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ABSTRACT OF THE DISSERTATION

Behavior of Geodesic Rays in Spaces with Geometric

Group Actions

by Daniel Staley

Dissertation Director: Steve Ferry

This dissertation studies certain groups by studying spaces on which they act geomet-

rically. These spaces are studied by examining the behavior of geodesic rays in these

spaces, which gives geometric data about the space that can translate into algebraic

data about the group.

First, we investigate the amenability of Thompson’s group F by studying the ge-

ometry of its Cayley graph. We apply the uniformly finite homology of Block and

Weinberger to subsets of this graph. Many large subsets of the Cayley graph are shown

to be nonamenable by exhibiting certain arrangements of geodesic rays which we call

“tree-like quasi-covers”.

We then examine CAT(0) boundaries. If a group acts geometrically on two CAT(0)

spaces X and Y , then one obtains a G-equivariant quasi-isometry from X to Y . One

may look at the image of a geodesic ray in X, and look at its closure in ∂Y . We

show that this “boundary image” can have the homeomorphism type of any compact,

connected subset of Euclidean space.
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Chapter 1

Introduction

Geometric group theory studies groups by studying metric spaces on which they act.

Given a group G acting on a metric space X, we say the action is proper if for each

compact K ⊂ X, gK ∩ K = ∅ for all but finitely many g ∈ G. We say the action is

cocompact if X/G is compact. The action is by isometries if d(x, y) = d(gx, gy) for all

g ∈ G and x, y ∈ X.

We are interested in actions of the following type:

Definition 1.0.1. An action of a group G on a metric space X is geometric if it is

proper, cocompact, and by isometries.

If G is finitely generated, then G always acts geometrically on its Cayley graph. The

Cayley graph is the graph constructed as follows: Given a generating set S of G, the

vertex set is simply the elements of G. We then connect two vertices g and g′ by an edge

if g′ = gs for some s ∈ S. Since left multiplication by a fixed element does not change

this relation, we have that the action of G on its Cayley graph via left multiplication

is a geometric action.

Another important notion in geometric group theory is that of quasi-isometry:

Definition 1.0.2. Given two metric spaces X and Y , a function f : X → Y is a

quasi-isometric embedding if there exist λ ≥ 1, B ≥ 0 such that for all x1, x2 ∈ X,

1
λ
d(x1, x2)−B ≤ d

(
f(x1), f(x2)

)
≤ λd(x1, x2) +B.

If f further has the property that for all y ∈ Y there is an x ∈ X with d(f(x), y) ≤ B,

then f is a quasi-isometry.
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It is a basic result in geometric group theory that if there is a quasi-isometry from

X to Y , then there is a quasi-isometry from Y to X. Two metric spaces are called

quasi-isometric if there exists a quasi-isometry between them. A fundamental theorem

of geometric group theory is the following theorem of Milnor and Svarc:

Theorem 1.0.3. Suppose G acts geometrically on a metric space X. Then X is quasi-

isometric to any Cayley graph of G.

This theorem allows us to study a wide variety of metric spaces with geometric

group actions, and obtain results about the groups that act upon them.

Given x, y ∈ X, a geodesic segment connecting x and y is a map p from any real

interval [a, b] into X such that p(a) = x, p(b) = y, and d
(
p(t), p(t′)

)
= |t − t′| for any

t, t′ ∈ [a, b]. For ease of notation, we will occasionally fail to distinguish between a

geodesic segment and its image.

Definition 1.0.4. A metric space X is a geodesic metric space if for any two points

x, y ∈ X, there is a geodesic segment connecting x and y.

We include the edges (as copies of the unit interval) in the Cayley graph of a group

G and give it the path metric, which makes it a geodesic metric space.

A geodesic ray in X is a path p : [0,∞) → X such that d (p(t), p(t′)) = |t − t′|

for all t, t′ ∈ [0,∞). Geodesic rays give important information about the large-scale

behavior of a metric space. Since large-scale behavior is typically all that is captured by

a quasi-isometry, this makes geodesic rays a useful tool for studying properties which

are invariant under quasi-isometry.

Using Theorem 1.0.3, we will study two open questions about groups by using the

behavior of geodesic rays in geodesic metric spaces with geometric group actions.

In Chapter 2, we study Thompson’s group F . This is a particular group with

numerous interesting properties. For several decades, the question has been open as to

whether F is amenable. We will define amenability in chapter 2. We do not answer

the question, but we show that certain subgraphs of the Cayley Graph of F are not

amenable. These graphs are “large” in the sense that their union is the entire Cayley

graph.
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In order to show that these subgraphs are not amenable, we use uniformly finite ho-

mology, which was developed by Block and Weinberger [4] but based on ideas originated

by Følner in 1955 [14]. We construct “Ponzi schemes” on these graphs, by “flowing”

along geodesic rays. By choosing an appropriate set of starting points for these rays,

we find that the graphs are sufficiently “tree-like” to admit a Ponzi scheme.

In Chapter 3, we study CAT(0) metric spaces. CAT(0) spaces are geodesic metric

spaces which satisfy a certain notion of nonpositive curvature. Groups which act geo-

metrically on these spaces are called CAT(0) groups, and have been extensively studied.

A CAT(0) space has a well-defined boundary consisting of geodesic rays emitting from

a chosen basepoint. However, this boundary is not an invariant of the group which acts

on it. Croke and Kleiner [9] constructed the first example of two CAT(0) spaces, acted

upon by the same group, whose boundaries are not homeomorphic.

It is natural to then ask what sort of equivalence one has between boundaries of

spaces acted upon by the same group. Bestvina [3] has shown that all such boundaries

are shape equivalent, which we will define in Chapter 3. It is an open question as to

whether these boundaries are CE-equivalent, another notion which we will define in

chapter 3.

We do not answer this question, but we do construct spaces with erratic behavior

of geodesic rays, which highlights the complexity of the situation. The construction

demonstrates that quasi-geodesics can have pathological behavior, even if we impose

the condition that they are images of true geodesics under G-equivariant maps.
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Chapter 2

Thompson’s Group F and Uniformly Finite Homology

2.1 Background

In 1965, Richard Thompson introduced his group F . F has many interesting properties:

it is finitely presented, has exponential growth, and contains subgroups isomorphic to

F × F , yet it is “almost simple” in the sense that every proper quotient of F is a

quotient of Z× Z. The question as to whether F is amenable was first posed in 1979.

F is, in a sense, “on the edge of amenability”, as it is not elementary amenable but

does not contain a free subgroup on two generators (see Brin and Squier [7]). If F

is not amenable, it provides a finitely-presented counterexample to the Von Neumann

conjecture. Very few such examples are known (Ol’shanskii and Sapir provided the first

in 2000 [21]).

In 1955, Følner provided a geometric criterion for the amenability of a group based

on the existence of subsets of the Cayley graph that satisfy a “small boundary” con-

dition [14]. This criterion holds for semigroups as well (one may find a proof in

Namioka [20]), and allows one to extend the definition of “amenable” to graphs of

bounded degree. In 1992, Block and Weinberger extended the definition to a broad

class of metric spaces [4]. They defined the uniformly finite homology groups Huf
n (M)

of a metric space M and proved that M is amenable if and only if Huf
0 (M) 6= 0.

In this chapter we use the results of Block and Weinberger to define the notion

of a tree-like quasi-cover, and show that an amenable graph cannot possess a tree-like

quasi-cover. We then apply this result to subgraphs of the Cayley graph of Thompson’s

group F .

Thompson’s group F can be described as the group with the following infinite
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presentation:

〈x0, x1, x2, x3, ... | xjxi = xi+1xj for i > j〉

The main result of this chapter is the following:

Theorem. Let k, l be nonnegative integers, with l > 0. Let Γlk be the subgraph of the

Cayley graph of F consisting of vertices that can be expressed in the form

a1...amb1...bn,

where m ≤ k, a1, ..., am ∈ {x0, x1, x2, ...}, and b1, ..., bn ∈ {x0, ..., xl}. Let the edge set

of Γlk include all edges in the Cayley Graph of F that connect such vertices. Then Γlk

is not amenable.

The case k = 1, l = 1 was proved by D Savchuk in [23].

A corollary of this theorem is that all finitely-generated submonoids of the positive

monoid of F are not amenable. It follows that if F is amenable these sets have measure

zero.

For ease of notation, we will sometimes identify a graph with its vertex set. If the

graph is the Cayley Graph of a group, we will occasionally identify vertexes with group

elements.

Many of the proofs in this chapter appear in [25].

2.2 Thompson’s Group F

From the presentation of F given in the previous section, we see that xi+1 = x0xix
−1
0

for i ≥ 1. Thus this group is finitely generated by {x0, x1}. F is finitely presented

as well (see [1] or [15] for a proof). However, it is still useful to consider the infinite

generating set {x0, x1, x2, ...}. We have the following definition:

Definition 2.2.1. The positive monoid of F is the submonoid of F consisting of ele-

ments that can be expressed as words in {x0, x1, x2, ...} without using inverses.
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Any element of F can be expressed as an element of the positive monoid multiplied

by the inverse of such an element. Elements of F have a normal form which is such a

product. The reader is referred to [1] or [15] for proofs.

In [1], the group F is studied using two-way forest diagrams. We will make extensive

use of these diagrams when studying the positive monoid in Section 4. We describe the

two-way forest diagrams of the positive monoid here, referring the reader to [1] for the

proofs.

Definition 2.2.2. A binary forest is an infinite sequence of binary trees, such that all

but finitely many of the trees are trivial (ie have a single node):

...r r r r r r r r r�
�
��

S
S
SS

��S
SS

��SS

Each binary tree can be thought of as a collection of “carets”. Removing the top

caret of a nontrivial tree leaves two (possibly trivial) trees, which we call the left child

and right child of the tree.

Definition 2.2.3. A pointed forest is a binary forest with a distinguished, or “pointed”,

tree:

...r r r r r r r r�
��
��S
SS

�
�
��

SS ��S
S
SS

?

Henceforth, we will omit the ellipses and assume a forest diagram or pointed forest

diagram has an infinite number of trivial trees continuing to the right.

Each element of the positive monoid of F can be identified with a pointed forest.

The identity element is the pointed forest consisting only of trivial trees, with the the

pointer on the leftmost tree.

Right multiplication by x0 moves the pointer one tree to the right (Figure 2.1).
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r r r r r r r�
��
��S
SS

��SS ��SS

?r r r r r r r�
��
��S
SS

��SS ��SS

?

Figure 2.1: Multiplication by x0

Right multiplication by x1 adds a caret between the pointed tree and the tree

immediately to its right, making a new tree whose left child is the pointed tree and

whose right child is the tree to its right. This new tree becomes the pointed tree (Figure

2.2).

r r r r r r r�
�
�
��

SS �
��
��S
S
S
SS

?

r r r r r r r��SS �
��
��S
SS?

Figure 2.2: Multiplication by x1

Since xi = xi−1
0 x1x

−(i−1)
0 , we can see that right multiplication by xi moves the

pointer i− 1 trees to the right, adds a caret, and then moves the pointer i− 1 trees to

the left again. This is equivalent to adding a caret between the trees i− 1 and i steps

to the right of the pointed tree (Figure 2.3).

r r r r r r r�
��
SS S
SS

��SS
?r r r r r r r��SS ��SS

?

Figure 2.3: Multiplication by x3

Multiplication of pointed forests corresponds to “putting one on top of the other”:

If P and Q are pointed forests, then PQ is the forest obtained by using the trees of

P as the nodes of Q with the pointed tree in P attaching to the leftmost node of Q

(Figure 2.4).

The pointer is then placed above whatever tree was pointed in Q.

It has been a longstanding open question as to whether F is amenable:
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r r r r r��SS ��SS
?

r r r�
�
��

�
�
S
S
SS

?

r r r r r�
�
�
��

SS �
��
��S
S
S
SS

?

Figure 2.4: Multiplying the two pointed forests on the left yields the pointed forest on
the right

Definition 2.2.4. A groupG is called amenable if there exists a right-invariant measure

on G–a function µ that assigns to each subset A ⊂ G a value 0 ≤ µ(A) ≤ 1 such that:

1. µ(G) = 1.

2. µ is finitely additive: If A and B are disjoint subsets of G, then µ(A) + µ(B) =

µ(A ∪B).

3. µ is G-invariant: For any g ∈ G and any A ⊂ G, µ(A) = µ(Ag).

Many texts define amenability as the existence of a left-invariant measure, but the

existence of left- and right- invariant measures is equivalent on a group. A useful result

for determining amenability is Følner’s Criterion, which uses the Cayley graph of G.

Recall that the Cayley graph of G is the graph obtained by taking a generating set S

and using G as the vertex set, connecting two vertices g and g′ by an edge if g′ = gs

for some s ∈ S.

Theorem (Følner’s Criterion). A group G is amenable if and only if, for any ε > 0,

there exists a finite subset A of vertices in the Cayley graph of G such that

#∂(A)
#A

< ε,

where #A is the number of vertices in A, and #∂(A) is the number of edges connecting

vertices of A to vertices outside A.

Følner’s criterion can be applied to any graph of finite valence. In particular, we

say such a graph is amenable if Følner’s criterion holds for that graph. This allows us

to state the following proposition:



9

Proposition 2.2.5. Let Γ be the subgraph of the Cayley graph of Thompson’s group F

(using the x0, x1 generating set) consisting of vertices in the positive monoid of F and

all edges between such vertices. Then Γ is amenable if and only if F is amenable.

For a proof see Savchuk [23]. Roughly, using the normal form alluded to above,

any finite subset of F can be left-translated into the positive monoid. The result then

follows from Følner’s criterion.

We finish this section with a proposition about geodesic rays in the Cayley graph

of F which we will need later:

Proposition 2.2.6. Let Γ be as above, and let v be a vertex of Γ. Let g be either x0

or x1. Define c : [0,∞)→ Γ to be the path such that for n ∈ N ∪ {0}, c(n) = vgn, and

c maps each interval [n, n+ 1] isometrically to the edge connecting vgn to vgn+1. Then

c is a geodesic ray.

Proof. It suffices to show that d(v, vxn0 ) = d(v, vxn1 ) = n in Γ. Since left multiplication

induces an isometry of the Cayley graph, it is sufficient to show that both xn0 and xn1

have distance n from the identity. This is evident from their pointed forest diagrams,

as xn1 has n carets and traversing an edge can add at most one caret, while xn0 has the

pointer on the (n+ 1)th tree, and traversing each edge can cause the pointer to be at

most one additional tree to the right.

2.3 Uniformly Finite Homology

This section describes the uniformly finite homology of Block and Weinberger defined

in [4]. We will always be considering a graph Γ of bounded degree, though many of

their results apply to a much broader class of metric spaces.

Definition 2.3.1. Let Γ be a graph of bounded degree with vertex set V . A uniformly

finite 1-chain with integer coefficients on Γ is a formal infinite sum
∑
ax,y(x, y), where

the (x, y) are ordered pairs of vertices of Γ, ax,y ∈ Z, such that the following properties

are satisfied:

1. There exists K > 0 such that |ax,y| < K for all vertices x and y.
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2. There exists R > 0 such that ax,y = 0 whenever d(x, y) > R.

Notice that condition (2) guarantees that for any fixed x ∈ V , the set of pairs (x, y)

such that ax,y 6= 0 is finite. This allows us to make the following definition:

Definition 2.3.2. A uniformly finite 1-chain is a Ponzi scheme if, for all x ∈ Γ, we

have
∑

v∈Γ av,x −
∑

v∈Γ ax,v > 0.

We now state the main result of [4] that we will use in this chapter:

Theorem 2.3.3. Let Γ be a graph of bounded degree. A Ponzi scheme exists on Γ if

and only if Γ is not amenable.

We will use a rephrased version of this theorem for the case of our graphs:

Definition 2.3.4. Let Γ be a graph of bounded degree with vertex set V . A Ponzi

flow on Γ will mean a function Φ: V × V → Z with the following properties:

(i) Φ(v, w) = 0 if there is no edge from v to w in Γ,.

(ii) Φ(v, w) = −Φ(w, v) for all v, w ∈ V .

(iii) The function Φ is bounded.

(iv) For each v ∈ V ,
∑

w∈V Φ(w, v) > 0.

Note that the sum in condition (iv) is guaranteed to be finite by condition (i). A

Ponzi flow is almost exactly a Ponzi scheme in different language, with the exception

that all “pairs” must be of distance 1. Our next proposition shows that this difference

is unimportant:

Proposition 2.3.5. Let Γ be a graph of bounded degree. There exists a Ponzi scheme

on Γ if and only if there exists a Ponzi flow on Γ.

Proof. The “if” direction is trivial: Given a Ponzi flow, we simply define our formal sum

to be
∑

Φ(x, y)(x, y). This will be a uniformly finite 1-chain with integer coefficients,

as condition (1) is implied by (iii), and condition (2) is implied by (i). This 1-chain

will be a Ponzi scheme by conditions (ii) and (iv).
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To see the “only if” direction, we start with a Ponzi scheme
∑
ax,y(x, y), and

alter it so that ax,y = 0 if d(x, y) > 1. For each ax,y such that d(x, y) = n > 1,

let x = v0, v1, ..., vn−1, vn = y be a sequence of vertices forming a path of minimal

length from x to y, and add Sx,y =
∑n−1

i=0 ax,y(vi, vi+1)− ax,y(x, y) to the Ponzi scheme

coefficientwise.

Each adjacent pair (v, w) has no more than
(
dR+1

2

)
pairs of vertices within distance

R, where d is the bound on degree and R is the radial bound from condition 2). That

means that each edge will be part of no more than
(
dR+1

2

)
of the paths we constructed

above. Thus, the coefficientwise addition is a finite sum for each coefficient, and so we

obtain a well-defined formal sum
∑
a′x,y(x, y).

This formal sum will still satisfy the inequality of Definition 2.3.2, since each vertex

in Sx,y appears exactly twice, once contributing ax,y and once contributing −ax,y, leav-

ing the sum in Definition 2.3.2 unchanged. For (x, y) with d(x, y) > 1, the coefficients

of (x, y) in the original Ponzi Scheme and in Sx,y will cancel, leaving the new coefficient

0. Thus we have canceled the coefficients ax,y whose vertices are not adjacent while

only affecting other coefficients with adjacent vertices.

We have a′x,y = 0 if d(x, y) > 1, since these coefficients have been canceled. Further-

more, we have that each a′x,y is bounded by K(
(
dR+1

2

)
+ 1), thus condition 1) of 2.3.1

still holds (with a different bound), so we have a uniformly finite 1-chain with R = 1.

Since we did not change the sums in 2.3.2,
∑
a′x,y(x, y) is still a Ponzi scheme. Now we

simply define Φ(x, y) = ax,y − ay,x, and condition (i) is now true by our construction,

condition (ii) is clear, (iii) is implied by 1), and (iv) is implied by the inequality of

2.3.2, thus Φ is a Ponzi flow on Γ.

A quantitative treatment of Proposition 2.3.5 and of Ponzi flows can be found in

Benjamini, Lyons, Perez and Schramm [2].

If a Ponzi flow exists on a Cayley graph, we then have that there can be no right-

invariant measure on the group since the group cannot be amenable by Proposition

2.3.5 and Theorem 2.3.3. We supply here a direct proof that existence of a Ponzi flow

implies no right-invariant measure exists, for any graph on which an appropriate notion
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of “right invariant” can be defined:

Definition 2.3.6. By a labeled directed graph we shall mean a directed graph Γ of

bounded degree, each of whose edges are labeled by elements from a finite set {g1, ..., gn},

such that each vertex of Γ has at most one incoming edge and one outgoing edge with

each label.

The motivating example is when Γ is a subgraph of a Cayley graph of a group

generated by {g1, ..., gn}, but the argument here holds for all labeled directed graphs.

Definition 2.3.7. Let Γ be a labeled directed graph. Suppose S is a subset of vertices

of Γ. For 1 ≤ i ≤ n, we say S is gi-translatable if each vertex in S has an outgoing edge

labeled gi. In such a case we denote by Sgi the set of vertices of Γ with an incoming

edge labeled gi whose opposite vertex lies in S.

In the case where Γ is a subgraph of a Cayley graph, Sgi is just the right-translate

of the elements of S under the group multiplication. We will abuse notation slightly

in the case of one-element sets, so that if v has an outgoing edge labeled by gi, we will

call the vertex on the other side of the edge vgi.

For vertex sets S and S′, we will say S′ = Sg−1
i if S′gi = S, and similarly for vertices

v and v′, we will say v′ = vg−1
i if v′gi = v.

Definition 2.3.8. Let µ be a finitely additive measure on the vertex set of Γ, such

that µ(Γ) = 1. Then we say µ is right-invariant if for each gi and each gi-translatable

subset S ⊆ Γ, µ(S) = µ(Sgi).

If Γ is the full Cayley graph of a finitely generated group or semigroup, then this

definition of right-invariant measure coincides with the standard one, since in this case

every set of vertices is gi-translatable for every i.

Theorem 2.3.9. Suppose Γ is any labeled directed graph, and has a Ponzi flow Φ.

Then there is no finitely additive, right-invariant measure on Γ.

Proof. Let K be the bound on Φ. Consider the set of symbols S = {g1, g2, ..., gn} ∪

{g−1
1 , g−1

2 , ..., g−1
n } ∪ {h}. h has no meaning here except as a placeholder symbol.
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For each vertex v of Γ, we define two functions pv, qv : S → N ∪ {0}, representing

the positive and negative parts of the flow Φ. For each s 6= h in S, if vs does not

exist or if Φ(v, vs) = 0, then we set pv(s) = qv(s) = 0. Otherwise, if Φ(v, vs) > 0,

set pv(s) = Φ(v, vs) and qv(s) = 0, and if Φ(v, vs) < 0, set qv(s) = −Φ(v, vs) and

pv(s) = 0. This defines pv and qv on S \ {h}. Set pv(h) and qv(h) to be the values such

that

∑
s∈S

pv(s) = 2nK,
∑
s∈S

qv(s) = 2nK + 1.

Note that since pv and qv are defined on 2n elements besides h, and each of these

takes a value at most K, we have that pv(h) and qv(h) are indeed nonnegative integers.

Also note that since Φ is a Ponzi flow, by Definition 2.3.4 (ii) and (iv) we have

∑
g 6=h∈S

qv(g) >
∑

g 6=h∈S
pv(g),

and thus

qv(h) ≤ pv(h) (2.1)

for all v.

For any function p : S → N ∪ {0} whose sum over all s ∈ S is 2nK, we define a set

Ap of vertices of Γ. Ap consists of all vertices v for which pv = p. Note that Ap may

be empty. Since each vertex has a unique list associated to it, we have that the Ap are

pairwise disjoint, and Γ =
⋃
pAp.

Similarly, for any function q : S → N ∪ {0} whose sum over all s ∈ S is 2nK + 1,

we define Zq to be the set of vertices v such that qv = q. Again, the Zq are pairwise

disjoint, and Γ =
⋃
q Zq.

Suppose Γ has a right-invariant measure µ. Since there are a finitely many nonneg-

ative functions p or q whose sum over S is 2nK or 2nK + 1, we have

∑
p

µ(Ap) = µ

(⋃
p

Ap

)
= µ (Γ) = 1

∑
q

µ(Zq) = µ

(⋃
q

Zq

)
= µ (Γ) = 1
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For any g ∈ S and integer j with 1 ≤ j ≤ K, define Bj,g to be the set of vertices v

such that pv(g) ≥ j. Let Λ(j, g) be the set of all functions p : S → N ∪ {0} which sum

to 2nK with p(g) ≥ j. We then have that Bj,g =
⋃
p∈Λ(j,g)Ap. Each Λ(j, g) is finite,

thus

∑
j,g

µ(Bj,g) =
∑
j,g

µ

 ⋃
p∈Λ(j,g)

Ap

 =
∑
j,g

∑
p∈Λ(j,g)

µ(Ap) (2.2)

Note that, for a fixed g ∈ S, a function p is contained in exactly p(g) of the sets

Λ(j, g). This means that each function p is contained in precisely 2nK of the sets Λ(j, g),

and so each set Ap appears exactly 2nK times in the double sum on the right-hand side

of Equation 2.2.

This allows us to explicitly calculate the sum of the measures of the Bj,g:

∑
g,j

µ(Bj,g) = 2nK
∑
p

µ(Ap) = 2nK.

For g ∈ S and 1 ≤ j ≤ K, define Yj,g to be the set of vertices v such that qv(g) ≥ j.

A similar argument as above shows that

∑
g,j

µ(Yj,g) = (2nK + 1)
∑
q

µ(Zq) = 2nK + 1.

For each gi and 1 ≤ j ≤ K, Bj,gi consists of vertices with an outgoing edge labeled

gi, thus Bj,gi is gi-translatable. Indeed, we have that Yj,gi = Bj,gigi. Similarly, we

have that Yj,g−1
i

= Bj,g−1
i
g−1
i . By the right-invariance of µ, we have then have that

µ(Yj,g) = µ(Bj,g) for every g 6= h in S. By Equation 2.1, we have that Yj,h ⊂ Bj,h, and

thus µ(Yj,h) ≤ µ(Bj,h). Thus,

2nK + 1 =
∑
g,j

µ(Yj,g) ≤
∑
g,j

µ(Bj,g) = 2nK,

a contradiction. Thus, no right-invariant measure can exist on Γ.

We remark that in [4], Ponzi Schemes are considered with real coefficients as well as

with integer coefficients. The same results hold in the real setting, including Theorem
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2.3.9, as long as we stipulate that for each Ponzi flow Φ there is some ε > 0 such that

either Φ(x, y) = 0 or |Φ(x, y)| > ε for all vertices x, y ∈ Γ.

Corollary 2.3.10. Let Γ be any labeled directed graph. If Γ is amenable but contains

a nonamenable subgraph P , then for any right-invariant measure µ on Γ, µ(P ) = 0.

Proof. If µ(P ) > 0, then we can define a measure µ′ on P by setting µ′(A) = µ(A)
µ(P ) for

A ⊂ P . Since µ(P ) is constant, and any gi-translatable subset of P is gi-translatable

in Γ, µ′ will inherit the properties of right invariance and finite additivity from µ. We

have µ′(P ) = µ(P )
µ(P ) = 1, thus µ′ is a finitely additive, right-invariant measure on P . But

since P is nonamenable it has a Ponzi flow, and then 2.3.9 says no such µ′ can exist,

yielding a contradiction.

We close this section by constructing another method for detecting amenability,

based on uniformly finite homology.

Definition 2.3.11. Let Γ be a graph of bounded degree, and let A be a set of geodesic

rays in Γ. We say A is a tree-like quasi-cover of Γ if:

1. There exists an N > 0 such that for every vertex v of Γ, no more than N of the

rays in A contain v in their image.

2. There exists a B > 0 such that for every vertex v of Γ, there is a c ∈ A such that

d(c(0), v) < B.

Theorem 2.3.12. Let Γ be a graph of bounded degree, and suppose Γ has a tree-like

quasi-cover A. Then Γ is not amenable.

Proof. For each c ∈ A, we define a function Ψc : Γ×Γ→ Z. Let d be the bound on the

degree of Γ. For each t ∈ R+ with c(t) a vertex, define Ψc

(
c(t+ 1), c(t)

)
= Bd + 1 and

Ψ
(
c(t), c(t+ 1)

)
= −(Bd + 1). Let Ψc(x, y) = 0 for all other pairs of vertices. Define

Ψ: Γ× Γ→ Z =
∑
c∈A

Ψc
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The sum on the right is well-defined, since condition (1) in Definition 2.3.11 guar-

antees that at most N of the rays traverse each edge, thus all but finitely many terms

in the sum are 0 for each pair of vertices.

Call a vertex v ∈ Γ terminal if v = c(t) for some c ∈ A, t ∈ [0, 1). For each vertex

u which is not terminal, there is a terminal vertex v such that d(u, v) < B + 1, by

Definition 2.3.11 (2). Choose a minimal-length path in Γ from v to u, calling the vertices

v = x0, x1, x2, ..., xn−1, xn = u. Define a function Φu : Γ× Γ → Z by Φu(xi, xi+1) = 1,

Φu(xi+1, xi) = −1 for 0 ≤ i < n, and Φ(x, y) = 0 for all other vertex pairs.

If u is a terminal vertex, we define Φu(x, y) = 0 for all x, y ∈ Γ. Now, define

Φ: Γ× Γ→ Z = Ψ +
∑
u∈Γ

Φu.

Again, the sum on the right is well-defined, as each edge is part of no more than(
(B+1)d+1

2

)
paths used in the Φu, and thus all but finitely many terms are 0 for each

vertex pair. We claim that Φ is a Ponzi flow.

Properties (i) and (ii) in Definition 2.3.4 clearly hold, as Φ is a sum of functions with

these properties. For each pair x, y ∈ Γ, we have that Ψ(x, y) is bounded by N(Bd+1),

and at most
(

(B+1)d+1
2

)
of the Φu have Φu(x, y) = ±1, with the rest taking the value

zero. Thus Φ is bounded and property (iii) holds.

For property (iv), note that for each a ∈ Γ,

∑
b∈Γ

Φ(b, a) =
∑
c∈A

∑
b∈Γ

Ψc(b, a) +
∑
u∈Γ

∑
b∈Γ

Φu(b, a)

If a is non-terminal, all the sub-sums in the first summation are zero, and all

the sub-sums in the second summation are zero except when a = u, in which case∑
b∈Γ Φu(b, a) = 1. Thus property (iv) holds for these vertices.

If a is terminal, then the only non-zero sub-sums in the first summation occur when

c is a geodesic for which a is terminal, in which case they are Bd + 1. The terms in the

right sum can only be negative if u is within distance B of a, in which case they are -1.

Since there are at most Bd such vertices, property (iv) still holds, and so Φ is a Ponzi

Flow and Γ is not amenable.
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2.4 Large Nonamenable Subgraphs of F

In this section we will prove Theorem 2.1.

We begin by characterizing the two-way forest diagrams of Γlk. Given any binary

tree T on n nodes, we define s(T ) to be the forest obtained by removing all the carets

along the left edge of T (Figure 2.5).
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Figure 2.5: Applying s to a tree removes the left carets as shown

We extend the definition of s to apply to forests, as well as single trees, by applying

s separately to each nontrivial tree in the forest. We will define the complexity of a

tree or forest to be the minimum number of applications of s required to turn it into a

forest of only trivial trees.

Note that applying s to a tree T gives a forest whose rightmost tree is the right

child of T , and the remainder of the forest is s applied to the left child of T . This gives

the following:

Proposition 2.4.1. The complexity of a tree is the maximum of the complexity of its

left child and one more than the complexity of its right child.

We record here two basic properties of complexity and the function s:

Proposition 2.4.2. Let T be a tree on n nodes, and let R be an n-tree forest. Denote

by RT the tree obtained by attaching the roots of R to the nodes of T . If T has com-

plexity j, then sj(RT ) consists only of carets in R, ie every caret from T is removed by

sj. (Figure 2.6.)
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Figure 2.6: A 4-node tree T of complexity 2(top left) and a 4-tree forest R(bottom
left) multiply to give RT (top right), and each caret of T is removed in s2(RT )(bottom
right)

Proof. This is easy to see, as we can determine whether a caret is removed by sj by

examining its relationship with those above it. Namely, when we examine the unique

path from a caret to the root of the tree, it consists of moves to the right and moves

to the left. An application of s removes all carets whose path consists only of moves to

the right. Further, any caret’s path to the root hits the left edge at some point, and

consists only of moves to the right afterwards. After s is applied, the path is truncated,

starting from the move that reaches the left edge (which is a move to the left). Thus

each new path from a remaining caret to the root of its new tree is left with one less

move to the left after applying s. So sj removes all carets whose paths contain j− 1 or

fewer moves to the left. Since this property is unchanged in the carets of T whether or

not it sits on R, the effect of sj is the same on carets of T , ie it removes them all.

Proposition 2.4.3. A pointed forest diagram consisting of a single nontrivial tree T

of complexity j in the leftmost position, with the pointer on that tree, can be expressed

as word in x1, ..., xj.

Proof. We will proceed by induction on the number of carets in the tree T . Suppose

the statement is true for all trees with n or fewer carets, and let T be a tree with

n + 1 carets and complexity j. Then the left child of T has no more than n carets

and complexity no more than j by Proposition 2.4.1. Thus by the inductive hypothesis

the left child can be constructed as a word w in x1, ..., xj . The right child of T has no

more than n carets and complexity no more than j − 1 by Proposition 2.4.1, thus can

be constructed as a word v in x1, ..., xj−1. We can construct the desired pointed forest
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as wx0vx
−1
0 x1, since this will construct the left child, move the pointer to the right,

construct the right child, move the pointer back to the left child, and finally construct

the top caret. However, since xi = x0xi−1x
−1
0 , by inserting x−1

0 x0 between each letter

of v we can rewrite x0vx
−1
0 as a word in x2, ..., xj . Thus, the word wx0vx

−1
0 x1 can be

rewritten as a word in x1, ..., xj , and the proposition is proved.

For a positive integer j, we define a function φj from pointed forests to forests in

the following way: Apply sj to the pointed tree and every tree to its left. For each

positive integer q < j, apply sj−q to the tree that is q trees to the right of the pointed

tree. That is, apply sj−1 to the tree to the immediate right of the pointed tree, sj−2 to

next tree to the right, etc.

For the proof of the main theorem we will use the following lemma. Recall that Γlk is

the subgraph of the Cayley graph of F consisting of vertices that can be expressed in the

form a1...amb1...bn, with m ≤ k, a1, ..., am ∈ {x0, x1, x2, ...}, and b1, ..., bn ∈ {x0, ..., xl}.

Lemma 2.4.4. A pointed forest P lies in Γlk if and only if φl(P ) has k or fewer carets.

Proof. Let P ∈ Γlk. First suppose that k = 0. In this case P can be expressed as a

word v in {x0, ..., xl}, and the proposition says it is annihilated by φl, ie φl(P ) consists

only of trivial trees. We proceed by induction on the length of v. If φl(v) consists only

of trivial trees, then so does φl(vx0), since φl(vx0) is a subforest of φl(v) (each tree has

s applied to it either the same number of times or one more time, since the pointer has

simply moved one tree to the right).

For 0 < i ≤ l, multiplying by xi adds a caret to the right of the tree i− 1 trees from

the pointer, combining it with the next tree to make a new tree. Since the left and right

children of this new tree were i− 1 and i trees to the right of the caret, respectively, by

induction their respective complexities are no more than (l − (i− 1)) and (l− i). Thus

by Proposition 2.4.1 the new tree has complexity no more than (l − i + 1). Since this

new tree is i− 1 trees to the right of the pointer, it is still annihilated by φl. The trees

to the left of the new caret are unchanged, and the trees to the right of the caret have

each been brought 1 tree closer to the pointer since two of the intervening trees have
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been merged. Thus φl applies s an additional time to each of these trees. This means

that they will still be annihilated by φl, and so the new pointed forest is still turned

into a trivial forest by φl.

The above argument shows that φl(v) is trivial if v ∈ Γl0. Now let P = wv, where

w = a1...am with ai ∈ {x0, x1, ...} and m ≤ k as in Theorem 2.1. Then wv attaches the

trees of w to the nodes of v. Thus all the carets added in each tree of v are still removed

by φl by Proposition 2.4.2, since s is applied the same number of times to each tree.

Thus φl(wv) has at most the same number of carets as w, ie k or fewer. This proves

the “only if” direction of the Lemma.

To prove the reverse direction, suppose that P is a pointed forest such that φl(P )

has k or fewer carets. We can then create w as above to put these carets in place

without moving the pointer (the generator xi creates a caret on the ith tree without

moving the pointer).

Consider the element w−1P . This is the pointed forest obtained by taking the trees

in P that remain after applying φl, and replacing them with trivial trees (Figure 2.7).
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Figure 2.7: For l = 2, if P is the forest in the top left then w is φ2(P ) with the pointer
on the first tree (bottom left), and w−1P is shown on the right.

The resulting pointed forest is then annihilated by φl by Proposition 2.4.2, and

so each tree under or to the left of the pointer has complexity at most l. Thus, we

may construct these trees as words in x1, ..., xl using Proposition 2.4.3 and inserting x0

between each word. This will result in building the first tree, moving the pointer to the

right, building the next tree, etc. Further, the tree that is j trees to the right of the

pointer has complexity at most l− j, and so Proposition 2.4.3 says we can construct it

as xj0ux
−j
0 , where u is a word in x1, ..., xl−j . As above, we then insert x−j0 xj0 between
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each letter of u, which allows us to rewrite it as a word in xj+1, ..., xl. Repeating this

for each j and appending these words in increasing order constructs all trees to the

right of the pointer. This completes the construction of w−1P as a word in x0, ..., xl,

which we will call v. Thus, P = ww−1P = wv, and the proof is complete.

We are now ready to prove the main theorem, which will occupy the remainder of

this section.

Proof of Theorem 2.1. Let P ∈ Γlk. Note that applying φl to P affects at most l trees

under or to the right of the pointer. Thus, by Lemma 2.4.4 there are at most k + l

nontrivial trees under or to the right of the pointer in P , otherwise, φl(P ) would have

more than k nontrivial trees and thus certainly have more than k carets.

For each P ∈ Γlk, define a path cP : [0,∞) → Γlk such that for n ∈ N ∪ {0},

cP (n) = Pxn1 , and cP maps the interval [n, n+ 1] isometrically to the edge connecting

Pxn1 and Pxn+1
1 . Then by Proposition 2.2.6, cP is a geodesic ray. Define

A =
{
cP | P ∈ Γlk, Px

−1
1 /∈ Γlk

}
We claim A is a tree-like quasi-cover. The cP have disjoint images, since if Pxn1 =

P ′, with P ∈ Γlk, then P ′x−1
1 = Pxn−1

1 ∈ Γlk, since Γlk is clearly closed under right

multiplication by x1. Thus, each vertex of Γlk lies in the image of at most one c ∈ A,

and so property (1) in Definition 2.3.11 holds.

Any pointed forest P whose pointed tree is trivial has the property that Px−1
1 is not

even in the positive monoid of F , and thus cP ∈ A. But since every pointed forest in

Γlk has at most k+ l nontrivial trees under or to the right of the pointer, every pointed

forest is within distance k+ l of a pointed forest with trivial pointed tree, which is cP (0)

for some cP ∈ A. Thus, condition (2) in Definition 2.3.11 holds as well.

Thus A is a tree-like quasi-cover of Γlk, and so by Theorem 2.3.12, Γlk is not amenable.

We close with some immediate corollaries:
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Corollary 2.4.5. If F is amenable, then for any right-invariant measure µ, µ(Γlk) = 0.

Proof. By Theorem 2.1, Γlk has a Ponzi flow, and thus by Proposition 2.3.10 it always

has measure zero.

Corollary 2.4.6. If F is amenable, then for any right-invariant measure µ, and any

finitely generated submonoid M of the positive monoid, µ(M) = 0.

Proof. Letting p1, ..., pn be generators of M , express each as a word in the x0, x1, x2, ...

generating set. Let L be the maximum index of the xi used to express the pj (or let L =

1, if this maximum is 0); then M is a subset of the monoid generated by x0, x1, ..., xL.

But this monoid is exactly ΓL0 , which by the previous corollary has measure zero. Thus,

µ(M) = 0.
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Chapter 3

Boundary Behavior of CAT(0) Geodesics under

G-equivariant Maps

3.1 Background

3.1.1 CAT(0) Groups

We begin this chapter with a brief overview of CAT(0) spaces and the groups that act

upon them. The material in this subsection, as well as proofs of the theorems, can be

found in Bridson-Haefliger [6].

Throughout this chapter we will use the convention [a, b] to denote the standard

real interval, unless a and b are already defined as points in a geodesic metric space. In

this case [a, b] will denote a geodesic segment connecting a and b.

Suppose X is a geodesic metric space. Given three points a, b, c ∈ X, a geodesic

triangle 4 abc is the union of three geodesic segments [a, b]∪ [b, c]∪ [a, c]. Given such a

geodesic triangle, we can find three comparison points a, b, c in the Euclidean plane E2,

such that d(a, b) = d(a, b), d(b, c) = d(b, c), and d(a, c) = d(a, c). We call the triangle

4 abc the comparison triangle for 4 abc.

Let x lie on one of the segments of 4 abc, say [a, b]. Since the segments [a, b] and

[a, b] are isometric, we can find a corresponding point x on the comparison triangle such

that d(x, a) = d(x, a) and d(x, b) = d(x, b). We can find comparison points in the same

way for any point on any segment of 4 abc.

Definition 3.1.1. A geodesic triangle4 abc satisfies the CAT(0) inequality if, for every

pair of points x, y ∈ 4 abc with comparison points x, y ∈ 4 abc, d(x, y) ≤ d(x, y).

In a sense, a triangle satisfies the CAT(0) inequality if it is “no fatter” than its

comparison triangle in Euclidean space.
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Definition 3.1.2. A geodesic metric space X is a CAT(0) metric space if every geodesic

triangle in X satisfies the CAT(0) inequality.

Recall that a metric space is proper if closed balls are compact. There has been much

study of CAT(0) metric spaces which are not proper, but this chapter is only concerned

with proper spaces. Henceforth, a CAT(0) space will be assumed to be proper and

finite dimensional unless otherwise stated. We will also assume that our metric spaces

are complete unless otherwise stated.

Examples of CAT(0) metric spaces include Euclidean space En, hyperbolic space Hn,

and any simply connected Riemannian manifold with nonpositive sectional curvature.

This definition also encompasses a wide class of spaces which are not manifolds. One

way to construct such spaces is by using the following theorems, which can be found

on page 167 of [6]:

Theorem 3.1.3. Let X and Y be CAT(0) metric spaces. Then X × Y is a CAT(0)

metric space.

Theorem 3.1.4. Let X and Y be CAT(0) metric spaces. Suppose A ⊂ X and B ⊂ Y

are closed and convex, and A and B are isometric. Then the space X ∪A,B Y , obtained

by identifying A and B, is CAT(0).

For example, metric trees, wedge sums of CAT(0) spaces, and spaces obtained by

gluing together geodesics in proper CAT(0) spaces are all CAT(0), as are products of

such spaces.

We note here some important properties of CAT(0) spaces:

Proposition 3.1.5. CAT(0) metric spaces are unique geodesic spaces, and these unique

geodesics vary continuously with their endpoints.

Proof. Let c and c′ be two geodesic segments connecting points x and y in a CAT(0)

metric space. Consider the geodesic triangle consisting of c, c′, and a degenerate third

side consisting only of x. Then the comparison triangle is also degenerate, and so for

w ∈ c, w′ ∈ c′ with d(x,w) = d(x,w′), the CAT(0) inequality tells us that d(w,w′) = 0.

Thus, c and c′ consist of the same points and are the same geodesic segment.
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To see that geodesics vary continuously with their endpoints, let {xi} and {yi} be

sequences of points converging to x and y, respectively. Consider the geodesic segments

[xi, yi]. Let m be the midpoint of [x, y], let mi be the midpoint of [xi, yi], and let m′i

be the midpoint of [x, yi]. The CAT(0) inequality applied to the triangle 4xyiy and

4xyixi shows that both d(m,m′i) and d(m′i,mi) approach zero, thus the mi converge

to m.

Since midpoints converge to midpoints, by expressing any point on the interval as

the limit of a sequence of dyadic rationals and passing to a diagonal sequence we can

see that the [xi, yi] converge pointwise to [x, y].

Proposition 3.1.6. CAT(0) spaces are contractible.

Proof. Let X be a CAT(0) space, and fix any point p ∈ X. For any x ∈ X and

t ∈ R with 0 ≤ t < d(x, p), let xt be the unique point on [p, x] such that d(xt, p) = t.

Let f : [0, 1) → [0,∞) be any order-preserving homeomorphism. Define a homotopy

h : X × I → X so that:

h(x, t) =


x if t = 0 or d(x, p) < f(1− t)

xf(1−t) otherwise

h(x, 0) is then the identity on X, and h(x, 1) = p. Each point is simply moved

uniformly along the geodesic segment connecting it to p, and since geodesic segments

vary continuously with their endpoints by Proposition 3.1.5, this map is continuous.

Thus, h is a strong deformation retraction from X to p.

We say a metric space has nonpositive curvature if it is locally CAT(0), that is, each

point has a neighborhood which is CAT(0). The proof of the following theorem can be

found in Chapter II.4 of [6]:

Theorem 3.1.7 (Cartan-Hadamard Theorem). The universal cover of a metric space

of nonpositive curvature is a CAT(0) metric space.

In particular, any metric space of nonpositive curvature is aspherical. This theorem

gives us another method of constructing CAT(0) metric spaces; namely, taking the
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universal covers of spaces of nonpositive curvature.

There is a final basic property of CAT(0) spaces which we will use. Suppose X is a

complete CAT(0) space, and A ⊂ X is nonempty, closed and convex.

Proposition 3.1.8. For every p ∈ X, there is a unique a ∈ A that minimizes d(a, p).

Proof. The existence of such a point is guaranteed by the fact that A is closed and X is

proper. To see uniqueness, suppose that for a 6= a′ ∈ A, d(a, p) = d(a′, p). Consider the

geodesic triangle 4 paa′. Since A is convex, the segment [a, a′] is contained in A. For

any point q in the interior of this segment, d(q, p) < d(a, p) = d(a′, p) by the CAT(0)

inequality. Thus a and a′ do not minimize the distance to p.

The following proposition is proved on page 177 of [6]:

Proposition 3.1.9. Let ρA : X → A be the function which takes each x ∈ X to the

unique point on A of minimal distance to X. Then ρA is continuous and does not

increase distances, ie d(x, y) ≥ d
(
ρA(x), ρA(y)

)
.

We will now define the boundary of a CAT(0) metric space.

Definition 3.1.10. Let c and c′ be geodesic rays in X. We say c and c′ are asymptotic

if there exists B ∈ R such that d
(
c(t), c′(t)) < B for all t ≥ 0.

We define a relation ∼ on geodesic rays by c ∼ c′ iff c and c′ are asymptotic. It

follows immediately from the definition and the axioms of a metric space that ∼ is an

equivalence relation.

Definition 3.1.11. The boundary ∂X of a CAT(0) space X is the set of equivalence

classes of geodesic rays in X under the equivalence relation ∼.

We will topologize this set shortly, but first we give an important proposition:

Proposition 3.1.12. For any point p ∈ X and any equivalence class ξ ∈ ∂X, there is

a unique geodesic ray c in the class ξ such that c(0) = p.
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Proof. The proof of existence is slightly technical and we omit it (the reader is referred

to page 261 of [6]). Essentially, given a geodesic ray c′ ∈ ξ, the pointwise limit of the

geodesic segments [p, c′(t)] is a geodesic ray emitting from p and asymptotic to c′.

To see uniqueness, let c and c′ be geodesic rays emitting from p, and suppose for

some T > 0 we have c(T ) 6= c′(T ). Let x = c(T ), y = c′(T ), and consider the comparison

triangle4xyp in Euclidean space. For t > T , let x′ be the point on
−→
px with d(x′, p) = t,

and let y′ be the point on
−→
py with d(y′, p) = t.

Then if d
(
c(t), c′(t)

)
< d(x′, y′), the comparison triangle for 4 c(t)c′(t)p would have

a strictly smaller angle at p than 4x′py′. The CAT(0) inequality would then imply

that d(x, y) < d(x, y), which is impossible since the two distances were constructed to

be equal. Thus, c(t) and c′(t) must grow apart at least as quickly as the Euclidean rays
−→
px and

−→
py, and thus cannot be asymptotic.

Proposition 3.1.12 implies that we can choose any basepoint p ∈ X, and points in

∂X correspond exactly to geodesic rays emitting from p.

We now define a topology on X ∪ ∂X. Consider ∂X as geodesic rays emitting from

a chosen basepoint p. For c ∈ ∂X and R, ε > 0, define

U(c,R, ε) =
{
c′ ∈ ∂X | d

(
c(R), c′(R)

)
< ε
}
∪

{
c′(t) | c′ ∈ ∂X, d

(
c(R), c′(R)

)
< ε, t > R

}
The basis for the topology on X∪∂X will be a basis for the topology of X, together

with the sets U(c,R, ε). This is called the cone topology, and its restriction to ∂X gives

us a topology on the boundary. It turns out that the cone topology is independent of

choice of p; the proof is somewhat technical and so we again omit it, referring readers

to [6].

It is an unfortunate fact that, if a group G acts geometrically on a CAT(0) space

X, then the boundary ∂X is not an invariant of G. In [9], Croke and Kleiner construct

a group which acts geometrically on two CAT(0) spaces X and Y such that ∂X is not

homeomorphic to ∂Y . This naturally leads to the question of what sort of equivalence

must exist between ∂X and ∂Y in this situation.
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3.1.2 Shape Equivalence and CE-Equivalence

We begin this subsection with a definition:

Definition 3.1.13. Two compact, metrizable, finite dimensional spaces X and Y are

shape equivalent if they can be written as inverse limits of finite polyhedra:

X = lim←−
(
X1 ← X2 ← X3 ← . . .

)
Y = lim←−

(
Y1 ← Y2 ← Y3 ← . . .

)
and there exist maps fi : Xi → Yi, gi : Yi → Xi−1, such that the diagram

� � � � �X1 X2 X3 . . . Xi . . .

� � � � �Y1 Y2 Y3 . . . Yi . . .
Q

QQk
Q

QQk
Q

QQk
Q

QQk
Q

QQk
? ? ? ?

f1 f2 f3 fi
g2 g3 g4 gi gi+1

commutes up to homotopy.

An overview of shape equivalence and shape theory can be found in [11] or [16].

The following theorem is due to Bestvina [3]:

Theorem 3.1.14. Suppose a group G acts geometrically on two CAT(0) spaces X and

Y . Then ∂X and ∂Y are shape equivalent.

Definition 3.1.15. A map f : X → Y between compact, metrizable, finite dimensional

spaces is cell-like if f is surjective, and for each y ∈ Y , f−1(y) has the shape of a point

(ie, is shape equivalent to a point).

Definition 3.1.16. Two compact, finite dimensional, metrizable spaces X and Y are

CE-equivalent if there exists a compact, finite dimensional, metrizable space Z and

cell-like maps f : Z → X and g : Z → Y .

A full definition and development of CE-equivalence can be found in Ferry [12].

Ferry proves that CE-equivalence is indeed an equivalence relation and is implied by

homotopy equivalence. The reverse implication does not hold, since for example the

topologist’s sine curve can be written as an inverse limit of contractible spaces, and thus
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is shape equivalent to a point. It is proved in Sher [24] that shape equivalence is implied

by CE-equivalence for finite-dimensional spaces. However, the reverse implication does

not hold; in [13] Ferry describes two spaces which are shape equivalent but not CE-

equivalent.

In [3], Bestvina asked whether, given a group G acting geometrically on CAT(0)

spaces X and Y , one always has that ∂X and ∂Y are CE-equivalent. This question

remains open. We do not answer this question here, but we address a related question.

Given a CAT(0) space X and a subset Q ⊂ X, we can view Q as a subset of X∪∂X

under the cone topology. Letting Q denote the closure of Q, we call Q∩∂X the boundary

limit of Q.

Given G, X, and Y as above, one can use Theorem 1.0.3 to obtain a G-equivariant

quasi-isometry from X to Y . One may take the image of a geodesic ray c in X under

this quasi-isometry, and examine its boundary limit in Y . We call this set the boundary

image of c. The question then arises: What are the possible homeomorphism types of

the boundary image?

It was observed by K Ruane [22] that such a boundary limit need not be a point.

This is in contrast with the case of δ-hyperbolic spaces, where quasi-isometries of the

space extend to homeomorphisms of the boundary. It was hoped that all boundary

images would be contractible, or have the shape of a point.

It is not hard to see that such boundary images must be compact, connected, and

finite dimensional. The main result of this chapter is that these are the only restrictions

on the homeomorphism types of such boundary limits:

Theorem 3.1.17. Let Z be any connected, compact subset of n-dimensional Euclidean

space for any n. Then there exists a group G which acts geometrically on two CAT(0)

spaces X and Y , a G-equivariant quasi-isometry f : X → Y , and a geodesic c in X,

such that the boundary limit of f(c) is homeomorphic to Z.

In fact in our construction X and Y will be the same space, albeit with different

actions of G. Our construction of X, G, and f depends only on n, thus all Z ⊂ Rn

arise as boundary images obtained from one particular quasi-isometry.
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The construction in this chapter is heavily influenced by the constructions of Croke

and Kleiner in [9] and its generalizations by C. Mooney in [18]. In fact, one may view the

space X as a higher-dimensional analogue of the “blocks” used in their constructions.

For a point p in a metric space and r > 0, we will denote by Br(p) the open ball of

radius r centered at p, and for a set Q we will use Nr(Q) to mean the r-neighborhood

of the set Q, i.e.,
⋃
p∈QBr(p). If c is a path in a space, we will occasionally fail to

distinguish between c and its image.

3.2 Constructing X, G, and f

We begin by constructing our CAT(0) space X, and the group G which will act on it

geometrically. Throughout the chapter we will assume a fixed integer n.

Consider (n + 1)-dimensional Euclidean space. Consider the group of isometries

on this space generated by translations by e0, ..., en, the standard basis vectors. The

quotient of Euclidean space by this action is Tn+1, the standard (n+ 1)-torus. Take n

disjoint copies of Tn+1, and identify the images of the subspaces spanned by e1, ..., en in

each torus. Call the resulting space X̄, and the identified image of the origin p̄. Denote

its universal cover by X. Choose a lift p ∈ X of p̄. The reader may easily verify the

following properties:

Proposition 3.2.1. 1. X̄ is a space of nonpositive curvature.

2. π1(X̄) = Fn × Zn, where Fn denotes the free group on n generators.

3. X is a CAT(0) space, and is isometric to T × Rn, where T is a regular tree of

degree 2n.

4. p can be chosen so that p = (q,
−→
0 ) ∈ T × Rn = X, where q is a vertex of T .

We then have that the group G = Fn × Zn acts geometrically on the CAT(0) space

X. For each of the n tori in X̄, the inverse image in X is a disjoint union of Euclidean

(n+1)-spaces, exactly one of which contains p. Call these spaces E1, ..., En ⊂ X. Denote

by g1, ..., gn the generators of the Fn factor of G. We may choose these generators so

that the subgroup 〈gi〉×Zn, acts geometrically on Ei, via translations by e0, ..., en, such
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that gi translates by e0 and the standard generators of Zn translate by e1, ..., en. Indeed,

this allows us to assume that the last n coordinates of each Ei correspond exactly to

the Rn factor of X. We will use the symbol · for this group action.

Define a group automorphism Φ: G→ G in the following way: Choosing generators

e1, ..., en of Zn in the standard way, let Φ
(
(1, ei)

)
= (1, ei). Let Φ

(
(gi,
−→
0 )
)

= (gi, ei).

The reader may easily check that Φ is an automorphism. This allows us to define a

new action of G on X, ◦, by g ◦ x = Φ(g) · x.

Proposition 3.2.2. The action ◦ is geometric.

Proof. Since Φ is an automorphism, ◦ has the same orbits as ·, and since both are free

actions, it follows that ◦ is proper and cocompact. Since each transformation Φ(g) ·G is

an isometry, each g acts via ◦ by an isometry as well. Thus, ◦ is a geometric action.

For each i = 1, ..., n, we define a linear transformation fi : Ei → Ei, which sends e0

to e0 + ei and is the identity on e1, ..., en. Note that on each Ei, fi is G-equivariant in

the sense that fi(g · x) = g ◦ fi(x) for all g ∈ 〈gi〉 × Zn, x ∈ Ei.

Proposition 3.2.3.

1. X is a union of flats of the form g · Ei, with g ∈ Fn ×
{−→

0
}
⊂ G.

2. For i 6= j and all x ∈ Ei ∩ Ej, fi(x) = fj(x) = x.

3. There is a unique function f : X → X such that f |Ei= fi for each i = 1, ..., n,

and such that f is G-equivariant in the sense that f(g · x) = g ◦ f(x) for all

g ∈ G, x ∈ X.

Proof. X is of the form T × Rn, and so we can write p in the form (pT ,
−→
0 ), where pT

is a vertex of T . Since the Fn factor of G acts on T in the standard way, any vertex

in T can be written as g · pT for some g ∈ Fn. The edges coming out of pT are all

contained in one of the Ei, and represent either the e0 or −e0 direction. Thus, any

point q on any edge can be expressed as g · v with v = (a0, 0, 0, ..., 0) ∈ Ei. Thus, any

point (q, (a1, ..., an)) ∈ T × Rn can be written as g · v′ with v′ = (a0, a1, ..., an) ∈ Ei,

proving (1).
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The intersection of Ei and Ej for i 6= j is the connected component of the inverse

image of the common n-torus in X̄ which contains p. This is isometric to Euclidean

n-space, and can be described as the convex hull of the orbit of p under the action of

the Zn factor of G. This is the space spanned by e1, ..., en in the coordinates of both

Ei and Ej , and both fi and fj are the identity map on this space, which proves (2).

To see (3), we can simply define f(g ·x) = g ◦fi(x) for x ∈ Ei. (1) and (2) guarantee

that this function is well-defined on all of X. (1), together with the equivariance

condition, guarantees the uniqueness of f .

Defining f as the unique function from Proposition 3.2.3 (3), we record here some

of its properties.

Proposition 3.2.4. For all (q, v) ∈ X, f
(
(q, v)

)
= (q, w) for some w ∈ Rn, that is, f

is the identity on the T factor of X.

Proof. The proposition follows from the definition of f , since the T coordinate of x ∈ Ei

depends only on the e0 coordinate of x in Ei, which is unchanged by fi. For points not

in any of the Ei, since f(g ·x) = g◦fi(x), we need only check that ◦ and · act identically

on the T factor of X. Since g ◦x = Φ(g) ·x and Φ doesn’t affect the Fn factor of G, the

result follows as the subgroup {1} × Zn ⊂ G acts trivially on the T factor of X.

We will put coordinates on the flats g · Ei, for g ∈ Fn × {
−→
0 }, however, g · Ei and

g′ ·Ei may be the same flat for distinct g, g′. Since Ei is the convex hull of the orbit of

the basepoint under the subgroup 〈gi〉×Zn for some generator gi, we have g ·Ei = g′ ·Ei

if and only if g′ = ggni for some n ∈ Z. Thus, for any such flat, we can always choose a

g of minimal length so that our flat is of the form g ·Ei, and we put coordinates on such

a flat by translating the coordinates of Ei via the isometry induced by this minimal g.

Proposition 3.2.5. For g ∈ G and i ∈ {1, ..., n}, f(g · Ei) = g · Ei, and f |g·Ei is an

affine transformation of g · Ei.

Proof. Choose g so that the origin in g · Ei is g · p. Let A : Ei → Ei be defined by

A(x) = g−1 · (g ◦ x). Since g ◦ x = f(g · x), it suffices to prove that A is affine.
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Since ◦ and · have the same effect on the T component of X, we immediately see

that A is the identity on the e0 component of Ei. Let u be the vector given by g◦p−g ·p,

taken in the coordinates of g · Ei. Then for x ∈ Ei, we have g ◦ x = g · fi(x) + u since

the coordinates of g ·Ei are just translated coordinates of Ei. Letting Au be translation

by −u, we then have that Au(A(x)) = fi(x).

Thus, after composing A with a translation we have that A is linear, and so A and

therefore f |g·Ei is an affine transformation.

The remainder of the chapter is devoted to proving the following, which in light of

Propositions 3.2.2 and 3.2.3(3) implies the main theorem:

Theorem 3.2.6. Let X and f be defined as above. Given any compact, connected set

Z ⊂ Rn−1, there is a geodesic ray c : [0,∞) → X such that the boundary limit of f(c)

is homeomorphic to Z.

3.3 Geodesic images under f

This section will use the notation defined in section 3.2.

Consider a geodesic ray c : [0,∞) in the 2n-regular tree T , with the property c(0) =

pT . Since edges in T have length 1, c(t) is a vertex precisely when t is an integer.

So, under the standard action of Fn on T , c(1) = gi1(p) for some generator gi1 ∈ Fn,

c(2) = gi1gi2(p) for some second generator gi2 , and in general, we have

c(k) = wk(p),

where wk ∈ Fn is represented by a word of length k in the generators and their inverses.

For the remainder of the section, we will assume that c is chosen such that wk is a positive

word in the gi, that is, can be written using only the generators and never their inverses.

wk is a proper initial substring of wk+1, and so there is a unique infinite sequence of

generators such that every wk is an initial subsequence. We define a sequence of integers

{Ik} such that this infinite sequence is gI1 , gI2 , gI3 , ....
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For the remainder of the chapter, we will consider T to be a subset of X by identi-

fying it with T × {−→0 }. Since c ⊂ T , c lies in the subspace c× Rn.

Proposition 3.3.1. f(c) ⊂ c× Rn.

Proof. This is an easy consequence of Proposition 3.2.4.

The space c × Rn is a Euclidean half-space of dimension n + 1, and is a closed,

convex subset of X. We put coordinates on this half space by identifying the point

(c(t), a1, ..., an) with (t, a1, ..., an) ∈ Rn+1.

Proposition 3.3.2. For each integer k ≥ 0, the space c |[k,k+1] ×Rn lies in exactly one

of the flats g · Ei. In this space, the coordinates on c × Rn and on g · Ei differ by a

constant vector v, which is an integer multiple of e0.

Proof. The segment c |[k,k+1] is an edge of the tree T , and each edge of T is contained

in exactly one flat g ·Ei. But since the flat containing a point depends only on the value

of the T factor of X, we have that c |[k,k+1] ×Rn is contained in exactly one g · Ei.

The last n coordinates in c× Rn are the coordinates from the Rn factor of X. But

g · Ei has coordinates translated from Ei via an element of Fn × {
−→
0 }, which doesn’t

change the Rn factor. Since the last n coordinates of Ei are just the coordinates from

the Rn factor of X, we see that the last n coordinates of g · Ei and c × Rn agree on

their intersection.

If x is a point in c |[k,k+1] ×Rn, then the e0 coordinate in both c × Rn and g · Ei

differs by a constant from d (πT (x), c(k)), where πT is projection onto the T factor.

Thus the two coordinates differ by a constant from each other. Furthermore, since the

origin (under both coordinate systems) is a vertex of T , they must differ by an integer

constant, proving the proposition.

Definition 3.3.3. Let V = {v1, ..., vm} be a finite set of vectors in a Euclidean half-

space E. A path c : [0,∞) → E or c : [0, a] → E is a walk in E over V if a ∈ Z

and there is a sequence vj1 , vj2 , vj3 , ... of vectors in V such that for each integer k with

[k, k + 1] in the domain of c, c(k + 1) = c(k) + vjk , and c |[k,k+1] maps linearly to the

line segment connecting c(k) and c(k) + vjk .
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Note that a walk is determined by a finite or infinite sequence of vectors in V

together with a starting point c(0).

For i = 1, ..., n, let vi = ei+e0. Recall that the sequence of integers {Ik} was chosen

so that c(k) = gI1 ...gIk(p).

Lemma 3.3.4. f(c) is a walk in c×Rn over the set {v1, ..., vn} starting at the origin.

The sequence of vectors corresponding to this walk is vI1 , vI2 , vI3 , ....

Proof. By Proposition 3.3.2, the space c |[k,k+1] ×Rn lies in some g · Ei, and the coor-

dinates on the two spaces coincide up to translation by an integer multiple of e0. In

particular, c ([k, k + 1]) is a line segment in the coordinates of g ·Ei, and since f is affine

on this space by Proposition 3.2.5, f
(
c ([k, k + 1])

)
is a line segment in both coordinate

systems.

To show that f(c) is a walk, we thus need only to show that the vector f(c(k+1))−

f(c(k)) is one of v1, ..., vn. This can be done in either coordinate system since they only

differ by a translation. Since c(k + 1)− c(k) = e0 in both coordinate systems, we then

have f(c(k + 1))− f(c(k)) = e0 + ei = vi, proving the proposition.

3.4 V-walks and boundary limits

In this section we will prove Theorem 3.2.6, deferring some technical arguments to the

next section. Recall that the Hausdorff distance dH(S, S′) between two subsets S and

S′ of a metric space is the infimum of the set {ε > 0 | S ⊂ Nε(S′), S′ ⊂ Nε(S)}.

Consider a Euclidean half-space E = {(x1, ..., xn) ∈ Rn | x0 ≥ 0}. E is a CAT(0)

space, and its boundary is a closed half-sphere M , which we give the angle metric (this

is in fact the Tits metric). Since each point in the boundary is represented by a unique

ray emanating from
−→
0 , we will occasionally fail to distinguish between the boundary

point and the ray. It will also be convenient to think of points in E as vectors.

Given any x 6= −→0 ∈ E, we can draw the geodesic segment to
−→
0 and then extend

to a ray emanating from
−→
0 . This gives a map ρM : E − {−→0 } → M . We will call the

image of a point under this map the projection of x to M . Note that, for vectors x and

u, we have that d
(
ρM (x), ρM (u)

)
is exactly the angle between x and u at the origin.
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Let V be any set of linearly independent vectors in E. Let W = ρM (V ), and let

L ⊂ M be the spherical simplex obtained by taking the convex hull of W . The result

we will need to prove Theorem 3.2.6 is the following:

Theorem 3.4.1. Suppose Z ⊂ L is connected and compact. Then there is a walk in E

over V , starting from the origin, whose boundary limit is Z.

Nonsingular linear transformations induce homeomorphisms of Euclidean space and

its boundary under the cone topology. Thus, by applying a change-of-basis transfor-

mation and passing to a subspace we may assume that V = {e1, ..., en}.

Definition 3.4.2. A path γ : [a, a + 1] → L is a W -directed segment if γ is injective

and its image is an initial subsegment of a geodesic segment [γ(a), w] for some w ∈W .

Definition 3.4.3. A path γ : [0,∞) → L or γ : [0, a] → L is a W -directed path if

a ∈ Z, and for each positive integer k in the domain of γ, γ |[k−1,k] is either constant or

a W -directed segment.

The proof of Theorem 3.4.1 will rely on the following two lemmas. The proofs of

these lemmas are rather technical and are deferred to the final section.

Lemma 3.4.4. Let γ : [0, a]→ L be any path, and ε > 0. Then there is is a W -directed

path γ′ : [0, a′]→ L such that dH(γ, γ′) ≤ ε. γ′ may be chosen so that γ′(0) is any point

in Bε(γ(0)), and so that γ′(a′) ∈ B ε
2
(γ(a)).

Lemma 3.4.5. Let γ : [0, a]→ L be a W -directed path, and let ε1, ε2 > 0. Then there

is an R > 0 such that, for any x ∈ E with ‖x‖ ≥ R and d
(
ρM (x), γ(0)

)
< ε1

2 , there is a

finite walk c in E over V , starting at x, such that dH
(
ρM (c), γ

)
≤ ε1. The walk c may

be chosen to have arbitrarily long length, and so that the projection of its ending point

is within ε2 of γ(a).

We now prove some basic propositions.

Proposition 3.4.6. Let c : [0,∞) → E be a path such that limt→∞‖c(t)‖ = ∞. Then

the boundary limit of c is{
lim
k→∞

ρM
(
c(ak)

)∣∣∣ak ∈ R+, lim
k→∞

ak =∞
}
.
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Proof. Let q be a point in the boundary limit of c. Then there is a sequence of

points c(a1), c(a2), ... which converge to q in the cone topology. Recall that a basis

of open sets around q consists of sets of the form N(q,R, ε) = {x ∈ E | d(x,
−→
0 ) >

R, d(ρR(x), ρR(q)) < ε}, where ρR is radial projection to the closed ball of radius R

centered at
−→
0 .

For any R, all but finitely many of the c(ak) have ‖c(ak)‖ > R. It follows that

limk→∞ ak = ∞. Since d
(
ρR(c(ak)), ρR(q)

)
< ε, the angle between c(ak) and q is

less than sin−1( εR), thus the angles between c(ak) and q approach zero. Therefore,

limk→∞ ρM (c(ak)) = q.

Conversely, suppose q = limk→∞ ρM (c(ak)), with ak →∞. Then the angle between

q and c(ak) approaches 0 as k →∞, and thus for any R and ε, we can find K such that

d
(
ρR(c(ak)), ρR(q)

)
< ε for all k > K. Since the ak approach ∞ we can also choose

K so that ‖c(ak)‖ > R for k > K. Thus q is the limit of the points c(ak) in the cone

topology, and the proposition is proved.

Lemma 3.4.7. Suppose γ : [0,∞)→ L is any path. Then there is a walk c : [0,∞)→ E

over V = {e1, ..., en} such that c(0) =
−→
0 and the boundary limit of c is⋂

T>0

γ ([T,∞)).

Proof. Express γ as a concatenation of paths γ1 : [0, 1] → L, γ2 : [1, 2] → L, etc. By

Lemma 3.4.4, for each γi, we can choose a directed path γ′i such that dH(γi, γ′i) ≤ 1
2i

,

and we can choose these γ′i so that the starting point of γ′i is the ending point of γ′i−1.

Letting εi = 1
2i

, let Ri be the associated value of R needed to approximate γi with

Lemma 3.4.5. Choose any point v ∈ E with positive integer coordinates such that

‖v‖ > R1 and d
(
ρM (v), γ1(0)

)
< ε1

2 . Then by Lemma 3.4.5, there is a walk c1 starting

at v such that dH(ρM (c1), γ′1) ≤ ε1. We can choose c1 to have arbitrary length. In

particular we can choose c1 so that its ending point has distance greater than R2 from

the origin. We can also choose c1 so that its ending point, when projected to M , has

distance less than ε2
2 from γ2(0).

Lemma 3.4.5 then says there is a walk c2, starting from the endpoint of c1, ending

at a point of distance at least R3 from the origin, and such that dH(ρM (c2), γ′2) ≤ ε2.
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We may choose c2 so that its ending point has distance less than ε3
2 from γ3(0) when

projected to M .

Continuing in this way, we construct a sequence of walks c1, c2, c3, ..., each ending

where the last started, such that dH(ci, γ′i) ≤ εi. Concatenating all these walks, and

concatenating any walk from the origin to v at the beginning gives us a walk c : [0,∞)→

E.

By Proposition 3.4.6, the boundary limit of c consists precisely of limits of sequences

of the form ρM (c(ak)), with ak →∞. Given such a sequence, for each k, we can choose

a point qk on some γ′ik such that ik → ∞ and d(ρM (c(ak)), qk) → 0 as k → ∞. We

can then choose b1, b2, · · · ∈ R such that bk → ∞, and so that d(γ(bk), qk) → 0. Thus

d(ρM (c(ak)), γ(bk))→ 0 as k →∞.

The limit of a sequence γ(bk) with bk →∞ is precisely a point in
⋂
T>0 γ ([T,∞)).

Thus we have that the boundary limit is contained in this intersection. But for any

sequence γ(bk), we can choose qk ∈ γ′ik with ik → ∞ and d(γ(bk), qk) → 0. Then we

can choose a sequence ak → ∞ such that d(ρM (c(ak)), qk) → 0, and so the sequence

ρM (c(ak)) converges to the same point as γ(bk). This shows the reverse inclusion,

proving the proposition.

We are now in a position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Fix any point q ∈ Z. For each positive integer k, let Sk

be a finite subset of Z such that Z ⊂ N 1
k
(Sk). Since Z is a connected subset of a

simplex, any open neighborhood of Z is path-connected. Thus we can choose paths

γk : [0, 1]→ N 1
k
(Z) such that γk(0) = γk(1) = q and such that Sk ⊂ γk. Concatenating

the paths γk gives a path γ : [0,∞)→ L.

Note that any point of Z lies in the closure of γ, since the Sk get arbitrarily close

to every point of Z. Indeed, any point of Z lies in γ ([T,∞)) for any T ∈ R. For k ∈ Z,

we have γ ([k,∞)) ⊂ N 1
k
(Z), and thus Z =

⋂
T>0 γ ([T,∞)).

By Lemma 3.4.7, there is a walk over V starting at the origin which has
⋂
T>0 γ ([T,∞)) =

Z as its boundary limit.
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Proof of Theorem 3.2.6. For i = 1, ..., n, let vi = e0 + ei. Let V = {v1, ..., vn}. Let L

be the spherical (n− 1)-simplex obtained by taking the convex hull of ρM (V ). Embed

Z into L. By Theorem 3.4.1, there is a walk c over V starting at the origin whose

boundary limit is Z. Let vI1 , vI2 , ... be the sequence of vectors in V associated to the

walk c.

Take the geodesic ray in T which starts at p and passes through gI1 ·p, gI1gI2 ·p, etc.,

and call this ray c′. f(c′) ⊂ c′×Rn by Proposition 3.2.4. By Lemma 3.3.4, f(c′) = c in

the coordinates of c′ × Rn. Since c′ × Rn is a closed, convex subset of X, its boundary

is embedded in ∂X. Thus, the boundary limit of f(c′) is the boundary limit of c and is

homeomorphic to Z.

As mentioned, Theorem 3.2.6 implies the main theorem.

3.5 Remarks

It is interesting to note that the construction of the group G, the space X, and the map

f depended only on the dimension of the space Z. This gives us that, for a fixed n,

every compact connected subspace of Rn−1 occurs as a boundary image of c for some

geodesic c in X. While these boundary images have diverse homeomorphism types, all

of their inclusions into ∂X are nullhomotopic. This leaves open whether the boundary

image of a geodesic ray under a G-equivariant quasi-isometry is always nullhomotopic

in the boundary.

In the proof of the main theorem, only positive geodesics were considered for sim-

plicity’s sake. However, the argument of 3.3.4 extends to geodesics in T ⊂ X which

do not represent positive words. Whenever an inverse of a generator g−1
i occurs, the

geodesic still passes through some g · Ei, but c(k + 1)− c(k) is now −e0 in the coordi-

nates of g ·Ei. This means that a direction in the coordinates of c×Rn is the reflection

across the e0 = 0 hyperplane of the direction in the coordinates of g ·Ei. So f sends the

vector c(k + 1) − c(k) to the reflection of fi(−e0) across the hyperplane e0 = 0. Since

f(−e0) = −e0 − ei, its reflection is e0 − ei. Calling such a vector v′i, we see that the

image of such a geodesic is then just a walk in {v1, ..., vn} ∪ {v′1, ..., v′n}.
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The geodesics we have constructed are all of the form c′ × {0} ⊂ T × Rn = X,

for some geodesic c′ in the tree T . One may also ask what happens to the images

of geodesics c which do not stay in the tree T . We answer this with the following

proposition:

Proposition 3.5.1. Let c be any geodesic in X = T×Rn. Let c′ = πT (c), the projection

of c to the T factor. If c′ is not constant, then up to reparameterization c′ is a geodesic,

and the boundary image of c is homeomorphic to the boundary limit of c′.

Proof. c′ is a path in a tree which does not retrace itself, thus is a geodesic after

reparameterization. Note that c must be contained in the Euclidean half-space c′×Rn,

and as a geodesic ray it corresponds to some vector in this space. This vector must

have a strictly positive e0 coordinate, otherwise c′ would be constant. Let v be the

vector pointing in this direction, scaled so that the e0 component of v is 1.

The same argument as in the proof of Proposition 3.3.4 then shows that, in the

coordinates of c′×Rn, f(c) is a walk in the vectors f1(v), ..., fn(v). Letting v = u+ e0,

we then have that fi(v) = u + ei + e0. This means the vectors fi(v) are still linearly

independent (one easily checks that adding u + e0 to these vectors produces a basis

of Rn+1). Thus, f(c) is a walk in f1(v), ..., fn(v), and the sequence of these vectors is

exactly the sequence of vectors v1, ..., vn taken by f(c′) with vi replaced by fi(v).

Let L be a change-of-basis linear transformation of Euclidean space which takes

{v1, ..., vn} to {f1(v), ..., fn(n)}. This extends to a homeomorphism of Euclidean space

together with its boundary sphere. L also takes f(c′) to f(c). Thus, the boundary

image of f(c) is the image under L of the boundary image of f(c′), and so the two are

homeomorphic.

3.6 Directed paths in a simplex

In this section we will prove Lemmas 3.4.4 and 3.4.5.

Proposition 3.6.1. It suffices to prove Lemma 3.4.4 for a standard Euclidean simplex

K.
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Proof. The projection from the standard Euclidean simplex to the corresponding spher-

ical simplex sends vertices to vertices and geodesics to geodesics. Thus a directed path

on K will project to a directed path on the spherical simplex L.

Furthermore, since each point of K is at least distance 1√
n

from the origin, points

on K of distance d apart have angle no more than 2 sin−1 (2d
√
n) ≤ 2πd

√
n. Thus,

projection is a Lipschitz map, and if we choose a directed path approximating a path

within ε
2π
√
n

in K, then the projection will approximate the projected path within ε in

L.

In light of the above proposition, we will proceed to prove Lemma 3.4.4 for a Eu-

clidean simplex K. We will still refer to the vertex set of K as W .

Lemma 3.6.2. Let q ∈ K. Let K ′ be a face of K, and let q′ lie in the interior of K ′.

Then for any ε > 0, there is a W -directed path γ starting at q, ending in Bε(q′), such

that γ ⊂ Nε

(
[q, q′]

)
.

Proof. The proof will be by induction on the dimension of K ′. If the dimension is zero

then K ′ is a vertex, and so the geodesic from q to q′ is already W -directed.

Let the dimension d of K ′ be at least 1, and choose a vertex v. The other vertices

span a (d − 1)–simplex K ′′. Extend the geodesic segment [v, q′] to K ′′, and denote by

q′′ the point where this segment intersects K ′′. Let P denote the 2-dimensional plane

containing q, q′, and v. Let πP : K → P denote orthogonal projection to P .

Suppose i is an integer with i > 1. Since the dimension of K ′′ is d−1, the inductive

hypothesis implies that there is a W -directed path β from q, ending within ε
2i

of q′′,

staying within ε
2i

of the segment [q, q′′]. If d(q′′, q′) ≤ ε
2 then by setting γ = β we are

done, otherwise let x be the point on [q, q′′] which is of distance ε
2 from [q, q′]. Let a ∈ R

be such that d(β(a), x) < ε
2i

.

Let β′ = β |[0,a]. Note that β′ is still W -directed.

Since q′ lies in the interior of K ′, we have that v and q′′ lie on opposite sides of [q, q′]

in P . By the triangle inequality, this means that πP (β′(a)) lies on the same side of [q, q′]

as q′′. Thus, the segment [β′(a), v], when projected to P , crosses the segment [q, q′].
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Append to β′ the v-directed segment that terminates at the point y which projects to

this intersection.

rq′′ r rq′ v

r
q��

��

πP (β)r
β′(a)
aaarBBB

B
B

y

Figure 3.1: The construction projected to the plane P .

The segment [β′(a), y] starts at most ε
2i

from the plane P and travels towards a

point on P , and thus ends within ε
2i

of P . In particular d(y, [q, q′]) < ε
2i

. Thus if

d(y, [v, q′′]) < ε
2 , we are done. Otherwise, this segment has a length of at least ε

4 , since

its projection starts at least of distance ε
4 from [q, q′] and ends at distance 0.

Consider the line containing q′ and v to be the x-axis in P . Then the line segment

πP ([β(a), y]) starts at least distance ε
2 from the x-axis, and it moves towards a point

on the x-axis no more than distance diam(K) =
√

2 away. If we choose our orientation

so that the x values of the segment are increasing, we then have that its slope is less

than − ε
2
√

2
. Since it is of length at least ε

4 , this gives a bound on d (πP (β′(a)), [v, q′′])−

d (πP (y), [v, q′′]) which is independent of i.

Since β stayed within ε
2i

of the geodesic [q, q′′], if i is sufficiently large we have

d (πP (β(a)), [v, q′′]) < d(q, [v, q′′]). Thus, assuming we choose i sufficiently large, we

have that d(q, [v, q′′])− d(y, [v, q′′]) is bounded away from zero.

We can now continually repeat this process, replacing q by y and increasing i suffi-

ciently each time. We concatenate the results to obtain a W -directed path γ starting

from q. Since at each stage we move no farther than ε
2i

from the geodesic to q′ at

the previous stage, we stay within ε of [q, q′] at every point in this process. Further,

since each step ends closer to [v, q′′] by an amount bounded away from zero, the process

eventually terminates within ε
2 of [v, q′′], and thus within ε of q′.

In particular, setting K ′ = K in the above Lemma allows us to approximate any

line segment by a W -directed path.

Proof of Lemma 3.4.4. Lemma 3.6.2 implies the existence of a W -directed path from
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any x ∈ Bε(γ(0)) which ends in B ε
2
(γ(0)) and stays within ε−d

(
γ(0), x) of the segment

[x, γ(0)]. By beginning with such a path, we can assume that our starting point lies in

B ε
2
(γ(0)).

Approximate γ by a piecewise-linear path β such that dH(γ, β) < ε
2 . By Lemma

3.6.2 we can find W -directed paths for each linear segment, each starting where the

previous ended, ending within ε
2 of the next linear segment, and staying within ε

2 of the

segments connecting their starting and ending points. Thus each stays within ε of the

corresponding linear segment of β.

Concatenating these W -directed paths gives a single W -directed path γ′ with the

desired properties.

We will need the following proposition for the proof of Lemma 3.4.5:

Proposition 3.6.3. Let x ∈ E be any nonzero vector with nonnegative coordinates,

and let ei be any elementary basis vector. Let u = x + ei. Then the segment [x, u]

projects to a W -directed segment on M , and d(ρM (x), ρM (u)) ≤ sin−1
(

1
‖x‖

)
.

Proof. The segment [x, u] consists of vectors of the form x + tei, for real values t. All

such vectors lie in the plane spanned by x and ei. The projection of this plane to M is

precisely the geodesic containing ρM (x) and ρM (ei). But ρM (ei) ∈W is a vertex wi of

the simplex L. It is clear that d(ρM (x+ tei), w) ≥ d(ρM (x+ t′ei), w) for 0 ≤ t ≤ t′ ≤ 1.

Thus the segment [x, u] projects to a subsegment of [ρM (x), w], which is a W -directed

segment.

Since v and ei have fixed lengths, ρM ([x, u]) has maximum length if u is orthogonal

to ei. In this case, its length is the angle between x and u, which is sin−1
(
‖ei‖
‖x‖

)
. Since

‖ei‖ = 1, this gives that d(ρM (x), ρM (u)) ≤ sin−1
(

1
‖x‖

)
.

Proposition 3.6.4. Given any vector v and basis vector ei,

lim
k→∞

d
(
ρM (v + kei), ρM (ei)

)
= 0.

Proof. By the same argument as above, the angle between kei and kei+v is no more than

sin−1
(
‖v‖
‖kei‖

)
. Since ρM (kei) = ρM (ei) and ‖kei‖ → ∞ the proposition follows.
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In particular, Propositions 3.6.3 and 3.6.4 show that we can add k copies of ei to

any vector v, and

lim
k→∞

ρM (kei + v) = ρM (ei) ∈ L.

Additionally, the linear path from ρM (v) to ρM (kei + v) projects to a ρM (ei)-directed

segment.

Lemma 3.6.5. Suppose a, a′, and w are colinear in the half-sphere M , and a′ is on

the geodesic segment from a to w. Further suppose b ∈ M with d(b, w) < d(a′, w), and

all distances between these points are ≤ π
2 . Then d(b, a′) < d(b, a).

a wa’

b

Figure 3.2:

Proof. This is an exercise in spherical geometry. For this proof, we will use the con-

vention ab to denote d(a, b). Since all distances here are ≤ π
2 , we have that sin and

tan are strictly increasing functions, while cos is a strictly decreasing function. Let C

be the angle (on the sphere) formed by the geodesic segments [b, w] and [a,w]. Since

d(a,w) > d(a′, w) > d(b, w) and cos(C) < 1, we have

tan
(
aw + a′w

2

)
> tan(bw) cos(C)

2 tan
(
aw + a′w

2

)
> 2 tan(bw) cos(C)

2 cos(bw) sin
(
aw + a′w

2

)
> 2 sin(bw) cos

(
aw + a′w

2

)
cos(C)

We multiply both sides by sin
(
a′w−aw

2

)
, reversing the inequality since this value is

negative, and apply angle difference formulas to obtain

cos(bw)
(
cos(aw)− cos(a′w)

)
< sin(bw)

(
sin(a′w)− sin(aw)

)
cos(C)
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cos(bw) cos(aw) + sin(bw) sin(aw) cos(C) < cos(bw) cos(a′w) + sin(bw) sin(a′w) cos(C)

Applying the spherical law of cosines to the triangles with vertices ABW and A′BW ,

we end up with

cos(ab) < cos(a′b)

ab > a′b

Let v = ρM (en). Then v is a vertex of L. Call the span of the other n− 1 vertices

L′. Define Ψ: L − {v} → L′ such that Ψ(q) is the point of L′ obtained by extending

the geodesic segment [v, q] to L′.

Proposition 3.6.6. 1. Ψ is induced by orthogonal projection of E to the subspace

spanned by {e1, ..., en−1}.

2. Up to reparameterization, Ψ sends geodesic segments to geodesic segments.

3. Ψ sends W -directed paths to (W − {v})-directed paths.

4. If d(v, q) = d(v, q′), then d(q, q′) ≤ d (Ψ(q),Ψ(q′)).

Proof. Note that an injective path in L is locally a geodesic segment (up to reparame-

terization) if and only if it lies in P ∩ L for some 2-plane P ⊂ E which passes through

the origin. Let q ∈ L−{v}, let x be any vector such that ρM (x) = q, and let x′ be such

that ρM (x′) = Ψ(q). Since ρM (x′) ∈ L′, x′ lies in the span of e1, ..., en−1, so x′ and en

are orthogonal.

v, q, and Ψ(q) lie on the same geodesic, thus x must lie in the plane spanned by en

and x′, ie x = aen+ bx′ for scalars a and b. This shows that Ψ is induced by orthogonal

projection to the subspace spanned by e1, ..., en−1, proving (1). This projection is a

linear map, thus it sends line segments to line segments, and since geodesic segments

on L are projections of line segments in E, we have proved (2).

For q ∈ L and w a vertex, Ψ sends the geodesic segment [q, w] to the geodesic

segment [Ψ(q),Ψ(w)]. If w 6= v, then w ∈ L′ and so Ψ(w) = w. Thus Ψ sends
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the segment [q, w] to [Ψ(q), w], and sends initial subsegments of the former to initial

subsegments of the latter. If w = v, a subsegment of [q, w] is sent to a single point,

which proves (3).

By (1), we have that for all q, q′ ∈ L, d(Ψ(q), v) = d(Ψ(q′), v) = π
2 . Geodesic

rays α(t), α′(t) emitting from a common basepoint in a sphere have the property that

d (α(t), α′(t)) < d (α(t′), α′(t′)) for 0 ≤ t < t′ ≤ π
2 . This proves (4).

We require one final lemma:

Lemma 3.6.7. For any ε > 0, there is an R > 0 such that, if x is a vector with positive

coordinates and ‖x‖ > R, there is a walk c : [0,∞) → E over V , starting at x, such

that ρM (c) ⊂ Bε(x).

Proof. We will proceed by induction on the dimension of L. If L is 1-dimensional,

then Bε(ρM (x)) is an interval. If ‖v‖ > sin−1
(

2
ε

)
then Proposition 3.6.3 guarantees

that these segments all have length < ε
2 , thus we can always choose an ei such that

ρM ([v, v + ei]) ⊂ Bε(ρM (x)). Thus, setting R = sin−1
(

2
ε

)
gives the result.

For higher dimensions, set v = en, and let L′ and Ψ be as in Proposition 3.6.6.

Let ρ : E → E be orthogonal projection to the subspace spanned by e1, ..., en−1. By

3.6.6(1), for every vector x, Ψ(ρM (x)) = ρM (ρ(x)). Note that ‖x‖ ≥ ‖ρ(x)‖.

By the inductive hypothesis, there is an R such that if ‖ρ(x)‖ > R, then there

is a walk in {e1, ..., en−1}, starting from ρ(x), whose projection to L′ lies within ε
3 of

Ψ(ρM (x)). If we use the same sequence of vectors starting from x instead of ρ(x)

we obtain a walk c. By Proposition 3.6.6 (1) and (4), we have that Ψ(ρM (c)) ⊂

B ε
3

(
Ψ(ρM (x))

)
.

Note that since c is a walk in e1, ..., en−1, we have that for all t, d
(
ρM (c(t)), v

)
≥

d
(
ρM (x), v

)
. Assume R is chosen large enough so that projections of segments [v, v+ei]

have length no more than ε
3 . We will create another walk c′ by inserting copies of en

into the sequence of vectors for c.

Let a be the smallest integer such that d
(
ρM (c(a)), v

)
−d
(
ρM (x), v

)
> ε

3 . We insert

copies of en at the ath position in the sequence for c. We insert the minimal number
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m of such vectors so that d
(
ρM (c(a) + men)), v

)
≤ d

(
ρM (x), v

)
. Such an m exists by

Proposition 3.6.4. After inserting the copies of en, our sequence continues with the

sequence of vectors from c.

This creates a new sequence of vectors, and we continue in this way, finding the

minimal integer a such that d
(
ρM (c(a)), v

)
− d
(
ρM (x), v

)
> ε

3 , and inserting en’s so

that d
(
ρM (c(a + m)), v

)
≤ d

(
ρM (x), v

)
. Continuing this process to infinity creates a

new walk c′ with the property that, for all t, |d
(
ρM (c′(t)), v

)
− d
(
ρM (x), v

)
| < 2ε

3 .

For any t, let qt be the point on the geodesic [v,Ψ(ρM (x))] such that d(qt, v) =

d
(
ρM (c′(t)), v

)
. Note that since we have only inserted en’s, we have that Ψ(ρM (c)) =

Ψ(ρM (c′)). By Proposition 3.6.6 (4) this implies that d
(
ρM (c′(t)), qt

)
< ε

3 . Since

d
(
ρM (x), qt

)
< 2ε

3 , the triangle inequality implies that ρM (c′(t)) is always within ε of x.

This construction works as long as ‖ρ(x)‖ > R. But the construction using the

inductive hypothesis works via orthogonal projection to the span of any (n − 1) of

our basis vectors. Thus, by replacing R with 2R, we can guarantee that any x with

‖x‖ > R has some sufficiently large projection to allow the above construction to work.

This completes the proof.

Proof of Lemma 3.4.5. Let N be the number of directed segments in γ. Let wi =

ρM (ei), so W = {w1, ..., wn}. Let δ = ε1
4N . Let R1 = csc(δ), let R2 to be the value

obtained from Lemma 3.6.7 which allows the projection of a walk to stay within ε2
2 of

its starting point, and let R = max(R1, R2).

To construct our walk c, let γ1, γ2, ... be the W -directed segments of γ. Let wik

be the vertex that γk moves towards, and let Tk be the terminal point of γk. We will

construct our sequence of vectors c by starting with the empty sequence and appending

copies of eik to the sequence for each γk. Denote by Σk the sum of all vectors appended

up to the kth step of this process, together with x. To choose how many eik ’s we append

at the kth step, we consider 3 cases:

1. If Tk = wik , we append enough copies of eik so that d
(
ρM (Σk), wik

)
< ε1

2 .

2. If d(Tk, wik) > d
(
ρM (Σk−1), wik

)
, we append no copies of eik .
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3. Otherwise, we append the minimal number of eik required so that d(Tk, wik) >

d
(
ρM (Σk), wik

)
.

Cases (1) and (3) are possible by Proposition 3.6.4.

We claim that in each of the above cases,

d
(
ρM (Σk), Tk

)
≤ max

(ε1
2
, d
(
ρM (Σk−1), Tk−1

)
+ δ
)
.

In case 1, the claim is clear since Tk = wik . In case 2, the claim holds by Lemma

3.6.5.

In case 3, let Ak ∈ [Tk−1, wik ] and Bk ∈ [ρM (Σk−1), wik ] be such that d(Ak, wik) =

d(Bk, wik) = min
(
d(Tk−1, wik), d(ρM (Σk−1), wik)

)
. Let Pk be the point on [ρM (Σk−1), wik ]

such that d(Pk, wik) = d(Tk, wik). Then we have

d
(
ρM (Σk−1), Tk−1

)
≥ d(Ak, Bk)

d(Ak, Bk) ≥ d(Tk, Pk)

The first inequality holds by Lemma 3.6.5. The second holds because geodesics α(t)

and α′(t) emitting from a common basepoint have increasing distance in t for t < π
2 ,

and [wik , Ak] and [wik , Bk] are such segments.

Since we added the minimal number of eik ’s to make ρM (Σk) closer to wik than

Tk is, we have that Pk ∈ ρM ([Σk − eik ,Σk]). But since ‖Σk − eik‖ ≥ R = csc(δ), by

Proposition 3.6.3 the length of this segment is no more than sin−1
(

1
csc(δ)

)
= δ. Thus

by the triangle inequality we have

d(Tk, Pk) ≥ d(ρM (Σk), Tk)− δ

and the claim follows.

Thus, for each k, ρM (Σk) gets no more than δ further from Tk. But since δ ≤
ε1
4N , with N the number of segments in γ, we have that d(ρM (ΣN ), TN ) < 3ε1

4 , since

d(ρM (Σ0), T0) < ε1
2 . Thus, it only remains to show that we can append additional

vectors causing the walk to end within ε2 of TN , and to show that we can continue the

walk arbitrarily far without leaving Bε1(TN ).
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By Lemma 3.6.2, we can find a W -directed path β in L which starts at ρM (ΣN ),

ends within ε2 of TN , and stays within ε2 of the geodesic segment [ΣN , TN ]. Without

loss of generality we may assume ε2 < ε1
4 . Let N ′ be the number of segments in β, let

δ′ = ε2
4N ′ , and let R′ = csc(δ′).

By Lemma 3.6.7, we can append vectors to our sequence so that the projections

stay within ε2
2 of ρM (ΣN ), until we reach a total sum Σ with ‖Σ‖ > R′. We can then

repeat the above construction to append a walk whose projection ends within ε2 of TN

and stays within ε2 of β and thus within ε1 of TN . This gives us our walk which has all

the desired properties.
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Chapter 4

The Locally Connected Case

In this chapter we generalize the results of Chapter 3 to include the added assumption

that the boundaries in question are locally connected. We will construct examples

which prove the following theorem:

Theorem 4.0.8. For any compact, connected Z ⊂ Rn, there is a group G which acts

geometrically on two CAT(0) spaces X and Y with locally connected boundaries, a G-

equivariant map f : X → Y , and a geodesic ray c in X such that the boundary limit of

f(c) is homeomorphic to Z.

As before, the construction of G,X, Y , and f depends only on n. X and Y will again

be the same space with different actions of G, and their boundaries will be spheres. The

examples in this chapter are somewhat analogous to the examples of Buyalo [8] where

the G-equivariant quasi-isometries between spaces do not extend to the boundaries.

Throughout this chapter we will assume a fixed integer n > 1.

4.1 Constructing X, G, and f

Let Σn be a surface of genus n, endowed with a metric of constant negative curvature.

Let X = Σn× Tn, where Tn is the standard n-torus. Let X denote the universal cover

of X. The following properties are easy to verify:

Proposition 4.1.1. 1. X is a space of nonpositive curvature.

2. X is a CAT(0) space, and is isometric to H2×Rn, where H2 denotes the hyperbolic

plane.
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3. π1(X) = Φ×Zn, where Φ is the Fuchsian group of hyperbolic isometries with the

following one-relation presentation:

Φ = 〈g1, ..., gn, h1, ..., hn | g1h1g
−1
1 h−1

1 g2h2g
−1
2 h−1

2 ...gnhng
−1
n h−1

n 〉

Setting G = Φ× Zn, we then have a geometric action of G on X, which we denote

by ·. As in Chapter 3, we may choose a basepoint p ∈ X and choose generators of the

Zn factor of G such that the generator with a 1 in the ith place and zeros elsewhere

translates the Rn factor of p by the the standard basis vector ei and fixes the H2 factor.

We choose our generators of Φ so that they fix the Zn factor of G. We may assume the

metric on H2 is scaled such that each gi and hi translate p by a distance of 1.

Define a function ψ : Φ → Zn by defining ψ(gi) = ei, ψ(hi) =
−→
0 . Note that this

induces a well-defined homomorphism since the only relation in Φ is always satisfied in

an Abelian group. Define an automorphism Ψ : G→ G by considering G as Φ×Zn and

defining Ψ(g, w) =
(
g, w + ψ(g)

)
. The reader may verify that Ψ is an automorphism.

Define a new action, ◦, by g ◦ x = Ψ(g) · x for g ∈ G and x ∈ X.

Proposition 4.1.2. The action ◦ is geometric.

Proof. The proof is identical to the proof of Proposition 3.2.2.

It is well-known that a fundamental domain of the action of Φ on H2 is a hyperbolic

2n-gon. Choose such a fundamental domain having p as a vertex, and call it P . We

consider H2 as a subspace of X by identifying it with H2 ×
{−→

0
}

.

We define a function f : X → X in the following way: Each vertex v in P is g · p

for some g ∈ G, and we define f(v) = g ◦ p for these vertices. We then map each edge

[v, w] of P linearly to the segment [f(v), f(w)]. For points in the interior of P , each

lies on a unique geodesic segment connecting p and an opposite edge, and we map such

geodesics linearly to the geodesic segments connecting the images of their endpoints.

Any point of H2 not in P can be written as g ·x for some g ∈ G and x ∈ P . We then

define f(g ·x) to be g ◦f(x) for all such points. We have now defined f on all of H2. To

extend f to all of X, we simply define f
(
(x,w)

)
=
(
πH2

(
f(x)

)
, πZn

(
f(x)

)
+w

)
, where

πH2 and πZn are the projections of X to the H2 and Zn components, respectively.
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Proposition 4.1.3. Using the above definition, f is well-defined and G-equivariant in

the sense that f(g · x) = g ◦ f(x) for all g ∈ G, x ∈ X.

Proof. If g ∈ {1} × Zn ⊂ G, then g · x = g ◦ x, and the proposition follows for these

g. Thus it suffices to prove the proposition for the Φ component of G. Since this

component acts on any translate of H2 by simply preserving the translation, it suffices

to prove the proposition for x ∈ H2.

The proposition holds trivially for points g · x when x lies in the interior of P , since

the orbit of such a point has a unique element in P .

If x is a vertex of P , then x = h · p for some h ∈ Φ. But then any point g · x is

just gh · p, and f(g · x) = f(gh · p) = gh ◦ p = g ◦ f(h · p) = g ◦ f(x), and we see that

G-equivariance holds.

If x lies in the interior of an edge of p, then there is a unique y ∈ P which lies in the

same orbit as x. These points are uniquely defined by their distances along the geodesic

segments that make up their respective edges. Since the proposition holds for vertices

and both group actions are by isometries, the proposition holds for edges as well.

It is well-known (see [6] for example) that the boundary of the product of two

CAT(0) metric spaces is the join of the two boundaries. Since ∂H2 = S1 and ∂Rn =

Sn−1, it follows that ∂X = ∂
(
H2 × Rn

)
= S1 ∗ Sn−1 = Sn+1. In particular, ∂X is

locally connected.

The remainder of this section will be devoted to proving the following, which implies

Theorem 4.0.8:

Theorem 4.1.4. Given any compact, connected Z ⊂ Rn−1, there is a geodesic ray

c : [0,∞)→ X such that the boundary limit of f(c) is homeomorphic to Z.

4.2 Useful properties of H2 and X

In this subsection we set out certain properties which we will need to prove Theorem

4.1.4.
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The following theorem is proved in [6]. In fact, the result holds for arbitrary δ-

hyperbolic spaces, but we will only need the result for H2.

Theorem 4.2.1. In H2, every quasi-geodesic ray lies in the R-neighborhood of a

geodesic ray, for some R.

This shows that every quasi-geodesic ray in H2 approaches a unique boundary point

in ∂H2 under the cone topology. We will use this fact by examining the Cayley graph

Γ of Φ, using the g1, ..., gn, h1, ...hn generating set. Recall that by Theorem 1.0.3, there

exists a quasi-isometry from Γ to H2. In particular, geodesic rays in Γ correspond to

boundary points in H2.

We now require a theorem to characterize certain geodesic rays in Γ. Given a se-

quence of generators a1, a2, ... from {g1, ...gn, h1...hn}, we can construct a path c : [0,∞)→

Γ which starts at the identity and passes through a1, then a1a2, then a1a2a3, etc., map-

ping each interval [k, k + 1] isometrically to the edge connecting a1...ak−1 to a1...ak.

Note that such an edge always exists, since at each step we are multiplying on the right

by a generator.

Theorem 4.2.2. Let c be constructed as above. Then c is a geodesic ray.

To prove this theorem, we first need some terminology. Consider all words of length

N , where the alphabet is a chosen set of generators of a finitely-generated group, to-

gether with the inverses of such generators. The symmetric group SN acts on such

words by permuting the entries.

Definition 4.2.3. Two words w and w′ of length N are cyclically equivalent if, for

some N -cycle s ∈ SN , either w = sw′ or w−1 = sw′, where the inverse is taken as an

element of the free group on the chosen generators.

Definition 4.2.4. A word v is a cyclic subword of a word w if v is a subword of a word

w′ which is cyclically equivalent to w.

Definition 4.2.5. A word w is cyclically reduced if no word cyclically equivalent to w

contains a generator followed immediately by its inverse.
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We will use the following, which is proved in much greater generality in [19]:

Theorem 4.2.6. Suppose w is a cyclically-reduced word in {g1, ..., gn, h1, ..., hn} ∪{g−1
1 , ...g−1

n ,

h−1
1 , ..., h−1

n } which represents the identity in Φ. Then, w contains a cyclic subword of

length at least 2n+1 which is also a cyclic subword of the relator g1h1g
−1
1 h−1

1 ...gnhng
−1
n h−1

n .

Recall that edges in a Cayley graph have a natural labeling by generators of the

group. Given a finite-length path γ which starts and ends and vertices in the Cayley

graph, we may then form a word w by reading off the edges of γ in the following way:

Whenever γ traverses an edge from g to gs for a generator s, we add s to the end of w.

When γ traverses an edge from gs to g, we add s−1 to the end of w.

The following is a well-known fact in geometric group theory:

Proposition 4.2.7. Suppose γ is a loop in a Cayley graph. Then the word w obtained

by reading off the edges of γ represents the identity in the group.

Proof. Let g be the group element corresponding to the vertex where γ starts and ends.

Let wk denote the subword of w consisting of the first k entries. An easy induction

from the definition of reading off edges shows that γ(k) = gwk for each k. Thus, when

k is the length of w, we have g = gw, showing that w represents the identity.

We are now in a position to prove Theorem 4.2.2:

Proof of Theorem 4.2.2. It suffices to show that each initial segment of c is a geodesic

segment. So suppose that c |[0,k] is not a geodesic segment in the graph Γ. Let c′ denote

a geodesic segment from the identity to c(k). Choose c′ so that c and c′ share as long

an initial segment as possible; call the final vertex of this segment v. Further suppose

that c′ is chosen so that, given this initial segment, it shares as long a terminal segment

as possible with c, and call the starting vertex of this segment v′.

Let w be the word obtained by reading off the edges traversed by c from v to v′, and

let u be the word obtained by reading the edges traversed by c′ from v to v′. Then wu−1

is a loop in the Cayley graph, and thus by Proposition 4.2.7 represents the identity in

Φ.
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By Theorem 4.2.6, there is then a cyclic subword s of wu−1 which is also a cyclic

subword of the relator g1h1g
−1
1 h−1

1 ...gnhng
−1
n h−1

n , and s has length at least 2n+ 1. We

can then write some cyclic permutation of the relator as st, for another cyclic subword

t of length at most 2n− 1. Since st must then represent the identity, we then have that

s = t−1 in Φ.

w is obtained by reading off the edges of c, and thus it consists only of positive

powers of generators and not their inverses. We can see that no cyclic subword of the

relator has more than two generators in a row with the same sign, thus at most two

letters of s come from w, and at least 2n− 1 come from u−1.

Since u forms a geodesic path, it is of minimal word length. Note that st−1 forms

a loop, so if two paths have the same starting point and yield s and t−1 by reading

off their edges, they have the same ending point. If we could replace s with t−1 in u

we could shorten u’s word length without changing the group element it represents,

yielding a contradiction, and so at least one letter of s must come from w.

Thus, the edges making up the subword s are contained in both c and c′, and thus

must pass through either v or v′. Let V be either v or v′, whichever they pass through.

Consider the path formed by the collection of these edges, and let x and x′ be the

endpoints of this path which lie in c and c′, respectively. Then 1 ≤ d(x, V ) ≤ 2, and

since c′ is a geodesic segment, d(x′, V ) ≥ 2n− 1.

Since x and x′ are connected by a path making the word s, they are also connected

by a path making the word t, since st−1 forms a loop in the Cayley graph. Thus

d(x, x′) ≤ 2n − 1. So we can construct a path from V to x′ of length 2n + 1 by

traversing the path from V to x, then from x to x′.

But this means that there is a path from V to x′ of minimal length which traverses

at least 1 edge identically to c. Replacing the part of c′ from V to x′ with this path, we

find that either V = v and we have extended the initial segment shared by c and c′, or

V = v′ and we have extended the terminal segment shared by c and c′ without altering

the initial segment. Since the initial and terminal segments were chosen maximally, we

have a contradiction. Thus, the only possibility is that v = v′, ie, c = c′, and thus c is

a geodesic segment.
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In X we have a copy of H2 with an action of Φ and a chosen basepoint p. We can

easily embed Γ into H2 in a Φ-equivariant way: we map the identity to p, we map each

vertex g to g · p, and we map edges to the geodesic segments connecting the images of

their vertices. This is a quasi-isometric embedding. Thus for any geodesic ray c in Γ,

c becomes a quasi-geodesic ray in H2 ⊂ X.

For the following proposition, we will use dX to denote the distance function in X,

and dΓ to denote the distance function in Γ.

Proposition 4.2.8. Let c be a geodesic ray in Γ with c(0) = p, considered as a quasi-

geodesic ray in X. There is a B > 0 such that, for all 0 ≤ t ≤ t′, dX
(
c(t′), p

)
−

dX
(
c(t), p

)
≥ −B.

Proof. By Theorem 4.2.1, c lies in the R-neighborhood of some geodesic ray c′, for some

R ≥ 0. Since Γ is embedded in H2 quasi-isometrically, there are values λ ≥ 1,K > 0,

such that for any x, y ∈ Γ,

1
λ
dX(x, y)−K ≤ dΓ(x, y) ≤ λdX(x, y) +K.

We claim that B = λ2
(
2R+ (1− 1

λ)K
)

satisfies the proposition.

To see this, suppose that for some t′ ≥ t ≥ 0, we have that dX
(
c(t′), p

)
−dX

(
c(t), p

)
<

−B. Let q be the point on c′ closest to c(t). Then there is some s > t′ such that

dX
(
c(s), p

)
> dX(q, p) + R, since quasi-geodesic rays get arbitrarily far from any fixed

point.

Define ρc′ : X → c′ to take points in X to their closest point on c′. Since c′ is closed

and convex, this is a continuous function. Further, dX
(
ρc′(c(s)), p

)
> dX(q, p), since

dX
(
c(s), p

)
> dX(q, p) + R. Since ρc′ is continuous, this means there is some t′′ > t′

such that ρc′(c(t′′)) = q, and thus dX
(
c(t′′), q

)
≤ R.

Since c(t) and c(t′′) are both within R of q, the triangle inequality gives us

dX
(
c(t′′), c(t)

)
≤ 2R.

Also by the triangle inequality and the assumption we have,

dX
(
c(t′), c(t)

)
> B,
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thus by the quasi-isometry constants we obtain

dΓ

(
c(t′), c(t)

)
>

1
λ

(B −K)

This gives us that

dΓ

(
c(t′′), c(t)

)
= t′′ − t > t′ − t = dΓ

(
c(t′), c(t)

)
>

1
λ

(B −K)

Applying the quasi-isometry constants an additional time yields

dX
(
c(t′′), c(t)

)
>

1
λ2
B − (1 +

1
λ

)K

.

Combining with the above gives

2R ≥ dX
(
c(t′′), c(t)

)
>

1
λ2
B − (1 +

1
λ

)K = 2R,

a contradiction.

4.3 Constructing the boundary limit Z

As before, let πRn and πH2 be the projections from X onto its Rn and H2 factors,

respectively. We define a function µ : X → Rn+1:

µ(x) =
(
d
(
πH2(x), p

)
, πRn(x)

)
.

Note that dX(x, y) ≥ dRn+1

(
µ(x), µ(y)

)
, for all x, y ∈ X. Taking a sequence of

generators a1, a2, ..., we can construct the quasi-geodesic ray c as in the previous section.

Denote by C the path in Rn+1 given by C(t) = µ(f(c(t))). Let v1, ..., vn be vectors in

Rn+1 defined by vi = ei + e0.

Lemma 4.3.1. For any walk b : [0,∞)→ E over {v1, ..., vn} starting from the origin,

there is a sequence a1, a2, a3, ... of generators from {g1, ..., gn, h1} such that when c and

C are constructed as above, there is some R > 0 such that C ⊂ NR(b) and b ⊂ NR(C).
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Proof. Let vi1 , vi2 , ... be the sequence of vectors corresponding to the walk b. As in the

previous chapter, we will construct the sequence a1, ..., an by adding on certain elements

for each element vik .

Since f is G-equivariant, we can immediately determine the Rn coordinate of c(j)

for any integer j. Since c(j) is a1...ajp, the ith entry in the Rn component of f(c(j)) is

precisely the number of times gi occurs in a1, ..., aj . Thus, adding on gi to our sequence

causes the ei component to increase by 1, and all the other components except the e0

component are unchanged.

dX
(
c(j), c(j + 1)

)
= 1 because each edge in Γ maps to a geodesic segment. Thus,

adding on a gi to our sequence causes the e0 component to change by no more than 1.

Further, adding h1 to our sequence will not change the e1, ...en components, and adding

h1 many times will eventually increase the e0 component, since the quasi-geodesic ray

gets arbitrarily far from p. By Proposition 4.2.8, there is a bound B on how much the

e0 component can decrease from a previous value.

We now construct our sequence as follows: At the kth element vik in the sequence

corresponding to b, suppose we have already constructed the finite sequence a1, ..., ajk

corresponding to v1, ..., vik−1. We then add gik to our sequence. We then add enough

copies of h1 so that the e0 component of C becomes at least as large as the e0 component

of b(k).

Constructed this way, we can see immediately that for each integer k and each integer

j ∈ {jk, ..., jk+1 − 1}, the e1, ...en components of b(k) and C(j) are always the same. If

we denote π0 to be projection to the e0 component, then we have π0(b(k)) − B − 1 ≤

π0(C(j)) ≤ π0(b(k)) + 1. Since b and C travel no more than distance 1 along each

coordinate between integer values, this shows that b and C stay within a bounded

distance of each other.

Proposition 4.3.2. Suppose two paths c and c′ in a CAT(0) space X have the property

that, for some R > 0, c ⊂ NR(c′) and c′ ⊂ NR(c). Then c and c′ have the same boundary

limit.

Proof. Suppose α is a point on ∂X and a1, a2, ... is a sequence of real numbers such
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that c(a1), c(a2), ... converges to α in the cone topology. Then choose b1, b2, ... such that

d
(
c(ai), c′(bi)

)
< R for each i. Pick a basepoint p.

Suppose α is a point in the boundary limit of c. Take any neighborhood N(α, T, ε)

of α. Choose T ′ > 0 large enough so that if q and q′ are points on the boundary

of a Euclidean ball of radius T ′ with d(q, q′) < R, then the distance between their

projections to the ball of radius T is no more than ε
2 .

Choose ak such that d
(
c(ak), p)

)
> T ′, and so that the projection of c(ak) to BT (p)

is within ε
2 of the projection of α. Then the projection of c′(bk) is within ε

2 of the

projection of c(ak) by the CAT(0) inequality, thus c′(bk) ∈ N(α, T, ε). Thus α lies in

the boundary limit of c′ as well.

This shows that the boundary limit of c is a subset of the boundary limit of c′, and

a completely symmetric argument shows the reverse inclusion, proving the proposition.

We now are ready to prove the main theorem of the section:

Proof of Theorem 4.1.4. By Theorem 3.4.1, there is a walk b in Rn+1 over {v1, ..., vn},

starting at the origin, whose boundary limit is homeomorphic to Z. By Lemma 4.3.1,

we can choose a geodesic c in Γ, such that when we consider c as a quasi-geodesic,

µ(f(c)) stays within a bounded distance of b. Thus, µ(f(c)) also has boundary limit Z

in Rn+1.

By Theorem 4.2.1, c stays within a bounded distance of a unique geodesic ray c′

emanating from p. c′ lies in the Euclidean half-space c′ ×Rn ⊂ X, which is closed and

convex. We put coordinates on this half-space by identifying (c′(t),−→x ) with the point

(t,−→x ) ∈ Rn+1. Note that these coordinates are unchanged by the map µ.

Since c and c′ stay within a bounded distance of each other, so do f(c) and f(c′).

Since µ does not increase distances, µ(f(c)) and µ(f(c′)) stay within a bounded distance

of each other, thus the boundary limit of µ(f(c′)) is also Z.

Since f(c′) ⊂ c′ × R, and the coordinates on c′ × R are unchanged under µ, this

means the boundary limit of f(c′) is Z in c′ ×R. This is a closed, convex subset of X,
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thus its boundary is embedded in ∂X, and so we have that the boundary image of c′ is

homeomorphic to Z.
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