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ABSTRACT OF THE DISSERTATION

A DOSE FINDING METHOD IN JOINT MODELING OF EFFICACY AND SAFETY

ENDPOINTS IN PHASE II STUDIES

-AN EXTENSION OF THE MCP-MOD METHOD

BY AIYANG TAO

Dissertation Director: Yong Lin, Ph.D.

Determination of appropriate dose(s) to advance into Phase III is one of the most

challenging and important decisions made during drug development. Selecting a dose

too high may result in unacceptable safety problems, while a too low dose may lead to

ineffective drugs. Proper estimation of such dose-response profiles for relevant safety and

efficacy endpoints allows the reliable evaluation of the risk-benefit profile of a drug at the

end of Phase II, as well as the selection of appropriate doses to be brought into confirma-

tory Phase III trials. This dissertation will address how to select dose(s) in Phase II trials

by combining information about the efficacy and safety in a joint model setting. The meth-

ods we present in the dissertation may play a key role in drug development programs,

and are often the gate-keeper for large confirmatory Phase III trials with greater chance of

successful approval.

The dose selection when both safety and efficacy are represented by continuous

responses is discussed in Part I of the dissertation, while Part II addresses the methodol-

ogy when the safety and efficacy are mixed type responses. Both scenarios involve joint

modeling of safety and efficacy endpoints. The methodology will focus on the following:
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(1) Joint modeling approaches; (2) Model selection; (3) Identification of minimum effec-

tive dose (MED) and maximum safety dose(MSD); (4) Selection of optimal dose(s) for the

Phase III program.
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Preface

This document consists of two parts:

I. Dose finding methodology for joint continuous bivariate responses (Chapter 1 to

Chapter 6).

II. Dose finding methodology for joint continuous and discrete bivariate responses (Chap-

ter 7 to Chapter 11).

Discussion and future directions are in Chapter 12. The dissertation is organized

as follows:

� Part I:

Chapter 1 describes the background for the need of developing dose finding

methodology, the motivating example for the dissertation, research objectives and specific

aims for Part I.

Chapter 2 discusses the existing approaches for dose finding and focuses on the

MCP-Mod method. This chapter also lists the limitations of the existing approaches.

Chapter 3 develops the concept and methodology of finding maximum safety

dose (MSD) by extending the MCP-Mod to safety outcome.

Chapter 4 is devoted to the methodology of joint modeling of continuous bivari-

ate responses; In the meantime, this chapter also presents two approaches of finding min-

imum effect dose (MED) and MSD for combined efficacy and safety data.

Chapter 5 proposes two strategies for recommending dose(s) to carry into Phase

III program development either through the joint criteria of success or utility function.
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Conclusions of Part I are presented in Chapter 6.

� Part II:

Chapter 7 reviews the examples of clinical setting under mixed type responses,

the need for developing the dose finding methodology for mixed type responses, research

objectives and specific aims for Part II.

Chapter 8 presents existing methods for estimating multivariate responses, limi-

tations as well as unaddressed areas for the dose finding for mixed type responses.

In chapter 9, we devote to a complete methodology for the joint model estima-

tion, model fitting, strategies of finding the MED and MSD for mixed type responses.

This chapter also discusses the relationship between the observed discrete response and

possible latent continuous variable in terms of mean model and correlations. In addition

full likelihood for joint mixed type bivariate responses is also derived in this chapter.

Chapter 10 proposes two strategies for recommending dose(s) to carry into Phase

III program development either through the joint criteria of success or utility function.

The concept is similar as what we have developed for the continuous bivariate responses

in Part I.

Conclusions of Part II are presented in Chapter 11.

Chapter 12 includes the discussion as well as the potential future research direc-

tions.

Appendix includes derivations to illustrate that the two likelihood formulas we

derived in Chapter 9 have different distributions. The method for the proof of concept

study for discrete response is also derived in Appendix.
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Part I

Dose finding for Joint Continuous

Bivariate Responses
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Chapter 1

Introduction

1.1 Background

Selection of appropriate dose(s) to carry into confirmatory Phase III trials is one of

the most difficult decisions that need to be considered during drug development. It is be-

lieved by many that the high attrition rate currently observed in Phase III is largely driven

by inadequate dose selection (FDC Report, 1991; Bornkamp et al., 2007). Most commonly

used dose finding designs and methods today still focus on selection of a target dose out

of a fixed, generally small, number of dose levels, via pairwise hypothesis testing, which

is typically inefficient (FDA, 2004). Assessment of dose-response should be an integral

component of drug development, with studies designed to assess dose-response as an in-

herent part of establishing the safety and effectiveness of the drug. If characterization of

dose-response relationship is built into the development process, it can usually be accom-

plished with no loss of time and minimal extra effort compared to development plans that

ignore dose-response estimation. Proper estimation of such dose-response profiles for rel-
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evant safety and efficacy endpoints allows the reliable evaluation of the risk-benefit profile

of a drug at the end of Phase II, as well as the selection of appropriate doses to be brought

into confirmatory Phase III trials. Thus how to select dose(s) in Phase II trials by combining

information about the efficacy and safety in a joint model setting may play a key role in

drug development programs, and are often the gate-keeper for large confirmatory Phase

III trials with greater chance of successful approval.

The primary goal of dose-response studies (Bretz et al., 2005; Dragalin, 2007 ) is to

establish the dose-response relationship or to find the target dose, usually the minimal ef-

fective dose (MED). There are fixed and adaptive approaches for designing and analyzing

dose-ranging studies (Bornkamp et al., 2007). These approaches target mostly efficacy as

the goal to get the optimal dose. Most Phase II designs assume that a dose range with an

acceptable toxicity has been previously determined and aim to establish treatment efficacy

at some dose within this range. However, under a variety of circumstances the safety may

lead to the early termination of the drug development in Phase II/III trials. Therefore it is

important to address safety and efficacy simultaneously. There has been some research on

how to design dose-finding studies based on efficacy-toxicity response in early phase(I/II)

(Thall and Cook, 2004; Dragalin, 2005; Thall et al., 2008) for oncology trials. Part I of

this dissertation will address how to combine continuous efficacy and safety responses in

Phase II trials in a joint model setting.

Bretz et al. (2005) combined multiple comparison procedure and modeling (MCP-

Mod), which has been used extensively for analyzing dose finding trials recently. It in-

cludes a PoC (proof-of-concept) assessment and a dose-selection step. The clear advantage



4

of this approach, compared to traditional multiple comparison dose finding methods, is its

added flexibility in selecting an appropriate dose-response model for future drug devel-

opment. Bretz et al. (2005) considered only efficacy to identify the minimum effective dose

assuming all considered doses are within safety tolerance. However, as mentioned earlier

in some cases both efficacy and safety may need to be considered for selecting optimum

doses to carry into Phase III trials. Typically the two outcomes (efficacy and safety) for

the same patient are usually correlated, how to determine the optimal dose(s) account for

correlated efficacy and safety outcomes remains unresolved. Part I of this dissertation will

extend the MCP-Mod approach to select the best joint model based on two continuous

correlated efficacy and safety outcomes and to get the final optimum dose(s) from the best

joint model for the Phase III study.

1.2 Motivating example

ACE inhibitors (inhibitors of Angiotensin-converting enzyme) are used primarily

in treatment of hypertension and heart failure. ACE inhibitors are used first-line as several

agents in the class have been clinically shown to be superior to other classes of drugs in

the reduction of morbidity and mortality for cardiovascular disorders and hypertension

(Thomas, 2000; Rossi, 2004).

Normally, angiotensin II will have the following effects (Dluhy et al., 2004; Krum

et al., 2002; Flack et al., 2003; Epstein et al., 2006) :

� Vasoconstriction (narrowing of blood vessels), which may lead to increased blood

pressure and hypertension. Specifically, angiotensin II constricts the efferent arteri-
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oles of the kidney, leading to increased perfusion pressure in the glomeruli.

� Stimulate the adrenal cortex to release aldosterone, a hormone that acts on kidney

tubules to retain sodium and chloride ions and excrete potassium. Sodium is a

"water-holding" molecule, so water is also retained, which leads to increased blood

volume, hence an increase in blood pressure.

� Stimulate the posterior pituitary into releasing vasopressin (also known as anti-diuretic

hormone (ADH)) which also acts on the kidneys to increase water retention.

With ACE inhibitor use, the effects of angiotensin II are prevented, leading to

decreased blood pressure.

Renal impairment is a significant adverse effect of all ACE inhibitors. The reason

for this is still unknown. Some suggest that it is associated with their effect on angiotensin

II-mediated homeostatic functions such as renal blood flow. Renal blood flow may be af-

fected by angiotensin II because it vasoconstricts the efferent arterioles of the glomeruli

of the kidney, thereby increasing glomerular filtration rate (GFR). Hence, by reducing an-

giotensin II levels, ACE inhibitors may reduce GFR, a marker of renal function.

In one clinical trial an ACE inhibitor (Drug A) is used to treat hypertension. The

efficacy endpoint is the change of sitting blood pressure from baseline. Decreasing GFR

is the undesirable effect and the main safety measure is the change of GFR from baseline.

Both response variables are assumed to be normally distributed. When the bivariate con-

tinuous outcomes are considered to find a suitable dose, joint model fitting that accounts

for the correlation between efficacy and safety outcomes should be superior to the separate

modeling that ignores the correlation.
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1.3 Research objectives

In Part I of this thesis, we set the following objectives:

1.3.1 Objectives

Objective I: To estimate the MSD (maximum safety dose) when the safety re-

sponse is considered (Chapter 3).

Objective II: To formulate and select the joint model when continuous efficacy

and safety responses are correlated and both need to be included for the dose selection

(Chapter 4).

Objective III: To find more accurate MED and MSD estimates when the corre-

lated efficacy and safety responses are both included in the dose selection (Chapter 4).

Objective IV: To identify the final dose(s) to carry into the Phase III program with

a high probability of success (Chapter 5).

1.3.2 Specific aims

The specific aims for Part I of this dissertation are described as follows:

1. Identify the MSD (maximum safety dose) if the safety outcome is of interest.

In clinical trials, when the safety outcome is the main interest in the study, we

need to find the maximum safety dose (MSD) for subsequent drug development. Bretz et

al. (2005) developed MCP-Mod method to estimate the MED by three different rules based

on the predicted response at each dose level and the corresponding confidence level. We

will extend the MCP-Mod approach for the safety endpoint to identify the MSD. How to
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define the MSD and estimate it accordingly will be explored in Part I.

2. Estimate the parameters for the continuous efficacy and safety outcomes corresponding

to the joint modeling of the bivariate outcomes.

The MCP-Mod method was developed for dose selection based on continuous ef-

ficacy outcome. When both the safety outcome and the efficacy outcome are considered for

dose selection, the use of MCP-Mod based on separate model fitting will not account for

the correlation between endpoints, thus the parameter estimations based on the separate

model fitting are not precise and efficient. In addition it is common that the dose-response

models for both continuous efficacy and safety data are nonlinear. Therefore how to for-

mulate the joint nonlinear continuous bivariate model and how to estimate its parameters

will be addressed in this dissertation.

3. Find more precised MED and MSD estimates based on the correlated bivariate re-

sponses for dose selection.

From the above two specific aims we will be able to find the MED and MSD

from the joint bivariate outcomes, but they may not be the most accurate estimates. The

rationale behind this statement is as follows: both efficacy and safety outcomes can have

more than one significant model to fit the data. For example, for efficacy data we may find

both Emax and quadratic models can fit the data well, with only slightly different AIC or

t-statistics. A similar case can take place for the safety data. Then we need to develop a

strategy for how to proceed to find the final joint model when there are more than one

significant model for either the efficacy or safety and what criteria to use for determining

the best model. After the final best fitted joint model is determined, the MED or MSD can
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be computed based on the final joint model.

4. Define the criteria and identify the optimal dose(s) based on the defined criteria for the

Phase III program.

After the MED and MSD are estimated, what exactly are the final dose(s) to used

in the Phase III program still may not be clear. In order to identify the final optimal dose(s),

first we may need to define the success criteria for the Phase III program. The next step we

will explore is how to identify the final dose(s) after the success criterion is clearly defined.

All these questions will be answered in this dissertation.
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Chapter 2

Literature Review

2.1 Existing approaches for dose finding

The traditional process of dose selection in a clinical program for a new candi-

date drug begins with human studies, when single ascending doses are used, followed

by multiple ascending doses in healthy volunteers. This is followed by empiric testing of

doses in small patient cohorts, looking both for differences in the pharmacokinetic profile

and evidence that the drug has an effect on the disease being studied, the so called proof-

of-concept (PoC) study. When the drug moves into Phase II, or even Phase III programs,

often only small amounts of efficacy and safety data are available to justify the dose selec-

tion. Until recently, dosing decisions were guided by the availability of prior information,

which changed from the traditional approach based on a purely empirical method to the

approach based on verification of a derived model.

There are a number of different dose-finding approaches to address different ob-

jectives. There also exist a number of different statistical methodologies that have been
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developed to allow adaptations to take place without compromising the statistical in-

tegrity of the trial (e.g., preserving the Type I error rate). Mainly there are 3 classes of

approaches for dose-finding studies based on very different demands on the logistics of

planning and running a trial. The first class is fixed designs with pre-determined ran-

domization strategy and a single analysis at the end of study, represented by ANOVA

and multiple comparison-modeling (MCP-Mod). The second class is discrete adaptation

design in which randomization can be adjusted (e.g., patients are enrolled in groups and

an interim analysis is performed after each group has completed the study) by D-Optimal

response-adaptive approach (Dopt). The third class is continuous adaptation which allows

adjustment of randomization (e.g., the subject is chosen by simulating the effects of ran-

domizing the next subject to each of possible doses and finding the one that minimizes the

variance of a parameter of interest) represented by the general adaptive dose allocation ap-

proach (GADA). The detailed summary for the above approaches may refer to Bornkamp

et al. (2007). In this dissertation the main focus is on fixed clinical trial designs, with the

MCP-Mod approach being discussed in detail.

As described above, except for some approaches to estimate maximum tolerated

dose in Phase I trials (e.g, CRM), most approaches only estimate the minimum effective

dose for Phase II program. Some authors (Thall and Cook, 2004; Thall et al., 2008) have

discussed how to select a target dose based on efficacy-toxicity trade off or bivariate out-

comes with patient specific covariates with their research more focused on Phase I/II on-

cology trials for binary endpoints, which may not be suitable for other therapeutic areas.

This dissertation will address how to develop an approach based on MCP-Mod to select
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final optimum dose(s) using efficacy and safety data for phase II trials in a general setting.

In order to introduce the proposed approach and the need for using a joint model to select

target doses, a review of the MCP-Mod approach is necessary.

2.2 MCP-Mod

The analysis of dose finding studies can be classified into two major strategies:

modeling techniques (Pinheiro et al., 2006; Bates and Watts, 1988) and multiple comparison

procedures (MCP) (Hochberg and Tamhane, 1987; Hsu, 1996). In the next sections we will

review the MCP and modeling techniques before we introduce MCP-Mod approach.

2.2.1 Multiple comparison procedures (MCP)

MCP can be considered in analysis-of-variance (ANOVA) settings, which regard

the dose as a qualitative factor and make no or only few assumptions about the underlying

dose-response model. This approach is easy to implement and interpret, does not require

prior knowledge of dose response relationship and is less sensitive to assumptions. The

inference is restricted to a set of doses under investigation. This procedure is robust with

respect to the underlying dose-response shape, but not designed for the exploration of

information other than the dose levels studied. There are two methods can be applied

in MCP to find the minimum effective dose (MED) (Bretz et al., 2008). First method is

Dunnett’s (1955) method which uses the two-sample t method to compare each dose group

with control group while adjusting for multiplicity. Second method is a stepdown method

with pre-determined steps (Stefansson, et al., 1988; Finner and Strassburger, 2002). This
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method offers some advantage of using a statistical method designed to give a contiguous

set of doses as efficacious when the Dunnett’s method may infer a dis-contiguous set of

doses to be efficacious due to sampling variation. If the dose levels giving the higher

sample responses are the ones tested early in the steps of the stepwise method, then the

stepwise method will infer more doses as efficacious than Dunnett’s method. Otherwise

Dunnett’s method will infer more doses as efficacious than the stepwise method. The

details are described in Bretz et al. (2008).

2.2.2 Modeling approaches

The modeling approach to dose finding is based on an assumed functional re-

lationship between the clinical endpoint and the dose, treated as a continuous variable,

according to a pre-specified parametric model. The MED dose or other target dose is es-

timated by inverse regression techniques and confidence intervals can be provided on the

estimated doses. This approach is easy to include requirements of clinical relevance and

leads to better understanding of the dose-response relationship, which allows planning of

future studies and simulations. The typical model-based analysis does not provide a rigid

Type I error control and the conclusions rely highly on the right choice of the dose-response

model. Furthermore the validity of its conclusions will highly depend on the correct choice

of the dose response model, which is of course a prior unknown. Bretz et al.(2008) also dis-

cussed the alternative modeling approaches such as non-parametric models and Bayesian

methods. Bornkamp et al. (2007) considered a non-parametric dose response modeling

approach based on local polynomial fits (Loader, 1999). Bayesian methods can be used

with the model-based methods as an extension. The bayesian dose-finding approach offer
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additional flexibility and in some cases can ease of interpretation compared to frequentist

approaches. But all priors for the model parameters need to be specified and computa-

tional complexity is increased (Berry et al., 2001).

Figure 2.1 provides an illustration of finding the MED by multiple comparison

procedure and modeling approach. It is shown that MCP approach treats dose as discrete

variable while the modeling treats the dose as continuous variable.
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Figure 2.1: Multiple comparisons and Modeling approach to find MED

Bretz et al. (2005) proposed a hybrid methodology which combines aspects of

MCP and modeling into a unified strategy for dose-finding studies. Typically decisions

derived from dose-response studies can be divided into two main steps: establishing that

the treatment has some effect on the outcome, which has evidence of dose response and is

called proof-of-concept (PoC), and selecting a target dose from the best fitted model. The

first step starts with a set of candidate models covering a suitable range of dose-response

shapes. Each of the models in the candidate set is assessed using predefined contrast tests

and applying MCP techniques to preserve the family-wise error rate (FWER). At least one

of the model contrast tests needs to be significant in order to establish PoC. Otherwise, the

procedure stops at this step and concludes that there is no sufficient evidence of a dose-

response relationship in the study. Once the overall dose-response relationship has been

established (PoC), the next step is to select a target dose from the best fitted model. The
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selection of the best model from possibly more than one statistically significant models can

be based on the minimum p-value of the test statistics or some other relevant model selec-

tion criteria such as the Akaike’s information criteria (AIC) (Akaike, 1973) or the Bayesian

Information Criteria (BIC) (Schwarz, 1978). The target dose is then estimated using inverse

regression techniques based on the selected dose-response model.

2.2.3 MCP-Mod approach procedures

Figure 2.2 provides the steps of MCP-Mod approach, the details are illustrated in

the text of body in this Section.
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Figure 2.2: MCP-Mod flow chart
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Candidate models

Several candidate parametric models are identified for the response Y and a given

set of parallel groups of patients corresponding to doses d2, d3, . . . , dk, plus placebo group

d1, for a total k treatment groups. For the purpose of dose estimation, a one-way layout for

the model is specified as follows:

Model:

Yij = f (di, θ) + εij, εij
ind� N(0, σ2),

i = 1, ..., k, j = 1, ..., ni,

where θ refers to the vector of model parameters, i to the dose group (i = 1 corresponds to

placebo), and j to the patient within dose group i.

Following Bretz et al. (2005), most dose-response models used can be written as

standardized version f 0 of the dose response model:

f (d, θ) = θ0 + θ1 f 0(d, θ0),

θ0 is a location parameter and θ1 is a scale parameter. The advantages of using the stan-

dardized model f 0 instead the full model f will become clear when obtaining the optimum

contrast coefficients later on. Prior estimates for the standardized model parameters θ0 are

typically derived from initial knowledge (or guesses) of the expected percentage p� of the

maximum response associated with a given dose d�. Table 2.1 provides a list of models

frequently used to represent dose-response relationships, together with their respective

standardized versions.
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Figure 2.3 provides the dose-response curves for the different models shown in

Table 2.1 as an example. The open dots in the figure indicate the responses at the dose

levels used in the simulation in Part I of this dissertation. The model means at these dose

levels are generated by the mean model designed for the simulation. All the dose-response

curves have the same baseline values and maximum change from baseline values. The

models used for generating the curves are indicated in Table 2.1.
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Figure 2.3: Dose-response models
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Optimal contrast coefficients

Monotonicity is not required for the PoC Two extreme approaches had been advocated

in the 1970s: (i) Assume the existence of monotonicity of response with dose (Williams,

1971, 1972). (ii) Assume nothing about response shape and use a procedure to compare

individual dose responses with the control response, taking account of the fact that the k

comparisons share a common control (Dutt et al.,1976).

Tukey et al. (1985) considered a more balanced approach which recognizes that

(i) if there is a response, it will most often (but not always) be monotone, and (ii) there are

many situations where the direction of any effect is far from certain. They proposed re-

gression analysis approach to test the existence of a trend in the response variable. The test

assesses the trend as the most extreme P-value observed from a candidate set of "dose car-

riers" (arithmetic, ordinal, and arithmetic-logarithmic as defined in Tukey et al., 1985). It is

claimed that the regression approach is both more trustworthy than assuming monotonic-

ity and more powerful than any individual comparison approach (Tukey et al., 1985).

Regression analysis uses within-group estimates of variability to detect a nonzero

trend. Doing regression on dose level di and comparing the result with the corresponding

linear combination of estimated variances varest[y] will have a sensitivity for detection

of an effect with the average responses ηi =ave[y] determined by the formal correlation

between the di and ηi (Abelson and Tukey, 1963). Here, y = (y, ..., yn) , yi = µi + εi =

α+ βdi + εi and the correlation is computed as follows:
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r = ∑(di � d)(ηi � η)h
∑(di � d)2 ∑(ηi � η)2

i1/2 .

The validity for detection of the trend test is not dependent on assumptions about

the behavior of the ηi. The value of r, and thus the sensitivity of the procedure compared

to what would be possible if the ηi is known, must of course depend on the degree of

general similarity of the η’s and the d’s. This approach can achieve very high power when

the response pattern has a very high correlation with the dose level and respectable power

against a wide variety of response pattern. Thus the validity of the procedure are not

seriously distorted or troubled in the instances when the repose pattern is not monotone,

although the sensitivity is somewhat decreased.

There were other approaches such as likelihood ratio test (LRT; Roberson, Wright,

and Dykstra, 1988) and the step contrasts (Bauer and Hackl, 1985) to test PoC. LRT is

known to be one of the most powerful tests for trend throughout the order restricted al-

ternative region µ1 � ... � µk. LRT is designed for the PoC only and thus is not for

finding any information about the underlying dose-response curves. The step contrasts

match exactly the corner vectors of the polyhedral cone described through the relation-

ship µ1 � ... � µk and span the order restricted space of interest. Both approaches used

assumptions of monotonicity.

Bretz et al. (2005) computed optimum weights based on the dose-response curves

for the comparison of the different candidate models within a multiple hypothesis testing

framework. The "best" contrast associated with the candidate model will maximizes the

chance of rejecting the associated null hypothesis. There is no monotonicity required when
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optimum contrast is used for testing the dose-response curves. As described in Bretz et al.

(2005), the following linear model was assumed for the purpose of detecting an overall

trend:

Yij = µi + εij, εij
ind� N(0, σ2),

i = 1, ..., k, j = 1, ...ni,

where µi = f (di, θ) are the unknown treatment means with µ = (µ1, ..., µk). Let Ȳi =

∑ni
j=1 Yij/ni denote the arithmetic mean of group i with Ȳ

0
= (Ȳ1, ..., Ȳk). Further let S2 =

∑k
i=1 ∑ni

j=1(Yij � Ȳi)
2/ν denote the pooled variance estimator with ν = ∑i ni � k degree of

freedom. The testing of PoC requires the estimation of the parameter θ. Under the as-

sumption of independent, identically distributed errors, ordinary least squares (OLS) es-

timates that minimize the residual sum of squares for dose-response models can be used.

Non-linear squares algorithms are needed for estimating θ. The most oftenly used is the

Gauss-Newton algorithm (Bates and Watts, 1988; Seber and Wild, 1989), which is an itera-

tive procedure consisting of solving, until convergence, a sequence of linear least squares

problems based on a local approximation of the nonlinear model. Such iterative algo-

rithms typically require a starting point and methods for deriving the initial estimates for

nonlinear models are discussed in Bates and Watts (1988).

If M candidate models are identified with Ω = fMm, m = 1, ..., Mg . These mod-

els generate the mean response vector µm = (µm1, ..., µmk)
0, where µmi = fm(di, θm). Each

of the dose-response shapes in the candidate set is tested using a single contrast test, with

coefficients chosen to maximize the power of the test when the true underlying mean re-

sponse equals µm. Abelson and Tukey (1963) gave an early introduction of contrast tests in
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the context of dose-response analyses. A linear contrast test is defined as the difference of

any two adjacent contrast coefficients which is a constant. Assuming that the standard lin-

ear model has been included in the candidate set, the linear contrast test is then a powerful

test to detect the linear trend. The following hypotheses are tested:

Hm
0 : c

0
mµ = 0 vs. Hm

1 : c
0
mµ > 0.

To determine the "best" contrast associated with a given model function f (d, θ),

when the model is correct, it will maximize the chance of rejecting the associated null

hypothesis, that is, it maximizes the non-centrality parameter τ = τ(c). Thus we should

choose Copt( f ) such that

Copt( f ) = argmax
c

g(c, µ),

where

g(c,µ) =
(c

0
µ)2

∑k
i=1 c2

i /ni
= σ2[τ(c)]2.

Without loss of generality, we assume that the contrast vectors cm = (cm1, ..., cmk)
0 follow

the regularity conditions ∑k
i=1 cmi = 0 and ∑k

i=1 c2
mi = 1.

Assuming that there exists a standardized version f 0 of f :

µ = µ( f ) = θ0 + θ1µ( f 0) = θ0 + θ1µ0.

Due to the shift and scale invariance properties, the optimum contrast coefficients

depend only on the standardized model f 0 as follows:

c
0
µ = θ1c

0
µ0, g(c, µ) = θ2

1g(c, µ0).

Thus,

Copt( f ) = Copt( f 0).
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Under balanced sample size allocation the optimum contrast coefficients are found as fol-

lows:

Copt(µ) =
µ� µ̄1
jjµ� µ̄1jj =

µ0 � µ̄01
jjµ0 � µ̄01jj .

Details on the computation of optimum contrast coefficients for model testing can

be found in Bretz et al.(2005). Figure 2.4 shows the optimal contrasts for various models

to be tested. Similarly to Figure 2.3, the open dots in the figure indicate the contrast for

the dose levels used in the simulation. The contrast coefficients are determined by the

model means at these dose levels, which are generated by the mean model designed for

the simulation.
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Figure 2.4: Plot of optimal contrasts
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Selection of significant models while controlling FWER

A common approach in situations when one has to select the model that ulti-

mately is used to fit the data is to use information criteria based on a reasonable discrep-

ancy measure to assess the lack of fit. A number of criteria are available for model selection.

Commonly used criteria is the ratio R2 of the sum of squares for the regression to the total

sum of squares. The problem with the R2 is that the sum of squares for the regression, and

hence by construction R2 itself, increases with the number of parameters and thus leads

to over-fitting. There are some alternatives measures that have been proposed such as the

Akaike information criterion (AIC) or Bayesian information criterion (BIC). All these and

other measures are generally not suitable in dose-response analyses as they do not incor-

porate potential constraints, such as the simple order restriction µ1 � ... � µk. The theory

of order restricted inference that the maximum likelihood estimates for the mean level re-

sponses subject to a given order restriction are different from the unrestricted maximum

likelihood estimates (Robertson et al., 1988). Anraku (1999) thus proposed to use an order

restricted information criterion (ORIC) based on monotonic regression theory.

However, any of the above measures of fit (AIC, BIC, ORIC or any other criterion)

has the inherent drawback of missing family-wise error control. For example, we would

have no conclusion on the validity of the decision if we simply selected the model by the

best ORIC criteria. In addition, the application of the ORIC or AIC will always lead to the

selection of one single model, irrespective the goodness of fit given the observed data.

Buckland et al. (1997) proposed a philosophy for weighting contending models

in preference to selecting between the models that can be done within a Bayesian frame-
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work. The model selection is replaced by estimated probabilities that models are correct.

Buckland et al. (1997) introduced the weighted estimate approach to compute the para-

meter estimates. Let Ω = fM1,...,MLg denote a set of L candidate models, the weights

are determined by the common information criterion IC described above applied to each

models. The weighted estimate is defined as

bµ = ∑
l

wlbµl ,

where bµl is the estimate of µ under model for given weights wl and

wl =
e�

ICl
2

L

∑
j=1

e�
ICj
2

, l = 1, ..., L.

In addition, Bayesian model averaging techniques are discussed (Hoteing et al., (1999) and

Clyde and George (2004)).

P(µjX) =
L

∑
j=1

P(µjX, Ml)P(Ml jX),

where X is the observed data and P(Ml jX) represents posterior model probability for the

investigated model.

Note although these approaches provide a simple and intuitive way to overcome

some of the model uncertainty problems, one is still left with the open problem of how to

ultimately choose the final model as a multiple hypotheses testing problem.

When performing multiple pairwise tests, familywise error rate (FWER) is the

probability of making one or more false discoveries, or type I errors among all the hypothe-

ses. Typical model-based analyses do not provide a rigid error control as it is provided, for

example, by multiple comparison procedures (Hochberg and Tamhane, 1987; Hsu, 1996).
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Selection of a specific model while controlling the familywise error rate at a pre-specified

level α is described in Shimodaira (1998). A reference set of good models is constructed

rather than choosing a single model. For example, denote the set of candidate models by

M = fMl j l 2 Mg , for each l 2 M, consider testing a set of hypotheses:

Hl : E(AICMl ) � min
Mj 2 MnMl

E(AICMj) vs.

Kl : E(AICMl ) > min
Mj 2 MnMl

E(AICMj),

and include Ml in the confidence set unless Hl is rejected at a prescribed significance level.

This construction leads to the following formula:

Pr fl� 2 Tg = Pr fHl� is not rejectedg � 1� α,

where T is the confidence set and l� is the minimum E(AIC) model and E(AICMl ) is the

expected AIC value for model Ml . Multiple comparison techniques (Gupta and Pancha-

pakesan (1979), Hochberg and Tamhane (1987)) are then used to test Hl . The proposed

multiple test procedure uses the standardized difference of any two AIC values within

a variant of Gupta’s subset selection procedure using bootstrap techniques to assess the

joint distribution of the test statistics. The final confidence set at a given significance level

is obtained as

T = fljMl 2 M, PMl � αg ,

where PMl is the p-value associated with the lth model. By construction, if PMl < α, it has

been shown that the AIC for the lth model Ml is significantly larger than the minimum

AIC of the remaining set MnMl . Thus, the present approach includes all models at the
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beginning and only removes those models shown to behave inferiorly to other models.

This approach never leads to T = ∅ and may contain more than one model at the end.

Bretz et al. (2005) selected the "best" model (if any), while controlling the FWER

by the use of multiple comparison procedures similar in spirit to the ideas expressed in

Schimodaira (1998). As described previously, each single contrast test thus tests whether

a selected dose-response curve is significant given the observed data, while controlling the

type I error rate at level α.

The following hypotheses are tested:

Hm
0 : c

0
mµ = 0

vs. Hm
1 : c

0
mµ > 0,

where contrast vectors c
0
m = (cm1, ..., cmk) are known constants subject to c

0
m1 = 0, m =

1, ..., M.

The single contrast tests are defined as

Tm =
c0mȲp

S2 ∑k
i=1 c2

mi/ni
, m = 1, ..., M.

Each single contrast test can be translated into a decision procedure to determine

whether a given dose-response shape is statistically significant. Under the assumptions

above, the joint distribution of the vector T = (T1, ..., TM)
T � multivariate T M(ν; 0, R) is

M-variate T-distributed with ν degrees of freedom and correlation matrix R = (ρij), where

ρij =
∑k

l=1 cilcjl/nl

(∑k
l=1 c2

il/nl ∑k
l=1 c2

jl/nl)
1
2

.
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The computation of the critical value q1�α should account for the multiplicity to

control the FWER at a pre-specified level α (Hochberg and Tamhane, 1987). The associated

probabilities are computed by numerical integration methods (Genz and Bretz,2002).

PoC is established if at least one contrast is significant i.e. max
m
(Tm) > q1�α and

all models with Tm > q1�α are kept for possible use in the dose-response modeling.

Model selection

Among the statistically significant models in the candidate set, a most adequate

dose-response model is selected for dose estimation. Different criteria may be used to

choose among models passing the PoC filter, e.g., max t-statistic, min AIC or min BIC.

Target doses of interest are estimated using the selected model.

Dose estimation and selection

Target doses can be selected out of the discrete dose set D = fd1, ..., dkg under

investigation or from the entire dose range (d1, dk]. To maintain confidentiality, as also

described in Bretz et al. (2005), the actual doses have been rescaled to lie within [0,1]

interval. For illustration purpose this rescaled dose will be used in this dissertation for the

dose ranges.

The MED is defined as the smallest dose which shows a clinically relevant effect.

The absolute clinically relevant difference ∆ with respect to the smallest dose d1 (often

placebo) is typically obtained from the guidelines/clinicians. Estimation of the MED 2 D

is conducted by applying appropriate multiple testing procedures (Tamhane, Dunnett, and

Hochberg, 1996). Estimation of the model-based approaches allow MED 2 (d1, dk]. Given
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a model f (., θ),

MED =argmind2(d1,dk ] f f (d, θ) > f (d1, θ) + ∆g .

Let p(d) = f (d,bθ) denote the predicted response at dose d based on the model

f (., θ), with corresponding 1 � 2γ confidence interval [Ld, Ud]. Three different rules are

proposed for estimating MED (Figure 2.5):

\MED1 = argmind2(d1,dk ]
fUd > p(d1) + ∆, Ld > p (d1)g ,

\MED2 = argmind2(d1,dk ]
fp(d) > p(d1) + ∆, Ld > p (d1)g ,

\MED3 = argmind2(d1,dk ]
fLd > p(d1) + ∆g .

By construction, \MED1 � \MED2 � \MED3.



33

Figure 2.5: MED dose estimation
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Table 2.2 (from table 7 in Bretz et al. (2005)) shows the examples of dose esti-

mation bias and precision under various dose-response shapes. The simulation results

from their paper showed that the estimated \MED1 tends to underestimate the target dose,

\MED3 tends to overestimate it , and \MED2 estimates the target dose more consistently.

Table 2.2: Median relative bias and relative IQR of MED estimate under various dose-
response shapes(from table 7 in Bretz et al (2005))

Median relative bias (%) Relative IQR (%)
Model n \MED1 \MED2 \MED3 \MED1 \MED2 \MED3
Emax 50 -36.3 5.0 38.7 82.5 93.7 108.7

150 -25.0 1.2 31.2 48.7 60.0 75.0
Linear in log-dose 50 -24.0 -0.1 23.8 56.5 63.0 71.7

150 -13.1 -0.1 17.3 28.2 36.9 43.4
Linear 50 -22.0 -7.0 9.5 28.5 33.0 34.5

150 -11.5 -2.5 8.0 15.0 18.0 19.5
Exponential 50 -17.0 -2.2 4.7 21.6 19.3 14.8

150 -6.7 0.1 4.7 12.5 11.4 10.2
Quadratic 50 -23.3 1.0 25.2 24.2 36.4 48.5

150 -11.1 1.0 21.2 16.2 20.2 32.3
Logistic 50 -11.8 5.4 29.0 38.7 40.9 45.4

150 -7.5 3.2 20.4 30.1 30.1 32.3
Relative IQR (%) is defined as the interquartile range of relative bias (%).
Relative bias (%) is calculated as the 100*(\MEDi � MED)/MED.

2.2.4 Bootstrap confidence interval approaches

Bootstrap is a data driven resampling method for statistical inference. The basic

idea of the bootstrap is to use the sample data to compute a statistic and to estimate its sam-

pling distribution based on resampling of observed data. Efron(1979) has considered two

types of bootstrap procedures: nonparametric and parametric. The nonparametric boot-

strap relies on consideration of the discrete empirical distribution generated by a random

sample of size n from an unknown distribution F. This empirical distribution bFn assigns
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equal probability to each sample item.

Efron and Tibisahrani (1993) described bootstrap confidence intervals. The basic

idea is as follows:

Let bθ�n be a bootstrap estimate of θ based on a resample of size n from the original

data X1, ..., Xn, and let G� be its distribution function given the observed value

G�(x) = probfbθ�n � xjX1 = x1,..., Xn = xng.

The bootstrap percentiles method gives G��1(α) and G��1(1� α) as, respectively,

lower and upper bounds for 1 � 2α confidence interval for bθn. In practice G��1(α) and

G��1(1� α) are approximated by generating B pseudo-sequences (X1, ..., Xn), calculating

the corresponding values of bθ�n(b) for b = 1, ..., B, and then finding the empirical per-

centiles. The number of resamples of B usually need to be quite large, in most cases it is

recommended that B > 1000.

The percentile interval may not have the nominal coverage when the sampling

distribution is skewed. Efron’s (1982) first improvement of the percentile interval is called

the bias-corrected (BC) percentile interval. This is based on observing that the estimator

under consideration may not be median-unbiased. Efron’s (1987) second improvement to

the percentile interval is called the bias-corrected, accelerated interval, BCα interval. Com-

puting the accelerated bootstrap confidence interval requires estimating a bias coefficient,

z0, and an acceleration coefficient, α. Both coefficients can be estimated nonparametrically

from the data. Confidence interval endpoints are obtained by inverting percentiles of the

bootstrap distribution. Adjusting for bias and acceleration shifts the percentiles used to

find the confidence interval endpoints. Because endpoints of the confidence interval are
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obtained by inverting the bootstrap distribution, both the percentiles and accelerated boot-

straps preserve the range of the parameter. When the acceleration coefficient, α = 0, BCα

interval reduces to the BC interval.

For this dissertation, patients within each dose group are re-sampled with re-

placement, and the whole MCP-Mod procedure is repeated B times, which generates B

bootstrap sample values of MED or MSD. Appropriate confidence interval for the MED

or MSD is derived from the B MED or MSD bootstrap sample values.

2.2.5 Extension of the current MCP-Mod approach

The issues and potential work to extend the current MCP-Mod approach are

listed as follows:

1. Dose selection based on safety dose-response models will be different from

dose selection from the efficacy dose-response model due to the different dose-response

profiles. In addition, the MCP-Mod approach tends to select the minimum efficacy dose

which can provide treatment effect. It hasn’t yet implemented a method for how to select

the maximum safety dose under acceptable toxicity profile once the model is selected.

2. For some clinical trials when both efficacy and safety are needed to be com-

bined for selecting appropriate dose for drug development, extended research is needed.

The following cases will be considered: a). Both efficacy and safety responses are continu-

ous; b). Efficacy response is continuous and safety response is discrete or vice versa.

The above extensions will be addressed in the remaining of this dissertation.
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2.3 Dose-finding based on efficacy-toxicity response

2.3.1 Dose-finding based on efficacy-toxicity trade off by in Phase I cancer stud-

ies

Several research papers have proposed methods for dose-finding based on both

efficacy and toxicity. Gooley et al. (1994) were perhaps the first to consider two dose-

outcome curves. O’Quigley, Hughes, and Fenton (2001) proposed a two-stage dose-finding

design, assuming continual reassessment method (CRM) models for efficacy and toxicity

outcomes. An acceptable level of toxicity is determined in the first stage, starting with a

low toxicity target that later may be increased, and a sequential probability ratio test is

used in the second stage to compare null and alternative values of probability for efficacy

and toxicity outcomes. Thall and Russell (TR, 1998) designed various dose-finding trials in

oncology. Thall and Russell require efficacy (E) and toxicity (T) to be disjoint. The method

in Thall and Cook (2004) differs from those earlier approaches in terms of both the under-

lying model and the dose-finding algorithm. They assume a more flexible model having

more parameters than the models used in the previous approaches and provide an algo-

rithm for establishing priors based on elicited mean outcome probabilities. The difference

is that their dose-finding algorithm is based on explicit trade-offs between probability of

efficacy and toxicity. They use both efficacy (E) and toxicity (T) to choose doses for suc-

cessive cohorts of patients in early phase clinical trials. The details are not illustrated here.

There are 3 components in the methodology: A bayesian model for joint probabilities of

efficacy and toxicity outcomes; consisting of criteria for deciding acceptable high efficacy

and low toxicity and several elicited (efficacy, toxicity) probability pairs that are equally
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desirable pairs provided by physicians. Thall et al. (2008) further developed a bayesian

sequential dose-finding procedure based on bivariate outcomes that accounts for patient

covariates and dose-covariate interactions. Because the dose selection criteria are covariate

specific, different patients may receive different doses at the same point in the trial, and

the set of eligible patients may change adaptively during the trial.

2.3.2 Limitations of this trade-off methodology

Although this methodology accommodates the bivariate outcomes, it is more

structured than most dose-finding methods and requires reliable, user-friendly computer

programs for the simulations during the design process and trial conduct. The method

proposed by Thall et al. (2008) is very complex, and it requires a substantial effort on both

the statistician and the physicians planning the trial. Their approach requires binary end-

points for both efficacy and safety endpoints. Furthermore, due to the design algorithm,

the patients or cohorts are enrolled sequentially. This is more limited to dose finding stud-

ies in phase I/II cancer trials. It is not easy to generalized to dose finding studies in other

phase II/III trials.
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Chapter 3

Extend MCP-Mod to Safety Outcome

3.1 Definition

The MCP-Mod from Bretz et al. (2005) can be extended to safety outcomes. The

MED (minimum effective dose) is replaced by the MSD (maximum safety dose). The

MSD is defined as the maximum dose which shows clinically acceptable toxicity. Let ∆

denote the clinically acceptable difference, that is, the largest safety acceptable difference,

by which we expect a dose to be not too worse than placebo. For the purpose of dose

estimation, the following model g(di, θZ) specification for the safety responses Zij is con-

sidered:

Zij = g(di, θZ) + εZ
ij ,

where

εZ
ij � N (0, ΨZZ) ,

for the jth patient in the ith dose group where i = 1, ..., k, and j = 1, ...., ni.
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Two definitions of the MSD are possible, depending on whether the target dose

is selected out of the discrete dose set D = d1, ..., dk under investigation or from the entire

dose range (d1, dk]. Model-based approaches allow MSD 2 (d1, dk]. In the following

sections we model the mean of the efficacy variable as f (di, θY) and the mean of the safety

variable as g(di, θZ). Given a model g(., θZ), define

MSD = argmax
d2(d1,dk ]

fg(d, θZ) � g(d1, θZ) +4g .

Following the above definition, two different rules are proposed to estimate the true MSD.

Denote Ud the upper 1� 2γ confidence limit of predicted mean value p(d) = g(d,bθZ) at

dose d based on the model g(., θZ) (Figure 3.1).

\MSD1 = argmaxd2(d1,dk ]

n
Ud � g(d1,bθZ) + ∆

o
,

\MSD2 = argmaxd2(d1,dk ]

n
p(d) � g(d1,bθZ) + ∆

o
,

where bθZ can be obtained based on the model g(., θZ) by the nls function in R (Bates and

Chambers, 1992).
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Figure 3.1: MSD Estimation
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3.2 Simulation

Select mean dose-response models g(di, θZ) for the safety responses Zij. For sim-

ulation purposes, we assumed decreased GFR from baseline follows an exponential model

with mean 0.163+ 0.037 exp(.5912 dose). The standard deviation for decreased GFR is 8 ml

min-1 1.73 m�2, and the clinical relevance for MSD is the decrease of GFR from baseline

less than 5ml min-1 1.73 m�2. The placebo effect for mean change of decreased GFR from

baseline is assumed as 0.2 ml min-1 1.73 m�2. The true MSD from the safety mean model

is 0.829. The basis for the data simulation is from the motivating example of the clinical

trial in Section 1.2.

Let ΨZZ = 64, n = 100/dose group and dose = 0, 0.05, 0.2, 0.4, 0.6, 0.8 and 1.

The data are simulated 1000 times from the above safety models. The data are generated

by the rnorm function in R (Becker et al., 1988).

3.3 MSD dose selection performance

3.3.1 MSD estimation plot

A graphical view of the dose-selection performance of the MSD estimators is

given by the boxplots of estimated\MSD1 and\MSD2 (Figure 3.2).
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Figure 3.2: MSD boxplot



44

3.3.2 Bias and dispersion

The dose-selection performance based on the MSD is measured in terms of its

proximity to the target dose (the dose producing an acceptable clinical safety difference

over placebo and dispersion around the target dose). Mean and Median relative bias (%)

Rb will be provided by the following formula:

Rb =
100 � (\MSD� MSD)

MSD
.

where MSD is the true value and\MSD is the estimated value.

Dispersion will be calculated by interquartile range (IQR).

IQR is a measure of statistical dispersion. The median and IQR of Rb characterize

the relative bias and variability of the MSD.

As shown in Table 3.1, mean relative bias and median relative bias for both\MSD1

and\MSD2 are in a reasonable range. Mean and median Rb for\MSD1 are 5.78% and 4.70%

respectively. \MSD1 has slightly more bias and dispersion than \MSD2 but is still within

reasonable range.

Table 3.1: Bias and dispersion of\MSD1 and\MSD2

True Mean Median Relative
mean Mean Median bias (%) bias (%) IQR(%) MSE

\MSD1 0.829 0.783 0.79 5.78% 4.70% 4.83% 2.1198
\MSD2 0.829 0.826 0.83 2.94% 0.12% 3.62% 0.0095
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3.3.3 Coverage of bootstrap confidence interval for MSD

The precision of the estimated MSD dose can be assessed using the nonparamet-

ric bootstrap method. The patients within each dose group are re-sampled with replace-

ment and the whole MCP-Mod procedure (described in Chapter 2) extended for MSD is

repeated 100 times. The bootstrap confidence intervals are derived. The percentage of

the bootstrap confidence intervals that cover the true MSD from the mean safety dose-

response model is calculated.

Table 3.2: Coverage of 95% bootstrap C.I. for true MSD

Coverage of
95% bootstrap
percentile C.I.

Coverage of 95%
bootstrap BC C.I.

Coverage of 95%
bootstrap BCα

C.I.
\MSD1 69% 51% 56%
\MSD2 97% 86% 89%

Table 3.3: Comparison of lower bound of 95% bootstrap C.I. with true MSD

Lower bound of
95% bootstrap
percentile C.I.
� True MSD

Lower bound of
95% bootstrap BC
C.I. � True MSD

Lower bound of
95% bootstrap
BCα C.I. � True
MSD

\MSD1 100% 90% 95%
\MSD2 100% 89% 92%

As expected, the \MSD1 95% bootstrap C.I has less coverage than the \MSD2, this

is consistent with the result in Table 3.1 and Figure 3.2. In addition, Table 3.3 showed that

the lower bound of 95% C.I bootstrap are smaller than the true MSD (89%-100%). \MSD1

coverage (69%) is reasonable and is more clinically appropriate to be used to estimate the
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maximum safety dose as a conservative approach since we want to select a dose which has

less chance to have toxicity.



47

Chapter 4

Joint Nonlinear Continuous Mixed

Model Estimation

4.1 Joint model formulation and log-likelihood function

For a bivariate vector

2664Yij

Zij

3775, representing the efficacy variable Yij and the safety

variable Zij, the correlation between Yij and Zij is determined by the within-patient variance-

covariance structure and may be different across treatment doses. Here, the within-patient

errors are assumed to be heteroscedastic and correlated. This formulation results in a sim-

plified version of the extended nonlinear joint regression model as follows:

2664 Yij

Zij

3775 =

2664 f (di, θY)

g(di, θZ)

3775 +

2664 εY
ij

εZ
ij

3775 , i=1,...k, j=1,....ni (4.1)
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where

εij =

2664 εY
ij

εZ
ij

3775 � BVN

0BB@
26640

0

3775 ,

2664Ψi
YY Ψi

YZ

Ψi
YZ Ψi

ZZ

3775
1CCA ,

and

2664 θY

θZ

3775 refers to the vector of model parameters, i to the dose group (i = 1 corre-

sponds to placebo), and j to the patient within dose group i.

Further, the response variables Yij or Zij can be combined into a single variable

Vij with the indicator variable t, i.e.,

Vijt =

8>>>><>>>>:
Yij if t = 0

Zij if t = 1,

then the model can be reformulated as

Vijt = f (di, θY)
1�t g(di, θZ)

t + (1� t, t) εij, (4.2)

where

εij � N(0, σ2Λi )

and

σ2Λi =

2664Ψi
YY Ψi

YZ

Ψi
YZ Ψi

ZZ

3775 ,

Λi is a positive-definite matrix. The Λi matrices are determined by fixed, generally a small

set of parameters λ. Let Λi =
�

Λ1/2
i

�T
Λ1/2

i , Λ�1
i = Λ�1/2

i

�
Λ�1/2

i

�T
, V ij =

2664 Yij

Zij

3775 ,

V�
ij =

�
Λ�1/2

i

�T
V ij,
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0BB@ f �(di, θY)

g�(di, θZ)

1CCA =
�

Λ1/2
i

�T

0BB@ f (di, θY)

g(di, θZ )

1CCA
and

ε�ij =
�

Λ�1/2
i

�T
εij.

Estimation and inference under a single response nonlinear model have been

studied in Pinheiro and Bates (2000). When the Λi matrices are known, this is referred to

the generalized nonlinear least-squares (GNLS) model. The model 4.1 can be re-expressed

as a "classic" nonlinear model:

V�
ijt = f �(di, θY)

1�t g�(di, θZ)
t + (1� t, t) ε�ij,

where

ε�ij � N(0, σ2 I).

The log-likelihood function for the GNLS model in (4.2) can be written as:

l(θY, θZ,λ, σ2jV) = �1
2

N log(2π)

�1
2

(
k

∑
i=1

ni

∑
j=1

"
1

∑
t=0

jjV�
ijt � f �(di, θY)

1�t g�(di, θZ)
tjj2

σ2 + log jΛij
#)

,

(4.3)

where N=
k
∑

i=1
ni, N represents the total number of observations.

The estimation and inference method discussed in Pinheiro and Bates (2000) can

be applied to find the MLE estimates based on the log-likelihood function in (4.3).
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4.2 Estimation and computational methods

For fixed θ and λ, the maximum likelihood estimator of σ2 for model in (4.2) is:

bσ2(θY, θZ, λ) =
k

∑
i=1

ni

∑
j=1

1

∑
t=0
jjV�

ijt � f �(di, θY)
1�t g�(di, θZ)

tjj2/N.

thus by replacing σ2 with bσ2(θY, θZ, λ), the profile log-likelihood can be written as:

l(θY, θZ, λjV) =

� 1
2

8><>:N[log(
2π

N
) + 1] + log(

k

∑
i=1

ni

∑
j=1

1

∑
t=0
jjV�

ijt � f �(di, θY)
1�t g�(di, θZ)

tjj2) +
k

∑
i=1

ni

∑
j=1

log jΛij

9>=>; .

Following the derivations in Pinheiro and Bates (2000), a Gauss-Seidel algorithm

was used with the profile log-likelihood to obtain the maximum likelihood estimates of

θY, θZ and λ :

1) Given current estimate bλ(m)of λ, a new estimate (bθm+1
Y , bθm+1

Z ) for (θY, θZ)

is produced.

2) Given current estimate (bθm+1
Y , bθm+1

Z ), a new estimate bλ(m+1)
is produced.

3) Repeat 1), 2) until a convergence criterion is met.

The asymptotic distributions of MLEs in the GNLS model, which are used for

constructing confidence intervals and hypothesis tests, are:0BB@ bθY

bθZ

1CCA � N

0BB@
0BB@ θY

θZ

1CCA , σ2

"
k

∑
i=1

cX i
T

Λ�1
i
cX i

#�1

1CCA ,

2664 bλ
log bσ

3775 � N

0BB@
2664 λ

log σ

3775 , I�1(λ, σ)

1CCA ,
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and

I(λ, σ) = �

2664 ∂2l
∂λ∂λT

∂2l
∂ log σ∂λT

∂2l
∂λ∂ log σ

∂2l
∂2 log σ

3775 ,

where cX i =

0BB@
∂ f (di ,θY)

∂θT
Y

∂g(di ,θZ)

∂θT
Z

1CCA is the derivative matrix evaluated at the true parameter values

for efficacy or safety model parameter values. log σ is used in place of σ2 to give unre-

stricted parameterization for which the normal approximations tend to be more accurate.

As described in Pinheiro and Bates (2000), to reduce the bias associated with the

maximum likelihood estimation of σ2, the following modified version of bσ2 is used:

bσ2 =

k
∑

i=1

ni

∑
j=1


�bΛ�1/2

i

�T

2664V�
ij �

0BB@ f �(di, θY)

g�(di, θZ)

1CCA
3775


2

(N � p)
,

with p denoting the length of θ, (N � p)bσ2 is asymptotically distributed as a σ2χ2
N�p

ran-

dom variable and is asymptotically independent of bθ.

4.2.1 Fitting joint model with gnls in R

The gnls (Pinheiro and Bates, 2000) function in R can be used to fit the extended

nonlinear regression model using maximum likelihood. It can either be viewed as a special

case of the nlme function (Pinheiro and Bates, 2000) without using random effects or as a

version of the nls function with the arguments weights and correlation which can account

for heteroscedastic and correlation within patient. The gnls (Pinheiro and Bates, 2000)

function in R can be used to fit the reformulated model in (4.2) which is equivalent to the

model in (4.1). Efficacy or safety data for the same patient are correlated and variances
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are usually unequal across dose group, the two components can be reflected in the within-

patient error variance structure by using the weight and correlation arguments in gnls

(Pinheiro and Bates, 2000) in R.

4.2.2 Parameter estimates, bias and relative efficiency

The median, mean(std) from separate models and joint model are computed from

1000 simulations of data having bivariate efficacy and safety responses. The percent of

bias is calculated as 100 x (mean-truemean)/truemean. The smaller the standard error of

a statistic, the more efficient it is. The relative efficiency of two statistics is the ratio of the

squares of their standard errors. The parameter estimates for the joint model and separate

models are compared by the percent of bias and relative efficiency.

In addition, estimates of the correlation between bivariate responses and the vari-

ances of the efficacy and safety responses from the gnls (Pinheiro and Bates, 2000) output

in R are used to verify the correctness of simulation and goodness of the covariance matrix

estimation of the model.

4.2.3 Simulation

Select mean dose-response models f (di, θY) and g(di, θZ) for the efficacy and

safety responses

2664Yij

Zij

3775, assume ρ is the correlation between efficacy and safety responses,

i.e,
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2664 Yij

Zij

3775 =

2664 f (di, θY)

g(di, θZ)

3775 +

2664 εY
ij

εZ
ij

3775 ,

where, 2664 εY
ij

εZ
ij

3775 � BVN

0BB@
26640

0

3775 ,

2664 ΨYY ρΨYΨZ

ρΨZΨY ΨZZ

3775
1CCA ,

for jth patient in ith dose group where i = 1, ...k, .and j = 1, ....ni, and ΨY =
p

ΨYY & ΨZ =

p
ΨZZ.

For the simulation purpose, we assumed the decreased diastolic blood pressure

(DBP) from baseline follows the Emax model f (di, θY) = 2.5+ 14.5 � dose/(.2+ dose); and

the decreased GFR from baseline follows the exponential model g(di, θZ) = 0.163+ 0.037 �

exp(3.3 � dose � log(6)). The standard deviation for decreased diastolic blood pressure and

GFR are 7 mmHg and 8 ml min-1 1.73 m�2, the clinical relevance for MED is more than 3

mmHg of the difference in decreased DBP from baseline between treatment and placebo

group and for MSD is less than 5ml min-1 1.73 m�2 of the difference in the decrease of

GFR from baseline between treatment and placebo group respectively. The placebo effect

for the mean change of decreased DBP from baseline is usually around 2.5 mmHg and

the mean change of decreased GFR from baseline is 0.2 ml/min/1.73 m2. The true MED

from the efficacy mean model is 0.056 and true MSD from the safety mean model is 0.829.

Though the values for \MED2 and \MSD1 are well within the range of the dose selection

and is a good window for the example we selected. But the final dose to be selected for the

Phase III will rely on the joint criteria that both efficacy and safety can be satisfied. This

will be discussed in Chapter 5.
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Let ΨYY = 49, ΨZZ = 64, n = 100/dose group and dose =0, 0.05, 0.2, 0.4, 0.6,

0.8 and 1. The data are simulated 1000 times each for ρ =0, 0.4, 0.8, respectively from the

above joint efficacy and safety models. The data are generated using the rmvnorm function

in the mvtnorm library (Hothorn et al., 2001) in R.

After the data are simulated, models are fitted separately and jointly with Emax

model for efficacy response and Exponential model for safety response. Joint model fitting

is performed by gnls (Pinheiro and Bates, 2000) function in R described in Section 4.2.1.

The mean (Std), median, bias, percent of bias, MSE and relative efficiency are computed.

4.2.4 Simulation results for parameter estimates

Parameter estimates for Emax and exponential models either from the separate

or the joint fitting are computed based on the simulated data. When the efficacy and safety

responses are independent, the parameter estimates of Emax and exponential models are

similar between separate and joint model fitting. This can be seen from the mean bias,

percent of bias, MSE and relative efficiency. When data are correlated (ρ = 0.4, or 0.8), the

mean bias, percent of bias, MSE are smaller for joint fitting than for separate fitting (Figure

4.2 to Figure 4.4). In addition, the efficiencies increase when the correlation between the

efficacy and safety responses increases (Table 4.1 and Figure 4.1). As seen in Table 4.1 and

Figure 4.1, efficiencies increase from 0.98-1.0 to 1.2-3.8 for all parameter estimates when

the correlation increases from 0 to 0.8.
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Figure 4.1: Efficiency of parameter estimates based on separate and joint modeling -Emax
for efficacy and Exponential for safety
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Figure 4.2: Percent bias of efficacy parameter estimates based on separate and joint mod-
eling -Emax for efficacy and Exponential for safety
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Figure 4.3: Percent bias of safety parameter estimates based on separate and joint modeling
-Emax for efficacy and Exponential for safety
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Figure 4.4: MSE of parameter estimates based on separate and joint modeling -Emax for
efficacy and Exponential for safety
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4.2.5 Procedures/Strategies of finding MED and MSD for combined efficacy

and safety data

In clinical trials, efficacy is the key factor for the approval of whether to proceed

with the development of the drug. If a drug does not have the PoC for efficacy, then there

is no continued assessment for the safety endpoint. The significance level alpha for safety

dose-response testing can be relaxed. The following figure provides the testing sequence

when both efficacy and safety endpoints need to be considered for the drug development.

?

?

? ?

?

?
Stop, no Phase III

Yes�

PoC of Safety
Overall Alpha=0.2

No�� Yes��

\MED2 only

\MED2

Joint Modeling for
Efficacy and Safety

\MSD1

PoC of Efficacy
Overall Alpha=0.05

No�

*: No - no PoC for efficacy dose response or \MED2 > dk.

Yes - PoC for efficacy dose response and \MED2 � dk.

**: No - no PoC for safety dose response or\MSD1 �\MED2.

Yes - PoC for safety dose response and\MSD1 >\MED2.

Figure 4.5: Testing procedures of PoC for efficacy and safety endpoints
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Denote the discrete dose set D = d1, ..., dk under investigation or the entire dose

range (d1, dk]. Let d1 < d2 < ... < dk. As shown in Figure 4.5, the first step is to confirm

whether PoC exists for the efficacy (alpha=0.05). If there is no PoC established for efficacy,

which indicates no dose-response relationship exists for efficacy or \MED2 > dk, then there

will be no dose-finding continued for this drug, i.e., the drug will not be carried to Phase III

development. When the PoC of efficacy is established and also \MED2 � dk is satisfied, the

second step is to test PoC of the safety response (alpha=0.2). Only the efficacy response is

studied further to identify the MED for the Phase III program when there is no established

PoC for the safety response or \MSD1 �\MED2. This means that the dose-response curve

for safety is flat and no dose-response relationship is present for safety, or when \MSD1 is

not higher than \MED2, then we only need to focus on the dose finding for efficacy. On the

other hand, joint modeling for efficacy and safety responses are performed when both PoC

for efficacy and safety responses exist and\MSD1 >\MED2.

4.2.6 Strategy for separate and joint model fitting

Separate model fitting

The next paragraph describe how to estimate the MED and MSD from separate

model fitting by ignoring the correlation:

1. The following set of candidate efficacy models are chosen for fitting the data by MCP-

Mod: Linlog, Emax, exponential, quadratic; While the Linglog, linear, Emax and

exponential models are selected for fitting safety data.

2. Fit the efficacy data separately to choose the best model with alpha=0.05 and lowest
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AIC. If PoC of efficacy is established, fit safety data separately and choose best model

with alpha=0.2 and lowest AIC.

3. Get the \MED2 and\MSD1 based on the models from Step 2.

Joint model fitting

The following two strategies can be used to obtain the MED and MSD from the

joint model fitting after PoC for both efficacy and safety are established:
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?

?

?

?

?

Candidate models
Set of efficacy

1st step

Most significant Most significant
safety model

(AIC) (AIC)

Final joint model

\MED2 \MSD1

MCP-Mod 2nd step

Fit joint model

MCP-Mod
1st step

MCP-Mod

MCP-Mod 2nd step

Efficacy model

Set of safety
Candidate models

Figure 4.6: Flow chart of joint model fitting-Strategy I

Strategy I: Keep most significant model from separate efficacy and safety model fitting

1. First get all the significant efficacy and safety models, of which t-statistics are bigger

than the critical values (qY, qZ) while controlling FWER from separate fittings. Al-

pha=0.05 is pre-specifed for PoC of efficacy and alpha=0.2 is pre-specifed for PoC of

safety. Then select the most significant efficacy and safety models based on the low-

est AIC criteria, keep the parameter estimates which will be used as start values for
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joint model fitting. Please note if there is no significant model for efficacy endpoint,

this indicates there is no PoC for efficacy, then we will not proceed further. If there

is no significant model for safety endpoint, which means there is no PoC for safety,

then we can fit the model for efficacy only.

2. Joint model fitting by generalized nonlinear least squares model.

3. Estimate \MED2 and \MSD1 based on updated efficacy and safety model from joint

fitting (Figure 4.6).

Strategy II: Keep all significant models from separate efficacy and safety models

1. Keep all the significant efficacy and safety models of which t-statistics are bigger than

the critical values (qY, qZ) while controlling FWER from separate fittings. Alpha=0.05

is pre-specified for PoC of efficacy and alpha=0.2 is pre-specifed for PoC of safety.

The parameter estimates are kept and will be used as initial values for the joint model

fitting.

2. Joint model fitting for all the combinations of efficacy and safety models selected

from separate model fitting in Step 1, choose the best combination based on the low-

est AIC from all the joint models fitting.

3. Obtain the estimated \MED2 and \MSD1 based on the updated efficacy and safety

models from the best joint model (Figure 4.7).
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?

? ?

??

Candidate models
Set of efficacy

1st step

All significant All significant

(AIC)
Best joint model

Safety models with

Fit all combinations of joint models

MCP-Mod 2nd step

\MSD1

MCP-Mod MCP-Mod
1st step

MCP-Mod 2nd step

\MED2

t>critical value qY. t>critical value qZ.
Efficacy models with

Set of safety
Candidate models

Figure 4.7: Flow chart of joint model fitting-Strategy II

4.2.7 Simulation results for \MED2 and \MSD1 from separate and joint model

fitting

The data are simulated as described in Section 4.2.3 and the joint model fitting is

conducted as described in Figures 4.8 and 4.9.
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? ?

?

Set of efficacy
Candidate models

Exponential, Quardratic

(AIC)

For example: Emax:

Most significant

type: 1=efficacy; 2=safety

For example: Emax,Linlog For example: Emax,Linear

For example: Linear:

Exponential, Linglog

Set of safety
Candidate models

(AIC)

Most significant

+(type-1)*(Es
0+ δs � d)

Fit joint model: Emax and Linear

Es
0+ δs � d

(2-type)(Ee
0+ Ee

maxd/(EDe
50+ d))

Ee
0+ Ee

maxd/(EDe
50+ d)

Final joint model:

efficacy model safety model

Figure 4.8: Flow chart of the joint model fitting-Strategy I Example
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? ?

Quadratic:

For example: Emax:

’(type-1)(Es
0+ δs � d)

type: 1=efficacy; 2=safety

Ee
0+ Ee

maxd/(EDe
50+ d)

Ee
0+ βe

1 � d+ βe
2 � d2

Set of efficacy
Candidate models

For example: Emax,Linlog
Exponential, Quardratic

All significant

(AIC)

Set of safety
Candidate models

For example: Emax,Linear
Exponential, Linlog

All significant

(AIC)

For example: Exponential
Es

0+ Es
1 � exp(d/δs)

Linear:
Es

0+ δs � d

Fit all combinations of joint models

For example: (2-type)Ee
0+ Ee

maxd/(EDe
50+ d))

Best joint model: Emax and exponential by AIC

.....................

efficacy models safety models

?

Figure 4.9: Flow chart of the joint model fitting-Strategy II example
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Table 4.2 shows the results of \MED2 and \MSD1 from joint and separate fitting

when the efficacy and safety responses are independent. Percent of bias and MSE for

\MED2 are similar between separate model fitting and joint model fitting methods de-

scribed in Figures 4.8 and 4.9; MSE and percent bias for \MSD1 are slightly better for the

joint model fitting (using the approach in Figure 4.8) than separate fitting. MSE is de-

creased from .00323 to .00183 (Table 4.2).

When the correlation between efficacy and safety increases, percent of bias and

MSE decrease more for both approaches of joint fitting than separate fitting in \MED2 and

\MSD1 estimation (Tables 4.2- 4.4). The \MED2 is better estimated when the data are cor-

related, \MSD1 estimates remain the similar. In general joint fitting (2) with the Strategy II

approach is better than joint fitting (1) with the Strategy I approach in terms of percent of

bias and MSE.

Table 4.5 shows the consistency of correlation and variance structure for both the

efficacy and safety responses.
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Table 4.2: The \MED2 and\MSD1 from separate fitting and joint fitting with ρ = 0

Efficacy \MED2 (%)
Model True MED Fitting Mean sd Median bias bias MSE
Emax 0.052 Separate 0.062 0.019 0.060 0.011 20.8 0.00047

Joint (1) 0.062 0.019 0.060 0.010 19.7 0.00045
Joint (2) 0.063 0.020 0.060 0.011 21.2 0.00050

Safety \MSD1 (%)
Model True MSD Fitting Mean sd Median bias bias MSE

Exp. 0.829 Separate 0.783 0.033 0.790 -0.040 -5.6 0.00323
Joint (1) 0.803 0.035 0.810 -0.026 -3.2 0.00183
Joint (2) 0.798 0.055 0.810 -0.037 -3.7 0.00401

Notes: a. Simulated correlation is 0. Outputs are from 500 simulations and n=100 per dose group.

b. Joint (1) for\MED2 and\MSD1 are based on the joint model of most significant
model from separate fitting of efficacy and safety data by lowest AIC criteria. The
results consist of 460 emax–exponential, and 29 quardratic-exponential final joint
models.

c. Joint (2) for\MED2 and\MSD1 are based on all joint models by combinations of
significantmodels from separate fitting of efficacy and safety data, the final model is
selected from all joint models by lowest AIC criteria. The results consist of 460 emax-
exponential, 34 quadratic-exponential, 5 emax-linear and 1 quardratic-linear final
joint models.
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Table 4.3: The \MED2 and\MSD1 from separate fitting and joint fitting with ρ = 0.4

Efficacy \MED2 (%)
Model True MED Fitting Mean sd Median bias bias MSE
Emax 0.052 Separate 0.063 0.020 0.060 0.011 21.1 0.00054

Joint (1) 0.063 0.019 0.060 0.010 19.9 0.00047
Joint (2) 0.063 0.019 0.060 0.010 20.2 0.00049

Safety \MSD1 (%)
Model True MSD Fitting Mean sd Median bias bias MSE

Exp. 0.829 Separate 0.782 0.034 0.790 -0.047 -5.6 0.0033
Joint (1) 0.801 0.035 0.810 -0.028 -3.4 0.0019
Joint (2) 0.801 0.035 0.800 -0.028 -3.4 0.0020

Notes: a. Simulated correlation is 0. Outputs are from 500 simulations and n=100 per dose group.

b. Joint (1) for\MED2 and\MSD1 are based on the joint model of most significant
model from separate fitting of efficacy and safety data by lowest AIC criteria. The
results consist of 453 emax–exponential, and 37 quardratic-exponential and 6 of
linlog-exponential final joint models.

c. Joint (2) for\MED2 and\MSD1 are based on all joint models by combinations of
significantmodels from separate fitting of efficacy and safety data, the final model is
selected from all joint models by lowest AIC criteria. The results consist of 464 emax-
exponential, 24 quadratic-exponential and 12 linlog-exponential final joint models.
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Table 4.4: The \MED2 and\MSD1 from separate fitting and joint fitting with ρ = 0.8

Efficacy \MED2 (%)
Model True MED Fitting Mean sd Median bias bias MSE
Emax 0.052 Separate 0.063 0.020 0.060 0.011 20.8 0.00052

Joint (1) 0.061 0.016 0.060 0.009 17.8 0.00032
Joint (2) 0.060 0.014 0.060 0.008 16.1 0.00028

Safety \MSD1 (%)
Model True MSD Fitting Mean sd Median bias bias MSE

Exp. 0.829 Separate 0.782 0.034 0.780 -0.047 -5.7 0.0034
Joint (1) 0.799 0.033 0.800 -0.029 -3.6 0.0019
Joint (2) 0.800 0.031 0.800 -0.029 -3.4 0.0019

Notes: a. Simulated correlation is 0. Outputs are from 500 simulations and n=100 per dose group.

b. Joint (1) for\MED2 and\MSD1 are based on the joint model of most significant
model from separate fitting of efficacy and safety data by lowest AIC criteria. The
results consist of 448 emax–exponential, and 35 quardratic-exponential final joint
models.

c. Joint (2) for\MED2 and\MSD1 are based on all joint models by combinations of
significantmodels from separate fitting of efficacy and safety data, the final model is
selected from all joint models by lowest AIC criteria. The results consist of 476 emax-
exponential, 24 quadratic-exponential final joint models.
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Table 4.5: The correlation and variance by simulation and gnls output

Correlation and variance between efficacy and safety data
True values gnls output

ρ ΨYY ΨZZ bρ bΨYY bΨZZ
0 49 64 -0.001 49.13 64.13

0.4 49 64 0.399 49.13 63.96
0.8 49 64 0.799 49.14 63.84

Evaluate bias and precision of the target dose estimate

The \MED and\MSD from the joint or separate fitting are compared with the true-

mean from the selected dose-response models, the mean/median bias, percent bias, boot-

strap 95% confidence interval coverage for MED and MSD are computed as described in

Sections 2.2.1 and 3.1. Also percent of

� \MED 6\MSD

� true MED 6\MED 6 true MSD

� \MED > true MSD and

� 0 <\MED 6 true MED

are calculated.

Table 4.6 displays the outputs of the relationship among \MED2, \MSD1, true val-

ues of efficacy and safety means. In general it shows the consistency of the estimated

\MED2 and \MSD1 for both the joint model and separate model fitting. All the estimated
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\MED2 are lower than the estimated\MSD1 value for this simulated example, 60% of\MED2

are lower than True safety mean and higher than true efficacy mean.
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Figures 4.10 - 4.11 show the distributions of \MED2 and \MED2 relative to the

true MED; distributions of \MSD1, \MSD2 and the true MSD. When the data are more

correlated, the joint model fitting seems less spread, and there are higher proportions of

\MSD2 above the true MSD mean than that of\MSD1.
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Figure 4.10: Plots of \MED2 and \MSD1 based on separate or joint fitting: horizontal and
vertical line represent true MED and true MSD, respectively.
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Figure 4.11: Plots of \MED2 and \MSD2 based on separate or joint fitting: horizontal and
vertical line represent true MED and true MSD, respectively.
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Chapter 5

Suggest Dose(s) for the Phase III

Program Development for Joint

Bivariate Continuous Responses

After the \MED2 and \MSD1 are estimated, the optimal dose(s) to be carried into

the Phase III program remain unresolved. If the\MSD1 is smaller than the\MED2, there will

be no appropriate dose for the Phase III program. In the following sections, we propose

two different methods to select an optimal dose or a dose range for Phase III. The first

method will focus on the joint success criteria for the efficacy and safety in Phase III; The

second method will use the utility function to identify the final dose(s) to carry into Phase

III program.
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5.1 Method I: Identify the dose(s) through the joint criteria of

continuous efficacy and safety responses for Phase III pro-

gram

5.1.1 Method

The recommended dose(s) will be determined by

argmax
d2[MED, MSD]

P(Y > a, Z < b j d) � c, or

a dose range in [MED, MSD] such that P(Y > a, Z < b j d) � c,

where the joint density is

f (y, z) =
exp

�
� 1

2(1�ρ2)

�
(y�µy)

2

σ2
y

+
(z�µZ)

2

σ2
Z

� 2ρ(y�µY)(z�µZ)
σYσZ

��
2πσyσz

p
1� ρ2

,

Y is the efficacy variable and Z is the safety variable, a and b are the criteria for Phase III

success and c is the success probability. The joint bivariate density is estimated from the

joint fitted model with estimated values of σy, σz, ρ, µy, µz from the joint modeling fitting

in 4.2.4.

5.1.2 Simulation

Procedure:

1. σy, σz, ρ are from the previous joint model fitting (These values will be retained

from the previous described Strategy II, which select the most significant joint model

from all combinations). µy, µz will be derived from the different dose levels and the
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mean models for efficacy and safety through the simulation results based on the joint

model fitting.

2. Criteria values a and b are given such that the decreased DBP change from baseline

is more than certain value (for example, 3 mmHg) and decreased GFR change from

baseline is less than certain value (for example, 6 ml min-1 1.73 m�2) in order to

claim the success of the Phase III program. de, and ds are the doses which fit the

mean efficacy and safety model to satisfy a and b respectively.

3. de and ds are 0.056 and 0.824 respectively, which are derived from the updated mean

efficacy and safety model from the joint fitting to satisfy the mean efficacy change of

a and mean safety change of b.

Results Figures 5.1 and 5.2 plot the joint probability for efficacy response (change from

baseline)>3 and safety response (change from baseline)<6. The simulated parameter es-

timates for efficacy and safety response models are based on the Emax and exponential

model simulation results respectively. There are 4 lines in each plot. The upper and lower

lines represent upper 97.5% and lower 2.5% of 500 values of the probabilities based on

the simulated parameter estimates. The middle 2 lines are the true probability based on

the true parameter value and mean of simulated probability, respectively. The simulated

probability is very close to the true probability, which results in the similar final best dose

satisfying the joint efficacy and safety criteria. The best dose that satisfies the joint crite-

ria based on the true parameter value is 0.47 while the best simulated dose is 0.45. As

shown in Table 5.1 and Figure 5.2, the set of doses with probability>0.6 of satisfying the
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joint criteria are 0.21-0.71 from true parameter and 0.21-0.69 from the simulated parameter

estimates.
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Figure 5.1: Plot of probability to satisfy efficacy and safety criteria
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Figure 5.2: The set of doses satisfy the joint criteria with at least 60% probability or the best
dose which has the maximum probability of success
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Table 5.1: The best set of dose(s) satisfy joint efficacy and safety criteria

Minimum dose Maximum dose Best dose (prob)
True 0.21 0.71 0.47 (66.03%)
Simulated 0.21 0.69 0.45 (65.65%)
Note: The correlation between efficacy and safety response is 0.8. Best dose provide
maximum probability to satisfy joint criteria while the minimum and maximum dose
can provide the probability to satisfy the joint criteria at least 60%.

5.2 Method II: Utility function based on trade off of continuous

efficacy and safety responses for Phase III.

5.2.1 Methods

Another method to determine the recommended dose is based on the following

utility function.

F(d) = e f f (d)� k � sa f (d).

The dose is determined by maximizing the utility function F(d), i.e., argmax
d2[MED, MSD]

F(d).

Here, k>0 is some weight for the discounted safety from efficacy; e f f (d) and sa f (d)

can represent

1) P(Y > a j d) and P(Z > b j d) respectively, with estimated marginal density

function derived from either the separate model fitting or the joint model fitting. Y and Z

are efficacy and safety variables, a and b are criteria for Phase III success.

2) Standardized response e f f (d)=bY(d) and sa f (d)=bZ(d). bY(d) = E(Y(d))p
Var(Y(d))

=

f (d,θY)
σY

and bZ(d) = E(Z(d))p
Var(Z(d))

= g(d,θZ)
σZ

. θY, θZ, σY, and σZ are calculated from the estimated

efficacy and safety models with the parameter estimates based on the joint or the separate
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efficacy model fitting.

5.2.2 Simulation

Procedure:

1. σy, σz are obtained from the separate or marginal of joint model fitting. µy, µz will

be derived based on the different dose levels and the mean models for efficacy and

safety from the simulation results by the separate or marginal model fitting.

2. Criteria a and b are given such as the decreased DBP change from baseline by more

than a certain value(for example, 3 mmHg) and decreased GFR change from baseline

of less than certain value(For example, 6 ml min-1 1.73 m�2) in order to claim the

success of the Phase III program. de, and ds are the doses which fit the mean efficacy

and safety model to satisfy a and b respectively.

3. de and ds are 0.056 and 0.824 respectively, which are derived from the updated mean

efficacy and safety models from the separate or marginal of joint model fitting to

satisfy the mean efficacy change of a and mean safety change of b.

4. Obtain the utility index based on separate probabilities of efficacy and safety re-

sponse or the utility index based on the standardized efficacy and safety responses.

Results Figure 5.3 plots the utility index by probability of efficacy response (change from

baseline)>3, safety response (change from baseline)<6 and some discounted (k) value for

the safety response. The simulated parameter estimates for efficacy and safety response

models are based on the Emax and exponential model simulation results respectively.
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There are 4 lines in each plot. The upper and lower lines represent upper 97.5% and lower

2.5% of 500 probabilities based simulated parameter estimates. The middle 2 lines are the

true probability based on the true parameter value and mean simulated probability, re-

spectively. The simulated probability is very close to true probability which result in the

similar final best dose satisfy the joint efficacy and safety criteria. As seen in Figure 5.3 and

Table 5.2, when k increases from 0.2 to 0.8, which means the safety has more discounted

weight from the efficacy response, the maximum utility index increases from 1.074 to 1.508

and the best dose to satisfy this criteria decreases from 0.63 to 0.48.

Similarly, the simulated best dose for standardized efficacy and safety response is

very similar to the true dose based on the true parameter value (Figure 5.4). Furthermore,

when k increases from 0.2 to 0.8, which means the safety has more discounted weight from

the efficacy response, the maximum utility index decreases from 1.919 to 1.757 and the

best dose to satisfy this criteria decreases from 0.76 to 0.58 (Table 5.2).
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Figure 5.3: Best dose with the maximum utility index by varying the weight of safety
response
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Figure 5.4: Best dose with the maximum utility index by varying the weight of standard-
ized safety response
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Table 5.2: The best set of dose satisfy different weight of efficacy and safety criteria

Best dose Best dose
k (utility index by prob) (utility index by standardized

response)
0.2 true 0.63 (1.073) 0.75 (1.910)

simu. 0.63 (1.074) 0.76 (1.919)
0.4 true 0.56 (1.218) 0.66 (1.847)

simu. 0.55 (1.215) 0.67 (1.847)
0.6 true 0.52 (1.364) 0.62 (1.803)

simu. 0.51(1.361) 0.61(1.797)
0.8 true 0.49(1.512) 0.58(1.767)

simu. 0.48(1.508) 0.58(1.757)
Note:The correlation between efficacy and safety response is 0.8. Best dose provide
maximum utility index to satisfy efficacy and safety criteria
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Chapter 6

Conclusions

In Part I of this dissertation, first we extend the MCP-Mod to the safety outcome;

then we develop the methodology for how to identify the final dose for the Phase III pro-

gram based on nonlinear models for continuous bivariate endpoints. The methodology

include several procedures and are summarized as follows:

Extension of MCP-Mod to safety outcome: MCP-Mod, developed by Bretz et al.

(2005), was used to select the minimum effective dose which can provide the acceptable

efficacy treatment effect. In Part I of the dissertation, we extend the MCP-Mod to select the

maximum safety dose (MSD) that shows clinically acceptable toxicity. This definition has

a different concept from the MED definition. \MSD1 is considered conservative for dose

selection based on a safety outcome. The statistical performance of \MSD1 and bootstrap

C.I coverage for \MSD1 are reasonable and confirm that the use of \MSD1 is valid and

applicable.

Joint nonlinear continuous bivariate model estimation: In Part I of this dis-
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sertation, we utilize the generalized nonlinear least squares method to estimate the joint

nonlinear continuous bivariate outcomes. This method uses a Gauss-Seidel algorithm with

profiled likelihood to obtain the maximum likelihood estimates for the joint model para-

meters. As expected, the parameter estimates from the joint model fitting are more effi-

cient than the parameter estimates from the separate model fitting. When the correlation

between the bivariate endpoints is stronger, the relative efficiency increases and results in

more advantage to use the joint model estimation.

Strategy to find the best joint model: Before we make efforts to estimate the best

joint model, we realize that the efficacy is the key for the approval of the drug development

program. Hence, if there is no PoC for the efficacy, then there is no need to continue to

Phase III which means we won’t continue to estimate the joint model for the bivariate

data. When there is PoC for efficacy but PoC for the safety response does not exist, then

we need only to find the \MED2 since there is no toxicity effect found for the safety dose-

response curves under this scenario. On the other hand we will proceed to find the best

joint model if there is PoC for both bivariate outcomes.

Therefore when both efficacy and safety responses are considered for the dose

selection, there are two strategies we developed to find the final best joint model. Since

both efficacy and safety responses can be fitted by different dose-response curves and it

is possible more than one model can fit the efficacy or safety data. The most significant

fitted model based on the separated model fitting for efficacy or safety data may not be

the most significant model when we take the correlation between the bivariate endpoints

into account. Therefore the first strategy starts with identifying the most significant model
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based on the separate efficacy or safety data model fitting by the lowest AIC criterion and

t-statistics are larger than the critical values (qY, qZ) that control the FWERs. The final

model will be the joint model from the two identified most significant models from the

separate model fitting. The second strategy will identify all the significant models from

the separate model fitting based on the t-statistics and critical values (qY, qZ) that control

the FWERs. The final joint model is then selected by the lowest AIC criterion based on all

the joint model combinations. The simulation results imply that both approaches provide

more efficient parameter estimates than the separate model fitting. However, the second

strategy seems to provide slightly more efficient parameter estimates based on the MSE

and percent bias under stronger correlation between the bivariate outcomes.

Identifying the final dose(s) to carry into the Phase III program: After we find

the \MED2 and\MSD1 based on the joint modeling, how to identify the final dose(s) is still

unresolved. In Part I of the dissertation, we consider two criteria for the success of Phase

III program. The first criteria is the joint success criteria defined by the continuous efficacy

and safety responses. The dose(s) will be identified by the probability of satisfying the

joint criteria which is computed from the joint density of bivariate outcomes. The second

criteria is the utility function which is the trade off of the efficacy and safety, this will need

more inputs from clinicians. Overall both criteria largely rely on the individual profiles of

the drug.
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Part II

Dose Finding for Joint Continuous

and Discrete Bivariate Responses
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Chapter 7

Introduction to Joint Continuous and

Discrete Bivariate Responses

7.1 Background

Part I addressed the methodology to estimate the joint continuous bivariate re-

sponses and to identify the final dose for the Phase III program. In clinical trials there are

numerous cases that continuous and discrete endpoints are observed. To illustrate the case

of mixed discrete and continuous endpoints, we may use the data from the Lipid Research

Clinics Coronary Primary Prevention Trial (Freedman et al., 1992). These data concern

the effect of the drug cholestramine on serum cholesterol levels as efficacy endpoint at

one year and on cardiovascular events defined as either death from coronary heart dis-

ease or occurrence of myocardial infarction as safety endpoint. The true safety endpoint

is binary (cardiovascular event or not), while the surrogate endpoint is cholesterol level.
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Hence the surrogate can be considered as a continuous variable. Another simple yet real

example is encountered in a randomized clinical trial (Pharmacological Therapy for Mac-

ular Degeneration Study Group) with mixed discrete-continuous endpoints. The primary

endpoint of the trial was the loss of at least three lines of vision at one year, compared to

their baseline performance (a binary endpoint). The secondary endpoint of this trial was

the visual acuity at one year (treated as a continuous endpoint). Thus discrete outcomes

may be thought as indicators of continuous variables that are either difficult or impossible

to measure directly.

There are also cases that no direct underlying continuous variable exist for the

observed discrete variable. For example patients with myocardial infarction may have a

discrete outcome as mild, moderate or severe event, but there is no direct latent continuous

variable to categorize this discrete variable.

As described above, it is very common that we need to consider joint continuous

and discrete responses for the dose finding. Both efficacy and safety variables can be con-

tinuous, discrete or mixed-type outcomes. Though in the Part II of the thesis we consider

only the joint continuous efficacy and binary safety outcomes for recommending doses of

drug for the clinical development. This is only for the purpose of the illustration in this

dissertation. In reality the efficacy can be discrete outcome and safety can be continuous

outcome. Indeed the methodology presented here also applies to multiple efficacy end-

points or multiple safety endpoints, and the discrete variable is not restricted to binary

endpoint only. The multivariate variable may be the same type or mixed type outcomes.

The method presented here can also be applied to the case discussed in Part I.
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7.2 Research objectives

In Part II, we will develop methodologies to identify the final dose to carry into

Phase III program based on joint nonlinear models for mixed continuous and discrete re-

sponses. The followings are the objectives and specific aims of Part II.

7.2.1 Objectives

Objective I: To establish and estimate the joint nonlinear model when mixed con-

tinuous and discrete responses (efficacy and safety endpoints) are correlated (Chapter 9.3).

Objective II: To evaluate and select the best joint nonlinear model for mixed con-

tinuous and discrete responses (Chapter 9.4, 9.9).

Objective III: To define and determine more accurate MED and MSD estimates

for the correlated nonlinear mixed continuous efficacy and discrete safety responses (Chap-

ter 9.7, 9.8).

Objective IV: To identify the final dose(s) to carry into Phase III program with

high probability of success when bivariate outcomes are of mixed type (Chapter 9.10).

Objective V: To simulate bivariate correlated mixed type responses data in order

to evaluate the dose finding methodology for the joint nonlinear models for mixed type

responses (Chapter 9.5).

7.2.2 Specific aims

The specific aims for Part II of this dissertation are summarized in the following:

1. To formulate bivariate nonlinear joint model for continuous and discrete responses,
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and to develop methods for estimating the parameters in the joint model that account for the corre-

lation between the continuous and discrete responses.

As mentioned above, the estimation methods for joint modeling of mixed type

outcomes are not obvious. Some studies proposed generalized estimating equations (GEE2)

(Prentice and Zhao, 1991) or extended least squares (ELS) (Vonesh et al., 2001) approaches

to estimate the parameters for the models with mixed type outcomes. No applications

have been illustrated for the efficiency of the parameter estimates. Most published work

are for linear continuous response instead of nonlinear continuous response. We will ex-

plore the strategy for estimating the joint monlinear modeling for continuous and discrete

outcomes. Furthermore, since the correlation between the continuous and discrete out-

comes varies and depends on the dose level, estimation of the different correlation for

different dose level adds further challenge.

2. To develop strategies to find the best joint nonlinear model for mixed type outcomes.

Since the joint model we discussed here is nonlinear regression of mixed type of

responses, we need to explore the method for assessing the model fitting.

3. To define the MSD based on the discrete safety outcome.

The maximum safety dose is the highest dose that its mean toxicity does not ex-

ceed the mean toxicity of the zero dose by a specified threshold. If the safety outcome is

a discrete endpoint, the parameter estimate from the joint model for the safety endpoint

used certain links in the modeling. Furthermore the specific threshold is not directly mea-

sured by the binary endpoint, but by the probability of the binary endpoint.

4. To determine the final dose(s) to carry into the Phase III program.
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In studying the dose response relationship of a new drug, we need to consider

the nature of the dose response relationship for both continuous and discrete endpoints. In

order to identify the optimal dose, the focus is on how to apply the dose response relation-

ship to efficacy, safety, and the benefit/risk ratio. All these aspects need to be evaluated.

5. To develop the strategy to simulate bivariate correlated mixed type responses data to

evaluate the dose finding methodology proposed.

In order to evaluate the dose finding methodology, including the joint nonlinear

model for joint mixed type responses, we need to simulate bivariate correlated mixed type

outcomes in this study. Since one of the research goals is to evaluate the estimates from

different nonlinear joint models, we need to find the relationships of parameters, the mean

model parameters and the correlations of the continuous and discrete variables for dif-

ferent joint model formation. We will explore the strategy for the simulation, including

the relationship between the observed discrete outcome and the underlying continuous

outcome regarding the mean model and correlations.
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Chapter 8

Literature Review for Estimation in

Multivariate Responses

In addition to the existing issues in the dose finding field reviewed in the Part I,

in reality not all bivariate outcomes are both continuous responses. Statistical problems

where various outcomes of a mixed nature are observed and are rather common at present

in clinical trials. Perhaps the most common situations in clinical trials are that the safety

responses maybe observed as discrete responses. Safety responses can be observed as ad-

verse events or the discrete lab outcomes. In most situations the observed discrete outcome

is derived from a latent continuous outcome. Thus under these scenarios the observed

discrete outcome may be assumed to arise from an unobservable continuous random vari-

able. This discrete outcome represents an indicator of whether this underlying variable

exceeds some threshold. On the other hand we also realize that some discrete outcomes

do not have a direct underlying continuous variable. It is also true that we may need to
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consider multiple efficacy or multiple safety outcomes for the drug development instead

of combined efficacy and safety outcomes as clinical interests.

Methods for jointly modeling continuous and discrete responses are not obvious,

especially with nonlinear models for both outcomes. It is clear that the literature on joint

modeling of outcomes of various nature is diverse and growing. The following section

will discuss the current existing approaches for estimating the parameters in models for

the multi-responses.

8.1 Existing estimating approaches for multivariate responses

For the problem sketched above, one approach is to factor the joint distribution

into the product of a marginal and a conditional distribution. There are two versions of a

conditional models, depending on whether the conditionaling is done on the continuous

or the discrete outcome (Cox 1972; Krzanowski 1988; Cox and Wermuth 1992; Fitzaurice

and Laird 1997). The choice of conditioning is mostly for statistical convenience rather than

biological rationale, as relatively little is understood about the biologic mechanisms of de-

velopmental toxicity. This approach focus on estimating the mean-dose parameters while

accounting for the bivariate correlation. Conditional models have some drawbacks in this

setting, including lack of a marginal dose-response interpretation in models that condition

on continuous variable and difficulty in quantitative assessment. Although such mod-

els may take into account the dependence between the bivariate variable, the correlation

itself may not be directly estimated and so the joint probability of the event of the bivari-

ate outcome is unavailable. Furthermore when the continuous outcome follows nonlinear
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regression model then the estimation adds further challenges.

Another model family is that a joint model is formulated for the two outcomes.

In this context, one often starts from a bivariate continuous variable, one component of

which is explicitly observed and the other one observed in dichotomized, or generally dis-

cretized, version only. Regan and Catalano (1999) proposed likelihood models that fully

specify the joint distribution of the continuous and discrete outcomes which directly es-

timate all mean dose-response and correlation parameters. These approaches focus on

estimating the mean dose-response parameters. Difficulty then arises in nonlinear contin-

uous outcome in the combined continuous and discrete outcomes because the likelihood

is not in a closed form. In addition, since the key parameters usually must be interpreted

conditional on the latent variables, distributional assumptions on the latent variables are

necessarily somewhat arbitrary and untestable, and computational aspects of model fitting

may be difficult.

GEE methodology has been proposed for multivariate continuous and discrete

outcomes (Prentice and Zhao, 1991; Zeger and Liang, 1991; Rochon 1996). A set of second-

order generalized estimating equations (GEE2) for jointly estimating the mean and second

moment parameters for a multivariate response vector are within the context of linear re-

gression for continuous variable. Furthermore, mis-specified second moments will lead to

poor estimation of the mean model parameters. Vonesh et al. (2001) focused on estimating

the parameters of a general multivariate nonlinear regression model. Estimation is based

on iteratively reweighted generalized least squares (IRGLS) and is carried out through

repeated application of Taylor series linearization and estimated generalized least squares
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(EGLS). Consequently, this IRGLS procedure may be viewed as performing a series of lin-

ear regressions using weighted least squares. An advantage of the procedure is that it only

requires specification of the first two moments, while it does require that the first four mo-

ments exist in order for the estimators to be consistent. When the covariance parameter

is unknown and need to be estimated with the location parameter in the mean vector,

this leads to the joint estimation both location parameter and covariance parameter which

is called extended least squares (ELS). However, the paper only showed and estimated

the marginal multivariate nonlinear regression model in which the marginal mean and

variance-covariance matrix share a common set of parameters.

8.1.1 GEE2 method

The GEE2 method has been shown as equivalent to the extended least squares

(ELS) method under normality in Vonesh et al. (2001). Given a sample of K independent

random observations yT
k = (yk1, ..., yknk), k = 1, ..., K, of a general multivariate response

vector. Liang and Zeger (1986) and Liang (1986) proposed that a parameter vector β in the

mean response µT
k = µT

k (β) = fE(yk1), E(yk1), ...g can be estimated as the solution to the

following equation:

K�1/2
K

∑
k=1

DT
k11V T

k11(yk � µk) = 0, (8.1)

where Dk11 =
∂µk
∂βT and V k11 is the variance matrix for yk.

Prentice (1988) introduced a second set of estimating equations (8.2) to estimate

α which is used to characterize V k11. This set of estimating equations is similar to (8.1) but

with yk � µk replaced by the vector of differences between the empirical and true pairwise
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correlations.

K�1/2
K

∑
k=1

DT
k22V T

k22(sk � σk) = 0, (8.2)

where σk and sk denote the covariance matrix V k11 and empirical covariance in vector

forms. Dk22 =
∂σk
∂αT and V k22 is a "working" variance matrix for the vector of empirical

covariances sk.

In order to specify the asymptotic distribution for
�bβ, bα� that solve (8.1) and (8.2),

denote

Dk =

2664 ∂uk
∂βT 0

0 ∂σk
∂αT

3775 =
2664 Dk11 0

0 Dk22

3775 ,

V k =

2664 Vk11 0

0 V k22

3775 , fk =

2664 yk � uk

sk � σk

3775 ,

Σ = K�1
K

∑
k=1

DT
k V T

k Dk,

we have

h
K�1/2(bβ� β)T, K�1/2(bα� α)

i
� AN

 
0, K�1Σ�1

 
K

∑
k=1

DT
k V�1

k f k f T
k V�1

k Dk

!
Σ�1

!
.

(8.3)

(bβ� β)T �

AN

0BBBB@
0,

"
K

∑
k=1

DT
k11V�1

k11Dk11

#�1 " K

∑
k=1

DT
k11V�1

k11 (yk � uk) (yk � uk)
T V�1

k11Dk11

#

�
"

K

∑
k=1

DT
k11V�1

k11Dk11

#�1

1CCCCA .

(8.4)



104

These features suggest that simple special cases of (8.1) and (8.2) will be attrac-

tive if interest resides primary in the mean parameter β. One can specify, or build, a model

for the variance matrix V k11(β, α) that may imply good efficiency for bα estimation with-

out being overly concerned about the choice of weight matrices V k22 for sk. On the other

hand, if interest resides in both the mean and covariance parameters, a systematic means

of generating estimating equations would be desirable.

8.1.2 Iteratively reweighted generalized least squares (IRGLS), extended least

squares (ELS) and quasi-extended least squares (QELS) methods

In order to adapt the ELS and QELS methods to dose-finding for joint nonlinear

continuous and discrete data, the detailed estimating procedures are introduced.

As described in Vonesh et al. (2001), assume a given sample of n individuals with

a pi measurements on the ith subject. Let yi = [yi1,...yipi ]
0
. yi are independently distributed

with mean and variance-covariance given by

E(Y i) = µi(β),

var(Y i) = Σi(β, θ).

Denote

Si(β) = Vec
�
(Y i � µi(β)(Y i � µi(β))

T
�

,

σi(β, θ) = E(Si(β)),

ωi = Vech(Y iYT
i ).

Vech(.) is the matrix operator that creates a column vector from a square matrix by stacking
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the diagonal and lower diagonal elements below one another. Vec(.) is the matrix operator

that creates a column vector from a matrix A by simply stacking the column vectors of A

below one another.

The third- and fourth-order moments are as follows:

Θi = cov(Y i, ωi), Γi = var(ωi).

Let τT = (βT, θT), and define

Y i =

0BB@ yi

wi

1CCA , f i(τ) =

0BB@ µi(β)

γi(β, θ)

1CCA , ψi (τ) =

2664 Σi(β, θ) Θi(β, θ)

Θi(β, θ) Γi(β, θ)

3775 .

The joint estimation of τT = (βT, θT) can be based on the non-linear model

Y i = f i(τ) + ξi, E(ξi) = 0, var(ξi) = Ψi(τ).

Let tT = bτ0T
= (bβ0T

, bθ0T
) be an initial estimate of τT = (βT, θT) and assume t is

in the interior of parameter space of τ. By applying the usual Gauss-Newton algorithm for

the nonlinear regression, estimation may be carried out by taking a first-order Taylor series

expansion of f i (τ) about τ = t yielding the approximation Y i = f i (τ) + X it(τ � t) + ξi,

which can be rewritten in terms of the linear model

Y�i = X itτ + ξi, (8.5)

where X it = ∂ f i (τ) /∂τTjτ=t and Y�i = Y i � f i (t) + X itt, based on this linear model, an

estimated generalized least squares estimate (EGLS) of τ is given by

bτ =  n

∑
i=1

XT
itΨi(t)�1X it

!�1 n

∑
i=1

XT
itΨi(t)�1Y�i, (8.6)

where Ψ(t) is the assumed covariance matrix of ξi evaluated at τ = t.
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Iteratively reweighted generalized least squares (IRGLS) entails iterating between

(8.5) and (8.6) by setting τ = t in (8.5) and then using (8.6) to obtain an updated estimate

of τ. By repeating this process, obtain a sequence of one-step Gauss-Newton estimators,nbτkjk = 1, 2, ...
o

, which, as k ! ∞, yields a solution to the set on nonlinear "normal" esti-

mating equations,

U(τ) =
n

∑
i=1

n
X i (τ)

T
Ψi(τ)

�1(Y i � f i (τ))
o
= 0, (8.7)

where X i (τ) = ∂ f i (τ) /∂τT. When fully iterated, the model-based asympotic variance-

covariance matrix of the IRGLS estimate, bτ is estimated by the inverse of the expected

information matrix evaluated at the final estimate, i.e,

bΩ(bτ) =  n

∑
i=1

X i (bτ)T
Ψi(bτ)�1X i (bτ)

!�1

.

To safeguard against mis-specification of Ψi(τ), one can use a robust estimator of the vari-

ance of bτ, which is given by the empirical "sandwich" estimator as follows:

bΩR(bτ) = bΩ(bτ) n

∑
i=1

X i (bτ)T
Ψi(bτ)�1eieT

i Ψi(bτ)�1X i (bτ)
! bΩ(bτ), (8.8)

where ei = Y i � f i (bτ) .

It was shown by Vonesh et al. (2001) that the IRGLS procedure for estimating τ,

which consists simply of repeated application of Taylor series linearization and estimated

generalized least squares, is equivalent to maximum likelihood estimation assuming nor-

mality.

In addition, Voensh et al. (2001) also discussed a least squares approach to es-

timate β assuming yi has mean µi(β) and variance-covariance Σi(β, θ). For convenience
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suppose that θ = θ� is known. The weighted least squares named as generalized least

squares (GLS) which minimize the GLS objective function

QGLS(βjθ
�) =

n

∑
i=1

n
(Y i �µi (β))T

Σi(β, θ�)�1 (Y i �µi (β))
o

. (8.9)

Since Σi(β, θ�) depends on β, the estimation based on minimizing (8.9) may pro-

duce biased estimates of β. To avoid the biased estimating equations in GLS, the corrected

generalized least squares (CGLS) estimating equation is used to provide unbiased esti-

mating equations correspond to minimizing the bias-corrected generalized least squares

objective function

QCGLS(βjθ
�) =

n

∑
i=1

n
(Y i �µi (β))T

Σi(β, θ�)�1 (Y i �µi (β)) + log jΣi(β, θ�)j
o

, (8.10)

where it is understood that minimization is with respect to β only.

From the above well-defined CGLS objective function( 8.10), it does require that

θ = θ� is known. By replacing θ� with any consistent estimate bθ, this ends up with a condi-

tional objective function QCGLS(βjbθ) and is subject to small sample bias. An alternative to

independently estimating θ prior to optimizing QCGLS(βjbθ), Vonesh et al. (2001) proposed

to jointly estimate both and β and θ by simply including θ as an unknown parameter in

the objective function ( 8.10) as follows.

QELS(β, θ) =
n

∑
i=1

n
(Y i �µi (β))T

Σi(β, θ)�1 (Y i �µi (β)) + log jΣi(β, θ)j
o

. (8.11)

Formula (8.11) denotes the extended least squares objective function associated

with the joint estimation of both β and θ. The corresponding joint estimating equations for
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maximizing QELS(β, θ) are given as follows:

UELS(β, θ) =
n

∑
i=1

2664 Di(β) 0

Ei(β) Ei(θ)

3775
T 2664 Σi(β, θ) 0

0 V i(β, θ)

3775
�1 2664 yi �ui (β)

Si(β)� σi(β, θ)

3775 = 0,

(8.12)

where Ei(θ) = ∂σi(β, θ)/∂θT.

It is straightforward to show that minimizing the ELS objective function QELS(β, θ),

is equivalent to maximizing the joint log-likelihood function of yi, i = 1, ..., n, assuming the

yi are independently normal distributed with mean ui(β) and covariance matrix Σi(β, θ).

The formula (8.12) is equivalent to the second-order generalized estimating equa-

tions (GEE2) and same to the set of nonlinear "normal" estimating equations given in (8.7)

under normality assumption which is described in Vonesh et al. (2001). The advantage of

using the ELS approach is that the 3rd and 4th order moments are automatically generated

as through from a multivariate normal distribution even though data are not multivariate

normal. The empirical sandwich estimator can be used to achieve asymptotically valid

inference provided that mean and variance structure have been correctly specified.

If Ei(β) = ∂σi(β, θ)/∂βT = 0 in formula (8.12), one gets the set of quasi-extended

least squares (QELS) estimating equations described in Vonesh et al. (2001). The advantage

of using QELS estimating equations is that under certain conditions, one can still achieve

a consistent estimate of β even if the variance-covariance structure is mis-specified.



109

8.2 Unaddressed areas from the existing approaches for multi-

variate responses

As summarized above, most papers either use factoring the joint distribution into

a conditional model approach or use direct joint distribution approach. These methods

only applied to linear model for continuous and discrete outcomes. For nonlinear regres-

sion models for mixed type responses, the approaches developed in the these papers can’t

be applied directly.

Vonesh et al. (2001) considered the estimation of multivariate nonlinear regres-

sion for the joint continuous and discrete variable. However, the application described in

the paper is in the setting of the marginal mean and variance-covariance structure share

a common set of regression parameters. For dose finding studies, both joint continuous

and discrete outcomes usually follow nonlinear regression and do not share common set

of regression parameters. Furthermore, the correlation between the continuous and dis-

crete outcomes will be different for each dose level. These haven’t been explored in the

currently published papers.

How to adapt the extended least squares (ELS) or quasi-extended least squares

(QELS) methods into the dose finding studies data will be explored and addressed in this

dissertation.

Furthermore, how to develop the methodology to identify the final dose(s) to

carry into Phase III program based on nonlinear mixed type efficacy and safety have not

been explored so far in the clinical drug development. To address the theoretical and

practical issues mentioned above will be quite worthwhile.
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Chapter 9

Developing the Methodology to

Estimate MED and MSD for Joint

Continuous and Discrete Responses

9.1 Joint nonlinear bivariate continuous and discrete model

A bivariate variable

2664Yij

Zij

3775 represents the efficacy response Yij and the safety re-

sponse Zij. Without loss of generality, both the Yij and Zij responses can be either continu-

ous or discrete. The generalized nonlinear joint model can be written as follows:

2664 h1(uY
i )

h2(uZ
i )

3775 =

2664 h1(E(Yij))

h2(E(Zij))

3775 =

2664 f �(di, θY)

g�(di, θZ)

3775 , i=1,...k, j=1,....ni



111

where

2664 θY

θZ

3775 refers to the vector of model parameters, i to the dose group (i = 1 corre-

sponds to placebo), and j to the patient within dose group i.

There are the following cases depend on the outcomes measures of efficacy vari-

able Yij and the safety variable Zij:

1. If both Yij and Zij are continuous outcomes and are normally distributed, then both

h1(.) and h2(.) equal the identity links.

2. If Yij is continuous outcome and Zij is discrete outcome, then h1(.) equals to the

identity link and and h2(.) equals to some link function such as logit link.

3. If both Yij and Zij are discrete outcomes, then both h1(.) and h2(.) equal to some link

functions such as logit link for binary outcome.

Case (1) is already discussed in the previous chapters and case (2) is the focus

of Part II of the dissertation. Vonesh et al. (2001) developed the method of estimating

parameters for the same type of outcomes in multivariate nonlinear regression and the

outcomes share a common set of parameters which assumed the outcomes follow the same

distributions.

In this chapter focus will be on the nonlinear mixed outcomes of continuous and

discrete binary responses for simplicity. The continuous efficacy response may follow the

nonlinear regression and binary response may be seen often to follow the logistic regres-

sion, probit or complementary log-log regression models.

The nonlinear continuous and discrete variable can be written as follows:
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2664 uY
i

h2(uZ
i )

3775 =
2664 E(Yij)

h2(E(Zij))

3775 =
2664 f (di, θY)

g�(di, θZ)

3775 , i = 1, ...k, j = 1, ....ni,

or 2664 uY
i

uZ
i

3775=

2664 E(Yij)

E(Zij)

3775=

2664 f (di, θY)

g(di, θZ)

3775 , i=1,...k, j=1,....ni, (9.1)

where θT = (θT
Y, θT

Z), which refers to the vector of model parameters, i to the dose group

(i = 1 corresponds to placebo), and j to the patient within dose group i, and g(di, θZ) =

h�1
2 (g�(di, θZ)).

The joint distribution of (Yij, Zij) is

f (yij, zij) = fYij(yij) fZijjYij
(zijjyij) = fZij(zij) fYijjZij

(yijjzij).

9.2 Likelihood for nonlinear joint continuous and discrete bivari-

ate model

The continuous efficacy variable Yij and binary safety variable Zij are described

Section 9.1. The likelihood based on the nonlinear joint model of continuous and binary

responses can be written as below:

L =
k

∑
i=1

ni

∑
j=1

log
�

f (yij, zij)
	

,

where f (yij, zij) is the joint distribution of (Yij, Zij) and (Yij, Zij) are independent.

The following two methods illustrate how to derive the likelihood for the joint

nonlinear continuous and discrete variable based on whether we have the information for

the latent continuous safety variable.
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9.2.1 Method 1: The latent variable threshold c and standard deviation σS of

latent variable are known

Under the clinical setting, the observed binary safety outcome Zij may result from

dichotomizing latent continuous safety random variable Sij and Zij represents an observ-

able indicator based on some chosen threshold c. For example, ALT, AST are continuous

lab measurements which can be dichotomized by some threshold c.

Assume that2664 Yij

Sij

3775 � N

0BB@
2664 uY

i

uS
i

3775 ,

2664 σ2
Y ρiσYσS

ρiσYσS σ2
S

3775
1CCA ,

and

Zij =

8>>>><>>>>:
1 if Sij > c

0 if Sij � c

. (9.2)

The joint distribution of (Yij, Zij) is

f (yij, zij) = f (yij) f (zijjyij),

where f (yij) is the pdf of the continuous efficacy variable Yij � N(uY
i , σ2

Y) and

f (zijjyij) =
�

P(Zij = 1jYij = yij)
�zij
�
1� P(Zij = 1jYij = yij)

�1�zij ,

where

P
�
Zij = 1jYij = yij

�
= P(Sij > cjYij = yij)

= 1� P(Sij � cjYij = yij).
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From the general multivariate normal theory, the conditional distribution yields the fol-

lowing:

SijjYij � N(uS
i + ρiσS/σY(Yij � uY

i ), σ2
S � (ρiσYσS)

2 /σ2
Y)

� N(uS
i + ρiσS/σY(Yij � uY

i ), σ2
S(1� ρ2

i )).

Thus,

P(Sij � cjYij = yij)

= P

0@Sij �
�
uS

i + ρiσS/σY(Yij � uY
i )
�

σS

q
(1� ρ2

i )
�

c�
�
uS

i + ρiσS/σY(Yij � uY
i )
�

σS

q
(1� ρ2

i )
jYij = yij

1A
= P

0@Sij �
�
uS

i + ρiσS/σY(yij � uY
i )
�

σS

q
(1� ρ2

i )
�

c�
�
uS

i + ρiσS/σY(yij � uY
i )
�

σS

q
(1� ρ2

i )
jYij = yij

1A
= Φ

0@ c�
�
uS

i + ρiσS/σY(yij � uY
i )
�

σS

q
(1� ρ2

i )

1A .

The log-likelihood can be written as follows:
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L =
k

∑
i=1

ni

∑
j=1

log
�

f (yij, zij)
	

=
k

∑
i=1

ni

∑
j=1

log
n

f (yij)
�

P(Zij = 1jYij = yij)
�zij
�
1� P(Zij = 1jYij = yij)

�1�zij
o

=
k

∑
i=1

ni

∑
j=1

log

8><>: f (yij)

0@1�Φ

0@ c�
�

uS
i + ρi

σS
σY
(yij � uY

i )
�

σS

q
(1� ρ2

i )

1A1Azij
9>=>;

+
k

∑
i=1

ni

∑
j=1

log

8><>:
0@Φ

0@ c�
�

uS
i + ρi

σS
σY
(yij � uY

i )
�

σS

q
(1� ρ2

i )

1A1A1�zij
9>=>;

=
k

∑
i=1

ni

∑
j=1

8<:log(
1q

2πσ2
Y

)

�
� 1

2σ2
Y

�
yij � uY

i

��9=;
+

k

∑
i=1

ni

∑
j=1

8<:zij log

241�Φ

0@ c�
�

uS
i + ρi

σS
σY
(yij � uY

i )
�

σS

q
(1� ρ2

i )

1A359=;
+

k

∑
i=1

ni

∑
j=1

8<:�1� zij
�

log

24Φ

0@ c�
�

uS
i + ρi

σS
σY
(yij � uY

i )
�

σS

q
(1� ρ2

i )

1A359=; (9.3)

where uS
i depends on the discrete safety response model assuming that the threshold value

c and standard deviation σS are known. Furthermore ρi can be derived from the eρi which is

the correlation between variable Yij and Zij at each dose level. The correlations between ob-

served bivariate mixed type responses and latent bivariate continuous responses in terms

of mean model and correlation are discussed in the following section.

Derive the relationship between observed bivariate mixed type responses and latent

bivariate continuous responses:

Mean Model: A bivariate variable

2664Yij

Zij

3775, represents the continuous efficacy variable Yij

and the discrete safety variable Zij. Generalized nonlinear joint model is described in (9.1).
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Assume Zij represent observed discrete binary safety variable, Sij is latent contin-

uous safety response variable and c is the threshold value, where the association between

indicator Zij and latent variable Sij is indicated in (9.2).

Let E(Zij) = g(di, θZ), we need to find uS
i = E(Sij) = h(di, θZ) in terms of θZ.

P
�
Zij = 1jdi

�
= P(Sij > cjdi)

= P
�

Sij � h(di, θZ)

σS
>

c� h(di, θZ)

σS
jdi

�
= P

�
ϕ >

c� h(di, θZ)

σS
jdi

�
,

where ϕ =
Sij�h(di ,θZ)

σS
, therefore,

1�Φ
�

c� h(di, θZ)

σS

�
= g(di, θZ)

Φ
�

c� h(di, θS)

σS
jdi

�
= 1� g(di, θZ)

c� h(di, θZ) = σSΦ�1 (1� g(di, θZ))

uS
i = E(Sij) = h(di, θZ) = c� σSΦ�1 (1� g(di, θZ)) . (9.4)

For simplicity, we only consider the linear regression for the binary variable after

certain link function is applied. The nonlinear regression model such as Emax model can

also be used for g�(di, θZ) in the discrete outcome.

If discrete safety response follows logistic regression, then

uS
i = E(Sij)

= h(di, θZ)

= c� σSΦ�1
�

1
1+ exp(α+ βdi)

�
.
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If discrete safety response follows probit regression, then

uS
i = E(Sij)

= h(di, θZ)

= c� σSΦ�1 (1�Φ (α+ βdi))

= c+ σS (α+ βdi) .

If discrete safety response follows complementary log-log link regression, then

uS
i = E(Sij)

= h(di, θZ)

= c� σSΦ�1 (1� (1� exp(� exp(α+ βdi))

= c� σSΦ�1 exp(� exp(α+ βdi)).

Correlation between continuous efficacy variable and discrete safety variable: Next, we

will try to find the association of correlation eρi between bivariate mixed type responses and

correlation ρi between bivariate continuous responses:

cov(Yij, Zij) = E(YijZij)� EYijEZij

= E(YijZij)� uY
i uZ

i .
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Since

E(YijZij) = E(Yij I(Sij > c))

=
Z

yI(s > c)dFYijSij(y, s)

=

∞Z
c

∞Z
�∞

ydFYijSij(y, s)

=

∞Z
c

∞Z
�∞

y fYijjSij
(yjs) fSij(s)dyds

=

∞Z
c

fSij(s)
∞Z

�∞

y fYijjSij
(yjs)dyds

=

∞Z
c

fSij(s)E(Yijjs)ds

=

∞Z
c

fSij(s)

 
uY

i +
ρiσY(s� uS

i )

σS

!
ds

= uY
i

∞Z
c

fSij(s)ds+ ρiσY

∞Z
c

fSij(s)
s� uS

i
σS

ds

= uY
i uZ

i + ρiσY

∞Z
c

1p
2πσS

exp

"
(s� uS

i )
2

2σ2
S

#
s� uS

i
σS

ds

= uY
i uZ

i + ρiσY
1p
2π

exp

 
�
�
c� uS

i

�2

2σ2
S

!
,
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eρi = ρi(Yij,Zij)

=
cov(Yij, Zij)q

var(Yij)var(Zij)

=

ρiσY
1p
2π

exp
�
� (c�uS

i )
2

2σ2
S

�
σY

q
uZ

i (1� uZ
i )

=

ρi
1p
2π

exp
�
� (c�uS

i )
2

2σ2
S

�
q

uZ
i (1� uZ

i )
. (9.5)

From the formula (9.4) we will have:

uS
i = c� σSΦ�1 (1� g(di, θZ)) = c� σSΦ�1

�
1� uZ

i

�
,

and we will get

1� uZ
i = Φ

 
c� uS

i
σS

!

by plug the above formula into formula (9.5), we will have following:

eρi = ρi(Yij,Zij)

=
ρiφ
�

c�uS
i

σS

�
r

Φ
�

c�uS
i

σS

�
(1�Φ

�
c�uS

i
σS

�
)

= ρi

φ
�

c�uS
i

σS

�
r

Φ
�

c�uS
i

σS

�
(1�Φ

�
c�uS

i
σS

�
)

. (9.6)

The maximum value of right side of formula (9.6) can be solved by the optimize

function in R. The maximum value is 0.798. Thus the maximum value of eρi is 0.7978846ρi.

The range for ρi is [-1,1] and eρi should be in the range of [�0.798, 0.798]. i.e., jeρij �

0.798jρij. This confirmed the result from Shih and Huang (1992).
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Hence we can compute the log-likelihood of observed data (Yij, Zij) by plugging

(9.4) and (9.5) into (9.3). For example, assume there are 7 dose levels, Yij follows Emax

model and Zij follows probit model. ρi represents the correlation between the continuous

efficacy variable and latent continuous safety variable.

Therefore by using the formulas (9.4) and (9.5) we have the following:

uY
i = e0 +

emaxdosei

ed50 + dosei
,

and

uZ
i = Φ (α+ βdi) .

This implies

uS
i = c+ σS (α+ βdi) ,

and

ρi =

p
2πeρiu

Z
i (1� uZ

i )

exp
�
� (c�uS

i )
2

2σ2
S

� .

where i=1,...,7.
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Thus the log-likelihood can be written as follows:

L =
k

∑
i=1

ni

∑
j=1

log
�

f (yij, zij)
	

=
7

∑
i=1

ni

∑
j=1

8<:log(
1q

2πσ2
Y

)

�
� 1

2σ2
Y

�
yij � uY

i

��9=;

+
7

∑
i=1

ni

∑
j=1

8>>>>>>>><>>>>>>>>:
zij log

2666666664
1�Φ

0BBBBBBBB@

�σS (α+ βdi)�
p

2πeρiu
Z
i (1�uZ

i )σS

σY exp

0@� (c�uS
i )

2

2σ2
S

1A (yij � uY
i )

σS

vuuut1� 2πeρ2
i (uZ

i (1�uZ
i ))

2

exp2

0@� (c�uS
i )

2

2σ2
S

1A

1CCCCCCCCA

3777777775

9>>>>>>>>=>>>>>>>>;

+
7

∑
i=1

ni

∑
j=1

8>>>>>>>><>>>>>>>>:
�
1� zij

�
log

2666666664
Φ

0BBBBBBBB@

�σS (α+ βdi)�
p

2πeρiu
Z
i (1�uZ

i )σS

σY exp

0@� (c�uS
i )

2

2σ2
S

1A (yij � uY
i )

σS

vuuut1� 2πeρ2
i (uZ

i (1�uZ
i ))

2

exp2

0@� (c�uS
i )

2

2σ2
S

1A

1CCCCCCCCA

3777777775

9>>>>>>>>=>>>>>>>>;
.

9.2.2 Method 2: The latent variable threshold c is unknown

Under some instances there is no information about the latent continuous safety

variable, then the likelihood can not be calculated from the approach described above.

The likelihood may be derived purely on the information about the observed continuous

efficacy and discrete safety outcome instead. The joint density of (Yij, Zij) can be written

as

fYij,Zij(yij, zij) = fZij(zij) fYijjZij
(yijjzij).

We assume that

fZij(zij) = (g(di, θZ))
Zij (1� g(di, θZ))

1�Zij ,
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and we assume that the conditional distribution of is normal,

fYijjZij
(yijjzij) =

1q
2πσ2

Yj(Z=zij)

exp

8<:� 1
2σ2

Yj(Z=zij)

h
yij � uY

i � γi

�
zij � uZ

i

�i9=;

=

exp

(
� 1

2σ2
Yj(Z=zij)

�
yij � f (di, θY)� γi

�
zij � g(di, θZ)

��)
q

2πσ2
Yj(Z=zij)

,

where γi is a parameter for regression of Yij on Zij for dose i, i.e,

E(YijjZij) = uY
i + γi(Zij � uZ

i ),

and

E(Yij) = E
�
E(YijjZij)

�
= E

�
uY

i + γi(Zij � uZ
i )
�

= uY
i + γiE(Zij � uZ

i )

= uY
i .

Since

var(Yij) = E
�
var(YijjZij)

�
+ var

�
E(YijjZij)

�
= E(σ2

Yj(Z=Zij)
) + var

�
uY

i + γi(Zij � uZ
i )
�

= σ2
Yj(Z=0)P(Zij = 0) + σ2

YjZ=1P(Zij = 1) + γ2
i var

�
Zij � uZ

i

�
= σ2

Yj(Z=0)(1� uZ
i ) + σ2

Yj(Z=1)u
Z
i + γ2

i uZ
i (1� uZ

i ),
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and

E(YijZij) = E
�
E(YijZijjZij)

�
= E

�
ZijE(YijjZij)

�
= E

�
Zij(uY

i + γi(Zij � uZ
i ))
�

= E
�

ZijuY
i + γiZij(Zij � uZ

i ))
�

= uY
i EZij + γiE

�
Z2

ij � ZijuZ
i

�
= uY

i EZij + γi

�
uZ

i � uZ
i EZij

�
= uY

i uZ
i + γiu

Z
i (1� uZ

i ),

eρi = corr(Yij, Zij)

=
cov(Yij, Zij)q

var(Yij)var(Zij)

=
E
�
YijZij

�
� EYijEZijr�

σ2
Yj(Z=0)(1� uZ

i ) + σ2
Yj(Z=1)u

Z
i + γ2

i uZ
i (1� uZ

i )
�

uZ
i (1� uZ

i )

=
uY

i uZ
i + γiu

Z
i (1� uZ

i )� uY
i uZ

ir�
σ2

Yj(Z=0)(1� uZ
i ) + σ2

Yj(Z=1)u
Z
i + γ2

i uZ
i (1� uZ

i )
�

uZ
i (1� uZ

i )

= γi

vuut uZ
i (1� uZ

i )

σ2
Yj(Z=0)(1� uZ

i ) + σ2
Yj(Z=1)u

Z
i + γ2

i uZ
i (1� uZ

i )
,

this implies

γ2
i uZ

i (1� uZ
i ) = eρ2

i

�
σ2

Yj(Z=0)(1� uZ
i ) + σ2

Yj(Z=1)u
Z
i

�
+ γ2

i uZ
i (1� uZ

i )eρ2
i ,

and we have

γi = eρi

vuuut
�

σ2
Yj(Z=0)(1� uZ

i ) + σ2
Yj(Z=1)u

Z
i

�
uZ

i (1� uZ
i )
�

1� eρ2
i

� .
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Hence we can write the log-likelihood as follows:

L =
k

∑
i=1

ni

∑
j=1

log
n

fYij,Zij(yij, zij)
o

=
k

∑
i=1

ni

∑
j=1

log
n

fZij(zij) fYijjZij
(yijjzij)

o

=
k

∑
i=1

ni

∑
j=1

log

8<: 1q
2πσ2

Yj(Z=zij)

(g(di, θZ))
zij (1� g(di, θZ))

1�zij

9=;
+

k

∑
i=1

ni

∑
j=1

8<:� 1
2σ2

Yj(Z=zij)

�
yij � f (di, θY)� γi

�
zij � g(di, θZ)

��9=;
=

k

∑
i=1

ni

∑
j=1

log

8<:
�
uZ

i
�zij
�
1� uZ

i
�1�zijq

2πσ2
Yj(Z=zij)

9=;+

k

∑
i=1

ni

∑
j=1

8>>>>>><>>>>>>:
�

24yij � uY
i � eρi

s �
σ2

Yj(Z=0)(1�uZ
i )+σ2

Yj(Z=1)u
Z
i

�
uZ

i (1�uZ
i )(1�eρ2

i )

�
zij � uZ

i
�35

2σ2
Yj(Z=zij)

9>>>>>>=>>>>>>;
.

If we assume σ2
Yj(Z=1) = σ2

Yj(Z=0) = σ2
c (Note: σ2

c 6= σ2
Y), the log-likelihood can be

further simplified as follow:

L =
k

∑
i=1

ni

∑
j=1

log
n

fZij(zij) fYijjZij
(yijjzij)

o
=

k

∑
i=1

ni

∑
j=1

log

(
1p

2πσ2
c

�
uZ

i

�zij
�

1� uZ
i

�1�zij

)

�
k

∑
i=1

ni

∑
j=1

�
1

2σ2
c

h
yij � uY

i

i�

+
k

∑
i=1

ni

∑
j=1

8>>>><>>>>:

"eρi

r
1

uZ
i (1�uZ

i )(1�eρ2
i )

�
zij � uZ

i
�#

2σc

9>>>>=>>>>; .

(9.7)



125

For example, assume there are 7 dose levels and if Yij follows Emax model and Zij follows

probit model. eρi represents the correlation between the continuous efficacy variable and

discrete safety variable for each dose level i. The parameters to be estimated are: e0, emax,

ed50, α, β, σ2
y, eρi. The log-likelihood can be computed by plugging the estimated parameters

for the observed data into the formula (9.7).

Since

uY
i = e0 +

emaxdosei

ed50 + dosei
,

and

uZ
i = Φ (α+ βdi) ,

we have

L =
7

∑
i=1

ni

∑
j=1

log

(
1p

2πσ2
c
(Φ (α+ βdi))

zij (1�Φ (α+ βdi))
1�zij

)

� 1
2σ2

Y

�
yij �

�
e0 +

emaxdosei

ed50 + dosei

��

+

8>>>><>>>>:

"eρi

r
1

Φ(α+βdi)(1�Φ(α+βdi))(1�eρ2
i )

�
zij �Φ (α+ βdi)

�#
2σc

9>>>>=>>>>; .

9.3 Estimation of joint nonlinear bivariate continuous and dis-

crete model

9.3.1 Estimation by IRGLS, ELS and QELS methods

Given a bivariate variable

2664Yij

Zij

3775 which represents the efficacy response Yij and

the safety response Zij. Here Yij and Zij can be continuous or discrete responses. The
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derivation below apply to different types of responses which include bivariate continuous

outcomes, bivariate discrete outcomes and bivariate continuous and discrete outcomes.

The generalized nonlinear joint model can be written as in (9.1).

Let

ui(θ) =

2664 uY
i

uZ
i

3775 =
2664 E(Yij)

E(Zij)

3775 =
2664 f (di, θY)

g(di, θZ)

3775 , i = 1, ...k, j = 1, ....ni

where θT = (θT
Y, θT

Z), which refers to the vector of model parameters, i to the dose group

(i = 1 corresponds to placebo), and j to the patient within dose group i, and

Σi(θ, α) = Var

0BB@
2664Yij

Zij

3775
1CCA .

The parameters to be estimated are θ and α. The following derivations will illus-

trate how to apply the IRGLS, ELS and QELS to the above data. Here we need to mention

that we do not use the full likelihood we derive above for the estimation. We will discuss

this later in the discussion and future direction section for the full likelihood estimation

approach.

Furthermore, let ωij =
�
Yij, Zij

�T , γij =
�
Yij

2, Zij
2, YijZij

�T , and

ϕij =

0BB@ ωij

γij

1CCA =

0BBBBBBBBBBBBBB@

Yij

Zij

Yij
2

Zij
2

YijZij

1CCCCCCCCCCCCCCA
.
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Assume that the first four moments of ωij exist and depend on the parameter (θ, α), let

f i (θ, α) = E(ϕij) =

0BB@ ui(θ)

νi(θ, α)

1CCA =

0BBBBBBBBBBBBBB@

uY
i (θY)

uZ
i (θZ)

E(Yij
2)

E(Zij
2)

E(YijZij)

1CCCCCCCCCCCCCCA
,

and

var(ϕij) = Ψi(θ, α) =

0BB@ Σi(θ, α) Θi(θ, α)

Θi(θ, α)T
Γi(θ, α)

1CCA ,

where ui(θ) = E(ωij) =

2664 E(Yij)

E(Zij)

3775 =
2664 uY

i

uZ
i

3775,

νi(θ, α) = E(γij) =

26666664
E(Yij

2)

E(Zij
2)

E(YijZij)

37777775 ,

Σi(θ, α) = var(ωij), Θi(θ, α) = cov(ωij, γij) and Γi(θ, α) = var(γij). We can jointly esti-

mate the parameter (θ, α) based on the following nonlinear model

ϕij = f i (θ, α) + εij

where E(εij) = 0 and var(εij) = Ψi(θ, α). The linearization method of Vonesh et al. (2001)

can be applied. To be specific and complete, the following derives the details though the

general formulas that have been introduced in the previous literature review section.

Let τ = (θ, α) and tT = bτ0T
= (bθ0T

, bα0T) be an initial estimate of τT = (θT, αT)

and assume t is in the interior of parameter space of τ. By applying the usual Gauss-
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Newton algorithm for the nonlinear regression, estimation may be carried out by taking a

first-order Taylor series expansion of f i (τ) about τ = t yielding the approximation ϕij =

f i (τ) + X it(τ � t) + ξij, , we can rewrite in terms of the linear model

ϕ�ij = X itτ + ξij, (9.8)

where X it = ∂ f i (τ) /∂τTjτ=t and ϕ�ij = ϕij � f i (t) + X itt, based on this linear model, an

estimated generalized least squares estimate (EGLS) of τ is given by

bτ =  ∑
i
∑

j
XT

itΨ
�1
i (t)X it

!�1

∑
i
∑

j
XT

itΨ
�1
i (t)ϕ�ij, (9.9)

where Ψij(t) is the assumed covariance matrix of ξij evaluated at τ = t.

Iteratively reweighted generalized least squares (IRGLS) entails iterating between

(9.8) and (9.9) by setting τ = t in (9.8) and then using (9.9) to obtain an updated estimate

of τ. By repeating this process, obtain a sequence of one-step Gauss-Newton estimators,nbτkjk=1,2,...
o

, which, as k! ∞,yields a solution to the set on nonlinear "normal" estimat-

ing equations,

U(τ) = ∑
i
∑

j

n
X i (τ)

T
Ψi(τ)

�1(ϕij � f i (τ))
o
= 0, (9.10)

where X i (τ) = ∂ f i (τ) /∂τT. When fully iterated, the model-based asympotic variance-

covariance matrix of the IRGLS estimate, bτ is estimated by the inverse of the expected

information matrix evaluated at the final estimate, i.e,

bΩ(bτ) =  ∑
i
∑

j
X i (τ)

T
Ψi(τ)

�1X i (τ)

!�1

, (9.11)

To safeguard against mis-specification of Ψi(τ), one can use a robust estimator of the vari-

ance of bτ, which is given by the empirical "sandwich" estimator as follows:

bΩR(bτ) = bΩ(bτ) ∑
i

X i (τ)
T

Ψi(τ)
�1eijeT

ijΨi(τ)
�1X i (τ)

! bΩ(bτ), (9.12)
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where eij = ϕij � f i (bτ) .

In order to compute (9.11), we need to calculate the third- and fourth-order mo-

ments in Ψi.

If we let

Sij(θ) = Vec((ωij � ui(θ))(ωij�ui(θ)
T) =

266666666664

(Yij � uY
i )

2

(Yij � uY
i )(Zij � uZ

i )

(Yij � uY
i )(Zij � uZ

i )

(Zij � uZ
i )

2

377777777775
,

σi(θ, α) = Vec (Σi(θ, α)) = E[Sij(θ)] =

266666666664

σ2
Y,i

σYZ,i

σYZ,i

σ2
Z,i

377777777775
,

and

B =

26666664
1 0 0 0

0 0 0 1

0 1 0 0

37777775 ,

where Vec(.) is the matrix operator that creates a column vector from a matrix A by simply

stacking the column vectors of A below one another, then under normality (Vonesh and

Chinchilli, 1997), we have

Θi(θ, α) = cov(ωij, γij) = Σi(θ, α)T i(θ)
T,

and

Γi(θ, α) = var(γij) = T i(θ)Σi(θ, α)T i(θ)
T + BVar

�
Sij(θ)

�
BT,
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where

T i(θ) = B f[ui(θ)
 I2] + [I2 
 ui(θ)]g

=

26666664
1 0 0 0

0 0 0 1

0 1 0 0

37777775

8>>>>>>>>>><>>>>>>>>>>:

266666666664

uY
i 0

uZ
i 0

0 uY
i

0 uZ
i

377777777775
+

266666666664

uY
i 0

uZ
i 0

0 uY
i

0 uZ
i

377777777775

9>>>>>>>>>>=>>>>>>>>>>;

= 2

26666664
uY

i 0

0 uZ
i

uZ
i 0

37777775 .

Hence we have

Θi(θ, α) =

2664 σ2
Y,i σYZ,i

σYZ,i σ2
Z,i

3775 2

2664 uY
i 0 uZ

i

0 uZ
i 0

3775

= 2

2664 σ2
Y,iu

Y
i σYZ,iuZ

i σ2
Y,iu

Z
i

σYZ,iuY
i σ2

Z,iu
Z
i σYZ,iuZ

i

3775 .
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Since

Var
�
Sij(θ)

�
= [I4 + I(2,2)] [Σi(θ, α)
 Σi(θ, α)]

= 2

266666666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377777777775

2664 σ2
Y,i σYZ,i

σYZ,i σ2
Z,i

3775

2664 σ2

Y,i σYZ,i

σYZ,i σ2
Z,i

3775

= 2

266666666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

377777777775

266666666664

σ4
Y,i σ2

Y,iσYZ,i σ2
Y,iσYZ,i σ2

YZ,i

σ2
Y,iσYZ,i σ2

Y,iσ
2
Z,i σ2

YZ,i σ2
Z,iσYZ,i

σ2
Y,iσYZ,i σ2

YZ,i σ2
Y,iσ

2
Z,i σ2

Zij
σYZ,i

σ2
YZ,i σ2

Z,iσYZ,i σ2
Z,iσYZ,i σ4

Z,i

377777777775

= 2

266666666664

σ4
Y,i σ2

Y,iσYZ,i σ2
Y,iσYZ,i σ2

YZ,i

σ2
Y,iσYZ,i σ2

Y,iσ
2
Z,i σ2

YZ,i σ2
Z,iσYZ,i

σ2
Y,iσYZ,i σ2

YZ,i σ2
Y,iσ

2
Z,i σ2

Zij
σYZ,i

σ2
YZ,i σ2

Z,iσYZ,i σ2
Z,iσYZ,i σ4

Z,i

377777777775
,
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we have

Γi(θ, α) = var(γij) = T i(θ)Σi(θ, α)T i(θ)
T + BVar

�
Sij(θ)

�
BT

= 2

26666664
uY

i 0

0 uZ
i

uZ
i 0

37777775 2

2664 σ2
Y,iu

Y
i σYZ,iuZ

i σ2
Y,iu

Z
i

σYZ,iuY
i σ2

Z,iu
Z
i σYZ,iuZ

i

3775

= 4

26666664
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Y,iu
Y
i σYZ,iuY

i uZ
i σ2

Y,iu
Y
i uZ

i

σYZ,iuY
i σ2

Z,iu
2Z
i σYZ,iu2Z

i

σYZ,iuY
i uZ

i σYZ,iu2Z
i σ2

Y,iu
2Z
i

37777775

+2

26666664
σ4

Y,i σ2
Y,iσYZ,i σ2

Y,iσYZ,i σ2
YZ,i

σ2
YZ,i σ2

Z,iσYZ,i σ2
Z,iσYZ,i σ4

Z,i

σ2
Y,i

σYZ,i σ2
Y,iσ

2
Z,i σ2

YZ,i σ2
Z,iσYZ,i

37777775

266666666664

1 0 0

0 0 1

0 0 0

0 1 0

377777777775

= 4

26666664
σ2

Y,iu
Y
i σYZ,iuY

i uZ
i σ2

Y,iu
Y
i uZ

i

σYZ,iuY
i σ2

Z,iu
2Z
i σYZ,iu2Z

i

σYZ,iuY
i uZ

i σYZ,iu2Z
i σ2

Y,iu
2Z
i

37777775+ 2

26666664
σ4

Y,i σ2
YZ,i σ2

Y,iσYZ,i

σ2
YZ,i σ4

Z,i σ2
Z,iσYZ,i

σ2
Y,iσYZ,i σ2

Z,iσYZ,i σ2
Y,iσ

2
Z,i

37777775

=

26666664
4σ2

Y,iu
Y
i + 2σ4

Y,i 4σYZ,iuY
i uZ

i + 2σ2
YZ,i 4σ2

Y,iu
Y
i uZ

i + 2σ2
Y,iσYZ,i

4σYZ,iuY
i + 2σ2

YZ,i 4σ2
Z,iu

2Z
i + 2σ4

Z,i 4σYZ,iu2Z
i + 2σ2

Z,iσYZ,i

4σYZ,iuY
i uZ

i + 2σ2
Y,iσYZ,i 4σYZ,iu2Z

i + 2σ2
Z,iσYZ,i 4σ2

Y,iu
2Z
i + 2σ2

Y,iσ
2
Z,i

37777775 .

The formula for the third and fourth moments in the above derivation can be used as

"working" covariance matrix in the estimating equation in (9.10). Equation (9.10) is an

unbiased estimating equation regardless of normality assumption and the M-estimation

theory applies. Under fairly mild regularity conditions, the resulting estimates are consis-
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tent, asymptotically normal.

Similar to the proof in Vonesh et al. (2001), alternatively θ and α can be jointly

estimated by maximizing the following objective function:

QELS(θ, α) = ∑
i
∑

j

�
(ωij � ui(θ))

T
Σi(θ, α)�1 �ωij�ui(θ)

�T
+ log jΣi(θ, α)j

�
. (9.13)

The function in (9.13) is the extended least squares objective function associated with the

joint estimation of both θ and α. The corresponding joint estimating equations for maxi-

mizing QELS(θ, α) are given as follows:

UELS (θ, α) =
k

∑
i=1

ni

∑
j=1

2664 Di(θ) 0

Ei(θ) Ei(α)

3775
T 2664 Σi(θ, α) 0

0 V i(θ, α)

3775
�1 2664 ωij � ui(θ)

Sij(θ)� σi(θ, α)

3775
= 0, (9.14)

where

Di(θ) = ∂ui(θ)/∂θT,

Ei(θ) = ∂σi(θ, α)/∂θT,

Ei(α) = ∂σi(θ, α)/∂αT,

σi(θ, α) = E[Sij(θ)],

Sij(θ) = Vec
�
(ωij �ui (θ))(ωij �ui (θ))

T
�

,

V i(θ, α) = 2Σi(θ, α)
 Σi(θ, α).

It is shown that under normality, the estimation in (9.10) and the ELS method are equiva-

lent to the GEE2 method. The empirical sandwich estimator can be used to achieve asymp-

totically valid inference provided that mean and variance structure have been correctly

specified.
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If we set Ei(θ)=0 in (9.14), one gets the set of quasi-extended least squares (QELS)

estimating equations described in Vonesh et al. (2001). The advantage of using QELS

estimating equations is that under certain conditions, one can still achieve a consistent

estimate of θ even if the variance-covariance structure is mis-specified.

As mentioned previously since IRGLS procedure for estimating τ, which consists

simply of repeated application of Taylor series linearization and estimated generalized

least squares, is equivalent to maximum likelihood estimation and it is equivalent to the

ELS estimating approach assuming normality. Hence only ELS and QELS will be used in

the following fitting procedure because the focus of this chapter is only for estimation of

the parameters in order to find the mean model for efficacy and safety which allow us to

select the best dose for Phase III. The comparison with IRGLS and using the maximum

likelihood will be a future direction for different estimating approaches regarding the joint

modeling.

9.3.2 Fitting the joint nonlinear bivariate continuous and discrete model with

ELS or QELS approach

The advantage of using the ELS approach is that the 3rd and 4th order mo-

ments are automatically generated as though from a multivariate normal distribution even

though data may not have multivariate normal. In this way, we can essentially treat

data (i.e., continuous and discrete response variables) as being multivariate normal even

though it is not and still achieve consistent parameter estimates of the mean and variance-

covariance parameters when mean and variance-covariance are not mis-specified. Alterna-

tively we can use the quasi-ELS approach (QELS) which uses a slightly different working
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covariance structure. In addition if the underlying third- and fourth-order moments do

not deviate too greatly from those of a Gaussian distribution, then the ELS estimators will

be more efficient than GEE-based estimators.

Here we assume a bivariate continuous and binary variable. The ELS and QELS

macros were kindly provided by Dr. Vonesh, these macros need to be adapted to the cur-

rent nonlinear bivariate continuous and binary outcome setting. The key for the estimating

joint nonlinear model parameters is how to specify the mean model for continuous and bi-

nary variable and the variance-covariance structure for the bivariate variable. The mean

model for continuous variable can be nonlinear model such as Emax model, and mean

model for binary variable can be logistic or other link functions. In addition, since the cor-

relation between bivariate outcome depends on the individual dose level, the correlation

need to be estimated in each dose level and specified in the variance-covariance structure.

The initial values for all mean model parameters, variance and correlation at each dose

level need to be correctly specified. These initial values for all mean model parameters,

variance are initially obtained by the separate model fittings for the continuous and binary

variable while the initial value for the correlation is obtained by direct pearson correlation

coefficients between the bivariate outcomes at each dose level.

9.4 Evaluation of the nonlinear joint model fitting

9.4.1 Parameter estimate bias and relative efficiency

The evaluations of parameter estimate bias and relative efficiency are similar to

what are described in Section 4.2.2 of Part I.
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9.4.2 Evaluate the model fitting

There are many different criteria to use to evaluate the model fitting. Many of cri-

teria are slightly variation of another and difference maybe subtle. For the nonlinear joint

bivariate mixed type model, since our estimation method based on QELS is equivalent to

the maximum likelihood under the normality, thus using Alaike’s information criterion

may be a fairly good choice. This criteria uses likelihood as the basis but other criteria may

not take into account of the nonlinear response which may not be an appropriate choice.

AIC criteria:

Alaike’s information criterion (AIC) is a measure of the goodness of fit of an esti-

mated statistical model. It is a test between models and is a tool for model selection. The

model having the lowest AIC is the best model. In general case, the AIC is:

AIC = 2k� 2 ln(L),

where k is the number of parameters in the statistical model, and L is the maximized value

of the likelihood for the estimated model.

As illustrated in Section 9.2, assume there are 7 dose levels, Yij follows Emax

model and Zij follows probit model. eρi represents the correlation between the continu-

ous efficacy variable and discrete safety variable for dose level i. The parameters to be

estimated are: e0, emax, ed50, α, β, σ2
Y,i, eρi.

AIC = 2k� 2 ln(L)

= 38� 2 ln(L).
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As we noted, the AIC is based on maximum likelihood estimation while ELS and

QELS approach do not directly use maximum likelihood, though ELS or QELS approach

is equivalent to the maximum likelihood approach under the normality. The modification

to AIC where the likelihood is replaced by the quasi-likelihood (QIC) (Pan, 2001) may be

investigated in the future as the criteria for the model selection.

9.4.3 Model mis-specification

To test robustness of ELS or QELS method, the data simulated from certain model

will be fitted for different model by the ELS or QELS methods. Here the focus is on the

discrete variable model mis-specification. Chi-square goodness-of-fit test can be applied

to the discrete distribution. It allows us to evaluate how "close" the observed values are to

those would be expected given in the model. Chi-square test uses a measure of goodness of

fit which is defined as the sum of squares of differences of observed and expected outcome

frequencies divided by the expected value, i.e.,

χ2 =
r

∑
i=1

1

∑
j=0

(Oi,j-Ei,j)
2

Ei,j
,

where i is the dose level and j is binary outcome. Degree of freedom=r-1. The parameter

estimates from the QELS method are obtained and the mean model for the binary outcome

with the particular distribution are used in the model fitting.

P(Zij = 1jdi) = g(di, θZ),

where g(di, θZ) can be inverse of logistic, probit or complementary log-log links.

There are different expected mean value at each dose level. Ei,j is computed as
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follows:

Ei,1 = g(di, θZ) � ni, and Ei,0 = ni � Ei,1

where ni is number of patients at each dose level.

9.5 Simulation of correlated bivariate continuous and discrete re-

sponses

The simulation will be based on Method 1 described in Section 9.2.1, i.e., we will

first simulate a bivariate correlated continuous random variable and then use a threshold

to obtain correlated continuous and discrete variables.

9.5.1 Simulation Procedures

1. Compute mean model for the latent continuous variable.

� Assume threshold value c which is used to as cut off value to obtain the binary

safety variable from the latent continuous safety variable.

� Assume that the latent continuous safety variable is standardized with variance

1.

� Assume correlation ρ between latent continuous safety variable and continuous

efficacy variable.

� Assume the mean model and variance for continuous efficacy variable.

� Compute that the latent continuous safety mean model based on the assumed

discrete binary variable mean model using formula (9.4).
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� Compute the correlation between the continuous efficacy variable and discrete

safety variable at each dose level using formula (9.5).

Note: For simplicity and consistency with Part I, here we assume ρi, σ2
Y,i and σ2

S,i are

equal for all dose levels.

2. Simulate bivariate continuous normal efficacy and latent safety responses.

3. Use cut off value c on the latent continuous variable to obtain discrete safety random

variable.

Example:

For the simulation purpose, we assume that we are interested in a continuous

efficacy outcome Yij measured by decreased diastolic blood pressure (DBP) from baseline

and a discrete safety outcome Zij measured by renal dysfunction (yes or no). The contin-

uous efficacy variable decreased diastolic blood pressure (DBP) from baseline follows the

Emax model with mean model 2.5 + 14.5 � dose/(.2 + dose) and the standard deviation

for decreased diastolic blood pressure is 7 mmHg; The binary renal dysfunction outcome

is an indicator of the decreased GFR from baseline (Sij). The cut off is 3.5 ml/min/1.73

m2 which means that if the decreased GFR from baseline is > 3.5 ml/min/1.73 m2 then

binary renal dysfunction is coded as 1 (yes) otherwise 0 (no). Next we consider logistic,

probit or complementary log-log model for the binary safety outcome. For simplicity the

linear regression is used in the simulation for the links we selected, to be specific, we as-

sume that the mean model of the binary outcome is P(Zij = 1jdi) =
exp(�2.123+3.728di)

1+exp(�2.123+3.728di)

for logit, P(Zij = 1jdi) = Φ (�1.166+ 1.853di) for probit, and P(Zij = 1jdi) = 1 �
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exp (� exp(�2.123+ 2.828di)) for complementary log-log respectively. The mean model

of the latent continuous GFR outcome can be derived based on formula (9.4) for differ-

ent assumed link functions for the safety binary outcome. Let var(Sij) = 1, n = 50/dose

group and dose values 0, 0.05, 0.2, 0.4, 0.6, 0.8 and 1. The data are simulated 500 times for

each ρ =0, 0.4, 0.8, respectively from the above continuous efficacy and safety models. The

data are generated using the rmvnorm function in R. Then the latent continuous response

Sij is dichotomized to Zij.

9.5.2 Evaluation of Simulation Results

1. Fit the discrete safety variable using the correct link function used in the simulation.

2. Fit the correct nonlinear regression model for the continuous variable using gnls (Pin-

heiro and Bates, 2000) function in R to get the parameter estimates for the continuous

model.

3. Estimate the correlations between bivariate continuous and discrete outcomes for

each dose level using Pearson correlation coefficients for the simulated data.

4. Compare all the estimates of the mean model parameters and correlations with true

parameter values.

The following Tables 9.1-9.3 are the simulated outputs with different regression

models for the discrete safety outcomes. As shown in the table, the proposed method

provides very consistent parameter estimates including correlations in each dose level for

different models for the discrete variable. Furthermore, the simulation results show the

correctness of theoritical result we derived in formula (9.6).
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Table 9.1: Simulated bivariate continuous and discrete outcomes (assuming discrete out-
come follows probit regression) eρi

ρ Parameter α β eρ0 eρ0.05 eρ0.2 eρ0.4 eρ0.6 eρ0.8 eρ1
0 True value -1.166 1.853 0 0 0 0 0 0 0

Simu. value -1.176 1.873 -.008 .005 -.000 .001 .003 -.009 -.006
0.4 True value -1.166 1.853 .247 .257 .284 .310 .320 .313 .292

Simu. value -1.170 1.862 .244 .257 .281 .313 .320 .310 .286
0.8 True value -1.166 1.853 .495 .515 .568 .618 .638 .627 .585

Simu. value -1.174 1.864 .489 .510 .569 .627 .637 .629 .583
Notes: eρi is the correlation between bivariate continuous and discrete outcomes at dose level i.

ρ is the correlation used for simulating the bivariate continuous outcomes.

Table 9.2: Simulated bivariate continuous and discrete outcomes (assuming discrete out-
come follows logistic regression) eρi

ρ Parameter α β eρ0 eρ0.05 eρ0.2 eρ0.4 eρ0.6 eρ0.8 eρ1
0 True value -2.123 3.728 0 0 0 0 0 0 0

Simu. value -2.129 3.743 .004 -.000 -.002 -.002 .002 .007 -.007
0.4 True value -2.123 3.728 .239 .250 .280 .310 .319 .303 .269

Simu. value -2.122 3.720 241 .250 .272 .313 .317 .299 .269
0.8 True value -2.123 3.728 .477 .499 .561 .621 .638 .606 .537

Simu. value -2.131 3.732 .474 .497 .556 .621 .639 .608 .531
Notes: eρi is the correlation between bivariate continuous and discrete outcomes at dose level i.

ρ is the correlation used for simulating the bivariate continuous outcomes.
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Table 9.3: Simulated bivariate continuous and discrete outcomes (assuming discrete out-
come follows complementary log-log regression) eρi

ρ Parameter α β eρ0 eρ0.05 eρ0.2 eρ0.4 eρ0.6 eρ0.8 eρ1
0 True value -2.123 2.828 0 0 0 0 0 0 0

Simu. value -2.134 2.843 -.011 -.002 -.012 .007 .004 -.005 -.001
0.4 True value -2.123 2.828 .242 .252 .277 .305 .319 .306 .253

Simu. value -2.157 2.877 .232 .239 .266 .312 .313 .297 .253
0.8 True value -2.123 2.828 .484 .502 .553 .610 .638 .612 .506

Simu. value -2.153 2.870 .473 .486 .544 .613 .638 .615 .506
Notes: eρi is the correlation between bivariate continuous and discrete outcomes at dose level i.

ρ is the correlation used for simulating the bivariate continuous outcomes.

9.6 Fitting the joint nonlinear continuous and discrete responses

model

All the parameter estimates for the joint nonlinear continuous and discrete re-

sponses model are obtained using SAS IML. The ELS and QELS methods discussed in

Section 9.3.1 are used for the estimation. Assume the 1st and 2nd order moments are from

the multivariate nonlinear model, the first two moments are used to set up the mean model

and covariance structure. Furthermore we assume that the 3rd and 4th order moments of a

general multivariate response vector coincide with the multivariate normal response. The

ELS or QELS algorithms are applied under this set up. The efficiency of ELS depends on

how far the third and fourth order moments deviate from those calculated using normal

distributions.
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9.6.1 Comparison of parameter estimates and their standard errors by the ELS

and QELS approaches

The results of parameter estimates of ELS and QELS approaches are displayed

in Tables 9.4 to 9.6. As summarized in Table 9.7, QELS yields better estimates on aver-

age. Especially with stronger correlations QELS approach has smaller standard deviations

for both continuous and discrete model parameter estimates overall. Model-based and

robust standard errors are similar for discrete variable parameter estimates. This is not

surprising since the information about the discrete variable is not as informative as the

latent continuous variable even though the correlation between the bivariate continuous

and discrete variable increases. Overall, it seems that QELS method is more robust under

various strength of bivariate correlation or the different models selected for the discrete

safety variable.
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9.6.2 The parameter estimates results from joint fitting and separate fitting

QELS parameter estimates:

As shown in Tables 9.8 to 9.10 and Figures 9.1 to 9.7, the joint model parame-

ter estimates for continuous efficacy Emax model and discrete safety probit model with

the stronger bivariate correlation have lower MSE and more efficiency than the parameter

estimates from the separate fitting. The relative efficiency of joint fitting vs. separate fit-

ting ranged from 1.06 to 1.527 for bivariate correlation of 0.495 to 0.638 for different dose

level. The efficiency of joint fitting vs. separate fitting ranged from 0.976-1.020 when the

bivariate correlation is 0. The joint parameter estimates tend to have less percent bias with

stronger correlation (0.3% to 11.6%) than those with no correlation (-4.3% to 16.3%). With

stronger correlation the parameter estimates from joint model fitting have lower MSE than

the parameter estimates from the separate model fitting. The correlation estimates from the

joint model at different dose levels have increased efficiency (1.076 to 1.508) with respect

to the simple Pearson correlation coefficient estimates when the true correlations between

the safety and efficacy variables increases. The percent bias for the joint model estimates

becomes smaller as the bivariate correlation becomes stronger. The variance estimates for

the continuous efficacy variable remain similar for different bivariate correlation.

Tables 9.11 to 9.16 show the joint model fitting with logit or complementary log-

log model for the discrete safety variable, the results are similar to the probit model fitting

regarding to the pattern of bias, MSE and efficiency by comparing the joint model fitting

with separate model fitting under different correlation strength.
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Figure 9.1: Efficiency of parameter estimates based on separate and joint modeling – Emax
for efficacy outcome and probit for safety outcome (QELS approach)
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Figure 9.2: Percent bias of efficacy parameter estimates based on separate and joint mod-
eling – Emax for efficacy outcome and probit for safety outcome (QELS approach)
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Figure 9.3: Percent bias of safety parameter estimates based on separate and joint modeling
– Emax for efficacy outcome and probit for safety outcome (QELS approach)
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Figure 9.4: MSE of parameter estimates based on separate and joint modeling – Emax for
efficacy outcome and probit for safety outcome (QELS approach)
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Figure 9.5: Efficiency of parameter estimates for correlations based on simple Pearson cor-
relation coefficient estimate and joint modeling – Emax for efficacy outcome and probit for
safety outcome (QELS approach)
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Figure 9.6: Percent bias of parameter estimates for correlations based on simple Pearson
correlation coefficient estimate and joint modeling – Emax for efficacy outcome and probit
for safety outcome (QELS approach)
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Figure 9.7: MSE of parameter estimates for correlations based on simple Pearson corre-
lation coefficient estimate and joint modeling – Emax for efficacy outcome and probit for
safety outcome (QELS approach)
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ELS parameter estimates:

The joint model estimates from the ELS approach (Emax model for continuous

efficacy outcome and probit model for discrete safety outcome) are shown in Tables 9.17

to 9.19, the joint model parameter estimates with the stronger bivariate correlation have

lower MSE and more efficiency than the parameter estimates from the separate fitting. The

efficiency of joint fitting vs. separate fitting ranged from 0.939-1.494 for bivariate correla-

tion of 0.495 to 0.638 at different dose level while the efficiency of joint fitting vs. separate

fitting ranged from 0.949-1.033 for no bivariate correlation. The joint parameter estimates

tend to have less percent bias (0.4% to 11.8%) with stronger correlation compared with no

correlation (-4.4% to 15.8%). The joint model estimates for correlation at different dose lev-

els have increased efficiency (1.092 to 1.486) with the bivariate correlation of (0.495 to 0.638)

by comparing to the pearson correlation coefficient estimates for the bivariate outcomes.

The percent bias is relative smaller for the joint estimates than for separate estimates when

the bivariate correlation become stronger. The variance estimate for the continuous effi-

cacy variable are similar for different bivariate correlation.

Tables 9.20 to 9.25 show the joint model fitting with logit or complementary log-

log model for the discrete safety variable, the results are similar to the probit model fitting

regarding to the pattern of percent bias, MSE and efficiency by comparing the joint model

fitting with separate model fitting under the different correlation strength.

In general, the discrete variable regression parameter estimates does not improve

much with joint modeling when correlation becomes stronger. This is not surprising since

the discrete variable comprises much less information than latent continuous variable af-



166

ter dichotomization. Model-based and robust standard error remain similar for discrete

variable parameter estimates regardless of correlation for ELS method. But overall the

percent bias are still relatively small (�2.3%). By comparing QELS and ELS approach for

the nonlinear joint modeling of mixed type outcomes, QELS method yields more efficient

parameter estimates and is more robust under the various strength of bivariate correlation

and the different models selected for the discrete safety variable.
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9.6.3 The model fitting from the model mis-specification

The model mis-specifications are performed to test the robustness of the QELS

method. Here we only consider QELS approach in this section since QELS provides bet-

ter overall parameter estimates for joint nonlinear modeling of mixed type outcomes in

the previous simulation example. The simulations are performed using correct and mis-

specified model assumption. For example, if the discrete response is simulated from the

probit regression, the model for the discrete variable will be fitted with correct probit

model, mis-specified logit or Cloglog respectively. The results were compared using Chi-

square test to study the impact of model mid-specification.

As illustrated in the following Tables 9.26 to 9.28, there are 7 dose levels and

df=(7-1)=6. As expected chi-square for both correct model and mis-specified models are

not significant with P-values � 0.3. The correct model fitting has the smallest χ2 value

and highest p-value and mis-specifed model still have expected value relatively close to

the observed value and p-values are not significant. These patterns remain true for either

strong or weak correlations. The results shown in Tables 9.26 to 9.28 support that the QELS

approach is reasonably robust to model mis-specification.
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Table 9.26: Model mis-specification fitting when there is no correlation between bivariate
responses

Chi-square
k

∑
i=1

1

∑
j=0

(Oi,j-Ei,j)
2

Ei,j

Data-simulated Model fitting Mean(std) p-value
Probit (ρ=0) Probit 5.19(3.080) .520

Logit 5.21(3.087) .517
Cloglog 5.86(3.457) .439

logit (ρ=0) Logit 5.37(3.320) .497
Probit 5.44(3.385) .487

Cloglog 6.27(3.820) .394

Cloglog (ρ=0) Cloglog 5.23(3.328) .514
Probit 6.60(4.403) .359
Logit 6.21(4.011) .400

Note: ρ is the correlation used for simulating the bivariate continuous outcomes.

Table 9.27: Model mis-specification fitting when there is weak correlation between bivari-
ate responses

Chi-square
k

∑
i=1

1

∑
j=0

(Oi,j-Ei,j)
2

Ei,j

Data-simulated Model fitting Mean(std) p-value
Probit (ρ=0.4) Probit 4.81(2.943) .568

Logit 4.87(3.035) .561
Cloglog 5.36(3.125) .500

logit (ρ=0.4) Logit 5.14(3.318) .526
Probit 5.18(3.341) .521

Cloglog 6.02(3.568) .421

Cloglog (ρ=0.4) Cloglog 4.97(2.930) .548
Probit 6.42(4.123) .378
Logit 6.14(4.015) .408

Note: ρ is the correlation used for simulating the bivariate continuous outcomes.
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Table 9.28: Model mis-specification fitting when there is strong correlation between bivari-
ate responses

Chi-square
k

∑
i=1

1

∑
j=0

(Oi,j-Ei,j)
2

Ei,j

Data-simulated Model fitting Mean(std) p-value
Probit (ρ=0.8) Probit 5.23 (3.263) .515

Logit 5.28 (3.219) .510
Cloglog 5.78 (3.017) .448

logit (ρ=0.8) Logit 5.20 (3.17) .518
Probit 5.29 (3.40) .507

Cloglog 6.11(3.45) .411

Cloglog (ρ=0.8) Cloglog 5.48 (3.214) .484
Probit 7.23 (6.919) .300
Logit 6.6 (4.152) .359

Note: ρ is the correlation used for simulating the bivariate continuous outcomes.

9.7 How to determine MED and MSD

9.7.1 MED definition

MED definition will be the same as the definition in Part I Section 2.2.1.

9.7.2 MSD definition

Following the rationale of MSD definition for continuous outcome in Section

2.2.1, for discrete outcome, the model-based approaches allow MSD 2 (d1, dk]. Given a

model g(., θ),

MSD = argmax
d2(d1,dk ]

fg(d, θ) � g(d1, θ) +4g ,
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g(., θ) can be the inverse of logit, probit or complementary log-log link if the discrete re-

sponse follows logistic, probit or complementary log-log regression respectively. Here,

MSD is defined as the maximum dose which shows clinically acceptable toxicity in terms

of measurable probability of safety events. 4 will be the clinical acceptable difference

of probability for the interest of safety outcome, that is, the largest relevant difference of

probability, by which we expect a dose to be not too worse than placebo.

Following the above definition, two different rules are proposed to estimate true

MSD. Denote Ud the upper 1� 2γ confidence limit of predicted mean value pd at dose d

based on the model g(., θ).

\MSD1 =argmaxd2(d1,dk ]

n
Ud � g(d1,bθ) + ∆

o
,

\MSD2 =argmaxd2(d1,dk ]

n
pd � g(d1,bθ) + ∆

o
.

9.8 Procedures/Strategies of finding MED and MSD for bivariate

continuous efficacy and discrete safety data

The procedures and strategies are similar to what we described in the Section

4.2.5. As shown in Figure 4.1, the first step is to confirm if there exists PoC for efficacy (al-

pha=0.05), there will be no dose-finding continuation for this drug which means the drug

will not be carried to the Phase III development. When the PoC for the efficacy response is

established, the second step is to show the PoC for the safety response (alpha=0.2). Only

efficacy response is studied further to identify MED for the Phase III program when there

is no established PoC for safety response. Joint modeling for efficacy and safety responses

is performed under the scenario there are both PoC for efficacy and safety responses.
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The details are referred in Section 4.2.5 and are not repeated here.

9.9 Design for separate and joint model fitting

9.9.1 Separate model fitting

To get the MED and MSD from separate model fitting by ignoring the correlation:

1. The following set of candidate efficacy models such as Linlog, Emax, exponential,

quadratic are chosen for the continuous response; the logistic, probit, complementary

log-log models are selected for fitting discrete safety data. Nonlinear the regression

model may be used for discrete safety data.

2. Fit the efficacy data separately and choose best model with alpha=0.05 and the lowest

AIC; If PoC for efficacy is established, fit discrete safety data separately and choose

best model with alpha=0.2 and the lowest AIC.

3. Obtain the \MED2 and\MSD1 based on the models from step 2.

9.9.2 Joint model fitting

When there is no PoC for efficacy established as shown in Figure 4.4, there are no

continued model fittings and Phase III development will not be proceeded. On the other

hand when there is PoC for efficacy but with no PoC for safety, then we only focus on

determining the MED. In the following Sections we will describe the strategy of estimating

the MED and MSD from the joint model fittings after PoC for both efficacy and safety are

established. Two stratigies will be used to find the final joint model as follow:



181

Strategy I – Keep most significant model from separate efficacy and safety

model fitting

1. First get all the significant efficacy models, of which t-statistics are greater than critical value

qY and all the significant safety models which z-statistics are greater than critical value

qZ for controlling FWER from separate model fitting. Alpha=0.05 is pre-specified for

PoC for efficacy and alpha=0.2 is pre-specified for PoC for safety respectively. The

PoC for the safety discrete response implies that there is significant differences in

probabilities of safety events among doses. The wald statistic under null hypothesis

is asymptotic multivaraite normally distributed. The detailed proofs are derived in

Appendix Section 13.2. The computation of the critical value qZ should account for

the multiplicity to control the FWER at a pre-specified alpha level (Hochberg and

Tamhane, 1987). After the PoC for both the efficacy and response are confirmed, the

next step is to determine the most significant efficacy and safety models based on

the lowest AIC criteria, and keep the parameter estimates from the separate model

fitting, these values will be used as starting values for joint model fitting.

2. Joint model fitting by QELS approach. This is done by specifying the correct mean

model and variance-covariance structure for the bivariate outcomes.

3. Obtain \MED2 and \MSD1 based on updated efficacy and safety models from joint

models fitting. Base on the definition of \MED2 and \MSD1, fit the updated marginal

of joint model to obtain the \MED2 and\MSD1.

4. Suggest an optimal dose or a range of doses for Phase III, and evaluate the Phase III
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Program Development.

Strategy II – Keep all significant models from separate efficacy and safety mod-

els

1. Keep all the significant efficacy models, of which t-statistics are bigger than criti-

cal value qY, and all the significant safety models, of which z-statistics are greater

than critical value qZ, for controlling FWER from separate fitting. Alpha=0.05 is pre-

specified for PoC for efficacy and alpha=0.2 is pre-specified for PoC for safety respec-

tively. The parameter estimates are kept and will be used as starting values for joint

model fitting.

2. Joint model fitting by QELS approach for all the combinations of efficacy and safety

models selected from separate model fitting in step 1, the next step is to determine the

best combination based on lowest AIC from all the joint models fitting. The method

for computing AIC is based on observed likelihood described in Section 9.2.

3. Obtain the \MED2 and \MSD1 based on the estimated marginal efficacy and safety

models of the best fitted joint model.

4. Suggest an optimal dose or a range of doses for Phase III, and evaluate the Phase III

Program Development..
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Chapter 10

Suggest Dose(s) for the Phase III

Program Development Based Joint

Continuous and Discrete Responses

In this chapter, we will propose several methods to select an optimal dose or a

range of doses for Phase III and evaluate the possibility of success in Phase III program.

Two of the proposed methods are based on probability functions, another two are based

on utility function. If \MSD1 is smaller than \MED2, there will be no appropriate dose for

the Phase III program.
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10.1 Identify dose(s) for Phase III program through joint criteria

of continuous efficacy and discrete safety responses

There are two proposed methods described in this section.

10.1.1 Methods

Method 1: The recommended dose(s) will be determined by

argmax
d2[MED, MSD]

fP(Y > a, Z = 0 j d) � ξg , or

a dose range in [MED, MSD] such that P(Y > a, Z = 0 j d) � ξ,

where Y is continuous efficacy variable and Z is discrete safety variable, Z = 0 means no

toxicity while a is the criteria for Phase III success and ξ is the success probability. The

parameters for the joint bivariate density are estimated from the joint fitted model using

the QELS approach in Sections 9.3.1 and 9.3.2. These estimates will be used to get the

estimated joint bivariate density and hence calculate the probabilities we are interested in.

When the latent variable threshold c and standard deviation σ2
S of latent variable

are known, the joint density is,

f (y, zjd) = fY(yjd) fZjY(zjy, d)

=

exp
�
� (y�uY

i )
2σ2

Y

�
q

2πσ2
Y

0@Φ

0@ c�
�

uZ
i + ρ σS

σY
(y� uY

i )
�

σS
p
(1� ρ2)

1A1A1�z

�

0@1�Φ

0@ c�
�

uZ
i + ρ σS

σY
(y� uY

i )
�

σS
p
(1� ρ2)

1A1Az

.

(See Section 9.2.1 for details).
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If we do not have the information for the latent variable and assume σ2
Yj(Z=1) =

σ2
Yj(Z=0) = σ2

c , then the following joint density will be used,

f (y, zjd) = fZ(zjd) f YjZ(yjz, d)

=

 
1p

2πσ2
c

�
uZ

i

�Z �
1� uZ

i

�1�Z
!

� exp

0BBBB@
�
 

y� uY
i � eρr 1

uZ
i (1�uZ

i )(1�eρ2)

�
z� uZ

i
�!

2σc

1CCCCA .

Method 2: Instead of using the joint density, the marginal distribution approach can also

be used, i.e., the recommended dose(s) will be,

argmax
d2[MED, MSD]

fP(Y > a j d) � ξ1 and P(Z = 1 j d) < ξ2g , or

a dose range in [MED, MSD] such that fP(Y > a j d) � ξ1 and P(Z = 1 j d) < ξ2g ,

where Y is the continuous efficacy variable and Z is the discrete safety variable, Z = 1

means toxicity response, a is the criteria for Phase III success, ξ1 and ξ2 are the success

probabilities. The probability P(Y > a j d) and P(Z = 1 j d) are calculated based on the

estimated marginal density functions derived from either separate model fitting or joint

model fitting using the QELS approach in Sections 9.3.1 and 9.3.2.
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10.2 Identify dose(s) for Phase III through utility function based

on trade off of efficacy and safety responses

10.2.1 Methods

The utility function method to determine the recommended dose is based on the

following utility function,

F(d) = e f f (d)� k � sa f (d).

The dose is determined by maximizing the utility function F(d), i.e., argmax
d2[MED, MSD]

F(d).

Here, k is the weight for the discounted safety from the efficacy; e f f (d) and sa f (d)

can represent

1) P(Y > a j d) and P(Z = 1 j d) respectively, where the estimated marginal

distributions are derived from either separate model fitting or joint model fitting using the

QELS approach in Sections 9.3.1 and 9.3.2. Y is the continuous efficacy variable and Z is

the discrete safety variable, a is a criteria for Phase III success.

2) Standardized response e f f (d)=bY(d) and sa f (d)=bZ(d),where bY(d) = E(Y(d))p
Var(Y(d))

=

f (d,θY)
σY

and bZ(d) = E(Z(d)) = g(d, θZ). θY, θZ, and σY are estimated from the mean efficacy

and safety models based on either the separate marginal model fitting or the joint model

fitting using the QELS approach in Sections 9.3.1 and 9.3.2.
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Chapter 11

Conclusions

In Part II of this dissertation, we developed the methodology for identifying the

final dose for Phase III program based on bivariate nonlinear models for continuous and

discrete endpoints. The methodology includes several procedures and is summarized as

follows:

1. The strategy to simulate the bivariate continuous and discrete outcomes:

The approach utilizes the association between the discrete variable and latent continuous

variable in terms of the mean model and the correlations at each dose level.

The derivations are in Section 9.2.1. The parameter values from the simulation

results are very close to the true parameter values from which the data are simulated. The

results show that the methods are valid for the different link functions selected for the

discrete variables and for various strength of correlations between the bivariate variables.

2. Estimation for joint continuous and discrete models: The ELS and QELS

methods are both explored and applied to the mixed type data. In this dissertation, dif-
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ferent link functions for the discrete variable and various bivariate correlations, from no

bivariate correlations to strong bivariate correlations, are considered. As expected, both

ELS and QELS methods produce relatively consistent estimates for all the parameters.

The standard errors from the QELS method are relatively smaller than the standard er-

rors from the ELS method. This confirmed that using the QELS estimating equations,

we can still achieve a consistent estimate of mean model parameter estimates even if the

variance-covariance structure is mis-specified. The robust standard errors of the parameter

estimates for the continuous variable obtained from the ELS method and QELS methods

are similar. And the robust errors for the discrete variable parameter estimates obtained

from the QELS are little lower than the robust errors obtained from the ELS method. Over-

all the QELS method is more efficient and robust for joint model fitting of the continuous

and discrete responses .

3. Comparison of efficiency of the parameter estimates from joint model fitting

and separate model fitting: The data with different correlations between the bivariate

variables and using different link functions for the discrete variable are simulated. The rel-

ative efficiency of the parameter estimates for the continuous outcome from the joint model

fitting with respect to the separate model fitting increases as the correlation between the

bivariate increases. Efficiencies of the joint model fitting with respect to the separate model

fitting are the similar for the parameter estimates for the discrete outcome model. This is

not surprising since there are tremendous information loss when the observed variable is

dichotomized obtained from the latent continuous outcome.

4. Joint model fitting evaluation: The full likelihood is derived in Section 9.2.
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There are two approaches to obtain the likelihood depending on if the information of the

latent continuous outcome is known. The AIC can be computed from the observed likeli-

hood after we have the parameter estimates from the ELS or QELS methods.

In addition, the model mis-specification is used to test the robustness of the QELS

approach. The Chi-square results from the model mis-specification do show that QELS

approach is robust.

5. Define the MSD for the discrete safety variable, and develop the strategies

of finding MED and MSD for bivariate continuous efficacy and discrete safety data: The

strategies of finding MED and MSD for the joint mixed type efficacy and safety responses

are similar to the bivariate continuous responses in Part I. The overall strategy is to prove

the PoC for the safety response (alpha=0.2) only after the PoC for the efficacy response

(alpha=0.05) is established. The two approaches developed in Part I are still valid here for

the mixed type responses.

6. Identify an optimal dose or a range of doses for Phase III program: There are

two concepts developed for identifying an optimal dose or a range of doses for the Phase

III program. First approach is through the joint success criteria of the continuous efficacy

and discrete safety responses for the Phase III program. The parameter estimates from

the joint modeling are obtained from the QELS method. The joint success criteria can be

based on either the joint distribution or the marginal distributions obtained from the joint

model estimation. The second approach is the utility function based on the trade off of the

continuous efficacy and discrete safety success criteria. The rationales are similar to the

bivariate continuous responses in Part I.
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Chapter 12

Discussion and Future Directions

12.1 Discussion

Part I develops the dose-finding methodology for continuous bivariate responses

while Part II develops the dose finding methodology for mixed typed outcomes. There are

some key differences for these two methodologies which are discussed below.

The motivation for Part I of the thesis is based on an example of the joint con-

tinuous bivariate efficacy and safety data from a clinical trial. The estimation of the joint

nonlinear continuous model uses the full likelihood approach and there is normality as-

sumption for the bivariate normal outcomes. The simulation results do show the joint

modeling provide less biased and more efficient parameter estimates when the bivariate

data have stronger correlation. The whole developed methodology starts from the exten-

sion of MSD, joint modeling, determination of the best final joint model and identifying

the final optimal dose for maximizing success of the Phase III program. We illustrate an ex-

ample through simulations of bivariate normal outcomes and show that the methodology
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is valid and applicable.

After Part I is finished, we continue to explore different methodologies when the

bivariate data are the mixed type of continuous and discrete. There are some challenges to

use the full likelihood approach for joint model estimations not only the nonlinear mod-

eling of mixed type outcomes, but also the modeling of second moment parameters since

the correlations between the bivariate variables are dose dependent. In Part II of the dis-

sertation we used the extended least squares approach for the estimation of the nonlinear

joint model of mixed type outcomes. The simulation results show that the parameter es-

timates obtained from the joint modeling approach are more efficient than the parameter

estimates obtained from the separate model especially for the estimates of model for con-

tinuous outcome. For the discrete variable, as expected there are some loss of information

when the discrete variable is dichotomized from the latent continuous variable. It seems

that efficiency remains similar comparing the joint modeling with the separate modeling

for discrete portion of outcomes. The standard errors from the QELS method are relatively

smaller than the standard errors from the ELS method. The rationale is that using the

QELS estimating equations can still achieve a consistent estimate of mean model parame-

ter estimates even if the variance-covariance structure is mis-specified. Furthermore the

QELS approach is a robust approach even when the model is mis-specified.

It was shown by Vonesh et al. (2001) that the ELS and QELS approach are equiv-

alent to the maximum likelihood estimation assuming normality. Furthermore the advan-

tage of using the ELS approach is that the 3rd and 4th order moments are automatically

generated as though from a multivariate normal distribution even though data may not
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follow a multivariate normal. This does add the robustness of this approach since normal-

ity assumption is not a necessarily condition for applying this method to the mixed type

data. Although the comparisons of the different estimation methods are not the focus of

the Part II, it may be a future direction to explore how the ELS or QELS approach is differ-

ent from the full likelihood approach when normality condition is not met in terms of the

efficiency of the parameter estimates.

Other challenges we face when we develop the dose finding methodology for the

mixed type bivariate data are the criteria for model selections when the data are not the

bivariate normal, we compute the AIC based on the observed likelihood. We discuss the

two approaches to compute the observed likelihood which depends on the information

we have for the latent continuous variable. But as we know the ELS or QELS do not use

the full likelihood, so in the future we may explore the alternatives for the model fitting

criteria like QIC (Pan, 2001), instead of using the AIC.

In addition, how to simulate the bivariate mixed type data mimic the clinical set-

ting for our research purpose is another challenge we face in Part II of the dissertation.

We do derive the association between the mean model for the discrete variable and the

mean model for the latent continuous variable, the relationship of the correlation between

the bivariate mixed type data and the correlation between the bivariate continuous vari-

able at each dose level. These relationships can be utilized for either observed likelihood

computation or the joint density criteria for the dose optimization.

The two strategies for determining the final model and how to identify the final

optimal dose(s) are similar in Part I and Part II. One point need to be addressed here is
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that since Part II apply to the discrete data, the success criteria will be different from what

is defined in Part I. In Part I the success criteria for the safety outcome criteria is that the

probability of the continuous safety response less than the certain value, for the discrete

data the success criteria is the probability of no toxicity for the safety outcome for the Phase

III program.

Though we mentioned in Part II that bivariate mixed type data consists of the

joint continuous efficacy and discrete safety outcomes, this is not always the case. In the

clinical trials, the mixed type data can be discrete efficacy data and continuous safety data

or the mixed type data can both be generated from the efficacy or safety outcomes depend-

ing on the individual clinical setting.

As we can see the dose finding methodology in Part II is developed based on

nonlinear joint models for the mixed type bivariate data, but the estimation procedure can

also be applied to bivariate continuous data. Certainly there may have more advantages

to use the full likelihood estimation methodology in Part I when the data are bivariate

normal. In cases that the joint continuous data are not bivariate normal we may expect the

ELS or QELS method may provide better parameter estimates than the estimations in Part

I.

12.2 Future Directions

Assessment of dose-response profiles for efficacy and safety outcomes are the key

for reliable evaluations of the risk-benefit profile of a drug as well as the selection of final

doses to be carried into Phase III program. Due to broad applications of the dose-finding
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approach and various clinical trial designs, there are lots of interesting issues remain un-

resolved. The following directions are considered as important potential directions in the

future.

12.2.1 Joint nonlinear continuous and discrete model estimation using full like-

lihood approach

In Part II, we use the extended least squares method to estimate the joint non-

linear continuous and discrete model. We do have the relative consistent and efficient

parameter estimates using this approach. Although for Part II of the dissertation, the fo-

cus is not comparing the different estimating approaches, in the future, utilizing the full

likelihood may be another direction for estimations. Fitmaurice and Laird (1995) devel-

oped the estimating method using likelihood equations. But the author did realize that the

full likelihood-based approach is computationally intensive and the solution to likelihood

equations becomes intractable when the number of nuisance parameters increased. Fur-

thermore this paper only consider the linear model for continuous outcome. In addition,

for our dose finding approach the correlations are different at each dose level.

There are other two key aspects make full likelihood not robust. If the distribution

we use in the likelihood do not reflect the true distribution, i.e., the normality is not met,

then the likelihood approach is not accurate. On the other hand we test robustness of the

model mis-specification for the ELS or QELS. ELS and QELS can be applied to mixed type

responses without the need to derive the likelihood. They can still get reasonable estimates

even the normality is not met.

Thus the full likelihood approach can be a future direction but may not be attrac-
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tive approach due to the above issues.

12.2.2 Extension of dose finding based on bivariate discrete variable

In Part I of this dissertation we developed the methodology to estimate the joint

bivariate continuous outcomes based on full likelihood, how to find the MED and MSD

and how to identify the final dose(s) to carry into Phase III. In Part II of this dissertation

we also developed the methodology to estimate the joint bivariate mixed type outcomes

based on extended least squares (ELS) or quasi-extended least squares method (QELS),

and furthermore we discussed the approaches to find the MSD for discrete variable and

identify the final dose for Phase III. Having done these work, we do realize that in reality it

is also common that in clinical trials dose finding need to be based on the outcomes which

are both discrete variables. Under this clinical setting, the extension of dose finding based

on the bivariate discrete variable is an interesting topic in the future. It is worth to mention

that ELS or QELS approach adapted into the estimation of bivariate mixed type outcomes

in Part II can also be applied to the estimation of the joint nonlinear models of the bivariate

discrete variables.

12.2.3 Comparison of estimating methods in Part I and Part II

In part I, the estimating method for the joint continuous bivariate variable is

based on the full likelihood under the normality assumption. This approach only apply

to bivariate continuous variable under normality. While the estimating method in Part

II is based on the extended least squares and normality assumption is not required. The

estimating method in Part II can be applied to different types of responses, there is no
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restriction of the type of random variable under normality, it may still produce correct es-

timates under the non-normal situation. Thus we consider the approach in Part II is more

robust and has broader application. While Part I does have the advantage since it may

produce more efficient estimated by the full likelihood approach under normality, it may

not produce correct estimates under the non-normal situation. Thus the comparison of

estimations of bivariate continuous variables in Part I and Part II may be a potential topic.

We do expect under normality the method in Part I may generate more efficient parame-

ter estimates while the method in Part II may have some advantages under non-normal

assumptions.

12.2.4 Quasi-likelihood criterion (QIC) for model selections

Model selection is an important mid-step in our procedures for finding the best

joint model. In Part II we propose to use the observed likelihood to compute AIC. AIC

is based on the likelihood and asymptotic properties of the maximum likelihood estima-

tor. It is described in Vonesh et al. (2001) that minimizing the QELS objective function is

equivalent to maximizing the joint log-likelihood function under normality assumption.

Though Vonesh et al. (2001) did show that the assumption of normality is not required to

achieve the consistent and reasonably efficient estimators, Pan (2001) proposed a modifi-

cation to the penalty term in the usual AIC and used the quasi-likelihood for the mean and

second moment parameters. Since QELS is the non-likelihood based, though we do derive

the likelihood and use the observed likelihood for the AIC computation, Qualsi-likelihood

criterion (QIC) may be an alternative to our observed likelihood based AIC method.
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Chapter 13

Appendix

13.1 Comparison of Likelihoods Between Method 1 and Method

2

Sections 9.2.1 and 9.2.2 introduce two approaches to derive the likelihood de-

pending on whether we have the information about the latent variable. Method 1 assumes

that we do have the underlying distribution about the latent variable. In this case we as-

sume the bivariate continuous variable follows a bivariate normal distribution and hence

YijjSij follows a normal distribution. Method 2 derives the likelihood directly from the

bivariate continuous and discrete variable when we do not have information about the

underlying variable. In this case, we assume the conditional distribution fYijjZij

�
yijjzij

�
is

a normal distribution. In this section, we want to explore if Yijj
�
Sij > c

�
is normally dis-

tributed given that
�
Yij, Sij

�
follows a bivariate normal distribution in Method 1.
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fYijjZij
(yjz = 1) = fYijj(Sij>c)(y) =

∞Z
c

f(Yij,,Sij)(y, s)ds

P(Sij > c)

=

∞Z
c

1
2πjΣi j1/2 exp

0BB@� 1
2

0BB@
2664 y� uY

i

s� uS
i

3775Σ�1
i

2664 y� uY
i

s� uS
i

3775
1CCA
1CCA ds

P(Sij > c)

=

∞Z
c

1
2πjΣi j1/2 exp

�
� 1

2

�
(y�uY

i )
2

σ2
Y

+ 2ρi
(y�uY

i )(s�uS
i )

σYσS
+
(s�uS

i )
2

σ2
S

��
ds

P(Sij > c)

= k1 exp

 
�
�
y� uY

i
�2

2σ2
Y

!

�
∞Z

c

exp

 
� 1

2σ2
S

�
2ρi

σS

σY

�
y� uY

i

� �
s� uS

i

�
+
�

s� uS
i

�2
�!

ds

= k1 exp

 
�
�
y� uY

i
�2

2σ2
Y

+
1

2σ2
S

�
ρi

σS

σY

�
y� uY

i

��2
!

�
∞Z

c

exp

0BBBB@�
 �

ρiσS(y�uY
i )

σY

�2

+
2ρiσS(y�uY

i )(s�uS
i )

σY
+
�
s� uS

i

�2
!

2σ2
S

1CCCCA ds

= k1 exp

 
�
�
y� uY

i
�2

2σ2
Y

+
ρ2

i
2σ2

Y

�
y� uY

i

�2
!

�
∞Z

c

exp

 
� 1

2σ2
S

�
s� uS

i + ρi
σS

σY

�
y� uY

i

��2
!

ds



199

let z =
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where k1 =
1

2πjΣi j1/2P(Sij>c) . Apparently from formula (13.1), the fYijjZij
(yjz = 1) is not a

pdf of a normal distribution. Thus the distribution from Method 1 is different from the

distribution from Method 2. But for both likelihoods, they have the same first two moment

parameters, and we do have all the parameter estimates using ELS or QELS methods.

13.2 Proof of Concept Study for Binary Outcomes

13.2.1 Contrast Tests with Multiple Dose Response Models

For the purpose of detecting an overall trend, we assume the following model:

uZ
i = pZ

i = P(Zij = 1jdi) = g(di, θZ) for i = 1, ..., k, j = 1, ...ni,

where pZ
i = g(di, θZ) are the probability of (Zij = 1) at dose di. Let pZ = (pZ

1 , ..., pZ
k ). The

MLEs of pZ
i and pZ are

bpZ
i =

∑ni
j=1 Zij

ni
,
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and bpZ = (bpZ
1 , ..., bpZ

k ), respectively.

Assume that we are given a set of models M = fMm : m = 1, ..., Mg. For each

model Mm, we want to determine if there are significant differences in probabilities of

events among all doses by considering the following hypotheses:

Hm
0 :

k

∑
i=1

cmi pZ
i = c0mpZ = 0,

vs. Hm
1 :

k

∑
i=1

cmi pZ
i = c0mpZ > 0,

where contrast vectors c
0
m = (cm1, ..., cmk) are known constants subject to c

0
m1 = 0, m =

1, ..., M.

The wald test statistic for the hypotheses can be written as

Zm =
c0mbpZq

c0m I�1
N (bpZ)cm

, m = 1, ..., M

where IN(pZ) is the Fisher information matrix for p. Since

IN(p) =

266666666664

n1
pZ

1 (1�pZ
1 )

0 � � � 0

0 n2
pZ

2 (1�pZ
2 )

� � � 0

...
...

. . .
...

0 0 � � � nk
pZ

k (1�pZ
k )

377777777775
,

c
0
m I�1

N (bpZ)cm = ∑k
i=1 bpZ

i (1� bpZ
i )c

2
mi/ni and

Zm =
∑k

i=1 cmibpZ
iq

∑k
i=1 bpZ

i (1� bpZ
i )c

2
mi/ni

, m = 1, ..., M.

It is shown that Zm is asymptotically normal with mean 0 and variance 1 under null hy-

potheses. In the proof of concept study, we want to test H0 : c0mpZ = 0 for all m = 1, � � � , M
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and control the family wise error rate (FWER). Since Z1, ..., ZM are correlated, we need to

study the asymptotic joint distribution of Z = (Z1, ..., ZM)
0 under H0.

The Central Limit Theorem shows that
p

ni(bpZ
i � pZ

i )
d! N(0, pZ

i (1 � pZ
i )) as

ni ! ∞ and

p
N(bpZ � pZ)

d! N(0, V(pZ)) as N ! ∞,

where N = ∑k
i=1 ni,

V(pZ) =

266666666664

r1 pZ
1 (1� pZ

1 ) 0 � � � 0

0 r2 pZ
2 (1� pZ

2 ) � � � 0

...
...

. . .
...

0 0 � � � rk pZ
k (1� pZ

k )

377777777775
and ri = N/ni. Let C = (c1, � � � , cM), we have

p
N(C0bpZ � C0pZ)

d! N(0, C0V(pZ)C) as N ! ∞,
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where

C0V(pZ)C

=

266666666664
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c0M

377777777775
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. . .
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Let

B(pZ) =

2666666666664

1p
c01V(pZ)c1

0 � � � 0

0 1p
c02V(pZ)c2

� � � 0
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. . .
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then
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R = B(pZ)C0V(pZ)CB0(pZ) = (ρij)M�M and

ρij =
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Z)cjq
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Z)ci

q
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.
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where µ(pZ) =

266666666664

µ1(p
Z)

µ2(p
Z)

...

µM(p
Z)

377777777775
. Furthermore we have

Z =
p

NB(bpZ)C0bpZ =
�

B(bpZ)B�1(pZ)
�p

NB(pZ)C0bpZ

=
�

B(bpZ)B�1(pZ)
� eZ,

and the Law of Large Number shows that bpZ P! pZ as N ! ∞, this implies that B(bpZ)
P!

B(pZ) and B(bpZ)B�1(pZ)
P! IM an M � M identity matrix by the Continuity Theorem.

Since under null hypothesis that H0 : c0mpZ = 0 for all m = 1, � � � , M, we have

eZ d! N(0, R) as N ! ∞,

multivariate version of Slutsky’s Theorem implies that

Z =
�

B(bpZ)B�1(pZ)
� eZ d! IMN(0, R) = N(0, R) as N ! ∞.

This shows that the asymptotic correlation of Zi and Zj is ρij. Under alternative, we can

consider

µ(pZ) =
p

NB(pZ)C0pZ =

26666666666664

c01pZq
c01 I�1

N (pZ)c1

c02pZq
c02 I�1

N (pZ)c2

...

c0MpZq
c0M I�1

N (pZ)cM

37777777777775
as the approximated non-central parameter for the Wald test statistics Z and R the approx-

imated correlation matrix of Z. The large sample assumption is reasonable assumption

under the Phase II or III trials since sample sizes are relatively large.
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Each single contrast test can be translated into a decision procedure to determine

whether a given dose-response shape is statistically significant. Under H0 : c0mpZ = 0

for all m = 1, � � � , M, we have shown that the asymptotic joint distribution of the vector

Z = (Z1, ..., ZM)
T � AN(0, R) asymptotic multivariate normal distribution with mean 0

and covariance (correlation) matrix R = (ρij)M�M, where

ρij =
∑k

l=1 cilcjlrl pZ
l (1� pZ

l )q
∑k

l=1 c2
ilrl pZ

l (1� pZ
l )
q

∑k
l=1 c2

jlrl pZ
l (1� pZ

l )
.

The statistic Zmax = max(Z1, ..., ZM) will be used to make the final decision rule that

whether there is a PoC. The computation of the critical value q1�α should account for the

multiplicity to control the FWER at a pre-specified level α (Hochberg and Tamhane, 1987),

where q1�α satisfies

P(max(U1, ..., UM) > q1�α) = α,

with U = (U1, ..., UM) � N(0, R) a multivariate normal distribution with mean 0 and

covariance matrix R.

13.2.2 Finding Optimal Model Contrasts

To determine the "best" contrast associated with a given model function g(di, θZ),

when the model is correct, will maximize the chance of rejecting the associated null hy-

pothesis. This can be done by maximizing the approximated non-centrality parameter

τ = τ(c) given pZ. Thus for each model g(di, θZ) we should choose Copt(g) such that

Copt(g) = argmax
c

h(c, pZ),
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where

h(c, pZ) =
(c

0
pZ)2

c0 I�1
N (pZ)c

=
∑k

i=1 ci pZ
iq

∑k
i=1 pZ

i (1� pZ
i )c

2
i /ni

= [τ(c)]2,

and pZ is determined based on the model g(di, θZ) with best guess of θZ from previous,

pilot or other relevant studies.

Without loss of generality, we can assume that the contrast vector c = (c1, ..., ck)
0

follow the regularity conditions ∑k
i=1 ci = 0 and ∑k

i=1 c2
i = 1. With this condition, the

maximization was on the unit sphere (a compact set) in Rk. This shows the existence of the

value Copt(g) = (cmax
1 , ..., cmax

k )0 on the unit sphere that maximizes h(c,pZ). The close form

of the solution may be hard to find, but numeric calculation can be done with optimization

softwares.
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