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ABSTRACT OF THE DISSERTATION

Stochastic Analysis of Bidding in Sequential Auctions and Related

Problems

by SRINIVASA KARTIKEYA PURANAM

Dissertation Director:

Michael N. Katehakis

In this thesis we study bidding in sequential auctions and taboo optimiza-

tion criteria for Markov Decision Processes. In the second chapter we study

the problem of sequentially bidding in N auctions of identical items. It is

assumed that at each auction there is a sufficiently high price that if paid

the item is won. The objective is to acquire a fixed number of these items at

a minimum expected cost. In the third chapter we consider the problem of

a firm (“the bidder”) that in each period, of an infinite time horizon, buys

items in auctions and sells the acquired items in a secondary market. We

investigate optimal bidding strategies for the bidder that take into account

the cost of acquiring the items, the random sale price and demand of the sec-

ondary market as well as pertinent salvage value or inventory holding costs.

In the final chapter we consider Markovian systems where costs or rewards

are unknown either in some states or in all states. For such cases we define

taboo optimization criteria for a propitiously defined set of taboo states.
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Chapter 1

Introduction

In this thesis we study bidding in sequential auctions and taboo optimiza-

tion criteria for Markov Decision Processes. In the second chapter we study

the problem of sequentially bidding in N auctions of identical items. It is

assumed that at each auction there is a sufficiently high price that if paid the

item is won. The objective is to acquire a fixed number of these items at a

minimum expected cost. We develop a Markov decision processes model for

the most general case of this problem. We study structural properties of the

optimal policies for several interesting cases. We prove that, under certain

assumptions, the optimal value function and the optimal bid are decreasing

functions of the number of remaining auctions , increasing functions of the

number of opponents and decreasing functions of the inventory on hand.

In the third chapter we consider the problem of a firm (“the bidder”) that
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in each period, of an infinite time horizon, buys items in auctions and sells

the acquired items in a secondary market. We investigate optimal bidding

strategies for the bidder that take into account the cost of acquiring the

items, the random sale price and demand of the secondary market as well as

pertinent salvage value or inventory holding costs. The main results of this

chapter are as follows. Here, we prove that, under a few assumptions, the

optimal value function is an increasing function of the number of remaining

auctions , a decreasing function of the number of opponents and a increasing

function of the inventory on hand. while the optimal bid is a decreasing

function of the number of remaining auctions, an increasing function of the

number of opponents and a decreasing function of inventory on hand.

In the final chapter we consider Markovian systems where costs or rewards

are unknown either in some states or in all states. For such cases we define

taboo optimization criteria for a propitiously defined set of taboo states.

Taboo states represent undesirable states for the system. We show that

computing policies that maximize expected taboo first return rewards and

mean taboo return times is in general a hard problem, for which well known

methods from MDP theory can not be applied. However, it is shown herein

that if certain monotonicity properties are satisfied then efficient computation

of an optimal deterministic policy is possible.



3

1.1 Literature Survey

The literature on auction models can be divided into two categories, single

auctions and multiple auctions. The literature on models where one item

is sold in a single auction is well developed. Milgrom and Weber [18] and

Engelbrecht-Wiggans [10] are the traditional references in this area. Klem-

perer [17] has complied a survey on auction models and mechanisms that

has a detailed state of current research. One of the major results in auction

theory is the Revenue Equivalence Theorem (Vickrey [29]) which was gener-

alized twenty years later by Myerson [20] and Riley and Samuelson [23]. This

theorem states that any allocation in an auction in which: (i) the bidder with

the highest value always wins, (ii) the bidder with the lowest possible value

expects zero surplus, (iii) all bidders are risk neutral and (iv) all bidders

are drawn from a strictly increasing and atomless distribution, will lead to

the same revenue for the seller. Bulow and Roberts [3] showed that from a

seller’s perspective it is optimal to sell the item to the bidder with the highest

“marginal revenue’.’ This result tied the idea of auction design with tradi-

tional market mechanism design which saw an explosion of auction design

research.

The literature on multiple auctions is also substantial. Milgrom’s book [19]

is an excellent introduction to the current state of research in this area. Start-

ing from Vickrey’s [29] seminal work there has been a great deal of research
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in the field and many models for optimal auction design and bidding have

been developed, c.f. [31, 30, 11]. Much of the literature is restricted to cases

where the bidders have a unit demand and most of these models are analyzed

using game theory.

The study of sequential auctions was initiated by Weber [30]. He studied

an independent private values environment with each bidder having unit

demand and with the seller having multiple items for sale. He considered

the revenue generated from the sequence of auctions to the auctioneer as the

optimization criterion and proved that under certain conditions the sequence

of prices in each auction is a martinagale, i.e. the prices don’t drift either up

or down. Feng, and Chatterjee [12] also consider a similar problem but over a

infinte horizon with time discounting. Many papers observed a price decline

in sequential auctions, c.f., Ashenfelter [1] in wine auctions, Jones et al. [14]

for wool auctions, van den Berg et al. [27] for flower auctions, Ashenfelter

and Genesove [2] , for real estate right-to-choose auctions, and Kittsteiner,

Nikutta and Winter [16]. This phenomenon has been termed “the decreasing

price anomaly.” Zeithammer [33] studied bidders forward-looking behavior

in sequential auctions and finds that buyers underbid when they expect the

seller to offer another auction in the near future, and the auctioneer decides

to sell or not to sell based on bidders behavior. Ganuza [13] studied the

impact of bidder ignorance on the revenue of an auctioneer. He finds that

the auctioneer has incentive to release less information than is efficient in
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order to promote competition.

Rothkopf and Oren [22] characterize a sequential auction as a multi-stage

control process where the state is represented by the competitor’s strategy

and state transitions represent the competitors’ reaction to a strategy used by

the the bidder. The control is the bidders strategy. They show the existence

of an equilibrium policy in the case of identical bidders. They also consider

various “response” functions and study how a bidders policy changes under

each of the response functions. We also consider the sequential auction to be

a multi-stage control process but our model significantly differs from their

model in the respect that the state in our model represents the information

available to the bidder, for example the number of auctions remaining in the

current period, the number of items already won and the number of bidders

participating in the auction. The state transitions at the end of each auction

depend on whether the item is won or not and on the change in the number

of bidders.

Literature on taboo optimization criteria is non-existent. The classical

methods of optimization c.f., [7, 15, 24, 6] involve minimizing the average

cost per unit time over an infinite horizon. An attempt to avoid use of a

cost structure was done in Derman [8]. Derman considered the problem of

finding the policy that maximizes the expected time between replacements

subject to conditions that the probabilities of replacement through certain

undesirable states are bounded by known numbers. Studying taboo measures
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as optimization criteria has not been attempted to the best of our knowledge.
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Chapter 2

Fixed Demand Model

2.1 Introduction

We consider the problem of a firm (“the bidder”) that in a given time period

buys items in a sequence of auctions. The objective of the buyer is to min-

imize his expected total cost for the period, while acquiring a fixed number

of items. It is assumed that there is a buy-it-now-price available at which

the buyer can obtain the item outright at any auction or sometimes in the

open market. In the current literature the problem where a fixed number of

units have to be acquired has not been studied. Here the bidders’ valuations

derive from resale of good acquired in the auctions. We study several aspects

of this problem including the number of opponents (fixed or random) and

the demand(unit or multi-unit).
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The main results of this chapter are as follows.

1. We obtain bidding strategies for the case where a bidder has to acquire a

fixed number of items through a series of auctions at minimum expected

cost. We model this problem as a Markov decision process.

2. We prove that, under certain assumptions, the optimal value function

is a decreasing function of n, the number of remaining auctions , an

increasing function of m, the number of opponents and a decreasing

function of l, the inventory on hand.

3. We prove that the optimal bid is also a decreasing function of n, an

increasing function of m, and a decreasing function of l.

2.1.1 Problem Definition

We study optimal bidding strategies for the buyer for the following auction

procedure. There is a sequence of N auctions of identical items. Before

each auction the number of opposing bidders (opponents) m is known. Every

bidder submits a sealed bid. At the end of each auction the winning bid is

announced and one of the highest bidders wins the auction. The objective

of the buyer is to acquire L items at a minimum expected cost. To avoid

trivialities we assume that L < N.

It is assumed that there is a buy-it-now-price available at which the buyer

can obtain the item outright at any auction or sometimes in the open market.
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After the buyer acquires all L items he does not bid in any of the remaining

auctions if any. It is assumed that the the set of all bids available (to the buyer

and all opponents) is a finite set {a0, a1, . . . ap} where a0 < a1 < · · · < ap.

We assume that a0 = 0 and ap denotes the buy-it-now-price. For simplicity

we will use the same symbol a to represent both the bid price a and the

action of the buyer biding amount a.

We assume that there exist known probabilities pm(a) that correspond to

the probability that the buyer wins an auction when his bid is a and there

are m opponents present. We assume that pm(a0) = 0 and pm(ap) = 1.

The number of opponents in each auction is random. Let Zn be the num-

ber of opponents participating in the nth auction. It is assumed that Zn for

n = 1, 2, · · · , N is a discrete time Markov chain with transition probabilities:

qmm′(n) = P (Zn+1 = m′|Zn = m).

The initial distribution of the number of opponents is known and is de-

noted for simplicity by:

qm(1) = P (Z1 = m).

It is assumed that whenever there is a tie in an auction involving the buyer

, then the buyer loses. This assumption is made to simplify the exposition.

Other tie breaking procedures like deciding the winner randomly will not

change the analysis but would complicate the exposition. This supposition



10

leads to the following.

pm(a) = P ( all opponents’ bids < a). (2.1)

The above problem is modeled as a Markov Decision process below.

1. The state space S is the set of triplets (n,m, l) where n (1 ≤ n ≤ N)

represents the number of auctions remaining, m represents the number

of bidders participating in the auction and l (0 ≤ l ≤ L) represents

the number of items already acquired by the buyer . Since the buyer

starts with no items and has to acquire L items there is the restriction:

L ≤ n + l ≤ N, for any state (n,m, l) in S.

2. In any state (n,m, l) the following action sets A(n,m, l) are available.

• A(n,m, L) = {a0},

• A(n,m, l) = {ap}, for all states (n,m, l) with n + l = L,

• A(n,m, l) = {a1, a2, . . . ap}), for all states (n,m, l) with L < n +

l ≤ N + L.

3. When an action a ∈ A(n,m, l) is taken in state (n,m, l) the following

transitions are possible.

• If l = L the only possible transition is back to the same state

(n,m, L) with probability 1.
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• If l < L depending on whether or not the buyer wins the auction

the next state is (n−1, m′, l+1) with probability pm(a) qmm′(N−n)

or (n− 1, m′, l) with probability (1− pm(a)) qmm′(N − n).

4. The following costs are incurred.

• In states (n,m, L) there is no cost.

• In states (n,m, l) with L+ 1 < n+ l ≤ N + L, a cost is incurred

only if the item is won in the auction. The expected cost when

action a is taken is a pm(a).

Let a∗n,m,l denote the optimal action in the state (n,m, l). Let v(n,m, l)

denote the value function in state (n,m, l) and w(n,m, l; a) denote the ex-

pected remaining cost when action a is taken in state (n,m, l) and an optimal

policy is followed thereafter. Note that v(n,m, l) = w(n,m, l; a∗n,m,l).

The dynamic programming equations are

v(n,m, l) = min
a∈A

{w(n,m, l; a)} (2.2)

where,

w(n,m, l; a) = a pm(a) +
∞
∑

m′
=1

{pm(a) qmm′(N − n)v(n− 1, m′, l + 1)

+
∞
∑

m′
=1

{(1− pm(a))qmm′(N − n)v(n− 1, m′, l)}}, if n+ l > L,

= nap, if n+ l = L, l < L

= 0, otherwise.
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The above dynamic programming equations can be solved to develop

a bidding strategy for the general model. In the subsequent sections we

consider structural properties of the optimal policies for several interesting

cases.

In the sequel we make the following assumptions.

Assumption A. For any fixed m, pm(a) is an increasing function of a.

Assumption B. For any fixed a, pm(a) is a decreasing function of m.

Assumption C. There exists a function G with
∑∞

i=−∞G(i) = 1 such

that:

qmm′(n) =



















G(m−m′) if m′ > 1,

∑−m+1

k=−∞G(k) if m′ = 1.

(2.3)

2.2 The Single Item Case With a Constant

Number of Opponents

In this section we consider the case where L = 1 and there is a constant

number of opponents, m0 ≥ 1, in all auctions. The state space is the set

{(n,m0, 0) , (n,m0, 1)}n=1,...,N . The action sets are A(n,m0, 0) = {a1, . . . , ap}

and A(n,m0, 1) = {a0}. Note that qmm′(n) = 1 if m = m′ = m0 and 0

otherwise.

Note that if the buyer has acquired the item there is no decision problem.

Thus, all information relevant for the decision problem of the buyer at any
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time is the number of auctions remaining before the single item is acquired.

We obtain a simplified MDP where the state n corresponds to the number

of remaining auctions before the item is acquired by the buyer , and all action

sets are equal to A = {a1, . . . , ap}. When action a is taken in state n by the

buyer he either wins the auction with probability p(a), in which case he does

not bid in the remaining auctions, or he loses and transitions to state n− 1

with probability p(a). The expected costs for taken action a in any state

is a p(a). The dynamic programming equations of Eq. (2.2) reduce to the

following.

v(n) = min
a∈A

{w(n; a)} (2.4)

where,

w(n; a) = a p(a) + (1− p(a)) v(n− 1), if n > 1 ,

= ap, if n = 1 .

We next state and prove theorem 2.2.1.

Theorem 2.2.1. Under assumption A the following relationships hold for

all n.

v(n+ 1) ≤ v(n), (2.5)

a∗n+1 ≤ a∗n. (2.6)
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Proof:

We prove both Eqs. (2.5) and (2.6) simultaneously by induction on n.

For n = 1, since v(1) = ap both inequalities are true. Assuming they hold

for n− 1, i.e.,

v(n) ≤ v(n− 1),

a∗n ≤ a∗n−1,

we prove that

v(n+ 1) ≤ v(n),

a∗n+1 ≤ a∗n.

The inequality v(n + 1) ≤ v(n) is true because from the definition of

w(n; a) and the induction assumption we have

v(n+1) = min
a∈A

{a p(a)+(1−p(a))v(n)} ≤ min
a∈A

{a p(a)+(1−p(a))v(n−1)} = v(n).

To complete the induction for Ineq. (2.6) by contradiction we assume that

a∗n+1 > a∗n. Since a
∗
n+1 is the optimal action in state n+1 any other action ân+1

will be such that w(n+ 1, ân+1) ≥ v(n + 1). Consider specifically the action

ân+1 = a∗n. From the previous argument we have that w(n+1; a∗n) > v(n+1).

This inequality, and the definition of w(·) imply the following.

a∗np(a
∗
n) + (1− p(a∗n))v(n) > a∗n+1p(a

∗
n+1) + (1− p(a∗n+1))v(n).
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Rearranging the terms of the above inequality we obtain:

a∗n+1p(a
∗
n+1)− a∗np(a

∗
n)

p(a∗n+1)− p(a∗n)
< v(n). (2.7)

Similarly, in state n action a∗n is optimal, so v(n) < w(n, a∗n+1). Expanding

this and rearranging the terms we obtain,

a∗n+1p(a
∗
n+1)− a∗np(a

∗
n)

p(a∗n+1)− p(a∗n)
> v(n− 1). (2.8)

Combining inequalities (2.7) and (2.8) we have

v(n) >
a∗n+1p(a

∗
n+1)− a∗np(a

∗
n)

p(a∗n+1)− p(a∗n)
> v(n− 1). (2.9)

The above inequalities contradict the induction assumption. This completes

the proof of theorem 2.2.1.

2.2.1 Computational example

The properties of v(n) and a∗n as stated in Theorem 2.2.1 are illustrated by

the graphs of Figs. 2.1 and 2.2 respectively for the case with N = 200,

m0 = L = 1 and A = {1 . . . , 50}. The winning probability p(a) is calculated

assuming the single opponent chooses bids from A with equal probabilities.
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Figure 2.1: v(n) vs n.

2.3 The Multi-Item Case With a Constant

Number of Opponents

In this section we consider the problem where L > 1 and there is a constant

number of opponents, m0 ≥ 1, in all auctions. The state space is the set

{(n,m0, l)}, n = 1, . . . , N and l = 1, . . . , L. The action sets are A(n,m0, l) =

{a1, . . . , ap} for l < L and A(n,m0, L) = {a0}. Note that qmm′(n) = 1 if

m = m′ = m0 and 0 otherwise.

Since the number of opponents is fixed we can simplify the above MDP.
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Figure 2.2: a∗n vs n.

The state is now (n, l) which represents the number of remaining auctions

and the number of items already acquired respectively. The action sets are

A(n, l) = {a1, . . . , ap} if l < L, and A(n, L) = {a0}. The transition probabil-

ities and expected costs also simplify. The dynamic programming equations

of Eq. (2.2) reduce to the following.

v(n, l) = min
a∈A

{w(n, l; a)} (2.10)



18

where

w(n, l; a) = a p(a) + p(a)v(n− 1, l + 1)

+(1− p(a))v(n− 1, l) if L+ 1 ≤ n+ l ≤ N,

= nap, if n+ l = L,

= 0, if l = L.

We next state and prove Theorem 2.3.1

Theorem 2.3.1. Under assumption A the following relationships hold true

for all n and l.

v(n+ 1, l) ≤ v(n, l) (2.11)

v(n, l + 1) ≤ v(n, l) (2.12)

Proof. The proofs of both inequalities (2.11) and (2.12) are by induction on

n. For n = 1 the inequalities v(1, l + 1) ≤ v(1, l) and v(2, l) ≤ v(1, l) follow

from Eq. (2.10) since v(n, L) = 0 and v(n, L− n) = nap.

To complete the induction step of Ineq. (2.11) we assume that v(n, l) ≤

v(n − 1, l) and prove that v(n + 1, l) ≤ v(n, l). From the induction assump-

tion and the definition of w(n, l; a) we can conclude that w(n + 1, l; a) ≤

w(n, l; a) ∀a. This concludes the induction step because the last inequality

implies that

v(n+ 1, l) = min
a∈A

w(n+ 1, l; a) ≤ min
a∈A

w(n, l; a) = v(n, l).
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To complete the induction step of Ineq. (2.12) we assume that v(n, l) ≤

v(n, l−1) and prove that v(n, l+1) ≤ v(n, l). From the definition of w(n, l; a)

and the induction assumption we can conclude that w(n, l+1; a) ≤ w(n, l; a).

This concludes the induction step because

v(n, l + 1) = min
a∈A

w(n, l + 1; a) ≤ min
a∈A

w(n, l; a) = v(n, l).

Theorem 2.3.2. Under assumptions A and B the following relationships

hold for all n and l.

a∗n,l+1 ≤ a∗n,l (2.13)

a∗n+1,l ≥ a∗n,l. (2.14)

Proof. The proofs of both the inequalities (2.13) and (2.14) are through in-

duction. For n = 1 the inequalities a∗1,l+1 ≤ a∗1,l and a∗1,l ≥ a∗2,l follow from

Eq. (2.10) since an,L = a0 and an,L−n = ap.

To complete the induction of Ineq. (2.13) we assume that a∗n−1,l ≤ a∗n−1,l−1

and prove that a∗n,l ≤ a∗n,l−1. To prove this we assume that a∗n,l > a∗n,l−1, and

prove that it produces a contradiction.

Since a∗n,l is the optimal action in state (n, l) and a∗n,l−1 is the optimal

action in state (n, l − 1) we have v(n, l) < w(n, l; a∗n,l−1) and v(n, l + 1) ≤

w(n, l − 1; a∗n,l). Simplifying the inequalities and combining the results we
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obtain 2 v(n − 1, l) > v(n − 1, l − 1) + v(n − 1, l + 1). This implies the

following.

w(n, l; a∗n−1,l−1) + w(n, l; a∗n−1,l+1) > v(n− 1, l − 1) + v(n− 1, l + 1). (2.15)

We notice that the induction assumption implies the following.

2 v(n− 2, l) ≤ v(n− 2, l− 1) + v(n− 2, l + 1). (2.16)

Inequalities (2.15) and (2.16) together imply

2 v(n− 2, l) > v(n− 2, l − 1) + v(n− 2, l + 1) (2.17)

which contradicts Ineq. (2.16).

We next complete the induction step for Ineq. (2.14). We assume that

a∗n−1,l ≤ a∗n−2,l and prove that a∗n,l ≤ a∗n−1,l. We prove this by contradiction.

We assume that a∗n,l > a∗n−1,l and show that this produces a contradiction.

From the definition of v(n, l) and w(n, l; a) we have v(n, l) ≤ w(n, l; a∗n−1,l)

and v(n−1, l) ≤ w(n−1, l; a∗n,l). Simplifying these inequalities and combining

the results results in the following : v(n−1, l)+v(n−2, l+1) > v(n−2, l)+

v(n− 1, l + 1). From the last inequality we can conclude that

w(n− 1, l; a∗n−1,l+1) + v(n− 2, l + 1) > v(n− 2, l) + v(n− 1, l + 1).

Using the definitions of w(n − 1, l; a∗n−1,l+1 and v(n − 1, l + 1) the above

inequality simplifies to the following inequality

v(n− 2, l + 2) > v(n− 2, l)
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which contradicts Ineq. (2.11).

2.3.1 Computational Example

The properties of a∗n,l as stated in Theorem 2.3.2 are illustrated by the graphs

of Fig. 2.3 for the case with N = 20, m0 = 4 and A = {1 . . . , 10}. The

winning probability p(a) is calculated assuming the four opponents choose

bids from A with equal probabilities.
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Figure 2.3: a∗n,l vs n vs l.
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2.4 Single Item Case With Randomly Vary-

ing Number Of Opponents

In this section we consider the problem where L = 1 and the number of

opponents may change with each auction as described in the section 2.1.1.

We make the following assumption about the probabilities qmm′(n).

Assumption C. There exists a function G with
∑∞

i=−∞G(i) = 1 such

that:

qmm′(n) =



















G(m′ −m) if m′ > 1,

∑∞
k=m−1

G(k) if m′ = 1.

(2.18)

In this case the state space is the set {(n,m, 0) , (n,m, 1)}, n = 1, . . . , N

andm = 1, 2, · · · . The action sets areA(n,m, 0) = {a1, . . . , ap} andA(n,m, 1) =

{a0}.

Once the buyer wins an auction there is no decision problem. The relevant

information at any time for the decision problem of the buyer in this case is

the number of auctions remaining before the single item is acquired and the

number of opponents. This simplifies the above MDP. The state (n,m) now

represents the number of remaining auctions before the item is acquired by

the buyer and the number of opponents present. All action sets are equal

to A = {a1, . . . , ap}. The transition probabilities and expected costs also

simplify and the dynamic programming equations of Eq. (2.2) reduce to the
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following.

v(n,m) = min
a∈A

{w(n,m; a)} (2.19)

with,

w(n,m; a) = a pm(a) + (1− pm(a))E(n− 1, m) for n > 1 and ∀m,

= ap for n = 1 and ∀m.

where for notational simplicity we have defined:

E(n− 1, m) =
∑

m′

qmm′(N − n)v(n− 1, m′).

We now state and prove the theorem 2.4.1.

Theorem 2.4.1. Under assumptions A and B the following relationships

hold for all n.

v(n,m) ≤ v(n− 1, m) (2.20)

v(n,m− 1) ≤ v(n,m). (2.21)

Proof. The proof of inequality (2.20) is by induction on n. For n = 1, the

inequalities v(1, m) ≥ v(2, m) for all m, follow from the Eq. (2.19) since

v(1, m) = ap. Assuming that v(n− 1, m) ≥ v(n,m) for all m, we now prove

that v(n,m) ≥ v(n + 1, m) for all m. We know that w(n,m; a) = a pm(a) +

(1− pm(a))E(n− 1, m) is a convex combination of a and E(n− 1, m). From

the induction assumption it follows that E(n − 1, m) ≥ E(n,m). Thus, we
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can conclude that the inequality below holds.

w(n,m; a) ≥ w(n+ 1, m; a) ∀a ∈ A

The above inequality implies that

v(n,m) = min
a∈A

w(n,m; a) ≥ min
a∈A

w(n+ 1, m; a) = v(n+ 1, m)

completing the induction.

The proof of inequality (2.21) is also by induction on n. For n = 1, the

inequalities v(1, m) ≥ v(1, m − 1) hold for all m since v(1, m) = ap for all

m. Assuming that v(n − 1, m) ≥ v(n − 1, m − 1) for all m, we now show

that v(n,m) ≥ v(n,m− 1) for all m. We prove last inequality by contradic-

tion. We assume that v(n,m) < v(n,m− 1) and prove that this produces a

contradiction. The last inequality implies that v(n,m) < w(n,m − 1; a∗n,m)

which is the same as the following inequality.

a∗n,m pm(a
∗
n,m) + (1− pm(a

∗
n,m))E(n− 1, m)

< a∗n,m pm−1(a
∗
n,m) + (1− pm−1(a

∗
n,m))E(n− 1, m− 1)

From assumption B we know that pm(a∗n,m) ≤ pm−1(a∗n,m). Let pm(a∗n,m) =

pm−1(a∗n,m)− δ. Substituting pm(a∗n,m) in the above inequality yields the fol-

lowing.

a∗n,m pm−1(a
∗
n,m) + (1− pm(a

∗
n,m))E(n− 1, m) + δ(E(n− 1, m)− a∗n,m)

< a∗n,m pm−1(a
∗
n,m) + (1− pm−1(a

∗
n,m))E(n− 1, m− 1)
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v(n,m) is a convex combination of a∗n,m and E(n,m). Note that E(n−1, m) >

a∗n,m because if we assume the contrary we will have w(n,m, a0) < v(n,m)

which is a contradiction. This implies that

a∗n,m pm−1(a
∗
n,m) + (1− pm(a

∗
n,m))E(n− 1, m)

< a∗n,m pm−1(a
∗
n,m) + (1− pm−1(a

∗
n,m))E(n− 1, m− 1)

which contradicts the induction assumption. This concludes the induction

of Ineq. (2.21) and the proof of the theorem.

Theorem 2.4.2. Under assumptions A, B and C the following relationships

hold for all n.

a∗n,m ≤ a∗n,m+1 (2.22)

a∗n,m ≥ a∗n−1,m. (2.23)

Proof. To prove Ineq. (2.22) we assume that a∗n,m−1 > a∗n,m and prove that

this produces a contradiction. Since a∗n,m is the optimal action in state (n,m)

we have that w(n,m; a∗n,m−1) > v(n,m). Simplifying the inequality using the

fact that a∗n,m−1 > a∗n,m we obtain

Tm > E(n− 1, m). (2.24)

where,

Tm =
a∗n,m−1pm(a

∗
n,m−1)− a∗n,mpm(a

∗
n,m)

pm(a∗n,m−1)− pm(a∗n,m)
.
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Similarly, in state (n,m − 1) action a∗n,m−1 is optimal, so v(n,m − 1) <

w(n,m− 1, a∗n,m). Simplifying the last inequality we obtain,

Tm−1 < E(n− 1, m− 1). (2.25)

We next show that

Tm < Tm−1. (2.26)

Indeed, using the definitions of Tm and Tm−1, the above simplifies to the

following equivalent inequality

pm(a
∗
n,m)pm−1(a

∗
n,m−1) < pm(a

∗
n,m−1)pm−1(a

∗
n,m),

which is true under assumption B since we have assumed that a∗n,m−1 > a∗n,m.

Inequalities (2.24), (2.25) and (2.26) together imply that

E(n− 1, m) < E(n− 1, m− 1).

Under assumption C this inequality can be expressed as follows.

∞
∑

i=−m+1

[G(i)(v(n−1, m+ i+1)−v(n−1, m+ i))]+G(−m+1)v(n−1, 1)< 0.

The above inequality is a contradiction since from Ineq. (2.21) we know that

v(n− 1, m+ i+ 1)− v(n− 1, m+ i) ≥ 0 and by assumption C, G(i) ≥ 0.

Next, to prove a∗n,m ≤ a∗n−1,m we show that a∗n,m > a∗n−1,m leads to a

contradiction. Since a∗n,m is the optimal action in state (n,m) we have that

w(n,m; a∗n−1,m) > v(n,m). Simplifying this inequality we obtain
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T < E(n− 1, m). (2.27)

where,

T =
a∗n,mpm(a

∗
n,m)− a∗n−1,mpm(a

∗
n−1,m)

pm(a∗n,m)− pm(a∗n−1,m)

Similarly, in state (n−1, m) action a∗n−1,m is optimal, so w(n−1, m, a∗n,m) >

v(n− 1, m). Simplifying the last inequality we obtain,

T > E(n− 2, m). (2.28)

Inequalities (2.27) and (2.28) together imply that

E(n− 2, m) < E(n− 1, m).

Under assumption C the above inequality can be expressed as follows.

∞
∑

i=−m+1

{G(i)(v(n− 2, m)− v(n− 1, m))} < 0.

The above inequality is a contradiction since from Ineq. (2.21) we know that

v(n− 2, m)− v(n− 1, m) ≥ 0 and by assumption C, G(i) ≥ 0.

2.4.1 Computational Example

The properties of a∗n,m as stated in Theorem 2.4.2 are illustrated by the graph

of Fig. 2.4 for the case with N = 20, 1 ≤ m ≤ 20 and A = {1 . . . , 10}. We
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assume that G(i) = 1/39 for i = −19 . . . , 0, . . . 19. The winning probability

pm(a) is calculated assuming that each of the opponents choose bids from A

with equal probabilities.

Figure 2.4: a∗n,m vs n vs m.



29

2.5 The Multi-Item CaseWith Randomly Vary-

ing Number of Opponents

In this section we consider the most general version of the problem as de-

scribed in section 2.1.1. Recall that the dynamic programming equations are

as follows.

v(n,m, l) = min
a∈A

{w(n,m, l; a)}

with,

w(n,m, l; a) = a pm(a) + pm(a)E(n− 1, m, l + 1)

+(1− pm(a))E(n− 1, m, l) if L+ 1 ≤ n+ l ≤ N,

= nap, if n+ l = L,

= 0, if l = L

where for notational simplicity we have defined:

E(n− 1, m, l) =
∞
∑

m′=1

qmm′(N − n)v(n− 1, m′, l).

We state and prove the following theorems.

Theorem 2.5.1. Under assumption A the following relationships hold true

for all n, m and l.

v(n+ 1, m, l) ≤ v(n,m, l) (2.29)

v(n,m, l) ≤ v(n,m, l − 1) (2.30)

v(n,m, l) ≥ v(n,m− 1, l). (2.31)
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Proof. The proof of all three inequalities are by induction on n. For n =

1, the inequalities, v(2, m, l) ≤ v(1, m, l), v(1, m, l) ≤ v(1, m, l − 1) and

v(1, m − 1, l) ≤ v(1, m, l) follow from Eq. (2.2) since v(n,m, L) = 0 and

v(n,m, L− n) = nap.

To complete the induction of Ineq. (2.29) we assume that v(n−1, m, l) ≤

v(n− 2, m, l) and prove that v(n,m, l) ≤ v(n− 1, m, l). From the induction

assumption and it follows that E(n − 1, m, l) ≤ E(n − 2, m, l). Thus we

can conclude that w(n,m, l; a) ≤ w(n − 1, m, l; a) ∀ a. This concludes the

induction step because the last inequality implies that

v(n,m, l) = min
a∈A

w(n,m, l; a) ≤ min
a∈A

w(n− 1, m, l; a) = v(n− 1, m, l).

To complete the induction of Ineq. (2.30) we assume that v(n,m, l−1) ≤

v(n,m, l−2) and prove that v(n,m, l) ≤ v(n,m, l−1). The induction assump-

tion implies that E(n,m, l−1) ≤ E(n,m, l−2). From this and the definition

of w(n,m, l; a) we can conclude that w(n,m, l; a) ≤ w(n,m, l−1; a) ∀ a. This

concludes the induction because

v(n,m, l) = min
a∈A

w(n,m, l; a) ≤ min
a∈A

w(n,m, l − 1; a) = v(n,m, l − 1).

To complete the induction of Ineq. (2.31) we assume that v(n−1, m, l) ≥

v(n− 1, m− 1, l) and prove that v(n,m, l) ≥ v(n,m− 1, l). To prove the last

inequality we assume that v(n,m − 1, l) > v(n,m, l) and proceed to show
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that this produces a contradiction. This assumption implies that w(n,m −

1, l; a∗n,m,l) > v(n,m, l). Using the definition of v(n,m, l) and w(n,m, l; a) in

the last inequality we obtain,

pm−1(a
∗)(a∗ + E(n− 1, m− 1, l + 1)) + (1− pm−1(a

∗))E(n− 1, m− 1, l)

> pm(a
∗)(a∗ + E(n− 1, m, l + 1)) + (1− pm(a

∗))E(n− 1, m, l).

where a∗ = a∗n,m,l. Condition B states that pm(a∗) < pm−1(a∗). Let pm(a∗) =

pm−1(a∗)− δ, where δ ≥ 0. Using this in the above inequality we obtain

pm−1(a
∗)(a∗ + E(n− 1, m− 1, l + 1)) + (1− pm−1(a

∗))E(n− 1, m− 1, l)

> pm−1(a
∗)(a∗ + E(n− 1, m, l + 1)) + (1− pm−1(a

∗))E(n− 1, m, l)

+δ(E(n− 1, m, l)− (a∗ + E(n− 1, m, l + 1))).

From its definition we know that v(n,m, l) is a convex combination of

E(n − 1, m, l) and a∗ + E(n − 1, m, l + 1). Note that a∗ + E(n − 1, m, l +

1) ≤ E(n− 1, m, l) because if we assume that contrary then w(n,m, l; a0) <

v(n,m, l), which is a contradiction. This implies that the term multiplying

δ in the above inequality is positive. Hence

pm−1(a
∗)(a∗ + E(n− 1, m− 1, l + 1)) + (1− pm−1(a

∗))E(n− 1, m− 1, l)

> pm−1(a
∗)(a∗ + E(n− 1, m, l + 1)) + (1− pm−1(a

∗))E(n− 1, m, l)

which contradicts the induction assumption.
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Theorem 2.5.2. Under assumption A, B and C the following relationships

hold true for all n, m and l.

a∗n,m,l+1 ≤ a∗n,m,l (2.32)

a∗n,m,l ≤ a∗n,m+1,l (2.33)

a∗n,m,l ≤ a∗n−1,m,l. (2.34)

Proof. The proofs of all three inequalities is by induction on n. For n = 1,

the inequalities, a∗2,m,l ≤ a∗1,m,l, a
∗
1,m,l ≤ a∗1,m+1,l and a∗1,m,l ≤ a∗1,m,l−1 (L ≤

2 + l ≤ N) hold from Eq. (2.2) since a∗n,m,L = 0 and a∗n,m,L−n = ap.

To complete the induction of Ineq. (2.32) we assume that a∗n−1,m,l ≤

a∗n−1,m,l−1 and prove that a∗n,m,l+1 ≤ a∗n−1,m,l. To prove this part we assume

that a∗n,m,l+1 > a∗n,m,l and show that this produces a contradiction. From the

definitions of v(n,m, l) and w(n,m, l; a) we have v(n,m, l) < w(n,m, l; a∗n,m,l+1)

and v(n,m, l + 1) < w(n,m, l + 1; a∗n,m,l). Simplifying and combining the re-

sults of the last two inequalities we obtain

E(n− 1, m, l) + E(n− 1, m, l + 2) > 2E(n− 1, m, l + 1).

This can be rewritten as

∑

m′

qmm′ [v(n− 1, m′, l) + v(n− 1, m′, l + 2)] > 2
∑

m′

qmm′v(n− 1, m′, l + 1).
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This implies that

∑

m′

qmm′ [w(n−1, m′, l; a∗)+w(n−1, m′, l+2; a∗)] > 2
∑

m′

qmm′v(n−1, m′, l+1).

(2.35)

where a∗ = a∗n−1,m′,l+1.

Notice that the induction assumption implies that

E(n− 2, m, l) + E(n− 2, m, l + 2) > 2E(n− 2, m, l + 1). (2.36)

Simplifying Ineq. (2.35) using assumption C and Ineq. (2.36) leads to the

inequality

∑

m′

qmm′ [E(n− 2, m′, l + 1)− E(n− 2, m′, l + 2)]

>
∑

m′

qmm′ [E(n− 2, m′, l + 1)− E(n− 2, m′, l + 2)]

which is a contradiction because both sides of the strict inequality are iden-

tical.

To complete the induction of Ineq. (2.34) we assume that a∗n,m,l ≥ a∗n,m−1,l

and prove that a∗n,m+1,l ≥ a∗n,m,l. To prove this part we assume that a∗n,m,l >

a∗n,m+1,l and show that this produces a contradiction. Since a∗n,m,l is the

optimal action in state (n,m, l) we have that v(n,m, l) < w(n,m, l, a∗n,m−1,l).

This simplifies to:

Tm + E(n− 1, m, l + 1) < E(n− 1, m, l). (2.37)
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where

Tm =
a∗n,m,lpm(a

∗
n,m,l)− a∗n,m+1,lpm(a

∗
n,m+1,l)

pm(a∗n,m,l)− pm(a∗n,m+1,l)
.

Similarly in state (n,m+1, l) we have v(n,m+1, l) < w(n,m+1, l, a∗n,m,l)

which simplifies to

Tm+1 + E(n− 1, m+ 1, l + 1) > E(n− 1, m+ 1, l). (2.38)

Note that

Tm+1 < Tm. (2.39)

Indeed, from the definitions of Tm and Tm+1 the last inequality simplifies to

the following inequality

pm(a
∗
n,m,l)pm(a

∗
n,m−1,l) < pm−1(a

∗
n,m,l)pm−1(a

∗
n,m−1,l),

which is true under assumption B since we have assumed that a∗n,m,l >

a∗n,m+1,l.

Inequalities (2.37), (2.38), (2.39) together imply that

E(n−1, m, l)−E(n−1, m+1, l) < E(n−1, m, l+1)−E(n−1, m+1, l+1).

This implies that

∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, l)− v(n− 1, m+ i+ 1, l)]}

+G(−m)(v(n− 1, 1, l)− v(n− 1, 1, l + 1))

<
∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, l + 1)− v(n− 1, m+ i+ 1, l + 1)].}
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Since v(n− 1, 1, l)− v(n− 1, 1, l + 1) ≥ 0, the above inequality implies that

∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, l)− v(n− 1, m+ i+ 1, l)]}

<
∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, l + 1)− v(n− 1, m+ i+ 1, l + 1)].}

or equivalently

∞
∑

m′=1

{G(m′ −m)[v(n− 1, m′ + 1, l + 1)− v(n− 1, m′, l + 1)]}

<
∞
∑

m′=1

{G(m′ −m)[v(n− 1, m′ + 1, l)− v(n− 1, m′, l)].}

From the definition of w(n,m, l; a) the above inequality implies that

∞
∑

m′=1

{G(m′ −m)[v(n− 1, m′ + 1, l + 1)− w(n− 1, m′, l + 1; a∗1)]}

<
∞
∑

m′=1

{G(m′ −m)[w(n− 1, m′ + 1, l; a∗2)− v(n− 1, m′, l)].} (2.40)

where a∗1 = a∗n−1,m′+1,l+1 and a∗2 = a∗n−1,m′,l From assumption B we have that

pm(a) ≥ pm+1(a). Let pm(a∗1) = pm+1(a∗1) + δ1 and pm(a∗2) = pm+1(a∗2) + δ2

Note that the induction assumption implies that

E(n−2, m+1, l+1)−E(n−2, m, l+1) > E(n−2, m+1, l)−E(n−2, m, l).

(2.41)

Simplifying Ineq. (2.40) using assumption C and Ineq. (2.41) leads to the
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following inequality

∞
∑

m′=1

{G(m′ −m)[E(n− 2, m′ + 1, l + 1)−E(n− 2, m′, l + 1)]}

+δ1[E(n− 2, m′ + 1, l + 1)− (a∗1 + E(n− 2, m′ + 1, l + 2))]

+δ2[E(n− 2, m′, l)− (a∗2 + E(n− 2, m′, l + 1))]

<
∞
∑

m′=1

{G(m′ −m)[E(n− 2, m′ + 1, l + 1)−E(n− 2, m′, l + 1)]}

From the proof of Theorem 2.5.1 we know that the terms multiplying δ1

and δ2 are both positive. This leads to the inequality

∞
∑

m′=1

{G(m′ −m)[E(n− 2, m′ + 1, l + 1)−E(n− 2, m′, l + 1)]}

<
∞
∑

m′=1

{G(m′ −m)[E(n− 2, m′ + 1, l + 1)−E(n− 2, m′, l + 1)]}

which is a contradiction because both sides of the strict inequality are iden-

tical.

To complete the induction of Eq. (2.32) we assume that a∗n,m,l ≤ a∗n−1,m,l

and prove that a∗n+1,m,l+1 ≤ a∗n,m,l. To prove this part we assume that a∗n+1,m,l+1 >

a∗n,m,l and prove that it produces a contradiction. From the definitions

of v(n,m, l) and w(n,m, l; a) we have v(n,m, l) < w(n,m, l; a∗n+1,m,l) and

v(n + 1, m, l) < w(n + 1, m, l; a∗n,m,l). Simplifying and combining the results

of the last two inequalities we obtain

E(n− 1, m, l + 1)− E(n,m, l + 1) > E(n− 1, m, l)− E(n,m, l).
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The above inequality is equivalent to the following inequality.

∑

m′

qmm′ [v(n−1, m′, l+1)−v(n,m′, l+1)] >
∑

m′

qmm′ [v(n−1, m′, l)−v(n,m′, l)].

Simplifying the above inequality using assumption C, the induction as-

sumption and the fact v(n− 1, m′, l+ 1) < w(n− 1, m′, l+ 1; a) leads to the

inequality

∑

m′

qmm′ [E(n− 2, m′, l + 1)− E(n− 1, m′, l + 1)]

>
∑

m′

qmm′ [E(n− 2, m′, l + 1)− E(n− 1, m′, l + 1)]

which is a contradiction because both sides of the strict inequality are iden-

tical.

2.6 Conclusions

In this chapter we considered the problem the problem of a firm (“the bid-

der”) that in a given time period buys items in a sequence of auctions. The

objective of the buyer is to minimize his expected total cost for the period,

while acquiring a fixed number of items. It is assumed that there is a buy-it-

now-price available at which the buyer can obtain the item outright at any

auction or sometimes in the open market. We formulated the problem as

a Markov Decision process and proved that, under a few assumptions, the
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optimal value function and the optimal bid are decreasing functions of the

number of remaining auctions, increasing functions of the number of oppo-

nents and decreasing functions of the inventory on hand.

Extensions of this model include relaxing the condition that the bid distri-

bution is constant through all the auctions. A model where the distribution

is updated using a Bayesian framework can also be constructed and stud-

ied. Other extensions include batch sales, where in each auctions more than

one item is sold. In such a model the batch size can also become a decision

variable if bids can be placed for batches of items.
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Chapter 3

Integrated Auction Inventory

Model

3.1 Introduction

We consider the problem of a firm (“the bidder”) that in each period, of an

infinite time horizon, buys items in auctions and sells the acquired items in a

secondary market. We investigate optimal bidding strategies for the bidder

that take into account the cost of acquiring the items, the random sale price

and demand of the secondary market as well as pertinent salvage value or

inventory holding costs. The objective of the buyer is to maximize his ex-

pected infinite horizon discounted reward. In the current literature the topics

of biding in auctions and inventory control of a firm are treated as though
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they are essentially independent. Yet there is often considerable interaction

between the bidding policy in auctions and the inventory control problem

of a firm. This chapter presents and studies models in which purchasing,

via bidding in auctions, and inventory decisions are made dynamically and

interact directly with each other. In this way the bidders’ valuations derive

from resale of good acquired in the auctions. We study several aspects of this

problem including the number of opponents (fixed or random) and inventory

accumulation (i.e., salvaging units at the end at a known price or carrying

unsold items at the end of a period to the next while incurring a known cost.)

The main results of this chapter are as follows.

1. We provide new models that combine purchasing decisions made via

bidding in auctions with inventory management decisions. We formu-

late these problems as Markov decision processes.

2. We prove that, under a few assumptions, the optimal value function

is an increasing function of n, the number of remaining auctions , a

decreasing function of m, the number of opponents and a increasing

function of x, the inventory on hand.

3. We prove that the optimal bid is a decreasing function of n, an increas-

ing function of m, and a decreasing function of x.
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3.1.1 General Problem Definition

We consider the problem of buying items via a sequence of N auctions during

each time period and then selling them in a secondary market. The demand

D in the secondary market is random with a known discrete distribution.

Let pD(d) = P (D = d), PD(d) = P (D ≤ d), and P̄D(d) = 1 − PD(d).

The sales price R is also a random variable with a known distribution. Let

r = E(R) < ∞. Excess demand is assumed to be lost and the penalty of

losing sales of x units is δ(x).

We consider two cases of this problem. In the first case any items that

are unsold at the end of a time period are salvaged at a known price s < r. In

the second case any items that are unsold at the end of a period are carried

over as inventory to the next period with an inventory carrying cost of h per

item per period.

We study optimal bidding strategies for the buyer for the following auc-

tion procedure. There is a sequence of N ≥ 1 auctions of identical items

in each time period. Before each auction the number of opposing bidders

(opponents) m is known. Every bidder submits a sealed bid. The highest

bidder wins the auction. At the end of each auction the winning bid is an-

nounced. The objective of the buyer is to maximize his expected infinite

horizon discounted reward.

It is assumed that the set of all bids available (to the buyer and all
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opponents) is a finite set {a0, a1, . . . ap} where a0 < a1 < . . . < ap. For

simplicity we will use the same symbol a to represent both the bid price and

the action of the buyer bidding amount a. We assume that a0 = 0 represents

the action of not bidding.

It is assumed that there exist known probabilities pm(a) that correspond

to the probability that the buyer wins an auction when his bid is a and

there are m opponents present. For consistency of notation we assume that

pm(a0) = 0. For convenience let p̄m(a) = 1− pm(a).

The number of opponents in each auction is random. Let Zn be the num-

ber of opponents participating in the nth auction. It is assumed that Zn for

n = 1, 2, · · · , N is a discrete time Markov chain with transition probabilities:

qmm′(n) = P (Zn+1 = m′|Zn = m).

The initial distribution of the number of opponents is known and is de-

noted for simplicity by:

qm(1) = P (Z1 = m).

We assume that whenever there is a tie in an auction involving the buyer

, then the buyer loses. This assumption is made to simplify the exposition.

Other tie breaking procedures like deciding the winner randomly will not

change the analysis but would complicate the exposition. This supposition

leads to the following.

pm(a) = P ( all opponents’ bids < a). (3.1)
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In the sequel we make the following assumptions.

Assumption A. For any fixed m, pm(a) is an increasing function of a.

Assumption B. For any fixed a, pm(a) is a decreasing function of m.

Assumption C. There exists a function G with
∑∞

i=−∞G(i) = 1 such

that:

qmm′(n) =



















G(m′ −m) if m′ > 1,

∑∞
k=m−1

G(k) if m′ = 1.

(3.2)

Assumption D. δ(x) is an increasing convex function of x and δ(x) = 0

if x ≤ 0.

3.2 The Salvage Case

3.2.1 Model Definition

In this section we consider the version of the problem where any items that

are unsold at the end of a period are salvaged at a known price s < r. We

model this problem as a Markov Decision process.

1. The state space S in this case is the set {(n,m, x), n = 0, . . . , N, m =

1, . . . , x = 0, 1, . . .}, where n represents the number of auctions re-

maining during the current epoch, m represents the number of bidders

participating in the current auction, x ≥ 0 represents the inventory

level at the beginning of the current (N − n) auction. Note that:
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• If n = 0 then m = 0.

• State (0, 0, x) represents the state of the system at the end of an

epoch when all auctions are over.

• Possible states at the beginning of an epoch, prior to the start of

the N auctions, are of the form (N,m, 0), for all m = 1, . . . .

2. In any state (n,m, x) the following action sets A(n,m, x) are available.

• A(0, 0, x) = {a0}.

• A(n,m, x) = {a0, . . . , ap} for n > 0.

3. When an action a ∈ A(n,m, x) is taken in state (n,m, x) the following

transitions are possible.

• If n = 0, then starting from state (0, 0, x) the next state is (N,m, 0)

with probability qm(1).

• If n > 0 then depending on whether or not the buyer wins the

current auction the next state is (n−1, m′, x+1) with probability

pm(a) qmm′(N −n) or state (n− 1, m′, x) with p̄m(a) qmm′(N −n).

4. When an action a ∈ A(n,m, x) is taken in state (n,m, x) the expected

reward ra(n,m, x) is as follows.

• ra(0, 0, x) =
∑x

d=0
(rd + s(x − d)) pD(d) +

∑∞
d=x+1

(rx − δ(d −

x))pD(d)
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• ra(n,m, x) = −a pm(a) if n > 0.

Lemma 3.2.1. The expected reward function in state (0, 0, x), ra(0, 0, x) is

an increasing function of x i.e.

ra(0, 0, x) ≤ ra(0, 0, x+ 1). (3.3)

Proof. The proof is evident from the fact that the difference ra(0, 0, x+1)−

ra(0, 0, x) can be simplified to

∞
∑

x+1

rpD(d) +
x

∑

d=0

spD(d) +
∞
∑

d=x+1

(δ(d− x)− δ(d− x− 1))pD(d),

which is non-negative because δ(·) is an increasing function.

Let a∗n,m,x denote the optimal action in the state (n,m, x). Let v(n,m, x)

denote the value function in state (n,m, x) and w(n,m, x; a) denote the ex-

pected future reward when action a is taken in state (n,m, x) and an optimal

policy is followed thereafter. Note that v(n,m, x) = w(n,m, x; a∗n,m,x).

The dynamic programming equations are

v(n,m, x) = max
a∈A

{w(n,m, x; a)} (3.4)

where,

w(n,m, x; a) = ra(0, 0, x) + β
∞
∑

m=1

qm(1)v(N,m, 0) if n = 0

= ra(n,m, x) + pm(a)E(n− 1, m, x+ 1)

+p̄m(a)E(n− 1, m, x) if n > 0,
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E(n − 1, m, x) =
∑∞

m′=1
qmm′(N − n)v(n − 1, m′, x) and β is the discount

factor.

The above dynamic programming equations can be solved to develop a

bidding strategies for general settings. We now consider structural properties

of the optimal policies for some interesting cases.

3.2.2 Constant Number of Opponents Case

In this section we consider the problem where there is a constant num-

ber of opponents, m0 ≥ 1, in all auctions. The state space is the set

{(n,m0, x)}n=1...N . The action sets are A(n,m0, x) = {a0, . . . , ap}. Note that

qmm′(n) = 1 if m = m′ = m0 and 0 otherwise.

During any auction the buyer makes a decision based on the number of

auctions remaining and the number of items already acquired. We obtain

a simplified MDP where the state (n, x) represents the number of remain-

ing auctions and the number of items already acquired. The action sets

are A(n, x) = {a0, . . . , ap}. The transition probabilities and expected re-

wards also simplify analogously and the dynamic programming equations in

Eq. (3.4) reduce to the following.

v(n, x) = max
a∈A

{w(n, x; a)} (3.5)
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where

w(n, x; a) = ra(0, x) + βv(N,m, 0) if n = 0

= ra(n, x) + p(a)E(n− 1, x+ 1) + p̄(a)E(n− 1, x) if n > 0.

We now state and prove the theorem 3.2.1.

Theorem 3.2.1. Under assumption A the following is true for all n ≥ 0

and all x ≥ 0.

v(n, x) ≤ v(n, x+ 1) (3.6)

v(n, x) ≤ v(n+ 1, x). (3.7)

Proof. We first prove Ineq. (3.6) by induction on n. For n = 0 we have v(0, x+

1) − v(0, x) = ra(0, x + 1) − ra(0, x) ≥ 0 from Lemma 3.2.1. For n = 1 the

difference w(1, x+ 1; a)− w(1, x; a) simplifies to

p(a)(v(0, x+ 2)− v(0, x+ 1)) + p̄(a)(v(0, x+ 1)− v(0, x)). (3.8)

which is non-negative. This implies the following inequality.

v(1, x+ 1) = max
a∈A

w(1, x+ 1; a) ≥ max
a∈A

w(1, x; a) = v(1, x).

The induction assumption is v(n, x + 1) ≥ v(n, x) ∀ x. We now show that

v(n+1, x+1) ≥ v(n+1, x). From the induction assumption and the definition

of w(n, x; a) we can conclude that w(n + 1, x + 1; a) ≥ w(n + 1, x; a). This
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concludes the induction because,

v(n+ 1, x+ 1) = max
a∈A

w(n+ 1, x+ 1; a) ≥ max
a∈A

w(n+ 1, x; a) = v(n+ 1, x).

We next prove Ineq. (3.7) by contradiction. We assume that v(n, x) >

v(n + 1, x) and prove that it produces a contradiction. The previous in-

equality implies that v(n, x) > w(n+1, x; a∗n,x). Since v(n+1, x) is a convex

combination of v(n, x) and v(n, x+ 1)− a∗n+1,x the last inequality will imply

v(n, x) > v(n, x + 1) − a∗n+1,x, which in turn implies that w(n + 1, x; a0) ≥

v(n+ 1, x). Since v(n, x) is the optimality value function, the last inequality

must imply a∗n+1,x = a0 which in turn implies that v(n, x) > v(n, x+1) which

contradicts Ineq. (3.6).

Theorem 3.2.2. Under assumptions A and B the following relationships

hold.

a∗n,x ≥ a∗n,x+1 ∀ n ≥ 0, (3.9)

a∗n,x ≥ a∗n+1,x ∀ n > 0. (3.10)

Proof. The proof of Ineq. (3.9) is by induction on n. For n = 0 the inequality

is obviously true because a∗0,x = a0, ∀ x. For n = 1 to prove that a∗1,x ≥ a∗1,x+1

we assume a∗1,x < a∗1,x+1 and prove that it produces a contradiction. Since

a∗1,x is the optimal action in state (1, x) and a∗1,x+1 is the optimal action

in state (1, x + 1) we have that v(1, x) > w(1, x; a∗1,x+1) and v(1, x + 1) >
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w(1, x + 1; a∗1,x). Simplifying the inequalities and combining the results we

obtain

v(0, x+ 1)− v(0, x) < v(0, x+ 2)− v(0, x+ 1).

The above inequality simplifies to r(0, x+1)−r(0, x) < r(0, x+2)−r(0, x+1),

which from the definition of r(0, x) further simplifies to

(r−s)pD(x+1)+
∞
∑

d=x+1

pD(d)[(δ(d−x)−δ(d−x−1))−(δ(d−x−1)−δ(d−x−2))] < 0.

The above inequality is a contradicts assumption D since we also assumed

that r > s. To complete the induction we assume that a∗n−1,x ≥ a∗n−1,x+1 and

prove that a∗n,x ≥ a∗n,x+1. To prove this we assume that a∗n,x < a∗n,x+1 and

prove that this produces a contradiction.

Since a∗n,x is the optimal action in state (n, x) and a∗n,x+1 is the optimal

action in state (n, x+ 1) we have v(n, x) ≥ w(n, x; a∗n,x+1) and v(n, x+ 1) ≥

w(n, x+ 1; a∗n,x). Simplifying these inequalities and combining the results we

obtain the following.

v(n− 1, x+ 1)− v(n− 1, x) < v(n− 1, x+ 2)− v(n− 1, x+ 1). (3.11)

From the definition of v(n, x) the above inequality implies the following.

w(n−1, x+1; a∗n−1,x)−v(n−1, x) < v(n−1, x+2)−w(n−1, x+1; a∗n−1,x+2).

(3.12)
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Note that the induction assumption implies the following inequality.

v(n− 2, x+ 2)− v(n− 2, x+ 1) < v(n− 2, x+ 1)− v(n− 2, x). (3.13)

Using Ineq. (3.13) and lemma 3.2.1, Ineq. (3.12) simplifies to

v(n− 2, x+ 2)− v(n− 2, x+ 1) > v(n− 2, x+ 1)− v(n− 2, x) (3.14)

which contradicts Ineq. (3.13).

The proof of Ineq. (3.10) is also by induction on n. For n = 1 to prove

that a∗1,x ≥ a∗2,x, we assume that a∗1,x < a∗2,x and show that it produces

a contradiction. From the definitions of v(1, x) and v(2, x) we know that

v(1, x) > w(1, x; a∗2,x) and w(2, x; a∗2,x) > w(2, x; a∗1,x). Simplifying these in-

equalities and combining the results we obtain v(1, x+1)−v(1, x) > v(0, x+

1) − v(0, x). The last inequality implies that v(1, x + 1) − w(1, x; a∗1,x+1) <

v(0, x + 1) − v(0, x), which from the definition of w(n, x; a) and Ineq. (3.7)

simplifies to v(0, x+1)−v(0, x) > v(0, x+1)−v(0, x), a contradiction as both

sides of a strict inequality are identical. Now we assume that a∗n−1,x ≥ a∗n,x

and prove that a∗n,x ≥ a∗n+1,x. To prove this we assume that a∗n+1,x > a∗n,x and

show that this produces a contradiction. From the definitions of v(n, x) and

v(n+1, x) we have v(n, x) > w(n, x; a∗n+1,x) and v(n+1, x) > w(n+1, x; a∗n,x).

Simplifying the above inequalities and combining the results gives the

following inequality.

v(n− 1, x) + v(n, x+ 1) > v(n, x) + v(n− 1, x+ 1).
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From the definition of w(n, x; a) the above inequality implies that

v(n− 1, x) + v(n, x+ 1) > w(n, x; a∗n,x+1) + v(n− 1, x+ 1).

From the definition of v(n, x+1) and w(n, x; a) the above inequality simplifies

to the following inequality

v(n− 1, x+ 1)− v(n− 1, x) > v(n− 1, x+ 1)− v(n− 1, x),

which is a contradiction because both sides of the strict inequality are iden-

tical.

3.2.3 Varying Number of Opponents Case

In this section we consider the problem where the number of opponents may

change with each auction as described in the section 3.2.1.

Recall that the dynamic programming equations are as follows.

v(n,m, x) = max
a∈A

{w(n,m, x; a)} (3.15)

where,

w(n,m, x; a) = ra(0, 0, x) + β
∞
∑

m=1

qm(1)v(N,m, 0) if n = 0,

= ra(n,m, x) + pm(a)E(n− 1, m, x+ 1)

+p̄m(a)E(n− 1, m, x) if n > 0.

We next state and prove the following theorems 3.2.3 and 3.2.4.
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Theorem 3.2.3. Under assumptions A, B and C the following relationships

hold.

v(n,m, x) ≤ v(n,m, x+ 1) ∀ n ≥ 0, (3.16)

v(n,m, x) ≤ v(n+ 1, m, x) ∀ n ≥ 0, (3.17)

v(n,m, x) ≥ v(n,m+ 1, x) ∀ n > 0. (3.18)

Proof. We first show that Ineq. (3.16) holds. For n = 0 the inequality

v(0, 0, x) ≤ v(0, 0, x+ 1) is true from the definition of v(0, 0, x) and Lemma

3.2.1. For n = 1 we show that v(1, m, x) ≤ v(1, m, x + 1) by contradiction.

If we assume the contrary we have that v(1, m, x) > v(1, m, x + 1), which

implies that v(1, m, x) > w(1, m, x+ 1; a∗1,m,x). The last inequality simplifies

to

pm(a
∗
1,m,x)(v(0, 0, x+2)−v(0, 0, x+1))+p̄m(a

∗
1,m,x)(v(0, 0, x+1)−v(0, 0, x)) < 0,

which contradicts the previous step of this induction. Now, we assume

that v(n − 1, m, x) ≤ v(n − 1, m, x + 1) ∀x and prove that v(n,m, x) ≤

v(n,m, x + 1). The induction assumption implies that E(n − 1, m, x) ≤

E(n − 1, m, x). From this fact and the definition of w(n,m, x; a) we can

conclude that w(n,m, x; a) ≤ w(n,m, x+ 1; a) ∀ a which in turn implies the

following:

v(n,m, x) = max
a∈A

w(n,m, x; a) ≤ max
a∈A

w(n,m, x+ 1; a) = v(n,m, x+ 1).
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This completes the induction.

Next, we prove that Ineq. (3.17) holds by induction on n. For n = 0

to show that the inequality v(0, 0, x) ≤ v(1, m, x), holds we assume that

v(0, 0, x) > v(1, m, x), and show that it produces a contradiction. Since

v(1, m, x) is a convex combination of v(0, 0, x) and v(0, 0, x+1)−a∗1,m,x. From

the assumption that v(0, 0, x) > v(1, m, x) we can conclude that v(0, 0, x) >

v(0, 0, x+ 1)− a∗1,m,x, which in turn implies that w(1, m, x; a0) ≥ v(1, m, x).

The last inequality implies that a∗1,m,x = a0 which in turn implies that

v(0, 0, x) > v(0, 0, x+ 1) which contradicts Ineq. (3.16)

For n = 1 from the fact that E(1, m, x) ≥ v(0, 0, x) for all x we can

conclude w(1, m, x; a) ≤ w(2, m, x; a) which implies that

v(1, m, x) = max
a∈A

w(1, m, x; a) ≤ max
a∈A

w(2, m, x; a) = v(2, m, x).

The induction assumption in this case will be v(n − 1, m, x) ≤ v(n,m, x),

using which we prove that v(n,m, x) ≤ v(n + 1, m, x). From the induction

assumption and it follows that E(n − 1, m, x) ≤ E(n,m, x). From this fact

and the definition of w(n,m, x; a) we can conclude that w(n − 1, m, x; a) ≤

w(n,m, x; a) ∀ a. The last inequality implies that

v(n,m, x) = max
a∈A

w(n,m, x; a) ≤ max
a∈A

w(n− 1, m, x; a) = v(n− 1, m, x),

which completes the induction.
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We now show that Ineq. (3.18) holds. For n = 1 to prove that v(1, m, x) ≥

v(1, m + 1, x) we assume v(1, m, x) < v(1, m + 1, x) and show that it pro-

duces a contradiction. From the definition of w(n,m, x; a) the last inequality

implies that w(1, m, x; a∗1,m+1,x) < v(1, m+ 1, x). Simplifying this inequality

we obtain v(0, 0, x+ 1)− a∗1,m,x+1 < v(0, 0, x). Since v(1, m, x + 1) is a con-

vex combination of v(0, 0, x+ 1)− a∗1,m,x+1 and v(0, 0, x), the last inequality

implies that w(1, m, x + 1; a0) ≥ v(1, m, x + 1). The last inequality implies

that a∗1,m,x+1 = a0, which leads to v(0, 0, x) > v(0, 0, x+1) which contradicts

Ineq. (3.16).

We complete the induction of Ineq. (3.18) along similar lines. We assume

that v(n− 1, m, x) ≥ v(n− 1, m+1, x) and prove that v(n,m, x) ≥ v(n,m+

1, x). To prove the last inequality we assume that v(n,m, x) < v(n,m+1, x)

and proceed to show that this produces a contradiction. This assumption

implies that w(n,m, x; a∗n,m+1,x) < v(n,m + 1, x). Simplifying the previous

inequality using assumption B leads to E(n,m, x+1)−a∗n,m,x+1 < E(n,m, x).

From the definitions of v(n+ 1, m, x) the last inequality implies that w(n+

1, m, x; a0) ≥ v(n+ 1, m, x), from which we can conclude that a∗n,m,x+1 = a0.

This fact implies that E(n,m, x+ 1) < E(n,m, x), which is a contradiction.

Theorem 3.2.4. Under assumption A, B and C the following relationships
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hold true for all n, m and l.

a∗n,m,x ≥ a∗n,m,x+1 for n ≥ 0, (3.19)

a∗n,m,x ≥ a∗n+1,m,x for n > 0, (3.20)

a∗n,m,x ≤ a∗n,m+1,x for n ≥ 0. (3.21)

Proof. We prove Ineq. (3.19) by induction on n. For n = 0 the inequality is

obviously true because a∗(0, 0, x) = a0 for all x. For n = 1, we show that

the inequality a∗1,m,x ≥ a∗1,m,x+1 holds by contradiction. We assume that

a∗1,m,x < a∗1,m,x+1 and show that it leads to a contradiction. We know that

v(1, m, x) > w(1, m, x; a∗1,m,x+1) and v(1, m, x − 1) > w(1, m, x − 1; a∗1,m,x).

Simplifying these inequalities and combining the results we obtain

v(0, 0, x+ 1)− v(0, 0, x) < v(0, 0, x+ 2)− v(0, 0, x+ 1).

The above inequality simplifies to r(0, 0, x+ 1)− r(0, 0, x) < r(0, 0, x+ 2)−

r(0, 0, x+ 1), which further simplifies to

(r−s)pD(d)+
∞
∑

d=x+1

pD(d)[(δ(d−x)−δ(d−x−1))−(δ(d−x−1)−δ(d−x−2))] < 0.

This contradicts assumption D because we have also assumed r > s.

To complete the induction of Ineq. (3.19) we assume that a∗n−1,m,x ≥

a∗n−1,m,x+1 and prove that a∗n,m,x ≥ a∗n,m,x+1. To prove last inequality we as-

sume that a∗n,m,x+1 > a∗n,m,x and show that this produces a contradiction.
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From the definitions of v(n,m, x) and w(n,m, x; a) we have v(n,m, x) <

w(n,m, x; a∗n,m,x+1) and v(n,m, x + 1) < w(n,m, x + 1; a∗n,m,x). Simplifying

and combining the results of the last two inequalities we obtain

E(n− 1, m, x+1)−E(n− 1, m, x) > E(n− 1, m, x+2)−E(n− 1, m, x+1).

This can be rewritten as

∑

m′

qmm′ [2v(n− 1, m′, x+ 1)− v(n− 1, m′, x)− v(n− 1, m′, x+ 2)] > 0.

The above inequality implies the following:

∑

m′

qmm′ [v(n− 1, m′, x+ 1)− w(n− 1, m′, x; a∗n−1,m′,x+1)]

>
∑

m′

qmm′ [w(n− 1, m′, x+ 2; a∗n−1,m′,x+1)− v(n− 1, m′, x+ 1)].(3.22)

Notice that the induction assumption implies the following for all m ≥ 1.

E(n− 2, m, x) + E(n− 2, m, x+ 2) > 2E(n− 2, m, x+ 1). (3.23)

Simplifying Ineq. (3.22) using lemma 3.2.1, assumption C and Ineq. (3.23)

leads to the inequality

∑

m′

qmm′ [E(n− 2, m′, x+ 1)− E(n− 2, m′, x+ 2)]

>
∑

m′

qmm′ [E(n− 2, m′, x+ 1)− E(n− 2, m′, x+ 2)]

which is a contradiction because both sides of the strict inequality are iden-

tical.
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The proof of Ineq. (3.20) is also by induction on n. For n = 1 we need to

prove that a∗1,m,x ≥ a∗2,m,x. To prove this we assume a∗1,m,x < a∗2,m,x and show

that it produces a contradiction. We know that v(1, m, x) > w(1, m, x; a∗2,m,x)

and v(2, m, x) > w(2, m, x; a∗1,m,x). Simplifying the inequalities and combin-

ing the results leads to v(0, 0, x+1)− v(0, 0, x) < E(1, m, x+1)−E(1, m, x)

or equivalently

v(0, 0, x+ 1)− v(0, 0, x) <
∑

m′

qmm′ [v(1, m′, x+ 1)− v(1, m′, x)].

The above inequality implies that

v(0, 0, x+ 1)− v(0, 0, x) <
∑

m′

qmm′ [v(1, m′, x+ 1)− w(1, m′, x; a∗1,m′,x+1)].

The above inequality simplifies to

v(0, 0, x+ 1)− v(0, 0, x) < v(0, 0, x+ 1)− v(0, 0, x)

which is a contradiction. For the next step in the induction we assume

that a∗n−1,m,x ≤ a∗n,m,x and prove that a∗n,m,x+1 ≤ a∗n+1,m,x. To prove the last

inequality we assume that a∗n,m,x+1 > a∗n+1,m,x and show that it produces a

contradiction. From the definitions of v(n,m, x) and w(n,m, x; a) we have

v(n,m, x) > w(n,m, x; a∗n+1,m,x) and v(n + 1, m, x) > w(n + 1, m, x; a∗n,m,x).

Simplifying and combining the results of the last two inequalities we obtain

E(n,m, x+ 1)−E(n,m, x) < E(n− 1, m, x+ 1)−E(n− 1, m, x).
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The above inequality is equivalent to the following inequality.

∑

m′

qmm′ [v(n,m′, x+1)−v(n,m′, x)] <
∑

m′

qmm′ [v(n−1, m′, x+1)−v(n−1, m′, x)].

The above inequality implies the following:

∑

m′

qmm′ [w(n,m′, x+ 1; a∗1)− v(n,m′, x)]

<
∑

m′

qmm′ [v(n− 1, m′, x+ 1)− w(n− 1, m′, x; a∗2)].

where a∗1 = a∗n,m′,x and a∗2 = a∗n−1,m′,x+1.

Simplifying the above inequality using assumption C and the induction

assumption leads to the inequality

∑

m′

qmm′ [E(n− 2, m′, x+ 1)− E(n− 2, m′, x)]

<
∑

m′

qmm′ [E(n− 2, m′, x+ 1)− E(n− 2, m′, x)],

which is a contradiction because both sides of the strict inequality are iden-

tical.

The proof of Ineq. (3.21) is also by induction on n. For n = 0 the inequality

is obviously true because a∗0,0,x = a0 for all x. For n = 1 we have to prove

a∗1,m,x ≤ a∗1,m+1,x. We assume that a∗1,m,x > a∗1,m+1,x and show that it leads to

a contradiction. We know that v(1, m, x) > w(1, m, x; a∗1,m+1,x) and v(1, m+

1, x) > w(1, m+1, x; a∗1,m,x). Simplifying the inequalities we obtain v(0, 0, x+

1)− v(0, 0, x) > T1,m and v(0, 0, x+ 1)− v(0, 0, x) < T1,m+1 where,

Tn,m =
a∗n,m,xpm(a

∗
n,m,x)− a∗n,m+1,xpm(a

∗
n,m+1,x)

pm(a∗n,m,x)− pm(a∗n,m+1,x)
.
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This is a contradiction because from assumption B we have T1,m ≥ T1,m+1

because we assumed a∗1,m,x > a∗1,m+1,x.

To complete the induction of we assume that a∗n−1,m+1,x ≥ a∗n−1,m,x and

prove that a∗n,m+1,x ≥ a∗n,m,x. To prove this part we assume that a∗n,m+1,x <

a∗n,m,x and show that this produces a contradiction. Since a∗n,m,x is the optimal

action in state (n,m, x) we have that v(n,m, x) < w(n,m, x, a∗n,m+1,x). This

simplifies to:

E(n− 1, m, x+ 1)−E(n− 1, m, x) > Tn,m. (3.24)

Similarly in state (n,m+1, x) we have v(n,m+1, x) < w(n,m+1, x, a∗n,m,x)

which simplifies to

E(n− 1, m+ 1, x+ 1)− E(n− 1, m+ 1, x) < Tn,m+1. (3.25)

Note that

Tn,m+1 < Tn,m. (3.26)

Indeed, from the definitions of Tm and Tm+1 the last inequality simplifies to

the following inequality

pm(a
∗
n,m,x)pm(a

∗
n,m−1,x) < pm−1(a

∗
n,m,x)pm−1(a

∗
n,m−1,x),

which is true under assumption B since we have assumed that a∗n,m,x >

a∗n,m+1,x.
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Inequalities (3.24), (3.25), (3.26) together imply that

E(n−1, m+1, x+1)−E(n−1, m+1, x) < E(n−1, m, x+1)−E(n−1, m, x).

This implies that

∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i+ 1, x+ 1)− v(n− 1, m+ i+ 1, x)].}

+G(−m)(v(n− 1, 1, x+ 1)− v(n− 1, 1, x))

<
∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, x+ 1)− v(n− 1, m+ i, x)]}.

From Theorem 3.2.3 we have v(n − 1, 1, x + 1) − v(n − 1, 1, x) ≥ 0. Hence,

the above inequality implies that

∞
∑

m′=1

qmm′ [v(n− 1, m′ + 1, x+ 1)− v(n− 1, m′ + 1, x)]

<
∞
∑

m′=1

qmm′ [v(n− 1, m′, x+ 1)− v(n− 1, m′, x)].

From the above inequality we obtain the following.

∞
∑

m′=1

qmm′ [w(n− 1, m′ + 1, x+ 1; a∗1)− v(n− 1, m′, x+ 1)]

<
∞
∑

m′=1

qmm′ [v(n− 1, m′ + 1, x)− w(n− 1, m′, x; a∗2)], (3.27)

where a∗1 = a∗n−1,m′,x+1 and a∗2 = a∗n−1,m′+1,x. From assumption B we have

pm(a) ≥ pm+1(a), so, let pm(a∗1) = pm+1(a∗1)+ δ1 and pm(a∗2) = pm+1(a∗2)+ δ2.

Note that the induction assumption implies that

E(n−2, m+1, x+1)−E(n−2, m, x+1) > E(n−2, m+1, x)−E(n−2, m, x).

(3.28)
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Simplifying Ineq. (3.27) using assumption C and Ineq. (3.28) leads to the

inequality

∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)−E(n− 2, m′, x+ 1)]

+δ1[−a∗1 + E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′ + 1, x)]

+δ2[−a∗2 + E(n− 2, m′, x+ 2)− E(n− 2, m′, x+ 1)]

<
∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)−E(n− 2, m′, x+ 1)].

From the proof of Ineq. (3.18) we know that the terms multiplying δ1 and δ2

are positive. Hence the above inequality implies

∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′, x+ 1)]

<
∞
∑

m′=1

{qmm′ [E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′, x+ 1)].

which is a contradiction because both sides of the strict inequality are iden-

tical.

3.3 Inventory Case

3.3.1 Model Definition

In this section we consider the version of the problem where any items that

are unsold at the end of a period are carried over as inventory to the next
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period with an inventory carrying cost of h units per item per period. We

model this problem as a Markov Decision process.

1. The state space S in this case is the set {(n,m, x), n = 0, . . . , N, m =

1, . . . , x = 0, 1, . . .}, where n represents the number of auctions re-

maining during the current epoch, m represents the number of bidders

participating in the current auction, x ≥ 0 represents the inventory

level at the beginning of the current (N − n) auction. Note that:

• If n = 0 then m = 0.

• State (0, 0, x) represents the state of the system at the end of an

epoch when all auctions are over.

• Possible states at the beginning of an epoch, prior to the start of

the N auctions, are of the form (N,m, x), for all m = 1, . . . and

x = 0, 1, . . . .

2. In any state (n,m, x) the following action sets A(n,m, x) are available.

• A(0, 0, x) = {a0}.

• A(n,m, x) = {a0, . . . , ap} for n > 0.

3. When an action a ∈ A(n,m, x) is taken in state (n,m, x) the following

transitions are possible.

• If n = 0, then starting from state (0, 0, x) the next state is (N,m, (x−



63

d)+) with probability qm(1)pD(d), if x > d and qm(1)P̄D(d), oth-

erwise, where d = 0, 1, . . . .

• If n > 0 then depending on whether or not the buyer wins the

current auction the next state is (n−1, m′, x+1) with probability

pm(a) qmm′(N −n) or state (n− 1, m′, x) with p̄m(a) qmm′(N −n).

4. When an action a ∈ A(n,m, x) is taken in state (n,m, x) the expected

reward ra(n,m, x) is as follows.

ra(n,m, x) =







































∑∞
d=0

(r(d ∧ x)− h(x− d)+ − δ(d− x)+) pD(d) if n = 0,

−a pm(a) if n > 0.

where d ∧ x = min{d, x} and d ∨ x = max{d, x}.

Let a∗n,m,x denote the optimal action in the state (n,m, x). Let v(n,m, x)

denote the value function in state (n,m, x) and w(n,m, x; a) denote the ex-

pected future reward when action a is taken in state (n,m, x) and an optimal

policy is followed thereafter. Note that v(n,m, x) = w(n,m, x; a∗n,m,x).

The dynamic programming equations are

v(n,m, x) = max
a∈A

{w(n,m, x; a)} (3.29)
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where,

w(n,m, x; a) = r(0, 0, x) + β
x

∑

d=0

E1(N,m, (x− d) ∨ 0)pD(d) if n = 0

= ra(n,m, x) + pm(a)E(n− 1, m, x+ 1)

+p̄m(a)E(n− 1, m, x) if n > 0,

E(n−1, m, x) =
∑∞

m′=1
qmm′(N−n)v(n−1, m′, x), E1(N,m, x) =

∑∞
m=1

qm(1)v(N,m, x)

and β is the discount factor.

The above dynamic programming equations can be solved to develop a

bidding strategy for a general setting. We now consider structural properties

of the optimal policies for some interesting cases.

In the following sections we consider the above problem with a fixed

inventory capacity. Let x∗ represent the fixed inventory capacity. We make

the following assumption about x∗.

Assumption E. P (D ≤ x∗) ≤
r

r+h

Remark 1: Assumption E is not very restrictive because in most situations

h << r.

Remark 2: Assumption E can be replaced with the less restrictive assump-

tion
∞
∑

d=x+1

(r + δ(d− x)− δ(d− x− 1))pD(d) ≥
x

∑

d=0

hpD(d),

but this assumption may be more difficult to verify in practice.

Lemma 3.3.1. Under assumption E the expected reward function in state

(0, 0, x), ra(0, 0, x) is an increasing function of x i.e.
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ra(0, 0, x) ≤ ra(0, 0, x+ 1). (3.30)

Proof. The proof is evident from the fact that the difference r(0, 0, x+ 1)−

r(0, 0, x) can be simplified to

rPD(x+ 1)− hP̄D(x+ 1) +
∞
∑

d=x+1

(δ(d− x)− δ(d− x− 1))pD(d),

which under assumption E is non-negative.

3.3.2 Constant Number of Opponents with Fixed In-

ventory Capacity.

In this section we consider the problem where there is a constant number of

opponents, m0 ≥ 1, in all auctions. The state space is the set {(n,m0, x)}

where n = 1 . . .N and x = 0 . . . x∗. The action sets are A(0, 0, x) = {a0},

A(n,m0, x∗) = {a0} and A(n,m0, x) = {a0, . . . , ap} otherwise. Note that

qmm′(n) = 1 if m = m′ = m0 and 0 otherwise.

During any auction the buyer makes his decision on how much to bid

based on the number of auctions remaining and the number of items already

acquired. We obtain a simplified MDP where the state (n, x) represents

the maximum possible number of remaining auctions and the number of

items already acquired. The action sets are A(0, x) = {a0}, A(n, x∗) =

{a0} and A(n, x) = {a0, . . . , ap}. The transition probabilities and expected
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rewards also simplify analogously and the dynamic programming equations

in Eq. (3.29) reduce to the following.

v(n, x) = max
a∈A

{w(n, x; a)} (3.31)

where

w(n, x; a) = r(0, x) + β
x

∑

d=0

v(N, (x− d) ∨ 0))pD(d) if n = 0,

= ra(n,m, x) + p(a)v(n− 1, m, x+ 1)

+p̄(a)v(n− 1, x) if n > 0 and x < x∗,

= v(n− 1, x∗) if n > 0 and x = x∗.

Let vk(n, x) denote the kth step of the successive approximation process

used to find the value function v(n, x). The successive approximation equa-

tions can be written as follows.

vk(n, x) = max
a∈A

{wk(n, x; a)}

where

wk(n,m, x; a) = r(0, x) + β
x

∑

d=0

vk−1(N, (x− d) ∨ 0))pD(d) if n = 0,

= ra(n, x) + p(a)vk−1(n− 1, m, x+ 1)

+p̄(a)vk−1(n− 1, x) if n > 0,

= vk−1(n− 1, x∗) if n > 0 and x = x∗.

Let a∗n,x(k) denote the optimal action in state (n, x) during the kth step of
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the successive approximation process. Note that limk→∞ vk(n, x) = v(n, x)

and limk→∞ a∗n,x(k) = a∗n,x.

We next state and prove the theorems 3.3.1 and 3.3.2.

Theorem 3.3.1. Under assumptions A and D the following inequalities hold

for all n and x.

v(n, x) ≤ v(n, x+ 1) for n ≥ 0 and x < x∗, (3.32)

v(n, x) ≤ v(n+ 1, x) for n ≥ 0 and x ≤ x∗. (3.33)

Proof. We first prove Ineq. (3.32) by induction. We start with the functions

vk(n, x). By definition v0(n, x) is an increasing function of x. For k = 1,

when n = 0 we have v1(0, x) = r(0, x) which by Lemma 3.3.1 is an increasing

function of x. For n = 1 the difference w1(1, x+ 1; a)− w1(1, x; a) simplifies

to

p(a)(v1(0, x+ 2)− v1(0, x+ 1)) + p̄(a)(v1(0, x+ 1)− v1(0, x)) ≥ 0, (3.34)

which implies that v1(1, x+ 1) ≥ v1(1, x). The argument proceeds by induc-

tion on n establishing v1(n, x+1) ≥ v1(n, x). Assuming that vk−1(n, x) is an

increasing function of x we now show that vk(n, x) is an increasing function of

x. For n = 0 we have vk(0, x) = r(0, x)+β
∑∞

d=0
vk−1(N,m, (x−d)∨0) which

by Lemma 3.3.1 and the induction assumption is an increasing function of
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x. For n = 1 the difference wk(1, x+ 1; a)− wk(1, x; a) simplifies to

p(a)(vk(0, x+ 2)− vk(0, x+ 1)) + p̄(a)(vk(0, x+ 1)− vk(0, x)) ≥ 0, (3.35)

which implies that vk(1, x + 1) ≥ vk(1, x). Proceeding using induction on n

we establish vk(n, x+1) ≥ vk(n, x). Taking the limit as k goes to infinity we

complete the proof of Ineq. (3.32).

We next prove Ineq. (3.33) by contradiction. We assume that v(n, x) >

v(n+1, x) and prove that it produces a contradiction. Note that v(n+1, x) is a

convex combination of v(n, x) and v(n, x+1)− a∗n+1,x. From the assumption

that v(n, x) > v(n + 1, x) we can conclude that v(n, x) > v(n, x + 1) −

a∗n+1,x. The last inequality implies that w(n + 1, x; a0) ≥ v(n + 1, x). The

last inequality implies that a∗n+1,x = a0 which in turn implies that v(n, x) >

v(n, x+ 1) which contradicts Ineq. (3.32).

Theorem 3.3.2. Under assumptions A and D the following relationships

hold.

a∗n,x ≥ a∗n,x+1 for n ≥ 0 and x < x∗, (3.36)

a∗n,x ≥ a∗n+1,x for n > 0 and x ≤ x∗. (3.37)

Proof. We first prove Ineq. (3.36). For n = 0 the inequality is obviously true

because a∗0,x = a0, ∀ x. For n > 0 the proof of Ineq. (3.36) is by induction on

k using the functions a∗n,x(k). For k = 0 the inequality is obviously true as
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all actions are equivalent. For k = 1 to prove that a∗1,x(1) ≥ a∗1,x+1(1) assume

a∗1,x(1) < a∗1,x+1(1) and prove that it produces a contradiction. We know

that v1(1, x) > w1(1, x; a∗1,x+1(1)) and vk(1, x + 1) > wk(1, x + 1; a∗1,x(1)).

Simplifying the inequalities and combining the results we obtain

v1(0, x+ 1)− v1(0, x) < v1(0, x+ 2)− v1(0, x+ 1).

The above inequality simplifies to r(0, x + 1) − r(0, x) < r(0, x + 2) −

r(0, x+ 1), which from the definition of r(0, x) further simplifies to

(r+h)pD(x+1)+
∞
∑

d=x+1

pD(d)[(δ(d−x)−δ(d−x−1))−(δ(d−x−1)−δ(d−x−2))] < 0,

which contradicts assumption D. The argument proceeds by induction on n

establishing a∗n,x(1) ≥ a∗n,x+1(1). Now we assume that a∗n,x(k−1) ≥ a∗n,x+1(k−

1) and prove that a∗n,x(k) ≥ a∗n,x+1(k). To prove this we assume that a∗n,x(k) <

a∗n,x+1(k) and prove that this produces a contradiction.

We know that vk(n, x) > wk(n, x; a∗n,x+1(k)) and vk(n, x+ 1) > w(n, x+

1; a∗n,x(k)). Simplifying these inequalities and combining the results we obtain

the following.

vk−1(n−1, x+1)−vk−1(n−1, x) < vk−1(n−1, x+2)−vk−1(n−1, x+1). (3.38)

From the definition of vk(n, x) the above inequality implies the following.

vk−1(n− 1, x+ 1)− wk−1(n− 1, x; a∗n−1,x+1(k − 1))

< wk−1(n− 1, x+ 2; a∗n−1,x+1(k − 1))− vk−1(n− 1, x+ 1). (3.39)
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Note that the induction assumption implies the following inequality.

vk−2(n−2, x+2)−vk−2(n−2, x+1) > vk−2(n−2, x+1)−vk−2(n−2, x). (3.40)

Using Ineq. (3.40) and lemma 3.3.1 Ineq. (3.39) simplifies to

vk−2(n−2, x)−vk−2(n−2, x+1) < vk−2(n−2, x)−vk−2(n−2, x+1) (3.41)

which contradicts Ineq. (3.40). This proves that a∗n,x(k) ≥ a∗n,x+1(k) for all

k. The proof is complete by taking limit as k goes to infinity of the last

inequality.

The proof of Ineq. (3.37) is by induction on n. For n = 1 to prove that

a∗1,x ≥ a∗2,x, we assume that a∗2,x > a∗1,x and show that it produces a contra-

diction. From the definitions of v(1, x) and v(2, x) we know that v(1, x) >

w(1, x; a∗2,x) and v(2, x) > w(2, x; a∗1,x). Simplifying the above inequalities and

combining the results we obtain v(1, x+ 1)− v(1, x) > v(0, x+ 1)− v(0, x).

The last inequality implies that v(1, x + 1) − w(1, x; a∗1,x+1) > v(0, x + 1) −

v(0, x), which from the definition of w(n, x; a) and Ineq. (3.33) simplifies to

v(0, x + 1) − v(0, x) > v(0, x + 1) − v(0, x) which is a contradiction. Now

we assume that a∗n−1,x ≥ a∗n,x and prove that a∗n,x ≥ a∗n+1,x. To prove this we

assume that a∗n,x < a∗n+1,x and show that this produces a contradiction. From

the definitions of v(n, x) and v(n+1, x) we have v(n, x) > w(n, x; a∗n+1,x) and

v(n+ 1, x) > w(n+ 1, x; a∗n,x).
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Simplifying the above inequalities and combining the results gives the

following inequality.

v(n− 1, x+ 1)− v(n− 1, x) < v(n, x+ 1)− v(n, x).

From the definition of w(n, x; a) the above inequality implies that

v(n− 1, x+)− v(n, x+ 1) > w(n, x; a∗n,x+1) + v(n− 1, x+ 1).

From the definition of v(n, x+1) and w(n, x; a) the above inequality simplifies

to the following inequality

v(n− 1, x+ 1)− v(n− 1, x) < v(n− 1, x+ 1)− v(n− 1, x),

which is a contradiction because both sides of the strict inequality are iden-

tical.

3.3.3 Varying Number of Opponents with Fixed In-

ventory Capacity.

In this section we consider the problem where the number of opponents may

change with each auction as described in the section 3.3.1. We also assume

that x∗ represents the inventory capacity.

The dynamic programming equations are as follows.

v(n,m, x) = max
a∈A

{w(n,m, x; a)} (3.42)
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where,

w(n,m, x; a) = r(0, 0, x) + β
x

∑

d=0

E1(N,m, (x− d) ∨ 0)pD(d) if n = 0,

= ra(n,m, x) + pm(a)E(n− 1, m, x+ 1)

+p̄m(a)E(n− 1, m, x) if n > 0 and x < x∗,

= E(n− 1, m, x∗) if x = x∗.

Let vk(n,m, x) denote the kth step of the successive approximation process

used to find the value function v(n,m, x). Let Ek(n,m, x) =
∑∞

m′=1
qmm′vk(n,m′, x)

and Ek
1 (N, 0, x) =

∑∞
m′=1

qm′(1)vk(N,m′, x). The successive approximation

equations can be written as follows.

vk(n,m, x) = max
a∈A

{wk(n,m, x; a)}

where

wk(n,m, x; a) = r(0, 0, x) + β
x

∑

d=0

Ek−1
1 (N, 0, (x− d) ∨ 0)pD(d) if n = 0,

= ra(n,m, x) + pm(a)E
k−1(n− 1, m, x+ 1)

+p̄m(a)E
k−1(n− 1, m, x) if n > 0 and x < x∗,

= Ek−1(n− 1, m, x∗) if x = x∗.

Let a∗n,m,x(k) denote the optimal action in state (n,m, x) during the kth

step of the successive approximation process. Note that limk→∞ vk(n,m, x) =

v(n,m, x) and limk→∞ a∗n,m,x(k) = a∗n,m,x.

We now state and prove the theorems 3.3.3 and 3.3.4.
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Theorem 3.3.3. Under assumptions A, B, C and D the following relation-

ships hold.

v(n,m, x) ≤ v(n,m, x+ 1) ∀ n ≥ 0 and x < x∗, (3.43)

v(n,m, x) ≤ v(n+ 1, m, x) ∀ n ≥ 0 and x ≤ x∗, (3.44)

v(n,m, x) ≥ v(n,m+ 1, x) ∀ n ≥ 0 and x ≤ x∗. (3.45)

Proof. We first show that Ineq. (3.43) holds. To prove this we use the

functions vk(n,m, x). For k = 0 the inequality is obviously true because

v0(n,m, x) = 0. For k = 1 the inequality v1(0, 0, x) ≤ v1(0, 0, x + 1)

is true from the definition of v1(0, 0, x) and Lemma 3.3.1. For n = 1

we show that v1(1, m, x) ≤ v1(1, m, x + 1) by contradiction. If we as-

sume the contrary we have v1(1, m, x) > v1(1, m, x+ 1), which implies that

v1(1, m, x) > w1(1, m, x+ 1; a∗1,m,x). Simplifying the last inequality leads to

pm(a
∗
1,m,x)(v(0, 0, x+2)−v(0, 0, x+1))+p̄m(a

∗
1,m,x)(v(0, 0, x+1)−v(0, 0, x)) < 0

which is a contradiction. The argument proceeds by induction on n and we

obtain v1(n,m, x) ≤ v1(n,m, x + 1). Now, we assume that vk−1(n,m, x) ≤

vk−1(n,m, x+1) and prove that vk(n,m, x) ≤ vk(n,m, x+1). The induction

assumption implies that Ek−1(n,m, x) ≤ Ek−1(n,m, x). From this and the

definition of w(n,m, x; a) we can conclude that w(n,m, x; a) ≤ w(n,m, x +
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1; a) ∀ a which in turn implies that

vk(n,m, x) = max
a∈A

wk(n,m, x; a) ≤ max
a∈A

wk(n,m, x+ 1; a) = vk(n,m, x+ 1).

This implies that vk(n,m, x) ≤ vk(n,m, x+ 1) for all k. Taking the limit as

k goes to infinity completes the proof of Ineq. (3.43).

Next, we prove that Ineq. (3.44) holds by induction on n. For n = 0

to show that the inequality v(0, 0, x) ≤ v(1, m, x), holds we assume that

v(0, 0, x) > v(1, m, x), and show that it produces a contradiction. Since

v(1, m, x) is a convex combination of v(0, 0, x) and v(0, 0, x+1)−a∗1,m,x. From

the assumption that v(0, 0, x) > v(1, m, x) we can conclude that v(0, 0, x) >

v(0, 0, x+ 1)− a∗1,m,x, which in turn implies that w(1, m, x; a0) ≥ v(1, m, x).

The last inequality implies that a∗1,m,x = a0 which further implies that

v(0, 0, x) > v(0, 0, x+ 1) which contradicts Ineq. (3.43).

For n = 1 from the fact that E(1, m, x) ≥ v(0, 0, x) we can conclude that

w(1, m, x; a) ≤ w(2, m, x; a) which implies that

v(1, m, x) = max
a∈A

w(1, m, x; a) ≤ max
a∈A

w(2, m, x; a) = v(2, m, x).

The induction assumption in this case will be v(n − 1, m, x) ≤ v(n,m, x),

using which we prove that v(n,m, x) ≤ v(n + 1, m, x). From the induction

assumption and it follows that E(n − 1, m, x) ≤ E(n,m, x). From this fact

and the definition of w(n,m, x; a) we can conclude that w(n − 1, m, x; a) ≤
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w(n,m, x; a) ∀ a. The last inequality implies that

v(n,m, x) = max
a∈A

w(n,m, x; a) ≤ max
a∈A

w(n− 1, m, x; a) = v(n− 1, m, x),

which completes the induction.

We now show that Ineq. (3.45) holds. For n = 1 to prove that v(1, m, x) ≥

v(1, m + 1, x) we assume v(1, m, x) < v(1, m + 1, x) and show that it pro-

duces a contradiction. From the definition of w(n,m, x; a) the last inequality

implies that v(1, m, x; a∗1,m+1,x) < w(1, m+ 1, x). Simplifying this inequality

we obtain v(0, 0, x+ 1)− a∗1,m,x+1 < v(0, 0, x). Since v(1, m, x + 1) is a con-

vex combination of v(0, 0, x+ 1)− a∗1,m,x+1 and v(0, 0, x), the last inequality

implies that w(1, m, x + 1; a0) ≥ v(1, m, x + 1) which further implies that

v(0, 0, x) > v(0, 0, x+ 1) which is a contradiction.

We complete the induction of Ineq. (3.45) along similar lines. We assume

that v(n,m, x) ≥ v(n,m + 1, x) and prove that v(n,m, x) ≥ v(n,m + 1, x).

To prove the last inequality we assume that v(n,m, x) < v(n,m+ 1, x) and

proceed to show that this produces a contradiction. This assumption implies

that w(n,m, x; a∗n,m+1,x) < v(n,m+1, x). Simplifying the previous inequality

leads to E(n,m, x+1)−a∗n,m,x+1 < E(n,m, x). From the definitions of v(n+

1, m, x) the last inequality implies that w(n + 1, m, x; a0) ≥ v(n + 1, m, x).

From the last inequality we can conclude that a∗n+1,m,x = a0 which implies

E(n,m, x+ 1) < E(n,m, x), which is a contradiction.
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Theorem 3.3.4. Under assumption A, B, C and D the following relation-

ships hold true for all n, m and x.

a∗n,m,x ≥ a∗n,m,x+1 for n ≥ 0, (3.46)

a∗n,m,x ≥ a∗n+1,m,x for n > 0, (3.47)

a∗n,m,x ≤ a∗n,m+1,x for n ≥ 0. (3.48)

Proof. We first prove Ineq. (3.46). For n = 0 the inequality is obviously true

because a∗0,0,x = a0, ∀ x. For n > 0 the proof of Ineq. (3.46) is by induction

on k using the functions a∗n,m,x(k). For k = 0 the inequality is obviously true

as all actions are equivalent. For k = 1 to prove that a∗1,m,x(1) ≥ a∗1,m,x+1(1)

assume a∗1,m,x(1) < a∗1,m,x+1(1) and prove that it produces a contradiction. We

know that v1(1, m, x) ≥ w1(1, x; a∗1,m,x+1(1)) and vk(1, m, x+ 1) ≥ wk(1, x+

1; a∗1,m,x(1)). Simplifying the inequalities and combining the results we obtain

v1(0, 0, x+ 1)− v1(0, 0, x) < v1(0, 0, x+ 2)− v1(0, 0, x+ 1).

The above inequality simplifies to r(0, 0, x + 1) − r(0, 0, x) < r(0, 0, x +

2)− r(0, 0, x+ 1), which from the definition of r(0, 0, x) implies that

∞
∑

d=x+1

pD(d)[(δ(d− x)− δ(d− x− 1))− (δ(d− x− 1)− δ(d− x− 2))] < 0,

which contradicts assumption D. The argument proceeds by induction on

n establishing a∗n,m,x(1) ≥ a∗n,m,x+1(1) Now we assume that a∗n,m,x(k − 1) ≥
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a∗n,m,x+1(k − 1) and prove that a∗n,m,x(k) ≥ a∗n,m,x+1(k). To prove this we as-

sume that a∗n,m,x(k) < a∗n,m,x+1 and prove that this produces a contradiction.

We know that vk(n,m, x) ≥ wk(n,m, x; a∗n,m,x+1(k)) and vk(n,m, x+1) ≥

w(n,m, x + 1; a∗n,m,x(k)). Simplifying these inequalities and combining the

results we obtain the following.

Ek−1(n− 1, m, x+ 1)− Ek−1(n− 1, m, x)

< Ek−1(n− 1, m, x+ 2)− Ek−1(n− 1, m, x+ 1). (3.49)

From the definition of vk(n,m, x) the above inequality implies the following.

∑

m′

qmm′ [vk−1(n− 1, m′, x+ 2)− wk−1(n− 1, m′, x+ 1; a∗2m′)]

>
∑

m′

qmm′ [wk−1(n− 1, m′, x+ 1; a∗1m′)− vk−1(n− 1, m′, x)]. (3.50)

where a∗1m′ = a∗n−1,m′,x+2(k − 1) and a∗2m′ = a∗n−1,m′,x(k − 1). Note that the

induction assumption implies the following inequality.

∑

m′

qmm′ [Ek−2(n− 2, m′, x+ 2)− Ek−2(n− 2, m′, x+ 1)]

>
∑

m′

qmm′ [Ek−2(n− 2, m′, x+ 1)− Ek−2(n− 2, m′, x)]. (3.51)

Using Ineq. (3.51) and lemma 3.3.1, Ineq. (3.50) simplifies to

∑

m′

qmm′ [Ek−2(n− 2, m′, x+ 1)−Ek−2(n− 2, m′, x)]

>
∑

m′

qmm′ [Ek−2(n− 2, m′, x+ 2)−Ek−2(n− 2, m′, x+ 1)]. (3.52)
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which contradicts Ineq. (3.51). This proves that a∗n,m,x(k) ≥ a∗n,m,x+1(k) for

all k. The proof is complete by taking limit as k goes to infinity of the last

inequality.

The proof of Ineq. (3.47) is also by induction on n. For n = 1 we need to

prove that a∗1,m,x ≥ a∗2,m,x. To prove this we assume a∗1,m,x < a∗2,m,x and show

that it produces a contradiction. We know that v(1, m, x) > w(1, m, x; a∗2,m,x)

and v(2, m, x) > w(2, m, x; a∗1,m,x). Simplifying the inequalities and combin-

ing the results leads to v(0, 0, x+1)− v(0, 0, x) < E(1, m, x+1)−E(1, m, x)

or equivalently

v(0, 0, x+ 1)− v(0, 0, x) <
∑

m′

qmm′ [v(1, m′, x+ 1)− v(1, m′, x)].

The above inequality implies that

v(0, 0, x+ 1)− v(0, 0, x) <
∑

m′

qmm′ [v(1, m′, x+ 1)− w(1, m′, x; a∗1,m′,x+1)].

The above inequality simplifies to

v(0, 0, x+ 1)− v(0, 0, x) > v(0, 0, x+ 1)− v(0, 0, x)

which is a contradiction. For the next step in the induction we assume

that a∗n−1,m,x ≥ a∗n,m,x and prove that a∗n,m,x+1 ≥ a∗n+1,m,x. To prove the last

inequality we assume that a∗n+1,m,x+1 > a∗n,m,x and show that it produces a

contradiction. From the definitions of v(n,m, x) and w(n,m, x; a) we have
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v(n,m, x) < w(n,m, x; a∗n+1,m,x) and v(n + 1, m, x) < w(n + 1, m, x; a∗n,m,x).

Simplifying and combining the results of the last two inequalities we obtain

E(n,m, x+ 1)−E(n,m, x) > E(n− 1, m, x+ 1)−E(n− 1, m, x).

The above inequality is equivalent to the following inequality.

∑

m′

qmm′ [v(n,m′, x+1)−v(n,m′, x)] >
∑

m′

qmm′ [v(n−1, m′, x+1)−v(n−1, m′, x)].

The above inequality implies that

∑

m′

qmm′ [v(n,m′, x+ 1)− w(n,m′, x; a∗1)]

>
∑

m′

qmm′ [w(n− 1, m′, x+ 1; a∗2)− v(n− 1, m′, x)].

where a∗1 = a∗n,m′,x+1 and a∗2 = a∗n−1,m′,x.

Simplifying the above inequality using assumption C and the induction

assumption leads to the inequality

∑

m′

qmm′ [E(n− 2, m′, x+ 1)−E(n− 2, m′, x)]

>
∑

m′

qmm′ [E(n− 2, m′, x+ 1)−E(n− 2, m′, x)]

which is a contradiction because both sides of the strict inequality are iden-

tical.

The proof of Ineq. (3.48) is also by induction on n. For n = 0 the inequality

is obviously true because a∗0,0,x = a0 for all x. For n = 1 we have to prove

a∗1,m,x ≤ a∗1,m+1,x. We assume that a∗1,m,x > a∗1,m+1,x and show that it leads to
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a contradiction. We know that v(1, m, x) > w(1, m, x; a∗1,m+1,x) and v(1, m+

1, x) > w(1, m+1, x; a∗1,m,x). Simplifying the inequalities we obtain v(0, 0, x+

1)− v(0, 0, x) > T1,m and v(0, 0, x+ 1)− v(0, 0, x) < T1,m+1 where,

Tn,m =
a∗n,m,xpm(a

∗
n,m,x)− a∗n,m+1,xpm(a

∗
n,m+1,x)

pm(a∗n,m,x)− pm(a∗n,m+1,x)
.

This is a contradiction because from assumption B we have T1,m ≥ T1,m+1

because we assumed a∗1,m,x > a∗1,m+1,x.

To complete the induction of Ineq. (3.48) we assume that a∗n−1,m+1,x ≥

a∗n−1,m,x and prove that a∗n,m+1,x ≥ a∗n,m,x. To prove this part we assume

that a∗n,m,x > a∗n,m+1,x and show that this produces a contradiction. Since

a∗n,m,x is the optimal action in state (n,m, x) we have that v(n,m, x) <

w(n,m, x, a∗n,m+1,x). This simplifies to:

E(n− 1, m, x+ 1)−E(n− 1, m, x) > Tn,m. (3.53)

Similarly in state (n,m+1, x) we have v(n,m+1, x) < w(n,m+1, x, a∗n,m,x)

which simplifies to

E(n− 1, m+ 1, x+ 1)− E(n− 1, m+ 1, x) < Tn,m+1. (3.54)

Note that

Tn,m+1 < Tn,m. (3.55)

Indeed, from the definitions of Tm and Tm+1 the last inequality simplifies to
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the following inequality

pm(a
∗
n,m,x)pm(a

∗
n,m−1,x) < pm−1(a

∗
n,m,x)pm−1(a

∗
n,m−1,x),

which is true under assumption B since we have assumed that a∗n,m,x >

a∗n,m+1,x.

Inequalities (3.53), (3.54), (3.55) together imply that

E(n−1, m+1, x+1)−E(n−1, m+1, x) < E(n−1, m, x+1)−E(n−1, m, x).

This implies that

∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i+ 1, x+ 1)− v(n− 1, m+ i+ 1, x)].}

+G(−m)(v(n− 1, 1, x+ 1)− v(n− 1, 1, x))

<
∞
∑

i=−m+1

{G(i)[v(n− 1, m+ i, x+ 1)− v(n− 1, m+ i, x)]}

From Theorem 3.3.3 we have v(n − 1, 1, x + 1) − v(n − 1, 1, x) ≥ 0. Hence,

the above inequality implies that

∞
∑

m′=1

qmm′ [v(n− 1, m′ + 1, x+ 1)− v(n− 1, m′ + 1, x)]

<
∞
∑

m′=1

qmm′ [v(n− 1, m′, x+ 1)− v(n− 1, m′, x)].

This inequality implies the following.

∞
∑

m′=1

qmm′ [w(n− 1, m′ + 1, x+ 1; a∗1)− v(n− 1, m′, x+ 1)]

<
∞
∑

m′=1

qmm′ [v(n− 1, m′ + 1, x)− w(n− 1, m′, x; a∗2)] (3.56)
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where a∗1 = a∗n−1,m′,x+1 and a∗2 = a∗n−1,m′+1,x. From assumption B we have

pm(a) ≥ pm+1(a), so, let pm(a∗1) ≥ pm+1(a∗1)+ δ1 and pm(a∗2) ≥ pm+1(a∗2)+ δ2.

Note that the induction assumption implies that

E(n−2, m+1, x+1)−E(n−2, m, x+1) > E(n−2, m+1, x)−E(n−2, m, x).

(3.57)

Simplifying Ineq. (3.56) using assumption C and Ineq. (3.57) leads to the

inequality

∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)−E(n− 2, m′, x+ 1)]

+δ1[−a∗1 + E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′ + 1, x)]

+δ2[−a∗2 + E(n− 2, m′, x+ 2)− E(n− 2, m′, x+ 1)]

<
∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)−E(n− 2, m′, x+ 1)].

From the proof of Ineq. (3.45) we know that the terms multiplying δ1 and δ2

are positive. Hence the above inequality implies

∞
∑

m′=1

qmm′ [E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′, x+ 1)]

<
∞
∑

m′=1

{qmm′ [E(n− 2, m′ + 1, x+ 1)− E(n− 2, m′, x+ 1)].

which is a contradiction because both sides of the strict inequality are iden-

tical.
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3.4 Conclusions

In this chapter we considered the problem the problem of “the bidder” who

in each period, of an infinite time horizon, buys items in auctions and sells

acquired items in a secondary market. We formulated the problem as a

Markov Decision process and proved that, under a few assumptions, the op-

timal value function and the optimal are decreasing functions of the number

of remaining auctions, increasing functions of the number of opponents and

decreasing functions of the inventory on hand.

This model can be extended to the case where the items are sold not at

the end of the time period but also after each auction. We are currently

working on this model and expect to finish it soon. The condition that the

bid distribution is constant through all the auctions can be relaxed and a

model where the distribution is updated using a Bayesian framework can

also be constructed and studied.
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Chapter 4

Optimizing Taboo Criteria in

Markov Decision Processes

4.1 Introduction

The optimization of Markovian systems is often based on costs, or rewards,

associated with the states of the system. However, in many applied problems

it may be difficult or even impossible to determine costs, or rewards, associ-

ated with some of the states. We consider two cases. In the first case rewards

and costs are known for some states only. For this case we show that one

can define a taboo first passage reward which can be used as an optimization

criterion. The first example shows how this can be achieved in the context

of an inventory control problem, similar to the models discussed in [28], [24]
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and [34]. In the second case none of the costs or rewards associated with the

states are known. In this situation a meaningful optimization criterion is to

maximize the taboo mean return time to a fixed state. The second example

models such a case in the context of the classical replacement problem, [8].

Taboo states represent undesirable states for the system see examples below

and also [26].

We show that computing policies that maximize expected taboo first

return rewards and mean taboo return times is in general a hard problem, for

which well known methods from MDP theory can not be applied. However,

it is shown herein that if certain monotonicity properties are satisfied then

efficient computation of an optimal deterministic policy is possible.

4.1.1 Notation and definitions

We will use the following notation. Let Xn denote the state of the system

at transition n and let S = {i = 1, 2, . . . , S} denote the finite state space

of the system. For each i ∈ S, there is a finite set Ai of actions available.

When the system is in state i and action a ∈ Ai is taken the system moves

to state j ∈ S with probability pij(a). For a detailed classification of policies

we refer to [9, 32]. In what follows we use the notation π(i) to denote the

unique action assigned by a deterministic policy π in state i.

Let G and B be two disjoint subsets of S, where the former represents
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a set of target (good) states while the later represents a set of taboo (bad)

states and let C denote the set of remaining states of S. We will assume that

all of these sets are nonempty. Let Bj denote the set B ∪ {j} and let BG

denote the set B ∪ G.

Remark. When B is empty this analysis reduces to the well known

expected first passage problem, cf, [5, 24].

For any given policy π, and fixed states i, j where i ∈ C ∪ G and j ∈ G

let

τij = inf{n : Xn = j , Xν /∈ Bj, for ν ≤ n− 1 , X0 = i}.

We will use the following notation.

Bf
n
ij(π) = Pπ(τij = n |X0 = i),

Bfij(π) = Pπ(τij < ∞ |X0 = i),

Bmij(π) = Eπ(τij).

Further, for a given subset G of S, we will use the following notation.

τiG = inf{n : Xn ∈ G , Xν /∈ B ∪G, for ν ≤ n− 1 , X0 = i}

and

Bf
n
iG(π) = Pπ(τiG = n |X0 = i),

BfiG(π) = Pπ(τiG < ∞ |X0 = i),

BmiG(π) = Eπ(τiG).
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4.2 Taboo mean first passage reward

In this section we consider the problem where only some of the costs or

rewards associated with the system are know. For such a system we study

the problem of maximization of the taboo mean first passage reward.

Let rk denote the reward when the state of the system is k. Note that

rewards need only be known for all states in S \ B := {k ∈ S, k /∈ B}. Ex-

tending the definitions given in the previous section, we define the following

quantities.

BV
n
ij =

n−1
∑

0

rXt
1 {Xt /∈Bj , 0≤ν<n and Xn=j },

Bv
N
ij = Eπ(

N
∑

n=1

BV
n
ij ),

Bvij = lim
n→∞ Bv

N
ij

and

BV
n
iG =

n−1
∑

0

rXt
1 {Xt /∈ B∪G , 0≤t<n and Xn∈G },

Bv
N
iG = Eπ(

N
∑

n=1

BV
n
iG),

BviG = lim
n→∞Bv

N
iG,

where 1B is the indicator function of the set B.

We next establish theorem 4.2.1 and discuss the computation of the op-

timal solution.
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Theorem 4.2.1. For a given policy π the following relations hold true.

BviG(π) = ri BfiG(π) +
∑

l /∈BG

pil(π) BvlG(π) (4.1)

Proof. The proof of the theorem is by recursion. Dropping the symbol π

for simplicity, we have

Bv
1
iG = ri

∑

j /∈B

Bpij = ri
∑

j /∈B

Bf
1
ij = riBf

1
iG

and

Bv
N
iG = ri

N
∑

n=1

Bf
n
iG +

∑

k/∈BG

pikBv
N−1
kG for N ≥ 2.

Taking the limit as N goes to infinity on both the sides we have

BviG(π) = ri BfiG(π) +
∑

l /∈BG

pil(π) BvlG(π). (4.2)

If the limit of Bv
N
iG as N goes to infinity exists then the theorem is proved.

To prove that the limit exists we first show that the value of Bv
N
iG increases

with N and that it is bounded for every N .

Let r∗ = maxk rk. From the definition ofBv
N
iG we have that

Bv
1
iG = ri Bf

1
iG ≤ r∗ Bf

∗
iG.

Continuing the recursion we can write,

Bv
N
iG = E(

∑N
t=1

rXt
1 {Xt /∈BG , 0≤t<N and XN∈G })

≤ r∗ (Bf
1
iG + Bf

2
iG + . . .+ Bf

N
iG)

≤ r∗Bf
∗
ij.
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This proves that Bv
N
iG is increasing and is bounded for every N, hence equation

(4.2) is valid. This completes the proof of theorem 4.2.1.

Let Bv
∗
iG = supπ { BviG } denote the value function. The problem is to

establish the existence of and find a policy π∗ such that Bv
∗
iG = BviG(π

∗).

The above problem can not be solved using standard MDP methods since

the rewards, riBfiG(π), depend on the policy π, and not just on the state

action pairs. Moreover, an uniformly optimal policy does not exist for all

i ∈ C ∪ G, i.e. the policy that maximizes BviG need not be the same as the

policy that maximizes BvkG for i += k. As an illustrative example consider

the replacement problem discussed in a later section, with L = 5, l = 4, G =

{ 1 }, B = { 5 } and transition probability matrix

P =































0.41 0.01 0.05 0.17 0.36

0.27 0.20 0.01 0.05 0.47

0.23 0.03 0.29 0.01 0.53

0.06 0.09 0.03 0.20 0.62

0.20 0.20 0.20 0.20 0.20































For this problem the deterministic policy that maximizes 5m11 is not to

replace in states 1 and 2 and to replace in states 3, 4 and 5. While the policy

that maximizes 5m31 is not to replace in states 1, 2 and 3 and to replace in

states 4 and 5.

In the next section we consider an inventory control example and show

that when certain monotonicity properties hold then the optimal determin-
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istic policy can be easily computed.

4.2.1 An inventory control application.

We study the following inventory control problem, where a sequence of or-

dering decisions is to be made at the beginning of a number of periods of

equal duration. The demand in each period is assumed to be an obser-

vation of a random variable with a known discrete distribution function

pD(d) = P (D = d), with a maximum possible value d = L. We assume

that the demand distribution function is an increasing function of d, i.e.

P (D = d) ≤ P (D = d+ 1).

The state is the discrete amount of inventory available at the beginning

of every time period: {−L + 1, . . . , 0, 1, . . . , S}, where S is the inventory

capacity of the system. At each period a decision on whether or not to order

is taken. Let a = 0 denote the action “do not order” and a = 1 denote the

action “order up to S”.

Whenever the system enters a state i > 0 and the decision to order is

taken, then an ordering cost is incurred and the state changes to state S. If

the system enters a state i ≤ 0 then an order must be placed. If the decision

not to order is taken the next state will be state j with probability pij, where

pij = P{D = i− j} for i ≥ j and pij = 0 for i < j.

The standard cost - reward structure for this model is as follows. There
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is a fixed ordering cost Co, that does not depend on the number of units

ordered; there is a holding cost h(j) = h · j when j units are at hand at the

end of a period; and a shortage or penalty cost p(k), where k is the amount of

shortage at the end of a period. Finally, there is a revenue function r(j) = r·j

where j is the number of units sold. We assume that r > h.

This model has been studied with the assumption of a known penalty

cost for lost sales [21] and with a constraint on the probability of stockout in

[25]. We shall refer to the problem of finding the policy that maximizes the

mean first return reward to the “full capacity state” S, with known penalty

costs as the classical “lost sales problem”.

We consider the case where the penalty cost is unknown. Unlike the

holding or ordering costs, the penalty cost represents many intangibles such

as an opportunity cost for lost sales, a loss in customer goodwill etc., making

it impossible to ascertain in many cases. In this case, we consider the criterion

of maximizing the taboo first return reward HvSS to the “full capacity” state

S, when we define as the taboo set H the set of all states where a penalty

cost will be incurred, i.e., H = {−L+ 1, . . . , 0}.

We prove that the optimal deterministic policy for this problem is a “con-

trol limit” policy, i.e., there exists an integer s∗ such that it is optimal to

order only when the inventory level becomes smaller than s∗. In inventory

theory terminology this type of policy is commonly known as a (s, S) policy.

To prove the above we consider the finite horizon version of the above
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problem. The finite horizon mean taboo first passage reward function can

be written as

Bv
N
iS =











max
{

Bv
N
iS(0), Bv

N
iS(1)

}

if i > 0 ,

Bv
N
iS(1) if i ≤ 0 ,

(4.3)

where Bv
N
iS(0) = rS

∑N
n=1 Bf

n
iS +

∑

k/∈Bj pikBv
N−1
kS and Bv

N
iS(1) = rS − Co.

In the above equations Bv
N
iS(1) is the N− period mean taboo reward when

optimal policy was employed for the first N − 1 periods and action a = 1,

is taken at time N . Note that Bv
N
iS(0) is the corresponding quantity when

action a = 0 is taken at time N. The expected reward is as follows:

ri =
i−1
∑

d=0

r(d)P{D = d}−
i−1
∑

d=0

h(i− d)P{D = d}.

In the sequel the optimal policy for the N− period taboo reward problem

will be denoted by π∗
N .

Lemma 4.2.1. ri is an increasing function of i.

Proof. Consider the difference ri+1 − ri. It simplifies to

r i P{D = i}− hP{D ≤ i− 1}

which is greater than 0 because we assumed r > h and P{D = i} ≥ P{D =

i− 1}.

For any finite discrete demand distribution the following two theorems

hold.
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Theorem 4.2.2. For any fixed k the function ρk(i) =
∑S

j=k pij is increasing

in i = 0, 1, . . . S.

Proof: It suffices to show that, for any 0 < i1 ≤ i2,
∑S

j=k P{D = i1 − j} ≤

∑S
j=k P{D = i2 − j}. Simplifying the terms the inequality can be written as

∑i1
j=0

P{D = j} ≤
∑i2

j=0
P{D = j} which is true for i1 ≤ i2 and the proof is

complete.

Theorem 4.2.3. For any stochastic matrix P = (pij), the following two

conditions are equivalent:

Condition A: For any increasing function h on S \H = {1, . . . , S}, the

function

ξ(i) =
S
∑

j=1

pijh(j)

is a increasing function of i.

Condition B: For each k = 1, . . . , S, the function

ρk(i) =
∑S

j=k pij , i = 1, . . . S (4.4)

is increasing in i.

Proof: For the proof see [7].

The next theorem contains the main result for this inventory control

model.

Theorem 4.2.4. The optimal deterministic policy for the problem of maxi-

mization of the taboo first passage reward is a “control limit” policy.
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Proof:

We first prove that Bv
N
iS(0) is an increasing function of i for all N.To show

this we first prove, using induction, that
∑N

n=0 Bf
n
iS is a increasing function

of i for all N . For n = 0, Bf
0
iS = 0 is an increasing function of i by definition.

Hence, from condition A we have that Bf
1
iS is an increasing function of i. The

induction can be completed using the following,

Bf
n
iS(π) =

∑

l /∈Bj

pil Bf
n−1
lS (π) (4.5)

and condition A. Since Bf
n
iS is an increasing function of i,

∑N
n=0 Bf

n
iS is also

an increasing function of i for all N.

Now consider

Bv
N
iS(0) = ri

N
∑

n=1

Bf
n
iS +

∑

k/∈Bj

pikBv
N−1
kS . (4.6)

For N = 0 we have that Bv
0
iS(0) = 0 is a increasing function of i by

definition. For N = 1, since PiS = 0 Bv
1
iS(0) = 0 is again an increasing

function of i. The induction can be completed using condition A, the fact

that
∑N

n=0 Bf
n
iS is an increasing function of i for all N and Eq. (4.6). Hence,

we can conclude that Bv
N
iS(0) is increasing in i.

Since Bv
N
iS(0) is increasing in i, and Bv

N
iS(1) is independent of i, there

exists an s∗N such that an optimal policy π∗
N for Bv

N
iS is specified by the

actions: π∗
N (i) = 1, for 1 ≤ i ≤ s∗N and π∗

N(i) = 0 for i > s∗N .

For the infinite horizon case, let BviS(0) and BviS(1) denote the taboo first

passage reward when in state i the action is a = 0 and a = 1 respectively.
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Note that the following hold,

BviS = lim
N→∞

Bv
N
iS, (4.7)

and

BviS =



















max
{

BviS(0), BviS(1)
}

if i > 0,

BviS(1) if i ≤ 0 ,

(4.8)

where

BviS(0) = ri BfiS +
∑

l /∈Bj

pil BvlS,

and

BviS(1) = rS − Co.

From Eq. (4.7) and the fact that
∑N

n=0 Bf
n
iS and Bv

N
iS are increasing

functions of i and for all N, it follows that BviS is increasing in i. Using this,

Eq.(4.8), and condition A it follows that there exists a number 1 ≤ s∗ ≤ S

such that BviS = BviS(0) if i > s∗ and BviS = BviS(1) if i ≤ s∗.

The proof of theorem 4.2.4 is complete.

Remark 1: We illustrate these ideas with the following example. The

inventory capacity is S = 10, the holding cost is 10 per unit held, the ordering

cost is 10 and the penalty cost is linear: p(k) = p · k. The demand has a

discrete distribution between 1 and 20. Given the optimal value of s∗ for the

taboo mean first return reward problem, one can solve the corresponding lost

sales problem with a penalty cost p and by adjusting the value of p obtain

the same optimal control limit s∗, for a range of values of the penalty cost.
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We call this range the “range of imputed penalties” and we will denote it

with ROIP. In table (4.1) we list values of the imputed penalty cost and the

value of the common control limit as we change the value of the unit reward.

Remark 2: The above results can be extended to the case where the opti-

mality criterion is the taboo discounted mean first passage reward.

4.3 Taboo mean first passage times

In this section we consider the problem where none of the costs or rewards

associated with the states are known. For such a system we study the problem

of maximizing the taboo mean first passage times

The problem of maximizing the taboo mean first passage times is a special

case of the problem considered in the previous section, with the reward ri =

1 ∀i ∈ S and i /∈ H and ri = 0 otherwise. Using the results of the previous

section we have that the optimal Markov policy is deterministic. Further we

can also prove that under similar monotonicity conditions on the pij ’s the

optimal deterministic policy is a “control limit” policy .

We next establish Theorem 4.3.1 below. Its proof follows as a special case

of theorem, 4.2.1, however we provide a direct proof that is a generalization

of some of the results in section 12 of Chung [4] pg. 66.

Theorem 4.3.1. For any state i /∈ B and a given policy π the following
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relations hold.

BfiG(π) = pij +
∑

l /∈BG

pil BflG(π). (4.9)

BmiG(π) = BfiG +
∑

l /∈BG

pil BmiG. (4.10)

Proof. For notational simplicity we omit π in the proof. We first prove Eq.

(4.10). The proof of Eq. (4.9) follows along similar lines.

BmiG =
∑∞

n=1
nP(Xn ∈ G,Xt /∈ BG|X0 = i)

=
∑∞

n=1
n
∑

j∈GP(Xn = j,Xt /∈ BG|X0 = i)

=
∑

j∈G

∑∞
n=1

nP(Xn = j,Xt /∈ BG|X0 = i)

=
∑

j∈G BGmij

=
∑

j∈G { BGfij +
∑

l /∈Bj pil BGmlj}

= BfiG +
∑

l /∈BG pil
∑

j∈G BGmlj

BmiG = BfiG +
∑

l /∈BG pil BmiG.

Let Bm
∗
ij = supπ{Bmij(π)}, we have:

Bm
∗
ij = sup

π
{Bfij(π) +

∑

l /∈Bj

pill Bmlj(π)}.

The above formulation also appears similar to the optimality equations

used when maximizing the first passage reward but the term corresponding

to the reward Bfij(π) depends on the policy and not solely on the current

state - action pair. To find an optimal policy, the quantities Bfij(π) and
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Bmij(π) must be computed for every policy since policy improvement type

optimality conditions do not hold.

4.3.1 The replacement problem

We study the following model for a system the state of which is continuously

observed. The set of possible states is a finite set {1, . . . , D}, where larger

values represent increased states of deterioration from the “new condition”

represented by state 1 to the “totally inoperative condition” of state D. Let

{d, . . . , D} denote the set of inoperative states. Whenever the system changes

state a decision has to be made as to whether it is replaced or not. Whenever

the system enters a state i < d and the decision to replace is taken, then a

certain cost is incurred and its state, immediately, changes to state 1. If

the system enters a state i, for d ≤ i < D, then it must be replaced at an

increased cost. There is no cost whenever the decision not to replace is taken

in a state i < d; in this case the next state will be state j with probability

pij , where pij ≥ 0 for j ≥ i and pij = 0 otherwise.

When the above problem is formulated as a cost minimization problem

Derman [7] proved that “control limit policies” are optimal, under certain

sufficient conditions. Furthermore, to deal with the issue of unknown costs,

Derman [8] considers the above problem and models it as maximization of

the mean return time to state 1 with a constraint on the probability of being
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in the undesirable states. For such a system we can consider the problem of

maximizing the taboo mean first return time to state 1, (Bm11) where the

taboo set is B = {d, . . . , D}.

Using similar arguments as those from the inventory control example of

the previous section we can prove that under the same sufficient conditions

as those in Derman [7] the optimal deterministic policy for this problem is a

“control limit” policy i.e. there exists an i∗ such that the optimal policy π∗

is specified by the actions π∗(i) = 0, (do not replace) for i ≤ i∗ and π∗(i) = 1

(replace) for i > i∗.

4.4 Conclusions

In this chapter we investigated the problem of maximization of taboo first

passage reward and taboo mean first passage times in Markov decision pro-

cesses. We showed that in general it is impossible to compute optimal policies

using existing dynamic programming methods. However, for certain prob-

lems with additional structure, such as satisfying monotonicity conditions,

efficient computation is possible.

The optimization criteria studied in this chapter can be applied in many

models where some or all of the costs are not available.
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Reward Control limit ROIP

30 2 73 to 80

40 4 121 to 134

60 5 203 to 228

80 7 347 to 396

100 7 435 to 497

150 9 749 to 866

1000 9 5021 to 5810

Table 4.1: Imputed costs for increasing rewards.
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