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Background:  Growth in health care spending has led to greater use of cost-effectiveness 

analysis (CEA) in assessing health technologies.  Traditional CEA uses the incremental 

cost-effectiveness ratio (ICER), a measure with statistical issues and limitations with 

missing data.  Better analytic methods for CEA are needed to inform health care policy 

decisions. 

Objectives:  The study evaluated estimates of cost-effectiveness from three models using 

incremental net monetary benefit (INMB) rather than ICER.  Estimates were compared 

under different conditions of missingness.  Data were simulated to include missing at 

random (MAR) and missing not at random (MNAR) nonresponse mechanisms as defined 

by Little and Rubin (2002). 

Methods:  The parameter of interest was INMB.  Models were ANCOVA, mixed effects 

(ME), and joint mixed effects and log of time-to-dropout (joint ME), a selection model. 
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Because the joint ME model incorporates correlation between time-to-dropout and 

random effects of the longitudinal model of NMB into one model, the hypothesis was it 

would produce the best estimate.  Simulated treatment effect provided a “true” INMB for 

model evaluations that included bias (absolute difference from “true”), precision (ratio of 

variances), and cost-effectiveness acceptability curves with willingness-to-pay (λ) values 

from $0 to $100k.  Base case used a threshold criterion for dropout.  Sensitivity analyses 

assessed impact of higher missingness.  Post-hoc analysis used a trajectory criterion for 

dropout. 

Results:  Base case analyses resulted in ANCOVA and ME models producing the least 

biased estimates.  At λ = $50k, bias was $1.3k, $1.4k, and $2.3k, and precision was 1.27, 

0.90, and 1.24 for ME, ANCOVA, and joint ME, respectively.  ANCOVA estimates were 

best in sensitivity analyses although estimates were poor.  The joint ME model performed 

best in the post hoc analysis. 

Conclusions:  The models performed differently under alternative missingness 

conditions and were sensitive to nonresponse mechanisms.  All estimates were poor when 

missingness was high, therefore, primary prevention of missing data should be a goal of 

research.  MNAR nonresponse mechanisms are more complicated than implied by Little 

and Rubin’s definitions as shown by results with threshold versus trajectory criteria for 

dropout.  Further research is needed with selection models in CEA and INMB as the 

measure of cost-effectiveness. 
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CHAPTER 1.  INTRODUCTION 

 

Health care spending in the United States continues to rank highest in the world.  

In 2004, U.S. per capita health care spending was $6,102 (US $PPP, i.e., purchasing 

power parity), which was 2.5 times greater than the median ($2,552) for all thirty 

industrialized member countries of the Organization for Economic Cooperation and 

Development (Anderson et al., 2007).  U.S. national health expenditures, as a share of 

gross domestic product, grew from 13.7% in 1993 to 16.0% in 2006, and are projected to 

reach 19.5% by 2017 (Keehan et al., 2008).   The primary factors estimated to drive 

growth in personal health care spending are medical prices and utilization, population 

growth, and age-sex mix (Keehan et al., 2008).  Since the early 1990s, the cost and 

utilization of hospital care has accounted for approximately one-third of the total national 

health expenditures every year, and spending on pharmaceuticals has grown from 5.6 to 

10.0 percent of total national health expenditures between the years 1993 and 2004 (U.S. 

Department of Health and Human Services, 2006).   

Continual growth in health care spending has increased payers’ interest in cost-

effective medical technologies.  Analytic methods that facilitate comparisons of medical 

technologies on cost-effectiveness may help to inform health care policy decisions.  The 

focus of the current study, therefore, was to evaluate different modeling approaches for 

measuring cost-effectiveness.  The study used data that were simulated to include data 

problems frequently present in clinical trial databases and that pose analytical and 

interpretation challenges.   
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Health care spending has also been an issue outside of the United States.  In many 

ways, health authorities around the world are further advanced than in the United States 

regarding consideration of economic evidence for purchasing and pricing decisions.  The 

National Institute for Clinical Excellence (NICE) in the United Kingdom has been 

conducting regular reviews of the “best available evidence” for the National Health 

Service (NHS) since 1999.  NICE reviews include economic appraisals of alternative 

treatments, and the results of these evaluations become guidelines to the NHS on what 

treatments physicians should choose.  Canada, Australia, the Netherlands, Finland, and 

Portugal are just a few of the other industrialized countries that have begun conducting 

health technology assessments similar to what is being done in the United Kingdom.   

Although health technology assessments are not yet formalized in the United 

States, there is increasing awareness that resource allocation must be addressed in a 

systematic manner.  For example, the American Academy of Managed Care Pharmacy 

(AMCP) issued a guideline to pharmaceutical manufacturers for submitting clinical and 

economic dossiers for formulary consideration (Academy of Managed Care Pharmacy, 

2005). The guideline requests that submissions include a modeling report that should 

present economic models and/or incremental cost-effectiveness analyses.  More recently, 

the Centers for Medicare and Medicaid Services issued a draft guidance document on a 

new approach to reimbursement policy called “coverage with evidence development” 

(CED) (Centers for Medicare and Medicaid Services, 2006).  The guidance links 

coverage decisions to evidence-based medicine and clinical research, with one of the 

goals being to produce savings for the Medicare program.    
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Good evidence development requires appropriate analytical methods for 

comparing alternative health interventions.  The incremental cost-effectiveness ratio 

(ICER) has been the standard measure for determining the cost-effectiveness of one 

treatment compared to another.  The ICER is defined as the ratio of the difference in 

costs to the difference in effectiveness between two treatment alternatives.  

Mathematically, the ICER is represented as 
E

C

EE

CCICER
Δ

Δ=
−
−

=
μ
μ

μμ
μμ

)(
)(

01

01 .  The terms 1Cμ  

and 0Cμ denote the expected values of cost (usually total direct medical costs) for a new 

experimental treatment, T1, and a standard of care treatment, T0.  The terms 1Eμ  and 0Eμ  

denote the expected values of effectiveness for the treatments T1 and T0, respectively.  

The value of the ICER can be interpreted as the additional investment that is needed for 

each additional unit of health that is expected from investing in T1 rather than T0.  When 

the ICER is less than the maximum price, λ, that society is willing to pay to achieve one 

more unit of health benefit, then T1 should be chosen over T0.  That is, if ICER < λ then 

the new treatment is considered to be a good value. 

The ICER, however, has some limitations as a statistic.  As a ratio of two 

asymptotically normal variables, the ICER has a Cauchy distribution.  The mean for the 

Cauchy distribution does not exist and the variance is indefinite, therefore, bootstrap 

methods or other techniques are necessary to approximate the variance of the ICER for 

significance testing (Zethraeus et al, 2003).  An alternative to the ICER that overcomes 

the problem of estimating uncertainty when the variance is indefinite is to estimate the 

incremental net-monetary-benefit (INMB) (Stinnett & Mullahy, 1998).  The INMB is 

calculated as the maximum value that the payer is willing to pay for one more unit of 
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effectiveness (λ) times the net effectiveness, minus the net cost.  The INMB is represented 

as CEINMB ΔΔ −= μλμ .  The INMB reformulates the components of an ICER and the 

value of λ into a continuous variable that can be expressed in monetary or health units, 

and is normally distributed in large samples.  In regression models with net monetary 

benefit ( CijEijijNMB μλμ −= , for patient i and treatment j) as the dependent variable, 

the INMB would be represented by the parameter estimate for the treatment main effect 

term (assuming no interaction terms involving treatment).  INMB > 0 is mathematically 

the same decision procedure as comparing the ICER to λ.  Moreover, the p-value 

associated with the parameter estimate for the main treatment effect (again, assuming no 

interaction terms involving treatment) is the probability associated with the statistical test 

of INMB = 0 (Hoch et al, 2002; Van Hout et al, 1994).  Therefore, the INMB offers an 

alternative approach to analyzing treatment cost-effectiveness within a regression model 

framework.   

Clinical trials and observational studies are common sources of data for cost-

effectiveness evaluations, and a challenge of cost-effectiveness analysis in the context of 

these studies occurs when there is a significant amount of missing follow-up data.  

Common reasons for subjects to drop out of clinical studies are death, adverse events, 

improvement or lack of improvement in symptoms, and other reasons unrelated to the 

trial procedures.  In the presence of missing data, biased estimates of the average total 

costs and effectiveness will result if a simple sample average is taken.  Biased estimates 

of the average total costs and effectiveness will also result if only completely observed 

cases are analyzed.  Different probability distributions of the patterns of missing 
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observations in a dataset may require alternative analytical approaches in order to 

produce unbiased estimates of the treatment effect.   

If missingness in a clinical trial does not depend on the values of the response 

variable, observed or missing, nor on the values of any other variables in the data set, the 

missing response data are said to be missing completely at random (MCAR) (Little, 

1995; Little & Rubin, 2002; Fairclough, 2002).  When the missing response data are 

MCAR, ordinary least squares regression and analysis of covariance (ANCOVA) 

methods on the subset of completely observed data can be used to obtain valid estimates, 

although there can be a loss of power from excluding the incomplete observations (Laird, 

1988; Lin, 2000).  If missingness depends on the values of the observed response variable 

and covariates, but does not depend on what the values would have been if the data had 

been captured after dropout, then the missing response data are said to be missing at 

random (MAR) (Little, 1995; Little & Rubin, 2002; Fairclough, 2002).  With MAR data, 

likelihood-based models and mixed-effects (ME) regression approaches will produce 

unbiased inferences (Rubin, 1976; Little & Rubin, 2002).  The greatest analytical 

challenge is when the missingness depends on what the response values would have been 

if the data had been captured after dropout.  This type of missing response is referred to 

as nonignorable or missing not at random (MNAR) (Little, 1995; Little & Rubin, 2002).  

Response data that are MNAR can occur, for example, when the missingness is 

associated with greater decline in health status (Fairclough, 2002).  MNAR nonresponse 

should be suspected in long-term studies of certain medical conditions and should be 

accounted for when performing cost evaluations from these studies.  When missing data 

are MNAR, it is necessary to model both the observed data and the nonresponse 
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mechanism in order to obtain valid parameter estimates (Rubin, 1976; Laird, 1988; Little, 

1995; Little & Rubin, 2002).  A joint mixed-effects and log of time-to-dropout (joint ME) 

model is a model that has been proposed for nonignorable nonresponse (Schluchter, 

1992; Ribaudo et al., 2000; Fairclough, 2002; Fairclough et al., 2004).  The joint ME 

model has been used in analyses of quality of life (Fairclough et al., 1998; Ribaudo et al., 

2000; Fairclough et al., 2002 and 2003), however, it has not been applied to cost-

effectiveness analyses.  The current study attempted to use the joint ME model and 

compared its results to the results of more commonly used models.  

1.1  Study Objectives 
 

The objectives of this study were to evaluate and compare estimates of 

incremental net monetary benefit (cost-effectiveness) from ANCOVA, ME, and joint ME 

models under different simulated conditions of nonresponse.  The dependent variable in 

the models was total one-year NMB, and the parameter of interest was the treatment 

group effect on NMB (INMB).  The data used in the analysis were simulated from the 

data structures of an actual clinical trial, and included simulated MAR and MNAR 

nonresponse mechanisms.  Using a simulated dataset allowed for the “true” INMB to be 

calculated and then used in the evaluation of model estimates.  The bias and precision of 

the model estimates were assessed.  Sensitivity analyses were performed to determine 

how the estimates were affected by various levels of MAR and MNAR missing data.    
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CHAPTER 2. BACKGROUND 

 
Chapter two provides background information to support the choice of NMB as 

the outcome measure and rationales for the selection of methods used in this study.  The 

chapter begins with a description of the ROSE Study, the original naturalistic clinical trial 

that is the basis for the simulated data in the current study.  Section 2.2 provides a 

description of the incremental cost-effectiveness ratio (ICER), the standard measure for 

determining cost-effectiveness.  Section 2.3 explains how an alternative measure (the 

INMB), is derived from components of the ICER and the advantages the INMB has as a 

cost-effectiveness measure compared to the ICER.  The basic concepts of cost-utility 

analysis are presented in Section 2.4.  Because this dissertation deals with the issue of 

estimation in the presence of missing data, definitions of nonresponse mechanisms are 

discussed in Section 2.5.  Finally, a review of many of the available methods for 

analyzing incomplete data is provided in Section 2.6. 

 

2.1 Original Data Source 
 

The study that provided the source data for simulation was a one-year, multi-

center, randomized, naturalistic clinical trial, also referred to as the Risperidone 

Outcomes Study of Effectiveness (ROSE) (Mahmoud et al., 2004; Mahmoud et al., 

1999).  The ROSE Study was conducted between 1995 and 1997 with the objective to 

compare clinical, health-related quality of life (HRQOL), and economic outcomes for 

patients with schizophrenia who were treated with the newly available (at that time) 

antipsychotic medication, risperidone, or with conventional antipsychotics that were the  

standard of care.  Outcome measures included HRQOL, rehospitalization for the 
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management of relapse, use of psychiatric services, and the cost of psychiatric care.     

           Twenty-one sites in 17 states participated in the study.  Sites included departments 

of clinical psychiatric research, university hospitals, community mental health clinics, 

and physician offices at Veterans Affairs, state, county, and private facilities.  Patients 

were eligible to participate if they were experiencing a relapse of schizophrenia at the 

time of enrollment.  Patients could be randomized in the hospital or in an outpatient 

setting.  Patients who were randomized in an outpatient setting were required to meet 

criteria for relapse that included an exacerbation of symptoms (as determined by a 

Clinical Global Impression score of at least moderately psychotic, and at least moderate 

presentation of two of the following psychotic symptoms:  delusions, conceptual 

disorganization, hallucinatory behavior, suspiciousness/persecution), accompanied by an 

increase in the use of psychiatric services such as use of emergency room or crisis team 

services,  admission to a crisis bed, or unscheduled office/clinic visits.  A total of 684 

patients were randomized to receive either risperidone (experimental group; N=354) or 

conventional antipsychotic therapy (control group; N=330) as initial treatment following 

relapse.  Because the frequency of psychiatric hospitalization may be an important 

predictor of therapeutic outcome in patients with schizophrenia, patients were stratified 

prior to randomization according to whether they had had one versus two or more 

previous hospitalizations in the two–year period before entry to the study.  All 

randomized patients were followed for one year regardless of changes in treatment.  

Study visits were scheduled at month 0 (baseline), and months 4, 8, and 12 following 

randomization.  Patients who withdrew consent prior to study completion were asked to 

return for a termination visit. 
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 The interviewer version of the Medical Outcomes Study 36-Item Short-Form 

Health Survey (SF-36) was used to assess physical and mental HRQOL (Ware & 

Sherbourne, 1992).  Data were collected on the frequency and duration of acute 

psychiatric hospitalizations for the management of relapse, use of nonhospital acute 

services (i.e., partial hospitalization or acute residential treatment, emergency room visits, 

encounters with crisis teams, and use of crisis beds), visits for routine mental health 

services (i.e., psychiatrist, nonphysician medication and therapy, and case management), 

and the use of other selected neuroleptic medications.  Data were collected directly from 

medical records, pharmacy records, discharge summaries, or other primary sources of 

documentation by full-time study coordinators.   Estimates of the costs for each type of 

service were derived from secondary sources.  In the current study, these costs have been 

corrected for inflation and are adjusted to 2005 dollars using the Medical Component of 

the Consumer Price Index.  Original and adjusted costs are presented in Table 2.1-1.   
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Table 2.1-1 Costs of services from the ROSE Study 
Health Care Service 
(Unit) 

Source  
(Year) 

Original Cost 
Scalar  

2005 Adjusted 
Cost Scalara

Hospitalization for the 
management of relapse  
(hospital day) 

Medicare Cost Reports 
(1993) 

$575 $916 

Partial hospitalization  
(hospital day)  

U.S. Department of 
Defense’s CHAMPUS 
program (1995)  

$240 (full-day) 
$120 (half-day) 

$346 (full-day) 
$173 (half-day) 

Residential treatment  
(treatment day) 

U.S. Department of 
Defense’s CHAMPUS 
program (1995) 

$240 (full-day) 
$120 (half-day) 

$346 (full-day) 
$173 (half-day) 

Emergency room (visit) Medicare’s Resource-
Based Relative Value 
Scale (RBRVS) (1995) 

$133 $192 

Encounter with crisis 
team (day) 

Medicare’s RBRVS 
(1996) 

$205 $290 

Crisis bed (day) Cost of ER or crisis 
team encounter plus 
50% of a hospital day 
(1995) 

$205 +$287 $709 

Mental health physician 
office visitb  
(visit) 

Medicare’s RBRVS 
(1995) 

$49 $71 

Psychotherapy  
(visit) 

Medicare’s RBRVS 
(1995) 

$40 $58 

Treatment for side 
effects  
(visit or medication) 

75% of mental health 
physician office visit 
(1995) 

$37 $51 

Disease-related 
medications 
(prescription) 

Average wholesale 
price from Pharmacist’s 
Redbook (1997) 

By medication By medication 

a  Adjusted costs are the original cost values adjusted  to 2005 U.S. dollars using the Medical  
  Component of the Consumer Price Index. 
b  Includes psychiatrist, nonphysician medication and therapy, and case management. 

 
 
   Selected results from the ROSE Study are shown in Table 2.1-2.  The final 

number of patients analyzed was 675 due to nine patients being dropped from the 

analysis because of questionable data collection procedures at one of the study sites.  Site 

of care varied at time of randomization, with 442 patients randomized as inpatients and 

233 patients randomized as outpatients.  The study population included patients with 

health insurance benefits through Medicaid and Medicare, including patients with dual 
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eligibility for benefits from both programs (risperidone 73.3%, conventional 

antipsychotics 71.1%).  Early dropout from the study occurred in 14.7 and 19.1% of 

risperidone- and conventional antipsychotics-treated patients, respectively.  The 

difference between the groups in early dropout was primarily due to loss to follow-up: 

risperidone 5.4% compared to conventional antipsychotics 10.0%. 

 
Table 2.1-2 Insurance type, dropouts, month 12 SF-36, and annual costs from 
the ROSE Study 
  

Risperidone 
N=349 

Conventional 
antipsychotics 

N=326 
Insurance type, %   
   Medicaid/Medicare 73.3 71.1 
   Veterans Administration 15.8 17.5 
   Other 10.9 11.4 
Early dropout, % 14.7 19.1 
   Lost to follow-up  5.4 10.0 
   Withdrew consent 4.4 4.2 
   Death 1.4 1.2 
   Othera 3.4 3.6 
Month 12 SF-36 MCSb, mean (SD)c 40 (12.6) 37 (13.3) 
Annual costs, mean (SD)c,d $23,709 (25,254) $21,746 (24,870) 
a  Includes dropout due to side-effects and lack of efficacy. 
b  MCS is the Mental Component Summary from the SF-36. 
c   p < .05 from ANCOVA controlling for study center, prior hospitalizations, and whether patient was 

randomized in hospital or in an outpatient setting. 
d   All costs in the original study were adjusted to 1996 U.S. dollars using the Medical Component of 

the Consumer Price Index. 
 

 Twelve-month results from the ROSE Study showed that patients randomized to 

risperidone had significantly better SF-36 mental component summary (MCS) scores 

compared to patients randomized to conventional therapy, suggesting greater 

effectiveness with risperidone (Table 2.1-2).  However, patients randomized to 

conventional therapy had significantly lower total costs at month 12 (Mahmoud et al, 

2004; Mahmoud et al, 1998).   
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The relationships between costs, utilities (derived from the SF-36), patient age, 

and prior hospitalizations in the ROSE Study were maintained in the process of 

generating the simulated dataset for the current study, thus creating more realistic data 

than are frequently used in simulation studies.  Simulated data are often based on a 

chosen distribution for the dependent variable and covariates without consideration for 

the correlations between variables.  Although such data may be adequate for comparing 

methods, they are probably not representative of real clinical trial data and results from 

those studies may not provide information on the performance of methods when applied 

to real data. The simulation procedure used in this study is described in Chapter 3.           

2.2 The Incremental Cost-effectiveness Ratio  
 

This section provides a description of the incremental cost-effectiveness ratio 

(ICER), which is the standard measure used in cost-effectiveness analysis.  The ICER is 

represented as the ratio of the difference in expected costs of two treatments to the 

difference in the expected effects. 

E

C

EE

CCICER
Δ

Δ=
−
−

=
μ
μ

μμ
μμ

)(
)(

01

01  
(2.1) 

    

The terms 1Cμ  and 0Cμ denote the expected values of cost for a new experimental 

treatment, T1, and a standard of care treatment, T0.  The terms 1Eμ  and 0Eμ  denote the 

expected values of effectiveness for the treatments T1 and T0, respectively.  When the 

ICER is less than the maximum price that society is willing to pay (λ) to achieve one 

more unit of health effect, then T1 should be chosen over T0.   In other words, when  

μΔC / μΔE < λ, the choice should be treatment T1. 
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True population means are not known, therefore, the ICER is estimated using the 

sample means for cost, 1C  and 0C , and effectiveness, 1E  and 0E . 

 ECEECCICER ΔΔ=−−=
∧

/)/()( 0101   

The uncertainty in these treatment group estimates of cost and effectiveness needs to be 

reflected in the confidence intervals around the ICER.  However, calculating confidence 

intervals around an ICER is not simple because ratios of asymptotically normal variables 

are Cauchy distributed, and the mean of a Cauchy distribution does not exist and the 

variance is indefinite (DeGroot, 1975).  Consequently, bootstrap methods or other 

techniques, such as the delta method by O’Brien et al. (1994), nonparametric 

bootstrapping (Efron & Tibshirani, 1986; Efron & Tibshirani, 1993), or use of Fieller’s 

theorem (Chaudhary & Stearns, 1996), are necessary to approximate the variance of the 

ICER for significance testing.  Part of the reason for this complexity is that when there is 

significant uncertainty regarding the sign of an intervention’s incremental cost and/or 

incremental effectiveness, constructing interpretable confidence intervals around the 

ICER is challenging, regardless of the method used (Stinnett & Mullahy, 1998).   

The cost-effectiveness plane (Figure 2.2-1), first introduced by Black (1990), 

helps to illustrate the challenges in interpretation of the ICER and confidence intervals 

around the ICER. 
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Figure 2.2-1 The cost-effectiveness plane 

 

dapted from Black (1990) and Stinnett & Mullahy (1998) 

The horizontal axis measures the incremental effectiveness, 

T0 is always acceptable
 

 
        Given λ, T1 is acceptable    T1 is always acceptable

 

Incremental Cost

       Given λ, T1 is acceptable

Incremental Effectiveness

CΔ

EΔ

 
A
 

EΔ , and the vertical 

axis measures the incremental cost, CΔ , of T  versus T . The slope of the dashed line 

represents λ, the threshold of the societal or payer willingness to pay value.    The 

decision rules for choosing T

1 0

ive to 

uadrant

1 or T0 involve determining where the ICER falls relat

λ in each of the quadrants.     

 

Sign of ICERQ Decision Rule

Upper right d only if ICER < λ 

ICER > λ + 

The rule generally states that if the ICER falls below the dashed line, then T1 is 

accepta n 

Choose T1 if an + 

Lower right Choose T1 - 

Lower left Choose T1 if and only if 

Upper left Choose T0 - 

 

ble.  One problem with interpretation of the ICER is that it has a positive value i

the upper right and lower left quadrants and a negative value in the lower right and upper 

left quadrants.  A negative ICER in the lower right quadrant is favorable for T1 because in 
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this quadrant T1 is more effective and less costly than the alternative treatment (T1 is 

dominant).  However, in the upper left quadrant, a negative ICER is favorable for T0 (

is dominant or T

T0 

R in the situations when a treatment is 

domina  also 

or 

 

em for the ICER extends to the upper right and lower left 

quadran

f 

2.3 Net Monetary Benefit 

 measure of treatment cost-effectiveness in the 

current study because it has statistical properties that allow it to be analyzed within the 

1 is dominated). Thus, just knowing that the ICER is negative is 

insufficient to determine cost-effectiveness. 

One does not usually calculate an ICE

nt.  However, if one were to present the estimated ICER, interpretation would

require information about the magnitudes of the numerator and denominator.  This is 

because a large negative ICER can be due to either greater cost savings in the numerat

or lower incremental effectiveness in the denominator. Regardless of the sign of the 

ICER, information about the magnitudes of the numerator and denominator is always

useful and should be reported. 

The interpretation probl

ts.  For positive ICERs, a value that is less than λ is favorable for T1 in the upper 

right quadrant (incremental effectiveness greater than zero).  However, in the lower left 

quadrant (incremental effectiveness less than zero) a positive ICER greater than λ is 

favorable for T1.  In other words, the decision rule for the ICER depends on the sign o

the effect difference.   Because of these problems, if the joint probability distribution of 

costs and effects extends to more than one quadrant of the cost-effectiveness plane, any 

inferences based on the distribution of the ICER and its confidence intervals will be 

ambiguous (Stinnett & Mullahy, 1998).   

 
The INMB was selected as the
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structur he 

at the mean 

st-

effectiv

e of regression models.  This section explains how the INMB is derived from t

concepts and components of the ICER.  Also presented is a discussion of the 

interpretation, advantages, and limitations of the INMB as an alternative to the ICER. 

A fundamental problem with ratios, and therefore with the ICER, is th

of ratios is not equal to the ratio of means.   This means that the overall incremental co

eness ratio cannot be constructed from the difference between average cost-

effectiveness ratios from the different treatment groups (
1E
1C

and )
0

0C  in a clinical trial, 

i.e., 

E

0101 EEEE −  (Stinnet & Paltiel, 1997).  Alternatively, the overall incremental 
0101 CCCC −≠−

net monetary benefit ( ) can be constructed from the difference in mean net 

monetary benefit from the different treatment groups (

∧

INMB

1NMB and 0NMB

een the treatm

) as shown in 

Equation 2.2.  The NMB of a treatment is the difference betw ent’s effect 

 C).   The estimat  

estimates of two treatm t groups’ (T1 and T0) mean effect (

(E) valued in dollars (λ), and its cost (C) (NMB = λ E – ed incremental

net monetary benefit,
∧

INMB , can be calculated as the difference between the sample 

en 1E  and 0E ) and cost ( 1C  

and 0C ) differences: 

 

01 NMBNMBINMB = −
∧

   
)()( 0011 CECE −−−= λλ  

)()( 0101 CCEE −−−= λ  

  CE Δ−Δ= λ .  

(2.2) 
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Further, the is a linear combination of the two asymptotically normal random 

variables, 

∧

INMB

EΔ  and CΔ , making the a continuous variable that is asymptotically 

normal by the central limit theorem (Hoch et al., 2002).   

∧

INMB

From the previous section, the threshold criterion for cost-effectiveness is 

achieved when the ICER equals λ, i.e., CΔ / EΔ = λ.  Recall the decision rule for values of 

the ICER that are favorable for T1:    

when EΔ  > 0 (right quadrants), ICER = CΔ / EΔ  < λ is favorable for T1, and 

when EΔ  < 0 (left quadrants), ICER = CΔ / EΔ  > λ is favorable for T1.     

By rearranging the components of either inequality, and multiplying the second by -1, 

one obtains λ EΔ  - CΔ  > 0.  This inequality describes the area under the λ line.  The 

expression on the left-hand side of the inequality describes a treatment’s net monetary 

benefit relative to another treatment.  The decision rule for the  is to choose T
∧

INMB 1 

over T0 if  > 0.  While the decision rule for the ICER is dependent on the sign of 

the effectiveness difference, the decision rule for the  is not.    

∧

INMB

∧

INMB

The linear relationship between group mean effects and costs and the  

shown above in Equation 2.2, allows the NMB measure to be used as the dependent 

variable in an ordinary least squares (OLS) regression model (Hoch et al., 2002).  If the 

data were completely observed with no repeated measures (e.g., in a single cross-section 

at a time point of a study with two treatment groups), the estimated coefficient associated 

with treatment from a standard regression model would estimate the INMB attributable to 

T

∧

INMB

1 as compared to T0. 
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NMBi = λ Ei – Ci = α + β  GROUPi  + εi (2.3) 
 

Equation 2.3 shows how NMBi, derived from the observed effect (Ei) and cost (Ci) for the 

ith patient, can be modeled; α is the intercept term, β the parameter for treatment group 

(GROUP) on NMB, and ε the random error term.  The parameter estimate for β is the 

estimate of the INMB.  Factors for time and group-by-time interaction could be added to 

account for repeated measures, and covariates could be added to adjust for group 

differences in potentially confounding factors.   

A limitation of the NMB measure for estimating cost-effectiveness is that the 

value society is willing to pay (λ) for one more unit of health effects is unknown.  To 

address this, Stinnett & Mullahy (1998) have recommended conducting analyses at 

different levels of λ and reporting as a function of λ.  Stinnett & Mullahy further 

recommend using the notation,  to indicate the value of λ corresponding to the 

estimate.  This notation is used in the current study. 

∧
INMB

λ
∧

INMB

 
2.4 Cost-Utility Analysis 
 

The current study used quality-adjusted life years (QALYs) as the measure of 

treatment effectiveness in the calculation of the INMB.  QALYs were selected as the 

effectiveness measure because it is the measure recommended by the U.S. Public Health 

Service Panel (USPHSP) on Cost-Effectiveness in Health and Medicine (Gold et al., 

Chap.1, 1996) for use in Reference Case analyses.  A Reference Case analysis allows for 

comparability of study results across multiple studies in order to inform resource 

allocation decisions.  The Panel recommends the QALY as an effectiveness measure 
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because it incorporates morbidity and mortality consequences in a single measure.  This 

section provides an explanation of QALYs.  The cost-effectiveness literature in 

schizophrenia is also reviewed to illustrate how cost-effectiveness in the therapeutic area 

of schizophrenia has been an ongoing concern for over a decade. 

 Cost-effectiveness analysis (CEA) involves comparing the economic 

consequences of a given treatment to an alternative, using a measure of effectiveness, 

such as years of life gained, hospitalizations avoided, or QALYs.  Cost-utility analysis 

(CUA) is a specific form of cost-effectiveness evaluation that compares the economic 

consequences of two or more treatments using some variant of QALYs as the measure of 

effectiveness.  Although CEA is a more general term, the two terms CEA and CUA are 

used interchangeably throughout this dissertation.   

A QALY is an effectiveness measure that is a sum of time units adjusted by 

health utility weights.  Utility is an economic term meaning preference or value. Utility 

weights are measures of patients’ valuations of different health states and outcomes, 

valued relative to one another on a scale from 0 to 1.  When utility weights are multiplied 

by the time spent in the health state and expressed in years of perfect health, the resulting 

measure is a QALY.  An advantage of the QALY as an effectiveness measure is it 

combines quality and quantity of life into one measure.  QALYs can capture the impact 

of side effects and the psychological concerns with illness that may be important as well 

as the value of a treatment.     

In more detail, the first step to calculating QALYs is to measure and assign 

utilities to health states.  Utility weights are interval-scaled measures (i.e., equal intervals 

on the preference scale have equivalent interpretations).  The two extremes of the scale 
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are typically optimal health (assigned the value 1.0) and death (assigned the value 0).  

Numerical preference weightings are assigned to states between these two extremes.  

Each health state is comprised of different health domains, such as physical functioning 

and role limitations.  Developing a health utility score for each health state involves 

combining the effect of each domain into a single metric.  A variety of scaling methods, 

such as rating scale, standard gamble, time trade-off, and person trade-off, are used for 

assigning numerical preference weightings.  Standard gamble (SG) is the classical 

method for measuring health preferences.  Derived from utility theory, SG was first 

presented by von Neumann and Morgenstern (1953).   The approach is to offer two 

alternative scenarios to an individual for evaluation.  The first is a treatment with two 

possible outcomes: either the individual is returned to normal health and lives for an 

additional t years (with probability p), or the person dies immediately (with probability 1 

- p).  The second alternative is a chronic illness (state i) that will happen with certainty if 

chosen, and that will result in an additional t years of life.  The probability p is varied 

until the individual is indifferent to the two alternatives.  At this point in the process, the 

preference value for state i is set equal to p (Drummond et al., 1987).  Brazier et al. 

(2002) used a variant of standard gamble to estimate the preference-based utility weights 

that were used in the current study.   

The weighted average number of QALYs is the sum over all health states of the 

utility weight for each health state multiplied by the duration in years (or fractions of 

years) spent in that health state.  QALYs for one treatment alternative can be illustrated 

by the area under a curve (Figure 2.4-1).  The difference in QALYs between two 
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treatments is the difference between the areas under their two curves (Gold et al., Chap.4, 

1996). 

 

Figure 2.4-1 QALYS gained from treatment 1 versus treatment 0 

 

dapted from Gold et al., Chap. 4 (1996) 

Despite the advantages of combining quality and quantity of life into a single 

measure, pros and cons of the QALY as an effectiveness measure have been debated by 

many (from Gold et al., Chap 4., 1996; Donaldson et al., 1988; Weinstein, 1988; Loomes 

& McKenzie, 1989; Mehrez & Gafni, 1989; Carr-Hill, 1989; Cox et al., 1992; Gafni & 

Birch, 1993; Mehrez & Gafni, 1993; Culyer & Wagstaff, 1993; Fryback, 1993; 

Johannesson et al, 1993; and Broome, 1993).  The different choices of scaling method 

and sources of utility values (patients, health care providers, general public) have raised 

concerns that the precise meaning of the utility scores may depend on the method and 

values used, and that different methods could produce a variety of results for the same 

health state from the same respondents (Brinsmead & Hill, 2003). 

The variant of standard gamble employed by Brazier et al. (2002) and used in the 

current study was one method for mapping SF-36 scores to utilities.  In Brazier’s study, a 
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represe

).  

lly 

 the 

ties 

 Brazier.  Although using Brazier’s method may not be 

ideal (b

r 

spans 

ted by 

compar

eridol.  

 

ntative sample of members from the general population in the United Kingdom 

evaluated health states defined by the SF-6D (an instrument derived from the SF-36) 

using a variant of SG developed by a team at McMaster University (Furlong et al., 1990

The interviews involved displaying the probabilities on a chance board, both numerica

and in the form of a pie chart.  The health states included physical functioning, role 

limitations, social functioning, pain, mental health, and vitality.  These domains, and 

particularly, role limitations, social functioning, and mental health, are important for

current study population because schizophrenia is a disease that seriously impairs 

patients’ lives in these areas.   

In the current study, QALYs were calculated by mapping the SF-36 to utili

using the function developed by

ecause it required applying U.K.-derived utilities to SF-36 scores of U.S. 

patients), this method was considered to be an adequate approximation because the 

primary objective was to compare modeling approaches for NMB estimation unde

conditions of missing data (and not to perfect the estimation of QALYs).   

Three CUA studies in schizophrenia have been published over a period that 

more than a decade.  In each of these studies, cost-effectiveness was evalua

ing an atypical to a conventional antipsychotic.  Chouinard & Albright (1997) 

performed a CUA comparing the antipsychotic medications, risperidone and halop

Standard gamble preference ratings were used from psychiatric nurses who rated 

patients’ symptomatology profiles as mild, moderate, or severe.  The three severity levels 

(or health states) were derived from a cluster analysis of the Positive and Negative

Syndrome Scale for Schizophrenia (PANSS) from a Canadian multi-center risperidone 
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trial.  Mean utility values and 95% confidence intervals for the three health states w

0.61 ±  0.069 (mild); 0.36 ±  0.073 (moderate); and 0.29 

ere 

±  0.071 (severe).  The utilities

were applied to data from 130 patients in the same trial, where each patient was placed 

into one of the three severity categories.  Costs were reported in 1995 Canadian dollars, 

with an incremental cost-utility ratio of $24,250 per QALY for patients treated with 

risperidone versus haloperidol.   

The second CUA, by Oh et al., (2001), was conducted to compare treatment 

outcomes for the atypical antipsy

 

chotic, clozapine, to the standards of care treatments of 

haloper  was 

 

 

f 

Interve  

 the 

he 

idol and chlorpromazine.  An incidence-based deterministic decision analysis

used to model treatment outcomes over one year.  Probabilities of clinical outcomes were

estimated from a random effects meta-analysis of three randomized clinical trials with a 

combined total of 157 patients.  The utility weights were obtained from a sample of seven 

schizophrenia patients using standard gamble methodology.  Costs were reported in 1995

Canadian dollars, with results indicating that clozapine was estimated to save $38,879 per 

year while producing 0.04 additional QALYs, compared to chlorpromazine.   

The third study was a recently published cost-effectiveness analysis from the 

National Institutes of Mental Health-sponsored Clinical Antipsychotic Trials o

ntion Effectiveness (CATIE) (Rosenheck et al., 2006).  The CATIE Trial was a

randomized, double-blind, 18-month study of the relative effectiveness of four of

atypical antipsychotics (olanzapine, quetiapine, risperidone, and ziprasidone) that were 

available on the market in 2002, and one conventional antipsychotic (perphenazine).  T

study was conducted to address questions regarding how to best allocate medication 

spending for patients with schizophrenia.  The study enrolled and followed 1,493 patients 
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for up to 18 months.  The CUA included various methods for deriving utilities, howe

the main cost utility analysis was based on QALYs as derived from a mapping function 

of the PANSS subscale scores and side effects.  Costs were based on resource use that 

was self-reported by the patients.  All costs were represented in 2002 US dollars.  

Analyses included an intention-to-treat (ITT) analysis using all available follow-up data

and an analysis of patients who remained on their initially assigned treatment.  Cos

were analyzed with a mixed-effects model with terms for treatment group, baseline value 

of the dependent cost variable (which included costs in the month prior to the study), 

time, site, history of recent clinical exacerbation, and baseline characteristics-by-time 

interactions.  Costs were log-transformed.  A similar mixed-effects model was used fo

the effectiveness analysis.   

Results from the ITT analysis showed that 31.8% of patients had dropped out of 

the study by month 6, with s

ver, 

, 

ts 

r 

ignificant differences in the proportion of participants across 

random

 

sts 

being lowest for the patients randomized to perphenazine ($959) (significant overall and 

ized treatments.  At 18 months, the percent of patients who had dropped out had 

increased to 54.3%, and differences in participation across the treatment groups were no 

longer significant.  Average monthly health care costs in the ITT analysis were lowest for

the patients randomized to perphenazine ($1,131) (significant overall and in all pair-wise 

comparisons), and among the atypical antipsychotics ranged from $1,433 for olanzapine 

to $1,730 for ziprasidone.  There were no significant differences in QALYs across all 

treatment groups (range: 0.72 for perphenazine to 0.70 for risperidone). 

Only 25.9% of all patients completed 18 months with their initially assigned 

treatment.  Average monthly health care costs were similar to the ITT results with co
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in all p ith 

ent 

hts how missing data pose a challenge for cost evaluations.   Analytic 

method a 

The current study compared different analytic methods for estimating treatment 

ut itudinal clinical trials, there 

can be numerous reasons why data are missing, and choosing an appropriate method for 

analysi

air-wise comparisons), and costs among patient who remained on treatment w

an atypical antipsychotic ranging from $1,404 for olanzapine to $1,770 for ziprasidone.  

There were no significant differences in QALYs across all treatment groups (range: 0.73 

or perphenazine to 0.71 for risperidone).  Because results for the perphenazine group 

were consistently and significantly less expensive and not less effective than the next 

most effective treatment, ICERs were not calculated.  One of the important outcomes of 

the CATIE trial, as it relates to the current study, was the high dropout rate in this pati

population. 

These three studies illustrate the ongoing interest in evaluating the cost-

effectiveness of available treatments for schizophrenia.  The CATIE cost-effectiveness 

study highlig

s that improve these evaluations may be valuable for future schizophreni

research, as well as for research in other therapeutic areas.   

 

2.5 Patterns and Mechanisms of Nonresponse 
 

cost- ility in the presence of missing response data. In long

s begins with understanding the mechanisms that lead to the missing data.  This 

section provides an overview of the different types of missing data, definitions of 

mechanisms of nonresponse, and whether the assumptions for each mechanism can be 

checked. 
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Missing or censored data can occur in a variety of situations.  (1) One situation i

when a stu

s 

dy’s timeframe is not long enough to observe all events, such as death or total 

health 

r one 

 

cur 

 

 

 
  

With the monot e patt n, no serv ns ar ade on a patient after a 

ertain time point.  The patient is considered a dropout after the last observed 

atterns 
 Monotone Nonmonotone 

care costs until death.  In this type of censoring, the data for individuals who 

experience the event after the end of the study are considered administratively censored.  

The current study does not deal with this type of missing data.  (2) Another type of 

censored data occurs when some individuals drop out before the study’s timeframe has 

elapsed.  For example, if a study’s objective is to estimate total health care costs ove

year, then the data for individuals who withdraw or die prior to completing the study are

dropouts and are considered censored.  The missing data pattern for these patients is 

referred to as monotone or terminal dropout.  A monotone pattern of missing data is the 

pattern created in the current study via the simulation process.  (3) Another pattern, 

referred to as nonmonotone or intermittent dropout, occurs when a patient misses an 

assessment in between other nonmissing assessments.  Nonmonotone patterns can oc

along with monotone patterns within a dataset from a clinical trial.  Examples of what

these two types of patterns would look like from the ROSE Study, with assessments 

taken at months 0, 4, 8, and 12, are shown in Table 2.5-1.    

 

Table 2.5-1 Monotone and nonmonotone missing data p

Month: 0 4 8 12 0 4 8 12 
X X X . X X . X 
X X . . X . X X 

 

X . X X . . . . 
X = observed pons  = m ing r nseres e; . iss espo  

on er ob atio e m

c
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assessment.  In the case of the nonmonotone pattern, subsequent observations are 

made on a patient following a missing observation or multiple missing 

observations.  The nonmonotone pattern generally represents missingness due to 

factors unrelated to patients’ health status, such as forgetting an appointment or 

missing an assessment due to lack of transportation.  The monotone pattern is 

more problematic because the reasons for missingness are more likely to be 

related to the outcome of interest.  This pattern may be seen in clinical trials of 

chronic illnesses where patients drop out because they either respond or fail to 

respond to treatment.  In the case of the current study, patients with schizophrenia 

may drop out due to uncontrolled (or controlled) symptoms, which could 

contribute to lower (or higher) health status, costs, and presumably be associated 

with the response variable, net monetary benefit.  Because a monotone missing 

data pattern is more likely to reflect relationships between missingness and the 

outcome variable, the current study focuses on this pattern of missingness. 

Rubin (1976) first formalized a theory about the relationships between observed 

response data and the reasons for missingness, and he referred to these relationships as 

missing data mechanisms.  His theory defined three major classes of missing data 

mechanisms that differ by how the missingness is related to the outcome of interest.  The 

three classes are (1) data missing completely at random (MCAR), (2) data missing at 

random (MAR), and (3) data missing not at random (MNAR).  The definitions used in 

this dissertation and the notation used in the following explanation of these nonresponse 

mechanisms are the same as those originally proposed by Rubin (1976), Little and Rubin 

(1987), and updated by Little (1995) and Little & Rubin (2002).    
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Let yij = (yi1 , … , yiK) denote a (1 x K) data vector of  the responses (dependent 

variable, Y) for patient i (i = 1, … , n)  at times j (j = 1, …, K).  Observed and missing 

respon

e 

 

ses for patient i are denoted as (yobs,i,  ymis i).  Observed and missing data for 

variable Y are denoted as Yobs and Ymis.  Let Xi be fixed covariates that are assumed to b

fully observed, such as patient age, country of residence, times of measurement (ti1, … , 

tiK), and treatment group assignment.  When the missing data have a monotone pattern of 

missingness, Mi represents a single missing indicator that takes the value Mi = j if yi1 ,…, 

yij-1  are observed and yij ,…, yiK  are missing, and takes the value Mi = 0 for complete 

cases.  The missing data mechanism describes the relationship between the observed data

and the probability of data being missing, and is represented by the conditional 

distribution of Mi given yi, and Xi, denoted as f(Mi | yi, Xi).   Table 2.5-2 provides a 

summary of the three missing data mechanisms.   
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Table 2.5-2 Summary of the three major classes of missing data mechanisms 
  

Notation  
Missingness is 
dependent on… 

Missingness is 
independent of… 

MCAR 
Missing 
completely  
at random  

Pr(Mi | yi, Xi) = Pr(Mi) 
 
 
 
 

 • Observed 
responses 

• Missing 
responses 

• Covariates 
 

Covariate 
dependent 
dropout 

Pr(Mi | yi, Xi) = Pr(Xi) • Covariates 
 

• Observed 
responses 

• Missing 
responses 

 
MAR 
Missing  
at random  

Pr(Mi | yi, Xi) = Pr(yobs,i,Xi) • Observed 
responses 

• Covariates 
 

• Missing 
responses 

 

MNAR 
Missing not at 
random 
(nonignorable) 
 

Pr(Mi | yi, Xi) = Pr(ymis) • Missing 
responses 

 

 

Adapted from Rubin (1976), Little and Rubin (1987), Little (1995), Little & Rubin (2002), and 
Fairclough (2002). 

 
 

MCAR.  Missing data are said to be MCAR if missingness does not depend on 

values of the observed or missing response variable.  Further, missingness should not 

depend on values of any other variables in the data set (Table 2.5-2).  This is the strongest 

assumption of the three missing data mechanisms.  When this assumption is satisfied, the 

probability of missingness is entirely independent of the response variable, and data for 

complete cases can be regarded as a simple random sample from the total study data set.  

Examples include missing data due to a patient moving or the study staff forgetting to 

provide the assessment.  It is uncommon for this assumption to hold for the majority of 

missing data in a trial.  Another mechanism, referred to as covariate-dependent dropout, 
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allows the probability of missingness to be dependent on covariates.  Covariate-

dependent dropout has been classified as a special case of MCAR by some authors 

(Diggle & Kenward, 1994; Fairclough, 2002), and as MAR by others (Allison, 2002).  

An example of this mechanism of nonresponse would be if missingness depended upon 

the age, gender, or ethnic group of the patients.

MAR.  An assumption that is less restrictive than MCAR and covariate-

dependent dropout is one where the missingness depends on values of the previously 

observed response variable and covariates, but does not depend on what the values would 

have been among the missing response data (Table 2.5-2).  When missing data for the 

response variable are MAR, the pattern of missingness is predictable from the observed 

data in the study.  An example of MAR by study design would be a study that required 

patients to discontinue if the value of the response variable at their last assessment 

exceeded some threshold value, such as blood pressure equal to or above 160/92 mm Hg, 

indicating stage 2 hypertension.  Another example of MAR data would be when response 

data are missing for patients whose health status was observed to be declining at previous 

study visits. 

MNAR.  If the probability of missingness depends on what the response values 

would have been if the individuals who dropped out could have been assessed, then the 

missing data mechanism is referred to as missing not at random or nonignorable missing 

(Table 2.5-2).  When data are MNAR, a systematic difference exists between respondents 

and nonrespondents who have the same values for the previously observed responses or 

covariates, and the missing data pattern cannot be predicted from the collected data.  Data 
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may be MNAR if patients drop out of a study due to a decline in health status that began 

to occur since the time of their last study visit. 

 Determining whether missing data are MCAR or MAR can be accomplished by 

using logistic regression to examine the associations between the probability of 

missingness and the values of the observed response, Yobs, and covariates, X.  If the 

MCAR assumption holds, there should be no associations between Yobs and X and the 

probability of a missing response.  An approach for checking the MAR assumption is to 

graphically display average observed responses by cohorts of patients defined by their 

pattern of missing data.  An example from Fairclough (2002) is presented in Figure 2.5-1.   

 

Figure 2.5-1 Average FACT-Lung TOI scores stratified by time of drop out  
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The graph shows that individuals who dropped out earlier had lower scores on a HRQOL 

scale at baseline, and their response scores were lower just prior to dropout, compared to 

individuals who remained in the study longer.  If the missingness depends on previously 

observed data, as in this example, then the missing data mechanism is not MCAR.  When 

the nonresponse mechanism is MNAR, it is more difficult to test by examination of the 
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data because the unobserved data are not available (Laird, 1988; Fairclough, 2002).  

Despite this difficulty, examination of the data for patterns of missingness should be d

to help inform the choice of analysis method.  For the current study, the ROSE Study data 

were examined with the above graphical approach to determine if a possible relationship 

existed between pattern of missingness and the NMB response variable.  These graphical 

analyses are described further in Chapter 3, Methods.    

 It would be uncommon for longitudinal clinical t

one 

rials with many patients to have 
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 the 
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m  data that are entirely based on one nonresponse mechanism.  If a study had 

missing data that were all MCAR, then analysis methods that require complete cases

such as ordinary least squares regression, could be used (Laird, 1988; Lin, 2000).  The

methods are valid under the MCAR assumption because the completely observed cases 

are a simple random sample from the total study data.  Realistically, data are usually 

missing for a variety of causes, such as subject characteristics, beliefs, and behaviors, 

nonvoluntary reasons such as severe morbidity and mortality.  Nonvoluntary reasons are 

more likely to lead to MAR or MNAR nonresponse mechanisms.  Likelihood-based 

models will produce valid inferences, assuming that the missing data are MAR and th

probability of missing is independent of the unobserved response data, conditional on th

observed response data and covariates (Rubin, 1976; Little & Rubin, 2002).  (Another 

way to think about the second assumption is that the parameters of the dropout process 

must be distinct from the parameters of interest, i.e., treatment effect).  With 

nonignorable nonresponse or (MNAR), however, it is necessary to model both

observed data and the nonresponse mechanism because the time of dropout is corre

with the treatment effect (Rubin, 1976; Laird, 1988; Little, 1995; Little & Rubin, 2002).  
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Because MAR and MNAR data pose the greatest analytic challenges and because clinical 

trial data are subject to multiple nonresponse mechanisms, the base case of the current 

study used data that were simulated to reflect both MAR and MNAR nonresponse 

mechanisms occurring within one dataset. 

2.6 Methods for Analysis of Incomplete Data 

Analyses of data with missing or censored observations can suffer from loss of 

power is.  

l 

roportional hazards models are standard methods for 

handlin -

e 

h care 

 

to detect meaningful differences if incomplete cases are dropped from the analys

Alternatively, analyses may result in biased estimates if the nonresponse mechanism is 

not accounted for when the full sample is retained in the analysis.  This section reviews 

many different approaches for addressing these problems in cost and cost-effectiveness 

evaluations.  Section 2.7 provides a review of modeling approaches that specifically dea

with the issues of MNAR data. 

Kaplan-Meier and Cox p

g censored data in survival analysis.  Quesenberry et al. (1989) used the Kaplan

Meier estimator to estimate distributions of lifetime hospitalizations and inpatient days 

from administrative claims data for individuals with AIDS from 1981 to 1987.  A 

patient’s lifetime number of hospitalizations and inpatient days were censored if th

patient withdrew from the health plan before the end of the study period or survived 

beyond the end of the study period.  Hiatt et al. (1990) expanded upon the work of 

Quesenberry et al. by applying the same approach to the estimation of lifetime healt

utilization and costs for a sample of cases from the original study.  Unit costs were 

assigned to all health care services provided to these patients.  The Kaplan-Meier 
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estimate of the mean number of lifetime inpatient days was 38.7 days, and estimat

mean lifetime costs were $32,816.  The authors did not provide any means for assessi

the accuracy of these estimates except to compare them to estimates based on complete 

cases (i.e., persons who had died).  The complete case estimates were lower than the 

product-limit estimates, with 34.2 days for the mean number of lifetime inpatient days

and $29,021 for the mean lifetime costs. 

Fenn et al. (1995) investigated how

ed 

ng 

, 

 different methods for estimating costs and 

effectiv

imit 

ed 

e 

 

med to 

eness with censored data can affect the estimated ICERs.  Mean costs and life-

years gained (LYG) using data from a placebo-controlled clinical trial were estimated 

using three different approaches:  (1) means based on the full sample of missing and 

complete cases (2) means based on complete cases; and (3) means based on product-l

estimators.  ICERs were calculated for all combinations of the three approaches in the 

numerator and denominator to demonstrate the unpredictable results that can be achiev

when combining biased estimates of costs and effectiveness.  Using complete cases for 

estimating costs with any of the three approaches for estimating effectiveness yielded th

lowest ICERs (range ₤55 to ₤83 / LYG), and using the full sample for estimating costs 

with any of the three approaches for estimating effectiveness yielded the highest ICERs 

(range ₤109 to ₤168 / LYG).  The ICER with product-limit estimates for both costs and 

effectiveness fell within the range of values (₤145.2 / LYG).  The authors concluded that

the product-limit approach should be used for estimating both components of an 

incremental cost-effectiveness ratio.  However, no simulation studies were perfor

demonstrate that this approach is actually more precise. 
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Lin et al., (1997) explained how the strategies used by Quesenberry, Hiatt, and 

Fenn, that treat cumulative costs as right censored survival times, are incorrect unless all 

patients accumulate costs at a common rate over time.  In practice, rates of cost 

accumulation are not homogeneous.  Survival methods require independence between the 

outcome variable and the censoring variable, and cumulative costs at survival and 

censoring times are correlated even if the survival and censoring times are independent.  

This correlation is due to the heterogeneity in the rates of cost accumulation across 

individuals.  In other words, individuals who incur costs rapidly tend to generate higher 

cumulative costs at all time points including survival-censoring times, as compared to 

those with lower accumulation rates.  

To avoid this correlation problem, Lin and colleagues (1997) proposed a 

nonparametric approach for estimating total costs from incomplete data due to 

administrative censoring and drop out.  The basic concept behind the method was that 

total costs for patients who are censored in the same small time interval are more 

homogeneous than the total costs for all patients. The method involved partitioning the 

study period into equal-length time intervals.  The probability of surviving until the start 

(or end) of the interval was calculated for each patient, and the average cost per patient 

was calculated for each interval, conditional on surviving until the start (or end) of the 

interval.  The probabilities and average cost were multiplied together for each interval, 

and summed over all intervals to estimate the average cost per patient over the study 

period.  The method was applied to simulated data for a 10-year study with 10 one-year 

intervals.  The total 10-year cost was the outcome of interest.  Estimates from the 

partition method were compared to naïve estimates using full sample and complete cases, 
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and to Kaplan-Meier estimates. Monte Carlo simulations were conducted with different 

levels of censoring, and survival times were generated from two different distributions 

(uniform and exponential).  The estimators were assessed by comparing to the “true” 

mean costs from the two survival distributions.  Performance measures included bias 

(defined as the percent difference between known and estimated parameters), variance 

estimation (defined as sampling standard error of the estimator and sampling average of 

the standard error estimator), and normal approximation (defined as sampling coverage 

probability of the 95% confidences interval).  The partition method produced nearly 

unbiased estimates of total costs, except some bias was present under moderate 

censoring.  The naïve estimators performed far worse than the partition method estimator 

under all conditions, with a large negative bias observed in the full sample estimator 

under moderate censoring, and a downward bias observed in the complete case estimator.  

The bias of the Kaplan-Meier estimator was substantial and varied in direction depending 

on the simulation conditions.  Although the partition method provided better estimates 

compared to product-limit estimators, it was not intended to deal with nonignorable 

missing data.  Further, adjustment for covariates (as in a regression model) was not 

possible.  Nevertheless, a simulation study such as Lin’s and colleagues is informative 

because the study included a “true” parameter with which comparisons of method results 

could be made.  The current study uses a “true” parameter for the purpose of comparing 

methods. 

Lin (2000) further developed the Kaplan-Meier partition method with a semi-

parametric marginal model for repeated measures that allowed for adjustment of 

covariates, and compared two models in another simulation study.  The first model was 
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based on a least squares normal equation, adapted for censored observations by weighting 

the complete observations by their inverse probabilities of inclusion in the data set.   The 

second model was a variant of the first that allowed for the effects of covariates on 

censoring and involved J separate estimates of costs, one for each of J time intervals.  

Monte Carlo simulations were conducted with different levels of censoring, different 

distributions for survival times (uniform and exponential), and varying sample sizes.  

Performance of the two models was assessed by comparing means of the parameter 

estimates for treatment group, , with the known value, β=0.   Both models produced 

unbiased estimators under uniform and exponential distributions for survival, and for all 

conditions of censoring and sample size.  The model that adjusted for covariates and used 

J separate estimates of costs was more efficient and more accurate in small samples.  This 

model may be appropriate for situations when the covariates can predict the probability 

of data being missing (i.e., covariate dependent dropout), however, it may not provide 

unbiased estimates under conditions of nonignorable missing data.  

∧

β

Oostenbrink & Al (2005) conducted an extensive simulation study to compare 

methods for estimating total costs from incomplete data due to dropout.  Nine approaches 

were assessed:  six so-called naïve methods (complete case, mean imputation, linear 

extrapolation, last value carried forward (LVCF), predicted regression, and hot-decking), 

and three so-called principled approaches (the nonparametric partition method of Lin et 

al. (1997), the expectation maximization (EM) algorithm, and multiple imputation).  The 

principled methods accounted for missing data and the uncertainty that they introduce.  

Definitions of the nine methods are provided in Table 2.6-1.   
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Table 2.6-1 Definitions of methods evaluated by Oostenbrink & Al (2005) for 
estimating total costs when data are incomplete 
Naïve Methods Definition 
Complete case Excludes data from patients who drop out or withdraw before 

end of study. 
Mean imputation Imputes for each missing value of costs the mean of the 

observed cost values. 
Linear 
extrapolation 

Extrapolates costs for patients who drop out by multiplying each 
patient’s observed cost per day by the study duration in days. 

Last value carried 
forward (LVCF) 

Imputes for each missing value of costs the last observed value 
of the particular patient. 

Predicted 
regression 

Imputes the most likely value for each missing cost observation 
using ordinary least squares regression. 

Hot-decking Imputes values based on a procedure that places each patient 
into one of several somewhat homogeneous imputation strata.  
Missing cost observations are imputed by random selection from 
the observed values of patients who were placed into the same 
imputation stratum. 

Principled 
Methods 

Definition 

Lin et al’s 
nonparametric 
method 

Estimates total costs per patient based on a procedure that 
divides the study period into equal-length time intervals.  
Probability (P) of surviving until an interval, and average cost 
(C) in the interval conditional on surviving until that interval are 
calculated. P and C are multiplied together for each interval, 
summed over all intervals to estimate the average cost per 
patient over the study period. 

Expectation 
algorithm (EM) 

Estimates total costs per patient based on an iterative procedure 
that begins with a complete case estimate.  Initial estimate is 
used to fill in the missing values and total costs are re-estimated.  
This last step is repeated until the parameter value converges.  
The EM method assumes the data to be distributed multivariate 
normal.  

Multiple imputation Missing values are replaced with m simulated values, creating m 
plausible versions of the data set.  Each version is analyzed by 
complete case analysis.  The m results are combined into a single 
estimate of total costs that includes uncertainty due to the 
missing data. 

 

The simulation procedure started with the creation of a complete case sample, 

followed by imposing three nonresponse mechanisms on the complete data.  The 

nonresponse mechanisms were MCAR, MAR, and MNAR.  MCAR data were generated 
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at each time interval by randomly selecting a number of patients still observed and from 

that time point forward.  All data were set to missing for those patients.  The proportion 

of patients with observed data was set to gradually decline from 100% at the first time 

interval (t = 1) to 70% by the last time interval (t = 10).   MAR data were generated with 

the probability of dropout during time interval t being associated with the following:  

positive association with costs during the previous time interval t-1, negative association 

with HRQOL at time interval t-1, increase in costs between intervals t-2 and t-1, decrease 

in HRQOL between intervals t-2 and t-1, and age at baseline.  This procedure simulates a 

mechanism for the missing data that guarantees the missing data can be predicted from 

the observed data.   For MNAR data, the probability of dropout was associated with 

increased costs and worse HRQOL after dropout rather than before, based upon the 

observed values in the complete case sample. 

A simulation consisted of the creation of a complete sample, the creation of three 

dropout samples, application of the nine analysis methods to the three dropout samples, 

and 3000 iterations to obtain stabilized estimates.  Results from the combined 3000 

iterations were then compared to the “true” cost value that was derived from 50000 

samples of complete data.  Oostenbrink & Al used similar performance measures to those 

used by Lin (2000):  absolute and relative bias (difference in mean costs between the 

“true” mean costs and the estimators), sampling standard error for the estimator (SSE, 

which is the standard deviation of the mean costs for the 3000 iterations), sampling 

average of the standard error estimator (SEE, which is the mean of the standard errors of 

the 3000 iterations), and sampling coverage probability of the 95% confidence interval 

(the proportion of iterations for which the 95% confidence interval includes the “true” 
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mean costs).  Three additional sets of simulations were conducted to assess the impact of 

dropout rate and sample size on the estimators.  The dropout rate was varied between 

18% and 60% in two additional sets of simulations, and sample size was increased to 

N=400 with a dropout rate of 30% in a third simulation.    

All naïve methods performed poorly.  The EM algorithm and multiple imputation 

methods produced unbiased estimates of the mean and standard error when applied to 

log-normal distributed costs under the MAR mechanism.  These methods produced 

biased results when log-normal costs were enlarged with costs of events, suggesting that 

large variations in costs within a patient overtime presents a challenge for estimation of 

costs with incomplete data.  None of the methods evaluated were able to deal with the 

MNAR mechanism.  Oostenbrink & Al (2005) concluded that the distribution of the data 

and the nonresponse mechanisms are the most important factors to consider in the 

analysis of incomplete costs data due to drop out.  The authors recommended that further 

simulation studies based on real data should be conducted. 

The above studies illustrate some of the potential biases in cost estimation when 

data are incomplete.  As Lin et al. (1997) demonstrated in their simulation study, the 

direction of bias will be downwards for full sample estimates that do not account for 

censoring because there is no adjustment for costs incurred after censoring.  For estimates 

based on complete cases, the direction of bias could be up or down, depending on the 

type of censoring.  With administrative censoring (nonmonotone missing data pattern) the 

bias in a complete case estimate will be towards the costs for individuals with shorter 

survival because longer survival times are more likely to be censored, and with 
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incomplete data due to drop out (monotone missing data pattern) the bias will be towards 

the costs for individuals who complete the study (Lin, 2000). 

2.7 Models for Data Missing not at Random 
 

A common method for analyzing incomplete longitudinal data is generalized 

estimating equations (GEE).  GEE uses a generalization of maximum likelihood 

estimation for analyzing correlated repeated measures data.  These equations use all 

available data but assume that the missing data are MCAR (Zeger and Liang, 1992).   

This assumption is not likely to hold in longitudinal clinical trials involving patients with 

complex, chronic medical conditions.  In longitudinal clinical trial databases, the 

assumptions of MAR and/or MNAR for the nonresponse mechanisms are more realistic.  

This section discusses pattern-mixture and selection models that specifically deal with the 

issues of MNAR data.  A review of the literature revealed that all applications of these 

models have been in the analysis of treatment efficacy or effectiveness (using HRQOL 

measures); no cost-effectiveness studies with these models were found.  Several 

publications of these modeling approaches are reviewed.   

Pattern-mixture and selection models are two classifications of models that can 

provide less biased estimates of model parameters when data are MNAR.  The advantage 

that these models offer over mixed-effects models is that they model both the pattern of 

missingness and the observed data (Little & Rubin, 1987; Little, 1993).    The two 

approaches evolve from different factorizations of the joint distribution of the dependent 

variable, Y (which includes both Yobs and Ymis), the missing-data indicator, M, and the 
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covariates, X.  The pattern-mixture model factorization, according to Glynn, Laird, and 

Rubin (1986, 1993) and Little (1993), can be specified as 

 

f(Y, M | X) = f(Y | M, X) f(M | X) (2.4) 
 

The pattern-mixture approach models the within-subject regression lines stratified 

by the pattern of missing values (Equation 2.4).  The factor, f(M | X), models the marginal 

proportions of each missing data pattern as functions of between–subject covariates 

(Little, 1995).  The factor, f(Y | X), specifies the missing data mechanism that does not 

depend upon the missing data (Ymis).  Therefore, pattern mixture models require only that 

the proportion of subjects within each pattern of missing data be known.  These models 

do not require specification of a model for the nonresponse mechanism (Fairclough, 

2002).    

Pattern-mixture models stratify the sample by pattern of missing data, then model 

the differences in the distribution of the response (i.e., dependent) variable over these 

patterns.  Each pattern has a different set of estimated parameters and variances.  The true 

distribution of the response variable for the entire patient population is estimated as a 

mixture of the distributions from each of the patterns.   An example of strata for patterns 

of missing data based on time point of assessment as in the current study would be:  

patients with all NMB missing except month 0 (stratum 1), patients with only months 8 

and 12 missing (stratum 2), patients with only month 12 missing (stratum 3), and patients 

with no NMB missing (stratum 4).  Alternative strata that are used in studies include 

reason for discontinuation of therapy, and patients with and without relapse of their 

medical condition within some timeframe.  Weights are based on the number of 
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individuals within each stratum, and population parameter estimates are the weighted 

average of the estimates from the strata (Fairclough, 2002).   

One main disadvantage of pattern-mixture models is the many potential patterns 

of missing data.  For example, if strata are based on time point of assessment, there can 

be 2k possible patterns in a study with k assessments over time (i.e., if intermittent 

missing are included).  Also, when the number of assessments is high, it may be 

impossible to obtain estimates of the parameters within each stratum, or obtaining 

estimates may require additional assumptions or restrictions to be specified.  Further, the 

choice of patterns (number of nonmissing assessments or reason for discontinuation of 

therapy) for stratifying the population is arbitrary and the model results can depend on the 

pattern that is chosen.     

Selection models offer another approach for dealing with MNAR data.  The term 

“selection model” originated from a classification of models with a univariate response 

(as opposed to a joint response such as time-to-dropout and NMB), where the probability 

of being selected into a sample depended upon the value of the response (Heckman, 

1976).  The factorization of the selection model, that originated with Heckman (1976) 

and was further developed by Little and Rubin (1987), can be specified as 

               f(Y, M | X) = f(M | Y, X) f(Y | X) (2.5) 
 

The first factor in Equation 2.5,  f(M | Y, X), models the nonresponse mechanism 

as a function of the observed and missing response values and covariates, and the second 

factor, f(Y | X), is a complete data model for the within-subject regressions (Little, 1995).  

The selection approach models the hypothetical complete data along with the 

nonresponse mechanism conditional on the hypothetical complete data.  Each 
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individual’s response is described in the selection model by a linear function of time, 

with random variation among individuals in the intercept and linear rate of change 

(slope).  The model incorporates the time of discontinuation by allowing a function of the 

time to discontinuation to be correlated with the random effects of the longitudinal model 

for the response (Fairclough, 2002).   

One criticism of selection models is that the validity of the nonresponse 

mechanism component of the model is untestable because the model includes the 

information regarding the missing values (Ymis) as an explanatory variable.  Further, the 

primary parameter estimates that describe change in response are sensitive to 

misspecification of the nonresponse model (Fairclough, 2002).  Estimating these models 

has been computationally challenging in the past, however, SAS software is now 

available in PROC NLMIXED that fits a mixed-effects model by maximizing an 

approximation likelihood integrated over the random effects (Wolfinger, 1997).   

Schluchter (1992) proposed the trivariate normal model as a type of selection 

model that is based on a log-normal survival model.  He also reviewed other proposed 

approaches for analyzing MNAR data in longitudinal studies, including generalized least 

squares, and weighted and unweighted averages of ordinary least squares approaches that 

are valid when missing data are MCAR or MAR.  He did not apply his proposed method 

to an actual dataset or simulation studies.  The trivariate normal model by Schluchter 

used the EM algorithm to cope with the difficulty of estimating the hypothetical complete 

data when the missing data are MNAR.  The model was based on a linear random-effects 

model that assumed the measurements for patient i follow a linear regression in time, and 

that the true intercept (βi0) and slope (βi1) come from a bivariate normal distribution.  
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Schluchter extended the linear random effects model by assuming that the true intercept, 

slope, and log of the survival time (Ti) follow a trivariate normal distribution. The 

unobserved random effects, βi0 and βi1, were considered part of the ‘complete data’ in 

Schluchter’s form of the EM-algorithm.  The algorithm obtained maximum likelihood 

estimates of all model parameters by computing conditional expected values of the 

complete data sufficient statistics (the Expectation-step), and computing updated 

estimates of the parameters (the Maximization step).  The algorithm cycles between the 

two steps until the parameters converge.    This model allowed for unbalanced data due to 

staggered patient entry into a study, missed visits, and loss to follow-up.  Also, the 

estimation procedure made use of all data, including patients with only one measurement.  

Further, likelihood ratio tests can be constructed to test for MNAR (i.e., testing that the 

covariance between the log of the time-to-dropout and intercept and/or slope = 0).  A 

limitation of the EM algorithm is that it can require large datasets in order to obtain stable 

estimates and avoid problems with convergence.      

Little and Wang (1996) compared results from pattern-mixture models under 

different assumptions about the nonresponse mechanism in the analysis of data from a 

clinical trial of three alternative doses (5 mg, 10 mg, and 20 mg) of haloperidol for the 

treatment of schizophrenia.  Results from the pattern-mixture models were also compared 

to results from a complete case analysis and a probit selection model.  The clinical trial 

involved 65 patients newly admitted to the hospital for schizophrenia.  Efficacy was 

measured by the Brief Psychiatric Rating Scale Schizophrenia (BPRSS) factor, assessed 

at baseline, week 1, and week 4.  The analysis focused on the difference in mean BPRSS, 

between baseline and week 4.  Twenty-nine (45%) patients dropped out of the study 
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before week 4 for a variety of reasons, including drug side effects.  Further, the 

proportions of dropouts varied across dosage groups (33%, 41%, and 63% missing in the 

5, 10, and 20 mg groups, respectively), suggesting that missingness was related to dose.   

The effect of MNAR on results was assessed by computing pattern-mixture model 

estimates under different assumptions about the nonresponse mechanism.  This was 

accomplished by adding an extra parameter to a MAR maximum likelihood model with 

the purpose of modeling the extent to which missingness depended on the missing 

variable.  Missingness was assumed to depend upon treatment group and four different 

linear combinations of BPRSS scores at baseline, week 1 and week 4.  Assumptions 

ranged from ignorable missing (i.e., MAR), where missingness was assumed to be 

weakly dependent on the missing values at week 4, to an extreme departure from 

ignorable missing (MNAR), where missingness was assumed to be strongly dependent on 

the missing values at week 4.   

Results showed that estimates from the complete case analysis deviated 

noticeably from the estimates from the other methods, with mean differences being larger 

among the 5 and 10 mg treatment groups, and smaller for the 20 mg treatment group, 

compared to estimates from the pattern-mixture and probit selection models.  Across the 

pattern-mixture models, the size of treatment effect did not vary widely across the four 

different nonresponse mechanism assumptions.  The differential in estimated treatment 

effect by size of dose was slightly increased as the assumption of MNAR increased.  

Standard errors of the estimates also increased as the assumption of MNAR increased.  

Treatment effect estimates varied the most across the modeling approaches for the high 

dose treatment group, which was probably due to the higher proportion of missing cases 
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in this group.  The probit selection model had similar results to the pattern-mixture model 

under the assumption of MAR.   

The pattern-mixture approach proposed by Little and Wang was based on the 

assumption that the nonresponse mechanism depended on the observed and missing data 

for the response variable, Y, in an additive manner, which may not be true.  The authors 

concluded that a limitation of the pattern-mixture model is that nothing is actually known 

about the conditional distribution of the missing responses, given the observed responses 

and covariates for nonrespondents.  Therefore, predictions of the missing data could take 

any form, and that form may not be the one chosen for the analysis.  (This is similar to 

the concern expressed by Fairclough  (2002) regarding how the primary parameter 

estimates that describe change in response are sensitive to misspecification of the 

nonresponse model.)  It should be noted that the structure of the multivariate regression 

pattern-mixture models evaluated by Little and Wang are not appropriate for repeated 

measures data where the means are modeled as a function of within-subject covariates 

(such as time).  The approach is appropriate, however, for analysis of differences of 

means between time points.  

Fairclough et al. (1998) compared a pattern-mixture and a selection model (a joint 

mixed-effects and time to disease progression model) in the analysis of longitudinal 

HRQOL outcomes.  Their evaluation of methods also included a complete case analysis 

and two mixed-effects models (one model included covariates that were associated with 

the probability of missing data, and the other model did not).  Except for the complete 

case model, the models used close to 100 percent of the patient data. The different 
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models were compared on the basis of the sensitivity of longitudinal estimates of 

HRQOL and hypothesis tests of the various underlying missing data assumptions.   

Data from two clinical trials of cancer therapy were analyzed.  Both trials had at 

least 30 percent of the planned HRQOL assessment missing.  The first trial was an 18-

month, 4-arm study of adjuvant therapy involving 1,212 post-menopausal patients with 

node-positive breast cancer.  Fifteen percent of the patients experienced disease 

progression with an overall average of 31 percent of patients with missing data.  The 

second trial was a 6-month, 3-arm study involving 576 patients with advanced nonsmall-

cell lung cancer.  Thirty-five percent mortality was observed and with an overall average 

of 39 percent of patients with missing data.     

The complete case analysis of the first trial included only 33 percent of the 

patients, whereas the other 4 methods included 95 percent of the patients (i.e., all patients 

who had at least one assessment in the first 18 months of treatment).  The event for the 

joint mixed-effects model was the time to disease progression within 18 months and the 

strata for the pattern-mixture model were defined by disease progression.  As in the 

previously described study by Little and Wang (1996), complete case estimates of 

treatment effect were higher for all treatment arms when compared to results from the 

other four modeling approaches.  Estimates from the models that used all available data 

were almost identical for all treatment arms, except for the control arm (Tamoxifen only), 

where the pattern-mixture model deviated from the other models and estimated higher 

mean HRQOL scores at the end of the 18 month study than the complete case analysis.  

An unexpected result among the models that used all available data was that the standard 

errors for the estimates were smallest for the joint mixed-effects model and largest for the 
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pattern-mixture model.  The authors concluded that the additional information on time to 

disease progression in the joint model might have led to more precise estimates.  Whereas 

in the mixture model, there was less information about the patients who progressed early, 

leading to less certainty about estimates that are based on the later observations.  

Therefore, although the mixture model estimates may have appeared to be less precise, 

they may actually better reflect the uncertainty of the estimates. 

Fairclough’s analysis of the second trial included only 24 percent of the patients 

for the complete case analysis and 94 percent of patients for the other 4 methods.  The 

event for the joint mixed-effects model was the time to death.  Strata for the pattern-

mixture model were defined as the number of courses of therapy completed.  As in the 

first trial, the estimates of HRQOL from the complete case analysis were higher for all 

three of the treatment arms, relative to the other four modeling approaches.  One of the 

two mixed-effects models included two patient characteristics as covariates for the 

nonresponse mechanism:  a measure of patient health status at baseline and survival 

status at six months.  The estimated rate of decline in HRQOL with this model was 

greater than the estimate from the mixed-effects model without covariates, and was very 

similar to the estimated rate of decline from the joint mixed-effects model.   

Across the two analyses by Fairclough et al., results were more variable when 

there was a higher proportion of missing data.  The authors concluded that this variability 

reflects increasing sensitivity of the estimates of the response variable to the choice of 

analytic model used.  Also, the joint mixed-effects may not have been as appropriate for 

the first trial as it was for the second because only 15 percent of patients experienced the 

event of disease progression and many of the patients in the first trial were likely to be 
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cured with therapy.  To find the best model for a particular analysis, the authors 

recommended using different methods of analysis of real data from clinical trials, and 

using simulations under ideal conditions where the true missing data mechanism is 

known. 

Ribaudo et al. (2000) applied a random effects selection model to the problem of 

analyzing joint HRQOL response and log of the survival time in a post-hoc analysis of 

data from a clinical trial of treatment for patients with colorectal hepatic metastases.  A 

nonignorable nonresponse mechanism was suspected because survival differed between 

the treatment groups and HRQOL response (based on the physical sub-scale scores from 

the Rotterdam Symptom Checklist) was worse both at baseline and in change over time 

for the patients with the shortest survival.  One hundred patients were involved in the 

study (51 received an experimental treatment, and 49 received conventional treatment).  

HRQOL data were available for only 86 patients, and only 43 of these patients had more 

than 60 percent of the planned HRQOL assessments.  Assessments were taken monthly 

for up to 15 months.   Published results of the primary analysis (a quality-adjusted 

survival time endpoint using TwiST-based analyses) showed evidence of an advantage 

from the experimental treatment, therefore, the researchers wanted to test if “normal” 

HRQOL could be sustained longer with the experimental treatment compared to the 

conventional treatment. 

The post-hoc selection model was based on Schlucter’s trivariate normal model 

described previously.  Without patient-level covariates, the model is represented as 

 

)  2(
222

)1(
1111 )()( ijiiijijijiiiijijij zstrtfzetvutrtttfy ++++++++= δαδβα (2.6) 
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The HRQOL component of the model is an identity link function (f1), which means that f1 

is a linear function of the dependent variable, HRQOL, with fixed parameters for the 

intercept, α1, and the slope, β1.  The identity link function is modeled alongside an 

exponential link function (f2), which represents time-to-event model for estimating the 

mean log of the time-to-dropout, α2.  The observed HRQOL and survival time data for 

patient i can be described as a vector, 
i

y = ( )2()1( , ii
yy ), where )1(

i
y represents the mi  

HRQOL responses (yi1,…,yimi), observed for patient i at times ti1,…, timi, and (the m)2(
iy i + 

1st element of 
i

y ) is the patient’s corresponding survival time.  The dummy variables, 

 and , are indicators to distinguish the two model components for the response 

values.  The indicator variable = 1 for j = 1, … , m

)1(
ijz )2(

ijz

)1(
ijz i indicates when the model is 

estimating the HRQOL responses for each time point, 0 otherwise; and = 1 for  )2(
ijz

j = mi  + 1 indicates when the model is estimating the survival time, 0 otherwise.  

Between-subject random residual components are represented by ui, vi, and si for the 

HRQOL intercept and slope and log of the survival time, respectively.  The within-

subject residuals are represented by the ((mi + 1) x 1) vector, ie  = (ei1,…, eimi, 0) where 

the first mi elements correspond to the mi HRQOL responses, and the last element is 0 

because there is no variance in subject survival time.  Linear and piece-wise linear 

models that assumed linear rates of change in HRQOL response over time were 

estimated, using the EM-algorithm to obtain parameter estimates given the missing data.  

Three different covariance structures were compared.  The first assumed no correlation 

between HRQOL and survival (σus = σvs = 0), the second assumed correlation between 
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survival and HRQOL intercept only (σvs = 0), and the third allowed correlation between 

survival and both HRQOL intercept and slope.  The parameter estimates from the model 

were compared to estimates from a model based on complete survival information from 

full patient follow-up that became available at the completion of the study. 

 Results from the linear model under the first covariance assumption of 

independence between HRQOL and survival substantiated the results from the primary 

analysis with an estimate of a steeper rate of decline for the control arm compared to the 

experimental arm.  The piece-wise linear model under the same assumption, estimated an 

initial deterioration in HRQOL, with a steeper decline in the experimental arm initially.  

Parameter estimates were not affected very much when the model was estimated with the 

assumptions of correlations between survival and HRQOL intercept and slope.  The 

piecewise linear model parameter estimates were in close agreement to the estimates 

from the full patient follow-up data, indicating that the piece-wise random effects 

selection model produced good parameter estimates 

Another study by Fairclough et al. (2003) compared results from a mixed-effects 

model and a joint mixed-effects log of the time-to-dropout model, in post hoc analyses of 

clinical trial data with nonrandom dropout.  The double-blind trial involved 375 cancer 

patients with anemia who were randomized to receive either epoetin alfa (N=251) or 

placebo (N=124).  Response variables included four HRQOL measures specific to 

cancer, one measure specific to anemia, and two general health-related HRQOL 

measures.  Data were collected at baseline and at three follow-up assessments, the timing 

of which varied according to each patient’s chemotherapy cycle.  A unique characteristic 
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of this trial for the post hoc analysis was that neither the length of treatment nor the 

timing of assessments could be prospectively predetermined. 

Previously reported primary findings from the trial were based on between 

treatment group differences in changes from baseline to last assessment.  Results 

indicated a significant benefit of increased HRQOL for patients treated with epoetin alfa 

on all cancer and anemia measures, and trended in favor of epoetin alfa on general 

measures.  However, approximately 42 percent of enrolled patients withdrew from the 

study early and lower HRQOL scores were reported for patients who discontinued early.  

Further, correlations ranging from 0.37 to 0.77 between individual rates of change and 

time to early termination of therapy or death supported the hypothesis that censored 

HRQOL was associated with HRQOL after the point of dropout, i.e., a nonrandom 

dropout process.  The objective of the study, therefore, was to investigate the robustness 

of the conclusions from the previously reported results using two alternative modeling 

approaches that assumed missing data were MAR or MNAR. 

The longitudinal models for the sensitivity analyses were based on mixed-effects 

growth-curve models, defined as YI = Xiβ + ZidI + ei, where YI was the vector of HRQOL 

responses on the ith patient, and Xi and Zi were design matrices of known covariates 

corresponding to fixed and random effects, β and dI., respectively.  The possibility of a 

nonlinear change (i.e., slope) in HRQOL over time was handled by piecewise linear 

regression with the assumption that the rate of change in the response variable was 

approximately linear within short time intervals.  The model allowed the rate of change in 

HRQOL scores to change at 4 and 16 weeks from baseline.  Piecewise linear regression 

models included an indicator term for treatment (TX), a continuous variable for weeks 
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from baseline (WEEK), and two additional covariates to model the change in slope at 

weeks 4 and 16 (WEEK4 and WEEK16).  Additional covariates were defined as 

WEEK04 = max(0,WEEK – 4) and WEEK16 = max(0, WEEK – 16).  Eight possible 

covariance structures were considered for the mixed-effects model for all seven HRQOL 

response variables. Treatment group differences in the mean change in HRQOL from 

baseline to 16 weeks were the outcomes of interest. 

Analyses included a mixed-effects (ME) model (assumes a MAR nonresponse 

mechanism) and a joint mixed-effects and log of the time-to-dropout model (joint ME) 

(assumes a MNAR nonresponse mechanism).  The second model was an extension of the 

first, where HRQOL was modeled jointly with the log of the time-to-dropout.  The joint 

modeling was accomplished with the assumption that the random effects, dI , were 

correlated with the time of censoring Ti (i.e., dtσ  ≠ 0).  For example, if individuals with 

HRQOL that declined more rapidly over time dropped out earlier, the random effects 

associated with the slope of HRQOL would be positively correlated with the time-to-

dropout.  With the joint ME model, one or both of the following conditions must be met 

in order to estimate the variance of the random effects and the covariance between the 

random effects and time:  (1) a random-effects covariance structure should be a 

reasonable approximation of the covariance structure, and (2) there should be variation in 

the random effects (intercept and slope) across patients.  Fairclough et al. recommend 

that the variances of the random effects be checked first by estimating the ME model.  

Then estimates from the ME model are used as initial estimates of β, D, and   =  2
Iσ

Var[ ei] in the joint ME model. 
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  Generally, both models supported the original conclusions from the previously 

reported results.  Results from the MAR (ME) and MNAR (joint ME) models were 

similar for all measures of HRQOL, however, within treatment group estimates of 

changes were smaller for the MNAR model.  There were some practical issues with the 

joint ME model, such as the random component for the modification of the rate of change 

after 16 weeks was difficult to estimate because data became sparser as time progressed, 

and the estimating algorithm for the SF-36 PCS model failed to converge due to minimal 

variation in the rate of change in the SF-36 PCS.  The authors recommended including 

treatment-specific covariance parameters to allow the correlations between random 

effects and time-to-event to vary by treatment, should this occur in a study.     

Many of the published studies reviewed in this chapter suggest that joint selection 

models can provide good estimates of treatment effect on HRQOL when MNAR data are 

present.  However, most of these studies did not compare results from the different 

estimation approaches to true parameters.  Comparisons between pattern-mixture and 

joint selection models indicate that the joint models may give more precise estimates 

because they include the additional information about survival time.  However, pattern-

mixture model estimates may more accurately reflect the uncertainty in the estimates, 

especially those that are based on later observations where more data are censored.  The 

strengths and weaknesses of the different modeling approaches should be considered 

when interpreting estimates treatment effect in the presence of MNAR missing data. 

The current study attempts to build upon the previously published work by 

applying a joint ME model to estimating cost-effectiveness with NMBλ as the dependent 

variable.   A simulation study was used to evaluate and compare estimates of INMBλ from 
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a joint ME model, a repeated measures ME model, and an ANCOVA model.  Model 

estimates were compared to a true parameter for INMBλ that was derived from the 

simulated data.  ANCOVA was selected because this approach is commonly used for 

analyzing longitudinal clinical trial data but does not account for the effects of MAR or 

MNAR data.  A repeated measures ME model was chosen because it is also commonly 

used but does not account for MNAR data.    The three models are described in detail in 

Chapter 3. 
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CHAPTER 3.  METHODS 
 

The objectives of the study were to evaluate and compare estimates of 

incremental net monetary benefit ( ) from ANCOVA, ME, and joint ME models, 

using data with simulated MAR and MNAR nonresponse mechanisms.  The dependent 

variable in the models was a total one-year , and the parameter of interest was the 

treatment group effect on  ( ).   is defined in Chapter 2 as a function 

of costs, utilities, and willingness to pay (λ). An ANCOVA model was selected for 

comparison because ANCOVA is commonly used in clinical trial analyses.  A mixed-

effects model was selected because these models can account for the impact of missing at 

random (MAR) data, but cannot account for nonignorable missing at random (MNAR) 

data.  Last, a joint ME model was selected because these models can account for both 

MAR and MNAR nonresponse mechanisms.  Joint ME models have been shown to 

provide good estimates of HRQOL in clinical trials with MAR and MNAR missing data, 

however, these models have not been reported in studies of incremental net monetary 

benefit.  It should be noted that the joint ME model can account for MNAR nonresponse 

mechanisms when these are related to individual trajectories as measured by random 

effects.  The joint ME model, however, may not necessarily account for other MNAR 

mechanisms (Fairclough, personal communication, May 2008).   

λINMB

λNMB

λNMB λINMB λINMB

The hypothesis was that the joint ME model would produce the best estimate of 

 compared to estimates from ME and ANCOVA models.  Estimates from the 

three models were evaluated and compared to each other and to the “true” , 

λINMB

λINMB

 



 58

calculated from the simulated complete dataset before nonresponse mechanisms were 

applied.     

This chapter describes the analysis methods, including variables, models, and data 

simulation procedures.  The measures of cost, effectiveness, and the λ constants that 

represent levels of willingness to pay, are described in sections 3.1-3.3.  Section 3.4 

provides an overview of the dependent variable and timeframes for deriving the estimated 

.  Section 3.5 provides the specifications of each model.  The rationale for basing 

the data simulation on the ROSE Study outpatient subgroup is provided in Section 3.6.  

Procedures for creating the simulated data are described in Section 3.7.  Last, the 

analyses are specified in Section 3.8. 

λNMB

3.1 Cost Measure:  Direct Medical Costs 

Costs were simulated from the original ROSE Study outpatient subgroup.  (The 

rationale for selecting this subgroup as the basis for the simulation is provided in Section 

3.6.)  This section describes costs from the ROSE Study as they pertain to the current 

analysis.   

ROSE Study costs consisted of direct medical costs per patient.  Costs were 

measured by multiplying each unit of health care service used times the cost per unit.  

Estimates of the unit costs for each type of service were derived from secondary sources 

(see Chapter 2, section 2.1 for details).  Direct medical costs per patient at each of the 

study time points were calculated as the sum of all health care costs over the prior four-

month time period. 

The ROSE Study did not collect resource use data for the four-month time period 

prior to randomization.  Therefore, baseline costs (representing the cost of care over the 
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four months prior to randomization) were imputed for the sake of calculating a 

baseline .  Details on the imputation of baseline costs and the simulation of follow-

up costs are provided in the section on simulation procedures.   

λNMB

In the ROSE Study and the current analysis, annual health care costs were not 

discounted to reflect the value of health care costs at the start of the study because the 

study timeframe was only 12 months.  For the current analysis, all of the original ROSE 

Study costs were adjusted for inflation using the 2005 Medical Component of the 

Consumer Price Index.   

3.2 Effectiveness Measure:  Quality-adjusted Life Years 

As described in Chapter 2, SF-36 scores were collected in the ROSE Study for 

each patient at each study time point.  For the current analysis, SF-36 values were 

converted to utility scores using the mapping function developed by Brazier et al. (2002).   

The resulting utility values were then used in the simulation procedure, and the simulated 

utilities were converted to QALYs.   

The SF-36 in the ROSE Study was assessed at baseline and every four months up 

to month 12, using the one-month recall version of the questionnaire.  This meant that 

patients were asked to respond to the questions while considering their health status over 

the last month.  For the purpose of calculating QALYs in the current analysis, an 

assumption was made that the SF-36 scores (and hence the utility scores) at each time 

point reflected the entire previous four-month period.  This assumption allowed the 

QALYs to align with the cost measures over each of the same time intervals.  The utility 

scores at each time point were multiplied by 0.33 to generate a QALY based upon one-
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third of a year.  The response variable, , for patient i at each time point t was then 

calculated from the resulting QALYs and costs. 

itNMBλ

3.3 Willingness to Pay:  Values of λ  
 

The value (λ) that payers are willing to pay for a new therapy is usually unknown.  

Therefore, Stinnett & Mullahy (1998) recommended conducting analyses at different 

levels of λ and reporting the estimated  as a function of λ.  In this study, λ = 

$50,000 was selected because it is widely referenced in the literature (Earle et al, 2000; 

Jonsson, 2004; Eichler et al, 2004), and the National Institute for Clinical Excellence in 

England uses λ = ₤30,000 (approximately $58,380 US Dollars) in their health technology 

assessments.  Higher and lower levels for this analysis were chosen arbitrarily as λ = 

$100,000 and λ = $25,000.  The level of λ = $0 was also included because it allowed for 

an analysis of negative costs as an additional interpretation of willingness to pay equal to 

zero, and for graphing cost-effectiveness acceptability curves described later in this 

chapter.     

λINMB
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3.4 Dependent Variable and Timeframes for Estimation 
 
 The dependent variable in the models was the total annual  for patient i at 

λ = $0, $25,000, $50,000, and $100,000.  The total annual , which will be denoted 

as , is the sum of each patient’s  values across the time points, month 4, 8, 

and 12.  Because of basic dissimilarities in the models that were selected for this analysis, 

the predicted  was derived one way for the ANCOVA model and somewhat 

differently for the ME models.  For example, in the ANCOVA model the observed 

 within patient across time points t = 4, 8, and 12 were first summed to create 

the .  Then  was used as the dependent variable in the model for estimating 

parameters and a predicted  (Equation 3.1). 

iNMBλ

iNMBλ

*
iNMBλ λNMB

^
*

λNMB

itNMBλ

*
iNMBλ

*
iNMBλ

^
*

λNMB

iii
t

it XNMBNMB εβλλ +==∑
=

*

12,8,4

 
(3.1) 

 

In the ME models, the observed  within patient at each time point were used as 

dependent variables (Equation 3.2), and the estimator was then calculated as the 

sum of the estimated parameters at months 4, 8, and 12.  The detailed specifications of the 

models, which are provided in the next section, explain further how this was 

implemented with the use of “knot” variables. 

itNMBλ

^
*

λNMB

itiitit
t

it dZXNMB εβλ ++= ∑
= 12,8,4,0

*  
(3.2) 
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 To help illustrate the differences in the predicted , a graphical depiction 

of hypothetical model results from the ANCOVA and ME models is shown in Figure 3.4-

1.  The ANCOVA model provides the estimated  based on the sum of the 

observed  across time points (diamonds).  The ME models provide estimates of 

at each time point (circles) which are summed to obtain the estimated .  

The solid lines represent estimated regression lines for T

^
*

λNMB

^
*

λNMB

iNMBλ

iNMBλ

^
*

λNMB

1; the dashed lines represent the 

same for T0.  The text provided in the boxes explain how the time intervals between 

months 0 and 4, months 4 and 8, and months 8 and 12 include the data for estimating 

the at each time point in the ME models.  The vertical arrows point out the 

differences between the areas under the curves for the two treatment groups (the areas 

extend across the entire study, not just where the arrows are shown). The differences 

represent the  or treatment effect. The black and white vertical arrows indicate 

the  for the ANCOVA and ME models, respectively. 

iNMBλ

λINMB

λINMB
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Figure 3.4-1 Hypothetical model results from the ANCOVA and ME models 

NMB

0 4 8
Month (t)

ANCOVA Model ME Models
       T1        T1

        T0        T0

12

Month 4 is 
estimated from 
months 0 to 4

Month 8 is 
estimated from 
months 4 to 8

Month 12 is 
estimated from 
months 8 to 12

 
 

3.5 Model Specifications 
 

This section provides descriptions of the models used in the analysis.  Table 3.5-1 

presents definitions of the terms included in the three models.  The fixed effects terms 

included in the models were patient age, previous hospitalizations, baseline NMB, 

treatment, time, and treatment-time interaction.  These covariates were selected because 

they comprised a parsimonious set of factors expected to be associated with the outcome, 

NMB.  The covariates were centered (i.e., rescaled) to facilitate interpretation of the NMB 

mean intercepts.  Centering of covariates was accomplished by subtracting the covariate 

mean value from each patient’s age (i.e. age – 40), previous hospitalizations (previous 

hospitalizations – 0.5), and baseline NMBλ (NMBλ  - mean NMBλ).  The interpretation of 

the NMB mean intercepts with centered covariates is the expected NMB value at time t 

for a 40-year old patient, with average values for the measures of previous 

hospitalizations and baseline NMB.  Another advantage of using centered covariates is 
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that the SAS procedure used to estimate the joint ME model (Proc NLMIXED) converges 

easier if the model variables are not widely different in scale (Fairclough, personal 

communication, Feb 2008).  The dependent variable was rescaled by dividing by 1,000 to 

provide results that were easier to read for all three models.  Thus, NMB is measured in 

thousands of dollars and the coefficients on the right-hand side variables show their effect 

on NMB in thousands of dollars. 
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Table 3.5-1 Definitions of variables and parameters used in each model  

Dependent Variables ANCOVA 
 

ME 
Joint 
ME 

  N
iY Overall annual  response for patient i in thousands 

of dollars (superscript N represents NMB) 

*
iNMBλ

 
√ 

 
 

 
 

  N
itY itNMBλ , observed at t (months) = 0, 4, 8, 12 for patient i in 

thousands of dollars (superscript N represents NMB) 

 
 

 
√ 

 
√ 

T
iY  Log time-to-dropout response (continuous variable) for 

patient i (superscript Y represents time to dropout) 
 
 

  
√ 

Indicator Variables    
Nz  λNMB response indicator    √ 
Tz  Log time-to-dropout response indicator   √ 

Groupi Treatment group indicator for patient i (=1 for T1; =0 for T0)  
√ 

 
√ 

 
√ 

Fixed Effects (Covariates) 
   

Monthit Time in months (continuous variable) for patient i  √ √ 

Agei Patient age (continuous variable); rescaled by subtracting 
approximate mean value of 40 

 
√ 

 
√ 

 
√ 

Phospi Previous hospitalizations in the 2 years before randomization 
for patient i (=0 for 1 hosp; =1 for >=2 hosp); rescaled by 
subtracting mean of 0.5 

 
√ 

 
√ 

 
√ 

]4[
iT  “Knot” term to allow  slope to change at month 4. 

 
λNMB

)4,0max(]4[ −= iji tT

 
 

 
√ 

 
√ 

]8[
iT  “Knot” term to allow  slope to change at month 8. 

 
λNMB

)8,0max(]8[ −= iji tT

 
 

 
√ 

 
√ 

BL_NMBi Baseline  for patient i; rescaled by subtracting mean 
baseline   

λNMB
λNMB

 
√ 

  

Parameters for Fixed Effects    

1β  λNMB  mean intercept √ √ √ 

2β  λNMB  mean slope (month)  √ √ 

3β  Treatment group effect on  response λNMB √ √ √ 

4β  Patient age effect on  response λNMB √ √ √ 

5β  Previous hospitalizations effect on  response λNMB √ √ √ 

6β  Interaction with treatment and time effect on  λNMB √ √ √ 

7β  Change in  slope at month 4 λNMB √ √ √ 

8β  Interaction between treatment and change in  slope at 
month 4 

λNMB  
√ 

 
√ 

 
√ 

9β  Change in  slope at month 8 λNMB √ √ √ 

10β  Interaction with treatment and change in  slope at 
month 8 

λNMB  
√ 

 
√ 

 
√ 

 



 66

 
Table 3.5-1 Definitions of variables and parameters (continued) 

Parameters for Fixed Effects ANCOVA 
 

ME 
Joint 
ME 

11β  Baseline  effect on  response λNMB λNMB √   

1τ  Log of time-to-dropout mean intercept   √ 

Variance of Random Effects and Residual Errors    
ui Between-patient random effect for intercept iNMB λ  √ √ 
vi Between-patient random effect for slope iNMB λ  √ √ 
si Between-patient random effect for log of time-to-dropout   √ 

itε  Residual errors for  itNMB λ √1 √2 √2

√ indicates term is included in the model. 
1   Subject-level residual errors for the annual . *

iNMBλ
2   Subject-level residual errors for at each time point. itNMBλ

 

3.5.1 Analysis of Covariance Model  
 

ANCOVA was selected because it is widely used for analyzing clinical trial data, 

but does not account for the effects of MAR and MNAR data.  Equation 3.3 presents the 

ANCOVA model specifications for this study. 

iiiii
N

i NMBBLPHospAgeGroupY εβββββ +++++= _115431  (3.3) 

 The terms in the joint ME model are defined in Table 3.5-1 and are indicated with 

check marks under the column labeled “ANCOVA.”  The response variable, , 

represents the overall annual  for patient i.   Common to all three models are the 

 intercept or population average represented by parameter

N
iY

*
iNMBλ

λNMB λNMB 1β ; treatment 

group represented by the indicator variable Groupi and treatment effect on  

represented by parameter

λNMB

3β ; patient age represented by continuous variable Agei and the 

effect of age on  by parameterλNMB 4β ; number of previous hospitalizations represented 

by the dichotomous variable PHospi and the effect of previous hospitalizations on  λNMB
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by the parameter 5β .  Included in the ANCOVA model, but not in the ME and joint ME 

models is the term for baseline , represented by BL_NMB, and the effect of 

baseline on the annual , by parameter, β

iNMBλ

*
iNMBλ 11.  BL_NMB is rescaled by subtracting 

mean baseline , which allows all remaining parameters to be interpreted as the 

value expected for a patient with average NMB.  The ANCOVA model does not include a 

term for time (Month) because the dependent variable in this model was the annual 

 that was first computed as the sum of the observed  across the three time 

points, then modeled (see section 3.4).  The ANCOVA model is a simple linear function 

that does not account for the effect of time-to-dropout, or the potential changes in  

slope over time.  The ANCOVA model is a fixed effects model except for the random 

error,

λNMB

*
iNMBλ itNMBλ

iNMBλ

iε , which represents the residual error for the annual .   *
iNMBλ

ANCOVA models require that observations with incomplete data either be 

discarded (when the number of missing observations is small) or be imputed (when the 

number of missing observations is large).  The simulated missing dataset had 

approximately 33% of patients with response values set to missing by month 12, 

therefore, the ANCOVA analysis used the imputation method of last observed value 

carried forward (LOCF).  LOCF was selected because it is a commonly used approach 

for handling monotone missing data.   

SAS Proc REG was used to estimate the ANCOVA model.  (See Appendix II.A 

for ANCOVA model SAS code.)  
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 3.5.2 Repeated Measures Mixed-Effects Model 
 

A repeated measures mixed-effects model (ME) was selected because it is 

commonly used in longitudinal clinical trials and can provide unbiased estimates when 

the dataset includes MAR data.  The ME model, however, cannot account for the effects 

of MNAR data.  Mixed-effects models allow repeated measurements on the same patient 

to be correlated (Littel et al, 1996) and do not require that all observations be complete 

(as in the ANCOVA model).  The ME model used in this analysis was piece-wise linear 

(explained later).  The foundation of the piece-wise linear ME model is shown in 

Equation 3.4.    

  
ititiiiti

iiiit
N

it

MonthvuMonthGroup
PHospAgeGroupMonthY

εβ
βββββ

++++
++++=

*6

54321
 

(3.4) 

 The terms in the ME model are defined in Table 3.5-1 and are indicated with 

check marks under the column labeled “ME.”    The  response for the iitNMBλ
th patient is 

represented by (the reason for using this notation will become apparent in the 

discussion of the joint ME).  The response data for each patient can be thought of as a 

vector with four elements, each representing the values of  observed at times t = 

0, 4, 8, and 12 months.  Patients who do not drop out of the study are considered 

censored.  The fixed effects (covariates) are the same as in the ANCOVA model, with the 

additional fixed effect for time and interactions involving time.  Time is measured in 

months from the start of the study for each patient and is represented by the continuous 

variable Month

N
itY

itNMBλ

it and the  linear rate of change (i.e., slope) by the parameterλNMB 2β .  

The interaction between treatment group and time is represented by the variable 

Groupi*Monthit, and interaction effect by parameter 6β .   Fixed effects parameters 1β and 
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2β represent the population average regression coefficients for intercept and 

 slope, respectively.   

λNMB

λNMB

The remaining terms in the model represent between-patient random effects for 

intercept and slope, represented by uλNMB λNMB i and vi, respectively.  The random 

effects coefficients are patient-specific and measure the deviation of the ith individual 

parameters from the corresponding population averages.  The between-patient effect is 

considered to be random because inference is to be made to the entire population of 

chronically ill individuals with schizophrenia who could have received one of the two 

treatment options.  The random effects are assumed to have normal distributions, with 

means equal to 0 and variance-covariance matrix Ω . 

  2σ u σ uv
 

Ω = 
 σ vu

2σ v
 

 
 
The diagonal elements of  represent the variability between patients that is 

unexplained by the model.  The off-diagonal elements are covariances that represent the 

relationships between these random effects; 

Ω

uvσ  represents the measure of the association 

between the intercept and the rate of change in . These random effects are 

incorporated into the fixed effects estimates by estimating the fixed effects conditional on 

the random effects.  In other words, the fixed effect treatment group parameter is the 

treatment fixed effect averaged over the subject-level random effects.  The random 

effects covariance structure that was specified in the ME model allowed the random 

effects on the  intercept and the rate of change over time (i.e., slope) to be 

λNMB λNMB

λNMB
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correlated (Fairclough, personal correspondence, May 3, 2008).  In SAS Proc MIXED, 

this covariance structure is referred to as unstructured.  

The last random effect term is the residual error, iε  that captures the variation of 

the within each patient.  The residual error can be thought of as a vector with four 

elements that correspond to the four  values observed at times t = 0, 4, 8, and 12 

months.  The  residual errors are assumed to have a covariance structure where 

the errors are independent and normally distributed with means 0 and homogeneous 

variance .   

λNMB

λiNMB

iNMBλ

2
eσ

The ME model described thus far is linear over the one-year study period.  A 

more flexible model is a piecewise-linear model that allows the slope of the estimated 

line to change at the time points for months 4 and 8  (Fairclough, 2003).  The in 

such a model is treated as a linear function, however, it is modeled over three shorter time 

intervals as was illustrated in Figure 3.1-1.  A piecewise-linear model was chosen for the 

ME and ME joint models because it should provide a better fit to the data and be easier to 

interpret than a model with higher order terms to account for departures from linearity. 

λNMB

 The ME model in Equation 3.4 is converted to a piecewise-linear model by 

adding two “knot” terms and two interaction terms that involve the knot terms.  These 

terms are referred to as “knots” because they allow the slope to change at discrete points 

in time.  The “knot” for patient i at month 4 is defined as , 

which is equal to 0 until month 4 and then is equal to the value of Month - 4 from month 

4 to 12.  Similarly, the “knot” for patient i at month 8 is defined as 

, which is equal to 0 until month 8 and then is equal to the value 

)4,0max(]4[ −= MonthTi

)8,0max(]8[ −= MonthTi
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of Month – 8 from month 8 to 12 (Fairclough et al, 2003; Fairclough et al, 2004).  The 

terms, and , represent the interactions between treatment and 

the change in slope indicators.  The slope of the estimated line from month 0 to 4 is 

accounted for in the model by the term

ii GroupT *]4[
ii GroupT *]8[

iMonth*2β .  The piecewise-linear ME model is 

presented in Equation 3.5. 
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(3.5) 

SAS Proc MIXED was used to estimate the ME model (Littell et al, 1996).  (See 

Appendix II.B for ME model SAS code.)                                                                 

3.5.3 Joint Mixed-Effects Log of Time-to-dropout Model  
 

The last modeling approach was a joint mixed-effects log of time-to-dropout 

(joint ME) model, which is an extension of the mixed-effects model.  The joint ME was 

selected because the impact of MNAR missing data on the estimate of treatment effect 

can be accounted for by simultaneously modeling  response and log time-to-

dropout in the same model.  Specifically, the non-ignorable missing data are accounted 

for by allowing the time of dropout to be correlated with the between-subject random 

effects on intercept and slope.  Additional random effects could have been 

included, however, the two random effects for the intercept and slope are usually enough 

to obtain a good approximation of the covariance structure.  The joint ME model allows 

the changes in the response variable to be a function of the dropout time and the time of 

dropout to be a function of the initial response value at baseline and the rate of change 

overtime (Fairclough, 2002).     

λNMB

λNMB
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The piecewise-linear joint ME model is presented in Equation 3.6.  This model is 

identical to the piecewise-linear ME model, except it includes an additional exponential 

link function for log of time-to-dropout. 
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(3.6) 

 All of the terms in the joint ME model are defined in Table 3.5-1 and are 

indicated with check marks under the column labeled “Joint ME.”  The majority of the 

terms of the joint ME model are defined as in the ME model, with a few differences that 

are noted here.  The  response for the iitNMBλ
th patient is represented by (where the 

superscript, N, represents NMB) and log time-to-dropout is represented by (where the 

superscript, T, represents time-to-dropout).  The response data for each patient can be 

thought of as a vector with five elements, with the first four elements representing the 

values of  observed at times t = 0, 4, 8, and 12 months, and the last element of the 

vector representing the value for log of the time-to-dropout.  Patients who do not drop out 

of the study are considered censored.   

N
itY

T
iY

iNMBλ

 The first function in Equation 3.6, f1, is an identity link function for the  

component of the model.  Indicator variable  = 1 when the  response 

component is modeled, otherwise = 0.  The second function, f

λNMB

Nz λNMB

Nz 2, is the exponential link 

function for log of the time-to-dropout.   Indicator variable  = 1 when the log of the 

time-to-dropout is modeled, otherwise = 0.  The fixed effects are the same as in the 

Tz

Tz
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ME model, with the addition of the fixed effect for log of the time-to-dropout in f2, where 

the mean log of time-to-dropout is represented by the parameter 1τ .  The decision to take 

the log of the time-to-dropout was based on two considerations:  (1)  the distribution of 

the dropout times (which were skewed towards later time points) and (2) the relationships 

between the time-to-dropout and the RE.  The relationships are more important than the 

distributional aspect for taking a log transformation because the earlier time periods have 

the stronger relationships, and a  log transformation maintains that relationship better by 

weighting the earlier dropouts more.  A log transformation resulted in positive predicted 

values and approximately normally distributed residuals.  Fixed effects 

parameters ,, 21 ββ and 1τ represent the population average regression coefficients for 

intercept,  slope, and log of time-to-dropout, respectively.  As with the ME 

model, the fixed effects have no variance because all of the variance is captured in the 

random effects and residual errors.   

λNMB λNMB

Similar to the ME model, the terms ui and vi, represent between-patient random 

effects for intercept and slope, and the additional term sλNMB i represents the residual 

error for log of time–to-dropout.  Again, the random effects coefficients are patient-

specific and measure the deviation of the ith individual from the corresponding 

population averages.  The random effects and residual error are assumed to have normal 

distributions, with means equal to 0 and variance-covariance matrix . Ω′

  2σ u σ uv σ us
 

Ω′ = 
 σ uv

2σ v σ vs
 

  σ us σ vs
2σ s
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The covariance matrices are similar between the ME and joint ME models, except in 

there is the additional variance for the residual error of time-to-dropout and the 

covariances of the residual error for time-to-dropout with the random effects for  

intercept and slope.  Covariance

Ω′

λNMB

usσ  represents a measure of association between random 

variation in  intercept and log time-to-dropout, and covariance λNMB vsσ represents the 

association between the rate of change in  and log time-to-dropout.  If λNMB usσ = vsσ = 

0, this would imply that each patient’s time-to-dropout is independent of the true slope 

and intercept.  In other words, the nonresponse mechanism would not be MNAR under 

that particular model (Schluchter, 1992).  A null hypothesis of independence between 

time-to-dropout and the random effects can be tested, but only under that model.  If the 

null hypothesis cannot be rejected , this does not mean that the non-response mechanism 

is MAR, but rather that under that model, the covariance is not statistically significantly 

different from zero.  Because MNAR comprises an infinite number of different 

mechanism, there is no one definitive test for MNAR.  The covariance structure that was 

specified in the joint ME model allowed the random effects on the  intercept and 

slope to be correlated with time-to-dropout (Fairclough, personal correspondence, May 

2008).  Similar to the ME model, these random effects are incorporated into the fixed 

effects estimates by estimating the fixed effects, conditional on the random effects. 

λNMB

 The last random effect term in f1 is the residual error itε .  Similar to the ME 

model, the residual error captures the variation of the within each patient.  It can 

be thought of as a vector with four elements that correspond to the four  values 

observed at times t = 0, 4, 8, and 12 months.  The  residual errors are assumed to 

itNMBλ

itNMBλ

itNMBλ
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be independent and normally distributed with means 0 and variance . The joint ME 

model in Equation 3.6 is a piecewise-linear model with the four “knot” terms included in 

the identity link function.  These terms are defined exactly as in the ME model.  Refer to 

Table 3.5-1 for definitions of all model terms.   

2
eσ

SAS Proc NLMIXED was used to estimate the joint ME model.  Proc NLMIXED 

uses numerical integration to maximize the approximation of the likelihood integrated 

over the random effects (Wolfinger, 1997).  Estimates of fixed and random effects 

parameters from the ME model were used as initial estimates for the joint ME model.  

(See Appendix II.C for joint ME model SAS code.)   

All models were estimated at λ = $0, $25,000, $50,000, and $100,000. 

 

3.6 Subgroup of the ROSE Study for Data Simulation  
 

The observed missing data pattern from a clinical trial may suggest one or more 

nonresponse mechanisms.  Ribaudo et al (2000), Fairclough (2002), and Fairclough et al 

(2003) proposed that the missingness patterns found in their studies of patients with 

different cancers suggested MAR and possibly MNAR data.  The patterns showed that 

individuals who dropped out earlier had lower baseline response scores and lower 

response scores just prior to dropout, compared to individuals who remained in the 

studies longer.  Patients with cancer would be expected to have different reasons for 

dropout and probably different patterns of dropout compared to patients with 

schizophrenia.  For example, dropout due to death would probably be more common with 

cancer patients, and dropout due to side effects and noncompliance would probably be 

more common with schizophrenia patients.  In the current study, it was believed there 
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would also be a dropout pattern among the patients with schizophrenia in the ROSE 

Study, and that the dropout pattern should be reflected in the simulated data.  The 

missingness patterns in the ROSE Study data, however, were unknown and required 

exploration.  This section is devoted to a thorough examination of the missingness 

patterns in the ROSE Study.   

In health economic evaluations, patients’ health care costs might be proxies for 

health status because costs for sicker patients would be expected to be higher.  Studies 

have shown health care costs are higher among patients with greater severity of illness, 

complex health conditions, and multiple comorbidities (Hlatky et al., 2004; Marciniak et 

al., 2005).  Hence, it was believed that ROSE Study schizophrenia patients with higher 

costs early in the study would also have lower health status and would be more likely to 

drop out earlier.  These same patients would also have lower NMB early in the study 

(because NMB is a function of cost (C) and health status (E), i.e., NMBi = λ Ei – Ci).  

Missingness patterns were checked using the graphical approach presented in 

Chapter 2, Figure 2.5-1 (Fairclough, 2002).  Patterns of missingness were examined for 

total costs, utilities, and NMB50000.  ROSE Study patients were grouped into four cohorts 

according to time-to-dropout (i.e., dropout at months 0, 4, 8, and 12, corresponding to 

cohorts 1, 2, 3, and 4).  The expectation was that cohorts 1 and 2 would have the lowest 

utilities and highest costs (reflecting they were sickest), as well as the lowest NMB50000.  

Patterns were inspected for all patients (N=675) and for the subgroups of patients who 

were randomized in the hospital (N=442) and patients who were randomized in the 

outpatient setting (N=233).  These subgroups were examined because they were expected 

to be different.  In particular, cost outcomes were expected to be higher for patients 
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randomized as inpatients, at least initially.  Moreover, psychiatric patients who were 

randomized in the hospital may exhibit different patterns of dropout compared to other 

patients because hospitalized patients should be under careful supervision.  

  The numbers of patient dropouts at months 0, 4, and 8, and study completers at 

month 12 are provided in Table 3.6-1.  Among the 675 patients who were randomized in 

the ROSE Study, 42 completed only the month 0 assessment and had nonmissing utility 

data, 499 patients completed all assessments and had nonmissing utility data, and 550 

completed all assessments and had nonmissing cost data.  Similar results are presented 

for the two subgroups of patients.  The numbers of patients in cohorts 1, 2, and 3 are 

small (ranging from 6 to 42).  Approximately 80% (186/233) of the subgroup of patients 

who were randomized as outpatients had not dropped out and had nonmissing data for 

analysis at the end of the study. 

   

Table 3.6-1 Number of ROSE Study patients by time-to-dropout (months 0, 4, 
and 8) or study completion (month 12) 

Time-to-dropout  
N with nonmissing utilities / N with nonmissing costs 

 
 
 
 

Month 0* 
Cohort 1 

Month 4 
Cohort 2 

Month 8 
Cohort 3 

Month 12 
Cohort 4 

All patients (N=675) 
 

42/NA 27/30 34/37 499/550 

Patients randomized in 
hospital (N=442) 

36/NA 17/19 21/22 313/350 

Patients randomized as 
outpatients (N=233) 

6/NA 10/11 13/15 186/200 

*  Month 0 costs are NA because cost data were not collected at baseline. 
Note: Ns in the table represent numbers of patients who dropped out at each time point and 
had nonmissing utility or cost data.   

 

Figures 3.6-1 A, B, and C present results for health status (utilities) by patient 

group.  The figures illustrate how missingness on this variable does not follow a clear 
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pattern.  Cohorts who dropped out earliest tended have the highest and lowest utility 

scores.  Cohort 2 had relatively high health status at baseline, then worsened by month 4.  

Patients who remained in the study longer tended to improve (cohorts 3 and 4).  Patients 

with lower health status at month 0 either were the first to drop out (cohort 1), or 

remained in study the longest (cohorts 3 and 4).  Health status did not vary greatly.  

However, at month 0 the extreme values occurred in the subgroup of patients who were 

randomized as outpatients, with cohort 2 having the highest mean values and cohorts 1 

and 3 having the lowest.  This variance was probably due to the extremely small number 

of patients in these cohorts (Ns ranged from 6 to 15).  Another possible explanation is 

this subgroup may have included a range of patient types, such as higher functioning 

patients who did not require hospitalization, and patients who required hospitalization but 

were not hospitalized for reasons such as no available hospital bed or patient refusal.   

ROSE Study costs by patient group are presented in Figures 3.6-1 D, E, and F.  

Recall that month 0 costs were not collected in the ROSE Study.  Therefore, costs are 

summarized only for months 4, 8, and 12, corresponding to cohorts 2, 3, and 4.  Contrary 

to what was expected, the patients with the lowest costs early in the study were the first to 

drop out.  The figures also illustrate how mean costs for patients who remained in the 

study longer tended to decrease overtime (cohorts 3 and 4).  Consistent with expectations, 

patients who were randomized as outpatients had lower costs compared to patients who 

were randomized in the hospital (month 4 mean costs ranged from $4,084 to $9,931 per 

patient randomized in the outpatient setting, compared to $15,834 to $29,956 per patient 

randomized in the hospital).   

 



 79

Last, Figures 3.6-1 G, H, and I present results for mean NMB50000 by patient 

group.  (since missingness patterns for NMB were similar for all levels of λ, graphs are 

provided only for NMB50000.)  Similar to costs, NMBs are summarized for only months 4, 

8, and 12, corresponding to cohorts 2, 3, and 4.  The figures illustrate how NMB50000 for 

patients who remained in the study longer tended to increase overtime (cohorts 3 and 4), 

however, patients with the highest NMB50000 at month 4 were the first to drop out (cohort 

2).  Patients randomized as outpatients had higher NMB50000 than patients randomized as 

inpatients (month 4 mean NMB50000 ranged from $637 to $6,547 per patient randomized 

in the outpatient setting, compared to negative $19,173 to $3,248 per patient randomized 

in the hospital).  Cohorts with the lowest mean costs and the highest mean health status 

also had the highest mean NMB50000 values.  There was a sequential pattern to 

missingness among patients randomized as outpatients.  For example, at month 4 cohort 2 

had the highest NMB50000, followed by cohort 3, then cohort 4.  By month 12, the mean 

NMB50000 ($5,090) for cohort 4 had increased to a value nearly equal to the mean 

NMB50000 for cohort 2 at month 4 ($6,547).  Contrary to expectations, patients with the 

lowest NMB50000 values early in the study were not the first to drop out.  

The observed missingness patterns in the ROSE Study data was opposite of what 

was expected.  Patients with low NMB50000 values early in the study tended to remain in 

the study longer.  Overtime, the mean NMB50000 values for patients who remained in the 

study increased and matched or surpassed the mean NMB50000 values for patients who 

dropped out early.  Among patients who were randomized as outpatients, individuals who 

dropped out earlier had higher NMB50000 values early in the study and their NMB50000 

values were higher before time of drop out.  Although this pattern was the reverse of 
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what was expected, it suggests that missingness may be dependent on previously 

observed data, and that the nonresponse mechanism could be MAR.  It is also possible 

that missingness depended on what occurred after patients were last observed (an MNAR 

nonresponse mechanism).  The purpose of the above examination was to explore the 

unknown missingness patterns for the schizophrenia patients in the ROSE Study.  

Missingness patterns for schizophrenia patients were expected to differ from those for the 

cancer patients observed in the studies by Ribaudo and Fairclough.  Further, missingness 

patterns for NMBλ would be expected to differ from patterns based on health status 

measures.  The examination revealed a unique pattern that may be reflective of the 

complexity of schizophrenia and its treatment, such as patients having psychotic and 

paranoid symptoms, severe social dysfunction, and high levels of medication 

noncompliance.  For the purpose of the current study, the ordered pattern of missingness 

that was observed among patients who were randomized in the outpatient setting was 

thought to reflect a pattern that could be suited for selection model analysis.  Moreover, 

schizophrenia treatment patterns since the mid 1990s have shifted from care being 

provided largely in the inpatient setting to the outpatient setting (Zeber et al., 2006).  

Therefore, the patterns of missingness and the relationships among variables for this 

subgroup of patients may be more representative of schizophrenia patients today.  For 

these reasons, this study used a simulated dataset that was based on the distributional 

properties of the subgroup of patients in the ROSE Study who were randomized in the 

outpatient setting.    

 



 

Figure 3.6-1 ROSE Study missing data patterns, by outcomes, subgroups, and cohorts 
A. Health status (utilities), all 
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D. Costs, all patients (N=675)
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3.7  Creating the Simulated Dataset 
 

 An overview of the simulation procedure is provided in this section, followed by 

details in sections 3.7.1 and 3.7.2.  The simulation procedure for the current study was 

based on a regression approach to produce a simulated complete dataset with realistic 

relationships between variables and across time.  The procedure used a mixed-effects 

model to simulate NMBλ values that were predicted from the covariance structure of 

patient characteristics, cost, and utilities over time from the ROSE Study outpatient 

subgroup.  In addition to creating a realistic simulated dataset, a regression approach 

allowed a specific treatment effect to be simulated directly into the NMB response 

variable.  As a result, the treatment group difference was a known parameter for assessing 

the performance of the models.  Further, a regression approach allowed diagnostics of the 

data to be examined throughout the process.   A concern with using a ME model for the 

simulation procedure is that the ME model for estimating the INMB may perform better 

as a result of this simulation. The ME model that generated the data looked at similar 

covariates, but interacted all of these and jointly modeled costs and utilities, whereas the 

analysis ME model had NMB as the dependent variable.  An alternative model for the 

data simulation would have been a repeated measures model.  However, with a repeated 

measures model it would have been more difficult to maintain the correlations between 

the costs and utilities, which was thought to be more important at the time.   

  Nonresponse mechanisms were also simulated.  The base case analysis used a 

combination of simulated MAR or MNAR missing and complete cases.  A combination 

of complete and missing cases was used because this is what would typically be found in 
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a clinical trial database.  Approximately equal proportions of patients were simulated to 

be either complete, MAR, or MNAR (i.e., 1/3, 1/3, and 1/3) in the base case.  The effects 

of different proportions of data types on the estimates of  were examined with 

sensitivity analyses.  MAR and MNAR data were simulated because these are the 

nonresponse mechanisms that are most likely to occur in long-term clinical trials and they 

pose analytical challenges.  The MCAR nonresponse mechanism was not included in the 

simulation because simple analytical methods, such as ANCOVA models, are usually 

adequate for inferences from MCAR data.   

λ
^

INMB

The MAR and MNAR data were generated with two nonresponse algorithms 

based on a threshold NMBλ criterion, i.e., NMBλ responses or subsequent responses were 

simulated to be missing if they exceeded a threshold value.  The threshold was a value 

that would result in at least the same proportion of missing cases as was observed in the 

ROSE Study.  A threshold criterion is a direct interpretation of Rubin and Little’s 

definition of MNAR nonresponse, which stated that the MNAR nonresponse mechanism 

occurs when the missingness is dependent on the missing responses, i.e., Pr(Mi | yi, Xi) = 

Pr(ymis).  Other approaches were possible, such as trajectories of the response values or 

change scores, as in the study by Oostenbrink et al. (2005).  (In February 2008, the author 

discussed the threshold approach used in this study with Dr. Fairclough.  She voiced 

concerns based on work-in-progress by another doctoral student.  The work suggested 

threshold-based simulated data may not have the necessary variability for joint ME 

models to converge.  However, Dr. Fairclough agreed that the threshold approach was 

worthwhile trying for this study.)   
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The first phase of the simulation was to generate a complete dataset of 600 

patients with NMBλ values at all time points.  The second phase of the simulation 

involved creating a subset of incomplete observations on the NMBλ response variable.  

Details on the two phases of the simulation process are described in the following 

sections. 

3.7.1 Phase 1:  Creating the Simulated Complete Dataset 

The simulated complete dataset was generated through a process of constructing 

cost and utility values from the components of a mixed-effects model’s β parameter 

estimates, covariance parameter estimates, and residual errors, using the ROSE Study 

data (outpatient subgroup, N=233) as inputs.  The approach resulted in a dataset that 

reflected the relationships between variables and time points found in the ROSE Study 

outpatient subgroup, and it allowed a specified treatment effect to be built into the 

response data.  The process began with identifying the best predictors of log of costs and 

utilities in two separate mixed-effects models.  Log of costs, instead of costs, was used in 

the data simulation because the transformed variable was approximately normally 

distributed, whereas cost was not.  Log of costs produced parameter estimates and 

simulated costs with good fit to the original data.   

The potential predictor variables in the separate mixed-effects models included 

patient age, previous hospitalization, time (month), and the two-way interactions between 

these variables.  Significant predictors were based on Type 3 sums of squares tests of the 

fixed effects with p values <0.15.  For log of costs, the significant predictors were 

previous hospitalizations (p=0.04) and month (p<0.01).  The reduced model for log of 

costs with only these two independent variables revealed that the variance in the log of 
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costs increased with time (Var = 1.45, 1.61, and 2.09 for months 4, 8, and 12).  Further, 

the variance parameter estimates for the random subject variations in the intercepts and 

slopes for log of costs were significantly different from zero (intercept p=0.03, slope 

p=0.02), meaning there was significant variability between patients in their starting 

values and their changes over time in log of costs in the ROSE Study outpatient 

subgroup.  For utilities, the significant predictors were age (p=0.06), month (p=0.06), and 

the interaction between month and previous hospitalizations (p=0.12).  The reduced 

model for utilities with these independent variables revealed the variance parameter 

estimates for the random variations in the intercepts were significantly different from 

zero (p<0.01), however, the random variations in the slopes for utilities were not (slope 

p=0.10).  The interpretation is there was significant variability between patients in their 

starting values for utilities and little variability between patients in the rate of change in 

utility over time.  This is noted here because small variance in the rate of change in a 

dependent variable could potentially lead to convergence problems for the joint ME 

model.  However, because NMB (not utilities) is the dependent variable in the final 

models, the small variance in utilities was not an issue for this analysis. 

The resulting best predictors of log of cost and utilities were then combined into 

one mixed-effects model to jointly estimate parameters for the fixed effects of age, 

previous hospitalizations, month, the interaction between previous hospitalizations and 

month, and the random effects of the covariance between intercept and slope for costs 

and utilities, and the residual errors for costs and utilities.  The general form of the joint 

cost and utility mixed-effects model is presented in Equation 3.5. 
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Simulated costs and utilities for patient i at time t are represented by  and , 

respectively.  Indicator variable = 1 when costs were modeled, otherwise = 0.  

Likewise, indicator variable = 1 when utilities were modeled, otherwise = 0.  The 

component, , represents the fixed effects and parameters for the average costs or 

utilities, and the covariate effects for month, patient age, and previous hospitalizations.  

The component, , represents the random variation in the intercepts (d
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βitX

iit dZ 1i) for costs and 

utilities, and the random variation in the rate of change overtime, i.e., the slopes (d2i) for 

costs and utilities.  The final component, , represents the residual errors for costs and 

utilities from the joint cost and utility model.  

ite

The beta estimate results from the joint log of cost and utility model are presented 

in Equations 3.8 and 3.9. 
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The joint model generated correlated data for the random effects for the intercept and 

slope of log of costs (  and ) and residual errors for log of costs ( ), and the 

random effects for the intercept and slope of utilities ( and ) and residual errors for 
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utilities ( ).  The correlation between the residual errors for log of costs and utilities 

was small enough to ignore (r = 0.05) in the data simulation, i.e., in a subsequent step of 

the simulation it was unnecessary to jointly sample the cost and utility residuals to 

account for this correlation.  The joint model produced output data sets that included the 

fixed effects parameter estimates and the variance/covariance of the estimates, the 

variance/covariance estimates of the random effects, and the residuals errors, all of which 

were used in the following steps to compute each simulated patient’s cost and utility 

values.  (See Appendix II.D for SAS code that generated the joint log of cost and utility 

model.) 

U
ite

The ’s (Equation 3.5) for 600 patients were generated by sampling with 

replacement from the ROSE Study variables for age and previous hospitalization, which 

allowed the simulated age and previous hospitalization values to have the same 

distributions as age and previous hospitalization in the original study.  The random 

effects for cost and utilities intercepts and slopes, ’s, were randomly generated 

standard normal variables.  The ’s were covariance estimates for the random effects, 

obtained from the joint cost and utility model using the Cholesky decomposition of the 

covariance matrix represented in Equation 3.6 (Fairclough, personal correspondence, Feb 

2008), and the residual errors were obtained by random sampling with replacement from 

the residual errors of the joint log of costs and utilities model.    

iX

iZ

id̂

At this point, all necessary components were available to generate cost and utility 

values for each patient at each time point as shown in Equation 3.8 and 3.9.  The cost 

values per patient were the sums of the cost components, which were retransformed back 

to costs by exponentiating the sums.  Likewise, the utility values per patient were the 
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sums of the utility components.  Recall that resource use data were not collected in the 

ROSE Study for the four-months before randomization.  Therefore, baseline costs (month 

0) were imputed in this step by “backwards extrapolation.”  That is, month 0 costs were 

estimated by setting Month = 0 in the estimated Equation 3.8 above.  The simulated 

month 0 costs were intended to represent the cost of care over the four months before 

randomization and were used to calculate a baseline NMBλ for each patient. 

Treatment group differences were also simulated.  This was done by adding $900 

to the cost values and 0.10 to the utility values at each time point after baseline for 

patients in the experimental group, T1.  These time point increments made annual costs 

for T1 $2,700 higher and health status better by 0.10 QALYs, compared to T0.  The 

rationale for simulating higher costs and utilities for the experimental arm is that new 

treatments typically cost more than standard treatments, and it is generally expected that 

new treatments will improve patients’ health status compared to the standard treatments.  

The cost and utility increments were chosen to make T1 approximately cost-effective at 

the λ = $50,000 level.  The resulting ICER is approximately $27,000, which would not be 

favorable for T1 at λ = $25,000, but would be favorable at λ = $50,000 and at λ = 

$100,000.  The “true” INMB values at the different levels of λ are discussed further in the 

next section.   

The final step of Phase 1 involved combining the simulated costs and utilities 

with lambda values of $0, $25,000, $50,000, and $100,000 to create the simulated NMBλ 

values.  The final simulated complete dataset is analogous to data from a hypothetical 

study where all patients complete every assessment and have nonmissing costs and 
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utilities, hence nonmissing NMBλ values, at each time point.  (See Appendix II.E for SAS 

code to generate the final simulated complete dataset.) 

3.7.2 Phase 2:  Creating the Simulated Missing Dataset by Imposing Nonresponse 
Mechanisms 

 

Phase 2 of the simulation procedure involved turning a subset of the simulated 

complete dataset into data with missing response values.  NMBλ responses were simulated 

to be missing at months 4, 8, or 12 according to MAR and MNAR nonresponse 

mechanisms using a threshold criterion for NMBλ.  The final simulated dataset was a 

combination of complete and incomplete (MAR and MNAR) observations.   

The threshold value for NMBλ was determined as follows.  First, NMBλ values at 

each level of λ were calculated for each patient at each time point.  Because λ = $50,000 

is a referenced value in the current literature, the distribution of the NMB50000 at month 8 

for group T0 was examined (month 8 was arbitrarily selected).  NMB50000 = $8,915.69 was 

the threshold value that would result in at least the same proportion of missing data 

(across both treatment groups) as was observed in the ROSE Study.  NMB50000 values 

greater than the threshold were set to missing if they met the MAR or MNAR criteria 

described in the following sections.  After the MAR and MNAR criteria were applied to 

all data for NMB50000, the same missing data pattern was applied to the NMB values at the 

other levels of λ, i.e., if a patient was simulated to drop out at month 4 for NMB50000, then 

that same patient was simulated to dropout at month 4 for NMB0, NMB25000, and 

NMB100000.  The reasoning behind using the same missingness pattern for all λ was that a 

missingness pattern in a dataset is observed and inherent in the data, whereas λ is not.  
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Before turning a subset of the simulated complete dataset into data with missing 

response values, one third of the simulated complete dataset (N=200) across treatment 

groups was randomly chosen to remain as complete observations.  The other 400 

observations were equally and randomly distributed to either MAR (N=200) or MNAR 

(N=200) simulation algorithms for generating incomplete observations.  A mix of 

complete cases, MAR, and MNAR data was selected for the base case because it was 

thought that real datasets will include a mix of these data types.   

 MAR Algorithm.  Data that are MAR can be predicted from the observed 

response data.  The algorithm to generate monotone MAR data compared NMB50000 

values to the threshold value of NMB50000 = $8,915.69 for each of the randomly selected 

200 patients.  If the response value at a given time point was greater than the threshold 

value, then the NMB50000 at all subsequent time points for a patient were set to missing.    

Step 1. Baseline NMB50000 values were evaluated for all 200 patients.  If a patient’s 

baseline NMB50000 was greater than the threshold value, then NMBλ values for 

Months 4, 8, and 12 were set to missing for that patient.  Patients whose 

baseline NMB50000 values did not meet the threshold criterion were evaluated 

in Step 2.   

Step 2. Month 4 NMB50000 values were evaluated.  If a patient’s month 4 NMB50000 

was greater than the threshold value, then all NMBλ values for Months 8 and 

12 were set to missing for that patient.  Patients whose month 4 NMB50000 

values did not meet the threshold criterion were evaluated in Step 3.   
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Step 3. Month 8 NMB50000 values were evaluated.  If a patient’s month 8 NMB50000 

was greater than the threshold value, then all NMBλ values for Month 12 were 

set to missing for that patient. 

 MNAR Algorithm.  Data that are MNAR are not entirely predictable from the 

observed response data.  Instead, the probability of missingness depends on events that 

occurred after the last observed response.  Because the simulation process began with a 

complete dataset, monotone MNAR data could be simulated by evaluating “observed” 

NMBλ values at each time point, then setting those and all subsequent values to missing if 

they failed to meet the threshold criterion.  The algorithm to generate monotone MNAR 

data compared NMB50000 values to the threshold value of NMB50000 = $8,915.69 for each 

of the second set of 200 randomly selected patients.  If the response value at a given time 

point was greater than the threshold value, then the NMB50000 at that time point and all 

subsequent time points for a patient were set to missing. 

Step 1. Month 4 NMB50000 values were evaluated for all 200 patients.  If a patient’s 

NMB50000 was greater than the threshold value, then NMBλ values for Months 

4, 8, and 12 were set to missing for that patient.  Patients whose month 4 

NMB50000 values did not meet the threshold criterion were evaluated in Step 2.   

Step 2. Month 8 NMB50000 values were evaluated.  If a patient’s NMB50000 was greater 

than the threshold value, then NMBλ values for Months 8 and 12 were set to 

missing for that patient.  Patients whose month 8 NMB50000 values did not 

meet the threshold criterion were evaluated in Step 3.   
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Step 3. Month 12 NMB50000 values were evaluated.  If a patient’s NMB50000 was 

greater than the threshold value, then NMBλ values for Months 12 were set to 

missing for that patient. 

The final simulated missing dataset was formed by concatenating the 200 

complete observations with the 400 observations that were processed through the MAR 

and MNAR algorithms.  Some of the latter 400 observations were complete observations 

because it was possible for a patient to have response values not exceeding the threshold 

value at all time points.  The simulated missing data resulted in a greater proportion of 

missing observations for T1 versus T0, based on the simulated higher costs and higher 

utilities for T1.  This pattern of missingness (i.e., patients with higher NMB values 

dropping out earlier) was based on the observed pattern found among the ROSE Study 

subgroup of outpatients.  (See Appendix II.F for SAS code of the MAR and MNAR 

algorithms for the base case, sensitivity analyses, and post hoc analysis.) 

3.8 The True Incremental Net Monetary Benefit 
 

The true INMBλ was based on the cost and utility increments that produced a cost-

effective result for T1 versus T0 at λ = $50,000.  The annual cost increment for T1 was 

computed as $900 multiplied by 3 time points for an annual incremental cost of $2,700.  

The effectiveness measure, QALYs, (represented by E) is equal to utilities multiplied by 

time in the health state.  Utilities were incremented for T1 by 0.10 at each time point.  

Since the time intervals between time points represented 1/3 of a year, the annual QALY 

increment for T1 was equal to (0.10/3 + 0.10/3 + 0.10/3) = 0.10 QALYs.   

The true INMBλ is derived from these two incremental values such that 

10.001 += EE , and 700,2$01 += CC , and true INMBλ = 270010.0 −λ  for T1- T0.  
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Values for the algebraically-derived true INMBλ at different levels of λ are shown in 

Table 3.8-1.  Evaluated at λ=0, INMB0 can be interpreted as the negative of the treatment 

group cost difference.  The true INMBBλ increases as λ increases, i.e., the net monetary 

benefit of T1 relative to T0 goes up as willingness to pay increases. 

 
Table 3.8-1 Algebraically-derived true INMBλ at different levels of λ  

λ  True INMBλ for T1- T0
$0 -$2,700  

$25,000 -$200  
$50,000 $2,300  
$100,000 $7,300  

     

The treatment group differences in NMBλ from the complete simulated dataset 

should be approximately equal to the above values.  The complete data INMBλ was used 

in many of the analyses because its variance could be computed directly from the 

simulated complete data.   

3.9 Analyses 

The analyses that were conducted are described in this section.  Results from the  

analyses are reported in Chapter 4. 

3.9.1 Descriptive Analyses 
 

Descriptive statistics were generated to evaluate the simulation results for the base 

case.  Statistics were generated from the (1) ROSE Study outpatient dataset, (2) simulated 

complete dataset, (3) simulated missing dataset, and (4) simulated missing dataset with 

LOCF imputation, as indicated.   

• Descriptive statistics were generated for costs, utilities, patient age, and previous 

hospitalizations, by treatment group and time point.  Descriptive statistics include 
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number and percent of patients remaining in the study at each time point, means, 

standard deviations (SD), medians, minimums, and maximums for costs, utilities, 

age, and previous hospitalizations (all datasets). 

• Spearman rank correlations between costs, utilities, patient age, and previous 

hospitalizations (all datasets) were calculated. 

• Descriptive statistics were generated for NMBλ (datasets 2, 3, and 4).   

• The Kolmogorov-Smirnov test was provided to check the assumption of normally 

distributed NMBλ (dataset 3).  Histograms of NMB50000 across all time points were 

compared to normal curves for visual inspection of the assumption of normally 

distributed NMB (datasets 2 and 3). 

• Graph of NMB50000 by time point, before and after MAR and MNAR nonresponse 

mechanisms were applied to the simulated complete data (datasets 2 and 3) was 

generated. 

• Graphs of NMBλ response values by time-to-dropout to examine the pattern of 

missingness in the simulated data (data sets 2 and 3) were generated. 

• Complete data INMB values derived from the complete simulated dataset (dataset 

2) were compared to the algebraically-derived true INMBλ values. 

• ICERs from the simulated missing data (with and without LOCF imputation) 

were compared to the complete data ICER to assess the impact of missingness 

and LOCF imputation on a traditional cost-effectiveness analysis (datasets 2,3, 

and 4).  ICERs were generated for descriptive purposes, therefore, standard errors 

were not estimated with bootstrapping or Taylor series approximation.      
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3.9.2 Model Diagnostics  
 

The following diagnostics were generated for each model in the base case 

analysis.       

• The Kolmogorov-Smirnov test was provided to check the assumption of normally 

distributed errors (all models) and visual inspection of the residual errors 

compared to a normal curve. 

3.9.3 Evaluating and Comparing the Models 
 

The primary focus of the evaluation and comparison of the models was on how 

well each model estimated the incremental net monetary benefit across different levels of 

λ.  According to the algebraically-derived true and the complete data INMBλ, treatment 

group T1 should not be cost-effective compared to T0 until λ =$50,000.  The following 

analyses were conducted to compare model results in the base case.   

• Model parameters, standard errors, and p-values were estimated.  

• Variances of the random effects for NMBλ intercept and slope, residual errors for 

log time-to-dropout and NMBλ, and correlations between the log of time-to-

dropout and the NMBλ intercept and slope for the joint ME model were estimated. 

• Total annual and for each model were summarized.  Each model’s 

ability to estimate treatment cost-effectiveness across the different levels of λ was 

assessed by the statistical significance of .  The estimated  were 

descriptively and visually compared to the complete data INMB

λ
^

NMB λ
^

INMB

λ
^

INMB λ
^

INMB

λ.  (The complete 
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data INMBλ was calculated as least squares mean differences from a generalized 

linear model that included only treatment group.)   

• Bias of the , defined as the absolute difference between the estimated and 

complete data INMB

λ
^

INMB

λ, was summarized and displayed graphically.  The estimate 

with smallest bias was desired. 

• Precision of the  was determined with a ratio of the  variances 

from each model to the variance of the complete data INMB

λ
^

INMB λ
^

INMB

λ.  A variance ratio 

close to 1.0 was desired. 

• Cost-effectiveness acceptability curves (CEACs) were generated to assess the 

probability of the cost-effectiveness of T1 relative to T0 across a range of λ values 

from $0 to $100,000, by increments of $5000.  CEACs, first introduced by Van 

Hout et al. (1994), show the proportion of the joint density of incremental costs 

and incremental effectiveness for which T1 is cost-effective at each value of λ 

(Fenwick et al., 2004).  One minus that proportion (the acceptability estimate) 

corresponds to the minimum significance level in the NMB regression models at 

which the null hypothesis of T1 not being cost-effective can be rejected (Zethraeus 

et al., 2003).  The probabilities in the CEACs were generated as 1 minus the one-

sided p-values from the tests of significant difference between treatment groups.  

The CEACs for the ME and joint ME models  (both using the simulated missing 

data) were taken from the p-values associated with the ESTIMATE statements for 

the test of the significance of the difference in total NMB.  Similarly, the CEAC 

for the ANCOVA model  (using the simulated missing data with LOCF 

imputation) was taken from the p-values associated with the test of the 
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significance of the difference in total NMB.  The CEACs for the models were 

plotted on a single graph and compared by visual inspection to the complete data 

CEAC.  The complete data CEAC was generated by first computing a patient-

level total NMB across all available time points, then using independent sample t-

tests to generate p-values.   

3.9.4 Sensitivity Analyses 
 

 Different proportions of MAR or MNAR missing data may affect the precision of 

INMBλ estimates.  Two sensitivity analyses were conducted to examine the potential 

impact.  Sensitivity Analysis 1 used simulated data from a simulation procedure that 

involved putting all 600 simulated complete observations through the MAR nonresponse 

algorithm (Chapter 3.7).  The result was a simulated missing dataset with a smaller 

proportion of complete observations than in the base case, and all missing cases MAR.  

Sensitivity analysis 2 was similar to sensitivity analysis 1, except the simulation 

procedure involved putting the 600 simulated complete observations through the MNAR 

nonresponse algorithm (Chapter 3.7).  The result was a simulated missing data with an 

even smaller proportion of complete observations compared to the base case, and all 

missing cases MNAR.   

 The sensitivity analyses were limited to results for λ = $100,000, because 

treatment group T1 should undoubtedly be cost-effective compared to T0 at this level of λ, 

according to the algebraically-derived true and complete data INMBλ.  The following 

analyses were done using the sensitivity analysis simulated missing data sets.  Base case 

results were presented along with sensitivity analysis results for comparison.   
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• Means (SDs) for NMB100000, by treatment group and time point were generated. 

• Graphs were provided for visual inspection of the NMB100000 distribution across all 

time points compared to a normal curve.   

• Total annual and for each model were summarized.  Each 

model’s ability to estimate treatment cost-effectiveness was assessed by the 

statistical significance of .   were descriptively and 

visually compared to the complete data INMB

100000
^

NMB 100000
^

INMB

100000
^

INMB 100000
^

INMB

100000.   

•  Bias of the  was summarized and displayed graphically.   100000
^

INMB

• Precision of the  was determined with a ratio of the  variances 

from each model to the variance of the complete data INMB

100000
^

INMB λ
^

INMB

λ.  

All analyses were performed with SAS version 9.1 (SAS Institute,  Inc) and 

Microsoft Excel 2000. 
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CHAPTER 4.  RESULTS 
 
 

Results of the simulation procedure and the base case analyses are presented in 

sections 4.1-4.3.  The base case analyses were conducted using the simulated missing 

dataset comprising 200 complete case observations and some proportion of the remaining 

400 observations (the proportion depended on the level of the criteria for being set to 

missing) being simulated to be missing according to MAR and MNAR nonresponse 

mechanisms.  LOCF imputation of the missing observations was used in the ANCOVA 

modeling, while no imputation of the missing observations was used in the ME and joint 

ME models.  Two sensitivity analyses were conducted to assess the impact of different 

proportions of MAR or MNAR missing data on the estimates of INMBλ.  Sensitivity 

analysis results are presented in section 4.4.    

4.1 Descriptive Analyses 
 

Descriptive statistics for number of patients remaining in the study, costs, utilities, 

patient age, and previous hospitalizations, by treatment group and time point are 

presented in Table 4.1-1.  Results begin with descriptive statistics from the ROSE Study 

outpatient dataset, the source data for the simulated dataset.  Table 4.1-1A shows the 

number of patients in treatment groups, T0 and T1, were 118 and 114, respectively at 

month 0.  By month 12 the numbers had decreased to 97 (82%) and 103 (90%).  Costs 

were not measured at month 0 in the original study.  Mean costs decreased for both 

treatment groups from month 4 (T0: $8,680; T1:  $10,163) to month 12 (T0:  $5,640; T1:  

$5,771).  Mean utilities increased from month 0 (T0: 0.61; T1:  0.63) to month 12 (T0:  

0.64; T1:  0.65).   Mean patient age ranged from 37.51 to 38.84 across treatment groups.  
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For the dichotomous variable, Phosp, 49 percent of T0 and 46 percent of T1 had two or 

more hospitalizations in the two years prior to randomization.   

Table 4.1-1B presents the descriptive statistics for the simulated complete dataset 

that resulted from Phase I of the simulation procedure.  The simulated complete dataset 

had complete data for all 600 patients at every time point.  The number of patients in each 

treatment group was 300.  Mean costs decreased for both treatment groups from the 

imputed costs at month 0 (T0: $15,988; T1:  $15,989), to month 4 (T0:  $9,259; T1:  

$10,158), and month 12 (T0:  $5,663; T1:  $6,563), similar to the ROSE Study month 4 

and 12 costs.  Mean utilities increased from month 0 (T0: 0.62; T1:  0.62) to month 12 

(T0:  0.65; T1:  0.75), somewhat higher than the month 12 values in the ROSE Study.  

Mean patient ages and previous hospitalizations were similar to the ROSE Study means.  

Patient age and previous hospitalization are baseline patient characteristics and are 

therefore the same in each of the simulated datasets. 

Table 4.1-1C presents the descriptive statistics for the simulated missing dataset 

that resulted from Phase II of the simulation procedure.  Recall that the base case analysis 

used a mixture of simulated complete cases (N~=200) and missing cases that were either 

MAR (N~=200) or MNAR (N~ =200) (because a clinical trial would typically include a 

mixture of complete and missing data, with patients dropping out for a variety of 

reasons).  At month 0, each treatment group had 300 patients.  By month 12, the 

simulated MAR and MNAR nonresponse mechanisms resulted in “dropping” 82 patients 

in T0 and 115 patients in T1 from the study, leaving 218 (73%) and 185 (62%) for T0 and 

T1, respectively.  The proportions of dropouts were somewhat larger than the ROSE 

Study outpatient subgroup proportions noted earlier.  Month 0 costs and utilities were 
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equivalent to the values from the simulated complete dataset.  At month 12, mean costs 

were lower (T0:  $6,711; T1:  $8,660) and mean utilities were higher (T0:  0.63; T1:  0.73).  

Comparing to the simulated complete data, the effect of the simulated MAR and MNAR 

nonresponse mechanisms on costs and utilities was to increase the unadjusted mean costs 

at all time points and decrease the unadjusted mean utilities after month 0.  The observed 

differences in the means between the simulated complete and simulated missing datasets 

seem reasonable give that 27% to 38% of the patients were simulated to drop out by 

month 12.      

Table 4.1-1D presents the descriptive statistics for the simulated missing dataset 

with LOCF imputation.  The number of patients in each treatment group was 300 at every 

time point.  Month 0 costs and utilities were equivalent to the values from the simulated 

complete dataset.  Mean costs with LOCF by month 12 were higher compared to the 

simulated complete data, but not as high as the simulated missing data (T0: $6,100; T1:  

$7,623).  Mean utilities with LOCF at month 12 were lower than the simulated complete 

data and similar to the simulated missing data (T0:  0.64; T1:  0.73).   
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Table 4.1-1 Number of patients remaining in study and descriptive 
statistics for costs, utilities, patient age, and previous hospitalizations  
A.  ROSE Study outpatient dataset 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 118 (100%) 115 (97%) 108 (92%) 97 (82 %) 
Costs  ($)      
   Mean (SD) -- 8,680 

(12,318) 
7,177 

(10,335) 
5,640 

(8,254) 
   Median -- 3,624 3,270 2,040 
   Minimum -- 0 0 0 
   Maximum -- 79,465 58,581 52,128 
Utilities 
   Mean (SD)  0.61 (0.10)  0.62 (0.10) 0.64 (0.10)   0.64 (0.10) 
   Median 0.60 0.60 0.63 0.65 
   Minimum 0.40 0.43 0.46 0.43 
   Maximum 0.83 0.87 0.92 0.94 
Age, mean (SD) 37.51 (9.40)  
Prev hosp, mean (SD) 0.49 (0.50)  
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 114 (100%) 111 (97%) 107 (94%) 103 (90%) 
Costs  ($)      
   Mean (SD) -- 10,163 

(11,760) 
9,189 

(13,380) 
5,771 

(9,287) 
   Median -- 5,963 3,414 2,736 
   Minimum -- 613 0 0 
   Maximum -- 82,220 78,586 73,274 
Utilities 
   Mean (SD) 0.63 (0.10) 0.65 (0.10) 0.64 (0.11) 0.65 (0.11) 
   Median 0.62 0.65 0.64 0.63 
   Minimum 0.42 0.43 0.35 0.41 
   Maximum 0.88 0.94 0.88 0.94 
Age, mean (SD) 38.84 (8.69)  
Prev hosp, mean (SD) 0.46 (0.50)  

(See Appendix II.G.  ROSE Descriptive Stats for SAS code.)
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Table 4.1-1 Number of patients remaining in study and descriptive statistics for 
costs, utilities, patient age, and previous hospitalizations, 
B.  Simulated complete dataset  
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%) 
Costs ($) 
   Mean (SD) 15,988 

(27,734)
9,258 

(13,120)
7,277 

(11,223) 
5,663 

(10,308)
   Median 8,066 5,166 3,786 2,294
   Minimum 249 409 78 65
   Maximum 272,859 115,320 111,679 78,867
Utilities 
   Mean (SD)  0.62 (0.09)  0.63 (0.09) 0.64 (0.10)  0.65 (0.10) 
   Median 0.62 0.63 0.64 0.65
   Minimum 0.31 0.32 0.40 0.37
   Maximum 0.88 0.91 0.94 0.91
Age, mean (SD) 37.55(9.38)  
Prev hosp, mean (SD) 0.45 (0.50)  
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%)
Costs ($) 
   Mean (SD) 15,988 

(18,556)
10,158 

(13,973)
8,180 

(12,708) 
6,563 

(9,581)
   Median 8,689 6,114 4,300 3,117
   Minimum 1,738 1,409 532 837
   Maximum 118,227 165,610 109,068 65,304
Utilities 
   Mean (SD)  0.62 (0.09) 0.73 (0.09) 0.74 (0.10)  0.75 (0.10) 
   Median 0.62 0.74 0.74 0.75
   Minimum 0.37 0.49 0.50 0.43
   Maximum 0.94 0.96 1.0 1.0
Age, mean (SD) 37.87 (8.37)  
Prev hosp, mean (SD) 0.49 (0.50)  
(See Appendix II.G. Univariate for SAS code.)  
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Table 4.1-1 Number of patients remaining in study and descriptive statistics for 
costs, utilities, patient age, and previous hospitalizations, 
C.  Simulated missing dataset, a base case 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 278 (93%) 252 (84%) 218 (73%)
Costs  ($)   
   Mean (SD) 15,988 

(27,734)
9,827 

(13,449)
8,198 

(11,996) 
6,711 

(11,127)
   Median 8,066 5,582 4,477 3,063
   Minimum 249 475 78 110
   Maximum 272,859  115,320 111,679 78,867
Utilities 
   Mean (SD)  0.62 (0.09)  0.63 (0.09)  0.62 (0.09)  0.63 (0.10)
   Median 0.62 0.63 0.63 0.63
   Minimum 0.31 0.32 0.40 0.37
   Maximum 0.88 0.85 0.89 0.91
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 273 (91%) 225 (75%) 185 (62%)
Costs  ($)      
   Mean (SD) 15,988 

(18,556)
10,836 
(14,444) 

9,799 
(14,151) 

8,660 
(11,447)

   Median 8,689 6,704 5,341 4,157
   Minimum 1,738 1,409 900 903
   Maximum 118,227 165,610 109,068 65,304
Utilities 
   Mean (SD)  0.62 (0.09)  0.73 (0.89)  0.73 (0.09)  0.73 (0.10)
   Median 0.62 0.73 0.72 0.73
   Minimum 0.37 0.49 0.50 0.43
   Maximum 0.94 0.92 1.00 1.00 
a  The simulated missing data for the base case analysis was a mixture of 

simulated complete cases and missing cases that were either MAR or MNAR.  
(See Appendix II.G. Missing for SAS code.) 
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Table 4.1-1 Number of patients remaining in the study and descriptive statistics 
for costs, utilities, patient age, and previous hospitalizations, 
D.  Simulated missing dataset with LOCF imputation, a base case 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%)
Costs  ($)      
   Mean (SD) 15,988 

(27,734)
9,473 

(13,127)
7,705 

(11,284) 
6,100 

(9,912)
   Median 8,066 5,313 4,145 2,756
   Minimum 249 249 78 110
   Maximum 272,859 115,320 111,679 78,867
Utilities 
   Mean (SD)  0.62 (0.09)  0.63 (0.09)  0.64 (0.09)  0.64 (0.09)
   Median 0.62 0.63 0.63 0.65
   Minimum 0.31 0.32 0.40 0.37
   Maximum 0.88 0.85 0.89 0.91
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%)
Costs  ($)      
   Mean (SD) 15,988 

(18,556)
10,646 

(13,969)
9,101 

(12,691) 
7,623 

(9,673)
   Median 8,689 6,572 4,970 4,160
   Minimum 1,738 1,409 900 903
   Maximum 118,227 165,610 109,068 65,304
Utilities 
   Mean (SD)  0.62 (0.09)  0.72 (0.09)  0.73 (0.09)  0.73 (0.09)
   Median 0.62 0.73 0.73 0.74
   Minimum 0.37 0.47 0.47 0.43
   Maximum 0.94 0.92 1.00 1.00
a  The simulated missing data for the base case analysis was a mixture of 

simulated complete cases and missing cases that were either MAR or MNAR.  
The ANCOVA model used the simulated missing data with LOCF imputation. 

   (See Appendix II.G. Univariate LOCF for SAS code.) 
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Table 4.1-2 presents the Spearman rank correlations between costs, utilities, 

patient age, and previous hospitalizations for the ROSE Study outpatient data and the 

three simulated datasets, by time point.  A comparison of the correlations across the 

ROSE Study and simulated complete dataset shows how the simulation process 

approximately maintained the original relationships between variables.  All correlations 

between the variables were weak and the signs of the correlations from ROSE Study to 

simulated data were maintained, except for month 4 correlations between costs and 

utilities and costs and age, month 8 correlations between costs and age, and month 12 

correlations between costs and age. There was greater statistical significance among the 

simulated correlations than the ROSE Study correlations, which was probably due to 

the larger sample size.  (The month 0 correlations from the simulated missing and 

simulated missing with LOCF imputation datasets are not shown because these 

correlations are equal to the correlations from the simulated complete dataset.) 
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Table 4.1-2 Spearman rank correlations for costs, utilities and covariates, 
treatment groups combined 
A.  ROSE Study outpatient dataset 
Month 0, N=232 Utilities Age Prev hosp 
   Costs -- -- -- 
   Utilities -- -0.09 -0.01 
   Age -- -- -0.11 
Month 4, N=226 Utilities Age Prev hosp 
   Costs -0.00 -0.04 0.17** 
   Utilities -- -0.16* -0.02 
Month 8, N=215 Utilities Age Prev hosp 
   Costs -0.09 -0.02 0.14* 
   Utilities -- -0.14* -0.06 
Month 12, N=200 Utilities Age Prev hosp 
   Costs -0.03 0.05 0.09 
   Utilities -- -0.17* -0.11 
 
B.  Simulated complete dataset 
Month 0, N=600 Utilities Age Prev hosp 
   Costs 0.00 -0.04 0.08 
   Utilities -- -0.13** -0.02 
   Age -- -- -0.09* 
Month 4, N=600 Utilities Age Prev hosp 
   Costs 0.13** 0.03 0.14** 
   Utilities -- -0.09* -0.03 
Month 8, N=600 Utilities Age Prev hosp 
   Costs -0.01 0.01 0.16** 
   Utilities -- -0.09* -0.07 
Month 12, N=600 Utilities Age Prev hosp 
   Costs -0.03 -0.06 0.20** 
   Utilities -- -0.05 -0.16** 
* p<0.05; **p<0.01 
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Table 4.1-2 Spearman rank correlations for costs, utilities and covariates 
(continued) 
C.  Simulated missing dataset, a base case 
Month 4, N=551 Utilities Age Prev hosp 
   Costs 0.18** 0.01 0.12** 
   Utilities -- -0.09* -0.02 
   Age -- -- -0.09* 
Month 8, N=477 Utilities Age Prev hosp 
   Costs 0.13** -0.04 0.13** 
   Utilities -- -0.07 -0.06 
Month 12, N=403 Utilities Age Prev hosp 
   Costs 0.06 -0.08 0.15** 
   Utilities --   
 
D.  Simulated missing dataset with LOCF imputation, b base case 
Month 4, N=600 Utilities Age Prev hosp 
   Costs 0.17** 0.01 0.13** 
   Utilities -- -0.09* -0.04 
   Age -- -- -0.09* 
Month 8, N=600 Utilities Age Prev hosp 
   Costs 0.11** -0.03 0.11** 
   Utilities -- -0.07 -0.06 
Month 12, N=600 Utilities Age Prev hosp 
   Costs 0.07 -0.07 0.14** 
   Utilities -- -0.04 -0.11** 
* p<0.05; **p<0.01 
a The simulated missing data for the base case analysis was a mixture of 

simulated complete cases and missing cases that were either MAR or MNAR. 
b The ANCOVA model used the simulated missing data with LOCF imputation. 
   (See Appendix II.G. ROSE Descriptive Stats, Univariate, Missing, and 

Univariate LOCF for SAS code.) 
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Table 4.1-3 presents descriptive statistics for NMBλ for the three simulated 

datasets, by treatment group and by time point.  Results for the simulated complete 

dataset are presented in Table 4.1-3A.  Mean NMBλ values increase as λ increases, as they 

should.  Mean NMBλ values also steadily increased overtime, but increases were greater 

for T1 as intended by the simulation.  For example, at month 12, NMB50000 = $5,119 for 

T0 and NMB50000 = $5,885 for T1.    

Results for the simulated missing dataset are presented in Table 4.1-3B.    Mean 

NMBλ values at month 0 for both T0 and T1 were equal to the values in the simulated 

complete dataset.  Compared to the simulated complete data, the effect of the simulated 

nonresponse mechanisms was to decrease the unadjusted mean NMBλ at all time points 

after month 0.  This result is consistent with the previously reported higher costs and 

lower utilities after simulation of the nonresponse mechanisms.  

Last, the results for the simulated missing dataset with LOCF imputation are 

presented in Table 4.1-3C.  Again, mean NMBλ values at month 0 for both T0 and T1 were 

equal to the values in the simulated complete dataset, and mean NMBλ increased 

overtime, with greater increases for T1.  LOCF imputation resulted in higher unadjusted 

mean NMBλs than those from the simulated missing dataset without LOCF imputation.        
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Table 4.1-3 Descriptive statistics for NMBλ
A.  Simulated complete dataset 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%)
NMB0 ($) 
   Mean (SD) -15,988 

(27,734)
-9,258 

(13,120)
-7,280 

(11,223)
-5,663 

(10,308)
   Median -8,066 -5,166 -3,786 -2,294
   Minimum -272,859 -115,320 -111,679 -78,867
   Maximum -249 -409 -78 -65
NMB25000 ($)  
   Mean (SD) -10,827 

(27,737)
-3,979 

(13,094)
-1,933 

(11,256)
-272 

(10,361)
   Median -3,240 135 1,215 2,950
   Minimum -268,077 -109,646 -106,389 -73,090
   Maximum 5,717 5,842 6,386 7,180
NMB50000 ($) 
   Mean (SD) -5,667 

(27,762)  
1,299 

(13,109)
3,414 

(11,344)
5,119 

(10,483)
   Median 2,198 5,173 6,403 7,890
   Minimum -263,295 -103,971 -101,099 -67,313
   Maximum 13,012 12,333 14,254 14,472
NMB100000 ($) 
   Mean (SD) 4,655 

(27,878)
11,856 

(13,263)
14,107 

(11,680)
15,900 

(10,920)
   Median 11,894 15,417 16,778 18,173
   Minimum -253,730 -92,622 -90,519 -55,758
   Maximum 27,601 27,574 29,991 29,056
(See Appendix II.G. Univariate for SAS code.) 
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Table 4.1-3 Descriptive statistics for NMBλ  
A.  Simulated complete dataset (continued) 
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 300 (100%) 300 (100%) 300 (100%)
NMB0 ($) 
   Mean (SD) -15,988 

(18,556)
-10,158 

(13,973)
-8,180 

(12,708)
-6,563 

(9,581)
   Median -8,689 -6,114 -4,300 -3,117
   Minimum -118,227 -165,610 -109,068 -65,304
   Maximum -1,738 -1,409 -532 -837
NMB25000 ($)  
   Mean (SD) -10,827 

(18,571)
-4,046 

(13,928)
-2,000 

(12,754)
-339 

(9,717)
   Median -3,543 -86 1,989 3,132
   Minimum -113,289 -158,340 -102,881 -59,614
   Maximum 4,415 6,150 7,726 7,321
NMB50000 ($) 
   Mean (SD) -5,667 

(18,615
2,065 

(1,3925)
4,180 

(12,848)
5,885 

(9,916)
   Median 1,717 5,719 7,838 9,206
   Minimum -108,351 -151,069 -96,694 -53,925
   Maximum 10,929 14,111 16,285 16,006
NMB100000 ($) 
   Mean (SD) 4,655 

(18,793)
14,288 

(14,041)
16,540 

(13,177)
18,333 

(10,487)
   Median 11,517 17,574 19,633 21,140
   Minimum -98,474 -137 -84,322 -42,546
   Maximum 23,956 30,033 33,402 33,375

(See Appendix II.G. Univariate for SAS code.) 
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Table 4.1-3 Descriptive statistics for NMBλ 
B.  Simulated missing dataset, a base case 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N (%) 300 (100%) 278 (93%) 252 (84%) 218 (73%)
NMB0 ($)     
   Mean (SD) -15,988 

(27,734)
-9,827 

(13,449)
-8,198 

(11,996)
-6,711 

(11,127)
   Median -8,066 -5,582 -4,477 -3,063
   Minimum -272,859 -115,320 -111,679 -78,867
   Maximum -249 -475 -78 -110
NMB25000 ($)  
   Mean (SD) -10,828 

(27,737)
-4,575 

(13,405)
-2,960 

(11,968)
-1,479 

(11,125)
   Median -3,240 -479 621 2,247
   Minimum -268 -109,646 -106,389 -73,090
   Maximum 5,717 5,842 6,270 6,330
NMB50000 ($) 
   Mean (SD)  -5,667 

(27,762)
 676 

(13,402)
 2,277 

(11,989)
 3,753 

(11,180)
   Median 2,198 4,657 5,488 7,241
   Minimum -263,295 -103,971 -101,099 -67,313
   Maximum 13,012 12,158 12,878 13,646
NMB100000 ($) 
   Mean (SD)  4,654 

(27,878)
 11,178 

(13,515)
12,752 

(12,171)
14,216 

(11,455)
   Median 11,894 14,687 15,526 17,133
   Minimum -253,730 -92,622 -90,519 -55,758
   Maximum 27,601 24,791 26,095 28,502
a The simulated missing data for the base case analysis was a mixture of 

simulated complete and MAR and MNAR missing cases. 
   (See Appendix II.G. Missing for SAS code.) 
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Table 4.1-3 Descriptive statistics for NMBλ
B.  Simulated missing dataset, a base case  (continued) 
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N 300 (100%) 273 (91%) 225 (75%) 185 (62%)
NMB0 ($)     
   Mean (SD) -15,988 

(18,556)
-10,836 

(14,444)
-9,799 

(14,151)
-8,660 

(11,447)
   Median -8,689 -6,704 -5,341 -4,157
   Minimum -118,227 -165,610 -109,068 -65,304
   Maximum -1,738 -1,409 -900 -903
NMB25000 ($)  
   Mean (SD) -10,827 

(18,51)
-4,778 

(14,367)
-3,743 

(14,134)
-2,596 

(11,530)
   Median -3,543 -865 656 1,709
   Minimum -113,289 -158,340 -102,881 -59,614
   Maximum 4,415 5,690 6,557 7,134
NMB50000 ($) 
   Mean (SD)  -5,667 

(18,615)
 1,280 

(14,329)
 2,313 

(14,157)
 3,469 

(11,668)
   Median 1,717 5,092 6,403 7,289
   Minimum -108,351 -151,069 -96,694 -53,925
   Maximum 10,929 13,124 14,493 15,435
NMB100000 ($) 
   Mean (SD)  4,655 

(18,793)
 13,396 

(14,369)
14,425 

(14,320)
15,599 

(12,095)
   Median 11,517 16,318 18,326 18,868
   Minimum -98,474 -136,527 -84,321 -42,546
   Maximum 23,956 27,991 30,799 32,038
a The simulated missing data for the base case analysis was a mixture of 

simulated complete and MAR and MNAR missing cases. 
   (See Appendix II.G. Missing for SAS code.) 
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Table 4.1-3 Descriptive statistics for NMBλ
C.  Simulated missing dataset with LOCF imputation, a base case 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

N 300 (100%) 300 (100%) 300 (100%) 300 (100%)
NMB0 ($)     
   Mean (SD) -15,988 

(27,734)
-9,473 

(13,127)
-7,705 

(11,284)
-6,100 

(9,912)
   Median -8,066
   Minimum -272,859 -115,320 -111,679 -78,867
   Maximum -249 -249 -78 -110
NMB25000 ($)  
   Mean (SD) -10,828 

(27,737)
-4,189 

(13,094)
-2,397 

(11,266)
-750 

(9,916)
   Median -3,240
   Minimum -268 -109,646 -106,389 -73,090
   Maximum 5,717 5,842 6,270 6,330
NMB50000 ($) 
   Mean (SD)  -5,667 

(27,762)
 1,095 

(13,102)
 2,911 

(11,298)
 4,600 

(9,979)
   Median 2,198
   Minimum -263,295 -103,971 -101,099 -67,313
   Maximum 13,012 12,158 12,878 13,646
NMB100000 ($) 
   Mean (SD)  4,654 

(27,878)
 11,662 

(13,239)
13,528 

(11,511)
15,301 

(10,281)
   Median 11,894
   Minimum -253,730 -92,622 -90,519 -55,758
   Maximum 27,601 25,272 26,095 28,502
a The simulated missing data for the base case analysis was a mixture of 

simulated complete and MAR and MNAR missing cases.  The ANCOVA 
model used the simulated missing data with LOCF imputation. 

   (See Appendix II.G. LOCF for SAS code.) 
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Table 4.1-3 Descriptive statistics for NMBλ
C.  Simulated missing dataset with LOCF imputation, a base case (continued) 
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

N 300 (100%) 300 (100%) 300 (100%) 300 (100%)
NMB0 ($)     
   Mean (SD) -15,988 

(18,556)
-10,646 

(13,969)
-9,101 

(12,691)
-7,762 

(9,673)
   Median -8,689
   Minimum -118,227 -165,610 -109,068 -65,304
   Maximum -1,738 -1,409 -900 -903
NMB25000 ($)  
   Mean (SD) -10,827 

(18,51)
-4,644 

(13,892)
-3,057 

(12,696)
-1,548 

(9,779)
   Median -3,543
   Minimum -113,289 -158,340 -102,881 -59,614
   Maximum 4,415 5,690 6,557 7,134
NMB50000 ($) 
   Mean (SD)  -5,667 

(18,615)
 1,358 

(13,858)
 2,987 

(12,749)
 4,527 

(9,948)
   Median 1,717
   Minimum -108,351 -151,069 -96,694 -53,925
   Maximum 10,929 13,124 14,493 15,435
NMB100000 ($) 
   Mean (SD)  4,655 

(18,793)
 13,362 

(13,920)
15,076 

(12,995)
16,677 

(10,463)
   Median 11,517
   Minimum -98,474 -136,527 -84,321 -42,546
   Maximum 23,956 27,991 30,799 32,038
a The simulated missing data for the base case analysis was a mixture of 

simulated complete and MAR and MNAR missing cases.  The ANCOVA 
model used the simulated missing data with LOCF imputation. 

   (See Appendix II.G. LOCF for SAS code.) 
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A check of the assumption of normally distributed NMB values in the simulated 

complete and simulated missing data was done using the Kolmogorov-Smirnov test.  The 

null hypothesis of NMB values being normally distributed was rejected for all λs and at 

all time points (all p<.01, not shown).  Because the Kolmogorov-Smirnov test is 

conservative, the distribution of NMB50000 values from the simulated complete data across 

all time points was compared to a normal curve in Figure 4.1-1.  Visual inspection 

indicates that NMB50000 in the complete data is not normally distributed.  A similar 

nonnormal distribution was found for , the annual NMB used in the ANCOVA 

model as the dependent variable (not shown).  

*
50000iNMB

   

 

 



 
 

Figure 4.1-1 Check of the assumption of normally distributed NMB50000 values across all time points, complete data  
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Figure 4.1-2 summarizes the simulation results on mean NMB50000 by time point, 

before and after the MAR and MNAR nonresponse mechanisms were applied to the 

complete simulated data.  The solid lines represent the simulated complete data and 

dotted lines the simulated missing data.  At month 0 the means from the two simulated 

datasets are equal because missing values were simulated only for months 4, 8, and 12 

based on the assumption that all patients were present at baseline (month 0).  The figure 

shows how the complete data NMB50000 values are higher than the values estimated from 

the simulated missing data at nearly all time points for each treatment group.  The one 

exception was at month 4 where the mean response for T0 from the simulated complete 

data is equal to the mean response for T1 from the simulated missing data.  Treatment 

group differences are apparent in the simulated complete data from month 4 to end of 

study.  In the simulated missing data, however, there is little difference between the 

treatment groups except at month 4.  The graph illustrates how MAR and MNAR missing 

data can have the affect of lowering unadjusted mean response values, obscuring 

treatment differences, and thereby making accurate estimation of treatment effect 

difficult.  The opposite could also occur, where treatment differences may be overstated 

depending on the pattern and mechanism of missingness. 
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Figure 4.1-2 Mean NMB50000 for simulated complete and missing data, base case 
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(See Appendix II.G. Univariate and Missing for SAS code.) 
 

 Figure 4.1-3 presents the missingness patterns in the simulated missing dataset 

with both treatment groups combined.  Similar to the graphs in Chapter 3 that showed the 

missingness patterns in the ROSE Study data, patients were grouped into cohorts 1, 2, 3, 

or 4, according to time of last nonmissing assessment.  NMBs were graphed by cohort, 

time point, and level of λ.  The missingness pattern that was seen in the ROSE Study 

(Figure 3.6-1 I) can be seen in these patterns, with an ordered pattern across cohorts (i.e., 

cohort 1 having the highest NMB at baseline, followed by cohorts 2, 3, and 4).  There was 

a slight trend for patients who remained in the study longer to have higher NMBs at time 

of dropout.  However, patients who dropped out between months 0 and 4 had only 

slightly higher mean NMB at time of dropout compared to patients who completed the 

study through month 12.   The simulated dropout pattern may suggest a MAR (and 
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possibly MNAR) nonresponse mechanism because the missingness may be predictable 

from the observed data in the study, i.e., higher baseline NMB values predict early 

dropout and lower NMB values predict later dropout and increasing NMB values over 

time.  Thus, the simulation procedure appeared to work successfully to impose at least a 

MAR missingness patterns on the simulated complete data.  Figure 4.1-3 also shows how 

the dropout pattern is the same across the levels of λ, as intended by the simulation 

procedure.  As expected, mean NMB increases as λ increases, with mean NMB values 

ranging from -$12,600 to $20,000.  
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Figure 4.1-3 Missingness patterns for mean NMB in the simulated missing dataset, 
both treatment groups combined, base case 
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(See Appendix II.H. Cohort_sim for SAS code.) 

B.  NMB25000
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Figure 4.1-3 Missingness patterns for mean NMB in the simulated missing dataset, 
both treatment groups combined, base case (continued) 
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(See Appendix II.H. Cohort_sim for SAS code.) 

D.  NMB100000
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The algebraically-derived, true INMBBλ values are presented in Table 4.1-4, with 

the means (s.e.) computed from the simulated complete dataset.  The complete data 

INMBλ are virtually identical to the algebraically-derived values.  The standard errors of 

the complete data INMBλ   are large, but this is expected in a sample size of N=600, and in 

the NMB that is a function of costs that vary widely. 

 
Table 4.1-4   Algebraically-derived true INMBλs and complete data INMBλs 
from the simulated complete dataset 

λ True INMBλ Complete data INMBλ (se) 
$0 -$2,700  -$2,700  (2,292.3) 

$25,000 -$200  -$201  (2,292.1) 
$50,000 $2,300  $2,299  (2,202.8) 
$100,000 $7,300  $7,298  (2,355.6) 

(See Appendix II.I. True for SAS code.) 

 

Incremental cost-effectiveness ratios (ICERs) from the simulated complete and 

the simulated missing data, with and without LOCF imputation, are presented in Table 

4.1-5.  The complete data ICER was $27,010 per QALY.  ICERs from simulated missing 

data were $45,467 and $45,559 per QALY, with and without LOCF imputation, 

respectively.  These results demonstrate how the cost-effectiveness of T1 relative to T0 

would be overestimated by approximately $19,000 per QALY in a traditional cost-

effectiveness analysis using the simulated missing data.  Despite this overestimation of 

the benefit, at the willingness to pay level of λ = $50000 one could conclude that T1 is 

cost-effective compared to T0.    
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Table 4.1-5 Cost-effectiveness as determined by incremental cost-effectiveness 
ratios  
A.  Simulated complete data 
Treatment Cost QALY ΔC ΔE ICER 

T1 $24,901 0.74 $2,701 0.10 $27,010/QALY 

T0 $22,200 0.64 -- -- -- 

 
B.  Simulated missing data, base case 
Treatment Cost QALY ΔC ΔE ICER 

T1 $29,295 0.73 $4,559 0.10 $45,559/QALY 

T0 $24,736 0.63 -- -- -- 

 
C.  Simulated missing data with LOCF imputation, base case 
Treatment Cost QALY ΔC ΔE ICER 

T1 $27,370 0.73 $4,092 0.09 $45,467/QALY 

T0 $23,278 0.64 -- -- -- 

 

  

4.2 Model Diagnostics 
 

A check of the assumption of normally distributed NMB residual errors from all 

models was done using the Kolmogorov-Smirnov test and visual inspection.  The null 

hypothesis of NMB values coming from a normal distribution was rejected for all λs and 

at all time points (all p<.01, not shown).  The distributions of residual errors for λ = $0, 

$25000, $50000, and $100000 from the ANCOVA model are shown in Figures 4.2-1A-

D.  Visual inspection shows the distribution to be roughly normal for λ = $0, $25000, 

$50000, but with a higher peak than a normal distribution.  Similar distributions were 

found for the residual errors of the ME and joint ME models (not shown). 

 



 
 

Figure 4.2-1A Check of the assumption of normally distributed residual errors from ANCOVA model, NMB0, base case 
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Figure 4.2-1B Check of the assumption of normally distributed residual errors from ANCOVA model, NMB25000, base case 
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Figure 4.2-1C Check of the assumption of normally distributed residual errors from ANCOVA model, NMB50000, base case 
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Figure 4.2-1D Check of the assumption of normally distributed residual errors from ANCOVA model, NMB100000, base case 
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4.3 Evaluating and Comparing the Models  
 

Parameter estimates from the ANCOVA and the ME models are presented and 

discussed separately because the models differ with regard to their dependent variables 

and the terms included in each model, as explained in Chapter 3.4 and 3.5.  Recall that 

the NMB of a treatment is the difference between the treatment’s effect (valued in dollars) 

and its cost (i.e., NMB = λE – C).  When λ = $0, the dependent variable is NMB with the 

willingness to pay being zero for one more unit of effectiveness (i.e., one QALY).  Since 

NMB0 is simply negative costs, negative parameter estimates imply higher costs. 

Parameter estimates from the ANCOVA model with annual  as the 

dependent variable are presented in Table 4.3-1 by level of λ.  For λ = $0, the treatment 

group effect was nearly significant ( =-3.77, p=0.08), indicating that T

*
iNMBλ

3β̂ 1 was associated 

with lower annual  (higher annual costs) versus T*
iNMBλ 0, after adjusting for other 

variables in the model.  As λ increases, the treatment effect on annual  switched 

from being nearly significant in favor of T

*
iNMBλ

0 to being significant in favor of T1 (λ 

=$100,000, =5.06, p=0.02).  The interpretation is that T3β̂ 1 is not cost-effective until λ = 

$100,000.  Other significant predictors of annual  were previous hospitalizations 

(more previous hospitalizations predict lower annual , or higher annual costs 

when λ = $0), and baseline NMB (higher NMB at baseline predicts higher annual , 

or lower annual costs when λ = $0).  The residual error for ranged from 707.27 

when λ = $25,000 to 740.20 when λ = $100,000.   

*
iNMBλ

*
iNMBλ

*
iNMBλ

*
iNMBλ
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Parameter estimates from the ME and joint ME models with  as the 

dependent variable are presented in Table 4.3-2A-D by level of λ.  In both models, and 

for all λ, the treatment group parameter estimate was not significant, however, INMB 

(incremental cost-effectiveness) cannot be determined from this parameter alone because 

of the interaction terms involving treatment group.  The INMB must be calculated as the 

linear combination of these parameters and is presented in a later analysis.  The 

significant predictors of  were previous hospitalizations (more previous 

hospitalizations predicted lower , or higher annual costs when λ = $0), and NMB 

mean slope and change in NMB slope at month 4 ( is predicted to increase over 

time, but with a significant decrease or change in slope at month 4), in both models and at 

all levels of λ.   

itNMBλ

itNMBλ

itNMBλ

itNMBλ

Variances of the random effects for between-patient intercept and slope 

were significantly different from zero, indicating there was significant variability 

between patients in their baseline and their changes in overtime (in both 

models and at all levels of λ).  In the joint model, the residual error for log time-to-

dropout was also significantly differently from zero.  The correlation between log of 

time-to-dropout and the random effect of slope ranged from 0.34 to 0.39 across 

the levels of λ (all p<0.01), meaning that time-to-dropout was significantly correlated 

with trajectory of the response.  The joint ME model would not converge without an 

assumption of zero correlation between log of time-to-dropout and the random effect of 

the NMB intercept. This was due to small correlations among the log of time-to-dropout, 

random intercept and random slope.  Convergence, therefore, required an assumption of 

λNMB

λNMB λNMB

λNMB

 



  
 

131

zero correlation among one of the pairs.  The relationships between the slopes and 

intercepts are usually strong enough that the joint ME model only needs one of the 

correlations to be significantly different from zero in order to converge  (Fairclough, 

personal communication, July 8, 2008).

 



  
 

Table 4.3-1  ANCOVA Model parameter estimates from model with annual *
iNMBλ

a
 as dependent variable, base case  

λ = $0 λ = $25,000  λ = $50,000  λ = $100,000   
 
 
Fixed Effects 

β̂ (s.e.) p-
value 

β̂ (s.e.) p-
value 

β̂ (s.e.) p-
value 

β̂ (s.e.) p-
value 

1β  NMB mean intercepta -23.54 (1.57) <0.01 -7.66 (1.57) <0.01 8.21 (1.58) <0.01 39.96 (1.61) <0.01 
3β  Treatment group (reference 

group is T0) 
-3.77 (2.18) 0.08 -1.56 (2.17) 0.47 0.64 (2.18) 0.77 5.06 (2.22) 0.02 

4β  Patient agea 0.05 (0.12) 0.67 0.04 (0.12) 0.77 0.02 (0.12) 0.88 -0.02 (0.13) 0.90 
5β  Previous hospitalizationsa  -7.27 (2.19) <0.01 -7.74 (2.19) <0.01 -8.21 (2.20) <0.01 -9.14 (2.24) <0.01 

11β  Baseline NMBa  0.39 (0.05) <0.01 0.37 (0.05) <0.01 0.36 (0.05) <0.01 0.34 (0.05) <0.01 
 
Variances of Residual Errors 

    

ε  Residual error for (λNMB 2σ̂ )b 709.69 707.27 711.55 740.20 
a  Dependent variable,  rescaled as /1000; patient age rescaled as age – 40; previous hospitalization rescaled as Phosp -  0.5, and baseline 

 rescaled as baseline –  mean NMB . 

*
iNMBλ

*NMB
λ

iλ

iNMBλ iNMBλ i
b   Represents subject-level residual errors for annual . *

iNMBλ

(See Appendix II.A. Uni LOCF Mean BL for SAS code.) 

 

132



  
 

Table 4.3-2A   ME and joint ME model parameter estimates from models with itNMBλ  as dependent variable, λ=$0, base case 

 

ME Joint ME  
 
Fixed Effects β̂ (s.e.) p-value β̂ (s.e.) p-value 

1β  NMB mean intercepta -16.06 (1.20) <0.01 -15.49 (1.20) <0.01 

2β  NMB mean slope (month) 1.64 (0.26) <0.01 1.62 (0.26) <0.01 

3β  Treatment group (reference group is T0)  0.13 (1.68) 0.94 -0.96 (1.67) 0.57 

4β  Patient agea 0.03 (0.05) 0.50 0.04 (0.05) 0.36 

5β  Previous hospitalizationsa -2.91 (0.86) <0.01 -2.52 ( 0.85) <0.01 

6β  Interaction: Group X Month -0.27 (0.37) 0.46 -0.16 (0.37) 0.67 

7β  Change in NMB slope, month 4 -1.24 (0.43) <0.01 -1.32 (0.43) <0.01 

8β  Interaction: Group X change in NMB slope, month 4 0.16 (0.62) 0.80 0.14 (0.62) 0.82 

9β  Change in NMB slope, month 8 -0.08 ( 0.46) 0.87 -0.14 (0.46) 0.77 

10β  Interaction: Group X change in NMB slope, month 8 0.07 (0.67) 0.92 0.03 (0.67) 0.96 

1τ  Log time-to-dropout mean intercept -- -- 3.31 0.11 
Variances of Random Effects, Residual Errors 2σ̂ (s.e.) p-value 2σ̂ (s.e.) p-value 

u Between-patient intercept λNMB 288.19 (22.83) <0.01 289.04 (22.84) <0.01 
v Between-patient slope λNMB 2.55 (0.28) <0.01 2.52 (0.28) <0.01 
s Residual error for log time-to-dropout -- -- 2.93 (0.35) <0.01 
ε  Residual error for λNMB b  137.27 (6.19) <0.01 137.40 (6.18) <0.01 
Correlations with Log of Time-to-dropout ρ̂  (s.e.) p-value ρ̂  (s.e.) p-value 
    intercept λNMB -- -- 0.00c -- 
    slope λNMB -- -- 0.34 (0.85) <0.01 
a  Dependent variable, , rescaled as / 1000; patient age rescaled as age – 40; previous hospitalization rescaled as Phosp -  0.5. iNMBλ iNMBλ
b   Represents subject-level residual errors for at each time point. itNMBλ
c   Model would not converge without assuming zero correlation. 

(See Appendix II.B.  Mar_miss for ME model and  Appendix II.C Joint_miss for joint ME SAS code.) 
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Table 4.3-2B  ME and joint ME model parameter estimates from models with itNMBλ  as dependent variable, λ=$25k base case 
ME Joint ME  

 
Fixed Effects β̂ (s.e.) p-value β̂ (s.e.) p-value 

1β  NMB mean intercepta -10.93 (1.20) <0.01 -10.33 (1.20) <0.01 

2β  NMB mean slope (month) 1.67 (0.26) <0.01 1.65 (0.26) <0.01 

3β  Treatment group (reference group is T0) 0.14 (1.69) 0.94 -1.01 (1.67) 0.55 

4β  Patient agea 0.03 (0.05) 0.61 0.04 (0.05) 0.44 

5β  Previous hospitalizationsa -3.07 (0.86) <0.01 -2.67 (0.85) <0.01 

6β  Interaction: Group X Month -0.07 (0.37) 0.85 0.05 (0.37) 0.90 

7β  Change in NMB slope, month 4 -1.28 (0.43) <0.01 -1.36 (0.44) <0.01 

8β  Interaction: Group X change in NMB slope, month 4 -0.04 (0.62) 0.95 -0.06 (0.62) 0.93 

9β  Change in NMB slope, month 8 -0.07 (0.46) 0.87 -0.14 (0.46) 0.76 

10β  Interaction: Group X change in NMB slope, month 8 0.07 (0.67) 0.92 0.032(0.67) 0.96 

1τ  Log time-to-dropout mean intercept -- -- 3.31 0.11 
Variances of Random Effects, Residual Errors 2σ̂ (s.e.) p-value 2σ̂ (s.e.) p-value 

u Between-patient intercept λNMB 287.96 (22.84) <0.01 289.11 (22.88) <0.01 
v Between-patient slope λNMB 2.60 (0.28) <0.01 2.56 (0.28) <0.01 
s Residual error for log time-to-dropout -- -- 2.94 (0.35) <0.01 
ε  Residual error for λNMB b 137.61 (6.21) <0.01 137.76 (6.20) <0.01 
Correlations with Log  of Time-to-dropout ρ̂  (s.e.) p-value ρ̂  (s.e.) p-value 
    intercept λNMB -- -- 0.00c -- 
    slope λNMB -- -- 0.36 (0.08) <0.01 
a  Dependent variable, , rescaled as / 1000; patient age rescaled as age – 40; previous hospitalization rescaled as Phosp -  0.5. iNMBλ iNMBλ
b   Represents subject-level residual errors for at each time point. itNMBλ
c   Model would not converge without assuming zero correlation. 

(See Appendix II.B.  Mar_miss for ME model and  Appendix II.C Joint_miss for joint ME SAS code.) 
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Table 4.3-2C  ME and joint ME model parameter estimates from models with itNMBλ  as dependent variable, λ=$50k base case 
ME Joint ME  

 
Fixed Effects β̂ (s.e.) p-value β̂ (s.e.) p-value 

1β  NMB mean intercepta -5.80 (1.20) <0.01 -5.16 (1.20) <0.01 

2β  NMB mean slope (month) 1.70 (0.26) <0.01 1.68 (0.26) <0.01 

3β  Treatment group (reference group is T0)  0.15 (1.69) 0.93 -1.04 (1.67) 0.53 

4β  Patient agea 0.02 (0.05) 0.72 0.03 (0.05) 0.54 

5β  Previous hospitalizationsa -3.23 (0.85) <0.01 -2.81 (0.84) <0.01 

6β  Interaction: Group X Month 0.13 (0.37) 0.73 0.25 (0.37) 0.50 

7β  Change in NMB slope, month 4 -1.31 (0.44) <0.01 -1.40 (0.44) <0.01 

8β  Interaction: Group X change in NMB slope, month 4 -0.23 (0.62) 0.71 -0.24 (0.62) 0.70 

9β  Change in NMB slope, month 8 -0.07 ( 0.46) 0.87 -0.14 (0.46) 0.76 

10β  Interaction: Group X change in NMB slope, month 8 0.07 (0.67) 0.92 0.02 (0.67) 0.98 

1τ  Log time-to-dropout mean intercept -- -- 3.31 0.11 
Variances of Random Effects, Residual Errors 2σ̂ (s.e.) p-value 2σ̂ (s.e.) p-value 

u Between-patient intercept λNMB 288.36 (22.89) <0.01 289.87 (22.98) <0.01 
v Between-patient slope λNMB 2.67 (0.29) <0.01 2.64 (0.29) <0.01 
s Residual error for log time-to-dropout -- -- 2.94 (0.35) <0.01 
ε  Residual error for λNMB b  138.56 (6.25) <0.01 138.72 (6.24) <0.01 
Correlations with Log  of Time-to-dropout ρ̂  (s.e.) p-value ρ̂  (s.e.) p-value 
    intercept λNMB -- -- 0.00c -- 
    slope λNMB -- -- 0.37 (0.08) <0.01 
a  Dependent variable, , rescaled as / 1000; patient age rescaled as age – 40; previous hospitalization rescaled as Phosp -  0.5. iNMBλ iNMBλ
b   Represents subject-level residual errors for at each time point. itNMBλ
c   Model would not converge without assuming zero correlation. 
(See Appendix II.B.  Mar_miss for ME model and  Appendix II.C Joint_miss for joint ME SAS code.) 
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Table 4.3-2D  ME and joint ME parameter estimates from models with itNMBλ  as dependent variable, λ=$100k base case 
ME Joint ME  

 
Fixed Effects β̂ (s.e.) p-value β̂ (s.e.) p-value 

1β  NMB mean intercepta 4.47 (1.21) <0.01 5.15 (1.20) <0.01 

2β  NMB mean slope (month) 1.75 (0.27) <0.01 1.73 (0.27) <0.01 

3β  Treatment group (reference group is T0) 0.17 (1.70) 0.92 -1.11 (1.68) 0.51 

4β  Patient agea 0.00 (0.05) 0.98 0.01 (0.05) 0.77 

5β  Previous hospitalizationsa -3.54 (0.86) <0.01 -3.10 (0.85) <0.01 

6β  Interaction: Group X Month 0.53 (0.38) 0.16 0.66 (0.38) 0.08 

7β  Change in NMB slope, month 4 -1.37 (0.44) <0.01 -1.47 (0.44) <0.01 

8β  Interaction: Group X change in NMB slope, month 4 -0.62 (0.63) 0.32 -0.64 (0.63) 0.31 

9β  Change in NMB slope, month 8 -0.07 ( 0.47) 0.88 -0.14 (0.47) 0.76 

10β  Interaction: Group X change in NMB slope, month 8 0.06 (0.68) 0.93 0.01 (0.68) 0.99 

1τ  Log time-to-dropout mean intercept -- -- 3.31 0.11 
Variances of Random Effects, Residual Errors 2σ̂ (s.e.) p-value 2σ̂ (s.e.) p-value 

Between-patient intercept λNMB 290.80 (23.23) <0.01 293.06 (23.35) <0.01 
Between-patient slope λNMB 2.80 (0.30) <0.01 2.78 (0.30) <0.01 
Residual error for log time-to-dropout -- -- 2.94 (0.35) <0.01 
Residual error for λNMB b 142.21 (6.42) <0.01 142.41 (6.41) <0.01 
Correlations with Log  of Time-to-dropout ρ̂  (s.e.) p-value ρ̂  (s.e.) p-value 
    intercept λNMB -- -- 0.00c -- 
    slope λNMB -- -- 0.39 (0.08) <0.01 
a  Dependent variable, , rescaled as / 1000; patient age rescaled as age – 40; previous hospitalization rescaled as Phosp -  0.5. iNMBλ iNMBλ
b   Represents subject-level residual errors for at each time point. itNMBλ
c   Model would not converge without assuming zero correlation. 

(See Appendix II.B.  Mar_miss for ME model and  Appendix II.C Joint_miss for joint ME SAS code.) 
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Model estimates for total annual NMBλ and INMBBλ are compared to the complete 

data INMBλ in Table 4.3-3.  The represents the treatment group difference in 

NMB

λ
^

INMB

λ (i.e., the measure of incremental cost-effectiveness).  Recall that in the ANCOVA 

model, the observed  within patient across time points t = 4, 8, and 12 were first 

summed to create the dependent variable, .  In the ME models, each of the 

observed  within patient at each time point was used as dependent variables and 

parameters were summed for a predicted .  Complete data were 

calculated from the simulated complete data as least squares mean differences from 

generalized linear models that included only treatment group.   

itNMBλ

*
iNMBλ

itNMBλ

^
*
iNMB λ λ

^
INMB

ANCOVA model results for are identical to the model parameter estimate 

results for treatment group (

λ
^

INMB

3β ) reported in Table 4.3-1, because the ANCOVA model 

included no interaction terms with treatment group.  As λ increases, the switches 

from being nearly significant in favor of T

λ
^

INMB

0 ( = -$3,770.5, p=0.08) to being 

significant in favor of T

0
^

INMB

1 ( = $5,055.7, p=0.02).  The ME and joint ME results 

for account for the additional interaction effects between treatment group and 

month and changes in NMB slope over time.  The ME and joint ME results are similar to 

the ANCOVA results, with  being nearly significant in favor of T

100000
^

INMB

λ
^

INMB

λ
^

INMB 0 when λ = $0 

(ME = -$4,001.1, p=0.13; joint ME = -$4,901.2, p=0.06) to being 

significant in favor of T

0
^

INMB 0
^

INMB

1 when λ = $100,000 (ME = $5,953.9, p=0.02; joint 

ME = $4,966.4, p=0.05).   

100000
^

INMB

0
^

INMB

 



 
 

138

Also reported in Table 4.3-3 are the measures of bias for each estimator.  Bias 

was defined as the absolute difference between the estimated and the complete 

data INMB

λ
^

INMB

λ.  When λ = $0, the estimators with the smallest and largest bias were 

produced by the ANCOVA model (bias = $1,070.5) and the joint ME model (bias = 

$2,201.2), respectively.  When λ = $25,000, $50,000, and $100,000, the ME model 

estimators had the smallest bias ($1,312.5, $1,324.1, and $1,344.1, respectively), and the 

joint ME model consistently produced the estimator with the largest bias.  Figure 4.3-1 

displays the estimators and 95% confidence intervals, by level of λ and for the three 

models versus the complete data (“true”) INMBλ.  The three models generated estimators 

that were not significantly different from the complete data INMBλ, as can be seen by the 

overlapping 95% confidence intervals.  When λ = $100,000, the estimators from the 

ANCOVA and ME models were in closest agreement to the complete data INMBλ where 

T1 was cost-effective compared to T0 (i.e., 95% confidence intervals not including the 

value zero).  Importantly, the joint model did not correctly estimate INMBλ at λ = 

$100,000 when the cost-effectivenessness of T1 was known to be significant.    
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Table 4.3-3  Total annual , , and bias from complete data , 
base case 

λ
^

NMB λ
^

INMB λINMB

λ
^

NMB ($) (s.e.) 
 

 
λ 

 

T1 T0

λ
^

INMB ($) 

(s.e.) 

 
p 

value 

 
 

Bias 
ANCOVA -27,307.5 

(1,560.4) 
-23,536.9 
(1,573.6) 

-3,770.5  
(2,177.9) 

0.08 1,070.5 

ME  -28,002.6    
(1,903.0) 

-24,001.5      
(1,839.7) 

 -4,001.1 
(2,614.6) 

0.13 1,301.1 

$0 

Joint ME  -28,797.3    
(1,891.0) 

-23,896.1      
(1,830.6) 

 -4,901.2 
(2,588.9) 

0.06 2,201.2 

 Complete 
data a

-- -- -2,700.0 
(2,292.3) 

0.24 -- 

ANCOVA -9,225.4  
(1,557.8) 

-7,661.6  
(1,571.0 

-1,563.8 
(2,174.4) 

0.47 
1,362.8 

ME -9,844.6      
(1,893.7) 

-8,331.1      
(1,829.0) 

-1,513.5 
(2,600.0) 

0.56 
1,312.5 

$25,000 

Joint ME -10,689.7     
(1,880.9) 

-8,231.5      
(1,819.3)  

-2,458.3 
(2,572.5) 

0.34 
2,257.3 

 Complete 
data a

-- -- -201.0 
(2,292.1) 

0.93 -- 

ANCOVA 8,856.4 
(1,562.5) 

8,213.5 
(1,575.7) 

642.9 
(2,180.9) 

0.77 
1,656.1 

ME 8,314.5      
(1,890.0) 

7,339.6      
(1,824.7) 

974.9 
(2,595.1) 

0.71 
1,324.1 

$50,000 

Joint ME   7,433.7     
(1,876.5) 

 7,419.7      
(1,814.3) 

13.9 
(2,565.0) 

1.00 
2,285.1 

 Complete 
data a

-- -- 2,299.0 
(2,302.8) 

0.32 -- 

ANCOVA 45,019.5 
(1,593.7) 

39,963.8 
(1,607.2) 

5,055.7 
(2,224.4) 

0.02 
2,242.3 

ME 44,642.1     
(1,904.5) 

38,688.2      
(1,836.5) 

5,953.9 
(2,613.7) 

0.02 
1,344.1 

$100,000 

Joint ME  43,664.5     
(1,888.0) 

 38,698.0      
(1,823.8) 

4,966.4 
(2,577.9) 

0.05 
2,331.6 

 Complete 
data a

-- -- 7,298.0 
(2,355.6) 

<0.01 -- 

a   Calculated using the simulated complete data, as least squares mean differences from a generalized 
linear model that included only treatment group. 

(See Appendix II.A. Uni LOCF Mean BL for ANCOVA model, Appendix II.B. Mar_miss for ME model, 
and Appendix II.C. Joint_miss for SAS code.) 

 

 
 

 



 
 

Figure 4.3-1 Total annual  and complete data , with 95% confidence intervals, base case λ
^
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The precision results for the model estimates of  are presented in Table 

4.3-4.  Precision was determined with ratios of the variances of  from each 

model, compared to the variance of the complete data INMB

λ
^

INMB

λ
^

INMB

λ.   For all levels of λ, the 

estimators with the best precision were produced by the ANCOVA model, with variance 

ratios ranging from 0.89 to 0.90.  This result indicates that the variances of the ANCOVA 

estimators were within 10-11% of the complete data INMBλ variance.  The ME and joint 

ME models produced estimators with variance ratios ranging from 1.20 to 1.30, 

depending on λ.  Likewise, this result indicates that the ME model estimator variances 

were within 20-30% of the complete data INMBλ variance. 

Cost-effectiveness acceptability curves (CEACs) are presented in Figure 4.3-2.  

These curves assess the probability of the cost-effectiveness of T1 relative to T0 across a 

range of λ values from $0 to $100,000, by increments of $5,000.  The probabilities in the 

CEACs were generated as 1 minus the one-sided p-values from the tests of significant 

difference between treatment groups.   From the graph, the probability of T1 being cost-

effective compared to T0 when willingness to pay λ = $50,000 is approximately 83% 

based on the complete data INMB.  (This result can be seen by drawing a vertical line 

through the curves at λ = $50,000, then drawing horizontal lines at the intersection points 

to the y-axis probability values.)  The ME model produced a CEAC closest to complete 

data with a probability of approximately 64%, followed by ANCOVA (60%), and joint 

ME model (50%). 
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Table 4.3-4 Precision of the estimates of total annual  compared to 
complete data , base case 

λ
^

INMB
λINMB

 
 

λ 

 
 

Model 

λ
^

INMB   
variance 

 
 

Variance ratio 
Complete dataa 3,152.8 -- 
ANCOVA 2,846.0 0.90 
ME 4,101.7 1.30 

$0 
  

Joint ME 4,021.4 1.28 
Complete data a 3,152.2 -- 
ANCOVA 2,836.8 0.90 
ME 4,057.3 1.29 

$25,000 

Joint ME 3,970.7 1.26 
Complete data a 3,181.7 -- 
ANCOVA 2,853.8 0.90 
ME 4,040.7 1.27 

$50,000 

Joint ME 3,947.5 1.24 
Complete data a 3,329.3 -- 
ANCOVA 2,968.8 0.89 
ME 4,098.9 1.23 

$100,000 

Joint ME 3,987.3 1.20 
a   Calculated using the simulated complete data, as least squares mean differences from a generalized 

linear model that included only treatment group. 
(See Appendix II.A. Uni LOCF Mean BL for ANCOVA model, Appendix II.B. Mar_miss for ME model, 
and Appendix II.C. Joint_miss for joint ME model SAS code.) 
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Figure 4.3-2  Cost effectiveness acceptability curves:  Model results compared to complete data, base case
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4.4 Sensitivity Analyses 
 
 Different proportions of MAR or MNAR missing data may impact the precision 

of INMBλ estimates.  Sensitivity analyses were conducted to examine the potential 

impact.  Sensitivity Analysis 1 used simulated data from a procedure that involved 

processing all 600 simulated complete observations through the MAR nonresponse 

algorithm (described in Chapter 3.7).  The result was a simulated missing dataset with a 

larger proportion of dropouts compared to the base case, and all missing cases MAR.  

Sensitivity analysis 2 was similar to 1, except the procedure involved processing the 600 

simulated complete observations through the MNAR nonresponse algorithm (also 

described in Chapter 3.7), with the result being simulated missing data with an even 

larger proportion of dropouts than in sensitivity analysis 1, and all missing cases MNAR.  

The sensitivity analyses were limited to results for λ = $100,000, where treatment group 

T1 should be cost-effective compared to T0 according to the algebraically-derived true 

INMBλ.   

 Table 4.4-1 shows the number of patients remaining in the study by treatment 

group and time point.  As expected, the percentages of patients remaining in the study are 

lower in the sensitivity analysis datasets.  For T0, 64% and 48% of patients remained in 

the study by month 12 for sensitivity analyses 1 and 2, respectively, while the base case 

had 73% of T0 remaining by month 12.  Results were similar for T1, where 53% and 35% 

of patients remained by month 12 in the sensitivity analysis, compared to 62% in the base 

case.   

 Also presented in Table 4.4-1 are the means (SD) for NMB100000 by treatment 

group and time point.  Mean NMB100000 were similar between sensitivity analysis 1 and 
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the base case.  For example, the mean value at month 4 for T0 in the sensitivity analysis 

was $11,198 versus $11,178 for the base case, and for T1 the mean value was $14,001 

versus $13,396 for the base case.  The greater proportions of dropouts in sensitivity 

analysis 2 resulted in mean NMB100000 that varied more from the base case across time 

points.  The mean value at month 4 for T0 was $10,170 versus $11,178 for the base case, 

and for T1 was $11,813 versus $13,396 for the base case.  By month 12, the mean value 

for T0 was $10,849 versus $14,216 for the base case, and for T1 was $9,855 versus 

$15,599 for the base case.   

 The impact of greater proportions of missing observations and the MAR or 

MNAR nonresponse mechanisms on mean NMB100000 can be seen clearly in Figure 4.4.1 

where the means from the complete simulated data, base case, and sensitivity analyses 

are graphed by treatment group.  All of means from the simulated missing data are lower 

than the complete data means after month 4.  Sensitivity analysis 1 (dashed lines) has 

mean NMB100000 for both T1 and T0 that hovered around the base case mean across time 

points.  By month 12, however, the treatment group difference decreased.  Sensitivity 

analysis 2 (dotted lines), where over 50 percent of patients were simulated to drop out of 

the study with the MNAR nonresponse mechanism, had much lower means at all time 

points compared to the base case and sensitivity analysis 1.  Further, as more patients 

drop out over time, the gap between base case and complete data increased.  Also, the 

mean for T1 trended downwards after month 4 indicating that a false interaction between 

treatment and time resulted from the increase in dropouts. The graph illustrates how large 

proportions of missing data and MAR or MNAR nonresponse mechanisms can have a 

dramatic impact on the crude mean values.
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Table 4.4-1 Descriptive statistics for NMB100000:  Sensitivity analyses and 
base case 
 
Treatment group T0

Time Point  
Month 0 Month 4 Month 8 Month 12 

Sensitivity analysis 1a

N (%) 300 (100%) 274 (91%) 241 (80%) 191 (64%)
Mean (SD) ($)  4,654 

(27,878)
11,198 

(13,662)
13,055 

(12,459)
13,831 

(12,019)
Sensitivity analysis 2b

N (%) 300 (100%) 256 (85%) 202 (67%) 144 (48%)
Mean (SD) ($) 4,654 

(27,878)
10,170 

(13,647)
10,936 

(12,722)
10,849 

(12,612)
Base casec

N (%) 300 (100%) 278 (93%) 252 (84%) 218 (73%)
Mean (SD) 4,654 

(27,878)
11,178 

(13,515)
12,752 

(12,171)
14,216 

(11,455)
 
 
Treatment group T1

Time Point  
Month 0 Month 4 Month 8 Month 12 

Sensitivity analysis 1a

N (%) 300 (100%) 289 (96%) 232 (77%) 160 (53%)
Mean (SD) ($) 4,655 

(18,793)
14,001 

(14,186)
14,971 

(14,229)
14,662 

(12,539)
Sensitivity analysis 2b

N (%) 300 (100%) 237 (79%) 161 (54%) 106 (35%)
Mean (SD) ($) 4,654 

(18,793)
11,813 

(14,803)
10,986 

(15,517)
9,855 

(13,122)
Base casec

N (%) 300 (100%) 273 (91%) 225 (75%) 185 (62%)
Mean (SD) 4,655 

(18,793)
13,396 

(14,369)
14,425 

(14,320)
15,599 

(12095)
a Simulated data include a mixture of MAR missing data and complete observations. 
b Simulated data include a mixture of MNAR missing data and complete observations. 
c Simulated data include a mixture MAR and MNAR missing data and complete 

observations. 
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Figure 4.4-1 Mean NMB100000 for the simulated complete data, base case, and 
sensitivity analyses 1 and 2  
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(See Appendix II.G. Univariate and Missing for SAS code.) 
 

 

The distributions of raw NMB100000 values from the two sensitivity analyses were 

compared to a normal curve as a visual check of the assumption of normally distributed 

NMB100000 values (results not shown). The distributions were similar to the distribution 

found in the base case, with NMB100000 not being normally distributed.  

.   
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Model estimates for total annual NMB100000 and INMB100000 from the sensitivity 

analyses are compared the estimates based on the complete INMB100000 in Table 4.4-2.  The 

ANCOVA and ME models produced significant estimates in sensitivity analysis 1.  

Sensitivity analysis 2 resulted in the worst estimates, with all models failing to estimate a 

significant treatment difference and absolute bias of the estimates being the greatest.  In 

sensitivity analysis 1, the ANCOVA and ME models produced better estimates than in the 

base case, with regard to bias.  The ANCOVA model produced the least biased estimates in 

both sensitivity analyses, and the bias was especially small ($532.5) in sensitivity analysis 

1.  Across all analyses, the joint model produced the most biased estimates.  The above 

results suggest an issue with the estimation method and/or a possible issue with how the 

non-response mechanism for MAR and MNAR data were simulated.  Results are also 

illustrated in Figure 4.4-2. 

The precision results for the model estimates for the sensitivity analyses are 

presented in Table 4.4-3.  For both sensitivity analyses, the ANCOVA estimates had the  

best precision with variance ratios ranging from 0.90 to 1.04.  The ME and joint ME 

models produced estimators with variance ratios ranging from 1.30 to 1.91. 
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Table 4.4-2  Total annual  and , and bias from complete data 

:  Sensitivity analyses and base case  
100000

^
NMB 100000

^
INMB

100000INMB

100000
^

NMB ($) (s.e.) 
 
 

T1 T0

100000
^

INMB
 ($) (s.e.)  

 
 

p value 

 
 

Bias 
ANCOVA 49,847.4 

(1,577.5) 
43,082.0 
(1,582.1) 

6,765.5 
(2,233.6) 

<0.01 
532.5 

ME 45,301.9 
(1,944.8) 

39,164.2 
(1,899.9) 

6,137.6 
(2,687.3) 

0.02 
1160.4 

Sensitivity 
analysis 1 

Joint ME 45,159.1 
(5,666.3) 

41,704.8 
(7,836.4) 

3,454.3 
(3,255.6) 

0.29 
3,843.7 

ANCOVA 37,360.3 
(1,694.1) 

34,919.6 
(1,699.1) 

2,440.7 
(2,398.8) 

0.31 
4,857.3 

ME 35,061.9 
(2,353.4) 

33,394.4 
(2,131.9) 

1,667.4 
(3,139.5) 

0.60 
5,630.6 

Sensitivity 
analysis 2 

Joint ME 34,080.1 
(2,332.5) 

32,935.8 
(2,111.2) 

1,144.4 
(3,082.6) 

0.71 
6,153.6 

ANCOVA 45,019.5 
(1,593.7) 

39,963.8 
(1,607.2) 

5,055.7 
(2,224.4) 

0.02 
2,242.3 

ME 44,642.1     
(1,904.5) 

38,688.2     
(1,836.5) 

5,953.9 
(2,613.7) 

0.02 
1,344.1 

Base case 

Joint ME  43,664.5    
(1,888.0) 

 38,698.0    
(1,823.8) 

4,966.4 
(2,577.9) 

0.05 
2,331.6 

Complete data a 7,298.0 
(2,355.6) 

<0.01 -- 
 

a   Calculated using the simulated complete data, as least squares mean differences from a 
generalized linear model that included only treatment group. 

(For sensitivity analysis 1 see Appendix II.J. UNI_LOCF MAR for ANCOVA model ; 
Appendix II.K. MAR_Miss for ME model; Appendix II.L. Joint_miss MAR for joint ME model 
SAS code.  For sensitivity analysis 2 see Appendix II.M. Uni_LOCF MNAR for ANCOVA 
model; Appendix II.N. Mar_miss MNAR for ME model; Appendix II.O. Joint_miss MNAR for 
joint ME model SAS code.) 
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Figure 4.4-2 Total annual  and complete data , with 
95% confidence intervals:  Sensitivity analyses and base case 
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Table 4.4-3 Precision of the estimates of total annual  compared 
to complete data : Sensitivity analyses and base case 

100000
^

INMB
100000INMB

 
 

 

 
 

Model 

100000
^

INMB   
variance 

 
 

Variance ratio 
ANCOVA 2,993.5 0.90 
ME 4,333.0 1.30 

Sensitivity analysis 1 
  

Joint ME 6,359.4 1.91 
ANCOVA 3,452.5 1.04 
ME 5,913.9 1.78 

Sensitivity analysis 2 

Joint ME 5,701.5 1.71 
ANCOVA 2,968.8 0.89 
ME 4,098.9 1.23 

Base case 

Joint ME 4,098.9 1.20 
Complete dataa 3,329.3 -- 
a  Calculated using the simulated complete data, as least squares mean differences from a 

generalized linear model that included only treatment group.  All observed F are 
calculated using the base case complete data residual error variance for NMB. 

(For sensitivity analysis 1 see Appendix II.J. UNI_LOCF MAR for ANCOVA model ; 
Appendix II.K. MAR_Miss for ME model; Appendix II.L. Joint_Miss MAR for joint ME 
model SAS code.  For sensitivity analysis 2 see Appendix II.M. Uni_LOCF MNAR for 
ANCOVA model; Appendix II.N. Mar_miss MNAR for ME model; Appendix II.O. 
Joint_miss MNAR for joint ME model SAS code.) 
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CHAPTER 5.  DISCUSSION 
 
 

This study compared ANCOVA, ME, and joint ME models using data with 

simulated MAR and MNAR nonresponse mechanisms.  Contrary to expectation, the joint 

ME model did not produce the best estimates of incremental net monetary benefit 

(INMB).  The assumption was that the joint ME model would produce better estimates 

than ANCOVA and ME models because it incorporated the correlation between time-to-

dropout and the random effects of the longitudinal model for NMB into a single model.  

Although all three models successfully estimated significant treatment effect 

(INMB100000), where the experimental treatment was known to be cost-effective versus the 

standard of care treatment, estimates with the smallest bias (absolute difference) from the 

known INMBλ were produced by the ANCOVA model when λ = $0 and by the ME model 

when λ = $25000, $50000, and $100000. Further, estimates with the best precision 

(variance ratio closest to the value of one) were produced by the ANCOVA model.  

Results on bias and precision were robust in sensitivity analyses that involved greater 

proportions of missing data (36% to 65% in the sensitivity analyses, and 27% to 38% in 

the base case), and only MAR in the first sensitivity analysis, and only MNAR in the 

second.  Last, cost-effectiveness acceptability curves illustrated how the ME model 

generated the closest approximation to the known probability of cost-effectiveness for $0 

< λ < $80000.  For λ > $80000, the ME and ANCOVA models were approximately 

equivalent and both were closer to the complete data than the joint ME model.  
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A possible explanation for this unexpected outcome is that the MAR and MNAR 

simulation procedure did not generate a good approximation for nonignorable missing 

data. The MAR and MNAR observations were simulated in accordance with Little and 

Rubin’s definitions of these nonresponse mechanisms, which are that  MAR missingness 

is dependent on the observed responses and/or covariates, and MNAR missingness is 

dependent on unobserved responses.  These definitions were implemented for the current 

study by using a threshold NMBλ criterion.  One possible issue with a threshold criterion 

in conjunction with the data simulation procedure is that variance was built into the 

imputed baseline NMB, and a threshold criteria for defining nonresponse  could result in 

setting some assessments to missing even if there had not been changes from baseline. 

Although visual inspection of the mean NMBs overtime showed distinctive patterns that 

resulted from the two nonresponse mechanism algorithms, it cannot be known if the 

algorithms produced good approximations of MAR and MNAR that would occur in a real 

dataset.      

Numerous alternative implementations to a threshold criterion for the MAR and 

MNAR nonresponse mechanisms could have been used.  For example, Oostenbrink & Al 

(2005) based MAR missing data on changes (rather than a threshold) in costs and 

effectiveness between time periods, and MNAR missing data on changes that occurred  

after dropout rather than before.  Other possible implementations could have combined 

various changes in NMB with various threshold values.  Because the time-to-dropout in 

this study was significantly correlated with the trajectory of the response, an alternative 

implementation based on change from baseline for the MAR and MNAR nonresponse 

mechanisms was investigated in a post-hoc analysis.  MAR missing involved setting all 
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observations to missing that occurred subsequent to an NMB50000 change from baseline 

greater than $2000.  MNAR missing was the same as MAR except the observation with 

the NMB50000 change from baseline greater than $2000 was set to missing, in addition to 

all subsequent observations.  A result from this implementation is there could be no 

simulated MAR missing at month 4, however, there could be MNAR missing at this time 

point.  Change from baseline of $2000 was selected because this value maintained 

approximately the same proportion of missing data as in the base case.   

Figure 5.1 shows the missingness pattern resulting from the post-hoc simulation 

of MAR and MNAR.  Although the missingness mechanism was based on change from 

baseline (i.e., a trajectory), the resulting pattern is not as clear with regard to slope as the 

pattern that came out of the base case with a threshold criterion.  Estimated INMBλ from 

the three models using the post-hoc simulation dataset are presented in Table 5.1.  The 

joint ME model at all levels of λ clearly produced the best estimates of INMBλ  on the 

criteria of bias and precision, and the ANCOVA model produced the worst estimates.  

Figure 5.2 illustrates results from the models with a set of cost-effectiveness acceptability 

curves.  The curves show how the estimates of INMBλ  from the joint ME most closely 

predict the true probability of cost-effectiveness along the full range of λ  from $0 to 

$100000.  The post-hoc analysis results align with what was expected to occur under 

circumstances of nonignorable missingness.  

 



 

Figure 5.1  Mean observed NMB50000 for cohorts defined by pattern of missing data, post-hoc simulation of MAR and MNAR  
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Figure 5.2  Cost-effectiveness Acceptability Curves:  Model Results Compared to Complete Data, Post-hoc Analysis  
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Table 5.1  Total annual , , and bias from complete data , 
post-hoc analysis 

λ
^

NMB λ
^

INMB λINMB

 
 
Λ  λINMB

^
($) (s.e.) 

 
p 

value Bias Precision 
ANCOVA -5,119.2 (3,411.3) 0.13 2,419.2 2.21 
ME -5,264.0 (2,760.1) 0.06 2,564.0 1.45 

$0 

Joint ME -4,878.6 (2,750.6) 0.08 2,178.6 1.20 
 Complete data a -2,700.0 (2,292.3) 0.24 -- -- 

ANCOVA -3,110.1 ( 3,432.0) 0.37 2,909.1 2.24 
ME -2,716.6 ( 2,746.1) 0.32 2,515.6 1.44 

$25000 

Joint ME -2,336.1 (2,737.6) 0.39 2,135.1 1.19 
 Complete data a -201.0 (2,292.1) 0.93 -- -- 

ANCOVA -1,101.1 (3,458.3) 0.75 3,400.1 2.25 
ME -166.8 (2,744.2) 0.95 2,465.8 1.42 

$50000 

Joint ME 199.6 (2,734.9) 0.94 2,099.4 1.19 
 Complete data a 2,299.0 (2,302.8) 0.32 -- -- 

ANCOVA 2,916.7 (3,530.0) 0.41 4,381.3 2.25 
ME 4,940.4 (2,771.5) 0.08 2,357.6 1.38 

$100000 

Joint ME 5,314.8 (2,764.2) 0.06 1,983.2 1.17 
 Complete data a 7,298.0 (2,355.6) <0.01 -- -- 

(See Appendix II.P for ANCOVA model; Appendix II.Q for ME model; and Appendix 
II.R for Joint ME model SAS code.) 

 
 
Dr. Fairclough  (in a personal correspondence, February 2008) had cautioned that 

the joint model might have convergence problems with simulated data based on a 

threshold criterion.  The reason for this was that the correlations among the random 

effects for NMB intercept and slope and the log of time-to-dropout might be too small for 

the model to converge.  The correlations were significant, yet it was necessary to set one 

of the pairs of correlations (the correlation between the random effect for NMB intercept)  

to zero in order for the base case model to converge.  Small correlations among these 

model parameters will pose an implementation barrier for a joint ME model, regardless of 

simulation criteria.     

In her book, Design and Analysis of Quality of Life Studies in Clinical Trials, Dr. 

Fairclough discusses how selection model estimates are not robust to model 
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misspecification.  She says, “…the lack of significant correlation implies that the missing 

data are ignorable only if the model for dropout is correct.  If dropout was the result of a 

sudden change in the outcome rather than a gradual change (as measured by slopes), then 

the dropout model is misspecified and would not identify the nonignorable process.”  

(Note:  “Sudden change” could be implemented with a threshold criterion, and “gradual 

change” with a change or trajectory criterion.)   The problem essentially is that the 

validity of the nonresponse mechanism component of the model is untestable because 

missing response is included as an explanatory variable.  The comparison of base case 

and post-hoc results confirms that these estimation models are sensitive to the non-

response mechanism.  The challenge for analysis of actual clinical trial data is that the 

non-response mechanism is always unobserved, and these estimation models require 

strong assumptions concerning the unobserved nonreponse mechanism.  Thus, the 

researcher can only conclude that, “If the non-response mechanism is thus, then this 

model provides a good estimate of the treatment effect.”  The researcher should never 

conclude that , “Because these estimates of treatment effect are good, then we can say 

that the non-response mechanism is thus.”  To draw this conclusion would be to make the 

Fallacy of Affirming the Consequent.   

An additional lesson from the post-hoc analysis was that Rubin and Little’s 

definitions of MAR and MNAR missingness may not sufficiently describe these 

nonresponse mechanisms.   The definitions are so vague that they can be interpreted and 

implemented as thresholds, changes, hybrids of threshold and changes, or other.  The true 

MAR and MNAR  mechanisms are undoubtedly complex and are probably unique to 

each disease and clinical trial.  Nevertheless, the definitions should be updated to at least 
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involve consideration for change in response overtime.  An examination of these 

definitions could easily be the topic of another thesis.   

A few issues in the current study need to be addressed.  First, the dependent 

variable (NMB) was not normally distributed in this sample size of 600, even though its 

statistical properties suggest that it should be.  The NMB probably would have been 

normally distributed in a larger sample, however, the sample size was chosen to be more 

representative of a typical clinical trial.  Second, a log transformation of the NMB was not 

possible because the values of NMB can be less than zero.  There are no transformations 

that work well on such variables, which is a potential methodological limitation to using 

the NMB in regression models.  However, in regression analysis, it is not as important for 

the dependent variable be normally distributed as it is for the residual errors to be.  In the 

current study, the residual errors were approximately normally distributed in each of the 

models.  Last, the current study only addressed monotone patterns of missing.  Monotone 

and intermittent patterns of missing are more likely to occur in clinical trials.  Fairclough 

(2002) references a likelihood method described by Troxel (1997) that uses a Markovian 

correlation structure in a logistic model for analyzing intermittent patterns of missing.   

A few additional findings from the current study are worth noting.  The study 

provides further support for using the incremental net monetary benefit as an alternative 

to the incremental cost-effectiveness ratio in clinical trials.  The response variable, NMB, 

can be used to assess cost-effectiveness in a regression model framework that may 

include treatment effect, covariates,  and interactions between covariates and treatment 

effect.  Cost-effectiveness from an analysis with the NMB, therefore, incorporates these 

effects as the linear combination of  the parameter estimates involving treatment effect.  
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If a traditional ICER is desired, this measure can be derived from the CEAC at the 

willingness to pay level where probability of being cost-effective is 50 percent, i.e., 

where there is no treatment effect difference in net monetary benefit.  (This point can be 

understood in terms of the INMB:  there is no treatment effect difference when 

,0=Δ−Δ CEλ or when CE Δ=Δλ , or when =ΔΔ= EC /λ
∧

ICER .) 

The current study carefully examined the dropout patterns of patients with 

schizophrenia.  The dropout pattern among the ROSE Study outpatient subgroup was 

suggestive of informative dropout, however, the pattern was very different from patterns 

that have been reported from cancer trials.  An important first step in the analysis of 

longitudinal clinical trial data should be to examine the dropout patterns.  Understanding 

how the disease and its treatments affect patients may  help with the interpretation of the 

dropout patterns and how to model the nonresponse mechanism.  Finally, this study 

illustrated how high proportions of missing data can dramatically alter unadjusted 

response values, and how different analytic approaches vary in their ability to produce 

good estimates under those data conditions.  This is an important finding that has been 

reported in many published studies.   

In conclusion, this study was the first to assess incremental net monetary benefit 

using simulated clinical trial data with monotone MAR and MNAR nonresponse 

mechanisms.  The study demonstrated how the joint ME model can provide improved 

estimates of the INMBλ over ANCOVA and repeated measures ME models, but that the 

estimates are sensitive to the nonresponse mechanism.  The study provides additional 

support for the use of the incremental net monetary benefit as an alternative to the 

traditional incremental cost-effectiveness ratio for assessing cost-effectiveness in clinical 

 



 161

trials.  Moreover, selection models may be appropriate for evaluating INMB if there is 

good evidence of nonignorable missing data.  When simulated MAR and MNAR 

nonresponse mechanisms are used in future simulation studies, careful consideration 

should be given to the definitions and implementation of these mechanisms.  Further 

research is needed to examine and expand upon the definitions of MAR and MNAR 

nonresponse mechanisms that were first established by Rubin in 1976. 
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APPENDIX I.  ABBREVIATIONS 
 
AMCP American Academy of Managed Care Pharmacy 

ANCOVA Analysis of covariance 

b0  intercept term (SAS code) 

b1 treatment group (SAS code) 

b2 Month (SAS code) 

b3 month interacted with treatment group (SAS code) 

b4 month 4 (SAS code) 

b5 month 4 interacted with treatment group (SAS code) 

b6 month 8 (SAS code) 

b7 month 8 interacted with treatment group (SAS code) 

b8 age, centered at 40 (SAS code) 

b9 previous hospitalizations (SAS code) 

BL_NMB variable name for baseline net monetary benefit 

BPRSS Brief Psychiatric Rating Scale Schizophrenia 

C cost measure 

CATIE Clinical Antipsychotic Trials of Intervention Effectiveness 

CEA cost-effectiveness analysis 

CEAC cost-effectiveness acceptability curve 

CED coverage with evidence development 

CUA cost-utility analysis 

D22 variance of the random effect of the between patient NMB slope in the 
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joint ME model (SAS code) 

D2t covariance between the random slopes and time-to-dropout for the joint 

ME model (SAS code) 

E effectiveness measure 

EM algorithm expectation maximization algorithm 

GROUP variable name for treatment group 

ICER incremental cost-effectiveness ratio 

INMB incremental net monetary benefit 

ITT intent-to-treat 

Lambda 1 & 2  coefficients for the random effects in the time portion of the joint ME 

model (SAS code) 

LOCF last observation carried forward 

LVCF last value carried forward 

LYG life years gained 

MAR missing at random 

MCAR missing completely at random 

MCS mental component summary (of the SF-36) 

ME mixed-effects 

MLR maximum likelihood ratio 

MNAR missing not at random 

mu0 joint ME model’s fixed effect for the log time-of-dropout mean 

intercept (SAS code) 

NHS National Health Service 
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NICE National Institute for Clinical Excellence 

NMB net monetary benefit 

OLS ordinary least squares 

PHOSP variable name for indicator of number of previous hospitalizations 

PPP purchasing power parity 

QALY quality-adjusted life year 

QOL quality of life 

RH02T correlation between NMB slope random effect and log time-to-dropout 

in the joint ME model (SAS code) 

ROSE Risperidone Outcomes Study of Effectiveness 

s1, s12, s2 components of the Cholesky decomposition of the covariance matrix 

for the random effects in the joint ME model (SAS code) 

s2t residual error (variance) for log time-to-dropout in the joint ME model 

– same as Tau2 (SAS code) 

s2w variance of the residual error of NMB in the joint ME model (SAS 

code) 

SD standard deviation 

s.e. standard error 

SF-36 Medical Outcomes Study 36-Item Short-Form Health Survey 

SEE standard error for the estimator 

SG standard gamble 

Tau2 residual error (variance) for log time-to-dropout in the joint ME model,  

same as s2t (SAS code) 
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T0 treatment group:  standard of care 

T1 treatment group:  experimental 

USPHSP U.S. Public Health Service Panel 
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APPENDIX II.  SAS CODE 
 
A. ANCOVA MODEL 

  *  Program:      LOCF.SAS                                          ; 
  *  Description:  This program reads the COMPLETE dataset and the   ; 
  *  MISSING dataset and creates an LOCF dataset.  Baseline is       ; 
  *  brought forward if there is not follow-up.                      ; 
  *  Programmer:   Dennis D. Gagnon                                  ; 
  *  Date:         02/24/2008                                        ; 
   
libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
options pageno=1 ps=46 ls=150 center errors=2 ; 
title 'LOCF.SAS                        Dissertation: Estimating INMB in 
a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete(keep=patid month txgroup 
age40 prevhospc month04 month08) ; 
    by patid month ; 
  run ; 
  proc sort data=indat.missing out=missing ; 
    by patid month ; 
  run ; 
 
  data full ; 
    merge complete missing ; 
 by patid month ; 
  run ; 
 
  proc print data=full(firstobs=2369) ; 
    title3 'Last Observations of Full, Starting at 2369' ; 
  run ; 
  data locf ; 
    set full ; 
 by patid month ; 
 array last {6} lc lu l0 l25 l50 l100 ; 
 array current {6} cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 retain lc lu l0 l25 l50 l100 ; 
 if first.patid then do ; 
   do i = 1 to 6 ; 
     last{i} = . ; 
   end ; 
 end ; 
 do i = 1 to 6 ; 
   if current{i} = . then current{i} = last{i} ; 
 end ; 
 do i = 1 to 6 ; 
   last{i} = current{i} ; 
 end ; 
 drop i lc lu l0 l25 l50 l100 ; 
  run ; 
 
  proc print data=locf(firstobs=2369) ; 
    title3 'Last Observations of LOCF, Starting at 2369' ; 
  run ; 

 



 167

 
  data indat.locf ; 
    set locf ; 
  run ; 
 
  proc contents data=indat.locf ; 
    title3 'Contents of LOCF' ; 
  run ; 
 
  proc print data=indat.locf(obs=20) ; 
    title3 'First 20 Observations of LOCF' ; 
  run ; 
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A. ANCOVA MODEL (continued) 
 

  *  Program:      Subject LOCF.SAS                                 ; 
  *  Description:  This program reads the LOCF Dataset and creates a; 
  *  subject-level complete dataset.  NMBs are summed across months ; 
  *  4, 8, & 12.                                                    ;  
  *  Programmer:   Dennis D. Gagnon                                 ; 
  *  Date:         02/24/2008                                       ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Subject LOCF.SAS                           Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
  proc sort data=indat.locf out=locf (rename=(nmb_0=n_0 nmb_25=n_25 
nmb_50=n_50 nmb_100=n_100)) ; 
    by patid month ; 
  run ; 
  proc print data=locf(obs=20) ; 
    title3 'First 20 Observations of LOCF' ; 
  run ; 
 
  data indat.subject_locf ; 
    set locf ; 
 by patid month ; 
 retain nmb_0 nmb_25 nmb_50 nmb_100 bln0 bln25 bln50 bln100 0 ; 
 array nmb{4} nmb_0 nmb_25 nmb_50 nmb_100 ; 
 array bl{4} bln0 bln25 bln50 bln100 ; 
 array nm{4} n_0 n_25 n_50 n_100 ; 
 if first.patid then do ; 
   do i=1 to 4   ;
     nmb{i} = 0 ; 
  bl{i} = 0 ; 
   end ; 
    end ; 
 if month = 0 then do ; 
   do i=1 to 4 ; 
     bl{i} = nm{i} ; 
   end ; 
 end ; 
 else do ; 
      do i=1 to 4 ; 
     nmb{i} = nmb{i} + nm{i} ; 
   end ; 
 end ; 
 drop i util cost month n_0 n_25 n_50 n_100 month month04 month08 
; 
 if last.patid then output ; 
  run ; 
 
  proc contents data=indat.subject_locf ; 
    title3 'Contents of Subject_LOCF' ; 
  run ; 
 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
  run ; 
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A. ANCOVA MODEL (continued) 

*  Program: UNI LOCF, Mean BL.SAS                                ; 
*  Description:  This program creates the ANCOVA model estimates ; 
*  by reading the SUBJECT_LOCF dataset and running analyses to   ;   
*  determine the INMB. First a t-test is run,                    ; 
*  then a simple GLM with no covariates, then GLMs with age40,   ; 
*  previous hosps and baseline nmb. Baseline nmb is centered at  ; 
*    the mean. Regressions modified to change categorical variables   ; 
*  to numeric.  LS Means have been changed to ESTIMATE statements.;                 
*  Output residuals from ANCOVAs and plot them against the normal ; 
*  curve. Plot NMBs against the normal curve.                     ; 
*  Programmer:   Dennis D. Gagnon                                 ;                 
*  Date: 06/15/2008                                               ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Uni LOCF, Mean BL.SAS                      Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
  run ; 
 
  proc means data=indat.subject_locf ; 
    var bln0 bln25 bln50 bln100 txgroup age40 prevhospc ; 
 title3 'Mean Baseline NMBs' ; 
  run ; 
 
  data subject_locf ; 
    set indat.subject_locf ; 
 bln0   = bln0   - -15.9882591 ; 
 bln25  = bln25  - -10.8275510 ; 
 bln50  = bln50  -  -5.6668430 ; 
 bln100 = bln100 -   4.6545730 ; 
  run ; 
 
  proc ttest data=subject_locf ; 
    class txgroup ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'T-Tests on LOCF Difference in Mean NMBs, Complete Data 
Set' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_0 = txgroup / solution ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB0 Against Treatment Only, LOCF' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_25 = txgroup / solution ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB25 Against Treatment Only, LOCF' ; 
  run ; 
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  proc glm data=subject_locf ; 
 model nmb_50 = txgroup / solution ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB50 Against Treatment Only, LOCF' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_100 = txgroup / solution ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB100 Against Treatment Only, LOCF' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_0 = txgroup age40 prevhospc bln0 / solution ; 
 output out=nmb0 r=resid ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB0 Against Treatment And Covariates, LOCF' ; 
 title5 'Baseline NMB Centered at Mean' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_25 = txgroup age40 prevhospc bln25 / solution ; 
 output out=nmb25 r=resid ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB25 Against Treatment And Covariates, LOCF' ; 
 title5 'Baseline NMB Centered at Mean' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_50 = txgroup age40 prevhospc bln50 / solution ; 
 output out=nmb50 r=resid ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB50 Against Treatment And Covariates, LOCF' ; 
 title5 'Baseline NMB Centered at Mean' ; 
  run ; 
 
  proc glm data=subject_locf ; 
 model nmb_100 = txgroup age40 prevhospc bln100 / solution ; 
 output out=nmb100 r=resid ; 
 estimate 'Tx=0' intercept 1 ; 
 estimate 'Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Diff'             txgroup 1 ; 
 title3 'OLS of NMB100 Against Treatment And Covariates, LOCF' ; 
 title5 'Baseline NMB Centered at Mean' ; 
  run ; 
  quit ; 
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  title ; 
 
  PROC CAPABILITY DATA=nmb0 GRAPHICS; 
    title3 'Residual Histogram from ANCOVA, Lambda 0' ; 
    HISTOGRAM resid / NORMAL; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb25 GRAPHICS; 
    title3 'Residual Histogram from ANCOVA, Lambda 25' ; 
    HISTOGRAM resid / NORMAL; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb50 GRAPHICS; 
    title3 'Residual Histogram from ANCOVA, Lambda 50' ; 
    HISTOGRAM resid / NORMAL; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb100 GRAPHICS; 
    title3 'Residual Histogram from ANCOVA, Lambda 100' ; 
    HISTOGRAM resid / NORMAL; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=subject_locf GRAPHICS; 
    title3 'Histogram of Subject-Level NMB, Lambda 0' ; 
    HISTOGRAM nmb_0 / NORMAL; 
 var nmb_0 ; 
  RUN; 
 
  PROC CAPABILITY DATA=subject_locf GRAPHICS; 
    title3 'Histogram of Subject-Level NMB, Lambda 25' ; 
    HISTOGRAM nmb_25/ NORMAL; 
 var nmb_25 ; 
  RUN; 
 
  PROC CAPABILITY DATA=subject_locf GRAPHICS; 
    title3 'Histogram of Subject-Level NMB, Lambda 50' ; 
    HISTOGRAM nmb_50 / NORMAL; 
 var nmb_50 ; 
  RUN; 
 
  PROC CAPABILITY DATA=subject_locf GRAPHICS; 
    title3 'Histogram of Subject-Level NMB, Lambda 100' ; 
    HISTOGRAM nmb_100 / NORMAL; 
 var nmb_100 ; 
  RUN; 
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B. ME MODEL 
 

  *  Program:      MAR_Miss.SAS                                  ; 
  *  Description:  This program creates the ME model estimates by; 
  *  reading the MISSING dataset and creating the                ;  
  *  month & month knot variables (one knot at month             ; 
  *  4 and one know at month 8). A mixed effects model is then   ; 
  *  run estimating the difference in the changes in NMB from    ;  
  *  baseline across treatment groups. This program uses the data;       
  *  simulated from Dr. Fairclough. NMB are divided by 1000.     ; 
  *  Predicted values are output from each model and residual    ; 
  *  are created. These residuals are then plotted against a     ;          
  *  normal curve.                                               ; 
  *  Programmer:   Dennis D. Gagnon                              ; 
  *  Date:         06/22/2008                                    ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'MAR_Miss.SAS                    Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
 
  data missing ; 
    set indat.missing ; 
  run ; 
 
  proc print data=missing(obs=20) ; 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
 
  *  Start Running of Mixed Models ; 
  *  NMB_0 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_0= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution outp=nmb0 ; 
    random intercept month / subject = patid type =UN gc g gcorr v 
vcorr ; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
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    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_0' ; 
  run ; 
  
  *  NMB_25 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_25= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution outp=nmb25 ; 
    random intercept month / subject = patid type =UN gc g gcorr v 
vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
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   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_25' ; 
  run ; 
   
  *  NMB_50 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_50= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution outp=nmb50 ; 
 random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
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   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_50' ; 
  run ; 
  
  *  NMB_100 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_100= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution outp=nmb100 ; 
    random intercept month / subject = patid type =UN gc g gcorr v 
vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 

 



 176

 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_100' ; 
  run ; 
     
  data nmb0 ; 
    set nmb0 ; 
 keep resid ; 
  run ;    
     
  data nmb25 ; 
    set nmb25 ; 
 keep resid ; 
  run ;    
     
  data nmb50 ; 
    set nmb50 ; 
 keep resid ; 
  run ;    
     
  data nmb100 ; 
    set nmb100 ; 
 keep resid ; 
  run ;    
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  title ; 
 
  PROC CAPABILITY DATA=nmb0 GRAPHICS; 
   title3 'Histogram of Residuals from Mixed-Effects Model, Lambda 0' ; 
    HISTOGRAM resid / NORMAL midpoints=-100 to 52 by 4 ; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb25 GRAPHICS; 
  title3 'Histogram of Residuals from Mixed-Effects Model, Lambda 25' ; 
    HISTOGRAM resid / NORMAL midpoints=-100 to 52 by 4 ; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb50 GRAPHICS; 
  title3 'Histogram of Residuals from Mixed-Effects Model, Lambda 50' ; 
    HISTOGRAM resid / NORMAL midpoints=-100 to 52 by 4 ; 
 var resid ; 
  RUN; 
 
  PROC CAPABILITY DATA=nmb100 GRAPHICS; 
 title3 'Histogram of Residuals from Mixed-Effects Model, Lambda 100' ; 
    HISTOGRAM resid / NORMAL midpoints=-100 to 52 by 4 ; 
 var resid ; 
  RUN; 
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C. JOINT ME MODEL 

  *  Program:  Joint_Miss.SAS                                   ; 
  *  Description:  This program creates the joint ME model      ; 
  *  estimates, by first obtaining estimates from the           ; 
  *  seperate models and then jointly estimates the parameters  ; 
  *  Programmer:   Diane Fairclough                             ; 
  *  Date:         20/Dec/2007                                  ; 
  *  Revised:      Dennis D. Gagnon                             ; 
  *  Date:         03/08/08                                     ; 
  *  Revised:      Diane Fairclough                             ; 
  *  Date:         21Mar2008                                    ; 
  *                Removed intercept random effect from Time to ; 
  *                DO model                                     ; 
  *  Revised:      Dennis G. Gagnon                             ; 
  *  Date:         06/17/08                                     ; 
  *                Add code sent by Diane Fairclough to print   ; 
  *                out variance and correlation estimates.      ; 
  *                (D11, D12, D22, Tau2, D1T, D2T, Rho1T, Rho2T ;                   
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  *libname indat 'C:\Projects\Consult\Engelhart\SASlib' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
 
  title 'Joint_Miss.SAS    Dissertation: Estimating INMB in a Clinical   
Study With Missing Data' ; 
  ***************************************************************** 
  PREPARE DATA ; 
        
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
   
proc summary data=indat.missing nway;  * Identifies time of last obs *; 
    class patid; 
 var month ; 
 output out=work.last max=Last; 
 run; 
     
  proc freq data=work.last; 
    table last/missing; 
 run; 
   
  data missing ; 
    merge indat.missing work.last(keep=patid last); 
 by patid; 
 *** Time to last Assessment ***; 
 if last eq 12 then Censor=1;  
    else censor=0; 
 L_Last=log(last+1); 
 Label Censor='Completor (1=Yes, 0=No)' 
       L_Last='Ln(Time to Last Obs + 1)'; 
  run ; 
   
  proc print data=missing (obs=20); 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
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*********************************************************************** 
  GET ESTIMATES FOR MU and SCALE (SAME FOR ALL NMBs ;   
   
*** Initial Estimates for Time to DO portion of model ***; 
proc lifereg data=work.missing;  
  model L_last*Censor(1)=/ dist=normal; * Used Normal because already 
logged *; 
  where month eq 0;  
  title3 'Estimate Mu and Scale' ; 
run;  
*********************************************************************** 
NMB_0 ; 
   
*** Reference Model ***; 
proc nlmixed data=work.missing ; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_0'; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0633 b1=0.1251 b2=1.6403 b3=-0.2719 b4=-1.2449 b5=0.1560 
b6=-0.0761 b7=0.0694 b8=0.0326 b9=-2.9063    
        s1=16.9781 s12=-1.4833 s2=0.5905 s2w=137.27 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
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  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11;  *Var of between patient NMB intercept; 
 
  estimate 'D12' D12;  *Covar of between patient NMB intercept and 
slope; 
 
  estimate 'D22' D22;  *Var of between patient NMB slope; 
 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
 
  estimate 'D2T' Lambda2*D22;     *; 
 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
 
  run; 
 
*** Joint Model with Two Random Effects ***; 
*** Note this does not converge ... ****; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_0'; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0633 b1=0.1251 b2=1.6403 b3=-0.2719 b4=-1.2449 b5=0.1560 
b6=-0.0761 b7=0.0694 b8=0.0326 b9=-2.9063    
        s1=16.9781 s12=-1.4833 s2=0.5905 s2w=137.27 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
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  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0  +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11; 
 
  estimate 'D12' D12; 
 
  estimate 'D22' D22; 
 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
 
  estimate 'D2T' Lambda2*D22; 
 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
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  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); 
  run; 
*********************************************************************** 
NMB_25 ; 
  
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_25'; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-10.9299 b1=0.1352 b2=1.6700 b3=-0.0707 b4=-1.2769 b5=-
0.0389 b6=-0.0746 b7=0.0674 b8=0.0250 b9=-3.0673    
        s1=16.9721 s12=-1.5019 s2=0.5928 s2w=137.61 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
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  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11; 
 
  estimate 'D12' D12; 
 
  estimate 'D22' D22; 
 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
 
  estimate 'D2T' Lambda2*D22; 
 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); 
 
  run; 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_25'; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-10.9299 b1=0.1352 b2=1.6700 b3=-0.0707 b4=-1.2769 b5=-
0.0389 b6=-0.0746 b7=0.0674 b8=0.0250 b9=-3.0673    
        s1=16.9721 s12=-1.5019 s2=0.5928 s2w=137.61 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
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  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 + b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11; 
  estimate 'D12' D12; 
  estimate 'D22' D22; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t));   run; 
 
*********************************************************************** 
NMB_50 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_50'; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.7967 b1=0.1453 b2=1.6968 b3=0.1285 b4=-1.3086 b5=-0.2339 
b6=-0.0728 b7=0.0654 b8=0.0172 b9=-3.2265    
        s1=16.9813 s12=-1.5202 s2=0.5983 s2w=138.56 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
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  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11; 
  estimate 'D12' D12; 
  estimate 'D22' D22; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
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  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); 
 
  run; 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_50'; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.7967 b1=0.1453 b2=1.6968 b3=0.1285 b4=-1.3086 b5=-0.2339 
b6=-0.0728 b7=0.0654 b8=0.0172 b9=-3.2265    
        s1=16.9813 s12=-1.5202 s2=0.5983 s2w=138.56 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11; 
  estimate 'D12' D12; 
  estimate 'D22' D22; 
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  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t));  run; 
 
*********************************************************************** 
NMB_100 ; 
  
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_100'; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4688 b1=0.1653 b2=1.7504 b3=0.5291 b4=-1.3714 b5=-0.6239 
b6=-0.0679 b7=0.0616 b8=0.0013 b9=-3.5388    
        s1=17.0574 s12=-1.5562 s2=0.6197 s2w=142.21 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
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  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11; 
  estimate 'D12' D12; 
  estimate 'D22' D22; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22; 
 *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); 
  run; 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_100'; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4688 b1=0.1653 b2=1.7504 b3=0.5291 b4=-1.3714 b5=-0.6239 
b6=-0.0679 b7=0.0616 b8=0.0013 b9=-3.5388    
        s1=17.0574 s12=-1.5562 s2=0.6197 s2w=142.21 
        mu0=3.3075 st=1.695 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
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    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
 
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11; 
  estimate 'D12' D12; 
  estimate 'D22' D22; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t));   run; 
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D. Build the Mixed Effects Model to Estimate the Joint Parameters 
for Costs and Utilities 
 
  *******************************************************************; 
  *  Program:      MAR_CostUtil.SAS                                  ; 
  *  Description:  This program jointly estimates Cost and Utility   ; 
  *  so that NMBs at different levels of lamba can be generated from ; 
  *  a single dataset, for the simulation of the dataset             ; 
  *                                                                  ; 
  *  Programmer:   Diane Fairclough                                  ; 
  *  Date:         18/Jan/2007                                       ; 
  *******************************************************************; 
  *libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  *libname indat 'H:\Consulting\Engelhart' ; 
  libname indat 'C:\Projects\Consult\Engelhart' ; 
  options pageno=1 ps=46 ls=150 center errors=2 nofmterr; 
  title 'MAR_CostUtil.SAS' ; 
 
  proc contents data=indat.missing2; * Missing dataset renamed *; 
  run; 
  proc print data=indat.missing2(obs=20); 
  run; 
  proc means data=indat.missing2; 
     where month eq 0 and meas eq 2; 
  var age prevhosp group; 
  run; 
 
* Estimate parameter estimates for cost to find the variables that;    
* best predict log of cost. Start by creating indicator variables ;  
* for cost and utilities, center variables, transform cost to log ;  
  * cost, and rescale utilities to 10 X utilities. ; 
 
 data work.missing2; 
    set indat.missing2; 
 visit=month;  * Allows One variable to be continous and the other  
                      to be categorical *; 
 Cost=(Meas eq 1);  * Indicator of Cost Data *; 
 Util=(Meas eq 2);  * Indicator of Utility Data *; 
 Age40=Age-40;      * Age Centered *; 
 PrevHospC=PrevHosp-.5;  * PrevHosp Centered *; 
 GroupC=Group-1.5;   * Group Centered; 
 *** Log of Cost Data ***; 
 if Meas eq 1 then LValue=log(Value+.1); 
 *** Rescaled Utility ***; 
 if Meas eq 2 then LValue=10*Value; 
 *** Deletes Missing Data ***; 
 if Value eq . then delete; 
 run; 
 
  proc means data=missing2 nway mean median stddev skewness; 
     title 'Measure 1 (Cost) only'; 
     where meas eq 1; 
  class group visit; 
  var value LValue; 
  run; 
  proc univariate data=missing2 plot; 
     title2 'Check Distribution of Log of Cost'; 
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     where meas eq 1; 
  var value LValue; 
  run; 
  title2 '  '; 
 
  * Begin with full model for log cost to find independent variables; 
  * that best predict log of cost.                                  ; 
  * Note: The variable COST is always 1.  Although not necessary at ; 
  * this point, the indicator will be useful in the joint model at  ; 
  * the end of this program.                                        ; 
 
  proc mixed data=work.missing2 method=ml noclprint covtest ; 
      title2 'Full model for Log Cost'; 
   where meas eq 1; 
 
       class PatID ;   
 
       model LValue=Cost Cost*Age40 Cost*PrevHospc  
             Cost*Month Cost*Month*GroupC Cost*Month*age40 
Cost*Month*PrevHospC  
    Cost*Month08 Cost*GroupC*Month08 
       /noint solution ; 
      random Cost Cost*Month/subject=PatID type=UN g gcorr gc v=2 
Vcorr=2; 
   contrast 'Group' Cost*MOnth*GroupC 1, Cost*Month08*GroupC 1; 
   contrast 'Month8' Cost*Month08 1, Cost*Month08*GroupC 1; 
   run; 
 
*** End with reduced model for log cost.   ; 
 
  proc mixed data=work.missing2 method=ml noclprint covtest ; 
      title2 'Reduced model for Log Cost'; 
   where meas eq 1; 
       class PatID ; 
       model LValue=Cost Cost*PrevHospc  Cost*Month  
       /noint solution ; 
      random Cost Cost*Month/subject=PatID type=UN g gcorr gc v=2 
Vcorr=2; 
   run; 
 
  proc means data=missing2 nway; 
      title 'Measure 2 (Utility) only'; 
     where meas eq 2; 
  class group visit; 
  var value; 
  run; 
  proc univariate data=missing2 plot; 
     title2 'Check Distribution of Utility'; 
     where meas eq 2; 
  var value; 
  run; 
  title2 '  '; 
 
* Estimate parameter estimates for utilities to find the variables ; 
*  that best predict utilities. Begin with full model for utilities.;             
   proc mixed data=work.missing2 method=ml noclprint covtest ; 
      title2 'Full Model for Utilities'; 
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   where meas eq 2; 
 
       class PatID ;   
 
       model LValue=Util Util*age40 Util*PrevHospC  
Util*Month Util*Month*GroupC      
Util*Month*Age40 Util*Month*PrevHospC 
                   Util*Month04 Util*Month04*GroupC  
                   Util*Month08 Util*Month08*GroupC 
       /noint solution ; 
   random Util Util*Month/subject=PatID type=un g gcorr gc v=2 Vcorr=2; 
   contrast 'Group Effects' Util*Month*GroupC 1, Util*Month04*GroupC 1, 
                Util*Month08*GroupC 1; 
      contrast 'Age Effects' Util*age40 1, Util*Month*Age40 1;  
      contrast 'Prev Hosp'  Util*PrevHospC 1, Util*Month*PrevHospC 1; 
      Contrast 'Month 8'   Util*Month08 1, Util*Month08*GroupC 1; 
   Contrast 'Month 4'    Util*Month04 1, Util*Month04*GroupC 1; 
      run; 
 
*** End with reduced model for utilities.   ; 
 
   proc mixed data=work.missing2 method=ml noclprint covtest ; 
      title2 'Reduced Model for Utilities'; 
   where meas eq 2; 
       class PatID ; 
       model LValue=Util Util*age40  
                   Util*Month Util*Month*PrevHospC 
       /noint solution ; 
      random Util Util*Month/subject=PatID type=un g gcorr gc v=2 
Vcorr=2;  
      run; 
 
* Combine the reduced Log of Cost and Utilities models into one      *; 
* mixed effects model to jointly estimate the parameters for the     *; 
* fixed effects of age, previous hospitalizations, and month, and    *; 
* the random effects of the covariance between intercept & slope.    *;  
* The output datasets of parameter estimates, covariance parameters  *; 
* and residuals for costs and utilities will be used in Step 2 of    *; 
* the data simulation.                                               *; 
  proc mixed data=work.missing2 method=ml noclprint covtest ; 
       title 'Mixed Effects on Costs & Utilities' ; 
 
       class PatID Meas Visit;  
 
       model LValue=Cost Cost*PrevHospc  Cost*Month  
                 Util Util*age40  Util*Month Util*Month*PrevHospC 
       /noint solution outpred=indat.resid_costutil; 
      random Cost Util Cost*Month Util*Month/subject=PatID type=FA0(4)  
             g gcorr gc; 
      repeated Meas/subject=PatID(visit) type=FA0(2) rc=2 r=2 rcorr=2; 
 
   *** Output Solutions for Fixed Effects and Covariance 
Parameters ***; 
      ods output covparms=indat.cp_costutil; 
      ods output solutionf=indat.sf_costutil; 
   run; 
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  *** Parameters for Simulation ***; 
  proc print data=indat.sf_costutil; 
 
  proc print data=indat.cp_costutil;   
  proc print data=indat.resid_costutil(obs=20); 
  run; 
  proc univariate data=indat.resid_costutil plot; 
    title 'Cost Residuals'; 
 where Meas eq 1; 
 var Resid; 
  run; 
    proc univariate data=indat.resid_costutil plot; 
    title 'Utility Residuals'; 
 where Meas eq 2; 
 var Resid; 
  run; 
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E. Generate Complete Simulated Dataset from Random ME Model 
 
*****************************=**************************************; 
* Program:     Gen_Complete2.SAS                                    ; 
* Description: This program generates a complete simulated dataset  ;  
* with parameters estimated from a random effects model of the      ; 
* cost and utility data (Step 1, MAR_CostUtil.sas) and from         ; 
* bootstrap samples of the patient characteristics and              ;               
* residual errors. For the simulation of the dataset.               ; 
* MAR_CostUtil.sas                                                  ;  
* Programmer:   Diane Fairclough                                    ; 
* Date:         19/Jan/2007                                         ; 
********************************************************************; 
  *libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  *libname indat 'H:\Consulting\Engelhart' ; 
  libname indat 'C:\Projects\Consult\Engelhart' ; 
  options pageno=1 ps=46 ls=150 center errors=2 nofmterr ; 
  footnote 'Gen_Complete2.SAS' ; 
* Generate random sample with replacement of baseline covariates   ; 
* and create dataset with 4 obs per subject and Std Norm Random    ;  
* Errors. Maintain the correlations between covariates.            ; 
 
  /* proc print data=indat.resid_costutil(obs=20); run; */ 
  proc summary data=indat.resid_costutil nway print; 
    where LValue ne .; 
 class Meas; 
    var  Pred Resid; 
 run; 
 
  *** Baseline Covariates (Age and PrevHosp) ***; 
   
  data work.covariates; 
    set indat.resid_costutil; 
 by PatID; 
 if first.PatID;         * Selects One Record *; 
 Age40=Age-40;           * Centered Age *; 
 PrevHospC=PrevHosp-.5;  * Centered Previous Hospitalization *; 
 keep PatID Age40 PrevHospC; 
 run; 
 
  *** Double check that IDs go from 1 to 232 and Average Age and 
PrevHosp ***; 
 
  proc summary data=work.covariates print n mean std min max; 
    title 'Characteristics of Source Data'; 
    var PatID Age40 PrevHospC; 
    run; 
   
  *** Generates 600 new case IDs between 1 and N ***; 
   
  data work.boot;  
    SEED=37373;  N=232; * Max of IDs between 1 and N *; 
    do NewID=1 to 600; * Generates 600 new cases *; 
      LINK_ID=ceil(ranuni(SEED)*N); * Ceil creates integers; 
      output; 
    end; 
    run; 
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  *** Selects cases from Source Dataset ***; 
 
  proc sql;  * Allows many to many merge; 
    create table work.boot2(keep=NewID Age40 PrevHospC) 
      as select * 
      from work.boot as l left join work.covariates as r 
      on l.LINK_ID=r.PatID 
      order by NewID; 
    quit; 
 
  proc summary data=work.boot2 print  n mean std min max; 
    title 'Characteristics of Random Sample with Replacement Data'; 
    var NewID Age40 PrevHospC; 
    run; 
 
*** Create dataset with 4 observations per subject and Std Norm  ***; 
*** Random Errors. Each of the 4 randomly generated observations ***; 
*** must be specific to each sampled subject.                    ***; 
   
  data work.boot3; 
    set work.boot2; 
 *** Group Assignment 1:1 Allocation ***; 
 Group=mod(NewID,2)-.5; * Even ID => Group=-0.5, Odd ID => 
Group=0.5 *; 
 *** 4 Standard Normal Errors for Random Effects ***; 
 Z1=rannor(77777); Z2=rannor(97531); Z3=rannor(12345); 
Z4=rannor(131313); 
 do Month=0 to 12 by 4; 
    Month04=max(Month-4,0); 
    Month08=max(Month-8,0); 
    output; 
 end; 
 run 
/* proc print data=work.boot3(obs=12); run; */ 
 
  *******************************************************************; 
*   Create random sample with replacement of Cost residuals.       ; 
*   Maintain correlations between covariates and costs.             ; 
  *******************************************************************;     
 
  data work.Cresid; 
    set indat.resid_costutil(where=(resid ne . and meas eq 1) keep=meas 
resid); 
 CostID=_N_; 
 rename resid=CResid; 
 run; 
  proc summary data=work.Cresid print N min max mean std median Q1 Q3; 
    title 'Characteristics of Residuals'; 
 var CostID CResid;  run; 
 
  *** Generates 2400 link IDs between 1 and 641 ***; 
 
  data work.clink;  
    SEED=17171;  N=641; * Max of IDs between 1 and N *; 
    do ResidID=1 to 2400; * Generates 2400 Link IDs *; 
      LINK_ID=ceil(ranuni(SEED)*N); 
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      output; 
    end; 
    run; 
 
  *** Selects cases from Source Dataset using LINK.ID ***; 
 
  proc sql;   
    create table work.cresid2(keep=CResid) 
      as select * 
      from work.clink as l left join work.cResid as r 
      on l.LINK_ID=r.CostID 
      order by ResidID; 
    quit; 
  proc summary data=work.cresid2 print  n mean std min max median Q1 
Q3; 
    title 'Characteristics of Bootstrapped Cost Residuals'; 
    var CResid; 
    run; 
**********************************************************************; 
*   Create random sample with replacement of Utility residuals.       ; 
*   Maintain correlations between covariates and utilities.           ;     
**********************************************************************; 
 
  data work.Uresid; 
    set indat.resid_costutil(where=(resid ne . and meas eq 2) keep=meas 
resid); 
 UtilID=_N_; 
 rename resid=UResid; 
 run; 
  proc summary data=work.Uresid print N min max mean std median Q1 Q3; 
    title 'Characteristics of Residuals'; 
 var UtilID UResid; 
 run; 
 
  *** Generates 2400 link IDs between 1 and 641 ***;  
 
  data work.Ulink;  
    SEED=818181;  N=763; * Max of IDs between 1 and N *; 
    do ResidID=1 to 2400; * Generates 240 Link IDs *; 
      LINK_ID=ceil(ranuni(SEED)*N); 
      output; 
    end; 
    run; 
 
  *** Selects cases from Source Dataset using LINK_ID ***; 
 
  proc sql;   
    create table work.Uresid2(keep=UResid) 
      as select * 
      from work.Ulink as l left join work.UResid as r 
      on l.LINK_ID=r.UtilID 
      order by ResidID; 
    quit; 
  proc summary data=work.Uresid2 print  n mean std min max median Q1 
Q3; 
    title 'Characteristics of Bootstrapped Utility Residuals'; 
    var UResid; 
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    run; 
 
  *** Transpose Datasets with the beta Parameters and covariances  ***; 
  *** between the covariates for age and previous hospitalizations ***; 
 
  /* proc print data=indat.sf_costutil; run; */ 
  proc transpose data=indat.sf_costutil out=work.beta prefix=B; 
    var Estimate; 
  run; 
  /* proc print data=work.beta; run; */ 
  /* proc print data=indat.cp_costutil; run; */ 
  proc transpose data=indat.cp_costutil out=work.Sig prefix=Sig; 
    var Estimate; 
  run; 
  /* proc print data=work.sig; run; */ 
 
  *** Merge Bootstrap Covariates parameters ***; 
 
  proc sql;   
    create table work.boot4(drop=_Name_) 
      as select * 
      from work.boot3, work.beta, work.sig; 
    quit; 
 
  *** Merge Cost and Utility Residuals ***; 
 
  data work.merged; 
    merge work.boot4 work.Cresid2 work.Uresid2; 
 run; 
  /* Proc print data=work.merged(obs=12); run; */ 
 
********************************************************************; 
* Generate New Data Values using parameter estimates for cost and   ; 
* utility, and adding to these the random effects (i.e., intercepts ; 
* and slope variations for each month) and residual error effects   ; 
* for both cost and utility.                                        ; 
   
  data work.simdata; 
    set work.merged; 
 *** Generage XBeta terms ***; 
 CXBeta=B1+B2*PrevHospC+B3*Month; *These are cost model 
parameters; 
      UXBeta=B4+B5*Age40+B6*Month+B7*Month*PrevHospC; *Utility model 
parameters; 
 
 *** Generate Random Effects ***; 
 ZiD1=Sig1*Z1;                *1st Random Effect (RE) - Cost 
Intercept*; 
 ZiD2=Sig2*Z1+Sig3*Z2;        *2nd RE - Utility Intercept*; 
 
    *** The slope effects are the random variations for each month; 
    ZiD3=Month*(Sig4*Z1+Sig5*Z2+Sig6*Z3);  * 3rd RE - Cost Slope *; 
    ZiD4=Month*(Sig7*Z1+Sig8*Z2+Sig9*Z3+Sig10*Z4);  *4th RE - Utility 
Slope *; 
 
* Generate REsidual Errors (if residuals were correlated, would do ; 
* random sample with replacement of the residuals)                 ;                
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 Z5=rannor(88888); Z6=Rannor(22222); 
 E1=Sig11*Z5;            * Residual for Cost *; 
 E2=Sig12*Z5+Sig13*Z6;   * Residual for Utility *; 
 
 ***  Put the all together and transform back ***; 
 Cost1=exp(CXBeta+ZiD1+ZiD3+Cresid); *Retransformed costs; 
 Cost2=exp(CXBeta+ZiD1+ZiD3+E1); 
 Util1=(UXBeta+ZiD2+ZiD4+Uresid)/10; 
 Util2=(UXBeta+ZiD2+ZiD4+E2)/10; 
 
 *** Add group specific cost and utility information ***; 
 if month gt 0 then do; 
       Cost1=Cost1+Group*900; 
       Util1=Util1+Group*.033; 
       Cost2=Cost2+Group*900; 
  Util2=Util2+Group*.033; 
 end; 
    run; 
  /* proc print data=work.simdata(obs=10); run; */ 
  proc univariate data=work.simdata plot; 
    title 'Check on Randomly Generated Data'; 
    var Cost1 Cost2 Util1 Util2; 
 run; 
 
* Output the final complete simulated dataset with calculated NMB ; 
* values for lambda equal to 0, 25k, 50k, and 100k.               ; 
 
  data indat.Complete2(label="Complete data from Cost and Utilities"); 
    set work.simdata; 
  *** Divide NMBs by 1000 to make the parameter estimates ; 
  *** from subsequent models smaller numbers              ;  
    NMB0=(Util1/3*0-Cost1)/1000; 
    NMB25=(Util1/3*25000-Cost1)/1000; 
    NMB50=(Util1/3*50000-Cost1)/1000; 
    NMB100=(Util1/3*100000-Cost1)/1000; 
 Age=Age40+age; 
 label NMB0='NMB0/1 K' 
          NMB25='NMB25/1 K' 
    NMB50='NMB50/1 K' 
    NMB100='NMB1000/1 K'; 
 rename Group=GroupC Cost1=Cost Util1=Util; 
 keep NewID group month Age40 PrevHospC  
         Month Month04 Month08 Cost1 Util1 NMB0 NMB25 NMB50 NMB100; 
 label Group='Centered Group Indicator' 
       PrevHospC='Centered Prev Hosp Indicator' 
    Age40='Age centered at 40 years'; 
 run; 
  proc mixed data=indat.Complete2 covtest noclprint ; 
    title 'Examine Mixed effect Model for Complete Data'; 
    model NMB50= age40 prevhospC groupC month month*groupC  
                     month04 month04*groupC month08 month08*groupC  
                    /solution; 
    random intercept month / subject = NewID type =UN gc g gcorr v 
vcorr;  
    title3 'Piecewise Linear Regression Analysis: NMB_50' ; 
  run ; 
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F. MAR/MNAR ALGORITHMS 
 
*  Program:      Missing.SAS (base case)                      ; 
*  Description:  This program reads the COMPLETE dataset and  ; 
*  creates the missing dataset based upon the NMB_50.         ; 
*  The cutoff value for determining MAR and mnar is NMB_50 of ; 
*  75th percentile of month 8 (8.91569 for group = 0).        ; 
*  Programmer:   Dennis D. Gagnon                             ; 
*  Date:         02/02/2008                                   ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Missing.SAS Dissertation: Estimating INMB in a Clinical Study 
With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by patid month ; 
  run ; 
 
  data tx0 ; 
    set complete ; 
 if txgroup = 0 ; 
  run ; 
 
  data tx1 ; 
    set complete ; 
 if txgroup = 1 ; 
  run ; 
 
  data tx0_1 tx0_2 tx0_3 ; 
    set tx0 ; 
      if _n_ le 400                then output tx0_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx0_2 ; 
 else                                   output tx0_3 ; 
  run ; 
 
  data tx1_1 tx1_2 tx1_3 ; 
    set tx1 ; 
      if _n_ le 400                then output tx1_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx1_2 ; 
 else                                   output tx1_3 ; 
  run ; 
 
  data mar ; 
    set tx0_2 tx1_2 ; 
 by patid month ; 
 retain flag 0 ; 
 if first.patid then flag = 0 ; 
 if flag = 1 then delete ; 
 output ; 
 if flag = 0 & nmb_50 > 8.91569 then flag = 1 ; 
  run ; 
 
  data mnar ; 
    set tx0_3 tx1_3 ; 
    by patid month ; 
    retain flag 0 ; 
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    if first.patid then flag = 0 ; 
    if month ne 0 & flag = 0 & nmb_50 > 8.91569 then flag = 1 ; 
    if flag = 1 then delete ; 
  run ; 
 
  data missing ; 
    set tx0_1 tx1_1 mar mnar ; 
 drop flag ; 
  run ; 
 
  proc sort data=missing out=indat.missing ; 
    by patid month ; 
  run ; 
 
  proc sort data=indat.missing out=missing ; 
    by txgroup month ; 
  run ; 
 
  proc means data=missing ; 
    by txgroup month ; 
    var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
  run ; 
 
  proc univariate data=missing ; 
    by txgroup month ; 
    var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean Cost, Util, and NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
  run ; 
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F. MAR/MNAR ALGORITHMS (continued) 
 
*  Program:      Missing, MAR Sensitivity                           ; 
*  Description:  This program reads the COMPLETE dataset and creates; 
*  the missing dataset based upon the NMB_50.  The cutoff value for ;  
*  determining MAR is NMB_50 of 75th percentile of month 8 (8.91569 ; 
*  for group = 0).                                                  ; 
*  ALL SUBJECTS ARE PUT THROUGH THE MAR ALGORITHM FOR THIS          ; 
*  SENSITIVITY ANALYSIS !!                                          ; 
*  Programmer:   Dennis D. Gagnon                                   ; 
*  Date:         05/24/2008                                         ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Missing, MAR Sensitivity.SAS              Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by patid month ;   run ; 
 
  data mar ; 
    set complete ; 
 by patid month ; 
 retain flag 0 ; 
 if first.patid then flag = 0 ; 
 if flag = 1 then delete ; 
 output ; 
 if flag = 0 & nmb_50 > 8.91569 then flag = 1 ;   run ; 
 
  data missing ; 
    set mar ; 
 drop flag ;   run ; 
 
  proc sort data=missing out=outdat.missing ; 
    by patid month ;   run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by txgroup month ;   run ; 
 
  proc means data=missing ; 
    by txgroup month ; 
    var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
 title6 'SENSITIVITY ANALYSIS, ALL DATA RUN THROUGH MAR ALGORITHM' 
;   run ; 
 
  proc univariate data=missing ; 
    by txgroup month ; 
    var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean Cost, Util, and NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
 title6 'SENSITIVITY ANALYSIS, ALL DATA RUN THROUGH MAR ALGORITHM' 
;   run ; 
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F. MAR/MNAR ALGORITHMS (continued) 
 
  *  Program:   Missing, Trajectory.SAS (post hoc)                   ; 
  *  Description:  This program reads the COMPLETE dataset and      ; 
  *  creates the missing dataset based upon the NMB_50.  This       ; 
  *  program is much like MISSING.SAS, but uses change from baseline;             
  *  instead of a threshold value.                                  ; 
  *  Programmer:   Dennis D. Gagnon                                 ; 
  *  Date:         06/30/2008                                       ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Missing, Trajectory.SAS                     Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by patid month ;   run ; 
 
  proc contents data=complete ; 
    title3 'Contents of Complete' ;   run ; 
 
  proc print data=complete(obs=20) ; 
    title3 'First 20 Observations of Complete' ;   run ; 
 
  data bl ; 
    set complete ; 
 if month = 0 ; 
    bl0 = nmb_0 ; 
    bl25 = nmb_25 ; 
    bl50 = nmb_50 ; 
    bl100 = nmb_100 ; 
    keep patid bl0 bl25 bl50 bl100 ;   run ; 
 
  data complete ; 
    merge complete bl ; 
    by patid ;   run ; 
 
  proc print data=complete(obs=20) ; 
    title3 'First 20 Observations of Complete, with Baseline' ; 
  run ; 
 
  data tx0 ; 
    set complete ; 
 if txgroup = 0 ;   run ; 
 
  data tx1 ; 
    set complete ; 
 if txgroup = 1 ;   run ; 
 
  data tx0_1 tx0_2 tx0_3 ; 
    set tx0 ; 
      if _n_ le 400                then output tx0_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx0_2 ; 
 else                                   output tx0_3 ; 
  run ; 
 
  data tx1_1 tx1_2 tx1_3 ; 
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    set tx1 ; 
      if _n_ le 400                then output tx1_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx1_2 ; 
 else                                   output tx1_3 ; 
  run ; 
 
  data mar ; 
    set tx0_2 tx1_2 ; 
 by patid month ; 
 retain flag 0 ; 
 if first.patid then flag = 0 ; 
 if flag = 1 then delete ; 
 output ; 
 if flag = 0 & (nmb_50 - bl50) > 2.0 then flag = 1 ; 
  run ; 
 
  data mnar ; 
    set tx0_3 tx1_3 ; 
    by patid month ; 
    retain flag 0 ; 
    if first.patid then flag = 0 ; 
    if month ne 0 & flag = 0 & (nmb_50 - bl50) > 2.0 then flag = 1 ; 
    if flag = 1 then delete ;   run ; 
 
  data missing ; 
    set tx0_1 tx1_1 mar mnar ; 
 drop flag ;   run ; 
 
  proc sort data=missing out=outdat.missing ; 
    by patid month ;   run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by txgroup month ;   run ; 
 
  proc means data=missing ; 
    by txgroup month ; 
    var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
 title5 'Trajectory Technique' ; 
  run ; 
 
  proc univariate data=missing ; 
    by txgroup month ; 
    var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean Cost, Util, and NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
  run ; 
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F. MAR/MNAR ALGORITHMS (continued) 
 
*  Program:      Missing, MNAR Sensitivity.SAS               ;                   
*  Description:  This program reads the COMPLETE dataset and ; 
*  creates the missing dataset based upon the NMB_50.        ; 
*  The cutoff value for determining MNAR is NMB_50 of 75th   ; 
*  percentile of month 8 (8.91569 for group = 0).            ; 
*  ALL SUBJESTS ARE RUN THROUGH THE MNAR ALGORITHM FOR THIS  ; 
*  SENSITIVITY ANALYSIS !                                    ;                      
*  Programmer:   Dennis D. Gagnon                            ; 
*  Date:         05/24/2008                                  ; 
 libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
 libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Missing, MNAR Sensitivity.SAS                     
Dissertation: Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by patid month ;   run ; 
  data mnar ; 
    set complete ; 
    by patid month ; 
    retain flag 0 ; 
    if first.patid then flag = 0 ; 
    if month ne 0 & flag = 0 & nmb_50 > 8.91569 then flag = 1 ; 
    if flag = 1 then delete ;   run ; 
 
  data missing ; 
    set mnar ; 
 drop flag ;   run ; 
 
  proc sort data=missing out=outdat.missing ; 
    by patid month ;   run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by txgroup month ;   run ; 
 
  proc means data=missing ; 
    by txgroup month ; 
    var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
 title6 'ALL SUBJECTS RUN THROUGH MNAR ALGORITHM FOR THIS 
SENSITIVITY ANALYSIS' ; 
  run ; 
 
  proc univariate data=missing ; 
    by txgroup month ; 
    var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean Cost, Util, and NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
 title6 'ALL SUBJECTS RUN THROUGH MNAR ALGORITHM FOR THIS 
SENSITIVITY ANALYSIS' ; 
  run ; 
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G. DESCRIPTIVE STATISTICS 
 
  *  Program:      ROSE, Descriptive Stats, Outpatients.SAS          ; 
  *  Description:  This program pulls the utility data and cost data ; 
  *  and creates a patient-level dataset with utility and costs for  ;    
  *  each visit.  It then creates a a patient/visit-level dataset and; 
  *  runs descriptive stats on the outcome variables.                ; 
  *  Programmer:   Dennis D. Gagnon                                  ; 
  *  Date:         05/24/2008                                        ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  libname indat2 'C:\UMDNJ\Dissertation\NMB\V612dat\Original Data' ; 
  title 'ROSE, Descriptive Stats, Outpatients.SAS         Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc format ; 
    value $zrace 
      " " = " " ; 
    value $zsex 
      " " = " " ; 
    value $zyesno 
      " " = " " ; 
 value $ZRISPTG 
   " " = " " ; 
 value $ZPHSE 
      " " = " " ; 
    value tag2a 
      . = " " ; 
    value tag1a 
      . = " " ; 
    run ; 
    /* 
 proc contents data=indat2.patittii ; 
   title3 'Contents of PATITTII' ; 
 run ;  */ 
    *  Bring in Dataset that Flags Patients as Being Randomized from 
Hospital or as Outpatients ; 
    data hosp ; 
      set indat2.patittii ; 
      length pat $4 ; 
      pat =substr(idn,1,4) ; 
      if substr(pat,1,1)= '0' then substr(pat,1,1)=' ' ; 
   if numprev ge 2 then prevhosp = 1 ; 
   else                 prevhosp = 0 ; 
      keep pat rih age numprev numprevr prevhosp group ;    run ; 
 
 proc sort data=hosp ; 
   by pat ; run ; 
 
    proc freq data=hosp ; 
   tables numprev*numprevr*prevhosp / list ; 
   where rih = 1 ; 
   title3 'Frequency of Number of Previous Hospitalizaitons, 
Inpatients' ; run ; 
 
 proc freq data=hosp ; 
   tables numprev*numprevr*prevhosp / list ; 
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   where rih = 0 ; 
   title3 'Frequency of number of Previous hospitalizaitons, 
Outpatients' ; run ; 
 
 proc means data=hosp ; 
   var age ; 
   where rih = 1 ; 
   title3 'Mean Age, Inpatients' ; run ; 
 
 proc means data=hosp ; 
   var age ; 
   where rih = 0 ; 
   title3 'Mean age, Outpatients' ; run ; 
 *  Bring in Cohort Dataset.  Cohort (1,2,3, or 4) is Derived from 
Days on Study and Reflects 
Which was Last Visit for the Patient.                            ; 
 
 proc sort data=indat.cohort out=cohort ; 
   by pat ; run ; 
 
 *  Create a patient-level dataset for utilities ; 
 data utility ; 
   set indat.utility ; 
   pat = right(pat) ; 
   if substr(pat,1,1)= '0' then substr(pat,1,1)=' ' ; 
   if sfindex = . then delete ; 
   keep pat vnbr sfindex ;    run ; 
 
 proc sort data=utility ; 
   by pat vnbr ; run ; 
 
 data util_v ; 
   merge utility(in=keep) cohort ; 
   by pat ; 
   if keep ; 
   if vnbr > cohort then delete ; run ; 
 
 data util_p ; 
   set util_v ; 
   by pat ; 
   retain util_1 util_2 util_3 util_4 ; 
   if first.pat then do ; 
     util_1 = . ; 
     util_2 = . ; 
     util_3 = . ; 
     util_4 = . ; 
   end ; 
   if vnbr = 1 then util_1 = sfindex ; 
   if vnbr = 2 then util_2 = sfindex ; 
   if vnbr = 3 then util_3 = sfindex ; 
   if vnbr = 4 then util_4 = sfindex ; 
   if last.pat then output ; 
   keep pat util_1 util_2 util_3 util_4 ; run ; 
 
 proc print data=util_p(obs=20) ; 
   title3 'First 20 Observations of UTIL_P' ; run ; 
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 *  Create a Patient-Level Dataset of Costs ; 
 
 data cost ; 
   set indat.cost ; 
   pat= right(pat) ; 
   if cost = . then delete ; 
   keep pat vnbr cost completr ; run ; 
 
 proc sort data=cost ; 
   by pat vnbr ; run ; 
 
 data cost_v ; 
   merge cost(in=keep) cohort ; 
   by pat ; 
   if keep ; 
   if vnbr > cohort then delete ; run ; 
 
 data cost_p ; 
   set cost_v ; 
   by pat ; 
   retain cost_1 cost_2 cost_3 cost_4 ; 
   if first.pat then do ; 
     cost_1 = . ; 
     cost_2 = . ; 
     cost_3 = . ; 
     cost_4 = . ; 
   end ; 
   if vnbr = 1 then cost_1 = cost ; 
   if vnbr = 2 then cost_2 = cost ; 
   if vnbr = 3 then cost_3 = cost ; 
   if vnbr = 4 then cost_4 = cost ; 
   cost_1 = cost_2 ; 
   if last.pat then output ; 
   keep pat cost_1 cost_2 cost_3 cost_4 ; 
 run ; 
 
 proc print data=cost_p(obs=20) ; 
   title3 'First 20 Observations of COST_P' ; 
 run ; 
 
 *  Merge Utilities, Costs, and Hospital Randomization data ; 
 
 data patient ; 
   merge util_p(in=util) cost_p(in=cost) hosp ; 
   by pat ; 
   if util or cost ; 
 run ; 
 
 data patient ; 
   set patient ; 
   if rih=0 ;   *  <--- Select Outpatients ; 
 run ; 
 
 proc print data=patient(obs=20) ; 
   title3 'First 20 Observations of Patient' ; 
 run ; 
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 * Create month-level data with derived NMBs ; 
 data month ; 
   set patient ; 
   patid = _n_ ; 
   do i=1 to 4 ; 
     if i=1 then do ; 
    month = 0 ; 
          cost = l ; 
    util = util_1 ; 
          output ; 
  end ; 
     if i=2 then do ; 
    month = 4 ; 
          cost = cost_2 ; 
    util = util_2 ; 
          output ; 
  end ; 
     if i=3 then do ; 
    month = 8 ; 
          cost = cost_3 ; 
    util = util_3 ; 
          output ; 
  end ; 
     if i=4 then do ; 
    month = 12 ; 
          cost = cost_4 ; 
    util = util_4 ; 
          output ; 
  end ; 
   end ; 
   keep patid age prevhosp group cost util month ; 
 run ; 
 
 proc print data=month(obs=20) ; 
   title3 'First 20 Observations of Month' ; 
 run ; 
 
 proc sort data=month ; 
   by group month ; 
 run ; 
 
 proc means data=month n nmiss mean std median min max ; 
      var cost util age prevhosp ; 
   by group month ; 
   title3 'Descriptive Statistics of ROSE Cost and Utility Data, 
By Group and Month' ; 
 run ; 
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G. DESCRIPTIVE STATISTICS (continued) 
 
  *  Program:      Univariate.SAS                                     ; 
  *  Description:  This program reads the COMPLETE dataset and runs   ; 
  *  some uni-variate analyses by txgroup and month on nmb_0, nmb_25, ; 
  *  nmb_50, and nmb_100.  NMBs have been divided by 1000.            ; 
  *  Programmer:   Dennis D. Gagnon                                   ; 
  *  Date:         04/12/2008                                         ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Univariate.SAS                  Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by month ; 
  run ; 
 
  proc corr data=complete spearman ; 
    by month ; 
    var cost util age40 prevhospc ; 
    title3'Spearman Rank Correlations, by Month(Treatments Combined)' ; 
  run ;  
 
  proc sort data=complete ; 
    by txgroup month ; 
  run ; 
 
  PROC MEANS DATA=COMPLETE; 
   BY TXGROUP ;  
   where month = 0 ; 
   VAR age40 prevhospc; 
   TITLE3 'Means of age40 and previous hospitalizations by treatment 
group'; 
   title4 'Complete simulated data'; 
   run; 
 
  PROC MEANS DATA=COMPLETE; 
   BY TXGROUP month ;  
   VAR UTIL COST; 
   TITLE3 'Means of utilities and costs by treatment group and month'; 
   title4 'Complete simulated data'; 
   run; 
 
  proc univariate data=complete plot normal ; 
    by txgroup month ; 
 var util cost ; 
 title3 'Univariate Statistics of utilities and costs by Treatment 
Group and Visit' ; 
 title4 'Complete Simulated Data' ; 
  run ; 
 
  proc means data=complete ; 
    by txgroup month ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Means of NMBs by Treatment Group and Visit' ; 
 title4 'Complete Simulated Data' ; 
  run ; 
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  proc univariate data=complete plot normal ; 
    by txgroup month ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Univariate Statistics of NMBs by Treatment Group and 
Visit' ; 
 title4 'Complete Simulated Data' ; 
  run ; 
 
  proc sort data=complete ; 
    by month ; 
  run ; 
 
  proc ttest data=complete ; 
    by month ; 
 class txgroup ; 
 var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 '**Independent Sample T-tests for Differences in Costs, 
Utils, and NMB by Visit**' ; 
 title4 'Complete Simulated Data' ;   run ; 
 
  proc sort data=complete ; 
    by patid month ;   run ; 
 
  data total ; 
    set complete ; 
 by patid month ; 
    retain tnmb_0 tnmb_25 tnmb_50 tnmb_100 0 ; 
 if first.patid then do ; 
   tnmb_0   = 0 ; 
   tnmb_25  = 0 ; 
   tnmb_50  = 0 ; 
   tnmb_100 = 0 ; 
 end ; 
 tnmb_0   = tnmb_0   + nmb_0   ; 
 tnmb_25  = tnmb_25  + nmb_25  ; 
 tnmb_50  = tnmb_50  + nmb_50  ; 
 tnmb_100 = tnmb_100 + nmb_100 ; 
 if last.patid then output ; 
 keep patid txgroup tnmb_0 tnmb_25 tnmb_50 tnmb_100 ;   run ; 
 
  proc sort data=total ; 
    by txgroup ;   run ; 
 
  proc univariate data=total plot normal ; 
    by txgroup ; 
    var tnmb_0 tnmb_25 tnmb_50 tnmb_100 ; 
 title3 'Univariate Statistics of Total NMBs by Treatment Group' ; 
    title4 'Complete Simulated Dataset' ; 
  run ; 
  proc ttest data=total ; 
    class txgroup ; 
 var tnmb_0 tnmb_25 tnmb_50 tnmb_100 ; 
 title3 'Independent Sample T-tests for Difference in Total NMB' ; 
 title4 'Complete Simulated Data' ; 
  run ; 
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G. DESCRIPTIVE STATISTICS (continued) 
 
  *  Program:      Univariate LOCF.SAS                                ; 
  *  Description:  This program reads the LOCF dataset and runs some  ;    
  *  univariate analyses by txgroup and month on nmb_0, nmb_25,       ; 
  *  nmb_50, and nmb_100.  NMBs have been divided by 1000.            ;             
  *  Programmer:   Dennis D. Gagnon                                   ; 
  *  Date:         04/12/2008                                         ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Univariate LOCF.SAS          Dissertation: Estimating INMB in 
a Clinical Study With LOCF Data' ; 
  proc sort data=indat.locf out=locf ; 
    by month ; 
  run ; 
  proc corr data=locf spearman ; 
    by month ; 
    var cost util age40 prevhospc ; 
    title3 'Spearman Rank Correlations, by Month (Treatments Combined)' 
; 
 title4 'Simulated LOCF' ; 
  run ;  
  proc sort data=locf ; 
    by txgroup month ; 
  run ; 
  PROC MEANS DATA=locf; 
   BY TXGROUP ;  
   where month = 0 ; 
   VAR age40 prevhospc; 
   TITLE3 'Means of age40 and previous hospitalizations by treatment 
group'; 
   title4 'LOCF simulated data'; 
   run; 
  PROC MEANS DATA=locf; 
   BY TXGROUP month ;  
   VAR UTIL COST; 
   TITLE3 'Means of utilities and costs by treatment group and month'; 
   title4 'LOCF simulated data'; 
   run; 
  proc univariate data=locf plot normal ; 
    by txgroup month ; 
 var util cost ; 
 title3 'Univariate Statistics of utilities and costs by Treatment 
Group and Visit' ; 
 title4 'LOCF Simulated Data' ; 
  run ; 
  proc means data=locf ; 
    by txgroup month ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Means of NMBs by Treatment Group and Visit' ; 
 title4 'LOCF Simulated Data' ; 
  run ; 
  proc univariate data=locf plot normal ; 
    by txgroup month ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Univariate Statistics of NMBs by Treatment Group and 
Visit' ; 
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 title4 'LOCF Simulated Data' ; 
  run ; 
  proc sort data=locf ; 
    by month ; 
  run ; 
  proc ttest data=locf ; 
    by month ; 
 class txgroup ; 
 var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 '**Independent Sample T-tests for Differences in Costs, 
Utils, and NMB by Visit**' ; 
 title4 'LOCF Simulated Data' ; 
  run ; 
  proc sort data=locf ; 
    by patid month ; 
  run ; 
  data total ; 
    set locf ; 
 by patid month ; 
    retain tnmb_0 tnmb_25 tnmb_50 tnmb_100 0 ; 
 if first.patid then do ; 
   tnmb_0   = 0 ; 
   tnmb_25  = 0 ; 
   tnmb_50  = 0 ; 
   tnmb_100 = 0 ; 
 end ; 
 tnmb_0   = tnmb_0   + nmb_0   ; 
 tnmb_25  = tnmb_25  + nmb_25  ; 
 tnmb_50  = tnmb_50  + nmb_50  ; 
 tnmb_100 = tnmb_100 + nmb_100 ; 
 if last.patid then output ; 
 keep patid txgroup tnmb_0 tnmb_25 tnmb_50 tnmb_100 ; 
  run ; 
  proc sort data=total ; 
    by txgroup ; 
  run ; 
  proc univariate data=total plot normal ; 
    by txgroup ; 
    var tnmb_0 tnmb_25 tnmb_50 tnmb_100 ; 
 title3 'Univariate Statistics of Total NMBs by Treatment Group' ; 
    title4 'LOCF Simulated Dataset' ; 
  run ; 
  proc ttest data=total ; 
    class txgroup ; 
 var tnmb_0 tnmb_25 tnmb_50 tnmb_100 ; 
 title3 'Independent Sample T-tests for Difference in Total NMB' ; 
 title4 'LOCF Simulated Data' ; 
  run ; 
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G. DESCRIPTIVE STATISTICS (continued) 
 
*  Program:      Missing.SAS                                       ; 
*  Description:  This program reads the COMPLETE dataset and       ;  
*  creates the missing dataset based upon the NMB_50.  The cutoff  ; 
*  value for determining MAR and mnar is NMB_50 of 75th percentile ; 
*  of month 8 (8.91569 for group = 0).                             ; 
*  Programmer:   Dennis D. Gagnon                                  ; 
*  Date:         02/02/2008                                        ; 
libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
options pageno=1 ps=46 ls=150 center errors=2 ; 
title 'Missing.SAS  Dissertation: Estimating INMB in a Clinical Study 
With Missing Data' ; 
 
  proc sort data=indat.complete out=complete ; 
    by patid month ; 
  run ; 
 
  data tx0 ; 
    set complete ; 
 if txgroup = 0 ; 
  run ; 
 
  data tx1 ; 
    set complete ; 
 if txgroup = 1 ; 
  run ; 
 
  data tx0_1 tx0_2 tx0_3 ; 
    set tx0 ; 
      if _n_ le 400                then output tx0_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx0_2 ; 
 else                                   output tx0_3 ; 
  run ; 
 
  data tx1_1 tx1_2 tx1_3 ; 
    set tx1 ; 
      if _n_ le 400                then output tx1_1 ; 
 else if _n_ gt 400 and _n_ le 800 then output tx1_2 ; 
 else                                   output tx1_3 ; 
  run ; 
 
  data mar ; 
    set tx0_2 tx1_2 ; 
 by patid month ; 
 retain flag 0 ; 
 if first.patid then flag = 0 ; 
 if flag = 1 then delete ; 
 output ; 
 if flag = 0 & nmb_50 > 8.91569 then flag = 1 ; 
  run ; 
 
  data mnar ; 
    set tx0_3 tx1_3 ; 
    by patid month ; 
    retain flag 0 ; 
    if first.patid then flag = 0 ; 
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    if month ne 0 & flag = 0 & nmb_50 > 8.91569 then flag = 1 ; 
    if flag = 1 then delete ; 
  run ; 
 
  data missing ; 
    set tx0_1 tx1_1 mar mnar ; 
 drop flag ; 
  run ; 
 
  proc sort data=missing out=indat.missing ; 
    by patid month ; 
  run ; 
 
  proc sort data=indat.missing out=missing ; 
    by txgroup month ; 
  run ; 
 
  proc means data=missing ; 
    by txgroup month ; 
    var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
  run ; 
 
  proc univariate data=missing ; 
    by txgroup month ; 
    var cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'Mean Cost, Util, and NMB by Treatment Group and Visit' ; 
 title4 'Simulated Dataset with Missing Data' ; 
  run ; 
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H. MISSINGNESS PATTERNS 
 
  *  Program:      Cohort_Sim.SAS                                     ; 
  *  Description:  This program uses the simulated data once missing  ;  
  *  has been imposed and derives a cohort flag for each subject in   ;     
  *  the simulated data.                                              ; 
  *  Programmer:   Dennis D. Gagnon                                   ; 
  *  Date:         02/23/2008                                         ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  title 'Cohort_Sim.SAS                 Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.missing out=missing;      
     by patid month ;  run ; 
 
data cohort_sim ; 
  set missing ; 
  by patid month ; 
  if last.patid then do ; 
    cohort = month ; 
 output ; 
  end ; 
  keep patid cohort ;run ; 
 
data indat.cohort_sim ; 
  merge missing cohort_sim ; 
  by patid ;run ; 
 
proc print data=indat.cohort_sim(obs=20) ; 
  title3 'First 20 Observations of Cohort_Sim' ;run ; 
 
proc contents data=indat.cohort_sim ; 
  title3 'Contents of Cohort_Sim' ;run ; 
 
proc sort data=indat.cohort_sim out=cohort_sim ; 
  by cohort month ;run ; 
 
proc freq data=cohort_sim ; 
  tables cohort*month / list ; 
  title3 'Numbers for Cohort by Visit' ; 
  title4 'Treatment Groups Combined' ;run ; 
proc freq data=cohort_sim ; 
  tables txgroup*cohort*month / list ; 
  title3 'Numbers for Treatment Group by Cohort by Visit' ;run ; 
proc means data=cohort_sim ; 
  by cohort month ; 
  var nmb_0 nmb_25 nmb_50 nmb_100 ; 
  title3 'Mean NMB by Cohort, by Visit' ; 
  title4 'Both Treatment Groups Combined' ;run ; 
proc sort data=cohort_sim ; 
  by txgroup cohort month ;run ; 
proc means data=cohort_sim ; 
  by txgroup cohort month ; 
  var nmb_0 nmb_25 nmb_50 nmb_100 ; 
  title3 'Mean NMB by Treatment, by Cohort, by Visit' ;run ; 
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I.     TRUE 
 
  *  Program:      True.SAS                                          ; 
  *  Description:  This program reads the SUBJECT_COMP dataset and   ; 
  *  runs analyses to determine the true INMB.  First a t-test is run; 
  *  then a simple GLM with no covariates, then GLMs with age40,     ; 
  *  previous hosps and baseline nmb.                                ; 
  *  Programmer:   Dennis D. Gagnon                                  ; 
  *  Date:         02/23/2008                                        ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'True.SAS                                   Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc print data=indat.subject_comp(obs=20) ; 
    title3 'First 20 Observations of Subject_Comp' ; 
  run ; 
 
  proc ttest data=indat.subject_comp ; 
    class txgroup ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'T-Tests on True Difference in Mean NMBs, Complete Data 
Set' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup ; 
 model nmb_0 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment Only' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup ; 
 model nmb_25 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment Only' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup ; 
 model nmb_50 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment Only' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup ; 
 model nmb_100 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment Only' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup prevhospc ; 
 model nmb_0 = txgroup age40 prevhospc bln0 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
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 title3 'OLS of NMB0 Against Treatment And Covariates' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup prevhospc ; 
 model nmb_25 = txgroup age40 prevhospc bln25 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment And Covariates' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup prevhospc ; 
 model nmb_50 = txgroup age40 prevhospc bln50 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment And Covariates' ; 
  run ; 
 
  proc glm data=indat.subject_comp ; 
    class txgroup prevhospc ; 
 model nmb_100 = txgroup age40 prevhospc bln100 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment And Covariates' ; 
  run ; 
  quit ; 
 
 

 



 218

J. SENSITIVITY ANALYSIS 1 ANCOVA MODEL 
 
*  Program: LOCF, MAR Sensitivity.SAS                            ; 
*  Description:  This program reads the COMPLETE dataset and the ; 
*  MISSING dataset and creates an LOCF dataset.  Baseline is     ;  
*  brought forward if there is not follow-up.                    ; 
*     THIS IS THE MAR SENSITIVITY ANALYSIS !                     ; 
*  Programmer:   Dennis D. Gagnon                                ; 
*  Date:         05/24/2008                                      ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'LOCF, MAR Sensitivity.SAS       Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete(keep=patid month txgroup 
age40 prevhospc month04 month08) ; 
    by patid month ;  run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by patid month ;  run ; 
 
  data full ; 
    merge complete missing ; 
 by patid month ;  run ; 
 
  proc print data=full(firstobs=2369) ; 
    title3 'Last Observations of Full, Starting at 2369' ;  run ; 
 
  data locf ; 
    set full ; 
 by patid month ; 
 array last {6} lc lu l0 l25 l50 l100 ; 
 array current {6} cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 retain lc lu l0 l25 l50 l100 ; 
 if first.patid then do ; 
   do i = 1 to 6 ; 
     last{i} = . ; 
   end ; 
 end ; 
 do i = 1 to 6 ; 
   if current{i} = . then current{i} = last{i} ; 
 end ; 
 do i = 1 to 6 ; 
   last{i} = current{i} ; 
 end ; 
 drop i lc lu l0 l25 l50 l100 ;  run ; 
 
  data outdat.locf ; 
    set locf ;  run ; 
 
  proc contents data=outdat.locf ; 
    title3 'Contents of LOCF, Sensitivity MAR' ;  run ; 
 
  proc print data=outdat.locf(obs=20) ; 
    title3 'First 20 Observations of LOCF, Sensitivity MAR' ;  run ; 
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J. SENSITIVITY ANALYSIS 1 ANCOVA MODEL (continued) 
 
*  Program:  Subject LOCF, MAR Sensitivity.SAS                       ; 
*  Description:  This program reads the LOCF dataset and creates     ; 
*  a subject-level complete dataset.  NMBs are summed across months  ; 
*  4, 8, & 12.                                                       ; 
*     THIS IS THE MAR SENSITIVITY ANALYSIS !!!!                      ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         05/24/2008                                          ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Subject LOCF, MAR Sensitivity.SAS                  
Dissertation: Estimating INMB in a Clinical Study With Missing Data' ; 
  proc sort data=indat.locf out=locf (rename=(nmb_0=n_0 nmb_25=n_25 
nmb_50=n_50 nmb_100=n_100)) ; 
    by patid month ; 
  run ; 
 
  proc print data=locf(obs=20) ; 
    title3 'First 20 Observations of LOCF' ; 
  run ; 
     
  data indat.subject_locf ; 
    set locf ; 
 by patid month ; 
 retain nmb_0 nmb_25 nmb_50 nmb_100 bln0 bln25 bln50 bln100 0 ; 
 array nmb{4} nmb_0 nmb_25 nmb_50 nmb_100 ; 
 array bl{4} bln0 bln25 bln50 bln100 ; 
 array nm{4} n_0 n_25 n_50 n_100 ; 
 if first.patid then do ; 
   do i=1 to 4 ; 
     nmb{i} = 0 ; 
  bl{i} = 0 ; 
   end ; 
    end ; 
 if month = 0 then do ; 
   do i=1 to 4 ; 
     bl{i} = nm{i} ; 
   end ; 
 end ; 
 else do ; 
      do i=1 to 4 ; 
     nmb{i} = nmb{i} + nm{i} ; 
   end ; 
 end ; 
 drop i util cost month n_0 n_25 n_50 n_100 month month04 month08 
; 
 if last.patid then output ;   run ; 
 
  proc contents data=indat.subject_locf ; 
    title3 'Contents of Subject_LOCF' ; 
 title5 'MAR Sensitivity Analysis' ;   run ; 
 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
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J. SENSITIVITY ANALYSIS 1 ANCOVA MODEL (continued) 
 
*  Program: UNI LOCF, MAR Sensitivity.SAS                            ; 
*  Description: his program reads the SUBJECT_LOCF dataset and runs  ; 
*  analyses to determine the INMB.  First a t-test is run, then a    ; 
*  simple GLM with No covariates, then GLMs with age40, previous     ; 
*  hosps and baseline nmb.                                           ; 
*     THIS IS THE MAR SENSITIVITY ANALYSIS !!!!                      ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         05/24/2008                                          ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Uni LOCF, MAR Sensitivity.SAS              Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
   
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
  run ; 
  proc ttest data=indat.subject_locf ; 
    class txgroup ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'T-Tests on LOCF Difference in Mean NMBs, Complete Data 
Set' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_0 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment Only, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_25 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment Only, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_50 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment Only, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_100 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment Only, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_0 = txgroup age40 prevhospc bln0 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
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 title3 'OLS of NMB0 Against Treatment And Covariates, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_25 = txgroup age40 prevhospc bln25 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment And Covariates, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_50 = txgroup age40 prevhospc bln50 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment And Covariates, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_100 = txgroup age40 prevhospc bln100 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment And Covariates, LOCF' ; 
 title5 'MAR Sensitivity Analysis' ; 
  run ; 
  quit ; 
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K. SENSITIVITY ANALYSIS 1 ME MODEL  
 
*  Program:      MAR_Miss, MAR Sensitivity.SAS                        ; 
*  Description:  This program reads the MISSING dataset and creates   ; 
*  the month & month knot variables (one knot at month 4 and one knot ; 
*  at month 8). A mixed effects model is then run estimating the      ; 
*  difference in the changes in NMB from baseline across treatment    ; 
*  groups.                                                            ; 
*     This program uses the data simulated from Dr. Fairclough.       ; 
*     NMB are divided by 1000.                                        ; 
*     MAR SENSITIVITY ANALYSES !!!!                                   ; 
*  Programmer:   Dennis D. Gagnon                                     ; 
*  Date:         05/26/2008                                           ; 
    libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR'; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'MAR_Miss, MAR Sensitivity.SAS                 Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
  data missing ; 
    set indat.missing ; 
  run ; 
  proc print data=missing(obs=20) ; 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
 
  *  Start Running of Mixed Models ; 
  *  NMB_0 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_0= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 month*txgroup 
12 month04 8 month04*txgroup 8  
month08 4 month08*txgroup 4 ; 
estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
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estimate 'Total FU NMB,Tx=0' intercept 3 month 24 month04 12 month08 4 
; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_0' ; 
 title5 'MAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_25 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_25= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
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 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_25' ; 
 title5 'MAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_50 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_50= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
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 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12                                      
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_50' ; 
 title5 'MAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_100 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_100= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
 contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8                                        
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12                                      
month08 4  month08*txgroup 4 ; 
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 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_100' ; 
 title5 'MAR SENSITIVITY ANALYSES !!' ; 
  run ; 
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L. SENSITIVITY ANALYSIS 1 JOINT ME MODEL  
 
*  Program: Joint_Miss, MAR Sensitivity.SAS                          ; 
*  Description:  This program first obtains estimats from the        ; 
*  separate models and then jointly estimates the parameters         ; 
*  Programmer:   Diane Fairclough;                            
*  Date:         20/Dec/2007     ; 
*  Revised:      Dennis D. Gagnon; 
*  Date:         03/08/08        ; 
*  Revised:      Diane Fairclough; 
*  Date:         21Mar2008       ; 
*  Removed intercept random effect from Time to DO model             ; 
*  Revised:      Dennis D. Gagnon                                    ; 
*                05/26/08                                            ; 
*                MAR SENSITIVITY ANALYSES !!                         ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MAR' ; 
  *libname indat 'C:\Projects\Consult\Engelhart\SASlib' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Joint_Miss, MAR Sensitivity.SAS    Dissertation: Estimating 
INMB in a Clinical Study With Missing Data' ; 
*********************************************************************** 
  PREPARE DATA ; 
        
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
   
  proc summary data=indat.missing nway;  * Identifies time of last obs; 
    class patid; 
 var month ; 
 output out=work.last max=Last; 
 run; 
     
  proc freq data=work.last; 
    table last/missing; 
 run; 
   
  data missing ; 
    merge indat.missing work.last(keep=patid last); 
 by patid; 
 *** Time to last Assessment ***; 
 if last eq 12 then Censor=1;  
    else censor=0; 
 L_Last=log(last+1); 
 Label Censor='Completor (1=Yes, 0=No)' 
       L_Last='Ln(Time to Last Obs + 1)'; 
  run ; 
 
    proc print data=missing (obs=20); 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
  
*********************************************************************** 
  GET ESTIMATES FOR MU and SCALE (SAME FOR ALL NMBs) ;  
   
*** Initial Estimates for Time to DO portion of model ***; 
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proc lifereg data=work.missing;  
  model L_last*Censor(1)=/ dist=normal; * Used Normal because already 
logged *; 
  where month eq 0;  
  title3 'Estimate Mu and Scale' ; 
  title5 'MAR Sensitivity Analysis' ; 
run;  
*********************************************************************** 
NMB_0 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing ; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_0'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.1150 b1=0.1349 b2=1.6742 b3=-0.2045 b4=-1.2214 b5=0.0888 
b6=-0.2484 b7=-0.0677 b8=0.0132 b9=-2.9815    
        s1=16.9651 s12=-1.5065 s2=0.6207 s2w=140.59 
        mu0=2.8497 st=1.2775; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*** Joint Model with Two Random Effects ***; 
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*** Note this does not converge ... ****; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_0'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.1150 b1=0.1349 b2=1.6742 b3=-0.2045 b4=-1.2214 b5=0.0888 
b6=-0.2484 b7=-0.0677 b8=0.0132 b9=-2.9815    
        s1=16.9651 s12=-1.5065 s2=0.6207 s2w=140.59 
        mu0=2.8497 st=1.2775 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0  +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*********************************************************************** 
NMB_25 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_25'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-10.9848 b1=0.1451 b2=1.7083 b3=-0.0032 b4=-1.2555 b5=-
0.1069 b6=-0.2634 b7=-0.0821 b8=0.0041 b9=-3.1334    

 



 230

        s1=16.9599 s12=-1.5232 s2=0.6186 s2w=141.25 
        mu0=2.8497 st=1.2775; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_25'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-10.9848 b1=0.1451 b2=1.7083 b3=-0.0032 b4=-1.2555 b5=-
0.1069 b6=-0.2634 b7=-0.0821 b8=0.0041 b9=-3.1334    
        s1=16.9599 s12=-1.5232 s2=0.6186 s2w=141.25 
        mu0=2.8497 st=1.2775 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
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  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
*********************************************************************** 
NMB_50 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_50'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.8547 b1=0.1552 b2=1.7423 b3=0.1982 b4=-1.2893 b5=-0.3026 
b6=-0.2778 b7=-0.0957 b8=-0.0051 b9=-3.2842    
        s1=16.9738 s12=-1.5397 s2=0.6199 s2w=142.52 
        mu0=2.8497 st=1.2775; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
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    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_50'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.8547 b1=0.1552 b2=1.7423 b3=0.1982 b4=-1.2893 b5=-0.3026 
b6=-0.2778 b7=-0.0957 b8=-0.0051 b9=-3.2842    
        s1=16.9738 s12=-1.5397 s2=0.6199 s2w=142.52 
        mu0=2.8497 st=1.2775 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
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  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
*********************************************************************** 
NMB_100 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_100'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4047 b1=0.1755 b2=1.8101 b3=0.6010 b4=-1.3562 b5=-0.6940 
b6=-0.3043 b7=-0.1209 b8=-0.0239 b9=-3.5817    
        s1=17.0551 s12=-1.5726 s2=0.6320 s2w=146.91 
        mu0=2.8497 st=1.2775; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
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*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_100'; 
  title5 'MAR Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4047 b1=0.1755 b2=1.8101 b3=0.6010 b4=-1.3562 b5=-0.6940 
b6=-0.3043 b7=-0.1209 b8=-0.0239 b9=-3.5817    
        s1=17.0551 s12=-1.5726 s2=0.6320 s2w=146.91 
        mu0=2.8497 st=1.2775 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
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M. SENSITIVITY ANALYSIS 2 ANCOVA MODEL  
 
*  Program:      LOCF, MNAR Sensitivity.SAS                      ; 
*  Description:  This program reads the COMPLETE dataset and the ; 
*  MISSING dataset and creates an LOCF dataset.  Baseline is     ; 
*  brought forward if there is not follow-up.                    ; 
*     THIS IS THE MNAR SENSITIVITY ANALYSIS !                    ; 
*  Programmer:   Dennis D. Gagnon                                ; 
*  Date:         05/26/2008                                      ; 
libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'LOCF, MNAR Sensitivity.SAS       Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
  proc sort data=indat.complete out=complete(keep=patid month txgroup 
age40 prevhospc month04 month08) ; 
    by patid month ; run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by patid month ; run ; 
 
  data full ; 
    merge complete missing ; 
 by patid month ;  run ; 
 
  proc print data=full(firstobs=2369) ; 
    title3 'Last Observations of Full, Starting at 2369' ;   run ; 
 
  data locf ; 
    set full ; 
 by patid month ; 
 array last {6} lc lu l0 l25 l50 l100 ; 
 array current {6} cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 retain lc lu l0 l25 l50 l100 ; 
 if first.patid then do ; 
   do i = 1 to 6 ; 
     last{i} = . ; 
   end ; 
 end ; 
 do i = 1 to 6 ; 
   if current{i} = . then current{i} = last{i} ; 
 end ; 
 do i = 1 to 6 ; 
   last{i} = current{i} ; 
 end ; 
 drop i lc lu l0 l25 l50 l100 ;  run ; 
 
  data outdat.locf ; 
    set locf ; 
  run ; 
 
  proc contents data=outdat.locf ; 
    title3 'Contents of LOCF, Sensitivity MNAR' ; 
  run ; 
 
  proc print data=outdat.locf(obs=20) ; 
    title3 'First 20 Observations of LOCF, Sensitivity MNAR' ;   run ; 
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M. SENSITIVITY ANALYSIS 2 ANCOVA MODEL (CONTINUED) 
 
*  Program:      Subject LOCF, MNAR Sensitivity.SAS                  ; 
*  Description:  This program reads the LOCF dataset and creates a   ; 
*  SUBJect-Level complete dataset.  NMBs are summed across months 4, ; 
*  8, 12.                                                            ;  
*     THIS IS THE MNAR SENSITIVITY ANALYSIS !!!!                     ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         05/26/2008                                          ; 
libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Subject LOCF, MNAR Sensitivity.SAS                  
Dissertation: Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.locf out=locf (rename=(nmb_0=n_0 nmb_25=n_25 
nmb_50=n_50 nmb_100=n_100)) ; 
    by patid month ;   run ; 
 
  proc print data=locf(obs=20) ; 
    title3 'First 20 Observations of LOCF' ;   run ; 
     
  data indat.subject_locf ; 
    set locf ; 
 by patid month ; 
 retain nmb_0 nmb_25 nmb_50 nmb_100 bln0 bln25 bln50 bln100 0 ; 
 array nmb{4} nmb_0 nmb_25 nmb_50 nmb_100 ; 
 array bl{4} bln0 bln25 bln50 bln100 ; 
 array nm{4} n_0 n_25 n_50 n_100 ; 
 if first.patid then do ; 
   do i=1 to 4 ; 
     nmb{i} = 0 ; 
  bl{i} = 0 ; 
   end ; 
    end ; 
 if month = 0 then do ; 
   do i=1 to 4 ; 
     bl{i} = nm{i} ; 
   end ; 
 end ; 
 else do ; 
      do i=1 to 4 ; 
     nmb{i} = nmb{i} + nm{i} ; 
   end ; 
 end ; 
 drop i util cost month n_0 n_25 n_50 n_100 month month04 month08 
; 
 if last.patid then output ;   run ; 
 
  proc contents data=indat.subject_locf ; 
    title3 'Contents of Subject_LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
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M. SENSITIVITY ANALYSIS 2 ANCOVA MODEL (CONTINUED) 
 
*  Program:  UNI LOCF, MNAR Sensitivity.SAS                          ; 
*  Description:  This program reads the SUBJECT_LOCF dataset and runs; 
*  to determine the INMB. First a t-test is run, then a simple GLM   ; 
*  with no covariates, then GLMs with age40, previous hosps and      ; 
*  baseline nmb.                                                     ; 
*  THIS IS THE MNAR SENSITIVITY ANALYSIS !!!!                        ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         05/26/2008                                          ; 
libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Uni LOCF, MNAR Sensitivity.SAS              Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
   
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ;   run ; 
 
  proc ttest data=indat.subject_locf ; 
    class txgroup ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'T-Tests on LOCF Difference in Mean NMBs, Complete Data 
Set' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_0 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment Only, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_25 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment Only, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_50 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment Only, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ;   run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_100 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment Only, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_0 = txgroup age40 prevhospc bln0 / solution ; 
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 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment And Covariates, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_25 = txgroup age40 prevhospc bln25 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment And Covariates, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_50 = txgroup age40 prevhospc bln50 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment And Covariates, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_100 = txgroup age40 prevhospc bln100 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment And Covariates, LOCF' ; 
 title5 'MNAR Sensitivity Analysis' ; 
  run ; 
  quit ; 
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N. SENSITIVITY ANALYSIS 2 ME MODEL 
 
*  Program:  MAR_Miss, MNAR Sensitivity.SAS                        ; 
*  Description:  This program reads the MISSING dataset and creates; 
*  the month & month knot variables (one knot at month 4 and one   ; 
*  know at month 8). A mixed effects model is then run estimating  ; 
*  the difference in the changes in NMB from baseline across       ; 
*  treatment groups. This program uses the data simulated from     ; 
*  Dr. Fairclough.                                                 ; 
*     NMB are divided by 1000.                                     ; 
*     MNAR SENSITIVITY ANALYSES !!!!                               ; 
*  Programmer:   Dennis D. Gagnon                                  ; 
*  Date:         05/26/2008                                        ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'MAR_Miss, MNAR Sensitivity.SAS                 Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
 
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
  data missing ; 
    set indat.missing ; 
  run ; 
  proc print data=missing(obs=20) ; 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ;   run ; 
 
  *  Start Running of Mixed Models ; 
  *  NMB_0 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_0= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
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 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_0' ; 
 title5 'MNAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_25 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_25= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
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 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_25' ; 
 title5 'MNAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_50 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_50= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
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month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_50' ; 
 title5 'MNAR SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_100 ; 
 
  proc mixed data=missing covtest noclprint ; 
    model NMB_100= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
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    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_100' ; 
 title5 'MNAR SENSITIVITY ANALYSES !!' ; 
  run ; 
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O. SENSITIVITY ANALYSIS 2 JOINT ME MODEL  
 
*  Program:  Joint_Miss, MNAR Sensitivity.SAS                       ; 
*  Description:  This program first obtains estimats from the       ; 
*  separate models and then jointly estimates the parameters        ; 
*  Programmer:   Diane Fairclough                                   ; 
*  Date:         20/Dec/2007                                        ; 
*  Revised:      Dennis D. Gagnon                                   ; 
*  Date:         03/08/08                                           ; 
*  Revised:      Diane Fairclough                                   ; 
*  Date:         21Mar2008                                          ; 
*                Removed intercept random effect from Time to DO    ; 
*                model                                              ; 
*  Revised:      Dennis D. Gagnon                                   ; 
*                05/26/08                                           ; 
*                MNAR SENSITIVITY ANALYSES !!                       ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Sensitivity, MNAR' ; 
  *libname indat 'C:\Projects\Consult\Engelhart\SASlib' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Joint_Miss, MNAR Sensitivity.SAS    Dissertation: Estimating 
INMB in a Clinical Study With Missing Data' ; 
*********************************************************************** 
  PREPARE DATA ; 
    proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
   
proc summary data=indat.missing nway;  * Identifies time of last obs *; 
    class patid; 
 var month ; 
 output out=work.last max=Last; 
 run; 
     
  proc freq data=work.last; 
    table last/missing; 
 run; 
   
  data missing ; 
    merge indat.missing work.last(keep=patid last); 
 by patid; 
 *** Time to last Assessment ***; 
 if last eq 12 then Censor=1;  
    else censor=0; 
 L_Last=log(last+1); 
 Label Censor='Completor (1=Yes, 0=No)' 
       L_Last='Ln(Time to Last Obs + 1)'; 
  run ; 
   
  proc print data=missing (obs=20); 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
  
*********************************************************************** 
  GET ESTIMATES FOR MU and SCALE (SAME FOR ALL NMBs) ;  
*** Initial Estimates for Time to DO portion of model ***; 
proc lifereg data=work.missing;  
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  model L_last*Censor(1)=/ dist=normal; * Used Normal because already 
logged *; 
  where month eq 0;  
  title3 'Estimate Mu and Scale' ; 
  title5 'MNAR Sensitivity Analysis' ; 
run;  
*********************************************************************** 
NMB_0 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing ; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_0'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0748 b1=0.1140 b2=1.4719 b3=-0.2941 b4=-1.2006 b5=-
0.1134 b6=-0.0909 b7=0.0961 b8=0.0215 b9=-2.6116    
        s1=16.8619 s12=-1.5543 s2=0.7354 s2w=160.68 
        mu0=2.2591 st=1.4175; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*** Joint Model with Two Random Effects ***; 
*** Note this does not converge ... ****; 
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proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_0'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0748 b1=0.1140 b2=1.4719 b3=-0.2941 b4=-1.2006 b5=-
0.1134 b6=-0.0909 b7=0.0961 b8=0.0215 b9=-2.6116    
        s1=16.8619 s12=-1.5543 s2=0.7354 s2w=160.68 
        mu0=2.2591 st=1.4175 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0  +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*********************************************************************** 
NMB_25 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_25'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-10.9384 b1=0.1219 b2=1.4828 b3=-0.0958 b4=-1.2267 b5=-
0.3190 b6=-0.1133 b7=0.1009 b8=0.0136 b9=-2.7044    
        s1=16.8415 s12=-1.5726 s2=0.7179 s2w=160.81 
        mu0=2.2591 st=1.4175; 
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  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 +  b5*12 + b7*4 ; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_25'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-10.9384 b1=0.1219 b2=1.4828 b3=-0.0958 b4=-1.2267 b5=-
0.3190 b6=-0.1133 b7=0.1009 b8=0.0136 b9=-2.7044    
        s1=16.8415 s12=-1.5726 s2=0.7179 s2w=160.81 
        mu0=2.2591 st=1.4175 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup +b8*age40 
+b9*prevhospc +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 

 



 248

 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'b1*3 + b3*24 + b5*12 +        b7*4 ; 
  run; 
 
*********************************************************************** 
NMB_50 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_50'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-5.8020 b1=0.1289 b2=1.4937 b3=0.1026 b4=-1.2527 b5=-0.5242 
b6=-0.1361 b7=0.1053 b8=0.0058 b9=-2.7967    
        s1=16.8356 s12=-1.5905 s2=0.7017 s2w=161.58 
        mu0=2.2591 st=1.4175; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup +b8*age40 
+b9*prevhospc +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
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  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 +    b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ;   run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_50'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-5.8020 b1=0.1289 b2=1.4937 b3=0.1026 b4=-1.2527 b5=-0.5242 
b6=-0.1361 b7=0.1053 b8=0.0058 b9=-2.7967    
        s1=16.8356 s12=-1.5905 s2=0.7017 s2w=161.58 
        mu0=2.2591 st=1.4175 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 + b5*12 + b7*4 ; 
  run; 
 
 
***********************************************************************
NMB_100 ; 
   
*** Reference Model ***; 
proc nlmixed data=work.missing; 
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  title3 'Longitudinal and Time to Event with No correlation, NMB_100'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4707 b1=0.1429 b2=1.5152 b3=0.4994 b4=-1.3045 b5=-0.9334 
b6=-0.1819 b7=0.1137 b8=-0.0100 b9=-2.9806    
        s1=16.8764 s12=-1.6249 s2=0.6756 s2w=164.90 
        mu0=2.2591 st=1.4175; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_100'; 
  title5 'MNAR Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4707 b1=0.1429 b2=1.5152 b3=0.4994 b4=-1.3045 b5=-0.9334 
b6=-0.1819 b7=0.1137 b8=-0.0100 b9=-2.9806    
        s1=16.8764 s12=-1.6249 s2=0.6756 s2w=164.90 
        mu0=2.2591 st=1.4175 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
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  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +        b2*24 +         b4*12 +         
b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  run; 
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P. POST HOC ANALYSIS ANCOVA MODEL   
 
*  Program:      LOCF, Trajectory.SAS                                ; 
*  Description:  This program reads the COMPLETE dataset and the     ; 
*  MISSSING Dataset and creates an LOCF dataset.  Baseline is brought; 
*  forward if there is not follow-up.                                ; 
*     THIS IS THE TRAJECTORY SENSITIVITY ANALYSIS !                  ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         06/30/2008                                          ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat' ; 
  libname outdat 'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'LOCF, Trajectory.SAS            Dissertation: Estimating INMB 
in a Clinical Study With Missing Data' ; 
 
  proc sort data=indat.complete out=complete(keep=patid month txgroup 
age40 prevhospc month04 month08) ; 
    by patid month ;  run ; 
 
  proc sort data=outdat.missing out=missing ; 
    by patid month ;  run ; 
 
  data full ; 
    merge complete missing ; 
 by patid month ;  run ; 
 
  proc print data=full(firstobs=2369) ; 
    title3 'Last Observations of Full, Starting at 2369' ;  run ; 
 
  data locf ; 
    set full ; 
 by patid month ; 
 array last {6} lc lu l0 l25 l50 l100 ; 
 array current {6} cost util nmb_0 nmb_25 nmb_50 nmb_100 ; 
 retain lc lu l0 l25 l50 l100 ; 
 if first.patid then do ; 
   do i = 1 to 6 ; 
     last{i} = . ; 
   end ; 
 end ; 
 do i = 1 to 6 ; 
   if current{i} = . then current{i} = last{i} ; 
 end ; 
 do i = 1 to 6 ; 
   last{i} = current{i} ; 
 end ; 
 drop i lc lu l0 l25 l50 l100 ;   run ; 
 
  data outdat.locf ; 
    set locf ;   run ; 
 
  proc contents data=outdat.locf ; 
    title3 'Contents of LOCF, Trajectory Sensitivity Analysis' ;  run ; 
 
  proc print data=outdat.locf(obs=20) ; 
    title3 'First 20 Observations of LOCF, Trajectory Sensitivity 
Analysis' ;   run ; 
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P. POST HOC ANALYSIS ANCOVA MODEL (CONTINUED) 
 
*  Program:      Subject LOCF, Trajectory.SAS                        ; 
*  Description:  This program reads the LOCF dataset and creates A   ; 
*  subject-level complete dataset.  NMBs are summed across months 4, ; 
*  8, & 12.                                                          ;  
*     THIS IS THE TRAJECTORY SENSITIVITY ANALYSIS !!                 ; 
*  Programmer:   Dennis D. Gagnon                                    ; 
*  Date:         06/30/2008                                          ; 
  libname indat  'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Subject LOCF, Trajectory.SAS                       
Dissertation: Estimating INMB in a Clinical Study With Missing Data' ; 
   
  proc sort data=indat.locf out=locf (rename=(nmb_0=n_0 nmb_25=n_25 
nmb_50=n_50 nmb_100=n_100)) ; 
    by patid month ; 
  run ; 
  proc print data=locf(obs=20) ; 
    title3 'First 20 Observations of LOCF' ;   run ; 
  
  data indat.subject_locf ; 
    set locf ; 
 by patid month ; 
 retain nmb_0 nmb_25 nmb_50 nmb_100 bln0 bln25 bln50 bln100 0 ; 
 array nmb{4} nmb_0 nmb_25 nmb_50 nmb_100 ; 
 array bl{4} bln0 bln25 bln50 bln100 ; 
 array nm{4} n_0 n_25 n_50 n_100 ; 
 if first.patid then do ; 
   do i=1 to 4 ; 
     nmb{i} = 0 ; 
  bl{i} = 0 ; 
   end ; 
    end ; 
 if month = 0 then do ; 
   do i=1 to 4 ; 
     bl{i} = nm{i} ; 
   end ; 
 end ; 
 else do ; 
      do i=1 to 4 ; 
     nmb{i} = nmb{i} + nm{i} ; 
   end ; 
 end ; 
 drop i util cost month n_0 n_25 n_50 n_100 month month04 month08 
; 
 if last.patid then output ;   run ; 
 
  proc contents data=indat.subject_locf ; 
    title3 'Contents of Subject_LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;  run ; 
 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;  run ; 
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P. POST HOC ANALYSIS ANCOVA MODEL (CONTINUED) 
 
*  Program:      UNI LOCF, Trajectory.SAS                          ; 
*  Description:  This program reads the SUBJECT_LOCF dataset and   ; 
*  runs analyses to determine the INMB. First a t-test is run,     ; 
*  then a simple GLM with no covariates, then GLMs with age40,     ; 
*  previous hosps and baseline nmb.                                ; 
*     THIS IS THE TRAJECTORY SENSITIVITY ANALYSIS !!!!             ; 
*  Programmer:   Dennis D. Gagnon                                  ; 
*  Date:         06/30/2008                                        ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Uni LOCF, Trajectory.SAS                   Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
  proc print data=indat.subject_locf(obs=20) ; 
    title3 'First 20 Observations of Subject_LOCF' ; 
  run ; 
 
  proc ttest data=indat.subject_locf ; 
    class txgroup ; 
 var nmb_0 nmb_25 nmb_50 nmb_100 ; 
 title3 'T-Tests on LOCF Difference in Mean NMBs, Complete Data 
Set' ; 
 title5 'Trajectory Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_0 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment Only, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_25 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment Only, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_50 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment Only, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ; 
  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup ; 
 model nmb_100 = txgroup / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment Only, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ; 
  run ; 
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  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_0 = txgroup age40 prevhospc bln0 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB0 Against Treatment And Covariates, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;   run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_25 = txgroup age40 prevhospc bln25 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB25 Against Treatment And Covariates, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_50 = txgroup age40 prevhospc bln50 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB50 Against Treatment And Covariates, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;  run ; 
 
  proc glm data=indat.subject_locf ; 
    class txgroup prevhospc ; 
 model nmb_100 = txgroup age40 prevhospc bln100 / solution ; 
 lsmeans txgroup / stderr tdiff pdiff cl ; 
 title3 'OLS of NMB100 Against Treatment And Covariates, LOCF' ; 
 title5 'Trajectory Sensitivity Analysis' ;  run ; 
  quit ; 
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Q. POST HOC ANALYSIS ME MODEL 
 
*  Program:      MAR_Miss, Trajectory.SAS                           ; 
*  Descriptin:  This program reads the MISSING dataset and creates  ; 
*  the month & month knot variables (one knot at month 4 and one    ; 
*  know at month 8). A mixed effects model is then run estimating   ; 
*  the difference in the changes in the NMB from baseline across    ; 
*  treatment groups.                                                ; 
*     This program uses the data simulated from Dr. Fairclough.     ; 
*     NMB are divided by 1000.                                      ; 
*     TRAJECTORY SENSITIVITY ANALYSIS !!!                           ; 
*  Programmer:   Dennis D. Gagnon                                   ; 
*  Date:         06/30/2008                                         ; 
  libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'MAR_Miss, Trajectory.SAS                      Dissertation: 
Estimating INMB in a Clinical Study With Missing Data' ; 
  proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
 
  data missing ; 
    set indat.missing ; 
  run ; 
 
  proc print data=missing(obs=20) ; 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
 
  *  Start Running of Mixed Models ; 
  *  NMB_0 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_0= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
    random intercept month / subject = patid type =UN gc g gcorr v 
vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
    estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 
; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
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month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_0' ; 
 title5 'TRAJECTORY SENSITIVITY ANALYSES !!' ;   run ; 
 
  *  NMB_25 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_25= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
  
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
  estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
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month08 4 month08*txgroup 4 ; 
 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 month08 4 
; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_25' ; 
 title5 'TRAJECTORY SENSITIVITY ANALYSES !!' ; 
  run ; 
 
  *  NMB_50 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_50= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
 random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8  
                                                                              
month08 4 month08*txgroup 4 ; 
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 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_50' ; 
 title5 'TRAJECTORY SENSITIVITY ANALYSES !!' ;   run ; 
 
   
 
  *  NMB_100 ; 
  proc mixed data=missing covtest noclprint ; 
    model NMB_100= age40 prevhospC txgroup month month*txgroup  
                     month04 month04*txgroup month08 month08*txgroup  
                    /solution; 
 random intercept month / subject = patid type =UN gc g gcorr v vcorr; 
    contrast 'Tx Diff at Baseline' txgroup 1 ; 
    estimate 'Intercept, Tx=0' intercept 1 ; 
    estimate 'Intercept, Tx=1' intercept 1 txgroup 1 ; 
 estimate 'Intercept, Diff' txgroup 1 ; 
    estimate 'Month 4, Tx=0' intercept 1 month 4 ; 
    estimate 'Month 4, TX=1' intercept 1 txgroup 1 month 4 
month*txgroup 4 ; 
 estimate 'Month 4, Diff' txgroup 1 month*txgroup 4 ; 
    estimate 'Month 8, Tx=0' intercept 1 month 8 month04 4 ; 
    estimate 'Month 8, TX=1' intercept 1 txgroup 1 month 8 
month*txgroup 8 month04 4 month04*txgroup 4 ; 
 estimate 'Month 8, Diff' txgroup 1 month*txgroup 8 
month04*txgroup 4 ; 
   estimate 'Month 12, Tx=0' intercept 1 month 12 month04 8 month08 4 ; 
    estimate 'Month 12, TX=1' intercept 1 txgroup 1 month 12 
month*txgroup 12 month04 8 month04*txgroup 8                                        
month08 4 month08*txgroup 4 ; 
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 estimate 'Month 12, Diff' txgroup 1 month*txgroup 12 
month04*txgroup 8 month08*txgroup 4 ; 
 estimate 'Total FU NMB, Tx=0' intercept 3 month 24 month04 12 
month08 4 ; 
 estimate 'Total FU NMB, Tx=1' intercept 3 txgroup 3 month 24 
month*txgroup 24 month04 12 month04*txgroup 12 
                                                                               
month08 4  month08*txgroup 4 ; 
 estimate 'Total FU NMB, Diff' txgroup 3 month*txgroup 24 
month04*txgroup 12 month08*txgroup 4 ; 
    estimate 'Chg Mo4, Tx=0' month 4 ; 
    estimate 'Chg Mo4, TX=1' month 4 month*txgroup 4 ; 
 estimate 'Chg Mo4, Diff' month*txgroup 4 ; 
    estimate 'Chg Mo8, Tx=0' month 8 month04 4 ; 
    estimate 'Chg Mo8, TX=1' month 8 month*txgroup 8 month04 4 
month04*txgroup 4 ; 
 estimate 'Chg Mo8, Diff' month*txgroup 8 month04*txgroup 4 ; 
    estimate 'Chg Mo12, Tx=0' month 12 month04 8 month08 4 ; 
    estimate 'Chg Mo12, TX=1' month 12 month*txgroup 12 month04 8 
month04*txgroup 8 month08 4 month08*txgroup 4 ; 
 estimate 'Chg Mo12, Diff' month*txgroup 12 month04*txgroup 8 
month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Tx=0' month 24 month04 12 month08 4 ; 
 estimate 'Chg T_FU NMB, Tx=1' month 24 month*txgroup 24 month04 
12 month04*txgroup 12 month08 4  month08*txgroup 4 ; 
 estimate 'Chg T_FU NMB, Diff' month*txgroup 24 month04*txgroup 12 
month08*txgroup 4 ; 
    title3 'Piecewise Linear Regression Analysis: NMB_100' ; 
 title5 'TRAJECTORY SENSITIVITY ANALYSES !!' ; run ; 
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R. POST HOC ANALYSIS JOINT ME MODEL  
 
*  Program:      Joint_Miss, Trajectory.SAS                          ; 
*  Description:  This program first obtains estimats from the        ; 
*  seperate models and then jointly estimates the parameters         ; 
*  Programmer:   Diane Fairclough                                    ; 
*  Date:         20/Dec/2007                                         ; 
*  Revised:      Dennis D. Gagnon                                    ; 
*  Date:         03/08/08                                            ; 
*  Revised:      Diane Fairclough                                    ; 
*  Date:         21Mar2008                                           ; 
*                Removed intercept random effect from Time to DO     ; 
*                model                                               ; 
*  Revised:      Dennis D. Gagnon                                    ; 
*                08/21/08                                            ; 
*                TRAJECTORY SENSITIVITY ANALYSIS !!                  ; 
  libname indat 
'L:\Raritan\PGSM\PGSMHE&P\PUBLIC\DGagnon\NMB\Trajectory\V802dat\Traject
ory' ; 
  *libname indat 'C:\UMDNJ\Dissertation\NMB\V802dat\Trajectory' ; 
  *libname indat 'C:\Projects\Consult\Engelhart\SASlib' ; 
  options pageno=1 ps=46 ls=150 center errors=2 ; 
  title 'Joint_Miss, Trajectory.SAS         Dissertation: Estimating 
INMB in a Clinical Study With Missing Data' ; 
*********************************************************************** 
  PREPARE DATA ; 
    proc print data=indat.missing(obs=20) ; 
    title3 'First 20 Observations of Missing' ; 
  run ; 
   
  proc summary data=indat.missing nway;  * Identifies time of last obs 
*; 
    class patid; 
 var month ; 
 output out=work.last max=Last; run; 
    proc freq data=work.last; 
    table last/missing; run; 
  data missing ; 
    merge indat.missing work.last(keep=patid last); 
 by patid; 
 *** Time to last Assessment ***; 
 if last eq 12 then Censor=1;  
    else censor=0; 
 L_Last=log(last+1); 
 Label Censor='Completor (1=Yes, 0=No)' 
       L_Last='Ln(Time to Last Obs + 1)'; 
  run ; 
  proc print data=missing (obs=20); 
    title3 'Print of Missing with Month and Knots at Months 4 and 8 
Derived' ; 
  run ; 
*********************************************************************** 
  GET ESTIMATES FOR MU and SCALE (SAME FOR ALL NMBs) ;  
  *** Initial Estimates for Time to DO portion of model ***; 
proc lifereg data=work.missing;  
  model L_last*Censor(1)=/ dist=normal; * Used Normal because already 
logged *; 
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  where month eq 0;  
  title3 'Estimate Mu and Scale' ; 
  title5 'Trajectory Sensitivity Analysis' ; 
run;  
*********************************************************************** 
NMB_0 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing ; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_0'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0498 b1=0.1070 b2=1.5262 b3=-0.4298 b4=-0.9284 b5=0.3531 
b6=-0.0813 b7=0.1235 b8=0.0292 b9=-2.4951    
        s1=18.0371 s12=-1.5875 s2=0.4572 s2w=132.19 
        mu0=2.4541 st=1.6194 lambda2=0 ; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 + b5*12 + b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
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  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*** Joint Model with Two Random Effects ***; 
*** Note this does not converge ... ****; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_0'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_0 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-16.0498 b1=0.1070 b2=1.5262 b3=-0.4298 b4=-0.9284 b5=0.3531 
b6=-0.0813 b7=0.1235 b8=0.0292 b9=-2.4951    
        s1=18.0371 s12=-1.5875 s2=0.4572 s2w=132.19 
        mu0=2.4541 st=1.6194 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_0-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0  +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_0 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
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    estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 + b5*12 +        b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*********************************************************************** 
NMB_25 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_25'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-10.9154 b1=0.1179 b2=1.5492 b3=-0.2216 b4=-0.9438 b5=0.1439 
b6=-0.0724 b7=0.1303 b8=0.0225 b9=-2.6785    
        s1=18.0248 s12=-1.6097 s2=0.4639 s2w=132.53 
        mu0=2.4541 st=1.6194 lambda2=0 ; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
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    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 +  b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff' b1*3 + b3*24 + b5*12 + b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_25'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_25 ne .;  * Proc does not deal well with missing values *; 
  parms b0=-10.9154 b1=0.1179 b2=1.5492 b3=-0.2216 b4=-0.9438 b5=0.1439 
b6=-0.0724 b7=0.1303 b8=0.0225 b9=-2.6785    
        s1=18.0248 s12=-1.6097 s2=0.4639 s2w=132.53 
        mu0=2.4541 st=1.6194 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
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  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_25-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_25 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 +  b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*********************************************************************** 
NMB_50 ; 
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*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_50'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.7818 b1=0.1289 b2=1.5719 b3=-0.0133 b4=-0.9594 b5=-0.0653 
b6=-0.0638 b7=0.1374 b8=0.0155 b9=-2.8636    
        s1=18.0353 s12=-1.6312 s2=0.4744 s2w=133.46 
        mu0=2.4541 st=1.6194 lambda2=0 ; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'b1*3 + b3*24 +    b5*12 +        b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
 *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
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  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing ; 
  title3 'Joint Longitudinal and Time to Event, NMB_50'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_50 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=-5.7818 b1=0.1289 b2=1.5719 b3=-0.0133 b4=-0.9594 b5=-0.0653 
b6=-0.0638 b7=0.1374 b8=0.0155 b9=-2.8636    
        s1=18.0353 s12=-1.6312 s2=0.4744 s2w=133.46 
        mu0=2.4541 st=1.6194 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_50-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_50 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
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  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*********************************************************************** 
NMB_100 ; 
*** Reference Model ***; 
proc nlmixed data=work.missing; 
  title3 'Longitudinal and Time to Event with No correlation, NMB_100'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4830 b1=0.1515 b2=1.6175 b3=0.4032 b4=-0.9910 b5=-0.4833 
b6=-0.0471 b7=0.1520 b8=0.0006 b9=-3.2371    
        s1=18.0964 s12=-1.6718 s2=0.5060 s2w=137.08 
        mu0=2.4541 st=1.6194 lambda2=0 ; 
  bounds s2w>0, st>0; * Variance of D constrained to be PD *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  S2T=st*st; 
 
  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
       +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
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    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 + b2*24 + b4*12 +   b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
 
*** Joint Mdel with Two Random Effects ***; 
proc nlmixed data=work.missing; 
  title3 'Joint Longitudinal and Time to Event, NMB_100'; 
  title5 'Trajectory Sensitivity Analyses' ; 
  where nmb_100 ne .;  * Proc does not deal well with missing values *; 
 
  parms b0=4.4830 b1=0.1515 b2=1.6175 b3=0.4032 b4=-0.9910 b5=-0.4833 
b6=-0.0471 b7=0.1520 b8=0.0006 b9=-3.2371    
        s1=18.0964 s12=-1.6718 s2=0.5060 s2w=137.08 
        mu0=2.4541 st=1.6194 lambda2=0; 
  bounds s2w>0, st>0; * Variance constrained to be Positive *; 
  D11=S1*S1; D12=S1*S12; D22=S12*S12 + S2*S2;  
  s2t=st*st; 
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  *** Mixed effect Model for longitudinal outcome***; 
  Pred=b0 +b1*txgroup +b2*month +b3*month*txgroup +b4*month04 
+b5*month04*txgroup +b6*month08 +b7*month08*txgroup  
      +b8*age40 +b9*prevhospc 
      +d1 +d2*month; 
  ll_Y= -(log(2*3.14159) + log(s2w) + (nmb_100-Pred)**2/s2w)/2; 
 
  *** Time to Event ***;  
  if month eq 0 then do; 
    Pred_T=mu0 +lambda2*d2; 
 *** Residual of Measure of Ancillary Variable ***; 
    Z_T=(L_Last-Pred_T)/sqrt(s2t); 
    *** Left censored ***; 
    *if Censor eq -1 then ll_t=log(probnorm(Z_T)); 
    *** Uncensored ***; 
    if Censor eq 0 then ll_T=-(log(2*3.14159)+log(s2t)+Z_T**2)/2; 
    *** Right censored ***; 
    if Censor eq 1 then ll_T=log(1-probnorm(Z_T)); 
  end; 
  else ll_T=0;  
 
  *** General Log Likelihood ***; 
  model nmb_100 ~ general(ll_Y+ll_T); 
  random d1 d2 ~ normal([0,0],[D11,D12,D22]) sub=patid; 
   
  estimate 'Total FU NMB, Tx=0' b0*3 +  b2*24 + b4*12 + b6*4        ; 
  estimate 'Total FU NMB, Tx=1' b0*3 + b1*3 + b2*24 + b3*24 + b4*12 + 
b5*12 + b6*4 + b7*4 ; 
  estimate 'Total FU NMB, Diff'        b1*3 +         b3*24 +         
b5*12 +        b7*4 ; 
  
  * These are the statements you need to add to the joint models to get 
the variance and correlation estimates.  ; 
  *  The ones that are commented out are if any of your models include 
lambda1.                                  ; 
  estimate 'D11' D11;   *Var of between patient NMB intercept; 
  estimate 'D12' D12;   *Covar of between patient NMB intercept 
and slope; 
  estimate 'D22' D22;   *Var of between patient NMB slope; 
  *estimate 'Tau2' lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t; 
  estimate 'Tau2' lambda2**2*D22 + S2t;   *Residual error for log 
time to dropout; 
  *estimate 'D1T' lambda1*D11+Lambda2*D12; 
  *estimate 'D2T' lambda1*D12+Lambda2*D22; 
  estimate 'D2T' Lambda2*D22;     *; 
  *estimate 'Rho1T' (lambda1*D11+Lambda2*D12)/ 
  (sqrt(D11)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
  *estimate 'Rho2T' (lambda1*D12+Lambda2*D22)/ 
  (sqrt(D22)*sqrt(lambda1**2*D11 + 2*lambda1*lambda2*D12 
+lambda2**2*D22 + S2t)); 
 
  estimate 'Rho2T' (Lambda2*D22)/(sqrt(D22)*sqrt(lambda2**2*D22 + 
S2t)); *Correlation between log time to dropout and NMB slope; 
  run; 
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