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Abstract of the Thesis 

 

Make-to-Stock Production-Inventory Systems  

with Compound Poisson Demands, Constant Continuous 

Replenishment and Lost Sales 

 

By Junmin Shi 

Thesis directors: Benjamin Melamed and Michael N. Katehakis 

 

Supply contracts are designed to minimize inventory costs or to hedge against undesirable 

events (e.g., shortages) in the face of demand or supply uncertainty.  In particular, replenishment 

terms stipulated by supply contracts need to be optimized with respect to overall costs, profits, 

service levels, etc.  This thesis considers a continuous-review, single-product Make-to-Stock 

production-inventory system with infinite base-stock level, compound Poisson demands and 

constant continuous replenishment under the lost-sales policy, in which the inventory is subject to 

a cost function consisting of holding costs and lost-sale penalties. The main objective is to 

minimize pertinent inventory cost functions (the expected discounted cost and the time average 

cost) with respect to the replenishment rate.  

 

For the expected discounted cost case, we first derive an integro-differential equation system for 

the expected discounted cost incurred up until the first loss occurrence, conditioned on an initial 

inventory level, from which we obtain the Laplace transform for the conditional expectation of 

the discounted cost over an infinite time horizon. For a system starting from an arbitrary initial 

inventory level, we obtain a closed form formula for the expected discounted cost via the 
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inversion of its Laplace transform. For the special cases of constant or proportional penalty 

function and exponentially distributed demand sizes, we exhibit an explicit expression for the 

conditional expectation of the discounted cost. Finally, we minimize the cost function with 

respect to the replenishment rate and provide an algorithm to compute the attendant optimal 

replenishment rate. We further obtain a closed form formula for the time-average cost under a 

suitable stability condition. For exponentially distributed demand sizes, we exhibit explicit 

solutions for the optimal replenishment rate for both the expected discounted cost function 

conditioned on initial empty inventory, as well as the time-average cost function. 

 

For each case, numerical studies are conducted to illustrate our results and investigate further 

properties of the system. 
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Chapter 1 Introduction   

 

Supply contracts are designed to minimize inventory costs or to hedge against 

undesirable events (e.g., shortages) in the face of demand or supply uncertainty [Simchi-Levy et 

al. (2008)].  In particular, replenishment terms stipulated by supply contracts need to be 

optimized with respect to overall costs, profits, service levels, financing costs, etc.  In this thesis, 

we consider a Make-to-Stock (MTS) continuous-review single-product inventory system with 

infinite base-stock level, compound Poisson demands and constant replenishment, subject to the 

lost-sales rule.  In this system, unsatisfied demand can be partially fulfilled from on-hand 

inventory (if any) and excess demand (shortage) is lost.  The excess demand is referred to as the 

lost-sale size.  Replenishment is continuous at a constant (deterministic) rate, which in our model 

can also be interpreted as a production rate.  The system incurs a cost function consisting of two 

types of costs: holding cost and lost-sales cost. A holding cost is incurred as a function of the 

inventory on hand and assessed at a constant rate per unit of on-hand inventory per unit time. A 

lost-sales cost is a penalty imposed at each loss occurrence, and is assumed to be a function of the 

quantity of the unsatisfied demand lost-sale size.  We consider two kinds of cost functions: 

discounted costs and time-average costs.  For the first kind, the cost function is the expected costs 

discounted to time 0, conditioned on the initial inventory level, and as such the time value of cash 

flows is accounted for, while for the second kind, the cost function is not undiscounted but rather 

time averaged.   

 

The objective of this thesis is twofold: first, to derive expressions for the computation of the 

aforementioned cost functions, and second, to derive the optimal replenishment rate that 

minimizes the respective cost functions.   
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Throughout the thesis, we use the following notational conventions and terminology.  Let R  

denote the set of real numbers.  For any x ∈ R , max 0{ , }x x=+ . The indicator function of set 

A  is denoted by 1A .  For a random variable X , its probability density function (pdf) is denoted 

by Xf x( ) , cumulative distribution function (cdf) by XF x( )  and the complementary cdf by 

1X XF x F x= −( ) ( ) .  If real functions ( )f x  and ( )g x  are defined on 0[ , )∞ , then the 

convolution function of ( )f x  and ( )g x  is given by 

0
( ) ( ) ( )

u
f g u f u x g x dx∗ = −∫ . 

The n-th fold convolution of function ( )f ⋅  is denoted by ( )( )nf ∗ ⋅ .  The Laplace transform of a 

function f x( )  is defined by  

0
� zx

f z f z e f x dx
∞ −⎡ ⎤⎢ ⎥⎣ ⎦ ∫( ) = ( ) = ( )L , 

and the corresponding inverse Laplace transform is denoted by the following contour integral 

1 1
2

� �lim
R

iR

iR

zxf x f x e f z dz
i

 −

→∞

+

−
⎡ ⎤⎢ ⎥⎣ ⎦ ∫( ) = ( ) = ( )L

γ

γπ
,   (1.1) 

where γ  is any real number that exceeds the real part of all the singularities of �f z( ) [Widder, 

(1959)]. Throughout this thesis, we restrict the Laplace domain to the real line unless otherwise 

specified. 

 

An arrival process : 0{ }iA i ≥  is a random sequence, such that for all 0i ≥ , 0iA ≥  and 

+1i iA A>  with probability 1 (w.p.1). A real-valued process : 0{ }X t t( ) ≥  has conditionally 

stationary increments with respect to process : 0{ }A t t( ) ≥ , if for any 0n m> ≥  and any real 

0t ≥  and 0x ≥ , 
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( )
( )

=
=

{ + }=
{ + }

n n n

m m m

X A t X A x |X A u
X A t X A x|X A u

≤
≤

( ) ( )

( ) ( )

P
P

−

−
   (1.2) 

A real-valued process : 0{ }Z t t( ) ≥  is said to have conditionally stationary discounted 

increments with respect to : 0≥{ }X t t( )  and : 0{ }iA i ≥ , if for any 0n m> ≥  and any real 

x , u  and 0t ≥ ,  

( )

( )

=

=

{ + }=

{ + }

n

m

-rA

-rA
n n n

m m m

Z A t Z A xe |X A u

Z A t Z A xe |X A u

≤

≤

( ) ( )

( ) ( )

P
P

−

−
   (1.3) 

In the sequel, : 0≥{ }X t t( )  will stand for the inventory process, : 0{ }iA i ≥  for the demand 

arrival time process, : 0≥{ }Z t t( )  for the discounted cost process and 

sup( ) { : }A nN t n A t≤=  is the number of arrivals up to time t . 

Finally, we shall make repeated use of the following relation for any non-negative valued random 

variable X , 

0 0

1 11 1� �( ) ( ) ( ) ( )
z x z x

X X X XF z e F x dx e dF x f z
z z

∞ ∞− −⎡ ⎤ ⎡ ⎤⎢ ⎥= = + = −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
∫ ∫  (1.4) 

where the second equality follows by integration by parts.   

 

This thesis consists of two parts, each treating the production-inventory system described in 

Chapter 3.  The first part studies expected discounted costs, conditioned on the initial inventory 

level, while the second part studies time-average costs.  The rest of this thesis is organized as 

follows. Chapter 2 provides literature review. Chapter 3 formulates the production-inventory 

model under study.  Chapter 4 studies the expected discounted cost function and its optimization, 

while Chapter 5 treats the optimization for the time average cost function. Some further 

discussions of the system are provided in Chapter 6. Consequently, Chapter 7 concludes this 

thesis and provides some discussion for future research. 
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Chapter 2 Literature Review 

 

There is a large body of literature addressing the management of inventory systems with 

compound Poisson demands, that is, demand arrivals follow a Poisson process, and the 

corresponding demand sizes follows an iid arbitrary distribution, independent of arrivals. Early 

papers on inventory process include Richards (1975), Thompstone and Silver (1975), Archibald 

and Silver (1978), Feldman (1978), and Federgruen and Schechner (1983).  Tijms (1972), Sahin 

(1979, 1983), and Federgruen and Schechner (1983) generalize the compound Poisson 

assumption to a general compound renewal processes, in which both the demand inter-arrival 

times and demand sizes have arbitrary distributions. Ohno and Ishigaki, (2001) considers a multi-

item continuous-review inventory system with compound Poisson demands under a general cost 

structure.  Presman and Sethi (2006) provides a detailed literature review with a comprehensive 

reference list.  The aforementioned papers assume various replenishment policies, but exclude 

continuous replenishment.   

 

Production-inventory systems with constant replenishment and various demand processes have 

been previously studied in literature. Gavish and Graves (1980) studies a one-product production-

inventory problem where demand is governed by a Poisson process and unsatisfied demand is 

backordered.  The system is subject to a fixed setup cost, a liner inventory holding cost and a 

linear backorder cost.  To minimize the expected cost per time unit, the paper treats the problem 

as an M/D/1 queueing system and proves that the optimal policy is a two-critical-number policy.  

Graves and Keilson (1981) considers a one-product, one-machine production-inventory problem, 

where the demand process is governed by a compound Poisson process with exponential demand 

sizes and the system is subject to a (r,R) policy with a constant replenishment rate. The paper 

analyses the cost optimization problem as a constrained Markov process using the compensation 
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method and the optimal policy is obtained via a search of the policy space.  Graves (1982) 

presents two models for inventory systems with constant production rate of perishable items. For 

each of these models, the paper derives analytical expressions for the steady-state distribution of 

system inventory, using a queuing-theoretic approach. The steady-state results are then used to 

evaluate various system performance metrics.  De Kok (1985) deals with a one-product 

production/inventory model with compound Poisson demands and lost-sales, where the 

production rate can be dynamically adjusted in order to cope with random fluctuations in demand. 

The paper considers the average number of lost-sales occurrences per unit time and the fraction of 

lost demand as service level measures. For a two-critical-number control rule, it derives 

practically useful approximations for the switch-over level in order to achieve a prescribed 

service level. Gullu and Jackson (1993) considers a one-product inventory problem with a 

constant production rate and a demand process with stationary and independent increments, 

where the replenishment policy is produce-up-to-S.  The paper derives the stationary distribution 

of the inventory level by extending existing results for dam systems, and then optimizes the time-

average cost of the system, by exhibiting a closed form formula for the optimal policy. 

 

A number of papers consider production-inventory problems for an integrated supply chain 

system, transportation and distribution.  Lei, et al (2006) studies the integrated production, 

inventory, and distribution routing problem (PIDRP). Optimally solving such an integrated 

problem is generally difficult due to its combinatorial nature, especially when transporter routing 

is involved. The authors propose a two-phase solution approach to this problem, which can 

simultaneously coordinate the production, inventory, and transportation operations over the entire 

planning horizon, without the need to aggregate demand or relax constraints on transportation 

capacities.  Armstrong et al (2008) studies the zero-inventory production and distribution problem 

with a single transporter and a fixed sequence of customers, where a subset of the customers is 

chosen from the given sequence to receive deliveries so as to maximize the total demand 
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satisfied, without violating the product lifespan, the production/distribution capacity, and the 

delivery time window constraints.  

 

Discounted costs are also frequently addressed in the inventory management literature. The 

pioneering work in Hadley (1964) offers a simple comparison of optimal order quantities 

computed using average costs with those computed using discounted costs.  Constantinedes and 

Richard (1977) offers an infinite-horizon, continuous time, discounted cash management model 

with fixed and proportional transaction costs and linear holding and penalty costs.  Federgruen 

and Schechner (1983) considers a single-item continuous review inventory model with a fixed 

delivery lag and compound renewal demand under the backlog policy. The paper presents cost 

formulas for the expected discounted inventory cost as a function of the inventory position just 

after a replenishment decision points. Wee and Law (2001), Bose, Goswami and Chaudhuri 

(1995), and Ray and Chaudhuri (1997) present variations of a deteriorating inventory system with 

price-dependent demand model taking into account the time-value of money. Presman and Sethi 

(2006) considers inventory models with compound Poisson demands under discounted and long-

run average cost structures. This paper connects two classical inventory results: the EOQ formula 

and the optimality of an (s,S) policy in stochastic inventory models with a fixed ordering cost. 

Under the two different valuation frameworks, i.e., the discounted cost and time average cost, the 

paper proves that the optimal ordering level s is unique, but the order-up-to-level S may not be.  

They also provide a detailed literature review on the optimal ordering policy for Poisson demand 

processes and fixed ordering cost.  

 

A number of papers study the derivation of optimal or near-optimal inventory replenishment, 

which minimize the time-average or expected discounted costs.  Springael and Nieuwenhuyse 

(2005) studies a lost-sales inventory model with a compound Poisson demand process, in which 

replenishment lead times are negligible.  On-hand inventory is managed according to a (0,B*) 
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policy, namely, when on-hand inventory drops to 0, the retailer instantaneously gets a fixed 

amount of B* units from the central stockroom as replenishment. The paper analyzes the time-

average cost of the system and provides a steepest-descent-based algorithm to calculate the 

optimal B* parameter. In a similar vein, Minner and Silver (2007) studies an inventory system 

with compound Poisson demands and negligible replenishment lead times.  The paper formulates 

the optimization problem as a Markov-decision-problem, which can be applied to inventory 

systems with a small number of products. For a large number of products, the paper proposes 

several heuristics for the optimal reorder points and reorder quantities. Zhao and Katehakis 

(2006) studies a single-item stochastic inventory system with a minimum order quantity (MOQ) 

over finite and infinite time horizons under the discounted cost criterion. The paper characterizes 

the optimal ordering policy everywhere in the state space outside of a state interval for each time 

period, and develops an upper bound and a lower bound for these intervals. Zhou, et al. (2007) 

considers a model of single-item periodic-review inventory system with stochastic demand, and 

linear ordering cost, where in each time period, the system must order either no items or at least 

MOQ items. The paper studies the performance of a simple heuristic policy, easily implementable 

in practice, and develops an algorithm to compute optimal parameters. For additional literature, 

refer to Yang, (2004), Yang and Yu (2002), and Yang and Qi (2010). 

 

MTS production-inventory systems have also been studies via other techniques. Zhao and 

Melamed (2006, 2007) apply the stochastic fluid model (SFM) paradigm to a class of single-

stage, single-product MTS production-inventory systems with stochastic demand and random 

production capacity, where unsatisfied demand is either lost or backordered. The authors derive 

formulas for infinitesimal perturbation analysis (IPA) derivatives of sample-path time averages of 

inventory level and lost sales, as well as backorder levels, with respect to the base-stock level and 

a parameter of the production rate process. It is further shown that all IPA derivatives under study 
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are unbiased and fast to compute, thereby providing the theoretical basis for online adaptive 

control of MTS production-inventory systems. 

 

Production-inventory systems with constant replenishment rates are commonly seen in the 

manufacturing industry and in service organizations. For example, a pharmaceutical manufacturer 

(or a chemical industry) often set up production lines to satisfy incoming demands from 

customers. As a consequence of high setup times and costs, no modification for the production 

line is done after the process has been started. The importance of an optimal production rate as a 

decision in the production planning stage can be seen as follows. If the production rate is high 

there will be extra inventory held in stock and high carrying costs will be incurred. On the other 

hand, if the production rate is low there will be high penalty costs. Such models can also be 

applied in service organizations, such as blood banks and food companies etc. 

 

From the managerial point of view, inventory models are treated differently from those of 

queueing. However, similarities between the mathematical formalisms of inventory models and 

queueing have been observed from a fairly early stage of their development. The linkage between 

those two areas has been studied by Prabhu (1965).  For other related recent work in the broader 

area of service systems we refer the reader to Adan, et al. (2005), Perry and Stadje (2003), and Li 

and Glazebrook (2010).  

 

We are not aware of any previous work on stochastic models with continuous replenishment and 

discounted or time-averaged cash flows.  For a good recent survey of related Markovian demand 

inventory models and theory, we refer the reader to Beyer, et al (2010) and references therein. 
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Chapter 3 The Inventory Process  

 

All random processes in this section are defined over a common probability space 

, ,(Ω )PF . Consider a single-product continuous-review production-inventory system, subject to 

the lost sales rule.  The demand arrival stream constitutes a compound Poisson process with rate 

λ  and arrival times : 0{ }iA i ≥ , where time 0 0=A  by convention.  Thus, the corresponding 

sequence of interarrival times, : 1{ }iT i ≥ , where 1−= −i i iT A A , is exponentially distributed 

and the sequence is identically independently distributed (iid).  The corresponding demand sizes 

form an iid sequence : 1{ }iD i ≥  with a common density function ( )Df x and common mean 

demand, [ ]D D= < ∞μ �E , where demand size iD  arrives at time iA .  Replenishment occurs 

at a constant (deterministic) rate 0ρ ≥ . Let 0{ ( ) : }I t t ≥  denote the right-continuous 

inventory process, given by 

10
=

= + − −∑ AN t

i i iI t I t D L A
( )

( ) ( ) ( )ρ [ ] ,     (3.1) 

where ( )AN t  is the number of demands arriving over 0( , ]t  and  

, , 1,2,...
0, otherwise

⎧ − − = =⎪= ⎨
⎪⎩

i i iD I A t A i
L t

( )
( )

[ ]+
   (3.2) 

is the lost-sales size (excess demand that cannot be satisfied from on-hand inventory under the 

lost-sale rule).  Let  0{ : }i i ≥τ  be the sequence of loss occurrence times, given by  

1 1inf : 0 if there exists s.t. 0
otherwise

⎧
= ⎨
⎩

{ ( ) }, ( )i- i-
i

t L t t L t> > > >
∞,

τ τ
τ   (3.3) 
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where 0 0=τ .  Throughout this thesis, we focus our interest on the case where <τi ∞ .  Let 

: 1,2,...={ }kJ k  be the sequence of random arrival indexes at which loss occurs, namely, 

=
kJk Aτ .   

 

Figure 3.1 illustrates the evolution of the inventory process with lost-sales over an infinite time 

horizon.  

 

Figure 3.1.  A Sample Path of the Inventory Level Process, { ( )}I t  

 

Figure 3.2 depicts the detailed evolution of a sample path of the inventory process over the 

interval 10[ ],τ . 
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Figure 3.2.  A Sample Path of the Inventory Level Process over the Interval 10,τ[ ]  

 

We next proceed to study some properties of the system.   

 

Proposition 3.1 

The inventory process, { ( )}I t  given by Eq. (3.1) has conditionally stationary increments with 

respect to { }iA . 

 

Proof. 

Follows directly from Eqs. (3.1) and (3.2), since the process 0{ ( ) : }I t t ≥  is a function of a  

given initial state, a Poisson arrival process, an iid demand size process and a deterministic 

replenishment rate.                   □ 

 

Note that Proposition 3.1 implies that the inventory process, { ( )}I t  is Markov renewal process, 

as imbedded with respect to the arrival times or lost-sale occurrence. 
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Next, consider the following auxiliary function 

�( ) ( )Dz f z z r= + −ψ λ ρ λ − ,    (3.4) 

where constant 0r ≥  is the interest rate. 

 

The following Lemma provides some properties for the roots of the equation 0( )z =ψ . 

 

Lemma 3.1 

For any 0r > , the equation 0( )z =ψ  has two distinct roots, ξ  and θ , where 0>ξ  and 

0<θ .   

 

Proof. 

We first prove that the function ( )zψ  is convex by computing its first and second derivatives, 

0
( ) ( )D

z xd
z x e f x dx

dz

∞ −
= ∫ψ ρ − λ ,   (3.5) 

2
2

2 0
( ) ( )D

z xd
z x e f x dx

dz

∞ −
= ∫ψ λ .   (3.6) 

Since the case of zero demand with probability 1 is precluded, it follows from Eq. (3.6) that  

2

2
0( )

d
z

dz
>ψ .     (3.7) 

Note that, for 0r > , 0 0( ) <ψ , ( )∞ = ∞ψ  and ( )−∞ = ∞ψ .  Consequently, by the 

continuity of ( )zψ , there must be exactly one positive root and exactly one negative root for 

0( )z =ψ , and the proof is complete.                □ 
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In view of Lemma 3.1, we have 

0� ( )Df r+ − =λ ξ ρ ξ λ − ,    (3.8) 

0� ( )Df r+ − =λ θ ρ θ λ − .    (3.9) 

Figure 3.3 outlines the key features of the function ( )zψ  and the roots of the equation 

0( )z =ψ . 

 

 

 

Figure 3.3.  Illustration of the Function ( )zψ  and its Root Structure 

 

Lemma 3.2 

The following relations hold: 

� ( )D
r

F= +ρ λ ξ
ξ

     (3.10) 

where the function =ξ ξ ρ( ) , implicitly defined by Eq. (3.10), is strictly decreasing in ρ . 

0
lim
→

=( ) ∞
ρ

ξ ρ       (3.11) 

0
lim
→

=( ) +r
ρ

ρ ξ ρ λ .     (3.12) 
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Proof. 

To prove Eq. (3.10) note first that by Eq. (3.8), 

1 �
D

r
f⎡ ⎤= + ⎢ ⎥⎣ ⎦

λρ  − ξ
ξ ξ

( ) ,    (3.13) 

Eq. (3.10) now follows from the above equation with the aid of Eq.(1.4).   

 

To prove that =ξ ξ ρ( )  is decreasing in ρ ,we differentiate Eq. (3.10) with respect to ρ , 

yielding 

2 0
1  

x
D

d r
x e F x dx

d

∞ −⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

∫
ξ ρ

ξ ρ λ 
ρ ξ ρ

( )
( ) ( )

( )
. 

The equation above implies 0d
d

<ξ ρ
ρ

( )  since the second term in the square bracket on the 

right hand side is strictly positive for all 0≥ρ , which in turn implies the result. 

 

To prove Eq. (3.11) sending 0↓ρ  on both sides of Eq. (3.10) implies  

0
lim 0
→

⎡ ⎤
=⎢ ⎥

⎣ ⎦
�
D

r
F

ρ
λ ξ ρ

ξ ρ
+ ( ( ))

( )
.       

Since both terms are non-negative, the only way each term vanishes in the limit is for Eq. (3.11) 

to hold.  

 

To prove Eq. (3.12), note that Eq. (3.8) can be rewritten as 

�
Dr f=ρ ξ λ − λ ξ+ ( ) .      

Eq. (3.12) now follows by taking limit of 0↓ρ  in the above equation and noting that 

0
lim ( ) 0
→

=�
Dfρ

ξ  by Eq. (3.11) .                  □ 



 

 

-15-

Next, define the function 

 ( )( )
( )

( )
z z

V z
z

=ρ
− ξ − θ

ψ
    (3.14) 

where the values of ( )Vρ ξ  and ( )Vρ θ  are defined as the corresponding limits above as → ξz  

and → θz , respectively. Then, setting 0z =  in Eq. (3.14) yields 

0( )rV= − ρξ θ .    (3.15) 

Furthermore, denote  

1 1
( ) ( )

( )
x x

z
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

ξη
ψ

L .    (3.16) 

Then, we derive a closed form for ( )xξη  defined in Eq. (3.16). 

 

Lemma 3.3 

( ) ( )
( )

u uV V
u e e= +

ξ θρ ρ
ξ

ξ θ
η

ξ − θ θ − ξ
.    (3.17) 

Proof. 

We prove the result by the Contour Integration and Residue Theorem [Churchill (1971)]. By 

Eq.(3.14), one has 

1  
V z

z z z
= ρ

ψ − ξ − θ
( )

( ) ( )( )
,     (3.18) 

where ξ  and θ  are the only singularities of 
1
zψ( )

. Substituting Eq. (3.18) into Eq. (1.1), we 

have, 

1 1 1
2R

iR

iR

zx V z
x e dz

z i z z
( ) = −

→∞

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ρ
γ

γψ π − ξ − θ
( )

lim
( ) ( )( )

L , 
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for any real >γ ξ .  To this end, define for R > γ − θ  a counter-clock contour path 

∪R R RC H L=  (see Figure 3.4 below), where 

{ }2 2 2=  ( , ) : ( ) ,RH x iy x y R R x− γ γ − γ+ = ≤ ≤

{ }( ) : ,RL x,iy x R y Rγ= = − ≤ ≤
 

Hence, the contour integral can be written as 

1 1 1 1 1 1
2 2 2R R

iR

iR

zx zx zx

C H
e dz e dz e dz

i z i z i z

+

−
= +∫ ∫ ∫

γ

γπ ψ π ψ π ψ( ) ( ) ( )
   (3.19) 

Now, by the Residue Theorem and Eq. (3.18), the left hand side of Eq. (3.19) becomes 

1 1
2 R

u uzx

C

V V
e dz e e

i z
= +∫ ξ θρ ρξ θ

π ψ ξ − θ θ − ξ
( ) ( )

( )
.   (3.20) 

The result now follows by substituting Eq. (3.20) into Eq. (3.19) and sending R ↑ ∞ , since the 

first term on the right-hand side of vanishes. To see this, note that for any 0x > , we have  

1 0
R RR

zx
RxH

R
e dz

z R e→∞ →∞
≤ =

−∫
π

ψ ψ
lim lim

( ) ( )
, [cf. Saff and Snider (1993)].            □ 

 

 
Figure 3.4.  Contour Integral for the Inverse Laplace Transform. 
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Chapter 4 Expected Discounted Cost 

 

This chapter provides a formula for the expected discounted cost function (consisting of 

holding costs and lost-sales penalties), conditioned on the initial inventory level, so as to 

minimize the aforementioned cost function with respect to the replenishment rate. To this end, we 

derive a system of integro-differential equations based on a renewal argument that decomposes 

the total cost into the partial cost up until the first demand arrival and the residual cost thereafter.  

From this system of equations, we obtain a closed form formula for the Laplace transform of the 

expectation of the discounted cost function, conditional on the initial inventory level, where the 

Laplace transform is taken with respect to the initial inventory level.  Moreover, a closed form 

formula is exhibited for the expected discounted cost function, conditioned on zero initial 

inventory. We then provide an algorithm for a numerical computation of the optimal 

replenishment rate which minimizes the aforementioned cost function. In particular, we consider 

two special cases of lost-sales penalty functions: constant penalty and loss-proportional penalty. 

Furthermore, for the special case of exponential demand sizes, we exhibit closed form formulas 

for the expected discounted cost function, conditioned on any initial inventory level, and its 

optimal replenishment rate.  Finally, some numerical studies are carried out to illustrate the 

results and investigate further properties of the system. 

 

Throughout this chapter, we assume continuously compounded discounting at rate, 0r > .  

Accordingly, the present value of a future cash flow Y  at time t  is 
r t

Ye
−

.   

 

The following result will be used to derive expected discounted cost functions, conditioned on the 

initial inventory level. 
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Proposition 4.1 

Let : 0{ }X t t( ) ≥  has conditionally stationary increments with respect to an arrival process 

: 0{ }iA i ≥ , and let the process : 0{ }Z t t( ) ≥  be given by 

1 2
10 =
∑∫

( )

+
A

i
N t

-r z

i

t -rA
iZ t e g X z dz e g A( )= ( ( )) ( )  

where 1g x( )  is a real-valued integrable function, 2g x( )  is a real-valued measurable function. 

Then : 0{ }Z t t( ) ≥  has conditionally stationary discounted increments with respect to 

: 0{ }X t t( ) ≥  and : 0{ }iA i ≥ , and satisfies for any 0n m> ≥  and any real 0t ≥  

[ ] ( ) [ ]( ) ( )−= =+ = +m nA A-r
n n n m m mZ A t Z A |X A u e Z A t Z A |X A u( ) ( ) ( ) ( )E E− − . 

(4.1) 
 

Proof. 

It suffices to prove for 11 0∫
-r zt

Z t e g X z dz( )= ( ( ))  since the proof for 

22
1=
∑
A

i
N t

i

-rA
iZ t e g A( )= ( )

( )

 is analogous.  Accordingly, for any 0n m> ≥  and any real 0t ≥  

and 0x, u ≥ ,  

1

1

1

1

1 1 ( )

( )

( )

( )

=

=

= =

∫

∫

∫

n m

n

n n

n

m n
n m

m

m m
n m

m

m

m

-rA

-rA-r z

-r v A A -rA

-rA-rv

-r z

n n n
A t

nA

A t
nA

A t
nA

A

A

Z A t Z A xe |X A u

e g X z dz xe |X A u

e g X v A A dv xe |X A u

e g X v A A dv xe |X A u

e g X v

P

P

P

P

        P

+

+

+

+

{ + }

= { }

= { + = }

{ + }

= {

( )

( ) ( )

( ( ))

( ( ))

( ( ))

( ( ))

−

−

−

−

≤

≤

≤

≤

1 1

( )

( )

=

=

∫ m

m

-rA

-rA

t
m

m m m

dv xe |X A u

Z A t Z A xe |X A u        P

+
}

= { + }( ) ( )−

≤

≤

 

where the first and last equations follow from the definition of 1Z t( ) , the second equation results 

from the change of variable → n mz v A A+ − , the third equation holds by multiplying both 
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sides of the inequality by n mr A Ae ( )− , and the fourth equation follows from Eq. (1.3) by 

assumption.  This completes the proof.                 □ 

 

4.1 Discounted Cost Functions 

 

The production-inventory system under study incurs costs in the form of holding costs and lost-

sales penalties.  These cost components are described below. 

 

• Discounted holding costs.  While there is inventory on hand, a holding cost is incurred 

at rate h  per unit time and per inventory unit.  Accordingly, the discounted holding cost 

process : 0= { }H H t t ≥ρ ρ( )  is given by  

0
−= ∫ rzt

H t h e I z dzρ( ) ( ) .    (4.2) 

• Lost-sales penalties.  Whenever a customer’s demand cannot be fully satisfied from on-

hand inventory, a penalty w x( )  is incurred as a non-decreasing function of the lost-sale 

size, x , with the proviso that 0 0w( )= .  In particular, we shall consider a linear penalty 

function (to be studied in Section 4.6) of the form 

( )0 0 1+,w x K K x∞( )=1 ,      (4.3) 

where 0 0K ≥  is a constant penalty per lost-sale occurrence, 1 0K ≥  is a constant 

penalty per unit of lost sales, and the two constants do not vanish simultaneously.  

Accordingly, the discounted penalty process : 0= { }W W t t ≥ρ ρ( )  is given by 

1
−

=
=∑ A iN t rA

i iW t e w L Aρ
( )

( ) ( ( )) .    (4.4)  

 

The discounted inventory cost process : 0= { }C C t t ≥ρ ρ( )  is given by 
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( ) = +C t H t W tρ ρ ρ( ) ( ) .     (4.5) 

Of particular interest is the inventory discounted cost until and including the first lost-sale 

occurrence, given by  

11
1 10

−−∫( ) = + rrzC h I z e dz w L e τ
ρ

τ
τ τ( ) ( ( ))    (4.6) 

and its associated conditional expected discounted cost function, given by  

1 0( ) = [ ( ) | ( )= ]c u C I uρ ρ τE� .     (4.7) 

Furthermore, define the auxiliary function 

1 0−( ) = [ | ( ) = ]rd u e I uρ
τE� ,     (4.8) 

Next, the conditional expected discounted cost function over the interval 0( ],t  is given by  

| 0( ) = [ ( ) | ( ) = ]t u C t I uρ ρΦ E� .     (4.9) 

 

Proposition 4.2 

For any 0u ≥ , |( )t uρΦ  is non-decreasing in t  and uniformly bounded by 

( | ) ( )i
h

t u u w D
r r r

⎛ ⎞ ⎡ ⎤⎜ ⎟≤ + +⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠
ρ

ρ λΦ E ,   (4.10) 

independent of t .  

 

Proof. 

( | )t uρΦ  is non-decreasing in t  by (4.9).  To prove Eq. (4.10), we first write  

( )
0 1

11

( )

( )

( | ) ( )

( )

A

A

t rAr z i

rAr t r t i

N t
ii

N t
i i

t u h u z e dz w D e

h ht
u e e w D e

r r r

−−

−− −

=

=

⎡ ⎤⎡ ⎤≤ + + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞ ⎡ ⎤⎡ ⎤⎜ ⎟= + − − +⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑∫

∑

ρΦ ρ

ρ ρ

E

E E
 (4.11) 
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where the inequality holds by Eqs. (4.2) and (4.4) and the facts that I t u t( )≤ +ρ  by Eq. (3.1) 

and  1,2,...=i iD L A i( )≥ , by Eq. (3.2). Furthermore, by the property that t uρΦ ( | )  is 

increasing over t , sending t  to infinity, Eq. (4.11) reduces to 

1
rAi

i i
h

t u u w D e
r r

−∞
=

⎛ ⎞ ⎡ ⎤⎡ ⎤⎜ ⎟≤ + +⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎣ ⎦⎝ ⎠
∑ρ

ρ
Φ E E( | ) ( )   (4.12) 

Denoting 1
r Ai

i e−∞
=

⎡ ⎤= ⎢ ⎥⎣ ⎦∑ϕ E � , we obtain the equation 

( )

1

11 1

1 1

1

2

12

1

i

i
i

rT i

r A TrT rT

rT rT

rT

rA
e e

e e e T

e e

e

∞

=

∞ −
=

−

−− −

− −

−

−⎡ ⎤+⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤= + ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤= + ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∑

∑

ϕ

ϕ

ϕ

E

E E E

E E

E

)(

=

|
  (4.13) 

But by the independence of the processes : 1iA i{ }≥  and : 1iD i{ }≥  and the Jensen 

inequality on the exponential as a convex function, and noting that 1iA i T=E� E�[ ] [ ] , we deduce  

 
11

1
1

i
r T

r A
i e

e−
∞ −
=≤ = < ∞

−
∑ϕ E�

E�
[ ]

[ ]
.   (4.14) 

Since all quantities in Eq. (4.13) are finite, we obtain 

1

�

�
T

T

f r

rf r
= = λ

ϕ
( )

( )−
     (4.15) 

where the second equality holds by Eq. (4.34).  The result now follows by substituting Eq. (4.15) 

into Eq.(4.12).                  □ 

 

Proposition 4.2 guarantees the existence of the asymptotic conditional expected discounted cost 

function, given by 

lim |
→

( ) = ( )
t

u t u
∞ρ ρΦ Φ .    (4.16) 
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Lemma 4.1 

The cost process { }C tρ( )  has conditionally stationary discounted increments with respect to 

{ }I t( )  and : 0{ }iA i ≥ , and for anys ,t  and 0u ≥ , 

[ ( + ) ( ) | ( ) ] ( | )rsC s t C s I s u e t u−− = = ρρ ρ ΦE .   (4.17) 

 

Proof. 

The property that { }C tρ( )  has conditionally stationary discounted increments follows 

immediately from Proposition 4.1 by setting 1 0,( ) 1 ( )= [ )g x x hx∞  and 2( ) ( )=g x w L x( ) . Eq. 

(4.17) immediately follows from this property and the independent increment property of the 

compound Poisson process.                □ 

 

In this chapter we derive closed form formulas for the conditional expected discounted cost 

function ( )uρΦ  of Eq. (4.16). To this end, we shall need the following structural result in the 

sequel. 

 

Theorem 4.1 

For any given initial inventory 0u ≥ , ( )uρΦ  and ( )c uρ  satisfy the following equation, 

0( )= ( )+ ( ) ( )u c u d uρ ρ ρ ρΦ Φ .    (4.18) 

 

Proof. 

For any 0t ≥ , 
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1

1

1

1 1

1 1 1

0

0

| 0 0

| 0  0

| 0

−

−

⎡ ⎤+⎣ ⎦
⎡ ⎤⎡ ⎤+⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

( ) ( )| ( )=

       = ( ) ( )| ( )=  

       = ( )| ( )=

       = ( ) | ( )=

       = ( ) ( )

r

r

C t C I u

C t C ,I u

e t I u

t e I u

t d u

−

−

ρ ρ

τ ρ ρ

τ
ρ

τ
ρ

ρ ρ

τ τ

τ τ τ

Φ

Φ

Φ

E �

E �E �

E�

E�

   (4.19) 

where 
1τE  is the expectation operator with respect to the measure induced by 1τ .  Here, the 

second equality holds by Eq. (4.17), and the last equality holds by Eq. (4.8).  

 

Next, decomposing the infinite time horizon as 1 1(0 ) (0 ] ( )∞ = ∞, ,τ τ ,∪  yields 

 

( )1 1 10 lim 0

lim | 0
→

→

+( ) = [ ( )| ( )= ]+ [ ( ) ( ) | ( )= ]

        = ( )+ ( ) ( ) 
t

t

u C I u C t C I u

c u d u t
∞

∞

−ρ

ρ

ρ ρ ρ

ρ ρ

Φ τ τ τ

Φ

E� E�
 

from which Eq. (4.18) readily follows.               □ 

 

4.2 Equations for c uρ( )  

 

In this section we derive an integro-differential equation for ( )c uρ  from which we obtain a 

closed form formulas for its Laplace transform and 0ρc ( ) . 

 

For any given initial inventory level 0u ≥ , and a time interval 0( , ]s , where 0s >  is small, 

consider the following disjoint events and the corresponding discounted cost function, ( )c uρ . 
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(1) On the event 1{ }A s> , the corresponding cost is 

1

0

0

0{ }[ 1 | ( ) =

( ) ( )

( ) ( )

A s

t rz rs

s rz rs

s

s

s

C I u

e h u z e dz c u s e dt

e h u z e dz c u s e

>

− − −

− − −

∞ ⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= + + +⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫

∫

ρ

λ
ρ

λ 
ρ

λ ρ ρ

ρ ρ

E� ]

=
,  (4.20) 

where the first term in the sums above is the discounted carrying cost over 0( , ]s , and the 

second is the discounted residual cost over 1( ]s τ, , since 1 1{ } { }A s s τ> ≤⊂ . 

 

(2) On the event 1{ }A s≤ , the corresponding cost is  

1 0
0{ }[ 1 | ( ) = ,t

A s

s
C I u e M u t dt−

≤ = ∫ λ
ρ λE� ] ( )     (4.21) 

where 1 0, [ | , ( ) =rM u t C A t I u=E�ρ,( ) = ]  is given by 

0

0

              

, ( )

( ) ( )

+ ( ) ( )

D

D

rz

u t
rt

rt

u t

t
M u t h u z e dz

e f x c u t x dx

e f x w x u t dx

−

+
−

∞
−

+

= +

+ + −

− +

∫
∫

∫

ρ

ρ

ρ

ρ

ρ

ρ

( )

( )

   (4.22) 

So that 

0, ( )+ ( )D D
u

M u f c u f x w x u dx
∞

= ∗ −∫ρ( ) ( ) .   (4.23) 

 

Thus, adding Eqs. (4.20) and (4.21) yields  

00
( ) ( ) ( ) ,s rz rs t

ss
c u e h u z e dz c u s e e M u t dt− − − −⎡ ⎤

= + + + +⎢ ⎥
⎢ ⎥⎣ ⎦∫ ∫λ λ

ρ ρρ ρ λ ( )  

(4.24) 
Next, differentiating Eq. (4.24) respect to s , and setting 0s = , we have 
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0 0( ) ( ) ( ) ,h u r c u c u M u
u

∂= − + + +
∂ρ ρλ ρ  λ ( ) .  (4.25) 

Finally, substituting Eq. (4.23) into Eq. (4.25) yields after rearranging terms 

( ) ( ) ( ) ( ) ( )Dc u r c u f c u g u
u

∂ − + + ∗ = −
∂ ρ ρρρ λ  λ ,  (4.26) 

where  

( )D
u

g u h u f x w x u dx( ) ( )λ 
∞

= + −∫ .    (4.27) 

It is convenient to decompose the function above into 1 2( ) ( ) ( )g u g u g u= + , where 

1( )g u h u= ,        (4.28) 

2 λ ( ) ( )D
u

g u f x w x u dx
∞

= −∫ ( ) .     (4.29) 

Thus, 1( )g u  corresponds to the carrying cost component, while 2( )g u  corresponds to the lost-

sales penalty component.   

 

Next, we proceed to solve Eq. (4.26) for ( )c uρ . To this end, we take Laplace transform on both 

sides of that equation to get 

 0  0�� � � �[ ( ) ( )] ( ) ( ) ( ) ( ) ( ),Dz c z c r c z f z c z g z z− − + + = − >ρ ρ ρ ρρ λ  λ  (4.30) 

Rearranging and simplifying the above equation yields 

 0 0� � �[ ( ) ] ( ) ( ) ( ),Df z z r c z c g z z+ − − − = − >ρ ρλ ρ λ ρ ,  (4.31) 

In view of Eq. (3.4), Eq. (4.31) can now be written as 

  0 0� �( ) ( ) ( ) ( ),z c z c g z z− = − >ρ ρψ ρ ,    (4.32) 

We are now in a position to derive a closed form formula for 0( )cρ .  
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Proposition 4.3 

For 0cρ( ) , the following is true, 

1 ( ),                     if 0
0

,      if 0

⎧ >⎪⎪= ⎨
⎪ =
⎪⎩

�

 [ ( )]

g
c

w D
r+

ρ

ξ ρ
ρ

λ ρ
λ

( )

E�
   (4.33) 

 

Proof. 

For 0>ρ , the result follows by setting z = ξ  in Eq. (4.32)and noting that its first term now 

vanishes by Lemma 3.1.  

 

For 0=ρ , note that given 0 0( )=I , 0( )=I t  for 1≤t τ , 1 1 1= =A Tτ  and 1 1( )=L Dτ , 

w.p.1,.  By Eq. (4.7), we have 

1

1

1

1

1

1

0 0 0

0 0

−

−

−

( ) = [ | ( ) = ]

       = [ ] [ | ( ) = ]

       = [ ] [ ]

r

r

rT

c w D e I

w D e I

w D e

τ
ρ

τ

( )

( )

( )

E�

E� E�
E� E�

 

Furthermore, by the assumption that the inter-arrival time is exponentially distributed, one has 

� ( )Tf z
z

=
+
λ

λ
.         (4.34) 

Finally, the result readily follows by substituting Eq.(4.34) with =z r  into the equation for 

0( )cρ  above.                    □ 

 

Next, we proceed to derive a closed form formula for the Laplace transform of ρc u( ) .  
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Corollary 4.1 

� �� ( ) ( )
( )

( )
g g z

c z
z

−=ρ
ξ

ψ
, z ≠ ξ .    (4.35) 

Proof. 

Follows immediately by substituting Eq. (4.33) into Eq. (4.32) and dividing the resultant equation 

by 0( )z ≠ψ .                    □ 

 

4.3 The Function ( )d uρ  

 

In this subsection, we derive a closed form formula for 0( )dρ  in Proposition 4.4, and provide a 

closed form formula for � ( )d zρ  in Proposition 4.5.  

 

Proposition 4.4 

The following holds 

0 1�( ) ( )D
r

d F= = −ρ
λ ξ
ρ ρ ξ

.     (4.36) 

Proof. 

To prove Eq. (4.36), consider the special case 0h =  and 0( , )( )w x x∞( ) = 1 .  Then, Eqs. (4.6) 

and (4.7) imply  

( ) = ( )c u d uρ ρ .      (4.37) 

Furthermore, Eq. (4.27) becomes 

( ) ( ) ( )D D
u

g u f x dx F u
∞

= =∫λ λ      (4.38) 

and in view of Eqs. (4.37) and (4.38), Eq. (4.33) becomes   
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0 0 �( ) ( ) ( )Dc d F= =ρ ρ
λ ξ
ρ

.     (4.39) 

By Eqs. (1.4) and (3.4), we have 

� ( )
( )D

z r z
F z

z
− −= ρ ψ

λ 
,     (4.40) 

so setting z = ξ  above, noting that 0( ) =ψ ξ  and substituting the resultant Eq. (4.40) into Eq. 

(4.39) yield Eq. (4.36).                    □ 

 

Proposition 4.5 

For 0>ρ , 

1 1 1� ( )
( )
r

d z
z z z

⎡ ⎤
⎢ ⎥= − +⎢ ⎥⎣ ⎦

ρ ψ ξ
,     z ≠ ξ    (4.41) 

 

Proof. 

To prove Eq. (4.41), take the Laplace transform of Eq. (4.38) and substitute it into Eq.(4.35), 

yielding 

� �� ( ) ( ) ( )
( ) D Dd z F F z
z

⎡ ⎤= −⎢ ⎥⎣ ⎦ρ
λ ξ

ψ
, z ≠ ξ .   (4.42) 

Finally, substituting Eq. (4.40) into Eq. (4.42) yields Eq. (4.41)              □ 

 

4.4 The Function ( )uρΦ   

 

Recall that our goal is to compute an optimal replenishment rate, *ρ  of the expected discounted 

cost ( )uρΦ .  However, for 0u > , it is not possible to derive a closed form representation of 

( )uρΦ  as function of ρ . Nevertheless, it is possible to derive a closed form representation for 
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( )( )= ( )u uρ ρ ξΦ Φ  as function of ξ .  Using the fact that the mapping 6ρ ξ  (implicitly 

defined by Eq. (3.10)) is 1-1, one can optimize ( )( )= ( )u uρ ρ ξΦ Φ  with respect to ξ .  We can 

then map back the optimal *ξ  to determine the corresponding optimal *ρ . The main results in 

this subsection are given in Theorem 4.2 and Theorem 4.4.  

 

In the sequel, for notational simplicity, we will use ( )uξΦ , ( )( )uρ ξΦ  interchangeably. The same 

convention will be adopted for other quantities such as ( )cρ ξ , ( )dρ ξ , ( )ρ ξα , ( )ρ ξβ , ( )ρ ξδ , etc. 

 

Theorem 4.2 

0 0 ( )�( )= ( ) =c g
rρξ
ξΦ ξ ξ .    (4.43) 

 

Proof. 

Setting 0=u  in Eq. (4.18) and rearranging yield 

0
0

1 0
( )

( )
( )

( )
( ) =

( )

c

d−
ρ ξ

ρ ξ
ρ ξ

Φ .    (4.44) 

Eq. (4.43) now follows by substituting Eqs. (4.33) and (4.36) into Eq. (4.44).           □ 

 

Proposition 4.6 

( )�( ) = ( )+ ( )u c u g d u
rξ ξ ξ
ξΦ ξ ,    0u ≥    (4.45) 

1 1 ( )( )
( ) ( )

⎡ ⎤
+ −⎢ ⎥

⎣ ⎦

�� �( ) =
g z

z g
r z z z zξΦ ξ ξ

ψ ψ
,    z ≠ ξ   (4.46) 

 



 

 

-30-

Proof. 

Eq. (4.45) follows readily by substituting Eq. (4.43) into Eq. (4.18). Eq. (4.46) obtains by taking  

Laplace transforms of both sides of Eq. (4.45) and substituting � ( )c zρ  in Eq. (4.35) and � ( )d zρ  in 

Eq. (4.41)       .             □ 

We next obtain an alternate representation of ( )uξΦ  by inverting Eq. (4.46). To this end, define 

( )−�( ) = ( )G x g g xξ ξ ξ ,     (4.47) 

 

Theorem 4.3 

0 ∗( ) = ( )+ ( )u G uξ ξ ξ ξΦ Φ η ,    0u ≥    (4.48) 

 

where 0( )ξΦ  is given by Eq. (4.43) and ( )G xξ  given by Eq. (4.47). 

 

Proof. 

Eq. (4.46) can be rewritten as 

( ) 1 1 ( ) ( )
( )

⎡ ⎤+ −⎢ ⎥⎣ ⎦

� �� �( ) =
g g

z g z
r z z zξ

ξ ξ ξ ξΦ
ψ

× . 

Eq. (4.48) now follows by inverting the equation above, noting that 
( ) 0=
�

( )
g
r ξ

ξ ξ Φ  by Eq. 

(4.43) and 
( ) ( ) ( )− =
� ��g

g z G z
z ξ

ξ ξ
 by Eq. (4.47).             □ 
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Theorem 4.4 

( )
0

( )( ) ( )

( ) ( )               1e e

⎡ ⎤−⎢ ⎥⎣ ⎦

⎡ ⎤+ − −⎢ ⎥⎣ ⎦

∫

∫

� �

�

( )

( )

( ) = + ( )

( )

u x

u

uu x u

Vg
u e g x e dx g

r
V g

g x e dx

∞ξ −ξ

θ −θ θ

ρ ξ

ρ ξ

ξ
ξξ ξΦ ξ

ξ− θ
θ ξ ξ

ξ− θ θ

 (4.49) 

where ( )( )V xρ ξ  is given by Eq. (3.14) and ( )g x  is given by Eq. (4.27). 

 

Proof. 

By Eq. (3.17), the convolution term in Eq. (4.48) becomes 

0 0

( ) ( )
( ) ( )e∗ +∫ ∫( ) ( )( ) =

u uu x u x
V V

G u e G x e dx G x e dxξ −ξ θ −θρ ξ ρ ξ
ξ ξ ξ ξ

ξ θ
η

ξ− θ θ− ξ
, (4.50) 

where ( )G xξ  is given by Eq. (4.47). 

 

Next, substituting Eqs. (4.43) and (4.50) into Eq. (4.48) yields 

0 0

( ) ( )( ) ( ) ( )e+∫ ∫
� ( ) ( )( ) = +

u uu x u x
V Vg

u e G x e dx G x e dx
r

ξ −ξ θ −θρ ξ ρ ξ
ξ ξ ξ

ξ θξ ξ
Φ

ξ− θ θ− ξ
, (4.51) 

Eq. (4.49) now follows by substituting Eq. (4.47) into Eq.(4.51).                         □ 

 

In the next two subsections, we shall specialize Eq. (4.49) to two penalty function structures: 

constant lost-sale penalty and loss-proportional penalty. 

 

4.4.1  Constant Lost-Sale Penalty 

 

In this subsection, we consider the constant lost-sales penalty function, ( )0 01 ,w x K x∞( )= ( ), 

provided 0>ρ .  Then Eq. (4.27) becomes 
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0 0( ) ( ),Dg u h u K F u u= + ≥λ ,   (4.52) 

and taking Laplace transforms above yields 

02
��( ) ( )D

h
g z K F z

z
= + λ .     (4.53) 

Next, setting z = ξ  and substituting � ( )DF ξ  from Eq. (3.10) into Eq. (4.53), we have 

02�( )
h r

g K
⎡ ⎤
⎢ ⎥= + ⎢ ⎥⎣ ⎦

ξ ρ −
ξ ξ

,     (4.54) 

and substituting Eq. (4.54) into Eq. (4.43) yields 

00 1⎛ ⎞
⎜ ⎟
⎝ ⎠

( ) =
h

K
r r

+ −ξ
ρ ξΦ

 ξ
.     (4.55) 

Furthermore, substituting Eqs. (4.52) and (4.54) into Eq. (4.49) yields 

1 2

( ) ( )
0 , ,( ) ( )( )= ( ) ( ) ( )c c

V V
u u u+ +ξ

ρ ξ ρ ξ
ξ

ξ θ
Φ Φ φ ξ φ θ

ξ− θ ξ− θ
,   (4.56) 

where 0( )ξΦ  is given by Eq. (4.55), and 

( )1 0 0
1, ( )∫( )=c u x

u D
h

u u K e F x e dx K r
∞

+ − −ξ −ξφ ξ λ ρ ξ
ξ ξ

, 

( )2 0 0

1( ) 0 1e e⎛ ⎞− ⎜ ⎟
⎝ ⎠∫( )= ( )

uc u x u
D

h h
u, u K F x e dx r+ − − −θ −θ θ

ρφ θ λ Φ
θ θ θ

. 

 

4.4.2  Loss-Proportional Penalty 

 

In this subsection, we consider the loss-proportional penalty, 1w x K x( )= , provided 0>ρ . 

Then Eq. (4.27) becomes 

1 0( ) ( ) ,D
u

g u h u K x f x dx u
∞

= + ≥∫λ ,  (4.57) 

and the corresponding Laplace transform is given by 
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12 2
1 �

� ( )
( ) D Dh f z

g z K
z z z

⎡ ⎤−⎢ ⎥= + −⎢ ⎥⎣ ⎦
λ μ � .   (4.58) 

Next, setting z = ξ  in Eq. (4.58) and substituting further � ( )Df ξ  given in Eq. (3.8) , we have 

12 2 
�( ) Dh r
g K

⎡ ⎤
⎢ ⎥= + − +⎢ ⎥⎣ ⎦

ρξ λ 
ξ ξ λ ξ λ ξ

μ � ,   (4.59) 

and substituting Eq. (4.59) into Eq. (4.43) yields 

1
10 −⎡ ⎤

+ +⎢ ⎥
⎣ ⎦

( ) = Dh
K

r rξ
λ ρΦ

ξ ξ
μ

,    (4.60) 

Furthermore, substituting Eqs. (4.57) and (4.59) into Eq. (4.49) yields 

1 2

( ) ( )
0 , ( ) ( )( ) = ( )+ ( )+ ( )p p

V V
u u u, ρ ξ ρ ξ

ξξ
ξ θ

Φ Φ φ ξ φ θ
ξ− θ ξ− θ

,  (4.61) 

where 0( )ξΦ  is given by Eq. (4.60), and 

1 1
1, ( ) 0⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

∫ ∫( )= + ( )p u x

u Dx

h h
u u K e z f z e dzdx r

∞ ∞ξ −ξ
ρφ ξ λ Φ

ξ ξ ξ
, 

( )2 1 0

1( ) 0 1e e⎛ ⎞+ ⎜ ⎟
⎝ ⎠∫ ∫( )= + ( )

up u x u
Dx

h h
u, u K z f z e dzdx r

∞θ −θ θ
ρφ θ − λ − Φ −

θ θ θ
. 

 

4.5 Optimal Replenishment Rate  

 

In this subsection, we optimize the expected discounted cost of ( )uρΦ  with respect to the 

replenishment rate, ρ , via an optimization of ( )( )uρ ξΦ  with respect to ξ .  We first provide a 

general structural result for an optimal replenishment rate, *ρ  (admitting the possibility of 

multiple optimal replenishment rates), and then describe a computational method for finding the 

optimal solutions. 
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While the cost function, ( )uξΦ , given by Eq. (4.49), is expressed in terms of the two roots, θ  

and ξ , we shall express ( )uξΦ  as a function of ξ  alone. To this end, we write with the aid Eq. 

(3.15) 

0( )/rV= − ρθ ξ .     (4.62) 

Accordingly, substituting Eq. (4.62) into Eq. (4.49) yields 

( ) ( )

2

2

2 0

(0)/ (0)/ (0)/

( )( ) ( )
(0)

(0) / ( )      1
(0) (0)

− −

⎡ ⎤−⎢ ⎥⎣ ⎦

− ⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦

∫

∫

� �

�

( )=

+ ( )
+

+ ( ) +
+

u

u

u x

rV u rV x rV u

u

Vg
e g x e dx g

r rV

V rV g
e g x e dx e

rV rV

∞

ξ ξ ξξ

ξ ξ

ξ ξ −ξ

ξ

ξ ξ ξξ

ξΦ

ξ ξξ ξ ξ
ξ

ξ ξ ξ ξ
ξ

   

(4.63) 

The boundedness of ( )uξΦ , implied by Proposition 4.2, guarantees the existence of the global 

minimizing point, *

0
argmin=  { ( )}u

>ξ
ξξ Φ . However, the function ( )uξΦ  is not convex in 

general.  The following example illustrates the non-convexity of the functions, uξΦ ( )  and 

uρΦ ( ) .  

 

Consider the production-inventory system with constant demand size 30d =  and the following 

parameters: 1λ = , 1h = , 0u =  0 100K = , 1 0K = , and 0.1r = .  
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Figure 4.1.  The Functions 0ξΦ ( )  (Left) and 0ρΦ ( )  (Right) for Constant Demand Size 

 

Figure 4.1 depicts the functions 0ξΦ ( )  (left) and 0ρΦ ( )  (right). It shows that in this case, the 

expected discounted cost is not convex in ξ  or ρ .  In fact, it is theoretically challenging to prove 

uniqueness of the global minimizing point, which remains as an open problem.  

 

In light of Theorem 4.4, a minimizing point, *ξ , can be calculated in several ways.  A 

straightforward but relatively time consuming method is global search.  However, when ( )uξΦ  

is convex, the availability of derivatives of the objective function ( )uξΦ  with respect to ξ  

allows us to apply the relatively fast Newton’s Method, where successive approximations of the 

minimum are started with any 0 0>ξ , and given by the iterative scheme  

2

2

+1 , =0,1,

∂
∂
∂
∂

…
( )

=
( )

n

nn

n

u
n

u
−

ξ

ξ

Φ
ξξ ξ

Φ
ξ

.   (4.64) 

We next state, for completeness, the following theorem without proof. 
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Theorem 4.5 

Given 0( ) =I u , the optimal replenishment rates for ( )uρΦ  are given by 

1 � *
*

*

( )Dr f⎡ ⎤+ −⎢ ⎥⎣ ⎦=
λ ξ

ρ
ξ

.    (4.65) 

          □ 

 

4.6 Special Cases 

 

In this subsection we study special cases of production-inventory system with selected demand-

size distributions, subject to two specialized lost-sales penalty structures: constant lost-sales 

penalty and loss-proportional penalty.  We shall assume here that 0>ρ  and 0r ≥ , and 

( ) ( )= ( )V x V xρ ρ ξ  is given by Eq. (3.14) and ( )G xξ  is given by Eq. (4.47). 

 

4.6.1  Example: Computation of uρΦ ( )  for Exponential Demand Size Distribution 

 

In this subsection, we illustrate the derivation of the function ( )uξΦ , subject to each penalty 

function, for the case of exponentially distributed demand size with rate 0>β , that is, 

( )D
x

f x e=
β

β
− ,  0x ≥       (4.66) 

( )Df z
z

=
+
β

β
,  0z ≥       (4.67) 

Then, substituting Eq. (4.67) into Eq. (3.4) yields 

( )( )
( )

( )
z z

z z r
z V z

− −= + − − =
+ ρ

λ β θ ξψ ρ λ
β

,  (4.68) 

where, 
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( )
z

V z
+=ρ

β
ρ

.      (4.69) 

Hence, in agreement with Lemma 3.1, the roots of the equation 0( )z =ψ  are given by 

( )2
4

0
2 

r r r+ − + + − +
≥

λ ρ β λ ρ β ρ β
ξ

ρ
=    (4.70) 

( )2
4

0
2 

r r r+ − − + − +
≤

λ ρ β λ ρ β ρ β
θ

ρ
= .   (4.71) 

 

4.6.2  Constant Lost-Sale Penalty  

 

In this case, Eq. (4.63) can be written as 

0 1 2+ +( ) = uu a a u a eθ
ρΦ       (4.72) 

where 

0
1 1 1⎛ ⎞

+⎜ ⎟
⎝ ⎠

=
h

a
r

+
ξ β θ

       (4.73) 

1 =
h

a
r

        (4.74) 

( )
0

2
1 1⎛ ⎞+⎜ ⎟+ ⎝ ⎠

=
K h

a
r r

−λ ξ
β ξ β θ

                               (4.75) 

 

4.6.3 Loss-Proportional Penalty 

 

In this case, Eq. (4.63) can be written as 

0 1 4 5+ + +( ) = u uu a a u a e a e−β θ
ρΦ ,     (4.76) 
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where 0a  and 1a  are given by Eqs. (4.73) - (4.74), and  

  
( )( ) ( )

1
4

1 1 1 1⎡ ⎤ ⎛ ⎞
+⎢ ⎥ ⎜ ⎟

⎢ ⎥ ⎝ ⎠⎣ ⎦

K h
a  

r
λ 

− −
ρ ξ− θ β θ θ β ξ β θ

=
+ +

 

  
( )( )

1
5

K
a

λ 
−

ρ β ξ β θ
=

++
. 

A numerical study of ( )uρΦ  with exponential demand distribution is described next. 

 

4.7 Optimal Replenishment Rate under Delayed Replenishment 

 

In practice, the system starts with an arbitrary inventory level, 0 0( ) =I u > .  Suppose the 

system operates under delayed replenishment such that replenishment starts only after the first 

lost-sale occurrence.  For example, suppose the system has an initial setup time during which 

replenishment is unavailable (e.g., the production facility requires a setup time to gear up for 

production).  Accordingly, the corresponding expected discounted cost, ˆ ( )uρΦ , over an infinite 

time horizon can be expressed as 

0 0
ˆ 0( )= ( )+ ( ) ( )u c u d uρ ρΦ Φ .    (4.77) 

From Eq.(4.77), it is readily seen that minimizing ˆ
ρΦ ( )u  with respect to ρ  is equivalent to 

minimizing 0( )ρΦ  with respect to ρ , since only the latter term is a function of ρ . 

 

4.7.1 Constant Lost-Sales Penalty 

 

In this case, 001{ }xw x K>( ) = , where 0 0K >  is a constant, and 0( )ξΦ  is given by Eq. (4.55). 

In view of Eq. (3.13), Eq. (4.55) can be written as 
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0 1 ( )
0

⎡ ⎤+ −⎣ ⎦
�

( )= Dh K f

rξ

λ ξ ξ
Φ

ξ
,    (4.78) 

By Eq.(4.78), the optimal *ξ  is given by 

*

0
0 ( )

>

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
�argmin D

h
K f

ξ
ξ λ ξ

ξ
.    (4.79) 

 

Table 4.1 exhibits *ξ , *ρ and * 0( )ρΦ  in closed form formulas, when available, for selected 

demand distributions; detailed derivations are given in Section A.1 of Appendix A. 

 

Table 4.1. Optimal Quantities for Production-Inventory Systems Subject to Constant Penalty and 

Various Demand Distributions 

Distribution *ξ  *ρ  * 0ρΦ ( )  

D d=  
 

0d >  

0
0

argmin −⎧ ⎫
−⎨ ⎬

⎩ ⎭
dh

K e
>ξ

ξλ 
ξ

 1 *

*

dr e−⎡ ⎤+ −⎢ ⎥⎣ ⎦
ξλ

ξ
 

( )* * *

*
0+ −ξ ρ ξ

ξ

h K r

r 
 

Exp( )D β∼
 

0>β  
0

0

,  if  

,                        otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

β
βλ 

λβ
h

K h
K h

>

∞

− 0
0

,  if  

0,                        otherwise

⎧
⎪
⎨
⎪
⎩

h
K h

K
>

λλ βλ 
β β β
−

 

0
0

0

2
,  if  

,                      otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

λβ −
βλ 

β
λ

K h h
K h

r
K
r

>

 

( , )D U a b∼
 

0 a b≤ <  
0

0
argmin

( ) 

− −⎧ ⎫−
−⎨ ⎬−⎩ ⎭

ξ ξ

ξ
λ 

ξ ξ

a bh e e
K

b a>
 1

 

ξ ξλ
ξ ξ ξ

a br e e
b a

− −⎡ ⎤−⎢ ⎥+ −⎢ ⎥−⎢ ⎥⎣ ⎦

* *

* * *( )

 

( )* * *

*
0+ −ξ ρ ξ

ξ

h K r

r 
 

( )D ,Γ α β∼
 

0, >α β  
( )

0
0argmin 1

>

−⎧ ⎫
−⎨ ⎬

⎩ ⎭ξ

αλ ξ/ β
ξ
h

K +

 

( )1 1
αλ ξ β

ξ ξ
r −⎡ ⎤

⎢ ⎥+ −⎢ ⎥⎣ ⎦
*

* *
/+  ( )* * *

*
0+ −ξ ρ ξ

ξ

h K r

r 
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In the table above and elsewhere, the argmin operation corresponds to a search for the optimal 

argument, where a closed form formula is unavailable or not readily available; for exponential 

demand distributions, the optimal solution is given in a closed form formula. Furthermore, the 

condition 0K h>βλ  ensures a positive optimal replenishment rate; otherwise, it is optimal to 

have zero replenishment and bear the repeated penalty costs (degenerate case). 

 

4.7.2 Loss-Proportional Penalty 

 

In this case, 0 11{ }xw x K x>( ) = , where 1 0K >  is constant, and 0( )ξΦ  is given by Eq. (4.60). 

In view of Eq. (3.13), Eq. (4.60) can be written as 

1
1

1 1 ( )0
⎡ ⎤−

−⎢ ⎥
⎣ ⎦

�
( )= D Dh f K

K
r r

+ξ
ξ λ Φ λ 

ξ ξ
μ

,   (4.80) 

where [ ]D D=μ E� . Consequently, by Eq. (4.80), the optimal *ξ  is given by 

*
1

0

1 ( )argmin
⎧ ⎫−

= −⎨ ⎬
⎩ ⎭

�
Dh f

K
>ξ

ξξ λ 
ξ ξ

.    (4.81) 

Table 4.2 exhibits *ξ , *ρ and *(0)ρΦ  in closed form formulas, when available, for selected 

demand distributions; detailed derivations are given in Section A.2 of Appendix A. 
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Table 4.2. Optimal Quantities for Production-Inventory Systems Subject to Loss-Proportional 

Penalty and Various Demand Distributions 

Distribution *ξ  *ρ  * 0ρΦ ( )  

D d=   
 

0d >  

1
0

1argmin
dh e

K  
ξ

ξ
λ 

ξ ξ>

−⎧ ⎫−
−⎨ ⎬

⎩ ⎭
 

1 *

*

dr e−⎡ ⎤+ −⎢ ⎥⎣ ⎦
ξλ

ξ
 

*

* *1 1
1 1 −⎡ ⎤−

−⎢ ⎥
⎢ ⎥⎣ ⎦

ξ

λ λ 
ξ ξ

dh e
K Kd

r
+  

Exp( )D β∼
 

0β >  
1

1

,  if  

,                        otherwise

⎧
⎪⎪
⎨
⎪
⎪⎩

β
λ 

λ
h

K h
K h

>

∞

−  
1

1
1

,  if  

0,                        otherwise

⎧ ⎡ ⎤−
⎪ ⎢ ⎥⎪

⎢ ⎥⎨ ⎣ ⎦
⎪
⎪⎩

λ λ
λ 

β
K h r

K h
Kh

+ >

 

1
1

1

2
,  if  

,                      otherwise

⎧
⎪
⎪
⎨
⎪
⎪
⎩

λ −
λ 

β

λ
β

Kh h
K h

r

K
r

>  

( , )D U a b∼
 

0 a b≤ <  

1

0
argmin 1

( ) 

− −⎧ ⎫⎡ ⎤−⎪ ⎪− −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭

ξ ξ

ξ

λ 
ξ ξ ξ

a bKh e e
b a>

 1
 

ξ ξλ
ξ ξ ξ

a br e e
b a

− −⎡ ⎤−⎢ ⎥+ −⎢ ⎥−⎢ ⎥⎣ ⎦

* *

* * *( )
 ( )* *

* *2
11

1
1

( ) 2

− −⎡ ⎤− −
+⎢ ⎥

−⎢ ⎥⎣ ⎦

ξ ξ λ λ 
λ 

ξ ξ

a b K b-ah K e e
K

r b a
+

 

( )D ,Γ α β∼
 

0α β, >  

( )
1

0

1 1
argmin

−⎧ ⎫−⎪ ⎪−⎨ ⎬
⎪ ⎪⎩ ⎭ξ

αξ/ β
λ 

ξ ξ
h

K
>

+

 

( )1 1
αλ ξ β

ξ ξ
r −⎡ ⎤

⎢ ⎥+ −⎢ ⎥⎣ ⎦
*

* *
/+  ( )*

* *1 1

1 11
−⎡ ⎤−⎢ ⎥−

⎢ ⎥
⎣ ⎦

α
ξ / β

λ λ αβ
ξ ξ
h

K K
r

+
+

 

 

Again, for an exponential demand distribution, the condition 1K h>λ  ensures a positive 

optimal replenishment rate; otherwise, it is optimal to have zero replenishment and bear the 

repeated penalty costs (degenerate case). 

 

4.8 Numerical Study 

 

This section contains two numerical studies of production-inventory systems with selected 

demand-size distributions, subject to a constant lost-sales penalty.  Both studies were conducted 

with the following common parameters: 1=λ , 1=h , 0 100=K , and 0.1=r .  Recall that 
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only the exponential demand-size distribution gives rise to closed-form optimal solutions when 

conditioned on 0 0( ) =I ; in all other cases, optimal solutions were obtained by a search. 

 

4.8.1 Optimal Numerical Solutions for Empty Initial Inventory 

 

In this subsection we compute and compare the numerical values of * 0( )ρΦ  for increasing mean 

demand sizes, and under the following demand-size distributions: constant, exponential, uniform 

and Gamma.   

 

Table 4.3 displays *ρ  and *( )uρΦ  as functions of the mean demand, E[ ]=1/D β , with the four 

aforementioned demand-size distributions.   
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Table 4.3.  Optimal Values for Selected Demand-Size Distributions 

λE[ ]D  
              1=D / β                 ( )ExpD β∼ ( )0, 2D U / β∼   ( )( )4,1 4D /Γ β∼

*ρ   * 0ρΦ ( )   *ρ * 0ρΦ ( ) *ρ * 0ρΦ ( )   *ρ   * 0ρΦ ( )

0.05  0.27  44.47  0.27 44.22 0.27 44.39  0.27  44.41
0.10  0.41  62.74  0.40 62.25 0.41 62.58  0.41  62.62
0.15  0.53  76.71  0.52 75.96 0.52 76.45  0.52  76.52
0.20  0.63  88.44  0.62 87.44 0.63 88.10  0.63  88.19
0.30  0.82  108.03  0.80 106.54 0.82 107.53  0.82  107.66
0.80  1.62  174.82  1.54 170.89 1.59 173.47  1.59  173.83
1.30  2.30  221.40  2.16 215.04 2.25 219.19  2.26  219.79
1.80  2.93  259.11  2.72 250.33 2.85 256.04  2.87  256.88
2.30  3.51  291.50  3.23 280.32 3.41 287.56  3.45  288.64
2.80  4.07  320.24  3.72 306.66 3.95 315.43  3.99  316.76
3.30  4.63  346.27  4.20 330.32 4.47 340.58  4.53  342.18
3.80  5.17  370.19  4.62 351.87 4.99 363.62  5.02  365.48
4.30  5.69  392.40  5.05 371.73 5.43 384.95  5.51  387.08
4.80  6.17  413.20  5.48 390.18 5.92 404.85  6.01  407.26
5.30  6.66  432.79  5.87 407.43 6.37 423.54  6.47  426.23
5.80  7.15  451.34  6.22 423.66 6.82 441.20  6.94  444.17
6.30  7.64  468.98  6.61 439.00 7.22 457.96  7.35  461.20
6.80  8.08  485.84  6.95 453.54 7.68 473.90  7.83  477.44
7.30  8.59  501.97  7.28 467.37 8.08 489.12  8.24  492.95
7.80  9.03  517.44  7.61 480.57 8.48 503.69  8.65  507.82
8.30  9.47  532.35  7.94 493.19 8.87 517.68  9.06  522.11
8.80  9.92  546.72  8.27 505.30 9.27 531.14  9.47  535.88
9.30  10.36  560.62  8.60 516.92 9.67 544.11  9.88  549.15
9.80  10.71  574.05  8.84 528.10 10.07 556.64  10.30  562.00
10.00  10.95  579.30  9.02 532.46 10.19 561.50  10.43  566.99
15.00  14.86  693.46  11.58 624.60 13.41 666.27  13.98  675.10
20.00  18.37  784.52  13.61 694.43 16.28 747.54  16.88  760.16
25.00  21.23  860.50  15.00 750.00 18.21 813.34  19.60  830.15
30.00  23.87  925.43  16.14 795.45 19.81 867.66  21.50  889.22

 

From Table 4.3 it can be seen that the respective *ρ  and the corresponding * 0( )ρΦ  increase in 

this order of distributions: exponential, uniform, Gamma and constant.  Note that as the average 
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demand increases, *ρ  and * 0( )ρΦ  increase as expected. Furthermore, for each selected demand-

size distribution, we observe that * E[ ]D>ρ λ  for 7E[ ]  D <λ , whereas * E[ ]D<ρ λ  for 

15E[ ]  D >λ .  This can be explained heuristically as follows: in the former case the optimal cost 

is dominated by its penalty component due to a relatively high inventory level, while in the latter 

case, it is dominated by its carrying cost component due to a relatively low inventory level.   

 

4.8.2 Optimal Numerical Solutions for Arbitrary initial Inventory Levels 

 

In this subsection we compute and compare the numerical values of *ξ , *ρ  and *( )uρΦ  for 

selected demand-size distributions (constant, exponential and uniform) with increasing initial 

inventory levels and low, medium and large average demands. 

 

Table 4.4-6 display *ρ , *ξ  and *( )uρΦ  for sample low, medium and high demand as functions 

of the initial inventory level 0( ) =I u .  
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Table 4.4. Optimal Quantities for Selected Demand-Size Distributions under a Low Demand with 

1 2[ ] = / =Dλ βE  

  1=D / β   ( )Exp βD ∼   ( )0, 2D U / β∼  

0( ) =I u   *ξ   *ρ   * uρΦ ( )   *ξ   *ρ   * uρΦ ( ) *ξ   *ρ   * uρΦ ( )

0  0.076  3.169  272.590  0.082 2.936  262.840 0.078  3.087  269.170
5  0.130  2.530  157.450  0.113 2.515  193.450 0.113  2.614  172.160
10  0.194  2.173  150.260  0.155 2.171  181.490 0.177  2.165  163.060
15  0.301  1.835  175.720  0.208 1.893  191.810 0.215  1.996  177.840
20  0.372  1.679  197.900  0.273 1.660  212.640 0.367  1.569  204.800
25  0.513  1.445  229.660  0.357 1.447  239.160 0.387  1.528  232.330
30  0.547  1.399  262.250  0.466 1.250  269.040 0.469  1.383  264.410
35  0.717  1.202  295.100  0.610 1.065  301.060 0.674  1.119  297.570
40  1.160  0.864  330.040  0.812 0.885  334.520 1.065  0.816  329.030
45  1.714  0.623  364.120  1.109 0.712  368.970 1.439  0.644  362.650
50  7.598  0.145  392.380  1.591 0.541  404.150 3.055  0.333  396.290

 

Table 4.5. Optimal Quantities for Selected Demand-Size Distributions under a Medium Demand 

with 1 10[ ] = / =Dλ βE  

  1=D / β   ( )Exp βD ∼   ( )0, 2D U / β∼  

0( ) =I u   *ξ   *ρ   * uρΦ ( )   *ξ   *ρ   * uρΦ ( ) *ξ   *ρ   * uρΦ ( )

0  0.038 10.940  579.290 0.046  9.014  532.460 0.041  10.175  561.500
5  0.042 10.537  538.850 0.048  8.831  510.550 0.040  10.281  529.820
10  0.042 10.537  473.330 0.051  8.575  495.870 0.045  9.783  503.520
15  0.046 10.181  473.980 0.054  8.338  487.280 0.047  9.603  486.570
20  0.051 9.787  473.100 0.058  8.046  483.780 0.050  9.350  483.970
25  0.051 9.787  472.220 0.062  7.779  484.590 0.055  8.966  483.810
30  0.051 9.787  480.220 0.067  7.475  489.050 0.061  8.556  486.500
35  0.059 9.242  491.380 0.072  7.198  496.600 0.061  8.556  494.790
40  0.076 8.315  503.470 0.077  6.944  506.800 0.073  7.860  506.230
45  0.076 8.315  517.540 0.084  6.621  519.270 0.078  7.606  519.590
50  0.076 8.315  536.250 0.091  6.331  533.700 0.090  7.066  532.690



 

 

-46-

 

Table 4.6. Optimal Quantities for Selected Demand-Size Distributions under a High Demand with 

1 20[ ] = / =Dλ βE  

  1=D / β   ( )Exp βD ∼   ( )0, 2D U / β∼  

0( ) =I u   *ξ   *ρ   * uρΦ ( )   *ξ   *ρ   * uρΦ ( )   *ξ   *ρ   * uρΦ ( )

0  0.030 18.299  784.500 0.041 13.519 694.430  0.034  16.187  747.520
5  0.031 18.251  774.650 0.041 13.356 684.430  0.034  16.187  736.510
10  0.032 17.943  759.150 0.043 13.147 676.910  0.034  16.187  726.210
15  0.032 17.943  736.390 0.044 12.928 671.680  0.037  15.709  716.850
20  0.032 17.943  705.290 0.045 12.685 668.580  0.037  15.709  709.080
25  0.035 17.324  705.480 0.047 12.437 667.440  0.039  15.203  703.600
30  0.036 16.994  707.410 0.049 12.171 668.130  0.039  15.203  700.800
35  0.036 16.994  705.130 0.051 11.889 670.500  0.042  14.642  698.260
40  0.040 16.303  706.100 0.053 11.609 674.430  0.042  14.642  698.590
45  0.040 16.303  709.320 0.055 11.317 679.790  0.045  14.073  701.890
50  0.042 15.929  715.630 0.058 11.007 686.490  0.045  14.073  707.640

 

Table 4.4 to Table 4.6 above reveal a similar behavior of *ρ  and *( )uρΦ  as functions of 

0( ) =I u .  For each demand-size distribution in each of these tables, *ρ  decrease as 0( ) =I u  

increases, while the corresponding *( )uρΦ  first decreases and then increases as function of u . 

Furthermore, *( )uρΦ  attains its minimum for each demand-size distribution in a narrow range of 

0( ) =I u : around 10=u  in Table 4.4, in the range [20,25] in Table 4.5, and in the range 

[25,35] in Table 4.6.  We also observe that in each of these tables, *ρ  decreases in the demand-

size distribution in this order: constant, uniform and exponential; this, however, does not 

generally hold for *( )uρΦ . 
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4.9 Additional Properties: Renewal-Type Solution for Cost Functions 

 

In this section, we derive an alternative representation for the cost functions ( )c uρ , ρ( )d u  and 

ρΦ ( )u .   However, instead of attempting the inversion of � ( )c zρ  in Eq. (4.35), we shall proceed 

to derive a closed form formula for ( )c uρ  by developing a renewal-type equation for it with the 

aid of the positive root, ξ . To this end, define  

0( ) ( ),zc z e c z z−= ≥ξ
ρ,ξ ρ .    (4.82) 

Substituting the representation ( ) ( )uc u e c u= ξ
ρ ρ,ξ  into Eq. (4.26) and rearranging terms yields 

, ,, 0
( ) ( ) ( ) ( ) ( ) ( )D

z
x zc z r c z e c z x f x dx e g z

z
− −∂ − + − + − = −

∂ ∫ρ ξ ρ ξ
ξ ξ 

ρ ξρ λ ρ ξ  λ .

(4.83) 

Next, substituting � ( )Dr f+ − =λ ρ ξ λ ξ  by appeal to Eq. (3.8) into Eq. (4.83) yields after 

rearrangement 

, ,, 0
�( ) ( ) ( ) ( ) ( ) ( )D D

z
x zc z f c z e c z x f x dx e g z

z
− −∂ = − − −

∂ ∫ρ ξ ρ ξ
ξ ξ 

ρ ξρ λ ξ  λ .  (4.84) 

For any 0u ≥ , integrating both sides of Eq. (4.84) with respect to z  over the interval 0[ , ]u  

yields 

, ,

,

, , 

0 0 0 0

0 0

0

   

�

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

D D

D

u u z u
x z

u u
y z

u x

c u c

f c z dz e c z x f x dxdz e g z dz

e f y dy c x dx e g z dz

− −

∞ − −

−

⎡ ⎤−⎢ ⎥⎣ ⎦

= − − −

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫

ρ ξ ρ ξ

ρ ξ

ρ ξ ρ ξ

ξ ξ 

ξ ξ 

ρ

λ ξ  λ  

λ  

(4.85) 

The second equality above holds because 
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,

,

,

,

0 0

0 0

0

0 0

( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

D

D

D

D

u z
x

u z z y

u u z y

y

u u y
x

e c z x f x dxdz

e c y f z y dydz

e f z y dz c y dy

e f x dx c y dy

−

−

−

−
−

−

= −

= −

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫ ∫

∫ ∫

ρ ξ

ρ ξ

ρ ξ

ρ ξ

ξ 

−ξ 

−ξ 

ξ 

 

 
 

where the first equality holds by the variable change z x y− → , the second equality holds by 

changing the order of integration, and the third equality holds by the variable change 

z y x− → . 

Next, for 0>ρ , substituting 0( )cρ  from Eq. (4.33) into Eq. (4.82) yields 

,
10 �( ) ( )c g=ρ ξ ξ
ρ

,     (4.86) 

while substituting Eq. (4.86) into Eq. (4.85) and rearranging yields 

,, 0
 ( ) ( ) ( ) ( )D

u
y y

u x u
c u e f y dy c x dx e g y dy

∞ ∞− −

−

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫ρ ξ
ξ ξ 

ρ ξρ λ  .  (4.87) 

Dividing both sides of Eq. (4.87) by ue−ξ ρ , we have the following functional equation in 

( )c uρ  for 0u > , 

0

1   [( ) ] ( )( ) ( ) ( ) ( )D

u u x y u y

u x u
c u e f y dy c x dx e g y dy

∞ ∞− − −

−

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ ∫ξ ξ  
ρ ρ

λ  
ρ ρ

. (4.88) 

Note that Eq. (4.88) is consistent with Eq. (4.33) by setting 0u =  in the former. 

We now proceed to solve for � ( )c zρ  and ( )c uρ .  To this end, define the following two auxiliary 

functions, 

0
0( )( ) ( ) ( ) ,D D

yx y

x
x e f y dy e f x y dy x

∞ ∞−= = + ≥∫ ∫ −ξ ξ 
ρ

λ λα  
ρ ρ

 (4.89) 

1 0( )( ) ( ) ,x y

x
x e g y dy x

∞ −= ≥∫ ξ  
ρβ

ρ
.     (4.90) 
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Proposition 4.7 

The following renewal-type equation holds 

0( ) ( ) ( ),c u c u u u= ∗ + ≥ρ ρ ρ ρα  β .   (4.91) 

 

Proof. 

Follows readily by rewriting Eq. (4.88) in terms of Eqs. (4.89) and (4.90).           □ 

 

Corollary 4.2 

The following results hold: 

 
1

�
�

�
( )

( )
( )

z
c z

z
= ρ

ρ
ρ

β
− α

.      (4.92) 

0 ρρ ρβ α ( )( ) ( )n

n
c u u∗∞

=
= ∗∑    (4.93) 

where ρα ( )n∗  is the n -fold convolution of ( )xρα  with itself. 

 

Proof. 

Taking Laplace transforms on both sides of Eq. (4.91) readily yields 

 �� � �( ) ( ) ( ) ( )c z z c z z= +ρ ρ ρ ρα  β .   (4.94) 

Eq. (4.92) readily follows by solving Eq. (4.94) for � ( )c zρ .  Finally, Inverting Eq. (4.92) term by 

term yields Eq. (4.93).                   □ 

 

Note that the terms in Eq. (4.93) can be readily computed recursively, since 

1
ρ ρ ρ ρ ρβ α β α α( ) ( )n n∗ ∗ −∗ = ∗ ∗ . 
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For notational convenience, define 

0( )( )( ) ( ) ,yx

x
x e e F y dy x

∞ −= ≥∫  ξ ρξ ρ  
ρ

λδ
ρ

.   (4.95) 

Note that ( )xρδ  can be obtained from Eq. (4.90) by setting 0h =  and 0( , )( )w x x∞( ) = 1 .   

 

Proposition 4.8 

The following holds 

0( ) ( ) ( ),d u d u u u= ∗ + ≥ρ ρ ρ ρα  δ .   (4.96) 

where ρα ( )x  is given by Eq. (4.89). 

 

Proof. 

Readily follows from Proposition 4.7 by setting 0h =  and 01w x x( ) = ( , )( )∞ .           □ 

 

Corollary 4.3 

 
1

�
�

�
( )

( )
( )

z
d z

z
= ρ

ρ
ρ

δ
− α

.      (4.97) 

0
( )( ) ( )n

n
d u u

∞ ∗
=

= ∗∑ρ ρ ρδ α     (4.98) 

 

Proof. 

Follows readily from Corollary 4.2 by setting there 0h =  and 0( , )( )w x x∞( ) = 1 .        □ 

 

Next, we shall derive a renewal formula for ( )uξΦ . To this end, define 

 �( ) ( ) ( ) ( )x x g x
r

= +ξ ξ ξ
ξσ β ξ δ , 0x ≥ .   (4.99) 
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Lemma 4.2 

0
( )( ) ( )n

n
u u

∞ ∗
=

= ∗∑ξ ξ ξΦ σ α     (4.100) 

 
1
��
�
( )

( )
( )

z
z

z
= ξ

ξ
ξ

σ
Φ

− α
.      (4.101) 

Proof. 

Eq. (4.100) follows by substituting Eqs. (4.93), (4.98) and (4.43) into Eq. (4.18) and simplifying 

with the aid of Eq. (4.99). Eq. (4.101) immediately follows by taking the Laplace transform of 

Eq. (4.100).                    □ 

 

The renewal-type formulas for ρc u( ) , ρd u( )  and ρΦ u( ) , given in Eqs. (4.91), (4.96) and 

(4.100), respectively, can be solved numerically [Tortorella (2005)]. This thesis is concerned with 

their analytical solutions by Laplace transform techniques rather than their numerical solution. 

For further discussion on renewal-type equations, refer to Burton (2005), Miller, (1971), and Linz 

(1987). 
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Chapter 5 Time-Average Cost 

 

In this chapter, we address the time-average cost function of MTS production-inventory 

systems. Some results follow immediately from Chapter 4 by setting 0=r  in their discounted 

counterparts.  

 

5.1 Time-Average Cost Functions 

 

The inventory cost function under study is incurred by carrying costs and lost-sales penalties.  

These cost components are described as below. 

 

• Carrying costs.  While there is inventory on hand, a carrying cost is incurred at rate h  

per unit time and per inventory unit.  Accordingly, the carrying cost process 

: 0{ }H H t tρ ρ= ≥( )  is given by  

0
= ∫ρ

t
H t h I z dz( ) ( )      (5.1) 

• Lost-sales penalties.  Whenever a customer’s demand cannot be satisfied from on-hand 

inventory, a penalty of the form w x( )  is incurred as a non-decreasing function of the 

lost-sale size, x , with the proviso that 0 0w( )= .  In particular, we shall consider a 

linear penalty function (to be studied in Section 5.5 as a special case) of the form 

0 10{ }1 xw x K K x> +( )= ,     (5.2) 

where 0 0K ≥  is a constant penalty per lost-sale occurrence, 1 0K ≥  is a constant 

penalty per unit of lost-sales, and the two constants do not vanish simultaneously.  

Accordingly, the penalty process : 0= ≥ρ ρ{ }W W t t( )  is given by 
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1== ∑ AN t

i iW t w L Aρ
( )

( ) ( ( ))      (5.3)  

 

The inventory cost process : 0{ }C C t tρ ρ= ≥( )  is given by 

10 =
= ∑∫ AN t

i

t
iC t H t W t h I z dz w L Aρ ρ ρ

( )
( ) ( ) ( ) ( ( ))( )= + + .   (5.4) 

The infinite-horizon time-average inventory cost is defined by 

0
→t

C t I u
c

t
ρ

ρ
[ ( )| ( )= ]

= lim
E�

∞
.    (5.5) 

In a similar vein, the infinite-horizon time-average carrying cost is defined by 

0
→t

H t I u
h

t
ρ

ρ
[ ( )| ( )= ]

= lim
E�

∞
,    (5.6) 

and the infinite-horizon time-average penalty by 

0
→t

W t I u
w

t
ρ

ρ
[ ( )| ( )= ]

= lim
E�

∞
.    (5.7) 

Thus, we have  

= +ρ ρ ρc h w .      (5.8) 

Throughout this chapter, replenishment occurs at a constant (deterministic) rate 0ρ >  and the 

system is subject to the stability condition  

D< μρ λ .      (5.9) 

By Prabhu (1965), this stability condition implies that a lost sale occurs with probability 1 over an 

infinite time horizon.   

 

5.2 Properties of ξ  

 

Consider again Eq. (3.4) and denote 
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�( ) ( )r Dz f z z r= + −ψ λ ρ λ −     (5.10) 

as a function of 0r ≥ . In view of Lemma 3.1, Eq. (5.10) has two roots, denoted by 0r ≥ξ  and 

0r ≤θ .  We then have the following result. 

 

Lemma 5.1 

For 0r = , the equation 0 0( )z =ψ  has two distinct roots, 0θ  and 0ξ , satisfying the following 

(a) if 0 [ ]D< <ρ λE� , then 0 0=θ  and 0 0>ξ ; 

(b) if [ ]D=ρ λE� , then 0 0 0= =θ ξ ; 

(c) if [ ]D>ρ λE� , then 0 0<θ  and 0 0=ξ . 

 

Proof. 

Letting 0r =  in Eq. (5.10) and setting the resulting equation to be zero, we have 

0 0�( ) ( )Dz f z z= + − =ψ λ ρ λ .    (5.11) 

By Lemma 3.1, Eq. (5.11) has two roots. Clearly, 0 0z =  is a root of the above equation, since 

0 1� ( )Df = . To study the other root, substitute the representation of � ( )Df z  from Eq. (5.11) into 

Eq.(1.4), yielding 

� ( )DF z = ρ
λ

.     (5.12) 

Since any Laplace transform of a non-negative function is strictly decreasing in z  from infinity 

to zero, Eq. (5.12) has a unique root 1z . In the remainder of the proof, we shall use the fact that 

0� ( ) [ ]DF D= E� .  
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To prove part (a), note that its premise implies 0 0�[ ] ( )DD F< < =ρ
λ

E� , so by the monotone 

decreasing property of � ( )DF z , we must have 0 1 0z= >ξ , and furthermore, 0 0 0z= =θ .   

 

To prove part (b), note that its premise implies 0� ( )DF=ρ
λ

, so by the monotone decreasing 

property of � ( )DF z , we must have 0 1 0 0 0z z= = = =θ ξ .  

 

Finally, to prove part (c), note that its premise implies 0� ( )DF>ρ
λ

, so by the monotone 

decreasing property of � ( )DF z , we must have 0 1 0z= <θ , and furthermore, 0 0 0z= =ξ .   □ 

 

For the case 0r = , Figure 5.1 outlines the key features of the function 0ψ ( )z  and its roots. 

 

 

 

Figure 5.1.  Illustration of the Function 0ψ ( )z  and its Root Structure for the Case 0r =  

when [ ]D>ρ λE�  (Left) and [ ]D<ρ λE�  (Right) 

 

We then have the following result. 
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Lemma 5.2 

For any 0r ≥ , under the stability condition in Eq. (5.9), the equation 0( )r z =ψ  has two 

distinct roots, rξ  and rθ  as follows: 

(a) If 0r = , then 0 0=θ  and 0 0>ξ .   

(b) If 0r > , then 0r <θ  and 0r >ξ .   

 

Proof. 

We first prove that the function ( )r zψ  is convex by computing its first and second derivatives, 

0
( ) ( )D

z x
r z x e f x dx

z

∞ −∂ =
∂ ∫ψ ρ − λ ,   (5.13) 

2
2

2 0
( ) ( )D

z x
r z x e f x dx

z

∞ −∂
=

∂ ∫ψ λ .   (5.14) 

Since the case of zero demand with probability 1 is precluded, it follows from Eq. (5.14) that  

2

2
0( )r z

z

∂
>

∂
ψ .     (5.15) 

To prove part (a) for 0r = , we have 0 0 0( ) =ψ , namely, zero is a root of 0 0( )z =ψ . It 

remains to show the existence of exactly one more positive root. First, note that 

0 0 0ψ ( ) |zz
z =

∂ <
∂

 by Eqs. (5.13) and (5.9). Therefore, there exists 0'z >  such that 

0 0( ')z <ψ   But since 0( )∞ = ∞ψ , it must have a positive root.  Second, we prove by 

contradiction that 0 0ψ ( )z =  cannot have more than two roots.  Otherwise, by Rolle’s Theorem, 

there must be more than one *z , such that 0 0( *)z
z

∂ =
∂

ψ . This contradicts the fact that there 

is at most one *z  such that 0 0( *)z
z

∂ =
∂

ψ  by Eq. (5.13), thereby establishing part (a). 
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To prove part (b) for 0r > , note that we have 0 0( )r <ψ , ( )r ∞ = ∞ψ  and 

( )r −∞ = ∞ψ .  Consequently, 0ψ ( )r z =  must have at least one positive root and one 

negative root. An argument similar to that in part (a) establishes that there cannot be more than 

two roots as required.                    □ 

 

Figure 5.2 illustrates the key features of the function ( )r zψ  and the root structure for the 

equation and 0( )r z =ψ . 

 

 

 

Figure 5.2.  Illustration of the Function ( )r zψ  and its Root Structure for 0r =  and 0r >  

 

In particular, for 0r = , we denote 

0=ξ ξ . 

Accordingly, in view of Lemma 5.2, we can write, 

0� ( )Df + − =λ ξ ρ ξ λ ,    (5.16) 
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and in general, for 0r ≥ , 

0�λ ξ ρ ξ λ −( )D r rf r+ − = .   (5.17) 

 

Lemma 5.3 

(a) For 0ρ ≥  and ( )ξ  ξ ρ= , 

�ρ λ ξ( )DF= .     (5.18) 

(b) For 0ρ ≥ , the mapping 6ρ ξ ρ( )  is strictly monotone decreasing in ρ . 

 

Proof. 

To prove part (a), note first that by Eq. (5.16), 

1 �λ − ξ
ρ

ξ

( )Df⎡ ⎤
⎢ ⎥⎣ ⎦= .     (5.19) 

Eq. (5.18) now follows by Eqs. (1.4) and (5.19). 

 

To prove part (b), we differentiate Eq. (5.16) with respect to ρ , yielding 

0
1  ξ ρ

λ ξ ρ
( )

( ) ( )
x

Dx e F x dx
∞ −′= − ∫ . 

The equation above implies 0ξ ρ( )′ <  since the integral on the right-hand side is strictly 

positive for all 0ρ ≥ , which in turn implies the result.             □ 

 

Corollary 5.1 

For 0r = , 

0
lim
→

=
ρ

ρ ξ λ ,     (5.20) 

where ( )ξ  ξ ρ= . 
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Proof. 

Sending 0ρ ↓  on both sides of Eq. (5.18) implies 
0

lim 0
→

=�
ρ

ξ ρ( ( ))DF , which in turn implies  

0
lim
→

=( ) ∞
ρ

ξ ρ .       (5.21) 

Furthermore, Eq. (5.16) can be written as 

�ρ ξ λ − λ ξ( )Df= .     (5.22) 

The proof immediately follows via sending 0ρ ↓  in Eq. (5.22) and the fact 
0

lim ( ) 0
→

=�
Dfρ

ξ .      □ 

 

5.3 Computing the Time-Average Cost Function  

 

In this section we derive closed form formulas for the time-average cost functions. 

 

5.3.1 The Function cρ  

 

To derive the time average cost function cρ  we first consider the inventory cost until and 

including the first lost-sale occurrence, which is given by  

 1
1 10

( ) = +C h I z dz w Lρ
τ

τ τ∫ ( ) ( ( ))  .   (5.23) 

Its expected value, conditioned on 0( )=I u , is denoted by  

1 0c u C I uρ ρ τ( )= [ ( )| ( )= ]E� .    (5.24) 

Note that the inventory process over intervals of the form 1,i iτ τ( ]+  is a renewal process and the 

corresponding incurred cost process can be regarded as a renewal reward process. Consequently, 
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by Theorem 3.6.1 in Ross (1996), with probability 1, the time-average cost in Eq. (5.5) is 

independent of the initial inventory level, and given by 

1

0
0 0

ρ
ρ τ

( )
=

[ | ( )= ]E�
c

c
I

.     (5.25) 

In the following, we shall obtain a formula for ρc , by deriving 0c ( )ρ  and 1 0 0[ | ( )= ]IτE� .   

 

To derive 0c ( )ρ , we shall apply the formula for c u( )ρ , given in Eq. (4.33), by setting there 

0=r . We then have the following result.  

 

Lemma 5.4 

0
�

ρ
ξ

ρ
( )

( )
g

c = .      (5.26) 

 

Proof. 

Follows from Eq. (4.33) and the fact that
0

lim
→

=rr
ξ ξ .               □ 

 

Next, to derive 1 0[ | ( )= ]I uτE� , define 

1 0−
r

rd u e I uρ,
τ( )= [ | ( )= ]E� .    (5.27) 

Finally, we shall need the following lemma. 

 

Lemma 5.5 

Under the stability condition (5.9), the conditional expected time to the first lost-sale occurrence 

is 

1 00 =
∂
∂ r rI u d u
r ρ,τ[ | ( )= ]= ( )|E� − .    (5.28) 
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Proof. 

To prove Eq. (4.18), write 

1 1

1 1

1

0 | 0 | 00 0
0 0

| 0 | 00 0
0 0

|

lim lim ( | lim ( |

                       lim ( | lim ( |

                       

→

− −

→ →

− −

→ →

∂ ∂ ∂
∂ ∂ ∂

− −

−

∫ ∫

∫ ∫

  ρ, τ τ

τ τ

τ

rr

rt rt
I Ir r

rt rt
I Ir r

d u e f t u dt e f t u dt
r r r

t e f t u dt t e f t u dt

t f

( ) ( )

( ) ( )

( )= ) = )

= ) = )

=

∞ ∞

∞ ∞

10
0

( | 0 ]−∫ E�τI t u dt I u( ) ) = [ | ( )=
∞

 

where the second equality holds by the Leibniz integral rule, while the fourth one holds by the 

Dominated Convergence Theorem, because
1 1| 0 | 0( | ( |−

τ τ( ) ( )) )rt
I Ite f t u t f t u≤  such that 

1 1| 0
0

( | 0 ]∫ E�τ τIt f t u dt I u( ) ) [ | ( )=
∞

= <∞  [Prabhu (1965)].             □ 

 

By Eq. (4.36), we have 

0 1ρ, ρ ξ
( )r

r

r
d = − .     (5.29) 

 

Theorem 5.1 

1
10 0[ | ( )= ]=Iτ

ρ ξ
E� .    (5.30) 

 

Proof. 

In view of Eqs. (4.18) and (4.36), we have 

1 0

20

00 0 0 lim  1

1 1 1                        lim

→

→

=
⎡ ⎤∂

= −⎢ ⎥∂ ⎣ ⎦
⎧ ⎫

′−⎨ ⎬
⎩ ⎭

ρ,τ
ρ ξ

ξ
ρ ξ ξ ρ ξ

[ | ( )= ]= ( )|

= =
[ ]

E� r r

r

r
r

r
r r

r
I d

r r

r

− − ∂
∂
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Here, the first equality holds by Eq. (4.18) at 0=u , the second equality holds by Eq. (5.29).  

The fourth equality is due to the fact that 20
lim 0
→

′ =ξ
ξ[ ]r r
r

r
, and to show that it suffices to prove 

that 20
lim
→

′ξ
ξ[ ]r

r

r

 exists and is finite.  To see that, we first note that 2 2

0
lim
→

=ξ ξ[ ]
r r . Secondly, since 

6 ξrr  is a one-to-one mapping by Eq. (5.17), one has 

0

0

1lim
lim→
→

′
′

ξ ξ

ξ
ξ

=
( )

r

r r
rr

.  Furthermore, by 

Eq. (5.17), one has  

ξξ ψ( ) ( )
rr zrr z

z =′ = ∂
∂

. 

Therefore, by continuity of ( )r z
z

ψ∂
∂

 at ξrz = , shown in the proof for Lemma 5.2, we have  

0lim 0ξ
ξ ξ

ξ ψ( ) ( )
r

r zr z
z =

→
′ = >∂

∂
,   (5.31) 

again by the proof for Lemma 5.2.  We conclude that 20
lim
→

′ξ
ξ[ ]r

r

r

 is finite as claimed.           □ 

 

5.3.2 Closed form formula for cρ   

 

The following theorem provides computable representations for the infinite-horizon time-average 

total cost and its components (carrying cost and lost-sales penalty).   

 

Theorem 5.2 

( )�ρ ξ ξ=c g ,     (5.32) 

1( )�ρ ξ ξ=h g ,     (5.33) 

2 ( )�ρ ξ ξ=w g      (5.34) 
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where ( )ξ  ξ ρ= , functions ( )⋅g , 1( )⋅g  and 2 ( )⋅g  are given by Eqs. (4.27), (4.28) and (4.29), 

respectively. 

 

Proof. 

To prove Eq. (4.43), substitute Eqs. (5.26) and (5.30) into Eq. (5.25).  Eqs. (5.33) and (5.34) 

readily follow by noting that 1 2+g=g g  implies 1 2+� � �g=g g .              □ 

 

Denote by I  the infinite-horizon time-average inventory, namely, 

0
1

→
= ∫lim

t

t
I I z dz

t∞
( ) .     (5.35) 

 

Corollary 5.2 

=
h

hρ ξ
,     (5.36) 

1
ξ

=I .     (5.37) 

 

Proof. 

Note that 1 2( ) =� h
g z

z
 by Eq. (4.28).  Eq. (5.36) now readily follows by substituting 1( )� ξg  into 

Eq. (5.33).  Finally, Eq. (5.37) follows immediately from Eq. (5.36) by noting that the inventory 

time average is equivalent to the time-average carrying cost with 1=h .              □ 
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5.4 Cost Function Properties 

 

In this section, we study properties of the cost function cρ  given by Eq. (5.32) and its 

components, hρ  and wρ .  To this end, we first provide some asymptotic results of the cost 

functions, and then demonstrate the existence and uniqueness of its minimum. 

 

We first rewrite Eq. (5.32) as 

[ ] [ ]( ) (0+) ( ) ′ ′+ += = [ ]c g g g w DE�( )ρ ξ ξ λ L L ,  (5.38) 

where the first equality holds by a property of the Laplace transform [Widder (1959)], the second 

equality follows from Eq. (4.27), and ( )g u′  is given by 

2 0( ) ( ) ( ) ( ) ( ) ( )D D
u

g u h g u h f x w' x u dx f u w
∞⎡ ⎤′ ′= + = − − + +⎢ ⎥

⎢ ⎥⎣ ⎦∫λ . (5.39) 

 

Lemma 5.6 

(a) hρ is monotone increasing and convex in 0≥ρ , and has the following asymptotes 

0
lim  0hρρ

=
→

 `     (5.40) 

lim =hρρ→∞
∞       (5.41) 

(b) wρ is monotone decreasing and concave in 0≥ρ , and has the following asymptotes 

0
lim = [ ]w w Dρρ

λ 
→

E�( )      (5.42)
 

lim 0=wρρ→∞
      (5.43) 

(c) cρ  has the following asymptotes 

0
lim = [ ]c w Dρρ

λ 
→

E�( )      (5.44)
 

lim =cρρ→∞
∞       (5.45) 
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Proof. 

Part (a) readily follows from Eq. (5.36).  

To prove part (b), we first prove Eq. (5.42) by writing 

2 20 0
lim lim lim= ( ) = ( ) = [ ( )]

u
w g g u w Dρρ ξ

ξ ξ λ 
→ →∞ →

� E� . 

Here, the first equality follows from Eq. (5.34) and the monotone decreasing relation between ρ  

and ξ  exhibited in Eq. (3.10); the second equality holds by the Initial Value Theorem of the 

Laplace transform [Widder (1959)]; and the third equality holds by Eq.(4.29). 

 

Next, to prove Eq. (5.43) we write  

2 20
lim lim lim= ( ) = ( ) =

u
w g g uρρ ξ

ξ ξ
→∞ → →∞

∞� . 

Here, the first equality holds by Eq. (5.34) and the decreasing monotone relation between ρ  and 

ξ  exhibited in Eq. (3.10); the second equality holds by the Final Value Theorem of the Laplace 

transform [Widder (1959)]; and the last equality holds by Eq.(4.29).  

 

We next show that the monotonicity and concavity of wρ  follow from its first and second 

derivatives, respectively.  To this end, we write 

[ ]2 2 2 20
( ) ( ) (0+) ( )′ ′+ +∫� xw g g g e g x dx w Dξ

ρ ξ ξ ξ  λ = = = [ ( )]−∞
E�L , (5.46) 

where the first equality holds by Eq. (5.34); the second equality holds by a property of the 

Laplace transform [Widder (1959)]; the first term in the third equality holds by definition; and the 

second term in the third equality holds by Eq. (4.29).  Differentiating Eq. (5.46) now yields 

20
( ) 0∂ ′

∂ ∫ xw xe g x dxξ
ρ  

ξ
= −∞

− ≥      (5.47) 

2
2

22 0
( ) 0∂ ′

∂ ∫ xw x e g x dxξ
ρ  

ξ
= −∞

≤     (5.48) 
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Here, we use the fact that Eq. (4.29) implies 

2 0 0D D
u

g u f x w' x u dx f u wλ ( ) ( ) ( ) ( ) ( )
∞⎡ ⎤′ = − − + + ≤⎢ ⎥

⎢ ⎥⎣ ⎦∫ ,  (5.49) 

since the equality holds by the generalized Leibniz’s integral rule, and the inequality holds in 

view of Df u( )≥ 0  and the fact that the inequalities 0w w' x( ), ( )+ ≥ 0  hold by assumption. 

This completes the proof for part (b). 

 

Finally, Eqs. (5.44) and (5.45) follow by adding Eq. (5.40) to Eq. (5.42), and adding Eq. (5.41) to 

Eq. (5.43), respectively.    .               □ 

 

We are now in a position to study the existence and uniqueness of the minima of cρ .  We 

mention that it is straightforward to prove the existence of minima; however the proof of 

uniqueness is much challenging. Still, we can prove uniqueness for some important cost 

functions.  To this end, we need the following general result. 

 

Proposition 5.1 

Let f x( )  be a continuous function, not identically zero, satisfying  

0
0f x dx

∞
=∫ ( ) ,     (5.50) 

and there exists a constant 0 0x >  such that 0( )f x ≤  for 00 x x≤ ≤ , and 0( )f x ≥  for 

0x x> . Then, 0�f z =( )  if and only if 0z = . 

 

Proof. 

The proof of the necessary condition is trivial. To prove the sufficient condition, we first write 

Eq. (5.50) as 
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0

0 0

x

x
f x dx f x dx

∞
= −∫ ∫( ) ( ) .    (5.51)

 

Next, for all 0z > , 

0

0

0

0 0

0

0

0

0 0

0 00

0 0

       

       

       0

�

x

x zx zx

x

x zx zx

x xzx zx

x zx zx

f z e f x dx e f x dx

e f x dx e f x dx

e f x dx e f x dx

e e f x dx

∞

∞

− −

− −

− −

− −

= +

≤ +

= −

⎡ ⎤= − <⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

∫ ∫

∫

( ) ( ) ( )

( ) ( )

( ) ( )

( ) 

 

because the first inequality holds by 0zx zxe e− −≤  for 0x x≥ , the second equality holds by 

Eq. (5.51), and the last inequality holds by the relations of 0zx zxe e− −>  and 0( )f x ≤  but 

not identically zero for 00 x x≤ ≤ . This completes the proof.              □ 

 

The following Lemma provides results for the case 0 0( )w + = . 

 

Lemma 5.7 

For 0 0( )w + = , 

(a) if 0h = , then cρ  attains a unique minimum at * [ ]D=ρ λ E , where * 0ξ = ; 

(b) if 

0 [ ]h w' Dλ < < < ∞E� ( ) ,    (5.52) 

then cρ  has a unique and finite minimum at * *( )DFρ λ ξ= � , where * 0>ξ ; 

(c) if 0[ ]h w' Dλ ≥ >E� ( ) , then cρ  attains a unique minimum at 0*ρ = , where * =ξ ∞ . 
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Proof. 

If 0 0( )w + = , then Eq. (5.39) implies  

( ) ( ) ( ) ( )D
u

g u h f x w' x u dx R uλ
∞

′ = − − =∫ ,   (5.53) 

where ( )R u  is an increasing function of u .  Furthermore, Eqs. (5.38) and (5.53) jointly imply 

( ) +�= [ ]c R w Dρ ξ λ E�( ) .     (5.54) 

Eq. (5.54) shows that minimizing cρ  in ρ  is equivalent to minimizing ( )R ξ�  in ξ . 

 

To prove Part (a), observe that 0h =  implies that 0( )R u <  because ( )w x  is a non-

decreasing function (of the loss) by assumption, and consequently ( ) �R ξ  is strictly increasing. 

Part (a) now follows since ( )R ξ�  attains a unique minimum at * 0ξ = . 

 

To prove Part (b), the existence of the minimum follows from the continuity of cρ  and Part (c) in 

Lemma 5.6. It remains to prove the uniqueness of the minimum.  To this end, differentiate Eq. 

(5.54) with respect to ξ , and set the derivative to zero, yielding 

0 0
0( ) xc x e R x dx f x dxρ ξ

ξξ
ξ

∞ ∞−∂ = − = =
∂ ∫ ∫( ) ( ) .  (5.55) 

where ( ) xf x xe R x−= −ξ
ξ

( ). Next, Eq. (5.53) implies 

lim 0( )
u

R u h
→∞

= > .      (5.56) 

Furthermore, the assumption [ ]h w' Dλ < < ∞E� ( )  and Eq. (5.53) imply 0 0( )R + < .  

Using the two limits above and the continuity and monotonicity of ( )R u , it follows that there 

exists a constant 0 0u > , such that 0( )R u ≤  for 00 u u≤ ≤ , while 0( )R u ≥  for 
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0u u≥ .  Consequently, we conclude that for any 0≥ξ , one has 0( )f xξ ≥  for 

00 u u≤ ≤ , while, 0( )f x ≤ξ  for 0u u≥ .  Letting *ξ  denote a solution of Eq.(5.55), we 

next prove its uniqueness by contradiction.  Suppose there exists another solution ′ξ  of Eq.(5.55)

, such that without loss of generality, * ′<ξ ξ . Then, by Eq. (5.55), one has 

0 0
0*

*)(( ) ( )xc f x dx e f x dxρ ξ ξ
ξ ξξ

ξ

∞ ∞

′
− −′∂ ′ = = =

∂ ∫ ∫( ) . 

In view of Proposition 5.1, we must have 0*′ − =ξ ξ  in contradiction to the assumption 

* ′<ξ ξ , which completes the proof for Part (b). 

 

Finally, to prove Part (c), if h w' D[ ]λ ≥ E� ( ) , then 0( )R u ≥  by Eq. (5.53).  It follows that 

( ) �R ξ  is non-increasing, which completes the proof for Part (c).              □ 

 

Figure 5.3 illustrates a typical cρ  as function of the original domain variable (the replenishment 

rate, ρ ), and a Laplace domain variable (the positive root, ξ ); recall that ρ  and ξ  are related by 

Eq.(5.18). 

  

Figure 5.3.  A Typical cρ  as Function of ρ  (Left) and ξ  (Right) 
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5.5 Optimal Replenishment Rate  

 

In this section, we optimize the time-average cost of Eq. (5.5) with respect to the replenishment 

rate, ρ . We first provide a general structural result for the optimal replenishment rates, ρ* , and 

then we study some special cases.  Note that we admit the possibility of multiple optimal 

replenishment rates. 

 

Theorem 5.3 

The optimal replenishment rates for Eq. (5.5) are given by 

 �ρ λ ξ* *( )DF= ,     (5.57) 

where 

*

0
argmin  ( )=  { }g

ξ
ξ ξ ξ

>
� .    (5.58) 

 

Proof. 

In view of Eq. (4.43), minimizing ( ) ( ( ))�ρ ξ ρ ξ ρ=c g  with respect to ρ is equivalent to 

minimizing ( ) �ρ ξ ξ=c g  with respect to the nonnegative variable ξ .  To this end, we first 

compute Eq. (5.58), namely, perform optimization on ( ) �ρ ξ ξ=c g in the Laplace domain to find 

the optimal values *ξ .  Next, by Lemma 5.3(b), 6ρ ξ ρ( )  is 1-1, and consequently, we can 

invert each * *( )=ξ ξ ρ  via Eq. (4.65) to obtain the corresponding optimal replenishment rate, 

ρ* .                     □ 

 

The minimum values, *ξ , given in Eq. (5.58), can be calculated in several ways.  A 

straightforward but relatively time consuming method is global search.  However, when *ξ  is 
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unique, the availability of derivatives of ( )cρ ξ  with respect to ξ  allows us to apply the relatively 

fast Newton’s Method, where successive approximations of the minimum are given by the 

iterative scheme, 

2

2

+1

( )
, =0,1,

( )

∂
∂
∂
∂

…
n

nn

n

c
n

c

ρ

ρ

ξ
ξξ ξ

ξ
ξ

= − .   (5.59) 

We next proceed to study production-inventory systems with specialized lost-sales penalty 

structures, specifically the constant lost-sales penalty and the loss-proportional penalty. Under 

each penalty structure, we study the optimal average costs, subject to particular demand 

distributions, such as constant, uniform, Exponential and Gamma distributions.  

 

5.5.1 Constant Lost-Sales Penalty 

 

In this case, 001{ }xw x K>( ) = , where 0 0K >  is a constant.  Then, Eq. (4.27) becomes 

0 0λ λ ( ) ( ) ( )D D
u

g u h u K f x dx h u K F u
∞

= + = +∫ ,  (5.60) 

and the corresponding Laplace transform is given by 

2 20 0
1 ( )( ) ( ) −

+ +
��� λ λ = = D

D

f zh h
g z K F z K

z z z
, 

where the second equality holds by Eq. (1.4).  In view of Eq. (4.43), we now have 

00( ) 1 ( )⎡ ⎤+ − = +⎣ ⎦
��ρ ξ ξ λ  ξ ρ Κ  ξ

ξ ξ
= = D

h h
c g K f ,  (5.61) 

where the last equality holds by Eq. (5.19).  By Eq. (5.58), the optimal *ξ  is given by 

*

0
0 ( )

>

⎧ ⎫
= −⎨ ⎬

⎩ ⎭
�argmin D

h
K f

ξ
ξ λ ξ

ξ
.    (5.62) 
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We mention that *ξ  is a monotonically decreasing function of 0λ K
h

. To see this, Eq. (5.62) can 

be rewritten as * 0

0

1 ( )⎧ ⎫
= −⎨ ⎬

⎩ ⎭
�argmin D

K
f

h>ξ

λ 
ξ ξ

ξ
, so that the derivative of the rewritten 

objective function with respect to 0λ K
h

 is ( ) 0− <�
Df ξ , which implies the result.  It follows that 

*ρ  is a monotonically increasing function of 0λ K
h

, because *ξ  is a monotonically decreasing 

function of 0λ K
h

, while ξ = ξ ρ( )  is monotonically decreasing in ρ . 

 

Table 5.1 exhibits the formulas for *ξ , *ρ and *c
ρ

 for selected demand distribution with detailed 

derivations given in Section A.3 of Appendix A. 
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Table 5.1. Optimal Quantities for Production-Inventory Systems Subject to Constant Penalty and 

Various Demand Distributions 

Distribution *ξ  *ρ  *c
ρ

 

D d=  

0d >  
0

0
argmin −⎧ ⎫

−⎨ ⎬
⎩ ⎭

dh
K e

>ξ

ξλ 
ξ

 1
*

*
de−⎡ ⎤−⎢ ⎥

⎣ ⎦
ξλ

ξ
 * *

* 0+
h

K ρ ξ
ξ

 

Exp( )D β∼  

0>β

0βλ K h>  

0

h
K h

β
λ β −

 

0

h

K

λλ
β β β
−  

02 h K hλ
−

β β
 

( , )D U a b∼  

0 a b≤ <  
0

0
argmin

( )

− −⎧ ⎫−
−⎨ ⎬−⎩ ⎭

a bh e e
K

b a>

ξ ξ

ξ
λ 

ξ ξ
 1

* *

* *( )

a b
e e

b a

− −⎡ ⎤
⎢ ⎥−−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

ξ ξ
λ
ξ ξ

 
* *

* 0+
h

K ρ ξ
ξ

 

( )D ,Γ α β∼
0, >α β  

0
0argmin 1h

K
ξ

α
ξλ 

ξ β>

−⎧ ⎫⎛ ⎞⎪ ⎪−⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭
+  1 1

*

*

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥− ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

α
λ ξ

βξ
+  

* *
* 0+

h
K ρ ξ

ξ
 

 

5.5.2 Loss-Proportional Penalty 

 

In this case, 0 11{ }xw x K x>( ) =  where 1 0K >  is constant. Then, Eq. (4.27) becomes 

1λ ( ) ( ) ( )D
u

g u hu K x u f x dx
∞

= + −∫ ,   (5.63) 

and the corresponding Laplace transform is given by 

12 2

1 �
� ( )
( ) D Dh f z

g z K
z z z

⎡ ⎤−⎢ ⎥= + −⎢ ⎥⎣ ⎦

�
λ 

μ
.   (5.64) 

In view of Eq. (4.43), we now have 

1
1 ( )⎡ ⎤−

+ −⎢ ⎥
⎣ ⎦

�
ρ

ξ
λ 

ξ ξ
μ=  D

D
fh

c K ,    (5.65) 
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where [ ]D D=μ E� . Note that 1 1 ( )− ⎡ ⎤−⎣ ⎦
�
Df =λ ξ  ξ ρ  by Eq. (3.8), we also have 

1 1− += D
h

c K Kρ ρ λ 
ξ

μ      (5.66)

 Consequently, by Eq. (4.80), the optimal *ξ  is given by 

*
1

0

1 ( )argmin Dh f
K

ξ

ξ
ξ λ 

ξ ξ>

⎧ ⎫−
= −⎨ ⎬

⎩ ⎭

�
.    (5.67) 

We mention that *ξ  is a monotonically decreasing function of 1K
h

λ 
. To see this, by Eq.(5.67), 

we have *

0

11 1 ( )argmin  D
D

K f
hξ

λ ξξ
ξ ξ

μ
>

⎧ ⎫⎡ ⎤−⎪ ⎪= + −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

�
, so that the derivative of the rewritten 

objective function with respect to 1K
h

λ 
 is  

0 0

1 ( ) ( ) ( ) ( ) 0= = = xD
D D DD D D D

f
F e F x dx F x dxξξ ξ

ξ
μ μ μ μ

∞ ∞
<−−

− − − −∫ ∫
� � , 

which implies the result.  It follows that *ρ  is a monotonically increasing function of 1K
h

λ 
, 

because *ξ  is a monotonically decreasing function of 1K
h

λ 
, while ξ = ξ ρ( )  is monotonically 

decreasing in ρ .   

 

Table 5.2 exhibits the expressions for *ξ , *ρ and *
ρc  for selected demand distribution with 

detailed derivations given in Section A.4 of Appendix A. 
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Table 5.2. Optimal Quantities for Production-Inventory Systems Subject to Loss-Proportional 

Penalty and Various Demand Distributions 

Distribution *ξ  *ρ  *c
ρ

 

D d=   

0d >  
1

0

1argmin
dh e

K  
ξ

ξ
λ 

ξ ξ>

−⎧ ⎫−
−⎨ ⎬

⎩ ⎭
 1

*

*
[ ]de−− ξλ

ξ
 *

* 1− +
h

k K dρ λ 
ξ

 

Exp( )D β∼
0β >  

1λ K h>  

1

h
K h
β

λ −  1

1 h
K

λ λ
β β
−  1

2 h
h Kλ −

β β
 

( , )D U a b∼
 

0 a b≤ <  

1

0
argmin 1

( )

a bh K e e
b a

ξ ξ

ξ

λ 
ξ ξ ξ>

− −⎧ ⎫⎡ ⎤−⎪ ⎪− −⎨ ⎬⎢ ⎥−⎪ ⎪⎣ ⎦⎩ ⎭
 1

* *

* *( )

a b
e e

b a

− −⎡ ⎤
⎢ ⎥−−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

ξ ξ
λ
ξ ξ

 
*

*
1

1
[ ]
2

− +
K b-ah

K
λ 

ρ
ξ

�

( )D ,Γ α β∼
 

0α β, >  

1
0

1 1
argm in h

K
ξ

α
ξ
βλ  

ξ ξ>

−⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠−⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

+  1 1
*

*

−⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥−⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

α
λ ξ

βξ
+  

*
* 1 1− + D
h

K Kρ λ 
ξ

μ  

 

5.5.3 Exponential Demand: Relationship between the Optimal and Cost-Balanced Rates  

 

In this section, we assume that demand is exponential, and under this assumption we relate the 

optimal replenishment rate, *ρ , and the corresponding cost-balanced replenishment rate, ρ̂ , 

which is the replenishment such that 

ˆ ˆ=h wρ ρ .     (5.68) 

Let 0β >  be the rate parameter of the exponential demand distribution, so 

   0( ) ,D
x

f x e x
β

β= ≥
− .     (5.69) 

and 
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( )Df z
z

β
β

=
+

.      (5.70) 

Accordingly, 0ψ ( )z  becomes 

0( )z z
z

λ β
ψ ρ λ

β
= − +

+
. 

And the equation 0 0zψ =( )  can be written as 

0λ β
ρ

z z
⎡ ⎤⎛ ⎞⎜ ⎟⎢ ⎥− −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

= .     (5.71) 

Hence, the positive root of Eq. (5.71) is given by 

λ
ξ β

ρ
−= .      (5.72) 

We then have the following result. 

 

Proposition 5.2 

Let the demand distribution be exponential, and assume that the penalty function is of the form 

001{ }xw x K>( ) =  or 10{ }xw x K x>1( ) = .  Then, for any 0ρ > , 

ˆ *ρ ρ>      (5.73) 

* *h wρ ρ≤      (5.74) 

 

Proof. 

Assume first that the lost-sale penalty is of the form 001{ }xw x K>( ) = .  Substituting Eq. (5.72) 

into Eq. (5.61), we have  

0+ − +
−

= [ ] =
h

c h wρ ρ ρ
ρ

Κ λ ρβ
λ ρβ

,   (5.75) 

where the time average carrying cost is 



 

 

-77-

−
=

h
hρ

ρ
λ ρβ

,      (5.76) 

and the time average lost-sales penalty is 

0 −= [ ]wρ Κ λ ρβ .     (5.77) 

Next, equate Eqs. (5.76) and (5.77) and solve for ρ̂ , yielding 

2

2
0 0 0

3 2ˆ
2 2

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
=

h h hλ λ
ρ

β Κ β Κ β Κ β
+ + .  (5.78) 

Letting 2
0

0
2

= >
h

a
Κ β

 and 
0

3 0= >
h

b
λ

Κ β
 above, and noting that 2 2+ < +a b a b , we 

get  

2

2
0 0 0 0

3 2 32 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

h h h hλ λ
Κ β Κ β Κ β Κ β

+ − < .  (5.79) 

Eqs. (5.78) and (5.79) readily imply 

0
3ˆ − = *hλ λ

ρ ρ
β Κ β

> ,    (5.80) 

where the equality in Eq. (5.80) follows from the exponential case in Table 5.1.  This completes 

the proof of Eq. (5.73). 

 

To prove Eq. (5.74), first note that hρ  is an increasing function of ρ  by Lemma 5.6(a) while 

wρ  is a decreasing function of ρ  by Lemma 5.6(b).  Second, the aforementioned monotonicity 

of hρ  and wρ  in conjunction with Eq. (5.80) imply *ˆh hρ ρ≥  and *ˆw wρ ρ≤ .  Eq. (5.74) now 

follows from the last two inequalities together with Eq. (5.68).   
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Finally, the corresponding proofs for the case 0 11 xw x K x>{ }( ) =  are readily seen to be 

analogous to the proofs above for 001 xw x K>{ }( ) = , but with 0Κ  replaced by 1Κ
β

.           □ 

 

A numerical study illustrating the relationships in Eqs. (5.73) and (5.74) appears in next section. 

 

5.6 Numerical Study  

 

In this section, we study three special cases with constant lost-sales, with 0.5=λ , 1h =  and 

0 100K =  in all cases.  As a check on accuracy, we performed paired evaluations of the requisite 

cost functions: by analytical formulas developed earlier and by simulation.  Accordingly, in the 

figures below, curves are paired as follows: those with circles correspond to analytical results, 

while those with asterisks correspond to their simulation counterparts.   

 

In the first case, we study the average total cost, cρ , as function of the replenishment rate, ρ , 

under three demand distributions: constant, exponential and uniform.  To ensure that these 

systems are comparable, we let 2D =μ  be the common mean of all the aforementioned demand 

distributions. 

 

Figure 5.4 depicts cρ  as a function of ρ  for each demand distribution.  Here, curve styles 

correspond to demand distributions: solid curves to the constant distribution, dashed curves to the 

exponential distribution and dotted curves to the uniform distribution.  Figure 5.4 shows a good 

agreement between all pairs of analytical and simulation results.  Furthermore, the system with 
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constant demand has the largest optimal replenishment rate, while its exponential counterpart has 

the smallest one.  
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Figure 5.4.  Average Costs for Inventory Systems with Various Demand Distributions as 

Functions of the Replenishment Rate 

 

In the second case, we study the average total cost, cρ , and its components (average carrying 

cost, hρ , and average penalty, wρ ) as functions of the replenishment rate, ρ , under an 

exponential demand distribution with rate parameter, 0.5=β .   

 

Figure 5.5 depicts the cρ , hρ  and wρ  as functions of ρ .  Here, curve styles correspond to cost 

types: solid curves to the average total costs, dashed curves average carrying costs and dotted 

Constant  

Uniform 

Exponential 
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curves to average penalties.  Figure 5.5 shows a good agreement between all pairs of analytical 

and simulation results.  Furthermore, the optimal solution P1 (with replenishment rate *ρ ) for the 

average total costs differs from its cost-balanced counterpart, P2 (with replenishment rate ρ̂ ), 

such that *ˆ >ρ ρ , in agreement with Eq. (5.73). 
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Figure 5.5.  Average Total Costs, Carrying Costs and Penalties as Functions of the 

Replenishment Rate under Exponential Demand 

 

In the third case, we study analytically-computed quantities associated with the optimal solution, 

*
* ,cρρ( ) , under various demand distributions: constant, exponential, uniform and Gamma.   

 

P1 

P2 

Total 

Penalty 

Carrying 
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Table 5.3 displays *ρ  and *ξ  as functions of the mean demand, 
1

β
−

, with the four 

aforementioned demand distributions.  From Table 5.3 it can be seen that the respective optimal 

replenishment rates increase in this order of distributions: constant, uniform, Gamma and 

exponential.  Note that as the average demand decreases (i.e., β  gets larger), the optimal 

replenishment rate approaches zero for all demand distributions, as it should be, since the optimal 

replenishment must be zero in the absence of demand. 

 



 

 

-82-

Table 5.3. Analytically-Computed Optimal Quantities under Various Demand Distributions 

β  

                  
1

D =
β

                ( )Exp β             
20,⎛ ⎞

⎜ ⎟
⎝ ⎠

U
β

             
14,

4
⎛ ⎞
⎜ ⎟
⎝ ⎠

Γ
β

 

*ξ  *ρ  *ξ  *ρ  *ξ  *ρ  *ξ  *ρ  

0.1 0.060 3.798 0.080 2.806 0.068 3.367 0.065 3.515 
0.6 0.121 0.762 0.133 0.689 0.125 0.736 0.124 0.743 
1.1 0.159 0.427 0.170 0.398 0.163 0.417 0.162 0.420 
1.6 0.189 0.298 0.200 0.281 0.193 0.292 0.192 0.293 
2.1 0.215 0.229 0.226 0.217 0.218 0.225 0.217 0.226 
2.6 0.238 0.186 0.249 0.177 0.241 0.183 0.240 0.184 
3.1 0.258 0.156 0.269 0.150 0.262 0.154 0.261 0.155 
3.6 0.277 0.135 0.288 0.130 0.281 0.133 0.280 0.134 
4.1 0.295 0.119 0.306 0.115 0.299 0.117 0.298 0.118 
4.6 0.312 0.106 0.323 0.103 0.316 0.105 0.315 0.105 
5.1 0.328 0.096 0.339 0.093 0.332 0.095 0.331 0.095 
5.6 0.343 0.087 0.354 0.085 0.347 0.087 0.346 0.087 
6.1 0.358 0.080 0.369 0.078 0.361 0.080 0.361 0.080 
6.6 0.372 0.074 0.382 0.072 0.375 0.074 0.374 0.074 
7.1 0.385 0.069 0.396 0.067 0.389 0.069 0.388 0.069 
7.6 0.398 0.065 0.409 0.063 0.402 0.064 0.401 0.064 
8.1 0.411 0.061 0.421 0.059 0.414 0.060 0.413 0.060 
8.6 0.423 0.057 0.433 0.056 0.426 0.057 0.426 0.057 
9.1 0.435 0.054 0.445 0.053 0.438 0.054 0.437 0.054 
9.6 0.446 0.051 0.457 0.050 0.450 0.051 0.449 0.051 
10.1 0.457 0.049 0.468 0.048 0.461 0.049 0.460 0.049 
10.6 0.468 0.047 0.479 0.046 0.472 0.046 0.471 0.046 
11.1 0.479 0.045 0.490 0.044 0.483 0.044 0.482 0.044 
11.6 0.489 0.043 0.500 0.042 0.493 0.042 0.492 0.042 
12.1 0.500 0.041 0.510 0.040 0.503 0.041 0.502 0.041 
12.6 0.510 0.039 0.520 0.038 0.513 0.039 0.512 0.039 
13.1 0.520 0.038 0.530 0.037 0.523 0.038 0.522 0.038 
13.6 0.529 0.036 0.540 0.036 0.533 0.036 0.532 0.036 
14.1 0.539 0.035 0.549 0.034 0.542 0.035 0.541 0.035 
14.6 0.548 0.034 0.558 0.033 0.551 0.034 0.550 0.034 
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Chapter 6 Further Properties  

 

The chapter investigates additional properties of the production-inventory system under study. 

 

6.1 Expected Stockout Time 

 

In the following, we consider ( ) ( )r z z=ψ ψ , r=ξ ξ , r=θ θ  and =( ) ( )rd u d uρ ρ,  as 

functions of 0r ≥ . 

 

The next proposition studies the expectation 

1 00 =
∂
∂

( ) = [ | ( ) = ]= ( )|r ru I u d u
r

− ρ,Γ τE� ,     0≥u ,  (6.1) 

where the second equality follows from Eq. (4.8).   

 

Proposition 6.1 

(a) For 0 [ ]D< <ρ λE� , 

0

1 1 1
( )

⎡ ⎤
−⎢ ⎥+ − ⎣ ⎦

�
�( ) =
D

z
f z z z

Γ
λ ρ λ ξ

,    0z ≥    (6.2)  

(b) For [ ]D≥ρ λE� , 

( ) =u ∞Γ ,    0u ≥       (6.3) 

 

Proof. 

To prove part (a), note that by Eq. (6.1), one has 

0
�� ( ) = ( ) |r rz d z

r =
∂−

∂ ρ,Γ      (6.4) 
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where the interchange above of the Laplace integral transform and differentiation holds by 

Leibnitz's rule. 

 

Next, substituting Eq. (4.41) into Eq. (6.4) yields 

0

2 20 0 000

1 1

1 1 1 1 1       

� ( ) lim
( )

lim lim lim
( ) ( )( )

r r r

r
r r rr r r r

r
z

r z z

r r
z z z rz

→

→ → →

⎧ ⎫⎡ ⎤⎪ ⎪∂ ⎪ ⎪⎢ ⎥= −⎨ ⎬⎢ ⎥⎪ ⎪∂ ⎣ ⎦⎪ ⎪⎩ ⎭
⎡ ⎤ ∂⎢ ⎥= − + −⎢ ⎥ ∂⎣ ⎦

Γ
ψ ξ

ξ
ψ ξ ξ ψψ ξ

 (6.5) 

where 0( )zψ  is given by Eq. (5.11). 

 

It remains to show that the two last terms on the right-hand side of Eq. (6.5) both vanish. Since 

0 0>ξ  by part (a) of Lemma 5.1, it suffices to show that rr
ξ∂

∂
 is bounded.  To this end, 

differentiate Eq. (3.8) with respect to r  yielding 

0
1  ( )r x

D rx e f x dx
r

−∞⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∫
ξ

ρ − λ ξ∂
∂

.   (6.6) 

Observe that 

0

0
0( ) [ ]

x
Dxe f x dx D

−∞
< <∫

ξ
ρ − λ ρ − λ E� ,  (6.7) 

where the first inequality holds by the fact that 0 0>ξ  and the second inequality holds by 

assumption. Eqs. (6.6) and (6.7) readily imply that rr
ξ∂

∂
 is bounded, which completes the proof 

of Eq. (6.2). 

 

Finally, part (b) follows from the fact that 1 = ∞τ  with positive probability [Prabhu (1965)].  □ 
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Corollary 6.1 

For 0≥ρ , 

00

1 10
( )�( )= =

Df−
Γ

ρξ λ λ ξ
,     (6.8) 

Proof. 

We consider two cases.   

(a) Assume that 0 [ ]D< <ρ λE� .  The first equality in Eq. (6.8) follows by substituting Eq. 

(6.2) into the representation 0 lim
→

�( )= ( )
z

z z
∞

Γ Γ  [Widder, (1959)], and then sending ↑z ∞ . 

The second equality readily follows by further substituting 0 0
� ( )Df= −ρξ λ λ ξ  which is 

obtained by setting 0=z ξ  in Eq. (5.11). 

(b) Assume that [ ]D≥ρ λE� . Eq. (6.8) now follows trivially, since 0( )= ∞Γ  by part (b) of 

Proposition 6.1, and 0 0=ξ  by part (b) and (c) of Lemma 5.1.              □ 

 

6.2 Bound on the Probability of the Inventory Exceeding a Given Value 

 

Since our model’s base-stock level is infinite, an excursion of the inventory process can generally 

reach arbitrarily large levels.  The following lemma provides a bound on the probability of the 

inventory level exceeding a given value. 

 

Lemma 6.1 

For a given replenishment rate, ρ , consider the corresponding inventory process in the steady 

state regime. Then, for 0s > , 

1
ξ

{ ( ) }P I t s
s

≥ ≤ ,  0t ≥ .    (6.9) 
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Proof. 

By Markov inequality [Karr (1993)], 

=
E�[ ( )]

{ ( ) }
I t I

P I t s
s s

≥ ≤  

The result now follows from Eq. (5.37).               □ 

 

6.3 Demand Fill Rate 

 

Let π  denote the fill rate (limiting fraction of demand arrivals that can be immediately satisfied 

from inventory on hand), and let the lost-sales rate be denoted by 1= −π π . Then,  

lim
→

( )
=

( )t

B

A

N t
N t∞

π ,       

where ( )AN t  and ( )BN t  are the numbers of demand arrivals and lost-sale, respectively, in the 

interval 0( ],t .  Alternatively, π  can be represented as [cf. Ross (1996), Theorem 3.4.4] 

1

1 0 0
[ ]

=
[ | ( )= ]

T
I

π
τ

E�
E�

.     (6.10) 

 

Proposition 6.2 

For 0≥ρ , 

0
0( ) 1�= =Df − ρ ξπ ξ

λ
    (6.11) 

 

Proof. 

For 0≥ρ , 

0
0

1 1 ( )
0

�= = =
( ) Df−ρ ξπ ξ

λ Γ λ
,    (6.12) 
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where the first equality follows from Eq. (6.10) and the facts that 10 0 0( )= [ | ( ) = ]IΓ τE�  and 

1 1[ ]= /T λE� , and the second equation holds by further substituting the representation of 0( )Γ  

in Eq. (6.8).  Eq. (6.11) now follows immediately from Eq. (6.12).          □ 

 

We mention in passing that sending 0↓ρ  on both sides of Eq. (6.11) yields the intuitive result 

0=π  by substituting Eq. (3.12) with 0=r  into Eq. (6.11).  This is consistent with the fact that 

for 0=ρ , one has 1 0 0 1[ | ( )= ]= /Iτ λE� , since in a system without replenishment, started 

with zero initial inventory, each demand arrival results in a lost sale, and consequently, the mean 

time between losses is coincides with the mean interarrival time, 1 1[ ]= /T λE� .   
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Chapter 7 Conclusion  

 

In this thesis, we investigated a single-product continuous-review production-inventory system 

with infinite base-stock level, compound Poisson demands and lost-sales, and constant 

replenishment, subject to holding costs and lost-sale penalties.  We derived closed-form formulas 

for both the expected discounted cost as a function of arbitrary initial inventory level, as well as 

the time average cost. The resultant cost functions were optimized with respect to the 

replenishment rate via a simple search in the Laplace transform domain.  

 

The results can be readily generalized to an optimization of cost functions under study with 

respect to the replenishment rate, subject to a given minimal service level, e.g., a fill rate π  [de 

Kok (1985)].  For this problem, one can apply Eq. (6.11) to compute the critical value 'ξ  such 

that ( )�= Df 'π ξ .  It can be readily shown that the cost optimization problem with the 

constraint that the fill rate is at least π  can be solved by a search in the Laplace domain restricted 

to the interval 0 z '< ≤ ξ , as opposed to the original search space, 0z > . 

 

Although optimal replenishment rate may not be unique in general, it is highly likely that the 

optimal replenishment rate is unique under fairly general conditions. More general conditions that 

ensure such uniqueness are the subject of future research. 

 

Further, the research presented in this thesis may be extended in several directions.  First, one 

may consider more general cost functions, e.g., with nonlinear terms. Second, the Poisson 

assumption can be relaxed to a general renewal arrival process. Finally, one may consider a 

continuous-replenishment inventory with a finite base-stock level (where replenishment is 
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suspended when the inventory level reaches or is at the base-stock level) rather than one with 

unlimited capacity.  
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Appendix A 

 

A.1 Proofs for Table 4.1 Formulas 

 

Constant Demand Size.  Consider the first distribution row of Table 4.1, where 0D d >=  is a 

constant, so that 

Df z zd= −( ) exp{ } .     (8.1) 

The corresponding *ξ  follows by substituting Eq. (8.1) into Eq. (4.79), the corresponding ρ*  

follows by substituting this *ξ  and Eq. (8.1) into Eq. (4.65), and the corresponding * 0ρΦ ( )  

follows by substituting these *ξ  and ρ*  into Eq. (4.78). 

 

Exponentially-Distributed Demand Size. Consider the second distribution row of Table 4.1, 

where ExpD β( )∼ .  Substituting Eq. (4.67) into Eq. (4.79) yields, 

*

0

0

>

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

Kh −
+ξ

βλ 
ξ

ξ ξ β
argmin .    (8.2) 

Finally, the corresponding *ξ  is obtained from Eq. (8.2) by first derivative test with respect ξ , 

the corresponding ρ*  follows by substituting such *ξ  into Eq. (4.65), and the corresponding 

* 0ρΦ ( )  follows by substituting *ξ  into Eq.(4.78). 

 

Uniformly-Distributed Demand Size.  Consider the third distribution row of Table 4.1, where 

D U a b( , )∼ , so that 

D

a z bz
e e

f z
b a z

− −
−

=
−

( )
( )

.    (8.3) 
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The corresponding *ξ  follows by substituting Eq. (8.3) into Eq. (4.79), the corresponding ρ*  

follows by substituting this *ξ  and Eq. (8.3) into Eq. (4.65), and the corresponding * 0ρΦ ( )  

follows by substituting these *ξ  and ρ*  into Eq. (4.78). 

 

Gamma-Distributed Demand Size.  Consider the fourth distribution row of Table 4.1, 

whereD ,Γ α β( )∼ , so that 

1D
z

f z
−⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

α

β
( ) + .     (8.4) 

The corresponding *ξ  follows by substituting Eq. (8.4) into Eq. (4.79), the corresponding ρ*  

follows by this *ξ  and Eq. (8.1) into Eq. (4.65), and the corresponding * 0ρΦ ( )  follows by 

substituting these *ξ  and ρ*  into Eq. (4.78).                □ 

 

A.2 Proofs for Table 4.2 Formulas 

 

Constant Demand Size.  Consider the first distribution row of Table 4.2, where D d= .  Then, 

the corresponding *ξ  follows by substituting Eq. (8.1) into Eq. (4.81), the corresponding ρ*  

follows by substituting this *ξ  and Eq. (8.1) into Eq. (4.65), and the corresponding * 0ρΦ ( )  

follows by substituting these *ξ  and ρ*  into Eq. (4.60). 

 

Exponentially-Distributed Demand Size.  Consider the second distribution row of Table 4.2, 

where ExpD β( )∼ . Substituting Eq. (4.67) into Eq. (4.81) yields, 

*

0

1

>

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

Kh −
+ξ

λ 
ξ

ξ ξ β
argmin .    (8.5) 
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Finally, the corresponding *ξ  is obtained from Eq. (8.5) by first derivative test with respect ξ , 

the corresponding ρ*  follows by substituting such *ξ  into Eq. (4.65), and the corresponding 

* 0ρΦ ( )  follows by substituting *ξ  into Eq. (4.60). 

 

Uniformly-Distributed Demand Size.  Consider the third distribution row of Table 4.2, where 

D U a b( , )∼ .  Then, the corresponding *ξ  follows by substituting Eq. (8.3) into Eq. (4.81), the 

corresponding ρ*  follows by substituting this *ξ  and Eq. (8.3) into Eq. (4.65), and the 

corresponding * 0ρΦ ( )  follows by substituting these *ξ  and ρ*  into Eq.(4.60). 

 

Gamma-Distributed Demand Size.  Consider the fourth distribution row of Table 4.2, where 

D ,Γ α β( )∼ .  Then, the corresponding *ξ  follows by substituting Eq. (8.4) into Eq. (4.81), the 

corresponding ρ*  follows by substituting this *ξ  and Eq. (8.4) into Eq. (4.65), and the 

corresponding * 0ρΦ ( )  follows by substituting these *ξ  and ρ*  into Eq. (4.60).            □ 

 

A.3 Proofs for Table 5.1 Formulas 

 

Constant Demand Size.  Consider the first distribution row of Table 5.1, where 0D d >=  is a 

constant, so that 

Df z zd( ) exp{ }= − .     (8.6) 

The corresponding *ξ  follows by substituting Eq. (8.1) into Eq. (4.79), the corresponding *ρ  

follows by substituting this *ξ  and Eq. (8.1) into Eq. (5.19), and the corresponding *c
ρ

 follows 

by substituting these *ξ  and *ρ  into Eq. (5.61). 
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Exponentially-Distributed Demand Size.  Consider the second distribution row of Table 5.1, 

where Exp( )D β∼ .  Substituting Eq. (5.70) into Eq. (4.78) yields, 

0
0 + −

+
=

Kh
c Kρ

λ β
λ   

ξ β ξ
.    (8.7) 

Finally, the corresponding *ξ  is obtained by straightforward minimization of Eq. (8.7) in ξ , the 

corresponding *ρ  follows by substituting this *ξ  into Eq. (5.72), and the corresponding *c
ρ

 

follows by substituting *ξ  into Eq. (8.7). 

 

Uniformly-Distributed Demand Size.  Consider the third distribution row of Table 5.1, where 

( , )D U a b∼ , so that 

( )
( )D

a z bz
e e

f z
b a z

− −
−

=
−

.    (1.8) 

The corresponding *ξ  follows by substituting Eq. (8.3) into Eq. (4.79), the corresponding *ρ  

follows by substituting this *ξ  and Eq. (8.3) into Eq. (5.19), and the corresponding *c
ρ

 follows 

by substituting these *ξ  and *ρ  into Eq. (5.61). 

 

Gamma-Distributed Demand Size.  Consider the fourth distribution row of Table 5.1, 

where ( )D ,Γ α β∼ , so that 

1( )D
z

f z
α

β

−⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
+ .     (1.9) 
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The corresponding *ξ  follows by substituting Eq. (8.4) into Eq. (4.79), the corresponding *ρ  

follows by substituting this *ξ  and Eq. (8.4) into Eq. (5.19), and the corresponding *c
ρ

 follows 

by substituting these *ξ  and *ρ  into Eq. (5.61).                □ 

 

A.4 Proofs for Table 5.2 Formulas 

 

Constant Demand Size.  Consider the first distribution row of Table 5.2, where =D d .  Then, 

the corresponding *ξ  follows by substituting Eq. (8.1) into Eq. (4.81), the corresponding *ρ  

follows by substituting this *ξ  and Eq. (8.1) into Eq. (5.19), and the corresponding *c
ρ

 follows 

by substituting these *ξ  and *ρ  into Eq.(5.66). 

 

Exponentially-Distributed Demand Size.  Consider the second distribution row of Table 5.2, 

where Exp( )D β∼ .  Substituting Eq. (5.70) into Eq. (4.80) yields, 

1
1− +

+ρ
λ 

λ 
ξ β ξ

μD
Kh

c K=  .    (8.10) 

Finally, the corresponding *ξ  is obtained by straightforward minimization of Eq.(8.10), the 

corresponding *ρ  follows by substituting this *ξ  into Eq. (5.72), and the corresponding *c
ρ

 

follows by substituting this *ξ  into Eq. (8.10). 

 

Uniformly-Distributed Demand Size.  Consider the third distribution row of Table 5.2, where 

( , )D U a b∼ .  Then, the corresponding *ξ  follows by substituting Eq. (8.3) into Eq. (4.81), the 
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corresponding *ρ  follows by substituting this *ξ  and Eq. (8.3) into Eq. (5.19), and the 

corresponding *c
ρ

 follows by substituting these *ξ  and *ρ  into Eq. (5.66). 

 

Gamma-Distributed Demand Size.  Consider the fourth distribution row of Table 5.2, where 

( )D ,Γ α β∼ .  Then, the corresponding *ξ  follows by substituting Eq. (8.4) into Eq. (4.81), the 

corresponding *ρ  follows by substituting this *ξ  and Eq. (8.4) into Eq. (5.19), and the 

corresponding *c
ρ

 follows by substituting these *ξ  and *ρ  into Eq. (5.66).             □ 
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