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Abstract of the Thesis 

Perceptual estimation of variance in orientation and its dependence on sample size 

By Steven A. Cholewiak 

Thesis director: Manish Singh 

Recent research has shown that participants are very good at perceptually 

estimating summary statistics of sets of similar objects (e.g., Ariely, 2001; Chong & 

Treisman, 2003; 2005).  While the research has focused on first-order statistics (e.g., the 

mean size of a set of discs), it is unlikely that a mental representation of the world 

includes only a list of mean estimates (or expected values) of various attributes.  

Therefore, a comprehensive theory of perceptual summary statistics would be incomplete 

without an investigation of the representation of second-order statistics (i.e., variance).  

Two experiments were conducted to test participants’ ability to discriminate samples that 

differed in orientation variability.  Discrimination thresholds and points of subjective 

equality for displays of oriented triangles were measured in Experiment 1. The results 

indicated that participants could discriminate variance without bias and that participant 

sensitivity (measured via relative thresholds, i.e., Weber fractions) was dependent upon 

sample size but not baseline variance.  Experiment 2 investigated whether participants 

used a simpler second-order statistic, namely, sample range to discriminate dispersion in 

orientation.  The results of Experiment 2 showed that variance was a much better 

predictor of performance than sample range.  Taken together, the experiments suggest 

that variance information is part of the visual system’s representation of scene variables. 

However, unlike the estimation of first-order statistics, the estimation of variance 

depends crucially on sample size. 
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INTRODUCTION 

Given the prevalence of ambiguity and noise in the environment, and the 

inductive nature of inferences in perception and cognition, most visual, visuo-motor, and 

cognitive tasks necessarily involve noisy or probabilistic representations.  Whether the 

perceptual system is tasked with estimating scene parameters from images (Knill, Kersten 

& Yuille, 1996; Geisler & Kersten, 2002; Mamassian, Landy & Maloney, 2003) or to 

generate non-verbal numerical estimates (Burr & Ross, 2008; Cordes, Gallistel, Gelman 

& Latham, 2007), all representations involve uncertainty.  Veridical representations of 

scene parameters would be a hindrance in a changing environment unless one could use 

past and present perceptual information in a dynamic manner, embracing the innate 

variability of the real-world.  The fact that individuals have little difficulty in performing 

perceptual and cognitive tasks and can make judgments in a computationally optimal 

manner suggests that there may be explicit representations of uncertainty and variance in 

the perceptual system, which provides a wealth of information for planning future actions 

in an uncertain world. 

All perceptual representations have local and global parameters associated with 

elements of the environment.  Perceptual and cognitive systems need to be able to make 

computations with these representations in order to plan actions and to predict future 

events.  Parameter estimates alone (whether individual values or means) are insufficient 

for most computations, which necessarily rely on variance information in a number of 

critical ways.  For example, cue combination within and across modalities (e.g., 

visual/haptic integration) requires taking into account the variance in the systems’ 

representations in order to combine noisy signals.  Similarly, visually guided actions rely 
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on perceptual estimates and need a representation of the distribution of relevant 

parameters in order to apply loss functions.  Other examples where expected values of 

parameters alone are insufficient are source separation and categorization where the 

perceptual system attempts to determine whether there is a single underlying source for 

the observed samples, or multiple sources. 

This highlights the question of what information perceptual systems should store. 

Should they store only the single “best estimate” value for each scene parameter, or 

should they store this best estimate along with the degree of uncertainty around this 

estimate?  Given the necessity for variance in cue combination, visually guided actions 

(where different consequences have different “losses” associated with them), source 

separation, and categorization, a simple “best estimate” appears to be insufficient. 

However, this has not always been the view.  A pictorial representation is superficially 

appealing because it would mean that we store parameters of a scene (e.g., object sizes, 

lengths, widths, orientations, etc.) for subsequent recreation and action.  However, 

although estimating parameters could provide valuable information about a single 

scene/image, changing environments would require re-encoding of the parameters and 

significant processing and storage.  The rigidity of the parameters and the inability to 

cope with changes in the scene make a pictorial representation of the environment an 

unappealing method of representation.  Therefore, a more robust method of encoding is 

necessary. 

A simple, universal axiom is that actions have consequences.  In general, actions 

are planned in order to maximize some gain and minimize some loss.  For example, a 

pitcher will throw a baseball with enough force so that it reaches the catcher’s mitt, but 
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will adjust his/her trajectory so that the ball will cross through the “strike zone” and avoid 

hitting the batter and avoid straying far enough to be called a “ball”.  To be able to throw 

a strike, the pitcher must have a representation of not only his motor variability, but also a 

loss function for the space of outcomes.  If individuals only represented the mean, 

median, or mode of the parameters of the scene, they would not be able to apply loss 

functions to their decision spaces.  This is because the entire probability distribution, not 

just the central tendency, is necessary for the use of loss functions.  Therefore, one could 

only use loss functions if the distribution (or a way to recreate it) is stored. 

Past research in decision making and action planning has found that participants 

have an implicit awareness of the uncertainty in planning motor actions and will utilize 

loss functions to maximize gain and minimize loss (Trommershäuser, Maloney, & Landy 

2003; Landy, Goutcher, Trommershäuser, & Mamassian, 2007).  Motor actions and 

perceptual decisions involve gains and losses associated with different outcomes and 

optimal performance thus depends on convolving a "loss function" with a noisy estimate / 

probabilistic representation of some variable.  These experiments have shown that 

participants ' performance is close to optimal, which suggests that participants implicitly 

"know" their own perceptual/motor variability.   If participants are aware that they are 

more variable in their motor actions, they will be more conservative in planning their 

actions to minimize loss.  Therefore, individuals’ implicit awareness of their variability 

affects their motor strategies. 

In addition to estimating and representing scene parameters pertaining to a single 

object / entity, the visual system must also deal with scenes that contain multiple similar 

elements.  For example, cooks need to be quickly process the mean size, color, and shape 
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of beans when sorting them to remove foreign objects (e.g., stones) and they need to 

rapidly assess variance when selecting root vegetables to ensure uniform size for even 

cooking.  Similarly, quality control workers must be aware of not only the mean size of a 

product (say, eggs), but also how much each batch can vary in size, color, and quality 

before being classified as a higher/lower grade.  Therefore, uncertainty or variance also 

arises naturally in situations where there are multiple similar elements with similar (but 

not identical) values along some property of interest (disc size, color, orientation, etc.). 

When a scene contains sets of multiple elements, as more objects are added to the set, 

more information must be processed and stored.  While each parameter of an element 

within a scene has a lossy, variable encoding, there may also be representations of the 

distribution properties (i.e., summary statistics) of sets of multiple elements. 

Summary statistics are representations of quantitative information about sets.  

They provide a way to represent large quantities of information along different 

dimensions.  Research has shown that individuals can compute and represent the mean 

(Ariely, 2001; Chong & Treisman, 2003; 2005) for distributions of discs.  However, as 

the previous examples demonstrate, probabilistic computations likely require not only the 

mean, but also the variance (and possibly higher-order statistics) of the relevant 

distributions. 

Most work investigating the representation of summary statistics has used discs of 

varying radii as stimuli (Ariely, 2001; Chong & Treisman, 2003; 2005).  Discs have been 

appealing because they provide a simple geometric stimulus, but they would not be ideal 

for investigating variance perception.  The reason for this is that the relationship between 

physical “size” (which could mean area or radius/diameter for circles) and perceived size 
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is highly non-linear, and moreover the precise mathematical form of this relationship is 

not fully known (but see Teghtsoonian, 1965). Therefore, in the current experiments, 

element orientation (rather than size) was used to investigate the representation of 

variance.  One could use oriented line segments, but because orientation is a periodic 

parameter, stimuli could only be manipulated between 0° and 180° and any stimuli with 

variability would thus need to have a relatively small variance.  Therefore, we chose to 

use oriented (“pointy”) triangles, in order to maximize the range of distinct orientations 

(0° - 360°). 

The current study thus addressed the following questions: 

1. How well can participants estimate variance?  Specifically, how precise is the 

representation of variance? 

2. When subjects estimate dispersion in orientation, are they in fact using variance, 

or a simpler statistic such as sample range? 

Two experiments were conducted to address these questions.  In Sections 1 and 2, 

the methods and findings of Experiments 1 and 2 are presented, respectively.  A general 

discussion follows in Section 3.  



6 

 

 

 

EXPERIMENT 1: SENSITIVITY TO SET VARIANCE 

In order to determine if participants could generate and process representations of 

second-order summary statistics, Experiment 1 was designed to evaluate participants’ 

abilities to compare samples of oriented isosceles (“pointy”) triangles that differed in 

orientation variance.  Experiment 1 specifically asked how sensitive participants were in 

estimating the variance of sets of oriented elements, and how their sensitivity varied with 

sample size.  In addition, a post-hoc analysis of the variance in the experimental stimuli 

(i.e., the sampling distributions) was contrasted with participant performance in order to 

estimate the internal noise of participant’s orientation variance representations. 

I. METHODS 

a. Participants 

Six graduate students (4 males and 2 females) at Rutgers University took part in 

the experiment.  Participants S1, S4, and S6 had previous experience with psychophysical 

experiments.  Participants S2, S3, and S5 were naïve participants who received 

compensation for their experimental time.  The participants gave their written consent to 

the experimental protocol that had been approved by the Institutional Review Board at 

Rutgers University. 

b. Stimuli 

The stimuli were composed of a number of isosceles triangles with orientations 

drawn from von Mises distributions.  Each triangle subtended 1.23° degrees of visual 

angle (DVA) and had a 5:1 (altitude:base) aspect ratio.  The triangles were randomly 

placed in a circular area with diameter = 11.87° DVA, and were placed such that no two 

triangles overlapped (with a 0.09° DVA buffer between elements).  For each stimulus, 



7 

 

 

 

the sample of orientations was drawn from a von Mises distribution using the randraw 

MATLAB function (Bar-Guy, 2005) with a probability density function of: 

( | , ) = ∗  ( )2 ( )  

where  is the mean orientation of the distribution,  is the concentration parameter, and 

 is the modified Bessel function of order 0.  The von Mises distribution was chosen for 

this experiment because it is considered the “circular normal distribution” and the 

concentration parameter ( ) closely approximates the reciprocal of the variance of a 

Gaussian distribution: 

lim→ = 1
 

In order to test the influence of sample size on variance perception, a 3x3 design 

was employed with baseline SD and sample size as independent variables.  Three 

baseline, or standard, SDs (10°, 20°, and 30°) and three sample sizes (N = 10, 20, and 30) 

were used to create 9 different conditions.  For each baseline SD, 8 comparison SDs 

(±10%, ±30%, ±50%, and ±70% of baseline SD) were used in the method of constant 

stimuli. 

c. Procedure 

A two-interval, forced-choice procedure was employed.  On each trial, the 

participants received two presentations of stimuli (two intervals) and were asked to 

choose the stimulus with the higher orientation variance.  On each trial within a 

condition, where baseline SD and N were constant, one of the stimuli (randomly chosen 

to be the 1st or 2nd) was drawn from a distribution with = rand ∗ 2π, =  and the other stimulus was drawn from a distribution with =



8 

 

 

 

, =  , where the comparison, or test, SD was randomly chosen from 

the 8 possible comparison SD values.   

Hence there were 9 conditions (3 baseline SDs × 3 sample sizes), and each 

condition consisted of 400 trials (8 comparison SDs × 50 repetitions), for a total of 3600 

trials per participant.  Each condition took participants approximately 20-25 minutes to 

complete and participants completed a maximum of 2 such sessions a day with at least a 

15 minute break between conditions.  Before each condition, participants were reminded 

that the triangles were placed randomly and that they should make their decisions based 

solely upon the variance in the triangles’ orientations.  

The participants were comfortably seated before a computer screen and a 

keyboard, and used a chin rest placed 1 meter from the screen.  Practice trials were 

provided, where a series of representative stimuli were presented to familiarize the 

participant with distributions of orientations of triangles that had a fixed mean orientation 

but different variances.  The example practice trials included stimuli with exaggerated 

variance differences to illustrate the task.  Participants were encouraged to ask questions 

and to raise any issues with the experimenter.  After the practice trials, the experimenter 

would initialize the experiment and leave the room. 

The first interval in a trial was initiated by a keystroke on the computer keyboard.  

A fixation cross was flashed for 1000 ms, followed by the first stimulus for 300 ms, a 

mask for 50 ms, an inter-stimulus interval of 100 ms, the second stimulus for 300ms, a 

mask for 50ms, and then a black response screen requesting the participant to respond 

(see Figure 1).  No feedback was provided.  The participants were allowed to take a break 

half-way through each experimental session. 
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Figure 1. Example flow diagram for a single trial.  Note that the second stimulus display has higher 

variance than the first. Note that the difference in variance between the two displays has been exaggerated 

in this Figure for illustrative purposes. 

d. Data analysis 

Stimulus parameters and participant responses were analyzed using the psignifit 

toolbox version 2.5.6 for Matlab R2008b, which implements the maximum-likelihood 

method and confidence interval bootstrap methods described by Wichmann and Hill 

(2001a; 2001b).  Analyses were conducted to address the following questions: 

• How sensitive/precise are participants in estimating the variance of a set of 

oriented elements? 

• How does this sensitivity vary with sample size? 
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II. RESULTS 

a. Bias 

Confidence intervals indicated that most participant PSEs did not significantly 

differ from the baseline SDs for the 9 conditions.  The baseline SD did not fall out 

outside of the 95% confidence intervals for S1 or S3.  Participant S2 had 1 positively 

biased PSE, S5 had 2 positively biased PSEs, S4 had 4 positively biased PSEs, and S6 

had 6 positively biased PSEs.  Although most participants had few, if any, biases for 

individual conditions, only one, S6, had a consistently positive bias. 

b. Effect of Baseline Variance 

In order to determine the effect of baseline SD on observer performance, 

psychometric curves were fit to the participants’ data using psignifit (Wichmann & Hill, 

2001a; 2001b) and performance was compared within-participant between baseline SD 

conditions, keeping sample size constant.  If variance perception, as measured by this 

experimental task, conforms to Weber’s Law, then psychometric curves with constant N 

should have similar shapes (sigmas) and there should be no effect of baseline variance. 

The plots in Figure 2 suggest that this is approximately true. We will return to this 

question when we report the difference thresholds.  
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A. 

 

B. 

 

C. 

 

 Figure 2. Within-participant psychometric curves for 6 participants with sample sizes of 10 (A), 20 (B), 

and 30 (C) elements held constant and varying baseline SD: 10° (red), 20° (green), and 30° (blue). 
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c. Effect of Sample Size 

Figure 3 shows the same data and psychometric curves rearranged to show the 

influence of sample size. Interestingly, the sigmas of the psychometric curves for 

participant responses, which are related to the participants’ sensitivity, appeared to 

increase as sample size increased (see Figure 3). 
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A. 

 

B. 

 

C. 

 

 Figure 3. Within-participant psychometric curves for 6 participants with baseline SDs of 10° (A), 20° (B), 

and 30° (C) held constant and varying sample size: N = 10 (red), 20 (green), and 30 (blue) elements. 
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d. Sensitivity 

The apparent trend of increasing sigma of the psychometric fits with increasing 

sample size warranted additional analysis, so difference thresholds, using Gaussian CDF 

best-fits, were estimated using psignifit’s curve fitting toolbox (Wichmann & Hill, 2001a; 

2001b).  Difference thresholds were defined as the PSE-75% “higher” threshold, 

estimated using the psychometric curve.  Note that the difference threshold is a raw, 

unnormalized threshold in degrees for each participant for each condition.  For each 

participant, as baseline standard deviation increased, so did the difference threshold (see 

Figure 4).  For most participants and most conditions with constant sample size and 

increasing baseline SD, this increase was linear, as would be expected from Weber’s 

Law.  In addition, for most participants, larger sample sizes resulted in lower difference 

thresholds. 

  

Figure 4. Difference thresholds for 6 participants for 9 conditions: N = 10 (red), 20 (green), 30 (blue) 

elements × baseline SD = 10°, 20°, 30°. 
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normalized by the baseline SDs.  Figure 5 shows that the relative thresholds are largely 

independent of baseline SD, as would be expected from Weber’s Law. However, relative 

thresholds tended to decrease with sample size: the larger the sample size, the more 

precisely participants can estimate the variance. 

 

Figure 5. Relative thresholds for 6 participants for 9 conditions: N = 10 (red), 20 (green), 30 (blue) 

elements × baseline SD = 10°, 20°, 30°. 

e. Internal vs. External Noise 

The encoding of external stimuli is an inherently noisy process.  As illustrated in 

the process flow diagram from Gallistel and King (2009), scene perception can be 

distorted by external physical noise sources that act upon the distal stimulus or internal 

biophysical noise sources that can alter the sensory signal (see Figure 6). 
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Figure 6. Process flow diagram of the encoding of a distal stimulus into a percept (Gallistel & King, 2009). 

In the Experiment 1, physical noise was controlled, such that a single sample of 

orientations presented repeatedly would generate the same proximal stimulus, assuming 

other environmental factors (distance from the stimuli, fatigue, etc.) are fixed.  However, 

note that from trial to trial the samples of orientations are drawn from a probabilistic 

distribution, the von Mises distribution and, therefore, there is variance from one sample 

(on a particular trial) to the next.  When orientations are drawn from an underlying 

distribution with a given population mean and population variance, the mean and 

variance of the sample will vary around the population parameters.  These sampling 

distributions have a mean and variance (the means of the sampling distributions of the 

mean and variance, and the variances of the sampling distributions of the mean and 

variance) and can thus be used to create observer models. 

An ideal computational model would have an absence of external physical noise 

or internal noise sources and would respond with perfect precision and accuracy for every 

trial.  However, due to sample-to-sample variance from samples being drawn from a 

probabilistic distribution, some trials may have a stimulus drawn from a higher 

population variance condition, but have a lower sample variance.  This variance is 
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manifested as variability in the sample’s variance around the mean variance (i.e., the 

baseline SD) for the condition and is quantified across the course of the experimental 

condition as the standard error of the variance (i.e., the standard deviation of the sampling 

distribution of variance).  If the ideal computational model then made its noise-free 

decisions, then the model’s psychometric curve would have a sigma (i.e., standard 

deviation of a Gaussian psychometric fit) equal to the standard error of the variance. 

However, humans are not noise free and have numerous internal sources of 

biophysical noise.  Although the performance would be predicted by the standard 

deviation of the variance for a perceptual system with no internal noise, the human visual 

system is noisy and noisy representations will ultimately decrease the performance.  

When representations of the samples of orientations (the distal stimuli) are generated, 

there are two primary possible sources of noise: 

1. The representation of the orientation of individual elements. 

2. The representation of the orientation variance of the sample. 

Each orientation will thus be represented with some variability and so will the 

holistic representation of their variance in the scene, so human performance could only be 

lower than would be predicted by the standard error of the variance. 

The sigmas of the psychometric curves (Figure 7) are a measurement that includes 

both the internal and external sources of noise.  It is the parameter fit to the individuals’ 

psychophysical data that represents an individual’s variance in their own representation 

of the variance.  Consistent with the difference threshold analysis (Figure 4), as baseline 

SD increased, so did the sigma of the psychometric curves. 
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Figure 7. Psychometric curve sigmas for 6 participants for 9 conditions: N = 10 (red), 20 (green), 30 (blue) 

elements × baseline SD = 10°, 20°, 30°. 

In order to determine the contribution of internal sources of noise (representation 

of the orientation of individual elements, and representation of the sample variance), 

participant performance was compared for each condition to a model with no internal 

noise.  By plotting the sigma of the Gaussian psychometric curve fits against the standard 

error of the variance for each condition, one can estimate the contribution of the internal 

sources of variability (see Figure 8).  Assuming internal noise affects performance in a 

constant manner, a linear best fit line was fit to the data to estimate how well participants 

performed compared to an ideal noise-free observer model.  Participants appeared to have 

representations of the sampling distributions that are approximately 1/3 as precise as an 

ideal model due to the internal biophysical noise sources (S1: 55% of ideal, S2: 31% of 

ideal, S3: 29% of ideal, S4: 21% of ideal, S5: 33% of ideal, S6: 27% of ideal). This 

suggests that, on average, two-thirds of the noise/imprecision in participants’ 

performance is due to internal sources of noise, and only one-third is due to external 

sources (sampling variability). 
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Figure 8. Comparing the psychometric curve sigmas versus the standard error of the standard deviation for 

6 participants for 9 conditions.  Pink lines are linear fits.  

III. DISCUSSION 

The results of Experiment 1 showed participants are sensitive to orientation 

variance and that their relative thresholds (difference thresholds normalized by baseline 

SD) were largely independent of baseline SD for the majority of participants. No bias 

would be predicted for participant responses given the two-interval, forced-choice 

higher/lower paradigm employed. 

A more interesting result was that the general trend for relative thresholds was to 

increase with decreasing sample size.  That is to say, as sample sizes became smaller, 

participants needed a larger difference in the baseline and comparison variances before 

they could detect a difference.  Participants relative thresholds (Weber fractions) ranged 

from approximately 15% for n = 30 and up to > 40% for n=10.  Therefore, participant 

sensitivity to the variance summary statistic was dependent upon the number of elements 

in the scene. This result contrasts sharply with previous research on first-order summary 

statistics: the estimation of the mean disc size in a set has been shown to be largely 
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unaffected by set size (in the range of 1-12 elements used by Chong & Treisman, 2003; 

and for sample sizes ranging from 4-16 elements for Ariely, 2001). 

Further analysis of the participants’ psychometric curves revealed that 

participants appear to have representations of the sampling distributions that are 

approximately 1/3 as precise as ideal representations, which assume no noise in the 

representation of individual orientations and representation of sample variance. 

 

EXPERIMENT 2: SAMPLE RANGE VS. VARIANCE 

The results from Experiment 1 clearly showed that participants are sensitive to the 

dispersion of orientations and could judge elements drawn from a higher variance 

population distribution to be different from samples drawn from a lower variance 

population.  However, these results do not necessarily show that participants are sensitive 

to variance per se.  A natural, and simpler, alternative in performing this task and judging 

the dispersion would be to use sample range.  This is due to the fact that the range 

statistic is diagnostic of the variability (i.e., higher range is correlated with higher 

variance).  Indeed, as long as the baseline and comparison samples are drawn from the 

same distribution, it is difficult to tell whether observers are using SD or sample range.  

Therefore, in order to experimentally distinguish between the strategies of using sample 

range or variance, one must set up a situation in which the two statistics would yield 

different predictions. We do this by drawing samples from different population 

distributions for the baseline and comparison stimuli displays. 

The strategy for this experiment was then to use Uniform distribution for baseline,  

or standard, samples and Gaussian distribution for comparison, or test, samples, such that 
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samples drawn from the two distributions would have the same sample variance, but 

different sample ranges.  Participants would be asked to compare the variability of the 

baseline and comparison samples and if participants chose to use range instead of 

variability, one would predict a bias in their psychometric curves due to the differing 

sample ranges. 

In order to compute the magnitude of the predicted bias, a Monte Carlo simulation 

was used to calculate the expected PSE if participants used sample range instead of 

variance.  The basic idea was to draw samples from the 2 distributions with identical 

sample ranges and to measure the sampling distributions’ standard deviations to compare 

predicted PSEs (see Figure 9).  100,000 samples were drawn from separate Uniform 

population distributions with population means of 0, sample sizes of 10, 20, 30, and 40 

elements, and population ranges of 30, 60, 90, and 120 degrees (for a total of 16 sampling 

distributions, 4 sample sizes × 4 ranges).  From these Uniform samples, sampling 

distributions were derived and the sample means, sample ranges, and standard deviations 

were estimated.  Gaussian sample distributions with constant sample sizes were 

successively drawn while increasing the population standard deviations from 0 in 

increments of 0.01° until the Gaussian mean sample ranges were equal or greater than of 

the Uniform mean sample ranges.  This resulted in Uniform and Gaussian sampling 

distributions with mean sample ranges within 0.5° of each other, but with differing 

sample variances (see Table 1 for the results).  Samples with n = 40 led to the greatest 

difference between the sample standard deviations between the Uniform and the 

Gaussian distributions.  Therefore, samples with 40 elements were chosen to maximize 

the predicted bias for this experiment.  For samples with 40 elements, the mean Gaussian 
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sample SD were, on average, ~23% lower than the mean Uniform sample SD with the 

same mean sample range.  Therefore, the prediction would be that if participants use 

sample range when making judgments of dispersion, their PSEs would be 23% lower 

than the Uniform distributions’ mean sample variances. 

 ⟷|| ⟷  

Figure 9. Commutative diagram illustrating the strategy for Experiment 2, where the distributions’ mean 

sample ranges (  and ) were equated, leaving the mean sample standard deviations 

(  and ) to vary.  See Table 1 for calculations. 

 

Table 1.  
Sample statistics from Uniform and Gaussian sample distributions 
with N = 100,000 samples. 

 

Sample 
Size 

Uniform 
Population 

Range 

Uniform 
Sample 

SD 

Uniform 
Sample 
Range 

Gaussian 
Sample 
Range 

Gaussian 
Sample 

SD 
1 – (Gaussian SD / 

Uniform SD) 
10 30 8.54 24.53 24.62 7.78 0.0890 
10 60 17.08 49.08 49.24 15.57 0.0884 
10 90 25.62 73.62 73.80 23.32 0.0899 
10 120 34.15 98.16 98.27 31.04 0.0911 
20 30 8.613 27.15 27.30 7.21 0.1627 
20 60 17.21 54.27 54.54 14.41 0.1630 
20 90 25.84 81.45 81.84 21.61 0.1638 
20 120 34.44 108.59 108.61 28.70 0.1668 
30 30 8.63 28.06 28.17 6.84 0.2077 
30 60 17.26 56.13 56.43 13.69 0.2067 
30 90 25.89 84.20 84.48 20.51 0.2079 
30 120 34.50 112.26 112.33 27.26 0.2099 
40 30 8.64 28.54 28.97 6.66 0.2293 
40 60 17.28 57.07 57.43 13.21 0.2357 
40 90 25.92 85.63 85.92 19.76 0.2378 
40 120 34.56 114.16 114.58 26.33 0.2381 
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Because the baseline distribution (Uniform) and the comparison distribution 

(Gaussian) had sample variances equated, if participants actually used variance when 

judging the dispersion of the samples, one would predict a bias of 0% of the baseline SD.  

However, if participants instead used range when judging the dispersion, although they 

would be explicitly instructed to use the variability, then one would predict a bias of -

23% of the baseline SD. 

I. METHODS 

a. Participants 

The six graduate students from Exp. 1 participated in Exp. 2.  The participants 

gave their written consent to the experimental protocol that had been approved by the 

Institutional Review Board at Rutgers University. 

b. Stimuli 

As in Exp. 1, stimuli were composed of a number of isosceles triangles.  Each 

triangle had a 5:1 (altitude:base) aspect ratio and subtended 1.23° degrees of visual angle 

(DVA).  The triangles were randomly placed in a 13.69° DVA circular area, with the 

same density as the N=30 conditions in Exp. 1, and were placed such that no two 

triangles overlapped. 

For each trial, samples were drawn from Uniform and Gaussian distributions 

using the randraw MATLAB function (Bar-Guy, 2005). 

As described in the discussion of the Monte Carlo simulation, in order to 

maximize the expected bias, sample size was fixed at n = 40.  Three baseline SDs 

(baseline SD = 10°, 20°, and 30°) drawn from Uniform distributions with were used.  For 

each baseline SD condition, 9 comparison SDs (±10%, ±30%, ±50%, ±70%, and -90% of 
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baseline SD) were used to create psychometric curves.  The comparison SDs were chosen 

to straddle the two possible predictions (0% PSE bias if sample variance was used, -23% 

PSE bias if sample range was used) and to provide ample sampling space for individual 

differences is dispersion perception. 

c. Procedure 

As in Exp. 1, a two-interval, forced-choice procedure was employed.  On each 

trial, the participants saw two presentations of stimuli (two intervals) and were asked to 

choose the stimulus with the higher orientation variance.  On each trial within a 

condition, where baseline SD was constant, one of the stimuli (randomly chosen to be the 

1st or 2nd) was drawn from a the Uniform distribution with = ∗2 , =    and the other stimulus was drawn from a Gaussian 

distribution with = , =   , where the comparison SD was 

randomly chosen from the 9 possible comparison SD values. 

Initial training was provided and participants were encouraged to ask questions 

and to raise any issues with the experimenter.  After practice, the experimenter would 

initialize the experiment and leave the room. 

Trial structure and timing were the same as in Exp. 1. 

d. Data analysis 

Stimuli and participant responses were analyzed with  MATLAB using psignifit.  

Of specific interest, as stated in the Exp. 2 introduction, were the participants’ biases 

(difference between the respective PSEs and baseline variance value). 
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II. RESULTS 

Psychometric curves were fit to the participants’ data and participants’ PSEs were 

compared to the predicted biases (0% if participants used variance, -23% if participants 

used range).  As illustrated in Figure 11, every participant responded with essentially no 

bias. When they deviated from zero, biases were small and positive. 

 

Figure 10. Within-participant psychometric curves for 6 participants.  Each curve represents a baseline SD 

of 10° (red), 20° (green), or 30° (blue).  The colored vertical lines represent the observed PSEs, the black 

dashed line represents the predicted PSE if participants used range, and the black solid line represents the 

predicted PSE if participants used variance. 

95% confidence intervals indicated that all participant PSEs were significantly 

different from the -23% bias predication for all conditions, which rules out the usage of 

sample range as a response method for all participants (see Figure 11). 
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Figure 11. Participant PSEs versus predicted PSEs for usage of Variance or Range in variance judgement 

tasks.  The black dashed line represents the predicted PSE if participants used range and the black solid line 

represents the predicted PSE if participants used variance.  Error bars are 95% confidence intervals. 

 

III. DISCUSSION 

The results of Experiment 2 provide supportive evidence that participants were 

using the variance, rather than the range, when making judgments about the dispersion of 

orientations in the experimental stimuli. All of the observed PSEs were significantly 

different from the range prediction and were consistent with the prediction for usage of 

sample variance.  Experiment 1 suggested that participants were sensitive to variance and 

Experiment 2’s results agree.  Reassuringly, observers appear to be using the variance 

when instructed to use variance and not sample range. 

Participants’ PSE were precise; that is, the PSEs for different baseline SDs did not 

vary to a significant degree.  As with Experiment 1’s constant N results, there was no 

significant effect for Experiment 2’s PSEs. 
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CONCLUSIONS 

The world is highly stochastic and variable, with pervasive ambiguity and noise, 

and so humans have adapted to cope with an ever-changing environment.  Every organic 

and inorganic object has a range of properties that vary from object to object.  Some 

varying in imperceptible ways, such as the differing sizes of grains of sand on the beach, 

while others can be so great that the sheer magnitude boggles the mind (e.g., sizes of 

planets, stars, and galaxies).  For most sets of similar objects that we encounter in our 

everyday lives (e.g., eggs, kiwis, basketballs, etc.), there are limited ranges of perceptibly 

differing properties.  These properties, such as orientation, size, and color, provide cues 

as to how we should interact, handle, and relate the sets of objects.  And because our 

perceptual systems exist to not only provide information about what is happening in the 

present, but to guide us as we plan our future decisions and actions in an uncertain world, 

these properties can help us identify how we should interact with the sets, from choosing 

to medicate a seemingly sick herd of sheep to making the decision to purchase a ripe 

basket of strawberries. Because statistical summary information is so valuable, it is 

beneficial to have explicit representations of uncertainty and variance in the perceptual 

system. 

Previous research has investigated the representation of summary statistics, but 

has focused primarily on the representation of the mean size of sets of discs (Ariely, 

2001; Chong & Treisman, 2003; 2005).  Variance perception has been an overlooked, but 

critically important, summary statistic that allows for perceptual processes to categorize 

and produce goal-directed actions.  It allows for cue combination within and across 

modalities and for loss functions to be applied to visually guided actions. 



28 

 

 

 

The experiments in this study specifically addressed the question of whether 

orientation variance is represented in the brain and how sensitive humans are to changes 

in orientation variance.  Experiment 1 asked: How well can participants estimate variance 

and how precise is the representation of variance? And Experiment 2 investigated 

whether participants used a “simpler” summary statistic, range, rather than variance when 

estimating dispersion in orientation. 

Experiment 1 clearly showed that not only was the difference threshold a 

relatively constant proportion of base SD for the range of SDs tested, but interestingly 

that the relative thresholds (Weber fractions) were sample size dependent.  And although 

the visual system is clearly sensitive to variance, the sensitivity appears to be not as high 

as sensitivity to disc size, where discrimination thresholds are ~6-8% (Chong & 

Treisman, 2003). However, for a direct comparison to perception of the mean, we will 

need to test the sensitivity to the mean for orientation.  In order to directly compare the 

sensitivity of variance perception to perception of the mean for sets of elements, one 

needs to compare sensitivities in the same domain (e.g., disc size, orientation, etc.).  

Although ideally this would mean extending the methodologies and analyses to the 

domain of disc size, the mapping between physical disc size and perceived size is less 

clear (as discussed in the Introduction). 

 The results of Experiment 2 showed that participants were not using range when 

they were instructed to make their judgments of dispersion based upon variance.  These 

results support the methodology and conclusions of Experiment 1. 
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 The results of Experiments 1 and 2 support the conclusion that the human 

perceptual system has representations of the variances of sets of elements and that it can 

provide a wealth of information for actions and decision making. 
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