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ABSTRACT OF THE DISSERTATION

On large families of automorphic L-functions on GL2

by Goran Djanković

Dissertation Director: Prof. Henryk Iwaniec

The goal of this dissertation is analytical investigation of large families of automorphic

L-functions on GL2. With a view towards potential applications in Analytic Number

Theory, we investigate families of holomorphic modular forms, but additionally averaged

over the nebentypus - characters and over the levels. We establish orthogonality in such

a family in the limited range in the form of large sieve type inequality. Further we

investigate non-vanishing at the central point of the corresponding L-functions and give

a bound for the sixth moment for Γ1(q)-family, consistent with Lindelöf hypothesis on

average.
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Chapter 1

Introduction and preliminaries

1.1 Automorphic forms

The main object of study in this thesis are holomorphic automorphic forms on GL2

with respect to congruence subgroups of SL2(Z) and L-functions associated to them.

Classical picture is the following: the group SL2(R) acts on the hyperbolic upper-

half plane H = {Im(z) > 0} by Möbius transformations. If Γ is an arbitrary discrete

subgroup of SL2(R), a point s ∈ R∪{∞} is a cusp of Γ if there exists a parabolic element

of Γ fixing s. Then Γ acts on H∗, the union of H and all the cusps of Γ. Subgroups

for which X(Γ) = Γ\H∗ is a compact Riemann surface are called Fuchsian groups of

the fist kind. Such subgroups have a finite covolume and at most a finite number of

Γ-inequivalent cusps.

The most important example of such groups is the Hecke congruence subgroup - a

discrete subgroup of SL2(R) defined by

Γ0(q) =






 a b

c d


 ∈ SL2(Z) : c ≡ 0 (mod q)



 .

Let χ be a Dirichlet character modulo q. Then a function f : H → C is a Γ0(q)-

automorphic form of weight k and nebentypus χ if:

• f
(

az+b
cz+d

)
= χ(d)(cz + d)kf(z), for all


 a b

c d


 ∈ Γ0(q);

• f is holomorphic in H and

• f is holomorphic at every cusp of Γ0(q).

We denote the space of all such functions by Mk(Γ0(q), χ). A function f ∈ Mk(Γ0(q), χ)
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is a cusp form if it vanishes at every cusp of Γ0(q), and the subspace of such forms is

denoted by Sk(Γ0(q), χ).

Geometrically, we can interpret holomorphic Γ-automorphic forms of even weight 2k

and trivial character as follows: let Ω = T ∗(X(Γ)) be the cotangent bundle to X(Γ) and

Ω⊗ k its kth tensor power. Then automorphic forms of weight 2k are the holomorphic

sections of Ω⊗ k, or in other words, every meromorphic differential on X(Γ) of degree

k pulls back (with respect to the natural projection H → X(Γ) ) to a meromorphic

differential f(z)(dz)k on H, where f is an automorphic form of the given type.

Denote j(g, z) = cz + d, for g =


 a b

c d


 ∈ SL2(R), and

K = SO(2) =



r(θ) =


 cos θ − sin θ

sin θ cos θ


 : θ ∈ [0, 2π)



 .

Then every automorphic form f ∈ Mk(Γ0(q), χ) can be lifted to a function on SL2(R)

defined by:

φf,∞(g) = j(g, i)−kf(g(i)), g ∈ SL2(R),

which has the following properties:

• φf,∞(γg) = χ(γ)φf,∞(g), for all γ ∈ Γ0(q), where χ(γ) := χ(dγ);

• φf,∞(g r(θ)) = e−ikθφf,∞(g), for all r(θ) ∈ K;

• φf,∞(g) satisfies the growth condition:

φf,∞





 1 x

0 1





 y1/2 0

0 y−1/2


 r(θ)


 ¿ yN , for some N, as y → +∞;

• ∆φf,∞ = −k
2

(
k
2 − 1

)
φf,∞, where ∆ is the Casimir operator of SL2(R) given in

(x, y, θ)- coordinates by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
− y

∂2

∂x∂θ
;

• if f is a cusp form, then φf,∞ is cuspidal, meaning:

∫ 1

0
φf,∞





 1 x

0 1


 g


 dx = 0, for all g.
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The modern context for automorphic forms is provided by the theory of automorphic

representations of reductive groups over adeles over number fields. Here we will just

briefly describe the lift of classical automorphic forms to the adelic space.

Let A = AQ denote the ring of adeles of Q i.e. the restricted direct product of

Q∞ = R and Qp, p = 2, 3, 5, . . . with respect to open compact subrings (Zp)p=2,3,.... The

image of Q in A is a discrete subgroup since Q ∩ (−1, 1)×∏
p<∞ Zp = {0}.

The group GL2(A) is the restricted direct product of GL2(R) and GL2(Qp), p =

2, 3, 5, . . . with respect to (GL2(Zp))p. Now, if we denote

K0,p(q) =






 a b

c d


 ∈ GL2(Zp) : c ∈ qZp





and then K0(q) =
∏

p<∞K0,p(q), the following holds:

A× = Q×R×>0

∏
p<∞

Qp,

GL2(A) = GL2(Q) GL+
2 (R) K0(q) and

GL2(Q) ∩ GL+
2 (R) K0(q) = Γ0(q). (1.1)

Next, each Dirichlet character χ (mod q) canonically determines a character of the

idele class group Q×\A×: let χp be the composition of the original χ and the natural

projection Z×p ³ (Z/qZ)×. Then
∏

p<∞ χp is a character of A× trivial on Q×R×>0,

which we will also denote χ. Moreover, it induces the character of K0(q) in the usual

manner.

Any g ∈ GL2(A) can be decomposed according to (1.1) as g = γg∞k0, and then for

any f ∈ Sk(Γ0(q), χ) we can define a function φf on GL2(A) by

φf (g) = φf (γg∞k0) := j(g∞, i)−kf(g∞(i))χ(k0).

This gives a realization of Sk(Γ0(q), χ) in the space of functions φ on GL2(A) satisfying

the following conditions:

• φ(γg) = φ(g), for all γ ∈ GL2(Q);

• φ(g k0) = φ(g) χ(k0), for all k0 ∈ K0(q);
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• φ(g r(θ)) = e−ikθφ(g);

• the restriction of φ on GL+
2 (R) satisfies:

∆φ = −k

2

(
k

2
− 1

)
φ ;

• φ(g z) = χ(z)φ(g) for all z ∈ Z(A) ' A× – the center of GL2(A);

• for every c > 0 and every compact Ω ⊆ GL2(A), there exists N such that

φ





 a 0

0 1


 g


 ¿ |a|N

for all g ∈ Ω and a ∈ A×, |a| > c;

• φ is cuspidal:

∫

Q\A
φ





 1 x

0 1


 g


 dx = 0, for almost all g.

The quotient Q\A ∼= N(Q)\N(A) is compact and hence the last integral is defined for

almost all g.

For our fixed unitary idele class character χ : Z(Q)\Z(A) → C∗, let L2(χ) be the

Hilbert space of functions φ on GL2(Q)\GL2(A) such that φ(zg) = χ(z)φ(g) and
∫

GL2(Q)Z(A)\GL2(A)
|φ(g)|2dg < ∞,

where dg is a GL2(A)-invariant measure on GL2(Q)Z(A)\GL2(A). Also, let L2
0(χ) ⊆

L2(χ) denote the closed, GL2(A)-invariant subspace of cuspidal functions.

The group GL2(A) acts unitarily on L2(χ) by right translations ρχ:

(ρ(g)φ)(x) = φ(xg),

and let ρχ,0 denote the restriction of ρχ to L2
0(χ). Now a fundamental theorem of

Gelfand and Piatetski-Shapiro (cf. [9]) gives that ρχ,0 is completely reducible, that is

ρχ,0
∼−→

⊕
m(π) π,

where m(π) is the multiplicity of π and is finite, while π ranges over inequivalent irre-

ducible unitary representations of GL2(A). Moreover the multiplicity one theorem of

Jacquet-Langlands, which is a consequence of the uniqueness of the Whittaker models,

gives here m(π) = 1 for any cuspidal irreducible unitary representation π of GL2(A).
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1.2 Congruence subgroups: Γ0(q) vs. Γ1(q)

The principal congruence subgroup of level q is

Γ(q) =






 a b

c d


 ∈ SL2(Z) :


 a b

c d


 ≡


 1 0

0 1


 (mod q)



 .

Since it is the kernel of the natural projection SL2(Z) ³ SL2(Z/qZ), it is a normal

subgroup of SL2(Z) and hence

SL2(Z)/Γ(q) ∼= SL2(Z/qZ),

which gives that [SL2(Z) : Γ(q)] = q3
∏

p|q
(
1− 1

p2

)
.

A congruence subgroup Γ ⊆ SL2(Z) of level q is any subgroup containing Γ(q). One

such group is already introduced - the Hecke congruence subgroup Γ0(q). The other one

that will be important in this thesis is

Γ1(q) =






 a b

c d


 ∈ SL2(Z) :


 a b

c d


 ≡


 1 ∗

0 1


 (mod q)



 .

These groups satisfy

Γ(q) C Γ1(q) C Γ0(q) ⊆ SL2(Z),

where the accompanying epimorphisms

Γ1(q) ³ Z/qZ,


 a b

c d


 7→ b (mod q),

Γ0(q) ³ (Z/qZ)∗,


 a b

c d


 7→ d (mod q),

respectively show that

Γ1(q)/Γ(q) ∼= Z/qZ, [Γ1(q) : Γ(q)] = q, and

Γ0(q)/Γ1(q) ∼= (Z/qZ)∗, [Γ0(q) : Γ1(q)] = φ(q),

hence in particular [SL2(Z) : Γ0(q)] = q
∏

p|q
(
1 + 1

p

)
.

We will recall also the moduli space interpretation for both Γ0(q) and Γ1(q), that

puts them in more arithmetic perspective. We will call a pair (E, C) with E an elliptic
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curve over C and C < E a cyclic subgroup of order q - an enhanced elliptic curve for

Γ0(q). Two such pairs are equivalent (E1, C1) ∼ (E2, C2) if some isomorphism E1 → E2

maps C1 to C2.

Similarly, an enhanced elliptic curve for Γ1(q) is a pair (E, P ) where E is a C-elliptic

curve and P ∈ E a point of order q. Two pairs are equivalent (E1, P1) ∼ (E2, P2) if

some isomorphism E1 → E2 maps P1 to P2.

For τ ∈ H we denote the corresponding lattice Λτ = τZ⊕ Z, and by 〈P 〉 we denote

the group generated by the point P . Then for the modular curves Y0(q) = Γ0(q)\H and

Y1(q) = Γ1(q)\H we have the following isomorphisms with the corresponding moduli

spaces of complex elliptic curves with q-torsion data:

{enhanced elliptic curves for Γ0(q)}/ ∼ ∼= Y0(q),

class of (C/Λτ , 〈1/q + Λτ 〉) 7→ Γ0(q)τ,

and

{enhanced elliptic curves for Γ1(q)}/ ∼ ∼= Y1(q)

class of (C/Λτ , 1/q + Λτ ) 7→ Γ1(q)τ.

Finally, the following decomposition of the space of holomorphic Γ1(q)-automorphic

forms into χ-eigenspaces, that is the spaces of Γ0(q)-automorphic forms with characters

will be the starting point for several calculations:

Sk(Γ1(q)) =
⊕

χ (mod q)

χ(−1)=(−1)k

Sk(Γ0(q), χ). (1.2)

Here it is important to emphasize the parity condition χ(−1) = (−1)k, since otherwise

the corresponding χ-eigenspace is empty.

1.3 Hecke operators and Hecke eigenforms

For any integer k, every β ∈ GL+
2 (Q) induces the operator [β]k on functions f : H→ C

given by f [β]k(z) = (det β)k/2

j(β,z)k f(βz). For any two congruence subgroups Γ1 and Γ2 of

SL2(Z) and α ∈ GL+
2 (Q), Γ1 acts on the double coset Γ1αΓ2 by the left multiplication.
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There is a finite number of orbits and let Γ1αΓ2 =
⊔

Γ1βj for some representatives βj .

Then the double coset operator of weight k is defined by

f [Γ1αΓ2]k =
∑

j

f [βj ]k

and it maps [Γ1αΓ2]k : Mk(Γ1) → Mk(Γ2), also preserving the cuspidality condition.

It can also be interpreted as the homomorphism between the divisor groups of the

corresponding modular curves

[Γ1αΓ2]k : Div(X(Γ2)) → Div(X(Γ1)),

where the map is defined as a Z-linear extension of

X(Γ2) → Div(X(Γ1)), Γ2 z 7→
∑

j

Γ1βj(z).

Now specializing to the situation Γ1 = Γ2 = Γ1(q), we get an action of the group

Γ0(q) on Mk(Γ1(q)) via double coset operators: for α ∈ Γ0(q) and f ∈ Mk(Γ1(q)),

f [Γ1(q)αΓ1(q)]k = f [α]k ∈ Mk(Γ1(q)). The subgroup Γ1(q) C Γ0(q) acts trivially, and

therefore this action can be seen as the action of the quotient (Z/qZ)∗ on Mk(Γ1(q))

via so called diamond operators:

〈d〉 : Mk(Γ1(q)) → Mk(Γ1(q)),

where 〈d〉f = f [α]k for any α ∈ Γ0(q) with the lower right entry ≡ d (mod q). Now

the spaces Mk(Γ0(q), χ) for Dirichlet characters χ (mod q) can be characterized as the

χ-eigenspaces of the diamond operators:

Mk(Γ0(q), χ) = {f ∈ Mk(Γ1(q)) : 〈d〉f = χ(d)f, for all d ∈ (Z/qZ)∗}.

The choice α =
(
1 0
0 p

)
, for p prime, leads to the classical Hecke operators: Tp =

[Γ1(q)
(
1 0
0 p

)
Γ1(q)]k, while taking α =

(
0−1
q 0

)
gives the Fricke involution W .

Explicitly, the operator Tp for p - q on Mk(Γ1(q)) is given by:

Tpf =
p−1∑

j=0

f

[(
1 j

0 p

)]

k

+ f

[(
m n

q p

)(
p 0
0 1

)]

k

,

where mp− nq = 1.
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Adelically, Hecke operators can be seen as follows. For p < ∞ a function f on

GL2(Qp) is smooth if there exists an open compact subgroup K < GL2(Qp) such that

f(k1gk2) = f(g) for all k1, k2 ∈ K. Let C∞c (GL2(Qp)) denote the convolution algebra of

smooth, compactly supported functions on GL2(Qp). Then for any irreducible unitary

representation (π, Vπ) of GL2(Qp) and any f ∈ C∞c (GL2(Qp)), one defines an (operator

on Vπ)-valued integral

π(f) :=
∫

GL2(Qp)
f(g)π(g)dg,

where dg is a fixed choice of Haar measure.

Now denoting Kp = GL2(Zp), let T̃p ∈ C∞c (GL2(Qp)) be defined as

T̃p := meas(Kp)−1 ×
(
characteristic function of Kp

(
p 0
0 1

)
Kp

)
.

Then, recalling that ρχ denotes the action of GL2(A) on L2(χ) by right translations, if

we denote for f ∈ Sk(Γ0(q), χ) the corresponding function on the adelic space GL2(A)

with φf as above, the action of the classical Hecke operators Tp for p - q can be recognized

in the language of the correspondence f ↔ φf as follows:

ρχ(T̃p)φf = const× φTpf .

The operators Tp for different primes commute with each other and a Hecke eigen-

form is a simultaneous eigenfunction of all operators Tp, p - q.

Every f ∈ Sk(Γ0(q), χ) admits a Fourier expansion at the cusp ∞ of the form

f(z) =
∑

n≥1

λf (n)n(k−1)/2e(nz). (1.3)

If moreover f ∈ Hχ i.e. f is a Hecke eigenfunction and we normalize it so that λf (1) = 1,

the Fourier coefficients are precisely the corresponding Hecke eigenvalues:

Tpf = λf (p)f, for (p, q) = 1,

and in the normalization of (1.3), Deligne’s theorem gives the bound |λf (p)| ≤ 2.

The Hecke eigenforms f ∈ Sk(Γ0(q), χ) correspond to irreducible representations

of GL2(A) in the following way: let Vf be the closed subspace of L2
0(χ) generated

by φf under the GL2(A)-action. Then the restriction of ρχ on Vf is an irreducible

representation of GL2(A).
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1.4 Petersson’s formulae

First we introduce the notation for weighted summation over the orthogonal basis Hχ

for Sk(Γ0(g), χ) (recall that prime level q and odd weight k ≥ 3 are fixed in our case,

so in particular we can choose Hχ consisting only of primitive eigenforms):

∑h

f∈Hχ

αf =
Γ(k − 1)
(4π)k−1

∑

f∈Hχ

αf

‖f‖2
. (1.4)

For any positive integers m,n Petersson’s formula for Sk(Γ0(q), χ) is the following trace

formula:

∑h

f∈Hχ

λf (n)λf (m) = δ(m,n) + 2πi−k
∑

c≥1
c≡0(modq)

1
c
Sχ(m,n; c)Jk−1

(
4π
√

mn

c

)
(1.5)

where the normalization of Fourier coefficients is as in (1.3), δ(m,n) is Kronecker’s

diagonal symbol and Sχ(m,n; c) is the Kloosterman sum:

Sχ(m,n; c) =
∑

aā≡1(mod c)

χ̄(a)e
(

ma + nā

c

)
. (1.6)

For the proof of Petersson’s formula we refer to [14], chapter 14. Here we just

emphasize that two main ingredients in its derivation are the Hilbert space structure on

Sk(Γ0(q), χ) given by Petersson’s inner product:

〈f1, f2〉 =
∫

Γ0(q)\H
f1(z)f2(z)ykdµ(z),

and the Bruhat decomposition

Γ0(q) = Γ∞
⊔




⊔

c>0
c≡0 (q)

⊔

d mod c
(d,c)=1

Γ∞

(
a b

c d

)
Γ∞


 ,

where for given c, d, (c, d) = 1, a and b are any two integers satisfying ad− bc = 1 and

Γ∞ =
{(

1 n
0 1

)| n ∈ Z} ∼= Z is the stabilizer of the cusp at infinity. The presence of Γ∞

enables application of the Poisson summation formula, while the whole decomposition

enables access to the information about the group Γ0(q) and creates Kloosterman sums

on the right hand side of (1.5).
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Since we are interested in Γ1(q)-family, we will need various averages of (1.5) with

respect to χ (mod q), χ(−1) = (−1)k. To facilitate the notation for averaging, we will

use the operator K (cf. [15]) defined by:

Kf = i−kf + ikf̄ = 2Re(i−kf). (1.7)

Often we will exploit the orthogonality of characters in the following form:

2
φ(q)

∑

χ mod q
χ(−1)=(−1)k

χ(l) =
1

φ(q)

∑

χ mod q

(χ(l) + χ(−l)(−1)k) =





1, if l ≡q 1

(−1)k, if l ≡q −1

0, otherwise
(1.8)

which is all together equal δ(l ≡q ε)Ke
(

1
6 + εk

4

)
, where ε ∈ {1,−1} and δ(P ) = 1 if P

is true and 0 otherwise.

Next, we will encounter also the following averaging for (l, q) = 1 :

2
φ(q)

∑

χ mod q
χ(−1)=(−1)k

χ(l)τ(χ) = e

(
l̄

q

)
+ (−1)ke

(
− l̄

q

)
=





2 cos(2πl̄/q), if k is even;

2i sin(2πl̄/q), if k is odd.

(1.9)

Similarly, by opening the Kloosterman sums, we find:

2
φ(q)

∑

χ mod q
χ(−1)=(−1)k

χ(l)Sχ(m,n; c) = ikK
∑∗

a (c)
a≡l (q)

e

(
ma + nā

c

)
(1.10)

and hence we have the following lemma (which we state for general k and q):

Lemma 1.1. For all χ mod q, χ(−1) = (−1)k, let Hχ be any orthogonal basis of

Sk(Γ0(q), χ) and let ε ∈ {1,−1}. Then for any integer l, (l, q) = 1 and any positive

integers m,n we have:

2
φ(q)

∑

χ mod q
χ(−1)=(−1)k

χ(l)
∑h

f∈Hχ

λf (n)λf (m) = δ(m,n)δ(l ≡q ε)Ke

(
1
6

+
εk

4

)
+

+ 2π
∑

c≥1
c≡0(modq)

1
c
Jk−1

(
4π
√

mn

c

)
K

∑∗

a (c)
a≡l (q)

e

(
ma + nā

c

)
. (1.11)

Note that for l = 1, (1.11) reduces to Petersson’s formula for the trace of orthogonal

basis of Sk(Γ1(q)), (cf. [15] (2.20)).
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1.4.1 J-Bessel functions

On the right hand side of Petersson’s formula appear classical J-Bessel functions which

are given by the power series

Jk−1(x) =
∞∑

l=0

(−1)l

l!(k − 1 + l)!
(x/2)k−1+2l.

In this thesis, k will be fixed, and we will use often the following basic asymptotic

bounds for Jk−1:

Jk−1(x) ¿ xk−1, for x < 1, (1.12)

and

Jk−1(x) =
(

2
πx

)1/2 (
cos

(
x− π

2
(k − 1)− π

4

)
+ O(x−1)

)
, for x À 1. (1.13)

In the treatment by Fourier analysis, we need the information about the phase of

Jk−1 as provided by the following expression (see [33], p. 206) :

Jk−1(2πx) =
1

π
√

x
Re

(
W (2πx)e

(
x− k

4
+

1
8

))
(1.14)

where W is essentially "flat":

W (2πx) =
1

Γ(k − 1/2)

∫ ∞

0
e−uuk−3/2

(
1 +

u

4πx
i
)k−3/2

du.

The only thing we need to know about W is that for any ν ≥ 0:

xνW (ν)(x) ¿k,ν 1.

Further, we will need the following formula ( [29], formulas 6.36 - 6.39): for any

α, β > 0 we have:

K
∫ ∞

0
Jk−1(4π

√
αβx)e

(
(α + β)x +

γ

x

) dx

x
=

=





2πJk−1(4π
√

αγ)Jk−1(4π
√

βγ), for γ > 0;

0, for γ ≤ 0.
(1.15)
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1.5 Motivation: families of L−functions, conductors, orthogonality,

large sieves and harmonic analysis on GL2

1.5.1 The analytic conductor

Discussion in this section will use the notion of the analytic conductor, introduced by

Iwaniec and Sarnak in [18]. Let f be any arithmetic (automorphic) object which has

associated L-function

L(f, s) =
∏
p

(1− α1(p)p−s)−1 . . . (1− αd(p)p−s)−1

of degree d, a gamma factor γ(f, s) = π−ds/2
∏d

j=1 Γ
(

s+κj

2

)
and an integer qf ≥ 1

such that the completed L-function Λ(f, s) = q
s/2
f γ(f, s)L(f, s) satisfies the functional

equation:

Λ(f, s) = εfΛ(f, 1− s)

where εf ∈ C, |εf | = 1 is the "root number". Then the analytic conductor of the object

f is the following quantity:

q(f) = qf

d∏

j=1

(|κj |+ 3),

which measures analytic "complexity" of the given object, especially in relation to the

harmonic analysis in the family to which f naturally belongs. For example, the analytic

conductor of f ∈ Sk(Γ0(q), χ) is q(f) ³ qk2.

We also mention a more general notion (cf. [14], chapter 5), including the t-aspect

as well, which will be used in a comparison in chapter 3:

q(f, s) = qf

d∏

j=1

(|s + κj |+ 3).

1.5.2 Large sieves and harmonic analysis in families

The family of Dirichlet characters modulo q has ϕ(q) elements – harmonics of conductor

q. It is a very natural family, with orthogonality coming from "algebraic reasons" – the

orthogonality of characters of the finite group (Z/qZ)∗.
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But in applications in analytic number theory, much more powerful is the large sieve:

∑

q≤Q

q

ϕ(q)

∑∗

χ mod q

∣∣∣∣∣∣
∑

N<n≤2N

anχ(n)

∣∣∣∣∣∣

2

≤ (Q2 + N)‖a‖2,

itself a manifestation of the orthogonality of primitive Dirichlet characters modulo q, q ≤
Q – hence a family of cardinality ³ Q2 but conductors still ³ Q. Although we stated it

in the "arithmetic form", its proof is purely analytic, being a corollary to the following

inequality:
∑

r

∣∣∣∣∣
∑

n∼N

ane(αr n)

∣∣∣∣∣
2

≤ (δ−1 + N)‖a‖2,

for any set {αr} of δ-spaced points on the circle R/Z. Nevertheless, it is the main

ingredient in the proof of the Bombieri-Vinogradov theorem:

∑

q≤Q

max
(a,q)=1

∣∣∣∣ψ(x; q, a)− x

ϕ(q)

∣∣∣∣ ¿ x(log x)−A

where Q = x1/2(log x)−B, B depends on A and ψ(x; q, a) counts prime numbers in

the arithmetic progression a (mod q) with von Mangoldt weights. The exponent 1/2

in Q is called the "level of distribution", and measures the uniformity Q up to which

prime numbers are equidistributed in arithmetic progressions modulo q ¿ Q. This is

of huge importance in all applications, however, it is still far from the truth, which is

conjecturally 1− ε by Elliott-Halberstam conjecture. The exponent 1/2 therefore is not

a natural boundary, it is imposed as a limitation coming from the GL1 large sieve.

Therefore, there is a natural desire to search for more and more powerful families of

harmonics which could be potentially applied to various problems in analytic number

theory. One such program is developed in early eighties by Iwaniec and collaborators,

where the role of arithmetic harmonics is played by Fourier coefficients of GL2 cusp

forms. We refer to [14], §7.7 for an overview of results on large sieves for GL2 families.

Here we illustrate the power of GL2-large sieve estimates by the following appli-

cation on the distribution of primes in arithmetic progressions obtained by Bombieri-

Friedlander-Iwaniec in [2]: for fixed a > 0, any ε > 0 and any A > 0 we have

∑

q<x4/7−ε

(q,a)=1

λ(q)
(

ψ(x; q, a)− x

ϕ(q)

)
¿ x(log x)−A,
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where λ is a well-factorable function found in applications in sieve theory. In particu-

lar, this gives the level of distribution 4/7 (going beyond the classical 1/2) with some

restrictions, but still enough for some applications.

The proof of that result essentially depends on estimates for sums of Kloosterman

sums, which themselves are corollaries of the following large sieve type estimates from

[5] (theorems 6 and 7 there):

∑

q≤Q

∑

λjexpeptional
for Γ0(q)

X4iκj

∣∣∣∣∣
∑

n∼N

anρj(n)

∣∣∣∣∣
2

¿ (Q + N + NX)(QN)ε‖a‖2,

∑

q≤Q

∑

λjexpeptional
for Γ0(q)

X4iκj

∣∣∣∣∣∣
∑

n≤N

ρj(n)

∣∣∣∣∣∣

2

¿ (Q + N + N1/2X)(QN)εN,

where λj = 1
4 + κ2

j are eigenvalues belonging to the exceptional spectrum of Γ0(q) and

ρj(n) are the Fourier coefficients of the corresponding Maaß forms at the cusp∞. These

can be seen as a motivation for the last chapter in this thesis, since the key feature that

gives the power in the last two large sieve estimates is the averaging over the levels q

on GL2.

In the chapter 4 we investigate such averaging over the levels for holomorphic mod-

ular forms. Important feature is that the dimension of space Sk(Γ0(q)) is ³ q (for fixed

k), which can be interpreted also as the multiplicity of the corresponding eigenvalue,

and contrasted with the multiplicity of Maaß forms which are all conjecturally simple.

Thus, for holomorphic modular forms we have a lot of harmonics with small conductor.

This can be enlarged even more, by averaging over the spaces Sk(Γ0(q), χ), χ mod q,

thus obtaining a family of ³ Q3 harmonics of conductors ³ Q which is "richer" than the

GL1 family of Dirichlet characters χ mod q, q ³ Q which has "only" ³ Q2 harmonics

of conductor ³ Q.

Further motivation for averaging over the levels only is that the level aspect appeared

so far to have the most significant arithmetic applications – for example the subconvexity

results in the level aspect on GL2 have the most interesting consequences.

At the end, we mention that one could dream of even larger families with controlled

size of the conductor. Although GLn(R) has no discrete series if n > 2, if we fix a
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compact subset S∞ of the unitary dual ĜLn(R) containing an open set of tempered

representations, then the set S1(q) of cuspidal automorphic representations π of con-

ductor q and with π∞ ∈ S∞ should have cardinality ³ qn. But in higher rank the

problem so far is inaccessible due to the lack of workable trace formula, although some

partial results are obtained via Rankin-Selberg L-functions and lattice reduction theory

in [8] and [31] respectively.

1.5.3 Γ1(q)-large sieve

Now we recall the version of the large sieve inequality for Γ1(q)-modular forms obtained

in [15]. Let Bχ denote any orthogonal basis (not necessarily Hecke) for Sk(Γ0(q), χ),

k ≥ 3 and let Bχ 3 f(z) =
∑

n≥1 ψf (n)n
k−1
2 e(nz) denote the Fourier expansion at ∞.

Authors in [15] derive several asymptotic-large sieve-type inequalities, among which the

following one - for the prime level is the most simple:

Theorem 1.2 (Iwaniec, Li). Let q be prime, N ≥ q, T = N/q and 1 ≤ H ≤ T . Then

for any complex vector a = (an)n∼N and any ε > 0 we have

2
ϕ(q)

∑

χ mod q
χ(−1)=(−1)k

∑h

f∈Bχ

∣∣∣
∑

anψf (n)
∣∣∣
2

=

=
1
q

∑

1≤t≤T
(t,q)=1

(
2π

t

)2 ∑

1≤h≤H

|Ph,t(a)|2 + O

(
N ε

(
N

q2
+

√
N

qH

))
‖a‖2, (1.16)

where

Ph,t(a) =
∑

n∼N

anS(hq, n; t)Jk−1

(
4π

t

√
hn

q

)
.

The forms Ph,t(a) could be considered as the "dual" forms for the linear forms
∑

anψf (n) in the Fourier coefficients of automorphic forms. One corollary is that for q

prime and N ≥ q we have:

2
ϕ(q)

∑

χ mod q
χ(−1)=(−1)k

∑h

f∈Bχ

∣∣∣
∑

anψf (n)
∣∣∣
2
¿ N ε

(
N

q2
+

√
N

q

)
‖a‖2. (1.17)

But with (1.16) being asymptotic, one can show even more ([15] Cor. 13.1 ), namely

that there is always a vector a0 such that the left hand side is À
√

N
q ‖a0‖2.
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This means that in the range q ≤ N ≤ q2 we do not have perfect orthogonality.

The number of harmonics involved (the cardinality of a basis for Γ1(q)-cusp forms) is

³ q2 and comparing with classical GL1-large sieves and Γ0(q)-large sieve, one would be

expecting "perfect orthogonality" for all N up to q2.

At the same time, this provides additional motivation to study the family of Γ1(q)-

automorphic forms: although the number of elements in the family is larger, the family

still lacks the perfect orthogonality, and hence potentially it may be relatively harder

to work with from the purely analytic point of view. Therefore, one aim of this thesis

is to investigate the analytic difficulties connected with this family.

In chapters 2 and 3 we will test orthogonality of this family but for special "test

vectors" (while in the large sieve setting one works with completely general complex

vectors). This will give the possibility for additional cancelation, since certainly one

does not expect that all interesting sequences arising in applications show the same bias

towards the Fourier coefficients of Γ1(q)-automorphic forms.

1.6 Fixing the setting and notation

We are interested in the level aspect and therefore because of simplicity and to avoid

complications with oldforms in Petersson formula, in chapters 2 and 3 we will assume

that q is prime and k ≥ 3 odd (of course k < 12 and even also "avoids" oldforms).

In this situation Snew
k (Γ0(q), χ) = Sk(Γ0(q), χ) and we can choose an orthogonal basis

Hχ = {f} entirely consisting of primitive Hecke-eigenforms.

We will often through the thesis use the symbol
∑−

χ mod q

to represent averaging over all odd characters modulo q.

The symbol
∫
(σ) means integration along the line σ + it, −∞ < t < ∞.

The symbol f ³ g means that c−1f(x) ≤ g(x) ≤ cf(x) for some c > 1 and for all

x > 1.

As usual, e(x) = e2πix. In all occurrences like e
(

ā
q

)
, ā is the multiplicative inverse

modulo q i.e. a ā ≡ 1 (mod q).
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Chapter 2

Nonvanishing of the family of Γ1(q)-automorphic
L-functions at the central point

2.1 Introduction

If there are no obvious reasons for an L-function to vanish at s = 1
2 , for example

because of the sign of the functional equation, we expect generically that the central

value is different from 0. There are numerous investigations of the non-vanishing of

the central values of L-functions in families, all of them starting with [17] which gives

intricate connection between such GL2 nonvanishing problem and the problem on GL1

concerning elimination of the Landau-Siegel zero.

In this chapter we consider the problem of nonvanishing of central values of auto-

morphic L-functions for Γ1(q)- family. For special features of this family and motivation

we refer to section 2.3.

We prove the following:

Theorem 2.1. Let H(q, χ) denotes basis of Hecke eigenforms in Sk(Γ0(q), χ) for k

fixed, odd and let AΓ1(q) denotes the following averaging:

AΓ1(q)[αf ] =
2

ϕ(q)

∑

χ (q)

χ(−1)=(−1)k

∑h

f∈H(q,χ)

αf .

Then, as q →∞ through primes, we have

limq→∞
AΓ1(q)[1(L(f, 1/2) 6= 0)]

AΓ1(q)[1]
≥ 0.2318,

where bold 1 denotes the indicator function.

We remark that harmonic weights here can be removed by a standard technique (cf.

[17], [22] ).
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2.2 L-functions and approximate functional equations

To every f ∈ Hχ ⊂ Sk(Γ0(q), χ) is attached an L-function with Euler product:

L(f, s) =
∑

n≥1

λf (n)n−s =
∏
p

(1− λf (p)p−s + χ(p)p−2s)−1. (2.1)

This equation is equivalent with

λf (m)λf (n) =
∑

d|(m,n)

χ(d)λf

(mn

d2

)
, (2.2)

or by Möbius inversion, with

λf (mn) =
∑

d|(m,n)

µ(d)χ(d)λf

(m

d

)
λf

(n

d

)
,

for all m,n ≥ 1. In particular, we have the exact factorization for any n ≥ 1:

λf (nq) = λf (n)λf (q). (2.3)

Further to each such f there is the associated dual form f̄ given by:

f̄(z) := Kf(z) = f(−z). (2.4)

The Fourier coefficients of f̄ are {λf (n)} and they satisfy ([14] Lemma 14.10):

λf (n) = χ(n)λf (n), for all (n, q) = 1. (2.5)

Moreover each Hecke eigenfunction f ∈ Hχ is by the Multiplicity one theorem also

an eigenfunction of the operator KW , hence

(KW )f = ηf

where η ∈ C, |η| = 1 is the corresponding eigenvalue. In the case of interest in this

thesis, that is for k odd, q prime, all characters χ appearing in the decomposition (1.2)

are primitive, and in that case the following formula holds (see [14] Proposition 14.15):

η =
τ(χ)λf (q)√

q
. (2.6)

where τ(χ) =
∑

x(modq) χ(x)e
(

x
q

)
is the Gauss sum.
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The Dirichlet series (2.1) is absolutely convergent for Re(s) > 1 but admits analytic

continuation to all of C. It satisfies the functional equation

Λ(f, s) = ikηΛ(f̄ , 1− s) (2.7)

where

Λ(f, s) =
(√

q

2π

)s

Γ
(

s +
k − 1

2

)
L(f, s) (2.8)

is the corresponding completed L-function.

2.2.1 Approximate functional equations

Our first task is to express L(f, 1
2) as a rapidly convergent series. The procedure is stan-

dard, see for example [14], Theorem 5.3. Choose a function G(s) which is holomorphic

and bounded in |Re(s)| < 3 and such that G(−s) = G(s), G(0) = 1. Denoting with (σ)

complex integration on vertical lines with real part σ, we start with

I(f) :=
1

2πi

∫

(2)
Λ(f,

1
2

+ s)G(s)
ds

s
.

Applying Cauchy’s theorem and the functional equation (2.7) we get

Λ(f,
1
2
) = I(f) + ikηI(f).

On the other hand, integrating termwise gives

L(f, 1/2) =
∑

n≥1

λf (n)√
n

V

(
2πn√

q

)
+ ikη

∑

n≥1

λf (n)√
n

V

(
2πn√

q

)
, (2.9)

where

V (y) =
1

2πi

∫

(2)
y−s Γ(k

2 + s)

Γ(k
2 )

G(s)
ds

s
. (2.10)

Similarly, integrating Λ(f, 1
2 +s)Λ(f, 1

2 +s)G2(s)s−1 we obtain the following formula:

|L(f, 1/2)|2 = 2
∑

n1≥1

∑

n2≥1

λf (n1)λf (n2)√
n1n2

W

(
4π2n1n2

q

)
, (2.11)

where

W (y) =
1

2πi

∫

(2)
y−s Γ2(k

2 + s)

Γ2(k
2 )

G2(s)
ds

s
. (2.12)
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One particular admissible choice for the function G(s) can be a polynomial which

additionally vanishes at all the poles of Γ
(
s + k

2

)
in the strip |Re(s)| ≤ A for any chosen

A > 0. Then using Stirling’s formula

Γ(s) =
(

2π

s

)1/2 (s

e

)s
(

1 + O
(

1
|s|

))
, valid in the angle | arg s| ≤ π − ε,

and moving the contour of integration in (2.10) and (2.12) to the left or to the right

respectively, one obtains the following asymptotic bounds:

V (y), W (y) = 1 + O(yA), y → 0, (2.13)

V (y), W (y) ¿ y−A, y À 1. (2.14)

2.3 The mollification and the mollified moments

In analytic investigations of L-functions ( their size, special values, distribution of zeros

etc.) inside the critical strip - the most prominent tool is calculation of various moments

of L−functions running in some family.

The classical method for investigation of the non-vanishing of L−functions at the

critical point is the comparison of the first and the second moment by an application of

the Cauchy-Schwarz inequality. If this is done for the "pure, un-weighted" L−functions,
there is inevitable loss of some power of the logarithm of the conductor in the final

proportion of non-vanishing, which is due to the variation of size of L-functions along

the family. For the first example of such calculation in the GL2-setting we refer to [6].

In order to obtain the positive proportion an additional device is needed: one has to

"save" the logarithmic factor that is, to control the abnormally large oscillations at the

central point. Such a device is the introduction of the mollifier - a factor whose purpose

is to "mollify" these problematic extreme values. In the analytic number theory, this

is first used by Bohr-Landau [1] in their pioneering work on density theorems for the

Riemann-zeta function. Much more delicate application of this mollification technique

is due to Selberg [30] where he established that a positive proportion of the zeros of the

Riemann’s ζ(s) are on the critical line.
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Although the behavior of L-functions inside the critical strip is not well understood,

heuristically one expects that the mollifier should behave as L(f, s)−1 or more precisely

as a Dirichlet polynomial approximating it in some sense. There are several difficulties

related to the mollification for this particular family. Various optimality results obtained

in calculations so far show that the mollifier has to reflect the fact that we are dealing

with the L-function of degree 2, as opposed to "classical" mollifiers for the Riemann

zeta and Dirichlet L-functions (see in particular [17], where particular attention was

given to the optimization of the proportion of nonvanishing because of the connection

to the Landau-Siegel zeros).

Next, inside of the critical strip L-function is given by

L(f, s) = LU + εfLV , (2.15)

where LU and LV are essentially two Dirichlet polynomials of lengths U and V respec-

tively, where U V ∼ conductor of f , and εf is the root number from the functional

equation. Now strategy can be different. Sometimes the root number is not well under-

stood or controlled analytically (e.g. the family of elliptic curves) and then one is forced

to take asymmetric representation, say with U ∼ conductor, but then this limits further

treatment because the power of harmonic analysis in families decreases and eventually

vanishes with longer and longer sums. On the other hand, in our situation we can take

U ∼ V , but still face possible loss of efficiency of the mollifier. In the results on GL2

L-functions so far, only L-functions with trivial nebentypus were considered where the

central value is real and ε = ±1. This means that central values in the family "oscillate"

only in one direction, while for Γ1(q)-family central values are complex and root number

ε is distributed along the unit circle, and hence "oscillations" are now in all directions

making them more difficult to capture. This is reflected in (2.15) by the fact that εf

oscillates independently from the arguments of the sums LU and LV (cf. [25] where

the similar situation is discussed for the family of Dirichlet characters mod q). Thus

since the mollifier is one Dirichlet polynomial it can not efficiently capture this more

complicated behavior. In [25] there was an attempt to remedy this by introducing a

twisted mollifier of the form M1 + εfM2, but still this appears to have some effect only
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for higher derivatives.

The first choice of the mollifier could be

Mprelim(f) =
∑

m≤M

λf (m)√
m

xm,

with (xm)m≤M a real vector at our disposal. Already this choice would lead to a positive

(and significant) proportion of nonvanishing.

On the other hand, if we denote for f ∈ Sk(Γ0(q), χ) :

L(f, s)−1 =
∑

n≥1

µf (n)
ns

, Re(s) > 1,

then from the Euler product (2.1) we infer that

µf (n) =





µ(m)λf (m)χ(l), if n = ml2, ml squarefree,

0, otherwise.
(2.16)

Hence, each space Sk(Γ0(q), χ) requires slightly different mollifier (in l variable) and we

will use this second choice in order to increase precision and test the effect of additional

averaging over χ mod q.

Therefore, for f ∈ Sk(Γ0(q), χ) the "perfect" mollifier would be

M(f) =
∑∑

m, l
ml2≤M

µ(m)λf (m)χ(l)√
m l

µ2(ml) xml2 .

However, the factor µ2(ml) has little effect and for notational simplicity we omit it.

Also, since the Möbius is already included in the mollifier and the very shape of it takes

care of degree 2 situation as discussed above, we can from the start take

xml2 = ψ(ml2), (2.17)

for some smooth function ψ at our disposal. Moreover we will take eventually

ψ(x) = P

(
log M/x

log M

)
,

where P is a polynomial with P (0) = 0.

Hence, our final choice of the mollifier is the following:

M(f) =
∑∑

m, l
ml2≤M

µ(m)λf (m)χ(l)√
m l

ψ(ml2), (2.18)
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where M = q∆, 0 < ∆ < 1 is to be chosen later.

Now, for this choice of the mollifier we consider the first and second mollified mo-

ments which now depend on the function ψ:

L(ψ) =
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

M(f)L(f, 1/2), (2.19)

Q(ψ) =
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

|M(f)L(f, 1/2)|2, (2.20)

where
∑−

χ
denotes the summation over characters χ(mod q) for which χ(−1) =

(−1)k = −1 (they are all primitive since q is a prime).

Because of the weights attached in spectral averaging (introduced because of Pe-

tersson’s formula) and 2
ϕ(q) – in character averaging, the mollified moments (2.19) and

(2.20) behave roughly as the expectations of LM and |LM |2 along the family and hence

if we denote with N the percentage of non-vanishing central values in such "harmonic"

average, Cauchy-Schwarz inequality gives:

N ≥ L(ψ)2

Q(ψ)
. (2.21)

Now, after asymptotic evaluations of L(ψ) andQ(ψ), the mollification mechanism trans-

fers the problem to the maximization of the quotient (2.21) with respect to the function

ψ which is at our disposal.

2.4 The first mollified moment L(ψ)

We start with

L(ψ) =
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

L(f, 1/2)
∑ ∑

m, l
ml2≤M

µ(m)λf (m)χ(l)√
m l

ψ(ml2) =

=
∑∑

m, l
ml2≤M

µ(m)√
m l

ψ(ml2)A(m, l),

where

A(m, l) =
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

χ(l)λf (m)L(f, 1/2) (2.22)
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is the first twisted moment.

Substituting (2.9) and (2.6) in (2.22), using (2.3) and taking into account that τ(χ) =

−τ(χ) for odd characters, we get:

A(m, l) =
∑

n≥1

1√
n

V

(
2πn√

q

)
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

χ(l)λf (m)λf (n)−

− ik
∑

n≥1

1√
nq

V

(
2πn√

q

)
2

ϕ(q)

∑−

χ

∑h

f∈Hχ

χ(l)τ(χ)λf (m)λf (nq). (2.23)

Since the contribution of the terms for n À q
1
2
+ε is negligible because of the rapid decay

of V , in the significant range we have that (n, q) = 1 and hence we can apply (2.5) and

substitute in the first line λf (n) with χ(n)λf (n) (with the negligible error):

A(m, l) =
∑

n≥1
(n,q)=1

1√
n

V

(
2πn√

q

)
2

ϕ(q)

∑−

χ

χ(ln)
∑h

f∈Hχ

λf (m)λf (n)−

− ik
∑

n≥1

1√
nq

V

(
2πn√

q

)
2

ϕ(q)

∑−

χ

χ(l)τ(χ)
∑h

f∈Hχ

λf (m)λf (nq) + O(q−2010). (2.24)

Now, for the first line we use the formula (1.11), while for the second line we use

Petersson’s formula (1.5) and then (1.9) for the diagonal part, while in the off-diagonal

part we keep Kloosterman sums:

A(m, l) =
∑

n≥1
(n,q)=1

1√
n

V

(
2πn√

q

)
δ(m,n) (δ(ln ≡q 1)− δ(ln ≡q −1))+

+ 2π
∑

n≥1
(n,q)=1

1√
n

V

(
2πn√

q

) ∑

r≥1

1
qr

Jk−1

(
4π
√

mn

qr

)
K

∑∗

a (qr)
a≡ ln (q)

e

(
na + mā

qr

)

− 2ik+1
∑

n≥1

δ(m,nq)√
nq

V

(
2πn√

q

)
sin(2πl̄/q)

− 2π
∑

n≥1
(n,q)=1

1√
n

V

(
2πn√

q

)
2

ϕ(q)

∑−

χ

χ(l)τ(χ)√
q

∑

r≥1

1
qr

Sχ(qn, m; qr)Jk−1

(
4π
√

mnq

qr

)

+ O(q−2010).

(2.25)

Since m ≤ M = q∆ < q the third line is void and similarly in the first line ln ≡q −1

can not occur in the significant range n ¿ q1/2+ε, while ln ≡q 1 implies l = n = 1 and

then using the asymptotic (2.13) we replace V (2π/
√

q) with 1, making negligible error.
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Next, using (2.13), (2.14) for V , bound (1.12) for Jk−1 and Weil’s bound (2.35) for

Kloosterman sums in the fourth line, while estimating exponential sums in the second

line trivially, we show that the second and the fourth contribute only to the error term:

second line¿ 1
q

∑

n≤q1/2+ε

n−1/2
∑

r≥1

(√
mn

qr

)2

¿ Mqε

q9/4
, (2.26)

fourth line¿
∑

n≤q1/2+ε

n−1/2
∑

r≥1

1
qr

τ(qr)(qn, m, qr)1/2(qr)1/2

(√
mnq

qr

)2

¿ Mqε

q3/4
.

(2.27)

Together we have:

A(m, l) = δ(m, 1) δ(l, 1) + O
(

Mqε

q3/4

)
. (2.28)

Of course here one can use the approximate functional equation in the asymmetric form,

but it turns out that this error term will match the one obtained for the second twisted

moment.

Finally, using only that ψ ¿ 1, we conclude:

L(ψ) = ψ(1) + O

(
M3/2qε

q3/4

)
.

2.5 The second mollified moment Q(ψ)

Substituting (2.11) and (2.18) in (2.20) we get:

Q(ψ) = 2
∑∑

m1, l1
m1l21≤M

∑∑

m2, l2
m2l22≤M

µ(m1)µ(m2)√
m1m2 l1l2

ψ(m1l
2
1) ψ(m2l

2
2)B(m1, m2; l1, l2), (2.29)

where B is the second twisted moment:

B(m1,m2; l1, l2) =
∑

n1≥1

∑

n2≥1

1√
n1n2

W

(
4π2n1n2

q

)

· 2
ϕ(q)

∑−

χ

χ(l1)χ(l2)
∑h

f∈Hχ

λf (m1)λf (n1)λf (m2)λf (n2) (2.30)

Now we use the Hecke relations (2.2), introduce new variables d1 and d2 to denote the

common divisors in the corresponding Hecke relations and change ni → dini, i = 1, 2

to get:

B(m1,m2; l1, l2) =
∑

d1e1=m1

∑

d2e2=m2

1√
d1d2

∑

n1≥1

∑

n2≥1

1√
n1n2

W

(
4π2d1d2n1n2

q

)
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· 2
ϕ(q)

∑−

χ

χ(l1d1)χ(l2d2)
∑h

f∈Hχ

λf (e1n1)λf (e2n2)

Next, we apply Petersson’s formula (1.5) to the inside spectral sums:

B(m1,m2; l1, l2) = Bdiag(m1,m2; l1, l2) + Boff(m1,m2; l1, l2), (2.31)

where

Bdiag(m1,m2; l1, l2) =
∑

d1e1=m1

∑

d2e2=m2

1√
d1d2

·
∑

n1≥1

∑

n2≥1

δ(e1n1, e2n2)√
n1n2

W

(
4π2d1d2n1n2

q

)
2

ϕ(q)

∑−

χ

χ(l1d1)χ(l2d2) (2.32)

denotes the "diagonal contribution" and

Boff(m1,m2; l1, l2) = 2πi−k
∑

d1e1=m1

∑

d2e2=m2

1√
d1d2

∑

n1≥1

∑

n2≥1

1√
n1n2

W

(
4π2d1d2n1n2

q

)
·

· 2
ϕ(q)

∑−

χ

χ(l1d1)χ(l2d2)
∑

c≥1
c≡0(q)

1
c
Sχ(e2n2, e1n1; c)Jk−1

(
4π
√

e1e2n1n2

c

)
(2.33)

denotes the "off-diagonal contribution" to the second twisted moment.

2.5.1 Bounding the off-diagonal contribution

We start the treatment of (2.33) by introducing new variable r, where c = rq and

dividing the summation over r into two parts according to r ≤ q or r > q. Denote the

resulting decomposition as:

Boff(m1, m2; l1, l2) = BI
off(m1,m2; l1, l2) + BII

off(m1,m2; l1, l2). (2.34)

Treatment of BII
off(m1,m2; l1, l2): In the range r > q we will use Weil’s bound for

(twisted) Kloosterman sums:

|Sχ(m,n; c)| ≤ τ(c)(m,n, c)1/2c1/2, (2.35)
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the bounds (2.14) for W (x) and Jk−1(x) ¿ x2 (since k ≥ 3), while the sum
∑−

χ we

estimate trivially:

BII
off(m1,m2; l1, l2) ¿

∑

d1e1=m1

∑

d2e2=m2

1√
d1d2

∑

n1n2¿(q/d1d2)1+ε

1√
n1n2

∑

r≥q

τ(qr)(e1n1, e2n2, qr)1/2(qr)1/2

qr

e1e2n1n2

q2r2

¿ M2qε

q5/2
. (2.36)

Treatment of BI
off(m1,m2; l1, l2): Here we exploit the orthogonality of Dirichlet char-

acters mod q via (1.11); since l1d1, l2d2 ≤ M , we have that (l1l2d1d2, q) = 1 and hence

χ(l1d1)χ(l2d2) = χ(l1d1 l̄2d̄2) so that by (1.10):

BI
off(m1,m2; l1, l2) = 2π

∑

d1e1=m1

∑

d2e2=m2

1√
d1d2

∑

n1≥1

∑

n2≥1

1√
n1n2

W

(
4π2d1d2n1n2

q

)
·

·
∑

1≤r≤q

1
qr

Jk−1

(
4π
√

e1e2n1n2

qr

)
K

∑∗

a(qr)
a≡l1d1d̄2 l̄2 (q)

e

(
e2n2a + e1n1ā

qr

)
. (2.37)

Now using (2.14), (1.12) and trivially estimating the last exponential sum we obtain:

BI
off(m1,m2; l1, l2) ¿ M2qε

q3/2
.

Taking together we get an estimate:

Boff(m1,m2; l1, l2) ¿ M2qε

q3/2
. (2.38)

2.5.2 Asymptotic evaluation of Q(ψ)

We start the treatment of (2.32) using the orthogonality relation (1.8): the choice of the

length of our mollifier M = q∆ will be in the range ∆ < 1, so again since l1d1, l2d2 <

M the innermost sum in (2.32) gives non-zero contribution only for l1d1 ≡q l2d2 or

l1d1 ≡q −l2d2. Moreover, again because of the length of the mollifier only the first case

is possible and then it becomes the equality l1d1 = l2d2, so Bdiag(m1,m2; l1, l2) is equal

to:
∑

d1e1=m1

∑

d2e2=m2

δ(l1d1, l2d2)√
d1d2

∑

n1≥1

∑

n2≥1

δ(e1n1, e2n2)√
n1n2

W

(
4π2d1d2n1n2

q

)
.



28

Here we introduce c = (e1, e2), change ei → cei, i = 1, 2, where now (e1, e2) = 1 and

then change n1 = e2n, n2 = e1n to get:

Bdiag(m1,m2; l1, l2) =
∑

cd1e1=m1
cd2e2=m2
(e1,e2)=1

δ(l1d1, l2d2)√
d1d2e1e2

∑

n≥1

1
n

W

(
4π2d1d2e1e2n

2

q

)
. (2.39)

Replacing this in (2.29) we arrive to:

Qmain(ψ) = 2
∑

c,d1,d2,e1,e2,l1,l2,n
cd1e1l21≤M

cd2e2l22≤M
(e1,e2)=1

δ(l1d1, l2d2)
µ(cd1e1)µ(cd2e2)
cd1d2e1e2l1l2n

·ψ(cd1e1l
2
1) ψ(cd2e2l

2
2)W

(
4π2d1d2e1e2n

2

q

)
.

Here let b = (d1, d2); then we replace di → bdi, i = 1, 2 with now (d1, d2) = 1 getting

from the delta symbol l1 = d2l and l2 = d1l where l is a new variable:

Qmain(ψ) =

2
∑

b,c,d1,d2,e1,e2,l,n
bcd1e1d2

2l2≤M

bcd2e2d2
1l2≤M

(e1,e2)=1
(d1,d2)=1

µ(bcd1e1)µ(bcd2e2)
b2cd2

1d
2
2e1e2l2n

ψ(bcd1e1d
2
2l

2) ψ(bcd2e2d
2
1l

2)W
(

4π2b2d1d2e1e2n
2

q

)
.

(2.40)

We are going to evaluate this sum using contour integration. First, our choice for

the function ψ is

ψ(x) = P

(
log(M/x)

log M

)
,

for some polynomial P with P (0) = 0. This choice is convenient because of the following

Perron type formula, that can be found for example in [24], Lemma 2.1: for a polynomial

P (x) =
∑

k akx
k such that P (0) = 0, let

P̂M (s) =
∑

k

k!ak(log M)−k

sk
; (2.41)

then if M is not an integer we have

δ(m < M) P

(
log M/m

log M

)
=

1
2πi

∫

(3)

M s

ms
P̂M (s)

ds

s
, (2.42)
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where as usual, δ(m < M) = 1 if m < M and 0 otherwise. The proof is standard

contour integration far to the right and far to the left.

Using this and the contour integral (2.12) for W we get:

Qmain(ψ) =
2

(2πi)3

∫

(3)

∫

(3)

∫

(3)

∑

b,c,d1,d2,e1,e2,l,n
(e1,e2)=1
(d1,d2)=1

µ(bcd1e1)µ(bcd2e2)
b2cd2

1d
2
2e1e2l2n

·
(

M

bcd1e1d2
2l

2

)s1

P̂M (s1)
(

M

bcd2e2d2
1l

2

)s2

P̂M (s2)

·
(

q

4π2b2d1d2e1e2n2

)t Γ2(t + k/2)
Γ2(k/2)

G2(t)
ds1

s1

ds2

s2

dt

t
(2.43)

=
2

(2πi)3

∫

(3)

∫

(3)

∫

(3)
A(s1, s2, t)M s1+s2

( q

4π2

)t
P̂M (s1)P̂M (s2)

Γ2(t + k/2)
Γ2(k/2)

G2(t)
ds1

s1

ds2

s2

dt

t

where A(s1, s2, t) is the arithmetic sum:

A(s1, s2, t) =
∑

b,c,d1,d2,e1,e2,l,n
(e1,e2)=1
(d1,d2)=1

· µ(bcd1e1)µ(bcd2e2)
b2+s1+s2+2tc1+s1+s2d2+s1+2s2+t

1 d2+2s1+s2+t
2 e1+s1+t

1 e1+s2+t
2 l2+2s1+2s2n1+2t

. (2.44)

The l and n sums are immediate:

A(s1, s2, t) = ζ(1 + 2t)ζ(2 + 2s1 + 2s2)

·
∑

b,c,d1,d2,e1,e2

(e1,e2)=1
(d1,d2)=1

µ(bcd1e1)µ(bcd2e2)
b2+s1+s2+2tc1+s1+s2d2+s1+2s2+t

1 d2+2s1+s2+t
2 e1+s1+t

1 e1+s2+t
2

. (2.45)

We will remove coprimality conditions (d1, d2) = 1 and (e1, e2) = 1 by Möbius inversion:

∑

(d1,d2)=1

f(d1, d2) =
∑

d1, d2

f(d1, d2)
∑

α|(d1,d2)

µ(α) =
∑
α

µ(α)
∑

d1, d2

f(αd1, αd2),

obtaining:

A(s1, s2, t) = ζ(1 + 2t)ζ(2 + 2s1 + 2s2)
∑

α,β,b,c,d1,d2,e1,e2

· µ(α)µ(β)µ(αβbcd1e1)µ(αβbcd2e2)
α4+3s1+3s2+2tβ2+s1+s2+2tb2+s1+s2+2tc1+s1+s2d2+s1+2s2+t

1 d2+2s1+s2+t
2 e1+s1+t

1 e1+s2+t
2

.

(2.46)
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First we simplify the sum slightly: β and b appear with the same exponent and one

factor µ(β). Hence
∑

β

∑
b reduces to 1:

A(s1, s2, t) = ζ(1 + 2t)ζ(2 + 2s1 + 2s2)
∑

α,c,d1,d2,e1,e2

· µ(α)µ(αcd1e1)µ(αcd2e2)
α4+3s1+3s2+2tc1+s1+s2d2+s1+2s2+t

1 d2+2s1+s2+t
2 e1+s1+t

1 e1+s2+t
2

(2.47)

= ζ(1 + 2t)ζ(2 + 2s1 + 2s2)
∑
α, c

µ(α)µ2(αc)
α4+3s1+3s2+2tc1+s1+s2

·
∑

d1,e1

(d1e1,αc)=1

µ(d1e1)
d2+s1+2s2+t

1 e1+s1+t
1

∑

d2,e2

(d2e2,αc)=1

µ(d2e2)
d2+2s1+s2+t

2 e1+s2+t
2

.

Each of the last two sums has the same form:

∑

d,e
(de,a)=1

µ(de)
d2+ue1+v

=
∑

(d,a)=1

µ(d)
d2+u

∑

(e,ad)=1

µ(e)
e1+v

=
∑

(d,a)=1

µ(d)
d2+u

∏

p-ad

(
1− 1

p1+v

)

=
∏

p-a

(
1− 1

p1+v

) ∑

(d,a)=1

µ(d)
d2+u

∏

p|d

1
1− p−1−v

=
∏

p-a

(
1− 1

p1+v

) ∑

(d,a)=1

∏

p|d

−1
p2+u

1
1− p−1−v

=
∏

p-a

(
1− 1

p1+v

)∏

p-a

(
1− 1

p2+u(1− p−1−v)

)
= ζ−1(1+v) η(u, v)

∏

p|a

1
1− p−1−v − p−2−u

,

where η is the following Euler product:

η(u, v) =
∏
p

(
1− 1

p2+u(1− p−1−v)

)
. (2.48)

Substituting this in A we get:

A(s1, s2, t) =
ζ(1 + 2t)ζ(2 + 2s1 + 2s2)η(s1 + 2s2 + t, s1 + t)η(2s1 + s2 + t, s2 + t)

ζ(1 + s1 + t)ζ(1 + s2 + t)

·
∑
α, c

µ(α)µ2(αc)
α4+3s1+3s2+2tc1+s1+s2

∏

p|αc

1
1− p−1−s1−t − p−2−s1−2s2−t

1
1− p−1−s2−t − p−2−2s1−s2−t

.

In the second line we replace αc → c, and since for square-free c

∑

α|c

µ(α)
α3+2s1+2s2+2t

=
∏

p|c

(
1− 1

p3+2s1+2s2+2t

)
,

we have that the second line is equal to

∑
c

µ2(c)
c1+s1+s2

∏

p|c

1− p−3−2s1−2s2−2t

(1− p−1−s1−t − p−2−s1−2s2−t)(1− p−1−s2−t − p−2−2s1−s2−t)
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=
∏
p

(
1 +

1
p1+s1+s2

1− p−3−2s1−2s2−2t

(1− p−1−s1−t − p−2−s1−2s2−t)(1− p−1−s2−t − p−2−2s1−s2−t)

)

= ω(s1, s2, t)
∏
p

(
1 +

1
p1+s1+s2

)
= ω(s1, s2, t)

ζ(1 + s1 + s2)
ζ(2 + 2s1 + 2s2)

,

where

ω(s1, s2, t) = (2.49)

∏
p

(
1 +

1
p1+s1+s2 + 1

[
1− p−3−2s1−2s2−2t

(1− p−1−s1−t − p−2−s1−2s2−t)(1− p−1−s2−t − p−2−2s1−s2−t)
− 1

])

is an Euler product absolutely convergent to the left of s1 = s2 = t = 0.

Returning to A, this gives:

A(s1, s2, t) =
ζ(1 + 2t)ζ(1 + s1 + s2)

ζ(1 + s1 + t)ζ(1 + s2 + t)
η(s1+2s2+t, s1+t)η(2s1+s2+t, s2+t)ω(s1, s2, t)

where η and ω are given by (2.48) and (2.49) respectively. We denote them together as

Υ(s1, s2, t) = η(s1 + 2s2 + t, s1 + t)η(2s1 + s2 + t, s2 + t)ω(s1, s2, t). (2.50)

We note here that

Υ(0, 0, 0) = η2(0, 0)ω(0, 0, 0) =
∏
p

(
1 +

1
(p− 1)2(p + 1)

)
= 1.438.... (2.51)

Finally we obtain the main term in the following form:

Qmain(ψ) =
2

(2πi)3

∫

(3)

∫

(3)

∫

(3)
M s1+s2

( q

4π2

)t Γ2(t + k/2)
Γ2(k/2)

G2(t)

· P̂M (s1)P̂M (s2)
ζ(1 + 2t)ζ(1 + s1 + s2)

ζ(1 + s1 + t)ζ(1 + s2 + t)
Υ(s1, s2, t)

ds1

s1

ds2

s2

dt

t
, (2.52)

and together with (2.38), using ψ ¿ 1, we have:

Q(ψ) = Qmain(ψ) + O
(

M3qε

q3/2

)
.

2.6 Calculation of the residues and choice of the mollifier

Since we switched from ψ to a polynomial P , the mollified moments depend now on P

and final formulas are:

L(P ) = P (1) + O

(
M3/2qε

q3/4

)
, Q(P ) = Qmain(P ) + O

(
M3qε

q3/2

)
,
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where M = q∆, and we see that any ∆ < 1
2 is admissible in order the above formulas

to be asymptotic.

To proceed further, we evaluate Qmain(P ) given by the integral (2.52) using contour

integration. The goal is to evaluate the residues at the pole s1 = s2 = t = 0 and then

to show that the contribution arising from shifting contours to the left of 0 is smaller

(by one factor of log q is enough).

Calculation of the residues at s1 = s2 = t = 0: In calculating the residues, various

powers of log q and log M will appear. We are interested only in the higher order terms

and rest can be ignored. Therefore, since the factor (4π2)−t Γ2(t+k/2)
Γ2(k/2)

G2(t)Υ(s1, s2, t)

has neither zeros nor poles at s1 = s2 = t = 0 and does not depend on q or M , its

derivatives will contribute only lower order terms and hence, from the start we can

replace it by its value at (0, 0, 0) which is Υ(0, 0, 0), see (2.51).

From the same reason, we may replace everywhere ζ(1 + z) with 1
z , arriving at the

following main term:

Υ(0, 0, 0)Res(0,0,0)
M s1+s2qtP̂M (s1)P̂M (s2)(s1 + t)(s2 + t)

s1s2(s1 + s2)t2
.

Now we write

(s1 + t)(s2 + t)
s1s2(s1 + s2)t2

=
1

s1s2t
+

1
t2(s1 + s2)

+
1

s1s2(s1 + s2)
,

and denote the corresponding residues by RI , RII , RIII respectively. The function in

RIII is holomorphic in t and will be treated later by shifting the contour, giving a

smaller order contribution.

The RI has a simple pole at t = 0 and hence

RI = Υ(0, 0, 0)Res(0,0)
M s1+s2P̂M (s1)P̂M (s2)

s1s2
.

These residues can be computed easily but we just cite Lemma 9.1 from [24]:

Ress=0
M sP̂M (s)

s
= P (1),

giving

RI = Υ(0, 0, 0)P (1)2.
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Next:

RII = Υ(0, 0, 0) Rest=0
qt

t2
Ress1=s2=0

M s1+s2P̂M (s1)P̂M (s2)
(s1 + s2)

.

We evaluate the second residue by using Lemma 9.4 from [24] (the factors s1s2 are

omitted in the statement there ):

Ress1=s2=0
M s1+s2P̂M (s1)Q̂M (s2)

s1s2(s1 + s2)
= (log M)

∫ 1

0
P (x)Q(x)dx.

Now, recalling the notation (2.41) we have that s P̂M (s) = 1
log M P̂ ′

M (s) so

RII = Υ(0, 0, 0)(log q)
1

(log M)2
Ress1=s2=0

M s1+s2P̂ ′
M (s1)P̂ ′

M (s2)
s1s2(s1 + s2)

=

= Υ(0, 0, 0)
log q

log M

∫ 1

0
P ′(x)2dx.

Shifting the contours: First in (2.52) we shift the s1, s2 and t contours to Re(s1) =

Re(s1) = Re(t) = 1/2 passing no poles. Next shift the t contour to Re = −1/2 + ε

for some small 0 < ε < 1
2 −∆. On that line |M s1+s2qt| = Mq−1/2+ε = q∆+ε−1/2 and

the other terms do not depend on M, q and hence the contribution of that t-contour

is negligible, leaving only the contribution from the pole t = 0. The same reasoning,

shifting even just slightly to the left of 0, shows that RIII is negligible.

Up to the constants, irrelevant and lower order terms we are left with

(log q)
∫

(1/2)

∫

(1/2)
M s1+s2P̂M (s1)P̂M (s2)

ζ(1 + s1 + s2)
ζ(1 + s1)ζ(1 + s2)

ds1

s1

ds2

s2
.

Here we shift s1 and s2 contours to the "prime number theorem contour", namely

slightly to the left of Re(si) = 0 but still to the right of all zeros of ζ(1 + si) so that in

the process no new poles are introduced. More precisely, one can take the new position

to be

Re(si) = − c

log(|Im(si)|+ 3)
,

for some constant c > 0 from the zero-free region theorem for ζ. The integrals on the

new contour are ¿ e−c1(log M)1/2010 which is enough to overcome the log q factor.

Finally, the only thing left is the pole s1 + s2 = 0, i.e. s2 = −s1 where s1 runs over

the new contour. But in that case, only dependance on M or q is in two P̂M factors and
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since P (0) = 0, they contribute the factor (log M)−2 or any smaller power, and hence

again in total, this is ¿ (log q)−1.

The conclusion: We have proved that

Qmain(P ) =
(
1 + O((log q)−1)

)
Υ(0, 0, 0)

[
P (1)2 +

log q

log M

∫ 1

0
P ′(x)2dx

]
.

Therefore,

Lmain(P )2

Qmain(P )
∼ Υ(0, 0, 0)−1 P (1)2

P (1)2 + ∆−1
∫ 1
0 P ′(x)2dx

, as q →∞

and in order to maximize this quantity we need to minimize the quotient

I(P ) =

∫ 1
0 P ′(x)2dx

P (1)2
,

where P (0) = 0.

In order to find the extremal polynomial, we first assume that it exists and then we

form the variation equation

∂

∂ε
|ε=0 I(P + εf) = 0,

which must be satisfied for all admissible (hence, satisfying f(0) = 0) perturbation

functions f(x). A short calculation leads to the condition:

f(1)P (1)P ′(1)− f(1)
∫ 1

0
P ′(x)2dx = P (1)

∫ 1

0
f(x)P ′′(x)dx,

which clearly can be satisfied for all admissible f only if P ′′(x) = 0, and that further

leads to the extremal solution P (x) = x.

Therefore, the extremum is attained for P (x) = x giving N > Υ(0, 0, 0)−1 1
1+∆−1 .

Substituting our admissible ∆ = 1/2 and (2.51) we obtain 23.18% of non-vanishing

central values in Γ1(q)-family of automorphic L-functions, in harmonic average.

Remark 2.2. The constant Υ(0, 0, 0)−1 can be removed or at least improved by tak-

ing perfect mollifier (with µ2(ml)-factors included) and hence essentially, our result is

1
1+∆−1 which is 1

3 for a mollifier of length q1/2. This is in complete agreement with the

percentage obtained in [16] for GL1 family of the L-functions for Dirichlet characters

χ mod q. This is hardly surprising, because both these families should have unitary

underlying symmetry group.
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Remark 2.3. We note that even if hypothetically, one can perform perfect off-diagonal

harmonic analysis and take maximal possible length q of a mollifier, i.e. ∆ = 1 (note that

|L|2 is represented essentially by a Dirichlet polynomial of that length), mollification

would give only 50% of nonvanishing of central values in harmonic average. Therefore

the family of Γ1(q)-modular forms still posses the same barrier as the family of Γ0(q)-

modular forms, which was critical in [17] for the problem of Landau-Siegel zero. Of

course, because central values in Γ1(q)-family are no longer positive, such an application

was not possible anyway.
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Chapter 3

The sixth moment of the family of Γ1(q)-automorphic
L-functions

3.1 Introduction

So far, understanding of L-functions predominantly has come from their embedding into

natural families and then trying to extract the required information from "the infor-

mation on average" by various devices, such are mollification or amplification. Hence,

understanding of moments of L-functions in families become vital for various applica-

tions in analytic number theory. On the other hand, one can study moments in their

own - viewed as an approximation towards the Generalized Lindelöf Hypothesis. Third

motivation comes from the Random Matrix Theory models for L-functions ([19], [20],

[21], [3]) where calculation of moments provides the testing ground for checking RMT

predictions, and by that hopefully increases our understanding of the underlying sym-

metries.

In this chapter we will bound the sixth moment of the Γ1(q)-family. Some analogous

situations which also provide the motivation for this chapter are as follows:

• direct analog on GL1 is the following bound for the sixth moment of Dirichlet

L-functions given by Huxley in [10]:

∑

q≤Q

∑∗

χmod q

|L(1/2, χ)|6 ¿ Q2 log9 Q ;

• the state of art on GL1 is the following asymptotic from [4]: for Ψ smooth and

compactly supported on [1, 2], and Φ(t) of rapid decay as |t| → ∞ the following

holds
∑

q

∑∗

χ (q)

Ψ(q/Q)
∫ ∞

−∞
Φ(t)|L(1/2 + it, χ)|6dt
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∼ 42 a3Q
2 log9 Q

9!

∫ ∞

0
Ψ(x)xdx

∫ ∞

−∞
Φ(t)|Γ(1/4 + it/2)|6dt,

where a3 is some explicit constant; we note it as an example of the use of additional

tiny averaging;

• on GL2 the following result of Kowalski, Michel and Vanderkam from [23] is di-

rectly related: the averaging is performed over the set S2(q) of primitive Hecke

eigenforms of weight 2 relative to the subgroup Γ0(q), where q is also a prime, and

the result is an asymptotic with the power saving in the error term - for all ε > 0,

∑h

f∈S2(q)

L(f, 1/2)4 = P (log q) + Oε (q−1/12+ε),

where P is a polynomial of degree 6;

• recently M. Young in [34] proved the following: let (uj) be an orthonormal basis

of Hecke-Maass cusp forms for SL2(Z) with corresponding Laplace eigenvalues

1
4 + t2j ; then the following bound for the sixth moment at the special points 1

2 + itj

holds:
∑

tj≤T

|L(uj ,
1
2

+ itj)|6 ¿ T 2+ε;

at these points the conductor drops (in effect replacing T by T 1/2) which analyti-

cally has the same effect as enlarging the family of holomorphic Γ0(q)-automorphic

forms to the family of Γ1(q)-forms (which means that the family is enlarged from

³ q elements to ³ q2 elements); in both cases log(conductor)
log(|family|) drops by the factor 2.

We will prove the following similar bound, consistent with the Lindelöf Hypothesis

on average:

Theorem 3.1. Let q be a prime. Then we have:

2
ϕ(q)

∑−

χ(q)

∑h

f∈Hχ

|L(f, 1/2)|6 ¿ qε. (3.1)

3.2 Approximate functional equation and reductions

There are several choices for representation of |L|6 inside the critical strip. We will start

with an expression for L3 and then pass to |L3|2 = |L|6 by Cauchy-Schwarz inequality.
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Therefore, starting with Dirichlet series representation (2.1) of L(f, s) for f ∈ Hχ and

Re(s) > 1, and using Hecke relations (2.2) one obtains:

L(f, s)3 = L(f, s)2L(f, s) =
∑

d≥1

χ(d)
d2s

∑

n≥1

λf (n)τ(n)
ns

∑

m≥1

λf (m)
ms

=

=
∑

d≥1

χ(d)
d2s

∑

n≥1

∑

m≥1

τ(n)
(mn)s

∑

c|(m,n)

χ(c)λf

(mn

c2

)
=

=
∑

d≥1

χ(d)
d2s

∑

c≥1

∑

n1≥1

∑

m1≥1

τ(cn1)χ(c)λf (m1n1)
(m1n1c2)s

.

Now we use the recursion formula for divisor function

τ(cn) =
∑

a|(c,n)

µ(a)τ(c/a)τ(n/a),

and replace c with ac1 and n1 with an2 to get:

L(f, s)3 =
∑

a≥1

µ(a)
a2s


∑

d≥1

χ(d)
d2s

∑

c1≥1

τ(c1)χ(c1)
c2s
1





 ∑

m1≥1

∑

n2≥1

τ(n2)λf (am1n2)
(am1n2)s


 =

=
∑

a≥1

µ(a)
a2s

∑

b≥1

χ(b)τ3(b)
b2s

∑

n≥1

λf (an)τ3(n)
(an)s

. (3.2)

Next, using the same notation and the same auxiliary function G as in 2.2, starting

from

I(f) =
1

2πi

∫

(2)
Λ(f,

1
2

+ s)3G3(s)
ds

s
(3.3)

moving the contour of integration and using the functional equation (2.7) we get:

Λ(f, 1/2)3 = I(f) + (ikη̄)3I(f̄)

Now introducing

U(y) =
1

2πi

∫

(2)
y−s Γ3(k

2 + s)

Γ3(k
2 )

G3(s)
ds

s
, (3.4)

by termwise integration in (3.3) we arrive at:

L(f, 1/2)3 =
∑

a≥1

∑

b≥1

∑

n≥1

µ(a)χ(b)τ3(b)λf (an)τ3(n)√
a3b2n

U

(
(2π)3a3b2n

q3/2

)
+

+(ikη̄)3
∑

a≥1

∑

b≥1

∑

n≥1

µ(a)χ(b)τ3(b)λf (an)τ3(n)√
a3b2n

U

(
(2π)3a3b2n

q3/2

)
. (3.5)
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Similarly as in 2.2 one obtains

U(y) ¿ (1 + y)−A,

U(y) = 1 + O(yA), for y → 0,

meaning that the terms in (3.5) for a3b2n À q3/2+ε are negligible (contributing only to

an error ¿ q−2010).

Further, it is enough to estimate each of the dual sums separately, and moreover,

each of them can be divided into dyadic segments. Hence, by fixing a smooth function

Ψ1 supported in the interval [1, 2] and with each of its derivatives absolutely bounded,

we see that another test function Ψ(x) := Ψ1(x)U( xX
q3/2+ε ) has the same properties for

all X ≤ q3/2+ε (with derivatives now bounded only in terms of k) .

By this, our problem reduces to bounding for any X ¿ q3/2+ε the following smoothed

sums:

S(X) =
2

ϕ(q)

∑−

χ(q)

∑h

f∈Hχ

|Sf (X)|2. (3.6)

where

Sf (X) =
∑

a≥1

∑

b≥1

∑

n≥1

µ(a)χ(b)τ3(b)λf (an)τ3(n)√
a3b2n

Ψ
(

(2π)3a3b2n

X

)
.

Now an application of Cauchy-Scwharz gives

|Sf (X)|2 ≤
∑

a,b

ab<
√

X

τ2
3 (b)
ab

∑

a,b

ab<
√

X

1
ab

∣∣∣∣∣∣
∑

n≥1

λf (an)τ3(n)√
an

Ψ
(

an

X/(8π3a2b2)

)∣∣∣∣∣∣

2

,

and denoting Y = X
(2π)3a2b2

, the bound for the sixth moment reduces to showing that

2
ϕ(q)

∑−

χ(q)

∑h

f∈Hχ

∣∣∣∣∣∣
∑

n≥1

λf (an)
τ3(n)√

an
Ψ

(an

Y

)
∣∣∣∣∣∣

2

¿ qε. (3.7)

3.3 A summation formula for the twisted divisor function

In the next section we will need a summation formula for the divisor function τ3(n),

which appears in (3.7). Analogous formula for τ2 is seen as part of the more general

framework - summation formulas for GL2 L-function coefficients, and as such it has

found many applications in GL2 L-functions theory, most notably in the proofs of
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subconvexity results (for example, [7] is one of the early instances where such formula

is utilized in the context of subconvexity). All formulas of that type are called Voronoi

formulas, by their most classical appearance in [32]. General GL2-Voronoi formulas

encode automorphy of the given Fourier coefficients, but in the case of τ2 for their proof

one only needs two variable Poisson summation formula (cf. Theorem 4.10 in [14]).

In the case which we need here, τ3 "belongs" to GL3 and such GLn summation

formulas are provided recently in [26] and [27] (for the general survey of the results,

see [28]). The summation formula for τk is obtained earlier by Ivić in [11], and we will

quote here some of his results that we will need.

Let ψ be a smooth compactly supported function on (0,∞), and

ψ̃(s) =
∫ ∞

0
ψ(x)xs dx

x

its Mellin transform - an entire function of rapid decay. Then, we are interested in the

summation formula for
∑

n≥1

τk(n)e
(

dn

c

)
ψ(n), (3.8)

where k ≥ 3 and (c, d) = 1. In order to perform the required summation one can use

the corresponding generating Dirichlet series, in this case:

Ek

(
s,

d

c

)
=

∑

n≥1

τk(n)e(dn/c)
ns

, for Re(s) > 1, (3.9)

which could be considered a higher dimensional relative of the classical Estermann zeta-

function ( k = 2 case). It can be easily transformed to

Ek

(
s,

d

c

)
= c−ks

c∑

a1=1

· · ·
c∑

ak=1

e

(
da1 . . . ak

c

)
ζ(s, a1/c) . . . ζ(s, ak/c) (3.10)

where

ζ(s, α) =
∑

n≥0

(n + α)−s for 0 < α ≤ 1, Re(s) > 1

is the Hurwitz zeta-function, from which then Ek

(
s, d

c

)
inherits meromorphic continu-

ation to the whole complex plane and suitable functional equation. Its only singularity

is a pole of order k at s = 1 (for the precise functional equation we refer to Lemma 1 in
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[11]). This analytic data suffice for the derivation of the summation formula for (3.8)

via Mellin inversion. To state it, we need the following notation:

A±k

(
n,

d

c

)
=

1
2

∑
n1...nk=n

c∑

a1=1

· · ·
c∑

ak=1(
e

(
n1a1 + . . . + nkak + da1 . . . ak

c

)
± e

(
n1a1 + . . . + nkak − da1 . . . ak

c

))
(3.11)

are two complete exponential sums bounded by

|A±k
(

n,
d

c

)
| ≤ ckτk(n),

and for x > 0 and 0 < σ < 1
2 − 1

r let

Uk(x) =
1

2πi

∫

(σ)
x−s Γk( s

2)
Γk(1−s

2 )
ds, Vk(x) =

1
2πi

∫

(σ)
x−s Γk(1+s

2 )
Γk(2−s

2 )
ds. (3.12)

Then, for any (c, d) = 1 and any ψ ∈ C∞0 (0,∞) we have the following summation

formula ([11], Theorem 2):

∑

n≥1

τk(n)e
(

dn

c

)
ψ(n) =

1
2πi

∫

(2)
ψ̃(s)Ek

(
s,

d

c

)
ds =

= ress=1ψ̃(s)Ek

(
s,

d

c

)
+

πk/2

ck

∑

n≥1

A+
k

(
n,

d

c

)∫ ∞

0
ψ(x)Uk

(
πkn

ck
x

)
dx+

+ i3k πk/2

ck

∑

n≥1

A−k

(
n,

d

c

)∫ ∞

0
ψ(x)Vk

(
πkn

ck
x

)
dx. (3.13)

Furthermore, the asymptotic behavior of U3(x) and V3(x) for x À 1 and for any

fixed integer K ≥ 1 is given by:

U3(x) =
K∑

j=1

1
xj/3

(
C1,j cos(6x1/3) + C2,j sin(6x1/3)

)
+ O(x−(K+1)/3), (3.14)

V3(x) =
K∑

j=1

1
xj/3

(
C3,j cos(6x1/3) + C4,j sin(6x1/3)

)
+ O(x−(K+1)/3), (3.15)

where C1,j , C2,j , C3,j , C4,j are some absolute constants.

Finally, in the next section we will apply (3.13) for k = 3 and we will need more

precise description of the Laurent expansion of E3(s, d/c) at its triple pole s = 1. Again,

that could be derived from (3.10) starting with the Laurent expansion of the Hurwitz

zeta function:

ζ(s, α) =
1

s− 1
+

∞∑

n=0

γn(α)(s− 1)n,
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where, for example:

γ0(α) = lim
K→∞

[
K∑

k=0

1
k + α

− log(K + α)

]
.

Denoting σ1 = σ1(a1, a2, a3) = γ0(a1/c) + γ0(a2/c) + γ0(a3/c) and σ2 = σ2(a1, a2, a3) =

γ0(a1/c)γ0(a2/c)+ γ0(a1/c)γ0(a3/c)+ γ0(a2/c)γ0(a3/c) and using the Taylor expansion

c−3s =
1
c3
− 3

log c

c3
(s− 1) +

9
2

(log c)2

c3
(s− 1)2 + . . .

we get

c−3sζ
(
s,

a1

c

)
ζ

(
s,

a2

c

)
ζ

(
s,

a3

c

)
=

=
1

(s− 1)3
c−3+

1
(s− 1)2

c−3(σ1−3 log c)+
1

(s− 1)
c−3

(
9
2
(log c)2 − 3σ1 log c + σ2

)
+. . . .

(3.16)

To get coefficients in the Laurent expansion

E3

(
s,

d

c

)
=

C−3

(s− 1)3
+

C−2

(s− 1)2
+

C−1

(s− 1)1
+ C0 + . . . (3.17)

one need to average (3.16) over a1, a2, a3 modulo c:

C−3 =
1
c3

c∑

a1=1

c∑

a2=1

c∑

a3=1

e

(
da1a2a3

c

)
=

1
c2

c∑

a1=1

c∑

a2=1

δ(c | a1a2),

C−2 =
1
c3

c∑

a1=1

c∑

a2=1

c∑

a3=1

e

(
da1a2a3

c

) (
γ0

(a1

c

)
+ γ0

(a2

c

)
+ γ0

(a3

c

)
− 3 log c

)
=

=
1
c2

c∑

a1=1

c∑

a2=1

δ(c | a1a2)
(
3γ0

(a1

c

)
− 3 log c

)
,

and similarly using symmetry between a1, a2 and a3,

C−1 =
1
c3

c∑

a1=1

c∑

a2=1

δ(c | a1a2)
(

9
2
(log c)2 − 9γ0

(a1

c

)
log c + 3γ0

(a1

c

)
γ0

(a2

c

))
.

In particular, the crucial property that we will use is that the coefficients C−3, C−2

and C−1 do not depend on d. Moreover, using γ0(α) ¿ 1, it is easy to show that

C−3, C−2, C−1 ¿ c−1+ε. (3.18)
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3.4 An application of the asymptotic Γ1(q)-large sieve

The reduced problem (3.7) is in the form suitable for an application of the large sieve, and

for the family of Γ1(q)-automorphic forms on GL2 such large sieve inequality is provided

by Iwaniec-Li in [15]. However, direct application of the large sieve and subsequent use

of Weil’s bound for Kloosterman sums does not give enough saving. On the other hand,

Iwaniec-Li large sieve is asymptotic, and it leaves freedom to exploit further special

properties of the test vector (which is in our case τ3-divisor function).

Therefore, denoting the test-vector ~α = (αi) with αan = τ3(n)√
an

Ψ
(

an
Y

)
and zero oth-

erwise, an application of (1.16) gives the following expression for the left hand side of

(3.7):

2
ϕ(q)

∑−

χ(q)

∑h

f∈Hχ

∣∣∣∣∣
∑

n

λf (an)αan

∣∣∣∣∣
2

=

=
1
q

∑

1≤t≤T
(t,q)=1

(
2π

t

)2 ∑

1≤h≤H

|Ph,t(~α)|2 + O

(
qε

(
Y

q2
+

√
Y

qH

))
‖~α‖2, (3.19)

where Y ¿ q3/2+ε

a2b2
and ‖~α‖2 ¿ a−1(Y/a)ε ¿ qε. Hence, the error term in (3.19) is

admissible as long as H À q1/2−ε/2

a2b2
. Moreover, T = Y/q and therefore we are left to

bound the main term in (3.19) for the following choice of the parameters:

T =
q1/2+ε

a2b2
, H =

q1/2−ε/2

a2b2
, Y ¿ q3/2+ε

a2b2
. (3.20)

Here ε > 0 in the all three exponents is the same and fixed through the end of the

argument.

Now, after opening Kloosterman sums,

Ph,t(~α) =
∑

n

τ3(n)√
an

Ψ
(an

Y

)
S(hq̄, an; t)Jk−1

(
4π

t

√
han

q

)
=

=
∑∗

d(t)

e

(
hq̄d̄

t

) ∑
n

τ3(n)e
(

adn

t

)
1√
an

Jk−1

(
4π

t

√
han

q

)
Ψ

(an

Y

)
,

we see that the inner sum can be treated by the formula (3.13). In order to do so, we

first need to reduce a
t to coprime a1 = a

(a,t) and t1 = t
(a,t) . Then we apply (3.13) for

∑
n

τ3(n)e
(

a1d

t1
n

)
ψ(n),
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where the test function is given by

ψ(x) = (ax)−1/2Jk−1

(
4π

t

√
hax

q

)
Ψ

(ax

Y

)
. (3.21)

First task is to analyze the weight functions appearing on the right hand side in

(3.13). Both U3 and V3 have the same asymptotic behavior, so we consider only:

∫ ∞

0
Jk−1

(
4π

t

√
hax

q

)
U3

(
π3nx

t31

)
Ψ

(ax

Y

)
(ax)−1/2dx.

Now we substitute the expression (1.14) for J-Bessel function, and the asymptotic ex-

pansion (3.14) for U3. In the later, it is enough to consider only the leading order term,

since all others behave identically and are smaller. We get two oscillatory integrals
∫

e(φ(x)) . . . with the phase functions:

φ±(x) = ±2
t

(
ha

q

)1/2

x1/2 +
3n1/3

t1
x1/3.

These phase functions have stationary point x0 (solution to φ′(x0) = 0) given by

x0 = n2

(
t

t1

)6 ( q

ha

)3

and unless x0 is close to the the support of ψ(x) (which is ∼ Y/a because of Ψ) the

contribution of the corresponding n-term to the right hand side of (3.13) is negligible,

by partial integration enough number of times. That means that only significant terms

are given by the condition:

x0 = n2

(
t

t1

)6 ( q

ha

)3
³ Y

a
¿ q3/2+ε

a3b2
.

But since h ≤ H and recalling (3.20) we get:

n2 ¿
(

t1
t

)6 (
Ha

q

)3 q3/2+ε

a3b2
¿ 1

a6b8qε/2
.

This means that again here - for the small n, by partial integration many times, we

get that the contribution of the n-terms in this range is ¿ q−2010 which means that

the both sums on the right hand side of (3.13) contribute to the Ph,t forms in (3.19)

negligible amount.
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Therefore, we are left only with the contribution from ress=1ψ̃(s)E3

(
s, a1d

t1

)
, that

is:

Ph,t(~α) =
∑∗

d(t)

e

(
hq̄d̄

t

)
ress=1ψ̃(s)E3

(
s,

a1d

t1

)
+ O(q−2010),

where ψ is given by (3.21).

The Mellin transform ψ̃(s) is holomorphic at s = 1 and:

ψ̃(s) = ψ̃(1) + ψ̃′(1)(s− 1) +
1
2
ψ̃′′(1)(s− 1)2 + . . .

where for ν = 0, 1, 2:

ψ̃(ν)(1) =
∫ ∞

0
ψ(x)(log x)νdx =

∫ ∞

0

(log x)ν

√
ax

Jk−1

(
4π

t

√
hax

q

)
Ψ

(ax

Y

)
dx.

Then recalling the notation (3.17) for the coefficients of Laurent expansion we get:

ress=1ψ̃(s)E3

(
s,

a1d

t1

)
= C−1ψ̃(1) + C−2ψ̃

′(1) +
1
2
C−3ψ̃

′′(1),

where by (3.18):

C−3, C−2, C−1 ¿ t−1+ε
1 . (3.22)

Since C-coefficients do not depend on d we have:

Ph,t(~α) = rt(h)
∫ ∞

0

C−1 + C−2 log x + 1
2C−3(log x)2√

ax
Jk−1

(
4π

t

√
hax

q

)
Ψ

(ax

Y

)
dx

+O(q−2010).

The main term is the Ramanujan sum times the sum of three oscillatory integrals that

all have the same phase and the same amplitudes up to the logarithmic factors which

are admissible (the factor qε will take care of them). Using (3.22), substituting the

expression (1.14) for J-function, using that t1 = t
(t,a) ≥ t

a , changing ax → x, and

replacing Ψ with another smooth test function Ψ2 with the same properties, we get the

bound:

|Ph,t(~α)| ¿ qε |rt(h)|
t
√

Y

(
t

√
q

hY

)1/2
∣∣∣∣∣
∫ ∞

0
e

(
±2

t

√
hx

q

)
Ψ2

( x

Y

)
dx

∣∣∣∣∣ .

Now substituting this in (3.19), we arrive at:

1
q

∑

1≤t≤T
(t,q)=1

(
2π

t

)2 ∑

1≤h≤H

|Ph,t(~α)|2 ¿
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¿ qε

q1/2Y 3/2

∑

1≤t≤T

∑

1≤h≤H

|rt(h)|2
t3h1/2

∣∣∣∣∣
∫ ∞

0
e

(
±2

t

√
hx

q

)
Ψ2

( x

Y

)
dx

∣∣∣∣∣

2

.

Next recalling the ranges of relevant parameters (3.20), we divide summation into dyadic

boxes (t, h) ∈ [T , 2T ]×[H, 2H], total number of which again being absorbed into qε, and

then divide boxes into two sets B1 t B2, members of B1 being all the boxes satisfying:

Y À T 2q1+ε

H .

For them, partial integration of the oscillatory integral many times shows that their

total contribution is negligible (¿ q−2010).

In the second case, after bounding the integral trivially by Y , we find that the

contribution of a box in B2 is

¿ qεY 1/2

q1/2

∑

t∼T

∑

h∼H

|rt(h)|2
t3h1/2

¿ qε T
H1/2

T H
T 3H1/2

¿ qε

T ¿ qε,

and hence the proof is complete.
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Chapter 4

A larger GL2 large sieve in the level aspect

4.1 Introduction

The starting point and motivation for this section is the phenomenon described in 1.5.3 -

the "loss" of orthogonality in the range q ≤ N ≤ q2. The question is: can we recover the

orthogonality by enlarging the family, but keeping the analytic conductors essentially

fixed? The analytic conductor of f ∈ Sk(Γ1(q)) is ³ qk2 and hence averaging in the

k-aspect is not suitable for this purpose, but on the other hand we can do averaging

q ∼ Q in the level aspect and still to have conductor of size ³ Q.

Let Bχ(q) denotes any orthogonal basis for Sk(Γ0(q), χ) and let (ψf (n))n≥1 denote

the Fourier coefficients of basis element f normalized as in 1.5.3.

For the purpose of averaging, let Φ(x) be a C∞ function compactly supported on

(1
2 , 5

2) and such that 0 ≤ Φ(x) ≤ 1 and Φ ≡ 1 on [1, 2]. Also, denote the total mass in

summation by Q̃ =
∑

q≥1 Φ(q/Q).

Then, for any complex vector a = (an)N<n≤2N we are interested in bounding the

following large sieve-type average:

B(a) =
1

Q̃

∑
q

Φ
(

q

Q

)
2

ϕ(q)

∑

χ mod q
χ(−1)=(−1)k

∑h

f∈Bχ(q)

|
∑

n

anψf (n)|2 =

=
∑

n∼N

∑

m∼N

anam∆(m,n), (4.1)

where ∆(m,n) is the trace of this enlarged family:

∆(m,n) =
1

Q̃

∑
q

Φ
(

q

Q

)
2

ϕ(q)

∑

χ mod q
χ(−1)=(−1)k

∑h

f∈Bχ(q)

ψf (n)ψf (m). (4.2)

Note that the total number of harmonics on the left hand side of (4.1) is ³ Q3

and they all have the analytic conductor ³ Q. This is a potentially very interesting
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feature of the given GL2-family, since the analogous GL1-family of primitive Dirichlet

characters mod q, q ≤ Q has only ³ Q2 members of the conductor ¿ Q. Therefore one

should expect the following bound for (4.1):

¿
(

1 +
N

Q3

)
‖a‖2.

i.e. one should expect "perfect orthogonality" of the Fourier coefficients (ψf (n))1≤n≤N

of automorphic forms in our family up to N = Q3. However we will treat only the

limited range 1 ≤ N ≤ Q2−δ, for arbitrary small δ > 0:

Theorem 4.1. With the notation as above, for any ε > 0, any vector a = (an)n∼N of

complex numbers with N in the range 1 ≤ N ≤ Q2−δ, we have

B(a) ¿ Qε‖a‖2,

where the implied constant depends on k, δ and ε.

Extension beyond this, i.e. to the range Q2 ¿ N ¿ Q3 is still open, and having

in mind (1.5.3) it is not even clear whether perfect orthogonality holds there. Still it

could be probable, just on account of previously mentioned large number of harmonics

involved - so that they could "wash out" all irregularities or biases. However, in this

range one meets extreme difficulties that we do not know how to resolve at present.

Moreover, situation about averaging over the levels on GL2 is more delicate than

on GL1 also in one additional aspect: isolation and handling of primitive characters on

GL1 was fairly easy, while isolation of the contribution of newforms in averaging over

the levels on GL2 appears to be extremely difficult task. On the other hand, again

because of "big" averaging, it might happen that oldforms have no effect to the large

sieve bound and such was the case in [15], for the fixed prime level.

4.2 Preparations and reductions: the tail

We emphasize again that we work in the range 1 ≤ N ≤ Q2−δ. Using Lemma 1.1 one

derives (or cf. Lemma 2.1. in [15] where the averaging for the fixed level is performed):

∆(m, n) = δ(m,n) + σ(m,n)
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where (recall the notation (1.7) for the K-operator)

σ(m,n) =
1

Q̃
K

∑
q

Φ
(

q

Q

)∑

s≥1

∑

t≥1

2π

qst
Vqs(m,n; t)e

(
m + n

qst

)
Jk−1

(
4π
√

mn

qst

)
(4.3)

and Vd(m,n; t) is the following exponential sum:

Vd(m, n; t) =
∑

x(mod t)
(x(x+d),t)=1

e

(
mx̄− nx + d

t

)
.

To treat further σ(m,n) we divide

σ(m,n) = σ](m,n) + σ[(m,n)

where σ](m,n) :=
∑

t≤N/Q and σ[(m,n) :=
∑

t>N/Q, and write

B(a) = ‖a‖2 + B](a) + B[(a)

for the corresponding bilinear forms. The reason for this is that for t > N/Q, the analytic

factors e
(

m+n
qst

)
Jk−1

(
4π
√

mn
qst

)
do not oscillate, and hence only oscillation comes from

Vqs(m,n; t) where m and n are already separated - and therefore in this range the

classical large sieve can finish the job. Namely, using (1.12) for k ≥ 3 and the power

series expansion for e · Jk−1, we obtain:

B[(a) ¿ 1

Q̃

∑
q

Φ
(

q

Q

) ∑

s≥1

∑

t>N/Q

1
qst

∣∣∣∣∣
∑

n∼N

∑

m∼N

anamVqs(m,n; t)

∣∣∣∣∣
(

N

qst

)2

.

Substituting the exponential sum Vqs and applying Cauchy-Schwarz while estimating

trivially the summations over q and s, this is further

¿ N2

Q3

∑

t>N/Q

1
t3

∑∗

x (t)

∣∣∣∣∣
∑

n∼N

ane
(nx

t

)∣∣∣∣∣
2

¿ ‖a‖2,

where the last inequality follows from dyadic subdivision and the classical large sieve.

Therefore, from now on, we only need to concentrate on B](a).
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4.3 Preparations and reductions: q-summation

Of course, in the treatment of σ](m,n) we will exploit additional summation over levels

q:

σ](m, n) =

=
1

Q̃
K

∑

s≥1

∑

1≤t≤N/Q

2π

st

∑

αmod t

Vαs(m,n; t)
∑

q≥1
q≡α(t)

1
q
Φ

(
q

Q

)
e

(
m + n

qst

)
Jk−1

(
4π
√

mn

qst

)
.

(4.4)

By the Poisson summation formula we have:

σ](m, n) =
1

Q̃
K

∑

s≥1

2π

s

∑

1≤t≤N/Q

1
t2
·

·
∑

h∈Z

∑

α(t)

Vαs(m,n; t)e
(

hα

t

)∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π
√

mn

stx

)
e

(
m + n

stx
− h

t
x

)
dx

x
.

(4.5)

In order to analyze the last integral, we use the formula (1.14) for the J-Bessel function.

It gives two oscillatory integrals with the phase functions:

φ±(x) =
m± 2

√
mn + n

stx
− h

t
x.

For h 6= 0, none of them has a stationary point (since N < Q2−δ and hence the linear

term dominates) and moreover in that case integration by parts A times gives:

∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π
√

mn

stx

)
e

(
m + n

stx
− h

t
x

)
dx

x
¿

(
t

Q|h|
)A

.

Since t ≤ N/Q ¿ Q1−δ taking A sufficiently large makes the contribution of all the

terms with h 6= 0 negligible. Therefore we are left only with h = 0 contribution:

σ](m, n) =
1

Q̃
K

∑

s≥1

2π

s

∑

1≤t≤N/Q

1
t2
·

·
∑

α(t)

Vαs(m,n; t)
∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π
√

mn

stx

)
e

(
m + n

stx

)
dx

x
+ σerr(m,n), (4.6)

where σerr(m,n) ¿ q−2010 by the repeated partial integration.
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By the direct computation (or see Lemma 3.1 in [15]) one shows that the resulting

exponential sum is equal to:

∑

α(t)

Vαs(m, n; t) =
∑

β(t)
βs≡0(t)

S(β, m; t)S(β, n; t) =
∑

γ mod (s,t)

S

(
t

(s, t)
γ, m; t

)
S

(
t

(s, t)
γ, n; t

)
.

Introducing a new variable v = (s, t) and changing s and t with sv and tv respectively,

where now (s, t) = 1, we arrive at:

σ](m, n) =
2π

Q̃
K

∑

1≤v≤N/Q

∑

1≤t≤N/(vQ)

∑

s≥1
(s,t)=1

1
st2v3

∑

γ (v)

S(tγ, m; tv)S(tγ, n; tv)·

·
∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π
√

mn

stv2x

)
e

(
m + n

stv2x

)
dx

x
+ σerr(m,n). (4.7)

4.4 Preparations and reductions: s-summation

Next task is to separate variables m and n in the oscillatory integral in (4.7). That can

be done by Poisson summation in the s variable and the situation is almost identical as

in [15], section 3, so we will follow it closely.

Because of technical convenience in further analysis, we first insert a factor η(s) in

summation over s, for η ∈ C∞(R>0), η(s) = 0 for 0 < s < 1/4, 0 ≤ η(s) ≤ 1 for

1/4 ≤ s ≤ 1/2, η(s) = 1 if s > 1/2, which is of course redundant.

Now, Φ has compact support and k ≥ 3, so in particular Jk−1(x) ¿ x2, and there-

fore the convergence in (4.7) is absolute and we can freely exchange summations and

integration. In particular we get by Poisson summation (we can move operator K inside

since all the terms before are real and K is R-linear):

s-sum = K
∑

s≥1
(s,t)=1

η(s)
s

Jk−1

(
4π
√

mn

stv2x

)
e

(
m + n

stv2x

)
=

=
1
t
K

∑

h∈Z
rt(h)

∫ ∞

0

η(s)
s

Jk−1

(
4π
√

mn

stv2x

)
e

(
m + n

stv2x
+

h

t
s

)
ds, (4.8)

where rt(h) =
∑

d|(t,h) µ(t/d)d is the Ramanujan sum.

Again using the expression (1.14), for each h we have two oscillatory integrals with

phase functions

φ±(s) =
m± 2

√
mn + n

stv2x
+

h

t
s.
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Since s ≥ 1/4 because of the support of η and x ³ Q because of the support of Φ and

t ≤ N/Q in σ], we see that for |h| ≥ H := (N/Q)1+ε none of the oscillatory integrals has

a stationary point and moreover by partial integration enough number of times we get

that the contribution of all terms |h| > H to the total sum is negligible. This truncation

of the dual sum can be done by a smooth cut-off factor ω(|h|/H) where ω ∈ C∞(R≥0),

ω(x) = 1 on 0 ≤ x ≤ 1 and ω(x) = 0 for x > 2. Hence, continuing from line (4.8):

s-sum =
1
t
K

∑

h

rt(h)ω
( |h|

H

)∫ ∞

0

η(s)
s

. . . ds + O(q−2010).

Now we replace back η by 1 i.e. write η = 1 − (1 − η) where 1 − η is supported on

[0, 1/2]:

s-sum =
1
t

∑

h

rt(h)ω
( |h|

H

)
K

∫ ∞

0

1
s
Jk−1

(
4π
√

mn

stv2x

)
e

(
m + n

stv2x
+

h

t
s

)
ds−

−1
t
K

∑

h

rt(h)ω
( |h|

H

) ∫ 1/2

0

1− η(s)
s

Jk−1

(
4π
√

mn

stv2x

)
e

(
m + n

stv2x
+

h

t
s

)
ds+O(q−2010).

Now, the integral in the fist line can be computed by the formula (1.15) and is equal

to:

2πJk−1

(
4π

tv

√
mh

x

)
Jk−1

(
4π

tv

√
nh

x

)

for h > 0, and equal 0 otherwise.

On the other hand, the contribution of the second line can be treated and asymp-

totically computed ( again with an error ¿ q−2010 ) precisely as in [15], equations (3.9)

- (3.14). Therefore, we get:

s-sum =
2π

t

∑

h≥1

ω

(
h

H

)
rt(h)Jk−1

(
4π

tv

√
mh

x

)
Jk−1

(
4π

tv

√
nh

x

)
−

− 2π

t

∫ ∞

0
ω

(
h

H

)
Jk−1

(
4π

tv

√
mh

x

)
Jk−1

(
4π

tv

√
nh

x

)
dh + O(q−2010). (4.9)

Substituting this in (4.7) we get:

σ](m,n) = σ]
+(m,n)− σ]

−(m,n) + σ′err(m,n)



53

where

σ]
+(m,n) =

4π2

Q̃

∑

1≤v≤N/Q

∑

1≤t≤N/(vQ)

1
t3v3

∑

γ (v)

S(tγ, m; tv)S(tγ, n; tv)·

·
∑

h≥1

ω

(
h

H

)
rt(h)

∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π

tv

√
mh

x

)
Jk−1

(
4π

tv

√
nh

x

)
dx

x
, (4.10)

σ]
−(m,n) =

4π2

Q̃

∑

1≤v≤N/Q

∑

1≤t≤N/(vQ)

1
t3v3

∑

γ (v)

S(tγ, m; tv)S(tγ, n; tv)·

·
∫ ∞

0
ω

(
h

H

)∫ ∞

0
Φ

(
x

Q

)
Jk−1

(
4π

tv

√
mh

x

)
Jk−1

(
4π

tv

√
nh

x

)
dx

x
dh (4.11)

and

σ′err(m,n) ¿ q−2010.

Accordingly, bilinear form B](a) splits further as

B](a) = B
]
+(a)−B

]
−(a) + B]

err(a).

Since we are interested in an upper bound and the contribution −B
]
−(a) is negative,

it can be ignored (recall that it arose after and because of the introduction of auxiliary

function η and therefore the outcome is not surprising).

4.5 Final bounds

We are left with the problem of bounding

B
]
+(a) =

∑

n∼N

∑

m∼N

anam σ]
+(m,n).

First we consider the exponential sum
∑

γ (v) S(tγ, m; tv)S(tγ, n; tv) appearing in

(4.10). For it we recall the twisted multiplicativity of Kloosterman sums: for (q, r) = 1

the following holds

S(m,n; qr) = S(mq̄, nq̄; r)S(mr̄, nr̄; q) (4.12)

where q̄, r̄ are multiplicative inverses of q, r modulo r, q respectively.
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Lemma 4.2. For m, n, t, v integers and t, v > 0 we have:

∑

γ (mod v)

S(tγ, m; tv)S(tγ, n; tv) = δ

(
v1|m
v1|n

)
vv2

1 rt1(m) rt1(n)rv

(
n

v1
− m

v1

)
(4.13)

where t = t1v1 is the factorization of t such that (t1, v) = 1 and v1|v∞ (meaning: for all

primes p|v1 =⇒ p|v) and δ = 1 only if both conditions are satisfied, and 0 otherwise.

Proof. We factor the modulus of Kloosterman sums as tv = t1 ·v1v, where now (t, v1v) =

1 so we can use the property (4.12):

∑

γ (mod v)

S(tγ, m; t1v1v)S(tγ, n; t1v1v) =

=
∑

γ (mod v)

S(tγt̄1,mt̄1; v1v) S(tγv1v, mv1v; t1) S(tγt̄1, nt̄1; v1v) S(tγv1v, nv1v; t1) =

= S(0,mv1v; t1) S(0, nv1v; t1)
∑

γ (mod v)

S(v1γ, mt̄1; v1v) S(v1γ, nt̄1; v1v) =

= S(0,m; t1) S(0, n; t1)
∑

γ (v)

∑∗

α (v1v)

e

(
v1γα + mt1α

v1v

) ∑∗

β (v1v)

e

(
v1γβ + nt1β

v1v

)
=

= rt1(m) rt1(n)
∑∗

α (v1v)

e

(
mt1α

v1v

) ∑∗

β (v1v)

e

(
nt1β

v1v

) ∑

γ (v)

e

(
γ(α + β)

v

)
. (4.14)

Now t1 can be absorbed into α and β and the innermost sum is then equal to

v δ(t1(α + β) ≡v 0) = v δ(β ≡v −α). (4.15)

Next, since v1|v∞, α ∈ (Z/v1vZ)∗ can be written as α = ϑ + vx′ where ϑ ∈ (Z/vZ)∗

and x′ runs modulo v1 and then α = ϑ + vx′ = ϑ̄ + vx for some uniquely determined x

(mod v1). Similarly, because of (4.15) we can write β̄ = −ϑ̄ + vy, for y (mod v1) and

hence, continuing from (4.14) we get:

= v rt1(m) rt1(n)
∑∗

ϑ (v)

∑

x (v1)

e

(
m(ϑ̄ + vx)

v1v

) ∑

y (v1)

e

(
n(−ϑ̄ + vy)

v1v

)
=

= vv2
1 rt1(m) rt1(n)δ

(
v1|m
v1|n

) ∑∗

ϑ (v)

e

(
n/v1 −m/v1

v
ϑ

)
.
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Substituting (4.13) into (4.10) we obtain:

B
]
+(a) =

4π2

Q̃

∑

1≤t≤N/Q

1
t3

∑

h≥1

ω

(
h

H

)
rt(h)·

·
∑

1≤v≤N/(Qt)

1
v2

v2
1

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

) ∣∣∣∣∣
∑

n∼N

anδ(v1|n)rt1(n)e
(

αn/v1

v

)
Jk−1

(
4π

tv

√
nh

x

)∣∣∣∣∣
2

dx

x
,

(4.16)

where we caution that v1 = v1(t, v) | t depends on the pair t, v appearing in front of it

in the formula.

It is reminiscent to the Iwaniec-Li asymptotic large sieve formula (1.16), although,

apart from being more complicated, in our case (4.16) contains on the right hand side

negative contribution as well (coming from negative Ramanujan sums rt(h)), reflecting

intricate nature of this family of harmonics obtained by averaging over the levels.

However, summation in h-variable already came from the Poisson formula, as the

dual variable to s, and hence further treatment by harmonic analysis would be "involu-

tive". Luckily, in the range of interest in this thesis, i.e. Q ¿ N ¿ Q2−δ, enough saving

comes from the averaging in the second line in (4.16), while in the fist line we replace

rt(h) with its absolute value. Hence the strategy is to "freeze" t and h and bound the

inner summation.

We remark that in the "typical" case, v1 = 1, the linear form on the right hand side

of (4.16) becomes:
∑

n∼N

anrt(n)e
(αn

v

)
Jk−1

(
4π

tv

√
nh

x

)
,

and hence, it is close to the classical GL1 large sieve, but contaminated with Jk−1-

function. Such situation is very common in deriving various GL2 large sieve type in-

equalities (cf. e.g. [5]) and the proof of all of these ultimately relies on reduction to the

GL1 case.

An appropriate auxiliary large sieve is given by the following:

Lemma 4.3. For any vector (an)n∼N of complex numbers and any L,N ≥ 1 and X > 0
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we have:

∫ 2X

X

∑

L<l≤2L

∑∗

α (l)

∣∣∣∣∣∣
∑

N<n≤2N

an e
(αn

l

)
Jk−1

(
4π

l

√
n

x

)∣∣∣∣∣∣

2

dx

x
¿ L2

(
X + L

√
X

N

)
‖a‖2,

(4.17)

where the implied constant depends only on k.

Proof. Change of variables from the large sieve inequality obtained by Iwaniec-Li in

[15], lemma 9.1.

Now we can return to (4.16) and start with the following arrangement:

B
]
+(a) ¿ 1

Q̃

∑

1≤t≤N/Q

1
t3

∑

h≥1

ω

(
h

H

)
|rt(h)|

∑
t1v1=t

(t1,v1)=1

Bt1,v1(a), (4.18)

where in the form Bt1,v1(a) the pair t1 and v1 is now fixed and the v-summation can be

enlarged to include all v (not necessarily only v such that v1|v∞; this will not be a loss

because of the nature of classical large sieve):

Bt1,v1(a) =
∑

1≤v≤N/(Qt)

v2
1

v2

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

) ∣∣∣∣∣
∑

n∼N

anδ(v1|n)rt1(n)e
(

αn/v1

v

)
Jk−1

(
4π

tv

√
nh

x

)∣∣∣∣∣
2

dx

x
. (4.19)

Next, we reduce further by dividing summation over v into dyadic intervals:

Bt1,v1(a) ¿ v2
1

∑

V =2κ≤N/(Qt)

1
V 2

BV
t1,v1

(a), (4.20)

where

BV
t1,v1

(a) =
∑

v∼V

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

) ∣∣∣∣∣
∑

n∼N

anδ(v1|n)rt1(n)e
(

αn/v1

v

)
Jk−1

(
4π

tv

√
nh

x

)∣∣∣∣∣
2

dx

x
.

(4.21)

This form is very close to (4.17) except for the Ramanujan sum, which we need to

control more precisely. First, since (v1, t1) = 1 we have that rt1(n) = rt1(n/v1). Second,

if we denote t2 = (t1, n) we have:

|rt1(n)| =
∣∣∣∣∣∣
∑

d|t2
dµ(t1/d)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

d|t2
d

∣∣∣∣∣∣
≤ τ(t2)t2.
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Recall that t1 is fixed and hence we have a finite number of possibilities for t2|t1. Divide

summation over n according to the common divisor t2:
∑

n∼N =
∑

t2|t1
∑

(n,t1)=t2
.

Then by Cauchy-Schwarz:

∣∣∣∣∣
∑

n∼N

∣∣∣∣∣
2

≤ τ(t1)
∑

t2|t1

∣∣∣∣∣∣
∑

(n,t1)=t2

∣∣∣∣∣∣

2

and we split (4.21) accordingly:

BV
t1,v1

(a) ≤ τ(t1)
∑

t2|t1

∑

v∼V

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

)
∣∣∣∣∣∣∣∣

∑

n∼N
(n,t1)=t2

anδ(v1|n)rt1(n)e
(

αn/v1

v

)
Jk−1

(
4π

tv

√
nh

x

)
∣∣∣∣∣∣∣∣

2

dx

x
. (4.22)

Now writing

rt1(n) =
rt1(n)
τ(t2)t2

τ(t2)t2,

since the absolute value of the fraction is ≤ 1, we can absorb it into the test-vector

a = (an), obtaining:

BV
t1,v1

(a) ≤ τ(t1)
∑

t2|t1
τ(t2)2 t22·

·
∑

v∼V

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

)
∣∣∣∣∣∣∣∣

∑

n∼N
(n,t1)=t2

anδ(v1|n)e
(

αn/v1

v

)
Jk−1

(
4π

tv

√
nh

x

)
∣∣∣∣∣∣∣∣

2

dx

x
. (4.23)

Final preparation of the second line (recall that now v1, t1, t2 are fixed): first, since t2|n,
in the numerator of the exponential write α n

v1
= αt2

n
v1t2

and then since (t2, v) = 1

absorb t2 into α by change of variables. Also, we write the argument of the Bessel

function in the following manner:

∑

v∼V

∑∗

α (v)

∫ ∞

0
Φ

(
x

Q

)
∣∣∣∣∣∣∣∣∣∣

∑

n∼N
(n,t1)=t2
n≡0 (v1)

ane

(
α n/(v1t2)

v

)
Jk−1

(
4π

v

√
n/(v1t2)

v1t21x/(ht2)

)
∣∣∣∣∣∣∣∣∣∣

2

dx

x
.

On this sum we can now apply (4.17), where the length of the inner summation

is N/(v1t2) and after the change of variables, X = v1t21Q
ht2

. Hence the previous line is
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bounded by

¿ V 2 v1t
2
1Q

ht2

∑

n∼N
(n,t1)=t2
n≡0 (v1)

|an|2,

since in the given range of parameters (recall that N ¿ Q2−δ, for δ anything > 0)

we have that
√

X À V√
N

and therefore the first term on the right hand side of (4.17)

dominates in our situation.

Substituting back, we get respectively:

BV
t1,v1

(a) ¿ V 2Qv1t
2
1

h
τ(t1)

∑

t2|t1
τ(t2)2 t2

∑

n∼N
(n,t1)=t2
n≡0 (v1)

|an|2,

Bt1,v1(a) ¿ Qt2v1

h
log(N/Q) τ(t1)

∑

t2|t1
τ(t2)2 t2

∑

n∼N
(n,t1)=t2
n≡0 (v1)

|an|2,

B
]
+(a) ¿ log(N/Q)

∑

1≤t≤N/Q

1
t

∑

h≥1

ω

(
h

H

) |rt(h)|
h

∑
t1v1=t

(t1,v1)=1

τ(t1)
∑

t2|t1
τ(t2)2 v1t2

∑

n∼N
(n,t1)=t2
n≡0 (v1)

|an|2.

Now in the above formula each |an|2 is weighted by at most the following quantity:

¿ log(N/Q)
∑

v1t2|n
v1t2 τ(t2)2

∑

1≤t≤N/Q
t≡0 (v1t2)

τ(t/v1)
t

∑

h≥1

ω

(
h

H

) |rt(h)|
h

¿

¿ log2(N/Q)
∑

v1t2|n
τ(t2)2

∑

1≤t≤N/Q
t≡0 (v1t2)

v1t2 τ(t/v1)τ(t)2

t
¿ qε,

implying the following

Proposition 4.4. For any vector of complex numbers a = (an)n∼N and any ε > 0 we

have:

B
]
+(a) =

∑

n∼N

∑

m∼N

anam σ]
+(m,n) ¿ Qε‖a‖2, (4.24)

where the implied constant depends only on k (the weight of modular forms).
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