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DISSERTATION ABSTRACT

A FORMAL APPROACH TO THE ROLE

MINING PROBLEM

By Qi Guo

Dissertation Advisor: Dr. Vijayalakshmi Atluri and Dr. Jaideep S. Vaidya

Role-based access control (RBAC) has become the norm for enforcing

security since it has been successfully implemented in various commercial

systems. Roles, which are nothing but sets of permissions when seman-

tics are unavailable, represent organizational agents that perform certain job

functions within the organization. Role engineering, the process of defining

a set of roles and associate permissions to them, is essential before all the

benefits of RBAC can be realized.

There are two basic approaches towards role engineering: top-down and

bottom-up. The key problem with the top-down approach is that it is likely

to ignore the existing permissions. In addition, the top-down approach calls

for a good understanding among various authorities from different disciplines,

which makes role engineering tedious, time consuming and very difficult to

implement. In contrast, the bottom-up approach automates the role engi-

neering process especially when business semantics are not available. Also, it
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starts from the existing permissions and aggregates them into roles. There-

fore, role engineering by the bottom-up approach is also referred to as role

mining.

A number of approaches exist for role mining and majority of them em-

ploy clustering techniques or their variants to discover roles. An inherent

problem with these approaches is that there is no formal notion of good-

ness/interestingness of a role. They present heuristic ways to find a set of

candidate roles. While offering justifications for the identified roles, there is

no integrative view of the entire set of roles. For insightful bottom-up analy-

sis, we need to define interestingness metrics for roles. The objective of this

dissertation research is to formally define a list of role mining problems and

find the solutions to solve them. To this end, we have made the following

three research contributions:

First, we have formally defined a suite of role mining problems which

include the Basic-RMP, the Edge-RMP and the Minimal Perturbation Role

Mining Problem (i.e., the MinPert-RMP) and the Role Hiararchy Mining

Problem (the RHMP). For each major category, we have also considered

its different variations which we feel have strong pragmatic significance. For

example, we have explored the δ-approx Basic-RMP and the MinNoise Basic-

RMP (simply called as the δ-approx RMP and the MinNoise RMP respec-

tively throughout the dissertation) which are variants of the Basic-RMP, the

δ-approx Edge-RMP, and the MinNoise Edge-RMP as the variants of the

Edge-RMP. More importantly, each of those problems provides an objec-
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tive which is both good/meaningful and in the view of the entire collection

of roles in contrast to only a single one. A good objective associated with

each role mining is important since without it and consequently a clear end

goal, role mining would be aimless and mining approaches would become

incomparable. Also, meaningful and diverse objectives for different role min-

ing problems can help security administrators to meet various organizational

needs in the process of role generation. It is true that there exist many so-

lutions for role mining so far, unfortunately, none of previous work formally

introduces objective functions (even from the perspective of one single role)

into role mining paradigm as far as we know.

Secondly, for each problem in the suite, we have provided an in-depth

investigation of other important issues such as its computational complexity,

and formally prove that the decision version of all RMPs defined are NP-

complete. In addition, we have determined the robustness of the RMPs

against noise. In reality, no data is clean due to various reasons. Therefore,

we need to determine the degree of robustness of our algorithms to noise.

In this dissertation, we have formally defined our model of noise, the degree

of noise and the approach to check the accuracy of results, since each of

these factors has a significant impact on how we measure the accuracy of our

proposed algorithms.

Thirdly, we have implemented and evaluated heuristic solutions to all of

the RMP variants. We have introduced the concept of metrics, the ways of

quantitative assessment when we evaluate how good existing approaches to
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role mining problems are. (i.e., how close the proposed approaches are to the

optimality).
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CHAPTER 1

INTRODUCTION

Role-based access control (RBAC) [10, 76, 27, 55, 59, 30, 93, 57, 62, 3, 28,

56, 79, 29, 84, 74, 5] has long been recognized as a normative access control

model. The essential notion of RBAC is to decouple users and permissions,

and then associate both to roles respectively. This substantially simplifies

the complexity of users and permissions management, widely perceived as

onerous operations by system administrators. Employing RBAC is not only

convenient but reduces the complication of access control since the number of

roles in an organization is significantly smaller than that of users. Moreover,

the use of roles as authorization subjects, instead of users, avoids having

to revoke and re-grant authorizations whenever users change their positions

and/or duties within the organization [49]. As a result, RBAC has been

implemented successfully by numerous information systems. The trend is

that RBAC will maintain its increasing prevalence since the growing demand

for cost-effectiveness in management and security mechanism calls for it.

Roles, users, permissions, objects and operations are constituents in RBAC

where roles represent organizational agents that perform certain job functions

within the organization, users are human beings and permissions are a set of

many-to-many relations between objects and operations. According to the
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RBAC reference model [26], roles describe the relationship between users and

permissions. Roles can be hierarchically structured, where senior roles gener-

ally inherit the permissions assigned to junior roles. Additionally, constraints

such as separation of duties may be associated with the roles.

1.1 Role Engineering

The goal of role engineering, by Edward Coyne [18], is to define a set of

roles that is complete, correct and efficient. In particular, role engineer-

ing [21, 2, 89] requires defining roles and assigning permissions to them.

Role engineering is essential before all the benefits of RBAC can be real-

ized. Meanwhile, role engineering, considered as one of the major challenges

RBAC implementation [34], is a time-consuming and costly process. Due to

this, organizations are often reluctant to move to RBAC. Therefore, the in-

creasing popularity of RBAC calls for efficient solutions for role engineering

as results in tremendous research efforts in this area.

There are two basic approaches towards role engineering: top-down and

bottom-up. Under the top-down approach, roles are defined by carefully ana-

lyzing and decomposing business processes into smaller units in a functionally

independent manner. These functional units are then associated with per-

missions on information systems. In other words, this approach begins with

defining a particular job function and then creating a role for this job function

by associating needed permissions. While it can aid in defining roles more

accurately, the top-down approach has two major weaknesses: 1) Often, the

top-down approach is a cooperative process where various authorities from
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different disciplines understand the semantics of business processes of one

another and then incorporate them in the form of roles. This is tedious and

time consuming. It is also a difficult task since, often, there are dozens of

business processes, tens of thousands of users and millions of authorization.

2) It ignores existing permissions within an organization and does not utilize

them. Therefore, those arguments add up to say that relying solely on a top-

down approach in most cases is not viable, although some case studies [86]

indicate that it has been done successfully by some organizations (though at

a high cost).

The bottom-up approach starts from the existing permissions before RBAC

is implemented and aggregates them into roles. A bottom-up model may not

consider business functions of an organization [48]. However, the bottom-up

approach excels in the fact that much of the role engineering process can be

automated and that it utilizes the existing permission assignments to for-

mulate roles. Therefore, role engineering by bottom-up approaches is also

referred to as role mining which we will discuss in detail in the next section.

It is also worth to notice that one may use a mixture of these two ap-

proaches to conduct role engineering. A bottom-down approach can be used

as a tool, in conjunction with a top-down approach, to identify potential or

candidate roles which can then be examined to determine if they are appro-

priate given existing functions and business models.
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1.2 Role Mining

Role mining is to define a set of roles by aggregating the existing permis-

sions. Role mining can be regarded as a bottom-up approach in the role

engineering process. There exist a number of approaches for role mining:

Many works [87, 54, 35, 38, 72, 12] employ clustering techniques or their

variants to discover roles. However, they all suffer from a serious weakness

in that clusters do not allow overlapping among each other. Therefore, each

specific permission can be clustered to no more than one role. This is a

major issue since permissions are seldom used by one role only and may

be necessary for incomparable roles. [100] proposed RoleMiner, an subset

enumeration approach to mine roles from the existing permissions. Unlike

clustering approaches, the RoleMiner approach seems promising. But one

of its major limitations is that the approach lacks a formal definition of the

objective which is to optimize a specific criterion. An objective function is

essential since it defines an agreed role mining goal to achieve, and provides

a shared criterion by which different algorithms are comparable. Without it,

role mining would be aimless and make no sense anymore. Another limita-

tion is its requirement of an expert review of the results to choose which of

the discovered roles are most advantageous to implement.

1.3 Problem Statement and Contributions

In this dissertation, we have made two main contributions to the role mining

realm.
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1. We have defined a variety of role mining problems each of which has

a different objective which is both meaningful and in the view of the

entire collection of roles in contrast to one single role. We are the first

to introduce the concept of objective into the role mining problems.

To the best of our knowledge, the notion of an objective which aims to

optimize a criterion does not exist in previous research works in role

mining paradigm even from the perspective of one single role. On the

other hand, the extensive applications of RBAC urgently call for the

association of meaningful and diverse objectives with the role mining

problem, therefore, system administrators can choose a specific role

mining problem which has a suitable objective in order to meet the

specific organizational needs.

The role mining problems under investigation include but not limited to

the Basic-RMP, the Edge-RMP and the MinPert-RMP. For each prob-

lem, we also considered its different variations which we feel have strong

pragmatic significance. In detail, we explored the δ-approx Basic-RMP

and the MinNoise Basic-RMP which are variants of the Basic-RMP,

the δ-approx Edge-RMP, and the MinNoise Edge-RMP as the variants

of the Edge-RMP. We also explored the variants of the MinPert-RMP,

i.e., the δ-approx MinPert-RMP and the MinNoise MinPert-RMP.

2. We formulated that the role mining problem is nothing but the binary

matrix decomposition problem [63, 91, 51, 78, 88, 58, 53]. Therefore,

different role mining problems are actually the different decomposi-

tions of same binary matrix with each of them being associated with a
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different decomposition criterion.

We believe we are the first to formulate the role mining problem this

way. As a significant advantage, this modeling naturally prevents the

solutions we proposed to role mining problems from suffering a serious

drawback that a permission can only be associated with one role at

most. To put it another way, proposed solutions satisfied all following

observations due to the way we model it as binary matrix decomposi-

tion.

• Roles can be assigned overlapping permissions.

• The above also implies that a particular permission might be held

by members of different roles. That is, permissions are not exclu-

sive to roles nor are they exclusive to a hierarchy.

• A user may play several different roles, and the user may have

a certain permission due to more than one of those roles (since

multiple roles may include the same permission).

This is essential for role mining since ignoring any of them would make

the job easier, but may result in more inaccurate set of roles. This

also differentiates our solutions from the traditional clustering ones.

For example, by missing the first observation, role mining will be triv-

ially degraded to a non-overlapping clustering problem in data mining

paradigm.

It is worth to note that the number of good objectives can be arbitrarily

large. Therefore, it is almost impractical to enumerate all. The fact that
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in the dissertation we endeavored to discuss only a few number of role min-

ing problems (each of which has a different, associated optimizing objective)

which we feel typical and significant doesn’t necessarily mean that the num-

ber of role mining problems worth to explore is bounded by them. On the

contrary, role mining is rather an extensible and open-ended research area in

that new problems which have good/interesting objectives should always be

added in and every facet of each of them should be explored thoroughly.

The dissertation has explored key issues related to each role mining prob-

lem in the suite such as formal problem definition, computational complexity,

implementation and evaluation of heuristic solutions. In detail, the disserta-

tion has explored the following issues with regard to each role mining problem

in the suite and its variants:

1. it has formally defined a suite of role mining problems each of which

aims to form a good collection of roles. This is significant since we

didn’t discover similar proposals in the literature yet. Also, without

clear definitions of objectives, role mining would lack a specific goal to

achieve and different approaches would become incomparable. More-

over, users would not be able to evaluate a particular mining algorithm

and determine how close it is to the optimality. Therefore, role min-

ing would be totally aimless. Moreover, the definitions of different role

mining problems under investigation with each being associated with

different objectives agree with the interests of security administrators

for they are given the opportunities to pick a specific problem (and
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accordingly an proposed solution to it) which serves their special needs

better.

2. We have provided the theoretical complexities of each role mining prob-

lem. This is critical since we need to use them as a guide to more effi-

ciently search for a solution, i.e., we don’t want to fall into the swamp

of finding a polynomial solution while the problem is proved to be NP-

complete. Plus, we have already developed a feeling, with some extent

of certainty, that those problems are in NP-complete. Therefore, it is

essential to first complete the complexity analysis of the problems in

the suite to avoid the waste of effort in search of exact solutions.

3. We have proposed either heuristic or exact solution to the role min-

ing problems defined. For some of role mining problems, we did this

from scratch without any direct help from the prior works in the lit-

erature with the belief that we cannot find equivalent solutions from

the existing works. Meanwhile, for some others, instead of ”reinvent-

ing the wheel” and constructing a new solution which, however, is at

the same level of efficiency as the existent, we reused what has already

been proved to be functional to address our problems. That is, we

have investigated the relation of certain role mining problems with the

problems already identified, studied and solved in data mining and data

analysis literature. These role mining problems have been proved to

be in essence matched to those known problems, therefore, the existing

solutions of the solved problems have been directly applied to ours.

This serves as one of the novel aspects of the dissertation.
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4. We have implemented and evaluated our algorithms in terms of qual-

ity, accuracy efficiency and noise robustness. For quality, we introduced

the notion of metrics in evaluation. Metrics are quantitative measures

used to indicate the degree of closeness of an investigated approach

towards the optimal solution. Metrics, often expressed as real numbers

between 0 and 1, can provide us an immediate idea on how close a

given approach is towards the optimality. The less distant the value

is to 1, the closer the approach is to optimality. For an NP-complete,

all possible values for a metric could be infinitely close to 1 but will

never exactly reach that optimal point. In addition, metrics naturally

make multiple algorithms comparable. For accuracy and efficiency, we

would like to validate that our algorithms work in a wide variety of

environments ranging from small to large organizations, with a few to

a large number of roles, and comprising of sparse versus dense matrix

of user permissions. Moreover, we would like to understand the effect

of different factors on the speed and accuracy of our algorithms. For

robustness, we analyzed noise robustness of our solutions. We did so in

view of the fact that data in reality won’t be accurate as always, multi-

ple reasons could result data deviating from being correct. Therefore,

mechanisms are called for to measure how reliable a solution will be

when data is erroneous. We also proposed a noise model to qualify the

degree of robustness to noise, the degree of noise and the measurement

of result accuracy.



10

In summary, research on role mining is still preliminary and much of the

efforts focuses on heuristically finding a set of candidate roles. The main

limitations of the work are that they lack integrative view of the entire set

of roles when justifying for the roles identified, therefore, no clear and good

objectives are available by which those work can be evaluated and compared

among each other. In another words, there is no formal metric defined before

against which we can evaluate the result of a given role mining algorithm or

compare the results of two algorithms. This dissertation has formally pro-

posed a collection of metrics, with each defining the goodness of a set of

generated roles from a different angel. In another word, this dissertation has

filled the gap by defining a suite of objectives to be associated with the role

mining problem, and formulating the role mining problem as nothing but

binary matrix decomposition problem. Furthermore, it has proposed solu-

tions to them, and also used metrics, the quantitative measures, to evaluate

the quality of our approaches. It also evaluated them in terms of accuracy,

efficiency and noise robustness.

1.4 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 discussed the related

works in role mining. Chapter 3 provides preliminary information and defi-

nitions on which the overall research is based. Chapter 4 formally present the

role mining problem (the Basic-RMP) and its variants, the δ-approx RMP

and the MinNoise RMP. It discussed the definition, complexity analysis and

proposed solutions to the Basic-RMP and its variants. Similarly, Chapter
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5 and Chapter 6 discussed the Edge-RMP and the MinPert-RMP respec-

tively. Chapter 7 presents the Role Hierarchy Mining Problem (the RHMP).

Chapter 8 talks about the degree of robustness of our proposed algorithms

to noise, it discusses noise model, degree of noise, and how the accuracy of

our algorithms is checked. Chapter 9 presents the tool called Role Mining

Systems to facilitate the security administrators for role management. Chap-

ter 10 summaries the research work shown in the dissertation and describes

plans for future research.
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CHAPTER 2

RELATED WORK

One of the major challenges in implementing RBAC is to define a complete

and correct set of roles. This process, known as role engineering [18], has

been identified as one of the costliest components in realizing RBAC [34].

A number of approaches have been proposed in the literature to accom-

plish the task of role engineering, which can be categorized into three ap-

proaches: top-down, bottom-up, and hybrid. While the top-down approach

defines roles by examining the business processes, the bottom-up approach

typically aggregates existing permissions to come up with roles.

Coyne [18] is the first to describe the role engineering problem, and to

present the concepts of the top-down approach. A top-down approach to

determine the needed permissions of roles using use cases has been proposed

by Fernandez and Hawkins [25]. A GUI interface has been developed by

Brooks [7] to migrating to a role-based environment. Later, Roeckle et

al. [81] present a process-oriented approach, which analyzes business pro-

cesses to deduce roles and access permissions on systems are assigned to

the roles. Shin et al. [90] present a system-centric approach that examines

backward and forward information flows and employs UML to conduct a

top-down engineering of roles. Thomsen et al. [98] propose a bottom-up ap-
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proach, which derives permissions from objects and their methods and then

derive roles derived from these permissions. Neumann and Strembeck [75]

consider usage scenarios as a semantic unit for deriving permissions, which

are then aggregated into roles. Epstein and Sandhu [20] propose to use

UML for facilitating role engineering, where roles can be defined in either

a top-down or a bottom-up manner. Kern et al. [48], propose a life-cycle

approach, an iterative-incremental process, that considers different stages of

the role life-cycle including role analysis, role design, role management, and

role maintenance.

Kuhlmann, Shohat, and Schmipf [54] present another bottom-up ap-

proach, which employs a clustering technique similar to the k-means clus-

tering. As such, it is required to first pre-define the number of clusters. In

[87], Schlegelmilch and Steffens propose an agglomerative clustering based

role mining approach called ORCA, which discovers roles by merging per-

missions appropriately. However, in ORCA, the order in which permissions

are merged determines the outcome of roles. Moreover, it does not allow

overlapping roles (i.e., a user cannot play multiple roles), which is a sig-

nificant drawback. More recently, Vaidya et al. [100] propose an approach

based on subset enumeration, called RoleMiner, which eliminates the above

limitations.

Ene et al. [19]describe several new bottom-up approaches to problems,

they first consider role minimization, the process of finding a smallest collec-

tion of roles that can be used to implement a pre-existing user-to-permission

relation. They introduce fast graph reductions that allow recovery of the
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solution from the solution to a problem on a smaller input graph.

An inherent problem with all of the above approaches is that there is

no formal notion of goodness/interestingness of a role. All of the algorithms

above present heuristic ways to find a set of candidate roles. While offering

justifications for the identified roles, there is no integrative view of the entire

set of roles. For insightful bottom-up analysis, we need to define interesting-

ness metrics for roles. [100] takes a first step towards this by ordering candi-

date roles on the basis of their support (i.e., roles that are more prevalent are

ordered higher). However, this metric still is quite ad-hoc and preliminary.

Also, while one may come up with interestingness metrics for a role by itself,

this does not directly lead to the notion of a good collection of roles. Indeed,

there is no formal definition of what is a good collection of roles. Defining

this is critical for the security administrator to gain confidence and be able

to fully utilize the output of any role mining algorithm beyond a piece-meal

fashion.

A problem related to all above existing bottom-up approaches is that they

treat each permission evenly and there is no notion of weight associated with

each permission. [105] introduced the notion about the weight of permission

based on reinforced similarity. In detail, they proposed a new similarity

matrix (NSM) to represent the similarity between users and permissions.

Repetitious computation over the NSM can improve the quality and utility

of the similarity. These reinforced similarities are more practical and useful

as they oer signicant information between users and permissions.

So far all role mining approaches assume clean input data which, as we
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all know is too ideal to be true in reality. The noisy input data is pervasive.

[42] suggested an cleaning approach by dividing the role mining problem into

two steps: noise removal and candidate role generation. It used non-binary

rank reduced matrix factorization to identify noise. This approach is also

applicable outside role engineering and may be used to identify errors or

predict missing values in any access control matrix.

In dynamic environments, changes on business logic are unavoidable to

systems which adopts RBAC for role management. Accordingly the associ-

ated user-role, role-role and role-permission relations need to be updated in

order to reflect this. [44] presented an approach for assisting administrators

with the update task. By using this approach, it is possible to check whether

a required update is achievable or not, and if so, a reference model will be

produced, in the light of which administrators could fulfill the changes to

RBAC systems. They proposed a formalization of the update approach, in-

vestigate its properties, and develop an updating algorithm based on model

checking techniques.

All proposed work so far are based on either top-down or bottom-up ap-

proach. As we know that neither pure top-down approach nor pure bottom-

up approach leads to an optimal role generation. Fuchs et al. [33] introduce

HyDRo, a hybrid methodology for developing roles. HyDRo is a hybrid

Role Development Methodology (RDM) that integrates Role Engineering

and Role Mining elements into a comprehensive framework for role creation.

HyDRo considers existing user information and access right structures with-

out neglecting the importance of organisational structures and information.
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In addition, HyDRo is tool-supported, the contROLE software implemented

by the same research group ensures the hybrid integration, cleansing, and se-

lection of input information from various sources throughout an iterative and

incremental role development process. Frank et al. [32] propose an approach

for hybrid role mining that incorporates top-down business information into a

bottom-up role-mining process. Following the probabilistic models for RBAC

proposed in [31, 95], [32] provides an entropy-based statistical measures to

analyze the relevance of different kinds of business information for defining

roles. It then presents a method to incorporate business information into a

role mining algorithm based on a probabilistic model of an RBAC system.

Colantonio et al. [12] proposes another hybrid approach that extends the

bottom-up algorithm proposed in [11]. It measures the spreading of a role

among business processes or organization units by centrality indices defined

as a metric for evaluating the business meaning of candidate role-sets. This

business analysis approach is based on the observation that a role is likely to

be meaningful from a business perspective when it involves activities within

the same business process or organizational units within the same branch.

Molloy et al [72] also proposed a hybrid role mining algorithm based on for-

mal concept analysis. In addition, they introduce an evaluation framework

for comparing different role mining algorithms.

While all the above proposals attempt to discover a set of roles with a

certain optimality notion, they do not discover hierarchies. Molloy et al. [71]

have proposed an approach using formal concept analysis for role hierarchy

construction. They propose the notion of weighted structural complexity.
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Colantonio et al. [11] describe a measure similar to it with an additional

abstract cost function. The authors believe that their work is safer then

other proposals [31, 60] since they adopt under-assign permissions than over-

assign permissions, and over-assignments are more likely to exist in deployed

systems by the same logic behind the principle of least privilege[82].Using

synthetic as well as real datasets [94], they compared nine role mining al-

gorithms. Takati et al. [97, 96] have defined the problem of mining role

hierarchy with minimal perturbation. They have also defined two measures:

a measure for goodness of an RBAC state and another measure for minimal

perturbation, then based on these measures developed a heuristic solution

called StateMiner to find an RBAC state with the smallest structural com-

plexity and as similar as possible to both the existing state and the optimal

state and as close as possible to both deployed RBAC state and the optimal

state.

Kern et al.[50],from the experiences in deploying RBAC systems in the

real world, proposed the enterprise RBAC model, which uses a two-level lay-

ered role hierarchy. In such a role hierarchy, there are two types of roles:

functional roles and business roles. Permissions are only assigned to func-

tional roles. Business roles are connected to functional roles and inherit all

permissions from the connected functional roles. Finally, users are only as-

signed business roles and inherit all permissions from the assigned business

roles.

Recently Lu et al.[60] present a unified framework for modeling the opti-

mal binary matrix decomposition and its variants using binary integer pro-
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gramming [24, 92, 104, 37, 52, 8, 4, 39, 13, 6, 65, 14] They present the binary

matrix decomposition problem in a role engineering context, whose goal is to

discover an optimal and correct set of roles from existing permissions, referred

to as the role mining problem. Their modeling allows them to directly adopt

the huge body of heuristic solutions and tools developed for binary integer

programming into Role Mining Problem. One step further, Lu et al. ex-

tended role mining problem with both positive and negative role assignment

[61]. By allowing negative role assignment, that is if a role is assigned to a

user negatively, that user cannot have any permission contained by that role,

this extended binary matrix decomposition (EBMD) has broad potential ap-

plications since there are many types of real datasets, which could be better

described with both the set difference operation and the set union operation,

such as word-document data, movie feedback, and human behavior.

Research efforts on role mining and role engineering in general expands

rapidly with the ample algorithms and methodologies proposed. However,

there is still no consensus on some fundamental question like what is the

formal definition of the role mining problem. Apparently the lack of this

dilutes the research effort and have a negative effect on how results are applied

and compared. Frank et al. [64] proposed a novel definition of the role mining

problem that fulfills the requirements that real-world enterprises typically

have. In detail, they first identify the most important requirements for RBAC

that any real-world RBAC configuration should satisfy. Then they analyze

existing problem definitions with respect to these requirements and identify

their weaknesses. Finally, they proposed a new definition of the role mining
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problem that specifies solutions that fulfill these requirements.
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CHAPTER 3

PRELIMINARIES

In this chapter, we introduce a few definitions extensively referred throughout

the whole dissertation. These definitions include RBAC, L1 norm, Boolean

Matrix Multiplication and Jaccard Coefficient as well.

3.1 Role-Based Access Control

We adopt the NIST standard of the Role Based Access Control (RBAC)

model [26]. For the sake of simplicity, we do not consider sessions, role

hierarchies or separation of duties constraints in this dissertation. In other

words, we restrict ourselves to RBAC0 without considering sessions.

Definition 1 (RBAC)

• U, ROLES, OPS, and OBJ are the set of users, roles, operations, and

objects.

• UA ⊆ U ×ROLES, a many-to-many mapping user-to-role assignment

relation.

• PRMS (the set of permissions) ⊆ {(op, obj)|op ∈ OPS
∧

obj ∈ OBJ}
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• PA ⊆ ROLES×PRMS, a many-to-many mapping of role-to-permission

assignments. 1

• UPA ⊆ U × PRMS, a many-to-many mapping of user-to-permission

assignments.

• assigned users(R) = {u ∈ U |(u, R) ∈ UA}, the mapping of role R

onto a set of users.

• assigned permissions(R) = {p ∈ PRMS|(p, R) ∈ PA}, the mapping

of role R onto a set of permissions.

3.2 L1 norm

The L1-metric allows us to count the difference between two matrices – i.e.,

to figure out how good an approximation one is of the other. When the

L1-metric is 0, the two matrices are identical. Other metrics (and distances)

can also be used – [67] discusses some alternatives and their implications.

Definition 2 (L1 norm) The L1 norm of a d-dimensional vector v ∈ Xd,

for some set X, is

‖ v ‖1 =
d∑

i=1

|vi|.

The L1-norm also defines a distance metric between vectors, referred to

as L1-metric and defined as

1Note that in the original NIST standard [26], PA was defined as PA ⊆ PRMS ×
ROLES, a many-to-many mapping of permission-to-role assignments.
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‖ v − w ‖1 =

d∑

i=1

|vi − wi|.

Finally, the L1-metric between vectors is expanded to matrices in a nat-

ural way, i.e., if A and B are matrices in Xn×m, for some set X, then

‖ A−B ‖1 =
n∑

i=1

‖ ai − bi ‖1 =
n∑

i=1

m∑

j=1

|aij − bij |.

3.3 Boolean Matrix Multiplication

Boolean matrix multiplication is defined here, this definition is from [67],

we introduce the mathematic operation on boolean matrix here since we

discovered that role mining problems can be also viewed as the boolean

matrix decomposition problems.

Definition 3 (Boolean matrix multiplication) A Boolean matrix mul-

tiplication between Boolean matrices A ∈ {0, 1}m×k and B ∈ {0, 1}k×n is

A⊗ B = C where C is in space {0, 1}m×n and

cij =

k∨

l=1

(ail ∧ blj).

3.4 Jaccard Coefficient

The Jaccard coefficient is a well known statistic used for comparing the sim-

ilarity and diversity of sample sets. Specifically, the Jaccard’s coefficient

(measure similarity) and the Jaccard’s distance (measure dissimilarity) are

measurement of asymmetric information on binary (and non-binary) vari-

ables. For non-binary data, Jaccard’s coefficient can be computed as follows:
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Given two sets A and B the Jaccard Coefficient JCAB = |A∩B|
|A∪B|

.

For example, if A = {a, b, c, d, e} and B = {a, d, e, f, g}. Therefore A ∩

B = {a, d, e} and A ∪B = {a, b, c, d, e, f, g}. Therefore JCAB = 3
7

= 0.429.

While the above Jaccard coefficient computes the similarity between two

sets, the dissimilarity between two sets, called the Jaccard distance JDAB =

1− JCAB. In the above example, JDAB = 4
7

= 0.571.
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CHAPTER 4

THE BASIC ROLE MINING PROBLEMS

In this chapter, we formally present the role mining problem (the Basic-RMP)

and its variants, the δ-approx RMP and the MinNoise RMP. Given m users,

n permissions and k roles (i.e., |U | = m, |PRMS| = n, |ROLES| = k), the

user-to-role mapping can be represented as an m×k boolean matrix where a

1 in cell {ij} indicates the assignment of role j to user i. Similarly, the role-

to-permission mapping can be represented as an k×n boolean matrix where

a 1 in cell {ij} indicates the assignment of permission j to role i. Finally, the

user-to-permission mapping can be represented as an m× n boolean matrix

where a 1 in cell {ij} indicates the assignment of permission j to user i.

We now introduce the notion of δ-consistency between UA, PA, and UPA

which is critical to the notion of accuracy of the roles. The L1 norm defined

above is useful in defining this.

Definition 4 (δ-Consistency) A given user-to-role assignment UA, role-

to-permission assignment PA and user-to-permission assignment UPA are

δ-consistent if and only if

‖M(UA)⊗M(PA)−M(UPA) ‖1 ≤ δ (4.1)
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where M(UA), M(PA), and M(UPA) denote the matrix representation of

UA, PA and UPA respectively.

Essentially, the notion of δ-consistency allows us to bound the degree of

difference between the user-to-role assignment UA, role-to-permission assign-

ment PA and user-to-permission assignment UPA. For UA, PA, and UPA

to be δ-consistent, the user-permission matrix generated from UA and PA

should be within δ of UPA.

4.1 The Basic-RMP and its variants

In this section, we present the Basic-RMP and two of its variants, the δ-

approx RMP and the MinNoise RMP.

Definition 5 (the Role Mining Problem (the Basic-RMP)) Given a

set of users U , a set of permissions PRMS, and a user-permission assign-

ment UPA, find a set of roles, ROLES, a user-to-role assignment UA, and

a role-to-permission assignment PA 0-consistent with UPA and minimizing

the number of roles, k.

Given the user-permission matrix, the basic Role Mining problem asks us

to find a user-to-role assignment UA and a role-to-permission assignment PA

such that UA and PA exactly describe UPA while minimizing the number

of roles. Put another way, it asks us what is the minimum number of roles

necessary to fully describe the given data (and what are those roles, and the

corresponding user assignments)?



26

While exact match is a good thing to have, at times we may be satis-

fied with an approximate match. For example, consider a case where we

have 1000 users and 100 permissions. The size of UPA is 5000 (i.e., 5000

user-permission assignments are allowed out of the possible 100, 000). Now,

suppose 100 roles are required to exactly match the given user-permission

data. However, if we allow approximate matching – i.e., if it is good enough

to match 99% of the matrix (4950 of the user-permission assignments), as-

sume that the minimum number of roles required is only 60. As long as we

do not add any spurious permissions (i.e., no extra 1s are added), the second

case is clearly better than the first, since we significantly reduce the number

of roles. This significantly reduces the burden of maintenance on the security

administrator while leaving only a few user-permission assignments uncov-

ered. Also, any given user-permission assignment is only a snapshot of the

current state of the organizations. Permissions and (to a lesser extent, Roles)

are dynamic. Thus while exact match may be the best descriptor in the static

case, it is probably not good for the dynamic case. Approximate match might

be a prudent choice for dynamic data. The notion of δ-consistency is use-

ful, since it helps to bound the degree of approximation. Therefore, we now

define the approximate Role Mining Problem using δ-consistency.

Definition 6 (the δ-approx RMP) Given a set of users U , a set of per-

missions PRMS, a user-permission assignment UPA, and a threshold δ,

find a set of roles, ROLES, a user-to-role assignment UA, and a role-

to-permission assignment PA, δ-consistent with UPA and minimizing the

number of roles, k.
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It should be clear that the basic Role Mining Problem defined earlier is

simply a special case of the δ-approx RMP (with δ set to 0). Instead of

bounding the approximation, and minimizing the number of roles, it might

be interesting to do the reverse – bound the number of roles, and minimize

the approximation. We call this the Minimal Noise Role Mining Problem

(the MinNoise RMP). Thus, we fix the number of roles that we would like

to find, but now we want to find those roles that incur minimal difference

with respect to the original user-permission matrix (UPA). The security

administrator might want to do this when he is looking for the top-k roles

that describe the problem space well enough, and are still (in some sense)

robust to noise.

Definition 7 (the Minimal Noise RMP) Given a set of users U , a set

of permissions PRMS, a user-permission assignment UPA, and the number

of roles k, find a set of k roles, ROLES, a user-to-role assignment UA, and

a role-to-permission assignment PA, minimizing

‖M(UA) ⊗M(PA)−M(UPA) ‖1 (4.2)

where M(UA), M(PA), and M(UPA) denote the matrix representation of

UA, PA and UPA respectively.

We can clarify these problems further by means of an example. Table

4.1 shows a sample user-privilege assignment (UPA), for 4 users and 5 priv-

ileges. Tables 4.1(a) and 4.1(b) depict a user-role assignment (UA) and role-

privilege assignment (PA) that completely describe the given user-privilege
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p1 p2 p3 p4 p5

u1 0 1 0 0 1
u2 1 1 1 0 1
u3 1 1 0 1 1
u4 1 1 1 0 0

Table 4.1. The user-privilege assignment

(a) User-role assign-
ment

r1 r2 r3

u1 0 0 1
u2 1 0 1
u3 0 1 1
u4 1 0 0

(b) Role-permission assignment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 1 1 0 1 0
r3 0 1 0 0 1

Table 4.2. The Basic Role Mining Problem

assignment (i.e., M(UA)⊗M(PA) = M(UPA)). Indeed, the given UA, PA,

and ROLES are optimal. It is not possible to completely describe the given

UPA with less than 3 roles. Tables 4.2(a) and 4.2(b) depict the optimal

user-role assignment (UA) and role-privilege assignment (PA) 2-consistent,

3-consistent, as well as 4-consistent with UPA. Tables 4.2(c) and 4.2(d) show

the optimal user-role assignment (UA) and role-privilege assignment (PA)

5-consistent with UPA. Similarly, if we set k = 2, Tables 4.2(a) and 4.2(b)

depict one possible optimal minimal noise UA and PA. Tables 4.3(a) and

4.3(b) depict another optimal UA and PA for the MinNoise RMP. Both rep-

resent correct solutions to the MinNoise RMP, though the second one does

not incorrectly cover any 0s with 1s.
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(a) User-role as-
signment

r1 r2

u1 0 1
u2 1 1
u3 1 1
u4 1 0

(b) Role-permission assignment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 0 1 0 0 1

(c) User-role
assignment

r1

u1 0
u2 1
u3 1
u4 1

(d) Role-permission assignment

p1 p2 p3 p4 p5

r1 1 1 1 0 1

Table 4.3. The δ-approx RMP

(a) User-role as-
signment

r1 r2

u1 0 1
u2 1 1
u3 0 1
u4 1 0

(b) Role-permission assignment

p1 p2 p3 p4 p5

r1 1 1 1 0 0
r2 0 1 0 0 1

Table 4.4. The MinNoise RMP
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4.2 Complexity Analysis

Before proceeding any further, we would like to establish some results on

the complexity of these problems. The Role Mining Problem, the δ-approx

RMP, and the MinNoise RMP Problem are all optimization problems. The

theory of NP-completeness applies to decision problems. Therefore, in order

to consider the complexity of the problems, we now frame the decision version

of these problems.

Definition 8 (the decision RMP) Given a set of users U , a set of per-

missions PRMS, a user-permission assignment UPA, and k ≥ 0, are there a

set of roles, ROLES, a user-to-role assignment UA, and a role-to-permission

assignment PA 0-consistent with UPA such that |ROLES| ≤ k?

Definition 9 (the decision δ-approx RMP) Given a set of users U , a

set of permissions PRMS, a user-permission assignment UPA, a threshold

δ ≥ 0, and k ≥ 0, are there a set of roles, ROLES, a user-to-role assignment

UA, and a role-to- permission assignment PA, δ-consistent with UPA such

that |ROLES| ≤ k?

Definition 10 (the decision MinNoise RMP) Given a set of users U , a

set of permissions PRMS, a user-permission assignment UPA, the number

of roles k, and a noise threshold θ, are there a set of k roles, ROLES, a

user-to-role assignment UA, and a role-to-permission assignment PA, such

that

‖M(UA) ⊗M(PA)−M(UPA) ‖1 ≤ θ (4.3)
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where M(UA), M(PA), and M(UPA) denote the matrix representation of

UA, PA and UPA respectively?

We can now prove that the decision RMP, the decision δ-approx RMP,

and the decision MinNoise RMP are all NP-complete (Indeed, some of these

results have already been obtained in the literature[67, 22]). Proving that a

problem π is NP-Complete consists of four main steps [36]:

1. showing that π is in NP.

2. selecting a known NP-complete problem π′.

3. constructing a transformation f from π′ to π, and

4. proving that f is a (polynomial) transformation.

The problem π′ used to reduce from is the “set basis problem” defined

below:

Definition 11 (Set basis Problem) Given a collection C of subsets of a

finite set S, and a positive integer K ≤ |C|, is there a collection B of subsets

of S with |B| = K such that, for each c ∈ C, there is a sub-collection of B

whose union is exactly c?

Theorem 4.2.1 The decision RMP is NP-complete.

• The decision Role Mining Problem is in NP. The set of roles ROLES,

the user-to-role assignment UA, and the role-to-permission assignment

PA together form the polynomial certificate/witness.
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Figure 4.1. An example of mapping the Basic-RMP to the Minimum Tiling
Problem

• We select the set basis problem as π′.

• The transformation is quite simple. Given an instance of the set basis

problem, here is how we transform it to an instance of the decision

Role Mining Problem: S denotes the permissions PRMS. C denotes

UPA. Thus, every set c ∈ C stands for one user u. Now, the answer

to the decision role mining problem directly provides the answer to the

set basis problem.

• The transformation is clearly polynomial (since it is a direct one-to-one

mapping).

Theorem 4.2.2 The decision δ-approx RMP is NP-complete.
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• The decision δ-approx RMP is in NP. The set of roles ROLES, the

user-to-role assignment UA, and the role-to-permission assignment PA

together form the polynomial certificate/witness. It only takes polyno-

mial time to compute

‖M(UPA)− (M(UA) ⊗M(PA)) ‖1 (4.4)

and ensure that it is less than or equal to δ, and that |ROLES| ≤ k.

• We select the set basis problem as π′.

• The transformation is quite simple. Given an instance of the set basis

problem, here is how we transform it to an instance of the decision Role

Mining Problem: S denotes the permissions PRMS. C denotes UPA.

Thus, every set c ∈ C stands for one user u. δ is set to 0. Now, the

answer to the decision approx role mining problem directly provides

the answer to the set basis problem.

• The transformation is clearly polynomial.

Theorem 4.2.3 The decision MinNoise RMP is NP-complete.

• The decision MinNoise RMP is in NP. The set of roles ROLES, the

user-to-role assignment UA, and the role-to-permission assignment PA

together form the polynomial certificate/witness. It only takes polyno-

mial time to compute

‖M(UPA)− (M(UA) ⊗M(PA)) ‖1 (4.5)

and ensure that it is less than or equal to θ, and |ROLES| = k.
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• We select the set basis problem as π′

• The transformation is quite simple. Given an instance of the set basis

problem, here is how we transform it to an instance of the decision

Role Mining Problem: S denotes the permissions PRMS. C denotes

UPA. Thus, every set c ∈ C stands for one user u. Set θ = 0. Now,

the answer to the decision MinNoise RMP directly provides the answer

to the set basis problem.

• The transformation is clearly polynomial.

4.3 Heuristic Solutions to the Basic-RMPs

In the following sections, we show that the Basic-RMP along with several

variants can be mapped to other problems already studied in the data mining

and data analysis literature. We discuss the complexity for each variant along

with suggested methods for solving the problem.

4.3.1 Mapping the Basic-RMP to the Tiling Databases Problem

In this section, we demonstrate the equivalence of the Role Mining Prob-

lem with the Tiling Databases problem. This mapping allows us to directly

borrow existing implementation solutions to the Basic-RMPs. In fact, the

original Database Tiling paper by Geerts et al. [22] looked at a set of five

problems, one of which exactly matches the role mining problem. We now

describe the relevant problems studied and then discuss their implications.
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Tiling Databases

Consider a binary matrix of size m×n where the number of rows, m, can be

viewed as the number of objects and the number of columns, n, can be viewed

as the number of attributes. A 1 in cell {ij} denotes that object i has/owns

attribute j (i.e., some relationship exists between object i and attribute j).

Now, let an itemset I denote a collection (subset) of the attributes. Then a

tile t corresponding to an itemset I consists of the columns in itemset I as

well as all the rows that have 1s in all the columns in I. The area of a tile is

defined as the cardinality of the tile (i.e., the number of 1s in the tile).

Informally, a tile consists of a block of ones in a boolean database as

shown in Figure 4.1(b). A collection of (possibly overlapping) tiles constitutes

a tiling. Among the collection of 5 related problems defined in [22], the

Minimum Tiling problem is of the most interest to us, which is defined

below.

Definition 12 (Minimum Tiling) Given a boolean matrix, find a tiling

of the matrix with area equal to the total number of 1s in the matrix and

consisting of the least possible number of tiles.

Mapping the Basic-RMP to the Minimum Tiling Problem

To see that the Minimum Tiling problem corresponds exactly to the Basic-

RMP, one must first see how a tile corresponds to a role. As defined above, a

tile is just a block of 1s – i.e., a collection of rows and columns that all have

1s. Remember that without semantics, a role is simply a collection of per-

missions. Thus, inherently, in any tile, the collection of the columns provides
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the role-to-permission assignment (PA) for that role. At the same time, the

collection of rows denotes those users/entities that have that role – thus the

collection of rows corresponds to the user-to-role assignment (UA) for that

role. As such, any tiling corresponds to a set of roles and their role/permission

and user/role assignments. If the tiling completely covers the entire matrix –

then all 1s have been covered, meaning that all user/permission assignments

have been covered. Since each tile corresponds to a role, if the tiling is min-

imal and covers the entire matrix, this means that we have found a set of

minimal roles such that they completely describe the given user-permission

assignment.

The following example clearly demonstrates this mapping. In the context

of tiling databases, Figure 4.1(a) shows the boolean matrix representing a

transactional database consisting of 4 transactions and 7 items. Rows denote

the transactions and columns denote the items. We may order transactions

from top to bottom sequentially as 1 – 4 and items from left to right as 1 – 7.

A 1 in cell {ij} represents that transaction i contains item j. Figure 4.1(b)

shows a tiling of the matrix consisting of 3 tiles. The shaded region represents

a tile. Thus, Tile 1={(1,1), (1,2), (3,1), (3,2), (4,1), (4,2)}, Tile 2={(2,4),

(2,5), (3,4), (3,5)} and Tile 3={(1,5), (1,6), (1,7), (2,5), (2,6), (2,7)}. As

one can see, Tiles 2 and 3 overlap on cell (2, 5). Figure 4.1(b) also gives the

minimum tiling of the matrix. It is not possible to find a tiling the covers

the entire matrix with less than 3 tiles. We can view the same problem from

the role mining perspective. As described before, each tile corresponds to

a role. Figure 4.1(c) and 4.1(d) show an optimal UA and PA, such that
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M(UA) ⊗M(PA) = M(UPA). Again, the decomposition is optimal in the

sense that it is impossible to find only two roles such that UA and PA will

be 0-consistent with UPA.

Formally, we can reduce the Minimum Tiling problem to the Basic-RMP

as follows.

Theorem 4.3.1 The Minimum Tiling problem is identical to the basic Role

Mining Problem.

To show that the two problems are identical we show that their inputs and

outputs exactly match. Thus, for every input instance, the output of both

problems have a direct one-to-one mapping.

• The input to both problems is a m× n boolean matrix.

• For any problem instance, the Minimum Tiling problem returns a set

of tiles that completely cover the input while minimizing the number

of tiles. Each tile corresponds to a role, R. For each tile, we extract

the set of columns C, in the tile. For each column c ∈ C, add the

assignment {c, R} to PA. Similarly, for each row i, belonging to the

tile, add the assignment {i, R} to UA. Add R to ROLES.

• The resulting set of roles (ROLES), user-role assignment (UA), and

permission-role assignment (PA) are guaranteed to be a solution to the

Basic-RMP. (i.e., UA and PA are 0-consistent with the corresponding

UPA, and the number of roles is minimal). To prove the 0-consistency,
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it is sufficient to note that UA ⊗ PA gives us the original tiling of

the input matrix which is equivalent to the original UPA. We can

prove the minimality by contradiction. Assume that a different solu-

tion to the RMP exists – consisting of ROLES ′, UA′ and PA′ where

|ROLES ′| < |ROLES|. In this case, we can transform this solution

into a corresponding solution for tiling. For each role r ∈ ROLES ′,

create the corresponding tile tR consisting of the permissions given by

PA′ and the users given by UA′. The union of all tiles
⋃

R TR gives

a tiling of the matrix. This tiling covers the entire matrix since UA′

and PA′ are 0-consistent with UPA. However, the number of tiles is

the same as |ROLES ′| which is less than |ROLES|. But that means

that the earlier solution is not minimal – and we have a contradiction.

Therefore, the solution to the tiling databases problem directly maps

to a solution for the role mining problem.

Thus, the Minimum Tiling problem exactly corresponds to the Basic-

RMP.

Algorithm to Discover Minimal Roles

Since the Minimum Tiling problem is equivalent to the Basic-RMP, the al-

gorithms developed for Minimum Tiling now directly apply. [22] proposes

a greedy approximation algorithm to find the minimum tiling of any given

database. This algorithm depends on finding all maximal tiles having an

area over a given threshold. A depth first search strategy is used to find all

large tiles. [22] prove that the Minimum Tiling problem can be approximated
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Figure 4.2. An example of mapping the MinNoise RMP to the DBP

within the factor O(log mn), given an oracle that finds for any database D

and tiling T , the tile t such that the area(T ∪ t) is the maximum (i.e., the

oracle returns the tile which covers as much of the remaining uncovered part

of the database). Such an oracle can be implemented reasonably efficiently

by adapting the maximal tile algorithm. [22] provides more detail on this.

We now briefly present the adapted algorithm for the Basic-RMP.

Algorithm 1 presents the Basic-RMP algorithm. It consists of two phases.

In the first phase, we find a minimum tiling for the given UPA. In the second

phase, we convert the tiling into ROLES, UA, and PA. As described earlier,

phase 1 uses a simple greedy strategy of adding the largest uncovered tile to

the current tiling, until UPA is completely covered (i.e., the largest uncovered

tile remaining is empty). Algorithm 2 describes the procedure for finding the

largest uncovered tile from UPA.
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Algorithm 1 RMP(UPA)

1: {Find the minimum tiling for UPA}
2: T ← {}
3: while (T ′ ← LUTM(UPA,T )) 6= {} do
4: T ← T ∪ T ′

5: end while
6: {Convert the minimum tiling into UA and PA}
7: ROLES ← {}, UA← {}, PA← {}
8: for each tile t ∈ T do
9: Create a new role R and add it to ROLES

10: Extract the set of permissions P in the tile
11: For each permission p ∈ P , add the assignment {p, R} to PA
12: Extract the set of users U in the tile
13: For each user u ∈ U , add the assignment {u, R} to UA
14: end for

The LUTM algorithm (Algorithm 2) is a depth-first recursive algorithm

that finds the largest uncovered tile. In order to do a depth-first search, we

simply assume some canonical order over the permissions. The key idea be-

hind the algorithm is that all large tiles containing a permission i ∈ PRMS,

but not containing any permission lower than i (according to the canoni-

cal order) can be found in the so-called i-conditional database [40]. In our

context, the P -conditional database UPAP consists of all user-to-permission

assignments that contain P , but from which all permissions before the last

permission in P and that last permission itself would have been removed.

Now, any large tile that is found in this conditional database, at once im-

plies a corresponding large tile including P . Therefore, whenever we want

to compute an area associated with a set of permissions P ′ in UPAP , we

simply need to add |P | to the width of the area (|P ′|) and multiply this with

|U(P ′)| [22]. We modify the original LTM algorithm [22] to return the largest

uncovered tile. For this, we keep track of the current largest uncovered tile,
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LT, and its uncovered area, LTarea. The main steps of the algorithm are as

follows:

Step 1: Originally, LT and LTarea are initialized to the empty set and 0, re-

spectively. The current set of permissions being considered, P is also

initialized to the empty set. Lines 1 and 2 perform this initialization.

Step 2: Line 3 starts the main loop of the algorithm, and iterates over each

permission separately. On lines 4-7, if the uncovered area of the current

tile being considered is larger than the current known best, the best

is updated to this. i.e., LT and LTarea always refer to the largest

uncovered tile seen so far. Over here, we need to clarify what we mean

by uncovered area. For any tile, the uncovered area is the number of 1s

that the tile covers that are not already covered in the existing tiling –

i.e., the uncovered area refers to that part of the tile that is new and

not seen before.

Referring back to Figure 4.1(b), assume that the current tiling consists

of Tile 1 and Tile 2. Now, the covered area is simply the distinct

number of 1s included in the Tiling. In our case, since the tiles do not

overlap, the overall covered area is equal to 10 (6 for Tile 1 and 4 for

Tile 2).

Now, suppose we are considering Tile 3. The uncovered area of Tile 3 is

5 (since the total number of 1s in Tile 3 is 6, and one out of those 1s, at

position {u2,p5} is already covered in the current tiling). Thus, given

a database and an existing tiling, whenever a new tile is considered, it
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is easy to compute the uncovered area by simply removing the already

covered area from the area of the tile.

Step 3: Lines 8-12 creates the conditional database UPAP .

Step 4: Finally, line 13 invokes the algorithm recursively to calculate the largest

uncovered area in the smaller conditional database. Since the condi-

tional database progressively shrinks, the algorithm is guaranteed to

finish after all the permissions have been considered. The algorithm

shown here is quite simple. However, its efficiency can be significantly

improved by using several pruning techniques – more details can be

found in [22].

Algorithm 2 LUTM(UPA, T )

1: P ← {}
2: LT ← {}, AreaLT ← 0
3: for ∀p ∈ PRMS do
4: if uncovered area of t(P ∪ {p})> AreaLT then
5: LT ← t(P ∪ {p})
6: Update AreaLT to have uncovered area of t(P ∪ {p})
7: end if
8: {Create the conditional database for recursion}
9: UPA(P∪{p}) ← {}

10: for (∀q|(q ∈ PRMS) ∩ (q>p)) do
11: Add (q, U({p}) ∩ U({q})) to UPA(P∪{p})

12: end for
13: Compute T ((P ∪ {p}), UPA(P∪{p})) recursively
14: end for

4.3.2 The Subset Enumeration Based Heuristic

Essentially, the solutions for Database Tiling Problem ask for pruning of an

exponential number of candidates (effectively candidates are generated ac-
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cording to Rymon’s set enumeration tree, which is exponential in the worst

case.) Thus, if the pruning strategies do not work, or even in cases where

there are lots of permissions, we have a significant scalability problem. In-

stead, we have come up with a solution based on the FastMiner [100] algo-

rithm that can significantly cut down on the cost while still retaining very

good accuracy. Even better, this solution can also be modified to work for

the δ-approx RMP. Essentially, a single algorithm can serve both the RMP

variants by simply setting a parameter. We believe that this is significant in

that one can implement one single algorithm and can tune it to obtain the

results of different RMP variants. This lends itself for security administrators

to pick and choose the RMP variant that is applicable to the organization at

the current situation. We now describe this solution.

The subset enumeration based heuristic proceeds in two independent

phases. In the first phase, we generate a set of candidate roles from the

UPA. This is currently done using the FastMiner algorithm developed by

Vaidya et al.[100]. FastMiner generates candidate roles simply by intersect-

ing all unique user pairs. In general, any technique can be used to generate

the candidate roles. In the second phase, we select the final roles from among

these candidates. For this selection, we follow a greedy strategy similar to

database tiling. Essentially, the best candidate role is selected from the

remaining candidate roles until the original UPA can be completely recon-

stituted. Thus, in each iteration, for every remaining candidate role, we

compute the uncovered area of that role. The uncovered area of a role can

be easily computed by finding the number of 1s in M(UPA) that are not
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already covered by any of the roles in ROLES (the current minimum tiling).

This can easily be used for the δ-approx RMP with a minor modifica-

tion. Instead of terminating when the UPA is completely reconstituted, the

algorithm for the δ-approx RMP stops as soon as the UPA is reconstituted

within δ. Since the Basic-RMP is only a special case of the δ-approx RMP

(with δ = 0), we formally present only the algorithm for the δ-approx RMP.

Another optimization is possible to improve efficiency. If the set of roles

is sorted in descending order by the area of the roles, the length of each

iteration can be reduced. When a new candidate role is considered, if the

total area of that role is less than the currently seen maximum uncovered

area, we know that it is impossible for that role to be the best. Indeed, since

the roles are sorted, we know that none of the roles following this can be

the best role either. Therefore, we immediately stop the iteration and use

the best role found so far. This can significantly help in reducing the overall

time. Algorithm 3 gives the details.

Example 1 We use the following example to demonstrate the working of

the algorithm. We assume the same hypothetical organization with 15 users

and 4 permissions depicted in [100]. Figure 4.4(a) shows the sample database

with the assignment of permissions to users. Since there are 4 permissions,

and a role is defined as a collection of permissions, the number of possible

different roles is 24 = 16 (i.e., the size of the powerset). Figure 4.3 depicts 15

of those roles (all excluding the empty set - i.e., the role with no permissions).

Now, in the first phase of our algorithm, the FastMiner algorithm [100] is
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Algorithm 3 the δ-approx RMP(UPA, δ)

Require: User-Permission assignment, UPA
Require: the approximation threshold, δ
1: {Create candidate set of roles}
2: Create a candidate set of roles, CROLES, using the FastMiner [100]

algorithm
3: Sort CROLES according to the area of each role
4: ROLES ← φ
5: while UPA is not covered within δ do
6: BestRole← φ
7: BestArea← 0
8: for each role C in CROLES do
9: if area(C) < BestArea then

10: Break out of the FOR {We have already found the best possible
role}

11: end if
12: carea ← Uncovered Area(C, UPA, ROLES) {compute uncovered

area of candidate role}
13: if carea > BestArea then
14: BestArea← carea
15: BestRole← C
16: end if
17: end for
18: ROLES ← ROLES

⋃
C {Add C to the set of roles, ROLES}

19: Remove C from CROLES
20: end while
21: Return ROLES
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used to select the set of candidate roles. FastMiner proceeds as follows: First,

the set InitRoles gets initialized to {{p1, p2, p4}, {p2, p3, p4}, {p2, p3}, {p4}, {}}.

These roles along with their corresponding counts are rectangled in Figure

4.3. The empty set, along with its count of 2 is not shown in the figure since

it does not add to the computation. Now, all pairs of unique users are inter-

sected to find the remaining candidate roles. These result in two additional

roles, {{p2, p4}, {p2}}, which are ovaled in the figure. Since {p2, p3}, {p4} and

{} are also the result of some intersections, at the end of phase 2, GenRoles

gets set to the roles {{p2, p3}, {p2, p4}, {p2}, {p4}, {}}. Finally, the generated

roles are matched to the corresponding counts which are 6,8,11,10, and 2.

Together, the initial roles and the generated roles form the set of candidate

roles, CROLES. These are then sorted in descending order according to

their area. Figure 4.4(a) shows the sorted set of CROLES.

Now, the algorithm iterates until the entire UPA is covered. Figures

4.4(b)-4.4(e) show the 4 iterations. Each figure shows the database with the

covered part shaded, as well as the uncovered area of each role considered

in the iteration. In the first iteration, the role {p2, p4} is picked since its

uncovered area (16) is the largest. Note that since the uncovered area 16 is

greater than the area of the next largest role ({p1, p2, p4}, 15), the iteration

correctly breaks right there without even looking at the remaining candidate

roles. In the second iteration, the role {p2, p3} is picked since its current

uncovered area (9) is the largest. Again, the iteration does not check the

last role ({p2, p3, p4}) since its total area is not larger than the maximum

uncovered area seen so far in that iteration. In the third iteration, since the
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Figure 4.3. An example of the RoleMiner algorithm

role {p1, p2, p4} has the largest uncovered area (5), it is picked. Starting from

this iteration, all of the roles are considered since the maximum uncovered

area is smaller than the area of all of the roles. In the fourth iteration, the

role {p4} with the maximum uncovered area (2) is picked. This covers the

entire UPA and terminates the algorithm. Figure 4.4(f) shows the complete

covered UPA at the end of iteration four. Though our pruning strategy

based on sorting only helps us for two iterations in this example, in general

it helps significantly. This has been borne out by the experimental results.

Also note that the algorithm will terminate faster for non-zero values of δ.

For example, for δ = 2, the algorithm will terminate at the end of iteration

three since UPA is covered within δ, and there will only be 3 returned roles.
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p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

U13 0 1 1 1

{u5,u6,u13}

{u1,u3,u4,u5,u6,u9,u10,u11,
u12,u13}

{u1,u2,u3,u4,u5,u6,u7,
u8,u11,u12,u13}

{u2,u5,u6,u7,u8,u13}

{u1,u3,u4,u11,u12}

{u1,u3,u4,u5,u6,u11,u12,u13}

Associated

Users

Candidate 

Roles

Orig

Count

Gen

Count

Total

Count
Area uc

{p2,p4} 0 8 8 16

{p1,p2,p4} 5 0 5 15

{p2,p3} 3 3 6 12

{p2} 0 11 11 11

{p4} 2 8 10 10

{p2,p3,p4} 3 0 3 9

(a) Example data and sorted candidate roles

p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

u13 0 1 1 1

{u5,u6,u13}

{u1,u3,u4,u5,u6,u9,u10,u11,
u12,u13}

{u1,u2,u3,u4,u5,u6,u7,
u8,u11,u12,u13}

{u2,u5,u6,u7,u8,u13}

{u1,u3,u4,u11,u12}

{u1,u3,u4,u5,u6,u11,u12,u13}

Associated

Users

Candidate 

Roles
Area uc

{p2,p4} 16 16

{p1,p2,p4} 15 X

{p2,p3} 12 X

{p2} 11 X

{p4} 10 X

{p2,p3,p4} 9 X

(b) Iteration 1
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{u5,u6,u13}

{u1,u3,u4,u5,u6,u9,u10,u11,
u12,u13}

{u1,u2,u3,u4,u5,u6,u7,
u8,u11,u12,u13}

{u2,u5,u6,u7,u8,u13}

{u1,u3,u4,u11,u12}

{u1,u3,u4,u5,u6,u11,u12,u13}

Associated

Users

Candidate 

Roles
Area uc

{p2,p4} 16 0

{p1,p2,p4} 15 5

{p2,p3} 12 9

{p2} 11 3

{p4} 10 2

{p2,p3,p4} 9 X

p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

u13 0 1 1 1

(c) Iteration 2

{u5,u6,u13}

{u1,u3,u4,u5,u6,u9,u10,u11,
u12,u13}

{u1,u2,u3,u4,u5,u6,u7,
u8,u11,u12,u13}

{u2,u5,u6,u7,u8,u13}

{u1,u3,u4,u11,u12}

{u1,u3,u4,u5,u6,u11,u12,u13}

Associated

Users

Candidate 

Roles
Area uc

{p2,p4} 16 0

{p1,p2,p4} 15 5

{p2,p3} 12 0

{p2} 11 0

{p4} 10 2

{p2,p3,p4} 9 0

p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

u13 0 1 1 1

(d) Iteration 3
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{u5,u6,u13}

{u1,u3,u4,u5,u6,u9,u10,u11,
u12,u13}

{u1,u2,u3,u4,u5,u6,u7,
u8,u11,u12,u13}

{u2,u5,u6,u7,u8,u13}

{u1,u3,u4,u11,u12}

{u1,u3,u4,u5,u6,u11,u12,u13}

Associated

Users

Candidate 

Roles
Area uc

{p2,p4} 16 0

{p1,p2,p4} 15 0

{p2,p3} 12 0

{p2} 11 0

{p4} 10 2

{p2,p3,p4} 9 0

p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

u13 0 1 1 1

(e) Iteration 4

p1 p2 p3 p4

u1 1 1 0 1

u2 0 1 1 0

u3 1 1 0 1

u4 1 1 0 1

u5 0 1 1 1

u6 0 1 1 1

u7 0 1 1 0

u8 0 1 1 0

u9 0 0 0 1

u10 0 0 0 1

u11 1 1 0 1

u12 1 1 0 1

u13 0 1 1 1

(f) Iteration 5

Figure 4.4. Data and algorithm iterations of the RoleMiner example
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Computational Complexity

The computational complexity of the algorithm depends on two factors: the

complexity of the candidate generation phase and the complexity of the can-

didate selection phase. Since the FastMiner algorithm uses pairwise intersec-

tion of unique users to generate candidate roles, it requires O(n2) time, where

n is the number of users. Since at most n roles are necessary to describe the

UPA (each user is in a role by itself), at most n iterations are required for

candidate selection. Thus in the absolute worst case, the overall cost is O(n3)

which is still significantly better than the exponential worst case of tiling.

However, in practice, due to the sorting and quick termination strategy, the

algorithm takes an order of magnitude less time.

Approximation Optimization for the Basic-RMP

While our solution works extremely well for non-zero values of δ, it still

takes a long time for solving the Basic-RMP problem (i.e., when δ = 0).

The reason for this is quite clear – essentially at every iteration a smaller

and smaller amount of uncovered area is covered. Effectively this invalidates

our pruning strategy and at every iteration the complete list of candidate

roles has to be scanned. With up to n2 candidates, this list gets very big

very fast. Another optimization is possible which significantly reduces the

overall time, though at the cost of giving a slightly non-optimal final set of

roles. The key is to observe that all of the candidate roles are not relevant at

every iteration. Though, at the start, any of the candidates could be chosen

as the best role, in later iterations, roles which do not comprise of any of
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the permissions in the remaining uncovered area definitely cannot be chosen.

While this observation is useful, we can actually do much better. Effectively

at any iteration, we could simply remove all of the users who have already

been covered and only generate candidates from the remaining users. As

more and more users are covered, this strategy keeps significantly decreasing

the number of candidate roles. Indeed the strategy can be applied as many

times as desired through the run of the algorithm. The reason why this may

generate a set of roles that is not optimal is due to the way the candidate

roles are generated. With FastMiner, candidates are generated simply by

intersecting pairs. It is possible that by eliminating an earlier covered user we

never generate a candidate role that could actually be the best role. If instead

CompleteMiner was used, this problem would be avoided (though the number

of candidate roles would significantly increase). Our experiments show that

for most situations using this optimization gives close to the optimal set of

roles, while significantly reducing the overall time required. Algorithm 4 gives

the details on the optimization (how the reduced UPA is generated). Once

we have the reduced UPA, a new set of candidates can be easily generated

using the FastMiner algorithm. Note that this can be done at the start of

any iteration in Algorithm 3.

4.3.3 Mapping the MinNoise RMP to the Discrete Basis Problem

In this section, we demonstrate the direct equivalence of the MinNoise RMP

to the Discrete Basis problem. This mapping again allows us to directly bor-

row existing implementation solutions. Miettinen, in his thesis [67], studies a
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Algorithm 4 Generate Reduced UPA

Require: Users U , Permissions PRMS, User-Permission Assignment UPA,
and current set of roles, ROLES

1: U ′ ← φ
2: PRMS ′ ← φ
3: for each user u ∈ U do
4: if u is not completely covered by ROLES then
5: U ′ ← U ′

⋃
u

6: for all permissions p ∈ PRMS such that (u, p) ∈ UPA do
7: PRMS ′ ← PRMS ′

⋃
p

8: end for
9: end if

10: end for
11: Generate reduced UPA′ from U ′, PRMS ′

12: Return UPA′

set of three related problems and shows that these are NP-complete. We now

describe the relevant problems studied and then discuss their implications.

The Discrete Basis problem [68] studies the problem of finding a basis

from given data. Similar to Principal Component Analysis (PCA), the dis-

crete basis problem is a technique for simplifying a dataset, by reducing

multidimensional datasets to lower dimensions for summarization, analysis,

and/or compression. Unlike PCA, the discrete basis problem only considers

boolean data, and finds boolean bases.

We have already introduced some of the notation used for defining the

discrete basis problem from [68]. Formally, the discrete basis problem is

defined as follows:

Definition 13 (Discrete Basis Problem) Given a matrix C ∈ {0, 1}n×d

and a positive integer k ≤ min{n, d}, find a matrix B ∈ {0, 1}k×d minimizing

l⊗(C, B) = minS∈{0,1}n×k ‖ C − S ⊗ B ‖1 (4.6)
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The Discrete Basis Problem only asks for a discrete basis. A related

problem is the Basis Usage problem:

Definition 14 (Basis Usage Problem) Given a matrix C ∈ {0, 1}n×d and

a matrix B ∈ {0, 1}k×d, find a matrix S ∈ {0, 1}n×k minimizing

‖ C − S ⊗ B ‖1 (4.7)

Together, the Discrete Basis Problem and the Basis Usage Problem cor-

respond to the MinNoise RMP. C represents the user-privilege assignment,

UPA. B represents the role-permission assignment, PA. S represents the

user-role assignment UA. The following example clearly demonstrates this

equivalence.

In the context of the discrete basis problem, the input is a boolean matrix,

where the rows and columns might stand for anything – users and permis-

sions, or documents and words. For now, we assume that these show the

user-permission assignment, UPA. Thus, Figure 4.2(a) is a n × m input

binary matrix where n = 4, m = 3. Given the positive integer k = 2 (k

<min{m, n}), Figure 4.2(b) shows one possible decomposition into a usage

matrix S and basis vector matrix B. As we can see, in this case |C −S⊗B|

is 2.1 Figure 4.2(c) shows a better decomposition since |C − S ⊗ B| =0.

Indeed this is the best (optimal) decomposition possible for the given input

matrix. Note that the discrete basis problem only asks for the optimal basis

1We keep the notations of matrix product and L1 norm as what they originally are in
DBP paper [68], even if they are slightly different with those used in the RMP.
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B (i.e., role-permission assignment PA). Given B, the basis usage problem

asks for the optimal usage matrix S (i.e., user-role assignment UA). In our

case, the MinNoise RMP asks for both PA and UA together. The difference

is semantic – in either case, the problem (as stated) is NP-complete [67].

However, splitting the problem into two parts (i.e., finding optimal PA,

and then finding optimal UA given PA) does help in the case of the Basic-

RMP. For the Basic-RMP, we wish to exactly match the given UPA. In this

case, while the discrete basis problem (finding optimal PA) remains NP-

hard, the basis usage problem (finding UA given PA) becomes polynomial.

A simple algorithm for the basis usage problem in this case is as follows: For

each user and for each role, if the set of permissions of the role is a subset

of the permissions of the user, then assign that role to that user. Since we

only assign a role to a user as long as all of its permissions are owned by

the user, there are no mistakes (and we have an exact match). Obviously,

this assumes that the provided basis is complete (i.e., that each user can be

exactly described using some subset of the roles), and thus all of the required

roles are assigned to the user. Thus, after going through the entire set of

users and permissions, we automatically come up with the optimal UA. The

running time of this algorithm is clearly polynomial in the size of the input

[67].

Miettinen [67] also shows that the discrete basis problem cannot be ap-

proximated to in polynomial time within any constant factor unless P = NP .

This essentially shuts the door on any attempt to find an approximation al-

gorithm for the problem. However, heuristic solutions based on association
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rule mining are proposed and seem to give fairly good results on simulated

data. Again, [67] provides further details on this. Other heuristics can also

be used. One possibility is to extend the RoleMiner algorithm [100] to find

the best candidates to describe the dataset. As part of future work, we in-

tend to comprehensively test a set of heuristics (including the one in [67]) to

determine what really works well in our domain.

4.3.4 Heuristic Solution to the MinNoise RMP

We now present a heuristic solution for the MinNoise RMP problem based

on the FastMiner [100] algorithm that provides significantly better accuracy

while still being fairly efficient in most cases, and better in certain cases.

Note that, the same solution can also be modified to solve several variants

of this problem including the Database Tiling problem [22] and the δ-approx

RMP [101]. We now describe this solution.

The key to the algorithm is to have better candidate generation, greedy

selection of roles (i.e., basis vectors) and intelligent assignment of users to

roles. The algorithm proceeds in three independent phases. In the first phase,

a set of candidate roles is generated from the user-permission assignment us-

ing the subset enumeration algorithm (FastMiner) developed by Vaidya et

al.[100]. The basic idea is to intersect the permissions of every pair of users to

generate candidate roles. Along with this, for the sake of completeness, can-

didate roles are created consisting of each user’s permissions, and separately

consisting of each permission. Thus the total candidate roles set consists of

the candidates due to intersection, a candidate representing each user, and
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a candidate representing each permission. While we use this specific way of

generating candidates, in general, any technique can be used to generate the

candidate roles. After removing duplicates, for each role, we associate with it

the users which fully enclose the set of permissions of the candidate. In other

words, we do a exact association as opposed to the associations described in

the third phrase shortly. We sort the roles according to the area (i.e. the

number of permissions in the role multiplied with the number of associated

users).

In the second phase, we select the final set of roles from among these

candidates. For this selection, we follow a greedy strategy similar to database

tiling. Essentially, the best candidate role is selected from the remaining

candidate roles until the original user set can be completely reconstituted or

until we have the required number of roles. In detail, in each iteration, out

of all remaining candidate roles, we select the one with the largest uncovered

area. The uncovered area of the role can be easily computed by finding the

number of 1s in the user set that are not already covered by any of the roles

already selected.

In the third phase, we associate additional users with each of selected roles

generated from the previous phase. Instead of associating only those users

whose permission set totally encloses a role, we slightly relax the restriction

to include those users that will benefit from such an association. Specifically,

a user is additionally associated with a selected role if the number of common

permissions shared between it and the role is greater than half the size of the

permission set (i.e. more than half of the number of permissions the role has).
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In other words, a user is only associated with a role if it has a net gain due

to the association. Clearly, this will introduce inaccuracies, since there may

be permissions in the role which are not owned by the user – however we are

guaranteed that the number of such permissions is less than half of the user’s

permissions, thus ensuring an overall gain. This whole algorithm is called

MinNoise with Errors (since errors can be introduced in the third phase. If

we stop after the second phase, there are no extraneous errors introduced

though the algorithm may not do as well – this is called MinNoise without

errors. We check the performance of both algorithms in the experimental

evaluation.

One problem with the above algorithm is that the candidate selection

process can potentially take quite a lot of time (since there may n2 candidates

in the worst case). In order to improve the overall efficiency, an optimization

is possible. If the set of candidate roles is sorted in descending order by the

area of the roles, the length of each iteration can be significantly reduced.

Essentially, in each iteration, it is sufficient to keep track of the maximum

uncovered area seen so far. While scanning through the list of sorted roles,

we can stop as soon as we come to a role whose area is less than the maximum

uncovered area seen so far. Since the actual area of that role is less than the

currently seen maximum uncovered area, we know that it is impossible for

this role to be the best. Indeed, since the roles are sorted, we know that none

of the roles following this can be the best role either. Therefore, the scan for

the iteration can be terminated and the best role found so far used. This can

significantly help in reducing the overall time. Algorithm 5 gives the details.
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Algorithm 5 An algorithm for the MinNoise RMP (Discrete Basis Problem)
using subset enumeration

Input: User-Permission Assignment UPA ∈ {0, 1}n×m for data, positive
integer k < min{n, m}

Output: Matrices PA ∈ {0, 1}k×m and UA ∈ {0, 1}n×k

1: {Create a candidate set of roles, CV EC, using subset enumeration (the
FastMiner [100] algorithm)}

2: Add the permission set of each user Ui to CV EC (i = 1 . . . n, Ui ∈ UPA)
3: Add {Ui

⋂
Uj} to CV EC (i, j = 1 . . . n, and i 6= j)

4: Add {Pi} to CV EC (i = 1 . . .m) {Create a candidate role out of each
permission, and add it into CV EC}

5: Remove duplicates in CV EC
6: {Associate users to each role in CV EC }
7: for each role v in CV EC do
8: for each user Ui in UPA do
9: if Permissions(v) ⊆ Permissions(Ui) then

10: {when the permission set of Ui fully encloses that of v}
11: Associate user Ui with role v
12: end if
13: end for
14: end for
15: Sort CV EC in descending order according to the area of each role
16: V ← φ
17: for l = 1 . . . k do
18: BestRole← φ, BestArea← 0
19: for each role v in CV EC do
20: if area(v) < BestArea then
21: Break out of the inner for loop {already found the best possible

role}
22: end if
23: if Uncovered Area(v, C, V ) > BestArea then
24: BestArea← Uncovered Area(v, C, V ), BestRole← v
25: end if
26: end for
27: Move v from CV EC to V
28: end for
29: {Associate users to each role in V }
30: for each role v in V do
31: for each user Ui in C do
32: if Common Permissions(v, Ui) > 0.5× Size(v) then
33: {when the number of common permissions between a role v and

the user Ui is greater than half of the size of v}
34: Associate user Ui with role v
35: end if
36: end for
37: end for
38: Return V
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Example 2 We use the following example to demonstrate the working of

the algorithm. Figure 4.5(a) shows the example user permission assignment

consisting of 10 users and 5 permissions. Each row represents a user and

each column a permission. The value of 1 in cell {i, j} indicates that user i

owns permission j and not if otherwise.

The algorithm mainly consists of four parts. Lines 1-5 generate the can-

didate roles. Lines 6-15 associate the users with each of the candidate

roles and then sort the roles by their areas in descending order. Lines 16-28

select the roles from the candidate set in a greedy manner. Lines 29-37 as-

sociate the users with the selected roles. In the following, we explain each

step in detail. The candidate roles are generated from 3 sources. First, we

uniquely incorporate the permission set associated with each user. They are

{P1, P2}, {P0, P1, P2, P3, P4}, {P2, P3}, {P1, P3, P4}, {P0, P2, P3}, {P0, P1},

{P0, P1, P2}, {P0, P2}, {P3, P4}, {P1}. Then, we intersect every two roles we

get from the previous step, this generates {P1, P2}, {P2}, {P1}, {P2, P3},

{P1, P3, P4}, {P0, P2, P3}, {P0, P1}, {P0, P1, P2}, {P0, P2}, {P3, P4}, {P3},

{P0}. Finally, each permission can be a candidate role. Therefore, we add

{P0}, {P1}, {P2}, {P3}, {P4} into the candidate set. The second part of the

algorithm associates users with each of the candidate roles as long as the

permission set of a user fully encloses that of the candidate role. Then the

candidate roles are sorted in descending order by the area (i.e., the number of

permissions multiplies the number of associated users). Figure 4.5(a) shows

the 14 sorted candidate roles after removing the duplicates.

In the third part, we keep selecting the best role from the candidate set
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until the expected number of roles has been reached or the original candidate

set has been completely reconstituted. By the best role, we mean the role

which has the maximum uncovered area. In this example, we have set the

required number of roles to 3. So we will have three iterations. Figure

4.5(b) shows the first iteration in which role with the largest area {P0, P2}

will be first picked based on the calculation of uncovered area which is 8,

apparently the largest so far. The iteration stops right here, since the next

role {P0, P1} has a total area of only 7, which is smaller than the uncovered

area of {P0, P2}. Thus, there is no possibility of its uncovered area being

greater. This is also true for all following roles since all roles are sorted in

descending order of their areas. Therefore, we move the best role from the

candidate set to the selected role set. Figure 4.5(c) show the second iteration.

It starts with {P0, P1} with an uncovered area of 4, which is derived by having

its total area of 6 minus the area (i.e., both cell{U1, P0} and {U6, P0}) already

covered by {P0, P2} selected from the first iteration. The iteration continues

calculating the uncovered area of each role down the candidate list and stops

after the role {P1} since the next role {P1, P2} cannot have an uncovered area

greater than the current largest one. Similarly, the third iteration shown in

Figure 4.5(d) selects the role {P3, P4} with uncovered area of 6.

The last part of the algorithm associates the users with the selected roles.

The exact association has been conducted in part 2 of the algorithm. The

difference is that here we may introduce inaccuracy by associating users which

may not fully enclose the role. Figure 4.5(e) shows the selected roles by our

algorithm and how they cover the original user permission assignment, we
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Dataset Parameters
NRoles NUsers NPermissions MRolesUsr MPermissionsRole

data1 100 2000 100 3 10
data2 100 2000 500 3 50
data3 100 2000 1000 3 100
data4 100 2000 2000 3 200

Table 4.5. Constant number of users/roles, varying permissions

can see that there are five 1s not covered at cells {U0, P2}, {U2, P2},{U2, P3},

{U4, P3},{U5, P0}. The right table in Figure 4.5(e) also shows the coverage

of roles generated by the DBP algorithm over the original database. We

can see that it also left the same five 1s uncovered, on top of that, it covers

{U8, P1} by mistake since it is originally a 0, not 1. Therefore, our algorithm

outperforms the DBP algorithm by 1.

Algorithm 6 CreateTestData(NRoles, NUsers, NPermissions, MRolesUsr,
MPermissionsRole)

Require: NRoles, the number of roles to be generated
Require: NUsers, the number of users to be generated
Require: NPermissions, the total number of permissions
Require: MRolesUsr, the maximum number of roles a user can have
Require: MPermissionsRole, the maximum number of permissions a role

can have
1: {Create the Roles}
2: for i = 1 . . .NRoles do
3: Set nrt to a random number between 1, . . . , MPermissionsRole
4: Set Roles[i] to nrt randomly chosen permissions
5: end for
6: {Create the Users}
7: for i = 1 . . .NUsers do
8: Set nrl to a random number between 1, . . . , MRolesUsr
9: Randomly select nrl roles from Roles

10: Set Users[i] to the permissions in the union of the selected roles
11: end for
12: Return Users
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4.4 Experimental Evaluation

The purpose of the experimental evaluation is two-fold. First, we would like

to validate that our algorithm works in a wide variety of environments ranging

from small to large organizations, with a few to a large number of roles, and

comprising of sparse versus dense matrix of user permissions. Secondly, we

want to see the effect of δ in terms of reduction in time and number of roles.

We would also like to see the effect of our optimization for the Basic-RMP.

Ideally, this should be done on real data sets. However, it is very difficult

to find different real data sets with the variety of parameters that we would

like to evaluate. Therefore, we used the same synthetic test data generator

used in [100] to allow us to set the parameters of our choice that enable us

to correctly gauge the actual accuracy of the algorithm.

4.4.1 Evaluation of solution to the Basic-RMP

First we briefly describe how the test data generator performs: First a set

of roles are created. For each role, a random number of permissions up to

a certain maximum are chosen to form the role. The maximum number of

permissions to be associated with a role is set as a parameter of the algo-

rithm. Next, the users are created. For each user, a random number of roles

are chosen. Again, the maximum number of concurrent roles a user can have

is set as a parameter of the algorithm. Finally, the user permissions are set

according to the roles to which the user has been assigned. Algorithm 6

gives the details. It is obvious that this generator uses a simple randomiza-

tion strategy in order to generate the test data. This allows us to test in
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a completely unbiased manner several different situations. However, no se-

mantics are used to create specific associations or weights. Thus, one could

actually enhance the test data generator itself to include more semantics

and create more realistic data. However, this would require expert domain

knowledge. Significant effort would be required to incorporate role, object

and permission hierarchies into the test data generation. A survey of orga-

nizations would need to be carried out to determine the right composition of

such semantics to create very realistic datasets. While this is a very worthy

goal, due to the high effort required, we leave it to future work. Our current

simple randomization strategy can give us sufficiently good indicative results

for now.

As the test data creator algorithm is randomized, we actually ran it 5

times on each particular set of parameters to generate the datasets. Our

role mining algorithm was run on each of the created data sets. All results

reported for a specific parameter set are averaged over the 5 runs.

For each set of experiments, we report the speed as well as the number

of roles reported by the algorithm. Since we are guaranteed that the roles

reported do cover UPA within δ, we are not worried about exactly matching

the original roles (any roles that suitably cover UPA are fine). Therefore we

only report the number of roles.

To exhaustively check the effect of different parameters on the algorithm,

we would need to run a very large number of experiments. Indeed, even

our 5 parameters (#users, #roles, #permissions, #maximum roles per user,

#maximum permissions per role) lead to 25 = 32 different combinations to
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check. It is clearly infeasible to check the variation/effect of each group of

parameters. Instead, we only report two major experiments – one varying

the number of permissions and one varying the number of permissions. We

actually tested the algorithm on a variety of different parameters and the

results were quite similar (and as expected) in every case.

Thus, in the first set of experiments, we kept the number of users and roles

constant, while changing the number of permissions (and correspondingly,

the number of permissions per role). Table 4.5 describes the test parameters.

Figure 4.6(b) shows the time taken by the algorithm, while Figure 4.6(a)

shows the number of roles found by the algorithm. There are four lines for

each of the four datasets. For each line, there are five plot points signifying

values for δ of 0, 1, 5, 10, and 20. It can be clearly seen close to the optimal

roles are found for the Basic-RMP (i.e., with δ = 0). What is even more

interesting is the amount of reduction in roles for increasing values of δ. For

example, for δ = 5%, the number of roles is close to 80, on average. This

means that we can cover 95% of the original UPA without any errors with

only 80% of the original roles. Clearly, these 80 roles could be viewed as more

fundamental, in some sense. In terms of time, the algorithm performs quite

well for non-zero values of δ, though it is quite slow for δ = 0. However, one

must note that the Basic-RMP optimization was not used for this experiment.

However, it was used in the second set of experiments to judge the effect.

In the second set of experiments, we kept the number of roles and per-

missions constant while varying the number of users. Table 4.6 describes the

test parameters. Figure 4.7(b) shows the time taken by the algorithm, while
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Dataset Parameters
NRoles NUsers NPermissions MRolesUsr MPermissionsRole

data1 100 100 1000 3 100
data2 100 500 1000 3 100
data3 100 1000 1000 3 100
data4 100 2000 1000 3 100

Table 4.6. Constant number of permissions/roles, varying users

Figure 4.7(a) shows the accuracy of the algorithm. The accuracy results are

quite similar to the first set of experiments. Indeed, our algorithm always

performed extremely well for a wide variety of parameters beyond those re-

ported here. The interesting result lies in the speed of the algorithm. Now,

the speed is drastically better, and the algorithm time does not significantly

increase with smaller values of δ.

4.4.2 Evaluation of solution to the MinNoise RMP

In this section, we present the results of our experiments that we have con-

ducted to validate our algorithm and to compare our results with those gen-

erated by the DBP algorithm [77]. In order to validate it, we have used the

same test data generator used for FastMiner. The test data generator first

creates a set of roles such that, for each role, a random number of permissions

are selected up to a certain chosen maximum. The maximum number of per-

missions to be associated with roles is set as a parameter to the generator

algorithm. Next, the users are created such that, for each user, a random

number of roles are chosen. Again, the maximum number of concurrent roles

a user associates with is set as a parameter. Finally, the permissions are set

according to the roles the user is assigned to.
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In this experimental section, we compare 3 algorithms, the DBP, and our

two algorithms one of which introduces inaccuracy/errors called MinNoise

with errors, and the other one called MinNoise without errors. The algo-

rithm without errors does not have the last user association phase of the

algorithm with errors. Thus it introduces no false positive errors. Other-

wise it is identical. To check the accuracy of our algorithms and compare

them with the DBP algorithm, we ran two types of experiments. In the first

experimental test, we generate 3 test data groups by running the test data

generator 3 times. Therefore, their structure is the same even though the

actual data varies. More specifically, each group consists of 4 different data

sets of different sizes. All data sets in a group have 200 permissions, but the

number of users of each data set varies from 100, 200, 500 to 1000. All data

sets are generated using 20 roles (i.e., k = 20).

Figure 4.8 shows the test results averaged over the 3 different runs when

20 roles are desired. The value on y-axis in each figure represents the differ-

ence between the original user permission assignment and the user permission

assignment generated by various algorithms. Each value on x-axis represents

the number of users of a different data set in that group. As we can see

that with the increase of sizes of the data sets, our algorithm (MN with er-

rors) outperforms the DBP algorithm by an increasing margin. This clearly

shows that our algorithm creates roles with higher reconstruction accuracy

as compared to the DBP algorithm for different data sizes.

In the second experiment, we would like to check if this behavior is con-

sistent even when different number of roles are required. To test this, we
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ran 2 tests. Each test ran on only one data set. But each test was run 5

times with different values of k from 5, 10, 15, 20 to 25. Figure 4.9.(a) and

(b) show the results on the 2 tests where Figure 4.9.(a) uses data set of 200

users and 200 permissions, and Figure 4.9.(b) has the data set with 500 users

and 200 permissions. Again, one can see, that regardless of the value of k,

our algorithm outperforms the DBP algorithm. Interestingly, the algorithm

that does not make any errors cannot outperform the DBP, and in fact fares

the worst among the three. This shows the utility of the final user associ-

ation phase, where users are associated with the candidate vectors even at

the cost of introducing inaccuracy. One other interesting point is that the

final association phase can easily be improved. Currently, we associate a user

with a role if at least half of the role permissions are also present in the user.

However, this may not gain us anything, as those permissions may already

be covered due to different roles. One can see this effect in the experiments,

when the errors sometimes increases with increase in the number of roles.

This can be easily fixed by only associating a user with a role in the final

phase when the number of uncovered permissions common to the role is more

than half of the number of permissions in the role. We plan to do this in the

next iteration of the program.
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CHAPTER 5

THE EDGE-RMP

Given the user-permission matrix, the basic-RMP asks us to find a user-to-

role assignment UA and a role-to-permission assignment PA such that UA

and PA describe UPA while minimizing the number of roles. Put another

way, it asks us what is the minimum number of roles necessary to fully

describe the given data (and what are those roles, and the corresponding

user assignments)?

Now, we formally define the new metric proposed, the edge-RMP.

Definition 15 (the Edge-RMP) Given a set of users U , a set of permis-

sions PRMS, and a user-permission assignment UPA, find a set of roles,

ROLES, a user-to-role assignment UA, and a role-to-permission assign-

ment PA 0-consistent with UPA and minimizing the sum of the sizes of the

user-assignment, UA, and the permission assignment, PA (i.e., minimizing

|UA|+ |PA|).

Although, based on the above two definitions, one may at a first glance

think that the Basic-RMP and the Edge-RMP are related, they are in reality,

unrelated. In other words, if one can derive a solution for the Basic-RMP,

it does not necessarily mean that it is a solution to the Edge-RMP, superset
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of the Edge-RMP or subset of the Edge-RMP. Similarly, if one can derive a

solution to the Edge-RMP, similar argument as above can be made in deduc-

ing a solution to the Basic-RMP from that of Edge-RMP. In the following,

we provide a concrete example to demonstrate that the above two arguments

are true.

Consider figure 5.1(a), which represents a 6 × 3 user-to-permission as-

signment UPA. Figures 5.1(b) and (c), represent the solution to the Basic-

RMP by decomposing UPA into UA and PA. Here, the number of minimal

identified roles, |R|=2. But, the number of edges, i.e., |UA|+ |PA|=14.

Figures 5.1(d) and (e) represent the solution to the Edge-RMP problem

by decomposing the same UPA in figure 5.1(a). In this case, as we can see,

the minimum number of edges after the decomposition is, |UA| + |PA|=13.

However, the number of roles, |r|=3, which is not minimal. This example

shows that the optimal solution for the Basic-RMP is not necessarily optimal

for the Edge-RMP and vice versa.

Intuitively, looking at the given example, one may think that this com-

plexity is solely due to the repetition of users – i.e., that if no two users have

the exact same set of rights, the Edge-RMP and the Basic-RMP might be

the same. However, this is not the case either. Irrespective of repetition of

users, containment of users (one’s permission set is a subset of another’s),

or constraints on the kinds of roles that can be mined, we can construct

examples having different solutions for both. This conclusively shows that

the two are completely different problems. The Edge-RMP can be consid-

ered as more complex than the Basic-RMP. This is due to the repetition of
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users. Repeated users make no difference in the solution to the Basic-RMP.

If a set of roles can describe a particular user, it can describe any number

of identical users. While this is true with the Edge-RMP as well, the overall

cost (|UA|+ |PA|) does change depending on the number of users. Thus, it

might make sense to create a special role for a 1000 users who perform three

related job functions. Here the Edge-RMP may find more roles such that

they reduce the overall work. Since it has to take the number of identical

users also into consideration, it can be considered to be more complex (finer)

than the Basic-RMP.

5.1 Complexity Analysis

Before proceeding any further, we would like to establish some results on

the complexity of this problem. The Edge-RMP is an optimization problem.

The theory of NP-completeness applies to the decision problem. Therefore, in

order to consider the complexity of the problems, we now frame the decision

version of the Edge-RMP.

Definition 16 (the decision Edge-RMP) Given a set of users U , a set

of permissions PRMS, a user-permission assignment UPA, and k ≥ 0, are

there a set of roles, ROLES, a user-to-role assignment UA, and a role-to-

permission assignment PA consistent with UPA such that |UA|+ |PA| ≤ k?

We can now prove that the decision Edge-RMP is NP-complete. Inter-

estingly, to the best of our knowledge, most (if not all) of the prior NP-

complete problems try to find some variant of the minimum number of
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roles/cliques/vertices satisfying some condition (we have not been able to

find one that corresponds to edges).

Nevertheless, we augment and use the NP-completeness proof given for

the normal set basis problem by Jiang and Ravikumar [43].

Proving that a problem π is NP-Complete consists of four main steps

[36]:

1. showing that π is in NP

2. selecting a known NP-complete problem π′

3. constructing a transformation f from π′ to π, and

4. proving that f is a (polynomial) transformation

The problem π′ used to reduce from is the “Vertex Cover problem” defined

below:

Definition 17 (Vertex Cover Problem) Given a graph G = (V, E), and

a positive integer K ≤ |V |, is there a vertex cover of size K or less for G,

i.e., a subset V ′ ⊂ V with |V ′| ≤ K such that for each edge {u, v} ∈ E at

least one of u and v belongs to V ′?

Theorem 5.1.1 The decision Edge-RMP is NP-complete.

• The decision edge Role Mining Problem is in NP. The set of roles

ROLES, the user-to-role assignment UA, and the role-to-permission
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assignment PA together form the polynomial certificate/witness. Given

all of these, it only takes polynomial time to check whether |UA| +

|PA| ≤ k

• We select the vertex cover problem as π′

• Let the graph G = (V, E), where V = {v1, . . . , vn}, and an integer k ≥ 0

be an instance of the vertex cover problem. Let m be the number of

edges in G (i.e., |E| = m). We now describe how to transform this

instance into an instance of the Edge-RMP problem. Before doing so,

we trivially assume that all of the vertices in V have at least one edge

connected to them. If this is not so, we can form a smaller graph by

simply removing all isolated vertices since these can never be part of

the vertex cover before transforming to the Edge-RMP problem.

Based on the vertices and edges of the graph, we create a collection of

users U , permissions PRMS and a user-permission assignment UPA

as follows. PRMS consists of the following permissions – {xi}, {yi}

for i ∈ [1, . . . , n], and {ai,j}, {bi,j}, {ci,j}, {di,j} for each each edge in E

(between vertices vi and vj). Since there are n total vertices and m total

edges, the total number of permissions is 2 ∗ n + 4 ∗m. We construct

the user set, U , and user-permission assignment UPA as follows: For

each vertex vi, we create a corresponding user Ui with the permission

set {xi, yi}. For each edge e between vertices vi and vj in E (assume

i < j), we define 5 users u1
i,j, . . . , u

5
i,j with the following permissions:

u1
i,j = {xi, ai,j, bi,j},
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u2
i,j = {yj, bi,j , ci,j},

u3
i,j = {yi, ci,j, di,j},

u4
i,j = {xj, di,j, ai,j},

u5
i,j = {ai,j, bi,j, ci,j, di,j}.

Since there are n vertices and m permissions, a total of n + 5 ∗m users

are created. Finally, we let s = 3n + 18m + k. Now, we only need

to show that G has a vertex cover of size at most k if and only if the

Edge-RMP problem has a solution with |UA|+ |PA| at most s.

The intuitive idea behind the proof follows the proof idea of Jiang and

Ravikumar[43]: To describe the user u having permission {xi, yi}, the

set of roles, ROLES must have either the role {xi, yi} or the two roles

{xi} and {yi}. In the first situation |UA| + |PA| = 1 + 2 = 3. In the

second case, |UA|+|PA| = 2+2 = 4. These are the only two meaningful

cases (i.e., there is no point in considering overlapping roles, since they

clearly would not be required). Let V1 = {vi| both {xi} and {yi} are in

ROLES}. We can show that for a fixed < vi, vj >∈ E at least 4 roles

and 18 links are necessary to cover the five users (in addition to the sets

ui, uj and are sufficient if and only if at least one of v1 or v2 is in V1.

Thus, if there is a vertex cover of size k, we can choose ROLES, PA and

UA as follows: For ever vi in the cover we include both {xi} and {yi}

in ROLES; otherwise, we include {xi, yi} in ROLES. The number

of sets included so far is n + k. The number of links created is 4k +

3(n − k) = 3n + k. Let e =< vi, vj > (with i < j) be an arbitrary

edge in G. Since V1 is a vertex cover, either vi or vj (or both) is in
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V1. Assume that vi is in V1. Then we create the following additional

4 roles {ai,j, bi,j}, {ci,j, di,j}, {yj, bi,j, ci,j}, {xj, di,j, ai,j}. Now, all of the

users u1
i,j, . . . , u

5
i,j can be expressed as a combination of the above roles

as follows:

1. u1
i,j = {xi}

⋃
{ai,j, bi,j},

2. u2
i,j = {yj, bi,j, ci,j},

3. u3
i,j = {yi}

⋃
{ci,j, di,j},

4. u4
i,j = {xj , di,j, ai,j},

5. u5
i,j = {ai,j, bi,j}

⋃
{ci,j, di,j},

In the case when vj is in V1 instead of vi, the four roles created are

slightly different: {bi,j , ci,j}, {di,j, ai,j}, {xi, ai,j, bi,j}, {yi, ci,j, di,j}. The

role assignment is also quite similar with u1
i,j and u3

i,j being present in

the roles created and the rest being composed out of two roles. Finally,

if both vi and vj are present in V1, we simply go with the case that vi

is in V1. In all three cases, only 4 sets are created and the resulting

|UA|+ |PA| is (2+1+2+1+2)+(2+2+3+3) = 18. This completes

the definition of ROLES, UA and PA. Note that since there are n

vertices and m edges in the graph, the total number of sets created is

n + k + 4m and the resulting |UA|+ |PA| = 3n + k + 18m.

Conversely, suppose that there is a decomposition of the RMP into

ROLES, UA and PA such that |UA|+ |PA| = 3n+k+18m. We show

that G has a vertex cover of size at most k. Define V ′ as {vi| both

{xi} and {yi} are in ROLES}. Let |V ′| = k′. The number of roles
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consisting of only xi and/or yi is at least n + k′ – This is obvious from

the fact that ROLES must have the set {xi, yi} to represent the user

ui when vi /∈ V ′. There are n − k′ such roles. Since |V ′| = k′, there

are the 2k′ singleton roles consisting of just xi or yi. Thus, the total

number of roles having xi and/or yi is at least n − k′ + 2k′ = n + k′.

Let E ′ ⊂ E be the set of edges covered by V ′, i.e., E ′ = {< vi, vj > |vi

and/or vj is in V ′}. Let |E ′| = m′. Jiang and Ravikumar make the

following the observation[43]: For any e ∈ E at least four sets from

ROLES are required (in addition to the sets ci, cj {xi}, and {xj}) to

cover the users u1
i,j, . . . , u

5
i,j. Further, at least 5 sets are required to

cover them if e /∈ E ′. We add to this observation by claiming that at

least 18 extra assignment links are required when e ∈ E ′ and at least

20 extra assignment links are required when e /∈ E ′. Now, the total

number of assignment links needed is at least

3(n− k′) + 4(k′) + 18m′ + 20(m−m′)

= 3n + k′ + 20m− 2m′

= 3n + k + 18m + (k′ − k + 2m− 2m′)

Thus, k′ − k + 2m − 2m′ ≤ 0 =⇒ 2(m −m′) ≤ k − k′. We conclude

the proof by showing that there is a vertex cover V of size m−m′ +k′:

Add one of the end vertices of each edge e ∈ E−E ′ to V ′. This vertex

cover is of size |E| − |E ′|+ k′ = m−m′ + k′ ≤ 2(m−m′) + k′ ≤ k.
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• The transformation is clearly polynomial, since s, U, PRMS, UPA can

all be constructed in polynomial time.

In the above proof, we claimed that at least 18 extra links would be

required if e ∈ E ′ and at least 20 otherwise. It is easy to see how 18 extra

links are sufficient if e ∈ E ′. In this case, we can simply use the construction

noted above of using 4 roles to represent the 5 users, and the number of

extra links is 18 as derived earlier. To show the 20 it is sufficient to show a

construction that requires 20 extra links and to show that it cannot be done

with less. The following construction requires 20 extra links: we create 6

roles {ai,j , bi,j}, {ci,j, di,j}, {xi}, {yi}, {yj, bi,j, ci,j}, and {xj , di,j, ai,j}. Now,

|PA| = 2+2+1+1+3+3 = 12. The user assignments are straightforward.

Therefore, |UA| = 2 + 1 + 2 + 1 + 2 = 8. In total, |UA + PA| = 20.

Lemma 5.1.2 The permissions for any role have to be a subset of the per-

missions for some user.

The proof is by contradiction. Assume that we have a role Ri whose

permission set is not a subset of the permissions for any user. There, Ri has

at least two permissions p1 and p2 which are not owned together by any user.

In this case, the role Ri cannot be assigned to any of the users since this

assignment would incorrectly give permission p1 or p2 or both to the user

when he/she is not supposed to have them. Therefore, Ri is useless, and

does not actually exist as a role.
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Lemma 5.1.3 If the users can be decomposed into disjoint sets based on

their permissions, then the global solution is the sum of the solutions for

each of the disjoint sets.

By Lemma 5.1.2, any role created can only be a subset of the permissions

for some user. Therefore, if there are two users whose permission sets are

completely disjoint, no role assigned to the first user can ever be assigned to

the second user and vice versa. (To see this, note that any role assigned to

that user has to have at least one permission assigned to that user. Since the

permission sets are disjoint, this role cannot then be assigned to the other.

The above lemmas can show that there is no solution which can com-

pletely reduce |UA|+ |PA| below 20. The second lemma shows that we can

consider edges in isolation, while the first lemma allows us to enumerate all

possible solutions for this fixed set. A brute force search can convince you of

the fact that you cannot find any decomposition that requires less than 20

extra links.

5.2 Heuristic Solutions

Since the Edge-RMP is NP-complete, we need a heuristic to identify the

correct set of roles. We now show an subset enumeration based heuristic to

identify the minimal set of roles. For the sake of exposition, we will assume

that there are n users, m permissions and q candidate roles identified. Our

goal is to select a set of roles from the candidate roles to minimize |UA|+|PA|,

where |UA| gives the size of the user-role assignment (i.e., |UA| is the sum
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of the number of roles assigned to each user) and |PA| gives the size of the

associated permission set (i.e., |PA| is the sum of the number of permissions

assigned to each present role).

The subset enumeration based heuristic proceeds in two independent

phases. The first phase is the same as the heuristic solution for the Basic-

RMP. That is, we generate a set of candidate roles from the UPA using the

FastMiner algorithm developed by Vaidya et al.[100]. In the second phase,

we select the final roles from among these candidates. For this selection, we

adopt a greedy strategy different from database tiling. Essentially, the best

candidate role is selected from the remaining candidate roles until the origi-

nal UPA can be completely reconstituted. Thus, in each iteration, for every

remaining candidate role, we compute the number of new 1s added into both

|UA| and |PA|. In addition, we compute the uncovered area of that role that

can be easily computed by finding the number of 1s in M(UPA) that are

not already covered by any of the roles in ROLES (the current minimum

tiling).

The greedy strategy is, in each iteration, we pick the role which introduce

the minimal number of new 1s into both |UA| and |PA|. However, this

strategy should abide by the following constraints:

1. If two roles introduce the same amount of new 1s, the one with the

larger uncovered area is selected.

2. The role picked should have uncovered area greater than or equal to 1.
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3. If role a introduce the minimal number of new 1s but the number of

new 1s is greater than the uncovered area, whereas role b, introduce

more 1s than role a, but the number of 1s it introduces is less than the

its uncovered area, then role b (rather than role a) is selected.

We define the first constraint since it will carry the greedy further in

a sense that in each step, if all other condition are the same, then picking

the one with largest uncovered area will generate least number of roles as

well. We expect this to cut the number of 1s further. The second constraint

guarantees that each picked role will contribute to the termination of the

role selection process. The last constraint serves two intention, first we try

to avoid the trivial case of always picking the role with the least number of

new 1s but only contain a single permission. Second, we strike the balance

between two types of greediness. The greedy that the one with minimum

number of 1s is selected focuses on iteration level, it might not be the best

in view of the whole role selection process. The other greedy (shown in the

first constraint) that picked the largest uncovered area can terminate the role

selection process quick, it also contributes to minimize the number of new 1s

in both |UA| and |PA|. The last constraint is more to resolve the conflict

between two contributing factors when we can’t satisfy both. Note that this

is one way to do conflict resolution. Alternatively we may also set up the

cost functions like we did in heuristic solutions to the MinPert-RMP. We will

leave that to the future research work.

In the following we use the same example as above to show the difference

between the heuristics for the Basic-RMP and the Edge-RMP.
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For the Basic-RMP, in the first iteration, we picked the role {p2, p4}

since it has the largest uncovered area. in Fig , we show the first iteration of

selecting a candidate roles for the Edge-RMP. All candidate roles are initially

sorted by their covered area. Then we compute their uncovered area and the

new 1s introduced. Role {p2, p4},{p1, p2, p4} {p2}, {p4} is not select since the

new 1s introduced is not minimal. Role {p2, p3} has new 1s less than role

{p2, p4}, but {p1, p2, p4} have the larger uncovered area than it even though

they have the same number of new 1s into |UA| and |PA|. Finally, role

{p2, p3, p4} is selected.
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CHAPTER 6

THE MINPERT-RMP

Minimality is a good notion, since it allows one to formally define the prob-

lem. Without semantics (i.e., human expert knowledge), minimality serves

as a best approximation for realizing good descriptive roles. [101] shows that

the decision version of the Basic-RMP is NP-complete by reducing the known

NP-complete the set basis problem to this. An optimal set of roles is desir-

able since it minimizes the administrative burden by reducing the number of

roles.

However, adopting this minimal set of roles suffers from the following

limitations. First, since this process does not consider job functions or any

semantics, the discovered set of roles may not accurately represent the or-

ganization’s requirements. Therefore, such a role discovery process can only

serve as a guideline to security administrators to launch RBAC. Second, this

role mining process completely ignores the existing set of roles. This probably

is acceptable if an organization is at a preliminary stage, or it is at a stage of

completely revamping of its processes. However, this approach of redefining

roles from scratch is not permissible for organizations that have an RBAC in

place. This is because, if the organization has spent considerable effort in role

engineering (perhaps using the top-down approach), these efforts are simply
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a waste. Moreover, changes to the role set may result in drastic changes

to the way in which organizations conduct their businesses. This may cause

disruptions to the proper functioning of the organizations. These disruptions

may be in the form of changes to the organizational processes and separa-

tion of duty constraints that are defined on roles. Furthermore, there may

be some previously defined roles that cannot be changed or removed due to

certain functional restrictions.

Therefore, although one would like to use an optimal set of roles, migrat-

ing to this new set of roles from existing set of roles (called deployed roles

or DROLES) should cause as less disruption as possible. This dissertation

has proposed an approach that identifies a set of roles (ROLES) that are

as close as possible to both DROLES and the optimal set of roles. We de-

note this problem as the the Minimal Perturbation RMP (also known as the

MinPert-RMP) and use a similarity metric based on Jaccard coefficient to

formalize this problem.

Essentially, the solution to the Minimal Perturbation RMP provides a

formal means to combine both top-down and bottom-up role engineering

approaches. Additionally, even if RBAC is in place, since it evolves over

time, it gives a formal way to measure the goodness of the current RBAC

assignments.

As a simple example, Figure 6.1(a) shows an organization with 16 users

and 12 permissions. The UPA can be completely described by the follow-

ing 8 roles, i.e., the optimal set of roles are: {{1, 3, 9}, {11, 3, 8}, {3, 8, 9},

{4, 5, 8}, {10, 5, 7}, {1, 10}, {2}, {3, 4}}. Assume that the deployed roles



92

consist of each permission in its own role; i.e., there are 12 deployed roles.

Hence DROLES = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10},

{11}, {12}}. The MinPert-RMP also has a weight parameter that allows

us to select how close the generated roles should be to the deployed set of

roles. With the weight set to 0, the following 9 roles are generated by our

algorithm: {{1, 3, 8, 11}, {1, 3, 9}, {1, 10}, {2, 3}, {3, 4}, {3, 5, 7, 8, 10, 11},

{3, 8, 9}, {4, 5, 8}, {5, 7, 10}}. With the weight set to 0.2, the following 10

roles are generated: {{1}, {1, 3, 8, 11}, {2, 3}, {3, 4}, {3, 8, 9}, {3, 8, 9, 11},

{3, 9}, {4, 5, 8}, {5, 7, 10}, {10}}. Finally, with the weight set to 1, the fol-

lowing 11 roles are generated: {{1}, {1, 3, 8, 11}, {2, 3}, {3}, {3, 8, 9, 11},

{3, 9}, {4}, {5}, {5, 7, 10}, {8}, {10}}. We can see that though the number

of roles is increasing, the roles generated are getting closer to the set of de-

ployed roles. In general, by appropriately tuning the weight parameter, our

algorithm allows one to come up with a suitable set of roles in between the

set of optimal roles and deployed roles.

6.1 Definition

In this section, we formalize the notion of the MinPert-RMP by first defining

the similarity / distance between pairs of roles and pairs of sets of roles. Since

a role is nothing but a set of permissions, we can use the Jaccard coefficient

to measure similarity / distance. The similarity and distance between a pair

of roles can be formulated as follows.
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6.1.1 Weighting of Permissions and Roles

In this section, we introduce weighting for both permissions and roles to

simulate the real time situations where different permissions and roles carry

different magnitude of significance. We focus on permissions weighting in

Section 6.1.1 followed by roles weighting in Section 6.1.1.

Permissions Weighting

Weight Ramification Given a permission, we define two types of weights

based on the scope of their effects upon it. global weight(G) and local

weights(L). Global weight measures the significance of a permission with re-

spect to other permissions among all the deployed roles whereas local weight

measures the relative importance of a permission in each of individual de-

ployed roles. Given a UPA, a set of deployed roles and a calculation scheme,

there is only one global weight per each permission in contrast to multiple lo-

cals weights a permission can have, in fact, it can have as many local weights

as the number of deployed roles since we define local weight as a role-specific

notion.

There are numerous ways to define how global weight can be calculated. A

legitimate strategy should support two assertions, first, the numerical values

associated with each weight should be a real number in range of ( 0, 1 )

exclusive. The existence of a permission reflect its significance and therefore,

it should carry at least some weight. On the other hand, no permission should

claim all weight unless in the extreme case where it is the sole permission
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in the systems. A native way is to define the equal importance of each

permission as long as there exists at least one user authorized to it. So if we

have 10 permissions in UPA, basically each permission carries the weight of

10 percent. This ”flat” weight strategy is actually an extreme case in which

essentially the notion of weight doesn’t show its influence. However, this is

still legitimate since it doesn’t violate the aforementioned assertions.

A effective approach is to count the number of users authorized to this

permissions, then divide it by the sum of the number of users authorized to

each of the deploy roles, i.e., by the number of 1s in UPA. This is a good

way of defining weight since one permission are reasonably differentiated

from all others based on its popularity in users, i.e., the more users who are

authorized to it, the more importance the permission demonstrates. As the

matter of fact, the notion of importance/weight of a permission might not

be proportional to its popularity in user. They may vary inversely (i.e., they

could be inversely proportional) such that the more popular a permission

is among users, the less weight it carries. In essential, how important a

permission is really based on by whom it is perceived. For instance, from

the perspective of the Chief Executive Officer role sitting at the top of the

role hierarchy, those permissions, which are barely authorized to users other

than itself and therefore indicate extremely minimal extent of popularity,

may be of great importance to itself since they are exclusive to only few

users. Popular permissions are usually authorized to more users, therefore,

are not that critical to the safety of the whole role-based secure systems,

naturally they concerns the high ranked roles less. From this point onward,
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we assume, without loss of generality, that the global weight of a permission

is proportional to its popularity among users. We can always easily change

this definition to cater to the cases when both show the relation of inverse

proportionality.

So far we only discuss the global weighting calculation. Local weighting

can be calculated in the similar fashion. The two assertions still hold, i.e., the

local weight of each permission in a deployed role should be a real number

between ( 0, 1 ), Note that we still define the weight of any permission

exclusive on 0 in a sense that each permission will still carry some level of

significance at a given role even though the fact that this permission may

not even be included in that specific role. Therefore, a given permission may

only be included in certain roles but will have weights on each of all deployed

roles. One implication of this is that in any deployed role, the sum of weights

of all available permissions in UPA, irrespective of whether they are included

in the role, should be 1. The significance of local weight is justified by the

fact that a permission’s weight may vary across different roles. A native

but legitimate way of local weighting is to assign the same weight to both

constituent permissions and permissions excluded from the role. In this case,

the global weight all local weights will end up being the same among each

other and also with the global weight of it.

An alternative but better local weighting also assume its proportionality

to the popularity in users. In detail, for each constituent permission, we

calculate its local weight in a role the same way we calculate its global weight,

i.e., the number of its users divided by the number of 1s in UPA, then we
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evenly distribute the remaining weights over the permissions excluded from

the role. This is better not because we ensure more weights for constituent

permissions, (as the matter of fact, the opposite might be the truth), but

because we treats the included permissions specially in a sese that, the weight

of each permission is evaluated based on its popularity, whereas we didn’t

differentiate excluded permissions among each other at all. Intrinsically,

the notion of weight represents the relevant importance of a permission in

comparison with others.

For example, consider a UPA with three users {u1, u2, u3} who, respec-

tively, have permission sets {p1, p2, p3, p4}, {p3, p4}, {p1, p2, p3}. One mining

approach generates two roles R1 = {p1, p2, p3} and R2 = {p3, p4}. Since there

are two users for each of p1, p2, p4, and three users for p3, we have the sum-

mation count of users of all permissions as 9, therefore, the global weight of

p1 denoted as Gp1
= 2

9
, which is same as Gp2

, Gp4
. Similarly, Gp3

= 1
3
. (Note

that if needed, we may add the second subscript specifying the global envi-

ronment such as the name of the specific UPA or of the role set for clarity).

The sum of global weights for {p1, p2, p3, p4} in total is 1. Now, we calculate

the local weight. Since R1 = {p1, p2, p3}, the local weight of p1 in R1 denoted

as L{p1,R1} = 2
9
, similarly, we have L{p2,R1} = L{p4,R1} = 2

9
and L{p3,R1} = 3

9
.

In R2, local weights of p3, p4 remains 3
9
, 2

9
respectively, the same as they are

in R1. While L{p1,R2}, L{p2,R2} equally share the remaining weight which is 4
9
,

therefore, each of them will get a share of 2
9
.

In reality, the weights of permissions are generated based on the avail-

ability of the user input, here the user could be the role system administrator
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or just a normal user who can access and manipulate the organizational role

mining systems. Typically, there are three types of privileges a user is autho-

rized to. First, a user can specify the priority order between local weighting

and global weighting. By default, if both are available, local weighting will

be adopted as opposed to global weighting. But the user can always over-

write this rule. Second, a user can arbitrarily assign weights to permission

locally or globally or both. That is, the user can assign weights either to

each of all permissions or only to some permissions, in the latter case, the

remaining weight will be distributed evenly among all permissions whose

weights are not specified. In local weighting, if the user specifies weights for

only a subset of permission, we restrict that each permission is the subset

be from the included permissions of the role. Then the constituent permis-

sions which is not specified weights and the excluded permissions will share

evenly the remaining weights. For instance, in the above example, if the

user specifies that that global weight and local weight of p3 is 0.4 and 0.3

respectively. Then the global and local weights for other permissions are as

follows: Gp1
= 0.2, L{p1,R1} = 0.35, L{p1,R2} = 0, Gp2

= 0.2, L{p2,R1} = 0.35,

L{p2,R2} = 0, Gp4
= 0.2, L{p4,R1} = 0, L{p1,R2} = 0.7. Third, the user can

specify the weight of a permission in form of either a numerical value, or

relative gravity in compared with the remaining permissions. For instance,

in the above example, the user can specify that, globally, p1 is 20 percent

more important than any other permissions. We already see from the above

calculation that Gp1
= Gp2

= Gp4
= 2

9
, whereas Gp3

= 3
9
, now, we allocate 30

percent more weight to p1, and distribute evenly the remaining 70 percent
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to all permissions (including p1 itself). Therefore, Gp1
= (0.175 + 0.3) × 2

9
,

Gp2
= 0.175× 2

9
, Gp3

= 0.175 × 3
9
, Gp4

= 0.175× 2
9
. In another example, a

user can specify that, locally, the subset of p2 and p3 combined in R1 is 30

percent more important that others. The calculation will be similar, except

that the specified 30 percent weight will be even distributed between p2 and

p3.

Roles Weighting

Similar to permission weighting, we also define both global weight(G) and

local weights(L) for each deployed role, while global weight measures the sig-

nificance of a role among all the deployed roles in UA whereas local weight

measures the relative importance of a role among all roles authorized to a

specific user. Given a calculation scheme, global weight of a role is deter-

ministic once a set of roles have been generated and will remain unchanged

as long as the deployed role set stay the same. Therefore, each role has only

one global weight for a given weighting strategy whereas it can have multi-

ple local weights each of which associates with a specific user, factually, the

number of local weights for a role can be as many as the number of users

given that the local weights are different among each other.

There are various strategies to calculate the global weight of a role given

a UA and a set of deployed roles and all of them shall support the same two

assertions as those of calculating global weight of a permission. Similarly,

local weighting of a role shares the same assertions with the local weighting

of a permission.
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A native weighting strategy, as is applicable both globally and locally, is

to define the same importance among deployed roles. So each role will share

a 20 percent weight if we have 5 deployed roles. This actually reverts to

the situation where weighting is not used since assigning the same weight to

each one defeats the purpose of introducing the notion of weight, which is to

weigh each one differently based on certain criterion.

As an effective global weighting strategy, one can count the number of

authorized users divided by the sum of the number of users authorized to each

of all deployed roles, that is, the number of 1s in UA. The local weighting of

one role w.r.t. one user can be similarly defined: for the assigned roles, one

can count the number of authorized users divided by the sum of the number

of users authorized to each of all deployed roles, for all roles not included in

the locality of the user, We just distribute even the remaining weights among

them. This strategy calculates the weight of each assigned role based on the

relative popularity of the role among users with respect to all other roles,

and treat all other roles not assigned to the user in undifferentiated manner.

For example,consider a UA with three users {u1, u2, u3} who are autho-

rized to role sets {R1, R2},{R2},{R1, R3} respectively. We use the aforemen-

tioned popularity based strategy to generate the local and global weights of

each role. Since we have five 1s in UA, and R1 and R2 each has two autho-

rized users, R3 has one. we have GR1
= GR2

= 2
5
, GR3

= 1
5
. We generate

the local weights for R1,R2 and R3 as follows: L{R1,u1} = 2
4
, L{R1,u2} = 0,

L{R1,u3} = 2
3
, L{R2,u1} = 2

4
, L{R2,u2} = 1, L{R2,u3} = 0, L{R3,u1} = L{R3,u2} = 0,

L{R3,u3} = 1
3
.
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The weights of roles, in real time, are generated based on the availabil-

ity of the user input pretty much the same way as permission weighting.

In summary, a user can define the priority order between local and global

weighting by indicating which one is superior. Also, a user can arbitrarily

assign weights to either all of the deployed roles and only a subset of it, in

this case, the remaining weight will be even distributing among unspecified

roles. This is applicable to both local and global weighting. In addition, the

user can specify the weight either by numerical real numbers or by the rela-

tive importance of one or more among all roles. For instance, in the above

example, if the user specifies that that global weight and local weight of R1 is

0.6 and 0.4 respectively. Then the global and local weights for other roles are

as follows: GR2
= 0.2, L{R2,u1} = 0.6, L{R2,u2} = 1, L{R2,u3} = 0, GR3

= 0.2,

L{R3,u1} = 0, L{R3,u2} = 0, L{R3,u1} = 0.6

6.1.2 Similarity Measurement

In this section, we discuss how the the similarity is measured. First we

formally define the Role-Role Similarity, Role-Roles Similarity and Roles-

Roles Similarity as well.

Definition 18 (Role-Role Similarity/Distance) For any two roles R1

and R2, let P1 = assigned permissions(R1) and P2 = assigned permissions

(R2), which denote the set of permissions assigned to R1 and R2, respectively.

Let ni = P1

⋂
P2, and nu = P1

⋃
P2. We define similarity between R1 and

R2 as follows, note that in the definition, we use local weights for permissions

by default, in real time, the user can overwrite them with the corresponding
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global weights. This is also the truth for the roles-roles similarity defined

shortly.

sim(R1, R2) =
P

pi∈ni
pi×L{pi,R2}

P

pj∈nu
pj×L{pj,R2}

, d(R1, R2) = 1− sim(R1, R2).

Note that each permission,in the union of R1 and R2, can have two local

weights defined in both R1 and R2. In reality, we can have 3 options to

resolve the conflict, that is, we can either use local weights from the first

parameter, which is R1, or from right parameter, R2 or the average of both.

In this definition, we use the local weight from right parameter, but this can

be changed easily to the other options.

For example, consider two roles R1 = {p1, p2, p3} and R2 = {p2, p4, p5}.

Since there is only one permission common to both R1 and R2 (i.e., p2) and

five permissions in total, sim(R1, R2) = 1/5 = 0.2. Correspondingly, the

distance d(R1, R2) = 1− sim(R1, R2) = 1− 0.2 = 0.8.

The above definition has several favorable properties. When two roles are

identical, their similarity is computed to be 1. When two roles have mutually

exclusive permission sets, their similarity is 0. In general, the similarity

(and distance) is a value between 0 and 1. We can also easily extend the

definition to measure distance between two sets of roles. First, we define the

similarity/distance between a role and a set of roles.

Definition 19 (Role-roles Similarity/Distance) Given a role R1 and a

set of roles SR1, we define the similarity between R1 and SR1 as follows:

sim(R1, SR1) = maxR2∈SR1
sim(R1, R2) and the distance d(R1, SR1) = 1 −

sim(R1, SR1).
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In this definition, the similarity is computed as the maximum similarity

between the role and any role in the other set. We choose this as an effective

measure since if an identical role is found in the other set, the similarity

reported is 1. Similarly, if no role is found with even one overlapping per-

mission, the similarity reported is 0. For example, consider the role R1 =

{p1, p2, p3} and the set of roles SR1 = {{p4, p5}, {p3, p6}, {p1, p2, p4, p7}}. In

this case the similarity would be computed as follows: sim(R1, {p4, p5}) =

0/5 = 0. Similarly, sim(R1, {p3, p6}) = 1/4 = 0.25. Finally, sim(R1,

{p1,p2,p4,p7}) = 2/5 = 0.4. Since the max similarity is 0.4, sim(R1, SR1)

= 0.4. While we choose the maximum similarity, we could easily follow

another way of aggregation such as computing the average instead of the

maximum, etc., if the situation warrants it. For now, we think that this is a

suitable general purpose measure.

Measuring the similarity / distance between sets of roles is a significantly

more complex task. It is unclear whether a single role should correspond to

only one other role or to a set of roles. Similarly, it is not clear if a role can

be involved in more than one matching (i.e., once a role is picked as part of

a suitable match, can it be considered for matching with another role(s)?).

If we restrict matches to single roles, an easy way to define this would be

by extending the earlier Role − Role metric. Thus, we could simply define

the similarity as the number of identical roles divided by the number of total

roles. The following definition formalizes this.

Definition 20 (Roles-roles Similarity/Distance) Given two sets of roles
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SR1 and SR2, we define the similarity between SR1 and SR2 as follows: Let

ni = S where (S = {(u, v)}, such that u ∈ SR1, v ∈ SR2 and sim(u, v) = 1).

Thus ni = SR1

⋂
SR2. Also, let nu = SR1

⋃
SR2. We define

sim(SR1, SR2) =
P

Ri∈ni
Ri×G{Ri,SR2}

P

Rj∈nu
Rj×G{Rj,SR2}

, d(SR1, SR2) = 1−sim(SR1, SR2).

For example, consider two sets of roles SR1 = {{p1, p2}, {p2, p4}, {p3, p4,

p5}}, and SR2 = {{p2, p4}, {p3, p4, p6}}. In this case, only one role in SR1

is identical to a role in SR2 (the role {p2, p4}). Therefore, according to the

earlier definition, the similarity would be calculated as 1/4 = 0.25. While

this is permissible for identical roles, it completely disregards the similarity

between roles. For example, the roles {p3, p4, p5} and {p3, p4, p6} differ only

in one permission but still do not contribute to the overall similarity. In

general, this could be worse, especially with larger roles which may not be

identical but are very similar. Instead, we would like to have a definition of

similarity that takes non-identical role-role similarity into account as well.

To do this, we extend our similarity/distance measure by using the prior

defined similarity measure between a role and a set of roles. Instead of

counting identical roles, we take the maximum similarity each role has with

the other set of roles, and average across all of the roles. If there is an identical

role in the earlier set, the earlier defined similarity metric will also give 1 as

desired. The advantage is that this also works for non-identical roles. To

capture this, we now provide an alternative definition for the ROLES-ROLES

similarity/distance, which is as follows:
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Definition 21 (Granular ROLES-ROLES Similarity / Distance). Given

two sets of roles SR1 and SR2, we define the similarity between SR1 and

SR2 as follows: if the sizes of the two sets are not equal, without loss of

generality, assume that SR1 is the smaller set. Then, sim(SR1, SR2) =

avgR∈SR1
sim(R, SR2).

For example, consider two sets of roles SR1 = {{p1, p2}, {p3, p4}} and

SR2 = {{p1, p2}, {p3, p5}}. The similarity between the four possible pairs

are: sim({p1, p2}, {p1, p2}) = 2/2 = 1, sim({p1, p2}, {p3, p5}) = 0/4 = 0,

sim({p3, p4}, {p1, p2}) = 0/4 = 0, and sim({p3, p4}, {p3, p5}) = 1/3 = 0.33.

Therefore, sim(SR1, SR2) = (1+0.33)/2 = 0.665. In our algorithm presented

in the next section, we employ this granular ROLES-ROLES similarity mea-

sure rather than the prior ROLES-ROLES similarity measure.

The similarity measure defined above is still quite straightforward. In

general, we may wish to define similarity between sets of roles in a much

more sophisticated fashion. For example, we may want to count the average

similarity, while eliminating the outliers (or while tolerating a certain number

of low similarity roles, etc.). For now we do not bother about this. Also note

that both of the above measures still assume that a role can only be mapped

to one other role. In general this is not true. For example, let one set has the

role {p1, p2, p3} and the other set has the roles {{p1}, {p2, p3}}. While our

similarity measures will give a score of 0.33 and 0.66 respectively for the two

roles, it should be clear that taken together, the sets of roles are quite similar.

However, this is also significantly more complex and we leave considerations

of this sort to future work.
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Now that we know how to measure similarity, we still need to find a way to

incorporate it into the role selection. Thus, given two different objectives, we

would like to define a way to combine the two objectives so as to minimize a

single global function. For the Basic-RMP, we minimize the number of roles.

Now, we would like to additionally minimize the distance between identified

roles and deployed roles. Many ways of combining the two objectives are

possible. An additional problem here is that the similarity/distance is a

number between 0 and 1 while the number of roles is between 0 and min(m, n)

where m is the number of users and n is the number of permissions. An easy

way to resolve this is to use a linear combination of the two. We would also

like to weigh the relative contribution of the two factors. Therefore we define

our combination function as follows:

Definition 22 (Combination Function) Given a number of roles k, and

a distance score d between two sets of roles, we define a combination function

CF (k, d) = (1 − w)k + wkd where w is a user defined weighting coefficient

for the similarity.

In the above definition, the distance is multiplied by k to bring both numbers

into a comparable range. With all of the prior definitions in place, we can

now define the MinPert-RMP as follows:

Definition 23 (the MinPert-RMP) Given a set of users U , a set of per-

missions PRMS, a user-permission assignment UPA, and a deployed set of

roles DROLES, find a set of roles ROLES, a user-to-role assignment UA,
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and a role-to-permission assignment PA consistent with UPA by minimiz-

ing the combination function of the number of roles and the distance between

ROLES and DROLES, i.e., minimizing CF (|ROLES|, d(ROLES, DRO-

LES)).

An interesting aside is that in all of the above distance / similarity def-

initions, we assume that all permissions are given equal weight. However,

in real situations this may not be the case. However, our definitions can be

easily extended to include permission weighting by changing the basic Role-

Role definition to include it. Permission weights could be set by the user or

even automatically identified from the UPA according to some strategy.

Also, while we have defined the MinPert-RMP in terms of the Basic-

RMP, the same idea applies to all of the variants – the δ-approx RMP and

the MinNoise RMP – proposed in [101]. All these problems can be extended

to include the concept of deployed roles in a similar manner to these variants.

6.2 Complexity

The MinPert-RMP is an NP-hard problem. This follows from the observation

that the Basic-RMP is a special case of the MinPert-RMP (with w1 = 1 and

w2 = 0). Since the Basic-RMP is known to be NP-hard [101], the MinPert-

RMP is also NP-hard.
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6.3 Heuristic Solution

We now present a heuristic algorithm to find a set of roles satisfying the

MinPert-RMP objective. The algorithm proceeds in two independent phases.

In the first phase, we generate a set of candidate roles. This is currently done

using the FastMiner algorithm developed by Vaidya et al. [100]. FastMiner

generates candidate roles simply by intersecting all unique user pairs. In

general, any technique can be used to generate the candidate roles. In the

second phase, we select the final roles from among these candidates. For this

selection, we follow a greedy strategy. Essentially, the best candidate role

is selected from the remaining candidate roles until the original UPA can

be completely reconstituted. Thus, in each iteration, for every remaining

candidate role we compute the uncovered area of that role as well as the

similarity of that role to the deployed roles. The uncovered area of a role

can be easily computed by finding the number of 1s in M(UPA) that are

not already covered by any of the roles in ROLES. The similarity of the

role to DROLES is computed as in Definition 19, by finding the maximum

similarity to any of the roles in DROLES. The weighted score is then

calculated by taking the area, similarity, and weight into consideration. One

more optimization is possible to improve efficiency. If the set of roles is sorted

in descending order by the area of the roles, the length of each iteration can

be reduced. When a new candidate role is considered, if the total area of

that role is less than the currently seen maximum score, we know that it

is impossible for that role to be the best (since the similarity, and weight

are bounded between 0 and 1, the total area gives the upper bound on the
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Algorithm 7 the Minimal Perturbation RMP (UPA, DROLES)

Require: User-Permission assignment, UPA
Require: Initial set of deployed roles, DROLES
Require: Weight factor for similarity, w ∈ [0, 1]
1: Create a candidate set of roles, CROLES, using the FastMiner [100]

algorithm {Create candidate set of roles}
2: Sort CROLES according to the area of each role
3: ROLES ← φ
4: while UPA is not covered do
5: BestRole← φ
6: BestScore← 0
7: for each role C in CROLES do
8: if area(C) < BestScore then
9: Exit the FOR loop {Since max. similarity can be 1, we have

already found the best possible role}
10: end if
11: carea ← Uncovered Area(C, UPA, ROLES) {compute uncovered

area of candidate role}
12: Compute csim← Similarity(C, DROLES)
13: Score← (1− w) · carea + w · carea · csim
14: if Score > BestScore then
15: BestScore← Score
16: BestRole← C
17: end if
18: end for
19: ROLES ← ROLES

⋃
C {Add C to the set of roles, ROLES}

20: Remove C from CROLES
21: end while
22: Return ROLES

maximum score from that role). Indeed, since the roles are sorted, we know

that none of the roles following this can be the best role either. Therefore, we

immediately stop the iteration and use the best role found so far. This can

significantly help in reducing the overall time. Algorithm 7 gives the details.

Example 3 We now briefly go through a small example that helps to demon-

strate the working of the algorithm. We use the same hypothetical organiza-
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Algorithm 8 Similarity(C, DROLES)

MaxSim← 0
for each role R ∈ DROLES do

ni ← C
⋂

R {the set of common permissions}
nu ← C

⋃
R {the set of unique permissions}

sim←
P

pi∈ni
pi×L{pi,R}

P

pj∈nu
pj×L{pj,R}

if sim > MaxSim then
MaxSim← sim

end if
end for
Return MaxSim

tion described in the introduction in Figure 6.1(a), along with set of deployed

roles shown in Figure 6.1(b). We go through the run of the algorithm when

run with a weight for similarity of 0.2. In this case, 10 roles are found with

a final similarity of 0.45 as computed according to Definition 21 (Algorithm

9). Since it would be quite tedious to show all of the 10 iterations (one role

is picked in each iteration), we instead just show a few of the iterations. Fig-

ure 6.2(a) shows the very first iteration where the role {p5, p7, p10} is chosen

as the role with the best score (maximum uncovered area and similarity).

Figure 6.2(b) shows the fifth iteration when the role {p1} is picked. Finally,

Figure 6.2(c) shows the final iteration when the role {p11} is picked and

the remaining uncovered area at that point drops to 0 which terminates the

algorithm.

6.3.1 Computational Complexity

The computational complexity of the algorithm depends on two factors: the

complexity of the candidate generation phase and the complexity of the can-
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p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

u0 0 1 1 1 0 0 0 0 0 1 0 0

u1 0 0 1 1 1 1 0 1 0 0 1 0

u2 0 1 0 0 1 1 0 0 1 0 1 0

u3 0 0 0 1 0 1 0 1 1 1 1 0

u4 0 1 0 0 0 1 0 1 0 0 1 0

u5 0 1 0 1 0 0 0 0 1 1 0 1

u6 0 0 0 1 0 1 0 1 1 1 1 1

u7 0 0 0 1 1 1 0 0 1 0 0 0

u8 0 0 0 1 0 0 0 0 1 1 0 0

u9 0 1 0 0 0 0 0 0 0 0 1 0

u10 0 0 0 0 1 1 0 0 1 0 0 0

u11 0 0 0 1 1 0 0 0 0 0 0 0

u12 0 1 0 0 1 1 0 1 1 0 1 0

u13 0 1 0 1 0 1 0 1 1 0 1 1

u14 0 0 1 1 1 0 0 0 1 1 0 0

u15 0 0 0 1 1 0 0 0 0 0 0 0

(a) Organization UPA

100000000000r12

010000000000r11

001000000000r10

000100000000r9

000010000000r8

000001000000r7

000000100000r6

000000010000r5

000000001000r4

000000000100r3

000000000010r2

000000000001r1

p11p10p9p8p7p6p5p4p3p2p1p0

(b) Deployed Roles
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Algorithm 9 Similarity(CROLES, DROLES)

MaxSim← 0
AvgSim← 0
MaxSimSet← 0
Counter ← 0
for each role c ∈ CROLES do

for each role d ∈ DROLES do
ni ← c

⋂
d {the set of common permissions}

nu ← c
⋃

d {the set of unique permissions}

sim←
P

pi∈ni
pi×L{pi,d}

P

pj∈nu
pj×L{pj,d}

if sim > MaxSim then
MaxSim← sim

end if
end for
AvgSim← AvgSim + MaxSim
increase Counter by 1
MaxSim← 0

end for
AvgSim← AvgSim/Counter
Return AvgSim

didate selection phase. Since the FastMiner algorithm uses pairwise intersec-

tion of unique users to generate candidate roles, it requires O(n2) time, where

n is the number of users. Since at most n roles are necessary to describe the

UPA (each user is in a role by itself), at most n iterations are required for

candidate selection. Thus in the absolute worst case, the overall cost is O(n3)

which is still significantly better than the exponential worst case of tiling.

However, in practice, due to the sorting and quick termination strategy, the

algorithm takes an order of magnitude less time.
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Algorithm 10 Uncovered Area(C, UPA, ROLES)

UC ← 0
for each user u ∈ assigned users(C) do

for each permission p ∈ assigned permissions(C) do
Mark each cell (u, p) as uncovered

end for
end for
for each role R ∈ ROLES do

for each user u ∈ R do
for each permission p ∈ R do

Mark each cell (u, p) of R as covered
end for

end for
end for
Let UC be the number of cells marked as uncovered
Return UC

6.4 Experimental Evaluation

To check the effect of weight on the results, we ran some experiments. Figure

6.3 shows the number of roles as a function of the weight. Figure 6.4 shows

the similarity of the roles generated to the deployed roles as a function of the

weight. The number of users was set to 200, number of permissions set to

400.

6.5 Discussion on Separation of Duty Constraints

In this section, we will first introduce the concept of separation of duty

constraint(SOD), followed by the discussion on how our algorithm will affect

the enforcement of SOD. Finally, we show how to identify the conflicting

roles among the discovered set of roles generated by our algorithm.

By the definition in [26], separation of duty relations are used to enforce
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010000000000r10
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100100001010r2
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p11p10p9p8p7p6p5p4p3p2p1p0

(c) Roles by our algorithm

Figure 6.1. An organization example

conflict of interest policies. Conflict of interest in a role-based system may

arise as a result of a user gaining authorization for permissions associated

with conflicting roles. There are two types of SOD, Static Separation of

Duty (SSOD) and Dynamic Separation of Duty (DSOD). SSOD refers to the

constraint that, at any time, a user can’t be assigned to two roles which have

conflicting interest. Let’s say R1 and R2 are in conflicts with each other, the

definition of SSOD implies that once a user is assigned a role, say, R1, he is

automatically disqualified for R2 not only at the same time, but also even

during the time he is no longer authorized to R1. Static here refers to that

the notion is irrespective of timing. It is a constraint needed to be enforced

all the time. SSOD is implemented mainly in order to avoid the fraudulent

conduct. An typical example will be that a user can’t perform duties of both

purchasing manager and accounts payable manager at the same time[85]. On

the contrary, Dynamic Separation of Duty (DSOD) has a notion of tempo

associated with it. More specifically, if we identify that two roles R1 and R2
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p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

u0 0 1 1 1 0 0 0 0 0 1 0 0

u1 0 0 1 1 1 1 0 1 0 0 1 0

u2 0 1 0 0 1 1 0 0 1 0 1 0

u3 0 0 0 1 0 1 0 1 1 1 1 0

u4 0 1 0 0 0 1 0 1 0 0 1 0

u5 0 1 0 1 0 0 0 0 1 1 0 1

u6 0 0 0 1 0 1 0 1 1 1 1 1

u7 0 0 0 1 1 1 0 0 1 0 0 0

u8 0 0 0 1 0 0 0 0 1 1 0 0

u9 0 1 0 0 0 0 0 0 0 0 1 0

u10 0 0 0 0 1 1 0 0 1 0 0 0

u11 0 0 0 1 1 0 0 0 0 0 0 0

u12 0 1 0 0 1 1 0 1 1 0 1 0

u13 0 1 0 1 0 1 0 1 1 0 1 1

u14 0 0 1 1 1 0 0 0 1 1 0 0

u15 0 0 0 1 1 0 0 0 0 0 0 0

Uncovered Area = 53

(a) Iteration 1

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

u0 0 1 1 1 0 0 0 0 0 1 0 0

u1 0 0 1 1 1 1 0 1 0 0 1 0

u2 0 1 0 0 1 1 0 0 1 0 1 0

u3 0 0 0 1 0 1 0 1 1 1 1 0

u4 0 1 0 0 0 1 0 1 0 0 1 0

u5 0 1 0 1 0 0 0 0 1 1 0 1u5 0 1 0 1 0 0 0 0 1 1 0 1

u6 0 0 0 1 0 1 0 1 1 1 1 1

u7 0 0 0 1 1 1 0 0 1 0 0 0

u8 0 0 0 1 0 0 0 0 1 1 0 0

u9 0 1 0 0 0 0 0 0 0 0 1 0

u10 0 0 0 0 1 1 0 0 1 0 0 0u10 0 0 0 0 1 1 0 0 1 0 0 0

u11 0 0 0 1 1 0 0 0 0 0 0 0

u12 0 1 0 0 1 1 0 1 1 0 1 0

u13 0 1 0 1 0 1 0 1 1 0 1 1

u14 0 0 1 1 1 0 0 0 1 1 0 0

u15 0 0 0 1 1 0 0 0 0 0 0 0

Uncovered Area = 12

(b) Iteration 5



115

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

u0 0 1 1 1 0 0 0 0 0 1 0 0

u1 0 0 1 1 1 1 0 1 0 0 1 0

u2 0 1 0 0 1 1 0 0 1 0 1 0

u3 0 0 0 1 0 1 0 1 1 1 1 0

u4 0 1 0 0 0 1 0 1 0 0 1 0

u5 0 1 0 1 0 0 0 0 1 1 0 1u5 0 1 0 1 0 0 0 0 1 1 0 1

u6 0 0 0 1 0 1 0 1 1 1 1 1

u7 0 0 0 1 1 1 0 0 1 0 0 0

u8 0 0 0 1 0 0 0 0 1 1 0 0

u9 0 1 0 0 0 0 0 0 0 0 1 0

u10 0 0 0 0 1 1 0 0 1 0 0 0u10 0 0 0 0 1 1 0 0 1 0 0 0

u11 0 0 0 1 1 0 0 0 0 0 0 0

u12 0 1 0 0 1 1 0 1 1 0 1 0

u13 0 1 0 1 0 1 0 1 1 0 1 1

u14 0 0 1 1 1 0 0 0 1 1 0 0

u15 0 0 0 1 1 0 0 0 0 0 0 0

Uncovered Area = 0

(c) Iteration 10

Figure 6.2. Iterations of the MinPert-RMP
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are under the dynamic separation of duty constraint a user could get assigned

to these two roles statically at the time of user-role assignment, but at run

time, he can not get assigned both at the same time. Notice that even though

DSOD can always be enforced via SSOD, its useage is justified by the fact

that it, in compared with SSOD, is less restrictive and provide a higher level

of flexibility.

6.5.1 SOD Constraint Violations

We claim that discovered role set by the Minimal Perturbation Role MP

algorithm (simplified as the MinPert-RMP or Algorithm 7) won’t violate

SSOD enforced by the original deployed roles under the assumption that

both discovered roles by the MinPert-RMP and original deployed roles are

accurate in a sense that neither, when used to reconstitute the UPA, will

not introduce errors (i.e flipping of 0s to 1s or vice versa)in compared with

original UPA. This can be illustrated informally by an example. Let’s say

R1 and R2 are two deployed roles which bear conflicting interests. Then

there exists at least one permission in each of R1 and R2 which are at odds

with each other. We assume that they are p1 ∈ R1 and p2 ∈ R2. Given

the fact that deployed roles are accurate, p1 and p2 will not be authorized

to any single user together in the original UPA. Therefore, the pair will not

be assigned to the same discovered role or to different discovered roles which

will be authorized to a same user. Otherwise the reconstituted UPA from

discovered roles will be different from original UPA, i.e., the errors will be

introduced by the MinPert-RMP as violates the assumption. (note that this
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argument assumes that two roles are conflicting with each other, it is still

valid when the conflict involves more than two roles).

However, the MinPert-RMP may violate DSOD given the same assump-

tion upon the accuracy of both discovered and deployed roles. For example,

given a UPA with three users u1, u2, u3 which have the permission sets of

{p1, p2, p3},{p1},{p2, p3} respectively. Assume that the deployed role set con-

sists of DR1 = {p1},DR2 = {p2},DR3 = {p3}. If we define DSOD between

DR2 and DR3, we know that p2 and p3 are in conflict at run time such that

no user can have both permissions at the same time. However, the MinPert-

RMP will generate the two roles R1 = {p1},R2 = {p2, p3}. The solution is

still accurate but violates the DSOD which states that p2 and p3 can not be

assigned to the same user at run time.

6.5.2 Conflict Elimination

We first define, in the context of DSOD, a few terms for convenience of ex-

planation. conflicting permissions refers to a group (two or more than two)

of permissions which, if assigned to the same role, will cause the violation

of DSOD. A conflicting role refers to a role which contains conflicting per-

missions. Similarly, a conflicting user refers to a user which is assigned a

conflicting role. Note the notions of conflicting roles and conflicting permis-

sions can be used in SSOD, a subtle difference over the notion of conflicting

role is that, in SSOD, we actually use conflicting roles to refer to a group

of roles among which conflict exists. We don’t use the singular form (i.e., a

conflicting role) since the conflict occurs in the context of two or more than
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two roles, and never within one role in SSOD.

Our approach to eliminate DSOD conflicts is based on the fact that per-

missions responsible for the conflict are known. We call it preprocessing since

the potential conflicting permissions are removed before the evaluation and

selection of discovered roles from the candidate list. Clearly, this is a safe ap-

proach, since the DSOD will not be violated. The preprocessing for conflict

elimination can be incorporated into Algorithm 7. It will take place right af-

ter a candidate set of roles ROLES are created. Then we identify, according

to the conflicting permissions, all the conflicting roles from ROLES.

In the following, we further explain the preprocessing by means of a toy

example shown in Figure 6.5 in which p1 and p3 are assumed to the conflict-

ing permissions. Figure 6.5.(a) shows the initial user-permission assignment

UPA. Figure 6.5.(b) shows the candidate roles generated as the first step

in Algorithm 7. As we can see that r2 contains p1 and p3 together, same as

r5. Therefore, they are removed from the candidate list since those two roles

violate the DSOD. Figure 6.5.(c) shows the candidate roles after removing

those which violate DSOD. The shaded rows in Figure 6.5.(c) represent the

roles discovered by Algorithm 7. Figure 6.5.(d) and Figure 6.5.(e) show the

UA and PA.

Alternatively, as opposed to preprocessing, we can do the postprocessing

strategy which procrastinates the elimination of conflicting roles right till af-

ter the role discovery. In details, once the discovered roles are generated. We

identify, among them, the conflicting roles and subsequently, all conflicting

users. We remove those roles from PA, and the corresponding conflicting
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0

1

0

0

p4p1 p2 p3 p5

u1 0 1 0 1

u2 1 1 1 1

u3 1 1 0 1

u4 1 1 1 0

2{u2,u4}{p3}r10

1{u3}{p4}r11

3{u1,u2,u3}{p5}r9

3{u2,u3,u4}{p1}r8

4{u1,u2,u3,u4}{p2}r7

4{u2}{p1,p2,p3,p5}r5

4{u3}{p1,p2,p4,p5}r6

6{u2,u3,u4}{p1,p2}r4

6{u1,u2,u3}{p2,p5}r1

r3

r2

Role ID

{u2,u3}

{u2,u4}

Associated

Users

Candidate 

Roles
Area

{p1,p2,p3} 6

{p1,p2,p5} 6

2{u2,u4}{p3}r10

1{u3}{p4}r11

3{u1,u2,u3}{p5}r9

3{u2,u3,u4}{p1}r8

4{u1,u2,u3,u4}{p2}r7

4{u3}{p1,p2,p4,p5}r6

6{u2,u3,u4}{p1,p2}r4

6{u1,u2,u3}{p2,p5}r1

r3

Role ID

{u2,u3}

Associated

Users

Candidate 

Roles
Area

{p1,p2,p5} 6

r1 r4 r10 r11

u1 1 0 0 0

u2 1 1 1 0

u3 1 1 0 1

u4 0 1 1 0 1

0

0

0

p4p1 p2 p3 p5

r1 0 1 0 1

r4 1 1 0 0

r10 0 0 1 0

r11 0 0 0 0

(a) UPA

(d) UA
(e) PA

(d) Candidate roles before preprocessing

(c) Candidate roles after preprocessing

Figure 6.5. An example of preprocessing
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users from UA. Then we form a small-scale UPA which consists of all per-

missions, but only conflicting users identified in the previous step. For the

second time, we discover the roles from the candidate list from which, the

conflicting roles are removed this time. Then the newly generated UA and

PA are consolidated with their counterpart derived from the first run.

We prefer preprocessing over postprocessing due to two reasons: (1) post-

processing might discover a role which finally proves to be a conflicting one,

therefore, the discovering effort proves to be futile and the time has been

factually wasted. (2) In the second run of discovering roles out of the smaller

scale UPA, we might have quite less number of candidate roles to select

from, as a result, we may end up discovering more number of roles. This

is in comparison with the case of preprocessing which have more candidate

roles to pick. Even thought preprocessing has the overhead of eliminating

the conflicting roles before role discovery, but this effort is considered to be

negligible compared to that of discovering a role and thereafter abandoning

it in postprocessing.

6.5.3 SSOD Migration

In this sections, we will discuss different strategies to conduct SSOD migra-

tion. We talked about Conservative Strategy followed by Pragmatic Strategy.

Conservative Strategy

In the following, we formally prove that the discovered roles generated by

the MinPert-RMP won’t violate SSOD.
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Theorem 6.5.1 The Minimal Perturbation RMP algorithm doesn’t violate

the static separation of duty constraint.

We first look at a guiding principle that are relevant to automated mining

of roles. Defacto role definitions are embedded in existing permissions. This

basic assumption related to the presence of a role is as follows: If none of the

users of a corporation have a particular permission set such as {pa, pb, ...pn} ,

then this permission set probably does not form a role. The reason for using

the word probably is that it is possible that such a role exists but no user

has been assigned to that role. However, in such a case, role mining is not

going to provide a meaningful answer without supervision. It is impossible

for an automated program to distinguish between whether no role exists or

no user belonging to such a role is present. Thus, we limit our attention to

those subset of permissions that are owned by at least one user.

Let DRi, DRj ∈ DROLES be a arbitrarily selected pair of deployed

conflicting roles. This means that there exists at least one permission in

each of DRi and DRj which are in conflict with each other. Without loss of

generality, let’s assume that they are pi ∈ DRi and pj ∈ DRj . Therefore, we

know that there doesn’t exist a user u who is authorized to both DRi and

DRj, more specifically, in original UPA, there doesn’t exist a user u, such

that the values of both cells {u, pi} and {u, pj} are 1, otherwise, UPA and

the deployed role set are not consistent and deployed role set has errors.

Let us now prove the theorem by contradiction. We assume there did

exists a role Ri in the discovered role set by the MinPert-RMP, such that
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piandpj ∈ Ri. However, we know from above that none of the users are

authorized to conflicting permissions, in another word, there are no users

assigned to Ri. By the guiding principle above, the MinPert-RMP will elim-

inate Ri from the discovered set as is contradict with the fact that Ri is in

the discovered role set.

Considering a discovered role set has been generated, we still need to

identify conflicting roles. Given a set of deployed roles DROLES and a set

of discovered roles ROLES, there might have a few possible relations between

them in terms of their corresponding SSODs. First, a SSOD in DROLES

may become multiple ones in ROLES. For example, let’s say DRi and DRj

are two conflicting deployed roles where DR1 = {p1, p2, p3}, and DR2 =

{p4, p5, p6}. They are conflicting because of the conflicting permissions p2

and p5, and also p3 and p6 as well. The MinPert-RMP might generate 4

roles, where R1 = {p1, p2},R2 = {p3}, R3 = {p4, p5}, R4 = {p6}. now, the

original one SSOD in DROLES turns into two SSODs, one is between R1 and

R3, the other R2 and R4. Second, to the opposite of the previous case, there

might exist multiple SSODs in DROLES, and they all get merged into one

in ROLES, we will see this if we twist the above example a bit by assuming

that R1, R2, R3, R4 are from DROLES and DR1 and DR2 are in ROLES,

while we keep the pairs of conflicting permissions unchanged. Third, SSOD

in DROLES and ROLES might be also one-to-one correspondence. This

can be easily seen if the roles involved in SSOD in DROLES remain the

same in ROLES.
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SSOD migration will be straightforward if the conflicting permissions are

already known. Strictly speaking, it won’t be migration of SSOD any more

(note this statement is based on the assumption that we define SSODs as

constraint relations among roles, not permissions), since the identification of

new SSODs in ROLES can be conducted without knowledge of SSODs in

deployed roles at all. For each of the permission sets involved in a conflict,

we just search ROLES to find all roles each of which contains all those

permissions. We can form a set S1 containing all these roles. Then we do the

same to each of the involving permission set to get S2, S3 and so on. Then

each combination consisting of a role from each of such sets will form a new

SSOD. For example, A conflict is defined to involve three permission sets,

{p1, p2},{p5}, {p7, p8, p9}, this means that any given user can’t be assigned

to roles the union of which are superset of {p1, p2, p5, p7, p8, p9. Let’s say

we have 4 discovered roles, R1 = {p1, p2, p3}, R2 = {p4, p5}, R3 = {p5, p6},

R4 = {p7, p8, p9, p10}. Now, we first form the role set S1 while each role in S1

will be superset of {p1, p2}, therefore, we have S1 = {R1}. S2 should contain

all roles which are supersets of {p5}, therefore, we have S2 = {R2, R3},

similarly, S3 = {R4}. Now, we create all combinations each of which contains

one role from each set. So we get two SSODs, one involves R1, R2, R4, the

other involves R1, R3, R4.

Given a SSOD in ROLES, The SSOD migration strategy adopted when

we don’t have sufficient information about the conflicting permissions consists

of two steps, we will first form a Candidate Role Set CRS which is composed

of all such discovered roles that each of them contains at least one permission
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Algorithm 11 SSOD Migration (SSOD DROLES, DROLES, ROLES)

Require: The set of SSODs (SSOD DROLES) from deployed roles
Require: Initial set of deployed roles, DROLES
Require: Initial user-to-role assignment from deployed roles, UA
Require: discovered set of roles by the MinPert-RMP, ROLES
1: for each set S in SSOD DROLES do
2: Build CRS from ROLES{each role in CRS will contain at least one

permission from any role in S}
3: Build candidate role combinatorics CRC from CRS
4: for each set C in CRC do
5: if (The union of permissions in C is the superset of the union of

permissions in S) then
6: move C from CRC to SSOD ROLES.
7: end if
8: end for
9: end for

10: Return SSOD CROLES

from each of the conflicting roles in this SSOD. Then, we run through Candi-

date Role Combinatorics (CRC) (i.e., all combinations/subsets of CRS) and

identify all such combinations that in each of them, the union of permissions

from all its constituent roles are superset of the union of permissions from

all roles in original SSOD.

Algorithm 11 is actually a for loop which cycle through all SSODs in

DROLES. Given each observed SSOD, Line 2-3 constructs CRS and one

step further CRC. In CRS, we incorporate all candidate roles each of which

contains at least one permission from each of the conflicting roles involved

in the SSOD in DROLES. By doing this, we might include the irrelevant

candidate roles, but this is the best we can do in the context of information

insufficiency. Line 4-8 is a inner for loop, in it, each set C in CRC is checked

against the SSOD S in DROLES. If the union of permissions in C is the
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superset of that in S, we claim that a SSOD exists among the roles in C.

We use an example to explain the strategy in detail for the case of in-

formation insufficiency. For instance, given a pair in DROLES, say DR1 =

{p1, p2, p3}, and DR2 = {p4, p5, p6} (note that in the example, we limit the

conflict occurring between two roles for simplicity, the strategy the example

tries to bring home to is actually applicable to cases in which more than two

roles get involved.) We know no more than the fact that DR1 conflicts with

DR2. We do not have sufficient information to drill down to the cause of

conflict in permission level. Therefore, any one or more than one of the 49

non-empty subset of {p1, p2, p3, p4, p5, p6} could be potential real cause of the

conflict. (The 49 is derived since each of DR1 and DR2 has 7 non-empty

subsets). Now we have two roles R1 and R2 in ROLES we want to check

if the conflicting relation between DR1 and DR2 is migrated over to R1 and

R2. To achieve this, we take a conservative approach in that we only claim

that the SSOD has been migrated onto R1 and R2 from DR1 and DR2 when

all possible permission combinations in DR1 and DR2 will be included in all

subset combinations formed between R1 and R2, that is, when the union of

permissions in DR1 and DR2 is the subset of the union of permissions in

R1 and R2. For instance, if R1 = {p1, p2, p3, p4}, R2 = {p4, p5, p6, p7}, then

there exists a SSOD between R1 and R2 since the union of both would be

{p1, p2, p3, p4, p5, p6, p7}, a superset of the union of DR1 and DR2.

This strategy is conservative in a sense that we might not mark all possible

SSODs in ROLES. However, any marked SSOD will be a real one.
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In contrast to the conservative strategy, we propose another strategy

called liberal strategy, in this strategy, the goal of this strategy is to mark

all SSODs in ROLES without outlooking any single one of them. The price

we pay for this is that we bring in the noise SSODs, i.e., we generate more

SSODs than we should and some of them are not the correct ones. The

major difference between those two strategies is, after building CRS and

CRC, liberal strategy runs through Candidate Role Combinatorics (CRC)

(i.e., all combinations/subsets of CRS) and identify all such combinations

that in each of them, the union of permissions from all its constituent roles

covers at least one permission from each of the conflicting roles in original

SSOD. (rather than being the superset of the union of permissions from all

roles in original SSOD). Therefore, we might notice that, given the same

SSOD migration problem, the result set of liberal strategy is the superset of

that of the conservative strategy.

For example, given a SSOD in DROLES involving DR1 = {p1, p2, p3},

and DR2 = {p4, p5, p6}. We try to identify that if there exists a SSOD

among 3 the discovered roles while R1 = {p1, p2}, R2 = {p3}, R3 = {p4}.

Apparently, the union of them is {p1, p2, p3, p4}, which contains at least one

permissions from DR1, say p1, and one from DR2, say p4. Therefore, we claim

that there is a SSOD among them. However, this might not be correct, if p2

and p5 are the cause of the conflict.
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Algorithm 12 SSOD Migration (SSOD DROLES, DROLES, ROLES)

Require: The set of SSODs (SSOD DROLES) from deployed roles
Require: Initial set of deployed roles, DROLES
Require: Initial user-to-role assignment from deployed roles, UA
Require: discovered set of roles by the MinPert-RMP, ROLES
1: for each set S in SSOD DROLES do
2: Build CRS from ROLES{each role in CRS will contain at least one

permission from any role in S}
3: Build candidate role combinatorics CRC from CRS
4: for each set C in CRC do
5: if (The union of permissions in C covers at least one permission

from each role in S) then
6: move C from CRC to SSOD ROLES.
7: end if
8: end for
9: end for

10: for each user U in UA do
11: for each set C ′ in SSOD ROLES do
12: if (The permission set assigned to U is the superset of the union of

permissions in C ′) then
13: remove C ′ from from SSOD ROLES
14: end if
15: end for
16: end for
17: Return SSOD CROLES

Optimization

We can improve the SSOD migration strategy proposed in the previous sec-

tion. For each SSOD in DROLES, we

For the liberal strategy, we know that we include noisy SSOD. We can

trim part of them by postprocessing.

Algorithm 12 is similar to Algorithm 11. Two major differences, first, Line

5 identifies the sets in CRC that for each set, the union of permissions from

all roles in that set covers at least one permission from each of the conflicting
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roles in original SSOD. Second, We add Line 10-17 for the optimization

purpose. For the resultant SSODs, the optimization intends to trim off those

which are noises. For each user, the process checks the union of permissions

in all the roles assigned to this user against the union of permissions in each

generated SSOD, if the former contains the latter, the SSOD will be removed.

(Note that we assume that deployed roles are all correct in a sense that the

reconstitute of UPA from UA and PA will exactly match the original UPA.)

For example, A SSOD S1 is identified among 3 discovered roles R1 = {p1, p2},

R2 = {p3}, R3 = {p4}. From the UA in deployed roles, we know a user u1 who

has been assigned two roles DR1 = {p1, p2, p3} and DR1 = {p4, p6}. Since

the union of permissions of DR1 and DR2 assigned to u1 is {p1, p2, p3, p4, p6}

which is the superset of {p1, p2, p3, p4}, the union of permissions in S1, S1

won’t be a real SSOD except that deployed roles are erroneous.

Pragmatic Strategy

The conservative strategy is justified by the completeness in a sense that

all possible new SSODs in ROLES will be identified even though we pay

a price by possibly identify more than we should, i.e., irrelevant role group

are also marked as conflicting roles. However, they might be not. The

downside of it is that it is exponential in complexity. Therefore, in this

section, we come up with a pragmatic strategy which, for each original SSOD

in DROLES, will only identify one corresponding counterpart in ROLES.

The advantage is it is very efficient. Apparently, we didn’t identify all SSODs.

Another disadvantage comes from the fact that the identified one even might
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be the real one. However, we pick it over other candidates since it has higher

possibility to be a SSOD in ROLES. We will formally prove this shortly. The

strategy is straightforward, given a SSOD involving n roles in DROLES, for

each of those roles, we first identify the closest role in ROLES by calculating

the the similarity of it with all roles in ROLES. The similarity function has

been defined before. Therefore, we got n corresponding roles in ROLES.

They together serve as our newly formed conflicting roles.
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CHAPTER 7

THE ROLE HIERARCHY MINING PROBLEM

Even though the basic concept of role hierarchy is quite standard [46, 47, 69,

83, 70, 15, 1, 16, 17, 45], the structural specifics of building a hierarchy are not

clearly defined. This dissertation formally provides the additional require-

ments needed by our approach. Note that we use the symbols ≻,≻≻ and �

to denote direct inheritance, indirect inheritance and both, respectively, in

the remainder of the dissertation.

Definition 24 [Role Hierarchy (RH)] A Role Hierarchy (RH) is a directed

acyclic graph (V, E) where each vertex v ∈ V represents a role r ∈ ROLES

and each edge e ∈ E represents a direct relation between the two incident

roles. A RH needs to meet the following requirements:

1. ∀ ri, rj ∈ ROLES, ri � rj, only if permissions(ri) ⊇ permissions(rj),

and users(ri) ⊆ users(rj).

2. ∀ r ∈ ROLES, permissions(r) 6= ∅

3. ∃ r ∈ ROLES such that ∀ r′ ∈ ROLES − {r}, r � r′

In the above definition, permissions(r) consists of permissions that are

explicitly assigned to it and those that are inherited from its descendants,
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and users(r) comprises of the assigned users(r) as well as all the users

that are eligible to play a descendent role (as a result of inheriting the per-

missions). Besides the role ID r, each vertex v also contains users(r) and

permissions(r). For the sake of simplicity, from this point on, we use the

role ID and its corresponding vertex interchangeably in the context of the

role hierarchy. Each edge e indicates the direct relation between two incident

roles, e is denoted as a pair (ri, rj) ∈ E iff ri ≻ rj.

Requirement 1 states the permission and user containment relationships

required between two roles with inheritance relations. In a role hierarchy,

permissions are inherited bottom-up as opposed to the top-down inheritance

fashion for users. For example, if ri � rj , permissions authorized to rj will

also be authorized to ri. On the contrary, users assigned to ri will also be

eligible to perform the tasks of users assigned to rj . Requirement 2 indicates

that an empty role cannot belong to a hierarchy. This is to prevent the

creation of dummy roles. A dummy role without any permissions can have no

practical significance and therefore should obviously be disallowed. Finally,

requirement 3 states that each role needs to be connected to at least one

other role in the graph. Isolated roles cannot exist in the hierarchy. This

requirement allows the existence of one and only one super role which has

all of the permissions. This role prevents any role from being disconnected

from the hierarchy. It might create some dummy links between itself and

others which would be isolated otherwise without the existence of the super

role. We restrict the number of such roles to one to keep the maintenance

overhead to a minimum.
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Here, we also define another flavor of role hierarchy which we call complete

role hierarchy.

Definition 25 [Complete Role Hierarchy(CRH)] Complete Role Hierarchy

(CRH) is a special role hierarchy satisfying the following observation:

• ∀ ri, rj ∈ ROLES, if ri � rj , then either { ∃ R ⊆ ROLES | R =

{r1,r2, . . . rx } 6= ∅, { (ri,r1),(r1,r2),. . ., (rx−1,rx),(rx,rj) } ⊆ E } or

(ri,rj) ∈ E or both.

The observation above essentially means that all inheritance relations

between any pair of roles need to be captured in the role hierarchy, either

directly or indirectly or both. Complete RH is of significance when role

hierarchies are actually constructed.

We also need to introduce the concept of transitive closure which will be

used in the following sections.

Definition 26 [Transitive Closure] Consider a directed graph G = (V, E),

where V is the set of vertices and E is the set of edges. The transitive closure

of G is a graph G+ = (V, E+) such that for all v, w in V there is an edge

(v, w) in E+ if and only if there is a non-null path from v to w in G.

7.1 The Role Hierarchy Mining Problem

In this section, we formally define the basic Role Hierarchy Mining Prob-

lem(the RHMP) and its two variants, the Role Hierarchy Building Problem



134

(the RHBP) and Minimal Perturbation Role Hierarchy Mining Problem (the

MinPert-RHMP).

Definition 27 [The Role Hierarchy Building Problem (the RHBP)] Given

a set of users U , a set of permissions PRMS, a user-permission assignment

UPA, a set of roles ROLES, a user-to-role assignment UA, and a role-to-

permission assignment PA, build a complete role hierarchy, G(V, E), such

that |E| is minimal.

The RHBP asks us to build a hierarchy out of the existing role set, such

that the number of direct relations is minimized. Potentially the possible

number of complete role hierarchies built from a given set of roles could be

substantial. These hierarchies could all be correct since they are complete,

and therefore, have the same transitive closure. Yet, some are superior to

others, from the perspective of role administrators due to the fact that they

have less number of edges/direct relations in the hierarchy than others. A

smaller number of edges implies less maintenance workload for the adminis-

trators, thus making them more favorable.

Example 4 Figure 7.1 shows an example where given a set of deployed

roles r1 = {p1, p2, p3, p4}, r2 = {p1}, r3 = {p1, p2}, r4 = {p1, p3}, r5 =

{p1, p3, p4}, there could exist multiple role hierarchies which are complete.

Figure 7.1.(a) and (b) are two of the complete hierarchies built from this role

set. They have the same transitive closure, but Figure 7.1.(a) is superior to

Figure 7.1.(b) since it has less number of edges. Actually Figure 7.1.(a) is

the optimal solution for this deployed role set.
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Figure 7.1. An example of a set of complete role hierarchies from a given
role set

In the prior problem, we are simply required to build a hierarchy out

of the existing roles without changing any of them. In general, it may be

acceptable to change the given roles somewhat in order to build a better

hierarchy. Therefore, we next define the minimal perturbation role hierarchy

problem. However, before doing so, since this problem involves creating a

new set of roles, it must be ensured that the set of roles created correctly

describes the original user-permission assignments. Vaidya et al.[101] define

the notion of δ-consistency to measure differences introduced by role sets.

The basic idea is to count the difference between the number of original

user-permission assignments and the number of user-permission assignments

induced by the discovered user-role and role-permission assignments. As

long as the difference is within δ, the discovered roles, user-role and role-

permission assignments are considered to be δ consistent with the original

UPA. However, this does not take role hierarchies into consideration at all.

We now extend this to incorporate role hierarchy as well. The key is to
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recognize the contribution of inherited permissions.

Definition 28 [δ-Consistency] A given user-to-permission assignment UPA,

user-to-role assignment UA, role-to-permission assignment PA, and a role

hierarchy RH are δ-consistent if and only if

‖M(UPA)−M(UPAd) ‖1 ≤ δ

where M(UPA) denotes the matrix representation of UPA, while M(UPAd)

denotes the matrix representation of the UPA derived from UA, PA, and

RH (i.e., including both direct and indirect permission mappings due to the

hierarchy). Thus, cell {i, j} in UPAd is 1 if and only if one of the following

three cases is true:

1. ∃r ∈ ROLES, such that i ∈ users(r) and j ∈ permissions(r).

2. ∃(ra, rb) ∈ E, i ∈ users(ra), j ∈ permissions(rb)

3. { ∃R⊆ V | R = {r1,r2, . . . rx } 6= ∅, { (ra,r1),(r1,r2),. . ., (rx−1,rx),(rx,rb)

} ⊆ E, i ∈ users(ra), j ∈ permissions(rb) }

This concept of mapping assures that, for any cell {i, j} with value of 1

in UPAd, in RH, there exists a role that permission j is assigned to either

directly or indirectly, and, user i is authorized to it. On the contrary, for

any cell {i, j} with value of 0 in UPAd, there exists no role in the RH, such

that the corresponding permission is assigned (either directly or indirectly)

to it and the user is authorized to that role. δ-Consistency thus essentially

bounds the degree of difference between the user permission assignment UPA
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and the discovered roles and role hierarchy. We can now define the minimal

perturbation role hierarchy problem.

Definition 29 [The Minimal Perturbation Role Hierarchy Problem (the Mi-

nPert-RHMP)] Given a set of users U , a set of permissions PRMS, a user-

permission assignment UPA, and a set of deployed roles DROLES, find

a set of roles ROLES, a user-to-role assignment UA, a role-to-permission

assignment PA and a complete role hierarchy, RH = G(V, E), such that

RH is 0-consistent with UPA and the sum of the predefined perturbation

function and the number of edges |E| in G is minimized.

the MinPert-RHMP describes the problems faced by organizations which

would like to achieve optimality so that total sum of the number of roles

and the number of direct relations in RH is minimized. However, they may

prefer to strike a balance between getting closer towards optimality (in terms

of the roles and role hierarchy) and towards causing as little disruption to

the existing system as possible. The MinPert-RHMP tends to update the

existing deployed roles to a degree that the quantified disruptions and the

number of direct relations in role hierarchy are minimized. This is closer in

spirit to the notion of the MinPert-RHMP defined by Vaidya et al.[99] where

the optimal roles need to be discovered that cause as little disruption to the

existing roles as possible. The notion of role similarity based on Jaccard

coefficient (defined in [99]) can be directly used to measure perturbation.

When there are no deployed roles, the hierarchy mining must include role

mining as well. Essentially, the optimal set of roles and role hierarchy must
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be discovered. We define this as the role hierarchy mining problem:

Definition 30 [The Role Hierarchy Mining Problem (the RHMP)] Given a

set of users U , a set of permissions PRMS, and a user-permission assignment

UPA, find a set of roles ROLES, a user-to-role assignment UA, a role-to-

permission assignment PA and a complete role hierarchy, RH = G(V, E),

such that RH is 0-consistent with UPA, and that minimize the sum of

|ROLES|+ |E|.

Given the user-permission matrix UPA, the Role Hierarchy Mining prob-

lem asks us to find a user-to-role assignment UA and a role-to-permission

assignment PA, and a complete role hierarchy RH such that both the pair

of (UA, PA) and RH are capable of exactly describing UPA (i.e. are 0-

consistent with UPA).

The above definition is suitable for cases where no existing roles are de-

ployed yet or role mining is still at its initial stage therefore, abandoning the

previous role engineering effort is still tolerable.

Example 5 Figure 7.2 shows an example of optimal hierarchy given a set

of users U , a set of permissions PRMS, and the user-permission assignment

UPA. Figure 7.2.(a) shows the UPA with 3 users and 6 permissions. Figure

7.2.(b) and (d) together shows an optimal solution for the RHMP. It generates

3 roles, r1 = {p1, p2, p3, p4, p5, p6}, r2 = {p1, p2, p5, p6}, r3 = {p5, p6}, and

2 edges in the hierarchy. For this UPA, there are no role sets which could

have the sum of the number of roles and the number of edges in the hierarchy
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Figure 7.2. An example of optimal role hierarchies for a given UPA

less than 5. However, there may exist multiple optimal solutions for a specific

UPA. Figure 7.2.(c) and (e) provides another optimal solution.

Given a deployed role set r1 = {p1, p2, p3, p4}, r2 = {p1}, r3 = {p1, p2},

r4 = {p1, p3}, r5 = {p1, p3, p4}, there could exist multiple role hierarchies

which are complete. Figure 7.1.(a) and (b) are two of the hierarchies built

from this role set. They have the same transitive closure, but Figure 7.1.(a) is

superior to Figure 7.1.(b) since it has less number of edges. Actually Figure

7.1.(a) is the optimal solution for this deployed role set.

7.2 Heuristic Solutions

In this section, we propose two algorithms to construct the role hierarchy.

Section 7.2.1 describes the RH-Builder which aims to address the Role Hier-

archy Building Problem (the RHBP). The RH-Miner is introduced in Section

7.2.2 for the Role Hierarchy Mining Problem (the RHMP).
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7.2.1 The RH-Builder Algorithm

The RH-Builder algorithm builds a complete and non-redundant hierarchy

from any given set of roles. The completeness property guarantees that

two roles are connected in the hierarchy if and only if they have an inheri-

tance/containment relation. Non-redundancy implies that each link/edge in

the graph carries irreplaceable information. If we removed that edge, cer-

tain role-to-role relation would be lost and completeness would be violated.

Accordingly, the modified hierarchy would have a different transitive closure

than earlier. Both Completeness and Non-redundancy can be described by

the following observation:

• ∀ ri, rj ∈ ROLES, if ri � rj , then either { ∃ R ⊆ ROLES | R =

{r1,r2, . . . rx } 6= ∅, { (ri,r1),(r1,r2),. . ., (rx−1,rx),(rx,rj) } ⊆ E } or

(ri,rj) ∈ E.

This observation has two implications. First it states that any two roles with

inheritance relation should be linked either directly or indirectly. Second,

it implies that redundancy occurs whenever indirect path and direct link

between the same pair of roles coexists. Since the relation represented by the

direct link is already implicit in the indirect path, for the sake of workload

reduction for role management, the direct link can be removed. This is

preferable to removing any link from the indirect path, since doing so could

result in information loss as the transitive closure could be different due to

loss of some relationship information.
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Algorithm 13 The RH-Builder(DROLES, E)

Input: A list of initially deployed roles, DROLES
Output: The set of direct links E representing the hierarchy G
1: E ← φ
2: super role← all permissions from all roles in DROLES
3: for each r ∈ DROLES do
4: call RH-Builder-Iteration(r, super role, E)
5: end for

The RH-Builder constructs the hierarchy by sequentially inserting all

roles in DROLES into the hierarchy which can be fully represented by its

set of edges E. Later, we prove that the RH-Builder is order-insensitive for

insertion. Algorithm 13 simply calls Algorithm 14 to insert each role r in

the deployed role set. The basic idea is to check the inheritance relation

of the role r with each direct descendant ri of the super role sr. Based on

the containment relationship between r and ri (disjoint / subset / superset

/ neither), different operations are performed. After the for loop, r will be

placed at the best position in the current hierarchy. Currently best has two

implications: first, if the hierarchy construction stops at r and no more roles

are inserted, all the inheritance relations associated with r will be represented

in the hierarchy and no edges incident on r is redundant. In other words,

the created hierarchy is optimal. Second, when other roles are inserted after

r, r’s position might need to be adjusted to stay optimal. We now go into

the details:

Line 1 adds the edge (sr, r) into the graph. Note that a super role sr

incorporates all permissions in UPA. This role can ensure that all roles are

connected to the graph by at least linking with the super role if it has no

containment relation with any other roles. Now the containment relation of
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Algorithm 14 RH-Builder-Iteration(r, super role, E)

1: E ← (super role, r)
2: for each ri such that super role ≻ ri do
3: if r ∩ ri = φ then
4: ignore subtree rooted at ri

5: else if r ⊇ ri then
6: E ← (r, ri), flag the whole subtree rooted at ri, meanwhile, mark ri

as r’s direct descendant
7: remove (super role, ri) from E
8: remove (r, rj) from E for any rj that ri � rj ∧ (r, rj) ∈ E
9: else if r ⊆ ri then

10: remove (super role, r) from E
11: recursively call RH-Builder-Iteration(r, ri, E)
12: else if r ∩ ri 6= φ then
13: breadth first search on subgraph rooted at ri

14: if (ri � rj) ∧ (r ⊇ rj) then
15: E ← (r, rj), flag the whole subtree rooted at rj, meanwhile, mark

rj as r’s direct descendant
16: remove (r, rk) from E for any rk that rj � rk ∧ (r, rk) ∈ E
17: end if
18: end if
19: end for

r is checked with every direct descendent ri of the super role sr. Lines 3-4

ensure that if r is disjoint with the descendant ri, the entire subtree of ri

is ignored (since there is no common permission between them, r cannot be

linked with any role in that subtree). Lines 5-8 handle the case where r fully

contains ri. This relation means that all permissions in ri are also associated

with r. If this is the case, the RH-builder removes the direct link (sr, ri) and

replaces it with the indirect path ((sr, r), (r, ri)). Then the subtree rooted at

ri will be flagged to ensure that the roles in it won’t be checked since r can

not establish a link with any of those roles because r can reach any of them

through a path via ri, therefore, any links between r and them are redundant.

The RH-Builder also marks ri as the descendant in case that (r, ri) can be
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removed if later r is linked with ancestors of ri. Next, if, due to the previous

iteration of comparison, there exists a direct link (r, rj) between r and one

descendant rj of ri, ( vj could be either direct or indirect descendant of ri),

the edge (r, rj) should also be replaced by a indirect path via ri. Lines 9-11

launches the recursive call to the RH-Builder once r is fully contained in

ri, since the relation between r and ri is exactly the same as the relation

between r and sr. Therefore, the RH-Builder just assigns ri, the descendant

of sr to be sr itself and recursively call the RH-Builder on the subtree rooted

at ri. Lines 13-19 indicates the overlapping relation between r and ri. In

this case, the RH-Builder do Breadth First Search for any descendant rj of ri

such that r fully contains rj . If it is found, link (r, rj) will be added into E,

accordingly, all edges (r, rk) between r and any direct or indirect descendant

rk of rj needs to be removed since the existence of a indirect path between r

and rk via edge r, rj.

As we can see that the RH-Builder is greedy in the sense that after

each comparison between r and any role in the hierarchy, adjustment will

take place to remove as many edges as possible. Those edges are redundant

since their inheritance relations have been incorporated in alternative indirect

paths. Therefore, the RH-Builder avoids the co-existence of direct link and

indirect path between the same pair of roles. However, under the assumption

that non-redundancy constraint is not violated for each role, there could

feasibly exist multiple different indirect inheritance relations between two

roles. I.e. two roles could be linked via different paths. By allowing this, we

actually explicitly incorporate the concept of the multiple inheritance into



144

our definition. We now go through an example to show how the RH-Builder

works, and then prove the optimality of the constructed hierarchy.

Example 6 Our toy example consists of constructing a complete role hier-

archy via the RH-Builder from the deployed role set {{p1}, {p1,p2}, {p1,p3},

{p1,p3,p4}, {p1,p2,p3}}. We will insert the roles in the order shown above.

Figure 7.3 shows how the RH-Builder works. r1={p1,p2,p3,p4} is created

as the super role. Figure 7.3.(a) show the insertion of r2={p1}. In figure

7.3.(b), since r3 ⊇ r2, the edge r1, r2 has been replaced by the new edges

(r1, r3), (r3, r2) denoted by directed dotted lines. In Figure 7.3.(c), r4 is in-

serted, since r4 overlaps r3, therefore, it performs the breadth first search for

possible containment relations in the subtree rooted in r3. Therefore, r4, r2

has been added into E. Figure 7.3.(d) and (e) shows how r5={p1,p3,p4} is

inserted. In Figure 7.3.(d), r5 is first compared with r3, since they overlap,

r5 search down the subtree rooted at r3 for containment relation and conse-

quently add r5, r2 in E. Then r2 gets marked. Later r5 compares with r4

and creates edge (r5, r4) since r5 ⊇ r4, meanwhile, (r1, r4) is removed. Then

r4 is marked, and the subtree rooted at r4 is flagged. During the process

of flagging the subtree, r3 is discovered to be marked. Therefore, (r5, r3) is

removed from E as being redundant. Figure 7.3.(f) inserts r6={p1,p2,p3}

into the hierarchy.

Next we prove that the role hierarchy built from the RH-Builder is opti-

mal.

Theorem 7.2.1 The RH-Builder algorithm is optimal.
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Figure 7.3. An example of building a role hierarchy using the RH-Builder

We use G(V, E) to denote the role hierarchy generated by the RH-Builder

and G′(V, E ′) to denote any arbitrarily picked graph which has the same

transitive closure with G(V, E).

First, we prove by contradiction that any given edge e=(ri, rj) in G must

also be in G′. Let’s assume that (ri, rj) is not an edge in G′. Since G

and G′ have the same transitive closure, there must exist at least one path

in G′ which links ri with rj . Without loss of generality, let R be such a

path in G′, therefore, R ⊆ ROLES, R = {r1,r2, . . . rx } 6= ∅ such that {

(ri,r1),(r1,r2),. . ., (rx−1,rx),(rx,rj) } ⊆ E . Apparently, not all of those edges

are in G, otherwise, the coexistence of edge (ri, rj) and the indirect path

between ri and rj will violate the non-redundancy constraint in G. Without

loss of generality, let’s assume that e′=(rm, rn) is the only edge which is in G′
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but not in G. (the argument will be the same in cases where multiple edges

in G′ are missing in G). Since G and G′ have the same transitive closure,

there must exists at least one path in G which links rm with rn. Among all

the pathes linking rm with rn in G, let R′ be an arbitrarily picked one. That

is, R′ ⊆ ROLES, R′ = {r′1,r
′
2, . . . r′x } 6= ∅ such that { (rm,r′1),(r

′
1,r

′
2),. . .,

(r′x−1,r
′
x),(r

′
x,rn) } ⊆ E. Now we can see the coexistence of edge e=(ri, rj)

and an indirect path linking ri and rj in G, which is { (ri,r1),(r1,r2),. . .,

(rm,r′1),(r
′
1,r

′
2),. . ., (r′x−1,r

′
x),(r

′
x,rn),. . ., (rx−1,rx),(rx,rj) } . This apparently

violates the non-redundancy constraint in G, therefore, we conclude that any

given edge e in G must also be in G′.

If G′ is exactly the same as G, the theorem holds since there only exists

one complete role hierarchy. Otherwise, we assume that there exists at least

one edge e′ which is in G′ but not in G. since all edges in G are also in G′,

we know that G′ has at least one more edge e′ than G. This proves that G is

the transitive reduction of any arbitrary graph which has the same transitive

closure with G.

The theorem that the RH-Builder is optimal can also be shown by the

fact that removal of any edge out of the hierarchy built by the RH-Builder

will result in a graph with a different transitive closure. This is so because

any given edge in G forms the only path between the two incident vertices.

If it were removed from G, it would be missing in the transitive closure

derived subsequently. In the following we prove that there is only one optimal

hierarchy from a given set of deployed roles.
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Theorem 7.2.2 The optimal role hierarchy and the set of deployed roles are

in a one-to-one correspondence.

Let’s assume that G1 and G2 are two different optimal hierarchies built

from a set of deployed roles DROLES. Then there must exist at least one

edge e incident on ri and rj such that e is in one hierarchy but not in the

other. Without loss of generality, let’s assume e ∈ G1 only.

Since e = (ri, rj) is in G1, there must exists an inheritance relation be-

tween ri and rj . since (ri, rj) is not an edge in G2, but all optimal hier-

archies need to meet the requirement of completeness, there must exist a

path linking ri and rj in G2. To express this, we denote that in G2 there

exists R ⊆ ROLES, R = {r1,r2, . . . rx } 6= ∅ such that { (ri,r1),(r1,r2),. . .,

(rx−1,rx),(rx,rj) } ⊆ E. Of course, not all these edges will be in G1 at the

same time, otherwise, G1 would not be optimal due to the coexistence of an

indirect relation and direct relation between ri and rj. In other words, at

least one edge in the above list is not in G1. Without loss of generality, let’s

assume that this edge is e′ = (rm, rn).

Since e = (rm, rn) is an edge in G2, there must exists an inheritance

relation between rm and rn. Similar as above argument, since (rm, rn) is

not an edge in G1, but all optimal hierarchy need to meet the requirement

of completeness, there must exist a path linking rm and rn in G1. That

is, in G1 there exists R′ ⊆ ROLES, R′ = {r′1,r
′
2, . . . r′x } 6= ∅ such that {

(rm,r′1),(r
′
1,r

′
2),. . ., (r′x−1,r

′
x),(r

′
x,rn) } ⊆ E.

Now we can see that ri ≻≻ rj in G1, in another word, there is a in-

direct path between ri and rj since { (ri,r1),(r1,r2),. . ., (rm,r′1),(r
′
1,r

′
2),. . .,
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(r′x−1,r
′
x),(r

′
x,rn) . . ., (rx−1,rx),(rx,rj) } ⊆ E. Meanwhile, we know that

ri ≻ rj in G1. The coexistence of a direct link and a path between ri and rj

implies that G1 is not optimal which is in conflict with the assumption made

above. Therefore, the theorem holds.

Based on the two theorems above, we know that the RH-Builder will

build one and only one optimal hierarchy with the minimal number of edges.

A corollary of this is that the RH-Builder algorithm is order-insensitive when

inserting roles into hierarchy. We now consider the computational complexity

of the algorithm. In each insertion iteration the algorithm may go through

all of the edges in the current graph at most once. Since the number of edges

can be upper bounded by |V |2, and there need to be |V | iterations (to insert

each node), the overall complexity of the RH-Builder is O(|V |3) (the worst

case is realized only for a complete graph).

7.2.2 The RH-Miner Algorithm

In this section, we propose another algorithm called the RH-Miner, for the

case where we have no initial roles. Essentially, the RH-Miner breaks down

the problem into two steps. First, a minimal set of roles is generated using one

of the heuristic approaches known. Generating a minimal set of roles from

a given UPA has been formally defined by Vaidya et al. [101] as the Role

Mining Problem (the RMP) (which is also mapped to the Tiling Databases

problem[22]). Therefore, we can directly borrow the existing implementation

solutions [22, 102] to the RMP.

Once we generate the minimal set of roles, we can apply the RH-Builder
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to it to come up with the hierarchy with the minimal number of edges. Our

algorithm essentially breaks one optimization problem into two subtasks.

One weakness of our algorithm is that it not only serializes the generation

of role set and hierarchy, but also specifies the order that roles to be gen-

erated first followed by the hierarchy. Therefore, the hierarchy construction

is conditioned on the generation of roles. This creates extra constraints and

overlooks the possibility that hierarchy could be created simultaneously with

the discovery of roles. Thus the solution reached by our algorithm may not

really be optimal.

Example 7 Figure 7.4 provides two solutions to the RHMP given a set of

users U , a set of permissions PRMS, and the user-permission assignment

UPA. Figure 7.4.(a) shows the user-permission assignment UPA. Figure

7.4.(b),(d) and 7.4.(c),(e) shows two solutions. Both of them adopt the idea

of generating minimal set of roles first followed by the build of hierarchy with

the minimal number of edges. Each solution generates a set of roles, the two

role sets are different, but they have the same cardinality of 3 and therefore

both are optimal. The hierarchies based on the previously generated roles

are also optimal. In a sense that given the same set of roles, no better

solutions available which can achieve less number of edges. However, we may

see that solutions represented by Figure 7.4.(b),(d) is superior 1 to the other

shown in 7.4.(c),(e). This clearly indicates that sequential optimization of

1We count the edges involved with dummy super roles. However, those edges will not
affect the conclusion, since even we don’t count them, one solutions is still superior to the
other
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Figure 7.4. An example showing the difference between the optimal hierarchy
and the hierarchy generated by the RH-Miner

each subprograms might not achieve the optimality of the RHMP. Part of

our future work is to look for solutions better than the RH-Miner to address

the RHMP.
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CHAPTER 8

ROBUSTNESS TO NOISE

The experimental results of the prior chapters show that our algorithm per-

forms quite well on the simulated data. However, an implicit assumption in

the above experiments was that the access control data is error free. But,

this assumption is often unsupported in real life access control data sets.

Indeed, in reality, there are often many errors, and no data is quite clean.

Permissions are accidentally assigned to those who do not need them, or are

not removed once the permission is no longer needed. In addition, some

users may not have all the permissions that others performing similar job

functions have. In such cases, the old adage frequently applies – “garbage in,

garbage out”. We need to ensure that such is not the case for our algorithm

for a reasonable amount of errors. Therefore, the purpose of this chapter is

to determine the degree of robustness of our algorithm to noise.

In order to meaningfully talk about the degree of robustness to noise,

several issues need to be clearly defined. First, what is our model of noise?

Second, what is the degree of noise? Third, how is the accuracy of results

checked? Each of these has a significant impact on how we measure the

accuracy of the FastMiner algorithm. We now discuss each in detail.
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8.1 Noise Model

First, let use consider how to meaningfully model noise. The presence of

noise essentially means that errors have occurred in the data – i.e., the actual

data does not match the real data. In our case, the data consists of access

permissions (subject-object pairs). Typically, one could have access control

lists or capability lists or some other representation. Regardless of the actual

representation, one can view the data in the form of a boolean matrix –

where a 1 signifies that the subject-object access is permissible (we denote

this as allowed permission), and a 0 denotes lack/denial of permission (we

denote this as disallowed permission). In this case, error means that the

actual boolean matrix is different from the desired boolean matrix. Three

types of errors can occur in the matrix:

1. General noise: Such noise results in bit-flipping errors. Thus, a 1 gets

flipped to a 0 and vice-versa. Effectively, this means that either a

permission is incorrectly revoked or a permission is incorrectly given

by the security administrator.

2. Additive noise: In this case, a permission can only be incorrectly given,

not incorrectly revoked. Thus, a 0 can incorrectly be changed to a 1 but

not vice-versa. This could happen if an administrator had first given

a permission to a user to accomplish some task, but then forgotten to

revoke it after the task/duration is complete.

3. Subtractive noise: In this case, a permission could be incorrectly re-

voked, though not incorrectly given. Thus, a 1 is incorrectly changed to
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a 0, but not vice-versa. This could happen when a user is only given a

subset of the overall permissions he may ultimately need. For example,

when someone new starts in the organization, he may be given a set

of permissions for some initial assignments but not the full set he will

ultimately need because accurate assignment is time consuming.

It is clear that general noise actually includes both additive noise and

subtractive noise. Thus, the presence of general noise implies the presence

of both additive as well as subtractive noise. However, their percentages are

not equal. In actuality, the degree of additive and subtractive noise depends

on the number of 0s and 1s. All else being equal, any general noise will

result in additive noise proportional to the number of 0s and subtractive

noise proportional to the number of 1s. Typically, the access control matrix

will be sparse with fewer 1s and many more 0s. Therefore, additive noise will

be more likely to occur. This corresponds to real situations where users are

more likely to have more permissions than they need (additive noise) than

less permissions than they need (subtractive noise) because otherwise they

could not perform their job functions. For now, we explore the robustness

of our algorithm to general noise since we believe it corresponds well to

ordinary situations. Even though we feel this is likely, this may not be

the case in certain situations. To test for this, in the future, we plan to

do a comprehensive evaluation of all three kinds of noise separately against

different role mining algorithms.
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8.2 Degree of Noise

Along with the model of noise, we also need to consider the degree of noise.

An obvious approach is to consider the degree of noise as a percentage of the

amount of data. For example, we could consider noise of 1%, or of 5% of the

data. However, how does this truly apply? Take the example of a dataset

with 2000 users and 500 permissions. The total size of the dataset is 1,000,000

bits. 1% of this equates to 10000 bits. Does this mean that 10000 bits should

be flipped? This might seem reasonable except for the fact that the access

permission data is typically very sparse. The number of allowed permissions

(1s) is significantly smaller than the number of disallowed permissions (0s).

For example, only 4000 of the subject-object accesses might be allowed. In

this case, flipping 10000 bits would completely obviate the true data. One

must realize that unlike digital communications, in access control data, the

signal is characterized only by the 1s, and not by the 0s. This implies that

when considering the degree of noise, it should be a percentage of the real

data. There is another justification for this. In general access permissions

are given by the system/security administrator. If the administrator only

hands out a total of 4000 permissions, is it likely that he would make 10000

mistakes? Indeed, this is unlikely! Thus, when considering noise percentages,

we take noise to be a percentage of the number of 1s.

Finally, we need to consider how to add noise to the data. Again, assume

2000 users, 500 permissions and 4000 allowed subject-object pairs (4000 1s).

If we wanted to introduce 10% general noise into this data set, how should

we proceed? A simple way to add noise is to pick 400 bits at random from
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the 1,000,000 bits and flip them. But is this correct – should exactly 400

bits be flipped? The key issue is whether by 10% noise we mean that the

noise is exactly 10% of the data or whether we mean that the probability

of error in the data is 10%. The first case corresponds to flipping 400 bits.

However, in the second case, we should go through all 1,000,000 bits and flip

each bit with a probability of 10%. Though either way is fine, we argue that

the second way of introducing noise more closely approximates real life.

In our experiments we considered 1%, 5%, 10%, and 20% noise and in-

troduced it into the datasets as described in the second method above. As a

result of the priopr discussion, we define noise as follows:

Definition 31 p% General Noise: Given users U and permissions PRMS

and a user to permission assignment UPA ⊆ U × PRMS, a noisy dataset

with p% general noise consists of a modified permission assignment UPA′ ⊆

U × PRMS such that

• if x ∈ UPA, x ∈ UPA′ with probability 1− p

• if x /∈ UPA, x ∈ UPA′ with probability p

8.3 Accuracy Comparison

The final issue to consider is the way of checking the accuracy of the algo-

rithm. An easy way to do this is simply to report the same accuracy figures

as reported in the earlier experimental evaluation section. Thus, we could

compute how many of the original roles are found in the results. This is fine,
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except for one caveat. When we match roles, the matches are exact. While

this is fine when there is no noise, in the presence of noise there is a good

possibility that we may find approximate roles rather than the real roles. In

this case, we should also calculate the pseudo-accuracy. This could be an

important factor affecting the overall accuracy of the algorithm. However,

for now, we restrict ourselves to exact matches and report the results ob-

tained. In the future, we plan to see if approximate matching can lead to

better results.

8.4 Experimental Results

We now discuss the actual experimental results concerning noise. For all of

the data generated earlier in Section 4.4.1, we generated noisy data and reran

the experiments to compute the accuracy. Since the noise addition process

was random, this was run three times on each data set. Thus for each of

the five variants of the four datasets for the four experiments, three noisy

datasets were generated. This led to a total of 4∗ 4 ∗ 5 ∗ 3 = 240 experiments

for each noise level. Accuracy results were computed and averaged over the

5 ∗ 3 = 15 datasets for each plot point. As discussed earlier, we tested

with noise addition of 1%, 5%, 10%, and 20%, thus leading to a total of

240∗4 = 960 experiments. The results from these experiments are reproduced

in the form of eight charts. Essentially, for each of the four experiments

carried out in Section 4.4.1 we depict two charts showing the results for

accuracy in the top 1x results and the accuracy in the top 2x results. Each

chart contains the results at all 4 noise levels as well as the original no-noise
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reference level (from the original experiments). This helps to visually see the

effect of noise on each experiment.

Figures 8.1(a) and 8.1(b) display the effect of noise when the number

of permissions and roles is kept constant, and only the number of users is

varied. It can be seen that 20% noise significantly degrades the accuracy of

the algorithm, while noise up to 10% is still tolerable. The overall results

for 2x accuracy are still quite good. Figures 8.2(a) and 8.2(b) display the

noise results when only the number of permissions are kept constant while

both the number of users and roles is varied. Again, the overall results are

encouraging. Accuracy significantly drops off only for 20% noise with the

highest number of permissions. The reason for this is the fact that as the

data set is sparse, even minor noise can make a big difference when finding

exact matches. We expect that approximate matching of roles would give us

significantly better results in this case.

For the third set of experiments, Figures 8.3(a) and 8.3(b) show the effect

of noise when the number of users is increased. The results here follow the

results observed in the absence of noise. Overall, the results are quite good

for noise up to 10%.

For the fourth set of experiments, Figures 8.4(a) and 8.4(b) display the

results when the maximum number of concurrent users is increased. It is

obvious that noise does make a significant difference in these experiments.

This is partly due to the fact that as the density of the dataset increases,

and the number of intersections increase, even minor amounts of noise can

make a huge difference when finding exact matches. Again, we expect that
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approximate matching of roles would give us significantly better results in

this case.

Overall, the noise results are encouraging and give us more confidence on

the performance of the algorithm in the presence of noise.
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Figure 8.1. Effect of Increasing Number of Users and Roles (in Constant
Proportion) with Constant Permissions
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CHAPTER 9

ROLE MINING SYSTEMS

All the RMPs and their variants have significance in solving the role engineer-

ing problem and help the security administrators to pick and choose the one

that perfectly suits to their organizational needs. In this chapter, we present

the tool called Role Mining Systems to facilitate the security administrators

for role management.

9.1 System Architecture and Constituent Modules

The role mining system (RMS) consists of four functional modules: RMP

and Algorithm Selector, Test Dataset Generator, Role Mining Processor and

Algorithm Analyzer. The architecture is shown in figure 9.1.

In the following, we describe each composing module in detail.

RMP and Algorithm Selector

This module includes RMP Selector and Algorithm Selector components.

The whole role mining request starts from RMP Selector component where

a user select a specific role mining problem and an algorithm. The suite is

actually open in a sense that it could be extended to enclose more role mining

problems. The user needs to choose a role mining problem and optionally
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Figure 9.1. The Role Mining System

its variations which are the δ-approx variant and the MinNoise variant. The

user chooses targeting algorithm from Algorithm Selector component. Note

that the user can select more than one algorithm at one time. We have

implemented our own proposed ones. In the future, we plan to implement

ORCA [87] and all other significant role mining approaches, we also plan to

carry out a systematic study of several comparative approaches to determine

what is better in general and in specific situations.
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Test Data Generator

In this module, the user has the option of either choosing the existing data

sets provided by various sources, for example, the data set by Ulrike Steffens

[87], or randomly generating data set for testing purpose. For the latter,

the user needs to assign values to at least 5 parameters (#users, #roles,

#permissions, #maximum roles per user, #maximum permissions per role)

which are necessary for the data set to be generated appropriately. On top of

that, the module simulates the reality by enabling the user to introduce noise

into the data set to be generated. That is, the user has options to choose the

combination of 3 types of noises which are general, additive and subtractive.

Also, the user can indicate the degree of noise in percentage. The user can

also choose the number of times to run for the set of parameters chosen in the

previous module. Since the test data generator algorithm is randomized, the

generator defaults to run 5 times on each particular set of parameters. We

also plan to add additional component called Semantic Enhancement which

incorporate reasonable semantics into the generated data to make them more

realistic. In order to do so, surveys need to be conducted to determine the

right collection of such semantics in order to incorporate role, object and

permission hierarchies into the test data generation. The randomization

strategy, equipped with the semantics enhancement can give us sufficiently

good dataset for testing.
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Role Mining Processor

This module is to carry out the role mining process based on the select role

mining problem, algorithm and test dataset. Note that when the test dataset

is randomly generated in the module above, the number of times that each of

the chosen algorithms will be run on the dataset is based on the parameter

that the dataset is run when being generated in Test Dataset Generator

module. For example, if the generator is set to run randomized algorithm

for data generation 10 times, each of the chosen algorithms for role mining

will be run on each of the created data sets. Then all results reported for

a specific parameter set are averaged over the 10 runs. The results after

the processing will be both directly returned to the user and saved in the

testing result database for future references. Once receiving the result the

user is entitled to do an single algorithm analysis or comparison among the

algorithms selected in RMP and Algorithm Selector module.

Algorithm Analyzer

The Algorithm Analyzer module aims to analyze the effect of different fac-

tors(parameters) on accuracy, efficiency and noise robustness of the targeted

role mining algorithm(s) under a specific situation(parameter set). Due to

the infeasibility of checking the effect of each group of parameters, we check

the effect of one parameter at a time by keeping others fixed. Since we have

5 parameters, we need 5 set of experiments to check all of them in an in-

dependent manner. Therefore, for each of the three features, the user could

pick any combination of the 5 sets of experiments depending on which pa-
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rameter(s) the user shows interested in. In this module, the user can analyze

any combination of the three features. Note that the noise robustness factor

is automatically set ON for each of the chosen algorithms if the test data

is randomly generated with noises, or the user selects the existing dataset

which is featured with noise. The Algorithm Analyzer is also designed to

enable the user to compare the algorithms in different aspects if more than

one algorithm is selected in RMP and Algorithm Selector module.

9.2 RMS Implementation

We has implemented Role Mining System (RMS) as a three-tier web-based

system, which includes front-end user interface, web server in the middle

and database server at the back end. The Web-based user interface is im-

plemented in JSP, HTML. The middle tier interacting with users runs on

IIS Web server. JDBC is used to connect to the database. We used Oracle

10G DBMS to store the test datasets collected from various sources, and the

results of the previously conducted tests.

Currently, we only implement the Algorithm Selector module. We will

leave the remaining modules as the future work. Note that we will keep

adding new features and algorithms into this systems with the further explo-

ration of role mining paradigm. Figure 9.2(a) shows the login page, the user

should sign up first in Register page shown in Figure 9.2(b) before logging in,

the system prompts the user for signing up since the it can provide the user

to customize the views. In addition, the user account could enable the user to

save the running results onto the server for future reference. In the following,
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we discuss the tabs RMP, MinNoiseV6, MinNoiseV7, and DBTiling.

Figure 9.2(c) shows the page for basic-RMP. Here the user has two ways

to provide the data in order to run basic-RMP: either the real data can be

uploaded, or the system can generate a random dataset with the provided

parameters for user count and privilege count. The results can be shown

in HTML web page view or downloaded in different formats. In the future,

we plan to give the user more options on choosing how the result could be

shown. The user may opt for having only the final role sets generated by the

selected algorithms or viewing the intermediate step by step executing result

of the algorithms. Alternatively, the user could also have only the first n (say

10) iterations shown in details for further understanding how the algorithm

functions.

We have implemented MinNoise-RMP in two ways, the tab MinNoiseV6

shown in Figure 9.2(d) generates the roles without introducing errors. This

means that discovered roles can exactly represent the UPA, the tab MinNoi-

seV7 shown in Figure 9.2(e) introduces the inexactness in a sense that the

discovered roles do not have to exactly cover the entire UPA.

Allowance of inexactness is justified since data in real life is never com-

pletely clean, therefore mistakes can always be made, and asking for roles

to match those mistakes would actually worsen the situation. Moreover, in

some sense, it may be possible to find more fundamental roles by only trying

to match a certain percentage of the original UPA.

We justify further the inexactness by the fact that at times we may be
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satisfied with an approximate match. For example, consider a case where we

have 1000 users and 100 permissions. The size of UPA is 5000 (i.e., 5000

user-permission assignments are allowed out of the possible 100, 000). Now,

suppose 100 roles are required to exactly match the given user-permission

data. However, if we allow approximate matching – i.e., if it is good enough

to match 99% of the matrix (4950 of the user-permission assignments), as-

sume that the minimum number of roles required is only 60. As long as we

do not add any spurious permissions (i.e., no extra 1s are added), the second

case is clearly better than the first, since we significantly reduce the number

of roles. This significantly reduces the burden of maintenance on the security

administrator while leaving only a few user-permission assignments uncov-

ered. Also, any given user-permission assignment is only a snapshot of the

current state of the organizations. Permissions and (to a lesser extent, Roles)

are dynamic. Thus while exact match may be the best descriptor in the static

case, it is probably not good for the dynamic case. Approximate match might

be a prudent choice for dynamic data. The notion of δ-consistency is use-

ful, since it helps to bound the degree of approximation. Therefore, we now

define the approximate Role Mining Problem using δ-consistency.

We’ve also implement Database Tiling Problem shown in Figure 9.2(f).

The efficiency of Database Tiling Problem significantly lies in the usage of

several pruning techniques more details can be found in [22]. Essentially, the

solutions ask for pruning of an exponential number of candidates (effectively

candidates are generated according to Rymon’s set enumeration tree, which is

exponential in the worst case.) Thus, if the pruning strategies do not work,
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or even in cases where there are lots of permissions, we have a significant

scalability problem. The difference between Our subset enumeration based

algorithm and the Database Tiling Problem is that our solution is based on

the FastMiner algorithm that can significantly cut down on the cost while

still retaining very good accuracy.
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(a) index

(b) register
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(c) rmp

(d) MinNoise V6
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(e) MinNoise7

(f) Tiling Database

Figure 9.2. An example of the Role Mining System
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CHAPTER 10

SUMMARY AND FUTURE RESEARCH

Role engineering is considered essential before all the benefits of RBAC can be

realized. On the other hand, it is one of the major challenges and the costliest

component of RBAC implementation. However, the increasing popularity

and the extensive applications of RBAC calls for efficient solutions to role

engineering. This has resulted in tremendous research effort in this area.

10.1 Contributions

Researches on role engineering is still preliminary and much of the effort is

focused on heuristically finding a set of candidate roles. The main limita-

tions of these works is that they lacks integrative view of the entire set of

roles when justifying for the roles identified. Therefore, no criterions can be

used to evaluate those works. This dissertation pioneered this area, it filled

the gap by proposing a suite of metrics. In summary, the research work in

this dissertation contributes to the role mining significantly in the following

aspects:

First, we formally define a variety of role mining problems each of which

has an different objective which is both meaningful and in the view of the

entire collection of roles in contrast to one single role. We are the first to
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introduce objectives into the role mining problems since, to the best of our

knowledge, the notion of an objective which aims to optimize a criterion

does not exist in previous research works in role mining paradigm (even from

the perspective of one single role) even though the extensive applications of

RBAC urgently call for the association of meaningful and diverse objectives

with the role mining problem so that in order to meet the specific orga-

nizational needs, system administrators can choose a specific role mining

problem which has a suitable objective. The role mining problems under

investigation include but not limited to the Basic-RMP, the Edge-RMP, the

MinPert-RMP, the Role Hierarchy Mining Problem(RHMP). For each prob-

lem, we also considered its different variations which we feel have strong

pragmatic significance. In detail, we explored the δ-approx Basic-RMP and

the MinNoise Basic-RMP which are variants of the Basic-RMP, the δ-approx

Edge-RMP, and the MinNoise Edge-RMP as the variants of the Edge-RMP.

It is worth to note that the number of good objectives can be arbitrar-

ily large and by no means limited to those proposed in our dissertation.

Therefore, it is almost impractical to enumerate all. The fact that in the dis-

sertation we endeavored to discuss only a few number of role mining problems

(each of which has a different, associated optimizing objective) which we feel

typical and significant doesn’t necessarily mean that the number of role min-

ing problems worth to explore will be bounded by them. On the contrary,

role mining is rather an extensible and open-ended research area in that new

problems which have good/interesting objectives should always be added in

and every facet of each of them should be explored thoroughly.
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Second, we formulate the role mining problem as nothing but the binary

matrix decomposition problem. Therefore, for a specific UPA, different role

mining problems are actually the different decompositions of same binary

matrix with each of them being associated with a different decomposition

criterion. We believe we are the first to formulate the role mining problem

this way. As a significant advantage, this modeling naturally prevents the

solutions we have proposed to role mining problems from suffering a serious

drawback that a permission can only associate with one role at most. To put

it another way, proposed solutions satisfied all following observations due to

the way we model it as binary matrix decomposition.

• Roles can be assigned overlapping permissions.

• The above also implies that a particular permission might be held by

members of different roles. That is, permissions are not exclusive to

roles nor are they exclusive to a hierarchy.

• A user may play several different roles, and the user may have a certain

permission due to more than one of those roles (since multiple roles may

include the same permission).

This is essential for role mining since ignoring any of them would make

the job easier, but may result in more inaccurate set of roles. This also

differentiates our solutions from the traditional clustering ones. For example,

by missing the first observation, role mining will be trivially degraded to a

non-overlapping clustering problem in data mining paradigm.
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Third, we provide the theoretical complexities of each role mining prob-

lem. This is critical since we need to use them as a guide to more efficiently

search for a solution, i.e., we don’t want to fall into the swamp of finding a

polynomial solution while the problem is proved to be NP-complete. There-

fore, it is essential to first complete the complexity analysis of the problems

in the suite to avoid the waste of effort in search of exact solutions.

Fourth, for some role mining problems, instead of ”reinventing the wheels”

and constructing a new solution which, however, is at the same level of effi-

ciency as the existent, we reused what has already been proved to be func-

tional to address our problems. That is, we investigate the relation of certain

role mining problems with the problems already identified, studied and solved

in data mining and data analysis literature. These role mining problems have

been proved to be in essence matched to those known problems, therefore,

the existing solutions of the solved problems have been directly applied to

ours. This serves as one of the novel aspects of the dissertation. This will

serve as one of the novel aspects of the dissertation. In this dissertation,

we demonstrate the direct equivalence of the MinNoise RMP to the Discrete

Basis problem and we also demonstrate the equivalence of the Role Mining

Problem with the Tiling Databases problem.

Fifth, we propose a brand-new heuristic solution to the role mining prob-

lems defined. in this dissertation, we presented an unsupervised subset enu-

meration based role mining process, which has three major advantages as

compared to earlier role mining proposals. (1) The first step of mining roles

is to select a set of candidate roles. the solution to Tiling Database Problem
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ask for pruning of an exponential number of candidates (effectively candi-

dates are generated according to Rymon’s set enumeration tree, which is

exponential in the worst case.) Thus, if the pruning strategies do not work,

or even in cases where there are lots of permissions, we have a significant

scalability problem. Instead, we have come up with a solution based on the

FastMiner [100] algorithm, FastMiner generates candidate roles simply by

intersecting all unique user pairs. The results show that FastMiner can sig-

nificantly cut down on the cost while still retaining very good accuracy. (2)

We select the final roles from among these candidates. For this selection,

we follow a greedy strategy similar to database tiling. Essentially, the best

candidate role is selected from the remaining candidate roles until the origi-

nal UPA can be completely reconstituted. Thus, in each iteration, for every

remaining candidate role, we compute the uncovered area of that role. The

uncovered area of a role can be easily computed by finding the number of 1s

in M(UPA) that are not already covered by any of the roles in ROLES (the

current minimum tiling). (3)This propose solution can also be modified to

work for the δ-Approx RMP. Instead of terminating when the UPA is com-

pletely reconstituted, the algorithm for δ-approx RMP stops as soon as the

UPA is reconstituted within δ. Since the basic RMP is only a special case

of the δ-approx RMP (with δ = 0). Essentially, a single algorithm can serve

both the RMP variants by simply setting a parameter. We believe that this

is significant in that one can implement one single alogrithm and can tune it

to obtain the results of different RMP variants. This lends itself for security

administrators to pick and choose the RMP variant that is applicable to the
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organization at the current situation.

Finally, we propose our noise model that helps in evaluating the algo-

rithms against their robustness to noise. In reality, no data is clean, and

the user-permission-assignment is no exception. Permissions are accidentally

assigned to those who do not need them, or are not revoked once the per-

mission is no longer needed. In addition, some users may not have all the

permissions that others performing similar job functions have. Since noise

in general is random in nature, we believe that using inexact variants of the

RMP in discovering roles could use this noise to its benefit and may have

little impact on the outcome of the role discovery process. In addition, we

also propose the concept of noise degree, and define the noise robustness

evaluation approach [103]. Each of these has a significant impact on how we

measure the accuracy of the role mining algorithms.

10.2 Research Plans on basic-RMP

Mapping Other Domains onto The Basic-RMP: In this dissertation,

we have mapped these problems to the recently proposed problems in the

area of data mining and data analysis – the database tiling and the discrete

basis. As a result, we could borrow the implementation solutions proposed

for these problem and directly apply them to solve the basic RMP and Min-

Noise RMP. Also, in mathematics, the problem of finding boolean rank /

schein rank of a matrix is exactly the same as the basic RMP. Other proper-

ties of the boolean rank have also been studied [9]. It would be interesting to

investigate what other results are directly applicable to our problem and see
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if they offer new insight into our domain. Bipartite graphs and bicliques are

another way of defining the RMP and its variants. Several papers have looked

at different variants of this (e.g., [41] and [80]) – though most concentrate on

finding one biclique from a bipartite or general graph. Conjunctive clustering

[73] generalizes this to finding multiple bicliques, which is more relevant to

our problem. We also need to see which solutions among this work can be

utilized for our problem. Moreover, most of the role mining approaches em-

ploy clustering techniques or its variants to discover roles. We are currently

investigating other data mining techniques including association rule mining

(specifically closed itemset mining [23, 66]) for role discovery.

Semantics Enhancement: Our subset enumeration based heuristic(based

on user counts) to decide which candidate roles are most useful is quite

rudimentary. This does not take into consideration any semantics or other

available domain knowledge. We are investigating other metrics that could

additionally or alternatively be used to identify the best roles to consider.

Other work includes using the semantics associated with permissions. The

only data set available to us had no semantics and so our process found roles

purely on the basis of whether a user had a permission or not. If infor-

mation on the type of permissions or resources were available, it could be

used to further refine the roles. Permissions that are semantically related

to different functions could be separated when post-processing the results,

thus uncovering whether a potential role (cluster of permissions) was actu-

ally a role or a blend of two or more roles. Semantics would also be helpful

in pre-processing data. By knowing the semantics of the resources, permis-
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sions associated with both organizational as well as functional roles might be

distinguishable, making further refinement of roles found more accurate.

Improvement of the Heuristic Solution on MinNoise-RMP: In this

dissertation, we have presented a heuristic solution for the MinNoise role

mining problem (also known as the discrete basis problem), which is the

problem of finding the roles that can be used to best approximate the orig-

inal user permission assignment. Finding such roles / basis vectors can be

mapped to many real world problems including characterization of a set of

documents with an optimal set of words, defining an optimal set of roles

that characterizes the existing security state of an organization, among oth-

ers. Our experimental results demonstrate that our proposed solution, which

is based on a subset enumeration based greedy algorithm, outperforms the

prior solution for the DBP. In the future, we plan to improve our algorithm

in two ways. First, the final association between users and permissions can

be done in a better fashion to ensure that more roles never lead to worse

accuracy. Secondly, instead of doing this association at the end, we could

actually associate users with candidate roles right at the start, and then cor-

respondingly choose the final roles. This is likely to give much better results

though it would probably require more computation.

10.3 Research Plans on Edge-RMP

Comparing with Solution Based on Binary Integer Programming:

Recently Lu et al. [60] present a unified framework for modeling the optimal

binary matrix decomposition and its variants using binary integer program-



182

ming. Such modeling allows them to directly adopt the huge body of heuristic

solutions and tools developed for binary integer programming. Our future

research effort will be to compare the efficiency of our algorithm with theirs

by running both test data and real data.

Considering More Interesting Metrics: Also, since Lu et al. [60] have

mapped this problem to the well established linear programming problem.

As a result, the implementation solutions proposed for these problems could

be borrowed and directly apply them to solve the basic- RMP and the Edge-

RMP. In the future, we will explore other domains which could be similarly

mapped to our Edge-RMP problem. Therefore we could explore the possi-

bility of utilizing their solutions for our problem. In addition, there are more

interesting metrics such as Edge-RMP + basic-RMP and UA+basic-RMP.

Since the Edge-RMP is NP-complete, it is important to come up with heuris-

tic strategies for achieving implementations with reasonable complexity.

10.4 Research Plans on MinPert-RMP

Exploring Better Weight Metrics: The dissertation provides a heuristic

algorithm for the minimal perturbation RMP. Even the experimental results

indicate that the minimal perturbation RMP is a good way of balancing the

deployed roles versus the optimal roles. It is important to note that, in many

cases, while migrating to a new set of roles, one should be able to specify

the desired set of unchanged parameters. These could include certain user-

assignments, certain roles or certain role-permission assignments. In future

research, we plan to include a different weight metric to emphasize certain
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parameters to be unchanged while migrating.

Finding Out Containment Amongst Roles: Additionally, our minimal

perturbation RMP only finds the new set of roles, but does not provide a

mapping between exiting set of roles to the new set. This would involve,

in addition to discovering the similarity/distance, finding out containment

amongst roles. Additionally, there could be some currently specified separa-

tion of duty constraints. So the role migration process should be as disruptive

as possible with respect to these constraints.

10.5 Research Plans on RHMP

Removing Constraints Applied to Current Heuristic: Our approach

towards constructing role hierarchy is that once we generate the minimal set

of roles, we can apply RH-Builder to it to come up with the hierarchy with

the minimal number of edges. However, this algorithm essentially breaks one

optimization problem into two subtasks. One weakness of it is that it not

only serializes the generation of role set and hierarchy, but also specifies the

order that roles to be generated first followed by the hierarchy. Therefore,

the hierarchy construction is conditioned on the generation of roles. This

creates extra constraints and overlooks the possibility that hierarchy could be

created simultaneously with the discovery of roles. Thus the solution reached

by our algorithm may not really be optimal. Our research concentration in

the future will be to find better solution which will remove the constraints

added by the current one.

Set Up Algorithm Evaluation Standards: We also plan to work on how
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to set up the standards against which a role hierarchy can be evaluated and

therefore, two role hierarchies built out of the same UPA can be compared

against each other according to universal metrics.

Adding Semantics: Another area we plan to work on is to enhance the

optimal role and hierarchy computation with semantics by considering the

semantics of the objects and their attributes. This will help to discover more

meaningful roles. Additionally, we plan to evaluate the proposed approach

in this dissertation using both simulated and real data sets. We will also

develop solutions for the MinPert RHMP, which is likely to be of the most

use to organizations.
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