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Gliomas are refractory to chemotherapy because of acquired resistance, which is 

associated with changes in important cellular processes, such as cell cycle kinetics and 

cell death. The mechanistic relationship between resistance markers and failure of 

chemotherapy remains to be elucidated. To that end, identification of biological systems 

and their interactions is of great promise.  

We characterized the pharmacological response of glioma cell lines to 

chemotherapeutic drugs, carmustine and etoposide. We developed a cell cycle structured 

mathematical model that reproduces the dynamics of dose response of cells to the two 

chemotherapeutic agents based on two parameters relating to cell cycle arrest and cell 

death.  We have shown that the model can provide a quantitative distinction between the 

influence of these two processes on tumor cells simply from pharmacological dose 

response curves, from which mechanism is not obtained using traditional analyses. The 

model suggests that carmustine elicits its effect via cell death, while etoposide primarily 

ii 



 

 

induces cell cycle arrest. We have also applied this methodology to track acquisition 

resistance to chemotherapy.  

We have generated a panel of glioma cell lines resistant to carmustine by 

incremental stepwise exposure to sublethal doses of the drug. To characterize molecular 

events underlying response of resistant and parent cell lines to carmustine, we performed 

gene expression profiling using micaroarrays followed by functional network analysis. 

We found that NFκB activation is implicated in the response to carmustine, and resistant 

cells exhibit increased survival mediated by inflammatory responses. In addition, 

resistant cells induce genes promoting cell cycle arrest and repress genes implicated in 

cell cycle phase transitions and proliferation. In agreement with gene expression results, 

we found that resistant cells exhibit decreased cell death and rapid and efficient arrest. 

We have characterized the DNA repair capacity, which is known to modulate cell cycle 

arrest and apoptosis.  

Our results provide insights into molecular pathways involved in resistance to 

carmustine in vitro. If they prove to hold for gliomas in human patients, these results can 

point the way towards improved therapeutic regimens that act upon NFκB mediated cell 

survival module in concert with cell cycle checkpoint abrogators. 
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CHAPTER 1 

INTRODUCTION 

1.1 Significance 

Prognosis and Classification of Gliomas 

  More than 41,000 people are afflicted with primary central nervous system (CNS) 

tumors per year in the USA.  These tumors account for 2.2% of all cancer related deaths 

[1].  Gliomas represent 42% of primary CNS tumors, 75% of which are malignant [1]. 

The survival of patients diagnosed with glioblastoma multiforme (GBM), the most 

malignant form, reaches 6 months for 42.4% of the patients, 1 year for 17.7% of patients, 

and 2 years for only 3.3% of the patients [1]. Gliomas are one of the main challenges in 

the field of oncology because of their malignancy, poor prognosis, and failure of 

treatment modalities [1]. 

 Diffuse astrocytomas are the most common type of primary brain tumors in adults.  

In terms of pathological classification, they are divided into lower grade astrocytomas 

(WHO grade II), anaplastic astrocytomas (WHO grade III), and glioblastoma multiforme 

(WHO grade IV) [2]. Lower grade astrocytoma is the least aggressive but it is still highly 

infiltrative and possesses a high potential for malignant progression [2]. Gliomas, in 

general, exhibit characteristics of malignant tumors: aberrant proliferation, evasion of 

apoptosis, avoidance of external growth control and immunoregulation, and high degree 

of intrinsic and acquired resistance to therapeutic intervention [2]. The malignant 

phenotype of gliomas has been linked with a wide range of genetic aberrations; these 

aberrations have been identified in primary GBM, tumors arising de novo, and secondary 

GBM, tumors arising from lower grade lesions [2,3]. These mutations have been shown 
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to affect main aspects of cell physiology, such as genomic stability, cell cycle control, 

apoptosis, and other signaling pathways [2].  

Treatment Modalities of Gliomas 

 Surgery, radiation, and chemotherapy are the three modalities utilized in the 

treatment of malignant gliomas. The main aim of surgery is resection of the tumor; 

however, the benefits of resection are limited—in the majority of cases—to reduction of 

the tumor bulk and obtaining tumor biopsies for pathological analysis. Total resection is 

not attainable due to the infiltrative nature of gliomas, where they spread several 

centimeters into surrounding normal brain tissue [2]. In a similar fashion, the infiltrative 

nature of gliomas limits the effect of radiation on patient outcome [2]. Normally, the 

volume exposed to radiation includes the enhancing volume (region containing actual 

tumor tissue), surrounding edema (region containing normal brain tissue infiltrated by 

microscopic tumors), and a region of normal brain tissue [2]. Thus, a significant portion 

of normal brain tissue is exposed to radiation, which limits the amount of exposure and, 

ultimately, tumor control [2].  

 Chemotherapy, as a treatment modality in addition to surgical intervention and 

radiotherapy, has the advantage of reaching tumor cells regardless of anatomic location 

[2]. In addition, many chemotherapeutic agents are not associated with neurotoxic 

effects; thus, toxicity is only a problem at the systemic level [2]. Most importantly, brain 

tissue in composed of differentiated cells with limited proliferative capacity; 

theoretically, chemotherapeutic agents selectively target tumor cells, which have a high 

proliferative capacity [2].   
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1.2 Chemotherapeutic Resistance  

 Similar to other tumors, gliomas are not responsive to chemotherapy because of a 

high degree of intrinsic and acquired resistance to chemotherapeutic agents. Intrinsic 

resistance is characterized by lack of initial response to chemotherapy as a result of the 

presence of some mechanisms in the tissue of origin of the tumor (e.g., P-glycoprotein, 

which is an ATP-dependent efflux pump) or genetic alterations (e.g. mutations in p53) 

that render cells resistant to chemotherapy [3]. On the other hand, acquired resistance is 

marked by an initial response to treatment followed by relapse in the form of a more 

aggressive tumor that is no longer responsive to the original chemotherapeutic agent [3]. 

There are, at least, two possible hypotheses for acquisition of resistance de novo. First, 

there may exist a fraction of tumor cells with genetic mutations that result in a resistant 

phenotype prior to the start of therapy. With prolonged exposure to cytotoxic agents, 

sensitive cells respond to therapy and resistant ones proliferate to form a tumor mass by 

monoclonal expansion [3]. Second, exposure to therapy upregulates some resistance 

pathways or some stress survival mechanisms that enable a fraction of cells to survive 

during the course of treatment [3]. 

 Several markers of resistance to chemotherapy have been characterized in glioma 

models. First, ATP-dependent efflux pumps transport cytotoxic agents out of cells by 

means of transmembrane proteins encoded by multi-drug resistance genes and multidrug 

resistance- associated proteins (MDR1, ABCB1, MRP, and ABCC1). Second, increased 

activity of glutathiones and glutathione-related enzyme systems, namely, glutathione-S-

transferase increases the detoxification of alkylating agents. Third, increased activity of 

protein kinase C (PKC) family changes phase transitions in the cell cycle. In addition, 
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resistance has been linked to the presence of some enzymes that counteract the cytotoxic 

effect of specific chemotherapeutic agents. For example, O6-methylguanine methyl 

transferase (MGMT) removes alkyl groups added to the O6
 position in guanine 

nucleotides by DNA alkylating agents. Other enzymes such as hydrofolate reductase and 

thymidilate synthase have been found to contribute to resistance of gliomas to 

chemotherapy. However, none of these individual markers of resistance is sufficient to 

explain the complexity of the resistance phenotype. Alternatively, resistance to 

chemotherapy in glioma models has been attributed to alterations in key cellular 

processes such as deficiency in DNA repair mechanisms, which renders tumor cells 

tolerant to methylation; alterations in cell cycle dynamics, which minimizes the fraction 

of cells in the vulnerable phase; or dysfunction in apoptotic pathways that ensures cell 

survival upon exposure to chemotherapy regardless of drug-target interaction. Reference 

[3] provides a comprehensive overview of mechanisms of resistance in gliomas.  

1.3 DNA Alkylating Agents: Standard of Care in Glioma Treatment 

Alkylating agents: Damage and Repair 

 The mainstay of chemotherapy in the treatment of malignant glioma is DNA 

alkylating agents; namely, 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) and 

temozolomide. They elicit their effect by adding chloroethyl (in the case of BCNU) or 

methyl groups (in the case of temozolomide) to DNA resulting in the formation of O6-

alkylguanine, N7-alkylguanine, N3-alkyladenine, and N3-alkylguanine. In addition, 

alkylation results in the formation of critical secondary DNA damages [4]. O6-

alkylguanine lesions are repaired by the enzyme MGMT, which transfers an alkyl group 

from guanine to its cysteine residue (cys 145), while nucleotide excision repair (NER), 
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base excision repair (BER), and translesion DNA synthesis (TLS) repair N7-alkylguanine, 

N3-alkyladenine, and N3-alkylguanine lesions [5]. Failure to repair these lesions results in 

the formation of DNA double strand breaks (DSB), which initiates cell cycle arrest and 

apoptosis [6]. Resistance to DNA alkylating agents in gliomas, as well as other tumors, 

has been attributed to either tolerance of tumor cells to damage or increased capacity to 

repair DNA lesion, i.e., enhanced MGMT activity, BER, NER, and TLS [6].  

Cell Cycle Deregulation and Resistance to Alkylating agents 

 Cell cycle deregulation is one of the hallmarks of cancer and tumorigenesis [7]. 

Checkpoints are signaling pathways that restrain cells from progressing through phases of 

cell cycle upon exposure to stress [8].  The goal of checkpoints is to monitor the 

proliferative capacity of cells and ensure proper replication of DNA prior to division. 

However, gliomas, as well as other tumors, exhibit a high degree of unrestrained growth 

as result of increased activity of cyclins and cyclin-dependent kinases (CDK), which 

accelerate progression through the cell cycle; decreased activity or total loss of CDK 

inhibitors; or alterations in key components of checkpoints signaling, such as p53 and 

DNA damage response genes (e.g., ATM, Chk1 and Chk2) [9].  

 At the level of cellular processes, DNA damage repair is directly related to cell 

cycle arrest and apoptosis. Upon exposure to chemotherapy, cells arrest transiently at cell 

cycle checkpoints in order for DNA damage repair to take place. In the case of sustained 

or irreparable damage to DNA, cells undergo apoptosis as well as other forms of cell 

death [9-12].   

 At the molecular level, DNA damage is sensed by ATM (ataxia telangiectasia 

mutated) and ATR (ATM and Rad3-Related) proteins, which leads to activation of G1-S 
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checkpoint through p53 signaling or G2-M checkpoint activation through Chk1 and Chk2 

signaling [9].  The exact role of checkpoint activation and cell cycle arrest in response to 

DNA alkylating agents is not clear. On the one hand, a group of studies suggest that the 

ability of tumor cells to undergo cell cycle arrest subsequent to drug exposure is 

correlated with resistance because of increased DNA damage repair. These studies 

suggest that abrogation of checkpoints increases sensitivity to alkylating agents because 

cells undergo mitotic catastrophe as a result of progression through cell cycle with 

damaged DNA.  This hypothesis has been supported by many studies on glioma cell lines 

in response to DNA damage [13-15]. The alternative hypothesis is that cell cycle arrest is 

an end goal of therapy and increased arrest, or decreased proliferation, is a sign of 

response to treatment. This has also been shown in many glioma cells lines upon 

exposure to chemotherapy [16, 17].  

Cell Death and Resistance to Alkylating Agents 

 DNA repair pathways, at the molecular level, are also connected to many modes of 

cellular demise: apoptosis, necrosis and, autophagy [6]. The most investigated mode, 

however, is apoptosis. Upon exposure to DNA alkylating agents, DSB are detected by 

DNA repair proteins, through an unknown sequence of events, which leads to activation 

of p53 signaling. Activation of p53 signaling results in death receptor-mediated apoptosis 

and, in the case of mutant p53, mitochondria-mediated apoptosis [6]. In addition, cell 

survival pathways—such as NF-κB signaling, AKT/Protein Kinase B (PKB) and JNK—

have been shown to be modulated in response to exposure to DNA damaging agents [6]. 

Thus, alterations in the activities of any of these pathways, many of which are common in 

gliomas [18], result in chemotherapeutic resistance.  
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 From a therapeutic perspective, resistance to alkylating agents is dependent on the 

outcome of three interacting events: DNA damage repair, cell cycle arrest and cell death. 

As previously discussed, a consistent model for resistance, involving the regulation of 

these three processes, is currently lacking.  

Cell Cycle Modeling: Analytical Approach to Characterize Drug Effects 

 Thus far we have established that the outcome of chemotherapy is dependent upon 

the magnitude of cell cycle arrest and/or induction of apoptosis as a result of damaging 

DNA—of the highly proliferative—tumor cells. Thus, resistance to chemotherapy could 

be analyzed quantitatively utilizing parameters related to cell cycle regulation. Several 

aspects of cell cycle kinetics such as cell cycle time, quiescent fraction, S-phase fraction, 

and apoptosis rates have an effect on the response to chemotherapy and patient prognosis 

[19]. For example, cell cycle time varies from 30 to 60 hours, apoptotic index varies from 

0.1% to 4%, S-phase fraction ranges from 1% to 40%, and proliferation index ranges 

from 1% to 70% [19]. As such, variations in cell kinetics are distinct from one tumor to 

another and result in disparate responses to chemotherapy. Thus, we may gain important 

insights into chemotherapeutic response using mechanistic models integrating parameters 

of cell cycle kinetics in addition to other factors such as drug pharmacokinetics and 

development of genetic resistance in order to enhance response to chemotherapy.  

 Several mathematical models have been proposed to maximize efficacy of 

chemotherapeutic intervention, especially in clinical trials. These models have been 

developed to maximize the efficacy of treatment (model output) by means of 

manipulating dosing and/or scheduling (model input). Norton and Simon formulated a 

model that exploits resistance due to changes in cell cycle kinetics [20]. The model 
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predicts that moderate initial doses of cell cycle specific drugs followed by escalating 

doses leads to more cell kill compared to intense initial doses followed by constant doses. 

This model, however, ignores the effect of acquired genetic resistance. In another 

attempt, Coldman and Goldie proposed a model centered around the development of 

genetic resistance; their model predicts that intense initial doses are more effective as the 

likelihood of developing resistance is minimized [21].   

 Modified Hill models have been used to describe dose response curves and extract 

some important parameters such as the concentration needed to kill a given percentage of 

total cell population and maximum cell kill. These parameters are fairly important in 

characterizing response to a given chemotherapeutic agent; however, they do not provide 

insights about the mechanism of action of drugs. This model is a statistical fit to data, not 

predictive, and different from one cell line to another.   

 Mechanistic models have been developed as well to predict the efficacy of drugs on 

tumor cells. Gardner developed an exponential kill model that predicts the shape of the 

dose response curve based on the mechanism of action of drug (i.e. whether the drug is 

cell cycle specific or non specific)[22].  There are few input parameters, measured 

experimentally, required for constructing the model: drug concentration; duration of drug 

exposure; cell cycle phase distribution, namely fraction of cells in the vulnerable phase of 

cell cycle; and level of sensitivity to drug. The output of the model is a predicted dose 

response curve which can be used to estimate ICx, concentration of drug that kill x % of 

cell population, and maximum cell kill. 

 A cell cycle-structured model has been developed by Sherer et al to optimize 

scheduling of cell cycle specific chemotherapeutic agents [23]. The main goal of the 
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model is to maximize cell kill of tumor cells with minimal damage to normal tissue. 

Model inputs are cell cycle phase distribution, rates of transitions between phases, drug 

concentration and duration of drug exposure. The model proposes that initial treatment 

with a cell cycle specific agent causes oscillations in the fraction of cells in each phase of 

the cell cycle; thus, a consequent treatment when a high fraction of cells are in the 

vulnerable phase of cell cycle would maximize cell kill. The model assumes that drug 

effects are independent of each other when multiple drugs are used.   

 A cell cycle structured model was developed by Panetta et al to elucidate the effect 

of mercaptopurine on the cell cycle dynamics of three acute lymphoplastic leukemia cell 

lines with different degrees of sensitivity [24]. Input parameters needed to construct the 

model are distributions of cells among phases of the cell cycle before and after treatment. 

The model estimates the rates of transition between phases of the cell cycle before and 

after treatment of the different cell lines. The model shows that, after incorporation of 

mercaptopurine, resistant cells arrest in S-phase efficiently and their commitment to 

apoptosis is much slower compared to sensitive cells. Thus, cell cycle deregulation is one 

of the resistance mechanisms implicated in resistance to chemotherapy.  

1.4 A Systems View of Resistance 

 The presence of one or more of the resistance mechanisms stated above does not 

provide a detailed understanding of the resistant phenotype; that is, the molecular systems 

biology behind the development of resistance phenotype is not yet understood. The 

presence of any of the aforementioned mechanisms is only correlative with response to 

treatment and there is no detailed mechanistic view. Thus, characterization of the 

molecular events and cellular processes implicated in resistance is required for more 
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effective chemotherapy regimens. 

Genome-Wide Characterization of Intrinsic Resistance 

 Large scale monitoring of molecular changes, especially gene expression profiles, 

has acquired a central role in understanding resistance to chemotherapy. Microarrays 

have been used to measure genome-wide changes in gene expression of many cancer cell 

lines and tumor xenografts. In many studies, it was found that basal expression profiles of 

several groups of genes exhibit strong correlation with response to various classes of 

chemotherapeutic agents [3]. In addition, microarrays have been used to compare 

changes in gene expression profiles of cells resistant to a given chemotherapeutic agent 

and those that are sensitive in order to elucidate biological pathways implicated in 

resistance development [3].  Numerous studies were performed on a panel of 60 cell 

lines, known as NCI60, representing tumors from various organ tissues [25-29]. The 

response of each individual cell line to thousands of chemotherapeutic agents was 

determined. Microarray technology was used to compare gene expression profiles of cell 

lines resistant to a given chemotherapeutic agent and their sensitive counterparts.  The 

same methodology was applied to tumor xenografts, which represent a more clinically 

relevant model compared to in vitro testing of cell lines [30].  

 Similarly, it was found that the expression patterns of certain groups of genes 

dictate the response of tumor xenografts to chemotherapeutic agents.  The goal of these 

studies is to select a group of genes that serve as predictors of response to a given 

therapeutic agent, which is an important step toward personalizing cancer treatment.   

 Gene expression data from the panel of the 60 cell lines and sensitivity to 

chemotherapeutic agents were used to construct functional relationships between genes 
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and chemotherapeutic agents [31, 32]. Statistical analysis techniques were applied to 

these datasets, gene expression and drug sensitivities, to constructs networks that relate 

the expression pattern of certain genes to the effect of chemotherapeutic agents. 

Relevance networks, based on statistically significant correlations between pairs of genes 

and sensitivity measures, identify relationships between genes and chemotherapeutic 

agents. Other techniques were developed to achieve the same goal; however, the 

relationship between genes and chemotherapeutic agents are statistical, not based on 

biological mechanisms, subject to change based on the stringency of statistical threshold 

applied. 

Resistance: An Acquired Phenotype 

 To understand the molecular mechanisms implicated in acquiring resistance to 

chemotherapeutic agents, gene expression profiles of parental cell lines and “modified” 

subclones that are resistant to a specific group of chemotherapeutic agents were 

compared. The resistant subclones were developed by prolonged exposure of sensitive 

cell lines to sublethal doses of chemotherapeutic agents [33, 34] or by transfecting cells 

with a given gene or an expression sequence tag that has been shown to confer resistance 

[35, 36].  

 The goal is to elucidate the changes in gene expression that confer cell lines with 

resistance to specific classes of chemotherapeutic agents, such as DNA damaging agents 

and topo I inhibitors. These studies were performed to confirm the role of specific 

resistance mechanisms to chemotherapeutic agents, such as the role of MGMT in 

resistance to BCNU and ATP-binding transporters to topoisomerase I inhibitors.  These 

studies have shown that aberrant expression is usually associated with genes involved in 
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critical processes such as DNA mismatch repair, DNA excision repair, cell cycle 

progression, apoptosis and stress response pathways.   

Genome-Wide Characterization of Resistance in Gliomas 

  Similar studies have been carried out on various glioma models. Gene expression 

profiles of glioma biopsies, and cell lines, have been used to identify genes correlated 

with poor prognosis and, consequently, to determine potential therapeutic targets [37, 

38]. Another group of studies were aimed at identifying the role of certain genes in 

determining the response to a given class of chemotherapeutic agent [39-42].  In addition, 

induction of resistance in vitro by prolonged exposure to sublethal doses of cytotoxic 

agents—and comparison with the parent cell line at the gene expression level—was used 

to identify mechanisms of resistance [33, 34, 43].   

 The main drawback with these studies is that basal gene expression profiling is 

performed rather than monitoring changes in gene expression upon exposure to drug. It 

could be more beneficial, from a therapeutic perspective, to characterize the response of 

resistant cells upon exposure to chemotherapy in comparison to the more sensitive 

counterparts. Thus, instead of having a list of genes that are found to be differentially 

expressed between resistant and parent cell lines, there is a need to characterize the 

cellular events that differentiate the response of resistant cell lines in comparison to that 

of sensitive ones.  
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CHAPTER 2 

MATHEMATICAL MODELING TO DISTINGUISH CELL ARREST AND CELL 

KILLING IN CHEMOTHERAPEUTIC DOSE RESPONSE CURVES 

ABSTRACT 

 Dose response curves are utilized widely to characterize the response of tumor cell 

lines to chemotherapeutic drugs, but the assay methods are non-standardized and their 

analysis is based on phenomenological equations. To provide a framework for better 

interpretation of these curves, we have developed a mathematical model in which 

progression through the tumor cell cycle is inhibited by drug treatment via either cell 

cycle arrest or entrance into cell death pathways.  By fitting dose response data, 

preferably over a dynamic range, the contribution of these mechanisms can be delineated. 

The model was shown to fit well experimental data for three glioma cell lines treated 

with either carmustine or etoposide. In each cell line, the major mechanism of tumor cell 

inhibition was cell death for carmustine in contrast to cell cycle arrest for etoposide. U87 

cells with acquired in vitro resistance to carmustine were shown to have attained a greater 

ability to enter cell cycle arrest and thus to avoid cell death. This approach will aid in 

understanding better the action of chemotherapeutic agents on tumor cells and can be 

incorporated into tumor growth models for the selection of dose/timing regimens in vivo.  
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2.1 INTRODUCTION 

 Pharmacological dose response curves are used to derive basic information 

regarding the amount of a drug needed to achieve a particular biological response. Often 

the entire dose response is distilled into a single EC50 value, without consideration to the 

shape of the curve, whether all the values of a response are attainable, or the dynamics of 

the process. Considerable information regarding the therapeutic mechanism remains 

hidden in such an analysis of the dose response, information that could be brought to light 

upon careful experimental design and data analysis and through the consideration of a 

mechanistic model.  

A specific area where improved understanding of molecular pharmacology is 

critical is in cancer therapeutics, especially tumors with high level intrinsic or acquired 

resistance as is the case with gliomas. DNA damaging agents exert their activity by a 

combination of growth arrest and cell killing, both apoptotic and necrotic. However, a 

detailed molecular characterization of these events is currently lacking even for clinically 

well-established agents, which further complicates the task of overcoming resistance. In 

spite of the incomplete characterization of these molecular events, it may be possible to 

improve the efficacy of DNA damaging agents—and overcome resistance—through 

understanding their contribution to cell cycle arrest and cell death. Improved efficacy of 

cell cycle specific drugs could be achieved through proper dose scheduling or by 

combination with the correct second drug. 

In order to provide a framework for improved understanding of the molecular 

pharmacology of DNA damaging agents on glioma cell lines, we have developed a 

mathematical model describing the contribution of cell cycle arrest and cell death on the 
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proliferation of these tumor cell lines.  The effect of model parameters on the 

pharmacological dose response is detailed. The model is validated by its correspondence 

to dose response curves for the DNA damaging agents BCNU, which the standard of care 

in glioma treatment, and etoposide (VP-16), which a cell cycle specific DNA 

topoisomerase II inhibitor. This approach allows us to ascribe mechanistic interpretations 

to the dose response curves for each of these drugs. 

In order to develop a preliminary understanding of events implicated in 

acquisition of resistance to BCNU, we have applied the modeling approach to glioma cell 

line U87 that have acquired resistance in vitro through prolonged sublethal exposure. In 

the future, the model may be useful in selecting dose schedules or drug combinations for 

improved efficacy. 

2.2 MATERIALS AND METHODS 

2.2.1 Chemotherapeutic Agents 

BCNU and Etoposide were purchased from Sigma-Aldrich (St. Louis, MO), and 

dissolved in DMSO (Sigma-Aldrich, St. Louis, MO) and stored at -20 oC at a stock 

concentration of 100 mg/ml.  

2.2.2 Cell Lines 

Human Glioblastoma cell lines A172 and U87 and astrocytoma cell line SW1088 

were purchased from American Type Culture Collection (Rockville, MD). A172 and 

SW1088 were cultured in DMEM (Invitrogen, Carlsbad, CA) supplemented with 10% 

FBS (GIBCO-BRL, Gaithersburg, MD), 4 mM L-glutamine (GIBCO, Gaithersburg), and 

100 U/mL Penicillin/Streptomycin. Human glioblastoma cell line U87 was cultured in 
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MEM (GIBCO-BRL) supplemented with 10% FBS, 4 mM L-glutamine, 100 U/mL 

penicillin/streptomycin. Cells were cultured at 37 oC and 5% CO2 atmosphere.  

2.2.3 Resistant Cells 

Resistant cell lines were developed by sublethal exposure to incremental doses of 

carmustine.  U87 cells were exposed to an initial concentration of 15 µg/mL for 48 hours. 

Subsequently, cells were incubated in drug free media. Increments of 5 µg/mL were used 

when cells show increased survival. U87 cells underwent 11 cycles of treatment over a 

period of 8 months. Maximum concentration to which cells were exposed was 40 µg/mL. 

After cells achieved a significant level of resistance, as evidenced by viability assay, cells 

were pulsed with 10 µg/mL of carmustine every 4 weeks to maintain resistant phenotype. 

2.2.4 Viability Assays 

Cells were resuspended in culture medium at a concentration of 105 cells/ml.  100 

µL of cell suspension (10000 cells) were seeded in wells of a 96-well plate. Cells were 

cultured for 18 hours to assure proper attachment. Dilutions of BCNU and etoposide, 

along with DMSO (Sigma-Aldrich, St. Louis, MO) as vehicle control, were prepared in 

culture media and added to cells for 72 hours or designated time-points. 20 µL of MTS 

solution (Promega, Madison, WI) was added to every well and left to incubate for two 

hours. Absorbance plate reader (Bio-Rad, Hercules, CA) was used to measure absorbance 

at 490 nm.  Average of six wells per single drug concentration was normalized to vehicle 

control (cells treated with DMSO).  Empirical fitting of dose response curves was 

performed using the following equation: 

  (1) 
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where f is the fractional viability (relative absorbance), [D] is the drug concentration, and 

the three fitting parameters fresist, IC50 and n are interpreted as a fraction of resistant cells, 

the standard pharmacological IC50 value, and a cooperativity (Hill) coefficient, 

respectively.  Empirical fits were performed using the software package KaleidaGraph v. 

4.03 (Synergy Software, Reading, PA). 

2.2.5 Propidium Iodide (PI) Exclusion 

To determine extent of cell death, cells were incubated with 100 µg/mL 

carmustine or etoposide and harvested at 12, 24, 48 and 72 hours. Floating dead cells 

were collected as well as viable cells and were washed with PBS. Cells were suspended 

in a 20 µg/mL solution of propidium iodide in PBS and immediately analyzed by flow 

cytometry, described below.  

2.2.6 Flow Cytometry 

 Propidium Iodide (PI) (Molecular Probes, Eugene, OR) staining was performed to 

determine cell cycle phase distribution based on DNA content. Cells were seeded a 

density of 2x105 cells and were left for 16 hours. Subsequently, cells were exposed to 

5µg/mL of etoposide or 25µg/mL of carmustine and harvested at 0,8,12, 24, 48 and 72 

hours. At designated time-points, cells were washed with PBS (GIBCO-BRL) and fixed 

in 70% ice-cold ethanol. Cells were centrifuged at 300 rcf for 6 minutes at 4 oC. Cell 

pellet was washed twice with PBS then stained with 20 µg/mL PI (Molecular probes, 

Eugene, OR) in 0.1% (V/V) Triton X-100 (Bio-Rad Laboratories) PBS solution with 0.2 

mg/mL RNaseA  (Qiagen, Valencia, CA) in PBS for 15 minutes at room temperature in 

the dark. Analysis was performed with FACScan flow cytometer (Becton-Dickinson, 

Mansfield, MA). Cell cycle distributions, generated by CellQuest (Becton-Dickinson), 



 

 

18 

were imported into ModFit software (Verity Software House, Topsham, ME) to quantify 

the fraction of cells in each phase of cell cycle. Triplicate samples were used for every 

time-point.  

2.2.7 Mathematical Model 

 A population balance model was used to follow the distribution of cells through 

the various phases of the cell cycle.  Each phase of the cell cycle is treated as a 

compartment, except that the G2 and M phases are lumped together as they are 

indistinguishable by DNA content in flow cytometric analysis.  First-order rate constants 

(k1, k2, k3) parameterize the rates of transition among successive phases.  In addition, cells 

in the G1 and G2/M phases may be directed to the death compartment (D) as a result of 

chemotherapy treatment; this is also treated as a first-order process, with rate constant γ.  

Cell cycle arrest is modeled by introduction of a parameter, fa, which is the fractional 

probability that a cell will pause rather than proceed with mitosis.  The model is shown 

schematically in Figure 2.1.  The balance on cells in each compartment is as follows. 

  (2) 

  (3) 

  (4) 

  (5) 

 
In these equations, G1, S and G2 are the numbers of cells in the G1, S and G2/M 

phases of cell cycle, respectively; D is the number of cells that have died.  The 
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experimental quantity of interest is the total number of live, viable cells, which is 

obtained in the model by summing over the number of cells in each phase of cell cycle: 

  (6) 

 Assuming that cells untreated with drug are in a steady-state growth condition, the rate 

parameters (k1, k2, k3) can be determined from the initial fraction of cells in each phase 

( , , ) and the growth rate, µ, each of which was measured experimentally, 

according to the following relations: 

  (7) 

  (8) 

  (9) 

 

These steady-state values form a set of initial conditions for the system before 

perturbation by drug treatment.  Given a set of parameters and initial conditions, the 

model (equations 2-5) was integrated using the ode15s solver in MATLAB (Mathworks, 

Natick, MA).   

 The effect of drug on cell cycle arrest was modeled with a saturation equation 

without any cooperativity parameter.  Since the maximum fraction of cells in arrest is 

one, fa maps onto a single parameter characterizing the dose effect, Ka.  The cell death 

rate, γ, is assumed to be proportional to drug concentration, with an effect that decays 

exponentially with time, with time constant τ, due to spontaneous deactivation of the 

drug.  That is, 
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                                                                                                            (10) 

  (11) 

 To determine the best fit of the model parameters (Ka, kg, τ) to experimental data, 

a simulated annealing algorithm was used [44] as implemented in the MATLAB function 

simann.m (http://isbweb.org/~tgcs/software/simann.m).  The parameters were bounded 

such that 0.0 ≤ log(Ka) ≤ 3.0,  -6.0 ≤ log(kg) ≤ -3.0 and 0 ≤ log(τ) ≤ 2 h-1, where Ka is in 

units of µg/mL, kg is in units of µg/mL/h, and τ is in units of hours.  

2.2.8 Statistics 

Experiments were performed that there are at least three replicate populations of 

cells for each measurement. Each data point is reported as mean of populations and error 

bars represent standard deviations. When possible, statistical significance was determined 

using single-tailed Student’s t-test. Results were deemed statistically significant for 

confidence levels of 95% (p < 0.05) 

2.3 RESULTS 

2.3.1 Dose Response Signatures 

To characterize the pharmacological dose response, several glioma cell lines 

(A172, U87, and SW1088) were each exposed to varying concentrations of carmustine 

and etoposide for 48 hours, and their viability (metabolic activity) was determined using 

the MTS assay (Figure 2.2).  The three different cell lines showed qualitatively similar 

responses to carmustine and etoposide.  For each cell line, low concentrations of 

carmustine do not inhibit cell viability; however, as the concentration of carmustine 

increases, viability drastically decreases and cells are completely destroyed at high doses 
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(~ 250 µg/mL).  The response to etoposide is fundamentally different from that of 

carmustine, as cells show a gradual decrease in viability with increasing concentration of 

etoposide. Using the conventional paramcological dose response fits to the data (Equation 

1), all of the cell lines exhibited a lower EC50 value and higher Hill (cooperativity) 

coefficient for carmustine treatment as compared to etoposide (Table 2.1).  

To characterize dynamics of dose response, the metabolic activity of U87 cells 

exposed to etoposide and carmustine for varying duration (18, 24, 48 and 72 hours) was 

quantified  (Figure 2.3). Carmustine was found to exert significant effects on cell 

viability by 18 hours, and its effects were only increased slightly at later time points. 

Etoposide, on the other had, exerted an effect on U87 metabolic activity that was quite 

weak at early times (18 and 24 hours) and pronounced only by 72 hours. Similar 

dynamics in the response to both drugs were observed in other cell lines (data not 

shown).  

2.3.2 Cell Cycle Model 

 Mathematical models structured on cell cycle have been used to describe 

chemotherapeutics previously, particularly to predict dose timing regimens that might 

take advantage of the cell cycle phase specificities of many drugs [23, 45, 46].  We 

hypothesized that a cell cycle structured model could highlight the distinct dynamics and 

dose response to etoposide and carmustine exhibited by multiple cell lines (Figure 2.2).  

The model is described in detail in the previous section and summarized schematically in 

Figure 2.1. 

 The two parameters acting to alter the proliferation of tumor cells are cell cycle 

arrest (fa) and cell death rate (γ).  In order to see how each parameter affects cell growth 
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in the model, we varied the magnitude of each of these parameters individually with the 

other set to zero.  When cells are arrested with increasing frequency as they pass through 

the G2 phase, the fraction of cells in each phase redistributes with an increasing fraction 

stagnated in G2/M phase (Figure 2.4).  While this effect on cell cycle appears quite 

moderate at an arrest fraction of 0.5, this fraction is sufficient to induce a marked 

decrease in cell number after 48 hours (Figure 2.4c).  In the extreme case where all cells 

are blocked from mitosis (fa = 1.0), then the final cell number is equal to the initial cell 

number. 

 Cell death after DNA-damaging chemotherapeutics including carmustine and 

etoposide can occur from both apoptotic and non-apoptotic pathways [47].  In the 

framework of the model, the transition from G1 or G2/M phases to a death program 

redistributes the population of cell cycle phases, giving rise to a transient enrichment of S 

phase cells (Figure 2.5).  The redistribution is more rapid than for cells undergoing cell 

cycle arrest.  A strong effect of death rate on cell number is observed (Figure 2.5c), with 

high rates allowing for complete cell elimination, in contrast to the cell cycle case where 

the cells were merely inhibited from growing. 

 The effect of drug on cell cycle arrest and apoptosis was modeled as simply as 

possible, with a one-parameter equation for arrest where the parameter, Ka, is an 

indication of the dose at which arrest is significant, and a two-parameter (kg, τ) equation 

indicating the rate of entry into cell death pathway and the time scale of 

chemotherapeutic killing action (Equations 7-8).  In this way, the effect of a drug acting 

only via growth arrest vs. one acting only via cell killing could be determined.  Growth 

arrest leads to a gradual slowing down of growth as drug concentration increases, 
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resulting in a “soft” dose response curve (Figure 2.6a).  In contrast, when cells are killed 

rather than arrested, the dose response curve is sharper in shape and more evident at early 

times (Figure 2.6b).  The intracellular half-life of drug, τ, does not alter the basic 

appearance of cell killing dose response but tunes its sharpness and dose range (Figure 

2.6c). 

2.3.3 Comparison with Experiment 

 The shapes of the simulated dose curves for growth arrest or cell death appear 

similar to the experimental curves for cells treated with etoposide or carmustine, 

respectively.  In order to provide a more quantitative link between mechanism and dose 

response curves, we fit the dose response data for each cell type to the model, where both 

growth arrest and apoptosis were allowed to contribute.  A comparison between 

experimental data and model predictions is shown in Figure 2.7 for U87.  A single set of 

parameters (Ka, kg, and τ) is fit to the ensemble of data for each drug.  While there are 

some features of the data, most notably hormesis (stimulation of cellular metabolic 

activity at low concentrations of drug), that are not described by the model, overall the 

combined dose and time dependencies are fit well. 

 The model was fit to time course, dose response data for A172, SW1088 and U87 

cells (Figure 2.8).  The model parameters show a distinct difference between the two 

drugs and a marked similarity among the cell type for a given drug.  For all three cell 

lines, the fit value of Ka is lower for etoposide treated cells as compared with carmustine 

treated cells, indicating a greater propensity for cell cycle arrest following etoposide 

treatment (Figure 2.8a).  The increased kg values in each cell line indicate a much greater 

entry into cell death programs following carmustine treatment (Figure 2.8b).  The fit 
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values of τ indicate an intracellular half-life on the order of a day for carmustine, whereas 

the values for etoposide are less meaningful due to the very low rate of entry into cell 

death (Figure 2.8c). 

 The model was also used to characterize changes in glioma cell responses in cells 

that acquired resistance to chemotherapeutics.  Resistance was induced in U87 cells by 

treatment with an escalating but sublethal dose schedule of carmustine for 11 cycles.  

These cells, denoted as U87C, are less sensitive to carmustine exposure with an increase 

in EC50 from 48 µg/mL to 135 µg/mL.  The U87C cells do not differ from U87 cells in 

their entry into cell death but increase their overall survival by entering into cell cycle 

arrest to a greater extent and thus avoiding further damage leading to death (Figure 2.8) 

 The distinction between cell cycle arrest and cell death was measured 

experimentally.  For cell cycle analysis, U87 cells treated with drugs were harvested at 

varying times, fixed, stained with propidium iodide (PI), and subjected to flow cytometry 

followed by software quantification of cell cycle distribution.  Treatment with either drug 

results in transient S phase accumulation followed by a redistribution with a majority of 

cells ending up in G2/M phase by 72 hours (Figure 2.9).  However, treatment with 

etoposide produced a greater final distribution in G2/M phase with essentially no cells 

completing mitosis and reaching G1 phase, whereas cells treated with carmustine retained 

a percentage (~20%) of cells in G1 phase as would be expected for cells completing the 

cell cycle and dividing. To determine the number of dead cells, drug treated cells were 

stained with PI without prior fixation, identifying only those cells whose membrane 

barrier have been compromised.  A much higher percentage of cells were killed by 
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carmustine treatment as compared with etoposide (Figure 2.10).  Results for A172 and 

SW1088 cells are similar (data not shown). 

2.4 DISCUSSION 

Mathematical models structured on cell cycle have been used previously to 

describe the growth dynamics of tumor cells.  The effect of a chemotherapeutic drug has 

typically been incorporated as a fitted change in the rate parameters governing transitions 

among the states (cell cycle phases) of the model [24, 46, 48].  Cellular level models of 

drug response can be incorporated modularly into tissue models of tumors that account 

for three-dimensional restrictions on growth and drug penetration [49, 50].  Given a set of 

fitted parameters and assuming the system will perform the same under repeated 

administration, predictive strategies for improved scheduling of chemotherapeutic 

regimens can be identified [23]. 

 Previous models have not incorporated multiple modes of drug action or allowed 

distinction among mechanisms of action.  By assuming knowledge of the cell cycle phase 

dependencies of growth arrest and death rate, we were able to use the model in simulation 

mode to explore the differences in dose response and dynamics for these two primary 

mechanisms of chemotherapeutic action.  The model elaborates quantitatively how death 

leads to a rapid reduction in cell number, whereas growth arrest causes a more gradual 

lag of the cell population compared to non-arrested ones.  Furthermore, the shape of the 

dose response curve depends critically on the mechanism, with a steeper response in the 

case of cell killing compared to cell cycle arrest.  The shape of the dose response curve is 

a manifestation more of the dynamics of the cell cycle processes occurring rather than the 
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pharmacological equations (eqn. 7 and 8) employed, as these do not employ Hill 

coefficients, which is the usual method of describing sharp dose response. 

We had observed in the response of glioma cell lines to etoposide and carmustine 

that the former more closely resembled the simulations of cell cycle arrest and the latter 

resembled more closely the simulations of cell killing.  We sought to incorporate both 

mechanisms simultaneously into the model and to use parameter fitting to determine the 

relative contribution of each to the observed pharmacological data.  We included the 

effect of drug concentration on cell cycle arrest using a saturation-response curve without 

a Hill coefficient (Equation 7) and for cell killing using a simple linear expression.  In the 

latter case, a saturation expression was also investigated, but the additional parameter 

relative to a linear model did not improve the fit significantly.  On the other hand, 

incorporation of an intracellular half-life, τ, did improve the fit significantly (p value < 

0.01, as determined by an F-test).  An exponentially decaying kill rate has been applied 

previously to model cancer drug pharmacodynamics [22, 23]. 

Each of the mechanisms incorporated into the model – cell cycle arrest and cell 

killing through apoptotic and necrotic pathways – has been ascribed to each of these 

drugs[51-54].  Carmustine, or 1,3-bis(2-chloroethyl)-1-nitrosurea (BCNU), is a 

monofunctional alkylating agent that creates alkylguanine adducts requiring DNA repair 

and can also produce interstrand cross-links [55].  These processes can lead to cell death 

via both apoptotic and necrotic mechanisms [47].  On the other hand, saturation of the 

DNA damage pathway can lead to signaling along the ATM and ATR signaling and cell 

cycle arrest.  Etoposide, or VP-16, is a topoisomerase-2 inhibitor that incurs DNA 

damage and can lead to cell cycle arrest or apoptosis depending on the status of tumor 
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suppressors such as p53 or PTEN or the presence of other pharmacological agents such as 

valproic acid [51, 56].  Thus, the mechanism and effectiveness of these drugs depends 

intricately on the molecular composition of the particular tumor.  In this light, it is 

somewhat surprising that the pharmacological profiles for each drug were similar across 

each of the cell lines tested, which have been shown to posses disparate molecular 

composition (see Appendix Tables A.7-A.9 for list of genetic and molecular changes of 

cell lines).  The similarities may reflect genetic similarities among the cell lines selected; 

for instance, all three have deletions in chromosome 19q [57]. 

 Treatment decisions for gliomas—as well as other malignant tumors—will 

increasingly be made with the aid of molecular (e.g., DNA microarray) or cellular (e.g., 

in vitro drug sensitivity testing) testing using tissue from an individual’s tumor [58].  In 

addition to the caveats associated with using cell culture as a surrogate for in vivo tumor 

growth conditions[59], the measurement and representation of pharmacological response 

are also issues.  Typically, drugs are evaluated using a cell culture assay similar to that 

employed here, but at a single time point, and the data are represented using a saturation 

response with cooperativity (Hill) coefficient (Eqn. 1).  Dynamics are not included in 

such a representation, and thus the pharmacological parameters will depend on the time at 

which the assay is completed.  Indeed, an assessment of the relative potency of 

carmustine and etoposide would be influenced by whether an early or late time point is 

chosen (Figure 2.3).  Use of the structured, dynamic model employed here allows the 

drug responses to be characterized by parameters that are mechanistic and reflect 

behavior over a prescribed period of drug treatment.  Furthermore, hypotheses regarding 

treatment dose/timing schedules or combinations can be simulated in silico and validated 
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experimentally.  This can be particularly useful when first-line chemotherapy fails and a 

second course of treatment can be selected.  The modeling approach employed here 

allows facile interpretation of the cellular changes occurring as cells become resistant, 

information that can be useful in selecting a complementary treatment. In light of this 

model, U87 cells acquire resistance to carmustine through enhanced arrest in G2/M. This 

could be valuable information from the therapeutic perspective. For example, the use of 

checkpoint abrogators, such as caffeine or pentoxyfilline (PTX), may sensitize cells to 

carmustine and overcome resistant phenotype. However, this hypothesis warrants further 

molecular characterization of resistant phenotype and response of cells upon exposure to 

chemotherapy. 

 In this work, tumor cells are treated as homogeneous and are described at the 

level of cell cycle.  While this level of details appears to describe in vitro 

pharmacological assays reasonably well, application to in vivo data will require 

incorporation of population heterogeneity, which could be of drug exposure or DNA 

repair response [60].  In addition, molecular level models have been developed to 

describe DNA damage responses and cell cycle arrest [61-64].  Integrating molecular 

details into cellular models and then to tissue models that account for tumor tissue 

morphology and transport will provide a much more comprehensive description of tumor 

response to chemotherapy in a fashion that can serve as a framework for understanding 

the responses of individual tumors.  While parameterizing integrated, multiscale models 

in a way that reflects human tumor physiology accurately will be a challenge, the reward 

will come in the ability to test various treatment regimens in silico and to predict which is 

best suited based on the genetic composition of the tumor being treated. 
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2.5 TABLES AND FIGURES 

Cell Line Drug fresist EC50 
* n 

A172 Carmstine -5±2 82±2 4.3±0.4 

A172 Etoposide 24±3 7±1 0.9±0.1 

SW1088 Carmustine -25±25 97±33 1.5±0.4 

SW1088 Etoposide 23±9 15±7 0.6±0.1 

U87 Carmustine -1±4 48±4 1.9±0.2 

U87 Etoposide -1±77 47±174 0.4±0.3 

Table 2.1: Pharmacological parameters of glioma cell lines 
*units of µg/mL 
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Figure 2.1: Compartmental Model of Cell Cycle. G1, S and G2/M represent phases of 
cell cycle that are distinguishable by flow cytometry. k1, k2 and k3 represent rates of 
transition between phases of the cell cycle, each of which is treated as a compartment.  fa 
represents that fraction of cells arrested in G2/M, while γ represents the rate of entry into 
cell death, denoted as D compartment.  
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(A) 

 

(B) 

 

(C) 

 

(D) 

 
 
Figure 2.2: Response of Different Cell Lines. (a) A172, (b) SW1088, and (c) U87 to 
carmustine and etoposide at 72 hours. Cell viability was determined by MTS assay, 
which measures metabolic activity of viable cells. (d) Response to A172 to etoposide and 
carmustine was also determined by calcein staining at 72 hours. 
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(A) 

 

(B) 

 

 
Figure 2.3: Response Dynamics of U87 to (A) carmustine and (B) etoposide at 18, 24, 
48 and 72 hours. Cell viability was determined by MTS assay.  
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Figure 2.4:  Effect of fraction of transitioning cells arrested (fa) on cell cycle 
dynamics: (A) fa = 0.5; (B) fa = 1.0.  (C) Decrease in cell number as a function of fa. 
There is a slow redistribution among phases of the cell cycle with increased values of 
fa, which corresponds with a marked decrease in cell growth at 48 hrs. When fa = 1, 
total number of cells at 48 hrs equals initial number of cells. Shape of dose response 
curve due to cell cycle arrest is “soft”. 
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Figure 2.5:  Effect of Cell Killing Rate (γ) on Cell Cycle Dynamics. (A) γ = 1.0 h-1; 
(B) γ = 2.0 h-1.  (C) Decrease in cell number as a function of γ. There is a rapid 
redistribution among the phases of the cell cycle with increasing value of γ. This increase 
in γ correlates with rapid decrease in total cell count at 48 hrs, with total elimination of 
cells, and a “sharp” dose response curve. 
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(A) 

 

(B) 

 
(C) 

 
 
Figure 2.6: Effect of Pharmacological Parameters on Cell Viability Curves. (A) 
Effect of cell cycle arrest across time from 12-72 h, (B) Effect of cell killing across time 
from 12-72 h (with tau fixed), (C) Effect of cell killing across various values of tau (with 
time fixed). 
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(A)  

 
(B) 

 
 
Figure 2.7: Model and Experiment Comparison. Response of U87 to (A) carmustine 
or (B) etoposide at 18, 24, 48 and 72 hours, along with corresponding model fits. 
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(B) 
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Figure 2.8: Parameters Fit to The Cell Cycle Structured Pharmacodynamic Model 
Described. (A) effective conc. for cell cycle arrest, Kma, units of µg/mL, (B) rate 
parameter for entry into cell death pathway, kg, units of (µg/mL)-1 h-1, (C) intracellular 
half-life, τ, units of h. 
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(A) 

 
(B) 

 
 

Figure 2.9: Cell cycle Changes of U87 Cells. Redistribution of cell among phases of cell 
cycle subsequent to exposure to (A) carmustine (25 µg/mL) or (B) etoposide (5 µg/mL).  
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(B) 

 
 
Figure 2.10: Propidium Iodide (PI) Staining of U87 Cells. (A) carmustine or (B) 
etoposide. * indicates p<0.05 and **indicates p<0.01 comparing drug treat and control at 
each time point. 

CHAPTER 3 



 

 

40 

UNDERSTANDING CHANGES ASSOCIATED WITH ACQUIRED 

RESISTANCE TO CARMUSTINE IN GLIOMA CELL LINES THROUGH GENE 

EXPRESSION PROFILING 

ABSTRACT 

Failure of treatment because of acquired resistance to alkylating agents is one of 

the hallmarks of gliomas. In the current study, we have developed resistance to 

carmustine in a panel of glioma cell lines through prolonged sublethal exposure. To 

develop a more mechanistic understanding of resistance, we conducted gene expression 

profiling of parent versus normal cells upon exposure to carmutine. We utilized gene 

ontology and systems biology data analysis techniques to unravel modules and biological 

processes involved in resistance to carmustine. In addition, we validated gene expression 

results by characterizing changes in cell death and growth arrest in resistant cells and 

their parent cell lines upon exposure to carmustine. We also investigated the role DNA 

damage repair in resistance to carmustine.  

We performed gene expression profiling along with gene ontology in resistant and parent 

cell lines upon exposure to chemotherapy. We found that the NFκB pathway plays an 

important role in promoting survival in resistant cells, through the induction of 

inflammatory response genes. In addition, we found that resistant cells induce genes 

promoting cell cycle arrest and repress genes implicated in cell cycle phase transitions 

and proliferation. DNA repair genes were not implicated in response to carmustine. In 

agreement with expression profiling results, resistant cells exhibit a higher level of 

survival upon exposure to carmustine, given by the fraction of apoptotic and necrotic 

cells, compared to parent cell lines. In addition, resistant cells exhibit more rapid arrest in 
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G2/M compared to parent cell line. We explored the status of DNA repair capacity, 

which is known to control both cell death and cell cycle arrest, upon exposure to 

carmustine. We found that resistant and parent cell line did not exhibit differential 

capacity to repair DNA. Our results provide insights into molecular pathways involved in 

resistance to carmustine in vitro. If they prove to hold for gliomas in human patients, 

these results can point the way towards improved therapeutic regimens that act upon 

NFκB mediated cell survival module in concert with cell cycle checkpoint abrogators. 
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3.1 INTRODUCTION 

Gliomas are the most lethal primary tumors in the central nervous system. They 

are highly infiltrative, which renders surgical resection and radiation practically 

ineffective. In addition, prognosis is very poor because of high recurrence rate and 

increased resistance to chemotherapy.  In order to develop more effective treatments and 

improve patient outcome, a better understanding the molecular basis of resistant 

phenotype is required.  

 The monofunctional alkylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), 

a DNA alkylating agent, has been used in the treatment of gliomas as an adjuvant to 

surgical resection and radiation [2]. Carmustine is currently used in Gliadel® wafers [65], 

which are implanted intracranially subsequent to tumor resection. Alkylating agents 

result in the formation of O6-alkylguanine, N7-alkylguanine, N3-alkyladenine, and N3-

alkylguanine. In addition, alkylation results in the formation of critical secondary DNA 

damages [4]. Carmustine has been shown to elicit its cytotoxic effects through growth 

arrest, apoptosis or combination thereof [6]. However, the effects of carmustine, and 

alkylating agents in general, have been shown to be reversed by the presence of active 

methyl guanine methyl transferase (MGMT), base excision repair (BER) and translesion 

DNA synthesis (TLS) systems [4]. In addition, alterations in cell cycle regulation and cell 

death pathways—which are regulated by DNA repair pathways—have been correlated 

with resistance [66].  A comprehensive model for resistance, involving the regulation of 

these three processes, is currently lacking.  

A multitude of molecular pathways have been implicated in resistance to 

chemotherapy in glioma models [3]. However, the presence or absence of any of these 
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markers does not necessarily indicate a certain level of response because of the 

complexity of the resistant phenotype. This is further complicated by the fact that tumor 

cells exhibit a high degree of redundancy in survival and proliferation pathways and 

genetic heterogeneity within tumors and from patient to patient [18]. In addition, a 

mechanistic understanding of resistance in light of these markers is currently lacking. 

Thus, it is important to characterize biological systems, and their interactions, that are 

implicated in resistance, which is a multifactorial and a coordinated process [67].  

A number of studies have utilized genome-wide gene expression profiling using 

microarrays to select a group of genes implicated in resistance or “resistance signature” 

to a given chemotherapeutic agent in different cancer models as well as gliomas [28-30, 

34, 68-73]. These studies tend to ignore a good portion of information that is embedded 

in the data because of low differential expression or averaging the expression over a 

population with heterogeneous genetic background [74]. Thus, it is important to analyze 

microarray data from complex phenotype studies, such as resistance, in the context of 

biological processes or gene modules rather than gene lists. Using this methodology, one 

can obtain more meaningful and useful results from the therapeutic perspective [43].  

In the current work, we have developed resistance to carmustine in a panel of 

glioma cell lines, with disparate molecular composition (see Appendix Tables A.7-A.9), 

through prolonged exposure to sublethal doses of carmustine. To develop a more 

mechanistic understanding for resistance, we conducted gene expression profiling of 

parent versus normal cells upon exposure to carmutine. We utilized gene ontology and 

large scale data analysis techniques to unravel modules and biological processes involved 

in resistance. In addition, we characterized changes in cell death and growth arrest 
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between resistant cells and their parent cell lines upon exposure to carmustine. In 

addition, we investigated the role of DNA damage repair in resistance to carmustine.  

3.2 MATERIALS AND METHODS 

3.2.1 Chemotherapeutic Agents 

BCNU and Etoposide were purchased from Sigma-Aldrich (St. Louis, MO), and 

dissolved in DMSO (Sigma-Aldrich, St. Louis, MO) and stored at -20 oC at a stock 

concentration of 50 mg/mL.  

3.2.2 Cell Lines 

Human Glioblastoma cell lines A172 and U87 and astrocytoma cell line SW1088 

were purchased from American Type Culture Collection (Rockville, MD). A172 and 

SW1088 were cultured in DMEM (Invitrogen, Carlsbad, CA) supplemented with 10% 

FBS (GIBCO-BRL, Gaithersburg, MD), 4 mM L-glutamine (GIBCO, Gaithersburg, 

MD), and 100 U/mL Penicillin/Streptomycin. Human glioblastoma cell line U87 was 

cultured in MEM (GIBCO-BRL) supplemented with 10% FBS, 4 mM L-glutamine, 100 

U/mL penicillin/streptomycin. Cells were cultured at 37 oC and 5% CO2 atmosphere.  

3.2.3 Resistant Cell Lines 

Resistant cell lines were developed by sublethal exposure to incremental doses of 

carmustine.  Cells were exposed to an initial concentration of 15 µg/mL for 48 hours. 

Subsequently, cells were incubated in drug free media. Increments of 5 µg/mL were used 

when cells show increased survival. Cells underwent 11 cycles of treatment over a period 

of 8 months. Maximum concentration to which cells were exposed was 40 µg/mL. After 

cells achieved a significant level of resistance, as evidenced by viability assay, cells were 

pulsed with 10 µg/mL of carmustine every 4 weeks to maintain resistant phenotype. 
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3.2.4 Viability Assay 

Cells were resuspended in culture medium at a concentration of 105 cells/mL.  100 µL of 

cell suspension (10000 cells) were seeded in wells of a 96-well plate. Cells were cultured 

for 18 hours to assure proper attachment. Dilutions of BCNU and etoposide, along with 

DMSO (Sigma-Aldrich, St. Louis, MO) as vehicle control, were prepared in culture 

media and added to cells for 72 hours or designated time-points. 20 µL of MTS solution 

(Promega, Madison, WI) was added to every well and left to incubate for two hours. 

Absorbance plate reader (Bio-Rad, Hercules, CA) was used to measure absorbance at 490 

nm.  Average of six wells per single drug concentration was normalized to vehicle 

control (cells treated with DMSO).  Empirical fitting of dose response curves was 

performed using the following equation: 

  (10) 

where f is the fractional viability (relative absorbance), [D] is the drug concentration, and 

the three fitting parameters fresist, IC50 and n are interpreted as a fraction of resistant cells, 

the standard pharmacological IC50 value, and a cooperativity (Hill) coefficient, 

respectively.  Empirical fits were performed using the software package KaleidaGraph v. 

4.03 (Synergy Software, Reading, PA). 

3.2.5 Growth Inhibition Assay 

Cells were suspended in culture medium at a concentration of 2.5x103 cells/mL. 

500 µL of cell suspension were seeded in wells of a 24-well plate. Cells were cultured for 

24 hours to assure proper attachment. Dilutions of BCNU and etoposide, along with 

DMSO (Sigma-Aldrich, St. Louis, MO) as vehicle control, were prepared in culture 
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media and added to cells for 72 hours. Cells were washed twice with phosphate buffered 

saline (PBS) and were left to grow in drug free media for 10 days. Cells were washed 

twice with ice cold PBS. 250 µL of 20 mM calcein (Molecular Probes, Eugene, OR) in 

PBS was added to each well and cells were incubated for 45 minutes and 4 oC. 

Fluorescence plate reader (Beckman Coulter, Fullerton, CA) was used to measure 

fluorescence (485 nm excitation /535 nm emission), which results from oxidized calcein 

by live cells. Average of three wells per single drug concentration was normalized to 

vehicle control (cells treated with DMSO). 

3.2.6 RNA Extraction and Hybridization 

Total RNA was isolated from exponentially growing cells using RNeasy mini kit 

(Qiagen, Valencia, CA) according to manufacturer’s protocol. The quality of RNA was 

assessed via Agilent bioanalyzer 2100 using the RNA nano kit (Agilent Technologies, 

Palo Alto, CA). cDNA synthesized from 5 mg of RNA using SuperScript® VILO cDNA 

synthesis kit. RNA from control (DMSO) or carmustine treated cells was labeled 

indirectly using a dendrimer-based [75] Genisphere 3DNA Array 350 labeling kit 

(Genisphere, Hatfield, PA). Remaining washing steps were performed according to 

manufacturer’s protocols.  

3.2.7 Experimental Setup and Data Analysis 

Each of the six cell lines (A172, A172CR, SW1088, SW1088CR, U87 and 

U87CR) were treated with vehicle control (DMSO) or carmustine for one hour, 4 

biological replicates were used for each treatment. Two pairs of dye swap experiments 

were performed for each cell line. Microarrays were scanned on a GenePix 4000B 

scanner (Axon Instruments, Union City, CA). GPR files containing raw data were loaded 
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into MATLAB (Mathworks). For each cell line, features were removed from the entire 

dataset (4 replicates) if one array had a negative flag or negative value after background 

subtraction. In addition, featured were excluded if the average expression did not exceed 

2-fold change and were not found to be consistent in at least three of the four replicates. 

Filtered data were loaded in R statistical programming environment. Data were 

normalized using LOWESS algorithm. Differentially expressed genes were determined 

using MAANOVA (MicroArray ANalysis Of VAriance) package in R [76]. The fixed-

effect linear ANOVA model that accounts for dye, array and sample variation was used 

pick differentially expressed genes. We then tested a null hypothesis of no differential 

expression using F statistics computed on the James-Stein shrinkage estimates of the 

error variance [77]. To avoid any assumption on error distribution, the package offers the 

possibility of computing p-values for hypothesis tests via permutation methods (in our 

analyses 500 permutations with sample shuffling were carried out). Finally the false-

discovery rate controlling method [78] was used to correct significance estimate for 

multiple testing hypothesis. We selected, as differentially expressed, the features with p < 

0.05 for further analysis.  

3.2.8 Gene Ontology and Functional Network Analysis 

Ingenuity Pathway Analysis (Ingenuity Systems, Mountain View, CA) is a web 

delivered application that allows the discovery, visualization and exploration of 

molecular interaction networks in gene expression data. We used IPA to obtain gene 

ontology, canonical pathways and functional networks. Differentially expressed, 

statistically significant, genes along with GenBank (National Institutes of Health, 

Bethesda, MD) accession number and fold-change were uploaded to IPA. Each accession 
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number was mapped onto its corresponding gene product in the IPA knowledge base. 

These mapped focus genes were used as a starting point for generation biologic networks. 

A score was computed for each network according to the fit of the original set of 

significant genes. This score reflects the negative logarithm of the P-value that indicates 

the likelihood of the focus genes in a network being found together as a result of random 

changer. Using a 99% confidence level or [-log10 (P-value)] ≥ 2 were considered 

significant.  

3.2.9 Propidium Iodide Exclusion 

To determine extent of cell death, cells were incubated with 100 µg/mL 

carmustine for 24 hours. Floating dead cells were collected as well as viable cells and 

were washed with PBS. Cells were suspended in a 20 µg/mL solution of propidium 

iodide in PBS and immediately analyzed by flow cytometry, described below.  

3.2.10 Flow Cytometry 

Propidium Iodide (PI) (Molecular Probes, Eugene, OR) staining was performed to 

determine cell cycle phase distribution based on DNA content. Cells were seeded a 

density of 2x105 cells and were left for 16 hours. Subsequently, cells were exposed to 

25µg/mL of carmustine and harvested at 0,12, 24, 48 and 72 hours. At designated time-

points, cells were washed with PBS (GIBCO-BRL) and fixed in 70% ice cold ethanol. 

Cells were centrifuged at 300 rcf for 6 minutes at 4 oC. Cell pellet was washed twice with 

PBS then stained with 20 µg/mL PI (Molecular probes, Eugene, OR) in 0.1% (V/V) 

Triton X-100 (Bio-Rad Laboratories) PBS solution with 0.2 mg/mL RNaseA  (Qiagen, 

Valencia, CA) in PBS for 15 minutes at room temperature in the dark. Analysis was 

performed with FACScan flow cytometer (Becton-Dickinson, Mansfield, MA). Cell 
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cycle distributions, generated by CellQuest (Becton-Dickinson), were imported into 

ModFit software (Verity Software House, Topsham, ME) to quantify the fraction of cells 

in each phase of cell cycle. Triplicate samples were used for every time-point.  

3.2.11 Single Cell Alkaline Electrophoresis (Comet) Assay 

The amount of DNA damage subsequent to drug exposure was quantified using a 

single cell alkaline electrophoresis assay (Trevigen Inc., Gaithersburg, MD). Cells were 

exposed to 50 µg/mL of carmustine for 2 hours. Cells were then washed and harvested 

(time zero) or washed and incubated in drug-free media and harvested at designated time 

points. Cells were washed and trypsinized in the dark and suspended in ice-cold PBS at a 

concentration of 105 cells/mL. 30 µL of cell suspension were added to 300 µL of Low 

Melt Agarose (LMA) (Trevigen Inc.), which had been incubated at 37 oC for at least 30 

minutes. 50 µL of cell suspension in LMA were added to the sample slot of the 

CometSlide TM (Trevigen Inc.). CometSlides TM with samples were incubated at 4 oC in 

the dark for 30 minutes to allow LMA to solidify; subsequently, CometSlides TM were 

immersed in chilled mild lysis buffer (Trevigen Inc.) for at least two hours in the dark at 

4 oC to allow for cell lysis within LMA.  CometSlides TM were then incubated in an 

alkaline buffer of pH ~ 13 (Trevigen Inc.) at room temperature for 20 minutes in the dark. 

CometSlides TM were subsequently immersed in an alkaline electrophoresis buffer (200 

mM NaOH, 1mM EDTA) and run in an electric field of 300 mA for 20 minutes at 4 oC.  

CometSlides TM were washed two times in distilled water and once in 70% ethanol for 5 

minutes, subsequently slides were dried at 45 oC to bring cells into a single plane for 

microscopic analysis. CometSlides TM were stained with Sybr Green ® and images were 

captured with epifluorescence microscope. Images were analyzed in ImageJ software 
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[79] and amount of damaged DNA was quantified as the integrated intensity of the tail 

moment relative to the total intensity of DNA in the tail and nucleus, where at least 100 

comets for each time-point or condition were analyzed.  

3.2.12 Statistics 

Experiments were performed that there are at least three replicate populations of 

cells for each measurement. Each data point is reported as mean of populations and error 

bars represent standard deviations, unless stated otherwise. When possible, statistical 

significance was determined using single-tailed Student’s t-test. Results were deemed 

statistically significant for confidence levels of 95% (p < 0.05). For multiple 

comparisons, one-way ANOVA was performed and Tukey’s HSD test performed for 

pairwise comparisons. 

3.3 RESULTS 

3.3.1 Acquired Resistance to Carmustine 

 A172, SW1088 and U87 were exposed to 11 cycles of treatment with carmustine. 

Population of cells surviving after 11 cycles of treatment were deemed resistant and 

named A172CR, SW1088CR and U87CR.  To confirm the acquisition of resistant 

phenotype, parent cell lines (A172, SW1088, and U87) and their resistant counterparts 

(A172CR, SW1088CR, and U87CR) were exposed to varying concentrations of 

carmustine for 72 hours and their viability (metabolic activity) was determined via MTS 

assay (Figure 3.1 A-C). As expected, A172CR, SW1088CR and U87CR exhibit higher 

viability compared to their parent cell lines, at concentrations ranging from (20 to 100 

µg/mL). At lower concentrations, resistant and parent cell lines exhibit similar viability. 
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At high concentrations (<100 µg/mL), fraction of cells surviving is minimal in both 

groups of cell lines.  

Pharmacological dose response curves were fit to equation (9) and EC50 values 

were estimated (Table 3.1). Parent cell lines (A172, SW1088 and U87) exhibit the same 

level of intrinsic resistance to carmustine, given by the equal EC50 values. However, 

U87CR cells seem to possess the highest level of acquired resistance compared to 

SW1088CR and A172CR.  In both groups of cell lines, the fraction of cells surviving at 

the highest dose of carmustine is close to zero as shown from the fit value for fresist. 

Growth inhibition assay was performed to assess the effect of drug exposure on 

proliferation (Figure 3.2 A-C).  A172CR and SW1088CR cells exhibit higher 

proliferation rate subsequent to drug exposure compared to the parent cell lines. This is 

an indication that resistant cells have an increased capacity to overcome the effects of 

carmustine exposure and resume proliferation when compared to the parent cell lines. It 

is worth noting that A172 cell line maintains a high level of proliferative capacity 

compared to the other two parent cell lines, which could be interpreted as a higher level 

of intrinsic resistance. This is probably reflected in the decreased acquisition of resistance 

in A172CR cells. This is agreement with the study performed by Wolff et al., which 

investigated the response of a panel of glioma cell lines to a wide range of 

chemotherapeutic agents. It was found that A172 cells are the most resistant cell line to 

the range of chemotherapeutic agents tested [80].  

3.3.2 Gene Expression Profiling and Gene Ontology Analysis 

In order to understand the molecular basis behind acquisition of resistance to 

carmustine, we performed gene expression profiles using oligonucleotide arrays. To 
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characterize early response genes implicated in response to carmustine, we compared 

changes in gene expression profiles upon exposure (1 hr) to 70 µg/mL of carmustine 

compared to vehicle control (DMSO) in resistant and parent cell lines. The gene 

expression changes varied among cell lines: 182 (99 induced and 83 repressed) in A172 

cells, 231 (113 induced and 118 repressed) in A172CR cells, 271 (131 induced and 140 

repressed) in SW1088 cells, 320 (172 induced and 138 repressed) in SW1088CR cells, 

261 (161 induced and 100 repressed) in U87 cells, and 230 (114 induced and 116 

repressed) in U87CR cells.  

Inginuity Pathway Analysis (IPA) tools were used to establish interactions, based 

on data reported in literature, among differentially expressed genes in each of the cell 

lines; these interactions are divided into functional networks, each of which is associated 

with a specific cellular function, physiological state or a given disease (see Appendix, 

Tables A.1-6, for detailed listings of networks and functions for each cell line).  

 Top scoring functions varied among cell lines (Table 3.2). However, some 

functions--such as cell cycle, cell growth and proliferation, and cell death--were regulated 

in the majority of cell lines. It is worth noting that genes associated with these functions 

were not common among any of the cell lines. This is an indication that each cell line has 

a specific carmustine response signature.  

 Network analysis based on predetermined, manually curated, molecular interactions 

show that networks centered around NFκB signaling are among the top 4 scoring 

networks of each cell line (Table A.1 network 1, Table A.2 network 2, Table A.3 network 

3, Table A.4 network 1, Table A.5, network 1, Table A.6 network 4, and Figures 3.4-3.6). 

In addition, top-scoring functional networks that are implicated in cell death, cell cycle, 
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and DNA recombination and repair were connected to networks built around NFκB in all 

cell lines. This is in agreement with similar studies indicating the role of NFκB signaling 

in response to O6-alkylalting agents [43, 81].  

At the level of cell death and survival, top-scoring networks in A172 cells are 

build around cell survival and proliferation pathways such as NFκB, PI3K, MAPK and 

Jnk  (Table A.1, network 1). That is, genes with differential expression in the dataset 

have direct relationships with these pathways; however, the net effect of changes in gene 

expression are not conclusive as some alterations result in a proapoptotic (repression of 

NOL3 and induction of RARB) outcome, while others result in an antiapoptotic 

(repression of TRAIL and induction of MAP2K) outcome (Table 3.3). In A172CR, cell 

survival is correlated with increased expression of inflammatory response genes (Table 

A.2, network 1 and 2; Table 3.3; and Figure 3.4), which is consistently correlated with 

increased survival in glioma models [82].  

At the level of cell cycle changes, A172CR exhibit increased regulation compared 

to parent cell line. In A172CR, genes that are associated with transitioning between 

phases of cell cycle were repressed (CDC2, BIRC5, TOP2, RAD21, etc.). On the 

contrary, A172 cells exhibit significant induction of genes that promote re-entry into and 

progression of cell cycle, such as GAS6, MAP2K1, and MXD3 (Table 3.3). Both cell 

lines did not exhibit a high degree of regulation of DNA replication, recombination and 

repair; however, A172CR showed an induction of 3 genes implicated in repair of DNA 

strand breaks (FGF2, IL24, and SMAD3).  

SW1088 cells exhibit a higher degree of regulation of cell death compared to 

SW1088CR (58 differentially expressed genes versus 19, Table 3.3).  Nodes of the NFκB 
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network are repressed in the case of SW1088 (Table A.3, network 4, and Figure 3.5). 

This repression of NFκB is also concomitant with the presence of proapoptotic changes 

in gene expression, such as the induction of genes correlated with proapoptotic outcome 

(CDC20 and CRAPB) and repression of genes correlated with antiapoptotic outcome 

CYR61 and CXCL1. In the case of SW1088CR, changes in expression of genes 

implicated in cell death are inconclusive as some change were antiapoptotic while others 

were proapoptitc.  

At the level of cell cycle regulation, SW1088 cells exhibit a much higher level of 

regulation compared to SW1088CR cells. SW1088 cells exhibit more changes that favor 

progression through G1/S phases and mitosis—given by increased expression of ADM, 

CSF, and CDC20—compared to SW1088CR cell line. The expression profile changes of 

genes involved in DNA repair were not significant, with genes involved in resolving 

DNA double strand breaks were consistently repressed in SW1088, which is counter 

intuitive.  

At the level of cell death and survival, U87CR cells exhibit a higher level of 

significant changes; there is a consistent induction of gene associated with survival 

(CAT, CSF, IL1A, and TAF1B) and repression of genes associated with cell death 

(CD40, APH1B, FKBP38, WIPF1 and MET).  Many of these genes are involved in 

mounting inflammatory response as well, which could explain the enhanced survival of 

U87CR cells (Figure 3.6).   

U87 cells exhibit a high degree of cell cycle regulation upon exposure to 

carmustine. Cell cycle regulation is the top-scoring function (Table 3.3) and cell cycle 

regulation appears in 3 of the 5 top-scoring networks (Appendix, networks 1, 2 and 4). 
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Some of these changes favor arrest, such as induction of G1 arrest genes (p21 and KRAS) 

and repression of genes that transition into S phase (E2F3, MPG and NRG1). Other 

changes, however, favor progression through G1/S (induction of DTD1, ELVAL1, and 

HAS2). In addition, there is a consistent induction of genes that result in cell proliferation 

(GSK3B, KRAS, and HSPA2) that is concomitant with repression of genes that hamper 

proliferation (PURA, and STAT5). U87CR cells, on the other hand, exhibit sustained 

arrest in G1/S through repression of genes that results in G1/S transition (MET and 

PLAC1) or induction of genes that result in sustained G1/S arrest (IL1A and CSF2). In 

addition, other changes in gene expression result in sustained G2/M arrest (induction of 

IL1A, increases arrest in G2/M, and repression Cyclin A, which increases G2/M phase 

transition) and decreased proliferation (repression of EGR1 and CD40, which are 

involved in proliferation).  

U87 exhibited a high degree of control over the expression of genes involved in 

DNA damage response (REV1, APBB1, RPE, MCM6 and MPG), contrary to U87CR 

cells where there were no significant changes in the expression of genes involved in DNA 

damage response. 

These results indicate that resistant cells exhibit a higher capacity to induce an 

inflammatory response through NFκB activation compared to parent cells lines, which is 

indicated by the induction of interleukins in A172CR and U87CR cells. Repression of 

NFκB components is correlated with increased sensitivity in SW1088 cells compared to 

SW1088CR.  Thus, cell survival pathways seem to play a central role in resistance to 

carmustine. 
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At the level of cell cycle regulation, cell cycle arrest, at G1/S and mitosis, and 

suppressing progression through cell cycle and proliferation is correlated with resistance 

to carmustine. Carmustine resistant cell lines exhibit gene expression changes that favor 

arrest, while parent cells exhibit profiles that are less synchronized, where expression 

changes favoring cell cycle arrest and progression seem to take place simultaneously. 

Genes implicated in DNA damage repair processes, which are thought to play a 

central role in resistance carmustine, did not exhibit significant changes except in the case 

of U87 cells.   

These results indicate that A172CR cells acquired resistance to carmustine 

through mounting an inflammatory response and tighter control over cell cycle 

progression compared to parent cell line. In the case of SW1088 and SW1088CR cells, 

the primary factor in resistance to carmustine is induction of apoptosis. SW1088 exhibit 

strong proapoptotic profile and marked repression of NFκB complex; conversely, 

SW1088CR exhibit a strong antiapoptitc profile. At the cell cycle level, SW1088 

exhibited changes that favor progression through phases of cell cycle compared to 

SW1088CR. Similar to SW1088CR, U87CR exhibit a strong antiapoptotic signal, which 

is concomitant with induction of genes implicated in inflammatory response. In addition 

U87CR cells maintain a tight control over proliferation compared to U87.  

3.3.3 Effect of Drug Exposure on Cell Death and Cell Cycle dynamics 

 Carmustine, a chloroethylating agent, elicits its cytotoxic effect by inducing cell 

death, which includes both apoptosis and necrosis [47]; it also includes cell cycle arrest 

[6]. To validate gene expression results, we utilized PI exclusion assay, which is used for 

the detection of compromised cells, whether cell death happens through apoptosis or 
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necrosis [47, 83] (figure 3.3).  Cells were exposed to carmustine (100 µg/mL) or vehicle 

control for 24 hours. Resistant cells exhibit a smaller fraction of cell death compared to 

parent cells lines, given by percent of PI incorporation. It is worth noting that the A172 

cell line exhibits lower level of cell death compared to SW1088 and U87 cells, which is 

in agreement with previous results indicating a higher level of intrinsic resistance. These 

results are in agreement with expression profiling experiments, which suggest that 

carmustine resistant cells induce changes that favor cell survival and suppress apoptosis 

and cell death.  

We have shown previously that U87CR cells are more efficient in arresting in 

G2/M phase upon exposure to carmustine. These results were further supported by 

parameters obtained from model fits (see Chapter 2). As such, we aimed to characterize 

the dynamics of cell cycle distribution of cell lines (parent vs. resistant) upon exposure to 

carmustine (Figures 3.7-3.9). Cells were exposed to 25 µg/mL of carmustine or DMSO 

and harvested at designated times. In the case of A172 and U87, resistant cells exhibit an 

earlier arrest in G2/M phase, by 24 hours, compared to parent cell line, by 48 hours. In 

addition, U87CR cells have a higher fraction of cells (~70%) accumulated compared to 

parent cell line (~50%). On the other hand, SW1088 and SW1088CR exhibit a distinct 

behavior, where parent cell lines exhibit more rapid arrest in G2/M. However, the total 

change in accumulation in G2/M phase, which is fraction in G2/M at 72 h less fraction in 

G2/M at 0 h, in SW1088CR is higher than that of the parent cell line. These results are in 

agreement with the gene expression studies, which suggest that resistant cells exhibit a 

tighter control over progression through cell cycle, at least at earlier times. 
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Resistant cells, A172CR, SW1088CR and to a lesser extent U87CR, exhibit a 

higher capacity to reenter cell cycle at later times, given by the high fraction of cells in 

G1 and S phases.  This observation is in line with the growth inhibition results, which 

show that resistant cells are more capable of proliferation subsequent to drug exposure. 

Two possible hypotheses behind the increased capacity of resistant cells to continue 

progressing through cell cycle after exposure to chemotherapy are: (1) resistant cells are 

capable of repairing DNA damage induced by carmustine through enhanced DNA repair 

pathways or  (2) cells are capable of progressing through cell cycle, at later times, 

irrespective of the amount of DNA damage; that is, the amount of damage per se is not a 

determinant in cell response, rather it is the response that the cell mounts. 

3.3.4 DNA Damage Repair Capacity 

 To investigate whether increased efficiency of G2/M arrest in resistant cell lines 

relative to parent cell lines is mediated by enhanced DNA damage repair in resistant 

cells, we exposed resistant and parent cell lines to 50 µg/mL of carmustine for 2 hours, 

after which cells were incubated in drug-free media and harvested at designated times. 

Comet assay was performed to detect the level of DNA damage (Figure 3.10).  

A172 and SW1088 cells accumulated comparable levels of DNA damage 

subsequent to exposure to carmustine (Figure 3.11 A and C), which could be an 

indication that the level of DNA damage is not a factor in the increased level of intrinsic 

resistance of the A172 cells line. In addition, resistant cell lines, A172CR and 

SW1088CR exhibit increased initial DNA damage, at time zero; however the level of 

damage at 4 hours becomes similar to that of the parent cells lines (Figure 3.11 B and D). 

U87 cells have a distinct response to DNA damage in which the parent cell line 
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accumulates more damage (> 50%) upon carmustine exposure compared to resistant cell 

line (~25%); however, the damage is repaired in parent cell lines to a much lower level 

(<25%), while resistant cell line has a sustained level of damage (~30%) (Figure 3.11 E 

and F), these results are in agreement with the gene expression profiling results, where 

U87 cells exhibit changes in the gene involved in DNA damage response. These data, in 

agreement with gene expression profiles, indicate that the resistance phenotype to 

carmustine is not the result of enhanced DNA repair capacity. These cells are known not 

to express significant amounts of MGMT [84, 85]. Thus, resistance could not be the 

result of elevated levels of MGMT.  

The status of mismatch repair determines the response to alkylating agents, where 

alkylguanines are known to pair with a thymine residue instead of cytosine. The mispairs 

are detected via hMLH1, hMSH2 and hMSH6. We monitored the basal expression of 

these 3 genes and their profiles upon drug exposure. We found that there were no 

differences in their expression between parent cell line (U87) and resistant cell line 

(U87CR) with or without drug exposure (data not shown). This suggests that DNA repair 

processes do not mediate resistance to carmustine.   

3.4 DISCUSSION 

 In the context of chemoresistance, most in vitro studies on glioma cell lines have 

been carried out to characterize the role of a given molecule on the response to a given 

drug [3, 67]. These studies neglect the effect of heterogeneous genetic background among 

cell lines and how cells acquire resistance. A more relevant model that has been used, 

from the therapeutic perspective, is developing resistance in vitro through prolonged 

sublethal exposure to a given chemotherapeutic agent [33, 34, 43, 86, 87].  
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 In spite of being a hurdle in the treatment of gliomas, acquired resistance to 

carmustine has not been thoroughly investigated. In this study, we have developed 

resistance to carmustine, in vitro, in a panel of glioma cell lines through prolonged 

exposure to escalating doses. After 11 cycles of treatment, three malignant astrocytoma-

derived cell lines (SW1088, A172 and U87) exhibit increased viability subsequent to 

drug exposure (Figure 3.1). In addition, resistant cells exhibit increased capacity to 

overcome drug effects and resume proliferation subsequent to drug exposure when 

compared to parent cell lines, with the exception of U87 cells where the differences 

between parent cells and resistant cells are minimal (Figure 3.2).  

To understand the molecular basis involved in resistance to carmustine, we 

characterized gene expression profiles upon exposure in parent and resistant cell lines at 

early times (1 hr). We have chosen early events to in order to monitor changes in the 

entire population of cells, rather than later time points where only the surviving fraction 

of cells is examined. This experimental setup highlights the distinct response of parent 

and resistant cell lines to carmustine exposure, which could ultimately lead to increased 

efficacy. 

Gene expression profiling of parent and resistant cells upon exposure to 

chemotherapy indicates that NFκB plays a central role in determining the response of 

gliomas to carmustine. In addition, cell death (as well as survival, growth and 

proliferation) and cell cycle arrest represent the most statistically significant associations 

with response to carmustine in most of the cell lines (Table 3.2). It was found that genes 

associated with these processes were directly linked to networks centered around NFκB 

(Appendix, Tables A.1-6). This is in agreement with many reports implicating NFκΒ in 
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response to radiation [88], alkylating agents, and etoposide [81] in gliomas and other 

cancer models.  

Resistant cells, A172CR and U87CR, exhibited expression profiles that favor 

increased cell survival and an antiapoptotic outcome (Table 3.3). This expression 

signature was accompanied with an increased expression of inflammatory response 

genes—such as IL1A, IL1B, IL8, and LIF—which are induced by NFκΒ  activity (Figure 

3.4 and 3.6). Interestingly, Morandi et al. have shown that in vitro acquired resistance to 

camptothecin (CPT) is mediated by increased expression of IL1B and other inflammatory 

response proteins [34] in U87 cells. In another study, inflammatory response proteins 

were found to be upregulated at early times (2 hrs) in response to CPT exposure in U87 

cells [89].  In SW1088 cells, repression of NFκB activity upon exposure to carmustine 

was correlated with an increased proapoptotic signal (Table 3.3 and Figure 3.5). In 

SW1088CR cells, some changes favored cell death while others favored cell survival. 

Thus, the main difference between the responses of the two cell lines is the status of 

NFκB activity, where proapoptotic signal is magnified in the absence of NFκB activity as 

is the case in SW1088 cells. This conclusion is in line with finding that NFκB activity 

mediates resistance to carmustine and temozolomide in glioma models and correlates 

with poor prognosis [43].    

In agreement with gene expression profiling results, resistant cells exhibit 

significantly higher levels of survival upon exposure to carmustine as shown by PI 

exclusion assay (Figure 3.3). This indicates that resistant cells indeed exhibit a lower 

propensity for cell death, both apoptotic and necrotic, compared to parent cell lines. This 

result is in agreement with the study performed by Ma et al, where resistance to 
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alkylating agents has been correlated with decreased activity of proaptotic genes—Bad, 

Bax, and BCLXS—and upregulation of antiapoptotic genes—BCL2 and BCLXL [90].  

 As previously discussed, alkylating agents elicit their cytotoxicity through cell 

cycle arrest. However, there are conflicting reports about the changes in cell cycle arrest 

that are associated with a given response to carmustine, and alkylating agents in general.  

A number of studies have shown that resistance to carmustine in glioma models, U87 

cells specifically, is associated with increased accumulation of cells in G2/M, which 

results from inhibition of p53 activity and decrease in accumulation in S phase [15, 91]. 

In line with these results, Ruan et al show that resistance to carmustine in glioma cell 

lines is associated with increased cell cycle arrest, as a result of increased activity of p21 

[14]. In addition, it has been shown that abrogation of G2/M arrest with PARP inhibitors 

results in accumulation of cells in S phase and initiation of apoptosis [92]. In other 

studies, however, G2/M abrogators—caffeine and PTX—were shown to have no specific 

effect on the response of glioma cell lines to carmustine [16, 93]. These studies were 

further supported by other reports that show no correlation between cell cycle arrest and 

response to carmustine [94, 95].  In contradiction with the previous studies, increased 

accumulation of glioma cell lines in G2/M is associated with sensitivity as cells undergo 

apoptosis [96, 97]. These results are in line with the general notion that cell cycle arrest 

corresponds to decreased tumor growth and, thus, represents a therapeutic target in itself 

[98].  

 Gene expression profiling upon exposure to carmustine shows that resistant cell 

lines possess a higher capacity to execute cell cycle arrest, through induction of genes 

that promote arrest and repression of genes that promote transitions among phases (Table 
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3.3). Expression profiles of parent cell lines, on the other hand, suggest a balance 

between promoting progression (and proliferation) and mounting arrest. This 

heterogeneity in response could explain higher sensitivity to carmustine compared to 

resistant cell lines, which prioritize the expression of stress response genes and cell cycle 

arrest.  

 At the level of cell cycle dynamics (Figures 3.7-3.9), resistant cells (especially 

U87CR cells) exhibit an increased capacity to arrest in G2/M at earlier times when 

compared to parent cell lines. However, SW1088CR exhibit more delayed arrest in 

G2/M, which could be a result of very tight control in G1/S checkpoint, where cells 

exhibit very slow transition from G1 to S and ultimately slower accumulation in G2/M.  

 In the case of A172CR and SW1088CR cells, it is evident that cells are capable of 

resuming proliferation and progressing through cell cycle after exposure to 

chemotherapy, as evidenced by an increased fraction of cells in G1 and S phases. This 

conclusion is further supported by the growth inhibition assay (Figure 3.2), which shows 

increased proliferative capacity of A172CR and SW1088CR compared to their respective 

parent cell lines. In case of U87CR, cells are not capable of progressing through cell 

cycle as indicated by the low fraction of cells in G1 and S phases.  This is in agreement 

with results from a similar study where U87 cells are capable of undergoing senescence 

upon exposure to chemotherapy without loss of viability [89]. Our results indicate that 

the ability to undergo senescence is preserved in the parent cell line as well as the 

resistant cell line, given by the comparable proliferative capacity after exposure to 

carmustine. Taken together, these results indicate that resistant cells have a higher 

potential to activate cell cycle checkpoints at earlier times, as seen in the case resistant 
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cell lines, and G2/M arrest; however, they also have a higher capacity to resolve the 

checkpoint activation at later times, which is an important determinant of cell fate [10, 

99].  

 The fact that resistant cells have a higher capacity to resolve cell cycle checkpoint 

activation—and exhibit increased survival upon drug exposure—could be related to the 

DNA damage repair status. As discussed previously, DNA damage proteins, ATM and 

ATR, tightly control cell cycle arrest and cell death. The capacity to repair DNA damage 

has been a subject of debate as a predictor of response to carmustine, and other alkylating 

agents as well. Many studies argue that enhanced DNA repair correlates with resistance 

to carmustine in gliomas [13-15, 47, 100-103] as well as other tumor models [104-110]. 

However, the DNA repair status was found to have no direct effect on response to 

carmustine, and other alkylating agents in many reports [86, 87, 111, 112]. Moreover, it 

has been shown that evolution of resistance to carmustine is dependent upon a mutator 

phenotype, which results from decreased DNA damage repair, and drug mutagenicity 

[113-115]. This has been shown to be the case in cells acquiring resistance to the 

combination of carmustine and O6-benzylguanine (OBG), which is an inhibitor of 

MGMT. These cells developed mutations to an MGMT amino acid sequence resulting in 

decreased binding of MGMT to OBG.  

 Our results indicate that resistant cells do not exhibit increased DNA repair capacity 

upon exposure to carmustine in comparison to parent cell lines, as indicated by single cell 

electrophoresis (comet) assay results (Figure 3.11). On the contrary, U87 cell lines 

exhibit a slightly enhanced repair capacity compared to the resistant counterpart (Figure 

3.11 E and F). It is worth noting, that parent cell line accumulates more initial DNA 
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damage however, when compared to U87CR. Decreased initial damage in U87CR 

indicates less drug availability, which could the results of increased Pgp activity or 

increased drug detoxification, both of which are known to be absent in U87 cells [87].  

 Exposure to carmustine results in the formation of monoadducts (90% of damage) 

and interstrand crosslinks (3-5%) [116]. The repair of monoadducts is mediated by NER 

and BER [117, 118]. We have chosen the comet assay to detect the level of DNA damage 

because it assesses the capacity to repair DNA damage through BER and NER[104].  We, 

also, found the expression of mismatch repair (MMR) genes (hMLH1, hMSH2 and 

hMSH6) and MGMT not to be differentially expressed (data not shown) by qRT-PCR. 

This is in agreement with many reports indicating that MMR is not involved in resistance 

to carmustine [86, 119-121] or MGMT, which is not expressed in U87 and A172 due to 

promoter hypermethylation [87, 122].  

 Gene expression profiling of cell lines upon exposure to carmustine show that DNA 

repair processes are not significantly altered in any of the cell lines except in the case 

U87 where genes involved in DNA damage response were differentially expressed. These 

results are in agreement with the comet assay results, which show increased DNA 

damage repair capacity in U87 compared to other cell lines. However, these results 

indicate that DNA repair capacity does not promote acquired resistance to carmustine. 

These results are supported by similar findings, where genes involved in DNA repair 

process were downregulated in glioma cells upon exposure to CPT at early times [89]. 

This downregulation is accompanied with a decrease in proliferation and, hence, DNA 

replication. It is known that many of the genes involved in DNA replication are involved 

in repair as well. Thus, the apparent downregulation is probably due to the decrease in 
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proliferative capacity of cells and not necessarily decrease in DNA repair.  

 Taken together, later times (subsequent to exposure to camusitne) in the cell cycle 

dynamics of resistant cell lines and comet assay results indicate that A172CR and 

SW1088CR have an enhanced alkylation tolerance in comparison to parent cell lines as 

resistant cells resolve the checkpoint activation in G2/M and continue to proliferate. This 

hypothesis warrants further molecular characterization at later times subsequent to 

exposure (48 or 72 hours), as our gene expression characterization addressed early 

response events. It could be of great importance to understand the molecular events 

underlying alkylation tolerance and resolving checkpoint. 

 Our results suggest that the primary aspect of acquired resistance to carmustine in a 

panel of glioma cell lines is enhanced survival and decreased apoptosis and cell death, 

mediated by NFκB activity. In addition, increased cell cycle arrest and decreased 

proliferation seem to further confer cells with resistance, although it is not clear how 

resistant cells acquire tolerance to alkylation and resume proliferation at later times. In 

addition, DNA damage repair capacity does not seem to play a significant role in 

resistance to carmustine, at least at early times. These observations indicate that 

modulation of NFκB activation and cell cycle checkpoint abrogators could increase the 

efficacy of carmustine in patients afflicted with gliomas.                         .
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3.5 TABLES AND FIGURES 

Cell Line Fresist EC50 * N 
U87 -3.77 ± 5.37 74.36 ± 4.66 3.46 ± 0.73 

U87CR -15.11 ± 10.38 135.07 ± 10.4 3.65 ± 0.63 

SW1088 -2.50 ± 2.12 69.41 ± 1.85 3.06 ± 0.24 

SW1088CR 3.38 ± 6.77 115 ± 7.78 7.46 ± 2.48 

A172 -5.1 ± 8.51 63.63 ± 7.06 3.22 ± 1.12 

A172CR -17.77 ± 14.8 90.24 ± 13.92 2.45 ± 0.72 

Table 3.1: Pharmacological Parameters of Parent and Resistant Cell Lines 
*units of µg/mL 
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Table 3.2: Top 5 Functions of Each Cell Line. Top-Functions associated with response 
to carmustine exposure in each of the cell lines. Cell death, cell proliferation and survival, 
and cell cycle are significant in almost all cell lines. 
Cell Line Molecular and Cellular Functions P-Value #Molecules 
A172 Cell Morphology 5.9E-5 - 4.6E-2 14 
  Cellular Assembly and Organization 5.9E-5 - 4.9E-2 18 
  Lipid Metabolism 1.8E-4 - 4.6E-2 8 
  Molecular Transport 1.8E-4 - 4.6E-2 8 
  Small Molecule Biochemistry 1.8E-4 - 4.6E-2 15 
A172CR Cellular Movement 2.7E-7 - 8.7E-3 23 
  Cellular Growth and Proliferation 6.2E-7 - 8.7E-3 58 
  Cell Cycle 1.2E-5 - 9.5E-3 33 
  Lipid Metabolism 1.5E-5 - 9.5E-3 13 
  Molecular Transport 1.5E-5 - 8.2E-3 14 
SW1088 Cell Death 1.6E-7 - 3.7E-3 58 
  Cellular Growth and Proliferation 1.6E-6 - 3.7E-3 54 
  Cell Cycle 2.1E-6 - 3.7E-3 33 
  Cell Morphology 3.7E-6 - 3.7E-3 20 
  Cellular Development 4.1E-6 - 3.7E-3 49 
SW1088CR Cell Death 9.8E-4 - 4.4E-2 19 
  Gene Expression 9.8E-4 - 3.8E-2 13 
  Cell Cycle 1.6E-3 - 3.8E-2 6 
  Cell Signaling 1.6E-3 - 4.9E-2 15 
  DNA Replication, Recomb., and Repair 1.6E-3 - 4.4E-2 12 
U87 Cell Cycle 3.7E-5 - 2.2E-2 28 
  DNA Replication, Recomb., and Repair 1.2E-4 - 2.2E-2 11 
  Cellular Growth and Proliferation 2.7E-4 - 2.2E-2 24 
  Cellular Development 3.6E-4 - 2.2E-2 27 
  Gene Expression 5.4E-4 - 2.2E-2 34 
U87CR Cell-To-Cell Signaling and Interaction 1.1E-4 - 3.9E-2 17 
  Cellular Growth and Proliferation 1.1E-4 - 3.9E-2 15 
  Cellular Assembly and Organization 2.9E-4 - 3.9E-2 19 
  Antigen Presentation 3.2E-4 - 3.9E-2 4 
  Cell Death 4.9E-4 - 3.9E-2 15 
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Table 3.3: Gene Expression Changes Associated with Cell Death and Cell Cycle in 
Cell Lines. Boldfacing indicates genes that were induced, while underlined genes were 
repressed.  The outcome of expression changes is summarized herein after evaluating 
gene function based in IPA knowledge base. 
Cell Process Changes Outcome 

A
17

2 Cell 
Death 

ADM, BAG1, BOK, CDC42, EEF1A, 
G6PD, GAS6, KLF5, LAMA2, MAP2K1,  
MXD3, NOL3, P4HB, PIAS1, RARB,  
TNFSF10, TOP1 

Proaptotic and antiapoptotic 
changes  

A
17

2 Cell 
Cycle 

ADM, CDC42, CDC45L, GAS6, 
MAP2K1, MLF1, MXD3, PIAS1, RARB, 
TIPIN, TNFSF10, TOP1 

Changes favoring reentry into 
and progression through cell 
cycle 

A
17

2C
R

 

Cell 
Death 

ALDH1A3, ANGPTL4, B4GALT5, 
BIRC3, BIRC5, BNIP3L, CCNI, CDC2, 
CSF3, CUL1, CXCL3, CYR61, ESPL1, 
FAIM2, FGF2, GATA6,GNB1, IL8, IL24, 
IL1B, LAT, LIF, MAP4, MAPT, MCL1, 
NAPA, PEG10, PINK1, PMEPA1, 
PPP1R15B, PTGES, PTGS2, PTN, 
RAD21, S100A4, S100A8, SCG5, 
SLC1A2, SMAD3, SPHK1, ST3GAL1, 
TACC3, TOP2A, TOPBP1, UBE2C, 
USP18 

Antiapoptotic changes given 
by increased inflammatory 
response  

A
17

2C
R

 

Cell 
Cycle 

BIRC5, CCNI, CDC2, COPS2, CP110,  
CSF3, CTNND1, CUL1, CYR61, ESPL1, 
FGF2, GATA6, IL8, IL24, IL1B, KIF23,  
LIF, MAP4, PFTK1, PRC1, PTGS2, PTN, 
RAD21, S100A4, SMAD3, SPHK1, 
TACC3, TOB2, TOP2A, TOPBP1, 
TPX2, UBE2C, ZWINT (includes 
EG:11130) 

 Changes favoring arrest  

SW
10

88
 

Cell 
Death 

ADM, ATP6AP1, BDKRB1, BHLHE40,  
CCL2, CDC20, CDK6, CRABP2, CSF1,  
CSF2RB, CTGF, CTNNA1, CXCL1, 
CXCL2, CYR61, DDIT3, DDIT4, DUSP6, 
EGR1, ELAVL1, EPHX1, F3, FGF2, 
FIP1L1, GLIPR1, GNA13, HLA-G, ID1, 
ID2, IL6, IL8, ITGAV, JAK1, KLF5, 
KLF10, LIF, LRDD, MSX1, NAIF1, 
NFKB1, OPN1SW, PHLDA1, PMEPA1, 
PPAP2A, PRKDC, PSAP, RAD21, 
RCAN1, SALL1, SH3RF1, SMARCC1, 
SNAI1, SSPN, TACC1, TJP2, TP53, TSLP 

Proapototic changes 
accompanied with repression 
of NFκB components 
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SW
10

88
 

Cell 
Cycle 

ADM, ARNTL2, BHLHE40, CDC20, 
CDK6, CDK7, CSF1, CYR61, DDIT3, 
EGR1, ELAVL1, EPB41L1, ERRFI1, 
FGF2, GNA13, ID1, ID2, IL6, IL8, 
ITGAV, LIF, MX2, NFKB1, PPAP2A, 
PRKDC, PSAP, RAD21, SNAI1, TAF1D, 
TARDBP, TP53, TSLP, ZNF365 

Changes favor transition 
through G1/S and mitosis 

SW
10

88
C

R
 

Cell 
Death 

ATP2A2, BCL2L1, CD74, SOCS2, 
FCGR2A, FKBP8, GPR37, HIP1, 
IGFBP3, NCOA6, PIK3CA, PLAU, 
PLSCR3, POT1, PSEN2, PTGER4, 
SETMAR, SP1, TRPV1 

Proapoptotic and 
antiapoptotic changes 

SW
10

88
C

R
 

Cell 
Cycle 

BCL2L1, EPB41L1, PLAU, PSEN2, RMI1, 
WRN (includes EG:7486) 

 Changes favor arrest  

U
87

 

Cell 
Death 

ABCB7, APBB1, AMIGO2, ATP6AP1, 
BRE, CCDC88A, CDC73, CDK8, 
CDKN1A, CNNM4, CSNK1E, DDR1, 
DNASE2, E2F3, ELAVL1, GAB1, 
GSK3B, HAS2, HSPA2, ITGA2B 
(includes EG:3674), KHDRBS1,KRAS, 
MAML2, MFN1, MITF, MPG, MSN, 
MT1E, MTPN, MUC2, MXD3, NEK8, 
NRG1, PIGT, PPP1R8, PURA, RAD54L, 
SFRP2, SFRS2, SMPD1, SOAT1, 
SORBS2, SP3, STAT5B, TBX21, TNC, 
TRAF6, VEGFA 

Proapoptotic and 
antiapoptotic changes 

U
87

 

Cell 
Cycle 

APBB1, AURKB, BRE, CDKN1A, DTD1, 
E2F3, ELAVL1, GAB1, GSK3B, HAS2, 
HOXB3, HSPA2, KHDRBS1, KIF22, 
KRAS, MITF, MPG, MT1E, MXD3, 
NRG1, PURA, RAD54L, SFRS2, 
STAT5B, TFE3, TNC, TRIM25, VEGFA 

Some changes favor arrest 
while other favor progression 
through G1/S and Mitosis.  

U
87

C
R

 

Cell 
Death 

APH1B, CABIN1, CAT, CCNA2,CD40,  
CSF2, EGR1, MAP4K1, FKBP8, IL1A,  
MET, PSEN2, SMARCA5, TAF1B, WIPF1 

Strong antiapoptotic signal 
accompanied with 
inflammatory response 

U
87

C
R

  

Cell 
Cycle 

CCNA2, CD40, CENPC1, CENPE, 
CENPH, CSF2, EGR1, IL1A, MET, 
PLAC1, PLCG1, PMF1, PSEN2, SSSCA1 

Changes favor arrest and limit 
proliferation. 
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(A) 

 
 

(B) 

 
 

(C) 

 
Figure 3.1: Response of Cell Lines to Carmustine Exposure at 72 Hours. Cell 
viability was determined by MTS assay, which measures metabolic activity of viable 
cells.  
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(A) 

 
 

(B) 

 
 

(C) 

 
Figure 3.2: Effect of Carmusitne on Cell Growth. Cells were exposed to carmustine 
for 72 hrs and grown in media for 10 days. Viability was measure by calcein staining.  
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Figure 3.3: Cell Death, Apoptotic and Necrotic, in Response to Carmustine 
Exposure. Cells were exposed to 100 µg/mL of carmustine for 24 hours. Cell death was 
measured by PI exclusion assay. PI Positive cells represent fraction of cells with 
compromised membrane integrity, * indicates p<0.01. One-way ANOVA was performed 
on 6 cell lines treated with carmustine and pairwise comparisons were done using 
Tukey’s HSD. Three resistant cell lines were significantly different from three parent cell 
lines; however, there were no significant differences among each other. A172 cell line 
was significantly different form all 5 cell lines. 
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Figure 3.4: A172CR NFκB network implicated in response to carmustine.  
Inflammatory response gens upregulated, shown in red, in response to drug exposure. 
This NFκB network is directly connected to other networks involved in cell survival and 
cell cycle progression. See appendix (Figure A.2) for detailed network legend.  
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Figure 3.5: SW1088 NFκB network implicated in response to carmustine. 
Inflammatory response gens downregulated, shown in green, in response to drug 
exposure. This NFκB network is directly connected to other networks involved in cell 
survival and cell cycle progression. See appendix (Figure A.2) for detailed network 
legend.  
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Figure 3.6: U87CR NFκB network implicated in response to carmustine. 
Inflammatory response gens upregulated, shown in red, in response to drug exposure. 
This NFκB network is directly connected to other networks involved in cell survival and 
cell cycle progression. See appendix (Figure A.2) for detailed network legend.  
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(A) 

 

(B) 

 

Figure 3.7: Cell Cycle Distribution of  (A) A172 and (B) A172CR upon exposure to 25 
µg/mL of carmustine.  
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(A) 

 
(B) 

 

Figure 3.8: Cell Cycle Distribution of (A) SW1088 and (B) SW1088CR upon exposure 
to 25 µg/mL of carmustine. Examples of cell cycle distribution of untreated cells is 
provided in Figure A.1 
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(A) 

 

(B) 

 

Figure 3.9: Cell Cycle Distribution of (A) U87 and (B) U87CR upon exposure to 25 
µg/mL of carmustine. 
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(A) 
 

 
 

(B) 
 

 

Figure 3.10: Single Cell Alkaline Electrophoresis (comet) Assay. (A)SW1088CR cells 
treated with DMSO, cells harvested after 2 hours of exposure (t=0) and (B) SW1088CR 
cells exposed to 50 µg/mL carmustine, cells were harvested after 2 hours of exposure 
(t=0). Tail moment is an indication of the amount of DNA damage.  
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(A) 

 

(B) 

 
(C) 

 

(D) 

 

(E) 

 

(F) 

 
Figure 3.11: DNA Damage Repair in Response to Carmustine exposure. Cells were 
exposed to 50 mg/mL of carmustine for 2 hours, washed and incubated in drug-free 
media, and harvested at designated times. Amount of DNA damage was quantified by 
single cell alkaline electrophoresis (comet) assay. n=100, mean ± S.E. * indicates p<0.01. 
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CHAPTER 4 

RESEARCH SUMMARY AND FUTURE DIRECTION 

Research Summary and Impact 

The main aim of the current work is to understand the mechanisms implicated in 

acquisition of resistance to chemotherapy in glioma models. First, we characterized the 

response of a panel of glioma cell lines to two drugs from two distinct classes of 

chemotherapeutic agents: DNA alkylating agents (carmustine) and topoisomerase II 

inhibitors (etoposide). We found that the shape and dynamics of the dose response curve 

of each agent is distinct and dependent on the chemotherapeutic agent rather than the cell 

line, in spite of the diverse genetic background (see Appendix Tables A.7-A.9).  We 

utilized a cell cycle-structured model as a computational framework to, first, understand 

the effect of cell cycle arrest and cell death on the shape and dynamics of dose response 

curves and, subsequently, to estimate the contribution of cell death and cell cycle arrest 

(model output) from dose response curves obtained experimentally (model input). Our 

model predicted that the primary mechanism of action of carmustine involves cell death, 

while the primary mode of action of etoposide is cell cycle arrest. Experimental data 

obtained from U87 cell lines validated our model predictions.  

While our model makes quantitative inferences about the role of cell death and 

cell cycle arrest in response to a given drug, the structure of the model did not include 

any molecular details. The importance of these details was highlighted by the fact that 

cells with diverse genetic background exhibit the same response at level of cell death and 

cell cycle arrest. Thus, it was important to characterize molecular changes taking place 

upon drug exposure in order to understand the basis of resistance.  
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We developed resistance to carmustine in a panel of glioma cell lines through 

prolonged exposure to sublethal doses. We used an integrated, cellular and genomic, 

approach to characterize the response of resistant and parent cell lines. To our 

knowledge, this is the first investigation of both cellular and genomic changes occurring 

upon exposure to chemotherapy in 6 related cell lines. Gene expression studies performed 

previously compare basal expression changes between parent and resistant cells. While 

important, these studies overlook the fact that some changes may not be involved in the 

response of cells to drugs; moreover, these studies neglect the fact that resistant cells may 

have an increased capacity to induce pathways upon exposure to drug that are dormant 

otherwise. The large number of cell lines utilized in this study better emulates the diverse 

genetic background of actual tumors, thus more meaningful conclusions could be made. 

In this study, we have tracked the response of parent and resistant cell lines at early and 

late times subsequent to drug exposure. Our models represents a case of acquisition of 

resistance through molecular changes as opposed to selection of preexisting fraction with 

a high level of intrinsic resistance. This was confirmed by testing the sensitivity of many 

single-cell clonal expansions from each cell line prior to the initiation of treatment; 

single-cell clonal expansions did not exhibit differences in viability in response to drug 

exposure. 

Our results indicate, in a general sense, that cell survival through NFκB pathway 

activation coupled with an increased inflammatory response plays a central role in 

resistance to carmustine. The capacity of resistant cell lines to upregulate immune 

response through NFκB, perhaps, relates to the physiological function of normal 

astrocytes. Astrocytes, along with microglia, are involved in mounting a protective 
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immune response in the central nervous system through NFκB-mediated production of 

IL-6 subsequent to insult [123]. Thus, increased resistance to chemotherapy could be 

primarily through the increased activity of an already preexisting molecular mechanism. 

This notion is not foreign in terms of acquired resistance, especially in brain tumors. It 

has been shown that Pgp plays an integral role in the physiological function of the blood 

brain barrier; however, it has been associated with resistance to chemotherapeutic agents 

[3]. From the therapeutic perspective, acquisition through alterations of a preexisting 

molecular mechanism could prove challenging as complete silencing or elimination may 

prove harmful at the level of normal brain physiology. In addition to increased survival, 

inactivation of proliferation is correlated with resistance. However, changes characterized 

in our gene expression study are only early response, after only 1 hour of exposure, as 

cells seem to resume proliferation at later times.  

Intuitively, it is important to investigate how cells overcome the proliferation 

arrest signal and continue dividing in spite of sustained DNA damage. It is also important 

to investigate the effect of inactivating NFκB signaling and/or components of 

inflammatory response machinery—such as IL1A, IL1B, IL8 and LIF, which were found 

to be upregulated in resistant cells—on the response to carmustine. These experiments 

could be performed, especially with the current advances in siRNA and antisense 

oligonucleotide technologies, to delineate the contributions of members of these 

pathways to the resistant phenotype. 

Our model of resistance indicates that cells avoid early death by mounting an 

inflammatory response mediated by NFκB signaling. Subsequently, cells avoid division 

and cell cycle progession before resuming proliferation again with no evidence of DNA 
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repair. NFκB system is highly conserved across multiple species indicating it primary 

role in maintaining cell survival in response to stress [124], and it has been shown to 

promote cellular proliferation through inducing the expression of cyclin D1, which 

promotes G1-to-S transition [125]. However, it is observed that halting G1-to-S transition 

is correlated with increased resistance in our model. This is in agreement with reports 

indicating that the capacity to arrest in G1 is the more important determinant of response 

to chemotherapy, compared to G2/M arrest [126]. Thus, it is important from the 

therapeutic perspective to understand how NFκB activation mediates survival without 

affecting cell cycle progression (G1 arrest is still maintained).  

Our model also points to the therapeutic importance of early response 

transcription factors, which are present in the cell and are active without the need to be 

synthesized, such as c-Jun and STATs, nuclear hormone receptors and NFκB [127].  Our 

results indicate that silencing these survival pathways prior to carmustine exposure could 

increase drug efficacy and overcome the chemoresistant phenotype. In another context, 

the future of glioma treatment, and cancer in general, is directed towards the development 

of molecularly targeted therapies [128, 129]; however, many of these targets are survival 

and proliferation pathways that are highly redundant, which results in treatment failure in 

many cases or development of resistance [130-132]. This failure could be attributed to the 

fact that many of these pathways are involved in the process of tumorigenesis but not 

necessarily the response of cells to chemotherapy. As an example, cell cycle checkpoint 

deregulation is a hallmark of cancer, meaning that it is involved in tumorigenesis [7]; 

however, failure to enforce checkpoint upon exposure to chemotherapy is correlated with 

sensitivity, as discussed above. In addition, many of these pathways are either 
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independent or upstream of NFκB, such as PI3K, Akt and, mTOR, which renders capable 

of survival in spite of the absence of proliferation signals [11].  

In our experimental program, we chose to characterize cell death as opposed to 

apoptosis. Apoptosis, defined as programmed cell death that is caspase dependent, has 

attracted attention as the primary mode of cellular demise in response to chemotherapy 

exposure, and resistance has been associated with alterations in pathways controlling this 

process. There has been, however, compelling evidence that apoptosis may not be the 

primary mode of cellular demise in vivo. These reports argue that apoptosis is induced in 

vitro at high concentrations; however, these concentrations are not attainable in vivo 

[133]. Alternatively, many modes of cell death have been proposed in response to 

alkylating agents, the most prominent of which is necrosis, which has been associated 

with increased Poly-ADP Ribose Polymerase activity. In addition, mitotic catastrophe has 

also been proposed as a mechanism of cellular demise subsequent to exposure to DNA 

damaging agents in vivo as well as in vitro [133]. In fact, reports indicate that mitotic 

catastrophe, characterized by the presence of multinucleated cells, is the more prominent 

mode of cellular demise in solid tumors compared to apoptosis [134-137]. It is worth 

noting that our observations are in agreement with the argument that apoptosis may not 

be the primary mode of death as expression of the executioner caspase 3 was found to be 

minimal subsequent to drug exposure in all 3 parent cell lines. In addition, there was a 

significant fraction of cells with multinuclei, a characteristic of mitotic castastrophe (data 

not shown). Given the lack of detailed molecular characterization and distinction between 

these 3 processes, we chose to characterize cell death, which is the ultimate goal of 

therapy, rather than individual modes of cellular demise. These modes of cellular 
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demise—apoptosis, necrosis, and mitotic catastrophe—can be detected experimentally 

with propidium iodide staining [133]. Our observations suggest that apoptosis, indeed, 

may not be the primary mode of cell death as our results show that cells exhibit very low 

levels of annexin V staining, caspase 3 expression, and caspase 3/7 activity upon 

exposure to carmustine (data not shown).  

In vitro cell culture models play a significant role in the development and 

evaluation of the cytotoxicity of anti-neoplastic agents. Most of the pre-clinical studies on 

drug resistance are carried out in vitro, where culture conditions and drug dosing are 

tightly controlled. That is, factors pertaining to patient-to-patient variability and 

pharmacokinetic parameters—drug absorption, distribution, metabolism, and 

elimination—do not contribute to the resistant phenotype. Thus, only molecular changes 

implicated in resistance are delineated, which is of great importance in developing 

molecularly targeted therapies.  The main caveat of utilizing in vitro resistance models in 

lieu of in vivo conditions is that cells are removed from their physiological milieu, which 

has been shown to affect gene expression profiles of glioma cell lines [59] as well as 

other cell lines, as discussed in details below. As a result, in vitro conditions could, in 

theory, affect proliferation and survival pathways of cell lines. This dichotomy between 

behavior of cells in vivo and in vitro could affect the resistant phenotype. In contradiction 

with this notion, however, the expression profiles of genes correlated with acquired 

resistance to carmustine and temozolomide in vivo and in vitro were similar [43].  Bredel 

et al compared the expression profiles of 4 groups of gliomas: cell lines with in vitro 

acquired resistance, parent cell lines, in vivo resistant tumors, and in vivo sensitive 

tumors. The study found that glioma cells were stratified into two distinct groups: 
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sensitive and resistant, each of which includes a mixture of in vivo tumors and in vitro 

cell lines [43]. Thus, while there are significant differences between in vivo and in vitro 

resistance models, insights could still be made about the nature of the molecular changes 

associated with resistance and, ultimately, development of novel therapeutic targets. 

Future Direction: More Biologically Relevant Culture Systems 

In order to have a better understating of resistant phenotype, culture models that 

mimic tumor microenvironments should be utilized to characterize drug response and 

resistant phenotypes. In body tissues, cells connect to each other and to the extracellular 

matrix (ECM). ECM provides structural support and regulates communication between 

cells.  Receptors on the cell surface, integrins, anchor cells to the ECM and interpret 

biochemical mediators from immediate surroundings. In 2D culture systems, this 

interplay between ECM and cells is not present, which alters the biological behavior of 

cells.  

At the gene expression level, microarrays have been used in a number of studies 

to monitor the differences in expression between cell lines, which have been grown in 2D 

systems for decades, and tumors from tissue of origin [71, 73, 138-141]. A distinct 

induction of ribosomal proteins, which are involved in proliferation, was observed in 2D 

cultures.  In addition, induction of genes involved in cell cycling, metabolism and 

turnover of macromolecules was also observed in cell lines. The group of genes that were 

found to be downregulated in cell lines was involved in processes such as cell-cell 

adhesion, cell contact with ECM, and membrane associated signaling proteins. These 

observations highlight the implications of cellular microenvironment on the gene 

expression profiles and, thus, phenotype.  
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Matrix dimensionality has been shown to affect cell morphology as well. 

Fibroblasts were shown to have an extremely spread morphology in 2D cultures because 

of the distribution of integrins on the ventral side, while in 3D, integrins were evenly 

distributed on the entire surface and cell adopted an elongated morphology. The 

morphology of fibroblasts is known to affect the phosphorylation status of focal adhesion 

kinase (FAK) [142, 143]. Decreased spreading is known to dephosphorylate FAK, 

leading to the upregulation of p21, which may be responsible for decreased proliferation 

of smooth muscle cells cultured in 3D [144]. Culture dimensionality was shown to affect 

malignant phenotype of epithelial tumors. Mammary epithelial cells were shown to 

regain polarity and decrease proliferation rates when cultured in 3D [145]. In 2D, 

however, these cells showed decreased polarity and increased proliferation.  

More importantly, dimensionality has been shown to affect response of cell lines to 

chemotherapy. 3D multicellular tumor spheroids of breast cancer cell line MDA-MB-231 

were shown to have lower EC50 to cisplatinum compared to cells cultured in 2D 

monolayers[146].  

We investigated the growth rate of gliomas in 3D collagen cultures in comparison 

to regular 2D monolayers. Cells grown in 3D exhibit slower growth rates, which is 

agreement with other studies mentioned above. Interestingly, cells grown in 3D were 

more sensitive to carmustine compared to cells grown in 2D, which is counter intuitive, 

given the fact that cells with lower proliferative capacity are, generally, less sensitive to 

chemotherapy. Thus, it is of great importance to characterize the molecular events 

involved in response to drug in 3D cultures.  
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In order to develop a detailed understanding of acquired resistance to carmustine, 

the response of resistant cells in 3D upon drug exposure should investigated at the 

cellular and molecular level in order to validate conclusions made from the current study, 

performed on 2D monolayers.  
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APPENDIX 

 
(A) 

 
(B) 

 

Figure A.1: Cell Cycle Phase Distribution of DMSO-Treated Cells.  (A) SW1088CR 
cells and (B) U87 Cells, as well as, other cell lines do not show alterations in phase 
distribution upon exposure to vehicle control (DMSO).  
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Figure A.2: Lengend representing molecular functions of genes in datasets.  Genes in 
datasets of interest were associated with cellular functions, from IPA knowledge base, 
and used to construct networks in figures 3.4-3.6 
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Table A.1: A172 Top-scoring Networks. Boldfacing indicates overexpressed gene. 
Genes that are underexpressed are underlined. Genes in plain type are gene that were 
connected to differentially expressed genes by IPA to form network   
ID Molecules in Network Score Focus  

Mol. 
Top Functions 

 1 ADM, ARHGEF7, Caspase,  
CBR3, CDC42, CRADD,  
CXCL16, DNAJA2, DNAJC4,  
DNAJC14,EIF2S1, ERK, 
G6PD, GAS6, 
Hsp22/Hsp40/Hsp90,  
Insulin, Jnk, KLF5, LDL, 
MAP2K1, Mapk, MAPK8IP2, 
NFkB (complex), P38 MAPK, 
Pdgf, PI3K, Pkc(s), PRSS23, 
Rac, Raf, Ras, SLC25A12, 
STK3, TMPO, TNFSF10 

 37  20 Cell Death 
 
Cellular Assembly & Organization  
 
Nervous System Dev. and Func. 

 2 ARHGEF7, ASXL1, ASXL2, 
ASXL3, C12ORF49,  
Cbp/p300-Hd-Taf4-Taf9b-Tbp,  
CBX2, CLCN3, DOCK11,  
EED,HIST3H3 (includes 
EG:8290), Histone h3, HMP19, 
HSPD1,HTT, LARP1B, MIR1, 
MPST, MTOR, PCGF1, 
PCGF6, PHF19, RNF138, 
RUNX1T1, SAMD8, SEC22B, 
STX18, SUZ12, Taf, TAF9B, 
TELO2, TGFBR1, TRIM52, 
TRPM7, ZNF264 

 26  15 Protein Trafficking 
 
Neurological Disease 
 
Cell-To-Cell Signaling and 
Interaction 

 3 ADAM10, amino acids,BOK, 
Ca2+, CBR3, CSRP1, CTDP1, 
CXCL16, DBP, EEF1A2, 
ELMO2, F8, GEFT, Ho, 
JAZF1, JUN, LAMA2, 
MFSD5, MGC29506, MIR23A 
(includes EG:407010), MLF1, 
MXD3, NET1, NFKB1, NR3C1, 
NRBP1, P2RX4, P2RX6, 
progesterone, S100B, SNAPC5, 
STK38, TGFB1, TNFAIP2, 
TNFRSF11A 

 26  15 Cell-To-Cell Signaling and 
Interaction 
 
Tissue Development 
  
Cellular Development 
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 4 ACIN1, ACN9, ACOT2, ATL1, 
BAT1, CXCL3, EAF1, ELL, 
EPO, FUZ, FYCO1, HMOX2, 
HNF4A, HNRNPA0, IL15, 
MLXIPL, MRPL44, NFKBIL1, 
OAZ2 (includes EG:4947), 
ONECUT1, PPP1R3B, PYGL, 
SEPSECS, SETDB1, 
SMARCA5, SPAST, SSSCA1, 
TFPT, TMEM48, 
TRAPPC3,TRAPPC4, 
TRAPPC6A, TRNAU1AP, 
ZNF277 

 24  14 Cell Cycle  
 
Cellular Development  
 
Hematological System Develop. 
and Fun. 

 5 Actin, ACTR1A, C11ORF75,  
C12ORF68, CDC45L, 
CDKN1A, CEACAM1, DCTN1, 
DCTN2, DCTN3, DCTN4, 
DCTN6, DLGAP4,FGF13, 
GINS1, IL6, ITGB3, KNTC1, 
MIR17 (includes EG:406952), 
MIR214 (includes EG:406996), 
MKI67, MUC15, NSMCE1, 
PLK2, POLDIP2, RABGAP1, 
RBM33, SMC5, SMC6, 
SUMO3, TFDP2, UBE2C, 
Ubiquitin, ZNF804A, ZW10 

 24  14 Cellular Assembly and 
Organization 
 
Cell Cycle 
 
Organismal Functions 

 6 AKAP8, ASNS, BAT1, 
BAZ1A, BOP1, CHRAC1, 
CSRP2, DDX17, EIF2S1, 
EIF4G1, ETF1, FBL,  
GSPT2, HRAS, KIAA1524, 
KPTN, MED26, MYC, 
MYO9A, MYO9B, NOP58, 
P4HA1, P4HB, PABPC1, PES1, 
PIN4, POLE3, PTGES2, 
RPAP2, SMARCA5, SMC3, 
SYNGAP1, TSPAN7, ULK2, 
ZXDB 

 21  13 Cellular Assembly and 
Organization 
 
DNA Replication, Recombination, 
and Repair  
 
Amino Acid Metabolism 

 7 AChR, Adaptor protein 1, 
APOD, ARG1, ARL6IP5, BGN, 
C10ORF35, CDX1, CREB1, 
CSRP2, CTNNB1, CTSZ 
(includes EG:1522), EIF2S1, 
FRMD6, GAS6, GM2A, 
GPR126, GRINL1A, HEXA, 
IER3, IFITM1, KLF5, MYO9A, 
MYO9B, PSMC2, RPL7A 
(includes EG:6130), SEC22B, 
SERPIND1, SLC26A2,SLC2A4, 
SMAP1, SMURF2, TCF7L1, 
TIMM44, TNF 

 20  13 Amino Acid Metabolism 
 
Molecular Transport  
 
Small Molecule Biochemistry 
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 8 ACIN1, ALPL, APOBEC3C,  
ARHGDIB, ASNS, CYP4F3, 
deoxyuridine, DYRK4, 
FAM153A,  
FBLN1, FLOT1, IFIT1, 
IFITM1, IFITM2, Igfbp, 
MMP11, NOTCH2NL, NOV, 
PAX3, PRAME (includes 
EG:23532), RAB11B, retinoic 
acid, RPA1, RPA4, SFRS3, 
SFRS2IP, SHBG, SMARCA4, 
thymidine, TIMELESS, TIPIN, 
TK2, tyrosine kinase, ZEB2 

 17  11 Lipid Metabolism  
 
Small Molecule Biochemistry  
 
DNA Replication, Recombination, 
and Repair 

 9 ACP5, ALPL, APOBEC3G,  
ARL6IP5, BAG1, CYB561, 
DPY19L1, ERK1/2, FSH, IFIT1, 
Interferon alpha, KDM5B, 
KIAA1797,Lh, MOS, NKX3-1,  
NOL3, NR2C1, P4HA2, PIAS1, 
PRAME (includes EG:23532), 
Proteasome, PTPRN, 
RAP1GDS1, RARB,SP100, 
TBL1XR1,TCF7, TOP1, 
TOPBP1, TOPORS, TRIB1, 
TYRO3, USP18, VCL 

 15  10 Genetic Disorder  
 
Metabolic Disease  
 
Cellular Growth and Proliferation 

 
10 

ABCA2, Acid Phosphatase, 
ACP5, ALB, AMBRA1, AR, 
CNOT1, ERLEC1, GH1, GSN, 
hydrocortisone, IFI16, Igfbp, 
IGFBP5, IGHG1, IL4, ITGA2,  
KLK3, MAPKAPK2, MUC1,  
NKX3-1, NUP160, PA2G4,  
PIAS4, PPAPDC2, PSMC2, 
RANBP2, RP2, RXRB, SELE, 
SPAST, TF, TNFRSF11B, 
TRA@ 

 10  7 Cellular Development  
 
Cellular Growth and Proliferation  
 
Inflammatory Disease 

 
11 

C8ORF30A, TRIT1 
 2  1 Cellular Growth and Proliferation 

 
12 

IMP4, MPHOSPH10  2  1 RNA Post-Transcriptional 
Modification 

 
13 

GLT8D2, Hexosyltransferase  2  1 
  

 
14 

CCDC85B, PPIL3, SLU7  2  1 RNA Post-Transcriptional 
Modification 
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Table A.2: A172CR Top-scoring Networks. Boldfacing indicates overexpressed gene. 
Genes that are underexpressed are underlined. Genes in plain type are gene that were 
connected to differentially expressed genes by IPA to form network   
ID Molecules in Network Score Focus  

Mol. 
Top Functions 

 1 ABCC2, BIRC3, COL1A2, Collagen 
Alpha1, Collagen(s), CSF3, Cyclin 
E, CYR61, DOCK3, Focal adhesion 
kinase, HAS1, HCCS, Ige, IL1B, 
Laminin, LAT, N-cor, NFAT 
(complex), Pdgf, PDGF BB, PIAS3, 
Pld, PTPRN, Rar, RDH5, Rxr, 
SLC1A2, SLC20A2, Smad, 
SPHK1, STAT5a/b, Tgf beta, 
ULBP2, USP18, YPEL3 

 32  19 Cellular Development  
 
Cellular Growth and 
Proliferation 
 
Hematological System 
Development and Function 

 2 ACAT1, ALDH1A3, CCL20,  
CHEMOKINE, CXCL3, CXCL14,  
Cyclooxygenase, Elastase, 
Fibrinogen, HRH1, Hsp27, IFN 
Beta, IKK (complex), IL1, IL8, 
IL24, IL1F5, Interferon alpha, 
LARGE, LDL, LIF, LOX, Mmp, 
NFkB (complex), NfkB-RelA, 
PTGES, PTGS2, S100, S100A3, 
S100A4, S100A8, SNIP1,sPla2, 
STAT, Tlr 

 30  18 Cellular Movement  
 
Inflammatory Response  
 
Antigen Presentation 

 3 14-3-3, ALP, Alpha catenin, APC, 
CCDC76, Cdc2, CDC2, Creb, 
CTNND1, Cyclin A, Cyclin B, E2f, 
ERK, Fgf, FGF2, GPNMB, 
GRB14, Gsk3, Histone h3, Histone 
h4, KPNB1, LOXL1,MAP4, 
MAP2K1/2,MAPT, Mek, PFTK1, 
PLC γ, POLD3, PTN, Rb, RPA2, 
TOP2A, TPX2, UBE2C 

 26  17 Cell Morphology  
 
Reproductive System 
Development and Function 
 
Cellular Assembly and 
Organization 

 4  ADAMTS5, AGBL5, ALDH7A1,  
ALPL, beta-estradiol, CDKN3,  
ERLIN2, GAD2, HIST2H2BE,  
ICOSLG, IER2, IFI44, IFNG,  
ILK, KIAA1199, MEFV, MIRN338, 
MORC2, OAS2, OTUD4, 
PARP9,PEG10, PRC1, PRIM1, 
PRSS23, PTGIS, PTPRN, retinoic 
acid, SCG5, SP110, STT3A, 
TGFB1, TNFAIP2, TYMP,  
ZWINT (includes EG:11130) 

 23  15 Cell Cycle  
 
Lipid Metabolism  
 
Small Molecule Biochemistry 
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 5 ACTB, ACTR10, ACTR1B 
(includes EG:10120), 
ANGPTL4,ARHGAP17,  
CALD1, CDC42SE2, CDKN1A, 
CIT, CNTNAP1, COG1, COG2, 
COG3, COG4, DOCK7 (includes 
EG:85440), EPB41L3, F2, GMPPB, 
I kappa b kinase, IKBKB, IL32, 
PITPNC1, PLA2G6, PNPT1, 
PROS1, RAC1, TAGLN3, TMSB4, 
TPX2, ZFP36, ZNF692 

 21  14 Genetic Disorder  
 
Metabolic Disease 
 
Amino Acid Metabolism 

 6 ABR, ADCY, Akt, Ap1, APLN, 
BIRC5, BNIP3L, Caspase, 
CDC42SE1, DHCR7, DHRS3, 
DR1, ERK1/2, FSH, GATA6, 
GNB1, hCG, Hsp70, Insulin, Jnk, 
Lh, MCL1, Nfat (family), P38 
MAPK, p70 S6k, Pka, Pkc(s), 
Proteasome, Rac, Ras, RHOQ, 
SMAD3, SVEP1, TOPBP1, Vegf 

 20  15 Infection Mechanism  
 
Cell Cycle 
 
Tumor Morphology 

 7 AR, BRF2, C10ORF18, CCDC59,  
CCNH, CDK9, CTSO, CYP1A2,  
DUSP11, FAIM2, GRIP1, GSN,  
HNF4A, HSP90B1, MUT, NCOA2, 
NHP2L1, NONO, NR0B1, NR0B2,  
NR2C2, NUFIP1, PAK7, PINK1,  
PPP1R15B, RRP9,RTN4IP1, 
RXRB, SULT2A1, TCF4, 
 TCF7L2 (includes EG:6934), 
TEAD3, TIGD6, UBL7, USMG5 

 19  13  Gene Expression 
 
 Infection Mechanism 
 
 Cell Morphology 

 8 ABHD6, C11ORF48, C4ORF43,  
CENPN, CETN3, CP110, CTSZ 
(includes EG:1522), DDX27,  
HNF4A, HNRNPUL1, HRAS,  
KIAA1217, LYAR, MIPEP, 
MTDH, NAT10, ONECUT1, 
PDE6D, PIN1, PNMA1, PPP1R1B, 
PWP1, ROBO2, RSL24D1, SDSL, 
TACC3, TP53, TUBGCP3, 
TUBGCP4, TUBGCP5, TUBGCP6, 
UBA6, UTP3, YPEL3,  
ZMIZ2 

 19  14 Cellular Assembly and 
Organization 
 
Cellular Function and 
Maintenance 
 
 Cell Cycle 
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 9 ATXN2L, BCOR, CDCA3, CIDEC,  
COPS2, CTSZ (includes EG:1522),  
CUL1, ELK1, EPO, ESPL1, 
FBXL12, Ferritin, GBP2, GPS1 
(includes EG:209318), GPS1 
(includes EG:2873), IER2, IL1F9, 
IL3RA, JAM2, L-carnitine, LTBP2,  
MIR298 (includes EG:723832), 
MOAP1, NLRP3, NR3C1, PTCD3, 
RAD21, SENP8, SMC1B, TGTP, 
TIE1, TNF, TNFAIP2, UGCG, 
USP31 

 17  12 Organismal Injury & 
Abnormalities 
 
Lipid Metabolism 
 
Molecular Transport 

 
10 

12-hydroxyeicosatetraenoic acid,  
AK3L1, AKR1C1, ANXA11,  
B4GALT5, CCL20, CDH23, 
DOK5, DUSP5, EDN2, EGFR, Egfr-
Erbb2, EREG, FLOT2, FUT8, 
GCNT1, GPC1, IL18BP, INPP5D, 
ITFG3, MAPK3, MATN2, MME,  
prostaglandin E2, PTGER1, PTGFR,  
PTGIS, SH2D2A, SNX6, 
ST3GAL1, TFF3, TIE1, TREM1, 
VEGFA, ZNF7 

 17  12  Drug Metabolism 
 
 Lipid Metabolism 
 
 Small Molecule Biochemistry 

 
11 

CAPZB, CCNI, CDC7, CDC45L,  
CDK4, CDKN2A, CHORDC1,  
CHTF18, CNOT7, CSDE1, 
CSF2RB, CYP2E1,EIF3I (includes 
EG:8668), ERLEC1, FAM70A, 
GCLC, GH1,HSP90AA1, HUWE1, 
IGFBP7,IPO7, IQUB, IRS2, 
LGMN, MAGMAS, MIR129-2 
(includes EG:406918), MYC,  
NOL12, RPS19, S100A6, SCPEP1, 
THY1, TOB2, TOP1, ZNF592 

 14  10 Cellular Growth and 
Proliferation 
 
Endocrine System Development 
and Function 
 
 Cell Cycle 

 
12 

ACAD9, BCKDK, BEAN, BEX1,  
BNIP1, C17ORF101, FAM98B,  
FGF1, FOXC2, GLG1, GOSR2,  
LEPRE1, LRRC17, MTDH, NAPA,  
NEDD4, neuroprotectin D1, NFkB 
(complex), NR1D1, PMEPA1,  
PPARG, RPL18A, SCNN1B, 
SCNN1G, SGK1, SLC2A2, 
SLC2A4, SNAP25, SNAP29, Snare, 
STX6, STX7, STX12, STX18, 
STXBP6 

 14  10 Molecular Transport 
 
Cellular Assembly and 
Organization 
 
Cell Signaling 
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13 

Actin, ANXA11, ARF3, 
ARHGEF18, BTC, CALD1, CCL1, 
Ck2, CLTB, CNR2, CORO2B, 
CTSLL3, F Actin, Fascin, FUT7, 
HIP1R, IgG, IL25, IL31, IL12 
(complex), KIF23, LGALS3, Mapk, 
MARCKS (includes EG:4082), 
MAZ, MIR1, MST1, PI3K, 
PIK3C2B, PQBP1, PRC1, Profilin, 
RABL2A, RNA polymerase II, 
XPO6 

 10  8 Cellular Assembly and 
Organization 
  
DNA Replication, 
Recombination, and Repair 
  
Antigen Presentation 

 
14 

APEX2, CCDC85B, EFEMP2,  
ENDOD1, GFI1B, MIR124, 
MIR124-1, MIR124-2, MIR124-3,  
MON1A, NME4, SLC30A7 

 10  6 Cell-mediated Immune Response 
Cellular Development 
Cellular Function and 
Maintenance 

 
15 

 C1ORF168, FDFT1  2  1 Developmental Disorder 
Genetic Disorder 
Skeletal and Muscular Disorders 

 
16 

 SSNA1, STAT2  2  1 Cancer 
Neurological Disease 
Infection Mechanism 

 
17 

 hyaluronic acid, LAYN  2  1 Cellular Compromise 
Cellular Movement 
Carbohydrate Metabolism 

 
18 

 ANP32E, MIR195  2  1 Cellular Compromise 
Cardiovascular Sys. Dev.&Func. 
Organ Development 

 
19 

 ATG4A, GABARAPL2 (includes 
EG:11345) 

 2  1 Protein Degradation 
Protein Synthesis 
Cardiac Arteriopathy 

 
20 

 LOC339047, NANOG  2  1 Cellular Development 
Cellular Growth and 
Proliferation 
Embryonic Development 

 
21 

 EFNB3, RHBDL2  2  1 Cell-To-Cell Signaling and 
Interaction 
Cellular Assembly & Organiz. 
Nervous System Dev. and Func. 

 
22 

 HPS1, HPS4  2  1 Genetic Disorder 
Cellular Assembly & Organiz. 
Cellular Development 

 
23 

 3-oxoacyl-[acyl-carrier-protein] 
synthase, OXSM 

 2  1 Lipid Metabolism 
Small Molecule Biochemistry 
Nucleic Acid Metabolism 

 
24 

 DIRAS3, Mannose-6-phosphate 
isomerase, MPI 

 2  1 Cancer 
Reproductive System Disease 
Cellular Development 

 
 
 



 

 

110 

Table A.3: SW1088 Top-scoring Networks. Boldfacing indicates overexpressed gene. 
Genes that are underexpressed are underlined. Genes in plain type are gene that were 
connected to differentially expressed genes by IPA to form network   
ID Molecules in Network Score Focus 

Mol. 
Top Functions 

 1 AASDHPPT, AMPK, Caspase,  
CDC20, CRABP2, Creatine 
Kinase, CTDSP2, DDIT4, 
DNAJA2, Estrogen Receptor, 
GLIPR1, Hdac, Histone h4, HLA-
G, Hsp27, Hsp70, Hsp90, HSPB3,  
ID1, ID2,IFN Beta, INSIG1,  
MHC CLASS I (family), NKX2-2, 
Nuclear factor 1, PDLIM5, 
PMEPA1, Proteasome,SMARCC1,  
SMARCC2 (includes EG:6601),  
SNAI1,SP4, TP53, BA2, Ubiquitin 

 34  21 Cell Cycle 
 
Connective Tissue Development and 
Function  
 
Cellular Function and Maintenance 

 2 ADM, ALP, BDKRB1, BHLHE40, 
Cbp/p300, CDK6, Collagen(s), 
CSF1, CSF2RB, Cyclin E,CYR61, 
DUSP6,ELAVL1,Eotaxin,ERRFI1, 
HOMER3, IL6, ITGAV, JAK, 
JAK1, KLF10, Laminin, LIF, 
MSX1, p70 S6k, Pdgf, PDGF BB, 
PHLDA1, PSAP, RDBP, Shc, 
SOCS, STAT, STAT5a/b, Tgf beta 

 34  20 Hematological System 
Development and Function 
 
Hematopoiesis 
 
Organismal Development 

 3 CCL2, CHEMOKINE, CXCL1,  
CXCL2, E2F7, ETS, F3, 
FAM46A, Fibrinogen, GBP2,  
Ifn,Ifn gamma, IFNα/β, Ikb, IKK 
(complex), IL1, IL8, Il12 (family), 
IL6 RECEPTOR, LRDD, MX2, 
NFKB1, NFkB (complex), NfkB-
RelA, NfkB1-RelA, NFKBIE,  
NXF1, PRKDC, Pro-inflammatory 
Cytokine, RFTN1, SAA@, 
SH3RF1, SLC2A6, Tlr, TSLP 

 29  18 Infection Mechanism 
 
Infectious Disease 
 
Cellular Movement 
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 4 ARRDC3, ATAD2, C14ORF4,  
C3ORF59, CDKN1A, E2F1, 
EAPP, EIF2C1, FBXO22, HPGD,  
JAG1, KIAA0101, KLF10, 
MIR103-1 (includes EG:406895),  
MIR98 (includes EG:407054),  
MIRLET7A1, MIRN338, 
NUSAP1, PCDH7, PDCD1,  
PHF8, PLEKHA3, PTPN12,  
RASIP1, SDCBP2, SERTAD2,  
SOCS5, SSPN, TIFA, TM4SF1,  
TNF, TNRC6B, TTK, ZMAT2,  
ZNF365 

 23  15 Cellular Assembly and 
Organization 
 
Cellular Compromise  
 
Cell Death 

 5 ACIN1, BTBD10, C17ORF70,  
CPSF2, CPSF3, CPSF4, CPSF6,  
EWSR1, FA, FANCB, FANCE,  
FANCL, FANCM, FIP1L1,GGN,  
HMG20A, KLF12, MAGOHB,  
NLE1, PAK4, PIK3C3, PIK3R4,  
PLSCR1, PRPF38B, PRPF40A,  
RNPS1, SFRS4, SKIL, SMAD4, 
SMCR7L, STK11, TCTA, YIPF3,  
YWHAG, ZBTB3 

21  14 Gastrointestinal Disease 
  
Genetic Disorder 
 
Hematological Disease 

 6 ATP6AP1, BCL2L14, BTK,  
CDC40, CENPT, CREBBP, 
DACH1, EXOC1, EXOC2, 
EXOC3,EXOC5, EXOC6,  
EXOC8, Exocyst, FKBP2, FNTA, 
HDAC1, HGS, IL1F9, ITGB6, 
KCMF1, KIAA1731, KLF5, 
MAPK3, NAGK, NR3C1, 
NUDT14, RAF1, RAP2A, SALL1, 
SMAD2, SS18L1, TADA2L, 
TNFRSF8, ZNF7 

 19  13 Cell Morphology 
 
Cellular Assembly and 
Organization 
  
Hair and Skin Development and 
Function 

 7 AGAP2, ARHGAP18, 
ARHGAP29, ARHGEF1, BLZF1, 
BMP6, BMPR1A, DAD1, DLX5, 
ELF4, EPB41L1, EPHX1, 
ERRFI1, FAM153A, FGF3, FGF8,  
FST, HM13, HOXB7, ITM2B, 
LHX8, MGAT2, MIR124-1, 
MIR214 (includes EG:406996), 
PLOD3, RAP2A, RARG, retinoic 
acid, RNF169 (includes 
EG:254225), SMAD5, SMARCA1, 
SPPL2A, TBC1D13, XBP1, 
ZNF608 

 19  13 Organismal Development  
 
Cellular Development 
 
Connective Tissue Development and 
Function 
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 8 AFF4, AGT, ANKRA2, ARNTL2, 
BACH1, BANP, C11ORF82, 
CASP3, CD48, CLEC4E, CPNE8, 
CSH2, CTBS, CTSS, ERAP1, 
ESPL1, GEMIN7, GNPAT, 
GPNMB, HIGD1A, hydrogen 
peroxide, IFNG, IL13, KAT5,  
Mlc, MYC, MYL5, MYL9 
(includes EG:98932), progesterone, 
RAD21, SLC14A2, SLC15A3, 
STK17A, TIPARP, TRAF2 

 18  14 DNA Replication, Recombination 
and Repair 
 
Lipid Metabolism 
 
Molecular Transport 

 9 Alcohol group acceptor phospho- 
transferase, Calcineurin protein(s), 
CDK7, Creb,CTGF, DAAM1, 
DCAF7, DDIT3, DYRK1A,  
EGR1, Elastase, ERK, ERMP1,  
FGF2, Focal adhesion kinase,  
GNA13, Igfbp, Integrin, KLF5,  
LDL, MAP2K1/2, Mek, Mmp,  
Nfat (family), P38 MAPK,  
Pkc(s), Pld, PPAP2A, Rac, Ras, 
Ras homolog, RCAN1, Rsk, 
TACC1, Vegf 

 18  14 Nervous System Development and 
Function 
 
Cell Signaling 
 
Vitamin and Mineral Metabolism 

 
10 

ADRB2, C18ORF55, 
CALCOCO2, CCDC49,  
CCDC85B, CCNH, CDC45L, 
DEM1, DKFZP761E198, FTSJ1, 
GIN1, GTF2B, HLA-B, HNF4A,  
MICAL3 (includes EG:57553),  
NCOA1, NCOA3, ONECUT1,  
PNKP, POLB, POLE3, POLR2A, 
PSMA1, PSMA3, PSMA5, RAB1B 
(includes EG:81876), RFC3, 
TACO1, TAF1D, TP53RK 
(includes EG:112858),TRMT6, 
TRMT61A, TSEN34, YBX1, 
ZFAND2A 

 15  11 Gene Expression  
DNA Rep., Recomb., & Repair 
Dermatological Diseases and 
Conditions 

 
11 

AHSG, ATP6V1H, CA9, CCDC59,  
CCDC101, CIDEC, CPB2, 
GSTA5, HACL1, HIST1H2BC, 
HNF1A, HNF4A, IDH1, IGF1, 
IGFBP6, MAP3K7, MTTP, 
MUTYH, NBR1, NLK, PHF2, 
POLE3, POLR1C, POLR3E, 
PPARG, PTPRG, RPL10, 
SCAND1, SLC10A1, SLC2A2, 
TBPL1, TRPV2, UGT2B15,  
VHL, YEATS2 

 15  11 Cellular Growth and Proliferation 
 
Connective Tissue Development and 
Function 
 
Tissue Morphology 
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12 

 ANXA9, ARHGEF10L, ARSA,  
ARSB, ARSD, ARSE, ARSF, 
ARSG, ARSI, ARSJ, ATF7IP, 
ATXN1, ATXN1L, CALY, FNG, 
HCFC2, IFIT1L, Ifnar, IL10RA, 
IL18RAP, IL1B, MT1F, NOTCH1, 
NR4A1, PELI2, RFNG, SENP3, 
STAT4, SULF1, SULF2, SUMF1, 
TAL1, VSNL1, ZC3H12A, 
ZNF804A 

 13  10 Skeletal and Muscular System 
Development and Function 
 
Infection Mechanism 
 
Molecular Transport 

 
13 

ACBD3, ACCN3, AKAP, AKAP3, 
AKAP11, AKAP13, CDKN2A,  
EXO1, GHRH, Gpcr,GPRASP2,  
GRIA4, KIAA0101, KLK4, MAP2,  
MELK, MLH1, NFYB, PCNA,  
POLD2, POLD3, POLH, POLM,  
PRKACA, PRKAR1A, PRKAR2A, 
PSD3, RAC1, RFC1, RFC3, RFC4,  
S1PR2, SYNJ2, TARDBP, 
ZNF323 

 13  10 DNA Replication, Recombination and 
Repair 
 
Post-Translational Modification 
 
Cell Cycle 

 
14 

ADCY, Akt, Ap1, ARL4C, C1q,  
CEBP-AP-1, Ck2, Collagen type I,  
CTNNA1, Cyclin A, EIF5, 
ERK1/2, FMOD, FSH, hCG, 
Histone h3, IgG, IL12 (complex), 
Insulin, Interferon alpha, Jnk, 
KIAA0895, Lh, Mapk, MED28,  
MIR124, OPN1SW, PI3K, Pka,  
PLC gamma, Rb, RGS20, RNA 
polymerase II, STEAP1, TJP2 

 12  9 Cellular Assembly and 
Organization 
 
Skeletal and Muscular System  
 
Development and Function 
Gene Expression 

 
15 

DPP4, GPC2  2  1 Cell Cycle 
Cellular Development 
Developmental Disorder 

 
16 

butyric acid, SPHAR  2  1 Cell Cycle 
Cell Death 
Cellular Development 

 
17 

D2HGDH, RAB25  2  1   

 
18 

CLCC1, MIR197  2  1 
  

 
19 

FAM188A, RPL8  2  1   

 
20 

BRD2, RAB24  2  1 Cancer 
Immunological Disease 
Cell Death 

 
21 

CSGALNACT2, 
Glucuronylgalactosyl- 
proteoglycan beta-1,4-N-acetyl- 
galactosaminyltransferase 

 2  1 Carbohydrate Metabolism 
Small Molecule Biochemistry 
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22 

 HLA-A, UGGT1, UGGT2  2  1 Neurological Disease 
Ophthalmic Disease 
Dermatological Diseases and 
Conditions 

 
23 

acad, ACADSB,  
Acyl-CoA dehydrogenase, 
phosphate 

 2  1  Cardiovascular Disease 
 Hematological Disease 
 Carbohydrate Metabolism 

 
24 

POP1, POP4, POP7, RPP14, 
RPP21, RPP30, RPP38, RPP40 

 1  1 RNA Damage and Repair 
RNA Post-Transcriptional 
Modification 
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Table A.4: SW1088CR Top-scoring Networks. Boldfacing indicates overexpressed 
gene. Genes that are underexpressed are underlined. Genes in plain type are gene that 
were connected to differentially expressed genes by IPA to form network 
ID Molecules in Network Score Focus  

Mol. 
Top Functions 

 1 26s Proteasome, ABCD3, APBA3, 
APOL3 (includesEG:80833), 
ATP2A2, ATPase, AUTS2 
(includes EG:26053), BCL2L1, 
CARD8, CD74, CDH22, CLPX, 
CXCL16, FCGR2A, FKBP8, IFN 
β, IL12 (complex), Interferon α, 
MHC Class II, MUC2, NFkB 
(complex), peptidase, POT1, 
PSEN2, RAD23B, RFXAP, 
SKIV2L, STAM2, TLR3, 
UBE2E2, UBE2E3, Ubiquitin, 
VAV3, VCP, WRN (includes 
EG:7486) 

 48  26 Cell Signaling 
 
Vitamin and Mineral Metabolism  
 
Molecular Transport 

 2 ABI2, ACTG2 (includes EG:72), 
Ap1, Coup-Tf, Creb, CYFIP2 
(includes EG:26999), DUSP3, 
EFNB2, ERK, FSH, hCG, Histone 
h3, HMBS, IGFBP3,  ITGAX, 
LDL, Lh, LRP, LRPAP1, Mek, 
MKNK1, MZF1, NR2F2, OLFM2, 
P38 MAPK, PKM2, PLAU, 
PROCR, RPS6KA4, 
SLC39A8,SMARCC2 (includes 
EG:6601), SP1, Tgf beta, TRPV1, 
Vegf 

 35  21 Gene Expression 
 
Organismal Injury and 
Abnormalities 
 
Neurological Disease 

 3 ABCC2, Akt, ARHGDIB, BRAP, 
Calmodulin, Clathrin, CLTCL1, 
ERK1/2, Estrogen Receptor, HIP1, 
Hsp90, Insulin, Mapk, NCOA6, 
NRGN, Pdgf, PDGF BB, PI3K, 
PIK3C2A, PIK3CA, Pkc(s), PLC γ, 
PROS1, Proteasome, QARS, Rac, 
Ras, RXRA,SLC3A2, SOCS2, 
STAT, STAT5a/b, TNK2, tyrosine 
kinase, UBE3A 

 24  16 Carbohydrate Metabolism 
 
Lipid Metabolism  
 
Small Molecule Biochemistry 
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 4 ABCG2, ACAA1, ACTN2, β-
estradiol, CCDC24 (includes 
EG:149473), CD44, CENPM, 
COLEC12, DDR1, DISC1, DLG1,  
EXOC1, HEATR6, HSD17B7, 
HYAL2, KCTD12, LRP12, 
METTL2B, MPP5, MPP7,NFYB, 
NHP2, PDGF BB, PDLIM1, 
PGS1, PTPN11, RFX5, 
RG9MTD1, RHPN2, SH3BP5, 
TMBIM6, TRAF6, TUFM, ZFP36, 
ZNF692 

 22  15 Drug Metabolism  
 
Molecular Transport  
 
Small Molecule Biochemistry 

 5 AK2, ARFIP1, ARPC1B, BNIP1, 
CTNNB1, CTSA, DHRSX, 
ELOVL1, FKBP10, GPR37, 
HNF4A, LSR, MFSD1, MIR124, 
NUFIP1, Oxidoreductase, PDE1C, 
PDIA5, PIH1D1, PKM2, PRPF31, 
RAB10, RECQL4, RNU2-1, 
RNU4-1, RNU5A, RNU6-1, 
SCFD1, SLC2A4, SNX17, STOM, 
TTC19, UPF3B, VAMP7,  
YKT6 

 21  15 Molecular Transport  
 
Protein Trafficking  
 
Lipid Metabolism 

 6  ARNT2, BCL9, Bcl9-Cbp/p300-
Ctnnb1-Lef/Tcf, CCND1, 
CCNDBP1, CCS, CDC27, CDC73, 
CUL3, Cyclin D, DNAJB11, 
EGFR, EPHA2, ERI3, GRAP2, 
Histone h3, HOXC10, hydrogen 
peroxide, MIR198, MIR188 
(includes EG:406964), MLL2, 
MRPS9, NDRG3, NT5E, PPFIA3  
(includes EG:8541), PTPRD, 
PTPRS (includes EG:5802), 
RIMS3, SCAMP1, SETMAR, 
TMEM55A, UBR1, WDR1, 
ZDHHC14, ZNF445 

 20  14 Cell Morphology 
 
Cellular Development  
 
Cellular Growth & Proliferation 

7 ALDH2, ATF6B, C14ORF1, 
CCDC21, CDKN1A, CLCN6, 
FAS, HELQ, HIST1H2BF, 
HMGB1 (includes EG:3146), 
HNF1A, HNF4A, HSPA5, HYLS1, 
LRCH2, MAT2A, MEPCE, 
MIR30C1, MIR30C2, N4BP2L2, 
NAT10, NFYA, NSF, ONECUT1, 
POLRMT, RMI1, RPA2, SEC23A, 
SEC23IP, SFRS1, TBC1D15, 
TBCK, TFB2M, ZFP64 

 20  14 Cell Morphology  
 
Cellular Assembly and 
Organization  
 
Gene Expression 
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 8 ANKRD32, ATP2A2, ATXN1, 
B2M, BAG1, C20ORF7, CD40LG, 
CIITA, DAXX, DMPK, ELMOD2, 
ESRRA, FASTKD2, FAT4, 
GMEB1, GMEB2, HMGB2, IDI1, 
MIR133A1, MIR133A2, 
MIR133A-1, MIR92A1, MIR92A2, 
MYH6, MYH7, NR3C1, NRIP1, 
RNF38, SFRS18,SMARCA4, 
SMARCC2 (includes EG:6601), 
TNFSF13, U2AF2 (includes 
EG:11338), UBTD2, UVRAG 

 19  13 Cellular Assembly and 
Organization 
 
Cellular Compromise  
 
Cardiovascular Disease 

 9 ABCC1, AHSA2 (includes 
EG:130872), AIP, ATP, BIK, 
Ca2+, CCNL2, Ck2, DMBT1, 
DNAJB6, EIF5, EIF2AK1, 
Endothelin, ENTPD4, F2RL3, 
HSP90AA1, MIR1, MTX1 
(includes EG:4580), MUC2, 
NCOA4, NETO2, NLRP3, NRTN, 
PBX4, PDCD6, PLSCR3, 
RABL2A, RABL2B, RRAD, 
SFRS5, SLC9A5, SNAPC4, 
SRPK1, STAT4, TNF 

 18  13 Drug Metabolism  
 
Molecular Transport 
 
Amino Acid Metabolism 

 
10 

APOBEC3C, ASS1, B2M, BCL7B, 
C8ORF38, CD38, CECR5, 
CKMT1B, CTSD, CX3CL1, 
CYP24A1, ERAP1,  
ERAP2, HDC, HLA-DQA1, IFNG, 
Ige, KPNB1, MIR25 (includes 
EG:407014), MTHFD1L, NUP98, 
PAPPA, PLTP, POLG, PSEN2, 
SHBG, SPHK2, TCF7L2 (includes 
EG:6934), TERF2, TERT, 
TNFSF13, TP53, UBE3A, ZAP70, 
ZNF140 

 18  13 Cell-To-Cell Signaling & 
Interaction 
 
Drug Metabolism 
 
Lipid Metabolism 

 
11 

ABL1, ACCN1, ACCN3, 
ATP11C, ATP8B2 (includes 
EG:57198), BRCA1, C7ORF20, 
CABLES1, CCR7, CDC27, CDK3, 
CDKN1A, CIT, CTNNBIP1, 
DDB2, EID2,  
geranylgeranyl pyrophosphate, 
HNRNPR, IL1A, Il8r, KIFC2, 
Mg2+-ATPase, PTGER4, RAGE, 
Ras homolog, RHOB, RHOG, 
RHOH,RHOT1, RPA3, RTKN, 
SUV39H2, TRIO, WRN (includes 
EG:7486) 

 17  12 Cell Cycle 
 
Cell Morphology 
 
Reproductive System 
Development and Function 
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12 

ABCC1, ADNP, ANKRD17, 
ANPEP, BIRC2, BTRC, 
C1ORF107, CD38, CX3CL1, 
DDX19B, DGCR14, EFNB2, 
FAF1, FBXO22, FBXO32, 
FBXW11, HGF, HLA-DR, IL11, 
KLHL15, LDHA, MAGEA11, 
MIR103-1 (includes EG:406895),  
MIR33A, NfkB-RelA, NFKBIE, 
OTUB2, RWDD2B, SKP1, TNF, 
Ube3, WDR90, WEE1, WT1, 
ZNF7 

 15  11 Cellular Development 
 
Cardiovascular System 
Development and Function 
 
Cell Morphology 

 
13 

BANF1, BCLAF1, BDH1, BET1, 
BET1L, C3ORF10, CCDC85B, 
CD99 (includesEG:673094), EMD, 
FAM53B, GCNT1, GMCL1L 
(includesEG:64396), GOLGA2,  
GOLGB1, GOSR1, GOSR2, 
KIAA1688, LEMD3, LMNA, 
LMNB1, MEAF6, PILRB 
(includes EG:29990), PRPF3, 
RAC1, SCFD1, SEC22A, SLU7, 
SYNE2, TGFB1, TOR1A, 
TOR1AIP1, USO1, VPS72, WISP1, 
YKT6 

 15  11 Cellular Assembly and 
Organization 
 
Cellular Function and 
Maintenance 
 
Molecular Transport 

 
14 

2-oxoglutaric acid, ALK, ALKBH1, 
BCL2L10, BID, BNIP3L, CASP3, 
CASP8AP2, Caspase, CHKA, 
CHRNA7, Cytochrome c, DBN1, 
EGR2, EPB41L1, HN, HSH2D 
(includes EG:84941), HTRA2, 
HTT, IKBKG, Jnk, MOAP1, 
PACS2, RIC3 (includesEG:79608), 
SRP72, STEAP3, TAOK1, 
tauroursodeoxycholic acid, 
THAP11, TMEM90A, TPP1, 
USO1, UTP20, ZNF598, ZNF675 

 13  11 Cell Death 
 
Embryonic Development 
 
Nervous System Development 
and Function 

 
15 

ANGEL1, ANK2, ANKRD12, APP, 
C10ORF71, DNAJC18, E2F3, 
EFNB1, EZR, FAM49B, FRMPD3, 
HECTD2, HNRNPU, HOXA1, 
HUWE1, IL6, KPNA4, MAP2K4, 
MARCH6, MECP2, MIR202 
(includes EG:387198), MIR34A 
(includes EG:407040), MIRLET7D 
(includesEG:406886), MIRLET7F1 
(includesEG:406888), MIRLET7F2 
(includesEG:406889), NAV3, 
NEDD4L, NR4A2, PABPC1L, 
POU4F1, SCN3A, TMEM25, 
TMEM104, TRIP10, ZZZ3 

 6  6 Cellular Movement 
 
Nervous System Development 
and Fucntion 
 
Cellular Development 
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16 

DHX34, POLA2  2  1  Molecular Transport 
 Protein Trafficking 
 DNA Rep., Recomb., & Repair 

 
17 

D2HGDH, RAB25  2  1   

 
18 

TRMU, tRNA(5-
methylaminomethyl- 
2-thiouridylate)-methyltransferase 

 2  1  Auditory Disease 

 
19 

HLA-A, KDM5D  2  1 Neurological Disease 
Ophthalmic Disease 
Dermatological Diseases & 
Conditions 

 
20 

DUB, USP35  2  1   

 
21 

KNTC1, ZW10, ZWILCH  2  1 Cell Cycle 
DNA Rep., Recomb., & Repair 
Cellular Assembly & 
Organization 

 
22 

Cpt, CPT1, CPT1C  2  1 Digestive Sys. Dev. & Func. 
Lipid Metabolism 
Small Molecule Biochemistry 

 
23 

MIR204 (includes EG:406987),  
MIRN326, MIRN343, PRR7 

 2  1  Cellular Development 
 Cellular Growth & Proliferation 
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Table A.5: U87 Top-scoring Networks. Boldfacing indicates overexpressed gene. 
Genes that are underexpressed are underlined. Genes in plain type are gene that were 
connected to differentially expressed genes by IPA to form network   
ID Molecules in Network Score Focus 

Mol. 
Top Functions 

 1 ANXA13, BRE, Collagen type I,  
Cyclin A, Cyclin E, DDR1, DDX17,  
DOT1L, E2f, E2F3, GNA15, HAS2,  
Hdac, Histone h4, KRAS, KRT17,  
MCM6, MFHAS1, MUC2, NCOR1,  
NFkB (complex), NPTXR, PURA,  
Rb, Rxr, Smad2/3, SNW1, SP3, 
SPINK1, STAP2, TFE3, Thyroid 
hormone receptor, TNC, TRIP11, 
VSNL1 

 45  24 Cell Cycle  
 
Connective Tissue Development 
and Function 
  
Cellular Assembly and 
Organization 

 2 ADAM17, AGTRAP, Calpain, 
CK1, Creb, CSNK1E, CSNK1G3, 
ELAVL1, ERK, Focal adhesion 
kinase, GAB1, GSK3B, HEXA, 
LDL, Mek, MITF, MT1E, NRG1, 
Pdgf, PDGF BB, PHLPP1, Pkc(s), 
Ras, RPN2, Rsk, SART3, SFRS2, 
Smad, STAT, STAT5a/b, STAT5B, 
TBX21, Tgf beta, Vegf, VEGFA 

 30  18 Cell Cycle 
 
Cardiovascular System 
Development and Function.  
 
Cellular Development 

 3 ADIPOR1, Akt, Alpha tubulin, Ap1, 
APBB1, AURKB, Calmodulin, 
CCDC88A, CDK8, CDKN1A, 
Estrogen Receptor, HAX1, hCG, 
HISTONE, Histone h3, Insulin, 
KHDRBS1, KIF22, LRRN3, 
Mapk,MSN, P38 MAPK, PHKB, 
PI3K, Proteasome, Rac, Ras 
homolog, RNA polymerase II, Rock, 
SMPD1,SNRPN, SNX9 (includes 
EG:51429), SORBS2, UBE3A, 
Ubiquitin 

 27  17 Cancer 
 
Genetic Disorder 
 
Lipid Metabolism 

 4 BBC3, C3ORF19, C6ORF170, 
CBFB, CDKN3, CENPF, CHRNB1, 
CLMN, DDB2, DTL, FBXL18, 
FERMT2, IFIT3, ITGA2B (includes 
EG:3674), KLHL3, MGMT, NFYB, 
PLK2, retinoic acid, RFC4, 
RWDD2A, SERPINB2,SLC22A18, 
SLC39A8, SLIT3, SNX19, SSRP1, 
TGFB1, TNFAIP6, TP73, TPSB2, 
TYMS, UTP3, YIPF4, ZFP36 

 22  14 Cell Cycle 
 
Embryonic Development  
 
Tissue Development 
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 5 BAI2, CDC42EP3, CHMP4A, 
DKK1, DLST, EDEM3, EXOSC8, 
EXOSC10, FEM1C, GTF2E1, 
HBP1, HEY1,  HIST1H2BO, 
HMGB2, HMGB1 (includes 
EG:3146), HNF4A, HOXB3, 
HOXD11, ING3, JINK1/2, LPPR2, 
LSM3, MDM2, MIRN101B, 
MOCS3, MYPOP, NOB1, PPIG, 
PSMA3, SCFD1, STAMBP, 
TARDBP, UMPS, UPF2, XRN2 

 20  14 Gene Expression 
 
Infection Mechanism  
 
Infectious Disease 

 6 ABCC9, ATAD2, BLK, CCND1, 
CDC73, CEP192, CHST10, 
CKS1B, CUEDC2, CXCL14, 
DECR1, DOCK2, EML1 (includes 
EG:2009), ERBB2, ESR1, FGF2, 
GPAA1, GPC1, H19, HEXDC, 
ISG20L2, KCNJ1, magnesium-
adenosine triphosphate, MIF, 
MKI67, MXD3, NOMO1, RILPL2, 
RNF149, SHBG, SRC, TUBB4, 
VAV1, WWC1, ZBTB17 

 18  12 Cancer  
 
Reproductive System Disease  
 
Cell Cycle 

 7 ABCB7, BAX, BBC3, CCL3L1, 
CCNE2, DDX1, DNASE2, EAF1, 
EPC2, GPAA1, HIGD1A, IL6, 
KIAA1217, KIF11, MAZ, MFN1, 
MFN2, MPHOSPH8, MYC, PEG3,  
PIGK, PIGS, PIGT, PIN1, PLSCR4, 
PNPT1, PRPH, RMND5A, 
RUVBL2, SMAD9, TRIP12, 
UBE2C, VPS72, YEATS4, ZNHIT1 

 17  12 Cellular Assembly and 
Organization  
 
Cancer  
 
Cellular Compromise 

 8 ABCB1B, ACAT1, AHNAK, 
AIMP1, ALDH3A1, APP, 
arachidonic acid, ATP5O, 
ATP6AP1, BCAS4, CCDC93,  
CDH13, CH25H, CLSTN3, 
DNAJB4, ETFA, F2RL3, GOT2, 
MIRLET7A1, MPG, MT1E, 
PDIA6, PHF8, PHGDH, PRPSAP2, 
RTN3, SAA2, SCPEP1, SLC2A4, 
SND1, SOAT1, SOD2, STXBP3, 
STXBP5, TNF 

 17  12 Molecular Transport  
 
Lipid Metabolism  
 
Small Molecule Biochemistry 
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 9 APOD, beta-estradiol, CALCR, 
CLDN6, CLDN14, CNNM4, 
CTNNB1, CXADR, DGCR6L, 
DLG4, DVL1L1, ERLEC1, 
FBXO45, FZD8, HSPA2, HSPA5, 
HSPA12A, KRT5, KRT19, LDHB, 
MIR24-1 (includes EG:407012), 
MYF5, NEK8, NPTX1, NRCAM, 
OS9, PTP4A2, SAV1, SFN, SFRP2, 
SIPA1L1, STK3, TRIM25, TUBG1, 
WNT3 

 17  12 Cell Cycle  
 
Cell Morphology  
 
Cellular Assembly and 
Organization 

 
10 

ACSS2, ADAM21 (includes 
EG:8747), ATYPICAL PROTEIN 
KINASE C, BEST1, C12ORF30, 
C17ORF63, C7ORF16, CDK2, 
cholesterol, CSHL1,HEY1,MAML1, 
MAML2, MAPK1, MAZ, 
Metalloprotease, MIR23B (includes 
EG:407011), NOTCH1, NOTCH3, 
PPM1A, PPP1R8, PPP2CA,  
PREB, PRKCH, PRL, PTPN18, 
putrescine, RHBDF2, SFRP2, 
ST8SIA1, TK1, TNRC6B, 
TSPYL2, TTK, WNT4 

 16  11 Gene Expression  
 
Cell-To-Cell Signaling and 
Interaction  
 
Hematological System 
Development and Function 

 
11 

ADCK4, AK1, AMIGO2, BRD2, 
CNTN2, COMT, DBF4, ELL, 
ENOX1, FHL2, GPR158, HCFC2, 
Histone-lysine N-methyltransferase, 
ING1, MDM4, MEN1, MGMT, 
NR3C1, POLH, POLK, PPA1, 
PPP5C, RAB24, RAD54L, REV1, 
RNF38, SETD7, SPHK2, TADA3L, 
TK1, TP53, UBC, Ube3, ZBTB16, 
ZNF346 

 15  11 Cell Cycle  
 
DNA Replication, 
Recombination, and Repair  
 
Cell Morphology 

 
12 

ACT1, BTG3, Caspase, CTLA2A, 
CYB561, DDB2, DDR1, ECSIT, 
ERK1/2, FGF13, FGF19 (includes 
EG:9965), GAS2, GAS5, GCGR, 
HRSP12, IL1, IL12 (complex), 
IL17RA, Interferon α, Jnk, 
KCTD12, KLB, Lh, MIR124, 
MTPN, Nfat (family), RYK, SPOP, 
TLR11, TMEM109, TRAF6, 
VEGFB (includes EG:7423), 
ZNF274, ZNF675, ZNRF3 

 12  10 Lipid Metabolism  
 
Molecular Transport  
 
Small Molecule Biochemistry 

 
13 

CTSLL3, LGALS3  2  1 Cell Morphology  
Cellular Assembly and 
Organization  
Cellular Development 



 

 

123 

 
14 

ERMAP, MIR146A  2  1 Inflammatory Disease  
Genetic Disorder  
Skeletal & Muscular Disorders 

 
15 

PGAP1, SIRT3  2  1 Amino Acid Metabolism  
Post-Translational Modification  
Small Molecule Biochemistry 

 
16 

Methionyl-tRNA formyltransferase,  
MTFMT 

 2  1   

 
17 

AR, CTSO  2  1 Cell Cycle  
Cellular Development  
Cellular Function & 
Maintenance 

 
18 

ATXN7L1, ZNF862  2  1   

 
19 

GRAMD1C, MIR292  2  1   

 
20 

ANKRD7, MARK3  2  1 Organ Development 
Reproductive Sys. Dev. & Funct. 

 
21 

COG8, NBPF10  2  1 Genetic Disorder  
Metabolic Disease 

 
22 

EFHD2, MIR126, RAD51L3  2  1 Cardiovascular Disease  
Cardiovascular Sys. Dev. & 
Funct.  
Organismal Development 

 
23 

HTN1, MUC7, MUC5B  2  1 Genetic Disorder  
Inflammatory Disease  
Respiratory Disease 

 
24 

ISY1, MIR1,  
MIR1-1 (includes EG:406904),  
MIR1-2 (includes EG:406905) 

 2  1 Cardiovascular Disease  
Cardiac Arteriopathy  
Genetic Disorder 
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Table A.6: U87CR Top-scoring Networks. Boldfacing indicates overexpressed gene. 
Genes that are underexpressed are underlined. Genes in plain type are gene that were 
connected to differentially expressed genes by IPA to form network  
ID Molecules in Network Score Focus 

Mol. 
Top Functions 

 1  Actin, Akt, ATPase, C20ORF20,  
Caspase, CCR1, CD40, CHMP7,  
DNMBP, HISTONE, Histone h3,  
Histone h4, Hsp70, Hsp90, IL1,  
IL12 (complex), Interferon alpha,  
Jnk, MCM3, MED28, MYO9B,  
NUMA1, P38 MAPK, PI3K, PRX,  
RDBP, RNA polymerase II, 
RNU4-1,  
RNU5A, SLC30A7, SMARCA5,  
Ubiquitin, USP8, VPS72, ZNF668 

 30  18 Cell Death  
 
Cellular Development 
 
Cellular Growth and Proliferation 

 2 26s Proteasome, Ap1, APBA2,  
APH1B, CAPN1, CAPN3, CAT,  
CCNA2, EGR1, ELOVL2,  
ERK, ERK1/2, FAM189B,  
FERMT2, FJX1, Focal adhesion 
kinase, GIPC1, GTF2H1, hCG, 
Integrin, LDL, Mapk, Pdgf, PDGF 
BB, peptidase, Pkc(s), PLC, PLC 
gamma, PLEKHA1, PSEN2, 
SENP6, STAT, TAF1B, Tgf beta, 
Vegf 

 28  17 Post-Translational Modification  
 
Gene Expression  
 
Cell Cycle 

 3 AKIRIN1, APIP, ARID4A, 
BFSP1, C10ORF2, CDC2, 
CRADD, CRCT1 (includes 
EG:54544), DNAJC7, E4F1, 
EDN1, FERMT2, FN1, FRYL, 
HEG1, ITGB3, ITGB6, ITGB8, 
MIR292, MIR27B (includes 
EG:407019), MORF4L1, 
MORF4L2, NCOA2, PPFIA1, 
PPFIA2, PPP2R5E, RABGAP1, 
RB1, RBBP9, RIF1, RNF121, 
SMAD9, UBE4A, VIM, ZNF638 

 28  17 Cellular Movement  
 
Reproductive System 
Development and Function  
 
Cell Cycle 

 4 CABIN1, Calcineurin A, CD3, 
CENPO, Cpla2, CSF2, E2f, F2R, 
FKBP8, FLNB, HLA-DR, Ige, 
IKK (complex), IL1A, JINK1/2, 
KRT75, MADD, MAP4K1, Mek, 
MET, NCK, NFAT (complex), 
Nfat (family), NFkB (complex), 
PLCG1, Rap1, Ras, Ras homolog, 
RIPK2, RRAS, Sapk, SNX18, 
SOS1, TCR, WIPF1 

 25  17 Cellular Development  
 
Cellular Growth & Proliferation  
 
Hematological System 
Development and Function 
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 5 ALDH3A2, ALPP, COL7A1, 
CTSC, CYP11B1, DMXL1, 
EGLN1, ELOVL7, EPAS1, 
EPHX1, FERMT2, GCLC, 
glutathione, HIST1H2AC, 
HIVEP3, IKBKG, ITGB6, ITGB8, 
ITPR2, JUN, KIAA1310, LAMP2, 
MIA3, MVD, NAT1, PCYT1A, 
RDH5, retinoic acid, SLC16A3, 
SREBF1, TGFB1, TGFB3, 
TSPAN2, Type II Receptor, 
UTP20 

 24  15 Drug Metabolism  
 
Molecular Transport  
 
Gene Expression 

 6 ACAA2, AHNAK, APOD, 
arachidonic acid, beta-estradiol, 
Calmodulin, CDH15, Ck2, CKB,  
CREB3L2, DEPDC1, DMD, 
EPB41L3, FARSA, GMFB, 
HADHB, IRX5, ITGBL1, 
KANK1, KCND2, LITAF, 
LYPLA2, MIR124, NOP2,  
OSTF1, PCYT1A, PLA2G2E, 
PLA2G4A, PPFIBP1, PSEN2, 
PTP4A1, STXBP1, TSFM 
(includes EG:10102), YWHAZ, 
ZCCHC24 

 24  15 Lipid Metabolism  
 
Molecular Transport  
 
Small Molecule Biochemistry 

 7  AIFM2, ANKRD32, ARL4C, 
BLM, C12ORF5, CHD7, CLIC1, 
CREB1, DAGLB, EP400, ERCC3, 
ERCC5, GH1, IKBKE, ING1, 
JMJD1C, MAGMAS, 
METTL11A, MPHOSPH6, 
MYO9B, PACRGL, PCNA, 
PPARG, PSENEN, PSMC2, 
RAD18, RECQL5, SEPT2, 
SHPRH, SMARCA4, SMARCA5, 
TAF1C, TMEM33, TOP3A, TP53 

 23  15 DNA Replication, Recombination 
and Repair  
 
Nucleic Acid Metabolism  
 
Small Molecule Biochemistry 

 8 ACOX3, BMP2K (includes 
EG:55589), C14ORF147, 
CCNG1, COPS8, COPS7A, 
COPS7B, CTDSPL2, DDX41, 
FHIT, FYCO1, GDAP2, GPT, 
HNF4A, HSD11B1, HSDL2, 
IGF1, INADL, IRS4, LCN2, 
MAK16, MAPK7, 
palmitoylcoenzyme A, PI4KB, 
PTPN4,RAB11A, SERPINA3, 
SULT1C2, TIGD6, TNFRSF11B, 
TUBB3, TUBB4, VEGFC, VTN, 
ZZEF1 

 22  14 Connective Tissue Development 
and Function 
 
Skeletal and Muscular System 
Development and Function  
 
Tissue Morphology 



 

 

126 

9 ACT1, APP, BAT2, CCDC33, 
CCDC101, CCR10, CPSF3, 
Filamin, FLNA, FLNB, FOLR1, 
GMFB, GNB5, GRB2, GSTK1, 
HSPA1L, KCND2, MADD, 
MAP3K7, NCBP1, NOC4L, 
OPN4, RHPN2, RTN3, SEPT9, 
SEPT11, SH3PXD2A, SNX17, 
SSSCA1, TRAF2, TRAF6, 
TRAIP, VTA1, XPO4, YEATS2 

 21  14 Protein Synthesis 
 
Cell Signaling  
 
Cellular Assembly and 
Organization 

10 AKD1, ARF3, BUB1B, CD274,  
CENPC1, CENPE, CENPH 
(includes EG:64946), CRADD, 
E2F1, GABPB1 (includes 
EG:2553), GCA, GCAT, GPR176, 
HIVEP2, KIF2C, MIR17 (includes 
EG:406952), NAPEPLD, NDC80, 
PCYT1A, PEA15, PHF13, Pld, 
POLA2, PRIM1, PRIM2, PTEN,  
RALGDS, RMND5A, RRM1  
(includes EG:6240), STXBP1, 
TNF, TNFRSF4, YY1, ZFP36, 
ZFP36L1 

 18  12 Cellular Assembly and 
Organization  
 
DNA Replication, Recombination, 
and Repair  
 
Immunological Disease 

11 26s Proteasome, ADCYAP1, 
ANAPC5, ANAPC7, APC, ATF3,  
CASP6, Cbp/p300, CD80, CDC6,  
CDC20, CHGB, CREBBP,  
Cytochrome c, DHFR, EGR1, 
EPAS1, FZR1, GALNT7, 
GNRHR, MAF, MIR24-1 
(includes EG:407012), MLL, 
NFE2L2, NKX2, NR5A1, PMF1, 
RAB4B, SAT1, SERPINA3, 
SLC2A1, SS18L1, TK1, 
ZDHHC5 

 9  7 Cancer  
 
Gene Expression  
 
Cell Death 

12 ARMCX5, ZNF217  2  1 Cellular Development  
Cardiovascular Sys. Dev. & Funct.  
Cellular Function & Maintenance 

13 PARS2, Proline-tRNA ligase  2  1   
14 ASNSD1, Asparagine synthase  

(glutamine-hydrolysing) 
 2  1   

15 RBM33, SUMO3, ZNF143  2  1 Gene Expression  
Post-Translational Modification  
Infection Mechanism 

16 AKAP3, ROPN1L, YBX2  2  1 Cellular Development 
Reproductive Sys. Dev. & Funct.  
Cell Signaling 

17 FBXW12, FIGLA, LOC728622  2  1 Cellular Compromise  
Organ Development  
Reproductive Sys. Dev. & Funct. 
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Chromosome A172 SW1088 U87 
1 +   + 
2 +     
3 +     
4 -     
5 +     
6       
7 +     
8 +     
9 + +   

10 +     
11 +     
12 -     
13 - - - 
14 -   - 
15 - -   
16 +     
17 +     
18 + -   
19 + -   
20 + +   
21 +     
22 -     
X       

X/Y + +   
Total 66-80 63-63 44 

Table A.7: Gross chromosomal gains (+) and losses (-) reported for 3 parent cell 
lines. Chromosomal gains and losses are presented relative to ploidy of parent cell 
line. Blank cells indicate no changes. Data adopted from reference [147]. 
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Cell Chromosomal Changes 
A172 XXY, i(X)(p10)[18], +Y[15], +1[15], der(1)t(1;18)(q?;q?)[17],  

der(1)t(1;17;14)(1qter→cen→1q?::17p?::14q?→14qter)[20],  
der(1)t(9;1;17;14)[5], 
ider(1)t(X;1;18;1)(Xp?::1q?::18::1q?→cen→1q?::18::1q::Xp?)[20], +2[10], 
der(2;5)(q33;q13)[22]×2[11], +3[10], der(3)t(3;9)(q27;p13)[17], 4[5],+5[12], 
del(6)(q12)[20],+7×2[18], del(7)(q32)[2], der(7)t(6;7)(q?;q11)[19], 
der(7;19)[3], +8[12], del(8)[18], +9[13], 
der(9)inv(9)t(9;16)(16q?::9p?11→cen→9q34::9p?11→9pter)×2[19],  
dic(9;14)(9qter→cen::14q21→cen→14pter)×2[22], +10[11], 
der(10)t(1;10)×4[11], der(10)t(1;10)×3[5], der(10)t(1;10)×2[6],+11[11], 
der(11)t(1;11)[17], der(1;11)[17], 12[5], 
del(12)(p11)[19],13[11],14×3[22],15[5], +16[18], +17[17], +18[12], 
der(18)t(1;18)×3[11], der(18)t(1;18)×2[11], del(18)[2], +19[13], 
der(7;19)×2[4], der(7;19)[2], der(19)t(10;19)(?;p13)×2[10], 
der(19)t(10;19)[8],+20[16], +21[13], der(21)t(2;21)[12],22[16][cp22]  
 

SW1088 XXY, +Y[12], +del(1)[15],der(1)t(1;18)[13], del(3)[2], der(6)t(6;19)[5], 
der(7)t(3;7)[3],r(8)[2], +der(9)t(7;9)[17], der(7;9)[3], der(10)t(4;10)[2], 
der(10)t(10;15)[5],13[9],15[21],18[10],19[7],+20[17][cp21]  
 

U87 X,X, der(1)t(1;13)(p13;q?)×2, +der(1;20)t(1;14)(p?;q?)t(1;20)(p10;q10), 
der(6)t(6;7)(p12;p?), der(6)t(6q;18;6q;12q), ins(9;13)(p13;q?), del(10)(q11), 
del(11)(q12), der(12)t(6;12)(q?;q?),13,14, der(16)t(1;16)(p?;p?), del(20), 
der(22)t(10;22)(q?;p?)[10]/44, idem, ins(2;16)(p?;?)[10] 

Table A.8: Detailed chromosomal aberrations reported in 3 parent cell lines. Table 
adopted as reported in reference [147].  
 
 

Gene  A172 SW1088 U87 
P53 Mutant Function[148] Not Reported Wild-type Function[148] 
P21 Wild-type Function [149] Not Reported Wild-type Function[14] 

P16 (INK4A) Wild-Type Function [149] Not Reported Homozygous Deletion[150] 
RB Not Reported Not Reported Wild-type Function[151] 

Chk1 Not Reported Not Reported Wild-type Function[152] 
Chk2 Not Reported Not Reported Wild-type Function[152] 
Mgmt No Activity[85] Not Reported No Activity[153] 

P-glycoprotein No Activity[154] Not Reported No Activity[155] 
Table A.9: Genetic alterations and activity status of genes involved in cell cycle 
regulation and drug resistance reported in literature for the three parent cell 
lines. Reference indicated in parenthesis.  
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