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ABSTRACT OF THE DISSERTATION

BPS states in string theory

by Evgeny Andriyash

Dissertation Director: Professor Gregory Moore

In this thesis we discuss a number of interesting and important projrties of BPS states in string
theory. We study wall-crossing behavior of BPS states at large volme limit and implications
of it for the OSV conjecture. We nd that the weak topological coupling OSV conjecture can
be true at most in a special chamber of the Kahler cone.

We also clarify an interesting puzzle arising in the description of BPS sates on the Higgs
branch of supersymmetic quantum mechanics. Using methods of t@ geometry we compute
Hilbert spaces of BPS states on the compacti ed Higgs branch and mive at completely consis-
tent picture of spatial Spin(3) structure of those spaces.

We introduce new kinds of walls, called Bound State TransformationBST) walls, in the
moduli space across which the nature of BPS bound states changéut the index remains con-
tinuous. These walls are necessary to explain the continuity of BPS idex. BPS states can
undergo recombination, conjugation or hybrids of the two when cossing a BST wall. Conjuga-
tion phenomenon happens near singularities in the moduli space andewelate massless spectra
of BPS states at such singularities to monodromies around them. Irtases when massless vector
BPS particles are present we nd new constraints on the spectrumand in particular predict the
existence of magnetic monopoles becoming massless at such singities.

We give a simple physical derivation of the Kontsevich-Soibelman wall-mssing formula.
Considering galaxy-like con gurations of BPS particles with a centra supermassive black hole
with a number of stellar BPS systems around it we derive a consistencrequirement on the par-
tition function of such BPS galaxies. This requirement turns out to be nothing but Kontsevich-

Soibelman wall-crossing formula. Our approach gives a generalizatioof the formula for the



case when massless BPS particles are present.
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Chapter 1

Introduction

String theory is intrinsically connected with supersymmetry, which is the symmetry between
bosonic and fermionic degrees of freedom. Low energy theoriesestribing the world around

di erent vacua of string theory, are supersymmetric eld theories, usually containing gauge
elds and gravity. Since the discovery of supersymmetry in the ealy 70's it was known that

supersymmetric eld theories may contain short representationsof supersymmetry, called BPS
states. Those are states that are annihilated by half of the supesymmetry generators, thus
giving a short representation. Since their discovery BPS states hae played a prominent role in

physics. They turned out to be responsible for a vast majority of fhenomena in the low energy
physics, including the low energy e ective action ofN = 2 supersymmetric eld theories, found

by Seiberg and Witten in the 90's [1].

BPS sates were also studied in supergravity theories and string thery. Due to the presence
of supersymmetry certain properties of BPS states, such as theelation between mass and
electromagnetic charge and their degeneracies, are protected ithe sense that they do not
change as the coupling constant of the theory is changed. This mas BPS states a natural
playground for testing the large web of dualities between dierent dring theories such that
strong coupling regime of one can be described by weak coupling regénof the other. A famous
example of BPS states usage is testing AdS/CFT duality, which in it's classic example is the
duality between type Il string theory on AdSs S°® and N = 4 super Yang-Mills theory on R*
2.

In view of this last fact, it is clear that BPS states can have dierent incarnations. In
the low energy limit of string theory, compacti ed on some internal 6D manifold, which is
typically a supergravity theory in 4 dimensions with some additional particles and gauge elds,
BPS states are represented as black hole solutions. This descriptioof BPS states is good
when the curvature of the resulting space-time is not too big which orrespond to the so-called
t'Hooft coupling being large. For small t'Hooft coupling, the more appropriate description is in
terms of world-volume theory of D-branes, wrapping various cycls in the internal manifold. As

BPS states are protected by supersymmetry, their degeneracygan be computed in the D-brane



picture, and then compared to the black hole entropy. Thus BPS sates provide a framework
to model microscopic structure of black holes, that account for he known entropy, which is
known as Strominger-Vafa program of accounting for black hole emopy in terms of D-brane
microstates [3].

Another more technical application of BPS states in string theory isthe so-called Ooguri-
Strominger-Vafa conjecture concerned with degeneracies of B states in type Il string theory,
compacti ed on a Calabi-Yau manifold [4]. It relates the partition fun ction formed out of BPS
black hole degeneracies with the so-called topological partition furtton. The latter partition
function computes some part of the low energy e ective action of &ging theory and the con-
jecture relates it to BPS states degeneracies directly. We will say mre about this relation
below.

In this thesis we study di erent properties and examples of BPS stdes in type Il string
theory. The Hilbert space of BPS states in this theory are graded i the values of their
magnetic and electric charges = (p;q@ 2 ©®™. The main characteristic of interest to us
will be the degeneracies, or more precisely indices of BPS states. &hndices will be denoted
( p;gt1 ) and generically they are functions of the background moduli eldsof type Il string
theory, denoted byt; . Although the introduced indices and degeneracies are di erent fo nite

charges , in the limit of large charges the two become the same

(; tr) &0 (1.0.1)

where S() is the corresponding entropy of the BPS state. Indices ( p;q t; ) are integer-valued
and piece-wise constant functions of the background moduli, i.e. tAy can change discontinu-
ously across certain walls in the moduli space. The amount of jump is @scribed by the famous
Denef-Moore wall-crossing formula(WCF) [5], which we now explain. Tte index of the Hilbert
space of BPS states with charge 2 ©™ at point t; , (; t1 ), gets many di erent contribu-
tions from BPS states, represented by black holes, as well as frotmound states of BPS objects,
represented by multicentered black hole solution of the low energyugpergravity theory. Suppose
there are two charges 1; 22 °©™ such that BPS states with these charges can form a bound
state of total charge = 1+ , at point t; . The conditions for such bound state to exist was

given in [6] and has the form

_ ha ol 1Z(; t1)j
2 ImZ( 1t )Z( 2it1) ,
where h 1; i is the intersection product of two charges in the symplectic lattice ™ and

R (1.0.2)




Z( 1.2;t1 ) are the central charges of two BPS states, following from the spersymmetry algebra
of the theory. Physically, R is the spatial distance between the two BPS states. The locus in
the moduli space where the two central charges (anti-)align is callé (Anti-)Marginal Stability
((A)MS) wall. If we cross the marginal stability wall from the negativ e side to the positive side
across a generic point,ms 2 MS( 1; »2) then the jump of index of BPS state with charge is

given by the primitive wall-crossing formula introduced in [5]
0=( DM Yo ol ( a5tms) ( 25tms): (1.0.3)

The interpretation of this formula is simple: whent approachesMS( 1; »2)the distance between
the two BPS states goes to in nity, the state decays and the chage in the index is roughly the
product of indices of the two decay products times the Landau levedegeneracy of one charge
in the electromagnetic eld of another. This WCF, as well the generdization thereof given by
Kontsevich and Soibelman[[7], will be the main focus of this thesis.

As we discuss in more details in chaptef]2 the OSV conjecture relatind3PS indices to the
topological partition function does not specify the place in moduli space where the indices have
to evaluated. In the large volume limit of compact manifold, given by Imt ' 1, the description
of BPS states in terms of D-branes wrapping cycles of this manifold bcomes accurate and
much is known about the values of BPS indices. From the physics poinbf view the study
was motivated by the Strominger-Vafa microstate counting progam. From the mathematical
perspective the hope is to identify BPS indices as something like \the Hler character of the
moduli space of stable objects in the bounded derived category oK with stability condition
t." As the BPS indices are well studied in this region, the large volume limit isnatural place
where we can test the OSV conjecture. In chaptef]2 we study théndices of BPS states in the
large volume limit with a focus on the possible jumps across MS walls goingp in nity and
implications of those jumps for the validity of the OSV conjecture. It was already noted in
[8], that for D4 brane BPS states, realized as a bound state of tw@®4's, the MS walls can
go to in nity. We construct explicitly an example of such state. It is a bound state of a BPS
black hole with D4 charge and anotherD 4 charge, which itself is a bound state oD 6 and D6
BPS branes. We choose the total charge of BPS state such that ihas also a realization as a
single-centered black hole. Whert; crosses MS wall, 3-centered con guration disappears from
the spectrum, and the index jumps. For a certain region of charge, namely when theD 4 charge
is very large, this jump can be exponentially larger than the single-cetered contribution. As
the original OSV conjecture was formulated precisely in this regionwhich corresponds to weak

topological coupling region, we conclude that the conjecture canot be true in this region. It



can be true at most in a certain chamber of the moduli space near th large volume point and
we propose the candidate chamber.

As mentioned above BPS states in string theory usually allow two di erent descriptions in
di erent regimes of the theory: supergravity description as singleor multi-centered black hole
con guration in the strong string coupling regime and D-brane world volume theory description
in the weak string coupling regime. Sometimes the theory on the worldvolume of D-brane
con guration is a conformal eld theory(CFT) in which case one expects to nd the complete
duality between the two description and matching of the spectra onboth sides. In such cases
the geometry on the supergravity side contains as a part Anti de ter space and the observed
duality is called AdS/CFT duality. A well-studied case of such duality is th e single-centered
black hole con guration, containing AdS3 part, which is dual to some 2 dimensionalCFT,. The
multicentered black holes can also be analyzed from AdS/CFT point ofview. In [9], the authors
considered certain limit of multicentered black hole con guration that lead upon lifting to 11-
dimensional space geometries containin§dS; piece. This allowed|[[9] to identify the dual CFT,
description. In particular, the entropy of such con gurations is reproduced in the dual CFT,
and is given by the entropy of the single centered con guration withthe same total charge. Our
3-centered example, with entropy bigger than single-centered adization, could potentially lead
to contradiction here, since it's contribution can not be seen in the dial CFT,. We checked
explicitly that our example does not survive the near-horizon limit of [9], actually corresponding
to two in nitely separated AdS3z geometries, and the contradiction is avoided.[[9] also suggested
a general criteria for multicentered BPS con guration to have a single AdS; geometry in the
near-horizon limit. We give give a constructive argument in favor of this criteria.

Having discussed the two complementary descriptions of BPS stateas applied to particular
examples we move forward to some more general questions relatitige two descriptions. On the
supergravity side the moduli space of BPS objects, which are multientered black hole solutions
in this case, is described by the space of all possible positions of théalok hole centers, subject to
constraints following from equations of motion and supersymmetry In the regime of weak string
coupling constant the same objects are described by bound stageof D-branes and excitations
of those. It is very important to understand precisely how the matching of di erent BPS states
in the two pictures occurs. An important step in this direction was made in [10]. It was shown
there that in fact we should expect to have a smooth transition betveen the two regimes, in
which all discrete characteristics, like the indices of BPS states, a preserved. Nevertheless
there are still unanswered questions here. In the D-brane pictue the bound states of BPS

objects can be described using the powerful apparatus of algehic geometry. For example[[8]



studied stable holomorphic bundles on rigid surfaces and found the umber of BPS states on
two sides of a marginal stability wall. It turned out that enumeration of BPS states in algebraic
geometry gives a very di erent answer for the number of BPS staés than the answer that we
expect from the supergravity description. More concretely supegravity picture tells us that
BPS space is empty on one side of the wall and is populated on the otheside. Algebraic-
geometry picture gives non-empty spaces on both sides. This appent contradiction is asking
for a resolution.

In [10] the description of the abound state of BPS objects, that an be useful in both string
and weak string coupling was given in terms of supersymmetric quantm mechanics(SSQM).
The moduli space of this supersymmetric quantum mechanics has tw branches: Coulomb
branch which corresponds to the supergravity side and the Higgs fanch which corresponds to
the D-brane side of the full string theory description. [10] used this picture to show that in
some cases the transition between the two descriptions is compldyesmooth. However, more
generally Higgs branch is populated on both sides of marginal stabilitywall, while the Coulomb
branch is populated only on the stable side, which leads to a similar comadiction as found for
algebraic-geometry versus supergravity pictures. We will not tryto resolve this problem in this
thesis but instead concentrate on a related interesting paradoxarising in this setup. The Hilbert
spaces of BPS states are representations of the Lorentz groupnd in particular of the group of
spatial rotations Spin(3). As we move through the wall of marginal stability part of the Hilb ert
space decays. It turns out that in the Higgs branch description BFS states on both sides of
MS wall as well as the decaying part of the Hilbert space form irreduible multiplets of Spin(3)
group. This leads to an apparent paradox since the sum of two irredcible representations
cannot be an irreducible representation itself. We give a resolution bthis paradox in chapter
[@. The main idea is to consider the simplest compacti cation of the modili space. We nd a
completely consistent picture for the BPS Hilbert spaces on both sids of the marginal stability
wall. The simplest compacti cation that we consider also gives a hope ¢ nd the relation
between algebro-geometric and SSQM pictures.

Despite the fact that there are two complementary descriptions & BPS states for the pur-
poses of enumerating di erent contributions to their indices and camputing the indices the
supergravity picture of multicentered black hole is by far more poweful. In supergravity every
multicentered black hole solution, representing BPS states, is giveim terms of a map from our
3-dimensional space to the moduli space of the internal Calabi-Yaunanifold. In the simplest
case of a two centered solution there is a correspondence betweilis map and a certain graph

in the moduli space, called Split Attractor Flow Tree in [L1]. The image d space under the



map turns out to be a "thickening" of the attractor ow tree and t he existence of the tree is
equivalent to the existence of the full supergravity solution. This fact lead [11] to the
Split Attractor Flow Tree Conjecture: Supergravity solution exists i the corresponding
Split Attractor Flow Tree exists. There is a one-to-one correspondence between components of
the moduli space of supergravity solutions and Attractor Fdbw Trees.

In practice it is very easy to formulate the existence conditions of &ractor ow trees. It is
a more computationally challenging problem to enumerate all possible iractor ow trees with
given total charge , existing at a given point t in the moduli space, although the algorithm
is straightforward. We collect all the details on existence conditionsof attractor ow trees
in Appendix BA] The conjecture gives a simple physical picture of the ehavior of black hole
"molecules" under the change of the background moduli. Suppose @move through the moduli
space keeping track of a given attractor ow tree. As we cross tk wall of marginal stability
where this tree has it's rst split the tree ceases to exist, decayinginto the two constituents,
represented by the two subtrees starting at this split. This gives adecomposition of BPS
Hilbert space of the total charge into the Hilbert spaces of constitients. This process can be
continued for the constituents also, moving along the edges of théree away from the root.
In all, the attractor ow tree gives a canonical way of (dis)assembing part of BPS Hilbert
space, represented by this tree, into the Hilbert spaces of the astituents. This split attractor
ow picture of BPS states, although originally coming from supergravity, is more general and
applicable outside of the range of validity of supergravity.

The decay of BPS objects into constituents is subject to conseation of energy. For a decay

! 1+  that occurs at some pointty,s on the marginal stability wall MS( 1; »2) this

condition takes the form

JZ(5 tms)i = JZ( 15tms)i +JZ( 25tms)j: (1.0.4)

Together with an obvious relation, re ecting linearity of central ch arge with respect to the

charge itself

Z(; tms) = Z( 13tms)+ Z( 2:tms); (1.0.5)

this mean that the state can only decay when the central chargealign, i.e. only across MS wall.
In fact the presence of a bound state ; + , near anti-marginal stability wall AMS ( 1; »2)
leads to a sharp contradiction with the conservation of energy, sine approaching the AMS wall

the radius of the bound state still has to go to in nity according to ([I.0.2) and the energies



should add up. It is this contradiction, rst pointed out in [12]] that is the main motivating
question for chapter[4. More precisely suppose that the bound ste exists near the MS wall
and there is a path in the moduli space connecting MS and AMS walls fothis bound state such
that the radius of it stays nite and positive along the whole path. Th is necessarily means that
the bound state exists near AMS wall leading to a contradiction, unless something dramatic
happened to it along the path.

We study the paradox in the most general set up using the split attactor ow picture in
chapter[4. We nd that there are several new phenomena and nevkinds of walls that help
to avoid the contradiction. We term these new walls collectively as Bomd State Transforma-
tion(BST) walls since the nature of BPS states changes across tise walls. These walls are
di erent from marginal stability walls, thus BPS indices are expected to be constant across
those walls. To avoid the contradiction the attractor tree must degenerate somehow and there
are three basic ways how it can happen: the trunk of the tree canlwink to zero size, the
internal edge can shrink to zero size or it can be the terminal edgefdhe tree. The rst case
is irrelevant since it would correspond to crossing (A)MS wall for thebound state 1+ » and
we assumed that our path does not cross them.

When an internal edge shrinks to zero size, the bound state undgpoes recombination phe-
nomenon and we call the corresponding wall Recombination wall. Uporcrossing this wall
di erent components of multicentered state unbind from each other and become bound to other
components. Although the content of the multicentered state dees not change the bonds hold-
ing this molecular con guration together do change. The canonicalrecipe of (dis)assembling
BPS Hilbert space also changes in accord with the change of attraot ow tree. A typical
situation is when e.g. charge ; is realized as a bound state of two constituents with charges

3+ 4 and we denote this con guration as (( 3; 4); 2)- As we cross the recombination wall
the internal edge of the attractor tree shrinks to zero size prodcing one 4-valent vertex, instead
of two 3-valent ones, and on the other side we end up with two attrator ow trees of the form
(( 4; 2); 3)and (( 2; 3); 2)- BPS index should not change as we cross recombination wall
and we prove that this is indeed the case.

When a terminal edge shrinks to zero size, the corresponding terimal charge must become
massless and the conjugate particles will be created. Suppose theharge 1 becomes massless
along some locus in the moduli space. It is knowr [13] that massless g&les in string theory
are associated with singularities on the moduli space of Calabi-Yau mafold and the charges of
BPS states undergo a typical monodromy of the form , ! ¥ := ,+1 pwith | = jh 1; ,ij.

As we cross the locus where ; constituent becomes massless a halo bfparticles  ; is created



from vacuum around , center. This halo is in fact a completely lled Fermi sea of fermionic
particles 1 and we call such process the Fermi ip. This process does not cosiny energy
since ; is massless and because of the monodromy the total charge of theal con guration

2+ 1 1+(1 1)( 1)isequal to the initial total charge. The wall AMS ( 1; 2) now becomes
marginal stability wall MS( ¥;(1  1)( 1)) and puzzle is resolved. Fermi ip e ectively
replaces ; particles by a certain number of conjugate particles 1 and we call the wall where
this happens conjugation wall. It is easy to see that BPS index remais constant during this
process.

Besides solving the puzzle the requirement that BPS indices are coimuous when going from
MS( 1; 2)to AMS( 1; »2) leads to non-trivial constraints on the spectrum of massless BPS
states at the singularity. We nd that when there is only one charge becoming massless at the
singularity ( 1 and/or possibly some rational multiples of it) then BPS indices of suchcharges
determine the monodromy of the local system of charges arounche singularity.

The above resolution assumed that massless particles; a fermionic. If it happens that
massless vector particles are present at the singularity the only waBPS index can stay con-
tinuous is the presence in the spectrum of massless particles mutlya non-local w.r.t. massless
vectors. We predict that the spectrum will necessarily contain masless magnetic monopoles
that will form bound states with ; and ,. The structure of bound states with total charge

will become much more complicated compared to purely fermionic cas. Particles ; and

D (monopole charge) will form clusters orbiting around central ,. Moving from MS( 1; »)
to AMS ( 1; 2) we encounter a countable set of BST walls across which some hybriof both
conjugation and recombination porceses will take place and in the eh BPS index will stay
continuous. We illustrate our conclusions on a number of examples ém the literature.

Halo picture of BPS states used in analyzing BPS indices near singulatig#s can be fruitfully
applied near a regular point in the moduli space. In chapteil’d we give avery simple physical
derivation of the famous Kontsevich-Soibelman wall-crossing formla(KSWCF) [¥] based on the
halo picture. KSWCF is a generalization of the primitive(and semiprimitive) WCF (L.0.3) of
[5] which relates BPS indices of charges of the forrm ; + n , on two sides of the marginal
stability wall MS( 1; 2). To formulate the KSWCF we introduce a complex symplectic torus
T, associated to the local system of charges at point in the moduli space, with coordinate

functions X , 2 ©M satisfying

X Xo=X 4 o (1.0.6)



There is a group of symplectomorphisms acting on this torus of thedrm

Ut:X ol (1 ()X )N%TC x4 (1.0.7)

where ( ;t) is BPS index of charge and ( ) is the "quadratic re nement" of the quadratic

form ( 1)" % ' obeying

(9 ()= D7 (% ) (1.0.8)
Consider a pointtyhs 2 MS( 1; 2) and in a small neighborhood of this point choosé. in the
stable side andt in the unstable side in nitesimally close to ts. At each oft central charges
of ;1 and ; do notalign as they do att,s. Because of this there will be some natural ordering
of charges of the formm ;1 + n , according to the phases of their central charges{™" att .
The KSWCF is a relation

Y t Y t
Ul = U : (1.0.9)

m 1+n 2 m 1+n 2°
‘min % ?TQI‘I %
+

This formula relates the indices (m 1+ n ,;t ) to each other and is the most general WCF
for BPS indices in N = 2 supersymmetric eld/string theories. In practice one expands both

sides of [1.0.9) in powers oiX .., and equates the coe cients in front of di erent powers on

both sides. In this way KSWCF reproduces the primitive and semi-prinmitive WCFs of [5] and

provides a generalization thereof.

The rst physical derivation of it in N = 2 eld theory, based on a thorough analysis of
hyper-Kahler metric on the moduli space, was given in[[14]. In chaper[§ we give a di erent
derivation of the formula valid in any N = 2 supergravity theory, based on the halo picture of
BPS states and semiprimitive WCF. Our derivation is very similar in spirit t o the derivation
of (motivic) WCF in N = 2 eld theories given in [L5]. Inspired by the results from chapter
[4 we also give a slight generalization of KSWCF for the cases when sinzuities are present.
In that case the formula becomes a constraint on the massless sgeum of BPS states at the

singularity and a relation of this spectrum to the monodromies of thelocal system of charges.
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Chapter 2
Ample D4-D2-D0 decay

In this chapter we study the wall-crossing behavior of the index of B’S states for D4-D2-D0
brane systems on a Calabi-Yau 3-fold at large radius. We nd that nd only is the \BPS index

at large radius" is chamber-dependent, but that the changes in tle index can be large in the
sense that they dominate single-centered black hole entropy. Weiscuss implications for the
weak coupling OSV conjecture. We also analyze the near horizon limit fomulticentered solu-
tions, introduced in [9], for these particular con gurations and comment on a general criterion,
conjectured in [C], which identi es those multicentered solutions whae near horizon limit cor-
responds to a geometry with a single asymptoticAdSs  S? boundary. This chapter is based

on [16].

2.1 Review of OSV conjecture

In this section we |l in the details about OSV conjecture mentioned in the Introduction. We
start with giving a more precise de nition of the BPS index. Let's denote the Hilbert space of
BPS states with charge = ( p;q) = (p%P;Q; ) by H(; t1 ). Index of BPS states with this

total charge is de ned to be the second helicity supertrace

(; ti)= 2Tryg )5 1)%=: (2.1.1)

Here J3 is the third component of spatial angular momentum. Factoring out center-of-mass

degrees of freedom, giving a half-hypermultiplet, we can rewrite tk index as

0
(;ote) =T ho o) 1Ps; (2.1.2)

whereJ{ is the reduced angular momentum. Using these indices it is natural tale ne a partition

function, usually referred to as black hole partition function as

X
Zgn (p; 5ty ) = (pigty)e? q: (2.1.3)
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This partition function has a meaning of a mixed ensemble of BPS state with xed magnetic
charges and chemical potential for the electric charges. In pririple such partition function
should arise naturally from string theory path integral. In practice it can be de ned in the large
charge limit using Wald's formula for the entropies of black holes, relaéd to the indices via
([@0.J). In cases when black hole con guration admit a dual CFT desadption, as in the famous
MSW theory [L7], one can give a de nition of black hole partition function valid for all charges,

using CFT partition function

Zerr (= Cotig—iC)=TH( 1)P5e M 210Co 21Q (Cr ), (2.1.4)

In practice the dual CFT is obtained from the D-brane con guratio n, corresponding to black
holes of given magnetic charge, and path integral over D-brane wtd-volume theory reduces to
the CFT partition function. Parameters of the world-volume theor y such as Ramond-Ramond
potentials Cp; C and the radius of AdS; throatH are related to the usual modular parameter

of CFT as in (2.1.4). Using this partition function the one in (2.1.3) can be de ned as

. . P
Zen(p; % )= Zeer ( =0;Co=1i %C=i E): (2.1.5)

Now we want to de ne another interesting object that exists on the Calabi-Yau manifolds used
in string compacti cation models: topological partition function. To pological string theory on
a Calabi-Yau manifold X is a twisted (2;2) CFT with target space X (see [18] for a review).
One de nes vacuum amplitudes for embedding genué string worldsheet into X

Z 3t 3

Fn(t) = h (G (G ; Wi (2.1.6)
Mn k=1

where G are worldsheet supersymmetry generators, x are Beltrami di erentials and t are

Kahler moduli of X . Topological partition function is formed using these amplitudes

%
Fiop (Gopit) = Giop “Fn(t): 2.1.7)
h=0

This partition function is known to compute F-terms in the low energy e ective action and
thus is related to black hole entropies computed using Wald's formula. [4] made this precise

and conjectured that there is a relation

In IIA string theory black hole geometries for black holes wi th vanishing D6 charge contain an AdS, S2
piece.
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Zen(p; % it1) = Ziop (Gop: )% where

Gop = rﬁjﬁ = %: (2.1.8)
This relation was derived for large charges, when BPS indices are satated by black hole
entropy as in (I.0.1), and in the weak topological couplinggp limit. A major problem with
this formula as originally formulated, is the dependence of black hole artition function on
the background modulit; and independence from it of the topological partition function. A
constructive proof of this relation was given in [5] where it was founl that t; has to be taken
to in nity in the Kahler cone of Calabi-Yau X, i.e. BPS indices entering black hole partition

function have to be evaluated around the large volume point of the @labi-Yau.

2.2 Some general remarks on BPS indices at large radius

In this section we focus on the type IIA string theory compacti ed on a Calabi-Yau manifold
X and study the indices of BPS states in the large volume limit. To de ne it we choose some

vector B + iJ in the complexi ed Kahler cone and consider the limit
Ili{”n (; ( B+id)) (2.2.9)

Charge here is an element of symplectic lattice with components = ( p°; P; Q; gp). We expect
- on physical grounds - that this limit exists: In the large radius limit th e physics is described
by some D-brane gauge theory, and there should be a well-de nedra nite-dimensional space
of BPS statesH(; t). Somewhat surprisingly, it was pointed out in [8] that the limit (Z.2.9)
depends on the directionB + iJ chosen in the Kahler cone, even for the D4-D2-D0 system
studied in [14], and hence the \large-radius limit" of the index of BPS states is not well-de ned
without specifying more data. This fact has recently played an impotant role in [3]. Our point
in this chapter is that in fact the dependence of the index on the diretion B + iJ can be large
and this has signi cant implications, as explained in more detail below. h [5] it was pointed
out that for D6-D4-D2-D0 systems there is nontrivial wall-crossing at in nite radius. In [8,]9]
it was shown that even for the D4-D2-D0 system with ampleD 4 chargeP, there are walls of
marginal stability going to in nity. (Such examples are only possible when the dimension of the
Kahler cone is greater than one[[5].) One should therefore ask houarge the discontinuities in
can be across walls at in nity. We show that they can be large in the following sense: If we

consider charges which support regular attractor points (hence the single-centered attractor
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solutions of [19,[20]) then it is not consistent with wall-crossing to aseme that the contribution
of such states dominate the large radius limit of the index (). We sh ow this by exhibiting
an explicit example in Section[2.4.

Our example consists of a charge which supports a regular attracr point (hence a single-
centered black hole), but which also supports a 3-centered solutit The three-centered solution
decays across a wall in the Kahler cone which extends to arbitrarilylarge radius. The contri-

bution of the single centered solution of charge is predicted from sipergravity to be
r

logj j Sen():=2 %PP’ (2.2.10)

In our example will support a boundstate of charge .+ , where ( 1) has bounded
entropy and » itself supports a regular attractor point, but Sgy ( 2) > Sgy (). Thus the
discontinuities in the index are competitive with the single-centered @tropy.

This e ect of entropy dominance of multi centered con gurations over single-centered ones
is reminiscent of the \entropy enigma" con gurations of [5] 21]. In that case, if we rst take
large J; then under charge rescaling ! single centered entropy scales as Sgy
while the two-centered solutions contribute to entropy as Syc 3. On the other hand, if
one holds the moduli at in nity, J; , xed and scales , then the con guration will eventually
become unstable and leave the spectrum. Here we again rst take tgeJ; and nd that under
rescaling D4 charge® ! P (holding the remaining components of xed) the single centered
entropy scales asSgy csy  °72 while the three-centered entropy scales aSsc  Czc 372,
with c3c > cgy . Thus here the entropy dominance of multicentered con guration over the
singlecentered arises from the prefactor and not from the scalingxponent. In contrast to the
entropy enigma con guration, if we x moduli atin nity J; and then scaleP, the con guration
does not leave the spectrum, as shown at the end of section 3 below

Like the \entropy enigma" con gurations, the boundstates considered here threaten to inval-
idate the weak-coupling version of the OSV conjecture[4] (or its rened version [5]). However,
as discussed at length in[[b], (see especially section 7.4.2), since is andex there are po-
tential cancellations between these con gurations leading to the @sired scaling log 2 for
uniformly scaled charges. Our main point here is thateven if we assumehat there are such
miraculous cancellations the index will nevertheless have large disctinuities across the MS
walls, even at large radius, and hence the weak coupling OSV conjagte is at best valid in
special chambers of the Kahler cone. It is notable that the phenmenon we discuss cannot
happen when the Kahler cone is one-dimensional. Moreover, our @mple only exists in the

regime of weak topological string coupling, wherg¢j is not much larger than P23. This regime
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is already known to be problematical for the OSV conjecture([5].
Of course, given a charge =P + Q + gdV, with P in the Kahler cone, there is a natural
direction singled out, namely the P direction. It is therefore natural to suppose that the re ned

OSV formula of |[5] should apply to
Ililm (; zP) (2.2.112)

wherez = x + iy is a complex number, and indeed, several of the arguments inl[5] ssmed (for
simplicity) that J and P are proportional.

A second, related, implication of our example concerns the modulant of generating func-
tions for BPS indices. In [8] a microscopic formulation of the \large adius" BPS indices
was investigated by characterizing the BPS states as coherent slaves supported on cycles
in the linear system jPj. Put dierently, a D4 brane wraps a cycle 2 jPj. There is
a prescribed ux F 2 H?(; Z) and the system is bound to N anti-DO branes. If we set
d(F;N)=( 1)¥mM (M) where M is the moduli space of supersymmetric con gurations of
this type then, it was claimed, the large radius BPS indices are nite suns of the d(F; N ). On
the other hand, duality symmetries of string theory imply that a certain generating function
of the indicesd(F; N ), denoted Zp 4p 2p 0, €xhibits good modular behavior. It follows from the
chamber dependence of the large radius limit of that there must be chamber dependence of
the d(F; N). The chamber dependence ofl(F; N ) raises the question of compatibility with the
modularity of the partition function Zpp2po. This partition function is also closely related to
the (0; 4) elliptic genus of the MSW string [22,[23], and hence similar remarks migt apply to
that elliptic genus. The statement of modularity of these partition f unctions follows from very
basic duality symmetries in string theory and conformal eld theory which, one might guess,
should be valid in every chamber of the Kahler cone. One might theréore expect that the
changein the partition function must also be modular. It might be easier to verify this than
it is to verify the modularity of the full partition function. One might a pproach this using the
results of [24]: One must compute the change of the polar polynomiahcross a chamber and
show that the associated cusp form vanishes. This appears to be @allenging computation,

but one well worth doing if possible.

2.3 Walls at large radius

In this section we analyze and enumerate marginal stability walls thatexist around the large

radius point. Let us consider a D4-D2-DO charge = P + Q + gdV splitting into a pair of



15

charges = 1+ , with

i =TIi+Pi+ Qi+ q;dV (2.3.12)

Thenri= rp=randliz=hgq; 2i=P; Q2 P2 Qi rgo. The Denef stability condition

[11] is governed by the sign of 1, times the sign of
Z12 =M Zynol Zopor (2.3.13)

We are interested in the existence of walls at in nity. Let us considerwalls which asymptotically
contain lines in the Kahler moduli space. Thus, we sett! tandtake !1 . Ifthe leading
term in Z;, at large can change sign as the \direction" t is changed, then there will be
asymptotic walls at in nity.

If r is nonzero then any wall that persists at in nity is necessarily an ant-MS wall, where
the phases ofZ( 1;t) and Z( »;t) anti-align. There is no wall-crossing associated with such
walls and thus we setr = 0.

When r = 0 (23.13) simpli es to
1
Zip = ZImPl tZPQ t2

%"‘ﬂ Py tZQz t+ Py tZQl t
. . (2.3.14)
+Im Ql th t+ sz;]_Pg t2+ EC{);QP]_ t2
IM(0p;1Q2 t+ Go;2Q1 t)

For the generic directiont the leading behavior for !'1  will be governed by the sign of
ImP; t2P, t>=(P; B J)P, B2 (P, B J)P; B2 (P, J?P, B J P; J?P, B J) (2.3.15)

This vanishes in the one-modulus case, but is generically nonzero in ¢hhigher dimensional
cases. Moreover, it is odd inB. Therefore, just by changing the sign ofB we change from a
region of Denef stability to instability, and hence there are de nitely walls at in nity.

As an example we analyze[{Z.3.15) for two particular examples of Calabrau manifolds with
a 2-parameter moduli space. The rst case is the elliptic bration : X ! P2, A basis of
divisors is Dy = ;D2 = h with intersection products given by $ =9, 2h=3, (h?=1
and h® = 0. The second example is a blow-up of a hypersurface iR1:1:222)[8] [25]. A basis of
divisors is H and L with intersection products given by H® =8, H2L =4, HL?=0, L3 =0.
It turns out that in the elliptic bration case (2[3.15)ltakes the form (here, superscripts denote

components w.r.t. the basisD, D, above):

16((B1)* +(IH)?)(PfP;  P{PH)(B2IT BYNI?) (2.3.16)
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and thus vanishes wheneveP; becomes parallel toP, or B becomes parallel toJ. Assuming
P1 not parallel to P, there is exactly one wall, going to in nity with B / J. In the case of

pP(:1:2:2.2)[8] (2.3:15) looks like:

(3B1B, + B2 +3J1J, + (PP PUPAYBLI, B1dy) (2.3.17)

Here in addition to B / J wall there is another wall for 38;B,+ B3+3J;J,+ JZ = 0, provided
that QBf 123135 4J22 > 0. Itis easy to see that on theB / J wall the phases of the central
charges align and hence, this is an MS and not an anti-MS wall. For simplity we will choose

B =0 in which case the stability condition at large is governed by the sign of
(P2 J?°Q1 J Py J?Q2 J) (2.3.18)

Again, in the one-modulus case this expression has a de nite sign in aord with the analysis in
[5], however, in the higher dimensional case it is perfectly possible fahis quantity to change

sign asJ changes direction in the Kahler cone.

2.4 An example

We now give an explicit example of a split of a D4D2DO0 charge, which supprts a single centered
black hole, but which admits marginal stability walls at in nity describing a splitting into a
pair of D4D2D0 systems in which the change in index is larger than th e single-centered
entropy.

In order to have a single-centered solution we must assum is in the Kahler cone and the

discriminant is positive. Therefore,

1,
G<O0 &= Q EQZJP (2.4.19)
where we recall that Q?jp := (Dasc P¢) 'QaQsz.

In some chambers this charge can also support a multicentered sdlan where the rst split

in the attractor ow tree is given by

)

(P1)
24

2= P2+ Q+ gp2dV (2.4.20)

1= P+ dv
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Here, i is a pure D4-brane and ; is a D 4-brane charge supporting a single-centered black
hole: We will consider only charge con gurations so that¢p.> < 0, and hence , has a regular
attractor point.

Using the summary of split attractor ows in the appendix A] we see that a necessary
condition for the existence of the split realization is that the ow crossesMS( 1; 2) at a
positive value of the ow parameter s. Using notations from Appendix [Althe ow parameter is

given by:

g2 -, (I P B NGP Q7 BY*r ) (GP (7 BH*Q B @)Pi B J,
= Pl
" 2J%iP (J2 B)Y+Q B g+iQ J iP B JjP; Q

(2.4.21)

Herej; means that complexi ed Kahler moduli t = B +iJ are evaluated at spatial in nity. The
vanishing locus ofsys is the wall of marginal stability. This is a rather complicated expressim,
but it simpli es if the starting point is chosen to have zero B- eld. In that case the parameter

along the ow s!2 , for which the wall is crossed is

12
ms

e QIGP 32+ G
o
3J3%3P J2 iQ J @jP1 Q

1 (2.4.22)

S

which further simpli es in the large J limit to

Q JpP; J?

1 (2.4.23)
2J3P J2P; Q

Swe = 24
The condition s}2 > 0 (which is equivalent to the Denef stability condition) imposes a restiction
on Q, because we must have@J; )(P:Q) < 0 while both P; and J; are in Kahler cone. There
are plenty of charges that satisfy this condition and we'll give a numeical example below.

We are not quite done constructing the split attractor ow tree be cause ; is a polar charge,
and must itself be realized as a multicentered solution. As discussed iappendix [A] for an
attractor tree to exist all its edges must exist and moreover all itsterminal charges must support
BPS states. The charge , supports a regular black hole. Meanwhile, ; is realized as a ow,

splitting into D6 and D6 as in [5]:

1
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1! 3t 4
3 —_ eP1=2
4= e P1:2
(2.4.24)
So for the whole tree to exist we need
si2 > 0forthe split ! 1+ ,toexist
s > 0forthe split ;! 3+ 4 toexist

s3> s wheres3* is the value when the ow reaches zero of the charg&( 1)

These conditions are su cient because the charges 3 and 4 exist everywhere in moduli

space and and ; support black holes. It is also easy to see that both walls are MS andat

anti-MS walls. It turns out that above conditions are always satis ed if

J; is on stable side of the wall, corresponding ts2 > 0
P1 J1 component-wise in a basis of Kahler cone

To see this we estimates3t and s3* in the large J; limit. Recall from appendix Althat

. : .o el2
g = N HIi N o isms. (2.4.25)
h 3; i

Now plugging the expression for H from ([L.0.G) we can estimateh 3; Hi gp%. Using
oY1

3
h s 4= '%1 and the fact that sj2  O(5:=) is small we get

2] 3
34 1 .
S S 2.4.26

To nd s3* we equate the central charge to zer@( ;;t) =0 to get the vanishing locus:

(2.4.27)

(P1) 1 , 1 2
— + — =0: =0:
5 5 P, B > P1 J 0; Pp B J=0

Moduli along the ow of charge ; are determined again by [T.0.6) with (s)= s 1+ s2

O(5i=) this can be written as
1

H. Recalling that si2

0
3

(s)= @0(%);3P1+ O( 11_2);0( 11_2);3 (P) qu A (2.4.28)

Ji- Ji~ Ji~ 24 2 %‘]13
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Plugging this ( s) into (L.O6) and taking into account that s3*  O(J3%2), as we will see below,

we nd that

0

6 P J
J(Sg4)a Pf‘{’l — @ ( 1) &
L2 o o)

(25

o<

3
1

A (2.4.29)

and B2(s3*) is small. Now we can solve[[Z.4.27) fos3* to nd:

st ﬂ : (2.4.30)
4=333 (P1)3

Thus we see from [Z.4.26) and[{Z.4.30) that the existence conditionare indeed satis ed: s3* >

s .

We conclude with a numerical example, checking explicitly that such sfit solutions exist.
We consider again the elliptic bration example and P1:1:222)[8] of [25]. The initial charge is
of the form = P+ Q+ qdV, whereP =(50;50), Q=( 1;3), o = 10. The starting point
of the ow is J; = (500;100), which indeed lies on stable side of MS wall in[{Z.4.22). The
pure D4 has chargeP; = (1;2). All the existence conditions are found to be satis ed for both
Calabi-Yau manifolds. As we'll discuss in the next section, the entroy of this three-centered
con guration is expected to be larger than the one from the singleeentered realization of the
same total charge. The numerical examples con rm this claim in bothcases.

Now we will justify the remark made in the Section[Z.2 about the existeice of the 3-centered
conguration for P ' 1 . We take B; = 0 and evaluate (Z.4.21). Evaluating (2.4.22) in
the limit P !'1 and with xed J; produces an expression almost identical to[{2.4.23). In
particular, it remains positive, but does go to zero. The second split 1 ! 3+ 4 will therefore
happen very close to starting point in moduli space and hencel; P1 will guarantee that
the second split exists. This proves that our example exists in the® ' 1 limit if it existed in

Ji 'l limit.

2.5 Comparison of the entropies

Now let us compare the discontinuity of the BPS index with the cont ribution of the single-
centered (black hole) solutions to the \large radius” index (; J; ). We rst assumethat the
dominant contribution to the large radius entropy is that of the sing le-centered solutions, if they
exist. We will then show that this assumption is inconsistent with the wall-crossing phenomena.
The black hole contribution to can be approximated using the equation from the attractor

mechanism
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h [

BH ():i=exp Sgu()=exp 2 P GP3=6 : (2.5.31)
The discontinuity of the index acrossthe wall ! 1+  is given by
(o tms)=( DN E 2 Yhog G (0tR) (2t (2.5.32)

Here the indices of ; and , are evaluated on the MS wall. As we have said, the state
with charge 1 is realized as a split attractor ow splitting into pure D6 and D6 with uxes.
The index of 1 is polynomial in charges and is given by ( 1) = ( 1)'P2) 11 (P;) where
I (P):= % + %. Again using our assumption we would estimate that the index of , can

again be approximated by the black hole contribution;
q__
( 2331) BH ( 2)=exp 2 Q:2P5=6 (2.5.33)
since , supports a single-centered black hole.
We now consider a limit of large charges. We hold®; xed and take P !' 1 along some
direction in the Kahler cone. Then from Egs.(2.5.31), (Z5.33) the indces of and , will be
exponentially large for large P while (1) is a known, bounded function of P;. This means

that to compare the contributions (£.5.37) and (Z5.32) we need to ompare the exponents:

oP3 vs 2P (2.5.34)
In this limit we can write
2

P3=pP3 3P2 py+::=P3 1 3PP3P1 + O(15Pj%) (2.5.35)

Moreover, sinceq is conserved at the vertex

1, (P1) 1

2=+ = = : 2.5.36
G2 =%+ 5Q7p on 3P ( )

In taking our charge limit we can make ¢y.» su ciently negative that ~qy., and & are both

negative. Now we can write

3 _ 3 (P1) 1 2: 2: 3p? P1 —pi2y -
®;2P; = QP 20a, E(Q jp,  Q%jp) 53—+ O(FPj) :  (25.37)
Sinced is negative we see fron{2.5.37) that the contribution ofthe ! 1+ 2! ( 3+ )+ 2

split attractor ow will be greaterinthe P !'1 limit provided that

(P), 1
240j  2jG]

2
3P2 Py

53 0: (2.5.38)

(Q%p, Q%p)
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The rst term of (25.38]) is always positive, while the second term canhave both signs. The
third term is always negative. However, for parametrically largeP and xed Q the second and
third terms are suppressed, so the expression is positive. Thus wed that in the limit described

above, the split ow con guration has greater entropy than the black hole contribution:

g1 () 12 (5 tms): (2.5.39)

So not only does the value of the index depend on the direction in whid J is taken to
in nity, but this dependence can be very strong, and even dominag single-centered black hole
entropy.

One might worry that there are other split ow realizations of the charge , with the
same wall of marginal stability as the one we are studying, which prodce a cancellation in

. For example, the charge  , might well support multi-centered solutions. However, by our
hypothesis, the single-centered entropy dominates the multi-cetered ones, so such a cancellation
cannot occur. Then (Z5.39) leads to a contradiction and hence weanclude that it cannot be

that single-centered entropy dominates the entropy at in nity in a Il chambers.

Remarks

1. In the context of topological string theory the topological string coupling is gwop
P G=P3 [4]. The e ect we are discussing does not appear in the strong couplqregime,
in harmony with the arguments in [5]. However, it does appear in the poblematic weak

coupling regime.

2. Interestingly, this phenomenon will not occur with splits into two single-centered attrac-
tors. If qv; < O for both i =1;2 and P1; P, are in the Kahler cone then (taking Q; = 0

for simplicity) one can show that

Sen () >Ser ( 1)+ Seu ( 2) (2.5.40)
as expected. We do not know of a proof of the analogous statemefor Q; 6 0.

3. In principle the example we have given can be extended by replacing; by an arbitrary
extreme polar state in the sense of |5]. Following]5], the charges; ! 3+ 4 can be

parametrized as
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3= reSt(l 1+ ngw)

4= reS2(1 5+ now) |

Ps P3 P2 P s '
1=1T 01 ﬁ; T + , ﬁ + T 7 + 2 nw (2541)
WhereI5 =S S$,S=5+85, = 1+ 2, = 9 ., Nh=n n,. For
suciently small ; andn;andS; P;=2, S; P1=2, the charge ; is very close to

a pure D4-brane and all existence conditions are still satis ed. The 3-cergred entropy

dominance also continues to hold.

2.6 M-theory lift and its near-horizon limit

In this section we check what happens to our boundstate con guations in the near horizon
scaling limit recently introduced in [9]. This is important since our obsenations regarding the
entropy have the potential to lead to a troublesome contradictionwith the AdS/CFT conjecture.
If our con gurations corresponded to states in the Cardy regionof the holographic dual to an
asymptotically AdSz S? geometry then there would be such a contradiction. Fortunately,our
example turns out to be quite similar to that discussed in [9]: The rst split D4! D4+ D4
corresponds to two in nitely separated (AdSz  S?)-like geometries, so there is no contradiction.
These curious limiting geometries, and especially their holographic duanterpretation, deserve
to be understood much better. Indeed, the existence of thesB4! D4+ D4 decays suggests
that in general one cannot identify the partition function Zpap2po Of [5] with the M5 elliptic
genus of [22[72B8]! They might nevertheless agree in certain chamtseof the Kahler cone (e.g.
at the \AdS point" described in [9]). Clearly, this issue deserves to beunderstood better.

The solution to the attractor equations in the e ective 4d N = 2 SUGRA for a general
multicentered con guration can be written (in the regime of large Keahler classes) in terms of

harmonic functions ( [9], eq. (2.8)):

df, = (ot Gal)?+ (0
- :_AJ,% | % , (2.6.42)
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where
1 . 1 o
Gy S Gy
1 Q3 L2
A = ? A = [
dAj 19?4 ?dH" ; (H0)2
L = HO(H0)2+%DABC HAHBHC HAHAHO; (2.6.43)
1
Q® = (éDABC yAy®y©)?; Dagc Y*Y® = 2HcH®+ Dagc HAH®
x P&
0. 4A a Ga i .
H (H%HA HasHo) == - = 2m (e ) jx=1 ;
2 1% %l
A =1;:::;h¥1(X) are components relative to a basisDa for H?(X; Z), ? is the Hodge star

with respect to the Euclidean metric d%* on R®, and we choose a solutiory” of the quadratic
equations such thaty” D 4 is in the Kahler cone. The Calabi-Yau volume in string units is given

by
Via = DA%JAJBJC = %Q—z (2.6.44)
and G, is the 4-dimensional Plank constant, determined in terms of the sting length |s and
string coupling gs by
__ 1Eg
Gy = m (2.6.45)
The above equations assuméi °(%) is nonzero, but they have a smooth limit asH® ! 0. (See
[28] eq. (9.21) for the relevant expansions.)
This solution of 4d supergravity can be lifted to 5d supergravity. To do this we use the

standard relation betweenM -theory and IIA geometries

RZ
dsgd = Te% d + AO 2+ e % dsid;
YA = v, 00 AR =AR+BA d +AC (2.6.46)
Here R is the M-theory circle radius, +4 , YA are 5d SUGRA moduli, and (%) is the

10d dilaton eld, normalized as (1 ) = 0. Note that the Calabi-Yau volume in 11d Planck

units is

2 Viia |
92

The near horizon limit of the M -theory solution, introduced in [9], may be described as

Vv = e (2.6.47)

follows. Beginning with a solution (Z2.6.42) we introduce a family of BPS stutions of the 4d

supergravity equations, parametrized by 2 [1;1 ). The expressions that get modi ed under



this deformation are given by

3=2 P
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1 I
dsiy. = —(dxo+ Gs! )2+ & (d%)?;
0 -, dx
A0 = @og =2 8% v g
@H Ga
3=2 3=2
2d = p—HH ;H i; d = p—2dH°
G4 G4
X TG PN
H = 332 = 2lm(e " ) g, +i3 , (2.6.48)
a 1% %l
Here, = pﬁe‘“” and for brevity we omit the corresponding formulae forA* and A%. .
The vectorsx, used to de neH can be taken to be any solution of the integrability constraints
S
. z
X h a, bl 3 3 i (By +iJ 1)
— = =5 Im e ' pe ‘o1t ! 8b: (2.6.49)
b6 a Xab G4Jl
wherex,, := j%, %,jand € *: is the phase of the total central charge atB; +iJ ; . We

choosex, to coincide with our original solution at =1, and let them depend continuously on

. Clearly there is some degree of arbitrariness at this stag

The above family of solutions can be obtained from original ones by sding (Z.6.43)

3

* %

Is ! =2\

g1 g

Gy ! 3G,

Ji ! Jg

B; ! B (2.6.50)

but we prefer to keepx;ls; G4 xed and change the solution according to [2.6.48). The constant
G4, and the coordinate system, in these equations is-independent.

Now consider the corresponding -deformed 5d geometries. Since the moduli” (x; ) de-
termined by (Z6.42) scale as ® for !1 (at least when HO(x) 6 0) it is clear that if the x,
tA (% ).

Indeed

have a well-de ned limit then there are well-de ned limiting moduli A (%) :=lim 1

One must be careful because the limitsx ! 1 and 1 do not commute.

tA(% ) ! Bf +iJf asx!1 forany xed while A(x) has asymptotics for large
X = j¥:
r___
. 3iXj -
A = DAB Qg + O(1=x) + i %(Jf =3)1%pA (1 + O(1=x)) (2.6.51)

2|n principle some components of the moduli space of solution s to (2:6.49) might be obstructed by the
positivity of the discriminant.
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This implies that the 5d SUGRA moduli Y* (%) have well-behaved largex asymptotics

A
YA(%) = —a—= + O(15%j): 2.6.52
(%) (P (15%)) ( )
Moreover, since the 10d dilaton scales according td (Z.6.47) & = %‘;VM (Wm is  inde-

pendent), € ) for xed x scales as 3. Note, however, that in the other order of limits

(1 ) =0. The corresponding 5d metric for the deformed solution stf-,d; has a well-de ned
limit. Reference [9] shows that this limiting solution de nes a geometrywhich is asymptotically
AdS3 S?, where there is a nontrivial connection on the (trivial) S? bundle over the asymptotic
AdS; region.

The upshot is that if we can choose the centers,, constrained by (Z6.49), so that thex,
have a well-de ned nite limitas !'1 then, by AdS/CFT, the BPS states corresponding to
the multicentered solution at = 1 should correspond to BPS states in the MSW conformal
eld theory. However, it can happenthatas !1 the distances between the centers, cannot
remain bounded. In this case the behavior of the limiting geometry is nere complicated, and
might involve, for example, \several AdS; S? geometries at in nite separation." In particular,
note that if the total D6 charge vanishesthen ; . ! 0 and hence those integrability equations
@%6.29) with D =0 have a zero on the RHS. This might force some centers to move tm nity.

In view of the above results we next turn to our 3-centered con giration and examine the
integrability conditions [L1] on the positions of the three centers. ©r the set of charges described

in section 3 we have two independent equations:

h 2; 3i+h3; 4 _

|
w

(2.6.53)

|
I

where , denote (minus) the right-hand-sides of [Z.6.4P). The intersectios of charges take the

form:

P
h s; 4i= _61 =c
P PZ P} QP
: = — + . =
h 2, si 8 g t D2 5 a b
. P P2 P} Q P
. - ¥ Oh. = .0.
h 2; 4l 8 8 Go:2 5 a b (2654)

Using the charges of sectioi 214 and the limit® ! 1 holding P; xed, we have a  b;cand

c < 0. As for the sign ofb we rst choose b > 0 and explain the caseb < 0 later. Equations
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(2.6.53) determine x,; and x,, in terms of x5,. As discussed above, there is still freedom in
choosing the dependence of;, on . One way to x this freedom is to choosex,, independent
of . The relations betweenx,,, following from (Z.6.53) are subject to the triangle inequalities.
The moduli space of solutions will generically consist of several intemls on the x5, line. The
relation between these intervals and topologies of attractor ow trees is the essence of the Split

Attractor Flow Conjecture (SAFC) [11], which we recall in Appendix Alfor convenience.

t 2 4)

Figure 2.1: The two contributing topologies of attractor trees.

In the present case the two possible attractor ow tree topologies are shown in Figure[2.1.
To identify the region corresponding to the left tree, we tune the noduli at in nity to be close
to the MS( ,; 1) wall. This means choosing , = ( 3+ ,) close to zero. We can then write

the triangle inequalities as follows:

a b a+b
+

1
C 3X34 Ct 4Xza
a b +1 a+b
C 3X34 C+ 4Xza
a+b a b
1+ (2.6.55)

Ct 4Xza C 3X34
Close to the MS wall , =0, we canwrite ;= , ,, solve inequalities [Z6.5b) and expand
the solution to rst order in ,. Using in addition the relations between the magnitudes of

a; b; ¢ we get the following solutions to [Z.6.55):

c,_¢ " 2a cC a
I w = = =
4 2(4)2 2 4 s (227
« 2b ¢ a(2b+ ¢ or c,_ac «
34 - YWY 34
a 20 )% ° s 2427
« c,_ac or 2b c, a(2b ¢ «
34 - FYWEEEY) 34
s 2 )77 . W77

(2.6.56)
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It is easy to see from these inequalities that for , < 0 the solution consists of a point and an

interval:
c ac [ 20 ¢ a@b ¢ 2a a _
w2t Tt T T B, (2 2d (2.6:57)
(220 3 4) ( 4(3 2)
® & >X34

Figure 2.2: The two intervals, corresponding to topologies of Figure2.1.

On the other hand for , > 0 the point disappears, and the solution is just an interval. Thus,
under the SAFC correspondence, the attractor tree topology bour main example is identi ed
with the component of the moduli of solutions to (2.6.53), given by the point on the x5, line.
In the above we have chosen a de nite sign ob, but it is easy to check that choosingb < 0

would lead to the existence of a point for , > 0, and absence of it for , < 0. This can also be

seen from the stability condition for the D4! D4D4 split, 4 —2— >0, taking into account
h1; 2i =2hb

Having identi ed the intervals with the corresponding topologies we @an investigate what
happens to each interval as we change from 1 to 1 . From the functional form of  itis easy
toseethat , = O( 2?)and ,=0O(l)as !1 . Thus in the near horizon limit the point on
the j%5,j line corresponding to the topology of interest goes tG*s,j = —g— This means that
Xy3:%4!1 as !'1 and we get an in nite separation between charges , and 3+ 4.

The conclusion is that our 3-centered con guration does notcorrespond to a single smooth

geometry with AdS;  S? asymptotics in the near horizon limit of [9].

2.7 Some general remarks on holographic duals of = D4D4 boundstates.

As a byproduct of our investigation of the previous section we wouldike to make some more
general remarks concerning the relation between the split attrator ows and the existence of a
near horizon geometry with a singleAdSz;  S? boundary. In [9] it is stated that con gurations
with the rst split of the type D4! D4+ D4 do not correspond to geometries with a single
AdS3 S? boundary. In this section we will re ne this statement. We begin with the integrability

conditions:

X ha; o

= 4 a=2lm(e ' Z( )1 ; (2.7.58)
Xab

b6 a
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where the sum runs over all centers of multicentered solution, andlenote by M ( ) the moduli
space of solutions inx, to (2.7.58). The decomposition of the charges in the rst split de nes
a disjoint decomposition of the charges into two setsA g B. Then, summing (2.7.58) over all

charges in one cluster we get:

X ha; i

= A= 2|m(e i Z( A))l . (2759)

a2Ab2B Xab

Conjecture 1: The component of M ( ) that corresponds to a topology with the rst split
D4! D4+ D4 according to A g B under the SAFC, has the property: ifP a2a a! 0, then
Xap!1 for8a2A;b2B.

We do not know the proof of this statement but our previous 3-cemered example can serve
as an illustration of it. A suggestive argument here is the following: Tune the moduli at in nity
t; close to the MS wall of the rst split. Then, according to the SAFC, for the D4! D4D4
component of moduli space theD 4 clusters will become separated, and denoting the maximum
size of these clusters byd, we can write (2.7.59) as

ha sl 1+ O(i) = Al (2.7.60)
l'aB l'aB
If one could argue, that as 5o ! 0 the sizes of clusters will remain much smaller than the
separation between themd ras , then we necessarily haverag ! 1 and Conjecture 1
follows. Unfortunately, in general the sizes of clusters can grow awe change ;'s, so this
argument does not always apply and one needs a more detailed knowlige of the moduli space
of solutions to (2.7.58).

A related issue that we wish to address is a conjecture of [9], relatipmulticentered solutions
with single AdS; S? near horizon geometry and attractor ow trees at the \AdS point ." The
\AdS point" is given by

tags = DB Qg + i1 PA (2.7.61)

This is a point on the boundary of moduli space given by limy; D”B Qg + iuP # and we are
considering limits of attractor ows with D”B Qg + iuP A as an initial point. Note that it is
naturally selected by the near horizon limit (2.6.51). [9] noticed that the component of moduli
space with rst split D4 ! D4+ D4 does not correspond to a singleAdSs  S?, and this
component also does not exist at the AdS point, which lead them to

Conjecture 2: There is a one to one correspondence betwegf) components of the moduli
space of lifted multicentered solutions with a single Ad$ S? asymptotic geometry and(ii)

attractor ow trees starting at the AdS point.
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We now give an argument in favor of this conjecture. As discussed irAppendix A, the

attractor tree is speci ed by the H -functions:

Hs@)= @g@  H@. (2.7.62)

where s(® is the parameter along the ow on the a-th edge. The rescaling in (2.6.48) leading

to the near horizon limit of [9] results in changing the H -functions to

Hs®)! H (s@)= 32 @g@  H®. (2.7.63)

According to (1.0.3), H (@) depend linearly on and are completely determined in terms of H
and H =2im(e ' ) t, » Wwheret; = B; +iJ 1. As the solution for the moduli (2.6.42)

are homogeneous of degree zero ki, we can replace theséd -functions with:

H @)1 | (s®)= @g@ H oy

H o= 22me ! ) j, (2.7.64)

We will refer to the split ow de ned by (2.7.64) as a -deformed ow. Note that for -
deformed ows the values of MS wall crossings parametersﬁ?s) in (1.0.4) will depend on
Our argument will be based on two assumptions:

Assumption 1: There is a -deformed version of the SAFC, i.e. the components of the
moduli space of -deformed solutions (2.6.48) are in one to one correspondare with -deformed
attractor ow trees.

Assumption 2: The -deformed solution \survives" the near horizon limit, i.e. it corresponds
to an asymptotically AdSs S? geometry, i the corresponding -deformed attractor ow tree

has all its ow parameters s nonzero (and positive) in the limit !'1 . The attractor ow

tree exists at the AdS point i all it's ow parameters s@ stay nonzero (and positive) as it's
starting point approaches AdS point.
The second assumption is of course closely related to Conjecturedbove, because for the
P

rst split D4! D4+ D4 we havesys = haA“B —. Given the above assumptions we want to

prove that there is a one to one correspondence betweendeformed attractor ow trees, that
\survive" the near horizon limit in the sense of Assumption 2, and regular (hot -deformed)
attractor ow trees, that start at the AdS point.

First, we note that the rst split of a -deformed ow that \survives" the limit must be

D4! D6+ D6. To see this we use (1.0.6), to estimate the dependence of H :
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B o=( B% B Ha; Ho) (% % %% (2.7.65)
From this we nd that for D4! D6+ D6 the ow parameter of the rst split is Sy °
while for D4! D4+ D4 itis Sy 2. This means that only D4! D6+ D6 is a valid split

in the limit  !1
For the chosen attractor trees we next look at the rst edge of the ow tree in the moduli

space. Using formula (1.0.6) from Appendix A, the complexi ed Kahler moduli are:

BA(s)= D*® spPC¢ HC (sQs Hg)
q
JA(s) = (sPA HA)  6(sp H, 1=2Q%(s))=(sP HO)3  (2.7.66)

Js p

J1

J1

Figure 2.3: Behavior of the ow for the rst edge of the tree.

Figure 2.3 shows that the ow starts at t, , but for the ow parameter s - the rstterm
in (sPA HA) becomes comparable with second term and then starts to dominat, so that
the ow will go along the P direction. The transition from J; asymptotics to P asymptotics
occurs arounds 4. Also note that the rst split D6D6 occurs long after this region at
Sms O

Now choose a values~ of the ow parameter that goes to zero more slowly than %, e.g.

s -2, withsmall > 0. From (2.7.66), it follows that J* (s ) will approach the P direction

as !1 ,andgrowas ! “? ie.
. - 1
th"(s) DB (P)Qg(1+O( )+ i ! “2P~const(1+ O(-)): (2.7.67)
We can think of the part of the attractor ow tree that starts at JA(s ) as a tree on its

own. It is again constructed in terms of H -functions, but now the H function will look like:

B = *22me ' ) jis ) (2.7.68)
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The only dierence of this H withthe H ofthe -undeformed ow with starting point
given by (2.7.67), is the overall factor 372, Denoting the ow parameters for all edges of the
tree collectively by s, we can introduce new parameters® = 33?s, in terms of which the H -
functions will look like the ones for the -undeformed ow with starting point given by (2.7.67).
It follows from Appendix A that the existence conditions, written in t erms of parameterss’,
are the same as those written in terms o, and furthermore the non-zerost&  will correspond
to non-zero sdn?s) sincesdn?s) = 325 | By virtue of Assumption 2, the -deformed ow
tree that "survives" the near horizon limit has all its ow parameter s s non-zero, and the
corresponding -undeformed ow tree with starting point (2.7.67) exists at the AdS point.

In order to prove Conjecture 2 in the other direction consider a fanily of attractor ow
trees whose initial point approaches the AdS point. Note that only the trees with the rst
split D4 ! D6D6 exist in this limit, as shown in [9], eq.(3.64). Without loss of generality,
for su ciently large we can choose the initial points to be given by the right-hand side of
(2.7.67) for somet; . Now, due to Assumption 2, the existence of the attractor ow tree at
the AdS point means that in the limit ! 1  all the ow parameters of these trees,sdnfs) ,
stay non-zero. The dependence on in sdn?s) originates from the dependence in the starting
point (2.7.67). We can use the discussion above to argue that therexists a corresponding

-deformed ow tree, starting at t; and passing through the point (2.7.67) at some parameter
s . Forthis -deformed ow tree to "survive” the limit 11 we must have alls$2* non-zero
and positive, due to Assumption 2. As the relation between the ow parameters for the two
trees issie = 3=25dnfs) , some of thesls) of the -deformed ow might go to zero in the
limit !1 |, leading to trouble. We will now argue that in fact this cannot happen. To this

end, rst introduce a notation, analogous to the one in (2.7.58):

():=2im( e’ Z()) 1 (2.7.69)

According to (1.0.4), for each edgea the ow parameter s@ is given by a linear combination,

with rational coe cients, of ( ), wherei runs over all the intermediate charges occurring in
the path from the root of the tree to the edgea. For the -deformed ow these ( i) have a
de nite scaling under -scaling. For instance, since the rst split is always (D4)! 1+ »
where ; and ; have nonzero (and opposite)D6 charge, we have ( 1) = ( 2) 0 and

(' 1) will enter the expressions for allsdnfs) . Other ( ;) will in general have O( °) scaling
(i.e. those with nonzeroD6 charge) but, examining examples, we nd that the coe cient of
the © term will be some complicated nonlinear expression in terms of the intesection products

of the charges, which does not vanish in these examples and hence wxpect does not vanish
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generically. For example for gure 2.7,s%) for the edge with 4, itis a combination of the form:

5 h5;2!3+h3§i.h5§2i‘l hs;i‘l
Sm — h 3; 4i hhl; .zlh .3; 4 h 1; 2i : (2.7.70)
5, 6l
Here 5 2 0 5 0. If we assume that allD 6 branes haveD 6 charges 1, then in
the limit  '1 1= 3, the leading coe cient of s@ s proportional to
h 3; sih 5; 1i+ hq; sih 5; i + h1; eih 5, 6i + h 1; 6ih 5; ai; (2.7.71)

which has no reason to vanish. In this way we can argue that ali;dnfs) will have an order ~ ©

contribution whose coe cient will not scale to zeroas !1 , atleast not in general.

3(D6)

5(D4) s(D4)

Figure 2.4: An example of attractor ow tree.

To summarize, we have shown that there is a one to one correspoadce between -deformed
attractor ow trees that \survive" the near horizon limit, and reg ular attractor ow trees,
starting at AdS point. If one grants Assumptions 1 and 2 this would actually prove Conjecture

2, and hence the conjecture of [9].
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Chapter 3

Spin paradox

In this chapter we will discuss an interesting question arising in the stidy of the moduli space of
BPS objects in string theory. As discussed in the introduction in thesupergravity approximation
to string theory there is a wide class of BPS solutions, introduced in [27], [11],[28]) represented
by multicentered black hole solutions. The moduli space of such obgs is described by the
space of all possible positions of the black hole centers, subject wonstraints following from
equations of motion and supersymmetry. On the other hand the sme BPS objects can be
studied in the regime of weak string coupling constant when the lightst states are described
by bound states of D-branes and excitations of those (for a goodeview see [29]). Of course,
according to the common lore supersymmetry ensures that cerfa properties like degeneracies
and mass/central charge relations are preserved when the colipg constant is changed, so the
two pictures should give the same answer. One of the major applicans of this statement is
the so-called Strominger-Vafa program of accounting for black hie entropy in terms of D-brane
microstates (see [3],[20], [17]). In view of this it is very important to understand precisely how
the matching of di erent BPS states in the two pictures occurs. An important step in this
direction was made in [10]. It was shown there that in fact we should epect to have a smooth
transition between the two regimes, in which all discrete characteistics, like the number of
BPS states, are preserved. Nevertheless there are still unanswed questions here. In the D-
brane picture the bound states of BPS objects can be describedsing the powerful apparatus of
algebraic geometry. For example [8] studied stable holomorphic burids on rigid surfaces and
found the number of BPS states on two sides of a marginal stability wall, across which BPS
space undergoes a jump [5]. It turned out that enumeration of BPSstates in algebraic geometry
gives a very di erent answer for the number of BPS states than tre answer that we expect from
the supergravity description. More concretely supergravity picture tells us that BPS space is
empty on one side of the wall and is populated on the other side. Algefaic-geometry picture
gives non-empty spaces on both sides. This apparent contradictiois asking for a resolution.
In [10] the description of the abound state of BPS objects, that an be useful in both string

and weak string coupling was given in terms of supersymmetric quantm mechanics(SSQM).
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We review this description briey in Section 3.1. The moduli space of ths supersymmetric
guantum mechanics has two branches: Coulomb branch which corsponds to the supergravity
side and the Higgs branch which corresponds to the D-brane side dhe full string theory
description. Generically Higgs branch is populated on both sides of nrginal stability wall,
while the Coulomb branch is populated only on the stable side [10]. Aparfrom the mismatch
between the number of BPS states on the two branches there is ather interesting paradox that
will be the focus of this chapter. As discussed at length in the Intrauction the Hilbert spaces
of BPS states are functions of the background moduli and can jump as the background moduli
cross marginal stability walls. Part of the Hilbert space decays as tk corresponding states
"move o0 to in nity" in the moduli space. A paradox arises when we re call that BPS states
are representations ofSpin(3) group of spatial rotations. On the Higgs branch, as we show in
Section 3.1, Hilbert spaces on both sides of the marginal stability walare irreducible multiplets
of Spin(3), as well as the decaying part of the Hilbert space. This leads to mapparent paradox
since the sum of two irreducible representations cannot be an irradtible representation itself.
We give a resolution of this paradox in Section 3.2, which also sheds sanight on the relation

between algebro-geometric and SSQM pictures.

3.1 Quantum quivers and spin paradox.

In this section we review the SSQM description of bound states of BB objects, given in [10].
Suppose we have two D-branes, wrapping two rigid® cycles of CY manifold, and placed atx;
and %, in R3 space. In the weak string coupling regime the lightest modes are desbed by the
world sheet gauge theory of these two D4 branes, which id(1) U(1) theory in this case. There
will be additional light modes coming from bi-fundamental elds, living o n the intersections of
the two D-branes. In all the low energy theory will be the SSQM theay, obtained from this

gauge theory by dimensional reduction with the Lagrangian:

= E(*?+ D?+2i ) D +j@ +?+j@ > (¥*+D)j +j* (¢ D)j j*+
+i @ -+ +X e 02 4 4 ++t 4 4 ++jF+j2+
+i @ +x~ +i 2 + +jF j2 (3.1.1)
Here, x is the relative position of the D-branes, ¢; ;D ) comes from the vector multiplet of

N =1 SYM in 4 dimensions, ( ; ;F ) are hypermultiplets coming from the string modes,

living on the intersections of two D-branes. We havek elds so that 2 CX . Denoting
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by 1., the phases of central charges of the two branes near the margihstability wall we have

the relations

= (2 1) g—ls: (3.1.2)

Eliminating the auxiliary elds the Lagrangian becomes:

: 2 i2)2

L= 50E+20 J+j@ +*+i@ [* ( +*+] 7 — +J2 S

+i @ ++ %X ~ 4 ip§++ L + F

+i @ x~ +i'32 + ; (3.1.3)

Depending on the value of the string coupling constant that enters the space of vacua of this
Lagrangian changes. First, following [10], we consider the regime
p— k

7 L (3.1.4)

In this regime we can integrate out the chiral elds, which induces the following potential for

the positions eld x:

s s 0 1,
Ve = 2—2+|<+ ¥+ —+k xR — (ket+k )jxj+2i@2q :2+ = 2q ;__A +0(i2)
(3.1.5)
Assuming that j%j% j j we further get
Ve = 2_2 ; % +o(L): (3.1.6)

Minimizing this potential gives the relative positions of D-branes in the supersymmetric bound

state (essentially the Coulomb branch of the SSQM) coinciding with the supergravity result:

k+ k k k+
R= = : 3.1.7
2 T 2(2 0 347
Now we can justify the conditions (3.1.4): we requiredp R in order to have large and

positive mass squared for  elds and the requirement R 1 justi es the usage of SSQM.

Positivity of the above radius is equivalent to Denef's stability conditions [11], which looks like

> 0 (3.1.8)

Let's assume thatk ki > 0 and the stable side is > 0. As we cross the marginal stability

wall goes through zero and becomes negative, the radius of the bourgfate goes to in nity
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and the bound state decays. [10] showed that on the stable sidd¢ Hilbert space of BPS states
forms and irreducible representation of spatialSpin(3) of spin % On the unstable side

the Hilbert space is empty.

Now let's turn to the Higgs branch description of the theory. In the regime of parameters

i i1 (3.1.9)
we can integrate outx modes in the Lagrangian (3.1.3). elds will have a potential
w002 i2y2
WVu = (+] 12 1) ; (3.1.10)
and the space of minima of this potential modulo gauge invariance, amg on  , constitute the

Higgs branch of the theory. This theory is known asN = 4 supersymmetric non-linear sigma
model and the Hilbert space of BPS states in this model is given by théolbeault cohomology

of the classical moduli space. The moduli space in our example is

M=f( ) «i%+) = ( e’ g (3.1.11)

It is very convenient to use quiver notation to denote such moduli paces. The moduli space is

given by the moduli space of a two node quiver, given on Figure 3.1.

+

Figure 3.1: Quiver for the moduli spaceM .

The nodes represent gauge groups here, the arrows represehe bi-fundamental elds
and 1 are the so-called D-term parameters that enter the D-term equéons as in (3.1.11).
Now let's nd the Hilbert spaces of BPS states on both sides of the meginal stability wall. The

stable side is given by ; > 0 and the quiver moduli space is a bration V.2

O( 1) K+
# (3.1.12)
Pk 1
As mentioned above BPS states are represented by the element$ Dolbeault cohomology

of this space. As the space is non-compact we have to specify whathomology we are talking

INotice that this regime is complimentary to (3.1.4).
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about. In fact we have to restrict ourselves to just cohomology 6the base of the bration
because as the bers are non-compact we restrict to states hawg zero momentum in the ber

direction. This gives the Hilbert space of BPS states

H 1>0 = J 1; dimH 1>0 = k : (3.1.13)

2

Here J« 1 is spin k2—1 representation of Spin(3) and we are focusing only on theSpin(3)
2

structure of the Hilbert space. We can repeat the above calculatio for the unstable side 1 < 0

to get the moduli spaceV°

o( 1) *
# (3.1.14)
pk+ 1
together with the Hilbert space
H 1<() = \]k+ 1; d|mH 1>() = k+: (3115)

7
First thing to note here is that the space is not empty, unlike in the supergravity (Coulomb
branch) description. We will not try to resolve this discrepancy between Coulomb and Higgs
branches here but just mention an argument from [30]: although tke potential on the Coulomb
branch (3.1.5) on the unstable side does not have a minimum, it decreses to a non-zero value for
%?> = L where the Coulomb branch approximation breaks down. This might bean indication
that the minimum is actually on the Higgs branch and the BPS space is na-empty.

Setting aside this problem we concentrate on theSpin(3) structure of Hilbert spaces on the

Higgs branch. We know thatH ,>0=J« : andH ,<o = J«. : and also from the Coulomb
2 2

branch description we know [10] that the part of Hilbert space that decays across the marginal

stability wall is  H = J« «, 1. Obviously there is a paradox here since we cannot have

H . >0=H <o H due to the dierence in Spin(3) representations. We will call this spin

paradox in what follows.

3.2 Spin paradox: resolution

In this section we describe the resolution of the spin paradox. As ned above the moduli space
on the Higgs branch in (3.1.11) is non-compact, which makes non-olous what cohomology

of this space corresponds to BPS states in the quantum theory. lther more, as discussed in
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[30], in the algebro-geometric picture one has a certain compacti ceon of the moduli space on
both sides of the marginal stability wall. So the simplest resolution is tocompactify the moduli
space (3.1.11) by adding an additional node to the quiver Figure 3.2. In Figure 3.2 we show

the proposed quiver describing the compacti ed Higgs branch. Themoduli space of this quiver

u@a ) 2

u(@) 3

Figure 3.2: Quiver for compacti ed moduli space.

is given by 3 moment map (D-term) equations

j P Hiut o=
i P iur o= s
Y R (3.2.16)

and gauge invariance (+;u; )! (¢ " ,;€ "Quu;e Q= )with a=1:3and

Qi=( 1.;0;;1)
Q=( 1+;1;;0)

Qz3=(0+; 1;; 1) (3.2.17)

We want to nd cohomology of this variety for both stable ;1 > 0 and unstable ; < O sides
and compare the results with non-compact case as well as with the @ilomb branch results. In
order to do this we will use methods of toric geometry as this is a toriozariety given in the form
of symplectic reduction® For another application of toric geometry and introductory remarks
on it see Appendix G. To keep formulas simple we will do the calculation in # details for a
particular simple but non-trivial case k. = 1;k =2 and after that generalize it to arbitrary

values ofk .

2This suggestion is due to Frederik Denef.

3For a good review of applications of toric geometry in physic s see for example [31].
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321 ki=1;k =2

Toric variety, de ned by (3.2.16);(3.2.17) depends on the values of parameters;. As 3 =

1 2 We can parametrize the space of resulting varieties by ¢; 2) 2 R?. Not every value
( 1; 2) corresponds to a non-empty toric variety, but rather the set of such values forms a fan
inside R?, called secondary fan. Di erent cones of this fan correspond todpologically distinct
toric varieties, connected to each other by a series of op transibns. Our main interest is to
study the transition between varieties V. in the region ;> 0 andV in the region ; < 0.

To describe toric varieties explicitly we will use the holomorphic quotiert construction,
reviewed in appendix G. As discussed there, all information is encodkin the fan of the variety
which can be constructed from (3.2.16)(3.2.17) data as follows. First we nd linear subspace

of Rk-*k 1 R4 orthogonal to the charges (3.2.17):

Qinl =0; (3.2.18)
|

wherel runs over (+;u; ) indices. Solving this equation we get

O 1 0O 1
-1 1 0

@MAa-@! A (3.2.19)
no O 0 1 -1
The columns of this matrix are points in some lattice N and generate 1-dimensional cones of
the toric fan, given on Figure 3.3. Each edge of the fan corresporsdto one of the coordinates
( +;u; ). Each coordinate corresponds to a divisor of toric variety given ly putting the
coordinate to zero. We denote the corresponding divisors by ¢; y; ). In the holomorphic

guotient construction, toric variety is given by

V =(C* Z)modG; (3.2.20)

where ( +;u; )2 C* group G is given in (3.2.17) and the excluded locug is encoded in the
fan. Each 1-dimensional cone corresponds to one of the coordites ( +;u; ) and for each
set of 1-dimensional cones that do not form a cone of our fan butuch that any subset does,

the zero locus of corresponding coordinates is included id. For the fan on Figure 3.3 we nd

Z=f ,=u=0g[f '= 2=0g (3.2.21)

There is a region in the ( 1; »2) plane where (3.2.16) leads to precisely such excluded locus,

namely ; 0; 2 0. In this indirect way we have found the Kahler cone of this toric variety.
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We depict it in Figure 3.4 along with the Kahler cone for the ; < 0 variety that we derive

later.

Figure 3.3: Fan of toric variety V. .

Figure 3.4: Kahler cones for 1 > 0 and ; < O varieties.

V. is known as Hirzebruch surfaceéF; and topologically this is a P?> with blown-up point in it.
In Figure 3.3 we depict the four divisors +; ; ) H?(F1), associated to each 1-dimensional
cone in the fan. Since the Kahler cone is given by ; > 0; 2 > 0, we can introduce the basis

elements 1., 2 H?(F1) and write the Kahler form of F; as

W= 11+ 2 2! (3222)

Other divisors can be expanded in this basis using charge®; and Q in (3.2.17) as

b= g (3.2.23)

The last thing we need is the ring structure of H (F1), which is determined by the fan as follows:
for each component of the excluded locus we equate to zero interstion of the corresponding

divisors. This produces
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+u=0 1 2=0; (3.2.24)

which translates into the following conditions on the H?(F1) generators 1; »:

7=0 3= 1 (3.2.25)

To nd the normalization of the intersection ring we choose any coneof maximal dimension in

the fan of F; and require the intersection of corresponding divisor to be equald 1#
T T (3.2.26)

which leads to

2= 1 ,=1: (3.2.27)

Finally we can write the decomposition of H (F1) into Spin(3) multiplets as

triplet: 1; w; w?;
singlet:w® = 5 1+ 5 5 (3.2.28)

There is a standard action of Spin(3) group on the cohomology of toric (or more generally

Kahler) varieties, called Lefschetz representation and generatd by

ST = Wpadz™ A dz"
@ @
- mn N
S =W aa @d
1 @ @ dimc
3 - = m m .
=5 A" gt d g 5 (3.2.29)

Although it is a known fact that supersymmetric ground state of N = 4 SSQM are in one-to-one
correspondence with Dolbeault cohomology of the moduli space ([3233]), the relation between
spatial Spin(3) ground and LefschetzSU(2) action is not obvious. We will demonstrate it in
details in Appendix B.

The space H(F;) is two dimensional with generators 1., and is decomposed into two classes:

w - Kahler form and w;, determined by the condition w;w = 0. In the next Section we will

4This is always true for smooth varieties. In general interse ction of n divisors of n-dimensional toric vari-
ety is equal to m where v; are generators of 1-dimensional cones in the n-dimensional cone and
index(vy;:::vp) is the index of lattice generated by ( vi;:::vn) in N. For varieties with quotient singularities this
index can be greater than 1.
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show how such decomposition works for arbitraryk . Having found the spin content of BPS
states in 1 > 0 region we would like to repeat the analysis for ; < 0 region. When ; < 0 the
excluded setZ will contain f , =0g 2 Z. This means that we have to remove the generator
+ from the fan (3.3). After that the condition , > 0 does not make sense since it leads to
excluded locus . = u = 0 which will remove the , cone from the fan in Figure 3.3 and give
non-compact variety. On the other hand requiring 3 > 0 corresponds to excluding the locus

v= Y¥2=0and produces a fan 3.5. This is a fan ofP?. The Kahler cone is 1-dimensional

N

1

N

Figure 3.5: Fan of toric variety V .

and we can immediately write the spin structure of H (V ):

H(V ): f1, w; w?g triplet

w= 3! (3.2.30)

The spectra (3.2.28) (3.2.30) lead to a completely consistent picture: as we cross the wathe
singlet state disappears a$? inside F; is blown down and on the other side we have only triplet.
The singlet is exactly the spin kz# multiplet that we expect from supergravity picture.

Before generalizing the discussion to arbitraryk it is interesting to see what happens to
V varieties as we decompactify them and go from quiver on Figure 3.2 toehe one on Figure
3.1

For 3 > 0, quiver Figure 3.1 gives a toric variety (3.1.12) with a fan in Figure 3.6. We
see that to decompactify all we need to do is to remove the edge, from the fan. In a way the
fan on Figure 3.3 is reallythe simplest possiblecompacti cation of the fan on Figure 3.6. This
becomes even more evident for the; < 0 case, where the decompacti cation leads to variety
(3.1.14) with a fan on Figure 3.7. In this case (3.1.14) is jusC? and compactifying it by adding
an edge to the fan givesP? which is the simplest compacti cation.

Decompactifying V. e ectively removes , from the cohomology ring and leaves
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Figure 3.6: Fan of toric variety V0.

HMV): Lw= g (3.2.31)

that is with the cohomology of just the baseP? of the bration (3.1.12). We observe a dramatic
change ofSpin(3) structure, starting with singlet+triplet and ending up with a dou blet. It is
this dramatic change that leads to the spin paradox for the non-canpact quiver (3.1). Decom-
pactifying V' = P? also removes from the cohomology and leaves a 0-form only, which is a
change ofSpin(3) structure of BPS space form a triplet to a singlet. In summary, when we
decompactify the two varietiesV there is a dramatic change ofSpin(3) structure of BPS space
on both sides of the marginal stability wall which eventually leads to the spin paradox. As we
mentioned above, in algebraic geometry the moduli space is also givesome natural compacti-
cation. It would be very interesting to understand if the two comp acti cations coincide.

N

1

Figure 3.7: Fan of toric variety VO.

3.2.2 Arbitrary k

First, it is straightforward to carry the above analysis of toric varieties fromk =2;k, =1
to k > 2 k. = 1. In this case V will be just P and V. will be P¢ with a blown up
point, which is blown up to a P 1. As before, V. will have one additional divisor . in

comparison toV , which is Poincar dual to the blow up cycle PX 1. The Spin(3) structures
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of cohomologies oV will also work in a similar way. For V. we will have:

H (V) J« Je 13
e —

Jo = fLwmwk

2

g;

Jo 2 = fwwaw; snwiwk g (3.2.32)

2

where

W= 11+ 22

(3.2.33)

The 2-form w; is determined by the condition w;w* ' = 0. The ring structure is similar to

(3.2.25) and can be easily read o the fan:

1 =0 5 Y2 =0: (3.2.34)

Using these relations we can nd the formw; to be

wi=( 1+ )¢ Ta+ 1+ ) e TN (3.2.35)

Going to the other side of marginal stability wall we have

H(NV): Je

Jo =fLwwk g (3.2.36)

2

and the multiplet that left the spectrum is again the one expected from supergravity picture

J« «, 1. Asin the previous Section we can decompactify botlV by removing , edge from
2

the fan and get back to the spin paradox.

Allowing for arbitrary values of k. makes the toric description ofV more complicated. In
each particular case we can obtain the fan and the Kahler cone numrically. On the other hand,
we do not really need this to resolve our spin paradox: all we need is thstructure of H (V )
as aSpin(3) module.

For arbitrary k the cohomology rings ofV are generated by 1.2, subject to the relations
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Vit f =05 (2 )% 2=0

Vi(2 =0, ¥ ,=o0: (3.2.37)

These relations follow directly form the excluded lociZ for both varieties, that can be read
o the quiver (3.2.16). Let's demonstrate how the cohomology ring @n be decomposed into
irreducible representations of LefschetzSpin(3). Starting with V. we rst identify the longest
multiplet

kK +ke 1

Je +x, 1= fLwinw
2

o (3.2.38)

As dim H?(V.: ) = 2 we can choose the formw; 2 H2(V, ) subject to the constraint wywk *k+ 2 =
0, which will furnish another multiplet:
k +ks 3

Ji vk, 3 = fwwaw; i waw
2

g (3.2.39)

It is obvious that this form is linearly independent from w, as well as that each formw;w"
is independent formw"*! . Now dim H*(V. ) = 3 with a basis 2; ; »; 3 and we can always
choose the formw, 2 H*(V.), subject to the constraint wowX **+ 4 = 0, which will give
another multiplet

Je vrs s = Fwo,wow; swowk tRe 5

2

o (3.2.40)

Again, in every space H"(V:), n = 2:k + k. 3 we have 3 independent elementsy",
wiw" 1 and wow" 2. We can continue this process: as each subsequent spacé"V. ) has
dimension 1 higher than the previous one, there will be a new multiplet] « SEUEY starting
with w, 1, subject to w,wK *tk+ 20 = 0 However when we reachn = k, + 1 the relation
(2 1)% 5 =0kicks in and for n = ks +1::k 1 the dimensions of H" (V. ) will be
constant and equal tok, +1. For n k the second relation '1< = 0 will come into play and
the dimensions will decrease. In all we get the usual structure of @&ensor product of Spin(3)

representations, that is decomposed into the sum of irreducible mitiplets:

H (V+)Z Jk vk, 1 Jk vk, 3 o Jk ok 1 (3.2.41)
2

2 2

Repeating this calculation for V. we nd
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H (V )Z Jk 4k, 1 Jk +k, 3 N (3.2.42)
2

2 2

The di erence between the two spaces is thel« «, 1 multiplet that leaves the spectrum
as we cross the wall. Recall that for the simplest éasdx = 2;k+ = 1 there was a simple
interpretation of the transition V., ! V as blowing down an exceptional divisor ofV. , which
naturally lead to the disappearance of a part of the cohomology. Hee we do not have such
clear interpretation. As for the decompacti cation of V that brings them to (3.1.12); (3.1.14)
the interpretation is exactly the same: as we decompactify, , 2 H?(V ) leaves cohomology
as it's support spreads out, this e ectively puts , = 0 and changes the spin structure form
(3.2.41);(3.2.42) to (3.1.13) (3.1.15).

3.3 Summary

In this chapter we brie y discussed the correspondence betweethe Hilbert spaces of BPS states
in the two complementary regimes: on the Higgs and Coulomb brancte We posed an apparent
paradox in the Higgs branch description in the Spin(3) structure of BPS spaces on the two sides
of some marginal stability wall. Compactifying the moduli space we shawed that the paradox
is completely resolved. This resolution also gave us a tentative pict of the Higgs branch of
supersymmetric quantum mechanics which is fully consistent with algbro-geometric picture.
It still remains to make an explicit check if the structure of the Higgs branch, i.e. the spectrum
of BPS states and their degeneracy, that we propose is related tthe one in algebro-geometric

picture.
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Chapter 4

Bound state transformation walls

In this chapter we address an interesting problem arising in the stugt of BPS states in four
dimensional N=2 supergravity theories. BPS bound states near meginal stability are described

by con gurations of widely separated constituents with nearly parallel central charges. When
the vacuum moduli can be dialed adiabatically until the central charges becomeanti -parallel,

a paradox arises. We show that this paradox is always resolved by th existence of Bound
State Transformation(BST) walls across which the nature of the bound state changes, although
the index does not jump. We nd that there are two distinct phenomena that can take place
on these walls, which we call recombination and conjugation. The latér is associated to the
presence of singularities at nite distance in moduli space. Consistecy of conjugation and wall-
crossing rules near these singularities leads to new constraints ofné BPS spectrum. Singular
loci supporting massless vector bosons are particularly subtle in tis respect. We argue that the
spectrum at such loci necessarily contains massless magnetic mgrades, and that bound states
around them transform by intricate hybrids of conjugation and recombination. This chapter is

based on [34].

4.1 Qualitative discussion of basic ideas

The spectrum of BPS states in four dimensionaN = 2 supersymmetric theories shows interest-
ing behavior when the vacuum moduli are varied. Well known are jump at walls of marginal
stability, where BPS bound states can decay into, or be assembleddm, mutually supersym-
metric constituents. In supergravity these bound states are dscribed by multicentered black
hole or particle con gurations [11, 35], providing an intuitive \molecula r" picture of such bound
states and their wall crossing behavior [5] (for recent reviews,ee [36, 37]). However as pointed

out e.g. in [12], this picture leads to an apparent paradox, reviewed blow.
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41.1 Puzzle

The simplest example of a BPS bound state in supergravity is a 2-ceetred bound state of
charges ; and . The equilibrium distance between the two centers is given by [11]

_ g ol jZi+ Zy

R —
2 |m(Z]_Zz)

(4.1.1)

where the central chargesZ; of ; are evaluated at spatial in nity. Existence of the bound
state requiresR > 0. When one dials the moduli at in nity through a marginal stability wall,
the equilibrium distance R diverges and the BPS state decays. The same is true when the two
centers themselves are replaced by clusters of black holes or paies, or by a multi-particle
“halo' [10]. This simple physical picture has led to a number of notable stcesses, including the
derivation of universal wall crossing formulae [5, 38].

These successes notwithstanding, it does not take much e ort taarrive at the following
disturbing observation. It is often possible [11, 6, 12] to dial the maluli while keepingR positive
and nite , from a marginal to an anti-marginal stability wall, as illustrated in g. 4.1. At an
anti-marginal stability wall, the phases of Z; and Z, anti-align. It would appear from (4.1.1)
that this simply leads to R! 1 again and a decay ! 1+ 2. However, this obviously
violates conservation of energy: the energy of the BPS bound ste at the anti-marginal stability
wallis jZj = jjZ1j j Zajj, while the total energy of the decay products equal$Z1j+ jZ,j! Either
we have created a perpetuum mobile, or something dramatic must ha happened to the bound

state along the way.

18'&(

O~ ' -~ ) o

#$ %#$

Figure 4.1: BPS bound states appear to be adiabatically transportale from marginal stability
to anti-marginal stability keeping R > 0, violating conservation of energy.

The puzzle is not tied to the supergravity approximation; it similarly ar ises, perhaps even
more sharply, when thinking of BPS bound states as characterizecdby attractor ow trees
[11, 27, 6, 5]. The branches of such trees are attractor ows, djtting on walls of marginal

stability, terminating on the attractor points of the constituents , and rooted at the vacuum
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value of the moduli. A ow tree can be thought of as the \skeleton" of a supergravity solution,*
but can be given a meaning independent of supergravity [39, 5], as@nonical recipe to assemble
or disassemble a BPS state. What makes an attractor ow special ampared to other paths in
moduli space is that for any pair of constituent charges it either cosses a marginal stability
wall once, or an anti-marginal stability wall once, or it crosses neitler. In particular it is not
possible to cross both a marginal and an anti-marginal stability wall. Qur puzzle is then how
to reconcile this with the fact that the root point of the tree can be moved along the path P
shown in g. 4.1, seemingly forcing the trunk to cross both the AMS and the MS wall. A related

puzzle has been discussed in [40].

4.1.2 Resolution

The most straightforward resolution of the puzzle would appear tobe that somewhere along
the path, the BPS state simply gets lifted. Indeed for classical soltions this \elevation" phe-
nomenon was noticed some time ago already [6] ( g. 18); see also @.4 below. However, this
is only possible at the quantum level if the BPS index was zero to begin ith. If the index is
nonzero, as in the situation raised in [12], something more dramatic @eds to happen to prevent
the paradox.

In the ow tree picture something dramatic can only happen when the ow tree degenerates,
i.e. when an edge shrinks to zero size. This edge can be the trunk, amernal edge or a terminal
edge. The rst case corresponds to crossing a marginal stability ail, which we have excluded
from the start. The second case is associated to constituents aeranging themselves, and the
third case to constituents becoming massless and charge conjugaparticles being created. They

will be referred to as recombination resp. conjugation walls.

1. Recombination wall  (g. 4.2): If the charges ; and ; themselves are composite bound
states, it is possible that along the way the di erent constituents recombine into new clus-
ters. This invalidates the hidden assumption in the formulation of the puzzle that the BPS
state can at all times be viewed as a bound state with well separatedlusters of charge

1 and 3. What happens instead is that before the troubling AMS wall is reacted, the

constituents rearrange themselves to make the AMS wall irrelevain A sketch of possible

1The Split Attractor Flow Conjecture, mentioned in the Intro duction and reviewed in Appendix A was
originally formulated in [5]. In the course of this work we no ticed this is not quite correct: the loci in moduli
space where solution spaces split and join do not exactly coi ncide with loci in moduli space where ow trees
split and join; see section 4.5.3 for details. None of the res ults on indices and wall crossing in the literature are
a ected by this, as those required only the interpretation o f ow trees as canonical procedures to assemble or
disassemble BPS states. For this reason we are careful to phr ase de nitions of bound state transformation walls
in terms of trees, not solutions.



50

1 " O"
00 )
.oo v o /)
> e o T
#O N
1 .!

Figure 4.2: Recombination:  Constituents rearrange themselves into di erent clusters. The
example represents a family of con gurations with A tightly bound to B evolving into a family
with A tightly bound to C, and a family with C tightly bound to B. The corresponding
attractor ow tree evolves from an ((A;B);C) tree to a ((C;A); B) tree plus a ((B; C); A) tree.
At the transition point, the ow tree has two 3-valent vertices coa lescing into a 4-valent vertex.
The recombination wall is the blue line with the asterisk next to it.

recombination processes is shown in g. 4.2. In the correspondingow trees we see two
3-valent vertices coalesce into a 4-valent vertex, which then agaiseparates into 3-valent
vertices, but with a di erent tree structure. The degenerate 4-valent vertex lies at the
intersection of the marginal stability walls for the di erent partition s of the constituents.
The union of critical ingoing ows, i.e. the set of all moduli values owin g into the degen-
erate vertex, forms a codimension 1 wall in moduli space, the recabmnation wall. We will
check that both index and spin character remain constant acrosa recombination wall,
provided we sum over all trees of the given charge. An example of sh a recombination

process appeared in g. 14 of [5]. More recently it was also discussed [41].

2. Conjugation wall : The second possibility is more subtle, and is the one that solves the
particular instance of the puzzle raised in [12]. It is associated to a vaishing terminal
edge of the ow tree. This is only possible if the end point of this edge isa singularity,
since regular attractor points can never lie on marginal stability walls Thus, for example,
it occurs when one of the constituents, say 1, is a particle in a hypermultiplet which
becomes massless at a singular locus, where the MS and AMS walls meét such cases
there is a log-monodromy around the massless locus:, ! 2+ 1 1, wherel = jh 1; Jij.
As was pointed out in [11], trying to pull a single  attractor ow through such a massless
locus going from MS( 1; 2) to AMS( 1; »2) will cause the creation of a new tree branch,
corresponding to charge | 1, terminating on the massless locus, as shown in g. 4.3 on

the left. This is required by charge conservation. The spacetime pitre of this is that
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Figure 4.3: Conjugation: Left: a single centered , ow turns into a ( 2; | 1) split ow
when pulled through the locus where the hyper ; becomes massless and around which we have
a monodromy ,! >+ | ;. The corresponding spacetime picture is the creation of a fully

lled fermi shell of | particles of charge ;. Right: a ( 2;n 1) split ow turns similarly into
a( 2;(1 n)( 1)) split ow.

a shell of | particles of charge ; gets created as a halo around a core of charge, at
the radius where the moduli pass through the massless locus. It vgashown in [10] that
these newly created particles form a completely lled fermi shell of pin 1/2 fermions. If

we start o with a bound state of ; and », the fermi shell of | particles of charge 1
will again be generated, but now one ;-particle will annihilate with the ; particle
already present, leaving behind a hole in the fermi shell, i.el 1 particles of charge ;.
The troublesome AMS wall for ; and , is now reinterpreted as a trouble-free MS wall
for , and the remaining particles of charge ;. In particular the state remains BPS:
we go from a owtree ( 2; 1)toa owtree ( 2;(I 1)( 1)). Similarly, if n | 1
particles were present, we end up withn holes orl  n particles of charge 1. In ow

tree language we go from a (2; 1)treetoa ( 2;(I n)( 1)) tree. This is shown in g.

4.3 on the right. We call this process the fermi ip.

Whenn > | this does not work: we end up with particles of charge ; ratherthan  , the
ow tree ceases to exist since splits on AMS walls are not allowed, anchie bound state goes
from being classically BPS to being classically non-BPS (the minimum of tle interaction
potential is no longer at the BPS bound). At the classical level, this isa realization of
the elevation phenomenon mentioned earlier as the most straightfovard resolution of the

puzzle. At the quantum level, what happened here wasn't quite eleviion, because there
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were initially no quantum BPS states at all. This is because more fermios were present
(n) than the number of available 1-particle states (). In some case$ elevation processes
may occur also at the quantum level. An example is a bound state of sne magnetically

charged particle and an electrically chargedN = 4 vector multiplet, illustrated in g. 4.4.

The above list is exhaustive, since the only possible degenerations @iw trees are collapses
of edges. In general we can also get recombination-conjugatiorybrids, at singularities where
mutually nonlocal BPS states become massless. But the basic buildinglocks are given by the

above classi cation.

$% &$%

Figure 4.4: Elevation: The initially BPS-saturated minimum of the interaction potential V(r)
gets lifted, and the bound state becomes classically non-BPS. Theocresponding ow trees are
shown on the right. The blue line with the asterisk is the elevation wall. It corresponds to a
critical attractor ow hitting a locus in (a suitable nite cover of) mo duli space where the mass
of one of the constituent particles vanishes but there is no chargenonodromy around it, as is
the case for example if anN = 4 vector multiplet becomes massless. The tree on the right is
shown in grey because it does not represent an actual BPS ow tre since the split occurs on
an anti-marginal stability wall.

The de nitions we have given here will be made more precise in the folloimg sections,
and we will study more systematically under what conditions these plenomena occur. Besides
solving the puzzle raised in [12], these considerations will also lead to iatesting constraints on
the BPS spectrum. More precisely these follow from continuity of BFS indices across bound
state transformation walls. For example, if only particles of chargeproportional to  become
massless at a certain locus at nite distance in moduli space, we nd hat the monodromy
around this locus must be given by

X
1 =h; i K2(k): (4.1.2)
k=1

2This may require ne tuning of hypermultiplet moduli, and re quires the absence of quantum tunneling
phenomena pairing up and lifting unprotected BPS states.
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Furthermore, if some ; = k supports massless BPS vector particles with (k ) 6 0, we
clearly run into trouble, since we could start with a BPS con guration ( 2;n ;) with n > |
vector-particles (as this is no longer forbidden by the exclusion prigiple), and after crossing
the bound state transformation wall end up with n | > 0 particles of charge i, leading to
a classically non-BPS con guration. By continuity of the index, this implies ( 2+ n 1)=0
on either side of the BST wall. The only way this is possible is if by some bizae conspiracy
the sum of all (nonzero) indices of individual con gurations with tot al charge >+ n 1 equals
zero, for any choice of , and n. More plausibly, this situation simply cannot occur. A more
precise version of this argument is given in Sections 4.3.4 and 4.3.9 belowndeed the following
independent argument corroborates this. We only expect masslssvectors at the quantum level
when the low energy gauge theory is IR free or conformal. For IR fee gauge theories we can
trust the smooth classical BPS monopole solutions that such thedes have on their Coulomb
branch. These monopoles have mass proportional to the W-bosomass, and so we will always
get BPS states with mutually nonlocal charges becoming massless dhe same locus as the
vector, contradicting the assumption that only charges proportional to become massless. See
Section 4.6.3 for further discussion.

Of course the BPS spectrum near singularities, including constrairg from monodromy and
stability, is a well-studied subject, going back to the original works [£2, 43, 1]. Scattered
examples of supergravity bound state transformation phenomea have appeared before in the
literature [11, 6, 5, 41]. Related phenomena have been exhibited in ber pictures of BPS
bound states; for example the conjugation phenomenon which weeascribe is related to quiver
mutations or Seiberg dualities in cases where the quiver descriptionfPS bound states holds
[44, 45], and to the string - string junction transition in the D-string description of BPS states
in brane engineered eld theories [46, 47, 48]. The goal of [34], on whidhe present chapter is
based, was to study bound state transformations in full generaliy in the supergravity attractor
ow tree picture of BPS states, and to determine how they constrain the BPS spectrum. We
believe our constraints on the spectrum of massless states disagsl in Sections 4.3.4 and 4.6.3
are new.

The organization of this chapter is the following: in section 4.2 we give gjeneral and precise
description of BST walls. In section 4.3 we review multicentered halo dations of supergravity.
We investigate the conjugation wall and the way BPS Hilbert spaces bange across it, detailing
the physical conjugation process and its relation to monodromy aound the singularity. Finally
we discuss constraints on the spectrum of BPS states following fra the continuity of BPS

index. In section 4.4 we give the simplest example of a conjugation wallssociated to a single
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massless hypermultiplet, as in the example from [12]. In Section 4.5 theecombination walls
are presented and we show how index and spin character are presed. In addition we revisit
the split attractor ow conjecture of [11] and add some important amendments to it. In Section
4.6 we describe the situation with a massless vector multiplet appearig at the singularity, and
in section 4.7 we give a representative set of examples. One importagonclusion we draw
from the example of Section 4.7.3 is that the spectrum of low energy grticles in some models
with extremal transitions has not been fully understood in the past We found this because
published spectra disagreed with the general conclusions we hadaehed in Section 4.3. We have
concluded that the published spectra were incomplete, and do notanstitute counterexamples

to the prediction of Section 4.3.4.

4.2 Walls from attractor ow trees

One way to describe BPS boundstates in supergravity is via attracor ow trees [11, 27, 6, 5]3
Such trees describing a boundstate of two subcomponents of ctge ( 1; 2) (necessarily in a
stable region) begin with single-centered attractor ow for the total charge = 1+ 2. When
describing boundstates of two constituents ;; , the tree then splits on a marginal stability

wall MS( 1; 2):

MS( 1 2):= ft2Mj 0<Z ( 1;1)=Z( »t) < +1g (4.2.3)

where 1 denotes the universal cover of vectormultiplet moduli space. (Ingeneral our notation

follows [5].)
Let us now suppose we are in the situation of our puzzle. The regionfetability is de ned
by
h 1 2ilmZ( 1;0)Z( 2;t) > O: (4.2.4)

Suppose that the path P is contained in the region of stability, connecting a point t,s on

MS( 1; 2)to apoint tams ON AMS ( 1; 2)

AMS( 1; )=ft2Mj 1 <Z( 1;t)=Z( 2;t) < 0g; (4.2.5)

The boundary of a region of stability is the set:

W( 15 2)=ft2Mj Im Z( ;1)Z( 2t) =0g; (4.2.6)

31n fact, the description of BPS boundstates via attractor o w trees is applicable in a far more general context
than just the supergravity approximation.
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which can be decomposed as:

W( 1; 2)=MS( 1; 2)QAMS( 1; 2)a (Z( 1)[Z ( 2); (4.2.7)
where
z()= ft2Mjz(; v)=0g (4.2.8)
MS( 1; 2)

S( 1 2) AM 1, 2)

Figure 4.5: Location of the S( 1; 2) wall.

In gure 4.5 we depict a caricature of the location of di erent components of W( 1; ) in
a real dimension 2 surface in the moduli space. Denote by a point on P and consider the
behavior of the attractor ow tree as t moves alongP from t,s towards tyms . We want to prove
the following
Statement: There exists a pointt 2 P, such that the attractor ow for ;+ 5, starting at t,
ends on eitherZ( 1) or Z( »).

One can use the following simple argument. Notice that whert is close totys, the attractor
ow for 1+  will almost immediately hit MS( 1; 2). On the other hand, whent is close
to tams, the ow will hit AMS( 1; »2). Indeed, according to Property 3 from Appendix C,
the attractor ow always has the direction from stable to unstable side in the vicinity of an
(anti)ymarginal stability locus. As one can continuously get from MS( 1; 2) to AMS( 1; 2)
only through the loci Z( 1) or Z( »), it is almost obvious that for some t 2 P the attractor
ow will crash on those zeros. The only thing to check is that the attractor ow for |+
does not run to a boundary of the moduli space at in nite distance when we movet from tys
to tams . Let B(t) denote the point where the ow hits W( 1; ). Property 2 from Appendix
C says that B (t) exists for all t on path P and Property 1 ensures that it is unique. Now de ne
a real-valued function

Z( 1;,B(1)

(1) := Z(2B() 2R[flg : (4.2.9)
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We showed that it can be de ned for everyt. Given that (t) > O for t near t,s and
(t) < O fort neartyms , there must be some point where (t) changes sign, going either to zero
or in nity. (t) having zero corresponds to crossing a wals( 1; 2) and (t) having in nity

corresponds to crossing a wals( ,; 1) wall, where
S( 1; 2):=ftj( 1+ 2) owfrom tcrashesorZ( 1)g: (4.2.10)

In principle, (t) could have changed its sign more than once along the patR, crossing one or
both of S( 1; 2), S( 2; 1) walls possibly several times. For resolving our puzzle it will su ce
to understand what happens when we cross just one wall.
Coming back to the fate of the BPS bound state (1 + ), we suppose for de niteness that
(t) has a zero, the pathP crossesS( 1; 2) and Z( 1) has a zero. The physical discussion of

BPS states depends on the following dichotomy:

1. Near the locusZ ( 1), BPS states with charge ; parallel to ; exist. That is, there is a

positive rational number and a charge ; = r 1 so that

H( 15 jt2z ( 1) 6 35 (4.2.11)

2. No such states exist in the neighborhood o¥ ( ;).

There are known examples of both possibilities. The rst possibility gives rise the conjuga-
tion phenomenon acrossS( 1; 2). We will de ne the wall S( 1; 2), subject to the constraint
(4.2.11), to be the conjugation wall.

In the second case the charge; is not populated around Z ( ;), but by assumption, it is
populated in the neighborhood oftn,s and thus should be realized as a multicentered solution
[11]. An example of this situation, when ; is a bound state of 3+ 4, is givenin gure 4.6 .
The bound state of 3+ 4 has to decay as one approaches( 1), so that MS( 3; 4) hasto
separate some region around ( ;) from the path P, as in gure 4.6. Introducing the notation
of nested lists to denote dierent attractor tree topologies the bound state just described is

denoted as ( 2;( 3; 4)). Let's also denote

ik Tkt ks ki T ik (4.2.12)

4 We depict charges 2, 3 and 4 as single-centered attractor ows, but the discussion is ap plicable to the
most general case with all charges being some multicentered con gurations. The notation t () in the gure is
used for the regular attractor point of charge .
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fori;j;k 2 (2;3;4) and all di erent. The set of points in moduli space, such that attractor ow
for charge w1 = 2+ 3+ 4 with atleastone jx non-zero, starting at those points, passes
through the locus where all three central charges are aligned d@aes arecombination wall (RW)

[5], which we will denote by

RW( 2; 3; 4)=ftj( 2+ 3+ 4)-owfromtcrashesonMS( 3+ 4; 2)\ MS( 3; 4)g
(4.2.13)

The de nition is in fact symmetric as will be explained in Section 4.5. It is clear from the

MS( 1, 2)

AMS (1 2)

RW S(C 1 2)

tams

Figure 4.6: Charge 1 is realized as a bound state of 3 + 4. The dashed line is the recombi-
nation wall RW between ( 2;( 3; 4)) and ( 4;( 2; 3)+( 3;( 2; 4))-

picture that as we movet along P from ts and before crossing theS( 1; 2) wall, we will hit
RW ( 2; 3; 4). Section 4.5 gives a detailed account of how the bound states trasform across

RW( »2; 3; 4)wall and once again the puzzle from SEction 4.1.1 gets resolved.

4.3 Conjugation Walls and Fermi Flips

In this section we describe what happens to the bound state whenhie background moduli
cross a conjugation wall. Changing slightly the notation from the previous section, we will
be interested in bound states of a single particle of charge with oneor more particles with
charges proportional to a primitive charge whereh ; i & 0. Our considerations will force us
to consider, more generally, a particle of charge +m bound to one or more particles whose

charges are proportional to .
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4.3.1 Rules of the game

We assume thatZ ( ) is located on the boundary of the moduli space at a nite distance. This
locus is complex codimension one in moduli spadgl and can be thought of as lying on a real
codimension one boundary of the covering spad@l . We will reduce arguments to one-complex-
dimensional slices so one should keep in mind the analogy 8t as the upper half-plane with
coordinate and M as the unit disk with parameter q = €' . Then 2( )is Q[f ilg and
Z( )is g=0. All our arguments should be understood as pertaining to some i ciently small
and generic neighborhoodJ of Z( ) in M .

The lattice of electromagnetic charges forms a local system oveiM . That is, there is a
at connection on . Moreover, the Hilbert space HO°"¢ Paticle of || one-particle states has a
at connection on M , and furthermore H°" Paticle ha5 5 compatible grading by . Typically,
the local system will have nontrivial monodromy around Z( ). We will assume that is
monodromy invariant. °

We will make some assumptions about the nature of certain BPS spas in U. First, we
assume thatH (i ;t)jioz ( ) 6 ; for some collection of integers; .6 Second, we assume that these
spaces are \constant" ort-independent in U. By \constant" we mean there is a at connection
on the vector bundle of BPS states of charge whose ber at t is H(" ;t). Using the at
connection we trivialize the bundle and just speak oH (" ). Third, it can very well happen that
there is a linearly independent charge °with the same vanishing locusZ ( ) = Z( 9. However,
we assume that if such charges arise they are not populated, thas, H(n + m %t)=0in U
wheneverm 6 0. As we will see in Section 4.6, this is a crucial assumption; one which igot
always satis ed in physically interesting situations.

Finally, returning to our charge such that h ; i & 0 we make some assumptions about
H(; t). Again, by taking U su ciently small we know that the only relevant walls of (anti)margina |
stability are in W(; ). As we have explained, the locus Z( ) divides W(; ) into two
connected components,U\ MS(; )and U\ AMS(; ). We assume that our neighbor-
hood of U is su ciently small that, for all n 2 Z, H( + n ;t) is \constant" on these two
components in the sense explained above. Therefore we can speak well-de ned spaces
H™(+ n)and H¥( + n ). We assume that H™ () is nonzero, but we do not as-

sume that H™ ( + n )= H®S( + n ). Indeed, such a statement is meaningless if is not

5We might need to pass to a nite cover of U if Z( ;t) has a multiple zero on Z( ).

6 Here we deviate slightly from the notation of [5] by using H for the reduced statespace of single-particle
BPS states where the half-hypermultiplet degrees of freedo m from the center of mass have been factored out.
Thus H was denoted by HC in [5] and hence the BPS index { the second helicity supertrac e { is given by
(; =Tr y¢; n( 1?3 throughout the thesis.
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invariant under the monodromy action around Z ( ).

4.3.2 Review of halo states
Multicentered Halo Solutions

Four dimensional N=2 supergravity has stationary multicentered BPS black hole solutions [49,
11, 35], which are typically true bound states with constrained cenér positions whenever the
centers have mutually nonlocal charges [11, 35]. It was shown in [1€hat there is a distinguished
class of multicentered solutions of supergravity known ashalo solutions In these solutions
there is one center, known as thecore with a charge while all the other centers carry charges
proportional to a primitive charge . The name derives from the fact that when the solution
exists all the halo centers must lie on a sphere of xed radius. For ttal charge of the form
+ n the halo radius is
1 CJZ(+ n )i

Rn(t) = §h ; |m (4.3.14)

The total halo charge n might be divided up between di erent halo centers in di erent ways
corresponding to several centers of charges , with P =N,

Multi-centered halo con gurations might or might not constitute ac ceptable solutions to
supergravity. The existence criterion for acceptable multi-centeed solutions of supergravity
are rather complex and di cult to check in general. However, for halo solutions there are two

simple necessary and su cient criteria for existence:

1. The halo centers all must have parallel charges. That is the chayes must be of the form

“i where the integers’; all have the same sign.

2. The single-centered attractor ow from t with total charge + n must split on a wall of
marginal stability MS(; )if n> 0 and it must split on a wall of anti-marginal stability

if n< 0.

The rst criterion is easy to understand. As we cross a wall of margnal stability the halo
radius Ry, (t) goes to in nity. If some particles had *; of opposite sign then energy could not be
conserved. Alternatively, if there were particles of opposite sign w could bring them together

adiabatically and annihilate them. Thus, the original con guration co uld not have been BPS.

The shell approximation

The multi-centered halo solutions are rather intricate, and lead to rather complicated variations

of moduli t(%) in space. Some useful intuition can be gleaned by examining a much spti ed
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\shell approximation” to the multicentered solutions. This shell app roximation is closely related
to the split attractor ow description.

In the \shell approximation" we replace the multicentered supergravity solution by a spher-
ically symmetric shell solution [11] (see gure 4.7). The supergraviy eld con guration is
radially symmetric. For r > R it is given by the attractor ow for + n . Following the lead
of split attractor ow, we choose the radius R to be R = R, (t). Thus, the local vectormultiplet
moduli at r = R are given by the point in M where the attractor ow of charge + n hits
W ( ; ), denoted in what follows by B, (t). We next insert a shell of uniform charge with total
chargen at the radius r = R. Then, we continue the solution tor < R using single centered
attractor ow for . Let us compute the energy of such a eld con guration. The energy is
a sum of three termsE. + Er + E<, the energy of the eldsforr >R, r = Randr <R,

respectively. These are given by
E>
TN
N

Figure 4.7: Shell con guration.

E>=jZ(+ n;t)jj eZ(+ n ;Bn(t)j
Er = jeVZ(n ;Bn(1))j

E< = je’Z(; Ba(1)j; (4.3.15)
with the total energy given by the sum
E=jz(+ n ;t)j+2 je¥Z(n ;Bn(t)j; (4.3.16)

where =0if B,(t) iesonMS(; )and =1if By(t) iesonAMS(; ). When =1 the
eld con guration is certainly not BPS and might not even be a solution of the equations of
motion. Thus, we have recovered the second existence criteriooif halo boundstates mentioned

above: B, (t) must lie on MS(; ).
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Halo Fock Spaces

Upon quantization multi-centered solutions of supergravity correspond to states in the Hilbert
space of BPS states. These states are to be thought of as boustdtes of BPS particles. For
the halo solutions we have acore particle of charge and halo particles whose charges are
proportional to . The corresponding quantum states are known a$alo states

Thus far we have been referring to a single core particle. In genekaghe core charge in a
multi-centered solution might correspond to several particles andmight not even have a single-
centered realization. Nevertheless, if the boundstate radiufR, (t) is large compared to any
dimensions of the multi-centered solution of charge then we can stl meaningfully distinguish
between the core and the halo and we can speak meaningfully of thenilo contribution to the
BPS spaceH( + n ;t)." We will restrict attention to such regions and think of the BPS space
as a direct sum

H(+ n;t)= H™(+ n;t) H Q+ n ;t); (4.3.17)

where HM@° ( + n :t) is the halo contribution and HY + n ;t) is the core contribution.
By taking a su ciently small neighborhood U of a generic point onZ ( ) any possible mixing
betweenH"° (; t) and HY; t) can be made small. By the correspondence principle we expect
that we can focus onHM© (; 1),

Let us now recall the description of the halo states given in [5]. It is seful to consider a
\generating Hilbert space"

n o H™O(+ n ;t): (4.3.18)

Since the halo particles are mutually BPS and noninteracting, the Hilbet space of all halo-type

boundstates with a core particle of charge form a Z,-graded Fock space:
Hhalo .= Hms(y S F[J ) H ()] (4.3.19)

HereJ -~ = %(jh ;7 i) 1)is an SU(2) spin and (J - ) is the corresponding representation
space ofSU(2) with generators Ji(l) while H(" ) is also an SU(2) representation space with
generatorsJi(z). The nite-dimensional vector space J -~ ) H (C )is Z,-graded by ( 1)2J§2)
and the Fock space construction is applied in theZ,-graded sense. The physical reason for this
seemingly strange choice 0Z,-grading is explained in detail in [10]. In particular, halo particles
which are hypermultiplets behave like free fermions and halo particles which argectormultiplets
behave like free bosons. Note that because of our assumptiondhe space (4.3.19) does not
depend ont.

There are three important subtleties one must be mindful of when sing (4.3.19).
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1. First, at a given value oft it is not true that all of the Hilbert space (4.3.19) contributes
to (4.3.18). Only those states contribute for which the correspouning halo solutions exist.
In particular, for contributions to HM° ( + n ;t) with n> 0 the point B, (t) must lie on
MS(; ) and hence t must lie on the appropriate side of the conjugation wallS(n ; ).
In Appendix D we discuss the arrangement of the wallsS(n ; ) as a function of n (see

Figure D.1) and the consequences for (4.3.18).

2. The second subtlety is that the halo Fock space (4.3.19) singles ba special \core charge"
. When speaking of the \halo contribution to the space H( + n ;t)" we should bear
in mind that there can also be core charges of the form +m surrounded by halos of
particles of total charge (n  m) , where m can be any integer, and thus when working

out the contributions to (4.3.18) we should really sum over such coreharges:
m2z HMO (4.3.20)

Once again, only values ofn such that the corresponding supergravity solutions exist will
contribute to (4.3.18). Note that the BST walls S((n m) ; + m ) are the same for all
m2Z.

3. Third, it is possible that there is nontrivial \mixing" between di ere nt halo states. This
would result from tunneling amplitudes between halo particles and coe states. Itis clearly
exponentially suppressed for large halo radius, but might in principle k& nonvanishing.
Such mixing would alter our description of the Hilbert space of BPS staes. This would
have an important impact on our description of the spin characters but it would not

impact our description of the BPS indices.

In (4.3.18) we have considered halo states with halo particles whoséharge is parallel to
There is an analogous story for halo states with halo particles whoseharge is anti-parallel to
. For these we should sum over negative values of in the analog of (4.3.18), the analogous

Fock space (4.3.19) involves particles drawn fronH( ~ ) with © 1, etc.

4.3.3 The puzzle

Let us now return to the situation described in the previous sectiors. We have a pathP joining
tms t0 tams as in gure 4.5. Now imagine movingt along the path P and consider boundstates
of total charge + n with n > 0. Fort nearty,s we know there are halo boundstates with

halo particles of charge parallel to . For t near tyms such boundstates cannot exist. Indeed,
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whent crosses the wallS(n ; ) the halo bound states will cease to exist. Again we ask:what
happened to these BPS statés

The simplest thing that can happen is that BPS states smoothly pair yp and become non-
BPS states ast crossesS(n ; ). We called this the elevation phenomenon. An example of this
will be given in Section 4.7.2, whereN = 2 vector- and hypermultiplets will pair up to form
massive vectormultiplets. This mechanism is indeed suggested by thehell model. The eld
con guration we have written is clearly a solution of the equations of motion for t 2 P ¢, since
it satis es the BPS bound. On the other hand, it ceases to be a BPSan guration for t 2 P gms .
Nevertheless, the energy as a function of continuously increases from the BPS bound. (Of
course, this is not a proof that the states smoothly evolve into noRBPS states since the eld
con guration for t 2 Pans might no longer solve the equations of motion, but we consider it
suggestive.)

Nevertheless, it is clear that this standard mechanism cannot be th whole story. The reason
is that one can easily compute the contribution of the halo states tathe BPS index (+ n ;t)
from (4.3.19), and this contribution is typically nonzero. Indeed, this is what happens in the
example of [12]. The lifting mechanism can only apply to states whose tal contribution to the
index vanishes. When the index does not vanish, the wall being crosd is the conjugation wall
and there must be at least some other kind of phenomenon to accaot for what happened to
the BPS states. In sections 4.3.5 and 4.3.6 we describe two new phanenon - the Fermi ip
and the fadeout { which can account for the disappearance of BPS states which cdribute to
an index. In sections 4.4 and 4.7.2 we show how these mechanisms nicalycounts for the fate
of BPS boundstates in the neighborhood of common types of discrimant loci of Calabi-Yau
manifolds. In order to motivate the Fermi ip it is useful to try to wr ite out quantitatively the
condition that all the indices ( + n ;t), n 2 Z are continuous functions along the pathP.

We turn to this in the next subsection.

4.3.4 BPS Indices

BPS indices can only change across walls of marginal stability. Let usee what this implies for

our setup with a path P connectingtys to tams . We will de ne the \partition function™:

*
F( 1) = a (+ n;b): (4.3.21)

n=1
This is a formal series ing; g * and we will demand its continuity along the path P. As we
have explained, we may focus on the contributions of the halo state with core charges of the

foom + m ,m2Z.
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When t is in nitesimally close to tns all halo states with halo particles of charge parallel to
will contribute to the partition function. No halo states with halo par ticles with charges anti-
parallel  will contribute. Therefore, the limiting value as t approaches the marginal stability

line factorizes:

F( , t;"IS) = Fég?e f?;lso (4'3'22)
b3
F(gl)?e = qn mS( + n ) (4323)
n=1
Fms = (1 ( L)k gkykin i (ko). (4.3.24)
k>0

Heret! . means a point in nitesimally displaced from MS( ; ) into the stable region. By the
same token, near the pointtyys all halo states with halo particles of charge parallel to
will contribute, while no such states with halo particles of charge paallel to  will contribute.

Therefore we have the factorization:

F(; tams) = Féore Frao (4.3.25)
p3
Feore = q" A (+ n) (4.3.26)
n=1
Fide == (L (i ig kln itk (4.3.27)
k> 0

Since (for su ciently small U) our path does not cross any walls of marginal stability the

two partition functions above must be equal:
F(; ths) = F( thms): (4.3.28)

Combining this continuity requirement with the above factorization statements leads to some
interesting constraints on BPS indices.

Note rst that since there are no walls of marginal stability in the unstable region F(; t)
cannot jump in this region. This suggests thatFJs. and F&rs must be identical, but that is not
quite the case because the charges live in a local system. In stating.3.28) we have implicitly
assumed that the local system has been trivialized throughout theclosure of the stable region
in U. Therefore, we must choose a \cut" in the unstable region. (See igure 4.8 and Section

4.3.8 below.) Taking into account the monodromy of the local system & see that instead
Fioe = 0 ' Fégie (4.3.29)
for some integerl . Equating the coe cient of " on both sides gives:

mS( 4 opn)= AS(4(n+l)): (4.3.30)
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Now, equations (4.3.28) and (4.3.29) together would seem to imply
Fraio = A ' Fraio (4.3.31)

and indeed formal manipulation of the product formulae above lead ® such an identity with

X

I :==jh; i k2(k): (4.3.32)

k=1
However, we must stress that (4.3.31) is only a formal identity! Theleft-hand side is a series in
negative powers ofg. On the other hand, the right-hand side is a series in positive powersf q
times g ', and thus the power series is bounded below. This necessarily impliekat the power
series is bounded both above and below and moreover th&; , and FZT° must be polynomials

alo halo

and nally that | 0 with | =0 only when Fo; = FZ20 is a constant in . Thus, if we are in

a situation where (4.3.31) holds then we can conclude:

1. At a generic point of a discriminant locus, if ( k ) 6 0 for some k then the quantity |
de ned in (4.3.32) must be positive. In particular, it is impossible to have ( k ) 0 for

allk 2 z.

2. The spectrum must be such that the product
Y
P(@:= (1 d)xtx) (4.3.33)
k>0

is a polynomial in g.

P
The quantity . ,k?( k ) has a nice physical interpretation, associated with the key
insights of [1] and [13]. It is the coe cient of the -function for the U(1) coupling de ned by

the direction in the charge lattice, that is

i 2@ - (4.3.34)

@

where is the low energy scale at which the coupling is measured. Thus, our aclusion would
seem to be that, given the hypotheses of Section 4.3.1 the low engreeld theory should be IR
free.

Before stating this conclusion we must hasten to add that there is dogical gap in the above
derivation. The di culty is that one must be careful because manipu lation with formal power
series ing;q ! can be tricky. As a simple example note that

X
( oY@ 9=0;

n27z
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so formal power series can have zero-divisors. From the matherieal standpoint we must
consider three cases: In the rst caseF.; is a polynomial in g and the above reasoning holds.
In the second casd~% is a rational function. In the third case F[; is an in nite product.

We will have nothing to say about the third case, other than to note that it can happen.
(For example the DO halo factor around aD 6 brane is a copy of the McMahon function [5].)
The second case, wher& 2% is a rational function would seem to be very physical since while
(half)hypermultiplets have = +1, vectormultiplets have = 2, which can lead to nontrivial
denominators in the product formula for Fy . Somewhat surprisingly, as we discuss in Section
4.6 below, in all examples we have analyzed, points in moduli space leadjrto massless vec-
tormultiplets violate the hypotheses stated in Section 4.3.1. Indeedwe show in Section 4.3.9
below that the second case leads to some rather peculiar physicatgaictions, and we suspect
there are no examples.

Thus we conclude that if we assume: 1.) the hypotheses of Section 4.3.1 2.) the lomergy
e ective eld theory is a conventional eld theory, and 3.) t he halo factor is not an in nite

product, then | > 0 and (4.3.33) is a polynomial in q.

Remark : The formula (4.3.32) for I can also be derived from the Kontsevich-Soibelman
wall-crossing formula using the relation between that formula and mamodromy pointed out in
[50] and elaborated in [38]. In particular, the requirement that the product of KS transforma-
tions denoted Uy in [38] in fact has a well-de ned action on F(; t) leads to an alternative

argument in favor of (4.3.33). A version of this argument is given in Setion 4.7.1 below.

4.3.5 The Fermi Flip

In this section we describe one way in which the Hilbert spaces of halaaes can change upon
crossing conjugation walls.

Restricting attention to the halo subsector of Hilbert space the dicussion of subsection 4.3.2
shows that for t = t} . the Hilbert space of halo states of total charge +n is

H(+ n Dipe * mo H™(+(n m)) CaF[@ ) H (O ¢ (4335

m

The Fermi Fock spaces are graded by aJ(1) charge corresponding to and the subscript
m means the subspace of the Fermi Fock space of totdl(1) chargem . Fort 2 Ps only
halo particles with charges parallel to can contribute, and in particular the only nonzero
contributions come fromm 0. The sum onm comes about because it is possible to have

di erent core charges.
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After crossing the wall S(n ; ) the Hilbert space becomes:
H(+ n ititpae ' m oo H¥™(+( n+m) ) ~aF[@ > ) H () : (4.3.36)
m
Now, it is possible for (4.3.35) and (4.3.36) to be isomorphic through tle following mecha-
nism. For simplicity of exposition suppose thatH™ () 6 ; but H™(+ n )= ; forn 60. It
follows from (4.3.30) that 2™ ( + m ) can only be nonzero form = 1, and this suggests that
HaS( + m )=0unlessm = |I. We will make that assumption. Then (4.3.35) and (4.3.36)
simplify to
H(+ n ijep,, =H™() [ - FI3 ) H I, (4.3.37)

H(+ n iDjtepa,, = H(+ 1) [~ 2F[Q ) H (L, (4.3.38)

In (4.3.37) we must haven 0 while in (4.3.38) we must haven | 0. Thus, there can only
be non-empty spaces for 0 n 1. This means that the Fock space (4.3.19) must be nite
dimensional, i.e. the halo particles of charge proportional to must be fermionic.

If we put n =1 and equate (4.3.37) with (4.3.38) then we nd that
Ha™S (+ | )= H™() L (4.3.39)
where L is the complex line:
L= ™ 33+ )HC(C): (4.3.40)

One can view (4.3.40) as the entirely lled Fermi Fock space, which of aurse furnishes a \ ipped
Fermi sea." More generally, equating the Hilbert spaces at = tpt we nd
L ~aF[@ ) H ()] oE 1F[@ ) H ()] ] (4.3.41)

The equation (4.3.41) suggests the following interpretation. We shold associate to the
halo particles a Cli ord algebra.” On the LHS of (4.3.41) we have a subspace of a Fock space
with creation operators associated to particles of charge ~ , *~ > 0. On the RHS we have a
subspace of a Fock space with creation operators associated tapicles of charge™ , * > 0.
The isomorphism corresponds to a Bogolyubov transformation th& exchanges creation and
annihilation operators. The transformation of Fock vacua may be eferred to as \ ipping the
Fermi sea." An example of this situation is the conifold point, which we @nsider in greater
detail in Section 4.4. In that case the only available halo particles havecharge and form a

hypermultiplet, so all the assumptions are met.

7Presumably this is simply the algebra of BPS states [51, 52, 5 3].
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The Fermi ip nicely accounts for how the BPS spaces change acr@sconjugation walls when
the halo particles are all fermionic. In cases wheid (* ) contains bosonic degrees of freedom for
some”, we do not expect an isomorphism betweetd( + n ;t)jiop,. andH( + n ;t)jizp ..
and in fact in section 4.3.7 we will see that in general it cannot be the cse. (Nevertheless, the

index is continuous.)

4.3.6 The Fadeout

The Fermi ip described in section 4.3.5 implies that ast crosses the conjugation wallS(n ; )
the supergravity description of the boundstate changes in an inteesting way. Consider rst the
casen = |. For t 2 P s there is a core charge at a single point irR® and it is surrounded by a
halo of particles with charges parallel to of total chargel . After crossing the BST wall we have
a single core charge of total charge +I and no halo particles! More generally, forO n 1,
a state with core charge and halo particles with charge parallel to of total halo charge n
evolves into a state with core charge +1 and halo particles with charge anti-parallel to  with
total halo charge (I n) . This sounds like a very discontinuous process, but, remarkably,te
process is in fact physically smooth. Nothing violent happens to our bundstates. In particular
we stress that the boundstate radiusR,, (t) is nite and smooth in the neighborhood of tyg;.
First, let us address how a state with halo particles of charge paralleto  can smoothly
evolve into a state with halo particles of charge anti-parallel to . Recall that as t crosses
the conjugation wall the central charge Z( ;t(%)) vanishes at the halo radius (in the shell
approximation). Now, let us consider a probe BPS halo particle of chege in an attractor

background of charge + n . It has Lagrangian [10]
L= 2e"jZ( ;t(%)j(1 cos( ) (4.3.42)

where is the phase ofZ( ;t(%)) and s the phase ofZ( + n ;t(%)). The term proportional
to the cosine comes from the interaction with the electromagnetic eld, and the other term
comes from the rest mass of the BPS particle. Sinc&( ;t(%)) ! 0 on the halo radiusRy(t)
ast crossesS(n; ) we see that the halo particles have both a mass and coupling to the
background gauge elds which approaches zero. Thus, ascrosses the BST wallS(n ; ) the
halo particles decouple from any possibléocal physical measurement! We call this process the
fadeout

The fadeout takes care of the halo particles, but the reader mighstill be disturbed because
our description of the core charge has changed discontinuously asrosses the BST wall, namely

a core of charge appears to have jumped suddenly to a core of eiige + | . The process is
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in fact physically smooth, but this aspect is best explained after we hAve discussed monodromy

in Section 4.3.8

4.3.7 Spin character

Hilbert spaces of BPS states are representations of the spatiabtation group SU(2). As such
they are completely classi ed by their character. In this section wiite out what the description
of halo states of section 4.3.2 above implies for the spin character.
To begin, let us de ne the spin character of halo particles to be:
%
True o 22°= (5 zt)=  ap 2" (4.3.43)
M-
By assumption the integersan are independent oft 2 U. Because of ourZ, grading the parti-
cles contributing to m even (for which ay.~ > 0) correspond tofermionic particles in the Fock
space while those contributing tom odd (for which a,> < 0) correspond to bosonic particles
in the Fock space. In particular, if M- 1 then ap counts hypermultiplets in four dimensions
and a ; counts vectormultiplets in four dimensions. By rotational invariance an, = a m: . By
=0y B

Now we introduce a generating function for the spin characters othe positive halo Fock

CPT invariance am: = am. . In particular, ( ~ ;y;t) = (
spaces:

X
F(q:y;t) := Q" Ty (4 n yy? (4.3.44)
n2z
This is a formal power series inq whose coe cients are nite Laurent polynomials in y. The

contribution to this generating function from boundstate halo particles of charge ~ is

. LG , ‘
FC ) (aiy) = @L+( 1myArmg yam (4.3.45)
m= M-j= J -
and in the spirit of our discussion around (4.3.22)-(4.3.25), we can wie down the full generating

+

function at points t}. and t

¥ o
=1

Y .
Fayitams)= 2™ (G y)  FC ) (ayy) (4.3.47)
—

where ™S ( ;y) is the spin character of H™s (), etc.
It is easy to see that when has bosonic internal degrees of freedonf (q;y;t}) is an

in nite series in positive powers of . The cancellation mechanism mentioned below (4.3.33)
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is no longer operative. Similarly, in this caseF (q;y;t},s) will be an in nite series in negative
powers ofq. Thus, (4.3.46) and (4.3.47) can never be equal. We conclude that vém halo
particles include bosonic degrees of freedom the spin character siuchange across conjugation
walls.
On the other hand when the only BPS patrticles with charge parallel to are fermionic, we
can apply the analog of (4.3.31), which states that:
FOy) = d Y FC ) (ay); (4.3.48)
-1 -1
In this case, the spin character will be smooth across conjugatiomalls provided the analog of
(4.3.29), is satis ed:
"+ m oy = § M+ m oyt (4.3.49)

m m

which would follow, for example, if H™S( + n ) = H&S( +( n+ |) ) upon parallel trans-
port with the at connection. When all halo particles are fermionic th is is quite a reasonable

condition, as we explain in section 4.3.8.

4.3.8 Monodromy

It is now time to understand the meaning of the identity (4.3.30). First let us note that the
choice of is rather general. After all, there will be many charges which are not local with
and furthermore support regular attractor points and hence sipport single-centered black hole
solutions in the supergravity approximation. Indeed in the local sysem of charges (trivialized

on M ), there should be an open set of such charges in R. Since the charges are sections

Zj Zj AMS(; )
Stable (b)
(a) AMS(; )

MS(; )
Stable

MS(; )

Figure 4.8: A gure of the z-plane whereZ( ;t) = z. When h ; i < 0 the stable region is the
shaded region in (a), and whenh ; i > 0 it is the shaded region in (b). The transformation
of charge ! + | corresponds to a monodromy transformation around the closed gths
indicated in green.

of a local system when comparing indices in an equation such as (4.3 we must specify a

path along which charges have been parallel transported. We havinplicitly assumed that the
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charges are related by parallel transport through the stable regn. On the other hand, the BPS
Hilbert space should remain \constant" in the unstable region, and kence equation (4.3.30) is

naturally explained if undergoes a monodromy transformation
I M =+ 1: (4.3.50)

along a closed path winding once around ( ). The direction of the path is determined by noting
that in the argument used in section 4.3.4 we parallel transport the barge from MS(; )to
AMS ( ; ) through the stable region. Since the spaces are \constant" in the unstable region
a path beginning on AMS (; ) and passing through the unstable region does not change ,
and hence we should consider a closed path that begins kM S ( ; ), rst passes through the
unstable region to MS(; ) and then returns through the stable region back to AMS (; ),
as shown in gure 4.8. Thus, the sign of the winding is correlated with te sign ofh ; i and
hence we can say that the monodromy transformation for eclockwise oriented curve of winding
number one is

I M =+ | (4.3.51)

where

b4
l=h;i Kk®(k) (4.3.52)
k=1

o+ 1) _S(:)

ts stpzol( + It)
+ 1
02(+ I ) fstep3
step
O2()
MS(; ) AMS(; )

S /+|

t(+ 1 )=t()

Figure 4.9: The steps in the Gedankenexperiment shown in terms ofgths on moduli space. The
conjugation wall is shown in green. There is a cut for the local syst& shown in yellow, and
the attractor ows are illustrated in purple. The entire experiment involves parallel transport
of the charge lattice once around the locuZ ( ) in M .
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Monodromy and the Fermi Flip: A Gedankenexperiment

A monodromy transformation of the form (4.3.51) around Z ( ) also nicely explains how the
Fermi ip transformation of Section 4.3.5 above is in fact a continuous physical process. Again,
let us work locally on moduli space in the neighborhoodJ of Z ( ). Let us imagine there are two
observersO; and O; in a laboratory located very far from the halo core, e ectively at in nite
radius. The vectormultiplet moduli at this radius are denoted t. Let us suppose the background
modulust is initially at tgst, on the Pps side ofS(1 ; ). Both O; and O, can measure the total
charge within a xed radius r. (For example, they can measure uxes with local test particles
and integrate the ux.) They both measure the charge of the bourdstate to be + | . We now
consider a four step experiment. In step one, one observer, s&, travels radially inward toward
the core (potentially observing attractor ow of the vectormultip let moduli along the way). As
O, passes through the radiusRn (t;,) there will be some mild disturbance, but, because of the
fadeout phenomenon, this disturbance will be arbitrarily mild. For r < R ,(t.), asr decreases
to the horizon at r = 0 O, measures total charge , and concludes that the core has chasy .
In step two, observer O; changes the vectormultiplet moduli t, crossing the conjugation wall
from t; to t . proceeding fromPms to Pams. Nothing discontinuous has happened either to
0O; or to O,. In particular O; continues to measure charge +1 of the boundstate. At the
same time, O, also sees nothing discontinuous happening and continues to measuthe charge
. In step three the observer O, travels radially outward from r = 0 back to the laboratory
of O3. In this third step O, notes that no halo is encountered. Now, for the nal step four
of our experiment O; and O, compare their results for the electromagnetic charge of the core
O, agrees that there is a single-centered boundstate, and declarés charge to be , while O;
insists that the charge is + | . They are both right, because the Gedankenexperiment we
have just described involves a closed loop in moduli space arourig( ) as shown in gure 4.9.
In our description of the Fermi ip in section 4.3.5 we used the viewpoirt of O;. However, in
order to investigate if something discontinuous has happened to th core while crossing(l ; )
we must send out the observelO, to report core activity from the scene of the crime. As we

have explained,O, saw nothing dramatic happening.

Area code walls and basins of attraction

There is an interesting interpretation of conjugation walls in terms of walls between basins
of attraction for attractor ow, i:e: \area code walls" [54]. This relation will be used in the

covering space description of our Gedankenexperiment in Section3l8 below.
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Let us assume that + | has at least one regular attractor point. Consider the attractor
ows for + | on the covering spacd‘f/l . The wall §(I ; ) is a set of attractor ows. If this
wall separatesl‘f/l into more than one component then, since attractor ows cannotintersect
except at a regular attractor point or a singular point the attract or ows cannot cross the wall

S@; ).

AMS(: ) 815 ) MS(; )
t | t* to(+ 1)
t(+1) + + 1

l\ t()
+

Figure 4.10: lllustrating why the conjugation wall (1 ; ) is an area code wall. The attractor
ow for + | (shown in purple) from t* has a split attractor ow, splitting into ows for
and | . We assume the attractor ow for has a regular attractor point att (). In the
Fermi ip scenario the action of the monodromy group M (shown in gold) ont () produces
the regular attractor point t ( + 1 ) for ows which begin from t . Note that t is on the
other side of the conjugation wall &(I ; ). On the other hand, the + | ow from t* can
be continued from its intersection with MS( ; ) and, unless t () is a regular attractor point
of rank two, the ow will continue and end on a point other than t (). We have denoted this
distinct point by t°( + 1 ). We claim that t° + 1 ) is also distinct fromt ( + | ), and
therefore §(I ; ) separates basins of attraction for + | ow. In our local model, where the
inverse attractor ow on $(1 ; ) extends in nitely far upwards, the ow cannot cross back to
the pointt (+ | ) onthe left because in order to do so it would have to cros&(l ; ), which is
impossible. (In addition it would also have to cross two wallsMS(; )and AMS(; ), which
is also impossible by Property 1 of Appendix A.) Thus - in our local model- if the attractor
ow for + | fromt* terminates on a regular attractor point it must be a distinct point fr om

t(+ 1)

It is di cult to give a completely general argument that (I ; ) is an area code wall because
one must take into account global properties of covering space. dlever, a very natural scenario
is illustrated and explained in gure 4.10. In this case, (I ; ) is a wall between basins of

attraction for the ow + |

Gedanken Again

Since discussions of this nature are apt to cause confusion it is wdmnvhile to describe the same
experiment using the language of the covering spac8 of U. Now we must take into account
the action of a gauge transformation by a generatoM of the covering (i.e. modular) group.

Under this transformation all physical quantities are invariant, so for example

ZM M )= Z(; t) (4.3.53)



S(; )

step 3
Oa(

t()
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AMS(; )

t(+ 1)
O+ 1)

step 3

Figure 4.11: Steps in the Gedankenexperiment as described in the wering space. The blue
vertical lines are the marginal stability walls, the red vertical lines are the anti-marginal stability
walls and the green vertical lines are the conjugation walls. Attracbr ows are shown in purple.
The group of Deck transformations is generated byM and corresponds to a shift by +1. In step
3 O, can choose to reverse the attractor ow fromt () as indicated in gold. Alternatively, O,
can make a gauge transformation while atr = 0 and reverse the attractor ow from t ( + | )
as indicated in pink. Note the discontinuous nature of the attractor ow as t crosses the

conjugation wall.

and,

HM ;M

t) = H(; t):

(4.3.54)

We illustrate the Gedankenexperiment expressed in the language dhe covering space in

gure 4.11. A crucial new point comes at step 3 whereD, makes the return trip in R3 radially

back outward to in nity. Now, if O, traverses the inverse attractor ow for charge + | from

t (), as shown in step 3 of gure 4.11 she measures the charge of he core, but ends up

expressing her measurements in terms of the point it * t,, 2 © which diers from the

point t,, used by O;. In order to compare results with O; the experimenters must be on the

same page - which in our case literally corresponds to being on the sarsheet of the covering

space. One of the two experimenters must transform the data byhe action of M 1. Once this

is done they will agree on the total charge of the single-centered state, as they mustsince the

local system has been trivialized on 8. Alternatively, as indicated by the pink arrow in step

three of gure 4.11 O, might make a gauge transform while atr = 0 in order for the return trip

tor =1 to take her data to t,,. Thus she starts not fromt () but rather from its modular

image

t(+

I )=t (M

)

M

tQ)

It is at this point that O, decides the core has charge +l

(4.3.55)

. She does not think this is a

discontinuous change from step 2, because she has merely appliedjauge transformation. In

step 4, 0; and O, are now on the same page and once again, they agree on the valuetbé

core charge.
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Remark: Relation to the monodromy of the derived category

A formula for the autoequivalences in the derived category inducedy monodromy around loci
where branes become massless was conjectured in [55]. (See Comjee 1 on page 6.) If an
object A in the derived category becomes massless on a component of the adiminant locus
Z (and we assumeA corresponds to a single D-brane which is stable in some su ciently smb
neighborhoodU of Z) then when one considers a loop ifJ around Z which winds once around

Z the monodromy action on the objects in the derived category is clairad to be:
B! Cone(HomA;B) A! B): (4.3.56)

If one takes the Chern character of this equation, setting chf) = k and ch(B) = , then

(4.3.56) becomes the standard Lefshetz formula
' + h;kik: (4.3.57)

There is therefore some tension between (4.3.56) and our formula(3.50), (4.3.52). The latter
involves asum over all charges parallel to and is moreover weighted by the BPS index (k ).
Since the group of autoequivalences of the derived category doemt depend on a stability
condition our expression involvingl might seem somewhat strange. However, since we have
explicitly assumed that the ( ;t) are constant in the neighborhood ofZ ( ) there is not a strict

contradiction here. Clearly this point needs to be understood beter 8

4.3.9 The case when Fy,, is a rational function

Let us now return to the logical possibility, mentioned in Section 4.3.4that F 1, () is a rational
function of g. We will show that this leads to some physical predictions which are sgeculiar
that we suspect that there are no examples.

To begin we prove a small Lemma from High School Mathematics:

Lemma : Let R(q) be a rational function of g with a convergent power series aroundj = 0,
R(g) = 1+ O(q). SupposeR has poles, and all the poles lie on the unit circle. Then there exists
a positive integer L such that R(qg) has a power series expansion of the form

X 1X
R(q) = a o * M (4.3.58)
r=0n 0

where, for somer;ny we havea., 60 forall n no.

8We thank Emanuel Diaconescu for useful discussions about th is point.
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Proof: First note that R(q) has a continued fraction expansion of the form:

X
R(Q) = r(q) + &is

wherer (q) is a polynomial and the sum over runs over a nite set of roots of unity and s runs
over a nite set of positive integers. The coe cients a.s are complex numbers.
Note that if is anL™ root of unity then

SR o (4.3.60)
_ r 3
(1 q)s r=0n 0

where, for eachr, p; (n) is a polynomial in n. (p; (n) might depend onr and is of order (5 1)).
Now let L be any integer such that all which occur in (4.3.59) areL™ roots of unity and
observe that a non vanishing polynomial can have at most a nite nunber of roots

Now we claim that if F; is a rational function of g with poles on the complexg-plane, (as

can happen if there are bosons in the halo) ther (; t) is a nite Laurent polynomial in g. In
particular, F3.(Q) is a nite Laurent polynomial in g whose set of zeroes includes the set of

poles of F* (g) and F™ (q 1), counted with multiplicity.

halo halo

To prove this we need need three ingredients: First, as we have sgeit follows from the
monodromy that we have (4.3.29), an identity of formal series inq;q *. Second, continuity of
the index away from walls of marginal stability implies (4.3.28). Third, n iteness of the number
of attractor ow trees implies that if we write FJs.(0) = P bng™ and F%3 (q) = P cnq", then,

halo
for all N,
X
dn = bm Cn (4.3.61)

n+m=N

is a nite sum.

Now if F% () has a pole then by the Lemma above we know that for some;r; n o we have

a-n 60forall n ngin the expansion:
X 1X

Fraio (O) = apn o "™ (4.3.62)
r=0n 0

Next, suppose the exponents ofy in the expansion of F{s.(g) is unbounded below. That is,
fmjh, 6 0gis unbounded below. Then choosind. as above, it must be that for some residue
r%and somen$ we haveb ;, ,. 6 0 for n >nQ . Then the coe cient of o r’ contains the
in nitely many terms

X
b ro n arn (4.3.63)

n> max[ no;nJ]

But this violates the ingredient 3 above, based on the niteness of he number of attractor ow

trees, and hence we conclude thaF 5. (g) has coe cients bounded blow.
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On the other hand, F2T$(q) = F™ (g 1) so exactly the same reasoning implies thaF2&"s ()

has coe cients bounded above. It now follows from equation (4.3.29 that F=. () is a nite
Laurent polynomial. Applying the same reasoning and now using the egality of indexes,
(4.3.28) shows that F 3P (q)Fiay, (0) must also be a nite Laurent polynomial. Therefore, the
poles of F3 (@) must also be zeroes oF . (0), including multiplicity. But the same reasoning
applied to g FS, (g)F2ms(q) shows that the poles of F2TS(q) must also be zeroes of 1S, (q).
This concludes the proof

Now, the above structure of Fpao and Feore is rather odd. The poles ofFg, only depend
on . On the other hand, there is a wide choice of 's for which the rules ofthe game in Section
4.3.1 apply. Indeed, we expect that there is an open set of such el@mts in the space of charges.
For all these charges-core Mmust be a Laurent polynomial with zeroes at the poles of 40 . This
means that for some collection of roots of unity (depending only on ) we must have

™+ n)"=0 (4.3.64)
n2z

for all charges mutually nonlocal with respect to  and supporting, say, single-centered at-
tractor ows. Such constraints seem to us physically unreasonale. We certainly know of no
examples, and we nd the above a compelling argument thatF: is either a nite Laurent

halo

expansion or an in nite product.

4.4 An Example: Conifold-Like Singularities

In this Section we discuss in detail a simple example of the setup of Siéan 4.3, in which
the spectrum of massless states of charge consists of a single hypermultiplet. Such massless
BPS states are present when a Calabi-Yau manifold develops a conltbsingularity. In the 1A
picture, the halos are made of light D2/D0 branes wrapping a rationd curve, bound to a heavy
core D6 brane lling the entire Calabi-Yau manifold. The local geometry of the Calabi-Yau
near the rational curve isO( 1) O ( 1)! P!, and a hypermultiplet becomes massless at the
singular point in the Kahler moduli space where the class of the ratimal curve vanishes. The
massless state is a pure fermion with ( ) = 1 and from the discussion in Section 4.3.5 we know
the structure of the halo bound states of core D6 with D2/D0 particles near the singularity,
their BPS indices and Hilbert spaces. In particular, the Hilbert spaces of halo states transform
smoothly across the conjugation walls through the Fermi ip of Sedion 4.3.5. The generating
function of the index of such BPS states as a function of the Kahle moduli was rst computed
in [56, 57] from the quiver category point of view, generalizing the reults in special chambers

found in [58] and [59].
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441 The resolved conifold

Since the puzzle of Section 4.1.1 was origianlly raised in [12], we now brie yeview the setting
of that puzzle and describe it's resolution. We will describe how the loal geometry of the
covering space near the conifold point ts together with the patch of the moduli space in which
the volume of the entire Calabi-Yau is taken very large. (This was usd in [12] to derive the
partition function of D6/D2/D0 bound states using the semi-primitiv e wall crossing formula.)
Consider the local limit of a Calabi Yau 3-fold X, with only one homology dass, a rigid rational
curve, dual to 2 H*(X; Z), remaining small. The Kahler parameter ist = zP + Le' P?
whereL ! 1 in the local limit, P = 1, for a positive integral class P, and P® =0 for a
semi-positive classP® This parameterization is only valid for 2 (0; ) and Im(z) > 0, which
corresponds to a patch in the full covering space. In this patch tle large volume expression for

the periods can be used, and for instance (hergy, is the holomorphic central charge):

Zn(1) = %L3e3i . Zn( )=z and Zp(dv)= 1L (4.4.65)

BPS states with charges of the form ., =1 m + ndV, wheredV is a generator of
H8(X;Z), are realized as multicentered solutions in supergravity descriptio. As argued in
[12], in the neighborhood of the wall = %argz+ 3 only the pure D6 brane with charge o =1
exists as a single centered object (out of the set of objects withharges of the form . ).
We are interested in con gurations that consist of this core D6 charge surrounded by halos of

D2-DO0 particles mn = m + ndV. [12] computed the D6/D2/DO0 partition function de ned
by

X
F(upvity ):= uNv (1 + NdV:ty ); (4.4.66)
N2Z; 2H4(X; 2)

in all chambers of the Kahler cone, parametrized in the local limitL ! 1 by (z; ). Fixing
some value ofz the interval can be divided into chambers, bounded by (anti)marginal gability

walls W' of D6 with ., asin gure 4.12, found to be

W =1(z; ): = %arg(z+ n=m) + 39
w,m=1(z; ): = %arg(z n=m)g
W M=1(z; ): = %arg(z+ n=m)g;

(4.4.67)
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Figure 4.12: Arrangement of W' walls along the line.

with both n 0, m 0. One can see that there is a path fromW' to W " along the

direction and we can form \positive" (\negative") halos around the D6 with particles mn
( mn)near WM (W ), but these halos cannot exist nearw ' (W ). As all particles
mn are mutually local, we can focus on one of them to see the resolutiorAlso the index of
particles with jmj > 1 is zero, so we can take some charge., as an example. The moduli
space has conifold singularities at the lociz = n, where 3. 5 becomes massless. Locally
around each pointz = n the moduli space will look like an in nite sheeted cover of thez-plane,
described by a coordinateu, = log(z n), and the charge lattice will have the monodromy

7' h ; 1ni 1.n. However, itis clear that in the large L limit for xed u,; , and to leading
order in 1=L, the periods will be given exactly as above. Therefore walls of margad stability
will approach being periodic in the u,-plane for large L. We now describe the conjugation
behavior in a single patchim(z) > 0; 2 (0; ), which will be repeated periodically in the
up-plane.

The location of the conjugation walls for with each of the ., can be determined precisely

in the limit of large L. In terms of the period vector ( t) the attractor ow of the total charge

is determined by

2e YiIm(e ' ()= + Hy (t1); (4.4.68)

where is the parameter along the ow and = ¢+ 1. We are interested in nding the
locusty , such that t( ) will intersect the discriminant locus of vanishing Z( 1.,). Note that

such at( ) necessarily satis es
Im  Z( 1n;)Z( o;t) =0; (4.4.69)

which immediately determines the value of at the intersection, due to the linearity of the
attractor equation for the periods. Now we impose that thist is on the discriminant locus.
Of course, to solve (4.4.69) and nd the location of the conjugationwall we need to know the

periods of D6 and D2/D0 close to the singularity, where they do get orrections from the D2/D0
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becoming massless. It turns out that in the limit of large L the point t( ) will also have an
order L component in the direction of P%. Thus in the neighborhood of the conjugation wall
the corrections to the periods att( ) will still be of order 1 =L, which allows us to solve (4.4.69)
in this limit (see Appendix E). The conjugation walls S( m:n; o) turn out to be located at

1 m
= zar —z 1 +
9 0

5 (4.4.70)

E;
in the patch of the Teichmuller space that we are discussing. Compeng (4.4.67) and (4.4.70)
we see that the conjugation wall is indeed located in the region of baud state stability between

the corresponding marginal and anti-marginal stability walls. Notice that the conjugation walls

for all chargesk m.n coincide, unlike the picture in z-plane near the singularity that we had
before in Figure D.1. This is of course an artifact of using the large viume expression for the
periods, or in other words asL ! 1 all the conjugation walls for k ., asymptote to (4.4.70) .

The particles n.n that inhabit the halos in this example have indices given by

( + ndV) = 1;for all n;

(ndv)= 2;forné6o0; (4.4.71)

where the D2/D0O states with charges  + ndV are the free hypermultiplet at the conifold
point and its images under the large gauge transformation8 7! B nP. The attractor ows
of objects with only DO charge ow to large volume, wheren DO branes can form precisely one
bound state, giving a massless vector multiplet. The expression (4.40) shows that there are
no conjugation walls for the D6 brane with the DO particles, con rming the general argument
that () must be positive. This can also be seen directly: the attractor ow of the D6 with
DO's can never reach the large volume point since then the period ofne D6 brane would be
increasingly well approximated by the large volume form, which growswithout bound at large
volume, contradicting the gradient ow.

On the other hand, 1., particles will have conjugation walls with the D6. Upon crossing
those, a lled Fermi sea ofn 1., particles appears at the halo radius. From Section 4.3.4 we
know that the partition function for each individual halo particle 1., stays constant across the
conjugation walls, so we can write the partition function for halos ofall 1.,'s in all chambers

of (4.4.67) a$

9The rst two lines were already presented in [12], but the thi  rd line is a new result.
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Y S
Fuviwiwi, = 1 ( uwv'

Y _ Y )
F(uv; W, W, ) = 1 ( uy 1 ( uv’ 1 (ukv?

>0 | k>n

2

1 1 oY i 2 ' i Y k
Fluv;iw w1y = (u'v) 1 ( u) 1 (uv'? 1 ( ukv

‘=1 >0 j>0 k>n
(4.4.72)

with n 0. The last expression is evaluated in the chambey/ } ;W 1], where all halos of
particles 1., k = 1::n have decayed after crossind1S( ; 1) from stable to unstable side,
and the factor szl (u'v) accounts for the change of the core chargeg due to monodromy. It

comes about through the identity

@ (uwv) =(uv) @ (u vh; (4.4.73)

where the second factor is the contribution of all halos of 1., particles. After crossing the

conjugation walls S( 1.-; o), = =1::n the core charge changes according to the monodromy

0 hy i = o+ g (4.4.74)

In particular, the \pure D6" brane with core charge ( does not existafter crossing the rst
conjugation wall. It gets replaced according to (4.4.74). Also note hat to be more precise
one might want to rewrite (4.4.72) using the left-hand side of (4.4.73)before crossing the wall
S( 1; o), and right-hand side after crossing it. This is straightforward using (4.4.70) and
(4.4.67), but the result would look rather messy which is why we don't @ it here.
Note that for xed z, taking to zero involves crossing in nitely many conjugation walls
and marginal stability walls. In fact, the limits ! OandL !1 do not commute, since when
is too close to 0, the imaginary part of the Kahler form becomes smb, and the large volume

approximation to the periods breaks down. Moreover,
; ; gt = + el
Il!m0 L|!I1”n Z(u;vity = zP + Le' P9

does not exist. To proceed further would require specifying a paitular compact Calabi-Yau

with a conifold degeneration.
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45 Recombinaton walls

45.1 BPS index

In this Section we describe what happens to the BPS state when it @sses the recombination
wall. Going back to Figure 4.6, let us rst describe the RW ( 2; 3; 4) in more detail. As
mentioned above (4.2.13) at least one of jx is nonzero. Using an identity jx + jki + kj =0
we see that two of them have to be non-zero. Without loss of genality we have 34., 6 0,
24:3 6 0. In what follows we also take 3.4 6 0 and comment on the case »3.4 = 0 in the
end of this section. Although the de nition appears to depend on the entire attractor ow,
the position of this wall can be expressed entirely in terms of the peods evaluated att; . By
de nition, the recombination wall consists of points ftj ms( totat ; 2;t) = ms( tota ; 3;t)Q, @S

the central charge of 4 will then also be aligned at the pointt( ms). Thus by equation (3.0.4),
it is given by

Z( 3+ 4DZ( 2t) Z( 2+ 4HZ( ait)

I - =1 _ 4.5.75
m hs+ 4 2 m ho+ 4; sl ( )
This equation can be expressed in the form
ImZ( a;t)Z( p;t) =0; where
a= 2h o ; a3l 3h totar 5 2
b= total - (4.5.76)

(4.5.76) can be interpreted as the MS wall for charges ; and , satisfyingh ,; i =0.

Returning to Figure 4.6, we see that the pathP necessarily crosses the recombination wall,
and we claim that the bound state , +( 3+ 4) on the left is transformed into two bound
states 3+( 2+ 4)and 4+( 3+ »)ontheright. Figure 4.13 shows one of the two bound
states on the right of the recombination wall. In [5, 9] this situation was illustrated in particular
examples, and it was found that on the level of the index the transiton is smooth, so that the
two bound states on the right have exactly the same index as the amon the left. Note that our
puzzle from the Introduction gets resolved since the bound statof ;= 3+ 4 and , does
not exist whent reachest;ms and the total charge .+ 3+ 4 has a dierent realization.

Now we will explain in complete generality why the above claim is true: thd is, why there

are precisely two attractor trees on one side of the wall and one &e on the other side, and why
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;v o2)

S( 2 3) MS( 4 2+ 3)

Figure 4.13: Bound state of charges 4 +( 3+ 2) on the right of the recombination wall.

the net BPS index is the same and also why the spin character does hohangel® The locus
where all three central charges align is complex codimension 1 in the oduli space, and we can
parametrize the transverse plane with complex coordinatez, z = 0 being the alignment point.
To understand the phenomenon it is enough to work in a small neighbdood of z = 0. There
will be six walls of marginal stability for pairs of charges ( 2; 3+ 4), ( 3; 4+ 2),( 4; 2+ 3),
(2 3),( 35 4), (4 2), allintersecting at z = 0. To understand which attractor trees exist
on each side of the recombination wall, we will nd the intersection poirts of the attractor ow
with ( 2; 3+ 4),( 3 a4+ 2),( 4 2+ 3), and then see whether these points lie on the
stable side ofMS( 3; 4), MS( 4; 2)and MS( ,; 3) respectively.

In a small neighborhood ofz = 0 we can expand all central charges in powers of to rst

order

Z( i;z) Z( ;0)+ @Z( i;2)jz=0 Z; (4.5.77)
for i = 2;3;4. We will assume that the two terms in this expansion are nonzero. n this
approximation the marginal stability walls can be written as

MS( i; j)=fz:Im j z=0g;

MS( i+ j; W=Ffz:Im( kx + k)z=0g;

i = Z( ;0)@Z( j;2)izz0  Z( ;0)@Z( i;2)jz=0" (4.5.78)
The recombination wall of the total charge ,+ 3+ 4 is determined from (4.5.75) and can

be written in parametric form as

4+ o+ .
2(s) = S(. 23 234+ 24 3427F 43 2,34?; (4.5.79)
J 23 234F 24 342F 43 243

1010 some independent work Jan Manschot found another version  of this proof [41].
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wheres 2 R is a parameter. The attractor ows on the two sides of the recomlination wall can
be analogously written as
(23 234% 24 342+ 43 2;34).

z (s)= i" + s)- =) 4.5.80
(s)=( )J 23 23;4F 24 342 % 43 2:43) ( )

where" > 0 is a very small shift o the recombination wall. Let us choose for de niteness the
plus sign in (4.5.80), nd the value of s where the ow intersects the wall MS( 2; 3+ 4), and
check if this point is on the stable side of the wallMS( 3; 4). Some simple algebra yields the

condition:

34 Im 23 3a+IM 34 42
>0 (4.5.81)
342 1M 42 23+1M 23 34 +IM 34 4

If this condition is true, then the attractor ow z. (s) will cross MS( ,; 3+ 4) on the stable
side of MS( 3; 4) and the attractor tree ( 2;( 3; 4)) will exist. Using the de nition of
from (4.5.78) together with the fact that all the Z( ;;0) have the same phase, we can, after a

bit more algebra, rewrite (4.5.81) as

34 JZ( 3;0)+ JZ( 4,0)]
34:2JZ( 2;0) + JZ( 3;0)i + JZ( 4,0))

Repeating the calculation for the two remaining trees ( 3;( 4; 2)) and ( 4;( 2; 3)) and get-

(4.5.82)

ting rid of positive factors we get

(2( 3 4): 34 342> 0
(350 4 2): 42 423> 0
(a( 25 3): 23 234> 0
(4.5.83)
This is the main result of the above calculation. Taking into account that
34 342t 42 423+ 23 234=0; (4.5.84)

we see that it is impossible to have all three trees to be present on @side of the recombination
wall. Furthermore, since choosing the attractor ow on the other side of the recombination wall
z (s) will give the same existence conditions with> exchanged with<, precisely the trees that

exist on one side of the recombination wall will cease to exist on the dier and vise versa. It is
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also clear now how the index gets preserved across the recombimat wall: the index of each

tree ( i;( j; «)) is given by!!
ColCi =0 D07 kT Wy k) ki C D)C )0«

and if the trees ( i;( j; «))and ( j;( k; i)) existon the "+" side of the recombination wall

and ( «;( i; j)) exists onthe " " side, then from (4.5.83) we have
ik (i ki)>0
k(k §)>0
i (ki k) <0

(4.5.85)

which leads to

(HOEES I G H O B G G
One thing to mention here is the fact that by looking at the marginal stability walls and
recombination wall on the z-plane for given charges 1, », 3 itis not possible to determine
on which side of the recombination wall two trees exist and on which sid only one tree exists.
Resolving this ambiguity requires the knowledge of the actual period.

Now let's comment on the case when not all jx 6 0, but rather 34, 6 0, 4.3 60 and
23:4 = 0. According to (4.5.76), the recombination wall coincides with MS( 4; 2+ 3). It
is clear that there will be a single con guration on each side oRW ( 2; 3; 4), ( 2;( 3; 4))
on one side and (3;( 4; 2)) on the other side. BPS index will again be preserved through
(4.5.84). The recombination wall in this particular case is called the Threshold Stability(TS)
wall, introduced rst in [9]. Physically, in ( 2;( 3; 4)) conguration charge 4 is bound to
3, and after crossing the recombination wall it leaves 3 and binds to ,. Exactly on the

recombination wall we have a bound state , + 3+ 4 at threshold, as described in [9].

4.5.2 Spin character

Finally let us show that the spin character is invariant across the reombination wall. The spin

character of the bound state of two charges j and  can be written as

lkl ! . . . .
yJ jk ) yJ ik (

y y 1t Y ky): (4.5.86)

(G k)(y): y2m ( j;y)( k:Y) =
m= ikt
2

1\we do not write explicitly the dependence of the BPS index on t he moduli, meaning that all indices are
evaluated at z = 0.
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Generalizing this to a three-centered con guration ( i;( j; «)) one gets

ol k))(y): m(yl jk yl Jk])(y] ij kil yl ij kl])( i;Y)( j;Y)( k;y):
(4.5.87)
The conservation of the spin character across the recombinationvall is the consequence of a

simple identity:
a a c b cthb + b b a c atcyy C c b a b+ a 0: (4.5.88
y* y Ny y “O)+(y? oy O)y y TO)+(y" oy )Ny y 7% 0 (4.5.88)

true for any a;b;cand y. Consider, for example, the case (4.5.85) again. In this casejx
and ki have the same sign and thus their absolute values in (4.5.87) can be placed
simultaneously by their actual values. The same is true for , and j entering the
expression for ( .c ;) (y), but j and jk have dierent signs and so dropping the
absolute value signs gives additional minus sign in the expression for¢ ,.c . ) (y), leading to

the desired result:

CisC s k))(y)+ (THES i))(y): [ i))(y): (4'5'89)

4.5.3 Attractor Flow Conjecture revisited

It is interesting to see what happens to the moduli space of the sugrgravity solutions as
one crosses the recombination wall. Recall that the Split Attractor Flow Conjecture (SACF)
[11] states that the components of the moduli spaces of the multientered BPS solutions with
constituent charges ; and backgroundt; , are in 1-1 correspondence with the attractor ow
trees beginning att; and terminating on attractor points for ;. Thus we expect to observe
that the number of components of the supergravity solution chames discontinuously as we cross
the recombination wall.

Let us write explicitly the stability conditions for the supergravity so lution with three charges

2, 3, 4.
1+ 42 + 34 0
23+ 2Xo23 23+ 3X23

1 42 + 34 0

23+ 2X23 23+ 3X23
42 34

1+ 0: (4.5.90)

23+ 2X23 23+ 3X23

Here the moduli space is 1-dimensional and we chose to parametrievith X3 - the distance

between charges , and 3. The % are de ned as follows:

i=2Im Z( i;t1)Z( wot;ty) (4.5.91)
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In this case the moduli space will be represented by one or two intemls in x3. Let us
suppose that the con guration ( 2;( 3; 4)) exists on the left of the recombination wall, at
some pointt_, and ( 3;( 4; 2)), ( 4;( 2; 3)) on the right at a point tg. It is easy to see
that for tg and t_ su ciently close to the recombination wall there will be only one component
of the moduli space in some open region, containing these two poinfé This means that the
SAFC as it was originally formulated does not hold

Nevertheless it is clear that there is a relation between attractor tees and the components of
the moduli space. To understand this relation let us rst look at the moduli space parametrized
by the absolute value squared of the angular momentum of the corguration. As discussed
in [60] each component of the moduli space will be an interval of thedrm [Jq;Ju] with Jg.y
determined by the intersection numbers of the charges. For the xample at hand there will an

interval for each topology of the attractor tree:

(2:(C 3 4):lzaa=[ a 23 34y 42 23+ a4
(3(a 2):lzga2=[ a 23t 347 42t 23 34]

(a(C 20 3): laas=[ a2+ 23 345 42 23 34l (4.5.92)

We see thatl,.34 = 13.42 q l4:23 and the moduli space always consist of only one interval .34,
which becomes patrtitioned into two on the right of the recombination wall. This leads us to a
modi ed version of the SACF as follows: The classical BPS con guration space and the quantum
BPS Hilbert space are partitioned by attractor ow trees. The partitioning in the classical case
is de ned as follows: start with some value of the background modulithen adiabatically deform
it by dialing the moduli at in nity along the attractor ow for the tota | charge. If there are
several con gurations of attractor ow trees then upon crossng MS walls they will decay and
the corresponding components of the moduli space will disappearAs we saw above di erent
components do not have to be disjoint, but the point is that the change of the moduli space will
be discontinuous which allows to identify the part of the moduli spacewith the attractor ow
tree. The quantum case is analogous, although we now have to alloveif evolution into linear
superpositions of di erent decay outcomes if there are multiple trees. The Hilbert space of BPS
states will be partitioned in states which have only nonzero amplitudes to decay adiabatically

into the constituents of each corresponding attractor tree.

12 Finding the roots of numerators and denominators of the rati  onal functions entering (4.5.90) one can check
than none of them become equal on the recombination wall, whi ch means that the number of components cannot
change as one crosses this wall.
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4.6 Massless Vectormultiplets

In this section we discuss a class of examples where the spectrum thie singularity contains

massless vector multiplets. The BPS index of a vectormultiplet has = 2 and therefore
(4.3.33) might very well be an in nite series and not a nite polynomial. | n various impor-

tant developments in string theory, such as geometrical engine@ng of gauge theories and het-
erotic/type Il duality, these kinds of singularities played a key role. Some of the models with
massless vectormultiplets which have appeared in this literature appar to conform to our ba-
sic assumptions in Section 4.3.1 and thus threaten to pose countetamples to our prediction

(4.3.33). In this Section and the next we examine these examples ardemonstrate that in fact

there are no counterexamples to our prediction.

We divide the zoo of examples into three groups:

singularities with the spectrum of an asymptotically free gauge theoy,
conformal xed points of gauge theories with vanishing -function,

theories with electric spectrum (with respect to some duality framé being that of IR free

gauge theory.

4.6.1 Asymptotically free gauge theories

Consider the simplest example ofSU(2) Nt = 0. This can emerge at a singularity in type I
string compacti cation, and a simple example was discussed in [61]. Th&Y in this case is a
K3 bration over P, which develops anA; singularity. Classically at the singularity there is
a massless vector multiplet with index ( ) = 2 and this clearly contradicts our conclusions
from Section 4.3.4. In particular, the quantity |1 which was associated with the beta-function

there is negative and the productP (g) of equation (4.3.33) is

1

P(a)

and is certainly not a polynomial!

However the full quantum moduli space does not have a singularity Wh massless vector
multiplets at nite distance in the moduli space ([62], [63], [64]). Indeed one recovers the full
moduli space of the SU(2) gauge theory, including the strong coupling region, in a certain
double scaling limit on 1A side. Part of the IIA string moduli space can be parameterized by
the Kahler moduli ty, and t; of the base of K3 bration and it's ber respectively. There will

be two discriminant loci, corresponding to the monopole and the dyon These intersect on the
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boundary of the moduli spacet, = 0. It is on this codimension 2 intersection where one expects
to have massless vector multiplets. This boundary is a nongeneric piat on the discriminant
locus and so this example does not meet the requirements of Secti@n3.1. In fact if we try to
consider bound states of some massive black hole with théV-boson near the codimension
2 locus where theW -boson is massless, we nd that the attractor ow of +  will never pass
through this locus, because the attractor ow will always have the direction away from the
boundary divisor t, = 0. Thus for any t; the ow of + will intersect MS( ; ) at some
point with t, 6 0 and the W-boson will be realized as a bound state of well-separated monopole
and dyon. As we movet; in the t; plane around the origin our paradox is resolved through
the recombination process of the 3-centered bound state + (\monopole + dyon )-

It is natural to assume that this conclusion extends to all cases whre one engineers an
asymptotically free gauge theory: there will be no places in the modiispace at nite distance
where on a codimension 1 locus a vector multiplet becomes masslesshelsingularity will always
"split" and there will be a number of conifold-like singularities, around each of which the picture

is as described in Section 4.3.4.

4.6.2 Conformal xed points

These theories are conformal xed points of gauge theories with anishing beta-function| = 0.
It is known that in such theories the spectrum necessarily containsnutually non-local populated
charges that becomes massless at the conformal point. This violas our assumptions that there
is only one charge (and possibly some other parallel charges), that is massless and palated
at the singularity. Although there is no notion of particles in such theories, away from the
superconformal point the theory does contain particles. One carform halo bound states of
these light particles with some massive black hole near the supercamfmal point and talk about

wall-crossing phenomenon. We examine an example of this situation inegtion 4.7.1.

4.6.3 Electrically IR-free gauge theories

This class of theories at rst sight seems to conform to our assumiions from Section 4.3.1.
The light spectrum near the singularity is that of an IR free gauge theory. Examples include
the model [65] and the model based on a chain of heterotic/llA dués rst discussed in [66] and
further analyzed in [67]. In Section 4.7.3 we consider an example whetke electrically charged
spectrum gives a non-polynomial expression for (4.3.33).

We will now argue that although the spectrum near the singularity is that of an IR free
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gauge theory, at the singularity itself there is a violation of the cental assumption of 4.3.1
that the only massless BPS particles have charge parallel to. If we parametrize the plane
transverse to the singularity by the expectation value of the adjdnt scalar v from the light
vector multiplet then the W-boson will have mass j vj. On the other hand, the theory will
also have BPS monopoles that can be reliably constructed as largem®oth, classical solutions
to the YM eld equations. The mass of the monopole is, as usual, proprtional to the vacuum
expectation value of scalars from the vector multiplet % where g(v) is the coupling at the
scalev. At energies smaller than the monopole mass the dependence of tlienning coupling
on the scalev is given by ﬁg = log(=v). As the energy scale set byv goes to zero the
relation between the mass of the monopole andlV-boson does not get spoiled by the quantum
corrections, and in the IR limit these masses are still proportional. Taking v! 0 and keeping

to be some xed string scale, both masses ofV-boson and monopole go to zero. Thus we
have mutually non-local massless states at = 0, violating a key assumption of 4.3.1.

We should remark that some care is required when interpreting the Bove massless monopole.
The ratio of monopole mass to W-boson mass goes to to in nity ay ! 0 so with an appropriate
cuto the IR free theory is indeed a free theory. On the other hand, one generally expects when
one approaches a locus with mutually nonlocal massless particles thbeory should become a
nontrivially interacting conformal eld theory. We believe that ther e are some important order
of limits questions here. In particular, the monopole also becomes Iger and more di use, since
its typical length scale is set byv . For purposes of BPS statecounting and the computation
of one should include this particle. For purposes of the computation of loop diagrams one
should exclude it.

We will examine two examples of this type. In Section 4.7.2 we consider anodel whose
electric spectrum is that of an IR free gauge theory which has massss vectors provided the
hypermultiplet moduli are tuned appropriately. In this case, there are cancelations between
vectors and adjoint hypers so that (4.3.33) is still polynomial. Morewer, the massless monopoles
have vanishing index, and thus do not a ect the partition function o f the index of BPS states.
In Section 4.7.3 we consider another famous example of this kind. As eheck of our conclusion
about the spectrum we show that there are two dual CY periods, anishing at the singularity.
The above reasoning implies they are both populated. Note that oumpicture of the massless

spectrum at the singularity is very di erent from the one advocated in [67].
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4.7 Examples with massless vectors

4.7.1 The FHSV Model

In this section we describe a particular example of a model where orteas massless vector multi-
plets at certain places on the moduli space and the theory at the sigularity is superconformal.
The model is referred to as the FHSV model [68]. Due to the high amaut of symmetry the
moduli space of this theory is known exactly. From theS-duality symmetry we also can make
a good guess about the massless spectrum at the singularity. Thispectrum contains both
electrically and magnetically charged states. The purpose of this dusection is to illustrate the

very nontrivial wall-crossing phenomenon around such a singularity

Basic Setup for the model

We recall that the FHSV model is an example of a type Il compacti cation with a heterotic
dual which is in fact simply an asymmetric orbifold of the heterotic string on T®. Both the vec-
tormultiplet and hypermultiplet moduli spaces are known exactly. The vectormutiplet moduli
space has universal cover

9 _ SuU@1;1) SO(106;2)
VT TU@  so@o) so@)

(4.7.94)

It is convenient to choose coordinates on 4.7.94 (we follow conventis of [69]). Let C'
denote ther + 1 dimensional complex vector space equipped with a Lorentzian bilinar form of
signature (+; ). Let HY" be the subspace of with positive de nite imaginary part. Then our
coordinates are (;¥), where 2 H'! and ¥ is a \tube domain" coordinate of H%°. We also
introduce u := (¥;1; %) 2 C%10, The lattice of electric charges isll %0 = |1 1® || 1 with

a quadratic form:

(V;v) = ¥ +2v.v  wherev:=(v;v;v )2 Il #20: (4.7.95)

Elements of the full electromagnetic lattice = 11 21 |1 210 will have the form (q;p), with

q;p2 Il 219, Using the quadratic form on Il %10 we construct the symplectic form on

h; 9=(aP () (4.7.96)

where =( q;p and °= (g% p% The holomorphic central charge can be written as:

Zn(O)=( 9 ¥ Q+§+q+ GRS p+§+p ; (4.7.97)
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The model has two kinds of singularities on the moduli space with enhaced gauge symmetry.

The rst kind is given by

~ y=0; with ~2= 2 (4.7.98)

and corresponds toN =4 SU(2) SYM gauge theory in the infrared. The second kind is the

locus

Yy 4. Y _q.
7) =1+ ?_O, (4.7.99)

and corresponds toN =2 N¢ =4 SU(2) gauge theory. We will describe them on the same

O, 1,1);(y:1,

footing as loci where
(;u)=0; where (; )= 2 (4.7.100)
for 211 %10,

The superconformal theory at the two singularities hasS-duality symmetry but the spectrum
of massless states at the singularity and the structure of halo st@s will be di erent in the two
cases. In both cases there will be two BPS states with mutually norecal charges = ( ; 0)
and p =(0; ), h; pi = 2,that become massless. The spectrum in the case of tt&U(2),

N =4 singularity is given by

H(m +np)6;; (m +np)=0 if gedm;n)=1;

H(m +np)=;; otherwise (4.7.101)

In case of theSU(2), N; = 4 singularity the spectrum is

H(m +np)6;; (m +np)=8; gcdm;n)=1;
Hm +np)6;; (m +np)= 2 gcdm;n) =2;
Hm +np)=;; otherwise (4.7.102)

We are interested in the behavior of BPS indices and the structure bHilbert spaces of

charges
mn = + m +np (4.7.103)
around the superconformal point. Here = ( q;p) is some charge, mutually non-local to and
p, such that () 6 0 and constant in the neighborhood of Z( ). (Let us say it supports a

heavy single-centered black hole with a regular attractor point nea Z( ).) It is convenient to

choose basis sothah ; i =0 and a:= %h ; pi < 0. In particular we are taking:

(p; )=0 (a; )=2a<0: (4.7.104)
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MS1o

Figure 4.14: Marginal stability walls MS,., for charge with charges mn = m +n p. The
walls form a dense set, labeled by the rational numbers in lowest tersi The arrows point in
the direction of stable to unstable region appropriate to that wall of marginal stability.

Attractor ows and walls of marginal stability

As another preliminary we describe relevant walls of marginal stabilityand the attractor ows.
It is convenient to parameterize the plane transverse toZ( ) by z := ( ;u ), the period of
and to project the walls of marginal stability and the attractor ow s into this plane.

First, let us plot the walls of marginal stability. Let ., := m +n p. There will be a dense
set of walls of marginal stability MSp., := MS( ; mn) for all (m;n) 2 Z2, gcdm;n) = 1.
For the Nt = 4 case there will also be such walls fogcdm; n) = 2. As usual these walls will
sit in the locus:

ImZz(; ;y)mz+n z)=0: (4.7.105)

The marginal stability walls will end at z = 0. We work in an arbitrarily small neighborhood of

z =0 and hence can treatZ (; t) as a constant. We will normalizeZ( ;t)tobe Z( ;t)= 1
at z = 0 and moreover we will take = i for simplicity. In the linear approximation the walls
MSmn will be

MSmn =f ( m+in): > Og: (4.7.106)

The marginal stability walls are in the upper half-plane for n > 0 and form ! +1 they
asymptote to the negative x axis, while form ! 1 they asymptote to the positive x axis.
Some of the walls are illustrated in Figure 4.14. Again, because we areorking at small z we
can in fact identify

MS( m;n; momo): MS( , mo;no); (47107)

an approximation which will be used throughout.
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The stable side of the walls is readily computed from
h; mnilmZ Z . =2na(nx + my) (4.7.108)

wherez = x + iy. Note that for x ! +1 the dominant term in the expression, 2an°x, is
always negative, hence the unstable side is always on the right in Figer4.14, as indicated by
the arrows.

Next, let us turn to the attractor ows. In the small z approximation the attractor ows

for m:n can be written for both cases in a uniform way:

z G;g)+2m+ ( (;p)+2n); (4.7.109)
which, for our choice of parameters = i and (4.7.104) is simply
mn  OW: z=(m a) in; (4.7.110)
and similarly we have
mn  OW: zZ=m in; (4.7.111)

Here we have neglected the variation in , again using the smallz approximation. (We also
rescaled time by a factor of 2.)
In order to prove (4.7.110) and (4.7.111) let us start with theN = 4 singularity with z = ~ ¥.

Writing the attractor equation as in (4.0.1), we get

z= ay° agab@b 1Zn( min s Y)i€? jzm0: (4.7.112)
Taking into account that the Kahler potential is given by K = log 4(Im¥)? log(Im ) gives
z ~ g+t2m+ ( ~ p+2n): (4.7.113)

Repeating the same calculation for theN = 2 singularity we get:

2 :
z= 1+ % = Va¥? Va0 @ iZn( nm; Y)i€? om0

z (@ q)+2m+ ( (p+ p)+2n): (4.7.114)

thus establishing (4.7.110), from which one can also deduce (4.7.111)

We remark that

1. The attractor ows for n,, are parallel to the marginal stability walls MS, a);n. In

particular, the ows for itself are parallel to the x-axis in the direction of increasingx.
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2. In particular, the bound state transformation wall S( m.n, ; ) is precisely the marginal
stability wall MSy, an. We will see that it is really a hybrid of conjugation and recom-

bination walls in this example.
3. The attractor ow for ., is parallel to the walls of marginal stability MS
4. Attractor ows always proceed from stable to unstable regions in accord with Property
3 of Appendix C.
Monodromy

It will be important in our story below to take into account the Z,-monodromy of the local

system of charges arouna = 0. The z-plane is simply a double-cover of the moduli space under

z!  z. The action on a general charge 2 = 1210 || 210 s
M = h; ip+h; pi: (4.7.115)
This takes ! , p! b, and is the identity on charges orthogonal to both ; . Thus,
if we write = ¢ a where g is orthogonalto and p then the monodromy image is
M =M = +2 a = gt+a.

Since there are no basins of attraction in the FHSV model, both chages and y will
be populated charges in the neighborhood of the singularity and will lave isomorphic Hilbert

spaces.

Attractor ow trees

Now let us turn our attention to the attractor ow trees for . .
We are interested in attractor ow trees relevant to considering as a core charge, that is,

trees of the form:
mn ' Cmang ¥C momy, 50 mye g o F(H myng)) i) (4.7.116)

Of course, charge conservation requires

X X
mi = m nj = n: (4.7.117)

i i
The attractor ow trees are systematically constructed from two principles: First, the ow
must split from the stable to the unstable side on the wall of marginalstability and second, the

charges must be conserved at each vertex of the tree.
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In Appendix F we give an algorithm for enumerating the trees and shwv, in particular, that
the number of such trees is nite. If n > 0 then the initial point of the tree can only be in the
upper half plane. Moreover, the initial point must be to the right of t he BST wall S( mn ; ),
otherwise there are no acceptable trees. The reason for this is & simple geometry forces the
trees that begin on the left of the BST wall S( m.n ; ) to intersect marginal stability walls
MSmono in a direction from unstable to stable side. But this is a forbidden vertex. This would
appear to pose a serious problem for continuity of the index. We diagss that point in the next

subsection.

Figure 4.15: Attractor trees, contributing to the realization of charge .2 on two sides of
S( o:2; )- We have chosen a=-4. Attractor ows of core with halos are pu rple, green and cyan
colored line, attractor ows of halo particles are blue lines.

As an example, consider the attractor trees contributing to the realization of charge o.2.
These are shown in Figure 4.15. Starting at. there will be only two valid trees. One is a two
centered solution + ., and the other is a 3-centered solution ( + 1.1)+  1.1. If, on the
other hand, we move the initial point t; from t. to t across the BST wall then these two

attractor ow trees cease to exist!

Continuity of the index

In the previous subsection we remarked that attractor ows of type (4.7.116) with nal core

charge do not exist for initial point t; to the left of the BST wall S( m:n ; ). As we noted, this
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would appear to pose a serious problem for the index. The only way thindex can be continuous
acrossS( m:n ; ) is if there exists another core charge that can form halos with o.40-particles
of the same total charge m.n . Because of theZ,-monodromy there is indeed another natural
core charge, namely y = +2 a = 50. The attractor ows for \ are parallel to the
x-axis but the ow is to the left. Similarly, the stable and unstable sides of all the walls of
marginal stability are ipped. (All this becomes more obvious if we write = o a and
M = o+ a asin Section 4.7.1.) One can write out conditions similar to those in Appedix
F for enumerating the attractor ow trees corresponding to core charge y . Again there will
be nitely many such trees. In particular, the initial point fora owt ree with terminating with

core charge \ must lie to the left of the BST wall
S(mn;)= S(m 2an; ™) (4.7.118)

Continuity of the index leads us to expect, and hence we conjectw, the following: The
sum of contributions to the index from ow trees terminating on core with initial point t.
in nitesimally to the right of S( m.n; ) is equal to the sum of contributions to the index from
ow trees terminating on the core charge \ with initial point t in nitesimally to the left of
S( mni)

As a simple check on this idea consider charges of typen.1. These only support a single
branch. At a point t. just to the right of the wall S( m.1; ) there is only a single tree

m1! + m1. This contributes to the index
( ma! + wm)=C DVt Yh i (m) ()= 16a() @ (4.7.119)

Atapoint t justtothe left of the wall this tree does not exist, butthetree 1! M+ m 2a1

does exist. The latter contributes

( m;1! M+ m 2a1) = ( 1)hM;m 221l 1jh My m 221 ( m 2a1)( m)= 16a( wm):
(4.7.120)
Now, thanks to the Z, monodromy () = ( v ) and so indeed the contributions to the index

are continuous.
As a second check we return to the example of the previous sectioror t. on the right of

S( o2) with a= 4 the tree with one branching contributes
= 16 ( 0:2) ()=32() (4.7.121)
and the second tree contributes

=32(  1)( 11)0=2 " (4.7.122)
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On the other hand, going back to Figure 4.15, starting fromt there will be two solutions with
the core charge y of the form v + g2 and ( m + s51)+ 3.2. The rsttree contributes
32( ) and the second 21 ().

For charges of type .2 we must take into account trees with one and two branches and the
computation becomes more elaborate. We have performed this chlke and the index is continu-
ous. The computation is very similar to that in given in the next subsedion. In general, upon
crossing the BST wall we have conjugation - since the core charge isplaced by a monodromy
image - at the same time as recombination - so the walls in this example é&xbit a hybrid of the

conjugation and recombination mechanisms.

Wall-Crossing near a superconformal point

MSs S( g21) MSi1  MSos

Figure 4.16: Transformation of the partition function through operators Uy, along a path P
from t; to t,.

In the next chapter, which is based on [38], we give a simple proof of th Kontsevich-
Soibelman wall-crossing formula based on supergravity halos. Moreer, as explained in Section
4 of [38], the line of reasoning adopted there suggests a generalizat of the KSWCF. The FHSV
model provides a nice example in which to illustrate the ideas.

Following [38] we consider the partition function

X _
Fa:pt)= d" 2p" _ ( mn:t); (4.7.123)

m;n
where _ ( mn ;t) are the \framed" BPS indices described in [38]. The sum here runs \er
n Oandm 2 Z. For our purposes these framed BPS indices can be identi ed with te halo
contributions to the total index ( mn;t) with () factored out. (This is also what we were

considering in Section 4.3.4.)
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Let us consider the pathP shown in Figure 4.16 going fromt; to t,. Using the reasoning of
[38] we see that the partition function at a point z = x + iy on P is given in terms of that at
z=1t;1 by

Y
F(g;pz)= Umn F(0; pta): (4.7.124)

my +nx< 0&n>0

Here the operatorsUy,., are de ned in terms of basic KS-transformations:
Tmn :=(1 g"p")°mn (4.7.125)
where D, is a di erential operator dened by Dmn g p :=2(n m )g p and
Unin = Ton Tond o0 (4.7.126)

The Un:n are only de ned for gcdm; n) = 1 and this restriction is understood on the product
(4.7.124) and similar products below. The restrictionmy + nx < 0 on the terms in the product
applies because only the wallMSn.n (de ned by my + nx = 0) that have been crossed while
moving along P should be included. Finally, the factors in the product are ordered o that
terms with increasing argument arg( m + in) are placed to the left.

If we identify the framed BPS index with the index of states which canbe described as halo
states around a core of charge then atz = t; there are no halo states and hence the core
simply contributes a factor of g 2. We have already seen in the halo description that such states
do not give a continuous index across the BST walls and we should expetrouble here too
if we only include q 2 in F(q;pt1). Indeed, the examples below will bear that out. Thus we
should include the monodromy image y and its halo states. Again, atz = t; the only halos
around \ are the single core state itself. Recalling that y = +2 a we see that including
these two cores gives

F(g;pt)= f+q % (4.7.127)

Substituting this into (4.7.124) and expanding as a series irp;q * we observe that the number
of terms in the expansion of the product contributing to a given moromial d" 2p" is nite.
Indeed, we can observe that we need to choose a partition of to account for the power of p.
The power of qis more complicated. The walls crossed in the rst quadrant all havem < 0, but
for x < 0 there will be a nite number of walls with 0 m < nx=y. Once these nonnegative
values of m have been chosen, the remaining negative values afi constitute a partition, and
therefore there are only nitely many choices. Thus the in nite pro duct will be well-de ned.

As an example of the issues involved let us examine the product

Y
Unn (0 + g ?) (4.7.128)

my +nx< 0& n> 0
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and let us extract the coe cients of g™ 2p and g 2p?. We rst consider the case ofgq™ 2p.

There are only two terms which can contribute to g" 2p. First, there is the term coming from

the expansion of

@ q"p®rmig?=@1 dq"p) *q? (4.7.129)
which enters the product whenmy + x < 0, i.e. whenm < x=y and contributes 16a to the
coe cient. The other term which can contribute comes from the expansion of

(1 qm Zap)8Dm 2a;1qa:(1 qm Zap)lGaq a (47130)

This contributes 16a to the coe cient and enters the product when m 2a < x=y. Thus

the coe cient of g™ 2p (that is, the framed BPS degeneracy) is given by

X
y<m 0
m < §<m 2a | 16a
X
m 2a< v 0

Now, a short computation shows that the BST wall S( m:1; )isgivenby x=y=m a, and
hence the index is continues across it.

A slightly more elaborate computation is required to compute the coecient of g™ 2p2.
The power of p?> can come from a single factor, or from two distinct factors. We hae listed the

cases in the table below together with the contribution of that factor and the range in which it

applies: 2

l (1 g"p?) Pm2q? gaq" 2p? m<ox

1 (1 qm ZapZ) 2D Za;gqa 8aqm apz % a< §
m 8D m 1

" (1 qzp° ziq? 8a(l6a+ 1) g™ 2p? 7< 3

v (1 q"% ap)SDmT a;1qa 8a(16a 1)qm apZ % a< §

V |[@ gp®®@1 q2pBPetqg?| 2Ba(m a 2) [

VIl @ ap®r@ q@pfPaigt | 2®am a 2) | %00

The range of in the last two rows is derived as follows. The expression

1 qp®* @ q2p* :eq? (4.7.131)

can contribute to g™ 2p? when ;+ = m. The factors are properly ordered for

O<Im( 1+i)( 2+i)= 1 2

13\We have taken m to be even for simplicity. A slightly di erent computation a pplies when m is odd.
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and hencem=2 < ;. On the other hand, for the second factor to contribute we musthave
1y + x< 0and hence ; < x=y. The range forV 1 is derived similarly.

When x=y >m=2 we can evaluate the contribution ofV using the identity

2

2 1
+ > : (4.7.132)

X a+1 m a
(m a 2)= 5 N >
< N

INE!

Now we can add up the contributions. For § < T there are no contributions, and the

coe cient is 0. In the range 5 < § < I aterms of types|, Ill and V all contribute.
The sum of the contributions of type | and Il is 2’a®. Using (4.7.132) we can evaluate the

contribution of terms of type V and thus derive the index

m a

1
2'a? 2Pa(a+1)2+2% Nyy t3 (4.7.133)

whereNy, = b x=yc. This is to be evaluated for x=y nonintegral.
When & a< § the index is zero. The way this comes about is interesting: The terms
| and Il cancel andIll and IV add up to give 2a?. MoreoverV and VI together have

canceling terms for 3. a < and the sum of these two terms becomes the constant (as a

function of x;y) given by
X
28a (m a 2): (4.7.134)

< mT a

N|E

The range of this sum can be writtenasa m a 2 < aand hence (4.7.134) is trivially
equal to 2%a?, thus leading to total index O.

In particular for our example .2 with a= 4 discussed in Figure 4.15 above we have

X
y<0 0

0< §<1 211

1< §<3 212
3< §<4 211
X
4< v 0

A number of interesting lessons can be drawn from these examples:

1. The BST wall S( m:2; ) is at § = 052, Note that at t. on the right of this wall

Nxy = T2 1landatt onthe left Ny, = T2, Thus, from equation (4.7.133) we see

that the index is indeed constant across the BST wall.
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2. Dierent terms from the product can be identi ed with di erent k inds of attractor trees.
Terms of type | correspond to single-branched ows with core while terms of type Il
correspond to single-branched ows with core . Terms of type Il and IV correspond
to 2-particle haloes with core and \, respectively. Some of the terms of typev and

V1 can be associated with two-branched trees with cores and y , respectively.

3. If we considered only one core charge , corresponding t& (q; p; 1) = q 2 then terms of
type V. would not give a well-de ned index as the point z on P approachest; sinceNy.y
goes to in nity and the sum of terms of type V grows without bound. On the other hand,
when we include the monodromy imagep there is a term-by-term cancellation between

V and V1 so that the index is in fact well-de ned.

We expect the features of the above example to hold for generabe cients of " 2p" with
n > 2. In particular, following the path P all the way from t; to t, should yield an identity of
the form

Y
Fla;ptz) = Unn F(0;pty): (4.7.135)
22(1 ;1 );n>0

Just like t;, at t, all halo states are unstable and the partition functions have only two contri-

butions from core charges and \ so:
F(a;ptz)=q %+ f (4.7.136)

and hence we arrive at the following (somewhat strange) identity fo formal power series inq
and p:
Y
qi+q= Unn g %+ (4.7.137)
2(1 ;1 );m>0

It is worth stressing that the operator Q m2(1 :1);n> 0Ymn does not act well on general
power series or even on general rational functions af; p. As we have seen above, it does have
a well-de ned action on ¢ + g 2 (and hence on nite sums of such terms). Thus, requiring
that such in nite products have well de ned actions on partition fu nctions puts a nontrivial
constraint on the spectrum of BPS states. This is the sense in whictthe approach of [38]

constitutes a generalization of the Kontsevich-Soibelman wall-crasing formula.

4.7.2 Massless vectors with adjoint hypermultiplets

In this section we consider an example with massless vector multipletat the singularity, intro-
duced by Katz, Morrison and Plesser (KMP) in [65]. The massless spéwmm at the singularity

is that of an N = 2, SU(2) gauge theory with some number of adjoint hypermultiplets. One
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distinctive feature of this example is that there are massless vectobosons at the singularity
in the Kahler moduli space only at some special value of hypermultiplé (complex structure)
moduli. If one moves o this special value of hypermultiplet moduli, the N = 2 vector multiplet
will become massive and the massless spectrum will consist of somemiber of hypermultiplets.
At the special locus where there are massless vectormultiplets wean invoke the discussion of
Section 4.6.3 above to conclude that the spectrum will also include ma$ess monopoles/dyons.
Note that when moving away from the special locus the monopoles wilbecome con ned due
to the dual Meissner e ect and will not be present in the massless sgctrum either. This means
that the monopoles must have zero BPS index.

As we discussed in more detail in Section 4.7.1 at the special locus theectrum leads to a
very complicated wall-crossing phenomena of halos states and themust be some hybrid BST
walls, across which both conjugation and recombination take place.On the other hand the
BPS index is preserved exactly as in the conifold like case, i.e. the indgumps across marginal
stability walls of the core charge with hypermultiplet halo particles. The rest of the massless
spectrum has index zero and thus across marginal stability walls withhalo particles containing
W -boson and monopole charges, as well as across BST walls for sudids, the index is trivially
constant. Thus the index of halo states changes exactly the sameay as for generic complex
structure with a conifold-like singularity. In the latter case the conditions of Section 4.3.1 are
met, and our main puzzle is resolved through the presence of the nfugation walls.

For completeness, in the remainder of this Section we recall a few thls of the KMP model
and justify the above statements a bit more. KMP considered the ompacti cation of type Il
string theory on a Calabi-Yau which is a K 3 bration over a genus g curve C. In particular,
the bration has a curve Cof Ay ; singularities, which corresponds toSU(N ) enhanced gauge
symmetry. Close to the singularity there is a eld theory description in terms of N =2 SU(N)

gauge theory with g adjoint hypermultiplets, with the Lagrangian

z z z
2L=Im Tr d* M/e'M' +me'M + Ye' + 5 & TTwi+i P w

W =Tr M ;M;]: (4.7.138)
Here, in (M '; M) are g adjoint hypermultiplets, representing complex structure moduli, V is an

N =1 vector multiplet super eld with eld strength W, isan N = 1 adjoint chiral multiplet,

representing Kahler moduli, and the scalar potential is given by
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V=T mipmY P+ mcm P YE2imd 0+ 20mY Y mi+

+2[mY;mY ][mi;r=|=1i]I : (4.7.139)
where m;, mj, and are the scalar components of the corresponding super elds. Thenoduli
space of this theory can be parametrized by diagonal traceless frices and (m;;m;) and
has the formCN 1t C20(N 1 where the rst factor comes from vector multiplet moduli, and
the second - from hypermultiplets. The point of enhancedSU(N) gauge symmetry occurs at
codimensionN 1 in vector moduli space and in codimension @N 1) in hypermultiplet
moduli space, which translates to codimensiorN 1 in Kahler and 2g(N 1) in complex
structure moduli spaces in the full 11A string theory. As we are interested in singularities of
codimension 1 in Kahler moduli space, we putN = 2,

The special locusm; = 0;m; = 0 is a complex plane, parametrized bya, = a 3. The
spectrum is that of aU(1) N =2 SYM with g hypermultiplets, that is enhanced to SU(2) at
the origin. The multiplet with charge 1 under this U(1) that becomes massless corresponds to
W™ boson in eld theory and to a state with charge in string theory. It has second helicity

supertrace 33 2 and thus

( )=2g9 2

where Zy comes fromg hypermultiplets and 2 comes from the vectormultiplet. The modulus
a corresponds to the period of the charge in string theory. Denoting by ap the period of the
dual charge p, h; pi = 2,[65] give the monodromy of these periods around the singularity

in the a-plane to be

8
< al! a
(4.7.140)
ap! ap 4(g a;
which translates to the monodromy of the charge lattice as follows
! 2g 2h; i = ( )i (4.7.141)

for any charge . As we mentioned above, going around the singulaty the Hilbert spaces
of halo states + m + n p will change in a complicated way due to the presence of hybrid
conjugation/recombination walls.

Now we change the complex structure away from the special pointfor example take non-

zeromj 6 0. Careful examination of the scalar potential (4.7.139) shows tlat in this case the
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point a = 0 does not have enhanced gauge symmetry, but there is a massivé = 4 vector
multiplet 14 (V*; *)with charge +1 under the unbroken U(1) as well as § 1) masslesN =2
hypermultiplets (M;"; N["), i = 2;::; g of the same charge. This massless spectrum has the same
BPS index but di erent spin character than the one at the special momplex structure value. In
particular the Hilbert space of became purely fermionic. From IIA string theory point of
view, there are 23 2 spheres in the same homology class shrinking to zero ([65]) and thePi$
index of massless stateis ()=2g 2. If we now go around thea = 0 singularity, the picture

will be exactly the same as in Sections 4.3.4,4.3.5. In particular the mordromy of the charge
lattice (4.7.141) is consistent with what we nd in (4.3.50),(4.3.32). The index will be preserved
across the conjugation wall, the Hilbert spaces of halo states will udergo the Fermi ip and

the spin character will also be preserved.

4.7.3 Extremal Transitions

In this Section we consider an example that was discussed in a numbef papers on geometric
engineering and heterotic/type Il dualities. It rst appeared in th e discussion of chains of
heterotic/type Il dual models in [66]. The spectrum at the singularity was analyzed from the
type IlA side in [67].

We will be interested only in the last step of the chain of heterotic/ll duals, connected by
extremal transitions, as described in [67]. On the type Il side thee are two CY manifolds
denoted by X4 and X3, and given, roughly, *> by hypersurfaces in weighted projective spaces
WP(1;1;2;6;10)[201+1%° and WP (1; 1; 2; 8; 12)[24F?*%. Each of these models has a heterotic
dual, given by certain Zg orbifolds. The main hero is the manifold X 4 with four Kahler moduli
ti. It develops a singularity on the locust, = 0 and transitions to the X3 model.

The description of the singularity in the lIA language is the following: fort, 6 0 X4 contains
a P! of blown-up A; singularities with 28 double points, where the blown-upP?! splits into two.
This family of P''s bered over the baseP* represents a divisor ofX 4, which is nothing else
than just a family of conics in P?> over P! with 28 degenerate bers. In the limit t; ! 0 the
ber P! shrinks and this gives rise to massless particles. One gets an enhaacgauge symmetry
at this locus and the massless spectrum consists of a massleS8/(2) vectormultiplet and 28
hypermultiplets, fundamental under the new SU(2). This has an interpretation on the heterotic

side, where the 11A modulust, corresponds to a Wilson line, of a point of perturbative enhanced

14 Here for instance V* := V1 + iv 2,

15We say roughly because the polytope, used to de ne X 4 in the language of toric geometry, has one additional
vertex and correspond to a di erent toric variety than just WP (1;1; 2; 6; 10).
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gauge symmetry with hypermultiplets coming from the Eg instanton degrees of freedom.

The transition to X3 occurs atty = 0 and on the IIA side consists of blowing-up the
singularities and obtaining a new CY with N, = 3 vector moduli and N}, = 243 hypermultiplet
moduli. The transition has a nice interpretation in eld theory, where one goes from the
Coulomb to Higgs branch [70]. On the Higgs branch the gauge group isompletely broken and
one is left with 2 28 3 =53 additional hypermultiplet moduli.

One way to verify the spectrum at the singularity, that does not involve the heterotic dual of
this model, is to compute the periods ofX 4 and nd their monodromy around the singularity.
In this example it is possible to do this explicitly by using a Mellin-Barnes representation of
the periods and analytically continuing the periods of X4 from the large volume point to the
neighborhood of the singularity. The advantage of the method of aalytic continuation is that
it automatically gives an integral symplectic basis for the periods, site we start with such a
basis from the large volume point. The details of the computation as wll as some background
material is given in Appendix G. Performing this computation one nds that there are two
dual vanishing periods at the singularity, denotedt, and t?, and given in terms of algebraic

coordinatesz; on the complex structure moduli space of the mirrorX4, by

ta= P Zi(1+ O(z))

p__
t = 2—i24 ((2410gz4 + 2l0g z, + 4log z3 + 8log z1)(1 + O(z)) + O(z)) (4.7.142)

These periods correspond to a pair of charges p with h; pi =2, respectively. From these

periods we see that there is a monodromy around singularity in thez, plane of the form

ta! ta

t2 1t} + 241, (4.7.143)

which is the monodromy, expected in theSU(2) gauge theory with 28 fundamental avors.
Nevertheless, as we argued in Section 4.6.3, the spectrum will alsorgain massless monopoles,
and the fact that the dual period t? vanishes at the singularity con rms this fact. The physical
argument of Section 4.6.3 implies that this charge is populated, but wecan supply further
evidence for the existence of a monopole (and indeed an in nite toweof dyons) becoming
massless together with theW boson at the singularity. In llA language the W boson is a D2
brane wrapping the generic ber of the shrinking divisor. The monopole is a D4 brane wrapping
the divisor itself (perhaps with some ux). The intersection product of this D2 and D4 is 2

as it should be. Classically, when the D2 volume vanishes at, = 0, the D4 volume vanishes
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also. On the other hand, the IR freeness of the theory implies thathis fact is not spoiled by
guantum corrections, as we have seen directly from the periods.&&he W-boson and monopole
become massless together. The quantum corrections do not spdhis relation, although from

the periods we see there is some logarithmic running of the proportiwality factor alf again as

expected from eld theory with =48 and

1=6_ 1=24_ 1=12

In the mapping of IIA with heterotic variables one identies z, e 25, where S is the
heterotic dilaton S = %OT i>—. Looking at the periods (4.7.142) we see that in the limit of
weak heterotic couplingz, ! 0 for xed t4 the dual period t§ becomes in nitely massive and
disappears from the spectrum. This is as expected in the IR-freehieory since the mass of
the monopole is proportional to alf If we keep the coupling constant non-zero and take the
limit t4;! O then we nd that in fact both periods vanish at the singularity and t he monopole
becomes massless. Moreover, the monopole state cannot be s@eihe perturbative spectrum
in the IR limit, but it does become massless at the singularity. In this sexse the perturbative
heterotic string is misleading with regards to the massless spectrum. Of course there might
be other dyonic massless states and the full massless spectrumpésds on the UV completion
of the eld theory. To determine the full spectrum one has to do a cetailed analyses of the
singularity in the 1IB picture and nd all the special Lagrangian cycle s, that shrink at the
singularity. Regrettably, this computation appears to be out of reach at present. We want to
stress that, as follows from the discussion in Section 4.3.4, the masss spectrum of the IR-

free gauge theory with fundamental matter isinconsistent with the wall-crossing phenomenon.

Indeed, the massless electric spectrum gives for the produ® in (4.3.33)

P(q) = a o* (4.7.144)

P
which is clearly not a polynomial.

If one goes through the extremal transition to the Higgs branch é the gauge theory, the
monopoles get con ned via the dual Meissner e ect. Thus on that sde of the extremal transition
they will not be seen in the spectrum. If one wishes to go back and ansition to the Coulomb
branch the ux tubes con ning the monopoles shrink and become tesionless at the transition
point, so one again gains free massless monopoles. For some relatistussion see [71].

To summarize, this model has a spectrum at the singularity, that dees not satisfy the
requirements of Section 4.3.1. We still expect that the BPS indices & preserved as one crosses

BST walls. To verify this we need to know the full massless spectrum tathe singularity. We do
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not have this information, and even if we did, as discussed in Section.4.1, it is not clear how
to sum all contributions to the given BPS state on both sides of the BST wall.

Similarly in the spirit of Section 4.3.4 and [38], we can form a partition fundion of the BPS
indices of states + m +n . Here isthe charge of the hypermultiplet that becomes massless
and p is the charge of magnetic monopole. The partition function changess we go around
the singularity and the net change is just the monodromy of the locdsystem of charges. As we
discuss in chapter 5 and in [38] this gives a restriction on the spectm at the singularity in the
form of a generalized KS formula which relates the product of KS trasformations around the
singularity to the monodromy of the local system of charges. Unfdaunately we cannot check

this statement here since we do not know the full spectrum.
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Chapter 5

Wall-crossing from supersymmetric galaxies

In this chapter we give an elementary physical derivation of the Korisevich-Soibelman wall
crossing formula, valid for any theory with a 4d N = 2 supergravity description. The basic
strategy we follow is similar to that of [15], which gave a proof of the (notivic) KS wall-
crossing formula in the context of N = 2 eld theory. The essential physical idea used halo
con gurations of particles bound to line operators. Our analysis will generalize this idea to
gravity, without introducing external objects such as line operators. The surrogate for the line
operator will be an in nitely massive BPS black hole, to which the BPS objects of interest are
bound. The physical cartoon to have in mind is that of a galaxy with a supermassive black
hole at its center, where the BPS objects of interest are the solasystems orbiting around
it. These galactic con gurations exhibit jumping phenomena when diding the moduli: when
crossing certain walls, halos of objects of a particular charge caneébpushed out to in nity or
conversely come in from in nity. The generating function for the BP S indices of these galactic
bound states transforms in a simple way when such a wall is crossebly the action of a certain
operator on the generating function, which follows directly from the simple halo wall crossing
formula (a.k.a. the semiprimitive wall crossing formula) of [5]. Collectiors of walls intersect
on real codimension two loci, together also with marginal stability walls for the individual
solar systems. Circling around these intersection loci will produce @equence of wall crossing
operations on the generating function. For a contractible loop in mauli space, the product of
these operators must be the identity. This turns out to be nothing but the KS formula. For a
noncontractible loop in moduli space we nd a generalization of the KSformula. This chapter

is based on [38].

5.1 BPS galaxies and the halo wall crossing operator

In Section 4.3.2 we gave the main properties of halo BPS states and fewe recall the necessary
details. A halo is a BPS con guration consisting of an arbitrary number N of particles with

electromagnetic charge proportional to a primitive charge surrounding a core of charge . For
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simplicity of exposition (only!) we will initially consider only halo particles of charge . The
charges are valued in a symplectic latticeL. The equilibrium distance R between core and halo

particles is given by [72]

h; i ]
R - m, (5.1.1)
where h; i is the electric-magnetic symplectic product of and , Z is the central charge

of , measured at spatial in nity (where the vector multiplet moduli are set att = t; ), and
=argZ. n - A necessary condition for existence iR > 0. When the phases of the central
charges of the core and halo line up, i.e. arg =arg Z = , the radius diverges and the halo
decays. Both core and halo particles can in turn be composites. Thabove formula for the
equilibrium distance still holds as long asR is much larger than the size of these composites.
Inthe limit R!1 | the halo particles can be considered to be noninteracting electric @int
particles, con ned to a sphere threaded by a uniform magnetic ux. The supersymmetric one
particle ground states are given by the lowest Landau levels, and th N -particle halo states are
constructed from those as anN particle Fock spaceF (N ) [10, 5]. We denote the Witten

index of these halo states by
PN st ) Tre (v y( D (5.1.2)

For N =1, we have ™% ( )= jh; ij( ). Here ( )isthe usualN = 2 BPS index, and
jh; ij is the lowest Landau level degeneracy factor. For generdll it is convenient to de ne a

Q

generating function. Introduce formal variables X;, i = 1;:::;rankL, and write X = ~, X, '
for a charge with components ; with respect to some chosen basis fdr. Then the generating

function is
Gk (X)) := X Fock(N )X *N = 1 ()" X Comd X (5.1.3)
N

This follows from standard Fock space combinatorics [5].

Ingeneral (+ N )6 () Fock(N ) in the full theory. The reason is that the true index
( + N ) in general gets contributions from many other con gurations of charges summing
up to the same total charge. For instance a core black hole of chge with two halo particles
of charge and a core black hole of charge + and one halo particle of charge will
both contribute to ( +2 ). At nite R, the corresponding Fock spaces can be expected

to get mixed due to quantum tunneling between these con guratiors. Only the sum over all

possible con gurations is guaranteed to give a well de ned index. Phased di erently, whereas

1The indices depend on the background moduli t1 . For notational compactness we will sometimes suppress
this dependence.
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the supersymmetric quantum mechanics of halo particles trapped irtheir potential minimum
at nite R is a well-de ned closed system in perturbation theory, nonperturtative tunneling
between this minimum and the minimum corresponding to merging with the black hole core
causes the wave function of the halo con guration to \leak out" and mix with con gurations
with di erent core black hole charges. It is no longer a well-de ned clesed system.

The leaking can be prevented, however, by taking the limit of in nite core black hole size,
as black hole tunneling is generically exponentially suppressed in the szof the black hole.
This is entirely an entropic e ect. For example the amplitude for fragmentation of an extremal
Reissner-Nordstem black hole of chargeQ = Q; + Q; into black holes of chargeQ; and Q; |
a process unobstructed by any potential barrier | is nevertheless suppressed ag z S where

S= Q2 Q? Q3=20Q1Q,[73]. Therefore intheQ!1 limit, taking into account
charge quantization, the extremal RN black hole becomes absolulg stable; there is no more
mixing with fragmented con gurations. Stability of large black holes is a universal phenomenon
| even Schwarzschild black holes stop radiating and become stable in he in nite size limit.

Thus, we will consider con gurations of BPS objects orbiting around a supermassive black
hole core of charge ., where we eventually send ! 1  while keeping the total charge of the
objects in the orbits nite. The objects themselves can be multicettered BPS bound states. We
can loosely think of this system as a galaxy consisting of many solar sjems orbiting around
a supermassive black hole, and we therefore refer to these obfjscas \BPS galaxies". The
simplest situation is when we have a single halo of particles of chargearound the hole, but we
also allow multiple halos, or more general, non-halo con gurations inveving interacting solar
systems with mutually nonlocal charges. So the most general BPSafpxy will be a complex
multi-particle bound state, with potentially strong position-constr aining interactions between
neighboring solar systems, and intricate exchanges of suns and plats between di erent solar
systems possible when dialing the moduli.

To make this more precise, we have to specify more carefully how weke the limit . !1
For our purpose of deriving the KS formula, it turns out to be convenient to single out a
particular U(1), give the core large electric and magnetic charges with respetd this U(1), and
keep the orbiting solar systems uncharged under thisJ(1). More precisely, we choose a set of
chargesC f o; 3 cgsuchthat o supports a single centered BPS black holeh o; 8i & 0,

andh¢; oi =0= h¢; Ji. We then set
c= o+t o+ ¢ (5.1.4)

and take !1 . The anisotropic scaling is chosen for reasons that will become cledater
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(see footnote 1). To avoid in nite lowest Landau level degeneracig, we restrict the charges of
the solar systems orbiting around this core to be orthogonal to bth o and 3, which means
they are uncharged under theU(1) associated to o and §. More formally, the sublattice of

orbiting chargesL o is thus
Low :=f 2Ljh; o =0= h; Jig: (5.1.5)

With this de nition, we also have 2 L.

The Hilbert space of BPS galaxies with core charge . and total orbital charge o1 has an
overall factor corresponding to the internal states of the coreblack hole, which we can factor
out to produce a factor spaceH _( om;t1 ), which can be thought of as the Hilbert space of
the orbiting solar systems in a background sourced by the core bl&chole. We obtain a closed
supersymmetric quantum system with this Hilbert space provided there is no mixing between
galaxies of di erent core charges, nor mixing with galaxies which do cotain charges in orbit
which are not in the restricted lattice Lo, . This turns out to be generically the case in the limit

11 , essentially because such tunneling events are either in nitely enwpically suppressed
along the lines mentioned above, or in nitely suppressed because #y require tunneling over
in nite distances. We give detailed arguments for this in appendix H, and prove that there is
just one exception, namely when it so happens that the attractorpoint of ¢ lies on a locus
with massless particles with charge inL o, , in which case there may be mixing between galaxies
with cores di ering by the charges becoming massless. This situatios nongeneric, and we will
assume this is not the case.

Thus, at xed o, in the limit 'l , we can de ne a proper Witten index for this
supersymmetric closed system, which we call the \framed" BPS galgy index, in analogy with

the framed BPS indices of [15]:
—cComity )= lim Ty (0 ( D (5.1.6)

HereC f o; 9; cgis the set of charges determining the one parameter family () of core
charges as in (5.1.4). It will be useful to introduce the generating dnction of framed BPS
indices:

X _
Ge(X;t1):= —c( oty )X ¢ om (5.1.7)
orb 2Lorb

The presence of singularities and associated monodromies gives risesome subtleties, which
we discuss in section 5.3. For the time being we simply assume we stay insa ciently small
open set of moduli space, away from singular loci, in which case we cagnore these subtleties

altogether.
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The key observation that makes this construction useful is that dthough the generic BPS
galaxy has a very complicated structure, its wall crossing behaviowhen varying t; is very
simple. It is entirely governed by pure halo decays, since the galacticore black hole cannot
decay and serves as a xed, primitively charged center. Whenevethe central chargeZ( ) of
some charge supporting BPS states lines up with the total central chargeZ = Z( )+ Z( o)
of the galaxy, a halo of objects with charge can be added or subtracted at spatial in nity. We
again restrictto 2 Lop. Inthe !'1  limit the wall in moduli space where this happens is
independent of the solar system charge, since in this limiZ=Z( ¢)=1,soargZ =arg Z( ¢) =
argZ( o) and we can set = ¢ = argZ( o;t1 ) in (5.1.1). Hence the wall of marginal

stability for the halo is 2

W =ft; jargle ' °Z(;t1)]=0g; stableside: h; ¢+ opilmle ' °Z(;t;)]> O:
(5.1.8)
We will call these \BPS walls."
The part of the Hilbert space of all BPS galaxies with xed core charge . that jumps across
a BPS wall W is given by the halo Fock space described earlier, with an e ective ca charge
, as seen by this halo, given by the total interior galactic charge = .+ o enclosed by
the halo. The corresponding transformation of the framed galadt indices can therefore be
inferred from (5.1.3). Roughly speaking, the terms in the generatig function G¢ in (5.1.7) get
multiplied by the factor appearing in (5.1.3). However, as we have jusexplained, the e ective
appearing in (5.1.3) depends on o and hence is di erent for the di erent terms in G¢, and
so the multiplication factor will be di erent. This is easily formalized by in troducing a linear

operator D acting on monomialsX by pulling down the symplectic product:
D X =h; iX : (5.1.9)
With this and an eye on (5.1.3), we de ne the following operator actingon polynomials in X : 3
D

T:=1 (1" X : (5.1.10)

Notice that this operator e ectively acts as a di eomorphism on the coordinatesX'. The trans-

formation of the generating function when crossing the wallw in the direction of increasing

2These are analogs of the \BPS walls" of [15] with e o playing the role of . However, an important di erence
is that now €' © depends ont; and is only an independent variable to the extent that o is.

3We remark that the operators =( 1P X satisfy o=( 1h % , o and hence the operators
provide a natural quadratic re nement of the mod-two inters  ection form, a point which a cionados of the
KSWCF will surely appreciate. (A related point was made in eq uations (3.27)-(3.29) of [15].)
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arglZ e ' °]is then
Y :
Ge(X)! U ()Ge(X): U (t):= TR, (5.1.11)
k2z+

where we made the dependence on the poirtwhere the wall is crossed explicit. We take to
be primitive. The product over k comes from the fact that the walls Wy coincide. (Thus, we
have now relaxed our initial assumption that only halo particles of primitive charge enter.)
To check that this formula is correct when going in the direction of inaeasing argg e ' °],
note that on the part of the generating function for which D > 0, going in this direction
means by (5.1.8) going from the unstable to the stable side, and viceersa for theD < 0 part.
Therefore, the wall crossing formula should multiply the D > 0 terms by halo factors (5.1.3),
and conversely remove such factors from thd < 0 part (or alternatively add such factors
when the inverse operation is performed, corresponding to decasing argg e ' °]). This is
indeed implemented by the fact that we dropped in (5.1.11) the absolte value signs appearing
in the exponent of (5.1.3).

Finally, we come to the central formula of this chapter. Consider a ¢osed contractible loop
P in moduli space (noncontractible loops will be discussed in section 5.3)Along this loop, the
generating function G¢ will undergo a sequence of wall crossing operationd | (ti). SinceP is
contractible, the composition of these operations must act trivially on G¢, for any choice of .
and starting point t:

U,(ti) Gec = G¢; (5.1.12)
[
where the product is ordered according to the sequence of walls@ssed: points crossed later in
the path are placed to the left. At the core attractor point t ( ) there are no multicentered

bound states involving ., and hence no BPS galaxies. So at this point we have simply
Ge (X)jtr( o) = X ©: (5.1.13)

Starting from this expression, the wall crossing formula (5.1.11) uiguely determines all framed
galactic indices given all (k ). This shows that G¢ is well de ned as a function to the extent
that the wall crossing factors are. (It is conceivable that a denseset of BPS walls can lead to
an ill-de ned expression.) Furthermore by varying . we can generate as many independent
functions G¢ (X ) as there are independent variablesX  associated to charges irLop. * This

in combination with the fact that the wall crossing operators U act as di eomorphisms implies

4This corresponds to the condition, discussed in [15], that t here are \enough" line operators to deduce the
KSWCEF.
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that the product of the sequence of halo wall crossing operatoraround a contractible loop must
be the identity
U,(ti)=1: (5.1.14)

We will prove in detail in the next section that this is in essence equivalaet to the KS wall

crossing formula.

5.2 Derivation of the KS formula

Imz,Z,>0 7/

Ilefg< 0
/
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Figure 5.1: This shows the neighborhoodJ in the normal bundle to W , \ W ,. The wall
of marginal stability is given by Im[Z( 1;t)Z( 2;t)] = 0 since Re[Z( 1;t)Z( 2;t)] is nonzero
throughout U. We choose the ordering of 1; » so that W , is counterclockwise fromW , with
opening angle smaller than . Then the BPS walls W;, ,:+, , are ordered so that increasing
r1=r, gives walls in the counterclockwise direction. We consider a patf in U circling the origin
in the counterclockwise direction. The central charges of vectary 1+ ry > with ri;rp 0 at

We now demonstrate that whenP is a small contractible loop intersecting a wall of marginal
stability the Kontsevich-Soibelman wall crossing formula is a consegence of (5.1.14). Let
us therefore consider two mutually nonlocal charges 1; » and a generichon-singular point
tms 2 MS( 1; 2) where both central charges are nonzero and;; » support BPS states. Using
the attractor equation it is easy to show that we can always nd a ( (and hence a phase o)
so that ¢ supports single-centered black holes andys lies on the intersection of BPS walls
W ,\ W ,. ® This intersection is real codimension two in moduli space and we now esider a
small neighborhoodU of t,s so that the only other BPS walls W o passing throughtns arise

from charges of the form %= r; 1 + r, , for rational ry;r,. We will denote charges of this

5We can take for example ¢ 2im[X @07 where (9 js the holomorphic 3-form evaluated at tms
and X is an arbitrary complex constant with arg X  argZi =arg Z,. This ¢ has a regular attractor point,
namely tms, because the equation we used to dene ¢ is nothing but the attractor point equation. Taking
the symplectic product of this equation with 1; 2 shows that h 1; oi =0= h; oi. Taking the symplectic
product with  ©@:9 shows that X = Z( o : tms ), SO, as we wished, the central charges line up at tms . Although
o will in general not be quantized, this is acceptable since al | we care about in the end is the limit [



116

e Z>
KZ, t ~—
to ! ZZ to Zl
2 1 Z
N 2, 2k s %Zz
Zq
AR
Z;

Figure 5.2: Ast moves along the pathP the central charges evolve as in this gure. Note that
Im(Z1Z,) > 0 means thatZ; is counterclockwise toZ, and rotated by a phase less than . In
that case the rays parallel tor;Z, + roZ, for ri;ro 0 are contained in the cone bounded by
Z1R: and Z;R. , and ordered so that increasing 1=r, corresponds to moving counterclockwise.
When t crosses the marginal stability wall the cone collapses and the rayswrerse order. Ast
moves in the regiont, the quantity arg[Z e ' °] > 0 is increasing for all ;,,, with ri;r, 0
while at the point tg the argument is decreasing.

form by .,.,. Since the pointtys is non-singular a loop around it is contractible and (5.1.14)
holds.
Below we will argue that, perhaps after choosing suitable linear cominations, we can assume
that the only populated charges of type ,,., in U in fact have (ry;rz) 2 Z? with ry;r, both
0 or both 0. We can order 1; » so that the con guration of BPS walls and the marginal
stability wall are arranged as shown in Figure 5.1. Suppose we begin dhe point t; and move
along the path P in the counterclockwise direction. We rst cross the BPS walls in the region

ImZ1Z, < 0in order of increasingri=r, and increasing arg[Z e ' °]. Then we cross in the

rir o

region ImZ1Z, > 0 again with increasingri=r, but now this corresponds to decreasingvalues
ofarglZ , , e ' °]. Thus we have

Y * . Y .
Trors'"? LI (5.2.15)

2

[—;% [—;%
where the arrows on the product mean that increasing values of=r, are written to the left,

and is the BPS index ofr; 1+r, »intheregionU withIm Z;Z, > 0 and< O respectively.

ryira

Taking into account the relation between the ordering ofr;=r, and the ordering of the phases of
the central charges illustrated in gures 5.1 and 5.2 we can also write¢his in the more traditional

way:
Y . Y
Tt = T e (5.2.16)

argZ;,; ,% argZ;,;y ,%

This is the KS wall crossing formula.

We still need to Il in a gap above and justify the important claim that w e can choose
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1; 2 sothatonly ry;r, both 0 or O are populated. This \root basis property" can be
rigorously proven in certain eld theory examples [50]. We o er an alternative justi cation here
by requiring that the spectrum of BPS masses should not have an aumulation point at zero.
(We are therefore using that the point t,s is not at a singularity of moduli space since that
assumption is violated, for example at a superconformal point.) Denpting the central charges
of 1; 2 attns by 1; 2 we therefore know that there is an > 0 so that populated charges

ryr, Must havejry 1+ 12 2 > . Inthe (r1;r2)-plane this is a strip of width 2 centered on
the line with slope  ,= ;. (Sincetns is on the marginal stability wall ,= ; is real.) If our
point tys is generic then there is in fact a neighborhood of,s in the marginal stability wall so
that, moving along this wall the spectrum of BPS particles of charge of the form .., must
remain constant. But the slope = ; will vary in this neighborhood. This means that there
must be an unpopulated wedge (and its negative) in the 1; r,)-plane. By choosing a suitable
redeniton ;! ai1+by »! c1+d, we can ensure that the populated states in the
complementary wedges are of the form,.., with ry;r, both 0 or both 0.

We end with two remarks

1. The root basis property of BPS states is addressed in the mathmeatical framework of
Kontsevich and Soibelman [7] in a slightly di erent way. A part of their \ stability condi-
tions," used a quadratic form on the lattice of chargesQ : L ! R and only the charges
that satised Q( ) O were considered. The quadratic form also has the property that
Qjker z < 0, whereZ is the central charge mapZ : L ! C. Thus, restricting the set of
charges entering the WCF toQ( ) 0 means that we have to discard certain wedges in

the space of charges surrounding the directions wittz ( ) = 0.

2. Finally, we comment on the \motivic" or \re ned" version of the wa Il-crossing formula [7]
which takes into account spin degrees of freedom [74, 75]. The eldheoretic derivation of
the motivic KSWCF given in [15] can also be carried over directly in the present context:
We now let X be valued in the quantum torus. We replaceG¢ by the generating function
of the spin characters, and across the wall®¥ we will nd that G¢ is conjugated by
certain combinations of quantum dilogarithms. However, we stresghat the justi cation
for the derivation in [15] relied on the existence of protected spin characters' which
can only be de ned if there is an SU(2)gr symmetry in the supersymmetry algebra. In
general this symmetry is not present in supergravity, and hence he validity of \motivic"
generalization of the wall-crossing formula is a little mysterious. In fat, as is well-known,

the spin character depends on hypermultiplet moduli as well as vearmultiplet moduli.
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(For examples in the weakly coupled heterotic strings with type Il duals see [69, 76].)

5.3 Generalization to noncontractible loops

In our derivation of the KS formula, we considered a contractible log@ P in moduli space.
Nothing prevents us from considering instead a non-contractible lop, in particular a loop
circling around a point on the discriminant locus. Such a loop will be closd in moduli space
but not in covering space, and the local system of charges undeogs nontrivial monodromy
Mp : L ! L after going around it.>° As a result the generating function will not be exactly
preserved, and (5.1.12) must be modi ed.

As mentioned under (5.1.7), the proximity of singularities associatedto nontrivial mon-
odromies can lead to some subtleties in the de nition of the framed BFS indices_ ¢ ( orb;t1 ).
Besides the usual jumps at marginal stability, there are two otherkinds of formal index \jumps"
(or rather relabelings) related to the presence of singularities ananonodromies. The rst occurs
whent; crosses a cut, where the choice of charge lattice basis jumps byrsention. This is just
a relabeling of indices, equating framed indices involving charges relatl by the corresponding
basis transformation. If desired it can be eliminated by going to the noduli covering space.
The second event occurs whet; crosses a conjugation wall in the language of chapter 4, i.e.
when the core attractor ow gets \pulled through" a singular locus in moduli space. In this
case new particles (becoming massless at the singularity) appear irrltt while the apparent
core charge as seen from in nity jumps, keeping the total charggand index) unchanged. This
is again some kind of relabeling of indices, equating framed indices invahg shifted core and
orbit charges, but this time the jump cannot be eliminated by going to the covering space.

More formally, when crossing a cut fromt; to t? , charges jtg andM j, getidentied.

Thus the indices on the respective sides of the cut are related by
_c( orb;t(l) )= _mcM  omity): (5.3.17)
A short computation shows that the generating functions get acordingly identi ed as
Ge(Xit1)=M Gy 1c(Xit?); (5.3.18)

where we de ned for any automorphismM of the charge lattice a map on generating functions

by
X X
Vi aX = axM : (5.3.19)

6To avoid cluttering the discussion, in the following we will not bother specifying at each step in which
direction we orient loops, monodromies etc.
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When crossing a conjugation wall fromt; to t? , by de nition, the core attractor ow gets
pulled through the discriminant locus, so that if initially the core attra ctor ow did not cross
the cut ending on the discriminant locus, it now does, or vice versa. B physical continuity, the
core charge as seen by a local observer at the core must remaig. Hence, if the monodromy
transformation associated to the cutis ! M , the apparent core charge as seen by an
observer at spatial in nity jumps from .to M .. Since the total charge must remain the
same, the charge in the galactic orbit must jump from o to o +(1 M) ¢ (see [34] for
a detailed discussion of how this happens physically). Note that to reain in the picture in

which the orbit charge remains nite when !'1 | we should therefore require

M o= o M 9: (5.3.20)

oo
1
o

The framed indices on the respective sides of the conjugation wallra then related by
“clamiti)= “yclom+(@ M) t}): (5.3.21)
The corresponding generating functions are related even more sjoly by
Ge(X;t1 )= Gu c(X;t?): (5.3.22)

We can now collect these results and state the generalization of (5.12) to the case of a
noncontractible loop P around a point to of the discriminant locus, with associated monodromy
M . As before, we assume that no massless BPS particles exist&t( o). Since in general there
are massless BPS particles present at the discriminant locus, we asse in particular that we

have chosen ( to be such thattyo 6 t ( (). There are two cases to distinguish:

1. Singularity without conjugation wall . This is the case for singularities at in nite
distance, such as the in nite volume limit of IIA on the quintic. We can a ssume there
is a single cut ending on the singularity, across which the generatinguhction transforms
as in (5.3.18). Going in nitesimally across the cut in one direction or alorg the full loop
P in the other direction (along which the generating function undergces a series of wall
crossing operations as before), should give the same result. Th5.1.12) generalizes to

Y
U, (t) Ge=M Gy :¢: (5.3.23)

i
2. Singularity with conjugation wall . This is the case typically for singularities at nite

distance, such as the conifold point of IIA on the quintic. Assuming 6.3.20) and taking

without loss of generality the cut on top of the conjugation wall for convenience, the
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transformation of the generating function when crossing the wallis given simply by G¢ !
Guc! M Gg,andthe analog of (5.1.12) becomes
U,(ti)) Gc =M Gg: (5.3.24)
[

By the same arguments as before, we can infer from this the opetar equation
Y
U,(t)= M; (5.3.25)

which generalizes (5.1.14).

As an application of this formula, consider a singularity to where a charge becomes
massless, but no other linearly independent charges do. Becaugd ) acquires all phases
around tg, the loop P will necessarily cross bothww and W . If the loop is chosen such

that these are the only walls that are crossed, equation (5.3.25) lm®mes

M = U U
Y Y
— 1 ( 1) kD X k k( k)D 1 ( 1)kD Xk k( k )D
Kp k
= X «K(k)D . (5.3.26)
Recalling (5.3.19), we see this is equivalent to
X
M = + K2(k )h; i : (5.3.27)

k
Thus this generalized KS formula relates monodromy to the the BPS gectrum. In the

case of the simple conifold, (k )= k.o and the above formula reduces to the well know
Picard-Lefschetz monodromy formulaM = + h; i . We discuss such relations in

much more detail in chapter 4.
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Appendix A

Attractor ow trees near the large volume point

In this appendix we summarize some facts about attractor ow trees. It was conjectured in
[11, 27] that the existence of multicentered BPS solutions of supgravity can be analyzed in
terms of the the existence of split attractor ow trees. Some attempts at making this conjecture

more precise were made in [5, 9].

Split Attractor Flow Conjecture (SAFC)

a) The components of the moduli spaces (inx) of the multicentered BPS solutions with
constituent charges ; and backgroundt; , are in 1-1 correspondence with the attractor

ow trees beginning at t; and terminating on attractor points for ;.

b) For a xed t; and total charge there are only a nite number of attractor ow trees.

A practical recipe of identifying the intervals with the corresponding tree topologies is the
following: tune the moduli at in nity such that they approach the r st MS wall of a given
attractor ow tree. Then, as we change the moduli across that MS wall, the corresponding
component of moduli space of solutions to (2.7.58) ceases to exist.

We now give an explicit description of an attractor ow tree. First, w e introduce some
notation. For a general tree we will denote vertices of the tress ¥ ~, which is a vector of + and

signs and the sequence of + and corresponds to sequence of right and left turns that one
needs to make when going from the origin of the tree to that vertex Quantity X related to
a particular vertex ~ will be denoted by X (). The attractor equation for the edge starting at
vertex (a), looks like:

i (@)

2e YIm (e ()= H(s®); (1.0.1)

where (t) = pﬁe‘“” (in 1A picture), eV is the metric warp factor, ( is the phase of

central chargeZ( @), s(@ is a parameter of the ow on this edge, and
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H (@ depends only on the moduli at in nity and is determined recursively by summing

contributions from the origin of the tree up to vertex ( a):

H=2Im@e ' )j,

H® = HO)= H Sms
HED = HE D= O @
HOCD = HO D= HO) (gl (1.0.3)

where s{& are values of parameters along the ow, for which surfaces of mainal stability are

crossed:

h®  Hi
B
) = h &Y H®
ms h G ()
h (O HO)
sl = s (1.0.4)

hH () "7

The solution to the attractor equations (1.0.1), that is, the image of the ow in moduli

space, can be written in closed form in terms of the entropy functia S(p; ¢) [28]:

@s + |p A
tA(s®) = @@?75 — (1.0.5)
@ P (=)

Here, the parameters(® varies as: s® 2 (0;1 ) for the terminal edge, and s® 2 (0; s\¥)
for an internal edge.

For a given attractor tree to exist, all its edges have to exist. Teminal edges exist if the
discriminants of terminal charges are positive, or if the terminal charge is pure electric or

magnetic, which corresponds to the ow going to the boundary of noduli space. Inner edges

exist if:
1. the ow reaches the MS wall at a positive ow parameter s@ >0
. . . (a
2. MS wall (not an anti-MS wall) is crossed, i.e. 2 ) J (@) > 0

(@ ))
3. MS wall is crossed before the ow hits a zero of the central chaye (if present):

s@ s o @ o

(a

where s, ) is the value where the ow crashes on a zero.
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For a D4-D2-D0 charge we give explicit formulae for attractor ow in moduli space:

%(s) = D(P(s)®Qu(s) + P () 6B(S)=P(S)

(8)= P+ P()+ Q(s)+ ap(s)dV = s H

2im(Z) .
H= ——2 =
izt
2 QJ+P B J , QJ+P B J J°® .
=g— 2 J+J + — : 1.0.6
U'ﬂ\]s P 32 P j2 6 ! ( )
3

In the formula for H we used the large]; approximation and dropped relative corrections
of order O(J; 2). The expression fort?(s) was found from (1.0.5) putting p°(s) = 0. Strictly
speaking, this is not true because already H contains non-zero contribution to p°(s). To
estimate the error that we make, take the expression for the modli for a 1-parameter moduli

space and expand it aroundp®(s) = 0. The rst correction looks like:

#
p°(s): (1.0.7)

2Q(s)”  3P(5)(s) | . p§F’(S;)Q(S)(ZQ(S)2 3P (s)x(s))

1t(s) = P(s) 3P(s)? P(92(Q(s)2 2P (S)%(9)

Focusing onJ; dependence, (s) in (1.0.6) can be written as

(s)= 0O(J; °2);sP + 0(J; ¥2);sQ+ O(J; ?);s¢p + O(IF?) (1.0.8)

This means that, for instance, fors of orders  J; 2" with O 2 (which covers all

the cases of interest of chapter 2) the correction in (1.0.7) is of ater

1t(s) 0@, 2)+ 0, ¥2): (1.0.9)

and can be neglected in largel; limit.
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Appendix B

Lefschetz SU(2) action on the Higgs branch ground states

In this Appendix we demonstrate that Lefschetz SU(2) action on the cohomology of the Higgs
branch moduli space coincides with spatial group of rotations. We tye a brief derivation of the
Hamiltonian of SSQM on it's Higgs branch, together with the rotation generators. Given the
two we will conclude how rotations act on the eigenfunctions of the Fmiltonian.

We rewrite the Lagrangian of SSQM (3.1.1) after integrating out auxliary elds and for

simplicity the case of only "-" elds present;

L = E()i2+2| —)+J@ aj2_|_|é a@ a @ a a r2j aj2 Zi(J aj2+ )2 a‘X _ a

ipé a 2y aa (2.0.1)

In the regime (3.1.9) we will integrate out elds %; as well as "radial* components of ;
which become massive due to the potentialzl(j 2j2 + )2, In order to decompose elds into
"radial" and "angular" components we choose a patch in the eld space where * 6 0. Introduce

the following coordinates:

R T T
- BIE ) - 202
Here, z' are coordinates on one patch ofCP¥ 1, ~is the "radial" eld, whose modulus will
become massive andknk? = (®Y; 1) = 1. Fermions are decomposed according to the supersym-
metry transformations:

a_@a +@a +@a

a @' @

is the antiholomorphic part of the connection on the canonical bunde of

=n.+ @R AT (2.0.3)

Here, Ai = (]_—+Pz7iﬁ



CPk 1, Let's list a number of expressions for later use:

(W@ = 3A = 30+ 7P
. — 1 f— i
(@0 = A = o+ P

(Wim= Az A D

. - i 3 E)IZJ
@07 = - uw 1a+ 2P

(#; @m) = 2 rzp 2L

T FIO NN FIOL
(@;n) = g 2 szz—rk:>+ AL
S T R NI O

j (Z%25 + 2¥2) 2207+ 72 22724k +52429) |

(@7;@n) = 20+ 722 a1+ jZj2)2 8L+ jZij?)3

Introducing the notation ~= e' the kinetic term for can be written as
2 o
j@ fP=(@ )+ *? @ w8 + Aj*ere;
where! iFjS is the Fubini-Studi metric:

1 FS = pl pZ

T @ 7 @+ jpe

To write fermion kinetic term we introduce fermion eld

1 1

- SA SR
and direct calculation gives:
S @t @tt=5 (@+(Fm) (@ (Wim) o+
+i§!53 Yi@+ (@)~ 2 KN (@ @) (YT

@ (@) £ (@R (@ R(R:R)

Finally introducing °= e ! , we can write the full Lagrangian as

2

i
km
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(2.0.4)

(2.0.5)

(2.0.6)

(2.0.7)

k i,m

(2.0.8)
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L= =x’+i —+(@ )°+ > @ i(RY;8) 2+ Z!ES@Zi@Zj_‘_

2
i 0 00,1 2/Fs i Pk i K
+§ D D +é !ij D "+ ! z" DI . i m
i Olci+i |OC|
1 r7
r2 2 2_(2+ . A AR T - 0, 0 . (2.0.9)

whereD = @ +(#®)+i_D=@ (#;8) i_C=(H#@n) @ @)Hnand |
are Christo el symbols of the moduli space metric. Note that this Lagrangian, though rst
written for certain patch in eld space, is valid everywhere in eld space. Phase is a gauge
degree of freedom. In order to restrict to gauge invariant con giration we have to nd the
canonical momentum, corresponding to and put it equal to zero. As enters the Lagrangian

guadratically this amounts to just integrating it out and gives:

L=x*+i —+(@ )+ 2[°@7@Z +
i i C o ,

+§( O@O @OO)+§2!ES ]@|+ Lm] kZm @] i kaklz_m
F( + 1 iljS j |)2 i 0 ich+i i 0C|

2 0 O (2.0.10)

-

22 Zi(z_,_#)z O ~ 0 Z!ESj_X,_i i

Dropping prime in  9for ease of notation we can write down the corresponding Hamiltonia

2 ; ; k ioom 5 mok
— p>2< p 1 1k I n m I I 7z
H=">4+F 4 = + _ + P+ p—
2 T aT Tz s BT g o mnk 1+ 27 @+ 272
H i i m-m -l
i m o S I pz"z +1 + 21FS | iy2,
Pt T @ @y ar g ezt T
1 : L2
+r22+2—(2+ Y+ %~ o+ S Ix ~ T4 = + : (2.0.11)
In the limit we are considering, namely 1; 1, 32 1, eldsx and ; wil
become massive with a Hamiltonian
H=H® +v
2 . r
HO. = S 224 o 2y 424+ Z + (2.0.12)

where we separated the quadratic part from the interaction with aher massless elds. We see

q YT
that gets an expectation value and becomes massive with large mass = 4% and we have
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to put this eld into it's oscillator ground state. Fermion elds , should be put into the state,
annihilated by operator + . Expectation value of gives mass tox eld, my = E,
but since the kinetic term for x contains 1 we have to take into account exchanges of, or in
Hamiltonian language, take into account rst excited states of x-oscillators. In all, the e ective
Hamiltonian for massless eldsz' and ' will look like:

X j< Mo jvj .. >j

Hs‘ffi:< 2;;; JVJ 2;;; >+ XMEO Exm (2'0'13)
n

where we need to account for excited states of only. The result is as expected

1 i
Hfif-fizj_j pk"’izmnknm !Lks pi EzmnlmI +
1 , .
*2 Ry (") (2.0.14)
We choose fermionic ground statg0Oi to be
1joi = 2j0i=0; 8n: (2.0.15)

The order of spinors in the Hamiltonian itself should be normal order,as usual. Ground states

of this Hamiltonian have a general form

nNi... ng,. mygl... m 1.
ningmaiimg 21"' Zk ! : ’ (2016)

and correspond to elements of Dolbeault cohomology of the modulipggce through identi cation

g g1 w2

@dm
n dzn n2, anm @ . (2 0 17)
2 . . FS @dﬁ] . . .

Forms ., m,:m,dz"t:dz"kdz™2::dz™ are harmonic representatives of Dolbeault cohomol-
ogy H¢' (M ) and Hamiltonian (2.0.14) acts as a Laplacian on them. Now we can writespatial

rotation generators M;,i = 1;2; 3, following from the Lagrangian (2.0.10) as :

ME= Bhogxe T wps kT (2.0.18)

Once we go to the Higgs branch we have to take expectation of thesgenerators in the ground

state of massive oscillators which gives
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Mi FS k i I.

I
=

(2.0.19)
Using the identi cation (2.0.17) we get
M3: WIFkS kl_!l_ k2|2 zé dzm@dm-i-dzm@dT 5
M* = WleS kll2= WleSdzl/\dzk
@ @
Moo= wis k2= tw ok ad (2.0.20)

which is exactly (3.2.29) if we put 1.
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Appendix C

Properties of Attractor Flow trees

In this appendix we review some properties of the attractor mechaism and attractor ow trees
relevant to the discussion in chapter 4. The attractor ow equations for the Kahler moduli t?

for given charge have the form [19, 20]:

d

70O = 2e"g"@z(; ()i
d . .
g€ =iz i (3.0.1)

where is the parameter along the ow, €V is metric warp factor, g,, is the metric on the
moduli space. The attractor ow can be written in an integrated form, which is particularly

useful for multicentered generalization [11]:

2e YiIm(e ' ()= + Hi (t1); (3.0.2)
where (t) is the period vector, =arg Z(; t), t; is the starting point of the ow and
Hi =2Im e ' * (ty) : (3.0.3)

Now we list and prove a number of properties of attractor ows that are useful in the main
text.
Property 1. For any two charges and the attractor ow for charge + crosses the
(anti)marginal stability locus Im Z(; t)Z( ;t) =0 at most once.

Proof: (3.0.2) determines the value of the ow parameter , for which the locusIm Z(; t)Z( ;t) =

0 is crossed to be

h i
2lm Z(; t1)Z( ;t1)
m ()= TRz ) 304
As (3.0.2) is linear in , there is only one solution (3.0.4).
Let's denote the point where the attractor ow of + |, starting at t, hits the locus

Im Z(; t)Z( ;t) =0 by B(t).
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Property 2: For any t 62AMS (; ) , the distance in the moduli space fromt to B(t) along

the ow of + is nite.

Proof: Using (3.0.1) one can write an identity:

z

2 Z Z
dev  2a%zj 2°@jzi = “dzj; (3.05)

Z
dl 1
d d— = d t_agabt_b = é

wheredl is a line element along the ow, parametrized by . Using the fact that djZj < 0 along

the owand ¥ 1, we get

2
(3.0.6)

Z
ms (t) dl
d 5 Qz(+ i

0
Th parameter s is nite, since the only place where it can go to innity is on the locus

;1) = 0, which belongs to AMS (; ). Thus we can conclude that

Z(+
Z ms dl 2
d — <1; (3.0.7)
0 d
which means that the distance is indeed nite
Z
d ﬂ <1: (3.0.8)

0 d

in the neighborhood of(A)MS(; ) always has

Property 3: The attractor ow of charge

the direction from stable to unstable side.
Indeed, writing the attractor equation for charge as in (3.0.1) and taking inter-

Proof:
section product of it with  we get:
Z(5 1) , Z(; t1)
2 Im - Z(;t) = h; i+2m =L 7Z(;t ; 3.0.9
AR iz et (309
Dividing both sides by h; i we get
eV Im Z(; t)Z( ;t
( )-( ) ( ms); (3.0.10)

2J'Z( ) h; i
which proves the Property after taking into account the de nition of stable/unstable side (4.2.4).
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Appendix D

Arrangement of conjugation walls near Z()

(
B a(t) Bo(t) Ba(t)

Figure D.1: Location of conjugation walls S(n ; ) as a function of n. Two attractor ows for
charges + and are shown.

In gure D.1 we show the general arrangement of the wallsS(p ; ) walls for p2 Z in a
su ciently small neighborhood of Z (). Let us give a schematic proof that this arrangement
of walls is correct. To do this we nd the gradient vectors, entering the attractor equations for
charges + p , at the locus Z( ). For this purpose we can neglect all the moduli except the
one parameterizing the plane in gure D.1 and can further choose it b be the period of , so
that Zn( ;z) = z in a small neighborhood ofZ ( ). In this e ectively one complex dimensional

case the attractor equation will look like:
z= 2¢”2@jZ( + p ;2)j; (4.0.1)

This can be written out as
s

z= eYg?Z@KjzZ(+ p ;z2)j eYgrrels? i—h@ Zn(; 2)+ pz ; (4.0.2)
h

and we want to study this ow in the leading approximation near z = 0 as a function of p.
Making a further choice of the phase ofz we can assume without loss of generality that
argZn(; 2)j;=0 = , sothat AMS (; ) is the positive real axis and MS( ; ) is the negative

real axis. In the neighborhood ofz = 0 the metric will in general be singular. For example the

1A more complete calculation would involve writing the gener  al attractor equation for the moduli  y2, assuming
that close to the zero of 's central charge we can write Zn( ;z)' ay? := z and then projecting the attractor
ow y2 on to the direction z = ay2. It gives the same result as we get below.
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metric will typically behave like g** Nevertheless, we can choose a gauge so that

R
log jzj2*
@K is continuous and then we can write the leading approximation to the ow equation for
+ pznearz =0 in the form
dz

where K > 0 is constant and is a complex constant. The stable side is determing by the
sign of h ; i and taking h ; i > 0 the stable side will be on top of gure D.1. According to
Property 3 from Appendix C the attractor ow will cross ( A)MS( ; ) from stable to unstable
side which corresponds to Im > 0. Then even if g? is singular, we know that it is positive,
and hence the tangent vectors to the ow haveg—y < 0 while g_x is positive for p > Re and

negative for p < Re . Thus, in a su ciently small neighborhood of z =0 the ows will look as

shown in Figure D.1.
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Appendix E
The BST walls on the conifold

In this section we determine the positions ofS( m:n ; mono) walls in the conifold example of
Section 4.4. As discussed on Section 4.4, we are going to use large vo&iapproximation® to
solve (4.4.68) and nd the branching point of the ow .n (= mqopo+ o from (4.4.69).

The starting point of the owis t; = zP + LP€ and the large volume approximation of the

holomorphic central charges are given by

Z"( monoity ) = % m% n°

Z"(mnit1)= mz n

ZM"( ity ) = % mz (5.0.1)
In terms of the harmonic functions H = + Hj , entering (4.4.68), the moduli on the rst

branch of the attractor tree are given by [77, 28].

- A
HO + 'Qszzy
Dasc Y2y© = 2HOHA + Dagc HBHC

Q%% =1=3Dagc Y y?y°©

M = Ho(H®)?+1=3Dagc HAHPH® HAHAH® (5.0.2)
h .
q —1Im —hi,z Cm ﬁitl ).Zh( mn 1 )
The branching point corresponds t0 ms = hma;Hii = 5% — :

and the only problem in nding the moduli at the brancing point is solving the equation

Dagc YBY® = 2HOHA + Dagc HBHC from (5.0.2). In the present case this reduces to

D222Y?y? + 2D 122y y? + Dipy'yt = 2HOH, + DoppH?H2 +2D1pHH2 + DyppHH?

D122Y?y? + 2D 112y y? + Diny'yt = 2HOH; + D1ppH2H2 +2D11oHH? + Dyps KE613)

1We use the large volume periods in what follows. Close to the d iscriminant locus, the periods get nite
quantum corrections, but one can check that the e ect of thes e corrections is subleading in 1=.
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It is easy to see thatH!* O(L®) and H? O(L?) and we will look for the solution of (5.0.3)

of the form

1
yh= v * Ey(lz) +o

V2= Lyd) + Ve + i

(5.0.4)
This allows to solve (5.0.3) as an expansion irﬁ and gives
S —r
3 . . _
ya) = L 37 sin? 2 %sm Im[ze 8 ]
q — _ _
7 2me? ( 2z 1)Im ze?®
1 _ i .
Yo = o— _ - : (5.0.5)
2 sin*2  Tsin Im[ze 3 ]

Note that triple-intersection numbers completely disappeared fran the answer! Now we can

write our nal expression for the moduli at the branching point :

n Ime? ( ™z 1 n . . 3m . »
Zyr = — . ( n ) —— —sin2 sinf2  -—sin Im ze ¥
M  sin?2  Msin Im[ze 3 ]° M ' 2n
o 30 3 .5 m . 3i
isin Im ze -sin“ 2 —sin Im[ze 3 ]
4 n
sin
Lor = Lg >
, P 3
Ssm 2 asin Imfze 3 ]
Imle 3 ( ™z 1)]
tan p = tan® + . n 5.0.6
br sin co? (5.06)

The BST wall is determined by the fact that the branching point is on the locusZ"( mn ;tor) =

mz,,  n=0. Using (5.0.6) we nd that this happens when

8
SIme?d ( ™z 1) =0
vz 1) (5.0.7)

3sinff2  Dsin Imze ¥ >0

which leads to the nal answer (4.4.70).
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Appendix F

Enumerating Flow Trees in the FHSV Example

Let us consider attractor ow trees of the form (4.7.116)

mn b Cmeny ¥ Cmon, F 50 me one o F0F men ) (6.0.1)

where P m; = m and P ni = n. We make the simplifying assumptions described in Section
4.7.1. In particular =i and z is arbitrarily small. We can assume without loss of generality
that n> 0.

If the terminal point is in the lower half-plane (for z) then each successive split drives the
ow further into the lower half-plane. On the other hand P n; = n must be positive, so some of
the n; must be positive, but all the walls MS,,.n, with n; positive are in the upper half-plane.
Therefore, the initial point must be in the upper half-plane.

Now consider a single split min !  + m:n . The marginal stability wall MSy,., is always
to the right of the BST wall S( m.n ; ). If the initial point is to the right of the BST wall we
can construct the tree, otherwise, there is no intersection with he marginal stability wall.

In general, we cannot construct any ow tree with initial point to th e left of the BST wall
S( mn ; ) because the initial branching (which must take place in the lower half-plane) must
necessarily proceed from unstable to stable region, which is forbidzh.

Now, consider a point in nitesimally to the right of the BST wall. When en umerating trees
further to the right we nd a subset of these ows. We rst claim th at all the n; are positive.
One can check that if n; becomes negative, then the conservation of charge and the stk
to-unstable rule forces the nextn;.; to be negative and so on so that then-value of the core
ow grows without bound. Since we explicitly want the terminal core ow to be this cannot
happen. Thus, the n; are all positive and form a partition of n, in particular, there are nitely

many choices for then;.

Next, the ow tree will intersect a series of marginal stability walls for

in that order. Since the ow proceeds to the right (stable to unstable) the walls must be
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ordered so that successive walls are in the clockwise direction. It isasy to check that the wall

MSm, . :n,., IS On the clockwise side oMSpy, ., |
MiNi+1  NiMjy > 0 (6.0.2)

One way to see this is to require the slope nj=m; to be decreasing. Another way is to require
Im(m; inj)(mj+1 inj+1) > 0. Sincem; can be positive, zero, or negative, buin; must be

positive it is more convenient to write:
—> —=> > —: (6.0.3)

Now, if m a O then all the successive walls haven; < 0. It follows that m; forms a
partition of m and hence there are nitely many choices for them;. In that case, the trees
are labeled by two partitions of m and n, respectively, subject to (6.0.3).

If m a> 0 the situation is a little more complicated. The walls of marginal stability divide
up into the rst set with  m; 0, which are met rst in moving downstream the ow tree and
the second set withm; < 0. For the rst set there will be inequalities bounding the allowed
values ofm;. Then the second set must form a partition to saturate total charge conjugation.
For example, if the rst branching happens at MSy,,.n, with m; > 0 then requiring that the
subsequent ow with tangent vector a+ m mj; i(n nj) proceed into the unstable region

forces

Im( a+m m; i(n ng)(my iny))>0 ) >n— (6.0.4)
1

There are therefore nitely many possible values form;. If the next branching is at MSp,n,

with my > 0 then we similarly get

a+m m m
e i, 2

6.0.5
n n; Ny ( )

giving nitely many values of my, and so on.
Of course, the walls are only relevant for wall-crossing provided theHilbert spaces of halo

particles are nonvanishing. Thusgcdm;; n;) must be 1 or 2.
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Appendix G

Computation of the periods

In this Appendix we give some details of the computation of periods nar the singularity for

the X4 CY manifold of [67]. We start with a review of mirror symmetry and construction of

mirror manifold pairs via toric geometry, after that we go over the techniques used to compute
the periods using Picard-Fuchs equations. Finally we use these methls to compute the periods
near the singularity with massless vector multiplets by explicitly solving Picard-Fuchs equations
and using the method of analytic continuation of the periods from the large volume point. We
nd consistence between the two methods and con rm the existege of two vanishing periods

at the singularity.

Construction of mirror manifolds

First we brie y review the construction of the X4 manifold with it's mirror X4 as a hypersurface
in a 4-dimensional toric variety, given in [67]. As pioneered in the worksof Batyrev [78] mirror
pair of CY manifolds (M ;M) can be described as hyper surfaces in a pair of toric varieties
(P ;P ). Here and are a pair of re exive polyhedra, describing the varieties in the
language of toric geometry. The dual polyhedra belong to the two dal rank 4 lattices (N; M)
and are de ned by the set of their verticesfv'g and fv; g. We also denote by i(k) the set of
k-dimensional cones who's edges are formed by rays going from theigin to each vertex of the
polytope. To a given polytope  one can associate a number of toric fans: take the set of one

dimensional cones M () and then choose a sefl of 4-dimensional cones i(4)( ) such that

4 4 )
Wy @2 Wkeyg
[izr ¥ =R" (7.0.1)
This set gives a triangulation of the polytope and is called a fan. Each fanT corresponds

to certain phase of the toric variety P . To construct it explicitly as a holomorphic quotient

we associate a coordinatey; to each one-dimensional cone i(l)( )sothaty; 2 C", n =
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dim @ ( ) and write

Ch Z(; T).

P (T)= S

(7.0.2)

Here Z(; T) is the subset ofC" where the action of toric group G becomes singular. For
each subset of verticesS @ (), that do not form a cone of the fan T but such that each
subset of S does form a cone, take the locuy; = 0,i 2 S. Z() is given by the union of all

these loci. Finally the group G is de ned as

G := Ker[Hom( @( );C)! Hom(N;C )]; where

Yy, Yy o,
Hom( @W( )C)! Hom(N;C): ( ;i n)! (0 (O (04):(7.0.3)

Herev,,, a = 1::4 are the coordinates of vertices in latticeM and the action of groupG on

Chis

g 2G :(yuunyn) ! (aynin aYn): (7.0.4)
The variety (7.0.2) might still be singular. In order to resolve the singularities we have to add
integral points of M inside 1- and 2-dimensional faces of and construct re ned triangulations.
These triangulations will give smoaoth toric varieties, connected to ach other through a sequence
of ops.
CY manifold X4 is a hyper surface in the above toric varietyP de ned by a polynomial:
P(b;y) = X b Y y,»hvi;Vi " (7.0.5)
i2 (@ =1
where by are coe cients, parameterizing complex structure deformationsof X4. In practice, in
each C* patch of the toric variety (7.0.2) we can choose 4 complex coordinasy;, ;::y;, and
(7.0.5) will give 3-dimensional surface in this patch.
The whole story repeats itself in describing the mirror CY X4 as a hypersurface irP  given
by a polynomial:
dim Y
Pax) = X " Yy’ O xihVi wyieL, (7.0.6)
j2 @ ) i=1
The parametersa; now parametrize complex structure moduli space of the mirror andby mirror

symmetry this is isomorphic to the Kahler moduli space of X 4.
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To be more speci c we proceed to writing down the details of two maniblds X4 and X}

from [67]. The polytopes are given by their vertices as

v =0:0;1; 1) v®@ =(0;0; 2;1) v® =(6; 6;1;1) v¥ =(6;4;1;1)

v® =( 14451 vO =@2;2 1) VO =( 62 11 (7.0.7)

cv@® = 1,0,2,3) v@=(0:0 1,00 v®=0:00 1) v©® =(0; 0,23)

v® =0:1;23) v©®=01;223 v?®=0; 1,223) v®=(0; 1,1;2): (7.0.8)

In principle, polytope contains 194 integral points, including all inte rnal points inside
1-, 2- and 3-dimensional faces and the corresponing polynomial, deéng X, will contain 194
monomials. However, following [67] we can restrict ourselves to a dgpace of the full complex

structure moduli space, given only by the vertices of . X4 will be given by a hypersurface

P(b;y) = boyiiys + biy3 + boy3ys + bayRy7oys’ + buy§ya®yslys + bsylyayalys +

+bey3Yy3ysys + bryiy3yays
(7.0.9)
inside the toric variety P . [67] analyzed in detail the rational curves insideX 4. Of particular
interest is the family of conics bered over P!, which shrinks when one dials certain Kahler

parameter of X4. This family can be seen if we putys = 0 and y, = ys = 1 in the above

equation:

biy3 + foo(y1;Ye)yZ + fa(y1;Ve)ys =0; (7.0.10)
wheref; are homogeneous polynomials of given degree. It is easy to see tl{sit ; ys) parametrize
P! and for each point on this P! we have a plain conic. The discriminant of the above equation
has degree 28, which means that there 28 points on thB! where the conic degenerates into a
pair of P!'s, intersecting over a point. Note that this is di erent from the claim made in [67]
that the discriminant has degree 24.

We can give the corresponding formulas for the mirror manifoldX,. As mentioned above,
for a given polytope one can construct a number of fans, corregmding to toric varieties, related

to each other by op transitions. For X, with vertices (7.0.7) the 3-dimensional faces are

((1;2,3;4,6); (1,235, 7); (1,26, 7); (1, 3,4, 5); (1, 4,5, 6, 7); (2, 3,4, 5, 6, 7)); (7.0.11)
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where the numbers label vertices (7.0.7). We can associate a fan this polytope by triangulating
the above 3-faces and then making each tetrahedron into a coneitl vertex at the point

(0,0,0,0). One possible triangulation is:

T:=((1:236);(1;3,4,6);(1,2,3,5);(1;2,5,7); (1, 2,6, 7); (1, 3, 4,5); (1, 4,5, 6); (1,5, 6, 7);
(2:3,4;5);(2;4;5;6); (25,6, 7): (7.0.12)

For T wecan nd Z( ;T)tobe

Z()= fxz=x7=09[f xa=x7=09g[f x1=X2=X4=0g[f X3=x5=x6=09]

[f Xo=X2=%X5=Xe=0g[f X2 =X3=X4=Xg=00: (7.0.13)
The gauge groupG  will have a (C )3 subgroup, generated by the elements:

n® =(20;10,3;2;0;0;5)
n® =(; 101, 6;0;150)
n® =(30;20;4;3;3;0;0); (7.0.14)

. in () . . . .
with g, X ! €" 1 x;. In addition there will be a discrete subgroup that will produce

guotient singularities. CY X, is a hypersurface inP  given by a polynomial equation:

Pa(a;x) = agXy:iX7 + agX20x8 + apx3xax3 + agx? + agxSxSxEx3x3 + asxzOxPOxaxs + agx3°xg +

+arxi?x3x2 + agxx3: (7.0.15)

a parametrize complex structure moduli space ofX’4 which is isomorphic to the Kahler moduli
space ofX4. Our main goal here is to study the singularities of M kaner and identify the
massless BPS spectrum at those singularities. To achieve this in theext Section we will study
the complex structure moduli space ofX;. We will nd the periods of the holomorphic 3-form
around the point ag = 0, which as explained in [67] corresponds to shrinking theP! family of
conics (7.0.10). On the other hand, in order to nd the spectrum weneed to identify special
Lagrangian cycles of (7.0.15), that vanish as we diabg ! 0. This is not possible to do in
the current setting since the toric variety P has quotient singularities and in order to resolve
them we need to add all 194 points of and consider a holomorphic qudient of a subvariety
of C'®*. This calculation seems to be out of reach. Nevertheless, computinthe periods only

will already give us some evidence about the spectrum.
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Periods near the large volume point

In this section we compute the periods of the holomorphic 3-form othe mirror X4, using the
techniques described in ([79], [80], [81], [82]). It turns out that one neds only the polytope
data in order to do that and in particular the phase of toric variety, in which X, is embedded,
is irrelevant.

First let's introduce the notion of the Mori cone of a toric variety P in a given phase
determined by a triangulation T of . It is convenient to enlarge the lattice M and consider
a polytope in this enlagred lattice with vertices v; := (1;v;). There is a linear space given by
L :=fl 2 RIm “C M |y =0g. Dimension of this space is dimh = dm @ ( ) 4.
For triangulation T take the set of 4-dimensional cones, comprisin@. For each cone @ (T)
denote the set of it's 1-dimensional generators bys,. Then to each X (T) we can associate a

cone inL space given by

G=fl2L:1; 08i;l;=0i2S,q (7.0.16)

Intersection of all such cones is called the Mori cone for given triagulation:

G =\ O (7.0.17)

The Kahler cone of P for this triangulation T is dual to Gr. As discussed in detail in [31],
a family of CY manifolds can have many phases, connected with eachtleer through ops or
more general transitions. In what follows we will be interested in nding the periods of X4 in
the large volume phase and also near the singularity givermg = 0. The Mori cone generators

for the large vomue phase are given in [67]:

It=( 20,0,11,00 22

12=(0;1;0;0;0; 2;1;0;0)

1*=(0;0;0;0; 2;1;0;1;0)

“=( 2,0;1;1,0;0;0;1; 1): (7.0.18)
The period vector ( a) is a function of a; from (7.0.15), parametrizing the complex structure
moduli space ofX’, and satis es the Picard-Fuchs equations:

2 3
"

4 al = z a @? S (a)=0;m=1:4 (7.0.19)
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It is very convenient to introduce z, = Qi a:‘m , m = 1::4 as complex coordinates on the CS

moduli space ofX’4. These coordinates are called algebraic and have direct relation tdie Kahler
moduli of X4. In particular, near the large volume point, which is given in these coodinates by

Zm = 0 the mirror map between moduli space ofX’, and Kahler moduli space of X4 is given by

Zn €?tm: (7.0.20)

A crucial property of the large volume point is the presence of a unige period (a), called
fundamental period, which is analytic around this point and non-vanishing at this point. It is

convenient to choose a "gauge" such that

(a)= %r a): (7.0.21)

In this gauge the fundamental period is a regular power series i around the large volume

point given by z; = 0. Using the identities

n X
a" g = ( a@)(a@ 1)(a-@ 2):::(a@ n+ 1) NE-T @i = Il(Zk @k : (7022)
k

and denoting  := z«@, we can rewrite the Picard-Fuchs operators (7.0.19) as:

Di=(a1+ 4)(1 2321 421 4 1)

z2( 21 24 (21 24 2)( 21+ 4+ 3)( 21+ 4+ 3 1)
Da= 2 z( 22+ 3)( 22+ 3 1)

D3=( 21+ 4+ 3)(3 22 z3(1 23)(1 23 1)

Da= 4( 1+ 4)( 21+ 4+ 3)

z24( 21 24 (21 24 2)21 ) (7.0.23)

Such generalized hypergeometric systems were studied rst by Gfand, Kapranov and Zelevin-
ski(GKZ) in [83]. Without going into too much details, the above system is incomplete, which
means that the space of solution to this system is much larger thanhe number of periods. In

order to compete it we rst write it with all z's being on the right of 's and possible factorizing
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the operators D; by polynomials of ; from the left:

Di=(1 23)2:1 421 4 1)

22142 4 1)( 21+ a4+ 3+2)( 21+ 4+ 3+1)zy
Do= 5 ( 22+ 3+2)( 2.+ 3+1)z,

Ds=( 21+ 4+ 3)( 3 22) (1 23+2)( 1 23+1)z3

D4 = 4( 21+ 4+ 3) 2(2 1+2 4 1)(2 1 4+1)Z4: (7024)

Now we consider all possible integral vectors insides the Mori coneyrite the corresponding
operators D, as above, and then look for linear combinations of them with polynomi&in

coe cients such that the resulting operators can be factorized fom the left by some polynomial
in g, reducing the order of operators. This procedure must give us inhis case 6 2nd order

operators, and this turns out to be a complete GKZ system:

Di= 5 ( 22+ 3+2)( 2.+ 3+1)2,

Do=( 21+ 4+ 3)(3 22 (1 23+2)( 1 23+1)zs

Ds= 4( 21+ 4+ 3) 2@21+2 4 1)21 4+1l)zy

Da= 4(1 23) 242:1+2 4 1)21+2 4 B5)z17}

42142 4 1)( 21+ 4+ 3+1)zazs

Ds=(1 23)(21 4) 2( 21+ a4+ 3+1)( 21+ 4+ 3+2)74
42 1+2 4 3)( 21+ a4+ 3+l z1zy

De=(3 22)(21 4) 2( 21+ 4+ 3+1)( 1 23+1)z173

122 1+2 4 3)( 1 23+1)z12324 (7.0.25)

Before proceeding further we brie y discuss the general apprazh to solving such systems. We
will apply this approach in the next section in order to nd the periods around the point inside
the moduli space, namely the point with massless vector multiplets. Mar the large volume

point z = 0 we can look for the solution of (7.0.25) in the form of a general powr series in z:

X
w(z; )= c(n; )z"* ; (7.0.26)
n 0

wheren = (ny;::ny) is a multi-index and = ( 1;:: 4) 2 C*. Plugging this in (7.0.25) allows
us to determine the coe cients c(n; ) for all n and in addition to get an algebraic equation
on , called indicial equation. This equation can be obtained by taking the mincipal parts of

Picard-Fuchs operators by putting z = 0 in them and replacing ;! ;:
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2=0 ( 21+ 4+ 3)( 3 22)=0 4( 21+ 4+ 3)=0

4( 1 23):0 ( 1 23)(2 1 4):0 ( 3 22)(2 1 4):0: (7027)

This system has only one solution = 0, which is 10-fold degenerate. The 10 solutions of

(7.0.25) corresponding to 10 periods oK 4 are given by

W(z; )j =0; @W(z; )j =0; C* @@wW(z; )j =0; C* @@@w(z; )j =0; ij;k =1:4; (7.0.28)

where all the derivatives are taken w.r.t . There are much more than 10 independent func-
tions here, however, the coe cients Ck and C* are not arbitrary but satisfy the following

conditions:

Ck@@ ppal )j =0 =0 C™* @@@ ppa( )j =0 = 0; (7.0.29)

where ppa( ) are the principal parts given in (7.0.27). Of course any combinationof these
solutions is also a solution. Recall now that the period vector in the IB picture (corresponding
to the mirror CY manifold X,) can be de ned in any integral symplectic basis (o; a; 2; °)

of H3(X ;Z). The basis is called symplectic if

(0 9=1 (a5 D= & (7.0.30)

and the rest of intersection numbers are zero. There is a particulabasis which is most useful

in applications of mirror symmetry, namely the basis in which the period vector, given by

Z Z Z Z
(2):= ( 2); (2); ( 2); (2) (7.0.31)

o a a 0

can be written in terms of the Kahler moduli t? of X4 as

(2)= 1;ta;%Dabctbt°;%Dabctatbtc + O ); (7.0.32)

where D g are the triple intersection numbers of X 4 manifold. In the IIA description, given by
X4, the components of the period have interpretation of holomorphiccentral charges of BPS
states, formed by wrapping (D0,D2,D4,D6)-branes on a symplectic bsis of H (X 4;Z). In other
words, the above basis is particularly useful since it has a direct geoetrical interpretation on
the 1A side. In this basis the period vector, being a solution to the Acard-Fuch system (7.0.25)

is given by
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0(2) = w(z; )j =0

—_— 1 . H . HE— .e
i(2)= W@W(Z )j=0; 1=1:4
(2)= 2(21i 2D @@z )i <o
°(2) = 6(21i )3D”k @@@W(z; )j =0; ijjik =1:u4 (7.0.33)

This de nes the period vector in an integral symplectic basis (uniqueup to monodromy) around

the large volume point. The general form of function (7.0.26) for Mai vectors 1K) is:

w(z; )= G( )z C nPklg)k)(nk"' k)
| n Owi>0(rk|i(k)(nk+ k) +1)
Q

(k)
G()= —=0 gl x+), (7.0.34)

P

k
¢! IS

Plugging in the Mori cone vectors (7.0.18) we get:

z": where

X (L+2( np+ 1)+2(ng+ 4))2"
w(z; )= G( )z o (no+ 2+D)2(ng+ 4+1)( N+ 1+ng+ 42+1)
ni;Nnz;N3Na 0
1
(ni+ 1 2(ns+ 3)+1)( ng+ 3 2(n2+ 2)+1)

1 .
(n3+ 3+ma+ 4 2(ni+ 1)+1)@2( ni+ 1) (na+ 4)+1)°
(2+1)2( 4+1)( 1+ 4+1)( 1 23+1)( 3 22+1)

e0)= T+2 1+2 2
(3t 4 2:1+1)(2 1 4+1): (7.0.35)
Periods around the singularity with massless vector multip lets

In this section we nally nd the periods around the singularity with ma ssless vector multiplets.
As mentioned above it is given by the complex codimension one locugg = 0. In terms of

algebraic coordinates, introduced under (7.0.19)
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S = azayaj
1=
agag
aj g
Zo = ——
ag
_ asay
Z3 = a—ﬁ
azazay
Z4 = ; 7.0.36
the locus looks like
z1! 0 z4!'1 7,73 = const: (7.0.37)

There are two ways to get the periods around this locus: we can eiéir write the GKZ system
(7.0.25) around this locus and solve it or we can take the periods (7.033 and analytically
continue them to this locus. We will use both ways and nd a consistemh answer. To write

(7.0.25) near theag = 0 locus we pass to new coordinates

2= 7,75
Zg;s = 223
22=1=z; (7.0.38)

in which the system becomes:

Di= § (2%+ 8+2( 28+ $+1)2
D=( 2+ DY 29 (§ 28+ 23+
D=6 9 29+1) ¢ 329 +1( §+ $+DZ
Da=(2 37 D32 25 2462 23 16F 2§ 52
69 29 1 9+ G128

Ds=(9 299 20 9+ $+1( §+ §+2)2028
463 22 3 I+ J+1)29d

Ds=(8 299 20 I+ $+1(§ 23+

1269 29 3)(? 29+1)20232% (7.0.39)

Notice that the principal parts of Picard-Fuchs operators are nd homogeneous in this new
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coordinates. This is expected since such homogeneity is really the ique property of the large

volume point. The indicial equations will now have two degenerate soltions:

S;: i =0 8i; 8times degenerate
S i=0i64; 4= %; 2 times degenerate (7.0.40)

To construct the solutions we need to obtain a functionw(z% ), analogous to (7.0.34), but

constructed using the new Mori cone vectors:

10D = @ 4 21@
|0(2$3) =123
199 = @, (7.0.41)

To prove this recall that the Mori cone is dual to the Kahler cone. Kahler cones, corresponding
to di erent patches of the moduli space form "secondary fan", which describes compacti cation
of the moduli space and the coordinate transformation betweenhe two chambers is given by
linear relations between Mori cones, corresponding to these twohambers. Provided that the
algebraic coordinates in the chamber, containing the divisorag = 0, are related to the large
volume coordinates as in (7.0.38), the transformation of Mori conggenerators must be given by

(7.0.41). Using these vectors we can write the functiow%(z% ):

(L+6( ni+ 1) 2(ng+ 4)2"
(n2+ 2+1)2(ng+ 4+1)(B nN1+3 1 ng  4+1)

wiz; )= G )2°

ninzingng 0

1
(ni+ 1 2(ng+ 3)+1)(ng+ 3 2(n2+ 2)+1)( N3+ 3 ng 4+1)
1
: 7.0.42
@(ni+ 1) (Nat+ 4)+1) ( )
In terms of this function the periods corresponding toS, from (7.0.40) are given by
wo(2) = wi2% )is,
wi(2) = A5(4@, + @, +2@, +12@,)WAZ% )js,; (7.0.43)

where to get the second solution, we take a general linear combinian of rst derivatives @, ,

act on the principal parts of the Picard-Fuchs operators (7.0.39)and nd combinations that
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annihilate those principal parts at S,. Around the point z° = 0 these two periods will look like

wo(z9 " Z(1+ O(z9)
p

w1 (29 (— 2(4logz? +log 28 + 2log z§ + 12log z3) (1 + O(z9) : (7.0.44)

Itis clear that the two periods will both vanish at the singular locus, given in the new coordinates
by z$ = 0. What is not clear is how these two periods are related to the integal sympectic basis
(7.0.33). We will nd the precise relation in the next Section. Now let's proceed to the solution
Si1. The fundamental solution here is justwg := w%z% ) -, . To get rst order in logs solution
we again nd linear combinations of the rst  derivatives, that annihilate the principal parts

of Picard-Fuchs operators:

WwW(z% )j o
(7.0.45)

wi(z% = ﬁ@IWO(ZO; )i =0 Wa(z9 = a )@ W28 )i zo wa(29 = (2| )

Using second order derivatives gives 4 linear combinations:

Wa(29) = e G172(@, + @@ Wi )i -
ws (2% = (2| )2@ @,wYz% )j =0
we(29) = (2| )2(@ @, @)Wz )] -

wy(29) = W(4@1 @ @0 +@,@ +2@,@,+6@,)W(z°% )j =0:(7.0.46)

but the last one is not independent but is related tow, found above through 4w; = (i—z)lp?wl.
4

Finally the third order  derivatives give:

8@ +6@@+128@+6@A@@+6@E WAz® )j =o: (7.0.47)

The periodsws;::;; wg can be written in a much more suggestive way. Recall that accordingo
[67] at the locusag = 0 of X4 it is possible to go through an extremal transition to another CY
manifold with 3 Kahler moduli, denoted by X3. Geometrically on the IIA side we freeze the
Kahler modulus z, = 0 and resolve the singularities by deforming the complex structuremoduli

to get to X 3 manifold with Hodge numbers dim H-1(X 3) = 3, dim H 3(X3) = 243. It is easy to
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see that we can write siutable linear combinations ofwy; :::; wg in the form:
Wy (29 = w° % )i =0
Xs 0. \; .
z)= —— z =0
( 0) (2| ) @w( )i =0

w3 (2) = 2(2 570%. @@WIZ" )i =0

WO = gDl @O@WE )i i Tk =1 (7049

“k3 are the intersection numbers ofX 3. After putting z, = O these 8 periods become

where D
exactly the periods of X 3 around it's large volume point. This is a manifestation of the extremal
transition on the level of periods. It is instructive to nd the map be tween the found periods and
the periods of the heterotic description of the same extremal trasition. Now let's discuss the
meaning of the above periods, and in particular, compare our resudt with the heterotic string.

The details of the heterotic description of this extremal transition as well as the lIA/heterotic

map in the weak coupling limit can be found in [84]. The Kahler moduli in the heterotic

description comprise of the dilaton eld S, the toroidal moduli T;U and Wilson lines of the

gauge elds on the torus. Using the IIA/Het map, given in Eq.(65) of [84], we can identify

V=14=wp= p_o(1+ 0(z%)
U

=t1=W—0 a )Iogzl+O(z°)
w1 0
S T—tz—WO—(z-)|0922+O(ZO)
T Usty= B2 logzd + O(z9%
7w (2) ’

Vb = constw, = const z(4logz? +log 23 + 2log zJ + 12log 2 + O(z%): (7.0.49)

The last equality holds because the periodswWg: w; ) have the correct monodromy transformation
around the singularity zJ = 0. To give even more convincing argument we use (4.9), (5.14),

(5.15) from [84] to write the period, dual to the Wilson line near V =0 as:

+
Vo i2—4v IogV+T12U : (7.0.50)

Using the mirror map (7.0.49) above this takes the form

Vo %p 72 (1210924 + 4l0g 21 + 2109 25) (7.0.51)

which is exactly our wy (in the weak-coupling limit) and the correct normalization is
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Vo = 2wy (7.0.52)

The main result of this relation between 11B and heterotic string periods is that (wo; 2w ; Wo; i W7)
form an integral symplectic basis of periods. In the next section wecon rm this using Mellin-
Barnes method of analytic continuation of the periods from the large volume point to the

neighborhood ofz°= 0 point.

Analytic continuation of the periods

The "period generating function" (7.0.34) can be rewritten in the new coordinates (7.0.38) as

wz’ )= 6()Z 70z

X z1 20222 F (29, ;n1;n2;na)
imans o (N2t 2+ DZ2(m+ 1 2(ng+ )+ ( ng+ 3 22+ 2)+1)
X 1+6 Ny 2m+2 1+2 4z
F (23 ninging) = ( : 142 )z
2n; m+ 4+1)@B N1 m+ 1+ 4+1)
m 2n;
1

: 7.0.53
(ns m+ 3+ 4 21+1)(mM+2 1 4+1)° ( )

wherem =2n; ny4. Doing the Mellin-Barnes trick to analytically continue F(zg; ;N1;N2;N3)

to the neighborhood ofz$ = 0 we get:

X
@1 ap(0n e — (I+6 n; 2m+2 142 4)
Z F(zz; ;n1;no;ng) =
4 (zz; ;n1;N2;N3) weon, @M1 ME FD)@E Ny mE b 4+1)
1 m+2 1 .,
(ng m+ 3+ 4 2:+1)(m+2 1 4+1)
X (1+6 N1 2m+6 1) .

+
o (m*D@n m+2 )@ N m+3 +0(ng m+ g+
p .
29sin (4 24)
2" cos (4t 1)
X ( 3n1 m 3 1 %) Z‘(an1+m+3 1 .
b 2Z2M(m+1)( nmom g+ (N3 311 m 3.+ 3+ 3)

+(

(7.0.54)

m
An interesting technical point is that the the rst sum would not give any contribution to the
periods! Using this function we can nd all the periods, using (7.0.33), which in the case of

X4 transforms into

1As m> 2n; the rst -function downstairs would give 4 and it's higher powers in the numerator.For n3
ni=2 we getpowersof ( 3+ 4 2 1)from ( n3 m+ 3+ 4 2 j1+1),andfor n3>n1=2 ( N1+ 1 2(n3+ 3)+1)
will give 1 2 3. In all this rst term will be proportional to either a( 3+ a4 21)or 4(1 2 3), but

these both are principal parts of GKZ system, and as such will be annihilated by all -derivatives.
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5(2) = @i )2(8@ 1Q@+8@@+2@Q@+2E +32@@+8@@ +
+16@@+24@)w(z°- )i =0

6(29) = 2(2 )2(2@+2@@+8@@+4@@+6@)w(z° )i =0

7(29 = 2(2| )2(4@+2@@+4@@+16@@+4@@+8@@+12@)w(z° )i =0
8(z% = 2(2|)2(16@+8@@+16@@+4@@+4@+48@@+12@@+
+24@@+36@)W(Z°' )i =0

o(z9) = 6(2 BT 8@ +6GQ@+12G@+6QAQ +6@QE +483@@ +24@Q@@+

+48@QQQ@ +12@@@ +12d@ + 72@@ + 18@@ + 36 @@ +36@ w(z% )j £7:0.55)

Some algebra nally gives the periods ofX , near the z§ = 0 locus:

wiz% )s, 1+ 0(29

o
1

w3 2, tolog+2” 1+ o)

N
1

@0
)= wy? (21.)Iogz2+0(z°)
o= wi® lologzds 0@)
R i L T
5= wy°
6= Wy °
7= wy
g = 2wy %+ 25 )2(4@ @+2@+12@)w%2"% )s, 8(log4+6) 4
o=wi® 2 (7.0.56)

Due to the fact that these periods are obtained from the large volme ones through analytic con-

tinuation, we automatically get an integral symplectic basis of periods. Performing a symplectic
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transformaion we can bring these periods to the form:

0= W 3(29);

1= Wfs

2= Wé(s

3= Wé(s

4= ﬁwo(zo)

5= Wffs

6= Wés

7= Wés

8 :Zﬁwl(zo)

0= W3 (7.0.57)

Thus we con rmed the relation between the two dual vanishing periads, following from (7.0.52).

The monodromy around the singularity z; ! €' z4 in this basis will look like:

g! g t24 4

(7.0.58)

Finally, we can give the physical interpretation of the vanishing periods. Near the large volume
point the periods ( 4; g) correspond to central charges of D2 and D4 branes, wrappinghe
corresponding cycles inX4. After analytic continuation and the change of basis, that brough
us to (7.0.57), the periods ( 4; g) are interpreted as central charges of a D2 brane and a
D4 brane with some ux. We see that both BPS states become massés at the singularity.
This supports the statements, made in 4.7.3, that we have two mutally non-local BPS states,

becoming massless at the singularity.
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Appendix H

No-mixing conditions in supersymmetric galaxies

A crucial element in our derivation of the KS wall crossing formula andits generalization in
chapter 5 was the argument for the absence of quantum mixing b&teen galaxies with di erent
core charges, and between galaxies with orbit charges 2 Lo and galaxies with some orbit
charges 2 Lo . As promised we will now examine this argument in more detail, and show
that mixing is absentinthe !'1 limit except if there exist massless charged particles at the
attractor point of o, with charge in Loy .

We rst investigate nonperturbative quantum mixing between the p erturbative semiclassical
states corresponding to a galaxy with all orbiting charges 2 Low, i.e.h; oi =0= h; Ji,
and those corresponding to a galaxy with some orbiting charges 2 Lo . The core charge is

c= 2 o9+ 9+ . forboth galaxies. This kind of mixing could in principle be mediated by
a tunneling process in which a charge in orbit splits into a charge ;+ andacharge , ,
with 1; 22 Lo, 1+ 2= ,and 2 Ly, followed by tunneling of the two charges to their
respective BPS equilibrium positions. If the charges are held xed inhe 1 limit, then
since 2 Loy the symplectic product h; i is at least of order and therefore by (4.1.1) the
distance to which the charges would have to tunnel diverges when ! 1 . Since tunneling
over in nite distances is in nitely suppressed, the amplitude for such a process vanishes in the
limit. If on the other hand we allow to grow with , then in particular for o+ S,
it is no longer true that h; (i diverges. So for such the tunneling trajectory does not have
to be in nitely long. However, such diverging charges carry divergirg entropy, and hence, by
the arguments we will give below, we get in nite entropic tunneling suppression of the splitting
event. An even stronger argument is that BPS con gurations conaining such charge pairs
(1+; 2 ) actually cannot exist, since inthe limit !'1 | these two charges are essentially
opposite (as they diverge but sum up to a nite xed charge ), so they are essentially each
others antiparticles, and it is not possible to have particles and antiparticles at the same time
in orbit and still be BPS (since particle annihilation would clearly be energetically favorable).

Thus, either way, mixing with galaxies with orbiting charges not in Loy does not occur in the
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limt 11 .1

Now we investigate mixing between di erent cores. Consider a BPS daxy with core charge

¢c= 2 o+ 3+ .and total orbiting charge omn, and a galaxy with core charge 2=

and orbiting charge %, = on + . The perturbative semiclassical states corresponding to
these classical con gurations can mix nonperturbatively through tunneling of a BPS patrticle
of charge between the core black hole and a solar system orbiting the galaxy. ¥ will now
argue that such tunneling is in nitely suppressed in the limit !'1 | exceptif liesin Lgp
and becomes massless at the attractor point ( o) of o.

The in nite suppression when 2 Loy inthelimit 1 follows by essentially the same
arguments as we used above to show the absence of mixing betwegalaxies with all orbiting
charges inLop and galaxies with some orbiting charges not inL,: charges 2 Lo would
either have to tunnel in nitely far (when they are kept nite), or ( when / o+ ) have
in nite entropy themselves and give rise to an in nite change in entropy of the core. Either
way, tunneling is in nitely suppressed.

When 2 Lgy, the particle can tunnel to nite distance, but tunneling will be in nit ely
suppressed in the limit due to the fact that the change in entropy ofthe core is in nite, except

when the massm = jZ j of vanishes att ( o). We rst show the steps in the proof of this

claim and then explain them. The entropy di erence is

S = Sgu( 2o+ 2+ o) Sen( 2o+ 9+ ¢ ) (8.0.1)
= 4 _'Zdilso j- ,+ 0(i4) (8.0.2)
= 2 e fe L+ o 803
= 2 ?Re(Z ,Z)ji( 4+ 0OQ) (8.0.4)
= 2 FHZ jmji o+ OQ); (8.0.5)

which indeed diverges when ! 1  except if m j ( ;) = 0. In going from the rst to the
second line we used the fact that the Bekenstein-Hawking entropyf a BPS black hole scales
guadratically with the charges, and we expanded around = 1 . In the third line we used the
expression of the entropy in terms of the central charge. In goig to the next to last line we
were allowed to ignore the dependence on through () because jZ( ;t)j has a critical point

att=1t (), i.e. @Z( ;t)jj () =0. Inthe nal step we used the attractor point equation

1 The preceding reasoning makes clear why we added the somewhat peculiar term 8 in (5.1.4): without
it there would be unsuppressed tunneling processes for / g, and with a term 2 8 instead, the there would
be unsuppressed tunneling for / o+ 8. Dropping the 8 term while adding ¢ to Loyp would be an
alternative, but then the awkward situation arises that all walls Wy +m , coincide, spoiling the derivation of
the KS formula.
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2Im(Z ,Z)j ( o) = ho; i =0. Thus, in the absence of massless BPS particles dt ( o) with
charge inLy , there can be no mixing between galaxies with di erent core charges

In conclusion, if no massless charged particles exist at ( o), our BPS galaxies are closed
guantum systems in the limit !1 , and the framed index is well de ned. Massless charged
particles only appear at loci of complex codimension 1. Thus, for a geric ¢, there will be no
massless charged patrticles at ( o), and there will be no mixing.

There might however be special circumstances in which we are inteséed precisely in the
situation where L contains charges becoming massless at( o). In this case, mixing may
occur, so to be guaranteed a well-de ned index we should sum overalues of the core charge
di ering by multiples of the charges becoming massless. It is indeed rtaral to consider such
nongeneric situations in compacti cations with codimension 1 loci of @hanced gauge symmetry,
as we now explain. Near such loci, there are light vector bosons, saf charge , and typically
also light monopoles of charge p. Their central charges are related byZ Z , where

is the (moduli-dependent) complexi ed coupling, and Z ! 0 at the enhanced symmetry

locus. When we want to allow both the vector boson and the monopolén a galactic orbit, i.e.

; b 2 Lom, the attractor equations for o imply Im(Z Z ,))=0=Im(Z ,Z ,) att ( o).
Given the relation Z Z andIm 60, thisimplies Z j; ( ,y =0 thatis, we necessarily
have massless particles at the attractor point. In Section 4.7.1 we idcuss an example of this
sort, and show explicitly that it is indeed necessary to sum over coreharges to get a well-de ned
index.

To make this more precise, we could try to de ne a generalized fram@ index by summing

over the entire lattice Vp of multiples of charges inL o, becoming massless at ( o):

j— x .
ToComitt)=lm Ty (o (DT (8.0.6)

2Vo
There is some redundancy among these objects, as o 3 cgl o) = i 0; Qi ot o( o )

for any 2 V. Consequently, the associated generating function

X
Gre)(X;ty ) = —c( ob;ta )X e* om (8.0.7)

o 2L om
depends only on the equivalence clas€] := f o; $; modVog. We could now try to repeat
the analysis of the previous sections using these generalized de ins. It is however not
immediately obvious that the objects we have de ned here are nite or computable in practice,

and indeed it is only in special cases possible to restrict the sum oveoces to a nite subset.
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