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Dissertation Director:  

Prof. Gyan Bhanot 

 

 

Understanding individualized breast cancer treatment options can help physicians care for 

their patients by careful selection of personalized therapies. The first steps towards this 

goal have already been taken by clinicians, with the frequent use of molecular and 

genetic biomarkers to classify breast cancer into categories which direct treatment. This 

thesis will propose new therapeutic targets for different breast cancer subtypes, as well as 

a new set of biomarkers that more efficiently predict hormone resistance in estrogen 

positive (ER+) breast tumors. A novel methodology for therapeutic target prediction will 

be proposed, based on a new paradigm called “gene centrality”. In addition to being over-

expressed, good therapeutic targets should have a high degree of connectivity in the 

tumor network. Gene centrality encompasses this concept by measuring the connectivity 

of genes in a network in which each edge is weighted by the level of over-expression of 
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the target gene. Using this method, a series of high centrality SRC proto-oncogenes 

(LYN, YES1, HCK, FYN, and LCK) were identified in subsets of Basal-like and HER2+ 

breast cancers. The hypothesis that YES1 is a therapeutic target in breast cancer was 

experimentally tested.  We found that Basal-like breast tumor cell lines showed a 

significant decrease in fitness upon silencing the expression of YES1. Another validated 

therapeutic target in breast cancer is the estrogen receptor ESR1, targeted by drugs such 

as Tamoxifen. However, a significant fraction (~30%) of ER+ cases doesn’t respond well 

to this therapy. A novel outlier analysis method was applied to gene expression data from 

ER+ breast cancer patients to identify genes highly associated with Tamoxifen resistance. 

These included cell cycle genes as well as several chromosomal amplification sites. In 

addition to the well known HER2 amplicon on 17q12, we discovered that amplicons in 

8q24.3, 8p11.2 and 17q21.33-q25.1 correlate strongly with early distant metastasis and 

poor long term survival. As independent biomarkers for Tamoxifen resistance, together 

these chromosomal regions are predictive for ~75% of patients that suffer early disease 

relapse.
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Chapter 1: Breast Cancer – Overview & Facts 

 

“Cancer is a word, not a sentence.” 
John Diamond 

 

1.1 Molecular origins of breast cancer 

Cancer is a generic term for a group of diseases that can affect most tissue types in the 

human body. It causes cells to lose their normal function and grow out of control. Most 

types of cancer cells will eventually grow into an abnormal mass of tissue that serves no 

purpose, and are named after the body part where the tumor originally formed. 

Eventually cells from the initial tumor site will spread to other organs where they gain the 

ability to form new tumors, in a process called metastasis. This, in time, leads to multiple 

organ failure which causes the death of the patient.  

 

Breast cancer is produced by the accumulation of genetic or epigenetic damage in 

mammary cells. Normal cells go through stages in which they develop, perform their 

intended function and then eventually die, when they are replaced by other proliferating 

cells. Cancer occurs when cells escape their normal, regulated program of division and 

growth and begin to grow in a dysregulated manner. This escape from control can happen 

through a variety of pathways. One possible mechanism is a sequence of specific 

mutations that alter the control provided by tumor suppressor genes or proto-oncogenes 

that normally regulate cellular behavior.  As the tumor grows, it eventually accumulates 
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enough genetic damage to allow it to break away from the primary site and establish as a 

distant tumor (metastasis) in a different part of the body. 

 

Proto-oncogenes are genes that normally function to promote differentiation and 

proliferation of cells in a regulated manner. A variety of proto-oncogenes exist and play 

key roles at crucial steps of cell growth, determining when a cell should enter cell cycle, 

how long it should stay there and when and under what conditions is it appropriate to 

allow the cell to divide. A mutation in the proto-oncogene’s sequence or an increase in 

the amount of protein it produces (over-expression) can interfere with its normal 

regulatory role. This can lead to uncontrolled growth, ultimately resulting in a developing 

tumor. Mutated or over-expressed proto-oncogenes that cause cancer are called 

oncogenes and are of several types: growth factors, receptor tyrosine kinases, 

cytoplasmic tyrosine kinases, regulatory GTPases, and transcription factors. An example 

of an important oncogene in breast cancer is ERBB2 that codes for the human epidermal 

growth factor receptor 2 (HER2). HER2 is a cell membrane bound receptor tyrosine 

kinase involved in signaling pathways leading to cell growth and differentiation. 

Approximately 20-30% of breast tumors over-express ERBB2, leading to a flood of 

signals to the cell cycle pathway driving it to increase the rate of cell division. This is 

why HER2-positive breast cancers are aggressive and have poor prognosis if untreated. 

 

Other oncogenes known to be involved in breast cancer include transcriptional regulators 

MYC, FOS, Cyclin D1 and Cyclin E, involved in cell cycle control, cyclin regulator 
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CDK-1, G-protein Ras, PI3K and Akt kinases, EIF-4E, an initiator of protein translation 

(1), and IKBKE, involved in NF-kB activation (2). 

 

The female hormone Estrogen together with the estrogen receptor ESR1, are very 

important regulators of growth and differentiation in normal mammary glands. Although 

they are not oncogenes, and are expressed in normal breast tissue, they are important in 

the development and progression of breast carcinomas because of their involvement in a 

variety of programs which promote growth of breast tissue.  It is also known that specific 

interactions between Cyclin D1 and estrogen directly stimulate the cell cycle (3; 4). 

   

Tumor suppressor genes are the policemen of the cell, and their role is to prevent cells 

from becoming tumorigenic. In order for cancer to develop, these genes need to be 

silenced or their function abrogated in some way (by mutation, methylation, deletion, 

etc.). One of the main functions of these genes is to establish “check points” during cell 

cycle. This effectively pauses the cell cycle to allow a variety of cellular programs to 

perform various checks (such as test for DNA damage, check that the chromosomes have 

divided correctly in S phase, check that the spindle forms and chromosomes segregate 

properly in M phase etc). If some of these checks fail, repair programs are initiated and if 

these fail too, the cell is forced into a program of regulated suicide (apoptosis). The 

checks controlled by tumor suppressor genes are necessary to avoid damaged 

chromosomes to be passed to generations of daughter cells, as this may cause them to 

become cancerous. The key player in the “cell suicide” or apoptotic pathway is the P53 

gene, which regulates the delicate balance between survival and death during DNA repair. 
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Various mechanisms inactivate P53 in approximately 40% of breast cancer cases (5) 

allowing damaged cells to reproduce. 

 

A small proportion of breast cancer cases (5-10%) are related to inheritance of certain 

mutated genes that predispose women to cancers of the breast and ovaries. Tumor 

suppressor genes BRCA1 and BRCA2 are mutated in these cases leading to a disruption 

of the DNA repair process. Incorrect repair leads to an accumulation of errors that 

eventually cause cancer. Women with abnormal BRCA1 are estimated to have a 57% risk 

of developing breast cancer by age 70 while women with abnormal BRCA2 have a 

corresponding 49% risk (6). 

 

Other tumor suppressor genes known to be involved in breast cancer include the Retino 

blastoma gene (Rb) which regulates progression from G1 to S phase, the pocket protein 

p27 which is involved in cell cycle arrest and cyclin dependent protein kinase inhibition, 

cell cycle checkpoint kinases CHK2 and ATM, and phosphatase PTEN, a negative 

regulator of AKT kinase (1). 

 

1.2 Breast cancer classification 

The breast is made up of glands for milk production, called lobules, and ducts that 

connect the lobules to the nipple. The remainder of the breast is made up of adipose, 

connective, and lymphatic tissue. Most breast cancers arise in the epithelial lining of the 

milk ducts. Some breast cancers are called “in situ” because they are confined, either 

within the ducts (ductal carcinoma in situ or DCIS) or within lobules (lobular carcinoma 
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in situ or LCIS). Almost all breast cancers which are identified “in situ” can be 

effectively cured, usually by surgery and radiation alone. However, once the tumor 

breaks the natural barriers enclosing of the ducts or lobules and invades surrounding 

tissue, the tumor is called “Infiltrating Ductal Carcinoma or IDC” and is much harder to 

treat. 

 

The seriousness of breast cancer depends strongly on its stage, a clinical measure 

assigned by pathologists and used in determining treatment.  A commonly used staging 

system in the US has been defined by the American Joint Committee on Cancer (AJCC) 

and it classifies tumors based on size, whether the cancer is invasive or non-invasive, 

whether lymph nodes are involved, and whether the cancer has spread beyond the breast. 

Based on these features, stages are defined in a manner which is believed to represent 

disease progression. Stage 0 represents DCIS or LCIS, stage I is assigned if the tumor 

size is < 2 cm and there is no lymph node involvement, etc. Stage IV is the most 

advanced stage with lowest survival expectancy (Table 1.1 (7)) and represents breast 

cancers which have spread to other organs, usually the lungs, liver, bone, or brain.  

 

A number of studies (8; 9) have shown that morphological assessment of the degree of 

differentiation (histologic grade) also provides useful prognostic information in breast 

cancer. One of the more commonly used systems for breast tumor grading is the 

Nottingham Grading System (10), based on a microscopic evaluation of morphologic and 

cytologic features of tumor cells, including degree of tubule formation, nuclear 

pleomorphism, and mitotic count. The sum of these scores stratifies breast tumors into 
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grade 1 (well-differentiated, slow-growing), grade 2 (moderately differentiated), and 

grade 3 (poorly differentiated, highly proliferative) malignancies. There is a relationship 

between breast cancer stage at diagnosis and tumor grade (8). Stage and grade are 

somewhat correlated. Tumors assigned a higher stage generally have a larger fraction of 

high grade tumors than those assigned a lower stage.  However, this is not a very strong 

correlation, and lower stage breast cancers can still be high grade. Thus, both stage and 

grade are considered to be independent markers of disease progression (Table 1.2 (9)) 

and both are used by clinicians to determine appropriate treatment. 

 

It is well known that breast cancer is not a single disease, but instead, consists of multiple 

subtypes with different rates of progression and risk of long term recurrence/survival. 

The clinical approach to the management of breast cancer depends on their subtype 

classification.  Approximately 60-70% of tumors express the estrogen receptor (ER), and 

are susceptible to treatments targeting the estrogen signaling pathway (11), such as long 

term treatment with Tamoxifen or aromatase inhibitors. About 15-30% of breast cancers 

have amplification of the human epidermal growth factor receptor-2 (HER2) and are 

treated by Trastuzumab (Herceptin®) and other agents that target the HER2 trans-

membrane receptor tyrosine kinase (12).  However, there remains significant 

heterogeneity in both natural history and treatment response in tumors with similar 

clinical classification (13; 14; 15).   

 

High-throughput gene expression analyses have provided additional insight into this 

clinical heterogeneity. DNA microarrays are used to measure mRNA expression of 
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thousands of genes simultaneously. In brief, this technology consists of an array of 

thousands of microscopic spots of DNA oligonucleotides, each containing small amounts 

of an exact sequence. Each of these probes contains a sequence specific to a single gene 

that is used to hybridize labeled cDNA (target) from the 3’ end of the respective gene. 

Probe-target hybridization is usually detected and quantified by detection of fluorophore-, 

silver-, or chemi-luminescence-labeling of the target cDNA and used to determine 

relative abundance of nucleic acid sequences in the target. These intensity values can be 

obtained in a high throughput format to quantify the mRNA expression of thousands of 

genes. 

 

Supervised learning methods applied to such gene expression datasets have resulted in 

several gene panels predictive of risk that are currently being applied to clinical practice 

(16; 17; 18) (for details see Chapter 3).  An alternate approach to analysis of gene 

expression data is based on unsupervised clustering (for details see Chapter 3) (15; 19) 

and has successfully identified molecular subtypes of breast cancer with distinct gene 

expression profiles and risk for disease recurrence and survival. The overall classification 

that has emerged from the early studies divided breast cancers into Luminal A (ER+ with 

good prognosis), Luminal B (ER+ with poor prognosis), HER2+ (HER2+, ER-) and 

Basal-like (ER-, PR-, HER2-). The additional clinical value of this molecular 

classification is limited by its close correspondence to the status of biomarkers such as 

ER, PR, HER2 status, and tumor grade (Figure 1.1) and stage, which are routinely 

measured in the clinic. However, molecular classification has allowed for a deeper 

understanding of the biology of breast cancer from measurements of over-expressed or 
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under-expressed genes. Gene expression analysis have shown that Luminal tumors 

express high amounts of luminal cytokeratins and genetic markers of luminal epithelial 

cells of normal breast tissue (21). In contrast, Basal-like breast cancers express high 

amounts of basal cytokeratins such as CK5 and a variety of growth factor receptors, 

including epidermal growth factor receptor (EGFR), c-kit, hepatocyte growth factor 

(HGF) and insulin growth factors (IGFs) (15; 17). Another feature that differentiates 

Basal-like tumors from the Luminal type is the dysfunction of the DNA repair 

mechanism, resulting in tumors with high genomic instability (22). Aberrant genomic 

patterns in Basal-like tumors are caused in part by the loss or dysregulation of BRCA1 

and BRCA2 genes, involved in the repair of double-strand DNA breaks. Additional 

genomic aberrations associated with Basal-like tumors include the loss of the X 

chromosome inactivation marker (Xi), loss of heterozygocity and activation of both X 

chromosomes (23).  

 

1.3 Treatment of breast cancer 

There are almost 200,000 cases of invasive breast cancer diagnosed each year in the 

United States (12). Although advances in diagnosis and treatment have led to 

improvements in survival, over 40,000 women die each year from this disease (12). 

Breast cancer prognosis and treatment options are generally based on the stage and 

biological characteristics of the disease. Lymphovascular spread, histologic grade, ER/PR 

and HER2 status, as well as patient menopausal status and age are important factors in 

determining treatment. Table 1.3 outlines typical treatment protocols organized by stage 

and type. Most women with breast cancer will undergo some type of surgery depending 
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on the size and spread of the tumor. Surgery is often combined with other treatments such 

as radiation therapy, chemotherapy, endocrine therapy and/or tissue-targeted therapy. 

Surgery and radiation are considered local therapies, while the rest (treatment with anti-

cancer drugs, hormone treatments etc) are classified as systemic therapies, which are 

based on delivery of the drugs via the blood to all parts of the body. Systemic treatment 

given to patients before surgery is called neo-adjuvant therapy. It is meant to shrink the 

tumor enough to make surgery possible or to allow less invasive breast-conserving 

surgery to be performed. Systemic treatment given to patients after surgery is called 

adjuvant therapy. After the surgical removal of the tumor, it is important to kill local or 

circulating tumor cells which may cause recurrence.  Systemic therapy often results in 

substantially decreased cancer recurrence and disease specific death. Lymph node-

positive disease benefits most from systemic therapy. Metastatic breast cancers are also 

treated by systemic therapy, because complete removal of the disseminated tumor foci by 

surgery is generally not possible. 

 

Estrogen, a hormone produced mainly in the ovaries, promotes the growth of 60-70% of 

breast cancers. Patients whose tumors test positive for the estrogen receptor ESR1 are 

administered endocrine therapies such as aromatase inhibitors (AI), selective estrogen 

receptor modulators (SERMs) such as Tamoxifen, or gonadotropin-releasing hormone 

agonists. These drugs either block estrogen or prevent estrogen production, thereby 

preventing stimulation of an estrogen-sensitive tumor. Tamoxifen is a highly popular 

SERM drug used for both premenopausal and postmenopausal women with ER+ breast 

cancer. Large clinical trials have shown that Tamoxifen therapy results in a 41% 
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reduction in annual recurrence and a 33% reduction in cancer related death in the first 5 

years (24).  

 

Aromatase inhibitors like Letrozole, Anastrozole and Exemestane are also used to treat 

ER+ breast cancer cases. However, since AIs work by blocking the conversion of 

androgens to estrogen, this class of drugs works only for postmenopausal women. 

Clinical trials have consistently shown that aromatase inhibitors also reduce the risk of 

relapse both in direct comparison with Tamoxifen or when used after completion of 

Tamoxifen treatment (25; 26; 27). However, none of these studies have shown an 

improvement in overall survival compared to Tamoxifen. In spite of this, many doctors 

prefer AIs over Tamoxifen as the first endocrine treatment for ER+ postmenopausal 

breast cancer patients, because AIs tend to be better tolerated and have fewer side effects.  

 

Approximately 15-30% of breast cancers over-express ERBB2 (HER2+). Untreated, 

these cancers are aggressive and have poor prognosis. A humanized anti-ERBB2 

monoclonal antibody, Trastuzumab (Herceptin), has been shown to improve recurrence 

and survival rates when combined with chemotherapy in HER2+ patients. Two large 

clinical trials showed that the risk of recurrence and death in HER2+ patients treated with 

Herceptin reduced by 52% and 33%, respectively, compared to chemotherapy alone (28). 

 

1.4 New and upcoming treatment options 

With the advent of new high throughput technologies like RNA-seq and next generation 

single molecule sequencing, targeted therapies and molecular diagnostics, breast cancer 
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treatment has the potential to become personalized to the specifics of each tumor. 

Estrogen and progesterone receptor expression levels are already used to predict response 

to hormonal therapy with Tamoxifen or similar drugs, while ERBB2 (HER2) over-

expression is used to detect HER2+ tumors that might respond to drugs that target HER2 

like Trastuzumab. Since ERBB2 is over-expressed in HER2+ tumors by chromosomal 

amplification of the 17q12 locus, which is the location of the ERBB2 gene, patients likely 

to respond to Trastuzumab may be identified by assessing the level of chromosomal 

amplification of 17q12 by Fluorescence in Situ Hybridization (FISH) with specific 

probes.  

 

Gene expression profiling has been used to develop genomic tests that may provide better 

predictions of clinical outcome than the traditional clinical and pathological standards. 

One of the main purposes is to predict response to Tamoxifen treatment. This is a well 

tolerated drug with low toxicity and excellent response rates of over 70% in patients with 

tumors expressing estrogen and progesterone receptors (29). Although most of the cases 

will eventually develop some form of resistance to anti-estrogen therapy, patients with 

bad initial response have significantly lower survival expectation. Table 1.4 lists 4 such 

commercially available tests that are used to predict clinical outcome for these cases. 

Clinicians use them to decide whether to prescribe chemotherapy in addition to 

Tamoxifen; i.e. wither it will benefit the patient to undergo more aggressive therapy 

because of the likelihood of early recurrence.  
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Besides FDA approved therapies like Tamoxifen and Herceptin, other drugs have shown 

promising results in treating breast cancer. Zoledronic acid (Zometa®) is a 

bisphosphanate drug used to treat bone metastasis and osteoporosis. It appears to 

significantly reduce the risk of recurrence in early stage ER+ breast cancer when used in 

combination with hormonal therapy like Tamoxifen (30). Other drugs that have shown 

promising results are the so called anti-angiogenic drugs that work by blocking blood 

supply to the tumor. Preclinical studies showed that when used in combination with a 

chemotherapeutic agent at lower doses, it slows disease progression in patients with 

metastatic breast cancer (31; 32).  

 

A promising new class of drugs, called PARP (Poly ADP -ribose polymerase) inhibitors, 

appears to be effective in treating breast cancers that have inactivating mutations in 

BRCA1 or BRCA2 genes. BRCA1 and BRCA2 are involved in DNA repair in 

complementary pathways. When both pathways are compromised, tumor cells become 

more sensitive to DNA damage induced by chemotherapy and radio therapy (33). A 

number of PARP inhibitors are currently in clinical testing. 
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Table 1.1: Breast cancer five-year survival by stage at diagnosis 

Five-year survival rates for patients with different diagnosed breast cancer stage. Data for 

these statistics were collected through 2006 and reported using classifications of situ, 

localized regional, and distant. 

 
Cancer stage Classification Five-year survival rate 
0 In situ 100% 
I & II Early invasive 98% (local); 83.6% (regional) 

III Locally advanced 57% 

IV Metastatic 23.4% 

 

 

Table 1.2: Breast cancer five-year survival by histologic grade at diagnosis 

Five-year survival rates for patients with different histologic tumor grades treated with 

surgery and radiation alone. Data for these statistics were collected from 1977 to 1986. 

 
 Tumor grade Classification Five-year survival rate 
1 Well-differentiated breast cells 93% 

2 Moderately-differentiated breast cells 82% 
3 Poorly differentiated breast cells 65% 
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Table 1.3: Typical treatment options for breast cancer by stage 

The last three columns list adjuvant therapy options. Table adapted with permission from 

Maughan et al. (7). 

 
Cancer stage 
and type 

Primary treatment Hormone 
receptor 
negative 

Hormone 
receptor 
positive 

HER2 over-
expression 

Stage 0: in situ 
Lobular carcinoma 

No treatment or consider 
prophylaxis with 
Tamoxifen 

— — — 

Ductal Carcinoma  
in situ 

Breast-conserving 
surgery and radiation 
therapy 

— — — 

Stages I & II: early 
stage invasive 

Breast-conserving 
surgery and radiation 
therapy 

Chemotherapy Chemotherapy 
and endocrine 
therapy 

Chemotherapy 
and 
Trastuzumab 
(Herceptin) 

Stage III: locally 
advanced 
Noninflammatory 

Induction chemotherapy, 
followed by breast-
conserving surgery and 
radiation therapy 

Induction 
chemotherapy 

Induction 
chemotherapy 
and 
postoperative 
endocrine 
therapy 

Induction 
chemotherapy 
and 
postoperative 
Trastuzumab Inflammatory Induction chemotherapy, 

followed by mastectomy 
and radiation therapy 

Stage IV: metastatic Radiation therapy or 
bisphosphonates for 
bone pain 

Chemotherapy Endocrine 
therapy with or 
without 
chemotherapy 

Trastuzumab 
with or without 
chemotherapy 

Recurrent: 
Local after breast 
conserving surgery 

Mastectomy Chemotherapy Chemotherapy 
and endocrine 
therapy 

Chemotherapy 
and 
Trastuzumab 

Local after mastectomy Wide excision 

Local inoperable Induction chemotherapy 
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Table 1.4: Commercially available genomic assays for the prediction of clinical 

outcome in patients with breast cancer 

 ER denotes estrogen receptor, FDA stands for Food and Drug Administration, and Q-

RT-PCR represents the quantitative reverse-transcriptase-polymerase chain reaction. 

Table adapted with permission from Sotiriou et al. (34). 

 
 MammaPrint Oncotype DX Theros MapQuant DX 
Provider Agendia Genomic Health Biotheranostics Ipsogen 
Type of assay 70-gene assay 21-gene recurrence 

score 
2-gene ratio of 
HOXB13 to IL17R 
and molecular grade 
index 

Genomic grade 

Type of tissue 
sample 

Fresh or frozen Formalin-fixed, 
paraffin-embedded 

Formalin-fixed, 
paraffin-embedded 

Fresh or frozen 

Technique DNA microarrays Q-RT-PCR Q-RT-PCR DNA microarrays 
Indication To aid in prognostic 

prediction in patients 
<61 yr of age with 
stage I or II, node-
negative disease with 
a tumor size < 5 cm 

To predict the risk of 
recurrence in patients 
with ER+, node-
negative disease 
treated with 
Tamoxifen; to identify 
patients with low risk 
of recurrence who 
may not need 
adjuvant 
chemotherapy 

To stratify ER+ 
patients into groups 
with a predicted low 
risk of recurrence and 
a predicted good or 
poor response to 
endocrine therapy 

To stratify grade 2 
tumors into low-risk 
grade 1 or high-risk 
grade 3 tumors, 
specifically for 
invasive, primary, 
ER+ grade 2 tumors 

FDA clearance Yes No No No 

Availability Europe and US Europe and US United States Europe 
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Figure 1.1: Correspondence between molecular class and clinical features of breast 

cancer 

ER denotes estrogen receptor and HER2 the human epidermal receptor 2. Ki-67 is a 

nuclear antigen and a marker for cell cycle senescence. Figure reproduced with 

permission from Sotiriou et al. (34). 
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Chapter 2: Therapeutic Targets in Breast Cancer 

 

“The most exciting phrase to hear in science, the one that heralds new 
discoveries, is not 'Eureka!' (I found it!) but 'That's funny ...'.” 

Isaac Asimov (1920-1992) 
 

2.1 A novel paradigm for therapeutic target identification 

The success of Trastuzumab (Herceptin) in treating certain types of breast cancer has 

heralded a rush for the next targeted therapy in breast cancer. This chapter will present a 

novel method for estimating therapeutic targets in different classes of breast tumors. 

Since good therapies such as Tamoxifen and Herceptin, already exist for ER+/PR+ and 

HER2+ breast cancers, we will first focus on ER-/PR-/HER2- cases and propose new 

targeted therapies for this type of cancer. 

 

Basal-like breast cancers (BLC) are high grade, invasive tumors characterized by the 

“triple negative" phenotype, lacking expression of the estrogen receptor (ER), 

progesterone receptor (PR), and HER2 and hence has no obvious target pathway for 

adjuvant therapy. BLC account for approximately 15% of breast cancers, tend to occur in 

younger women and account for a disproportionate amount of breast cancer deaths (35). 

BLC do not respond to Tamoxifen or Herceptin and there are at present no targeted 

therapies for their treatment.  
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Our goal is to identify specific therapeutic targets for BLC.  Towards this end, we 

hypothesize that good targets should be highly expressed proteins that are “important” for 

the survival of the tumor cell, meaning that down-regulation of the associated gene would 

lead to a significant impact on the fitness of the cancer cells. Intuitively, important genes 

are correlated with a large number of other genes in their expression values across 

multiple samples, acting like hubs (high degree nodes) in the associated gene network. 

Our assumption is that identifying these “hubs” may lead to appropriate targets for 

therapy.  

 

Normal cellular behavior is a complex, regulated network of interaction between genes, 

proteins, transcription factors, microRNA etc. Tumor cells modify this network to allow 

them to proliferate and avoid detection and apoptosis. This is achieved by altering 

specific genes to enable them to avoid/ignore apoptotic pathways, proliferate, elicit blood 

supply, migrate to other tissue and reestablish there as a metastatic tumor. Targeted 

cancer therapies aim to neutralize specific proteins necessary for the tumor cell to remain 

viable in-vivo. Ideally, the proteins targeted should be such that their down-regulation has 

a major impact on the survival/fitness of the tumor cells and, at the same time, has a 

smaller effect on normal cells. Gene or protein expression levels are not sufficient to 

identify these targets because the level thresholds for tumorigenic behavior may be 

different for different genes/proteins and different for each individual.  We suggest a 

novel algorithm and methodology to identify therapeutic targets by using a technique 

based on a new paradigm which we call gene centrality. 
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The identification of a target gene as one with high centrality is based on our expectation 

that in addition to being over-expressed, good therapeutic targets must have a high degree 

of connectivity in the tumor gene network. We identify such genes by computing the 

eigenvector associated with the largest eigenvalue of a modified gene connectivity 

network matrix in which each edge is weighted by the over-expression level of the target 

gene, as shown in Figure 2.1. Genes with high centrality are those with high coefficients 

in the first eigenvector. We expect such genes to be better therapeutic targets, because 

their modification would affect a relatively large number of other “important” genes. 

Simulations on synthetic gene networks (36) show that knocking out such highly 

connected genes (i.e. genes linked to many other genes) yields a lower fitness compared 

to knocking out a gene with fewer connections, and this effect is even stronger for genes 

with high expression values. 

 

We applied this method to two published breast cancer gene expression datasets. Tumors 

were classified as Luminal, HER2+ and Basal-like based on clinical information on ER, 

PR and HER2 biomarkers. Molecular subtypes within these classes were identified using 

consensus clustering and centroid based classification (13). Potential therapeutic targets 

within each subtype were identified using network analysis as described above. This 

analysis identified a number of SRC tyrosine kinases LYN, YES1, HCK, FYN, LCK 

with high centrality scores in subsets of Basal-like breast cancers and HER2+ tumors. 

Their importance was verified with a growth/survival assay by stably suppressing the 

expression of YES1 in several breast cancer cell lines. This analysis showed that down-

regulation of YES1 has a significant effect on the fitness of cancer cells. It also suggests 
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that several existing drugs, such as SRC inhibitors, might be successfully used in treating 

an identifiable subset of BLCs.  

 

2.2 Identification of candidate therapeutic targets in breast 

cancer subtypes 

We analyzed gene expression data from Wang et al. (37), consisting of 286 early stage, 

lymph node negative breast tumor samples from patients treated with surgery and 

radiation but no adjuvant or neo-adjuvant therapy. Long term recurrence/survival data 

was available for all patients. Robust unsupervised consensus clustering had previously 

split this dataset into six core breast cancer subtypes (13; 38; 39), two within each clinical 

class. The Luminal (ER+) cases split into 28 Luminal A (LA) and 104 Luminal B (LB) 

samples, HER2+ (HER2+,ER-) cases split into 14 HER2I  and 17 HER2NI, while Basal-

like (HER2-,ER-,PR-) cases split into 15 BA1 and 22 BA2 samples. LA and LB tumors 

were both positive for estrogen and progesterone, the main difference between them 

being that LB cases had a significantly higher recurrence rate. HER2I and HER2NI breast 

cancers both had amplification of the ERBB2 (HER2) chromosomal region 17q12, but 

HER2I tumors had a significantly lower recurrence rate correlated with high expression 

of many lymphocyte associated genes (13). Compared to the BA2 subtype, the BA1 cases 

were characterized by over-expression of genes associated with the innate 

immune/defense response pathway. Chapter 3.1 provides a more in depth description of 

the clustering method used and these breast cancer subtypes.  
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We also analyzed a second gene expression dataset from Ivshina et al. (40), consisting of 

249 samples from primary invasive breast tumors. Samples were classified into subtypes 

using the core clusters already identified in the Wang et al. (37) dataset by comparing 

gene expression values for each sample to mean expression values calculated for each of 

the original core clusters. Centroids for each subtype were identified using normalized 

gene expression values as described in (13) and distances from the centroids to samples 

from the new dataset were calculated using several distance metrics (such as Pearson 

correlation and Euclidean distance). For each distance metric used, the new samples were 

assigned to the subtype whose centroid they were closest to. Samples that did not 

consistently classify with the same subtype for all distance measures were discarded. We 

thus identified 78 LA, 96 LB, 12 HER2I, 24 HER2NI, 11 BA1 and 13 BA2 tumors.  

 

Both gene expression datasets were obtained from the Gene Expression Omnibus 

(GEO:www.ncbi.nlm.nih.gov/geo) database with accession identifiers GSE2034 and 

GSE4992 for the first (Wang et al. (37)) and the second (Ivshina et al. (40)) dataset 

respectively. Table 2.1 summarizes the clinical and pathological characteristics of all 

patients used in the study. The main difference between the two datasets is in the 

distribution of lymph node (LN) status and histologic grade, but this does not adversely 

affect our analysis, because it depends mostly on the subtype assignments, which are also 

given in Table 2.1.  

 

Outlier scores (θ) and Pearson correlation values (r) were calculated for each gene across 

all samples. The outlier score is a measure of the relative over-expression of a gene in 
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one subtype compared to all others. It is defined as the percentage of tumor samples that 

over-express a particular gene. To make the score robust, the outlier score for each 

subtype was defined as the mean over the distribution of outlier scores across sample 

bootstrap datasets. To reduce sample size bias, each bootstrap dataset was chosen by 

random sampling of an equal number of samples from each subtype. Outlier score values 

were determined separately for the two datasets (GSE2034 and GSE4992) and then 

merged into one meta-outlier score (θ̂ ) by taking a weighted mean of the individual 

outlier scores over bootstrap datasets. Similarly, Pearson correlation values between gene 

pairs were calculated for each of the six tumor classes for both datasets and then merged 

into meta-correlation values ( r̂ ). Correlations that were significantly different between 

the two datasets were discarded. Next, centrality scores were calculated for a gene 

network in which an edge from gene ig  to gene jg is equal to 2ˆˆ
ijj rθ . A more detailed 

analysis in Appendix A shows that the coefficients of the first eigenvector of the 

corresponding adjacency matrix represent the desired measure of gene centrality.  

 

A more intuitive explanation of the centrality measure would be an analogy to the US 

highway system. Large cities are connected by a big number of highways as opposed to 

small towns. Highways also tend to become wider as they approach a large city, to 

accommodate more traffic. If someone starts driving randomly across the country, they 

will inevitably end up in a major city, hence the saying “All roads lead to Rome!”. One 

way to identify these hub cities is to calculate the first eigenvector of the highway 

network, where larger coefficients will correspond to hubs. Similarly, in our gene 
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network, edges connecting over-expressed genes have a higher weight, and if enough 

connections are present, they will also act like hubs, with high centrality scores. 

 

High correlation scores are transitive (linked across several genes) and could identify 

cliques of over-expressed genes with similar centrality scores. To find the genes most 

likely to cause a phenotypic change upon knock-down, we pruned the genes with high 

centrality scores in each subtype to known oncogenes. These are presented in Table 2.2 

along with the associated centrality and outlier scores calculated by meta-analysis over 

GSE2034 and GSE4992 gene expression tables. 

 

2.3 YES1 is a therapeutic target in basal-like breast cancers 

As seen in Table 2.2, our method successfully identified epidermal growth factor receptor 

ERBB2 as a central gene for HER2+ (HER2I, HER2NI) subtypes and estrogen receptor 

ESR1 for Luminal subtypes (LA, LB).  In addition, most strikingly, we identified a 

number of SRC protein kinases LYN, YES1, HCK, FYN, and LCK with high centrality 

scores in either the BA1 subset of basal-like breast cancer and/or the HER2I subset of 

HER2+ breast cancers, suggesting that they may be potential therapeutic targets for 

patients in these subtypes. Here we focus on the YES1 (Yamaguchi sarcoma viral 

oncogene homolog 1) gene, which is also known to be over-expressed in colorectal, head 

and neck, renal, lung and stomach cancers (41). Figure 2.2A and B show the normalized 

expression values of YES1 across all subtypes for the two data sets. To avoid sampling 

bias (due to unequal number of samples in the subtypes), we used the following 

procedure: Ten samples were chosen from each subtype, the expression value of YES1 
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was standard normalized across these sixty samples and the normalized value of each 

sample in this bootstrap dataset was noted. This procedure was repeated 1000 times. The 

average expression value of YES1 for each sample across these bootstrapped datasets 

was calculated, keeping track of how often the sample appeared in the bootstrap 

samplings. Figure 2.2A and B shows the sorted values of YES1 for all samples in each 

subtype thus obtained for the two datasets. The relative over-expression of YES1 

uniquely in the basal-like subtypes is obvious from Figure 2.2A and B.  

 

To further validate YES1 over-expression in a subset of basal-like breast cancers, we 

analyzed FFPE slides from 13 ER-/PR-/HER2- breast cancer patients. These slides were 

obtained under an IRB approved protocol from the Tumor Bank at the Cancer Institute of 

New Jersey. Immunohistochemical analysis of the slides was performed using a YES1-

specific antibody and scored as described in Appendix B.1. Figure 2.2C, D and E show 

staining of the samples identified as having high, medium or low/no expression of YES1 

respectively. Of the 13 samples, 2 showed high levels of YES1, 6 had medium expression 

and 5 had low/no expression. 

 

The analysis described above identified YES1 as a potential therapeutic target in the BA1 

subtype of breast cancer. We tested this possibility in-vitro by studying whether 

suppressing YES1 expression in subsets of breast cancer cell lines has a significant effect 

on their fitness, as measured by a survival/growth assay (Appendix B.2-5). Appropriate 

shRNA were purchased and lentiviral vectors constructed to stably suppress the 

expression of YES1 in breast cancer cell lines: MDA468, MDA231, BT549, MCF10A, 
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SKBR3 and MCF7. Of these, MDA468, MDA231, BT549 and MCF10A are all Basal-

like, that is, they are negative for expression of estrogen, progesterone and HER2 proteins 

(ER-/PR-/HER2-). SKBR3 is ER-/PR- but weakly HER2+ while MCF7 is ER+/PR+, and 

consistent with the Luminal breast cancer type. Three different shRNA were chosen and 

their ability to suppress the expression of YES1 was tested on MDA468. Only the most 

efficient one (shYES1#2) was selected for subsequent experiments. Equal numbers of 

cells from each cell line infected with either a lentivirus encoding shYES1 or a control 

scrambled shRNA. After 6 days all cells were counted and the results compared to the 

controls to assess whether the growth rate of cancer cells was affected by silencing of 

YES1. We found (see Figure 2.3A, B and D), that all cell lines except the Luminal cell 

line MCF7 had a significant reduction of cell counts when treated with shYES1#2 

compared to the controls. Two additional shRNAs that were less efficient in knocking 

down YES1 protein levels (shYES1#1 and shYES1#3), could also decrease cell growth 

in his assay, although not as efficiently as shYES1#2, demonstrating the effect on growth 

is not likely an off target effect of shYES1#2 (Figure 2.3C). 

 

Our method also successfully identified previously  known therapeutic targets like 

ERBB2 (HER2/neu) and ESR1 that have already led to the development of drugs such as 

Herceptin® for HER2+ or Tamoxifen® for Luminal (ER+) breast cancers. Interestingly, 

Tamoxifen treatment is less successful in the case of Luminal B (LB) subtype (15) 

comparing to Luminal A (LA). The centrality scores of ESR1 are 6.94 in LA and only 

3.44 in LB, even though ESR1 is equally over-expressed in both cases. This suggests that 
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perhaps in Luminal B patients, the tumor is not as “addicted” to ESR1 as in Luminal A, 

and hence does not respond as well to therapy which blocks estrogen. 

 

2.4 Treatment implications for breast cancer 

In this chapter we have presented a novel method for analysis of gene expression data 

that takes into account not only the levels of expression for genes but also a measure of 

co-relatedness between pairs of genes across multiple samples. The algorithm 

implemented here, based on outlier scores and correlations, is general enough that can be 

modified to use different measures of expression,  as long as they are positive valued. 

One such method is the soft-max normalization procedure described in (42). Other 

estimations of correlation can also be used in place of the Pearson correlation (for 

example: Spearman rank correlation (43), Kendall tau rank correlation (44) or mutual 

information (45)).  

 

The rest of the potential therapeutic targets associated with breast cancer subtypes in 

Table 2.2, are either new or are currently being tested in clinical trials (Clinical Trials: 

www.clinicaltrials.gov). These targets are: the epidermal growth factor receptor EGFR 

for high risk ER+ tumors (Luminal B), FOS, TGF beta receptor 2, ETS-related genes 

ERG, ELK3 and ETS2 for Luminal A tumors, PIM2 and a number of SRC tyrosine 

kinases predicted to be good therapeutic targets in subsets of Basal-like and HER2+ 

breast tumors. Among drugs being tested in clinical trials on breast cancer patients are 

Gefitinib, Cetuximab that target EGRF and Dasatnib that targets SRC kinases. 
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Our in-vitro confirmation of YES1 as a therapeutic target in a set of Basal-like breast 

cancers opens the way to new targeted treatments involving SRC kinase inhibitors like 

Dasatnib® (Bristol-Myers Squibb), AP 23846 (Ariad), TG 100598 (TargeGen), AZD 

0539 (AstraZeneca) or SKI-606 (Wyeth). Dasatnib is a drug that inhibits the BCR/ABL 

pathway in addition to SCR kinases, and has been shown to slow the growth of triple 

negative (ER-/PR-/HER2-) breast cancer cell lines in vitro (46; 47). It is unclear whether 

this result is due to the inhibition of BCR/ABL or any of the SRC kinases, but based on 

centrality scores and subsequent experiments, YES1 is at least partially involved in the 

phenotypic changes observed upon Dasatnib treatment. 
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Table 2.1: Microarray datasets used in this study 
 
Clinical and pathological characteristics of all patients, as well as clustering and 

classification results. Unknown values are not counted. 

 
GEO acc. No. of 

samples 
Grade ratio 
(1/2/3) 

LN status 
ratio (+/-) 

ER status 
ratio (+/-) 

Luminal 
class ratio 
(LA/LB) 

HER2+ class ratio 
(HER2I/HER2NI) 

Basal-like 
class ratio 
(BA1/BA2) 

GSE2034 286 7/42/148 0/286 209/77 28/104 14/17 15/22 

GSE4922 249 68/126/55 81/159 211/34 77/96 12/24 11/13 

 

 

Table 2.2: Top centrality results for cancer genes 

Top gene centralities and meta-outlier scores are listed for oncogenes for each breast 

cancer subtype. High centrality scores are highlighted in red. 

The genes corresponding to these high centrality scores are potential drug targets because 

they are both over-expressed and highly connected, suggesting that the tumor is addicted 

to them (needs them in an essential way for growth and proliferation). 
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LYN 4.35 80% 1.89 38% 3.32 29% 0.21 5% 0.00 0% 0.00 0% 
YES1 3.66 70% 1.84 52% 0.00 0% 1.22 24% 0.00 0% 0.23 6% 
HCK 3.85 63% 0.38 10% 4.38 47% 0.21 6% 0.57 6% 0.33 8% 
FYN 2.42 41% 0.94 32% 7.60 55% 0.37 7% 1.65 13% 0.44 8% 
LCK 3.08 52% 0.50 15% 12.01 88% 0.00 0% 0.93 10% 0.41 8% 
PIM2 4.12 65% 0.29 10% 5.88 79% 0.00 0% 0.61 9% 0.43 13% 
ERBB2 0.00 0% 0.00 0% 6.51 100% 4.51 100% 0.01 0% 0.05 2% 
TGFBR2 0.04 1% 0.71 9% 3.32 41% 0.76 12% 13.61 66% 0.46 9% 
ERG 0.00 0% 0.71 11% 1.72 21% 2.04 31% 10.57 65% 1.21 26% 
ELK3 0.71 13% 1.14 18% 1.16 15% 1.36 23% 6.50 50% 0.72 16% 
FOS 0.00 0% 0.10 2% 1.50 28% 0.94 20% 5.76 76% 0.77 34% 
ETS2 0.47 11% 1.60 33% 2.39 27% 0.70 19% 5.92 34% 0.50 11% 
ESR1 0.00 0% 0.00 0% 0.78 13% 1.54 26% 6.94 69% 3.44 82% 
EGFR 0.77 11% 2.36 38% 1.24 18% 1.38 25% 1.57 19% 4.99 40% 
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Figure 2.1: Example of a gene network with a high centrality gene. 

The figure shows an example of a section of the cellular network. The size of the circle 

representing the node for gene gi is proportional to the relative expression of the gene.  

Links between genes represent associations – and transform the network into an 

adjacency matrix which can be made primitive by eliminating unconnected genes and 

adding self-loops to all nodes. Undirected edges may be changed into directed edges 

using relative associated weights which equal the expression level of the target gene. In 

the configuration shown, the center node (gene) coloured in red would have the highest 

centrality score because of its high expression and connectivity. 
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Figure 2.2: YES1 is expressed in a subset of basal-like breast tumors 

Bar plots showing relative over-expression of YES1 in a subset of basal-like breast 

tumors in the GSE2034 (A) and GSE4922 (B) gene expression datasets. To confirm this, 

13 ER-/PR-/HER2- paraffin embedded breast cancer tissue slides were probed for 

expression of YES1 by immunohistochemistry with an appropriate YES1-specific 

antibody. Of the 13 samples, 2 had high expression levels of YES1, 6 had medium 

expression and 5 low or no expression. Shown are examples of the staining protocol on 

slides showing high (C), medium (D) and low-zero (E) expression of YES1 in cancer 

cells on the slides.   
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Figure 2.3: YES1 knock-down impairs the growth of breast cancer cell lines 

6 breast cancer cell lines were infected with lentiviral constructs designed to suppress 

expression of YES1 with hairpin shRNA. Equal numbers of these cells were plated in 

triplicates alongside controls and then counted after 6 days. 

(A) Pictures of the cells after 6 days growing in 12 well plates with and without YES1 

knockdown. 

(B) Western blot of 3 of the cell lines showing the efficacy of YES1 expression knock-

down. On MDA468 three different shRNA were used with different efficiencies. The best 

one was shYES1#2 which was used in further experiments on cell lines. 

(C) Average cell counts are normalized to the respective control and shows that 

compromise of YES1 impairs the growth and survival of MDA468 breast cancer cells. To 

control for off-target effects three different shRNA constructs were used. 

(D) The most efficient lentiviral construct was used on the rest of breast cancer cell lines. 

Knock-down of YES1 showed a significant effect on basal-like cell lines and no effect on 

the luminal-like cell line MCF7. All experiments were performed more than once and 

showed similar results. 
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Chapter 3:Towards Personalized Therapies 

 

“It is more important to know what sort of person has a disease than to 
know what sort of disease a person has.” 

Hippocrates of Kos (ca. 460 BC – ca. 370 BC) 
 

As described in previous chapters, there are numerous drugs for treating breast cancer 

and even more drugs being tested in clinical trials, waiting for government approval. 

Considering the molecular diversity of breast tumors, prescribing the right therapy for the 

patient can be challenging. Diagnosis of cancer and decision about treatment still rely 

largely on classical histopathological and immunohistochemical techniques. More 

accurate, quantitative methods are needed that can lead to individualization of treatments. 

This chapter will present three validated molecular diagnostic tools for predicting 

therapeutic response in breast cancer, using analysis of gene expression data from both a 

supervised and an unsupervised perspective. 

 

3.1 Identifying robust subtypes of breast cancer from gene 

expression data.  

The first steps towards understanding the molecular diversity of breast cancer, and how it 

correlates with response to therapy and other clinical factors, came as a result of the 

analysis of high throughput breast tumor datasets. Gene expression clustering led to the 

identification of different subtypes of breast cancer that have distinct biological features, 

clinical outcomes, and response to treatment (13; 19; 48; 49). Hu el al. (49) showed that 



  34  

    

hierarchical clustering of a combined set of gene expression datasets (Figure 3.1) first 

splits the samples into ER+ and ER-, largely on the basis of the difference of expression 

between genes in the estrogen signaling pathway. ER+ samples further split into two 

subtypes, Luminal A (ER+ with good prognosis) and Luminal B (ER- with bad 

prognosis) while ER- samples fell into one of three categories: Basal-like (ER-, PR-, 

HER2-), HER2+ and IFN (samples that show an enrichment of over-expressed genes 

from the interferon pathway (IFN)). These authors also found that Basal-like, HER2+, 

IFN and Luminal B types are in majority high grade, have significantly higher relapse 

rates and lower overall survival. 

 

The fact that Luminal type breast tumors split into two clinically relevant subtypes with 

significantly different survival prognosis  raised the question whether the same is true for 

Basal-like or HER2+ cases. Alexe et al. (13) showed that, using the methods and genes 

originally proposed by Perou et al. (19), HER2+ samples cluster into two groups based 

on the expression of estrogen pathway genes, which assorts the samples into HER2+/ER- 

and HER2+/ER+ cases. They also showed that HER2+/ER+ samples cluster with 

Luminal B samples, and a further analysis of the survival characteristics of these groups 

shows that this classification does not reflect a clinically useful split. The reason this 

happens is that there is a disproportionate number of ER+ cases and a large number of 

genes are co-regulated by ER. Because of these biases in sampling, and in the domination 

the ER pathway in breast tissue (which in turn biases the choice of genes which represent 

the dominant variation in the data), all analysis methods will always split samples into 

ER+ and ER- subsets. However, the fact that this happens does not guarantee that this is a 
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clinically useful classification that adds value beyond the measurement of ER by 

Immunohistochemistry, which is already a routine part of clinical evaluation of breast 

cancer. To circumvent this problem, and to take account of the fact that the HER2 

pathway is known to cause a more aggressive form of the disease, Alexe et al. (13) 

removed the HER2+ samples based on IHC measurement of and the over-expression of 

genes in the HER2 amplicon and clustered HER2+ and HER2- samples separately. 

 

The clustering method used by Alexe et al. (13) was principal component analysis (PCA) 

for data filtering (identifying significantly variable genes) followed by consensus 

ensemble clustering of the filtered gene set (51; 52). Figure 3.2 shows a flowchart of the 

general procedure. After normalization, mRNA levels of four genes in the HER2 

amplicon (17q12), ERBB2, GRB7, STARD and PPARBP were used to isolate HER2+ 

samples. The samples identified as HER2+ were those for at least three of these genes 

(including ERBB2 or HER2/neu) had high expression. Next, PCA was used to filter out 

uninformative genes, retaining only those that occur with high coefficients  (top 25% in 

absolute value) in the eigenvectors corresponding to the highest eigenvalues (those 

representing 85% of the variation in the data).  

 

Consensus ensemble clustering is a procedure which combines results from a number of 

different clustering algorithms (partitioning, agglomerative, and probabilistic) in a way 

that improves the quality of the identified clusters. This is achieved by  averaging over 

bootstraps of the data for a given clustering method to find clusters that are stable and 

robust, i.e. insensitive to perturbations of the choice of samples or genes) and then to 



  36  

    

combine the results across  clustering methods to make them insensitive to the technique 

used.  Samples were assigned to clusters using an agreement matrix constructed whose 

entries were the fraction of times two samples were in the same cluster across 

bootstrapped datasets. Core clusters were identified as sets of samples that consistently 

clustered together across bootstrapped datasets and clustering techniques. Their 

molecular signatures were then used to classify ambiguous samples (whose class 

membership fluctuated across bootstrapped datasets or methods).  The optimum number 

of clusters was determined a priori using the gap statistic (53), the Gini index (52) and the 

silhouette score (54). 

 

The method was demonstrated on the dataset from Wang et al. (37) which consisted of 

gene expression data from 286 lymph node negative breast cancer samples from patients 

who were then treated with surgery and radiation alone with clinical median follow up of 

86 months. The method described above successfully identified the two ER+ subtypes 

found previously (Luminal A and Luminal B) which had been confirmed in several 

previous publications (15; 19; 48; 49). As shown in Figure 3.3A, Luminal B (LB) 

patients had a significantly worse outcome compared to Luminal A (LA) patients. The 

analysis also showed that LB samples further clustered into 3 stable subtypes, labeled 

LB1, LB2 and LB3, with distinct survival expectancies (Figure 3.3B). Within the HER2+ 

samples, the method identified two core subtypes, with significantly distinct (P = 0.01) 

long term, distant metastasis free survival rates of 89% for HER2I and 42% for HER2NI 

(Figure 3.3C). These subtypes were also found by to be distinct by gene set enrichment 

analysis which showed that the HER2I subtype showed activation of a number of 



  37  

    

immunity related pathways (P < 0.01): T-cell activation, inflammation-mediated 

chemokine and cytokine signaling, and B-cell activation (55). This correlated well with 

the analysis of immunohistochemically stained HER2+ samples which found that the 

HER2I samples had a strong lymphocytic infiltrate compared to HER2NI (13). The 

clinical value of the classification was prospectively validated by data and slides from 

small HER2+ neo-adjuvant Herceptin trial which showed that the HER2I samples had a 

visible immune infiltrate visible in FFPE sections by staining and had better short term 

response to Herceptin.  

 

Within Basal-like samples, the method also identified two core clusters, labeled BA1 and 

BA2. Although these subtypes had similar survival curves (Figure 3.3D), pathway 

enrichment analysis found significant differences between them, with BA1 samples 

exhibiting  up-regulation of genes in the Wnt signaling pathway, immunity and defense 

and  BA2 showing up-regulation  of genes in the integrin signaling pathway, cell 

adhesion, cell structure and motility (55). The conclusion was that Basal-like breast 

cancers exhibit two molecularly distinct subtypes which are likely to be biological 

disease entities, but that these subtypes display no significant differences in their risk for 

progression upon local treatment alone. 

 

The overall result of the study of Alexe et al. (13) was the identification of eight subtypes 

of breast cancer with distinct molecular and clinical characteristics. In our analysis we 

used the clustering results by Alexe et al. (13) to classify new breast cancer datasets into 

BA1, BA2, HER2I, HER2NI, LA and LB subtypes. Sub-classification of LB in LB1, 
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LB2 and LB3 was not used, since this would have introduced a disproportionate number 

of ER+ subtypes, which would have biased the normalization procedure described in 

Appendix A.2. 

 

3.2 The Genomic Grade Index: a measure of progression risk 

MapQuant DX™ is a molecular diagnostic test provided by Ipsogen Inc. in the European 

Union. It uses fresh or frozen breast tumor samples to measure the expression of specific 

genes with the aid of DNA microarray technology. The MapQuant DX genomic grade 

test is based on the Genomic Grade index (GGi (17)) which measures the expression of 

97 genes that best characterize high-grade vs. low-grade tumors. The manufacturer 

claims that this test can resolve grade 2 breast tumors, which represent 30-60% of all 

cases, into either grade 1 or grade 3 tumors 80% of the time. Histologic grade, a 

consensus indicator of tumor proliferation and risk of metastasis, is an important 

diagnostic factor and aids in deciding treatment course. High grade tumors (grade 3) have 

bad prognosis and are treated more aggressively as opposed to low grade tumors (grade 

1) that have a better prognosis. Grade 3 tumors are also generally chemo-sensitive and 

are treated by chemotherapy while grade 1 tumors are often chemo-insensitive. This is 

why choosing the right treatment for intermediate grade 2 tumors is a critical issue. By 

resolving grade 2 tumors into either low-risk grade 1 or high-risk grade 3, numerous 

patients can be spared potentially useless and painful chemotherapy. 

 

The current assay was developed from supervised analysis of a gene expression dataset 

comprising 64 estrogen receptor positive (ER+) breast cancer samples. In addition, a 
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cohort of 597 independent tumors was used to evaluate the association between the 

Genomic Grade index (GGi) and relapse free survival rates. 

 

Genes that were differentially expressed between histologic grades 1 and 3 in the training 

set were ranked according to the standardized mean difference (56) between expression 

levels in the two groups. This statistic is similar to a t-test but better suited when the 

training dataset comes from different laboratories, such as in this case. A step-down 

procedure called maxT (57; 58) was used to correct for multiple hypotheses. 

 

The expression pattern of 97 genes was found to be significantly different between 33 

grade 1 tumors versus 31 grade 3 tumors, with a majority of them being over-expressed 

in the high histologic grade group. Amongst them were mostly genes associated with cell 

cycle progression and proliferation like UBE2C, KPNA2, TPX2, FOXM1, STK6, 

CCNA2, BIRC5, and MYBL2. 

 

To summarize the similarity between expression profiles of these genes and histologic 

grade the authors introduced a scored named Genomic Grade index (GGI): 
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where scale and offset are transformation parameters to standardize the gene expression 

grade index values to mean -1 for low grade and mean +1 for high grade. Variables xj 

represent logarithmic gene expression measures while G1 and G3 represent the set of 

genes with increased expression in histologic grade 1 and grade 3 tumors, respectively.  
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Validation of the GGi score was conducted on a combined set of 597 breast tumor 

samples of various histologic grades, estrogen receptor status and lymph node status. 

Kaplan-Meier survival curves and hazard ratio (HR) estimates of different risk categories 

are shown in Figure 3.4.  Pathologist scored histologic grade were used to separate the 

dataset into 3 categories, from grade 1 to 3 with decreasing relapse free survival rates 

(HR = 3.18, 95% CI = 2.1 – 4.8; P < 0.001) as shown in Figure 3.4A. Patients with 

histologic grade 2 were then assigned gene expression grade 1 if GGi < 0 and gene 

expression grade 3 if GGi > 0. Among these intermediate histologic grade patients, the 

ones assigned gene expression grade 3 had statistically significant difference in survival 

compared to samples assigned gene expression grade 1 (HR = 3.61, 95% CI = 2.25 – 

5.78; P < 0.001). Figure 3.4B shows similar survival curves to those with histologic 

grades 1 and 3 from Figure 3.4A. When GGi scores were computed for all samples and 

split into gene expression grades 1 and 3 (Figure 3.4C), a similar survival difference was 

noticed (HR = 2.83, 95% CI = 2.13 – 3.77; P < 0.001). Furthermore, the differences in 

survival in the combined 597 samples were conserved among individual datasets as 

shown by the forest plots in Figure 3.4D-F. 

 

The prognostic power of gene expression grade was assessed in combination with other 

variables like ER status, lymph node status, histologic grade, tumor size and patient age 

at diagnosis with a multivariate Cox regression model. Only gene expression grade, 

lymph node status, and tumor size were found to be statistically significant, with gene 

expression grade having the strongest association (HR = 1.99, 95% CI = 1.43 – 2.78; P < 

0.001). As expected, histologic grade provides little additional information when 
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compared with the gene expression grade index. GGi seems to perform better than 

traditional pathologist grading at predicting breast cancer prognosis and hence provides a 

more efficient and consistent way of classifying tumors. 

 

3.3 The Oncotype DX® recurrence score 

Oncotype DX® is a molecular diagnostic test provided by Genomic Health Inc. widely in 

use in Europe and in the United States. It uses paraffin embedded breast tumor samples to 

measure the expression of specific genes using RT-PCR (59). This assay is used to 

determine a recurrence score that uses the expression level of 21 genes associated with 

recurrence in patients with estrogen positive (ER+), node negative breast tumors treated 

with Tamoxifen (16). The test has been shown to predict the magnitude of chemotherapy 

benefit for breast cancer patients treated with a variety of different chemotherapy 

regimens. It is currently used by physicians to decide treatment regiment for early stage 

ER+/HER2- breast cancer patients. Patients with high Oncotype DX scores will receive 

hormonal treatment as well as chemotherapy while patients with low scores will be 

treated only with Tamoxifen or another drug that targets the estrogen pathway. 

 

This method was developed from the meta-analysis of three separate studies (60; 61; 62) 

that looked for genes that correlated with disease recurrence in breast cancer patients with 

various disease types and different treatment regiments. 250 cancer related genes were 

selected from published literature, pathway analysis, genomic databases, and microarray 

gene expression profiling experiments on breast tumors; and their expression level 

determined by reverse transcriptase polymerase chain reaction (RT-PCR). Next, the 
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relationship between candidate genes and recurrence over a total of 447 samples was 

assessed. Imposing consistency in the results between the three separate datasets removed 

the majority of the candidate genes leaving 16 cancer genes strongly associated with 

breast cancer recurrence. These were: HER2, GRB7 (from 17q12 amplicon), 

MMP11,CTSL2 (invasion markers), Ki-67, STK15, Survivin, CCNB1, MYBL2 

(proliferation markers), ER, PR, BCL2, SCUBE2 (estrogen pathway), GSTM1, CD68, 

BAG1; together with reference genes: ACTB, GAPDH, RPLPO, GUS and TFRC. These 

reference genes are necessary to normalize the quantified RT-PCR expression levels to 

compensate for sample variation in extracted RNA due to variations resulting from the 

tissue-fixation processes, the age of the specimen (which affects quality of RNA), and 

other variables unrelated to gene expression. 

 

Analyses were performed to determine the functional form of the variables to be included 

in the model. Correlation analysis, dimension reduction, Martingale residual analysis, 

concordance measure of accuracy, and bootstrap resampling were used for this purpose 

(63). Intermediate scores were calculated separately for the HER2 group, the ER group, 

the invasion markers group, and the proliferation markers group. The final recurrence 

score RS based on these genes was defined as a linear combination of the scores of each 

group of markers in addition to the normalized expressions of CD68, GSTM1, and 

BAG1: 
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Details on how the recurrence score (RS) is calculated is given in Paik et al. (16) and 

Cronin et al. (64). 

 

The value of this assay to separate ER+, node-negative breast cancer patients, into 

meaningful clinical classes, which represent the risk of disease recurrence, was tested on 

668 patients enrolled in the National Surgical Adjuvant Breast and Bowel Project 

(NSABP) clinical trial B-14. The patients were selected if they had been randomly 

assigned to receive Tamoxifen or had received Tamoxifen as members of the registration 

group of NSABP trial B-14. Each patient was assigned a single risk class based on their 

recurrence score: low risk (RS < 18), intermediate risk (18 ≤ RS < 31), or high risk (RS ≥ 

31). These thresholds were determined based on the recurrence rates of Tamoxifen-only 

treated patients in the NSABP B-20 clinical trial, one of the three initial datasets on 

which the recurrence score was trained.  

 

Kaplan-Meier estimates for the proportion of patients who had suffered distant recurrence 

(Figure 3.5) at 10 years was 6.8% (95% CI = 4.0% – 9.6%) for the low risk group, 14.3% 

(95% CI = 8.3% – 20.3%) for the intermediate group, and 30.5% (95% CI = 23.6% – 

37.4%) for the high risk group. The observed differences in survival were statistically 

significant at a log-rank P value < 0.001. 
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A multivariate Cox regression model was used to explore the relation between the 

recurrence score, age at surgery, clinical tumor size, histologic grade, HER2 

amplification, and ER protein levels. Only high tumor grade (HR = 3.34, 95% CI = 1.79 

– 6.29; P < 0.001) and the recurrence score (HR = 2.81, 95% CI = 1.70 – 4.64; P < 0.001) 

were significant predictors of distant metastasis recurrence. The assessment of tumor 

grade was made by three pathologists separately, with similar results for high grade 

tumor but substantial differences in assigning consistent labels to low and intermediate 

grade tumors. However, the recurrence score provided significant (P < 0.001) 

discriminatory power beyond tumor grade for each of the three pathologists. 

 

3.4 Limitations and challenges in predicting recurrence risk  

Molecular diagnostic tests have proven their advantage over traditional laboratory 

techniques and usefulness in clinical practice. However, questions remain over their 

accuracy, and whether the high price paid for them is justified. All studies previously 

described showed that histologic tumor grade is a good marker for disease progression 

and treatment response. Although numerous claims have been made about the 

inconsistencies in histological grading between different pathologists (65; 66; 67), unified 

methods such as Elston and Ellis modification (8) of the Bloom and Richardson method 

have greatly improved the reproducibility of histologic grading. Furthermore, the 

problem of undecidable intermediate grade tumors is not completely solved by any of the 

presented molecular methods. Clustering based methods discovered classes with 

intermediate recurrence rates such as LB1 and LB3, which interpolate between the good 

prognosis LA and truly poor prognosis subtype LB2. The Genomic Grade index from 
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Ipsogen Inc. suffers from “the intermediate value” problem when GGi score is close to 

zero, when it becomes impossible to determine whether the patient should be assigned 

Grade 1 or Grade 3. Similarly, for the Recurrence Score of Genomic Health Inc., 22% of 

patients were declared to have intermediate risk if RS score was between 18 and 31. 

Patients assigned an intermediate RS have an ambiguous risk assignment of limited 

clinical value. Since the Oncotype DX assay is expensive (~$3000 per test at this time), 

its clinical value for this intermediate class is unclear. 

 

Another caveat of these methods is that they are uninformative beyond providing a 

recurrence score. Compared to them, the use of a well knows breast cancer marker HER2, 

not only indicates a particular risk group, but also provides a clear molecular pathway of 

disease progression that can be therapeutically targeted. Moreover, HER2 amplification 

can be determined by a simple test that can be done cheaply and quickly by any hospital, 

compared to the expensive diagnostic assays that require fresh, snap-frozen or paraffin 

embedded tumor samples to be sent to a central laboratory. 

 
Common technologies used to measure gene expression levels, like DNA microarrays or 

Q-RT-PCR, actually measure RNA levels in a mix of tumor, fat and connective tissue. 

The specifics of tumor cellularity and within patient variability will bias the result of 

these measurements, and significantly affect the reliability of the final risk score. Using 

laser micro-dissection to harvest only tumor tissue, as well as replacing current gene 

expression measurement techniques with more accurate methods based on sequencing 

(RNA-seq), has the potential to greatly improve the accuracy and reproducibility of 

molecular diagnostics. 
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Figure 3.1: Molecular breast cancer subtypes derived from hierarchical clustering 

Hierarchical cluster analysis of the 315-sample combined test set using the Intrinsic/UNC 

gene set reduced to 306 genes. (A) Overview of complete cluster diagram. (B) 

Experimental sample-associated dendrogram. Figure reproduced with permission from 

Hu et al. (49). 
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Figure 3.2: Flowchart of the clustering method 

After identification of HER2+ samples, PCA and consensus ensemble clustering find 2 

HER2+ subtypes (HER2I & HER2NI), 2 Basal-like subtypes (BA1 & BA2) and 4 

Luminal subtypes (LA, LB1, LB2, LB3). Figure reproduced with permission from Alexe 

et al. (13). 
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Figure 3.3: Kaplan-Meier curves comparing distant metastasis rates for Luminal, 

HER2+ and Basal-like breast cancer subtypes. 

(A) Luminal B (LB) has a slightly significant (log-rank P value = 0.14) poorer prognosis 

than Luminal A (LA). (B) LB splits into LB1, LB2 and LB3 with LB2 having the worst 

prognosis. (C) HER2I has 89% long term distant metastasis free survival rate vs 42% for 

HER2NI (log-rank P value = 0.01). (D) The log-rank P value for difference in survival is 

0.6 so this difference is not significant. However, this does not preclude a biological basis 

for the two subtypes. Figure reproduced with permission from Alexe et al. (13). 
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Figure 3.4: Relapse-free survival according to Genomic Grade Index categories 

Relapse-free survival analysis for all validation datasets. Only 570 patients with complete 

histologic grade (HG) and relapse-free survival information were included. Kaplan–

Meier analyses were conducted with pooled data. Number of patients at risk and 95% 

confidence intervals (CIs) for the relapse-free survival estimates (shown as error bars) are 

indicated at 2.5-year intervals. Difference in relapse-free survival between two groups is 

summarized by the hazard ratio (HR) for recurrence with its 95% CI. NKI2(U) = 

untreated subset of dataset NKI2; NKI2(T) = treated subset of dataset NKI2. (A) Analysis 

of the whole dataset by HG1 (green), HG2 (blue), or HG3 (red). (B) Analysis of patients 

with HG2 tumors by gene expression grade (GG). The 217 patients with HG2 tumors 

were separated into low- and high-risk subsets by GG as GG1 (green) and GG3 (red), 

respectively. (C) Analysis of the whole dataset of 572 patients by GG. GG1 = green; 

GG3 = red. All statistical tests were two-sided. To show consistency among different 

datasets, forest plots of the hazard ratios and confidence intervals for individual datasets 

are shown below the corresponding Kaplan–Meier plots (panels D, E, and F, 

corresponding to panels A, B, and C, respectively). The difference among the groups is 

significant (log-rank P value < 0.001). Figure reproduced with permission from Sotiriou 

et al. (17). 
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Figure 3.5: Distance recurrence free survival according to Oncotype DX score 

categories 

A low risk was defined as a recurrence score of less than 18, an intermediate risk as a 

score of 18 or higher but less than 31, and a high risk as a score of 31 or higher. There 

were 28 recurrences in the low-risk group, 25 in the intermediate-risk group, and 56 in 

the high-risk group. The difference among the groups is significant (log-rank P value < 

0.001). 
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Chapter 4:Predicting Resistance to Endocrine Therapy  

 

“Prediction is very difficult, especially about the future.” 
Niels Bohr (1885-1962) 

 

4.1 Motivation and overview 

Hormonal therapy is widely prescribed for the treatment of estrogen receptor positive 

(ER+) breast cancer and has had a great impact on survival in this disease (29). In spite of 

this, there remains a significant subset of ER+ breast cancer patients have early 

recurrence despite endocrine therapy. This suggests that a subset of ER+ breast cancers 

have intrinsic resistance to hormone therapy. A better understanding of the biological 

mechanisms underlying resistance to hormonal therapy is of considerable clinical 

significance and may suggest new strategies in the treatment of breast cancer patients. 

 

 The best validated assay to identify patients likely to have early recurrence on hormone 

therapy is the Oncotype DX assay (16) from Genomic Health, Inc., based on RT-PCR 

measurement of the mRNA of 21 genes. Other assays, such as the Genomic Grade Index 

(17), and clinical markers such as histological grade, are also used to identify good 

prognosis and poor prognosis ER+ breast cancer patients.  Analysis of gene-expression 

data can also separate ER+ breast cancers into good prognosis Luminal A cancers, and 

poor prognosis Luminal B cancers (13; 38; 39).  

 



  53  

    

Several studies have shown that prognostic assays such as Oncotype DX are essentially 

identifying Luminal A tumors (low grade, ER+ breast cancers) as being good prognosis, 

and non-Luminal A, ER+ breast cancers (Luminal B which are ER+, non-low grade, 

some with HER2 amplification) as poor prognosis (15; 74; 75). Moreover, these assays, 

although they have prognostic and predictive utility, do not identify the biologic 

pathways driving resistance in the poor prognosis tumors. For example ER+ tumors that 

have HER2 amplification will have a high Oncotype DX recurrence score (RS), high 

histological grade, and a high genomic grade and be identified as poor prognosis. But 

conversely, not all high RS ER+ breast cancers have HER2 amplification; indeed the 

majority of them do not.   If an ER+ tumor identified as being poor prognosis by genomic 

assays is found to have HER2 amplification, this finding gives insight into the biological 

pathways mediating ER independence and identifies a therapeutic target that can be 

successfully exploited. However the majority of poor prognosis ER+ cancers (Luminal B 

cancers) do not have HER2 amplification (15). As identification of HER2 amplification 

by FISH is now routinely done for all breast cancers, clinicians do not use tools such as 

Oncotype DX for HER2+ tumors; such assays are mostly performed on ER+/HER2- 

tumors. For ER+/HER2- tumors identified by Oncotype DX and similar assays as being 

poor prognosis (HER2-, Luminal B breast cancers), there is neither great insight into their 

underlying biology nor is there available targeted therapy.  

 

In this chapter we describe our own efforts to gain insight into the biology of poor 

prognosis ER+/HER2- breast cancers. Using a novel outlier analysis, we found that other 

amplicons besides HER2 may be driving the growth of these tumors. To identify 
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potential amplicons, we applied an outlier analysis to published clinically annotated gene 

expression dataset of ER+ breast cancers treated with Tamoxifen. Instead of identifying 

individual genes associated with poor outcome, which simply generates meaningless lists 

of genes, we took a different approach.  We focused instead on identifying sets of genes 

in the same set of patients with similar outlier profiles whose expression correlated with 

outcome. The idea is to identify clusters of samples with a specific phenotype (poor 

prognosis patients) who exhibit a set of associated outlier genes (with unusually high or 

low expression) compared to controls (good prognosis patients). The set of outlier genes 

was mapped to chromosomal regions and then analyzed these genes to identify 

enrichment of chromosomal regions whose amplification was correlated with outcome. 

This analysis had the dual goals of identifying potential amplicons whose presence in 

ER+ breast cancer directly correlates with poor prognosis as well as identification of 

“driver” oncogenes that can be therapeutically targeted. Much like the identification of 

the HER2 gene, one expects “driver” oncogenes in these amplicons who are responsible 

for the poor prognosis phenotype.  The identification of such genes would lead to 

improved therapies, as was the case in the development of Herceptin which targets HER2 

amplification. 

 

Our analysis found that high expression of sets of genes in four distinct regions of the 

genome is highly predictive of poor prognosis in ER+ breast cancers treated with 

Tamoxifen. One of the identified chromosomal regions was in 17q12, which is the HER2 

amplicon (77; 78). This identification validates our method. The other three regions we 

found were in 17q21.33-q25.1, 8p11.2 and 8q24.3. Although these regions have been 
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previously identified in subsets of breast cancers (79) and known to contain potential 

oncogenes, their association with poor prognosis in patients undergoing hormone therapy 

is novel.   

 

We have validated the presence of these amplicons in ER+ breast cancer and to some 

extent, their association with poor prognosis in an independent set of clinical samples, 

using a high Oncotype DX score as a surrogate for poor prognosis.  

 

4.2 Identifying amplicons associated with Tamoxifen resistance 

Although most patients with ER+ breast tumors have good outcome with  

Tamoxifen treatment, a subset of ~30% has disease recurrence despite Tamoxifen 

treatment (29). In this scenario, resistant ER+ breast tumors act as outliers because they 

behave markedly different from Tamoxifen responsive patients. Hence patients with the 

resistant phenotype may contain genes whose expression are “outliers” and whose 

identification may suggest the biology of resistance. We define an “outlier” as a 

measurement that deviates significantly from the distribution of the rest of the data. One 

expects that genes whose over/under-expression is responsible for the more aggressive 

phenotype should behave as outliers, because the proliferating tumor is either addicted to 

them or else needs to down-regulate them to survive and grow.  Each gene defines its 

own outlier profile, on sets of samples where its expression levels are unusually high or 

unusually low compared to the rest.  
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Three gene expression datasets collected from breast cancer patients published by Loi et 

al. (74; 80) were obtained from the Gene Expression Omnibus website 

(GEO:www.ncbi.nlm.nih.gov/geo) accession number GSE6532 (74; 80). The sets are 

abbreviated with KIT, OXFT and GUYT representing the institutions where they were 

processed: Uppsala University Hospital, Uppsala, Sweden, John Radcliffe Hospital, 

Oxford, United Kingdom and Guys Hospital, London, United Kingdom. They comprise 

of 81, 109 and 87 ER+ breast cancer samples from patients treated with Tamoxifen that 

included 9 years of median follow-up for relapse free survival and distant metastasis 

information (Table 4.1). Distant metastatic events were recorded for 26% of the sample 

population, 92% of patients were over 50 years old, 19% low grade, 51% medium grade, 

16% high grade, 47% lymph node negative and 53% lymph node positive (74) 

(Additional Table 1). The expression data were obtained on Affymetrix (Affymetrix Inc., 

Santa Clara, CA) microarray platforms U133A/B (KIT & OXFT) and U133Plus2 

(GUYT), then MAS5 normalized. In order to combine the three sets into one analysis, 

probes corresponding to genes that were not present across all platforms were discarded. 

After taking log2 of each intensity values, multiple probes corresponding to the same 

gene were compressed to the one with the biggest median expression over all samples. 

 

For each gene, the expression values were median centered and then divided by the 

median absolute deviation (MAD) as described in Tomlins et al. (81). Median and MAD 

were used here instead of the usual mean and standard deviation because they are less 

influenced by the presence of outliers. This step was performed separately for KIT, 
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OXFT and GUYT datasets in order to avoid distribution biases that arise from the merger 

of separate expression array tables. 

 

We define the outlier cut-off value for a gene as the expression value in the normalized 

data which is outside of the 90% quantile across genes for each sample for “high” outliers 

and 10% quantile for “low” outliers. The results presented are not too sensitive to these 

thresholds and similar results are obtained when the outlier quantile cut-off is varied by 

+/-5%.  Outlier expression limits for high and low expression were identified for each 

gene and the high/low outlier genes in every sample array were identified using these 

values. In this way, the dataset, which is a matrix of genes x samples, splits into a sum of 

three matrices: one matrix defining non-outlier samples and genes, and two matrices, B1 

and B2 defining high and low outlier genes and samples respectively, with rows 

corresponding to genes and columns corresponding to samples. Each row represents the 

distribution of outliers for the corresponding gene across samples with B1,2 = 1  if gene i 

is over-expressed (high outlier) in sample j and B1,2 =0  if gene i is under-expressed (low 

outlier) in sample j. The rest of the elements (for non-outlier samples) were set to zero. 

 

This process was repeated for all three gene expression datasets: KIT, OXFT, GUYT and 

the results merged by concatenation, resulting in matrices with the same number of rows 

but with number of columns equal to the total number of samples for the three datasets 

combined. Next, genes with less than 10 outliers across all samples were discarded 

because they lack statistical power. In a sample size of ~100 (the approximate number of 

poor prognosis cases), one expects a standard deviation of  ~ 10 samples. Hence, 
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discarding genes which have less than 10 samples in their outlier set controls for 

statistical fluctuations at the one-sigma level. For each of the remaining genes, the 

distribution of outliers across samples defines two classes: the set of samples with 

aberrant (outlier) expression of the corresponding gene and the set of samples where the 

gene expression is “normal”. For each gene, we generated Kaplan-Meier survival curves 

for these two classes and compared them for differential survival using a log-rank test.  A 

gene was retained as a true outlier (relevant to prognosis) if its outlier sample class was 

statistically distinguishable from its complement at a log-rank P = 0.05 or better. 

 

Usual methods based on classification or clustering fail to identify features (biomarkers), 

associated with prognosis, that are not consistently spread in the dataset. Each case might 

exhibit different combinations of features, which leads to inconsistent results that are 

highly dependent on the frequency and distribution of the biomarkers. To overcome this, 

we ask the question: Do the outlier lists define gene and sample sets which are 

“collectively” associated with the phenotype or poor prognosis? For this to happen sets of 

genes must exist with similar outlier sets of samples - i.e. the genes must be over/under-

expressed in roughly the same set of samples. This corresponds to the presence of tightly 

correlated clusters in binary matrices B1 and B2. One suitable correlation measure to 

identify such clusters is the Phi coefficient which is equivalent to a Pearson correlation 

between pairs of rows of the matrices B1 and B2. Let C1 and C2 be the covariance matrices 

between the rows of B1 and B2 respectively, then ),(),(),(),( 2,12,12,12,1 jjCiiCjiCjiR =  

is the matrix of correlation coefficients between the outlier profiles of the genes in B1,2.  
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Clusters of tightly correlated genes were identified by iteratively removing row i and 

column i with 1),( ≤Δ∑ j
ji  where 1),( =Δ ji  if 5.0),(2,1 >jiR  and 0),( =Δ ji   

otherwise; until a stable set was obtained, where stability means that the size of the 

reduced matrix R’ stops changing. PCA plots of the resulting reduced matrices B1 and B2 

identify distinct groups of highly correlated genes that are now suitable for pathway 

enrichment analysis. Gene clusters in Figures 4.1A and B are associated with bad/good 

prognosis based on the survival profiles defined by the genes within each cluster. Further, 

each gene is labeled with the appropriate pathway information taken from the Gene 

Ontology (82) database together with chromosomal location information obtained from 

Affymetrix annotation files. We used a Fisher Exact test to assess the significance of 

pathways and chromosomal location enrichment for each group of genes (Table 4.2).   

 

Figure 4.1 shows the projection of the outlier gene profiles on the first two principal 

components of the filtered matrix for high outlier values (A) and low outlier values (B). 

Each point in the graph corresponds to a gene. By careful examination of the survival 

curves associated with their outlier profiles we observed that genes associated with good 

prognosis naturally separate from outliers associated with poor prognosis.  The clusters 

circled in red are correlated with poor prognosis and the ones in blue with good prognosis.  

 

Pathway enrichment analysis using Gene Ontology (82) (GO) revealed that the outlier 

gene clusters in Figure 4.1 were enriched in specific biological pathways. Chromosomal 

location information for each gene was collected from the Affymetrix annotation file of 

the 3’ Expression Array HG-133 Plus2. Mapping these to chromosomes, we defined 
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amplicons as continuous regions on the chromosome which were enriched in these outlier 

genes. Amplicon and pathway enrichment was assessed using Fisher’s Exact Test (83). 

These results are summarized in Table 4.2. 

 

Over-expressed outlier genes associated with good prognosis were enriched in two 

pathways - the development and cell adhesion pathway and the immune response 

pathway. In the poor prognosis samples, the outlier genes over-expressed genes in cell 

cycle pathways and in four chromosomal regions: 17q12, 17q21.33-q25.1, 8p11.2 and 

8q24.3. The set of cell cycle pathway genes we identified contained genes associated 

with proliferation and were almost all were part of the genes used in the Genomic Grade 

Index (17). Our observation thus confirms that proliferation-associated genes are strong 

markers of poor prognosis in ER+ breast cancer. One of our identified amplicons was the 

17q12 amplicon (84), which contains the gene ERBB2 (HER2), is known to be 

associated with relative resistance to hormonal therapy and poor prognosis. The three 

other amplicons:17q21.33-q25.1 (85; 86; 87), 8p11.2 (88; 89) and 8q24.3 (79) have been 

previously reported as amplified in a subset of breast cancers and probably contain one or 

more driver oncogenes responsible for the poor prognosis phenotype. The full list of 

outlier genes identified in the amplified chromosomal regions is given in Table 4.3. 

Highlighted in red are oncogenes previously identified in the literature: WHSC1L1 (90; 

91), CLTC (92; 93; 94), HSF1 (95), and LSM1 (96).   

 

For under-expressed outliers with good prognosis we find enrichment of the cell cycle 

pathway, while the immune response and cell adhesion are associated with poor 
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prognosis. This mirrors the results from the over-expressed outlier analysis confirming 

the strong association of the cell cycle, immune response and cell adhesion pathways 

with prognosis in ER+ breast cancers.   

 

4.3 Gene patterns that predict Tamoxifen resistance 

To examine the relationship between the cell cycle pathway and the four potential 

amplicons identified by our analysis, a correlation matrix of all the genes identified to be 

associated with poor outcome was computed. This is displayed as a heatmap in Figure 4.2. 

Correlation between the presence of any one amplicon and the presence of the other 

amplicons or the cell cycle pathway are shown in Table 4.4. The cell cycle pathway 

correlates partly with all the amplicons (Figure 4.2, Table 4.4), suggesting that increased 

expression of the cell cycle pathway is always associated with the presence of the 

amplicons to some degree.  To study this association further, samples with enrichment of 

any of the four amplicons or with cell cycle pathway enrichment were identified by 

requiring at least 50% of gene markers in each group to be over-expressed, i.e. is marked 

as a high outlier in the respective sample. It was found that most samples (90.5%) that 

over-expressed cell cycle genes displayed at least one of the four chromosomal 

amplifications, suggesting a direct (causal) relationship between tumor proliferation and 

the presence of these amplicons. The most likely relationship is that the amplicons are 

upstream of the cell cycle genes, i.e., driver genes on the amplicons up-regulate pathways 

which result in amplification of the cell cycle genes. 
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Our analysis also showed that the amplicons are poorly correlated with each other (see 

Table 4.4) suggesting that the presence of each amplicon is most likely to be functionally 

independent of the others. The conclusion is that each of these amplicons is a separate 

marker for poor prognosis and that each amplicon may be driving the disease process 

using distinct mechanisms and pathways.  

 

We next analyzed the effect of the presence of cell cycle pathway amplification and the 

presence of the four amplicons on survival. These results are shown in Figure 4.3 and 

Figure 4.4. The up-regulation of cell cycle pathway genes (Figure 4.3) was found to be 

associated with significantly reduced time to distant metastasis (Hazard Ratio (HR) = 

9.71, 95% CI = 3.3 – 28.6; P < 0.0001). The presence of any one of the four amplicons 

was also associated with significantly increased risk of distant recurrence (Figure 4.4). 

Hazard ratios for samples with amplicons on 17q12, 17q21.33-q25, 8p11.2 or 8q24.3 vs. 

no amplicons were (4.09, 3.14, 3.75, 4.29) respectively, while log-rank p-values for the 

survival differences were (6.3e-07, 3.0e-04, 5.7e-06, 2.2e-06) (Table 4.5). This shows 

that the three novel amplicons each confer additional risk of disease progression that is 

similar to that of HER2 amplification. 

 

4.4 Validation of the association of amplicons with poor 

outcome 

To validate the association of amplicons with poor prognosis we analyzed a CGH dataset 

on a separate set of breast cancer samples published by Jonsson et al. (97) (GEO 

accession number GSE22133 in GEO: www.ncbi.nlm.nih.gov/geo). This comprised of 
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359 breast tumor tissues that included 8.1 years of median follow-up survival information, 

of which 222 were ER+ samples which we used in our analysis. Unfortunately, patients 

were not uniformly treated and the exact specifics of the treatments, as well as clinical 

information other than grade, ER and PR status, were unavailable. Copy number 

estimates were obtained and segmented using circular binary segmentation (CBS) (98) 

followed by identification of significant amplification peaks with the GISTIC (99) 

algorithm as described by Jonsson et al. (97). Amplification peaks were detected in 

17q12, 17q23.2, 8p11.2 and 8q24.3 that strongly overlapped the regions we had 

discovered previously in gene expression data.  A correlation analysis between samples 

with these amplicons showed little to medium associations (Table 4.6), similar to the 

previous obtained values in Table 4.4. 

 

Survival curves were plotted (Figure 4.5) for samples with and without amplicons. As 

shown in Figure 4.5 and Table 4.7, the presence of an amplicon in any of these four 

regions was associated with significantly higher death rates. Of note, 17q23.2 as 

identified by GISTIC is a peak region included in the previously defined amplicon 

17q21.33-q25 that contains a number of outlier genes from 17q23.2 from Table 4.3. This 

suggests that the driver gene for this amplicon may be in this region. 

 

To eliminate the possibility that the amplicons are just a surrogate for high histologic 

grade, we analyzed the ability of the presence of any amplicon in intermediate grade 

tumors to distinguish low and high risk breast cancers. Two risk categories were defined: 

any amplicon: a high risk set of samples with chromosomal amplifications at any of the 
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four sites; and no amplicon: a low risk set of samples with no amplicons. Kaplan-Meier 

curves comparing recurrence in intermediate grade tumors for these two classes are 

shown in Figure 4.6A. It is clear from this figure that the amplicons are able to separate 

intermediate grade samples into significantly different risk classes. The Hazard ratio for 

intermediate grade tumors with amplicons versus intermediate grade tumors without 

amplicons was: (HR = 3.22, 95% CI = 1.6 – 6.5; P = 0.0012). Similar results were found 

for overall survival for intermediate grade tumors with any of the 4 amplicons versus 

cases without amplicons (Figure 4.6B: HR = 3.01, 95% CI = 1.2 – 7.6; P = 0.0200). 

These results show that the defined risk categories have a discriminatory power beyond 

that of classic histologic grade. 

 

Average rates of distant metastasis at 10 years were calculated for the two risk classes in 

the gene expression data set of Loi et al. (80) (GSE6532). Similarly, average death rates 

at 10 years were available for the CGH array data set of Jonsson et al. (97) (GSE2133). 

Kaplan–Meier estimates (Table 4.8) for the proportion of patients in the high risk group 

who experienced an event (distant recurrence: 49.3% or death: 43.9%) were much higher 

than those in the low risk category (distant recurrence: 18.7% or death: 13.0%). 

 

A validated marker of poor outcome in ER+ breast cancers with hormonal treatment is 

the Oncotype DX assay (16) described previously.  This assay uses a linear combination 

of the expression of 21 genes to generate a single recurrence score, consisting of HER2, 

GRB7, GSTM1, CD68, BAG1, invasion markers (MMP11,CTSL2), proliferation 

markers (Ki67,STK15,Survivin,CCNB1,MYBL2) as well as estrogen and some reference 
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markers. When the same gene panel is used to generate a relative Oncotype DX score 

(Figure 4.8) using normalized expression levels and published weights (16), we found 

that the presence of any of these amplicons was associated with higher recurrence scores, 

while tumors lacking the amplicons had lower recurrence scores. The relative Oncotype 

DX score computed using published weights on normalized gene expression values on 

the Loi et al. (80) dataset was also able to separate poor prognosis samples from good 

prognosis samples (Figure 4.7). 

 

To test the hypothesis that regions 17q21.33-q25.1, 8p11.2 and 8q24.3 are likely to be 

amplified in ER+/HER2- breast tumor samples having high Oncotype DX recurrence 

scores, a set of 14 ER+/HER2- breast cancer samples with known Oncotype DX scores 

was evaluated for the presence of 17q21.33-q25.1, 8p11.2 or 8q24.3 amplifications using 

FISH with validated probes (for details of the procedure see Appendix B.6). Of these, 8 

had high recurrence scores (RS) (>30) and 6 had low scores (<18).  As shown in Table 

4.9 and Figure 4.9, tumors with high RS had amplification of at least one of these regions, 

while almost all tumors with low RS did not exhibit any amplification at the mentioned 

chromosomal locations. 

 

4.5 Potential for clinical use 

Currently Oncotype DX or other quantitative grading methods are used to predict 

outcome and guide treatment for early stage ER+/HER2- breast cancer patients. A high 

recurrence score can identify patients likely to have poor outcome with hormonal therapy 

alone, who may benefit most from additional chemotherapy. However, Oncotype DX is 
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an expensive assay (~$3000 per test), requires sending RNA to a central lab and about 

30% of samples tested are assigned an “intermediate” risk class of dubious prognostic 

value. Moreover, it does not give any insight into new biological mechanisms driving 

poor prognosis, nor does it identify potential therapeutic targets. 

 

On the other hand, the results presented here show that the presence of amplification in 

chromosomal regions 17q21.33-q25.1, 8p11.2 and 8q24.3 are strong markers of poor 

prognosis in ER+/HER2- breast cancers.  Our analysis suggests that each amplicons has 

an associated risk equal to but independent of the risk of amplification of HER2. In our 

dataset, out of 44 patients who suffered distant metastasis within the first 4 years after 

diagnosis, 72.5% were predicted to have at least one of the four amplicons on 

chromosomes 8 and 17 while only 30% were predicted to have only 17q12 (HER2+) 

amplification.  

 

The presence of chromosomal amplification on 17q21.33-q25.1, 8p11.2 or 8q24.3 in 

early ER+/HER2- tumors may be highly predictive of poor outcome in the setting of 

hormonal treatment. These amplicons are associated with higher expression of genes that 

drive a high Oncotype DX (ODx) recurrence score. Direct analysis of clinical specimens 

for amplification of these regions using FISH also demonstrated that the presence of 

amplification at least one of these loci is associated with high recurrence ODx scores, 

while tumors that lack any of these amplicons have low recurrence ODx scores. The 

amplicons may be valuable as strong biomarkers in predicting poor outcome under 

hormonal therapy of early stage ER+/HER2- breast cancers. They can be identified using 
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a cost effective FISH assay on routine FFPE specimens. Since FFPE samples are 

routinely collected and archived in all hospitals, the association between the amplicons 

and poor prognosis can be easily validated in large retrospective and prospective studies 

and they can be easily identified and used in clinical practice.  

 

In addition to their value as biomarkers, these chromosomal regions may contain driver 

oncogenes that could be specific therapeutic targets for patients harboring these 

amplicons. Such targets can be identified using routine knock-out and knock-in 

experiments on breast cancer cell lines. We discuss below some possible oncogenes 

which may be responsible for the observed phenotype. 

 

Recent work by Turner et al. (100) identified that amplification of Fibroblast growth 

factor receptor 1 (FGFR1) is a driver for endocrine therapy resistance and a therapeutic 

target in breast cancer.  FGFR1 is located in chromosomal region 8p11.2 and is part of 

one of the amplicons that we found associated with Tamoxifen resistance. In the present 

dataset its outlier profile is associated with poor survival with 1.8 hazard ratio and 0.046 

log-rank p-value. This gene may well contribute to the observed effect of the 8p11.2 

amplicon on cancer recurrence in ER+/HER2- breast cancer.  Other genes in these 

amplicon regions that have been identified as putative oncogenes and therapeutic targets 

include U6 snRNA-associated Sm-like protein (LSM1), Wolf-Hirschhorn syndrome 

candidate 1-like 1(WHSC1L1) in region 8p11.2 and Heat shock transcription factor 1 

(HSF1) in 8q24.3 (90; 95; 96). 
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As seen in Figure 4.2, the majority of outlier genes associated with poor prognosis on the 

q arm of chromosome 8, are clustered in the region 8q24.3, with the rest of them 

scattered all the way to 8q11.2. This suggests that in some cases, the whole q arm is 

amplified or else there are a number of different amplicons on 8q. Slightly more upstream 

of 8q24.3 there is a well known oncogene MYC, a key estrogen effector, that has been 

reported to induce Tamoxifen resistance when over-expressed (101). Although MYC 

could also contribute to the effect of this amplicon on resistance, it is not as strongly 

associated with differential survival (log-rank P = 0.042) as more distal genes, suggesting 

it may contribute to only a minority of cases containing this amplicon. 

 

Another estrogen effector associated with Tamoxifen resistance is Cyclin D1 (CCND1, 

log-rank P value = 5.7e-6) (99) located on chromosomal band 11q13 another well known 

amplification site (102).  However CCND1 is also a cell cycle marker and its expression 

is associated with proliferation. Thus its association with poor outcome may in part 

reflect its role in proliferation and not just as a driver oncogene. Intriguingly there are 

reports of an association between 11q13 amplification and amplification of 8p12 (97; 

103; 104) in breast cancers, with some reports demonstrating a physical association 

between these domains (103). Thus 8p12 amplification may be functionally linked to 

11q13 amplification in a subset of breast cancers. 

 

Of the chromosomal regions identified in this study, 17q21.33-q25.1 is the least 

understood. Situated downstream of a much better known amplicon 17q12 (HER2+), it is 

a huge region known to be amplified and correlated with high grade tumors and poor 



  69  

    

prognosis (86). However, there is still no definite answer on indentifying the driver 

oncogenes in this region. Possible candidates are CLTC, involved in gene fusions in B-

cell lymphomas and non-small cell lung carcinomas, RAD51C involved in DNA repair 

and homologous recombination, and PPM1D, a protein phosphatase,  with only the first 

two significantly associated with Tamoxifen resistance in this dataset (P < 0.05). 

 

In summary, the data presented here suggest that amplification of chromosomal regions 

17q21.33-q25.1, 8p11.2 and 8q24.3 is strongly associated with intrinsic hormone 

resistance in early stage ER+/HER2- breast cancers, and correlates with high Oncotype 

DX recurrence scores. Similar to the HER2 amplicon, the presence of these amplicons 

may serve as a biomarker of poor prognosis in Luminal breast cancers. Moreover these 

chromosomal regions may contain genes whose over-expression may drive hormone 

independence in ER+ breast cancers.  
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Table 4.1: Microarray datasets used in this study 

Clinical and pathological characteristics of all ER+, Tamoxifen treated patients in the 

dataset analyzed in our study.  

 
Identifier No. of 

samples 
Grade ratio 
(1/2/3) 

LN status 
ratio +/-() 

Treatment 

GUYT 87 17/37/16 58/29 Tamoxifen 

OXFT 109 21/51/17 37/66 Tamoxifen 
KIT 72 12/43/14 48/21 Tamoxifen 

 

 

Table 4.2: Pathways and amplicons associated with Tamoxifen response and 

resistance. 

Gene Ontology pathways/chromosomal location enrichment analysis results. P values 

were computed using Fisher’s Exact Test. 

 
 Over-expression P values Under-expression P values 

Good Outcome with 
Tamoxifen treatment  

Immune response 1.61E-05 Cell cycle  1.10E-03 

Development 7.56E-08 

Cell adhesion 1.68E-04 
Poor outcome with 
Tamoxifen treatment  

Cell cycle 9.12E-07 Immune response 1.36E-05 

17q21.33-q25.1 3.87E-05 Cell adhesion 2.01E-08 

17q12 1.39E-08   
8p11.2 1.11E-16 

8q24.3 2.22E-16 
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Table 4.3: Over-expressed genes in chromosomal regions 17q12, 17q21.33-q25.1, 

8p11.2 and 8q24.3 associated with Tamoxifen resistance 

Genes on chromosomes 8 and 17 associated with Tamoxifen resistance. Genes 

highlighted in red are known cancer related genes CLTC, WHSC1L1 and oncogenes 

ERBB2, LSM1 and HSF1.  

Gene Name Cytoband Start End 

STARD3 StAR-related lipid transfer (START) domain containing 
3 chr17q12 35,046,940 35,073,248 

ERBB2 
v-erb-b2 erythroblastic leukemia viral oncogene 
homolog 2, neuro/glioblastoma derived oncogene 
homolog (avian) 

chr17q12 35,110,005 35,122,109 

GRB7 growth factor receptor-bound protein 7 chr17q12 35,152,029 35,156,782 
GSDML gasdermin B chr17q12 35,326,079 35,328,194 

PSMD3 proteasome (prosome, macropain) 26S subunit, non-
ATPase, 3 chr17q12 35,390,607 35,407,732 

PHB prohibitin chr17q21.33 44,836,413 44,847,246 
SLC35B1 solute carrier family 35, member B1 chr17q21.33 45,133,688 45,140,281 
SUPT4H1 suppressor of Ty 4 homolog 1 (S. cerevisiae) chr17q22 53,778,283 53,784,556 
RAD51C RAD51 homolog C (S. cerevisiae) chr17q22 54,124,987 54,127,694 
CLTC clathrin, heavy chain (Hc) chr17q23.1 55,052,102 55,126,906 
PTRH2 peptidyl-tRNA hydrolase 2 chr17q23.1 55,129,449 55,139,638 
ABC1 ATP-binding cassette, sub-family A (ABC1), member 1 chr17q23.1 55,475,337 55,499,876 

APPBP2 amyloid beta precursor protein (cytoplasmic tail) 
binding protein 2 chr17q23.2 55,875,300 55,958,365 

TRIM37 tripartite motif-containing 37 chr17q23.2 57,059,999 57,184,266 
USP32 ubiquitin specific peptidase 32 chr17q23.2 58,254,691 58,469,586 
CYB561 cytochrome b-561 chr17q23.3 58,864,245 58,869,052 
CCDC44 coiled-coil domain containing 44 chr17q23.3 59,038,377 59,039,456 

PSMC5 proteasome (prosome, macropain) 26S subunit, 
ATPase, 5 chr17q23.3 59,258,832 59,263,111 

PSMD12 proteasome (prosome, macropain) 26S subunit, non-
ATPase, 12 chr17q24.2 62,764,494 62,793,171 

KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) chr17q24.2 66,031,848 66,042,970 
ICT1 immature colon carcinoma transcript 1 chr17q25.1 70,520,374 70,528,950 

ATP5H ATP synthase, H+ transporting, mitochondrial F0 
complex, subunit d chr17q25.1 70,546,552 70,548,888 

MRPS7 mitochondrial ribosomal protein S7 chr17q25.1 70,769,394 70,773,734 
SAP30BP SAP30 binding protein chr17q25.1 71,175,038 71,214,431 
SPFH2 ER lipid raft associated 2 chr8p11.2 37,713,267 37,734,476 
PROSC proline synthetase co-transcribed homolog (bacterial) chr8p11.2 37,739,282 37,756,441 
ASH2L ash2 (absent, small, or homeotic)-like (Drosophila) chr8p11.2 38,082,214 38,116,216 

LSM1 LSM1 homolog, U6 small nuclear RNA associated (S. 
cerevisiae) chr8p11.2 38,140,017 38,153,183 

WHSC1L1 Wolf-Hirschhorn syndrome candidate 1-like 1 chr8p11.2 38,293,091 38,358,947 

BRF2 BRF2, subunit of RNA polymerase III transcription 
initiation factor, BRF1-like chr8p12 37,821,053 37,826,512 

DDHD2 DDHD domain containing 2 chr8p12 38,208,356 38,239,442 
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UBE2V2 ubiquitin-conjugating enzyme E2 variant 2 chr8q11.21 49,083,545 49,136,681 

ATP6V1H ATPase, H+ transporting, lysosomal 50/57kDa, V1 
subunit H chr8q11.23 54,828,192 54,832,484 

MRPL15 mitochondrial ribosomal protein L15 chr8q11.23 55,210,341 55,223,011 

COPS5 COP9 constitutive photomorphogenic homolog subunit 
5 (Arabidopsis) chr8q13.2 68,117,869 68,136,905 

TCEB1 transcription elongation factor B (SIII), polypeptide 1 
(15kDa, elongin C) chr8q21.11 75,020,403 75,047,049 

FAM82B family with sequence similarity 82, member B chr8q21.3 87,555,453 87,590,037 
UQCRB ubiquinol-cytochrome c reductase binding protein chr8q22 97,312,308 97,316,963 

POLR2K polymerase (RNA) II (DNA directed) polypeptide K, 
7.0kDa chr8q22.2 101,232,001 101,235,407 

ATP6V1C1 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit 
C1 chr8q22.3 104,102,463 104,152,473 

EBAG9 estrogen receptor binding site associated, antigen, 9 chr8q23 110,621,485 110,646,565 

YWHAZ tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta polypeptide chr8q23.1 102,001,097 102,033,426 

ENY2 enhancer of yellow 2 homolog (Drosophila) chr8q23.1 110,415,745 110,425,074 
RAD21 RAD21 homolog (S. pombe) chr8q24 117,927,353 117,956,221 
SQLE squalene epoxidase chr8q24.1 126,100,439 126,102,952 
MRPL13 mitochondrial ribosomal protein L13 chr8q24.12 121,477,267 121,526,557 
SCRIB scribbled homolog (Drosophila) chr8q24.3 144,945,082 144,968,239 
SIAHBP1 poly-U binding splicing factor 60KDa chr8q24.3 144,970,536 144,983,471 

GRINA glutamate receptor, ionotropic, N-methyl D-aspartate-
associated protein 1 (glutamate binding) chr8q24.3 145,136,247 145,139,570 

EXOSC4 exosome component 4 chr8q24.3 145,205,516 145,207,538 
CYC1 cytochrome c-1 chr8q24.3 145,221,982 145,224,415 
SHARPIN SHANK-associated RH domain interactor chr8q24.3 145,225,527 145,230,852 
C8orf30A chromosome 8 open reading frame 30A chr8q24.3 145,264,659 145,267,608 
BOP1 block of proliferation 1 chr8q24.3 145,456,867 145,485,928 
HSF1 heat shock transcription factor 1 chr8q24.3 145,497,218 145,498,193 
FBXL6 F-box and leucine-rich repeat protein 6 chr8q24.3 145,549,899 145,552,940 
GPR172A G protein-coupled receptor 172A chr8q24.3 145,553,131 145,555,738 
VPS28 vacuolar protein sorting 28 homolog (S. cerevisiae) chr8q24.3 145,619,807 145,623,174 
RPL8 ribosomal protein L8 chr8q24.3 145,985,957 145,988,332 
ZNF7 zinc finger protein 7 chr8q24.3 146,023,747 146,043,697 
ZNF250 In multiple Geneids chr8q24.3 146,076,967 146,079,026 
C8orf33 chromosome 8 open reading frame 33 chr8q24.3 146,248,629 146,251,814 

 

 

 

 

 

 



  73  

    

Table 4.4: Sample correlations between gene patterns associated with Tamoxifen 

resistance 

Correlations amongst sample with up-regulation of the cell cycle pathway and each of the 

four amplicons associated with Tamoxifen resistance in the gene expression dataset 

(GSE6532) from Loi et al. (80). Values represent Phi coefficients measuring the strength 

of association between the group of samples that over-express cell cycle genes and 

amplicons 17q12, 17q21.33-q25.1, 8p11.2 and 8q24.3. The last column lists the 

percentage counts of ER+ samples with the associated pathway/amplicons. Marked in red 

are correlation values significant at p < 0.01 except for self correlations. 

Note that the cell cycle pathway is correlated with each amplicon. However, the 

amplicons themselves are not correlated with each other. This suggests that they are 

independent markers of poor progression.  

 
 cell cycle 17q12 17q21.33-

q25.1 
8p11.2 8q24.3 Percent 

samples 
cell cycle 1.00 0.26 0.30 0.17 0.20 7.8% 
17q12 0.26 1.00 0.18 0.01 0.00 12.7% 

17q21.33-q25.1 0.30 0.18 1.00 0.07 0.23 13.1% 

8p11.2 0.17 0.01 0.07 1.00 0.26 13.4% 
8q24.3 0.20 0.00 0.23 0.26 1.00 9.0% 
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Table 4.5: Amplicon survival properties  

Metastasis free survival in samples with amplicons 17q12, 17q21.33-q25.1, 8p11.2, 

8q24.3 in the gene expression dataset (GSE22133) of Loi et al. (80). Hazard ratio and 

log-rank P values were computed with reference to samples without any amplicons. 

 
Amplicon Median time 

to recurrence 
(days) 

Hazard 
ratio 

95% CI Log-rank 
P value 

17q12 3355 4.09 3.84 – 21.99 6.3e-07 

17q21.33-q25.1 — 3.14 2.17 – 13.62 3.0e-04 

8p11.2 3795 3.75 3.18 – 18.31 5.7e-06 
8q24.3 3468 4.29 4.32 – 34.08 2.2e-06 

 

 

Table 4.6: Correlations between samples different amplicons in an independent 

CGH array dataset 

Phi coefficients measuring the association between amplicons 17q12, 17q23.2, 8p11.2 

and 8q24.3 in the test CGH dataset (GSE22133) from Jonsson et al. (97). The last column 

lists the percentage counts of ER+ samples with the associated amplicons. Marked in red 

are correlation values significant at P < 0.01 not including self correlations. 

 
 17q12 17q23.2 8p11.2 8q24.3 Percent 

samples 
17q12 1.00 0.32 0.12 0.27 51.8% 

17q23.2 0.32 1.00 0.15 0.20 41.9% 
8p11.2 0.01 0.15 1.00 0.22 45.9% 

8q24.3 0.27 0.20 0.22 1.00 68.5% 
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Table 4.7: Amplicon survival properties in an independent CGH array dataset 

Overall survival properties of samples with amplicons 17q12, 17q23.2, 8p11.2, 8q24.3 

derived from the CGH array dataset (GSE22133) of Jonsson et al. (97). Hazard ratio and 

log-rank P values are relative to samples without amplicons. 

 
Amplicon Median 

survival 
(days) 

Hazard 
ratio 

95% CI Log-rank  
P value 

17q12 4356 2.61 1.51 – 5.51 6.8e-04 

17q23.2 2879 3.02 1.76 – 5.18 7.3e-05 

8p11.2 3813 2.65 1.48 – 4.74 1.3e-03 
8q24.3 5800 2.12 1.24 – 3.65 6.7e-03 

 

 
 
Table 4.8: Kaplan-Meier estimates of the rate of distant metastasis/death events at 
10 years 
Average rates of distant metastasis/death are compared between two risk categories: any 

amplicon vs. no amplicon present. Distant metastasis times are obtained for the gene 

expression dataset (GSE6532) of Loi et al. (80) while overall survival times are collected 

from the CGH array dataset (GSE22133) of Jonsson et al. (97).  

 
Risk category Rate of distant 

recurrence at 10 
years 

95% CI Rate of death at 
10 years 

95% CI 

Any amplicon 49.3% 36.9 - 61.7% 43.9% 36.1 - 51.7% 

No amplicon 18.7% 11.7 - 25.7% 13.0% 2.30 - 23.7% 

 

 

 

 

 

 



  76  

    

Table 4.9: FISH staining scores for ER+/HER2- breast cancer tissue samples 

Fluorescence in situ hybridization (FISH) results for 14 paraffin embedded ER+/HER2- 

breast cancer samples. Scores are calculated as average number of spots over 20 cancer 

cells for each chromosomal location and the separated into amplified, not amplified and 

borderline classes as follows: (>4 amplified; 2-4 borderline; <2 not amplified). The last 

column lists the associated Oncotype DX score for each sample, 8 have high scores while 

6 have low scores. Note that all samples with high Oncotype DX score (in red) have at 

least one associated amplicon, while samples with low Oncotype DX score have none.  

 
17q23.1 8q24.3 8p11.2 Oncotype DX 
amplified amplified amplified 46 

not amplified not amplified amplified 42 

borderline not amplified amplified 38 
amplified borderline borderline 36 

borderline amplified borderline 33 

amplified amplified amplified 44 
amplified amplified borderline 42 

borderline borderline borderline 34 

no signal  not amplified not amplified 13 
no signal not amplified not amplified 8 

not amplified not amplified not amplified 5 

borderline not amplified not amplified 12 
not amplified no signal no signal 11 

not amplified not amplified not amplified 11 
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Figure 4.1: PCA plots of high (A) and low (B) outliers 

Outlier profiles of genes associated with differential survival were organized into two 

binary matrices B1 and B2 corresponding to high and low outlier values respectively. For 

both matrices, B(i,j) = 1 if gene i was an outlier in sample  j and  B(i,j) = 0 otherwise. 

These matrices were further pruned by iteratively eliminating row i and column i if gene i 

was not positively correlated with at least one other gene from the remaining set. The 

figure represents the projection of each gene’s outlier profile on the first two principal 

components of the corresponding matrix. Clusters associated with good prognosis are 

circled blue while clusters associated with bad prognosis are circled red. 

 
A B
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Figure 4.2: Clustergram of the correlation matrix between selected over-expressed 

genes associated with poor survival under Tamoxifen treatment  

Calculating Phi coefficients for the distribution of high outliers between every two genes 

found to be associated with Tamoxifen resistance in Figure 1A produces a correlation 

matrix. This figure shows the resulting heatmap of the hierarchical clustering (Pearson 

correlation distance, complete linkage) of this correlation matrix. Genes in the same 

pathway or chromosomal region are clustered together as marked. 
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Figure 4.3: Patients with cell cycle pathway activation show poor survival outcome 

under Tamoxifen treatment 

Kaplan-Meier curves of the samples enriched for over-expressed cell cycle genes versus 

the rest of samples that don’t show this feature. Patients with cell cycle activated genes 

show a significant decrease in relapse free survival rate (HR = 9.71, 95% CI = 3.3 – 28.6; 

P < 0.0001). 
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Figure 4.4: Patients with 17q12, 17q21.33-q25.1, 8p11.2 and 8q24.3 amplifications 

show poor survival outcome under Tamoxifen treatment 

Kaplan-Meier curves of the samples with the 4 amplicons versus samples that don’t have 

any of the chromosomal amplifications. Samples with enrichment of any of the four 

amplicons were identified by requiring at least 50% of gene markers in each group to be 

over-expressed, i.e. is marked as a high outlier in the respective sample. Patients that 

show any one of the chromosomal amplifications have significantly higher relapse rates 

at an overall log-rank P value < 0.0001. See Table 4.4 for additional detail. 
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Figure 4.5: Patients with 17q12, 17q23.2, 8p11.2 and 8q24.3 amplifications also show 
poor survival outcome in an independent CGH array data set. 
 
Kaplan-Meier curves of the samples with the 4 amplicons versus samples without these 

amplifications. Analysis of the CGH data identified amplification peaks at each of the 

four regions that overlap with the previously identified loci. Once again, we see that 

patients with any of the amplifications have significantly higher relapse rates at an overall 

log-rank P  =0.0015. Additional details are in Table 4.6. 
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Figure 4.6: Analysis of intermediate grade tumors by presence of amplicons 

Kaplan-Meier curves comparing rates of distant metastasis for patients with intermediate 

grade tumors who harbor one of the 4 amplicons versus patients with intermediate grade 

tumors without amplicons (A) in the training set GSE6532 (HR = 3.22, 95% CI = 1.6 – 

6.5; P = 0.0012) and  (B) in the test set GSE22133 (HR = 3.01, 95% CI = 1.2 – 7.6; P = 

0.0200). 
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Figure 4.7: Relative Oncotype DX scores separate low risk from high risk breast 

cancers 

Kaplan-Meier curves showing significantly lower survival (HR = 2.81, 95% CI = 1.7 – 

4.5; P < 0.0001) for tumor samples with high Oncotype DX scores (ODx score > 0) 

versus low Oncotype DX scores (ODx score < 0). The scores were computed from 

normalized gene expression data using published weights (16). 
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Figure 4.8: Relative Oncotype DX recurrence scores vs. presence/absence of 

amplicons.  

Oncotype DX scores were inferred from the gene expression data using published 

weights and normalized expression values for the 21 genes in the Oncotype DX panel. 

The figure shows the range of these scores in sets of patients with each amplicon and in 

patients without any amplicons.  Note that the Oncotype DX scores are highest in patients 

with amplicons in 17q12 or with amplification of cell cycle genes, because HER2 and 

proliferation genes are included in the Oncotype DX panel. However, patients with 

amplifications at 17q23.2, 8p11.2 and 8q24.3 have intermediate recurrence scores. This 

suggests that they are enriched in samples in the “intermediate” risk class of Oncotype 

DX. This shows that identification of these amplicons gives useful clinical information 

beyond what is the risk score of Oncotype DX. 
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Figure 4.9: Fluorescent in situ hybridizations (FISH)  

FISH images from experiments performed on breast cancer tissue slides with and without 

each amplicon.  The FISH assay was done using probes specific to the amplicon 

chromosomal regions 17q23.2, 8p11.2 and 8q24.3. 
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Chapter 5:Conclusions and Outlook 

 

“There is grandeur in this view of life, with its several powers, having 
been originally breathed into a few forms or into one; and that, whilst this 
planet has gone cycling on according to the fixed law of gravity, from so 

simple a beginning endless forms most beautiful and most wonderful have 
been, and are being, evolved.” 
Charles Darwin (1809-1882) 

 

5.1 Conclusions 

Unraveling the intricate mechanisms that drive the growth of breast tumor cells has 

proven to be a formidable task. The current classification of breast cancer based on 

clinical markers correlates well with molecular classes based on gene expression analyses, 

and this in turns drives treatment. However, in clinical practice, the distinctions between 

different types of breast cancers are often not clear-cut, and cases often exhibit molecular 

patterns associated with a combination of the known subtypes. For example, Luminal 

(ER+) breast tumors can also be HER2+, showing chromosomal amplification at the 

17q12 loci. Other known genomic aberrations like 8p12, 8q24.21, 8q24.3 and 11q13.3, 

identified in this thesis as relevant in clinical management of disease, are present in 

patients across all subtypes (97). This indicates that there is considerable more 

heterogeneity between breast cancers than previously thought, and treatment should be 

directed accordingly, by careful molecular profiling of each case. 
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ERBB2 (HER2) is one of a handful of molecular targets for which FDA approved drugs 

exist. Monoclonal antibodies like Trastuzumab, Cetuximab and tyrosine kinase inhibitor 

Lapatinib are common targeted therapies for HER2+ breast cancers. The success of these 

treatments, verified in large scale clinical trials, led to an avalanche of new candidate 

molecular targets in different subsets of breast tumors. Some of them have been predicted 

by the work presented here in Chapter 2, like epidermal growth factor receptor EGFR for 

high risk ER+ tumors (Luminal B); FOS, TGF beta receptor 2, ETS-related genes ERG, 

ELK3 and ETS2 for Luminal A tumors; PIM2 and a number of SRC tyrosine kinases 

predicted to be good therapeutic targets in subsets of Basal-like and HER2+ breast 

tumors. 

 

EGRF is already being used as a partial target together with ERBB2 (HER2) for the 

treatment of HER2+ breast cancers. Lapatinib is a drug that targets both proteins 

expressed by these genes and has shown its efficacy in HER2+ cases. However, other 

drugs like Cetuximab or Gefitinib are in different phases of clinical trials for the 

treatment of other classes of breast tumors. Another class of drugs that are in clinical 

trials for breast cancer treatment is the one that targets SRC kinases. Dasatnib is one such 

cancer drug that has shown promising early results on triple negative (ER-/PR-/HER2-) 

breast cancer cell lines (46; 47). 

 

An equally important issue in managing breast cancer cases, besides the availability of 

adjuvant, neoadjuvant or systemic therapies, is the ability to predict disease drug response. 

Classic methods based on IHC or FISH staining of tumors tissue slides have been very 
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useful in predicting response to HER2 targeted therapies as well as estrogen pathway 

inhibitors. In addition, these methods are cheap and the assay can be done quickly, in the 

same hospital where the patient is being treated. A pathologist usually scores the amount 

of HER2, ER and PR protein expressed in the cancer cells. An equally efficient alternate 

method to identify ERBB2 over-expression is to use a FISH assay to assess chromosomal 

amplification of the 17q12 locus.  

 

Until a few years ago, the standard of care in the evaluation of breast cancers to guide the 

clinician in determining appropriate treatment were standard techniques such as histo-

pathological examination of the tumor and immunohistochemical measurements of ER, 

PR, and HER2.  The advent of high throughput gene expression analysis and more 

recently, sequencing techniques, has given the clinician additional information about the 

underlying molecular features of the tumor and the possible risk of progression and 

possible failure of hormone therapy.  Some of these new methods, such as the Oncotype 

DX® assay by Genomic Health Inc. and MapQuant DX™ by Ipsogen Inc. are already in 

use in the clinic. However, as we have shown in Chapter 4, these assays do not 

adequately identify all the risk associated molecular events in breast cancer. We have 

identified three additional regions of chromosomal amplifications in 8p11.2, 8q24.3 and 

17q23.2 that confer additional risk of progression, similar to the HER2 amplicon on 

17q12, which are not currently assessed in the clinic, which can be easily identified by 

relatively inexpensive methods from FFPE specimens. Although the biology of these 

amplicons remains to be understood, they can be used, with potentially tremendous 

benefit to the patients, as markers of risk. Their identification would help identify patients 
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currently unidentifiable, who may benefit from additional chemotherapy.  An additional 

benefit may result from an understanding of their biology, which may reveal gene and 

protein targets for the development of novel therapeutics.  

 

5.2 Outlook 

There is a long road winding from research laboratories to clinical practice.  In this thesis, 

we developed techniques for the analysis of large high throughput gene expression 

datasets and used them to identify therapeutic targets in Basal-like breast cancers, for 

which no systemic therapy currently exists. We also discovered markers associated with 

differential survival which identifies patients likely to have early recurrence under 

standard therapy, who may benefit from additional chemotherapy. Our discoveries can 

easily be validated in larger retrospective and prospective datasets and easily and cost 

effectively implemented in the clinic, to the benefit of the patients. 

 

The discoveries in this thesis need to be further verified in large independent datasets and 

clinical trials. The gene targets listed in Table 2.2 could be tested in breast cancer cell 

lines, using techniques similar to the methods used in Chapter 2 and Appendix B to 

validate YES1 as a target in Basal-like breast cancers.  This could be followed by 

validation/testing in a mouse models, followed by drug development and a clinical trial 

before use in the clinic.  

 

We are hoping to be able to obtain experimental validation of the chromosomal markers 

(amplicons) discovered in Chapter 4. To this end, FISH probes corresponding to 8p11.2, 
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8q24.3 and 17q23.2 loci will be hybridized to a large number of tumor tissue samples 

from ER+, Tamoxifen only treated patients with long term follow up information. 

Relapse risk will be assessed as a function of the presence/absence of each of the 

amplicons, and the value of this assessment will be compared to standard clinical markers 

such as stage, grade and assays like Oncotype DX. 

 

We hope that some of the discoveries in this thesis will eventually be incorporated into 

clinical practice because they have the potential to assist the clinician in the management 

of breast cancers and to markedly improve the quality of life of patients. As more data 

becomes available for other types of cancers, our hope is that collaborations between 

researchers from diverse backgrounds and clinicians, that led to this thesis, will become 

routine and will reveal many new and useful tools for diagnosis, prognosis and the 

development of effective therapies.  
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Appendix A: Derivation of the Gene Centrality Score 

A.1 Datasets and pre-processing 

Previously published breast cancer microarray datasets (accession numbers GSE2034 

(37) and GSE4922 (40)) were downloaded from the Gene Expression Omnibus website 

(GEO:www.ncbi.nlm.nih.gov/geo). The first dataset (GSE2034) comes from a study of 

Wang et al. (37) and consists of gene expression data from 286 lymph node negative 

patients treated with surgery and radiation alone and followed for up to 150 months after 

treatment, with recorded events for distant metastasis. ER status was available; HER2 

status and histologic grade were known but not provided. The second dataset (GSE4922) 

from (40) consisted of 249 primary invasive breast tumors. In this cohort, 64% of patients 

were lymph node negative and were treated with surgery and radiation alone. The 

remaining were lymph node positive and received systemic adjuvant polychemotherapy 

consisting of intravenous cyclophosphamide, methotrexate and 5-fluorouracil (105). 

Histological grade, tumor size, ER and P53 biomarker information were available for 

each sample together with up to 153 months of follow up information for distant 

metastasis.  

 

The arrays were MAS 5.0 normalized and only probes present in both datasets were 

retained. Multiple probes corresponding to the same gene were compressed to the one 

with the biggest median over all arrays after taking log2 of each intensity value. In 

addition, every array was scaled to median zero by subtracting the median of each array 

from every expression value. 
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Robust unsupervised consensus ensemble clustering methods previously applied to the 

data of Wang et al. (37) identified six core breast cancer subtypes(13; 38; 39): Two 

ER+,HER2- subtypes labeled Luminal A (LA) and Luminal B (LB), two Basal subtypes 

BA1 and BA2, both ER-,HER2- and two HER2+ subtypes labeled HER2I and HER2NI. 

The samples in the Ivshina et al. (40) dataset were assigned subtype as follows: HER2+ 

samples were identified based on Chr-17q12 amplification using expression levels of 

ERBB2, GRB7, STARD3 and PPARBP. Gene expression values in both datasets were 

normalized by subtracting the median and dividing by the median absolute deviation. 

HER2+ samples were identified as those over-expressing ERBB2 and at least two others 

from the set GERB7, STARD3 and PPARBP. After HER2 samples were identified, the 

two datasets were merged using a method called Distance Weighted Discrimination 

(DWD) (106) which corrects for biases arising from different experimental conditions. 

The assignment of samples in (15) to subtypes was done by comparison to mean 

expression profiles (centroids) across all genes for each subtype, using the classification 

of the Wang dataset as the standard. This method, called Single Sample Predictor (49), 

calculates a “distance” from each sample to mean expression values of samples in labeled 

sets using Euclidean distance or Pearson correlation and assigns them to the set for which 

this distance the smallest. Samples with inconsistent class labels for different distance 

metrics were discarded. 

 

A.2 Meta-analysis of outliers 

To minimize sample size bias, 10 arrays were randomly picked from each breast cancer 

subtype and combined into a reduced gene expression table 60][ nxijg=G  where n is the 
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total number of genes in each array. For each gene, the expression values were median 

centered and then divided by the median absolute deviation (MAD) as described in 

Tomlins et al. (81): 
)(

)(

i

iij
ij gMAD

gmediang
g

−
=′ . Median and MAD were used here instead of 

the usual mean and standard deviation because they are less influenced by the presence of 

outliers. Outlier scores (θ) were defined for each gene and class as the percentage of high 

outlier values across each breast cancer subtype: ∑ Δ=
N

j jN
1θ where 10=N , 1=Δ j if 

1>′jg and 0=Δ j otherwise.  

 

The sampling procedure was repeated 1000 times, separately for the two datasets 

(GSE2034 and GSE4922), and in each sampling, outlier scores was generated for each 

gene in each subtype. At the end of this analysis, every gene had two associated 

distributions of outlier scores for each subtype that could now be combined into a single 

consensus score. This meta-outlier score was calculated, using the method of Cochran 

(109), as a weighted mean of the average outlier scores from the two distributions ( 1θ  and 

2θ ), where the weights are the inverse of the corresponding variances 2
kσ :  

 ∑∑= 22ˆ
k kk kk ww θθ , 21 kkw σ=  [2.1] 

Each gene was now assigned a meta-outlier score for each of the 6 breast cancer classes 

(BA1, BA2, HER2I, HER2NI, LA and LB) which assesses whether it is over or under 

expressed in that subtype.  
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A.3 Meta-analysis of correlations 

For each dataset, Pearson correlations were computed between all pairs of genes within 

each subtype. Assuming a common underlying population correlation between every two 

genes in each class, we calculated meta-correlation values by first transforming each 

Pearson correlation r with a Fisher z-transform 
r
rz

−
+

=
1
1ln

2
1 . The method usually used to 

estimate a common correlation value across multiple datasets (110) is to calculate the 

weighted average ∑∑= 22ˆ
k kk kk wzwz  [2.2] where 1z  and 2z  are z-transformed Pearson 

correlations between any two genes from datasets GSE2034 and respectively GSE4922. 

The weights are 3−= kk nw  where 1n  and 2n are number of samples used to calculate the 

correlations in the two datasets. Since correlation values calculated from gene expression 

arrays are often noisy (111), a homogeneity chi-squared statistic 

∑ −−=
2 2)ˆ)(3(
k kk zznQ was used to reject inconsistent correlation values. This statistic 

is chi-squared distributed (110) with 1−K  degrees of freedom, where 2=K  is the total 

number of studies. Based on this statistic, the degree of inconsistencies can be measured 

as QdfQI /)(%1002 −×=  where 1−= Kdf is the number of degrees of freedom. The 

measure 2I  describes the percentage of total variation across studies that is due to actual 

heterogeneity (signal) rather than chance (112). 

  

Meta-correlation values were calculated using the inverse Fisher z-transform: 

1)ˆ2exp(
1)ˆ2exp(ˆ

+
−

=
z
zr  and the ones for which %502 >I  were discarded. This ensures that 

more than 50% of the observed variations were due to true heterogeneity. 
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A.4 Gene centrality 

Eigenvector centrality (113; 114) is a measure of the importance of a node in a network. 

Relative scores are assigned to each node based on the idea that connections to nodes 

with high scores should contribute more to the score of the node in question than equal 

connections to low scoring nodes. Similarly, gene centrality is a measure of the 

importance of a gene in a modified gene network, where directed edges between nodes 

(genes) are weighted by a positive measure of the over-expression of the target gene as 

shown in the toy gene network from Figure 2.1. More generally, connections between 

nodes can be real positive numbers representing connection strengths.  

 

Let nxnija ][=A  be an adjacency matrix where every element 2
îjij ra = is the square of the 

meta-correlations between all genes within a subtype. (For more detailed explanation of 

the material here, refer to (115) and (110)). This is the inverse of ẑ from equation [2.2] 

and measures how much of the variance in the expression of gene gi can be explained by 

gene gj. It provides an intuitive measure of the “connection” strength between the two 

genes. Let is  be the centrality of gene ig  with associated meta-outlier score iθ̂  as 

described in equation [2.1]. Then the centrality of gene ig is proportional to the sum of 

scores of all genes modulated by the “connection” strength with each one of them; and 

also proportional to its own measure of over-expression:  

 ∑=
n

j jijii sas θ
λ

ˆ1  [2.3] 

where λ is the constant of proportionality to be determined. Let )ˆ,...ˆ,ˆ( 21 ndiag θθθ=Θ  be 

the diagonal matrix with meta-outlier scores of all genes on the main diagonal and 
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1][ nxis=s  be a column vector of all gene centrality scores, then the previous equation 

[2.3] can be rewritten as an eigenvector problem:  

 sΘAs λ=  [2.4] 

Equation [2.4] identifies λ as an eigenvalue of the product of matrices Θ and A . In 

general, there will be many different eigenvalues λ for which an eigenvector solution s  

exists, and they describe the behavior of the discrete linear dynamical system: 

 mm ΘAxx =+1  [2.5] 

Where,   

 n
m
nn

mm
m ccc sssx λλλ +++= ...222111  [2.6] 

The linear system defined in [2.5] is completely characterized by the matrix ΘA which 

can be viewed as an adjacency matrix of a directed graph whose nodes represent genes 

and an edge from gene ig  to gene jg is equal to 2ˆˆ
ijj rθ . 

 

If ΘA is a primitive matrix (see below for a definition), Perron-Frobenius Theorem (115) 

states that it has a unique positive largest eigenvalue whose eigenvector has only positive 

entries. This guarantees that the maximal eigenvalue in equation [2.6] will dominate the 

long term behavior of the system defined by equation [2.5]. This property justifies 

choosing the corresponding eigenvector as a measure of gene centrality. Each element in 

this vector is a centrality score and is proportional to the long term “state” of the 

associated node in the gene network. 
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A primitive matrix M is a non-negative square matrix such that there is a number k for 

which all elements of kM are strictly positive. Since ΘA is not always a primitive matrix, 

minor modification in its structure need to be made for the analysis above to apply. A 

sufficient condition for a non-negative matrix to be primitive is that the matrix must be 

irreducible and have strictly positive elements along the main diagonal. An irreducible 

matrix is equivalent, in graph theoretic terms, to a fully connected network. In the case of 

a graph it is thus sufficient to eliminate unconnected nodes until the remaining ones are 

fully connected and add self loops to one or all nodes as shown in Figure 2.1. Similarly, 

to transform ΘA to a primitive matrix, it is sufficient to make all elements on the 

principal diagonal positive, in this case equal to 0ˆ >iθ , and discard unconnected nodes. 

 

Separate ΘA matrices were calculated for each breast cancer subtype (BA1, BA2, HER2I, 

HER2NI, LA and LB) and the principal eigenvector determined. Genes that were 

eliminated to make ΘA  primitive were assigned centrality score zero, while the rest were 

assigned scores from the dominant eigenvector. To allow the comparison of centrality 

scores between subtypes, the scores for each subtype were normalized by dividing by the 

median score across all genes. 
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Appendix B: Experimental methods and conditions 

B.1 Immunohistochemistry 

Anti-YES1 antibody (Santa Cruz) was first optimized on human breast tissue microarray 

slides using Discovery XT (Ventana Medical Systems) automated immunostainer. Before 

hybridization, breast cancer tissue slides were deparaffinized in a 60°C oven for 1 hour 

followed by 3x5 minutes in xylene, and hydrated in 100%, 80%, 70% ethanol and dH2O. 

Antigen retrieval was performed by using Cell Conditioning Solution (Ventana Medical 

Systems) for 72 minutes. Anti-c-Yes antibody was applied at a dilution of 1:30 and 

incubated at 37°C for 1 hour, followed by 12 minutes with a universal secondary 

antibody (Ventana Medical Systems). DABMap (Ventana Medical Systems) was used for 

chromogenic detection after which slides were counterstained with Hematoxylin 

(Richard-Allan Scientific) and dehydrated in 70%, 80%, and 100% ethanol. 

 

B.2 Cell culture conditions 

MDA468 and MDA231 cell were maintained in DMEM/F12 (Gibco) supplemented with 

5% Fetal Bovine Serum(FBS) (Gibco), 1% amino acids (Cellgro), 1% sodium pyruvate 

(Sigma); BT549 and SKBR3 cells were maintained in RPMI 1640 (ATCC) with 10% 

FBS; MCF7 and HEK-293T in DMEM (Gibco) with 10% FBS and MCF10A were 

grown in DMEM/F12 to which the following were added: 5% horse serum (Invitrogen), 

20 ng/ml epidermal growth factor (Invitrogen), 100 ng/ml cholera toxin (Sigma), 0.01 

mg/ml insulin (Sigma) and 500 ng/ml hydrocortisone (Sigma). With the exception of 
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HEK-293T cell culture media, all presented solutions had an addition of 1% 

penicillin/streptomycin (Gibco).  

 

B.3 Immunoblotting 

After incubation, cells were washed in cold (4�°C) PBS solution then kept on ice with 

NETN buffer (20 mM Tris, 150 mM NaCl, 1mM EDTA, 0.5% NP40, 1x Protease 

inhibitor cocktail (Sigma)) for 15 minutes. Cells were then scraped and collected in 1.5 

ml tubes, incubated on ice for an Supplementary 5 minutes. Whole cell protein was 

extracted by sonication followed by 14,000 rpm centrifugation for 10 minutes. The 

supernatant was then collected and quantified by using a Bradford(116) based protein 

assay (Bio-Rad). After loading 25-50 µg protein onto 10% polyacrylamide gels they were 

subject to electrophoresis, transferred to PVDF membranes (Bio-Rad) and probed with 

antibodies against YES1 (1:1000, BD Transduction Laboratories) and GAPDH (1:5000, 

Abcam). 

 

B.4 Lentivirus production 

To suppress YES1 we introduced shRNA specific for the following sequences using 

pLKO.1 lentiviral vectors (117) acquired from Open Biosystems: 

shYES1 #1 CCAGCCTACATTCACTTCTAA 

shYES1 #2 ACCACGAAAGTAGCAATCAAA 

shYES1 #3 CCTCGAGAATCTTTGCGACTA 
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A standard 18bp non-hairpin control (CCGCAGGTATGCACGCGT) was also acquired 

from Addgene together with psPAX2 packaging plasmid and pMD2.G envelope plasmid. 

Lentiviruses were produced by transiently transfecting individual shRNA constructs 

together with packaging and envelope plasmids into HEK-293T cells using Fugene 6 

(Roche). Viral supernatants were collected and passed through 0.45 µm syringe filters. 

 

B.5 Cell proliferation assays 

Cells were plated in 6 cm culture dishes and grown in the incubator until they were 70% 

confluent. After changing to fresh culture media, 8 µg/ml of polybrane (Millipore) was 

added together with 0.5 ml of each of the previously prepared lentiviral solutions to 

separate dishes: one for the lentivirus containing the scrambled shRNA (shSRC) and one 

corresponding to the lentivirus designed to knock-down the expression of YES1 

(shYES1). After 24 hours the media containing viral particles was replaced with fresh 

media to which 3 µg/ml puromycin (Sigma) was added in order to select for infected cells. 

The cells were kept on growing for 3-4 days until a stable population was obtained.  

Cells expressing shYES1 and shSCR were separately plated in triplicates in 12-well 

plates in the following quantities: 50x103 cells for MDA231, BT549, MCF10A; 25x103 

cells for MDA468, SKBR3; and 10x103 cells for MCF7. After 6 days of growing in 

specific media supplemented by 3 µg/ml puromycin, cells in each well were collected 

and counted by trypan blue exclusion using a Beckman Coulter counter. 
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B.6 Fluorescence in situ hybridization (FISH) 

Prelabeled FISH probes for BAC clones RP11-1065N2, RP11-90P5 and RP11-1136N16 

were purchased from Empire Genomics, Buffalo, NY and tested on metaphase 

chromosome spreads. They successfully hybridized to corresponding chromosomal 

locations 17q23.1, 8p11.2 and 8q24.3. FISH experiments were further performed on 14 

4µm paraffin embedded breast cancer tissue slides, collected from women diagnose with 

ER+/HER2- breast cancers between 2007 and 2009 at Robert Wood Johnson University 

Hospital, New Jersey, USA. Out of all samples 8 had high Oncotype DX scores (>30) 

and 6 had low scores (<18). Oncotype DX scores for these samples were independently 

determined by Genomic Health, Redwood City, CA. 

 

Before hybridization, tissue sections were deparaffinized in pepsin solution, fixed with 

formaldehyde, and dehydrated in 70%, 80%, and 100% ethanol followed by denaturation 

at 83°C for 3 min on hybrite (Vysis, Downers Grove, IL, USA). Hybridization was 

performed on hybrite for 16-24 hours at 37�°C, and then slides were washed first with 

4x SSC for 3 min at 37°C then with 0.1% NP-40 (Vysis, Downers Grove, IL, USA) for 

30 sec at room temperature.  

 

Slides were scored for chromosomal amplification by counting signals in 20 tumor cells 

and then reporting the average number of spots/cell. 
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