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This thesis extends results on spectral functions of invariant differential operators on

multiplicity free spaces to the setting of skew multiplicity free spaces, which are rep-

resentations of a reductive group whose exterior algebra decomposes into a direct sum

of pairwise nonisomorphic irreducibles. We prove in the general skew multiplicity free

case that the spectral functions satisfy a vanishing property and a transposition for-

mula which are formally identical to those satisfied by their multiplicity free analogues.

We investigate two special cases, the GLnC modules S2
C
n and

∧2
C
n, for which the

spectral functions of invariant operators form a family of supersymmetric functions

which can be identified with the factorial Schur Q functions. From this equivalence

we deduce several properties of each family, giving the spectral functions a combinato-

rial interpretation and the factorial Schur Q functions a new representation theoretic

one.
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Chapter 1

Introduction and Overview

Let G be a connected reductive group. A G-module W is said to be multiplicity free

(MF) if no two irreducible submodules of its symmetric algebra S∗W are isomorphic. A

G-module V is said to be skew multiplicity free (SMF) if no two irreducible submodules

of its exterior algebra
∧
V are isomorphic. The primary objects of interest in this study

are G-invariant polynomial coefficient differential operators on V where V is an SMF

space, and our viewpoint will be that any such invariant operator can be viewed as a

complex valued function on the set of highest weights of
∧
V as a G-module. The goal

is to demonstrate certain general properties of these functions, and to give complete

characterizations of them in two special cases.

To justify this viewpoint, let V denote any SMF G-module, and Λ the set of highest

weights occurring in
∧
V . Then we can write the decomposition of

∧
V into irreducible

G-submodules as

(1.1)
∧
V =

⊕
λ∈Λ

Mλ

Denoting the polynomial coefficient differential operators on V by PD(V ), we consider

the natural G-module isomorphisms

(1.2) PD(V ) ∼= Cliff(V ⊕ V ∗) ∼=
∧
V ⊗

∧
V ∗ ∼=

∧
(V ⊕ V ∗)

Least familiar among these isomorphisms is Cliff(V ⊕ V ∗) ∼=
∧
V ⊗

∧
V ∗; see [FH,

Lemma 20.9] for a proof and discussion. We have
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(1.3) PD(V ) ∼=
∧
V ⊗

∧
V ∗ =

⊕
λ,µ

Mλ ⊗M∗µ

Taking G-invariants gives

(1.4) PD(V )G ∼=
⊕
λ,µ

(Mλ ⊗M∗µ)G

But by Schur’s Lemma,

(1.5) PD(V )G ∼=
⊕
λ

(Mλ ⊗M∗λ)G

Thus for each λ ∈ Λ there is a 1-dimensional space (Mλ⊗M∗λ)G of G-invariant polyno-

mial coefficient differential operators, hence, up to scalars, a unique invariant operator

Dλ associated with each λ ∈ Λ. Moreover, these operators {Dλ, λ ∈ Λ} form a basis

for PD(V )G. The analogous objects in the MF case are, after a suitable normalization,

the famous Capelli operators, so that our {Dλ, λ ∈ Λ} may reasonably be termed the

skew Capelli operators.

Now each such Dλ maps
∧
V to itself in a G equivariant way, so that by another ap-

plication of Schur’s lemma, any nonzero image of the restriction of Dλ to a particular

Mµ must lie entirely in Mµ, and its action on Mµ must simply be multiplication by a

scalar cλ(µ). In this sense we may interpret Dλ as a complex-valued function cλ(·) on

Λ, referred to henceforth as the spectral function of Dλ.

The properties of spectral functions in the symmetric case, i.e. for invariant differential

operators on MF spaces, have been well investigated by Knop, Sahi, Okounkov, Ol-

shanskii, Benson and Ratcliff, and others. The development of this subject in the skew

symmetric case, i.e. that of SMF spaces, follows that of the symmetric case closely.

Among the properties which have SMF analogues are the existence of ”transposition

formulas”, in the following sense.
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The action of G on V induces an action of the universal enveloping algebra U(g) as

differential operators on
∧
V , and thus of its center Z(g) as invariant differential oper-

ators on V . There is an antiautomorphism of U(g), which we call ”transposition” by

analogy to the work of Knop [K1], whose induced effect on differential operators is to

reverse the order of multiplication;

(1.6) x 7→ x, ∂ 7→ −∂, x∂ 7→ ∂x, ∂x 7→ x∂

Thus for each of our invariant operators Dλ as described above, there exists a trans-

posed operator Dt
λ, hence there also exist the corresponding spectral functions cλ and

ctλ, respectively. Chapter 2 derives the following transposition formula, which expresses

the value of ctλ at a given highest weight as a linear combination of values of several cµ:

(1.7) ctλ(ν) = cλ(χ− w0ν) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)cµ(ν)

where w0 is the longest element of the Weyl group of G, χ is the sum of the weights

of V , and dν is the superdimension of the irreducible submodule Mν , whose elements

have homogeneous degree |ν| as tensors. This is a general result on skew multiplicity

free spaces which is completely analogous to a corresponding result proved by Knop in

the multiplicity free case [K1].

Another property of spectral functions of invariant operators on MF spaces, investigated

by several authors beginning with Sahi [S2] and proven in full generality by Knop [K1],

is the vanishing condition, cλ(µ) = 0 if |µ| ≤ |λ|, µ 6= λ and cλ(λ) 6= 0. This condition,

together with simple conditions on symmetry and degree, suffice to determine uniquely

a polynomial (with ρ-shifted arguments) which interpolates cλ at all {µ ∈ Λ}. Most

remarkably, the spectral functions vanish at many more points than those indicated

in the vanishing condition, and indeed satisfy the extra vanishing condition that for

all λ, µ ∈ Λ, cλ(µ) = 0 if λ * µ, in settings in which λ and µ may be interpreted as

partitions. Other examples of families of functions satisfying the vanishing and extra
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vanishing conditions, or suitable analogues thereof, are the shifted MacDonald functions

introduced by Okounkov [O2], and even certain non symmetric polynomials introduced

by Knop [K5].

Chapter 2 demonstrates that spectral functions of invariant operators on SMF spaces

satisfy the same basic vanishing property, cλ(µ) = δλµ for all |µ| ≤ |λ|. Since
∧
V

has only finitely many highest weights for each SMF space V , the interesting cases to

investigate are those in which infinite families occur. Howe [H] has classified irreducible

SMF spaces for simple groups (possibly augmented by C∗), and apart from the defining

representations of the classical groups, the only infinite classes of such spaces are the

GLn modules S2
C
n, n ≥ 2 and

∧2
C
n, n ≥ 2.

Chapter 3 investigates the spectral functions of invariant operators on S2
C
n and

∧2
C
n

for n ≥ 2, and proves a characterization theorem analogous to that of Knop in the

multiplicity free case:

For each highest weight λ of
∧
V there exists a polynomial pλ on SpanCΛ which satis-

fies the following properties.

CT1a. pλ(µ+ ρ) = cλ(µ) for every µ ∈ Λn.

CT1b. pλ(µ+ ρ) = 0 whenever |µ| ≤ |λ| unless µ = λ, and pλ(λ+ ρ) = 1.

CT2. pλ ∈ C[p1, p3, p5, ...], where p1, p3, .. are the odd degree power sum polynomials.

CT3. pλ has degree
|λ|
2

.

Furthermore, pλ is uniquely determined by CT1b, CT2, and CT3. Moreover, cλ satis-

fies the extra vanishing condition that cλ(µ) = 0 if λ * µ.
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A symmetric polynomial p(z1, z2, .., zn) is said to be supersymmetric if for any integers

1 ≤ i < j ≤ n, p(z1, ..., zi−1, t, zi+1, ..., zj−1,−t, zj+1, ..., zn) does not depend on t. Pra-

gacz (cf. [P]) shows that the odd degree power sum polynomials p1, p3, ... generate the

algebra of supersymmetric functions. Henceforth we will use the term supersymmetric

with this interpretation in mind; we call p supersymmetric if p ∈ C[p1, p3, p5, ...]. Con-

dition CT2 of the characterization theorem just stated can thus be reformulated; pλ is

supersymmetric.

The factorial Schur Q-functions Q∗λ are a family of symmetric functions defined by Ok-

ounkov and investigated by Ivanov in [I1] and[I2]. Like the classical Schur Q-functions

of which they are analogues, the Q∗λ are supersymmetric and indexed by strict par-

titions. After replacing each Q∗λ by a suitably rescaled polynomial function qλ, the

family {qλ : λ a strict partition} are characterized by the same vanishing, supersymme-

try, and degree conditions as our spectral polynomials, except that strict partitions are

the defining set of evaluation points instead of highest weights of
∧
V . The argument

in chapter 3 associates to each highest weight λ a unique strict partition λ̌, constructs

an automorphism φ of the algebra of supersymmetric functions such that φ(pλ) = qλ̌,

and concludes that cλ(µ) = qλ̌(µ̌) for all highest weights λ and µ of
∧
V .

By virtue of this correspondence between the two families of supersymmetric functions,

the spectral functions inherit several important properties of the factorial Schur Q func-

tions, as well as the combinatorial interpretation of Q∗µ(λ) as a term in a simple for-

mula which counts shifted skew tableaux of shape λ/µ. Conversely, the factorial Schur

Q functions acquire a new representation theoretic interpretation as spectral functions

of invariant operators, and satisfy a suitable reformulation of the transposition formula.

Chapter 4 employs the Weyl Dimension Formula together with the peculiar combina-

torics of the highest weights occurring in
∧
V, V = S2

C
n or

∧2
C
n, to obtain explicit

dimension formulas for irreducible submodules of
∧
V in terms of the top-row Frobe-

nius coordinates of their highest weights. For each such irreducible Mλ, dimMλ can

be expressed explicitly as a polynomial in n. This makes possible the derivation of an
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explicit formula for the leading coefficients of the spectral functions, the factorial Schur

Q-functions, and the classical Schur Q-functions.

Chapter 5 presents computational examples. Among these are explicitly written op-

erators Dλ, spectral functions, factorial Schur Q-functions, tables of values of these

functions, and dimension polynomials.

Chapter 6 sets out several topics for further research which arise from, or are natural

extensions of, the current project.
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Chapter 2

The Transposition Formula for General Skew Multiplicity

Free Spaces

In the following discussion, multiplications are understood to be skew multiplications,

i.e. multiplication inside an exterior algebra. Other notational conventions are as fol-

lows.

G denotes a connected reductive group. V denotes any skew multiplicity free G-module.

PD(V ) denotes the algebra of polynomial coefficient differential operators on V , and

PD(V )G the algebra of G-invariant such operators.

For a specific V understood from context, Λ denotes the set of highest weights of
∧
V

as a G-module, and the elements of Λ are denoted by lower case Greek letters λ, µ, ν, ...

For λ ∈ Λ, Mλ denotes the irreducible G-module of highest weight λ.

dλ = (−1)|λ|dimMλ denotes the superdimension of Mλ.

Sections 2.1 and 2.2 are largely inspired by Benson and Ratcliff’s treatment of the sub-

ject in the symmetric case in [BR, 43-57], and closely mimic much of the pattern of

their argument.

2.1 Skew Capelli Polynomials and Operators

Assume that V has finite dimension n. To define a pairing
∧
V ∗ ⊗

∧
V → C, let {zi}

be a basis of V and {z̄i} a basis of V ∗, such that < z̄i, zj >= δij and < zi, z̄j >= −δij .

We define ∂i and ∂̄i by ∂i(zj) =< z̄i, zj >= δij , and ∂̄i(z̄j) =< zi, z̄j >= −δij .

The G-module isomorphisms PD(V ) ∼=
∧

(V ⊕ V ∗) ∼=
∧
V ⊗

∧
V ∗ permit us to adopt
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the useful viewpoint that the canonical invariant operator Dλ considered in the intro-

duction can be regarded as a polynomial P̃λ in skew symmetric variables, which can in

turn be viewed as a tensor. We may move freely between these interpretations.

Beginning with the tensor viewpoint, we consider the basis-independent element

(2.1.1)
|dλ|∑
i=1

vi ⊗ v∗i ∈ (Mλ ⊗M∗λ)G ⊂ (
∧
V ⊗

∧
V ∗)G

where {vi} is any basis forMλ and {v∗i } is its dual basis, in the sense that< v∗i , vj >= δij

and < vi, v
∗
j >= −δij . We can define the canonical skew invariant

(2.1.2) P̃λ =
|dλ|∑
i=1

vi ⊗ v∗i ,

and the normalized invariant

(2.1.3) Pλ =
1
dλ
P̃λ.

By the natural isomorphism

(2.1.4)
∧
V ⊗

∧
V ∗ ∼=

∧
(V ⊕ V ∗)

we may regard P̃λ as a skew-polynomial in the variables z1, ..., zn, z̄1, ..., z̄n, recalling

that z1, ..., zn ∈ V and z̄1, ..., z̄n ∈ V ∗ . With this interpretation we write

(2.1.5) P̃λ(z, z̄) =
|dλ|∑
i

vi(z)v∗i (z̄)

and refer to P̃λ(z, z̄) as the skew Capelli polynomial determined by λ.

Finally, consider the isomorphism of G-modules

(2.1.6) π :
∧

(V ⊕ V ∗)→ PD(V )
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defined by

(2.1.7) π(zi) = zi, π(z̄i) = ∂i, i = 1, 2, ..., n

We define the skew Capelli operator determined by λ by

(2.1.8) Dλ = π(P̃λ(z, z̄))

and write Dλ = P̃λ(z, ∂).

We define a G-invariant form < · , · > on
∧

(V ⊕ V ∗) by

(2.1.9) < p, q >= p(∂̄, ∂)(q(z, z̄))|z=z̄=0

The form has the properties

(2.1.10) < ξzi, · >=< ξ, ∂̄i(·) >

< ξz̄i, · >=< ξ, ∂i(·) >

< 1, 1 >= 1

< 1, ξ >= 0 if ξ is not a constant.

In the first two statements in (2.1.10) the right side has strictly lower degree than the

left, so that the four given statements show that such an inner product on
∧

(V ⊕ V ∗)

is unique.

Note also that this form is supersymmetric in the sense that

(2.1.11) < ξ, η >= (−1)|ξ||η| < η, ξ > .

Computation of the inner product on concrete elements of
∧

(V ⊕V ∗) entails replacing
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the variables of the first argument by suitable differentiation operators.

Examples:

1) < z1z̄2, z1z̄2 >=< z1, ∂2(z1z̄2) >=< z1, 0 >= 0

2) < z1z2, z̄1z̄2 >=< z1, ∂̄2(z̄1z̄2) >=< z1,−z̄1∂̄2(z̄2) >=< z1, z̄1 >= −1

Indeed, we can write the following formula for the inner product on straightened mono-

mials:

(2.1.12) < zaz̄b, zcz̄d >= δadδbc(−1)(
|a|+1

2 )+(|b|2 )

where za =
n∏
i=1

zaii , with each ai = 0 or 1; similarly z̄b =
n∏
i=1

z̄bii , etc. Thus if ξ and η are

monomials then < ξ, η >= 0 unless ξ equals, up to sign, a permutation of the factors

of η.

2.1.1. Proposition. If Mλ ⊂
∧
V and M∗µ ⊂

∧
V ∗, then the pairing < ·, · > restricted

to Mλ ×Mµ is zero unless λ = µ, in which case it is non-degenerate.

Proof: This follows from the G-invariance of the bilinear form < ·, · >.

The following computation is central to the overall argument:

2.1.2. Proposition. < P̃λ, P̃µ >= dλδλµ

Proof: Let {vi} and {wj} be bases for the irreducible submodules Mλ and Mµ, respec-

tively, and let {v∗i } and {w∗j} be the corresponding dual bases. In keeping with our con-

ventions this means precisely that < v∗i , vj >= δij , < vi, v
∗
j >= −δij , < w∗i , wj >= δij ,

and < wi, w
∗
j >= −δij

(2.1.13) < P̃λ, P̃µ >=< P̃λ(z, z̄), P̃µ(z, z̄) >

= P̃λ(∂̄, ∂)(P̃µ(z, z̄))
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=
∑
i,j

vi(∂̄)v∗i (∂)wj(z)w∗j (z̄)

Since vi ∈ Mλ, wi ∈ Mµ, Proposition 2.1.1 implies that v∗i (∂)wj(z) =< v∗i , wj >= δλµ.

Thus if λ 6= µ we have < P̃λ, P̃µ >= 0.

If λ = µ, so that the {vi} and {wj} are bases of the same space, we may assume by the

basis independence of P̃λ that vi = wi for each i. Thus we may replace v∗i (∂)wj(z) by

δλµδij , and obtain

(2.1.14) < P̃λ, P̃µ >= δλµ

|dλ|∑
i

vi(∂̄)v∗i (z̄)

= δλµ

|dλ|∑
i

(−1)|λ|

since deg vi = |λ|

= (−1)|λ||dλ|δλµ

= dλδλµ

The argument in the next section will require the following lemma.

Let Q = z1z̄1 + ...+ znz̄n.

2.1.3. Lemma.
∑
|λ|=k

P̃λ =
Qk

k!

Proof: The left side is the sum of all skew Capelli polynomials of specified degree, which

together form a basis of
⊕
|λ|=k

Mλ. Recalling (2.1.5) we can express each skew Capelli

polynomial in a basis independent way by

(2.1.15) P̃λ =
|dλ|∑
i=1

vi(z)v∗i (z̄)

Consider the monomial basis of
⊕
|λ|=k

Mλ, namely {zα : |α| = k}, where α = (α1, ..., αn)

is a multiindex of 0s and 1s, and zα = zα1
1 · · · zαnn . By the basis independence of the

sum of skew Capelli polynomials of a given degree, we have that
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(2.1.16)
∑
|λ|=k

P̃λ =
∑
|α|=k

zα(zα)∗.

(zα)∗, the element of
∧
V ∗ dual to zα, is determined by formula (2.1.12), which implies

that

(2.1.17) < z̄α, zα >= (−1)(
|α|
2 )

It follows that

(2.1.18) (zα)∗ = (−1)(
|α|
2 )z̄α

so that

(2.1.19)
∑
|λ|=k

P̃λ =
∑
|α|=k

zα(zα)∗

= (−1)(
k
2)
∑
|α|=k

zαz̄α

=
(−1)(

k
2)

k!

∑
|α|=k

k!zαz̄α

=
(−1)(

k
2)

k!

∑
1≤i1<...<ik≤n

k!(−1)(
k
2)zi1 z̄i1 · · · zik z̄ik

=
Qk

k!

2.1.4. Corollary.
∑
λ∈Λ

P̃λ = eQ.
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2.2 The Transposition Operator

Let ∆ := ∂̄1∂1 + ...+ ∂̄n∂n. Recall from the beginning of this chapter that by definition,

∂i(zj) =< z̄i, zj >= δij and ∂̄i(z̄j) =< zi, z̄j >= −δij .

Define an operator T :
∧

(V ⊕ V ∗)→
∧

(V ⊕ V ∗) by

(2.2.1) (TP )(z, z̄) = (e∆P )(z,−z̄) = e∆(P (z,−z̄)).

Define an operator M by

(2.2.2) (MP )(z, z̄) = P (z,−z̄).

Then

2.2.1.Proposition. T = M ◦ e−∆ = e∆ ◦M = T−1.

Proof: Observe first that

(2.2.3)
∆k

k!
=

∑
1≤i1<i2<...<ik≤n

∂̄i1∂i1 ...∂̄ik∂ik

In the expansion of the product ∆k = (∂̄1∂1 + ...+ ∂̄n∂n)k, the only terms which do not

contain repeated factors and consequently vanish are those of the form ∂̄i1∂i1 ...∂̄ik∂ik .

Furthermore, since there are k! reorderings of each k-tuple of indices {i1, ..., ik}, we

have k! copies of each term of the form ∂̄i1∂i1 ...∂̄ik∂ik in the expansion of ∆k.

It suffices to test the equality of M ◦ e−∆ and e∆ ◦ M on elements of the form

z1z̄1z2z̄2...zsz̄s.

On the one hand,
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(2.2.4) (−1)k
∆k

k!
◦M(z1z̄1z2z̄2...zsz̄s) =(−1)k

∆k

k!
((−1)s(z1z̄1z2z̄2...zsz̄s))

= (−1)k+s
∑

1≤i1<i2<...<ik≤n
∂̄i1∂i1 ...∂̄ik∂ik(z1z̄1z2z̄2...zsz̄s)

= (−1)s
∑

1≤j1<j2<...<js−k≤n
zj1 z̄j1zj2 z̄j2 ...zjs−k z̄js−k

The second factor of (−1)k, which cancels the first, arises because each ∂̄i(z̄i) = −1.

On the other hand,

(2.2.5) M ◦ ∆k

k!
(z1z̄1z2z̄2 · · · zsz̄s)= M((−1)k

∑
1≤j1<j2<...<js−k≤n

zj1 z̄j1zj2 z̄j2 ...zjs−k z̄js−k)

= (−1)s
∑

1≤j1<j2<...<js−k≤n
zj1 z̄j1zj2 z̄j2 ...zjs−k z̄js−k

2.2.2. Corollary. T (Pλ) = (−1)|λ|e∆(Pλ).

Proof: Immediate from the definition and the fact that degz̄Pλ = |λ|.

2.2.3. Lemma. {T (Pλ) : λ ∈ Λ} is a vector space basis for
∧

(V ⊕ V ∗)G.

Proof: T (Pλ) ∈
∧

(V ⊕ V ∗) is G-invariant and ∆ is a G-invariant operator. Moreover,

(2.2.6) T (Pλ) = (−1)|λ|Pλ +Rλ

where Pλ ∈
∧

(V ⊕ V ∗)|λ|,|λ| and Rλ is of strictly lower degree, due to the action of e∆.

As the {Pλ} form a basis for
∧

(V ⊕ V ∗)G, so do the {T (Pλ)}.

Remark: This differs slightly from argument given in the symmetric case, in which

a K-invariant form is used and the statement of the lemma pertains to K-invariants.

This difference has no effect on the overall argument.
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2.2.4. Definition. The generalized skew binomial coefficients

 λ

ν

 are defined for

λ, ν ∈ Λ by T (Pλ) = (−1)|λ|
∑
ν∈Λ

 λ

ν

Pν .
Analogously to the symmetric case, the proof of Lemma 2.2.3 gives the following corol-

lary

2.2.5. Corollary.

 λ

λ

 = 1,

 λ

ν

 = 0 when |λ| ≤ |ν| but λ 6= ν.

Thus

(2.2.7) T (Pλ) =
∑
|ν|≤|λ|

(−1)|λ|

 λ

ν

Pν = (−1)|λ|Pλ +
∑
|ν|<|λ|

(−1)|λ|

 λ

ν

Pν .

2.2.6. Proposition.
∑
µ∈Λ

(−1)|µ|

 λ

µ

 µ

ν

 = (−1)|λ|δλν .

Proof: T 2 = 1 implies that

(2.2.8) Pλ = T (T (Pλ)) = (−1)|λ|
∑
ν

 λ

ν

T (Pν)

On the other hand,

(2.2.9) T (Pλ) = (−1)|λ|
∑
µ

 λ

µ

Pµ
= (−1)|λ|

∑
µ

 λ

µ

 ((−1)|µ|
∑
ν

 µ

ν

T (Pν))

= (−1)|λ|
∑
ν

(
∑
µ

(−1)|µ|

 λ

µ

 µ

ν

)T (Pν)
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The proposition follows from the linear independence of the {T (Pλ) : λ ∈ Λ}.

2.2.7. Proposition. For λ ∈ Λ and k ∈ N,

(2.2.10)
∆k

k!
Pλ =

∑
|ν|=|λ|−k

 λ

ν

Pν
and

(2.2.11) (−1)k
∆k

k!
T (Pλ) =

∑
|ν|=|λ|−k

 λ

ν

T (Pν)

Proof: We have

(2.2.12) (−1)|λ|
∑
ν

 λ

ν

Pν = T (Pλ) = (−1)|λ|e∆(Pλ) = (−1)|λ|
∑
k

∆k

k!
Pλ

For a given k,

(2.2.13)
∆k

k!
Pλ =

∑
|ν|=|λ|−k

 λ

ν

Pν
Equating homogeneous components of degree 2(|λ| − k) on both sides yields (2.2.10).

To prove 2.2.11, apply the operator T to both sides of (2.2.10):

(2.2.14) e∆ ◦M∆k

k!
Pλ =

∑
|ν|=|λ|−k

 λ

ν

T (Pν)

(−1)|λ|−ke∆ ∆k

k!
Pλ =

(−1)|λ|−k
∆k

k!
e∆Pλ =

(−1)|λ|−k
∆k

k!
(−1)|λ|T (Pλ) =
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(−1)k
∆k

k!
T (Pλ) =

2.2.8. Lemma. Q and ∆ are adjoint.

Proof: We compute

(2.2.15) < zj z̄jξ, η >=< zjξ, (−1)deg ξ∂jη >=< ξ, ∂̄j∂jη > .

Thus

(2.2.16) < Qξ, η >=< ξQ, η >=< ξ,∆η > .

Benson and Ratcliff ([BR, p.54]) cite an unpublished Pieri formula proved by Yan,

whose skew analogue is the following:

2.2.9. Theorem. For ν ∈ Λ, k ∈ N, Qk

k!
P̃ν =

∑
|λ|=|ν|+k

 λ

ν

 P̃λ.
Proof: The theorem states that

(2.2.17)
Qk

k!
dνPν =

∑
|λ|=|ν|+k

 λ

ν

 dλPλ
We have

(2.2.18)
Qk

k!
Pν =

∑
|λ|=|ν|+k

< Qk

k! Pν , Pλ >

< Pλ, Pλ >
Pλ

since the Pλ of degree |ν|+ k form a basis for invariants of degree |ν|+ k

(2.2.19) =
∑

|λ|=|ν|+k

dλ < Pν ,
∆k

k!
Pλ > Pλ
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by adjointness of Q and ∆ (Lemma 2.2.8) and the fact that dλ =< P̃λ, P̃λ > (Proposi-

tion 2.1.2) , so that < Pλ, Pλ >= 1
dλ

. Thus we have

(2.2.20) =
∑

|λ|=|ν|+k

dλ < Pν ,
∑
µ

 λ

ν

Pν > Pλ

=
∑

|λ|=|ν|+k

 λ

ν

 dλ < Pν , Pν > Pλ

by the orthogonality of Pλ and Pν for λ 6= ν, and Proposition 2.2.7.

(2.2.21) =
∑

|λ|=|ν|+k

dλ
dν

 λ

ν

Pλ.
Thus

(2.2.22)
Qk

k!
dνPν =

∑
|λ|=|ν|+k

 λ

ν

 dλPλ
i.e.

Qk

k!
P̃ν =

∑
|λ|=|ν|+k

 λ

ν

 P̃λ
2.2.10. Corollary. For ν ∈ Λ, eQP̃ν =

∑
λ∈Λ

 λ

ν

 P̃λ.

Recall from Chapter 1 that by Schur’s Lemma and the skew multiplicity freeness of V ,

the G-invariant operator Dν = P̃ν(z, ∂) acts as a scalar on each irreducible Mλ.

2.2.11. Definition. Let cν denote the spectral function of the canonical invariant

operator P̃ν(z, ∂) ∈ (Mν ⊗M∗ν )G.

Thus for ν, λ ∈ Λ, cν(λ) ∈ C denotes the eigenvalue of Dν on Mλ.

2.2.12. Proposition. For all λ, ν ∈ Λ, cν(λ) =

 λ

ν

 .
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Proof: Note that P̃ν(z, ∂)P̃λ(z, z̄) = cν(λ)P̃λ(z, z̄) since P̃λ(z, z̄) ∈Mλ ⊗M∗λ .

We have

(2.2.23) P̃ν(z, ∂)eQ = P̃ν(z, z̄)eQ

which holds in the skew case as in the symmetric.

On the one hand,

(2.2.24) P̃ν(z, z̄)eQ = P̃ν(z, z̄)
∑
k

Qk

k!

=
∑
k

Qk

k!
P̃ν(z, z̄)

since Qk is homogeneous of even degree, so that QkP̃λ = P̃λQ
k for each k.

(2.2.25) =
∑
k

∑
|λ|=|ν|+k

 λ

ν

 P̃λ(z, z̄)

by Theorem 2.2.9.

=
∑
|λ|≥|ν|

 λ

ν

 P̃λ(z, z̄).

On the other hand, using Lemma 2.1.3 we find that

(2.2.26) eQ =
∑
k

Qk

k!

=
∑
k

∑
|λ|=k

P̃λ(z, z̄)

=
∑
λ

P̃λ(z, z̄)

Thus
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(2.2.27) P̃ν(z, ∂)eQ =
∑
λ

P̃ν(z, ∂)P̃λ(z, z̄)

=
∑
λ

cν(λ)P̃λ(z, z̄)

Having written P̃ν(z, ∂)eQ in two ways we find that

(2.2.28)
∑
λ

 λ

ν

 P̃λ(z, z̄) =
∑
λ

cν(λ)P̃λ(z, z̄).

For each λ, equating coefficients of P̃λ(z, z̄) gives

 λ

ν

 = cν(λ).

Proposition 2.2.12 and Corollary 2.2.5 imply that the spectral functions satisfy the fol-

lowing vanishing condition:

2.2.13. Corollary. For any λ, ν ∈ Λ, cν(λ) = 0 if |λ| ≤ |ν| but λ 6= ν; cν(ν) = 1.
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2.3 The Transposition Formula

Let the transposition map τ be the antiautomorphism on skew differential operators

defined for each i = 1, ..., dim V by

(2.3.1) τ(zi) = zi, τ(∂i) = −∂i.

It then follows that τ(zi∂i) = (−1)deg(zi)deg(∂i)(−∂i)zi = ∂izi, and similarly τ(∂izi) =

zi∂i.

2.3.1. Proposition. The action of T = e∆ ◦M = M ◦ e−∆ on skew polynomials

corresponds to that of τ on skew differential operators in the sense that the following

diagram commutes for any P (z, z̄) ∈
∧

(V ⊕ V ∗):

P (z, z̄) −→π P (z, ∂)

↓ ↓

T (P (z, z̄)) −→ τ(P (z, ∂))

Proof: We observe that the following diagrams commute:

(2.3.2)

z −→ z

↓ ↓

z −→ z

(2.3.3)

z̄ −→ ∂

↓ ↓

−z̄ −→ −∂

(2.3.4)

zz̄ −→ z∂

↓ ↓

−zz̄ + 1 −→ −z∂ + 1 = ∂z

since z∂ + ∂z = 1. To justify that in fact e∆ ◦M(zz̄) = −zz̄ + 1, we compute
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(2.3.5) e∂̄∂ ◦M(zz̄) = e∂̄∂(−zz̄)

= −zz̄ + ∂̄∂(−zz̄)

= −zz̄ + ∂̄(−z̄)

= −zz̄ + 1

For the induction step, assume that the result holds for polynomials

P (z, z̄) = P (z1, .., zn−1, z̄1, ..., z̄n−1). We must show that it holds for P (z, z̄)Q(zn, z̄n).

It suffices to check this for Q(zn, z̄n) = zn, z̄n, or znz̄n. Write

(2.3.6) ∆n−1 := ∂̄1∂1 + ...+ ∂̄n−1∂n−1.

Then

(2.3.7) ∆ = ∆n = ∆n−1 + ∂̄n∂n

and in particular

(2.3.8) e∆ = e∆n−1e∂̄n∂n

Note that ∆n−1 and ∂̄n∂n commute, since both expressions have even degree, and there-

fore e∆n−1 and e∂̄n∂n commute as well.

For Q(z, z̄) = zn, observe that e∂̄n∂n ◦M(zn) = zn. We have

(2.3.9) e∆n−1e∂̄n∂n ◦M(P (z, z̄)zn) = e∆n−1(P (z,−z̄))e∂̄n∂n(zn))

= (e∆n−1(P (z,−z̄)))zn

Thus
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(2.3.10)

P (z, z̄)zn −→ P (z, ∂)zn

↓ ↓

(e∆n−1(P (z,−z̄)))zn −→ τ(P (z, ∂))zn

where e∆n−1(P (z,−z̄)) 7→ τ(P (z, ∂)) by induction.

For Q(z, z̄) = z̄n, we have e∂̄n∂n ◦M(z̄n) = −z̄n, hence

(2.3.11) e∆n−1e∂̄n∂n ◦M(P (z, z̄)(z̄n)) = e∆n−1(P (z,−z̄)))(−z̄n)

Thus we have a commutative diagram

P (z, z̄)z̄n −→ P (z, ∂)(∂n)

↓ ↓

e∆n−1(P (z,−z̄))(−z̄n) −→ τ(P (z, ∂))(−∂n)

For Q(z, z̄) = znz̄n, we have

(2.3.12) e∂̄n∂n ◦M(znz̄n) = e∂̄n∂n(−znz̄n)

= −znz̄n + ∂̄n∂n(−znz̄n)

= −znz̄n + ∂̄n(−z̄n)

= −znz̄n + 1

since ∂̄n(z̄n) = −1, hence

(2.3.13) e∆n−1e∂̄n∂n ◦M(P (z, z̄)znz̄n) = e∆n−1(P (z,−z̄))(−znz̄n + 1)

Thus we have a commutative diagram

P (z, z̄)znz̄n −→ P (z, ∂)(zn∂n)

↓ ↓

e∆n−1(P (z,−z̄))(−znz̄n + 1) −→ τ(P (z, ∂))(−zn∂n + 1) = τ(P (z, ∂))(∂nzn)
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Let V be an SMF G-space of dimension n, let χ denote the sum of all weights of V ,

and let w0 denote the longest element of the Weyl group of G. Consider the map

(2.3.14)
∧i V ⊗

∧n−i V →
∧n V

and observe that the module Mχ ⊆
∧n V .

If Mλ ⊆
∧i V then there exists Mµ ⊆

∧n−i V such that multiplication is a perfect pair-

ing, Mλ ⊗Mµ →Mχ. Then necessarily Mµ = Mχ ⊗M∗λ . Since M∗λ has highest weight

−w0λ it follows that the set of highest weights of
∧
V is invariant under λ 7→ χ−w0λ.

We can now formulate the following

2.3.2. Proposition. cDt(λ) = cD(χ− w0λ).

Proof. The argument closely follows Knop’s approach in the symmetric case ([K1, sec-

tion 2] where the corresponding assertion is that cDt(z) = cD(−z)).

Let V be any finite dimensional SMF G-space, where G has Lie algebra g. Let Z(g)

denote the center of the universal enveloping algebra U(g). The action of G on V in-

duces a homomorphism Ψ : U(g)→ PD(V ), whose restriction to Z(g) maps to PD(V )G.

Let ei be a basis for V consisting of weight vectors such that each ei has weight

χi. Let the operator ∂i be defined by ∂i(ej) = δij . Write the usual decomposition

g = n+ ⊕ h⊕ n−. For η ∈ h we have Ψ(η) =
∑
χi(η)ei∂i. After transposing we have

(2.3.15) Ψt(η) =
∑

χi(η)∂iei =
∑

χi(η)(1− ei∂i) = χ(η)−Ψ(η).

If η ∈ n± then Ψ(η) =
∑

i6=j aijei∂j . Since ei and ∂j anticommute when i 6= j, we have
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Ψt(η) = −Ψ(η). Since χ is a character of g we can define an antiautomorphism τ on

U(g) by τ(η) = −η + χ for all η ∈ g, and thus we have shown that

(2.3.16) Ψt(ξ) = Ψ(τ(ξ)) for all ξ ∈ U(g).

Let ξ ∈ Z(g) and D = Ψ(ξ). By the Poincare Birkhoff Witt theorem we can write

ξ = ξ0 + ξ1 where ξ0 ∈ h and ξ1 ∈ n−U(h)n+. Regarding ξ0 as a function on h∗ which

takes the value ξ0(v) at v ∈ h∗,

(2.3.17) τ(ξ0(v)) = ξ0(−v + χ).

Now observe that τ(ξ) = τ(ξ0)+τ(ξ1), where τ(ξ0) ∈ U(h) and, since τ is an antiautomorphism,

τ(ξ0) ∈ n+U(h)n−. We consider the action upon a lowest weight vector u of Mλ, which

has weight w0λ, where w0 denotes the longest element in the Weyl group of G. Since

n− annihilates a lowest weight vector, Ψ(τ(ξ1))u = 0, hence

(2.3.18) Dtu = Ψ(τ(ξ0))u = τ(ξ0)(w0λ)u = ξ0(−w0λ+ χ)u.

Thus we have

(2.3.19) cDt(λ) = ξ0(χ− w0λ) for any highest weight λ.

Since λ is the highest weight of Mλ, we can write

(2.3.20) cD(λ) = ξ0(λ).

Since χ− w0λ is again a weight, we may replace λ by χ− w0λ to obtain

(2.3.21) cD(χ− w0λ) = ξ0(χ− w0λ) = cDt(λ).
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This result holds when D is any G-invariant differential operator arising from the center

of U(g). On the assumption that Dλ, for λ ∈ Λ, arises in this way, we obtain at last

the desired transposition formula:

2.3.3. Theorem. cλ(χ− w0ν) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)cµ(ν) for each λ, ν ∈ Λ.

Equivalently,

 χ− w0ν

λ

 =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ

 λ

µ

 ν

µ


Proof: By Definition 2.2.4 we write in terms of unnormalized invariants that

(2.3.22) T (Pλ(z, z̄)) =
∑
µ∈Λ

(−1)|λ|

 λ

µ

Pµ(z, z̄)

In terms of normalized invariants this is written

(2.3.23)
T (P̃λ(z, z̄))

dλ
=
∑
µ∈Λ

(−1)|λ|

 λ

µ

 P̃µ(z, z̄)
dµ

By Proposition 2.2.12 we have

(2.3.24)
T (P̃λ(z, z̄))

dλ
=
∑
µ∈Λ

(−1)|λ|cµ(λ)
P̃µ(z, z̄)
dµ

hence

(2.3.25) T (P̃λ(z, z̄)) =
∑
µ∈Λ

(−1)|λ|
dλ
dµ
cµ(λ)P̃µ(z, z̄)

Now we apply the map π (see (2.1.6) above) which associates to each polynomial the

corresponding differential operator by mapping z 7→ z, z̄ 7→ ∂. Recalling that by Propo-

sition 2.3.1, the action of T corresponds under this map to the transposition operator

τ , we have
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(2.3.26) τ(P̃λ(z, ∂)) =
∑
µ∈Λ

(−1)|λ|
dλ
dµ
cµ(λ)P̃µ(z, ∂)

or equivalently,

(2.3.27) Dt
λ =

∑
µ∈Λ

(−1)|λ|
dλ
dµ
cµ(λ)Dµ

When each side of this equation acts on an irreducible Mν , we replace the operator on

each side by its spectral function:

(2.3.28) ctλ(ν) =
∑
µ∈Λ

(−1)|λ|
dλ
dµ
cµ(λ)cµ(ν)

By Proposition 2.3.2 this is

(2.3.29) cλ(χ− w0ν) =
∑
µ∈Λ

(−1)|λ|
dλ
dµ
cµ(λ)cµ(ν)

Theorem 2.3.3 implies an additional symmetry which the spectral functions satisfy:

2.3.4. Corollary. The expression
(−1)|λ|cλ(χ− w0ν)

dλ
is symmetric in λ and ν.

2.3.5. Corollary. For each λ ∈ Λ, cλ(χ) = (−1)|λ|dλ = dimMλ.

Proof: By evaluating the transposition formula, Theorem 2.3.3, at µ = 0,

(2.3.30) cλ(χ) = cλ(χ− w0(0)) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)cµ(0).

The vanishing property, Corollary 2.2.13, implies that cµ(0) = 0 unless µ = (0), so we

have

(2.3.31) cλ(χ) = (−1)0 |dλ|
d(0)

c(0)(λ)c(0)(0).
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Since (0) is the highest weight of the trivial representation, D(0) = 1, so that c(0)(ν) = 1

for all ν ∈ Λ, and moreover, d(0) = 1. Thus (2.3.31) becomes cλ(χ) = |dλ|.

2.3.6. Corollary. For each nontrivial λ ∈ Λ,
∑
|µ|≤|λ|

(−1)|µ|cµ(λ) = 0.

Proof: By evaluating the transposition formula at χ,

(2.3.32) cλ(χ− w0(χ)) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)cµ(χ)

cλ(0) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)|dµ|

by Corollary 2.3.5. Since λ 6= 0 by assumption, cλ(0) = 0 by the vanishing property

(Corollary 2.2.13), so we have

(2.3.33) 0 =
∑
|µ|≤|λ|

(−1)|µ||dλ|cµ(λ) = |dλ|
∑
|µ|≤|λ|

(−1)|µ|cµ(λ)

0 =
∑
|µ|≤|λ|

(−1)|µ|cµ(λ).

Remark: Theorem 2.3.3 and its corollaries are analogous to results obtained by Knop

in the general multiplicity free case [cf. K1].
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Chapter 3

Spectral functions for S2
C
n and

∧2
C
n

In this chapter we restrict our investigation to the two special cases in which G =

GLn(C) and V is the skew multiplicity free space S2
C
n or

∧2
C
n, n ≥ 2. We let Λn

denote the set of highest weights actually occurring in
∧
V as a G-module; the sub-

script may be omitted when the dependence on n is irrelevant. We will regard these

weights concretely as partitions of length at most n, i.e. weakly decreasing n-tuples λ

consisting of `(λ) positive integers followed by n− `(λ) 0s. It is primarily
∧
V whose

highest weights are of interest, rather than V , though we continue to denote by χ the

sum of all weights of V itself. We also continue to denote by cλ the spectral function

for the action of the skew Capelli operator Dλ on V , so that Dλ acts on the irreducible

module Mµ as multiplication by the scalar cλ(µ).

pk =
n∑
i=1

zki denotes the degree k power sum polynomial in n commuting variables, and

C[p1, p3, p5, ...] the algebra of supersymmetric polynomials in n variables on V , where

n is understood from context.

3.1 Combinatorics of highest weights

There are two useful characterizations of Λn when V = S2
C
n. Consider the standard

basis e1, ..., en of Cn, so that {eiej , 1 ≤ i ≤ j ≤ n} is a basis for S2
C
n. Following Howe’s

approach in [H, section 4.4], put eij = eiej and write these basis vectors in a triangular

array
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(3.1.1)

e11 e12 e13 e14 e15 ... e1n

e22 e23 e24 e25 ... e2n

e33 e34 e35 ... e3n

e44 e45 ... e4n

...
...

...

enn

Now consider subsets of basis vectors with the property that if a given basis element

is in the subset, then so are all basis elements above it and/or to the left of it in the array.

(3.1.2)

e11 e12 e13 ... e1r3 ... e1r2 ... e1r1

e22 e23 ... e2r3 ... e2r2

e33 ... e3r3

...

Howe shows that a highest weight vector of
∧
V is obtained by taking the wedge product

of all elements of such a subset, and that a highest weight vector for every irreducible

submodule can be obtained in this way. Next consider the Young diagram of a highest

weight λ defined by such a subset of the triangular array, and observe that the ith row

of the array

(3.1.3) eii ei,i+1 ei,i+2 ... ei,ri−1 ei,ri

contributes to the Young diagram of λ what Howe defines as an (ri+1, ri) hook, namely

the Young diagram of (ri + 1, 1ri−1). Note that we must have ri ≤ n. Thus the Young

diagram of λ is formed by nesting k such (r + 1, r) hooks, for a finite number k of

different values of r; this property characterizes the elements of Λn, which consists of

all weights formed by nesting (r + 1, r) hooks such that r ≤ n.

3.1.1. Proposition. The set Λn of highest weights occurring in
∧
S2
C
n consists pre-

cisely of all weights formed by nesting (r + 1, r) hooks such that r ≤ n.
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3.1.2. Corollary. Λn embeds in Λn+1 by

λ = (λ1, λ2, ..., λ`(λ), 0n−`(λ)) 7→ (λ1, λ2, ..., λ`(λ), 0n−`(λ)+1) for each λ ∈ Λn

For example, when n = 3, the subsets of the triangular array which give rise to highest

weight vectors are {}, {e11},{e11, e12}, {e11, e12, e22}, {e11, e12, e13}, {e11, e12, e13, e22},

{e11, e12, e13, e22}, {e11, e12, e13, e22, e23}, and {e11, e12, e13, e22, e23, e33}. The correspond-

ing highest weights are (0, 0, 0), (2, 0, 0), (3, 1, 0), (3, 3, 0), (4, 1, 1), (4, 3, 1), (4, 4, 2), and

(4, 4, 4). Among the Young diagrams of these weights, that of (2, 0, 0) consists of a single

(2, 1) hook, that of (3, 1, 0) consists of a single (3, 2) hook, and that of (4, 1, 1) consists

of a single (4, 3) hook, while the other nontrivial diagrams consist of nestings of two or

three of these.

An equivalent characterization, due to Knop, is based on the form of the Frobenius co-

ordinates of elements of Λn. If λ is any partition (λ1, λ2, ..., λr), then its dual partition

λ′ = (λ′1, λ
′
2, ..., λ

′
k) is the partition whose Young diagram is obtained from that of λ by

interchanging its rows with its columns. λ is said to have Frobenius coordinates

 α1 α2 ... αk

β1 β2 ... βk

,

where αi = λi − i and βi = λ′i − i, i = 1, 2, .., k, and k is the largest index such that

λi− i > 0. This description of a partition λ can be viewed as a decomposition of λ into

nested hooks of shapes (α1 + 1, 1β1), (α2 + 1, 1β2), ..., (α1 + k, 1βk).

In private conversation, Knop reformulated Howe’s characterization of Λn by observ-

ing that weights which satisfy Howe’s nested hook property are precisely those whose

Frobenius coordinates are of the form

(3.1.4)

 α1 α2 ... αk

α1 − 1 α2 − 1 ... αk − 1





32

where
∑

i αi ≤ n. Since Frobenius coordinates of this form are determined by their top

row alone, whose entries are by definition positive and strictly decreasing, the partitions

in Λn correspond bijectively to strict partitions of integers ≤ n. The correspondence is

indeed bijective, since any strict partition of an integer ≤ n can be placed into the top

row of Frobenius coordinates of the indicated form and thereby determine a highest

weight of
∧
S2
C
n.

For each λ ∈ Λ, denote the associated strict partition λ̌. Observe that each λ̌i equals

half the number of boxes in the corresponding (λi − i+ 1, λi − i) hook. It follows that

(3.1.5) |λ| = 2|λ̌|.

For example, when λ = (4, 3, 1), whose Young diagram is composed of a (4, 3) hook and

a (2, 1) hook, we have λ̌ = (3, 1), so that indeed |(4, 3, 1)|= 8 = 2|(3, 1)|.

In the case
∧∧2

C
n, the same reasoning using the basis {ei ∧ ej , 1 ≤ i < j ≤ n} shows

that the highest weights are those whose Young diagrams are nested (r, r + 1) hooks

and whose Frobenius coordinates are therefore of the form

(3.1.6)

 α1 − 1 α2 − 1 ... αk − 1

α1 α2 ... αk

.

Thus a bijection holds between highest weights of
∧∧2

C
n and strict partitions of inte-

gers ≤ n, by associating to each highest weight its bottom row Frobenius coordinates.

Moreover, the characterization by nested hooks shows that λ is a highest weight of∧
S2
C
n if and only if its dual λ′ is a highest weight of

∧∧2
C
n, so that λ and λ′ cor-

respond to the same strict partition λ̌. This fact will ultimately have the consequence,

which is surprising a priori, that our two special cases
∧
S2
C
n and

∧∧2
C
n have es-

sentially the same spectral theory.



33

This bijective correspondence between highest weights and strict partitions can be re-

alized in another way, which will be crucial to the subsequent discussion. Let

(3.1.7) ρ̄ =
(
n− 1

2
,
n− 3

2
, ...,
−n+ 1

2

)

the half sum of the positive roots, as it were the ”true” ρ, and, as in chapter 2, denote

by χ the sum of all weights of V . Throughout this chapter we will use

(3.1.8) ρ = ρ̄− 1
2
χ

When V = S2Cn, χ = (n + 1, n + 1, ..., n + 1), so that ρ = (−1,−2,−3, ...,−n) and

when V =
∧2Cn, χ = (n− 1, n− 1, ..., n− 1), so that ρ = (0,−1,−2, ...− n+ 1).

Consider any weakly decreasing m-tuple of integers (a1, ..., am) with at least a1 > 0, and

let r be the largest index such that ar > 0. Then let (a1, ..., am)+ denote (a1, a2, ..., ar),

i.e. the r-tuple obtained by discarding all 0 or negative entries of (a1, ..., am).

3.1.3. Lemma. Highest weights µ ∈ Λn correspond bijectively to strict partitions of

integers ≤ n, under the map µ 7→ (µ+ ρ)+.

Proof: If V = S2
C
n, then the coordinates of (µ + ρ)+ = (µ1 − 1, µ2 − 2, ..., µk − k)

are by definition the top-row Frobenius coordinates of µ. Similarly, if V =
∧2
C
n, and

µ has top-row Frobenius coordinates (µ1 − 1, µ2 − 2, ..., µk − k), then its bottom-row

Frobenius coordinates are (µ1, µ2 − 1, ..., µk − k + 1) = (µ+ ρ)+.

3.1.4. Lemma. Let V = S2
C
n and ρ = (−1,−2,−3, ...,−n). For any µ ∈ Λn, the

unordered set of integers {|µ1 + ρ1|, |µ2 + ρ2|, ..., |µk + ρk|, ..., |µn + ρn|} is precisely the

set {1, 2, ..., n}.

In the statement of the lemma it is understood that if `(µ) < n then µi = 0 for each
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i = `(µ) + 1, ..., n.

A few examples are as follows:

µ = (2, 0), µ+ ρ = (1,−2,−3,−4, ...)

µ = (3, 1), µ+ ρ = (2,−1,−3,−4, ...)

µ = (3, 3), µ+ ρ = (2, 1,−3,−4, ...)

µ = (4, 1, 1), µ+ ρ = (3,−1,−2,−4, ...)

µ = (4, 3, 1), µ+ ρ = (3, 1,−2,−4, ...)

µ = (4, 4, 2), µ+ ρ = (3, 2,−1,−4, ...)

µ = (4, 4, 4), µ+ ρ = (3, 2, 1,−4, ...)

A more extensive list is given in Chapter 5, Section 3.

Proof: We prove the result by induction on the number of nested (r+1, r) hooks making

up the Young diagram of µ.

If the diagram of µ consists of one hook (µ1, µ1 − 1), then µ+ ρ =

(µ1 − 1, 1− 2, 1− 3, ..., 1− (µ1 − 1),−(µ1 − 1 + 1),−(µ1 − 1 + 2),−(µ1 − 1 + 3), ...) =

(µ1 − 1,−1,−2, ..., 2− µ1,−µ1,−µ1 − 1, µ1 − 2...).

The first µ1 − 1 coordinates are, in absolute value, a cyclic permutation of the integers

1, 2, ..., µ1 − 1. The subsequent coordinates are, in absolute value, µ1, µ1 + 1, ... Thus

the result holds for µ consisting of one hook.

Now suppose that the result holds for weights whose diagrams are composed of k

nested (ri + 1, ri) hooks. Consider a weight µ composed of k + 1 nested hooks. De-

note by µ̃ the partition formed by the first k of these hooks, and write ν = µ̃ + ρ =

(ν1, ν2, ..., νµ1−1,−µ1,−µ1− 1, ...), so that by induction the integers |ν1|, |ν2|, ..., |νµ1−1|

form a permutation of 1, 2, ..., µ1− 1. We now consider µ+ ρ, whose first k coordinates

are identical to those of ν = µ̃+ ρ.

The coordinates first differ at the k + 1st position, where we add µk+1 − k. They also

differ from the k + 2nd to the µk+1 − k − 1st coordinates, to each of which we add 1;
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after this point µ + ρ agrees with µ̃ + ρ in all subsequent entries. We can write the

entries in which they do differ as

(νk+1 + µk+1 − k, νk+2 + 1, νk+3 + 1, ..., νµk+1−k−1 + 1). It suffices to show that these

integers, in absolute value, are a permutation of (νk+1, νk+2, ..., νµk+1−k−1).

Note the simple but crucial fact that since the hooks are nested, µ̃k+1 = µ̃k+2 = ... =

µ̃µk+1−k−1, i.e. the length of the k + 1st nested hook must be less than that of any

previous hook. Thus νk+1 = νk+2 + 1 = ... = νµk+1−k−1 + µk+1 − k − 2.

We can be even more specific, and assert that νk+1 = −1. After nesting k hooks, the

k + 1st row has k boxes. The kth hook cannot be a (2, 1) hook, i.e. just a row with 2

boxes, or else we could not nest the k + 1st hook. So after nesting k hooks, there are

exactly k boxes in the k + 1st row, and νk+1 = −1.

Our task of showing that in absolute value,

(3.1.9) (νk+1 + µk+1 − k, νk+2 + 1, νk+3 + 1, ..., νµk+1−k−1 + 1)

is a permutation of

(3.1.10) (νk+1, νk+2, ..., νµk+1−k−1),

now reduces to showing that in absolute value,

(3.1.11) (−1 + µk+1 − k,−1 − 1 + 1,−1 − 2 + 1, ...,−1 − µk+1 + k + 2 + 1) =

(µk+1 − k − 1,−1,−2, ...,−µk+1 + k + 2)

is a permutation of

(3.1.12) (−1,−1− 1, ...,−1− µk+1 + k + 2) = (−1,−2,−3...,−µk+1 + k + 1).

These do differ by a (cyclic) permutation, and the result follows.
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3.1.5. Lemma. Let V =
∧2
C
n and ρ = (0,−1,−2, ...,−n+ 1).

For any µ ∈ Λn, the unordered set of integers {|µ1 + ρ1|, |µ2 + ρ2|, ..., |µn + ρn|} is

precisely the set {0, 1, 2, ..., n− 1}.

Proof : The induction on the number of nested (r−1, r) hooks making up the Young dia-

gram of µ is virtually identical to the proof of Lemma 3.1.4, but uses ρ = (0,−1,−2, ...,−n+

1) instead of (−1,−2,−3, ...,−n).

Examples:

µ = (1, 1), µ+ ρ = (1, 0, − 2, − 3, ...)

µ = (2, 1, 1), µ+ ρ = (2, 0, − 1, − 3, ...)

µ = (2, 2, 2), µ+ ρ = (2, 1, 0, − 3, ...)

µ = (3, 1, 1, 1), µ+ ρ = (3, 0, − 1, − 2, ...)

µ = (3, 2, 2, 1), µ+ ρ = (3, 1, 0, − 2, ...)

µ = (3, 3, 2, 2), µ+ ρ = (3, 2, 0, − 1, ...)

µ = (3, 3, 3, 3), µ+ ρ = (3, 2, 1, 0, ...)

In each of our two examples of skew multiplicity free spaces V , the number of high-

est weights λ of
∧
V with |λ| = 2d equals the number of strict partitions of d. By a

celebrated result of Euler, the number of strict partitions of d equals the number of

partitions of d into odd parts. Now monomials of degree d in the odd degree power

sums p1, p3, p5, ... correspond bijectively to partitions of d into odd parts. For example,

the partitions of 6 into odd parts are (16), (13, 3), (1, 5), and (32), and the corresponding

monomials are p6
1, p

3
1p3, p1p5, and p2

3. Since monomials of degree ≤ d form a basis for

the space of supersymmetric polynomials of degree ≤ d, we have proven the following:

3.1.6. Proposition: For any integers n ≥ d ≥ 0, the number of highest weights

λ ∈ Λn with |λ| ≤ 2d equals the dimension of the space of supersymmetric polynomials

of degree ≤ d.
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3.2 Factorial Schur Q functions

Okounkov defines [I1, I2] the factorial Schur Q functions, a family of supersymmetric

functions which, like the classical Schur Q functions of which they are an analogue, are

indexed by strict partitions.

Let [z ↓ k] =
k∏
i=1

(z − i+ 1), k = 0, 1, 2, .... For any strict partition λ and n ≥ `(λ), let

(3.2.1) Fλ(z1, ..., zn) =
`(λ)∏
i=1

[zi ↓ λi]
∏

i≤`(λ),i<j≤n

zi + zj
zi − zj

Then the factorial Schur Q polynomial indexed by λ is defined by

3.2.1. Definition. Q∗λ =
2`(λ)

(n− `(λ))!

∑
w∈Sn

Fλ(zw(1), ..., zw(n))

From this definition it is clear that Q∗λ has degree |λ|. Ivanov demonstrates [I2] that Q∗λ

is supersymmetric and vanishes at all strict partitions µ such that |µ| ≤ |λ|, but not at

λ itself. Moreover, Q∗λ satisfies the extra vanishing condition that Q∗λ(µ) = 0 if λ and

µ are strict partitions such that λ * µ. Furthermore, for each n ≥ `(λ) we can express

Q∗λ as a polynomial in n variables, but the values taken by Q∗λ are independent of n.

Ivanov shows that Q∗λ(λ) = H(λ), where

(3.2.2) H(λ) =
`(λ)∏
t=1

λt!
∏
i<j

λi + λj
λi − λj

.

H(λ) is indeed defined, since λ is assumed to be a strict partition. We will consider a

rescaled version of the factorial Schur Q functions, defined by

(3.2.3) qλ =
1

H(λ)
Q∗λ,

so that qλ(λ) = 1. Thus qλ has the same properties of supersymmetry, degree, and
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independence of n as Q∗λ. The basic vanishing property it satisfies can be expressed as

(3.2.4) qλ(µ) = δλµ for all strict partitions µ such that |µ| ≤ |λ|.

Let V = S2
C
n and ρ = (−1,−2, ...,−n). Let pk denote the degree k power sum poly-

nomial in n variables, i.e. pk =
∑n

i=1 z
k
i .

We define an automorphism φ of C[p1, p3, p5, ..., ps] in n variables, where s is the largest

odd number ≤ n, by

(3.2.5) φ(pk) = 2pk + pk(ρ) for each k = 2j + 1, j = 0, 1, 2, ..., s−1
2

Recall that to each λ ∈ Λn there is associated a unique strict partition λ̌.

3.2.2. Lemma. pk(λ + ρ) = 2pk(λ̌) + pk(ρ) for every k = 2j + 1, j = 0, 1, 2, ... and

λ ∈ Λn.

Proof: By Corollary 3.1.5, the coordinates of λ+ ρ are in absolute value a permutation

of {1, 2, ..., n}; the positive terms are precisely the top row Frobenius coordinates of λ,

and are equal to the coordinates λ̌1, ..., λ̌`(λ̌) of λ̌. Thus

(3.2.6) pk(λ+ ρ) = λ̌k1 + ...+ λ̌k
`(λ̌)
−

∑
1≤j≤n, j 6=λ̌i

jk

= 2(λ̌k1 + ...+ λ̌k
`(λ̌)

)− 1k − 2k − ...− nk

= 2pk(λ̌) + pk(ρ)

3.2.3. Proposition. For any p ∈ C[p1, p3, p5, ..., ps] in n variables, p(λ+ρ) = φ(p)(λ̌)

for every λ ∈ Λn.

Proof: We can write p as a polynomial in the odd degree power sums of degree ≤ n,

say p = f(p1, p3, ...ps). Then
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(3.2.7) φ(p) = f(2p1 + p1(ρ), 2p3 + p3(ρ), ..., 2ps + ps(ρ))

The proposition now follows directly from Lemma 3.2.2.

3.2.4. Lemma.: If p ∈ C[p1, p3, ..., ps]≤d vanishes at all strict partitions λ̌ such that

|λ̌| ≤ d then p = 0 identically.

Proof: The rescaled factorial Schur Q functions {qµ̌ : |µ| ≤ d} form a basis of

C[p1, p3, p5, ..., ps]≤d, since the vanishing property (3.2.4) which they satisfy guarantees

linear independence, and we conclude from Proposition 3.1.6 that they span. It follows

that p has a unique expansion p = a0qµ̌0 + a1qµ̌1 + ... + akqµ̌k , where µ̌0, ..., µ̌k are all

the strict partitions of size ≤ d, in order of weakly increasing size. But the vanishing

property (3.2.4) implies that only qµ̌0 = q(0) does not vanish at (0), hence a0 = 0.

Likewise, by induction, each ai = 0, i = 1, ..., k, and in fact no such supersymmetric

polynomial p of degree > 0 exists.

3.2.5. Lemma.: For any integers n ≥ d > 0, if p ∈ C[p1, p3, ..., ps]≤d satisfies

p(λ+ ρ) = 0 on the set {λ ∈ Λn : |λ| ≤ 2d}, then p = 0 identically.

Proof: Suppose that there exists such a supersymmetric polynomial p of degree d > 0.

Then by Proposition 3.2.3, φ(p) vanishes at all strict partitions λ̌ such that |λ̌| ≤ d.

Since φ is an automorphism, the result now follows from Lemma 3.2.4.
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3.3 Characterization Theorem

Let V = S2
C
n, ρ = (−1,−2, ...,−n). The goal of this section is to prove the following

Characterization Theorem:

3.3.1. Theorem. For each λ ∈ Λn, n ≥
|λ|
2

there exists a polynomial pλ which satis-

fies the following properties.

CT1a. pλ(µ+ ρ) = cλ(µ) for every µ ∈ Λn.

CT1b. pλ(µ+ ρ) = 0 whenever |µ| ≤ |λ| unless µ = λ, and pλ(λ+ ρ) = 1.

CT2. pλ is supersymmetric.

CT3. pλ has degree
|λ|
2

.

Furthermore, pλ is uniquely determined by CT1b, CT2, and CT3.

Preliminary remark 1: Implicitly, pλ depends on n, although it will be shown in

Section 3.4 that this dependence is much weaker than it appears to be. Indeed, it will

be shown that for all n large enough, the values of pλ on ρ-shifted arguments are inde-

pendent of n. On the one hand, since G acts on
∧
S2
C
n for each n, we can consider a

fixed value of n and study all the functions pλ. On the other hand we can fix a λ and

study the functions pλ as n increases, in particular for all n ≥ |λ|
2 . The statements of

the Characterization Theorem should be understood in the latter sense, with λ fixed

and for all n ≥ |λ|2 .

Preliminary remark 2: Our strategy is to prove the theorem for a certain class of

invariant differential operators, namely those which arise from the center of the univer-

sal enveloping algebra of G. A combinatorial argument then shows that in fact all the
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G-invariant operators on V belong to this class.

Proof: The action of G on V gives rise to an action of its Lie algebra g on V as endo-

morphisms

(3.3.1) g→ End(V )

hence of U(g) on V as differential operators

(3.3.2) U(g)→ PD(V )

and thus, passing to G-invariants, of the center Z(g) of the universal enveloping algebra

on V as invariant differential operators

(3.3.3) Ψ : Z(g)→ PD(V )G

A priori it is not clear whether Ψ is surjective, but as indicated in the second prelimi-

nary remark to this proof, our strategy is to establish CT1, CT2, and CT3 for the class

of operators which do arise from Z(g), and leave it to the concluding part of the proof

to show that in fact every invariant operator on V arises in this way.

Consider the following diagram, which will be crucial to the proof of each step of the

Characterization Theorem.

(3.3.4)

Z(g) '←− C[p1, p2, p3, ...]

Ψ ↓ ↓

PD(V )G → Maps(Λn,C)
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The map Z(g)← C[p1, p2, p3, ...] is the canonical isomorphism of symmetric polynomials

with Z(g).

The map PD(V )G →Maps(Λn,C) is the association of a spectral function cD to each

invariant operator D on V .

The left vertical map Ψ has just been explained. The right vertical map, whose stated

properties we wish to verify, assigns to each symmetric polynomial p a function c such

that c(µ) = p(µ+ ρ) for each µ ∈ Λn.

Proof of CT1a: Any symmetric polynomial p can be viewed as an element ξ ∈ Z(g)

and then identified with its image D ∈ PD(V )G. By the Harish Chandra isomorphism,

D acts on Mµ ⊂
∧
V by the scalar cD(µ) = p(µ + ρ), which proves that the diagram

(3.3.4) is commutative and establishes CT1a for operators arising from Z(g).

Proof of CT1b:

CT1b follows directly from CT1a and Corollary 2.2.13, which establishes the vanishing

property for the general case of spectral functions of invariant operators on SMF spaces.

Proof of CT2:

We wish to show that our commutative diagram (3.3.4) can in fact be written

(3.3.5)

Z(g) ← C[p1, p3, p5, ...]

↓ ↓

PD(V )G → Maps(Λn,C)

i.e. that the symmetric polynomials, generated by the power sum polynomials, can be

replaced by the supersymmetric polynomials, which are generated by the odd degree

power sums.

Lemmas 3.1.4 and 3.1.5 have the following immediate consequence:
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3.3.2. Corollary. For each even degree power sum polynomial p2k there is a constant

Nk such that for every µ ∈ Λn, p2k(µ+ ρ) = Nk, where ρ = (−1,−2,−3, ...− n).

Corollary 3.3.2 shows that to each even degree power sum is associated a spectral func-

tion which is merely a constant function, or equivalently, that p2k −Nk is in the kernel

of the map which assigns spectral functions to symmetric polynomials. It follows that

each spectral function has a supersymmetric preimage under this map. This proves

CT2, that for each λ ∈ Λn, pλ can be chosen to be supersymmetric.

Proof of CT3:

In light of the supersymmetry result CT2, we can indeed write

(3.3.6)

Z(g) ← C[p1, p3, p5, ...]

↓ ↓

PD(V )G → Maps(Λn,C)

Consider fixed d ≤ |λ|
2
≤ n. Another consequence of the Harish Chandra isomorphism

is that if ξ ∈ Z(g) has degree d then the spectral function cD of its associated invariant

operator D = Ψ(ξ) is interpolated (in the ρ-shifted sense) by a polynomial of degree

d. What is not clear a priori is whether D also has degree exactly d; conceivably some

cancellation in the highest degree term of D could cause it to have degree less than

d. Also unclear a priori is whether Z(g) maps surjectively onto PD(V )G. The proof

will address both of these issues. At this stage the degree conditions implied by the

Harish Chandra isomorphism and the fact that Z(g), PD(V )G, and C[p1, p3, p5, ...] are

all filtered by degree, allow us to restrict our diagram to elements of degree at most d.

Thus we have a commutative diagram
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(3.3.7)

Z(g)≤d ← C[p1, p3, p5, ..., ps]≤d

↓ ↓

PD(V )G≤d → Maps(Λn,C)

where s is the largest odd integer such that s ≤ d. We wish to show that there is a

bijection between PD(V )G≤d and C[p1, p3, p5, ...]≤d. First we argue that

(3.3.8)

C[p1, p3, p5, ..., ps]≤d

↓

Maps(Λn,C)

is injective for all n ≥ d. Note first that since s ≤ n, the odd degree power sums

p1, p3, ..., ps are algebraically independent. Furthermore, it follows directly from Lemma

3.2.5 that C[p1, p3, p5, ..., ps]≤d maps injectively into Maps(Λn,C) if Λn contains all

highest weights ν with |ν| ≤ 2d. This is the case for all n ≥ d, by Proposition 3.1.1, so

that indeed

(3.3.9)

C[p1, p3, p5, ..., ps]≤d

↓

Maps(Λn,C)

is injective for all n ≥ d.

It follows that the composite map

(3.3.10)

Z(g)≤d ← C[p1, p3, p5, ..., ps]≤d

↓

PD(V )G≤d

is also injective. Now to prove CT3 it suffices to show that this map is also surjective,

i.e. that this map preserves degree, or more specifically that the map on the associated

filtered algebras preserves degree. This is done by proving that for each d, the dimension
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of the subspace of degree d modulo degree d− 1 invariant differential operators equals

the dimension of the subspace of degree d modulo degree d−1 supersymmetric functions.

dim(PD(V )G≤d/PD(V )G≤d−1) equals the number of highest weights µ with |µ|2 = d, which

equals the number of strict partitions of d. On the other hand,

dim(C[p1, p3, p5, ...]≤d/C[p1, p3, p5, ...]≤d−1) equals the number of monomials of degree

d in the odd degree power sums; such monomials correspond bijectively to partitions of

d into odd parts. We appeal again to Euler’s result that the number of strict partitions

of d equals the number of partitions of d into odd parts, for all positive integers d.

It follows that our injective map PD(V )G≤d ← C[p1, p3, p5, ...]≤d is in fact a bijection,

which proves CT3 for those invariant operators on V arising from Z(g). But these are

in fact all the invariant operators on V , since the surjectivity of the composite map

(3.3.11)

Z(g)≤d ← C[p1, p3, p5, ..., ps]≤d

↓

PD(V )G≤d

shows that

(3.3.12)

Z(g)≤d

↓

PD(V )G≤d

is itself surjective. This completes the proof of CT3.

The spectral polynomials, as a collection of functions, are in fact characterized by the

supersymmetry, degree, and vanishing properties:

The spectral polynomials {pµ, |µ| ≤ |λ|} form a basis of the space of supersymmetric

polynomials of degree ≤ |λ|
2

; the vanishing property guarantees linear independence,

and indexing of polynomials by highest weights guarantees spanning. Now suppose
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that there exists a supersymmetric polynomial rλ satisfying the same degree and van-

ishing properties as pλ. Then we can write rλ uniquely as a linear combination of the

pµ, |µ| ≤ |λ|. Determining the coordinates of rλ with respect to this basis is equivalent

to solving a matrix system in which both the rows and columns of the matrix (which

is square) are indexed by {µ ∈ Λn, |µ| ≤ |λ|} in order of increasing |µ|, and whose

(µ, ν)-entry is pµ(ν + ρ). Since the pµ themselves satisfy the vanishing condition, the

matrix is unit triangular, hence invertible, so that the system has a unique solution. It

follows that rλ = pλ identically.

This completes the proof of the Characterization Theorem.

Remark 1: The uniqueness argument at the end of the proof of the Characterization

Theorem is essentially that of Sahi in one of the earliest papers on the subject of spec-

tral functions and the vanishing property [S2, p.573].

Remark 2: The same uniqueness argument shows that the rescaled factorial Schur

Q function qλ̌ considered in section 3.2 is uniquely determined by the properties of

supersymmetry, having degree |λ̌|, and satisfying the vanishing condition qλ̌(µ̌) = δλ̌µ̌

for all |µ̌| ≤ |λ̌|.

We could prove an identical result for the special case V =
∧2
C
n, but there is an even

stronger observation to be made. Recall that µ is a highest weight of
∧
S2
C
n if and

only if its dual µ′ is a highest weight of
∧∧2

C
n, at any rate for all n ≥ |µ

′|
2 . Comparing

Lemmas 3.1.4 and 3.1.5 shows that the value of pk(µ + (−1,−2, ..., n)) in n variables

equals the value of pk(µ+(0,−1,−2, ..., n)) in n+1 variables, for any k but in particular

for odd k. Thus if we write pλ = fλ(p1, p3, ...) in n variables, then pλ′ = fλ(p1, p3, ...) in

n+1 variables. In other words the corresponding spectral polynomials pλ and pλ′ for our

two different special cases of skew multiplicity free spaces are identical as expressions in

the odd degree power sums, if the number of variables is 1 greater for pλ′ . This is one of

the significant surprises of this entire investigation, that the two special cases have the
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same spectral theory. It had appeared at the beginning of this project that we would

obtain two families of supersymmetric polynomials, each obtained by specializing the

value of a parameter, by analogy with the Jack polynomials; this turned out not to be

the case.
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3.4 Equivalence with factorial Schur Q functions, and consequences

Recall from section 3.1 that to each highest weight λ ∈ Λ there is associated a unique

strict partition λ̌; the coordinates of λ̌ are precisely the top-row Frobenius coordinates

of λ, or equivalently, the positive terms of λ+ ρ. Moreover, |λ| = 2|λ̌|.

Recall from (3.2.5) above the automorphism φ of the algebra of supersymmetric poly-

nomials in n variables, for any n, defined by its action on odd degree power sums:

(3.4.1) φ(pk) = 2pk + pk(ρ) for each k = 2j + 1, j = 0, 1, 2, ...

This automorphism carries each spectral polynomial in n variables to its corresponding

rescaled factorial Schur Q function:

3.4.1. Proposition. φ(pλ) = qλ̌ for each λ ∈ Λn.

Proof: Since pλ is supersymmetric, it can be written as a polynomial in the odd degree

power sums, say

(3.4.2) pλ = fλ(p1, p3, ..., ps(λ)),

where s(λ) =
|λ|
2

if
|λ|
2

is odd and s(λ) =
|λ|
2
− 1 if

|λ|
2

is even. Now

(3.4.3) φ(pλ) = fλ(2p1 + p1(ρ), 2p3 + p3(ρ), ..., 2ps(λ) + ps(λ)(ρ))

by definition of φ. Since pλ = fλ(p1, p3, ..., ps(λ)) vanishes at every highest weight µ

with |µ| ≤ |λ| except for λ itself, where it takes the value 1, Proposition 3.2.3 implies

that fλ(2p1 + p1(ρ), 2p3 + p3(ρ), ..., 2ps(λ) + ps(λ)(ρ)) vanishes at every strict partition

µ̌ with |µ̌| ≤ |λ̌| except for λ̌ itself, where it takes the value 1. Moreover, since pλ has
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degree |λ|2 = |λ̌| by the Characterization Theorem, so does φ(pλ). Thus φ(pλ) satis-

fies the supersymmetry, vanishing, and degree conditions which uniquely determine the

rescaled factorial Schur Q function qλ̌, hence φ(pλ) = qλ̌.

3.4.2. Corollary. pλ(µ+ ρ) = qλ̌(µ̌) for each λ, µ ∈ Λn. Equivalently, cλ(µ) = qλ̌(µ̌)

for each λ, µ ∈ Λn.

3.4.3. Corollary. The values of cλ are independent of n for all n ≥ max( |λ|2 ,
|µ|
2 ).

3.4.4. Corollary. cλ satisfies the extra vanishing property, i.e. for all λ, µ ∈

Λn, cλ(µ) = 0 if λ * µ.

3.4.5. Corollary. The expression fλ(2p1 + p1(ρ), 2p3 + p3(ρ), ..., 2ps + ps(λ)(ρ)) con-

sidered in statement (3.4.3) in the proof of Proposition 3.4.1, is independent of n.

In addition to the properties indicated in Corollaries 3.3.5 and 3.3.6 which the spectral

functions inherit from the qλ̌, they also acquire a combinatorial interpretation. Ivanov

proves [I2 p.4200] that if hλ̌/µ̌ denotes the number of shifted skew tableaux of shape

λ̌/µ̌, where hλ̌/µ̌ = 0 if µ̌ * λ̌, then

(3.4.4) hλ̌/µ̌ = 2−`(λ̌)hλ̌/(0) ·
Q∗µ̌(λ̌)

|λ̌| ↓ |µ̌|

3.4.6. Corollary. hλ̌/µ̌ = 2−`(λ̌)hλ̌/(0)H(µ̌) · cµ(λ)
|λ̌| ↓ |µ̌|

In a certain sense this combinatorial interpretation explains the extra vanishing prop-

erty. It also implies a positivity, rationality, and non-vanishing result:

3.4.7. Corollary. cλ(µ) is a strictly positive rational number for all λ, µ ∈ Λn such

that λ ⊆ µ.
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Remark: The shifted Schur functions studied by Okounkov and Olshanskii in [OO1],

which up to rescaling are the spectral functions for the multiplicity free space Cn⊗Cn,

play the same role in the corresponding formula for the number of skew tableaux of a

given shape.

Having considered several properties of the qλ̌ inherited by the spectral functions cλ, we

now study a major consequence for the qλ̌ of the equivalence given by Corollary 3.3.4,

namely that the qλ̌ satisfy a transposition formula.

Recall from Chapter 2 that transposition of differential operators induces an involution

of C[p1, p3, p5, ...]. For each odd degree power sum pk, denote its image under transpo-

sition by ptk.

3.4.8. Lemma. ptk(z) = −pk(z) if k is odd.

Proof: The formula cDt(ν) = cD(χ − w0ν) asserted in Proposition 2.3.2 holds for all

invariant differential operators which arise from Z(g), and the proof of the Characteri-

zation Theorem shows that this accounts for all the invariant operators on S2
C
n. Thus

for odd values of k we study the effect of transposition on the power sum symmetric

polynomial pk as follows:

(3.4.5) ptk(ν + ρ) = pk(χ− w0ν + ρ)

Let z = ν + ρ, so that

(3.4.6) ptk(z) = pk(χ− w0(z − ρ) + ρ)

= pk(χ− w0z + w0ρ+ ρ)
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Recall that

(3.4.7) ρ = ρ̄− 1
2
χ

Since w0ρ̄ = −ρ̄ and w0χ = χ, we have

(3.4.8) χ+ w0ρ+ ρ = χ+ ρ̄− 1
2
χ− ρ̄− 1

2
χ = 0

Thus (3.4.6) becomes

(3.4.9) ptk(z) = pk(−w0z)

= pk(−z) since pk is symmetric

= −pk(z) since pk has odd degree.

To produce a version of the transposition formula satisfied by the qλ, we must calculate

the effect of transposition on each odd degree power sum before and after twisting by

φ. Consider the following diagram

(3.4.10)

pk φ
−→

2pk + pk(ρ)

↓ ↓ τ

−pk −→ −2pk − pk(ρ)

where the left vertical arrow represents transposition before twisting by φ, and the right

vertical arrow represents the map, denoted τ , which is transposition after twisting by

φ.

Thus

(3.4.11) 2τ(pk) + pk(ρ) = −2pk − pk(ρ),
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hence

(3.4.12) τ(pk) = −pk − pk(ρ)

We can now write a somewhat explicit version of the transposition formula for the

rescaled factorial Schur Q polynomials. Since qλ̌ is supersymmetric, it can be written

as a polynomial in the odd degree power sums,

(3.4.13) qλ̌ = gλ̌(p1, p3, p5, ..., ps(λ̌)).

Certainly the qλ̌ satisfy the transposition formula in the sense that

(3.4.14) τ(gλ̌)(p1, p3, p5, ..., ps(λ̌)) =
∑
|µ̌|≤|λ̌|

(−1)|λ̌|
dλ
dµ
qµ̌(λ̌)qµ̌

which can instead be written

3.4.9. Proposition.

gλ̌(−p1− p1(ρ),−p3− p3(ρ),−p5− p5(ρ), ...,−ps(λ̌)− ps(λ̌)(ρ)) =
∑
|µ̌|≤|λ̌|

(−1)|λ̌|
dλ
dµ
qµ̌(λ̌)qµ̌

Since this formula holds at all strict partitions, which form a Zariski dense subset of

C
n, the formula in fact holds on all of Cn.

For example, when λ = (4, 3, 1), so that λ̌ = (3, 1), we have

(3.4.15) q(3,1) =
1
36
p4

1 −
1
36
p1p3 −

1
12
p3

1 +
1
12
p3

To obtain the transpose of q(3,1) in 4 variables, we replace p1 by −p1 + 1 + 2 + 3 + 4 =

−p1 + 10 and p3 by −p3 + 1 + 8 + 27 + 64 = −p3 + 100:
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(3.4.16) τ(q(3,1)) =
1
36
p4

1 −
1
36
p1p3 −

37
36
p3

1 +
7
36
p3 +

85
6
p2

1 −
250
3
p1 + 175

Proposition 3.4.9 asserts that its left hand side, given in (3.4.16), should equal its right

hand side:

(3.4.17)
∑
|µ̌|≤4

(−1)4d(4,3,1)

dµ
qµ̌(3, 1)qµ̌

Although the next chapter will derive dimension formulas, we can already compute

d(4,3,1) and each dµ using Corollary 2.3.5, so (3.4.17) becomes

(3.4.18)
175
1
q(0)(3, 1)q(0) −

175
10

q(1)(3, 1)q(1) +
175
45

q(2)(3, 1)q(2) −
175
50

q(2,1)(3, 1)q(2,1)

− 175
70

q(3)(3, 1)q(3) +
175
175

q(3,1)(3, 1)q(3,1)

Chapter 5 section 3 exhibits the qλ̌ explicitly up to degree 6:

q(0) = 1, q(0)(3, 1) = 1.

q(1) = p1, q(1)(3, 1) = 4,

q(2) = 1
2p

2
1 − 1

2p1, q(2)(3, 1) = 6

q(2,1) = 1
18p

3
1 − 1

18p3, q(2,1)(3, 1) = 2

q(3) = 1
9p

3
1 + 1

18p3 − 1
2p

2
1 + 1

3p1, q(3)(3, 1) = 2

q(3,1) = 1
36p

4
1 − 1

36p3p1 − 1
12p

3
1 + 1

12p3, q(3,1)(3, 1) = 1

Thus we have

(3.4.19) = 175− 175
10
· 4p1 +

175
45
· 6(

1
2
p2

1 −
1
2
p1)− 175

50
· 2(

1
18
p3

1 −
1
18
p3)

− 175
70
· 2(

1
9
p3

1 +
1
18
p3 −

1
2
p2

1 +
1
3
p1) +

1
36
p4

1 −
1
36
p3p1 −

1
12
p3

1 +
1
12
p3

After simplifying, this equals (3.4.16), as required.
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Chapter 4

Dimension formulas

We continue to restrict our investigation to the SMF spaces S2
C
n and

∧2
C
n.

Let λ be a highest weight of
∧
V , and Mλ ⊂

∧
V a submodule of highest weight λ.

Then the following dimension formulas hold:

4.1.1. Proposition. If V = S2
C
n and λ ∈ Λn has top-row Frobenius coordinates

α1, α2, ..., αk, then

dimMλ =
1
2k

∏
1≤i<j≤k

(
αi − αj
αi + αj

)2 k∏
i=1

 n+ αi

αi

 n

αi


4.1.2. Proposition. If V =

∧2
C
n and λ ∈ Λn has top-row Frobenius coordinates

α1, α2, ..., αk, then

dimMλ =
1
2k

∏
1≤i<j≤k

(
αi − αj
αi + αj

)2 k∏
i=1

 n+ αi − 1

αi

 n− 1

αi


Proof of Proposition 4.1.1: As we have seen previously, if V = S2Cn, λ has top-row

Frobenius coordinates α1, α2, ..., αk, and we use ρ = (−1,−2, ...,−n) then

(4.1.1) λ+ρ = (α1, α2, ..., αk,−1,−2, ...,−αk+1, ˆ−αk,−αk−1, ...,−α1+1, ˆ−α1,−α1−

1, ...,−n).

The proof is an induction on k. When k = 1,

(4.1.2) λ+ ρ = (α1,−1,−2, ...,−α1 + 1, ˆ−α1,−α1 − 1, ...,−n).
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By the Weyl Dimension Formula,

(4.1.3) |dλ| =
∏

1≤i<j≤n(λi + ρi − λj − ρj)∏
1≤i<j≤n(ρi − ρj)

The denominator is simply (n− 1)!(n− 2)!..3!2!1!. The numerator equals

(4.1.4)
n∏
j=2

(α1 − λi − ρi)
∏

2≤i<j≤n
(λi + ρi − λj − ρj)

=
(α1 + n ↓ α1 + 1)

α1 + α1

(n− 1)!(n− 2)!...3!2!1!
(n− α1)!(α1 − 1)!

Combining these gives

(4.1.5) |dλ| =
1
2

(n+ α1 ↓ α1 + 1)
α1!(n− α1)!

(4.1.6) =
1
2

(n+ α1)!
α1!α1!(n− α1)!

(4.1.7) =
1
2

(n+ α1)!
α1!n!

n!
α1!(n− α1)!

(4.1.8) =
1
2

(
α1

α1

)2
 n+ α1

α1

 n

α1


Now let λ denote a weight whose Young diagram is composed of k nested hooks, and

which has top-row Frobenius coordinates α1, α2, ..., αk. Assume by induction that the

result holds for the weight µ whose top-row Frobenius coordinates are α1, α2, ..., αk−1.

By the Weyl Dimension Formula,

(4.1.9) |dλ| = |dµ|
k−1∏
i=1

(αi − αk)
(n+ αk ↓ αk + 1)∏k−1

i=1 (αk + αi)

∏k−1
i=1 (αi − αk)∏k

i=1(αi + αk)(αk − 1)!(n− αk)!
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since in passing from µ + ρ to λ + ρ the only change in the entries is the replacement

of −αk by αk, the consequences of which are indicated by this equation.

Simplifying gives

(4.1.10)
|dλ|
|dµ|

=
k−1∏
i=1

(
αi − αk
αi + αk

)2 (n+ αk ↓ αk + 1)
2αk(αk − 1)!(n− αk)!

=
1
2

k−1∏
i=1

(
αi − αk
αi + αk

)2 (n+ αk ↓ αk + 1)
αk!(n− αk)!

=
1
2

k−1∏
i=1

(
αi − αk
αi + αk

)2 (n+ αk)!
αk!αk!(n− αk)!

=
1
2

k−1∏
i=1

(
αi − αk
αi + αk

)2 (n+ αk)!
αk!n!

n!
αk!(n− αk)!

=
1
2

k−1∏
i=1

(
αi − αk
αi + αk

)2 k∏
i=1

 n+ αk

αk

 n

αk


which completes the induction.

Proof of Proposition 4.1.2: For V =
∧2Cn use ρ = (0,−1,−2, ...,−n+ 1), so that

λ + ρ = (α1, α2, ..., αk, 0,−1,−2, ...,−αk + 1, ˆ−αk,−αk − 1, ...,−α1 + 1, ˆ−α1, −α1 −

1, ...,−n+ 1)

The same argument holds, with n replaced by n− 1.

It follows directly from the dimension formulas in Propositions 4.1.1 and 4.1.2 that

for each λ, the dimension |dλ| is a polynomial in n. We may reasonably denote this

polynomial |dλ|(n), and investigate its properties.

4.1.3. Corollary. If V = S2
C
n and λ ∈ Λ has top-row Frobenius coordinates

α1, α2, ..., αk, then the dimension polynomial |dλ|(n) has degree |λ| and leading coeffi-

cient
1
2k

∏
1≤i<j≤k

(
αi − αj
αi + αj

)2 k∏
t=1

(
1
αt!

)2
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Proof: It follows directly from the dimension formula in Proposition 4.1.1 that the de-

gree of |dλ|(n) equals twice the sum of the Frobenius coordinates, which is precisely

|λ|. The stated leading coefficient follows immediately from the dimension formula as

well.

4.1.4. Lemma. If µ, λ ∈ Λ and µ ⊂ λ, then
dλ
dµ

is a polynomial in n of degree |λ|−|µ|.

Proof: Since µi ≤ λi holds for corresponding partition numbers of µ and λ, we also have

µ̌i ≤ λ̌i for corresponding partition numbers of the associated strict partitions µ̌ and

λ̌, which are precisely the top row Frobenius coordinates of µ andλ, respectively. By

the dimension formula in Proposition 4.1.2, dµ depends on n only through the expression

(4.1.11)
k∏
i=1

 n+ µ̌i

µ̌i

 n

µ̌i


Since each µ̌i ≤ λ̌i, every factor in this product of binomial coefficients is also a factor

in the corresponding product in the expression for dλ, so (4.1.11) in its entirety cancels

out in the expression for
|dλ|
|dµ|

. Thus
|dλ|
|dµ|

, which is a priori only a rational function, is

in fact a polynomial in n of degree 2|λ̌| − 2|µ̌| = |λ| − |µ|.

Since pλ is supersymmetric of degree
|λ|
2

, it can be written as a polynomial in the odd

degree power sums. Although this expression in the odd degree power sums has several

monomials of total degree
|λ|
2

, it is useful to refer to the p
|λ|
2

1 term as the leading term

of pλ, and its coefficient as the leading coefficient of pλ. With this convention we can

state the following:

4.1.5. Proposition. The leading coefficient of pλ equals the leading coefficient of |dλ|.

Proof: The transposition formula asserts that

cλ(χ− w0ν) =
∑
|µ|≤|λ|

(−1)|λ|
dλ
dµ
cµ(λ)cµ(ν)
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Consider fixed values of λ and ν but regard n as an indeterminate. By the extra vanish-

ing property (Corollary 3.4.4), the only nonvanishing terms on the right side are those

for which µ ⊆ λ. By Lemma 4.1.4, each of these nonvanishing terms is a polynomial

in n of degree |λ| − |µ|, so that the entire right side is a polynomial in n. Thus it is

solely the µ = (0) term in the summation which contributes the leading term of the

polynomial, and this leading term is identical to that of |dλ| since the µ = (0) term

simply equals dλ. The right side is therefore a polynomial in n of degree |λ| whose

leading coefficient is expressed explicitly in Corollary 4.1.3.

The left side of the transposition formula also depends on n, through the value of

χ = (n + 1, n + 1, ..., n + 1), which has n coordinates. Now p1(χ − w0ν) has degree

2 in n, p3(χ − w0ν) has degree 4 in n, ..., pk(χ − w0ν) has degree k + 1 in n, so that

prk(χ − w0ν) has degree (k + 1)r in n. Thus when the left side is written first as a

polynomial in odd degree power sums and then evaluated at χ−w0ν, only the leading

term p
|λ|/2
1 contributes a term of degree |λ| in n.

For example, in degree 6, the highest degree terms in pλ are a1p
6
1, a2p

3
1p3, a3p

2
3, and

a4p1p5, where the ai are constants. Evaluating at χ − w0ν, and denoting lower order

terms by l.o.t., yields the following:

a1p
6
1(χ− w0ν) = a1(n2)6 + l.o.t. = a1n

12 + l.o.t.

a2p
3
1p3(χ− w0ν) = a2(n2)3(n4) + l.o.t. = a2n

10 + l.o.t.

a3p
2
3(χ− w0ν) = a3(n4)2 + l.o.t. = a3n

8 + l.o.t.

a4p1p5(χ− w0ν) = a4(n2)(n6) + l.o.t. = a4n
8 + l.o.t.

Thus the leading coefficient on the left side is precisely the leading coefficient of pλ.

This equals the leading coefficient of the right side, which is the same as that of |dλ|.

4.1.6. Corollary. If λ ∈ Λ has top-row Frobenius coordinates α1, ..., αk, then the

rescaled Schur Q-polynomial qλ̌ has leading coefficient
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2|λ̌|−`(λ̌)
∏

1≤i<j≤`(λ̌)

(
αi − αj
αi + αj

)2 `(λ̌)∏
t=1

(
1
αt!

)2

Proof: By (3.4.1) and Proposition 3.4.1, the leading coefficient of qλ̌ equals 2|λ̌| times

the leading coefficient of pλ. The result now follows from Proposition 4.1.5.

Ivanov’s preliminary discussion of the factorial Schur Q-functions shows that each Q∗
λ̌

has the same highest degree terms as the corresponding classical Schur Q-function Qλ̌.

Recalling (3.2.2) and (3.2.3) we have

4.1.7. Corollary. Q∗
λ̌

and Qλ̌ both have leading coefficient

2|λ̌|−`(λ̌)
∏

1≤i<j≤`(λ̌)

λ̌i − λ̌j
λ̌i + λ̌j

`(λ̌)∏
t=1

1
λ̌t!

= 2|λ̌|−`(λ̌) 1
H(λ̌)
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Chapter 5

Computed examples

5.1 Skew Capelli operators

We give C3 the standard basis {e1, e2, e3}, and S2
C

3 the basis {e1e1, e1e2, e1e3, e2e2,

e2e3, e3e3}, abbreviated by {e11, e11, e12, e13, e22, e23, e33}; these multiplications are sym-

metric products, though all subsequent multiplications in this subject will be exterior

products. We define ∂ij by ∂ij(ers) = δirδjs.

∧3 S2
C

3 splits into two irreducible GL3-submodules, M(3,3), and M(4,1,1). These have

highest weight vectors e11e12e22 and e11e12e13, respectively; all multiplications are to

be understood in the skew sense.

For each of these two irreducible submodules we find a basis and dual basis for each

weight space, multiply corresponding basis and dual basis vectors, and sum. In this

way we compute the invariant operators

D(3,3) = −e11e12e22∂11∂12∂22 − e11e13e33∂11∂13∂33 − e22e23e33∂22∂23∂33 −
1
3e11e22e33∂11∂22∂33 − 2

3e12e13e23∂12∂13∂23 − 2
3e11e12e23∂11∂12∂23 − 1

3e11e13e22∂11∂13∂22 −
1
3e11e12e33∂11∂12∂33 − 2

3e11e13e23∂11∂13∂23 − 1
3e11e22e23∂11∂22∂23 − 2

3e12e13e22∂12∂13∂22 −
1
3e11e23e33∂11∂23∂33 − 2

3e12e13e33∂12∂13∂33 − 1
3e12e22e33∂12∂22∂33 − 2

3e13e22e23∂13∂22∂23 −
2
3e12e23e33∂12∂23∂33 − 1

3e13e22e33∂13∂22∂33

and



61

D(4,1,1) = −e11e12e13∂11∂12∂13 − e12e22e23∂12∂22∂23 − e13e23e33∂13∂23∂33 −
2
3e11e22e33∂11∂22∂33 − 1

3e12e13e23∂12∂13∂23 − 1
3e11e12e23∂11∂12∂23 − 2

3e11e13e22∂11∂13∂22 −
2
3e11e12e33∂11∂12∂33 − 1

3e11e13e23∂11∂13∂23 − 2
3e11e22e23∂11∂22∂23 − 1

3e12e13e22∂12∂13∂22 −
2
3e11e23e33∂11∂23∂33 − 1

3e12e13e33∂12∂13∂33 − 2
3e12e22e33∂12∂22∂33 − 1

3e13e22e23∂13∂22∂23 −
1
3e12e23e33∂12∂23∂33 − 2

3e13e22e33∂13∂22∂33
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5.2 Spectral polynomials

The spectral polynomials for the operators exhibited in the previous section are

p(3,3) = − 1
36

(z3
1 + z3

2 + z3
3) +

1
144

(z1 + z2 + z3)3 +
1
8

(z1 + z2 + z3)2 +
3
4

(z1 + z2 + z3) +
1
2

and

p(4,1,1) =
1
36

(z3
1 + z3

2 + z3
3) +

1
72

(z1 + z2 + z3)3 +
1
8

(z1 + z2 + z3)2 +
1
6

(z1 + z2 + z3) +
1
2

One can check the correctness of these results as follows.

The highest weights occurring in
∧
S2
C

3 are (0,0,0), (2,0,0), (3,1,0), (3,3,0), (4,1,1),

(4,3,1), (4,4,2), and (4,4,4). Note that these correspond to strict partitions (0), (1),

(2), (2,1), (3), (3,1), (3,2), and (3,2,1), respectively. Setting ρ = (−1,−2,−3) and

evaluating p(3,3) at λ+ ρ for each of these highest weights λ yields

p(3,3)(0− 1, 0− 2, 0− 3) = p(3,3)(−1,−2,−3) = 0

p(3,3)(2− 1, 0− 2, 0− 3) = p(3,3)(1,−2,−3) = 0

p(3,3)(3− 1, 1− 2, 0− 3) = p(3,3)(2,−1,−3) = 0

p(3,3)(3− 1, 3− 2, 0− 3) = p(3,3)(2, 1,−3) = 1

p(3,3)(4− 1, 1− 2, 1− 3) = p(3,3)(3,−1,−2) = 0

This verifies that p(3,3)(z1, z2, z3) satisfies the vanishing condition. Since the polynomial

p(3,3)(z1, z2, z3) is supersymmetric of degree 3, it is a linear combination of z3
1 + z3

2 +

z3
3 , (z1 + z2 + z3)3, (z1 + z2 + z3)2, z1 + z2 + z3 and 1. Interpolating the 5 values required

by the vanishing condition thus determines the coefficients of the polynomial uniquely.

Additional values are as follows:

p(3,3)(4− 1, 3− 2, 1− 3) = p(3,3)(3, 1,−2) = 2

p(3,3)(4− 1, 4− 2, 2− 3) = p(3,3)(3, 2,−1) = 5

p(3,3)(4− 1, 4− 2, 4− 3) = p(3,3)(3, 2, 1) = 10
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One obtains the same results by applying the operator D(3,3) as written above, to the

corresponding highest weight vectors (h.w.v.). These are

λ highest weight vector

(0, 0, 0) 1

(2, 0, 0) e11

(3, 1, 0) e11e12

(3, 3, 0) e11e12e22

(4, 1, 1) e11e12e13

(4, 3, 1) e11e12e13e22

(4, 4, 2) e11e12e13e22e23

(4, 4, 4) e11e12e13e22e23e33

The eigenvalues of D(3,3) on each of these highest weight vectors would appear to be

utterly tedious to compute by direct application of the explicitly written operator to

the vector. On the contrary, each term aIeI∂I of D(3,3), where I denotes an index set

and aI a constant, contributes −aI to the eigenvalue of D(3,3) on the highest weight

vector eJ iff I ⊆ J . The minus sign is important, and is the result of working in a skew

setting; observe that e11e12e22∂11∂12∂22 applied to e11e12e22 yields −e11e12e22 rather

than e11e12e22, which explains the minus signs appearing in the expressions for D(3,3)

and D(4,1,1) above. It is thus not difficult to compute these eigenvalues, which agree

with the values of p(3,3) as written above.

One can also check the stated results for D(4,1,1) and p(4,1,1), whose values are

p(4,1,1)(0− 1, 0− 2, 0− 3) = p(4,1,1)(−1,−2,−3) = 0

p(4,1,1)(2− 1, 0− 2, 0− 3) = p(4,1,1)(1,−2,−3) = 0

p(4,1,1)(3− 1, 1− 2, 0− 3) = p(4,1,1)(2,−1,−3) = 0

p(4,1,1)(3− 1, 3− 2, 0− 3) = p(4,1,1)(2, 1,−3) = 0

p(4,1,1)(4− 1, 1− 2, 1− 3) = p(4,1,1)(3,−1,−2) = 1

p(4,1,1)(4− 1, 3− 2, 1− 3) = p(4,1,1)(3, 1,−2) = 2

p(4,1,1)(4− 1, 4− 2, 2− 3) = p(4,1,1)(3, 2,−1) = 5
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p(4,1,1)(4− 1, 4− 2, 4− 3) = p(4,1,1)(3, 2, 1) = 10

Making direct use of the supersymmetry, degree, and vanishing conditions we can also

compute

p(0)(z1, z2, z3) = 1

p(2)(z1, z2, z3) = 1
2(z1 + z2 + z3) + 3

p(3,1)(z1, z2, z3) = 1
8(z1 + z2 + z3)2 + 5

4(z1 + z2 + z3) + 3

Now consider the case n = 4:

p(0)(z1, z2, z3, z4) = 1

p(2)(z1, z2, z3, z4) = 1
2p1 + 5

p(3,1)(z1, z2, z3, z4) = 1
8p

2
1 + 9

4p1 + 10

p(3,3)(z1, z2, z3, z4) = 1
144p

3
1 − 1

36p3 + 5
24p

2
1 + 25

12p1 + 25
6

p(4,1,1)(z1, z2, z3, z4) = 1
72p

3
1 + 1

36p3 + 7
24p

2
1 + 11

6 p1 + 35
6

p(4,3,1)(z1, z2, z3, z4) = 1
576p

4
1 − 1

144p3p1 + 17
288p

3
1 − 1

36p3 + 35
48p

2
1 + 25

8 p1 + 25
6

p(5,1,1,1)(z1, z2, z3, z4) = 1
1152p

4
1 + 1

144p3p1 + 1
72p

3
1 + 1

36p3 + 1
96p

2
1 + 1

12p1 + 5
6

Observe that the expression for pλ as a polynomial in the odd degree power sums does

indeed depend on n, except for the terms of highest degree.

For n = 5:

p(0)(z1, z2, z3, z4, z5) = 1

p(2)(z1, z2, z3, z4, z5) = 1
2p1 + 15

2
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p(3,1)(z1, z2, z3, z4, z5) = 1
8p

2
1 + 7

2p1 + 195
8

p(3,3)(z1, z2, z3, z4, z5) = 1
144p

3
1 − 1

36p3 + 5
16p

2
1 + 75

16p1 + 275
16

p(4,1,1)(z1, z2, z3, z4, z5) = 1
72p

3
1 + 1

36p3 + 1
2p

2
1 + 139

24 p1 + 55
2

p(4,3,1)(z1, z2, z3, z4, z5) = 1
576p

4
1 − 1

144p3p1 + 3
32p

3
1 − 1

16p3 + 15
8 p

2
1 + 475

32 p1 + 2475
64

p(5,1,1,1)(z1, z2, z3, z4, z5) = 1
1152p

4
1 + 1

144p3p1 + 1
32p

3
1 + 1

16p3 + 67
192p

2
1 + 81

32p1 + 1485
128

p(4,4,2)(z1, z2, z3, z4, z5) = 1
14400p

5
1− 1

1440p3p
2
1 + 1

600p5 + 7
1440p

4
1− 7

360p3p1 + 49
360p

3
1− 199

1440p3 +

7
4p

2
1 + 575

64 p1 + 441
32

p(5,3,1,1)(z1, z2, z3, z4, z5) = 1
6400p

5
1 − 1

400p5 + 11
1280p

4
1 + 1

80p3p1 + 337
1920p

3
1 + 17

120p3 + 201
128p

2
1 +

2025
256 p1 + 5103

256

p(6,1,1,1,1)(z1, z2, z3, z4, z5) = 1
28800p

5
1 + 1

1440p3p
2
1 + 1

1200p5 + 1
1152p

4
1 + 1

144p3p1 − 1
576p

3
1 −

1
288p3 − 5

192p
2
1 + 189

640p1 + 189
128

p(4,4,4)(z1, z2, z3, z4, z5, z6) = 1
1036800p

6
1 − 1

51840p
3
1p3 + 1

7200p1p5 − 1
12960p

2
3 + 7

57600p
5
1 −

7
5760p

2
1p3 + 7

2400p5 + 49
7680p

4
1 − 49

1920p1p3 + 49
288p

3
1 − 1421

5760p3 + 5831
2560p

2
1 + 54047

3840 p1 + 62769
2560

p(5,4,2,1)(z1, z2, z3, z4, z5, z6) = 1
82944p

6
1− 1

10368p
3
1p3 + 1

5184p
2
3 + 1

768p
5
1− 5

1152p
2
1p3− 1

288p5 +

533
9216p

4
1 − 67

1152p1p3 + 2255
1728p

3
1 − 85

3456p3 + 47201
3072 p

2
1 + 217511

1024

p(6,3,1,1,1)(z1, z2, z3, z4, z5, z6) = 1
129600p

6
1 + 1

12960p
3
1p3 − 1

3600p1p5 − 1
6480p

2
3 + 1

1600p
5
1 +

7
1440p

2
1p3 − 1

3600p5 + 161
8640p

4
1 + 371

4320p1p3 + 563
2160p

3
1 + 1229

4320p3 + 2387
960 p

2
1 + 1323

64 p1 + 24451
320
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p(7,1,1,1,1,1)(z1, z2, z3, z4, z5, z6) = 1
1036800p

6
1 + 1

25920p
3
1p3 + 1

7200p1p5 + 1
25920p

2
3 + 1

28800p
5
1 +

1
1440p

2
1p3 + 1

1200p5 − 19
69120p

4
1 − 19

8640p1p3 − 19
2880p

3
1 − 19

1440p3 + 199
4608p

2
1 + 199

384p1 + 6153
2560
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5.3 Factorial Schur Q polynomials

For V = S2
C
n, the correspondence between highest weights λ of

∧
V and strict parti-

tions λ̌ is illustrated in the following table. Here ρ = (−1,−2,−3...) so that the positive

terms in λ+ ρ are precisely the top row Frobenius coordinates of λ, which in turn are

the partition numbers of the corresponding strict partition λ̌.
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λ λ+ ρ λ̌

(0) (−1,−2,−3, ...) (0)

(2) (1,−2,−3, ...) (1)

(31) (2,−1,−3,−4...) (2)

(33) (2, 1,−3,−4...) (21)

(411) (3,−1,−2,−4,−5...) (3)

(431) (3, 1,−2,−4,−5...) (31)

(5111) (4,−1,−2,−3,−5,−6...) (4)

(442) (3, 1,−2,−4,−5...) (32)

(5311) (4, 1,−2,−3,−5,−6...) (41)

(61111) (5,−1,−2,−3,−4,−6,−7...) (5)

(444) (3, 2, 1,−4,−5...) (321)

(5421) (4, 2,−1,−3,−5,−6...) (42)

(63111) (5, 1,−2,−3,−4,−6,−7...) (51)

(711111) (6,−1,−2,−3,−4,−5,−7,−8...) (6)

(5441) (4, 2, 1,−3,−5,−6...) (421)

(5522) (4, 3,−1,−2,−5,−6...) (43)

(64211) (5, 2,−1,−3,−4,−6,−7...) (52)

(731111) (6, 1,−2,−3,−4,−5,−7,−8...) (61)

(8111111) (7,−1,−2,−3,−4,−5,−6,−8,−9...) (7)

(5542) (4, 3, 1,−2,−5,−6...) (431)

(64411) (5, 2, 1,−3,−4,−6,−7...) (521)

(65221) (5, 3,−1,−2,−4,−6,−7...) (53)

(742111) (6, 2,−1,−3,−4,−5,−7,−8...) (62)

(8311111) (7, 1,−2,−3,−4,−5,−6,−8,−9...) (71)

(91111111) (8,−1,−2,−3,−4,−5,−6,−7,−9,−10...) (8)

When viewed as partitions, the highest weights of
∧∧2

C
n are precisely the duals

of those of
∧
S2
C
n, in the sense that their Young diagrams differ by interchanging

rows and columns (i.e. by reflection across the diagonal). Equivalently, the

bottom row Frobenius coordinates of a highest weight of
∧∧2

C
n are precisely
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the top row Frobenius coordinates of the corresponding highest weight of
∧
S2
C
n.

The correspondence between highest weights λ of
∧∧2

C
n and strict partitions λ̌

is illustrated in the following table. Here ρ = (0,−1,−2, ...) so that the positive

terms in λ+ ρ are precisely the bottom row Frobenius coordinates of λ.

λ λ+ ρ λ̌

(0) (0,−1,−2,−3, ...) (0)

(11) (1, 0,−2,−3...) (1)

(211) (2, 0,−1,−3,−4...) (2)

(222) (2, 1, 0,−3,−4...) (21)

(3111) (3, 0,−1,−2,−4,−5...) (3)

(3221) (3, 1, 0,−2,−4,−5...) (31)

(41111) (4, 0,−1,−2,−3,−5,−6...) (4)

(3322) (3, 2, 0,−1,−4,−5...) (32)

(42211) (4, 1, 0,−2,−3,−5,−6...) (41)

(511111) (5, 0,−1,−2,−3,−4,−6,−7...) (5)

(3333) (3, 2, 1, 0,−4,−5...) (321)

(43221) (4, 2, 0,−1,−3,−5,−6...) (42)

(522111) (5, 1, 0,−2,−3,−4,−6,−7...) (51)

(6111111) (6, 0,−1,−2,−3,−4,−5,−7,−8...) (6)

(43331) (4, 2, 1, 0,−3,−5,−6...) (421)

(44222) (4, 3, 0,−1,−2,−5,−6...) (43)

(532211) (5, 2, 0,−1,−3,−4,−6,−7...) (52)

(6221111) (6, 1, 0,−2,−3,−4,−5,−7,−8...) (61)

(71111111) (7, 0,−1,−2,−3,−4,−5,−6,−8,−9...) (7)

(44332) (4, 3, 1, 0,−2,−5,−6...) (431)

(533311) (5, 2, 1, 0,−3,−4,−6,−7...) (521)

(542221) (5, 3, 0,−1,−2,−4,−6,−7...) (53)

(6322111) (6, 2, 0,−1,−3,−4,−5,−7,−8...) (62)

(72211111) (7, 1, 0,−2,−3,−4,−5,−6,−8,−9...) (71)

(811111111) (8, 0,−1,−2,−3,−4,−5,−6,−7,−9,−10...) (8)
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The following are examples of the qλ̌, the rescaled factorial Schur Q-polynomials;

cf. section 3.2. Observe that the coefficient of each leading term of qλ̌ of total

degree k equals 2k times the corresponding leading term of the spectral polynomial

pλ.

q(0) = 1

q(1) = p1

q(2) = 1
2
p2

1 − 1
2
p1

q(2,1) = 1
18
p3

1 − 1
18
p3

q(3) = 1
9
p3

1 + 1
18
p3 − 1

2
p2

1 + 1
3
p1

q(3,1) = 1
36
p4

1 − 1
36
p3p1 − 1

12
p3

1 + 1
12
p3

q(4) = 1
72
p4

1 + 1
36
p3p1 − 1

6
p3

1 − 1
12
p3 + 11

24
p2

1 − 1
4
p1

q(3,2) = 1
450
p5

1 − 1
180
p3p

2
1 + 1

300
p5 − 1

180
p4

1 + 1
180
p3p1 + 1

180
p3

1 − 1
180
p3

q(4,1) = 1
200
p5

1 − 1
200
p5 − 1

20
p4

1 + 1
20
p3p1 + 11

120
p3

1 − 11
120
p3

q(5) = 1
900
p5

1 + 1
180
p3p

2
1 + 1

600
p5 − 1

36
p4

1 − 1
18
p3p1 + 7

36
p3

1 + 7
72
p3 − 5

12
p2

1 + 1
5
p1

q(3,2,1) = 1
16200

p6
1 − 1

3240
p3p

3
1 − 1

3240
p2

3 + 1
1800

p5p1

q(4,2) = 1
1296

p6
1− 1

648
p3p

3
1+ 1

1296
p2

3− 1
144
p5

1+ 1
72
p3p

2
1− 1

144
p5+ 1

72
p4

1− 1
72
p3p1− 5

432
p3

1+ 5
432
p3



71

q(5,1) = 1
2025

p6
1+ 1

810
p3p

3
1− 1

1620
p2

3− 1
900
p5p1− 1

90
p5

1+ 1
90
p5+ 7

108
p4

1− 7
108
p3p1− 5

54
p3

1+ 5
54
p3

q(6) = 1
16200

p6
1 + 1

1620
p3p

3
1 + 1

6480
p2

3 + 1
1800

p5p1 − 1
360
p5

1 − 1
72
p3p

2
1 − 1

240
p5 + 17

432
p4

1 +

17
216
p3p1 − 5

24
p3

1 − 5
48
p3 + 137

360
p2

1 − 1
6
p1
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5.4 Values of spectral functions

The highest weights of
∧
S2
C

3 are (0), (2), (31), (33), (411), (431), (442), and

(444). In the following table of values, the (µ, λ) entry equals cµ(λ), where each

row corresponds to a different λ, and each column to a different µ.

cµ(λ) µ

(0) (2) (31) (33) (411) (431) (442) (444)

(0) 1 0 0 0 0 0 0 0

(2) 1 1 0 0 0 0 0 0

(31) 1 2 1 0 0 0 0 0

λ (33) 1 3 3 1 0 0 0 0

(411) 1 3 3 0 1 0 0 0

(431) 1 4 6 2 2 1 0 0

(442) 1 5 10 5 5 5 1 0

(444) 1 6 15 10 10 15 6 1

Displayed next is the matrix {(−1)|λ|cµ(λ)}, which is the matrix of the operator

T (cf. Definition 2.2.4 and Proposition 2.2.12). Observe that it is indeed self-

inverting, as required.



1 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

1 2 1 0 0 0 0 0

−1 −3 −3 −1 0 0 0 0

−1 −3 −3 0 −1 0 0 0

1 4 6 2 2 1 0 0

1 −5 10 −5 −5 −5 −1 0

1 6 15 10 10 15 6 1
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An expanded table of values of cµ(λ), but indicating strict partitions rather than

their corresponding highest weights, is as follows; observe that both the extra

vanishing (Corollary 3.4.4) and non-vanishing (Corollary 3.4.7) properties hold.
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(0) (1) (2) (21) (3) (31) (4) (32) (41) (5) (321) (42) (51) (6)

(0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(1) 1 1 0 0 0 0 0 0 0 0 0 0 0 0

(2) 1 2 1 0 0 0 0 0 0 0 0 0 0 0

(21) 1 3 3 1 0 0 0 0 0 0 0 0 0 0

(3) 1 3 3 0 1 0 0 0 0 0 0 0 0 0

(31) 1 4 6 2 2 1 0 0 0 0 0 0 0 0

(4) 1 4 6 0 4 0 1 0 0 0 0 0 0 0

(32) 1 5 10 5 5 5 0 1 0 0 0 0 0 0

(41) 1 5 10 10
3

20
3

10
3

5
3 0 1 0 0 0 0 0

(5) 1 5 10 0 10 0 5 0 0 1 0 0 0 0

(321) 1 6 15 10 10 15 0 6 0 0 1 0 0 0

(42) 1 6 15 8 12 12 3 12
5

18
5 0 0 1 0 0

(51) 1 6 15 5 15 15
2

15
2 0 9

2
3
2 0 0 1 0

(6) 1 6 15 0 20 0 15 0 0 6 0 0 0 1

(421) 1 7 21 15 20 30 5 12 9 0 2 5 0 0

(43) 1 7 21 14 21 28 7 42
5

63
5 0 0 7 0 0

(52) 1 7 21 35
3

70
3

70
3

35
3

14
3 14 7

3 0 35
9

28
9 0

(61) 1 7 21 7 28 14 21 0 63
5

42
5 0 0 28

5
7
5

(7) 1 7 21 0 35 0 35 0 0 21 0 0 0 7

(431) 1 8 28 70
3

98
3

175
3

35
3 28 28 0 14

3
70
3 0 0

(521) 1 8 28 21 35 105
2

35
2 21 63

2
7
2

7
2

35
2 7 0

(53) 1 8 28 20 36 50 20 16 36 4 0 20 8 0

(62) 1 8 28 16 40 40 30 8 36 12 0 10 16 2

(71) 1 8 28 28
3

140
3

70
3

140
3 0 28 28 0 0 56

3
28
3

(8) 1 8 28 0 56 0 70 0 0 56 0 0 0 28

(432) 1 9 36 35 49 105 21 63 63 0 14 70 0 0

(531) 1 9 36 32 52 96 30 48 72 6 8 60 16 0

(54) 1 9 36 30 54 90 36 36 81 9 0 60 24 0

(621) 1 9 36 28 56 84 42 168
5

378
5

84
5

28
5 42 168

5
14
5

(63) 1 9 36 27 57 81 45 27 81 18 0 45 36 3

(72) 1 9 36 21 63 63 63 63
5

378
5

189
5 0 21 252

5
63
3

(81) 1 9 36 12 72 36 90 0 54 72 0 0 48 36

(9) 1 9 36 0 84 0 126 0 0 126 0 0 0 84
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Corollary 2.3.5, which asserts that cµ(χ) = |dµ|, is illustrated for n=2, 3, 4, and

5:

(0) (1) (2) (21) (3) (31) (4) (32) (41) (5) (321) (42) (51) (6)

(21) 1 3 3 1 0 0 0 0 0 0 0 0 0 0

(321) 1 6 15 10 10 15 0 6 0 0 1 0 0 0

(4321) 1 10 45 50 70 175 35 126 126 0 35 175 0 0

(54321) 1 15 105 175 280 1050 315 1176 1701 126 490 3675 840 0



76

5.5 Transposition

The following are examples of the the pairing λ 7→ χ− w0λ discussed in Section

2.3.

In the case V = S2
C
n, the sum χ of all weights satisfies χ = (n+1, n+1, ..., n+1).

In four variables χ = (5, 5, 5, 5), and the pairing λ 7→ χ−w0λ is illustrated in the

following table.

λ w0λ χ− w0λ

(0, 0, 0, 0) (0, 0, 0, 0) (5, 5, 5, 5)

(2, 0, 0, 0) (0, 0, 0, 2) (5, 5, 5, 3)

(3, 1, 0, 0) (0, 0, 1, 3) (5, 5, 4, 2)

(3, 3, 0, 0) (0, 0, 3, 3) (5, 5, 2, 2)

(4, 1, 1, 0) (0, 1, 1, 4) (5, 4, 4, 1)

(4, 3, 1, 0) (0, 1, 3, 4) (5, 4, 2, 1)

(4, 4, 2, 0) (0, 2, 4, 4) (5, 3, 1, 1)

(4, 4, 4, 0) (0, 4, 4, 4) (5, 1, 1, 1)

(5, 1, 1, 1) (1, 1, 1, 5) (4, 4, 4, 0)

(5, 3, 1, 1) (1, 1, 3, 5) (4, 4, 2, 0)

(5, 4, 2, 1) (1, 2, 4, 5) (4, 3, 1, 0)

(5, 4, 4, 1) (1, 4, 4, 5) (4, 1, 1, 0)

(5, 5, 2, 2) (2, 2, 5, 5) (3, 3, 0, 0)

(5, 5, 4, 2) (2, 4, 5, 5) (3, 1, 0, 0)

(5, 5, 5, 3) (3, 5, 5, 5) (2, 0, 0, 0)

(5, 5, 5, 5) (5, 5, 5, 5) (0, 0, 0, 0)

For V =
∧2
C
n, χ = (n− 1, n− 1, ..., n− 1). For n = 4 we have
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λ w0λ χ− w0λ

(0, 0, 0, 0) (0, 0, 0, 0) (3, 3, 3, 3)

(1, 1, 0, 0) (0, 0, 1, 1) (3, 3, 2, 2)

(2, 1, 1, 0) (0, 1, 1, 2) (3, 2, 2, 1)

(2, 2, 2, 0) (0, 2, 2, 2) (3, 1, 1, 1)

(3, 1, 1, 1) (1, 1, 1, 3) (2, 2, 2, 0)

(3, 2, 2, 1) (1, 2, 2, 3) (2, 1, 1, 0)

(3, 3, 2, 2) (2, 2, 3, 3) (1, 1, 0, 0)

(3, 3, 3, 3) (3, 3, 3, 3) (0, 0, 0, 0)

For n = 5 we have

λ w0λ χ− w0λ

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (4, 4, 4, 4, 4)

(1, 1, 0, 0, 0) (0, 0, 0, 1, 1) (4, 4, 4, 3, 3)

(2, 1, 1, 0, 0) (0, 0, 1, 1, 2) (4, 4, 3, 3, 2)

(2, 2, 2, 0, 0) (0, 0, 2, 2, 2) (4, 4, 2, 2, 2)

(3, 1, 1, 1, 0) (0, 1, 1, 1, 3) (4, 3, 3, 3, 1)

(3, 2, 2, 1, 0) (0, 1, 2, 2, 3) (4, 3, 2, 2, 1)

(3, 3, 2, 2, 0) (0, 2, 2, 3, 3) (4, 2, 2, 1, 1)

(3, 3, 3, 3, 0) (0, 3, 3, 3, 3) (4, 1, 1, 1, 1)

(4, 1, 1, 1, 1) (1, 1, 1, 1, 4) (3, 3, 3, 3, 0)

(4, 2, 2, 1, 1) (1, 1, 2, 2, 4) (3, 3, 2, 2, 0)

(4, 3, 2, 2, 1) (1, 2, 2, 3, 4) (3, 2, 2, 1, 0)

(4, 3, 3, 3, 1) (1, 3, 3, 3, 4) (3, 1, 1, 1, 0)

(4, 4, 2, 2, 2) (2, 2, 2, 4, 4) (2, 2, 2, 0, 0)

(4, 4, 3, 3, 2) (2, 3, 3, 4, 4) (2, 1, 1, 0, 0)

(4, 4, 4, 3, 3) (3, 3, 4, 4, 4) (1, 1, 0, 0, 0)

(4, 4, 4, 4, 4) (4, 4, 4, 4, 4) (0, 0, 0, 0, 0)
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5.6 Dimension Polynomials

This section presents examples of the dimension polynomials discussed in Chapter

4. Observe that for each highest weight λ, the leading coefficient of |dλ| equals

the coefficient of the highest power of p1 in the spectral polynomial pλ.

We first consider dimensions of submodules of
∧
S2
C
n:

|d(0)|(n) = 1

|d(2)|(n) = 1
2
n2 + 1

2
n

|d(3,1)|(n) = 1
8
n4 + 1

4
n3 − 1

8
n2 − 1

4
n

|d(3,3)|(n) = 1
144
n6 + 1

48
n5 + 1

144
n4 − 1

48
n3 − 1

72
n2

|d(4,1,1)|(n) = 1
72
n6 + 1

24
n5 − 5

72
n4 − 5

24
n3 + 1

18
n2 + 1

6
n

|d(4,3,1)|(n) = 1
576
n8 + 1

144
n7 − 1

288
n6 − 5

144
n5 − 11

576
n4 + 1

36
n3 + 1

48
n2

|d(5,1,1,1)|(n) = 1
1152

n8 + 1
288
n7 − 7

576
n6 − 7

144
n5 + 49

1152
n4 + 49

288
n3 − 1

32
n2 − 1

8
n

|d(4,4,2)|(n) = 1
14400

n10 + 1
2880

n9 − 1
480
n7 − 3

1600
n6 + 1

320
n5 + 1

288
n4 − 1

720
n3 − 1

600
n2

|d(5,3,1,1)|(n) = 1
6400

n10+ 1
1280

n9− 1
640
n8− 7

640
n7− 7

6400
n6+ 49

1280
n5+ 1

40
n4− 9

320
n3− 9

400
n2

|d(6,1,1,1,1)|(n) = 1
28800

n10 + 1
5760

n9 − 1
960
n8 − 1

192
n7 + 91

9600
n6 + 91

1920
n5 − 41

1440
n4 −

41
288
n3 + 1

50
n2 + 1

10
n

|d(4,4,4)|(n) = 1
1036800

n12 + 1
172800

n11 + 1
207360

n10 − 1
34560

n9 − 19
345600

n8 + 1
57600

n7 +

19
207360

n6 + 1
34560

n5 − 11
259200

n4 − 1
43200

n3

|d(5,4,2,1)|(n) = 1
82944

n12 + 1
13824

n11− 7
82944

n10− 5
4608

n9− 19
27648

n8 + 7
1536

n7 + 419
82944

n6−
85

13824
n5 − 161

20736
n4 + 1

384
n3 + 1

288
n2

|d(6,3,1,1,1)|(n) = 1
129600

n12 + 1
21600

n11− 1
5184

n10− 1
720
n9 + 41

43200
n8 + 91

7200
n7 + 109

25920
n6−

41
1080

n5 − 881
32400

n4 + 2
75
n3 + 1

45
n2

|d(7,1,1,1,1,1)|(n) = 1
1036800

n12 + 1
172800

n11− 11
207360

n10− 11
34560

n9 + 341
345600

n8 + 341
57600

n7−
1529

207360
n6 − 1529

34560
n5 + 5269

259200
n4 + 5269

43200
n3 − 1

72
n2 − 1

12
n
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Chapter 6

Topics for future research

I. Howe’s classification of skew multiplicity free spaces is limited to irreducible

modules for simple reductive groups. The next step in this area is to classify

irreducible SMF spaces for not necessarily simple reductive groups, with the hope

that such a classification will yield additional infinite classes of SMF spaces. Each

such infinite class presents the problem of characterizing spectral functions for in-

variant differential operators, and with it the possibility that these functions are,

up to a change of variables, some already known and interesting family of sym-

metric functions. It would also be interesting to classify SMF modules of finite

groups, especially those occurring in infinite families.

II. Understanding skew multiplicity freeness in its own right, and not necessarily

in connection with symmetric polynomials and invariant operators, is an inter-

esting challenge. Ideally it would be possible to find a geometric characterization

of this property, which is not currently known. This would be a significant step

toward completing the analogy with multiplicity free spaces, for which there is

such a characterization; V is multiplicity free if and only if a Borel subgroup of

G has a dense orbit, cf. [K4 Theorem 3.1].

III. Ivanov proves a branching rule for the factorial Schur Q-functions. The

equivalence which we have shown between these functions and spectral functions

associated with SMF spaces has made it possible to derive properties of one set

of functions from the other, in either direction. The next task is to reformulate
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the branching rule in terms of the spectral functions, and to draw specifically

representation theoretic conclusions.

IV.The argument of Chapter 2 proves the vanishing condition for spectral func-

tions in the general SMF case; it remains to be investigated whether an extra

vanishing property holds. Furthermore, the transposition formula which holds in

the general SMF case requires that the operator Dλ arise from the center of the

universal enveloping algebra of G; whether this holds for all invariant operators

on SMF spaces is unknown, and certainly does not hold in general for invariant

operators on MF spaces.

V. Our study of the spectral functions in the special cases S2
C
n and

∧2
C
n made

use of particular choices of ρ. Following the approach of Knop and Sahi, it may

be useful to regard ρ as a parameter, and investigate the effects of changing its

value, i.e. regarding functions pλ,ρ as a deformation of the family pλ.

VI. At the beginning of this research project it seemed plausible, though difficult

to work out, that the explicitly written differential operator Dλ could be inter-

preted combinatorially in the following sense. Dλ is a sum of terms of the form

aIeI∂I . When applied to an element (in particular a highest weight vector) of

Mµ, aIeI∂I contributes ±aI or 0 to the value of cλ(µ), where the contribution is

±aI iff I ⊂ J where J is the index set determined by the highest weight vector

of weight µ, and the value of ± depends only on the residue mod 4 of |λ|
2

. The

difficulty lies in the values of aI . Are the values of aI , after some appropriate

scaling, the solution to a counting problem related to the Young diagrams of λ

and µ, and not just through the formula for shifted skew tableaux? This seemed

to be the case during the initial work on this project, but it is now quite unclear.
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VII. In the special cases considered in Chapter 3, the extra vanishing and non-

vanishing properties were proved for spectral functions by means of the equiva-

lence with the factorial Schur Q functions. A direct proof would be desirable, in

particular one which makes use of the explicit form of the operator Dλ.

VIII. Difference operators are used in two ways in the symmetric case, both in

Knop’s proof of the transposition formula and in the Knop-Sahi realization of

spectral polynomials as eigenfunctions of such operators. If only to complete the

analogy with the symmetric case, or to determine if the cases are not entirely

analogous, it would be interesting to construct the appropriate difference opera-

tors for the skew case.

IX. One result which holds in the symmetric case whose skew symmetric analogue

has yet to be investigated is what Knop [K1] calls the interpolation formula. The

analogue, if it exists, would express an arbitrary supersymmetric polynomial as

a linear combination of spectral polynomials.
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