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ABSTRACT OF THE DISSERTATION

Refinements of Selberg’s Sieve

by Sara Elizabeth Blight

Dissertation Director: Henryk Iwaniec

This thesis focuses on refinements of Selberg’s sieve as well as new applications of

the sieve. Sieve methods are addressed in four ways. First, we look at lower bound

sieves. We will construct new lower bound sieves that give us non-trivial lower bounds

for our sums. The lower bound sieves we construct will give better results than those

previously known.

Second, we create an upper bound sieve and use it to bound the number of primes

to improve Selberg’s version of the Brun-Titchmarsh Theorem. We improve a constant

in the bound of the number of primes in an arbitrary interval of fixed length.

Third, we construct an upper bound sieve to improve the large sieve inequality in

special cases. Sieve methods allow us to improve this well-known bound of exponential

sums.

Finally, we include some notes on the use of successive approximations to give a

choice of an upper bound sieve that minimizes the main term and the remainder term

simultaneously.
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Chapter 1

Introduction

In sifting theory, a quantity we are interested in is how many of the numbers n ≤ x

have no prime factors p less than a parameter z. If we take P (z) to be the product of

all primes p ≤ z, then this means that we want to count how many numbers n ≤ x are

such that (n, P (z)) = 1. In summation form, this is

S(x, z) =
∑

n≤x
(n,P (z))=1

1. (1.1)

Although this is an interesting problem by itself, we would like to look at an even more

general problem. Instead of looking at the sum (1.1), we look at the weighted sum

below.

S(A, x, z) =
∑

n≤x
(n,P (z))=1

an (1.2)

where A = (an) is a sequence of non-negative real numbers. Now we would like to

estimate this sum. We would like to remove the condition (n, P (z)) = 1 from the

summation. One way we can do this is by using the Mobiüs function. We recall that

∑

d|m
µ(d) =





1 if m = 1,

0 otherwise.
(1.3)

Therefore,

S(A, x, z) =
∑

n≤x

an

∑

d|(n,P (z))

µ(d)

=
∑

n≤x

an

∑

d|n
d|P (z)

µ(d).

Unfortunately, the Mobiüs function does not have nice asymptotics, so this is not the

best approach for estimations. Therefore, we look at more general functions. If we
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want an upper bound for S(A, x, z), we take a sequence of real numbers Λ+ = (λ+
d )

such that
∑

d|m
λ+

d





= 1 if m = 1,

≥ 0 if m 6= 1.

Then

S(A, x, z) ≤
∑

n≤x

an

∑

d|n
d|P (z)

λ+
d .

We note that the two conditions we imposed on λ+
d are equivalent to the conditions

that λ+
1 = 1 and

∑
d|m λ+

d ≥ 0 for all m. If these conditions are satisfied and λ+
d = 0

for d > D, then Λ+ = (λ+
d ) is called an upper bound sieve of level D. With a clever

choice of λ+
d , we will be able to construct good upper bounds for S(A, x, z).

Now we would like to construct a lower bound for S(A, x, z). Trivially, we know that

the sum is non-negative because each an ≥ 0. We would like to be able to construct

non-trivial lower bounds as well. If we want a lower bound, we take a sequence of real

numbers Λ− = (λ−d ) such that

∑

d|m
λ−d





= 1 if m = 1,

≤ 0 if m 6= 1.

Then

S(A, x, z) ≥
∑

n≤x

an

∑

d|n
d|P (z)

λ−d .

We note that the two conditions we imposed on λ−d are equivalent to the conditions that

λ−1 = 1 and
∑

d|m λ−d ≤ 0 for all m 6= 1. If these conditions are satisfied and λ−d = 0 for

d > D, then Λ− = (λ−d ) is called a lower bound sieve of level D.

For now, we let

S(Λ) =
∑

n≤x

an

∑

d|n
d|P (z)

λd (1.4)

where Λ = (λd) is a general sieve of level D, either an upper bound sieve or a lower

bound sieve. Changing the order of summation, we have

S(Λ) =
∑

d|P (z)

λd

∑

n≤x
n≡0(d)

an =
∑

d|P (z)

λdAd(x)
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where

Ad(x) =
∑

n≤x
n≡0(d)

an. (1.5)

In order to treat the summation, we shall assume some asymptotics of the partial sums

Ad(x). We write

Ad(x) = g(d)X + r(A, d)

where g(d)X is the expected main term and r(A, d) is an error term which we think of

as being small. In the main term,

X ≈
∑

n≤x

an

so g(d) is the density of the masses an attached to n ≡ 0(mod d). If we think of

divisibility by distinct primes as independent events, we are led to assume that g(d) is

a multiplicative function with 0 < g(p) < 1 if p|P (z) and g(p) = 0 otherwise. Given

these asymptotics of Ad(x), we have

S(Λ) = X
∑

d|P (z)

g(d)λd +
∑

d|P (z)

λdr(A, d)

= XV (D, z) + R(A, D)

where V (D, z) =
∑

d|P (z)

g(d)λd, R(A, D) =
∑

d|P (z)

λdr(A, d).

In this thesis, we will address sieve methods in four ways. First, we will look at lower

bound sieves. A fundamental problem in sieve theory is the sifting limit problem. We

wish to construct lower bound sieves that give non-trivial lower bounds for our sums.

Given a particular asymptotic for our density function g(d), the problem is to find a

lower bound sieve that gives a non-trivial lower bound. Details of the problem are

described in chapter (2). Selberg established the asymptotic result for this problem.

He also predicted a value for the sifting limit in general. This is still an open problem.

In this thesis, we construct a lower bound sieve that gives better results than those

previously known in many cases.

Second, we will create an upper bound sieve and use it to bound the number of

primes to improve Atle Selberg’s version of the Brun-Titchmarsh Theorem. We will
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improve a constant in the bound of the number of primes in an arbitrary interval of

fixed length.

Third, we will construct an upper bound sieve to improve the large sieve inequality

in special cases. Sieve methods will allow us to improve this well-known bound of

exponential sums.

Finally, we make some notes on the use of successive approximations to give an

upper bound sieve that simultaneously minimizes the main term and remainder term.

We provide useful lemmas to solve systems of equations prevalent in sieve theory.
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Chapter 2

Sifting Limit

2.1 Introduction

From chapter (1), we know that if Λ = (λd) is a lower bound sieve of level D, then

S(A, x, z) =
∑

n≤x
(n,P (z))=1

an ≥ XV (D, z) + R(A, D)

where

V (D, z) =
∑

d|P (z)

g(d)λd

and

R(A, D) =
∑

d|P (z)

λdr(A, d).

Since an ≥ 0 for all n, we know trivially that S(A, x, z) ≥ 0. We would like to find

a choice of Λ that gives a nontrivial lower bound. To do this, we first make a couple

definitions.

Definition 2.1.1. Let g(p) be a multiplicative function supported on square free num-

bers with 0 < g(p) < 1 for p|P (z) and g(p) = 0 for p - P (z) and κ > 0 is a number

which satisfies
∑

p≤x

g(p) log p = κ log x + O(1). (2.1)

Further assume for any w ≥ 2 with w < z that

∏

w≤p≤z

(1− g(p))−1 ¿
(

log z

log w

)κ

.

Then κ is called the sifting dimension.
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To control the size of g(p), we assume

∑
p

g(p)2 log p < ∞.

In this chapter, we will be examining a quantity βκ, known as the sifting limit for

a sifting dimension κ. A precise definition of sifting limit is very complicated. For

such a definition, the reader is referred to Selberg’s Lectures on Sieves [4, Section 14].

Loosely speaking, for a sifting dimension κ and a lower bound sieve Λ of level D, by

the sifting limit βκ,Λ we mean the minimum of log D/ log z for which V (D, z) > 0 for

log D/ log z > βκ,Λ and V (D, z) ≤ 0 for log D/ log z ≤ βκ,Λ. By the sifting limit βκ for

a sifting dimension κ, we mean the greatest lower bound of the βκ,Λ over all possible

lower bound sieves Λ of level D. For ease of notation, in this thesis we denote βκ,Λ by

βκ when the sieve Λ is understood.

Selberg proposed that the sifting limit is 2κ. He was able to prove this result asymp-

totically as κ approached infinity. For 1/2 < κ < 1, Iwaniec and Rosser constructed

a sieve with βκ < 2κ. However, at this time, a lower bound sieve with a sieving limit

of 2κ has not been found for κ > 1. The sifting limit problem is to find lower bound

sieves that give βκ ≤ 2κ for each κ > 1.

There are many types of lower bound sieves, each with its own advantages and

disadvantages. We will mention a few of these sieves and the corresponding sifting

limits. Then we will give an improvement on Selberg’s lower bound sieve, which will

provide significant improvement of the sifting limit for κ ≥ 3.

2.2 Various Lower Bound Sieves

There are many choices of lower bound sieves that provide good sifting limits. Here we

will focus on the beta-sieve, the Diamond-Halberstam sieve, and the Selberg sieve.

2.2.1 Beta Sieve

The beta sieve was created by Iwaniec and Rosser. The sieve works very well when the

sifting dimension is small. We let βκ denote the sifting limit for sifting dimension κ.
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Using formulas (B.9), (11.42), and (11.57) of [2], we established the following numerical

values of βκ.

κ βκ

0.5 1.0000000000

0.55 1.0340771100

0.6 1.1042161305

0.65 1.1922077070

0.7 1.2912892849

0.75 1.3981115251

0.8 1.5107489225

0.85 1.6279798714

0.9 1.7489723058

0.95 1.8731283112

1 2.0000000000

1.05 2.1292406269

1.1 2.2605745188

1.15 2.3937776845

1.2 2.5286648100

1.25 2.6650802364

1.3 2.8028915201

1.35 2.9419847168

1.4 3.0822608556

1.45 3.2236332483

1.5 3.3660254038

2 4.8339865967

Asymptotically, the beta sieve gives

βκ ∼ cκ

where c = 3.591 . . . is the number which solves the equation (c/e)c = e. We also note

that βκ < 2κ if 1
2 < κ < 1.
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2.2.2 Diamond-Halberstam Sieve

The Diamond-Halberstam sieve works well for slightly larger sifting dimension. We

have the following values of sifting limits [1, p.227].

κ βκ

1.0 2.000000

1.5 3.115821

2.0 4.266450

2.5 5.444068

3.0 6.640859

3.5 7.851463

4.0 9.072248

4.5 10.300628

5.0 11.534709

5.5 12.773074

6.0 14.014644

6.5 15.258588

7.0 16.504285

7.5 17.751146

8.0 18.998853

8.5 20.247056

9.0 21.495510

9.5 22.744013

10.0 23.992408

The Diamond-Halberstam sieve is an infinite iteration of the Ankeny-Onishi sieve[1].

Therefore, it is believed that the sifting limit

βκ ∼ cκ

as κ →∞, where c = 2.445 . . ..
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2.2.3 Selberg Sieve

Finally, we turn to the Selberg sieve. The Selberg sieve does not give good sifting limits

when the sifting dimension is very small. However, asymptotically,

βκ ∼ 2κ

which is better than any other sieve. By making different choices and better estimates,

we have been able to modify the Selberg sieve to give good sifting limits for small κ.

These sifting limits are smaller than the sifting limits of the other sieves for κ ≥ 3. In

this section, we explain Selberg’s approach. In the next section, we will explain the

modifications.

With straightforward calculations, we see that if Λ+ is an upper bound sieve of level

D1 and Λ− is a lower bound sieve of level D2, then Λ = Λ+Λ− is a lower bound sieve

of level D1D2, defined by

∑

d|n
d|P (z)

λd =
( ∑

d|n
d|P (z)

λ+
d

)( ∑

d|n
d|P (z)

λ−d

)
.

Applying this lower bound sieve, we have

S(A, x, z) =
∑

n≤x
(n,P (z))=1

an ≥
∑

n≤x

an

( ∑

d|n
d|P (z)

λd

)
=

∑

n≤x

an

( ∑

d|n
d|P (z)

λ−d

)( ∑

d|n
d|P (z)

λ+
d

)
.

For Λ−, Selberg chose λ−1 = 1, λ−p = −1 for p ≤ z and λ−d = 0 otherwise, so that

Λ− is a lower bound sieve of level z. Then,

∑

d|n
d|P (z)

λ−d = 1−
∑

p|n
p|P (z)

1.

This is a crude lower bound sieve. However, with a good choice of Λ+, the overall choice

of Λ = Λ−Λ+ is still good. For Λ+, Selberg chose his Λ2 sieve, which is the convolution

of Λ with itself, Λ+ = ΛΛ with Λ = {ρd}. That is he chose λ+
d such that

∑

d|m
λ+

d =
(∑

d|m
ρd

)2
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where {ρd} is another sequence of real numbers with ρ1 = 1 and ρd = 0 for d >
√

D/z =

Y . Then Λ+ is an upper bound sieve of level D/z and Λ = Λ−Λ+ is a lower bound

sieve of level D. He kept the choice of ρd open. Applying these choices, we see

S(A, x, z) =
∑

n≤x

an

(
1−

∑

p|n
p|P (z)

1
)( ∑

d|n
d|P (z)

ρd

)2

= XV (D, z) + R(A, D)

where

V (D, z) =
∑

d|P (z)

g(d)λd, R(A, D) =
∑

d|P (z)

λdrd(A),

in the notation of chapter 1.

We note that with the above definitions,

λd = λ+
d −

∑

p|d

(
λ+

d + λ+
d/p

)
.

Rewriting λ+
d in terms of ρd and noting that d is squarefree, and manipulating the

result, we see that

λd =
∑

[d1,d2]=d

ρd1ρd2 −
∑

[p,d1,d2]=d

ρd1ρd2 .

Then

V (D, z) =
∑

d1

∑

d2

g([d1, d2])ρd1ρd2 −
∑

p

∑

d1

∑

d2

g([p, d1, d2])ρd1ρd2 ,

where p, d1, d2 run independently over divisors of P (z), p prime.

In order to look at the first sum, we first define the multiplicative function h(d) by

h(p) =
g(p)

1− g(p)
.

We note that since 0 < g(p) < 1 for p|P (z), we have h(p) > 0 for all p|P (z) and h(d) > 0

for all d|P (z). Since g(p) = 0 for p - P (z), h(p) = 0 for p - P (z). Then we have

∑

d1

∑

d2

g([d1, d2])ρd1ρd2 =
∑

d

h(d)−1

( ∑

m≡0(mod d)

g(m)ρm

)2

.

In order to treat the second sum, we need to make some more definitions. We define

gp(d) = g([p, d])/g(p) and hp(d) as hp(d) = ∞ if p|d and hp(d) = h(d) otherwise.
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Finally, we define

Gp :=
∑

d

hp(d)−1

( ∑

m≡0(mod d)

gp(m)ρm

)2

.

By expanding the square and simplifying, we find

Gp =
∑
m1

∑
m2

ρm1ρm2

g([p,m1,m2])
g(p)

.

Therefore,

∑
p g(p)Gp =

∑
p

g(p)
∑

d

hp(d)−1

( ∑

m≡0(mod d)

gp(m)ρm

)2

=
∑
m1

∑
m2

ρm1ρm2g([p,m1,m2]),

which is the second sum in our expression for V (D, z).

Rewriting gp and hp in terms of g and h, we find that

∑
p|P (z) g(p)Gp =

∑

pd|P (z)

g(p)
h(d)

( ∑

m≡0(mod d)
m|P (z)

g(m)ρm +
1

h(p)

∑

m≡0(mod pd)
m|P (z)

g(m)ρm

)2

.

Finally,

V (D, z) =
∑

d|P (z)

1
h(d)

( ∑

m≡0(mod d)
m|P (z)

g(m)ρm

)2

−
∑

d|P (z)

∑

pd|P (z)

g(p)
h(d)

( ∑

m≡0(mod d)
m|P (z)

g(m)ρm +
1

h(p)

∑

m≡0(mod pd)
m|P (z)

g(m)ρm

)2

.

Since the sum
∑

m≡0(mod d)
m|P (z)

g(m)ρm

is prevalent, we make a change of variables to simplify the expression. Selberg chose

yd =
µ(d)
h(d)

∑

m|P (z)
m≡0(mod d)

g(m)ρm. (2.2)

Making this substitution, we find

V (D, z) =
∑

d|P (z)

h(d)y2
d −

∑

pd|P (z)

g(p)h(d)
(

yd − ypd

)2

. (2.3)
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We note that the original variables ρd can be found in terms of the new variables yd by

Mobiüs inversion. For the normalization, we note that ρ1 = 1 means that

1 =
∑

d|P (z)

h(d)yd.

Also, the support of ρd being d ≤ Y is equivalent to the support of yd being d ≤ Y .

This is the point where two different paths may be taken. The first path is ideal for

large sifting dimension because it illumines the asymptotics Selberg was able to achieve.

However, in order to clearly see the asymptotics, some estimates are made which worsen

the result for small sifting dimension. The second path is more computationally heavy,

but yet gives better results for small sifting dimension. The work of this thesis expands

upon the second path to give even more precise results for small sifting dimension. We

will explore these paths in the following sections.

2.3 Selberg’s Choice

In section (2.2.3), we gave the set-up of Selberg’s sifting limit argument. We now

continue with an explanation of his work. Since h(p) ≥ g(p), equation (2.3) gives

V (D, z) ≥
∑

d|P (z)

h(d)y2
d −

∑

pd|P (z)

h(pd)(yd − ypd)2. (2.4)

Rewriting this, we find

V (D, z) ≥
∑

d|P (z)

h(d)y2
d −

∑

pd|P (z)

h(pd)(yd − ypd)2

=
∑

d|P (z)

h(d)



y2

d −
∑

p|d
(yd/p − yd)2





=
∑

d|P (z)

h(d){y2
d − l(d)}

where

l(d) =
∑

p|d
(yd/p − yd)2.

Selberg then chose

yd = J−1





min
{

1,
log Y/d

log z

}
if 1 ≤ d ≤ Y

0 otherwise
, where J =

∑

d|P (z)
d≤Y

h(d).
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We recall that Y =
√

D/z. We note that with this choice of yd, l(d) = 0 except for

x/z < d < xz. In this range,

l(d) =
∑

p|d
(yd/p − yd)2 ≤ J−2

∑

p|d

(
log p

log z

)2

≤ J−2
∑

p|d

log p

log z
= J−2 log d

log z
. (2.5)

By making these crude estimates, we lose some of our precision. The precision will not

matter for the main term of the asymptotic result, but it does effect the result for small

sifting dimension. We have

∑

d|P (z)
Y/z<d<Y z

h(d){y2
d − l(d)} ≥ −J−2

∑

d|P (z)
Y/z<d<Y

h(d)
log d

log z
. (2.6)

Also,
∑

d|P (z)
d≤Y/z

h(d){y2
d − l(d)} = J−2

∑

d|P (z)
d≤Y/z

h(d). (2.7)

Therefore,

J2V (D, z) ≥ J2
∑

d|P (z)

h(d){y2
d − l(d)}

≥
∑

d|P (z)
d≤Y/z

h(d)−
∑

d|P (z)
Y/z<d<Y z

h(d)
log d

log z

≥
∑

d|P (z)
d≤Y/z

h(d)− log Y z

log z

∑

d|P (z)
d≥Y/z

h(d)

=
∑

d|P (z)

h(d)−
∑

d|P (z)
Y/z<d<Y z

h(d)− log Y z

log z

∑

d|P (z)
Y/z<d<Y z

h(d)

=
∑

d|P (z)

h(d)− log Y z2

log z

∑

d|P (z)
Y/z<d<Y z

h(d).

Definition 2.3.1. We define V (z) by

V (z)−1 =
∑

d|P (z)

h(d).

We define

I(X, z) =
∑

d≥X
d|P (z)

h(d).
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Then

J2V (D, z) ≥ V (z)−1 − log Y z2

log z
I(Y/z, z)

so

J2V (D, z)V (z) ≥ 1− log Y z2

log z
I(Y/z, z)V (z).

From Opera de Cribro by Friedlander and Iwaniec [2, p.111], we have

I(X, z)V (z) ≤ e−κ

(
2eκ

t

)t/2

if t = 2 log X/ log z > 2κ. We note that s = log D/ log z = 2(log Y/ log z)+1. Therefore,

log Y/ log z = (s− 1)/2. Letting X = Y/z, we have t = s− 3. Therefore, if s > 2κ + 3,

I(Y/z, z)V (z) ≤ e−κ

(
2eκ

s− 3

)(s−3)/2

.

Hence,

J2V (D, z)V (z) ≥ 1− s + 3
2eκ

(
2eκ

s− 3

)(s−3)/2

.

Thus, V (D, z) > 0, if
s + 3
2eκ

(
2eκ

s− 3

)(s−3)/2

< 1

assuming s > 2κ + 3. This occurs when s > 2κ + 2
√

2κ log κ + log κ + 9. This provides

an upper bound for the sifting limit in the case of sifting dimension κ.

2.4 Choice for Small Sifting Dimension

In the previous section, we made some estimates to give a clear asymptotic. We now

use better bounds to achieve good sifting limits for small sifting dimension. In equation

(2.3) we choose our variables yd as follows.

yd =





J−1F

(
log d

log Y

)
if 1 ≤ d ≤ Y

0 otherwise
(2.8)

where F is a general continuous, piecewise smooth function which will be picked to

optimize results for each sifting dimension. We define α = log z/ log Y = 2/(s− 1).
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We note that Selberg’s choice of yd from the previous section corresponds to:

F (t) =





1 if 0 ≤ t ≤ 1− α,

1
α(1− t) if 1− α < t ≤ 1.

(2.9)

Now, we have

J2V (D, z) =
∑

d|P (z)
d≤Y

h(d)F 2

(
log d

log Y

)

−
∑

d|P (z)

h(d)
∑

p|P (z)

g(p)
[
F

(
log d

log Y

)
− F

(
log pd

log Y

)]2

.

We now treat the sum over primes in the second line. We assume that F is a continuous

piecewise smooth function with (F (0) − F (u))2 ¿ u for 0 ≤ u ≤ 1. We now apply

Lemma (2.8.3) with

Φ
(

log p

log Y

)
=

[
F

(
log d

log Y

)
− F

(
log d

log Y
+

log p

log Y

)]2

.

Therefore, we have

∑

p|P (z)

g(p)
[
F

(
log d

log Y

)
− F

(
log pd

log Y

)]2

= κ

∫ α

0
(F (v)− F (v + u))2

du

u
+ O

(
log log z

log z

)

where α = log z/ log Y and v = log d/ log Y . We apply Lemma (2.8.4) with

Φ(v) = F 2(v)− κ

∫ α

0
(F (v)− F (u + v))2

du

u
.

For the contribution from the error term of O(log log z/ log z), we note that
∑

d|P (z) h(d) =

V (z)−1. Then we have

c−1V (z)J2V (D, z) =
∫ 1

0
F (v)2df(v/α)

−κ

∫ 1

0

∫ α

0
(F (v)− F (u + v))2

du

u
df(v/α)

+O

(
c−1 log log z

log z

)

where c−1 = eγκΓ(κ + 1), γ is Euler’s constant, f is given by (2.16) and

V (z) =
∏

p|P (z)

(1 + h(p))−1.
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Then we have

c−1V (z)J2V (D, z) =
∫ 1

0
F (v)2df(v/α)

−κ

∫ 1

0

∫ α

0
(F (v)− F (v + u))2

du

u
df(v/α)

+O

(
c−1 log log z

log z

)
.

Then

α
c V (z)J2V (D, z) =

∫ 1

0
F 2(v)f′(v/α)dv

−κ

∫ 1

0

∫ α

0
(F (v)− F (u + v))2

1
u

f′(v/α)dudv

+O

(
V (z)−1α

log log z

log z

)
.

Applying the condition that F (v) = 0 for v > 1, we have

α
c V (z)J2V (D, z) =

∫ 1

0
F 2(v)f′(v/α)dv

−κ

∫ 1

1−α

∫ 1−v

0
(F (v)− F (u + v))2

1
u

f′(v/α)dudv

−κ

∫ 1−α

0

∫ α

0
(F (v)− F (u + v))2

1
u

f′(v/α)dudv

−κ

∫ 1

1−α

∫ α

1−v
(F (v))2

1
u

f′(v/α)dudv

+O

(
V (z)−1α

log log z

log z

)
.

Definition 2.4.1. For α = 2/(s− 1), we define

TF (s) =
∫ 1

0
F 2(v)f′(v/α)dv

−κ

∫ 1

1−α

∫ 1−v

0
(F (v)− F (u + v))2

1
u

f′(v/α)dudv

−κ

∫ 1−α

0

∫ α

0
(F (v)− F (u + v))2

1
u

f′(v/α)dudv

−κ

∫ 1

1−α

∫ α

1−v
(F (v))2

1
u

f′(v/α)dudv.

With this definition, we have

Proposition 2.4.2. Let F be a continuous piecewise smooth function with (F (0) −
F (u))2 ¿ u for all 0 ≤ u ≤ 1 and F (v) = 0 for v > 1. Assume TF (s) as defined above

is positive. Then there is some z0 such that if z > z0, then V (D, z) is also positive.
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Proof. As z →∞, the error term above approaches zero and the main term is positive

as stated.

2.4.1 Choice of F (t)

We have V (D, z) positive if TF (s) is positive. Now we wish to examine different choices

for the function F . We would like to find the minimum of s such that TF (s) is positive

for some function F . To do so, we will look at various families of functions. We

recall that the requirement on F is that it is continuous, piecewise smooth and satisfies

(F (0) − F (u))2 ¿ u for all 0 ≤ u ≤ 1. For a particular function F , we let βκ(F )

be the minimum s such that TF (s) is positive in the case of sifting dimension κ. For

ease of notation we will denote βκ(F ) by βκ where F is understood. We note that

F (t) = (1− t)m + c for any m > 1/2 and constant c satisfies the conditions on F .

With the choice of F (t) = 1− t, we have

β5 < 10.76

β4 < 8.7499

β3.5 < 7.81.

With the choice of F (t) = (1− t)0.7 we have

β3 < 6.6125.

All of these sifting limits are smaller than the sifting limits given by the Diamond-

Halberstam sieve. We note that all computations were done using Maple math software.

We would also like to compare this result to the sieve given in section (2.3). To find

asymptotics of the sifting limit, Selberg chose yd corresponding to the choice of F (t)

given in (2.9). The sifting limit using F (t) = 1 − t is much better than this choice of

Selberg. For example for κ = 3, the function F (t) = 1− t gives us

β3 < 6.75

while Selberg’s choice gives us

β3 < 7.24.
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Although this choice of Selberg is not the best choice for small sifting dimension, his

choice does give us some insight into the problem. He chose a piecewise defined function

for F with a break at t = 1−α. We note that this is a natural choice due to the limits

of integration in the definition of TF (s). We now follow this example, but keep the

definition of F very general to allow us more freedom. We define

F (t) =





F1(t) if 0 ≤ t ≤ 1− α

F1(1− α)
F2(1− α)

F2(t) if 1− α < t ≤ 1
(2.10)

where F1(t) and F2(t) are continuous, piecewise monotonic functions such that (F1(0)−
F1(w))2 ¿ w and (F2(0) − F2(w))2 ¿ w for 0 ≤ w ≤ 1. Then F (t) is a continuous

piecewise monotonic function that satisfies (F (0) − F (w))2 ¿ w for 0 ≤ w ≤ 1. We

also note that the simple case of a single function F follows when F1 = F2. Using this

definition of F (t), we find that TF (s) is:

TF (s) =
∫ 1−α

0
F1(v)2f′(v/α)dv

+
F1(1− α)2

F2(1− α)2

∫ 1

1−α
F2(v)2f′(v/α)dv

−κ
F1(1− α)2

F2(1− α)2

∫ 1

1−α

∫ α

1−v
(F2(v))2

1
u

f′(v/α)dudv

−κ
F1(1− α)2

F2(1− α)2

∫ 1

1−α

∫ 1−v

0
(F2(v)− F2(u + v))2

1
u

f′(v/α)du

−κ

∫ 1−α

1−2α

∫ α

1−α−v

(
F1(v)− F1(1− α)

F2(1− α)
F2(u + v)

)2 1
u

f′(v/α)dudv

−κ

∫ 1−α

1−2α

∫ 1−α−v

0
(F1(v)− F1(u + v))2

1
u

f′(v/α)dudv

−κ

∫ 1−2α

0

∫ α

0
(F1(v)− F1(u + v))2

1
u

f′(v/α)dudv.

This does give us more improvements. For κ = 3, we chose F1(t) = (1− t)0.83 and

F2(t) = (1− t)0.57. With this choice, we have:

β3 < 6.576.

With the choice of F (t) = (1− t)0.7, we had

β3 < 6.6125.
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Another choice of F suggested by Selberg [5, p.482] is F (t) = 1− t + c where c is a

constant dependent on κ.

With c = 0.1, we have

β3 < 6.5206.

With c = 0.07, we have

β4 < 8.53.

By using the piecewise defined F with F1(t) = (1−t)0.86 and F2(t) = (1−t)0.98+0.1

we achieve

β3 < 6.51998.

which is an improvement over Selberg’s method presented in section (2.3).

2.5 Further Generality

In the previous section, we considered the sieve Λ−Λ+ where Λ+ was Selberg’s Λ2 sieve

and Λ− = (λ−q ) was given by λ−1 = 1, λ−p = −1 for p ≤ z, and λ−q = 0 otherwise. Now,

we would like to consider a more general lower bound sieve Λ−. We let Λ− = (λ−q )

supported on q ≤ z and we let Λ+ = Λ2 = (ρd)2 be Selberg’s Λ2 sieve in terms of ρd

with support d ≤
√

D/z = Y .

Proposition 2.5.1. With Λ = Λ−Λ2 = (λd), we have

V (D, z) =
∑

d≤D
d|P (z)

g(d)λd =
∑

q≤z
q|P (z)

λ−q g(q)
∑

d≤
√

D/z

d|P (z)

h(d)
(∑

c|q
µ(c)ycd

)2

(2.11)

where

yd =
µ(d)
h(d)

∑

m≡0(mod d)
m|P (z)

g(m)ρm. (2.12)
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Proof. We first write λd in terms of λ−q and ρd.

∑
n≤x an

∑
d|n

d|P (z)

λd =
∑

n≤x

an

( ∑

q|n
q|P (z)

λ−q

)( ∑

d|n
d|P (z)

ρd

)2

=
∑

n≤x

an

∑

q|n
q|P (z)

λ−q
∑

d1|n
d1|P (z)

ρd1

∑

d2|n
d2|P (z)

ρd2

=
∑

d1≤Y
d|P (z)

ρd1

∑

d2≤Y
d2|P (z)

ρd2

∑

q≤z
q|P (z)

λ−q
∑

n≡0(mod [q,d1,d2])

an.

Therefore,

V (D, z) =
∑

d≤√D
d|P (z)

g(d)λd

=
∑

d1≤Y
d1|P (z)

ρd1

∑

d2≤Y
d2|P (z)

ρd2

∑

q≤z
q|P (z)

λ−q g([d1, d2, q])

=
∑

q≤z
q|P (z)

λ−q g(q)
∑

d1≤Y
d1|P (z)

ρd1

∑

d2≤Y
d2|P (z)

ρd2g

(
[d1, d2, q]

q

)
.

Now we turn to the right-hand side of equation (2.11). We only need to show that

∑

d1≤Y
d1|P (z)

ρd1

∑

d2≤Y
d2|P (z)

ρd2g

(
[d1, d2, q]

q

)
=

∑

d≤Y
d|P (z)

h(d)
(∑

c|q
µ(c)ycd

)2

.

Applying the definition of ycd (2.12), we find

∑
d≤Y

d|P (z)

h(d)
(∑

c|q µ(c)ycd

)2

=
∑

d≤Y
d|P (z)

1
h(d)

(∑

c|q

1
h(c)

∑

m≡0(mod cd)
m|P (z)

g(m)ρm

)2

=
∑

d≤Y
d|P (z)

1
h(d)

( ∑

m≡0(mod d)
m|P (z)

g(m)ρm

∑

c|(q,m)

1
h(c)

)2

=
∑

d≤Y
d|P (z)

1
h(d)

( ∑

m≡0(mod d)
m|P (z)

g(m)ρm
1

g((q,m))

)2

.
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Now we expand the square.

∑

d≤Y
d|P (z)

h(d)
(∑

c|q
µ(c)ycd

)2

=
∑

d≤Y
d|P (z)

1
h(d)

∑

m≡0(mod d)
m|P (z)

g(m)ρm
1

g((q,m))

∑

n≡0(mod d)
n|P (z)

g(n)ρn
1

g((q, n))

=
∑

m≤Y
m|P (z)

ρm

∑

n≤Y
n|P (z)

ρn
g(m)g(n)

g((q, m))g((q, n))

∑

d|(m,n)

1
h(d)

=
∑

m≤Y
m|P (z)

ρm

∑

n≤Y
n|P (z)

ρn
g(m)g(n)

g((q, m))g((q, n))g((m,n))

=
∑

m≤Y
m|P (z)

ρm

∑

n≤Y
n|P (z)

ρng

(
[m,n, q]

q

)
.

Therefore,

V (D, z) =
∑

d≤√D
d|P (z)

g(d)λd =
∑

q≤z
q|P (z)

λ−q g(q)
∑

d≤Y
d|P (z)

h(d)
(∑

c|q
µ(c)ycd

)2

.

2.5.1 Choice of Λ−

We now consider specific choices for Λ−. Previously, we chose λ−1 = 1, λ−p = −1 if

p|P (z) and λ−d = 0 otherwise. We can instead make the following choice:

Lemma 2.5.2. Let λ1 = 1, λp = −1 for p|P (z), λp1p2 = 1 for p2 < p1 ≤ z1/3,

λp1p2p3 = −1 for p3 < p2 < p1 ≤ z1/3, and λd = 0 otherwise, where p1p2p3|P (z). Then

Λd = {λd} is a lower bound sieve of level z.

Proof. We first note that λ1 = 1. Also, the sieve is of level z because λd = 0 for d ≥ z.

We have
∑

d|n
d|P (z)

λd ≤
∑

d|n∗
d|P (z)

λd
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where n∗ is the (squarefree) part of n with all prime divisors ≤ z1/3 since the rest

contributes a non-positive amount. Let n∗ = p1 · · · pm. Then

∑

d|n∗
λd = 1−

(
m

1

)
+

(
m

2

)
−

(
m

3

)
= −

(
m− 1

3

)
≤ 0.

The last equality follows from the identities
(

m

3

)
=

(
m− 1

3

)
+

(
m− 1

2

)
, and

(
m

2

)
=

(
m− 1

2

)
+

(
m− 1

1

)
.

We let Y =
√

D/z. Then according to Proposition (2.5.1) and Lemma (2.5.2), we

have

V (D, z) =
∑

d≤Y
d|P (z)

h(d)y2
d

−
∑

p1≤z
p1|P (z)

g(p1)
∑

d≤Y
d|P (z)

h(d)(yd − yp1d)2

+
∑

p2<p1≤z1/3

p1p2|P (z)

g(p1)g(p2)
∑

d≤Y
d|P (z)

h(d)
(

yd − yp1d − yp2d + yp1p2d

)2

−
∑

p3<p2<p1≤z1/3

p1p2p3|P (z)

g(p1)g(p2)g(p3)
∑

d≤Y
d|P (z)

h(d)




yd − yp1p2p3d

−yp1d − yp2d − yp3d

+yp1p2d + yp1p3d + yp2p3d




2

.

The above is a logical choice of lower bound sieve. However, Selberg presented another

choice of lower bound sieve that will give more flexibility and in fact better results.

Lemma 2.5.3. Let T be a positive integer. Let λ1 = 1, λp = −1 for p|P (z), λp1p2 =

(4T − 2)/T (T + 1) for p2 < p1 ≤ z1/3, λp1p2p3 = −6/T (T + 1) for p3 < p2 < p1 ≤ z1/3

and λd = 0 otherwise, where p1p2p3|P (z). Then Λd = {λd} is a lower bound sieve of

level z.

Proof. We first note that λ1 = 1. Also, the sieve is of level z because λd = 0 for d ≥ z.

We have
∑

d|n
d|P (z)

λd ≤
∑

d|n∗
d|P (z)

λd
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where n∗ is the (squarefree) part of n with all prime divisors ≤ z1/3 since the rest

contributes a non-positive amount. Let n∗ = p1 · · · pm.

∑
d|n∗

d|P (z)

λd = 1−
(

m

1

)
+

4T − 2
T (T + 1)

(
m

2

)
− 6

T (T + 1)

(
m

3

)

= −(m− 1)(T −m)(T − (m− 1))
T (T + 1)

≤ 0

since T is an integer and m ≥ 1. We do note that if T is not an integer, this condition

does not hold.

With this choice of Λ− for some integer T , we have

V (D, z)

=
∑

d≤Y
d|P (z)

h(d)y2
d

−
∑

p1≤z
p1|P (z)

g(p1)
∑

d≤Y
d|P (z)

h(d)(yd − yp1d)2

+
4T − 2

T (T + 1)

∑

p2<p1≤z1/3

p1p2|P (z)

g(p1)g(p2)
∑

d≤Y
d|P (z)

h(d)(yd − yp1d − yp2d + yp1p2d)2

− 6
T (T + 1)

∑

p3<p2<p1≤z1/3

p1p2p3|P (z)

g(p1)g(p2)g(p3)
∑

d≤Y
d|P (z)

h(d)




yd − yp1p2p3d + yp1p2d

−yp1d − yp2d − yp3d

+yp1p3d + yp2p3d




2

.

2.5.2 Lower Bound Sieve with Three Primes

In this section, we present the sifting limit arguments for the lower bound sieve Λ =

Λ−Λ2 where Λ− is given by λ1 = 1, λp = −1 for p|P (z), λp1p2 = (4T − 2)/T (T + 1)

for p2 < p1 ≤ z1/3 and λp1p2p3 = −6/T (T + 1) for p3 < p2 < p1 ≤ z1/3, and λd = 0

otherwise, where p1p2p3|P (z). We again make the following choice of yd.

yd =





J−1F

(
log d

log Y

)
if 1 ≤ d ≤ Y

0 otherwise
(2.13)

where Y =
√

D/z.
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To make notation easier, we introduce some new variables. We let v = log d/ log Y ,

u = log p1/ log Y , w = log p2/ log Y and x = log p3/ log Y . With this notation, we see

that

J2V (D, z) =
∑

d≤Y
d|P (z)

h(d)F (v)2

−
∑

p1≤z

g(p1)
∑

d≤Y

h(d) (F (v)− F (u + v))2

+
4T − 2

T (T + 1)

∑

p2<p1≤z1/3

g(p1)g(p2)
∑

d≤Y

h(d)
(

F (v) + F (u + w + v)

−F (u + v)− F (w + v)

)2

− 6
T (T + 1)

∑

p3<p2<p1≤z1/3

g(p1)g(p2)g(p3)
∑

d≤Y




F (v)− F (u + v)

−F (w + v)− F (x + v)

+F (u + w + v)

+F (u + x + v)

+F (w + x + v)

−F (u + w + x + v)




2

.

We now apply the same arguments as in section (2.4) to this expression in order

to analyze the sums. We employ the notation that α = log z/ log Y . We also let

β = α/3 = log z1/3/ log Y , so that x < w < u ≤ β in the second and third sums.

Finally, we note that d ≤ Y means v ≤ 1. Therefore,

α

c
V (z)J2V (D, z)

=
∫ 1

0
F (v)2f′(v/α)dv

−κ

∫ 1

0

∫ α

0
(F (v)− F (u + v))2f′(v/α)dudv

+κ2 4T − 2
T (T + 1)

∫ 1

0

∫ β

0

∫ β

w

(
F (v) + F (u + w + v)

−F (u + v)− F (w + v)

)2

f′
(

v

α

)
du

u

dw

w
dv

−κ3 6
T (T + 1)

∫ 1

0

∫ β

0

∫ β

x

∫ β

w




F (v)− F (u + w + x + v)

−F (u + v) + F (u + w + v)

−F (w + v) + F (u + x + v)

−F (x + v) + F (w + x + v)




2

f′
(

v

α

)
du

u

dw

w

dx

x
dv

+O

(
α

c

log log z

log z

)
.

We again define TF (s) to be the right-hand side of the above expression without the

error term. Then we have V (D, z) > 0 for large enough z if s is chosen such that

TF (s) > 0.

We now turn to the analysis of TF (s).
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2.5.3 Analysis of TF (s)

This section describes the computation of TF (s). The computations are tedious and

long, so we only include highlights of the computations. The results from these com-

putations can be found in the next section.

The first step in computing TF (s) is to apply the condition that F (v) = 0 for v > 1.

We make the following definitions:

B = {0 ≤ v ≤ 1, 0 ≤ u ≤ α}

B1 = {(u, v) ∈ B : u + v ≤ 1}

B2 = {(u, v) ∈ B : u + v > 1}

C = {0 ≤ v ≤ 1, 0 ≤ w ≤ β, w ≤ u ≤ β}

C1 = {(u,w, v) ∈ C : u + v + w ≤ 1}

C2 = {(u,w, v) ∈ C : u + v + w ≥ 1, u + v ≤ 1}

C3 = {(u,w, v) ∈ C : u + v ≥ 1, w + v ≤ 1}

C4 = {(u,w, v) ∈ C : w + v ≥ 1}

D = {0 ≤ v ≤ 1, 0 ≤ x ≤ β, x ≤ w ≤ β, w ≤ u ≤ β}

D1 = {(u,w, x, v) ∈ D : x + v ≥ 1}

D2 = {(u,w, x, v) ∈ D : x + v ≤ 1, w + v ≥ 1}

D3 = {(u,w, x, v) ∈ D : w + v ≤ 1, u + v ≥ 1, x + w + v ≥ 1}

D4 = {(u,w, x, v) ∈ D : x + w + v ≤ 1, u + v ≥ 1, x + w ≤ u}

D5 = {(u,w, x, v) ∈ D : u + v ≤ 1, x + w + v ≥ 1, x + w ≥ u}

D6 = {(u,w, x, v) ∈ D : u + v ≤ 1, x + w + v ≤ 1, x + u + v ≥ 1}

D7 = {(u,w, x, v) ∈ D : x + u + v ≤ 1, w + u + v ≥ 1}

D8 = {(u,w, x, v) ∈ D : w + u + v ≤ 1, x + w + u + v ≥ 1}

D9 = {(u,w, x, v) ∈ D : x + w + u + v ≤ 1}.

Then we have

TF (s) +TA − κTB + κ2 4T − 2
T (T + 1)

TC − κ3 6
T (T + 1)

TD
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where

TA =
∫ 1

0
F (v)2f′

(
v

α

)
dv

TB =
∫

B1

(F (v)− F (u + v))2f′
(

v

α

)
du

u
dv

+
∫

B2

F (v)2f′
(

v

α

)
du

u
dv

TC =
∫

C1

(F (v)−F (u+v)−F (w+v)+F (u+w+v))f′
(

v

α

)
du

u

dw

w
dv

+
∫

C2

(F (v)−F (u+v)−F (w+v))2f′
(

v

α

)
du

u

dw

w
dv

+
∫

C3

(F (v)−F (w+v))2f′
(

v

α

)
du

u

dw

w
dv

+
∫

C4

F (v)2f′
(

v

α

)
du

u

dw

w
dv

TD =
∫

D1

F (v)2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D2

(F (v)−F (x+v))2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D3

(F (v)−F (x+v)−F (w+v))2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D4

(F (v)−F (x+v)−F (w+v)+F (x+w+v))2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D5

(F (v)−F (x+v)−F (w+v)−F (u+v))2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D6

(F (v)−F (x+v)−F (w+v)−F (u+v)+F (x+w+v))2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D7

(
F (v)− F (x + v)− F (w + v)− F (u + v)

+F (x + w + v) + F (x + u + v)

)2

f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D8

(
F (v)− F (x + v)− F (w + v)− F (u + v)

+F (x + w + v) + F (x + u + v) + F (w + u + v)

)2

f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D9

(
F (v)− F (x + v)− F (w + v)− F (u + v) + F (x + w + v)

+F (x + u + v) + F (w + u + v)− F (x + w + u + v)

)2

f′
(

v

α

)
du

u

dw

w

dx

x
dv.

Now we can simply use the definition of F (t) on the interval 0 ≤ t ≤ 1 instead of a

piecewise definition. The next step is to write the sets Bi, Ci and Di as unions of sets

such that the variables are in intervals. For example,

B1 = {1− α ≤ v ≤ 1, 0 ≤ w ≤ 1− v} ∪ {0 ≤ v ≤ 1− α, 0 ≤ w ≤ α}.
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We do not include the decomposition of each set here, since the decompositions are

quite complicated. For example, D8 decomposes into 22 such sets.

Ideally, once we have the decompositions we would like to be able to input TF (s)

into a math software program to compute its value and leave the choice of F (t) open.

Unfortunately, the integrals over the Ci and Di are too difficult for typical math software

to handle. Hence, we now make a general choice of F (t) = 1−t+c where c is a constant

to be chosen later. With this choice of F , we can now simplify some of the integrals by

hand using changes of variables and by changing the order of integration. The math

software does not use these techniques. We simplify the integrals as much as necessary

in order for the software to be able to process the rest. In some cases, we estimate some

of the integrals in order to make computation time feasible. In two cases, we use the

estimate that − ln (1− u) ≤ (4 ln 2− 2)u2 + u for u ∈ [0, 1/2].

We note that our choice of F (t) = 1 − t + c simplifies some of our computations

quite a bit. For example, over C1, F (v)−F (u+v)−F (w+v)+F (u+w+v) = 0. Over

D4, F (v)−F (x+v)−F (w+v)+F (x+w+v) = 0. Finally, over D9, F (v)−F (x+v)−
F (w+v)−F (u+v)+F (x+w+v)+F (x+u+v)+F (w+u+v)−F (x+w+u+v) = 0.

Applying our definition of F (t), we have

TA =
∫ 1

0
(1 + c− v)2f′

(
v

α

)
dv

TB =
∫

B1

uf′
(

v

α

)
dudv

+
∫

B2

(1 + c− v)2f′
(

v

α

)
du

u
dv

TC =
∫

C2

(1 + c− u− v − w)2f′
(

v

α

)
du

u

dw

w
dv

+
∫

C3

wf′
(

v

α

)
du

u
dwdv

+
∫

C4

(1 + c− v)2f′
(

v

α

)
du

u

dw

w
dv
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TD =
∫

D1

(1 + c− v)2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D2

xf′
(

v

α

)
du

u

dw

w
dxdv

+
∫

D3

(1 + c− x− w − v)2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D5

(2 + 2c− 2v − x− w − u)2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D6

(1 + c− v − u)2f′
(

v

α

)
du

u

dw

w

dx

x
dv

+
∫

D7

xf′
(

v

α

)
du

u

dw

w
dxdv

+
∫

D8

(1 + c− v − u− w − x)2f′
(

v

α

)
du

u

dw

w

dx

x
dv.

Once we have the integrals in a simple enough form, we use Maple software to numeri-

cally integrate the functions with error less than 10−10. The results of these computa-

tions are in the next section.

2.6 New Sifting Limit Results

Let Λ1 = Λ2Λ− where Λ = {ρd} and Λ− = {λq}. We define λq by λ1 = 1, λp = −1

for p|P (z), λp1p2 = (4T − 2)/T (T + 1) for p2 < p1 ≤ z1/3, λp1p2p3 = −6/T (T + 1) for

p3 < p2 < p1 ≤ z1/3 and λd = 0 otherwise, where T is an integer to be determined later

and p1p2p3|P (z).

In the notation of the previous sections, with the choice of F (t) = 1− t+ c, we have

the following results:

For κ = 2, with c = 0.2214971799 and T = 16, we have

β2 < 4.45.

For κ = 2.5 with c = 0.17 and T = 19, we have

β2.5 < 5.455.

For κ = 3 with c = 0.13 and T = 24 we have

β3 < 6.458.
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For κ = 4 with c = 0.11 and T = 31 we have

β4 < 8.47.

The sieve of Diamond and Halberstam gives a smaller sifting limit for κ = 2 and

κ = 2.5. However, our sifting limit is very close to that of Diamond and Halberstam for

κ = 2.5. In addition, the sifting limits for κ = 3, 4 are much smaller than those given

by the Diamond-Halberstam sieve.

2.7 Analysis of Choice of Sieve

There are many choices for a lower bound sieve. In the previous sections, we have made

the choice of Λ1 = Λ−Λ2, a convolution of a lower bound sieve and Selberg’s Λ2 upper

bound sieve. Our original choice of Λ− was λ1 = 1, λp = −1 for p|P (z) and λd = 0

otherwise. This is a pretty weak lower bound sieve and yet our results have been very

good. This is due to the power of Selberg’s Λ2 sieve.

For example, with this choice of Λ− and Λ = {ρd} we have

S(A, x, z) =
∑

n≤x

an

(
1−

∑

p|n
p|P (z)

1
)( ∑

d|n
d|P (z)

ρd

)2

. (2.14)

We would like S(A, x, z) to be a good estimate for the number of n ≤ x such that

(n, P (z)) = 1. If n does not have any prime factors less than z, then an is counted with

weight 1. If n has one prime factor less than z then it is counted with weight zero.

The sieve comes into play when n has more than one prime factor less than z. In such

a case, the lower bound sieve Λ− gives a negative weight to an. However, when n is

highly composite, the upper bound sieve Λ2 gives a weight close to zero. Therefore, the

overall weight for an is negative but small. Therefore, the crudeness of the lower bound

sieve Λ− is counterbalanced by the power of the upper bound sieve Λ2.

When we changed our Λ− to also address n with up to three prime factors, we saw

an improvement in the sieve. However, the improvement was relatively small, so it is

likely that further improvements to Λ− will not have a noticeable effect on the sifting

limit results. The tradeoff between better results and computational difficulty seems to

make a Λ− addressing five prime factors inadvisable.
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It is possible that a better choice of Λ− that still address three prime factors could

be used. So far, we have used the choice of Λ− with λ1 = 1, λp = −1 for p|P (z), λp1p2 =

(4T − 2)/T (T + 1) for p2 < p1 ≤ z1/3, λp1p2p3 = −6/T (T + 1) for p3 < p2 < p1 ≤ z1/3

and λd = 0, where T is an integer and p1p2p3|P (z).

This choice of Λ− makes computations feasible. However, it does not address the

case when n has two or three prime factors with one of the factors p > z1/3. This

accounts for a small portion of n, so we do not lose much. We can take this case into

account though by choosing Λ− with λ1 = 1, λp = −1 for p|P (z), λp1p2 = f1(T ) for

p2 < p1 ≤ z such that p2
2p1 ≤ z and λp1p2p3 = −f2(T ) for p3 < p2 < p1 ≤ z with

p2
2p1 ≤ z, where p1p2p3|P (z) and f1(T ), f2(T ) are some functions that make Λ− a lower

bound sieve of level z.

2.8 Appendix

In this appendix, we give some useful general lemmas for sifting limit calculations.

These lemmas are referenced in the previous chapter. Throughout this appendix, we

let κ > 0 and let g(p) be a multiplicative function with the three following properties.

1.
∑

p≤x g(p) log p = κ log x + δ(x) where δ(x) is bounded for x ≥ 2.

2.
∏

w≤p≤z (1 + |g(p)|) ¿
(

log z
log w

)κ
if z > w ≥ 2.

3.
∑

p g(p)2 log p < ∞.

We note that these three conditions are satisfied by the multiplicative function g(d)

that gives the density of the masses an attached to n ≡ 0 mod d in sifting theory.

The three conditions are also satisfied by the multiplicative function h(d) defined by

h(p) = g(p)/(1− g(p)).

Lemma 2.8.1. We have

∑

p≤x

g(p) = κ log log x + b + O

(
1

log x

)

where b is a constant given in the proof.
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Proof. We first write
∑

p≤x g(p) log p = L(x) = κ log x+R(x) with R(x) ¿ 1. We then

have

∑
p≤x g(p) =

∫ x

2−
(log u)−1dL(u)

= κ

∫ x

2−

1
log u

d log u +
∫ x

2−

dR(u)
log u

= κ

∫ log x

log 2−

du

u
+ R(u) log u|x2− +

∫ x

2−

R(u)
u(log u)2

du

= κ log log x− κ log log 2 +
R(x)
log x

+ 1

+
∫ ∞

2

R(u)
u(log u)2

du−
∫ ∞

x

R(u)
u(log u)2

du

where the 1 term appears because R(2) = − log 2/2. We note that the third term

R(x)/ log x ¿ 1/ log x. Additionally, the final term is O(1/ log x). Therefore,

∑

p≤x

g(p) = κ log log x + b + O(1/ log x)

where

b = 1− κ log log 2 +
∫ ∞

2

R(u)
u(log u)2

du

We now give a general theorem from Opera de Cribro [2, Theorem A.7]

Theorem 2.8.2.

∑

d|P (z)
d≤Y

g(d) = W (z)
{
cf(log Y/ log z) + O((log Y )−1)

}
(2.15)

where f is the solution to the differential difference equation:




f(t) = tκ if 0 < t ≤ 1,

tf′(t) = κ(f(t)− f(t− 1)) if t > 1,
(2.16)

W (z) =
∏
p<z

(1 + g(p)),

and

c = e−γκΓ(κ + 1)−1.

With the above theorem, we can prove the following general lemma:
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Lemma 2.8.3. Let Φ(w) be a continuous piecewise smooth function with Φ(w) = O(w).

Let α = log z/ log Y . Then

∑

p≤z

g(p)Φ
(

log p

log Y

)
= κ

∫ α

0
Φ(w)

dw

w
+ O

(
log log z

log z

)
.

Proof.

S =
∑

p≤z

g(p)Φ
(

log p

log Y

)

=
∫ z

1
Φ

(
log w

log Y

)
d

∑

p≤w

g(p)

=
∫ z

1
Φ

(
log w

log Y

)
d log log wdw +

∫ z

1
Φ

(
log w

log Y

)
dR(w)

where R(w) ¿ 1/ log 2w. By partial summation,

S =
∫ z

1
Φ

(
log w

log Y

)
d log log wdw

+O

(
Φ

(
log w

log Y

)
R(w)|z1 +

∫ z

1
R(w)d

∣∣∣∣Φ′
(

log w

log Y

)∣∣∣∣
)

.

We note that since Φ(u) ¿ u, we have Φ′(log w/ log Y ) ¿ 1/(w log Y )

S =
∫ α

0
Φ(w)

1
w

dw + O

(
(log Y )−1 +

∫ z

1

dw

w log 2w

)

=
∫ α

0
Φ(w)

1
w

dw + O

(
log log z

log z

)
.

We need one more final lemma:

Lemma 2.8.4. Let Φ(v) be a continuous, piecewise smooth function for 0 ≤ v ≤ 1 with

Φ(v) = Φ(0) + O(v). Then

c−1W (z)−1
∑

d|P (z)
1≤d≤Y

g(d)Φ
(

log d
log Y

)
=

∫ Y

1
Φ

(
log w

log Y

)
df

(
log w

log z

)

+O

(
c−1 log log Y

log Y

)

where c,W (z), and f are as in Theorem (2.8.2).
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Proof. Define Φ1(v) = Φ(v) − Φ(0). Then Φ1(v) = O(v). Suppose that the result is

true for Φ1(v). Then

S =
∑

d|P (z)
1≤d≤Y

g(d)Φ
(

log d

log Y

)

= Φ(0)
∑

d|P (z)
1≤d≤Y

g(d) +
∑

d|P (z)
1≤d≤Y

g(d)Φ1(v).

From Theorem (2.8.2), we have

∑

d≤Y
d|P (z)

g(d) = cW (z)f
(

log Y

log z

)
+ O

(
W (z)

1
log 2Y

)
.

Then

S = cW (z)f
(

log Y

log z

)
Φ(0) + cW (z)

∫ Y

1
Φ1

(
log w

log Y

)
df

(
log w

log z

)

+O

(
W (z)

log log Y

log Y

)

= cW (z)
∫ Y

1
Φ(0)df

(
log w

log z

)
+ cW (z)

∫ Y

1
Φ1

(
log w

log Y

)
df

(
log w

log z

)

+O

(
W (z)

log log Y

log Y

)

= cW (z)
∫ Y

1
Φ1

(
log w

log Y

)
df

(
log w

log z

)
+ O

(
W (z)

log log Y

log Y

)
.

We have now reduced the question to Φ(v) with Φ(v) = O(v).

S =
∑

d|P (z)
1≤d≤Y

g(d)Φ
(

log d

log Y

)

=
∫ Y

1
Φ

(
log w

log Y

)
d

∑

d|P (z)
d≤w

g(d)

= cW (z)
∫ Y

1
Φ

(
log w

log Y

)
df

(
log w

log z

)

+O

(
W (z)

Φ(1)
log 2Y

+ W (z)
∫ Y

1

1
log 2w

∣∣∣∣dΦ
(

log w

log Y

)∣∣∣∣
)

.
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We note that Φ(v) = O(v) and Φ(v) piecewise smooth gives Φ′(v) ¿ 1, so

S = cW (z)
∫ Y

1
Φ

(
log w

log Y

)
df

(
log w

log z

)

+O

(
W (z)
log Y

+
W (z)
log Y

∫ Y

1

dw

w log 2w

)

= cW (z)
∫ 1

0
Φ(v)df

( v

α

)
+ O

(
W (z)

log log Y

log Y

)
.
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Chapter 3

Brun-Titchmarsh Theorem

3.1 Introduction

A historic problem in analytic number theory is to bound the number of primes in

an interval of a fixed length. We define π(x) to be the number of primes p ≤ x. If

we wish to bound the number of primes in an interval of length y, we want to bound

π(x+y)−π(x). We want to find some function F (y) that is independent of x such that

π(x + y)− π(x) < F (y)

for all x, when y is sufficiently large. A theorem with a bound of this type is called

a Brun-Titchmarsh Theorem named for Viggo Brun and Edward Charles Titchmarsh.

Brun first established a bound of this type in 1915 with

F (y) =
c1y

log y

with a constant c1 > 2.

Then Titschmarsh established a bound for primes in arithmetic progressions. We

define π(x; a, k) to be the number of primes p ≤ x such that p is congruent to a modulo

k. Then we want a function G(y, k) independent of x and a such that

π(x + y; a, k)− π(x; a, k) < G(y, k)

for y sufficiently large. Titchmarsh proved this for

G(y, k) =
c2y

φ(k) log (y/k)

with a constant c2 > 2, where φ is Euler’s totient function.
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Various improvements of these bounds have been made over the years. Our focus is

on Selberg’s improvement using sieve methods. In section 22 of his Lectures on Sieves

[4], Selberg established the following two bounds:

π(x + y)− π(x) <
2y

log y + 2.8

π(x + y; a, k)− π(x; a, k) <
2y

φ(k)
(

log (y/k) + 2.8
) .

Following Selberg’s notes, we are able to modify his constructions and create a computer

program to establish the improved bounds:

π(x + y)− π(x) <
2y

log y + 2.8168

π(x + y; a, k)− π(x; a, k) <
2y

φ(k)
(

log (y/k) + 2.8168
) .

These bounds will be proven using sieve methods in the next section.

3.2 Improvement of Brun-Titchmarsh Theorem

3.2.1 Preliminaries

In order to establish the bounds we desire, we first introduce a function θq, following

Selberg’s work.

Definition 3.2.1. For q prime, we define Q to be the product of all primes p ≤ q.

Then we define

θq = max
a,x

∣∣∣∣x
∏

p≤q

(
1− 1

p

)
−

∑

a≤n≤a+x
(n,Q)=1

1
∣∣∣∣.

We note that the maximum exists by periodicity. We also note that
∏

p≤q (1− p−1) =

φ(Q)/Q.

In his Lectures on Sieves [4, Section 22], Selberg proved the following Lemma re-

garding θq:

Lemma 3.2.2 (Selberg). With θq as defined in (3.2.1), we have that θq grows faster

than any power of q. Also θ1 = 1, θ2 = 1, θ3 = 4/3, θ5 = 28/15 and θ7 = 106/35.
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We can extend this result further by computing values of θq for larger q. Selberg

computed the above values, and with a simple computer program we compute the

following values.

Lemma 3.2.3 (B.). With θq as defined in (3.2.1), we have that θ1 = 1, θ2 = 1,

θ3 = 4/3, θ5 = 28/15, θ7 = 106/35, θ11 = 388/77, θ13 = 7102/1001, θ17 ≈ 10.87759

and θ19 ≥ 16.96824.

Proof. To determine θq we may assume 0 ≤ a ≤ Q and 0 ≤ x ≤ Q due to the

periodicity mod Q. Therefore, θq can always be found by inspecting a finite number of

cases. In this way, we are able to compute the values in the lemma.

For the proof of the growth of θq, we refer the reader to section 22 of Selberg’s

Lectures on Sieves [4, Lemma].

Selberg then established the following technical lemma:

Lemma 3.2.4 (Selberg). Let σ(ρ) denote the sum of the divisors of ρ. Let φ(ρ) be

Euler’s function and once again let Q be the product of all primes p ≤ q. Then for

z > 1, we write:

∑
1 =

∑

σ(ρ)≤z
(ρ,Q)=1

µ2(ρ)
σ(ρ)
φ(ρ)

(
1− σ(ρ)

z

)
,

∑
2 =

∑

σ(ρ)≤z
(ρ,Q)=1

µ2(ρ)
1

φ(ρ)

(
1− σ(ρ)

z

)

∑
3 =

∑

σ(ρ)≤z
(ρ,Q)=1

µ2(ρ)
1

φ(ρ)

(
1− σ(ρ)

z

)2

.

Then

∑
1 =

z

2

∏

p≤q

(
1− 1

p

)
+ O

(
ze−

√
log z

)
,

∑
2 =

∏

p≤q

(
1− 1

p

) {
log z + γ + κ1 + κ′(q)− 1

}
+ O

(
e−
√

log z

)

∑
3 =

∏

p≤q

(
1− 1

p

){
log z + γ + κ1 + κ′(q)− 3

2

}
+ O

(
e−
√

log z

)
.
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Here γ is Euler’s constant, while

κ1 =
∑

p

(
log p

p− 1
− log (p + 1)

p

)

κ′(q) =
∑

p≤q

log (p + 1)
p

.

For a proof of this lemma, the reader is again referred to Section 22 of Selberg’s

Lectures on Sieves [4]. In the next section, we will use these preliminaries to prove the

Brun-Titchmarsh Theorem.

3.2.2 Brun-Titchmarsh Theorem

We now wish to apply the preliminaries established in the previous section to another

problem. Consider the interval Ix = [b, b + x]. We exclude one residue class for each

prime less than z. We then look for an upper bound of the number of integers left. We

choose z just large enough to get the smallest possible upper bound that the method

allows. Without loss of generality, we can assume that the residue class is always

represented by zero. Then we look at the case where we are excluding all n which are

divisible by p for p ≤ z. We assume that we have already excluded the n that are

divisible by p ≤ q. We then apply a Λ2 sieve with P , the product of all primes p with

q +1 ≤ p ≤ z and Λ = (ρd). We also recall that φ(Q) is the product of all primes p ≤ q.

Using Lemma (3.2.2), we find

∑

b≤n≤b+x
(n,P )=1

1 ≤ φ(Q)
Q

x
∑

d1,d2

(d1, d2)
d1d2

ρd1ρd2 + θq

(∑

d

|ρd|
)2

. (3.1)

We now introduce new variables yρ according to the equation

∑

d≡0(modρ)

ρd

d
= µ(ρ)

yρ

φ(ρ)
,

which implies
∑

ρ≡0(modd)

yρ

φ(ρ)
= µ(d)

ρd

d
.

The first term of (3.1) in terms of these new variables is then

φ(Q)
Q

x
∑

d1,d2

(d1, d2)
d1d2

ρd1ρd2 =
φ(Q)

Q
x

∑

(ρ,Q)=1

y2
ρ

φ(ρ)
.



39

In addition, we have the bound

∑

d

|ρd| ≤
∑

(ρ,Q)=1

σ(ρ)
φ(ρ)

|yρ|.

From the normalization of ρ1 = 1, we have the side condition:

∑

(ρ,Q)=1

yρ

φ(ρ)
= 1. (3.2)

We lose nothing by assuming that the yρ ≥ 0, so we may write the upper bound as

∑

a≤n≤a+x
(n,P )=1

1 ≤

φ(Q)
Q

x
∑

(ρ,Q)=1

y2
ρ

φ(ρ)
+ θq

( ∑

(ρ,Q)=1

σ(ρ)
φ(ρ)

yρ

)2

( ∑

(ρ,Q)=1

yρ

φ(ρ)

)2 (3.3)

and we drop the condition (3.2).

We now wish to choose yρ ≥ 0 to minimize the expression (3.3) with z chosen as

large as possible. We recall that P is the product of all primes p with q + 1 ≤ p ≤ z.

We follow Selberg’s approach and choose

yρ =





1− σ(ρ)
z

if σ(ρ) < z,

0 if σ(ρ) ≥ z.

Then the upper bound (3.3) becomes

∑

a≤n≤a+x
(n,P )=1

1 ≤
φ(Q)

Q
x

∑
3 +θq

(∑
1

)2

(∑
2

)2 ,

where
∑

1,
∑

2 and
∑

3 are defined in Lemma (3.2.4). We then use the product ex-

pansions given in the same lemma and write z = eu√x, where u will be chosen later,

independent of x. After some manipulation, we obtain the upper bound

2x

log x + 2γ + 2κ1 + 2κ′(q)− 1 + 2u− θq

2
e2u + O

(
e−

1
2

√
log x

) .

The optimal choice of u is given by

e2u =
2
θq

.
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With this choice of u, we have the upper bound

2x

log x + 2γ + 2κ1 + 2κ′(q)− 2 + log
2
θq

+ O

(
e−

1
2

√
log x

) .

We can now choose q so that

2κ′(q) + log
2
θq

is maximized. We know there is an optimal choice because by the Lemma (3.2.2), this

expression tends to negative infinity as q grows without bound. By maximizing this

expression, we maximize the constant denominator term

f(q) = 2γ + 2κ1 + 2κ′(q)− 2 + log
2
θq

.

We approximate κ1 by restricting its defining sum to the primes less than 300. We

note that κ1 is a sum of positive terms, so we have

κ1 ≥
∑

p≤300

(
log p

p− 1
− log (p + 1)

p

)
≥ 0.368582.

We now calculate the values of f(q) for q ≤ 19. We have the following values:

q f(q)

1 0.584743117

2 1.683355406

3 2.319869574

5 2.700101125

7 2.810290556

11 2.75298288

13 2.816814684

17 2.729530369

19 < 2.600232097

We see that the maximum of f(q) occurs for q = 13. In Selberg’s lectures, he chose

q = 7 because that was the highest value he calculated. By calculating larger values of

θq, we were able to find a larger value of f(q).
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We find that

z =
√

e2ux =
√

2x

θ13
=

√
1001
3551

x <
√

x.

Thus if we exclude one residue class from Ix for each prime p <
√

x, there remain

at most
2x

log x + 2.8168

numbers if x > x0 for some x0. We know simply that such an x0 exists. Finding the

value x0 is a much more difficult problem without much benefit.

Theorem 3.2.5. We have

π(x + y)− π(x) <
2y

log y + 2.8168
(3.4)

for y > x0 and all x > 0. Similarly for (a, k) = 1, if π(x; a, k) denotes the number of

primes p ≤ x which are congruent to a modulo k, we have

π(x + y; a, k)− π(x; a, k) <
2y

φ(k)
(
log (y/k) + 2.8168

) , (3.5)

for y/k > x0.

Proof. Equation (3.4) follows easily. For equation (3.5), we note that sifting the section

of the arithmetic progression that lies in an interval of length y is equivalent to sifting an

interval of length y/k. We also note that the sifting range for the arithmetic progression

does not include the primes dividing k.

Therefore, we have an improvement of Selberg’s version of the Brun-Titchmarsh

theorem.
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Chapter 4

Large Sieve Inequality

4.1 Introduction

Large sieve inequalities are a very general problem in analytic number theory. The

topic was first introduced to address the problem of least quadratic non-residues by

Linnik. The problem has changed shape quite a bit since then. In general, we consider

a finite set X of “harmonics” that will solve some interesting equation. For each element

x ∈ X , we associate a sequence (x(n)). In a way, these are “Fourier coefficients.” The

large sieve problem then is to find a constant C = C(X , N) ≥ 0 such that the following

“large sieve inequality” holds:

∑

x∈X

∣∣∣∣
∑

n≤N

anx(n)
∣∣∣∣
2

≤ C(X , N)‖a‖2
2 (4.1)

for any complex numbers an, where ‖a‖2 is the L2 norm of (an). That is, ‖a‖2
2 =

∑ |an|2.
There are two main forms of the large sieve inequality, the additive and the multi-

plicative. In the additive large sieve inequality, the harmonics are additive characters

of Z with x(n) = e(αn) for some α ∈ R, where e(x) = e2πix. We will use the notation

e(x) throughout this chapter. In the multiplicative large sieve inequality, we take the

harmonics to be Dirichlet characters. We only address the additive case here.

For the additive large sieve inequality, we are interested in estimating the trigono-

metric polynomials

S(α) =
∑

n

ane(αn) (4.2)

where the support of an is M < n ≤ M + N for some M . For y ∈ R, we define ‖y‖ to

be the distance to the nearest integer. If there is some δ > 0 so that

‖αr − αs‖ > δ, if r 6= s
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then the αr are well-spaced. In this case, the number of distinct αr is less than or equal

to 1 + δ−1. We say that {αr} is a set of δ-spaced points. Selberg, Montgomery and

Vaughn proved the following theorem independently.

Theorem 4.1.1. For any set of δ-spaced points αr ∈ R/Z and any complex numbers

an with M < n ≤ M + N , where 0 < δ ≤ 1
2 and N ≥ 1 an integer, we have

∑
r

∣∣∣∣
∑

M<n≤M+N

ane(αrn)
∣∣∣∣
2

≤
(

δ−1 + N − 1
)
‖a‖2

2. (4.3)

We now look at a special case of the large sieve inequality. We take αr to be rationals

a/q with 1 ≤ q ≤ Q and (a, q) = 1. Then αr are spaced by δ = Q−2. Hence we have

the following:

Theorem 4.1.2. For any complex numbers an with 1 ≤ n ≤ N , where N is a positive

integer, we have

∑

q≤Q

∑∗

a(mod q)

∣∣∣∣
∑

1≤n≤N

ane

(
an

q

)∣∣∣∣
2

≤ (Q2 + N − 1)‖a‖2
2 (4.4)

where

‖a‖2
2 =

∑

1≤n≤N

|an|2.

The notation ∗ denotes the restriction to (a, q) = 1 throughout.

For general an, (4.4) gives the best possible bound. However, we can improve the

bound in special cases. We are interested when the an are sparsely supported and Q is

much smaller than N . To make this improvement, we apply the techniques of Selberg’s

sieve, which is new in this context.

4.1.1 Improvement of Large Sieve

By utilizing Selberg’s sieve, we will prove the following:

Theorem 4.1.3. We let {λd} be any finite sequence of real numbers such that |λd| ≤ 1

for all d, λ1 = 1 and
∑

d|n
λd ≥ 0, for all n ≥ 1.



44

We define

D = {d : λd 6= 0}, D = maxD + 1,

and

Q = {q ≤ Q : (q, d) = 1 for all d ∈ D}.

Finally, we assume 3 ≤ Q ≤ N/D2. Then, for any complex numbers an ∈ C with

1 ≤ n ≤ N , we have

∑

q∈Q

∑∗

a(mod q)

∣∣∣∣
∑

n≤N

ane

(
an

q

)(∑

d|n
λd

)∣∣∣∣
2

≤ D(Q,N)
∑

n≤N

|an|2
(∑

d|n
λd

)
.

where

D(Q,N) = 2N
∑

d≤D

λd

d
+ 2Q


N

3

∑

d≤D

λd

d




2

.

We now look at a special case:

Corollary 4.1.4. Let {an} be a sequence of complex numbers supported on n whose

smallest prime factor is larger than some z. We define

Qz = {q ≤ Q : smallest prime factor of q is > z}.

We let

D = 1 +
∏

p≤z

p.

Then if 3 ≤ Q2 ≤ N/D2, we have

∑

q∈Qz

∑∗

a(mod q)

∣∣∣∣
∑

n≤N

ane

(
an

q

)∣∣∣∣
2

≤ D(Q,N)
∑

n≤N

|an|2, ∀an ∈ C.

with

D(Q,N) = 2aN + 2Q

(
aN

3

)1/2

with a = a(z),

a(2) = 1/2, a(3) = 1/3, a(5) = 4/15, a(7) = 8/35, a(11) = 16/77.

In general,

a(z) =
∏

p≤z

(1− p−1).
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Proof. We choose λd = µ(d) whenever the largest prime factor of d is ≤ pr. Then

∑′

d≤D

λd

d
= a(pr).

We note that if n does not have any prime factors ≤ pr, then

∑

d|n
λd = λ1 = 1.

Applying this choice of λd to the theorem gives the corollary.

4.2 Proof of Theorem

In order to prove Theorem (4.1.3), we use the following lemma.

Lemma 4.2.1. Given a set Q bounded by Q, consider the following three statements:

1. For all an ∈ C,

∑

q∈Q

∑∗

a(mod q)

∣∣∣∣
∑

n≤N

ane

(
an

q

)(∑

d|n
λd

)∣∣∣∣
2

≤ D(Q,N)
∑

n≤N

|an|2
(∑

d|n
λd

)
.

2. For all bn ∈ C,

∑

q∈Q

∑∗

a(mod q)

∣∣∣∣
∑

n≤N

bnX

(
n,

a

q

)∣∣∣∣
2

≤ D(Q,N)
∑

n≤N

|bn|2

where the operator X(n, a/q) is defined by

X

(
n,

a

q

)
=

(∑

d|n
λd

)1/2

e

(
an

q

)
.

3. For all c(a, q) ∈ C,

∑

n≤N

∑

d|n
λd

∣∣∣∣
∑

q∈Q

∑∗

a(mod q)

c(a, q)e
(

an

q

)∣∣∣∣
2

≤ D(Q,N)‖c‖2
2

where

‖c‖2
2 =

∑∗

q∈Q

∑

a(mod q)

|c(a, q)|2.

Then statement (1) follows from (2) and (2) is equivalent to (3).
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Proof. Statement (1) follows from statement (2) by letting

bn =
(∑

d|n
λd

)1/2

an.

By duality, (2) is equivalent to (3).

Now we wish to prove (3) in order to prove Theorem (4.1.3).

To continue our analysis, we introduce a continuous function g : R→ R such that

g(x) ≥ 1 for |x| ≤ N and g(x) ≥ 0 for all x.

We will later pick this function to optimize the results. Let ĝ(y) be the Fourier transform

of g, so that

ĝ(y) =
∫

R
g(x)e−2πixydx.

We have

∑

n≤N

∣∣∣∣
∑

q∈Q

∑∗

a(mod q)

c(a, q)
(∑

d|n
λd

)1/2

e

(
an

q

)∣∣∣∣
2

≤
∑

n∈Z
g(n)

(∑

d|n
λd

)∣∣∣∣
∑

q∈Q

∑∗

a(mod q)

c(a, q)e
(

an

q

)∣∣∣∣
2

.

The diagonal terms of this sum will be the main contribution, so we treat the diagonal

and off-diagonal terms separately. We let A be the contribution of the diagonal terms

and B be the contribution of the off-diagonal terms.

∑

n≤N

∣∣∣∣
∑

q∈Q

∑∗

a(mod q)

c(a, q)
(∑

d|n
λd

)1/2

e

(
an

q

)∣∣∣∣
2

=
∑

n∈Z
g(n)

(∑

d|n
λd

) ∑

q∈Q

∑∗

a(mod q)

|c(a, q)|2

+
∑

n∈Z
g(n)

(∑

d|n
λd

) ∑∗

a1
q1
6=a2

q2

c(a1, q1)c(a2, q2)e
((

a1

q1
− a2

q2

)
n

)

= A + B.
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4.2.1 Preliminary Analysis

We now analyze the diagonal and off-diagonal terms. We first treat the diagonal terms.

A =
∑

n∈Z
g(n)

(∑

d|n
λd

) ∑

q∈Q

∑∗

a(mod q)

|c(a, q)|2 = ‖c‖2
2

∑

n∈Z
g(n)

(∑

d|n
λd

)

= ‖c‖2
2

∑

d≤D

λd

∑

m∈Z
g(dm) = ‖c‖2

2

∑

d≤D

λd

d

∑

h∈Z
ĝ

(
h

d

)

by Poisson summation. We then have

A = ‖c‖2
2



ĝ(0)

∑

d≤D

λd

d
+ 2

∑

d≤D

λd

d

∞∑

h=1

ĝ

(
h

d

)

 .

We cannot analyze the diagonal contribution further until g is chosen. It will be chosen

later to optimize the result. Next, we treat the off-diagonal terms.

B =
∑

n∈Z
g(n)

(∑

d|n
λd

) ∑∗

a1
q1
6=a2

q2

c(a1, q1)c(a2, q2)e
((

a1

q1
− a2

q2

)
n

)

=
∑∗

a1
q1
6=a2

q2

c(a1, q1)c(a2, q2)
∑

n∈Z
g(n)

(∑

d|n
λd

)
e

((
a1

q1
− a2

q2

)
n

)

=
∑∗

a1
q1
6=a2

q2

c(a1, q1)c(a2, q2)
∑

d≤D

λd

∑

m∈Z
g(dm)e

((
a1

q1
− a2

q2

)
dm

)

=
∑∗

a1
q1
6=a2

q2

c(a1, q1)c(a2, q2)
∑

d≤D

λd

d

∑

h∈Z
ĝ

(
h

d
−

(
a1

q1
− a2

q2

))

also by Poisson summation.

We note that ĝ(x) is of manageable size when x 6= 0. Unfortunately, ĝ(0) is a rather

large term that should be avoided. We have a ĝ(0) contribution in the diagonal terms,

which is expected as part of the main term. However, we do not wish to have ĝ(0) in

the off-diagonal contribution. Therefore, we wish to avoid the situation where

h

d
−

(
a1

q1
− a2

q2

)
= 0, for some h ∈ Z.

That is, when (
a1

q1
− a2

q2

)
d =

(
a1q2 − a2q1

q1q2

)
d ∈ Z.

Thus, we have a problem when (q1q2, d) is large. We have that Q is much larger than

D > d, but small values of q1, q2 can cause problems. For example, this technique is

not useful for Q = {q : 1 ≤ q ≤ Q}.
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We let

D = {d : λd 6= 0}, and D = maxD + 1.

Finally, we let

Q = {q : (q, d) = 1 for all d ∈ D}.

We note in particular that

Q1 = {q : q prime, q ≥ D} ⊂ Q,

so the bound for Q will also work for Q1.

Lemma 4.2.2. We have

dx := d

(
a1q2 − a2q1

q1q2

)
/∈ Z for all q1, q2 ∈ Q,

a1

q1
6= a2

q2
.

Proof. We assume for contradiction that dx ∈ Z. Let r = (q1, q2), q′1 = q1/r, and

q′2 = q2/r. Then (q′1, q
′
2) = 1. Then

dx =
d

r

(
a1q

′
2 − a2q

′
1

q′1q
′
2

)
∈ Z.

Consider p|q′1. Then p|a2q
′
1 but p - a1q

′
2 because (a1, q

′
1) = 1 = (q′1, q

′
2). Thus, p -

(a1q
′
2 − a2q

′
1) and hence p|d. This implies that q′1|d. Likewise, q′2|d. Since (q′1, q

′
2) = 1,

this shows that q′1 = q′2 = 1 and so r = q1 = q2. Then

dx = d

(
a1 − a2

q1

)
∈ Z.

This would imply that q1|(a1 − a2), but 0 < |a1 − a2| < q1, so this is impossible.

Therefore, dx /∈ Z.

Thus, if we define ‖dx‖ to be the distance of dx to the closest integer, we have

‖dx‖ 6= 0 for all d, x with λd 6= 0. Furthermore, due to the spacing of rationals,

‖dx‖ ≥ 1/Q2 for all d, x.

Now we return to the contribution of the off-diagonal terms. We have
∣∣∣∣
∑

d≤D

λd

d

∑

h∈Z
ĝ

(
h

d
− x

)∣∣∣∣ =
∣∣∣∣
∑

d≤D

λd

d

(
ĝ

(‖dx‖
d

)
+

∞∑

k 6=0

ĝ

(
k + ‖dx‖

d

))∣∣∣∣.

This is the most analysis of B we can do until we choose a function g.
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4.2.2 Choice of g

We have several constraints while choosing our function g. On the one hand, we would

like ĝ(0) to be as small as possible so that A is small. However, we also need the sum

∞∑

k 6=0

ĝ

(
k + ‖dx‖

d

)

to converge, so we need ĝ(y) ≤ O(1/y2). Finally, we need g(x) ≥ 1 for |x| ≤ N and

g(x) ≥ 0 for all x. A family of such functions is given by:

gk(x) =





1 |x| ≤ N

−k

∣∣∣∣
x

N

∣∣∣∣ + (k + 1) N ≤ |x| ≤ N

(
1 + 1

k

)

where k is a parameter that will be chosen later. Then we have

ĝk(y) =





N

(
2 + 1

k

)
y = 0,

k

2N(πy)2

[
cos

(
2πNy)− cos(2πNy

(
1 + 1

k

))]
otherwise.

We then note that ĝk(y) is majorized by fk(y) where fk is given by

fk(y) =





N

(
2 + 1

k

)
y = 0,

k

N(πy)2
otherwise.

4.2.3 Conclusion

With a choice of our function g, we can now continue our analysis of the diagonal and

off-diagonal terms. For the diagonal terms, we have

A = ‖c‖2
2



ĝk(0)

∑

d≤D

λd

d
+ 2

∑

d≤D

λd

d

∞∑

h=1

ĝk

(
h

d

)



≤ ‖c‖2
2



N

(
2 +

1
k

) ∑

d≤D

λd

d
+

∑

d≤D

|λd|
d

2k

N

∞∑

h=1

d2

π2h2





= ‖c‖2
2



N

(
2 +

1
k

) ∑

d≤D

λd

d
+

k

3N

∑

d≤D

|λd|d


 .
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We now examine the contribution of the off-diagonal terms.
∣∣∣∣
∑

d≤D

λd

d

∑

h∈Z
ĝk

(
h

d
− x

)∣∣∣∣

=
∣∣∣∣
∑

d≤D

λd

d

(
ĝk

(‖dx‖
d

)
+

∞∑

k 6=0

ĝk

(
k + ‖dx‖

d

))∣∣∣∣

≤
∑

d≤D

|λd|
d

(
fk

(‖dx‖
d

)
+

∞∑

l 6=0

fk

(
l + ‖dx‖

d

))

=
∑

d≤D

|λd|
d

(
fk

(‖dx‖
d

)
+

k

Nπ2

∞∑

l 6=0

d2

(l + ‖dx‖)2
)

.

To continue our analysis, we note that 0 ≤ ‖dx‖ ≤ 1/2. Splitting the summation over

l, we find that

(l + ‖dx‖)2 ≥





l2 if l ≥ 1,

1/4 if l = −1,

(l + 1)2 if l ≤ −2.

Therefore,

∞∑

l 6=0

d2

(l + ‖dx‖)2 ≤
∞∑

l=1

d2

l2
+ 4d2 +

−2∑
−∞

d2

(l + 1)2
≤ d2π2 7

9
.

Applying this estimate to our sum, we have
∣∣∣∣
∑

d≤D

λd

d

∑

h∈Z
ĝk

(
h

d
− x

)∣∣∣∣ ≤
∑

d≤D

|λd|
d

(
fk

(‖dx‖
d

)
+

7d2k

9N

)
.

Finally,

|B| ≤
∑

q1∈Q

∑∗

a1(mod q1)

|c(a1, q1)|2
∑

x6=0

∑

d≤D

|λd|
d

(
fk

(‖dx‖
d

)
+

7d2k

9N

)
.

We know that ‖dx‖ 6= 0 for all d such that λd 6= 0. In addition, we know that the a/q

are δ-spaced where δ = Q−2. Therefore, so are the ‖dx‖. Applying these facts, we see

|B| ≤
∑

q1∈Q

∑∗

a1(mod q1)

|c(a1, q1)|2
∑

d≤D

|λd|
d

∑

x6=0

(
fk

(‖dx‖
d

)
+

7kd2

9N

)

≤
∑

q1∈Q

∑∗

a1(mod q1)

|c(a1, q1)|2




∑

d≤D

|λd|
d

[
7kQ2d2

9N
+

∞∑

l=1

fk

(
l

dQ2

)]



= ‖c‖2
2

∑

d≤D

|λd|d
(

7kQ2

9N
+

kQ4

6N

)
.
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Simplifying the expression slightly, we find

A + B ≤ ‖c‖2
2

(
N

(
2 +

1
k

) ∑

d≤D

λd

d
+

kQ4

3N

∑

d≤D

|λd|d
)

.

In addition, since |λd| ≤ 1 for all d,

∑

d≤D

|λd|d ≤ D2.

Thus, if we assume that Q2 ≤ N/D2, then

A + B ≤ ‖c‖2
2

(
N

(
2 +

1
k

) ∑

d≤D

λd

d
+

kQ2

3

)
.

Finally, we choose k as the geometric mean of N
∑

λd/d and Q2/3. Then

A + B ≤ ‖c‖2
2

(
2N + 2Q


N

3

∑

d≤D

λd

d




1/2)
.

Therefore, by Lemma (4.2.1), we have Theorem (4.1.3).
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Chapter 5

Notes on Successive Approximations

This chapter consists of notes on the use of successive approximations to refine Selberg’s

upper bound sieve. We also provide some useful lemmas for solving systems of equations

which are prevalent in sieve theory.

5.1 Introduction

Let A = (an), an ≥ 0, Λ = (λd), d ≤ D. Assume

∑

d|n
λd ≥ 0, for all n and λ1 = 1.

Let ρd ∈ R such that (∑

d|n
ρd

)2

=
∑

d|n
λd

with ρ1 = 1. Then we have

λd =
∑

[d1,d2]=d

ρd1ρd2 .

We now wish to look at the sum

S(A) =
∑

(n,P )=1

an.

We estimate this sum by

S(A) ≤ S+(A) =
∑

n

an

(∑

d|n
ρd

)2

.

We would like to find variables ρd that give the minimum of S+(A). In general, this

problem is impossible. However, we can find a choice of ρd which give a good ap-

proximation to the minimum of S+(A). Following the notation of Chapter (1), we
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write

S+(A) = X
∑

d|P (z)

g(d)λd +
∑

d|P (z)

λdr(A, d)

= XV (D, z) + R(A, D).

In order to approximate S(A), Selberg chose the variables ρd to minimize the main term

V (D, z). His choice of ρd also resulted in a remainder term that was under control. He

chose

ρd =
µ(d)h(d)
g(d)J

∑

l≤√D/d(d,l)=1

h(l)

where h(d) is the multiplicative function defined by h(p) = g(p)/(1− g(p)) and

J =
∑

d≤√D
d|P

h(d).

We then have

S+(A) ≤ X

J
+ R(A, D) (5.1)

where

R(A, D) =
∑

d|P
λdr(A, d).

With this choice of ρd, we have |ρd| ≤ 1 so the remainder term is under control.

However, we would like to find a choice of ρd that minimizes the remainder term at

the same time. To do this, we will use the method of successive approximations. We

will start by choosing our ρd to be the same as Selberg’s choice. Then we will perturb

this choice slightly in order to also minimize the remainder term. This process could be

continued indefinitely. However, since Selberg’s choice of ρd already gives such a good

result, we will only execute this process once. In the following sections, we will describe

this process.

5.1.1 Property of S+

We note that S+ is a quadratic form in variables ρd for d 6= 1. We know that S+ must

obtain a minimum because trivially S+ ≥ 0, so we want to find the (ρd) at which the
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minimum is attained. That is, where

∂

∂ρk
S+ = 0 for k 6= 1.

For k 6= 1,
∂

∂ρk
S+ = 2

∑

n≡0(mod k)

an

(∑

d|n
ρd

)
= 0. (5.2)

We now note a special property of S+
min, that is the minimum of S+ given by the optimal

choice of ρd.

Proposition 5.1.1. Let ρd be chosen to minimize

S+(A) =
∑

n|P (z)

an

(∑

d|n
ρd

)2

.

Then

S+
min =

∑

n|P (z)

an

∑

d|n
ρd.

Proof. If ρd give the minimum of S+(A), then we have

∑

n≡0(mod k)

an

(∑

d|n
ρd

)
= 0

for all k|P (z), k 6= 1. Then

S+(A) =
∑

n|P (z)

an

(∑

d|n
ρd

)2

=
∑

n|P (z)

an

(∑

d1|n
ρd1

)(∑

d2|n
ρd2

)

=
∑

d1|P (z)

ρd1

∑

n|P (z)
n≡0(mod d1)

an

∑

d2|n
ρd2

=
∑

d1|P (z)

ρd1





0 if d 6= 1
∑

n|P (z) an
∑

d|n ρd2 if d1 = 1

=
∑

n|P (z)

an

∑

d|n
ρd

since ρ1 = 1. This concludes the proof.

Now we return to finding the minimum ρd. We define

Al =
∑

n≡0(mod l)

an.
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Then the condition for the derivatives (5.2) is equivalent to:

∑

d6=1

ρdA[d,k] = −Ak for all k 6= 1.

Let S+
min be the minimum of S+(A). Then we would like to find ρd such that

∑

d|P
d≤√D

ρdA[d,k] = δk1S
+
min.

In order to solve this system of equations, we will need some lemmas, which we present

in the following section.

5.2 Preliminaries

The following lemmas are true for all systems of equations where g(d) is a multiplicative

function with g(d) = 0 for d ≥ √
D and h(d) is the multiplicative function defined by

h(p) = g(p)/(1− g(p)).

Lemma 5.2.1. Consider the system of equations:

∑

d|P
d≤√D

ρdg([d, k]) =





J−1 if k = 1

0 if k 6= 1

where k|P , k ≤ √
D and

J =
∑

d|P
d≤√D

h(d).

The solution to this system of equations is given by

ρd =
µ(d)
g(d)J

∑

m≡0(mod d)
m|P

m≤√D

h(m).



56

Proof. Let ρd be given by the formula in the lemma. Then

∑
d|P

d≤√D

ρdg([d, k]) =
1
J

∑

d|P
d≤√D

µ(d)
g([d, k])

g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)

=
1
H

∑

m|P
m≤√D

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

=
1
H

∑

m|P
m≤√D

h(m)
∑

d|m
µ(d)g

(
k

(d, k)

)
.

Write d = d1d2 with d1|k and (d2, k) = 1. Then

∑
d|m µ(d)g

(
k

(d, k)

)
=

∑

d1|(m,k)

∑

d2|m
(d2,k)=1

µ(d1)µ(d2)g
(

k

d1

)

=
∑

d1|(m,k)

µ(d1)g
(

k

d1

) ∑

d2|m
(d2,k)=1

µ(d2)

=
∑

d1|(m,k)

µ(d1)g
(

k

d1

) ∑

d2|m/(m,k)

µ(d2)

=
∑

d1|(m,k)

µ(d1)g
(

k

d1

) 



1 if m|k
0 otherwise

.

Therefore, for m - k,
∑

d|m µ(d)g(k/(d, k)) = 0 and for m|k,

∑
d|m µ(d)g

(
k

(d, k)

)
=

∑

d1|m
µ(d1)g

(
k

d1

)

= g(k)
∑

d1|m

µ(d1)
g(d1)

= g(k)
∏

p|m

(
1− 1

g(p)

)

= g(k)
µ(m)
h(m)

.
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Returning to the original sum, we have

∑
d|P

d≤√D

ρdg([d, k]) =
1
J

∑

m|P
m≤√D

h(m)
∑

d|m
µ(d)g

(
k

(d, k)

)

=
1
J

g(k)
∑

m|k
m≤√D

h(m)
µ(m)
h(m)

=
1
J

g(k)
∑

m|k
m≤√D

µ(m)

=





1
J

if k = 1,

0 if k 6= 1.

Lemma 5.2.2. Let l|P and l ≤ √
D. Consider the system of equations in variables

t
(l)
d :

∑

d≤√D
d|P

t
(l)
d g([d, k]) =





1 if k = l,

0 if k 6= l.

The solution to this system of equations is given by:

t
(l)
d =

µ(d)µ(l)
g(d)g(l)

∑

m≡0(mod [d,l])
m|P

m≤√D

h(m).

Proof. Let t
(l)
d be given as in the Lemma.

∑
d≤√D

d|P
t
(l)
d g([d, k]) =

µ(l)
g(l)

∑

d≤√D
d|P

µ(d)
g(d)

g([d, k])
∑

m≡0(mod [d,l])
m|P

m≤√D

h(m)

=
µ(l)
g(l)

∑

m≡0(mod l)
m|P

m≤√D

h(m)
∑

d|m
µ(d)g

(
k

(d, k)

)
.

We recall from the proof of Lemma (5.2.1) that

∑

d|m
µ(d)g

(
k

(d, k)

)
= g(k)

µ(m)
h(m)
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for m|k and is zero otherwise. Then

∑
d≤√D

d|P
t
(l)
d g([d, k]) =

µ(l)
g(l)

∑

m≡0(mod l)
m|P

m≤√D

h(m)
∑

d|m
µ(d)g

(
k

(d, k)

)

=
µ(l)
g(l)

∑

m≡0(mod l)
m|k

h(m)g(k)
µ(m)
h(m)

= g(k)
µ(l)
g(l)

∑

m≡0(mod l)
m|k

µ(m)

= g(k)
µ(l)
g(l)

µ(l)
∑

n|k/l

µ(m)

=





1 if k = l,

0 if k 6= l.

We can now use Lemma (5.2.2) to find the solution to a more general system of

equations:

Lemma 5.2.3. Consider the system of equations in variables ρd given by

∑

d≤√D
d|P

ρdg([d, k]) = Ek

where Ek are general expressions depending on k where k|P and k ≤ √
D. Then the

solution to this system of equations is given by:

ρd =
∑

l≤√D
l|P

t
(l)
d El

where t
(l)
d are given by the formula in Lemma (5.2.2)
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Proof. Let ρd be given by the formula in the statement of the Lemma. Then

∑
d|P

d≤√D

ρdg([d, k]) =
∑

d|P
d≤√D

g([d, k])
∑

l≤√D
l|P

t
(l)
d El

=
∑

l≤√D
l|P

El

∑

d|P
d≤√D

t
(l)
d g([d, k])

=
∑

l≤√D
l|P

Elδlk

by Lemma (5.2.2). Therefore,

∑

d|P
d≤√D

ρdg([d, k]) = Ek.

5.3 Solution to System of Equations

We recall that we wish to solve the system of equations

∑

d|P
d≤√D

ρdA[d,k] = δk1S
+
min

where S+
min is the minimum of S+(A). We let

Am = g(m)X + rm

where g is a multiplicative function. Then, we want to solve the system of equations

δk1S
+
min = X

∑

d|P
d≤√D

g(d)ρ[d,k] +
∑

d|P
d≤√D

ρdr[d,k].

We use the method of successive approximations in order to determine the best choice

of ρd. We start first with Selberg’s choice of ρd. Since Selberg’s standard choice of

ρd was made to minimize the main term, his choice corresponds to rm = 0. We let

rm = 0 and S+ = X/J (the main term corresponding to Selberg’s choice). We note

that S+ = X/J is the definition of S+ and is not equal to S+(A). We let ρ
(0)
d be the
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variables such that
∑

d|P
d≤√D

ρ
(0)
d g([d, k]) = δk1

S+

X
= δk1

1
J

.

Then from Lemma (5.2.1) of section (5.2) we find that

ρ
(0)
d =

µ(d)
g(d)J

∑

m≡0(mod d)
m|P

m≤√D

h(m)

which is Selberg’s choice of ρd. We would like to perturb this choice slightly in order

to find a better choice of ρd when the error term is close to the main term. Therefore,

we write

ρd = ρ
(0)
d + ρ′d

where ρd is the optimal choice, which gives the minimum of S+(A), ρ
(0)
d is Selberg’s

choice and ρ′d is the difference, which we think of as small. We note that

S+
min =

X

J
+

∑

d|P (z)

g(d)ρ′d +
∑

d|P (z)

ρ
(0)
d rd +

∑

d|P (z)

ρ′drd.

We also note that

∑
d|P

d≤√D

ρ′dA[d,k] = δk1S
+
min −

∑

d|P
d≤√D

ρ
(0)
d A[d,k]

= δk1S
+
min − δk1

X

J
−

∑

d|P
d≤√D

ρ
(0)
d r[d,k]

= δk1

(
S+

min −
X

J

)
−

∑

d|P
d≤√D

ρ
(0)
d r[d,k]

def
= Ck.

We then have
∑

d|P
d≤√D

ρ′d

(
g([d, k])X + r[d,k]

)
= Ck.

We want to solve the system of equations:

∑

d|P
d≤√D

ρ′dg([d, k]) = δk1

(
S+

min

X
− 1

J

)
− 1

X

∑

d|P
d≤√D

(ρ(0)
d + ρ′d)r[d,k]. (5.3)
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We let Ek be the right-hand side of (5.3) and we see from Lemma (5.2.3) of Section

(5.2) that

ρ′d =
∑

l≤√D
l|P

t
(l)
d El

=
µ(d)
g(d)

∑

l|P
l≤√D

µ(l)
g(l)

El

∑

m≡0(mod [d,l])
m|P

m≤√D

h(m)

=
µ(d)
g(d)

(
S+

min

X
− 1

J

) ∑

m≡0(mod d)
m|P

m≤√D

h(m)

− 1
X

µ(d)
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

t|P
t≤√D

ρ′tr[t,l]

− 1
XJ

µ(d)
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

We note that the second term will be especially small since we think of both ρ′d and rd

as small. Therefore, we ignore that term and define

ρ
(1)
d =

µ(d)
g(d)

(
S+

min

X
− 1

J

) ∑

m≡0(mod d)
m|P

m≤√D

h(m)

− 1
XJ

µ(d)
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

This is our next approximation to the best choice of ρd. We now define

ρd = ρ
(0)
d + ρ

(1)
d . (5.4)

We see then that

ρd =
µ(d)
g(d)

S+
min

X

∑

m≡0(mod d)
m|P

m≤√D

h(m)

− 1
XJ

µ(d)
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].
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For this choice of ρd, we have the following:

Proposition 5.3.1. Define

ρd = ρ
(0)
d + ρ

(1)
d =

µ(d)
g(d)

S+
min

X

∑

m≡0(mod d)
m|P

m≤√D

h(m)

− 1
XJ

µ(d)
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

Then for all k|P , k ≤ √
D, we have

∑

d|P
d≤√D

ρdA[d,k]

= S+
min

(
δk1 +

1
X

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

)
− 1

J

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

− 1
XJ

∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

To prove this statement, we will need some lemmas.

Lemma 5.3.2. For all n|k,

∑

m|P
m≤√D
(m,k)=n

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

= µ(n)g(k).

Proof.

∑

m|P
m≤√D
(m,k)=n

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

= g(k)
∑

m|P
m≤√D
(m,k)=n

h(m)
∑

d|m
µ(d)

1
g((d, k))

.

If d|m and (m, k) = n, then (d, k) = (d, n). For each d, we write t = (d, n) and
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l = d/(d, n) so d = tl. Then for m such that (m, k) = n, we have

∑
d|m µ(d)

1
g((d, k))

=
∑

t|n

1
g(t)

∑

l|m
(l,n)=1

µ(tl)

=
∑

t|n

µ(t)
g(t)

∑

l|m/n

µ(l)

=





µ(n)/h(n) if m = n,

0 otherwise.

Applying this to our sum, we find

∑

m|P
m≤√D
(m,k)=n

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

= µ(n)g(k).

We use the above lemma to prove the following two lemmas.

Lemma 5.3.3. For all k|P , k ≤ √
D, we have

δk1 =
∑

d|P
d≤√D

µ(d)g([d, k])
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m).

Proof. We have

∑

d|P
d≤√D

µ(d)g([d, k])
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m) =
∑

m|P
m≤√D

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

=
∑

n|k

∑

m|P
m≤√D
(m,k)=n

h(m)
∑

d|m
µ(d)

g([d, k])
g(d)

= g(k)
∑

n|k
µ(n)

= δk1.
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Lemma 5.3.4. For all k|P , k ≤ √
D, we have

∑

d|P
d≤√D

µ(d)
g([d, k])

g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

=
∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k].

Proof.

∑

d|P
d≤√D

µ(d)
g([d, k])

g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

= g(k)
∑

m|P
m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

∑

d|m

µ(d)
g((d, k))

= g(k)
∑

α|k

∑

m|P
m≤√D
(m,k)=α

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

∑

d|m

µ(d)
g((d, k))

= g(k)
∑

α|k

∑

m|P
m≤√D
(m,k)=α

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

(




µ(α)
h(α)

if m = α

0 otherwise

)

= g(k)
∑

α|k
µ(α)

∑

l|α

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

= g(k)
∑

l|k

µ(l)
g(l)

µ(l)
∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

∑

β|k/l

µ(β)

= g(k)
∑

l|k

1
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]





1 if k = l

0 otherwise

=
∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l].

Now we return to the proof of Proposition (5.3.1).
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Proof.

∑

d|P
d≤√D

ρdA[d,k]

= S+
min

∑

d|P
d≤√D

µ(d)g([d, k])
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)

+
S+

min

X

∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)

− 1
J

∑

d|P
d≤√D

µ(d)g([d, k])
g(d)

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l]

− 1
XJ

∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,l].

Rearranging the order of summation and applying our lemmas, we see

∑

d|P
d≤√D

ρdA[d,k]

= S+
min

(
δk1 +

1
X

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

)

− 1
J

∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

− 1
XJ

∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

Definition 5.3.5. For this choice of ρd = ρ0
d + ρ

(1)
d , define

S+(A) =
∑

n|P (z)

an

(∑

d|n
ρd

)2

.

Let ρmin
d be the optimal choice of ρd so that

∑

n|P (z)

an

∑

d|n
ρmin

d = S+
min.
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Define

R1(k) =
∑

d|P
d≤√D

(ρd − ρmin
d )A[d,k].

We recall that
∑

d|P
d≤√D

ρmin
d A[d,k] = δk1S

+
min

so that
∑

d|P
d≤√D

ρdA[d,k] = δk1S
+
min + R1(k).

We think of the remainder term R1(k) as being very small. With these definitions,

from Proposition (5.3.1) we have

Proposition 5.3.6. For all k|P , k ≤ √
D,

δk1S
+
min + R1(k) = S+

min

(
δk1 +

1
X

Ak

)
− 1

J
Ak − 1

XJ
Bk

where

Ak =
∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

and

Bk =
∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].

Corollary 5.3.7. For all k|P , k ≤ √
D, if

0 6= Ak =
∑

n|P
n≤√D

h(n)
∑

t|n

µ(t)
g(t)

r[t,k]

then

S+
min =

X

J
+

1
J

Bk

Ak
+

X

Ak
R1(k)

where

Bk =
∑

d|P
d≤√D

µ(d)
g(d)

r[d,k]

∑

m≡0(mod d)
m|P

m≤√D

h(m)
∑

l|m

µ(l)
g(l)

∑

n|P
n≤√D

h(n)
∑

t|n
µ(t)g(t)r[t,l].
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Chapter 6

Conclusion

In conclusion, we have seen the refinement of Selberg’s choice of sieve in order to improve

the current results in the sifting limit problem. In addition, we have seen the use of

Selberg’s sieve to give an improvement of the Brun-Titchmarsh theorem as well as an

improvement of the large sieve inequality in special cases.

6.1 Further Research

There is still much work to be done on the sifting limit problem. With further inves-

tigation and improvements, our techniques will provide even better results. The work

is very general and provides quite a bit of flexibility. By altering parameters, we have

already seen great improvement. By optimizing these parameters, we hope to see even

greater improvement.

Most likely, future research will focus on the work with successive approximations.

In the course of my research, I have developed several tools that will be useful in this

problem. By minimizing the main term and remainder term simultaneously, I hope to

give an improvement on the upper bound in certain cases. This improvement would be

especially useful in the case when Selberg’s result gives a remainder term which is close

the main term. With this improvement, a refinement of the Brun-Titchmarsh theorem

and other results could be possible.
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