Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 1 of 8

1	00:46:46	ROMINA	All right. It's, um, - it's Pascal's triangle.
			[Looking at the numerical array of the 1-
			centimeter-grid transparency.]
2		MICHAEL	What is that? Two by three? [Looking and
			pointing to Brian's inscription on the
			classroom chalkboard.]
3		JEFF	It is?
4		ROMINA	Yeah.
5		JEFF	Let me see.
6		ROMINA	All right. Yeah it is.
7		MICHAEL	What?
8		ROMINA	It's Pascal's triangle.
9		MICHAEL	Two, three-
10		ROMINA	No, it's not. It doesn't work out.
11		JEFF	See look at- Here, Mike-
12		ROMINA	Because twelve that doesn't-
13		JEFF	Mike look- just look at it in this thing. You got
			the 6 and the 4 and the 6 are the 10. That
			should be a 15- //that's should be a 20-
			[Pointing to the 1-centimeter transparency grid
			that is in front of Romina.]
14		ROMINA	//But that's not a 15. That is a twelve because
			he even got the 12.
15		JEFF	Well- that should- that should be a 20 right
			there. [Pointing to the square \dagger (6,3) on the
			transparency that contains the datum 15.]
16		ROMINA	Ah, you can [Inaudible] the twenty.
17		MICHAEL	Up to here is been a one, one, one, one and-
18		JEFF	Huh.
19		BRIAN	So what's wrong?
20		MICHAEL	It should be six- fifteen.
21		ROMINA	Do- do a four by two.
22		MICHAEL	Yeah.
23		JEFF	You do the four by two, and it should put us,

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 2 of 8

			uh, in business.
24		BRIAN	All right.
25		ROMINA	And then- because we'll compare it to all-
26		JEFF	If this comes through it just-
27		ROMINA	If it's Pascal's triangle it'll just give us
			problems.
28		JEFF	No but it- it's just nice how- you start- like
			when you start from nothing. You know what
			I'm saying? Like we have no clue what we're
			doing. [Putting his hand on his forehead and
			then waves his hand in the air by his forehead.]
29		ROMINA	But he even got twelve when he did it.
30		MICHAEL	I might be missing two.
31		JEFF	It could be- it's not hard to miss three, right?
			[Jeff waves his hand in the air.]
32		MICHAEL	Two.
33		JEFF	Three.
34		ROMINA	So for the next one Jeff we missed five?
35		JEFF	It's very easy. I mean, //there's a lot of things
			going on.
36		MICHAEL	//That's kind of a lot.
37		JEFF	We like blew like a lot of these. You know
			what I'm saying? [Waving his hand in the air
			and puts it back on his forehead.]
38		ROMINA	Yeah. I think we, uh, got every single one
			wrong so far.
39		JEFF	That's what I'm saying. So why- like it
			wouldn't be totally out of control. [Removing
			his hand from of his forehead and waving his
			hand toward the grid.]
40		BRIAN	Oh.
41	00:48:22	ROMINA	Do- do it the other way. Just turn it around.
			That'll make our life- that- because that's we
			did. It's the same thing but- [Brian writing
			rows of numbers silently, this time adding a 4
			too.]

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 3 of 8
	0

42	00:52:30	JEFF	All right. All right, what if we even went- let
12	00.52.50		me know when you're done. All right. Because
			there's an easier way to [Inaudible]. Listen to
			me for one sec.
43		MICHAEL	Go ahead.
44		JEFF	All right. If- all right. Say in a situation where
			it's like, uh a two by four. [Drawing a two-by-
			four sub-grid on 1-centimeter paper.]
45		MICHAEL	Uh hum.
46		JEFF	All right. If we know that in a four-by-four
40		JETT	[really meaning a two-by-two] it's six [shortest]
			routes] if you figure out all the ways to get to
			the beginning parts of this, this would all just
			be six different ways to get from here to here.
			So you figure out all the ways to get there and
			you could just add six- you know.
			[Subdividing the two-by-four sub-grid into two
			two-by-two sub-grids.]
47		MICHAEL	If you have the two, you could find out how
• •			many ways to get to here and add that where
			every two is. [Leaning over to Jeff's paper and
			pointing.]
48		JEFF	You know what I'm saying? So like from-
			from-
49		BRIAN	I got fifteen.
50		JEFF	You did?
51		BRIAN	Yeah.
52		JEFF	All right. 'Cause from there to there you have
			six different ways. And then from there,
			there's one way. To there there's one way and
			from there- //
53		BRIAN	//Haaa. Tell me when you're done.
54		JEFF	Sure. one- two- there's three ways. Um-
55		MICHAEL	I got fifteen also.
56		BRIAN	Yeah Mike. [Inaudible]. [Leaving the room.]
57			

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 4 of 8

58		JEFF	It means that it is the triangle. Right here?
			[Pointing to paper]
59		MICHAEL	Mm hm.
60		JEFF	You have fifteen there?
61		MICHAEL	I got fifteen.
62		JEFF	That's good. Yeah, because then- Yeah. This-
			then in a three by three it should be twenty.
			That'll be, uh,- [Pointing to paper and writing a
			6 in the lower right hand square.]
63		MICHAEL	Is nine blocks for that one? [Pointing to
			intersection point (6,3) on the transparency]
64	00:54:30	JEFF	In the nine block it should be twenty. [Jeff
			writes the numbers 1, 3, and 6 in squares
			vertically with two 3s to the left of the other 3.]
			[inaudible]
65	00:56:58	BRIAN	I got fifteen for this one-
66		ROMINA	For which one?
67		MICHAEL	//For-
68		BRIAN	//Four by two.
69		ROMINA	So you did get fifteen? So now it's working?
			And then the two by four has to be fifteen too.
			Now if we do three by three and that's twenty,
			then we're done.
70		BRIAN	That's what he's doing?
71		ROMINA	What?
72		BRIAN	He said he was off by two. [Romina erasing
			the numbers on the grid transparency then
			takes a new transparency with a grid on it.]
			You can just get another one.
73		ROMINA	I'll just turn this around. [Referring to the
			transparency of a centimeter grid. She then
			writes 2 and 3 in the squares of the first row of
			the transparency.]
74		BRIAN	It's only a couple of numbers.
75		ROMINA	I did it again. You got twelve for this one?
			Fifteen, I mean? [Rewriting the numbers on the

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 5 of 8

		grid and adds a 15 to the right of the 10 and under the 10.]
76	BRIAN	Yep. Now, what one are you expecting to be twenty? Three by three?
77	BRIAN	I guess I'll do it. Check it out.
78	ROMINA	I don't think- it's here- he has- He was just
		doing three by three wasn't he? [Looking
		through her papers.]
79	BRIAN	Yeah. It's no big deal.
80	ROMINA	I'm already stuck. [Brian drawing a three-by-
		three subgrid on his paper. Romina draws in
		shortest routes for the "imaginary" three-by-
		threes on her grid. Romina's pen stops when
		drawing a route.]
81	JEFF	You shouldn't be. Where you going?
82	ROMINA	Three by three. [Showing the paper to Jeff.]
83	JEFF	You said F making the- the boxes.
84	MICHAEL	Yeah, I got twenty for that one.
85	JEFF	For three by three?
86	MICHAEL	Yeah.
87	JEFF	All right well then- I mean can't we explain
		why we think- well- all right. [Waving his
		hand.]
88	MICHAEL	//They're going to ask us-
89	JEFF	//All right then the next question is why- //why
90	ROMINA	//Now-
91	MICHAEL	//How do you know-
92	ROMINA	//Just relate this back to the //blocks. [Pointing
		to the 1-centimer grid on the transparency with
		his marker.]
93	JEFF	//Wait- Why is this- why does the Pascal's
		triangle work for this is the question.
94	ROMINA	//Exactly. Relate it to the blocks.
95	MICHAEL	//Just think first how do you know it's twenty?
		You know, how do you know it's not nothing
		else?

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 6 of 8

96	JEFF	Well F that. If we could explain-
97	ROMINA	Stop saying that.
98	JEFF	Why- why this is the Pascal's triangle up to
		here [Pointing to the numerical array on the
		transparency 1-centimeter grid.], we don't
		need to explain how we're positive this is
		twenty. //You know what I'm saying?
99	ROMINA	How does it go- this is-
100	JEFF	One-
101	MICHAEL	It should be ones on all the sides. [Jeff writing
		ones on the outside lines of their numeral array
		on the transparency 1-centimer grid.]
102	ROMINA	Yeah right. So- [Writing out Pascal's triangle.]
103	JEFF	And that's six-
104	ROMINA	This is just one, two, three. //So-
105	JEFF	//What's that?
106	ROMINA	With one- //there's only one possibility.
107	MICHAEL	//All right, how- //how is he getting them?
108	ROMINA	//Two-
109	MICHAEL	How are you getting yours? Maybe the way
		you're doing will give us
110	JEFF	Has some kind of- Yeah, we can work
		something out.
111	BRIAN	[Inaudible].
112	MICHAEL	Do you just like- are you guessing or do you
		have some kind of pattern?
113	BRIAN	I'm just- doing it man. I'm just- you know-
114	MICHAEL	Ah- [Romina pointing to the numbers on her
		transparency with a marker.]
115	BRIAN	I know there's a way to make two and get there
		in two moves. I know there's a way to make it
		in three moves. Four moves.
116	MICHAEL	So you're going by the moves, right?
117	BRIAN	Yeah.
118	JEFF	Don't use that one.
119	ROMINA	Hold on. For the Pascal's triangle-

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 7 of 8

120		MICHAEL	Yeah.
121		JEFF	You're making thumbprints again.
122		ROMINA	The one, //two, one-
123		JEFF	//Bringing it back to eighty-six.
124		ROMINA	-that's with what? With?
125		MICHAEL	Um-
126		ROMINA	Two colors- It's, it's two to the <i>x</i> like that?
			[Pointing to the second diagonal "row" of the
			array of numbers on the 1-centimeter-square
			transparency, containing the numerals 1, 2, 1.]
127		MICHAEL	Yeah it's two.
128		ROMINA	So it's two colors-
129		MICHAEL	Think of it as zero, one, two- you only have
			two colors of choices - zero, one, two. Three
130		ROMINA	Huh
131		MICHAEL	Three toppings on a pizza.
132		ROMINA	Yeah, like- so then how could this- this is two
			what? Two? Two different ways- like-
			[Pointing to the top numbers on the
			transparency with her marker.]
133		MICHAEL	Two- Uh- it's the total. One, two, three-
			That's, that's the total length that you can get,
			have to get there- to get there. [Pointing at
			numbers on transparency with marker.]
134		ROMINA	Yeah, okay.
135		MICHAEL	You know?
136		ROMINA	So for this one, the total length is three.
137		MICHAEL	But then this one is one, two, three, four, five
			and you get ten. You know? [Pointing at the 6
			on the transparency grid]
138		ROMINA	But you're in the second row. [Pointing at
			triangle]
139	01:02:23	MICHAEL	Yeah. [Romina taps her marker on the table.]
			Right. This is one, two, three- four, five, six
			and you get twenty. [Pointing at the 20 on the
			transparency grid.]

Description: Clip 3 of 5: It is Pascal's	Transcriber(s): Powell, Arthur;
Triangle! But why?	Milonas, Jeremy
Parent Tape: Taxicab Geometry	Verifier(s): McGowan, Will; Brookes,
Date: 2000-05-05	Elijah
Location: David Brearley High School	Date Transcribed: Spring 2010
Researcher(s): Professor Carolyn Maher	Page: 8 of 8
	0