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and approved by

New Brunswick, New Jersey

May, 2010



c© 2010

Manik Raina

ALL RIGHTS RESERVED



ABSTRACT OF THE THESIS

Properties of LDGM-LDPC codes With Applications to

Secrecy Coding

by Manik Raina

Thesis Directors: Professor Predrag Spasojević

The ensemble of low-density generator-matrix/low-density parity-check (LDGM-LDPC)

codes has been proposed in literature. In this thesis, an irregular LDGM-LDPC code

is studied as a sub-code of an LDPC code with some randomly punctured output-

bits. It is shown that the LDGM-LDPC codes achieve rates arbitrarily close to the

channel-capacity of the binary-input symmetric-output memoryless (BISOM) channel

with a finite lower-bound on the complexity. The measure of complexity is the average-

degree (per information-bit) of the check-nodes for the factor-graph of the code. A

lower-bound on the average degree of the check-nodes of the irregular LDGM-LDPC

codes is obtained. The bound does not depend on the decoder used at the receiver.

The stability condition for decoding the irregular LDGM-LDPC codes over the binary-

erasure channel (BEC) under iterative-decoding with message-passing is described. The

LDGM-LDPC codes are capacity achieving with bounded complexity and possess nat-

ural binning/nesting structure. These codes are applied to secrecy coding. The prob-

lem of secrecy coding for the type-II binary symmetric memoryless wiretap channel is

studied. In this model, the main channel is binary-input and noiseless and the eaves-

dropper channel is binary-symmetric memoryless. A coding strategy based on secure

nested codes is proposed. A capacity achieving length-n code for the eavesdropper
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channel bins the space {0, 1}n into co-sets which are used for secret messaging. The

resulting co-set scheme achieves secrecy capacity of the type-II binary symmetric mem-

oryless channel. As an example, the ensemble of capacity-achieving regular low-density

generator-matrix/low-density parity-check (LDGM-LDPC) codes is studied as a basis

for binning. The previous result is generalized to the case of a noisy main-channel.

The problem of secrecy-coding for a specific type-I wiretap channel is studied. In

the type-I wiretap channel under consideration, the main channel is a binary-input

symmetric-output memoryless (BISOM) channel and the eavesdropper channel is a

binary-symmetric channel (BSC). A secure-nested-code that achieves perfect-secrecy

for the above type-I channel is proposed. The secure-nested-code is based on a nested

regular LDGM-LDPC code construction.
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Chapter 1

Introduction

The foundation of channel coding theory was laid by the pioneering work of Shannon

[1]. Shannon showed that for a given channel, there existed a highest rate of infor-

mation transmission called the channel capacity (C), below which information could

be transmitted at arbitrarily low error-probability. Conversely, it was shown that for

rates at or higher than capacity, the error-probability was bounded away from zero.

Shannon’s theory was non-constructive in that it showed what rates of communication

were possible for large block lengths without indicating which specific coding schemes

could be used to achieve those rates. However, Shannon showed that, asymptotically,

almost all codes chosen randomly were reliable in the sense that if the transmission rate

R < C, arbitrarily low error-probability was achievable.

Taking a cue from Shannon’s random code construction, Gallager [2] proposed the

low-density parity-check codes or LDPC codes. The LDPC codes were constructed by

randomly choosing a sparse parity-check matrix. The purpose of a sparse parity-check

matrix was to use the iterative decoder (using message passing). With the introduction

of irregular LDPC codes, rates very close to the capacity of the binary-erasure channel

were reached. After the discovery of LDPC codes, more complex codes like Turbo

codes, Repeat-accumulate (RA) codes and Irregular repeat-accumulate (IRA) codes

have been proposed and studied. More recently, the ensemble of low-density generator-

matrix/low-density parity-check (LDGM-LDPC) codes has been proposed in literature.

This thesis attempts to understand the properties of the ensemble of LDGM-LDPC

codes and applies nested code constructions based on LDGM-LDPC codes to secrecy.
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1.1 Outline of the Thesis

In Chapter 2, it is shown that irregular LDGM-LDPC codes achieve capacity of the

binary-input symmetric-output memoryless (BISOM) channel with a finite lower-bound

on complexity. Further, the performance of irregular LDGM-LDPC codes under itera-

tive decoding is studied and the stability condition for zero error probability is given.

Subsequent chapters study the applications of LDGM-LDPC codes to secrecy.

In Chapter 3, regular LDGM-LDPC codes are used to partition the set of vectors

{0, 1}n and the resulting coset coding scheme is shown to achieve the secrecy-capacity

of a type-II binary symmetric wiretap channel.

In Chapter 4, regular LDGM-LDPC codes are used to achieve perfect-secrecy of the

type-I wiretap channel with a BISOM main channel and a binary symmetric wiretap

channel such that the main channel is less noisy compared to the eavesdropper channel.
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Chapter 2

Decoding Complexity of Irregular LDGM-LDPC Codes

Over BISOM Channels

2.1 Introduction

Two questions guide much of the research in channel-coding: the construction of codes

that achieve rates arbitrarily close to the capacity of a given channel and efficient

decoding of these codes. The decoding of error-correcting-codes using message-passing

over sparse-graphs is considered the state-of-the-art. An example of a sparse-graph

code is the ensemble of low-density parity-check codes [2]. Consider a binary-input

symmetric-output memoryless (BISOM) channel with channel-capacity C. Suppose a

code is chosen at random from a given code-ensemble and achieves a rate (1 − ǫ)C,

where ǫ ∈ (0, 1] is the multiplicative gap-to-capacity. The study of the encoding and

decoding complexity of code-ensembles in terms of the capacity-gap ǫ was proposed by

Khandekar and McElice [3].

Low-density parity-check (LDPC) codes exhibit remarkable performance under message-

passing decoding. This performance is attributed to the sparseness of the parity-check

matrices of these codes. The density of a parity-check matrix is the number of ones in

the parity-check matrix per-information-bit. The density is proportional to the number

of messages passed in one round of iterative-decoding. A lower-bound on the density

of a parity-check matrix in terms of the multiplicative-capacity-gap ǫ was obtained in

[4] and later tightened in [8]. For a code defined by a full-rank parity-check matrix,

the lower-bound on the density is
K1+K2 log 1

ǫ

1−ǫ , where K1 and K2 depend on the chan-

nel and not on code parameters. As the rate of code approaches the channel-capacity

(ǫ→ 0), the density of the parity-check matrix becomes unbounded. The authors of [5]

showed that non-systematic irregular-repeat-accumulate (NSIRA) codes could achieve
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rates arbitrarily close to the channel-capacity of a BISOM channel with bounded com-

plexity. The rates close to channel-capacity were achieved by randomly puncturing the

information bits of the NSIRA codes indepedently with a probability that depended

on the gap to capacity. Recently, the authors of [15], [10] modeled several commu-

nication scenarios using parallel channels. This model enables (among other things)

the investigation of the performance of punctured LDPC codes. The effect of random-

puncturing on the ensemble of (j, k) regular LDPC codes was studied in [11]; where

an upper-bound on the weight spectrum of the ensemble of LDPC codes in question

was obtained. The ensemble of low-density generator-matrix/low-density parity-check

(LDGM-LDPC) codes was studied in [6], [20]. This ensemble results on compounding

the LDGM and LDPC codes. Hsu [6] proved that codes from the regular LDGM-LDPC

ensemble could achieve rates arbitrarily close to the channel-capacity of the BISOM

channel with bounded graphical complexity. However, the proof of [6] assumed: a

regular LDGM code with rate 1; a regular LDPC code; and, a maximum-likelihood

(ML) decoder. No puncturing was employed. Pfister and Sason [12] studied capacity

achieving degree-distributions for the accumulate-repeat-accumulate (ARA) codes over

the BISOM channel. Using a technique called graph-reduction, some capacity-achieving

degree-distributions for accumulate LDPC (ALDPC) codes were proposed. ALDPC

codes were shown to be LDGM-LDPC codes with a 2-regular LDGM code. In this

work, the upper LDGM code can have any rate RG ∈ (0, 1]. Further, the LDPC and

LDGM codes can be irregular and the requirement for ML decoding is removed.

This chapter obtains lower-bounds on the complexity of the ensemble of irregu-

lar LDGM-LDPC codes at rates arbitrarily close to the capacity of the binary-input

symmetric-output memoryless channel for asymptotic block-lengths. The information-

theoretic bounds obtained in this chapter do not depend on the type of decoder. The

LDGM-LDPC codes are studied as sub-codes of constrained punctured LDPC codes.

It is shown that if some variable nodes of the constrained punctured LDPC codes are

punctured independently with probability p = 1 − κǫ (for some constant κ), the en-

semble achieves rates arbitrarily close to channel capacity of the BISOM channel with
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a finite lower-bound on the complexity. Further, it is shown that that the LDGM-

LDPC codes are equivalent to the constrained punctured LDPC codes when ǫ → 0

(or p → 1). The performance of the constrained punctured LDPC codes are studied

over the binary-erasure channel under iterative-decoding using message-passing. The

stability conditions are derived.

This chapter is organized as follows. Some preliminary topics are introduced in

Section 2.2. LDGM-LDPC codes are modeled as sub-codes of constrained punctured

LDPC codes in Section 2.3. Performance of the constrained punctured LDPC codes

and bounds on the average degrees of the factor graph are studied in Section 2.4.

The stability condition for these codes over the binary-erasure channel under message-

passing decoding is studied in Section 2.5. The chapter is concluded in Section 2.6.

2.2 Preliminaries

In this chapter, uppercase, lowercase and bold-uppercase variables represent random-

variables, realization of random variables and random-vectors respectively. For exam-

ple, X is a random-variable with a realization x while X is a random-vector.

2.2.1 LDGM-LDPC Codes

Regular LDGM-LDPC codes were studied in [6, 20]. In this chapter, irregular LDGM-

LDPC codes are studied. Consider the binary random vectors X1,X2 of length n[1]

and n[2] respectively. The LDGM-LDPC code is defined as follows:

C
∆
= {X1 : X1 = X2G,X2H

T = 0} (2.1)

where H and G are the random low-density parity-check (LDPC) matrix and random

low-density generator-matrix (LDGM) respectively (Figure 2.1). Consider the factor-

graphs GH and GG represented by the matrices H and G respectively. Let GH be a

(n[2], λH(x), ρH(x)) factor-graph with n[2] variable-nodes where we define the following

generating-functions:

λH(x) =
∑

i

λH,ix
i−1, ρH(x) =

∑

i

ρH,ix
i−1 (2.2)
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LDGM
LAYER

LDPC
LAYER

[1] bits of X1n

n[1] accumulate nodes of the LDGM code

n[2] LDPC output bits (also serve as LDGM information bits)

LDPC 
check nodes

Figure 2.1: The LDGM-LDPC Code

where λH,i (ρH,i) is the probability of a randomly chosen edge in GH being connected

to a variable (check) node of degree i. Similarly, Let GG be a (n[1], λG(x), ρG(x)) factor-

graph with n[1] accumulated-nodes where we define the following generating-functions:

λG(x) =
∑

i

λG,ix
i−1, ρG(x) =

∑

i

ρG,ix
i−1 (2.3)

where λG,i (ρG,i) is the probability of a randomly chosen edge in GG being connected

to a information (accumulate) node of degree i. The two factor graphs GG and GH are

compounded to form the LDGM-LDPC code as shown in Figure 2.1.

2.3 LDGM-LDPC Codes As a LDPC Sub-Code

In this section, the LDGM-LDPC code as defined in (2.1) is shown to be a sub-code of an

LDPC code. Consider the binary vector X = (X1X2) that results on the concatenation

of the two binary vectors X1 and X2 (of lengths n[1] and n[2] respectively), which satisfy

(2.1). A new constraint-matrix is defined as follows:

H =













I 0

G HT













T

(2.4)

where I is the n[1] × n[1] identity matrix, G and H are the random LDGM generator-

matrix and LDPC parity-check matrix of the LDGM-LDPC code (defined in (2.1)).

The following lemma holds.
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Lemma 1. The code CH
∆
= {X : XHT = 0} is a parity-check code with parity-check

matrix H which is a mother code of the LDGM-LDPC code defined in (2.1).

Proof. It follows from (2.4) that

{(X1X2)HT = 0} ⇐⇒ {X1 = X2G and X2H
T = 0}

where all arithmetic is over GF(2). The bits X1 are identical to the code bits of

the LDGM-LDPC code in (2.1). Thus, the code in (2.1) is a sub-code of the code

CH. The vector X is a length n parity-check code with a sparse parity-check ma-

trix H. H is the parity-check matrix of a randomly chosen code from the ensemble

(n, λG(x), ρG(x), λH(x), ρH(x)).

2.4 Puncturing the Mother Code CH

In this section, a random puncturing scheme is introduced for the code CH that was

defined in Lemma 1. Further, the lower-bound on the average density of the irregular

LDGM-LDPC ensemble is obtained. Consider a length n codeword X = {X1, . . . , Xn}

that is transmitted over a BISOM channel. A code bit of X is punctured if the output at

the BISOM channel corresponding to the said code bit is 0. Some puncturing schemes

for codes were proposed in [13], which include random puncturing (codeword bits were

punctured independently with some probability p) or intentional-puncturing (code bits

were divided into classes and each class had its own puncturing probability).

Remark 1. The codeword X is assumed to be uniformly chosen from the code CH. It

is assumed in this chapter that all the bits of the codeword are equally likely to be 0 or

1.

The result [10, Proposition 2.1] is now restated. It is assumed that every codeword

bit in X is transmitted though one of the J statistically independent BISOM channels,

where Cj is the capacity of the jth channel (in bits per channel use) and pY |X(.|.; j) is the

transition probability of the jth channel. Let the received message at the channel output

be Y. The conditional probability-density of the log-likelihood ratio log
pY |X(Y=y|0;j)

pY |X(Y=y|1;j) at

the output of the jth channel given the input is 0 is denoted by a(.; j). Let I(j) be the
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set of indices of the code bits transmitted over the jth channel, n[j] ∆
= |I(j)| be the size

of this set, and pj = n[j]

n
be the fraction of bits transmitted over the jth channel. For

an arbitrary c× n parity-check matrix H of the code C, let βj,m designate the number

of indices in I(j) referring to bits which are involved in the mth parity-check equation

of H and let Rd = 1 − c
n

be the design rate of C.

Proposition 1. Let C be a binary linear block code of length n, and assume that its

transmission takes place over a set of J statistically independent BISOM channels.

Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn} designate the transmitted codeword and

received sequence respectively. Then, the average conditional entropy of the transmitted

codeword given the received sequence satisfies

1

n
H(X|Y) ≥ 1 −

J
∑

j=1

pjCj − (1 −Rd)

.

(

1 −
1

2n(1 −Rd) log 2

∞
∑

p=1







1

p(2p− 1)

n(1−Rd)
∑

m=1

J
∏

j=1

(gj,p)
βj,m







)

where

gj,p
∆
=

∫ ∞

0
a(l; j)(1 + e−l)tanh2p

( l

2

)

dl,

j ∈ {1, . . . , J}, p ∈ N.

(2.5)

Definition 1. Constrained punctured LDPC code CH(p): Let CH be a parity-check

code defined in Lemma 1. If the first n[1] bits of this code X1 pass through the channel

without puncturing and the last n[2] bits of the code X2 are punctured independently

with probability p, the punctured mother code is denoted by CH(p).

The following remark explains why the above punctured LDPC codes are termed

”constrained.”

Remark 2. Let km be a random variable representing the number of edges involved in

the mth parity-check of a given parity-check code. In the bound derived in proposition

1, βj,m refers to the number of code bits from the jth class that are connected to the
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mth parity-check. For every m, it follows that:

km =
∑

j∈[1,...,J ]

βj,m

where J is the number of parallel, statistically independent channels. When discussing

the code CH(p), J = 2. The case j = 1 corresponds to the n[1] un-punctured bits

(variable nodes) X1 and j = 2 corresponds to the n[2] bits (variable nodes) of X2 that

are independently punctured with probability p. From the structure of the code CH(p),

each of the first n[1] parity-checks are connected to exactly one variable node from the

first class (bits of X1), i.e β1,m = 1, if m ∈ [1, n[1]]. The number of variable nodes

connected to the first n[1] check nodes from j = 2 is β2,m = km − 1, where km is

distributed as per ρG(.) of (2.3) (see Figure 2.1 and 2.2). The remaining parity-checks

of the code CH(p) are connected to variables nodes from the second class (bits of X2)

only. Thus if m ≥ n[1], β1,m = 0 and β2,m = km, where km is distributed as per ρH(.)

of (2.2). To summarize:

β1,m =















1,m ∈ [1, n[1]],

0, otherwise

β2,m =















km − 1,m ∈ [1, n[1]]

km, otherwise

(2.6)

In parallel LDPC codes of [10], the members of the sequence {β1,m, . . . , βJ,m} take on

all possible values between 1 and km such that
∑

j βj,m = km. On the other hand, for

the code CH(p), β1,m takes values 0 or 1 only. This follows from: the structure of the

parity-check matrix H of the code CH (and of CH(p)); and, the assignment of X1 and

X2 to the two classes of parallel channels.

Claim 1. Let C and CH(p) represent the codes defined in (2.1) and definition 1 respec-

tively. Then,

lim
p→1

CH(p) = C

The above claim follows from (2.1) and definition 1 because in the limit p → 1, all
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the bits of the lower LDPC code X2 are punctured. The codewords of CH(p) are X1,

which is identical to the codewords of C of (2.1).

The following lemma relates the code rate and the conditional entropy H(X|Y) of

the code defined in definition 1.

Lemma 2. Let CH(p) be a code of length n as defined in definition 1. Let X be a

binary codeword from CH(p). Let Y be a vector sequence of length n at the output of

the BISOM channel upon transmission of X. Then, the following inequality holds:

1

n
H(X|Y) ≤

n[2]

n
H(Pb) (2.7)

where Pb is the average bit-error probability of decoding the lower LDPC code X2 , n[2]

is the length of the lower LDPC code X2, as defined in (2.1).

Proof.

1

n
H(X|Y)

a
=

1

n
H(X1,X2|Y)

b
=

1

n
H(X2|Y) +

1

n
H(X1|Y,X2)

c
=

1

n
H(X2|Y)

(2.8)

where
a
= follows from the definition of X,

b
= follows from the chain rule of entropy and

c
= follows because for a given code CH(p), the entropy of X1 is zero if X2 is known (this

follows from X1 = X2G). Further,

1

n
H(X2|Y)

d
≤

1

n

n[2]
∑

i=1

h2(p
i
e) =

n[2]

n

1

n[2]

n[2]
∑

i=1

h2(p
i
e)

e
≤
n[2]

n
h2

( 1

n[2]

n[2]
∑

i=1

pie

)

f
=
n[2]

n
h2(Pb)

(2.9)

where
d
≤ follows from the Fano’s inequality for binary valued random variables and

where pie is the bit error probability for the ith bit of X2,
e
≤ follows from the concavity

of the binary entropy function and
f
= follows from the definition of the average bit-error

probability of X2. (2.7) follows from (2.8) and (2.9).

In the following theorem, it is assumed that the code length n → ∞ and Pb → 0.

An upper-bound on the design-rate for the ensemble of parity-check codes defined in

Lemma 1 is obtained.
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Theorem 1. Consider a (n, λG(x), ρG(x), λH(x), ρH(x)) ensemble as defined in Lemma

1. Let X be a codeword from the code CH(p) that is chosen uniformly from this ensem-

ble. Let the first n[1] bits of X pass through a BISOM channel with capacity C without

puncturing. The last n[2] bits of X pass through the BISOM channel after being punc-

tured independently with probability p. Let p1 = n[1]

n
, p2 = n[2]

n
(where p1 + p2 = 1) and

let RH be the design-rate of the lower LDPC code in the LDGM-LDPC code. Further,

let aL and aR be the average degrees of the accumulate nodes of the LDGM codes and

check nodes of the LDPC nodes respectively. Then, the design rate Rd of the ensemble

is upper-bounded as:

Rd ≤ 1 −
1 − (p1 + (1 − p)p2)C

1 − 1
2 log 2

g1,1p1+(1−RH)p2
p1+(1−RH)p2

g

g1,1p1aL+(1−RH )p2aR
g1,1p1+(1−RH )p2

2,1

where g1,1 and g2,1 are defined as per (2.5).

The above theorem is proved in the appendix. The above upper-bound on the

design-rate of punctured (n, λG(x), ρG(x), λH(x), ρH(x)) ensembles (as defined in Lemma

1) can be used to obtain a lower-bound on the asymptotic complexity of the code. In

the following theorem, the lower-bound is obtained.

Corollary 1. In the limiting case of n→ ∞, puncturing the last n[2] bits of a codeword

(independently with probability p) results in a channel capacity
−
C = (1 − p2p)C, where

C is the capacity of the BISOM channel under consideration. Let aL and aR be the

average degrees of the LDGM accumulate nodes and the LDPC check nodes. Let RH be

the rate of the lower LDPC code. Then, if the design rate of the ensemble Rd = (1−ǫ)
−
C,

the following lower-bound on aL and aR holds:

p1g1,1aL + (1 −RH)p2aR

p1g1,1 + (1 −RH)p2
≥

log
(

1
2 log 2

p1g1,1+(1−RH)p2
p1+(1−RH)p2

1−(1−ǫ)
−
C

ǫ
−
C

)

log( 1
g2,1

)

Proof. The design-rate Rd is set to (1 − ǫ)
−
C in the upper-bound of Theorem 1 and

obtain the above bound.
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A direct consequence of the above result is that rates arbitrarily close to channel

capacity are possible with finite complexity.

Lemma 3. Consider a code CH(p) discussed in corollary 1. Then, in the limit ǫ → 0,

the lower-bound on the average-degrees is finite if the puncturing probability p = 1−κǫ,

for some constant κ.

Proof. Since the last n[2] bits of the code CH(p) are punctured independently with

probability p, the probability density of the log-likelihood ratio (LLR) of those bits is:

a(l; 2) = pδ0(l) + (1 − p)a(l) (2.10)

where δ0(l) is the Dirac delta function at l = 0 and a(l) is the density of the LLR over

the original (un-punctured) BISOM channel. First, g2,1 is simplified. As per (2.5),

g2,1
∆
=

∫ ∞

0
a(l; 2)(1 + e−l)tanh2

( l

2

)

dl

a
=

∫ ∞

0
[pδ0(l) + (1 − p)a(l)](1 + e−l)tanh2

( l

2

)

dl

= (1 − p)g1

where
a
= follows from (2.10) and where

g1 =

∫ ∞

0
a(l)(1 + e−l)tanh2

( l

2

)

dl.

In the limit ǫ → 0, the lower-bound on the complexity in corollary 1 is finite if and

only if (1 − p)g1 = ηǫ for some constant η. Thus, it follows that p = 1 − κǫ, where

κ = η
g1

.

Lemma 4. The lower-bound on the average degrees of the LDGM-LDPC code defined

in (2.1) is finite for a BISOM channel.

Proof. Let X = (X1X2) represent a randomly chosen codeword from the code CH(p).

It follows from Lemma 3 that if the design rate of this ensemble Rd approaches capacity

(ǫ→ 0) and the puncturing probability p of the LDPC code bits X2 approaches 1, the

average lower-bound on the complexity is bounded. In the limit n → ∞ and p → 1,

the code words of the code CH(p) are X1 as all the bits of X2 are punctured. Thus,

the code words of the code CH(p) are identical to the LDGM-LDPC code defined in

(2.1).
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2.5 Stability Condition for Message Passing Decoding of Punctured

LDGM-LDPC Codes Over BEC

In this section, the decoding of the ensemble of (n, λG(x), ρG(x), λH(x), ρH(x)) codes

is studied. The channel is assumed to be a binary erasure channel (BEC) with an

erasure probability of δ. It is assumed that the decoder employs iterative-decoding

using message-passing. The density-evolution technique of [14] is employed in this

work. The main assumption in density-evolution is that the message on an edge of the

factor-graph of a randomly chosen code is independent of the messages on all other

edges. This assumption is justified because in the asymptotic case n→ ∞, the fraction

of bits involved in finite-length cycles vanishes. The density-evolution (DE) equations

are obtained for the lth stage of decoding. The fixed-point analysis is performed on the

DE equations and the stability-condition for DE is derived.

Consider the factor-graph of the LDGM-LDPC code in fig. 2.2. The lth iteration of

DE is considered. Let xl1 (yl1) be the erasure probability along a random edge from (to)

the n[1] un-punctured LDGM channel bit nodes to (from) the LDGM accumulate nodes

in the lth iteration of message-passing. Further, let xl2 (yl2) be the erasure probability

along a random edge from (to) the n[2] punctured LDPC variable bit nodes to (from)

the LDGM accumulate nodes. Similarly, let xl3 (yl3) be the erasure probability along

a random edge from (to) the n[2] punctured LDPC variable bit nodes to (from) the

LDPC check nodes. Consider the n[1] LDGM variable nodes. The message from the

LDGM variable nodes to the LDGM accumulate constraints is an erasure if the original

channel symbol that was received was an erasure and the message from the accumulate

constraint to the LDGM node in the l − 1th erasure was an erasure. This observation

is formalized as:

xl1 = δyl−1
1 (2.11)

Consider the message on a random edge from an LDGM accumulate node to a LDGM

variable node. An erasure results when at least one message from the LDPC variable
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Figure 2.2: The erasure probabilities for LDGM-LDPC codes

nodes in the previous iteration were erasures.

yl1 = 1 −RG(1 − xl−1
2 ) (2.12)

where RG(x) =
R x

0 ρG(t)dt
R 1
0 ρG(t)dt

. Consider a random edge from an LDPC variable node to the

LDGM accumulate node. An erasure results on this edge during the lth iteration if all

the incoming edges are erasures and the variable node was erased or punctured. Thus,

xl2 = (1 − (1 − δ)(1 − p))λG(yl−1
2 )LH(yl−1

3 ) (2.13)

where p is the puncturing probability and LH(x) =
R x

0 λH(t)dt
R 1
0 λH(t)dt

. The probability along

a random edge from a LDGM accumulate node to a LDPC variable node in the lth

iteration happen if any of the channel outputs are erased in the previous iteration.

yl2 = 1 − (1 − xl−1
1 )ρG(1 − xl−1

2 ) (2.14)

Along the lines of (2.13), a randomly chosen edge from an LDPC variable node to an

LDPC check-node has an erasure in the lth iteration if the variable node experienced

an erasure and all incoming edges carried erasure messages in the l − 1th iteration.

xl3 = (1 − (1 − δ)(1 − p))LG(yl−1
2 )λ(1 − yl−1

3 ) (2.15)

An erasure along a randomly chosen edge from an LDPC check node to an LDPC

variable node happens if any incoming edge has an erasure.

yl3 = 1 − λH(1 − xl−1
3 ) (2.16)
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Definition 2. The fixed-points of density-evolution described in (2.11-2.16) are defined

as

liml→∞x
l
i = xi and liml→∞y

l
i = yi, ∀i ∈ {1, 2, 3}

We solve for x2 and x3 from (2.11-2.16) and obtain,

x2 = [1 − (1 − δ)(1 − p)].

λG(1 − (1 − δ(1 −RG(1 − x2)))ρG(1 − x2)).

LH(1 − ρH(1 − x3))

x3 = [1 − (1 − δ)(1 − p)].

LG(1 − (1 − δ(1 −RG(1 − x2)))ρG(1 − x2)).

λH(1 − ρH(1 − x3))

(2.17)

Theorem 2. Consider the LDGM-LDPC code ensemble as defined in Lemma 1. The

point x2 = 0 is stable during density-evolution if

(1 − (1 − δ)(1 − p))2λG(0)L
′

G(0)ρ
′

H(1)λH(0)L
′

H(0) (2.18)

.[δL
′

G(1) + ρ
′

G(1)] < 1 (2.19)

The theorem is proved in the appendix.

As per Lemma 3, at rates very close to capacity, if the puncturing rate p = 1 − κǫ,

the lower-bound on the complexity is finite as the rates are arbitrarily close to capacity.

We study the stability condition when the rates are chosen very close to capacity.

Lemma 5. When the code rate of the LDGM-LDPC code is arbitrarily close to capacity

i.e. ǫ→ 0, and p = 1 − κǫ, the stability condition for iterative decoding is

λG(0)L
′

G(0)ρ
′

H(1)λH(0)L
′

H(0)[δL
′

G(1) + ρ
′

G(1)] < 1

Proof. Substituting p = 1 − κǫ and ǫ→ 0 in (2.18) proves the above lemma.

2.6 Chapter Summary

Irregular LDGM-LDPC codes have been shown to be the sub-codes of LDPC codes with

some randomly punctured bits. The ensemble of irregular LDGM-LDPC codes have
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been shown to achieve the capacity of the BISOM channel with a finite lower-bounded

on the complexity. The stability condition for the punctured LDGM-LDPC codes over

the BEC under message-passing decoding was obtained.

2.7 Appendix

2.7.1 Proof of Theorem 1

Proof. From Lemma 2, proposition 1, setting n→ ∞ and Pb → 0,

0 ≥ 1 −
J
∑

j=1

pjCj − (1 −Rd)

(

1 −
1

2n(1 −Rd) log 2

.

∞
∑

p=1







1

p(2p− 1)

n(1−Rd)
∑

m=1

J
∏

j=1

(gj,p)
βj,m







)
(2.20)

By considering the first term of the sum in p in the above equation, the above equation

can be bounded as follows:

0 ≥ 1 −
J
∑

j=1

pjCj − (1 −Rd)

(

1 −
1

2n(1 −Rd) log 2

.







n(1−Rd)
∑

m=1

J
∏

j=1

(gj,1)
βj,m







)
(2.21)

Since the first n[1] bits pass through the BISOM channel without puncturing, C1 =

C. Further, since the last n[2] bits of the codeword are punctured, C2 = (1 − p)C. Let

c be the number of parity checks in the matrix (2.4). Then, c = n(1 − Rd). Due to

the structure of the code, from (2.6) and (2.4), for m ∈ [1, n[1]], β1,m = 1 and β2,m is

distributed as ρG(x), (defined in (2.3)). Further, for m ∈ [n[1] + 1, c], β1,m = 0 and

β2,m is distributed as ρH(x) (defined in (2.2)). We compute the expectation of (2.21)

over the distributions ρG(.) and ρH(.). The expectation E
[

∑n(1−Rd)
m=1

∏J
j=1(gj,p)

βj,m

]

is

computed as follows:

E

n(1−Rd)
∑

m=1

J
∏

j=1

(gj,p)
βj,m = E

n[1]
∑

m=1

J
∏

j=1

(gj,p)
βj,m+

E

c
∑

m=n[1]+1

J
∏

j=1

(gj,p)
βj,m

(2.22)
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E
∑n[1]

m=1

∏J
j=1(gj,p)

βj,m is evaluated as follows:

E

n[1]
∑

m=1

J
∏

j=1

(gj,p)
βj,m a

= n[1]Eβ2,m [g1,pg
β2,m

2,p ]

b
= n[1]g1,pEβ2,m [g

β2,m

2,p ]
c
≥ n[1]g1,pg

Eβ2,m
β2,m

2,p

(2.23)

where
a
= follows because β1,m = 1,

b
= follows because g1,p is a constant as the expectation

is w.r.t. β2,m,
c
≥ follows from the convexity of the function g

β2,m

2,p and the Jensen’s

inequality. E
∑c

m=n[1]+1

∏J
j=1(gj,p)

βj,m is evaluated as follows:

E

c
∑

m=n[1]+1

J
∏

j=1

(gj,p)
βj,m d

= cHEβ2,m [g
β2,m

2,p ]
e
≥ cHg

Eβ2,m
β2,m

2,p (2.24)

where cH = c − n[1] is the number of parity-checks in the lower LDPC layer of the

LDGM-LDPC code, where
d
= follows because β1,m = 0,

e
≥ follows from the convexity

of the function g
β2,m

2,p and the Jensen’s inequality. From (2.23) and (2.24), the sum in

(2.22) becomes

E

n(1−Rd)
∑

m=1

J
∏

j=1

(gj,p)
βj,m ≥ n[1]g1,pg

Eβ2,m
β2,m

2,p + cHg
Eβ2,m

β2,m

2,p

f
= n[1]g1,pg

aL
2,p + cHg

aR
2,p

(2.25)

where
f
= results by replacing the average number of edges to the LDGM accumulate

nodes and LDPC check nodes by aL and aR respectively. The right hand side of (2.25)

is further simplified as follows.

n[1]g1,pg
aL
2,p + cHg

aR
2,p = (n[1]g1,p + cH)

[ n[1]g1,p

n[1]g1,p + cH
g
aL
2,p

+
cH

n[1]g1,p + cH
g
aR
2,p

]

g

≥ (n[1]g1,p + cH)g

n[1]g1,p

n[1]g1,p+cH
aL+

cH

n[1]g1,p+cH
aR

2,p

(2.26)

f

≥ is explained as follows. Consider a random-variable B with a probability distribution

defined as:

PB(b) =















n[1]g1,p

n[1]g1,p+cH
, b = aL

cH
n[1]g1,p+cH

, b = aR
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Consider f(B) = gB2,p. As f(B) is convex in B, from the Jensen’s inequality,
f

≥ follows.

From (2.21-2.26), and substituting n(1 −Rd) = c = n[1] + cH ,

0 ≥ 1 −

J
∑

j=1

pjCj − (1 −Rd)

(

1 −
1

2 log 2

.







n[1]g1,1 + cH

n[1] + cH
g

n[1]g1,1

n[1]g1,1+cH
aL+

cH

n[1]g1,1+cH
aR

2,1







)

(2.27)

We make the following substitutions in the above equations cH = (1 − RH)n[2], n[1] =

p1n and n[2] = p2n, where RH is the rate of the lower LDPC code:

0 ≥ 1 −
J
∑

j=1

pjCj − (1 −Rd)

(

1 −
1

2 log 2

.

{

p1g1,1 + (1 −RH)p2

p1 + (1 −RH)p2
g

p1g1,1aL+(1−RH )p2aR
p1g1,1+(1−RH )p2

2,1

})

(2.28)

By replacing C1 = C, C2 = (1 − p)C and solving for Rd in the above equation, we

obtain the desired bound.

2.7.2 Proof of Theorem 2

Proof. The equations (2.17) can be represented as

x2 = ψA(x2, x3), x3 = ψB(x2, x3)

Consider a fixed point in the density-evolution (x2, x3) = (xo2, x
o
3). The above functions

can be linearly approximated in the neighbor of the fixed point as follows,

ψA(x2, x3) = xo2 +

[

∂ψA

∂x2
+
∂ψA

∂x3

dx3

dx2

]

(x2 − xo2) + o(x2 − xo2)
2 (2.29)

Since x3 = ψB(x2, x3), taking derivatives on both sides,

dx3

dx2
=
∂ψB

∂x2
+
∂ψB

∂x3

dx3

dx2
(2.30)

Substituting dx3
dx2

from (2.30) into (2.29),

ψA(x2, x3) = xo2 +

[

∂ψA

∂x2
+
∂ψA

∂x3

∂ψB
∂x2

1 − ∂ψB
∂x3

]

(x2 − xo2)

+o(x2 − xo2)
2
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For stability,

[

∂ψA
∂x2

+ ∂ψA
∂x3

∂ψB
∂x2

1−
∂ψB
∂x3

]

< 1. Evaluating the derivatives and substituting

xo2 = xo3 = 0, the result is obtained.
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Chapter 3

Applications of Regular LDGM-LDPC Codes to the

Type-II Binary Symmetric Wiretap Channel

3.1 Introduction

The popularity of wireless communications has led to new security issues. Wireless de-

vices have numerous applications: communications, health care, computer peripherals,

home automation, gaming, etc. The broadcast nature of wireless devices makes them

vulnerable to eavesdropping. Traditionally, cryptographic mechanisms are used to solve

this problem. Cryptographic mechanisms require infrastructure to support passwords

and key exchange. In this chapter, we study techniques that use error-correcting codes

to provide secrecy without requiring cryptographic infrastructure. These techniques

achieve secrecy by exploiting the statistical properties of the noise in the channel be-

tween the transmitter and the eavesdropper [17].

The information theoretic approach to secrecy was pioneered by Shannon [16].

Wyner [18] proposed the wiretap channel model to study data transmission in the

presence of an eavesdropper. In this model, discrete memoryless channels were used

to model communication links from the transmitter to the legitimate receiver and the

eavesdropper. Wyner determined the rates at which information could be transmitted

to the receiver while keeping the eavesdropper completely ignorant. Wyner and Ozarow

[19] considered a special case of the wiretap channel model in which the channel be-

tween the transmitter and the legitimate receiver was noiseless. This model was called

the type-II wiretap channel.

Low density parity check codes were used for secure code design in type-II binary

erasure wiretap channels in [25]. In that work, error detection codes were also used for

secure code design of type-II binary symmetric wiretap channels. The authors of [24]
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solved the problem of secure coding for a general class of type-II wiretap channels, in

which the main channel was noiseless and the eavesdropper channel was a binary input

symmetric output memoryless (BISOM) channel. The problem was solved by proving

that a BISOM channel was a degraded version of a binary erasure channel. Secure

codes were then designed to achieve perfect secrecy for the binary erasure channel. It

was shown that this secure code design achieved perfect secrecy of the type-II BISOM

wiretap channel.

More recently, low-density generator-matrix/low-density parity-check (LDGM-LDPC)

codes have been studied in [6] and [20]. This code ensemble results from compounding

factor graphs of randomly chosen regular LDGM and LDPC codes. These codes are

shown to achieve the capacity of the binary symmetric channel under typical-pairs de-

coding. While previous works [24] and [25] have proposed approaches to achieve perfect

secrecy, there is a gap between the achieved transmission rates and the secrecy capacity.

This chapter focuses on designing secure codes to achieve the secrecy capacity of

the type-II binary symmetric wiretap channel. To achieve that goal, we construct

secure nested codes based on regular LDGM-LDPC codes of [20]. In this approach,

the space of vectors, {0, 1}n is partitioned by a sub-code and its corresponding co-

sets. The sub-code is an LDGM-LDPC code sequence that achieves the capacity of the

eavesdropper channel. A scheme to transmit confidential messages using this partition is

proposed. It is shown that the proposed coding scheme achieves the secrecy capacity of

the type-II binary symmetric wiretap channel. Finally, we choose specific LDGM-LDPC

codes and compute their noise thresholds using typical-pairs decoding. These results

demonstrate how such codes can be used to achieve rates on the secrecy capacity curve.

The chapter is organized as follows. We introduce some definitions and background

concepts in Section 3.2. An approach for secure nested codes for the type-II binary

symmetric wiretap channel is studied in Section 3.3. This is followed by a discussion

of the performance of the proposed approach in Section 3.4. The equivocation rate is

compared to the transmission rate and the cross-over probability of the eavesdropper

channel.
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Eavesdropper Channel
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Eavesdropper

W
Xn Yn

Zn

Figure 3.1: The wiretap channel model

3.2 Preliminaries

3.2.1 Wiretap Channels and Secrecy Coding

As shown in Fig. 3.1, the wiretap channel model consists of the transmitter, the le-

gitimate receiver, and an eavesdropper. The transmitter sends a confidential message

W to the legitimate receiver. The confidential message W is chosen uniformly from

the set of all messages, {1, . . . ,M}. The transmitter encodes the message W into a

binary sequence Xn = {X1, . . . , Xn}. Let Y n and Zn be the received sequences at the

legitimate receiver and the eavesdropper, respectively, given that Xn was transmitted.

The goal of secrecy coding is two fold. The transmitter must be able to communicate

with the legitimate receiver at rate R such that the messages can be decoded by the

legitimate receiver with error probability Pe → 0 as code length n → ∞ (reliability).

The uncertainty about the message at the eavesdropper H(W |Zn)
n

must be larger than

or equal to the design equivocation rate Re, i.e. limn→∞
H(W |Zn)

n
≥ Re (confidentiality).

If the above two conditions are satisfied, the rate pair (R,Re) is said to be achievable.

If R = Re, the eavesdropper is completely ignorant about the transmitted message. We

say that the encoding scheme achieves perfect secrecy.

3.2.2 Random Bins and Secure Nested Codes

Wyner [18] proposed a solution to the secrecy coding problem for wiretap channels.

A code C was randomly partitioned into bins {C1, . . . , CM}. To transmit a message

W = i, a codeword was uniformly chosen from the bin Ci and transmitted. The code
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C had enough redundancy to defeat the noise in the main channel (Fig. 3.1). On the

other hand, the noise in the eavesdropper channel prevented the eavesdropper from

determining which bin the transmitted codeword came from. Structured codes which

solve the problem of secure code design over wiretap channels are based on the intuitions

provided by Wyner’s random binning scheme. Let {C(n)} denote a sequence of binary

linear codes, where C(n) is a (n, kn) code having a common rate Rc = kn
n

. Following

[24], we define a secure code sequence as follows:

Definition 3. Secure Code Sequence: {C0(n), C1(n)} is a secure nested code sequence

if C0(n) is a fine code of rate R0 and C1(n) is a coarse code of rate R1 so that C1(n) ⊆

C0(n) and R1 ≤ R0. The information rate of this code sequence is R0 −R1.

The secure code sequence is chosen such that it satisfies the confidentiality and

reliability requirements (Section 3.2.1).

Definition 4. Type-II Binary Symmetric Wiretap Channel: Consider a wiretap chan-

nel (Fig. 3.1). If the main channel is noiseless and the eavesdropper channel is a

binary-symmetric memoryless channel with crossover probability p, the resulting chan-

nel is a type-II binary symmetric wiretap channel.

Definition 5. Secrecy Capacity: The secrecy capacity is the maximum possible rate at

which the transmitter can communicate with the legitimate receiver (with arbitrarily low

probability of error) such that the eavesdropper is completely ignorant of the transmitted

message.

The secrecy capacity for the wiretap channel was established in [26] as

Cs = maxp(X)[I(X;Y ) − I(X;Z)]

For the type-II binary symmetric wiretap channel, Cs = h2(p), where h2(.) is the binary

entropy function:

h2(p) = −p log2 p− (1 − p) log2(1 − p).

Similarly, h(p) = −p log p− (1 − p) log(1 − p).
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G

K1 K2
k

m

n

dc

dv

dc’

H1 H2

Figure 3.2: The regular LDGM-LDPC compound construction

3.2.3 LDGM-LDPC Codes

LDGM-LDPC codes were proposed in [6] and [20]. This code ensemble is based on

compounding the factor graph of a randomly-chosen regular low-density generator-

matrix (LDGM) code, with a randomly-chosen regular low-density parity-check (LDPC)

code (Fig. 3.2). We now discuss the nesting properties of the LDGM-LDPC codes.

Let xn be a codeword of the LDGM-LDPC code C; then

C = {xn ∈ {0, 1}n : xn = Gym for some

ym ∈ {0, 1}m such that Hym = 0}.

(3.1)

whereG andH denote the generator-matrix of the LDGM layer and the parity-check

matrix of the LDPC layer, respectively. Partition the k lower parity checks into two

sets K1 and K2 (Fig. 3.2). The number of parity checks in K1 and K2 are k1 and k2,

respectively. Let the parity check matrices for K1 and K2 be H1 and H2, respectively.

Then, the code C(G,H1) is defined as follows:

C(G,H1) = {xn ∈ {0, 1}n : xn = Gym for some

ym ∈ {0, 1}m such that H1y
m = 0}.

(3.2)

This code consists of codewords which satisfy the parity checks in K1 alone. For a

sequence r ∈ {0, 1}k2 , the code C(r) is defined as follows:

C(r) = {xn ∈ {0, 1}n : xn = Gym for some

ym ∈ {0, 1}m such that





H1

H2



 ym =





0

r



}.
(3.3)
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C(r) satisfies all the parity checks in K1 and leaves a syndrome with the parity checks in

K2. Clearly, C(r) ⊆ C(G,H1) as codewords in C(r) satisfy at least all the constraints

of K1. C(r) forms partitions of C(G,H1) such that C(G,H1) = ∪r∈{0,1}k2C(r).

3.3 Secure code design for Type-II Binary symmetric wiretap channel

In this section, we study secure codes for a type-II binary symmetric wire-tap channel

based on the LDGM-LDPC code sequence. Let C0(n) = {0, 1}n and let C1(n) be a

sequence of LDGM-LDPC codes which achieve the capacity of the binary symmetric

channel with cross-over probability p. The set of vectors {0, 1}n is partitioned into sub-

codes {C1, . . . , CM} by C1(n) and its co-sets. To transmit the confidential messageW =

i, the transmitter chooses a codeword uniformly from the co-set Ci(n) and transmits

it. Now we have the following result:

Theorem 3. Consider a sequence of secure nested codes {C0(n), C1(n)}, where C0(n) =

{0, 1}n and C1(n) is an LDGM-LDPC code sequence achieving the capacity of the binary

symmetric channel with cross-over probability p (the eavesdropper channel). Suppose

that the secure code sequence {C0(n), C1(n)} is transmitted over the type-II binary sym-

metric wiretap channel, then, the rate-equivocation pair

(R,Re) = (h2(p), h2(p)) (3.4)

is achievable.

Proof. The secrecy capacity of the type-II binary symmetric wiretap channel is shown

in [26] to be h2(p). We need to prove that the rate-equivocation pair (R,Re) =

(h2(p), h2(p)) is achievable. Following the approach of [24, Appendix A], we compute
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H(W |Zn), the equivocation of the transmitted message at the eavesdropper:

H(W |Zn) = H(W,Zn) −H(Zn)

= H(W,Xn, Zn) −H(Zn) −H(Xn|W,Zn)

= H(Xn) +H(W,Zn|Xn) −H(Zn)

−H(Xn|W,Zn)

≥ H(Xn) +H(Zn|Xn) −H(Zn)

−H(Xn|W,Zn)

= H(Xn) − I(Xn;Zn) −H(Xn|W,Zn)

≥ n− nCBSC −H(Xn|W,Zn)

(3.5)

where CBSC = 1 − h2(p) is the capacity of the binary symmetric channel. Consider

the term H(Xn|W,Zn). Suppose the transmitted message is W = w. Based on the

encoding procedure described in Section 3.3, Xn is uniformly chosen from the co-set

Cw. By applying Fano’s inequality, we obtain

H(Xn|W = w,Zn) ≤ 1 + nPe(w)R1 = nǫ (3.6)

where Pe(w) denotes the average probability of error under Maximum-likelihood (ML)

decoding at the eavesdropper incurred by using coset Cw and ǫ is small when n is

large. Since the co-set Cw shares the same Hamming distance properties of C1, we have

Pe(W = w) = Pe(W = 1) = limn→∞ 0, i.e., the probability of error vanishes to 0 where

n is large. Now, we have

H(Xn|W,Zn) =
1

M

M
∑

w=1

H(Xn|W = w,Zn) ≤ nǫ. (3.7)

Substituting this result into (3.5), we get H(W |Zn) ≥ n − nCBSC = nh2(p). Hence,

the rate pair (R,Re) = (h2(p), h2(p)) is achievable.

3.4 Numerical Examples

In this section, the performance of the proposed secure code sequence for the Type-

II binary symmetric wiretap channel is discussed. We look at specific examples of
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LDGM-LDPC codes and determine the secrecy rates they achieve. Towards that end,

we determine the noise thresholds these codes achieve. Consider a channel characterized

by one parameter. The noise threshold of a code over this channel is the worst value of

the channel noise parameter at which decoding of the given code is possible at arbitrarily

small error probability. We consider the crossover probability of the binary symmetric

channel as the channel noise parameter. Using typical-pair decoding [22, Chapter 6], we

numerically calculate the noise thresholds for some regular LDGM-LDPC codes based

on the weight spectrum of the LDGM-LDPC code ensemble. The weight spectrum of

the LDGM-LDPC ensemble is described in the Appendix. As shown in Table 3.1, we

derive the noise thresholds of several LDGM-LDPC code ensembles. In particular, we

choose LDGM-LDPC codes with LDGM degree dc = 2. The LDPC degrees are varied

to get different rates. In Table 3.1, we compare the Shannon threshold psh with the

noise threshold p2,j,k of the LDGM-LDPC codes for the binary symmetric channels.

It is observed that the achieved noise threshold p2,j,k achieves the Shannon limit. The

(2, j, k) R psh p2,j,k

(2, 2, 8) 0.75 0.0416 0.0416
(2, 2, 7) 0.714 0.0498 0.0498
(2, 2, 5) 0.6 0.0793 0.0793
(2, 4, 8) 0.5 0.11 0.11
(2, 3, 5) 0.4 0.1461 0.1461
(2, 4, 6) 0.33 0.17395 0.17395
(2, 3, 4) 0.25 0.2145 0.2145

Table 3.1: Noise thresholds of some regular LDGM-LDPC codes

secrecy capacity is plotted as a function of the crossover probability of the eavesdropper

channel in Fig. 3.3. Also shown are the highest achievable rates with the best known

techniques. The use of error detection codes [23] gives a best secrecy rate of − log(1−p)

as shown in the figure. Using a degraded erasure channel [24] gives a best secrecy rate

of 2p. The secure coding sequence proposed in this chapter (Theorem 3) achieves a

secrecy rate of h2(p). The secrecy rates that the (2, j, k) LDGM-LDPC codes achieve

are shown in Fig. 3.3. The rate achieved by each code is marked on the secrecy capacity

curve. The secrecy capacity curve for the type-II binary symmetric wiretap channel in

Fig. 3.3 overlaps with the secrecy rate achieved by the proposed coding scheme.
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Figure 3.3: Secrecy rate that can be achieved using LDGM-LDPC binning

The boundaries of the equivocation rate vs. the transmission rate for the type-II

binary symmetric(0.214) wiretap channel are shown in Fig. 3.4. At p = 0.214, the

equivocation rate rises linearly with transmission rate till the rate is 0.75. This rate

pair (Re, R) = (0.75, 0.75) can be achieved by a (2, 3, 4) LDGM-LDPC code. The rate

pair (Re, R) = (0.42, 0.42) can be achieved by using a dual of a good code for the

binary erasure channel as shown in [24]. Any point (Re, R) on the straight line between

(0.42, 0.42) and (0.75, 0.75) can be achieved by time-sharing. The capacity equivocation

region [18] for the type-II binary symmetric wiretap channel X → (Y, Z) with cross-over

probability p consists of transmission-equivocation rate pairs (R,Re) satisfying

Re ≤ R ≤ maxp(X)I(X;Y ) = 1

0 ≤ Re ≤ maxp(X)I(X;Y ) − I(X;Z) = h2(p).

For our example above, that means 0 ≤ Re ≤ 0.75 and Re ≤ R ≤ 1. The transmission-

equivocation region achieved by LDGM-LDPC secure code sequences is identical to the

region achievable in Wyner’s random binning scheme.
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3.5 Chapter Summary

This chapter has used capacity achieving LDGM-LDPC codes as coarse codes to par-

tition the space of binary vectors {0, 1}n. It has been seen that this results in a secure

nested code which achieves the secrecy capacity of the type-II binary symmetric wire-

tap channel. We have compared the performance of the scheme with previous results.

Further, we have demonstrated this result using some specific LDGM-LDPC codes.

3.6 Appendix

3.6.1 Spectrum of regular LDGM-LDPC Codes

An upper-bound on the weight-spectrum of the LDGM-LDPC codes was derived in [6,

Section 3.3]. However, [6] assumed a (d, c) LDGM upper-code, i.e. both the check-

nodes and variable-nodes in the factor-graph of the upper LDGM code were assumed

to be regular. Further, the upper LDGM code was assumed to be rate-1, i.e. d = c. An

upper-bound on the asymptotic-spectrum of the LDGM-LDPC codes is derived in this
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section after relaxing the above two conditions. The upper-bound on the asymptotic-

spectrum is used to calculate the noise-thresholds of the LDGM-LDPC codes over

the binary-symmetric-memoryless channel. Consider a regular LDGM-LDPC code en-

semble with a randomly-chosen LDGM generator-matrix G and a randomly-chosen

parity-check matrix H respectively (as defined in Section 3.2.3). Let Xn and V m de-

note the LDGM-LDPC codeword and the lower LDPC code-word respectively, such

that Xn = V mG and V mHT = 0, where HT is the transpose of the matrix H. Let

ALDGM-LDPC(nδ) denote the ensemble-averaged LDGM-LDPC weight-enumerator of

the above code, where δ ∈ [0, 1]. Then, the ensemble-averaged weight-enumerator can

be upper-bounded as follows:

ALDGM-LDPC(nδ) ≤
m
∑

l=0

ALDPC(l)
(

m
l

) Z(nδ, l). (3.8)

where ALDPC(l) is the ensemble-averaged weight-enumerator of the lower LDPC code

(determined by Litsyn et. al. in [28]) and Z(nδ, l) is the number of LDGM code-words

with input-weight l and output-weight nδ for a randomly chosen LDGM code. The

equation (3.8) is an inequality because different LDPC code-words could result in the

same LDGM-LDPC code-word (leading to an over-count). Following [33], we have

Z(nδ, l) =

(

m

l

)

P (wt(Xn) = nδ|wt(V m) = l) (3.9)

Thus,

ALDGM-LDPC(nδ) ≤
m
∑

l=0

ALDPC(l)

P (wt(Xn) = nδ|wt(V m) = l).

(3.10)

If the weight of the input sequence applied to a randomly chosen LDGM code is l, then

by [21, Appendix A], Xn = {X1, . . . , Xn} is a sequence of independent and identically

distributed, binary, Bernoulli random variables with parameter δ∗(l) = 1
2(1−(1− 2l

m
)dc),

where dc is the degree of the upper, regular, LDGM check-nodes. Furthermore, applying

the method of types [27, Chapter 12], we obtain

P (wt(Xn) = nδ|wt(V m) = l) =

(

n

nδ

)

e−n(h(δ)+D(δ||δ∗(l)) (3.11)
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where D(.) is the Kullback-Leibler distance between two probability distributions. By

substituting P (wt(Xn) = nδ|wt(V m) = l) into (3.10),

ALDGM-LDPC(nδ) ≤

(

n

nδ

) m
∑

l=0

ALDPC(l).

e−n(h(δ)+D(δ||δ∗(l)).

(3.12)

In the limiting case of n→ ∞,

ALDGM-LDPC(nδ) ≤
m
∑

l=0

ALDPC(l)e−n(D(δ||δ∗(l)). (3.13)

The upper-bound on the spectrum of the LDGM-LDPC code is:

r(δ) = limn→∞
1

n
logALDGM-LDPC(nδ). (3.14)

Then, the upper-bound on the weight-spectrum of the regular LDGM-LDPC code en-

semble is given by

r(δ) ≤ limn→∞
1

n
log

m
∑

l=0

ALDPC(l)e−n(D(δ||δ∗(l)) (3.15)

Using the bound on the weight-spectrum, the noise thresholds of these codes over

a binary-symmetric channel with cross-over probability p are determined. The noise-

thresholds are obtained using the typical-pairs approach of [22], which assumes that the

weight-spectrum of the code in question satisfies assumptions 1 and 2 of [22, Section

6.4.1]. Two lemmas are presented to prove this to be true for the LDGM-LDPC codes.

Lemma 6. Consider the upper-bound on the LDGM-LDPC weight-spectrum in (3.15).

There exists a δ0 ∈ (0, 1) such that r(δ) < 0 for all δ ≤ δ0. (The quantity nδ0 is the

minimum-distance of the code).

Proof. From (3.15), r(δ) ≤ RG max
l∈[0,...,m]

rLDPC( l
m

)−D(δ||δ∗( l
m

)), where RG is the upper

LDGM rate and rLDPC( l
m

) is the asymptotic weight-spectrum of the lower LDPC code.

Let x = l
m

. We upper-bound rLDPC(x) from [33, Lemma 1] and expand the term

D(δ||δ ∗ ( l
m

)) to obtain,

r(δ) ≤ h(δ) + max
x
RG((1 −RH + 1 − δ) log(1 + (1 − 2x)d

′
c)+

h(x) + (1 −RH) log 2) + δ log δ∗(x) + (1 − δ) log(1 − δ∗(x))
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By using the definition of δ∗(x) and the observation that δ∗(x) ≤ 0 ≤ 1 − δ∗(x), the

above upper-bound simplifies to:

r(δ) ≤ h(δ) +RGh(x) − log 2(RGRH + 1)+

(RG(1 −RH) + (1 − δ)) log(1 + (1 − 2x)max(d
′
c,dc))

It is shown in [33, Theorem 1] that the above expression has a maxima at x = 1
2 for

a sufficiently large (but finite) d
′

c or dc. Substituting x = 1
2 in the above equation,

we obtain the bound r(δ) ≤ h(δ) − (1 − RGRH) log 2. From the previous bound,

δ0 = h−1(1 −RGRH log 2).

Lemma 7. Let rn(δ) and r(δ) be the weight-spectrum and asymptotic weight-spectrum

of the regular LDGM-LDPC codes. Then rn(δ) − r(δ) ≤ θn for a non-negative θn such

that lim
n→∞

nθn
dn

= 0, where dn is the minimum-distance.

Proof. From (3.12),

rn(δ) ≤
1

n
(log

(

n

nδ

)

+RG max
l∈[0,...,m]

rLDPC(
l

m
) − h(δ)

−D(δ||δ∗(
l

m
)) +

logm

n

≤
1

n
(log

(

n

nδ

)

) − h(δ) +
logm

n
+ r(δ)

Clearly, as n→ ∞, rn(δ) − r(δ) = 0.
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Chapter 4

Applications of Regular LDGM-LDPC Codes to Type-I

Channels With a Binary Symmetric Eavesdropper

4.1 Introduction

This chapter focuses on designing secure codes to achieve perfect-secrecy of the type-I

wiretap channel with an eavesdropper’s channel that is a binary-symmetric channel

(BSC). The main channel is assumed to be any BISOM channel. To achieve that goal,

we construct secure nested codes based on regular LDGM-LDPC codes of [20]. In this

approach, a regular LDGM-LDPC code is partitioned by a sub-code and its correspond-

ing co-sets. The sub-code is another regular LDGM-LDPC code sequence that achieves

the capacity of the eavesdropper channel. A scheme to transmit confidential messages

using this partition is proposed. It is shown that the proposed coding scheme achieves

the perfect secrecy of the type-I channel in question.

4.2 Preliminaries

Definition 6. Binary-input symmetric-output memoryless (BISOM) channel: Con-

sider a channel with binary-input:

X ∈ X
∆
= {0, 1}. (4.1)

Let R be the set of real numbers. Let the output of the channel be Y ∈ Y ⊆ R, and let

the channel transition probability be PY |X(.|.). A channel is symmetric if:

PY |X [Y = y|X = 0] = PY |X [Y = −y|X = 1],∀y ∈ Y. (4.2)

All memoryless channels satisfying (4.1) and (4.2) are called BISOM channels.
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Definition 7. Bhattacharrya parameter of a BISOM channel: Consider a BISOM

channel (as per definition 6). The Bhattacharyya noise parameter of the above channel

is defined as

γ
∆
=

∫

y∈Y

{√

PY |X [Y = y|X = 0]PY |X [Y = y|X = 1]
}

dy (4.3)

Definition 8. Type-I (γ, p) wiretap channel: The type-I (γ, p) wiretap channel has

a main channel that is a BISOM channel with Bhattacharrya noise parameter γ; the

eavesdropper channel is a binary-symmetric channel (BSC) with cross-over probability

p.

4.3 Regular LDGM-LDPC Codes Achieve Capacity of the BSC

Theorem 4. The ensemble of regular (dc, dv, dc′ ) LDGM-LDPC codes achieves the

capacity of the BSC with finite degrees under typical-pairs decoding.

This theorem is proved in the appendix.

4.4 Cutoff Rates for Regular LDGM-LDPC Codes Over BISOM Chan-

nels

We now restate [31, Thm 5.1] for completeness. Let Dn be a sequence of integers such

that

Dn

nǫ
→ 0,

log n

Dn
→ 0, ∀ǫ > 0 (4.4)

Further,

c
(n)
0

∆
= sup

Dn
n
<δ≤1

rn(δ)

δ
, c0

∆
= lim sup

n→∞
c
(n)
0 (4.5)

where rn(δ) is the spectrum of the length n code under discussion.

Theorem 5. [31, Thm. 5.1] : Suppose the ensemble threshold c0 (defined in (4.5))

is finite and α = − log γ such that α > c0. Then if

−

P
(n)
W denotes the ensemble aver-

aged maximum-likelihood (ML) decoder error probability, there exists an integer n0 and
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positive constants K and ǫ such that for n > n0,

−

P
(n)
W ≤ Z(n)(Dn) +Ke−ǫDn

where Z(n)(D)
∆
=
∑D

h=1

−

A
(n)
h , where

−

A
(n)
h is the ensemble averaged weight enumerator

of the code in question.

An upper bound on the asymptotic spectrum of the regular LDGM-LDPC codes is

derived in (4.11) in the Appendix as

r(δ) ≤ H(δ) − log 2(1 −R) (4.6)

where R is the rate of the code. Using (4.6) and (4.5), the following result is proved.

Lemma 8. For a regular LDGM-LDPC code with rate R, the ensemble threshold c0 is

bounded as:

c0 ≤ log
1

21−R − 1

This lemma is proved in the appendix.

Theorem 6. Consider a regular LDGM-LDPC code with c0 satisfying Lemma 8. Then,

if α = − log γ > log 1
21−R−1

, the ensemble maximum-likelihood decoder error probability
−

P
(n)
W goes to 0 for large code-lengths n.

Proof. If α = − log γ > log 1
21−R−1

=⇒ α > c0 as c0 ≤ log 1
21−R−1

, which follows from

Lemma 8. From Theorem 5,

−

P
(n)
W goes to 0 as n→ ∞.

Lemma 9. Consider a regular LDGM-LDPC code transmitted over the BISOM with

Bhattacharrya noise-parameter γ. If R < 1 − log2(1 + γ),

−

P
(n)
W goes to 0 as n → ∞

under maximum likelihood decoding.

Proof. The lemma follows from Theorem 6.

We observe that the upper-bound on the rate in Lemma 9 is identical to the cut-off

rate for the BISOM channel [31].
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Figure 4.1: A nested regular LDGM-LDPC construction

4.5 A Nested Code Construction Based on LDGM-LDPC Codes

A nested LDGM-LDPC construction is proposed in this section. First, a regular LDGM-

LDPC code is defined.

Definition 9. (dc, dv, dc′ ) regular LDGM-LDPC code: In this code, each of the n accu-

mulate nodes (the parity-checks) connected to the n LDGM variable nodes are connected

to dc LDPC variable nodes. Further, each LDPC variable node is connected to dv LDPC

check nodes; each LDPC check-node is connected to dc′ LDPC variable nodes.

As an example, a (3, 4, 6) regular LDGM-LDPC code is shown in Figure 4.1.

Definition 10. Nested (dc, dv, dv2 , dc′ ) regular LDGM-LDPC code: Consider a (dc, dv, dc′ )

regular LDGM-LDPC code as defined in definition 9. The above code is a nested

(dc, dv, dv2 , dc′ ) regular LDGM-LDPC code if removing a given set of LDPC parity-

checks results in a (dc, dv2 , dc′ ) regular LDGM-LDPC code.

As an example, consider the (3, 4, 6) regular LDGM-LDPC code illustrated in Figure

4.1. Removing the last LDPC parity-check (and the corresponding edges connected to

the removed parity-check) results in a (3, 3, 6) regular LDGM-LDPC code. Thus, as

per definition 10, the code in Figure 4.1 is a nested (3, 4, 3, 6) regular LDGM-LDPC

code. This chapter assumes that the rate of the lower LDPC code RH of the nested

regular LDGM-LDPC codes agrees with the design rate 1 − dv
d
c
′
. A similar assumption

is made about the rate of the randomly chosen lower LDPC code (after removal of the

LDPC checks) RH′ , and its design rate 1 −
dv2
d
c
′
. This assumption is justified for codes
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with large block-lengths by [30, lemma 3.27] which is re-stated for completeness.

Lemma 10. [30, Lemma 3.27]: Consider the (dv, dc′ ) regular LDPC code with length

m and with 2 ≤ dv < dc′ . Let the design rate of the ensemble be r(dv, dc′ ) = 1 − dv
d
c
′
.

Let H be the parity-check matrix of a randomly chosen code from this ensemble with

rate r(H). Then,

P
[

r(H) = r(dv, dc′ ) +
ν

m

]

= 1 − om(1)

where ν = 1 if dv is even and 0 otherwise.

Note 1. Rank of the parity-check matrix of the lower LDPC code: Consider the length

m lower LDPC code in the nested (dc, dv, dv2 , dc′ ) regular LDGM-LDPC code. It follows

from Lemma 10 that the parity-check matrix H of the lower (dv, d
′

c) LDPC code is full

rank with probability 1 for m → ∞. Removal of parity-checks from the factor graph of

the LDPC code (as shown in fig. 4.1) involves removal of the corresponding rows of the

full-rank matrix H. The resulting matrix is also full rank with probability 1 for m→ ∞.

4.6 Secure Code Sequence for the Type-I Wiretap (WT) Channel

In this section, a secure code sequence for the type-I (γ, p) wiretap channel is proposed.

Lemma 11. Consider a type-I (γ, p) WT channel where the main and eavesdropper

channels are BISOM channels with capacities CM and CE respectively. Let the main

channel be less noisy than the eavesdropper channel. Then, the secrecy capacity of such

a type-I channel is

Cs = CM − CE

Proof. Since both the main and eavesdropper channels are BISOM channels, the input

distribution that maximizes the mutual information I(X;Y ) and I(X;Z) is the uniform

distribution. As per [32], since the main channel is less noisy than the eavesdropper

channel and the same (uniform) distribution onX maximizes I(Xn;Y n) and I(Xn;Zn),

the secrecy capacity of such a wiretap channel is the difference between the capacities of

the main channel channel and eavesdropper channels respectively. Thus, the result.
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The main theorem of the chapter is now stated.

Theorem 7. Consider a regular nested (dc, dv, dv2 , dc′ ) LDGM-LDPC code. Further,

consider a type-I (γ, p) wiretap channel such that the main channel is a BISOM channel

with Bhattacharrya noise-parameter γ and the eavesdropper channel is a BSC with

cross-over probability p. Let C1(n) be the regular (dc, dv, dc′ ) LDGM-LDPC code that

achieves the capacity of the eavesdropper’s channel. Further, Let C0(n) be the nested

regular (dc, dv2 , dc′ ) LDGM-LDPC code that results on removing a specific number of

LDPC check nodes. Then, the secure code sequence (C0(n), C1(n)) has the following

properties.

• The proposed secure code sequence achieves perfect secrecy.

• The maximum information rate of the resulting secure code sequence is h2(p) −

log2(1 + γ) under maximum likelihood decoding, where h2(.) is the binary entropy

function such that h2(x) = x log2
1
x

+ (1− x) log2
1

1−x and γ is the Bhattacharrya

noise parameter of the main channel.

Proof. For asymptotic code lengths, it follows from Lemma 10 that a randomly chosen

LDPC code has rate that equals the design rate with probability 1− om(1). Assuming

a full rank LDGM generator matrix G, the fine code is chosen to achieve the capacity

of the eavesdropper’s channel (this is possible as per Theorem 4). As the code C1(n)

is capacity achieving for the eavesdropper channel, as per [25, Theorem1], the secure

code sequence achieves perfect secrecy of the type-I (γ, p) wiretap channel. As per

Lemma 9, the nested regular LDGM-LDPC code can achieve a rate upto the cut-off

rate R0 ≤ 1 − log2(1 + γ) and still be decoded by the receiver with an arbitrarily

low error-probability under maximum-likelihood decoding. Thus, from definition 3, the

rate of the secure code sequence is upper-bounded by (1− log2(1 + γ))− (1− h2(p)) =

h2(p) − log2(1 + γ).
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4.7 Chapter Summary

A type-I wiretap channel was studied in this chapter with a BISOM main channel and

a binary symmetric eavesdropper channel. A secure code sequence for this channel was

proposed using a special construction of the regular LDGM-LDPC codes. It was shown

that this construction achieved perfect secrecy.

4.8 Appendix

4.8.1 Proof of Theorem 4

Proof. An upper bound on the asymptotic-spectrum of the regular (dc, dv, dc′ ) LDGM-

LDPC codes was determined in [29] as:

r(δ) = max l
m
∈(0,1)

{

RG rL

( l

m

)

−D
(

δ||δ∗
( l

m

))}

(4.7)

where RG is the rate of the upper LDGM code, rL(.) is the asymptotic spectrum of the

lower (dv, dc′ ) LDPC code, m is the code-length of the lower LDPC code, D(.||.) is the

Kullback-Leibler divergence between two distributions and δ∗( l
m

) = 1
2(1− (1− 2 l

m
)dc).

As per [33, lemma 1], for x ∈ [0, 1], the LDPC spectrum can be upper-bounded as,

rL(x) ≤ (1 −RH) log(1 + (1 − 2x)dc′ ) +H(x)

− (1 −RH) log 2

(4.8)

where RH is the rate of the lower LDPC code and H(.) is the entropy function. The

term D(δ||δ∗(x)) can be written as:

D(δ||δ∗(x)) = δ log
2δ

(1 − (1 − 2x)dc)
+

(1 − δ) log
2(1 − δ)

(1 + (1 − 2x)dc)

= log 2 −H(δ) − δ log(1 − (1 − 2x)dc)

− (1 − δ) log(1 + (1 − 2x)dc)

(4.9)
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Substituting (4.9) and (4.8) into (4.7),

r(δ) = maxx∈(0,1){RG(1 −RH) log(1 + (1 − 2x)dc′ )+

RGH(x) −RG(1 −RH) log 2 − log 2 +H(δ)+

δ log(1 − (1 − 2x)dc) − (1 − δ) log(1 + (1 − 2x)dc)}

a
≤ maxx∈(0,1){RG(1 −RH) log(1 + (1 − 2x)dc′ )+

RGH(x) −RG(1 −RH) log 2 − log 2 +H(δ)+

− (1 − δ) log(1 + (1 − 2x)dc)}

(4.10)

where
a
≤ results because log(1 − (1 − 2x)dc) ≤ 0, for x ∈ [0, 1]. By choosing a large

enough dc and dc′ , the terms log(1 + (1 − 2x)dc) and log(1 + (1 − 2x)dc′ ) can be made

as small as possible. Thus, (4.11) simplifies to,

r(δ) = maxx∈(0,1){RGH(x) −RG(1 −RH) log 2 − log 2+

H(δ)} = RG log 2 −RG(1 −RH) log 2 − log 2 +H(δ)

= RGRH log 2 − log 2 +H(δ) = H(δ) − log 2(1 −R)

(4.11)

where R = RGRH . A sufficient condition for the code with a spectrum bounded as

in (4.11) to achieve arbitrarily small error-probability under typical-pair decoding was

proved in [22] as

r(δ) < H(δ) − pH(
δ

2p
) − (1 − p)H(

δ

2(1 − p)
) (4.12)

Substituting (4.11) into (4.12),

H(δ) − log 2(1 −R) < H(δ) − pH(
δ

2p
) − (1 − p)H(

δ

2(1 − p)
)

=⇒ pH(
δ

2p
) + (1 − p)H(

δ

2(1 − p)
) < log 2(1 −R)

(4.13)

As per [22, (6.31)], the function pH( δ2p)+(1−p)H( δ
2(1−p)) over δ ∈ [0, 2p] is maximized

at δ = 2p(1 − p). The maximum value of the function is H(p). Thus,

H(p) < log 2(1 −R) =⇒ R < 1 −
H(p)

log 2
(4.14)
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4.8.2 Proof of Lemma 8

Proof. By the definition of C0 in (4.5),

c0 = sup
0<δ≤1

r(δ)

δ

a
≤ sup

0<δ≤1

H(δ) − log 2(1 −R)

δ

where
a
≤ follows from (4.11). The function f(δ) = H(δ)−log 2(1−R)

δ
is maximized with

respect to δ by setting the first derivative to 0 as follows.

f
′
(δ) =

H
′
(δ)

δ
−
H(δ) − log 2(1 −R)

δ2
= 0

b
=⇒

log 1−δ
δ

δ
−
H(δ) − log 2(1 −R)

δ2
= 0

c
=⇒ log(1 − δ) + (1 −R) log 2 = 0

=⇒ δ = 1 − 2−(1−R)

where
b

=⇒ follows because H
′
(δ) = 1−δ

δ
,

c
=⇒ follows by replacing H(δ) by −δ log δ−

(1 − δ) log(1 − δ). The value of f(δ) at δ = 1 − 2−(1−R) is computed as follows.

f(1 − 2−(1−R)) =
H(1 − 2−(1−R)) − (1 −R) log 2

1 − 2−(1−R)

log
2−(1−R)

1 − 2−(1−R)
= log

1

21−R − 1
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