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ABSTRACT OF THE DISSERTATION

A Multiobjective Approach for Addressing

Dynamism and Heterogeneity in Parallel Scientific

Simulations

by SUMIR CHANDRA

Dissertation Director:

Professor Manish Parashar

Scientific simulations offer the potential for accurate solutions of realistic models

of complex physical phenomena. These simulations are based on systems of par-

tial differential equations and are playing an increasingly important role in science

and engineering. However, the phenomena underlying scientific simulations are in-

herently multi-phased, have heterogeneous state, and span multiple time and space

scales. The resulting dynamism coupled with the spatiotemporal and computational

heterogeneity make parallel implementations of these scientific simulations extremely

challenging. Key issues that need to be addressed include algorithmic efficiency,

load balancing, coordination and performance management, which lead to conflicting

objectives and trade-offs at runtime. In cases when analytical approaches are not fea-

sible, this requires an understanding of application and system characteristics, and

the impact of dynamism and heterogeneity on simulation performance.
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The overarching goal of this research is to enable large-scale investigative and

exploratory science using high-performance “smart” simulations. The key innovation

in this research is a multiobjective approach that provides several distribution, co-

ordination, and adaptation strategies to address dynamism and heterogeneity. The

partitioning schemes perform dynamic domain decomposition based on either the

application geometry or load characteristics to address spatiotemporal and computa-

tional heterogeneity. The synchronization algorithm improves communication over-

heads by reducing messaging frequency in favor of additional computation, when the

application is communication-dominated. A runtime infrastructure integrates these

strategies and supports the efficient and scalable execution of parallel scientific sim-

ulations. Experimental evaluation of the presented strategies using simulations from

several application domains demonstrate improvement in overall performance on large

systems.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Large-Scale Simulations for Computational Science

Realistic models of complex physical phenomena are generally structured as systems

of partial differential equations (PDEs), which can be solved accurately using scien-

tific simulations. Scientific simulations are playing an increasingly important role in

science and engineering. Large-scale parallel simulations offer the potential for dra-

matic insights into physical systems such as interacting black holes and neutron stars,

formations of galaxies, subsurface flows in oil reservoirs and aquifers, and dynamic

response of materials to detonation.

Parallel implementations of scientific simulations typically partition the applica-

tion domain into blocks, enabling processors to perform local computations on these

blocks in parallel followed by periodic synchronization. Furthermore, structured grids

usually employ regular data structures that are easier to partition and lead to regular

access and communication patterns. Consequently, structured formulations of paral-

lel scientific simulations can result in relatively simpler and efficient implementations.

Structured grid techniques can be implemented using either uniform mesh (unigrid)

[78] or structured adaptive mesh refinement (SAMR) [7] [10] [129] schemes. GrACE

[94], SAMRAI [68], Chombo [37], and PARAMESH [76], are examples of structured

grid infrastructures that support adaptive implementations of parallel scientific sim-

ulations. Simulations on structured grids have been effectively used to solve complex
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systems of PDEs in various scientific and engineering application domains, including

computational fluid dynamics [2] [9] [101], numerical relativity [34] [55], astrophysics

[3] [23] [86], subsurface modeling and oil reservoirs [98] [133], and combustion [107].

Figure 1.1: Trends and requirements for computational science simulations.

Due to the constant need for increased computational accuracy, scientific simu-

lations can greatly benefit from advances in computing systems. Figure 1.1 illus-

trates the trends and requirements for enabling computational science simulations on

massively parallel processing (MPP) and commodity computing systems, which are

described in the following sections.

1.1.2 Architectural Trends and Challenges in High Perfor-

mance Computing

Over the past decade, processor and networking technologies have demonstrated rapid

progress, driven by Moore’s Law [82] and Gilder’s Law [50] respectively, which have

enabled parallel and distributed systems of unprecedented scales. As illustrated in
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Figure 1.2: Performance development timeline for the Top 500 computing systems in
the world as of November 2006 [130].

Figure 1.2 [130], the IBM BlueGene/L [19] supercomputer at the Lawrence Livermore

National Laboratory has demonstrated a sustained Linpack performance of 280.6

teraflops (TFlops), and is ranked first on the 28th edition (November 2006) of the

TOP500 [132] list of the most powerful commercially available computer systems in

the world. The BlueGene/L system boasts a peak speed of over 360 TFlops, a total

memory of 32 terabytes (TB), total power of 1.5 megawatts (MW), and machine

floor space of 2,500 square feet [19]. The full system, comprising 131,072 700 MHz

processors, has 65,536 dual-processor compute nodes that are configured as a 32 ×
32 × 64 3D torus such that each node is connected in six different directions for

nearest-neighbor communications. Multiple communications networks enable extreme

application scaling and 1024 gigabit-per-second (Gbps) links to a global parallel file

system support fast input/output to disk. However, realizing efficient performance

for challenging scientific simulations on such a machine is non-trivial.

Furthermore, initiatives have recently been undertaken towards creating a petas-

cale computing environment in the near future for advancing a broad range of science
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and engineering. These next-generation computing systems offer the potential for new

scientific breakthroughs [43] such as analyzing the structure and function of complex

biological molecules, deciphering the origins of the universe and creation of matter,

predicting global climatic changes, designing more fuel-efficient and environment-

friendly automobiles and aircraft, and understanding the origin, spread and mitigation

of contagious diseases. However, harnessing high-performance scientific simulations

on computing resources of such scale require sophisticated numerical techniques with

significant concurrency, scalable algorithms, and above all, efficient runtime manage-

ment.

1.1.3 Architectural Trends and Challenges in Commodity

Computing

Figure 1.3: Landscape of system architectures for the TOP500 computing systems in
the world as of November 2006 [130].

Cluster computing is the predominant, and generally less expensive, execution

paradigm in current parallel and distributed systems. Figure 1.3 shows the landscape



5

of various system architectures [130] that constitute the TOP500 computing systems

in the world. Clusters comprise 72.2% of the systems in the 28th TOP500, while

21.6% are massively parallel processing (MPP) systems and the remaining 6.2% are

constellations. The 500th ranked system in the TOP500 List is a BL-20P Blade

Cluster, comprising 800 Pentium4 Xeon 3.06 GHz processors with a Gigabit Eth-

ernet interconnect, which demonstrates 2.73 TFlops Linpack performance [132]. In

contrast, Frea is a 64 node Linux Beowulf symmetric multiprocessing (SMP) cluster

at Rutgers University. The nodes of the cluster are 1.7 GHz Pentium4 processors with

512MB main memory, and are interconnected by 100 Mbps Fast Ethernet. Scientific

simulations on clusters may encounter shared resources, slower or heterogeneous inter-

connects, and lower overall performance as compared to dedicated MPP systems. An

analysis of the underlying system constraints becomes imperative to ensure efficient

performance in such heterogeneous networked environments.

1.2 Problem Description

The performance of parallel scientific simulations can be affected by several factors at

runtime. The key challenges include complexity, dynamism and heterogeneity, which

are discussed in the following section.

1.2.1 Software Complexity

The complex physical phenomena being modeled by scientific simulations are inher-

ently multi-phased, dynamic, and heterogeneous (in time, space, and state), requiring

large numbers of software components. For example, a scientific application model-

ing combustion [72] can include a linear algebraic or ordinary differential equation

(ODE) solver, chemistry integrator, diffusion/physics integrator, time interpolator,

error estimator and statistical components, as well as various services/tools for mesh

management, discretization, parallel data description and redistribution, performance
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evaluation, and visualization. The large numbers of software components present sig-

nificant challenges in managing the runtime performance of complex scientific simu-

lations.

1.2.2 Dynamics and Spatiotemporal Heterogeneity

Figure 1.4: Dynamism and spatiotemporal heterogeneity exhibited by an illustrative
3-D compressible turbulence (RM3D) simulation.

The interactions between components in scientific simulations can span several

different space and time scales, and the application runtime behavior can change dy-

namically over time. As an example, Figure 1.4 shows a sequence of snapshots of an

illustrative 3-D compressible turbulence (RM3D) SAMR simulation with 256×64×64

resolution. Changes in RM3D application physics create dynamically varying simu-

lation total workloads, ranging from nearly 3 × 106 at redistribution/regridding step

20 to approximately 7.5× 106 at regridding step 100. Note that the load at each grid

point is assumed to be uniform. The peak total workload is about 8 times larger than

the minimum total workload and over two times larger than the average total work-

load for this simulation. The RM3D application serves as a representative of the class

of simulations that exhibit significant dynamism and spatiotemporal heterogeneity,
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and is discussed in greater detail in Chapter 4. Dynamism and spatiotemporal hetero-

geneity in parallel scientific simulations lead to significant challenges in partitioning,

load balancing and synchronization.

1.2.3 Computational Heterogeneity

Figure 1.5: Computational heterogeneity exhibited by an illustrative 2-D methane-air
combustion (R-D) simulation.

Certain types of scientific applications, such as combustive reacting flows, can

change their mathematical and topological characteristics during the simulation to

resolve the underlying phenomena. These applications exhibit varying degrees of

computational heterogeneity at runtime, generally manifested as pointwise varying

workloads. As an example, Figure 1.5 shows a sample distribution of the heteroge-

neous computational workloads for an illustrative 2-D methane-air combustion (R-D)

kernel with 3 hot-spots on a 128 × 128 structured grid. The reactive processes near

the flame fronts have high computational requirements that correspond to large val-

ues of workloads ranging from 100 to nearly 250, while the diffusive processes have

uniform loads with a value of 1. Efficient partitioning and load balancing for parallel

implementations of such simulations are quite challenging due to the computational

heterogeneity, and are discussed in greater detail in Chapter 5.
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1.2.4 Impact on Runtime Performance

The inherent dynamism coupled with the runtime heterogeneity in parallel scien-

tific simulations lead to significant challenges in ensuring algorithmic efficiency, load

balancing, and runtime performance management [30]. Critical among these is the

partitioning of the application grid hierarchy to balance load, optimize communication

and synchronization, minimize data migration costs, and maximize grid quality (e.g.,

aspect ratio) and available parallelism. These performance and scalability challenges

will be further exacerbated by the advent of petascale and multicore computing that

envisage scientific simulations at unprecedented scales in the near future. Moreover,

in the case of scientific simulations on heterogeneous clusters where processor speeds

typically overshadow network speeds, optimizing communication between simulation

components based on the system constraints can lead to efficient performance.

Addressing the runtime challenges of parallel scientific simulations to obtain opti-

mal performance, often, lead to conflicting objectives and trade-offs, which are non-

trivial [123] to identify and resolve. In cases where a formal analytical framework

exists, e.g., error estimation via Richardson extrapolation [11] or the solution of lin-

ear systems with robustness and speed trade-offs [14] [15] [16] [79], optimal behavior

can be predicted purely using analytical rigor. However, this is not always the case,

and an empirical approach based on runtime calibration and adaptation is the only

recourse for predicting performance when analysis of the system is not feasible. This

requires an understanding of application characteristics, system constraints, and the

impact of heterogeneity on algorithmic, component and overall simulation perfor-

mance.

1.3 Problem Statement

The complexity, heterogeneity, and dynamism associated with scientific applications

has made current programming environments and infrastructure unmanageable and



9

insecure, and has led researchers to consider alternative programming paradigms

and management techniques that are based on strategies used by biological sys-

tems. Systems based on this approach, known as autonomic computing [65], have

the capabilities of being self-defining, self-healing, self-configuring, self-optimizing,

self-protecting, contextually aware, and open.

In this research, we present a multiobjective approach that analyzes application

and system state, and provides appropriate distribution, configuration, coordination,

and adaptation strategies for simulations on structured grids. Such an autonomic in-

frastructure formulation can address dynamism and heterogeneity in parallel scientific

simulations, and enable their efficient and scalable execution on high-performance or

cluster computing architectures. The specific research objectives are as follows.

1.3.1 Application and System Characterization

As discussed in Sections 1.1 and 1.2, the runtime behavior of the scientific application

and the underlying system can significantly impact overall simulation performance.

Moreover, analytical performance models are generally not feasible for these large-

scale simulations. In such cases, an empirical understanding of the application and

system dynamism and heterogeneity is critical for analyzing current performance and

selecting appropriate adaptations. Addressing this research issue of application and

system characterization involves the following tasks.

• Analyze the various characteristics of parallel scientific simulations such as do-

main features, application locality, computational costs, synchronization behav-

ior, and redistribution overheads.

• Analyze the application synchronization overheads as well as system constraints

such as bandwidth to determine the communication costs relative to local com-

putations.
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1.3.2 Addressing Dynamism and Heterogeneity

Sections 1.2.2 and 1.2.3 briefly describe the dynamism and runtime heterogeneity

typically associated with parallel scientific simulations. Analyzing the cause and

effect of these challenges can provide insights into the investigation of smarter/hybrid

algorithms and runtime adaptations. For example, the load balancing algorithm

may be based on the structure of the problem domain if the formulation is quite

homogeneous, or on the simulation workload profile if there is sufficient computational

heterogeneity. Different adaptation strategies need to be designed and evaluated.

The research tasks required for addressing dynamism and heterogeneity are listed as

follows.

• Investigate strategies that maintain application locality, provide good load bal-

ance, or reduce synchronization overheads to address dynamism and spatiotem-

poral heterogeneity.

• Develop partitioning strategies that consider the pointwise varying workloads

and perform in-situ global load balancing to address the computational hetero-

geneity for parallel uniform and adaptive scientific applications.

• Design hybrid schemes that employ runtime calibration to analyze the impact

of heterogeneity on load distribution and performance for different application

compositions, and use this feedback towards appropriate algorithm selection for

domain decomposition.

• Adapt simulation performance by relaxing the synchronization requirements us-

ing additional computations on overlapped application sub-domains to enable

efficient execution in constrained network/system environments such as hetero-

geneous clusters.
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1.3.3 Autonomic Infrastructure with Multiobjective Formu-

lation

As described in Section 1.2.4, addressing the runtime challenges of parallel scientific

simulations to obtain optimal performance, often, lead to conflicting objectives and

trade-offs. A multiobjective approach can combine various metrics such as load im-

balance, synchronization costs, computation-to-communication ratio (CCR), aspect

ratio, and other configurable parameters of the simulation to prescribe performance

adaptations at runtime. The multiobjective formulation, runtime characterization,

and suite of available adaptation strategies are integrated into a conceptual runtime

infrastructure for parallel scientific simulations. The research tasks involved in this

modeling process are specified below.

• Devise a multiobjective approach that synthesizes the impact and relative con-

tributions of application and system runtime challenges to define overall perfor-

mance objectives.

• Conceptualize a runtime infrastructure that provides appropriate distribution,

configuration, coordination, and adaptation strategies to optimize simulation

performance based on the specified objectives.

• Integrate the algorithmic, application, and system adaptations into the pro-

posed runtime management framework and validate its performance, scalability,

and efficiency.

1.4 Research Overview

In this research, we devise an autonomic infrastructure (runtime management frame-

work) for the performance optimization of structured unigrid or adaptive formulations

of parallel scientific simulations modeling complex physical phenomena. The frame-

work uses application and system state information to select appropriate distribution,
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configuration, coordination, and adaptation strategies at runtime. The overarching

goal of this research is to enable large-scale investigative and exploratory science us-

ing high-performance “smart” simulations based on a policy- and performance-driven

approach.

Figure 1.6: Conceptual model of an autonomic runtime infrastructure for parallel
scientific simulations.

A conceptual autonomic infrastructure is illustrated in Figure 1.6. The goal of

the runtime framework is to reactively and proactively manage and optimize appli-

cation execution using current system and application state, performance calibration

and feedback control, and online multiobjective models for adapting performance. It

builds on the concept of vGrid [66] proposed by M. Parashar and S. Hariri. The

framework defines and maps application “working-sets” across physical resources so

as to exploit the space, time, and functional heterogeneity of the simulations and un-

derlying numerical methods. The framework infrastructure services are responsible

for collecting and characterizing the operational, functional, and control aspects of
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the application. The multiobjective approach uses this information to determine algo-

rithms and adaptations for distribution, configuration, and coordination. As shown in

Figure 1.6, the framework has three components: (1) services for monitoring resource

capabilities and application dynamics and characterizing the monitored state into

natural regions; (2) deduction engine and objective function that define the appro-

priate optimization strategy based on runtime state and policies; and (3) autonomic

runtime manager which is responsible for hierarchically partitioning, scheduling, and

mapping the application onto physical resources, and tuning application execution.

We first understand application runtime characteristics and investigate the effects

of spatiotemporal heterogeneity on load balancing, performance and scalability of

structured adaptive scientific simulations. Next, the effects of computational hetero-

geneity on simulation performance are addressed by deploying a dynamic partitioning

strategy based on pointwise varying workloads. We then use runtime calibration to

examine the impact of heterogeneity on load balancing and performance for different

orchestrations of scientific applications. This information is used as feedback to devise

a hybrid approach that selects the appropriate load balancing algorithm to address

heterogeneity at runtime.

Furthermore, we investigate the communication model for parallel scientific sim-

ulations in networked environments to identify possible relaxation of synchroniza-

tion requirements by performing extra computations on overlapped application sub-

domains. The basic premise for this approach is that processor speeds typically

overshadow network speeds for heterogeneous clusters. This behavior is also antici-

pated for scientific applications when scaled to large numbers of processors on dedi-

cated MPP systems, since such a formulation will involve greater communication and

reduced local computations. Subsequently, we analyze these strategies using a mul-

tiobjective approach to evaluate the implications of different runtime challenges and

to suggest combined algorithmic, application, and system remedies/adaptations that

optimize performance. These constituent strategies are integrated into the runtime
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management framework described above.

1.5 Contributions and Impact of the Research

The primary contribution of this research is the host of application and system adap-

tation strategies, which optimize performance and are integrated into the autonomic

infrastructure. This research presents a comprehensive approach towards identifying

and addressing heterogeneity and runtime challenges for parallel scientific simula-

tions on structured grids. These performance challenges assume greater significance

in high-performance petascale systems as well as heterogeneous cluster computing

environments. The solutions and adaptations presented herein aim to mitigate per-

formance bottlenecks with the overall goal to enable efficient execution of parallel

scientific simulations in such systems. A selection of potential applications of the

presented research are highlighted below.

1.5.1 Component-based Scientific Computing

Recent years have seen a steady adoption of component-based technologies for imple-

menting complex scientific simulations [72]. The idea of a monolithic parallel code is

replaced by a collection of components, which may be composed into various feasible

configurations. Further, these components may be adapted and/or replaced at run-

time. Such an approach provides interoperability and flexibility, and can ideally be

exploited to significantly improve application performance, especially in cases where

the algorithmic and component behaviors as well as overall application execution are

not known a priori. For example, a domain-decomposition component for parallel

scientific simulations may adapt based on application state and particularly its het-

erogeneity. However, performing such runtime adaptation is non-trivial and requires

an understanding of the requirements of a particular application state as well as a

calibration of the impact of the adaptation on overall performance. This research
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addresses these issues and can enable efficient component-based scientific computing.

1.5.2 Scientific Simulations in Grid Environments

The Grid [46] has rapidly emerged as the dominant paradigm for wide area distributed

computing. Its goal is to provide a service-oriented infrastructure that leverages

standardized protocols and services to enable pervasive access to, and coordinated

sharing of geographically distributed hardware, software, and information resources.

The Grid infrastructure is heterogeneous and dynamic, globally aggregating large

numbers of independent computing and communication resources, data stores, and

sensor networks. The inherent heterogeneity and dynamism of scientific applications

coupled with a similarly heterogeneous and dynamic computational Grid results in

significant complexities in application composition and runtime management. This

research addresses challenges and provides adaptations for such heterogeneous execu-

tion environments.

1.5.3 Insights towards Petascale Computing

As mentioned before, the research community is striving towards achieving petascale

computational performance for scientific simulations. The scale and heterogeneity

of these systems will necessitate a paradigm shift in application composition and

performance optimization. This research comprises important steps towards this

objective.

1.6 Outline of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 outlines structured grid

formulations and presents related work in partitioning and load balancing for scien-

tific simulations. Chapter 3 offers an overview of the conceptual autonomic runtime
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management infrastructure. Chapter 4 describes prototype application characteris-

tics as well as the design and evaluation of the partitioning/load balancing schemes

that address spatiotemporal heterogeneity. Chapter 5 presents the design, operation,

and experimental evaluation of partitioning strategies that address computational

heterogeneity for scientific applications with pointwise varying workloads. Chapter 6

analyzes the impact of heterogeneity on the performance of reactive flow simulations

and motivates the need for a hybrid approach for domain decomposition. Chapter 7

presents the multiobjective formulation that combines different adaptation strategies

at runtime to improve the overall performance of scientific simulations. Chapter 8

describes the synchronization adaptation for reducing communication overheads for

parallel scientific simulations when the application state is communication-dominated.

Chapter 9 presents conclusions and future work.
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Chapter 2

Background and Related Work

This chapter first presents an overview of parallel implementations of structured grid

formulations of scientific applications. The latter part of this chapter describes the

related work in structured grid infrastructures and partitioning and load balancing

strategies for scientific simulations.

2.1 PDE and Structured Unigrid Formulations

The numerical solution to a partial differential equation (PDE) can be obtained by

first discretizing the problem domain into a mesh/grid comprising small simple shapes

called elements [53]. Meshes can either be structured (Cartesian grid of boxes) or

unstructured (typically triangulations). The unknowns of the PDE are then approx-

imated numerically at each discrete grid point. The resolution of the grid (or grid

spacing) determines the local and global error of this approximation, and is typically

dictated by the features of the solution that need to be resolved. The resolution also

determines the computational costs and storage requirements for the PDE formula-

tion.

Structured unigrid [78] methods resolve the PDE numerical approximation by

discretizing the application problem space onto a single, regular Cartesian grid with

uniform resolution. The grid resolution determines the overall workload of the sim-

ulation, since the load at each grid point is typically assumed to be homogeneous.

Parallel unigrid implementations uniformly decompose the structured grid, assum-

ing homogeneous workloads, to balance load across the processors. Each processor
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then performs computations on its local patches and periodically synchronizes its

boundaries with neighboring patches.

Note that increasing the resolution to obtain greater solution accuracy in a unigrid

application can be expensive. For example, increasing the grid resolution by a factor

of two requires a factor of eight more storage in three dimensions. Given a constant

Courant factor1 and homogeneous workloads, the computation time will increase by

a factor of sixteen.

2.2 Structured Adaptive Mesh Refinement (SAMR) Formu-

lations

For problems with “well behaved” PDE solutions, it is typically possible to find a grid

with uniform resolution that provides the required solution accuracy using acceptable

computational and storage resources. However, for problems where the solution con-

tains shocks, discontinuities, or steep gradients, finding such a uniform grid that

meets accuracy and resource requirements is not always possible. Furthermore, in

these classes of problems, the solution features that require high resolution are local-

ized causing the high resolution and associated computational effort in other regions

of the uniform grid to be wasted. Finally, due to solution dynamics in time-dependent

problems, it is difficult to estimate the minimum grid resolution required to obtain

acceptable solution accuracy.

Compared to numerical techniques based on static uniform discretization, struc-

tured adaptive mesh refinement (SAMR) methods employ locally optimal approx-

imations and can yield highly advantageous ratios for cost/accuracy by adaptively

concentrating computational effort and resources to regions with large local solution

error at runtime. In the case of SAMR methods, dynamic adaptation is achieved by

1A time-step/space-step ratio that is normally used as a stability criterion for transient calcula-
tions with explicit time-marching schemes.
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Figure 2.1: Berger-Oliger SAMR formulation of adaptive grid hierarchies.

tracking regions in the domain that require higher resolution and dynamically over-

laying finer grids on these regions. These techniques start with a base coarse grid

with minimum acceptable resolution that covers the entire computational domain.

As the solution progresses, regions in the domain with high solution error, requiring

additional resolution, are identified and refined. Refinement proceeds recursively so

that the refined regions requiring more resolution are similarly tagged and even finer

grids are overlaid on these regions. The resulting grid structure is a dynamic adaptive

grid hierarchy. The adaptive grid hierarchy corresponding to the SAMR formulation

by Berger and Oliger [10] is illustrated in Figure 2.1.

In SAMR formulations, the grid hierarchy is refined both in space and in time.

Refinements in space create finer level grids which have more grid points/cells than

their parents. Refinements in time mean that finer grids take smaller time steps and,

hence, have to be advanced more often. As a result, finer grids not only have greater

computational loads, but also have to be integrated and synchronized more often.

This can result in significant spatiotemporal heterogeneity in the SAMR adaptive

grid hierarchy. Note that even though finer-resolution grids have more grid points

and consequently more work than the coarser grids, the load associated with each grid

point throughout the computational domain is still the same since the formulation
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typically assumes homogeneous workloads.

2.3 Parallel SAMR Implementations

Figure 2.2: Berger-Oliger algorithm with recursive integration at each level of the
SAMR grid hierarchy.

Parallel implementations of SAMR applications typically partition the dynamic

heterogeneous grid hierarchy across participating processors, with each processor op-

erating on its local portions of the computational domain in parallel. As illustrated

in Figure 2.2, each processor starts at the coarsest level, integrates the patches at

this level, and performs intra-level or “ghost” communications for boundary updates.

It then recursively operates on the finer grids using the refined timesteps - i.e., for

each step on a parent grid, there are multiple steps (equal to the time refinement

factor) on a child grid. When the parent and child grids are at the same physical

time, inter-level communications are used to inject information from finer levels onto

coarser ones. The solution error at different levels of the SAMR grid hierarchy is

evaluated at regular intervals and this error is then used to determine the regions

where the hierarchy needs to be locally refined or coarsened. Dynamic re-partitioning

and regridding/redistribution is typically required after this step.
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2.3.1 SAMR Algorithmic Requirements

The overall efficiency of parallel SAMR applications is limited by the ability to par-

tition the underlying grid hierarchies at runtime to expose all inherent parallelism,

minimize communication and synchronization overheads, and balance load. A criti-

cal requirement while partitioning these adaptive grid hierarchies is the maintenance

of logical locality, both across different levels of the hierarchy under expansion and

contraction of the adaptive grid hierarchy, and within partitions of grids at all lev-

els when they are decomposed and mapped across processors. The former enables

efficient computational access to the grids while the latter minimizes the total syn-

chronization overheads. Furthermore, the grid hierarchy is dynamic and adaptation

results in application grids being dynamically created, moved, and deleted.

Figure 2.3 illustrates a 2-D snapshot of a sample SAMR application representing

a combustion simulation [107] that investigates the ignition of a H2-Air mixture. The

top half of Figure 2.3 depicts the temperature profile of the non-uniform temperature

field with 3 hot-spots, while the bottom half of the figure shows the mass-fraction plots

of various radicals produced during the simulation. SAMR applications exhibit high

dynamism and spatiotemporal heterogeneity, which can present significant runtime

and scalability challenges [26].

2.3.2 Computation and Communication Behavior for Paral-

lel SAMR

The timing diagram [74] (note that this diagram is not to scale) in Figure 2.4 il-

lustrates the operation of the SAMR algorithm described above using a 3-level grid

hierarchy. For simplicity, only the computation and communication behaviors of pro-

cessors P1 and P2 are shown. The three components of communication overheads

(described in Section 2.3.3) are illustrated in the enlarged portion of the time line.

Note that the timing diagram shows that there is one time step on the coarsest level
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Figure 2.3: 2-D snapshots of a combustion simulation illustrating the ignition of
H2-Air mixture in a non-uniform temperature field with three hot spots (Courtesy:
J. Ray, et al, Sandia National Laboratory). The top half of the figure shows the
temperature profile while the bottom half shows the mass-fraction plots of radicals.

(level 0) of the grid hierarchy followed by two time steps on the first refinement level

and four time steps on the second level, before the second time step on level 0 can

start. Also, note that the computation and communication for each refinement level

are interleaved.

2.3.3 Communication Overheads for Parallel SAMR

As shown in Figure 2.4, the communication overheads of parallel SAMR applications

primarily consist of three components: (1) Inter-level communications are defined
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Figure 2.4: Timing diagram for a parallel implementation of Berger-Oliger SAMR al-
gorithm, showing computation and communication behaviors for two processors [74].

between component grids at different levels of the grid hierarchy and consist of pro-

longations (coarse to fine grid data transfer and interpolation) and restrictions (fine

to coarse grid data transfer and interpolation); (2) Intra-level communications are

required to update the grid elements along the boundaries of local portions of a dis-

tributed grid and consist of near-neighbor exchanges. These communications can be

scheduled so as to be overlapped with computations on the interior region; and (3)

Synchronization costs occur when load is not balanced among processors at any time

step and at any refinement level. Note that there are additional communication costs

due to the data movement required during dynamic load-balancing and redistribution.

Clearly, an optimal partitioning of the SAMR grid hierarchy and scalable SAMR

implementations require a careful consideration of the timing pattern and the com-

munication overheads described above. A critical observation from Figure 2.4 is that,

in addition to balancing the total load assigned to each processor, the load balance

at each refinement level and the communication/synchronization costs within a level

need to be addressed. This leads to a trade-off between (i) maintaining parent-child

locality for component grids that results in reduced communication overheads but
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possibly high load imbalance, and (ii) “orphaning” component grids (i.e., isolating

grid elements at different refinement levels of the SAMR hierarchy) resulting in better

load balance with slightly higher synchronization costs.

2.4 Taxonomy for Partitioning and Load Balancing

Partitioning Techniques

Static Dynamic

Geometric Non−Geometric Geometric Non−Geometric

Local Global Local Global

Patch−based

Domain− based

Hybrid

Figure 2.5: A general taxonomy of partitioning and load balancing approaches.

A general taxonomy of partitioning and load balancing approaches is presented in

Figure 2.5. The plethora of research on partitioning and load balancing techniques

can be broadly divided into static and dynamic techniques. Static partitioning

techniques are used when the application domain is partitioned only once (or very

few times) and there is no dynamic redistribution involved. In this case, the initial

partitioning is maintained through the execution of the application. Static techniques

tend to focus on the partitioning quality rather than partitioning speed. Dynamic

partitioning routines are used by adaptive applications to repartition and redis-

tribute the dynamic application domain at runtime. Moreover, these techniques have

to minimize data movement overheads and partitioning time since grid adaptations

occur at regular intervals. Consequently, partitioning quality is often sacrificed for
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speed and efficiency by these partitioners. Dynamic scheduling [117, 104], a variant

of the dynamic techniques, is a more general way of dealing with the load balancing

problem. It requires some basic partitioning of the domain into “tasks” that can be

created at runtime. These tasks are then scheduled dynamically. This approach is

closer to the operating system and mimics thread-level scheduling as compared to the

application-level strategies discussed in this section.

Static and dynamic partitioners can be further sub-divided into structured (geo-

metric) and unstructured (graph-based) techniques. Structured techniques take

the geometry of the grids into account during partitioning, and include strategies

such as binary dissection [8] [21], ISP [89], and geometric mesh partitioning [49] [25].

Unstructured techniques use a graph representation of the problem domain and

partition this graph among processors. Examples of schemes in this category include

recursive spectral bisection [5] and the multilevel algorithms in the software parti-

tioning library METIS [62] and ParMETIS [63]. Unstructured techniques can also be

used for partitioning domains where geometry plays an important role. In such cases,

the geometrical information is coded into the graph which is used as the input to the

partitioner.

Dynamic partitioning and load balancing techniques can be either global or lo-

cal. Global techniques maintain a global view of the problem domain and use

this global information to partition the domain. Global techniques include space-

filling curve (SFC) partitioners [94, 102] and diffusion schemes based on global work-

load [113]. SFC-based global techniques are used by PARAMESH [75] and GrACE

[90] [94] SAMR infrastructures. While these global techniques typically lead to a

better and more balanced distribution, the global synchronization required in these

schemes may be expensive. The hierarchical multithreaded model proposed in [105]

uses multiple threads and a hierarchical redistribution to reduce these overheads. A

similar approach is used in PaLaBer [104] which additionally uses preemptive and

non-preemptive process migration to balance load. Local techniques, such as the
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molecular dynamics load balancing algorithm in [20] and diffusion schemes using lo-

cal workloads [113], base their partitioning on localized views of the problem domain.

Typically, each processor only knows about its workload and that of its immediate

neighbors. Local schemes tend to be faster but the simulation workload may not be

as well-balanced as in the case of global techniques.

Partitioners for SAMR grid hierarchies can be classified as patch-based, domain-

based, or hybrid. In the case of patch-based partitioners, distribution decisions

are independently made for each newly created grid. A grid may be kept on the local

processor or entirely moved to another processor. If the grid is too large, it may be

split (see Figure 2.6). Domain-based partitioners partition the physical domain

rather than the grids themselves. The domain is partitioned along with all contained

grids on all refinement levels. Hybrid partitioners use a two-step partitioning

approach. The first step uses domain-based techniques to generate meta-partitions

which are mapped to a group of processors. The second step uses a combination of

domain and patch based techniques to optimize the distribution of each meta-partition

within its processor group.

The SAMR framework SAMRAI [68] (based on the LPARX [4] and KeLP [45]

model) fully supports patch-based partitioning. The distribution scheme maps the

patches at a refinement level of the AMR hierarchy across processors. Domain-based

partitioners tend to be more scalable [92] [13] [131] [106] [121] [124] and are the

primary focus of the research presented in this thesis. Some hybrid approaches are

presented in [92].

Patch-based techniques result in good load balance, independently of the depth

and complexity of the grid hierarchy, as long as each patch has a sufficient amount of

work. Moreover, they do not require redistribution when grids are created or deleted.

These techniques, however, can lead to substantial parent-child communication over-

heads. In a SAMR grid hierarchy, a fine grid typically corresponds to a relatively small

region of the underlying coarse grid. If both the fine and coarse grids are distributed
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over the entire set of processors (corresponding to a patch-based partitioning), all the

processors will communicate with the small set of processors corresponding to the

associated coarse grid region, thereby causing a serialization bottleneck. For exam-

ple, in Figure 2.7, a restriction from grid G2
2 to grid G1

1 requires all the processors

to communicate with processor P3. Another problem with patch-based distributions

is that parallelism across multiple grids at a level is not exploited. In most SAMR

algorithms, updates are performed level by level in a sequential manner. That is,

the solution on all grids at refinement level l have to be advanced before the solution

on any overlaid grid at level l + 1 can be advanced. Thus, parallelism in SAMR ap-

plications primarily comes from operating on component grids at a level in parallel.

For example, in Figure 2.7, grids G1
1, G1

2, and G1
3 are distributed across the same set
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of processors and have to be integrated sequentially. This causes processors to be

temporarily idle and parallel efficiency to deteriorate.

Domain-based partitioners (Figure 2.8), on the other hand, eliminate “depth-wise”

communication by maintaining parent-child locality. Furthermore, these partitioners

fully exploit the available parallelism at each level of the SAMR grid hierarchy. How-

ever, domain-based partitioners require load redistribution when grids are created or

destroyed. But this redistribution can be performed incrementally [92], thus mini-

mizing overheads. Although domain-based partitioners can effectively support paral-

lel SAMR, these techniques require the overall structure of the grid hierarchy to be

maintained and partitioned, which can be challenging. Furthermore, the load balance

produced by domain-based partitioners for deep SAMR hierarchies with strongly lo-

calized regions of refinement can deteriorate significantly. In these cases, hybrid

partitioners, combining patch-based and domain-based approaches, can be used.

2.5 Space-Filling Curve Based Partitioning

Inverse space-filling curve partitioners (ISP) [92] [120] are widely used to implement

domain-based partitioning of SAMR grid hierarchies. Space-filling curves (SFC) [57]
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[100] [109] [17] [110] are computationally efficient, locality preserving recursive map-

pings from N -dimensional space to 1-dimensional space i.e. Nd → N1, such that each

point in Nd is mapped to a unique point or index in N1. Two such mappings, the

Morton order and the Peano-Hilbert order, are shown in Figure 2.9.

Peano-Hilbert OrderMorton Order

Figure 2.9: Space-filling curves: Morton (left) and Peano-Hilbert (right) [123].

Level 3Level 2

Level 2Level 1

Level 1

Figure 2.10: Self-similarity property of space-filling curves [123].

Two properties of space filling curves, viz. digital causality and self-similarity,

make them particularly suitable for partitioning SAMR grid hierarchies. Digital

causality implies that points close together in d-dimensional space will be mapped to

points close together in 1-dimensional space, i.e. the mapping preserves locality [44]
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[51] [52] [80] [93]. Self-similarity implies that, as a d-dimensional region is refined, the

refined sub-regions can be recursively filled by curves having the same structure as

the curve filling the original (unrefined) region, but possibly a different orientation.

Figure 2.10 illustrates this property for a 2-dimensional region with refinements by

factors of 2 and 3. In the case of SAMR grid hierarchies, this self-similar or recur-

sive nature of SFC mappings is exploited to represent the hierarchical structure and

to maintain locality across different hierarchy levels. Finally, these techniques are

computationally efficient and are suited to SAMR algorithms, which require regular

regriding steps. ISP techniques can be effectively used to support parallel applica-

tions [89] [102] and are used by SAMR infrastructures such as PARAMESH [75] and

GrACE [93].

2.6 AMR Infrastructures

Currently, there exist a wide spectrum of software infrastructures that have been de-

veloped and deployed to support parallel and distributed implementations of AMR

applications. A survey on AMR applications is presented in [41]. Each system rep-

resents a unique combination of design decisions in terms of algorithms, data struc-

tures, decomposition schemes, mapping and distribution strategies, and communica-

tion mechanisms. Table 2.1 summarizes a selection of the existing AMR software

packages/infrastructures.

2.6.1 PARAMESH

PARAMESH [76] is a FORTRAN library designed to facilitate the parallelization of

an existing serial code that uses structured grids. The package builds a hierarchy

of sub-grids to cover the computational domain, with spatial resolution varying to

satisfy the demands of the application. These sub-grid blocks form the nodes of a tree

data-structure (quad-tree in 2-D or oct-tree in 3-D). Each grid block has a logically
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Table 2.1: Summary of AMR infrastructures.
AMR Infrastructures

Infrastructure Description and Method Supported Strategy
Object-oriented toolkit built on semantically Dynamic,

GrACE specialized DSM substrate implementing a global,
hierarchical distributed dynamic array. domain-based,
Supports SAMR and multigrid methods geometric
Hierarchical representation of finite element Dynamic,

SCOREC mesh with operators to query and update global,
mesh structure. Supports adaptive finite geometric
element methods
Extends serial code to parallel based on Dynamic,

PARAMESH partitioning hierarchical tree representation geometric,
of adaptive grid structure. Supports SAMR domain-based
Block-based approach with the adaptation Dynamic,

BATSRUS distributed over processors in computational domain-based
pool in phases. Supports AMR
Object-oriented SAMR framework based on Dynamic,

SAMRAI LPARX and KeLP model with patches global,
mapped separately at refinement levels patch-based
Distributed infrastructure for implementing Dynamic,

Chombo finite difference calculations on block- domain-based,
structured, adaptively refined rectangular grids geometric

Cartesian structured mesh.

2.6.2 SAMRAI

Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) [68]

[134] provides computational scientists with general and extensible software support

for the prototyping and development of parallel SAMR applications. The framework

contains modules for handling tasks such as visualization, mesh management, integra-

tion algorithms, geometry, etc. SAMRAI makes extensive use of C++ object-oriented

techniques and various design patterns such as abstract factory, strategy and chain of

responsibility. Load-balancing in SAMRAI occurs independently at each refinement

level resulting in convenient handling but increased parent-child communication.
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2.6.3 Chombo

The Chombo [37] package provides a distributed infrastructure and set of tools for

implementing parallel calculations using finite difference methods for the solution

of partial differential equations on block-structured, adaptively refined rectangular

grids. Chombo includes both elliptic and time-dependent modules as well as support

for parallel platforms and standardized self-describing file formats.

2.6.4 GrACE

Grid Adaptive Computational Engine (GrACE) [92] is an adaptive computational

and data-management framework for enabling distributed adaptive mesh refinement

computations on structured grids. It is built on a virtual, semantically specialized

distributed shared memory substrate with multifaceted objects specialized to dis-

tributed adaptive grid hierarchies and grid functions. The development of GrACE

is based on systems engineering focusing on abstract types, a layered approach, and

separation of concerns. GrACE allows the user to build parallel SAMR applications

and provides support for multigrid methods.

2.6.5 SCOREC

SCOREC Parallel Mesh Database [115] provides a generic mesh database for the

topological, geometric and classification information that describes a finite element

mesh. The database supports meshes of non-manifold models and multiple meshes

on a single model or multiple models. Operators are provided to retrieve, store and

modify the information available in the database. Parallel Mesh Database (PMDB)

provides three static partitioning procedures for initial mesh distribution, three dy-

namic load-balancing schemes, and mesh migration operators.
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2.6.6 BATSRUS

BATSRUS [6] is implemented in Fortran90 using a block-based domain-decomposition

approach. Cell blocks, stored as 3-D Fortran90 arrays, are locally stored on each

processor to achieve reasonably balanced load. The application starts out with a pool

of processors with some processors being possibly unused. Each utilized processor has

a block of equal memory size but possibly at a different resolution and/or different

partition size of the physical space. As the application adapts, new (adapted) grids

are allocated in units of the same fixed block size to the unused processors. No

additional refinement can occur once all the virtual processors have been utilized.

2.7 Partitioning Libraries

In addition to the AMR infrastructures, there exist several partitioning tools that are

used in domain decomposition and load balancing for scientific simulations. Table

2.2 summarizes a selection of existing partitioning libraries.

Table 2.2: Summary of partitioning libraries.
Partitioning Libraries
Library Description and Method Supported Strategy

Research tool with dedicated partitioners Dynamic,
Vampire combining structured and unstructured global,

techniques. Supports SAMR domain-based
METIS Partitioning unstructured graphs based on Dynamic,

ParMETIS parallel multilevel k-way graph- global,
partitioning algorithms graph-based

PART Tool for distributed systems considering Dynamic,
ParaPART heterogeneity and application computational global

complexity, using simulated annealing
Object-oriented library including a suite of Dynamic,

Zoltan algorithms for dynamically computing the geometric/
partitions over sets of processors graph-based
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2.7.1 Vampire

Vampire [119] is a dedicated SAMR partitioning library (2D/3D) involving variable-

grain adaptive mesh partitioner/repartitioner strategies. It uses reverse multilevel ISP

techniques combining structured and unstructured schemes and consists of a set of

highly parameterized domain-based algorithms written in C. The prominent features

of Vampire include fast, high-quality partitioning and variable grain size allowing for

experimentation with granularity. In Vampire, granularity is determined by the size

of the “atomic unit” and the “weight limit”.

2.7.2 METIS and ParMETIS

METIS [62] is a set of programs for partitioning graphs, partitioning finite element

meshes, and for producing fill reducing orderings for sparse matrices. The algorithms

implemented in METIS are based on the multilevel graph partitioning schemes. Key

features of METIS include high quality partitions, fast execution, and better fill-

orderings. ParMETIS [63] is an MPI-based parallel library that extends the function-

ality provided by METIS and includes routines that are especially suited for parallel

AMR computations and large scale numerical simulations. The algorithms imple-

mented in ParMETIS are based on the parallel multilevel k-way graph-partitioning

algorithms.

2.7.3 PART and ParaPART

PART [32] is a tool for automatic mesh partitioning for distributed systems. PART

takes into consideration the heterogeneities in processor performance, network perfor-

mance, and application computational complexities to achieve a balanced estimate of

execution time across the processors in the distributed system. Simulated annealing

is used in PART to perform the backtracking search for desired partitions. ParaPART

[33] is a parallel version of PART and significantly improves its performance by using
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the asynchronous multiple Markov chains approach of parallel simulated annealing.

2.7.4 Zoltan

Zoltan [40] is a load-balancing tool that provides an interface between an applica-

tion and existing load balancing routines. This object-oriented library, written in

C++, uses established algorithms to compute partitions over a set of processors for

a given parallel application. Though the new distribution is computed transparently

by Zoltan, the data-movement features have to be supported by the user or the in-

terfacing application.

2.8 Dynamic Adaptive Partitioning Strategies

Dynamic adaptive partitioning and load balancing for AMR applications on struc-

tured and unstructured computational meshes is an active research area. A summary

of these schemes is presented in Table 2.3. Whereas dynamic adaptive partitioning

techniques have been extensively investigated for unstructured meshes, such schemes

for structured grids are relatively unexplored. Our goal in this research is to adap-

tively manage dynamic and heterogeneous applications on structured grids based on

a multiobjective approach and a characterization of the runtime state.

2.8.1 PLUM

PLUM (Parallel Load-balancing for adaptive Unstructured Meshes) [87] is a dynamic

load balancing strategy for adaptive unstructured grid computations that uses a cost-

metric model for efficient mesh adaptation. PLUM consists of a flow solver and a mesh

adaptor, with a partitioner and a remapper that load balances and redistributes the

computational mesh when necessary. Parallel adaptation code consists of three phases

– initialization, execution, and finalization.
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Table 2.3: Research summary on dynamic partitioning/load-balancing schemes.
Dynamic Adaptive Partitioning and Load Balancing
Scheme Description

Dynamic load balancing for unstructured meshes using cost-metric
PLUM model with computation, communication and remapping weights;

accepts new partitioning if gain greater than redistribution cost
Repartitioning for unstructured meshes based on relative cost

URA factor to minimize both communication and data redistribution
cost; initial partitioning scheme yielding lowest cost is selected

SAMR Moving-grid and splitting-grid phases in parallel where load is
DLB balanced across processors after adaptation, or grid is split along

the longest dimension, if imbalance still exists
Partitioning Ranking of partitioning methods based on the problem space,

Advisory machine speed, and network information; considers processor
System performance variance, but assumes linear complexity

A dual graph representation of the initial computational mesh keeps complexity

and connectivity constant. The PLUM model uses computation (Wcomp), communica-

tion (Wcomm), and data-remapping (Wremap) weights to implement accurate metrics

that estimate and compare the computational gain and the redistribution cost of

having a balanced workload after each mesh adaptation step. Wcomp and Wcomm de-

termine how dual graph vertices should be grouped to form partitions that minimize

both the disparity in the partition weights and the runtime communication. Wremap

determines how partitions should be quickly assigned to processors using a heuristic

remapping algorithm such that the cost of data redistribution is minimized. The new

partitioning and mapping are accepted if the computational gain is larger than the

redistribution cost.

2.8.2 Unified Repartitioning Algorithm

The Unified Repartitioning Algorithm (URA) [114] is a parallel adaptive repartition-

ing scheme for the dynamic load-balancing of scientific simulations that attempts

to solve the precise multi-objective optimization problem. A key parameter used in

URA is the Relative Cost Factor (RCF) that describes the relative times required for
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performing the inter-processor communications incurred during parallel processing

and to perform the data redistribution associated with balancing the load. Using

this parameter, it is possible to unify the two minimization objectives of the adaptive

graph partitioning problem into the precise cost function

|Ecut| + α|Vmove|

where α is the RCF, |Ecut| is the edge-cut of the partitioning, and |Vmove| is the total

amount of data redistribution. URA attempts to compute a repartitioning while

directly minimizing this cost function.

URA has three phases: graph coarsening, initial partitioning, and uncoarsening/-

refinement. In the initial partitioning phase of URA, repartitioning is performed

on the coarsest graph twice by alternative methods which are optimized variants of

scratch-remap and global diffusion schemes. The cost functions are then computed for

each of these and the one with the lowest cost is selected. The algorithm is extremely

fast and scalable to very large problems; however, it is primarily targeted towards

unstructured meshes.

2.8.3 Dynamic Load Balancing for SAMR

In investigating dynamic load balancing (DLB) schemes for SAMR [70], Lan, Tay-

lor, and Bryan analyzed the requirements imposed by the applications. The analysis

provided four unique characteristics: coarse granularity, high dynamism, high im-

balance and different dispersion, and an implementation that maintains some global

information. Their DLB scheme is composed of two steps: moving-grid phase and

splitting-grid phase.

In the “moving-grid phase”, after each adaptation, the DLB is triggered if the

load is imbalanced, i.e. MaxLoad/AvgLoad > threshold. The MaxProc moves its

grid directly to MinProc under the condition that the computational load of this

grid does not exceed (threshold ∗ AvgLoad − MinLoad), thereby ensuring that an
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underloaded processor does not become overloaded. If imbalance still exists, the

“splitting-grid phase” is invoked and it splits the grid, along the longest dimension,

into two subgrids. Eventually, either the load is balanced or the minimum allowable

grid size is reached. Both the moving-grid phase and splitting-grid phase execute in

parallel.

A modified DLB scheme on distributed systems [71] considers the heterogeneity

of processors and the heterogeneity and dynamic load of the network. The scheme

employs global load-balancing and local load-balancing, and uses a heuristic method

to evaluate the computational gain and redistribution cost for global redistribution.

2.8.4 Partitioning Advisory System

Crandall and Quinn developed a partitioning advisory system [38] for a network of

workstations. The advisory system has three built-in partitioning methods (contigu-

ous row, contiguous point, block). Given information about the problem space, the

machine speed, and the network, the advisory system provides ranking of the three

partitioning methods. The advisory system takes into consideration the variance in

processor performance among the workstations but variance in network performance

is not considered. The problem, however, is that linear computational complexity is

assumed for the application.

2.9 Addressing Multiple Objectives in Scientific Simulations

Multiobjective optimization problems [1, 118] require the simultaneous optimization

of more than one objective function in a multi-dimensional criteria search space.

Multiobjective optimization techniques are based on evolutionary [135] or combina-

torial [22] formulations, and have been extensively studied in the field of operations

research. A comprehensive survey of multiobjective optimization techniques is pre-

sented in [35].
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The set of criteria that produces the optimal outcome is a set of non-inferior or

non-dominated solutions, designated as the Pareto optimal set or Pareto front. When

the behaviors of the objective functions are adequately known and the criteria search

space is convex, aggregating functions can be used to combine multiple objectives into

a single function. Examples of this approach include weighted aggregation methods,

goal programming or attainment, and ε-constraint methods. Alternative techniques

for multiobjective optimization can be based on population policies or specialized

operations for objective functions, and include genetic algorithms and their variants,

hierarchical or lexicographic ordering, weighted min-max approach, and use of game

theory principles.

Despite the recent advances in multiobjective optimization techniques and their

widespread use in several science and engineering domains, these strategies have been

sparingly adopted in high-performance computing. This observation can be attributed

to three key factors. First, the runtime behaviors of adaptive scientific simulations

are not known a priori, making it difficult to characterize, adapt and optimize perfor-

mance. Second, analytical models of the performance objectives for complex, multi-

phased scientific simulations are typically not feasible, and scientists resort to heuris-

tics and empirical approaches to estimate and optimize performance. Third, even if

an accurate performance model existed, it is generally very time-consuming to com-

pute the exact Pareto optimal solution that satisfies all performance objectives for

each state of the dynamic parallel scientific simulation. Moreover, an exact Pareto

analysis tends to be an overkill for high-performance simulations since the cost to de-

termine and deploy the optimization may be greater than the benefit provided by the

optimization itself. Nonetheless, multiobjective optimization techniques have been

applied in certain frameworks supporting scientific simulations, which are described

in Chapter 7. In this research, we focus on the dynamism and heterogeneity chal-

lenges that impact the runtime performance of adaptive structured grid formulations

of various parallel scientific simulations.
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Chapter 3

Autonomic Runtime Management Infrastructure

3.1 Application and System Heterogeneity in SAMR

Unlike static applications where requirements are typically known a priori, the dy-

namic behavior of structured adaptive mesh refinement (SAMR) applications is based

on the current state of the physical phenomenon being simulated and can only be

determined at runtime. Thus, it is important to abstract the state of the SAMR

application in order to determine its current computational, communication, and

storage requirements. This information can then be used to determine an appropri-

ate decomposition of the application and mapping of the computations to available

processing elements of the computational environment, and to drive the selection of

appropriate algorithms and implementations, both at the application level (solvers,

preconditioners) as well as the system level (communication mechanism).

Furthermore, the execution environment such as a high-performance or networked

computational system may exhibit dynamic or constrained behavior at runtime. The

underlying system heterogeneity introduces a new level of complexity and makes the

selection of a “best” match between system resources, application algorithms, problem

decompositions, mappings and load distributions, communication mechanisms, etc.,

non-trivial. System dynamics coupled with application adaptation makes application

composition, runtime management, and optimization a significant challenge.

To address these challenges, we propose a multiobjective approach that analyzes

application and system state at runtime and provides appropriate distribution, config-

uration, coordination, and adaptation strategies. Such an autonomic infrastructure
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formulation can address dynamism and heterogeneity in parallel scientific simula-

tions on structured grids, and enable their efficient and scalable execution on high-

performance or cluster computing architectures.

3.2 Runtime Infrastructure Requirements

Parallel/distributed implementations of scientific simulations lead to interesting com-

putational and computer science challenges in dynamic resource allocation, data-

distribution and load balancing, communications and coordination, and runtime man-

agement. As a result, key requirements for an efficient runtime management frame-

work for SAMR applications include:

• Dynamic Partitioning Support: The overall efficiency of the algorithms is

limited by the ability to partition the underlying data-structures at runtime so

as to expose all inherent parallelism, minimize communication and synchroniza-

tion overheads, and balance load.

• Adaptive Communication Support: A critical requirement while partition-

ing adaptive grid hierarchies is the maintenance of logical locality, both across

different levels of the hierarchy under expansion and contraction of the adaptive

grid structure, and within partitions of grids at all levels when they are decom-

posed and mapped across processors. The former enables efficient computa-

tional access to the grids while the latter minimizes the total communication

and synchronization overheads.

• Dynamic Application Configuration Support: Application adaptation re-

sults in application grids being dynamically created, moved and deleted on-

the-fly, making it necessary to efficiently re-partition the hierarchy so that it

continues to meet performance goals. Furthermore, the heterogeneity in the
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underlying execution environment may require selecting and configuring appli-

cation components based on system state.

3.3 Autonomic Infrastructure: Model and Operation

3.3.1 Monitoring and Characterization

Figure 3.1: Autonomic infrastructure operation: monitoring and characterization.

The monitoring and characterization mechanisms in the runtime management

framework consist of embedded application-level and system-level sensors/actuators

and are illustrated in Figure 3.1. The application is characterized into “natural re-

gions” (NRs) which are regions of relatively homogeneous activity in the application

domain and can span various levels of the SAMR grid hierarchy. Application sen-

sors monitor the structure and state of the SAMR grid hierarchy and the nature of

the refined regions. One way to track such natural regions for SAMR applications

is using the refinement patterns based on local truncation errors. For example, a
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“hot-spot” in the flame simulation application described in Section 2.3.1 represents

a natural region in the application domain. The application state is abstracted using

these natural regions and is characterized in terms of application-level metrics such as

computation/communication requirements, storage requirements, activity dynamics,

and the nature of adaptations [123].

Similarly, system sensors, which may be built on existing infrastructures such as

NWS (Network Weather Service) and MDS (Metacomputing Directory Service), sense

the current state of underlying computational resources in terms of CPU, memory,

bandwidth, availability, and access capabilities. These are fed into the system state

synthesizer along with history information (current state stored over time in the

history module) and performance estimates (obtained using performance functions

from the prediction module) to determine the overall system runtime state. The

current application and system state are provided as inputs to the deduction engine

and are used to define the autonomic runtime objective function.

3.3.2 Deduction and Objective Function

The deduction engine and the autonomic runtime manager provide the primary de-

cision making capabilities within the runtime management framework. As shown in

Figure 3.2, the current application and system state and the overall “decision space”

are the inputs to the deduction engine. The decision space comprises the adaptation

policies, rules, and constraints defined in terms of application metrics, and enables

autonomic configuration, adaptation, and optimization. Application metrics may in-

clude application locality, communication mechanism, data migration, load balancing,

memory requirements/constraints, adaptive partitioning, adaptation overheads, and

granularity control. Based on current runtime state and policies/constraints within

the decision space, the deduction engine formulates prescriptions for algorithms, con-

figurations, and parameters that are used to define the objective function for adapting

the behavior of the SAMR application. The deduction engine may be made capable
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of self-learning by augmenting its decision space with new rules and constraints. The

prescriptions provided by the deduction engine along with the objective function yield

two metric – normalized work metric (NWM) and normalized resource metric (NRM)

that characterize the current application state and current system state, respectively.

These metric are self-defined based on the current application/system context and en-

able autonomic runtime management by helping to configure the SAMR application

with appropriate parameters and execute optimally within the computing environ-

ment, which may be heterogeneous.

Figure 3.2: Autonomic infrastructure operation: deduction and optimization.

3.3.3 Autonomic Runtime Manager

The normalized metric, NWM and NRM, form the inputs to the autonomic run-

time manager (ARM). Using these inputs, ARM defines a hierarchical distribution

mechanism, configures and deploys appropriate partitioners at each level of the hier-

archy, and maps the application domain onto virtual computational units. A virtual

computational unit (VCU) is the basic application work unit that is scheduled by
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the runtime management framework and may consist of computation patches on a

single refinement level of the SAMR grid hierarchy or composite patches that span

multiple refinement levels. VCUs are dynamically defined at runtime to match the

natural regions (NRs) in the application. Using natural regions to define VCUs can

significantly reduce coupling and synchronization costs.

Subsequent to partitioning, scheduling operations are performed first across VRUs

(Global-Grid Scheduling (GGS)) and then within a VRU (Local-Grid Scheduling

(LGS)). During GGS, VCUs are hierarchically assigned to sets of VRUs, whereas

LGS is used to schedule one or more VCU within a single VRU. The entire process

is first spatial and then temporal, and could possibly combine a range of partitioning

techniques (domain-based, patch-based, tree-based, etc.) and scheduling techniques

(gang, backfilling, migration, etc.). A virtual resource unit (VRU) may be an indi-

vidual resource (compute, storage, instrument, etc.) or a collection (cluster, super-

computer, etc.) of physical system resources. A VRU is characterized by its com-

putational, memory, and communication capacities and by its availability and access

policy. Finally, the VRUs are dynamically mapped onto physical system resources

at runtime and the SAMR application is tuned for execution within the dynamic

computing environment.

Note that the work associated with a VCU depends on the state of the computa-

tion, the configuration of the components (algorithms, parameters), and the current

ARM objectives (optimize performance, minimize resource requirements, etc.). Sim-

ilarly, the capability of a VRU depends on its current state as well as the ARM ob-

jectives (minimizing communication overheads implies a VRU with high bandwidth

and low latency has higher capability). The normalized metric NWM and NRM are

used to characterize VRUs and VCUs based on current ARM objectives.
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Chapter 4

Addressing Spatiotemporal Heterogeneity

4.1 Overview

Parallel implementations of SAMR applications with highly dynamic and localized

features require high SAMR efficiencies1 [10], which can lead to deep hierarchies and

small regions of refinement with unfavorable computation-to-communication ratios.

The resulting dynamism and spatiotemporal heterogeneity present significant scal-

ability challenges. In this chapter, we present a SAMR runtime engine, consisting

of a stack of partitioners, which can address the space-time heterogeneity and dy-

namism of the SAMR grid hierarchy. The partitioners build on a locality-preserving

space-filling curve based representation of the SAMR grid hierarchy [93] and enhance

it based on localized requirements to minimize synchronization costs within a level

(level-based partitioning), balance load (bin-packing based partitioning), or reduce

partitioning costs (greedy partitioner). The SAMR runtime engine as well as its indi-

vidual components are experimentally evaluated on an IBM SP2 supercomputer using

a 3-D Richtmyer-Meshkov (RM3D) compressible turbulence kernel. Results demon-

strate that the techniques presented individually improve runtime performance, and

collectively enable the scalable execution of applications with localized refinements

and high SAMR efficiencies on large numbers of processors (upto 1024 processors).

1AMR efficiency is the measure of effectiveness of AMR and is computed as one minus the ratio
of the number of grid points using AMR to that required if a uniform mesh is used.
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4.2 Driving SAMR Application – RM3D Kernel

Figure 4.1: Snapshots of the grid hierarchy for a 3-D Richtmyer-Meshkov simulation.
Note the dynamics of the SAMR grid hierarchy as the application evolves.

The 3-D compressible turbulence application kernel solving Richtmyer-Meshkov

(RM3D) instability is used as the driving SAMR application in this chapter. The

RM3D application is a part of the virtual test facility (VTF) developed at the ASCI/-

ASAP Center at the California Institute of Technology2. The Richtmyer-Meshkov

instability is a fingering instability which occurs at a material interface accelerated

by a shock wave. This instability plays an important role in studies of supernova

and inertial confinement fusion. The RM3D application is dynamic in nature and

exhibits space-time heterogeneity and is representative of the simulations targeted by

this research. A selection of snapshots for the RM3D adaptive SAMR grid hierarchy

are shown in Figure 4.1.

2Center for Simulation of Dynamic Response of Materials - http://www.cacr.caltech.edu/ASAP/
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Figure 4.2: Richtmyer-Meshkov detonation in a deforming tube modeled using SAMR
with 3 levels of refinement. The Z=0 plane is visualized on the right (Courtesy: R.
Samtaney, VTF+GrACE, Caltech).

In particular, RM3D is characterized by highly localized solution features result-

ing in small patches and deep application grid hierarchies (i.e., a small region is very

highly refined in space and time). As a result, the application has increasing computa-

tional workloads and greater communication/synchronization requirements at higher

refinement levels with unfavorable computation to communication ratios. The physics

modeled by the RM3D application for detonation in a deforming tube is illustrated in

Figure 4.2. Samples of the SAMR statistics for RM3D execution on 32, 64, and 128

Table 4.1: Sample SAMR statistics for RM3D application on 32, 64, and 128 pro-
cessors of IBM SP2 “Blue Horizon” using a 128*32*32 coarse grid, executing for 50
iterations with 3 levels of factor 2 space-time refinements and regridding performed
every 4 steps.

Application 32 64 128
Parameter processors processors processors

AMR efficiency 87.50% 85.95% 85.29%

Avg. blocks per processor per regrid 15 12 9

Avg. memory per processor (MB) 360.64 202.72 106.08

Minimum block size 4 4 4

Maximum block size 128 128 128
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processors of IBM SP2 “Blue Horizon” are listed in Table 4.1. The resulting SAMR

grid hierarchy characteristics significantly limit RM3D scalability on large numbers

of processors. The SAMR runtime engine described in Section 4.3 addresses these

runtime challenges in synchronization, load balance, locality, and communication to

realize scalable RM3D implementations.

4.3 SAMR Hierarchical Partitioning Framework

The hierarchical partitioning framework within the SAMR runtime engine consists of

a stack of partitioners that can manage the space-time heterogeneity and dynamism of

the SAMR grid hierarchy. These dynamic partitioning algorithms are based on a core

Composite Grid Distribution Strategy (CGDS) belonging to the GrACE [90] SAMR

infrastructure [92]. This domain-based partitioning strategy performs a composite

decomposition of the adaptive grid hierarchy using Space-filling Curves (SFCs) [57]

[80] [100] [109]. SFCs are locality preserving recursive mappings from n-dimensional

space to 1-dimensional space. At each regridding stage, the new refinement regions

are added to the SAMR domain and the application grid hierarchy is reconstructed.

CGDS uses SFCs and partitions the entire SAMR domain into sub-domains such

that each sub-domain keeps all refinement levels in the sub-domain as a single com-

posite grid unit. Thus, all inter-level communication are local to a sub-domain and

the inter-level communication time is greatly reduced. The resulting composite grid

unit list (GUL) for the overall domain must now be partitioned and balanced across

processors. However, certain SAMR applications with localized refinements and deep

hierarchies (such as RM3D) have substantially higher computational requirements

at finer levels of the grid hierarchy. As described in Section 2.3.3, maintaining a

GUL with composite grid units may result in high load imbalance across processors

in such cases. To address this concern, CGDS allows a composite grid unit with

high workload (greater than the load-balancing threshold) to be orphaned/separated
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into multiple sub-domains, each containing a single level of refinement. An efficient

load-balancing scheme within CGDS can use this “orphaning” approach to alleviate

processor load imbalances and provide improved application performance despite the

increase in inter-level communication costs.

Figure 4.3: Layered design of hierarchical partitioning framework within SAMR run-
time engine (SFC: Space-Filling Curves, CGDS: Composite Grid Distribution Strat-
egy, HPA: Hierarchical Partitioning Algorithm, LPA: Level-based Partitioning Algo-
rithm, GPA: Greedy Partitioning Algorithm, BPA: Bin-packing based Partitioning
Algorithm).

The layered structure of the SAMR hierarchical partitioning framework is shown

in Figure 4.3. Once the grid hierarchy index space is mapped using the SFC+CGDS

scheme, higher-level partitioning techniques may be applied in a hierarchical manner

using the hierarchical partitioning algorithm (HPA). In HPA [74], processor groups

are defined based on the dynamic grid hierarchy structure and correspond to regions of

the overall computational domain. The top processor group partitions the global GUL

obtained initially and assign portions to each processor sub-group in a hierarchical

manner. In this way, HPA further localizes the communication to sub-groups, reduces

global communication and synchronization costs, and enables concurrent communi-

cation. Within each processor sub-group, higher-level partitioning strategies are then

applied based on the local requirements of the SAMR grid hierarchy sub-domain. The

objective could be to minimize synchronization costs within a level using the level-

based partitioning algorithm (LPA), or efficiently balance load using the bin-packing

based partitioning algorithm (BPA), or reduce partitioning costs using the greedy
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partitioning algorithm (GPA), or combinations of the above. GPA and BPA form the

underlying distribution schemes that can work independently or can be augmented

using LPA and/or HPA.

4.3.1 Greedy Partitioning Algorithm

GrACE uses a default greedy partitioning algorithm to partition the global GUL and

produce a local GUL for each processor. The GPA scheme performs a rapid partition-

ing of the SAMR grid hierarchy as it scans the global GUL only once while attempting

to distribute the load equally among all processors, based on a linear assignment of

grid units to processors. If the workload of a grid unit exceeds processor threshold,

it is assigned to the next successive processor and the threshold is adjusted. GPA

helps in reducing partitioning costs and works quite well for a relatively homogeneous

computational domain with few levels of relatively uniform refinement, and small-to-

medium scale application runs. However, due to the greedy nature of the algorithm,

GPA tends to result in overloading of processors encountered near the end of the

global GUL, since the load imbalances from previous processors have to be absorbed

by these latter processors. Scalable SAMR applications require a good load balance

during the computational phase between two regrids of the dynamic grid hierarchy.

In applications with localized features and deep grid hierarchies, the load imbalance

in GPA at higher levels of refinement can lead to large synchronization delays, thus

limiting SAMR scalability.

4.3.2 Level-based Partitioning Algorithm

The computational workload for a certain patch of the SAMR application is tightly

coupled to the refinement level at which the patch exists. The computational work-

load at a finer level is considerably greater than that at coarser levels. The level-

based partitioning algorithm (LPA) [74] attempts to simultaneously balance load and
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minimize synchronization cost. LPA essentially preprocesses the global application

computational units represented by a global GUL, disassembles them based on their

refinement levels, and feeds the resulting homogeneous units at each refinement level

to GPA (or any other partitioning/load-balancing scheme). The GPA scheme then

partitions this list to balance the workload. Due to the preprocessing, the load on

each refinement level is also balanced.

level 0

level 1

P0 P1

(a)

level 0

level 1

P0 P1 P0 P1

(b)

Figure 4.4: Partitions of a 1-D grid hierarchy for (a) GPA, (b) LPA.
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Figure 4.5: Timing diagrams showing computation and communication behaviors for
a 1-D grid hierarchy partitioned using (a) GPA, (b) LPA.

LPA benefits from the SFC-based technique by maintaining parent-children re-

lationship throughout the composite grid and localizing inter-level communications,

while simultaneously balancing the load at each refinement level, which reduces the
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synchronization cost as demonstrated by the following example. Consider the parti-

tioning of a one-dimensional grid hierarchy with two refinement levels, as illustrated

in Figure 4.4. For this 1-D example, GPA partitions the composite grid unit list into

two sub-domains. These two parts contain exactly the same load: the load assigned

to P0 is 2 + 2 × 4 while the load assigned to P1 is 10 units. From the viewpoint

of GPA scheme, the partition result is perfectly balanced as shown in Figure 4.4(a).

However, due to the heterogeneity of the SAMR algorithm, this distribution leads to

large synchronization costs as shown in the timing diagram (Figure 4.5(a)). The LPA

scheme takes these synchronization costs at each refinement level into consideration.

For this simple example, LPA will produce a partition as shown in Figure 4.4(b) which

results in the computation and communication behavior depicted in Figure 4.5(b).

As a result, there is an improvement in overall execution time and a reduction in

communication and synchronization time.

4.3.3 Bin-packing based Partitioning Algorithm

The bin-packing based partitioning algorithm (BPA) improves the load-balance dur-

ing the SAMR partitioning phase. The computational workload associated with a

GUL at different refinement levels of the SAMR grid hierarchy is distributed among

available processors. The distribution is performed under constraints such as mini-

mum block size (granularity) and aspect ratio. Grid units with loads larger than the

threshold limit are decomposed geometrically along each dimension into smaller grid

units, as long as the granularity constraint is satisfied. This decomposition can occur

recursively for a grid unit if its workload exceeds processor threshold. If the work-

load is still high and the orphaning strategy is enabled, the grid units with minimum

granularity are separated into multiple uni-level grid elements for better load balance.

Initially, BPA distributes the global GUL workload among processors based on

processor load threshold, in a manner similar to GPA. A grid unit that cannot be
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allocated to the current processor, even after decomposition and orphaning, is as-

signed to the next consecutive processor. However, no processor accepts work greater

than the threshold in the first phase. Grid units representing unallocated loads after

the first phase are distributed among processors using a “best-fit” approach. If no

processor matches the load requirements of an unallocated grid unit, the “most-free”

approach (i.e., the processor with least load accepts the unallocated work) is adopted

until all the work in the global GUL is assigned.

BPA allows the user to set a tolerance value that determines the acceptable work-

load imbalance for the SAMR application. In case of BPA, the load imbalance, if

any, is low since it is bounded by the tolerance threshold. Due to the underlying bin-

packing algorithm, the BPA technique provides overall better load balance for the

grid hierarchy partitions among processors as compared to the GPA scheme. How-

ever, a large number of patches may be created as a result of multiple patch divisions.

Also, the load distribution strategy in BPA can result in multiple scans of the grid

unit list that marginally increases the partitioning overheads.

A combined approach using LPA and BPA can provide good scalability benefits

for SAMR applications since LPA reduces the synchronization costs and BPA yields

good load balance at each refinement level. The experimental evaluation presented in

Section 4.4 employs this combined approach. It disassembles the application global

GULs into uniform patches at various refinement levels using level-based partitioning,

which is subsequently followed by bin-packing based load-balancing for the patches

at each refinement level of the SAMR grid hierarchy.

4.4 Scalability Evaluation of the SAMR Runtime Engine

The experimental evaluations of individual components of the SAMR runtime engine

such as LPA and BPA, as well as the scalability for SAMR applications are performed

using the RM3D compressible turbulence application kernel (described in Section
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4.2) on the NPACI IBM SP2 “Blue Horizon” supercomputer. Blue Horizon [18] is

a teraflop-scale Power3 based clustered Symmetric Multiprocessing (SMP) system

from IBM, installed at the San Diego Supercomputing Center (SDSC). The machine

contains 1,152 processors running AIX that are arranged as 144 SMP compute nodes.

The nodes have a total of 576 GB of main memory such that each node is equipped

with 4 GB of memory shared among its eight 375 MHz Power3 processors. Each

node also has several gigabytes of local disk space. Nodes are connected by the

Colony switch, a proprietary IBM interconnect.

4.4.1 Evaluation: LPA and BPA Techniques

The LPA and BPA partitioning and load-balancing techniques are evaluated for the

RM3D application on 64 processors of Blue Horizon using the GrACE infrastructure.

RM3D uses a base grid of size 128 × 32 × 32 and a 3-level hierarchy with factor 2

space-time refinements and regridding performed every 8 time-steps at each level.

The RM3D application executes for 100 iterations and the total execution time, syn-

chronization (Sync) time, recompose time, average maximum load imbalance, and the

number of boxes are measured for each of the following three configurations, namely:

(i) default GrACE partitioner (GPA), (ii) LPA scheme using GrACE, and (iii) the

LPA+BPA technique using GrACE, i.e., the combined approach.

Figure 4.6 illustrates the effect of LPA and BPA partitioning schemes on RM3D

application performance. Note that the values plotted in the figure are normalized

against the corresponding maximum value. The results demonstrate that the LPA

scheme helps to reduce application synchronization time while the BPA technique

provides better load balance. A combined approach reduces the overall execution

time by around 10% and results in improved application performance. The LPA+BPA

strategy improves load balance by approximately 70% as compared to the default GPA

scheme. The improvements in load balance and synchronization time outweigh the

overheads (increase in number of boxes) incurred while performing the optimizations
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Figure 4.6: Evaluation of RM3D performance (normalized values) for LPA and BPA
partitioning schemes on 64 processors of Blue Horizon.

within LPA and BPA. This evaluation is performed on a reduced scale on fewer

processors, and hence the performance benefits of the SAMR partitioning framework

are lower. However, these hierarchical partitioning strategies become critical while

addressing scalable SAMR implementations, as shown in the next section.

4.4.2 Evaluation: Overall RM3D Scalability

The evaluation of overall RM3D SAMR scalability uses a base coarse grid of size

128 × 32 × 32 and the application executes for 1000 coarse level time-steps. The

experiments are performed on 256, 512, and 1024 processors of Blue Horizon us-

ing a 4-level SAMR hierarchy with factor 2 space-time refinements, and regridding

is performed every 64 time-steps at each level. The partitioning algorithm chosen

from the hierarchical SAMR partitioning framework for these large-scale evaluations

is LPA+BPA since a combination of these two partitioners results in reduced syn-

chronization costs and better load balance, as described in Sections 4.3 and 4.4.1.

The orphaning strategy and a local refinement approach are used in conjunction with

LPA+BPA in this evaluation since the RM3D application exhibits localized patterns

and deep hierarchies with large computational and communication requirements. The

minimum block size for a patch on the grid is maintained at 16.
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Figure 4.7: Scalability evaluation of the overall execution time for 1000 coarse-level
iterations of the RM3D application with a 4-level SAMR hierarchy and 128× 32× 32
base grid – log graphs for 256, 512, and 1024 processors of Blue Horizon.

The scalability tests on 256, 512, and 1024 processors measure the runtime met-

rics for RM3D application. For these three experiments, the overall execution time,

average computation time, average synchronization time, and average regridding/-

redistribution time are illustrated in Figures 4.7, 4.8, 4.9, and 4.10 respectively. The

vertical error bars in Figures 4.8, 4.9, and 4.10 represent the standard deviations

of the corresponding metrics. Table 4.2 presents the coefficients of variation3 (CV)

for computation, synchronization and regridding times, and the average time per

synchronization and regrid operation.

As seen in Figure 4.7, the scalability ratio of overall application execution time

from 256 to 512 processors is 1.394 (ideal scalability ratio is 2) yielding a parallel effi-

ciency of 69.72%. The corresponding values of scalability ratio and parallel efficiency

as processors increase from 512 to 1024 are 1.661 and 83.05% respectively. These

execution times and parallel efficiencies indicate reasonably good scalability, consid-

ering the high computation and communication runtime requirements of the RM3D

application. The LPA partitioning and bin-packing based load-balancing techniques

3The coefficient of variation is a dimensionless number that is defined as the ratio of the standard
deviation to the mean for a particular metric, and is usually expressed as a percentage.
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Table 4.2: Scalability evaluation for RM3D application on 256, 512, and 1024 proces-
sors of Blue Horizon in terms of coefficients of variation (CV) and additional metrics.
The RM3D evaluation is performed for 1000 coarse-level iterations on a 128×32×32
base grid and a 4-level SAMR hierarchy.

Application 256 512 1024
Parameter processors processors processors

Computation CV 11.31% 15.5% 12.91%

Synchronization CV 8.48% 6.62% 7.41%

Regridding CV 2.89% 7.52% 9.1%

Avg. time per sync 0.43 sec 0.38 sec 0.22 sec

Avg. time per regrid 5.35 sec 7.74 sec 9.46 sec

collectively enable scalable RM3D runs with multiple refinement levels on large num-

bers of processors.

Figure 4.8: Scalability evaluation of the average computation time for 1000 coarse-
level iterations of the RM3D application with a 4-level SAMR hierarchy and 128 ×
32×32 base grid – log graphs for 256, 512, and 1024 processors of Blue Horizon. The
vertical error bars are standard deviations of the computation times.

The RM3D average computation time, shown in Figure 4.8, scales quite well.

The computation CV in Table 4.2 is reasonably low for the entire evaluation, im-

plying good overall application load-balance provided by the SAMR runtime engine

(LPA+BPA strategy). Note that in the case of large numbers of processors, the
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RM3D application has few phases in which there is not enough workload in the do-

main that can be distributed among all processors. In such cases, some processors

remain idle during the computation phase which affects the standard deviations of

the computation times. Hence, the computation CV for 512 and 1024 processors are

slightly higher than for 256 processors, as shown in Table 4.2. However, this lack

of computation on large numbers of processors is an intrinsic characteristic of the

application and not a limitation of the SAMR runtime engine.

Figure 4.9: Scalability evaluation of the average synchronization time for 1000 coarse-
level iterations of the RM3D application with a 4-level SAMR hierarchy and 128 ×
32×32 base grid – log graphs for 256, 512, and 1024 processors of Blue Horizon. The
vertical error bars are standard deviations of the synchronization times.

The scalability of synchronization time is limited by the highly communication-

dominated application behavior and unfavorable computation to communication ra-

tios, as described in Section 4.2 and observed in Figure 4.9. The evaluation exhibits

reasonably low synchronization CV in Table 4.2, which can be attributed to the com-

munication improvements provided by the SAMR runtime engine (LPA and delayed

waits techniques). As observed in Table 4.2, the average time taken per synchroniza-

tion operation reduces with an increase in the number of processors. This is primarily

due to the reduction in size of the grid units owned by processors, resulting in smaller

message transfers for boundary updates. The decrease in synchronization time is
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proportionately greater when processors increase from 512 to 1024 due to smaller

processor workloads, further reduced message sizes, and greater parallelism among

message transfers. Moreover, as described earlier, some application phases may not

have sufficient workload that can be allocated to all processors during redistribution

in case of large numbers of processors, forcing some processors to remain idle. In

such cases, this can result in reduced synchronization times since the idle processors

do not participate in the synchronization process. However, this is not a limitation

of the SAMR runtime engine, but is a direct consequence of the lack of application

dynamics.

Figure 4.10: Scalability evaluation of the average regridding time for 1000 coarse-level
iterations of the RM3D application with a 4-level SAMR hierarchy and 128× 32× 32
base grid – log graphs for 256, 512, and 1024 processors of Blue Horizon. The vertical
error bars are standard deviations of the regridding times.

The scalability evaluation of the regridding costs for the RM3D application is

plotted in Figure 4.10. SAMR regridding/redistribution entails error estimation,

clustering and refinement of application sub-domains, global domain decomposition/-

partitioning, and reconstruction of the application grid hierarchy followed by data

migration among processors to reflect the new distribution. The average regridding

time increases from 256 to 1024 processors since it is more expensive to perform global

decomposition operations for larger number of processors. However, the partitioning
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overheads induced by the SAMR hierarchical partitioning framework are miniscule

compared to the average regridding costs. As an example, the overall partitioning

overhead for the SAMR runtime engine on 512 processors is 4.69 seconds which is

negligible compared to the average regridding time of 364.01 seconds. The regridding

CV and the average time per regrid, noted in Table 4.2, show a similar trend as the

average regridding time – these metrics increase in value for larger number of pro-

cessors. To avoid prohibitive regridding costs, the redistribution of the SAMR grid

hierarchy is performed less frequently, in periods of 64 time-steps on each level.

This scalability evaluation on 256-1024 processors analyzed the runtime behavior

and overall performance for the RM3D application with a 4-level SAMR hierarchy

and a 128×32×32 base grid. Note that a unigrid RM3D implementation for the same

experimental settings will use a domain of size 1024× 256× 256 with approximately

67 million computational grid points. Such a unigrid implementation will require

extremely large overall memory availability (a total of 600 GB) that accounts for the

spatial resolution (1024 × 256 × 256), grid data representation (8 bytes for “double”

data), local copies in memory for grid functions and data structures (approximately

50), storage for previous, current, and next time states (total 3 sets), and temporal

refinement corresponding to the number of time-steps at the finest level (factor of

8). With 0.5 GB memory availability per processor on Blue Horizon, this unigrid im-

plementation will require 1200 processors to complete execution, which exceeds the

system configuration of 1152 processors. Thus, unigrid implementations are not even

feasible for large-scale execution of the RM3D application on the IBM SP2. More-

over, even if such unigrid RM3D implementations were possible on large systems,

they would entail a tremendous waste of computational resources since the RM3D

application exhibits localized refinement patterns with high SAMR efficiencies. Con-

sequently, a SAMR solution that addresses spatiotemporal heterogeneity is the only

viable alternative to realize such large-scale implementations, which underlines the

primary motivation for this research in this chapter.



62

4.4.3 Evaluation: SAMR Benefits for RM3D Performance

To additionally evaluate the benefits of using SAMR, another experiment compares

the RM3D application performance for configurations with identical finest-level res-

olution but different coarse/base grid size and levels of refinement. This evaluation

is performed on 512 processors of Blue Horizon and all other application-specific and

refinement-specific parameters kept constant. Note that for every step on the coarse

level (level 0), two steps are taken at the first refinement level (level 1), four steps

on level 2, and so on. Each configuration has the same resolution and executes for

the same number of time-steps (in this case, 8000) at the finest level of the SAMR

grid hierarchy. The RM3D domain size at the finest level is 1024 × 256 × 256 and

the evaluation uses the LPA+BPA technique with a minimum block size of 16. The

first configuration (4-Level Run) uses a coarse grid of size 128 × 32 × 32 with a 4-

level SAMR hierarchy and factor 2 space-time refinements, and executes for 1000

coarse-level iterations which correspond to 8000 steps at the finest level. The second

configuration (5-Level Run) uses a 5-level SAMR hierarchy with a 64 × 16× 16 base

grid and runs for 500 coarse-level iterations, corresponding to 8000 steps at the finest

level, to achieve the same resolution.

Table 4.3: RM3D performance evaluation of SAMR on 512 processors of Blue Horizon
for different application base grids and varying refinement levels. Both experiments
have the same finest resolution and execute for 8000 steps at the finest level.

Application 4-Level Run 5-Level Run Performance
Parameter (128*32*32 (64*16*16 Improvement

base grid) base grid)

Overall Execution time 10805 sec 6434.62 sec 40.45%

Avg. Computation time 2912.51 sec 1710.15 sec 41.28%

Avg. Synchronization time 2823.05 sec 1677.18 sec 40.59%

Avg. Regridding time 364.01 sec 255.34 sec 29.85%

Table 4.3 presents the runtime metrics for 4-Level and 5-Level configurations and

the performance improvement obtained with SAMR. Table 4.4 lists the coefficients



63

of variation for computation, synchronization and regridding times for the two con-

figurations, and the average time per synchronization and regrid operation. In this

evaluation, the error estimator used for determining refinement at each level of the

hierarchy is an absolute threshold of 0.005. Note that the quality of solutions ob-

tained in the two configurations are comparable; however, the grid hierarchies are

not identical. It is typically not possible to guarantee identical grid hierarchies for

different application base grids with varying refinement levels, if the application uses

localized refinements and performs runtime adaptations on the SAMR grid hierarchy.

However, we reiterate that the two grid hierarchies in this evaluation are comparable,

which is validated by the similar average time per regrid (shown in Table 4.4) for

4-Level and 5-Level runs.

Table 4.4: Coefficients of variation (CV) and additional metrics for evaluating RM3D
SAMR performance on 512 processors of Blue Horizon using 4 and 5 level hierarchies.

Application 4-Level Run 5-Level Run
Parameter (128*32*32 base) (64*16*16 base)

Computation CV 15.5% 14.27%

Synchronization CV 6.62% 7.67%

Regridding CV 7.52% 4.39%

Avg. time per sync 0.38 sec 0.32 sec

Avg. time per regrid 7.74 sec 7.74 sec

SAMR techniques seek to improve the accuracy of the solution by dynamically

refining the computational grid only in the regions with large local solution error.

The 5-Level Run has fewer grid points in the application grid hierarchy at the finest

resolution since the refinements are localized, and hence uses fewer resources than the

corresponding 4-Level Run. Consequently, the average times for all runtime metrics

shown in Table 4.3 and the CV values for computation and regridding (in Table 4.4)

are lower for the 5-Level Run. Though the average time for each synchronization oper-

ation is lesser for the 5-Level Run (as seen in Table 4.4), the standard deviation values

per synchronization operation are similar for both configurations. Consequently, the
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5-Level Run has a relatively higher synchronization CV than the 4-Level Run due

to deeper SAMR hierarchies requiring more inter-level communications. As observed

from Table 4.3, the overall RM3D execution time shows around 40% improvement for

the 5-Level hierarchy due to the efficiency of the basic Berger-Oliger SAMR algorithm.

These results corroborate our claim that the RM3D application exhibits localized pat-

terns with high SAMR efficiencies, and can derive substantial performance benefits

from scalable SAMR implementations.
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Chapter 5

Addressing Computational Heterogeneity

5.1 Overview

Structured grid frameworks typically assume that the computational effort at each

grid point is the same and the workload at any level of the grid hierarchy is uniformly

distributed, resulting in homogeneous load balancing. However, there exist certain

SAMR applications involving reactive flows, such as the simulation of hydrocarbon

flames with detailed chemistry [107], where the physical models include transport/-

structured processes with uniform computational loads as well as reactive/pointwise

processes having varying workloads. In these simulations, the solution of pointwise

processes at each iteration requires a different number of sub-cycles to complete the

computation at each grid point within a single global timestep. As a result, the

computational load varies at different grid points and is only known locally, and

at runtime. Therefore, traditional parallelization approaches are not suitable for

these simulations, and their parallel/distributed implementations present significant

partitioning and runtime challenges due to the inherent computational heterogeneity.

In this chapter, we present the Dispatch dynamic structured partitioning strategy

for parallel scientific applications with computational heterogeneity. Dispatch main-

tains distributed computational weights associated with pointwise processes, com-

putes local workloads in parallel, and performs in-situ global load balancing to de-

termine processor allocations proportional to the computational weights and data

redistribution that preserves application locality. The experimental evaluation of

Dispatch is performed using an illustrative 2-D reactive-diffusion (R-D) kernel and
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demonstrates improvement in load distribution and overall application performance.

5.2 Parallel Formulations of Simulations with Heterogeneous

Workloads

5.2.1 Partitioning Challenges for Pointwise Varying Work-

loads

Parallel structured implementations of PDE-based simulations typically assume a

uniform workload per grid point, and use numerical schemes that require all points

to march forward, together in time, in lock-step. Such an approach is exact since

it preserves the spatial coupling in a straightforward manner. However, there exist

certain classes of problems, such as reactive flows, which have physical point pro-

cesses that are coupled to other similar point processes through a second process.

Reaction/chemistry is such a point process – its models (and operators in the evo-

lution equations for reactive flows) do not contain any spatial derivatives. Reactive

processes at a point in space affect others around them through convective and diffu-

sive processes, which are separate physical processes and usually operate at different

timescales. Thus, over a time period that is far smaller than the transport (convection

and diffusion) timescale, the reactive processes can be considered as approximately

decoupled. This approximation is exploited in operator-split [77] integration methods.

Operator-split methods are used in PDEs where the physical processes can be

approximately decoupled over a global timestep Δtg. Consequently, the physical pro-

cesses can be advanced in time over Δtg using separate integrators since they do not

have to be marched in lock-step, and are usually chained in a certain sequence for

accuracy reasons. If one of these physical processes happens to be a purely point pro-

cess, viz. reaction, then separate (systems of) ordinary differential equations (ODEs)

for different points in space are obtained. While these ODEs are advanced up to Δtg
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for all points, different points (decoupled point processes) can adopt various inde-

pendent paths to reach there. Thus, points in the domain with little reaction take a

few large timesteps to reach Δtg, while points with significant reactive processes take

miniscule timesteps in order to time-resolve the fastest reactive processes. Although

such an approach is efficient as the non-reactive regions do not necessarily march in

lock-step with explosive regions, it results in a highly uneven distribution of compu-

tational load as a function of space. Any domain partitioner that ignores this uneven

load distribution often incurs a stiff load imbalance penalty.

Since the reactive processes are approximately decoupled in space (over Δtg) and

there are no spatial terms in the reaction operator, a conceptually simple solution

exists. The grid points are distributed arbitrarily across all processors as long as the

loads are equalized. Such a solution has no spatial couplings, and hence does not

consider communication costs or preserve the connections between a point and its

neighbors. As a result, this approach incurs significant communication costs as the

data is redistributed at every global timestep. In combusting flows, where one strives

to capture subtle effects of the simulation by preserving as many chemical species

as possible (leading to 50-100 variables per grid point), this communication cost can

be prohibitive. This motivates the requirement to calculate the reactive processes in

situ, and achieve load balance by a prudent domain decomposition that incorporates

the uneven nature of load distribution.

5.2.2 Reactive-Diffusion (R-D) Application

Combustion applications modeling the properties of hydrocarbon flames [107] are

highly complex. The physical processes in such simulations interact in a strongly

non-linear fashion and accurate solutions can only be obtained using highly de-

tailed models that include complex chemistry and transport processes [81]. The

transport (or structured) processes have uniform computational workloads while the

chemical/reactive (or pointwise) processes require different amounts of computation
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(i.e., “weights”) at each point.

Figure 5.1: 2-D snapshot of R-D kernel’s temperature field with 3 hot-spots at time
t=50.

Figure 5.2: 2-D snapshot of R-D kernel’s temperature field with 3 hot-spots at time
t=100.

A model problem approximating the ignition of a CH4-Air mixture is used as

an illustrative example to evaluate the Dispatch partitioning strategy presented in

this chapter, and is referred to as the reactive-diffusion (R-D) application or kernel.

Figs. 5.1, 5.2, and 5.3 are 2-D snapshots of the R-D kernel and illustrate the applica-

tion dynamics during the ignition of a CH4-Air mixture in a non-uniform temperature

field with 3 “hot-spots” at 50, 100 and 150 timesteps, respectively. The application

exhibits high dynamism, space-time heterogeneity and varying computational work-

loads, and is representative of the class of simulations targeted by this research. Figure
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Figure 5.3: 2-D snapshot of R-D kernel’s temperature field with 3 hot-spots at time
t=150.

5.4 shows a sample distribution of the heterogeneous computational workloads asso-

ciated with pointwise processes for the R-D kernel on a 128 × 128 structured grid.

The reactive processes near the flame fronts have high computational requirements

that correspond to large values of workloads (over 100) at the 3 hot-spots, while the

diffusive processes have uniform loads with a value of 1, as illustrated in Figure 5.4.

Figure 5.4: Distribution of heterogeneous loads for R-D kernel on a 128 × 128 struc-
tured grid.

Briefly, the R-D kernel solves an equation of the form

∂Φ

∂t
= ∇2Φ + R(Φ) (5.1)

where Φ is a vector consisting of the temperature and the mass fraction of 26 chemical

species at a given point in space. R(Φ) models the production of heat and chemical
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species by 92 reversible chemical reactions [56]. ∇2 is approximated using second-

order central differences. Eqn. 5.1 is evolved in the following manner:

1. Over a timestep of Δtg/2, we advance Φn (solution at timestep n) using Φt =

∇2Φ to Φ′ with Heun’s method (second order Runge-Kutta scheme). For this

step, the integration is done either on one level for a unigrid implementation

or in a recursive manner for all levels in case of SAMR, so that the CFL con-

dition is preserved on each patch of the SAMR hierarchy for the Berger-Oliger

formulation [10].

2. Using Φ′ as initial condition, we solve Φt = R(Φ) over Δtg to get Φ′′. Since

there are no spatial coupling terms, this system is solved on a point-by-point

basis. At certain points, especially near flame fronts and ignition points, this

ODE system exhibits very fast kinetics and has to be advanced using small

timesteps (for accuracy reasons). This is done using BDF3 from the CVODE

[36] package. This step does not require recursive integration in the case of

SAMR, and accounts for the heterogeneity in the application workloads.

3. Using Φ′′ as initial condition, we solve Φt = ∇2Φ over Δtg/2 to get Φn+1,

exactly as in Step 1.

5.3 Related Work on Partitioning Heterogeneous Computa-

tional Workloads

In [81], Moon et al performed experiments to evaluate the performance of simulations

of hydrocarbon flames using Multiblock PARTI (structured) and CHAOS (unstruc-

tured) runtime support libraries. The physical processes are classified as structured

(e.g., heat conduction) or pointwise (e.g., radiation, chemistry, etc.) processes. As

there is no spatial coupling, the block-partitioned data is redistributed across pro-

cessors to balance the workload of pointwise processes, and is then moved back into
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the original locations for the next structured process. This results in a substantial

amount of communication as the application redistributes data at every timestep.

Heuristic schemes partly alleviate redistribution costs by generating a load balancing

plan for each of the participating processors and reducing the communication volume

during workload distribution. However, the Dispatch scheme, implemented as part of

this research and presented in Chapter 5, accounts for heterogeneous workload in the

current distribution itself and performs in-situ global partitioning, without requiring

additional data migration for load balancing purposes. Moreover, the use of dis-

tributed grid functions enables parallel generation of load schedules for participating

processors.

Adaptive MPI (AMPI) [58] extends MPI to support processor virtualization and

provides dynamic measurement-based load balancing strategies for automatic load

redistribution, based on object/thread migration in CHARM++. AMPI is evaluated

using an artificial benchmark involving non-uniform 2-D stencil calculations, where

the load on 1/16 of the processors is much heavier than on the other 15/16 proces-

sors. Unlike AMPI, Dispatch addresses adaptive meshing, domain decomposition,

and runtime support for scientific applications with computational heterogeneity.

5.4 Dynamic Partitioning for Applications with Computa-

tional Heterogeneity

This section presents Dispatch, a dynamic structured partitioning strategy for sci-

entific applications with pointwise varying workloads. Dispatch has been integrated

with the GrACE [94] computational framework and enables parallel uniform and

adaptive simulations. Dispatch augments the structured grid formulations outlined

in Section 2.3 by combining an inverse space-filling curve based partitioner (ISP) [94]

with in-situ weighted load balancing using global thresholds. The reactive-diffusion

(R-D) kernel, presented in Section 5.2.2, is used to illustrate Dispatch. The parallel
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Figure 5.5: R-D kernel execution illustrates the Dispatch scheme for heterogeneous
workloads.

execution of the R-D application is shown in Figure 5.5 and described in the next

section.

5.4.1 Parallel R-D Application Execution

The execution of the R-D application consists of three major phases: (i) initialization,

(ii) computation and synchronization at each timestep, and (iii) periodic load balanc-

ing followed by redistribution. The structured grid domain/hierarchy is constructed

at the start of the simulation based on input parameters. The initial partitioning is a

simple geometric decomposition of the application domain among the available pro-

cessors. The application grid function (U) and workload grid function (W ) are then

initialized. Grid functions are distributed entities that represent application variables

denoting physical entities (e.g., pressure, temperature, density, etc.), and use the grid
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hierarchy as a template to define their structure and distribution.

The computation component consists of two diffusion integration methods over an

application timestep Δt. These two integration methods are recursively invoked for

each level of the (single level or adaptive) grid hierarchy and are separated by a non-

recursive chemistry integration routine over 2 ∗ Δt for all levels. This is followed by

boundary updates and timestepping. During the redistribution phase, computational

weights in W corresponding to existing grid points are first updated. In case of

SAMR, a truncation error estimate is used to identify regions requiring additional

resolution, which are then clustered and refined. As described in Section 5.4.2, a

global grid list mapping the entire application domain is created and the Dispatch

strategy is invoked to dynamically partition the grid. Since unigrid can be viewed as

a special case of SAMR with only one level, the description of Dispatch focuses on

the general SAMR case.

5.4.2 Parallel Workload Computation

Figure 5.6: The structured grid domain is mapped to a global grid list for load
balancing in Dispatch.

As depicted in Figure 5.6, traditional inverse space-filling curve based partitioners
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(ISP) [94] preserve application locality by indexing the grid blocks that map the

structured grid domain in the order of traversal of the Hilbert space-filling curve

(SFC) [109] to form a one-dimensional global grid list. The global grid list consists

of simple or composite grid blocks representing portions of the application domain.

Simple grid blocks are strictly base grid regions while composite grid blocks contain

regions that span multiple levels of refinement in the grid hierarchy. Decomposing a

grid block entails a geometrical bisection of the block along all axes as long as the

minimum block dimension (granularity) constraints are satisfied. A grid block that

attains minimum block dimension is called a “grain”. As an example, a 2-D grid

block, if divisible, will decompose into 4 smaller blocks. Similarly, a 64 × 64 size

grid block, when recursively decomposed, will result in 256 grains for a minimum

application granularity of 4.

Each simple/composite grid block in the global grid list is assigned a cost cor-

responding to its computational load, which is determined by the load at the grid

points contained in the block at each level and the level of the block in the SAMR

grid hierarchy. Since the load per grid point is uniform for homogeneous simulations,

the total computational work is proportional to the number of grid points and is rel-

atively easy to calculate. However, in the heterogeneous case such as the R-D kernel,

the load of a grid block at a level is obtained as the sum of the computational weights

in the workload grid function (W ) corresponding to the grid points in the grid block

at that level.

Since the computational weights for existing grid blocks in W as well as the

global grid list may have been updated during regridding, the Dispatch strategy first

compares the current and previous global grid lists to identify existing grid blocks and

new refinement regions. Each processor then operates on its local grid list (portions of

the global grid list owned by it) in parallel, and constructs a local work list comprised

of grains obtained by disassembling the simple/composite grid blocks in the local

grid list. This decomposition of the local grid list is performed to speed up load
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calculation using the “sum-of-parts” approach (overall load of the grid block is simply

the sum of the loads of all its grains) and to fine-tune the load balancing algorithm

(decomposing a grid block during partitioning does not involve recalculation of loads

of the constituent parts). The owner computes the updated workload for each grain in

the local work list from its corresponding local W , and determines the workloads for

existing grid blocks in the list. When a grain contains a newly refined level, the load

at each grid point for that level is interpolated as the average workload of its parent

(the immediate coarser level). Each processor stores the loads for all grains in its

local work list and computes the total processor workload, in parallel. All processors

then collectively construct a global work distribution list by concatenating individual

local work lists.

5.4.3 Global Load Balancing

The global work threshold is locally computed at each processor from the global

work distribution list. Dispatch performs domain decomposition by appropriately

partitioning the global grid list based on the global work threshold so that the total

computational load on each processor is approximately balanced. Processor allocation

is based on a linear assignment of loads in the order of occurrence in the global grid list.

This is done to preserve application locality which, in turn, reduces communication

and data migration overheads during redistribution. If the workload for a grid block in

the global grid list exceeds the processor threshold, the block is decomposed (possibly

recursively) and replaced by smaller grid blocks whose loads are already known. If

the load is still high, the block is assigned to the next available processor and the

processor work thresholds are updated. The load imbalance generated during this

phase is due to application granularity and aspect ratio constraints for each grid

block that need to be satisfied.

The application (U) and workload (W ) grid functions are reconstructed after

the dynamic partitioning phase based on the new distribution. This step involves
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data migration, communication, and synchronization among participating processors,

which updates the structure of the grid hierarchy. The new distribution is used in

subsequent computation stages until the next regridding stage.

5.5 Experimental Evaluation
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Figure 5.7: Execution time for 200 timesteps of a simulation on a 256× 256 uniform
grid plotted as a function of number of executing processors. All times are in seconds.

The experimental evaluation of the Dispatch strategy is performed using unigrid

and SAMR implementations of the 2-D reactive-diffusion (R-D) kernel. The evalua-

tion is performed on the IBM SP4 “DataStar” [39] at the San Diego Supercomputer

Center (SDSC). Datastar is SDSC’s largest IBM terascale machine that is especially

suited for data intensive computations, and has 272 (8-way) P655+ compute nodes

with 16-32 GB of memory. The experiments consist of comparing the performance

of the Dispatch scheme and the default GrACE partitioner (Homogeneous) by mea-

suring overall application execution time, load imbalance, synchronization time, and

redistribution overheads. The Homogeneous strategy assumes that all grid points

have the same workload requirements, and hence does not consider computational

heterogeneity during load balancing.
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5.5.1 Unigrid Evaluation
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Figure 5.8: Comparison of compute (μcomp) and synchronization (μsync) times av-
eraged across all processors. Error bars (dark: Dispatch; light: Homogeneous) are
standard deviations of the compute times. All times are in seconds.

The unigrid (1-level) evaluation for the R-D application is performed using Homo-

geneous and Dispatch strategies on 8-128 processors on DataStar using 2-D applica-

tion base grids with resolutions of 256×256 and 512×512. The application executes

for 200 iterations, with all other application-specific parameters kept unchanged. Fig-

ure 5.7 plots the total execution time Texec for Homogeneous and Dispatch schemes.

The Dispatch scheme improves overall application execution time by 11.23% for 16

processors up to 46.34% for 64 processors. To further analyze load distribution and

application runtime behavior, Figure 5.8 plots the average (across all processors) com-

pute (μcomp) and synchronization (μsync) times for 8-128 processor runs. The standard

deviation σcomp in compute time is plotted as error bars. The average compute times

are roughly similar for both strategies while the Dispatch scheme achieves smaller av-

erage synchronization times than the Homogeneous scheme. Dispatch considers the

weights of pointwise processes while performing load balancing and achieves a con-

sistently smaller σcomp. This leads to reduced synchronization times (since processors

finish computation closer together in time) and ultimately improved execution times,
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as compared to the Homogeneous strategy.
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Figure 5.9: Execution time for 200 timesteps of a simulation on a 512× 512 uniform
grid plotted as a function of number of executing processors. All times are in seconds.

The Homogeneous scheme does not repartition the base grid beyond the initial

decomposition since it does not consider computational heterogeneity. Using the Dis-

patch strategy does lead to increased partitioning overheads that include the costs to

extract the existing pointwise weights and interpolate new ones, compute the weights

of local grid blocks for each processor, determine the global workload, and perform an

appropriate domain decomposition based on the heterogeneous loads. However, the

cumulative partitioning overheads are of O(10) seconds, which is an order of magni-

tude smaller than the application execution time. Hence, the partitioning overheads

for Dispatch are considered negligible compared to the performance improvement in

the uniform grid case. Figures 5.9 and 5.10 plot the same metrics for a 512×512 uni-

form grid run, and similar performance improvement is observed as for the 256× 256

uniform grid case. Dispatch improves application execution times by about 15-50%

and provides better load balance. The partitioning overheads are, once again, neg-

ligible compared to the overall performance gain. Note that application execution

times for 512× 512 uniform grid in Figure 5.9 are approximately 4 times larger than
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Figure 5.10: Comparison of compute (μcomp) and synchronization (μsync) times av-
eraged across all processors. Error bars (dark: Dispatch; light: Homogeneous) are
standard deviations of the compute times. All times are in seconds.

the corresponding times for the 256 × 256 uniform grid, since the domain has been

scaled by a factor of 4. Increasing the resolution on uniform grids to obtain greater

accuracy can be expensive, and hence SAMR methods are suitable for this class of

applications with localized features.

5.5.2 Evaluation of Dispatch SAMR Formulations

2-level SAMR: The Dispatch strategy is evaluated using a 2-level SAMR imple-

mentation of the R-D kernel on 8-128 processors of DataStar with an application

base grid of resolution 512×512 and factor 2 space-time refinement. The application

uses a timestep (Δt) value of 2.1875e-9 and executes for 200 iterations, performing

10 regrids. All other application-specific and refinement-specific parameters are kept

constant. The minimum block size for this set of experiments is set to 4. Figures

5.11 and 5.12 respectively plot the execution time Texec and the compute μcomp and

synchronization times μsync averaged across processors. Error bars in Figure 5.12 are

the standard deviation of the compute times across processors. The Dispatch strategy
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improves application execution time (upto 32 processors) and achieves a more uni-

form load balance, though the overall improvement obtained using Dispatch reduces

as the computation-to-communication ratio (roughly, the ratio of average compute to

average synchronization times) for the R-D application decreases. Since the R-D ap-

plication has localized spiked loads, Dispatch generates more patches to yield a better

load balance. If there is not enough computation per grid block on each processor

and the application is communication-dominated, the Dispatch strategy can, in fact,

perform worse than the Homogeneous scheme. This is seen in the case of 64 and 128

processors for granularity of 4, due to large number of grid blocks created.
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Figure 5.11: R-D application times for a 2-level SAMR hierarchy with a 512 × 512
base grid executing for 200 timesteps. All times are in seconds. Dispatch scheme
shows a improvement in execution times, though the improvement reduces as the
computation-to-communication ratio decreases.

However, if an appropriate granularity is chosen so that the domain does not con-

tain a large number of tiny blocks, the Dispatch strategy can be expected to perform

better. Note that this performance variation is a direct result of the application/-

workload characteristics and the “computation-communication trade-off”, and not a

restriction for the Dispatch strategy. Furthermore, Table 5.1 shows that Dispatch

gives better runtime performance as compared to Homogeneous for the 2-level SAMR
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evaluation on 64 and 128 processors with a base grid resolution of 512 × 512, if the

granularity is set to 32 or 16 instead of 4.
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Figure 5.12: Average R-D compute and synchronization times for 512 × 512 2-level
SAMR simulation. Error bars (dark: Dispatch; light: Homogeneous) are standard
deviations of compute times. All times are in seconds.

Table 5.1: 2-level SAMR evaluation of Dispatch and Homogeneous schemes for R-D
application with varying granularity on 64 and 128 processors of DataStar.

Number of Grain Homogeneous Dispatch
processors size Time (sec) Time (sec)

64 4 1155.53 1167.35
32 1742.11 1436.36

128 4 691.13 814.32
16 765.63 664.15

3-level SAMR: The Dispatch strategy is evaluated for the R-D application on 16

and 64 processors of DataStar using an application base grid of resolution 256× 256

and a 3-level SAMR hierarchy with factor 2 space-time refinements. The application

uses a timestep (Δt) value of 8.75e-9 and executes for 200 iterations, performing 10

regrids. All other application-specific and refinement-specific parameters are kept

constant. The minimum block size for this set of experiments is set to 4 for the

16 processor run and 16 for the 64 processor run. The application execution times
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are listed in Table 5.2. The improvements are lower for the 64 processor run due

to the higher synchronization costs. However, the 16 processor evaluation has more

computational load, and its performance is improved by the Dispatch strategy.

Table 5.2: Dispatch 3-level SAMR evaluation for R-D application with 256×256 base
grid on 16 and 64 processors on DataStar.

Number of Grain Homogeneous Dispatch Percentage
processors size Time (sec) Time (sec) Improvement

16 4 1324.57 1120.1 15.44
64 16 678.55 668 1.55

Benefits of SAMR: To additionally evaluate the benefits of using SAMR for

the R-D kernel, we present another set of experiments comparing the performance

of Dispatch and Homogeneous schemes for three configurations that have identical

finest-level resolution, but different coarse/base grid size and number of refinement

levels. Each configuration has 512 × 512 resolution at the finest level of the SAMR

grid hierarchy and executes for 400 finest-level timesteps. The first configuration

(Unigrid) is a simple uniform grid case with 512 × 512 grid resolution executing for

400 iterations. The second configuration (2-Level) is a SAMR hierarchy comprising 2

levels with a coarse grid of size 256× 256 and executes for 200 coarse-level iterations,

which correspond to 400 steps at the finest level (factor 2 space-time refinement).

The final configuration (3-Level) uses a 128 × 128 base grid for a 3-level SAMR

hierarchy and executes for 100 coarse-level iterations, corresponding to 400 steps at

the finest level. These experiments are performed on 32 processors of DataStar and

the application granularity is set to 4. All other application-specific and refinement-

specific parameters are kept constant.

The R-D application execution times as well as average and standard deviation

values for computation, synchronization, and regridding times for various unigrid and

SAMR configurations are listed in Table 5.3. Table 5.3 also presents the coefficients
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Table 5.3: Evaluation of Dispatch and Homogeneous schemes on 32 processors of
DataStar for different R-D application base grids and refinement levels. All config-
urations have 512 × 512 finest-level resolution and execute for 400 finest-level steps.
H :Homogeneous, D :Dispatch.

Application Unigrid 2-Level SAMR 3-Level SAMR
Parameters H D H D H D

Overall execution 3546.04 2049.17 607.73 566.83 95.31 77.77
time (sec)

Average compute 820.32 880.65 285.73 300.35 36.22 39.27
time (sec)
Standard deviation 956.21 252.26 163.17 45.05 19.12 5.14
compute time (sec)
Compute coefficient 1.17 0.29 0.57 0.15 0.53 0.13
of variation

Average sync 2712.1 1155.89 314.42 254.82 56.99 35.7
time (sec)
Standard deviation 955.61 248.36 163.58 45.11 18.98 5.18
sync time (sec)
Sync coefficient 0.35 0.21 0.52 0.18 0.33 0.15
of variation

Average regrid 0 7.42 6.27 10.69 1.81 2.61
time (sec)
Standard deviation 0 4.24 0.28 0.23 0.41 0.14
regrid time (sec)
Regrid coefficient - 0.57 0.04 0.02 0.23 0.05
of variation

of variation1 (CV) for computation, synchronization and regridding times. The Dis-

patch strategy outperforms the Homogeneous scheme in all cases, with significant

improvements in standard deviation for compute and sync times. The average com-

pute times for Dispatch are slightly higher than for Homogeneous due to higher but

well-balanced individual loads for each processor, resulting in a higher overall average.

However, the standard deviation and CV values for compute times truly reflect the

performance gain due to more equitable load distribution. Similar improvements are

observed for synchronization times as well. Moreover, the average regrid times for

1The coefficient of variation is a dimensionless number that is defined as the ratio of the standard
deviation to the mean for a given metric.
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Dispatch are only slightly higher than for the Homogeneous scheme. Consequently,

the overheads for the Dispatch strategy are negligible compared to the overall per-

formance improvement. Also, the R-D scheme is amenable for SAMR implementa-

tions as can be observed by a factor of 6 improvement in execution times for SAMR

configurations with successively higher levels of refinement. However, deep SAMR

hierarchies can lead to unfavorable computation-to-communication ratios resulting in

performance degradation. As a result, appropriate trade-offs between computation

and synchronization components are necessary for efficient SAMR execution.
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Chapter 6

Impact of Heterogeneity in Parallel Scientific

Components

6.1 Overview

Component-based technologies for scientific simulations provide interoperability and

flexibility, and can ideally be exploited to significantly improve application perfor-

mance, especially in cases where the algorithmic and component behaviors as well

as overall application execution are not known a priori. However, the inherent dy-

namism coupled with the runtime heterogeneity in scientific simulations lead to sig-

nificant challenges in ensuring algorithmic efficiency, load balancing, and runtime

performance management [30]. In such cases, performing runtime adaptation is non-

trivial and requires an understanding of the requirements of a particular application

state as well as a calibration of the impact of the adaptation on overall performance.

In this chapter, we use runtime calibration to analyze the impact of computational

heterogeneity on application performance, and investigate load balancing trade-offs

when applied to different orchestrations of component-based scientific simulations.

The analysis is based on a 2-D methane-air reaction-diffusion model solved using an

operator-split method, which employs an iterative implicit time-integration scheme

for the (stiff) reactive terms and creates a variable computational load. A domain-

decomposition component for this simulation may be either based on the application

structure such as domain geometry, or on the application characteristics such as

load heterogeneity. The overarching goal of this research is to enable performance-

enhancing runtime adaptations of the load balancing component based on the level of
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heterogeneity and application behavior. The characterization of computational het-

erogeneity and its performance implications, presented in this chapter, are important

steps towards achieving this objective.

6.2 Component-Based Scientific Computing

High-performance scientific simulations often leverage the combined expertise of mul-

tidisciplinary research teams comprising scientists, engineers, mathematicians, and

computer scientists. However, code incompatibilities and lack of standardization

among contributing teams lead to significant challenges in managing the complex-

ity and performance of such simulation codes. As a result, component-based software

engineering [12] has been widely adopted as the paradigm of choice in designing and

managing large-scale scientific simulations. One such approach is the Common Com-

ponent Architecture (CCA) [12] that offers greater flexibility, interoperability, and

reuse in comparison to large, unwieldy monolithic codes.

The CCA paradigm envisages the creation of “components” [24], which generally

embody a particular scientific model or a numerical, data-decomposition or I/O func-

tionality. These components are designed with standard, clearly-defined interfaces

that help to protect them from external changes in the software environment. Ap-

plications can be composed or assembled at runtime from components selected from

a component pool. These selected components are peers and can interact with one

another only through well-defined interfaces. Therefore, when an application needs to

be modified, a single component can be modified (or exchanged for a similar compo-

nent), without affecting the other components making up the application. Moreover,

various compositions of the constituent components can result in different runtime

scenarios for scientific applications.
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6.3 The Reaction-Diffusion System

Gaseous, combusting flows, in the absence of significant sooting, consist of convection,

diffusion and reactions involving a fuel, an oxidizer and a number of intermediate

radicals. They are modeled by laws governing the conservation of mass, momentum,

energy and the conservation of each of the radicals [84]. Transport processes refer

to processes (typically, convection and diffusion) that transport various species (fuel,

oxidizer or intermediate radicals) around in the domain of interest. The combustion

model presented in this paper does not consider convection, and hence the transport

processes are purely diffusive. On the other hand, reaction processes are processes

that are governed by chemical reactions occuring in situ, i.e., based entirely on the

state at a point. Reaction processes at two adjoining points interact with each other

via transport processes.

In this study, we approximate the true behavior (for performance purposes) of this

highly non-linear system by a set of reaction-diffusion partial differential equations

(PDEs). When solved with realistic chemical mechanisms, this PDE system is plagued

by a wide spectrum of timescales, ranging from nanoseconds for reactive processes

to tens of milliseconds for transport processes. A common technique to address this

is operator-splitting [67] that advances chemistry implicitly, while transport may be

dealt with either explicitly or implicitly. In either case, the integrators for chemistry

and transport are very different. The implicit chemistry time-advancement leads to

higher loads at grid points in reactive regions. A non-linear system is iteratively

solved at each grid point; reactive regions with fast processes converge slowly as they

have to be time-resolved. This leads to a spatially heterogeneous computational load.

We consider the case of an igniting methane-air mixture and use the CFRFS [72, 73]

Toolkit, which is a collection of CCA components, to simulate the problem. Two

different chemical mechanisms are used, as described later in Section 6.5. Briefly, the
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reaction-diffusion system is of the form

∂φi

∂t
=

∇Pi · ∇φi

Qi
+ R(φj) (6.1)

φi, i = 1 . . .Nspecies + 1 at a grid point is the temperature or the mass fraction

of Nspecies chemical species at a given point in space. R(φj) models the production

of heat and chemical species by reversible chemical reactions. Spatial derivatives

are approximated using central finite differences. The case i = 1 corresponds to

the temperature equation with Pi = ρCpα and Qi = ρCp, where ρ is the mixture

density, Cp is the specific heat at constant pressure of the mixture and α is the

thermal diffusivity. For i = 2 . . .Nspecies + 1, Pi = ρDi and Qi = ρ, where Di is

the diffusivity of each of the Nspecies species. α and Di are obtained from a mixture-

averaged formulation. ρ, α, Di and Cp couple the temperature and all the species

together. Below, we will refer to φi, i = 1 . . .Nspecies + 1 as Φ. Equation 6.1 can be

rewritten as

∂Φ

∂t
= T (Φ) + R(Φ) (6.2)

where T (Φ) contains all the spatial derivatives. The system is time-evolved in the

following manner:

1. Over a timestep of Δtg/2, we advance Φn (solution at timestep n) using Φt =

T (Φ) to Φ′ with a second-order Runge-Kutta-Chebyshev scheme [72]. The gra-

dients are computed using a central-difference scheme.

2. Using Φ′ as initial condition, we solve Φt = R(Φ) over Δtg to Φ′′. Since there

are no spatial coupling terms, this system is solved on a point-by-point basis.

At certain points, especially near flame fronts and ignition points, this ODE

system exhibits very fast kinetics and has to be advanced using small timesteps

(for accuracy reasons). This is done using BDF3 from the CVODE [36] package.

This step accounts for the heterogeneity of workloads.



89

3. Using Φ′′ as initial condition, we solve Φt = T (Φ) over Δtg/2 to get Φn+1. This

is done exactly as in Step 1.

Figure 6.1: Illustrative snapshot of a 2-D methane-air combustion simulation with 3
hot-spots [29].

This scheme is also referred to as diffusion-reaction-diffusion (D-R-D) splitting.

A R-D-R splitting is also possible and changes the computational load. The problem

is solved in a square domain using a uniform (square) mesh. Zero-gradient boundary

conditions (adiabatic system) are enforced. Three high-temperature Gaussian kernels

are initialized in a stoichiometric methane-air mixture and serve as the ignition sites,

as observed in Figure 6.1.Ignition fronts propagate out into the unburnt gas. Due to

the wide spectrum of the timescales of the active (chemical) processes in the ignition

front, the iterative solver embedded in the implicit time-integration scheme (Step 1

and 3 above) takes long to converge, as it resolves all the timescales. In contrast,

the integration in the burnt and unburnt region is computationally light. Further,

the computational load of the diffusion step (Step 1 above) is usually lighter than

the reaction step. However, it involves ghost cell updates and incurs communication

costs. Such an uneven loading of the domain requires a non-uniform decomposition

across processors. Furthermore, the domain has to be redistributed as the ignition

fronts propagate.
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6.4 Load Balancing for Parallel Reaction-Diffusion Simula-

tions

Parallel simulations of the reaction-diffusion model exhibit conflicting load balanc-

ing requirements for reactive and transport processes. The degree of heterogeneity

impacts the performance of the domain decomposition strategy and the overall ex-

ecution. In this section, we discuss load balancing schemes for structured meshes

that address two extremes. Blocked distribution is a homogeneous scheme based on

the domain geometry, whereas the Dispatch strategy addresses the computational

heterogeneity. Note that these partitioning strategies are two different domain de-

composition algorithms that have been integrated into the GrACE [94] infrastructure,

which serves as the mesh and data management component in component-based im-

plementations of high-performance scientific simulations.

6.4.1 Blocked Distribution

The Blocked [94] distribution strategy is based on application geometry and provides

a spatially uniform decomposition along each axis of the structured domain. This

widely-used scheme is relatively simple, has low overheads, and results in roughly the

same number of grid points per processor when the domain can be favorably parti-

tioned. This approach does not consider variations in computational heterogeneity

and assumes equal load at each grid point. As a result, uniform resolution (unigrid)

simulations do not perform domain redistribution for this scheme, since the domain

structure remains unchanged.

6.4.2 Dispatch Strategy

Dispatch [29] combines inverse space-filling curve based partitioning (ISP) [94] with

pointwise varying, in-situ global load balancing to address the dynamic partitioning

and heterogeneous computational requirements of structured uniform or adaptive
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scientific applications.

The decomposition of the structured grid hierarchy is performed using space-

filling curves (SFCs) [109]. SFCs are locality preserving recursive mappings from

N -dimensional space to 1-dimensional space. Dispatch uses SFCs to map the en-

tire application domain into a global grid list comprising grid blocks (representing

sub-domains that keep all contained refinement levels), as illustrated in Figure 5.6.

Moreover, Dispatch maintains the loads associated with pointwise reactive processes,

which represent computational heterogeneity, using a workload grid function that is

distributed among processors. Since Dispatch addresses computational heterogeneity

that can change as the simulation progresses over time, this strategy is invoked at

periodic intervals during application execution to perform redistribution and data

remapping among processors.

During redistribution, the Dispatch scheme analyzes previous and current de-

compositions to determine the updated loads for existing grid blocks (representing

portions of the application domain) and to generate interpolated workloads for new

refinement regions in case of adaptive meshes. Each processor simultaneously com-

putes and stores the loads for all grid blocks in its local work list and determines the

cumulative workload for its local workload grid function. All processors construct a

global work distribution list by concatenating individual local work lists and compute

the global work threshold. The partitioning algorithm then decomposes the global

grid list based on the threshold so that the total workload on each processor is nearly

balanced. The load imbalance generated during this phase is due to granularity (min-

imum grid block dimension) and aspect ratio constraints that need to be satisfied.

Dispatch balances the pointwise varying computational loads across processors and

can result in complicated partitions with unequal number of grid points.



92

6.4.3 Runtime Calibration

To analyze the impact of computational heterogeneity on overall performance, we aug-

ment the application reaction component with sensors and timers that enable runtime

calibration. The sensors profile the reaction characteristics and express heterogeneity

in terms of the number of iterative solves performed at each pointwise process. The

timers instrument the chemistry adapter (comprising the reaction compute section) at

a fine level and measure the time spent in reaction time-advancement, implicit solves,

and other data operations. During redistribution, the calibration component gath-

ers the cumulative reaction computation times for all processors and computes the

average, standard deviation, and coefficient of variation (defined as a dimensionless

ratio of the standard deviation to the average) metrics for the heterogeneous loads.

This coefficient of variation can serve as a useful indicator to analyze the impact

of computational heterogeneity on runtime performance, especially in non-intuitive

cases.

Note that the runtime calibration for component-based combustion simulations

presented in this research are performed by modifying the existing interfaces of var-

ious components. Though components should ideally be enhanced with specialized

interfaces for obtaining application-specific performance characteristics, these are not

available in current implementations, which require significant software engineering

efforts to provide these calibration interfaces. For our proof-of-concept study, we fo-

cus on using the runtime calibration to analyze the impact of heterogeneity on load

balancing and performance of parallel scientific simulations.

6.5 Experimental Evaluation

The experimental evaluation is performed using structured unigrid implementations

of the 2-D methane-air reaction-diffusion model. Two different orchestrations of this

combustion application can be enabled by using either a reduced chemical mechanism
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(R-D kernel) or the more detailed/accurate but computationally heavy GRI 1.2 [48]

mechanism (CFRFS kernel). The variation in execution times for the two composi-

tions can be attributed to the different computational requirements of the underlying

chemical mechanisms.

Both models are evaluated on 64 processors of “Jacquard” [85] at the National

Energy Research Scientific Computing Center (NERSC) using Blocked and Dispatch

load balancing strategies, presented in Section 6.4. Jacquard is a 712-CPU Opteron

cluster, arranged as 356 dual-processor nodes, running a Linux operating system.

Each processor runs at a clock speed of 2.2GHz and has a theoretical peak performance

of 4.4 GFlop/s. Processors on each node share 6GB of memory. The nodes are

interconnected with a high-speed InfiniBand network.

The experiments consist of analyzing the computational heterogeneity and com-

paring the performance of the two partitioners by measuring overall application ex-

ecution time, spans (defined as the difference between the maximum and minimum

values) for reaction and diffusion compute time and synchronization time, and the

redistribution overheads. Note that the synchronization time metric in this evalua-

tion is the total time required to complete the synchronization operation and includes

processor “wait” time as well as the time taken to perform ghost cell updates. Con-

sequently, higher load imbalances among processors in the computation section can

result in larger synchronization spans.

6.5.1 Methane-Air Model using a Reduced Chemical Mech-

anism

The experimental evaluation of the R-D kernel is performed on a 2-D uniform mesh

with 512 × 512 resolution using a diffusion-reaction-diffusion (D-R-D) splitting strat-

egy. A second-order central difference scheme is used to evaluate the spatial deriva-

tives on the uniform mesh. A reduced methane-air mechanism with 25 species and 92
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reversible reactions is used in this experiment. The application granularity is set to

4 and the simulation executes for 200 timesteps, with other application parameters

kept unchanged. Due to splitting, a spatially variable load-distribution is achieved, as

shown in Figure 6.2. The reactive processes near the flame fronts have high compu-

tational requirements that correspond to large values of workloads at the 3 hot-spots

(ranging around 100-125), while in the bulk of the domain, they have a value near 1.

Figure 6.2: Computational load heterogeneity at timestep 78 for the R-D simulation
with 512 × 512 resolution.

Figure 6.3 illustrates the application execution times for the R-D kernel obtained

with Blocked and Dispatch load balancing strategies. The average redistribution time

as well as the spans for reaction and diffusion compute times and application synchro-

nization (sync) times are also shown in Figure 6.3. Table 6.1 presents further details

on the performance metrics and the heterogeneity analysis for the R-D simulation,

viz. the average, standard deviation and coefficient of variation for reaction computa-

tion times (μR
comp, σR

comp, CV R
comp), diffusion computation times (μD

comp, σD
comp, CV D

comp),

and synchronization times (μsync, σsync, CVsync). Even though the R-D kernel uses

a reduced chemical mechanism, the simulation exhibits large variation in computa-

tional heterogeneity, as observed in Figure 6.2, and deduced from the high values

of reaction span and CV R
comp. The calibration component reports that the pointwise

reactive loads vary by an order of nearly 100-125, and the coefficient of variation for

the reaction component exceeds 100%.
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Figure 6.3: Performance evaluation of Blocked and Dispatch load balancing strategies
for the R-D kernel on 64 processors.

In this scenario, the Blocked scheme performs decomposition based on domain

geometry that results in very high imbalance in the reaction component. This high

imbalance is also reflected in the large sync span, since lightly-loaded processors have

to wait during the synchronization stage for the overloaded processors to complete

their local computations. However, the diffusion component is well-balanced by the

Blocked strategy since the diffusion phenomenon is based on the number of grid points

rather than the load at each point. Also, there are no redistribution costs since the

domain structure remains unchanged.

The R-D performance of Dispatch is antipodal to that of the Blocked strategy.

Dispatch considers the variation in computational heterogeneity and improves over-

all R-D performance by about 12%, while maintaining low redistribution overheads

(1.26% of total execution time). While Dispatch provides better load balance and im-

proved sync times (evident from the low values of CV R
comp and CVsync), the diffusion

compute times suffer due to the non-equitable distribution of grid points. How-

ever, the magnitude and variation in heterogeneity within the reaction component

overshadow the runtime effects of diffusion, and Dispatch provides overall better per-

formance as compared to the Blocked scheme. Therefore, the Dispatch partitioner is

well-suited for load balancing parallel simulations of the R-D methane-air model.
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Table 6.1: Heterogeneity analysis for Blocked and Dispatch schemes applied to differ-
ent models of the 2-D methane-air combustion application on 64 processors.

Runtime R-D kernel CFRFS kernel
Parameters Blocked Dispatch Blocked Dispatch

μR
comp (s) 77.13 81.6 1423.18 1590.02

σR
comp (s) 102.14 28.48 108.19 200.3

CV R
comp 1.327 0.349 0.076 0.126

μD
comp (s) 9.03 9.15 279.42 314.73

σD
comp (s) 0.14 15.64 10.01 40.29

CV D
comp 0.016 1.709 0.036 0.128

μsync (s) 204.42 161.69 13.57 95.94
σsync (s) 102.11 27.77 9.73 31.09
CVsync 0.5 0.172 0.717 0.324

6.5.2 Methane-Air Model using GRI 1.2

Figure 6.4: Performance evaluation of Blocked and Dispatch load balancing strategies
for the CFRFS kernel on 64 processors.

This experiment is conducted on a 2-D uniform mesh with 500× 500 resolution

using the CFRFS [72] Toolkit, a component-based toolkit for simulating reacting

flows. The simulation executes for 20 timesteps, with other application parameters

kept unchanged. We use a reaction-diffusion-reaction (R-D-R) splitting, unlike Sec-

tion 6.5.1, which increases the overall computational load due to the two reaction

steps. The spatial derivatives in the diffusion step are computed using fourth-order
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central differences - this also requires one to keep a broader border of ghost cells

on each processor and, hence, the application granularity is set to 8. The diffusion

coefficients are computed using DRFM [99]. The GRI 1.2 chemical mechanism [48]

is used in this evaluation and consists of 32 species and 177 reversible reactions.

The computational load due to chemistry is estimated to be nearly five times more

than due to diffusion. Intuitively, one may posit that Dispatch should outperform

the Blocked scheme, based on the empirical analysis of the R-D kernel presented in

Section 6.5.1. However, this is not the case, as illustrated in Figure 6.4 that shows

the comparative performance of the two load balancing strategies for the CFRFS

kernel. The Blocked partitioner improves overall application performance by nearly

22% as compared to Dispatch. Dispatch exhibits larger spans for reaction and diffusion

compute times and synchronization times, but maintains low redistribution overheads

(2% of the total execution time).

Table 6.1 presents the runtime performance metrics and the heterogeneity analysis

for the CFRFS simulation. Though the reaction component dominates diffusion in

terms of computation time (μR
comp is roughly five times greater than μD

comp), there

is low variation among the pointwise varying loads apparent from the low values of

CV R
comp (7.6% for Blocked and 12.6% for Dispatch). Similar low values are observed

for CV D
comp as well. The calibration component reports that the pointwise loads differ

by a factor of 2 approximately, which is very low compared to the large variation

observed in the R-D kernel. Moreover, the reaction coefficient of variation computed

by the calibration component ranges around 4-7% during the course of the simulation.

In such simulations with relatively low heterogeneity, Dispatch may well prove to

be an overkill due to more complicated partitions and possibly higher imbalance

that can increase both reaction and diffusion component times, resulting in degraded

performance. This indicates that the evaluated CFRFS kernel may be better suited

to partitioning schemes based on domain geometry, since the simulation has relatively

homogeneous computational characteristics, even though the reaction component is
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quite compute-intensive.

6.5.3 Inferences

In the experimental evaluation presented above, R-D and CFRFS are combustion

kernels that exhibit different execution times due to different complexities of the

chemical mechanisms. Moreover, runtime heterogeneity impacts the performance of

the domain decomposition component for both kernels in different ways. It can,

therefore, be inferred that the overall performance of component-based scientific sim-

ulations is highly dependent on the problem characteristics and the implementation

and particular connectivity of the components in the simulation code, none of which

are known before runtime. This study illustrates these uncertainties that can be in-

troduced by componentization as well as heterogeneity, and motivates the need for

an empirical approach using runtime calibration, heuristics or prediction to ensure a

degree of performance in such poorly characterized environments.

The research presented in this paper motivates the investigation of a hybrid do-

main decomposition approach that can select an appropriate load balancing compo-

nent (from a pool of available load balancers) at runtime, based on calibration of

heterogeneity and performance for a particular orchestration of the component-based

simulation. Such an approach can be augmented with feedback and other control-

theoretic methods to perform runtime adaptations, thereby reducing the uncertainties

due to component behaviors and improving overall simulation performance.
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Chapter 7

Addressing Heterogeneity and Dynamism in

Parallel Reactive Flow Simulations

7.1 Overview

Reactive flows involve the interaction of chemical reactions with fluid flow, and are

seen by a wide spectrum of complex physical phenomena in various scientific domains

such as combustion, oceanography, atmospheric modeling, astrophysics, particle cos-

mology, and bio-engineering. The dynamic, and often unsteady, interactions underly-

ing these physical phenomena span several different time and space scales, resulting

in significant spatiotemporal complexity. Moreover, the reaction mechanisms, key

physical processes, and the strength and type of coupling among processes vary sub-

stantially in these systems. As a result, depending on the numerical algorithms used

to simulate such flows, the intrinsic interactions can lead to significant computational

heterogeneity. This heterogeneity is typically manifested as pointwise varying work-

loads for chemical (reaction) processes and homogeneous computational requirements

for fluid dynamics (diffusion) processes.

Furthermore, the reaction and diffusion components within parallel reactive flow

simulations, such as combustion, exhibit incompatible characteristics at runtime. The

load balance in the reaction phase is dependent on the average computational load

on each processor, which can differ from the domain geometry due to the presence of

pointwise varying workloads. On the other hand, the diffusion component assumes

uniform requirements at each grid point and benefits from an equitable spatial decom-

position of the application domain. While balancing these conflicting requirements is
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necessary for efficient execution of combustion applications, identifying appropriate

trade-offs is non-trivial [123].

This chapter presents a performance calibration and hybrid partitioning approach

for addressing heterogeneity and dynamism in parallel reactive flow simulations on

structured grids. The calibration component quantifies the relative performance of the

reaction and diffusion processes and the heterogeneity manifested at runtime. The

domain decomposition component uses this knowledge to partition the application

domain based on spatial structure or load heterogeneity. Experimental evaluation of

our approach using a 2-D reactive flow combustion application (CFRFS [72] Toolkit)

demonstrates improvement in overall simulation performance.

7.2 Related Work in Runtime Management of Scientific Sim-

ulations

In this section, we summarize related efforts that apply multiobjective optimization

techniques to support scientific simulations.

PLUM (Parallel Load-balancing for adaptive Unstructured Meshes) [87] is a dy-

namic load balancing strategy for adaptive unstructured grid computations that uses

computation, communication, and data-remapping weights to implement accurate

metrics that estimate and compare the computational gain and the redistribution cost

of having a balanced workload after each mesh adaptation step. The new partitioning

and mapping are accepted if the computational gain is larger than the redistribution

cost.

The Unified Repartitioning Algorithm [114] is a parallel adaptive scheme for sci-

entific simulations on unstructured meshes that attempts to compute a repartitioning

while minimizing a cost function combining the edge-cut of the partitioning and the

total amount of data redistribution. The cost functions are computed for variants

of scratch-remap and global diffusion schemes and the one with the lowest cost is
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selected.

A multi-constraint algorithm for contact/impact computations [61] reduces the

communication overheads across the two computation phases while ensuring that the

overall computation remains well-balanced. This strategy models the unstructured

mesh as a graph with two vertex weights (for the contact and impact phases) and

uses a decision tree along with heuristics to compute hyperplanes that partition the

application domain.

In case of simulations on unstructured meshes solved using sparse direct factoriza-

tion methods, an approach is presented in [83] that uses a predictor-corrector approach

to simultaneously balance the number of elements assigned to each processor and the

amount of time required to factor the local subproblem using direct factorization. Dif-

ferent refinement algorithms emphasize various parameters controlling edge cut and

vertex separators, and the strategy reduces the fill-in of the overweight sub-domains

achieving better load balance.

In [103], a general framework for addressing graph partitioning problems is de-

scribed, in which the work per processor is a complex function of the partition. In

this approach, the cost of partition with respect to the desired objective is evaluated

and a global schedule for moving cost between sub-domains is determined. Vertex

transfers and cost updates are performed until a heuristic threshold is reached. The

utility of the framework has been investigated for partitioning to balance overlapped

sub-domains and to minimize the sum of computation and communication times.

The majority of these related efforts have been investigated for unstructured

meshes. In this part of the research, we focus on the challenges in dynamic par-

titioning for adaptive structured grid formulations and target scientific simulations

with computational heterogeneity, specifically the CFRFS application.
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Figure 7.1: The reaction-diffusion cycle within the CFRFS reaction flow application.

7.3 CFRFS Application

The CFRFS combustion application framework accepts user input, initializes the

SAMR grid hierarchy and applies initial conditions (step 1). The main component

of the CFRFS application is the reaction-diffusion (R-D-R) cycle and is illustrated in

Figure 7.1. The CFRFS application uses the operator-split approach for handling the

reaction and diffusion components at different timescales. The R-D-R cycle consists

of two non-recursive reaction/chemistry integration methods (steps 2 and 4) over an

application global timestep Δtg/2 for all levels, separated by a diffusion integration

routine (step 3) over Δtg, which is recursively invoked for each level of the (single

level or adaptive) grid hierarchy, followed by boundary updates and time-stepping.

During the redistribution phase (step 5), computational weights corresponding to

existing grid points in the workload grid function are first updated and weights for

new refinement regions, in case of SAMR, are extrapolated from their parent blocks.

In SAMR formulations, a truncation error estimate is used to identify regions re-

quiring additional resolution, which are then clustered and refined. A global grid list

(consisting of grid blocks that correspond to various sub-domains) mapping the entire
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application domain is created and the domain decomposition strategy (based on either

application geometry or reaction load) is invoked to dynamically partition the grid

hierarchy. The application grid hierarchy is then reconstructed and the application

execution cycles over to the next iteration at the successive timestep.

CFRFS application geometry impacts the performance of the “Diffusion” com-

ponent, which consists of the computation of D and synchronization during the re-

cursive integration procedure in Figure 7.1, and involves time and space staggering

due to SAMR. Optimal partitioning for “Diffusion” involves optimizing the surface

area for grid blocks as well as the shared boundary lengths among participating pro-

cessors. The computational weights/workloads in CFRFS affect the performance of

the “Chemistry/Reaction” component, which is currently optimized in the Dispatch

formulation. Optimal partitioning for “Reaction” involves optimizing the workload

distribution for grid blocks among participating processors. However, efficient run-

time behavior necessitates a blend of these two different objectives, based on previous

application performance and current application state.

As illustrated in Figure 7.2, the CFRFS application is constructed using various

components for chemistry, diffusion, mesh management, visualization, etc., within the

Common Component Architecture (CCA) [12] framework. As described in Chapter 6,

we enable performance calibration by augmenting the application reaction component

with sensors and timers. The sensors profile the reaction characteristics and express

heterogeneity in terms of the number of iterative solves performed at each pointwise

process. The timers instrument the chemistry adapter (comprising the reaction com-

pute section) at a fine level and measure the time spent in reaction time-advancement,

implicit solves, and other data operations. Note that the performance calibration for

CCA-based combustion simulations, presented above, is implemented by extending/-

modifying the existing interfaces of various components. Our focus in this paper

is on using the runtime calibration to address the impact of heterogeneity on load

balancing and performance of parallel reactive flow simulations.
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Figure 7.2: Composition of the CFRFS application using various CCA components.

7.4 Recapitulation of Partitioning Algorithms for Parallel

Reactive Flow Simulations

In this section, we briefly discuss various partitioners (presented previously in this

research) that can manage the spatiotemporal and computational heterogeneity and

dynamism in SAMR implementations of parallel reactive flow simulations. These

dynamic partitioning algorithms are based on a core Composite Grid Distribution

Strategy (CGDS) belonging to the GrACE [90] SAMR infrastructure [92]. This

domain-based partitioning strategy performs a composite decomposition of the adap-

tive grid hierarchy using Space-filling Curves (SFCs) [57] [80] [100] [109], and is based

on the application geometry (referred to as “Geometry” in this chapter). The Geom-

etry strategy uses SFCs and partitions the entire SAMR domain into sub-domains
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such that each sub-domain keeps all refinement levels in the sub-domain as a single

composite grid unit. The resulting composite grid unit list (GUL) for the overall

domain must now be partitioned and balanced across processors. On the other hand,

“Dispatch” [29] combines inverse space-filling curve based partitioning with pointwise

varying, in-situ global load balancing to address the dynamic partitioning and het-

erogeneous computational requirements of structured uniform or adaptive scientific

applications. Dispatch maintains the loads associated with pointwise reactive pro-

cesses, which represent computational heterogeneity, using a workload grid function

that is distributed among processors.

We have previously presented 3 decomposition algorithms, namely the greedy

partitioning algorithm (GPA), bin-packing based partitioning algorithm (BPA) and

level-based partitioning algorithm (LPA). The Geometry and Dispatch strategies use

any one of these decomposition algorithms to distribute the SAMR application do-

main among processors at runtime. The GPA scheme partitions the global GUL

and produces a local GUL for each processor, while attempting to distribute the

load equally among all processors, using a greedy approach and based on a linear

assignment of grid units to processors. The BPA scheme distributes the global GUL

workload among processors based on processor load threshold in a manner similar to

GPA, but no processor accepts work greater than the threshold in the first phase.

Grid units representing unallocated loads after the first phase are distributed among

processors using a “best-fit” approach. If no processor matches the load require-

ments of an unallocated grid unit, the “most-free” approach (i.e., the processor with

least load accepts the unallocated work) is adopted until all the work in the global

GUL is assigned. The LPA+BPA scheme attempts to simultaneously balance load

and minimize synchronization cost. LPA essentially preprocesses the global GUL,

disassembles the grid units based on their refinement levels, and feeds the resulting

homogeneous units at each refinement level to BPA, which then partitions this list to

balance the workload. Due to the preprocessing, the load on each refinement level is
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also balanced.

7.5 Hybrid Partitioning Approach

Parallel reactive flow simulations (such as CFRFS) can exhibit conflicting load bal-

ancing requirements for reactive and transport processes. Furthermore, the degree of

runtime heterogeneity impacts the performance of the domain decomposition strategy

and the overall execution. Consequently, the overall runtime performance of a parallel

reactive flow application is a function of the problem domain, number of computing

elements, and the current application state. To address this issue, we formulate a hy-

brid partitioning (referred to as “Hybrid”) approach, which is illustrated in Figure 7.3

and described below.

7.5.1 Initialization

At the outset, the application domain is partitioned using Geometry+GPA scheme,

since there is no previous knowledge about the application characteristics. Subse-

quently, initial conditions are applied and redistribution is performed on the SAMR

grid hierarchy. The Hybrid scheme starts with an initial partitioner, which is accepted

as input from the user, for the first regridding. Since there are no reaction loads as

yet in the simulation, the appropriate choice for the initial partitioner can be either

Geometry+GPA or Dispatch+GPA as they would have similar behavior at the initial

stage. Moreover, since it may be possible for the application to exhibit substantial

pointwise varying workloads before the next regridding stage, it may be preferable to

use Dispatch+GPA as the initial partitioner.

7.5.2 Analysis of Previous Distribution

We then analyze the previous and current distribution to determine which decompo-

sition strategy should be suitable as part of the next partitioner. Using previously
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Figure 7.3: Execution flowchart for the CFRFS application illustrating the hybrid
partitioning approach.

stored domain information, we compute the average, standard deviation, and coeffi-

cient of variation or CV (defined as a dimensionless ratio of the standard deviation

to the average) metrics for the processor loads (which may be due to geometry or

reaction) in the previous distribution. We also compute the peak-to-average ratio

(PAR) for the old distribution since it helps to quantify the maximum imbalance

for the previous stage. If the workload is increasing and the PAR is greater than

MAX IMBALANCE THRESHOLD (set to 25% in our evaluation), we select the

BPA decomposition strategy.
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7.5.3 Heterogeneity Analysis

For the current distribution, we analyze the loads with respect to geometry (equivalent

to number of points in grid blocks) as well as loads with respect to reaction (pointwise

varying loads for reactive processes). We compute the PAR values for both geometry

and reaction loads normalized with respect to the grid block size at each level of the

SAMR hierarchy for the current distribution. The maximum size-normalized PAR

at any level for the reaction loads is an indicator of the level of heterogeneity in

the simulation at that time. If this level of computational heterogeneity exceeds a

predefined threshold, RD SCALEUP (set to 20% in our evaluation), the simulation

exhibits substantial computational heterogeneity and should benefit from the Dispatch

partitioning scheme. If the computational heterogeneity is less than the threshold,

Geometry scheme is selected as the next partitioner.

7.5.4 Analysis of Current Distribution

We also determine the number of grid blocks in the current distribution that are at

minimum granularity size and have loads that exceed the threshold load at that level.

Such blocks can result in high load imbalance and greater synchronization costs, and

hence are addressed by using the LPA+BPA decomposition strategy. If the number

of such non-decomposable and heavily-loaded grid blocks exceed a preset threshold,

BAD GU THRESHOLD (set to 15% in our evaluation), then LPA+BPA is selected

as the decomposition technique that augments whichever scheme is selected to address

heterogeneity (Geometry or Dispatch).

To analyze the workload behavior, we determine the “work ratio” which is de-

fined as the workload for the current distribution with respect to the metric used

in the previous distribution. If the work ratio is greater than the sum of 1 and

LOAD INCREASE THRESHOLD (set to 30% in our evaluation) and the CV for

the previous work is greater than LOW VARIATION THRESHOLD (set to 10%



109

in our evaluation), the application is assumed to heading towards high imbalance

and hence BPA scheme is selected as the decomposition strategy of choice. If the

work ratio is greater than 1 and CV for the previous work distribution is greater

than HIGH VARIATION THRESHOLD (set to 30% in our evaluation), the decom-

position scheme is upgraded by one level, i.e. from GPA to BPA or from BPA to

LPA+BPA. If the work ratio is less than 1 and the previous work CV is less than

LOW VARIATION THRESHOLD, then the decomposition scheme is downgraded by

one level.

7.5.5 Partitioner Selection

Based on the selection of the heterogeneity partitioner (Geometry or Dispatch) and

the decomposition strategy (GPA, BPA, LPA+BPA), the appropriate combination is

invoked at runtime as the selected partitioner and domain decomposition is performed.

At the next regridding stage, the cycle repeats itself.

7.6 Experimental Evaluation

The experimental evaluation of hybrid partitioning is performed using a 3-level SAMR

implementation of the 2-D methane-air reaction-diffusion model using the GRI 1.2 [48]

mechanism (referred to as the CFRFS kernel). The experiments are performed on 8

and 64 processors of “Jacquard” [85] at NERSC using the Geometry and Dispatch

strategies along with GPA, BPA and LPA+BPA decomposition schemes, summa-

rized in Section 7.4. The experiments compare the performance of the individual

partitioners and analyze the effectiveness of the hybrid approach by measuring over-

all and normalized application execution time, load imbalance, synchronization time,

regridding time, and adaptation overheads.
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7.6.1 Test Evaluation on 8 Processors

This experiment is conducted on a 2-D 3-level SAMR mesh with 64 × 64 base grid res-

olution using the CFRFS [72] Toolkit, a component-based toolkit for simulating react-

ing flows. The simulation executes for 10 timesteps, with regridding performed every

4 timesteps and other application parameters kept unchanged, and uses a reaction-

diffusion-reaction (R-D-R) splitting. The spatial derivatives in the diffusion step are

computed using fourth-order central differences. This also requires a broader border

of ghost-cells on each processor and, hence, the application granularity is set to 8.

The diffusion coefficients are computed using DRFM [99]. The GRI 1.2 chemical

mechanism [48] is used in this evaluation and consists of 32 species and 177 reversible

reactions.

Figure 7.4 illustrates the normalized application execution times for 6 individ-

ual strategies (namely, Geometry+GPA, Geometry+BPA, Geometry+LPA+BPA,

Dispatch+GPA, Dispatch+BPA and Dispatch+LPA+BPA) and 2 hybrid schemes

(namely, Hybrid with Dispatch+GPA start and Hybrid with Geometry+GPA as ini-

tial partitioner) that are used in the evaluation of the CFRFS simulation. The nor-

malized spans (defined as the difference between the maximum and minimum values)

for reaction compute, diffusion compute, total compute, synchronization (sync) and

regrid times for each partitioner are also shown in Figure 7.4.

Note that the different partitioners listed above produce different numbers of

grid cells after domain decomposition, since they are typically based on different

runtime objectives that may involve either balancing load aggressively or keeping

low overhead or managing synchronization costs. Since different placements of cuts

produce different application sub-domains for the various partitioners at runtime, we

normalize the performance of all partitioners by the number of grid cells produced

by a baseline scheme such as Geometry+GPA. Note that the normalization does not

adversely affect the simulation behavior and is useful for gauging the comparative

performance of the individual and hybrid schemes presented in this research.
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Figure 7.4: Performance comparison of six individual and two hybrid partitioners
used in the 3-level SAMR evaluation of the CFRFS application on 8 processors on
Jacquard.

The hybrid partitioner performs the initial domain decomposition using either

Geometry+GPA or Dispatch+GPA. Then, at each successive regridding stage, the

appropriate partitioner is selected at runtime based on the current and previous ap-

plication state. Table 7.1 lists the sequence of partitioners selected by the Hybrid

strategy at runtime for our current CFRFS evaluation executing for 10 iterations with

regridding performed every 4 timesteps. Note that during the initialization stages,

we do not switch between Geometry and Dispatch partitioners simply because the

reaction loads are not manifested until the application has set up the reactive pro-

cesses and advanced in time over a couple of timesteps. Therefore, as observed in
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Table 7.1, no partitioner state transition occurs until the first time-advancement re-

grid (at timestep 4). However, the load imbalance characteristics are known while

the simulation is performing regridding during initialization and it is possible for the

decomposition strategy (GPA or BPA or LPA+BPA) to be adapted during this stage.

Table 7.1: Sequence of partitioners selected at runtime by the Hybrid strategy for the
3-level SAMR CFRFS evaluation on 8 processors with 64*64 base grid and executing
for 10 iterations.

Regrid Application Hybrid with initial state
Count Stage Dispatch+GPA Geometry+GPA

1 Initialization 1 Dispatch+GPA Geometry+GPA
2 Initialization 2 Dispatch+BPA Geometry+BPA
3 Timestep 4 Geometry+BPA Geometry+BPA
4 Timestep 8 Geometry+BPA Geometry+BPA

As observed in Figure 7.4, the best performance among the various partitioners is

provided by Dispatch+BPA due to the good load balance and also partly due to the

large number of grid cells that are a consequence of the complicated partitions created

by this scheme. Similar good performance is also observed for Geometry+BPA and

the hybrid strategy. Since the simulation does not exhibit substantial load hetero-

geneity and pointwise varying loads for reaction vary by only 4%, the hybrid scheme

selects the Geometry strategy and then augments it intially with GPA and subse-

quently with BPA to address load imbalance.

Tables 7.2 and 7.3 present further details on the performance metrics for the

CFRFS application using individual and hybrid partitioners respectively. These met-

rics include the maximum, average, standard deviation, coefficient of variation and the

peak-to-average ratio (PAR) for overall execution times (Maxexec, μexec, σexec, CVexec,

PARexec), total computation times (Maxcomp, μcomp, σcomp, CVcomp, PARcomp), re-

action computation times (MaxR
comp, μR

comp, σR
comp, CV R

comp, PARR
comp), diffusion com-

putation times (MaxD
comp, μD

comp, σD
comp, CV D

comp, PARD
comp), synchronization times

(Maxsync, μsync, σsync, CVsync, PARsync), and regridding times (Maxregrid, μregrid,

σregrid, CVregrid, PARregrid).
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Table 7.2: Normalized performance metrics for individual partitioners applied to a
3-level SAMR formulation of the CFRFS application, with 64*64 base grid resolution
and executing for 10 iterations on 8 processors on Jacquard.

Performance Geometry augmented with Dispatch augmented with
Metrics GPA BPA LPA+BPA GPA BPA LPA+BPA

Maxexec (s) 1239.43 1015.59 1049.85 1103.22 998.10 1105.03
μexec (s) 1148.92 987.03 1013.29 1046.67 976.43 1051.82
σexec (s) 38.95 19.48 25.31 35.09 16.15 27.81
CVexec 0.03 0.02 0.02 0.03 0.02 0.03
PARexec 1.08 1.03 1.04 1.05 1.02 1.05

Maxcomp (s) 973.89 832.58 925.40 832.98 821.61 937.28
μcomp (s) 693.33 747.47 783.12 667.73 738.87 791.21
σcomp (s) 111.17 66.48 124.57 102.63 56.68 115.13
CVcomp 0.16 0.09 0.16 0.15 0.08 0.15
PARcomp 1.40 1.11 1.18 1.25 1.11 1.18

MaxR
comp (s) 680.58 535.93 579.63 547.51 512.56 620.53

μR
comp (s) 429.05 465.72 496.74 409.60 457.53 502.85

σR
comp (s) 103.27 49.53 67.95 78.21 38.80 70.52

CV R
comp 0.24 0.11 0.14 0.19 0.08 0.14

PARR
comp 1.59 1.15 1.17 1.34 1.12 1.23

MaxD
comp (s) 297.81 322.73 364.43 351.99 316.54 351.85

μD
comp (s) 264.28 281.75 286.38 258.12 281.34 288.36

σD
comp (s) 28.90 29.42 58.86 48.88 23.98 49.45

CV D
comp 0.11 0.10 0.21 0.19 0.09 0.17

PARD
comp 1.13 1.15 1.27 1.36 1.13 1.22

Maxsync (s) 286.42 194.18 189.43 265.16 186.23 189.73
μsync (s) 243.76 138.88 111.98 205.71 137.03 114.83
σsync (s) 28.58 29.44 58.84 46.64 23.98 49.43
CVsync 0.12 0.21 0.53 0.23 0.18 0.43
PARsync 1.18 1.40 1.69 1.29 1.36 1.65

Maxregrid (s) 49.67 21.58 32.01 41.10 23.36 38.01
μregrid (s) 38.67 13.04 20.28 26.42 12.40 25.72
σregrid (s) 14.53 5.90 10.28 10.36 6.05 9.11
CVregrid 0.38 0.45 0.51 0.39 0.49 0.35
PARregrid 1.28 1.66 1.58 1.56 1.88 1.48
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From Table 7.3, we observe that the coefficient of variation (CV) values for all

performance metrics, except for regridding times, for the Hybrid scheme are among

the lowest across all listed partitioning strategies. As a result, we can deduce that the

Hybrid strategy provides a good domain decomposition and good overall performance,

especially since no information about runtime behavior was known a priori. Table 7.3

also lists the adaptation overheads incurred by the hybrid schemes in choosing the

appropriate partitioner at a regridding stage. The simplicity and efficiency of our

hybrid partitioning approach ensures that these overheads are kept quite low, in

the order of 0.2-0.3 milliseconds, which is negligible compared to the regridding and

overall execution times for the CFRFS simulation.

Table 7.3: Normalized performance metrics for hybrid partitioners based on Dis-
patch and Geometry strategies for 3-level CFRFS application, with 64*64 base grid
resolution and executing for 10 iterations on 8 processors on Jacquard.

CFRFS Hybrid with initial state CFRFS Hybrid with initial state
Performance Dispatch Geometry Performance Dispatch Geometry
Metrics + GPA + GPA Metrics + GPA + GPA

Maxexec (s) 1026.77 1025.84 Maxcomp (s) 857.93 858.07
μexec (s) 990.63 989.75 μcomp (s) 744.09 744.18
σexec (s) 17.42 17.41 σcomp (s) 52.62 52.61
CVexec 0.02 0.02 CVcomp 0.07 0.07
PARexec 1.04 1.04 PARcomp 1.15 1.15

MaxR
comp (s) 559.21 559.34 MaxD

comp (s) 302.55 302.46
μR

comp (s) 463.24 463.43 μD
comp (s) 280.85 280.75

σR
comp (s) 44.68 44.66 σD

comp (s) 16.88 16.88
CV R

comp 0.10 0.10 CV D
comp 0.06 0.06

PARR
comp 1.21 1.21 PARD

comp 1.08 1.08

Maxsync (s) 178.85 178.47 Maxregrid (s) 20.60 20.82
μsync (s) 143.87 143.51 μregrid (s) 14.39 14.59
σsync (s) 16.88 16.88 σregrid (s) 5.72 5.74
CVsync 0.12 0.12 CVregrid 0.40 0.39
PARsync 1.24 1.24 PARregrid 1.43 1.43

Adaptation overheads (ms) 0.2-0.3 0.2-0.3
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7.6.2 Evaluation on 64 Processors

This experiment evaluates the performance of the Hybrid strategy on 64 processors on

Jacquard using a 3-level SAMR formulation of the CFRFS application with 512 × 512

base grid resolution. The simulation executes for 20 timesteps, with regridding per-

formed every 8 timesteps and other application parameters kept unchanged. The

partitioners evaluated in this experiment include Geometry+GPA, Dispatch+GPA,

Dispatch+BPA, Dispatch+LPA+BPA, and the Hybrid strategy. The hybrid parti-

tioner performs initial decomposition using Dispatch+GPA.

Table 7.4: Performance comparison of individual and hybrid partitioners for 3-level
CFRFS simulation on 64 processors with 512*512 base grid and executing for 20
iterations.

Partitioning Normalized Max.
Strategy Execution Time (sec)

Geometry+GPA 5843.80
Dispatch+GPA 5003.93
Dispatch+BPA 4997.99

Dispatch+LPA+BPA 4665.04
Hybrid 4535.67

Table 7.4 lists the performance of the individual and hybrid partitioners for this

64-processor experiment. The Hybrid scheme has the lowest overall execution time

normalized with respect to the total number of grid cells in the simulation, and

outperforms the individual partitioners. The Hybrid scheme has low overheads in

this experiment, ranging from 0.5 - 0.8 milliseconds for different processors, which is

negligible compared to regridding and overall execution times.

As observed in Table 7.5, the Hybrid strategy starts with Dispatch+GPA as the

initial partitioner. At the second initialization stage, though the coefficient of varia-

tion (CV) for the previous state is 0.248, the simulation load is decreasing (work ratio

is less than 1). Hence, the decomposition strategy is maintained as GPA. During the

regrid stage at timestep 8, the maximum normalized peak-to-average ratio for reaction

is 1.22 which exceeds the RD SCALEUP threshold of 1.2. Since there is substantial
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Table 7.5: Partitioner selection in Hybrid approach for the 3-level SAMR CFRFS
evaluation on 64 processors with 512*512 base grid and executing for 20 iterations.
Regridding is performed every 8 timesteps.

Application Partitioner Max. Normalized Work Previous
Stage Selected PAR for Reaction Ratio State CV

Initialization 1 Dispatch+GPA - - -
Initialization 2 Dispatch+GPA - 0.91 0.248

Timestep 8 Dispatch+BPA 1.22 1.73 0.279
Timestep 16 Geometry+BPA 1.13 0.96 0.145

heterogeneity manifested in the current application state, the Dispatch partitioner

is selected. Also, due to increasing workloads and high CV for the previous state,

the BPA decomposition strategy is preferred over GPA. Therefore, Dispatch+BPA

is selected as the partitioner of choice during the regrid at timestep 8. At timestep

16, there is lesser heterogeneity manifested at runtime and the Geometry partitioner

is selected. Due to to similar load characteristics, BPA is maintained as the decom-

position strategy. The experimental evaluation of the hybrid partitioning approach

demonstrates that Hybrid provides a good domain decomposition and good overall

performance, especially with lack of prior knowledge about runtime behavior.

7.7 Inferences

The Hybrid partitioning approach presented in this research appears promising and

can provide good performance on average (and average performance in the worst case)

for parallel reactive flow simulations, especially when application characteristics are

not known a priori. However, the applicability of this approach as a general solution

for performance optimization of most parallel scientific simulations cannot be easily

ascertained, since it is typically not feasible to obtain Pareto optimal solutions for such

simulations. Furthermore, to keep adaptation overheads low, any hybrid approach

should be lightweight in its complexity and reasonably efficient in its evaluation.

As a result, brute force schemes cannot be applied to optimize dynamic adaptive

scientific simulations and one has to resort to either statistical inference or machine
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learning or predictor-corrector approaches to address multiple conflicting objectives

at runtime. As part of future work for the Hybrid partitioning approach, one can

conduct a sensitivity analysis to study the impact and effectiveness of various runtime

parameters that affect simulation performance. Moreover, the Hybrid partitioning

approach can be augmented with learning mechanisms to predict an appropriate next

state based on past experiences and historical observations. However, guaranteeing

the optimality and effectiveness of non-heuristic approaches for addressing parallel

scientific simulations is non-trivial.
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Chapter 8

Algorithmic Adaptations for Reducing

Synchronization in Scientific Simulations

8.1 Overview

Scientific simulations modeling complex physical phenomena can be targeted on dedi-

cated massively parallel processing (MPP) systems or commodity computing systems

such as clusters. Compared to MPP systems, cluster environments may be heteroge-

neous and dynamic, aggregating large numbers of dedicated or shared computing and

communication resources with varying capabilities. Moreover, clusters typically have

lower installation and maintenance costs, better performance per unit cost, and are

more feasible for a majority of institutions and research/commercial organizations as

compared to MPP systems. Consequently, clusters have emerged as the dominant

execution paradigm for high performance distributed computing, comprising 72.2%

of the 500 most powerful commercially available computer systems in the world (28th

TOP500 [132] List).

Parallel adaptive implementations of scientific simulations are inherently dynamic

and heterogeneous and their runtime performance is sensitive to the computation and

communication costs. The computation-to-communication ratios (CCR) vary signif-

icantly in cluster environments due to system configurations and loads, which can

further exacerbate the challenges in partitioning, synchronization and runtime man-

agement and impact the overall performance and scalability of scientific applications,

especially when computing resources are either shared or heterogeneous. While these

performance challenges can be partially addressed for uniform resolution simulations
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by using granularity control (blocking) to ameliorate unfavorable computation-to-

communication ratios (CCR), this approach is not sufficient. Furthermore, granu-

larity control using predetermined block sizes is not efficient for structured adaptive

mesh refinement (SAMR) applications. In such applications, the block sizes should

be determined dynamically by the application features to obtain good runtime per-

formance.

This chapter investigates algorithmic adaptations based on computation and com-

munication trade-offs and their impact on runtime performance for unigrid and SAMR

formulations of parallel scientific simulations. We present a reformulation of the un-

derlying finite difference algorithm in these simulations to address unfavorable CCR

by adaptively trading off reduced synchronization for additional computation when

the application is communication-dominated. The goal is to reduce the frequency

of synchronization/messaging but still maintain numerical correctness of the finite

difference scheme as well as valid domain data. This is achieved by scheduling larger

data transfers than required during the synchronization phase and then performing

extra computations locally on each processor. Experimental evaluation demonstrates

the improvement in overall performance of parallel scientific simulations in cluster

environments due to these synchronization adaptations.

8.2 Related Work

Ghost cell expansion, proposed by Ding and He [42] and analyzed in detail in [108], is

a form of domain decomposition with overlapping boundaries. Ding and He present

a unigrid formulation for finite difference methods that can be used to solve PDEs

with a timestep iteration, such as time-dependent PDEs (parabolic or hyperbolic) or

elliptic problems solved with a timestep-like iteration (e.g. Jacobi, Gauss-Seidel or

ADI). In this formulation, the overlaps (known as “ghost” regions/cells) between sub-

domains are increased to reduce the frequency of synchronization among processors
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in favor of extra local computations.

A similar approach called the SuperBoundary Exchange [69] reduces communi-

cation in distributed implementations of iterative computations by sending a larger

ghost boundary less often. The algorithm has been implemented and evaluated for

uniform 2-D finite difference problems.

We extend the basic premise of “ghost cell expansion” to support reduced synchro-

nization for structured adaptive mesh refinement (SAMR) formulations by allowing

for additional local computations of the expanded overlapped regions across various

levels of the SAMR grid hierarchy in lieu of greater communication frequency among

processors.

8.3 Synchronization Algorithm

Structured grid formulations (either unigrid or SAMR) consider a regular rectangular

domain, which is partitioned across processors such that the decomposition overlaps

the sub-domains by the width of the spatial stencil. These overlapped regions are

known as “ghost” regions/cells. Each local sub-domain on a processor stores in its

own ghost cells the values of those adjoining cells in neighboring sub-domains (that

may be local or off-processor) that are in the numerical domain of dependence of

the sub-domains own cells. The width of this ghost region is defined by the spatial

stencil for the formulation. Adjacent to the ghost cells along each dimension in the

local sub-domain is a region which corresponds to the neighbor’s ghost cells.

Communication is required after every timestep, when the values contained in

the ghost cells change. In the communication phase, the local domain sends its local

near-boundary values to its neighbors ghost cells, and receives its neighbors local

near-boundary values into its own ghost cells. Ghost cell expansion widens the ghost

regions by a small number of cells and allows communication to be delayed over as

many timesteps as the number of expansion cells. In unigrid and SAMR formulations,
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the delay reduces the frequency of communication at the cost of increasing the volume

of data in a single transmission as well as incurring additional local computations on

processors to maintain numerical correctness. Since the message volume is not an

issue for small boundary sizes which are typical for simulations on large numbers of

processors, this research focuses on the gain in synchronization overheads at the cost

of additional computations.

The primary consideration in the reduced synchronization model for SAMR im-

plementations is that the additional local computations are not performed for those

boundaries of sub-domains (referred to as grid patches/blocks) which coincide with

the physical domain boundary or an adaptive boundary in case of finer level grids.

This is due to the fact that the ghost regions are not expanded at the physical do-

main boundary or an adaptive boundary for any grid patch. We have applied this

synchronization algorithm to both uniform and adaptive formulations of a 2-D appli-

cation solving the transport equation (Transport2D kernel), described in the following

section.

8.4 Transport Equation Model

In physics, chemistry and engineering, a transport phenomenon is any of various

mechanisms by which particles or quantities move from one place to another. Three

common examples of transport phenomena are diffusion, convection, and radiation.

A scalar transport equation is a general partial differential equation that describes

transport phenomena such as heat transfer, mass transfer, fluid dynamics (momen-

tum transfer), etc. All the transfer processes express a certain conservation principle.

In this respect, any differential equation addresses a certain quantity as its depen-

dent variable and thus expresses the balance between the phenomena affecting the

evolution of this quantity. Briefly, the 2-D transport equation is of the form

∂tu(x, y, t) + c1∂xu(x, y, t) + c2∂yu(x, y, t) = 0 (8.1)
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This equation can be used to model air pollution, dye dispersion, or even traffic flow

with u representing the density of the pollutant (or dye or traffic) at position (x,y)

and time t.

In this research, we use a structured grid approach to model the transport equation

onto a 2-dimensional, regular Cartesian computational domain. We investigate both

uniform and SAMR implementations of the 2-D transport model. A finite difference

scheme is used to solve the model numerically and time evolution is performed using

the MacCormack (predictor-corrector) method. Furthermore, for sake of simplicity

and numerical correctness, boundary conditions (at the physical domain or an adap-

tive boundary) are not applied within the Transport2D model since these conditions

do not allow synchronization requirements to be relaxed across successive timesteps

due to the required boundary update procedures. Note that the boundary constraints

are restrictions posed by the underlying numerical formulation to maintain solution

correctness and not a limitation of the synchronization algorithm.

8.5 Reduced Synchronization Adaptation for 2-D Transport

Model

Figure 8.1: 9-point stencil used by the finite difference scheme within the 2-D trans-
port application.

The finite difference scheme within the Transport2D application uses a 9-point
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spatial stencil of radius 1 (ghost region width is set to 1), as shown in Figure 8.1.

Each grid point computes its updated value using its current value and the values

obtained from 1-away neighboring grid points. In case of our reduced synchronization

algorithm illustrated in Figure 8.2, we expand the size of the ghost regions to 2 since

the Transport2D application is communication-dominated, and reduce the communi-

cation requirements by alternating the synchronization calls within the predictor and

corrector computation sections, while maintaining numerical correctness.

Figure 8.2: Operation of the reduced synchronization algorithm illustrating synchro-
nization and computation trade-offs.

At timestep t at any level, assume that all domain data is valid and all ghost

regions are synchronized. Since the ghost width in our new approach is 2, we perform

additional local computations on the expanded ghost cell regions for timestep t when

these regions are valid. At the next timestep (t + 1), synchronization is skipped and

the computation region is shrunk by 1 to avoid the outermost ghost cells that are

invalidated due to lack of synchronization. However, the interior domain data (local

to a processor) remains unaffected and can be correctly computed. At the successive

timestep t + 2, the entire ghost region contains invalid data and the synchronization

phase needs to be reapplied on the expanded ghost region to obtain the correct ghost

data from the interior domain data for the neighboring processor. The application

state after synchronization at timestep t+2 is now identical to the synchronized state

at timestep t, and the cycle repeats itself.
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Note that that the expansion factor for the ghost region is set to 2 in our evaluation

since it is constrained by the space-time refinement factor used to create the SAMR

grid hierarchy. Refinements in space create finer level grids, which have more grid

points than their parents (coarser grids), and hence greater computational loads.

Refinements in time mean that finer grids take smaller timesteps, and hence have to

be advanced and synchronized more often. Due to restriction (fine to coarse grid data

transfer and interpolation) operations occurring in the SAMR hierarchy, the parent

grids (grids at a coarse level) receive updated data from child grids (grids at one level

finer than the parent) and need to synchronize their boundaries with other parent

grids at the same level to ensure numerical correctness. The frequency of restriction

across levels is determined by the space-time refinement factor, which is set to 2

in our evaluation. Therefore, the ghost cell expansion factor is also set to 2 and is

the maximum factor by which synchronization requirements can be relaxed without

affecting the numerical correctness of the simulation. Note that the load at each grid

point is homogeneous in the Transport2D evaluation.

8.6 Experimental Evaluation

The experimental evaluation of our reduced synchronization approach is performed

using structured unigrid and adaptive implementations of the Transport2D kernel that

solves the transport equation in 2-D. The experiments are performed on the 64-node

“Frea” cluster at Rutgers University and on “Jacquard” which is a 712-CPU Opteron

cluster at NERSC. We compare the performance (in terms of overall execution) of the

reduced synchronization and traditional (original) lock-step approaches, and verify

the numerical correctness of the reduced synchronization algorithm.
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Figure 8.3: Performance of the reduced synchronization algorithm for 2048 × 2048
unigrid Transport2D application on 4-48 processors on Frea.

8.6.1 Unigrid Evaluation

The first experiment evaluates the performance of the original and reduced synchro-

nization schemes for a unigrid implementation of the Transport2D application on

4-48 processors on Frea. The application uses a 2048 × 2048 grid and executes for

200 iterations (or timesteps). Figure 8.3 illustrates the performance of the reduced

synchronization scheme. Since the application is communication-dominated, there

is overall improvement in the simulation performance due to the reduction in the

communication times.

8.6.2 2-level SAMR Evaluation

The second experiment evaluates the performance of the original and reduced syn-

chronization schemes for a 2-level SAMR formulation of the Transport2D application

on 8 processors on Frea. The application uses a 128× 128 base grid and executes for
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Table 8.1: Performance comparison of original and reduced synchronization algo-
rithms for a 2-level Transport2D application with 128×128 base grid on 8 processors
on Frea.

Execution Original Reduced Percentage
Parameter Scheme Synchronization Improvement

Max. Execution Time (sec) 17.49 12.323 29.54%
Max. Compute Time (sec) 0.06 0.062 -3.33%
Min. Compute Time (sec) 0.039 0.042 -7.69%
Avg. Compute Time (sec) 0.052 0.056 -7.69%

Total Sync Count 535 334 37.57%
Max. Sync Time (sec) 14.911 9.442 36.68%
Min. Sync Time (sec) 13.574 8.491 37.45%
Avg. Sync Time (sec) 14.386 9.012 37.36%

50 iterations with regridding performed every 8 timesteps. Table 8.1 and Figure 8.4 il-

lustrate the performance and numerical correctness of our approach respectively. Due

to the small application domain and lack of dynamics, the computation time for the

Transport2D application is dwarfed by the synchronization time. Since the simulation

is heavily communication-dominated, the reduced synchronization algorithm helps to

lower the communication overheads by reducing the number of synchronization calls

across timesteps in favor of additional local computations performed at each proces-

sor due to expanded ghost regions. As observed in Table 8.1, the overheads of extra

computations range from approximately 3-8% while the improvement in communica-

tion costs is nearly 37%. As a result, the overall simulation performance improves by

nearly 30% due to the reduced synchronization approach. Furthermore, this approach

maintains the numerical correctness of the solution (similar to the original scheme),

as demonstrated by the coincident graphs for the maximum, minimum and second

norm values obtained at each level for the simulation, illustrated in Figure 8.4.

8.6.3 3-level SAMR Evaluation

The next set of experiments compare the performance of the original and reduced syn-

chronization schemes for different configurations of a 3-level SAMR formulation of the
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Figure 8.4: Numerical correctness for the reduced synchronization algorithm using a 2-
level SAMR Transport2D implementation on 8 processors. Graphs for the maximum,
minimum and second norm values at each level are coincident for original and reduced
synchronization schemes.

Transport2D application on Frea and Jacquard. While Frea is a shared-node cluster

environment with a 100Mbps Fast Ethernet interconnect, Jacquard is a dedicated-

node MPP system with InfiniBand interconnect having a peak MPI unidirectional

bandwidth of 620MB/s. Besides evaluating the performance of the reduced syn-

chronization scheme on both systems, these experiments aim to demonstrate that

communication-dominated SAMR applications can potentially benefit from relaxing

the synchronization requirements even when executing on MPP systems, which have

higher network capabilities and lower latencies as compared to cluster environments.

Table 8.2: Reduced synchronization algorithm performance for 3-level SAMR formu-
lation of the Transport2D application with 256× 256 base grid and executing for 500
iterations on 8 processors on Frea.

Execution Original Reduced Percentage
Parameter Scheme Synchronization Improvement

Max. Execution Time (sec) 160.866 134.358 16.48%
Max. Compute Time (sec) 1.745 1.801 -0.032%
Min. Compute Time (sec) 1.128 1.156 -0.025%
Avg. Compute Time (sec) 1.528 1.578 -0.032%

Total Sync Count 5891 4693 20.34%
Max. Sync Time (sec) 145.415 119.157 18.06%
Min. Sync Time (sec) 127.283 102.96 19.11%
Avg. Sync Time (sec) 139.846 114.218 18.33%
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Table 8.3: Reduced synchronization algorithm performance for 3-level SAMR formu-
lation of the Transport2D application with 256× 256 base grid and executing for 500
iterations on 8 processors on Jacquard.

Execution Original Reduced Percentage
Parameter Scheme Synchronization Improvement

Max. Execution Time (sec) 12.947 11.334 12.46%
Max. Compute Time (sec) 0.897 0.932 -3.9%
Min. Compute Time (sec) 0.729 0.744 -2.06%
Avg. Compute Time (sec) 0.794 0.826 -4.03%

Total Sync Count 5891 4693 20.34%
Max. Sync Time (sec) 10.021 8.195 18.22%
Min. Sync Time (sec) 8.552 7.007 18.07%
Avg. Sync Time (sec) 9.387 7.706 17.91%

We first evaluate the two schemes on a 3-level SAMR grid hierarchy for the Trans-

port2D application with a 256 × 256 base grid and executing for 500 iterations with

regridding performed every 8 timesteps. Figure 8.5 illustrates the SAMR domain

structure at iterations 0, 48, 208 and 496 for this 3-level formulation of the Trans-

port2D application. The application dynamics lead to high synchronization costs and

result in a communication-dominated behavior. The comparative performance of the

original and reduced synchronization schemes on 8 processors on Frea and Jacquard

are listed in Tables 8.2 and 8.3 respectively. The overall improvement in execution

time for this experiment is 16.48% on Frea and 12.46% on Jacquard. Due to the

reduced synchronization algorithm, the synchronization time component improves by

nearly 18% on both systems, while the overheads of additional local computations is

marginal (ranging from 0.025% to 4%) for both cases.

The next 3-level SAMR experiment compares the impact of original and reduced

synchronization strategies on the performance of the Transport2D application with

a 512 × 512 base grid and executing for 1000 coarse-level iterations on 48 processors

on Frea and Jacquard. Though the base grid in this evaluation is 4 times larger than

the 256 × 256 base grid in the previous experiment, the increase in the number of

processors by a factor of 6 offsets the increase in computation time and, therefore, the

compute times for both experiments are nearly similar. However, the decomposition
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Figure 8.5: Snapshots of the 3-level Transport2D application at iterations 0, 48,
208 and 496 illustrating the SAMR domain structure on 8 processors on Frea and
Jacquard.

of the SAMR domain among higher number of processors increases the synchroniza-

tion costs on both systems, as illustrated in Tables 8.4 and 8.5 for Frea and Jacquard

respectively. By trading off frequent synchronization in favor of additional local com-

putations, the reduced synchronization algorithm improves the overall simulation

execution time by nearly 19% and 13% for Frea and Jacquard respectively. The large

synchronization times observed for Frea can be attributed to application load imbal-

ance, slower interconnect and shared-usage environment. In addition to providing

considerable performance benefit in such cluster environments, the reduced synchro-

nization scheme also improves performance in MPP systems when the simulation is

communication-dominated.
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Table 8.4: Reduced synchronization algorithm performance for 3-level SAMR formu-
lation of the Transport2D application with 512×512 base grid and executing for 1000
iterations on 48 processors on Frea.

Execution Original Reduced Percentage
Parameter Scheme Synchronization Improvement

Max. Execution Time (sec) 1734.68 1398.69 19.37%
Max. Compute Time (sec) 2.335 2.412 -3.3%
Min. Compute Time (sec) 0.682 0.695 -1.91%
Avg. Compute Time (sec) 1.235 1.27 -2.83%

Total Sync Count 10649 8477 20.4%
Max. Sync Time (sec) 1613.25 1280.55 20.62%
Min. Sync Time (sec) 192.209 132.081 31.28%
Avg. Sync Time (sec) 977.171 767.634 21.44%

Table 8.5: Reduced synchronization algorithm performance for 3-level SAMR formu-
lation of the Transport2D application with 512×512 base grid and executing for 1000
iterations on 48 processors on Jacquard.

Execution Original Reduced Percentage
Parameter Scheme Synchronization Improvement

Max. Execution Time (sec) 39.136 34.142 12.76%
Max. Compute Time (sec) 0.791 0.827 -4.55%
Min. Compute Time (sec) 0.435 0.443 -1.84%
Avg. Compute Time (sec) 0.597 0.622 -4.19%

Total Sync Count 10649 8477 20.4%
Max. Sync Time (sec) 32.51 26.995 16.96%
Min. Sync Time (sec) 2.043 1.785 12.63%
Avg. Sync Time (sec) 21.815 18.082 17.11%

8.7 Inferences

Experimental evaluation of the reduced synchronization algorithm demonstrates its

potential benefits when applied to uniform or adaptive implementations of parallel

scientific simulations that use finite difference numerical methods and do not have syn-

chronization limitations due to boundary condition restrictions or specialized stencils.

Several extensions to the reduced synchronization approach are possible. If the

simulation permits different ghost region widths along different boundaries of the

same grid patch and one-sided inter-processor communication is possible, then the

communication algorithm can be transformed to be completely asynchronous by using
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communication schedules or a multi-threaded implementation. Moreover, the addi-

tional local computations on each processor due to expanded ghost regions creates

redundancy in the computational domain that can be potentially exploited to provide

fault tolerance for the simulation at runtime. Once a certain processor fails, the other

processors can detect this failure and re-create the application sub-domains owned

by the failed processor from the redundant versions that reside on other functioning

processors.
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Chapter 9

Conclusions and Future Work

9.1 Summary

Simulations are playing an increasingly important role in science and engineering.

Multi-scale and coupled scientific simulations enable realistic modeling of complex

physical phenomena and have been effectively used to solve systems of partial differ-

ential equations in several application domains including astrophysics, combustion,

computational fluid dynamics, numerical relativity, plasma physics, and subsurface

modeling.

Parallel scientific simulations are typically implemented using uniform or adaptive

techniques on structured or unstructured grid formulations. The multi-phased phe-

nomena underlying these simulations span different time and space scales resulting

in significant spatiotemporal heterogeneity. Moreover, these simulations can exhibit

varying degrees of computational heterogeneity due to changes in their mathematical

and topological characteristics. The inherent dynamism coupled with the runtime

heterogeneity lead to significant challenges in ensuring algorithmic efficiency, coor-

dination, load balancing, runtime management, and scalability of parallel scientific

simulations on high-performance architectures.

Furthermore, the advent of multi-core processors and petascale computing systems

offer the potential for new scientific breakthroughs such as analyzing the structure and

function of complex biological molecules, deciphering the origins of the universe and

creation of matter, predicting global climatic changes, designing more fuel-efficient

and environment-friendly automobiles and aircraft, and understanding the origin,
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spread and mitigation of contagious diseases [43]. However, the heterogeneity and

dynamism manifested at unprecedented scales in these next-generation simulations

will substantially exacerbate their performance and scalability in petascale environ-

ments. These challenges necessitate a paradigm shift in application composition,

management and performance optimization, which underlines the motivation for this

research.

Our previous work investigated the application-sensitive characterization for dy-

namically selecting the appropriate partitioner at runtime from a suite of partitioning

algorithms. In this research, we present a multiobjective approach that analyzes ap-

plication and system state, and provides appropriate distribution, configuration, co-

ordination, and adaptation strategies for simulations on structured grids. Prototypes

of individual partitioning and load balancing schemes that address spatiotemporal

and computational heterogeneity have been developed and evaluated. We have ex-

amined the impact of heterogeneity on load balancing and performance using runtime

calibration for different orchestrations of scientific applications. The synchronization

algorithm improves communication overheads by reducing the messaging frequency in

favor of additional computation, when the application is communication-dominated.

The presented strategies have been integrated into an autonomic infrastructure that

can address dynamism and heterogeneity in parallel scientific simulations, and en-

able their efficient and scalable execution on high-performance or cluster computing

architectures.

9.2 Conclusions and Contributions

Addressing the runtime challenges associated with scientific applications to obtain

optimal performance, often, lead to conflicting objectives and trade-offs. Since ana-

lytical approaches are typically not feasible, this research focuses on understanding
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application and system characteristics, developing solutions to address heterogene-

ity and dynamism, and performing runtime adaptations to enhance performance and

scalability for uniform and structured adaptive mesh refinement (SAMR) implemen-

tations of scientific simulations. Experimental evaluation of the presented strategies

using simulations from several application domains demonstrate improvement in over-

all performance on large systems.

Key contributions of this research are summarized below.

9.2.1 Addressing Spatiotemporal Heterogeneity

In this research, we present a hierarchical partitioning framework, consisting of a

stack of partitioners, which can address the space-time heterogeneity and dynamism

in adaptive simulations. The partitioners build on a locality-preserving inverse space-

filling-curve based representation of the SAMR grid hierarchy and enhance it based on

localized requirements to minimize synchronization costs within a level (level-based

partitioning), balance load (bin-packing based partitioning), or reduce partitioning

costs (greedy partitioner). These schemes mitigate computation and synchronization

limitations caused by unfavorable computation-to-communication ratios at runtime,

and have enabled efficient scalable implementations of SAMR applications on thou-

sands of processors.

9.2.2 Addressing Computational Heterogeneity

We have developed a dynamic partitioning strategy called Dispatch to address the

computational heterogeneity for applications that exhibit non-uniform workload dis-

tributions in the computational domain. Dispatch maintains distributed computa-

tional weights associated with pointwise processes, computes local workloads in par-

allel, and performs in-situ global load balancing to determine processor allocations
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proportional to computational weights and data redistribution that preserves applica-

tion locality. Dispatch has shown improvements for uniform and adaptive methane-air

combustion simulations that use operator-split reaction-diffusion models.

9.2.3 Synchronization Adaptation

Efficient execution of scientific simulations in heterogeneous networked environments

necessitates a system-sensitive approach for adapting runtime performance. In this

research, we have adapted the synchronization algorithm so that communication re-

quirements can be relaxed by using additional computations on overlapped applica-

tion sub-domains while reducing the frequency of synchronization. The basic premise

is that processor speeds typically overshadow network speeds for heterogeneous clus-

ters and hence this adaptation is beneficial when the application is communication-

dominated. This behavior is also anticipated for scientific applications when scaled

to large numbers of processors on dedicated massively parallel processing (MPP) sys-

tems, since such a formulation will involve more communication and reduced local

computations.

9.2.4 Calibration, Analysis and Multiobjective Formulation

Due to the inherent dynamism and runtime heterogeneity in scientific simulations,

performing runtime adaptation is non-trivial and requires an understanding of the

application requirements as well as a calibration of the impact of the adaptation on

overall performance. In this research, we have used runtime calibration to analyze

the impact of heterogeneity on load distribution and performance for different orches-

trations of scientific simulations. The heterogeneity analysis is then used as feedback

towards appropriate algorithm selection for domain decomposition. We also present

a multiobjective optimization approach that analyzes the severity and relative contri-

butions of various runtime challenges and enables suitable algorithmic, application,
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and system adaptations to mitigate the ill-effects of these challenges.

9.2.5 Autonomic Infrastructure

We have devised a conceptual autonomic runtime infrastructure with the aim to reac-

tively and proactively manage and optimize application execution using current sys-

tem and application state, performance calibration and feedback control, and online

multiobjective models for adapting performance. The framework defines and maps

application “working-sets” across physical resources so as to exploit the space, time,

and functional heterogeneity of the simulations and underlying numerical methods.

The various adaptation strategies presented in this research are integrated within this

framework and help to improve simulation performance in different scenarios.

9.3 Research Publications

The research ideas presented in this dissertation have resulted in the following pub-

lications.

• Analyzing the Impact of Computational Heterogeneity on Runtime Performance

of Parallel Scientific Components. S. Chandra, M. Parashar and J. Ray. Pro-

ceedings of the 15th High Performance Computing Symposium (HPC), March

2007.

• Enabling Scalable Parallel Implementations of Structured Adaptive Mesh Re-

finement Applications. S. Chandra, X. Li, T. Saif and M. Parashar. Journal of

Supercomputing, vol. 39, no. 2, pages 177-203, Kluwer Academic Publishers,

February 2007.

• Addressing Spatiotemporal and Computational Heterogeneity for Structured Ad-

aptive Mesh Refinement. S. Chandra and M. Parashar. Computing and Visu-

alization in Science, vol. 9, no. 3, pages 145-163, Springer Berlin/Heidelberg,



137

November 2006.

• Dynamic Structured Partitioning for Parallel Scientific Applications with Point-

wise Varying Workloads. S. Chandra, M. Parashar and J. Ray. Proceedings of

the 20th IEEE/ACM International Parallel and Distributed Processing Sym-

posium (IPDPS), IEEE Computer Society Press, Rhodes Island, Greece, April

2006.

• Dynamic Structured Partitioning of Adaptive Applications with Computational

Heterogeneity. S. Chandra, M. Parashar and J. Ray. Technical Report Num-

ber TR-281, Center for Advanced Information Processing, Rutgers University,

Piscataway, NJ, USA, December 2005.

• Investigating Autonomic Runtime Management Strategies for SAMR Applica-

tions. S. Chandra, M. Parashar, J. Yang, Y. Zhang and S. Hariri. Special Issue

on the NSF Next Generation Software (NGS) Program, International Journal

of Parallel Programming (IJPP), editor: F. Darema, Springer Science+Business

Media B.V., vol. 33, no. 2-3, pages 247-259, June 2005.

• Towards Autonomic Application-Sensitive Partitioning for SAMR Applications.

S. Chandra and M. Parashar. Journal of Parallel and Distributed Computing

(JPDC), Academic Press, vol. 65, no. 4, pages 519-531, April 2005.

• A Simulation Framework for Evaluating the Runtime Characteristics of Struc-

tured Adaptive Mesh Refinement Applications. S. Chandra and M. Parashar.

Technical Report Number TR-275, Center for Advanced Information Process-

ing, Rutgers University, Piscataway, NJ, USA, September 2004.
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Y. Zhang, J. Yang, S. Hariri, S. Chandra and M. Parashar. Proceedings of the

NSF Next Generation Software (NGS) Program Workshop, held in conjunction

with the 18th IEEE/ACM International Parallel and Distributed Processing
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Symposium, Santa Fe, NM, USA, IEEE Computer Society Press, 8 pages on

CD-ROM, April 2004.
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editors: L. T. Yang and Y. Pan, Kluwer Academic Publishers, ISBN: 104920-
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9.4 Future Work

The primary contribution of this research is a comprehensive approach towards iden-

tifying and addressing dynamism and heterogeneity, using a gamut of application and

system adaptation strategies, to optimize the performance of parallel scientific sim-

ulations on structured grids. However, these challenges assume greater significance

in heterogeneous cluster computing and high-performance petascale environments.

Harnessing scientific simulations on computing resources of such scale require sophis-

ticated numerical techniques with significant concurrency, scalable algorithms, and

above all, efficient runtime management. The ideas presented in this research consti-

tute important steps towards these objectives, and envision several potential research

directions that is the focus of future work.
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9.4.1 Expanding the Runtime Decision Space

The research presented in this dissertation focuses on heterogeneity and dynamism for

parallel scientific simulations and provides partitioning and synchronization strate-

gies to address these challenges at runtime. As part of future work, the decision

space for the deduction engine within the autonomic infrastructure can be expanded

by investigating other runtime parameters for parallel scientific simulations such as

locality and clustering properties, memory constraints, and adaptive granularity con-

trol. However, care must be taken to ensure that the overheads of characterization

and adaptation are kept low, especially for an expanded decision space, since the cost

of deploying the adaptation may overshadow the benefit of the adaptation itself. This

assumes greater significance in high-performance computing environments.

9.4.2 Error Convergence and Fault Tolerance

The synchronization adaptation algorithm presented in this research lowers the com-

munication overheads for scientific simulations, especially when the application is

communication-dominated, by employing a trade-off between messaging frequency

and additional local computation. By utilizing greater boundary overlaps that in-

crease local computations on processors while reducing overall synchronization over-

heads, this approach also creates a certain degree of redundancy within the application

domain, which can be possibly exploited for fault tolerance to enhance simulation sur-

vivability on large computational systems. Furthermore, it is possible to devise novel

modifications to existing numerical schemes that can enable adaptations based on the

quantity and accuracy of the available data for better error convergence at runtime,

while simultaneously reducing the frequency of lock-step synchronization typically

observed in SAMR algorithms.
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9.4.3 Machine Learning in Scientific Simulations

Another extension of this research is to augment the calibration and feedback compo-

nent within the runtime infrastructure with transductive inference and reinforcement

techniques drawn from machine learning theory to provide a robust mapping of appli-

cation and system states with performance-enhancing adaptations. Such a mapping

can exploit the similarity in runtime characteristics of different classes of scientific sim-

ulations, and can prove extremely useful in predicting and optimizing performance in

cases where application behaviors are not known a priori. Moreover, it is conceivable

to use formal methods and models for performance prediction and optimization of

parallel scientific simulations in various domains.

9.4.4 Addressing Performance for Component-based Scien-

tific Computing

Component-based scientific computing is a promising domain with significant benefits

from advances in runtime optimization. Recent years have seen a steady adoption of

component-based technologies for implementing complex scientific simulations. The

idea of a monolithic parallel code is replaced by a collection of components, which

may be composed into various feasible configurations. Furthermore, these components

may be adapted and/or replaced at runtime. Such an approach provides interoper-

ability and flexibility, and can ideally be exploited to significantly improve application

performance, especially in cases where algorithmic and component behaviors are not

known a priori. This research can be extended to address issues related to effi-

cient component-based scientific computing in a parallel or distributed environment.

Specifically, it may be worthwhile to develop unique performance components (includ-

ing calibrators, timers, rational agents) that can be used in a plug-and-play fashion in

componentized high-performance simulations. Furthermore, it is possible to formu-

late an algebra that can combine various performance objectives based on the outputs
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of these performance components, and determine the appropriate composition of the

application from a pool of components at runtime.

9.4.5 Grid-based Scientific Computing

A recent and popular application area is the execution of scientific simulations on

the computational Grid. The Grid has rapidly emerged as the dominant paradigm

for wide area distributed computing. The inherent heterogeneity and dynamism of

scientific applications coupled with a similarly heterogeneous and dynamic computa-

tional Grid results in significant complexities in runtime management. Future work

can investigate the unique challenges of Grid environments and apply the research

ideas related to heterogeneity and synchronization presented in this dissertation to

provide performance adaptations for scientific simulations deployed on a wide-area or

even global scale, similar to the SETI@Home model or protein-folding simulations.

9.4.6 Addressing Next-Generation Simulations

The overarching goal of this research is to enable large-scale scientific investigation

and discovery using high-performance “smart” simulations. The ideas presented in

this research have been successfully applied to simulations in basic sciences including

domains in physics and chemistry. It will be worthwhile to investigate potential

applications in domains such as bioinformatics and computational finance, which can

greatly benefit from runtime performance optimization.

Furthermore, extending the ideas in this research pose several challenging ques-

tions such as: How should an application developer write scientific codes to maintain

modularity and reuse while minimizing performance degradation and complexity?

To what extent can a computer scientist perform optimizations to compensate for

algorithmic limitations? How do we transform the performance optimization process
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for adaptive computational simulations from an art into an exact science? Explor-

ing answers to these issues as well as application, system and numerical adaptations

are critical towards enabling next-generation scientific simulations at unprecedented

scales.
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