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ABSTRACT OF THE DISSERTATION

BPS states in string theory

by Evgeny Andriyash

Dissertation Director: Professor Gregory Moore

In this thesis we discuss a number of interesting and important properties of BPS states in string

theory. We study wall-crossing behavior of BPS states at large volume limit and implications

of it for the OSV conjecture. We find that the weak topological coupling OSV conjecture can

be true at most in a special chamber of the Kähler cone.

We also clarify an interesting puzzle arising in the description of BPS states on the Higgs

branch of supersymmetic quantum mechanics. Using methods of toric geometry we compute

Hilbert spaces of BPS states on the compactified Higgs branch and arrive at completely consis-

tent picture of spatial Spin(3) structure of those spaces.

We introduce new kinds of walls, called Bound State Transformation(BST) walls, in the

moduli space across which the nature of BPS bound states changes but the index remains con-

tinuous. These walls are necessary to explain the continuity of BPS index. BPS states can

undergo recombination, conjugation or hybrids of the two when crossing a BST wall. Conjuga-

tion phenomenon happens near singularities in the moduli space and we relate massless spectra

of BPS states at such singularities to monodromies around them. In cases when massless vector

BPS particles are present we find new constraints on the spectrum and in particular predict the

existence of magnetic monopoles becoming massless at such singularities.

We give a simple physical derivation of the Kontsevich-Soibelman wall-crossing formula.

Considering galaxy-like configurations of BPS particles with a central supermassive black hole

with a number of stellar BPS systems around it we derive a consistency requirement on the par-

tition function of such BPS galaxies. This requirement turns out to be nothing but Kontsevich-

Soibelman wall-crossing formula. Our approach gives a generalization of the formula for the
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case when massless BPS particles are present.
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Chapter 1

Introduction

String theory is intrinsically connected with supersymmetry, which is the symmetry between

bosonic and fermionic degrees of freedom. Low energy theories, describing the world around

different vacua of string theory, are supersymmetric field theories, usually containing gauge

fields and gravity. Since the discovery of supersymmetry in the early 70’s it was known that

supersymmetric field theories may contain short representations of supersymmetry, called BPS

states. Those are states that are annihilated by half of the supersymmetry generators, thus

giving a short representation. Since their discovery BPS states have played a prominent role in

physics. They turned out to be responsible for a vast majority of phenomena in the low energy

physics, including the low energy effective action of N = 2 supersymmetric field theories, found

by Seiberg and Witten in the 90’s [1].

BPS sates were also studied in supergravity theories and string theory. Due to the presence

of supersymmetry certain properties of BPS states, such as the relation between mass and

electromagnetic charge and their degeneracies, are protected in the sense that they do not

change as the coupling constant of the theory is changed. This makes BPS states a natural

playground for testing the large web of dualities between different string theories such that

strong coupling regime of one can be described by weak coupling regime of the other. A famous

example of BPS states usage is testing AdS/CFT duality, which in it’s classic example is the

duality between type II string theory on AdS5 × S5 and N = 4 super Yang-Mills theory on R4

[2].

In view of this last fact, it is clear that BPS states can have different incarnations. In

the low energy limit of string theory, compactified on some internal 6D manifold, which is

typically a supergravity theory in 4 dimensions with some additional particles and gauge fields,

BPS states are represented as black hole solutions. This description of BPS states is good

when the curvature of the resulting space-time is not too big which correspond to the so-called

t’Hooft coupling being large. For small t’Hooft coupling, the more appropriate description is in

terms of world-volume theory of D-branes, wrapping various cycles in the internal manifold. As

BPS states are protected by supersymmetry, their degeneracy can be computed in the D-brane
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picture, and then compared to the black hole entropy. Thus BPS states provide a framework

to model microscopic structure of black holes, that account for the known entropy, which is

known as Strominger-Vafa program of accounting for black hole entropy in terms of D-brane

microstates [3].

Another more technical application of BPS states in string theory is the so-called Ooguri-

Strominger-Vafa conjecture concerned with degeneracies of BPS states in type II string theory,

compactified on a Calabi-Yau manifold [4]. It relates the partition function formed out of BPS

black hole degeneracies with the so-called topological partition function. The latter partition

function computes some part of the low energy effective action of string theory and the con-

jecture relates it to BPS states degeneracies directly. We will say more about this relation

below.

In this thesis we study different properties and examples of BPS states in type II string

theory. The Hilbert space of BPS states in this theory are graded by the values of their

magnetic and electric charges Γ = (p, q) ∈ Λem. The main characteristic of interest to us

will be the degeneracies, or more precisely indices of BPS states. The indices will be denoted

Ω(p, q; t∞) and generically they are functions of the background moduli fields of type II string

theory, denoted by t∞. Although the introduced indices and degeneracies are different for finite

charges Γ, in the limit of large charges the two become the same

Ω(Γ; t∞) ∼ eS(Γ), (1.0.1)

where S(Γ) is the corresponding entropy of the BPS state. Indices Ω(p, q; t∞) are integer-valued

and piece-wise constant functions of the background moduli, i.e. they can change discontinu-

ously across certain walls in the moduli space. The amount of jump is described by the famous

Denef-Moore wall-crossing formula(WCF) [5], which we now explain. The index of the Hilbert

space of BPS states with charge Γ ∈ Λem at point t∞, Ω(Γ; t∞), gets many different contribu-

tions from BPS states, represented by black holes, as well as from bound states of BPS objects,

represented by multicentered black hole solution of the low energy supergravity theory. Suppose

there are two charges Γ1,Γ2 ∈ Λem such that BPS states with these charges can form a bound

state of total charge Γ = Γ1 +Γ2 at point t∞. The conditions for such bound state to exist was

given in [6] and has the form

R =
〈Γ1,Γ2〉

2

|Z(Γ; t∞)|
ImZ(Γ1; t∞)Z(Γ2; t∞)

> 0, (1.0.2)

where 〈Γ1,Γ2〉 is the intersection product of two charges in the symplectic lattice Λem and
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Z(Γ1,2; t∞) are the central charges of two BPS states, following from the supersymmetry algebra

of the theory. Physically, R is the spatial distance between the two BPS states. The locus in

the moduli space where the two central charges (anti-)align is called (Anti-)Marginal Stability

((A)MS) wall. If we cross the marginal stability wall from the negative side to the positive side

across a generic point tms ∈MS(Γ1,Γ2) then the jump of index of BPS state with charge Γ is

given by the primitive wall-crossing formula introduced in [5]

∆Ω(Γ) = (−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉|Ω(Γ1; tms)Ω(Γ2; tms). (1.0.3)

The interpretation of this formula is simple: when t approachesMS(Γ1,Γ2) the distance between

the two BPS states goes to infinity, the state decays and the change in the index is roughly the

product of indices of the two decay products times the Landau level degeneracy of one charge

in the electromagnetic field of another. This WCF, as well the generalization thereof given by

Kontsevich and Soibelman [7], will be the main focus of this thesis.

As we discuss in more details in chapter 2 the OSV conjecture relating BPS indices to the

topological partition function does not specify the place in moduli space where the indices have

to evaluated. In the large volume limit of compact manifold, given by Im t→ ∞, the description

of BPS states in terms of D-branes wrapping cycles of this manifold becomes accurate and

much is known about the values of BPS indices. From the physics point of view the study

was motivated by the Strominger-Vafa microstate counting program. From the mathematical

perspective the hope is to identify BPS indices as something like “the Euler character of the

moduli space of stable objects in the bounded derived category on X with stability condition

t.” As the BPS indices are well studied in this region, the large volume limit is natural place

where we can test the OSV conjecture. In chapter 2 we study the indices of BPS states in the

large volume limit with a focus on the possible jumps across MS walls going to infinity and

implications of those jumps for the validity of the OSV conjecture. It was already noted in

[8], that for D4 brane BPS states, realized as a bound state of two D4’s, the MS walls can

go to infinity. We construct explicitly an example of such state. It is a bound state of a BPS

black hole with D4 charge and another D4 charge, which itself is a bound state of D6 and D̄6

BPS branes. We choose the total charge of BPS state such that it has also a realization as a

single-centered black hole. When t∞ crosses MS wall, 3-centered configuration disappears from

the spectrum, and the index jumps. For a certain region of charges, namely when the D4 charge

is very large, this jump can be exponentially larger than the single-centered contribution. As

the original OSV conjecture was formulated precisely in this region, which corresponds to weak

topological coupling region, we conclude that the conjecture cannot be true in this region. It
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can be true at most in a certain chamber of the moduli space near the large volume point and

we propose the candidate chamber.

As mentioned above BPS states in string theory usually allow two different descriptions in

different regimes of the theory: supergravity description as single or multi-centered black hole

configuration in the strong string coupling regime and D-brane world volume theory description

in the weak string coupling regime. Sometimes the theory on the world volume of D-brane

configuration is a conformal field theory(CFT) in which case one expects to find the complete

duality between the two description and matching of the spectra on both sides. In such cases

the geometry on the supergravity side contains as a part Anti de Sitter space and the observed

duality is called AdS/CFT duality. A well-studied case of such duality is the single-centered

black hole configuration, containing AdS3 part, which is dual to some 2 dimensional CFT2. The

multicentered black holes can also be analyzed from AdS/CFT point of view. In [9], the authors

considered certain limit of multicentered black hole configuration that lead upon lifting to 11-

dimensional space geometries containing AdS3 piece. This allowed [9] to identify the dual CFT2

description. In particular, the entropy of such configurations is reproduced in the dual CFT2

and is given by the entropy of the single centered configuration with the same total charge. Our

3-centered example, with entropy bigger than single-centered realization, could potentially lead

to contradiction here, since it’s contribution can not be seen in the dual CFT2. We checked

explicitly that our example does not survive the near-horizon limit of [9], actually corresponding

to two infinitely separated AdS3 geometries, and the contradiction is avoided. [9] also suggested

a general criteria for multicentered BPS configuration to have a single AdS3 geometry in the

near-horizon limit. We give give a constructive argument in favor of this criteria.

Having discussed the two complementary descriptions of BPS states as applied to particular

examples we move forward to some more general questions relating the two descriptions. On the

supergravity side the moduli space of BPS objects, which are multicentered black hole solutions

in this case, is described by the space of all possible positions of the black hole centers, subject to

constraints following from equations of motion and supersymmetry. In the regime of weak string

coupling constant the same objects are described by bound states of D-branes and excitations

of those. It is very important to understand precisely how the matching of different BPS states

in the two pictures occurs. An important step in this direction was made in [10]. It was shown

there that in fact we should expect to have a smooth transition between the two regimes, in

which all discrete characteristics, like the indices of BPS states, are preserved. Nevertheless

there are still unanswered questions here. In the D-brane picture the bound states of BPS

objects can be described using the powerful apparatus of algebraic geometry. For example [8]
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studied stable holomorphic bundles on rigid surfaces and found the number of BPS states on

two sides of a marginal stability wall. It turned out that enumeration of BPS states in algebraic

geometry gives a very different answer for the number of BPS states than the answer that we

expect from the supergravity description. More concretely supergravity picture tells us that

BPS space is empty on one side of the wall and is populated on the other side. Algebraic-

geometry picture gives non-empty spaces on both sides. This apparent contradiction is asking

for a resolution.

In [10] the description of the abound state of BPS objects, that can be useful in both string

and weak string coupling was given in terms of supersymmetric quantum mechanics(SSQM).

The moduli space of this supersymmetric quantum mechanics has two branches: Coulomb

branch which corresponds to the supergravity side and the Higgs branch which corresponds to

the D-brane side of the full string theory description. [10] used this picture to show that in

some cases the transition between the two descriptions is completely smooth. However, more

generally Higgs branch is populated on both sides of marginal stability wall, while the Coulomb

branch is populated only on the stable side, which leads to a similar contradiction as found for

algebraic-geometry versus supergravity pictures. We will not try to resolve this problem in this

thesis but instead concentrate on a related interesting paradox, arising in this setup. The Hilbert

spaces of BPS states are representations of the Lorentz group, and in particular of the group of

spatial rotations Spin(3). As we move through the wall of marginal stability part of the Hilbert

space decays. It turns out that in the Higgs branch description BPS states on both sides of

MS wall as well as the decaying part of the Hilbert space form irreducible multiplets of Spin(3)

group. This leads to an apparent paradox since the sum of two irreducible representations

cannot be an irreducible representation itself. We give a resolution of this paradox in chapter

3. The main idea is to consider the simplest compactification of the moduli space. We find a

completely consistent picture for the BPS Hilbert spaces on both sides of the marginal stability

wall. The simplest compactification that we consider also gives a hope to find the relation

between algebro-geometric and SSQM pictures.

Despite the fact that there are two complementary descriptions of BPS states for the pur-

poses of enumerating different contributions to their indices and computing the indices the

supergravity picture of multicentered black hole is by far more powerful. In supergravity every

multicentered black hole solution, representing BPS states, is given in terms of a map from our

3-dimensional space to the moduli space of the internal Calabi-Yau manifold. In the simplest

case of a two centered solution there is a correspondence between this map and a certain graph

in the moduli space, called Split Attractor Flow Tree in [11]. The image of space under the
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map turns out to be a ”thickening” of the attractor flow tree and the existence of the tree is

equivalent to the existence of the full supergravity solution. This fact lead [11] to the

Split Attractor Flow Tree Conjecture: Supergravity solution exists iff the corresponding

Split Attractor Flow Tree exists. There is a one-to-one correspondence between components of

the moduli space of supergravity solutions and Attractor Flow Trees.

In practice it is very easy to formulate the existence conditions of attractor flow trees. It is

a more computationally challenging problem to enumerate all possible attractor flow trees with

given total charge Γ, existing at a given point t in the moduli space, although the algorithm

is straightforward. We collect all the details on existence conditions of attractor flow trees

in Appendix A. The conjecture gives a simple physical picture of the behavior of black hole

”molecules” under the change of the background moduli. Suppose we move through the moduli

space keeping track of a given attractor flow tree. As we cross the wall of marginal stability

where this tree has it’s first split the tree ceases to exist, decaying into the two constituents,

represented by the two subtrees starting at this split. This gives a decomposition of BPS

Hilbert space of the total charge into the Hilbert spaces of constituents. This process can be

continued for the constituents also, moving along the edges of the tree away from the root.

In all, the attractor flow tree gives a canonical way of (dis)assembling part of BPS Hilbert

space, represented by this tree, into the Hilbert spaces of the constituents. This split attractor

flow picture of BPS states, although originally coming from supergravity, is more general and

applicable outside of the range of validity of supergravity.

The decay of BPS objects into constituents is subject to conservation of energy. For a decay

Γ → Γ1 + Γ2 that occurs at some point tms on the marginal stability wall MS(Γ1,Γ2) this

condition takes the form

|Z(Γ; tms)| = |Z(Γ1; tms)|+ |Z(Γ2; tms)|. (1.0.4)

Together with an obvious relation, reflecting linearity of central charge with respect to the

charge itself

Z(Γ; tms) = Z(Γ1; tms) + Z(Γ2; tms), (1.0.5)

this mean that the state can only decay when the central charges align, i.e. only across MS wall.

In fact the presence of a bound state Γ1 + Γ2 near anti-marginal stability wall AMS(Γ1,Γ2)

leads to a sharp contradiction with the conservation of energy, since approaching the AMS wall

the radius of the bound state still has to go to infinity according to (1.0.2) and the energies
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should add up. It is this contradiction, first pointed out in [12], that is the main motivating

question for chapter 4. More precisely suppose that the bound state exists near the MS wall

and there is a path in the moduli space connecting MS and AMS walls for this bound state such

that the radius of it stays finite and positive along the whole path. This necessarily means that

the bound state exists near AMS wall leading to a contradiction, unless something dramatic

happened to it along the path.

We study the paradox in the most general set up using the split attractor flow picture in

chapter 4. We find that there are several new phenomena and new kinds of walls that help

to avoid the contradiction. We term these new walls collectively as Bound State Transforma-

tion(BST) walls since the nature of BPS states changes across these walls. These walls are

different from marginal stability walls, thus BPS indices are expected to be constant across

those walls. To avoid the contradiction the attractor tree must degenerate somehow and there

are three basic ways how it can happen: the trunk of the tree can shrink to zero size, the

internal edge can shrink to zero size or it can be the terminal edge of the tree. The first case

is irrelevant since it would correspond to crossing (A)MS wall for the bound state Γ1 + Γ2 and

we assumed that our path does not cross them.

When an internal edge shrinks to zero size, the bound state undergoes recombination phe-

nomenon and we call the corresponding wall Recombination wall. Upon crossing this wall

different components of multicentered state unbind from each other and become bound to other

components. Although the content of the multicentered state does not change the bonds hold-

ing this molecular configuration together do change. The canonical recipe of (dis)assembling

BPS Hilbert space also changes in accord with the change of attractor flow tree. A typical

situation is when e.g. charge Γ1 is realized as a bound state of two constituents with charges

Γ3 + Γ4 and we denote this configuration as ((Γ3,Γ4),Γ2). As we cross the recombination wall

the internal edge of the attractor tree shrinks to zero size producing one 4-valent vertex, instead

of two 3-valent ones, and on the other side we end up with two attractor flow trees of the form

((Γ4,Γ2),Γ3) and ((Γ2,Γ3),Γ2). BPS index should not change as we cross recombination wall

and we prove that this is indeed the case.

When a terminal edge shrinks to zero size, the corresponding terminal charge must become

massless and the conjugate particles will be created. Suppose that charge Γ1 becomes massless

along some locus in the moduli space. It is known [13] that massless particles in string theory

are associated with singularities on the moduli space of Calabi-Yau manifold and the charges of

BPS states undergo a typical monodromy of the form Γ2 → ΓM
2 := Γ2+IΓ1 with I = |〈Γ1,Γ2〉|.

As we cross the locus where Γ1 constituent becomes massless a halo of I particles −Γ1 is created
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from vacuum around Γ2 center. This halo is in fact a completely filled Fermi sea of fermionic

particles Γ1 and we call such process the Fermi flip. This process does not cost any energy

since Γ1 is massless and because of the monodromy the total charge of the final configuration

Γ2+IΓ1+(I−1)(−Γ1) is equal to the initial total charge. The wall AMS(Γ1,Γ2) now becomes

marginal stability wall MS(ΓM
2 , (I − 1)(−Γ1)) and puzzle is resolved. Fermi flip effectively

replaces Γ1 particles by a certain number of conjugate particles −Γ1 and we call the wall where

this happens conjugation wall. It is easy to see that BPS index remains constant during this

process.

Besides solving the puzzle the requirement that BPS indices are continuous when going from

MS(Γ1,Γ2) to AMS(Γ1,Γ2) leads to non-trivial constraints on the spectrum of massless BPS

states at the singularity. We find that when there is only one charge becoming massless at the

singularity (Γ1 and/or possibly some rational multiples of it) then BPS indices of such charges

determine the monodromy of the local system of charges around the singularity.

The above resolution assumed that massless particles Γ1 a fermionic. If it happens that

massless vector particles are present at the singularity the only way BPS index can stay con-

tinuous is the presence in the spectrum of massless particles mutually non-local w.r.t. massless

vectors. We predict that the spectrum will necessarily contain massless magnetic monopoles

that will form bound states with Γ1 and Γ2. The structure of bound states with total charge

Γ will become much more complicated compared to purely fermionic case. Particles Γ1 and

ΓD
1 (monopole charge) will form clusters orbiting around central Γ2. Moving from MS(Γ1,Γ2)

to AMS(Γ1,Γ2) we encounter a countable set of BST walls across which some hybrid of both

conjugation and recombination porceses will take place and in the end BPS index will stay

continuous. We illustrate our conclusions on a number of examples from the literature.

Halo picture of BPS states used in analyzing BPS indices near singularities can be fruitfully

applied near a regular point in the moduli space. In chapter 5 we give a very simple physical

derivation of the famous Kontsevich-Soibelman wall-crossing formula(KSWCF) [7] based on the

halo picture. KSWCF is a generalization of the primitive(and semiprimitive) WCF (1.0.3) of

[5] which relates BPS indices of charges of the form mΓ1 + nΓ2 on two sides of the marginal

stability wall MS(Γ1,Γ2). To formulate the KSWCF we introduce a complex symplectic torus

T̃t, associated to the local system of charges at point t in the moduli space, with coordinate

functions Xγ , γ ∈ Λem satisfying

XγXγ′ = Xγ+γ′ . (1.0.6)
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There is a group of symplectomorphisms acting on this torus of the form

U t
γ : Xγ′ → (1− σ(γ)Xγ)

〈γ′,γ〉Ω(γ;t)Xγ′ , (1.0.7)

where Ω(γ; t) is BPS index of charge γ and σ(γ) is the ”quadratic refinement” of the quadratic

form (−1)〈γ
′,γ〉 obeying

σ(γ′)σ(γ) = (−1)〈γ
′,γ〉σ(γ′ + γ). (1.0.8)

Consider a point tms ∈MS(Γ1,Γ2) and in a small neighborhood of this point choose t+ in the

stable side and t− in the unstable side infinitesimally close to tms. At each of t± central charges

of Γ1 and Γ2 do not align as they do at tms. Because of this there will be some natural ordering

of charges of the form mΓ1 + nΓ2 according to the phases of their central charges αm,n
t± at t±.

The KSWCF is a relation

∏

αm,n
t+
ր

U
t+
mΓ1+nΓ2

=
∏

αm,n
t−
ր

U
t−
mΓ1+nΓ2

. (1.0.9)

This formula relates the indices Ω(mΓ1 + nΓ2; t±) to each other and is the most general WCF

for BPS indices in N = 2 supersymmetric field/string theories. In practice one expands both

sides of (1.0.9) in powers of XΓ1,2 and equates the coefficients in front of different powers on

both sides. In this way KSWCF reproduces the primitive and semi-primitive WCFs of [5] and

provides a generalization thereof.

The first physical derivation of it in N = 2 field theory, based on a thorough analysis of

hyper-Kähler metric on the moduli space, was given in [14]. In chapter 5 we give a different

derivation of the formula valid in any N = 2 supergravity theory, based on the halo picture of

BPS states and semiprimitive WCF. Our derivation is very similar in spirit to the derivation

of (motivic) WCF in N = 2 field theories given in [15]. Inspired by the results from chapter

4 we also give a slight generalization of KSWCF for the cases when singularities are present.

In that case the formula becomes a constraint on the massless spectrum of BPS states at the

singularity and a relation of this spectrum to the monodromies of the local system of charges.



10

Chapter 2

Ample D4-D2-D0 decay

In this chapter we study the wall-crossing behavior of the index of BPS states for D4-D2-D0

brane systems on a Calabi-Yau 3-fold at large radius. We find that not only is the “BPS index

at large radius” is chamber-dependent, but that the changes in the index can be large in the

sense that they dominate single-centered black hole entropy. We discuss implications for the

weak coupling OSV conjecture. We also analyze the near horizon limit of multicentered solu-

tions, introduced in [9], for these particular configurations and comment on a general criterion,

conjectured in [9], which identifies those multicentered solutions whose near horizon limit cor-

responds to a geometry with a single asymptotic AdS3 × S2 boundary. This chapter is based

on [16].

2.1 Review of OSV conjecture

In this section we fill in the details about OSV conjecture mentioned in the Introduction. We

start with giving a more precise definition of the BPS index. Let’s denote the Hilbert space of

BPS states with charge Γ = (p, q) = (p0, P,Q, q0) by H(Γ; t∞). Index of BPS states with this

total charge is defined to be the second helicity supertrace

Ω(Γ; t∞) = −2TrH(Γ;t∞)J
2
3 (−1)2J3 . (2.1.1)

Here J3 is the third component of spatial angular momentum. Factoring out center-of-mass

degrees of freedom, giving a half-hypermultiplet, we can rewrite the index as

Ω(Γ; t∞) = TrH′(Γ;t∞)(−1)2J
′
3 , (2.1.2)

where J ′3 is the reduced angular momentum. Using these indices it is natural to define a partition

function, usually referred to as black hole partition function as

ZBH(p, φ; t∞) =
∑

q

Ω(p, q; t∞)e2πφ
Λ

qΛ. (2.1.3)
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This partition function has a meaning of a mixed ensemble of BPS states with fixed magnetic

charges and chemical potential for the electric charges. In principle such partition function

should arise naturally from string theory path integral. In practice it can be defined in the large

charge limit using Wald’s formula for the entropies of black holes, related to the indices via

(1.0.1). In cases when black hole configuration admit a dual CFT description, as in the famous

MSW theory [17], one can give a definition of black hole partition function valid for all charges,

using CFT partition function

ZCFT (τ = C0 + i
β

gIIA
, C) = Tr(−1)2J

′
3e−βH−2πiq0C0−2πiQ·(C+P

2 ). (2.1.4)

In practice the dual CFT is obtained from the D-brane configuration, corresponding to black

holes of given magnetic charge, and path integral over D-brane world-volume theory reduces to

the CFT partition function. Parameters of the world-volume theory such as Ramond-Ramond

potentials C0, CΛ and the radius of AdS2 throat1 are related to the usual modular parameter

of CFT as in (2.1.4). Using this partition function the one in (2.1.3) can be defined as

ZBH(p, φ
0, φΛ) = ZCFT(β = 0, C0 = iφ0, C = iΦ− P

2
). (2.1.5)

Now we want to define another interesting object that exists on the Calabi-Yau manifolds used

in string compactification models: topological partition function. Topological string theory on

a Calabi-Yau manifold X is a twisted (2, 2) CFT with target space X (see [18] for a review).

One defines vacuum amplitudes for embedding genus h string worldsheet into X

Fh(t) =

∫

Mh

〈
3h−3∏

k=1

(G−, µk) (G±, µ̄k)〉, (2.1.6)

where G± are worldsheet supersymmetry generators, µk are Beltrami differentials and t are

Kähler moduli of X . Topological partition function is formed using these amplitudes

Ftop(gtop, t) =

∞∑

h=0

g2h−2top Fh(t). (2.1.7)

This partition function is known to compute F -terms in the low energy effective action and

thus is related to black hole entropies computed using Wald’s formula. [4] made this precise

and conjectured that there is a relation

1In IIA string theory black hole geometries for black holes with vanishing D6 charge contain an AdS2 × S2

piece.
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ZBH(p, φ
0, φΛ; t∞) = |Ztop(gtop, t)|2, where

gtop =
−4iπ

p0 + iφ
0

π

ta =
P a + iφ

a

π

p0 + iφ
0

π

. (2.1.8)

This relation was derived for large charges, when BPS indices are saturated by black hole

entropy as in (1.0.1), and in the weak topological coupling gtop limit. A major problem with

this formula as originally formulated, is the dependence of black hole partition function on

the background moduli t∞ and independence from it of the topological partition function. A

constructive proof of this relation was given in [5] where it was found that t∞ has to be taken

to infinity in the Kähler cone of Calabi-Yau X , i.e. BPS indices entering black hole partition

function have to be evaluated around the large volume point of the Calabi-Yau.

2.2 Some general remarks on BPS indices at large radius

In this section we focus on the type IIA string theory compactified on a Calabi-Yau manifold

X and study the indices of BPS states in the large volume limit. To define it we choose some

vector B + iJ in the complexified Kähler cone and consider the limit

lim
Λ→∞

Ω(Γ;Λ(B + iJ)) (2.2.9)

Charge Γ here is an element of symplectic lattice with components Γ = (p0, P,Q, q0). We expect

- on physical grounds - that this limit exists: In the large radius limit the physics is described

by some D-brane gauge theory, and there should be a well-defined and finite-dimensional space

of BPS states H(Γ; t). Somewhat surprisingly, it was pointed out in [8] that the limit (2.2.9)

depends on the direction B + iJ chosen in the Kähler cone, even for the D4-D2-D0 system

studied in [17], and hence the “large-radius limit” of the index of BPS states is not well-defined

without specifying more data. This fact has recently played an important role in [9]. Our point

in this chapter is that in fact the dependence of the index on the direction B + iJ can be large

and this has significant implications, as explained in more detail below. In [5] it was pointed

out that for D6-D4-D2-D0 systems there is nontrivial wall-crossing at infinite radius. In [8, 9]

it was shown that even for the D4-D2-D0 system with ample D4 charge P , there are walls of

marginal stability going to infinity. (Such examples are only possible when the dimension of the

Kähler cone is greater than one [5].) One should therefore ask how large the discontinuities in

Ω can be across walls at infinity. We show that they can be large in the following sense: If we

consider charges Γ which support regular attractor points (hence the single-centered attractor
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solutions of [19, 20]) then it is not consistent with wall-crossing to assume that the contribution

of such states dominate the large radius limit of the index Ω(Γ). We show this by exhibiting

an explicit example in Section 2.4.

Our example consists of a charge which supports a regular attractor point (hence a single-

centered black hole), but which also supports a 3-centered solution. The three-centered solution

decays across a wall in the Kähler cone which extends to arbitrarily large radius. The contri-

bution of the single centered solution of charge Γ is predicted from supergravity to be

log |Ω| ∼ SBH(Γ) := 2π

√
− q̂0

6
P 3 (2.2.10)

In our example Γ will support a boundstate of charge Γ1 + Γ2 where Ω(Γ1) has bounded

entropy and Γ2 itself supports a regular attractor point, but SBH(Γ2) > SBH(Γ). Thus the

discontinuities in the index are competitive with the single-centered entropy.

This effect of entropy dominance of multi centered configurations over single-centered ones

is reminiscent of the “entropy enigma” configurations of [5, 21]. In that case, if we first take

large J∞ then under charge rescaling Γ → ΛΓ single centered entropy scales as SBH ∼ Λ2

while the two-centered solutions contribute to entropy as S2c ∼ Λ3. On the other hand, if

one holds the moduli at infinity, J∞, fixed and scales Γ, then the configuration will eventually

become unstable and leave the spectrum. Here we again first take large J∞ and find that under

rescaling D4 charge P → ΛP (holding the remaining components of Γ fixed) the single centered

entropy scales as SBH ∼ cBHΛ3/2 while the three-centered entropy scales as S3c ∼ c3cΛ
3/2,

with c3c > cBH . Thus here the entropy dominance of multicentered configuration over the

singlecentered arises from the prefactor and not from the scaling exponent. In contrast to the

entropy enigma configuration, if we fix moduli at infinity J∞ and then scale P , the configuration

does not leave the spectrum, as shown at the end of section 3 below.

Like the “entropy enigma” configurations, the boundstates considered here threaten to inval-

idate the weak-coupling version of the OSV conjecture [4] (or its refined version [5]). However,

as discussed at length in [5], (see especially section 7.4.2), since Ω is an index there are po-

tential cancellations between these configurations leading to the desired scaling logΩ ∼ Λ2 for

uniformly scaled charges. Our main point here is that even if we assume that there are such

miraculous cancellations the index will nevertheless have large discontinuities across the MS

walls, even at large radius, and hence the weak coupling OSV conjecture is at best valid in

special chambers of the Kähler cone. It is notable that the phenomenon we discuss cannot

happen when the Kähler cone is one-dimensional. Moreover, our example only exists in the

regime of weak topological string coupling, where |q̂0| is not much larger than P 3. This regime
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is already known to be problematical for the OSV conjecture [5].

Of course, given a charge Γ = P +Q+ q0dV , with P in the Kähler cone, there is a natural

direction singled out, namely the P direction. It is therefore natural to suppose that the refined

OSV formula of [5] should apply to

lim
Λ→∞

Ω(Γ;ΛzP ) (2.2.11)

where z = x+ iy is a complex number, and indeed, several of the arguments in [5] assumed (for

simplicity) that J and P are proportional.

A second, related, implication of our example concerns the modularity of generating func-

tions for BPS indices. In [5] a microscopic formulation of the “large radius” BPS indices

was investigated by characterizing the BPS states as coherent sheaves supported on cycles

in the linear system |P |. Put differently, a D4 brane wraps a cycle Σ ∈ |P |. There is

a prescribed flux F ∈ H2(Σ;Z) and the system is bound to N anti-D0 branes. If we set

d(F,N) = (−1)dimMχ(M) where M is the moduli space of supersymmetric configurations of

this type then, it was claimed, the large radius BPS indices are finite sums of the d(F,N). On

the other hand, duality symmetries of string theory imply that a certain generating function

of the indices d(F,N), denoted ZD4D2D0, exhibits good modular behavior. It follows from the

chamber dependence of the large radius limit of Ω that there must be chamber dependence of

the d(F,N). The chamber dependence of d(F,N) raises the question of compatibility with the

modularity of the partition function ZD4D2D0. This partition function is also closely related to

the (0, 4) elliptic genus of the MSW string [22, 23], and hence similar remarks might apply to

that elliptic genus. The statement of modularity of these partition functions follows from very

basic duality symmetries in string theory and conformal field theory which, one might guess,

should be valid in every chamber of the Kähler cone. One might therefore expect that the

change in the partition function must also be modular. It might be easier to verify this than

it is to verify the modularity of the full partition function. One might approach this using the

results of [24]: One must compute the change of the polar polynomial across a chamber and

show that the associated cusp form vanishes. This appears to be a challenging computation,

but one well worth doing if possible.

2.3 Walls at large radius

In this section we analyze and enumerate marginal stability walls that exist around the large

radius point. Let us consider a D4-D2-D0 charge Γ = P + Q + q0dV splitting into a pair of
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charges Γ = Γ1 + Γ2 with

Γi = ri + Pi +Qi + q0,idV (2.3.12)

Then r1 = −r2 = r and I12 = 〈Γ1,Γ2〉 = P1 ·Q2 − P2 ·Q1 − rq0. The Denef stability condition

[11] is governed by the sign of I12 times the sign of

Z12 := ImZ1,holZ
∗
2,hol. (2.3.13)

We are interested in the existence of walls at infinity. Let us consider walls which asymptotically

contain lines in the Kähler moduli space. Thus, we set t→ Λt and take Λ → ∞. If the leading

term in Z12 at large Λ can change sign as the “direction” t is changed, then there will be

asymptotic walls at infinity.

If r is nonzero then any wall that persists at infinity is necessarily an anti-MS wall, where

the phases of Z(Γ1; t) and Z(Γ2; t) anti-align. There is no wall-crossing associated with such

walls and thus we set r = 0.

When r = 0 (2.3.13) simplifies to

Z12 =
1

4
ImP1 · t2P2 · t̄2

− 1

2
Im
(
P1 · t2Q2 · t̄+ P2 · t̄2Q1 · t

)

+ Im

(
Q1 · tQ2 · t̄+

1

2
q0,1P2 · t̄2 +

1

2
q0,2P1 · t2

)

− Im (q0,1Q2 · t̄+ q0,2Q1 · t)

(2.3.14)

For the generic direction t the leading behavior for Λ → ∞ will be governed by the sign of

ImP1 ·t2P2 · t̄2 = (P1 ·B ·J)P2 ·B2−(P2 ·B ·J)P1 ·B2−(P2 ·J2P1 ·B ·J−P1 ·J2P2 ·B ·J) (2.3.15)

This vanishes in the one-modulus case, but is generically nonzero in the higher dimensional

cases. Moreover, it is odd in B. Therefore, just by changing the sign of B we change from a

region of Denef stability to instability, and hence there are definitely walls at infinity.

As an example we analyze (2.3.15) for two particular examples of Calabi-Yau manifolds with

a 2-parameter moduli space. The first case is the elliptic fibration π : X → P 2. A basis of

divisors is D1 = αf , D2 = h with intersection products given by α3
f = 9, α2

fh = 3, αfh
2 = 1

and h3 = 0. The second example is a blow-up of a hypersurface in P(1,1,2,2,2)[8] [25]. A basis of

divisors is H and L with intersection products given by H3 = 8, H2L = 4, HL2 = 0, L3 = 0.

It turns out that in the elliptic fibration case (2.3.15) takes the form (here, superscripts denote

components w.r.t. the basis D1, D2 above):

16((B1)2 + (J1)2)(P 2
1P

1
2 − P 1

1P
2
2 )(B

2J1 −B1J2) (2.3.16)
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and thus vanishes whenever P1 becomes parallel to P2 or B becomes parallel to J . Assuming

P1 not parallel to P2 there is exactly one wall, going to infinity with B ∝ J . In the case of

P(1,1,2,2,2)[8] (2.3.15) looks like:

(3B1B2 +B2
2 + 3J1J2 + J2

2 )(P
(2)
1 P

(1)
2 − P

(1)
1 P

(2)
2 )(B2J1 −B1J2) (2.3.17)

Here in addition to B ∝ J wall there is another wall for 3B1B2+B
2
2 +3J1J2+J

2
2 = 0, provided

that 9B2
1 − 12J1J2 − 4J2

2 > 0. It is easy to see that on the B ∝ J wall the phases of the central

charges align and hence, this is an MS and not an anti-MS wall. For simplicity we will choose

B = 0 in which case the stability condition at large Λ is governed by the sign of

(P2 · J2Q1 · J − P1 · J2Q2 · J) (2.3.18)

Again, in the one-modulus case this expression has a definite sign in accord with the analysis in

[5], however, in the higher dimensional case it is perfectly possible for this quantity to change

sign as J changes direction in the Kähler cone.

2.4 An example

We now give an explicit example of a split of a D4D2D0 charge, which supports a single centered

black hole, but which admits marginal stability walls at infinity describing a splitting into a

pair of D4D2D0 systems in which the change in index ∆Ω is larger than the single-centered

entropy.

In order to have a single-centered solution we must assume P is in the Kähler cone and the

discriminant is positive. Therefore,

q̂0 < 0 q̂0 := q0 −
1

2
Q2|P (2.4.19)

where we recall that Q2|P := (DABCP
C)−1QAQB.

In some chambers this charge can also support a multicentered solution where the first split

in the attractor flow tree is given by

Γ → Γ1 + Γ2

Γ1 = P1 +
χ(P1)

24
dV

Γ2 = P2 +Q + q0,2dV (2.4.20)
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Here, Γ1 is a pure D4-brane and Γ2 is a D4-brane charge supporting a single-centered black

hole: We will consider only charge configurations so that q̂0,2 < 0, and hence Γ2 has a regular

attractor point.

Using the summary of split attractor flows in the appendix A, we see that a necessary

condition for the existence of the split realization is that the flow crosses MS(Γ1,Γ2) at a

positive value of the flow parameter s. Using notations from Appendix A the flow parameter is

given by:

s12ms = 2
−(Q · J − P ·B · J) (12P1 · (J2 −B2) + χ(P1)

24 )− (12P · (J2 −B2) +Q · B − q0) P1 · B · J√
4
3J

3| 12P · (J2 −B2) +Q · B − q0 + iQ · J − iP ·B · J | P1 ·Q
|∞

(2.4.21)

Here |∞ means that complexified Kähler moduli t = B+iJ are evaluated at spatial infinity. The

vanishing locus of sms is the wall of marginal stability. This is a rather complicated expression,

but it simplifies if the starting point is chosen to have zero B-field. In that case the parameter

along the flow s12ms, for which the wall is crossed is

s12ms = 2
−Q · J (12P1 · J2 + χ(P1)

24 )√
4
3J

3| 12P · J2 − iQ · J − q0| P1 ·Q
|∞ (2.4.22)

which further simplifies in the large J limit to

s12ms = −2
Q · J P1 · J2

√
4
3J

3P · J2 P1 ·Q
|∞ (2.4.23)

The condition s12ms > 0 (which is equivalent to the Denef stability condition) imposes a restriction

on Q, because we must have (QJ∞)(P1Q) < 0 while both P1 and J∞ are in Kähler cone. There

are plenty of charges that satisfy this condition and we’ll give a numerical example below.

We are not quite done constructing the split attractor flow tree because Γ1 is a polar charge,

and must itself be realized as a multicentered solution. As discussed in appendix A, for an

attractor tree to exist all its edges must exist and moreover all its terminal charges must support

BPS states. The charge Γ2 supports a regular black hole. Meanwhile, Γ1 is realized as a flow,

splitting into D6 and D6 as in [5]:
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Γ1 → Γ3 + Γ4

Γ3 = eP1/2

Γ4 = −e−P1/2

(2.4.24)

So for the whole tree to exist we need

• s12ms > 0 for the split Γ → Γ1 + Γ2 to exist

• s34ms > 0 for the split Γ1 → Γ3 + Γ4 to exist

• s340 > s34ms where s340 is the value when the flow reaches zero of the charge Z(Γ1)

These conditions are sufficient because the charges Γ3 and Γ4 exist everywhere in moduli

space and Γ and Γ2 support black holes. It is also easy to see that both walls are MS and not

anti-MS walls. It turns out that above conditions are always satisfied if

• J∞ is on stable side of the wall, corresponding to s12ms > 0

• P1 ≪ J∞ component-wise in a basis of Kähler cone

To see this we estimate s34ms and s340 in the large J∞ limit. Recall from appendix A that

s34ms =
〈Γ3,∆H〉 − 〈Γ3,Γ〉s12ms

〈Γ3,Γ4〉
. (2.4.25)

Now plugging the expression for ∆H from (1.0.6) we can estimate 〈Γ3,∆H〉 ∼ J3
∞

3
√

4/3J3
∞

. Using

〈Γ3,Γ4〉 = −P 3
1

6 and the fact that s12ms ∼ O( 1
J1/2 ) is small we get

s34ms ∼
2J3
∞√

4/3J3
∞P

3
1

. (2.4.26)

To find s340 we equate the central charge to zero Z(Γ1; t) = 0 to get the vanishing locus:

− χ(P1)

24
− 1

2
P1 ·B2 +

1

2
P1 · J2 = 0, P1 · B · J = 0. (2.4.27)

Moduli along the flow of charge Γ1 are determined again by (1.0.6) with Γ(s) = sΓ1+s
12
msΓ−

∆H . Recalling that s12ms ∼ O( 1
J1/2 ) this can be written as

Γ(s) =


O( 1

J
5/2
∞

), sP1 +O(
1

J
1/2
∞

), O(
1

J
1/2
∞

), s
χ(P1)

24
− J3

∞

2
√

4
3J

3
∞


 . (2.4.28)
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Plugging this Γ(s) into (1.0.6) and taking into account that s340 ∼ O(J3/2), as we will see below,

we find that

J(s340 )a ∼ P a
1

√√√√√−6

P 3
1


χ(P1)

24
− J3

∞

2s340

√
4
3J

3
∞)


, (2.4.29)

and Ba(s340 ) is small. Now we can solve (2.4.27) for s340 to find:

s340 ∼ 6J3
∞√

4/3J3
∞(P1)3

. (2.4.30)

Thus we see from (2.4.26) and (2.4.30) that the existence conditions are indeed satisfied: s340 >

s34ms.

We conclude with a numerical example, checking explicitly that such split solutions exist.

We consider again the elliptic fibration example and P(1,1,2,2,2)[8] of [25]. The initial charge is

of the form Γ = P +Q+ q0dV , where P = (50, 50), Q = (−1, 3), q0 = −10. The starting point

of the flow is J∞ = (500, 100), which indeed lies on stable side of MS wall in (2.4.22). The

pure D4 has charge P1 = (1, 2). All the existence conditions are found to be satisfied for both

Calabi-Yau manifolds. As we’ll discuss in the next section, the entropy of this three-centered

configuration is expected to be larger than the one from the single-centered realization of the

same total charge. The numerical examples confirm this claim in both cases.

Now we will justify the remark made in the Section 2.2 about the existence of the 3-centered

configuration for P → ∞. We take B∞ = 0 and evaluate (2.4.21). Evaluating (2.4.22) in

the limit P → ∞ and with fixed J∞ produces an expression almost identical to (2.4.23). In

particular, it remains positive, but does go to zero. The second split Γ1 → Γ3+Γ4 will therefore

happen very close to starting point in moduli space and hence J∞ ≫ P1 will guarantee that

the second split exists. This proves that our example exists in the P → ∞ limit if it existed in

J∞ → ∞ limit.

2.5 Comparison of the entropies

Now let us compare the discontinuity ∆Ω of the BPS index with the contribution of the single-

centered (black hole) solutions to the “large radius” index Ω(Γ; J∞). We first assume that the

dominant contribution to the large radius entropy is that of the single-centered solutions, if they

exist. We will then show that this assumption is inconsistent with the wall-crossing phenomena.

The black hole contribution to Ω can be approximated using the equation from the attractor

mechanism
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ΩBH(Γ) := expSBH(Γ) = exp
[
2π
√
−q̂0P 3/6

]
. (2.5.31)

The discontinuity of the index across the wall Γ → Γ1 + Γ2 is given by

∆12Ω(Γ; tms) = (−1)〈Γ1,Γ2〉−1|〈Γ1,Γ2〉| Ω(Γ1; t
12
ms) Ω(Γ2; t

12
ms). (2.5.32)

Here the indices of Γ1 and Γ2 are evaluated on the MS wall. As we have said, the state

with charge Γ1 is realized as a split attractor flow splitting into pure D6 and D6 with fluxes.

The index of Γ1 is polynomial in charges and is given by Ω(Γ1) = (−1)I(P1)−1I(P1) where

I(P ) := P 3

6 + c2(X)·P
12 . Again using our assumption we would estimate that the index of Γ2 can

again be approximated by the black hole contribution:

Ω(Γ2, J∞) ∼ ΩBH(Γ2) = exp

[
2π
√
−q̂0,2P 3

2 /6

]
(2.5.33)

since Γ2 supports a single-centered black hole.

We now consider a limit of large charges. We hold P1 fixed and take P → ∞ along some

direction in the Kähler cone. Then from Eqs.(2.5.31), (2.5.33) the indices of Γ and Γ2 will be

exponentially large for large P while Ω(Γ1) is a known, bounded function of P1. This means

that to compare the contributions (2.5.31) and (2.5.32) we need to compare the exponents:

− q̂0P
3 vs − q̂0,2P

3
2 . (2.5.34)

In this limit we can write

P 3
2 = P 3 − 3P 2 · P1 + ... = P 3

(
1− 3P 2 · P1

P 3
+O(1/|P |2)

)
. (2.5.35)

Moreover, since q0 is conserved at the vertex

q̂0,2 = q̂0 +
1

2
Q2|P − χ(P1)

24
− 1

2
Q2|P2 . (2.5.36)

In taking our charge limit we can make q0,2 sufficiently negative that q̂0,2 and q̂0 are both

negative. Now we can write

− q̂0,2P
3
2 = −q̂0P 3

(
1− χ(P1)

24q̂0
− 1

2q̂0
(Q2|P2 −Q2|P )−

3P 2 · P1

P 3
+O(1/|P |2)

)
. (2.5.37)

Since q̂0 is negative we see from (2.5.37) that the contribution of the Γ → Γ1+Γ2 → (Γ3+Γ4)+Γ2

split attractor flow will be greater in the P → ∞ limit provided that

χ(P1)

24|q̂0|
+

1

2|q̂0|
(Q2|P2 −Q2|P )−

3P 2 · P1

P 3
> 0. (2.5.38)
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The first term of (2.5.38) is always positive, while the second term can have both signs. The

third term is always negative. However, for parametrically large P and fixed Q the second and

third terms are suppressed, so the expression is positive. Thus we find that in the limit described

above, the split flow configuration has greater entropy than the black hole contribution:

ΩBH(Γ) ≪ ∆12Ω(Γ; tms). (2.5.39)

So not only does the value of the index Ω depend on the direction in which J is taken to

infinity, but this dependence can be very strong, and even dominate single-centered black hole

entropy.

One might worry that there are other split flow realizations of the charge Γ, with the

same wall of marginal stability as the one we are studying, which produce a cancellation in

∆Ω. For example, the charge Γ2 might well support multi-centered solutions. However, by our

hypothesis, the single-centered entropy dominates the multi-centered ones, so such a cancellation

cannot occur. Then (2.5.39) leads to a contradiction and hence we conclude that it cannot be

that single-centered entropy dominates the entropy at infinity in all chambers.

Remarks

1. In the context of topological string theory the topological string coupling is gtop ∼
√
−q̂0/P 3 [4]. The effect we are discussing does not appear in the strong coupling regime,

in harmony with the arguments in [5]. However, it does appear in the problematic weak

coupling regime.

2. Interestingly, this phenomenon will not occur with splits into two single-centered attrac-

tors. If q0,i < 0 for both i = 1, 2 and P1, P2 are in the Kähler cone then (taking Qi = 0

for simplicity) one can show that

SBH(Γ) > SBH(Γ1) + SBH(Γ2) (2.5.40)

as expected. We do not know of a proof of the analogous statement for Qi 6= 0.

3. In principle the example we have given can be extended by replacing Γ1 by an arbitrary

extreme polar state in the sense of [5]. Following [5], the charges Γ1 → Γ3 + Γ4 can be

parametrized as
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Γ3 = reS1(1− β1 + n1w)

Γ4 = −reS2(1− β2 + n2w)

Γ1 = r

(
0, P̂ ,

P̂ S

2
+ ∆β,

P̂ 3

24
+
P̂ S2

8
− P̂ β

2
+
S∆β

2
−∆nw

)
(2.5.41)

where P̂ = S1 − S2, S = S1 + S2, β = β1 + β2, ∆β = β2 − β1, ∆n = n2 − n1. For

sufficiently small βi and ni and S1 ≡ P1/2, S2 ≡ −P1/2, the charge Γ1 is very close to

a pure D4-brane and all existence conditions are still satisfied. The 3-centered entropy

dominance also continues to hold.

2.6 M-theory lift and its near-horizon limit

In this section we check what happens to our boundstate configurations in the near horizon

scaling limit recently introduced in [9]. This is important since our observations regarding the

entropy have the potential to lead to a troublesome contradiction with the AdS/CFT conjecture.

If our configurations corresponded to states in the Cardy region of the holographic dual to an

asymptotically AdS3×S2 geometry then there would be such a contradiction. Fortunately, our

example turns out to be quite similar to that discussed in [9]: The first split D4 → D4 +D4

corresponds to two infinitely separated (AdS3×S2)-like geometries, so there is no contradiction.

These curious limiting geometries, and especially their holographic dual interpretation, deserve

to be understood much better. Indeed, the existence of these D4 → D4 +D4 decays suggests

that in general one cannot identify the partition function ZD4D2D0 of [5] with the M5 elliptic

genus of [22, 23]! They might nevertheless agree in certain chambers of the Kähler cone (e.g.

at the “AdS point” described in [9]). Clearly, this issue deserves to be understood better.

The solution to the attractor equations in the effective 4d N = 2 SUGRA for a general

multicentered configuration can be written (in the regime of large Kähler classes) in terms of

harmonic functions ( [9], eq. (2.8)):

ds24d = − 1

Σ
(dx0 +

√
G4 ω)

2 +Σ(d~x)2 ,

A0 =
∂ logΣ

∂H0

(
dx0√
G4

+ ω

)
+ ω0 ,

AA =
∂ logΣ

∂HA

(
dx0√
G4

+ ω

)
+AA

d ,

tA =
HA

H0
+
yA

Q
3
2

(
iΣ− L

H0

)
, (2.6.42)
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where

⋆ dω =
1√
G4

〈dH,H〉 , dω0 =
1√
G4

⋆ dH0

dAA
d =

1√
G4

⋆ dHA , Σ =

√
Q3 − L2

(H0)2

L = H0(H
0)2 +

1

3
DABCH

AHBHC −HAHAH
0 , (2.6.43)

Q3 = (
1

3
DABCy

AyByC)2 , DABCy
AyB = −2HCH

0 +DABCH
AHB

H ≡ (H0, HA, HA, H0) :=
∑

a

Γa

√
G4

|~x− ~xa|
− 2Im (e−iαΩ)|~x=∞ ,

A = 1, . . . , h1,1(X) are components relative to a basis DA for H2(X,Z), ⋆ is the Hodge star

with respect to the Euclidean metric d~x2 on R3, and we choose a solution yA of the quadratic

equations such that yADA is in the Kähler cone. The Calabi-Yau volume in string units is given

by

ṼIIA =
DABC

6
JAJBJC =

1

2

Σ3

Q3
(2.6.44)

and G4 is the 4-dimensional Plank constant, determined in terms of the string length ls and

string coupling gs by

G4 =
l2sg

2
s

32π2ṼIIA,∞

. (2.6.45)

The above equations assume H0(~x) is nonzero, but they have a smooth limit as H0 → 0. (See

[26] eq. (9.21) for the relevant expansions.)

This solution of 4d supergravity can be lifted to 5d supergravity. To do this we use the

standard relation between M -theory and IIA geometries

ds25d =
R2

4
e

4
3φ
(
dψ +A0

)2
+ e−

2
3φ ds24d ,

Y A = Ṽ
−1/3
IIA JA , AA

5d = AA +BA
(
dψ +A0

)
. (2.6.46)

Here R is the M-theory circle radius, ψ ∼ ψ + 4π, Y A are 5d SUGRA moduli, and φ(~x) is the

10d dilaton field, normalized as φ(∞) = 0. Note that the Calabi-Yau volume in 11d Planck

units is

ṼM = e−2φ
ṼIIA
g2s

. (2.6.47)

The near horizon limit of the M -theory solution, introduced in [9], may be described as

follows. Beginning with a solution (2.6.42) we introduce a family of BPS solutions of the 4d

supergravity equations, parametrized by λ ∈ [1,∞). The expressions that get modified under
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this deformation are given by

ds24d ,λ = − 1

Σλ
(dx0 + λ−3/2

√
G4 ω

λ)2 + λ−6Σλ (d~x)2 ,

A0
λ =

∂ logΣλ

∂Hλ
0

(
λ3/2

dx0√
G4

+ ωλ

)
+ ωλ

0 ,

⋆dωλ =
λ−3/2√
G4

〈dHλ, Hλ〉 , dωλ
0 =

λ−3/2√
G4

⋆ dH0
λ

Hλ := λ3/2
∑

a

Γa

√
G4

|~x− ~xλa |
− 2Im(e−iαΩ)|B∞+iλJ∞ (2.6.48)

Here, Ω = − 1√
4/3J3

eB+iJ and for brevity we omit the corresponding formulae for AA
λ and AA

d ,λ.

The vectors ~xλa used to define Hλ can be taken to be any solution of the integrability constraints

∑

b6=a

〈Γa,Γb〉
xλab

= −λ−3
√

3

G4J3
∞

Im

(
e−iα∞,λ

∫
Γbe
−(B∞+iλJ∞)

)
∀b. (2.6.49)

where xλab := |~xλa − ~xλb | and eiα∞,λ is the phase of the total central charge at B∞ + iλJ∞. We

choose ~xλa to coincide with our original solution at λ = 1, and let them depend continuously on

λ. Clearly there is some degree of arbitrariness at this stage. 2

The above family of solutions can be obtained from original ones by scaling (2.6.43)

~x→ λ−3~x

ls → λ−3/2ls

g2s → λ3g2s

G4 → λ−3G4

J∞ → λJ∞

B∞ → B∞ (2.6.50)

but we prefer to keep ~x, ls, G4 fixed and change the solution according to (2.6.48). The constant

G4, and the coordinate system, in these equations is λ-independent.

Now consider the corresponding λ-deformed 5d geometries. Since the moduli tA(~x;λ) de-

termined by (2.6.42) scale as λ0 for λ→ ∞ (at least when H0(~x) 6= 0) it is clear that if the ~xλa

have a well-defined limit then there are well-defined limiting moduli τA(~x) := limλ→∞ tA(~x;λ).

One must be careful because the limits ~x → ∞ and λ → ∞ do not commute. Indeed

tA(~x;λ) → BA
∞ + iλJA

∞ as ~x → ∞ for any fixed λ while τA(~x) has asymptotics for large

x = |~x|:

τA = DABQB +O(1/x) + i

√
3|x|
P 3

(J3
∞/3)

1/4PA (1 +O(1/x)) (2.6.51)

2In principle some components of the moduli space of solutions to (2.6.49) might be obstructed by the
positivity of the discriminant.
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This implies that the 5d SUGRA moduli Y A(~x) have well-behaved large ~x asymptotics

Y A(~x) =
PA

(P 3/6)1/3
+O(1/|~x|). (2.6.52)

Moreover, since the 10d dilaton scales according to (2.6.47) as e2φ
λ

=
Ṽ λ
IIA

λ3g2
s ṼM

(ṼM is λ inde-

pendent), e2φ
λ(~x) for fixed ~x scales as λ−3. Note, however, that in the other order of limits

φλ(∞) = 0. The corresponding 5d metric for the deformed solution λ2ds25d, λ has a well-defined

limit. Reference [9] shows that this limiting solution defines a geometry which is asymptotically

AdS3×S2, where there is a nontrivial connection on the (trivial) S2 bundle over the asymptotic

AdS3 region.

The upshot is that if we can choose the centers ~xλa , constrained by (2.6.49), so that the ~xλa

have a well-defined finite limit as λ→ ∞ then, by AdS/CFT, the BPS states corresponding to

the multicentered solution at λ = 1 should correspond to BPS states in the MSW conformal

field theory. However, it can happen that as λ→ ∞ the distances between the centers ~xλa cannot

remain bounded. In this case the behavior of the limiting geometry is more complicated, and

might involve, for example, “several AdS3×S2 geometries at infinite separation.” In particular,

note that if the total D6 charge vanishes then α∞,λ → 0 and hence those integrability equations

(2.6.49) with Γ0
b = 0 have a zero on the RHS. This might force some centers to move to infinity.

In view of the above results we next turn to our 3-centered configuration and examine the

integrability conditions [11] on the positions of the three centers. For the set of charges described

in section 3 we have two independent equations:

−〈Γ2,Γ3〉
xλ23

+
〈Γ3,Γ4〉
xλ34

= θλ3

−〈Γ2,Γ4〉
xλ24

− 〈Γ3,Γ4〉
xλ34

= θλ4 (2.6.53)

where θλb denote (minus) the right-hand-sides of (2.6.49). The intersections of charges take the

form:

〈Γ3,Γ4〉 = −P
3
1

6
:= c

〈Γ2,Γ3〉 =
(
P · P 2

1

8
− P 3

1

8
+ q0,2

)
− Q · P1

2
:= a− b

〈Γ2,Γ4〉 = −
(
P · P 2

1

8
− P 3

1

8
+ q0,2

)
− Q · P1

2
:= −a− b (2.6.54)

Using the charges of section 2.4 and the limit P → ∞ holding P1 fixed, we have a ≫ b, c and

c < 0. As for the sign of b we first choose b > 0 and explain the case b < 0 later. Equations
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(2.6.53) determine xλ23 and xλ24 in terms of xλ34. As discussed above, there is still freedom in

choosing the dependence of xλ34 on λ. One way to fix this freedom is to choose xλ34 independent

of λ. The relations between xλab, following from (2.6.53) are subject to the triangle inequalities.

The moduli space of solutions will generically consist of several intervals on the xλ34 line. The

relation between these intervals and topologies of attractor flow trees is the essence of the Split

Attractor Flow Conjecture (SAFC) [11], which we recall in Appendix A for convenience.

Γ

Γ2

Γ4Γ3

MS(Γ1,Γ2)

MS(Γ3,Γ4)

Γ

Γ3
Γ2

MS(Γ3 + Γ2,Γ4)

MS(Γ3,Γ2)
Γ4

Z(Γ1)

Figure 2.1: The two contributing topologies of attractor trees.

In the present case the two possible attractor flow tree topologies are shown in Figure 2.1.

To identify the region corresponding to the left tree, we tune the moduli at infinity to be close

to the MS(Γ2,Γ1) wall. This means choosing θλ2 = −(θλ3 + θ
λ
4 ) close to zero. We can then write

the triangle inequalities as follows:

a− b

c− θλ3x34
+

a+ b

c+ θλ4x34
≥ 1

a− b

c− θλ3x34
+ 1 ≥ a+ b

c+ θλ4x34

1 +
a+ b

c+ θλ4x34
≥ a− b

c− θλ3x34
(2.6.55)

Close to the MS wall θλ2 = 0, we can write θλ3 = −θλ4 −θλ2 , solve inequalities (2.6.55) and expand

the solution to first order in θλ2 . Using in addition the relations between the magnitudes of

a, b, c, we get the following solutions to (2.6.55):

− c

θλ4
+

c

2(θλ4 )
2
θλ2 ≤ x34 ≤ 2a

θλ4
− c

θλ4
− a

(θλ4 )
2
θλ2

x34 ≤ −2b− c

θλ4
− a(2b+ c)

2b(θλ4 )
2
θλ2 or − c

θλ4
+

ac

2b(θλ4 )
2
θλ2 ≤ x34

x34 ≤ − c

θλ4
+

ac

2b(θλ4 )
2
θλ2 or

2b− c

θλ4
+
a(2b− c)

2b(θλ4 )
2
θλ2 ≤ x34

(2.6.56)
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It is easy to see from these inequalities that for θλ2 < 0 the solution consists of a point and an

interval:

x34 ∈ {− c

θλ4
+

ac

2b(θλ4 )
2
θλ2 }

⋃
{2b− c

θλ4
+
a(2b− c)

2b(θλ4 )
2
θλ2 ,

2a

θλ4
− a

(θλ4 )
2
θλ2 }. (2.6.57)

(Γ2, (Γ3,Γ4)) (Γ4, (Γ3,Γ2))

x34

Figure 2.2: The two intervals, corresponding to topologies of Figure 2.1.

On the other hand for θλ2 > 0 the point disappears, and the solution is just an interval. Thus,

under the SAFC correspondence, the attractor tree topology of our main example is identified

with the component of the moduli of solutions to (2.6.53), given by the point on the xλ34 line.

In the above we have chosen a definite sign of b, but it is easy to check that choosing b < 0

would lead to the existence of a point for θλ2 > 0, and absence of it for θλ2 < 0. This can also be

seen from the stability condition for the D4 → D4D4 split, − θ2
〈Γ1,Γ2〉

> 0, taking into account

〈Γ1,Γ2〉 = 2b.

Having identified the intervals with the corresponding topologies we can investigate what

happens to each interval as we change λ from 1 to ∞. From the functional form of θλa it is easy

to see that θλ2 = O(λ−2) and θλ4 = O(1) as λ→ ∞. Thus in the near horizon limit the point on

the |~xλ34| line corresponding to the topology of interest goes to |~xλ34| = − c
θ∞
4
. This means that

~xλ23, ~x
λ
24 → ∞ as λ→ ∞ and we get an infinite separation between charges Γ2 and Γ3 + Γ4.

The conclusion is that our 3-centered configuration does not correspond to a single smooth

geometry with AdS3 × S2 asymptotics in the near horizon limit of [9].

2.7 Some general remarks on holographic duals of D4D4 boundstates.

As a byproduct of our investigation of the previous section we would like to make some more

general remarks concerning the relation between the split attractor flows and the existence of a

near horizon geometry with a single AdS3 ×S2 boundary. In [9] it is stated that configurations

with the first split of the type D4 → D4 + D4 do not correspond to geometries with a single

AdS3×S2 boundary. In this section we will refine this statement. We begin with the integrability

conditions:

∑

b6=a

〈Γa,Γb〉
xab

= θa θa := 2Im(e−iαZ(Γa))∞, (2.7.58)
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where the sum runs over all centers of multicentered solution, and denote by M(θ) the moduli

space of solutions in ~xa to (2.7.58). The decomposition of the charges in the first split defines

a disjoint decomposition of the charges into two sets A ∐ B. Then, summing (2.7.58) over all

charges in one cluster we get:

∑

a∈A,b∈B

〈Γa,Γb〉
xab

= θA := 2Im(e−iαZ(ΓA))∞. (2.7.59)

Conjecture 1: The component of M(θ) that corresponds to a topology with the first split

D4 → D4 +D4 according to A ∐ B under the SAFC, has the property: if
∑

a∈A θa → 0, then

xab → ∞ for ∀a ∈ A , b ∈ B.

We do not know the proof of this statement but our previous 3-centered example can serve

as an illustration of it. A suggestive argument here is the following: Tune the moduli at infinity

t∞ close to the MS wall of the first split. Then, according to the SAFC, for the D4 → D4D4

component of moduli space the D4 clusters will become separated, and denoting the maximum

size of these clusters by d, we can write (2.7.59) as

〈ΓA,ΓB〉
rAB

(
1 +O(

d

rAB
)

)
= θA. (2.7.60)

If one could argue, that as θA → 0 the sizes of clusters will remain much smaller than the

separation between them d ≪ rAB , then we necessarily have rAB → ∞ and Conjecture 1

follows. Unfortunately, in general the sizes of clusters can grow as we change θa’s, so this

argument does not always apply and one needs a more detailed knowledge of the moduli space

of solutions to (2.7.58).

A related issue that we wish to address is a conjecture of [9], relating multicentered solutions

with single AdS3 × S2 near horizon geometry and attractor flow trees at the “AdS point.” The

“AdS point” is given by

tAdS = DABQB + i∞PA (2.7.61)

This is a point on the boundary of moduli space given by limu→∞D
ABQB + iuPA and we are

considering limits of attractor flows with DABQB + iuPA as an initial point. Note that it is

naturally selected by the near horizon limit (2.6.51). [9] noticed that the component of moduli

space with first split D4 → D4 + D4 does not correspond to a single AdS3 × S2, and this

component also does not exist at the AdS point, which lead them to

Conjecture 2: There is a one to one correspondence between (i) components of the moduli

space of lifted multicentered solutions with a single AdS3 × S2 asymptotic geometry and (ii)

attractor flow trees starting at the AdS point.
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We now give an argument in favor of this conjecture. As discussed in Appendix A, the

attractor tree is specified by the H-functions:

H(s(a)) = Γ(a)s(a) −∆H(a), (2.7.62)

where s(a) is the parameter along the flow on the a-th edge. The rescaling in (2.6.48) leading

to the near horizon limit of [9] results in changing the H-functions to

H(s(a)) → Hλ(s(a)) = λ3/2Γ(a)s(a) −∆H
(a)
λ . (2.7.63)

According to (1.0.3), ∆H
(a)
λ depend linearly on and are completely determined in terms of ∆Hλ,

and ∆Hλ = 2Im(e−iαΩ)tλ∞ , where tλ∞ := B∞ + iλJ∞. As the solution for the moduli (2.6.42)

are homogeneous of degree zero in H , we can replace these Hλ-functions with:

Hλ(s(a)) → H̃λ(s(a)) = Γ(a)s(a) −∆H̃λ
(a),

∆H̃λ = λ−3/22Im(e−iαΩ)|tλ∞ . (2.7.64)

We will refer to the split flow defined by (2.7.64) as a λ-deformed flow. Note that for λ-

deformed flows the values of MS wall crossings parameters s
(a)λ
ms in (1.0.4) will depend on λ.

Our argument will be based on two assumptions:

Assumption 1: There is a λ-deformed version of the SAFC, i.e. the components of the

moduli space of λ-deformed solutions (2.6.48) are in one to one correspondence with λ-deformed

attractor flow trees.

Assumption 2: The λ-deformed solution “survives” the near horizon limit, i.e. it corresponds

to an asymptotically AdS3 × S2 geometry, iff the corresponding λ-deformed attractor flow tree

has all its flow parameters s
(a)λ
ms nonzero (and positive) in the limit λ→ ∞. The attractor flow

tree exists at the AdS point iff all it’s flow parameters s
(a)
ms stay nonzero (and positive) as it’s

starting point approaches AdS point.

The second assumption is of course closely related to Conjecture 1 above, because for the

first split D4 → D4 +D4 we have sms =
∑

a∈A θa
〈ΓAΓB〉

. Given the above assumptions we want to

prove that there is a one to one correspondence between λ-deformed attractor flow trees, that

“survive” the near horizon limit in the sense of Assumption 2, and regular (not λ-deformed)

attractor flow trees, that start at the AdS point.

First, we note that the first split of a λ-deformed flow that “survives” the limit must be

D4 → D6 +D6. To see this we use (1.0.6), to estimate the λ dependence of ∆H̃λ:
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∆H̃λ = (∆H̃0,∆H̃A,∆H̃A,∆H̃0) ∼ (λ−4, λ−2, λ−2, λ0). (2.7.65)

From this we find that for D4 → D6 + D6 the flow parameter of the first split is sλms ∼ λ0,

while for D4 → D4 +D4 it is sλms ∼ λ−2. This means that only D4 → D6+D6 is a valid split

in the limit λ→ ∞.

For the chosen attractor trees we next look at the first edge of the flow tree in the moduli

space. Using formula (1.0.6) from Appendix A, the complexified Kähler moduli are:

BA
λ (s) = DAB

(
sPC −∆H̃C

λ

)
(sQB −∆H̃λ

B)

JA
λ (s) = (sPA −∆H̃A

λ )

√
−6(sq0 −∆H̃λ

0 − 1/2Q2(s))/(sP −∆H̃0
λ)

3 (2.7.66)

J1

λJ∞

s ∼ λ−2

PJ2

Figure 2.3: Behavior of the flow for the first edge of the tree.

Figure 2.3 shows that the flow starts at tλ∞, but for the flow parameter s ∼ 1
λ2 the first term

in (sPA −∆H̃A
λ ) becomes comparable with second term and then starts to dominate, so that

the flow will go along the P direction. The transition from J∞ asymptotics to P asymptotics

occurs around s ∼ 1
λ2 . Also note that the first split D6D̄6 occurs long after this region at

sλms ∼ λ0.

Now choose a value s̃λ of the flow parameter that goes to zero more slowly than 1
λ2 , e.g.

s̃λ ∼ 1
λ2−ǫ , with small ǫ > 0. From (2.7.66), it follows that JA(s̃λ) will approach the P direction

as λ→ ∞, and grow as λ1−ǫ/2, i.e.

tA(s̃λ) ∼ DAB(P )QB(1 +O(λ−ǫ)) + iλ1−ǫ/2PA const (1 +O(
1

λ
)). (2.7.67)

We can think of the part of the attractor flow tree that starts at JA(s̃λ) as a tree on its

own. It is again constructed in terms of H-functions, but now the ∆H̃λ function will look like:

∆H̃λ = λ−3/22Im(e−iαΩ)|t(s̃λ). (2.7.68)
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The only difference of this ∆H̃λ with the ∆H of the λ-undeformed flow with starting point

given by (2.7.67), is the overall factor λ−3/2. Denoting the flow parameters for all edges of the

tree collectively by s, we can introduce new parameters s′ = λ3/2s, in terms of which the H-

functions will look like the ones for the λ-undeformed flow with starting point given by (2.7.67).

It follows from Appendix A that the existence conditions, written in terms of parameters s′,

are the same as those written in terms of s, and furthermore the non-zero s
(a)λ
ms will correspond

to non-zero s′(a) λms since s′(a)λms = λ3/2s
(a)λ
ms . By virtue of Assumption 2, the λ-deformed flow

tree that ”survives” the near horizon limit has all its flow parameters s
(a)λ
ms non-zero, and the

corresponding λ-undeformed flow tree with starting point (2.7.67) exists at the AdS point.

In order to prove Conjecture 2 in the other direction consider a family of attractor flow

trees whose initial point approaches the AdS point. Note that only the trees with the first

split D4 → D6D6 exist in this limit, as shown in [9], eq.(3.64). Without loss of generality,

for sufficiently large λ we can choose the initial points to be given by the right-hand side of

(2.7.67) for some t∞. Now, due to Assumption 2, the existence of the attractor flow tree at

the AdS point means that in the limit λ → ∞ all the flow parameters of these trees, s′
(a)λ
ms ,

stay non-zero. The dependence on λ in s′(a)λms originates from the dependence in the starting

point (2.7.67). We can use the discussion above to argue that there exists a corresponding

λ-deformed flow tree, starting at t∞ and passing through the point (2.7.67) at some parameter

s̃λ. For this λ-deformed flow tree to ”survive” the limit λ→ ∞ we must have all s
(a)∞
ms non-zero

and positive, due to Assumption 2. As the relation between the flow parameters for the two

trees is s
(a)λ
ms = λ−3/2s′(a)λms , some of the s

(a)λ
ms of the λ-deformed flow might go to zero in the

limit λ → ∞, leading to trouble. We will now argue that in fact this cannot happen. To this

end, first introduce a notation, analogous to the one in (2.7.58):

θ(Γ) := 2Im(e−iαZ(Γ))∞ (2.7.69)

According to (1.0.4), for each edge a the flow parameter s
(a)
ms is given by a linear combination,

with rational coefficients, of θ(Γi), where i runs over all the intermediate charges occurring in

the path from the root of the tree to the edge a. For the λ-deformed flow these θ(Γi) have a

definite scaling under λ-scaling. For instance, since the first split is always Γ(D4) → Γ1 + Γ2

where Γ1 and Γ2 have nonzero (and opposite) D6 charge, we have θ(Γ1) = −θ(Γ2) ∼ λ0 and

θ(Γ1) will enter the expressions for all s′
(a)λ
ms . Other θ(Γi) will in general have O(λ0) scaling

(i.e. those with nonzero D6 charge) but, examining examples, we find that the coefficient of

the λ0 term will be some complicated nonlinear expression in terms of the intersection products

of the charges, which does not vanish in these examples and hence we expect does not vanish
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generically. For example for figure 2.7, s
(4)
ms for the edge with Γ4, it is a combination of the form:

s(4)ms =
θ5 − 〈Γ5,Γ2〉

〈Γ3,Γ4〉
θ3 +

〈Γ3,Γ〉〈Γ5,Γ2〉
〈Γ1,Γ2〉〈Γ3,Γ4〉

θ1 − 〈Γ5,Γ〉
〈Γ1,Γ2〉

θ1

〈Γ5,Γ6〉
. (2.7.70)

Here θ5 ∼ λ−2, θ1 ∼ λ0, θ3 ∼ λ0. If we assume that all D6 branes have D6 charges ±1, then in

the limit λ→ ∞ θ1 = −θ3, the leading coefficient of s
(4)
ms is proportional to

− 〈Γ3,Γ6〉〈Γ5,Γ1〉+ 〈Γ1,Γ5〉〈Γ5,Γ6〉+ 〈Γ1,Γ6〉〈Γ5,Γ6〉+ 〈Γ1,Γ6〉〈Γ5,Γ3〉, (2.7.71)

which has no reason to vanish. In this way we can argue that all s′
(a)λ
ms will have an order ∼ λ0

contribution whose coefficient will not scale to zero as λ→ ∞, at least not in general.

Γ6(D4)

Γ3(D6)

Γ5(D4)

Γ(D4)

Γ2

Γ4
Γ1(D6)

Figure 2.4: An example of attractor flow tree.

To summarize, we have shown that there is a one to one correspondence between λ-deformed

attractor flow trees that “survive” the near horizon limit, and regular attractor flow trees,

starting at AdS point. If one grants Assumptions 1 and 2 this would actually prove Conjecture

2, and hence the conjecture of [9].
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Chapter 3

Spin paradox

In this chapter we will discuss an interesting question arising in the study of the moduli space of

BPS objects in string theory. As discussed in the introduction in the supergravity approximation

to string theory there is a wide class of BPS solutions, introduced in ([27], [11],[28]) represented

by multicentered black hole solutions. The moduli space of such objects is described by the

space of all possible positions of the black hole centers, subject to constraints following from

equations of motion and supersymmetry. On the other hand the same BPS objects can be

studied in the regime of weak string coupling constant when the lightest states are described

by bound states of D-branes and excitations of those (for a good review see [29]). Of course,

according to the common lore supersymmetry ensures that certain properties like degeneracies

and mass/central charge relations are preserved when the coupling constant is changed, so the

two pictures should give the same answer. One of the major applications of this statement is

the so-called Strominger-Vafa program of accounting for black hole entropy in terms of D-brane

microstates (see [3],[20], [17]). In view of this it is very important to understand precisely how

the matching of different BPS states in the two pictures occurs. An important step in this

direction was made in [10]. It was shown there that in fact we should expect to have a smooth

transition between the two regimes, in which all discrete characteristics, like the number of

BPS states, are preserved. Nevertheless there are still unanswered questions here. In the D-

brane picture the bound states of BPS objects can be described using the powerful apparatus of

algebraic geometry. For example [8] studied stable holomorphic bundles on rigid surfaces and

found the number of BPS states on two sides of a marginal stability wall, across which BPS

space undergoes a jump [5]. It turned out that enumeration of BPS states in algebraic geometry

gives a very different answer for the number of BPS states than the answer that we expect from

the supergravity description. More concretely supergravity picture tells us that BPS space is

empty on one side of the wall and is populated on the other side. Algebraic-geometry picture

gives non-empty spaces on both sides. This apparent contradiction is asking for a resolution.

In [10] the description of the abound state of BPS objects, that can be useful in both string

and weak string coupling was given in terms of supersymmetric quantum mechanics(SSQM).
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We review this description briefly in Section 3.1. The moduli space of this supersymmetric

quantum mechanics has two branches: Coulomb branch which corresponds to the supergravity

side and the Higgs branch which corresponds to the D-brane side of the full string theory

description. Generically Higgs branch is populated on both sides of marginal stability wall,

while the Coulomb branch is populated only on the stable side [10]. Apart from the mismatch

between the number of BPS states on the two branches there is another interesting paradox that

will be the focus of this chapter. As discussed at length in the Introduction the Hilbert spaces

of BPS states are functions of the background moduli and can jump as the background moduli

cross marginal stability walls. Part of the Hilbert space decays as the corresponding states

”move off to infinity” in the moduli space. A paradox arises when we recall that BPS states

are representations of Spin(3) group of spatial rotations. On the Higgs branch, as we show in

Section 3.1, Hilbert spaces on both sides of the marginal stability wall are irreducible multiplets

of Spin(3), as well as the decaying part of the Hilbert space. This leads to an apparent paradox

since the sum of two irreducible representations cannot be an irreducible representation itself.

We give a resolution of this paradox in Section 3.2, which also sheds some light on the relation

between algebro-geometric and SSQM pictures.

3.1 Quantum quivers and spin paradox.

In this section we review the SSQM description of bound states of BPS objects, given in [10].

Suppose we have two D-branes, wrapping two rigid S3 cycles of CY manifold, and placed at ~x1

and ~x2 in R3 space. In the weak string coupling regime the lightest modes are described by the

world sheet gauge theory of these two D4 branes, which is U(1)×U(1) theory in this case. There

will be additional light modes coming from bi-fundamental fields, living on the intersections of

the two D-branes. In all the low energy theory will be the SSQM theory, obtained from this

gauge theory by dimensional reduction with the Lagrangian:

L =
µ

2
(~̇x2 +D2 + 2iλ̄λ̇)− θD + |∂τφ+|2 + |∂τφ−|2 − (~x2 +D)|φ+|2 − (~x2 −D)|φ−|2+

+ iψ̄+∂τψ+ − ψ̄+~x · ~σψ+ − i
√
2
(
φ̄+ψ+ · λ+ + φ+λ̄+ · ψ̄+

)
+ |F+|2+

+ iψ̄−∂τψ− + ~x · ~σψ− + i
√
2
(
φ̄−ψ− · λ− + φ−λ̄− · ψ̄−

)
+ |F−|2. (3.1.1)

Here, ~x is the relative position of the D-branes, (~x, λ,D) comes from the vector multiplet of

N = 1 SYM in 4 dimensions, (φ±, ψ±, F±) are hypermultiplets coming from the string modes,

living on the intersections of two D-branes. We have k± fields φ± so that φ± ∈ Ck± . Denoting
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by α1,2 the phases of central charges of the two branes near the marginal stability wall we have

the relations

θ = µ(α2 − α1), µ ∼ 1

gs
. (3.1.2)

Eliminating the auxiliary fields the Lagrangian becomes:

L =
µ

2
(~̇x2 + 2iλ̄λ̇) + |∂τφ+|2 + |∂τφ−|2 − ~x2(|φ+|2 + |φ−|2)−

(θ + |φ+|2 − |φ−|2)2
2µ

+

+ iψ̄+∂τψ+ + ψ̄+~x · ~σψ+ − ψ̄−i
√
2
(
φ̄+ψ+ · λ+ + φ+λ̄+ · ψ̄+

)
+

+ iψ̄−∂τψ− − ~x · ~σψ− + i
√
2
(
φ̄−ψ− · λ− + φ−λ̄− · ψ̄−

)
. (3.1.3)

Depending on the value of the string coupling constant that enters µ the space of vacua of this

Lagrangian changes. First, following [10], we consider the regime

√
∆α ≪ ∆k

2µ∆α
≪ 1. (3.1.4)

In this regime we can integrate out the chiral fields, which induces the following potential for

the positions field ~x:

VC =
θ2

2µ
+k+

√
~x2 +

θ

µ
+k−

√
~x2 − θ

µ
−(k++k−)|~x|+

1

2µ


 k+

2
√
~x2 + θ

µ

− k−

2
√
~x2 − θ

µ




2

+O(
1

µ2
)

(3.1.5)

Assuming that |~x|2 ≫ |∆α| we further get

VC =
θ2

2µ

(
θ +

(k+ − k−)

2|~x|

)
+O(

1

µ2
). (3.1.6)

Minimizing this potential gives the relative positions of D-branes in the supersymmetric bound

state (essentially the Coulomb branch of the SSQM) coinciding with the supergravity result:

R = −k+ − k−
2θ

=
k− − k+

2µ(α2 − α1)
. (3.1.7)

Now we can justify the conditions (3.1.4): we required
√
∆α ≪ R in order to have large and

positive mass squared for φ± fields and the requirement R ≪ 1 justifies the usage of SSQM.

Positivity of the above radius is equivalent to Denef’s stability conditions [11], which looks like

k− − k+
2θ

> 0. (3.1.8)

Let’s assume that k− − k+ > 0 and the stable side is θ > 0. As we cross the marginal stability

wall θ goes through zero and becomes negative, the radius of the bound state goes to infinity
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and the bound state decays. [10] showed that on the stable side the Hilbert space of BPS states

forms and irreducible representation of spatial Spin(3) of spin k−−k+−1
2 . On the unstable side

the Hilbert space is empty.

Now let’s turn to the Higgs branch description of the theory. In the regime of parameters1

µ|∆α|3/2 ≫ 1, (3.1.9)

we can integrate out ~x modes in the Lagrangian (3.1.3). φ± fields will have a potential

VH =
(θ + |φ+|2 − |φ−|2)2

2µ
, (3.1.10)

and the space of minima of this potential modulo gauge invariance, acting on φ±, constitute the

Higgs branch of the theory. This theory is known as N = 4 supersymmetric non-linear sigma

model and the Hilbert space of BPS states in this model is given by the Dolbeault cohomology

of the classical moduli space. The moduli space in our example is

M = {(φ±) : −|φ+|2 + |φ−|2 = θ, (φ± ∼ e±iαφ±)}. (3.1.11)

It is very convenient to use quiver notation to denote such moduli spaces. The moduli space is

given by the moduli space of a two node quiver, given on Figure 3.1.

U(1)θ1 U(1)

φ−

φ+

−θ1

Figure 3.1: Quiver for the moduli space M.

The nodes represent gauge groups here, the arrows represent the bi-fundamental fields φ±

and ±θ1 are the so-called D-term parameters that enter the D-term equations as in (3.1.11).

Now let’s find the Hilbert spaces of BPS states on both sides of the marginal stability wall. The

stable side is given by θ1 > 0 and the quiver moduli space is a fibration V 0
+:

O(−1)⊕k+

↓
Pk−−1

(3.1.12)

As mentioned above BPS states are represented by the elements of Dolbeault cohomology

of this space. As the space is non-compact we have to specify what cohomology we are talking

1Notice that this regime is complimentary to (3.1.4).
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about. In fact we have to restrict ourselves to just cohomology of the base of the fibration

because as the fibers are non-compact we restrict to states having zero momentum in the fiber

direction. This gives the Hilbert space of BPS states

Hθ1>0 = J k−−1

2

, dimHθ1>0 = k−. (3.1.13)

Here J k−−1

2

is spin k−−1
2 representation of Spin(3) and we are focusing only on the Spin(3)

structure of the Hilbert space. We can repeat the above calculation for the unstable side θ1 < 0

to get the moduli space V 0
−

O(−1)⊕k−

↓
Pk+−1

(3.1.14)

together with the Hilbert space

Hθ1<0 = J k+−1

2

, dimHθ1>0 = k+. (3.1.15)

First thing to note here is that the space is not empty, unlike in the supergravity (Coulomb

branch) description. We will not try to resolve this discrepancy between Coulomb and Higgs

branches here but just mention an argument from [30]: although the potential on the Coulomb

branch (3.1.5) on the unstable side does not have a minimum, it decreases to a non-zero value for

~x2 = θ1
µ where the Coulomb branch approximation breaks down. This might be an indication

that the minimum is actually on the Higgs branch and the BPS space is non-empty.

Setting aside this problem we concentrate on the Spin(3) structure of Hilbert spaces on the

Higgs branch. We know that Hθ1>0 = J k−−1

2

and Hθ1<0 = J k+−1

2

and also from the Coulomb

branch description we know [10] that the part of Hilbert space that decays across the marginal

stability wall is ∆H = J k−−k+−1

2

. Obviously there is a paradox here since we cannot have

Hθ1>0 = Hθ1<0 ⊕∆H due to the difference in Spin(3) representations. We will call this spin

paradox in what follows.

3.2 Spin paradox: resolution

In this section we describe the resolution of the spin paradox. As noted above the moduli space

on the Higgs branch in (3.1.11) is non-compact, which makes non-obvious what cohomology

of this space corresponds to BPS states in the quantum theory. Further more, as discussed in
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[30], in the algebro-geometric picture one has a certain compactification of the moduli space on

both sides of the marginal stability wall. So the simplest resolution is to compactify the moduli

space (3.1.11) by adding an additional node to the quiver Figure 3.1.2 In Figure 3.2 we show

the proposed quiver describing the compactified Higgs branch. The moduli space of this quiver

U(1)

U(1)

U(1)

φ+

u

φ−

θ2

θ3

θ1

Figure 3.2: Quiver for compactified moduli space.

is given by 3 moment map (D-term) equations

|φ+|2 + |u|2 = θ2

−|φ−|2 − |u|2 = θ3

|φ−|2 − |φ+|2 = θ1, (3.2.16)

and gauge invariance (φ+, u, φ−) → (eiα
aQ+

a φ+, e
iαaQu

au, eiα
aQ−

a φ−) with a = 1..3 and

Q1 = (−1+, 0, , 1−)

Q2 = (−1+, 1, , 0−)

Q3 = (0+,−1, ,−1−). (3.2.17)

We want to find cohomology of this variety for both stable θ1 > 0 and unstable θ1 < 0 sides

and compare the results with non-compact case as well as with the Coulomb branch results. In

order to do this we will use methods of toric geometry as this is a toric variety given in the form

of symplectic reduction.3 For another application of toric geometry and introductory remarks

on it see Appendix G. To keep formulas simple we will do the calculation in all details for a

particular simple but non-trivial case k+ = 1, k− = 2 and after that generalize it to arbitrary

values of k±.

2This suggestion is due to Frederik Denef.

3For a good review of applications of toric geometry in physics see for example [31].
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3.2.1 k+ = 1, k− = 2

Toric variety, defined by (3.2.16), (3.2.17) depends on the values of parameters θi. As θ3 =

−θ1 − θ2 we can parametrize the space of resulting varieties by (θ1, θ2) ∈ R2. Not every value

(θ1, θ2) corresponds to a non-empty toric variety, but rather the set of such values forms a fan

inside R2, called secondary fan. Different cones of this fan correspond to topologically distinct

toric varieties, connected to each other by a series of flop transitions. Our main interest is to

study the transition between varieties V+ in the region θ1 > 0 and V− in the region θ1 < 0.

To describe toric varieties explicitly we will use the holomorphic quotient construction,

reviewed in appendix G. As discussed there, all information is encoded in the fan of the variety

which can be constructed from (3.2.16), (3.2.17) data as follows. First we find linear subspace

of Rk++k−+1 ≡ R4 orthogonal to the charges (3.2.17):

∑

I

QI
an

I
i = 0, (3.2.18)

where I runs over (+, u,−) indices. Solving this equation we get


 n1

n2


 =


 1 -1 1 0

0 0 1 -1


 . (3.2.19)

The columns of this matrix are points in some lattice N and generate 1-dimensional cones of

the toric fan, given on Figure 3.3. Each edge of the fan corresponds to one of the coordinates

(φ+, u, φ−). Each coordinate corresponds to a divisor of toric variety given by putting the

coordinate to zero. We denote the corresponding divisors by (ξ+, ξu, ξ−). In the holomorphic

quotient construction, toric variety is given by

V = (C4 − Z) modG, (3.2.20)

where (φ+, u, φ−) ∈ C4, group G is given in (3.2.17) and the excluded locus Z is encoded in the

fan. Each 1-dimensional cone corresponds to one of the coordinates (φ+, u, φ−) and for each

set of 1-dimensional cones that do not form a cone of our fan but such that any subset does,

the zero locus of corresponding coordinates is included in Z. For the fan on Figure 3.3 we find

Z = {φ+ = u = 0} ∪ {φ1− = φ2− = 0}. (3.2.21)

There is a region in the (θ1, θ2) plane where (3.2.16) leads to precisely such excluded locus,

namely θ1 ≥ 0, θ2 ≥ 0. In this indirect way we have found the Kähler cone of this toric variety.
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We depict it in Figure 3.4 along with the Kähler cone for the θ1 < 0 variety that we derive

later.

1

1

0

ξ+
ξ1−

ξu

ξ2−

N

Figure 3.3: Fan of toric variety V+.

θ3 = 0 θ2

θ1

θ1 > 0

θ1 < 0

Figure 3.4: Kähler cones for θ1 > 0 and θ1 < 0 varieties.

V+ is known as Hirzebruch surface F1 and topologically this is a P2 with blown-up point in it.

In Figure 3.3 we depict the four divisors ξ+, ξu, ξ
1,2
− ∈ H2(F1), associated to each 1-dimensional

cone in the fan. Since the Kähler cone is given by θ1 > 0, θ2 > 0, we can introduce the basis

elements η1,2 ∈ H2(F1) and write the Kähler form of F1 as

w = θ1η1 + θ2η2. (3.2.22)

Other divisors can be expanded in this basis using charges Q1 and Q2 in (3.2.17) as

ξ+ = −η1 + η2

ξu = η2

ξi− = η1. (3.2.23)

The last thing we need is the ring structure of H∗(F1), which is determined by the fan as follows:

for each component of the excluded locus we equate to zero intersection of the corresponding

divisors. This produces
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ξ+ξu = 0 ξ1−ξ
2
− = 0, (3.2.24)

which translates into the following conditions on the H2(F1) generators η1, η2:

η21 = 0 η22 = η1η2. (3.2.25)

To find the normalization of the intersection ring we choose any cone of maximal dimension in

the fan of F1 and require the intersection of corresponding divisor to be equal to 1:4

ξ+ξ
1
− = ξ+ξ

2
− = ξuξ

1
− = ξuξ

2
− = 1, (3.2.26)

which leads to

η22 = η1η2 = 1. (3.2.27)

Finally we can write the decomposition of H∗(F1) into Spin(3) multiplets as

triplet : 1, w, w2,

singlet : w(1) = θ3η1 + θ2η2, (3.2.28)

There is a standard action of Spin(3) group on the cohomology of toric (or more generally

Kähler) varieties, called Lefschetz representation and generated by

S+ = −wmn̄dz
m ∧ dz̄n̄

S− = wmn̄ ∂

∂dzn
∧ ∂

∂dz̄n̄

S3 =
1

2

(
dz̄m̄

∂

∂dz̄m̄
+ dzm

∂

∂dzm

)
− dimC

2
. (3.2.29)

Although it is a known fact that supersymmetric ground state of N = 4 SSQM are in one-to-one

correspondence with Dolbeault cohomology of the moduli space ([32], [33]), the relation between

spatial Spin(3) ground and Lefschetz SU(2) action is not obvious. We will demonstrate it in

details in Appendix B.

The space H2(F1) is two dimensional with generators η1,2 and is decomposed into two classes:

w - Kähler form and w1, determined by the condition w1w = 0. In the next Section we will

4This is always true for smooth varieties. In general intersection of n divisors of n-dimensional toric vari-
ety is equal to 1

index(v1,...vn)
, where vi are generators of 1-dimensional cones in the n-dimensional cone and

index(v1, ...vn) is the index of lattice generated by (v1, ...vn) in N. For varieties with quotient singularities this
index can be greater than 1.
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show how such decomposition works for arbitrary k±. Having found the spin content of BPS

states in θ1 > 0 region we would like to repeat the analysis for θ1 < 0 region. When θ1 < 0 the

excluded set Z will contain {φ+ = 0} ∈ Z. This means that we have to remove the generator

ξ+ from the fan (3.3). After that the condition θ2 > 0 does not make sense since it leads to

excluded locus φ+ = u = 0 which will remove the ξu cone from the fan in Figure 3.3 and give

non-compact variety. On the other hand requiring θ3 > 0 corresponds to excluding the locus

φu = φ1,2− = 0 and produces a fan 3.5. This is a fan of P2. The Kähler cone is 1-dimensional

1

1

0

ξ1−

ξu

ξ2−

N

Figure 3.5: Fan of toric variety V−.

and we can immediately write the spin structure of H∗(V−):

H∗(V−) : {1, w, w2} − triplet

w = −θ3η. (3.2.30)

The spectra (3.2.28), (3.2.30) lead to a completely consistent picture: as we cross the wall the

singlet state disappears as P1 inside F1 is blown down and on the other side we have only triplet.

The singlet is exactly the spin k−−k+−1
2 multiplet that we expect from supergravity picture.

Before generalizing the discussion to arbitrary k± it is interesting to see what happens to

V± varieties as we decompactify them and go from quiver on Figure 3.2 to the one on Figure

3.1.

For θ1 > 0, quiver Figure 3.1 gives a toric variety (3.1.12) with a fan in Figure 3.6. We

see that to decompactify all we need to do is to remove the edge ξu from the fan. In a way the

fan on Figure 3.3 is really the simplest possible compactification of the fan on Figure 3.6. This

becomes even more evident for the θ1 < 0 case, where the decompactification leads to variety

(3.1.14) with a fan on Figure 3.7. In this case (3.1.14) is just C2 and compactifying it by adding

an edge to the fan gives P2 which is the simplest compactification.

Decompactifying V+ effectively removes η2 from the cohomology ring and leaves
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1

1

0

ξ+
ξ1−

ξ2−

N

Figure 3.6: Fan of toric variety V 0
+.

H∗(V 0
+) : 1, w = θ1η1, (3.2.31)

that is with the cohomology of just the base P1 of the fibration (3.1.12). We observe a dramatic

change of Spin(3) structure, starting with singlet+triplet and ending up with a doublet. It is

this dramatic change that leads to the spin paradox for the non-compact quiver (3.1). Decom-

pactifying V− = P2 also removes η from the cohomology and leaves a 0-form only, which is a

change of Spin(3) structure of BPS space form a triplet to a singlet. In summary, when we

decompactify the two varieties V± there is a dramatic change of Spin(3) structure of BPS space

on both sides of the marginal stability wall which eventually leads to the spin paradox. As we

mentioned above, in algebraic geometry the moduli space is also given some natural compacti-

fication. It would be very interesting to understand if the two compactifications coincide.

1

1

0

ξ1−

ξ2−

N

Figure 3.7: Fan of toric variety V 0
−.

3.2.2 Arbitrary k±

First, it is straightforward to carry the above analysis of toric varieties from k− = 2, k+ = 1

to k− > 2, k+ = 1. In this case V− will be just Pk− and V+ will be Pk− with a blown up

point, which is blown up to a Pk−−1. As before, V+ will have one additional divisor ξ+ in

comparison to V−, which is Poincar dual to the blow up cycle Pk−−1. The Spin(3) structures
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of cohomologies of V± will also work in a similar way. For V+ we will have:

H∗(V+) : J k−
2

⊕ J k−−1

2

,

J k−
2

= {1, w, ..., wk−},

J k−−2

2

= {w1, w1w, ..., w1w
k−−2} (3.2.32)

where

w = θ1η1 + θ2η2

(3.2.33)

The 2-form w1 is determined by the condition w1w
k−−1 = 0. The ring structure is similar to

(3.2.25) and can be easily read off the fan:

η
k−

1 = 0 η
k−−1
2 (η2 − η1) = 0. (3.2.34)

Using these relations we can find the form w1 to be

w1 = (θ1 + θ2)
k−−1η1 +

(
−(θ1 + θ2)

k−−1 + θ
k−−1
1

)
η2. (3.2.35)

Going to the other side of marginal stability wall we have

H∗(V−) : J k−
2

,

J k−
2

= {1, w, ..., wk−}, (3.2.36)

and the multiplet that left the spectrum is again the one expected from supergravity picture

J k−−k+−1

2

. As in the previous Section we can decompactify both V± by removing ξu edge from

the fan and get back to the spin paradox.

Allowing for arbitrary values of k+ makes the toric description of V± more complicated. In

each particular case we can obtain the fan and the Kähler cone numerically. On the other hand,

we do not really need this to resolve our spin paradox: all we need is the structure of H∗(V±)

as a Spin(3) module.

For arbitrary k± the cohomology rings of V± are generated by η1,2, subject to the relations
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V+ : η
k−

1 = 0, (η2 − η1)
k+η2 = 0

V− : (η2 − η1)
k+ = 0, η

k−

1 η2 = 0. (3.2.37)

These relations follow directly form the excluded loci Z for both varieties, that can be read

off the quiver (3.2.16). Let’s demonstrate how the cohomology ring can be decomposed into

irreducible representations of Lefschetz Spin(3). Starting with V+ we first identify the longest

multiplet

J k−+k+−1

2

= {1, w, ..., wk−+k+−1}. (3.2.38)

As dim H2(V+) = 2 we can choose the form w1 ∈ H2(V+) subject to the constraintw1w
k−+k+−2 =

0, which will furnish another multiplet:

J k−+k+−3

2

= {w1, w1w, ..., w1w
k−+k+−3}. (3.2.39)

It is obvious that this form is linearly independent from w, as well as that each form w1w
n

is independent form wn+1. Now dim H4(V+) = 3 with a basis η21 , η1η2, η
2
2 and we can always

choose the form w2 ∈ H4(V+), subject to the constraint w2w
k−+k+−4 = 0, which will give

another multiplet

J k−+k+−5

2

= {w2, w2w, ..., w2w
k−+k+−5}. (3.2.40)

Again, in every space H2n(V+), n = 2..k− + k+ − 3 we have 3 independent elements wn,

w1w
n−1 and w2w

n−2. We can continue this process: as each subsequent space H2n(V+) has

dimension 1 higher than the previous one, there will be a new multiplet J k−−k+−2n−1

2

, starting

with wn−1, subject to wnw
k−+k+−2n = 0. However when we reach n = k+ + 1 the relation

(η2 − η1)
k+η2 = 0 kicks in and for n = k+ + 1...k− − 1 the dimensions of H2n(V+) will be

constant and equal to k+ + 1. For n ≥ k− the second relation η
k−

1 = 0 will come into play and

the dimensions will decrease. In all we get the usual structure of a tensor product of Spin(3)

representations, that is decomposed into the sum of irreducible multiplets:

H∗(V+) : J k−+k+−1

2

⊕ J k−+k+−3

2

⊕ ...⊕ J k−−k+−1

2

. (3.2.41)

Repeating this calculation for V− we find
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H∗(V−) : J k−+k+−1

2

⊕ J k−+k+−3

2

⊕ ...⊕ J k−−k++1

2

. (3.2.42)

The difference between the two spaces is the J k−−k+−1

2

multiplet that leaves the spectrum

as we cross the wall. Recall that for the simplest case k− = 2, k+ = 1 there was a simple

interpretation of the transition V+ → V− as blowing down an exceptional divisor of V+, which

naturally lead to the disappearance of a part of the cohomology. Here we do not have such

clear interpretation. As for the decompactification of V± that brings them to (3.1.12), (3.1.14)

the interpretation is exactly the same: as we decompactify, ξu ∈ H2(V±) leaves cohomology

as it’s support spreads out, this effectively puts η2 = 0 and changes the spin structure form

(3.2.41), (3.2.42) to (3.1.13), (3.1.15).

3.3 Summary

In this chapter we briefly discussed the correspondence between the Hilbert spaces of BPS states

in the two complementary regimes: on the Higgs and Coulomb branches. We posed an apparent

paradox in the Higgs branch description in the Spin(3) structure of BPS spaces on the two sides

of some marginal stability wall. Compactifying the moduli space we showed that the paradox

is completely resolved. This resolution also gave us a tentative picture of the Higgs branch of

supersymmetric quantum mechanics which is fully consistent with algebro-geometric picture.

It still remains to make an explicit check if the structure of the Higgs branch, i.e. the spectrum

of BPS states and their degeneracy, that we propose is related to the one in algebro-geometric

picture.
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Chapter 4

Bound state transformation walls

In this chapter we address an interesting problem arising in the study of BPS states in four

dimensional N=2 supergravity theories. BPS bound states near marginal stability are described

by configurations of widely separated constituents with nearly parallel central charges. When

the vacuum moduli can be dialed adiabatically until the central charges become anti-parallel,

a paradox arises. We show that this paradox is always resolved by the existence of Bound

State Transformation(BST) walls across which the nature of the bound state changes, although

the index does not jump. We find that there are two distinct phenomena that can take place

on these walls, which we call recombination and conjugation. The latter is associated to the

presence of singularities at finite distance in moduli space. Consistency of conjugation and wall-

crossing rules near these singularities leads to new constraints on the BPS spectrum. Singular

loci supporting massless vector bosons are particularly subtle in this respect. We argue that the

spectrum at such loci necessarily contains massless magnetic monopoles, and that bound states

around them transform by intricate hybrids of conjugation and recombination. This chapter is

based on [34].

4.1 Qualitative discussion of basic ideas

The spectrum of BPS states in four dimensional N = 2 supersymmetric theories shows interest-

ing behavior when the vacuum moduli are varied. Well known are jumps at walls of marginal

stability, where BPS bound states can decay into, or be assembled from, mutually supersym-

metric constituents. In supergravity these bound states are described by multicentered black

hole or particle configurations [11, 35], providing an intuitive “molecular” picture of such bound

states and their wall crossing behavior [5] (for recent reviews, see [36, 37]). However as pointed

out e.g. in [12], this picture leads to an apparent paradox, reviewed below.
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4.1.1 Puzzle

The simplest example of a BPS bound state in supergravity is a 2-centered bound state of

charges Γ1 and Γ2. The equilibrium distance between the two centers is given by [11]

R =
〈Γ1,Γ2〉

2

|Z1 + Z2|
Im(Z1Z2)

(4.1.1)

where the central charges Zi of Γi are evaluated at spatial infinity. Existence of the bound

state requires R > 0. When one dials the moduli at infinity through a marginal stability wall,

the equilibrium distance R diverges and the BPS state decays. The same is true when the two

centers themselves are replaced by clusters of black holes or particles, or by a multi-particle

‘halo’ [10]. This simple physical picture has led to a number of notable successes, including the

derivation of universal wall crossing formulae [5, 38].

These successes notwithstanding, it does not take much effort to arrive at the following

disturbing observation. It is often possible [11, 6, 12] to dial the moduli while keeping R positive

and finite, from a marginal to an anti-marginal stability wall, as illustrated in fig. 4.1. At an

anti-marginal stability wall, the phases of Z1 and Z2 anti-align. It would appear from (4.1.1)

that this simply leads to R → ∞ again and a decay Γ → Γ1 + Γ2. However, this obviously

violates conservation of energy: the energy of the BPS bound state at the anti-marginal stability

wall is |Z| = ||Z1| − |Z2||, while the total energy of the decay products equals |Z1|+ |Z2|! Either
we have created a perpetuum mobile, or something dramatic must have happened to the bound

state along the way.

R

???

MS AMS

R > 0

P

Figure 4.1: BPS bound states appear to be adiabatically transportable from marginal stability
to anti-marginal stability keeping R > 0, violating conservation of energy.

The puzzle is not tied to the supergravity approximation; it similarly arises, perhaps even

more sharply, when thinking of BPS bound states as characterized by attractor flow trees

[11, 27, 6, 5]. The branches of such trees are attractor flows, splitting on walls of marginal

stability, terminating on the attractor points of the constituents, and rooted at the vacuum
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value of the moduli. A flow tree can be thought of as the “skeleton” of a supergravity solution,1

but can be given a meaning independent of supergravity [39, 5], as a canonical recipe to assemble

or disassemble a BPS state. What makes an attractor flow special compared to other paths in

moduli space is that for any pair of constituent charges it either crosses a marginal stability

wall once, or an anti-marginal stability wall once, or it crosses neither. In particular it is not

possible to cross both a marginal and an anti-marginal stability wall. Our puzzle is then how

to reconcile this with the fact that the root point of the tree can be moved along the path P
shown in fig. 4.1, seemingly forcing the trunk to cross both the AMS and the MS wall. A related

puzzle has been discussed in [40].

4.1.2 Resolution

The most straightforward resolution of the puzzle would appear to be that somewhere along

the path, the BPS state simply gets lifted. Indeed for classical solutions this “elevation” phe-

nomenon was noticed some time ago already [6] (fig. 18); see also fig. 4.4 below. However, this

is only possible at the quantum level if the BPS index was zero to begin with. If the index is

nonzero, as in the situation raised in [12], something more dramatic needs to happen to prevent

the paradox.

In the flow tree picture something dramatic can only happen when the flow tree degenerates,

i.e. when an edge shrinks to zero size. This edge can be the trunk, an internal edge or a terminal

edge. The first case corresponds to crossing a marginal stability wall, which we have excluded

from the start. The second case is associated to constituents rearranging themselves, and the

third case to constituents becoming massless and charge conjugate particles being created. They

will be referred to as recombination resp. conjugation walls.

1. Recombination wall (fig. 4.2): If the charges Γ1 and Γ2 themselves are composite bound

states, it is possible that along the way the different constituents recombine into new clus-

ters. This invalidates the hidden assumption in the formulation of the puzzle that the BPS

state can at all times be viewed as a bound state with well separated clusters of charge

Γ1 and Γ2. What happens instead is that before the troubling AMS wall is reached, the

constituents rearrange themselves to make the AMS wall irrelevant. A sketch of possible

1The Split Attractor Flow Conjecture, mentioned in the Introduction and reviewed in Appendix A was
originally formulated in [5]. In the course of this work we noticed this is not quite correct: the loci in moduli
space where solution spaces split and join do not exactly coincide with loci in moduli space where flow trees
split and join; see section 4.5.3 for details. None of the results on indices and wall crossing in the literature are
affected by this, as those required only the interpretation of flow trees as canonical procedures to assemble or
disassemble BPS states. For this reason we are careful to phrase definitions of bound state transformation walls
in terms of trees, not solutions.
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Figure 4.2: Recombination: Constituents rearrange themselves into different clusters. The
example represents a family of configurations with A tightly bound to B evolving into a family
with A tightly bound to C, and a family with C tightly bound to B. The corresponding
attractor flow tree evolves from an ((A,B), C) tree to a ((C,A), B) tree plus a ((B,C), A) tree.
At the transition point, the flow tree has two 3-valent vertices coalescing into a 4-valent vertex.
The recombination wall is the blue line with the asterisk next to it.

recombination processes is shown in fig. 4.2. In the corresponding flow trees we see two

3-valent vertices coalesce into a 4-valent vertex, which then again separates into 3-valent

vertices, but with a different tree structure. The degenerate 4-valent vertex lies at the

intersection of the marginal stability walls for the different partitions of the constituents.

The union of critical ingoing flows, i.e. the set of all moduli values flowing into the degen-

erate vertex, forms a codimension 1 wall in moduli space, the recombination wall. We will

check that both index and spin character remain constant across a recombination wall,

provided we sum over all trees of the given charge. An example of such a recombination

process appeared in fig. 14 of [5]. More recently it was also discussed in [41].

2. Conjugation wall: The second possibility is more subtle, and is the one that solves the

particular instance of the puzzle raised in [12]. It is associated to a vanishing terminal

edge of the flow tree. This is only possible if the end point of this edge is a singularity,

since regular attractor points can never lie on marginal stability walls. Thus, for example,

it occurs when one of the constituents, say Γ1, is a particle in a hypermultiplet which

becomes massless at a singular locus, where the MS and AMS walls meet. In such cases

there is a log-monodromy around the massless locus: Γ2 → Γ2+IΓ1, where I = |〈Γ1,Γ2〉|.
As was pointed out in [11], trying to pull a single Γ2 attractor flow through such a massless

locus going from MS(Γ1,Γ2) to AMS(Γ1,Γ2) will cause the creation of a new tree branch,

corresponding to charge −IΓ1, terminating on the massless locus, as shown in fig. 4.3 on

the left. This is required by charge conservation. The spacetime picture of this is that



51

P

ms

*

I

P

ms

*

I-nn

ams      ms ams      ms

Figure 4.3: Conjugation: Left: a single centered Γ2 flow turns into a (Γ2,−IΓ1) split flow
when pulled through the locus where the hyper Γ1 becomes massless and around which we have
a monodromy Γ2 → Γ2 + IΓ1. The corresponding spacetime picture is the creation of a fully
filled fermi shell of I particles of charge −Γ1. Right: a (Γ2, nΓ1) split flow turns similarly into
a (Γ2, (I − n)(−Γ1)) split flow.

a shell of I particles of charge −Γ1 gets created as a halo around a core of charge Γ2 at

the radius where the moduli pass through the massless locus. It was shown in [10] that

these newly created particles form a completely filled fermi shell of spin 1/2 fermions. If

we start off with a bound state of Γ1 and Γ2, the fermi shell of I particles of charge −Γ1

will again be generated, but now one −Γ1-particle will annihilate with the Γ1 particle

already present, leaving behind a hole in the fermi shell, i.e. I− 1 particles of charge −Γ1.

The troublesome AMS wall for Γ1 and Γ2 is now reinterpreted as a trouble-free MS wall

for Γ2 and the remaining particles of charge −Γ1. In particular the state remains BPS:

we go from a flow tree (Γ2,Γ1) to a flow tree (Γ2, (I − 1)(−Γ1)). Similarly, if n ≤ I Γ1

particles were present, we end up with n holes or I − n particles of charge −Γ1. In flow

tree language we go from a (Γ2,Γ1) tree to a (Γ2, (I −n)(−Γ1)) tree. This is shown in fig.

4.3 on the right. We call this process the fermi flip.

When n > I this does not work: we end up with particles of charge Γ1 rather than−Γ1, the

flow tree ceases to exist since splits on AMS walls are not allowed, and the bound state goes

from being classically BPS to being classically non-BPS (the minimum of the interaction

potential is no longer at the BPS bound). At the classical level, this is a realization of

the elevation phenomenon mentioned earlier as the most straightforward resolution of the

puzzle. At the quantum level, what happened here wasn’t quite elevation, because there
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were initially no quantum BPS states at all. This is because more fermions were present

(n) than the number of available 1-particle states (I). In some cases2 elevation processes

may occur also at the quantum level. An example is a bound state of some magnetically

charged particle and an electrically charged N = 4 vector multiplet, illustrated in fig. 4.4.

The above list is exhaustive, since the only possible degenerations of flow trees are collapses

of edges. In general we can also get recombination-conjugation hybrids, at singularities where

mutually nonlocal BPS states become massless. But the basic building blocks are given by the

above classification.
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Figure 4.4: Elevation: The initially BPS-saturated minimum of the interaction potential V (r)
gets lifted, and the bound state becomes classically non-BPS. The corresponding flow trees are
shown on the right. The blue line with the asterisk is the elevation wall. It corresponds to a
critical attractor flow hitting a locus in (a suitable finite cover of) moduli space where the mass
of one of the constituent particles vanishes but there is no charge monodromy around it, as is
the case for example if an N = 4 vector multiplet becomes massless. The tree on the right is
shown in grey because it does not represent an actual BPS flow tree, since the split occurs on
an anti-marginal stability wall.

The definitions we have given here will be made more precise in the following sections,

and we will study more systematically under what conditions these phenomena occur. Besides

solving the puzzle raised in [12], these considerations will also lead to interesting constraints on

the BPS spectrum. More precisely these follow from continuity of BPS indices across bound

state transformation walls. For example, if only particles of charge proportional to γ become

massless at a certain locus at finite distance in moduli space, we find that the monodromy

around this locus must be given by

Γ → Γ + I γ , I = 〈γ,Γ〉
∞∑

k=1

k2Ω(kγ) . (4.1.2)

2This may require fine tuning of hypermultiplet moduli, and requires the absence of quantum tunneling
phenomena pairing up and lifting unprotected BPS states.
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Furthermore, if some Γ1 = kγ supports massless BPS vector particles with Ω(kγ) 6= 0, we

clearly run into trouble, since we could start with a BPS configuration (Γ2, nΓ1) with n > I

vector-particles (as this is no longer forbidden by the exclusion principle), and after crossing

the bound state transformation wall end up with n − I > 0 particles of charge Γ1, leading to

a classically non-BPS configuration. By continuity of the index, this implies Ω(Γ2 + nΓ1) = 0

on either side of the BST wall. The only way this is possible is if by some bizarre conspiracy

the sum of all (nonzero) indices of individual configurations with total charge Γ2 + nΓ1 equals

zero, for any choice of Γ2 and n. More plausibly, this situation simply cannot occur. A more

precise version of this argument is given in Sections 4.3.4 and 4.3.9 below. Indeed the following

independent argument corroborates this. We only expect massless vectors at the quantum level

when the low energy gauge theory is IR free or conformal. For IR free gauge theories we can

trust the smooth classical BPS monopole solutions that such theories have on their Coulomb

branch. These monopoles have mass proportional to the W-boson mass, and so we will always

get BPS states with mutually nonlocal charges becoming massless at the same locus as the

vector, contradicting the assumption that only charges proportional to γ become massless. See

Section 4.6.3 for further discussion.

Of course the BPS spectrum near singularities, including constraints from monodromy and

stability, is a well-studied subject, going back to the original works [42, 43, 1]. Scattered

examples of supergravity bound state transformation phenomena have appeared before in the

literature [11, 6, 5, 41]. Related phenomena have been exhibited in other pictures of BPS

bound states; for example the conjugation phenomenon which we describe is related to quiver

mutations or Seiberg dualities in cases where the quiver description of BPS bound states holds

[44, 45], and to the string - string junction transition in the D-string description of BPS states

in brane engineered field theories [46, 47, 48]. The goal of [34], on which the present chapter is

based, was to study bound state transformations in full generality in the supergravity attractor

flow tree picture of BPS states, and to determine how they constrain the BPS spectrum. We

believe our constraints on the spectrum of massless states discussed in Sections 4.3.4 and 4.6.3

are new.

The organization of this chapter is the following: in section 4.2 we give a general and precise

description of BST walls. In section 4.3 we review multicentered halo solutions of supergravity.

We investigate the conjugation wall and the way BPS Hilbert spaces change across it, detailing

the physical conjugation process and its relation to monodromy around the singularity. Finally

we discuss constraints on the spectrum of BPS states following from the continuity of BPS

index. In section 4.4 we give the simplest example of a conjugation wall, associated to a single
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massless hypermultiplet, as in the example from [12]. In Section 4.5 the recombination walls

are presented and we show how index and spin character are preserved. In addition we revisit

the split attractor flow conjecture of [11] and add some important amendments to it. In Section

4.6 we describe the situation with a massless vector multiplet appearing at the singularity, and

in section 4.7 we give a representative set of examples. One important conclusion we draw

from the example of Section 4.7.3 is that the spectrum of low energy particles in some models

with extremal transitions has not been fully understood in the past. We found this because

published spectra disagreed with the general conclusions we had reached in Section 4.3. We have

concluded that the published spectra were incomplete, and do not constitute counterexamples

to the prediction of Section 4.3.4.

4.2 Walls from attractor flow trees

One way to describe BPS boundstates in supergravity is via attractor flow trees [11, 27, 6, 5].3

Such trees describing a boundstate of two subcomponents of charge (Γ1,Γ2) (necessarily in a

stable region) begin with single-centered attractor flow for the total charge Γ := Γ1+Γ2. When

describing boundstates of two constituents Γ1,Γ2 the tree then splits on a marginal stability

wall MS(Γ1,Γ2):

MS(Γ1,Γ2) := {t ∈ M̃ | 0 < Z(Γ1; t)/Z(Γ2; t) < +∞} (4.2.3)

where M̃ denotes the universal cover of vectormultiplet moduli space. (In general our notation

follows [5].)

Let us now suppose we are in the situation of our puzzle. The region of stability is defined

by

〈Γ1,Γ2〉ImZ(Γ1; t)Z(Γ2; t) > 0. (4.2.4)

Suppose that the path P is contained in the region of stability, connecting a point tms on

MS(Γ1,Γ2) to a point tams on AMS(Γ1,Γ2)

AMS(Γ1,Γ2) := {t ∈ M̃ | −∞ < Z(Γ1; t)/Z(Γ2; t) < 0}. (4.2.5)

The boundary of a region of stability is the set:

W (Γ1,Γ2) = {t ∈ M̃ | Im
[
Z(Γ1; t)Z̄(Γ2; t)

]
= 0}, (4.2.6)

3In fact, the description of BPS boundstates via attractor flow trees is applicable in a far more general context
than just the supergravity approximation.
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which can be decomposed as:

W (Γ1,Γ2) =MS(Γ1,Γ2) ∐AMS(Γ1,Γ2) ∐ (Z(Γ1) ∪ Z(Γ2)) , (4.2.7)

where

Z(Γ) := {t ∈ M̃|Z(Γ; t) = 0}. (4.2.8)
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Figure 4.5: Location of the S(Γ1,Γ2) wall.

In figure 4.5 we depict a caricature of the location of different components of W (Γ1,Γ2) in

a real dimension 2 surface in the moduli space. Denote by t a point on P and consider the

behavior of the attractor flow tree as t moves along P from tms towards tams. We want to prove

the following

Statement: There exists a point t ∈ P, such that the attractor flow for Γ1 +Γ2, starting at t,

ends on either Z(Γ1) or Z(Γ2).

One can use the following simple argument. Notice that when t is close to tms, the attractor

flow for Γ1 + Γ2 will almost immediately hit MS(Γ1,Γ2). On the other hand, when t is close

to tams, the flow will hit AMS(Γ1,Γ2). Indeed, according to Property 3 from Appendix C,

the attractor flow always has the direction from stable to unstable side in the vicinity of an

(anti)marginal stability locus. As one can continuously get from MS(Γ1,Γ2) to AMS(Γ1,Γ2)

only through the loci Z(Γ1) or Z(Γ2), it is almost obvious that for some t ∈ P the attractor

flow will crash on those zeros. The only thing to check is that the attractor flow for Γ1 + Γ2

does not run to a boundary of the moduli space at infinite distance when we move t from tms

to tams. Let B(t) denote the point where the flow hits W (Γ1,Γ2). Property 2 from Appendix

C says that B(t) exists for all t on path P and Property 1 ensures that it is unique. Now define

a real-valued function

λ(t) :=
Z(Γ1;B(t))

Z(Γ2;B(t))
∈ R ∪ {±∞}. (4.2.9)
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We showed that it can be defined for every t. Given that λ(t) > 0 for t near tms and

λ(t) < 0 for t near tams, there must be some point where λ(t) changes sign, going either to zero

or infinity. λ(t) having zero corresponds to crossing a wall S(Γ1,Γ2) and λ(t) having infinity

corresponds to crossing a wall S(Γ2,Γ1) wall, where

S(Γ1,Γ2) := {t | (Γ1 + Γ2) flow from t crashes onZ(Γ1)}. (4.2.10)

In principle, λ(t) could have changed its sign more than once along the path P , crossing one or

both of S(Γ1,Γ2), S(Γ2,Γ1) walls possibly several times. For resolving our puzzle it will suffice

to understand what happens when we cross just one wall.

Coming back to the fate of the BPS bound state (Γ1 +Γ2), we suppose for definiteness that

λ(t) has a zero, the path P crosses S(Γ1,Γ2) and Z(Γ1) has a zero. The physical discussion of

BPS states depends on the following dichotomy:

1. Near the locus Z(Γ1), BPS states with charge γ1 parallel to Γ1 exist. That is, there is a

positive rational number and a charge γ1 = rΓ1 so that

H(γ1, t)|t∈Z(Γ1) 6= ∅, (4.2.11)

2. No such states exist in the neighborhood of Z(Γ1).

There are known examples of both possibilities. The first possibility gives rise the conjuga-

tion phenomenon across S(Γ1,Γ2). We will define the wall S(Γ1,Γ2), subject to the constraint

(4.2.11), to be the conjugation wall.

In the second case the charge Γ1 is not populated around Z(Γ1), but by assumption, it is

populated in the neighborhood of tms and thus should be realized as a multicentered solution

[11]. An example of this situation, when Γ1 is a bound state of Γ3 +Γ4, is given in figure 4.6 4.

The bound state of Γ3 + Γ4 has to decay as one approaches Z(Γ1), so that MS(Γ3,Γ4) has to

separate some region around Z(Γ1) from the path P , as in figure 4.6. Introducing the notation

of nested lists to denote different attractor tree topologies the bound state just described is

denoted as (Γ2, (Γ3,Γ4)). Let’s also denote

Γij := 〈Γi,Γj〉,

Γij,k := Γik + Γjk, Γk,ij := −Γij,k (4.2.12)

4 We depict charges Γ2, Γ3 and Γ4 as single-centered attractor flows, but the discussion is applicable to the
most general case with all charges being some multicentered configurations. The notation t∗(Γ) in the figure is
used for the regular attractor point of charge Γ.
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for i, j, k ∈ (2, 3, 4) and all different. The set of points in moduli space, such that attractor flow

for charge Γtotal = Γ2+Γ3+Γ4 with at least one Γij,k non-zero, starting at those points, passes

through the locus where all three central charges are aligned defines a recombination wall (RW)

[5], which we will denote by

RW (Γ2,Γ3,Γ4) = {t|(Γ2 + Γ3 + Γ4)-flow from t crashes onMS(Γ3 + Γ4,Γ2) ∩MS(Γ3,Γ4)}.
(4.2.13)

The definition is in fact symmetric as will be explained in Section 4.5. It is clear from the
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Figure 4.6: Charge Γ1 is realized as a bound state of Γ3 + Γ4. The dashed line is the recombi-
nation wall RW between (Γ2, (Γ3,Γ4)) and (Γ4, (Γ2,Γ3))+(Γ3, (Γ2,Γ4)).

picture that as we move t along P from tms and before crossing the S(Γ1,Γ2) wall, we will hit

RW (Γ2,Γ3,Γ4). Section 4.5 gives a detailed account of how the bound states transform across

RW (Γ2,Γ3,Γ4) wall and once again the puzzle from SEction 4.1.1 gets resolved.

4.3 Conjugation Walls and Fermi Flips

In this section we describe what happens to the bound state when the background moduli

cross a conjugation wall. Changing slightly the notation from the previous section, we will

be interested in bound states of a single particle of charge Γ with one or more particles with

charges proportional to a primitive charge γ where 〈Γ, γ〉 6= 0. Our considerations will force us

to consider, more generally, a particle of charge Γ +mγ bound to one or more particles whose

charges are proportional to γ.
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4.3.1 Rules of the game

We assume that Z(γ) is located on the boundary of the moduli space at a finite distance. This

locus is complex codimension one in moduli space M and can be thought of as lying on a real

codimension one boundary of the covering space M̃. We will reduce arguments to one-complex-

dimensional slices so one should keep in mind the analogy of M̃ as the upper half-plane with

coordinate τ and M as the unit disk with parameter q = e2πiτ . Then Z̃(γ) is Q ∪ {i∞} and

Z(γ) is q = 0. All our arguments should be understood as pertaining to some sufficiently small

and generic neighborhood U of Z(γ) in M.

The lattice Λ of electromagnetic charges forms a local system over M. That is, there is a

flat connection on Λ. Moreover, the Hilbert space Hone−particle of all one-particle states has a

flat connection on M, and furthermore Hone−particle has a compatible grading by Λ. Typically,

the local system Λ will have nontrivial monodromy around Z(γ). We will assume that γ is

monodromy invariant. 5

We will make some assumptions about the nature of certain BPS spaces in U . First, we

assume thatH(ℓiγ; t)|t∈Z(γ) 6= ∅ for some collection of integers ℓi.
6 Second, we assume that these

spaces are “constant” or t-independent in U . By “constant” we mean there is a flat connection

on the vector bundle of BPS states of charge ℓγ whose fiber at t is H(ℓγ; t). Using the flat

connection we trivialize the bundle and just speak of H(ℓγ). Third, it can very well happen that

there is a linearly independent charge γ′ with the same vanishing locus Z(γ) = Z(γ′). However,

we assume that if such charges arise they are not populated, that is, H(nγ +mγ′; t) = 0 in U
whenever m 6= 0. As we will see in Section 4.6, this is a crucial assumption; one which is not

always satisfied in physically interesting situations.

Finally, returning to our charge Γ such that 〈Γ, γ〉 6= 0 we make some assumptions about

H(Γ; t). Again, by taking U sufficiently small we know that the only relevant walls of (anti)marginal

stability are in W (γ,Γ). As we have explained, the locus Z(γ) divides W (γ,Γ) into two

connected components, U ∩ MS(γ,Γ) and U ∩ AMS(γ,Γ). We assume that our neighbor-

hood of U is sufficiently small that, for all n ∈ Z, H(Γ + nγ; t) is “constant” on these two

components in the sense explained above. Therefore we can speak of well-defined spaces

Hms(Γ + nγ) and Hams(Γ + nγ). We assume that Hms(Γ) is nonzero, but we do not as-

sume that Hms(Γ + nγ) ∼= Hams(Γ + nγ). Indeed, such a statement is meaningless if Γ is not

5We might need to pass to a finite cover of U if Z(γ; t) has a multiple zero on Z(γ).

6 Here we deviate slightly from the notation of [5] by using H for the reduced statespace of single-particle
BPS states where the half-hypermultiplet degrees of freedom from the center of mass have been factored out.
Thus H was denoted by H′ in [5] and hence the BPS index – the second helicity supertrace – is given by
Ω(Γ; t) = TrH(Γ;t)(−1)2J3 throughout the thesis.
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invariant under the monodromy action around Z(γ).

4.3.2 Review of halo states

Multicentered Halo Solutions

Four dimensional N=2 supergravity has stationary multicentered BPS black hole solutions [49,

11, 35], which are typically true bound states with constrained center positions whenever the

centers have mutually nonlocal charges [11, 35]. It was shown in [10] that there is a distinguished

class of multicentered solutions of supergravity known as halo solutions. In these solutions

there is one center, known as the core with a charge Γ while all the other centers carry charges

proportional to a primitive charge γ. The name derives from the fact that when the solution

exists all the halo centers must lie on a sphere of fixed radius. For total charge of the form

Γ + nγ the halo radius is

Rn(t) =
1

2
〈Γ, γ〉 |Z(Γ + nγ; t)|

ImZ(Γ; t)Z(γ; t)
(4.3.14)

The total halo charge nγ might be divided up between different halo centers in different ways

corresponding to several centers of charges ℓiγ, with
∑
ℓi = n.

Multi-centered halo configurations might or might not constitute acceptable solutions to

supergravity. The existence criterion for acceptable multi-centered solutions of supergravity

are rather complex and difficult to check in general. However, for halo solutions there are two

simple necessary and sufficient criteria for existence:

1. The halo centers all must have parallel charges. That is the charges must be of the form

ℓiγ where the integers ℓi all have the same sign.

2. The single-centered attractor flow from t with total charge Γ+ nγ must split on a wall of

marginal stability MS(γ,Γ) if n > 0 and it must split on a wall of anti-marginal stability

if n < 0.

The first criterion is easy to understand. As we cross a wall of marginal stability the halo

radius Rn(t) goes to infinity. If some particles had ℓi of opposite sign then energy could not be

conserved. Alternatively, if there were particles of opposite sign we could bring them together

adiabatically and annihilate them. Thus, the original configuration could not have been BPS.

The shell approximation

The multi-centered halo solutions are rather intricate, and lead to rather complicated variations

of moduli t(~x) in space. Some useful intuition can be gleaned by examining a much simplified
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“shell approximation” to the multicentered solutions. This shell approximation is closely related

to the split attractor flow description.

In the “shell approximation” we replace the multicentered supergravity solution by a spher-

ically symmetric shell solution [11] (see figure 4.7). The supergravity field configuration is

radially symmetric. For r > R it is given by the attractor flow for Γ + nγ. Following the lead

of split attractor flow, we choose the radius R to be R = Rn(t). Thus, the local vectormultiplet

moduli at r = R are given by the point in M where the attractor flow of charge Γ + nγ hits

W (Γ, γ), denoted in what follows by Bn(t). We next insert a shell of uniform charge with total

charge nγ at the radius r = R. Then, we continue the solution to r < R using single centered

attractor flow for Γ. Let us compute the energy of such a field configuration. The energy is

a sum of three terms E> + ER + E<, the energy of the fields for r > R, r = R and r < R,

respectively. These are given by

E<

nγR

Γ

E>

ER

Figure 4.7: Shell configuration.

E> = |Z(Γ + nγ; t)| − |eUZ(Γ + nγ;Bn(t)|

ER = |eUZ(nγ;Bn(t))|

E< = |eUZ(Γ;Bn(t))|, (4.3.15)

with the total energy given by the sum

E = |Z(Γ + nγ; t)|+ 2θ|eUZ(nγ;Bn(t))|, (4.3.16)

where θ = 0 if Bn(t) lies on MS(γ,Γ) and θ = 1 if Bn(t) lies on AMS(γ,Γ). When θ = 1 the

field configuration is certainly not BPS and might not even be a solution of the equations of

motion. Thus, we have recovered the second existence criterion for halo boundstates mentioned

above: Bn(t) must lie on MS(γ,Γ).
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Halo Fock Spaces

Upon quantization multi-centered solutions of supergravity correspond to states in the Hilbert

space of BPS states. These states are to be thought of as boundstates of BPS particles. For

the halo solutions we have a core particle of charge Γ and halo particles whose charges are

proportional to γ. The corresponding quantum states are known as halo states.

Thus far we have been referring to a single core particle. In general the core charge Γ in a

multi-centered solution might correspond to several particles and might not even have a single-

centered realization. Nevertheless, if the boundstate radius Rn(t) is large compared to any

dimensions of the multi-centered solution of charge Γ then we can still meaningfully distinguish

between the core and the halo and we can speak meaningfully of the “halo contribution to the

BPS space H(Γ+nγ; t).” We will restrict attention to such regions and think of the BPS space

as a direct sum

H(Γ + nγ; t) = Hhalo(Γ + nγ; t)⊕H′(Γ + nγ; t), (4.3.17)

where Hhalo(Γ + nγ; t) is the halo contribution and H′(Γ + nγ; t) is the core contribution.

By taking a sufficiently small neighborhood U of a generic point on Z(γ) any possible mixing

between Hhalo(Γ; t) and H′(Γ; t) can be made small. By the correspondence principle we expect

that we can focus on Hhalo(Γ; t).

Let us now recall the description of the halo states given in [5]. It is useful to consider a

“generating Hilbert space”

⊕n≥0 Hhalo(Γ + nγ; t). (4.3.18)

Since the halo particles are mutually BPS and noninteracting, the Hilbert space of all halo-type

boundstates with a core particle of charge Γ form a Z2-graded Fock space:

Hhalo
Γ := Hms(Γ)⊗ℓ≥1 F [(JΓ,ℓγ)⊗H(ℓγ)] (4.3.19)

Here JΓ,ℓγ = 1
2 (|〈Γ, ℓγ〉| − 1) is an SU(2) spin and (JΓ,ℓγ) is the corresponding representation

space of SU(2) with generators J
(1)
i while H(ℓγ) is also an SU(2) representation space with

generators J
(2)
i . The finite-dimensional vector space (JΓ,ℓγ)⊗H(ℓγ) is Z2-graded by −(−1)2J

(2)
3

and the Fock space construction is applied in the Z2-graded sense. The physical reason for this

seemingly strange choice of Z2-grading is explained in detail in [10]. In particular, halo particles

which are hypermultiplets behave like free fermions and halo particles which are vectormultiplets

behave like free bosons. Note that because of our assumptions, the space (4.3.19) does not

depend on t.

There are three important subtleties one must be mindful of when using (4.3.19).



62

1. First, at a given value of t it is not true that all of the Hilbert space (4.3.19) contributes

to (4.3.18). Only those states contribute for which the corresponding halo solutions exist.

In particular, for contributions to Hhalo(Γ+nγ; t) with n > 0 the point Bn(t) must lie on

MS(γ,Γ) and hence t must lie on the appropriate side of the conjugation wall S(nγ,Γ).
In Appendix D we discuss the arrangement of the walls S(nγ,Γ) as a function of n (see

Figure D.1) and the consequences for (4.3.18).

2. The second subtlety is that the halo Fock space (4.3.19) singles out a special “core charge”

Γ. When speaking of the “halo contribution to the space H(Γ + nγ; t)” we should bear

in mind that there can also be core charges of the form Γ +mγ surrounded by halos of

particles of total charge (n −m)γ, where m can be any integer, and thus when working

out the contributions to (4.3.18) we should really sum over such core charges:

⊕m∈Z Hhalo
Γ+mγ . (4.3.20)

Once again, only values of m such that the corresponding supergravity solutions exist will

contribute to (4.3.18). Note that the BST walls S((n−m)γ,Γ+mγ) are the same for all

m ∈ Z.

3. Third, it is possible that there is nontrivial “mixing” between different halo states. This

would result from tunneling amplitudes between halo particles and core states. It is clearly

exponentially suppressed for large halo radius, but might in principle be nonvanishing.

Such mixing would alter our description of the Hilbert space of BPS states. This would

have an important impact on our description of the spin characters, but it would not

impact our description of the BPS indices.

In (4.3.18) we have considered halo states with halo particles whose charge is parallel to γ.

There is an analogous story for halo states with halo particles whose charge is anti-parallel to

γ. For these we should sum over negative values of n in the analog of (4.3.18), the analogous

Fock space (4.3.19) involves particles drawn from H(−ℓγ) with ℓ ≥ 1, etc.

4.3.3 The puzzle

Let us now return to the situation described in the previous sections. We have a path P joining

tms to tams as in figure 4.5. Now imagine moving t along the path P and consider boundstates

of total charge Γ + nγ with n > 0. For t near tms we know there are halo boundstates with

halo particles of charge parallel to γ. For t near tams such boundstates cannot exist. Indeed,
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when t crosses the wall S(nγ,Γ) the halo bound states will cease to exist. Again we ask: what

happened to these BPS states?

The simplest thing that can happen is that BPS states smoothly pair up and become non-

BPS states as t crosses S(nγ,Γ). We called this the elevation phenomenon. An example of this

will be given in Section 4.7.2, where N = 2 vector- and hypermultiplets will pair up to form

massive vectormultiplets. This mechanism is indeed suggested by the shell model. The field

configuration we have written is clearly a solution of the equations of motion for t ∈ Pms, since

it satisfies the BPS bound. On the other hand, it ceases to be a BPS configuration for t ∈ Pams.

Nevertheless, the energy as a function of t continuously increases from the BPS bound. (Of

course, this is not a proof that the states smoothly evolve into non-BPS states since the field

configuration for t ∈ Pams might no longer solve the equations of motion, but we consider it

suggestive.)

Nevertheless, it is clear that this standard mechanism cannot be the whole story. The reason

is that one can easily compute the contribution of the halo states to the BPS index Ω(Γ+nγ; t)

from (4.3.19), and this contribution is typically nonzero. Indeed, this is what happens in the

example of [12]. The lifting mechanism can only apply to states whose total contribution to the

index vanishes. When the index does not vanish, the wall being crossed is the conjugation wall

and there must be at least some other kind of phenomenon to account for what happened to

the BPS states. In sections 4.3.5 and 4.3.6 we describe two new phenomenon - the Fermi flip

and the fadeout – which can account for the disappearance of BPS states which contribute to

an index. In sections 4.4 and 4.7.2 we show how these mechanisms nicely accounts for the fate

of BPS boundstates in the neighborhood of common types of discriminant loci of Calabi-Yau

manifolds. In order to motivate the Fermi flip it is useful to try to write out quantitatively the

condition that all the indices Ω(Γ + nγ; t), n ∈ Z are continuous functions along the path P .

We turn to this in the next subsection.

4.3.4 BPS Indices

BPS indices can only change across walls of marginal stability. Let us see what this implies for

our setup with a path P connecting tms to tams. We will define the “partition function”:

F (Γ; t) :=

∞∑

n=−∞

qnΩ(Γ + nγ; t). (4.3.21)

This is a formal series in q, q−1 and we will demand its continuity along the path P . As we

have explained, we may focus on the contributions of the halo states with core charges of the

form Γ +mγ, m ∈ Z.
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When t is infinitesimally close to tms all halo states with halo particles of charge parallel to

γ will contribute to the partition function. No halo states with halo particles with charges anti-

parallel γ will contribute. Therefore, the limiting value as t approaches the marginal stability

line factorizes:

F (Γ; t+ms) = Fms
core · Fms

halo (4.3.22)

Fms
core :=

∞∑

n=−∞

qnΩms(Γ + nγ) (4.3.23)

Fms
halo :=

∏

k>0

(1 − (−1)k|〈Γ,γ〉|qk)k|〈Γ,γ〉|Ω(kγ). (4.3.24)

Here t+ms means a point infinitesimally displaced from MS(γ,Γ) into the stable region. By the

same token, near the point tams all halo states with halo particles of charge parallel to −γ
will contribute, while no such states with halo particles of charge parallel to γ will contribute.

Therefore we have the factorization:

F (Γ; t+ams) = F ams
core · F ams

halo (4.3.25)

F ams
core :=

∞∑

n=−∞

qnΩams(Γ + nγ) (4.3.26)

F ams
halo :=

∏

k>0

(1 − (−1)k|〈Γ,γ〉|q−k)k|〈Γ,γ〉|Ω(kγ). (4.3.27)

Since (for sufficiently small U) our path does not cross any walls of marginal stability the

two partition functions above must be equal:

F (Γ; t+ms) = F (Γ; t+ams). (4.3.28)

Combining this continuity requirement with the above factorization statements leads to some

interesting constraints on BPS indices.

Note first that since there are no walls of marginal stability in the unstable region F (Γ; t)

cannot jump in this region. This suggests that Fms
core and F

ams
core must be identical, but that is not

quite the case because the charges live in a local system. In stating (4.3.28) we have implicitly

assumed that the local system has been trivialized throughout the closure of the stable region

in U . Therefore, we must choose a “cut” in the unstable region. (See Figure 4.8 and Section

4.3.8 below.) Taking into account the monodromy of the local system we see that instead

Fms
core = q−IF ams

core (4.3.29)

for some integer I. Equating the coefficient of qn on both sides gives:

Ωms(Γ + nγ) = Ωams(Γ + (n+ I)γ). (4.3.30)
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Now, equations (4.3.28) and (4.3.29) together would seem to imply

F ams
halo = q−IFms

halo (4.3.31)

and indeed formal manipulation of the product formulae above lead to such an identity with

I := |〈Γ, γ〉|
∞∑

k=1

k2Ω(kγ). (4.3.32)

However, we must stress that (4.3.31) is only a formal identity! The left-hand side is a series in

negative powers of q. On the other hand, the right-hand side is a series in positive powers of q

times q−I , and thus the power series is bounded below. This necessarily implies that the power

series is bounded both above and below and moreover that Fms
halo, and F

ams
halo must be polynomials

and finally that I ≥ 0 with I = 0 only when Fms
halo = F ams

halo is a constant in q. Thus, if we are in

a situation where (4.3.31) holds then we can conclude:

1. At a generic point of a discriminant locus, if Ω(kγ) 6= 0 for some k then the quantity I

defined in (4.3.32) must be positive. In particular, it is impossible to have Ω(kγ) ≤ 0 for

all k ∈ Z.

2. The spectrum must be such that the product

P (q) :=
∏

k>0

(1− qk)kΩ(kγ) (4.3.33)

is a polynomial in q.

The quantity
∑

k>0 k
2Ω(kγ) has a nice physical interpretation, associated with the key

insights of [1] and [13]. It is the coefficient of the β-function for the U(1) coupling defined by

the direction γ in the charge lattice, that is

4πiµ
∂

∂µ
τ = I (4.3.34)

where µ is the low energy scale at which the coupling is measured. Thus, our conclusion would

seem to be that, given the hypotheses of Section 4.3.1 the low energy field theory should be IR

free.

Before stating this conclusion we must hasten to add that there is a logical gap in the above

derivation. The difficulty is that one must be careful because manipulation with formal power

series in q, q−1 can be tricky. As a simple example note that

(
∑

n∈Z

qn)(1 − q) = 0,
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so formal power series can have zero-divisors. From the mathematical standpoint we must

consider three cases: In the first case, Fms
halo is a polynomial in q and the above reasoning holds.

In the second case Fms
halo is a rational function. In the third case Fms

halo is an infinite product.

We will have nothing to say about the third case, other than to note that it can happen.

(For example the D0 halo factor around a D6 brane is a copy of the McMahon function [5].)

The second case, where Fms
halo is a rational function would seem to be very physical since while

(half)hypermultiplets have Ω = +1, vectormultiplets have Ω = −2, which can lead to nontrivial

denominators in the product formula for Fms
halo. Somewhat surprisingly, as we discuss in Section

4.6 below, in all examples we have analyzed, points in moduli space leading to massless vec-

tormultiplets violate the hypotheses stated in Section 4.3.1. Indeed, we show in Section 4.3.9

below that the second case leads to some rather peculiar physical predictions, and we suspect

there are no examples.

Thus we conclude that if we assume: 1.) the hypotheses of Section 4.3.1 2.) the low energy

effective field theory is a conventional field theory, and 3.) the halo factor is not an infinite

product, then I > 0 and (4.3.33) is a polynomial in q.

Remark: The formula (4.3.32) for I can also be derived from the Kontsevich-Soibelman

wall-crossing formula using the relation between that formula and monodromy pointed out in

[50] and elaborated in [38]. In particular, the requirement that the product of KS transforma-

tions denoted Ukγ in [38] in fact has a well-defined action on F (Γ; t) leads to an alternative

argument in favor of (4.3.33). A version of this argument is given in Section 4.7.1 below.

4.3.5 The Fermi Flip

In this section we describe one way in which the Hilbert spaces of halo states can change upon

crossing conjugation walls.

Restricting attention to the halo subsector of Hilbert space the discussion of subsection 4.3.2

shows that for t = t+ms the Hilbert space of halo states of total charge Γ + nγ is

H(Γ + nγ; t)|t∈Pms ≃ ⊕m≥0

(
Hms(Γ + (n−m)γ)⊗

{
⊗ℓ≥1F [(JΓ,ℓγ)⊗H(ℓγ)]

}

m

)
. (4.3.35)

The Fermi Fock spaces are graded by a U(1) charge corresponding to γ and the subscript

m means the subspace of the Fermi Fock space of total U(1) charge mγ. For t ∈ Pms only

halo particles with charges parallel to γ can contribute, and in particular the only nonzero

contributions come from m ≥ 0. The sum on m comes about because it is possible to have

different core charges.
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After crossing the wall S(nγ,Γ) the Hilbert space becomes:

H(Γ+nγ; t)|t∈Pams ≃ ⊕m≥0

(
Hams(Γ+(n+m)γ)⊗

{
⊗ℓ≥1F [(JΓ,ℓγ)⊗H(−ℓγ)]

}

−m

)
. (4.3.36)

Now, it is possible for (4.3.35) and (4.3.36) to be isomorphic through the following mecha-

nism. For simplicity of exposition suppose that Hms(Γ) 6= ∅ but Hms(Γ+nγ) = ∅ for n 6= 0. It

follows from (4.3.30) that Ωams(Γ+mγ) can only be nonzero for m = I, and this suggests that

Hams(Γ +mγ) = 0 unless m = I. We will make that assumption. Then (4.3.35) and (4.3.36)

simplify to

H(Γ + nγ; t)|t∈Pms
∼= Hms(Γ)⊗ [⊗ℓ≥1F [(JΓ,ℓγ)⊗H(ℓγ)]]n (4.3.37)

H(Γ + nγ; t)|t∈Pams
∼= Hams(Γ + Iγ)⊗ [⊗ℓ≥1F [(JΓ,ℓγ)⊗H(−ℓγ)]]n−I (4.3.38)

In (4.3.37) we must have n ≥ 0 while in (4.3.38) we must have n− I ≤ 0. Thus, there can only

be non-empty spaces for 0 ≤ n ≤ I. This means that the Fock space (4.3.19) must be finite

dimensional, i.e. the halo particles of charge proportional to γ must be fermionic.

If we put n = I and equate (4.3.37) with (4.3.38) then we find that

Hams(Γ + Iγ) ∼= Hms(Γ)⊗ L (4.3.39)

where L is the complex line:

L = Λmax

(
⊕ℓ≥1(JΓ,ℓγ)⊗H(ℓγ)

)
. (4.3.40)

One can view (4.3.40) as the entirely filled Fermi Fock space, which of course furnishes a “flipped

Fermi sea.” More generally, equating the Hilbert spaces at t = tbst we find

L ⊗
{
⊗ℓ≥1F [(JΓ,ℓγ)⊗H(−ℓγ)]

}

n−I

∼=
{
⊗ℓ≥1F [(JΓ,ℓγ)⊗H(ℓγ)]

}

n

(4.3.41)

The equation (4.3.41) suggests the following interpretation. We should associate to the

halo particles a Clifford algebra.7 On the LHS of (4.3.41) we have a subspace of a Fock space

with creation operators associated to particles of charge −ℓγ, ℓ > 0. On the RHS we have a

subspace of a Fock space with creation operators associated to particles of charge ℓγ, ℓ > 0.

The isomorphism corresponds to a Bogolyubov transformation that exchanges creation and

annihilation operators. The transformation of Fock vacua may be referred to as “flipping the

Fermi sea.” An example of this situation is the conifold point, which we consider in greater

detail in Section 4.4. In that case the only available halo particles have charge ±γ and form a

hypermultiplet, so all the assumptions are met.

7Presumably this is simply the algebra of BPS states [51, 52, 53].



68

The Fermi flip nicely accounts for how the BPS spaces change across conjugation walls when

the halo particles are all fermionic. In cases when H(ℓγ) contains bosonic degrees of freedom for

some ℓ, we do not expect an isomorphism between H(Γ + nγ; t)|t∈Pms and H(Γ + nγ; t)|t∈Pams

and in fact in section 4.3.7 we will see that in general it cannot be the case. (Nevertheless, the

index is continuous.)

4.3.6 The Fadeout

The Fermi flip described in section 4.3.5 implies that as t crosses the conjugation wall S(nγ,Γ)
the supergravity description of the boundstate changes in an interesting way. Consider first the

case n = I. For t ∈ Pms there is a core charge at a single point in R3 and it is surrounded by a

halo of particles with charges parallel to γ of total charge I. After crossing the BST wall we have

a single core charge of total charge Γ+ Iγ and no halo particles! More generally, for 0 ≤ n ≤ I,

a state with core charge Γ and halo particles with charge parallel to γ of total halo charge nγ

evolves into a state with core charge Γ+Iγ and halo particles with charge anti-parallel to γ with

total halo charge −(I−n)γ. This sounds like a very discontinuous process, but, remarkably, the

process is in fact physically smooth. Nothing violent happens to our boundstates. In particular

we stress that the boundstate radius Rn(t) is finite and smooth in the neighborhood of tbst.

First, let us address how a state with halo particles of charge parallel to γ can smoothly

evolve into a state with halo particles of charge anti-parallel to γ. Recall that as t crosses

the conjugation wall the central charge Z(γ; t(~x)) vanishes at the halo radius (in the shell

approximation). Now, let us consider a probe BPS halo particle of charge γ in an attractor

background of charge Γ + nγ. It has Lagrangian [10]

L = −2eU |Z(γ; t(~x))|(1 − cos(αγ − α)) (4.3.42)

where αγ is the phase of Z(γ; t(~x)) and α is the phase of Z(Γ+nγ; t(~x)). The term proportional

to the cosine comes from the interaction with the electromagnetic field, and the other term

comes from the rest mass of the BPS particle. Since Z(γ; t(~x)) → 0 on the halo radius Rn(t)

as t crosses S(nγ,Γ) we see that the halo particles have both a mass and coupling to the

background gauge fields which approaches zero. Thus, as t crosses the BST wall S(nγ,Γ) the
halo particles decouple from any possible local physical measurement! We call this process the

fadeout.

The fadeout takes care of the halo particles, but the reader might still be disturbed because

our description of the core charge has changed discontinuously as t crosses the BST wall, namely

a core of charge Γ appears to have jumped suddenly to a core of charge Γ + Iγ. The process is
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in fact physically smooth, but this aspect is best explained after we have discussed monodromy

in Section 4.3.8

4.3.7 Spin character

Hilbert spaces of BPS states are representations of the spatial rotation group SU(2). As such

they are completely classified by their character. In this section write out what the description

of halo states of section 4.3.2 above implies for the spin character.

To begin, let us define the spin character of halo particles to be:

TrH(ℓγ;t)(−z)2J3 := Ω(ℓγ;−z; t) =
Mℓ∑

−Mℓ

am,ℓz
m (4.3.43)

By assumption the integers am,ℓ are independent of t ∈ U . Because of our Z2 grading the parti-

cles contributing to m even (for which am,ℓ > 0) correspond to fermionic particles in the Fock

space while those contributing to m odd (for which am,ℓ < 0) correspond to bosonic particles

in the Fock space. In particular, if Mℓ ≤ 1 then a0 counts hypermultiplets in four dimensions

and a±1 counts vectormultiplets in four dimensions. By rotational invariance am,ℓ = a−m,ℓ. By

CPT invariance am,ℓ = am,−ℓ. In particular, Ω(ℓγ; y; t) = Ω(−ℓγ; y; t) = Ω(ℓγ; y−1; t).

Now we introduce a generating function for the spin characters of the positive halo Fock

spaces:

F (q, y; t) :=
∑

n∈Z

qnTrHhalo(Γ+nγ;t)y
2J3 (4.3.44)

This is a formal power series in q whose coefficients are finite Laurent polynomials in y. The

contribution to this generating function from boundstate halo particles of charge ±ℓγ is

F (±ℓ)(q, y) =

Mℓ∏

m=−Mℓ

JΓ,ℓγ∏

j=−JΓ,ℓγ

(1 + (−1)my2j+mq±ℓ)am,ℓ (4.3.45)

and in the spirit of our discussion around (4.3.22)-(4.3.25), we can write down the full generating

function at points t+ms and t+ams:

F (q, y; t+ms) = Ωms(Γ; y)

∞∏

ℓ=1

F (ℓ)(q, y) (4.3.46)

F (q, y; t+ams) = Ωams(Γ; y)

∞∏

ℓ=1

F (−ℓ)(q, y) (4.3.47)

where Ωms(γ; y) is the spin character of Hms(Γ), etc.

It is easy to see that when γ has bosonic internal degrees of freedom, F (q, y; t+ms) is an

infinite series in positive powers of q. The cancellation mechanism mentioned below (4.3.33)
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is no longer operative. Similarly, in this case F (q, y; t+ams) will be an infinite series in negative

powers of q. Thus, (4.3.46) and (4.3.47) can never be equal. We conclude that when halo

particles include bosonic degrees of freedom the spin character must change across conjugation

walls.

On the other hand when the only BPS particles with charge parallel to γ are fermionic, we

can apply the analog of (4.3.31), which states that:

∞∏

ℓ=1

F (ℓ)(q, y) = qI
∞∏

ℓ=1

F (−ℓ)(q, y), (4.3.48)

In this case, the spin character will be smooth across conjugation walls provided the analog of

(4.3.29), is satisfied:

∑

m

Ωms(Γ +mγ; y)qm =
∑

m

Ωams(Γ +mγ; y)qm−I . (4.3.49)

which would follow, for example, if Hms(Γ + nγ) ∼= Hams(Γ + (n + I)γ) upon parallel trans-

port with the flat connection. When all halo particles are fermionic this is quite a reasonable

condition, as we explain in section 4.3.8.

4.3.8 Monodromy

It is now time to understand the meaning of the identity (4.3.30). First let us note that the

choice of Γ is rather general. After all, there will be many charges Γ which are not local with γ

and furthermore support regular attractor points and hence support single-centered black hole

solutions in the supergravity approximation. Indeed in the local system of charges Λ (trivialized

on M̃), there should be an open set of such charges in Λ ⊗ R. Since the charges are sections

Stable

(a)

(b)

Stable

AMS(γ,Γ)

MS(γ,Γ)

MS(γ,Γ)

AMS(γ,Γ)z|z|

Figure 4.8: A figure of the z-plane where Z(γ; t) = z. When 〈Γ, γ〉 < 0 the stable region is the
shaded region in (a), and when 〈Γ, γ〉 > 0 it is the shaded region in (b). The transformation
of charge Γ → Γ + Iγ corresponds to a monodromy transformation around the closed paths
indicated in green.

of a local system Λ when comparing indices in an equation such as (4.3.30) we must specify a

path along which charges have been parallel transported. We have implicitly assumed that the
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charges are related by parallel transport through the stable region. On the other hand, the BPS

Hilbert space should remain “constant” in the unstable region, and hence equation (4.3.30) is

naturally explained if Λ undergoes a monodromy transformation

Γ →M · Γ = Γ + Iγ. (4.3.50)

along a closed path winding once aroundZ(γ). The direction of the path is determined by noting

that in the argument used in section 4.3.4 we parallel transport the charge Γ from MS(γ,Γ) to

AMS(γ,Γ) through the stable region. Since the spaces are “constant” in the unstable region

a path beginning on AMS(γ,Γ) and passing through the unstable region does not change Γ,

and hence we should consider a closed path that begins on AMS(γ,Γ), first passes through the

unstable region to MS(γ,Γ) and then returns through the stable region back to AMS(γ, γ),

as shown in figure 4.8. Thus, the sign of the winding is correlated with the sign of 〈Γ, γ〉 and

hence we can say that the monodromy transformation for a clockwise oriented curve of winding

number one is

Γ →M · Γ = Γ + Īγ. (4.3.51)

where

Ī = 〈Γ, γ〉
∞∑

k=1

k2Ω(kγ) (4.3.52)

step 2

step 3

step 1

S(Iγ,Γ)

MS(γ,Γ) AMS(γ,Γ)

Γ + Iγ

Γ
Γ

Iγ

t∗(Γ + Iγ) = t∗(Γ)

Γ + Iγ

O2(Γ)

O1(Γ + Iγ)

t−
O1(Γ + Iγ)t+

O2(Γ + Iγ)

Figure 4.9: The steps in the Gedankenexperiment shown in terms of paths on moduli space. The
conjugation wall is shown in green. There is a cut for the local system Λ shown in yellow, and
the attractor flows are illustrated in purple. The entire experiment involves parallel transport
of the charge lattice once around the locus Z(γ) in M.
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Monodromy and the Fermi Flip: A Gedankenexperiment

A monodromy transformation of the form (4.3.51) around Z(γ) also nicely explains how the

Fermi flip transformation of Section 4.3.5 above is in fact a continuous physical process. Again,

let us work locally on moduli space in the neighborhood U of Z(γ). Let us imagine there are two

observers O1 and O2 in a laboratory located very far from the halo core, effectively at infinite

radius. The vectormultiplet moduli at this radius are denoted t. Let us suppose the background

modulus t is initially at t+bst, on the Pms side of S(Iγ,Γ). Both O1 and O2 can measure the total

charge within a fixed radius r. (For example, they can measure fluxes with local test particles

and integrate the flux.) They both measure the charge of the boundstate to be Γ+ Iγ. We now

consider a four step experiment. In step one, one observer, sayO2, travels radially inward toward

the core (potentially observing attractor flow of the vectormultiplet moduli along the way). As

O2 passes through the radius Rn(t
+
bst) there will be some mild disturbance, but, because of the

fadeout phenomenon, this disturbance will be arbitrarily mild. For r < Rn(t
+
bst), as r decreases

to the horizon at r = 0 O2 measures total charge Γ, and concludes that the core has charge Γ.

In step two, observer O1 changes the vectormultiplet moduli t, crossing the conjugation wall

from t+bst to t
−
bst proceeding from Pms to Pams. Nothing discontinuous has happened either to

O1 or to O2. In particular O1 continues to measure charge Γ + Iγ of the boundstate. At the

same time, O2 also sees nothing discontinuous happening and continues to measure the charge

Γ. In step three the observer O2 travels radially outward from r = 0 back to the laboratory

of O1. In this third step O2 notes that no halo is encountered. Now, for the final step four

of our experiment O1 and O2 compare their results for the electromagnetic charge of the core.

O2 agrees that there is a single-centered boundstate, and declares its charge to be Γ, while O1

insists that the charge is Γ + Iγ. They are both right, because the Gedankenexperiment we

have just described involves a closed loop in moduli space around Z(γ) as shown in figure 4.9.

In our description of the Fermi flip in section 4.3.5 we used the viewpoint of O1. However, in

order to investigate if something discontinuous has happened to the core while crossing S(Iγ,Γ)
we must send out the observer O2 to report core activity from the scene of the crime. As we

have explained, O2 saw nothing dramatic happening.

Area code walls and basins of attraction

There is an interesting interpretation of conjugation walls in terms of walls between basins

of attraction for attractor flow, i.e. “area code walls” [54]. This relation will be used in the

covering space description of our Gedankenexperiment in Section 4.3.8 below.
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Let us assume that Γ + Iγ has at least one regular attractor point. Consider the attractor

flows for Γ + Iγ on the covering space M̃. The wall S̃(Iγ,Γ) is a set of attractor flows. If this

wall separates M̃ into more than one component then, since attractor flows cannot intersect

except at a regular attractor point or a singular point the attractor flows cannot cross the wall

S̃(Iγ,Γ).

Iγ

t′∗(Γ + Iγ)

M

S̃(Iγ,Γ)
t−

t∗(Γ)
t∗(Γ + Iγ)

AMS(γ,Γ) MS(γ,Γ)

t+

Γ + Iγ

Γ + Iγ
Γ

Γ + Iγ

Figure 4.10: Illustrating why the conjugation wall S̃(Iγ,Γ) is an area code wall. The attractor
flow for Γ + Iγ (shown in purple) from t+ has a split attractor flow, splitting into flows for
Γ and Iγ. We assume the attractor flow for Γ has a regular attractor point at t∗(Γ). In the
Fermi flip scenario the action of the monodromy group M (shown in gold) on t∗(Γ) produces
the regular attractor point t∗(Γ + Iγ) for flows which begin from t−. Note that t− is on the

other side of the conjugation wall S̃(Iγ,Γ). On the other hand, the Γ + Iγ flow from t+ can
be continued from its intersection with MS(γ,Γ) and, unless t∗(Γ) is a regular attractor point
of rank two, the flow will continue and end on a point other than t∗(Γ). We have denoted this
distinct point by t′∗(Γ + Iγ). We claim that t′∗(Γ + Iγ) is also distinct from t∗(Γ + Iγ), and

therefore S̃(Iγ,Γ) separates basins of attraction for Γ+ Iγ flow. In our local model, where the

inverse attractor flow on S̃(Iγ,Γ) extends infinitely far upwards, the flow cannot cross back to

the point t∗(Γ+Iγ) on the left because in order to do so it would have to cross S̃(Iγ,Γ), which is
impossible. (In addition it would also have to cross two walls MS(γ,Γ) and AMS(γ,Γ), which
is also impossible by Property 1 of Appendix A.) Thus - in our local model - if the attractor
flow for Γ+ Iγ from t+ terminates on a regular attractor point it must be a distinct point from
t∗(Γ + Iγ).

It is difficult to give a completely general argument that S̃(Iγ,Γ) is an area code wall because

one must take into account global properties of covering space. However, a very natural scenario

is illustrated and explained in figure 4.10. In this case, S̃(Iγ,Γ) is a wall between basins of

attraction for the flow Γ + Iγ.

Gedanken Again

Since discussions of this nature are apt to cause confusion it is worthwhile to describe the same

experiment using the language of the covering space Ũ of U . Now we must take into account

the action of a gauge transformation by a generator M of the covering (i.e. modular) group.

Under this transformation all physical quantities are invariant, so for example

Z(M · Γ;M · t) = Z(Γ; t) (4.3.53)
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step 2

step 1step 3

step 3

AMS(γ,Γ) AMS(γ,Γ)S̃(Iγ,Γ) S̃(Iγ,Γ)

O1(Γ + Iγ)

O2(Γ + Iγ)

O1(Γ + Iγ)
t−

t∗(Γ)
t∗(Γ + Iγ)

O2(Γ)

O2(Γ + Iγ)

t+ M
M−1 · t−

Γ + Iγ

Γ + Iγ

Iγ

Γ

Γ

MS(γ,Γ)

Figure 4.11: Steps in the Gedankenexperiment as described in the covering space. The blue
vertical lines are the marginal stability walls, the red vertical lines are the anti-marginal stability
walls and the green vertical lines are the conjugation walls. Attractor flows are shown in purple.
The group of Deck transformations is generated byM and corresponds to a shift by +1. In step
3 O2 can choose to reverse the attractor flow from t∗(Γ) as indicated in gold. Alternatively, O2

can make a gauge transformation while at r = 0 and reverse the attractor flow from t∗(Γ + Iγ)
as indicated in pink. Note the discontinuous nature of the attractor flow as t crosses the
conjugation wall.

and,

H(M · Γ;M · t) ∼= H(Γ; t). (4.3.54)

We illustrate the Gedankenexperiment expressed in the language of the covering space in

figure 4.11. A crucial new point comes at step 3 where O2 makes the return trip in R3 radially

back outward to infinity. Now, if O2 traverses the inverse attractor flow for charge Γ+ Iγ from

t∗(Γ), as shown in step 3 of figure 4.11 she measures the charge Γ of the core, but ends up

expressing her measurements in terms of the point in M−1 · t−bst ∈ Ũ which differs from the

point t−bst used by O1. In order to compare results with O1 the experimenters must be on the

same page - which in our case literally corresponds to being on the same sheet of the covering

space. One of the two experimenters must transform the data by the action of M±1. Once this

is done they will agree on the total charge of the single-centered state, as they must, since the

local system Λ has been trivialized on Ũ . Alternatively, as indicated by the pink arrow in step

three of figure 4.11 O2 might make a gauge transform while at r = 0 in order for the return trip

to r = ∞ to take her data to t−bst. Thus she starts not from t∗(Γ) but rather from its modular

image

t∗(Γ + Iγ) = t∗(M · Γ) =M · t∗(Γ) (4.3.55)

It is at this point that O2 decides the core has charge Γ + Iγ. She does not think this is a

discontinuous change from step 2, because she has merely applied a gauge transformation. In

step 4, O1 and O2 are now on the same page and once again, they agree on the value of the

core charge.
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Remark: Relation to the monodromy of the derived category

A formula for the autoequivalences in the derived category induced by monodromy around loci

where branes become massless was conjectured in [55]. (See Conjecture 1 on page 6.) If an

object A in the derived category becomes massless on a component of the discriminant locus

Z (and we assume A corresponds to a single D-brane which is stable in some sufficiently small

neighborhood U of Z) then when one considers a loop in U around Z which winds once around

Z the monodromy action on the objects in the derived category is claimed to be:

B → Cone (Hom(A,B)⊗A → B) . (4.3.56)

If one takes the Chern character of this equation, setting ch(A) = kγ and ch(B) = Γ, then

(4.3.56) becomes the standard Lefshetz formula

Γ → Γ + 〈Γ, kγ〉kγ. (4.3.57)

There is therefore some tension between (4.3.56) and our formula (4.3.50), (4.3.52). The latter

involves a sum over all charges parallel to γ and is moreover weighted by the BPS index Ω(kγ).

Since the group of autoequivalences of the derived category does not depend on a stability

condition our expression involving I might seem somewhat strange. However, since we have

explicitly assumed that the Ω(γ; t) are constant in the neighborhood of Z(γ) there is not a strict

contradiction here. Clearly this point needs to be understood better.8

4.3.9 The case when Fhalo is a rational function

Let us now return to the logical possibility, mentioned in Section 4.3.4, that Fms
halo(q) is a rational

function of q. We will show that this leads to some physical predictions which are so peculiar

that we suspect that there are no examples.

To begin we prove a small Lemma from High School Mathematics:

Lemma: Let R(q) be a rational function of q with a convergent power series around q = 0,

R(q) = 1+O(q). Suppose R has poles, and all the poles lie on the unit circle. Then there exists

a positive integer L such that R(q) has a power series expansion of the form

R(q) =

L−1∑

r=0

∑

n≥0

ar,nq
r+nL (4.3.58)

where, for some r, n0 we have ar,n 6= 0 for all n ≥ n0.

8We thank Emanuel Diaconescu for useful discussions about this point.
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Proof: First note that R(q) has a continued fraction expansion of the form:

R(q) = r(q) +
∑

ρ,s

aρ,s
(1− ρq)s

(4.3.59)

where r(q) is a polynomial and the sum over ρ runs over a finite set of roots of unity and s runs

over a finite set of positive integers. The coefficients aρ,s are complex numbers.

Note that if ρ is an Lth root of unity then

1

(1− ρq)s
=

L−1∑

r=0

∑

n≥0

pr(n)q
r+nL (4.3.60)

where, for each r, pr(n) is a polynomial in n. (pr(n) might depend on r and is of order (s− 1)).

Now let L be any integer such that all ρ which occur in (4.3.59) are Lth roots of unity and

observe that a non vanishing polynomial can have at most a finite number of roots �

Now we claim that if Fms
halo is a rational function of q with poles on the complex q-plane, (as

can happen if there are bosons in the halo) then F (Γ; t) is a finite Laurent polynomial in q. In

particular, Fms
core(q) is a finite Laurent polynomial in q whose set of zeroes includes the set of

poles of Fms
halo(q) and F

ms
halo(q

−1), counted with multiplicity.

To prove this we need need three ingredients: First, as we have seen, it follows from the

monodromy that we have (4.3.29), an identity of formal series in q, q−1. Second, continuity of

the index away from walls of marginal stability implies (4.3.28). Third, finiteness of the number

of attractor flow trees implies that if we write Fms
core(q) =

∑
bmq

m and Fms
halo(q) =

∑
cnq

n, then,

for all N ,

dN =
∑

n+m=N

bmcn (4.3.61)

is a finite sum.

Now if Fms
halo(q) has a pole then by the Lemma above we know that for some L, r, n0 we have

ar,n 6= 0 for all n ≥ n0 in the expansion:

Fms
halo(q) =

L−1∑

r=0

∑

n≥0

ar,nq
r+nL (4.3.62)

Next, suppose the exponents of q in the expansion of Fms
core(q) is unbounded below. That is,

{m|bm 6= 0} is unbounded below. Then choosing L as above, it must be that for some residue

r′ and some n′0 we have b−r−nL 6= 0 for n > n′0 . Then the coefficient of qr−r
′

contains the

infinitely many terms
∑

n>max[n0,n′
0]

b−r′−nLar,n (4.3.63)

But this violates the ingredient 3 above, based on the finiteness of the number of attractor flow

trees, and hence we conclude that Fms
core(q) has coefficients bounded blow.
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On the other hand, F ams
halo(q) = Fms

halo(q
−1) so exactly the same reasoning implies that F ams

core (q)

has coefficients bounded above. It now follows from equation (4.3.29) that Fms
core(q) is a finite

Laurent polynomial. Applying the same reasoning and now using the equality of indexes,

(4.3.28) shows that Fms
core(q)F

ms
halo(q) must also be a finite Laurent polynomial. Therefore, the

poles of Fms
halo(q) must also be zeroes of Fms

core(q), including multiplicity. But the same reasoning

applied to qIFms
core(q)F

ams
halo(q) shows that the poles of F ams

halo(q) must also be zeroes of Fms
core(q).

This concludes the proof �

Now, the above structure of Fhalo and Fcore is rather odd. The poles of Fhalo only depend

on γ. On the other hand, there is a wide choice of Γ’s for which the rules of the game in Section

4.3.1 apply. Indeed, we expect that there is an open set of such elements in the space of charges.

For all these charges Fcore must be a Laurent polynomial with zeroes at the poles of Fhalo. This

means that for some collection of roots of unity ρ (depending only on γ) we must have

∑

n∈Z

Ωms(Γ + nγ)ρn = 0 (4.3.64)

for all charges Γ mutually nonlocal with respect to γ and supporting, say, single-centered at-

tractor flows. Such constraints seem to us physically unreasonable. We certainly know of no

examples, and we find the above a compelling argument that Fms
halo is either a finite Laurent

expansion or an infinite product.

4.4 An Example: Conifold-Like Singularities

In this Section we discuss in detail a simple example of the setup of Section 4.3, in which

the spectrum of massless states of charge γ consists of a single hypermultiplet. Such massless

BPS states are present when a Calabi-Yau manifold develops a conifold singularity. In the IIA

picture, the halos are made of light D2/D0 branes wrapping a rational curve, bound to a heavy

core D6 brane filling the entire Calabi-Yau manifold. The local geometry of the Calabi-Yau

near the rational curve is O(−1)⊕O(−1) → P1, and a hypermultiplet becomes massless at the

singular point in the Kähler moduli space where the class of the rational curve vanishes. The

massless state is a pure fermion with Ω(γ) = 1 and from the discussion in Section 4.3.5 we know

the structure of the halo bound states of core D6 with D2/D0 particles near the singularity,

their BPS indices and Hilbert spaces. In particular, the Hilbert spaces of halo states transform

smoothly across the conjugation walls through the Fermi flip of Section 4.3.5. The generating

function of the index of such BPS states as a function of the Kähler moduli was first computed

in [56, 57] from the quiver category point of view, generalizing the results in special chambers

found in [58] and [59].
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4.4.1 The resolved conifold

Since the puzzle of Section 4.1.1 was origianlly raised in [12], we now briefly review the setting

of that puzzle and describe it’s resolution. We will describe how the local geometry of the

covering space near the conifold point fits together with the patch of the moduli space in which

the volume of the entire Calabi-Yau is taken very large. (This was used in [12] to derive the

partition function of D6/D2/D0 bound states using the semi-primitive wall crossing formula.)

Consider the local limit of a Calabi Yau 3-fold X, with only one homology class, a rigid rational

curve, dual to β ∈ H4(X,Z), remaining small. The Kähler parameter is t = zP + LeiφP ′,
where L → ∞ in the local limit, Pβ = 1, for a positive integral class P , and P ′β = 0 for a

semi-positive class P ′. This parameterization is only valid for φ ∈ (0, π) and Im(z) > 0, which

corresponds to a patch in the full covering space. In this patch the large volume expression for

the periods can be used, and for instance (here Zh is the holomorphic central charge):

Zh(1) =
1

3
L3e3iφ , Zh(β) = z and Zh(dV ) = −1. (4.4.65)

BPS states with charges of the form Γm,n = 1 − mβ + ndV , where dV is a generator of

H6(X ;Z), are realized as multicentered solutions in supergravity description. As argued in

[12], in the neighborhood of the wall φ = 1
3 arg z+

π
3 only the pure D6 brane with charge Γ0 = 1

exists as a single centered object (out of the set of objects with charges of the form Γm,n).

We are interested in configurations that consist of this core D6 charge surrounded by halos of

D2-D0 particles γm,n = −mβ + ndV . [12] computed the D6/D2/D0 partition function defined

by

F (u, v; t∞) :=
∑

N∈Z,β∈H4(X,Z)

uNvβΩ(1− β +NdV ; t∞), (4.4.66)

in all chambers of the Kähler cone, parametrized in the local limit L → ∞ by (z, φ). Fixing

some value of z the φ interval can be divided into chambers, bounded by (anti)marginal stability

walls Wm
n of D6 with γm,n as in figure 4.12, found to be

Wm
n = {(z, φ) : φ =

1

3
arg(z + n/m) +

π

3
}

W−mn = {(z, φ) : φ =
1

3
arg(z − n/m)}

W−m−n = {(z, φ) : φ =
1

3
arg(z + n/m)},

(4.4.67)
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Figure 4.12: Arrangement of Wm
n walls along the φ line.

with both n ≥ 0, m ≥ 0. One can see that there is a path from Wm
n to W−m−n along the

φ direction and we can form “positive” (“negative”) halos around the D6 with particles γm,n

(−γm,n) near Wm
n (W−m−n ), but these halos cannot exist near W−m−n (Wm

n ). As all particles

γm,n are mutually local, we can focus on one of them to see the resolution. Also the index of

particles with |m| > 1 is zero, so we can take some charge γ1,n as an example. The moduli

space has conifold singularities at the loci z = n, where γ±1,∓n becomes massless. Locally

around each point z = n the moduli space will look like an infinite sheeted cover of the z-plane,

described by a coordinate un = log(z − n), and the charge lattice will have the monodromy

Γ 7→ Γ−〈Γ, γ1,n〉γ1,n. However, it is clear that in the large L limit for fixed un, φ, and to leading

order in 1/L, the periods will be given exactly as above. Therefore walls of marginal stability

will approach being periodic in the un-plane for large L. We now describe the conjugation

behavior in a single patch Im(z) > 0, φ ∈ (0, π), which will be repeated periodically in the

un-plane.

The location of the conjugation walls for Γ with each of the γ1,n can be determined precisely

in the limit of large L. In terms of the period vector Ω(t) the attractor flow of the total charge

is determined by

2e−U Im(e−iαΩ(t)) = −τΓ +H∞(t∞), (4.4.68)

where τ is the parameter along the flow and Γ = Γ0 + γ1,n. We are interested in finding the

locus t∞, such that t(τ) will intersect the discriminant locus of vanishing Z(γ1,n). Note that

such a t(τ) necessarily satisfies

Im
[
Z̄(γ1,n; t)Z(Γ0; t)

]
= 0, (4.4.69)

which immediately determines the value of τ at the intersection, due to the linearity of the

attractor equation for the periods. Now we impose that this t is on the discriminant locus.

Of course, to solve (4.4.69) and find the location of the conjugation wall we need to know the

periods of D6 and D2/D0 close to the singularity, where they do get corrections from the D2/D0
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becoming massless. It turns out that in the limit of large L the point t(τ) will also have an

order L component in the direction of P ′. Thus in the neighborhood of the conjugation wall

the corrections to the periods at t(τ) will still be of order 1/L, which allows us to solve (4.4.69)

in this limit (see Appendix E). The conjugation walls S(γm,n,Γ0) turn out to be located at

φ =
1

2
arg
(
−m
n
z − 1

)
+
π

2
, (4.4.70)

in the patch of the Teichmüller space that we are discussing. Comparing (4.4.67) and (4.4.70)

we see that the conjugation wall is indeed located in the region of bound state stability between

the corresponding marginal and anti-marginal stability walls. Notice that the conjugation walls

for all charges kγm,n coincide, unlike the picture in z-plane near the singularity that we had

before in Figure D.1. This is of course an artifact of using the large volume expression for the

periods, or in other words as L→ ∞ all the conjugation walls for kγm,n asymptote to (4.4.70) .

The particles γm,n that inhabit the halos in this example have indices given by

Ω(±β + ndV ) = 1, for all n,

Ω(ndV ) = −2, for n 6= 0, (4.4.71)

where the D2/D0 states with charges ±β + ndV are the free hypermultiplet at the conifold

point and its images under the large gauge transformations B 7→ B − nP . The attractor flows

of objects with only D0 charge flow to large volume, where n D0 branes can form precisely one

bound state, giving a massless vector multiplet. The expression (4.4.70) shows that there are

no conjugation walls for the D6 brane with the D0 particles, confirming the general argument

that Ω(γ) must be positive. This can also be seen directly: the attractor flow of the D6 with

D0’s can never reach the large volume point since then the period of the D6 brane would be

increasingly well approximated by the large volume form, which grows without bound at large

volume, contradicting the gradient flow.

On the other hand, γ1,n particles will have conjugation walls with the D6. Upon crossing

those, a filled Fermi sea of n γ1,n particles appears at the halo radius. From Section 4.3.4 we

know that the partition function for each individual halo particle γ1,n stays constant across the

conjugation walls, so we can write the partition function for halos of all γ1,n’s in all chambers

of (4.4.67) as9

9The first two lines were already presented in [12], but the third line is a new result.
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F (u, v; [W1
nW1

n+1]) =
n∏

j=1

(
1− (−u)jv

)j

F (u, v; [W−1n+1W−1n ]) =
∏

j>0

(
1− (−u)j

)−2j (
1− (−u)jv

)j ∏

k>n

(
1− (−u)kv−1

)k

F (u, v; [W−1−n−1W−1−n]) =
(

n∏

ℓ=1

(uℓv)ℓ

)
∏

j>0

(
1− (−u)j

)−2j ∏

j>0

(
1− (−u)jv−1

)j ∏

k>n

(
1− (−u)kv

)k
,

(4.4.72)

with n ≥ 0. The last expression is evaluated in the chamber [W−1−n−1W−1−n], where all halos of

particles −γ1,k, k = 1..n have decayed after crossingMS(Γ,−γ1,k) from stable to unstable side,

and the factor
∏n

ℓ=1(u
ℓv)ℓ accounts for the change of the core charge Γ0 due to monodromy. It

comes about through the identity

(1− (−u)ℓv)ℓ = (uℓv)ℓ (1− (−u)−ℓv−1)ℓ, (4.4.73)

where the second factor is the contribution of all halos of −γ1,n particles. After crossing the

conjugation walls S(γ1,ℓ,Γ0), ℓ = 1..n the core charge changes according to the monodromy

Γ0 → Γ0 −
n∑

ℓ=1

〈Γ, γ1,ℓ〉γ1,ℓ = Γ0 +
n∑

ℓ=1

ℓγ1,ℓ. (4.4.74)

In particular, the “pure D6” brane with core charge Γ0 does not exist after crossing the first

conjugation wall. It gets replaced according to (4.4.74). Also note that to be more precise

one might want to rewrite (4.4.72) using the left-hand side of (4.4.73) before crossing the wall

S(γ1,ℓ,Γ0), and right-hand side after crossing it. This is straightforward using (4.4.70) and

(4.4.67), but the result would look rather messy which is why we don’t do it here.

Note that for fixed z, taking φ to zero involves crossing infinitely many conjugation walls

and marginal stability walls. In fact, the limits φ→ 0 and L→ ∞ do not commute, since when

φ is too close to 0, the imaginary part of the Kähler form becomes small, and the large volume

approximation to the periods breaks down. Moreover,

lim
φ→0

(
lim

L→∞
Z(u, v; t∞ = zP + LeiφP ′)

)

does not exist. To proceed further would require specifying a particular compact Calabi-Yau

with a conifold degeneration.
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4.5 Recombinaton walls

4.5.1 BPS index

In this Section we describe what happens to the BPS state when it crosses the recombination

wall. Going back to Figure 4.6, let us first describe the RW (Γ2,Γ3,Γ4) in more detail. As

mentioned above (4.2.13) at least one of Γij,k is nonzero. Using an identity Γij,k+Γjk,i+Γki,j = 0

we see that two of them have to be non-zero. Without loss of generality we have Γ34,2 6= 0,

Γ24,3 6= 0. In what follows we also take Γ23,4 6= 0 and comment on the case Γ23,4 = 0 in the

end of this section. Although the definition appears to depend on the entire attractor flow,

the position of this wall can be expressed entirely in terms of the periods evaluated at t∞. By

definition, the recombination wall consists of points {t|τms(Γtotal,Γ2; t) = τms(Γtotal,Γ3; t)}, as
the central charge of Γ4 will then also be aligned at the point t(τms). Thus by equation (3.0.4),

it is given by

Im

[
Z(Γ3 + Γ4; t) ¯Z(Γ2; t)

〈Γ3 + Γ4,Γ2〉

]
= Im

[
Z(Γ2 + Γ4; t) ¯Z(Γ3; t)

〈Γ2 + Γ4,Γ3〉

]
. (4.5.75)

This equation can be expressed in the form

Im Z(Γa; t)Z̄(Γb; t) = 0, where

Γa = Γ2〈Γtotal,Γ3〉 − Γ3〈Γtotal,Γ2〉

Γb = Γtotal. (4.5.76)

(4.5.76) can be interpreted as the MS wall for charges Γa and Γb, satisfying 〈Γa,Γb〉 = 0.

Returning to Figure 4.6, we see that the path P necessarily crosses the recombination wall,

and we claim that the bound state Γ2 + (Γ3 + Γ4) on the left is transformed into two bound

states Γ3 + (Γ2 +Γ4) and Γ4 + (Γ3 +Γ2) on the right. Figure 4.13 shows one of the two bound

states on the right of the recombination wall. In [5, 9] this situation was illustrated in particular

examples, and it was found that on the level of the index the transition is smooth, so that the

two bound states on the right have exactly the same index as the one on the left. Note that our

puzzle from the Introduction gets resolved since the bound state of Γ1 = Γ3 + Γ4 and Γ2 does

not exist when t reaches tams and the total charge Γ2 + Γ3 + Γ4 has a different realization.

Now we will explain in complete generality why the above claim is true: that is, why there

are precisely two attractor trees on one side of the wall and one tree on the other side, and why
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Figure 4.13: Bound state of charges Γ4 + (Γ3 + Γ2) on the right of the recombination wall.

the net BPS index is the same and also why the spin character does not change.10 The locus

where all three central charges align is complex codimension 1 in the moduli space, and we can

parametrize the transverse plane with complex coordinate z, z = 0 being the alignment point.

To understand the phenomenon it is enough to work in a small neighborhood of z = 0. There

will be six walls of marginal stability for pairs of charges (Γ2,Γ3+Γ4), (Γ3,Γ4+Γ2), (Γ4,Γ2+Γ3),

(Γ2,Γ3), (Γ3,Γ4), (Γ4,Γ2), all intersecting at z = 0. To understand which attractor trees exist

on each side of the recombination wall, we will find the intersection points of the attractor flow

with (Γ2,Γ3 + Γ4), (Γ3,Γ4 + Γ2), (Γ4,Γ2 + Γ3), and then see whether these points lie on the

stable side of MS(Γ3,Γ4) , MS(Γ4,Γ2) and MS(Γ2,Γ3) respectively.

In a small neighborhood of z = 0 we can expand all central charges in powers of z to first

order

Z(Γi; z) ≈ Z(Γi; 0) + ∂zZ(Γi; z)|z=0 z, (4.5.77)

for i = 2, 3, 4. We will assume that the two terms in this expansion are nonzero. In this

approximation the marginal stability walls can be written as

MS(Γi,Γj) = {z : Im ρij z̄ = 0},

MS(Γi + Γj ,Γk) = {z : Im (ρik + ρjk) z̄ = 0},

ρij := Z(Γi; 0) ∂z̄Z̄(Γj ; z̄)|z̄=0 − Z(Γj ; 0) ∂z̄Z̄(Γi; z̄)|z̄=0. (4.5.78)

The recombination wall of the total charge Γ2 + Γ3 + Γ4 is determined from (4.5.75) and can

be written in parametric form as

z(s) = s
(ρ23Γ23,4 + ρ24Γ3,42 + ρ43Γ2,34)

|ρ23Γ23,4 + ρ24Γ3,42 + ρ43Γ2,43|
, (4.5.79)

10In some independent work Jan Manschot found another version of this proof [41].
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where s ∈ R is a parameter. The attractor flows on the two sides of the recombination wall can

be analogously written as

z±(s) = (±iε+ s)
(ρ23Γ23,4 + ρ24Γ3,42 + ρ43Γ2,34)

|ρ23Γ23,4 + ρ24Γ3,42 + ρ43Γ2,43|
, (4.5.80)

where ε > 0 is a very small shift off the recombination wall. Let us choose for definiteness the

plus sign in (4.5.80), find the value of s where the flow intersects the wallMS(Γ2,Γ3+Γ4), and

check if this point is on the stable side of the wall MS(Γ3,Γ4). Some simple algebra yields the

condition:

− Γ34

Γ34,2

Imρ23ρ̄34 + Imρ34ρ̄42
Imρ42ρ̄23 + Imρ23ρ̄34 + Imρ34ρ̄42

> 0 (4.5.81)

If this condition is true, then the attractor flow z+(s) will cross MS(Γ2,Γ3 + Γ4) on the stable

side of MS(Γ3,Γ4) and the attractor tree (Γ2, (Γ3,Γ4)) will exist. Using the definition of ρij

from (4.5.78) together with the fact that all the Z(Γi, 0) have the same phase, we can, after a

bit more algebra, rewrite (4.5.81) as

− Γ34

Γ34,2

|Z(Γ3; 0)|+ |Z(Γ4; 0)|
|Z(Γ2; 0)|+ |Z(Γ3; 0)|+ |Z(Γ4; 0)|

> 0. (4.5.82)

Repeating the calculation for the two remaining trees (Γ3, (Γ4,Γ2)) and (Γ4, (Γ2,Γ3)) and get-

ting rid of positive factors we get

(Γ2, (Γ3,Γ4)) : −Γ34 Γ34,2 > 0

(Γ3, (Γ4,Γ2)) : −Γ42 Γ42,3 > 0

(Γ4, (Γ2,Γ3)) : −Γ23 Γ23,4 > 0.

(4.5.83)

This is the main result of the above calculation. Taking into account that

Γ34 Γ34,2 + Γ42 Γ42,3 + Γ23 Γ23,4 = 0, (4.5.84)

we see that it is impossible to have all three trees to be present on one side of the recombination

wall. Furthermore, since choosing the attractor flow on the other side of the recombination wall

z−(s) will give the same existence conditions with > exchanged with <, precisely the trees that

exist on one side of the recombination wall will cease to exist on the other and vise versa. It is
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also clear now how the index gets preserved across the recombination wall: the index of each

tree (Γi, (Γj ,Γk)) is given by11

Ω(Γi,(Γj ,Γk)) = (−1)Γij+Γjk+Γki |(Γij − Γki)Γjk|Ω(Γi)Ω(Γj)Ω(Γk),

and if the trees (Γi, (Γj ,Γk)) and (Γj , (Γk,Γi)) exist on the ”+ ” side of the recombination wall

and (Γk, (Γi,Γj)) exists on the ”− ” side, then from (4.5.83) we have

Γjk(Γij − Γki) > 0

Γki(Γjk − Γij) > 0

Γij(Γki − Γjk) < 0,

(4.5.85)

which leads to

Ω(Γi,(Γj ,Γk)) +Ω(Γj ,(Γk,Γi)) = Ω(Γk,(Γi,Γj)).

One thing to mention here is the fact that by looking at the marginal stability walls and

recombination wall on the z-plane for given charges Γ1, Γ2, Γ3 it is not possible to determine

on which side of the recombination wall two trees exist and on which side only one tree exists.

Resolving this ambiguity requires the knowledge of the actual periods.

Now let’s comment on the case when not all Γij,k 6= 0, but rather Γ34,2 6= 0, Γ24,3 6= 0 and

Γ23,4 = 0. According to (4.5.76), the recombination wall coincides with MS(Γ4,Γ2 + Γ3). It

is clear that there will be a single configuration on each side of RW (Γ2,Γ3,Γ4), (Γ2, (Γ3,Γ4))

on one side and (Γ3, (Γ4,Γ2)) on the other side. BPS index will again be preserved through

(4.5.84). The recombination wall in this particular case is called the Threshold Stability(TS)

wall, introduced first in [9]. Physically, in (Γ2, (Γ3,Γ4)) configuration charge Γ4 is bound to

Γ3, and after crossing the recombination wall it leaves Γ3 and binds to Γ2. Exactly on the

recombination wall we have a bound state Γ2 + Γ3 + Γ4 at threshold, as described in [9].

4.5.2 Spin character

Finally let us show that the spin character is invariant across the recombination wall. The spin

character of the bound state of two charges Γj and Γk can be written as

Ω(Γj ,Γk)(y) =

|Γjk|−1

2∑

m=−
|Γjk|−1

2

y2m Ω(Γj , y)Ω(Γk, y) =
y|Γjk| − y−|Γjk|

y − y−1
Ω(Γj , y)Ω(Γk, y). (4.5.86)

11We do not write explicitly the dependence of the BPS index on the moduli, meaning that all indices are
evaluated at z = 0.
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Generalizing this to a three-centered configuration (Γi, (Γj ,Γk)) one gets

Ω(Γi,(Γj ,Γk))(y) =
1

(y − y−1)2
(y|Γjk| − y−|Γjk|)(y|Γij−Γki| − y−|Γij−Γki|) Ω(Γi, y)Ω(Γj , y)Ω(Γk, y).

(4.5.87)

The conservation of the spin character across the recombination wall is the consequence of a

simple identity:

(ya − y−a)(yc−b − y−c+b) + (yb − y−b)(ya−c − y−a+c) + (yc − y−c)(yb−a − y−b+a) ≡ 0, (4.5.88)

true for any a, b, c and y. Consider, for example, the case (4.5.85) again. In this case Γjk

and Γij − Γki have the same sign and thus their absolute values in (4.5.87) can be replaced

simultaneously by their actual values. The same is true for Γki and Γjk − Γij entering the

expression for Ω(Γj ,(Γk,Γi))(y), but Γij and Γki − Γjk have different signs and so dropping the

absolute value signs gives additional minus sign in the expression for Ω(Γk,(Γi,Γj))(y), leading to

the desired result:

Ω(Γi,(Γj ,Γk))(y) + Ω(Γj ,(Γk,Γi))(y) = Ω(Γj ,(Γk,Γi))(y). (4.5.89)

4.5.3 Attractor Flow Conjecture revisited

It is interesting to see what happens to the moduli space of the supergravity solutions as

one crosses the recombination wall. Recall that the Split Attractor Flow Conjecture (SACF)

[11] states that the components of the moduli spaces of the multicentered BPS solutions with

constituent charges Γi and background t∞ , are in 1-1 correspondence with the attractor flow

trees beginning at t∞ and terminating on attractor points for Γi. Thus we expect to observe

that the number of components of the supergravity solution changes discontinuously as we cross

the recombination wall.

Let us write explicitly the stability conditions for the supergravity solution with three charges

Γ2, Γ3, Γ4:

−1 +
−Γ42

−Γ23 + θ2x23
+

Γ34

Γ23 + θ3x23
≥ 0

1− −Γ42

−Γ23 + θ2x23
+

Γ34

Γ23 + θ3x23
≥ 0

1 +
−Γ42

−Γ23 + θ2x23
− Γ34

Γ23 + θ3x23
≥ 0. (4.5.90)

Here the moduli space is 1-dimensional and we chose to parametrize it with x23 - the distance

between charges Γ2 and Γ3. The θ
′s are defined as follows:

θi = 2Im
[
Z(Γi, t∞)Z̄(Γtot, t∞)

]
. (4.5.91)
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In this case the moduli space will be represented by one or two intervals in x23. Let us

suppose that the configuration (Γ2, (Γ3,Γ4)) exists on the left of the recombination wall, at

some point tL, and (Γ3, (Γ4,Γ2)), (Γ4, (Γ2,Γ3)) on the right at a point tR. It is easy to see

that for tR and tL sufficiently close to the recombination wall there will be only one component

of the moduli space in some open region, containing these two points.12 This means that the

SAFC as it was originally formulated does not hold!

Nevertheless it is clear that there is a relation between attractor trees and the components of

the moduli space. To understand this relation let us first look at the moduli space parametrized

by the absolute value squared of the angular momentum of the configuration. As discussed

in [60] each component of the moduli space will be an interval of the form [Jd, Ju] with Jd,u

determined by the intersection numbers of the charges. For the example at hand there will an

interval for each topology of the attractor tree:

(Γ2, (Γ3,Γ4)) : I2,34 = [Γ42 − Γ23 − Γ34,Γ42 − Γ23 + Γ34]

(Γ3, (Γ4,Γ2)) : I3,42 = [Γ42 − Γ23 + Γ34,Γ42 + Γ23 − Γ34]

(Γ4, (Γ2,Γ3)) : I4,23 = [Γ42 + Γ23 − Γ34,Γ42 − Γ23 − Γ34]. (4.5.92)

We see that I2,34 = I3,42 ∐ I4,23 and the moduli space always consist of only one interval I2,34,

which becomes partitioned into two on the right of the recombination wall. This leads us to a

modified version of the SACF as follows: The classical BPS configuration space and the quantum

BPS Hilbert space are partitioned by attractor flow trees. The partitioning in the classical case

is defined as follows: start with some value of the background moduli, then adiabatically deform

it by dialing the moduli at infinity along the attractor flow for the total charge. If there are

several configurations of attractor flow trees then upon crossing MS walls they will decay and

the corresponding components of the moduli space will disappear. As we saw above different

components do not have to be disjoint, but the point is that the change of the moduli space will

be discontinuous which allows to identify the part of the moduli space with the attractor flow

tree. The quantum case is analogous, although we now have to allow for evolution into linear

superpositions of different decay outcomes if there are multiple trees. The Hilbert space of BPS

states will be partitioned in states which have only nonzero amplitudes to decay adiabatically

into the constituents of each corresponding attractor tree.

12Finding the roots of numerators and denominators of the rational functions entering (4.5.90) one can check
than none of them become equal on the recombination wall, which means that the number of components cannot
change as one crosses this wall.
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4.6 Massless Vectormultiplets

In this section we discuss a class of examples where the spectrum at the singularity contains

massless vector multiplets. The BPS index of a vectormultiplet has Ω = −2 and therefore

(4.3.33) might very well be an infinite series and not a finite polynomial. In various impor-

tant developments in string theory, such as geometrical engineering of gauge theories and het-

erotic/type II duality, these kinds of singularities played a key role. Some of the models with

massless vectormultiplets which have appeared in this literature appear to conform to our ba-

sic assumptions in Section 4.3.1 and thus threaten to pose counterexamples to our prediction

(4.3.33). In this Section and the next we examine these examples and demonstrate that in fact

there are no counterexamples to our prediction.

We divide the zoo of examples into three groups:

• singularities with the spectrum of an asymptotically free gauge theory,

• conformal fixed points of gauge theories with vanishing β-function,

• theories with electric spectrum (with respect to some duality frame) being that of IR free

gauge theory.

4.6.1 Asymptotically free gauge theories

Consider the simplest example of SU(2) Nf = 0. This can emerge at a singularity in type II

string compactification, and a simple example was discussed in [61]. The CY in this case is a

K3 fibration over P1, which develops an A1 singularity. Classically at the singularity there is

a massless vector multiplet with index Ω(γ) = −2 and this clearly contradicts our conclusions

from Section 4.3.4. In particular, the quantity I which was associated with the beta-function

there is negative and the product P (q) of equation (4.3.33) is

P (q) =
1

(1 − q)2
(4.6.93)

and is certainly not a polynomial!

However the full quantum moduli space does not have a singularity with massless vector

multiplets at finite distance in the moduli space ([62], [63], [64]). Indeed one recovers the full

moduli space of the SU(2) gauge theory, including the strong coupling region, in a certain

double scaling limit on IIA side. Part of the IIA string moduli space can be parameterized by

the Kähler moduli tb and tf of the base of K3 fibration and it’s fiber respectively. There will

be two discriminant loci, corresponding to the monopole and the dyon. These intersect on the
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boundary of the moduli space tb = 0. It is on this codimension 2 intersection where one expects

to have massless vector multiplets. This boundary is a nongeneric point on the discriminant

locus and so this example does not meet the requirements of Section 4.3.1. In fact if we try to

consider bound states of some massive black hole Γ with the W -boson γ near the codimension

2 locus where the W -boson is massless, we find that the attractor flow of Γ + γ will never pass

through this locus, because the attractor flow will always have the direction away from the

boundary divisor tb = 0. Thus for any t∞ the flow of Γ + γ will intersect MS(Γ, γ) at some

point with tb 6= 0 and theW -boson will be realized as a bound state of well-separated monopole

and dyon. As we move t∞ in the tf plane around the origin our paradox is resolved through

the recombination process of the 3-centered bound state Γ + (γmonopole + γdyon).

It is natural to assume that this conclusion extends to all cases where one engineers an

asymptotically free gauge theory: there will be no places in the moduli space at finite distance

where on a codimension 1 locus a vector multiplet becomes massless. The singularity will always

”split” and there will be a number of conifold-like singularities, around each of which the picture

is as described in Section 4.3.4.

4.6.2 Conformal fixed points

These theories are conformal fixed points of gauge theories with vanishing beta-function I = 0.

It is known that in such theories the spectrum necessarily contains mutually non-local populated

charges that becomes massless at the conformal point. This violates our assumptions that there

is only one charge γ (and possibly some other parallel charges), that is massless and populated

at the singularity. Although there is no notion of particles in such theories, away from the

superconformal point the theory does contain particles. One can form halo bound states of

these light particles with some massive black hole near the superconformal point and talk about

wall-crossing phenomenon. We examine an example of this situation in Section 4.7.1.

4.6.3 Electrically IR-free gauge theories

This class of theories at first sight seems to conform to our assumptions from Section 4.3.1.

The light spectrum near the singularity is that of an IR free gauge theory. Examples include

the model [65] and the model based on a chain of heterotic/IIA duals first discussed in [66] and

further analyzed in [67]. In Section 4.7.3 we consider an example where the electrically charged

spectrum gives a non-polynomial expression for (4.3.33).

We will now argue that although the spectrum near the singularity is that of an IR free
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gauge theory, at the singularity itself there is a violation of the central assumption of 4.3.1

that the only massless BPS particles have charge parallel to γ. If we parametrize the plane

transverse to the singularity by the expectation value of the adjoint scalar v from the light

vector multiplet then the W -boson will have mass ∼ |v|. On the other hand, the theory will

also have BPS monopoles that can be reliably constructed as large, smooth, classical solutions

to the YM field equations. The mass of the monopole is, as usual, proportional to the vacuum

expectation value of scalars from the vector multiplet |v|
g2(v) , where g(v) is the coupling at the

scale v. At energies smaller than the monopole mass the dependence of the running coupling

on the scale v is given by 1
g(v)2 = β log(µ/v). As the energy scale set by v goes to zero the

relation between the mass of the monopole and W -boson does not get spoiled by the quantum

corrections, and in the IR limit these masses are still proportional. Taking v → 0 and keeping

µ to be some fixed string scale, both masses of W -boson and monopole go to zero. Thus we

have mutually non-local massless states at v = 0, violating a key assumption of 4.3.1.

We should remark that some care is required when interpreting the above massless monopole.

The ratio of monopole mass to W-boson mass goes to to infinity as v → 0 so with an appropriate

cutoff the IR free theory is indeed a free theory. On the other hand, one generally expects when

one approaches a locus with mutually nonlocal massless particles the theory should become a

nontrivially interacting conformal field theory. We believe that there are some important order

of limits questions here. In particular, the monopole also becomes larger and more diffuse, since

its typical length scale is set by v−1. For purposes of BPS statecounting and the computation

of Ω one should include this particle. For purposes of the computation of loop diagrams one

should exclude it.

We will examine two examples of this type. In Section 4.7.2 we consider a model whose

electric spectrum is that of an IR free gauge theory which has massless vectors provided the

hypermultiplet moduli are tuned appropriately. In this case, there are cancelations between

vectors and adjoint hypers so that (4.3.33) is still polynomial. Moreover, the massless monopoles

have vanishing index, and thus do not affect the partition function of the index of BPS states.

In Section 4.7.3 we consider another famous example of this kind. As a check of our conclusion

about the spectrum we show that there are two dual CY periods, vanishing at the singularity.

The above reasoning implies they are both populated. Note that our picture of the massless

spectrum at the singularity is very different from the one advocated in [67].
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4.7 Examples with massless vectors

4.7.1 The FHSV Model

In this section we describe a particular example of a model where one has massless vector multi-

plets at certain places on the moduli space and the theory at the singularity is superconformal.

The model is referred to as the FHSV model [68]. Due to the high amount of symmetry the

moduli space of this theory is known exactly. From the S-duality symmetry we also can make

a good guess about the massless spectrum at the singularity. This spectrum contains both

electrically and magnetically charged states. The purpose of this subsection is to illustrate the

very nontrivial wall-crossing phenomenon around such a singularity.

Basic Setup for the model

We recall that the FHSV model is an example of a type II compactification with a heterotic

dual which is in fact simply an asymmetric orbifold of the heterotic string on T 6. Both the vec-

tormultiplet and hypermultiplet moduli spaces are known exactly. The vectormutiplet moduli

space has universal cover

M̃V =
SU(1, 1)

U(1)
× SO(10, 2)

SO(10)× SO(2)
. (4.7.94)

It is convenient to choose coordinates on 4.7.94 (we follow conventions of [69]). Let C1,r

denote the r+1 dimensional complex vector space equipped with a Lorentzian bilinear form of

signature (+,−r). Let H1,r be the subspace of with positive definite imaginary part. Then our

coordinates are (τ, ~y), where τ ∈ H1,1 and ~y is a “tube domain” coordinate of H1,9. We also

introduce u := (~y, 1,− ~y2

2 ) ∈ C2,10. The lattice of electric charges is II2,10 = II1,9 ⊕ II1,1 with

a quadratic form:

(v, v) = ~v2 + 2v+v− where v := (~v, v+, v−) ∈ II2,10. (4.7.95)

Elements of the full electromagnetic lattice Λ = II2,10 ⊕ II2,10 will have the form (q, p), with

q, p ∈ II2,10. Using the quadratic form on II2,10 we construct the symplectic form on Λ

〈Γ,Γ′〉 = (q, p′)− (p, q′) (4.7.96)

where Γ = (q, p) and Γ′ = (q′, p′) The holomorphic central charge can be written as:

Zh(Γ) = (~q · ~y)− q+
~y2

2
+ q− + τ

(
(~p · ~y)− p+

~y2

2
+ p−

)
. (4.7.97)
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The model has two kinds of singularities on the moduli space with enhanced gauge symmetry.

The first kind is given by

~α · ~y = 0, with ~α2 = −2, (4.7.98)

and corresponds to N = 4 SU(2) SYM gauge theory in the infrared. The second kind is the

locus (
(~0,−1, 1), (~y, 1,−~y

2

2
)

)
= 1 +

~y2

2
= 0, (4.7.99)

and corresponds to N = 2 Nf = 4 SU(2) gauge theory. We will describe them on the same

footing as loci where

(α, u) = 0, where (α, α) = −2 (4.7.100)

for α ∈ II2,10.

The superconformal theory at the two singularities has S-duality symmetry but the spectrum

of massless states at the singularity and the structure of halo states will be different in the two

cases. In both cases there will be two BPS states with mutually non-local charges γ = (α, 0)

and γD = (0, α), 〈γ, γD〉 = −2, that become massless. The spectrum in the case of the SU(2),

N = 4 singularity is given by

H(mγ + nγD) 6= ∅, Ω(mγ + nγD) = 0 if gcd(m,n) = 1,

H(mγ + nγD) = ∅, otherwise. (4.7.101)

In case of the SU(2), Nf = 4 singularity the spectrum is

H(mγ + nγD) 6= ∅, Ω(mγ + nγD) = 8, gcd(m,n) = 1,

H(mγ + nγD) 6= ∅, Ω(mγ + nγD) = −2, gcd(m,n) = 2,

H(mγ + nγD) = ∅, otherwise. (4.7.102)

We are interested in the behavior of BPS indices and the structure of Hilbert spaces of

charges

Γm,n := Γ +mγ + nγD (4.7.103)

around the superconformal point. Here Γ = (q, p) is some charge, mutually non-local to γ and

γD, such that Ω(Γ) 6= 0 and constant in the neighborhood of Z(γ). (Let us say it supports a

heavy single-centered black hole with a regular attractor point near Z(γ).) It is convenient to

choose basis so that 〈Γ, γ〉 = 0 and a := 1
2 〈Γ, γD〉 < 0. In particular we are taking:

(p, α) = 0 (q, α) = 2a < 0. (4.7.104)
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Z(γ)

z
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Γ-flow

Figure 4.14: Marginal stability walls MSm,n for charge Γ with charges γm,n = mγ + nγD. The
walls form a dense set, labeled by the rational numbers in lowest terms. The arrows point in
the direction of stable to unstable region appropriate to that wall of marginal stability.

Attractor flows and walls of marginal stability

As another preliminary we describe relevant walls of marginal stability and the attractor flows.

It is convenient to parameterize the plane transverse to Z(γ) by z := (α, u), the period of γ,

and to project the walls of marginal stability and the attractor flows into this plane.

First, let us plot the walls of marginal stability. Let γm,n := mγ+nγD. There will be a dense

set of walls of marginal stability MSm,n := MS(Γ, γm,n) for all (m,n) ∈ Z2, gcd(m,n) = 1.

For the Nf = 4 case there will also be such walls for gcd(m,n) = 2. As usual these walls will

sit in the locus:

Im Z(Γ; τ, y)(mz̄ + nτ̄ z̄) = 0. (4.7.105)

The marginal stability walls will end at z = 0. We work in an arbitrarily small neighborhood of

z = 0 and hence can treat Z(Γ; t) as a constant. We will normalize Z(Γ, t) to be Z(Γ, t) = −1

at z = 0 and moreover we will take τ = i for simplicity. In the linear approximation the walls

MSm,n will be

MSm,n = {ρ(−m+ in) : ρ > 0}. (4.7.106)

The marginal stability walls are in the upper half-plane for n > 0 and for m → +∞ they

asymptote to the negative x axis, while for m → −∞ they asymptote to the positive x axis.

Some of the walls are illustrated in Figure 4.14. Again, because we are working at small z we

can in fact identify

MS(Γm,n, γm′,n′) ∼=MS(Γ, γm′,n′), (4.7.107)

an approximation which will be used throughout.
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The stable side of the walls is readily computed from

〈Γ, γm,n〉Im ZΓZ̄γm,n = 2na(nx+my) (4.7.108)

where z = x + iy. Note that for x → +∞ the dominant term in the expression, 2an2x, is

always negative, hence the unstable side is always on the right in Figure 4.14, as indicated by

the arrows.

Next, let us turn to the attractor flows. In the small z approximation the attractor flows

for Γm,n can be written for both cases in a uniform way:

ż ∼ −(α, q) + 2m+ τ̄ (−(α, p) + 2n) , (4.7.109)

which, for our choice of parameters τ = i and (4.7.104) is simply

Γm,n − flow : ż = (m− a)− in, (4.7.110)

and similarly we have

γm,n − flow : ż = m− in. (4.7.111)

Here we have neglected the variation in τ , again using the small z approximation. (We also

rescaled time by a factor of 2.)

In order to prove (4.7.110) and (4.7.111) let us start with theN = 4 singularity with z = ~α·~y.
Writing the attractor equation as in (4.0.1), we get

ż = αaẏ
a ∼ −αag

ab̄∂ȳb̄

(
|Zh(Γm,n; τ, y)|eK/2

)
|z=0. (4.7.112)

Taking into account that the Kähler potential is given by K = − log
(
4(Im~y)2

)
− log (Imτ) gives

ż ∼ −~α · ~q + 2m+ τ̄ (−~α · ~p+ 2n) . (4.7.113)

Repeating the same calculation for the N = 2 singularity we get:

ż =

(
1 +

~y2

2

).

= yaẏ
a ∼ −yagab̄∂ȳb̄

(
|Zh(Γn,m; τ, y)|eK/2

)
|z=0,

ż ∼ −(q+ − q−) + 2m+ τ̄ (−(p+ − p−) + 2n) . (4.7.114)

thus establishing (4.7.110), from which one can also deduce (4.7.111).

We remark that

1. The attractor flows for Γm,n are parallel to the marginal stability walls MS(m−a),n. In

particular, the flows for Γ itself are parallel to the x-axis in the direction of increasing x.
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2. In particular, the bound state transformation wall S(γm,n,Γ) is precisely the marginal

stability wall MSm−a,n. We will see that it is really a hybrid of conjugation and recom-

bination walls in this example.

3. The attractor flow for γm,n is parallel to the walls of marginal stability MSm,n

4. Attractor flows always proceed from stable to unstable regions, in accord with Property

3 of Appendix C.

Monodromy

It will be important in our story below to take into account the Z2-monodromy of the local

system of charges around z = 0. The z-plane is simply a double-cover of the moduli space under

z → −z. The action on a general charge λ ∈ Λ = II2,10 ⊕ II2,10 is

M · λ = λ− 〈λ, γ〉γD + 〈λ, γD〉γ. (4.7.115)

This takes γ → −γ, γD → −γD, and is the identity on charges orthogonal to both γ, γD. Thus,

if we write Γ = Γ0 − aγ where Γ0 is orthogonal to γ and γD then the monodromy image is

ΓM :=M · Γ = Γ + 2aγ = Γ0 + aγ.

Since there are no basins of attraction in the FHSV model, both charges Γ and ΓM will

be populated charges in the neighborhood of the singularity and will have isomorphic Hilbert

spaces.

Attractor flow trees

Now let us turn our attention to the attractor flow trees for Γm,n.

We are interested in attractor flow trees relevant to considering Γ as a core charge, that is,

trees of the form:

Γm,n → (γm1,n1 + (γm2,n2 + ...(γmL−1,nL−1 + (Γ + γmL,nL))...)). (4.7.116)

Of course, charge conservation requires

∑

i

mi = m
∑

i

ni = n. (4.7.117)

The attractor flow trees are systematically constructed from two principles: First, the flow

must split from the stable to the unstable side on the wall of marginal stability and second, the

charges must be conserved at each vertex of the tree.
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In Appendix F we give an algorithm for enumerating the trees and show, in particular, that

the number of such trees is finite. If n > 0 then the initial point of the tree can only be in the

upper half plane. Moreover, the initial point must be to the right of the BST wall S(γm,n,Γ),

otherwise there are no acceptable trees. The reason for this is that simple geometry forces the

trees that begin on the left of the BST wall S(γm,n,Γ) to intersect marginal stability walls

MSm′,n′ in a direction from unstable to stable side. But this is a forbidden vertex. This would

appear to pose a serious problem for continuity of the index. We discuss that point in the next

subsection.

z

MS−1,1

MS1,0

γ0,2

ΓM := Γ + 〈Γ, γD〉γ = Γ− 8γ

MS−1,0

MS0,1MS1,1MS3,1

MS5,1

MS4,1
γ3,1

γ5,1
ΓM

Γ
Γ

γ−1,1ΓM

Γ−3,1

MS−2,−1

S(γ0,2,Γ)

γ8,2

t−
Γ0,2

γ1,1
Γ−1,1

t+

Γ0,2

Figure 4.15: Attractor trees, contributing to the realization of charge Γ0,2 on two sides of
S(γ0,2,Γ). We have chosen a=-4. Attractor flows of core with halos are purple, green and cyan
colored line, attractor flows of halo particles are blue lines.

As an example, consider the attractor trees contributing to the realization of charge Γ0,2.

These are shown in Figure 4.15. Starting at t+ there will be only two valid trees. One is a two

centered solution Γ + γ0,2 and the other is a 3-centered solution (Γ + γ1,1) + γ−1,1. If, on the

other hand, we move the initial point t∞ from t+ to t− across the BST wall then these two

attractor flow trees cease to exist!

Continuity of the index

In the previous subsection we remarked that attractor flows of type (4.7.116) with final core

charge Γ do not exist for initial point t∞ to the left of the BST wall S(γm,n,Γ). As we noted, this
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would appear to pose a serious problem for the index. The only way the index can be continuous

across S(γm,n,Γ) is if there exists another core charge that can form halos with γm′,n′ -particles

of the same total charge Γm,n. Because of the Z2-monodromy there is indeed another natural

core charge, namely ΓM = Γ + 2aγ = Γ2a,0. The attractor flows for ΓM are parallel to the

x-axis but the flow is to the left. Similarly, the stable and unstable sides of all the walls of

marginal stability are flipped. (All this becomes more obvious if we write Γ = Γ0 − aγ and

ΓM = Γ0 + aγ as in Section 4.7.1.) One can write out conditions similar to those in Appendix

F for enumerating the attractor flow trees corresponding to core charge ΓM . Again there will

be finitely many such trees. In particular, the initial point for a flow tree with terminating with

core charge ΓM must lie to the left of the BST wall

S(γm,n,Γ) = S(γm−2a,n,ΓM ) (4.7.118)

Continuity of the index leads us to expect, and hence we conjecture, the following: The

sum of contributions to the index from flow trees terminating on core Γ with initial point t+

infinitesimally to the right of S(γm,n,Γ) is equal to the sum of contributions to the index from

flow trees terminating on the core charge ΓM with initial point t− infinitesimally to the left of

S(γm,n,Γ) .

As a simple check on this idea consider charges of type Γm,1. These only support a single

branch. At a point t+ just to the right of the wall S(γm,1,Γ) there is only a single tree

Γm,1 → Γ + γm,1. This contributes to the index

∆Ω(Γm,1 → Γ + γm,1) = (−1)〈Γ,γm,1〉−1|〈Γ, γm,1〉|Ω(γm,1)Ω(Γ) = −16aΩ(Γ). (4.7.119)

At a point t− just to the left of the wall this tree does not exist, but the tree Γm,1 → ΓM+γm−2a,1

does exist. The latter contributes

∆Ω(Γm,1 → ΓM+γm−2a,1) = (−1)〈ΓM ,γm−2a,1〉−1|〈ΓM , γm−2a,1〉|Ω(γm−2a,1)Ω(ΓM ) = −16aΩ(ΓM ).

(4.7.120)

Now, thanks to the Z2 monodromy Ω(Γ) = Ω(ΓM ) and so indeed the contributions to the index

are continuous.

As a second check we return to the example of the previous section. For t+ on the right of

S(Γ0,2) with a = −4 the tree with one branching contributes

∆Ω = −16Ω(γ0,2)Ω(Γ) = 32Ω(Γ) (4.7.121)

and the second tree contributes

∆Ω = 32Ω(γ1,1)Ω(γ−1,1)Ω(Γ) = 211Ω(Γ) (4.7.122)
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On the other hand, going back to Figure 4.15, starting from t− there will be two solutions with

the core charge ΓM of the form ΓM + γ8,2 and (ΓM + γ5,1) + γ3,2. The first tree contributes

32Ω(ΓM ) and the second 211Ω(ΓM ).

For charges of type Γm,2 we must take into account trees with one and two branches and the

computation becomes more elaborate. We have performed this check and the index is continu-

ous. The computation is very similar to that in given in the next subsection. In general, upon

crossing the BST wall we have conjugation - since the core charge is replaced by a monodromy

image - at the same time as recombination - so the walls in this example exhibit a hybrid of the

conjugation and recombination mechanisms.

Wall-Crossing near a superconformal point

z

MS−1,1

MS1,0

MS0,1MS1,1MS3,1

MS5,1

MS4,1

P

MS−2,−1

S(γ0,2,Γ)

MS−1,0

XΓ +XM ·Γ XΓ +XM ·Γ

U0,1U1,1

U4,1

t1t2

U−1,1
U3,1

U5,1

Figure 4.16: Transformation of the partition function through operators Um,n along a path P
from t1 to t2.

In the next chapter, which is based on [38], we give a simple proof of the Kontsevich-

Soibelman wall-crossing formula based on supergravity halos. Moreover, as explained in Section

4 of [38], the line of reasoning adopted there suggests a generalization of the KSWCF. The FHSV

model provides a nice example in which to illustrate the ideas.

Following [38] we consider the partition function

F (q, p; t) =
∑

m,n

qm−apn ΩΓ(γm,n; t), (4.7.123)

where ΩΓ(γm,n; t) are the “framed” BPS indices described in [38]. The sum here runs over

n ≥ 0 and m ∈ Z. For our purposes these framed BPS indices can be identified with the halo

contributions to the total index Ω(Γm,n; t) with Ω(Γ) factored out. (This is also what we were

considering in Section 4.3.4.)
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Let us consider the path P shown in Figure 4.16 going from t1 to t2. Using the reasoning of

[38] we see that the partition function at a point z = x + iy on P is given in terms of that at

z = t1 by

F (q, p; z) =
∏

my+nx<0&n>0

Um,nF (q, p; t1). (4.7.124)

Here the operators Um,n are defined in terms of basic KS-transformations:

Tm,n := (1 − qmpn)Dm,n (4.7.125)

where Dm,n is a differential operator defined by Dm,nq
αpβ := 2(nα−mβ)qαpβ and

Um,n = T 8
m,nT

−2
2m,2n. (4.7.126)

The Um,n are only defined for gcd(m,n) = 1 and this restriction is understood on the product

(4.7.124) and similar products below. The restriction my+nx < 0 on the terms in the product

applies because only the walls MSm,n (defined by my + nx = 0) that have been crossed while

moving along P should be included. Finally, the factors in the product are ordered so that

terms with increasing argument arg(−m+ in) are placed to the left.

If we identify the framed BPS index with the index of states which can be described as halo

states around a core of charge Γ then at z = t1 there are no halo states and hence the core

simply contributes a factor of q−a. We have already seen in the halo description that such states

do not give a continuous index across the BST walls and we should expect trouble here too

if we only include q−a in F (q, p; t1). Indeed, the examples below will bear that out. Thus we

should include the monodromy image ΓM and its halo states. Again, at z = t1 the only halos

around ΓM are the single core state itself. Recalling that ΓM = Γ + 2aγ we see that including

these two cores gives

F (q, p; t1) = qa + q−a. (4.7.127)

Substituting this into (4.7.124) and expanding as a series in p, q±1 we observe that the number

of terms in the expansion of the product contributing to a given monomial qm−apn is finite.

Indeed, we can observe that we need to choose a partition of n to account for the power of p.

The power of q is more complicated. The walls crossed in the first quadrant all have m < 0, but

for x < 0 there will be a finite number of walls with 0 ≤ m < −nx/y. Once these nonnegative

values of m have been chosen, the remaining negative values of m constitute a partition, and

therefore there are only finitely many choices. Thus the infinite product will be well-defined.

As an example of the issues involved let us examine the product

∏

my+nx<0&n>0

Um,n(q
a + q−a) (4.7.128)
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and let us extract the coefficients of qm−ap and qm−ap2. We first consider the case of qm−ap.

There are only two terms which can contribute to qm−ap. First, there is the term coming from

the expansion of

(1− qmp)8Dm,1q−a = (1− qmp)−16aq−a (4.7.129)

which enters the product when my + x < 0, i.e. when m < −x/y and contributes 16a to the

coefficient. The other term which can contribute comes from the expansion of

(1− qm−2ap)8Dm−2a,1qa = (1− qm−2ap)16aq−a (4.7.130)

This contributes −16a to the coefficient and enters the product when m − 2a < −x/y. Thus

the coefficient of qm−ap (that is, the framed BPS degeneracy) is given by

−x
y < m 0

m < −x
y < m− 2a 16a

m− 2a < −x
y 0

Now, a short computation shows that the BST wall S(γm,1,Γ) is given by −x/y = m− a, and

hence the index is continues across it.

A slightly more elaborate computation is required to compute the coefficient of qm−ap2.

The power of p2 can come from a single factor, or from two distinct factors. We have listed the

cases in the table below together with the contribution of that factor and the range in which it

applies: 13

I (1− qmp2)−2Dm,2q−a −8aqm−ap2 m
2 < −x

y

II (1 − qm−2ap2)−2Dm−2a,2qa 8aqm−ap2 m
2 − a < −x

y

III (1− q
m
2 p)

8Dm
2

,1q−a 8a(16a+ 1)qm−ap2 m
2 < −x

y

IV (1− q
m
2 −ap)

8Dm
2

−a,1qa 8a(16a− 1)qm−ap2 m
2 − a < −x

y

Vµ (1− qµp)8Dµ,1(1− qµ2p)8Dµ2,1q−a −28a(m− a− 2µ)
(m

2 <µ<− x
y

µ+µ2=m

)

V Iµ (1− qµp)8Dµ,1(1− qµ2p)8Dµ2,1qa 28a(m− a− 2µ)
(m

2 −a<µ<− x
y

µ+µ2=m−2a

)

The range of µ in the last two rows is derived as follows. The expression

(1− qµ1p)8Dµ1,1(1− qµ2p)8Dµ2,1q−a (4.7.131)

can contribute to qm−ap2 when µ1 + µ2 = m. The factors are properly ordered for

0 < Im(−µ1 + i)(−µ2 + i) = µ1 − µ2

13We have taken m to be even for simplicity. A slightly different computation applies when m is odd.
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and hence m/2 < µ1. On the other hand, for the second factor to contribute we must have

µ1y + x < 0 and hence µ1 < −x/y. The range for V Iµ is derived similarly.

When −x/y > m/2 we can evaluate the contribution of Vµ using the identity

∑

m
2 <µ≤N

(m− a− 2µ) =

(
a+ 1

2

)2

−
(
N − m− a

2
+

1

2

)2

. (4.7.132)

Now we can add up the contributions. For −x
y < m

2 there are no contributions, and the

coefficient is 0. In the range m
2 < −x

y < m
2 − a terms of types I, III and Vµ all contribute.

The sum of the contributions of type I and III is 27a2. Using (4.7.132) we can evaluate the

contribution of terms of type Vµ and thus derive the index

27a2 − 26a(a+ 1)2 + 28a

(
Nx,y −

m− a

2
+

1

2

)2

(4.7.133)

where Nx,y = ⌊−x/y⌋. This is to be evaluated for −x/y nonintegral.

When m
2 − a < −x

y the index is zero. The way this comes about is interesting: The terms

I and II cancel and III and IV add up to give 28a2. Moreover Vµ and V Iµ together have

canceling terms for m
2 − a < µ and the sum of these two terms becomes the constant (as a

function of x, y) given by

− 28a
∑

m
2 <µ≤m

2 −a

(m− a− 2µ). (4.7.134)

The range of this sum can be written as a ≤ m− a− 2µ < −a and hence (4.7.134) is trivially

equal to −28a2, thus leading to total index 0.

In particular for our example Γ0,2 with a = −4 discussed in Figure 4.15 above we have

−x
y < 0 0

0 < −x
y < 1 211

1 < −x
y < 3 212

3 < −x
y < 4 211

4 < −x
y 0

A number of interesting lessons can be drawn from these examples:

1. The BST wall S(γm,2,Γ) is at −x
y = m−a

2 . Note that at t+ on the right of this wall

Nx,y = m−a
2 − 1 and at t− on the left Nx,y = m−a

2 . Thus, from equation (4.7.133) we see

that the index is indeed constant across the BST wall.
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2. Different terms from the product can be identified with different kinds of attractor trees.

Terms of type I correspond to single-branched flows with core Γ while terms of type II

correspond to single-branched flows with core ΓM . Terms of type III and IV correspond

to 2-particle haloes with core Γ and ΓM , respectively. Some of the terms of type Vµ and

V Iµ can be associated with two-branched trees with cores Γ and ΓM , respectively.

3. If we considered only one core charge Γ, corresponding to F (q, p, t1) = q−a then terms of

type Vµ would not give a well-defined index as the point z on P approaches t2 since Nx,y

goes to infinity and the sum of terms of type Vµ grows without bound. On the other hand,

when we include the monodromy image qa there is a term-by-term cancellation between

Vµ and V Iµ so that the index is in fact well-defined.

We expect the features of the above example to hold for general coefficients of qm−apn with

n > 2. In particular, following the path P all the way from t1 to t2 should yield an identity of

the form

F (q, p; t2) =
∏

m
n ∈(−∞,∞), n>0

Um,n F (q, p; t1). (4.7.135)

Just like t1, at t2 all halo states are unstable and the partition functions have only two contri-

butions from core charges Γ and ΓM so:

F (q, p; t2) = q−a + qa (4.7.136)

and hence we arrive at the following (somewhat strange) identity for formal power series in q

and p:

q−a + qa =
∏

m
n ∈(−∞,∞), n>0

Um,n

(
q−a + qa

)
. (4.7.137)

It is worth stressing that the operator
∏

m
n ∈(−∞,∞), n>0 Um,n does not act well on general

power series or even on general rational functions of q, p. As we have seen above, it does have

a well-defined action on qa + q−a (and hence on finite sums of such terms). Thus, requiring

that such infinite products have well defined actions on partition functions puts a nontrivial

constraint on the spectrum of BPS states. This is the sense in which the approach of [38]

constitutes a generalization of the Kontsevich-Soibelman wall-crossing formula.

4.7.2 Massless vectors with adjoint hypermultiplets

In this section we consider an example with massless vector multiplets at the singularity, intro-

duced by Katz, Morrison and Plesser (KMP) in [65]. The massless spectrum at the singularity

is that of an N = 2, SU(2) gauge theory with some number of adjoint hypermultiplets. One
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distinctive feature of this example is that there are massless vector bosons at the singularity

in the Kähler moduli space only at some special value of hypermultiplet (complex structure)

moduli. If one moves off this special value of hypermultiplet moduli, the N = 2 vector multiplet

will become massive and the massless spectrum will consist of some number of hypermultiplets.

At the special locus where there are massless vectormultiplets we can invoke the discussion of

Section 4.6.3 above to conclude that the spectrum will also include massless monopoles/dyons.

Note that when moving away from the special locus the monopoles will become confined due

to the dual Meissner effect and will not be present in the massless spectrum either. This means

that the monopoles must have zero BPS index.

As we discussed in more detail in Section 4.7.1 at the special locus the spectrum leads to a

very complicated wall-crossing phenomena of halos states and there must be some hybrid BST

walls, across which both conjugation and recombination take place. On the other hand the

BPS index is preserved exactly as in the conifold like case, i.e. the index jumps across marginal

stability walls of the core charge with hypermultiplet halo particles. The rest of the massless

spectrum has index zero and thus across marginal stability walls with halo particles containing

W -boson and monopole charges, as well as across BST walls for such halos, the index is trivially

constant. Thus the index of halo states changes exactly the same way as for generic complex

structure with a conifold-like singularity. In the latter case the conditions of Section 4.3.1 are

met, and our main puzzle is resolved through the presence of the conjugation walls.

For completeness, in the remainder of this Section we recall a few details of the KMP model

and justify the above statements a bit more. KMP considered the compactification of type II

string theory on a Calabi-Yau which is a K3 fibration over a genus g curve C. In particular,

the fibration has a curve C of AN−1 singularities, which corresponds to SU(N) enhanced gauge

symmetry. Close to the singularity there is a field theory description in terms of N = 2 SU(N)

gauge theory with g adjoint hypermultiplets, with the Lagrangian

2πL = Im

[
Tr

∫
d4θ

(
M †i e

VM i + M̃ †i e
V M̃ i

)
+Φ†eV Φ+

τ

2

∫
d2θTrW 2 + i

∫
d2θW

]

W = TrM̃ i[Φ,Mi]. (4.7.138)

Here, in (M i, M̃ i) are g adjoint hypermultiplets, representing complex structure moduli, V is an

N = 1 vector multiplet superfield with field strengthW , Φ is an N = 1 adjoint chiral multiplet,

representing Kähler moduli, and the scalar potential is given by
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V = Tr
[
[mi,m

†i]2 + [m̃i, m̃
†i]2 + [φ, φ†]2 + 2[m†i, φ][φ†,mi] + 2[m̃†i, φ][φ†, m̃i]+

+2[m̃†j,m
†j ][mi, m̃

i]
]
, (4.7.139)

where mi, m̃i, and φ are the scalar components of the corresponding superfields. The moduli

space of this theory can be parametrized by diagonal traceless matrices φ and (mi, m̃i) and

has the form CN−1 ×C2g(N−1), where the first factor comes from vector multiplet moduli, and

the second - from hypermultiplets. The point of enhanced SU(N) gauge symmetry occurs at

codimension N − 1 in vector moduli space and in codimension 2g(N − 1) in hypermultiplet

moduli space, which translates to codimension N − 1 in Kähler and 2g(N − 1) in complex

structure moduli spaces in the full IIA string theory. As we are interested in singularities of

codimension 1 in Kähler moduli space, we put N = 2.

The special locus mi = 0, m̃i = 0 is a complex plane, parametrized by a, φ = aσ3. The

spectrum is that of a U(1) N = 2 SYM with g hypermultiplets, that is enhanced to SU(2) at

the origin. The multiplet with charge 1 under this U(1) that becomes massless corresponds to

W+ boson in field theory and to a state with charge γ in string theory. It has second helicity

supertrace 2g − 2 and thus

Ω(γ) = 2g − 2,

where 2g comes from g hypermultiplets and −2 comes from the vectormultiplet. The modulus

a corresponds to the period of the charge γ in string theory. Denoting by aD the period of the

dual charge γD, 〈γ, γD〉 = −2, [65] give the monodromy of these periods around the singularity

in the a-plane to be





a→ a

aD → aD − 4(g − 1)a,
(4.7.140)

which translates to the monodromy of the charge lattice as follows

Γ → Γ− (2g − 2)〈Γ, γ〉γ = Γ− Ω(γ)〈Γ, γ〉γ, (4.7.141)

for any charge Γ. As we mentioned above, going around the singularity the Hilbert spaces

of halo states Γ +mγ + nγD will change in a complicated way due to the presence of hybrid

conjugation/recombination walls.

Now we change the complex structure away from the special point, for example take non-

zero m1 6= 0. Careful examination of the scalar potential (4.7.139) shows that in this case the
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point a = 0 does not have enhanced gauge symmetry, but there is a massive N = 4 vector

multiplet14 (V +,Φ+)with charge +1 under the unbroken U(1) as well as (g−1) massless N = 2

hypermultiplets (M+
i , M̃

+
i ), i = 2, .., g of the same charge. This massless spectrum has the same

BPS index but different spin character than the one at the special complex structure value. In

particular the Hilbert space of γ became purely fermionic. From IIA string theory point of

view, there are 2g− 2 spheres in the same homology class shrinking to zero ([65]) and the BPS

index of massless state is Ω(γ) = 2g− 2. If we now go around the a = 0 singularity, the picture

will be exactly the same as in Sections 4.3.4,4.3.5. In particular the monodromy of the charge

lattice (4.7.141) is consistent with what we find in (4.3.50),(4.3.32). The index will be preserved

across the conjugation wall, the Hilbert spaces of halo states will undergo the Fermi flip and

the spin character will also be preserved.

4.7.3 Extremal Transitions

In this Section we consider an example that was discussed in a number of papers on geometric

engineering and heterotic/type II dualities. It first appeared in the discussion of chains of

heterotic/type II dual models in [66]. The spectrum at the singularity was analyzed from the

type IIA side in [67].

We will be interested only in the last step of the chain of heterotic/II duals, connected by

extremal transitions, as described in [67]. On the type II side there are two CY manifolds

denoted by X4 and X3, and given, roughly, 15 by hypersurfaces in weighted projective spaces

WP (1, 1, 2, 6, 10)[20]4,190 and WP (1, 1, 2, 8, 12)[24]3,243. Each of these models has a heterotic

dual, given by certain Z6 orbifolds. The main hero is the manifold X4 with four Kähler moduli

ti. It develops a singularity on the locus t4 = 0 and transitions to the X3 model.

The description of the singularity in the IIA language is the following: for t4 6= 0 X4 contains

a P1 of blown-up A1 singularities with 28 double points, where the blown-up P1 splits into two.

This family of P1’s fibered over the base P1 represents a divisor of X4, which is nothing else

than just a family of conics in P2 over P1 with 28 degenerate fibers. In the limit t4 → 0 the

fiber P1 shrinks and this gives rise to massless particles. One gets an enhanced gauge symmetry

at this locus and the massless spectrum consists of a massless SU(2) vectormultiplet and 28

hypermultiplets, fundamental under the new SU(2). This has an interpretation on the heterotic

side, where the IIA modulus t4 corresponds to a Wilson line, of a point of perturbative enhanced

14Here for instance V + := V 1 + iV 2.

15We say roughly because the polytope, used to define X4 in the language of toric geometry, has one additional
vertex and correspond to a different toric variety than just WP (1, 1, 2, 6, 10).
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gauge symmetry with hypermultiplets coming from the E8 instanton degrees of freedom.

The transition to X3 occurs at t4 = 0 and on the IIA side consists of blowing-up the

singularities and obtaining a new CY with Nv = 3 vector moduli and Nh = 243 hypermultiplet

moduli. The transition has a nice interpretation in field theory, where one goes from the

Coulomb to Higgs branch [70]. On the Higgs branch the gauge group is completely broken and

one is left with 2× 28− 3 = 53 additional hypermultiplet moduli.

One way to verify the spectrum at the singularity, that does not involve the heterotic dual of

this model, is to compute the periods of X4 and find their monodromy around the singularity.

In this example it is possible to do this explicitly by using a Mellin-Barnes representation of

the periods and analytically continuing the periods of X4 from the large volume point to the

neighborhood of the singularity. The advantage of the method of analytic continuation is that

it automatically gives an integral symplectic basis for the periods, since we start with such a

basis from the large volume point. The details of the computation as well as some background

material is given in Appendix G. Performing this computation one finds that there are two

dual vanishing periods at the singularity, denoted t4 and tD4 , and given in terms of algebraic

coordinates zi on the complex structure moduli space of the mirror X4, by

t4 =
√
z4(1 +O(zi))

tD4 = −
√
z4

2πi
((24 log z4 + 2 log z2 + 4 log z3 + 8 log z1)(1 +O(zi)) +O(zi)) (4.7.142)

These periods correspond to a pair of charges γ, γD with 〈γ, γD〉 = 2, respectively. From these

periods we see that there is a monodromy around singularity in the z4 plane of the form

t4 → −t4

tD4 → −tD4 + 24t4, (4.7.143)

which is the monodromy, expected in the SU(2) gauge theory with 28 fundamental flavors.

Nevertheless, as we argued in Section 4.6.3, the spectrum will also contain massless monopoles,

and the fact that the dual period tD4 vanishes at the singularity confirms this fact. The physical

argument of Section 4.6.3 implies that this charge is populated, but we can supply further

evidence for the existence of a monopole (and indeed an infinite tower of dyons) becoming

massless together with the W boson at the singularity. In IIA language the W boson is a D2

brane wrapping the generic fiber of the shrinking divisor. The monopole is a D4 brane wrapping

the divisor itself (perhaps with some flux). The intersection product of this D2 and D4 is 2

as it should be. Classically, when the D2 volume vanishes at t4 = 0, the D4 volume vanishes
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also. On the other hand, the IR freeness of the theory implies that this fact is not spoiled by

quantum corrections, as we have seen directly from the periods. So the W -boson and monopole

become massless together. The quantum corrections do not spoil this relation, although from

the periods we see there is some logarithmic running of the proportionality factor 1
g2 , again as

expected from field theory with β = 48 and

µ

v
=
z
−1/6
1 z

−1/24
2 z

−1/12
3√

z4
.

In the mapping of IIA with heterotic variables one identifies z2 ∼ e−2πS, where S is the

heterotic dilaton S = 4π
g2
0
− i θ

2π . Looking at the periods (4.7.142) we see that in the limit of

weak heterotic coupling z2 → 0 for fixed t4 the dual period tD4 becomes infinitely massive and

disappears from the spectrum. This is as expected in the IR-free theory since the mass of

the monopole is proportional to 1
g2 . If we keep the coupling constant non-zero and take the

limit t4 → 0 then we find that in fact both periods vanish at the singularity and the monopole

becomes massless. Moreover, the monopole state cannot be seen in the perturbative spectrum

in the IR limit, but it does become massless at the singularity. In this sense the perturbative

heterotic string is misleading with regards to the massless spectrum. Of course there might

be other dyonic massless states and the full massless spectrum depends on the UV completion

of the field theory. To determine the full spectrum one has to do a detailed analyses of the

singularity in the IIB picture and find all the special Lagrangian cycles, that shrink at the

singularity. Regrettably, this computation appears to be out of reach at present. We want to

stress that, as follows from the discussion in Section 4.3.4, the massless spectrum of the IR-

free gauge theory with fundamental matter is inconsistent with the wall-crossing phenomenon.

Indeed, the massless electric spectrum gives for the product P in (4.3.33)

P (q) =
(1− q)28

(1− q2)4
(4.7.144)

which is clearly not a polynomial.

If one goes through the extremal transition to the Higgs branch of the gauge theory, the

monopoles get confined via the dual Meissner effect. Thus on that side of the extremal transition

they will not be seen in the spectrum. If one wishes to go back and transition to the Coulomb

branch the flux tubes confining the monopoles shrink and become tensionless at the transition

point, so one again gains free massless monopoles. For some related discussion see [71].

To summarize, this model has a spectrum at the singularity, that does not satisfy the

requirements of Section 4.3.1. We still expect that the BPS indices are preserved as one crosses

BST walls. To verify this we need to know the full massless spectrum at the singularity. We do
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not have this information, and even if we did, as discussed in Section 4.7.1, it is not clear how

to sum all contributions to the given BPS state on both sides of the BST wall.

Similarly in the spirit of Section 4.3.4 and [38], we can form a partition function of the BPS

indices of states Γ+mγ+nγD. Here γ is the charge of the hypermultiplet that becomes massless

and γD is the charge of magnetic monopole. The partition function changes as we go around

the singularity and the net change is just the monodromy of the local system of charges. As we

discuss in chapter 5 and in [38] this gives a restriction on the spectrum at the singularity in the

form of a generalized KS formula which relates the product of KS transformations around the

singularity to the monodromy of the local system of charges. Unfortunately we cannot check

this statement here since we do not know the full spectrum.
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Chapter 5

Wall-crossing from supersymmetric galaxies

In this chapter we give an elementary physical derivation of the Kontsevich-Soibelman wall

crossing formula, valid for any theory with a 4d N = 2 supergravity description. The basic

strategy we follow is similar to that of [15], which gave a proof of the (motivic) KS wall-

crossing formula in the context of N = 2 field theory. The essential physical idea used halo

configurations of particles bound to line operators. Our analysis will generalize this idea to

gravity, without introducing external objects such as line operators. The surrogate for the line

operator will be an infinitely massive BPS black hole, to which the BPS objects of interest are

bound. The physical cartoon to have in mind is that of a galaxy with a supermassive black

hole at its center, where the BPS objects of interest are the solar systems orbiting around

it. These galactic configurations exhibit jumping phenomena when dialing the moduli: when

crossing certain walls, halos of objects of a particular charge can be pushed out to infinity or

conversely come in from infinity. The generating function for the BPS indices of these galactic

bound states transforms in a simple way when such a wall is crossed, by the action of a certain

operator on the generating function, which follows directly from the simple halo wall crossing

formula (a.k.a. the semiprimitive wall crossing formula) of [5]. Collections of walls intersect

on real codimension two loci, together also with marginal stability walls for the individual

solar systems. Circling around these intersection loci will produce a sequence of wall crossing

operations on the generating function. For a contractible loop in moduli space, the product of

these operators must be the identity. This turns out to be nothing but the KS formula. For a

noncontractible loop in moduli space we find a generalization of the KS formula. This chapter

is based on [38].

5.1 BPS galaxies and the halo wall crossing operator

In Section 4.3.2 we gave the main properties of halo BPS states and here we recall the necessary

details. A halo is a BPS configuration consisting of an arbitrary number N of particles with

electromagnetic charge proportional to a primitive charge γ surrounding a core of charge Γ. For
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simplicity of exposition (only!) we will initially consider only halo particles of charge γ. The

charges are valued in a symplectic lattice L. The equilibrium distance R between core and halo

particles is given by [72]

R =
〈γ,Γ〉

2 Im(e−iαZγ)
, (5.1.1)

where 〈γ,Γ〉 is the electric-magnetic symplectic product of γ and Γ, Zγ is the central charge

of γ, measured at spatial infinity (where the vector multiplet moduli are set at t = t∞), and

α = argZΓ+Nγ . A necessary condition for existence is R > 0. When the phases of the central

charges of the core and halo line up, i.e. argZΓ = argZγ = α, the radius diverges and the halo

decays. Both core and halo particles can in turn be composites. The above formula for the

equilibrium distance still holds as long as R is much larger than the size of these composites.

In the limit R → ∞, the halo particles can be considered to be noninteracting electric point

particles, confined to a sphere threaded by a uniform magnetic flux. The supersymmetric one

particle ground states are given by the lowest Landau levels, and the N -particle halo states are

constructed from those as an N particle Fock space FΓ(Nγ) [10, 5]. We denote the Witten

index of these halo states by1

ΩFock
Γ (Nγ; t∞) ≡ TrFΓ(Nγ)(−1)F . (5.1.2)

For N = 1, we have ΩFock
Γ (γ) = |〈γ,Γ〉|Ω(γ). Here Ω(γ) is the usual N = 2 BPS index, and

|〈γ,Γ〉| is the lowest Landau level degeneracy factor. For general N it is convenient to define a

generating function. Introduce formal variables Xi, i = 1, . . . , rankL, and write X∆ :=
∏

iX
∆i

i

for a charge ∆ with components ∆i with respect to some chosen basis for L. Then the generating

function is

GFock
Γ (X) :=

∑

N

ΩFock
Γ (Nγ)XΓ+Nγ =

(
1− (−1)〈γ,Γ〉Xγ

)Ω(γ)|〈γ,Γ〉|

XΓ (5.1.3)

This follows from standard Fock space combinatorics [5].

In general Ω(Γ+Nγ) 6= Ω(Γ)ΩFock
Γ (Nγ) in the full theory. The reason is that the true index

Ω(Γ + Nγ) in general gets contributions from many other configurations of charges summing

up to the same total charge. For instance a core black hole of charge Γ with two halo particles

of charge γ and a core black hole of charge Γ + γ and one halo particle of charge γ will

both contribute to Ω(Γ + 2γ). At finite R, the corresponding Fock spaces can be expected

to get mixed due to quantum tunneling between these configurations. Only the sum over all

possible configurations is guaranteed to give a well defined index. Phrased differently, whereas

1The indices depend on the background moduli t∞. For notational compactness we will sometimes suppress
this dependence.
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the supersymmetric quantum mechanics of halo particles trapped in their potential minimum

at finite R is a well-defined closed system in perturbation theory, nonperturbative tunneling

between this minimum and the minimum corresponding to merging with the black hole core

causes the wave function of the halo configuration to “leak out” and mix with configurations

with different core black hole charges. It is no longer a well-defined closed system.

The leaking can be prevented, however, by taking the limit of infinite core black hole size,

as black hole tunneling is generically exponentially suppressed in the size of the black hole.

This is entirely an entropic effect. For example the amplitude for fragmentation of an extremal

Reissner-Nordström black hole of charge Q = Q1 +Q2 into black holes of charge Q1 and Q2 —

a process unobstructed by any potential barrier — is nevertheless suppressed as e−
1
2∆S where

∆S = πQ2 − πQ2
1 − πQ2

2 = 2πQ1Q2 [73]. Therefore in the Q → ∞ limit, taking into account

charge quantization, the extremal RN black hole becomes absolutely stable; there is no more

mixing with fragmented configurations. Stability of large black holes is a universal phenomenon

— even Schwarzschild black holes stop radiating and become stable in the infinite size limit.

Thus, we will consider configurations of BPS objects orbiting around a supermassive black

hole core of charge Γc, where we eventually send Γc → ∞ while keeping the total charge of the

objects in the orbits finite. The objects themselves can be multicentered BPS bound states. We

can loosely think of this system as a galaxy consisting of many solar systems orbiting around

a supermassive black hole, and we therefore refer to these objects as “BPS galaxies”. The

simplest situation is when we have a single halo of particles of charge γ around the hole, but we

also allow multiple halos, or more general, non-halo configurations involving interacting solar

systems with mutually nonlocal charges. So the most general BPS galaxy will be a complex

multi-particle bound state, with potentially strong position-constraining interactions between

neighboring solar systems, and intricate exchanges of suns and planets between different solar

systems possible when dialing the moduli.

To make this more precise, we have to specify more carefully how we take the limit Γc → ∞.

For our purpose of deriving the KS formula, it turns out to be convenient to single out a

particular U(1), give the core large electric and magnetic charges with respect to this U(1), and

keep the orbiting solar systems uncharged under this U(1). More precisely, we choose a set of

charges C ≡ {Γ0,Γ
′
0, γc} such that Γ0 supports a single centered BPS black hole, 〈Γ0,Γ

′
0〉 6= 0,

and 〈γc,Γ0〉 = 0 = 〈γc,Γ′0〉. We then set

Γc = Λ2Γ0 + ΛΓ′0 + γc (5.1.4)

and take Λ → ∞. The anisotropic scaling is chosen for reasons that will become clear later
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(see footnote 1). To avoid infinite lowest Landau level degeneracies, we restrict the charges γ of

the solar systems orbiting around this core to be orthogonal to both Γ0 and Γ′0, which means

they are uncharged under the U(1) associated to Γ0 and Γ′0. More formally, the sublattice of

orbiting charges Lorb is thus

Lorb := {γ ∈ L | 〈γ,Γ0〉 = 0 = 〈γ,Γ′0〉}. (5.1.5)

With this definition, we also have γc ∈ Lorb.

The Hilbert space of BPS galaxies with core charge Γc and total orbital charge Γorb has an

overall factor corresponding to the internal states of the core black hole, which we can factor

out to produce a factor space HΓc(Γorb; t∞), which can be thought of as the Hilbert space of

the orbiting solar systems in a background sourced by the core black hole. We obtain a closed

supersymmetric quantum system with this Hilbert space provided there is no mixing between

galaxies of different core charges, nor mixing with galaxies which do contain charges in orbit

which are not in the restricted lattice Lorb. This turns out to be generically the case in the limit

Λ → ∞, essentially because such tunneling events are either infinitely entropically suppressed

along the lines mentioned above, or infinitely suppressed because they require tunneling over

infinite distances. We give detailed arguments for this in appendix H, and prove that there is

just one exception, namely when it so happens that the attractor point of Γ0 lies on a locus

with massless particles with charge in Lorb, in which case there may be mixing between galaxies

with cores differing by the charges becoming massless. This situation is nongeneric, and we will

assume this is not the case.

Thus, at fixed Γorb, in the limit Λ → ∞, we can define a proper Witten index for this

supersymmetric closed system, which we call the “framed” BPS galaxy index, in analogy with

the framed BPS indices of [15]:

ΩC(Γorb; t∞) := lim
Λ→∞

TrHΓc (Γorb;t∞) (−1)F . (5.1.6)

Here C ≡ {Γ0,Γ
′
0, γc} is the set of charges determining the one parameter family Γc(Λ) of core

charges as in (5.1.4). It will be useful to introduce the generating function of framed BPS

indices:

GC(X ; t∞) :=
∑

Γorb∈Lorb

ΩC(Γorb; t∞)Xγc+Γorb . (5.1.7)

The presence of singularities and associated monodromies gives rise to some subtleties, which

we discuss in section 5.3. For the time being we simply assume we stay in a sufficiently small

open set of moduli space, away from singular loci, in which case we can ignore these subtleties

altogether.
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The key observation that makes this construction useful is that although the generic BPS

galaxy has a very complicated structure, its wall crossing behavior when varying t∞ is very

simple. It is entirely governed by pure halo decays, since the galactic core black hole cannot

decay and serves as a fixed, primitively charged center. Whenever the central charge Z(γ) of

some charge γ supporting BPS states lines up with the total central charge Z = Z(Γc)+Z(Γorb)

of the galaxy, a halo of objects with charge γ can be added or subtracted at spatial infinity. We

again restrict to γ ∈ Lorb. In the Λ → ∞ limit the wall in moduli space where this happens is

independent of the solar system charge, since in this limit Z/Z(Γc) = 1, so argZ = argZ(Γc) =

argZ(Γ0) and we can set α = α0 := argZ(Γ0; t∞) in (5.1.1). Hence the wall of marginal

stability for the halo is 2

Wγ = {t∞| arg[e−iα0Z(γ, t∞)] = 0} , stable side: 〈γ, γc + Γorb〉 Im[e−iα0Z(γ, t∞)] > 0 .

(5.1.8)

We will call these “BPS walls.”

The part of the Hilbert space of all BPS galaxies with fixed core charge Γc that jumps across

a BPS wall Wγ is given by the halo Fock space described earlier, with an effective core charge

Γ, as seen by this halo, given by the total interior galactic charge Γ = Γc + Γorb enclosed by

the halo. The corresponding transformation of the framed galactic indices can therefore be

inferred from (5.1.3). Roughly speaking, the terms in the generating function GC in (5.1.7) get

multiplied by the factor appearing in (5.1.3). However, as we have just explained, the effective

Γ appearing in (5.1.3) depends on Γorb and hence is different for the different terms in GC , and

so the multiplication factor will be different. This is easily formalized by introducing a linear

operator Dγ acting on monomials Xδ by pulling down the symplectic product:

DγX
δ := 〈γ, δ〉Xδ . (5.1.9)

With this and an eye on (5.1.3), we define the following operator acting on polynomials in X : 3

Tγ :=
(
1− (−1)DγXγ

)Dγ
. (5.1.10)

Notice that this operator effectively acts as a diffeomorphism on the coordinates X i. The trans-

formation of the generating function when crossing the wall Wγ in the direction of increasing

2These are analogs of the “BPS walls” of [15] with eiα0 playing the role of ζ. However, an important difference
is that now eiα0 depends on t∞ and is only an independent variable to the extent that Γ0 is.

3We remark that the operators τγ := (−1)DγXγ satisfy τγτγ′ = (−1)〈γ,γ
′〉τγ+γ′ , and hence the operators

τγ provide a natural quadratic refinement of the mod-two intersection form, a point which aficionados of the
KSWCF will surely appreciate. (A related point was made in equations (3.27)-(3.29) of [15].)
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arg[Zγe
−iα0 ] is then

GC(X) → Uγ(t)GC(X) , Uγ(t) :=
∏

k∈Z+

T
Ω(kγ;t)
kγ , (5.1.11)

where we made the dependence on the point t where the wall is crossed explicit. We take γ to

be primitive. The product over k comes from the fact that the walls Wkγ coincide. (Thus, we

have now relaxed our initial assumption that only halo particles of primitive charge γ enter.)

To check that this formula is correct when going in the direction of increasing arg[Zγe
−iα0 ],

note that on the part of the generating function for which Dγ > 0, going in this direction

means by (5.1.8) going from the unstable to the stable side, and vice versa for the Dγ < 0 part.

Therefore, the wall crossing formula should multiply the Dγ > 0 terms by halo factors (5.1.3),

and conversely remove such factors from the Dγ < 0 part (or alternatively add such factors

when the inverse operation is performed, corresponding to decreasing arg[Zγe
−iα0 ]). This is

indeed implemented by the fact that we dropped in (5.1.11) the absolute value signs appearing

in the exponent of (5.1.3).

Finally, we come to the central formula of this chapter. Consider a closed contractible loop

P in moduli space (noncontractible loops will be discussed in section 5.3). Along this loop, the

generating function GC will undergo a sequence of wall crossing operations Uγi(ti). Since P is

contractible, the composition of these operations must act trivially on GC , for any choice of γc

and starting point t:
∏

i

Uγi(ti) ·GC = GC , (5.1.12)

where the product is ordered according to the sequence of walls crossed: points crossed later in

the path are placed to the left. At the core attractor point t∗(Γc) there are no multicentered

bound states involving Γc, and hence no BPS galaxies. So at this point we have simply

GC(X)|t⋆(Γc) = Xγc . (5.1.13)

Starting from this expression, the wall crossing formula (5.1.11) uniquely determines all framed

galactic indices given all Ω(kγ). This shows that GC is well defined as a function to the extent

that the wall crossing factors are. (It is conceivable that a dense set of BPS walls can lead to

an ill-defined expression.) Furthermore by varying γc we can generate as many independent

functions GC(X) as there are independent variables Xk associated to charges in Lorb.
4 This

in combination with the fact that the wall crossing operators Uγ act as diffeomorphisms implies

4This corresponds to the condition, discussed in [15], that there are “enough” line operators to deduce the
KSWCF.
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that the product of the sequence of halo wall crossing operators around a contractible loop must

be the identity
∏

i

Uγi(ti) = 1 . (5.1.14)

We will prove in detail in the next section that this is in essence equivalent to the KS wall

crossing formula.

5.2 Derivation of the KS formula

ImZ1Z2 < 0

ImZ1Z2 > 0

W 1

W 1 W 2

W 2

Wr1,r2

Wr1,r2

t0 t1

t2

t3

t4
t5

t6

t7

Figure 5.1: This shows the neighborhood U in the normal bundle to Wγ1 ∩ Wγ2 . The wall

of marginal stability is given by Im[Z(γ1; t)Z(γ2; t)] = 0 since Re[Z(γ1; t)Z(γ2; t)] is nonzero
throughout U . We choose the ordering of γ1, γ2 so that Wγ1 is counterclockwise from Wγ2 with
opening angle smaller than π. Then the BPS walls Wr1γ1+r2γ2 are ordered so that increasing
r1/r2 gives walls in the counterclockwise direction. We consider a path P in U circling the origin
in the counterclockwise direction. The central charges of vectors r1γ1 + r2γ2 with r1, r2 ≥ 0 at
representative points t0, . . . , t7 along P are illustrated in the next figure.

We now demonstrate that when P is a small contractible loop intersecting a wall of marginal

stability the Kontsevich-Soibelman wall crossing formula is a consequence of (5.1.14). Let

us therefore consider two mutually nonlocal charges γ1, γ2 and a generic non-singular point

tms ∈MS(γ1, γ2) where both central charges are nonzero and γ1, γ2 support BPS states. Using

the attractor equation it is easy to show that we can always find a Γ0 (and hence a phase α0)

so that Γ0 supports single-centered black holes and tms lies on the intersection of BPS walls

Wγ1 ∩Wγ2 .
5 This intersection is real codimension two in moduli space and we now consider a

small neighborhood U of tms so that the only other BPS walls Wγ′ passing through tms arise

from charges of the form γ′ = r1γ1 + r2γ2 for rational r1, r2. We will denote charges of this

5We can take for example Γ0 ≡ −2Im[X̄Ω(3,0)], where Ω(3,0) is the holomorphic 3-form evaluated at tms

and X is an arbitrary complex constant with argX ≡ argZ1 = argZ2. This Γ0 has a regular attractor point,
namely tms, because the equation we used to define Γ0 is nothing but the attractor point equation. Taking
the symplectic product of this equation with γ1, γ2 shows that 〈γ1,Γ0〉 = 0 = 〈γ2,Γ0〉. Taking the symplectic
product with Ω(3,0) shows that X = Z(Γ0 : tms), so, as we wished, the central charges line up at tms. Although
Γ0 will in general not be quantized, this is acceptable since all we care about in the end is the limit Λ → ∞.
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Figure 5.2: As t moves along the path P the central charges evolve as in this figure. Note that
Im(Z1Z2) > 0 means that Z1 is counterclockwise to Z2 and rotated by a phase less than π. In
that case the rays parallel to r1Z2 + r2Z2 for r1, r2 ≥ 0 are contained in the cone bounded by
Z1R+ and Z2R+, and ordered so that increasing r1/r2 corresponds to moving counterclockwise.
When t crosses the marginal stability wall the cone collapses and the rays reverse order. As t
moves in the region t2 the quantity arg[Zγe

−iα0 ] > 0 is increasing for all γr1,r2 with r1, r2 ≥ 0
while at the point t6 the argument is decreasing.

form by γr1,r2 . Since the point tms is non-singular a loop around it is contractible and (5.1.14)

holds.

Below we will argue that, perhaps after choosing suitable linear combinations, we can assume

that the only populated charges of type γr1,r2 in U in fact have (r1, r2) ∈ Z2 with r1, r2 both

≥ 0 or both ≤ 0. We can order γ1, γ2 so that the configuration of BPS walls and the marginal

stability wall are arranged as shown in Figure 5.1. Suppose we begin at the point t1 and move

along the path P in the counterclockwise direction. We first cross the BPS walls in the region

ImZ1Z2 < 0 in order of increasing r1/r2 and increasing arg[Zγr1,r2
e−iα0 ]. Then we cross in the

region ImZ1Z2 > 0 again with increasing r1/r2 but now this corresponds to decreasing values

of arg[Zγr1,r2
e−iα0 ]. Thus we have

←∏

r1
r2
ր

T
−Ω+

r1,r2
r1,r2

←∏

r1
r2
ր

T
Ω−

r1,r2
r1,r2 = 1 (5.2.15)

where the arrows on the product mean that increasing values of r1/r2 are written to the left,

and Ω±r1,r2 is the BPS index of r1γ1+r2γ2 in the region U with ImZ1Z̄2 > 0 and < 0 respectively.

Taking into account the relation between the ordering of r1/r2 and the ordering of the phases of

the central charges illustrated in figures 5.1 and 5.2 we can also write this in the more traditional

way:
→∏

argZr1,r2ր

T
Ω+

r1,r2
r1,r2 =

→∏

argZr1,r2ր

T
Ω−

r1,r2
r1,r2 . (5.2.16)

This is the KS wall crossing formula.

We still need to fill in a gap above and justify the important claim that we can choose
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γ1, γ2 so that only r1, r2 both ≥ 0 or ≤ 0 are populated. This “root basis property” can be

rigorously proven in certain field theory examples [50]. We offer an alternative justification here

by requiring that the spectrum of BPS masses should not have an accumulation point at zero.

(We are therefore using that the point tms is not at a singularity of moduli space since that

assumption is violated, for example at a superconformal point.) Denoting the central charges

of γ1, γ2 at tms by ρ1, ρ2 we therefore know that there is an ǫ > 0 so that populated charges

γr1,r2 must have |r1ρ1 + r2ρ2| > ǫ. In the (r1, r2)-plane this is a strip of width 2ǫ centered on

the line with slope −ρ2/ρ1. (Since tms is on the marginal stability wall ρ2/ρ1 is real.) If our

point tms is generic then there is in fact a neighborhood of tms in the marginal stability wall so

that, moving along this wall the spectrum of BPS particles of charges of the form γr1,r2 must

remain constant. But the slope −ρ2/ρ1 will vary in this neighborhood. This means that there

must be an unpopulated wedge (and its negative) in the (r1, r2)-plane. By choosing a suitable

redefinition γ1 → aγ1 + bγ2, γ2 → cγ1 + dγ2 we can ensure that the populated states in the

complementary wedges are of the form γr1,r2 with r1, r2 both ≥ 0 or both ≤ 0.

We end with two remarks

1. The root basis property of BPS states is addressed in the mathematical framework of

Kontsevich and Soibelman [7] in a slightly different way. A part of their “stability condi-

tions,” used a quadratic form on the lattice of charges Q : L → R and only the charges

that satisfied Q(γ) ≥ 0 were considered. The quadratic form also has the property that

Q|KerZ < 0, where Z is the central charge map Z : L → C. Thus, restricting the set of

charges entering the WCF to Q(γ) ≥ 0 means that we have to discard certain wedges in

the space of charges surrounding the directions with Z(γ) = 0.

2. Finally, we comment on the “motivic” or “refined” version of the wall-crossing formula [7]

which takes into account spin degrees of freedom [74, 75]. The field theoretic derivation of

the motivic KSWCF given in [15] can also be carried over directly in the present context:

We now let Xγ be valued in the quantum torus. We replace GC by the generating function

of the spin characters, and across the walls Wγ we will find that GC is conjugated by

certain combinations of quantum dilogarithms. However, we stress that the justification

for the derivation in [15] relied on the existence of “protected spin characters,” which

can only be defined if there is an SU(2)R symmetry in the supersymmetry algebra. In

general this symmetry is not present in supergravity, and hence the validity of “motivic”

generalization of the wall-crossing formula is a little mysterious. In fact, as is well-known,

the spin character depends on hypermultiplet moduli as well as vectormultiplet moduli.
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(For examples in the weakly coupled heterotic strings with type II duals see [69, 76].)

5.3 Generalization to noncontractible loops

In our derivation of the KS formula, we considered a contractible loop P in moduli space.

Nothing prevents us from considering instead a non-contractible loop, in particular a loop

circling around a point on the discriminant locus. Such a loop will be closed in moduli space

but not in covering space, and the local system of charges undergoes nontrivial monodromy

MP : L → L after going around it.6 As a result the generating function will not be exactly

preserved, and (5.1.12) must be modified.

As mentioned under (5.1.7), the proximity of singularities associated to nontrivial mon-

odromies can lead to some subtleties in the definition of the framed BPS indices ΩC(Γorb, t∞).

Besides the usual jumps at marginal stability, there are two other kinds of formal index “jumps”

(or rather relabelings) related to the presence of singularities and monodromies. The first occurs

when t∞ crosses a cut, where the choice of charge lattice basis jumps by convention. This is just

a relabeling of indices, equating framed indices involving charges related by the corresponding

basis transformation. If desired it can be eliminated by going to the moduli covering space.

The second event occurs when t∞ crosses a conjugation wall in the language of chapter 4, i.e.

when the core attractor flow gets “pulled through” a singular locus in moduli space. In this

case new particles (becoming massless at the singularity) appear in orbit while the apparent

core charge as seen from infinity jumps, keeping the total charge (and index) unchanged. This

is again some kind of relabeling of indices, equating framed indices involving shifted core and

orbit charges, but this time the jump cannot be eliminated by going to the covering space.

More formally, when crossing a cut from t∞ to t′∞, charges Γ|t′∞ and M ·Γ|t∞ get identified.

Thus the indices on the respective sides of the cut are related by

ΩC(Γorb; t
′
∞) = ΩM·C(M · Γorb; t∞) . (5.3.17)

A short computation shows that the generating functions get accordingly identified as

GC(X ; t∞) = M̂ ·GM−1C(X, t
′
∞) , (5.3.18)

where we defined for any automorphism M of the charge lattice a map on generating functions

by

M̂ ·
∑

Γ

aΓX
Γ :=

∑

Γ

aΓX
M·Γ . (5.3.19)

6To avoid cluttering the discussion, in the following we will not bother specifying at each step in which
direction we orient loops, monodromies etc.
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When crossing a conjugation wall from t∞ to t′∞, by definition, the core attractor flow gets

pulled through the discriminant locus, so that if initially the core attractor flow did not cross

the cut ending on the discriminant locus, it now does, or vice versa. By physical continuity, the

core charge as seen by a local observer at the core must remain Γc. Hence, if the monodromy

transformation associated to the cut is Γ → M · Γ, the apparent core charge as seen by an

observer at spatial infinity jumps from Γc to M · Γc. Since the total charge must remain the

same, the charge in the galactic orbit must jump from Γorb to Γorb + (1−M) · Γc (see [34] for

a detailed discussion of how this happens physically). Note that to remain in the picture in

which the orbit charge remains finite when Λ → ∞, we should therefore require

M · Γ0 = Γ0 , M · Γ′0 = Γ′0 . (5.3.20)

The framed indices on the respective sides of the conjugation wall are then related by

ΩC(Γorb; t∞) = ΩM·C(Γorb + (1−M) · γc; t′∞) . (5.3.21)

The corresponding generating functions are related even more simply by

GC(X, t∞) = GM·C(X, t
′
∞) . (5.3.22)

We can now collect these results and state the generalization of (5.1.12) to the case of a

noncontractible loop P around a point t0 of the discriminant locus, with associated monodromy

M . As before, we assume that no massless BPS particles exist at t∗(Γ0). Since in general there

are massless BPS particles present at the discriminant locus, we assume in particular that we

have chosen Γ0 to be such that t0 6= t∗(Γ0). There are two cases to distinguish:

1. Singularity without conjugation wall: This is the case for singularities at infinite

distance, such as the infinite volume limit of IIA on the quintic. We can assume there

is a single cut ending on the singularity, across which the generating function transforms

as in (5.3.18). Going infinitesimally across the cut in one direction or along the full loop

P in the other direction (along which the generating function undergoes a series of wall

crossing operations as before), should give the same result. Thus (5.1.12) generalizes to

∏

i

Uγi(ti) ·GC = M̂ ·GM−1·C . (5.3.23)

2. Singularity with conjugation wall: This is the case typically for singularities at finite

distance, such as the conifold point of IIA on the quintic. Assuming (5.3.20) and taking

without loss of generality the cut on top of the conjugation wall for convenience, the
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transformation of the generating function when crossing the wall is given simply by GC →
GM·C → M̂ ·GC , and the analog of (5.1.12) becomes

∏

i

Uγi(ti) ·GC = M̂ ·GC . (5.3.24)

By the same arguments as before, we can infer from this the operator equation

∏

i

Uγi(ti) = M̂ , (5.3.25)

which generalizes (5.1.14).

As an application of this formula, consider a singularity t0 where a charge γ becomes

massless, but no other linearly independent charges do. Because Z(γ) acquires all phases

around t0, the loop P will necessarily cross both Wγ and W−γ . If the loop is chosen such

that these are the only walls that are crossed, equation (5.3.25) becomes

M̂ = U−γ · Uγ

=
∏

k

(
1− (−1)−kDγX−kγ

)−kΩ(kγ)Dγ
∏

k

(
1− (−1)kDγXkγ

)kΩ(kγ)Dγ

= X
∑

k k2Ω(kγ) γDγ . (5.3.26)

Recalling (5.3.19), we see this is equivalent to

M · Γ = Γ +
∑

k

k2Ω(kγ) 〈γ,Γ〉 γ . (5.3.27)

Thus this generalized KS formula relates monodromy to the the BPS spectrum. In the

case of the simple conifold, Ω(kγ) = δk,0 and the above formula reduces to the well know

Picard-Lefschetz monodromy formula M · Γ = Γ + 〈γ,Γ〉 γ. We discuss such relations in

much more detail in chapter 4.
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Appendix A

Attractor flow trees near the large volume point

In this appendix we summarize some facts about attractor flow trees. It was conjectured in

[11, 27] that the existence of multicentered BPS solutions of supergravity can be analyzed in

terms of the the existence of split attractor flow trees. Some attempts at making this conjecture

more precise were made in [5, 9].

Split Attractor Flow Conjecture (SAFC):

a) The components of the moduli spaces (in ~xi) of the multicentered BPS solutions with

constituent charges Γi and background t∞, are in 1-1 correspondence with the attractor

flow trees beginning at t∞ and terminating on attractor points for Γi.

b) For a fixed t∞ and total charge Γ there are only a finite number of attractor flow trees.

A practical recipe of identifying the intervals with the corresponding tree topologies is the

following: tune the moduli at infinity such that they approach the first MS wall of a given

attractor flow tree. Then, as we change the moduli across that MS wall, the corresponding

component of moduli space of solutions to (2.7.58) ceases to exist.

We now give an explicit description of an attractor flow tree. First, we introduce some

notation. For a general tree we will denote vertices of the tress by ~ǫ, which is a vector of + and

− signs and the sequence of + and − corresponds to sequence of right and left turns that one

needs to make when going from the origin of the tree to that vertex. Quantity X related to

a particular vertex ~ǫ will be denoted by X(~ǫ). The attractor equation for the edge starting at

vertex (a), looks like:

2e−UIm(e−iα
(a)

Ω(t)) = −H(s(a)), (1.0.1)

where Ω(t) = − 1√
4/3J3

eB+iJ (in IIA picture), eU is the metric warp factor, α(a) is the phase of

central charge Z(Γ(a)), s(a) is a parameter of the flow on this edge, and

H(s(a)) = Γ(a)s(a) −∆H(a). (1.0.2)
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∆H(a) depends only on the moduli at infinity and is determined recursively by summing

contributions from the origin of the tree up to vertex (a):

∆H = 2Im(e−iαΩ)|t∞

∆H(+) = ∆H(−) = ∆H − Γsms

∆H(++) = ∆H(+−) = ∆H(+) − Γ(+)s(+)
ms

∆H(−+) = ∆H(−−) = ∆H(−) − Γ(−)s(−)ms , ... (1.0.3)

where s
(a)
ms are values of parameters along the flow, for which surfaces of marginal stability are

crossed:

sms =
〈Γ(+)∆H〉
〈Γ(+)Γ〉

s(+)
ms =

〈Γ(++)∆H(+)〉
〈Γ(++)Γ(+)〉

s(−)ms =
〈Γ(−+)∆H(−)〉
〈Γ(−+)Γ(−)〉 , ... (1.0.4)

The solution to the attractor equations (1.0.1), that is, the image of the flow in moduli

space, can be written in closed form in terms of the entropy function S(p, q) [28]:

tA(s(a)) =

∂S
∂qA

+ πipA

∂S
∂q0

− πip0

∣∣∣∣∣
(p,q)=H(s(a))

. (1.0.5)

Here, the parameter s(a) varies as: s(a) ∈ (0,∞) for the terminal edge, and s(a) ∈ (0, s
(a)
ms)

for an internal edge.

For a given attractor tree to exist, all its edges have to exist. Terminal edges exist if the

discriminants of terminal charges are positive, or if the terminal charge is pure electric or

magnetic, which corresponds to the flow going to the boundary of moduli space. Inner edges

exist if:

1. the flow reaches the MS wall at a positive flow parameter s
(a)
ms > 0

2. MS wall (not an anti-MS wall) is crossed, i.e. Z(Γ(a+))
Z(Γ(a−))

|
s
(a)
ms

> 0

3. MS wall is crossed before the flow hits a zero of the central charge (if present):

s(a)ms ≤ s
(a)
0 or s

(a)
0 ≤ 0.

where s
(a)
0 is the value where the flow crashes on a zero.
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For a D4-D2-D0 charge we give explicit formulae for attractor flow in moduli space:

ta(s) = D(P (s))abQb(s) + iP a(s)
√
−6q̂0(s)/P 3(s)

Γ(s) = p0(s) + P (s) +Q(s) + q0(s)dV = sΓ−∆H

∆H =
2Im(Z̄Ω)

|Z| |∞ =

=
2√
4
3J

3

(
2
−Q · J + P ·B · J

P · J2
− J + J2−Q · J + P · B · J

P · J2
+
J3

6

)
|∞. (1.0.6)

In the formula for ∆H we used the large J∞ approximation and dropped relative corrections

of order O(J−2∞ ). The expression for ta(s) was found from (1.0.5) putting p0(s) = 0. Strictly

speaking, this is not true because already ∆H contains non-zero contribution to p0(s). To

estimate the error that we make, take the expression for the moduli for a 1-parameter moduli

space and expand it around p0(s) = 0. The first correction looks like:

δ1t(s) =

[
2Q(s)2 − 3P (s)q0(s)

P (s)3
+ i

√
3P (s)Q(s)(2Q(s)2 − 3P (s)q0(s))

3P (s)3
√
P (s)2(Q(s)2 − 2P (s)q0(s))

]
p0(s). (1.0.7)

Focusing on J∞ dependence, Γ(s) in (1.0.6) can be written as

Γ(s) =
(
O(J−5/2∞ ), sP +O(J−1/2∞ ), sQ+O(J−1/2∞ ), sq0 +O(J3/2

∞ )
)
. (1.0.8)

This means that, for instance, for s of order s ∼ J
−1/2+ǫ
∞ with 0 ≤ ǫ ≤ 2 (which covers all

the cases of interest of chapter 2) the correction in (1.0.7) is of order

δ1t(s) ∼ O(J−2ǫ∞ ) + iO(J−1−3/2ǫ∞ ). (1.0.9)

and can be neglected in large J∞ limit.
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Appendix B

Lefschetz SU(2) action on the Higgs branch ground states

In this Appendix we demonstrate that Lefschetz SU(2) action on the cohomology of the Higgs

branch moduli space coincides with spatial group of rotations. We give a brief derivation of the

Hamiltonian of SSQM on it’s Higgs branch, together with the rotation generators. Given the

two we will conclude how rotations act on the eigenfunctions of the Hamiltonian.

We rewrite the Lagrangian of SSQM (3.1.1) after integrating out auxiliary fields and for

simplicity the case of only ”-” fields present:

L =
µ

2
(ẋ2 + 2iλ̄λ̇) + |∂τφa|2 +

i

2

(
ψ̄a∂τψ

a − ∂τ ψ̄
aψa

)
− r2|φa|2 − 1

2µ
(|φa|2 + θ)2 − ψ̄a~x · ~σψa −

−i
√
2
(
φ̄aλαψa

α + φaψ̄a αλ̄α
)

(2.0.1)

In the regime (3.1.9) we will integrate out fields ~x, λ as well as ”radial” components of φ, ψ,

which become massive due to the potential 1
2µ (|φa|2 + θ)2. In order to decompose fields into

”radial” and ”angular” components we choose a patch in the field space where φ1 6= 0. Introduce

the following coordinates:

φ = (φ1, ..., φn) = φ̃
(1, z1, ..., zn−1)√

1 +
∑ |zi|2

:= φ̃~n. (2.0.2)

Here, zi are coordinates on one patch of CP k−1, φ̃ is the ”radial” field, whose modulus will

become massive and ‖n‖2 = (~n†, ~n) = 1. Fermions are decomposed according to the supersym-

metry transformations:

ψa =
∂φa

∂φ̃
ξφ̃ +

∂φa

∂zi
ξi +

∂φa

∂z̄i
ξ̄i = ~nξφ̃ + φ̃∂i~nξi −

1

2
Aīφ̃∂i~nξ̄i. (2.0.3)

Here, Aī =
zi

(1+
∑

|zi|2) is the antiholomorphic part of the connection on the canonical bundle of
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CP k−1. Let’s list a number of expressions for later use:

(~n†, ∂i~n) =
1

2
Ai =

z̄i

2(1 +
∑ |zi|2)

(∂ī~n
†, ~n) =

1

2
Aī =

zi

2(1 +
∑ |zi|2)

(~n†, ~̇n) =
1

2
(Aiżi −Aī

˙̄iz)

(∂̄j̄~n
†, ∂i~n) =

δij
(1 +

∑ |zi|2) −
3

4

z̄izj

(1 +
∑ |zi|2)2

(~n†, ∂ī~̇n) = −
˙̄iz

2(1 +
∑ |zi|2) −

z̄i

4

z̄kżk − zk ˙̄zk

(1 +
∑ |zi|2)2

(∂̄ī~n
†, ~̇n) =

żi

(1 +
∑ |zi|2) −

zi

4

3z̄kżk + zk ˙̄zk

(1 +
∑ |zi|2)2

(∂̄ī~n
†, ∂j~̇n) = −δij(z̄

kżk + zk ˙̄zk)

2(1 +
∑ |zi|2)2 − 2z̄j żi + zi ˙̄zj

4(1 +
∑ |zi|2)2 − z̄jzi(7z̄kżk + 5zk ˙̄zk)

8(1 +
∑ |zi|2)3 . (2.0.4)

Introducing the notation φ̃ = ρeiα the kinetic term for φ can be written as

|∂τφa|2 = (∂τρ)
2 + ρ2

(
∂τα− i(~n†, ~̇n)

)2
+ ρ2ωFS

ij̄ ∂τz
i∂τ z̄

j̄, (2.0.5)

where ωFS
ij̄ is the Fubini-Studi metric:

ωFS
ij̄ =

δij
(1 +

∑ |zi|2) −
z̄izj

(1 +
∑ |zi|2)2 . (2.0.6)

To write fermion kinetic term we introduce fermion field

χ = ξφ̃ − 1

2
φ̃Aj̄ ξ̄

j +
1

2
φ̃Aiξ

i, (2.0.7)

and direct calculation gives:

i

2

(
ψ̄a∂τψ

a − ∂τ ψ̄
aψa

)
=
i

2

(
χ̄(∂τ + (~n†, ~̇n))χ− (∂τ − (~n†, ~̇n))χ̄χ

)
+

+
i

2
ωFS
ij̄

(
φ̃†ξ̄j(∂τ + (~n†, ~̇n))(φ̃ξi) + ρ2Γi

kmξ̄
jξkżm − (∂τ − (~n†, ~̇n))(φ̃†ξ̄j)φ̃ξi − ρ2Γj̄

k̄m̄
ξ̄kξi ˙̄zm

)
−

−iχ̄φ̃ξi
(
(
˙
~ †n, ∂i~n)− (~n†, ∂i~n)(

˙
~ †n, ~n)

)
+ iφ̃†ξ̄iχ

(
(∂̄ī~n

†, ~̇n)− (∂ī~n
†, ~n)(~n†, ~̇n)

)
. (2.0.8)

Finally introducing χ′ = e−iαχ, we can write the full Lagrangian as
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L =
µ

2
ẋ2 + iλ̄λ̇+ (∂τρ)

2 + ρ2
(
∂τα− i(~n†, ~̇n)

)2
+ ρ2ωFS

ij̄ ∂τz
i∂τ z̄

j̄ +

+
i

2

(
χ̄′Dχ′ − D̄χ̄′χ′

)
+
i

2
ρ2ωFS

ij̄

(
ξ̄jDξi + Γi

kmξ̄
jξkżm − D̄ξ̄jξi − Γj̄

k̄m̄
ξ̄kξi ˙̄zm

)
−

−iρχ̄′ξiCi + iρξ̄iχ′C̄i −

−r2ρ2 − 1

2µ
(ρ2 + θ)2 − χ̄′~x · ~σχ′ − ρ2ωFS

ij̄ ξ̄j~x · ~σξi − i

√
2

µ
ρ
(
λχ′ + χ̄′λ̄

)
, (2.0.9)

where D = ∂τ + (~n†, ~̇n) + iα̇, D̄ = ∂τ − (~n†, ~̇n)− iα̇, Ci = (
˙
~ †n, ∂i~n)− (~n†, ∂i~n)(

˙
~ †n, ~n) and Γj̄

k̄m̄

are Christoffel symbols of the moduli space metric. Note that this Lagrangian, though first

written for certain patch in field space, is valid everywhere in field space. Phase α is a gauge

degree of freedom. In order to restrict to gauge invariant configuration we have to find the

canonical momentum, corresponding to α and put it equal to zero. As α enters the Lagrangian

quadratically this amounts to just integrating it out and gives:

L =
µ

2
ẋ2 + iλ̄λ̇+ (∂τρ)

2 + ρ2ωFS
ij̄ ∂τz

i∂τ z̄
j̄ +

+
i

2
(χ̄′∂τχ

′ − ∂τ χ̄
′χ′) +

i

2
ρ2ωFS

ij̄

(
ξ̄j∂τ ξ

i + Γi
kmξ̄

jξkżm − ∂τ ξ̄
jξi − Γj̄

k̄m̄
ξ̄kξi ˙̄zm

)
−

− 1

4ρ2
(χ̄χ+ ωFS

ij̄ ξ̄jξi)2 − iρχ̄′ξiCi + iρξ̄iχ′C̄i −

−r2ρ2 − 1

2µ
(ρ2 + ϑ)2 − χ̄′~x · ~σχ′ − ρ2ωFS

ij̄ ξ̄j~x · ~σξi − i

√
2

µ
ρ
(
λχ′ + χ̄′λ̄

)
(2.0.10)

Dropping prime in χ′ for ease of notation we can write down the corresponding Hamiltonian

H =
p2x
2µ

+
p2ρ
4

+
1

ρ2
ωlk̄
FS

(
pk̄ +

i

2
ρ2Γmn̄k̄ ξ̄

nξm +
iρχ̄ξk

(1 +
∑ |zi|2) +

iρξ̄mχzmzk

(1 +
∑ |zi|2)2

)
×

×
(
pl −

i

2
ρ2Γm̄nlξ̄

mξl − iρξ̄lχ

(1 +
∑ |zi|2) −

iρχ̄ξmz̄mz̄l

(1 +
∑ |zi|2)2

)
+

1

4ρ2
(χ̄χ+ ρ2ωFS

ij̄ ξ̄jξi)2 +

+r2ρ2 +
1

2µ
(ρ2 + θ)2 + χ̄~x · ~σχ+ ρ2ωFS

ij̄ ξ̄j~x · ~σξi + i

√
2

µ
ρ
(
λχ+ χ̄λ̄

)
. (2.0.11)

In the limit we are considering, namely µ ≪ 1, α ≫ 1, µα3/2 ≫ 1, fields ~x, λ and ρ, ξ will

become massive with a Hamiltonian

H = H
(2)
x,ρ,λ,χ + V

H
(2)
x,ρ,λ,χ =

p2x
2µ

+
p2ρ
4

+ r2ρ2 +
1

2µ
(ρ2 + ϑ)2 + i

√
2

µ
ρ
(
λχ+ χ̄λ̄

)
, (2.0.12)

where we separated the quadratic part from the interaction with other massless fields. We see

that ρ gets an expectation value and becomes massive with large mass mρ =
√

2|ϑ|
µ and we have
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to put this field into it’s oscillator ground state. Fermion fields λ, χ should be put into the state,

annihilated by operator
(
λχ+ χ̄λ̄

)
. Expectation value of ρ gives mass to x field, mx =

√
2|ϑ|
µ ,

but since the kinetic term for x contains 1
µ we have to take into account exchanges of x, or in

Hamiltonian language, take into account first excited states of x-oscillators. In all, the effective

Hamiltonian for massless fields zi and ξi will look like:

Heff
zi,ξi =< Ψ0

x,ρ,λ,χ|V |Ψ0
x,ρ,λ,χ > +

∑

n

| < Ψn
x,ρ,λ,χ|V |Ψn

x,ρ,λ,χ > |2
E0 − En

(2.0.13)

where we need to account for excited states of x only. The result is as expected

Heff
zi,ξi =

1

|θ|

(
pk̄ +

i

2
ρ2Γmn̄k̄ ξ̄

nξm
)
ωlk̄
FS

(
pl −

i

2
ρ2Γm̄nlξ̄

mξl
)
+

+
1

4
ρ2Rik̄lj̄(ξ̄

iξ̄k)(ξlξj). (2.0.14)

We choose fermionic ground state |0〉 to be

ξn1 |0〉 = ξ̄2n̄|0〉 = 0, ∀ n. (2.0.15)

The order of spinors in the Hamiltonian itself should be normal order, as usual. Ground states

of this Hamiltonian have a general form

Φn1...nkm̄1...m̄l
ξn1
2 ...ξnk

2 ξ̄m̄1 1...ξ̄m̄l 1, (2.0.16)

and correspond to elements of Dolbeault cohomology of the moduli space through identification

ξ̄n̄ 1 → dz̄n̄ ξn1 → θ−1wnm̄
FS

∂

∂dz̄m̄

ξn2 → dzn ξ̄n̄ 2 → θ−1wn̄m
FS

∂

∂dzm
. (2.0.17)

Forms Φn1...nkm̄1...m̄l
dzn1 ...dznkdz̄m̄1 ...dz̄m̄l are harmonic representatives of Dolbeault cohomol-

ogy Hk,l(M) and Hamiltonian (2.0.14) acts as a Laplacian on them. Now we can write spatial

rotation generators Mi,i = 1, 2, 3, following from the Lagrangian (2.0.10) as :

M i = µǫijkẋjxk − λ̄τ iλ− ρ2wFS
lk̄ ξ̄k̄τ iξl (2.0.18)

Once we go to the Higgs branch we have to take expectation of these generators in the ground

state of massive oscillators which gives
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M i = θwFS
lk̄ ξ̄k̄τ iξl. (2.0.19)

Using the identification (2.0.17) we get

M3 = θwFS
lk̄

(
ξ̄k̄ 1ξl1 − ξ̄k̄ 2ξl2

)
=

1

2

(
dz̄m̄

∂

∂dz̄m̄
+ dzm

∂

∂dzm

)
− dimC

2

M+ = θwFS
lk̄ ξ̄k̄ 1ξl2 = −θwFS

lk̄ dzl ∧ dz̄k̄

M− = θwFS
lk̄ ξ̄k̄ 2ξl1 = θ−1wlk̄

FS

∂

∂dzl
∧ ∂

∂dz̄k̄
(2.0.20)

which is exactly (3.2.29) if we put θ = 1.
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Appendix C

Properties of Attractor Flow trees

In this appendix we review some properties of the attractor mechanism and attractor flow trees

relevant to the discussion in chapter 4. The attractor flow equations for the Kähler moduli ta

for given charge Γ have the form [19, 20]:

d

dτ
ta(τ) = −2eUgab̄∂b̄|Z(Γ; t(τ)|

d

dτ
e−U = |Z(Γ; t(τ))|, (3.0.1)

where τ is the parameter along the flow, eU is metric warp factor, gab̄ is the metric on the

moduli space. The attractor flow can be written in an integrated form, which is particularly

useful for multicentered generalization [11]:

2e−U Im(e−iαΩ(t)) = −τΓ +H∞(t∞), (3.0.2)

where Ω(t) is the period vector, α = argZ(Γ; t), t∞ is the starting point of the flow and

H∞ = 2Im
[
e−iα∞Ω(t∞)

]
. (3.0.3)

Now we list and prove a number of properties of attractor flows that are useful in the main

text.

Property 1: For any two charges Γ and γ the attractor flow for charge Γ + γ crosses the

(anti)marginal stability locus Im
[
Z̄(Γ; t)Z(γ; t)

]
= 0 at most once.

Proof: (3.0.2) determines the value of the flow parameter τ , for which the locus Im
[
Z̄(Γ; t)Z(γ; t)

]
=

0 is crossed to be

τms(t∞) =
2Im

[
Z(Γ; t∞)Z(γ; t∞)

]

〈Γ, γ〉|Z(Γ + γ; t∞)| (3.0.4)

As (3.0.2) is linear in τ , there is only one solution (3.0.4).�

Let’s denote the point where the attractor flow of Γ + γ, starting at t, hits the locus

Im
[
Z̄(Γ; t)Z(γ; t)

]
= 0 by B(t).
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Property 2: For any t 6∈ AMS(γ,Γ), the distance in the moduli space from t to B(t) along

the flow of Γ + γ is finite.

Proof: Using (3.0.1) one can write an identity:

∫
dτ

(
dl

dτ

)2

=

∫
dτ ṫagab̄

¯̇tb̄ =
1

2

∫
dτeU

(
−2

¯
ṫ
¯b
∂b̄|Z| − 2ṫa∂a|Z|

)
= −

∫
eUd|Z|, (3.0.5)

where dl is a line element along the flow, parametrized by τ . Using the fact that d|Z| < 0 along

the flow and eU ≤ 1, we get

∫ τms(t)

0

dτ

(
dl

dτ

)2

≤ |Z(Γ + γ; t)|. (3.0.6)

Th parameter τms is finite, since the only place where it can go to infinity is on the locus

Z(Γ + γ; t) = 0, which belongs to AMS(γ,Γ). Thus we can conclude that

∫ τms

0

dτ

(
dl

dτ

)2

<∞, (3.0.7)

which means that the distance is indeed finite

∫ τms

0

dτ
dl

dτ
<∞. (3.0.8)

�

Property 3: The attractor flow of charge Γ in the neighborhood of (A)MS(γ,Γ) always has

the direction from stable to unstable side.

Proof: Indeed, writing the attractor equation for charge Γ as in (3.0.1) and taking inter-

section product of it with γ we get:

2eUIm

(
Z̄(Γ; t)

|Z(Γ; t)|Z(γ; t)
)
= −τ〈γ,Γ〉+ 2Im

(
Z̄(Γ; t∞)

|Z(Γ; t∞)|Z(γ; t∞)

)
. (3.0.9)

Dividing both sides by 〈γ,Γ〉 we get

2
eU

|Z(Γ; t)|
Im
(
Z̄(Γ; t)Z(γ; t)

)

〈γ,Γ〉 = −(τ − τms), (3.0.10)

which proves the Property after taking into account the definition of stable/unstable side (4.2.4).

�
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Appendix D

Arrangement of conjugation walls near Z(γ)

S(2γ,Γ)

t

Γ + γ

S(0γ,Γ)
S(−γ,Γ)

S(−2γ,Γ)

Γ
MS(Γ, γ)

B0(t) B1(t)
Z(γ)

B−1(t)
AMS(Γ, γ)

Γ− γ

S(γ,Γ)

Figure D.1: Location of conjugation walls S(nγ,Γ) as a function of n. Two attractor flows for
charges Γ + γ and Γ− γ are shown.

In figure D.1 we show the general arrangement of the walls S(pγ,Γ) walls for p ∈ Z in a

sufficiently small neighborhood of Z(Γ). Let us give a schematic proof that this arrangement

of walls is correct. To do this we find the gradient vectors, entering the attractor equations for

charges Γ + pγ, at the locus Z(γ). For this purpose we can neglect all the moduli except the

one parameterizing the plane in figure D.1 and can further choose it to be the period of γ, so

that Zh(γ; z) = z in a small neighborhood of Z(γ).1 In this effectively one complex dimensional

case the attractor equation will look like:

ż = −2eUgzz̄∂z̄ |Z(Γ + pγ; z)|, (4.0.1)

This can be written out as

ż = −eUgzz̄∂z̄K|Z(Γ + pγ; z)| − eUgzz̄eK/2

√
Zh

Z̄h
∂z̄
(
Z̄h(Γ; z̄) + pz̄

)
, (4.0.2)

and we want to study this flow in the leading approximation near z = 0 as a function of p.

Making a further choice of the phase of z we can assume without loss of generality that

argZh(Γ; z)|z=0 = π, so that AMS(γ,Γ) is the positive real axis and MS(γ,Γ) is the negative

real axis. In the neighborhood of z = 0 the metric will in general be singular. For example the

1Amore complete calculation would involve writing the general attractor equation for the moduli ya, assuming
that close to the zero of γ’s central charge we can write Zh(γ; z) ≃ αaya := z and then projecting the attractor
flow ẏa on to the direction ż = αaẏa. It gives the same result as we get below.
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metric will typically behave like gzz̄ ∼ − R
log |z|2 . Nevertheless, we can choose a gauge so that

∂z̄K is continuous and then we can write the leading approximation to the flow equation for

Γ + pz near z = 0 in the form
dz

dτ
= −Kgzz̄(∆− p) (4.0.3)

where K > 0 is constant and ∆ is a complex constant. The stable side is determined by the

sign of 〈Γ, γ〉 and taking 〈Γ, γ〉 > 0 the stable side will be on top of figure D.1. According to

Property 3 from Appendix C the attractor flow will cross (A)MS(γ,Γ) from stable to unstable

side which corresponds to Im∆ > 0. Then even if gzz̄ is singular, we know that it is positive,

and hence the tangent vectors to the flow have dy
dτ < 0 while dx

dτ is positive for p > Re∆ and

negative for p < Re∆. Thus, in a suffciently small neighborhood of z = 0 the flows will look as

shown in Figure D.1.
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Appendix E

The BST walls on the conifold

In this section we determine the positions of S(γm,n,Γm′,n′) walls in the conifold example of

Section 4.4. As discussed on Section 4.4, we are going to use large volume approximation1 to

solve (4.4.68) and find the branching point of the flow Γm̃,ñ := Γm′,n′ + γm,n from (4.4.69).

The starting point of the flow is t∞ = zP + LP̃eiφ and the large volume approximation of the

holomorphic central charges are given by

Zh(Γm′,n′ ; t∞) =
t3∞
6

−m′z − n′

Zh(γm,n; t∞) = −mz − n

Zh(Γm̃,ñ; t∞) =
t3∞
6

− m̃z − ñ. (5.0.1)

In terms of the harmonic functions H = −τΓ +H∞, entering (4.4.68), the moduli on the first

branch of the attractor tree are given by [77, 28].

tA =
HA − M

Q3/2 y
A

H0
+ i

Σ

Q3/2
yA

DABCy
ByC = −2H0HA +DABCH

BHC

Q3/2 = 1/3DABCy
AyByC

M = H0(H
0)2 + 1/3DABCH

AHBHC −HAHAH
0 (5.0.2)

The branching point corresponds to τms = 〈γm,n, H∞〉 =
√

3
J3
∞

Im

[

Z̄h(Γm̃,ñ;t∞)

|Zh(Γm̃,ñ;t∞)|
Zh(γm,n;t∞)

]

〈γm,n,Γm̃,ñ〉
,

and the only problem in finding the moduli at the brancing point is solving the equation

DABCy
ByC = −2H0HA +DABCH

BHC from (5.0.2). In the present case this reduces to

D222y
2y2 + 2D122y

1y2 +D112y
1y1 = −2H0H2 +D222H

2H2 + 2D122H
1H2 +D112H

1H1

D122y
2y2 + 2D112y

1y2 +D111y
1y1 = −2H0H1 +D122H

2H2 + 2D112H
1H2 +D111H

1H1(5.0.3)

1We use the large volume periods in what follows. Close to the discriminant locus, the periods get finite
quantum corrections, but one can check that the effect of these corrections is subleading in 1/Λ.
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It is easy to see that H1 ∼ O(L0) and H2 ∼ O(L1) and we will look for the solution of (5.0.3)

of the form

y1 = y1(1) +
1

L
y1(2) + . . .

y2 = Ly2(1) + y2(2) + . . .

(5.0.4)

This allows to solve (5.0.3) as an expansion in 1
L and gives

y2(1) = L

√
3

J3
∞

√
sin2 2φ− m

n
sinφ Im [ze−3iφ]

y1(1) =

√
3

J3
∞

(
−2Im

[
e−2iφ(−m

n z − 1)
]
Im
[
ze−3iφ

])

2
√
sin2 2φ− m

n sinφ Im [ze−3iφ]
. (5.0.5)

Note that triple-intersection numbers completely disappeared from the answer! Now we can

write our final expression for the moduli at the branching point :

zbr = − n

m
+

Im
[
e−2iφ(−m

n z − 1)
]

(
sin2 2φ− m

n sinφ Im [ze−3iφ]
)2
(
n

m
sin 2φ

(
sin2 2φ− 3

2

m

n
sinφ Im

[
ze−3iφ

])
−

−i sinφIm
[
ze−3iφ

]
√

3

4
sin2 2φ− m

n
sinφ Im [ze−3iφ]

)

Lbr = L
sinφ√

sin2 2φ− m
n sinφ Im [ze−3iφ]

tanφbr =

√
tan2 φ+

Im[e−3iφ(−m
n z − 1)]

sinφ cos2 φ
(5.0.6)

The BST wall is determined by the fact that the branching point is on the locus Zh(γm,n; tbr) =

−mzbr − n = 0. Using (5.0.6) we find that this happens when





Im
[
e−2iφ(−m

n z − 1)
]
= 0

3
4 sin

2 2φ− m
n sinφ Im

[
ze−3iφ

]
> 0.

(5.0.7)

which leads to the final answer (4.4.70).
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Appendix F

Enumerating Flow Trees in the FHSV Example

Let us consider attractor flow trees of the form (4.7.116)

Γm,n → (γm1,n1 + (γm2,n2 + ...(γmL−1,nL−1 + (Γ + γmL,nL))...)), (6.0.1)

where
∑
mi = m and

∑
ni = n. We make the simplifying assumptions described in Section

4.7.1. In particular τ = i and z is arbitrarily small. We can assume without loss of generality

that n > 0.

If the terminal point is in the lower half-plane (for z) then each successive split drives the

flow further into the lower half-plane. On the other hand
∑
ni = n must be positive, so some of

the ni must be positive, but all the walls MSmi,ni with ni positive are in the upper half-plane.

Therefore, the initial point must be in the upper half-plane.

Now consider a single split Γm,n → Γ + γm,n. The marginal stability wall MSm,n is always

to the right of the BST wall S(γm,n,Γ). If the initial point is to the right of the BST wall we

can construct the tree, otherwise, there is no intersection with the marginal stability wall.

In general, we cannot construct any flow tree with initial point to the left of the BST wall

S(γm,n,Γ) because the initial branching (which must take place in the lower half-plane) must

necessarily proceed from unstable to stable region, which is forbidden.

Now, consider a point infinitesimally to the right of the BST wall. When enumerating trees

further to the right we find a subset of these flows. We first claim that all the ni are positive.

One can check that if ni becomes negative, then the conservation of charge and the stable-

to-unstable rule forces the next ni+1 to be negative and so on so that the n-value of the core

flow grows without bound. Since we explicitly want the terminal core flow to be Γ this cannot

happen. Thus, the ni are all positive and form a partition of n, in particular, there are finitely

many choices for the ni.

Next, the flow tree will intersect a series of marginal stability walls for

γm1,n1 , γm2,n2 , . . . , γmL,nL ,

in that order. Since the flow proceeds to the right (stable to unstable) the walls must be
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ordered so that successive walls are in the clockwise direction. It is easy to check that the wall

MSmi+1,ni+1 is on the clockwise side of MSmi,ni iff

mini+1 − nimi+1 > 0 (6.0.2)

One way to see this is to require the slope −ni/mi to be decreasing. Another way is to require

Im(mj − inj)(mj+1 − inj+1) > 0. Since mi can be positive, zero, or negative, but ni must be

positive it is more convenient to write:

m1

n1
>
m2

n2
> · · · > mL

nL
. (6.0.3)

Now, if m − a ≤ 0 then all the successive walls have mi < 0. It follows that −mi forms a

partition of −m and hence there are finitely many choices for the mi. In that case, the trees

are labeled by two partitions of −m and n, respectively, subject to (6.0.3).

If m−a > 0 the situation is a little more complicated. The walls of marginal stability divide

up into the first set with mi ≥ 0, which are met first in moving downstream the flow tree and

the second set with mi < 0. For the first set there will be inequalities bounding the allowed

values of mi. Then the second set must form a partition to saturate total charge conjugation.

For example, if the first branching happens at MSm1,n1 with m1 > 0 then requiring that the

subsequent flow with tangent vector −a+m−m1 − i(n− n1) proceed into the unstable region

forces

Im(−a+m−m1 − i(n− n1))(m1 − in1) > 0 ⇒ m− a

n
>
m1

n1
(6.0.4)

There are therefore finitely many possible values for m1. If the next branching is at MSm2,n2

with m2 > 0 then we similarly get

−a+m−m1

n− n1
>
m2

n2
(6.0.5)

giving finitely many values of m2, and so on.

Of course, the walls are only relevant for wall-crossing provided the Hilbert spaces of halo

particles are nonvanishing. Thus gcd(mi, ni) must be 1 or 2.
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Appendix G

Computation of the periods

In this Appendix we give some details of the computation of periods near the singularity for

the X4 CY manifold of [67]. We start with a review of mirror symmetry and construction of

mirror manifold pairs via toric geometry, after that we go over the techniques used to compute

the periods using Picard-Fuchs equations. Finally we use these methods to compute the periods

near the singularity with massless vector multiplets by explicitly solving Picard-Fuchs equations

and using the method of analytic continuation of the periods from the large volume point. We

find consistence between the two methods and confirm the existence of two vanishing periods

at the singularity.

Construction of mirror manifolds

First we briefly review the construction of the X4 manifold with it’s mirror X̃4 as a hypersurface

in a 4-dimensional toric variety, given in [67]. As pioneered in the works of Batyrev [78] mirror

pair of CY manifolds (M,M̃) can be described as hyper surfaces in a pair of toric varieties

(P∆,P∆∗). Here ∆ and ∆∗ are a pair of reflexive polyhedra, describing the varieties in the

language of toric geometry. The dual polyhedra belong to the two dual rank 4 lattices (N,M)

and are defined by the set of their vertices {vi} and {v∗j }. We also denote by Σ
(k)
i the set of

k-dimensional cones who’s edges are formed by rays going from the origin to each vertex of the

polytope. To a given polytope ∆∗ one can associate a number of toric fans: take the set of one

dimensional cones Σ(1)(∆∗) and then choose a set T of 4-dimensional cones Σ
(4)
i (∆∗) such that

Σ
(4)
i ∩ Σ

(4)
j ∈ Σ(k), k < 4

∪i∈T Σ
(4)
i = R4. (7.0.1)

This set gives a triangulation of the polytope ∆∗ and is called a fan. Each fan T corresponds

to certain phase of the toric variety P∆. To construct it explicitly as a holomorphic quotient

we associate a coordinate yi to each one-dimensional cone Σ
(1)
i (∆∗) so that yi ∈ Cn, n =
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dimΣ(1)(∆∗) and write

P∆(T ) =
Cn − Z(∆;T )

G∆
. (7.0.2)

Here Z(∆;T ) is the subset of Cn where the action of toric group G∆ becomes singular. For

each subset of vertices S ⊂ Σ(1)(∆∗), that do not form a cone of the fan T but such that each

subset of S does form a cone, take the locus yi = 0,i ∈ S. Z(∆) is given by the union of all

these loci. Finally the group G∆ is defined as

G∆ := Ker[Hom(Σ(1)(∆∗), C∗) → Hom(N, C∗)], where

Hom(Σ(1)(∆∗), C∗) → Hom(N, C∗) : (λ1, ...λn) → (

n∏

i=1

λ
v∗
(i) 1

i , ...,

n∏

i=1

λ
v∗
(i) 4

i ). (7.0.3)

Here v∗i a, a = 1..4 are the coordinates of vertices in lattice M and the action of group G∆ on

Cn is

gλ ∈ G∆ : (y1, ..., yn) → (λ1y1, ..., λnyn). (7.0.4)

The variety (7.0.2) might still be singular. In order to resolve the singularities we have to add

integral points ofM inside 1- and 2-dimensional faces of ∆∗ and construct refined triangulations.

These triangulations will give smooth toric varieties, connected to each other through a sequence

of flops.

CY manifold X4 is a hyper surface in the above toric variety P∆ defined by a polynomial:

P (b, y) :=
∑

i∈Σ(1)(∆)

bi

n∏

j=1

y
〈vi,v∗

j 〉+1

j , (7.0.5)

where bi are coefficients, parameterizing complex structure deformations of X4. In practice, in

each C4 patch of the toric variety (7.0.2) we can choose 4 complex coordinates yj1 , ...yj4 and

(7.0.5) will give 3-dimensional surface in this patch.

The whole story repeats itself in describing the mirror CY X̃4 as a hypersurface in P∆∗ given

by a polynomial:

P̃ (a, x) :=
∑

j∈Σ(1)(∆∗)

aj

dimΣ(1)(∆)∏

i=1

x
〈vi,v∗

j 〉+1

i . (7.0.6)

The parameters aj now parametrize complex structure moduli space of the mirror and by mirror

symmetry this is isomorphic to the Kähler moduli space of X4.
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To be more specific we proceed to writing down the details of two manifolds X4 and X̃4

from [67]. The polytopes are given by their vertices as

∆ : v(1) = (0, 0, 1,−1) v(2) = (0, 0,−2, 1) v(3) = (6,−6, 1, 1) v(4) = (6, 4, 1, 1)

v(5) = (−14, 4, 1, 1) v(6) = (2, 2,−1, 1) v(7) = (−6, 2,−1, 1). (7.0.7)

∆∗ : v∗(1) = (−1, 0, 2, 3) v∗(2) = (0, 0,−1, 0) v∗(3) = (0, 0, 0,−1) v∗(4) = (0, 0, 2, 3)

v∗(5) = (0, 1, 2, 3) v∗(6) = (1, 2, 2, 3) v∗(7) = (0,−1, 2, 3) v∗(8) = (0,−1, 1, 2). (7.0.8)

In principle, polytope ∆ contains 194 integral points, including all internal points inside

1-, 2- and 3-dimensional faces and the corresponing polynomial, defining X4 will contain 194

monomials. However, following [67] we can restrict ourselves to a subspace of the full complex

structure moduli space, given only by the vertices of ∆. X4 will be given by a hypersurface

P (b, y) = b0y1...y8 + b1y
2
3 + b2y

3
2y8 + b3y

6
4y

12
7 y

10
8 + b4y

6
4y

10
5 y

20
6 y

2
7 + b5y

20
1 y

6
4y

10
5 y

2
7 +

+b6y
2
2y

2
4y

4
5y

8
6 + b7y

8
1y

2
2y

2
4y

4
5

(7.0.9)

inside the toric variety P∆. [67] analyzed in detail the rational curves inside X4. Of particular

interest is the family of conics fibered over P1, which shrinks when one dials certain Kähler

parameter of X4. This family can be seen if we put y8 = 0 and y4 = y5 = 1 in the above

equation:

b1y
2
3 + f20(y1, y6)y

2
7 + f8(y1, y6)y

2
2 = 0, (7.0.10)

where fi are homogeneous polynomials of given degree. It is easy to see that (y1, y6) parametrize

P1 and for each point on this P1 we have a plain conic. The discriminant of the above equation

has degree 28, which means that there 28 points on the P1 where the conic degenerates into a

pair of P1’s, intersecting over a point. Note that this is different from the claim made in [67]

that the discriminant has degree 24.

We can give the corresponding formulas for the mirror manifold X̃4. As mentioned above,

for a given polytope one can construct a number of fans, corresponding to toric varieties, related

to each other by flop transitions. For X̃4 with vertices (7.0.7) the 3-dimensional faces are

((1, 2, 3, 4, 6), (1, 2, 3, 5, 7), (1, 2, 6, 7), (1, 3, 4, 5), (1, 4, 5, 6, 7), (2, 3, 4, 5, 6, 7)), (7.0.11)
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where the numbers label vertices (7.0.7). We can associate a fan to this polytope by triangulating

the above 3-faces and then making each tetrahedron into a cone with vertex at the point

(0,0,0,0). One possible triangulation is:

T := ((1, 2, 3, 6), (1, 3, 4, 6), (1, 2, 3, 5), (1, 2, 5, 7), (1, 2, 6, 7), (1, 3, 4, 5), (1, 4, 5, 6), (1, 5, 6, 7),

(2, 3, 4, 5), (2, 4, 5, 6), (2, 5, 6, 7)) . (7.0.12)

For T we can find Z(∆∗;T ) to be

Z(∆) = {x3 = x7 = 0} ∪ {x4 = x7 = 0} ∪ {x1 = x2 = x4 = 0} ∪ {x3 = x5 = x6 = 0} ∪

∪{x1 = x2 = x5 = x6 = 0} ∪ {x2 = x3 = x4 = x6 = 0}. (7.0.13)

The gauge group G∆∗ will have a (C∗)3 subgroup, generated by the elements:

n(1) = (20, 10, 3, 2, 0, 0, 5)

n(2) = (0,−10, 1,−6, 0, 15, 0)

n(3) = (30, 20, 4, 3, 3, 0, 0), (7.0.14)

with gλ
n(i) : xj → eiλn

(i)
j xj . In addition there will be a discrete subgroup that will produce

quotient singularities. CY X̃4 is a hypersurface in P∆∗ given by a polynomial equation:

P4(a, x) = a0x1...x7 + a1x
20
5 x

8
7 + a2x

3
2x

2
6x

2
7 + a3x

2
1 + a4x

6
3x

6
4x

6
5x

2
6x

2
7 + a5x

10
4 x

10
5 x

4
6x

4
7 + a6x

20
4 x

8
6 +

+a7x
12
3 x

2
4x

2
5 + a8x2x

10
3 . (7.0.15)

aj parametrize complex structure moduli space of X̃4 which is isomorphic to the Kähler moduli

space of X4. Our main goal here is to study the singularities of MKahler and identify the

massless BPS spectrum at those singularities. To achieve this in the next Section we will study

the complex structure moduli space of X̃4. We will find the periods of the holomorphic 3-form

around the point a8 = 0, which as explained in [67] corresponds to shrinking the P1 family of

conics (7.0.10). On the other hand, in order to find the spectrum we need to identify special

Lagrangian cycles of (7.0.15), that vanish as we dial a8 → 0. This is not possible to do in

the current setting since the toric variety P∆∗ has quotient singularities and in order to resolve

them we need to add all 194 points of ∆ and consider a holomorphic quotient of a subvariety

of C194. This calculation seems to be out of reach. Nevertheless, computing the periods only

will already give us some evidence about the spectrum.
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Periods near the large volume point

In this section we compute the periods of the holomorphic 3-form of the mirror X̃4, using the

techniques described in ([79], [80], [81], [82]). It turns out that one needs only the polytope

data in order to do that and in particular the phase of toric variety, in which X̃4 is embedded,

is irrelevant.

First let’s introduce the notion of the Mori cone of a toric variety P∆ in a given phase

determined by a triangulation T of ∆∗. It is convenient to enlarge the lattice M and consider

a polytope in this enlagred lattice with vertices v̄∗i := (1, v∗i ). There is a linear space given by

L := {l ∈ RdimΣ(1)(∆∗)+1 : liv̄
∗
i = 0}. Dimension of this space is dimL = dimΣ(1)(∆∗) − 4.

For triangulation T take the set of 4-dimensional cones, comprising T . For each cone Σ
(4)
a (T )

denote the set of it’s 1-dimensional generators by Sa. Then to each Σ
(4)
a (T ) we can associate a

cone in L space given by

Ca
T = {l ∈ L : li ≥ 0 ∀i, li = 0 i ∈ Sa}. (7.0.16)

Intersection of all such cones is called the Mori cone for given triangulation:

CT = ∩aCa
T . (7.0.17)

The Kähler cone of P∆ for this triangulation T is dual to CT . As discussed in detail in [31],

a family of CY manifolds can have many phases, connected with each other through flops or

more general transitions. In what follows we will be interested in finding the periods of X4 in

the large volume phase and also near the singularity given a8 = 0. The Mori cone generators

for the large vomue phase are given in [67]:

l1 = (−2, 0, 0, 1, 1, 0, 0,−2, 2)

l2 = (0, 1, 0, 0, 0,−2, 1, 0, 0)

l3 = (0, 0, 0, 0,−2, 1, 0, 1, 0)

l4 = (−2, 0, 1, 1, 0, 0, 0, 1,−1). (7.0.18)

The period vector Π(a) is a function of ai from (7.0.15), parametrizing the complex structure

moduli space of X̃4 and satisfies the Picard-Fuchs equations:


 ∏

i:lmi >0

a
lmi
i

(
∂

∂ai

)lmi

− zl
∏

i:lmi <0

a
−lmi
i

(
∂

∂ai

)−lmi

Π(a) = 0, m = 1..4. (7.0.19)
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It is very convenient to introduce zm =
∏

i a
lmi
i , m = 1..4 as complex coordinates on the CS

moduli space of X̃4. These coordinates are called algebraic and have direct relation to the Kähler

moduli of X4. In particular, near the large volume point, which is given in these coordinates by

zm = 0 the mirror map between moduli space of X̃4 and Kähler moduli space of X4 is given by

zm ∼ ei2πtm . (7.0.20)

A crucial property of the large volume point is the presence of a unique period Π0(a), called

fundamental period, which is analytic around this point and non-vanishing at this point. It is

convenient to choose a ”gauge” such that

Π(a) =
1

a0
Π̃(a). (7.0.21)

In this gauge the fundamental period is a regular power series in aj around the large volume

point given by zi = 0. Using the identities

an
(
∂

∂a

)n

= (a∂a)(a∂a − 1)(a∂a − 2)...(a∂a − n+ 1), ai∂ai =
∑

k

likzk∂zk , (7.0.22)

and denoting θk := zk∂zk we can rewrite the Picard-Fuchs operators (7.0.19) as:

D1 = (θ1 + θ4)(θ1 − 2θ3)(2θ1 − θ4)(2θ1 − θ4 − 1)−

−z1(−2θ1 − 2θ4 − 1)(−2θ1 − 2θ4 − 2)(−2θ1 + θ4 + θ3)(−2θ1 + θ4 + θ3 − 1)

D2 = θ22 − z2(−2θ2 + θ3)(−2θ2 + θ3 − 1)

D3 = (−2θ1 + θ4 + θ3)(θ3 − 2θ2)− z3(θ1 − 2θ3)(θ1 − 2θ3 − 1)

D4 = θ4(θ1 + θ4)(−2θ1 + θ4 + θ3)−

−z4(−2θ1 − 2θ4 − 1)(−2θ1 − 2θ4 − 2)(2θ1 − θ4). (7.0.23)

Such generalized hypergeometric systems were studied first by Gelfand, Kapranov and Zelevin-

ski(GKZ) in [83]. Without going into too much details, the above system is incomplete, which

means that the space of solution to this system is much larger than the number of periods. In

order to compete it we first write it with all z’s being on the right of θ’s and possible factorizing
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the operators Di by polynomials of θj from the left:

D1 = (θ1 − 2θ3)(2θ1 − θ4)(2θ1 − θ4 − 1)−

−2(2θ1 + 2θ4 − 1)(−2θ1 + θ4 + θ3 + 2)(−2θ1 + θ4 + θ3 + 1)z1

D2 = θ22 − (−2θ2 + θ3 + 2)(−2θ2 + θ3 + 1)z2

D3 = (−2θ1 + θ4 + θ3)(θ3 − 2θ2)− (θ1 − 2θ3 + 2)(θ1 − 2θ3 + 1)z3

D4 = θ4(−2θ1 + θ4 + θ3)− 2(2θ1 + 2θ4 − 1)(2θ1 − θ4 + 1)z4. (7.0.24)

Now we consider all possible integral vectors insides the Mori cone, write the corresponding

operators Dl as above, and then look for linear combinations of them with polynomial in θk

coefficients such that the resulting operators can be factorized from the left by some polynomial

in θk, reducing the order of operators. This procedure must give us in this case 6 2nd order

operators, and this turns out to be a complete GKZ system:

D1 = θ22 − (−2θ2 + θ3 + 2)(−2θ2 + θ3 + 1)z2

D2 = (−2θ1 + θ4 + θ3)(θ3 − 2θ2)− (θ1 − 2θ3 + 2)(θ1 − 2θ3 + 1)z3

D3 = θ4(−2θ1 + θ4 + θ3)− 2(2θ1 + 2θ4 − 1)(2θ1 − θ4 + 1)z4

D4 = θ4(θ1 − 2θ3)− 24(2θ1 + 2θ4 − 1)(2θ1 + 2θ4 − 5)z1z
2
4 −

−4(2θ1 + 2θ4 − 1)(−2θ1 + θ4 + θ3 + 1)z1z4

D5 = (θ1 − 2θ3)(2θ1 − θ4)− 2(−2θ1 + θ4 + θ3 + 1)(−2θ1 + θ4 + θ3 + 2)z1 −

−4(2θ1 + 2θ4 − 3)(−2θ1 + θ4 + θ3 + 1)z1z4

D6 = (θ3 − 2θ2)(2θ1 − θ4)− 2(−2θ1 + θ4 + θ3 + 1)(θ1 − 2θ3 + 1)z1z3 −

−12(2θ1 + 2θ4 − 3)(θ1 − 2θ3 + 1)z1z3z4. (7.0.25)

Before proceeding further we briefly discuss the general approach to solving such systems. We

will apply this approach in the next section in order to find the periods around the point inside

the moduli space, namely the point with massless vector multiplets. Near the large volume

point z = 0 we can look for the solution of (7.0.25) in the form of a general power series in z:

w(z, ρ) =
∑

n≥0

c(n; ρ)zn+ρ, (7.0.26)

where n = (n1, ...n4) is a multi-index and ρ = (ρ1, ...ρ4) ∈ C4. Plugging this in (7.0.25) allows

us to determine the coefficients c(n; ρ) for all n and in addition to get an algebraic equation

on ρ, called indicial equation. This equation can be obtained by taking the principal parts of

Picard-Fuchs operators by putting z = 0 in them and replacing θi → ρi:
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ρ22 = 0 (−2ρ1 + ρ4 + ρ3)(ρ3 − 2ρ2) = 0 ρ4(−2ρ1 + ρ4 + ρ3) = 0

ρ4(ρ1 − 2ρ3) = 0 (ρ1 − 2ρ3)(2ρ1 − ρ4) = 0 (ρ3 − 2ρ2)(2ρ1 − ρ4) = 0. (7.0.27)

This system has only one solution ρ = 0, which is 10-fold degenerate. The 10 solutions of

(7.0.25) corresponding to 10 periods of X4 are given by

w(z, ρ)|ρ=0, ∂iw(z, ρ)|ρ=0, C
jk∂j∂kw(z, ρ)|ρ=0, C

ijk∂i∂j∂kw(z, ρ)|ρ=0, i, j, k = 1..4, (7.0.28)

where all the derivatives are taken w.r.t ρ. There are much more than 10 independent func-

tions here, however, the coefficients Cjk and Cijk are not arbitrary but satisfy the following

conditions:

Cjk∂j∂k ppa(ρ)|ρ=0 = 0 Cijk∂i∂j∂k ppa(ρ)|ρ=0 = 0, (7.0.29)

where ppa(ρ) are the principal parts given in (7.0.27). Of course any combination of these

solutions is also a solution. Recall now that the period vector in the IIB picture (corresponding

to the mirror CY manifold X̃4) can be defined in any integral symplectic basis (α0, αa, β
a, β0)

of H3(X ;Z). The basis is called symplectic if

(α0, β
0) = 1 (αa, β

b) = δba, (7.0.30)

and the rest of intersection numbers are zero. There is a particular basis which is most useful

in applications of mirror symmetry, namely the basis in which the period vector, given by

Π(z) :=

(∫

α0

Ω(z),

∫

αa

Ω(z),

∫

βa

Ω(z),

∫

β0

Ω(z)

)
(7.0.31)

can be written in terms of the Kähler moduli ta of X4 as

Π(z) =

(
1, ta,

1

2
Dabct

btc,
1

6
Dabct

atbtc
)
+O(e2πit), (7.0.32)

where Dabc are the triple intersection numbers of X4 manifold. In the IIA description, given by

X4, the components of the period have interpretation of holomorphic central charges of BPS

states, formed by wrapping (D0,D2,D4,D6)-branes on a symplectic basis of H2∗(X4, Z). In other

words, the above basis is particularly useful since it has a direct geometrical interpretation on

the IIA side. In this basis the period vector, being a solution to the Picard-Fuch system (7.0.25)

is given by
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Π0(z) = w(z, ρ)|ρ=0

Πi(z) =
1

(2πi)
∂iw(z, ρ)|ρ=0, i = 1..4

Πi(z) =
1

2(2πi)2
Dijk∂j∂kw(z, ρ)|ρ=0,

Π0(z) = − 1

6(2πi)3
Dijk∂i∂j∂kw(z, ρ)|ρ=0, i, j, k = 1..4. (7.0.33)

This defines the period vector in an integral symplectic basis (unique up to monodromy) around

the large volume point. The general form of function (7.0.26) for Mori vectors l(k) is:

w(z, ρ) = G(ρ)zρ
∑

n≥0

Γ(1−∑k l
(k)
0 (nk + ρk))∏

i>0 Γ(
∑

k l
(k)
i (nk + ρk) + 1)

zn, where

G(ρ) =

∏
i>0 Γ(

∑
k l

(k)
i ρk + 1)

Γ(1−∑k l
(k)
0 ρk)

. (7.0.34)

Plugging in the Mori cone vectors (7.0.18) we get:

w(z, ρ) = G(ρ)zρ
∑

n1,n2,n3,n4≥0

Γ(1 + 2(n1 + ρ1) + 2(n4 + ρ4))z
n

Γ(n2 + ρ2 + 1)2Γ(n4 + ρ4 + 1)Γ(n1 + ρ1 + n4 + ρ4 + 1)
×

× 1

Γ(n1 + ρ1 − 2(n3 + ρ3) + 1)Γ(n3 + ρ3 − 2(n2 + ρ2) + 1)
×

× 1

Γ(n3 + ρ3 + n4 + ρ4 − 2(n1 + ρ1) + 1)Γ(2(n1 + ρ1)− (n4 + ρ4) + 1)
,

G(ρ) =
Γ(ρ2 + 1)2Γ(ρ4 + 1)Γ(ρ1 + ρ4 + 1)Γ(ρ1 − 2ρ3 + 1)Γ(ρ3 − 2ρ2 + 1)

Γ(1 + 2ρ1 + 2ρ4)
×

×Γ(ρ3 + ρ4 − 2ρ1 + 1)Γ(2ρ1 − ρ4 + 1). (7.0.35)

Periods around the singularity with massless vector multiplets

In this section we finally find the periods around the singularity with massless vector multiplets.

As mentioned above it is given by the complex codimension one locus a8 = 0. In terms of

algebraic coordinates, introduced under (7.0.19)
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z1 =
a3a4a

2
8

a20a
2
7

z2 =
a1a6
a25

z3 =
a5a7
a24

z4 =
a2a3a7
a20a8

, (7.0.36)

the locus looks like

z1 → 0 z4 → ∞ z1z
2
4 = const. (7.0.37)

There are two ways to get the periods around this locus: we can either write the GKZ system

(7.0.25) around this locus and solve it or we can take the periods (7.0.33) and analytically

continue them to this locus. We will use both ways and find a consistent answer. To write

(7.0.25) near the a8 = 0 locus we pass to new coordinates

z′1 = z1z
2
4

z′2,3 = z2,3

z′4 = 1/z4, (7.0.38)

in which the system becomes:

D1 = θ′22 − (−2θ′2 + θ′3 + 2)(−2θ′2 + θ′3 + 1)z′2

D2 = (−θ′4 + θ′3)(θ
′
3 − 2θ′2)− (θ′1 − 2θ′3 + 2)(θ′1 − 2θ′3 + 1)z′3

D3 = (6θ′1 − 2θ′4 + 1)θ′4 −
1

2
(2θ′1 − θ′4 + 1)(−θ′4 + θ′3 + 1)z′4

D4 = (2θ′1 − θ′4)(θ
′
1 − 2θ′3)− 24(6θ′1 − 2θ′4 − 1)(6θ′1 − 2θ′4 − 5)z′1 −

−4(6θ′1 − 2θ′4 − 1)(−θ′4 + θ′3 + 1)z′1z
′
4

D5 = (θ′1 − 2θ′3)θ
′
4 − 2(−θ′4 + θ′3 + 1)(−θ′4 + θ′3 + 2)z′1z

′2
4 −

−4(6θ′1 − 2θ′4 − 3)(−θ′4 + θ′3 + 1)z′1z
′
4

D6 = (θ′3 − 2θ′2)θ
′
4 − 2(−θ′4 + θ′3 + 1)(θ′1 − 2θ′3 + 1)z′1z

′2
4 z
′
3 −

−12(6θ′1 − 2θ′4 − 3)(θ′1 − 2θ′3 + 1)z′1z
′
3z
′
4. (7.0.39)

Notice that the principal parts of Picard-Fuchs operators are not homogeneous in this new
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coordinates. This is expected since such homogeneity is really the unique property of the large

volume point. The indicial equations will now have two degenerate solutions:

S1 : ρi = 0 ∀i, 8 times degenerate

S2 : ρi = 0 i 6= 4, ρ4 =
1

2
, 2 times degenerate. (7.0.40)

To construct the solutions we need to obtain a function w(z′, ρ), analogous to (7.0.34), but

constructed using the new Mori cone vectors:

l′
(1)

= l(1) + 2l(4)

l′
(2,3)

= l(2,3)

l′
(4)

= −l(4). (7.0.41)

To prove this recall that the Mori cone is dual to the Kahler cone. Kähler cones, corresponding

to different patches of the moduli space form ”secondary fan”, which describes compactification

of the moduli space and the coordinate transformation between the two chambers is given by

linear relations between Mori cones, corresponding to these two chambers. Provided that the

algebraic coordinates in the chamber, containing the divisor a8 = 0, are related to the large

volume coordinates as in (7.0.38), the transformation of Mori cone generators must be given by

(7.0.41). Using these vectors we can write the function w′(z′, ρ):

w′(z, ρ) = G′(ρ)z′ρ
∑

n1,n2,n3,n4≥0

Γ(1 + 6(n1 + ρ1)− 2(n4 + ρ4))z
′n

Γ(n2 + ρ2 + 1)2Γ(n4 + ρ4 + 1)Γ(3n1 + 3ρ1 − n4 − ρ4 + 1)
×

× 1

Γ(n1 + ρ1 − 2(n3 + ρ3) + 1)Γ(n3 + ρ3 − 2(n2 + ρ2) + 1)Γ(n3 + ρ3 − n4 − ρ4 + 1)
×

× 1

Γ(2(n1 + ρ1)− (n4 + ρ4) + 1)
. (7.0.42)

In terms of this function the periods corresponding to S2 from (7.0.40) are given by

w̃0(z
′) = w′(z′, ρ)|S2

w̃1(z
′) = 1

(2πi) (4∂ρ1 + ∂ρ2 + 2∂ρ3 + 12∂ρ4)w
′(z′, ρ)|S2 , (7.0.43)

where to get the second solution, we take a general linear combination of first derivatives ∂ρi ,

act on the principal parts of the Picard-Fuchs operators (7.0.39) and find combinations that



148

annihilate those principal parts at S2. Around the point z′i = 0 these two periods will look like

w̃0(z
′) ≈

√
z′4 (1 +O(z′))

w̃1(z
′) ≈ 1

(2πi)

√
z′4(4 log z

′
1 + log z′2 + 2 log z′3 + 12 log z′4) (1 +O(z′)) . (7.0.44)

It is clear that the two periods will both vanish at the singular locus, given in the new coordinates

by z′4 = 0. What is not clear is how these two periods are related to the integral sympectic basis

(7.0.33). We will find the precise relation in the next Section. Now let’s proceed to the solution

S1. The fundamental solution here is just w0 := w′(z′, ρ)ρ=0. To get first order in logs solution

we again find linear combinations of the first ρ derivatives, that annihilate the principal parts

of Picard-Fuchs operators:

w1(z
′) =

1

(2πi)
∂ρ1w

′(z′, ρ)|ρ=0 w2(z
′) =

1

(2πi)
∂ρ2w

′(z′, ρ)|ρ=0 w3(z
′) =

1

(2πi)
∂ρ3w

′(z′, ρ)|ρ=0.

(7.0.45)

Using second order derivatives gives 4 linear combinations:

w4(z
′) =

1

(2πi)2
(∂2ρ1

+ ∂ρ1∂ρ3)w
′(z′, ρ)|ρ=0

w5(z
′) =

1

(2πi)2
∂ρ1∂ρ2w

′(z′, ρ)|ρ=0

w6(z
′) =

1

(2πi)2
(∂2ρ3

+ ∂ρ2∂ρ3)w
′(z′, ρ)|ρ=0

w7(z
′) =

1

(2πi)2
(4∂ρ1∂ρ4 − ∂ρ2∂ρ3 + ∂ρ2∂ρ4 + 2∂ρ3∂ρ4 + 6∂2ρ4

)w′(z′, ρ)|ρ=0. (7.0.46)

but the last one is not independent but is related to w̃1 found above through θ4w7 = 1

(πi2)
√

z′
4

w̃1.

Finally the third order ρ derivatives give:

w8(z
′) =

1

(2πi)3
(
8∂31 + 6∂21∂2 + 12∂21∂3 + 6∂1∂2∂3 + 6∂1∂

2
3

)
w′(z′, ρ)|ρ=0. (7.0.47)

The periods w1, ..., w8 can be written in a much more suggestive way. Recall that according to

[67] at the locus a8 = 0 of X4 it is possible to go through an extremal transition to another CY

manifold with 3 Kähler moduli, denoted by X3. Geometrically on the IIA side we freeze the

Kähler modulus z′4 = 0 and resolve the singularities by deforming the complex structure moduli

to get to X3 manifold with Hodge numbers dim H1,1(X3) = 3, dim H3(X3) = 243. It is easy to
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see that we can write siutable linear combinations of w1, ..., w8 in the form:

wX3
0 (z′) = w′(z′, ρ)|ρ=0

wX3

i (z′) =
1

(2πi)
∂iw(z

′, ρ)|ρ=0,

wX3

i+3(z
′) =

1

2(2πi)2
Dijk

X3
∂j∂kw

′(z′, ρ)|ρ=0,

wX3
7 (z′) = − 1

6(2πi)3
Dijk

X3
∂i∂j∂kw

′(z′, ρ)|ρ=0, i, j, k = 1..3, (7.0.48)

where Dijk
X3

are the intersection numbers of X3. After putting z′4 = 0 these 8 periods become

exactly the periods of X3 around it’s large volume point. This is a manifestation of the extremal

transition on the level of periods. It is instructive to find the map between the found periods and

the periods of the heterotic description of the same extremal transition. Now let’s discuss the

meaning of the above periods, and in particular, compare our results with the heterotic string.

The details of the heterotic description of this extremal transition as well as the IIA/heterotic

map in the weak coupling limit can be found in [84]. The Kähler moduli in the heterotic

description comprise of the dilaton field S, the toroidal moduli T, U and Wilson lines of the

gauge fields on the torus. Using the IIA/Het map, given in Eq.(65) of [84], we can identify

V = t4 = w̃0 =
√
z′4(1 + O(z′))

U = t1 =
w1

w0
=

1

(2πi)
log z′1 +O(z′)

S − T = t2 =
w2

w0
=

1

(2πi)
log z′2 +O(z′)

T − U = t3 =
w3

w0
=

1

(2πi)
log z′3 +O(z′)

VD = const w̃1 = const
√
z′4(4 log z

′
1 + log z′2 + 2 log z′3 + 12 log z′4 +O(z′)). (7.0.49)

The last equality holds because the periods (w̃0, w̃1) have the correct monodromy transformation

around the singularity z′4 = 0. To give even more convincing argument we use (4.9), (5.14),

(5.15) from [84] to write the period, dual to the Wilson line near V = 0 as:

VD ≈ −24

iπ
V

(
logV +

T + U

12

)
. (7.0.50)

Using the mirror map (7.0.49) above this takes the form

VD ≈ − 2

i2π

√
z4 (12 log z4 + 4 log z1 + 2 log z2) , (7.0.51)

which is exactly our w̃1 (in the weak-coupling limit) and the correct normalization is
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VD = −2w̃1. (7.0.52)

The main result of this relation between IIB and heterotic string periods is that (w̃0,−2w̃1, w0, ..., w7)

form an integral symplectic basis of periods. In the next section we confirm this using Mellin-

Barnes method of analytic continuation of the periods from the large volume point to the

neighborhood of z′ = 0 point.

Analytic continuation of the periods

The ”period generating function” (7.0.34) can be rewritten in the new coordinates (7.0.38) as

w(z′, ρ) = G(ρ)z′ρ1

1 z′ρ2

2 z′ρ3

3 z′2ρ1−ρ4

4 ×

×
∑

n1,n2,n3≥0

z′n1
1 z′n2

2 z′n3
3 F (z′4, ρ;n1, n2, n3)

Γ(n2 + ρ2 + 1)2Γ(n1 + ρ1 − 2(n3 + ρ3) + 1)Γ(n3 + ρ3 − 2(n2 + ρ2) + 1)

F (z′4, ρ;n1, n2, n3) =
∑

m≤2n1

Γ(1 + 6n1 − 2m+ 2ρ1 + 2ρ4)z
′m
4

Γ(2n1 −m+ ρ4 + 1)Γ(3n1 −m+ ρ1 + ρ4 + 1)
×

× 1

Γ(n3 −m+ ρ3 + ρ4 − 2ρ1 + 1)Γ(m+ 2ρ1 − ρ4 + 1)
, (7.0.53)

where m = 2n1 − n4. Doing the Mellin-Barnes trick to analytically continue F (z′4, ρ;n1, n2, n3)

to the neighborhood of z′4 = 0 we get:

z′2ρ1−ρ4

4 F (z′4, ρ;n1, n2, n3) = −
∑

m>2n1

Γ(1 + 6n1 − 2m+ 2ρ1 + 2ρ4)

Γ(2n1 −m+ ρ4 + 1)Γ(3n1 −m+ ρ1 + ρ4 + 1)
×

× 1

Γ(n3 −m+ ρ3 + ρ4 − 2ρ1 + 1)Γ(m+ 2ρ1 − ρ4 + 1)
z′m+2ρ1−ρ4

4 +

+
∑

m≥0

Γ(1 + 6n1 − 2m+ 6ρ1)

Γ(m+ 1)Γ(2n1 −m+ 2ρ1 + 1)Γ(3n1 −m+ 3ρ1 + 1)Γ(n3 −m+ ρ3 + 1)
z′m4 +

+(−1)3n1

√
z′4 sinπ(ρ4 − 2ρ1)

2
√
π cosπ(ρ4 + ρ1)

×

×
∑

m≥0

Γ(−3n1 −m− 3ρ1 − 1
2 ) z

′3n1+m+3ρ1

4

22mΓ(m+ 1)Γ(−n1 −m− ρ1 +
1
2 )Γ(n3 − 3n1 −m− 3ρ1 + ρ3 +

1
2 )
. (7.0.54)

An interesting technical point is that the the first sum would not give any contribution to the

periods.1 Using this function we can find all the periods, using (7.0.33), which in the case of

X4 transforms into

1As m > 2n1 the first Γ-function downstairs would give ρ4 and it’s higher powers in the numerator.For n3 ≤
n1/2 we get powers of (ρ3+ρ4−2ρ1) from Γ(n3−m+ρ3+ρ4−2ρ1+1), and for n3 > n1/2 Γ(n1+ρ1−2(n3+ρ3)+1)
will give ρ1 − 2ρ3. In all this first term will be proportional to either ρ4(ρ3 + ρ4 − 2ρ1) or ρ4(ρ1 − 2ρ3), but
these both are principal parts of GKZ system, and as such will be annihilated by all ρ-derivatives.
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Π5(z
′) =

1

2(2πi)2
(8∂21 + 4∂1∂2 + 8∂1∂3 + 2∂2∂3 + 2∂23 + 32∂1∂4 + 8∂2∂4 +

+16∂3∂4 + 24∂24)w(z
′, ρ)|ρ=0

Π6(z
′) =

1

2(2πi)2
(2∂21 + 2∂1∂3 + 8∂1∂4 + 4∂3∂4 + 6∂24)w(z

′, ρ)|ρ=0

Π7(z
′) =

1

2(2πi)2
(4∂21 + 2∂1∂2 + 4∂1∂3 + 16∂1∂4 + 4∂2∂4 + 8∂3∂4 + 12∂24)w(z

′, ρ)|ρ=0

Π8(z
′) =

1

2(2πi)2
(16∂21 + 8∂1∂2 + 16∂1∂3 + 4∂2∂3 + 4∂23 + 48∂1∂4 + 12∂2∂4 +

+24∂3∂4 + 36∂24)w(z
′, ρ)|ρ=0

Π9(z
′) = − 1

6(2πi)3
(
8∂31 + 6∂21∂2 + 12∂21∂3 + 6∂1∂2∂3 + 6∂1∂

2
3 + 48∂21∂4 + 24∂1∂2∂4+

+48∂1∂3∂4 + 12∂2∂3∂4 + 12∂23∂4 + 72∂1∂
2
4 + 18∂2∂

2
4 + 36∂3∂

2
4 + 36∂34

)
w(z′, ρ)|ρ=0.(7.0.55)

Some algebra finally gives the periods of X4 near the z′4 = 0 locus:

Π0 = w′(z′, ρ)S1 ∼ 1 +O(z′)

Π1 = wX3
1 − 2Π4 ∼ 1

(2πi)
log z′1 + 2

√
z′4(1 +O(z′))

Π2 = wX3
2 ∼ 1

(2πi)
log z′2 +O(z′)

Π3 = wX3
3 ∼ 1

(2πi)
log z′3 +O(z′)

Π4 = − 1

(2πi)
w′(z′, ρ)S2 ∼ − 1

(2πi)

√
z′4(1 +O(z′))

Π5 = wX3
4

Π6 = wX3
5

Π7 = wX3
6

Π8 = 2wX3
4 + 2

1

(2πi)2
(4∂1 + ∂2 + 2∂3 + 12∂4)w

′(z′, ρ)S2 − 8(log 4 + 6)Π4

Π9 = wX3
7 − 56

3
Π4. (7.0.56)

Due to the fact that these periods are obtained from the large volume ones through analytic con-

tinuation, we automatically get an integral symplectic basis of periods. Performing a symplectic
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transformaion we can bring these periods to the form:

Π0 = wX3
0 (z′),

Π1 = wX3
1

Π2 = wX3
2

Π3 = wX3
3

Π4 = − 1

(2πi)
w̃0(z

′)

Π5 = wX3
4

Π6 = wX3
5

Π7 = wX3
6

Π8 = 2
1

(2πi)2
w̃1(z

′)

Π9 = wX3
7 . (7.0.57)

Thus we confirmed the relation between the two dual vanishing periods, following from (7.0.52).

The monodromy around the singularity z4 → e2πiz4 in this basis will look like:

Π4 → −Π4

Π8 → −Π8 + 24 Π4,

(7.0.58)

Finally, we can give the physical interpretation of the vanishing periods. Near the large volume

point the periods (Π4,Π8) correspond to central charges of D2 and D4 branes, wrapping the

corresponding cycles in X4. After analytic continuation and the change of basis, that brought

us to (7.0.57), the periods (Π4,Π8) are interpreted as central charges of a D2 brane and a

D4 brane with some flux. We see that both BPS states become massless at the singularity.

This supports the statements, made in 4.7.3, that we have two mutually non-local BPS states,

becoming massless at the singularity.
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Appendix H

No-mixing conditions in supersymmetric galaxies

A crucial element in our derivation of the KS wall crossing formula and its generalization in

chapter 5 was the argument for the absence of quantum mixing between galaxies with different

core charges, and between galaxies with orbit charges γ ∈ Lorb and galaxies with some orbit

charges γ /∈ Lorb. As promised we will now examine this argument in more detail, and show

that mixing is absent in the Λ → ∞ limit except if there exist massless charged particles at the

attractor point of Γ0, with charge in Lorb.

We first investigate nonperturbative quantum mixing between the perturbative semiclassical

states corresponding to a galaxy with all orbiting charges γ ∈ Lorb, i.e. 〈γ,Γ0〉 = 0 = 〈γ,Γ′0〉,
and those corresponding to a galaxy with some orbiting charges γ /∈ Lorb. The core charge is

Γc = Λ2Γ0 +ΛΓ′0 + γc for both galaxies. This kind of mixing could in principle be mediated by

a tunneling process in which a charge γ in orbit splits into a charge γ1 + δ and a charge γ2 − δ,

with γ1, γ2 ∈ Lorb, γ1 + γ2 = γ, and δ /∈ Lorb, followed by tunneling of the two charges to their

respective BPS equilibrium positions. If the charges are held fixed in the Λ → ∞ limit, then

since δ /∈ Lorb the symplectic product 〈δ,Γc〉 is at least of order Λ and therefore by (4.1.1) the

distance to which the charges would have to tunnel diverges when Λ → ∞. Since tunneling

over infinite distances is infinitely suppressed, the amplitude for such a process vanishes in the

limit. If on the other hand we allow δ to grow with Λ, then in particular for δ ≡ ΛΓ0 + Γ′0,

it is no longer true that 〈δ,Γc〉 diverges. So for such δ the tunneling trajectory does not have

to be infinitely long. However, such diverging charges carry diverging entropy, and hence, by

the arguments we will give below, we get infinite entropic tunneling suppression of the splitting

event. An even stronger argument is that BPS configurations containing such charge pairs

(γ1+ δ, γ2− δ) actually cannot exist, since in the limit Λ → ∞, these two charges are essentially

opposite (as they diverge but sum up to a finite fixed charge γ), so they are essentially each

others antiparticles, and it is not possible to have particles and anti-particles at the same time

in orbit and still be BPS (since particle annihilation would clearly be energetically favorable).

Thus, either way, mixing with galaxies with orbiting charges not in Lorb does not occur in the
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limit Λ → ∞.1

Now we investigate mixing between different cores. Consider a BPS galaxy with core charge

Γc = Λ2Γ0+ΛΓ′0+γc and total orbiting charge Γorb, and a galaxy with core charge Γ′c = Γc− δ
and orbiting charge Γ′orb = Γorb + δ. The perturbative semiclassical states corresponding to

these classical configurations can mix nonperturbatively through tunneling of a BPS particle

of charge δ between the core black hole and a solar system orbiting the galaxy. We will now

argue that such tunneling is infinitely suppressed in the limit Λ → ∞, except if δ lies in Lorb

and becomes massless at the attractor point t∗(Γ0) of Γ0.

The infinite suppression when δ /∈ Lorb in the limit Λ → ∞ follows by essentially the same

arguments as we used above to show the absence of mixing between galaxies with all orbiting

charges in Lorb and galaxies with some orbiting charges not in Lorb: charges δ /∈ Lorb would

either have to tunnel infinitely far (when they are kept finite), or (when δ ∝ ΛΓ0 + Γ′0) have

infinite entropy themselves and give rise to an infinite change in entropy of the core. Either

way, tunneling is infinitely suppressed.

When δ ∈ Lorb, the particle can tunnel to finite distance, but tunneling will be infinitely

suppressed in the limit due to the fact that the change in entropy of the core is infinite, except

when the mass mδ = |Zδ| of δ vanishes at t∗(Γ0). We first show the steps in the proof of this

claim and then explain them. The entropy difference is

∆S = SBH(Λ
2Γ0 + ΛΓ′0 + γc)− SBH(Λ

2Γ0 + ΛΓ′0 + γc − δ) (8.0.1)

= Λ4

[
δI

Λ2

d

dΓI
S(Γ)|Γ=Γ0 +O(

1

Λ4
)

]
(8.0.2)

= πΛ2δI
d

dΓI
|Z(Γ, t∗(Γ))|2|Γ=Γ0 +O(1) (8.0.3)

= 2πΛ2 Re(ZΓ0Zδ)|t∗(Γ0) +O(1) (8.0.4)

= ±2πΛ2|ZΓ0 |mδ |t∗(Γ0) +O(1) , (8.0.5)

which indeed diverges when Λ → ∞ except if mδ|t∗(Γ0) = 0. In going from the first to the

second line we used the fact that the Bekenstein-Hawking entropy of a BPS black hole scales

quadratically with the charges, and we expanded around Λ = ∞. In the third line we used the

expression of the entropy in terms of the central charge. In going to the next to last line we

were allowed to ignore the dependence on Γ through t∗(Γ) because |Z(Γ, t)| has a critical point

at t = t∗(Γ), i.e. ∂t|Z(Γ, t)||t∗(Γ) = 0. In the final step we used the attractor point equation

1 The preceding reasoning makes clear why we added the somewhat peculiar term ΛΓ′
0 in (5.1.4): without

it there would be unsuppressed tunneling processes for δ ∝ Γ0, and with a term Λ2Γ′
0 instead, the there would

be unsuppressed tunneling for δ ∝ Γ0 + Γ′
0. Dropping the ΛΓ′

0 term while adding Γ0 to Lorb would be an
alternative, but then the awkward situation arises that all walls Wkγ+mΓ0

coincide, spoiling the derivation of
the KS formula.
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2 Im(ZΓ0Zδ)|t∗(Γ0) = 〈Γ0, δ〉 = 0. Thus, in the absence of massless BPS particles at t∗(Γ0) with

charge in Lorb, there can be no mixing between galaxies with different core charges.

In conclusion, if no massless charged particles exist at t∗(Γ0), our BPS galaxies are closed

quantum systems in the limit Λ → ∞, and the framed index is well defined. Massless charged

particles only appear at loci of complex codimension 1. Thus, for a generic Γ0, there will be no

massless charged particles at t∗(Γ0), and there will be no mixing.

There might however be special circumstances in which we are interested precisely in the

situation where Lorb contains charges becoming massless at t∗(Γ0). In this case, mixing may

occur, so to be guaranteed a well-defined index we should sum over values of the core charge

differing by multiples of the charges becoming massless. It is indeed natural to consider such

nongeneric situations in compactifications with codimension 1 loci of enhanced gauge symmetry,

as we now explain. Near such loci, there are light vector bosons, say of charge γ, and typically

also light monopoles of charge γD. Their central charges are related by ZγD ∼ τZγ , where

τ is the (moduli-dependent) complexified coupling, and Zγ → 0 at the enhanced symmetry

locus. When we want to allow both the vector boson and the monopole in a galactic orbit, i.e.

γ, γD ∈ Lorb, the attractor equations for Γ0 imply Im(ZγZΓ0) = 0 = Im(ZγDZΓ0) at t∗(Γ0).

Given the relation ZγD ∼ τZγ and Im τ 6= 0, this implies Zγ |t∗(Γ0) = 0 — that is, we necessarily

have massless particles at the attractor point. In Section 4.7.1 we discuss an example of this

sort, and show explicitly that it is indeed necessary to sum over core charges to get a well-defined

index.

To make this more precise, we could try to define a generalized framed index by summing

over the entire lattice V0 of multiples of charges in Lorb becoming massless at t∗(Γ0):

ΩC(Γorb; t∞) :=
∑

ν∈V0

lim
Λ→∞

TrHΓc+ν(Γorb−ν;t∞) (−1)F . (8.0.6)

There is some redundancy among these objects, as Ω{Γ0,Γ′
0,γc}(Γorb) = Ω{Γ0,Γ′

0,γc+ν}(Γorb − ν)

for any ν ∈ V0. Consequently, the associated generating function

G[C](X ; t∞) :=
∑

Γorb∈Lorb

ΩC(Γorb; t∞)Xγc+Γorb , (8.0.7)

depends only on the equivalence class [C] := {Γ0,Γ
′
0, γcmodV0}. We could now try to repeat

the analysis of the previous sections using these generalized definitions. It is however not

immediately obvious that the objects we have defined here are finite or computable in practice,

and indeed it is only in special cases possible to restrict the sum over cores to a finite subset.
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