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DISSERTATION ABSTRACT

ENSURING SECURITY AND PRIVACY IN A
PERSONALIZED MOBILE ENVIRONMENT

By Heechang Shin

Dissertation Director: Dr. Vijaya Atluri and Dr. Jaideep Vaidya

Services in a mobile environment are based on the locations of mobile users.

Personalization, based on the profiles of mobile users, significantly increases

the value of such services. However, they pose significant security and privacy

challenges; ensuring security and privacy for a personalized mobile environ-

ment in an efficient manner is the primary objective of this dissertation.

Often, access control requirements in a mobile environment are based

on the spatiotemporal attributes of mobile users, resources to be protected,

profiles of users, or all of these. Evaluating an access request incurs signif-

icant overhead as it requires searching for the relevant moving objects that

satisfy the query as well as the applicable security policies. In this disserta-

tion, we have developed a unified index structure capable of indexing mobile

objects, security policies and profiles, in a single index. This enables the

efficient enforcement of access control. Another contribution is to extend the

enforcement of access control to the case where instead of the exact location,
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only the approximate location of moving objects is maintained. To this end,

the dissertation proposes an authorization model that takes the uncertainty

of location measures into consideration for specifying and evaluating access

control policies.

Another pressing issue in delivering mobile services is protecting the pri-

vacy of users. In this dissertation, we have proposed a comprehensive family

of anonymity models, based on k-anonymity, that incorporates location, di-

rection, as well as profile information. We have also developed anonymization

algorithms that can constrain both the generalization of the location as well

as that of profiles and direction, while meeting the quality of service require-

ments. In addition, we have proposed a partitioning method that can limit

tracking of the service requestor while continuously receiving a service, thus

achieving enhanced level of both privacy and quality of service.
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CHAPTER 1

INTRODUCTION

In the last decade, mobile communication has enjoyed unprecedented growth

all over the world. The recent advances in mobile communication technolo-

gies including global positioning system (GPS) and radio frequency identi-

fication (RFID) have propelled the growth of a number of mobile services.

As opposed to the desktop paradigm, in which a user engages in a fixed lo-

cation, users in mobile environment can utilize computing services that are

based on the locations of mobile users. In these applications, personalization

and customization are achieved in order to increase the value of such services

significantly by collecting (i) user profiles and (ii) location data.

Users in such environment can be categorized into mobile users and static

users based on the mobility. Mobile users have mobile devices such as per-

sonal data assistant (PDA) or cellular phones and communicate with others

using wireless technologies to enjoy useful services, where as static users may

wish to track the location of mobile objects. Location based services (LBS) is

one popular example for mobile users. Popular examples of LBS include: pro-

viding nearby points of interest based on the real-time location of the mobile

user, advising of current conditions such as traffic and weather, personalized

dating services, delivering personalized, location-aware, and context-sensitive

1
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advertising based on mobile user profiles and preferences, or providing rout-

ing and tracking information. Gartner, an information technology research

firm, predicts that the number of LBS users worldwide will increase from 43.2

million in 2008 to 300 million by 2011, and revenue will increase from $1.3

billion in 2008 to top $8 billion in 2011 [4]. For static users, popular exam-

ples include fleet management systems: TeleNav Vehicle Tracker system [3]

enables static users (i.e., companies) to monitor their fleets by informing the

real-time location of every vehicle in the fleet. The market for fleet manage-

ment systems shows very strong growth: in 2006, the applications account

for nearly $1 billion in annual revenue, and by 2009, annual revenues are

expected to increase to nearly $2 billion [1]. However, such services present

inherent security/privacy threats to users because location and profile infor-

mation are sensitive pieces of information.

Security Issues: There are a number of applications that call for secur-

ing resources based on the criteria of mobile objects. The security policies

provide controlled access to the mobile user profiles, to their current loca-

tion and movement trajectories, to mobile resources, stationary resources

based on the mobile user’s location and profiles. In fact, the use of location

information can be used for enhancing the security of an application, and

for critical applications, such as the military, location-based access control

(LBAC) increases the security of the application and ensures that the lo-

cation information cannot be exploited to cause harm [53]. Also, sensitive

profile information of the mobile users should be revealed to the authorized

users because user profile information may include both sensitive and non-
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sensitive attributes such as name, address, linguistic preference, age group,

income level, marital status, education level, etc. Therefore, an appropri-

ate access control mechanism must be in place to enforce the authorization

specifications reflecting the above security and privacy needs. Access policies

are specified as a set of authorizations, where each authorization states if a

given subject possesses privileges to access an object. In the personalized

mobile environment, both subjects and objects in an authorization can ei-

ther be mobile or non-mobile. As a result either a subject or an object in

an authorization specification can be a moving object. The access requests

in such an environment can typically be on past, present and future status

of the moving objects. To effectively serve such access requests, one must

efficiently organize the mobile objects as well as authorizations.

Privacy Issues: Note that it is essential to identify the location of the mo-

bile object due to the following two reasons. First, to effectively function,

LBS require information about the location of the communication device.

Second, in countries like U.S., the European Union and Japan, laws require

that mobile telephones be able to provide location data with a fairly detailed

accuracy for the purposes of emergency situations. Although identifying (and

sometimes tracking) of the location of a mobile object is essential in deliver-

ing a mobile service, it could pose a threat to privacy of the person carrying

the mobile device. Location information has the potential to infer a person’s

personal preferences (if the location is a place where specialty products are

sold or certain leisure activities can be performed), political orientation (if the

location is a certain political party’s office), employment status (if the loca-



4

tion is a premise of a company), social network information (if the location is

a house of one’s friends), or health conditions (if the location is a specialized

hospitals such as AIDS or brain cancer treatment specialization). Also, loca-

tion information with corresponding time and frequencies can reveal further

information about a person without any background knowledge on him/her.

For example, suppose a meeting room is reserved only for faculty members

between 10:00AM and 11:00AM. If someone stays in the room over this time

duration can reveal the person’s profession, a professor. Also, knowing that a

person visited the hospital frequently is much more meaningful than visiting

the hospital only once over the last three months. Therefore, association be-

tween location and a person can impose privacy threats to mobile users who

subscribe to LBS. For example, there are several incidents that an adver-

sary uses the location information to stalk a person in order to identify the

personal life styles and gives a security threat to the victims by using the sen-

sitive location information. According to [76], the first recorded prosecution

for GPS stalking was in Boulder, CO, in October 2000, and in 2003, another

incident occurred in Kenosha, Wis. Both cases were convicted of harassment

of spouse and stalking of ex-girlfriend respectively by using location-tracking

devices that they hid in the victims’ cars. It is expected that such threats

may become more common as location sensing devices become smaller and

cheaper.
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1.1 Problem Statement

In this dissertation, we have investigated methodologies to facilitate security

and privacy of users in a personalized mobile environment. To this end, we

have addressed the following research issues which have not be adequately

addressed by researchers to date:

1. Location Based Access Control Enforcement: Enforcing security

in a personalized mobile environment incurs overhead, and as a result

may degrade the performance of a system because serving an access re-

quest requires searching for the desired moving objects that satisfy the

query as well as identifying and enforcing the relevant access control

policies. Current approaches address the performance issue by creat-

ing separate index structures for moving object data, profile data, and

authorizations. However, they have one of the following drawbacks: (i)

processing an access request requires traversal of multiple index struc-

tures (ii) the index does not store past location history of mobile users,

and (iii) spatiotemporal restrictions are indexed, but profiles restric-

tions are not supported. The first issue can be addressed by creating a

unified index structure to maintain moving objects and profiles as well

as authorizations that govern access to them. Although Atluri and Guo

[10] address this issue, similar to other work, it still has the second and

third drawbacks: they should be addressed because user access requests

in a mobile environment are typically based on past,present and future

status of the moving objects [63], and also, customization and person-

alization require that security policies support profile restrictions. Our
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goal in this issue is to develop a unified index structure that retrieves

the information on mobile users (location, moving trajectory, and pro-

files) while enforcing the access control policies that govern over them.

In addition, most of the time, provided location information by cur-

rent moving object databases is not precise because of continuous mo-

tion and location sensing technology’s measurement error [50]. Current

moving object databases do not keep the exact location of the moving

objects, rather maintain the approximate value of the location in order

to minimize the update cost. Also, the measured location of current

location sensing technologies is different from the actual location in

most of cases. For example, GPS can provide measurement accuracy of

approximately 1 to 3 meters, and IEEE 802.11b wireless local area net-

work can estimate the position of a mobile station from signal strength

readings at the base station resulting in location estimation with accu-

racy of approximately 4.5 meters [55]. Therefore, location information

provided by the moving object database is an estimated measure and

can be quite different from the actual location. If so, currently proposed

LBAC systems [7, 10, 18, 54] cannot guarantee the desired security. In

other words, their underlying assumption that any logical position can

be computed from real positions by using specific mapping functions

are no longer true because it is possible that several logical positions

can be mapped from a single real position. This may incur huge risks

to the security of the system especially for highly sensitive resources.

Our goal in this issue is to introduce (i) an access control model that
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embeds location uncertainty within the model and allows varying thresh-

old levels of location predicates, and (ii) efficient evaluation mechanism

of the proposed access control model. An access request is granted only

if the confidence level of the location predicate exceeds the predefined

uncertainty threshold level specified in the policy. As such, it is possible

to differentiate the highly security sensitive area and less sensitive area

in an access control rule. Also, because the location predicate evalua-

tion under location uncertainty is computationally expensive, we want

to reduce the cost of location predicate computation as much as possi-

ble in order to efficiently evaluate the access request.

2. Privacy-Preservation of Mobile Users: Gruteser and Grunwald

propose the concept of location k-anonymity [36] in order to address

the privacy issue of mobile users. Under location k-anonymity scheme,

instead of revealing the exact location, a bounding box, called gener-

alized region (GR), is reported containing at least k people. If all the

LBS requests satisfy location k-anonymity, the privacy of mobile users

assumed to be preserved because one cannot be individually identified

among k other users. However, it is not sufficient to comprehensively

protect privacy in the personalized mobile service environment due to

the additional background knowledge that can be exploited by the ad-

versary. Specifically, existing solutions on location k-anonymity, dur-

ing anonymization, do not consider background information such as

(i) profile and preferences of mobile users and (ii) mobility (direction

and speed) information. However, these background information can
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actually be used to identify a user individually and thus, should be

considered during the anonymization. Also, continuous LBS such as

continuous nearest neighbor queries [70] requires trajectory informa-

tion from their users. This assumption of trajectory traceability would

require the extension for the notion of location k-anonymity to trajec-

tory k-anonymity which anonymizes mobile users’ trajectories instead

of location. However, this can lead to considerable GR expansion and

associated loss of accuracy, and furthermore, privacy of users will be

decreased because longer tracking durations imply that adversaries will

be more likely to identify a query issuer.

Our goal is to propose (i) a more comprehensive family of anonymity

models that incorporate location, direction, as well as profile informa-

tion and (ii) appropriate techniques that improve the privacy of mobile

users in continuous LBS environments while the quality of service is also

enhanced.

1.2 Contributions

The contribution of the thesis are centered on related topics: enforcement of

LBAC systems and protection of location privacy in a personalized mobile

environment.

1. Location Based Access Control Enforcement

An important contribution of this thesis is the definition of a LBAC

model supporting location uncertainty within the model and allows
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varying threshold levels of location predicates. In order to address

the performance issue during enforcement of authorizations, we have

proposed unified index structures that includes moving object data,

users’ profiles, and authorizations. The original results of our work can

be summarized as followed.

Unified Index Structures for Efficient Enforcement of LBAC:

Typically, mobile applications require maintaining the mobile objects’

location and profile information and efficiently serving access requests

on the past, present and future status of the moving objects. Because

enforcing security policies significantly degrades system performance,

we propose a set of unified index structures which maintains (i) past,

present and future positions of the moving objects along with autho-

rizations by employing partial persistent storage and (ii) profiles of

users, along with authorizations. Besides demonstrating how the uni-

fied index structures can be constructed and maintained, we have pro-

vided algorithms to process queries where either the subject or the

object or both in an access request are mobile. We have provided a

comprehensive experimental evaluation to establish the scalability and

performance of our approach.

Location-Based Access Control Model under Uncertain Loca-

tion Estimates: We have defined an authorization model that takes

the uncertainty of location measures into consideration for specifying

and evaluating access control policies. An access request is granted

only if the confidence level of the location predicate exceeds the prede-
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fined uncertainty threshold level specified in the policy. However, this

access request evaluation is computationally expensive as it requires

to evaluate a location predicate condition and may also require eval-

uating the entire moving object database. For reducing the cost of

evaluation, we have computed lower and upper bounds on the region

that minimize the region to be evaluated, thereby allowing unneeded

moving objects to be discarded from evaluation. Our approach does

not require assumptions on the probability distribution functions for

uncertainty regions.

2. Location Privacy in a Personalized Mobile Environment

We have defined a set of anonymity models that protect the privacy

of users in a personalized mobile environment. On the other hand, en-

forcing privacy-enhancing techniques (PET) would degrade the quality

of service, especially on the continuous LBS environment where infor-

mation is provided to users continuously during their movement until

it expires. We have proposed an optimal partitioning method in order

to improve on both privacy and quality of service in such environment.

The original results of our work can be summarized as follows.

Comprehensive Anonymity Models: We have addressed the prob-

lem of privacy preservation via anonymization. Prior research in this

area attempts to ensure k-anonymity by generalizing the location. How-

ever, a person may still be identified based on his/her movement in-

formation or profile if the movement or profiles of all k people in the

generalized region are not the same. We have extended the notion of
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k-anonymity by proposing a set of anonymization models that guaran-

tees anonymity even when mobility information or profiles of mobile

users are revealed to untrusted entities. Specifically, our generaliza-

tion methods generalize both location and profiles (or direction) to the

extent specified by the user. We support three types of queries – mo-

bile users requesting stationary resources, stationary users requesting

mobile resources, and mobile users requesting mobile resources. We

have proposed novel unified index structures that organize both the

locations (as well as direction) of mobile users as well as their profiles

using a single index, it results in significant gain in performance during

anonymization as well as query processing.

Enhanced Privacy and Quality of Service in Continuous LBS

Environment: New types of LBS services such as continuous nearest

neighbor searches require the knowledge of the user’s trajectory, which

can lead to a privacy breach. The longer the adversary can track the

user’s trajectory, the stronger the possibility that the user’s sensitive

information is revealed. To alleviate this problem, we have proposed

algorithms to optimally partition a continuous request into multiple

LBS requests with shorter trajectories. This results in increased privacy

due to the unlinking of different requests over time and has the added

benefit of improving the overall quality of service since the generalized

regions are now smaller.
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1.3 Outline

This dissertation is organized as follows. Chapter 2 presents the related work

in the area of location-based security enforcement and location privacy pre-

serving methods, specifically pertaining to the three areas outlined in this dis-

sertation, namely, Efficient Location-based Access Control System, Security

Enforcement under Uncertain Location Estimates, and Privacy Preservation

of Mobile Users.

In Chapter 3, we present some background material necessary for under-

standing the related work and the solutions presented in this dissertation.

Specifically, we discuss spatiotemporal data primitives such as moving ob-

jects, uncertainty of moving objects location, and moving object index struc-

tures such as TPR-Tree. We also discuss fundamental theories used in this

dissertation such as mobility models and entropy-based anonymity measures.

Chapter 4 presents our approach for enforcement of location-based access

control system. We first discuss our approach for creating an secure-index

structure that stores historical as well as current and future locations of users

along with authorizations. We then outline our approach to expand the index

structure to store users profile as well. In each of these, we have demonstrated

the improvements over existing enforcement techniques. Finally, we discuss

the issue of efficient enforcement of location-based security policies under

uncertain locations of users. We describe a set of spatial filters that minimize

the region to be evaluated therefore allowing unneeded moving objects to be

discarded from evaluation. We demonstrate the effectiveness and refinement
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achieved by using such filters.

In Chapter 5, we discuss the preservation of location privacy for mobile

users. We first describe a set of anonymity models in personalized mobile

environments, then propose our approach to further improve on the privacy

and service quality.

We conclude this dissertation with a summary of our contributions and

an insight into the future research in Chapter 6.



CHAPTER 2

RELATED WORK

In this chapter we review related work; specifically, Location-based Access

Control Enforcement and Location Privacy Methods.

2.1 Location-based Access Control Enforcement

Incorporating location information for access control is not a new concept.

Atluri and Chun [7] propose an access control model suitable to geo-spatial

data. Similarly, Bertino et al. [18] extends the RBAC model to support

location-based conditions, called GEO-RBAC, which can deal with mobile

data. However, these models do not consider uncertainty within the model,

and thus, the access control decision does not guarantee the correctness of

the evaluation. There are also several access control models that support pro-

tecting people location information in the context of ubiquitous or pervasive

computing environment [38, 43]. However, these approaches are different

from our approach because they focus on preventing location information

from leaking to unauthorized entities by introducing the concept of trust.

Actually, Ardagna et al. [6] address the representation and evaluation of

location-based access control systems with uncertainty considered, but it

does not discuss efficient evaluation of access control requests.

14
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It is essential to have appropriate access control mechanisms in place in

order to provide the security of users in a mobile environment. However,

enforcing security often incurs overhead, and as a result may degrade the

performance. In order to improve the response time, the concept of unified

indexing scheme that maintains both data objects and authorizations has

been advanced.

In [11], Atluri and Mazzoleni present the concept of unified index scheme

that stores geospatial data and authorizations at the same time for efficient

processing of user access requests: one traversal of the unified index is enough

to evaluate the geospatial query and the relevant authorizations. STAR-tree

[9] proposed by Atluri and Guo relaxes the underlying assumptions in [11]

(i.e. square images), and thus, STAR-tree is able to index natively any size of

geospatial images with supporting the temporal attributes as well. However,

the works in [11, 9] only apply to the geospatial images, which is static in

nature. In a mobile environment, the locations of mobile users are constantly

changing, static index structures suffer from the high update costs, and thus,

they are not applicable to the mobile environment. The first unified index

scheme that applies to the mobile environment is proposed by Atluri and

Guo [10]. A significant limitation of this approach is that it is unable to store

past location of moving objects and is therefore not capable of supporting

security policies based on tracking of mobile users. Also, the index does not

maintain profiles of mobile users, thus requiring a separate index structure

for profiles. For efficient processing of user access requests, Youssef et al.

[82] propose an index structure that stores authorizations suitable for mobile
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environment. However, it is not a unified index because a separate index

structure is required for moving object data.

Regarding the uncertainty, Wolfson et al. [78] introduce a cost based

approach to determine the size of the uncertainty area. A formal quanti-

tative approach to the aspect of uncertainty in modeling moving objects is

presented in [50]. However, the authors limit the uncertainty to the past of

the moving objects and the error may become very large as time approaches

now. Trajcevski et al. [74] introduced a set of spatiotemporal range queries

that apply the uncertainty in traditional range queries. Cheng et al. [25] are

the first to formulate the uncertain data retrieval, and contrary to the case of

traditional data, uncertain data retrieval involves probabilistic quality with

the query results. The work in [26] develops the notion of x-bounds, and

based on this concept, index-based access methods, called the probability

threshold index for one-dimensional uncertain objects. Tao et al. develop a

multi-dimensional access method, called the U-Tree [68] which extends [26]

to multi-dimensional space.

Recently, Vicente et al. [75] identify that current work does not deal with

mobility of both subjects and objects and does not support the utilization

of complex access control decisions based on spatiotemporal relationships

among subjects and objects. However, our work is orthogonal to all of these

work because the underlying assumption of these approaches is that the

location measure is always accurate, and therefore, evaluating access requests

based on the location measures are correct.
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2.2 Location Privacy-Preserving Methods

In this section, we review the location privacy-preserving methods suitable

for a mobile environment.

2.2.1 Anonymization

A subject can be anonymous within a group of other subjects [67]. The

location k-anonymity is defined as the state where location information of

a mobile user is indistinguishable from the location information of at least

k− 1 other mobile users [36]. Thus, the location k-anonymity is achieved by

creating a spatiotemporal region, called GR, which includes at least k − 1

other mobile users. In order to achieve location k-anonymity, it is necessary

to track all the user locations, and LS assumes the role of providing location

k-anonymity to users.

Gruteser and Grunwald propose the concept of location k-anonymity

which applies k-anonymity [59] to the LBS environment in [36]. Because

the underlying assumption of the global minimum level of k is rigid in [36],

Gedik and Liu propose a personalized location k-anonymity model in [33].

The model enables each mobile user to specify the minimum level of loca-

tion anonymity, k, as well as the maximum spatiotemporal resolutions it is

willing to tolerate. A personalized k-anonymity model can provide better

quality of service than the work in [36] while meeting each user’s privacy

requirement. In [47], Mokbel, Chow, and Aref propose (1) grid-based index

structures used for efficient anonymization process, and (2) nearest neighbor

query processing models that deal with GR rather than the exact location
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information.

The above works support sporadic LBS queries where each LBS request

is considered as an independent event, but they are not suitable for frequent

LBS requests environment where a time series sequence of LBS requests may

be correlated. Bettini, Wang, and Jajodia [19] propose the concept of his-

torical k-anonymity that extends the location k-anonymity to the historical

traces of location information of mobile users. Historical k-anonymity guar-

antees privacy protection by ensuring that once a GR is generated, each

subsequent GR includes the same users within the first GR. Therefore, the

size of GR tends to be larger as time elapses. To address this issue, Xu

and Cai [79] present relaxed anonymity model which permits subset of users

during anonymization, thus creating smaller GR than that of historical k-

anonymity. Hoh et al. [39] consider that the degree of privacy risk depends on

how long an adversary can follow a vehicle in a data set, and try to anonymize

the data set by ensuring that an adversary cannot track the trajectory of a

mobile user more than the temporal threshold.

Location privacy can be achieved by utilizing the benefits from the dis-

tributed computing. The main limitation of location k-anonymity model is

reliance on the trusted anonymizing server, or the LS. If the LS has been

breached, all the privacy of mobile users are not preserved accordingly. How-

ever, the neighboring peers can be utilized to provide anonymity when sub-

mitting a request to the contents providers in distributed environment, which

means that there is no need to have a trusted third party. The work by

Sampigethaya et al. [60] addresses the problem of achieving unlinkability
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between two or more of its locations in the presence of tracking by an ad-

versary. The proposed scheme allows vehicles to preserve their privacy by

forming groups in which the group leader acts as a proxy on behalf of all

group members. The main limitation of the work is that the scheme still

requires the existence of a trusted third party for verification of the other

peer vehicles. Thus, it is not completely distributed model for achieving

privacy. The work by Chow, Mokbel and Liu [29] addresses a peer-to-peer

(P2P) spatial cloaking algorithm. The main idea is that before submitting an

LBS service request, a mobile user forms a group with her neighboring peers

via single-hop communication and/or multi-hop routing if necessary, and the

minimum coverage of predefined regions that the members of the group are

located is submitted to the contents providers by a randomly selected group

representative. The main limitation of both works is that privacy cannot be

preserved within a rural area where other peer nodes may not exist within the

broadcast communication range. Since both works require forming a group

in order to provide privacy, they cannot provide privacy in such case.

2.2.2 Obfuscation

Obfuscation is the process of degrading the quality of information about a

person’s location, with the aim of protecting that person’s location privacy

[32]. The basic idea of obfuscation is to lower the probability of attackers to

locate the true locations of mobile users. The main advantages of obfuscation

techniques are

• There is no need to know other users’ locations. Mobile users’ informed
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location is associated with the inherent location sensing technologies’

uncertainty, and thus, true location of mobile users cannot be deter-

mined with the informed location information.

• True identifying information of mobile users can be revealed to contents

providers. This identifying information can be used for authentication

of users.

• There is no need to include a trusted third party in the architecture.

The work by Duckham and Kulik [31] develops an obfuscation method to

preserve privacy of mobile users based on imprecision of location information

by utilizing a graph-based representation of a geographic environment. The

work by Ardagna et. al. [5] extends the model in [31] to support real coor-

dinate space, specifically two-dimensional space. Ardagna et al. introduce

two new basic obfuscation operations (i.e. Shifting and Reducing) in addi-

tion to Enlarging, and two formal metrics for representing relative privacy

preference and relevance to express users’ privacy preferences and location

accuracy, respectively. Until the work by Ardagna et al., there is no for-

mal metric available for measuring the accuracy of the applied obfuscation

technique, and how to specify each user’s location privacy requirement.

2.2.3 Other Approaches

There have been some work to remove the reliance on a trusted third party.

Recently, Yiu et al. [81] propose a new framework, called SpaceTwist, which

processes k nearest neighbor queries. Instead of providing the actual location,



21

a mobile user provides a fake location, and nearest neighbors are retrieved

incrementally until the query is answered correctly. Another direction is

application of private information retrieval (PIR) to location privacy. PIR

[27] allows a client to retrieve information from a database server without

the server learning what information the client has requested. Ghinita et al.

[35] propose a framework to support nearest neighbor queries based on the

theoretical work on PIR. However, these approaches handle only static POIs

(point of interests) (i.e. restaurants, gas stations, and so on) being retrieved

as a result of queries.



CHAPTER 3

BACKGROUND

In this chapter, we introduce the notion and formalism on user profiles and

moving objects. We also provide a brief review of the location privacy mea-

sure based on entropy.

3.1 User Profile

We assume that a user profile represents the set of attributes associated with

a mobile user that characterize it [12]. These attributes may include (1)

demographic information (e.g. country, race, age, gender, etc.), (2) contact

information (e.g., name, address, zip code, telephone number, e-mail, etc.),

(3) personal preferences (e.g., hobbies, favorite activities, favorite magazines,

etc.), (4) behavioral profile (e.g., level of activity, type of activity, etc.), and

others. Note that the behavioral profile is created by observing activities and

habits of a user continuously. Information such as the kind of activity done by

the user, as well as the intensity level should be captured. For example, the

Sony TiVo box records frequently-watched television shows and generates a

behavioral profile based on the use patterns. Now, the type of activity could

be ‘watching drama’, while the level of activity could be ‘2 hours’.

Let the set of profile attributes under consideration beA = {a1, a2, . . . , am}.

22
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Salary

Age

Gender

20 20, < 30 4030, < 40

Male Female

< $ 50,000 $ 50,000

Workclass Private Self-Employed Never workedGovernment

Figure 3.1. Profile Attribute Discretization

We assume that the profile of each user is represented as {a1 : val1, a2 :

val2, . . . , am : valm}, where vali is the value of ai for that user. Since not all

attributes may apply to all users, some of the attributes may be empty for

certain users.

Representation of User Profile: Given a profile attribute ai, we first dis-

cretize it, if necessary, using the method of Dougherty et al. [30]. Thus, if

the attribute is of numeric data type, we partition the continuous data space

into appropriate disjoint intervals. Figure 3.1 presents sample discretizated

intervals for four different profile attributes. After discretization, each profile

attribute can be represented using a string of binary digits (bits). The length

of the string corresponds to the number of discrete values the attribute can

have – assuming some canonical order over the values, we can use a 1 in the

appropriate place to indicate the correct attribute value. For example, con-

sider the attribute Gender: since there are only two possible values, “Male”

and “Female”, Gender can be represented using a string of two bits. Assum-

ing that the order is “Male” followed by “Female”, the string ‘10’ represents

“Male”, while the string ‘01’ represents the value “Female”.

Now, we can use a profile vector consisting of bit strings to represent a
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Name Gender Age Salary Workclass Profile Vector
David Male 35 $45,000 Self-Employed ⟨10, 0010, 10, 0100⟩
Jane Female 25 $85,000 Government ⟨01, 0100, 01, 0010⟩

Robert Male 42 $63,000 Private ⟨10, 0001, 01, 1000⟩

Table 3.1. User Profile Information

user’s profile. We formally define a profile vector as follows:

Definition 3.1 (Profile Vector) Given a profile of user u = {a1 : val1, a2 :

val2, . . . , am : valm}, a profile vector of u, denoted as p⃗u = ⟨l1, l2, . . . , lm⟩,

where each li is a sequence of binary digits representing ai. (i.e., li = {0, 1}ni,

where ni represents the number of discrete values of ai, and the bit lij (the

jth bit of li) is 1 if and only if vali corresponds to the jth value of ai, and 0

otherwise.)

Table 3.1 shows examples of profile vectors. For example, p⃗David =

⟨10, 0010, 10, 0100⟩ because his gender ‘Male’, is represented as ‘10’, age 35

as ‘0010’, salary $45,000 as ‘10’, and workclass as ’Self-Employed’. We use

p⃗u[ai] to denote the string li corresponding to attribute ai for a user u. So,

p⃗David[Gender] is ‘10’ and p⃗David[Age] is ‘0010’. Also, valpos(p⃗[i]) is a func-

tion that returns the location of ‘1’ in p⃗[i] and the position has to be counted

from right to left, starting from one. For example, valpos(p⃗David[Gender]) is

2, and valpos(p⃗David[Age]) is 2.

We now define vector distance. In doing so, we need to distinguish be-

tween nominal and ordinal attributes. Nominal attributes have no ordering,

while ordinal attributes are completely ordered. After discretization, nu-

meric attributes can simply be considered as ordinal. The distance between
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two values in a nominal attribute is simply 1 if the values are different,

and 0 if the values are the same. Note that we only consider single-valued

attributes. In case of multi-valued attributes, a näıve solution would be

to simply convert each to multiple single-valued attributes. For example,

consider “Movie”, “Fishing” and “Tennis” are the possible values for an at-

tribute Hobby. Then, we create three new profile attributes whose names

are “Hobby Movie”, “Hobby Fishing”, and “Hobby Tennis” instead of using

“Hobby”. For ordinal attributes we must measure the degree of distance.

Therefore, for ordinal attributes, the distance is given by the difference be-

tween the position of the 1s.

Definition 3.2 (Profile Vector Distance) Let p⃗u and p⃗v be two profile

vectors. The distance between p⃗u and p⃗v is dist(p⃗u, p⃗v) =
1
m

∑m
i=1 disti(p⃗u, p⃗v).

For ordinal attributes ai, disti(p⃗u, p⃗v) = |valpos(p⃗u[i])−valpos(p⃗v [i])
|p⃗[i]|−1

|. For nominal

attribute ai, disti(p⃗u, p⃗v) = 0, if valpos(p⃗u[i]) = valpos(p⃗v[i]), otherwise 1.

Definition 3.3 (Weighted Profile Vector Distance) Let p⃗u and p⃗v be

two profile vectors, and a weight W = (w1, w2, . . . wm) where
∑

iwi = 1.

The weighted distance between p⃗u and p⃗v is dist(p⃗u, p⃗v,W ) = 1
m

∑m
i=1 wi ·

disti(p⃗u, p⃗v), where disti(p⃗u, p⃗v) is as defined earlier.

For example, let p⃗u = ⟨10, 0100, 10, 0100⟩ and p⃗v = ⟨01, 0010, 10, 0010⟩

under the discretization in figure 3.1. Observe that ”Age” and ”Salary”

are ordinal attributes and ”Gender” and ”Workclass” is nominal attributes.

Then, dist(p⃗u, p⃗v) =
1
4
(1 + |3−2

4−1
| + |2−2

2−1
| + 1) = 7

12
. Also, if W = (2

5
, 1
5
, 1
5
, 1
5
),

dist(p⃗u, p⃗v,W ) = 1
4
(2
5
· 1 + 1

5
· |3−2

4−1
|+ 1

5
· |2−2

2−1
|+ 1

5
· 1) = 1

5
.



26

Definition 3.4 (Profile Bounding Vector) Given a set of profile vectors

P⃗ = {p⃗1, p⃗2, . . . , p⃗n}, a profile bounding vector of P⃗ , denoted as P̂ = ⟨p⃗1[a1]∨

p⃗2[a1] ∨ · · · ∨ p⃗n[a1], p⃗1[a2] ∨ p⃗2[a2] ∨ · · · ∨ p⃗n[a2], · · · , p⃗1[am] ∨ p⃗2[am]∨ · · ·

∨p⃗n[am]⟩.

For example, consider three profile vectors, p⃗David = ⟨10, 0010, 10, 0100⟩,

p⃗Jane = ⟨01, 0100, 01, 0010⟩, and p⃗Robert = ⟨10, 0001, 01, 1000⟩. Then, P̂ of

David and Jane is ⟨11, 0110, 11, 0110⟩, and P̂ of all three users is ⟨11, 0111, 11, 1110⟩.

The way we define bounding vectors, given a set of P̂ s, they can al-

ways be placed in a hierarchy. For example, suppose we have three P̂ s:

P̂1 = ⟨11, 0011, 10, 0110⟩, P̂2 = ⟨10, 0010, 10, 0100⟩, P̂3 = ⟨01, 0001, 10, 0010⟩.

These P̂ s can be organized in a hierarchical structure with P̂2 and P̂3 as the

children of P̂1. Each P̂ bounds P̂ s of all of its children. Therefore, the root

of the hierarchy covers the set of P̂ s of all of its descendants.

Definition 3.5 (Profile Compatibility) A profile vector p⃗ is called com-

patible with a profile bounding vector P̂ iff bitwise ’AND’ operation of P̂ and

p⃗ results in p⃗ (i.e., P̂ subsumes p⃗).

Intuitively, the profile compatibility condition specifies that the profile and its

bounding vector can be placed in a hierarchical relationship with the bound-

ing vector being the ancestor of the profile vector. Thus, for every profile

attribute value of ’1’ in the profile vector, there must exist a corresponding

value in the profile bounding vector. Therefore, the bitwise ’AND’ operation

should result in the profile vector.
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3.2 Moving Object Data

Let the set of moving objects be O={o1, . . . , on}. In the d-dimensional

space, objects are specified as points which move with constant velocity

v̄ = {v1, v2, . . . , vd} and initial location x̄ = {x1, x2, . . . , xd}. The position

x̄(t) of an object at time t(t ≥ t0) can be computed through the linear func-

tion of time, x̄(t) = x̄(t0) + v̄(t − t0) where t0 is the initial time, and x̄(t0)

the initial position. Considering a two-dimensional space, a moving object

oi moving in ⟨x, y⟩ space can be represented as oi = ((xi, vix), (yi, viy)).

Given a set of moving objects O = {o1, . . . , on} in the time interval [t0, t0+

δt] in ⟨x, y, t⟩ space, the tpbr of O is a 3-dimensional bounding trapezoid

which bounds all the moving objects in O during the entire time interval

[t0, t0 + δt] in the following way:

tpbr(O) = {(x⊢, x⊣, y⊢, y⊣), (v⊢x , v
⊣
x , v

⊢
y , v

⊣
y )} where ∀ i ∈ {1, 2, . . . , n}

x⊢ = x⊢(t0) = mini{xi(t0)} v⊢x = mini{vix}

x⊣ = x⊣(t0) = maxi{xi(t0)} v⊣x = maxi{vix}

y⊢ = y⊢(t0) = mini{yi(t0)} v⊢y = mini{viy}

y⊣ = y⊣(t0) = maxi{yi(t0)} v⊣y = maxi{viy}

Then, we can compute the bounding rectangles that tpbr covers with

respect to time. The bounding rectangle’s x-axis interval and y-axis interval

at time t are defined as [x⊢(t), x⊣(t)] = [x⊢(t0)+v⊢x(t− t0), x
⊣(t0)+v⊣x(t− t0)]

and [y⊢(t), y⊣(t)] = [y⊢(t0) + v⊢y (t− t0), y
⊣(t0) + v⊣y (t− t0)] respectively.
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3.2.1 Moving Object Index Structures

In this section, we discuss two moving object indexing structures: (i) TPR-

Tree and (ii) RPPF -tree.

TPR-Tree

TPR-tree (Time Parameterized R-tree) [56] is a disk-based spatio-temporal

access method proposed to answer queries on moving objects. TPR-tree is

the sole practical spatio-temporal index for predictive queries [69].

Time Horizon (H): Given a moving object, it is unrealistic to assume that

its velocity remains constant. Therefore, the predicted future location of a

object specified as a linear function of time becomes less and less accurate as

time elapses [57]. To address this issue, a time horizon H is defined, which

represents the time interval during which the velocities of the moving objects

assumed to be the same. Figure 3.2 shows how tpbr bounds the trajectory

of two moving objects o1 and o2 in [t0, t0 +H].

The Tree Structure: Given a set of tpbrs, they can be organized in a

hierarchical structure. In figure 3.3, tpbr C encloses tpbrs A and B. These

three can be organized as a hierarchical structure with A and B being the
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children of C. Essentially, at the bottom-most level of the hierarchy, a set of

moving objects could be grouped to form tpbrs. Each tpbr of the next higher

level is the bounding tpbr of the set of tpbrs of all of its children. The root

of the hierarchy is thus the bounding tpbr covering all its lower level tpbrs in

a recursive manner.

Construction of the TPR-tree: Given a set of tpbrs, they can be orga-

nized in a hierarchical structure. As can be seen in Figure 3.3, tpbr C encloses

tpbrs A and B, which are organized as a hierarchical structure with A and

B being the children of C. The TPR-tree uses the same insertion/deletion

algorithms of the R*-tree [17], but utilizes a different objective function (gen-

erating the smallest sum of volumes of tpbrs during insertion) to improve the

quality of the resulting structure. Entries in leaf nodes are pairs consisting

of the position of a mobile object and a pointer to it, and entries in internal

nodes are pairs consisting of a pointer to a subtree and a tpbr that bounds

the positions of all moving objects or other tpbrs in that subtree [56].

Update of the TPR-tree: When an object is updated (consecutive oper-

ations of deletion followed by insertion), the TPR-tree first locates the leaf

node that stores the updated object from the root node. Then, the object is

removed from the leaf node, and if necessary, tightens the tpbr of its parent

node. For example, if a node B in Figure 3.3 includes the object that needs

to be deleted, after removing it from B, B and C is adjusted to the tightest

tpbr of its objects stored in the node and also its parent node, C, if necessary.

On the other hand, the tpbr of A is not tightened because it is not affected

by the deletion. Insertion operation finds the leaf node that would satisfy
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the objective function whenever it is required to traverse the tree from the

root node and its child nodes, and this operation repeats until a leaf node is

found. After inserting an object to the leaf node, tpbr of the leaf node and

its parent nodes may need to be updated similar to the case of the deletion.

RPPF -Tree

RPPF -tree [49] is a moving object index that maintains not only the present

and anticipated future positions of moving objects, but also their past po-

sitions. In order to to so, RPPF -tree extends the TPR-tree by incorporating

the concept of partial persistence in each node in the tree.

The Partial Persistence Framework: Partial persistence is a data struc-

ture that keeps all past states of the data being indexed, but applies updates

only to the newest version. It is based on the following important concepts.

• Evolution of Index Nodes and Data Entry: In order to be trans-

formed to a partially persistent structure, each index (leaf or index)

node and data entry (moving object) include two additional fields for

maintaining the evolution of the index records: insertion time and dele-

tion time. These are denoted as N.insertionT ime and N.deletionT ime
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for node N . If a new moving object is available and captured at time

t0, its insertion time is set to t0 and deletion time is set to ∞. When

the object is logically deleted from the index at time td, its deletion

time is changed from∞ to td. The same rule applies to index nodes. A

node or a data entry is said to be dead if its deletion time is less than

∞, otherwise it is said to be alive.

• Time Split: When an update (insertion or deletion) occurs at a node

N , it may result in structural changes if it becomes underfull or overfull.

If this is the case, a time-split occurs to N . The time-split on N at time

t is performed by copying all alive entries in N at t to a new leaf node L

and timestamp of both L and those copied entries are set to [t, ∞). In

addition, the deletion time of N is set to t, and N is considered dead.

Then, the new node L is investigated further in order to incorporate

it into the tree. Essentially, three different cases may arise: (i) split:

If L is overfull, split it into two nodes and then insert these two nodes

into the tree. (ii) merge: If L is underfull, accommodate by merging it

with another node. (iii) no change: If L is neither overfull or underfull,

insert it directly into the tree. After the structural change, the tpbr of

the parent node may need to be updated accordingly and the described

process may be repeated up to the root node. If the root node is time-

split at time t, a pointer to the new alive node together with timestamp

[t,∞) is added to a special root array that is stored in the main memory

[49].

Note that if the tree is constructed at t0 and time split for the alive root
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element of the root array occurs at {t1, t2, . . . , tn}, each root element in

the root array is associated with time interval [t0, t1), [t1, t2), . . . , [tn−1, tn),

and [tn,∞). The associated time interval for each root element repre-

sents the valid structure of the tree during those time intervals. Thus,

if we want to know the status of the tree at time t, we simply need to

find a root element r from the root array such that the time interval of

r includes t.

In the following, we explain the concept of time-split, root array, dead

and alive nodes by taking a concrete example. Consider a tree with a node

that can hold 5 data entries. Obviously, the node is considered underfull if

the number of data entries is less than 2, and overfull if the number of data

entries is more than 5.

• Time interval t = [0, 3]: Moving objects o1, o2, and o3 are inserted

into the root node at t = 0: the insertion time and deletion time of

all these objects are set to [0,∞). Then at t = 2 and 3, o4 and o5 are

inserted, as a result, their insertion time and deletion times are [2,∞)

and [3,∞), respectively, as shown in Figure 3.4.
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• At t = 4: Moving object o6 needs to be inserted to the root node

N , which is overfull. Therefore, time split occurs. A new leaf node

L with insertion and deletion times [4,∞) is created and all the alive

data entries (o1, o2, . . . , o5) in the root node and the new data entry o6

are copied there with insertion and deletion times as [4,∞). Because L

is also overfull, it is split into two nodes, which are inserted to the tree.

A new root entry is added, forming a root array. The previous root’s

deletion time is set to 4, representing it as a dead node, and the newly

created root has the insertion and deletion times as [4,∞), as shown in

Figure 3.5. In all the figures, the dead nodes are shaded.

• At t = 5: Moving object o2 is deleted and o7 is inserted. Therefore, the

deletion time of o2 is set to 5, and o7 is inserted into the tree with the

insertion and deletion times [5, ∞). Figure 3.6 represents this event.

• At t = 6: Moving objects o3 and o7 are deleted. So, deletion time

of these objects are set to 6. Because the deletion of o3 results in the

underfull of the node L1 that stores o3, a time split occurs: another

new node K is created and alive entry o1 is copied there. Since newly

created node K is underfull, it is merged with its neighboring alive

node L2. The deletion time of the node L1 is set to 6, representing that

L1 is dead. The resultant data structure is shown in figure 3.7.

When update occurs, the resulting trajectory of a moving object may con-

sist of disconnected and slightly incorrect segments because at the insertion

of the object, the predicted future positions can be different from the actual
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positions. Therefore, during update, the last-recorded trajectory segment of

an object needs to be updated. It may be stored in more than one leaf node

because the leaf node in question may have been time split a number of times

since the previous updates [49]. RPPF -tree corrects the last-recorded trajec-

tory segment by visiting all leaf nodes that contain copies of the segment

and also tightens the tpbr accordingly. For example, in figure 3.7, suppose

the actual location of o3 turns out to be different from the predicted location

during update (deletion). Then, after setting the deletion time of o3 as 6, all

the nodes that include the trajectory of o3 since the last update (insertion

of o3 at t = 3) are updated to point the actual location of o3 correctly. The

first root element and the node L1 is such a case.

3.2.2 Uncertainty of Moving Objects

According to [40], in the mobile network environment, no technology is avail-

able that ensures precisely the exact user locations. Thus, a position of a

moving object, instead of a single location point, is rather specified with a

range, called uncertainty region. The uncertainty is caused by the sampling

error and the measurement error [50].

Sampling Error: It is unrealistic to obtain the current location of the

moving objects continuously under the existing location sensing technologies

and database technologies, and the position is collected at discrete instances

of time such as every few seconds instead [50]. The solid line in Figure 3.8

represents the projected movement of a moving object in one dimensional

space (x axis) and time (t axis). Linear interpolation is used to project
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positions between two consecutive location updates: the sampled positions

become the end points of single line segments, and the entire polyline (i.e.,

solid line) represents the projected movement of the object. However, this

approach brings the error due to the position estimation methods of moving

objects within any single line segment except the end point. For example, in

Figure 3.8, the dashed line shows the actual locations of the object between

t0 and t5. After the location is updated, because the position of the moving

object is unknown until the next location update, the actual location can be

anywhere within the so called uncertainty region.

Measurement Error: Location sensing techniques determine the accuracy

and the quality of the location measurements. For example, GPS can provide

measurement accuracy of approximately 1 to 3 meters, and IEEE 802.11b

wireless local area network can estimate the position of a mobile station from

signal strength readings at the base station resulting in location estimation

with accuracy of approximately 4.5 meters [55].

Definition 3.6 (Moving Object Uncertainty) Given a set of moving ob-

jects O, uncertainty of a moving object o ∈ O in the 2-dimensional data space
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D is conceptually described by (i) a 2-dimensional uncertainty region repre-

sented with a circle centered at (µx1 , µx2) with radius r, denoted by o.ur and

(ii) a PDF f(x) (x ∈ D is the 2 dimensional location) where (i) f(x) ≥ 0 for

any point x ∈ o.ur, (ii)
∫
o.ur

fo(x)dx = 1, and (iii) f(x) = 0 if o is located

outside of o.ur.

We use loc(o) to denote the last update location of o in the database and

use the standard dot notation to refer to the location in xi dimension. For

example, in 2D space, given loc(o) = (1, 2), loc(o).x1 refers to 1 and loc(o).x2

to 2. The size of the uncertainty region depends on the maximum speed

and update interval as well as the measurement error, which determines

uncertainty threshold r:

r = max(vmax|tc − tu|, emax) (3.1)

where vmax is the maximum speed, tc is the current time, tu is the last update

time, and emax is the maximum measurement error. In other words, the circle

with radius r is the region that a user can be possibly located after the last

location update. Figure 3.9 illustrates such an example. We do not know

the exact probability density function, f(x) inside of o.ur. The formula of

f(x) depends on application scenarios. For example, [50, 74, 5] assume the

uniform distribution of f(x) while Wolfson et al. [64] propose that the object

location follows the Gaussian distribution over the uncertainty region. Our

proposed approach is general enough to have any type of f(x).
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Movement pattern and its corresponding count
S1 → S1 (20) S1 → S2 (10) S1 → S3 (0) S1 → S4 (0)
S2 → S1 (3) S2 → S2 (4) S2 → S3 (1) S2 → S4 (0)
S3 → S1 (0) S3 → S2 (15) S3 → S3 (15) S3 → S4 (15)
S4 → S1 (0) S4 → S2 (0) S4 → S3 (3) S4 → S4 (3)

Table 3.2. Movement Pattern History

2/3 1/3 1/8 1/3 1/21/2 1/3 0 1

S1 S2 S3 S4 S5

3/8 1/3 1/2 0

Figure 3.10. Markov Model for User Movements

3.2.3 Modeling User Movement

When a user moves from one location to another, it is usually the same

for the next time when the user begins to move from the same location,

and therefore, we can predict a user’s next location based on her current as

well as previously visited locations [2]. User movement can be modeled as a

Markov stationary process of order τ , which assumes that the location can be

predicted from the sequence of τ most recently visited locations. The Markov

model is useful for describing user mobility because it allows for reasonably

accurate predictions with relatively small memory requirement. Song et al.

[65] found that low-order Markov models performed as well or better than

the more complex and more space-consuming compression-based models. We

use the order of 1 here: the next location is predicted based on the current

location. This is reasonable because if there are some accidents or delay in

the traffic, a user tends to find an alternative route to the destination no

matter how long they have been driving. We plan to evaluate the model
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with order 2 in the future.

Suppose we have a set of states, S = {s1, s2, · · · , sr} where each state

specifies a non-overlapping spatial region and the whole data space is covered

by s1 ∪ · · · ∪ sr. According to Bhattacharya and Das[20], the mobility model

of a user is a stationary stochastic process V = {Vi} where Vi assumes the

value vi such that the event of the ith location of the user is positioned at

zone vi ∈ S. Then, we can formulate the mobility model between time t and

t + 1 as time-invariant Markov chain whose transition matrix is P with the

(i, j)th element equal to

Pi,j = Pr(Vt+1 = j|Vt = i)

The aforementionedPi,j is estimated by using the historical trajectory dataset.

For example, in Table 3.2, there exist 30 instances where a user is located

in s1, and on the next time instance, she still stays at s1 20 times or visits

s2 10 times. Then, the relative count of movement for s1 → s1 = 20
30

(or

s1 → s2 =
10
30
) is used to estimate the corresponding probability. Figure 3.10

illustrates the Markov model of the dataset in Table 3.2. Observe that we do

not show s5 in the table because s5 has no interaction with other states. Let∏
= [π1, · · · , πr]

T be the steady state probability vector where each πi can

be computed by solving
∏

=
∏
×P with the π1 + · · ·+ πr = 1 constraint.

3.2.4 Moving Object Authorization Model

In this section, we introduce an authorization model for moving object data,

which is an extension of the model proposed in [14]. In a moving object
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environment, authorization specifications should be capable of expressing

access control policies based on spatiotemporal attributes of both subjects

and objects. An authorization can be defined as follows.

Definition 3.7 (Authorization) An authorization, denoted as α, is a 4

tuple ⟨ce, ge, p, τ⟩, where ce is a credential expression denoting a set of sub-

jects, ge is an auth-object expression denoting a set of auth-objects, p is a set

of privilege modes, and τ is a temporal term.

The formalism to specify ce, ge and τ has been developed in [14], and

also, Ardagna et al. [6] have proposed formalisms to specify location-based

conditions in access control policies separately.

• Subject expression (ce) is a boolean formula of terms that refer

to a set of subjects by specifying profiles of users, location predicates

(spatiotemporal restriction), and so on.

• Auth-object expression (ge) is a boolean formula of terms that refer

to a set of objects by specifying the membership of the auth-objects in

categories, values of properties on metadata, and location predicates

(spatiotemporal restriction), and so on.

Similar to [14], we assume that a subject is associated with a set of cre-

dentials which might belong to different credential domains. A credential

domain is a set of related hierarchically organized credential classes. Each

credential class in a credential domain is associated with a set of attributes.



40

Each subject credential is an instantiation of attributes of a credential class

in a specific domain. Lower level credential classes may inherit attributes,

and as a result, inherit authorizations from those at upper levels. A cre-

dential expression, ce, is used to express a set of credentials, which in turn

specifies a group of subjects. The followings are the examples for ce and ge.

• ce1 ={emp(x) ∧ human resource(x) ∧ rectangle(y) = (10,50,10,10) ∧

[5pm,9pm]}

• ce2 = {empid(15) ∨ empid(30)}

• ge1 = {patrol car(x) ∧ dispatched from(x)=’Newark’}

• ge2 = {customer(y) ∧ rectangle(z) = (20,30,10,50) ∧ [6pm, 10pm]}

ce1 denotes a set of subjects who are employees at the human resource

department in an area centered at (10,50) with width and height of 10 during

5pm and 9pm. ce2 denotes two employees with employee IDs 15 and 30. ge1

denotes a set of patrol cars dispatched from the Newark police station, and

ge2 specifies all the customers in a region centered at (20,30) with width

10 and height 50 during 6pm and 10pm. While ce2 and ge1 denote a set

of subjects and objects, respectively, by identifiers, ce1 and ge2 include a

combination of spatiotemporal and traditional attributes. Note that the set

of subjects and objects denoted by ce and ge can be moving objects. For a

given authorization α = ⟨ce, ge,m, τ⟩, we denote subjects expressed by ce as

α.ce, objects expressed by ge as α.ge, privileges as α.m, respectively. Also,

[α.τb, α.τe] denotes the time interval during which α is valid.
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Our model supports not only read, write, and execute privileges for tra-

ditional auth-objects but also viewing and compose for moving objects with

spatiotemporal attributes. Viewing privileges allow subjects to read the spa-

tiotemporal information. We support two types of viewing privileges: Locate

and Track privileges.1 Locate privilege enables subjects to read the location

information of moving objects in the authorized spatiotemporal region. On

the contrary, track privilege enables subjects to read the trajectory informa-

tion of moving objects in the authorized spatiotemporal region. Compose

privileges allow subjects to write information on the auth-objects. τ can be

a time point, a time interval or a set of time intervals. In the following, we

present some examples of security policies in which moving objects can be

subjects, auth-objects or both. Also, the authorizations can be specified on

the spatiotemporal attributes of subjects, auth-objects or both. These are

summarized in table 3.3.

• Policy 1: A mobile (phone/service) customer is willing to reveal his

personal profile information to a merchant only during the evening

hours, and while he is close to the shopping mall. In this case, only the

auth-object is a moving object and this policy is based on auth-object’s

spatiotemporal attributes.

• Policy 2: An employee is allowed to enter the document repository

only between “9am and 5pm” and while physically located “in the office

1The privileges can have ordering relationships among them according to their inherent
semantics. For example, the track privilege subsumes the locate privilege because with
track privilege, a subject can locate auth-objects as well by specifying a time point instead
of time duration.
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Moving object Spatiotemporal Specification

Policy 1 auth-object auth-object
Policy 2 subject subject
Policy 3 subject, auth-object subject, auth-object
Policy 4 auth-object
Policy 5 auth-object auth-object

Table 3.3. Categorization of Policies

premises.” Note that while subjects are moving objects, the auth-

objects are not. Also note that the policy is based on the subject’s

spatiotemporal attributes.

• Policy 3: An airport security official can access the trajectory infor-

mation of travelers in the airport only while he is on-duty (i.e., during

11pm-7am). In this case, both the subject (security official) and the

auth-object (travelers) are moving objects. This policy is based on the

spatiotemporal attributes of both subject and auth-object.

• Policy 4: Certain FBI agent can access the current location and trajec-

tory information of truck with id 325. Note that although the subject

and the auth-object are moving objects, the subject is allowed to ac-

cess the information regardless of his location and time. In this case,

the policy is based on the identifiers of both subject (FBI agent) and

auth-object (truck with id 325).

• Policy 5: A police office in Newark, NJ can access only the dispatched

patrol cars from the Newark area. Note that only auth-object (patrol

cars) is a moving object. Also, the policy is specified on two types of
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auth-objects: object identifiers (patrol cars from Newark police station)

and spatiotemporal region (Newark).

The above policies can be specified as the following authorizations.

• α1 = ⟨merchant(i), {profile(i) ∧ rectangle(j)=(50,60,10,10) ∧ [5pm,

9pm]}, locate ⟩

• α2= ⟨{employee(i) ∧ rectangle(j)=(45,45,1,1) ∧ [9am, 5pm]},

{document repository(j)}, enter ⟩

• α3= ⟨{security official(i) ∧ rectangle(j)=(100,50,30,30) ∧ [9am, 5pm]},

{travelers(i) ∧ rectangle(j)=(100,50,30,30) ∧ [current time]}, track ⟩

• α4= ⟨ FBI agent(i), truckid(j)=325, track ⟩

• α5= ⟨{dispatch department(i) ∧ office location(j)=’Newark’},

{patrol cars(k) ∧ rectangle(l)=(100,50,30,30) ∧ dispatched from(k) =

’Newark’}, track ⟩

3.3 Location Privacy Measure

A user can be anonymous within a group of other users [67], called an

anonymity set, denoted as S. Let P (Q = u) be the probability of a user

u ∈ S submitting a request. Obviously P (Q = u) > 0 if u ∈ S, and

P (Q = u) = 0 otherwise. In an attempt to quantify the level of anonymity

inherent in S, Shannon entropy is calculated as

HØ(S) = −
∑
u∈S

P (Q = u) log2 P (Q = u). (3.2)
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Let us consider the following two systems D1 and D2:

• Under D1, the probability distribution is uniform among all m users,

i.e., D1 : P (Q = u) = 1
m

• Under D2, given n users, the probability of the actual user submitting

a request is 0.5 and the probability of other n − 1 users is uniformly

distributed.

D2 : P (Q = u) =

{
0.5 for the actual user
0.5
n−1

otherwise

To obtain the same resulting entropy in case of both D1 and D2, the resulting

m and n are such that n = m2

4
+ 1 [73]. For example, when m = 20 under

D1, n = 101 must hold under D2 to ensure the same entropy for D1 and

D2. This demonstrates that, in order to achieve the same level of anonymity,

the system with non-uniform distribution would need to include significantly

larger number of users. Specifically, in this case, D2 needs m2

4
+ 1− n addi-

tional users for obtaining the same level of anonymity as that of D1. Another

problem with non-uniform probability distribution in the anonymity set is

that there exists a user that an adversary believes to be the actual person

who submits a query. For example, under D1, an adversary has 1
20

= 0.05

chance to guess the user of a request, but under D2, an adversary knows that

a particular user sent the request with 50% certainty and another 100 users

could have sent it with only 0.5%. Due to the considerable difference in the

probability distributions between the actual user and remaining users in the

anonymity set, an adversary could infer the actual user among the anonymity

set. This example shows that it is possible that single user is associated with
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a probability which is an order of magnitude higher than the probability of

any other users even though the Shannon entropy measures are the same for

two systems. This issue calls for an alternative anonymity metric that better

capture the ratio between probabilities associated with different members

of the anonymity set. In order to address this problem, a lower bound of

entropy, called min-entropy, is suggested to measure anonymity [61].

H(S) = − log2 max
u∈S

P (Q = u). (3.3)

In fact, this notion of anonymity is easily integrated with the local anonymity

measure proposed by [73].

Definition 3.8 [Local Anonymity] Local anonymity exists for the anonymity

set S with parameter ϵ if an adversary cannot assign a user u ∈ S to the

submitted request with a probability greater than ϵ, i.e. ∀u ∈ S, P (Q = u) ≤ ϵ.

The important property of ensuring local anonymity with parameter ϵ is that

the following inequality holds:

HØ(S) ≥ H(S) ≥ − log ϵ. (3.4)

Inequality (3.4) is easy to prove: first, HØ(S) ≥ H(S) is true because H(S)

is a lower bound of HØ(S), and H(S) ≥ − log ϵ is true because logarithm is

a continuous strictly increasing function and for all u ∈ S P (Q = u) ≤ ϵ,

i.e., maxu∈S P (Q = u) ≤ ϵ holds.

Inequality (3.4) implies that any system preserving local anonymity with

parameter ϵ is at least as strong as a system with 1
ϵ
users and uniformly
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distributed probabilities [73]. For example, if local anonymity of parameter

ϵ = 0.1 is preserved, the anonymity level would be at least greater than or

equal to the anonymity level of 10 users with uniformly distributed proba-

bilities.



CHAPTER 4

EFFICIENT ENFORCEMENT OF LOCATION-BASED ACCESS
CONTROL

In a personalized mobile environment, services based on user locations re-

quire maintaining the mobile objects’ location and profile information and

efficiently serving access requests on the past, present and future status of

the moving objects. This creates inherent security and privacy challenges.

One solution to this is to specify security policies to ensure controlled access.

However, this significantly degrades system performance. Existing solutions

to improve the performance have one or more of the following drawbacks: (i)

processing an access request requires traversal of multiple index structures

[82] (ii) the index does not store past location history and profiles of mobile

users [11, 9, 10].

In this dissertation, we have developed a unified index structure that

retrieves the information on mobile users (location, moving trajectory, and

profiles) while enforcing the access control policies that govern over them. In

this chapter we discuss two following key contributions:

1. Secured Past, Present, and Future Location Moving Object Tree (SPPF -

Tree)

2. Secured Location and Profile Moving Object Tree (SLP -Tree)

47
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Then, we have discussed how to ensure security under uncertain location

estimates. Because current moving object databases do not keep the exact

location of the moving objects, but rather maintain their approximate lo-

cation, the access request evaluation based on the location measure stored

in the database cannot always guarantee the intended access control pol-

icy requirements. This may be risky to the system’s security, especially for

highly sensitive resources. In order to address this issue, we have introduced

an authorization model that takes the uncertainty of location measures into

consideration for specifying and evaluating access control policies. However,

this access request evaluation is computationally expensive as it requires to

evaluate a location predicate condition and may also require evaluating the

entire moving object database. For reducing the cost of evaluation, we have

introduced a set of spatial filters that minimize the region to be evaluated,

thereby allowing unneeded moving objects to be discarded from evaluation.

We have discussed how these filters can be computed and maintained, and

have provided algorithms to process access requests.

4.1 The SPPF -Tree

In this section, we present our proposed unified index, the SPPF -tree that

indexes authorizations as well as the moving objects by capturing their past,

present, and future locations. As a result, we can now support authorizations

based on locate and track privileges.
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4.1.1 Authorization Overlaying

Our approach is to first construct an RPPF -tree for moving objects, and

then appropriately overlay authorizations on top of each node of the index

by carefully examining the spatiotemporal extents of both the node and the

authorizations. Our overlaying strategy allows for efficient evaluation of user

access requests for the specified moving objects. The resulting tree is the

SPPF -tree. Authorizations are categorized as follows based on whether or

not a spatiotemporal extent is associated with subjects and auth-objects.

• Moving Subject on Static Auth-Object Authorization (αMS): An au-

thorization α is said to be moving subject on static auth-object autho-

rization, denoted as αMS, if α.ce is associated with the spatiotemporal

extent, but not the auth-object.

• Static Subject on Moving Auth-Object Authorization (αSM): An au-

thorization α is said to be static subject on moving auth-object autho-

rization, denoted αSM , if only α.ge is associated with the spatiotempo-

ral extent, but not α.ce.

• Moving Subject on Moving Auth-Object Authorization (αMM): An

authorization α is said to be moving subject on moving auth-object

authorization, denoted as αMM if both of α.ce and α.ge are associated

with the spatiotemporal extents.

In our tree, we are capable of overlaying if the authorization is specified

based on the spatiotemporal extent of not only ce or ge, but also both. For
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a given authorization α, we denote the spatiotemporal extent of the autho-

rization as α�. In case of αMS or αSM , there is only one case of computing

spatiotemporal extent because the spatiotemporal extent is from either ce or

ge. In case of αMM , we denote the spatiotemporal extent associated with

α.ce as α�S and α.ge as α�O because we need to differentiate the origin of

the spatiotemporal extent. Because we overlay authorizations of type αMM

only based on α�S , we denote α�S as α� in case of αMM . Also, we denote

the spatiotemporal extent (tpbr) of a node N as N�. We assume that α�

is a contiguous spatiotemporal region without losing any generality because

each non-continuous spatiotemporal region in α can be sliced to form a single

contiguous spatiotemporal region.

A node of SPPF -tree is similar to that of RPPF -tree except that it includes

three pointers that point to the three different types of authorizations. For

a given node N , we use N.αMS, N.αSM , and N.αMM to refer to the set

of overlaid authorizations of types αMS, αMS, and αMM , respectively. Let

the binary operators ⊃{x,y,t},∩{x,y,t} and ⊗{x,y,t} denote enclose, overlap and

disjoint, respectively, in all x, y and t dimensions.

Algorithm 4.1 Overlay
1: Input: root array R, authorization α
2: Output: authorizations-overlaid SPPF -tree
3: for each root r from R do
4: if [r.insertionT ime, r.deletionT ime) ∩ [α.τb, α.τe] ̸= ∅ then
5: OverlaySubtree(r, α)
6: end if

7: end for

Algorithm 4.1 Overlay presents the details of our overlaying strategy. Es-

sentially, the algorithm first selects the root nodes from the root array R such
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Algorithm 4.2 OverlaySubtree
1: Input: node N , authorization α
2: Output: authorization-overlaid node N
3: tempNode← N
4: if tempNode.deletionT ime =∞ then
5: tempNode.deletionT ime← tc +H
6: end if
7: if (α� ⊃{x,y,t} tempNode� is true) OR (N is a leaf node AND α�∩{x,y,t}tempNode�

is true) then
8: if α is a moving subject static auth-object type of authorization then
9: N.αMS ← N.αMS ∪ α
10: else if α is a static subject moving auth-object type of authorization then
11: N.αSM ← N.αSM ∪ α
12: else
13: N.αMM ← N.αMM ∪ α
14: end if
15: return
16: end if
17: for each child c of N do
18: if α� ∩{x,y,t} c� then
19: OverlaySubtree(c, α)
20: end if

21: end for

that the root node’s alive time interval is overlapped with the authorization’s

effective time interval [τb, τe]. Then, for each selected root node r, it traverses

the tree recursively starting from the root node r to the leaf level in a way

that for each node N in the traversal path, α� is compared with N�. All the

possible scenarios for this comparison are as follows:

• Case 1: If the spatiotemporal extent of α fully encloses that of the

node N , i.e., α� ⊃{x,y,t} N
� is true, we will stop traversing and overlay

α on N by adding α to αMS, αSM , or αMM of N . This is because, if

a subject is allowed to access objects within a certain spatiotemporal

region, that is α�, it is allowed to access objects in the subregion of that
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α2
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auth-begin 
event

auth-end 
event

Figure 4.1. Authorization Time Line

[15].1 After overlaying an authorization on a node, it is not necessary

to overlay the same authorization on any of its descendants.

• Case 2: If the spatiotemporal extent of α overlaps with that of the

node N , i.e., N� ∩{x,y,t} α� is true, the level of the node decides where

it is overlaid.

◃ If N is a non-leaf node, each of N ’s children are traversed and the

algorithm repeats the comparison between α� and the spatiotem-

poral extent of each child node. The goal here is to check if there

exist a child of N whose spatiotemporal extent is enclosed by that

of α.

◃ If the node N is a leaf node, we overlay α on the leaf node N . This

is because, when the spatiotemporal extent of the authorization

does not enclose, but overlaps with that of the leaf node N�,

we need to ensure that no relevant authorizations are discarded.

1If α.ge points to a set of auth-objects instead of a spatiotemporal region, we can
exclude unauthorized auth-objects by post-processing the query result when we evaluate
the query.



53

α
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α��{x,y,t} h� is true

N1

N2 N3

N4

Figure 4.2. Authorization Overlaying Example

Also, note that only part of the spatiotemporal extent of N� is

in the authorized region. The moving objects from the remaining

unauthorized spatiotemporal region N� − α� must be removed

from the user’s output, if the user request includes this region.

• Case 3: Else, which implies the spatiotemporal extent of the autho-

rization, α� is disjoint with that of the node N�, i.e., N� ⊗{x,y,t} α
�

is true, we stop the overlaying process. This is because, if α does not

have privilege to the region covered by N�, then α is not applicable

to that region. Also, since N� includes spatiotemporal extent of all its

children nodes, α� is disjoint with the spatiotemporal extent of each

child. Therefore, there is no need to traverse further to the leaf level.

Let us take a concrete example to explain the overlaying concept. Suppose

an authorization α is being overlaid on the tree, andN1 is the root node whose

effective time interval is overlapped with that of α, i.e., (N1.insertionT ime,

N1.deletionT ime) ∩ [α.τb, α.τe] ̸= ∅. In figure 4.2 shows that the spatiotem-

poral extent of α and N1 is overlapped, i.e., α
�∩{x,y,t}N

�
1 is true. Therefore,
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we recursively visit all of its children, i.e., N2 and N3. When N2 is visited,

observe that the spatiotemporal extent of α encloses that of N2. Therefore,

we stop traversing the tree further and overlay α on N2. However, when we

visit N3, the spatiotemporal extent of α is disjoint with that of N3. Thus,

we also stop traversing the tree, and we do not need any further actions.

We now consider the computational complexity of the algorithm. In the

worst case, each subtree could contain all of the moving objects, and each

moving object could exist in a separate leaf. Thus, in the worst case, each

subtree traversal would require visiting all of the nodes, thus requiring O(n)

time. Now, the only remaining factor is the size of the root array. This

depends on the number of time splits as well as the number of updates.

Assuming that there are k elements in the root array, the overall worst case

complexity of the algorithm is O(nk).

4.1.2 Maintenance of the SPPF -tree

One main challenge of the SPPF -tree is to maintain the overlaid authoriza-

tions as the tree evolves. Changes to the SPPF -tree are needed due to the

following two reasons:

• Updates to the moving object: It is important to note that, while

the spatiotemporal region of an overlaid authorization is static in na-

ture, the tpbr of each node in the tree changes over time. Therefore,

it is possible that certain overlaid authorizations may no longer sat-

isfy the conditions. As a result, it may be necessary to reposition the

existing overlaid authorization.
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Figure 4.3. Relationship of Authorization Log and SPPF -Tree

• Change of applicable authorizations: If the overlaid authoriza-

tions are valid only during a certain time interval, as time elapses, they

are no longer applicable. Therefore, these need to be removed from the

node where they are overlaid. Also, certain new authorizations may

become applicable, which need to be overlaid appropriately.

Because the SPPF -tree is a unified index that maintains not only moving

objects but also authorizations, we need to pay attention to how updates of

one type can be performed without hampering the properties of the SPPF -

tree.

Handling Updates due to Change of Applicable Authorizations

To handle this issue, we introduce the notion of Authorization Log, described

below.

Authorization Log: An authorization log is nothing but a data structure

constructed by spreading all the authorizations on the time line. For each

authorization, we consider the following two events: (1) auth-begin event
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and (2) auth-end event. These two are nothing but [τb, τe] specified in the

authorization specification.2 For example, in figure 4.1, the auth-begin event

of the authorization α1 occurs at time t15, and the auth-end event will occur

at time t28.

Essentially, as time elapses, new authorizations may become applicable

and we do not want to miss overlaying these authorizations on the SPPF -tree.

An authorization α is said to be applicable to the tree constructed at t, if the

two time intervals [α.τb, α.τe] and [t, t + H] overlap. For example, suppose

the SPPF -tree is constructed at t = t10, which is valid until t10+2 (assuming

H = 2). Referring to figure 4.1, only α2, α3, and α4 are overlaid on the

tree. Since valid intervals of α1 and α5 are outside [t10, t10 + 2], they are

not applicable now and therefore are not overlaid on the tree. On the other

hand, at t20, both α1 and α5 must have been overlaid on the tree. However,

the tree has no capability to keep track of newly applicable authorizations

that need to be overlaid on the appropriate nodes of the tree. An auth-begin

event triggers the algorithm 4.2 OverlaySubtree procedure to take care of

this issue. For example, α1 in figure 4.1 will be overlaid on the tree at t13

because the tree is valid up to the current time + H.

Also, after some time later, certain overlaid authorizations become invalid

and therefore must be removed from the tree. This is taken care by the auth-

end event to trigger such removals. The removed authorization needs to be

2Note that each authorization will have only two such events since we are not consid-
ering periodic authorizations. However, our proposed solution can be easily extended to
handle periodic authorizations.
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Algorithm 4.3 UpdateSPPF -Tree
1: Input: old moving object data E0, new moving object data En

2: Output: updated SPPF -tree
3: changedPageIds ← Update(E0, En) {Update() is the slightly modified version of

update method of RPPF -tree, which returns updated node identifiers}
4: changedNodeSet ← GetNodeSet(vhangedPageIds) {GetNodeSet() returns the

pointers of the identifiers in changedPageIds}
5: for each node N in changedNodeSet do
6: tempAuth← N.αMS ∪N.αSM ∪N.alphaMM∪ AuthLog.find auth(N.t0, tc)
7: Initialize overlaid authorizations in N {N.αMS , N.αSM , and N.αMM becomes

null}
8: for each authorization α in tempAuth do
9: parent ← parent node of N
10: if α� ⊃{x,y,t} parent� is true then
11: overlayParent(N,α) {similar to overlaySubtree() but overlays α to the parent

level until the root node is reached}
12: else
13: OverlaySubtree(N,α)
14: end if
15: end for
16: end for
17: AuthSet← AuthLog.find auth(tc, tc +H){ tc is the current time}
18: for each α in AuthSet do
19: Overlay(alive root node, α)

20: end for

N1

N2

N1

N2

N1

N2

(c) No changes(b) Degraded Authorization(a) Upgraded Authorization

N0

N0 N0

Figure 4.4. Re-overlaying of authorizations due to updates to moving objects



58

re-overlaid on the SPPF -tree because it may satisfy the overlaying conditions

of another node in the tree.

In addition to triggering the overlaying and deletion of authorizations,

update must take care of the cases when the time-split occurs. In this case,

an entirely new node will be created for which there exist no overlaid autho-

rizations. The find-auth method computes all the authorizations overlapping

with the interval of the newly created nodes.3 Figure 4.3 depicts the re-

lationship between the authorization log and the SPPF -tree along with the

auth-begin and auth-end events, and the find-auth method.

Handling Updates due to Changes to Moving Objects

Updates to moving objects may cause a structural change to the SPPF -tree.

When update (insertion/deletion) occurs on the SPPF -tree, all the access

nodes, which are ancestors of the leaf node for which the update is applied

to, need to be checked because the overlaid authorizations in the nodes may

either be degraded authorizations (authorizations which were originally over-

laid on the access nodes, but no longer fit in their original positions due to

the spatiotemporal enlargement of the nodes by updates) or upgraded autho-

rizations (authorizations which were originally overlaid on the access nodes,

but able to fit in an ancestor of their original positions due to spatiotemporal

shrinkage of the nodes by updates). This procedure is even more complicated

if the update process results in the structural changes due to time-split. The

3In this thesis, we do not include the details of the method because any one-dimensional
data structure which supports the range query can be used to support this method.
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details are summarized below.

1. Updating authorizations on the adjusted nodes: Based on the

periodic updates on the position of the moving objects, the tpbr of

each node in the SPPF -tree will be adjusted; they may either shrink

or expand. Moreover, adjustments to the tpbr of a node may trigger

adjustments to the tpbrs of its ancestor nodes. For each adjusted node

N , every overlaid authorization α on it can fall into one of the three

categories: (i) degraded authorization, (ii) upgraded authorization, (iii)

no changes. The algorithm 4.3 UpdateSPPF -tree presents the details of

our updating strategy. It checks first if it is an upgraded authorization

and attempts to overlay it as high in the tree as possible. Else, the

same overlaying strategy is used to find the appropriate position for α.

Figure 4.4 shows these three different cases. Suppose N2 is the adjusted

leaf node. Figure 4.4 (a) shows the shrinkage of the tpbr for N2 and its

parents. The authorization initially overlaid on N1 is now repositioned

to N0: it can enclose N�
1 as well as N�

0 spatiotemporally and therefore

becomes an upgraded authorization. On the other hand, the tpbr of

N2 may be expanded due to the adjustment. Figure 4.4 (b) shows this

expanded case, and that the overlaid authorization does not enclose N�
1

spatiotemporally any more. It becomes a downgraded authorization.

Therefore, it is repositioned to the child of N1, i.e., N2. In addition, it

may be possible that the shrinkage or expansion of the corrected node

does not affect the overlaid authorizations if the overlaid authorization
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still encloses N�
1 but does not enclose its parent N0 spatiotemporally.

Figure 4.4 (c) presents this case.

2. Overlaying authorizations on the newly created node: The

newly created node due to a time-split does not have any authoriza-

tions overlaid on it. Therefore, all the authorizations whose valid time

intervals are overlapped with the interval of this node are overlaid on

the alive root node from the root array.

4.1.3 Access Request Evaluation

In this section, we present different types of access requests and how these

are evaluated against the specified authorizations to retrieve the information

that satisfies the user request. There exist three different request scenarios

based on the mobility of requestors and resources, and the corresponding

authorizations in order to protect the resources.

• Static Requests upon Mobile Resources: In this case, requestors are

static entities while resources are moving objects. (e.g., a merchant

(static requestor) tries to send promotion deals to near-by mobile cus-

tomers (mobile resources) as in policy 1 in section 3.2.4.) Thus, only

the location of mobile resources plays an important role for making the

access control decision. Therefore, in order for requestors to gain access

to the information of mobile resources, security/privacy policies must

have been issued to the requestors in advance, and only if the specified

conditions in the privacy/security policies are met, the requestors are

able to access the information.
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• Mobile Requests upon Static Resources: In this case, the access control

decision for the requestor is dependent on the current location of the

requestor ((e.g, an employee (mobile requestor) tries to use the printer

in the office (static resource)) as in policy 2 in section 3.2.4. Therefore,

in order to gain access to the static resources such as a printer, the

requestor must be located in the authorized region.

• Mobile Requests upon Mobile Resources: In this case, locations of both

entities (requestors and resources) are important (e.g., a boss (mobile

requestor) tries to access the locations of her employees (mobile re-

source) as policy 3 in section 3.2.4).

In the rest of this section, we will focus on the first and third user request

types because the second query type can be considered as a special case of

the third query type where location conditions of mobile resources are not

considered. Then, we can simplify the categorization as static requests (the

first case) or mobile request (the third case).

Definition 4.1 (Static Requests) A static request (SR), denoted as a triple

U = ⟨s,�,m⟩, where s is a subject of the user request, � is a spatiotemporal

region, and m is a track, a locate, or a view access mode.

The result of SR would be a trajectory, a position, or identifiers of a

moving object(s). A trajectory is of the form ⟨o, {loc1, loc2 . . . , locn}⟩, where

o is the object identifier, and loci is the ith location information of o in the

x, y, t dimensional space. In case of locate, the result would be of the form
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⟨o, loc⟩. The result of a view access mode would be a set of object identifiers.

We use U.s, U�, U.m to denote the subject, the spatiotemporal extent, and

the access mode of the access request U , respectively. Also, the effective time

interval of U is denoted as [U.τb, U.τe], which is derived from U�.

The spatiotemporal query evaluation is based on the overlaying procedure

that is introduced in the section 4.1.1. For a given user request U , the

procedure first locates a set of roots from the root array of SPPF such that

the alive time interval of the root overlaps with [U.τb, U.τe].

Algorithm 4.4 QueryEvaluationSR
1: Input: root array R, SR U
2: Output: If U.m is locate, location information of moving objects resultSet at time =

U.τb. If U.m is track, trajectory information of resultSet. Otherwise, moving object
IDs of resultSet

3: resultSet← ∅
4: for each root r from R do
5: if [r.insertionT ime, r.deletionT ime) ∩ [U.τb, U.τe] ̸= ∅ then
6: resultSet← EvaluateSubtree(r, U) ∪ resultSet
7: end if
8: end for

9: return Retrieve(resultSet, R, U) {location, trajectory, or ID information of resultSet

is retrieved depending on U.m}

Then, for each located root r, the procedure described in algorithm 4.4

(QueryEvaluationSR), traverses the subtree under this root r until it reaches

the leaf level by using algorithm 4.7. The worst case running time of al-

gorithm 4.7 is O(nk + m) where n is the number of moving objects, k is

the number of elements in the root array and m is the number of autho-

rizations which are overlaid on the tree. This is because the cost of visiting

nodes is exactly the same as when overlaying authorizations, while the cost

of searching the authorizations also needs to be factored in (in the worst case

all authorizations are overlaid on all of the nodes). During this traversal, it
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compares the spatiotemporal extent of user request with that of each node

in the search path. One would encounter three different cases:

• enclosing: If there exists any αSM such that a set of subjects eval-

uated by ce contains U.s, then return all the moving objects that are

overlapped with (U� ∩ α�). In the case of the locate access mode, re-

turn the location information of those objects at time = U.τb. Because,

if we allow time interval, the trajectory information during the time

interval [U.τb, U.τe] is rather revealed to the user instead of the location

information, U.τe is ignored if it is different from U.τb. If a track access

mode is requested, return the trajectory information of those objects.

The trajectory of each object o in the result set is traced back by using

the pointer N.ptr where N is the leaf node that stores o. Whenever

a node L is time split, ptr of newly created node is set to point back

to the original node L. Thus, all the past location information of o

can be reached by following the ptr created each time a node is split.

This tracking is processed within the spatiotemporal region U� ∩ α�

where α� is the spatiotemporal region of all the authorizations with

track privilege that are applicable to U.s.

• overlapping: If there exists any αSM such that the set of subjects

evaluated by ce contains U.s, return the objects overlapping with U�

only. However, we still need to check authorizations overlaid for the

descendants of the node N because authorizations overlaid for the de-

scendants may include another spatiotemporal region that α� does not
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Algorithm 4.5 EvaluateSubtree
1: Input: node N , SR U
2: Output: moving objects resultSet
3: resultSet← ∅
4: authorized← false
5: Stack.add((N, authorized))
6: while Stack is not empty do
7: (N, authorized)← Stack.pop()
8: LL ← CheckUserIDAuth(U.s,N.αSM ) {CheckUserIDAuth returns the authoriza-

tions that is applicable to U.s among N.αSM}
9: if N is a leaf node then
10: if authorized = false AND LL ̸= ∅ then
11: for each object o in N .objects do
12: for each authorization α in LL do
13: if o� ∩ α� ∩ U� ̸= ∅ then
14: resultSet← resultSet ∪ o
15: end if
16: end for
17: end for
18: else if authorized = true then
19: resultSet← resultSet ∪N .objects
20: end if
21: else
22: if authorized = false AND LL ̸= ∅ then
23: authorized← true
24: end if
25: for each node c in N .children do
26: if c� ∩ U� ̸= ∅ then
27: Stack.add(c, authorized)
28: end if
29: end for
30: end if
31: end while

32: return resultSet
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cover. In the case of the leaf node, return all the moving objects that

are overlapped with (N� ∩ α� ∩ U�). Again, if it is a track access

mode, return the trajectory information of those objects. If it is a

locate access mode, return the location information.

• disjoint: Stop the evaluation process because no relevant authoriza-

tions can be found in the descendants of the node N to satisfy the

request.

Definition 4.2 (Mobile Requests) A mobile request (MR), denoted as

M = ⟨s, loc,�,m⟩, where s is the subject of the user request, loc is the current

location of the subject in the x, y, t dimensional space, � is a spatiotemporal

region, and m is a track, locate, or view access mode.

In MR, we use M.s, M loc, M�, and M.m to denote the subject, the

spatiotemporal position of M.s, the spatiotemporal extent, the access mode

of the access request M respectively. Also, the effective time interval of M

which is derived from M�, is denoted as [M.τb,M.τe]. Observe that in order

to process mobile requests upon static resources, M� is set to null, and αMS

is evaluated instead of αMM .

There are two spatiotemporal conditions involved in MR: the current

location of M.s is used to evaluate if M.s is authorized to access moving

objects information, and M� specifies the spatiotemporal region that M.s

wants to retrieve where moving objects are positioned within. Therefore,

we need to traverse the tree twice: one traversal for checking if there exists
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any authorization issued for M.s, and another traversal for retrieving the

authorized moving objects for M�.

During the first traversal process, only the alive root node among the root

array is traversed because the access control decision for the subject’s condi-

tion is evaluated only by the M.s’s location at tc. Therefore, the algorithm

traverses from the alive root node until it reaches the leaf level. During the

traversal, it checks if the spatiotemporal extent of each node in the search

path includes the M loc. If any authorization of type αMM applicable to M.s

has been found during the traversal, α�O is compared with M�. There are

three different cases for this comparison:4

• enclosing (α�O ⊃x,y,t M
�): If α�O encloses M�, the spatiotemporal

region of the user request are authorized to access by M.s. Therefore,

stop traversing the tree for locating authorizations issued for M.s, and

start traversing the tree to retrieve the moving objects that are within

M�. Observe that for the second traversal, there is no need to evalu-

ate authorizations further because it is already evaluated by the first

traversal.

• overlapping (α�O ⊃x,y,t M�): If α�O is overlapped with M�, only

the intersection area between α�O and M� is the spatiotemporal region

that the user wants to access while meeting the security requirement.

4The comparison of MR is between the spatiotemporal extent of an authorization and
that of the user request while in case of SR, the spatiotemporal extent of a node and that
of the user request are compared.
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Therefore, continue traversing, and compute union of all the intersect-

ing area until the traversal finishes, and retrieve the moving objects

that are within the intersecting area.

• disjoint (α�O ⊃x,y,t M
�): Although the existence of overlaid autho-

rization αMM during the traversal implies that M.s is allowed to access

moving objects within α�O , the authorized spatiotemporal region, α�O ,

is not within the user’s interest. Therefore, this authorization is not

relevant for M , and we need to evaluate more authorizations of type

αMM by continuing the traversal.

If no authorization is found, continue traversal. In case traversal reaches

a leaf node N , for each authorization αMM overlaid on N , include α�O if

intersection area between N� and α�O encloses M loc since we do not want to

get the false positive result for the area N�−α�O . Algorithm 4.6 QueryEval-

uationMR discusses the details of processing MR. As discussed earlier, the

worst case running time of this algorithm is also O(nk +m) where n is the

number of moving objects, k is the number of elements in the root array and

m is the number of authorizations which are overlaid on the tree.

4.1.4 Performance Evaluation

We have conducted experiments measuring the performance of the SPPF -tree.

The SPPF -tree was implemented in C++, and the experiments were run using

generated data. For the experimental setup, we define a 3-dimensional spa-

tiotemporal space (x, y, and t axes). All the moving objects move within this
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Algorithm 4.6 QueryEvaluationMR

1: Input: root array R, node N , MR M , and union of authorized inter-
secting area ϖ

2: Output: If M.m is locate, location information of authorized moving
objects. If M.m is track, trajectory information of authorized moving
objects. Otherwise, identifiers of authorized moving objects.

3: if N is a leaf node then
4: if N.αMM ̸= ∅ then
5: LL← CheckUserIDAuth(M.s, αMM)
6: if LL ̸= ∅ then
7: for each authorization α in LL do
8: if M loc ∈ (α� ∩N�) then
9: ϖ ← ϖ ∪ α�O

10: end if
11: end for
12: end if
13: end if
14: return Retrieve(R,ϖ,M) {depending on M.m, location, trajectory,

or ID of moving objects are returned if the objects are located within
the ϖ}

15: else
16: if N.αMM ̸= ∅ then
17: LL← CheckUserIDAuth(s, αMM)
18: if LL ̸= ∅ then
19: if α�O ⊃x,y,t M

� then
20: ϖ ←M�

21: return Retrieve(R,ϖ,M.m)
22: else if α�O ⊃x,y,t M

� then
23: ϖ ← ϖ ∪ α�O

24: end if
25: end if
26: end if
27: for each node c in N .children do
28: if M loc ∈ c� then
29: result← QueryEvaluationMR(c,M,ϖ)
30: end if
31: end for
32: return result
33: end if
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space and all the authorizations are also applied in this space. To simulate

the moving object database, we randomly generate an initial location (x and

y coordinates), velocities for the x and y dimensions, and the moving object’s

insertion time to the index using a uniform distribution. As a result, there

are groups of moving objects that are being inserted into the tree for a given

time point. Similarly, authorizations are randomly generated: their spa-

tiotemporal extents within the given 3-dimensional space, and auth-objects

list or subject list depending on the type of an authorization are randomly

generated.

User Access Request Performance: We have performed two sets of ex-

periments for SR and MR: In the first set, we generate workloads that vary

authorization/object ratios (the number of authorizations to the number of

moving object data) when the number of moving object data has been fixed

at 60,000. This allows us to see the effect of increasing number of authoriza-

tions on the overall performance. In the second set, we vary the number of

moving objects when the auth-object ratio has been fixed at 0.5. This allows

us to see the effect of number of objects on the overall performance.

In general, in order to evaluate any user access request, there are three

different kinds of costs incurred. Given a particular user access request, the

costs involved are:

1. Authorization Search Cost: This is the cost of searching for relevant

authorizations from the set of authorizations.

2. Moving Object Search Cost: This is the cost of identifying the
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moving objects that lie within the spatiotemporal extent of the user

access request.

3. Filtering Cost: This is the cost of checking if there exists any au-

thorization specified for the requester to access the identified moving

object. Essentially this is the cost of matching the result sets from

the access control evaluation module and the moving object processing

module.

In order to measure the performance benefit due to the SPPF -tree, in each

experiment, we evaluate the following four cases:

1. Case 1. No Index: Both moving object data and authorizations are

not indexed. In this case, all the three of the above costs come into

play.

2. Case 2. RPPF & No Index: The moving object data is indexed

using RPPF -tree but authorizations are not been indexed. In this case,

all the three of the above costs come into play.

3. Case 3. RPPF & R: The moving object data is indexed using RPPF -

tree and authorizations are indexed using R-tree. Authorizations can

be organized by using R-tree because each authorization includes the

corresponding spatiotemporal extent in the mobile environment, and

any multi-dimensional index structure such as R-tree can be used to

index authorizations. In this case, all the three of the above costs come

into play.
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4. Case 4. SPPF -tree: The moving object data and authorizations are

indexed using the unified index, the proposed SPPF -tree. In this case,

only the first two of the above costs come into play.

Disk access I/O is generally accepted performance measure in moving

objects index community because (i) main memory may not fit large amounts

of moving objects, (ii) disk access I/O cost always dominates, and (iii) CPU

clock time largely depends on the implementation details. Thus, to measure

the true cost, we measure the performance in terms of the number of disk

access I/O operations instead of elapsed CPU time.

We assume that data is stored serially in a disk, and the sizes of disk access

page and data (moving object data and authorizations) are 8k bytes and 32

bytes respectively. Therefore, if no index structure is used for moving object

data or authorizations (i.e. Case 1 for both and Case 2 for authorizations), we

increment the number of disk access I/O by one for every 256 authorizations

or moving object data accessed. Thus, the cost of search operation is assumed
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to be linear in the case of no index structure available. We assume that R-tree

and RPPF -tree are disk-based, and whenever a node is accessed, we increment

the disk access I/O during the search of authorizations and moving object

data.

In case of the SPPF -tree, we assume that each node id is stored in the

disk, and whenever a node is accessed, we increment the disk access I/O

by one. The implementation is memory-based, but each node stores the

cache for its children or moving object data information, which enables us

to simulate the disk access I/O: first, the cache is searched to find candidate

nodes to navigate further, and then, only the accessed candidate node will

increase the disk access I/O. Whenever a node is visited during processing

a user access request, overlaid authorizations on the node are evaluated if

any of the overlaid authorizations are applicable to the requester. Because

we assume that overlaid authorizations on a node are stored serially in a file,

whenever 256 authorizations are accessed, we increment the disk access I/O

by one following the same assumption used in case 1 and 2. Initially, the

SPPF -tree is empty. First, the specified number of moving objects are bulk-

loaded, and then, the specified number of authorizations are batch-overlaid

on the tree.

Figures 4.5 and 4.7 show how many disk I/O operations on average are

performed in relation to conducting SR and MR respectively when autho-

rizations/objects ratios are varied for the fixed number of moving object

data. This shows how the increased number of authorizations will adversely

affect the query performance. Figures 4.5 and 4.7 show that the number of
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I/O operations for SPPF -tree increases slowly due to our user request evalu-

ation process: more authorizations will be overlaid on a node as the number

of overlaying authorizations increases, but if there exists any authorization

that is applicable to the requester in node N which is located at the higher

level of the tree, authorization evaluation does not need to be performed any

more for the descendent nodes of N . The simulation confirms this argument.

However, the performance of other benchmark cases (e.g., case 1, 2, and

3) is seriously affected because the number of evaluated authorizations will

increase proportionally as the number of authorizations increases.

In order to investigate the scalability of the SPPF -tree, we experiment

with varying the number of moving objects when the authorizations/objects

ratio is fixed. Figure 4.6 and 4.8 show the number of disk I/O operations on

average for performing SR and MR respectively when the auth-object ratio

has been fixed to 0.5. The result shows that in all four cases, the number of

disk I/O is proportional to the number of moving objects, but the increase
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rate of disk I/O operations for SPPF is slower than other benchmark cases.

Effect of Skewed Authorizations: We evaluate the effect of authoriza-

tions that are skewed on user distribution. It would be more realistic if a

particular group of users are being assigned more number of authorizations

than others. For example, a system administrator group will be given more

authorizations to perform administrative work than other regular users. In

order to simulate the skewness of users in authorizations, during the simula-

tion, normal distribution is used when assigning an authorization to a user,

i.e., a user will be assigned more authorizations if her identifier is close to the

mean. Figure 4.9 and 4.10 show how many disk I/O operations on average

are performed in relation to conducting MR when authorizations/objects

ratios are varied for the fixed number of moving object data (60,000) and

when the auth-object ratio has been fixed to 0.5. We do not include the

results of case 1 and 2 because they always perform worse. In both cases,

the proposed SPPF -tree’s performance is proportionally degraded to the ra-

tio and the number of moving objects.5 However, the increase rate of disk

5Figure 4.9 does not show this effect clearly, but its performance is degraded as the
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I/O operations for SPPF - is much slower than RPPF&R. This result clearly

shows that our proposed SPPF -tree is not vulnerable to the skewness of user

distribution. Although we have to navigate all the authorizations in a node

to find a relevant authorization issued to a user, this navigation is done no

more than necessary due to our authorization overlaying strategy. Also, this

navigation can be further improved if we construct B-Tree based on the user

identifiers on each node, but the current link-listed approach is still good

enough to perform the search process.

Index Construction Performance: Next, we evaluate the cost of index

construction. Figure 4.11 compares the time required to construct SPPF -tree

and RPPF -tree by varying the number of moving objects when the authoriza-

tion/object ratio is fixed to 0.5. SPPF -tree is constructed by first creating

RPPF -tree and carefully overlaying authorizations on nodes of RPPF -tree:

the resultant tree is SPPF -tree. Therefore, the construction time of SPPF -

ratio increases.
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tree includes both the construction time of the RPPF -tree for moving objects

and the authorizations overlaying time. The bulk-loading process results in

increasing the time required for the authorizations overlaying process since

there exist more moving objects: during bulk-loading process of moving ob-

ject data, time splits tends to occur at the same time point. For example,

given the example shown in section 3.2.1, 6 moving objects are all being in-

serted to RPPF -tree at time 0. Then, the time interval for root node would

be [0,0] and [0, ∞). If this is the case, then during the overlaying process,

any authorization that is applicable from time 0 will need to visit all the

elements in the root array. As a result, the root array does not effectively

differentiate the valid time duration of data. This reasoning explains why

the overlaying process takes more time during the construction process.

Update Performance: We have performed experiments to measure the up-

date cost of SPPF -tree. The first experiment shown in Figure 4.12 measures

the number of I/O operations for updating moving object data in SPPF -tree

when authorization/object ratio varies while the number of moving object

data is fixed at 10,000. In this experiment, 10,000 moving objects are bulk-

loaded into the tree initially, and then, 2000 updates are gradually performed

over 100 time units, and the corresponding disk I/O operations during the

updates are measured. Update (insertion/deletion) of moving object data in

SPPF -tree incurs two different types of I/O operations: the structural change

of SPPF -tree, and the reorganization of the overlaid authorizations. Updates

to moving objects may cause a structural change when time split or node

splitting occurs. In this case, all the authorizations overlaid on the access



77

0

20

40

60

80

100

120

140

160

0.25 0.50 1.00 1.50 2.00

Ratio

D
is

k 
I/

O

SPPF RPPF

Figure 4.13. Query-Update Ratio
Analysis

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1000 1500 2000

Number of Updates

D
is

k 
I/

O

SPPF RPPF

Figure 4.14. Update Scalability
Analysis

nodes need to be re-evaluated. Because re-evaluation of overlaid authoriza-

tions incurs I/O cost, whenever 256 of the authorizations are accessed, we

increment the disk access I/O by one using the same assumption. Also, if

we find an authorization that does not fit in the originally overlaid node, we

need to remove the authorizations from the node, and re-overlay them on

the tree, which also incurs I/O costs. Similarly, as time elapses, the autho-

rization log overlays newly applicable authorizations on the tree and removes

those that are not applicable to the tree. It is obvious that as the number

of overlaid authorizations increases, the number of I/O operations would in-

crease linearly to the number of overlaid authorizations because if a node is

being updated, each of the overlaid authorizations on the node will need to

be evaluated if the spatiotemporal extent of the authorization still encloses

(or overlaps with, if the node is leaf node) that of the node. Also, if there is

any authorization applicable to the tree as time elapses, it is overlaid on the

tree by the authorization log.
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Next, we consider a more realistic scenario where updates and user access

requests6 are intermixed. After 10,000 moving objects are inserted into the

tree at the same time, various number of updates and user requests are per-

formed to measure the average disk I/O operations during these operations.

In all cases, 10,000 authorizations are generated and overlaid onto the tree.

Since valid time intervals of the authorizations are uniformly distributed, not

all the authorizations are overlaid on the tree during the batch-overlaying

process: authorizations of which valid interval are [t0, t0 +H] where t0 is the

bulk-loading insertion time of moving objects and H is the time horizon are

only overlaid on the tree.7 As time elapses, the authorization log removes au-

thorizations that are not applicable to the tree, and overlays newly applicable

authorizations. We perform two different experiments: in the first, shown in

Figure 4.13, we experiment with workloads that vary the query-update ratios

(the number of user requests to the number of updates) when the number of

update have been fixed at 2,000. This allows to us to measure the effect of

increasing the number of queries. In the second experiment shown in Figure

4.14, we vary the number of updates when the query-update ratio has been

fixed by 0.5. This allows to see the effect of updates on the performance.

Figure 4.13 shows that as the query-update ratio is increased, the disk

I/O operations of SPPF -tree is reduced compared to the ”RPPF & R” case.

This is obvious because the I/O operations of user access request in SPPF -

6In this experiment, we only consider SR type of user requests because the experimental
performance results of SR and MR shows the same pattern: SPPF -tree performs best, and
other benchmark cases are performed well in order order of RPPF & R, RPPF & No Index,
and No Index.

7In this experiment, time horizon H is set to 20 time units.
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tree is smaller than that of the other benchmark cases, and therefore, as

query-update ratio is increased, the average disk operation of SPPF -tree is

reduced if the number of updates are fixed. Thus, although the overall per-

formance of SPPF -tree is worse than that of the ”RPPF & R” case in the

query-update ratio less than 0.5, the performance cross-over occurs at the

query-update ratio of approximately 0.6.8 Figure 4.14 shows that as the

number of updates are increased, the disk I/O operations of SPPF -tree is

increasing compared to the ”RPPF & R” case as long as the update-query

ratio is fixed. This experimental result shows that the extra overhead cost

of SPPF -tree by maintaining authorizations on the tree can be offset by the

performance gains from the user request evaluation of SPPF -tree.

4.2 SLP -tree

In this section, we introduce our novel unified index structure, called the

SLP -tree that supports efficient enforcement of security policies based on

user locations as well as profiles. SLP -tree is a balanced tree. Each node in

the SLP -tree comprises of the spatiotemporal attributes as well as a profile

bounding vector in order to support the profile conditions. The role of profile

bounding vector is to filter out profile conditions that do not satisfy the

designated profile query conditions.

8Our performance study shows that this cross-over phenomenon occurs at different
number of updates although the cross-over point varies a bit.
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4.2.1 User Profile Information Embedded TPR-Tree

Personalization and customization of LBS, based on the profiles of mobile

suers, would significantly increase the value of these services. Because TPR-

tree stores only location information, we propose PTPR-tree, which is an

extension of the TPR-tree where the node structure of the tree holds profile

information as well. In order to support profile information in the tree, we use

the notion of the profile bounding vector, P̂ , which is similar to the notion of

minimum bounding rectangle (MBR) in the R-tree family. The MBR in a R-

tree works as a coarse spatial filter that can be used as a pre-filter to perform

a more computationally expensive overlapping polygon checking. Similarly,

the role of P̂ is to filter out profiles that do not satisfy the designated profile

query condition. Figure 4.15 shows an example of the PTPR-tree. A leaf node

entry contains the position and profile vector of mobile objects and pointers

to each object in the disk block. An internal node entry contains a pointer

to a subtree, as well as the tpbr and P̂ covering the subtree. Let M and

m (2 ≤ m ≤ ⌈M/2⌉) be the maximum number and the minimum number
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of entries allowed in each node of the PTPR-tree, respectively. In general,

the space required for a leaf node entry is different from the space required

for an internal node entry, since the pointer sizes may be different. As the

space allocated to each node (i.e., block size) is assumed to be the same,

this implies that the values of M and m may be different for leaf nodes and

internal nodes. However, for simplicity, in this thesis, we assume that leaf

nodes and internal nodes share the same values of M and m. Since the PTPR-

tree and TPR-tree are essentially the same (the PTPR-tree, only maintains

some extra information – P̂ ), they share the same tree properties: (1) the

tree is balanced: all the leaf nodes appear at the same level, (2) the root has

at least two children unless it is a leaf, but has at most M children, (3) an

internal node (except the root node) has between m and M children, and

(4) a leaf node contains at least m entries but at most M entries unless it

is the root. PTPR-tree is constructed similar to TPR-tree, but P̂ is updated

accordingly during the insertion of new objects. After insertion of a new

object into a target leaf node, the tpbr and P̂ of the leaf node is updated.

If necessary, the tpbr or P̂ of all of the ancestors up to the root are also

updated. However, observe that due to the extra information that PTPR-tree

holds, m and M of PTPR-tree has smaller value compared to m and M of

TPR-tree when the disk block size is the same.

An update operation of PTPR-tree is same as TPR-tree, but now it needs

to update not only tpbr but also P̂ of the updated nodes. For example, if

a node B in Figure 3.3 includes the object that needs to be deleted, after

removing it from B, B and C is adjusted to the tightest tpbr and P̂ of its
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objects stored in the node and also its parent node, C, if necessary. On the

other hand, the tpbr and P̂ of A is not tightened because it is not affected

by the deletion.

Relationships Between Authorization and Node: Given an autho-

rization α and a nodeN , we are interested in different cases of spatiotemporal

and P̂ relationships between α and N . For a given authorization α and a

node N , we denote the profile bounding vector of α and N as α→ and N→,

respectively.

• Spatiotemporal Relationship

◃ α� ⊃st N
�: spatiotemporal extent of α encloses that of N .

◃ α� ∩st N
�: spatiotemporal extent of α overlaps with that of N .

◃ α�⊗st N
�: spatiotemporal extent of α is disjoint with that of N .

• Profile Bounding Vector Relationship

◃ α→ ⊃p N→: the profile bounding vector of α encloses that of N ,

i.e., for each non-zero profile attribute vector 9 of α and N , bitwise

’OR’ operation of α and N results in α’s profile vector.

◃ α→ ∩pN
→: the profile bounding vector of α overlaps with N , i.e.,

for each non-zero profile attribute of α and N , their bitwise ’AND’

operation results in a non-zero profile attribute vector.

9A non-zero profile attribute vector refers to a binary vector that includes the value
“1” in at least one bit
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α→ N→ AND OR XOR Relationship
110 011 010 111 101 α→ ∩p N→

110 010 010 110 100 α→ ∩p N→, α→ ⊃p N→

110 001 000 111 111 α→ ⊗p N→

Table 4.1. Bitwise Operation Results

◃ α→ ⊗p N
→: the profile bounding vector of α is disjoint with that

of N if for each non-zero profile attribute of α and N , their bitwise

’XOR’ operation results in all “1”s in the resultant vector.

Because the spatiotemporal relationships are straightforward, here we

focus on profile bounding vector relationships between an authorization and

a node. First, in case of ⊃p relationship, observe that for every bit value

of ’0’ of α→, the corresponding bit value of N→ must be ’0’ because there

must not exist any profile attribute value that only N→ includes but α→

does not. Therefore, bitwise ’OR’ operation would generate the same value

with α→. Also, in case of ∩p relationship, we need to see if there exists any

common profile attribute value between α and N→. Therefore, if bitwise

’AND’ operation results in a non-zero profile vector, we know that there

exists common value set. Finally, in case of ⊗p relationship, we know α and

N→ should not share any profile attribute value that is common to each

other. The bitwise ’XOR’ operation is used for checking this condition, and

the result of ’XOR’ must include all ’1’s in the resultant N→.

Suppose α→ = ⟨∗∗, 110, ∗∗⟩, which implies that the authorization α is

given to the users with salary < $62,000. Observe that because α evaluates

the profile attributes ’Salary’ only, we do not evaluate other profile attributes
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such as ’Department’ or ’Home Town’. Therefore, as long as a user’s salary

is less than $62,000, she meets the profile conditions of α. Considering the

same P̂1, P̂2, P̂3 in the previous section, suppose N→
1 = P̂1, N

→
2 = P̂2, and

N→
3 = P̂3. We know that N→

1 and N→
2 include a user within this salary

range while N→
3 does not include any user within the specified salary range.

Also, in case of N→
2 , all the value ranges of profile attributes for N→

2 are

also included in α→. Table 4.1 shows the results of bitwise AND, OR, XOR

operations between α→
1 and N→

1 , N→
2 , and N→

3 with their profile bounding

vector relationships.

4.2.2 Authorizations Overlaying

The overlaying strategy traverses the SLP -tree from the root node to leaf

level by recursively comparing both the spatiotemporal extents and P̂ s of

the overlaying authorization and each node in the traversal path. Let us

denote the spatiotemporal extent of a node N as N�, and P̂ as N→. All the

possible scenarios for this comparison are as follows:

• Case 1: If (α� ⊃st N
�) ∧ (α→ ⊃p N

→) is true, we stop traversing and

overlay α on N . This overlaying strategy has several benefits. First of

all, we overlay the authorizations on the first node encountered on the

traversal path that totally encloses the spatiotemporal region and P̂ .

As a result, authorizations are overlaid as high up as possible in the

tree [15]. Because user access request evaluates also from the root node

to the leaf level, authorizations that have been issued for the subject

of the access request would be encountered as early as possible. Due
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to our overlaying strategy, existence of a relevant authorization in the

traversal path for a subject of the access request means that all the

moving objects stored at the subtree rooted at the node are already

authorized. Therefore, we do not need to evaluate authorizations for

the access evaluation process for the subtree. Observe that after over-

laying an authorization on a node, it is not necessary to overlay the

same authorization on any of its descendants.

• Case 2: Else if (α�⊗stN
�) ∨ (α→⊗pN

→) is true, we stop the overlaying

process. This is because, if subjects of α do not have a privilege to

N� or N→, α is not applicable to moving objects stored at the subtree

rooted at N . Also, because N� and N→ includes all the spatiotemporal

extents and P̂ s of all of N ’s descendants, there is no reason to traverse

further to the leaf level.

• Case 3: Else if (α� ∩st N�) ∨ (α→ ∩p N
→) is true, the overlaying

strategy is different depending on the level of N .

◃ If N is a non-leaf node, we traverse to each of N ’s children node C,

and the same comparison between α and C is processed. This is

because there may exist a descendent node whose spatiotemporal

extent and P̂ is enclosed by that of α.

◃ If N is a leaf node, we overlay α on N . This is because at least one

of the moving objects stored in N comply with the spatiotemporal

and profile specification of α. Therefore, in order not to discard

any relevant authorization, we need to overlay α on N .
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Figure 4.16. Authorization Overlaying Process in SLP -tree

Figure 4.16 presents the overlaying process in the SLP -tree. It shows that

a node N1 is a root node of the tree, and N2, N3 are the children nodes of

N1. Consider an authorization α1 to be overlaid on the SLP -tree. α1 cannot

be overlaid on the node N1 since α→
1 ∩p N→

1 , which belongs to the case 3

above. Therefore, we need to traverse down to N1’s children nodes N2 and

N3. The first traversal path is to N2, and α1 can actually be overlaid on N2

because α�
1 ⊃st N

�
2 and α→

1 ⊃p N
→
2 , which is case 1. Another traversal path

to N3 is stopped because α→
1 ⊗p N

→
3 , which belongs to case 2.

4.2.3 User Access Request Evaluation

In this section, we present the details of user access request evaluation. Typi-

cally, a user request is of the form of requesting objects in the area of interest

that satisfy a certain profile criteria. For example, a merchant is interested

in sending promotion deals to mobile customers who are near a mall and

whose salary is greater than $52,000. However, such promotion deals should

be reached to only to the customers who are willing to reveal their salary

information to that merchant (specified in the authorization) to receive the
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promotion deal.

A user request is denoted as U = ⟨s,�, V,m⟩ where s is the subject re-

questing access, � is the spatiotemporal extent that the subject is interested

in, V is interested profile vector, and m the access mode. We denote U.s, U�,

U→, and U.m to denote the subject, the spatiotemporal extent, the profile

vector, and the access mode of the user access request U , respectively. For

example, if a merchant A wants to locate mobile customers who are 10 miles

from the shopping mall and whose salary is greater than $52,000, the user

request would be U =⟨merchant A, circle((50,60),10),⟨011⟩, locate⟩.

Algorithm 4.7 UserAccessRequestEvaluation
1: Input: node N , User Access Request U , Boolean authorized
2: Output: a set of authorized moving objects resultSet
3: if U� ⊗{x,y,t} N

� OR CheckPV(U→, N→) = disjoint then
4: return NIL
5: end if
6: if There exists overlaid authorizations in N then
7: Λ(N)← CheckUserIDAuth(U,N)
8: end if
9: resultSet← NIL
10: if authorized = false AND Λ(N) ̸= ∅ AND N is a non-leaf node then
11: if Λ(N) ̸= NIL AND U� ∩{S,T} N

� AND CheckPV(U→, N→) = disjoint then
12: authorized← true
13: end if
14: else if authorized = false AND Λ(N) ̸= ∅ AND N is a leaf node then
15: for each α in Λ(N) do
16: if N� ∩ U� AND CheckPV(U→, N→) = overlap) then
17: resultSet← resultSet∪ evaluate(α,U,N)
18: end if
19: end for
20: return resultSet
21: end if
22: if authorized = true AND N is a leaf node then
23: return evaluate(U,N)
24: end if
25: for each child c in N do
26: MUserAccessRequestEvaluation(c, U , authorized)

27: end for

Algorithm 4.7 discusses the details of user access request processing. The
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initial function call is UserAccessRequestEvaluation(R,U, false) where R is

a root node of SLP -tree. The evaluation process starts with the root node

by comparing the spatiotemporal extents and the profile vectors of the user

request and each node N involved in the top-down traversal. At the same

time, the evaluation process searches for the relevant authorizations.

Given a user request U , we say an authorization α as relevant to U if

the set of subjects evaluated by α.se includes U.s and U.m ≺m α.m for U.s

overlaid on the node N . We denote the relevant authorizations at a node

N on the tree as Λ(N) ={α ∈ overlaid authorizations on N | U.s ∈ α.se,

U.m ≺m α.m }. The comparison among U , N and Λ(N) during the traversal

results in the following cases.

• Case 1: (U�⊗stN
�) ∨ (U→⊗pN

→) is true: The disjoint relationship

implies that all the moving objects stored at the subtree rooted at

N are not within the spatiotemporal region or do not meet the profile

condition for the user request U . Regardless of the existence of relevant

authorizations for U at N , the moving objects stored at the subtree

rooted at N are not within the user’s interests. Therefore, the traversal

stops regardless of the existence of overlaid authorizations.

• Case 2: (Λ(N) ̸= ∅) ∧ ((U� ∩st N�) ∨ (U→ ∩p N
→)) is true: If N

is a non-leaf node, although all the moving objects stored at the sub-

tree rooted at N are authorized, the user wants to retrieve a subset of

moving objects whose locations are within U� and whose profiles are

enclosed by U→. Therefore, for the subtree rooted at N , we retrieve
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moving objects whose location overlaps with U� and whose profile con-

dition overlaps with U→. We do not need to evaluate authorizations

during the traversal because the subtree rooted at N is already autho-

rized by Λ(N).

If N is a leaf node, because we overlay authorizations on a leaf-node

in an enclosing case as well as overlapping case, not all of the moving

objects in N are authorized. Thus, for all α ∈ Λ(N), return the mov-

ing objects that are located within α� ∩st U
� and whose profiles are

overlapped with α→ ∩p U→.

• Case 3: (Λ(N) = ∅) ∧ ((U� ∩st N
�) ∨ (U→ ∩p N→)) is true: If

N is a non-leaf node, access control decision cannot be made because

there is a possibility that a relevant authorization may be overlaid

on a descendent node of N . Thus, evaluation process repeats for all

the children nodes of N . If N is a leaf node, we reject the access

request because there exists no relevant authorization for U during the

traversal.

• Case 4: (Λ(N) ̸= ∅) ∧ ((U� ⊃st N
�) ∧ (U→ ⊃p N

→)) is true: There

exists at least one relevant authorization for U is overlaid on N . If

N is a non-leaf node, because the spatiotemporal extents and profiles

stored at the subtree rooted at N are authorized, all the moving objects

stored at leaf nodes of the subtree rooted at N are allowed to be ac-

cessed by U.s. Therefore, there is no need to evaluate authorizations on

the subtree rooted at N . In addition, spatiotemporal and profile vector
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SLP -Tree Separate Index Structures
If m < M − k/s Else Index for moving objects Index for profiles
Ω(logmN) Ω(logM−k/s N) Ω(logmN) Ω(logmN)

Table 4.2. Number of Disk Access

comparisons would not be required either because all the moving ob-

jects stored at the subtree rooted at N are within the user’s interests.

If N is a leaf node, some of the moving objects in N may not meet

the conditions set by U . Thus, for all α ∈ Λ(N), the algorithm would

return all the moving objects that are located within α� and whose

profiles are overlapping with those of α→.

• Case 5: Λ(N) = ∅ ∧ ((U� ⊃st N
�) ∧ (U→ ⊃p N

→)) is true: Although

all the moving objects stored at the subtree rooted at non-leaf node

N meet the spatiotemporal and profile conditions of U , access control

decision cannot be made because there is a possibility that a relevant

authorization may be overlaid on a descendent node of N . Thus, eval-

uation process repeats for all the children nodes of N . If N is a leaf

node, we reject the access request because there exists no relevant au-

thorization for U .

Note that, in algorithm 4.7, the operation CheckUserIDAuth() returns

relevant authorizations for U among the overlaid authorizations in the node

N . CheckPV(A,B) returns overlap (if A ∪p B), disjoint (if A ⊗p B), and

enclose (if A ⊃p B). The overloading function evaluate() returns the moving

objects whose location and profile conditions meet the user request, and

which are stored in the leaf node N .
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User Access Request Performance Analysis: We present an informal

analysis of the complexity of user request evaluation by comparing the perfor-

mance between the proposed SLP -tree and the where there are two separate

index structures (one for moving objects and another for profile). For the

discussion, we do not consider authorizations because the overlaying proce-

dure does not change the structure of the tree. Overlaying simply stores the

relevant authorizations on the nodes of the tree, which does not incur any

changes on the structure of the tree.

For the analysis, let us suppose the following:

• N is the number of moving objects: That is, there are N number of

location information and N of profile vectors.

• The number of children (or data) that each non-leaf (or leaf) node

includes is between m and M where 2 ≤ m ≤ M/2: this implies that

the height of the tree is bounded by [logMN , logmN ]

• k is the size of P̂ in bytes

• b is the disk page size in bytes

• s is the size of location information and profile vector (in bytes)

If a tree does not store a P̂ in a node,M = b/s becauseM is the maximum

number of children node or data that can be stored in each disk page without

considering the P̂ . However, in case of SLP -Tree, k bytes are reserved to store
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a P̂ for each node. Thus, the maximum number of data (children) for each

disk page is

(b− k)/s = b/s− k/s (4.1)

= M − k/s (4.2)

Thus, the height of SLP -tree is

• If m < M − k/s, the height = [logm N , logM−k/s N ].

• Else, the height = [logM−k/s N , logm N ]

The number of disk accesses for user request is summarized in 4.2. If

m < M − k/s, it is obvious that the SLP -tree shows better performance

(fewer disk accesses) because in this case, the proposed tree would generate

the exactly same structure of tree as that from the separate index for moving

objects. Thus, separate indexes would need to access the number of nodes

from the profile index additionally than the SLP -tree.
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4.3 LBAC Enforcement under Uncertain Location Estimates

The prior proposals of LBAC systems [7, 10, 18, 54] assume that provided

location measure of moving object is always accurate. For example, in GEO-

RBAC [18], positions can be real or logical: the real position corresponds to

the position on the Earth of the mobile user obtained from location-sensing

technologies such as Global Positioning Systems (GPS) while the logical posi-

tion is modeled as a polygon feature such as city, i.e., a real position acquired

through GPS can be mapped to a corresponding road segment (logical posi-

tion). A spatial role is activated based on the location (either logical or real)

of the user. However, considering the fact that users are moving objects,

most of the time, the provided location information is not precise because

of continuous motion [74]. In fact, most of currently proposed moving ob-

ject databases do not keep the exact location of the moving objects, rather

maintain the approximate value of the location in order to minimize the up-

dates. Therefore, a location measure stored in the moving object database

should be modeled as a region instead. In general, we call this inherent error

of a location measure as location uncertainty. However, if we consider the

inherent uncertainty of location measures, the role activation in GEO-RBAC

cannot guarantee the desired security. In other words, their underlying as-

sumption that any logical position can be computed from real positions by

using specific mapping functions are no longer true because it is possible that

several logical positions can be mapped from a single real position. This may

incur huge risks to the security of the system especially for highly sensitive

resources. Therefore, it is essential that all LBAC systems must incorporate
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the concept of uncertainty within the model.

To the best of our knowledge, the work of Ardagna et al. [6] is the only

LBAC model where uncertainty is considered. They present a model for

representing and evaluating a set of location predicates. Each access request

can gain access to the specified resources only if the confidence level of the

location predicate result exceeds the predefined uncertainty threshold level.

Formally, given an access control rule’s location predicate and a user o, we

need to evaluate the probability po, the chance that o satisfies the given

location predicate, to determine the satisfiability of the predicate (i.e, o is

located within an authorized region R). Given an authorized region R and

o’s uncertainty region denoted as o.ur, po is computed as

po =

∫
o.ur∩R

f(x)dx (4.3)

where x is the location of o in d-dimensional data spaceD, f is the probability

density function (PDF), and o.ur ∩ R is the intersection of o.ur and R.

In other words, po is the confidence level of the location predicate result.

The user o gains access to the resources only if po ≥ pc where pc is the

predetermined predicate threshold. However, their model has the following

limitations: (i) the uncertainty thresholds for location predicates are globally

fixed values, thus lacking the specification power for different situations: for

example, the minimum threshold of location predicate for granting access is

a globally fixed level, and therefore, it cannot differentiate between highly

security-sensitive area and less sensitive area by assigning different confidence

levels; and (ii) resources are assumed to be always static, and therefore, only

MS type of security policies for a mobile environment can be evaluated.
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To address the above limitations, we introduce an access control model

that embeds uncertainty within the model, and allows varying threshold

levels of location predicates. As such, it is possible to differentiate the highly

security sensitive area and less sensitive area in an access control rule. Also,

in addition to MS type of security policies, our model supports SM and

MS type of policies. Although Ardagna et al.’s model can be extended to

support MM and SM type of queries by incorporating location predicates in

specifying resources, the main challenge of supporting them in their model is

the evaluation part, which is the focus of this section: it is hard to evaluate

the resources’ satisfiability to an access request. For example, if location of

employees in a given area are requested, considering the location uncertainty,

the access control enforcement system cannot simply release the location of

employees inside the region since it is still possible that some people who

are believed to be located outside may, in fact, be inside, or vice versa (i.e.,

people believed to be inside may actually be outside). Under Ardagna et

al.’s model, in order to guarantee the correctness of the query results, it may

require to evaluate all the moving objects in the database since they only

allow Boolean queries.

Our main objective in this section is to reduce the cost of location pred-

icate evaluation. There are two main challenges: (i) the computation of

Equation (4.3) is computationally expensive. For example, under the normal

distribution case, o.ur ∩ R is not symmetric with respect to the mean [68],

and therefore, it is expensive to compute; (ii) the size of uncertainty region

grows as time elapses, implying that location predicate evaluation cannot
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be computed in advance. In order to address the first issue, Tao et al. [68]

propose a Monte Carlo based approach. This method generates inputs ran-

domly, performs a deterministic computation using the inputs and aggregates

the results of the individual computations into the final result. However, it

is relatively accurate only if the sampled points are sufficiently large. This is

because, the computation of probability is based on the sampling, the result

of this approach is close to the actual value only if there are enough num-

ber of samples (i.e., at the order of 106 in their experimental study). Even

worse when considering the second problem, in the moving object database,

Equation (4.3) needs to be computed within the reasonable amount of time

because the satisfying condition of location predicate changes as the position

of o is constantly updated. Also, because the size of uncertainty region grows

as time elapses after the last location update, it requires the continuous eval-

uation of the specified location predicates. Therefore, we need to reduce the

cost of computation of po as much as possible.

Our proposed approach is to find the upper and lower bounds of the

region to be evaluated, essentially identifying two regions: (i) the first, called

Rmin, is the region that guarantees the correctness of the location predicate

evaluation if the location estimate is within this region, and (ii) the second,

called Rmax, is the region where any location measure outside of this region

is guaranteed to have no probability to satisfy the given predicate. Once

these regions are found, the cost of location predicate evaluation process

is significantly reduced because it requires simple location containment test

to evaluate the predicate correctness for most of location measures instead
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of expensive computation of Equation (4.3). More specifically, instead of

computing po by using Equation (4.3) for all the location measures, we take

the following steps:

1. Those objects which are located outside of Rmax are filtered out from

the candidate set for examining their satisfaction for the given predi-

cate;

2. Among the objects located within Rmax, we do not need to evaluate po

of those objects located within Rmin because it is guaranteed to have

po ≥ pc;

3. po needs to be computed only for those objects located in the uncertain

region, i.e., Rmax−Rmin. In order to minimize the cost of po evaluation,

our objective is to minimize the area size of Rmax −Rmin.

To further reduce the uncertain region that requires the evaluation of

Equation (4.3), i.e., Rmax − Rmin, we propose to compute R′
min and R′

max.

Essentially, R′
min and R′

max work same as Rmin and Rmax respectively, but

these filters significantly reduce the area of the uncertain region when com-

pared to the case of using Rmax and Rmin. In addition to improving the

performance of spatial filters, we extend our approach so that our evaluation

does not make any specific assumptions about f . Obviously, the problem

would be much easier if f is already known. Instead, we aim to develop a

”unified” solution that can support any arbitrary PDF distribution. We dis-

cuss how to generate Rmax and Rmin (or R′
max and R′

min) while minimizing

the uncertain region Rmax −Rmin (or R′
max −R′

min).
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Our main contributions in this section are the following:

• We introduce an authorization model that takes the uncertainty of

location measures into consideration for evaluation of access requests

• For efficient predicate evaluation process, we propose a set of spatial

filters to efficiently prune out most of objects. We show how these

filters can be constructed and maintained, and provide algorithms to

process access requests.

• We demonstrate through an extensive experimental evaluation that our

algorithms are both efficient in practical situations and significantly

outperform other approaches.

4.3.1 LBAC Model under Uncertain Location Estimates

In this section, we introduce a location-based access control model by extend-

ing the GSAM [7, 8], that is suitable when inherent uncertainty is involved

with moving object data. An access control rule, in general, is specified

on the basis of three parameters, ⟨s, o, p⟩ which states that s is authorized

to exercise privilege p on resource o10. However, this basic access control

rule lacks specification power to include moving object data since an access

control rule should be capable of specifications based on spatiotemporal at-

tributes of both subjects and resources that are functions of time. In the

following, we extend the basic authorization to accommodate this.

10‘Object’ is a more general term to specify o, but in order not to confuse with moving
objects, we specify o as ’resource’ throughout the section.
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Definition 4.3 (Access Control Rule) An access control rule is a triple

of the form ⟨se, re, pr⟩ where se is a subject expression that denotes a set of

authorized subjects, re is a resource expression that denotes a set of authorized

resources, and pr is a set of privilege modes that denotes the set of allowed

operations.

In this section, we use P to denote the set of access control rules stored

in the LS. Given an access control rule α ∈ P, se(α), re(α) and pr(α) denote

the set of subjects satisfying subject expression, the set of resources satis-

fying resource expression, and the set of privileges, respectively, of α. Also,

α(Rr) and α(Rs) denote the authorized region specified in se(α) and re(α),

respectively. In the following, we discuss these concepts in detail.

Definition 4.4 (Subject Expression) A subject expression is a triple of

the form ⟨R, sc, ue⟩ where R is the role to which the subject belongs, sc is the

location predicate, called scene, which can be associated with a set of geospatial

and temporal extents, and ue is an uncertainty expression associated with a

scene.

Similar to subject expression, a resource expression includes (i) an object

type t which evaluates the membership of the object in categories, or val-

ues of properties on metadata, and (ii) location predicate with uncertainty

expression.

Definition 4.5 (Resource Expression) A resource expression is a triple

of the form ⟨t, sc, ue⟩ where t the object type to which the resource belongs,
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sc is a location predicate, called scene, which can be associated with a set of

geospatial and temporal extents, and ue is an uncertainty expression associ-

ated with a scene.

In this section, we assume the formalism developed in [8] to specify R

and sc in a subject expression. Due to space limitations, we do not review

the details. In short, R refers to a role in RBAC with roles organized as

a hierarchy, and sc is a conceptual event or region that can be mapped

to a set of bounding boxes represented with ⟨label, lt, lg, h, w, [tb, te]⟩ where

label is a descriptive scene name, ⟨lt, lg, h, w⟩ denotes latitude, longitude,

height and width of a bounding box covering a geographic area of the scene

during temporal period between tb and te
11. An object type o in an object

expression can be organized into a hierarchy similar to a role hierarchy. In

[8], only geospatial objects are considered, but it can be extended to support

other types of objects as well. An uncertainty expression ue is a logical

expression denoting uncertainty level of the corresponding scene in both se

and re. As we have discussed in Section 3.2.2, any location measure stored

in the database includes inherent uncertainty.

Definition 4.6 (Uncertainty Expression) Given α ∈ P and a finite set

of scenes S = {sc1,sc2,· · · ,scm} used in se(α) or re(α), an uncertainty ex-

pression, denoted as ue(α), is defined as follows:

11Actually, sc corresponds to the inarea() location predicate in [5]. In this section,
we mainly focus on this type of predicate evaluation because other location predicates
introduced in [5] is a special case of the proposed approach. For example, in case of
velocity, it is the special case of the proposed approach with one dimensional space, and
thus, the proposed approach is general enough to evaluate other location predicates.
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• If sci is a scene, op ∈ {=, ̸=, <,>,≤,≥}, and pc is a real number in

the range from 0 to 1, si op pc is a ue.

• If ue1 and ue2 are two uncertainty expressions, ue1 ∧ ue2, ue1 ∨ ue2,

¬ue1, and (ue1) are ue.

Although we allow any logical operator (i.e, =, ̸=, <,>,≤,≥) for speci-

fying ue, we particularly focus on ≥ operator in this section since it plays

an important role to prune out moving objects (either subjects or resources)

that do not satisfy the uncertainty threshold specification (i.e., pc). Evalu-

ation of scene (location predicate) results in the following form [result set,

timeout] stating that each element in the result set includes a moving object

and its corresponding confidence level, and every element in the result set

exceeds the specified uncertainty threshold level in the corresponding uncer-

tainty expression. More specifically, the confidence value of each object o,

denoted as po, is compared with the predetermined value of threshold in ue,

denoted as pc, and those objects whose confidence level is greater than the

threshold are included in the result set. Although [6] requires two thresholds

for accepting or rejecting the evaluation, without loss of generality, we only

require one threshold for evaluating location predicates. Also, the timeout

represents the time validity of the result. This timeout takes into account

that location values may change rapidly, even during policy evaluation. After

it is expired, scene must be reevaluated to guarantee the correctness of the

evaluation since the location measures are constantly updated.

• α1 = ⟨{operations dept(x)}, {truck(y), New York City(y), New York City
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≥ 0.7}, {track}⟩: This rule states that the operations department

can track the locations of dispatched trucks that are currently located

within New York City with greater than 70 % confidence.

• α2 = ⟨{Security manager(x), server farm room(x), server farm room

= 1.0},

{mobile network(y)}, {read ∧ write }⟩: This rule states that all security

mangers who are currently located within the server farm room with

confidence level of 100% can read or write the mobile network data.

• α3 = ⟨{Supervisor(x), office building(x), office building≥ 0.8}, {employee(y),

office building(y), office building ≥ 0.9}, {locate} ⟩: This rules states

that all supervisors who are currently located within the office building

with confidence level greater than 80 % can locate their employees who

are also currently located within the building with greater than 90 %

confidence level.

The access control rules α1, α2, α3 refer to SM, MS, and MM type re-

spectively. Each access control rule has its own uncertainty level specified for

location predicates. We consider that the network configuration in a server

farm room in α2 is the most highly sensitive to security because configuration

must be performed according to the highest security standards. Therefore,

100% of location confidence should be guaranteed to do such a job. Access-

ing the locations of employees in the office building is considered less critical

but still to be handled in a highly secured environment and to be granted

only to selected personnel, according to the laws and regulations in force [5].
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Finally, we consider tracking dispatched trucks for operational purposes as

the lowest critical to security.

4.3.2 Security Policy Evaluation of Uncertain Location Samples

Here, we present our proposed approach that evaluates access control policies

efficiently. Then, our solutions considering certain reasonable assumptions

are described.

Proposed Approach: Using Rmin and Rmax

Our approach is to find two regions: (i) the first region, called Rmin, is the

region that guarantees the correctness of the location predicate evaluation if

the location estimate is located within this region, and (ii) the second region,

called Rmax, is the region where any location measure located outside of this

region is guaranteed to have no probability to satisfy the given predicate.

Formally, given an authorized region R = [a1, b1] × [a2, b2] × · · · × [ad, bd]

⊆ D where ai < bi for i = 1, 2, · · · , d, we want to find cin, cout ≥ 0 such

that Rmin := [a1 + cin, b1 − cin]× [a2 + cin, b2 − cin]× · · · × [ad + cin, bd − cin]

(ai+ cin < bi− cin for i = 1, 2, · · · , d) and Rmax := [a1− cout, b1+ cout]× [a2−

cout, b2+cout]×· · ·× [ad−cout, bd+cout] (ai−cout < bi+cout for i = 1, 2, · · · , d)

where ∀o ∈ O, min(po) ≥ pc if loc(o) is contained in Rmin and max(po) < pc

if loc(o) is contained in outside of Rmax.

Figure 4.17 illustrates Rmin and Rmax. In case of Rmin, the original

authorized region R is reduced to Rmin by cin in every dimension so that

if any location measure loc(o) that is stored in the last update is contained
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uncertainty threshold r

2r

2a

a

a

Figure 4.18. Approxi-
mation of Uncertainty
Region

within Rmin, we can guarantee that po ≥ pc. Therefore, in case of o1, it is

guaranteed to have po1 ≥ pc because loc(o1) is located within Rmin. Similarly,

any location measure loc(o) outside of Rmax is guaranteed to satisfy po <

pc. For example, o2 is located outside of Rmax, i.e., loc(o2)is contained in

D − Rmax, and thus, po2 < pc holds. However, we do not know how the

result of location predicate evaluation for any location measure located in

Rmax − Rmin. Therefore, in this case, we have to manually compute po for

any o ∈ O located within this region, i.e., we should evaluate po3 in order

to see if po3 ≥ pc holds. This example illustrates that it is important to

have Rmax − Rmin as small as possible. In other words, our objective is to

compute the minimized value of cin and cout and therefore, the number of

computations for Equation (4.3) is minimized as well.

Obviously, the main benefit of our proposed approach is that the cost

of location predicate evaluation process is significantly reduced once Rmin

and Rmax are computed because it requires simple location containment test
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to evaluate the predicate’s correctness for most of location measures instead

of expensive computation of Equation (4.3). Throughout the section, we

restrict our discussion on 2-dimensional space for its easiness to illustration.

However, it is simple to extend to a higher dimensional space.

Uniform Distribution Case

Here we discuss how to compute the value of cin and cout to find corresponding

Rmin and Rmax when uncertainty region is approximated with square under

the assumption of uniform distribution.

Approximation of Uncertainty Region: Suppose a security policy is

evaluated over a moving object o ∈ O in 2-dimensional data space D. For

example, o is one of the resources (or subjects) in SM (or MS) type of policies

while o can be both resources and subjects in MM. Also, an authorized

region R is specified in either se or re or both. In case of a circular shape

of o.ur centered at (µx1 , µx2) with radius r (µx1 , µx2 ≥ 0), its PDF f(x1, y1)

(x1, y1 ≥ 0) is defined as

f(x1, x2) =

{
g(x1, x2) if(x1 − µx1)

2 + (x2 − µx2)
2 ≤ r2

0 otherwise

(4.4)

where g(x1, x2) is a probability distribution such as uniform or bivariate

normal distribution. Then, po is defined as

po =

∫ min(b1,µx1+r)

max(a1,µx1−r)

∫ min(b2,µx2+
√

r2−(x1−µx1 )
2)

max(a2,µx2−
√

r2−(x1−µx1 )
2)

f(x1, x2) dx2 dx1

However, it turns out that even with the uniform distribution, the evaluation

of Equation (4.5) is very expensive. We can use square instead of circle for



106

representing an uncertainty region for computing Rmin and Rmax. Figure

4.18 illustrates that we use two squares to approximate the circular shape

of uncertainty region. For example, in case of Rmin, we can use a rectangle

whose circumcircle passes through all the vertices of it: the inner square with

edge’s size= 2a where a = r√
2
because the radius of the circumcircle is the

same as the radius of the polygon as shown in the figure. This is because we

want to have the minimum value of po for objects located within Rmin satisfy

po ≥ pc. Then, the size of area(R∩ o.ur) is getting smaller, implying that po

is getting smaller compared to the original value of po. Given an uncertainty

region o.ur with circle shape where the center is (µx1 , µx2) and the radius of r,

the corresponding rectangle becomes [µx1− r√
2
, µx1+

r√
2
]×[µx2− r√

2
, µx2+

r√
2
].

In case of Rmax, we want to have ∀o ∈ O po ≤ pc satisfied. Thus, we want

to find a rectangle whose incircle is o.ur, illustrated with an outer rectangle in

Figure 4.18. Then, the area(R∩o.ur) is getting larger, implying that po is also

getting larger. Because the incircle’s radius is the apothem of the rectangle,

the corresponding rectangle becomes [µx1−r, µx1 +r]× [µx2−r, µx2 +r] when

the uncertain region’s circle with the center (µx1 , µx2) and the radius of r.

Now, we are ready to discuss how to compute the value of cin and cout to

find corresponding Rmin and Rmax under the uniform distribution assump-

tion. We represent the uncertainty region as square where each side’s width

is 2r without loss of generality for simple representation. Under the uniform

distribution assumption, po is computed as

po =
area(o.ur ∩R)

area(o.ur)
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where area() returns the area of the given region.

Finding Minimal cin: Let w and h be the width and height of o.ur ∩ R,

respectively, implying area(o.ur ∩R)= w · h. In order to find the minimized

value of cin, consider the case where po is minimized but still satisfies po ≥ pc,

i.e., for all oi located within Rmin, mini(poi) ≥ pc is satisfied. In this case, we

can set m = min(w, h) without loss of generality. Then, from Equation (4.5),

the inequality m2

area(o.ur)
≥ pc holds, implying (r+cin)

2

πr2
≥ pc since m = r + cin

when po is minimized. Because we want to find the minimum value of cin, we

can set cin = max(r(
√
πpc−1), 0). Therefore, Rmin is computed by shrinking

R by cin in each dimension. One thing to notice is that we cannot fix the

value of cin in advance because the size of uncertainty is dependent on the

elapsed time after the last update as illustrated in Section 3.2.2.

Finding Minimal cout: In order to find the minimal value of cout, consider

the case where po is maximized while still satisfying po ≤ pc. Let w and h be

the width and height of o.ur∩R. Observe that po is maximized when w = 2r

and h = r − cout or vice versa.12 In this case, area(o.ur ∩ R) = 2r(r − cout).

Then, the inequality 2r(r − cout) ≤ pcπr
2 holds from Equation (4.5), which

implies cout ≥ (1 − 1
2
πpc)r. Because we want to find the minimum value of

cout, we can set cout = max((1− 1
2
πpc)r, 0).

Example 4.1 Given R = [10, 20]× [10, 20], pc = 0.4, and r = 1, cin and cout

become cin = 0.1270 and cout = 0.3717. Thus, Rmin is [10.1210, 19.8790] ×

[10.1210, 19.8790], and Rmax = [9.6283, 20.3717]× [9.6283, 20.3717].

12This is because of an implicit assumption of the condition cout ≤ r since we want to
have area(Rmax) ≤ area(R).
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Figure 4.20. Properties of Probabilis-
tically Constrained Line

General Probability Distribution Case

In this section, we discuss how to compute the value of cin and cout without

assuming any specific probability distribution. In order to do so, let us first

define basic concepts, which are used to compute cin and cout.

Probabilistically Constrained Lines: Given o.ur and pc, we can define

two lines, Li and Hi, for each dimension i. Figure 4.19 illustrates 2D example

of L1, H1, L2, and H2. Line L1 divides o.ur into two parts (on the left and

right of L1 respectively) and the probability of o being actually located in

the right part of o.ur equals pc. Similarly, H1 is such that the likelihood of

o in fact located on the left of H1 equals pc. Lines L2 and H2 are obtained

in the same way, except that they horizontally partition o.ur. Because the

probability distribution can be skewed, it is possible that the Euclidian dis-

tance between H1 and loc(o) is not necessarily same as that between L1 and

loc(o). Similarly, the distance between H1 and loc(o) can be different from

that between H2 and loc(o). Figure 4.19 illustrates that f(x) is more dense
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in the left part than the right one of o.ur. Although we illustrate these lines

using the 2D example in Figure 4.19, it is straightforward to extend to ar-

bitrary dimensionality. Let us denote o.ur ∩ L+
i is intersection of o.ur and

the half-plane by xi ≥ Li. Similarly, o.ur ∩ H−
i is intersection of o.ur and

the half-plane by xi ≤ H−
i . For example, o.ur ∪ L+

1 is the right part of o.ur

divided by L1. The probabilistically constrained lines, Li and Hi are formally

defined as follows:

Definition 4.7 (Probabilistically Constrained Line) Given an uncer-

tainty area o.ur and pc in the d-dimensional data space, for i = 1, · · · , d,

Li and Hi are lines that are perpendicular to the i-th dimension, and P{o is

located within o.ur ∩ L+
i } =

∫
o.ur∩L+

i
f(x)dx = pc, and P{o is located within

o.ur ∩H−
i } =

∫
o.ur∩H−

i
f(x)dx = pc

In fact,
∫
o.ur∩L+

i
f(x)dx and

∫
o.ur∩H−

i
f(x)dx refer to the marginal distribu-

tion of o’s location in xi dimension. Therefore, although evaluating Equation

(4.3) is costly, finding probabilistically constrained lines can actually be ob-

tained with small overhead because it can be computed by considering each

individual dimension in turn [68]. For example, in order to compute L1 and

H1, we use the cumulative density function F (x) (i.e., P{Xi ≤ Hi}) of f(x)

on the horizontal dimension. Specifically, H1 can be decided by solving x1

from equation F (x1) = pc because F (x) is the probability that o appears on

the left of a vertical line intersecting the axis at x, and similarly L1 from

F (x1) = 1 − pc. If the probability distribution is already known such as

uniform distribution or multivariate normal distribution, F (x1) can be easily
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derived into a simple formula [68].

Properties of Probabilistically Constrained Line: In Figure 4.20, an

object o1 meets with the left boundary of R, and L2 of o1 overlaps with the

lower boundary of R. Here, for any object o, loc(o) located vertically higher

than loc(o1) will in turn have higher po than po1 until o.ur meets with the

upper boundary of R (illustrated as o2 in Figure 4.20). If there is any other

object o′ whose loc(o′) is located higher than loc(o2) vertically, po′ will be

smaller than po. Therefore, the relationship of po1 < po ≤ po2 < po′ exists.

Also, observe that for any object o, loc(o) located east of o1 horizontally will

have po = po1 until o.ur meets with the right boundary of R (illustrated as

o3 in Figure 4.20). These observations are formalized as follows.

Observation 1 For an authorized region R = [a1, b1]× [a2, b2]×· · ·× [ad, bd]

⊆ D (ai < bi for i = 1, 2, · · · , d) with the corresponding pc and the uncer-

tainty threshold r:

1. For any pc, a moving object o is guaranteed to satisfy po ≥ pc if (i)

loc(o).xi+ r ≤ bi, (ii) for j ∈ {1, · · · , d}−{i}, xj ∈ [aj + r, bj− r], and

(iii) o’s Li ≥ ai.

2. For any pc, a moving object o is guaranteed to satisfy po ≥ pc if (i)

loc(o).xi− r ≥ bi, (ii) for j ∈ {1, · · · , d}−{i}, xj ∈ [aj + r, bj− r], and

(iii) o’s Li ≤ bi.

The conditions (i), (ii), and (iii) in Observation 1.1 and 1.2 show the bound-

ary conditions of satisfying po ≥ pc for given pc, r, and R. In Figure 4.20, we
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only consider an object o whose loc(o).x1 is located in the horizontal dashed

line (the line between loc(o1) and loc(o3), which is specified as (ii) in 1.1 and

1.2) and loc(o).x2 is located in vertical dashed line (the line between loc(o1)

and loc(o2), which is specified as (i) and (iii) in Observation 1.1 and 1.2).

Another interesting observation is that after finding objects such as o1

(i.e., o1’s Li is overlapped with the boundary of R in xi dimension, we can

define the half-plane such that one of the half-plane is guaranteed to have

po < pc as long as loc(o) is located within it. For example, in Figure 4.20,

given any object o, if loc(o) is located below loc(o1) vertically (i.e., loc(o).x2 <

loc(o1).x2) will have po < pc because the area o.ur ∩ R is getting smaller as

loc(o) moves down further from loc(o1). This observation can be formally

defined as follows:

Observation 2 For an authorized region R = [a1, b1]× [a2, b2]×· · ·× [ad, bd]

⊆ D (ai < bi for i = 1, 2, · · · , d) with the corresponding pc and the uncer-

tainty threshold r:

1. For any pc, o is guaranteed to satisfy po < pc if loc(o).xi ¡ loc(oj).xi

where (i) oj’s Li is located at xi = ai and (ii) for j ∈ {1, · · · , d} − {i},

xj ∈ [aj + r, bj − r].

2. For any pc, a moving object o is guaranteed to satisfy po < pc if loc(o).xi

¿ loc(oj).xi where (i) oj’s Hi is located at xi = bi and (ii) for j ∈

{1, · · · , d} − {i}, xj ∈ [aj + r, bj − r].
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In Observation 2.1 and 2.2, the object oj refers to o1 and o4 in the cases of

L2 and H2 respectively.

Now, we are ready to discuss how to compute the value of cin and cout

to find corresponding Rmin and Rmax without assuming any specific dis-

tribution. Once we have computed probabilistically constrained lines, it is

straightforward to compute cin and cout.

Finding cin: In order to find the value of cin, consider the case where po

is minimized but still satisfies po ≥ pc. In fact, o1 in Figure 4.20 shows such

a case. In order words, for any object oi, if the Euclidean distance between

loc(oi).xi and ai is less than that of loc(o1) from Li, Po < pc is ensured by

Observation 2. However, if the Euclidean distance between loc(oi).xi and ai

is larger than that of loc(o1) from Li (but still loc(oi).xi + r < bi satisfied),

Po ≥ pc is ensured by Observation 1. This implies that the minimum dis-

tance to make po ≥ pc satisfied is the distance between o.ur’s center and

its corresponding Li, and this distance can be used as cin. Similarly, Hi is

used to find such a case where po ≤ pc is ensured, i.e, the minimum distance

between loc(o).xi and bi is the distance of loc(o4).xi and Hi.

As we discussed earlier, in the general probability distribution case, f(x)

can be skewed, and therefore, these two distances can be different. Similarly,

it is also possible that these distances can be different among different di-

mensions, i.e., dist(loc(o).x1, L1) ̸= dist(loc(o).x2, L2) where dist(A,B) is the

Euclidian distance between A and B. Therefore, we cannot set cin simply

considering one dimension. In this section, we solve this problem of skewness

by applying Observation 1 in a ”conservative way.” For example, in Figure
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4.20, assume {dist(loc(o1), a1) = 1, dist(loc(o4), b1) = 1.5, dist(loc(o′1), a2) =

0.5, dist(loc(o′4), b2) = 3}13 for a given R and pc where o′1 (or o′4) are the

objects whose L2 (or H2) overlaps with L2 (H2) and its loc(o′1) or loc(o
′
4) is

located within [a1 + r, b1 − r]. Then, we want to set cin = 3 because po ≥ pc

will guarantee to be satisfied in every dimension. Then, Rmin is computed by

shrinking R by cin in each dimension. In this way, we can guarantee that any

location measure located within Rmin can guarantee po ≥ pc by Observation

1. This is formalized as the following:

cin = max
i
{dist(loc(oLi ), ai), dist(loc(oHi ), bi)} for i = 1, · · · , d

where oLi is the object whose Li overlaps with ai and for j = {1, · · · , d}−{i},

loc(oLi ).xj is located within [aj + r, bj − r], and oHi is the object whose Hi

overlaps with bi and for j = {1, · · · , d} − {i}, loc(oHi ).xj is located within

[aj + r, bj − r].

Finding cout: In order to find the value of cout, consider the case where

po is maximized while still satisfying po < pc. Because for any object oi, if

the Euclidean distance between loc(oi).xi and ai is less than that of loc(o1)

from Li, Po < pc is ensured by Observation 2, but if the Euclidean distance

between loc(oi).xi and ai is larger than that of loc(o1) from Li (but still

loc(oi).xi + r < bi satisfied), Po ≥ pc is ensured by Observation 1. This

implies that the maximum distance to make po < pc satisfied is the dis-

tance between o.ur’s center and its corresponding Li, and this distance can

be used as cout. Similarly, Hi is used to find such a case where po < pc is

13o′1 and o′4 are not illustrated in Figure 4.20
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ensured, i.e, the maximum distance between loc(o).xi and bi is the distance

of loc(o4).xi and Hi. Similar to the case of cin, we follow a conservative

way to address skewness issue of general probability distribution. For exam-

ple, assume {dist(loc(o1), a1) = 1, dist(loc(o4), b1) = 1.5, dist(loc(o1), a2) =

0.5, dist(loc(o2), b2) = 3} for a given R and pc. Then, cout = 0.5, and Rmax is

computed by enlarging R by cout in each dimension. In this way, we can guar-

antee that any location measure located outside Rmax can guarantee po < pc

by Observation 1 and 2.

cout = min
i
{dist(loc(oLi ), ai), dist(loc(oHi ), bi)} for i = 1, · · · , d

where oLi is the object whose Li overlaps with ai and for j = {1, · · · , d}−{i},

loc(oLi ).xj is located within [aj + r, bj − r], and oHi is the object whose Hi

overlaps with bi and for j = {1, · · · , d} − {i}, loc(oHi ).xj is located within

[aj + r, bj − r].

4.3.3 Further Improvements on Uncertainty Evaluation

Authorized region R Authorized region RAuthorized region R
1

o1

Authorized region R
2

r

r

k

dist(loc(o2)x2, L2)
L2

L2

o2

Figure 4.21. Location of L2 for o2 and o2

In this section, we discuss how we can further improve the performance

of the proposed filters, Rmin and Rmax. Specifically, we utilize Li and Hi
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introduced in Section 4.3.2 to generate a tighter filter, called as R′
min and

R′
max. Essentially, R

′
min and R′

max work same as Rmin and Rmax respectively,

but these filters significantly reduce the area of the uncertain region when

compared to the case of using Rmax and Rmin. Let us define basic concepts

first. Based on the probability distribution of f(x) and pc, L2 may appear in

the north of loc(o).x2 or south of loc(o).x2. Figure 4.21 illustrates that o1’s

L2 appears south of loc(o1). If this is the case, when loc(o1) = (a1 + r, a2 +

dist(µx2 , L2)), po1 = pc is satisfied. If L2 appears in the south of loc(o).x2

(illustrated as o2 in Figure 4.21), when loc(o1) = (a1 + k, a2 − dist(µx2 , L2)),

po1 = pc is satisfied as well according to Observation 1. We denote such

objects (i.e., o1 and o2 in Figure 4.21) as orpt, which is formalized as

Definition 4.8 (orpt) Given R = [a1, b1] × [a2, b2] × · · · × [ad, bd], oLi
rpt is

the object such that its Li overlaps with ai, and for j = {1, · · · , d} − {i},

loc(o).xj = aj + k where

k =

{ √
r2 − dist(Li, loc(o).x2)2 if loc(orpt).xi > ai

r otherwise

Similarly, oHi
rpt is the object such that its Hi overlaps with bi, and for j =

{1, · · · , d} − {i}, loc(o).xj = bj + k where

k =

{ √
r2 − dist(Hi, loc(o).x2)2 if loc(orpt).xi < bi

r otherwise

The benefit of orpt is that we can define the following lemmas, which is used

to find spatial filters that would perform better than Rmin and Rmax.

Lemma 4.1 For an authorized region R = [a1, b1] × [a2, b2] × · · · × [ad, bd]

(ai < bi) with the corresponding pc and the uncertainty threshold r, po < pc
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Figure 4.22. Illustration of R′
min and Uncertain regions

is satisfied, if loc(o) is located outside of the region R′
max = [a1 + kL

1 , b1 −

kH
1 ]× · · · × [ad + kL

d , bd − kH
d ] where for i = 1 · · ·n,

kL
i =

{
dist(loc(oLi

rpt).xi, ai) if loc(orpt).xi > ai
−dist(loc(oLi

rpt).xi, ai) otherwise

kH
i =

{
dist(loc(oHi

rpt).xi, bi) if loc(orpt).xi < bi
−dist(loc(oHi

rpt).xi, bi) otherwise

proof sketch: The proof is straightforward by using Observation 2. From

Observation 2.1, any object o whose loc(o).xi < loc(oLi
rpt).xi has po < pc.

Therefore, the half-plane xi < loc(oLi
rpt).xi refers to the region that will have

po < pc. Similarly, from Observation 2.2, any object o whose loc(o).xi >

loc(oHi
rpt).xi has po < pc. Therefore, the half-plane xi > loc(oHi

rpt).xi refers to

the region that will have po < pc. Thus, the region outside of [loc(oL1
rpt).x1,
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loc(oH1
rpt).x1]× · · · [loc(oLd

rpt).xd, loc(o
Hd
rpt).xd] ensures po < pc if loc(o) is located

in that space for any object o.

Lemma 4.2 For an authorized region R = [a1, b1] × [a2, b2] × · · · × [ad, bd]

(ai < bi) with the corresponding pc and the uncertainty threshold r, po ≥ pc

is satisfied, if loc(o) is located within the region R′
min =

∪
j=1···d[loc(o

Lj

rpt).x1,

loc(o
Hj

rpt).x1]× [loc(o
Lj

rpt).xd, loc(o
Hj

rpt).xd]

proof sketch: The proof is straightforward by using Observation 1. In

each dimension i, [loc(oLi
rpt).x1, loc(o

Hi
rpt).x1] × · · · × [loc(oLi

rpt).xd, loc(o
Hi
rpt).xd]

is the region that guarantees po ≥ pc by Observation 1. Therefore, the union

of these regions for each dimension would generate a region that guarantees

po ≥ pc.

Then, R′
max − R′

min is the only region that requires the evaluation of

Equation (4.3) because outside of R′
max implies that po < pc is there is any

object whose location measure is located within there while if R′
min specifies

that po ≥ pc is ensured is any object o whose location measure is located

within Rmin. Figure 4.22 present R′
min and R′max (union of R′

min and four

uncertain regions in the figure).

4.3.4 Evaluation of Imprecise Access Requests

The imprecision of location measures implies that given α ∈ P , either se(α)

if location predicate is included, or re(α), if location predicate is included,

cannot be evaluated deterministically. Instead, it is natural to assign a proba-

bility value to the requester’s answer to access request results. This approach
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is similar to uncertain databases [77] where each object in the query results

is associated with the probability value such as (oi, pi) where oi is the object

and pi is the quantification of probability that oi satisfies the query.

Definition 4.9 (Imprecise Access Request) An imprecise access request

(IAR) is the form of ⟨user id,re,action,pq⟩ where user id is the identifier of

the user who submits the request, re is a resource expression, action is the

requested action, and pq is the probability threshold that the probability quan-

tification (pi) of each resource that evaluates re be true must satisfy (i.e.,

pi ≥ pq must holds).

Given an IAR q, user id(q), re(q), action(q), pq(q) will denote the user,

the action, the set of resources evaluated by the resource expression, and

pq of q. The result of IAR is a set of resources that are allowed to gain

access to and their quantification probability pi is greater than or equal to

pq. Given an IAR, LS evaluates P to find all the relevant rules P ′ ⊆ P that

are applicable to the requester. Then, we need to find if ∃α ∈ P ′, the objects

specified by re(α) contains each u specified by re(q). Algorithm 4.8 describes

the detailed IAR processing by utilize of the proposed Rmin and Rmax (or

R′
min and R′

max).

4.3.5 Experiments

This section experimentally evaluates the efficiency of the proposed tech-

niques. o.ur is represented as a circle centering at loc(o) with radius r. The

PDF of o.ur is uniform or truncated bivariate normal distribution (in short
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Algorithm 4.8 IAR Processing

1: Input: a set of authorizations P and IAR q
2: Output: a set of authorized objects O′ ⊆ O where for each oi ∈ O,

pi ≥ pq(q).
3: for each α ∈ P do
4: if q is MM or MS then
5: retrieve the uncertainty region o.ur of user id(q) from the LS
6: compute Rmax and Rmin from α(R)
7: if loc(o) is contained inRmin then
8: Oc ← Oc∪ re(α)
9: else if loc(o) is contained in D −Rmax then
10: do nothing
11: else if po ≥ pc then
12: Oc ← Oc∪ re(α).
13: end if
14: else
15: if se(α) includes user id(q) then
16: Oc ← Oc∪ re(α)
17: end if
18: end if
19: end for
20: if q is SM or MM then
21: Compute Rmax and Rmin from α(Rr)
22: Range query of resources located within Rmin, denoted as Oc1

23: Range query of resources location within Rmax−Rmin, denoted as Oc2 .
24: O′ ← result of set intersection operation of Oc1 and Oc

25: O′′ ← result of set intersection operation of Oc2 and Oc

26: for each o ∈ O′′, remove it from O′′ if po < pc
27: return O′ ∪O′′

28: else
29: O′ ← result of set intersection operation of Oc and re(q)
30: return O′

31: end if
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trc-norm) with covariance= 0 and σx1 = σx2 . Specifically, for uniform, o falls

at each position in o.ur with equal probability. The definition of trc-norm is

based on the traditional bivariate normal distribution, but its value is either

bounded below or above (or both). Here, o must be limited within o.ur.

Therefore, given a bivariate normal probability distribution g(x), we first

calculate the value of c =
∫
x∈o.ur g(x)dx, and then f(x) is formulated as

f(x) =

{
g(x)/c if x ∈ o.ur
0 otherwise

The performance of proposed filters is measured as the average time (in

seconds) of computing the filters and the size of uncertain region (i.e., Rmax−

Rmin and R′
max − R′

min). The algorithms to compute Rmin, Rmax, R
′
min and

R′
max are implemented in MATLAB 7.0.4. All the experiments are performed

using a machine with 1.8GHz Intel CPU and 3GB memory.

Uniform Distribution

Figure 4.23 and Figure 4.24 show the experimental results of cin and cout

for various values of pc and r respectively. As Figure 4.23 illustrates, the

value of cin is increased while the value of cout is decreased with respect
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to the increasing value of pc when r is fixed as 1. In case of cin, this is

expected because in order to have Rmin guarantee the correctness of the

given location predicate evaluation, the size of Rmin should be smaller (or

cin is increased) as pc is increased. However, the size of Rmax gets smaller

(or cout gets smaller) as the value of pc is increased, which is also expected

because higher threshold value implies that smaller number of objects satisfy

this threshold. Figure 4.24 illustrates that both cin and cout is increased with

respect to the increasing value of r when pc = 0.4. This is because both cin

and cout have the positive relationship with r in the formulae.

Figure 4.25 and Figure 4.26 show the experimental results of the uncertain

area for various values of pc and r respectively. As Figure 4.25 illustrates,

the uncertain area of Rmax − Rmin decreases until it reaches pc = 0.6. After

that point, Rmax −Rmin increases again. This is because cin increases while

cout decreases as pc increases in Figure 4.23. Therefore, Rmax −Rmin can be

minimized when cin + cout is minimized, which occurs at pc = 0.6. In case of

R′
max −R′

min, the uncertain area keeps increasing until pc = 0.5 and then, it

stays at the same size of uncertainty region. This is because the value of k
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in Definition 4.8 keeps increasing until it reaches pc = 1/2, and k = r after

that level. Therefore, the size of uncertain region keeps increasing before

pc = 1/2 and then it remains constant. When we compare both approaches,

it clearly shows that R′
max−R′

min shows much better performance than that

of Rmax − Rmin. Figure 4.26 illustrates that uncertain areas are increased

with respect to the increasing value of r when pc is fixed as 0.4. This is

because cin and cout have positive relationship with r in the formulae and the

value of k in Definition 4.8 is increased as r is increased.

We measure the processing time of computing Rmax −Rmin and R′
max −

R′
min. We get the average processing time for each case over 100 times.

Figure 4.27 and Figure 4.28 show the experimental results of the processing

time for various values of pc and r respectively. Both figure clearly show that

the processing time of Rmax−Rmin is much faster than that of R′
max−R′

min

because it is a simple calculation to compute Rmax and Rmin while in case of

Ruc, it requires to find Hi and Li for each dimension which would take more

time to get the calculation.



123

30

40

a
Rmax Rmin R'max R'min

0

10

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
r
e

Pc

Figure 4.29. Comparison of Un-
certain Area when r = 1 in Bi-
variate Normal Distribution

60

80

a

Rmax Rmin R'max R'min

0

20

40

1 2 3 4

A
r
e

r

Figure 4.30. Comparison of Un-
certain Area when pc = 0.4 in Bi-
variate Normal Distribution

Bivariate Normal Distribution

Figure 4.29 and Figure 4.30 show the experimental results of the uncertain

area for various values of pc and r respectively under bivariate normal distri-

bution of f(x). As Figure 4.29 illustrates, the area of Rmax−Rmin decreases

until it reaches pc = 0.5. After that point, the area of Rmax−Rmin increases

again. This is because cin increases while cout decreases as pc increases simi-

lar to the uniform distribution case, and when pc = 0.5, cin and cout has the

value of 0, and therefore, R = Rmax = Rmin is achieved. Therefore, the area

of Rmax = Rmin becomes 0 when pc = 0.5.

Similar to the Uniform distribution case, in case of R′
max − R′

min, the

uncertainty area keeps increasing until pc = 0.5 and then, it stays at the

same size of uncertain region. This is because the value of k in Definition

4.8 keeps increasing until it reaches pc = 1/2, and k = r after that level.

Therefore, the size of uncertainty region R′
max−R′

min keeps increasing before

pc = 1/2 and then it remains constant. When we compare both approaches,

it clearly shows that R′
max − R′

min shows better performance than that of

Rmax − Rmin in most of cases except that pc is around 0.5. Figure 4.30
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illustrates that uncertain areas of both cases are increased with respect to

the increasing value of r when pc = 0.4. Similar to the uniform distribution

case, this is because both cin and cout has the positive relationship with r

in the formulae, and the value of k is increased as r is increased as well in

Definition 4.8.

4.3.6 Discussion

Availability of the System: There are two kinds of errors with respect to

granting an access request: false positive and false negative errors. The false

positive error occurs when the system grants the access request although the

actual location is outside of the authorized region. On the other hand, the

false negative error occurs when the system denies the request although the

actual location is inside the authorized region. The purpose of our proposed

work mainly improves on the first case (false positive) in order to protect

the sensitive resources, this may have adverse effect on the second case (false

negative), thus degrading the availability of the system. There are two main

approaches to address this issue in the system administrator’s perspectives.

The first one is to reduce the location uncertainty by adopting the locating

sensing technologies with better accuracy and increasing the location update

cycle. As a result, the uncertainty threshold r is reduced, resulting in small

errors when making an access control decision. The second approach is to

delay the decision until the next location update is made and queries for

a user location repeatedly until the system is pretty sure about the actual

user location. In this way, the location error is only from the measurement
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error and under the location sensing technologies such as GPS, because the

measured location is considered to follow the multivariate normal distribution

with the mean, the actual user location, by the central limit theorem, the

actual user locations will not be too different from the actual location.

Shape of Uncertainty Region: We represent an uncertainty area as a

circle whose center is at its last update, and has a radius equal to the distance

threshold. However, in general, the shape of an uncertainty area may be any

shape. For example, it can be the shape of pentagon or hexagon. However,

our proposed approach to compute Rmin, Rmax, R
′
min, and R′

max for a general

probability distribution is general enough to handle any shape of uncertainty

area. For example, it is always true that for any i = 1 · · · d, Li(pc1) is always

located lower than Li(pc2) if pc1 > pc2 . Similarly, Hi(pc1) is always located

higher than Li(pc2) if pc1 > pc2 . It is because the cumulative probability

distribution, i.e., P{Xi ≥ Li} or P{Xi ≤ Li}, is non-decreasing function.

Therefore, Observation 1 and Observation 2 are still satisfied for any shape

of uncertainty area.



CHAPTER 5

PRESERVING LOCATION PRIVACY

By definition, delivery of an LBS requires knowledge of a mobile object’s

location. However, knowledge of a person’s location can be used by an ad-

versary to physically locate the person. As such, wireless subscribers carrying

mobile devices have legitimate concerns about their personal safety, if such

information should fall into the wrong hands. To deal with this, the concept

of location k-anonymity has been advanced [36]. Location k-anonymity is

based on the well-established notion of k-anonymity [58]. A dataset is said

to be k-anonymized if each record is indistinguishable from at least k − 1

other records with respect to certain identifying attributes [44]. In the LBS

environment, an LBS request is said to preserve location k-anonymity if an

adversary cannot distinguish the actual query issuer from at least k−1 other

users. In order to achieve location k-anonymity, given an LBS query, existing

work [36, 47] removes the identifying information such as user id and trans-

forms the exact location into a bounding box, called generalized region (GR),

containing at least k people within it. We assume that such anonymization

is performed by a trusted server, which is the standard assumption used in

much of prior work.

However, it is not sufficient to comprehensively protect privacy in the

126
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personalized mobile service environment due to the additional background

knowledge such as profile and movement information that can be exploited by

the adversary. In this dissertation, we have proposed a more comprehensive

family of anonymity models that incorporate location, direction, as well as

profile information in Section 5.1 and Section 5.2.

Also, continuous LBS such as continuous nearest neighbor queries [70]

requires trajectory information from their users. This assumption of tra-

jectory traceability would require the extension for the notion of location

k-anonymity to trajectory k-anonymity which anonymizes mobile users’ tra-

jectories instead of location. However, this can lead to considerable GR

expansion and associated loss of accuracy, and furthermore, privacy of users

will be decreased because longer tracking durations imply that adversaries

will be more likely to identify a query issuer. In Section 5.3, we have pro-

posed a method that provides privacy while satisfying the quality of service

requirement.

5.1 Anonymity Models for Personalized Mobile Environments

Consider a situation where a user u1 (as shown in Figure 5.1.(a)) uses her

iPhone to search for dating partners who are located within 10 miles from

her current location. This query can be answered by a mobile dating LBS

provider such as meetmoi.com. Assuming the location k-anonymity with

k = 3 is applied to u1’s LBS request, the GR is computed as shown in Figure

5.1.(a) consisting of three users – u1, u2 and u5.

However, in order to find the appropriate partners, in the above LBS re-
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quest, u1 also has to provide her profile information as well as her preferences

about the dating partners such as age, gender, and so on. Adapting location

k-anonymity may not completely preserve the privacy of mobile users as the

query itself can be exploited to reveal sensitive information about the users.

For example, because u1 is the only woman within GR1, the request reveals

that u1 is the actual person who issues the LBS request. This is because

location k-anonymity completely ignores the fact that profile and preference

information may aid in further identifying an individual – in effect, the profile

and preferences are themselves quasi-identifiers. Since the LBS provider is

not trusted, an adversary can collude with the LBS provider and acquire the

query and its results. Both types of information can be used to find the actual

query issuer. First, an adversary can actually relate the location information

with a person by using several techniques such as physical observation, trian-

gulating the mobile device’s signal, or correlating with public databases, i.e.,

if Tom issues his query in a unique place (such as his home) where he is the

only candidate of the query, matching this location with Google Maps can

identify the address easily, and using online white pages service can actually

identify Tom as the query issuer. Next, profile and preferences information

can also identify Tom as the query issuer. For example, if Tom is a basketball

fan and asks for the location of the closest soccer club, and the associated GR

contains only female users in addition to Tom, the attacker may infer Tom as

a query source with higher probability. The second type of issue is referred

to as background knowledge attacks, when the attacker has additional infor-

mation about the profile and preferences of certain users [44]. Therefore, it
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Figure 5.1. Location Privacy Example

is important that anonymity guarantees apply over location as well as profile

information at the same time.

In this section, we show how profile information can be included as part

of the user queries, and can be anonymized along with location information

to provide true privacy in a location based service environment. Considering

once again the above example of LBS request, we may enlarge GR so that

there exist at least k − 1 other users whose profile is identical with that of

the query issuer, as shown in Figure 5.1.(b). Now the generalized region GR2

includes two other women (u3 and u4). We refer to this notion as Location

and Profile k-anonymity (kLP -anonymity). However, it is obvious that such

uncontrolled expansion of the generalized region to meet the privacy require-

ment may result in excessively large regions, especially when the population

density is small. This may adversely affect the quality of the LBS service

measured in terms of the size of the GR. To limit the GR enlargement, we
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propose to generalize the profiles as well. We refer to this notion as Con-

strained Location and Profile k-anonymity (kLcP -Anonymity). Once again,

one may not wish to generalize the profiles in an uncontrolled manner. Based

on the type of query, a user may not want to generalize certain attributes (for

example gender attribute in case of a dating service LBS), but does not care

if other attributes are generalized. We refer to this notion as Constrained

Location and Constrained Profile k-anonymity (kLcPc-Anonymity).

To implement these different flavors of location anonymity models and to

serve the LBS access requests, efficient and scalable mechanisms must be in

place. The database that maintains the locations of mobile users can be very

large (e.g., millions of locations), and to support efficient anonymization and

query processing in such databases, robust disk-based indexing techniques

are needed as all the location information cannot fit into the main memory.

Also, in a mobile environment, locations are constantly being updated, and

capturing continuous movement would entail either performing very frequent

updates or recording outdated, inaccurate data [56]. Most of the current

location k-anonymity works are implemented using grid-based index struc-

tures, and thus, the scalability and update issues are not properly addressed:

index structures reside only in main memory and require frequent location

updates. Towards this end, we propose a novel index structure, called the

PTPR-tree that aids in improvising the efficiency of the anonymization pro-

cess and query processing. PTPR-tree is a unified index structure to represent

both the moving objects as well as the profiles of the users representing these

objects. It employs the concepts of those in the TPR-tree [56] to represent
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mobile objects, but appropriately overlays the profiles on the nodes of the

tree.

Based on our observations, we have found that much of the anonymiza-

tion overhead comes from searching profile conditions. To alleviate this, we

maintain an auxiliary data structure, called density table for each node in

the tree. The density table contains the information on the count of dif-

ferent profiles that are stored in a subtree rooted at each node. To serve

a request, the density table is looked up to catch the necessary informa-

tion for anonymization. Obviously, we sacrifice the storage for performance,

but our experimental results confirm that this approach is worthwhile as the

anonymization can be done much faster with reasonable overhead to update

cost. Also, the low storage cost justifies using more storage for better per-

formance. The proposed PTPR-tree is used to process such requests as well

as all the flavors of anonymization models efficiently.

Adversary Model

We now discuss the adversary model. We assume that an adversary only

has the knowledge of anonymized requests and user location and profile in-

formation from an external source. The first assumption implies that (1) an

adversary cannot gain access to original requests because the communication

channel between a mobile user and the LS is secure, resulting that any eaves-

dropping entity to this channel cannot recognize the contents of the messages,

and (2) an LBS provider can be an adversary or the communication chan-

nel between the LS and LBS providers is not secure. The second assumption
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states that the locations and profiles of at least a few users within the vicinity

of the targeted victim are revealed through triangulation, public databases,

physical observation, and so on [44]. If an LBS provider can collude with

traffic monitoring services, the location of users can be revealed along with

the public database.

The objective of an adversary is to identify the user who is likely to submit

the query and link the query information to the publicly available information

in order to identify the user’s preferences. This is because, the query itself

unintentionally reveals sensitive information about the user. For example, if

a particular user is interested in finding specific dating partners, identifying a

user who is likely to submit the query implying that this user is interested in

dating services and also his/her preferences for dating partners are revealed.

There are also other causes for concern. [19] provides a detailed discussion

on the risks of revealing sensitive information in the LBS environment.

In general, the profile distribution of users in a given region is not uni-

form, e.g., there are many young users in a university town, but only a few

young people in the nursing home district. Thus, the users whose profile

distribution are located in sparse areas become outliers in the system. If

those users issue a LBS request, most of the existing approaches do not suf-

ficiently provide anonymity to the users since they do not consider profiles.

The observation (described in the beginning of the chapter) shows that if

the adversary has the extra knowledge of location and profile information,

he is able to reduce the number of possible query issuers less than k, thus

defeating the anonymization’s purpose.
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The attack to the anonymized request is performed as follows: given the

knowledge of location and profile information of users in the system, the

attacker “reverse engineers” the anonymized requests to obtain the possible

candidate users, called anonymity set, by filtering out those users who are

located outside of the GR and whose profiles are not compatible with r′.P̂ .

We formalize this type of attack, called background knowledge attack, as

follows:

Definition 5.1 (Background Knowledge Attack) Let U be the finite set

of users in the system. Given an anonymized user request r′, the anonymity

set of the given request is defined as the users whose profiles are compatible

with r′.P̂ and located within the r′.GR. The probability of distinguishing a

particular user u ∈ S is 1/|S|.

To achieve privacy, we need to generate an anonymity set S ⊆ U such

that users in S are indistinguishable from each other so that there is no user

distinctly noticeable.

Definition 5.2 (Privacy condition with parameter k) Location privacy

with parameter k is preserved for a query issuer u ∈ U iff there exists a set

of users S ⊆ U , called an anonymity set, such that each user in S has the

probability of submitting a query less than 1/k.

Therefore, an anonymity model should satisfy the above condition. Other-

wise, an adversary’s attack is going to be successful in breaching privacy.
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Example 5.1 Suppose u1 submits a query, and this query is anonymized as

GR1 which includes u1, u2, and u3. If u1 is the only woman within GR1 and

the request is searching for male dating partner, the request reveals that u1

is most likely the actual person who issues the LBS request. Since the LBS

provider is not trusted, an adversary can collude with the LBS provider and

acquire the query and its results. Both profiles and location information can

be used to find the actual query issuer.

5.1.1 Anonymization Models

In this section, we present the formal definitions for different anonymiza-

tion models. The simplest kind of anonymization is to simply use pseudo-

identifiers instead of the actual ids. In general, you need more sophisti-

cated anonymization as presented below including anonymization of location

and profiles. Table 5.1 summarizes user request formats for each of these

anonymization models, while Figure 5.2 gives examples of the different cases.

Pseudo Identifiers

This is the simplest form of anonymization. The anonymization of a user

requesting a location based service is achieved by simply hiding the true

identity of the user with a pseudo identifier. However, simply using psuedo

identifiers cannot provide true anonymization if the adversary has access

to other information pertaining to the user. For example, based on the

location of the user (e.g., home address) and the profile (e.g., age, gender)

one may easily infer the identity of a person. In order to address the above

concerns, one may choose to either generalize the location, the profiles, or
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Case User Request r
Case 0: Pseudo Identifiers ⟨id, p⃗, (x, y, t), c⟩
Case 1: kL-anonymity ⟨id, p⃗, (x, y, t), k, c⟩
Case 2: kLP -anonymity ⟨id, p⃗, (x, y, t), k, c⟩
Case 3: kLcP -anonymity ⟨id, p⃗, (x, y, t), k, dL, c⟩
Case 4: kLcPc -anonymity ⟨id, p⃗, (x, y, t), k, dL, dP, c⟩

Table 5.1. User Requests in Different Cases

both. In the following, we discuss the different cases of such generalization

for anonymization.

Location k-anonymity

Gruteser and Grunwald [36] first propose the concept of location k-anonymity,

such that the location information in a user request is generalized so that

the generalized region includes at least k − 1 other users in the region. To

achieve this, a user must submit his privacy requirement (i.e. the minimum

level of k). We formally capture the essence of the location k-anonymity in

the following definition.

Definition 5.3 (kL-Anonymity) Given a request r by a user u ∈ U and

a spatio-temporal region GR, we say that location k-Anonymity is ensured

for u if ∃S ⊆ U , such that u ∈ S, and ∀ui ∈ S, location(ui) ∈ GR, and

|S| ≥ r.k.

Looking back at the example in Figure 5.1, once an adversary can ac-

cess the requested information, it cannot distinguish the real requester from

the three users located within GR1. However, since the submitted informa-

tion includes the profile of the user and because they may be different for



136

each user, this information can be exploited by the adversary to successfully

identify the user. As shown in Figure 3.1, with the knowledge of profiles,

the adversary can prune out some of the users successfully from the candi-

date set because their profiles are not identical. Thus, the adversary can

identify the user submitting the request, in this case, Mary. To provide true

anonymization, in the following, we enhance the traditional notion of location

k-anonymization in such a way that the profiles of the users be the same.

Location and Profile k-anonymity

In this model, location is generalized so that GR includes at least additional

k − 1 users with identical profiles of the user. In order to do so, just as in

the case of location k-anonymization, a user must submit his/her privacy

requirement (i.e. the minimum level of k).

Definition 5.4 (kLP -Anonymity) Given a request r by a user u ∈ U and

a spatio-temporal region GR, we say that location and profile k-Anonymity is

ensured for u if ∃S ⊆ U , such that u ∈ S, and ∀ui ∈ S, location(ui) ∈ GR,

|S| ≥ r.k, and ∀{ui, uj} ⊂ S, p⃗ui
= p⃗uj

.

However, the amount of location generalization required to ensure that

there exist at least k users with a matching user profile within the region is

dependent on the profile distribution of the users themselves. As a result,

to meet this requirement, the location may need to be generalized to a large

extent – so much so that it may render the location based service that is

specific to a user’s request useless as it quite far-off from the user. Therefore,
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in the following, we provide a notion of k-anonymization that restricts the

location generalization, and additionally generalizes the profiles to meet the

k-anonymity requirement.

Constrained Location and Profile k-anonymity

In this model, the location is generalized as required up to a user specified

spatio-temporal extent to find k − 1 other users with a matching profile.

However, if enough users cannot be found within the threshold, then profiles

are generalized to meet the privacy requirement. For this, a user must submit

his privacy requirement (i.e. the minimum level of k) as well as the maximum

spatio-temporal region (i.e. the maximum size of spatio-temporal region that

guarantees the LBS quality), which we denote it as location tolerance.

Location Tolerance (dL): The location tolerance dL = (dx, dy, dt) is the user

specified generalization allowed while anonymizing. In other words, it speci-

fies the spatio-temporal cloaking box.

Definition 5.5 (kLcP -Anonymity) Given a request r by a user u ∈ U and

a spatio-temporal region GR such that GR is contained in dL, we say that

location and profile k-Anonymity is ensured for u if ∃S ⊆ U , such that u ∈ S,

and ∀ui ∈ S, location(ui) ∈ GR, |S| ≥ r.k, and ∀{ui, uj} ⊂ S, p̂ui
= p̂uj

.

In the above definition, p̂ is the profile bounding vector of certain user

profiles. (In fact, it is the profile vector associated with the parent node of a

subtree in the PTPR-tree discussed later.) Profile generalization is achieved

by generating p̂ of all the users located within GR. Suppose David and Jane
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in table 3.1 are located within GR, and their profiles need to be general-

ized. First, let us look at the attribute, Gender. Because David’s and Jane’s

genders are male and female respectively, their profile generalization should

include both genders, which corresponds to the result P̂ [Gender] = ⟨11⟩.

Similarly, profile generalization of two users for the attribute ‘Age’ should in-

clude the range of [25, 35]. Since the ages for David and Jane are represented

with discretized value of [20,30) and [30, 40), the resultant profile attribute

generalization is [20,40), which also corresponds with P̂ [Age] = ⟨0110⟩. In

the same manner, the profile attribute ‘Salary’ generalization result is ⟨11⟩.

In this case, although an adversary can gain access to the requested in-

formation, it cannot distinguish the real requester from other k − 1 users

because each user included in the location and profile generalization has the

same probability of submitting a query. However, a random generalization of

the user profiles may result in decreased quality of service. For example, the

profile attribute “gender” should not be generalized for a person looking for a

dating service. In the following, we present yet a different case of anonymiza-

tion where the users can specify the acceptable level of generalization on each

of the profile attributes.

Constrained Location and Constrained Profile k-anonymity

In our final model, both location and profile are simultaneously generalized

within limits set by the user. Specifically, along with location tolerance, the

user also specifies the level of generalization for each profile attribute, denoted

as profile tolerance.
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Profile Tolerance (dP ): The profile tolerance dP is the user specified general-

ization weightage allowed for each profile attribute in the profile vector, while

anonymizing. Formally, it can be specified as dP = (wp1 , wp2 , . . . wpn), such

that
∑

i wpi = 1 where wpi represents the weight associated with the profile

attribute p⃗i indicating the allowed level of generalization of that attribute

by the user. In order to enjoy this case of anonymization, a user must sub-

mit his/her profile constraints and privacy requirements and the maximum

spatio-temporal region.

Definition 5.6 (kLcPc-Anonymity) Given a request r by a user u ∈ U and

a spatio-temporal region GR such that GR is contained in dL, we say that

constrained location and constrained profile k-Anonymity is ensured for u if

∃S ⊆ U , such that u ∈ S, and ∀ui ∈ S, location(ui) ∈ GR, |S| ≥ r.k, and

∀ui ∈ S(u ̸= ui),
∑

dist(p⃗u, p⃗ui
, dP ) is minimized.

In this case, although an adversary can gain access to the request in-

formation, it cannot distinguish the real requester from other k − 1 users

because each user included in the location and profile generalization has the

same probability of submitting a query.

To further explain all of these concepts, in Figure 5.2 we give the example

of a user, Tom, who would like to submit a request to an online dating service.

We show Tom’s original request, along with all of the generalized variants

meeting each of the anonymization models proposed above.
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Pseudo Identifiers (Case 0): Consider a user, say Tom, submits a request for a location

based online dating service. His user request to the trusted LS is as follows: ⟨id = Tom, p⃗ =

(Age = 25, Gender = MALE), (Latitude = 4151.8122, Longitude = 08739.0505, T ime =

18 : 28 : 33)), c = preference(Age = 20 − 25, Gender = FEMALE, Located within

30 miles)⟩. The generalized request sent to the LBS provider is ⟨PsedoID, p⃗ = (Age =

25, Gender = MALE), (Latitude = 4151.8122, Longitude = 08739.0505, T ime = 18 : 28 :

33)), c = preference(Age = 20− 25, Gender = FEMALE, Located within 30 miles)⟩.
kL-Anonymity (Case 1): In this case, Tom specifies his location k-anonymity re-

quirement, say k = 3. To meet the 3-anonymity requirement, LS enlarges the location

of Tom so that it contains at least 2 other users. Suppose that there are two users

nearby: Mary (Age=21, Gender=FEMALE) and John(Age=31, Gender=MALE), and

the GR now includes Mary and John as well as Tom. Thus, the location server for-

wards the following information to the LBS provider: p⃗ = (Age=25, Gender=MALE)

and (x, y, t) = (Latitude=[4151.7501,4153.7210], Longitude=[08739.0505, 08741.1102],

Time=[18:28:33,18:28:34]), c = partner preference (Age=20-25, Gender=FEMALE, Lo-

cated within 30 miles).

kLP -Anonymity (Case 2): Since the profile of Mary and John are different

from that of Tom, he could still be identified. To prevent this, the region is

further enlarged so that it contains at least two other users with identical pro-

files. Assume now there exist two more users in addition to Mary and John,

Ethan(Age=25, MALE), and Joshua(Age=25, Male) that have the same profile of

that of Tom. Now the generalized request sent to the LBS provider is: pro-

file (Age=25, Gender=MALE), (x, y, t) = (Latitude=[4150.7101,4155.8210], Longi-

tude=[08739.0505, 08743.2182], Time=[18:28:33,18:28:34]), partner preference (Age=20-

25, Gender=FEMALE, Located within 30 miles).

kLcP -Anonymity (Case 3): To guarantee the service quality, Tom may spec-

ify a limit on the location enlargement. Suppose the enlarged spatio-temporal

region covering Ethan and Joshua is larger than the location tolerance speci-

fied by Tom, to meet 3-anonymity, the LS now generalizes the profiles. Now

the generalized request sent to the LBS provider is: profile (Age=[21, 25] and

Gender={MALE, FEMALE}), (x, y, t) = (Latitude=[4151.7501,4153.7210], Longi-

tude=[08739.0505, 08741.1102], Time=[18:28:33,18:28:34]), partner preference (Age=20-

25, Gender=FEMALE, Located within 30 miles).

kLcPc-Anonymity (Case 4): Tom now restricts both location and profile generaliza-

tion. He may specify that gender must not be generalized. Thus, Mary will not be

selected for anonymizing group, but only John and Ethan are included. The generalized

request sent to the LBS provider is: profile = (Age=[25, 31] and Gender=MALE), spatio-

temporal region (Latitude=[4150.7101,4155.8210], Longitude=[08739.0505, 08743.2182],

Time=[18:28:33,18:28:34]), partner preference (Age=20-25, Gender=FEMALE, Located

within 30 miles).

Figure 5.2. Example
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Privacy Analysis

In order to show that our proposed anonymization models satisfy the privacy

of users, we need to show that our proposed anonymization models satisfy

the location privacy condition specified in Definition 5.8. First, we formally

prove that kL-anonymity does not necessarily satisfy this condition.

Proposition 5.1 kL-anonymity does not satisfy the location privacy condi-

tion.

proof: Given r′, suppose there are k users in the r′.GR, and their profiles

are denoted as p⃗1, · · · , p⃗k. If there exists p⃗i ∈ {p⃗1, · · · , p⃗k} such that p⃗i is not

compatible with r′.P̂ , the size of the anonymity set becomes smaller than k,

thus not satisfying the location privacy condition.�

Intuitively, kL-anonymity satisfies location privacy only if all of the users

within the generalized region have identical profiles, which does not happen

in most cases.

Proposition 5.2 kLP -anonymity, kLcP -anonymity, and kLcPc-anonymity sat-

isfy the location privacy condition.

proof: Given r′, suppose there are l users (l ≥ k) in the r′.GR.

• kLP -anonymity: By construction, there are at least k − 1 number

of users with the identical profiles as that of the query issuer, i.e.,

p⃗1 = · · · = p⃗k. Therefore, the size of the anonymity set is at least k,

and therefore, thus the probability of each user less than 1/k.
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• kLcP -anonymity and kLcPc-anonymity: If the size GR is smaller than

r′.dL, the generated GR is the same as that of kLP -anonymity, thus

satisfying the location privacy condition. Otherwise, the profile is also

generalized so that there are at least k− 1 users compatible with r′.P̂ .

Thus, the probability assigned to each user is less than 1/k.

Therefore, kLP -anonymity, kLcP -anonymity, and kLcP -anonymity satisfy the

location privacy condition. �

5.1.2 Anonymization Algorithms

We now present algorithms to implement the different anonymity models

presented in section 5.2.1. As mentioned in section 5.2.1, we assume that the

input to the algorithm in each case is the user’s location, privacy requirement,

profile, and desired type of anonymity (along with extended parameters such

as the location tolerance dL, and profile tolerance dP , if necessary). Before

introducing the details of the proposed algorithms, we discuss the relation-

ships between the quality of service (QoS) and its implications on location

anonymity.

Figure 5.3. QoS example
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QoS and location anonymity

There is an inverse relationship between the level of location privacy and

the level of QoS. It is because achieving location k-anonymity with higher k,

thus with higher location privacy, typically requires assigning larger GR, but

larger GR can potentially result in a decreased level of QoS or performance

with respect to the target location-based application [33]. With the same

reasoning, smaller profile generalization is better in terms of QoS. Addition-

ally, a larger GR and profile generalization incur higher processing overhead

at the LBS provider as they have to provide the data that satisfies larger GR

and more generalized profiles compared to the smaller GR and profiles. This

would incur more network cost as more number of data needs to be trans-

mitted as well. A simple example can illustrate this relationship. Suppose

an LBS service which searches the nearest restaurant from a user’s current

location and the user is currently located at (0.5, 0.5) in Figure 5.3. Because

there is an equal probability of the user being located any place in the GR,

upon receiving the request with GR, the LBS provider needs to provide all

the possible candidate nearest restaurants to the user. If a user submits a

GR of size [0, 1] × [0, 1], there is only one restaurant (i.e., o1) that satisfies

the query no matter where the user is located within the GR. However, if

GR is [0, 3]× [0, 3], there are more restaurants (i.e., o1, o2, and o3) which are

candidates as the nearest restaurant, thus sending three restaurants to users

as a candidate result. Thus, it is better to generate a smaller GR during the

anonymization. The same reasoning applies to the profile generalization as

well.
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In order to provide better QoS, it is a reasonable approach to minimize the

generalization in terms of location and profile. In other words, we have two

objectives to achieve: i) minimize GR and ii) minimize generalized profiles.

In order to achieve the first goal, a natural way is to generate a GR by finding

a minimum bounding rectangle (MBR) of k− 1 nearest users from the user’s

location. However, as the work in [44] addresses, this approach may leak

the information who submits a query in certain cases. Simply generating a

GR that includes k users is not sufficient for satisfying proposed anonymity

models because this approach is likely to disclose the location of the query

submitter: the user whose location is the nearest to the center of the GR is

more likely to be the one who submits the query. In order to address this

issue, we use more conservative way to compute a GR by using the proposed

tree structure, PTPR-tree. Given a query and an anonymity model, it selects

a node whose subtree rooted at includes at least k − 1 users who satisfy

the anonymity model. Then, MBR of the node is selected as a GR. This

approach is not vulnerable to the attack because any user located within the

node’s MBR has an equal probability to submit a query. The same reasoning

applies to the profile generalization: given a query and an anonymity model,

it selects a node that satisfies the given model, and then, P̂ of the node is

selected as a generalized profile.

Anonymization based on PTPR-tree.

Here we present how the proposed anonymizations are ensured in an effi-

cient manner. Our proposed anonymity models require information on user
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locations and profiles of users, both of whom are indexed in the proposed

PTPR-tree. Therefore, we discuss how to use PTPR-tree as the basic indexing

structure when performing the proposed anonymity models.

First, we present the kLP -anonymity algorithm. The input to the algo-

rithm is the root node and a user request r, which includes the user’s current

location (i.e. (x, y, t)), privacy requirement (i.e. k), and profile vector (i.e.

p⃗). The goal is to find the node that contains the user and satisfy the profile

and location privacy requirements. The algorithm starts by finding the leaf

node that contains the user, by using the standard findLeaf() function as

implemented in the TPR-tree. If this node satisfies the privacy requirements

(i.e. the number of users with the profile identical to the requester is ≥ k),

the area of the node is returned. Otherwise, the algorithm recursively checks

the parent node all the way up to the root to find the appropriate node.

Algorithm 5.9 gives the complete details.

The function getMatchedProfiles() is used to compute the count of users

whose profile vector is compatible with the specified profile bounding. A

simple depth first traversal strategy is used to find the number of compatible

profile vectors. Since the only profile vector compatible with p⃗ is itself,

getMatchedProfiles() returns the number of users with the identical profile

as r.p⃗. Also, since the tpbr of a node is not tightly enclosed at all times [56],

we may need to tighten the tpbr and return the spatial coverage of a node as

well.

Note that kL-Anonymity can be easily processed as a special case of our

algorithm, simply by ignoring profiles. To do this, we can use the most
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general profile vector (i.e. profile bounding vector include all 1s) as input.

Now, getMatchedProfiles() will return the number of all users which are

stored at the subtree rooted at L regardless of their profiles.

Algorithm 5.9 kLP -Anonymity(N, r)
1: Input: root node N , user request r
2: Output: generalized spatio-temporal region GR
3: L← findLeaf(r.id, r.(x, y, t))
4: while L ̸= NIL do
5: count← getMatchedProfiles(L, r.p⃗)
6: if count ≥ r.k then
7: return area(L)
8: else
9: L← parent(L)
10: end if
11: end while

12: return area(N)

Algorithm 5.10 kLcP -Anonymity(N, r)
1: Input: root node N , user request r
2: Output: generalized spatio-temporal region GR, generalized profile P̂
3: GR ← kLP -Anonymity(N, r)
4: if GR ≤ dL then
5: return GR
6: else
7: {Find the node corresponding to the area satisfying kL-anonymity}
8: L← kL-anonymity(N, r)
9: {Generalize all of the profiles in that area}
10: L̂←

∪
p⃗,∀p⃗ stored in L

11: return (area(L), L̂)

12: end if

Next, we look at the algorithm for kLcP -anonymity. The only additional

input is the desired location tolerance dL. The algorithm first checks if it is

possible to find a GR smaller than dL that satisfies kLP -anonymity. If so,

no profile generalization is necessary, and this area is reported. We follow

this approach because kLP -anonymity does not generalize profile, and thus

quality of the service is not deteriorated in terms of profile. Therefore, it

is preferable to achieve kLP -anonymity. However, if the size of GR is larger
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Algorithm 5.11 kLcPc-anonymity(N, r)
1: Input: root node N , user request r
2: Output: generalized spatio-temporal region GR, generalized profile P̂
3: GR ← kLP -anonymity(N, r)
4: if GR ≤ dL then
5: return GR
6: end if
7: L← findLeaf(r.id, r.(x, y, t))
8: while L ̸= NIL ∧ area(L)< dL do
9: C ← L
10: L← parent(L)
11: end while
12: Create a priority queue Q
13: For each profile vector p⃗ in L, maintain a count of number of users in L having the

profile
14: Insert the profile, and count into the priority queue Q based on the distance from the

requestor’s profile
15: Extract profiles from the priority queue head until the number of users is at least k
16: Generalize extracted profiles to get P̂ , and find the MBR to get GR

17: return (GR, P̂ )

than dL, kLcP -anonymity cannot be achieved and profile generalization must

take place. The goal here is to keep the GR as small as possible while still

meeting the profile privacy requirement. This can be easily done simply by

invoking the standard kL-anonymity algorithm (i.e., by finding the GR that

contains more than k objects), and then generalizing the profiles of those

objects to satisfy the profile privacy requirement. Algorithm 5.10 provides

the actual details.

Finally, we look at the case of kLcPc-anonymity. Again, the additional

input in this case is the profile tolerance dP . As earlier, the algorithm first

checks if it is possible to find a GR smaller than dL that satisfies kLP -

anonymity. If so, no profile generalization is necessary, and this area is

reported. Otherwise, we need to generalize profiles as well to meet the pri-

vacy requirements. The main difference here with respect to Algorithm 5.10
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is in the data objects chosen for profile generalization. Instead of minimizing

the GR (as in Algorithm 5.10), the goal here is to minimize the quality of

service deterioration due to profile generalization. To do this, the algorithm

identifies the appropriate ancestor node C with the largest area still smaller

than dL. Out of all of the user profiles stored in the subtree rooted at C, the

algorithm prioritizes profiles that are closest to (i.e., with smallest distance

from) the requestor’s profile. This can be efficiently done by maintaining a

priority queue to select the profile with the smallest distance. A hash table

can be used to store the count of users with the same profiles as well, for

easy search. Algorithm 5.11 gives the actual details.

5.1.3 Performance Improvements

In this section, we discuss how we can improve the performance of the pro-

posed PTPR-tree. During the experiments, we observe that most of the

anonymization overhead comes from performing kLP -algorithm by search-

ing users with identical profiles. In PTPR-tree, we use P̂ for pruning of the

profile conditions. However, P̂ only shows the existence of certain profile at-

tribute value, and therefore, we can check if a certain profile vector, p⃗, exists

only when we reach the leaf level of the tree.

Example 5.2 Suppose P̂1 = ⟨11, 0011, 10, 0010⟩, P̂2 = ⟨10, 0010, 10, 0010⟩,

P̂3 = ⟨01, 0001, 10, 0010⟩, and P̂1 is the parent node of P̂2 and P̂3 in the

hierarchy. When we try to find p⃗q = ⟨01, 0010, 10, 0010⟩, we have to actually

visit P̂2 and P̂3 after P̂1 is reviewed, and only find out that there is no such

profile vector stored in the hierarchy.
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Figure 5.4. Node Regions and their Density Table Information

We maintain an auxiliary data structure, called density table, for each tree

node. The density table contains the information on the count of different

profile vectors that are stored in a subtree rooted at each node. When an

anonymization is processed regardless of the models, the density table is

looked up to catch the necessary information for anonymization. The density

table is structured as a map keyed by p⃗ and its count information. Whenever

a node is accessed with a particular profile vector, we use the density table to
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look for an entry in the node. If there exists an entry in the density table, it

will obtain the count of the profile vector that is being stored at the subtree.

Because the entries in the density table are sparse, we come up with the

following two different strategies.

Table-based Implementation (TI) Scheme: The TI scheme uses a straight-

forward representation of the density information using a table structure. For

each profile vector, the TI scheme contains the count of users who have the

same profile vector. Therefore, the size of TI scheme depends on the number

of different profile vectors. TI scheme contains 2 entries (in the format ⟨ p⃗,

count ⟩) where count is the total number of objects with profile p⃗ in the node

that TI scheme is stored at.

Linked list-based Implementation (LI) Scheme: In the real situation,

TI scheme may generate sparse data table. In other words, most of counts for

the profile vector entries are zeros in TI scheme. To overcome this problem,

a linked list-based implementation can be used. Thus, for each node in the

tree, there exists a linked list that stores the relevant profile vectors and its

corresponding counts. An LI scheme entry in a node includes ⟨ p⃗, count, the

pointer to the next LI scheme entry ⟩.

Figure 5.4 illustrates the density table information of nodeN1, N2, andN3

for PTPR-tree. We remove the children nodes information (or moving object

data information if leaf nodes) such as tpbrs and P̂ s for brevity. Observe that

we include both TI and LI scheme for explanation; however, we consider only

one scheme for actual usage of density table. In figure 5.4, observe that N1

(or N2) includes several profile vectors, i.e., two of p⃗1s and one p⃗3 (or one of
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p⃗1, p⃗2 and p⃗4). Therefore, LI scheme for N1 (or N3) only includes p⃗1 and p⃗3

(or p⃗1, p⃗2 and p⃗4). As a result, the parent node of N1 and N2, say N3 includes

all four profile vectors; thus, it has the density information of p⃗1, p⃗2, p⃗3 and

p⃗4. Observe that TI scheme for all three nodes includes same number of

entries, i.e., p⃗1, p⃗2, p⃗3 and p⃗4. Let us consider a concrete example (i.e., u1

requests kLP -anonymity of his request with k = 3). Because the node N1

that u1 resides at includes only 2 of the identical profile vector of u1 (i.e, p⃗1),

kLP -anonymity cannot be satisfied at N1. Therefore, a parent node, N3 is

visited as a candidate anonymization node. The density table of N3 actually

shows that there exists 3 of p⃗1, and therefore, the anonymization stops at

N3. Observe that in case of original PTPR-tree, the node N2, a child node

of N3 needs to be visited for anonymization process. In this example, the

performance gain seems trivial (i.e., the disk I/O of 2 using density table

versus the disk I/O of 3 using original PTPR-tree), but considering that there

are at least m children nodes, this gain can be huge.1 Therefore, if the depth

of the node that satisfies the given anonymity model is decreased by one, the

disk I/Os are increased by the factor of O(mh) at least where h is the height

of the subtree rooted at the node. Thus, the worst case performance of kLP -

anonymity becomes the height of the tree (i.e., O(log n)) by using density

table compared to the performance of O(n) where density table is not used.

Obviously, we sacrifice the storage for performance, but our experimental

results confirm that this approach is worthwhile as the anonymization can

1[m,M ] is the branching factor of PTPR-tree. Because we consider that the density
table is stored in separate disk blocks pointed by the node, we consider the branching
factor between the original PTPR-tree and the tree with density table is the same by
assuming that the size of the pointer to the disk block is negligible.
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be done much faster with a little overhead of update cost. Also, current age

of low storage cost justifies using more storage for better performance.

The density table facilitates anonymization processing by eliminating the

need to descend nodes that are enclosed by a node. Let us take an example of

processing kLP -anonymization. When an anonymization begins after finding

the leaf node that the query issuer resides at (we call this leaf node as the

target leaf node), the number of identical profile vector is counted from the

target leaf node. By looking up the density table, we can check if the target

leaf node includes enough count of users (i.e., count of users with identical

profile ≥ k). If the target node does not satisfy the privacy requirement of

the user, it will visit the parent node of the target leaf node, say N and

check if the node N satisfies the privacy requirement. Since the original

PTPR-tree does not have the information on how many users of the identical

profile vector are stored at a node, it actually has to visit all the children

nodes of N to count the number of users with the identical profile vector.

However, with the density table, the additional traversal is not required.

Since all the profile vector distribution information is being stored at the

density table, the anonymization process only needs to visit the ancestor

nodes of the target leaf node where the requester of the anonymization is

stored. Regardless of the implementation details, both methods support the

readMatchedProfiles() function that reads the number of profiles in the table.

The anonymization procedure of kLP -anonymity benefits most by using the

density table among other anonymity models. It is because using the count

of each profile vector decreases the necessity of visiting all the children nodes,
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and profile bounding vector only shows the existence of profile vector. Also,

because kLcP -anonymity and kLcPc-anonymity first check if kLP -anonymity is

satisfied, it also improves their performance. This process is repeated until

the traversal reaches the root node or privacy requirement is satisfied.

5.1.4 Experimental Results

We now experimentally validate the performance of our system. The PTPR-

tree, and all of the anonymization algorithms are implemented in C++. All

moving objects lie within a specified 3-dimensional spatio-temporal space.

Random initial locations (x and y coordinates) for the x and y dimension

are generated using a uniform distribution. Profile data is generated using

the Adult dataset (census information) from the UCI ML Repository [21].

We utilize the following 10 attributes: age, workclass, education, marital-

status, occupation, relationship, race, sex, hours-per-week, native-country.

The continuous attributes are discretized with 7 disjoint ranges. Each profile

attribute is represented with a profile vector using the C++ unsigned int

data type: thus, each can have 32 discrete values, which are enough for all of

the attributes excepting native-country. For simplicity, we reorganized that

attribute to use 32 discrete values, but this limitation can be easily relaxed.

Only the first 500 records of the dataset are used to represent profiles, and

every moving object is assigned one of these profiles. All experiments were

run on a Windows system with 1.8GHz Intel CPU and 3GB memory.

Anonymization Performance

We first look at the anonymization performance.
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Parameter Default value

Number of different profiles 500
Mean of car speeds (miles/hour) 30
Std. dev. in car speeds (miles/hour) 20
Minimum Speed 15
Maximum Speed 100
Page size 4K bytes
Branching factor for PTPR-tree M = 69, m = 35
Branching factor for TPR-tree M = 228, m = 114

Table 5.2. Simulation Parameters

Scalability: Figure 5.5 shows the scalability of the proposed anonymization

algorithms with respect to varying number of users from 50K to 200K. Fig-

ure 5.5.(a) gives the performance figures in terms of disk access I/O. Two

contrasting effects occur with the increased number of users: (i) negative

effect on the performance due to more tree traversals and (ii) positive effect

due to more number of users with same profile. Figure 5.5.(a) shows that

the performance of the anonymization algorithms deteriorates as the num-

ber of users increases when the number of users are comparatively small,

but after a certain point more users can be easily found, thus incurring less

disk I/Os. kL-anonymity performs best, as expected because it does not

consider profile conditions. Because k = 10 is smaller than m, the lower

bound on the branching factor, the anonymization occurs directly at the

leaf node containing the query issuer. Therefore, the anonymization cost is

very small compared to other anonymization models. kLP -anonymity, kLcP -

anonymity, and kLcPc-anonymity give similar performance in terms of disk

I/O. Note that both kLcP -anonymity and kLcPc-anonymity algorithms first

check if kLP -anonymity is satisfied within the location tolerance level. Only if
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(c) Profile Variability

Figure 5.5. Scalability Test (k = 10, dL = 0.1)

this is not true, profiles are generalized. Thus, the cost of kLcP -anonymity and

kLcPc-anonymity includes the minimum disk I/O for kLP -anonymity, along

with the additional overhead for profile generalization. Figure 5.5.(b) shows

the relative size (as a percentage of the entire data space) of the general-

ized region (GR) for all of the algorithms. The size of GR decreases as the

number of users increases for all anonymization models. The GR of kLcPc-

anonymity is always larger than that of kL-anonymity and kLcP -anonymity

because kLcPc-anonymity needs to visit all the nodes that resides within dL

to to find candidate mobile users whose profiles are most similar to the query
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(c) Profile Variability

Figure 5.6. Effect of Privacy Profile (Number of users = 100K, dL = 0.1)

issuer. The GR of kLP -anonymity is the largest since it always tries to find

identical profiles. Obviously, as the number of users with identical profiles

increases, the search area gets smaller. In Figure 5.5.(c), the profile variabil-

ity is measured in order to find the level of quality of service deterioration

in terms of profile generalization. Profile variability is measured as the aver-

age of x−1
n−1

for each profile attribute where x is the degree of generalization

occurring and n is the maximum amount of generalization possible for each

profile attribute. For example, the profile variability of ⟨110, 10⟩ is computed

as (2− 1)/(3− 1) + (1− 1)/(2− 1) = 0.5. Obviously, smaller value of profile
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Figure 5.7. Performance Improvements Using Density Table

variability is preferred because there is less quality of service deterioration.

The profile variability of kLP -anonymity is always 0 because all the users’

profiles within GR are identical. kLcPc-anonymity shows smaller variability

compared to kL-anonymity and kLcP -anonymity because by searching most

similar mobile users in terms of profile, the profile generalization is mini-

mized. kL-anonymity and kLcP -anonymity show the exactly same value of

variability because the anonymization occurs at the leaf node that the query

issuer resides, as we explained earlier.
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Figure 5.8. Relationship between Profile Variability and GR

Effect of Privacy Profile: Figure 5.6 shows the effect of increasing k when

the number of users is fixed (at 100K). As k increases, the anonymization

cost increases, since more nodes have to be traversed to find enough users.

Figure 5.6.(a) shows the I/O cost for different value of k. It can be seen that

performance deteriorates sharply between k = 60 and k = 80. This effect can

be explained with the value of branching factor M . In case of PTPR-tree, we

set M = 69, and therefore, for the value of k ≥ 80, one node cannot satisfy

the required anonymization, and therefore, more sibling nodes need to be

searched. With higher value of k, kLP -anonymity takes more time to find

the users with identical profile. As we explained earlier, the disk I/O for kLcP -

anonymity and kLcPc-anonymity is lower bounded by that of kLP -anonymity

– indeed, the additional overhead for each is quite small. Similarly, with

higher k, the size of GR increases for kLP -anonymity because more nodes

are traversed to find sufficient identical users. However, other anonymization

variations incur less cost, since they start generalizing profiles once kLP -

anonymity fails. In 5.6.(b), the size of GR is sharply increased between
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Figure 5.9. Performance Improvements Using Density Table

k = 60 and k = 80 because the node that satisfies the given anonymity

can only be made in the higher level of the tree. Also, in terms of profile

variability in figure 5.6.(c), kLP -anonymity’s profile variability is always 0

because there exist only one profile available. In case of kL-anonymity and

kLcP -anonymity, it is obvious that the variability is being increased because

as k increases, the anonymizing node is more likely located closer to the root

node and more profile generalization occur as there exist more number of
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5 10 15 20
M=106 M=69 M=51 M=40
m=56 m= 35 m=26 m=20

Table 5.3. Branching Factor for Varying Size of Profile Attributes

users needs to .

Relationship between Profile Variability and GR: Measuring the cost

of generalization involves profile generalization as well as location general-

ization in our anonymization models. The cost of the former is measured as

the profile variability and the latter as the size of GR. Figure 5.8 shows the

trade off effect between these two generalizations. Although the profile vari-

ability of kLP -anonymity is always 0 in Figure 5.8.(a) and 5.8.(b), implying

that there is no cost from the profile generalization, the cost from the loca-

tion generalization is always the highest among the anonymity models. On

the contrary, as expected, the location generalization cost of kL-anonymity

and kLcP -anonymity is the lowest because the objective of both anonymity

models is to minimize the location generalization. However, because they

do not consider profile generalization cost, the profile variability is the high-

est. kLcPc-anonymity shows the reasonable generalization cost of profile and

location at the same time. Compared to the kL-anonymity, the location gen-

eralization cost is much smaller (in other words, upper-bounded by dL), and

at the same time, the profile generalization cost is also much smaller than

kLcP -anonymity and kL-anonymity.

Performance Improvements Using Density Table: Figure 5.7.(a) gives

the performance figure in terms of disk access I/O for varying number of
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moving objects. Compared to no density table case, TI and LI scheme incur

much less disk I/O because without visiting the children nodes, the profile

distribution is available. Although TI and LI visit same nodes, they incur

different number of disk I/O because storage size of TI and LI are different:

TI requires the same size of storage while the size of LI varies depending on

the data distribution. In this experiment, LI requires more disk I/O than TI

does mainly because there are only 500 different number of profile vectors.

As the number of different profile vectors increases, we expect that there

would be a pivot point that TI incurs more disk I/O than LI does. Figure

5.7.(b) gives the performance for varying size of k. Using the density table

shows performance improvements as expected. The figure shows that TI

scheme shows relatively constant disk I/Os for varying value of k, while as k

increases, more number of disk access I/O is required for LI scheme. Figure

5.7.(c) shows the effect of varying number of profile attributes. Observe that

as the number of profile attributes is increased, the number of entries that a

node can store is being decreased as table 5.3 shows. As a result, during the

anonymization step, smaller number of children nodes are being accessed.

However, as the number of profile attributes is increased, the data entry size

of TI and LI scheme are being increased and this increasement in disk I/Os

overloads the performance gain from the smaller number of children nodes

accesses.

Construction and Update Costs: Figure 5.9.(a) shows the construction

time comparison in terms of disk I/O. In this experiment, we measure the

number of I/Os by varying the number of moving objects. The bulk-loading
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process results in increasing the time required for maintaining density table

information. Between LI and TI scheme, LI scheme takes more time to con-

struct because each node needs to perform linear search to get the profile

information stored in a node. However, this searching cost is smaller in TI

scheme because only O(1) is required to perform the search of the given pro-

files. Figure 5.9.(b) shows the update cost for different number of users being

indexed. As expected, compared to no density table case, TI and LI schemes

incur more disk I/O because of the extra storage size. Figure 5.9.(c) shows

a realistic scenario where anonymizations (kLP -anonymity with k = 20) and

updates are intermixed. After 40,000 moving objects are inserted into the

tree, various number of updates and anonymization requests are performed

to measure the average disk I/O operations during these operations. As ex-

pected, the I/O decreases as the ratio increases. This is obvious since the

I/O cost of anonymization in TI and LI schemes is smaller than the update

cost, thus, as anonymization-update ratio increases, the average disk oper-

ations are reduced. However, the opposite situation occurs for no density

table case.

5.2 Anonymity Models for Directional LBS Environments

Previous work in location privacy area has focused on achieving anonymity

based on the spatiotemporal anonymization methods by considering location

as a quasi-identifier. As a result, it suffers from the following two major

limitations. First, it ignores the fact that users are mobile. However, when

movement of the user is taken into consideration, the adversary can identify a
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Figure 5.10. Issues of location k-anonymity when movement direction infor-
mation is available

user based on the movement direction provided it is distinguishable from the

other k-1 users. Consider for example the mobile users shown in figure 5.10.

Suppose Tom is the LBS requester and requests 3-anonymity. Even though

the GR is comprised of 3 users, since the direction of Tom is significantly

different from that of the other two users (John and Mary), an adversary can

easily find out who the actual LBS requester is. The key argument we make

in this chapter is that, in addition to the user’s location, user’s movement

should also be considered to achieve true anonymization. We extend the

notion of location k-anonymity such that anonymity is guaranteed even when

movements of mobile users are known to untrusted entities. Specifically, our

generalization methods generalize both location and movement direction to

the extent specified by the user.

Second, the prior work does not attempt to preserve privacy while serving

advanced type of LBS requests based on continuous nearest neighbor queries.

Examples of such services include: a) find the nearest restaurant(s) 10 min-
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utes from now (while the user is traveling in the northeast direction), and b)

find all the nearest restaurants on my path (while traveling in the northeast

direction) We denote such LBS services as directional LBS [70]. On the other

hand, examples of traditional location based queries include “find the nearest

restaurant (given the location).” Figure 5.11 shows how query direction is

decided on a continuous nearest neighbor query. There are four data points

such as restaurants (i.e., O1, O2, O3, O4), represented with a square, and five

location points (i.e., Lb, L1, L2, Le, Ls), represented with a circle. Suppose a

user wants to find the continuous nearest neighbors along his/her trajectory.

Typically, a trajectory is represented with a set of consecutive single line seg-

ments, i.e., ⟨Lb, L1, L2, Le⟩, as shown in Figure 5.11. It is straightforward to

represent the query direction of each single line segment, (i.e., basically the

degree of the line between two consecutive points, and thus θ1 is the query

direction for the first line segment (i.e., ⟨Lb, L1⟩). Therefore, in order to get

the answers for the whole trajectory, users need to submit separate queries

for each line segment. However, if exact answers are not required, the tra-

jectory can be approximated with a single line between the current location
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and the destination (i.e., ⟨Lb, Le⟩), in which case the query direction would

be θ2. The answer for this query is {(O2, ⟨Lb, Ls⟩), (O4, ⟨Ls, Le⟩)}, meaning

that o2 is the nearest neighbor for [Lb, Ls]; then from Ls, O4 becomes the

nearest neighbor. Please refer to [70] for more details to compute the con-

tinuous nearest neighbor for a single line segment. Observe that O1 would

have been included in the answer if the trajectory is not approximated. It

is important to note that, in most of GPS traces, in addition to location

information, directional information is computed from the location tracking

devices [39]. Our proposed anonymization models, namely, kLD-anonymity

and kLDϵ-anonymity, ensure the desired privacy of users while serving such

LBS requests.

The main challenge is how to support proposed anonymity models in an

efficient manner. In a mobile environment, anonymization process needs to

be performed within a reasonable amount of time because the position of

users in GR is constantly updated. In order to address this, first, we present

detailed algorithms for providing the proposed anonymity models based on

TPR-tree [56]. Because TPR-tree captures location as well as direction infor-

mation, we can effectively extract candidate users. Second, kLDϵ-anonymity

requires continuous evaluation of condition checking of all users within the

anonymity set whenever the anonymity set changes, resulting in performance

degradation. We show the incremental evaluation of condition checking pro-

cess so that the condition checking is only required for the additional users

newly added to anonymity set. Our experimental results indicate that the

proposed kLDϵ-anonymity actually preserves the privacy of mobile users in
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a directional LBS environment with a marginal extra cost compared to the

traditional location k-anonymity.

Problem Setting

We assume that LBS providers are not trusted. This is a reasonable assump-

tion because customer data is often among the most valuable assets owned by

electronic retailers, and there is an active market for personal consumer in-

formation by such web-based marketing firms as Double Click and I-Behavior

and these firms collect and sell customer data [71]. For example, currently,

due to the App Store which allows iPhone users to browse and download

applications through mobile devices, it is easy to develop LBS applications

and become a registered LBS provider. However, it is not clear how these

small-sized LBS providers treat users’ location information. Therefore, any

information submitted to the LBS provider is a potential threat to the pri-

vacy of mobile users if they are utilized to identify the query issuer. In a

typical directional LBS request, the exact coordinates of location and query

direction are revealed to the LBS provider, which can be used to identify a

user.

Observe that our problem setting is different from MIX networks, which

try to achieve hard-to-trace communications in a network. Our focus is not

on the network communication privacy, but on the location privacy from the

LBS provider in a directional LBS environment. In this case, even though

every communication is anonymized, the message content itself (in this case,

location and direction) must be provided to the LBS provider in order to get
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the query answer, which can breach the privacy of users.

Adversary Model

We assume that an adversary has the knowledge of (1) anonymized requests

and (2) user location and moving direction from an external source. The

first assumption states that (1) an adversary cannot gain access to original

requests because the communication channel between a mobile user and the

LS is secure, resulting that any eavesdropping entity to this channel cannot

recognize the contents of the messages, and (2) an LBS provider can be an

adversary or the communication channel between the LS and LBS providers

is not secure.

The second assumption states that the locations and directions of at least

a few users within the vicinity of the targeted victim are revealed through

triangulation, public databases, physical observation, and so on [44]. For

example, traffic monitoring services such as Delcan technology can compute

the location and speed of a vehicle by measuring the time of handoffs from

cell to cell [51] in Maryland. Then, the movement direction can also be

computed by utilizing an underlying road network. If an LBS provider can

collude with traffic monitoring services, the location and direction of users

can be revealed.

The objective of an adversary is to infer the identity of the query issuer

in order to learn sensitive information about the user. This is because, the

query itself unintentionally reveals sensitive information about the user. For

example, assume Tom submits a continuous nearest neighbor query to find
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the nearest casinos along his path to the destination. If an adversary can

identify Tom as a user who is likely to submit the query, his query information

can be used to reveal his gambling habit. Refer to [19] for discussion on the

risks of revealing sensitive information in LBS environment.

Definition 5.7 (Privacy Attack in Directional LBS) Let S be the fi-

nite set of users in the system. Given a directional LBS query with specified

anonymity degree k, an attacker assigns a probability of submitting this query

to every user in S. An attack is successful iff the probability of distinguishing

a particular user u is larger than 1/k, i.e., ∃u ∈ S, P (Q = u) > 1/k. If this

attack is successful, the adversary can infer the preferences of mobile users.

In location k-anonymity literature, S is defined over the users located

within GR in the anonymized LBS request. For example, in Figure 5.10,

Tom, John, and Mary are the anonymity set for the given request. In order

to defend against the privacy attack, GR needs to be carefully computed so

that there is no user distinctly noticeable for sending a query within the users

in S.

Definition 5.8 (Location Privacy Condition with Parameter k) Location

privacy with parameter k is preserved for a directional LBS query iff there

exists a set of users S, called an anonymity set, such that each user in S has

less than 1/k probability of submitting a query.

Therefore, an anonymity model should satisfy this condition. Otherwise, an

adversary’s attack is successful. Observe that this condition is equivalently



169

specified with H(S) ≥ − log 1/k according to the inequality (3.4). In other

words, if local anonymity with ϵ = 1/k is satisfied, the location privacy

condition is also satisfied.

5.2.1 Anonymization Models

In this section, we propose anonymization models for ensuring the anonymity

of mobile users requiring directional LBS and also study how an adversary

can breach the privacy of such users. We now present the problems of us-

ing location k-anonymity for directional LBS, and then, introduce two new

anonymity models more suitable for it.

Limitations of Location k-Anonymity

Location k-anonymity, denoted as kL-anonymity, is achieved when the loca-

tion information of a mobile user is indistinguishable from that of at least

k−1 other mobile users [36]. As discussed ealier in the chapter, kL-anonymity

preserves the privacy of mobile users only for traditional queries (i.e., answers

to the query are evaluated only based on the current user location, such as

the nearest neighbor query), and the queries generally require only location

information. Our focus is a directional user request. We define it as follows.

Definition 5.9 (Directional LBS User Request) A directional user re-

quest r is a tuple r=⟨id,(x, y, t),(vx, vy),k,d,m⟩ where id is the identifier

(pseudo), (x, y, t) is the spatiotemporal location, (vx, vy) is the velocity for

x and y dimensions, k is the minimum size of the anonymity set, d is the

direction of the request, m is the service specific information.



170

Moving direction

( u )

Query direction

(r
u
.d)

Figure 5.12. Query direction (r.d) and user moving direction (θu)

Note that a user request in directional LBS specifically includes the di-

rection of the query from the user. The direction of a user u, denoted as θu,

is computed using the velocity (vx, vy) in r. Figure 5.12 shows the example

that the query direction r.d and the moving direction θu of a user u. We use

r.k (or r.d) to denote the minimum size of S (or the direction of the request)

in a directional LBS user request r. Users have the capability of setting r.d

of their own interest. Revisiting the example in Figure 5.11. If a user wants

to retrieve nearest objects along with the final destination, he/she can set

r.d as θ2. However, if the user wants to find the nearest neighbors based on

his current movement, θ1 can be set as r.d.

Observe that when a mobile user submits r, he/she must specify the

minimum level of k, which guarantees the minimum level of anonymity. This

implicitly states that a user wants to enjoy at least an anonymity levelHmin =

− log2
1
k
.
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Upon receiving r, the anonymized request by the LS is defined as follows:

Definition 5.10 (Anonymized Directional LBS User Request) An

anonymized directional user request r′ is a tuple r′=⟨GR,d,m⟩ where GR is

the spatiotemporal region, d is the direction of the request, m is the service

specific information.

The size of GR depends on the specific anonymity models used by the LS.

Observe that r′ does not include specific location and directions of the users,

and only GR and d are specified.

Let us assume that there exist a finite set of users U . Then, kL-Anonymity

can be formally defined as follows:

Definition 5.11 (kL-Anonymity) Given a user request r by a user u ∈ U

and a spatiotemporal region GR, called the generalized region, we say that

kL-anonymity is ensured for u if ∃ a set of users S ⊆ U such that u ∈ S,

|S| ≥ r.k, and ∀ui ∈ S, ui is located in GR.

LS ensures kL-anonymity by generalizing the user request by creating a spa-

tiotemporal region that includes at least k − 1 other mobile users. Thus,

for any user request, the spatiotemporal location of the user is transformed

into a spatiotemporal region that would include at least k mobile users after

removing any identifying information. Under the kL-anonymity model, the

probability that any mobile user u ∈ S is the person who submits a user

request is assumed to be uniform among the anonymity set, i.e, ∀u ∈ S



172

(P (Q = u) = 1
|S|). The degree of anonymity increases proportionally to the

size of the anonymity set, |S| [36]. However, as stated earlier, kL-anonymity

only considers location information. However, for using a directional LBS,

direction information is also required for effective service. We now show

that this can lead to significantly less anonymity than that assumed under

kL-anonymity.

Privacy Analysis

Let P (D = d) denote the probability that a query direction matches d, and

P (Q = u) denote the probability that a given query was issued by user u.

For our privacy analysis, we assume the following throughout the chapter:

1. ∀u ∈ S, P (Q = u) = 1/|S| which is the underlying assumption of the

kL-anonymity model.

2. Degree of direction is discretized into m equal sized bins. i.e., if m =

360, the discretized directions are between 0◦ and 359◦, i.e, {0◦, 1◦, 2◦, · · · ,

359◦}

3. The distribution of P (D = d) is unknown, but given a user request r,

P (D = r.d|Q = u) is known, i.e, normal distribution.

The first assumption is straightforward. The second assumption states

that we partition the continuous data space into m disjoint intervals of de-

grees, each represented with its mean value, i.e., if m = 360, 100◦ represents

the interval [99.5, 100.5], and of course, 0◦ represents [359.5, 0.5]. In this

chapter, we assume m = 360 if not specified. The third assumption states
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that there is public knowledge on specific relationship between r.d and θu.

In this chapter, we discuss specific probability distributions below:

• Normal distribution: Given a user’s query direction (r.d), normal

distribution (i.e., P (D = r.d|Q = u) ∼ N(θu, σ
2)) implies that the

user’s query direction (r.d) is estimated as his/her current moving di-

rection (θu), and users share the same value of σ for each predetermined

area. In this case, we assume that σ depends on the area rather than

each user’s preferences because road structures restrict a user’s move-

ment physically. For example, if a user is driving in a rural area, the

road structure is relatively simple, and therefore, the query direction

is more likely to be the same as the movement direction. Section 5.2.1

shows how to estimate σ using maximum likelihood estimation method.

• Uniform distribution: Uniform distribution of P (D = r.d|Q = u)

implies that there is no relationship between r.d and θu because it is

equally probable to submit r.d regardless of θu.

Note that the distance between degrees needs to be defined carefully. For

example, distance between 1◦ and 359◦ should be 2◦ not |359◦ − 1◦| = 358◦.

Definition 5.12 (Distance between Degrees) Distance function between

two degrees d1 and d2, denoted as dist(d1, d2), is defined as dist(d1, d2) =

min((d1−d2) mod m, m−((d1 − d2) mod m))

Then, the distance between r.d and θu is upper bounded by xm
2
y. Although

normal distribution is defined on (−∞,∞), because the maximum distance
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between two degrees is xm
2
y, we can truncate (−∞,−m

2
) and (m

2
,∞): in fact,

this is called truncated normal distribution where random variable is both

bounded below by −m
2
and above by m

2
. In this chapter, normal distribution

actually refers to truncated normal distribution for simplicity. Note that

since the sum of normals is also a normal, given a particular area including a

set of users, P (D = d) in this area also has a normal distribution whose mean

and variance can be calculated (as the average of the mean and variance) of

the distribution based on each user.

Definition 5.13 (Anonymity Level under Directional LBS Environment)

The anonymity level of kL-anonymity is assumed to be H(S) = − log2
1
|S| by

Equation (3.2) and the uniform distribution among query issuers (assump-

tion 1). However, the moving directions of the mobile users in |S| actually

change the query probability distribution. In other words, the posterior proba-

bility distribution after receiving the user request is actually different from the

prior uniform query distribution (assumed by kL-anonymity model). In fact,

under directional LBS environment, the anonymity level should be measured

by a specific conditional entropy H(S|D = r.d) as

H(S|D = r.d) = − log2max
u∈S

P (Q = u|D = r.d)

where P (Q = u|D = r.d) is a posterior probability using the Bayes rule, i.e.,

P (Q = u|D = r.d) =
P (D = r.d|Q = u)P (Q = u)∑

ui∈S P (D = r.d|Q = ui)P (Q = ui)
. (5.1)

Then, by the definition 5.13, given r, kL-anonymity does not guarantee the

privacy of mobile users if H(S|D = r.d) < Hmin.
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Example 5.3 Suppose r.k = 3 and S = {u1, u2, u3} with θu1 =10◦, θu2 =20◦,

and θu3 =190◦. Let us assume that σ is estimated as σ̂ = 10, and the spec-

ified directional LBS request’s direction r.d = 10◦. P (Q = u1|D = 10◦) is

computed for the following probability distributions:

• Normal Distribution:

P (Q = u1|D = 10◦) =
P (Q = u1, D = 10◦)

P (D = 10◦)

=
0.0398 · 1

3

0.0398 · 1
3
+ 0.0249 · 1

3
+ 0 · 1

3

= 0.6151

Since P (D = 10◦|Q = u1)∼N(10, 102), P (D = 10|Q = u1) =

P ( |dist(20,10)−0.5|
10

≤ Z ≤ dist(20,10)+0.5|
10

) = 0.0398. In the same manner,

P (Q = u2|D = 10) = 0.3849 and P (Q = u3|D = 10) = 0. Then, the

anonymity level of S is

H(S|D = 10) = −(log2 0.6151) = 0.7011

which is much smaller than the anonymity level of Hmin = − log2
1
3
=

1.1584. The anonymity level H(S|D = 10) = 0.7011 implies although

a user specifies the minimum anonymity level of k = 3 in the user

request, the system can achieve the anonymity level of only k = 1.6257

because − log2
1

1.6257
= 0.7011.

• Uniform Distribution: In fact, under uniform distribution, for any

user u in S, P (Q = u|D = d) becomes 1
|S| . This is because, in Equation

(5.1) P (Q) = 1
|S| and P (D = r.d|Q = u) is uniform. Therefore, under

uniform distribution, H(S|D = d) ≥ Hmin is satisfied. The proof of

this is trivial.
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Figure 5.14. kLDϵ-Anonymity

In other words, uniform distribution assumption of P (D|Q) guarantees

the desired anonymity level as long as |S| ≥ r.k. Therefore, applying kL-

anonymity model would not breach the privacy. However, although uniform

distribution would make sense in certain scenarios (i.e., a user submits a

directional user request regardless of his/her current moving direction), this

chapter contributes to the case where non-uniform distribution is more suit-

able. Thus, we mainly restrict our discussion on non-uniform distribution

such as normal distribution from here.

Location and Direction k-Anonymity

To overcome the limitation of the kL-anonymity model, we now present the

location and direction k-anonymity model, denoted as kLD-anonymity. In

this case, given r, location is generalized so that GR includes at least k (or

k − 1) other users with moving direction identical to r.d (or θu).

Definition 5.14 (kLD-anonymity) Given a user request r by a user u and

a spatiotemporal region GR, we say that kLD-anonymity is ensured for u if

∃S ⊆ U , such that |S| ≥ r.k, and every ui ∈ S is located within GR and

θui
= r.d.
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In other words, given a user request r, kLD-anonymity is ensured by finding

k users whose moving direction is identical with r.d. Equivalently, we can

consider the case of k − 1 users whose moving direction is identical with θu.

In order to distinguish them, we denote kLD
θu

as kLD-anonymity based on

the same direction with θu and kLD
r.d as kLD-anonymity based on the query

direction r.d.

Example 5.4 Assume Tom is heading northeast, i.e, θTom = 45◦. His LBS

request is to find the nearest restaurant(s) heading northeast from the loca-

tion of submitting the request. The request to LS is of the following form:

r = ⟨id=T, (Latitude=4151.8122, Longitude=08739.0505, Time=18:28:33),

(vx=50Mph, vy=50Mph), k = 3, d = 45◦, m =Nearest Restaurant⟩. In order

to preserve the privacy of Tom, LS removes all the identifying information

(i.e., replace identifier with pseudo id) and replaces location information with

GR that covers the locations of three users: Tom, Kim, and Robert all of

whose direction is the same, i.e., θTom = θMary = θJohn = 45◦, as shown in

figure 5.13.

One problem with this model is that the size of GR depends on the move-

ment distribution of mobile users. For example, if there are sufficient mobile

users around the LBS requester moving in the same direction, the GR will

be small. However, if the area is sparsely populated with few mobile users,

the location generalization may be drastic, and may significantly degrade the

accuracy of the requested service.
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Relaxed Location and Direction k-Anonymity

Because in a real scenario, kLD-anonymity model may be too rigid, i.e.,

finding k users with the same direction could require an GR that is too

large, we would like to relax this limitation. Note that it is sufficient to

generalize the location to an GR which gives a local anonymity of ϵ = 1/k.

Given a user request r, relaxed location and direction k-anonymity, de-

noted as kLDϵ-anonymity is defined as follows:

Definition 5.15 (kLDϵ-Anonymity) Given a user request r and a spatiotem-

poral region GR, we say that kLDϵ-anonymity is ensured for u if ∃S ⊆ U such

that ∀ui ∈ S, ui is located within GR and P (Q = ui|D = r.d) ≤ 1/k.

In other words, kLDϵ-anonymity is ensured if we can find a group of users

whose posterior probability distribution is less than or equal to 1
k
so that

adversaries cannot really differentiate between the actual query requester

and the other users in S. Intuitively, we want to have a group of users

whose P (Q|D) is not very different than that of the query submitter for

guaranteeing the kLDϵ-anonymity.

Example 5.5 As earlier, suppose Tom is heading northeast, i.e, θTom =

45◦, and he wants to find the nearest restaurant from his current location

heading northeast direction. Again, the request submitted is the same as

earlier. However, in this case the LS replaces location information with an

GR that covers the locations of four users: Tom, Kim, Robert, and Harry
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all of whose direction is very close to each other, i.e., θTom = 45◦; θKim =

50◦; θRobert = 47◦; θHarry = 49◦, as shown in figure 5.14.

Given S, it is straightforward to check if S satisfies kLDϵ-anonymity. How-

ever, how do we pick the right GR? The obvious solution is to keep enlarging

GR until the covered anonymity set satisfies kLDϵ-anonymity. However, since

the value of P (Q|D) changes based on users in S, when an additional user is

included in S, we need to recalculate P (Q = ui|D = r.d) for all users in S to

check if kLDϵ-anonymity is satisfied, i.e., ∀ui ∈ S, P (Q = ui|D = r.d) ≤ 1/k.

The naive solution would recompute the P (Q|D) for each user when consid-

ering each GR, which creates a bottleneck in anonymization performance.

Incremental Condition Checking: We now discuss an efficient way to

incrementally check whether an GR satisfies kLDϵ-anonymity. First, there

exists Pmax for any probability distribution.2 For example, P (D|Q) is max-

imized when r.d = θu for normal distribution. Let Pmax denote this value.

Then, given r, ∀ui ∈ S, P (D = r.d|Q = ui) ≤ Pmax. Also, observe that:

P (Q = u|D = r.d) =
P (Q = u,D = r.d)

P (D = r.d)

=
P (D = r.d|Q = u)P (Q = u)∑

ui∈S P (d = r.d|Q = ui)P (Q = ui)

=
P (D = r.d|Q = u) · 1

|S|∑
ui∈S P (D = r.d|Q = ui) · 1

|S|
since ∀ui ∈ S, P (Q = ui) = 1/|S|

=
P (D = r.d|Q = u)∑

ui∈S P (D = r.d|Q = ui)
(5.2)

2In case of discrete probability distribution, it is trivial to find such value by enumer-
ating each probability values. Continuous probability distribution also guarantees to have
Pmax exist: any probability value has the range of 0 and 1, thus bounded, and because the
distance between θu and r.d is bounded by 0 and xm

2 y, we can enumerate the probability
for each subinterval between 0 and xm

2 y and pick the maximum value.
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Therefore, P (Q = u|D = r.d)= P (D=r.d|Q=u)∑
ui∈S P (D=r.d|Q=ui)

by Equation (5.2). For

simplicity, let sum denote
∑

ui∈SP (D = r.d|Q = ui). Also, let ¯sum =

k · Pmax. Now, when sum ≥ ¯sum, we can achieve ∀ui ∈ S, P (D = r.d|Q =

ui)/sum ≤ 1/k which satisfies kLDϵ-anonymity.

Theorem 5.1 Given a request r, if sum ≥ ¯sum = Pmax · (r.k), kLDϵ-

anonymity is satisfied.

Proof: Let us use k instead of r.k for simplicity. Observe that ∀ui ∈ S,

P (Q = ui|D = r.d) = P (D=r.d|Q=ui)
sum

. However, because sum ≥ Pmax · k

implies Pmax

sum
≤ 1

k
, P (D=r.d|Q=ui)

sum
≤ Pmax

sum
≤ 1

k
which satisfies the definition of

kLDϵ-anonymity as desired, completing the proof �.

The implication of Theorem 5.1 is that when GR is expanded, we only

need to consider additionally included users S ′ ⊆ U by checking
∑

ui∈S′ P (D =

r.d|Q = ui) +
∑

uj∈S P (D = r.d|Q = uj) ≥ Pmax · (r.k) where S is the

anonymity set before expansion, and if this condition is satisfied, kLDϵ-

anonymity is automatically guaranteed without checking P (Q|D) of entire

users. Thus, as long as we keep the value of
∑

uj∈S P (D = r.d|Q = uj)

before expansion, the condition checking for kLDϵ-anonymity becomes simple

procedure.

Example 5.6 (Normal Distribution Case) Suppose U = {u1, u2, u3, u4}

with θu1 =20◦, θu2 =25◦, θu3 =15◦, and θu4 =31◦. Let us assume that σ is

estimated as σ̂ = 10, r.k = 2, and r.d = 10◦. Then, P (D = 10◦|Q = u1) =

0.024197, P (D = 10◦|Q = u2) = 0.012959, P (D = 10◦|Q = u3) = 0.035196,
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P (D = 10◦|Q = u4) = 0.00440461, and Pmax = 0.035196. Suppose only u1

and u2 are included in S. Then, P (Q = u1|D = 10◦) = 0.651237 > 1/r.k =

0.5, thus not satisfying kLDϵ-anonymity. Now, we have two choices as a

candidate user to add in S: u3 or u4. Simply checking sum of the additional

user can decide if the additional user can satisfy kLDϵ-anonymity.

• u3 is included: P (D = 10◦|Q = u1) + P (D = 10◦|Q = u2) + P (D =

10◦|Q = u3) = 0.072351, which is greater than ˆsum = 0.070391. Thus,

without computing P (Q|D) of existing users in S additionally, we know

that including u3 satisfies kLDϵ-anonymity.

• u4 is included: P (D = 10◦|Q = u1) + P (D = 10◦|Q = u2) + P (D =

10◦|Q = u4) = 0.04156, which is smaller than ˆsum. Thus, we cannot

guarantee kLDϵ-anonymity by adding u4. In fact, P (Q = u1|D = 10◦) =

0.582218 > 1/r.k = 0.5, thus not satisfying kLDϵ-anonymity.

Properties of kLDϵ-anonymity

If S satisfies kLDϵ-anonymity for r, the following holds:

• Property 1. |S| ≥ r.k holds.

• Property 2. When |S| = r.k, kLDϵ-anonymity holds iff kLD-anonymity

holds. In other words, kLD-anonymity is a special case of kLDϵ-anonymity.

Proof sketch: Property 1 is straightforward since otherwise, ∃ui ∈ S,

P (Q = ui|D = r.d) > 1
k
must hold. “If” part of the property 2 is straight-

forward by the fact that P (Q = ui|D = r.d) = 1
k
holds because under
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kLD-anonymity, there must exist at least k users with the identical move-

ment direction, and |S| = k implies that P (Q = ui|D = r.d) must be the

same for these users, meaning 1/k. However, this condition is also satisfied

in the definition 5.15 of kLDϵ-anonymity. For “Only If” part, we can show

that when |S| = k, then, kLDϵ-anonymity is satisfied only when the condi-

tion P (Q = ui|D = r.d) = 1
k
holds, but the condition is also true for the

kLD-anonymity �.

Parameter Selection

We need to estimate the value of σ for normal distribution. Maximum like-

lihood estimation (MLE) is a popular statistical method to compute the

values of the model parameters. For a normal distribution N(θ, σ2), the

probability density function is f(x|θ, σ2) = 1√
2πσ

exp(− (x−θ)2

2σ2 ). Let Xi ∈

{X1, X2, · · · , Xn} be a random sample from the population distribution with

f(x|θi, σ2), i.e., Xi ∼ N(θi, σ
2). In other words, the true mean of Xi is θi,

but σ is shared by all Xi. Then, the likelihood function L(σ) is L(σ) =∏n
i=1 f(xi|θi, σ2) = ( 1

2πσ2 )
n
2 exp(−

∑n
i=1(xi−θi)

2

2σ2 ) by assuming that ∀Xi, Xj ∈

{X1, X2, · · · , Xn}(i ̸= j), Xi and Xj are independent.

Because the logarithm is a monotonically increasing function over the

range of the likelihood, the values which maximize the likelihood will max-

imize its logarithm value as well. Observe that the first order condition of

logL(σ) becomes 0 = −n
σ
+

∑n
i=1(xi−θi)

2

σ3 and the solution is σ̂2 =
∑n

i=1
(xi−θi)

2

n
.

The second order condition of logL(σ) is actually negative when σ̂2 =∑n
i=1

(xi−θi)
2

n
. Thus, log(L(σ)) is maximized with the value of σ̂2.
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Privacy Analysis of Proposed Models

If our anonymization models are not used, the common method to achieve

privacy is using pseudonym. For example, when a user, Bob, submits a

query to the LBS provider, instead of submitting a query directly to the

untrusted LBS provider, he submits his query via an intermediate trusted

server which hides his ID with pseudonym. However, because the submitted

query includes the exact location and query direction of him, which can be

used to identify him if this location belongs to him exclusively. Similarly, the

existing kL-anonymity cannot preserve privacy as well because the additional

information (i.e., direction) changes the probability distribution of P (Q|D)

of individual users in the anonymity set.

In case of kLDϵ-anonymity, we know that ∀ui ∈ S, P (Q = ui|D = r.d) ≤

1
k
holds by Definition 5.15. Then, we can show H(S|D = r.d) ≥ Hmin

by equation (3.4) since the kLDϵ-anonymity achieves local anonymity with

ϵ = 1/k. This implies that the anonymity level provided by kLDϵ-anonymity

is at least as strong as Hmin with |S| = k regardless of the probability

distribution P (D|Q).

Although it is natural to think that if given S satisfies kLD-anonymity, it

automatically satisfies kLDϵ-anonymity, this is actually not necessarily true.

In fact, the anonymity level of kLD-anonymity depends on the probability

distribution of P (D|Q). In case of normal distribution,

• we can show that kLD
r.d -anonymity always satisfies kLDϵ-anonymity be-

cause any user’s P (Q|D) represented with Equation (5.2), the numera-
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tor is upper-bounded by Pmax and the denominator is lower-bounded by

k ·Pmax, implying that P (Q|D) of all users are upper-bounded by 1/k.

Thus, since kLD
r.d -anonymity satisfies kLDϵ-anonymity, the min-entropy

of kLD
r.d -anonymity shows at least as strong as the level provided by the

kLDϵ-anonymity, thus satisfying H(S|D = r.d) ≥ Hmin.

• However, we cannot guarantee that the anonymity level of kLD
θ -anonymity

is always stronger than that of kLDϵ-anonymity. Example 5.7 illustrates

this situation.

Example 5.7 Suppose that S has k − 1 users moving with the same direc-

tion as the query submitter, but not the same with the query direction, and

an additional user whose direction is the same as the query direction. Ob-

viously, S satisfies kLD
θ -anonymity because of the existence of k users with

same direction. Let us denote their P (D|Q) as P . Because the additional

user’s moving direction is the same as the query direction, his P (D|Q) must

be equal to Pmax. Then, the additional user’s P (Q|D) = Pmax/(k ·P +Pmax)

by Equation (5.2). In order to satisfy kLDϵ-anonymity, i.e., P (Q|D) ≤ 1/k,

Pmax ≤ (k · P + Pmax)/k must hold. However, Pmax > (k · P + Pmax)/k may

hold in extreme case such as θu = 20, k = 100, and r.d = 15. Obviously, this

does not occur when kLD
r.d -anonymity is used because (k ·P +Pmax)/k becomes

(k + 1) · P/k since Pmax = P , thus no matter what value k (k ≥ 1) takes,

kLDϵ-anonymity is satisfied.

In the experimental study in section 5.3.5, it turns out that an GR

satisfying kLD
r.d -anonymity or kLD

θ -anonymity always contains that of kLDϵ-
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anonymity for the given r, which implies that not only kLD
r.d -anonymity but

also kLDϵ-anonymity satisfies the minimum anonymity level for normal dis-

tribution, but in a certain situation, kLD
r.d -anonymity cannot guarantee the

privacy just because there exists at least k users moving with the same direc-

tion as the requester. However, there may exist an probability distribution

of P (D|Q) such that even the anonymity level of kLD
r.d -anonymity may not

exceed Hmin. Therefore, kLDϵ-anonymity is preferred because it works re-

gardless of probability distribution.

Discussion

Role of Speed during Anonymization: We do not consider the speed

in our anonymization models because it does not affect the privacy of mobile

users. In this chapter, we consider two directional LBS: nearest neighbor

query with specifying direction, and continuous nearest neighbor query. Ob-

serve that the answer of the first type of query is the same no matter how

speed is different among the users in S because nearest neighbor query with

specific direction is a snapshot query, where the query is evaluated only once

based on the user’s current location, implying that the result is not depen-

dent on the speed. In the second type of query, speed also has no impact on

the query result if we consider the maximum speed of the user in S during

computing the result. The result of continuous nearest neighbor queries con-

tains a set of ⟨point, interval⟩ tuples, such that point is the nearest neighbor

of all points in the corresponding interval [70]. Here, the data point refers to

the locations of static objects such as building, restaurants, and so on. Since
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we use the maximum speed when computing the candidate result, although

the distance that are considered for the query may be longer, we guarantee

that the result does not miss any data.

Role of σ from the Adversary’s Perspective: Observe that the specific

value of σ̂ is used not only by the LS but also by the adversary. In order to

simplify the discussion, let us assume that the adversary has the true value

of σ̂, denoted as σ. Suppose a random variable X is normally distributed

with mean 0 and variance σ2. The behavior of σ upon the probability density

function f(X = x) is dependent on the value of x. For example, although

f(x|σ = 1.0) < f(x|σ = 0.2) holds when x = 1, f(x|σ = 1.0) > f(x|σ = 0.2)

holds when x = 0. Observe that in order to compute P (Q|D), we need

to assume certain anonymity set. In other words, we need to have a set

of users’ P (D|Q) in advance in order to compute P (Q|D), and the size of

anonymity set is also variable. The issue is that in Equation (5.2), behavior

of the denominator with respect to the value of σ is dependent on the given
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anonymity set. In other words, because f(X = x) is dependent on the

value of x, individual user’s P (D|Q) may increase or decrease depending on

his/her current moving direction. Because there are too many combinations,

it cannot be directly analyzed theoretically. Therefore, we experimentally

analyze the behavior of σ. The anonymity set of size 100 is randomly selected

from the dataset used in section 5.3.5 and we compute P (Q|D) for each user

in S for various value of σ̂. In fact, we are only interested in the maximum

value of P (Q|D) in S because in Definition 5.15, kLDϵ-anonymity is satisfied

if each user’s P (Q|D) in S is less than or equal to 1/k, and thus, we only

need to check if the maximum value of P (Q|D) ≤ 1/k is satisfied. Figure

5.15 shows that the maximum value of P (Q|D) monotonically decreases with

increasing value of σ̂, but after some point, it becomes relatively constant.

Based on this result, it is trivial to show that if the adversary’s σ is greater

than or equal to that of LS, kLDϵ-anonymity is still satisfied because the

maximum value of P (Q|D) computed by the adversary is now getting smaller

than that by the LS, thus still satisfying the condition of P (Q|D) ≤ 1/k.

Otherwise, kLDϵ-anonymity may not be satisfied based on the value of k.

For example, because the experiment is based on 100 random samples, we

can have any value of k ≤ 100. If k = 10, no matter how we select σ̂,

P (Q|D) ≤ 1/k is satisfied in Figure 5.15. However, given k = 50 and the

LS’s σ̂ = 5, we cannot guarantee kLDϵ-anonymity if σ < 5.

The implication of this observation is in three-folds. First, given k, in

order to make sure that kLDϵ-anonymity is satisfied, we need to find enough

number of users as S such that regardless of σ̂, P (Q|D) ≤ 1/k holds for every
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user in S. We can find such S with an assumption of σ̂ = 0. Second, it is

important to have the property of asymptotically unbiased for estimation of

σ, meaning that the distance between σ̂ and σ tends to zero as the sample

size increases to infinity, which happens to be the case of the MLE method.

Therefore, it is crucial to have enough number of samples to estimate σ.

Third, in practice, the adversary does not have the knowledge on the sub-

mitted value of k, and therefore, even though the estimated value of σ by

the LS is higher than that of the adversary, kLDϵ-anonymity is still preserved

but with the smaller value of k. For example, in Figure 5.15, suppose σ = 3,

thus the maximum value of P (Q|D) = 0.02592. Because the adversary does

not know k, the reasonable assumption by him/her is that the submitted k

is less than 38.58 (by using 1/P (Q|D)). This implies that kLDϵ-anonymity is

still preserved but with the smaller value of k, thus resulting smaller privacy

level than the user expects.

5.2.2 Efficient Anonymization Procedures

We now present efficient procedures for anonymization based on our models.

We employ the TPR-tree [56], an index structure to organize mobile objects.

Each node in the tree is a time parameterized rectangle that is constructed by

appropriately grouping objects based on their current location and velocity.

The TPR-tree allows efficient anonymization since it is likely that users with

closest directions are grouped together.

For kLD-anonymity, the goal is to find the tree node satisfying kLD-

anonymity. We start by finding the leaf node containing the user submitting
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the request. If this node satisfies the privacy requirements (i.e. the number

of users with the identical direction to the requester ≥ k), the area of the

node is returned. Otherwise, we recursively check the parent node all the way

up to the root to find the appropriate node. Note that kL-anonymity can

be easily processed as a special case of kLD-anonymity, simply by ignoring

direction.

Similar to kLD-anonymity, kLDϵ-anonymity first finds the leaf node L that

contains the user who submits the user request. The main difference with

kLD-anonymity is in the data objects chosen for anonymization. Instead of

finding k − 1 users with identical direction, the goal here is to find a group

of mobile users so that each user in the set satisfies the kLDϵ-anonymity

requirement. Theorem 5.1 is used for efficient anonymization. First, we

check if sum of the objects stored at L actually greater than or equal to

¯sum. If this is the case, we return the spatial coverage of L. Otherwise, we

select a parent node N of L, and check if sum of those users stored at subtree

rooted at N satisfies kLDϵ-anonymity. This step is repeated until we find an

appropriate node which satisfies kLDϵ-anonymity.

5.2.3 Experimental Analysis

We have experimentally validated the performance of the proposed algo-

rithms. The TPR-tree and all of the anonymization algorithms are imple-

mented in C++. The page size and tree node size is set to 4k bytes, which

results in 204 and 146 entries per node for three-dimensional data. All mov-

ing objects lie within a specified 3-dimensional spatiotemporal space. In all
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the experiments, we use the Network-based Generator of Moving objects [22].

We use the road network map of Joaquin County area in CA, USA. With

1000 random samples, σ for Joaquin is estimated as 37.8996 using MLE

methods. Figure 5.16 shows movement traces of a mobile user. We compute

the movement direction (or query direction) using the first movement to the

next (or to the final destination) by assuming that the final destination of

a trip is located under the query direction. All experiments were run on a

Windows system with 1.8GHz Intel CPU and 3GB memory.

We use the following evaluation metrics to measure the efficiency and

effectiveness of the presented anonymization models. The anonymization

time measures how efficiently an LBS request is being anonymized. We use

disk access I/O as the performance measure instead of elapsed CPU time

because (1) main memory may not fit large amounts of moving objects, (2)

disk access I/O cost always dominates over CPU cost, and (3) CPU clock

time largely depends on the implementation details. In fact, disk access I/O

is generally accepted performance measure in moving object index commu-

nity. The relative GR size measures the spatiotemporal resolution by the

generalization algorithms. This is defined as the area of GR divided by the

total area of the given data space multiplied by 100. It shows how much

percentage of data space is covered by the GR. In general, a smaller GR re-

duces the burden on the system. The relative privacy level measures how

many users are moving towards the same direction relatively in the given

anonymity set. It is defined as the number of users who move in the same

direction specified in the anonymity model divided by the value of k. For
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example, for kLD
θu

-anonymity (or kLD
ru.d

-anonymity), the numerator refers to

the number of users whose direction is identical with θu (or ru.d). We set

the denominator as k because k is used for specifying the desired level of pri-

vacy, and the fraction of users moving in the same direction can show that

how evenly P (Q) is distributed among the anonymity set. The best case

scenario for kLD-anonymity is that the relative privacy level is 1, i.e., there

are k number of users moving towards the same direction in the GR so that

the GR’s size is minimized. This is because, due to the inverse relationship

between the level of privacy and the size of GR, it is desired to maintain the

relative privacy level close to 1. The measure should not be less than 1 in

case of kLD-anonymity because it means that the size of anonymity set is

even smaller than the user’s desired minimum value of k. If this happens, we

drop the user request as it does not satisfy the minimum anonymity level.

However, we expect the relative privacy level of kLDϵ-anonymity less than 1

because it does not require to have k number of users moving towards the

same direction to satisfy the kLDϵ-anonymity. However, it is still possible to

have this measure greater than 1.

Scalability

Figure 5.17 and figure 5.18 give the scalability of the proposed anonymization

algorithms with respect to varying number of users from 20K to 100K (k =

50 and ˆσMLE = 37.8996), and increasing k from 10 to 50 (the number of

users= 50K and ˆσMLE = 37.8996).

Effect of varying number of users: Figure 5.17.(a) gives the average
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Figure 5.17. Number of Users (k = 50, σ̂MLE = 37.8996)

performance figures in terms of disk access I/O. This figure shows that more

number of users in the system actually incurs less performance overhead to

the system. Observe that there are two different effects in terms of disk ac-

cess I/O: (1) more number of disk nodes needs to be accessed to search for

the desired users for the anonymity set, which causes more disk access I/Os,

and (2) as more number of users exist in the system, it is easier to find users

who satisfy the anonymization model criteria. The actual disk I/Os actually

depend on which effect is stronger between these two effects, but the general

trends shows that the second effect (less performance overhead) dominates.
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kLD-anonymity performs the worst since it does the most processing to find

the mobile users heading the same direction. kL-anonymity always performs

best, as expected. Interestingly, the performance of kLDϵ-anonymity is very

similar to that of kL-anonymity. Thus, only a marginal sacrifice in perfor-

mance is required to get better privacy. Also, kLDθ-anonymity performs

better than kLDr.d-anonymity in the experiment implies that it is more easy

to find the users whose directions are identical with θ than those with r.d.

This is convincing because in a road network, a group of people in a given

region are more likely heading the same direction. In fact, kLDθ-anonymity

performs better than kLDr.d-anonymity in terms of anonymization time and

relative GR size for all the scalability tests. Thus, kLDθ-anonymity is more

preferable.

Figure 5.17.(b) shows the relative GR size for different number of users

on average, and we can observe that the size is decreased with more number

of users. This is because, the anonymity set can be selected in the smaller

region as more number of users are inserted into the TPR-tree. The GR size

of kLD-anonymity is always larger than other anonymity models because it

has to find at least k users heading the same direction. Along with the same

argument in the previous paragraph, the performance of kL-anonymity and

kLD-anonymity exhibit very similar performance in terms of the GR size.

This verifies our argument that the insertion heuristics of TPR-tree actually

groups mobile users with similar velocity because the anonymized area of

kLDϵ-anonymity is not actually very different from that of the kL-anonymity.

Figure 5.17.(c) shows the average relative privacy levels for varying num-
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ber of users. The relative privacy level of all the anonymity models is rel-

atively constant with varying number of users. We do not consider kL-

anonymity here because it does not consider directions of users. The rel-

ative privacy level of kLDϵ-anonymity is relatively smaller than other models

as expected because kLDϵ-anonymity allows variations of directions during

anonymization process. The relative privacy level of kLDϵ-anonymity is close

to 0, meaning that kLDϵ-anonymity is preserved with users with only small

portion of users have the same directions as θu and ru.d. This is because,

kLDϵ-anonymity allows variations on the directions of users, and therefore it

is not required to have the exactly same direction as θu and ru.d to guarantee

the privacy. kLD
r.d -anonymity shows similar relative privacy level to that of

kLD
θ . The important observation is that the relative privacy level using our

anonymization process is close to 1, meaning that the proposed anonymiza-

tion algorithms provides desirable results. Interesting result is that the rela-

tive privacy level of kLD
r.d -anonymity is smaller than that of kLD

θ -anonymity,

which shows another evidence that there exist more users with direction θ

than r.d.

Effect of varying privacy requirement (k): Figure 5.18.(a) shows the

anonymization performance in terms of disk access I/O. As k increases, the

anonymization cost increases, since more nodes have to be traversed to find

corresponding number of users to k, which applies to the kLD-anonymity.

Both kL-anonymity and kLDϵ-anonymity show relatively constant perfor-

mance for varying value of k. The main reason is that the predetermined

minimum number of entries for a tree node is 146 and thus, there are enough
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Figure 5.18. Effect of k (Number of users = 50K, σ̂MLE = 37.8996)

number of users exist in the leaf node which satisfies the given anonymization

model. The same argument applies to effect on the GR size for varying num-

ber of k. With the value of σ estimated by the MLE method, the performance

of kLDϵ is almost identical with kL-anonymity in terms of anonymization

time and GR sizes. Again, this observation shows the superiority of kLDϵ-

anonymity model over kL-anonymity because kLDϵ-anonymity preserves the

privacy of mobile users even if the mobility knowledge is revealed to the un-

trusted entities with marginal cost. Figure 5.18.(c) shows the relative privacy

level for varying k when σ̂ and the number of users are fixed. The relative
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Figure 5.19. Effect of σ̂

privacy level of all the anonymity models are decreased as k increases be-

cause the nodes used for anonymization are relatively fixed for varying value

of k, meaning numerator of relative privacy level formula is relatively con-

stant, while increasing k will increase the value in denominator. Overall, the

relative privacy level decreases.

Effect of σ on kLDϵ-anonymity

In order to compute P (Q|D), we need to estimate σ for kLDϵ-anonymity

in case of normal distribution. This experiment shows the behavior of kLDϵ-

anonymity with varying value of σ̂. Figure 5.19 shows the average anonymiza-

tion performance for varying σ̂ when we change the number of users and k.

Figure 5.19.(a) gives the anonymization performance in terms of disk I/O for

varying number of users. The interesting result is that as σ̂ increases, the disk

I/O is considerably decreased, and after some threshold, the anonymization

occurs at a leaf node and thus performance remains constant. This effect

is shown when σ̂ is greater than 30: in this case, they show the similar

performance figure in Figure 5.19.(a). As Figure 5.15 shows that Pmax is
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monotonically decreased with respect to increasing value of σ̂, this effect

implies that ¯sum becomes smaller as well because in ¯sum = k · Pmax, k is

fixed and Pmax becomes smaller. Therefore, kLDϵ-anonymity can be satisfied

with smaller number of users. Also, in Figure 5.15, observe that after some

threshold, the decreasing rate of Pmax is marginal, which in turn, the change

in ¯sum becomes marginal as well. Therefore, when σ̂ is greater than the

threshold level (i.e.,30), the performance becomes similar. Figure 5.19.(b)

shows the anonymization performance for varying value of k. With larger

value of k, the performance of disk I/O gets worse in all cases because it

has to search more number of nodes to satisfy the given k. Similar to the

previous case, with the greater value of σ̂, the disk I/O decreases, and after

a point, the anonymization remains constant.

5.3 Optimal Trajectory Partitioning for Enhanced Privacy and
Utility in Continuous Location Based Services

The notion of trajectory k-anonymity has been proposed by extending loca-

tion k-anonymity for protecting the trajectory of a suer. Although existing

work is limited to the case of static trajectory publication scenario, it is

straightforward to apply to the continuous LBS which requires a user’s fu-

ture trajectory. Under trajectory k-anonymity, a user trajectory is being

anonymized by at least k−1 other trajectories: therefore, a user’s trajectory

remains indistinguishable from at least k − 1 other trajectories. However,

the trajectory k-anonymity requirement can lead to considerable GR ex-

pansion and associated loss of accuracy, thus not satisfying minimum QoS

thresholds. The situation is further aggravated if the anonymization is over



198

a sparse area. Therefore, our goal is to guarantee privacy while satisfying the

quality of service requirement. We employ trajectory partitioning to achieve

both privacy and accuracy of the LBS service. Essentially, we propose an

optimal k-anonymity trajectory partitioning method, which splits the con-

tinuous LBS request into multiple LBS requests with shorter trajectories.

Our partitioning strategy enjoys the following benefits.

• Enhanced privacy: It is obvious that privacy risk increases as the time

duration of tracking a moving object increases [39]. As a result of split-

ting a user’s trajectory, the adversary may believe that the requests are

originating from different users, and therefore is not capable of track-

ing the user for the entire trajectory. Fuzziness can be introduced in

the length and time interval of the partition to minimize the risk of

the adversary to reconstruct the trajectory from multiple paths. Addi-

tionally, our partitioning approach is optimal in that it chops a set of

trajectories in such a way that both privacy and utility are maximized.

• Enhanced service quality: It is well known that there exists an inverse

relationship between the service quality and the level of privacy [33, 47].

This is because, better privacy is provided by increased generalization

of a LBS region (i.e. larger number of k), which tends to create larger

anonymized region. This may have adverse effect on the accuracy of

the result. For example, for a continuous nearest neighbor LBS search

with trajectory of 50 miles looking for nearest restaurants along the

path, due to larger GR, the restaurants that are farther to the ac-

tual path will also be included. Our trajectory partitioning results in
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smaller anonymized regions and as a consequence results in better ser-

vice quality. Essentially, in the above example, smaller anonymized

regions give more closer restaurants than the case of non-partitioned

trajectories. Indeed, our experimental results show that the covered

area due to partitioning is reduced by 20% - 30% compared to the one

without.

Clearly, such partitioning increases the workload on the anonymizer as it

has to put together the different query results to compose the answer to the

user’s request. However, our experiments indicate that the cost of doing so

is nominal.

The main contributions of this chapter are summarized as follows:

• We present a trajectory k-anonymity model for protecting the privacy

of users in a continuous LBS environment.

• We propose optimal trajectory partitioning methods that can achieve

enhanced privacy and service quality, and formally prove these proper-

ties.

• We experimentally demonstrate that our partitioning approach is both

efficient in practical situations and significantly outperforms existing

trajectory partitioning approaches by using synthetic and real data

sets.
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Problem Setting

In order to process continuous LBS requests, there are two main approaches:

(1) an LBS request is submitted repeatedly for each time instance until it ex-

pires, thus requiring the system evaluate the results continuously, and (2) the

query result is computed only once if the information on the future trajec-

tory is provided. The first approach suffers from the drawback of sampling,

i.e., if the sampling rate is too low, the results will be incorrect; otherwise,

there is a significant computational overhead [69]. Therefore, in this section,

we focus on the continuous LBS environment where the query results can be

computed in advance. Existing privacy-preserving work for continuous LBS

[28, 79] only consider the first case, thus, still having the issues of sampling

and correctness of query results. We are the first to address the anonymity

of users based on the revealed information of future trajectory.

A mobile user brings a mobile device such as PDA or cellular phone to

send a LBS request to a trusted location server (LS) using wireless technolo-

gies through a secure channel, such as secure sockets layer (step 1). This

user request in the continuous LBS environment can be defined as follows:

Definition 5.16 (Continuous LBS User Request) A user request ri of

a mobile user oi is ri = ⟨id, Ti, k, s⟩ where id is the identifier (pseudo), Ti is

the trajectory which includes the user’s current location, k is the minimum

privacy level, s is the service specific information.

Here, k indicates that the user wants to be k-anonymous for a given query,

i.e., indistinguishable among at least k users. We use ri.k and ri.Ti to de-
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note k and Ti of ri. LS maintains the (past as well as current) locations

of users and utilizes those information to perform anonymization (step 2)

based on users’ privacy requirements (k). The LS first removes any identify-

ing information from the original request and anonymizes it by replacing the

trajectory with the GR which contains the trajectories of at least k users.

Thus, the anonymized request includes GR instead of a trajectory and is for-

warded to the LBS providers (step 3). On receiving the anonymized request

from LS, the LBS provider computes a candidate list of answers satisfying

the request, and sends it back to the LS (step 4). Then, LS sends the actual

result back to the user requesting the service (step 5).

Adversary Model

We assume that an adversary has the knowledge of (1) anonymized requests

and (2) (past as well as current) user location from an external source. The

first assumption states that (1) an adversary cannot gain access to original

requests because the communication channel between a mobile user and the

LS is secure, so that any entity eavesdropping on this channel still cannot

recognize the contents of the messages, and (2) an adversary can be an LBS

provider or the entity eavesdropping on an insecure communication channel

between the LS and LBS providers. Therefore, any information submitted

to the LBS provider is a potential threat to the privacy of mobile users

if they are utilized to identify the query issuer. The second assumption

states that the location of at least a few users within the vicinity of the

targeted victim are revealed through triangulation, public databases, physical
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observation, and so on [44]. For example, traffic monitoring services such as

Delcan technology can compute the current location of a vehicle by measuring

the time of handoffs from cell to cell [52] in Maryland, and past locations can

be stored in a form of a log file. If an LBS provider can collude with traffic

monitoring services, the (current as well as past) location of users can be

revealed, and this information can be utilized to infer the trajectory of each

user by using a realistic mobility model (such as the one specified in Section

3.2.3). Then, the identity of the mobile users can be possibly identified if the

submitted trajectory information belongs to a particular user.

The objective of an adversary is to infer the identity of the query issuer

in order to learn sensitive information about him. This is because, the query

itself unintentionally reveals sensitive information about the user. For ex-

ample, assume Tom submits a continuous nearest neighbor query to find the

nearest casinos along his path to the destination. If an adversary can identify

Tom as a user who is likely to submit the query, his query information can

be used to reveal his gambling habit.

Optimal k-Trajectory Partitioning

Given a user request ri, a trajectory is anonymized if the trajectory is replaced

with a GR which includes at least ri.k − 1 trajectories of other users after

removing any identifying information (i.e. ID of a mobile user). The following

definition formalizes this notion.

Definition 5.17 (kT -anonymity) Given a user request ri and a spatiotem-

poral region GR, we say that trajectory k-anonymity, denoted as kT -anonymity,
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is ensured for ri if ∃T such that |T | ≥ ri.k and ∀Ti ∈ T , Ti is completely

located within the GR.

In other words, LS ensures kT -anonymity by creating a spatiotemporal

region that includes trajectories of at least k − 1 other requests. The main

issue of applying kT -anonymity is that it may not guarantee the target QoS

level of the continuous LBS. It is well known that there exists an inverse

relationship between the service quality and the level of privacy [33, 47].

This is because, better privacy is provided by increased generalization of

a LBS region (i.e. larger number of k), which tends to create larger GR.

This may have an adverse effect on the accuracy of the result. For example,

consider a continuous nearest neighbor LBS search with trajectory of 50

miles looking for nearest restaurants along the path. Due to a larger GR,

restaurants that are farther to the actual path will also be unnecessarily

included. Motivated by the main limitation in the existing work, we aim to

enhance privacy of users by unlinking their trajectories while improving the

QoS in a continuous LBS environment. To this end, we define the optimal

k-trajectory partitioning problem as follows:

Definition 5.18 (Optimal k-Trajectory Partitioning) Suppose a con-

tinuous LBS user request r is anonymized along with other k − 1 trajec-

tories, and r is submitted at the time instance tb and valid until te. Optimal

k-trajectory partitioning requires finding a set of n-partitioning time points

T = {t1, · · · , tn} (tb = t0 < t1 < t2 < · · · < tn < te = tn+1), and each ti, i =

1, . . . , n, is the time of ith partitioning, such that
∑n

i=0 V (TMBT (ti, ti+1)) is
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Figure 5.20. A multiple line trajectory and its simplification

minimized while for i = 0, · · · , n, TMBT (ti, ti+1) encloses all the trajectories

of AS(TMBT (ti, ti+1)), and ti+1 − ti ≥ m∗.

Here, m∗ is the system variable, which depends on the historical loca-

tion data, and we carefully select m∗ in order to guarantee the enhanced

privacy (detailed explanation in the proof of [Increased Privacy] property in

Appendix.B). Proposing a general method that can find the optimal split

points for arbitrary length trajectories is a complex task. Although we do

not assume that the number of splits required for an optimal partitioning is

known a priori in the optimal trajectory partitioning problem, this makes

the problem significantly more difficult. In practice, we can assume that the

maximum number of splits is given as input, and the algorithm simply has

to find the best split time points.

In this section, we essentially model a trajectory as a single line segment

due to the high computational cost of processing trajectory data. Observe

that the size of the trajectory information may prohibit efficient processing
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of trajectory data: a GPS receiver usually generates a new spatiotemporal

location every second or two, and large transportation agencies own tens

of thousands of vehicles that need to be tracked [24]. Recently, researchers

[37, 24] try to address this issue by approximating a trajectory by using

a line simplification method. Specifically, a single line segment is used to

approximate multiple line segments when they are “sufficiently close”, and

therefore this approximate technique achieves less storage space due to less

straight line segments [24]. However, in practice, although a trajectory is

simplified, a trajectory may still consist of several multiple consecutive line

segments. For example, after a line simplification method is applied in Fig-

ure 5.20, the same trajectory is now represented with only three locations

T ′
1 = [L1(t1), L1(t4), L1(t6)]. Our proposed approach can still be applied in

this situation if we consider each trajectory represented with a single line sep-

arately. For example, we can apply our method to T ′ = [L1(t1), L1(t4)] and

T ′′ = [L1(t4), L1(t6)] separately. Since our focus is on trajectory partitioning,

we do not discuss query processing in this section, and simply assume that

the standard scheme is used.

5.3.1 Optimal Trajectory Partitioning

In this section, we present our proposed approach, which consists of two main

steps. Given a continuous LBS request ri with a system parameter m∗, the

two steps are:

1. Find a candidate set of trajectories for anonymization.

Although it is possible to use any k − 1 trajectories as candidates for
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anonymization, it is desirable to find them in such a way that they

would lead to a small GR size due to an inverse relationship between

the level of location privacy and the level of QoS. While any technique

can be used to do this, we employ a heuristic for selection process by

utilizing TPR-tree [56].

2. Partition the set of trajectories in an optimal manner

The GR of the selected trajectories is partitioned into n (n ≥ 1)

GRs. In order to minimize the cost (i.e., minimize the sum of par-

titioned regions), and enhance the privacy, we employ a solution based

on a nonlinear programming method, called Karush-Kuhn-Tucker con-

ditions [16].

In the following sections, we elaborate more on how the above steps are

actually implemented.

5.3.2 Find a Candidate Set of Trajectories for Anonymization

In a continuous LBS environment, we can determine the AS by finding the

set of users who have located closest to the current location of the query

issuer. This simple approach may minimizes the size of the GR for that

time instance, as the time elapses, the size of the GRs may become larger

and larger, making it difficult to guarantee the given QoS level. Thus, when

selecting the AS, we need to consider not only these users’ current location

but also future trajectories. We can apply the Markov model to find such

sets. After the anonymized request is submitted, whenever any user in the
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Figure 5.21. The Chebyshev approximation of an example trajectory

AS moves outside of the GR, the LS may submit a new continuous LBS

query. However, if they stay in the GR for the given time horizon of the

query, there is no need to submit a new continuous query.

Here, we do not discuss in detail how to select those users. Instead, pre-

viously known approaches such as the anonymization method in [80] which

selects a candidate set of users whose previously visited locations are most

similar to the query issuer can be utilized. Because our kT -anonymity model

is general enough to hold any proposed model for trajectory anonymization,

our method can be applied to the existing models as well. In our experi-

ments, we employ a heuristic for selection process by utilizing the TPR-tree

[56]. Since the users selected by the heuristic have the same probability of

submitting the request, it is not susceptible to known privacy attacks. Also,

it generates smaller GR size because the objective function of the tree (i.e.,

generating the smallest sum of volumes) matches our purpose.
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5.3.3 Partition the Set of Trajectories in an Optimal Manner

We now present our methodology for trajectory partitioning which ensures

both of our goals: enhanced QoS and privacy levels. The GR of an anonymized

request is partitioned into n+ 1 (n ≥ 1) GRs. As discussed earlier, in order

to minimize the cost (i.e., the sum of partitioned regions’s volumes is mini-

mized) and enhance the privacy, we employ a solution based on a nonlinear

programming method, called Karush-Kuhn-Tucker conditions [16]. This is

a generalization of the method of Lagrange multipliers to have inequality

constraints. After solving the optimization problem, fuzziness can be intro-

duced in the length and time interval of the partition to minimize the risk

of the adversary to reconstruct the trajectory from multiple paths. The

minimization problem formulation is as follows:

Minimizetb≤t1≤···≤tn≤teF (t1, · · · , tn)

=
n∑

i=0

V (TMBT (ti, ti+1))

and t0 = tb and tn+1 = te

subject to

Cj = tj − tj−1 −m∗ ≥ 0 for j = 1, · · · , n+ 1

Objective function F (·) represents the total volume in two-dimensional space

(or area in one-dimensional space) of partitioned trapezoids. The necessary

conditions for this optimization problem is specified as follows.

1.
∂F (t∗1,··· ,t∗n)

∂ti
−
∑n+1

j=1 λ
∗
j

∂C∗
j

∂tj
= 0, i = 1, · · · , n

2. C∗
j ≥ 0, j = 1, · · · , n+ 1
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3. λ∗
j ≥ 0, j = 1, · · · , n+ 1

4. λ∗
jC

∗
j = 0, j = 1, · · · , n

Solving the above equations can lead us to get the local optimum value. In

general, there is no guarantee that we can get the global optimum value (in

fact, this is the general issue of the nonlinear programming). However, in

certain cases, i.e., the objective function is convex and the constraints are

concave, we can guarantee that the local optimum is the global optimum

(this condition is called the sufficient condition).

The Karush-Kuhn-Tucker theorem requires that x⊢(t) and x⊣(t) (or y⊢(t)

and y⊣(t)) be continuously differentiable functions. However, this is not the

case because they are not differentiable at some points, i.e., the point at t11

of the trajectory in Figure 5.21. We address this issue by using Chebyshev

approximation [66]. The Chebyshev polynomial Pe(t) is a polynomial in t of

degree e defined as

Pe(t) = cos(e · cos−1(t)) (5.3)

and the Chebyshev polynomials can be rewritten with the recurrence relation

Pe(t) = 2tPe−1(t) − Pe−2(t) for all e ≥ 2 with P0(t) = 1 and P1(t) = t.

Although t is defined over the interval [-1,1], the definition can be easily

extended to any interval [a, b] [46]. It is proven that P0(t), P1(t), · · · , Pe(t)

is orthogonal to each other, and therefore it is possible to approximate any

function [23]. If f(t) is the function to be approximated, the Chebyshev

approximation method approximates f(t) as

f(t) ≃ c0P0 + c1P1 + · · ·+ cePe (5.4)
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The coefficients c0, · · · , ce are defined as

c0 =
1

e

e∑
j=1

f(tj)P0(tj)

ci =
2

e

e∑
j=1

f(tj)Pi(tj) for all 1 ≤ i ≤ e

for tj = cos (j−0.5)π
e

for all 1 ≤ j ≤ e. Figure 5.21 shows the Chebyshev

approximation of the given function.

After x⊢(t) and x⊣(t) (or y⊢(t) and y⊣(t)) are approximated, we can com-

pute the optimal k-trajectory partitioning. An example illustrating this is

given in the appendix.

5.3.4 Discussion

In this section, we discuss two important properties of our proposed tra-

jectory partitioning method and show how a known privacy attack on the

continuous environment can be defended.

Properties of Trajectory Partitioning Method

Our partitioning method enhances both privacy and QoS for the LBS. First,

in order to show the enhanced privacy (measured by the entropy), we want

to show that the expected number of users in each partitioned GR is larger

than that of the original GR, thus achieving higher value of entropy. Let

ASNP (or ASi) denote the anonymity set of the non-partitioned GR (or the

anonymity set of ith partitioned GR).

Property 1 (Enhanced privacy) Partitioning of trajectories achieves more
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Figure 5.22. Benefits of trajectory partitioning

privacy than the non-partitioned case if each partitioning has at least m∗ time

duration, i.e., miniE(H(ASi)) ≥ E(H(ASNP )) is satisfied.

Here, m∗ specifies the minimum time horizon of each partitioned GR, and

E(·) is the expected number of users in the given anonymity set. Please refer

to the Appendix for the proof of this property and a detailed discussion of

how to compute m∗.

Next, we can show that the partitioning can achieve better level of QoS.

Here, we measure the QoS level using the total volume of the GR in an

anonymized request. Large volume of GR may decrease the usability of the

reported information. In other words, the QoS level increases as the total sum

of the partitioned volumes is smaller. The intuition is that if we partition the

set of trajectories, we can tighten them within the partitioned time horizon,

thus achieving the better QoS.

Property 2 (Enhanced QoS) The QoS after partitioning of trajectories

is equivalent or better that the QoS without partitioning.
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The proof sketch for this is also provided in the appendix. The following

example clearly illustrates benefits of trajectory partitioning methods. Figure

5.22 shows three trajectories and their TMBT without partitioning as well

as with partitioning. Before partitioning, R depicts the TMBT of the three

trajectories. After partitioning at t1, we instead have two TMBTs R′ and

R′′ for the time period before t1 and after t1 respectively. It can be clearly

seen that the spatiotemporal extent summation of both R′ and R′′ is smaller

than R, and therefore will achieve better QoS.

Privacy Attack on Partitioned Trajectories

If an adversary knows that an anonymized request is partitioned into a group

of anonymized requests, he can model the following query tracking attack

[28, 79]: starting from the observation of a set of anonymized requests and

the knowledge of (both past and current) locations, the adversary finds the

intersection of each anonymity sets. For example, if GR1 for time inter-

val [t0, t1] includes the trajectories of {o1, o2, o3}, and GR2 for time interval

[t1, t2] includes those of {o3, o5, o6}, the intersection results in o3 only. Thus,

the identity of the query issuer is revealed as o3.
3 This attack is suc-

cessful because each subsequent request includes different set of users for

anonymization. As a countermeasure to the query tracking attack, Chow

and Mokbel [28] propose the memorization property. The main idea is that

the anonymization algorithm has to memorize those users who are contained

in the anonymity set at the time when the query is initially issued, and

3In [28, 79], GR is defined only for a given time instance while we consider the spa-
tiotemporal region.
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anonymization of each subsequent query should include such initial users

with the corresponding GR. Obviously, we can trivially prove that our par-

titioning method achieves privacy against the query tracking attack because

each partitioned TMBT always contains those users in the initial anonymity

set, thus satisfying the memorization property. In Figure 5.22.(b), we use

the same anonymity set (i.e., o1, o2, and o3) for each partitioned TMBT,

and therefore, partitioning method is not vulnerable to the query tracking

attack even though the adversary reconstructs the partitioned TMBTs to the

original TMBT successfully.

5.3.5 Experimental Results

We experimentally evaluate our proposed optimal trajectory partitioning

method by using different set of parameters to investigate the behavior of

the proposed algorithm. We run experiments on both synthetic data and

real data. Both results show that our proposed partitioning method achieves

better quality of service on the same set of trajectories with small computa-

tional cost. In this experiments, the kT -anonymity is achieved by selecting k

nearest neighbor trajectories of the requester. The optimal partitioning algo-

rithm is implemented in MATLAB 7.0.4 while the anonymization algorithms

are implemented in C++. Both methodologies were tested on Windows oper-

ating system with 1.86GHz Intel CPU and 3GB memory. All moving objects

lie within a specified 3-dimensional spatiotemporal space.
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Semi-synthetic Dataset

Our semi-synthetic data is generated using the Network-based Generator of

Moving objects [22]. The input to the generator is the road network map

of San Joaquin County area in CA, USA. The output is a set of moving

objects that moves on the road network of the city. Our data includes 100k

spatiotemporal trajectories. The speed of the moving objects varies such as

cars, cyclists, pedestrians, and so on. When a moving object moves along

a road, its speed follows a normal distribution whose parameters are de-

termined by the type of the road, and each object periodically updates its

location before the trip is over. In this experiment, we fix m∗ = 0.1, and

e = 4. In order to measure the performance benefits, in each experiment, we

evaluate the following three cases:

• No Partitioning

• Optimal Partitioning Method

• Random Partitioning Method

Random trajectory partitioning serves as a baseline to demonstrate the ben-

efit of partitioning and comparatively evaluate the benefit of our optimal

partitioning approach.

Effect of Minimum Privacy Level (k): Figure 5.23 gives the effect of the

proposed partitioning method with respect to varying number of k from 10

to 100. Figure 5.23.(a) shows that the area generated by using the proposed
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Figure 5.23. Effect of Minimum Privacy Level (k) (query duration = 5, no
splitting points = 5)

approach is approximately 75% of the volume without employing partition-

ing. Therefore, the performance gain in terms of the total area is consid-

erable. Although there is no significant performance gain compared to the

random partitioning method, the optimal partitioning method constantly

outperforms this method. However, this performance gain is achieved at the

cost of processing time. Figure 5.23.(b) shows that the processing time (in

seconds) increases as k increases. The main reason for this result is due to

the optimization cost. However, in practice, the value of k = 100 would

meet most of the privacy requirements of the user, and it takes less than 0.5

seconds to perform partitioning.

Number of Splitting Time Points: Figure 5.24 shows the performance

with respect to varying number of splitting points from 2 to 5. As we have

more splitting points, obviously we would get the reduced volumes for the

optimal partitioning method as well as the random partitioning method, and

figure 5.24.(a) confirms this effect. As expected, the cost of processing time
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Figure 5.24. Effect of Splitting Points (query duration = 5, minimum privacy
level (k) = 20)

is increased as shown in figure 5.24.(b).

Effect of Query Duration: Figure 5.25 shows the performance with re-

spect to varying number of discretized query durations from 2 to 5. As the

life time of a query becomes longer, obviously we would get more areas to

be covered by the set of trajectories, and Figure 5.25.(a) clearly shows this

effect. Although all three methods show similar pattern (i.e., the processing

time increases as query duration gets longer), the total area computed by op-

timal trajectory method and random partitioning method shows somewhat

slower growth rate than that of the area without partitioning. Thus, as query

duration increases, the partitioning achieves more QoS level. With the same

reasoning for the above case, this gain is achieved at the cost of processing

time as shown in figure 5.25.(b). One point to note is that apart from the

QoS benefit, our approach also guarantees enhanced privacy which is not

true of the randomized partitions. Thus, even though it is computationally

more expensive, it gives better performance for both QoS and privacy.
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Figure 5.26. INFATI Data: Effect of m∗

Real Dataset

We now look at the performance on real data. For this, we use the INFATI

dataset, which is a collection of spatiotemporal data, collected during an in-

telligent speed adaptation project in which some two dozen cars equipped

with GPS receivers and logging equipment took part [42]. This data is pub-

licly available for non-commercial purposes.

Figure 5.26 shows the effect of m∗ on the trajectory partitioning. The
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parameters for this experiment are k=50, number of splitting points = 3,

and query duration = 3, e = 6. This experiment shows that the total sum

of the partitioned areas is a function of m∗, and the resulting function is a

U -shaped curve. When m∗ = 0.4, the function has an optimal solution to

minimize the total sum of partitioned areas. The other experiments show

consistent results with those from the semi-synthetic dataset, and therefore,

we omit the details.



CHAPTER 6

THESIS SUMMARY AND FUTURE DIRECTIONS

In this chapter, we summarize our key contributions and discuss future work

in the topics addressed in this thesis.

6.1 Thesis Summary

In the thesis, we claim that personalized mobile environments threaten the

privacy and security of users since they require location and profile infor-

mation explicitly in order to subscribe to those services. Mobile users have

legitimate security concerns about their personal safety if the provided lo-

cation information falls into the wrong hands. Similarly, privacy concerns

arise because location information can be used to identify a persons personal

preferences.

One can address security issues by enforcing access control policies in

order to prevent unauthorized access to important resources, but enforcing

security incurs overhead to the system and as a result may degrade the per-

formance. This performance overhead would be even more severe to the

system in a mobile environment than to the traditional one since searching

the relevant policies is not trivial as those policies are based on the spatial

and temporal attributes. The first part of my dissertation attempts to alle-

219
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viate this performance issue of enforcing access control policies in a mobile

environment. To process an access request, the system must first retrieve

the relevant objects, and then verify whether there exists an authorization

that allows users to access these objects. For efficient processing of access

requests, it is essential that they both be organized using index structures.

As a result, processing an access request requires searching two types of in-

dexes.one for objects, and the other for authorizations. To further improve

the response time, I have proposed unified index structures for moving object

data and authorizations. More specifically, the proposed indexing structures

maintain (i) past, present and future positions as well as (ii) profiles of the

moving objects along with (iii) authorizations that govern them. Our perfor-

mance study indicates that the proposed strategy significantly outperforms

the case where separate index structures are used in terms of the response

time and scales well to large number of users.

Second part of my dissertation addresses the issue of privacy by using

anonymization techniques. In a mobile environment, a privacy threat arises

when an attacker is able to associate the identity of a user to private informa-

tion by deriving from requests issued to LBS providers and external knowl-

edge that is not explicitly available. Existing privacy-defense mechanisms use

oversimplifying assumptions about the attacker, and background knowledge

such as movement direction, profiles, and future trajectory is ignored during

processing anonymization. In my dissertation, I have proposed a compre-

hensive family of anonymity models that incorporate mobile users location,

direction, profile, and future trajectory information. As a result, oversimpli-
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fying assumptions are relaxed in the proposed anonymization models. Exper-

imental results demonstrate that such anonymization can be achieved with

marginal increase in computational cost when compared to the existing work,

while providing enhanced privacy. In addition, while protecting location pri-

vacy, the quality of service (QoS) of LBS plays an important role and should

be preserved. The proposed anonymization models can be achieved while

satisfying the better quality of service (QoS) requirement by employing an

optimal trajectory partitioning method, which optimally splits the request

into multiple LBS requests with shorter trajectories. Formal analysis and ex-

perimental results demonstrate that the proposed strategy enjoys enhanced

privacy and enhanced service quality with nominal computational cost.

6.2 Future Directions

We discuss future directions in the area of spatiotemporal access control

model and location privacy.

6.2.1 Spatiotemporal Access Control Model

Authorization Enforcement for Mobile Peer-to-Peer Environment:

In chapter 4, we discussed enforcement of LBAC. However, this enforcement

is limited to centralized environment only. It does not address the issue of

access control enforcement in mobile peer-to-peer environment. A number

of applications in mobile peer-to-peer environment, including pervasive and

ubiquitous computing, and ad-hoc sensor networks, require resource sharing

among the peers. In such an environment, each peer node has its own security
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and privacy policies for protecting its resources. Specifically, these policies

state the rules for providing controlled access to its resources as well as to its

profile, current location and movement trajectories. An access control model

that is suitable for mobile peer-to-peer environment needs to be developed.

Facilitating resource sharing with strictly enforcing the security policies

raises a number of challenges due to the fact that the peer nodes are con-

stantly moving and the policies are based on time and space. A trivial

solution to manage and enforce these policies is to rely on a trusted party,

however, it is neither elegant not practical. The following two alternative

approaches to address this problem will be investigated.

1. Preventive Approach: Each peer node can be made responsible to man-

aging and enforcing its policies when sharing its resources with its peers.

2. Provisional Approach: Release the resources on the condition that the

recipients require to meet certain requirements after obtaining the re-

sources. Since one cannot assume that there exist policing authorities,

there is a need to develop light-weight techniques where any peer node

can verify the adherence of its security policies by its peer nodes sharing

the resources.

Facilitating secure resource sharing requires (i) the peer node to search

and retrieve its desired resources from its neighboring peers, (ii) allowing its

peers to access its own resources without compromising its security and pri-

vacy policies. Direct application of the popular access control model such as
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Role-based Access Control (RBAC)to the mobile peer-to-peer environment

is not feasible. The main reason is because in peer-to-peer context, there

are not much roles are involved. As the word peer represents, in most of the

time, each user has the same privileges: for example, for mobile peer-to-peer

file sharing environment, every user is authorized to access the contents as

long as she has an account on the system. The connection between peers are

arbitrary, and therefore, the access control is based on the conditions that

the resource holding peer has: for example, in online ad-hoc auction market

environment, the auctioneer allows bidding of only serious users who meets

the criteria such as reading and signing the contract. Access control deci-

sions depend on specific actions to be performed before the decision is taken,

and these specific actions are called as provisions. Provisional authorization

models [41] have been proposed in order to address the issues.

However, the generic provisional authorization model does not address

the nature of peer’s mobility issues because security and privacy policies

are spatiotemporal in nature: a peer is interested in the resources within

the specific neighboring region and during a specific time interval without

the actual knowledge of peers’ identifiers. For example, in mobile electronic

commerce, a buyer is interested in sellers in a mall and during the next two

hours. In order to properly limit the control of resources, the provisional

authorizations must incorporate the spatiotemporal specifications within its

model. The methodologies to embed spatiotemporal specifications within the

provisional authorization model will be investigated.

Authorizations Index under Uncertain Location Estimates: In
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Chapter 4.3, we discussed how to enforce LBAC systems when location in-

formation is not accurate. While in this thesis, we offer a solution to this

problem, as part of the future research, generating an index structure for

authorizations in order to achieve efficient search process of relevant autho-

rizations under uncertain location estimates will be investigated. Most of

the currently available authorization enforcement techniques search all the

authorization base to find relevant authorizations, which is not efficient espe-

cially in the context of mobile environment. Although there are some work

for this direction such as [10, 12, 13, 82], no work has considered uncertainty

issue. The approach will consist of the following:

1. Generating an underlying index for authorizations.

2. Investigating enforcement algorithms to efficiently search for authoriza-

tions using the proposed spatial filters.

Improving Spatial Filters for Uncertain Location Predication Eval-

uation: As discussed in chapter 4 two separate spatial filters are used for

improving the performance when evaluating location predicates. However,

the performance can be further improved if we can come up with a spatial

filter such that this filter forms the boundary of Po = Pc. Then, any object’s

location measure located within this filter guarantees Po ≥ Pc, and on the

contrary, any object’s location measure located outside this boundary be-

comes Po < Pc. Thus, we only need to retrieve the objects located within

this filter for finding those objects satisfying the location threshold level.
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Developing a Suite of Spatiotemporal Index Structures: As a future

work, an extensible data structure, which allows users to develop indices over

geospatial or moving object data, supporting any lookup over the data while

the relevant security policies are enforced, will be developed. This package

will unify a number of popular search trees suitable for geospatial data and

moving object data (the list of potentials includes R-trees, TPR-trees, RPPF -

trees, and many others).

6.2.2 Location Privacy Preservation

Removing the Reliance on Trusted-Third Party: Our solutions to

preserve location privacy, discussed in Chapter 5, utilize a trusted anonymizer

between the users and the LBS. The existence of a trusted third party has

the following drawbacks: (i) the anonymizer is a single point of attack: if an

attacker gains access to it, the privacy of all users is compromised. It is also a

bottleneck, since it must process the frequent updates of user locations, (ii) a

large number of users must subscribe to the service, otherwise GR cannot be

constructed. It is assumed that all users are trustworthy. However, if some

of them are malicious, they can easily collude to compromise the privacy of

a targeted user.

In order to overcome these limitations, Ghinita et al. [35] introduce a

framework to support private location dependent queries, based on the theo-

retical work on Private Information Retrieval (PIR). Under this framework,

since privacy is achieved via cryptographic techniques, it does not require

a trusted third party. Although their experimental results show that PIR-
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based approaches incur reasonable overhead in the given experimental set-

ting, this may not be applicable in practice. Recently, Sion et al. argue that

using single server computational PIR, it takes more time to process one bit

of information privately than to transfer it over the network and therefore,

conclude that it is more efficient to transfer the entire database to the user in-

stead of privately retrieving an item from it and hence dismissing theoretical

PIR as impractical. [62]

In order to address the computational limitation of PIR, the size of

dataset evaluated for a query needs to be minimized while the privacy is

guaranteed. The solution will be subdivide the entire region and apply the

PIR-based location query over applicable subregions: therefore, the size of

dataset evaluated can be much smaller than the entire dataset. However, this

approach may be applicable for range-queries, but it does not guarantee the

correctness of k nearest neighbor queries because the result may be spread

over more than one subregion to evaluate the k nearest neighbor query. A

protocol that minimizes communication and computational costs while pri-

vacy is guaranteed will be investigated.

Addressing Passive Attacks on Location k-Anonymity: Location k-

anonymity guarantees the privacy of the query submitter, and therefore, the

adversary cannot differentiate the one with other users in the GR. In other

words, the location k-anonymity achieves the sender anonymity. Passive

attacks on the location k-anonymity over time or location would be able to

breach the privacy because only those users who are moving to the data

locations of the query answer will be likely to be the query submitter. For
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example, when a user a’s identity is anonymized with users b, c, and d.

(There are those four users in the GR). Suppose, as a result of a query, loc1

and loc2 are returned. Observation of users in loc1 and loc2 would reveal

that only the user a visits loc1. This observation would reveal that the user

a is the query submitter. In order to deal with this, it may be necessary

to have a more comprehensive spatiotemporal anonymity models that can

evaluate privacy based on the anonymized locations at different time instants.

However, addressing such issues is outside the scope of this dissertation and

left for future work.

Ensuring Location Privacy under Known Anonymization Algorithm:

Our solutions to preserve location privacy, discussed in Chapter 5, are based

on the privacy measure based on location k-anonymity. We propose anonymity

models that would not breach privacy level even though some background

knowledge is additionally available to adversaries. Another important back-

ground knowledge would be the anonymization algorithm itself. For example,

existence of outliers can easily break the privacy of existing works based on

quad-tree based anonymization. The main reason is that the computation of

the GR is deterministic. In other words, the anonymization algorithm divides

the region in a predetermined way (in this case, four equal-sized regions), and

therefore, the node structure of the tree is based on the distribution of the

moving objects on the given space. Therefore, it is susceptible to the pri-

vacy attack based on the outliers. Consequently, the characterization of the

attacks on anonymization algorithms makes the previously proposed defense

techniques are easily attackable.
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To the best of our knowledge, only Kalnis et al. [44] addresses this is-

sue. They pointed out a possible problem with the previously proposed

anonymization methods when the algorithm is revealed, and presented a

possible solution called Hilbert Cloak. More specifically, given a query with

minimum anonymity level k, Hilbert Cloak sorts the Hilbert values of moving

objects and splits them into buckets of size k except the last one which may

contain up to 2k − 1 users. The users in that the same bucket constitute

the corresponding anonymity set. For example, given the number of users is

10, if k = 3, the users are grouped into 3 buckets (the last one contains 4

users). When any of the users within the same bucket issues a query, Hilbert

Cloak returns the bounding rectangle of those users as the GR. However, it

turns out that even their method cannot preserve the privacy by attacks on

k itself. For example, if a user submits a request with k = 3 and another

request with k = 4 within a small amount of time so that the Hilbert values

of users are relatively constant, the set difference operation of the first GR

and the second GR can effectively find the location of the user. Repeating

this process can identify locations of most of the users.

The main problem of privacy breach is because all the proposed anonymiza-

tion algorithms are deterministic anonymization. Instead, we propose a ran-

domized anonymization algorithm: our algorithm will randomly select k− 1

users for the anonymity set. Thus, each request may generate different GRs

so that it is harder for the adversary to infer the locations of users. Two main

challenges arise in this approach: (i) the anonymization algorithm should be

processed within a small amount of time, and (ii) the size of GR must be
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smaller for better service quality. In order to address these issues, we plan

to adapt the TPR-tree which is a disk-based spatio-temporal access method

proposed to answer queries on moving objects.

Trajectory Publication: Based on the anonymization problem study w.r.t

trajectory data, trajectory k-anonymity have been proposed in [48, 34, 45, 72]

by considering each trajectory as a single distinct value. Hence, the prob-

ability of identifying every user from their trajectory records is below 1/k.

However, this privacy-preserving trajectory releasing model still has some

limitations. First, if the adversaries have sufficient background knowledge,

it may cause great privacy leakage for every group of users. Second, since

the anonymization approach runs on the basis of generalization of location

records for other k − 1 users such method results in so much fuzzy loca-

tion generalization data releasing that would affect the quality of individual

data usage. Finally, trajectory anonymization works well based on assump-

tions of adversaries background knowledge, and there is no rigorous privacy

protection standard for trajectory data anonymization and how much back-

ground knowledge that the adversary is able to learn. In sum, privacy-

preservation based on k-anonymity suffers from limited utility and potential

privacy breach. Differential privacy allows for the adversaries hold arbitrary

prior knowledge. An algorithm was proposed to release query click graph

and simultaneously satisfies the rigorous privacy requirements. If we apply

differential privacy on the trajectory data, we can overcome the shortcomings

of the trajectory k-anonymity model.

Integration of Privacy and Security: As a future work, integrating
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privacy and security of a mobile user within a common framework will be

investigated. Although this thesis improves on the results in terms of secu-

rity and privacy issues separately, there is a need to support both security

and privacy simultaneously. More specifically, it calls for development of

a metric that can measure the trade-offs among QoS, privacy and security

enforcement. Existing work only considers the trade-off of these objectives

partially, i.e., trade-off between QoS and Privacy. In other words, the release

of the information according to the security enforcement can result in the pri-

vacy breach of the users because location information is considered sensitive,

and therefore, should consider the amount of privacy leakage. This is not

easy to solve because the background knowledge of attackers are not known

when access control decisions are made. Existing work addresses this issue

by management of secondary use of released data, but it is still unclear that

the enforcement strictly follows the data handling policies after the access

has been granted.

Location Uncertainty and its Privacy Implications: As we have

discussed in Section 4.3, the reported location is uncertain, and there is

no current technology to guarantee the exact user location at all times. The

basic assumption about the adversaries in the location k-anonymity literature

is that the exact locations of users are known to the adversaries. Therefore,

the result of location k-anonymity would generate a GR which would have a

complex PDF defined over the GR. In other words, there would be a region

that a user is more likely to be located, thus, the underlying assumption of

location k-anonymity (uniform distribution over the space in the GR) is not
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preserved. Therefore, it would be interesting to investigate how uncertain

data affects privacy and we can use the probabilistic databases to guarantee

the user’s desired level of privacy



REFERENCES

[1] U.s.mobile resource management systems market shows strong growth in

subscribers and revenues, Website, 2006, http://www.directionsmag.

com/article.php?article_id=2066&trv=1.

[2] Predict user mobility in enterprise networks, Website, 2008,

Predictusermobilityinenterprisenetworks.

[3] Telenav vehicle tracker - track vehicle location, mileage and history with

a gps tracking device, all using a web browser, Website, 2008, http://

www.telenavtrack.com/tnt/products/tnt/vehicle-tracker.html.

[4] Worldwide location-based services will grow nearly 170% in 2008 - gart-

ner, Website, 2008, http://www.computingsa.co.za/article.aspx?

id=701077.

[5] C.A. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimer-

cati, and P. Samarati, Location Privacy Protection Through Obfuscation-

based Techniques, IFIP TC11/WG 11.3 21st Annual Conference on Data

and Applications Security (2007).

[6] C.A. Ardagna, M. Cremonini, E. Damiani, S.D.C. di Vimercati, and

P. Samarati, Supporting location-based conditions in access control poli-

232



233

cies, Proceedings of the 2006 ACM Symposium on Information, com-

puter and communications security, ACM New York, NY, USA, 2006,

pp. 212–222.

[7] V. Atluri and S.A. Chun, An Authorization Model for Geospatial Data,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COM-

PUTING (2004), 238–254.

[8] V. Atluri and S.A. Chun, A geotemporal role-based authorisation system,

International Journal of Information and Computer Security 1 (2007),

no. 1, 143–168.

[9] V. Atluri and Q. Guo, STAR-Tree: An index structure for efficient

evaluation of spatiotemporal authorizations, IFIP TC11/WG 11.3 Eigh-

teenth Annual Conference on Data and Applications Security (2004),

31–47.

[10] V. Atluri and Q. Guo, Unified Index for Mobile Object Data and Autho-

rizations, LECTURE NOTES IN COMPUTER SCIENCE 3679 (2005),

80.

[11] V. Atluri and P. Mazzoleni, A uniform indexing scheme for geo-spatial

data and authorizations, Proc. of the Sixteen Conf. on Data and Appli-

cation Security (2002).

[12] V. Atluri and H. Shin, Efficient Security Policy Enforcement in a Loca-

tion Based Service Environment, LECTURE NOTES IN COMPUTER

SCIENCE 4602 (2007), 61.



234

[13] V. Atluri, H. Shin, and J. Vaidya, Efficient security policy enforcement

for the mobile environment, Journal of Computer Security 16 (2008),

no. 4, 439–475.

[14] V. Atluri and S.A. Chun, An authorization model for geospatial data.,

IEEE Trans. Dependable Sec. Comput. 1 (2004), no. 4, 238–254.

[15] V. Atluri and Q. Guo, Unified index for mobile object data and autho-

rizations., ESORICS, 2005, pp. 80–97.

[16] M. Avriel, Nonlinear programming: analysis and methods, Dover Publi-

cations, 2003.

[17] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, The R*-tree:

an efficient and robust access method for points and rectangles, Pro-

ceedings of the 1990 ACM SIGMOD international conference on Man-

agement of data (1990), 322–331.

[18] E. Bertino, B. Catania, M.L. Damiani, and P. Perlasca, GEO-RBAC:

a spatially aware RBAC, Proceedings of the tenth ACM symposium on

Access control models and technologies, ACM New York, NY, USA,

2005, pp. 29–37.

[19] C. Bettini, X.S. Wang, and S. Jajodia, Protecting privacy against

location-based personal identification, Proc. of the 2nd VLDB Workshop

on Secure Data Management (2005), 185–199.

[20] A. Bhattacharya and S.K. Das, LeZi-update: An information-theoretic

approach to track mobile users in PCS networks, Proceedings of the 5th



235

annual ACM/IEEE international conference on Mobile computing and

networking, ACM New York, NY, USA, 1999, pp. 1–12.

[21] C. Blake and C. Merz, Uci repository of machine learning databases,

1998.

[22] T. Brinkhoff, A Framework for Generating Network-Based Moving Ob-

jects, GeoInformatica 6 (2002), no. 2, 153–180.

[23] Y. Cai and R. Ng, Indexing spatio-temporal trajectories with Cheby-

shev polynomials, Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, ACM New York, NY, USA, 2004,

pp. 599–610.

[24] H. Cao, O. Wolfson, and G. Trajcevski, Spatio-temporal data reduction

with deterministic error bounds, The VLDB Journal The International

Journal on Very Large Data Bases 15 (2006), no. 3, 211–228.

[25] R. Cheng, D.V. Kalashnikov, and S. Prabhakar, Evaluating probabilistic

queries over imprecise data, Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, ACM New York, NY,

USA, 2003, pp. 551–562.

[26] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter, Efficient

indexing methods for probabilistic threshold queries over uncertain data,

Proceedings of the Thirtieth international conference on Very large data

bases-Volume 30, VLDB Endowment, 2004, pp. 876–887.



236

[27] B.Z. Chor, O. Goldreich, and E. Kushilevitz, Private information re-

trieval, December 29 1998, US Patent 5,855,018.

[28] C.Y. Chow and M.F. Mokbel, Enabling Private Continuous Queries

For Revealed User Locations, Proc. of advances in spatial and temporal

databases, 10th international symposium (2007).

[29] C.Y. Chow, M.F. Mokbel, and X. Liu, A peer-to-peer spatial cloaking

algorithm for anonymous location-based service, Proceedings of the 14th

annual ACM international symposium on Advances in geographic infor-

mation systems (2006), 171–178.

[30] J. Dougherty, R. Kohavi, and M. Sahami, Supervised and unsupervised

discretization of continuous features, Proceedings of the Twelfth Inter-

national Conference on Machine Learning 202 (1995), 194–202.

[31] M. Duckham and L. Kulik, A Formal Model of Obfuscation and Negoti-

ation for Location Privacy, Proc. Pervasive 2005, 152–170.

[32] M. Duckham and L. Kulik, Location privacy and location-aware com-

puting, Book chapter in Dynamic & Mobile GIS: Investigating Change

in Space and Time (2006), 35–51.

[33] B. Gedik and L. Liu, Protecting Location Privacy with Personalized k-

Anonymity: Architecture and Algorithms, IEEE TRANSACTIONS ON

MOBILE COMPUTING (2008), 1–18.

[34] G. Ghinita, Private queries and trajectory anonymization: a dual per-

spective on location privacy, Transactions on Data Privacy 2 (2009),



237

no. 1, 3–19.

[35] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.L. Tan,

Private queries in location based services: Anonymizers are not neces-

sary, Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, ACM New York, NY, USA, 2008, pp. 121–132.

[36] M. Gruteser and D. Grunwald, Anonymous Usage of Location-Based

Services Through Spatial and Temporal Cloaking, Proceedings of the 1st

international conference on Mobile systems, applications and services

(2003), 31–42.

[37] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle,

Compressing Spatio-temporal Trajectories, LECTURE NOTES IN

COMPUTER SCIENCE 4835 (2007), 763.

[38] U. Hengartner and P. Steenkiste, Access control to people location infor-

mation, ACM Transactions on Information and System Security (TIS-

SEC) 8 (2005), no. 4, 424–456.

[39] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady, Preserving privacy in

gps traces via uncertainty-aware path cloaking, Proceedings of the 14th

ACM conference on Computer and communications security, ACM New

York, NY, USA, 2007, pp. 161–171.

[40] S. Horsmanheimo, H. Jormakka, and J. Lähteenmäki, Location-Aided
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