Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy
of 5: Extending the Taxicab	Verifier(s): McGowan, Will; Brookes, Elijah Correspondence to Pizzas with Toppings Date Transcribed: Spring 2010 Page: 1 of 8
and Binary Notation	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

		T/R3	$\begin{array}{l}\text { Uh, my question was you said that you found } \\ \text { Pascal's triangle here and um, it wasn't clear to } \\ \text { me that if you go, let's take- }\end{array}$
2		MICHAEL	Do you want a like reason why- how it relates?
3		T/R3	Yeah.
4		ROMINA	Okay.
5		MICHAEL	$\begin{array}{l}\text { Not because it looks like it? You want to know } \\ \text { why. }\end{array}$
		ROMINA	$\begin{array}{l}\text { Now we just picked any point. Let's say we } \\ \text { picked this point. No matter how you get to } \\ \text { this point- }\end{array}$
		MOMINA	Do the six one. The six one-
	ROMINA	Well we'll do the six and the four.	
All right.			
		$\begin{array}{l}\text { Okay, to this point you know you need to take } \\ \text { at least you have to take four moves. That's the } \\ \text { shortest amount of moves because just like a } \\ \text { simple one, two, three, four. So that means it's- } \\ \text { let's say you we're relating back to this four } \\ \text { moves equals four blocks. So I'd have to go } \\ \text { down to the four block area. So that's one, two, } \\ \text { three, four. [Pointing to the fourth row of her } \\ \text { Pascal's triangle.] And now here you're going }\end{array}$	
three across and one down. Or- so- [Illustrating			
the moves on the taxi grid and pointing to the			

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy
of 5: Extending the Taxicab	Verifier(s): McGowan, Will; Brookes, Elijah
Correspondence to Pizzas with Toppings	Date Transcribed: Spring 2010 Page: 2 of 8
and Binary Notation	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy of 5: Extending the Taxicab
Correspondence to Pizzas with Toppings Verifier(s): McGowan, Will; Brookes, Elijah Date Transcribed: Spring 2010 and Binary Notation Page: 3 of 8	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

		it. [Waving both hands.]
	T/R3	Maybe you can help me see how you're relating the number of toppings and the number of //blocks.
	MICHAEL	//To this?
	T/R3	Yeah. To the- get- getting to any- to a particular corner.
	MICHAEL	I like see something and I- if I say it'll- it'll make it a lot clearer but I just don't- don't know how to say it.
	T/R3	Why don't you just try saying it?
	MICHAEL	All right. Well- I'm trying to think of like a- a way//
	ROMINA	//Mike, if we were to use pizza could you explain this 'cause I don't know how to do this, okay, that means you have four toppings[Pointing with Michael to the 4 th row of the triangle.]
	MICHAEL	This is, um,- Yeah, four toppings.
	ROMINA	$/ /$ Plain. [Pointing to the $1_{\text {st }}$ number in the $4_{\text {th }}$ row.]
	MICHAEL	//You have one topping, you're going to make //four different kinds of pizzas.
	ROMINA	//One topping. //Two toppings. [Pointing to the $2^{\text {nd }} \#$ in the $4_{\text {th }}$ row]
	MICHAEL	//Two toppings. [Pointing to the $3_{\text {rd }} \#$]
	ROMINA	//Three toppings. [Pointing to the $4_{\text {th }}$ number]
	MICHAEL	//You can make six.
	ROMINA	Four toppings. [Pointing to the $5_{\text {th }}$ number]
	MICHAEL	Yeah.
	ROMINA	All right. So, you can do that. Just do-
	MICHAEL	Don't know where to go from there though. Like how to relate toppings to that.
	ROMINA	Just the same way I just did with the blocks. It's the same thing.
	MICHAEL	All right, think of a topping as like, um, being

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy of 5: Extending the Taxicab
Correspondence to Pizzas with Toppings Verifier(s): McGowan, Will; Brookes, Elijah Date Transcribed: Spring 2010 and Binary Notation Page: 4 of 8	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

		able to go across so if you're only able to go across one time then you could do it four different ways and-
	ROMINA	That's one topping.
	MICHAEL	Here. You could do this- This- this one right here. Go across this time and go down this time and go down and this time and that time. The rest is all going down. The rest of your moves are all going down. [Tracing moves on grid]
	T/R3	So you're say one topping-
	MICHAEL	Yeah. Yeah, one topping would be like you're only able to walk across or go across or drive across actually it's a taxi, one time- one block.
	T/R3	Okay.
	MICHAEL	Now the six would mean you're able to drive two blocks across and two down. Um, four would be you're able to drive three across and the last- and this one right here is you're able to drive- wait four, um, you're able to drive four across which- I mean, drive four downno, nothing across. I'm trying- I'm trying to say- I can't really say-
	BRIAN	Good job.
	MICHAEL	Yeah, this would mean you would drive nothing across. It wouldn't even get you to that- wouldn't even get you there. So, that's why, you know, the ones don't really count in our- in our like model. Like- [motioning with fingers in air and pointing to redrawn triangle and grid triangle]
	ROMINA	The ones- the ones //would be if you just could-
	MICHAEL	//The only thing-
	ROMINA	-if you're going just to this point because it's only you're only going in one direction. Like you can't get to any of the inside points

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy
of 5: Extending the Taxicab	Verifier(s): McGowan, Will; Brookes, Elijah
Correspondence to Pizzas with Toppings	Date Transcribed: Spring 2010 Page: 5 of 8
and Binary Notation	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

			because you have to use two directions.
		MICHAEL	Yeah. So on the odd do you see like four-
		M/R3	What I understood you say- you're saying is that the number of toppings related to-
		T/R3	To the number of times you go across.
		T/CHAEL	Okay. So that one that you have at the corner there-
		MICHAEL	This one right there? [Pointing to a number in the redrawn triangle]
		MICHAEL	Uh hum. How many toppings is that one?
		T/R1	That's all the toppings. But you really- you can't get there by going all- you know- um-
		ROMINA	Those would be like the across- toppings.
	Yeah. This one actually- this would be, uh, all		
toppings, which would really mean all down.			

across and some of those are down?\end{array}\right|\)| Yeah, like how I was saying it. |
| :--- |
| |

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy
of 5: Extending the Taxicab	Verifier(s): McGowan, Will; Brookes, Elijah
Correspondence to Pizzas with Toppings	Date Transcribed: Spring 2010 (and Binary Notation
Page: 6 of 8	
Parent Tape: Taxicab	
Date: 2000-05-05	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	


```
Description: The Taxicab Problem: Clip 5 Transcriber(s): Powell, Arthur; Milonas, Jeremy
```

of 5: Extending the Taxicab Correspondence to Pizzas with Toppings and Binary Notation Parent Tape: Taxicab
Date: 2000-05-05
Location: David Brearley High School Researcher(s): Carolyn A. Maher, Arthur B. Powell

Verifier(s): McGowan, Will; Brookes, Elijah Date Transcribed: Spring 2010 Page: 7 of 8

	ROMINA	Come on Mike. Zero, one.
	BRIAN	//Break out the binary.
	T/R1	//Does that work with zeros and ones?
	MICHAEL	Uh man, I haven't seen that in a while. Uh, I really gotta remember.
	ROMINA	Well just- the same thing-
	MICHAEL	Oh like-
	ROMINA	One would be every time across-
	MICHAEL	Yeah, one-
	ROMINA	Zero would be every time down.
	MICHAEL	Just- All right, this- right there. This group is, you know, everything that has one, one and two zeros. [Writing binary codes
	T/R1	Uh hum.
	MICHAEL	That's that. The next one would be- [Writing binary codes
	T/R1	//Mm hm.
	MICHAEL	//or two across' and one down there's a zero. That's a, is that good?
	T/R1	I don't know. Is that another way?
	MICHAEL	Do you- like do you see how you can relate the zeros //across and down.
	BRIAN	//The same thing.
	T/R1	Brian- //Brian thinks-
	MICHAEL	The one moving across and the zero would mean down.
	T/R1	Romina?
	ROMINA	Yeah, see I can't work like that. I work in, um, towers.
	T/R1	You're working in towers.
	ROMINA	He works in pizzas and binary.
	T/R1	Brian are you- work both ways Brian?
	BRIAN	No. No I'm totally not a binary kid. I don't-
	ROMINA	We- see me and Brian were absent when we did binaries in like sixth grade.
	BRIAN	I missed a week.

Description: The Taxicab Problem: Clip 5	Transcriber(s): Powell, Arthur; Milonas, Jeremy
of 5: Extending the Taxicab	Verifier(s): McGowan, Will; Brookes, Elijah
Correspondence to Pizzas with Toppings	Date Transcribed: Spring 2010 and Binary Notation
Parent Tape: Taxicab	
Pate: 8000 of 8	
Location: David Brearley High School	
Researcher(s): Carolyn A. Maher, Arthur	
B. Powell	

| | ROMINA | We obviously weren't there. |
| :--- | :--- | :--- | :--- |

