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Abstract of the Thesis

Make-to-Stock Production-Inventory Systems
with Compound Poisson Demands, Constant Continuous

Replenishment and Lost Sales

By Junmin Shi

Thesis directors: Benjamin Melamed and Michael N. Katehakis

Supply contracts are designed to minimize inventory costs or to hedge against undesirable
events (e.g., shortages) in the face of demand or supply uncertainty. In particular, replenishment
terms stipulated by supply contracts need to be optimized with respect to overall costs, profits,
service levels, etc. This thesis considers a continuous-review, single-product Make-to-Stock
production-inventory system with infinite base-stock level, compound Poisson demands and
constant continuous replenishment under the lost-sales policy, in which the inventory is subject to
a cost function consisting of holding costs and lost-sale penalties. The main objective is to
minimize pertinent inventory cost functions (the expected discounted cost and the time average

cost) with respect to the replenishment rate.

For the expected discounted cost case, we first derive an integro-differential equation system for
the expected discounted cost incurred up until the first loss occurrence, conditioned on an initial
inventory level, from which we obtain the Laplace transform for the conditional expectation of
the discounted cost over an infinite time horizon. For a system starting from an arbitrary initial

inventory level, we obtain a closed form formula for the expected discounted cost via the

il



inversion of its Laplace transform. For the special cases of constant or proportional penalty
function and exponentially distributed demand sizes, we exhibit an explicit expression for the
conditional expectation of the discounted cost. Finally, we minimize the cost function with
respect to the replenishment rate and provide an algorithm to compute the attendant optimal
replenishment rate. We further obtain a closed form formula for the time-average cost under a
suitable stability condition. For exponentially distributed demand sizes, we exhibit explicit
solutions for the optimal replenishment rate for both the expected discounted cost function

conditioned on initial empty inventory, as well as the time-average cost function.

For each case, numerical studies are conducted to illustrate our results and investigate further

properties of the system.

Keywords and Phrases: Make-to-Stock Production-Inventory Systems, Compound Poisson,
Conditional Expected Discounted Cost, Time-Average Cost, Lost-Sales, Constant Continuous

Replenishment.
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Chapter 1 Introduction

Supply contracts are designed to minimize inventory costs or to hedge against
undesirable events (e.g., shortages) in the face of demand or supply uncertainty [Simchi-Levy et
al. (2008)]. In particular, replenishment terms stipulated by supply contracts need to be
optimized with respect to overall costs, profits, service levels, financing costs, etc. In this thesis,
we consider a Make-to-Stock (MTS) continuous-review single-product inventory system with
infinite base-stock level, compound Poisson demands and constant replenishment, subject to the
lost-sales rule. In this system, unsatisfied demand can be partially fulfilled from on-hand
inventory (if any) and excess demand (shortage) is lost. The excess demand is referred to as the
lost-sale size. Replenishment is continuous at a constant (deterministic) rate, which in our model
can also be interpreted as a production rate. The system incurs a cost function consisting of two
types of costs: holding cost and lost-sales cost. A holding cost is incurred as a function of the
inventory on hand and assessed at a constant rate per unit of on-hand inventory per unit time. A
lost-sales cost is a penalty imposed at each loss occurrence, and is assumed to be a function of the
quantity of the unsatisfied demand lost-sale size. We consider two kinds of cost functions:
discounted costs and time-average costs. For the first kind, the cost function is the expected costs
discounted to time 0, conditioned on the initial inventory level, and as such the time value of cash
flows is accounted for, while for the second kind, the cost function is not undiscounted but rather

time averaged.

The objective of this thesis is twofold: first, to derive expressions for the computation of the
aforementioned cost functions, and second, to derive the optimal replenishment rate that

minimizes the respective cost functions.
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Throughout the thesis, we use the following notational conventions and terminology. Let R
denote the set of real numbers. Forany z € R, " = max{x,0}. The indicator function of set
A is denoted by 1, . For a random variable X, its probability density function (pdf) is denoted
by fx(x), cumulative distribution function (cdf) by Fx(x) and the complementary cdf by

Fy(xz)=1— Fy(x). If real functions f(x) and g(x) are defined on [0,00), then the

convolution function of f(x) and g(x) is given by

u
(Frg)w = [ flu—)ge)de.
The n-th fold convolution of function f(-) is denoted by f*™(:). The Laplace transform of a

function f(x) is defined by

= 2z
£lfz)=F= = [ e f@)da,
and the corresponding inverse Laplace transform is denoted by the following contour integral

1 Y¥+iR

flx)=.2£" [f](:r:) = lim — e’ f(z)dz, (1.1)

Rooo 2qrg J y—iR
where -y is any real number that exceeds the real part of all the singularities of f(z) [Widder,

(1959)]. Throughout this thesis, we restrict the Laplace domain to the real line unless otherwise

specified.

An arrival process {A;:4>0} is a random sequence, such that for all >0, A, >0 and
A, > A, with probability 1 (w.p.1). A real-valued process {X(t):¢>0} has conditionally
stationary increments with respect to process {A(%): t > 0}, if for any n>m >0 and any real

t>0and >0,



P{X(A, +1)- X(4,) <z| X(4,) = u} = .
A real-valued process {Z(t):¢>0} is said to have conditionally stationary discounted

increments with respect to {X(t): ¢ >0} and {4, :4 >0}, if forany n>m >0 and any real

x,uand t=>0,

P{Z(A, +t)~ Z(A,) Sze ™ | X(4,) = u} = s
P{Z(A,, +t)~Z(A,,) <ze | X(A,,) = u}
In the sequel, {X(¢): ¢ >0} will stand for the inventory process, {4, : % >0} for the demand
arrival  time  process, {Z(t):t>0} for the discounted cost process and

N ,(t) =sup{n: A, <t} is the number of arrivals up to time ¢.

Finally, we shall make repeated use of the following relation for any non-negative valued random
variable X,

00
0

ix(z) = f e “Fy(z)dz :é

1+ ‘l;oo e “dFx(z)

= é[l . 16 B

where the second equality follows by integration by parts.

This thesis consists of two parts, each treating the production-inventory system described in
Chapter 3. The first part studies expected discounted costs, conditioned on the initial inventory
level, while the second part studies time-average costs. The rest of this thesis is organized as
follows. Chapter 2 provides literature review. Chapter 3 formulates the production-inventory
model under study. Chapter 4 studies the expected discounted cost function and its optimization,
while Chapter 5 treats the optimization for the time average cost function. Some further
discussions of the system are provided in Chapter 6. Consequently, Chapter 7 concludes this

thesis and provides some discussion for future research.



Chapter 2 Literature Review

There is a large body of literature addressing the management of inventory systems with
compound Poisson demands, that is, demand arrivals follow a Poisson process, and the
corresponding demand sizes follows an iid arbitrary distribution, independent of arrivals. Early
papers on inventory process include Richards (1975), Thompstone and Silver (1975), Archibald
and Silver (1978), Feldman (1978), and Federgruen and Schechner (1983). Tijms (1972), Sahin
(1979, 1983), and Federgruen and Schechner (1983) generalize the compound Poisson
assumption to a general compound renewal processes, in which both the demand inter-arrival
times and demand sizes have arbitrary distributions. Ohno and Ishigaki, (2001) considers a multi-
item continuous-review inventory system with compound Poisson demands under a general cost
structure. Presman and Sethi (2006) provides a detailed literature review with a comprehensive
reference list. The aforementioned papers assume various replenishment policies, but exclude

continuous replenishment.

Production-inventory systems with constant replenishment and various demand processes have
been previously studied in literature. Gavish and Graves (1980) studies a one-product production-
inventory problem where demand is governed by a Poisson process and unsatisfied demand is
backordered. The system is subject to a fixed setup cost, a liner inventory holding cost and a
linear backorder cost. To minimize the expected cost per time unit, the paper treats the problem
as an M/D/1 queueing system and proves that the optimal policy is a two-critical-number policy.
Graves and Keilson (1981) considers a one-product, one-machine production-inventory problem,
where the demand process is governed by a compound Poisson process with exponential demand
sizes and the system is subject to a (I,R) policy with a constant replenishment rate. The paper

analyses the cost optimization problem as a constrained Markov process using the compensation



method and the optimal policy is obtained via a search of the policy space. Graves (1982)
presents two models for inventory systems with constant production rate of perishable items. For
each of these models, the paper derives analytical expressions for the steady-state distribution of
system inventory, using a queuing-theoretic approach. The steady-state results are then used to
evaluate various system performance metrics. De Kok (1985) deals with a one-product
production/inventory model with compound Poisson demands and lost-sales, where the
production rate can be dynamically adjusted in order to cope with random fluctuations in demand.
The paper considers the average number of lost-sales occurrences per unit time and the fraction of
lost demand as service level measures. For a two-critical-number control rule, it derives
practically useful approximations for the switch-over level in order to achieve a prescribed
service level. Gullu and Jackson (1993) considers a one-product inventory problem with a
constant production rate and a demand process with stationary and independent increments,
where the replenishment policy is produce-up-to-S. The paper derives the stationary distribution
of the inventory level by extending existing results for dam systems, and then optimizes the time-

average cost of the system, by exhibiting a closed form formula for the optimal policy.

A number of papers consider production-inventory problems for an integrated supply chain
system, transportation and distribution. Lei, et al (2006) studies the integrated production,
inventory, and distribution routing problem (PIDRP). Optimally solving such an integrated
problem is generally difficult due to its combinatorial nature, especially when transporter routing
is involved. The authors propose a two-phase solution approach to this problem, which can
simultaneously coordinate the production, inventory, and transportation operations over the entire
planning horizon, without the need to aggregate demand or relax constraints on transportation
capacities. Armstrong et al (2008) studies the zero-inventory production and distribution problem
with a single transporter and a fixed sequence of customers, where a subset of the customers is

chosen from the given sequence to receive deliveries so as to maximize the total demand
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satisfied, without violating the product lifespan, the production/distribution capacity, and the

delivery time window constraints.

Discounted costs are also frequently addressed in the inventory management literature. The
pioneering work in Hadley (1964) offers a simple comparison of optimal order quantities
computed using average costs with those computed using discounted costs. Constantinedes and
Richard (1977) offers an infinite-horizon, continuous time, discounted cash management model
with fixed and proportional transaction costs and linear holding and penalty costs. Federgruen
and Schechner (1983) considers a single-item continuous review inventory model with a fixed
delivery lag and compound renewal demand under the backlog policy. The paper presents cost
formulas for the expected discounted inventory cost as a function of the inventory position just
after a replenishment decision points. Wee and Law (2001), Bose, Goswami and Chaudhuri
(1995), and Ray and Chaudhuri (1997) present variations of a deteriorating inventory system with
price-dependent demand model taking into account the time-value of money. Presman and Sethi
(2006) considers inventory models with compound Poisson demands under discounted and long-
run average cost structures. This paper connects two classical inventory results: the EOQ formula
and the optimality of an (s,S) policy in stochastic inventory models with a fixed ordering cost.
Under the two different valuation frameworks, i.e., the discounted cost and time average cost, the
paper proves that the optimal ordering level s is unique, but the order-up-to-level S may not be.
They also provide a detailed literature review on the optimal ordering policy for Poisson demand

processes and fixed ordering cost.

A number of papers study the derivation of optimal or near-optimal inventory replenishment,
which minimize the time-average or expected discounted costs. Springael and Nieuwenhuyse
(2005) studies a lost-sales inventory model with a compound Poisson demand process, in which

replenishment lead times are negligible. On-hand inventory is managed according to a (0,B*)



policy, namely, when on-hand inventory drops to 0, the retailer instantaneously gets a fixed
amount of B* units from the central stockroom as replenishment. The paper analyzes the time-
average cost of the system and provides a steepest-descent-based algorithm to calculate the
optimal B* parameter. In a similar vein, Minner and Silver (2007) studies an inventory system
with compound Poisson demands and negligible replenishment lead times. The paper formulates
the optimization problem as a Markov-decision-problem, which can be applied to inventory
systems with a small number of products. For a large number of products, the paper proposes
several heuristics for the optimal reorder points and reorder quantities. Zhao and Katehakis
(2006) studies a single-item stochastic inventory system with a minimum order quantity (MOQ)
over finite and infinite time horizons under the discounted cost criterion. The paper characterizes
the optimal ordering policy everywhere in the state space outside of a state interval for each time
period, and develops an upper bound and a lower bound for these intervals. Zhou, et al. (2007)
considers a model of single-item periodic-review inventory system with stochastic demand, and
linear ordering cost, where in each time period, the system must order either no items or at least
MOQ items. The paper studies the performance of a simple heuristic policy, easily implementable
in practice, and develops an algorithm to compute optimal parameters. For additional literature,

refer to Yang, (2004), Yang and Yu (2002), and Yang and Qi (2010).

MTS production-inventory systems have also been studies via other techniques. Zhao and
Melamed (2006, 2007) apply the stochastic fluid model (SFM) paradigm to a class of single-
stage, single-product MTS production-inventory systems with stochastic demand and random
production capacity, where unsatisfied demand is either lost or backordered. The authors derive
formulas for infinitesimal perturbation analysis (IPA) derivatives of sample-path time averages of
inventory level and lost sales, as well as backorder levels, with respect to the base-stock level and

a parameter of the production rate process. It is further shown that all IPA derivatives under study
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are unbiased and fast to compute, thereby providing the theoretical basis for online adaptive

control of MTS production-inventory systems.

Production-inventory systems with constant replenishment rates are commonly seen in the
manufacturing industry and in service organizations. For example, a pharmaceutical manufacturer
(or a chemical industry) often set up production lines to satisfy incoming demands from
customers. As a consequence of high setup times and costs, no modification for the production
line is done after the process has been started. The importance of an optimal production rate as a
decision in the production planning stage can be seen as follows. If the production rate is high
there will be extra inventory held in stock and high carrying costs will be incurred. On the other
hand, if the production rate is low there will be high penalty costs. Such models can also be

applied in service organizations, such as blood banks and food companies etc.

From the managerial point of view, inventory models are treated differently from those of
queueing. However, similarities between the mathematical formalisms of inventory models and
queueing have been observed from a fairly early stage of their development. The linkage between
those two areas has been studied by Prabhu (1965). For other related recent work in the broader
area of service systems we refer the reader to Adan, et al. (2005), Perry and Stadje (2003), and Li

and Glazebrook (2010).

We are not aware of any previous work on stochastic models with continuous replenishment and
discounted or time-averaged cash flows. For a good recent survey of related Markovian demand

inventory models and theory, we refer the reader to Beyer, et al (2010) and references therein.



Chapter 3 The Inventory Process

All random processes in this section are defined over a common probability space
(€2, F,P). Consider a single-product continuous-review production-inventory system, subject to
the lost sales rule. The demand arrival stream constitutes a compound Poisson process with rate

A and arrival times {A,L. : 120}, where time A, =0 by convention. Thus, the corresponding

sequence of interarrival times, {7} : 4> 1}, where T, = A, — A,

i_1» 1s exponentially distributed

and the sequence is identically independently distributed (iid). The corresponding demand sizes

form an iid sequence {D, :4>1} with a common density function fj,(z)and common mean

demand, pp= E[D] < 00, where demand size Di arrives at time Ai . Replenishment occurs
at a constant (deterministic) rate p > 0. Let {I(¢): ¢ > 0} denote the right-continuous

inventory process, given by
I(t)=I(0)+pt— Z [D —-L(A,), (3.1)

where IN ,(t) is the number of demands arriving over (0,%] and

(3.2)

5o - {[Di LA, t=A,,i=12,

0, otherwise

is the lost-sales size (excess demand that cannot be satisfied from on-hand inventory under the

lost-sale rule). Let {7; : 7 > 0} be the sequence of loss occurrence times, given by

{inf{t > 7, L(t) > 0}, if there exists £ > 7, ;s.t. L(t) >0 (33)
T; = .

oo, otherwise
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where 7, =0. Throughout this thesis, we focus our interest on the case where 7, <oo. Let
{J,:k=1,2,..} be the sequence of random arrival indexes at which loss occurs, namely,

Figure 3.1 illustrates the evolution of the inventory process with lost-sales over an infinite time

horizon.
I(H)A
Skpe= P
0N A)
D / /*‘
1(0) / AT) , e \1r,) ()
27 e DJ;< .
: Dy < / / >
0 4 1| Ty 1 T3 ¢

i &L(Ts)
i FE(T,)
Y

Figure 3.1. A Sample Path of the Inventory Level Process, {I(t)}

Figure 3.2 depicts the detailed evolution of a sample path of the inventory process over the

interval [0,7].
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I(t)'“

1(0)

Figure 3.2. A Sample Path of the Inventory Level Process over the Interval [O,Tl]

We next proceed to study some properties of the system.

Proposition 3.1

The inventory process, {I(t)} given by Eq. (3.1) has conditionally stationary increments with

respect to {A,}.

Proof.

Follows directly from Eqs. (3.1) and (3.2), since the process {I(t):t > 0} is a function of a

given initial state, a Poisson arrival process, an iid demand size process and a deterministic

replenishment rate. o

Note that Proposition 3.1 implies that the inventory process, {I(¢)} is Markov renewal process,

as imbedded with respect to the arrival times or lost-sale occurrence.
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Next, consider the following auxiliary function
W(2)=Afp(2)+pz—A—r, (3.4)

where constant 7 > 0 is the interest rate.

The following Lemma provides some properties for the roots of the equation ’LP(Z) =0.

Lemma 3.1
For any 7 >0, the equation ¥(z) =0 has two distinct roots, & and @, where & > 0 and

0<0.

Proof.

We first prove that the function )(z) is convex by computing its first and second derivatives,

d o —zx
@) =p-A[ we T fp(a)de, (33)

2 o0 —zx
%Tﬁ(z):)\ [T 7 e ) dz, (3.6)

Since the case of zero demand with probability 1 is precluded, it follows from Eq. (3.6) that

dZ
——(z) > 0. (3.7)
dz?

Note that, forr >0, 1(0) <0, 1(c0) =00 and @p(—oc) =co. Consequently, by the
continuity of %)(2), there must be exactly one positive root and exactly one negative root for

1(z) = 0, and the proof is complete. O
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In view of Lemma 3.1, we have
Afp€)+p€—A—r=0, (3.8)
Afp(@)+pO—X—r=0. (3.9)

Figure 3.3 outlines the key features of the function )(z) and the roots of the equation

P(z) =0.
A
¥(2)
/
a\ 0 3 "
-r
Figure 3.3. Illustration of the Function %)(z) and its Root Structure

Lemma 3.2

The following relations hold:
™ =
p =g+ p(E) (3.10)

where the function & = &(p) , implicitly defined by Eq. (3.10), is strictly decreasing in p.

lim &(p) = o0 (3.11)
p—0

Lig(l)p&(p)Z)\-i-T. (3.12)
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Proof.

To prove Eq. (3.10) note first that by Eq. (3.8),

r A ~
_T AL , 3.13
P €+ c fD(ﬁ)} (3.13)

Eq. (3.10) now follows from the above equation with the aid of Eq.(1.4).

To prove that & =&(p) is decreasing in p,we differentiate Eq. (3.10) with respect to p,

yielding

d
The equation above implies d—ﬁ(p) < 0 since the second term in the square bracket on the

right hand side is strictly positive for all p > 0, which in turn implies the result.

To prove Eq. (3.11) sending p 4 0 on both sides of Eq. (3.10) implies

lim [@ + AFD(S(P))} =0.

Since both terms are non-negative, the only way each term vanishes in the limit is for Eq. (3.11)

to hold.

To prove Eq. (3.12), note that Eq. (3.8) can be rewritten as
pE=A+r—Xfp(&).
Eq. (3.12) now follows by taking limit of p{ 0 in the above equation and noting that

lin(l)fD(E):O by Eq. 3.11) . O
p—>
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Next, define the function

Vg OG-0 a1

Y(2)

where the values of V,(§) and V), (0) are defined as the corresponding limits above as z — &

and z — 0, respectively. Then, setting z = 0 in Eq. (3.14) yields

£0=—rV,0). (3.15)
Furthermore, denote
ne(@) = £ |——|(@) (3.16)
: P(z)] '

Then, we derive a closed form for 7¢ () defined in Eq. (3.16).

Lemma 3.3

e . (3.17)

Proof.
We prove the result by the Contour Integration and Residue Theorem [Churchill (1971)]. By

Eq.(3.14), one has

1 V,(2)
_ , (3.18)
P(z)  (2—€)(z—0)

where £ and O are the only singularities of . Substituting Eq. (3.18) into Eq. (1.1), we

z
have,

iR
() = lim L 7+' e’ Vo(2) dz,
Boyoo Dqrg J y—iR (z—&)(z—06)

P(2)
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for any real v > &. To this end, define for R >~ — 60 a counter-clock contour path
Cr = Hy U Ly (see Figure 3.4 below), where

Hy={(z,iy): (x—7) +y' =R, y—R<z <~}
LR={(m,iy)=fB=%—RSySR}

Hence, the contour integral can be written as

1 2z 1 1 2z 1 1 YR L ]
LI dz fHRe ; dz + f e dz (3.19)

2wider p(z)  2mwi (2) 2miJ-in  ah(z)
Now, by the Residue Theorem and Eq. (3.18), the left hand side of Eq. (3.19) becomes
2z |4 w  Vp(0) ou
LY e pl&) geu | Vi(6) o (3.20)
27wt JCr P(2) £E—0 0—¢

The result now follows by substituting Eq. (3.20) into Eq. (3.19) and sending R 1 oo, since the

first term on the right-hand side of vanishes. To see this, note that for any & > 0, we have

lim f e’ ! dz < lim L}u = 0, [cf. Saff and Snider (1993)]. m
R—oo J Hp ¢(z) R—o0 7,[)(—R)e

_R\

Figure 3.4. Contour Integral for the Inverse Laplace Transform.
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Chapter 4 Expected Discounted Cost

This chapter provides a formula for the expected discounted cost function (consisting of
holding costs and lost-sales penalties), conditioned on the initial inventory level, so as to
minimize the aforementioned cost function with respect to the replenishment rate. To this end, we
derive a system of integro-differential equations based on a renewal argument that decomposes
the total cost into the partial cost up until the first demand arrival and the residual cost thereafter.
From this system of equations, we obtain a closed form formula for the Laplace transform of the
expectation of the discounted cost function, conditional on the initial inventory level, where the
Laplace transform is taken with respect to the initial inventory level. Moreover, a closed form
formula is exhibited for the expected discounted cost function, conditioned on zero initial
inventory. We then provide an algorithm for a numerical computation of the optimal
replenishment rate which minimizes the aforementioned cost function. In particular, we consider
two special cases of lost-sales penalty functions: constant penalty and loss-proportional penalty.
Furthermore, for the special case of exponential demand sizes, we exhibit closed form formulas
for the expected discounted cost function, conditioned on any initial inventory level, and its
optimal replenishment rate. Finally, some numerical studies are carried out to illustrate the

results and investigate further properties of the system.

Throughout this chapter, we assume continuously compounded discounting at rate, 7 > 0.

Accordingly, the present value of a future cash flow Y at time £ is Ye 't

The following result will be used to derive expected discounted cost functions, conditioned on the

initial inventory level.
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Proposition 4.1

Let {X(t):t>0} has conditionally stationary increments with respect to an arrival process

{4, : 1> 0}, and let the process {Z(t): t > 0} be given by

where g,(x) is a real-valued integrable function, g,(x) is a real-valued measurable function.
Then {Z(t):t>0} has conditionally stationary discounted increments with respect to

{X(t): t=0} and {4, : 420}, and satisfies for any 7 >m >0 and any real ¢ >0

E[Z(A,, +)— Z(A,)| X(A,) = u] = " B[ Z(A,, + 1)~ Z(Ay,) | X(Ay) = u].

4.1)

Proof.

t
It suffices to prove for Zl(t):.[o e"*g,(X(z))dz since the proof for

Z,(t)= e 9,(4;) is analogous. Accordingly, for any 7 >m >0 and any real £>0

and ©, u =0,

P{Z (A, +1)— Z,(A,)<ze" | X(A,)=u}

=B{[;" " e" g,(X(2))dz <ze ™ | X(4,) = u}

—B{ [ e g (X(0+ 4, A,))do <we | X(4,) = u}
SB[ e g (X(0+ A, — A,))do <z | X(A,) = u}

=B{[,"" e g,(X(0) dv <ze™ | X(A,,) = u}

=P{Z\(Ap +1)— Z)(Ap) Sme | X(Ay) = u}
where the first and last equations follow from the definition of Z,(t), the second equation results

from the change of variable z — v+ A,, — A,,,, the third equation holds by multiplying both
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(4,—4)

sides of the inequality by e” , and the fourth equation follows from Eq. (1.3) by

assumption. This completes the proof. i
4.1  Discounted Cost Functions

The production-inventory system under study incurs costs in the form of holding costs and lost-

sales penalties. These cost components are described below.

e Discounted holding costs. While there is inventory on hand, a holding cost is incurred
at rate h per unit time and per inventory unit. Accordingly, the discounted holding cost

process H , ={H ,(t): t > 0} is given by
t o
H,(t)=h[ e™I(z)dz. (4.2)
e Lost-sales penalties. Whenever a customer’s demand cannot be fully satisfied from on-
hand inventory, a penalty 'w(a:) is incurred as a non-decreasing function of the lost-sale

size, x , with the proviso that w(0) =0. In particular, we shall consider a linear penalty
function (to be studied in Section 4.6) of the form

w(z) =1, Ky + K T, (4.3)
where K, >0 is a constant penalty per lost-sale occurrence, K, > 0 is a constant
penalty per unit of lost sales, and the two constants do not vanish simultaneously.

Accordingly, the discounted penalty process W, = {W,(t): t > 0} is given by

W, (t) =3 "1 in(L(4,)). (4.4)

1=

The discounted inventory cost process C, = {C ,(t): t > 0} is given by
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Cp(t) = Hp(t)+Wp(t). 4.5)
Of particular interest is the inventory discounted cost until and including the first lost-sale
occurrence, given by
C, (1) =h[ " I(z)e™ dz+w(L(r))e ™ (4.6)
and its associated conditional expected discounted cost function, given by
c,(u)=E[C, ()| L(0) = u]. 4.7)
Furthermore, define the auxiliary function

d (u)=E[e "™ |I(0)=u], (4.8)

p

Next, the conditional expected discounted cost function over the interval (0,%] is given by

@, (t|u)=E[C,(t)| L(0) = u]. (4.9)

Proposition 4.2
Forany u >0, @,(t|u) is non-decreasing in ¢ and uniformly bounded by

+ 2 Bluw(D)). (4.10)
T

T

@p(t|u) Sﬁ[u'i'p
r

independent of £.

Proof.
b, (t | u) is non-decreasing in ¢ by (4.9). To prove Eq. (4.10), we first write

—'r'Ai

D, (t|u) < foth[u + pz]e_rz dz + E[Z?jl(t)w(Di)e

@.11)
= E[u + B] (1 — e_rt) _ pht - + E[w( Di)]E[Z?jl(t) e

T r T
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where the inequality holds by Egs. (4.2) and (4.4) and the facts that I(t)<u+ pt by Eq. (3.1)
andD, > L(A,) i=1,2,..., by Eq. (3.2). Furthermore, by the property that ®,(t|u) is
increasing over t, sending ¢ to infinity, Eq. (4.11) reduces to

rA;
&,(t|u) < :

h 4.12)
r

u+£
T

+ B uw( Di)]]E[ZZI e

. oo —rA; . .
Denoting ¢ = E[Zi:l e |, we obtain the equation

—rT; o  —TA;
p=Ele "'+ Eizze ’

=]}.«:[e‘”T1 +E

e—rTl E [222 e_T(Ai_Tl) | Tl] ]
(4.13)
—rT e—rTl

=Ele + E

(i+)

d

— E e—”'Tl

But by the independence of the processes {A,:%2>1} and {D,:i>1} and the Jensen

inequality on the exponential as a convex function, and noting that E[A4;] = ¢ E[T}], we deduce

oo  —rE[4;] 1
(%] S Eizle —W<OO (4.14)

Since all quantities in Eq. (4.13) are finite, we obtain

_ fT(r) _A @15)
- 1- fr(r) or '

where the second equality holds by Eq. (4.34). The result now follows by substituting Eq. (4.15)

into Eq.(4.12). i

Proposition 4.2 guarantees the existence of the asymptotic conditional expected discounted cost

function, given by

D (u)= tlim D, (t|u). (4.16)



=22-
Lemma4.l
The cost process {C,(t)} has conditionally stationary discounted increments with respect to
{I(¢)} and {A,:i>0},and foranys,t and u >0,

ElC,(s+t)—C,(s)| I(s)=u]l=e " ®,(t|u). (4.17)

Proof.

The property that {C,(¢)} has conditionally stationary discounted increments follows
immediately from Proposition 4.1 by setting g,(x) = 1[0 Oo)(a:)hilz and g,(z) =w(L(x)). Eq.

(4.17) immediately follows from this property and the independent increment property of the

compound Poisson process. i

In this chapter we derive closed form formulas for the conditional expected discounted cost

function SPP (u) of Eq. (4.16). To this end, we shall need the following structural result in the

sequel.

Theorem 4.1

For any given initial inventory © >0, ®,(u) and c,(u) satisfy the following equation,

@ (u)=c,(u)+d,(u) 2,(0). (4.18)

p [

Proof.

Forany £t >0,
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E[C, (7 +1)—C, (7)) 1(0) =u]

=B, [E[C,(r,+)—C,(r) |7, 1(0) = u] |
[ T (£10) [ 1(0) =1 @.19)
=&,(t|0)Ele " |I(0)=u]

=45p( 10) d, (u)
where IE}T1 is the expectation operator with respect to the measure induced by 7,. Here, the

second equality holds by Eq. (4.17), and the last equality holds by Eq. (4.8).

Next, decomposing the infinite time horizon as (0,00) = (0,7,]U (T,,00) yields

®,(w) =E[C, (7)) | 1(0) = ul+ im E[(C, (1, + ) —C, (7)) | 1(0) = u]
=c,(u)+d,(u) tlgg{lip(t 10)

from which Eq. (4.18) readily follows. i

4.2 Equations for c,(u)

In this section we derive an integro-differential equation for ¢, (w) from which we obtain a

p

closed form formulas for its Laplace transform and ¢, (0).

For any given initial inventory level w > 0, and a time interval (0,s], where s > 0 is small,

consider the following disjoint events and the corresponding discounted cost function, ¢ o (u).
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(1) On the event {A; > s}, the corresponding cost is

E[Cp Lia ey | 1(0) = u]
= f oo)\e_’\t
S

S
hj;) (u+pz)e“dz+c,(u+ps)e™

S
hj;) (u+pz)ePdz+c,(u+ps)e ™ |dt

, (4.20)

— e—)\s

where the first term in the sums above is the discounted carrying cost over (0,s], and the

second is the discounted residual cost over (s,7,], since {4, >s}c{s<T}.

(2) On the event{A, < s}, the corresponding cost is
E[C, iszy | 1(0) = u] = [ Xe ™ M(u,t)dt @“21)
where M (u,t) = E[C,, | A, =t,I(0) = u] is given by
t —Trz
M(u,t) = hj;) (u+pz)e™dz

+e ™ ‘]:)Mptfp(w) c,(u+pt—x)dz (4.22)

+ e_"tfoo fo(@)w(x — (u+ pt))dzx
u+pt
So that

M(u,0) = <fD * cp>(u) + j;oo fo(z)w(x —u)dz. (4.23)

Thus, adding Egs. (4.20) and (4.21) yields

c,(u)=e™* [hj:(u +pz)e"dz+c,(u+ps)e |+ j:)\e_“M(u,t)dt

(4.24)
Next, differentiating Eq. (4.24) respect to S, and setting s = 0, we have
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0:hu—()\+r)cp(u)+p%cp(u)+)\M(u,O). (4.25)
Finally, substituting Eq. (4.23) into Eq. (4.25) yields after rearranging terms

P o) = (A + e, (w)+ A(fy 6, (u) = —g(u). (426)
where

g(u)=hu+A j:o fo(z) w(x—u)dz. (4.27)

It is convenient to decompose the function above into g(u) = g,(u) + g,(u), where

g(u)=hu, (4.28)

g (u)=A f:o fo(@)w(x — u)dx. (4.29)

Thus, g,(u) corresponds to the carrying cost component, while g,(u) corresponds to the lost-

sales penalty component.

Next, we proceed to solve Eq. (4.26) for cp(u) . To this end, we take Laplace transform on both
sides of that equation to get
plz é,(2)—c,(0)] = A+ 1), (2) + A fo(2) é,(2) = —g(2), 2>0 (430)
Rearranging and simplifying the above equation yields
A fp(2)+ pz—A=7]&,(2) — p c,(0)= —g(2), z>0, (4.31)
In view of Eq. (3.4), Eq. (4.31) can now be written as

P(2) 6p(z) —pP cp(o): —4g(z), z2>0, (4.32)

We are now in a position to derive a closed form formula for ¢, 0).
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Proposition 4.3

For ¢,(0), the following is true,

(4.33)

Proof.

For p > 0, the result follows by setting z = & in Eq. (4.32)and noting that its first term now

vanishes by Lemma 3.1.

For p = 0, note that given I(0)=0, I(t)=0 for t<7,, 7,=A4, =T, and L(7|)=D,,

w.p.1,. By Eq. (4.7), we have

¢,(0) =E[w(D,)e ™ | 1(0) = 0]
— E[w(D,)] Ble ™" | 1(0) = 0]
— E[w(D,)] Ble "]

Furthermore, by the assumption that the inter-arrival time is exponentially distributed, one has

. A

Finally, the result readily follows by substituting Eq.(4.34) with 2z =17 into the equation for

c,(0) above. O

Next, we proceed to derive a closed form formula for the Laplace transform of cp(u) .
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Corollary 4.1

¢p(2) = %z)g(z)’ z=E. (4.35)

Proof.

Follows immediately by substituting Eq. (4.33) into Eq. (4.32) and dividing the resultant equation

by ¢P(z) = 0. O

4.3  The Function d,(u)

In this subsection, we derive a closed form formula for d, (0) in Proposition 4.4, and provide a

closed form formula for &p (2) in Proposition 4.5.

Proposition 4.4

The following holds

d,(0)=2Fpe)=1— " (4.36)
P P&

Proof.
To prove Eq. (4.36), consider the special case h = 0 and w(x) = 1(y (). Then, Egs. (4.6)
and (4.7) imply

c,(u)=d,(u). (4.37)

Furthermore, Eq. (4.27) becomes

glw)=X [ T 1o (@) dz = A Fy(u) 4.38)

and in view of Egs. (4.37) and (4.38), Eq. (4.33) becomes
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A=
c,(0)=d,(0) =;FD(£). (4.39)
By Egs. (1.4) and (3.4), we have
Fp(z)=P2—"— ¥(2) , (4.40)
Az

so setting z = £ above, noting that 1)(£) = 0 and substituting the resultant Eq. (4.40) into Eq.

(4.39) yield Eq. (4.36). o

Proposition 4.5

For p >0,

+—, z=z¢§ (4.41)

Proof.

To prove Eq. (4.41), take the Laplace transform of Eq. (4.38) and substitute it into Eq.(4.35),

yielding
dy(2) = | Fp(e) = Fp(z)], z = ¢ (4.42)
_ D - D ) . B
P ()
Finally, substituting Eq. (4.40) into Eq. (4.42) yields Eq. (4.41) mi

4.4 The Function &, (u)

Recall that our goal is to compute an optimal replenishment rate, p* of the expected discounted

cost P, (u). However, for u >0, it is not possible to derive a closed form representation of

Sﬁp (u) as function of p. Nevertheless, it is possible to derive a closed form representation for
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@, (u) :‘Pp(s)(u) as function of &. Using the fact that the mapping p > & (implicitly

defined by Eq. (3.10)) is 1-1, one can optimize ®,(u)= ‘ﬁp( E)('u,) with respect to €. We can

then map back the optimal £ to determine the corresponding optimal p*. The main results in

this subsection are given in Theorem 4.2 and Theorem 4.4.

In the sequel, for notational simplicity, we will use (lié, (w), qu( g)('u,) interchangeably. The same

convention will be adopted for other quantities such as cp( £)° dp( €) ap( £)’ ,Bp( £)’ Jp( €)’ etc.

Theorem 4.2
®,(0)=£c,(0)="5 §(6). (443)
r
Proof.
Setting u = 0 in Eq. (4.18) and rearranging yield
¢,e)(0)
B, (0) = %. (4.44)
o p(&)( )
Eq. (4.43) now follows by substituting Eqgs. (4.33) and (4.36) into Eq. (4.44). o
Proposition 4.6
B, (1) = ce(w) + 2 §(E) de(u). u>0 (4.45)
3 3 r 3

s o[ 1] a2
%(z)—&g(ﬁ){r;w(z)} ooy P76 (4.46)
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Proof.

Eq. (4.45) follows readily by substituting Eq. (4.43) into Eq. (4.18). Eq. (4.46) obtains by taking
Laplace transforms of both sides of Eq. (4.45) and substituting ¢,(2) in Eq. (4.35) and d ,(2) in
Eq. (4.41) . o

We next obtain an alternate representation of &, (u) by inverting Eq. (4.46). To this end, define

Ge()=£§(6)-g(x), (4.47)

Theorem 4.3

B (u) = B, (0)+ (G *m J(w), uw>0 (4.48)
where @, (0) is given by Eq. (4.43) and G (z) given by Eq. (4.47).

Proof.

Eq. (4.46) can be rewritten as

@g(z)=gg,fg)x}@{ﬁi@)—ﬁ(z)]

Eq. (4.48) now follows by inverting the equation above, noting that £9(8) = SPg (0) by Eq.
r

(4.43) and £9(8) _ §(z) = G’é(z) by Eq. (4.47). O

z
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Theorem 4.4

~ V 0o
2, ()= 1), g(ﬁf) [ gla)e dagie)|

V (0 u g
+ 2(5_)(0 ) [eeufo g(w) e~ 0% do — ggo(ﬁ) (eﬂu _ 1):'

(4.49)

where Vp(g)(a:) is given by Eq. (3.14) and g(x) is given by Eq. (4.27).

Proof.

By Eq. (3.17), the convolution term in Eq. (4.48) becomes

p(ﬁ)(g) st
£E—06

)(

) ""I Ge(z)e*dz, (450)

<G£*n£>( )= ["Ge(@)e o€t o 4 L0

where G5 () is given by Eq. (4.47).

Next, substituting Egs. (4.43) and (4.50) into Eq. (4.48) yields

€50 Voo e oto g V@ @) ou
B, (u) = . 6”(5)0 ﬁjG(m) ¢ da:+0(£Te J.OGé(:Iz)e dz, (4.51)

Eq. (4.49) now follows by substituting Eq. (4.47) into Eq.(4.51). i

In the next two subsections, we shall specialize Eq. (4.49) to two penalty function structures:

constant lost-sale penalty and loss-proportional penalty.

4.4.1 Constant Lost-Sale Penalty

In this subsection, we consider the constant lost-sales penalty function, w(z)= K1, (),

provided p > 0. Then Eq. (4.27) becomes



g(u) =hu+ XK ,Fy(u), u>0,

and taking Laplace transforms above yields

~ h =
3 = 5 + A K Fy(2).

Next, setting z = £ and substituting F},(&) from Eq. (3.10) into Eq. (4.53), we have

h
(€)=~ + K,
a(§) P +

o T
s)

and substituting Eq. (4.54) into Eq. (4.43) yields

@6(0):i+K0(”—5_ j

r§ r

Furthermore, substituting Eqgs. (4.52) and (4.54) into Eq. (4.49) yields

P

Vv V (0
() = 8,(0) + 20 e, g1 Vo0 ey, ).

£—6 §—06
where @, (0) is given by Eq. (4.55), and

¢ (u, 5)=%uHKoeﬁ"Ij"FD(w)e—“dw—éKo(ps—r),

1

4.4.2 Loss-Proportional Penalty
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

In this subsection, we consider the loss-proportional penalty, w(z)= K,x, provided p > 0.

Then Eq. (4.27) becomes
g(u)=hu+ )‘Klfoomfp(w)dwv u>0,

and the corresponding Laplace transform is given by

(4.57)
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h

- 1—f
9(z) ==+ K, Bo _ ff(z).
z z z

(4.58)

Next, setting z = £ in Eq. (4.58) and substituting further f,,(£) given in Eq. (3.8) , we have

222} p r
- + 2K, + , 4.59
and substituting Eq. (4.59) into Eq. (4.43) yields
h Apup,—p 1

$.(0)=—+K,| —L2——+—|, 4.60
(0= P k| AP (a0

Furthermore, substituting Eqs. (4.57) and (4.59) into Eq. (4.49) yields

0
5(0) = 20+ 29 g0, 9+ O D e w0, o

where @, (0) is given by Eq. (4.60), and

B (u, &) = %u—i—)\K] equ':OJ‘:osz(z)e—gz dzda:+é(%—1‘@p(0)] ,

¢ (u, 0) = —%u+ A K, eguJ.OUJ.;OZfD(Z)e*"f” dzda:+%(%—r¢p(0)j(e"“ — 1)_

45  Optimal Replenishment Rate

In this subsection, we optimize the expected discounted cost of <I>p(u) with respect to the
replenishment rate, p, via an optimization of dip( £)('u,) with respect to §. We first provide a

general structural result for an optimal replenishment rate, p* (admitting the possibility of

multiple optimal replenishment rates), and then describe a computational method for finding the

optimal solutions.
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While the cost function, @5 (u), given by Eq. (4.49), is expressed in terms of the two roots, 6
and &, we shall express <I>£ (u) as a function of & alone. To this end, we write with the aid Eq.

(3.15)

0=—rV,(0)/&. (4.62)

Accordingly, substituting Eq. (4.62) into Eq. (4.49) yields
P (u) =

£9(&) , EVe(©) T cup> gz -
. -I—rVg(O)[e 7 g(@)e ¢ da- (o) |

EVe(-rVe O &) vaoeupr o rvioves | E2G(E) [ rveore
£ £ {e ¢ Iog(w)e ¢ dw+'r'VE(0)(e ¢ —1)

& +rV.(0)
(4.63)

The boundedness of §P€ (u), implied by Proposition 4.2, guarantees the existence of the global

minimizing point, & = argmin {ég(u)} However, the function @g(u) is not convex in
£>0

general. The following example illustrates the non-convexity of the functions, @E(u) and

@p(u) .

Consider the production-inventory system with constant demand size d =30 and the following

parameters: A=1, h=1,u=0 K;=100, K, =0,and r=0.1.
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Figure 4.1. The Functions @, (0) (Left) and ®,(0) (Right) for Constant Demand Size

Figure 4.1 depicts the functions <I>€(O) (left) and (lf'p(O) (right). It shows that in this case, the

expected discounted cost is not convex in & or p. In fact, it is theoretically challenging to prove

uniqueness of the global minimizing point, which remains as an open problem.

In light of Theorem 4.4, a minimizing point, &, can be calculated in several ways. A

straightforward but relatively time consuming method is global search. However, when @5 (u)

is convex, the availability of derivatives of the objective function <15£ (u) with respect to &

allows us to apply the relatively fast Newton’s Method, where successive approximations of the

minimum are started with any &, > 0, and given by the iterative scheme

0
—P
™ o
& =& 7% , n=0,1,.... (4.64)

a—ﬁzdign (u)

We next state, for completeness, the following theorem without proof.
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Theorem 4.5

Given I(0) = u, the optimal replenishment rates for @, (u) are given by

. TEA[I=Fo(€)]
_ : ,

p (4.65)

46  Special Cases

In this subsection we study special cases of production-inventory system with selected demand-
size distributions, subject to two specialized lost-sales penalty structures: constant lost-sales

penalty and loss-proportional penalty. We shall assume here that p >0 and r >0, and

V,(2)= Vp (x) is given by Eq. (3.14) and G£ (x) is given by Eq. (4.47).

(6

4.6.1 Example: Computation of sﬁp(u) for Exponential Demand Size Distribution

In this subsection, we illustrate the derivation of the function Slig (u), subject to each penalty

function, for the case of exponentially distributed demand size with rate 3> 0, that is,

fplx)=pBe , 220 (4.66)

fp(z) = B , z2>0 (4.67)

Then, substituting Eq. (4.67) into Eq. (3.4) yields

L R ot [ Gt 3]
VR =gy termAors V,(2)

, (4.68)

where,
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V,(2) = . (4.69)

i)

Hence, in agreement with Lemma 3.1, the roots of the equation ’(,b(z) =0 are given by

2
_}\+r—p,3+\/(>\+r—pﬂ) +4rpps

€= >0 (4.70)
2p
2
A+r—pB— (A+r—p,8) +4rpp
0= <0. 4.71)
2p
4.6.2 Constant Lost-Sale Penalty
In this case, Eq. (4.63) can be written as
®,(u)=a,+au+ a,e’" (4.72)
where
(L 11 )
r\§ B 0
a, = h 4.74)
T
= AL _E(LJFLJ (4.75)
r(ﬁ + 5) r\3 6

4.6.3 Loss-Proportional Penalty

In this case, Eq. (4.63) can be written as

P, (u)=a, +au+a,e™™ +ae™, (4.76)
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where a, and a, are given by Eqs. (4.73) - (4.74), and

= Afl (£—0)1(ﬂ+0) - 9<ﬂ1+€)}_%(%+%j

W MK
T p(B+E)(B+0)

A numerical study of @, (u) with exponential demand distribution is described next.

4.7  Optimal Replenishment Rate under Delayed Replenishment

In practice, the system starts with an arbitrary inventory level, I(0) = >0. Suppose the

system operates under delayed replenishment such that replenishment starts only after the first
lost-sale occurrence. For example, suppose the system has an initial setup time during which

replenishment is unavailable (e.g., the production facility requires a setup time to gear up for
production). Accordingly, the corresponding expected discounted cost, !iip (u), over an infinite

time horizon can be expressed as

A

@, (u) =c,(u) +d,(u) 2,(0). 4.77)

From Eq.(4.77), it is readily seen that minimizing Sisp(u) with respect to p is equivalent to

minimizing (lip (0) with respect to p, since only the latter term is a function of p .

4.7.1 Constant Lost-Sales Penalty

In this case, w(x) = lg,50y K, where K, > 0 is a constant, and ¥, (0) is given by Eq. (4.55).

In view of Eq. (3.13), Eq. (4.55) can be written as



_ R ALK [1-F,()]

2 (0)

By Eq.(4.78), the optimal £ is given by

T

b

¢’ = argmin {%— AK, fD(g)}.

£>0
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(4.78)

(4.79)

Table 4.1 exhibits &, p’k and @p*(O) in closed form formulas, when available, for selected

demand distributions; detailed derivations are given in Section A.1 of Appendix A.

Table 4.1. Optimal Quantities for Production-Inventory Systems Subject to Constant Penalty and

Various Demand Distributions

Distribution '3 o’ ®,.(0)
D=d argmin{h—)\Koe_Ed} r+}‘[1_e_£d] Pt (135 =)
£0 5 E* r é
d>0
DBxpB)| | _dh e gygesn | 2o i g s |22 pa ks
550 PBK, —Jh B B{BK, N "
o, otherwise 0, otherwise TO otherwise
D ~U(a,b) argmin{h—)\I{O e—ag_e—bs} roAl ol _ bE K (p' € -r)
b<a<cp | & GO leTe T p-ag re
— - X T Y
D (o, B) argrnin{h—)\lﬁ)(Hﬁ/ﬁ) } 7;+*ll—(1+;§ /B) ] M
e (€ £ £ r&
o,3>0
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In the table above and elsewhere, the argmin operation corresponds to a search for the optimal
argument, where a closed form formula is unavailable or not readily available; for exponential

demand distributions, the optimal solution is given in a closed form formula. Furthermore, the

condition 3A K, > h ensures a positive optimal replenishment rate; otherwise, it is optimal to

have zero replenishment and bear the repeated penalty costs (degenerate case).

4.7.2 Loss-Proportional Penalty

In this case, w(x) = l{,50) K, where K, > 0 is constant, and @,(0) is given by Eq. (4.60).

In view of Eq. (3.13), Eq. (4.60) can be written as

¢£(O)Z%E—AK[l_fg(@})‘ﬁ“l’, (4.80)

where ftp= E[D]. Consequently, by Eq. (4.80), the optimal £ is given by

¢ :argmin{ﬁ—)\K1 l_f—D(g)} (4.81)
&0 | € 3

Table 4.2 exhibits &, p* and @p*(O) in closed form formulas, when available, for selected

demand distributions; detailed derivations are given in Section A.2 of Appendix A.
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Table 4.2. Optimal Quantities for Production-Inventory Systems Subject to Loss-Proportional

Penalty and Various Demand Distributions

Distribution £ p* ij* (0)
= _etd _ o—t'd Y
P=d 1 ramin] Ak, 1€ P[] 1{’“54&1 d +qud}
S ¢ ¢ Ul £
d>0
DNEXP(’@) /37@ if A\K. >h \/E_ﬁl[r+ )\}, if AK >h M if AK,>h
WK, B’ ! 8 |h VK r
p>0 . 0, otherwise AK, .
o0, otherwise R otherwise
r3
D ~U(a,b |h oA ol _ gt —af b | hAK e MK(bq
O e ae ) | B 4
0<a<b £ & b-a¢
0, B> 0 e € 13 £ ¢

Again, for an exponential demand distribution, the condition X K, > h ensures a positive

optimal replenishment rate; otherwise, it is optimal to have zero replenishment and bear the

repeated penalty costs (degenerate case).

4.8

Numerical Study

This section contains two numerical studies of production-inventory systems with selected

demand-size distributions, subject to a constant lost-sales penalty. Both studies were conducted

with the following common parameters: A=1, h=1, K, =100, and r»=0.1. Recall that
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only the exponential demand-size distribution gives rise to closed-form optimal solutions when

conditioned on I(0) = 0; in all other cases, optimal solutions were obtained by a search.

4.8.1 Optimal Numerical Solutions for Empty Initial Inventory

In this subsection we compute and compare the numerical values of (lip* (0) for increasing mean

demand sizes, and under the following demand-size distributions: constant, exponential, uniform

and Gamma.

Table 4.3 displays p* and @p* (u) as functions of the mean demand, E[D] =1/ 3, with the four

aforementioned demand-size distributions.



Table 4.3. Optimal Values for Selected Demand-Size Distributions
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D=1/8 D~Ep(8) D~U(0.2/8) D~T(41/(48))

AED L 2.(0) > 2.(0) > 2.(0) , 2.0
005 027 4447 027 4422 027 4439 027 4441
010 041 6274 040 6225 041 6258 041 62.62
015 053 7671 052 7596 052 7645 052  76.52
020 063 8844 062 8744 063 8810 063 88.19
030 082 10803 080 10654 082 10753 082 107.66
080 162 17482 154 17089 159 17347 159 173.83
130 230 22140 216 21504  2.25 21919  2.26 219.79
180 293 259.11 272 25033  2.85 25604  2.87 256.88
230 351 29150 323 28032 341 28756 345 288.64
280 407 32024 372 30666  3.95 31543 399 316.76
330 463 34627 420 33032 447 34058 453 342.18
380 517 37019 462 351.87 499 363.62 502 365.48
430 569 39240 505 37173 543 38495 551 387.08
480 617 41320 548 39018 592 40485 601 407.26
530 666 43279 587 407.43 637 42354  6.47 42623
580 7.5 45134 622 42366  6.82 44120 694 444.17
630  7.64 46898 661 439.00  7.22 45796  7.35 461.20
680 808 48584 695 45354  7.68 47390  7.83 477.44
730 859 50197  7.28 46737 808 489.12 824 492.95
780  9.03 517.44  7.61 48057 848 503.69  8.65 507.82
830 947 53235 794 493.19 887 517.68  9.06 522.11
880 992 54672 827 50530 927 53114 947 535.88
930 1036 560.62 860 51692  9.67 54411  9.88 549.15
980 1071 57405 884 52810 10.07 556.64 1030 562.00
1000 1095 57930  9.02 53246 1019 561.50 1043 566.99
1500 14.86 69346 1158 624.60 13.41 66627 1398 675.10
2000 1837 78452 13.61 69443 1628 74754 16.88 760.16
2500 21.23 86050 1500 750.00 1821 81334 19.60 830.15
3000  23.87 92543  16.14 79545 19.81 867.66 21.50 889.22

From Table 4.3 it can be seen that the respective p* and the corresponding @p* (0) increase in

this order of distributions: exponential, uniform, Gamma and constant. Note that as the average
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demand increases, p~ and flip* (0) increase as expected. Furthermore, for each selected demand-

size distribution, we observe that p° > AE[D] for AE[D]< 7, whereas p- < AE[D] for
AE[D] > 15. This can be explained heuristically as follows: in the former case the optimal cost

is dominated by its penalty component due to a relatively high inventory level, while in the latter

case, it is dominated by its carrying cost component due to a relatively low inventory level.

4.8.2 Optimal Numerical Solutions for Arbitrary initial Inventory Levels

In this subsection we compute and compare the numerical values of £, p° and @p* (u) for

selected demand-size distributions (constant, exponential and uniform) with increasing initial

inventory levels and low, medium and large average demands.

Table 4.4-6 display p* , 6* and t_‘Pp* (u) for sample low, medium and high demand as functions

of the initial inventory level I(0) = w .



-45-

Table 4.4. Optimal Quantities for Selected Demand-Size Distributions under a Low Demand with

AED]=1/8=2

D=1/p D~Bxp(8) D~U(0,2/8)
10)=u| & | p° | Bu) | & | p |Bp(w)]| ¢ p | Bp(u)
0 | 0076 |3.169 | 272.590 | 0.082| 2.936 | 262.840| 0.078 | 3.087 |269.170
5 | 0.130 |2.530] 157.450 | 0.113| 2.515 |193.450| 0.113 | 2.614 |172.160
10 | 0.194 |2.173] 150.260 |0.155| 2.171 |181.490| 0.177 | 2.165 |163.060
15 | 0.301 | 1.835| 175.720 |0.208| 1.893 |191.810| 0.215 | 1.996 |177.840
20 | 0372 | 1.679] 197.900 |0.273| 1.660 |212.640| 0.367 | 1.569 |204.800
25 | 0.513 | 1.445 | 229.660 |0.357| 1.447 | 239.160| 0.387 | 1.528 |232.330
30 | 0.547 | 1.399] 262.250 | 0.466 | 1.250 |269.040| 0.469 | 1.383 |264.410
35 | 0.717 | 1.202] 295.100 | 0.610| 1.065 |301.060| 0.674 | 1.119 |297.570
40 | 1.160 | 0.864 | 330.040 | 0.812| 0.885 |334.520| 1.065 | 0.816 |329.030
45 | 1.714 |0.623 | 364.120 | 1.109| 0.712 |368.970| 1.439 | 0.644 |362.650
50 | 7.598 | 0.145 392.380 | 1.591| 0.541 | 404.150| 3.055 | 0.333 |396.290

Table 4.5. Optimal Quantities for Selected Demand-Size Distributions under a Medium Demand

with AE[D]=1/8 = 10

D=1/p3 D~Bxp () D~U(0,2/8)
10)=u| & | p° | Dw) | ¢ p | ()| &£ | p | Pul(u)
0 |0.038]10.940] 579.290 | 0.046 | 9.014 |532.460| 0.041 |10.175|561.500
5 |0.042[10.537538.850 | 0.048 | 8.831 |510.550| 0.040 |10.281]529.820
10 |0.042]10.537[ 473.330 | 0.051 | 8.575 | 495.870 0.045 | 9.783 | 503.520
15 |0.046]10.181/ 473.980 | 0.054 | 8.338 | 487.280| 0.047 | 9.603 | 486.570
20 |0.051]9.787|473.100 | 0.058 | 8.046 |483.780| 0.050 | 9.350 | 483.970
25 |0.051]9.787|472.220 | 0.062 | 7.779 | 484.590| 0.055 | 8.966 | 483.810
30 |0.051]9.787|480.220 | 0.067 | 7.475 | 489.050| 0.061 | 8.556 | 486.500
35 [0.059]9.242]491.380 | 0.072 | 7.198 | 496.600| 0.061 | 8.556 | 494.790
40 |0.076/8.315|503.470 | 0.077 | 6.944 |506.800 | 0.073 | 7.860 | 506.230
45 |0.076/8.315|517.540 | 0.084 | 6.621 |519.270| 0.078 | 7.606 | 519.590
50 |0.076|8.315 | 536.250 | 0.091 | 6.331 |533.700| 0.090 | 7.066 | 532.690
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Table 4.6. Optimal Quantities for Selected Demand-Size Distributions under a High Demand with

AE[D]=1/8=20

D=1/p3 D~Bxp() D~U(0,2/8)
10)=u| & | p° | (w) | ¢ P | B | & | p | Bp(u)
0 |0.030[18.299] 784.500 | 0.041 | 13.519 | 694.430 | 0.034 |16.187747.520
5  |0.031/18.251] 774.650 | 0.041 | 13.356 | 684.430 | 0.034 |16.187736.510
10 |0.032[17.943] 759.150 | 0.043 | 13.147 | 676.910 | 0.034 |16.187|726.210
15 |0.032[17.943] 736.390 | 0.044 | 12.928 | 671.680 | 0.037 |15.709|716.850
20 |0.032[17.943| 705.290 | 0.045 | 12.685 | 668.580 | 0.037 |15.709 | 709.080
25 |0.035|17.324] 705.480 | 0.047 | 12.437 | 667.440 | 0.039 |15.203|703.600
30 |0.036|16.994] 707.410 | 0.049 | 12.171 | 668.130 | 0.039 |15.203|700.800
35 |0.036]16.994| 705.130 | 0.051 | 11.889 | 670.500 | 0.042 |14.642]698.260
40 |0.040|16.303] 706.100 | 0.053 | 11.609 | 674.430 | 0.042 |14.642|698.590
45 |0.040|16.303] 709.320 | 0.055 | 11.317 | 679.790 | 0.045 |14.073|701.890
50 |0.042|15.929] 715.630 | 0.058 | 11.007 | 686.490 | 0.045 |14.073|707.640

Table 4.4 to Table 4.6 above reveal a similar behavior of p  and @p*(u) as functions of

I(0) = w. For each demand-size distribution in each of these tables, p~ decrease as I(0) = u

increases, while the corresponding !Pp* (u) first decreases and then increases as function of .

Furthermore, dip* (u) attains its minimum for each demand-size distribution in a narrow range of

I(0) =wu: around u =10 in Table 4.4, in the range [20,25] in Table 4.5, and in the range

[25,35] in Table 4.6. We also observe that in each of these tables, p* decreases in the demand-

size distribution in this order: constant, uniform and exponential; this, however, does not

generally hold for @ . (u).
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4.9  Additional Properties: Renewal-Type Solution for Cost Functions

In this section, we derive an alternative representation for the cost functions ¢, (), d,(u) and
®,(u). However, instead of attempting the inversion of ¢,(2) in Eq. (4.35), we shall proceed
to derive a closed form formula for ¢, (u) by developing a renewal-type equation for it with the
aid of the positive root, & . To this end, define

cpe(2) = e_gch(z), z2>0. (4.82)

Eu

Substituting the representation c,, (uw)=e Cp,e (u) into Eq. (4.26) and rearranging terms yields

p%cpﬁg(z) —A+r—pEc(z)+ A j;)z e—ﬁwcp’g(z —x)fp(x)dz = —e_ﬁzg(z).

(4.83)

Next, substituting A+7—p& = Af, (&) by appeal to Eq. (3.8) into Eq. (4.83) yields after

rearrangement

p % cpe(2)=A £ (€) c,e(2)— A foz et “c,e(z — ) fp(x) dx — e $%g(z). (4.84)
For any u > 0, integrating both sides of Eq. (4.84) with respect to z over the interval [0, u]
yields

plep.e(u) — ¢, ¢(0)]
=Xfp(8) j;)u c,e(z)dz — )\j:)u j;)z e *%c,(z — z)f,(z) dr dz — j:)u e *%g(z) dz
= )\j;u[f:_om e Vf,(y)dy| c,(x) dm—j;u e *7g(z) dz

(4.85)

The second equality above holds because
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j;” j: € %, ¢(z — @) f,(x) dx dz
= [ [ e, () folz — v dydz
B f f Cfo(z — y) dz c,e(y) dy

=J; [fo“_” e, (2) da e, c(4) dy

where the first equality holds by the variable change z — * — vy, the second equality holds by
changing the order of integration, and the third equality holds by the wvariable change
zZ—yY—x.

Next, for p > 0, substituting c,,(0) from Eq. (4.33) into Eq. (4.82) yields

cpe(0)= %9(5) ; (4.86)

while substituting Eq. (4.86) into Eq. (4.85) and rearranging yields

p ey e(u) = Af [f eV, (y)dy|c

o(z) dz+ f gy) dy. (4.87)

Dividing both sides of Eq. (4.87) by pe_su, we have the following functional equation in

c,(u) foru >0,

ey =2 [

1 Oty
c,(x) de+ — f e Vg(y)dy. (4.88)
P u

e AL ;

Note that Eq. (4.88) is consistent with Eq. (4.33) by setting 4 = 0 in the former.
We now proceed to solve for €,(z) and c,(u). To this end, define the following two auxiliary

functions,

o@) = [T gy =2 [Te s @t )dy, 220 @)

Bu(e) =~ [~ e Vg(y) dy, =>0. (4.90)
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Proposition 4.7

The following renewal-type equation holds

cp(u)=<ap*cp>(u)+ By(u), u>0. (4.91)
Proof.
Follows readily by rewriting Eq. (4.88) in terms of Egs. (4.89) and (4.90). i
Corollary 4.2

The following results hold:

é,(2) = _Bl®) (4.92)
I—ay,(2)
o0 *(n
cp(u) =30 (By x ™) (w) (4.93)
where ™ is the n -fold convolution of a, () with itself.
Proof.

Taking Laplace transforms on both sides of Eq. (4.91) readily yields
é,(2) = 6,(2) é,(2) + B,(2). (4.94)
Eq. (4.92) readily follows by solving Eq. (4.94) for €,(2). Finally, Inverting Eq. (4.92) term by

term yields Eq. (4.93). i

Note that the terms in Eq. (4.93) can be readily computed recursively, since

B, * ap*(") =0, * a;(n_l) *Qy, .



For notational convenience, define

0,(x) = Aeg(p)””fme_g(p)yF'(y) dy, x>0.
p T
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(4.95)

Note that §,(z) can be obtained from Eq. (4.90) by setting h = 0 and w(z) = 1o )(T)-

Proposition 4.8

The following holds

d,(u) = <ap * dp>(u)+ d,(u), u©>0.

where a, () is given by Eq. (4.89).

Proof.

Readily follows from Proposition 4.7 by setting h = 0 and w(z) = 19 )(T)-

Corollary 4.3
d,z)= 2o
1—a,(2)
d,(u) = Zoozo <6p * a;(")>(u)
Proof.

Follows readily from Corollary 4.2 by setting there b = 0 and w(z) = 1) (T)-

Next, we shall derive a renewal formula for 455 () . To this end, define

oe(w) = Be(o) + £ 3(9) dela). = >0.

(4.96)

(4.97)

(4.98)

(4.99)
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Lemma 4.2
o) =37 (o x ™) (u) (4.100)
& (2) = % (4.101)
Proof.

Eq. (4.100) follows by substituting Egs. (4.93), (4.98) and (4.43) into Eq. (4.18) and simplifying
with the aid of Eq. (4.99). Eq. (4.101) immediately follows by taking the Laplace transform of

Eq. (4.100). o

The renewal-type formulas for c,(u), d,(u) and ®,(u), given in Egs. (4.91), (4.96) and

(4.100), respectively, can be solved numerically [Tortorella (2005)]. This thesis is concerned with
their analytical solutions by Laplace transform techniques rather than their numerical solution.
For further discussion on renewal-type equations, refer to Burton (2005), Miller, (1971), and Linz

(1987).
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Chapter 5 Time-Average Cost

In this chapter, we address the time-average cost function of MTS production-inventory

systems. Some results follow immediately from Chapter 4 by setting 7 =0 in their discounted

counterparts.

5.1

Time-Average Cost Functions

The inventory cost function under study is incurred by carrying costs and lost-sales penalties.

These cost components are described as below.

Carrying costs. While there is inventory on hand, a carrying cost is incurred at rate h
per unit time and per inventory unit. Accordingly, the carrying cost process

H,={H,(t):t>0} is given by

Hp(t)th;I(z) dz (5.1)

Lost-sales penalties. Whenever a customer’s demand cannot be satisfied from on-hand

inventory, a penalty of the form w(m) is incurred as a non-decreasing function of the

lost-sale size, x, with the proviso that w(O) =0. In particular, we shall consider a
linear penalty function (to be studied in Section 5.5 as a special case) of the form

w(z)=1 K,+K, x, (5.2)

{z>0}
where K ;>0 is a constant penalty per lost-sale occurrence, K, > 0 is a constant

penalty per unit of lost-sales, and the two constants do not vanish simultaneously.

Accordingly, the penalty process W, = {W,(t): ¢ >0} is given by



W, (t)=3 " w(L(4,))

The inventory cost process C, = {C ,(t): t > 0} is given by

t N, (t)
C,(t)=H,({t)+W,(t)=h jo I(z)dz+Y. * " w(L(4,)).
The infinite-horizon time-average inventory cost is defined by

o B, (01 10)=u]

t—o0 t

In a similar vein, the infinite-horizon time-average carrying cost is defined by

h, = lim E[H,(t)|1(0) = u]

p t—o0 t

b

and the infinite-horizon time-average penalty by

E(W,(t)| 1(0) = u]
t

w, = lim
P t—oo
Thus, we have

c, =hp+wp.

-53-

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

Throughout this chapter, replenishment occurs at a constant (deterministic) rate p >0 and the

system is subject to the stability condition

p<App .

(5.9)

By Prabhu (1965), this stability condition implies that a lost sale occurs with probability 1 over an

infinite time horizon.

5.2  Properties of &

Consider again Eq. (3.4) and denote
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Pe(2) = A fp(2)+ pz—A—7 (5.10)
as a function of 7 > 0. In view of Lemma 3.1, Eq. (5.10) has two roots, denoted by &,. > 0 and

0, < 0. We then have the following result.

Lemma 5.1

For = 0, the equation t(2) = 0 has two distinct roots, 8, and &, satisfying the following
(@) if 0 < p < AE[D],then 6, =0 and &, > 0;

(b) if p=AE[D],then 8, =&, =0;

(c) if p > AE[D], then 8, <0 and & =0.

Proof.

Letting 7 = 0 in Eq. (5.10) and setting the resulting equation to be zero, we have

Po(2) = A fp(2) + pz— A = 0. (5.11)
By Lemma 3.1, Eq. (5.11) has two roots. Clearly, z, = 0 is a root of the above equation, since
fp(0) = 1. To study the other root, substitute the representation of o (2) from Eq. (5.11) into
Eq.(1.4), yielding

Fp(2) :% (5.12)

Since any Laplace transform of a non-negative function is strictly decreasing in z from infinity

to zero, Eq. (5.12) has a unique root z;. In the remainder of the proof, we shall use the fact that
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To prove part (a), note that its premise implies 0 < § < E[D] = Fp(0), so by the monotone

decreasing property of 1:'1 'p(2), we must have &, = z; > 0, and furthermore, 8, = 2, = 0.

To prove part (b), note that its premise implies § =F 'n(0), so by the monotone decreasing

property of 1?1) (2), we musthave 2y = 2, =0, =&, =0.

Finally, to prove part (c), note that its premise implies §> F’D(O), so by the monotone

decreasing property of i‘D(z), we must have 8, = z; < 0, and furthermore, §, = 2, = 0. O

For the case = 0, Figure 5.1 outlines the key features of the function t),(z) and its roots.

‘¢0 (2) + ¥o(2)

> 2 >
9\/&; =0 6, =0 \/50 z

Figure 5.1. Illustration of the Function %),(z) and its Root Structure for the Case 7 = 0

when p > AE[D] (Left) and p < AE[D] (Right)

We then have the following result.
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Lemma 5.2
For any 7 >0, under the stability condition in Eq. (5.9), the equation %.(2) =0 has two
distinct roots, &, and 8,. as follows:

(@ If »=0,then ) =0 and & > 0.

(b) If 7 >0, then 6, <0 and §,. > 0.

Proof.

We first prove that the function 1),.(z) is convex by computing its first and second derivatives,

0 o0 —zx

aipr(z):p—)\j; ze  fp(x)dx, (5.13)
82 o0 —zx

@) =2 [ e (@) de. (5.14)

Since the case of zero demand with probability 1 is precluded, it follows from Eq. (5.14) that

82
& @) > 0 (519

To prove part (a) for =0, we have 1(0) = 0, namely, zero is a root of y(z) =0. It
remains to show the existence of exactly one more positive root. First, note that

i%(z) l,—o< 0 by Egs. (5.13) and (5.9). Therefore, there exists 2z'>0 such that

0z

1p(z') < 0 But since y(00) = 0o, it must have a positive root. Second, we prove by

contradiction that 1y(2) = 0 cannot have more than two roots. Otherwise, by Rolle’s Theorem,

3] . .
there must be more than one z*, such that — 1o(2*) = 0. This contradicts the fact that there
z

is at most one z* such that 8i 1Po(2*) = 0 by Eq. (5.13), thereby establishing part (a).
z
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To prove part (b) forr >0, note that we have .(0)<0, ,.(co0)=o00 and

1, (—00) = co. Consequently, 1,.(z) =0 must have at least one positive root and one

negative root. An argument similar to that in part (a) establishes that there cannot be more than

two roots as required. o

Figure 5.2 illustrates the key features of the function ),.(z) and the root structure for the

equation and 1,.(2) = 0.

Figure 5.2. Illustration of the Function 1),.(z) and its Root Structure for 7 =0 and 7 >0

In particular, for 7 = 0, we denote

£=4&.

Accordingly, in view of Lemma 5.2, we can write,

Afp(&)+pE—X=0, (5.16)
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and in general, for 7 >0,

Afp&)+p&—A—r=0. (5.17)

Lemmab5.3

(@) For p >0 and £ =£(p),

p = AFp(£). (5.18)

(b) For p > 0, the mapping p > &(p) is strictly monotone decreasing in p .

Proof.
To prove part (a), note first that by Eq. (5.16),
A [1 - fD(f)]
: :

Eq. (5.18) now follows by Egs. (1.4) and (5.19).

0 (5.19)

To prove part (b), we differentiate Eq. (5.16) with respect to p, yielding

l=-X E'(p)j;oozzz e_wS(p)F’D(m) dx.

The equation above implies S'(p) < 0 since the integral on the right-hand side is strictly

positive for all p > 0, which in turn implies the result. i
Corollary 5.1
For 7 =0,
limp&=A, (5.20)
p—>0

where £ =&(p).
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Proof.

Sending p ¥ 0 on both sides of Eq. (5.18) implies lir% FD(E(p)) =0, which in turn implies
p—>

lim&(p) =oo. (5.21)
p—0

Furthermore, Eq. (5.16) can be written as
pE=X—XJp(8). (5.22)

The proof immediately follows via sending p { 0 in Eq. (5.22) and the fact lirr(l) fD &=0. o
p—

53  Computing the Time-Average Cost Function
In this section we derive closed form formulas for the time-average cost functions.

5.3.1 The Function Ep

To derive the time average cost function ¢, we first consider the inventory cost until and
including the first lost-sale occurrence, which is given by

C,(r)=h| 'I(z)dz+w(L(r) . (5.23)
Its expected value, conditioned on I(0) = u, is denoted by

cp(u):E[Cp(Tl)|I(0):u]. (5.24)

Note that the inventory process over intervals of the form (7;,7,,,] is a renewal process and the

corresponding incurred cost process can be regarded as a renewal reward process. Consequently,
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by Theorem 3.6.1 in Ross (1996), with probability 1, the time-average cost in Eq. (5.5) is

independent of the initial inventory level, and given by

50
* " Blr, [10)=0]

(5.25)

In the following, we shall obtain a formula for €, by deriving c,(0) and E[r, | I(0) =0].

To derive c,(0), we shall apply the formula for c,(u), given in Eq. (4.33), by setting there

7 = 0. We then have the following result.

Lemma 5.4
¢, (0)= 9 (5.26)
p
Proof.
Follows from Eq. (4.33) and the fact that lir% £ =€. O
T

Next, to derive E[7; | I(0) = u], define
d, (u)=Ele"" |I(0)=u]. (5.27)

Finally, we shall need the following lemma.

Lemma 5.5
Under the stability condition (5.9), the conditional expected time to the first lost-sale occurrence
is

d
E[r, | 1(0)=u]= —a—rdp,qn(u) |0 - (5.28)
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Proof.

To prove Eq. (4.18), write

_ 0%, 20,
l‘i%a_rdw(u)_li%a_r!e Friro)(tw)dt —lli%ia_re Friro)(tlu)dt

oo

= —ligf}) ] te’ fTI\I(O)(t |u)dt = - 2[ lig(l)t e fTI\I(O)(t |u)dt
= [t £, 10 (tlw)dt = -Blr, | 1(0) =
0

where the second equality holds by the Leibniz integral rule, while the fourth one holds by the

Dominated Convergence Theorem, because‘teim lell(O)(t|u)‘§t lell(O)(t|u) such that

jt Fr10)(t1w)dt =E[7, | 1(0) = u] < 0o [Prabhu (1965)]. o
0

By Eq. (4.36), we have

r
d,.(0)=1-— : (5.29)
g P&,
Theorem 5.1
E[r, | 1(0)= 0] = ——. (530)
23
Proof.
In view of Egs. (4.18) and (4.36), we have
B[, |10) = 0= ——-d,, (0) |, = —lim —|1-—"—
or 0 Op P&,

:llim{L_ng;}zL
pr> &[] p&
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Here, the first equality holds by Eq. (4.18) at u =0, the second equality holds by Eq. (5.29).

The fourth equality is due to the fact that ling €. =0, and to show that it suffices to prove
>

€]

that lim &

0 [g,]

5 exists and is finite. To see that, we first note that lim[€7,]2 =¢”. Secondly, since
r—0

: 1
T > &, is a one-to-one mapping by Eq. (5.17), one has 11113 §, = ———— . Furthermore, by

lim 7’
{rlirglﬂ r (57')

Eq. (5.17), one has

’ 0
r (57‘) - g’w?‘(z)

z=§, -

0
Therefore, by continuity of 6_ 1, (2) at z = &,., shown in the proof for Lemma 5.2, we have
z

. 0
lim =— 2)| e >0, 5.31
€ ¢ (5’/‘) oz ’lb()( ) z=£ ( )
again by the proof for Lemma 5.2. We conclude that lim—"— is finite as claimed. i

r—0

T’]Z

5.3.2 Closed form formula for Ep

The following theorem provides computable representations for the infinite-horizon time-average

total cost and its components (carrying cost and lost-sales penalty).

Theorem 5.2
c,=£g(), (5.32)
h,=£5,8). (533)

w, =£3,(8) (5:34)
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where € =&(p), functions g(-), g,(-) and g,(-) are given by Egs. (4.27), (4.28) and (4.29),

respectively.

Proof.

To prove Eq. (4.43), substitute Egs. (5.26) and (5.30) into Eq. (5.25). Eqgs. (5.33) and (5.34)

readily follow by noting that g = g, +g, implies g = g, +g,. O

Denote by I the infinite-horizon time-average inventory, namely,

— 1t
I =tll>rcr>10¥ OI(z) dz. (5.35)
Corollary 5.2
— h
h =—, (5.36)
P
7=1 (5.37)
§
Proof.

~ h - ,
Note that g,(z) =—; by Eq. (4.28). Eq. (5.36) now readily follows by substituting g, (&) into
z

Eq. (5.33). Finally, Eq. (5.37) follows immediately from Eq. (5.36) by noting that the inventory

time average is equivalent to the time-average carrying cost with h =1. o
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5.4  Cost Function Properties

In this section, we study properties of the cost function ¢, given by Eq. (5.32) and its

components, h, and w,. To this end, we first provide some asymptotic results of the cost

functions, and then demonstrate the existence and uniqueness of its minimum.

We first rewrite Eq. (5.32) as
c,=2L[g'](¢) +9(0+)=2L[g'](€) +AE[w(D)], (5.38)
where the first equality holds by a property of the Laplace transform [Widder (1959)], the second

equality follows from Eq. (4.27), and g’(u) is given by

7w =+ glw) = h=A| [ fo@)wlz — w)do + f(w (o). (539

Lemmab5.6

(a) Ep is monotone increasing and convex in p > 0, and has the following asymptotes

}}L% h,=0 = (5.40)
plil?o h, = oo (5.41)

(b) w, is monotone decreasing and concave in p >0, and has the following asymptotes

Liil% w, = AE[w(D)] (5.42)
lim @, =0 (5.43)

(c) ¢, has the following asymptotes

limz, = A Blu(D)] (5.44)
lim €, = oo (5.45)

p—00
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Proof.
Part (a) readily follows from Eq. (5.36).
To prove part (b), we first prove Eq. (5.42) by writing
lim @, = Jim £4.(&) = lim g (u) = A\E[uw(D)].
Here, the first equality follows from Eq. (5.34) and the monotone decreasing relation between p

and & exhibited in Eq. (3.10); the second equality holds by the Initial Value Theorem of the

Laplace transform [Widder (1959)]; and the third equality holds by Eq.(4.29).

Next, to prove Eq. (5.43) we write

pli_)Iglo’lTJp = 151_r}3€§z(€) = ulggo g,(u) = oco.
Here, the first equality holds by Eq. (5.34) and the decreasing monotone relation between p and
& exhibited in Eq. (3.10); the second equality holds by the Final Value Theorem of the Laplace

transform [Widder (1959)]; and the last equality holds by Eq.(4.29).

We next show that the monotonicity and concavity of w, follow from its first and second

derivatives, respectively. To this end, we write

@, =£5,(6)=£[g,]©)+ .00 = [~ e **g\(2)dz+ ABlw(D)],  (546)

where the first equality holds by Eq. (5.34); the second equality holds by a property of the
Laplace transform [Widder (1959)]; the first term in the third equality holds by definition; and the

second term in the third equality holds by Eq. (4.29). Differentiating Eq. (5.46) now yields

0 _ o0 —£z 1

pr:—_[o ze “"g,(x)dz >0 (5.47)
0’ oo

—w :Io z’ e gl (x)dx <0 (5.48)

852 P
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Here, we use the fact that Eq. (4.29) implies

g:(u) = =X [ f " (@) w'(@ — u)da + £, (w)w(0+)| < 0. (5:49)
since the equality holds by the generalized Leibniz’s integral rule, and the inequality holds in

view of fp(u)> 0 and the fact that the inequalities w(0+),w'(x)> 0 hold by assumption.

This completes the proof for part (b).

Finally, Egs. (5.44) and (5.45) follow by adding Eq. (5.40) to Eq. (5.42), and adding Eq. (5.41) to

Eq. (5.43), respectively. . o

We are now in a position to study the existence and uniqueness of the minima of c,. We

mention that it is straightforward to prove the existence of minima; however the proof of
uniqueness is much challenging. Still, we can prove uniqueness for some important cost

functions. To this end, we need the following general result.

Proposition 5.1

Let f(x) be a continuous function, not identically zero, satisfying

f f(z)dz=0, (5.50)
0
and there exists a constant @, > 0 such that f(x) <0 for 0 < x < x,, and f(x) >0 for

x > x,. Then, f(z) =0 ifand only if z = 0.

Proof.
The proof of the necessary condition is trivial. To prove the sufficient condition, we first write

Eq. (5.50) as
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f: flx)dz= —j;mo flx)dz. (5.51)

Next, forall z > 0,
f(z):f " f dw-i-f flz)dz
<f TP f(x) dx + e Zmof flx

_f Ty —z:c dw— z:cof f(il?

:‘l;moe flx)dz <0

because the first inequality holds by e~ < e "™ for > x, the second equality holds by

—ZZT —Zz LEO

Eq. (5.51), and the last inequality holds by the relations of e ">e ™ and f(x) <0 but

not identically zero for 0 < @ < a,. This completes the proof. i

The following Lemma provides results for the case w(0+) = 0.

Lemma5.7

For w(0+) =0,
(a)if h= 0, then Ep attains a unique minimum at p* = AE[D], where £=0;

(b) if

0<h <AE[w' (D) < oo, (5.52)
then €, has a unique and finite minimum at p = AF D (E*) , where £ >0;

(¢)if h > AE[w'(D)] > 0, then ¢, attains a unique minimum at p" =0, where £ =c0.
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Proof.
If w(0+) = 0, then Eq. (5.39) implies
g'(u)=h— )\f:o fo(x)w'(x — u)dx = R(u), (5.53)
where R(u) is an increasing function of w. Furthermore, Egs. (5.38) and (5.53) jointly imply
¢, =R(&) +AE[w(D)]. (5.54)

Eq. (5.54) shows that minimizing €, in p is equivalent to minimizing R(ﬁ) in £.

To prove Part (a), observe that h= 0 implies that R(u) <0 because w(x) is a non-

decreasing function (of the loss) by assumption, and consequently R(ﬁ) is strictly increasing.

Part (a) now follows since R(£ ) attains a unique minimum at £ = 0.

To prove Part (b), the existence of the minimum follows from the continuity of Ep and Part (c) in

Lemma 5.6. It remains to prove the uniqueness of the minimum. To this end, differentiate Eq.

(5.54) with respect to &, and set the derivative to zero, yielding
iE & = —fooa:e_sz(w)dw = foof (x)de =0. (5.55)
8& P 0 0 13

where f(x) = —x e_ng(m). Next, Eq. (5.53) implies

lim R(u)=h >0. (5.56)

Furthermore, the assumption h < AE[w'(D)] < oo and Eq. (5.53) imply R(0+) <O.

Using the two limits above and the continuity and monotonicity of R(u), it follows that there

exists a constant uy > 0, such that R(u) <0 for 0 <wu < wugy, while R(u)>0 for



-69-

u > uy. Consequently, we conclude that for any & >0, one has fi(x) >0 for
0 <u < wuy, while, fe(z) <0 for u>wuy. Letting £ denote a solution of Eq.(5.55), we
next prove its uniqueness by contradiction. Suppose there exists another solution &’ of Eq.(5.55)

, such that without loss of generality, & < &’. Then, by Eq. (5.55), one has
0 _ o © —(¢—&
8—£cp(£’) = ‘l; Jo(z)dz = j; e fe(x)dz =0.

In view of Proposition 5.1, we must have & — & =0 in contradiction to the assumption

¢ < &, which completes the proof for Part (b).

Finally, to prove Part (c), if h > AE[w'(D)], then R(u) > 0 by Eq. (5.53). It follows that

R(E) is non-increasing, which completes the proof for Part (c). m

Figure 5.3 illustrates a typical Ep as function of the original domain variable (the replenishment

rate, p), and a Laplace domain variable (the positive root, & ); recall that p and & are related by

Eq.(5.18).
— g
Ca er
F 3 \
AEfw{D) AE{w(D)]
ﬂ E - 0 : g £
0 p. P 0 5. L5

Figure 5.3. A Typical Ep as Function of p (Left) and & (Right)
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55  Optimal Replenishment Rate

In this section, we optimize the time-average cost of Eq. (5.5) with respect to the replenishment

*

rate, p. We first provide a general structural result for the optimal replenishment rates, p*, and

then we study some special cases. Note that we admit the possibility of multiple optimal

replenishment rates.

Theorem 5.3

The optimal replenishment rates for Eq. (5.5) are given by

p* =X Fp(¢), (5.57)
where
¢ =argmin {£ g(§)}. (5.58)
£>0
Proof.

In view of Eq. (4.43), minimizing ¢, = &(p)g(&§(p)) with respect to pis equivalent to
minimizing ¢, =§g(§) with respect to the nonnegative variable &. To this end, we first
compute Eq. (5.58), namely, perform optimization on ¢, = £ g(&) in the Laplace domain to find
the optimal values S*. Next, by Lemma 5.3(b), p > &(p) is 1-1, and consequently, we can

invert each 5* = f(p*) via Eq. (4.65) to obtain the corresponding optimal replenishment rate,

*

p . O

The minimum values, &, given in Eq. (5.58), can be calculated in several ways. A

straightforward but relatively time consuming method is global search. However, when £ is
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unique, the availability of derivatives of Ep (&) with respect to & allows us to apply the relatively

fast Newton’s Method, where successive approximations of the minimum are given by the

iterative scheme,

0 _
Fscp(gn)

SnH:gn—az—, n=0,1,.... (5.59)
67526” (&)

We next proceed to study production-inventory systems with specialized lost-sales penalty
structures, specifically the constant lost-sales penalty and the loss-proportional penalty. Under

each penalty structure, we study the optimal average costs, subject to particular demand

distributions, such as constant, uniform, Exponential and Gamma distributions.

5.,5.1 Constant Lost-Sales Penalty

In this case, w(x) = liz03 Ko, where K, > 0 is a constant. Then, Eq. (4.27) becomes

g(u):hu+)\K0foofD(:L')d:1::hu+)\KOI_5’D(u), (5.60)

and the corresponding Laplace transform is given by

g(z)=§+AKOﬁD(z)=Z£2+AKOHTD(z),

where the second equality holds by Eq. (1.4). In view of Eq. (4.43), we now have

7 =630 = g+ MG (15 0] = g+ K, &, (5.61)

where the last equality holds by Eq. (5.19). By Eq. (5.58), the optimal & is given by

£>0

¢ =argmin {% -\K, f, (5)} . (5.62)
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. A K
We mention that & is a monotonically decreasing function of 3 9 To see this, Eq. (5.62) can

. .1 AK, ; o .
be rewritten as & :argmln{g— B o f (5)}, so that the derivative of the rewritten
£>0

AK =
objective function with respect to . 0 is —f, (&) <0, which implies the result. It follows that

K,

* . . . . * . . .
p is a monotonically increasing function of , because & is a monotonically decreasing

K,

function of , while & = &(p) is monotonically decreasing in p .

Table 5.1 exhibits the formulas for &, p* and Ep* for selected demand distribution with detailed

derivations given in Section A.3 of Appendix A.
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Table 5.1. Optimal Quantities for Production-Inventory Systems Subject to Constant Penalty and

Various Demand Distributions

Distributi : * c
istribution I3 p Cp*
D=d A * h ok
argmin{ﬁ—/\Koe_gd} —*ll—e_sd] —+K,p &
d>0 &0 (€ ¢ 3

D ~ Exp(8) 8Jh N N 5 [PAK, R
550 ABEK,-h 8 88K, B B

BAK,>h

D~U(a,b —ag _ b€ —at" —be" h X o
(@0) argmin{ﬁ—)\Koeb—e} A 1_Q §+Kop£
0<a<b | & L& (b-a)¢ '3 (b—a)¢
D ~I(a, B) " —a o h e
a,3>0  [argmin ——AKo(“é] A+ & £*+K0p£
o | € B ¢ B

5.,5.2  Loss-Proportional Penalty

In this case, w(z) = l(,~0) K,z where K, > 0 is constant. Then, Eq. (4.27) becomes

g(u) = hu+)\K1foo(ac—u)fD(ac)dw, (5.63)

and the corresponding Laplace transform is given by

Ko _ l_ff(z) . (5.64)

N h
J(z) = — +AK,
z z

In view of Eq. (4.43), we now have

o= oak [, 0], 69
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where ftp=E[D]. Note that X &' [1 —f (5)] = p by Eq. (3.8), we also have

h
cng— WPHAK, 1y (5.66)

Consequently, by Eq. (4.80), the optimal & is given by

5* = argmin {E—)\ K, %} (5.67)
&0 | § 3

. AK,
We mention that § is a monotonically decreasing function of 3 L To see this, by Eq.(5.67),

' |1 XK 1-f
we have & =argmin {EJF%{ Ly —#} }, so that the derivative of the rewritten
£>0

1S

objective function with respect to

1-£,(8)

e = H ~Fy©)=pp- | e Fy@da < pp— [ Fy(z)dz=0,

Hp

* A
which implies the result. It follows that p is a monotonically increasing function of h

K,

because 5* is a monotonically decreasing function of , while & =&(p) is monotonically

decreasing in p .

Table 5.2 exhibits the expressions for E*, p* and Ep* for selected demand distribution with

detailed derivations given in Section A.4 of Appendix A.
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Table 5.2. Optimal Quantities for Production-Inventory Systems Subject to Loss-Proportional

Penalty and Various Demand Distributions

Distribution g* p* Ep*
D=d _ptd A e h .

argmin{ﬁ—)\K1 Ie } —[l—e £‘Jl] ——kp +AK d
d>0 £>0 5 5 13 5

D ~ Exp(B) END A1 [rX 2 h}\Kl_ﬁ
Kl

p>0 JAK, - B B B B
AK,>h
D ~U(a,b ~a€ _ ¢ —at" b€ h . AK[b-a
(a,) argmin{h /\K{l_e € }} A € e’ g—Km +1£ ]
b-a T T
e (& & (b-a)€ ¢ (b—a)e
0<a<b
D~TI(a, o QY h .
(@0 CIh K 1_(1+%j A+ & E_I{lp +AK
< I '3 s
o, 3>0

5.5.3 Exponential Demand: Relationship between the Optimal and Cost-Balanced Rates

In this section, we assume that demand is exponential, and under this assumption we relate the
optimal replenishment rate, p , and the corresponding cost-balanced replenishment rate, p,
which is the replenishment such that

h, =1, . (5.68)

Let 8> 0 be the rate parameter of the exponential demand distribution, so

Ip(@) = B’ z>0. (5.69)

and
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B (5.70)

Accordingly, 1y(z) becomes

AB
wo(z)—Pz—)\'i‘B_l_z

And the equation 1(2) = 0 can be written as

z— A—B]z=0. (5.71)
p
Hence, the positive root of Eq. (5.71) is given by
(5.72)

e=2_p.
p

We then have the following result.

Proposition 5.2
Let the demand distribution be exponential, and assume that the penalty function is of the form

w(x) = 10 Ko or w(z) = 1,00, K x. Then, forany p >0,
(5.73)

(5.74)

Proof.
. Substituting Eq. (5.72)

Assume first that the lost-sale penalty is of the form w(x) = 11,0, K

into Eq. (5.61), we have
(5.75)

c =_Ph + K A-pBl=h,+@,,

P X-pB

where the time average carrying cost is



-77-

h, = ph (5.76)
A-ppB
and the time average lost-sales penalty is
w, =K, [A-pB]. 5.77)

Next, equate Egs. (5.76) and (5.77) and solve for p, yielding

2
<A h Ah h
= —— . 5.78
P=3 \/[2Koﬁ2J+Koﬂ3+2Koﬂ2 G79

AR
K,

Y Ak h [ AR
\/(2K062] + K g _2K0ﬁ2 < K5 (5.79)

Egs. (5.78) and (5.79) readily imply

Al A ’ Ah .
0

where the equality in Eq. (5.80) follows from the exponential case in Table 5.1. This completes

: h .
Letting a =———>0 and b= >0 above, and noting that / a> +b*> <a+b, we

2K, B

get

the proof of Eq. (5.73).

To prove Eq. (5.74), first note that Ep is an increasing function of p by Lemma 5.6(a) while
w P is a decreasing function of p by Lemma 5.6(b). Second, the aforementioned monotonicity

of Ep and w,, in conjunction with Eq. (5.80) imply Eﬁ > Ep* and 'lT)i) < ’lTJp*. Eq. (5.74) now

follows from the last two inequalities together with Eq. (5.68).
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Finally, the corresponding proofs for the case w(x)= l;,», K,z are readily seen to be

K
analogous to the proofs above for w(x) = 1 {&>0} K, , but with K replaced by ?1 . o

A numerical study illustrating the relationships in Eqs. (5.73) and (5.74) appears in next section.
56  Numerical Study

In this section, we study three special cases with constant lost-sales, with A=0.5, h=1 and
K, =100 in all cases. As a check on accuracy, we performed paired evaluations of the requisite

cost functions: by analytical formulas developed earlier and by simulation. Accordingly, in the
figures below, curves are paired as follows: those with circles correspond to analytical results,

while those with asterisks correspond to their simulation counterparts.

In the first case, we study the average total cost, Ep, as function of the replenishment rate, p,
under three demand distributions: constant, exponential and uniform. To ensure that these
systems are comparable, we let f4, =2 be the common mean of all the aforementioned demand

distributions.

Figure 5.4 depicts ¢, as a function of p for each demand distribution. Here, curve styles

correspond to demand distributions: solid curves to the constant distribution, dashed curves to the
exponential distribution and dotted curves to the uniform distribution. Figure 5.4 shows a good

agreement between all pairs of analytical and simulation results. Furthermore, the system with
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constant demand has the largest optimal replenishment rate, while its exponential counterpart has

the smallest one.

45,

—+— Constant Demand (Simulation)
—&— Constant Demand (Analytical)
—+— Exponential Demand (Simulation)
—o—- Exponential Demand (Analytical)
—+# - Uniformal Demand (Simulation)
-G - Uniformal Demand (Analytical)

S3

Average Total Cost

» Exponential

N
25+ [
\
e
20+
15 ! ! ! ! ! ! ! ! |
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure 5.4. Average Costs for Inventory Systems with Various Demand Distributions as

Functions of the Replenishment Rate

In the second case, we study the average total cost, ¢,, and its components (average carrying

cost, hp, and average penalty, w,) as functions of the replenishment rate, p, under an

exponential demand distribution with rate parameter, 3 =0.5.

Figure 5.5 depicts the ¢,, hp and w,, as functions of p. Here, curve styles correspond to cost

types: solid curves to the average total costs, dashed curves average carrying costs and dotted
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curves to average penalties. Figure 5.5 shows a good agreement between all pairs of analytical

and simulation results. Furthermore, the optimal solution P1 (with replenishment rate p* ) for the

average total costs differs from its cost-balanced counterpart, P2 (with replenishment rate p),

such that p > p* , in agreement with Eq. (5.73).

40

35}

T T T
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-0 - Awerage Penalty Cost (Analytical) //
-+ - Average Penalty Cost (Simulation)

20+

Average Cost

15+

10+

~

L T
Pénalty Qé;\\\\\\ N /

0
0.5

| |
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Figure 5.5. Average Total Costs, Carrying Costs and Penalties as Functions of the

Replenishment Rate under Exponential Demand

In the third case, we study analytically-computed quantities associated with the optimal solution,

[ J— . . . . . .
(p ,cp,, ) , under various demand distributions: constant, exponential, uniform and Gamma.
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Table 5.3 displays p  and & as functions of the mean demand, ,6'_1, with the four
aforementioned demand distributions. From Table 5.3 it can be seen that the respective optimal
replenishment rates increase in this order of distributions: constant, uniform, Gamma and
exponential. Note that as the average demand decreases (i.e., (3 gets larger), the optimal
replenishment rate approaches zero for all demand distributions, as it should be, since the optimal

replenishment must be zero in the absence of demand.
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Table 5.3. Analytically-Computed Optimal Quantities under Various Demand Distributions

1 2 1
L

B '3 p '3 p '3 p '3 p
0.1 0.060 3.798 0.080 2.806 0.068 3.367 0.065 3.515
0.6 0.121 0.762 0.133 0.689 0.125 0.736 0.124 0.743
1.1 0.159 0.427 0.170 0.398 0.163 0.417 0.162 0.420
1.6 0.189 0.298 0.200 0.281 0.193 0.292 0.192 0.293
2.1 0.215 0.229 0.226 0.217 0.218 0.225 0.217 0.226
2.6 0.238 0.186 0.249 0.177 0.241 0.183 0.240 0.184
3.1 0.258 0.156 0.269 0.150 0.262 0.154 0.261 0.155
3.6 0.277 0.135 0.288 0.130 0.281 0.133 0.280 0.134
4.1 0.295 0.119 0.306 0.115 0.299 0.117 0.298 0.118
4.6 0.312 0.106 0.323 0.103 0.316 0.105 0.315 0.105
5.1 0.328 0.096 0.339 0.093 0.332 0.095 0.331 0.095
5.6 0.343 0.087 0.354 0.085 0.347 0.087 0.346 0.087
6.1 0.358 0.080 0.369 0.078 0.361 0.080 0.361 0.080
6.6 0.372 0.074 0.382 0.072 0.375 0.074 0.374 0.074
7.1 0.385 0.069 0.396 0.067 0.389 0.069 0.388 0.069
7.6 0.398 0.065 0.409 0.063 0.402 0.064 0.401 0.064
8.1 0411 0.061 0.421 0.059 0.414 0.060 0.413 0.060
8.6 0.423 0.057 0.433 0.056 0.426 0.057 0.426 0.057
9.1 0.435 0.054 0.445 0.053 0.438 0.054 0.437 0.054
9.6 0.446 0.051 0.457 0.050 0.450 0.051 0.449 0.051
10.1 0.457 0.049 0.468 0.048 0.461 0.049 0.460 0.049
10.6 0.468 0.047 0.479 0.046 0.472 0.046 0.471 0.046
11.1 0.479 0.045 0.490 0.044 0.483 0.044 0.482 0.044
11.6 0.489 0.043 0.500 0.042 0.493 0.042 0.492 0.042
12.1 0.500 0.041 0.510 0.040 0.503 0.041 0.502 0.041
12.6 0.510 0.039 0.520 0.038 0.513 0.039 0.512 0.039
13.1 0.520 0.038 0.530 0.037 0.523 0.038 0.522 0.038
13.6 0.529 0.036 0.540 0.036 0.533 0.036 0.532 0.036
14.1 0.539 0.035 0.549 0.034 0.542 0.035 0.541 0.035
14.6 0.548 0.034 0.558 0.033 0.551 0.034 0.550 0.034
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Chapter 6 Further Properties

The chapter investigates additional properties of the production-inventory system under study.

6.1  Expected Stockout Time

In the following, we consider ¥.(2) =v(2), £€=¢€,, 6=0, and d (u)=d, (u) as

— o,

functions of r > 0.

The next proposition studies the expectation

I(u)=Efr, | 1(0) = u] = —a%dp,r(u) o w20, 6.1)
where the second equality follows from Eq. (4.8).
Proposition 6.1
(a) For 0 < p < AE[D],
I'(z)=— ! [i—l} 220 (6.2)
Afp(R)+pz=-A & =z
(b) For p > AE[D],
I'u)=00, u©u2>0 (6.3)
Proof.
To prove part (a), note that by Eq. (6.1), one has
N
D(z) = —— - dpr(2) lr=0 (6.4)
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where the interchange above of the Laplace integral transform and differentiation holds by

Leibnitz's rule.

Next, substituting Eq. (4.41) into Eq. (6.4) yields

~ . 0 r 1 1
o= %E{wr(z) Z_Z}
(6.5)
1 1 1 1 ..r 1 .. r 0
= lim — im—— lim ——¢&,
r201,(2) €z () r0E hy(z) o0 g Or

where 1(z) is given by Eq. (5.11).

It remains to show that the two last terms on the right-hand side of Eq. (6.5) both vanish. Since
. 0 . .
&, > 0 by part (a) of Lemma 5.1, it suffices to show that a—fr is bounded. To this end,
T

differentiate Eq. (3.8) with respect to 7 yielding
o @] —
1= p—)\f Te £waD(:zz) dx iﬁr (6.6)
0 or
Observe that
o0 =&
p—)\j;) ze = fp(x) de < p—AE[D]<O, (6.7)
where the first inequality holds by the fact that &, > 0 and the second inequality holds by

assumption. Egs. (6.6) and (6.7) readily imply that iﬁ is bounded, which completes the proof
or "

of Eq. (6.2).

Finally, part (b) follows from the fact that 7, = oo with positive probability [Prabhu (1965)]. o
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Corollary 6.1
For p >0,
Iro)= ! = 1~ , (6.8)
pSy  A—=Afp(&)
Proof.

We consider two cases.

(a) Assume that 0 < p < AE[D]. The first equality in Eq. (6.8) follows by substituting Eq.

(6.2) into the representation I'(0) = lim zI"(z) [Widder, (1959)], and then sending z T co.
Z—00
The second equality readily follows by further substituting p&y= A — A fp(&,) which is

obtained by setting z = &, in Eq. (5.11).
(b) Assume that p > AE[D]. Eq. (6.8) now follows trivially, since I'(0) = oo by part (b) of

Proposition 6.1, and &y, = 0 by part (b) and (c) of Lemma 5.1. i

6.2  Bound on the Probability of the Inventory Exceeding a Given Value

Since our model’s base-stock level is infinite, an excursion of the inventory process can generally
reach arbitrarily large levels. The following lemma provides a bound on the probability of the

inventory level exceeding a given value.

Lemma 6.1

For a given replenishment rate, p, consider the corresponding inventory process in the steady

state regime. Then, for s >0,

—

P{I(t)>s}<—, t>0. (6.9)

E’
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Proof.

By Markov inequality [Karr (1993)],

P{I(t)>s} < =

The result now follows from Eq. (5.37). o

6.3 Demand Fill Rate

Let 7 denote the fill rate (limiting fraction of demand arrivals that can be immediately satisfied

from inventory on hand), and let the lost-sales rate be denoted by ™ =1— 7r. Then,

7 = lim Np(t)

t—o0 NA (t)

B

where IN ,(t) and N(t) are the numbers of demand arrivals and lost-sale, respectively, in the

interval (0,%]. Alternatively, 7= can be represented as [cf. Ross (1996), Theorem 3.4.4]

7= E[T)) . (6.10)
E[7,|1(0)=0]
Proposition 6.2
For p > 0,
7r=fp(£0)=1—p750 (6.11)
Proof.
For p >0,
_ 1 %
7= _ P& =1—F,(&,), (6.12)
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where the first equality follows from Eq. (6.10) and the facts that I'(0) = E[r, | I(0) = 0] and

E[T;]=1/ A, and the second equation holds by further substituting the representation of I'(0)

in Eq. (6.8). Eq. (6.11) now follows immediately from Eq. (6.12). i

We mention in passing that sending p 4 0 on both sides of Eq. (6.11) yields the intuitive result
7 = 0 by substituting Eq. (3.12) with 7 =0 into Eq. (6.11). This is consistent with the fact that
for p=0, one has E[r,|I(0)=0]=1/X, since in a system without replenishment, started
with zero initial inventory, each demand arrival results in a lost sale, and consequently, the mean

time between losses is coincides with the mean interarrival time, E[T,]=1/A.
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Chapter 7 Conclusion

In this thesis, we investigated a single-product continuous-review production-inventory system
with infinite base-stock level, compound Poisson demands and lost-sales, and constant
replenishment, subject to holding costs and lost-sale penalties. We derived closed-form formulas
for both the expected discounted cost as a function of arbitrary initial inventory level, as well as
the time average cost. The resultant cost functions were optimized with respect to the

replenishment rate via a simple search in the Laplace transform domain.

The results can be readily generalized to an optimization of cost functions under study with

respect to the replenishment rate, subject to a given minimal service level, e.g., a fill rate 7t [de

Kok (1985)]. For this problem, one can apply Eq. (6.11) to compute the critical value & such

that ™ = fD (&'). Tt can be readily shown that the cost optimization problem with the

constraint that the fill rate is at least 7 can be solved by a search in the Laplace domain restricted

to the interval 0 < z < &', as opposed to the original search space, z > 0.

Although optimal replenishment rate may not be unique in general, it is highly likely that the
optimal replenishment rate is unique under fairly general conditions. More general conditions that

ensure such uniqueness are the subject of future research.

Further, the research presented in this thesis may be extended in several directions. First, one
may consider more general cost functions, e.g., with nonlinear terms. Second, the Poisson
assumption can be relaxed to a general renewal arrival process. Finally, one may consider a

continuous-replenishment inventory with a finite base-stock level (where replenishment is
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suspended when the inventory level reaches or is at the base-stock level) rather than one with

unlimited capacity.
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Appendix A

A.1  Proofs for Table 4.1 Formulas

Constant Demand Size. Consider the first distribution row of Table 4.1, where D=d >0 isa

constant, so that
fD(z) = exp{—=zd}. 8.1)
The corresponding S* follows by substituting Eq. (8.1) into Eq. (4.79), the corresponding p*

follows by substituting this 5* and Eq. (8.1) into Eq. (4.65), and the corresponding dip*(O)

follows by substituting these € and p* into Eq. (4.78).

Exponentially-Distributed Demand Size. Consider the second distribution row of Table 4.1,

where D ~ Exp(83). Substituting Eq. (4.67) into Eq. (4.79) yields,

t = i ﬁ_%} 82
I3 ar%gun{€ erp | (8.2)

Finally, the corresponding 5* is obtained from Eq. (8.2) by first derivative test with respect &,
the corresponding p* follows by substituting such S* into Eq. (4.65), and the corresponding

!Pp*(O) follows by substituting & into Eq.(4.78).

Uniformly-Distributed Demand Size. Consider the third distribution row of Table 4.1, where

D ~U(a,b), so that

Fpl)="——"—. (8.3)



-95-

The corresponding S* follows by substituting Eq. (8.3) into Eq. (4.79), the corresponding p*

follows by substituting this 5* and Eq. (8.3) into Eq. (4.65), and the corresponding dip*(O)

follows by substituting these 5* and p* into Eq. (4.78).

Gamma-Distributed Demand Size. Consider the fourth distribution row of Table 4.1,

where D ~ I'(av, 3), so that

(8.4)

The corresponding & follows by substituting Eq. (8.4) into Eq. (4.79), the corresponding p:k

follows by this & and Eq. (8.1) into Eq. (4.65), and the corresponding <15p*(0) follows by

substituting these E* and p* into Eq. (4.78). i

A.2  Proofs for Table 4.2 Formulas

Constant Demand Size. Consider the first distribution row of Table 4.2, where D = d . Then,
the corresponding S* follows by substituting Eq. (8.1) into Eq. (4.81), the corresponding p*

follows by substituting this 5* and Eq. (8.1) into Eq. (4.65), and the corresponding 45p*(0)

follows by substituting these & and p:k into Eq. (4.60).

Exponentially-Distributed Demand Size. Consider the second distribution row of Table 4.2,

where D ~ Exp((3) . Substituting Eq. (4.67) into Eq. (4.81) yields,

- . Jh  AK,
ﬁ—ar%g)nn{5 S-I-,B}‘ (8.5)
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Finally, the corresponding E* is obtained from Eq. (8.5) by first derivative test with respect &,

the corresponding p* follows by substituting such S* into Eq. (4.65), and the corresponding

<15p*(0) follows by substituting € into Eq. (4.60).

Uniformly-Distributed Demand Size. Consider the third distribution row of Table 4.2, where

D ~U(a,b). Then, the corresponding S* follows by substituting Eq. (8.3) into Eq. (4.81), the
corresponding p:k follows by substituting this 5* and Eq. (8.3) into Eq. (4.65), and the

corresponding <15p*(0) follows by substituting these £* and p* into Eq.(4.60).

Gamma-Distributed Demand Size. Consider the fourth distribution row of Table 4.2, where

D ~ I'(c, B). Then, the corresponding & follows by substituting Eq. (8.4) into Eq. (4.81), the
corresponding p* follows by substituting this E* and Eq. (8.4) into Eq. (4.65), and the

corresponding !Pp*(O) follows by substituting these S* and p* into Eq. (4.60). o

A.3  Proofs for Table 5.1 Formulas

Constant Demand Size. Consider the first distribution row of Table 5.1, where D=d >0 is a

constant, so that
fD(z) = exp{—=zd}. (8.6)
The corresponding & follows by substituting Eq. (8.1) into Eq. (4.79), the corresponding p*

follows by substituting this S* and Eq. (8.1) into Eq. (5.19), and the corresponding Ep* follows

by substituting these 5* and p* into Eq. (5.61).
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Exponentially-Distributed Demand Size. Consider the second distribution row of Table 5.1,

where D ~ Exp((3). Substituting Eq. (5.70) into Eq. (4.78) yields,

c :)\K0+E—AKOB.
g § B+¢

(8.7)

Finally, the corresponding £ is obtained by straightforward minimization of Eq. (8.7) in &, the

corresponding p* follows by substituting this 5* into Eq. (5.72), and the corresponding Ep*

follows by substituting & into Eq. (8.7).

Uniformly-Distributed Demand Size. Consider the third distribution row of Table 5.1, where

D ~U(a,b), so that
fpla) =S (1.8)

The corresponding & follows by substituting Eq. (8.3) into Eq. (4.79), the corresponding p:k

follows by substituting this E* and Eq. (8.3) into Eq. (5.19), and the corresponding Ep* follows

by substituting these & and p* into Eq. (5.61).

Gamma-Distributed Demand Size. Consider the fourth distribution row of Table 5.1,

where D ~ I'(av, 3), so that

(1.9)
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The corresponding S* follows by substituting Eq. (8.4) into Eq. (4.79), the corresponding p*

follows by substituting this & and Eq. (8.4) into Eq. (5.19), and the corresponding Ep* follows

by substituting these E* and p* into Eq. (5.61). o

A.4  Proofs for Table 5.2 Formulas

Constant Demand Size. Consider the first distribution row of Table 5.2, where D = d . Then,
the corresponding & follows by substituting Eq. (8.1) into Eq. (4.81), the corresponding p3k

follows by substituting this S* and Eq. (8.1) into Eq. (5.19), and the corresponding Ep* follows

by substituting these 5* and p* into Eq.(5.66).

Exponentially-Distributed Demand Size. Consider the second distribution row of Table 5.2,

where D ~ Exp(3). Substituting Eq. (5.70) into Eq. (4.80) yields,

_h AK,

"¢ Bt

+AK pp (8.10)

Finally, the corresponding E* is obtained by straightforward minimization of Eq.(8.10), the

corresponding p* follows by substituting this E* into Eq. (5.72), and the corresponding Ep*

follows by substituting this &  into Eq. (8.10).

Uniformly-Distributed Demand Size. Consider the third distribution row of Table 5.2, where

D ~U(a,b). Then, the corresponding & follows by substituting Eq. (8.3) into Eq. (4.81), the
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corresponding p* follows by substituting this E* and Eq. (8.3) into Eq. (5.19), and the

corresponding Ep* follows by substituting these 5* and p* into Eq. (5.66).

Gamma-Distributed Demand Size. Consider the fourth distribution row of Table 5.2, where

D ~ I'(a, B). Then, the corresponding & follows by substituting Eq. (8.4) into Eq. (4.81), the
corresponding p* follows by substituting this S* and Eq. (8.4) into Eq. (5.19), and the

corresponding Ep* follows by substituting these € and p* into Eq. (5.66). i
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