| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School  <br> Researcher(s): Professor Carolyn Maher Date Transcribed: Spring 2010 <br>  Page: 1 of 10 |  |


| 1 | $01 ; 09:$ <br> 36 <br> begin <br> Clip 4 | T/R1 | You're showing me that's Pascal's triangle but <br> I don't see it. Help me see it. |
| :--- | :--- | :--- | :--- |
| 2 |  | JEFF | T/R1 |
| 3 |  | JEFF | Right. Can you //show it to me? |
| 4 |  | T/R1 | I/All right, well here. The one, one two one, <br> one three three one, one four six four one- <br> [Pointing to transparency grid with marker] |
| 5 |  | T/R1 | Okay let- show me again where's the four? |
| 6 |  | TEFF |  |
| right there- [Pointing to grid] |  |  |  |$|$| Mm hm. that one |
| :--- |
| 8 |
| 9 |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Elijah |  |
| Lote: 2000-05-05 | Date Transcribed: Spring 2010 <br> Researcher(s): Professor Carolyn Maher 2 of 10 |


|  |  | paths of one you haven't found? |
| :---: | :---: | :---: |
| 12 | JEFF | Well like to here, I mean we //would say- |
| 13 | T/R1 | //You understand my question? |
| 14 | JEFF | Well like to here we would say it was thirtyfive. [Pointing to a square on the transparency grid with marker] |
| 15 | T/R1 | Right. How would you- how- where //would the thirty-five come from? |
| 16 | MICHAEL | //You can't justify it because- You can justify these because you can say you counted. You can't justify that because you can't say you counted. |
| 17 | JEFF | Yeah because we didn't count it. We're saying we're following the pattern- [Waving his hand.] |
| 18 | T/R1 | Right. |
| 19 | JEFF | That's- that is our justification as of now. |
| 20 | ROMINA | [Inaudible]. |
| 21 | T/R1 | Right. |
| 22 | JEFF | That we're just following //the pattern. |
| 23 | T/R1 | Do you understand my next question Jeff? What I'm asking? |
| 24 | JEFF | //Yeah. |
| 25 | ROMINA | //What if three- what if Pascal- |
| 26 | T/R1 | Because so you notice this pattern and the pattern fits Pascal's triangle. |
| 27 | BRIAN | So does that mean there's //thirty-five for the red one? [Romina and Mike are counting. Mike writes something.] |
| 28 | MICHAEL | //Only these are zeros. This is like one toppingyou know on the pizza? [With Jeff looking at the transparency grid. Jeff pointing to a number on the grid.] |
| 29 | ROMINA | Yeah, one topping, two toppings. |
| 30 | BRAIN | Remember how- Mike you had thirty-four for the red one, right? |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School | Date Transcribed: Spring 2010  <br> Researcher(s): Professor Carolyn Maher  <br>  Page: 3 of 10 |


| 31 |  | MICHAEL | Um- Yeah I think that was the problem. |
| :--- | :--- | :--- | :--- |
| 32 |  | BRIAN | It's thirty-five. |
| 33 |  | JEFF | Yeah, it's thirty-five. |
| 34 |  | MICHAEL | Oh, I probably missed one. |
| 35 | JEFF | Good, uh, deduction. |  |
| 36 | T/R1 | So you counted thirty-four by brute force //and <br> you're saying that by this pattern, um, you <br> would feel more comfortable with the pattern <br> in saying thirty-five. |  |
| 37 |  | JEFF | //Yeah. |
| 38 |  | BRIAN | But- |
| 39 |  | T/R1 | Right? |
| 40 | ROMINA | Did you actually get thirty-five? |  |
| 41 | MICHAEL | I got //thirty-four. |  |
| 42 | BRIAN | l/He got thirty-four but you know he's been off <br> by like one cause you know. Yeah, it could- it <br> could of //been one. |  |
| 43 |  | ROMINA | //Natural tendencies? Um,- |
| 44 | MICHAEL | Stop that. |  |
| 45 |  | T/R1 | Okay. So why is- why is that- |
| 46 | ROMINA | All right. [With Jeff studying the transparency <br> grid.] |  |
| 47 |  | T/R1 | Why do you think that- Why do those numbers <br> seem to work? How could you explain those <br> numbers? That's that's really- isn't that <br> interesting? |
| 52 |  | JEFF | Yeah. It- it hurts though. It really does. |
| 53 |  | ROMINA | Yeah, I'm having trouble seeing Pascal's <br> triangle. [Rewriting the triangle the way she is <br> used to seeing it.] |
| 49 | JEFF | ROMINA | Mmhmm. All right. So for this one the two <br> comes from when there's- [Pointing to <br> numbers in the triangle with her marker] |
| 51 |  | ROMINA | One block. |
|  | One- |  |  |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School | Date Transcribed: Spring 2010  <br> Researcher(s): Professor Carolyn Maher  <br>  Page: 4 of 10 |


| 54 | JEFF | Block. |
| :---: | :---: | :---: |
| 55 | ROMINA | Is that- |
| 56 | JEFF | One block. |
| 57 | ROMINA | Isn't that two blocks? |
| 58 | JEFF | One, two. |
| 59 | ROMINA | No. Um, let's go back to towers. The two comes from this is one block. This is two blocks with two colors. [Continuing to point to numbers in the triangle with her marker.] |
| 60 | JEFF | I have to leave. I'm kind of out. |
| 61 | ROMINA | Alright. Hold on. How's this go? Just tell me where this comes from. |
| 62 | MICHAEL | What happened? |
| 63 | ROMINA | Okay. This is with- with just one block? |
| 64 | MICHAEL | This is nothing. |
| 65 | ROMINA | This is nothing? This is one block? |
| 66 | MICHAEL | This is like- yeah, //one. All right. |
| 67 | ROMINA | //One block, two- this one tells how many blocks. |
| 68 | MICHAEL | One block. Two blocks. [Pointing to the 1 and 2 in the triangle Romina redrew.] Not two blocks but like- [He points to the numbers on the transparency grid.] [Inaudible.] |
| 69 | ROMINA | One block, two blocks, three blocks- Oh no, this is zero block, one block, two block? |
| 70 | MICHAEL | For one block you get two. Right? For two blocks- |
| 71 | ROMINA | All right. |
| 72 | MICHAEL | Three- three- three blocks. One- So you can't really say it because there's three for three and then you get four here. You can't really- I don't think you can use that. That- that row thing. [Pointing to the numbers on the transparency grid.] |
| 73 | ROMINA | All right. Yeah. I know. I'm just trying tobecause for like- |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School |  |
| Researcher(s): Professor Carolyn Maher | Date Transcribed: Spring 2010 5 of 10 |


| 74 | MICHAEL | There's got to be some type of, you know, way. Be nice if I could see- |
| :---: | :---: | :---: |
| 75 | ROMINA | Can't you just go one, two, three, four? |
| 76 | MICHAEL | Uh hum [nodding his head in agreement] |
| 77 | ROMINA | That's what it goes one, two, three, four? Because then okay for this one for the three. If we name all the ones going horizontal- $A$ 's and ones going down same with $B$. And this would be with two $A$ 's and one $B$ there's three and then there's two $B$ 's with one $A$, three. [Pointing with a green marker at the intersections Points $\dagger(3,2)$ and $\dagger(3,1)$ on the transparency grid.] And for this one remember like two $A$ s two $B \mathrm{~s}$ - $/ /$ six. [Now pointing to the intersections point $\dagger(4,2)$ and on the transparency grid.] |
| 78 | MICHAEL | //You could say, um- |
| 79 | ROMINA | Do you understand what I'm saying? |
| 80 | MICHAEL | Like yeah, these are like this row is everything with perimeter two. I mean I half the perimeter, like. [Pointing with his marker to numbers on the transparency grid.] |
| 81 | ROMINA | //Well no I'm saying so to get that- |
| 82 | MICHAEL | //In order to get to that point you have to go over one and down, uh, one or down one and over one. [Pointing to the intersection point $\dagger$ $(2,1)$.] Just like that row. Everything in this row, over two and down two and over one. |
| 83 | ROMINA | Yeah but like I'm just saying like if she were to pick anything like right there we could say it's like eight $A$ 's and like six $B$ 's. [Tracing a rectangle on the transparency grid.] You know like- and then we could tell you where you it is in this one. [Pointing to the redrawn Pascal's triangle on the piece of paper.] |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School |  |
| Researcher(s): Professor Carolyn Maher | Page: 6 of 10 |


| 84 | MICHAEL | Well you could say all- everything in this row, the shortest route is two. Everything in this row shortest route is three. This one shortest route is four. [Pointing to a diagonal of numbers-14641-in the transparency grid.] |
| :---: | :---: | :---: |
| 85 | ROMINA | Yeah. |
| 86 | MICHAEL | The shortest route is five, six and so on. So that's how you could, you know, name them. This is row six because it has everything in the row has shortest route of six. [Pointing with a marker to diagonals of numbers on the transparency grid.] |
| 87 | ROMINA | No, I understand. I'm just saying like- |
| 88 | MICHAEL | There's a, you know- |
| 89 | ROMINA | To get it- |
| 90 | MICHAEL | //To- to say it like, oh I'll pick this block- |
| 91 | ROMINA | //Because isn't that how- isn't that how we get like the $B$ 's? Like doesn't the two- there's- that I mean, that's one- that means it's one of $A$ color, one of $B$ color. [Pointing to the 2 on the redrawn triangle on paper.] Here's one- it's either one- either way you go. It's one of across and one down. [Pointing to a number on the transparency grid and motions with her pen to go across and down.] And for three that means there's two $A$ color and one $B$ color [pointing to the 3 on the redrawn triangle], so here it's two across, one down or the other way [tracing across and down on the transparency grid] you can get three is //two down[Pointing to the grid.] |
| 92 | MICHAEL | //You mean like one $A$ color and two- |
| 93 | ROMINA | Yeah. |
| 94 | MICHAEL | This is one- |
| 95 | ROMINA | Like two blues, one red. Two across, one down or this is two reds, one blue, two down, one |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Elijah |  |
| Lote: 2000-05-05 | Date Transcribed: Spring 2010 <br> Researcher(s): Professor Carolyn Maher |


|  |  |  | across. And that's how we would get the <br> Pascal's triangle. [Pointing to numbers on the <br> redrawn grid and transparency grid.] |
| :--- | :--- | :--- | :--- |
| 96 |  | MICHAEL | But there's like- you know, there's got to be a <br> way that we could just say, all right this one's <br> three. //So five down this has to be this because <br> of some kind of- |
| 97 |  | ROMINA | //I know, I'm just saying- |
| 98 |  | ROMINA | So if it were- |
| 99 | MICHAEL | Pattern- I mean like, you know, reasoning. You <br> can't just say I counted them. |  |
| 100 |  | ROMINA | I know. I'm just saying so like- and then that <br> could relate back to this but that is this, so it's <br> relateable- and for- |
| 101 |  | ROMICHAEL | So what- what are you looking for right now? |
| 102 |  | T/R1 | Yeah like- |
| 103 |  | MICHAEL | I think Romina knows what I'm looking for. I <br> think she's said it very articulately. That if I <br> were to pick any point right on- |
| 104 | T/R1 | Mm hmm. |  |
| 105 |  | BRIAN | If I were to make a larger grid- right Brian? I <br> think he //knows what I'm looking for. |
| 106 |  | T/R1 | //Yeah. |
| 107 |  | She's looking for a way to come up with a <br> particular pattern that she's identifying that. I <br> think I'm hearing you say- you're trying to <br> look at blocks- |  |
| 108 |  | 1227. RROMINA | Mm hmm. |
| 109 |  | T/R1 | Colors? |
| 110 | 1229. ROMINA | Yeah. |  |
| 112 |  | T/R1 | And then you're doing $A$ 's and B's. |
| 113 | T/R1 ROMINA | Mm hmm. |  |
|  |  | That's what I'm hearing you say? And you <br> were trying to say maybe that could get you to <br> some general point. Why don't you try saying <br> that again? I- I thought I followed you, but I'm |  |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Date: 2000-05-05 | Elijah |
| Location: David Brearley High School  <br> Researcher(s): Professor Carolyn Maher Date Transcribed: Spring 2010 <br>  Page: 8 of 10 |  |


|  |  |  | not so sure that Brian and Michael followed <br> what you said. |
| :--- | :--- | :--- | :--- |
| 114 |  | 1233. ROMINA | Like why- |
| 115 |  | T/R1 | So say it again. What you were- |
| 116 |  | 1235. ROMINA | Like why this and this are related? |
| 117 |  | T/R1 | Yeah. |
| 118 |  | 1237. ROMINA | Well- |
| 119 | T/R1 | Throw out your idea //again for them so we <br> can hear it. |  |
| 120 | ROMINA | //When we look- whenever we do this we <br> always- we always talk about towers and how <br> this is like a tower of two high with two <br> different colors and there's one- one tower you <br> can make that makes all one color and one and <br> one and then all the other color. And- and then <br> for this one it's three high and this is all one <br> color. There's two of one color and one of the <br> other, whatever. And for this it's basically the <br> same thing because this is- let's see. This is- <br> this is two but usually you go one across and |  |
| one down so there's two different ways to get |  |  |  |
| to that one. And for this one there's going to be |  |  |  |
| two across and one down. Or to go down here |  |  |  |
| it's two down and one across which is |  |  |  |
| basically the same thing and it just goes on. Do |  |  |  |
| you understand? Understand? Was that good? |  |  |  |
| Or, do you want more? [Connecting the data |  |  |  |
| from the grid and the triangle drawings by |  |  |  |
| pointing to the numbers on each back and |  |  |  |
| forth.] |  |  |  |$|$| Yeah. |
| :--- |
| 121 |
| 122 |
| 125 |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Elijah |  |
| Lote: 2000-05-05 | Date Transcribed: Spring 2010 <br> Researcher(s): Professor Carolyn Maher |


| 127 | MICHAEL | This would be, um, one- we'll think of it as pizza because that's the thing I like but- |
| :---: | :---: | :---: |
| 128 | ROMINA | Think of towers. |
| 129 | MICHAEL | Or towers. I mean this will be a tower of three- |
| 130 | T/R1 | Think of it as pizzas. |
| 131 | MICHAEL | A pizza. A pizza with, um, three possible choices for toppings and- I like the tower. |
| 132 | ROMINA | Yeah, the tower is easier. |
| 133 | MICHAEL | You have, you have a tower of three and you have, you know, two colors. So one- it's either you know- Color $x$ and two of color $y$. Well this is direction $x$ and two, two directions of $y$, you know-// [Pointing with a marker to the redrawn Pascal's triangle.] |
| 134 | ROMINA | //Yeah. |
| 135 | MICHAEL | //of $y$. So that makes- that makes sense. |
| 136 | ROMINA | So for like the three, it would be two $x$, one $y$ or two $y$, one $x / /$ [Referring to the taxi grid.] |
| 137 | MICHAEL | //Yeah, I got that. |
| 138 | ROMINA | And this would be |
| 139 | T/R1 | Okay. Well- where I'm still having a little trouble is, um, - Okay, so you're talking about these blocks, right? |
| 140 | ROMINA | Mm hmm. |
| 141 | T/R1 | So what are you labeling them? These blocks? [Referring to blocks on the taxi grid.] Which is the $A$ and which is the $B$ and why is it//okay to call them $A$ 's and $B$ 's? |
| 142 | ROMINA | //We'll do it- how about x and y ? |
| 143 | T/R1 | Sure. |
| 144 | ROMINA | $x$ will be the ones that go horizontal. [Motioning across with her marker on transparency grid.] |
| 145 | T/R1 | Okay. |
| 146 | ROMINA | And y will be the ones that go up and down, basic graphing skills. [Moving her marker |


| Description: Clip 4 of 5: Explaining the | Transcriber(s): Powell, Arthur; |
| :--- | :--- |
| Taxicab and Towers Isomorphism | Milonas, Jeremy |
| Parent Tape: Taxicab Geometry | Verifier(s): McGowan, Will; Brookes, |
| Elijah |  |
| Location: David Brearley High School | Date Transcribed: Spring 2010 <br> Researcher(s): Professor Carolyn Maher |


|  |  |  | down.] |
| :--- | :--- | :--- | :--- |
| 147 |  | T/R1 | Does that make any sense Brian? |
| 148 |  | BRIAN | Yeah. |
| 149 |  | T/R1 | Brian, do you think so? |
| 150 | $01 ; 19:$ <br> 20 <br> end <br> clip 4 | BRIAN | I think so. Yeah. I'm- I'm hanging out. I'm <br> doing good now. You know what I'm saying. <br> Oh, I was like what is that? A research paper. |

