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ABSTRACT OF THE THESIS 

Reliability-Based Analysis of Crack Control in Reinforced Concrete Beams  

By RIMA ZAHALAN 

Thesis Director: 

Dr. Hani H. Nassif 

This thesis is a study on reliability-based analysis of reinforced concrete beams at 

the crack control limit state. Past approaches to crack control and crack widths 

predictions in various codes are discussed.  The limit state considered in this study is the 

maximum flexural crack width of reinforced concrete structures. Reliability index, β, is 

calculated to assess the level of safety in the ACI 318-08 Building Code.  

 Resistance prediction equations for the flexural crack control limit state as well as 

load equations are researched and developed in terms of the stress in the reinforcing steel. 

Statistical properties of variables are obtained from available literature. The effects of 

several parameters on the reliability index are also studied.  The equation by Frosch 

(1999) provided the most accurate crack width predictions for various beam data obtained 

and is used as the resistance model in the limit state function.  The live load model used 

is based on statistical information provided in the study by Nowak et. al (2008) which 

was also used in the calibration of the ACI318-08 building code.  Monte Carlo simulation 

is performed using statistical parameters obtained for each variable.  A total of 1290 

beams are designed using the ACI 318-08 Building Code and included in a detailed 

parametric study.  
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It is concluded that the spacing of steel reinforcement and the concrete cover had 

the most significant effects on the reliability of crack width predictions.  When spacing of 

reinforcement and concrete cover are increased, the reliability index decreases.  However, 

increasing beam effective depth and area of reinforcement did not significantly increase 

the reliability index.  Additionally, using a larger number of bars with smaller diameters 

yields higher reliability indices than using a small number of bars with larger diameters. 

Furthermore, an overall trend was observed that as steel yield strength increases and 

concrete strength decreases, the reliability index decreases.  This study can be considered 

as a prelude to a future code calibration process of the ACI 318-08 Building Code at the 

serviceability limit state of crack control.  
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CHAPTER 1 THESIS OVERIEW 

 

1.1 PROBLEM STATEMENT 

The factors influencing cracking in concrete have been debated throughout recent 

history. Crack width prediction models have been presented and various codes have 

implemented crack control provisions. These codes have been based on statistical 

analysis which is in turn based on collected crack width data. Reinforced concrete 

structures are considered here. The properties of the variables used in the previous 

analyses have all been deterministic, which are quantities that are assumed to be perfectly 

known. However, properties of structures are inherent to natural variability. Therefore, 

absolute safety, or zero probability of failure, cannot be achieved. Thus, a reliability-

based approach will be taken which considers the probability of failure of a structure. 

This probability of failure is measured in terms of a reliability index, β. Extensive 

research has been performed on ultimate limit states, but not enough has been done on 

serviceability limit states with regard to reliability index. With a reliability-based 

approach, the variables used in the prediction equations will be considered as random 

variables and not deterministic. Consequently, the reliability-based model makes the 

resulting designs more real and more consistent than the currently used deterministic 

models. An attempt to control cracking using the reliability index as an input variable, 

which varies based on the designer’s desired probability of failure, is made here to 

account for the inherent variability found in the material properties of structures. 

Different variables will be analyzed using a reliability-based approach to determine 

which ones will have the most effect on the probability of failure.  
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1.2 RESEARCH OBJECTIVES AND SCOPE 

The principal objective of this research is to perform a reliability-based analysis to 

determine the reliability index of crack width in reinforced concrete structures. Control of 

cracking in concrete is important for aesthetics and durability. The crack control limit 

state is addressed. The most important variables influencing cracking in reinforced 

concrete will be determined using a reliability-based analysis. Provisions will be 

recommended based on these influencing parameters. Probabilistic analysis using random 

variables is becoming more prevalent and models real world situations better than a 

deterministic analysis. A limit state function is used with a crack width prediction 

equation as the resistance and a distributed live load for an office building will be used as 

the load. This model will be simulated using the Monte Carlo method. The results of the 

Monte Carlo simulation will output a reliability index for each case studied. Evaluation of 

these reliability indices will determine how selected parameters influence reliability and 

safety. Parameters included in the study are beam width, beam effective depth, concrete 

cover, steel yield strength, concrete compressive strength, area of reinforcement, spacing 

of reinforcement, and reinforcement bar size. Reliability indices will also be evaluated to 

see if the designed beams meet the selected target reliability index.  
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1.3 THESIS ORGANIZATION 

 This thesis consists of six chapters described briefly as follows: 

 Chapter I covers the introduction consisting of the problem statement, research 

objective and scope, and thesis organization. 

 Chapter II covers the literature review dating back to the 1950s of the history of 

crack width theory, causes and mechanism of cracking, the most influential variables on 

crack width, and a collection of crack width equations. Theories of various investigators 

are presented chronologically. A comparison of international code provisions is also 

presented along with a summary of the most important crack width equations, identified 

by simplicity and historical use.  

 Chapter III covers an introduction to the reliability-based approach and how 

considering variables as random as opposed to deterministic is becoming more prevalent 

in structural design. The inherent variability of material properties must be taken into 

account and the resulting realization that the capacity may not be the same for every 

structure with the same design parameters. 

 Chapter IV covers the test method and procedure. A validation of the resistance 

and load equations is provided and proven using data of measured crack widths available 

in literature. Statistical parameters of the variables are also presented, which include 

mean, standard deviation, and coefficient of variation.  

 Chapter V covers the results of the Monte Carlo simulations, the most influential 

parameters affecting the reliability index, an analysis of these results, and a discussion.  
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 Chapter VI covers the conclusions, recommendations, and appendices.  
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CHAPTER 2 CAUSES AND MECHANISM OF CRACKING IN CONCRETE 

 

2.1 INTRODUCTION 

Control of cracking in concrete structures is controversial but must be controlled 

for aesthetic purposes, durability, and corrosion resistance. Cracking can reduce the 

serviceability of a structure. Cracking can primarily be caused by flexural and tensile 

stresses, but also from temperature, shrinkage, shear, and torsion. Although researchers 

do not agree on any one specific crack formula, the most significant parameters to control 

cracking have been widely agreed upon. The most sensitive factor is the reinforcing steel 

stress, followed by concrete cover, bar spacing, and the area of concrete surrounding each 

bar. It has been agreed upon that the bar diameter is not a major variable. 

 

2.2 CAUSES OF CRACKING IN CONCRETE 

Cracking in concrete is subject to an inherent variability. Concrete cracks simply 

because it has low tensile strength and lacks ductility i.e. it is brittle. The following lists 

the factors that cause cracking according to Abdun-Nur (1983). The first factor is a too 

high water content in the concrete mixture which increases drying shrinkage and causes 

tensile stresses due to shrinkage movement. The second is excessively high cement 

content which requires more water and leads to the aforementioned cracking result. Next, 

when higher cement content is used than needed, extra heat is generated through the 

hydration of cement which leads to thermal stresses that exceed the tensile strength of 

concrete at early ages. Fourth, cycles of drying and wetting due to rain and sun cause 

dimensional expansion and contraction and lead to stresses that again exceed the tensile 

strength of concrete. Fifth, temperature changes also cause expansion which leads to 
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excess stresses. Next, freezing and thawing not only brings temperature and dimensional 

changes that introduce tension, but also freezing of the water in pores creates additional 

tensile stresses that cause cracking. Also, deicing salts to increase safety for moving 

traffic on pavements leads to forces of crystallization of the salt out of solution which 

increases tensile stresses. Furthermore, the effect of chloride ions on the reinforcing steel 

causes rusting and expansion of the steel which brings tensile stresses. Eighth, dry hot 

winds during placing remove the surface water quickly and cause surface shrinkage 

which leads to cracking. Ninth, structural adjustments due to foundation movements by 

settlement or expansive soils lead to cracking. Next, the reaction between the alkalies in 

the cement and certain types of silica in aggregates bring about the formation of a gel that 

leads to internal pressures which cause concrete to break up in tension. Lastly, sulfate 

attack of the concrete produces calcium sulfoaluminate which occupies a large space and 

leads to internal pressure which causes cracking. Abdun-Nur maintains that these are 

some of the major causes of cracking he has experienced throughout his career but there 

certainly may be more causes. 

 

2.3  HISTORY OF CRACK WIDTH THEORY  

Since the 1950s, various researchers have been conducting investigations on 

cracking in concrete. Previous research using statistical evaluation has been performed on 

reinforced concrete beams where crack widths were recorded at two primary locations- 

the bottom tension surface and the side face at the level of reinforcement. The crack 

width at the bottom of the beam is typically larger than on the side of the beam because 

of the larger extension of the bottom face than at the level of the steel. Due to the random 
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nature of cracking and currently accepted models that become invalid when concrete 

cover is large, there is an ever-growing need for investigators to find compromise on 

crack width equations that will accurately determine width values and provide insight on 

specific parameters that will prevent large crack widths. Figure 1 shows a cracked section, 

where Sc  denotes crack spacing and fs denotes reinforcement stress. 

 
Figure 2.1: Cracked Section (Frosch, 1999) 

 

2.3.2 EQUATION BY CLARK (1956) 

Clark (1956) conducted tests to enable engineers to estimate crack width and 

spacing in flexural members of varying design and stresses in reinforcement. He 

maintained that the low tensile strength of concrete, its low extensibility, and the stresses 

brought on by drying shrinkage all result in cracks in the tensile zone of loaded 

reinforced concrete flexural members. The data provided in this experiment will be 

elaborated on later in this thesis as it was used to test the accuracy of existing crack width 

equations. The study included 58 reinforced concrete beams and slabs of varying 

dimension. The specimens were loaded with two point loads at quarter points and 

Tuckerman gages were used to measure the width of cracks.  

 

 



 

 

Figure 2.2: Dimensions of Clark’s Specimen and Type of Loading 

 

 

Figure 

Clark (1956) concluded that the average width of cracks was found to be 

proportional to the product of the quantities D/p and (h

average width was also found to be proportional to the increase of steel stress beyond tha

causing initial cracking. Clark (1956) also insisted that the width of cracks can be 

reduced by using a large number of small bars and by increasing the ratio of 

reinforcement. However, the aforementioned investigators disagree. Broms (1965), 

Gergely-Lutz (1968), and Frosch (1999) indicate that the ratio D/p is not a good 

correlation variable, especially for T beams, and that bar size plays a minimal role in 

reducing crack widths. The coefficients in Clark’s (1956) equation are specific to a set of 

data and thus his equation is not the simplest applicable formula. Nevertheless, Clark 

 

: Dimensions of Clark’s Specimen and Type of Loading 

 

 

Figure 2.3: Typical Crack Pattern at Failure (Clark, 195

concluded that the average width of cracks was found to be 

proportional to the product of the quantities D/p and (h-d)/d. Furthermore, he stated that 

average width was also found to be proportional to the increase of steel stress beyond tha

causing initial cracking. Clark (1956) also insisted that the width of cracks can be 

reduced by using a large number of small bars and by increasing the ratio of 

reinforcement. However, the aforementioned investigators disagree. Broms (1965), 

z (1968), and Frosch (1999) indicate that the ratio D/p is not a good 

correlation variable, especially for T beams, and that bar size plays a minimal role in 

reducing crack widths. The coefficients in Clark’s (1956) equation are specific to a set of 

nd thus his equation is not the simplest applicable formula. Nevertheless, Clark 
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(Clark, 1956) 

concluded that the average width of cracks was found to be 

d)/d. Furthermore, he stated that 

average width was also found to be proportional to the increase of steel stress beyond that 

causing initial cracking. Clark (1956) also insisted that the width of cracks can be 

reduced by using a large number of small bars and by increasing the ratio of 

reinforcement. However, the aforementioned investigators disagree. Broms (1965), 

z (1968), and Frosch (1999) indicate that the ratio D/p is not a good 

correlation variable, especially for T beams, and that bar size plays a minimal role in 

reducing crack widths. The coefficients in Clark’s (1956) equation are specific to a set of 

nd thus his equation is not the simplest applicable formula. Nevertheless, Clark 
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(1956) concluded that his equation gave reasonable values for average crack width and 

that the maximum crack width is 1.64 times the average crack width: 

 

���� = �� �	 [�� −  �� ��	 +  ��]                                   (2.1) 

where:   

wave = average width of cracks, in 

C1, C2 = coefficients, the values depend on distribution of bond stress, bond 

strength, and tensile strength of concrete, for Clark’s study C1 = 2.27 x 10��(h-

d)/d, C2 = 56.6 

D = diameter of reinforcing bar, in 

p =As/Ae =cross-sectional area of reinforcement/cross-sectional area of concrete = 

bd, in² 

fs  = computed stress in reinforcement, psi 

n = ratio of modulus of elasticity of steel to concrete (assumed to be 8 in Clark’s 

study) 

h = overall depth of beam/slab, in 

d = distance from compressive face of beam/slab to centroid of longitudinal 

tensile reinforcement  

 

2.3.3 EQUATION BY KAAR AND MATTOCK (1963) 

Kaar and Mattock (1963) also developed a well-known crack width equation for 

bottom face cracking using the same variables as the Gergely-Lutz (1965) equation 

discussed later:  

    �� = 0.115��� √��
     (2.2)                                      

where: 
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b
w = maximum crack width, 0.001 in   

β = ratio of distances to neutral axis from extreme tension fiber and from centroid  

       of reinforcement 

s
f = steel stress calculated by elastic crack section theory, ksi 

c
d = bottom cover measured from center of lowest bar, in 

A  = average effective concrete area around a reinforcing bar, having same 

centroid  

        as reinforcement, in² 

The equation of Kaar and Mattock (1963) was derived from a curve fit of limited data 

primarily from Hognestad and Kaar-Mattock. The equation fits the test data well for the 

range of covers considered. However, for covers greater than 2.5 inches, the equation no 

longer fits data well (Frosch, 1999).  

 

2.3.4 EQUATION BY BROMS (1965) 

Broms (1965) attempts to construct a rather uncomplicated method for calculating 

crack width and crack spacing in reinforced concrete members. Using reinforcement with 

higher strength levels in reinforced concrete members is partially limited by the crack 

width which can be permitted without endangering reinforcement. Generally, increasing 

steel stress and crack spacing also increases the crack width at the level of reinforcement. 

Plain bars associated with crack spacing for reinforced concrete members is large, thus 

prompting steel stress levels to be kept lower to control crack widths. Analysis of the 

stress distribution in cracked reinforced concrete members has shown that assuming a 

linear or uniform distribution of stress may lead to larger and more significant errors 



11 

 

 

 

when the calculated crack spacing or the main cracks approach two times the thickness of 

the concrete cover or the individual spacing of reinforcing bars (Broms, 1965).  

Broms carried out tests on 37 tension members and 10 flexural members all 

having reinforced high strength bars in order to analyze crack width and crack spacing. It 

was found that the length of new cracks that develop in a member that has been 

reinforced with several bars depends primarily on the spacing of the individual bars and 

on the initial crack spacing. The study concluded that the absolute minimum visible crack 

spacing will be the same distance from the surface to the center of the bar that is located 

nearest to the surface of the member, defined as distance t. Therefore, the theoretical 

minimum crack spacing is equal to the thickness of the concrete cover (Broms, 1965). 

Based on his study, Broms (1965) developed a formula to calculate average crack 

width wmax, neglecting the elongation of concrete and assuming crack spacing equal to 

twice the distance te (the effective concrete cover) where ϵs is the strain in the 

reinforcement. In the figure below, t = te, the distance to the nearest reinforcing bar to the 

point in question (e.g. C). Broms’ equation for maximum crack width is as follows:  

   � �! = 4#�$� when t > 1.0                                            (2.3)                                                 
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Figure 2.4: Reinforced concrete member showing terms used to define the effective cover, 

te (Gergely and Lutz, 1968) 

 

This equation is only applicable when the nominal steel stress exceeds 20,000 to 

30,000 psi at cover thicknesses ranging from 1.25 to 3.0 in and about 50,000 psi at a 

cover thickness of 6.0 inches. Thus, the equation is not a reasonably applicable one for all 

situations.  

It was also shown that the widths of the initial cracks present at low levels of 

stress in the reinforcement, usually less than 20,000 psi were almost the same at the 

surface of the members closest to the reinforcement. The crack widths positioned at the 

surface were two to three times greater than the widths closer to the reinforcement at 

stresses larger than 30,000 psi (Broms, 1965). 
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2.3.5 EQUATION BY GERGELY AND LUTZ (1968) 

Peter Gergely and Leroy Lutz (1968) examine information from six experiments 

by Broms (1965), Hognestad (1962), Kaar and Mattock (1963), Kaar and Hognestad 

(1965), Clark (1956), and Rüsch and Rehm (1964) for the side and bottom crack width of 

flexural members. In order to obtain equations for bottom and side face cracks that best 

fit the data, a large number of equations and variables were analyzed. Gergely and Lutz 

present an equation that best fit the experimental data. These equations were used to 

predict the most likely bottom and side face crack widths in reinforced concrete flexural 

members.  

Others have proposed a myriad of semi-theoretical and experimental equations 

that contain several different variables. Because the width of cracks can be subjected to 

large scatter, it is more difficult to ascertain which equation is better for predicting such 

quantities. The primary variable is the steel stress, fs. Bar diameter was concluded to be 

insignificant when determining crack widths while the number of bars was extremely 

important since it indirectly determines concrete cover. Some other variables considered 

were the average effective concrete area around a reinforcing bar (A), bar spacing s, 

concrete cover ts or tb, and the ratio of bar diameter D to reinforcement ratio p. Crack 

width was found to directly change depending on the distance from the nearby bar 

(Gergely and Lutz, 1968). 

The larger extension of the bottom face allows the crack width at the bottom of 

the beam to be generally larger than on the side of the beam as opposed to the level of 

steel. “Regression analysis was used where the coefficients of a linear expression that 

best fits a given set of experimental data are determined by a least squares of deviations 



14 

 

 

 

criterion” (Gergely and Lutz, 1968). When considering individual variables of certain 

investigations, the basis for evaluation remained in the standard error. When comparing 

various investigations, the magnitude of the regression coefficient was quintessential.  

Based on their study, Gergely and Lutz (1968) recommend the following equation 

for calculating bottom crack width:  

�� = 0.076���  '�()*
                                                       (2.4) 

where: 

b
w = maximum crack width, 0.001 in   

β = ratio of distances to neutral axis from extreme tension fiber and from centroid  

       of reinforcement 

s
f = steel stress calculated by elastic crack section theory, ksi 

c
d = bottom cover measured from center of lowest bar, in 

A  = average effective concrete area around reinforcing bar, having same centroid  

as reinforcement, in² and is equal to 2b’(h-d)/m, where b’ is the width of the 

beam at the centroid of tensile reinforcement, h is the depth, d is the effective 

depth, and m is the number of tensile reinforcing bars  

They did this only after taking into consideration that the Rüsch -Rehm and Kaar-

Mattock data are biased. They compared the results to other studies and concluded that 

Clark’s test program was more comprehensive than other American studies.  

In conclusion, Gergely and Lutz found that the steel stress is the most important 

factor. The cover thickness is an important factor as well but not the only thing that 
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should be taken into consideration. The bar diameter is not a detrimental factor and that 

the ratio D/p is not a good variable in any form. The proximity of the compression zone 

in flexural members reduces the size of the crack width. As the strain gradient increases, 

so does the bottom crack width and that the major variables are the effective concrete 

area Ae, the number of bars m, the side or bottom cover, and the steel stress (Gergely and 

Lutz, 1968).  

 

2.3.6 ACI FALL CONVENTION: MODERATED BY DARWIN (1984) 

To discuss the aforementioned crack width theories, the ACI fall convention met 

in 1984 in New York, NY. It was sponsored by ACI committees 222, Corrosion of 

Metals in Concrete, and 224, Control of Cracking of Concrete Structures and supervised 

by David Darwin. David G. Manning, Eivind Hognestad, Andrew W. Beeby, Paul F. 

Rice, and Abdul Q. Ghowrwal. The participants at the convention all shared their views, 

reflected below. A debate was conducted to question current design tactics and provisions. 

They connected crack width to steel stress, bar spacing, exposure conditions, and cover 

thickness. According to these provisions, a thinner crack width can be acquired by 

reducing the cover in order to provide protection against severe exposure conditions. 

Corrosion resistance can be decreased by a reduced cover.  

According to Manning (1984), there are two varied theories about the effect of 

cracking on the corrosion of steel in concrete. “Theory No. 1 states that cracks 

significantly reduce the service life of structures by permitting aces of chloride ions, 

moisture, and oxygen to reinforcing steel, not only accelerating the onset of corrosion but 
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providing space for the deposition of corrosion products. The opposing argument, Theory 

No. 2 states that while cracks may accelerate the onset of corrosion, such corrosion is 

localized and confined to the intersected reinforcing bars” (Manning, 1984). Because 

chloride ions eventually diffuse through concrete that has not been cracked and further 

develop more corrosion, after several years of service there is little ability to tell the 

difference the amount of corrosion in cracked and uncracked concrete. Manning, Beeby, 

and Maylan all believe that Theory No. 2 is closest to the actual situation than the first 

theory. Most codes outline certain provisions to deal with crack width at the surface of 

the concrete. However, the crack width at the bar is not related to the surface cracks. The 

crack width at the bar is a function of where the crack originated, the amount of cover, 

the steel stress, the arrangement and diameter of the bars, the reinforcement ratio, and the 

depth of the tensile zone.  

Hognestad (1984) outlines current provisions at the time of the meeting. The 1971 

ACI Building Code was created to accommodate the use of reinforcing steels with yield 

strength of 60,000 to 80,000 psi. Rules introduced the issue of crack control and were 

made to distribute reinforcement and controlled limitations on steel stress at service loads. 

When the ACI Code was written in 1971, it was not known the limits beyond which 

crack widths and steel would lead reinforcement to corrode. Therefore, the Gergely-Lutz 

term for crack width was chosen as the main basis for the provisions relating to 

distribution of flexural reinforcement. In preference to other equations at the time, this 

choice was made on the basis of simplicity and reasonable accuracy, considering that 

crack width is subject to large scatter. The equations for Gergely-Lutz crack width and 
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reinforcement distribution z are as follows, where exterior denotes structures exposed to 

outside environment and interior denotes structures not exposed to outside environment: 

    

� = 0.076� '()�*
 < 0.013 in (exterior),0.016 in (interior)                                  (2.5)  

+ =  �� '()�*
 < 145 k/in (exterior) 175 k/in (interior)                                           (2.6)  

 

The z factor has been modified several times for different structures, such as pipes or 

slab-type structures, to produce correct results since the cod provisions are too general. 

Committee 224 has been concerned about using the z factor to reduce cover in order to 

reduce crack width under conditions with potentially high corrosive levels. Numerous 

researchers concur that the z value is not as significant as has been previously suggested. 

The committee has stated that the crack width, or the crack width as seen through the z 

value, will not provide protection for reinforcement against corrosion. Hognestad 

deduced that the provisions set forth in the code control steel corrosion through six major 

factors. The quality of concrete, adequate cover, limited chlorides, sound reinforcing 

details, steel stress limitations, and prestressing in must all be considered. One of the 

Committee’s recommendations calls for limiting the value of the cover that is used for the 

calculation of z to 2 in. Manning and Beeby believe there is no legitimate relationship 

between crack width and corrosion. Therefore, the crack provisions in most codes of 

practice are more likely to lessen in durability than to improve it. “The road toward 

design criteria for the future could be to differentiate between various exposures, types of 

member, and types of service” (Beeby, Darwin, Hognestad, & Manning, 1984).  
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2.3.7 EQUATION BY FROSCH (1999-2001) 

The ACI Building Code calls for the control of flexural cracking in reinforced 

concrete members. Since 1971, the code has used the z-factor method, which is a tailored 

form of the Gergely-Lutz crack width equation that was derived from a statistical 

assessment of experimental data. Thicker concrete covers coupled with the use of high-

performance concrete are becoming increasingly popular because of their durability. 

These thicker covers are necessary for maintaining crack control. They result in 

unrealistic bar spacing and prevent the use of contemporary crack control practices that 

are based on statistical reasoning. Research is becoming increasingly significant to 

determine if increasing covers can still provide reasonable crack control, the effect of 

epoxy-coated reinforcement on crack width, and the validity of the z-factor approach for 

thicker concrete covers. Frosch (1999) discusses the validity of the crack width equation 

and introduces a new formulation of the equation based on the physical phenomenon The 

physical model allows a designer to choose any limiting crack width (2001).  

Gergely and Lutz (1968) developed a well-known crack width equation for the 

critical bottom tension face that was previously mentioned. The concrete cover dc is of 

interest and the range covered in the Gergely-Lutz study considered a maximum cover of 

only 3.31 in, where only three test specimens had covers greater than 2.5in. The fit for the 

equation is best seen with covers less than 2.5 in. However, it is perfectly legitimate to 

question both equations outside the parameters of the covers already considered. The 

Kaar-Mattock (1963) and Gergely-Lutz (1968) equations displayed a divergence in the 

tabulated crack widths as the covers increased, as seen in Figure 2.5. This did not allow 

for a “correct” equation to exist because test data for thicker covers is unavailable. 



 

 

Another approach needs to be taken in order for 

converge for covers greater than 2.5 in.

   

Figure 2.5: Comparison of Equations of Gergely

The physical model for cracking is considered to provide more perception on 

crack width calculations. 

cracked section and an assumed linear strain gradient profile.

 

ther approach needs to be taken in order for the calculation of crack widths to 

for covers greater than 2.5 in. 

: Comparison of Equations of Gergely-Lutz (1968) and Kaar

(1963), (Frosch, 1999) 

 

The physical model for cracking is considered to provide more perception on 

crack width calculations. This can be shown in the following figures which illustrate a 

cracked section and an assumed linear strain gradient profile. 

Figure 2.1: Cracked Section (Frosch, 1999) 
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Lutz (1968) and Kaar-Mattock  

The physical model for cracking is considered to provide more perception on 

This can be shown in the following figures which illustrate a 
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Figure 2.6: Strain Gradient (Frosch, 1999) 

 

Flexural cracking was studied where crack width is calculated at the level of 

reinforcement by the following equation: 

�) =  ,�-)                                                                 (2.7) 

where:   

c
w = crack width 

 s
ε = reinforcing steel strain = s

f / s
E  

 c
S = crack spacing 

 s
f = reinforcing steel stress 

 s
E = reinforcing steel modulus of elasticity 

 

To determine crack width at the beam surface, the above equation can also be 

multiplied by an amplification factor β = ε2/ε1 = (h-c)/(d-c) to account for the strain 

gradient. 
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 Crack widths were generated based on the physical model. These results were 

compared to test data mainly used in the Kaar-Mattock and Gergely-Lutz study except 

that of Rusch-Rehm. The crack width model clearly shows that the crack spacing and 

width are functions of the distance between the reinforcing steel. Limiting the spacing of 

the steel contributes to crack control. Placing reasonable limits on crack widths results in 

provisions for maximum bar spacing. Based on the physical model, the equation to 

calculate the maximum crack width for uncoated reinforcement is as follows: 

�) =  �./0/ �12()� +  �����3                                                        (2.8) 

 

For epoxy coated reinforcement, the formula should be multiplied by a factor of 2. The 

equation can also be rearranged to solve for the allowed bar spacing, s: 

   4 = 212�670/�./8�� −  ()�3                                                               (2.9) 

where:               

 s  = maximum permissible bar spacing, in 

c
w = limiting crack width, in.  (0.016 in, based on ACI 318-95) 

s
E = 29000 ksi 

s
f = reinforcement steel stress; 2/3fy, ksi (ACI 318-08 recommended, accounts for 

service stress) 

β  = 1.0 + 0.08 c
d  

c
d = bottom cover measured from center of lowest bar, in 
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Based on the physical model, the following design recommendation is presented 

that accommodates the use of both coated and uncoated reinforcement. The primary 

purpose of these recommendations serve is to unify the design criteria for controlling 

cracking in side face and bottom face cracking. As the thickness of the cover increases, 

the reinforcement spacing decreases: 

 

4 = 129 :2 − ;7<=/>  ≤ 129�                                                      (2.10) 

where:               

36
c

s

s
f

γ
α =  (reinforcement factor) 

c
d = thickness of concrete cover measured from extreme tension fiber to center of 

bar or wire located closest thereto, in 

 s  = maximum spacing of reinforcement, in 

c
γ = reinforcement coating factor: 1.0 for uncoated reinforcement; 0.5 for epoxy-

coated reinforcement, unless test data can justify a higher value 

 

According to Frosch (1999), there is a disadvantage for the current use of crack 

width expressions. They are based solely on statistical reasoning and any covers beyond 

2.5 in. are limited. For covers less than 3 in., a limited bar spacing of 12 in. should be 

used for Grade 60 reinforcement. This is reduced to 9.6 in. for Grade 75 reinforcement. 

Gergely maintains that limiting surface cracks is for the sole purpose of improving 

aesthetics. Test data corroborates the aforementioned formulation for calculating crack 

width and is based on the physical phenomenon observed.  Frosch (1999) maintains that 
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the crack width model clearly shows that crack width is a function of the distance 

between reinforcing steel. Therefore, crack control can be maintained by limiting the 

distance between reinforcing steel.  

The ACI 318-08 Building Code also states that deep beams must have distributed 

reinforcement in order to control crack widths. Typically, crack widths are expected only 

at the extreme tensile face of the beam because that is where the largest cracks are mostly 

anticipated. However, Beeby has conducted studies that showed the largest crack widths 

occurring in the web along the beam side face with the maximum widths occurring at 

about mid-height. This is supported by Frosch (2005). Frosch (2005) also states that 

research has shown that the ACI 318-08 provisions in Section 10.6.4 are sufficient to 

control side face cracking. The largest crack width occurs at the bottom face and 

decreases to zero at the neutral axis. This is based upon the assumption that crack spacing 

is constant over the depth of the beam. On the contrary, the crack spacing varies over the 

depth of the beam and forms cracks near the neutral axis. In effective depths greater than 

36 in., ACI requires skin reinforcement to limit side face crack width in larger beams. 

Thicker covers coupled with high performance concrete provide durability to concrete 

structures. Concrete cover is a primary component used to control crack width which 

leads to questions arising as to whether current code provisions based on the work of 

Frantz and Breen are adequate enough to control side face cracking (Frosch, 2002). 

For any section that contains only primary reinforcement, the maximum crack 

spacing will occur at the largest distance from the reinforcement, this being at the neutral 

axis. Minimum crack spacing will occur at the level of reinforcement. The model tested 

showed that crack width in beams having a larger depth can be greater than the crack 



24 

 

 

 

width at the bottom surface. Therefore, the skin reinforcement provides a decline in crack 

spacing along the depth of the cross section. This occurs by reducing the distance from 

the closest reinforcement. The model reasonably calculated crack widths but 

overestimated the average crack widths by 11% and underestimated them by 14%. 

Increasing maximum side width cracks by 33% can lend to more accuracy as shown 

through histograms with results of the physical model. The side cover varied yet the 

results were within range (Frosch, 2002). 

The crack model allows crack width to be calculated at any part along the cross 

section. A profile of the crack width through the depth of the section is more easily 

created and allows for information regarding optimum locations for placing skin 

reinforcement for the purpose of controlling side face cracks.  

Results from tests conducted on the physical model correlate with the results set 

forth by Beeby (1971) and Frantz and Breen (1978) (Frosch, 2002). No crack widths 

were seen in beams having only primary reinforcement and no crack widths existed at the 

neutral axis. They began just below the neutral axis and increased toward the bottom face 

until a maximum was reached. Crack widths were minimized at points where skin 

reinforcement was added. Therefore, understanding crack width profiles for both sections 

including and not including reinforcement allows for maximum crack control. This 

occurs where maximum crack widths can be expected as well (Frosch, 2002). The 

following figure illustrates the crack width profile with and without skin reinforcement:  
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Figure 2.7: Side Face Crack Width Profile (Frosch, 2002) 

 

The cracking model shows that the crack spacing and crack width along the side face are 

functions of the distance from the reinforcement. Therefore, crack control can be 

achieved after adding skin reinforcement and limits the reinforcement spacing. A crucial 

facet is placing the concrete cover over the skin reinforcement. Depending on the 

accepted limit for crack widths and the depth of the section, skin reinforcement may not 

be a necessary component. Since the maximum crack width was previously stated to be 

halfway between the reinforcement and neutral axis, the following equation can be used 

to solve for the crack width at x = (d-c)/2: 

   �) = ,�@(�� + 2�� A( − BC3�
         (2.11) 

 

This equation can be solved for d as a function of ds.  The study of the physical model 

states that for a 36 ksi reinforcement stress level and where the concrete side faces covers 

up to 3 in., it is possible to build sections having an effective depth of 36 in. without 

using skin reinforcement. For thicker covers, the maximum effective depth not requiring 
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skin reinforcement should be decreased. Moreover, there is a reduction is maximum 

effective depth for covers thicker than 3 in. for Grade 60 reinforcement. This results in a 

maximum d = 36 in. These values are consistent with the current design requirements set 

forth by ACI 318-99.  

According to Frosch (2002), the placement of the first bar is the most critical for 

constant spacing of skin reinforcement. Studies concluded that the maximum skin 

reinforcement spacing is a function of the concrete cover over the skin reinforcement. It 

was also shown that a maximum bar spacing of 12 in. will provide reasonable crack 

control for concrete covers up to 3 in. The provisions concerning reinforcements confirm 

the presence of adequate control of cracking along the side face. ACI provisions for 

bottom face reinforcement can also be utilized for the design of skin reinforcement. 

Unification can help to simplify the current design provisions and takes into account the 

effect concrete covers have. The following figure shows the required skin reinforcement 

spacing: 

 

 

Figure 2.8: Required Skin Reinforcement Spacing (Frosch, 2002) 
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It is necessary to determine the location in the section where the reinforcement can no 

longer be used in sections where reinforcement exists. Because crack widths are 

controlled by skin reinforcement below its end point, it is necessary to calculate the 

maximum distance sna where the skin reinforcement can be eradicated. The maximum 

crack width will occur approximately halfway between the neutral axis and the location 

of the first layer of skin reinforcement at a distance x = sna /2 from the neutral axis 

(Frosch, 2002).  Although Frosch maintains that his 1999 equation is more conservative, 

the maximum crack width using skin reinforcement can be calculated by the following: 

 

�� = 4D� � E/;�)� 1(�� + ��FG� ��
    (2.12) 

 

Only the bottom 40% of the cross section requires skin reinforcement in the physical 

model. Similar studies were conducted for varying concrete cover dimensions ranging 

from 1 to 4 in.  

These analyses present the notion that changes in concrete cover dimensions do not 

significantly change the results. For 50% of the effective depth, it is traditional to require 

skin reinforcement in the tension zone, which is consistent with current ACI code 

provisions. Furthermore, it was shown that reinforcement bar size does not tremendously 

affect crack widths. The tests that were performed with varying bar sizes resulted in 

approximately the same crack widths. The bar size only impacted the dimension d. As 

long as the skin reinforcement provides sufficient bond transfer to the concrete itself, a 

bar of any size can be used with a high success rate. Again, it has been verified that the 
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spacing used on skin reinforcement is the primary parameter in controlling side face 

crack widths. This can also be done for controlling side face cracks (Frosch, 2002). Skin 

reinforcement shall be required along both side faces of a member for a distance d/2 

nearest the flexural tension reinforcement if the effective depth exceeds the value 

 

   ( = 429� − 2() ≤ 369�     (2.13) 

where: 

( = effective depth, in.; 

() =  thickness of concrete cover, in., for bottom-face reinforcement, measured from 

extreme tension fiber to center of bar, and for skin reinforcement, measured from side 

face to center of bar. 

 

2.4 REVIEW OF DESIGN CODES 

A comparison of international provisions for crack control is discussed here. This 

was done in an endeavor to acquire other crack width prediction equations and theory. In 

regard to both, it was determined that for simplicity and agreement of theory, that the 

American codes are deemed most suitable.  

2.4.1 ACI CODE SPECIFICATIONS (2008) 

ACI 318-08 requirements for flexural crack control in beams and thick one-way 

slabs are based on the statistical analysis (Gergely and Lutz, 1968) of maximum crack 

width data from several sources. ACI maintains that crack control is particularly 

important when reinforcement with yield strength in excess of 40,000 psi is used. Good 
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detailing practices such as concrete cover and spacing of reinforcement should lead to 

adequate crack control even when reinforcement of strength 60,000 psi is used. ACI 318-

99 and 318-08 Section 10.6 does not make a distinction between interior and exterior 

exposure since corrosion is not clearly correlated with surface crack widths in the range 

normally found with reinforcement stresses at service load levels. ACI 318-08 only 

requires that the spacing of reinforcement closest to a surface in tension, s, shall not 

exceed that given by 

    4 = 15 �IJ,JJJ./ � −  2.5B)                                               (2.14)                                                 

 

but not greater than 12(
IJ,JJJ./ ), where cc is the least distance from surface of 

reinforcement or prestressing steel to the tension face. If there is only one bar or wire 

nearest to the extreme tension face, s used in equation (1) is the width of the extreme 

tension face. These provisions are not sufficient for structures subject to very aggressive 

exposure or designed to be watertight. Special investigation is required for such 

structures. ACI 318-99 also limited the maximum spacing to 12in, but this limitation has 

been removed in ACI 318-08 (ACI Committee 224, 2001). ACI also recommends the use 

of several bars at moderate spacing rather than fewer bars at larger spacing to control 

cracking. These provisions were updated in 2005 to reflect the higher service stresses that 

occur in flexural reinforcement with the use of the load combinations introduced in the 

2002 Code. The maximum bar spacing is specified to directly control cracking. Similar 

recommendations have been stated for deep beams with the requirement of skin 

reinforcement.  
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2.4.2 AASHTO LRFD SPECIFICATIONS (2008) 

AASHTO LRFD (2008) also provides provisions to control flexural cracking 

through spacing of reinforcement. Similar to the equation adopted in ACI, AASHTO 

emphasizes the importance of reinforcement detailing and that smaller bars at moderate 

spacing tend to be more effective than larger bars of equivalent area. AASHTO also 

agrees with ACI on the most important parameters affecting crack width and specifies a 

formula for distribution of reinforcement to directly control cracking. The equation is 

based on the physical crack model of Frosch 2001 rather than on the statistically-based 

model used in previous editions. The equation limits bar spacing rather than crack width 

as is as follows: 

    4 ≤ LJJMN8/.// −  2()          

(2.15)                     

                                                                                                                                                        

in which �� = 1 +  ;7J.LAO�;7C (geometric relationship between crack width at tension face 

versus crack width at reinforcement level) 

 

where: 

P� = exposure factor = 1.00 for Class I exposure, 0.75 for Class II exposure 

() = thickness of concrete cover measured from extreme tension fiber to center of the 

flexural reinforcement located closest thereto (in.) 

fss = tensile stress in steel reinforcement at the service limit state (ksi) 

h = overall thickness of depth of the component (in.) 
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As seen above, unlike ACI, AASHTO specifies exposure conditions to meet the 

needs of the authority having jurisdiction. Class I exposure condition is based on a crack 

width of 0.017in and applies when cracks can be tolerated due to reduced concerns of 

appearance and/or corrosion and can be thought of as an upper bound in regards to crack 

width for appearance and corrosion. Class II exposure condition applies to transverse 

design of segmental concrete box girders for any loads applied prior to attaining full 

nominal concrete strength and is used when there is increased concern of appearance 

and/or corrosion such as in substructures exposed to water and decks. The exposure 

factor can also vary to meet the user’s needs. AASHTO LRFD also specifies 

requirements for skin reinforcement based on ACI 318 standards. The AASHTO equation 

(15) also applies to both reinforced and prestressed concrete, with specifications on the 

steel stresses used.  

 

2.4.3 EUROCODE 2 AND COMITE EURO-INTERNATIONAL DU BETON 

(CEB)/FEDERATION INTERNATIONAL DE LA PRECONTRAINTE (FIP) 

MODEL SPECIFICATIONS (1990) 

2.4.3.1 CEB/FIP MODEL SPECIFICATIONS  

The Comite Euro-International du Beton and the Federation International de la 

Precontrainte (CEB/FIP) Model Code 1990 (CEB 1990) for concrete structures uses a 

different approach than ACI for crack control. The CEB/FIP technique examines the 

transfer of stress from the concrete and the reinforcement and estimates the width and 

spacing of the crack. The tensile load is applied to the beam prior to cracking and causes 

the beam to produce equal strains in the concrete and steel. As the load increases, so does 



32 

 

 

 

the strain until cracks develop in the concrete. This results in the steel resisting the 

entirety of the tensile load. There is a slip between the concrete and the steel. This occurs 

adjacently to the cracks. This slip is the most important factor in controlling crack widths 

because it causes some of the force in the steel to transfer through the bond stress and 

affecting the perimeter of the bar. Thus, the concrete between the cracks is forced to carry 

tensile force. The steel strain is a maximum at a crack and the concrete strain is zero. 

With the CEB/FIP approach, the crack width is related to the distance over which the slip 

occurs and to the difference between the steel and concrete strains in the slip zones on 

either side of the crack (Carino and Clifton, 1995). The CEB/FIP 1990 equation to 

calculate crack width with low probability of being surpassed is as follows: 

 

�Q =  R�, �! A,� − ,) −,)�C                                             (2.16) 

 

where  wk = characteristic crack width  

ls,max = maximum distance over which slip between concrete and steel occurs and 

is equal to ϕ/(3.6ρs,ef ), where ϕ = bar diameter, ρs,ef  = area of steel divided by 

effective concrete area in tension (similar to ACI’s value A, but calculated 

differently) 

ϵsm = average steel strain within ls,max 

ϵcm = average concrete strain within ls,max 

ϵcs = concrete shrinkage strain (negative value) 
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In this approach, the bond stress is assumed to be uniform over the slip distance 

and equal to 1.8 times the concrete tensile strength, ft. According to this bond-slip model, 

intermediate cracks can occur only when the spacing between the cracks exceeds ls,max. 

According to Beeby (1979) and Base (1976) it has been argued that the slip mechanism is 

not the only issue affecting crack width. According to this, there should be significant 

differences between the spacing of the cracks in members with smooth bars as opposed to 

members with deformed bars. According to the Beeby (1979), the width of real cracks is 

more than likely due to a combination of these two mechanisms. The location of a neutral 

axis in a flexural member is another factor affecting the surface crack width. As the 

distance from the neutral axis increases, so does the flexural crack. The ACI approach 

takes this into account through the use of the β-value in equation 25 (Carino and Clifton, 

1995). 

 

2.4.3.2 EUROCODE 2 AND CEB/FIP MODEL SPECIFICATIONS 

The CEB-FIP Model Code and Eurocode 2 crack width formulas are based on the 

idea that the dominating parameter affecting crack widths is crack spacing (Tammo and 

Thelandersson, 2009). Crack spacing is assumed to be proportional to bar diameter and 

reinforcement area, which in turn depends greatly on the concrete cover. This implies that 

crack width increases with concrete cover. These codes also predict that crack width is 

affected by bar diameter, but that contradicts the authors’ current test results. Beeby 

(2004) supports the findings that the ratio of bar diameter to the effective reinforcement 

ratio should not be a governing parameter to determining crack widths. Gergely and Lutz 

(1968) also corroborate this. Even in these codes, when concrete cover is increased, these 
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codes do not agree on exactly how the crack width will change, emphasizing the 

disagreement on this issue by the international community.  

In 2008, the ACI code revised its crack control formula based on a model 

developed by Frosch (2001), where the concrete strain is ignored and the crack spacing is 

determined differently than the CEB-FIP Model Code and Eurocode 2. Broms (1965) 

concludes that crack spacing is thought to be proportional to maximum concrete cover. 

Thus, the limitation of surface crack width can be achieved by reducing the spacing 

between reinforcing bars. ACI does not limit crack widths for fear of reinforcement 

corrosion. However, DeStefano et al. (2003) conducted a study that concluded concrete 

cover does not influence crack spacing or crack width. 

 

2.5   SUMMARY OF CRACK WIDTH EQUATIONS  

The following section presents a summary of crack width equations that are 

simple and accurate to calculate maximum crack width. Other more complex equations 

are not considered due to the difficulty of applicability, such as the ones presented in 

international codes.  

Clark (1956) concluded that the average width of cracks was found to be 

proportional to the product of the quantities D/p and (h-d)/d. Furthermore, he stated that 

average width was also found to be proportional to the increase of steel stress beyond that 

causing initial cracking. Clark (1956) also insisted that the width of cracks can be 

reduced by using a large number of small bars and by increasing the ratio of 

reinforcement. However, the aforementioned investigators disagree. Broms (1965), 
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Gergely and Lutz (1968), and Frosch (1999) indicate that the ratio D/p is not a good 

correlation variable, especially for T beams, and that bar size plays a minimal role in 

reducing crack widths. Nevertheless, Clark concluded that his equation gave reasonable 

values for average crack width and that the maximum crack width is 1.64 times the 

average crack width. This is given by Equation 2.1 

Kaar and Mattock (1963) also developed a well-known crack width equation for 

bottom face cracking using the same variables as the Gergely-Lutz equation. This is 

given by Equation 2.2. The equations of Kaar and Mattock (1963) and of Gergely and 

Lutz (1968) fit the test data well, especially with covers less than 2.5 in, but it is 

reasonable to question these equations outside the range of the covers considered. The 

equations intersect around a cover of 1.625 in.  As the covers increased, the two 

equations showed a divergence in calculated crack widths, and thus a “correct” equation 

cannot be determined since test data for thicker covers is unavailable. An alternate 

approach is needed to calculate crack widths with covers greater than 2.5 in.  

Broms’ (1965) derived an expression for maximum crack width from tensile tests 

for high stresses. Broms’ study demonstrated the shortcomings of using the average 

effective concrete area around a reinforcing bar as a variable. Instead, Broms used the 

variable te as the effective cover thickness defined as the effective distance from any 

point on the beam surface to the centroid of the nearest reinforcing bar and ∈� is in milli 

in/in; te is difficult to acquire. This is given by Equation 2.17.  
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Gergely-Lutz (1968) developed a well-known crack width equation for the critical 

bottom tension face. This is given by Equation 2.4. The concrete cover dc is of interest 

and the range considered in the Gergely-Lutz study tested a maximum cover of only 3.31 

in, where only three test specimens had covers greater than 2.5in. 

Frosch (1999) recommends Equation 2.8, which is based on the physical model, 

to determine maximum crack width for uncoated reinforcement from an experiment 

including a physical model. For epoxy coated reinforcement, the formula should be 

multiplied by a factor of 2. The crack width model developed shows that the crack 

spacing and width are functions of the distance between the reinforcing steel. Crack 

control can be achieved by limiting the spacing of this steel. Maximum bar spacing can 

be achieved by placing reasonable limits on crack widths. Frosch attempts to determine 

bottom face and side face crack widths in a single equation. 
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CHAPTER 3 RELIABILITY-BASED ANALYSIS 

 

3.1 INTRODUCTION 

 Society expects that structures are designed with a reasonable level of safety. 

There are many sources of uncertainty inherent to structural design. These include natural 

causes of uncertainty such as wind, earthquake, snow, live loads, etc, and human causes 

such as calculation errors, design approximations, etc. As a result, it is necessary to 

consider the variation of load, resistance and material properties, estimation of 

parameters due to limited sample size, and uncertainty due to simplifying assumptions 

and unknown boundary conditions. Throughout history, basic variables, such as materials 

properties, section geometry, etc, of structures have been taken to be deterministic 

variables. This leads to the idea that a structure is designed so that its theoretical capacity 

is greater than the estimated design loads. However, this is not always the case when 

materials are created or acquired from resources. In recent advances, it is becoming 

increasingly accepted that the design variables are actually random variables. With this, 

the design capacity of a section may not actually be larger than the design loads. 

Therefore, designers attempt to find a balance between cost, safety, economy, service, 

performance, and durability (Corotis, 1985). Because of this, it is necessary to consider 

the design variables as random variables with probabilistic values.  

 Reliability-based analysis takes into account the inherent uncertainty associated 

with structural design. The reliability of a structure is its ability to fulfill its design 

purpose to a certain level of probability specified by the designer or a code. It is often 

understood as the probability that a structure will not fail to perform its intended function. 

Failure does not denote collapse or catastrophic failure. Rather, it denotes the inability of 
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a structure to perform its intended function. This makes the resulting design model more 

applicable to real world circumstances and more consistent that the currently used 

deterministic model since it factors in variable uncertainty and prediction errors of 

variables and equations (Siriaksorn and Naaman, 1980). Reliability-based analysis 

utilizes a safety index, also called a reliability index, β, to be applied as an input variable 

in the design process. This index corresponds to a probability of failure that can be 

applied based on the designer’s preference. 

 A limit state can be defined as the instance where the performance of a structure 

has to be checked to ensure safety according to specific load requirements (Siriaksorn 

and Naaman, 1980). It is the set of performance criteria that must be met when a structure 

is subjected to loads. Limit state design entails the satisfaction of the ultimate limit state 

or the serviceability limit state. Ultimate limit states address failure of a structure in 

regard to moment, shear, ductility, etc. Serviceability limit states address usability of a 

structure in regard to deflection, fatigue, cracking, etc and are less critical than ultimate 

limit states. In this thesis, the serviceability limit state of cracking will be addressed. 

Provisions from the ACI 318-08 code will be used.   

 

3.2 RELIABILITY-BASED ANALYSIS 

 Structural safety has been an important theory and practice since ancient times. 

Throughout history, design methods have taken structural parameters to be deterministic. 

However, more recently these statistical approaches have been evolving into probabilistic 

approaches. The first mathematical formulation of structural safety was considered by 

Mayer (1926), Streletzki (1947), and Wierzbicki (1936). They recognized that load and 
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resistance parameters are random variables that have an associated probability of failure. 

Freudenthal developed these ideas further in the 1950s. These investigators formulated 

convolution functions that were too difficult to solve by hand. It wasn’t until the work of 

Cornell and Lind in the late 1960s and early 1970s that the application of reliability 

analysis was feasible by hand. Hasofer and Lind created a definition of the reliability 

index in 1974 while Rackwitz and Fiessler developed an efficient economical procedure 

for its evaluation in 1978. Others have made contributions to the reliability approach and 

by the 1970s it became a well developed theory. Only some codes have incorporated 

reliability analysis to structural members. According to Nowak and Collins (2000), 

application of the reliability approach to ultimate limit states has been seen more recently, 

but not much has been done toward serviceability limit states with respect to this (An 

endeavor is made in this thesis to establish the significance of reliability-based 

approaches to the serviceability limit states in building codes, specifically the cracking 

limit state.  

   

3.3 DEVELOPMENT OF THE LIMIT STATE 

 The idea of the crack control limit state will be used to help define failure in 

regard to structural reliability. It is the boundary between a desired and undesired level of 

performance of a structure. The limit state function must be derived to identify a safety 

margin. Failure is denoted when the “load” on the beam, whether it is actual loads such as 

live load or dead load, or a serviceability “load” such as deflection or cracking, exceeds 

the “resistance” of a structure, such as moment capacity, shear capacity, or code accepted 

levels of deflection or cracking. A structure is considered safe when the load effect is less 
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than or equal to the resistance. In this thesis, the crack created by an applied live load and 

the self weight of the beam will be evaluated by the accepted ACI 318-08 crack width 

limit of 0.016 inches. Let R represent the resistance and Q represent the load side of the 

limit state function, G. The limit state function would be defined as follows: 

T AU, VC = U − V     (3.1)                                                 

The limit state would be when G = 0. If G ≥ 0, the structure is considered safe. If G < 0, 

the structure is considered unsafe for the desired level of performance. The reliability of a 

structure can be measured using the reliability index which depends on the limit state 

function G. Not only will G have to be greater than 0, it will have to be at a certain level 

to achieve a desired reliability index, β. The reliability index corresponds to a probability 

of failure, Pf, which is equal to the probability that the undesired performance will occur. 

Mathematically, this is stated as follows: 

W.AU − V < 0C = W.AT < 0C     (3.2)                                                 

The probability of failure can be derived when considering the continuous variable’s 

probability density function (PDF). The PDF for resistance is denoted fR(r) and the PDF 

for the load is denoted fQ(q).  Mathematically, this can be expressed as: 

W. =  Y �ZA[\C�]^∞�∞ A[\C([\     (3.3) 

This integration is not straight forward and requires numerical techniques to evaluate. 

Therefore, the probability of failure, which corresponds to a reliability index, is 

calculated using other methods. The reliability index, β corresponds to the probability of 

failure with the following equation, if the variables are normally distributed and 
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uncorrelated, where ϕ
-1

 is the inverse of the standard normal cumulative distribution 

function: 

� =  −ϕ��AW.C  _`  W. =  ϕA−βC     (3.4)                                                 

 Table 3.1 illustrates how β varies with the probability of failure and vice versa based on 

the aforementioned formula.  

Table 3.1: Reliability Index β and Probability of Failure Pf 

 

The limit state function G involves random variables, as discussed earlier with a 

reliability-based approach. Converting these random variables to their “standard form,” 

which is a nondimensional form of the variables, has been shown to provide a convenient 

understanding of the approach. For the basic variables R and Q, the standard forms can 

be expressed as  

aZ =  Z� bcdc        (3.5) 

a] =  ]� bede             (3.6) 

Pf β

10
-1

1.28

10
-2

2.33

10
-3

3.09

10
-4

3.71

10
-5

4.26

10
-6

4.75

10
-7

5.19

10
-8

5.62

10
-9

5.99
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where  Zi is sometimes referred to as a reduced variable 

 µi = the mean of the variable 

σi = the standard deviation of the variable 

 

The variables R and Q can be expressed in terms of the reduced variables as follows: 

U =  fZ +  aZgZ      (3.7) 

V = f] +  a]g]      (3.8) 

The reliability index can be defined as the inverse of the coefficient of variation of the 

function G or as the shortest distance from the origin of reduced variables to the line 

G(ZR, ZQ) = 0, as introduced by Hasofer and Lind (1974) (Nowak and Collins, 2000).  As 

stated earlier, first order second moment analysis will be used for the reliability approach. 

The reliability index is called a second-moment measure of structural safety because only 

the first two moments (mean and variance) are required to calculate β. For this thesis, 

using a Monte Carlo simulation, which will be discussed later, the reliability index is 

calculated as follows and shown in the figure below: 

� = bc�be
1dch^ deh

=  bidi      (3.9) 



 

 

Figure 3.1: Reliability Index Defined As the Shortest Distance in the Space of Reduced 
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The reliability index of reinforced concrete beams is sought to be determi

 approach to assess the effect of primary variables on 

crack width prediction. As discussed before, in the past, code provisions have utilized 

statistical analysis to predict and control crack width. A reliability-based 

used to analyze crack width prediction and enable designers to seek a level of safety 

corresponding to a probability of failure. A generalized procedure is presented here, 

while details of the steps will be presented later. Singly reinforced rectangular concrete 

beams were designed using ACI 318-08 code provisions to provide flexural adequacy. 

Beams were designed for all possible combinations of three different values for four 

span length, steel yield strength, concrete strength, and concrete cover. 

For beams with depth (h) greater than 36, skin reinforcement as #3 bars are provided up 

to h/2 as required by the ACI 318-08 code. This reinforcement does not influence 

maximum crack width at the bottom of the beam since only the bottom layer of tension 
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08 code. This reinforcement does not influence 

e bottom layer of tension 



44 

 

 

 

reinforcement directly affects crack width. All beams have a 1 inch cover on each side for 

reinforcement. The span lengths included are 20 ft, 30 ft, and 40 ft; the steel yield 

strengths are 40 ksi, 60 ksi, and 80 ksi; the concrete strengths are 4 ksi, 6 ksi, and 8ksi 

(normal weight concrete); the concrete covers considered are 1 inch, 2 inches, and 3 

inches. The spacing between all beams is 10 ft. For this base case, there are 81 possible 

combinations of beams. A distributed live load pertaining to office buildings was then 

placed on these beams for analysis. 

To analyze the effect of each major design variable on crack width reliability 

index, one parameter was varied while all others were held constant. The variables 

studied were beam width, beam depth, concrete cover, concrete strength, steel yield 

strength, area of reinforcement, ACI design spacing, and ACI maximum spacing. This 

yielded over 700 beams to be used in the Monte Carlo simulation. The effect of bar size 

on reliability index was tested for each beam by using an adequate amount of ASTM 

deformed #5 bars and #10 bars. Technically, this doubles the amount of beams used in 

the simulation, to total around 1450 beams with input variations.  

Literature review has been performed to assess the most credible and accurate 

crack width equations. Once a crack width formula was chosen, the limit state function 

was derived using the aforementioned techniques. For this study, the limit state was in 

terms of reinforcement steel stress. The chosen crack width equation, along with sectional 

analysis of the beams, was solved for in terms of the steel stress. This derivation will be 

presented later. Statistical data was also obtained for each variable used in the limit state 

function, since the first moment second order analysis requires the mean and variance. 

This will also be presented in detail later.   
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After all the necessary parameters were obtained, a Monte Carlo simulation was 

performed to obtain a reliability index for each beam. The Monte Carlo simulation is a 

technique used to generate results numerically without actually doing any physical 

testing. The basis of all Monte Carlo simulations is the generation of random numbers 

from 0 to 1. Information from other tests regarding the variables in the limit state, such as 

mean, coefficient of variation, and probability distribution, is used to perform the 

simulation. For each variable, random number from 0 to 1 are use to generate values for 

each variable that correspond to the aforementioned information. A substantial amount of 

simulations must be conducted to obtain enough random numbers that represent the 

spectra of possible values for the input variables to within a small percent deviation. With 

this, the results will provide a more accurate testament to the reliability index by 

narrowing the margin of change.  

Once random variables are generated that correspond to the probability 

distribution, the limit state function G is evaluated for an adequate number of 

simulations. In this study, it was found that 2000 simulations resulted in a deviation in 

reliability index of less than 5% for repeated testing. Once 2000 G values are obtained for 

each beam, the mean and standard deviation of the set of all G values are generated. The 

reliability index, which corresponds to a probability of failure, is then calculated for each 

beam using Equation 3.9 where β is the mean of G divided by the standard deviation of 

G. Once the reliability indices of all beams have been calculated, the results are then 

analyzed to determine the effect of different variables on the indices, to evaluate current 

code provisions, and to provide recommendations for designers seeking to achieve a 

desired level of performance corresponding to a probability of failure. For this study, 
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Matlab was used to design the beams according to ACI 318-08 code provisions, generate 

random numbers for each variable, and perform the Monte Carlo simulations to result in 

a reliability index for each beam. The codes written for these processes are given in 

Appendix III. A target reliability index should be a consideration factor for designers 

using this approach. Based on past practices, the target reliability for the beams in this 

study is 3.5. This value is the same as in other recent code calibrations, such as AASHTO 

LRFD 2005 (Nowak et al, 2008).  

Presented below is the overall procedure summarized in a step-by-step format.  

Step 1: Design singly reinforced rectangular beams using Matlab according to ACI 318-

08 design provisions. The input variables for this study were span lengths of 20ft, 30ft, 

and 40ft; concrete strength of 4ksi, 6ksi, and 8ksi; steel yield strength of 40ksi, 60ksi, and 

80ksi; and concrete covers of 1 inch, 2 inches, and 3 inches.  

Step 2: Formulate the limit state function, G = R-Q, where G is the limit state function, R 

is the resistance, and Q is the load. For this study, the limit state function is in terms of 

the stress in the reinforcing steel, fs.  

Step 3: Obtain statistical parameters of all variables in the limit state function to find 

each variable’s distribution, mean, and standard deviation. For this study, this 

information can be found in Table 1 based on research done by Siriaksorn and Naaman 

(1980), and by Nowak, Szersen, Szeliga, Szwed, and Podhorecki (2008).  

Step 4: Determine which simulation method to use to obtain the reliability index, β, 

which corresponds to a probability of failure, pf = P(G<0) = P(R-Q<0), where P(z) = 

probability function. For this study, the Monte Carlo Method will be used to obtain 
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randomized values of R and Q based on each variable’s probability distribution. For 

example, random variables, xi, for a normal distribution can be obtained by xi = µX + ziσX 

where zi = ϕ
-1

(ui); ui is the randomly generated number from 0 to 1, and ϕ
-1 

is the inverse 

cumulative distribution function. 

Step 5: To obtain random values of R and Q, a random number must be generated for 

each variable in the limit state function. Matlab was used to generate the random numbers 

from 0 to 1 for each variable. Based on the variable’s probability distribution, these 

randomly generated numbers will be converted into a random variable corresponding to 

typical values. For example, the random number 0.925827 will generate a random steel 

stress of 30,006 ksi for a steel stress of mean 29,000 ksi and standard deviation 696 ksi. 

Step 6: After all variables have randomly generated values, the limit state function G = 

R-Q should be calculated and stored. Repeat Step 4 until a sufficient number of G values 

have been generated. Matlab was also used for the Monte Carlo Simulation. For this 

study, 2000 values of G will be obtained for each beam tested to minimize deviation 

between the mean and standard deviation of G. 

Step 7: After a sufficient number of G values have been obtained, the reliability index, β 

should be calculated. β = µG (mean of G)/σG (standard deviation of G). The mean and 

standard deviation of G were obtained based on the 2,000 values of G using Matlab 

where the input is the 2,000 values of G for each beam. Thus, using the aforementioned 

equation for β, the reliability index can be calculated for a beam. A target reliability index 

should be stated. In this study, the target reliability index is 3.5, corresponding to a 
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probability of failure of 0.00023, or 2.3 x 10
-4

. The probability of failure, if desired, is the 

CDF (cumulative distribution function) of –β. Pf = ϕ(-β). 

 

3.5 VALIDATION OF THE RESISTANCE EQUATION 

A study of the crack control limit state is being pursued to test the reliability of this limit 

state given by current codes and crack width equations. Extensive literature review of the 

research done on crack control from the 1950s to present was undertaken. The purpose of 

the literature review was to assess the influence of important variables on crack control, 

to gain understanding of background theory, to find the most accurate and widely used 

crack control equations, and to compare current code provisions. It has been found that 

steel stress is the most important variable affecting crack width; that the thickness of the 

concrete cover and the cross sectional area of concrete surrounding each bar are 

important geometric variables; that the crack width on the tension face is affected by the 

strain gradient from the level of steel to the tension face; and that the bar diameter is not a 

major variable. Furthermore, comparison of international codes such as CEB/FIP 

AASHTO, and Eurocode has been carried out and moreover, comparison of the 

American code ACI has been conducted and will be used in this study. Major crack width 

equations have been researched and include the Gergely-Lutz equation previously used in 

the ACI code, the newly presented Frosch equation in which the current AASHTO code 

is based on, and others such as Kaar-Mattock, Clark, Beeby, Broms, etc. A summary of 

these equations is presented in Table 3.2. 
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Table 3.2: Equations of Maximum Crack Width 

Author Maximum Crack Width Equation Year 

Clark ���� = �� jk [�� −  �� 21k +  �3]  

  1956 

Kaar-Mattock �� = 0.115��� √��
  

  1963 

Broms             �� = 4#� ∈�= 0.133#���   1965 

Gergely-Lutz �� = 0.076��� '�()*
  

1968 

Beeby � = Al�B +  l� ϕmC,  
1979 

CEB/FIP �Q =  R�, �! A,� − ,) −,)�C 1990 

Eurocode �Q = n50 + 0.25o�o� ϕ

ρ�.p n1 −  ���� 2g�qg� 3�p g�r� 

 

1991 

Frosch �) =  2��r� �@2()� +  �42��3 

 

1999 

 

Previous research using statistical evaluation has been performed on reinforced 

concrete beams where crack widths were recorded at two primary locations- the bottom 

tension surface and the side face at the level of reinforcement. The crack width at the 

bottom of the beam is typically larger than on the side of the beam because of the larger 

extension of the bottom face than at the level of the steel. Due to the random nature of 

cracking and currently accepted models that become invalid when concrete cover is large, 

there is an ever-growing need for investigators to find compromise on crack width 

equations that will accurately determine width values and provide insight on specific 

parameters that will prevent large crack widths.  

A study on the accuracy of the crack width prediction equations in Table 3.2 was 

conducted to decide on the resistance of the limit state function G. For simplicity, ease of 
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variable determination, commonly accepted formulae, and applicability purposes, the 

equations considered in the accuracy study were Kaar-Mattock (1963), Gergely-Lutz 

(1968), and Frosch (1999). Data on the measured crack width of regular rectangular 

beams of different dimensions and reinforcement were obtained from Clark (1956), Chi 

& Kirstein (1958), Hognestad (1962), Kaar & Mattock (1963), and Hutton (1966). Clark 

(1956) had a total of 54 beams for steel stress levels of 15 ksi, 20 ksi, 25 ksi, 30 ksi, 35 

ksi, 40 ksi, and 45 ksi. Chi & Kirstein had a total of 16 beams for steel stress levels of 

15ksi, 20 ksi, 25 ksi, 30 ksi, 35 ksi, 40 ksi. Hognestad had a total of 8 beams for steel 

stress levels of 20 ksi, 30 ksi, 40 ksi, and 50 ksi. Kaar and Mattock had a total of 13 

beams for a steel stress level of 40 ksi. Hutton had a total of 3 beams for steel stress 

levels that vary by no specific category. The three beams, however, have a total of 25 

measured crack widths to provide a reasonable amount of data. Using Frosh’s, Kaar-

Mattock’s, and Gergely-Lutz’s equations, the data was tested to determine the most 

accurate equation from various investigators. The specimen data, crack width predictions, 

and errors for each beam are given in Appendix I.  

The error for each case, called absolute error, was calculated as the absolute value 

of the difference in predictions so when the average of the errors was taken, a true error 

would be revealed rather than positive and negative values minimizing these average 

errors. The percent error, also called percent difference, is the absolute error divided by 

the measured crack width of each investigator’s beams. Accuracy of each prediction 

equation was based on this percent difference. The findings of each crack width 

prediction equation for each set of data acquired are categorized by steel stress level and 

presented below. Averages of all steel stress values do not consider any stress level 
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beyond yield of steel reinforcement since analysis is complicated beyond this point. 

Nevertheless, all results are presented.  

 

Table 3.3:  Comparison of Prediction Equations for Clark (1956)  

 
 

Table 3.4: Comparison of Prediction Equations for Chi & Kirstein (1958)  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

fs, ksi Kaar-Mattock Error Gergely-Lutz Error Frosch Error

15 50.1% 34.0% 35.3%

20 32.2% 22.4% 21.4%

25 31.4% 21.2% 23.5%

30 32.2% 21.7% 28.4%

35 30.4% 22.1% 31.6%

40 24.6% 19.8% 27.7%

45 21.3% 26.2% 29.4%

All Beams 33.2% 33.2% 22.5%

fs, ksi Kaar-Mattock Error Gergely-Lutz Error Frosch Error

15 86.4% 78.7% 39.1%

20 49.2% 42.8% 19.4%

25 43.5% 40.9% 24.6%

30 35.1% 33.8% 22.8%

35 28.7% 28.2% 22.5%

40 23.7% 22.4% 23.0%

All Beams 43.5% 40.4% 24.9%
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Table 3. 5: Comparison of Prediction Equations for Hognestad (1962)  

 

 

 

Table 3.6: Comparison of Prediction Equations for Kaar and Mattock (1963)  

 
 

 

 

Table 3.7: Comparison of Prediction Equations for Hutton (1966) 

 

Table 3.8: Comparison of Prediction Equations for All Data Combined  

 
 

  Table 3.8 shows the percent difference, or percent error, for all the data combined. 

It is seen that Frosch has the least error by far for all the data considered and when 

considering each set of data alone. In fact, Frosch’s error is half that of Gergely and 

Lutz’s equation, the basis for the ACI code on cracking. It is noted that the Gergely-Lutz 

fs, ksi Kaar-Mattock Error Gergely-Lutz Error Frosch Error

20 41.6% 44.3% 21.3%

30 36.2% 27.0% 19.1%

40 30.3% 26.3% 20.2%

50 33.8% 26.2% 18.2%

All Beams 45.2% 43.1% 24.9%

fs, ksi Kaar-Mattock Error Gergely-Lutz Error Frosch Error

40 33.6% 35.6% 33.6%

fs, ksi Kaar-Mattock Error Gergely-Lutz Error Frosch Error

<20 163.9% 129.0% 38.1%

20-25 262.0% 194.7% 40.8%

25-30                            NO FS VALUES IN RANGE

30-35 358.7% 273.4% 25.0%

35-40 215.3% 167.0% 56.3%

40-45 248.8% 184.0% 42.9%

45-50 155.0% 123.0% 37.6%

50-55 72.5% 66.0% 57.2%

55-60 74.5% 58.5% 16.4%

All Beams 193.8% 149.4% 39.3%

ALL Data Kaar-Mattock Gergely-Lutz Frosch

% Difference 69.9% 60.3% 30.1%
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equation has a very large error when considering Hutton’s data. If this data were 

eliminated, the Gergely-Lutz equation would have a percent error of 38.1% while Frosch 

would have an error of 27.8%. This is still a 10% difference between the two equations, 

which is enough to corroborate the case for Frosch as the resistance in the limit state 

function G. In addition to Frosch’s exceptional percent error, his equation is also based 

on the physical phenomenon of cracking and not simply on statistical analysis, as 

explained in detail in the literature review. This has proven to be enough evidence to 

support Frosch as the resistance equation for the limit state function.  

 After selecting Frosch’s (1999) crack width equation, crack width predictions 

were also compared to a state of the art program called Response 2000. Response 2000 is 

a non-linear sectional analysis program used for the analysis of reinforced concrete 

elements subjected to shear based on the Modified Field Compression Theory. The 

program was written from 1996-1999 by Evan Bentz, PhD candidate at the University of 

Toronto, under the supervision of Professor M.P. Collins. Response 2000 is based on a 

series of biaxial nodes integrated along a line through the cross section. It calculates the 

strengths and deformations for beams and columns subject to axial load, moment, and 

shear. The program is considered to be the successor of the program Response and 

program Smal. Response 2000 includes a method to integrate the sectional behavior for 

simple prismatic beam-segments. The assumptions used in the program are that plane 

sections remain plane and that there is no transverse clamping stress across the depth of 

the beam. Beam dimensions and properties of concrete and reinforcement are input into 

the program. When the analysis is performed, an entire Moment-Shear interaction 

diagram, load deflection properties, and crack diagram will be shown for the specimen. 
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The predicted crack width can be obtained at levels of stress in the reinforcement and 

levels of stress at the crack itself.  

 The aforementioned data was used to compare Response 2000 with Frosch’s 

crack width prediction equation. Overall, Response 2000 had an error of 50.4% as 

compared to the previously mentioned error of Frosch at 30.1%. It can be seen that 

Frosch still has a better prediction of crack width compared to the other equations and to 

this program. Since Frosch’s equation does not consider the depth of the beam, deep 

beams were also tested to verify the accuracy of his equation. Comparisons were made 

with Response 2000. Data was obtained on deep beams with high strength from Moran 

and Lubell (2008). Nine beams of the same exact cross section but varying reinforcement 

were evaluated with 55 crack widths. It was found that Response had an overall error of 

43.3% while Frosch still had a better prediction with only an error of 34.8%. To further 

validate Frosch’s equation regarding deep beams, his equation was compared to data 

obtained from Frantz and Breen (1978) in Texas. There were 44 beams presented in this 

paper with 166 crack widths. Using Frosch’s (1999) equation, the error was a low 28.9%. 

Thus, it is evident that Frosch has the most accurate prediction from the considered 

equations for crack widths of any beam type.   
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3.6 LIMIT STATE FORMULATION 

The reliability-based approach to the analysis of crack width limit states is based 

on calculating a reliability index beta, β. Reliability is the probability that a structure will 

not fail to perform its intended function. The structural parameters are treated as random 

variables rather than deterministic values. This attempts to account for the many sources 

of uncertainty that are inherent of structural design. The Monte Carlo method is a 

technique used to generate some results numerically based on obtained statistical 

information without doing any physical testing.  

The reliability index, β, is based on the mean and standard deviation of a 

resistance, R, and a load, Q, to generate the limit state function G as stated earlier for the 

Monte Carlo method. To formulate the crack width limit state using the reliability 

approach, the function G will be in terms of the steel reinforcement stress, fs, since 

research has shown this to be the most important parameter influencing crack widths. 

Thus, the limit state function would appear as such: 

   T =  �� Aq��\�s�D)�C −  �� Atu�;C    (3.10) 

As the resistance was validated in the previous section, Frosch’s (1999) equation was 

used for the resistance side of the limit state function. This equation is presented below:  

   �) =  �./0/ �12()� +  �����3                                                        (2.8)

 

The limit state function is in terms of steel stress fs. Solving for fs yields the following 

resistance equation to be used in the limit state: 



56 

 

 

 

   �� =  670/
�8@n;7h^ �/hh�p  

      (3.11) 

The variables Es, β, and dc, wc are random variables with obtained statistical parameters. 

In this study, the values for reinforcement steel spacing, s, are deterministic parameters 

based on ACI318-08 regulations. Spacing will be varied to show its influence on 

maximum crack width. The variations will range from ACI flexural design spacing to the 

maximum allowable spacing in ACI 318-08 Section 10.6.4 provisions. This maximum 

spacing is given by the following provisions of Section 10.6.4: 

The spacing of reinforcement closest to the tension face, s, shall not exceed that 

given by: 

4 = 15 �IJ,JJJ./ � −  2.5B)                                               (2.14) 

but not greater than 12�IJ,JJJ./ �, where cc is the least distance from surface of 

reinforcement to the tension face. If there is only one bar nearest to the extreme 

tension face, s is the width of the extreme tension face. 

The load, Q, in the reliability approach was derived based on principles of reinforced 

concrete analysis, as shown in Figure 3.2.   
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Figure 3.2: Singly Reinforced Concrete Beam with Stress and Strain Distributions 

Force and moment equilibrium were used to solve for two unknowns, steel stress fs and 

neutral axis, Cna. The beams tested in this simulation are assumed to be simply supported 

and loaded with a distributed live load used in office buildings. The maximum moment 

for this type of loading as given by the AISC Steel Manual 13
th

 edition is: 

6vh
�        (3.12) 

 

where  w = distributed load (lbs)  

L = span length (in)  

 

The maximum allowable moment given from the concrete section is: 

            ���� �( − wFG< �       (3.13) 

 

where  As = area of steel reinforcement  
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fy = yield stress of the steel 

 

For force equilibrium, the compression force is equal to the tension force. The 

compression force is as follows:  

        �) = .7wFG�� = E707wFG��       (3.14) 

                

 

 

 

where  fc = stress in the concrete,  

b = width of the concrete section  

εc = strain in the concrete   

Ec = elastic modulus of the concrete 

 

The tension force, T, is as follows, where Es is the elastic modulus of steel and εs is the 

strain in the steel: 

x =  ���� =  ��r�,�      (3.15) 

Using force and moment equilibrium, two equations with two unknowns were solved to 

obtain  

the load equation in terms of fs using Maple 13:  

 

�� =  <�y/0/^ <07�;^ 'y/h0/h^ �y/0/07�;  �6vh 
�;AIy/0/^ z07�;Cy/     (3.16) 
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where As = area of steel reinforcement, in
2
 

Es = elastic modulus of steel, psi 

Ec = elastic modulus of concrete, psi 

b = width of concrete section, in 

d = effective depth of concrete section, in 

P = applied load, lbs 

L = span length, in 

 

 

After the load and resistance are combined, the resulting limit state function is as follows: 

 

T =  670/
�8@n;7h^ �/hh�p  

  −     <�y/0/^ <07�;^ 'y/h0/h^ �y/0/07�;  �6vh 
�;AIy/0/^ z07�;Cy/   (3.17) 

 

Since a reliability-based approach was taken, most variables are based on statistical 

information whereas some are merely deterministic. The statistical parameters are 

presented in the next section.  
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3.7 STATISTICAL PARAMETERS 

To analyze the cracking in reinforced concrete beams probabilistically, the 

probability distributions and statistical values of mean, coefficient of variation (CoV), 

and standard deviation of the variables used in the limit state function need to be acquired. 

Information is limited in regard to these parameters and they can be directly accessed 

from other sources. If the required data is not available, Ellingwood et al (1974) suggest 

that the range of variation of the mean values may be estimated and the CoV can be 

found by assuming a distribution for the mean value over this range.  If the mean and 

CoV are provided, the standard deviation is simply the product of the mean and CoV. 

Thus, all the necessary parameters would then have been obtained and the Monte Carlo 

simulation can be executed.  

For the resistance case, concrete cover, dc, elastic modulus of steel Es, maximum 

crack width wc, and Frosch’s β are all random variables.  For the load case, area of 

reinforcing steel in the bottom most layer near the tension face As,  steel elastic modulus 

Es, concrete elastic modulus Ec, distributed live load w, concrete section width b, and 

concrete section effective depth d are all random variables. The deterministic variables 

for the limit state function are reinforcement spacing s and span length L. Live loads are 

the loads that can move or be moved, such as occupants, furniture, etc and are inherent to 

wide variability. The statistical parameters that include the mean and coefficient of 

variation were obtained from research done by Siriaksorn and Naaman (1980) and by 

Nowak, Szersen, Szeliga, Szwed, and Podhorecki (2008), which performed an analysis of 

statistical parameters themselves. They are presented in Table 3.9. The subscript ‘n’ 
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denotes a nominal value. As noted earlier, to obtain the standard deviation, one would 

simply take the product of the mean and CoV. 

Table 3.9: Statistical Parameters of Variables Used in the Monte Carlo Simulation 

Variable Distribution Mean CoV 

b 

(beam width) 

normal bn 0.04 

h 

(beam height) 

normal hn 16.4 ∗ ℎD 

d 

(effective depth) 

normal 0.99dn 0.04 

dc 

(concrete cover) 

normal dcn 0.04 

C_Ec 

(concrete factor) 

normal 33.6 0.1217 

f’c 

 

(concrete strength) 

lognormal 

Note: Ec = 

C_Ec* 

γc^1.5'�′B 

4000: 1.21fcn’ 

6000: 1.22fcn’ 

8000: 1.09fcn’ 

(ksi) 

4000: 0.155 

6000: 0.075 

8000: 0.088 

γc 

(concrete weight) 

normal 150 0.03 

fy 

(steel yield strength) 

lognormal 1.13fyn 0.03 

As 

(area of reinforcement) 

normal 0.9As 0.015 

Es 

(steel elastic modulus) 

normal Esn 0.024 

w 

(distributed live load) 

Type 1 100 psf (office 

building 

occupancy, IBC 

2008) 

AI (ft
2
) =  400: 0.19 

              600: 0.18 

              800: 0.17 

wc 

(maximum crack width) 

normal 0.016 in (ACI 318-

08 max allowable) 

0.2 

  

As shown in Table 3.9, beam dimensions such as height, width, effective depth 

are not inherent to wide variability and have a normal distribution. Steel elastic modulus 

and area of steel reinforcement have a higher variability but still a normal distribution. 

Steel yield strength and concrete strength have a lognormal distribution. The mean and 
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coefficient of variation vary with the nominal value of concrete strength. These 

parameters were obtained directly from Nowak et al (2008). The mean for the maximum 

crack width was taken from ACI 318-08 limit on maximum allowable crack width and is 

0.016 inches. Data from the investigators used to validate the resistance of the limit state 

function were used to obtain the distribution and coefficient of variation for crack width 

values at 0.016 inches. The mean and CoV for the distributed live load were also 

obtained from Nowak et al (2008) and depend on the influence area of the beam, which is 

twice the tributary area. For this study, the span lengths of 20 ft, 30 ft, and 40 ft, the 

tributary areas are 200 ft
2
, 300

  
ft

2
, and 400

  
ft

2
, respectively since the beam spacing for all 

beams is 10 ft. Thus, the influence areas become 400 ft
2
, 600 ft

2
, and 800 ft

2
. The values 

for the CoV were obtained from the equation of the curve in the graph below. 

 

Figure 3.3: Live Load Coefficient of Variation (Nowak et al, 2008) 
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CHAPTER 4 RESULTS, ANALYSIS, AND DISCUSSION  

 

4.1 EVALUATION OF PARAMETRIC STUDY 

The results of the Monte Carlo simulation on the reliability of reinforced concrete 

beams are presented in this chapter. All beams are rectangular and singly reinforced. The 

results are categorized by span length, L. For each span length, the variable in question is 

presented as an average of the values in each span length category. Data is presented for 

the simulations using the #5 bars and #10 bars. Any designation of “#5”/”#10” indicates 

use of #5 bars/#10 bars, respectively. The specimen data for each beam and their 

respective reliability indices for the base case are presented in Appendix II. For the base 

case, using #5 bars, the average reliability index was 3.27 with a standard deviation of 

0.77. Also, 48 out of 81 beams had reliability indices that fell below the target reliability 

index βT of 3.5. Using #10 bars, the average reliability index was 2.92 with a standard 

deviation of 0.85. Also, 60 out of 81 beams had reliability indices that were below βT. It 

can be seen that using #5 bars yields a better reliability index than using #10 bars, but not 

with a very large difference. To achieve the target reliability index of 3.5, ACI must 

enforce more strict design provisions, which can be applied to a number of variables that 

will be analyzed in this study. 

 The variation of the reliability index is presented for the variables of beam width 

(b), beam depth (d), concrete cover (dc), steel yield strength (fy), concrete strength (fc’), 

area of reinforcement (As), spacing of reinforcement (s), and maximum allowable ACI 

reinforcement spacing (max s). Tables are presented in this chapter for each variable 

based on several hundred beams. The number of beams used to obtain the influence of 

each variable is specified in the respective section. The tables categorize the data by span 
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length and the variable in question with reliability index in the body of the table. The 

reliability indices are averages of the aforementioned number of beams classified by span 

length. This results in 3 reliability indices for each variable and bar size used. Thus, trend 

lines of these 3 points are logical since they truly represent a series of beams. Horizontal 

grand total refers to the average of a column while vertical grand total refers to the 

average of a row with respect to reliability index. Conclusions can be drawn from the 

graphs and tables.  

 

4.1.1 EFFECT OF BEAM WIDTH 

The first variable investigated is beam width, b. A total of 243 beams for each bar 

size (#5 and #10 to total 486 beams) were used to analyze the effects of this variable. 

There are 27 beams in each span length. Table 4.1 shows the span length category 

vertically and the beam widths in inches horizontally with average reliability index in the 

body. For each span length, the minimum design width is used, and then increased by 4 

inches and 8 inches to observe the variation in reliability index with beam width. For 

example, the minimum design beam width using a span length of 20ft is 8 inches. This 

was then varied by 4 inches to yield a beam width of 12 inches and then varied by 8 

inches to yield a beam width of 16 inches. The same was done for a span length of 30ft 

(minimum b = 12 inches) and 40ft (minimum b = 15 inches).  

As beam width increases within each span length, reliability index shows no trend 

for both #5 and #10 bars. As span length increases, reliability index increases for #10 

bars (vertical grand total), while for #5 bars the indices remain in the same range. No 
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trend is shown overall for reliability (horizontal grand total) as beam width increases. 

Using #5 bars yields a higher reliability than #10 bars. The data presented in tables and 

scatter graphs is to be shown with both #5 bars and #10 bars in the same graph and 

separate with applied trendlines to provide visual ease of understanding and comparison. 

 

Table 4.1:  Influence of Beam Width on Reliability Index 

 

The average reliabilities with their standard deviations and number of beams with 

reliability indices less than the target are presented in Table 4.2. Overall, as beam width 

increases, there seems to be no significant trend or effect on reliability index, its standard 

deviation, and the number of beams with indices less than the target of 3.5 for both #5 

and #10 bars. Around half the beams in each case fail to meet the target reliability index. 

Beam width does not prove to have a significant influence on reliability index overall. 

 

 

 

Variation of Reliability Index with Beam Width (#5 bars)

b, in

L, ft 8 12 15 16 19 20 23 Grand Total

20 3.23 3.22 3.23 3.23

30 3.33 3.33 3.32 3.33

40 3.24 3.25 3.27 3.25

Grand Total 3.23 3.28 3.24 3.28 3.25 3.32 3.27 3.27

Variation of Reliability Index with Beam Width (#10 bars)

b, in

L, ft 8 12 15 16 19 20 23 Grand Total

20 2.56 2.56 2.57 2.56

30 3.10 3.09 3.10 3.10

40 3.11 3.14 3.13 3.12

Grand Total 2.56 2.83 3.11 2.83 3.14 3.10 3.13 2.93



 

 

 

Table 4.2: Change 

 

Figure 4.1: Variation of Reliability Index vs. Beam Width for #5 Bars

 

              Average Reliability Index

#5 Bars Base Case 1st Increase

L = 20 ft 3.23 3.22

L = 30 ft 3.33 3.33

L = 40 ft 3.24 3.27

# 10 Bars Base Case 1st Increase

L = 20 ft 2.56 2.56

L = 30 ft 3.10 3.09

L = 40 ft 3.10 3.14
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Change in Reliability Index with Beam Width Increase

 

Variation of Reliability Index vs. Beam Width for #5 Bars

              Average Reliability Index               Standard Deviation of β                       Number of 

2nd Increase Base Case 1st Increase 2nd Increase Base Case 1st Increase

3.22 3.23 0.81 0.80 0.79 15

3.33 3.32 0.76 0.76 0.75 16

3.27 3.26 0.75 0.77 0.76 17

2nd Increase Base Case 1st Increase 2nd Increase Base Case 1st Increase

2.56 2.57 0.94 0.95 0.94 23

3.09 3.10 0.82 0.81 0.81 18

3.14 3.13 0.68 0.70 0.69 19

3.22 3.23

3.33 3.33 3.32
3.24

3.27

12 15 16 19 20

Beam Width, in
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Reliability Index with Beam Width Increase 

 

 

Variation of Reliability Index vs. Beam Width for #5 Bars 

 

                      Number of β < βT

1st Increase 2nd Increase

15 15

14 14

16 16

1st Increase 2nd Increase

23 23

18 18

18 18

3.26

23

20

30

40

L, ft



 

 

Figure 4.2: Variation of Reliability Index vs. Beam Width for #10 Bars
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: Variation of Reliability Index vs. Beam Width for #10 Bars

 

: Variation of Reliability Index vs. Beam Width for both #5 and #10 Bars

2.57
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: Variation of Reliability Index vs. Beam Width for #10 Bars 
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4.1.2 EFFECT OF BEAM EFFECTIVE DEPTH 

The second variable investigated is beam effective depth, d. A total of 243 beams 

for each bar size (#5 and #10, to total 486 beams) were used to analyze the effect of this 

variable. There are 27 beams in each span length. The effective depths were increased by 

4 inches for the first increase, and 6 inches for the second increase. The data in the tables 

is again categorized by span length in the left vertical column and beam effective depth 

horizontally with average reliability index in the body. In Table 4.3, within each span 

length, and overall (horizontal grand total), reliability index increases as beam effective 

depth increases. Beta also increases as span length increases (vertical grand total), with a 

small exception for #5 bars at L = 40ft. Reliability index is also greater when #5 bars are 

used as opposed to #10 bars.  

Table 4.3: Influence of Beam Effective Depth on Reliability Index 

 
 

 

 

It can be seen in Table 4.4 that as beam effective depth increases, reliability index 

also increases, while standard deviation decreases and the number of beams that have 

reliability index less than the target decreases. With increases in effective depth, less than 

half the beams in each span length fail to meet the target reliability index for #5 bars, 

       Variation of Reliablity Index with Beam Depth (#5 bars)

d, in

L, ft 16 20 22 24 28 30 34 36 Grand Total

20 3.23 3.58 3.71 3.51

30 3.33 3.57 3.65 3.52

40 3.24 3.48 3.55 3.42

Grand Total 3.23 3.58 3.71 3.33 3.57 3.44 3.48 3.55 3.48

      Variation of Reliablity Index with Beam Depth (#10 bars)

d, in

L, ft 16 20 22 24 28 30 34 36 Grand Total

20 2.56 2.75 3.20 2.84

30 3.10 3.24 3.46 3.26

40 3.11 3.31 3.43 3.28

Grand Total 2.56 2.75 3.20 3.10 3.24 3.28 3.31 3.43 3.13



 

 

while that number is increases for #10 bars.

reliable results than #10 bars. 

The effective depth has a considerable infl

Table 4.4: Change in Reliability Index 

 

 

 

Figure 4.4: Variation of Reliability Index 

              Average Reliability Index

#5 Bars Base Case 1st Increase

L = 20 ft 3.23 3.58

L = 30 ft 3.33 3.57

L = 40 ft 3.24 3.48

# 10 Bars Base Case 1st Increase

L = 20 ft 2.56 2.74

L = 30 ft 3.10 3.24

L = 40 ft 3.10 3.31
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while that number is increases for #10 bars. Again, this shows that #5 bars 

reliable results than #10 bars. These results are supported by the corresponding graphs. 

The effective depth has a considerable influence on reliability index.  

: Change in Reliability Index with Beam Effective Depth Increase

: Variation of Reliability Index vs. Beam Effective Depth

              Average Reliability Index               Standard Deviation of β                       Number of 

1st Increase 2nd Increase Base Case 1st Increase 2nd Increase Base Case 1st Increase

3.58 3.71 0.81 0.64 0.57 15

3.57 3.65 0.76 0.66 0.61 16

3.48 3.55 0.75 0.68 0.64 17

1st Increase 2nd Increase Base Case 1st Increase 2nd Increase Base Case 1st Increase

2.74 3.20 0.94 0.83 0.74 23

3.24 3.46 0.82 0.77 0.67 18

3.31 3.43 0.68 0.63 0.59 19

3.58
3.71

3.33

3.57 3.65

3.24

3.48

20 22 24 28 30 34

Beam Effective Depth, in
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#5 bars provide more 

These results are supported by the corresponding graphs. 

Beam Effective Depth Increase 

 

 

vs. Beam Effective Depth for #5 Bars 

                      Number of β < βT

1st Increase 2nd Increase

10 10

13 11

14 11

1st Increase 2nd Increase

22 16

16 14

17 14

3.55

36
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40
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Figure 4.5: Variation of 

 

Figure 4.6: Variation in Reliability Index with Beam Effective Depth
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Variation of Reliability Index vs. Beam Effective Depth 

in Reliability Index with Beam Effective Depth for 

Bars  
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 for #10 Bars 

 

or both #5 and #10 
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4.1.3 EFFECT OF CONCRETE COVER 

The third variable investigated is concrete cover. dc. A total of 405 beams for each 

bar size (#5 and #10 to total 810 beams) were analyzed for this variable with covers of 1, 

2, and 3 inches. There are 135 beams in each span length and 45 beams of each cover 

within each span length. The data is again categorized by span length in the left vertical 

column and concrete cover horizontally with average reliability index in the body. As 

seen in Table 4.5, within each span length, and overall (horizontal grand total), reliability 

index (beta) decreases as concrete cover increases. There has been great debate over the 

control of concrete cover. If concrete cover increases, investigators argue that this helps 

defend against corrosion and provide protection, but as a result, crack width increases. 

The debate over the level of corrosion induced from a minimal cover has not been 

resolved. Reliability also increases as span length increases, with the exception of #5 bars 

at L = 40ft. (vertical grand total). Reliability index is also greater when #5 bars are used 

as opposed to #10 bars. The corresponding graphs verify these results. Concrete cover 

has a significant effect on reliability index, as Frosch states as well.  

Table 4.5: Influence of Concrete Cover on Reliability Index 

 

  Variation of Reliability Index with Concrete Cover (#5 bars)

dc, in

L, ft 1 2 3 Grand Total

20 4.14 3.43 2.62 3.40

30 4.18 3.47 2.67 3.44

40 4.16 3.40 2.52 3.36

Grand Total 4.16 3.43 2.60 3.40

  Variation of Reliability Index with Concrete Cover (#10 bars)

dc, in

L, ft 1 2 3 Grand Total

20 3.33 2.83 2.19 2.78

30 3.85 3.25 2.55 3.22

40 3.94 3.28 2.48 3.23

Grand Total 3.70 3.12 2.41 3.08
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Table 4.6 presents the reliability indices along with standard deviation and 

number of beams that fail to meet the target as concrete cover changes. The table shows 

that reliability index decreases significantly while its standard deviation increases as 

concrete cover increases. For a cover of 1 inch using #5 bars for all span lengths, all 

beams have reliability indices greater than the target of 3.5. As cover increases, the 

number of beams that fall below the target reliability index increases to almost half the 

beams in the category. When the cover reaches a value of 3 inches, all beams using both 

#5 and #10 bars fail to reach the target index, with an exception of 2 beams when L = 

20ft for #5 bars. The influence of concrete cover on reliability index is very significant. 

The number of beams with reliability indices below βT is higher when using #10 bars as 

opposed to #5 bars. This tapers off when cover becomes large, around 3 inches.  

Table 4.6: Change in Reliability Index with Concrete Cover Increase 

 
 

 

 

 

 

              Average Reliability Index               Standard Deviation of β                       Number of β < βT

#5 Bars Cover = 1" Cover = 2" Cover = 3" Cover = 1" Cover = 2" Cover = 3" Cover = 1" Cover = 2" Cover = 3"

L = 20 ft 4.14 3.43 2.62 0.23 0.38 0.55 0 23 43

L = 30 ft 4.18 3.47 2.67 0.20 0.33 0.47 0 22 45

L = 40 ft 4.16 3.40 2.52 0.17 0.25 0.36 0 29 45

# 10 Bars Cover = 1" Cover = 2" Cover = 3" Cover = 1" Cover = 2" Cover = 3" Cover = 1" Cover = 2" Cover = 3"

L = 20 ft 3.33 2.83 2.19 0.80 0.78 0.77 21 39 45

L = 30 ft 3.85 3.25 2.55 0.53 0.56 0.61 10 27 45

L = 40 ft 3.94 3.28 2.48 0.24 0.26 0.33 3 37 45



 

 

Figure 4.7: Variation of 

 

Figure 4.8: Variation of 
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Variation of Reliability Index vs. Concrete Cover for #5 Bars

Variation of Reliability Index vs. Concrete Cover for #10 Bars
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Figure 4.9: Variation of Reliability Index with Concrete Cover
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4.1.4 EFFECT OF STEEL YIELD STRENGTH 

The fourth variable investigated is steel reinforcement yield strength. There were 

405 beams used with #5 and #10 bars to total 810 beams, with 135 beams in each span 

length category. The data is again categorized by span length in the left vertical column 

and steel yield strength horizontally with average reliability index in the body. In Table 

4.7, within each span length, and overall (horizontal grand total), reliability index 

decreases as steel yield strength increases. There is a negligible exception when L= 20ft 

and fy is 60,000 psi and a slightly larger exception when L = 40ft and fy = 80,000 psi for 

#5 bars. Nevertheless, the overall trend is clear. There is also an overall trend of 

reliability increase as span length increases (vertical grand total). Reliability index is also 

greater when #5 bars are used as opposed to #10 bars. Steel yield strength has 

considerable influence on reliability index. Although this variable is not used in the 

Monte Carlo simulation, it does directly affect beam design through area of steel 

reinforcement required to achieve flexural adequacy but not necessarily sufficient crack 

width control.  
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    Table 4.7: Influence of Steel Yield Strength on Reliability Index

 
 

It can be seen in Table 4.8 that reliability index decreases overall as steel yield 

strength increases. There are exceptions when fy = 80 ksi at L = 20ft and 40ft. Though the 

change is small, overall standard deviation increases as steel yield stress increases. This is 

more clearly seen with #10 bars. Overall, the number of beams with reliability indices 

less than the target index increases as steel yield strength increases for #10 bars and 

remain rather constant for #5 bars. These numbers represent a little over half the beams in 

each category and virtually all the beams for #10 bars when steel yield strength is 80 ksi.  

Beams using #5 bars more often meet βT than those beams using #10 bars. The 

aforementioned results can be validated by the following graphs as well.  

 

 

 

 

 

 

 

 

       Variation of Reliability Index with Steel Yield Strength (#5 bars)

fy, psi

L, ft 40000 60000 80000 Grand Total

20 3.36 3.32 3.51 3.40

30 3.56 3.53 3.23 3.44

40 3.45 3.21 3.41 3.36

Grand Total 3.46 3.35 3.38 3.40

        Variation of Reliability Index with Steel Yield Strength (#10 bars)

fy, psi

L, ft 40000 60000 80000 Grand Total

20 3.34 2.60 2.40 2.78

30 3.62 3.38 2.65 3.22

40 3.45 3.15 3.10 3.23

Grand Total 3.47 3.04 2.72 3.08



 

 

Table 4.8: Change in Reliability Index with Steel Yield

Figure 4.10: Variation of Reliability Index 

 

      Average Reliability Index

#5 Bars Fy = 40ksi Fy = 60ksi

L = 20 ft 3.36 3.32

L = 30 ft 3.56 3.53

L = 40 ft 3.45 3.21

# 10 Bars Fy = 40ksi Fy = 60ksi

L = 20 ft 3.34 2.60

L = 30 ft 3.62 3.38

L = 40 ft 3.44 3.15
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: Change in Reliability Index with Steel Yield Strength Increase

Variation of Reliability Index vs. Steel Yield Strength 

      Average Reliability Index      Standard Deviation of β               Number of 

Fy = 60ksi Fy = 80ksi Fy = 40ksi Fy = 60ksi Fy = 80ksi Fy = 40ksi Fy = 60ksi

3.32 3.51 0.72 0.78 0.73 25

3.53 3.23 0.64 0.67 0.78 21

3.21 3.41 0.69 0.75 0.71 23

Fy = 60ksi Fy = 80ksi Fy = 40ksi Fy = 60ksi Fy = 80ksi Fy = 40ksi Fy = 60ksi

2.60 2.40 0.62 0.81 0.98 25

3.38 2.65 0.59 0.66 0.71 19

3.15 3.10 0.64 0.69 0.62 23

3.32

3.51
3.53

3.23

3.45

3.21

3.41

60 80

Steel Yield Strength, ksi
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Strength Increase 

 

 

 for #5 Bars 

              Number of β < βT

Fy = 60ksi Fy = 80ksi

23 18

21 25

28 23

Fy = 60ksi Fy = 80ksi

38 42

24 39

29 33

L=20ft

L=30ft

L=40ft



 

 

Figure 4.11: Variation of Reliability Index 

Figure 4.12: Variation of Reliability Index with Steel Strength

3.34

3.62
3.45

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

40

R
e

li
a

b
il

it
y

 In
d

e
x

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

40

R
e

li
a

b
il

it
y

 In
d

e
x

 

: Variation of Reliability Index vs. Steel Yield Strength f

 

: Variation of Reliability Index with Steel Strength for both #5 and #10 Bars

 

2.6

2.4

3.38

2.65

3.45

3.15 3.1

60 80

Steel Yield Strength, ksi

60 80

Steel Yield Strength, ksi

78 

 

for #10 Bars 

 

for both #5 and #10 Bars 

L=20ft

L=30ft

L=40ft

L=20ft #5

L=20ft 

#10
L=30ft #5

L=30ft 

#10
L=40ft #5

L=40ft 

#10

L=20ft, #5

L=20ft,#10

L=30ft, #5

L=30ft, #10

L=40ft,#5

L=40ft,#10



79 

 

 

 

4.1.5 EFFECT OF CONCRETE STRENGTH 

The fifth variable investigated is concrete strength. Again, 405 beams for #5 and 

#10 bars to total 810 beams were used to analyze the effect of this variable as it was 

varied from 4 to 8ksi. For each span length, there are 135 beams. In each span length, 

there are 45 beams within each category of concrete strength. The data is organized by 

span length in the left vertical column and concrete strength horizontally with average 

reliability index in the body. Mixed information is given in Table 4.9. There is no clear 

trend in reliability index as concrete strength increases. Within each span length, and 

overall (horizontal grand total), reliability index increases and decreases as concrete 

strength increases. This is also true as span length increases (vertical grand total). There 

are more instances, however, of reliability index increasing as concrete strength increases. 

This is evident with #5 bars at L = 30ft and #10 bars at span lengths of 20ft and 30ft. The 

span length of 40ft shows no trend in reliability index. Nevertheless, reliability index is 

certainly greater when #5 bars are used as opposed to #10 bars. 

Table 4.9: Influence of Concrete Strength on Reliability Index 

 

           Variation of Reliability Index with Concrete Strength (#5 bars)

fc', psi

L, ft 4000 6000 8000 Grand Total

20 3.39 3.26 3.53 3.40

30 3.41 3.43 3.51 3.44

40 3.54 3.21 3.32 3.36

Grand Total 3.45 3.29 3.46 3.40

            Variation of Reliability Index with Concrete Strength (#10 bars)

fc', psi

L, ft 4000 6000 8000 Grand Total

20 2.46 2.64 3.24 2.78

30 3.10 3.12 3.44 3.22

40 3.34 3.08 3.28 3.23

Grand Total 2.97 2.94 3.32 3.08
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It can be seen in Table 4.10 there is no clear trend in reliability index as concrete 

strength increases. No clear trend is shown overall for the standard deviation of reliability 

index or the number of beams that fail to meet βT as well. Reliability, however, does 

increase using #5 bars for a span length of 30ft and #10 bars for span lengths of 20ft and 

30ft. Over half the beams using #5 bars do not meet the target index when concrete 

strength is increased. This number is even higher for #10 bars. The number of beams that 

meet the target reliability increases when using #10 bars for span lengths of 20ft and 30ft. 

Since there is no overall trend in the number of beams that meet the target reliability, 

changing concrete strength when designing beams will not ensure a higher reliability. 

However, using #5 bars certainly yields higher reliability indices than #10 bars in every 

category. The influence of concrete strength on reliability index is rather ambiguous as 

compared to other variables. This ambiguity could be due to the fact that statistical 

parameters for concrete strength are subject to variability when the strengths change.  

Table 4.10: Change in Reliability Index as Concrete Strength Increases 

 
 

 

      Average Reliability Index      Standard Deviation of β               Number of β < βT

#5 Bars Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi

L = 20 ft 3.39 3.26 3.53 0.74 0.81 0.67 23 24 19

L = 30 ft 3.41 3.43 3.51 0.69 0.77 0.68 24 21 22

L = 40 ft 3.54 3.21 3.32 0.67 0.76 0.71 20 28 26

# 10 Bars Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi Fc' = 4ksi Fc' = 6ksi Fc' = 8ksi

L = 20 ft 2.46 2.64 3.24 1.05 0.85 0.57 38 37 30

L = 30 ft 3.10 3.12 3.44 0.62 0.95 0.69 32 28 22

L = 40 ft 3.34 3.08 3.28 0.61 0.71 0.64 26 31 28



 

 

Figure 4.13: Variation of 

 

Figure 4.14: Variation of 
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Variation of Reliability Index vs. Concrete Strength for #5 Bars

Variation of Reliability Index vs. Concrete Strength for #10 Bars
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Figure 4.15: Variation of Reliability Index with Concrete Strength
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: Variation of Reliability Index with Concrete Strength for both #5 and #10 

Bars 
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4.1.6 EFFECT OF AREA OF REINFORCEMENT 

The sixth variable investigated is area of steel reinforcement considered in the 

Monte Carlo simulation to obtain a reliability index. The area of reinforcement 

considered in the simulations is different than the total area of reinforcement in the beam 

because only the bottom most layer of reinforcement is considered to control cracking, 

not the full reinforcement area provided. Beams in this study had only tension 

reinforcement, but distributed in several layers when necessary. Beams with depth greater 

than 36 inches had necessary skin reinforcement, as mentioned earlier, but this again is 

not considered to control bottom face cracking. There were 156 beams of each bar size, 

#5 and #10, to total 312 beams used to analyze the influence of reinforcement area on 

reliability index. Area of reinforcement was decreased in the modified simulation by 0.65 

in². A decrease in reinforcement was performed instead of an increase because for many 

beams, more than one layer was necessary and thus no more bars can fit in the bottom 

layer to directly affect crack width. Furthermore, the decrease was small to allow beams 

to still meet ACI flexural design adeuacy. Larger decreases would result in the 

elimination of many beams for the simulation since they would be inadequate in flexure. 

Two decreases were not performed because the change in area of reinforcement for #5 

bars would not be significant. 

 It was observed that with the second increase of reinforcement area, the 

relaibility indices converged to essentially the same values as with the first increase. This 

is due to the fact that even though more reinforcement was added, the same amount of 

reinforcement can only fit at the bottom most layer of the beam. This bottom layer is the 

input into the Monte Carlo simulations and thus directly affects reliability index. This can 
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be more easily seen in the beams with #10 bars since they are a larger size. Due to this 

result, the first increase of reinforcement area will only be presented and 162 beams of 

each bar size will be analyzed.  

Average original and incerased areas of reinforcement along with their respective 

average reliability indices for each span length are shown. In Table 4.11, the base case 

reinforcement area is compared with the modified, or decreased, reinforcement area. As 

noted earlier, the decrease is limited to ensure flexural adequacy of a sufficient number of 

beams. The change in reinforcement area is more evident with #10 bars, since fewer 

larger bars are required. Within each span length, and overall, as area of reinforcing steel 

decreases, reliability index decreases as well. For #5 and #10 bars, as span length 

increases, reliability increases, with the exception of #5 bars at a span length of 40ft. 

Once again, the reliability index for #5 bars is greater than that for #10 bars for both 

original and modified areas of reinforcement. 

        Table 4.11: Influence of Reinforcement Area on Reliability Index 

 
 

 

          Variation of Reliability Index with Reinforcement Area (#5 bars)

L, ft Base Case As, in² Modified As, in² Base Case β Modified β

20 1.62 1.58 3.23 3.18

30 2.59 2.45 3.33 3.23

40 3.44 3.28 3.24 3.19

          Variation of Reliability Index with Reinforcement Area (#10 bars)

L, ft Base Case As, in² Modified As, in² Base Case β Modified β

20 3.14 2.80 2.56 2.34

30 6.54 5.86 3.10 2.70

40 8.11 7.50 3.11 2.93
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It can be seen in Table 4.12 reliability index increases as reinforcement area 

increases. Standard deviation increases in each category as reinforcement area decreases. 

For both the original and modified cases, over half the beams in each span length 

category fail to meet the target reliability index. The number of beams that fail to meet 

the target index increase slightly as reinforcement area decreases. Greater changes are 

evident when #10 bars are used. Thus, it seems reasonable to deduce that reinforcement 

area considerably influences reliability index. However, there is the limitation of the total 

reinforcement that can fit in the beam, and the bottom layer that affects crack widths. 

Thus, there is a convergence on the amount of influence that reinforcement area can have 

on reliability index. The following graphs support these conclusions. Higher areas of 

reinforcement will yield higher reliability indices for the values in this study. 

Table 4.12: Change In Reliability Index As Reinforcement Area Decreases 

 

  Average Reliability Index     Standard Deviation of β          Number of β < βT

#5 Bars Base Case Decreased As Base Case Decreased As Base Case Decreased As

L = 20 ft 3.23 3.18 0.81 0.81 15 17

L = 30 ft 3.33 3.23 0.76 0.79 16 16

L = 40 ft 3.24 3.19 0.75 0.79 17 17

# 10 Bars Base Case Decreased As Base Case Decreased As Base Case Decreased As

L = 20 ft 2.56 2.34 0.94 1.09 23 24

L = 30 ft 3.10 2.70 0.82 1.08 18 20

L = 40 ft 3.10 2.93 0.68 0.76 19 21



 

 

Figure 4.16: Variation of 

 

Figure 4.17: Variation of 
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Variation of Reliability Index vs. Area of Reinforcement 

Variation of Reliability Index vs. Area of Reinforcement for #10 Bars
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vs. Area of Reinforcement for #5 Bars 
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Figure 4.18: Variation of
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: Variation of Reliability Index with Area of Reinforcement for both #5 and 

#10 Bars 
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4.1.7 EFFECT OF SPACING OF REINFORCEMENT 

The seventh and eighth variables will be presented together since they are related. 

The seventh variable investigated is reinforcement spacing. Original spacing is the design 

spacing (steel adequate for flexural design) and the modified spacing is greater than 

original spacing by 2 inches. The eighth variable investigated is maximum allowable 

spacing by ACI 318-08 Section 10.6.4. This provision was discussed earlier and is based 

on the stress in the steel reinforcement. The actual stress, and not the recommended 2/3fy 

to be used, as given in ACI, resulted in very large spacings that were not reasonable. 

There were 243 beams for each bar size, to total 486 beams, used to analyze the effect of 

spacing on reliability index. The reliability indices were negative since the spacing was 

so large. This spacing is also not applicable to every beam since the maximum spacing is 

essentially dictated by the section width. Thus, this logical limitation must be applied. 

The maximum spacing will generally correspond to the section width in this study. To 

investigate these variables, 243 beams for each bar size (#5 and #10, to total 486 beams) 

were analyzed with 27 beams in each span length.  

Using this design provision, maximum allowable spacing and the corresponding 

reliability index are presented in the following table. Table 4.13 presents the original, 

modified, and maximum spacing values along with their respective reliability indices for 

both #5 and #10 bars. Within each span length, and overall, the larger spacing yields 

considerably lower reliability indices. Reliability index increases as spacing decreases. 

Beta also decreases as span length increases. Reliability index is greater for #5 bars than 

#10 bars. Spacing using flexural design requirements yields high and positive reliability 

indices. 
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Table 4.13: Influence of Reinforcement Spacing on Reliability Index 

 

 

In Table 4.14, it is clear that reliability index decreases as reinforcement spacing 

increases. Standard deviation of reliability index shows no trend, but is more spread out 

than other variables. The number of beams that fail to meet the target index of 3.5 

average around half for the base case, and consistently increase as reinforcement spacing 

increases, until virtually all beams fail to meet the target reliability index when 

reinforcement spacing is at its maximum. Frosch argues that reinforcement spacing is 

among the best parameters than can control cracking in reinforced concrete structures. 

Spacing indirectly dictates design of several parameters. It is clear that reinforcement 

spacing has the strongest influence on crack control in reinforced concrete structures. The 

following graphs support these conclusions as well.  

Table 4.14: Change in Reliability Index as Reinforcement Spacing Increases 

 

                                                 Variation of Reliability Index with Reinforcement Spacing (#5 Bars)

L, ft Avg Original Spacing, in Avg Increased Spacing, in Avg Max Spacing, in Original Avg β  Increased Avg β Max Avg β

20 1.36 3.36 7.96 3.23 2.55 1.93

30 1.31 3.31 11.77 3.33 2.72 1.49

40 1.23 3.23 14.62 3.24 2.63 1.39

                                                 Variation of Reliability Index with Reinforcement Spacing (#10 Bars)

L, ft Avg Original Spacing, in Avg Increased Spacing, in Avg Max Spacing, in Original Avg β Increased Avg β Max Avg β

20 4.67 6.96 7.98 2.56 2.25 2.01

30 2.87 4.87 11.85 3.10 2.39 1.57

40 2.49 4.48 14.72 3.11 2.38 1.47

              Average Reliability Index               Standard Deviation of β                       Number of β < βT

#5 Bars Base Case 1st Increase Max Spacing Base Case 1st Increase Max Spacing Base Case 1st Increase Max Spacing

L = 20 ft 3.23 2.55 1.93 0.81 0.77 0.81 15 21 27

L = 30 ft 3.33 2.72 1.49 0.76 0.73 1.21 16 20 26

L = 40 ft 3.24 2.63 1.39 0.75 0.68 1.29 17 21 26

# 10 Bars Base Case 1st Increase Max Spacing Base Case 1st Increase Max Spacing Base Case 1st Increase Max Spacing

L = 20 ft 2.56 2.25 2.01 0.94 0.95 0.84 23 26 27

L = 30 ft 3.10 2.39 1.57 0.82 0.86 1.26 18 22 25

L = 40 ft 3.11 2.38 1.47 0.68 0.60 1.34 19 25 25



 

 

 

 

Figure 4.19: Variation of 

 

Figure 4.20: Variation of 
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Reliability Index vs. Reinforcement Spacing for #5 Bars 
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Figure 4.21: Variation of Reliability Index with Reinforcement Spacing
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: Variation of Reliability Index with Reinforcement Spacing for both #5 and 
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CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 CONCLUSIONS AND RECOMMENDATIONS  

In this study, a reliability-based approach was employed to analyze the effect of 

major variables on crack control in reinforced concrete beams. Probabilistic models can 

incorporate the level of uncertainty using available statistical information based on 

research and observed situations. In this thesis, the reliability of reinforced concrete 

structures regarding the crack control serviceability limit states was investigated. More 

common practice has shown a target reliability index of 3.5 is desired (Siriaksorn and 

Naaman, 1980). The crack control serviceability limit state was investigated to determine 

the most influential parameters on maximum crack width.  For the base case of 81 beams, 

it was found that the average reliability for all span lengths using #5 bars is 3.31, while 

for #10 bars is 3.24.  

In studying the reliability of reinforced concrete beams for the crack control limit 

state, the following observations or conclusions can be drawn: 

(1) As beam width is increased, no significant effect results on 

reliability index. The average reliabilities of the beams within each span length 

essentially remain constant as beam width is increased. The average increase in 

reliability index using #5 bars is 0.31% and for #10 bars is 0.34%.  

(2) As effective depth is increased, reliability index is slightly 

increased. The average increase in reliability index for all span lengths using #5 

bars is 5.5% and for #10 bars is 7.0%.  
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(3) As concrete cover is increased, reliability index decreases. Frosch 

(1999) validates that smaller covers will reduce maximum crack widths, but 

researchers argue for and against the case that larger covers protect against 

reinforcement corrosion. The average decrease in reliability index as cover is 

increased is 22.9% for #5 bars and 21.1% for #10 bars. Concrete cover is certainly 

among the top factors influencing reliability index.  

(4) In general, as steel yield strength increases, reliability decreases. 

The average decrease in reliability index is 1.5% for #5 bars and 12.3% for #10 

bars.  

(5) Also an increase in concrete strength causes a slight increase in 

reliability index. The average increase in reliability index is 0.59% using #5 bars 

and 5.8% using #10 bars.  

(6) It was also found that as reinforcement area increases, reliability 

index also increases. The average increase in reliability index is 2.2% when using 

#5 bars and 11.9% when using #10 bars. This variable is limited in its influence as 

only a certain amount of reinforcement can fit in the bottom most layer while still 

adhering to ACI 318-08 code requirements for spacing of reinforcement.  

(7) The seventh and eighth parameters, spacing of reinforcement and 

maximum allowable spacing as given by ACI 318-08 Section 10.6.4, considered 

in this study will be discussed together. For the beams in this study, the maximum 

allowable spacing was dictated by the section width, as spacing cannot logically 

exceed the width of the section. It is clear that decreasing spacing will result in 

higher reliability indices. The average reduction in reliability index when 
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increasing spacing is 33.2% for #5 bars and 26.7% for #10 bars. It is also evident 

that reinforcement spacing and concrete cover are the most significant parameters 

to control cracking in reinforced concrete.  

(8) It was also observed that using a larger number of bars with small 

diameters leads to higher reliability indices than using a smaller number of bars 

with larger diameters. For this study, the average reliability index increased by 

13.2% when using #5 bars as opposed to #10 bars. 

In conclusion, reliability-based approaches should be considered to provide more 

realistic analyses. Reliability-based analysis models real world situations more closely 

than deterministic analysis. Future work can include ACI 318-08 Building Code 

calibration using reliability-based approaches for various serviceability limit states.  
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APPENDIX I RESISTANCE VALIDATION DATA  

Clark’s (1956) Specimen Data 

 
 

 

 

 

 

Specimen No. Depth, h, in Width, b, in Cover, dc, in Bar Size No. of Bars Bar Spacing s, in As, in² fc', psi fs, psi fy, psi

6-7 1/2-3-2 6 7.5 0.69 3 3 2.5 0.3313 3720 15000 40000

6-7 1/2-4-1 6 7.5 0.75 4 2 3.75 0.3927 3550 15000 40000

6-7 1/2-4-2 6 7.5 0.75 4 2 3.75 0.3927 3570 15000 40000

6-7 1/2-4-3 6 7.5 0.75 4 2 3.75 0.3927 3810 15000 40000

6-15-6-1 6 15 0.87 6 2 7.5 0.8836 3890 15000 40000

6-9-5-5 6 9 0.81 5 2 4.5 0.6136 4300 15000 40000

6-11-6-1 6 11 0.87 6 2 5.5 0.8836 4100 15000 40000

6-11-6-2 6 11 0.87 6 2 5.5 0.8836 3750 15000 40000

6-15-7-1 6 15 0.94 7 2 7.5 1.2026 3870 15000 40000

6-15-7-2 6 15 0.94 7 2 7.5 1.2026 3850 15000 40000

6-7 1/2-7-1 6 7.5 0.94 7 1 7.5 0.6013 3600 15000 40000

6-7 1/2-7-2 6 7.5 0.94 7 1 7.5 0.6013 3460 15000 40000

6-7 1/2-5-1 6 7.5 0.81 5 2 3.75 0.6136 3330 15000 40000

6-7 1/2-5-2 6 7.5 0.81 5 2 3.75 0.6136 3200 15000 40000

6-7 1/2-5-3 6 7.5 0.81 5 2 3.75 0.6136 4190 15000 40000

6-9-8-1 6 9 1 8 1 9 0.7854 4500 15000 40000

6-9-8-2 6 9 1 8 1 9 0.7854 3780 15000 40000

6-6-7-1 6 6 0.94 7 1 6 0.6013 4250 15000 40000

6-7 1/2-6-1 6 7.5 0.87 6 2 3.75 0.8836 3980 15000 40000

6-9 1/2-7-1 6 9.5 0.94 7 2 4.75 1.2026 3410 15000 40000

6-9 1/2-7-2 6 9.5 0.94 7 2 4.75 1.2026 4100 15000 40000

15-6-8-1 15 6 2 8 1 6 0.7854 3690 15000 40000

15-6-8-2 15 6 2 8 1 6 0.7854 3750 15000 40000

15-6-6-1 15 6 1.62 6 2 3 0.8836 4360 15000 40000

15-6-6-3 15 6 1.87 6 2 3 0.8836 3940 15000 40000

15-6-7-1 15 6 0.94 7 2 3 1.2026 3890 15000 40000

15-6-7-2 15 6 1.94 7 2 3 1.2026 3250 15000 40000

15-6-7-3 15 6 1.94 7 2 3 1.2026 4280 15000 40000

15-6-7-4 15 6 1.94 7 2 3 1.2026 4210 15000 40000

15-6-7-5 15 6 1.94 7 2 3 1.2026 4040 15000 40000

15-6-10-1 15 6 2.14 10 1 6 1.2272 3570 15000 40000

15-6-10-2 15 6 2.14 10 1 6 1.2272 4160 15000 40000

15-6-8-3 15 6 2 8 2 3 1.5708 3860 15000 40000

15-6-8-4 15 6 2 8 2 3 1.5708 3870 15000 40000

15-6-9-1 15 6 1.44 9 2 3 1.988 4080 15000 40000

15-6-9-2 15 6 2.06 9 2 3 1.988 4140 15000 40000

15-6-9-3 15 6 2.06 9 2 3 1.988 3950 15000 40000

15-6-9-4 15 6 2.06 9 2 3 1.988 4140 15000 40000

15-6-9-5 15 6 2.06 9 2 3 1.988 3540 15000 40000

23-6-10-1 23 6 2.14 10 1 6 1.2272 3960 15000 40000

23-6-10-2 23 6 2.14 10 1 6 1.2272 3620 15000 40000

23-6-11-1 23 6 2.7 11 1 6 1.4849 3930 15000 40000

23-6-9-1 23 6 2.06 9 2 3 1.988 3650 15000 40000

23-6-9-2 23 6 2.06 9 2 3 1.988 3560 15000 40000

23-6-11-2 23 6 2.2 11 2 3 2.9698 3590 15000 40000

23-6-11-3 23 6 2.2 11 2 3 2.9698 4040 15000 40000
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 15 ksi) 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-7 1/2-3-2 0.00073 269.8% 139.4% 113.5%

6-7 1/2-4-1 0.00068 356.8% 216.7% 225.6%

6-7 1/2-4-2 0.00109 184.9% 97.6% 103.2%

6-7 1/2-4-3 0.00166 86.8% 29.5% 33.4%

6-15-6-1 0.00226 74.5% 36.4% 88.5%

6-9-5-5 0.00214 57.4% 14.4% 23.1%

6-11-6-1 0.00278 32.6% 1.0% 14.8%

6-11-6-2 0.00266 39.2% 6.0% 20.0%

6-15-7-1 0.00246 68.5% 36.0% 74.8%

6-15-7-2 0.00278 49.2% 20.4% 54.7%

6-7 1/2-7-1 0.00342 21.7% -1.7% 25.7%

6-7 1/2-7-2 0.00299 39.6% 12.7% 43.8%

6-7 1/2-5-1 0.00281 16.8% -16.4% -19.9%

6-7 1/2-5-2 0.0029 13.4% -18.8% -22.4%

6-7 1/2-5-3 0.00252 28.7% -7.8% -10.7%

6-9-8-1 0.0025 78.6% 50.2% 106.0%

6-9-8-2 0.0037 21.8% 2.4% 39.2%

6-6-7-1 0.00332 19.2% -5.6% 5.3%

6-7 1/2-6-1 0.00198 73.9% 28.3% 15.5%

6-9 1/2-7-1 0.00484 -19.1% -37.2% -41.3%

6-9 1/2-7-2 0.00314 21.7% -5.5% -9.5%

15-6-8-1 0.00203 122.2% 141.1% 113.1%

15-6-8-2 0.00264 70.8% 85.3% 63.9%

15-6-6-1 0.00228 52.5% 43.0% 13.2%

15-6-6-3 0.00308 19.8% 19.3% -7.4%

15-6-7-1 0.0019 51.6% 13.4% 3.6%

15-6-7-2 0.00282 35.7% 37.2% 3.9%

15-6-7-3 0.00241 56.8% 58.6% 21.6%

15-6-7-4 0.00355 6.5% 7.7% -17.4%

15-6-7-5 0.00329 15.1% 16.4% -10.9%

15-6-10-1 0.00442 7.3% 19.7% 1.0%

15-6-10-2 0.00513 -8.3% 2.4% -13.0%

15-6-8-3 0.00654 -40.3% -38.8% -54.1%

15-6-8-4 0.00345 13.2% 15.9% -13.0%

15-6-9-1 0.00235 45.9% 30.3% 2.1%

15-6-9-2 0.00415 -3.1% 0.5% -26.0%

15-6-9-3 0.00302 33.7% 38.6% 1.7%

15-6-9-4 0.00292 37.7% 42.8% 5.2%

15-6-9-5 0.00443 -7.6% -4.2% -30.7%

23-6-10-1 0.00331 31.3% 46.5% 34.9%

23-6-10-2 0.00401 8.5% 21.1% 11.3%

23-6-11-1 0.00414 15.4% 41.9% 22.6%

23-6-9-1 0.00361 1.2% 4.9% -14.9%

23-6-9-2 0.00332 10.1% 14.2% -7.5%

23-6-11-2 0.0034 12.9% 20.3% -4.7%

23-6-11-3 0.0049 -22.4% -17.3% -33.9%

Avg Positive Error 55.1% 39.2% 44.3%

Avg Negative Error -16.8% -15.3% -19.9%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 20

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-9-3-1 0.0014 168.4% 76.4% 71.6%

6-9-3-3 0.00175 115.0% 41.3% 37.3%

6-7 1/2-3-2 0.00156 130.7% 49.4% 33.2%

6-7 1/2-4-1 0.00303 36.7% -5.2% -2.6%

6-7 1/2-4-2 0.00146 183.6% 96.7% 102.2%

6-7 1/2-4-3 0.00248 66.7% 15.6% 19.1%

6-15-6-1 0.00477 10.2% -13.9% 19.1%

6-9-5-5 0.00337 33.3% -3.1% 4.2%

6-11-6-1 0.00397 23.8% -5.7% 7.2%

6-11-6-2 0.00444 11.2% -15.3% -4.2%

6-15-7-1 0.00417 32.6% 7.0% 37.5%

6-15-7-2 0.00499 10.8% -10.6% 14.9%

6-7 1/2-7-1 0.00608 -8.7% -26.3% -5.7%

6-7 1/2-7-2 0.00497 12.0% -9.6% 15.4%

6-7 1/2-5-1 0.0044 -0.6% -28.8% -31.8%

6-7 1/2-5-2 0.00432 1.5% -27.3% -30.6%

6-7 1/2-5-3 0.00391 10.6% -20.8% -23.3%

6-9-8-1 0.00407 46.3% 23.0% 68.7%

6-9-8-2 0.00496 21.2% 1.9% 38.4%

6-6-7-1 0.00531 -0.6% -21.3% -12.2%

6-7 1/2-6-1 0.00298 54.1% 13.7% 2.3%

6-9 1/2-7-1 0.00749 -30.3% -45.9% -49.4%

6-9 1/2-7-2 0.00476 7.0% -16.8% -20.4%

15-6-8-1 0.00464 29.6% 40.6% 24.3%

15-6-8-2 0.00459 31.0% 42.1% 25.7%

15-6-6-1 0.00441 5.1% -1.4% -22.0%

15-6-6-2 0.00301 54.0% 44.5% 14.3%

15-6-6-3 0.00369 33.4% 32.8% 3.0%

15-6-7-1 0.00274 40.2% 4.8% -4.2%

15-6-7-2 0.0043 18.7% 20.0% -9.1%

15-6-7-3 0.00362 39.2% 40.8% 7.9%

15-6-7-4 0.00431 17.0% 18.3% -9.3%

15-6-7-5 0.00568 -11.1% -10.1% -31.2%

15-6-10-1 0.00659 -4.1% 7.1% -9.7%

15-6-10-2 0.00739 -15.1% -5.3% -19.4%

15-6-8-3 0.0086 -39.5% -38.0% -53.5%

15-6-8-4 0.00515 1.1% 3.5% -22.3%

15-6-9-1 0.00342 33.7% 19.4% -6.5%

15-6-9-2 0.00553 -3.1% 0.5% -26.0%

15-6-9-3 0.00409 31.6% 36.5% 0.1%

15-6-9-4 0.00444 20.7% 25.2% -7.8%

15-6-9-5 0.00404 35.1% 40.1% 1.3%

23-6-10-1 0.00641 -9.6% 0.9% -7.1%

23-6-10-2 0.00633 -8.3% 2.3% -6.0%

23-6-11-1 0.00689 -7.6% 13.7% -1.7%

23-6-9-1 0.00523 -6.9% -3.4% -21.7%

23-6-9-2 0.00369 32.1% 37.0% 11.0%

23-6-11-2 0.00495 3.4% 10.2% -12.7%

23-6-11-3 0.0073 -30.5% -25.9% -40.8%

Avg Positive Error 40.0% 26.4% 25.4%

Avg Negative Error -12.6% -16.7% -18.2%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 25 ksi) 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-8-3-1 0.00207 143.1% 63.7% 85.9%

6-8-3-2 0.00143 251.4% 136.6% 169.2%

6-7 1/2-3-1 0.00258 91.7% 28.4% 40.9%

6-9-3-1 0.00246 90.9% 25.5% 22.1%

6-9-3-3 0.0034 38.3% -9.1% -11.7%

6-7 1/2-3-2 0.00309 45.6% -5.7% -15.9%

6-7 1/2-4-1 0.00436 18.7% -17.7% -15.4%

6-7 1/2-4-2 0.00226 129.0% 58.8% 63.3%

6-7 1/2-4-3 0.00402 28.5% -10.9% -8.2%

6-15-6-1 0.00669 -1.8% -23.2% 6.1%

6-9-5-5 0.00457 22.9% -10.7% -3.9%

6-11-6-1 0.00559 9.9% -16.3% -4.8%

6-11-6-2 0.00627 -1.6% -25.0% -15.2%

6-15-7-1 0.00616 12.2% -9.5% 16.3%

6-15-7-2 0.00709 -2.5% -21.3% 1.1%

6-7 1/2-7-1 0.00806 -13.9% -30.5% -11.1%

6-7 1/2-7-2 0.00457 52.2% 22.9% 56.8%

6-7 1/2-5-1 0.00607 -9.9% -35.5% -38.2%

6-7 1/2-5-2 0.00589 -6.9% -33.4% -36.3%

6-7 1/2-5-3 0.00508 6.4% -23.8% -26.2%

6-9-8-1 0.00571 30.3% 9.6% 50.3%

6-9-8-2 0.00671 12.0% -5.9% 27.9%

6-6-7-1 0.00708 -6.9% -26.2% -17.7%

6-7 1/2-6-1 0.00403 42.4% 5.1% -5.4%

6-9 1/2-7-1 0.00531 22.9% -4.5% -10.8%

6-9 1/2-7-2 0.00406 56.9% 21.9% 16.6%

15-6-8-1 0.00669 12.4% 21.9% 7.8%

15-6-8-2 0.00769 -2.3% 6.0% -6.2%

15-6-6-1 0.00668 -13.3% -18.6% -35.6%

15-6-6-2 0.0042 38.0% 29.5% 2.4%

15-6-6-3 0.00504 22.1% 21.6% -5.7%

15-6-7-1 0.00362 32.7% -0.8% -9.3%

15-6-7-2 0.00578 10.4% 11.6% -15.5%

15-6-7-3 0.00465 35.5% 37.0% 5.0%

15-6-7-4 0.00582 8.3% 9.5% -16.1%

15-6-7-5 0.00774 -18.5% -17.6% -36.9%

15-6-10-1 0.00905 -12.7% -2.5% -17.8%

15-6-10-2 0.00941 -16.7% -7.0% -20.9%

15-6-8-3 0.01053 -38.2% -36.7% -52.5%

15-6-8-4 0.0069 -5.7% -3.4% -27.5%

15-6-9-1 0.00454 25.9% 12.4% -11.9%

15-6-9-2 0.0067 0.0% 3.7% -23.6%

15-6-9-3 0.00537 25.3% 29.9% -4.7%

15-6-9-4 0.00589 13.8% 18.0% -13.1%

15-6-9-5 0.00528 29.2% 34.0% -3.1%

23-6-10-1 0.0092 -21.3% -12.1% -19.1%

23-6-10-2 0.00886 -18.1% -8.6% -16.0%

23-6-11-1 0.00884 -9.9% 10.7% -4.3%

23-6-9-1 0.00702 -13.3% -10.1% -27.1%

23-6-9-2 0.00509 19.7% 24.1% 0.5%

23-6-11-2 0.00675 -5.2% 1.0% -20.0%

23-6-11-3 0.00967 -34.4% -30.1% -44.2%

Avg Positive Error 43.1% 26.8% 35.8%

Avg Negative Error -12.7% -16.3% -18.1%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 30 ksi) 

 
 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-12-3-2 0.00147 352.4% 215.1% 357.2%

6-8-3-1 0.00304 98.7% 33.8% 51.9%

6-8-3-2 0.00281 114.6% 44.5% 64.4%

6-7 1/2-3-1 0.00492 20.6% -19.2% -11.3%

6-9-3-1 0.00347 62.4% 6.8% 3.9%

6-9-3-3 0.00414 36.3% -10.4% -12.9%

6-7 1/2-3-2 0.00322 67.7% 8.6% -3.2%

6-7 1/2-4-1 0.00623 -0.3% -30.9% -28.9%

6-7 1/2-4-2 0.00329 88.8% 30.9% 34.6%

6-7 1/2-4-3 0.00517 19.9% -16.8% -14.3%

6-15-6-1 0.00708 11.4% -12.9% 20.3%

6-9-5-5 0.00500 34.8% -2.0% 5.4%

6-11-6-1 0.00732 0.8% -23.3% -12.8%

6-11-6-2 0.00816 -9.2% -30.9% -21.8%

6-15-7-1 0.00501 65.5% 33.6% 71.7%

6-15-7-2 0.00892 -7.0% -25.0% -3.6%

6-7 1/2-7-1 0.00615 35.4% 9.3% 39.8%

6-7 1/2-7-2 0.00609 37.1% 10.6% 41.2%

6-7 1/2-5-1 0.00506 29.7% -7.1% -11.1%

6-7 1/2-5-2 0.00752 -12.5% -37.4% -40.2%

6-7 1/2-5-3 0.00653 -0.7% -28.9% -31.1%

6-9-8-1 0.00654 36.6% 14.8% 57.5%

6-9-8-2 0.00840 7.3% -9.8% 22.6%

6-6-7-1 0.00941 -15.9% -33.4% -25.7%

6-7 1/2-6-1 0.00502 37.2% 1.2% -8.9%

6-9 1/2-7-1 0.00639 22.5% -4.8% -11.1%

6-9 1/2-7-2 0.00730 4.7% -18.7% -22.2%

15-6-8-1 0.00823 9.6% 18.9% 5.1%

15-6-8-2 0.00793 13.7% 23.4% 9.1%

15-6-6-1 0.00889 -21.8% -26.6% -42.0%

15-6-6-2 0.00536 29.8% 21.7% -3.7%

15-6-6-3 0.00632 16.8% 16.3% -9.8%

15-6-7-1 0.00463 24.5% -6.9% -14.9%

15-6-7-2 0.00735 4.1% 5.3% -20.3%

15-6-7-3 0.00558 35.5% 37.0% 5.0%

15-6-7-4 0.00721 4.9% 6.1% -18.7%

15-6-7-5 0.00982 -22.9% -22.0% -40.3%

15-6-10-1 0.01047 -9.4% 1.1% -14.7%

15-6-10-2 0.01130 -16.7% -7.1% -21.0%

15-6-8-3 0.01243 -37.2% -35.6% -51.7%

15-6-8-4 0.00824 -5.2% -2.9% -27.2%

15-6-9-1 0.00572 19.9% 7.1% -16.1%

15-6-9-2 0.00802 0.3% 4.0% -23.4%

15-6-9-3 0.00673 20.0% 24.4% -8.8%

15-6-9-4 0.00632 27.2% 31.9% -2.8%

15-6-9-5 0.00666 22.9% 27.5% -7.8%

23-6-10-1 0.01170 -25.7% -17.1% -23.7%

23-6-10-2 0.01104 -21.2% -12.0% -19.1%

23-6-11-1 0.01049 -8.9% 12.0% -3.2%

23-6-9-1 0.00882 -17.2% -14.1% -30.4%

23-6-9-2 0.00626 16.8% 21.1% -1.9%

23-6-11-2 0.00881 -12.9% -7.2% -26.5%

Avg Positive Error 40.9% 25.6% 52.7%

Avg Negative Error -14.4% -17.8% -18.6%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 35 ksi) 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-12-3-1 0.00161 381.8% 235.6% 387.0%

6-12-3-2 0.00287 170.3% 88.3% 173.2%

6-8-3-1 0.00464 51.8% 2.2% 16.1%

6-8-3-2 0.00434 62.1% 9.2% 24.2%

6-7 1/2-3-1 0.00523 32.4% -11.4% -2.7%

6-9-3-1 0.00455 44.5% -5.0% -7.6%

6-9-3-3 0.00528 24.7% -18.0% -20.4%

6-7 1/2-3-2 0.00445 41.6% -8.3% -18.3%

6-7 1/2-4-1 0.00774 -6.4% -35.1% -33.2%

6-7 1/2-4-2 0.00616 17.6% -18.4% -16.1%

6-7 1/2-4-3 0.00637 13.6% -21.3% -18.9%

6-15-6-1 0.00888 3.6% -19.0% 11.9%

6-9-5-5 0.00615 27.8% -7.1% -0.1%

6-11-6-1 0.00902 -4.6% -27.4% -17.4%

6-11-6-2 0.00950 -9.0% -30.7% -21.6%

6-15-7-1 0.00563 71.8% 38.7% 78.2%

6-15-7-2 0.01093 -11.5% -28.5% -8.2%

6-7 1/2-7-1 0.00734 32.4% 6.8% 36.7%

6-7 1/2-7-2 0.00765 27.3% 2.8% 31.2%

6-7 1/2-5-1 0.00618 23.9% -11.3% -15.1%

6-7 1/2-5-2 0.00903 -15.0% -39.1% -41.9%

6-7 1/2-5-3 0.00657 15.2% -17.5% -20.1%

6-9-8-1 0.00793 31.4% 10.5% 51.5%

6-9-8-2 0.01062 -1.0% -16.7% 13.2%

6-6-7-1 0.01109 -16.7% -34.0% -26.4%

6-7 1/2-6-1 0.00651 23.4% -8.9% -18.0%

6-9 1/2-7-1 0.00793 15.2% -10.5% -16.4%

6-9 1/2-7-2 0.00924 -3.5% -25.0% -28.3%

15-6-8-1 0.00947 11.1% 20.6% 6.6%

15-6-8-2 0.00980 7.3% 16.5% 3.0%

15-6-6-1 0.01075 -24.6% -29.2% -44.0%

15-6-6-2 0.00649 25.0% 17.3% -7.2%

15-6-6-3 0.00799 7.8% 7.3% -16.7%

15-6-7-1 0.00557 20.7% -9.7% -17.5%

15-6-7-2 0.00883 1.1% 2.3% -22.6%

15-6-7-3 0.00666 32.4% 33.9% 2.7%

15-6-7-4 0.00859 2.7% 3.9% -20.4%

15-6-7-5 0.01170 -24.5% -23.6% -41.6%

15-6-10-1 0.01221 -9.4% 1.1% -14.7%

15-6-10-2 0.01399 -21.5% -12.4% -25.5%

15-6-8-3 0.01427 -36.1% -34.6% -50.9%

15-6-8-4 0.00958 -4.9% -2.6% -26.9%

15-6-9-1 0.00673 18.9% 6.2% -16.8%

15-6-9-2 0.00965 -2.8% 0.8% -25.8%

15-6-9-4 0.00884 6.1% 10.0% -19.0%

15-6-9-5 0.00805 18.6% 23.0% -11.0%

23-6-10-1 0.01436 -29.4% -21.2% -27.5%

23-6-10-2 0.01289 -21.2% -12.1% -19.2%

23-6-11-1 0.01221 -8.7% 12.2% -3.0%

23-6-9-1 0.01061 -19.7% -16.7% -32.5%

23-6-9-2 0.00737 15.8% 20.0% -2.8%

Avg Positive Error 40.0% 25.9% 64.3%

Avg Negative Error -14.2% -19.2% -20.4%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 40 ksi) 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-12-3-1 0.00440 101.5% 40.3% 103.7%

6-12-3-2 0.00455 94.9% 35.7% 96.9%

6-8-3-1 0.00637 26.4% -14.9% -3.3%

6-8-3-2 0.00572 40.6% -5.3% 7.7%

6-7 1/2-3-1 0.00534 48.2% -0.8% 8.9%

6-9-3-1 0.00588 27.8% -16.0% -18.3%

6-9-3-3 0.00673 11.8% -26.5% -28.6%

6-7 1/2-3-2 0.00579 24.3% -19.5% -28.2%

6-7 1/2-4-1 0.00967 -14.3% -40.6% -38.9%

6-7 1/2-4-2 0.00648 27.8% -11.4% -8.9%

6-7 1/2-4-3 0.00751 10.1% -23.7% -21.4%

6-15-6-1 0.01055 -0.3% -22.1% 7.7%

6-9-5-5 0.00712 26.2% -8.3% -1.3%

6-11-6-1 0.01093 -10.0% -31.5% -22.1%

6-11-6-2 0.01166 -15.3% -35.5% -27.0%

6-15-7-1 0.00700 57.9% 27.5% 63.8%

6-15-7-2 0.01293 -14.5% -31.0% -11.3%

6-7 1/2-7-1 0.00602 84.4% 48.9% 90.5%

6-7 1/2-7-2 0.00892 24.8% 0.7% 28.6%

6-7 1/2-5-1 0.00745 17.4% -15.9% -19.5%

6-7 1/2-5-2 0.01069 -17.9% -41.3% -43.9%

6-7 1/2-5-3 0.00751 15.2% -17.5% -20.1%

6-9-8-1 0.00932 27.8% 7.4% 47.4%

6-9-8-2 0.02793 -57.0% -63.8% -50.8%

6-6-7-1 0.01428 -26.1% -41.5% -34.7%

6-7 1/2-6-1 0.00708 29.7% -4.3% -13.9%

6-9 1/2-7-2 0.01078 -5.5% -26.6% -29.7%

15-6-8-1 0.01099 9.4% 18.7% 5.0%

15-6-8-2 0.01388 -13.4% -6.0% -16.9%

15-6-6-1 0.01275 -27.3% -31.8% -46.0%

15-6-6-2 0.00765 21.2% 13.7% -10.1%

15-6-6-3 0.00903 9.0% 8.6% -15.8%

15-6-7-1 0.00663 15.9% -13.3% -20.8%

15-6-7-2 0.01055 -3.3% -2.2% -25.9%

15-6-7-3 0.00790 27.6% 29.0% -1.1%

15-6-7-4 0.00991 1.7% 2.9% -21.1%

15-6-7-5 0.01359 -25.7% -24.9% -42.5%

15-6-10-1 0.01366 -7.4% 3.3% -12.8%

15-6-10-2 0.01638 -23.4% -14.5% -27.3%

15-6-8-3 0.02083 -50.0% -48.8% -61.6%

15-6-8-4 0.01092 -4.7% -2.3% -26.7%

15-6-9-1 0.00802 14.0% 1.8% -20.2%

15-6-9-2 0.01144 -6.3% -2.8% -28.4%

15-6-9-4 0.01038 3.3% 7.1% -21.1%

15-6-9-5 0.00951 14.8% 19.0% -13.9%

23-6-10-1 0.01654 -30.0% -21.8% -28.0%

23-6-10-2 0.01477 -21.4% -12.3% -19.4%

23-6-11-1 0.01393 -8.6% 12.4% -2.8%

23-6-9-1 0.01276 -23.7% -20.8% -35.8%

23-6-9-2 0.00880 10.8% 14.9% -7.0%

Avg Positive Error 29.4% 17.2% 46.0%

Avg Negative Error -18.5% -21.2% -23.2%
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Accuracy of Crack Width Equations with Clark’s Measured Crack Width (fs = 45 ksi) 

 
 

 

 

 

 

 

 

 

 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

6-12-3-1 0.00709 40.7% -2.0% 42.2%

6-12-3-2 0.00816 22.2% -14.9% 23.5%

6-8-3-1 0.00799 13.4% -23.7% -13.3%

6-8-3-2 0.00714 26.7% -14.7% -3.0%

6-7 1/2-3-1 0.00649 37.1% -8.2% 0.8%

6-9-3-1 0.00523 61.6% 6.3% 3.4%

6-9-3-3 0.00506 67.3% 10.0% 6.9%

6-7 1/2-3-2 0.00691 17.2% -24.1% -32.3%

6-7 1/2-4-3 0.01140 -18.4% -43.4% -41.7%

6-15-6-1 0.01377 -14.1% -32.9% -7.2%

6-9-5-5 0.00833 21.3% -11.8% -5.1%

6-11-6-1 0.01149 -3.7% -26.7% -16.7%

6-11-6-2 0.01451 -23.4% -41.7% -34.0%

6-15-7-1 0.00837 48.6% 19.9% 54.1%

6-15-7-2 0.01668 -25.4% -39.8% -22.7%

6-7 1/2-7-1 0.01047 19.3% -3.7% 23.2%

6-7 1/2-7-2 0.01070 17.0% -5.5% 20.6%

6-7 1/2-5-1 0.00884 11.3% -20.3% -23.6%

6-7 1/2-5-2 0.01223 -19.3% -42.2% -44.8%

6-7 1/2-5-3 0.00936 4.0% -25.6% -27.9%

15-6-8-1 0.01483 -8.8% -1.0% -12.5%

15-6-8-2 0.02402 -43.7% -38.9% -46.0%

15-6-6-1 0.01453 -28.2% -32.7% -46.7%

15-6-6-2 0.00916 13.9% 6.8% -15.5%

15-6-6-3 0.01064 4.1% 3.6% -19.6%

15-6-7-1 0.00758 14.0% -14.7% -22.1%

15-6-7-2 0.01186 -3.2% -2.1% -25.9%

15-6-7-3 0.00930 21.9% 23.3% -5.5%

15-6-10-1 0.01624 -12.4% -2.2% -17.5%

15-6-10-2 0.01930 -26.9% -18.4% -30.6%

23-6-10-1 0.01908 5.0% -0.8% -11.2%

23-6-10-2 0.01693 -35.7% -26.8% -33.6%

Avg Positive Error 24.6% 11.7% 21.8%

Avg Negative Error -20.3% -19.9% -23.3%
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Chi’s & Kirstein’s (1958) Specimen Data 

 
 

 

 
Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 15 ksi) 

 
 

 

 

 

 

 

 

 

Specimen b, in h, in d, in dc, in #bars Bar # fc', psi fy, psi

CK1 7.5 6 5.25 0.75 2 4 5840 40000

CK2 7.5 6 5.25 0.75 2 4 2360 40000

CK3 11 6 5.12 0.88 2 6 6110 40000

CK4 11 6 5.12 0.88 2 6 2110 40000

CK5 6 15 13.06 1.94 2 7 6630 40000

CK6 6 15 13.06 1.94 2 7 6655 40000

CK7 6 15 13.06 1.94 2 7 2520 40000

CK8 6 15 13.06 1.94 2 7 2130 40000

CK9 6 15 13 2 1 8 6100 40000

CK10 6 15 13 2 1 8 5930 40000

CK11 6 15 13 2 1 8 3060 40000

CK12 6 15 13 2 1 8 2285 40000

CK13 6 23 20.87 2.13 1 10 6330 40000

CK14 6 23 20.87 2.13 1 10 2400 40000

CK15 6 23 20.94 2.06 2 9 6460 40000

CK16 6 23 20.94 2.06 2 9 2450 40000

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00091 225.2% 125.5% 143.3%

CK3 0.00285 27.2% -2.7% 12.2%

CK4 0.00375 77.0% 35.4% -14.7%

CK5 0.00205 83.3% 85.4% 43.0%

CK6 0.0025 50.2% 51.9% 17.2%

CK7 0.00323 68.8% 70.7% -9.3%

CK8 0.00335 103.3% 105.6% -12.5%

CK10 0.00272 56.2% 69.5% 59.1%

CK12 0.00228 128.8% 148.3% 89.8%

CK14 0.00286 82.8% 103.6% 55.8%

CK15 0.00282 38.0% 43.1% 8.9%

CK16 0.00319 96.0% 103.2% -3.7%

Avg Positive Error 86.4% 85.6% 53.6%

Avg Negative Error 0.0% -2.7% -10.1%
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Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 20 ksi) 

 
 

 

 

 
Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 25 ksi) 

 
 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00191 106.6% 43.2% 54.6%

CK2 0.00247 93.1% 33.9% 19.5%

CK3 0.00469 3.1% -21.1% -9.1%

CK4 0.00535 65.4% 26.5% -20.3%

CK5 0.0046 8.9% 10.1% -15.1%

CK6 0.00456 9.8% 11.1% -14.3%

CK7 0.00522 39.3% 40.8% -25.1%

CK8 0.00334 171.9% 174.9% 17.0%

CK10 0.00497 14.0% 23.7% 16.1%

CK12 0.00416 67.2% 81.4% 38.7%

CK13 0.0061 -5.9% 4.8% -2.6%

CK14 0.0055 26.7% 41.2% 8.0%

CK15 0.00469 10.6% 14.7% -12.7%

CK16 0.00502 66.1% 72.2% -18.4%

Avg Positive Error 52.5% 44.5% 25.6%

Avg Negative Error -5.9% -21.1% -14.7%

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00256 92.7% 33.6% 44.2%

CK2 0.0046 29.6% -10.1% -19.8%

CK3 0.00659 -8.3% -29.8% -19.1%

CK4 0.00669 65.3% 26.5% -20.3%

CK5 0.00355 76.4% 78.4% 37.6%

CK6 0.00499 25.5% 26.9% -2.1%

CK7 0.00582 56.1% 57.9% -16.1%

CK8 0.00706 60.8% 62.6% -30.8%

CK9 0.00541 30.6% 41.7% 33.3%

CK10 0.00736 -3.8% 4.4% -2.0%

CK11 0.00428 83.0% 98.6% 68.5%

CK12 0.00527 65.0% 79.0% 36.8%

CK13 0.00878 -18.3% -9.0% -15.4%

CK14 0.00735 18.5% 32.1% 1.0%

CK15 0.00673 -3.6% -0.1% -24.0%

CK16 0.00659 58.1% 64.0% -22.3%

Avg Positive Error 55.1% 50.5% 36.9%

Avg Negative Error -8.5% -12.3% -17.2%
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Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 30 ksi) 

 
 

Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 35 ksi) 

 
 

 

 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00353 67.7% 16.3% 25.5%

CK2 0.00621 15.2% -20.1% -28.7%

CK3 0.00805 -9.9% -31.1% -20.6%

CK4 0.00796 66.7% 27.6% -19.7%

CK5 0.00683 10.0% 11.3% -14.2%

CK6 0.0063 19.2% 20.6% -7.0%

CK7 0.00698 56.2% 58.0% -16.0%

CK8 0.00895 52.2% 53.9% -34.5%

CK9 0.00739 14.7% 24.5% 17.1%

CK10 0.00954 -10.9% -3.4% -9.3%

CK11 0.00538 74.7% 89.6% 60.8%

CK12 0.00637 63.8% 77.7% 35.8%

CK13 0.01108 -22.3% -13.4% -19.6%

CK14 0.00903 15.8% 29.0% -1.3%

CK15 0.00863 -9.8% -6.5% -28.8%

CK16 0.00821 52.3% 57.9% -25.2%

Avg Positive Error 42.4% 42.4% 34.8%

Avg Negative Error -13.2% -14.9% -18.7%

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00449 53.8% 6.6% 15.1%

CK2 0.00783 6.6% -26.1% -34.0%

CK3 0.00941 -10.1% -31.2% -20.7%

CK4 0.00929 66.7% 27.5% -19.7%

CK5 0.0084 4.4% 5.6% -18.6%

CK6 0.008 9.6% 10.8% -14.5%

CK8 0.01091 45.7% 47.3% -37.3%

CK9 0.00991 -0.2% 8.3% 1.9%

CK10 0.0117 -15.3% -8.1% -13.7%

CK11 0.00672 63.2% 77.1% 50.2%

CK12 0.00775 57.1% 70.4% 30.3%

CK13 0.01298 -22.6% -13.8% -19.9%

CK14 0.01068 14.2% 27.2% -2.7%

CK15 0.01049 -13.5% -10.3% -31.7%

CK16 0.00991 47.2% 52.6% -27.7%

Avg Positive Error 36.8% 33.3% 24.4%

Avg Negative Error -12.3% -17.9% -21.9%
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Accuracy of Crack Width Equations with Chi & Kirstein’s  Measured Crack Width (fs = 40 ksi) 

 
 

 

 

Hognestad’s (1962) Specimen Data 

 
 

 

 

 
Accuracy of Crack Width Equations with Hognestad’s  Measured Crack Width (fs = 20 ksi) 

 

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

CK1 0.00546 44.5% 0.2% 8.2%

CK2 0.00945 1.0% -30.0% -37.5%

CK3 0.01071 -9.7% -30.9% -20.4%

CK4 0.01062 66.6% 27.5% -19.7%

CK5 0.01022 -2.0% -0.8% -23.5%

CK6 0.01 0.2% 1.3% -21.9%

CK8 0.01257 44.5% 46.1% -37.8%

CK9 0.01166 -3.0% 5.2% -1.0%

CK11 0.00811 54.5% 67.7% 42.3%

CK13 0.01566 -26.7% -18.3% -24.1%

CK14 0.01235 12.9% 25.7% -3.8%

CK15 0.01274 -18.6% -15.6% -35.7%

Avg Positive Error 32.0% 24.8% 25.2%

Avg Negative Error -12.0% -19.1% -22.6%

Specimen b, in h, in d, in dc, in #bars Bar # fc', psi fy, psi

H29 8 16 15.2 0.8 2 7 4030 60000

H30 8 16 14.2 1.8 2 7 3040 60000

H31 8 16 12.7 3.3 2 7 3640 60000

H32 8 16 11.2 4.8 2 7 3640 60000

H33 8 16 14.2 1.8 2 7 4360 60000

H34 8 16 14.2 1.8 2 7 4360 60000

H35 8 16 15.2 0.8 2 7 3940 60000

H36 8 16 12.7 3.3 2 7 3940 60000

Specimen No.Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

H29 0.002 140.9% 72.5% 58.1%

H30 0.002 242.2% 243.5% 112.3%

H31 0.005 43.4% 85.3% 34.6%

H32 0.01 -21.3% 19.0% -0.7%

H33 0.003 92.4% 93.2% 41.5%

H34 0.005 15.4% 15.9% -15.1%

H35 0.005 -2.8% -30.4% -36.8%

H36 0.005 38.5% 79.0% 34.6%

Avg Positive Error 95.5% 86.9% 56.2%

Avg Negative Error -12.1% -30.4% -17.5%
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Accuracy of Crack Width Equations with Hognestad’s Measured Crack Width (fs = 30 ksi) 

 
 

 

 
Accuracy of Crack Width Equations with Hognestad’s Measured Crack Width (fs = 40 ksi) 

 
 

 

 
Accuracy of Crack Width Equations with Hognestad’s Measured Crack Width (fs = 50 ksi) 

 

Specimen No.Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

H29 0.004 80.7% 29.4% 18.5%

H30 0.005 105.3% 106.1% 27.4%

H31 0.012 -10.4% 15.8% -15.9%

H32 0.019 -37.8% -6.1% -21.6%

H33 0.007 23.7% 24.2% -9.0%

H34 0.006 44.3% 44.9% 6.1%

H35 0.007 4.1% -25.5% -32.3%

H36 0.008 29.8% 67.8% 26.1%

Avg Positive Error 48.0% 48.0% 19.6%

Avg Negative Error -24.1% -15.8% -19.7%

Specimen No.Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

H29 0.006 60.6% 15.0% 5.4%

H30 0.008 71.1% 71.8% 6.1%

H31 0.019 -24.5% -2.5% -29.2%

H32 0.03 -47.5% -20.7% -33.8%

H33 0.01 15.4% 15.9% -15.1%

H34 0.011 4.9% 5.4% -22.8%

H35 0.01 -2.8% -30.4% -36.8%

H36 0.012 15.4% 49.1% 12.1%

Avg Positive Error 33.5% 31.4% 7.9%

Avg Negative Error -25.0% -17.9% -27.5%

Specimen No.Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

H29 0.007 72.1% 23.2% 12.9%

H30 0.011 55.5% 56.2% -3.5%

H31 0.025 -28.3% -7.3% -32.7%

H32 0.043 -54.2% -30.8% -42.3%

H33 0.012 20.2% 20.7% -11.5%

H34 0.0115 25.5% 26.0% -7.7%

H35 0.011 10.4% -20.9% -28.2%

H36 0.018 -3.8% 24.3% -6.6%

Avg Positive Error 36.7% 30.1% 12.9%

Avg Negative Error -28.8% -19.7% -18.9%
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Kaar’s and Mattock’s (1963) Specimen Data 

 
 

 

 

 

 

 
Accuracy of Crack Width Equations with Kaar’s and Mattock’s Measured Crack Width (fs = 40 ksi) 

 
 

 

 

 

 

 

 

 

Specimen b, in h, in d, in dc, in #bars Bar # fc', psi fy, psi

KM-4.75R 4.75 17.5 13.625 3.875 8 4 3880 60000

KM-4.75T 4.75 17.5 13.625 3.875 8 4 4090 60000

KM-8R 8 16 13.625 2.375 8 4 4550 60000

KM-8T 8 16 13.625 2.375 8 4 3590 60000

KM-16R 16 16 13.625 2.375 8 4 4050 60000

KM-16T 16 16 13.625 2.375 8 4 4460 60000

KM-24R 24 16 13.625 2.375 8 4 3760 60000

KM-32R1 32 15.25 13.625 1.625 8 4 3960 60000

KM-32R2 32 16 13.625 2.375 8 4 4170 60000

KM-S1 24 8 6 2 3 6 4020 60000

KM-S2 24 8 6 2 3 4 3780 60000

KM-S3 24 8 6 2 3 10 4410 60000

KMS4 24 8 6 2 2 10 4090 60000

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

KM-4.75R 0.013 61.5% 90.4% 8.0%

KM-4.75T 0.0104 74.1% 105.3% 35.0%

KM-8R 0.0108 -10.0% -9.7% -26.2%

KM-8T 0.0128 -12.1% -11.8% -37.8%

KM-16R 0.014 -32.6% -28.3% -39.6%

KM-16T 0.0148 -37.1% -33.1% -42.8%

KM-24R 0.0144 -31.1% -24.2% -36.0%

KM-32R1 0.0134 -29.7% -32.4% -40.1%

KM-32R2 0.0189 -45.6% -38.7% -46.1%

KM-S1 0.0199 -34.0% -26.7% -28.1%

KM-S2 0.0202 -41.6% -35.1% -29.2%

KM-S3 0.0266 -0.3% 10.8% -46.2%

KMS4 0.0257 -27.2% -16.3% -21.3%

Avg Positive Error 67.8% 68.8% 21.5%

Avg Negative Error -27.4% -25.6% -35.7%
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Hutton’s (1966) Specimen Data 

 
 

 

 

 
Accuracy of Crack Width Equations with Hutton’s (1966) Measured Crack Width (All fs) 

 
  

Specimen b, in h, in d, in dc, in #bars Bar # fc', psi fy, psi

HU-2P-1R-1 6 5 3.5 1.5 1 5 7450 60000

HU-1P-2R-1 6 5 3.5 1.5 2 5 7000 60000

HU-0P-3R-1A 6 5 3.75 1.25 3 5 7250 60000

Specimen No. Max Width, in Kaar-Mattock Error Gergely-Lutz Error Frosch Error

HU-2P-1R-1 0.001 45.0% 39.6% 32.1%

HU-2P-1R-1 0.002 74.9% 68.3% 59.3%

HU-2P-1R-1 0.003 70.6% 64.2% 55.4%

HU-2P-1R-1 0.005 108.1% 100.3% 89.6%

HU-2P-1R-1 0.007 86.4% 79.5% 69.9%

HU-2P-1R-1 0.009 72.5% 66.0% 57.2%

HU-1P-2R-1 0.001 2.6% -6.8% -50.8%

HU-1P-2R-1 0.002 18.0% 7.2% -43.5%

HU-1P-2R-1 0.002 105.2% 86.5% -1.7%

HU-1P-2R-1 0.004 100.1% 81.8% -4.1%

HU-1P-2R-1 0.006 95.0% 77.1% -6.6%

HU-1P-2R-1 0.008 97.6% 79.5% -5.4%

HU-1P-2R-1 0.011 74.5% 58.5% -16.4%

HU-0P-3R-1A 0.0002 345.3% 262.5% -27.1%

HU-0P-3R-1A 0.0005 211.7% 153.8% -49.0%

HU-0P-3R-1A 0.0007 249.9% 184.8% -42.8%

HU-0P-3R-1A 0.0012 326.7% 247.4% -30.2%

HU-0P-3R-1A 0.0025 283.0% 211.8% -37.3%

HU-0P-3R-1A 0.003 285.9% 214.2% -36.9%

HU-0P-3R-1A 0.004 334.2% 253.4% -29.0%

HU-0P-3R-1A 0.005 358.7% 273.4% -25.0%

HU-0P-3R-1A 0.007 281.7% 210.7% -37.5%

HU-0P-3R-1A 0.008 256.2% 190.0% -41.7%

HU-0P-3R-1A 0.009 248.8% 184.0% -42.9%

HU-0P-3R-1A 0.009 281.0% 210.1% -37.7%

Avg Positive Error 176.5% 141.9% 60.6%

Avg Negative Error 0.0% -6.8% -29.8%
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APPENDIX II BASE CASE BEAM DIMENSIONS AND RELIABILITY INDICES 

 

 

Base Case: L = 20 ft: 27 Beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L, ft fy, ksi fc', ksi b, in d, in dc, in h, in As5, in² No. #5 bars s5, in β5 As10, in² No. #10 bars s10, in β10

20 40 4 8 16 1 17 3.37 11 1.20 4.19 3.68 3 3.00 3.83

20 40 4 8 16 2 18 3.37 11 1.20 3.33 3.68 3 3.00 3.15

20 40 4 8 16 3 19 3.37 11 1.20 2.50 3.68 3 3.00 2.41

20 60 4 8 16 1 17 1.84 6 1.20 4.46 2.45 2 6.00 3.23

20 60 4 8 16 2 18 1.84 6 1.20 3.66 2.45 2 6.00 2.69

20 60 4 8 16 3 19 1.84 6 1.20 2.85 2.45 2 6.00 2.07

20 80 4 8 16 1 17 1.23 4 2.00 3.71 1.23 1 8.00 1.39

20 80 4 8 16 2 18 1.23 4 2.00 2.79 1.23 1 8.00 0.92

20 80 4 8 16 3 19 1.23 4 2.00 1.74 1.23 1 8.00 0.40

20 40 6 8 16 1 17 4.30 14 1.38 3.92 4.91 4 2.00 3.90

20 40 6 8 16 2 18 4.30 14 1.38 3.00 4.91 4 2.00 3.11

20 40 6 8 16 3 19 4.30 14 1.38 1.97 4.91 4 2.00 2.19

20 60 6 8 16 1 17 2.45 8 1.71 3.70 2.45 2 6.00 2.17

20 60 6 8 16 2 18 2.45 8 1.71 2.65 2.45 2 6.00 1.53

20 60 6 8 16 3 19 2.45 8 1.71 1.66 2.45 2 6.00 0.91

20 80 6 8 16 1 17 1.84 6 1.20 4.22 2.45 2 6.00 3.05

20 80 6 8 16 2 18 1.84 6 1.20 3.53 2.45 2 6.00 2.60

20 80 6 8 16 3 19 1.84 6 1.20 2.89 2.45 2 6.00 2.09

20 40 8 8 16 1 17 4.91 16 1.20 4.02 4.91 4 2.00 3.97

20 40 8 8 16 2 18 4.91 16 1.20 3.25 4.91 4 2.00 3.32

20 40 8 8 16 3 19 4.91 16 1.20 2.24 4.91 4 2.00 2.42

20 60 8 8 16 1 17 3.07 10 1.33 3.98 3.68 3 3.00 3.64

20 60 8 8 16 2 18 3.07 10 1.33 3.23 3.68 3 3.00 3.05

20 60 8 8 16 3 19 3.07 10 1.33 2.24 3.68 3 3.00 2.16

20 80 8 8 16 1 17 2.15 7 1.00 4.46 2.45 2 6.00 3.48

20 80 8 8 16 2 18 2.15 7 1.00 3.76 2.45 2 6.00 2.96

20 80 8 8 16 3 19 2.15 7 1.00 3.21 2.45 2 6.00 2.55
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Base Case: L = 30ft: 27 Beams 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L, ft fy, ksi fc', ksi b, in d, in dc, in h, in As5, in² No. #5 bars s5, in β5 As10, in² No. #10 bars s10, in β10

30 40 4 12 24 1 25 7.36 24 1.30 4.08 7.36 6 2.00 4.01

30 40 4 12 24 2 26 7.36 24 1.30 3.37 7.36 6 2.00 3.38

30 40 4 12 24 3 27 7.36 24 1.30 2.38 7.36 6 2.00 2.48

30 60 4 12 24 1 25 4.30 14 1.54 3.95 4.91 4 3.33 3.49

30 60 4 12 24 2 26 4.30 14 1.54 3.14 4.91 4 3.33 2.84

30 60 4 12 24 3 27 4.30 14 1.54 2.15 4.91 4 3.33 1.97

30 80 4 12 24 1 25 2.76 9 1.25 4.33 3.68 3 5.00 3.45

30 80 4 12 24 2 26 2.76 9 1.25 3.48 3.68 3 5.00 2.79

30 80 4 12 24 3 27 2.76 9 1.25 2.79 3.68 3 5.00 2.26

30 40 6 12 24 1 25 9.51 31 1.00 4.29 9.82 8 1.43 4.29

30 40 6 12 24 2 26 9.51 31 1.00 3.74 9.82 8 1.43 3.79

30 40 6 12 24 3 27 9.51 31 1.00 3.01 9.82 8 1.43 3.13

30 60 6 12 24 1 25 5.52 18 1.18 4.42 6.14 5 2.50 4.19

30 60 6 12 24 2 26 5.52 18 1.18 3.45 6.14 5 2.50 3.35

30 60 6 12 24 3 27 5.52 18 1.18 2.73 6.14 5 2.50 2.69

30 80 6 12 24 1 25 3.68 12 1.82 3.67 3.68 3 5.00 2.53

30 80 6 12 24 2 26 3.68 12 1.82 2.77 3.68 3 5.00 1.95

30 80 6 12 24 3 27 3.68 12 1.82 1.67 3.68 3 5.00 1.15

30 40 8 12 24 1 25 11.04 36 1.14 4.20 11.04 9 1.25 4.27

30 40 8 12 24 2 26 11.04 36 1.14 3.50 11.04 9 1.25 3.65

30 40 8 12 24 3 27 11.04 36 1.14 2.54 11.04 9 1.25 2.76

30 60 8 12 24 1 25 6.44 21 1.00 4.24 7.36 6 2.00 4.15

30 60 8 12 24 2 26 6.44 21 1.00 3.78 7.36 6 2.00 3.73

30 60 8 12 24 3 27 6.44 21 1.00 3.06 7.36 6 2.00 3.06

30 80 8 12 24 1 25 4.30 14 1.54 4.04 4.91 4 3.33 3.56

30 80 8 12 24 2 26 4.30 14 1.54 3.06 4.91 4 3.33 2.77

30 80 8 12 24 3 27 4.30 14 1.54 2.15 4.91 4 3.33 1.98
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Base Case: L = 40ft: 27 Beams 

 
Note:  L = span length 

fy = steel yield strength 

 fc’ = concrete strength 

 b = beam width 

 d = beam effective depth 

 dc = concrete cover 

 h = beam height  

 As5/10 = area of steel reinforcement using #5/#10 bars, respectively 

 No. #5/#10 bars = number of #5/#10 bars, respectively 

 s5/10 = spacing of #5/#10 bars, respectively  

 β5/10 = reliability index using #5/#10 bars, respectively 

 

  

 

L, ft fy, ksi fc', ksi b, in d, in dc, in h, in As5, in² No. #5 bars s5, in β5 As10, in² No. #10 bars s10, in β10

40 40 4 15 30 1 31 11.35 37 1.08 4.28 12.27 10 1.44 4.27

40 40 4 15 30 2 32 11.35 37 1.08 3.34 12.27 10 1.44 3.40

40 40 4 15 30 3 33 11.35 37 1.08 2.62 12.27 10 1.44 2.73

40 60 4 15 30 1 31 6.44 21 1.30 4.08 7.36 6 2.60 3.79

40 60 4 15 30 2 32 6.44 21 1.30 3.25 7.36 6 2.60 3.09

40 60 4 15 30 3 33 6.44 21 1.30 2.32 7.36 6 2.60 2.24

40 80 4 15 30 1 31 4.30 14 1.00 4.22 4.91 4 4.33 3.58

40 80 4 15 30 2 32 4.30 14 1.00 3.66 4.91 4 4.33 3.19

40 80 4 15 30 3 33 4.30 14 1.00 2.94 4.91 4 4.33 2.57

40 40 6 15 30 1 31 15.03 49 1.08 4.10 15.95 13 2.17 3.95

40 40 6 15 30 2 32 15.03 49 1.08 3.49 15.95 13 2.17 3.43

40 40 6 15 30 3 33 15.03 49 1.08 2.56 15.95 13 2.17 2.58

40 60 6 15 30 1 31 8.59 28 1.44 3.93 8.59 7 2.17 3.80

40 60 6 15 30 2 32 8.59 28 1.44 2.88 8.59 7 2.17 2.87

40 60 6 15 30 3 33 8.59 28 1.44 1.95 8.59 7 2.17 2.02

40 80 6 15 30 1 31 5.83 19 1.44 3.85 6.14 5 3.25 3.36

40 80 6 15 30 2 32 5.83 19 1.44 2.97 6.14 5 3.25 2.66

40 80 6 15 30 3 33 5.83 19 1.44 2.01 6.14 5 3.25 1.84

40 40 8 15 30 1 31 17.18 56 1.18 4.16 17.18 14 2.00 4.08

40 40 8 15 30 2 32 17.18 56 1.18 3.12 17.18 14 2.00 3.14

40 40 8 15 30 3 33 17.18 56 1.18 2.28 17.18 14 2.00 2.37

40 60 8 15 30 1 31 9.82 32 1.26 4.01 9.82 8 1.86 3.94

40 60 8 15 30 2 32 9.82 32 1.26 3.21 9.82 8 1.86 3.23

40 60 8 15 30 3 33 9.82 32 1.26 2.26 9.82 8 1.86 2.35

40 80 8 15 30 1 31 6.75 22 1.24 4.11 7.36 6 2.60 3.86

40 80 8 15 30 2 32 6.75 22 1.24 3.42 7.36 6 2.60 3.28

40 80 8 15 30 3 33 6.75 22 1.24 2.37 7.36 6 2.60 2.29
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APPENDIX III MATLAB DESIGN AND SIMULATION CODES 

BEAM DESIGN CODE: Base Case 

%CODE TO DESIGN BEAMS% 
%INPUT Span Length L (ft), fy (psi), fc'(psi), dc (in)% 
%INPUT Data 
input = xlsread('beaminput.xls'); 
L=input(:,1)'; 
fy=input(:,2)'; 
fc=input(:,3)'; 
dc=input(:,4)'; 
  
%Permute Input Matrix 
I=npermutek([1 2 3],4); 
V = [L(I(:,1))' fy(I(:,2))' fc(I(:,3))' dc(I(:,4))']; 
  

  
%RUN FOR NUMBER OF CASES N;  INPUT N 
N=81; 
i=1; 
  
for i=1:N 
  
%Design Beams for all combinations 
d(i)=ceil(V(i,1)*12/16); 
  
if mod(d(i),2)==1 
    d(i)=d(i)+1; 
end 
  
b(i)=ceil(d(i)/2); 
h(i) = V(i,4) + d(i); 
  
selfwt = (b(i)*h(i)/144*150)/1000; 
wu = 1.2*selfwt + 1.6*1; 
Mu(i) = [wu*(V(i,1))^2]/8*12; 
  
cb = d(i)*87000/(87000+(V(i,2))); 
c = 0.5*cb; 
  
if (V(i,3) <= 4000) 
    B1 = 0.85; 
else 
    B1 = 0.85-0.05*((V(i,3)-4000)/1000); 
end 
  
a = c*B1; 
  
As(i) = (0.85*V(i,3)*b(i)*a)/(V(i,2)); 
  
NumberofNo5bars(i)=ceil(As(i)/0.307); 
NumberofNo10bars(i)=ceil(As(i)/1.227); 
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As5(i)=NumberofNo5bars(i)*(.097656*pi); 
MAs5(i) = As5(i); 
Layers5(i)= 1; 
  
As10(i)=NumberofNo10bars(i)*(.390625*pi); 
MAs10(i) = As10(i); 
Layers10(i) = 1; 
  
if NumberofNo5bars(i) > 1 
s5(i) = (b(i)-2)/(NumberofNo5bars(i)-1); 
else s5(i) = b(i); 
end 
  
d5(i) = d(i); 
  
if ((s5(i) < 1) | (s5(i)*(NumberofNo5bars(i)-1)) > b(i)) 
    MAs5(i) = As5(i)/2; 
    s5(i) = 2*s5(i); 
    Layers5(i) = 2; 
    d5(i) = d(i)- 5/16 - 0.5; 
    if ((s5(i) < 1) | (s5(i)*(NumberofNo5bars(i)-1)/2) > b(i)) 
        MAs5(i) = As5(i)/3; 
        s5(i) = 3/2*s5(i); 
        Layers5(i) = 3; 
        d5(i) = d(i) - 5/8-1; 
    end 
    if ((s5(i) < 1) | (s5(i)*(NumberofNo5bars(i)-1)/3) > b(i)) 
        MAs5(i) = As5(i)/4; 
        s5(i) = 4/3*s5(i); 
        Layers5(i) = 4; 
        d5(i) = d(i) -1.5*5/8-1.5; 
    end  
    if ((s5(i) < 1) | (s5(i)*(NumberofNo5bars(i)-1)/4) > b(i)) 
        MAs5(i) = As5(i)/5; 
        s5(i) = 5/4*s5(i); 
        Layers5(i) = 5; 
        d5(i) = d(i)-2*5/8-2; 
    end 
    if ((s5(i) < 1) | (s5(i)*(NumberofNo5bars(i)-1)/5) > b(i)) 
        MAs5(i) = As5(i)/6; 
        s5(i) = 6/5*s5(i); 
        Layers5(i) = 6; 
        d5(i) = d(i)-2.5*5/8-2.5; 
    end 
     
end 
  

  
if NumberofNo10bars(i) > 1 
s10(i) = (b(i)-2)/(NumberofNo10bars(i)-1); 
else s10(i) = b(i); 
end 
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d10(i) = d(i); 
if ((s10(i) < 10/8) | (s10(i)*(NumberofNo10bars(i)-1)) > b(i)) 
    MAs10(i) = As10(i)/2; 
    s10(i) = 2*s10(i); 
    Layers10(i) = 2; 
    d10(i) = d(i) - 10/16-0.5; 
    if ((s10(i) < 10/8) | (s10(i)*(NumberofNo10bars(i)-1)/2) > b(i)) 
        MAs10(i) = As10(i)/3; 
        s10(i) = 3/2*s10(i); 
        Layers10(i) = 3; 
        d10(i) = d(i) - 10/8-1; 
    end 
    if ((s10(i) < 10/8) | (s10(i)*(NumberofNo10bars(i)-1)/3) > b(i)) 
        MAs10(i) = As10(i)/4; 
        s10(i) = 4/3*s10(i); 
        Layers10(i) = 4; 
        d10(i) = d(i) - 10/8-1.5; 
    end 
     
end 
  

  
a5(i) = (As5(i))*V(i,2)/(0.85*V(i,3)*b(i)); 
a10(i) = (As10(i))*V(i,2)/(0.85*V(i,3)*b(i)); 
  
c5 = a5(i)/B1; 
c10 = a10(i)/B1; 
  
e5=0.003*((d(i)-c5)/c5);  
  
if  e5 > 0.005 
      phi5(i) = 0.9; 
elseif (0.002 <= e5) & (e5 <= 0.005) 
        phi5(i) = 0.65 + (e5-0.002)*250/3;      
else 
    phi5(i) = 0.65; 
     
end 
  
Mu5(i) = phi5(i)*((As5(i))*V(i,2)*(d5(i)-a5(i)/2))/1000; 
  
if Mu5(i) > Mu(i) 
    Design5(i) = 1; 
else 
    Design5(i) = 0; 
end 
  
e10=0.003*((d(i)-c10)/c10); 
  

  
if  e10 > 0.005 
    phi10(i)= 0.90; 
elseif (0.002 <= e10) & (e10 <= 0.005) 
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        phi10(i) = 0.65 + (e10-0.002)*250/3; 
else 
        phi10(i)=0.65; 
       
end 
  
Mu10(i) = phi10(i)*((As10(i))*V(i,2)*(d10(i)-a10(i)/2))/1000; 
  
if Mu10(i) > Mu(i) 
    Design10(i) = 1; 
else 
    Design10(i) = 0; 
end 
  
Vu(i) = (1.6*1000*V(i,1) + 1.2*b(i)*h(i)/144*150*V(i,1))/24; 
Vn5(i) = 2*sqrt(V(i,3))*b(i)*d5(i); 
Vn10(i) = 2*sqrt(V(i,3))*b(i)*d10(i); 
  
if Vn5(i) > Vu(i) 
    Shear5(i) = 1;  
else  
    Shear5(i) = 0;  
end 
  
if Vn10(i) > Vu(i) 
    Shear10(i) = 1;  
else  
    Shear10(i) = 0;  
end 
  
i=i+1; 
end 
  

 

 

 

RANDOM NUMBER GENERATOR CODE FOR EACH VARIABLE: Base Case 

%Code to Generate Random Numbers% 
  
rel= xlsread('designoutput.xls'); 
  
i=1; 
  
for i=1:81 
    b_mu(i)= rel(i,4); 
    b_sigma(i)= b_mu(i)*0.04; 
     
    As5_mu(i)= rel(i,11)*.9; 
    As5_sigma(i)= As5_mu(i)*0.015; 
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    As10_mu(i) = rel(i,17)*0.9; 
    As10_sigma(i)= As10_mu(i)*0.015; 
     
    if rel(i,3)== 4000 
    fc_mu(i)= log(rel(i,3)*1.21); 
    fc_sigma(i)= sqrt(0.155); 
    elseif rel(i,3) == 6000 
        fc_mu(i)= log(rel(i,3)*1.22); 
        fc_sigma(i)= sqrt(.075); 
    elseif rel(i,3)== 8000 
        fc_mu(i)= log(rel(i,3)*1.093); 
        fc_sigma(i)= sqrt(.088); 
    end 
     
    CEc_mu(i)= 33.6; 
    CEc_sigma(i)= 4.08912; 
     
    w_mu(i)= 150; 
    w_sigma(i)= 4.5; 
     
    Es_mu(i)= 29000; 
    Es_sigma(i)= Es_mu(i)*0.024; 
     
    fy_mu(i)= log(rel(i,2)*1.13); 
    fy_sigma(i)= sqrt(.03); 
     
    d5_mu(i)= rel(i,9)*.99; 
    d5_sigma(i)= d5_mu(i)*0.04; 
     
    d10_mu(i)= rel(i,15)*.99; 
    d10_sigma(i)= d10_mu(i)*0.04; 
     
    if  rel(i,1)== 20 
    P_mu(i)= 83.33; 
    P_sigma(i)= 83.333*0.19; 
    elseif  rel(i,1) == 30 
        P_mu(i)= 83.33; 
        P_sigma(i)= 83.333*0.18; 
    elseif   rel(i,1) == 40 
        P_mu(i)= 83.33; 
        P_sigma(i)= 83.333*0.17; 
    end 
         
    dc_mu(i)= rel(i,6); 
    dc_sigma(i)= dc_mu(i)*0.04; 
     
    h_mu(i)= rel(i,7); 
    h_sigma(i)= 0.15625; 
     
    wc_mu(i)= 0.016; 
    wc_sigma(i)= 0.0032; 
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    Length(i)= rel(i,1)*12; 
    spacing5(i)= rel(i,13); 
    spacing10(i)= rel(i,19); 
     
    i=i+1; 
end 

 

 

 

 

 

MONTE CARLO SIMULATION CODE: Base Case 

%Monte Carlo Simulation 
  
reliRA; 
i=1; 
for i=1:81 
  

  
b = normrnd(b_mu(i),b_sigma(i),1,2000); 
As5 = normrnd(As5_mu(i),As5_sigma(i),1,2000); 
As10 = normrnd(As10_mu(i),As10_sigma(i),1,2000); 
fc = lognrnd(fc_mu(i),fc_sigma(i),1,2000); 
CEc = normrnd(CEc_mu(i),CEc_sigma(i),1,2000); 
w = normrnd(w_mu(i),w_sigma(i),1,2000); 
Es = normrnd(Es_mu(i),Es_sigma(i),1,2000); 
fy = lognrnd(fy_mu(i),fy_sigma(i),1,2000); 
d5 = normrnd(d5_mu(i),d5_sigma(i),1,2000); 
d10 = normrnd(d10_mu(i),d10_sigma(i),1,2000); 
u=rand(1,2000); 
k=1; 
for k=1:2000 
P(k)=((83.333-0.45*28.33)-(log(-log(u(k)))/(1.282/20.833))); 
k=k+1; 
end 
  
dc = normrnd(dc_mu(i),dc_sigma(i),1,2000); 
h = normrnd(h_mu(i),h_sigma(i),1,2000); 
wc = normrnd(wc_mu(i),wc_sigma(i),1,2000); 
L=Length(i); 
s5=spacing5(i); 
s10=spacing10(i); 
  
j=1; 
for j = 1:2000; 
    Beta(j)=1+.08*dc(j); 
    Ec(j)=CEc(j)*(w(j)^1.5)*sqrt(fc(j)); 
    fs5(j)= 

[3*(As5(j)*Es(j)+3*Ec(j)*b(j)*d5(j)+sqrt(As5(j)^2+Es(j)^2+2*As5(j)*Es(j)*Ec(j)*b(j)*d5(j)))*P(j)*L^2]/[

8*d5(j)*(4*As5(j)*Es(j)+9*Ec(j)*b(j)*d5(j))*As5(j)]; 
    fs10(j)= 

[3*(As5(j)*Es(j)+3*Ec(j)*b(j)*d10(j)+sqrt(As5(j)^2+Es(j)^2+2*As5(j)*Es(j)*Ec(j)*b(j)*d10(j)))*P(j)*L^

2]/[8*d10(j)*(4*As5(j)*Es(j)+9*Ec(j)*b(j)*d10(j))*As5(j)]; 
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    resistance5(j)= [wc(j)*1000*Es(j)]/[2*Beta(j)*sqrt(dc(j)^2+(s5/2)^2)]; 
    resistance10(j)= [wc(j)*1000*Es(j)]/[2*Beta(j)*sqrt(dc(j)^2+(s10/2)^2)]; 
    G5(j)=resistance5(j)-fs5(j); 
    G10(j)=resistance10(j)-fs10(j); 
     
    j=j+1; 
end 
  
Gmean5= mean(G5); 
Gmean10= mean(G10); 
Gstdev5= std(G5); 
Gstdev10= std(G10); 
RelIndex5(i)= Gmean5/Gstdev5; 
RelIndex10(i) = Gmean10/Gstdev10; 
i=i+1; 
end 
 

 

 

 

 

 

 

 

 

 


