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ABSTRACT OF THE DISSERTATION

Scattering Bethe Ansatz approach

By SUNG-PO CHAO

Dissertation Director:

Professor Natan Andrei

We derive the transport properties of a quantum impurity system, often realized as a quantum dot,

subject to a source-drain bias voltage at zero temperature and magnetic field. Using the Scattering

Bethe Anstaz(SBA), a generalization of the traditional Thermodynamic Bethe Ansatz(TBA) to open

systems out of equilibrium, we derive some transport results for the small quantum dot, described

by Anderson impurity Hamiltonian. Exact dot occupation out of equilibrium and the nonlinear

conductance are obtained by introducing phenomenological spin- and charge-fluctuation distribution

functions in the computation of the current. The current and dot occupation as a function of voltage

are evaluated numerically. We also vary the gate voltage and study the transition from the mixed

valence to the Kondo regime in the presence of a non-equilibrium current. For the larger quantum

dot the Interacting Resonance Level Model is used to describe the strog correlation problem in

this system. We show some current vs voltage results and compare with other theoretical results.

We conclude with the difficulties we encountered by using this method and suggest some future

extensions related to this SBA approach.
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Chapter 1

Introduction on Quantum impurity problem

This chapter is an introduction to the problems of quantum impurities out of equilibrium. It serves as

the major motivation for Scattering Bethe Ansatz approach on out of equilibrium quantum impurity

problems which we are going to mention in the next chapter. We briefly discuss experimental results

on a single quantum dot, starting with linear response to finite bias, discussing the Kondo physics

in this electric transport measurement at low temperature, and ending with the experiments for

a larger quantum dot (well) which exhibiting physics of Fermi Edge Singularity. We explain why

nonequilibrium quantum impurity problems are theoretically challenging and summarize the various

theoretical attempts to tackle the problem thus far.

1.1 Overview of Quantum impurity problem

The past few years have witnessed a spectacular progress in the fabrication and exploration of nanos-

tructures giving experimentalists unprecedented control over the microscopic parameters governing

the physics of these systems. The quantum fluctuations play an important role in determining the

physical properties of these nano devices and different structures of the devices also display many

different aspects of physics. Apart from the practical applications such as solid-state quantum com-

puting, light emitting (quantum dot LED or diode laser), photovoltaic devices, biology ect., the nano

devices also provide a rich array of experimental tools for physicists to verify some physical ideas

with great control and precision which are difficult to achieve in bulk systems. For the bulk samples

most of the physical properties of the materials are fixed as the samples are made and only coarse

signatures can be pulled out from the measurements. Another advantage of the nano devices is that

we can study the local site out of equilibrium which is not doable in the traditional bulk materials.

In this thesis the term ”quantum impurity” means some type of nanostructure. The nanostruc-

ture is connected with the leads through some tunneling junctions and thus we treat the nanos-

tructure as the impurity part of the Hamiltonian describing the leads and the nanostructure. The

nanostructures could be zero dimensional, such as quantum dot devices, or one dimensional, such

as quantum wire made by carbon nanotube or a collection of quantum dots or wires. The quantum
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Figure 1.1: Left: Scanning electron microscope image of the lateral quantum dot. The left top
and bottom electrodes control the tunneling strengths and left center electrode provide gate voltage
on the dot. Top and bottom regions are the source drain part of the two dimensional electron
gases which are connected with external source drain electrodes not shown in the picture. Right:
Schematic diagram of the relevant energy scale: charging energy U , level spacing �E, tunneling
strength Γ. Dot level can be tuned by gate voltage Vg. Both pictures are taken from Ref.[5]

dot devices confine a small droplet of electron liquid or a few electrons within a finite region of

space, typically around 102nm to �m in length. There are basically three type of these single dot

devices[1]: Lateral, vertical and carbon nanotube quantum dots. In the thesis we concentrate our

discussion on transport property of the lateral quantum dot, starting with the small size mesoscopic

quantum dot.

1.1.1 Small size single quantum dot: Kondo effect

Scanning electron microscope image of small size lateral quantum dot is shown in Fig.1.1. The

transport properties through a small size (with diameter around 100 nm) single quantum dot at low

temperature, at which strong correlations between dot electrons and itinerant electrons from the

leads taking place, is the subject of Chap 3 to Chap 4 of this thesis.

The dot is attached by tunneling junctions to massive electrodes to allow electronic transport

across the system. The conductance of such a device is determined by the number of the electrons

on the dot, which in turn is controlled by the gate voltage capacitively connected with the dot.

Denote Γ as the energy scale related to the electrons tunneling between the dot and the leads, �d as

one of the dot level, U ≃ e2

2C the charging energy or Coulomb repulsion associated with the energy

required to add/remove an electron on the dot with C the total capacitance on the dot, and �E the
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mean level spacing on the dot. In the mesoscopic dot we mention in this thesis �E ≪ U ( U�E ∼ 10

in the experiment[5]) thus we can neglect this energy difference. This simplified picture is depicted

in the right figure of Fig.1.1. For more general discussions on the quantum dot systems we refer the

reader to the theoretical review article by M. Pustilinik and L. Glazman[2] and experimental review

article by M. Grobis et al.[1].

Temperature plays an important role in determining the tunneling strength Γ. For high tempera-

ture Γ is lager than the discrete levels in the dot and thus the information of the energy levels within

the dot is washed out. As we lower the temperature Γ becomes smaller than the level spacing within

the dot and we may begin to see the individual discrete energy levels by performing linear response

measurement with different gate voltage. This linear response experiment is done by applying a

voltage of a few microvolts between the leads connected with the dot and measuring the current

that flows through the droplet as a function of the gate voltage Vg on the dot. For such low applied

voltage, current varies linearly with voltage, and the zero bias conductance can be measured[5, 4].

The zero bias conductance vs gate voltage measured by D. Goldhaber-Gordon et al. is shown in

Fig.1.2. This can be understood in the following way: When some dot level �d, which is capacitively

controlled by Vg, crosses the equilibrium Fermi surface �F (in linear response measurement chemical

potential from both leads are roughly equal �1 ≃ �2 = �, and the equilibrium chemical potential

determines the Fermi energy of the leads system: e� = �F ) a conduction channel is formed and thus

the conductance becomes maximum as the level �d is completely aligned with Fermi surface �. By

tunning the level to ∣�d − �F ∣ > Γ there will be no available channels to tunnel through the dot. As

a result, the conductance decreases on both side of the peak around some gate voltage Vg. This is

the so called Coulomb blockade regime.

At even lower temperatures, if there were odd number of electrons on the dot, the spin or

magnetic moment of the dot electrons tends to be screened by the delocalized electrons from the leads.

This screening occurs through subtle many body correlations, extensively studied since J. Kondo

discussed them in 1964 by perturbation theory[3, 61]. This same correlations produce anomalies in

the resistivity, susceptibility, and many other properties of bulk magnetic alloys. We digress for a

moment to mention two important models related to this Kondo effect. The Kondo effect was first

reported in the electrical resistivity measurement of Au done in 1930s, where de Hass et al. found

resistance minimum at temperature around 3.7 K, below which the resistance actually increased.

This behavior was soon confirmed experimentally to be connected with magnetic impurities such as
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Fe or Co within the bulk metals. Theoretical advance in magnetic impurities came in 1964 by J.

Kondo’s computation on the resistivity where he did third order perturbation in the coupling J of

the s-d exchange model, nowadays also named Kondo model. This model’s Hamiltonian is given by

H =
∑

k�

�kc
†
k�ck� +

∑

kk′ab

Jk,k′ S⃗ ⋅ c†ka�⃗abck′b (1.1)

Here ck� is the electron annihilation operator with spin index � and energy �k. S⃗ is the impurity

spin. This model can be deduced from Anderson model in the local moment regime (�d << �F and

�d + U >> �F ) when the occupation number of impurity electron is fixed at one. The Anderson

model was proposed by P. W. Anderson in 1961. It describes the resonance associated with the

impurity states and a short range interaction U between the impurity electrons. The Hamiltonian

of the Anderson model is given by

H =
∑

�

�dd
†
�d� + Ud†↑d↑d

†
↓d↓ +

∑

k�

�kc
†
k�ck� +

∑

k�

(tkd
†
�ck� + t∗kc

†
k�d�) (1.2)

Here again ck� is the electron annihilation operator with spin index � and d� is the impurity

electron annihilation operator with spin index �. The two-lead version of the Anderson impurity

model is the standard model to describe the physics of single quantum dot system as shown in

Fig.1.1. For tunneling around the Fermi surface the tunneling amplitude tk ≃ tkF is roughly a

constant independent of k. We can then relate Γ to tkF by Γ ≃ ∣tkF ∣22��(kF ) and linearize the

energy spectrum around k = kF , kF being the Fermi momentum and �(kF ) being the itinerant

electron density around the Fermi surface. Under these condition the Hamiltonian shown in Eq.(1.2)

is integrable and we may write down the Bethe Ansatz wavefunctions as the eigenstates of this

Hamiltonian. More details are given in Chap. 3.

Now we come back to the discussion of the Kondo effect in the quantum dot system. As we

have mentioned above, the screening effect on the impurity spin only occurs when the system’s

temperature is lowered below a certain scale, often called the Kondo temperature Tk. The screening

enhances the interactions between impurity electrons and delocalized electrons, therefore increasing

the resistivity of the bulk sample. The same mechanism in fact increases the conductance of the

quantum dot as the enhancement of the interaction produces a sharp (width proportional to Tk)

density of states fixed at the Fermi surface. Thus even if the impurity level �d is far below the Fermi
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surface the dot can still have finite conductance. In the case of zero temperature in this Kondo

regime the conductance of the dot reaches a maximum value 2e2

ℎ , the so called unitary limit in the

Landauer transport approach. This has been observed in experiments by W. G. van der Wiel et

al.[9]. This screening effect on the impurity spin occurs when there is an odd number of electrons in

the impurity. When there is an even number of electrons there is no bare spin to be compensated.

Lowering the temperature just means decreasing the effective tunneling strength Γ and thus the

conductance in the even valley of electrons decreases as temperature decreases. Even/odd valley

here means the valley in linear response conductance vs gate voltage plot when number of electrons

on the dot is even/odd. The corresponding experimental plots are shown in Fig.(1.2).

The experiment can also be performed by fixing the initial chemical potentials of the leads on the

center of the odd valley, where the Kondo effect is most prominent, and turning on the source drain

voltage to produce a current flowing through the dot. By measuring the current vs source drain

voltage we may obtain nonlinear differential conductance vs source drain voltage. Both equilibrium

and out of equilibrium measurement by W. G. van der Wiel et al.[9] are shown in Fig.1.3. Major

features of the nonlinear conductance show a peak structure nearby zero voltage with width around

kBTk, the so called zero bias anomaly, and a broad side peak with width scaled as Γ centered around

renormalized impurity level �d. The overall feature is similar to the impurity density of state as a

function of energy[27] since the zero temperature out of equilibrium conductance is related to out of

equilibrium density of state on the dot in the case of two leads Anderson model[19]. Our theoretical

results have provided qualitative agreements with the experiments, both in and out of equilibrium.

The comparison of nonlinear conductance with one of the experiments[10] is shown in Chap. 3. Our

approach, Phenomenological Scattering Bethe Ansatz method (pSBA), though not starting from

first principle, does capture the main physics related to zero temperature charge transport of this

Kondo quantum dot system.

Further experimental designs and setups are used to measure the dephasing mechanism due to

nonequilibrium current, the extent of Kondo screening cloud, out of equilibrium density of states,

time evolution of the Kondo cloud, to name a few. The holy grail for research on the Kondo effect

is to know whether it is possible to measure and control the Kondo cloud [3], which is the crucial

question in applying quantum dot to quantum computing.
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1.1.2 Large size single quantum dot: Fermi-edge singularity

We now switch gears to consider the interesting case of a larger dot (with diameter a few �m).

In this case the spin fluctuations are less important compared with the Coulomb repulsion between

electrons from the dot and the leads. This leads to singular behavior in the transmitted current when

dot level is aligned with the higher chemical potential lead. The idea, proposed by K. A. Matveev

and A. I. Larkin[11] in 1992, is that the electron tunneling in these resonant tunneling devices

(RTD)[12] is accompanied by the formation of a positively charged hole bound to the impurity.

The Coulomb interaction of electrons with the hole leads to power-law singularities in the transition

rate, analogous to those arising in the problem of x-ray-absorption edges in metals[11]. Thus this

anomalous behavior in tunneling current is named Fermi-edge singularity (FES). They manifest

themselves in I-V characteristic as

I ∝ (V − Vtℎ)
−��(V − Vtℎ)

where Vtℎ is related to the difference between dot level �d and higher end of the Fermi energy. � is

related to many body interactions.

This singularity around the threshold is smeared out when e∣V −Vtℎ∣ ≥ Γ. The power law decay

in current as a function of voltage nearby the threshold voltage was confirmed experimentally by

A. K. Geim et al.[12] in 1993. Recently it was also reported by M. Ruth et al.[14] that without

using high magnetic field they can also get FES in their tunneling current. By rescaling their data

with effective temperature kBT
∗ ≃

√
kBT 2 + Γ2[13] they obtained universal behavior for current vs

voltage. Their device, a type of self assembled vertical quantum dot, and the universality curve are

shown in Fig.(1.4)

The physics of FES in the resonant tunneling devices can be captured by the Interacting Resonant

Level Model (IRLM). The Hamiltonian of two leads IRLM is

H = �dd
†d+

∑

k,k′,a

Ud†dc†kack′a +
∑

ka

�kc
†
kacka +

∑

ka

(tkd
†cka + t∗kc

†
kad) (1.3)

Here a = 1, 2 refers to the lead indices. The pioneering work of Scattering Bethe Ansatz approach

by P. Mehta and N. Andrei[16, 15] is in fact started with this IRLM. In Chap. 5 we reexamine

their results on this IRLM and extend the formulation to energies higher than impurity level �d.
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We also compare with other theoretical results with our numerical results in Chap. 5. Possible

extension of the Scattering Bethe Ansatz approach to other system such as quantum wire or multi

leads connections is addressed in Chap 6 based on extension of this two leads IRLM.

1.2 Theoretical efforts and challenges

A number of theoretical approaches to the Kondo model[36, 33, 34] or the Anderson impurity model

[17–19, 29, 20, 22] in the quantum dot systems have been developed based on the Keldyish per-

turbation approach. These approaches can obtain features in the strong coupling Kondo regime,

when eVsd ≪ kBTk, or in the weak Kondo regime when eVsd ≫ kBTk. Most of the numerical and

analytical approaches used to tackle strong correlation problems, such as 1
N expansion, boundary

conformal field theory, renormalization group (RG), numerical RG, time-dependent density ma-

trix renormalization group(t-DMRG), Non-crossing approximations, etc. are being developed for

nonequilibrium quantum impurity system. Some benchmarks in nonequilibrium IRLM have been

achieved by E. Boulat et al.[38, 39] but the exact analytic approach is limited at some particular

value of interaction.

Similarly, there exists exact solutions at the Toulouse limit for Kondo quantum dot. At this limit

the nonequilibrium Kondo model can be solved exactly by Hershfield Y-operator approach[32]. This

method relies on calculating the nonequilibrium density matrix using a resummation of perturbation

theory and its complexity makes it technically difficult. Thus, despite the numerous valiant efforts, no

real theoretical approach exists that can describe the above experiments in the regimes of interest[15].

The bulk of this thesis is dedicated to presenting the Scattering Bethe Ansatz approach[16] to

nonequilibrium quantum impurity physics. The idea of this method is to construct exact many body

scattering eigenstates of the full Hamiltonian and fix the energy distribution from the asymptotic

boundary conditions. Thus in principle this is ab initio approach to solve this type of nonequilibrium

quantum. However the application of this approach leads to some problems and we have not yet

succeeded in finding the solutions to these problems. We developed some phenomenological ideas to

get around these difficulties. The exact SBA approach, however, is still under development and far

from complete.
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1.3 Summary of the thesis

In this chapter we have briefly introduced the experimental setup of quantum impurity systems. The

main physical quantity we are interested in is the zero temperature steady state transport through

these quantum impurity systems. From the transport measurement we can extract the information

about the many body interactions among the delocalized electrons from the leads and the electrons

from the impurities. Strong correlation problems such as Kondo effect and Fermi-edge singularities

can be observed and measured with great accuracy in quantum dots, wells, or wires.

The main tool we tackle the problems of steady state transport through quantum impurity is

the Scattering Bethe Ansatz (SBA) approach[16]. We introduced the general ideas and procedures

of SBA and compare it with traditional Bethe Ansatz (TBA) in Chap. 2.

In Chap 3. we apply this SBA method to two leads finite U Anderson impurity model, the

two leads version of Eq.(1.2). We proved the equivalence of TBA and SBA in equilibrium dot

occupation. We find that the direct computation by this method when taking the system out of

equilibrium in the bound state cases leads to problems contradicting the steady state assumptions. A

phenomenological approach, named phenomenological Scattering Bethe Ansatz (pSBA), is proposed

to circumvent this difficulty. The numerical results of this pSBA are shown and compared with

known experimental results and theories. Exact results of dot occupation and Friedel sum rule are

compared with pSBA results in equilibrium. Universality in nonlinear conductance vs voltage scaled

by Kondo temperature Tk, expected from Fermi liquid picture in strong coupling and weak coupling

regime, are shown in our numerical results.

In Chap 4. we apply the pSBA method to infinite U Anderson impurity model, the U → ∞

limit of the finite U case. We showed by direct calculations how to connect finite U and infinite U

results in Bethe Ansatz bases. Numerical results for conductance and dot occupation vs voltage are

shown. Similar universality curves are shown for conductance vs rescaled voltage. In the end of this

chapter we discuss some preliminary work on the two leads Kondo model (or two leads version of

s-d model shown in Eq.(1.1)) and connect it with the infinite U Anderson model.

In Chap 5. we step from smaller quantum dot devices into larger quantum dot devices or quantum

well devices. We extend the formulations of SBA on the two leads IRLM from real Bethe momenta

to complex (bound state) Bethe momenta. We redo the numerical computation and examine the

condition of dot occupation in equilibrium. We find qualitative agreement between our results with
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expected FES behaviors.

Chap 6. is about some possible extension of the current frame work. In the discussion from

Chap. 3 to Chap. 5 the computations are done with zero temperature and zero field. We set up the

free energy formulation of finite temperature and finite field in infinite U Anderson model, proving

the ground state configurations at zero temperature and zero field limit. Different geometry such

as three leads connections or quantum wire devices are also discussed. Possible application to time

dependent problems is briefly mentioned in the end.

Chap 7. gives a summary of the accomplishments of this SBA approach, discusses the problems

encountered in bound states, and states how we plan to proceed in the near future.
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Figure 1.2: Temperature dependence of zero-bias conductance G through two different spatial states
on the quantum dot. (a) Paired peaks corresponding to the two spin states for each spatial state
become better resolved with increasing temperature from 90mK (full line) to 400mK (dashed). The
intra-pair valleys become deeper and the peaks become narrower. (b) From 400mK (dashed line) to
800mK (dotted) the paired peaks near Vg ∼ 270mV broaden. The peaks near Vg ∼ 225mV are still
becoming better resolved even at 800 mK, as they have larger Γ and hence larger TK . (c) When
Γ is reduced (as illustrated by shorter and narrower peaks), U increases relative to �E, so peak
pairing is no longer evident. Because the Kondo phenomenon is suppressed, peaks become narrower
as temperature is decreased at all T down to our base temperature of 90 mK. Full line is for 90 mK,
dotted line for 800 mK. Figs and captions taken from Ref.[5]
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Figure 1.3: (A) Coulomb oscillations in G versus Vgl at B = 0.4 T for different temperatures. T = 15
mK (thick black trace) up to 800 mK (thick red trace). Vgr is fixed at −448 mV. The lower-right
inset highlights the logarithmic T-dependence between ∼90 and ∼500 mK for Vgl = −413 mV. The
upper-left inset explains the symbols used in the text with Γ = ΓL + ΓR. Note that �d is negative
and measured from the Fermi level in the leads at equilibrium. (B) Differential conductance, dI

dVsd
,

versus dc bias voltage between source and drain contacts, Vsd, for T = 15 mK (thick black trace)
up to 900 mK (thick red trace), also at Vgl = −413 mV and B = 0.4 T. The left inset shows that
the width of the zero-bias peak, measured from the full-width-at-half-maximum (FWHM) increases
linearly with T. The red line indicates a slope of 1.7 kB/e, where kB is the Boltzmann constant. At
15 mK the FWHM = 64 �V and it starts to saturate around 300 mK. Figs and captions taken from
Ref.[9]
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Figure 1.4: Left: Device layout and layer structure. Self assembled quantum dots which are embed-
ded in the (Zn,Be)Se tunnel barrier provide the resonant state for the tunneling transport mechanism.
Right: (a) (color online) I(VD) characteristics for various temperatures up to 45 K and at zero mag-
netic field. Symbols are the experimental data. The colored line for each dataset represents a fit
to equation in Ref.[13] for each temperature. (b) Rescaling both axes collapses the datasets for all
temperatures on a single scaling curve. The solid line is a fit to the rescaled equation in Ref.[13]
which is now independent of the effective temperature T ∗. Captions and pictures are from Ref.[14]
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Chapter 2

Introduction of Scattering Bethe Ansatz approach

2.1 Introduction on methods on nonequilibrium quantum impurity

The physical phenomena we want to describe in this thesis is the transport measurement on quantum

impurity system (dot or wire) as introduced in the previous chapter. The problem is intrinsically

time dependent. As we couple the leads with the dot the current would start from zero immediately

before the coupling and eventually reach a steady state current after certain amount of transient

time. The steady state means the expectation value of current does not change with time and it

is a non-equilibrium steady state as we need to keep up the voltage difference to maintain this

current. The physics of how the system goes from initial zero current to the steady state current is

a very interesting problem in non-equilibrium physics and is one of the future extension we want to

achieve with the Scattering Bethe Ansatz (SBA) approach (see Chap 6). It has also been studied

by various numerical methods such as real time numerical renormalization group, time dependent

density matrix renormalization group (t-dMRG), time-dependent non-crossing approximation etc to

name a few. The primary work in this thesis is to concentrate on the steady state part assuming

steady state can be achieved in this system.

The current measured in experiment is in fact the steady state current (A measurement done

with pulsed voltage was done by T. Fujisawa et al.[35] in 2000 to measure the transient time scale

related to spin relaxation time in quantum dot system. Typically the time scale they obtained in

this measurement is around �s. Thus for usual direct current measurement the current obtained is

already in the steady state.). How one reaches the steady state for this quantum impurity system

from theoretical point of view is still an interesting open question. B. Doyon and N. Andrei[36] had

used Keldyshi perturbation approach to show order by order that this steady state can be achieved

in Kondo model by taking the size of the leads to be infinite before taking the initial time (the time

to couple the leads with the dot) to minus infinity. Another condition is the leads are described

by Fermi distributions. The quantum impurity models we describe in this thesis have some special

limit related to Kondo model. Based on this connection we assume the steady state can also be
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achieved in these models. More rigorous proof on this argument is required though.

One way to describe the steady state problem related to transport measurement is to use scatter-

ing eigenstates. To construct the scattering eigenstates of the quantum impurity models in general

is quite a formidable task due to the strong correlation between particles and the complication of

scattering mechanism which may or may not conserve number of particles. For a special subset of

quantum-impurity models, the full Hamiltonian is integrable and the multi particles scattering eigen-

states can be explicitly constructed by Bethe Ansatz method. Bethe Ansatz is a way to write down

exact many particles eigenstates in the product form of single particle eigenstates and two particles

scattering matrices. This form of solution, strictly speaking, can only be applied in one (spatial)

dimensional system as extra dimensions will result in three or more particles scattering event at one

spacetime. In low energy regime the physics can be treated as if it were one dimensional problem

and we may use this Ansatz to obtain the exact multi particles eigenstates.

The way we use to judge whether the Hamiltonian is integrable or not is to write down its two

particles scattering eigenstate. We can assume the two particles eigenstate takes the product form

of two single particle’s eigenstates with the two particles’ S-matrix determined by the interaction. If

the two particles S-matrix obtained satisfied the Yang-Baxter equations, which are some consistency

equations for exchanging particles, then we say the Hamiltonian is integrable and the many particles’

eigenstate can be written as the product form of single particle’s eigenstates and many two particles

S-matrices determined by the interaction between any two of the particles. The physical reason

behind this approach is that in one dimensional system the interactions among particles always

occur pairwise. Quite often we are interested in the universality region which does not depend on

particular energy spectra of the system. In this region the energy can be linearized and only s-wave

scattering is needed to be taken into account in the scattering eigenstate construction. Higher order

of scattering channels such as p or d-wave in general could be included but sometimes it would break

the integrability of the model. Thus we confine ourself in the simpler case where the Hamiltonian is

integrable and we can write down the multi particles scattering eigenstate by Bethe Ansatz approach.

There are two main differences between SBA and traditional Bethe Ansatz (TBA). One is in the

boundary condition of the eigenstates. As we have stated in the discussion of reaching steady state

from time dependent picture we need to require the size of the leads to be infinite from the beginning.

The scattering eigenstate constructed has open boundary rather than the closed boundary (periodic
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SBA TBA

System Infinite Finite
Boundary condition asymptotic (open) periodic

Wavefunctions used explicitly not used
Thermodynamics difficult difficult

Scattering Properties possible not possible
Nonequilibrium Generalization Yes No

Table 2.1: Summary of differences between the Scattering Bethe Ansatz (SBA) and Traditional
Bethe Ansatz (TBA). Table is modified from Ref.[15].

boundary condition) in the eigenstate of equilibrium system. The energy spectrum of this scattering

eigenstate is determined by the incoming state (asymptotic boundary condition) , or the initial state

in the time dependent picture. The other major difference is that we use explicitly the wavefunctions

to compute matrix elements of various physical quantity. From these matrix element computation we

then compute expectation value of the physical quantity. In TBA the thermodynamical quantities

are derived by taking various derivative on the free energy and the wavefunctions are not used

explicitly. The comparison between SBA and TBA is summarized in Table.2.1.

In the following we give an overview of SBA and its application on some general quantum impurity

model without going into any particular Hamiltonian. The specific application of SBA for two leads

finite U Anderson model, infinite U Anderson model, Kondo model (some preliminary results), and

interacting resonance level model(IRLM) will be shown in later chapters.

2.2 General introduction of Scattering Bethe Ansatz

The bulk of this thesis is to use Scattering Bethe Ansatz approach to compute transport property

of quantum impurity system. Here we give a brief overview of this approach. Imagine we turn on

the coupling Hint between the leads and impurity adiabatically in the infinite past at t = −∞

H = H0 + e�tHint

Here H0 describes the leads Hamiltonian or the system in the initial state. At t = −∞ the quantum

impurity is decoupled from the electron baths and the system is described by an eigenstate of H0

which we denote as ∣Φ⟩. At later times, the baths and the quantum impurity are coupled adiabatically

and at later time the eigenstate of the system Ψ(t)⟩ is described by time evolving state ∣Φ⟩ with
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time evolution operator U(t,−∞)

∣Ψ(t)⟩ = U(t,−∞)∣Φ⟩ = T {
∫ t′

−∞
eiH(t′)dt′}∣Φ⟩

From Gellman-Low theorem we can take the limit � → 0 and see that ∣Ψ(t = 0)⟩ → ∣Ψ⟩s is an

eigenstate of the full Hamiltonian H . The state ∣Ψ⟩s is in close analogy to the scattering state in

ordinary quantum mechanics describing scattering of a wave-packet by localized, spherically sym-

metric potential. The formal structure of this scattering state is given by solving Lippman-Schwinger

equation

∣Ψ⟩s = ∣Φ⟩+ 1

E −H0 ± i�
Hint∣Ψ⟩s

We construct the scattering eigenstate ∣Ψ⟩s with asymptotic boundary condition ∣Φ⟩ to describe the

solution of the full Hamiltonian under the assumption that the steady state can be achieved. Note

that this asymptotic boundary condition ∣�⟩ in time independent picture of steady state corresponds

to the initial condition in time dependent picture.

DOTDOT

Incoming

Outgoing

Incoming Outgoing

x=0

Figure 2.1: We work in a chiral-electron picture where the leads have been unfolded. The incoming
particles correspond to x < 0 and the reflected outgoing particles, x > 0 in the case of quantum dot
system. Figure and caption taken from P. Mehta’s thesis[15]

For the models we are going to describe in this thesis we further assume the energy spectra of

the leads are linear. For mathematical convenience we further unfold these linear spectra into right

movers only. The first step is to say that the physics we are interested in is nearby the Fermi surface

of the leads and we are interested in the universality behavior nearby this regime. Thus we can
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expand the quadratic spectra around Fermi surface and get linearized spectra as

�(k) =
k2 − k2F

2m
≃ kF

m
(k − kF )

In our convention the Fermi velocity kF
m = 1 and ℏ = e = 1 which we can put them back when

needed. Since we are interested in low energy physics, we keep only the modes where ∣k− kF ∣ < D.

We define right and left movers by

 R,L(r) =

∫ D

−D
dke±ikr (k + kF )

In terms of left and right movers, the Hamiltonian can be written as

H = H0 +Hint = −i
∫ 0

−∞
dr{ †

R∂ R −  †
L∂ L}

Use the fact that  R(0) =  L(0) and  R(r) =  L(−r) for the electron operators we may unfold this

linear spectra to right movers only for mathematical convenience. Thus the general Hamiltonian

describing some quantum impurity system (dot(s), wire, or interferometer etc.) can be written as

H = H0 +Hint (2.1)

H0 =
∑

i,�i

∫ ∞

−∞
dx †

i�i
(x)∂ i�i

(x) (2.2)

We put back the indices for leads and other degrees of freedom. Here i refers to the lead index and

� refers to spin and other degrees of freedom such as levels splitting due to crystal field. Hint could

be of any form at the moment but is required to be confined in a small (compared with the size

of the leads) physical region such as a quantum dot or quantum wire. The pictorial description of

this unfolding process is plotted in Fig.(2.1). In this unfolded picture the incoming state are in the

x < 0 region and the outgoing state are in the x > 0 region. The quantum dot is sitting at x = 0 in

this coordinate.

2.2.1 The Bethe Ansatz basis and the Fock basis

To construct scattering eigenstates for integrable quantum models, the Bethe-Ansatz wavefunction

exploits the large degeneracy of the linearized free electron gas shown in Eq.(2.2. We shall show that
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the Bethe Ansatz basis is the correct basis to be chosen in the non-interacting free electron problem

described by H0 when the interaction Hint is turned on. The simplest example is to look at two

particles solution. Consider the first quantized version of H0 (obtained by acting the Hamiltonian

H0 on some two particles state ∣p1 + q, p2 − q⟩). In the two particles sector, the first quantized H0

is just given by H0 = ∂x1 + ∂x2 . Notice that any wavefunction of the form

∣p1 + q, p2 − q⟩ =
∫

dxAq�1�2
ei(p1+q)x1+i(p2−q)x2 †

�1
(x1) 

†
�2
(x2)∣0⟩

is an eigenfunction of H0 with energy E = p1 + p2. Since q can take on any value, there are an

infinite number of such states. Any linear combination of eigenfunctions of the above form is also

an eigenfunction of the H0 with energy E. This argument can be easily generalized to N particles

solution of the form

∣N⟩ =
∫

(
N
∏

j=1

dxje
ipjxj )

∏

i<j

f�i�j
(xi − xj) 

†
�i
(xi)∣0⟩ (2.3)

which is an N particles eigenstate of H0 and N is the total number of particles from the leads

(N = N1 +N2 for two leads Hamiltonian). Now let us get back to two particles solution of the full

Hamiltonian H . What we find is that the solution takes the following form

∣ki, kj⟩ =

∫

dxidxje
i(kixi+kjxj)(�(xi − xj) + Sij�(xj − xi))

×
∑

�i,�j

A�i�j
f�i

(xi)f�j
(xj) ̃

†
�i
(xi) ̃

†
�j
(xj)∣0⟩ (2.4)

Here f�j
(xj) refers to some functions determined by single particle solution of the Hamiltonian H

and it carries the information of phase shift (contained in Hint part) across the impurity.  ̃†
�j
(xj)

represents leads creation operator  †
�j
(xj) when xj is away from interacting region (xj > 0 or

xj < 0, assuming Hint occurs at xj = 0 only for quantum dot system. For quantum wire it could be

∣xj ∣ > l
2 with l being the length of the wire.) and represents dot/wire particle when xj is within the

interacting region. The two particles S-matrix Sij is determined by Hint and thus model dependent.

For H with SU(2) symmetry in spin space for example, the general structure of Sij can be written

as

Sij =
(�(ki)− �(kj))Îij − iP̂ij

�(ki)− �(kj)− i
.
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Here Îij is the identity operator and P̂ij = 1
2 (Îij + �̂i ⋅ �̂j) is the spin exchnage operator between

particle i and j. In the asymptotic region (xj ≪ 0) the operators  ̃†
�i
(xi) become  †

�i
(xi) and

f�j
(xj) reduces to �(−xj) times some constant. The two particles eigenstate shown in Eq.(2.4)

becomes

∣ki, kj⟩∣x≪0 =

∫

dxidxje
i(kixi+kjxj)(�(xi − xj) + Sij�(xj − xi))

×
∑

�i,�j

A�i�j
�(−xi)�(−xj) †

�i
(xi) 

†
�j
(xj)∣0⟩ (2.5)

By acting H0 on Eq.(2.5) it is easy to see that H0∣ki, kj⟩∣x≪0 = (ki + kj)∣ki, kj⟩∣x≪0 and confirm

that this is indeed an eigenstate of the free Hamiltonian H0 in the asymptotic region. The Fock

basis, the simplest basis for solution of free Hamiltonian H0, can be viewed as a special solution of

this two particles solution by choosing Sij = 1. The interaction in the full Hamiltonian H breaks the

degeneracy in the linear spectra and picks out a particular form of tow particles S-matrix. This is

the same idea as doing perturbation theory for a highly degenerate system where we need to choose

a particular linear combination when the interaction is turned on.

2.2.2 Scattering eigenstates in the Bethe Ansatz form

Now let us summarize the previous discussion and generalize the discussion to multi particles from

two particles solution. The first stage of the SBA is to construct eigenstates of this general Hamil-

tonian such that far away from the quantum-impurity, the eigenstate for the incoming particles

reduce to an eigenstate of the free electrons Hamiltonian H0. Another requirement is that we can

identify the leads indices of the incoming particles from this scattering eigenstate. As discussed

previously, the incoming particles are those to the left of the impurity (x < 0) and the outgoing

scattered particles are those to the right of the impurity (x > 0). The SBA constructs eigenstates

of the Hamiltonian by using Bethe Ansatz approach. This approach utilizes the integrability of the

Hamiltonian H to divide multi particles scattering events into sets of two particles scattering events

characterized by the two particles S matrices. The integrability of the Hamiltonian H is confirmed

by self consistency conditions on the two particles S-matrices known as the Yang Baxter Equations.

These conditions ensure all multi particles interactions can be consistently broken up into pairwise

interactions and the multi particles wavefunction can be written in the Bethe Ansatz form.

As we have stated in the steady state conditions the quantum impurity need to be coupled to non
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interacting electrons. Quite often this is a valid assumption as well since the leads itinerant electrons

can screen out effectively any interactions from the quantum impurity due to the smallness of the

impurity part. We further assume that total number of particles is conserved in the Hamiltonian H

and thus fixed number of particles can be used to construct an eigenstate. Wavefunctions of Bethe

Ansatz divide the configuration space into N ! regions according to the ordering of the particles on

the infinite line. Each such region is labeled by a permutation Q in the symmetric group of degree

N . The general wavefunction of Bethe Ansatz form can be written as

∣BA, {kj}⟩ =
∫

∏

j

dxje
∑

j kjxj

∑

Q

SQA�1...�N
(Q)�(xQ)

N
∏

j=1

f�j
(xj) ̃

†
�j
(xj)∣0⟩ (2.6)

with �(xQ) = �(xQ(1) < xQ(2) . . . xQ(N) < xQ(0)) and Q runs over all N ! permutations. A�1...�N
(Q)

represents the amplitude for the wavefunctions in some defined by permutation Q which incorporates

spin or other physical degrees of freedom. The two particles solution is written in Eq.(2.4) as an

example. In the asymptotic region (xj ≪ 0) Eq.(2.6) reduces to

∣BA, {kj}⟩∣xj≪0 =

∫

∏

j

dxje
∑

j kjxj

∑

Q

SQA�1...�N
(Q)�(xQ)

N
∏

j=1

 †
�j
(xj)∣0⟩ (2.7)

which is an eigenstate of the free Hamiltonian H0 with eigenvalue E =
∑

j kj . This is due to the

fact that A�1...�N
(Q)�(xQ) takes the product form of �(xQ(i) − xQ(j)) between particles i and j

and this form does not affect the energy of the linear spectrum. Thus far the distribution of {kj}

is arbitrary. The next step is to find the distribution of {kj} such that in this asymptotic region

Eq.(2.7) describes the energy distribution in the form of the free Fermi seas of the leads.

2.2.3 Imposing asymptotic boundary conditions

To simplify the discussion let us first concentrate on zero temperature case. The leads in zero

temperature are described by two Fermi seas filled from lowest available levels to their respective

Fermi energy. Fig.2.2 shows one of the leads condition. The description of these Fermi seas is

straightforward for Fock bases (Sij or S
Q equals to one): It starts filling the integers corresponding

to lowest energy level and from there fills up all the available integers up to the integers corresponding

to some Fermi level. This can be achieved in the asymptotic region in th Fock basis. By imposing the

periodic boundary condition in the asymptotic region which means applying the periodic boundary
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condition for plane wave solution in the Fock basis,

eikjL = 1 → kjL = 2�nj → kj =
2�nj
L

(2.8)

with L being the size of the leads to be taken to infinity in thermodynamic limit and nj some integer.

The procedure to find energy distribution in the Bethe basis is quite similar to the Fock basis in

zero temperature case. Since at zero temperature we need to fill up all available particles state (i.e.

no hole state in zero temperature problem), we shall also apply periodic boundary condition in the

asymptotic region and require that all integers nj are filled. The periodic boundary condition in the

asymptotic region gives

Filled Fermi Sea

E F

Figure 2.2: Pictorial representation of fixing energy eigenvalue by the asymptotic boundary con-
dition. The incoming states correspond to the initial states described by filled Fermi sea at zero
temperature and zero field. Figure taken from P. Mehta’s thesis[15]

eikjLA�1...�N
= Sjj−1 . . . Sj1SjN . . . Sjj+1A�1...�N

(2.9)

To solve Eq.(2.10) usually requires the Quantum inverse scattering method. For spinless system

such as IRLM the two particle S-matrices are some U(1) phases, denoted as Sij = eiΦ(ki,kj), and

Eq.(2.10) can be simplified as

eikjL =

N
∏

i∕=j
eiΦ(kj ,ki) → kj =

2�nj
L

+
1

L

N
∑

i∕=j
Φ(kj , ki) (2.10)

In taking the limit L → ∞ the discrete energy levels can be viewed as continuous spectra as the

energy level difference is of order 1
L which is approaching to zero as L → ∞. For the one lead

(traditional Bethe Ansatz) we may define the single lead Bethe momenta density (In fact the term

Bethe momentum here actually refers to the energy eigenvalue. The momentum is not conserved in



22

an impurity model which breaks translational invariance. In literature, however, it is widely called

as Bethe momentum and we also take this convention.)

�(p) =
1

L

dn

dp

by taking the continuous limit of Eq.(2.10) and obtain

�(p) =
1

2�
− 1

2�

∫

dk
∂Φ(p, k)

∂p
�(k)dk

the case of multi leads is to put in the information of leads indices back in Bethe momenta k and

will be illustrated in specific models shown in the later chapters.

2.2.4 Computing with Scattering States

Once we obtain the energy distribution from the asymptotic condition the next thing to do is to

compute the expectation value of some physical operator Ô with respect to the scattering eigenstates

by using Eq.(2.6)

⟨Ô⟩ = ⟨BA, {pj}∣Ô∣BA, {kj}⟩
⟨BA, {pj}∣BA, {kj}⟩

(2.11)

Essentially this type of computation is to obtain the matrix element of the physical operator Ô in

the vector space of the Bethe basis. To carry out this calculation in general is quite complicated.

The simplification comes from the fact that we work directly with infinite system. Technically, this

means that in the infinite systems we can retain terms of order 1
L and ignore terms of order higher

than 1
L2 . Under this approximation the orthogonality between different Bethe momenta state is

valid. The expectation value of two such wavefunctions ⟨BA, {pj}∣BA, {kj}⟩ is given by(suppressing

the internal index �j for notational brevity)

∑

Q,Q̃

∫

dx⃗dy⃗ ei
∑

j(kjxj−pjyj)�(xQ)�(yQ̃)A(Q)A(Q̃)⟨0∣
N
∏

s=1

f(ys) (ys)

N
∏

j=1

f∗(xj) 
†(xj)∣0⟩ (2.12)
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The impurity part of particles operators does not contribute to overall normalization factor in this

L→ ∞ limit. The fermion operators just give rise to a Slater determinant which gives

∑

Q,Q̃,S

(−1)sgn(S)
∫

dx⃗dy⃗ ei
∑

j(kjxj−pjyj)�(xQ)�(yQ̃)A(Q)A(Q̃)

N
∏

j=1

f∗(xS(j))f(yj)�(xS(j) − yj)(2.13)

where S is a permutation of the N particles. Integrating over y⃗, we have

⟨BA, {pj}∣BA, {kj}⟩ =
∑

Q,S

(−1)sgn(S)
∫

dx⃗ ei
∑

j(kjxj−pjxS(j))�(xQ)A(Q)A(QS−1)∣f(xj)∣2

=
∑

Q,Q̃,S

(−1)sgn(S)
∫

dx⃗ ei
∑

j(kj−pS−1(j))xj�(xQ)A(Q)A(QS−1)∣f(xj)∣2(2.14)

∣f(xj)∣2 usually leads to some constant as a function of xj . Thus, we see that this expression is just

the norm of plane waves integrated over a region �(xQ). As is usual we regularize plane waves by

first taking L which is then taken to infinity at the end of the calculation.

lim
L→∞

∫ 0

−L
dxei(kj−pj)xj�(x1 < x2 . . . < xN ). (2.15)

The integration taken from L→ directly gives essentially the same results[71]. It is straightforward

to show that the leading order contribution in L to this integral is just LN/N ! which occurs only

if the two Bethe-Ansatz momenta are identical {kj} = {pj} (or k+j + k−l = p+j + p−l in the case of

complex momenta, see Appendix for details). This is simply saying that plane waves are orthogonal

even on a region �(xQ) for an infinite system. Thus for an infinite size system we can ignore all

terms in Eq.(2.14) where the kj ∕= pS−1(j) for all j. This leads to great technical simplifications as

we only need to keep S = 1 terms in Eq.(2.14). Similar simplifications occur when computing the

matrix element of an operator Ô between the Bethe Ansatz wavefunctions. Assuming the operator

Ô is related to impurity part the computation of ⟨BA, {pj}∣Ô∣BA, {pj}⟩ leads to

⟨BA, {pj}∣Ô∣BA, {kj}⟩ = O1L
N−1 +O2L

N−2 + . . .

The expectation value Eq.(2.11) is then in the form of O1
1
L +O2

1
L2 + . . .. For an infinite size system

we can take the leading order term O1 and ignore the rest of the higher order terms.

Notice that in the SBA the information of nonequilibrium is not built into the Hamiltonian H .
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Rather, the nonequilibrium is characterized by different number of particles incoming from different

leads or, in the other words, the information is carried by the asymptotic boundary conditions on

the wavefunctions. The number of particles from lead i is controlled by the chemical potential �i in

the free energy F , given by

F

L
=

1

L

∑

i

Ei − �iNi

with

Ei
L

=

∫ Bi

D

dp p �i(p)

and

Ni
L

=

∫ Bi

D

dp �i(p)

in the case of IRLM at zero temperature and zero magnetic field case.

2.2.5 Extension to finite temperature and finite magnetic field

So far we have only discussed the case of zero temperature. The case for finite temperature and/or

finite magnetic field can also be generalized from this zero temperature free energy

F

L
=

1

L

∑

i

Ei − �iNi − TiSi −miℎi

where Ti and ℎi are temperature and magnetic field in the lead i. Si and mi denote entropy and

magnetization of the lead i. The explicit calculation of this free energy without magnetic field for

infinite U Anderson model is shown in chapter 6 where minimization of this free energy is used to

prove the ground state configuration close to zero temperature. A complication in the Bethe bases

is that the entropy and magnetic moment terms cannot always be distinguished by the leads labels.

This is shown in the infinite U Anderson case when the quantum inverse scattering method is applied

to solve the eigenvalue problem. Thus it remains to be questionable whether we can use this SBA

approach to find thermal current induced by different temperature within the leads.

Apart from this problem of identifying the entropy and magnetic moment by the leads in the
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SBA method, the main difficulty in obtaining the finite temperature solution is very similar to the

TBA. At finite temperature we need to consider all possible solutions of the energy eigenvalue. Some

of the eigenvalues could be complex solutions with some regular poles structure predicted by string

hypothesis, and some of the complex pairs do not have string type of solutions like the case of IRLM

with Bethe momenta higher than impurity level. Even if the string hypothesis were valid, as is

the case for Anderson model and Kondo model, the analytic solution involve infinite sets of integral

equations which are not easily carried out in practical calculations. The complexity of matrix element

computation, however, is similar to the complexity encountered in the case of complex solution in

finite U or infinite U Anderson model. Higher order of complex pairs basically have the same type

of matrix element evaluation methods. Thus we conclude that the level of difficulty for TBA and

SBA at finite temperature in Tab.2.1 to be the same.

2.3 Summary of the SBA

Here we use a flow chart shown in the last page of this chapter to summarize the procedures of the

SBA method. The first step is to see if the system can reach steady state after certain transient

time. In most of the experimental DC measurements this condition is almost always valid. The

theoretical treatment for this problem, however, is much more involved and not easy to prove the

existence of steady state. This thesis is based on the proof of existence of steady state shown by

B. Doyon and N. Andrei[36] in the two leads Kondo model. We say that the models we use in this

thesis have the limiting form of two leads Kondo model thus we can assume there are also steady

state existing for our models. Further proof regarding this assumption is still needed.

To solve the steady state problem we solve the scattering eigenstates of the full Hamiltonian. The

method we use to find the N particles eigenstates is the Bethe Ansatz approach. This approach re-

quires the two particles S-matrices satisfying Yang-Baxter equations as the consistency conditions to

construct many particles wavefunctions. The major difference of the SBA and the traditional Bethe

Anatz is that the scattering eigenstates are constructed directly on infinite line (open boundary)

rather than in a closed system.

Once we have the eigenstates the next thing to do is to fix the energy distribution by the

asymptotic boundary condition in the incoming region. For zero temperature and zero field, which is

the main line of this thesis work, the leads are in their respective ground state. For finite temperature



26

or finite field the leads states are described by some thermal distribution which we have to resort

to finite temperature Bethe Ansatz approach to include all possible excitation states weighted by

Boltzman distributions in the Hamiltonian.

Given the eigenstates with proper energy distribution we can then carry out the expectation

value of the physical quantity we are interested in. For this part of computation it involves matrix

element evaluations of the operators describing the corresponding physical quantity. It has been

successfully applied in the case of real Bethe momenta k, while in the case of complex momenta or

bound state solution we have not got physically reasonable results as it leads to non steady state

problem. This is discussed in more details as we begin to apply this model in finite U Anderson

model shown in next chapter. We circumvent this difficulty by applying phenomenological ideas to

describe the transport related to the bound states. It is still not how to overcome this difficulty and

hinders the practical application of this scattering approach in Bethe Ansatz.
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Steady state condition

Two particles scattering eigenstates in Bethe Ansatz form

Yang Baxter equations No N-particle solution in BA form

N-particle scattering eigenstates

Asymptotic boundary conditions

Expectation value of physical quantity

Yes

Not integrable
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Chapter 3

Two leads Finite U Anderson impurity model

3.1 Introduction on Finite U Anderson model

Nano-structures, beyond their practical applications, display an array of emergent phenomena stem-

ming from their reduced dimensionality which enhances quantum fluctuations and strong correla-

tions. Often, experiments are carried out under non-equilibrium conditions, with currents passing

through the structures. The measurements are performed over a wide range of parameters, such

as temperature and applied bias, allowing experimental exploration of the interplay between non-

equilibrium dynamics and strong correlation physics [5, 7, 6, 8–10]. A canonical example is the

non-equilibrium Kondo effect observed in a quantum dot attached to two leads held at different

chemical potentials �i. The voltage difference V = �1 − �2 induces a non-equilibrium current

I(V ) through the dot, interfering with and eventually destroying the Kondo effect as the voltage is

increased.

In this chapter we develop a phenomenological approach, based on an exact method, the Scat-

tering Bethe Ansatz (SBA), recently developed by P. Mehta and N. Andrei[16], a non-perturbative

implementation of the Keldysh formalism to construct the current-carrying, open-system scatter-

ing eigenstates for the two-lead nonequilibrium Anderson impurity model, the standard model to

describe the system[17–20, 25, 21, 26, 22–24, 27–31]. The basic idea of SBA is to construct scatter-

ing eigenstate of the full Hamiltonian defined directly on the infinite line and match the incoming

states by two Fermi seas describing the initial state of the leads. The non-equilibrium steady state

transport properties of the system are then expressed as expectation values of the current or dot

occupation operators in these eigenstates. This program has been implemented for the Interacting

Resonance Level Model (IRLM), a spinless interacting model, described in Ref.[16] where the zero

temperature results for current and dot occupation ⟨n̂d⟩ for all bias voltages are shown in chapter 5.

Carrying out the program for the non-equilibrium Anderson model we find difficulties in the

direct application of the SBA approach due to the fact that the ground state in the Bethe basis

consists of bound pairs of quasi-particles, leading to problems in the computation of the scattering
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phase shifts for the quasi-particles with complex momenta. This problem is not present in the

IRLM when the Bethe momenta are below the impurity level and no bound states can be formed.

We circumvent this difficulty by means of the following argument: The transport property computed

in the IRLM is related to the single particle phase shift across the impurity in the Bethe basis. Based

on the same idea we develop a phenomenological approach to describe the transport property in the

Anderson impurity model. We identify two types of possible phase shifts across impurity, which we

refer to as ”spin-fluctuation” and ”charge-fluctuation” types to label two phenomenological phase

shifts akin to the fundamental excitations described in the traditional Bethe Ansatz in this model.

The phenomenological Ansatz is checked against exact results on the dot occupation in equilibrium

and the Friedel sum rule[40, 41], in the linear response regime. Subsequently, we discuss our results

for the out of equilibrium current, conductance and dot occupation. The scaling relations for the

conductance, predicted from the Fermi liquid picture of the problem at strong and weak coupling,

are also discussed.

We start with the construction of scattering eigenstates of the full Hamiltonian. The (unfolded)

2-lead Anderson impurity Hamiltonian reads,

Ĥ =
∑

i=1,2

∫

dx †
i�(x)(−i∂x) i�(x) + �dd

†
�d� + ti( 

†
i�(0)d� + d†� i�(0)) + U d†↑d↑d

†
↓d↓ (3.1)

where summation over the spin indices � is implied. The fields  i�(x) describe chiral, right-moving

electrons from lead i, U is the on-site Coulomb repulsion between electrons on the dot, ti is the

coupling between the dot and the lead i, and �d is the gate voltage. We have set the Fermi velocity

vF = 1.

3.2 The Scattering Bethe Ansatz approach

The model’s equilibrium properties have been studied in great detail via the traditional Thermody-

namic Bethe Ansatz (TBA)[46, 47]. The SBA exploits in a new way the integrability of the Anderson

Model to construct current-carrying scattering eigenstates on the open line. There are two main

requirements: One is the construction of scattering eigenstates with the number of electrons in each

lead conserved prior to scattering off the impurity. Another is the asymptotic boundary condition:

that the wave function of the incoming electrons, i.e. in the region (x ≪ 0), tend to that of two
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free Fermi seas far from the impurity [16]. All information about the external bias applied to the

system is encoded in the boundary condition by appropriately choosing the chemical potential of

the incoming Fermi seas. As in all Bethe-Ansatz constructions, the full multi-particle wavefunction

is constructed from single particle eigenstates (now on the infinite open line) and the appropriate

two-particle S-matrices.

3.2.1 Scattering state construction

We first rewrite Eq. (3.1) in the even-odd basis as

Ĥ = Ĥe + Ĥo

Ĥe =
∑

�

∫

dx †
e�(x)(−i∂x) e�(x) + �dd

†
�d� + t( †

e�(0)d� + d†� e�(0)) + Ud†↑d↑d
†
↓d↓

Ĥo =
∑

�

∫

dx †
o�(x)(−i∂x) o�(x)

With

 e�(x) =
t1 1�(x) + t2 2�(x)

√

t21 + t22

 o�(x) =
t2 1�(x) − t1 2�(x)

√

t21 + t22

and t =
√

t21 + t22. In what follows we consider the case t1 = t2 = t√
2
for simplicity and we shall

discuss the t1 ∕= t2 case in the discussion for IRLM. We show from single particle to two particles

solution and show the integrability in the following three sections.

single particle solution

The single particle solution for even and odd basis is: ∣e, p�⟩ =
∫

dx (eipxgp(x) 
†
e�(x)+ ep�(x)d

†
�)∣0⟩

and ∣o, p�⟩ =
∫

dx eipxℎp(x) 
†
o�(x)∣0⟩, with ∣0⟩ the vacuum state and gp(x), ℎp(x), ep independent

of spin and given by

gp(x) = �(−x) + ei�p�(x) + sep �(x)�(−x) ,

ℎp(x) = �(−x) + �(x) + sop �(x)�(−x) , (3.2)

ep =
t(1 + ei�p + sep/2)

2(p− �d)
.
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Here �p ≡ 2 tan−1( Γ
�d−p ) is the single particle scattering phase shift of the electrons off the impurity

with Γ ≡ t2

2 being the width of the resonance level. We adopted a symmetric regularization scheme

�(±x)�(x) = 1
2�(x) and imposed ∣p∣ ≤ D, D being the bandwidth cut-off [49]. The s(x) = �(x)�(−x)

term is a local constant (∂xs(x) = 0) in this scheme and it is included in the odd channel function

to allow the same two particle S-matrices, Eq.(3.20), in all channels[50]. The �(x)�(−x) term in the

even channel wave function is introduced in order to modify the single particle phase shift across

the impurity. The choice of sop and sep will be addressed later. In the lead basis, ∣i, p�⟩, the single-

particle scattering eigenstates with the incoming particle incident from lead i, can be restored by

taking a proper linear combination of even-odd states. For example, ∣1, p�⟩ = 1√
2
(∣e, p�⟩ + ∣o, p�⟩)

is written as

∣1, p�⟩ =
∫

dx eipx
{

[�(−x)+1

2
(ei�p+1)�(x)] †

1�(x)+
1

2
(ei�p−1)�(x) †

2�(x)+epd
†
��(x)+s

†
1p�(x)

}

∣0⟩

(3.3)

with ∣2, p�⟩ = 1√
2
(∣e, p�⟩ − ∣o, p�⟩) and s†ip�(x) related to the �(x)�(−x) terms. These states have

a single incoming particle (x < 0) from lead i, that is reflected back into lead i with amplitude,

Rp = (ei�p + 1)/2 and transmitted to the opposite lead with amplitude Tp = (ei�p − 1)/2. Similar

single particle states are discussed in Ref. [16].

From two particles solution to multi particles solution

The multi-particle Bethe-Ansatz wave-function is constructed by means of the two-particle S-matrix,

S(p, k), describing the scattering of two electrons with momenta p and k. The two-particles solution

in spin singlet state takes the following form

∣ik, ↑; jp, ↓⟩ =
∫

dx1dx2A{ei(kx1+px2)Zkp(x1 − x2)�
†
ik,↑(x1)�

†
jp,↓(x2)}∣0⟩

Here
∫

dxeikix�†
iki,ai

(xi) = ∣iki, ai⟩ with a multiplication factor Z̃kp(0) ≡ k+p−2�d
k+p−U−2�d

Zkp(0) multi-

plied on the d†↑d
†
↓ term in two particles eigenstate. The explicit form for this two particles case is

written in Eq. (3.58) with the derivation given by the following: For the two particles solution we

follow similar construction in P B Wiegmann and A M Tsvelick’s work[46] and the Scattering Bethe

Ansatz approach developed by P. Mehta and N. Andrei[16]. Since Eq.(3.1) is rotational invariant
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the spin quantum number is conserved. We show the solution with both particles with spin singlet

incoming from lead 1 as an example in the following. Spin quantum number in z direction Sz is a

good quantum number and we can write the two particle solution of Sz = 0 state as:

∣Ψ⟩ = {
∫

dx1dx2{Ag(x1, x2) †
e↑(x1) 

†
e↓(x2) + Cℎ(x1, x2) 

†
o↑(x1) 

†
o↓(x2) +Bj(x1, x2)( 

†
e↑(x1) 

†
o↓(x2)

− †
e↓(x1) 

†
o↑(x2))}+

∫

dx(Ae(x)( †
e↑(x)d

†
↓ −  †

e↓(x)d
†
↑) +Bo(x)( †

o↑(x)d
†
↓ −  †

o↓(x)d
†
↑)) +Amd†↑d

†
↓}∣0⟩

Here A,B,C are arbitrary constants to be determined later. To satisfy Ĥ∣Ψ⟩ = E∣Ψ⟩ = (k + p)∣Ψ⟩

we have:

[−i(∂x1 + ∂x2)− E]g(x1, x2) + t[�(x1)e(x2) + �(x2)e(x1)] = 0 (3.4)

[−i(∂x1 + ∂x2)− E]ℎ(x1, x2) = 0 (3.5)

[−i(∂x1 + ∂x2)− E]j(x1, x2) + t[�(x1)o(x2)] = 0 (3.6)

(−i∂x − E + �d)e(x) + tg(0, x) + t�(x)m = 0 (3.7)

(−i∂x − E + �d)o(x) + tj(0, x) = 0 (3.8)

(U + 2�d)m+ 2te(0) = Em (3.9)

For U = 0 the model becomes non-interacting and the two particles solution becomes direct product

of two one particle solutions.

∣Ψ⟩ = ∣ k↑⟩ ⊗ ∣ p↓⟩+ ∣ p↑⟩ ⊗ ∣ k↓⟩

=

∫

dx1dx2{(gk(x1) †
e↑(x1) + ℎk(x1) 

†
o↑(x1) + ekd

†
↑�(x1))(gp(x2) 

†
e↓(x2) + ℎp(x2) 

†
o↓(x2) + epd

†
↓�(x2))

+(gp(x1) 
†
e↑(x1) + ℎp(x1) 

†
o↑(x1) + epd

†
↑�(x1))(gk(x2) 

†
e↓(x2) + ℎk(x2) 

†
o↓(x2) + ekd

†
↓�(x2))}∣0⟩
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Therefore at U = 0 we have:

g(x1, x2) = gk(x1)gp(x2) + gk(x2)gp(x1)

ℎ(x1, x2) = ℎk(x1)ℎp(x2) + ℎk(x2)ℎp(x1)

j(x1, x2) = gk(x1)ℎp(x2) + ℎk(x2)gp(x1)

e(x) = ekgp(x) + epgk(x)

o(x) = ekℎp(x) + epℎk(x)

m = 2epek

Now for U ∕= 0 we shall derive the solution of this form

g(x1, x2) = Zkp(x1 − x2)gk(x1)gp(x2) + Zkp(x2 − x1)gk(x2)gp(x1) (3.10)

Plug Eq.(3.10) into Eq.(3.4) we get

e(x) = Zkp(−x)gp(x)ek + Zkp(x)gk(x)ep (3.11)

Plugging above two results into Eq.(3.7) into Eq.(3.9) we get for m = 2Z̃kp(0)ekep we have:

(−i∂xZkp(−x))gp(x)ek + (−i∂xZkp(x))gk(x)ep − tZkp(−x)ep�(x)ek

−tZkp(x)ek�(x)ep + 2tZ∗
kp(0)ekep = 0 (3.12)

2Z̃kp(0)ekep =
2t(Zkp(0)gp(0)ek + Zkp(0)gk(0)ep)

p+ k − U − 2�d
(3.13)

Now take Zkp(x) = e−i�kp�(−x) + ei�kp�(x) we get tan(�kp) = −Ut2
(k−p)(p+k−U−2�d)

and Z̃kp(0) =

k+p−2�d
k+p−U−2�d

Zkp(0). Define Γ ≡ t2

2 and B(k) ≡ k(k − 2�d − U) as in Ref. [47] we can rewrite

tan(�kp) =
−2UΓ

(B(k)−B(p)) .

From Eq.(3.5) we can write ℎ(x1, x2) as:

ℎ(x1, x2) = Zookp(x1 − x2)ℎk(x1)ℎp(x2) + Zookp(x2 − x1)ℎk(x2)ℎp(x1)
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with arbitrary Zookp(x1 − x2). Now write j(x1, x2) as:

j(x1, x2) = Zeokp(x1 − x2)gk(x1)ℎp(x2) + Zeokp(x2 − x1)ℎk(x2)gp(x1)

again with Zeokp(x1 − x2) undetermined. Plug Eq.(3.14) into Eq.(3.6) we get o(x) is written as:

o(x) = Zeokp(−x)ℎp(x)ek + Zeokp(x)ℎk(x)ep (3.14)

Now if we choose Zeokp(x1 − x2) = Zkp(x1 − x2) and plug Eq.(3.14) and Eq.(3.14) into Eq.(3.8) we

get:

(−k + �d)Zkp(−x)ℎp(x)ek + (−p+ �d)Zkp(x)ℎk(x)ep + t(Zkp(−x)ℎp(x)gk(0) + Zkp(x)ℎk(x)gp(0))

+(−i)(∂xZkp(−x))ℎp(x)ek + (−i)(∂xZkp(x))ℎk(x)ep = −2 sin(�kp)(ℎp(0)ek − ℎk(0)ep) = 0 (3.15)

To satisfy Eq.(3.15) we can set ℎp(0) = 0 for arbitrary p. This can be done by choosing sop = −4

in Eq.(4.2). Now since Zookp(x1 − x2) is arbitrary we can choose Zookp(x1 − x2) = Zkp(x1 − x2). Also

from Eq.(3.13) we have

Z̃kp(0) =
p+ k − 2�d

p+ k − U − 2�d
Zkp(0) (3.16)

Since the Hamiltonian in Eq.(3.1) has rotational invariance the general form of scattering matrix for

particles with momentum k, p and spins �1, �2 is given by:

S
�
′

1�
′

2
�1�2 (k, p) = b(k, p) + c(k, p)P̂12 (3.17)

where P̂12 = 1
2 (1 ⋅ 1 + �⃗1 ⋅ �⃗2) is the permutation operator in spins. For antiparallel spins (singlet

state) as shown above P̂12 = −1 thus we have:

b(k, p)− c(k, p) =
Zkp(x > 0)

Zkp(x < 0)
=
B(k)−B(p)− i2UΓ

B(k)−B(p) + i2UΓ
(3.18)

For the triplet state (P̂12 = 1) the interaction term with the impurity is absent and the particles
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passing through each other without changing their phase

b(k, p) + c(k, p) = 1 (3.19)

Thus from Eq.(3.18) and Eq.(3.19) we get the two particle S-matrix as:

Ŝ(k, p) =
(B(k)−B(p))I�,� ′ + i2UΓP�,� ′

B(k)−B(p) + i2UΓ
(3.20)

In general we denote the Ŝ(ki, kj) as S
aia

′

i

aja
′
j

(ki, kj) with ai denotes the spin index before the scattering

and a
′

i the spin index after the scattering. These matrices satisfy the Yang-Baxter equations

S
a1a

′

1

a2a
′
2

(k1, k2)S
a1a

′

1

a3a
′
3

(k1, k3)S
a2a

′

2

a3a
′
3

(k2, k3)

= S
a2a

′

2

a3a
′
3

(k2, k3)S
a1a

′

1

a3a
′
3

(k1, k3)S
a1a

′

1

a2a
′
2

(k1, k2)

Thus the integrability of two leads with Anderson type dot system is similar to the integrability of

one lead Anderson model.

The choice of identical two particles S-matrices (by choosing sop = −4; the choice of sep will

be discussed later and does not affect the result here) enables us to construct the scattering state

labeled by lead indices by choosing appropriate A,B,C in this even-odd basis. For example, if

both particles are coming from lead 1, we shall choose (A,B,C) = A0(
t2

t22
, −t2
t1t2

, t
2

t21
) such that the

amplitude of incoming state from lead 2 is zero (A0 being an overall renormalization constant). We

can therefore label the eigenstate by the incoming state from lead i and/or lead j. Without this

sop term we cannot write back from even-odd basis to lead indices basis in this two leads Anderson

model and similarly in IRLM in Ref. [16].

Since the S-matrix is the same for all even-odd combinations the S-matrix does not depend

on the lead index i, and the number of electrons in a lead, Ni, can change only at the impurity

site. This circumstance allows us to construct the fully-interacting eigenstates of our Hamiltonian

characterized by the incoming quantum numbers, N1 and N2 the numbers of incident electrons from

lead 1 and 2 respectively. These quantum numbers are subsequently determined by the chemical

potentials �1 and �2. This leads us to the topic of fixing these momenta distribution by imposing

the asymptotic boundary condition in the next section.
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3.2.2 Choosing the momenta distribution by the asymptotic boundary

conditions

To complete the construction of the SBA current-carrying, scattering eigenstate, ∣Ψ, �i⟩, we must

still choose the ”Bethe-Ansatz momenta” {pl}N1+N2

l=1 of the single particles states to ensure that the

incoming particles look like two Fermi seas in the region x < 0. This requirement translates into a

set of ”free-field” SBA equations for the Bethe-Ansatz momenta-density of the particles from the two

leads [16]. The argument is as follows: Away from the impurity ∣i, p�⟩ reduces to  †
i�(x) with the

inter-particle S-matrix Eq. (3.20) present. Thus the scattering eigenstates describing non-interacting

electrons are in the Bethe basis rather than in the Fock basis of plane waves.

The existence of many bases for the free electron is due to their linear spectrum which leads to

degeneracy of the energy eigenvalues. The wave function

eip1x1+ip2x2 [�(x1 − x2) + S�(x2 − x1)]A

is an eigenstate of the free Hamiltonian for any choice of S with, in particular, S = 1 defining the

Fock basis and S given in Eq. (3.20) defining the Bethe basis. The Bethe basis is the correct ”zero

order” choice of a basis in the degenerate energy space required in order to turn on the interactions.

We proceed to describe the leads (two free Fermi seas) in this basis.

We consider the system at zero temperature and zero magnetic field in this paper. To describe

the two Fermi seas on the leads translates to a set of Bethe Ansatz equations whose solution in this

case consists of complex conjugate pairs: p±(�) = x(�)∓ iy(�) in the �-parametrization [47, 46, 48]

with

x(�) = �d +
U

2
− (

�+ (�d +
U
2 )

2 + ((� + (�d +
U
2 )

2)2 + U2Γ2)1/2

2
)1/2 (3.21)

y(�) = (
−(�+ (�d +

U
2 )

2) + ((�+ (�d +
U
2 )

2)2 + U2Γ2)1/2

2
)1/2. (3.22)

We may simplify this expression by defining �̃d = �d + U/2 to get

x(�) = �̃d −

√

�+ �̃2d +
√

(�+ �̃2d)
2 + U2Γ2

2

y(�) =

√

−(�+ �̃2d) +
√

(�+ �̃2d)
2 + U2Γ2

2
.
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Each member of a pair can be either in lead 1 or in lead 2, since the S-matrix is unity in the

lead space. There are, therefore, two possible configurations for these bounded pairs. One possible

way of forming bounded pairs is described by four types of complex solutions whose densities we

denote �ij(�) with {ij} = {11, 12, 21, 22} indicating the incoming electrons from lead i and lead j.

The other possibility, which is perhaps more intuitive in comparing with the free electron in the

Fock basis, is to include only {ij} = {11, 22}. These two types of states give the same results when

evaluating the expectation value of the dot occupation in equilibrium. However when we turn on the

bias voltage, the results obtained from a 4-bound states description show some charge fluctuations

even way below the impurity level which is not expected from the non-interacting (U → 0) theory

(shown in Appendix A). Thus we shall focus on the 2-bound states description in the following

discussion.

Derivation for momenta distribution for 2-bound states

The momenta distribution can be derived from imposing boundary condition in the free leads (in-

coming state) region and the value of momenta is connected with spin rapidity � by using the

quantum inverse scattering method. The Bethe Ansatz equation solved with periodic condition at

lead region with total number of particles N (N = N1 +N2 as sum of particle number from lead 1

and 2) and the total spin projection S (S = S1 + S2 = N/2−M with M =M1 +M2 as number of

down spin particles) is given by

eik
l
jL =

M
∏

�=1

B(klj)− �� + iUΓ

B(klj)− �� − iUΓ
(3.23)

∏

l=R,L

Nl
∏

j=1

B(klj)− �� − iUΓ

B(klj)− �� + iUΓ
=

M
∏

� ∕=�

�� − �� + i2UΓ

�� − �� − i2UΓ
(3.24)

with total energy E = E1 + E2 and El =
∑

j k
l
j indicating the energy of the electrons within the

lead l at zero temperature.

The spectrum of Eq.(3.23,3.24) for one lead case has been analyzed by N. Kawakami and A.

Okiji [47] where they found that the ground state at zero temperature is composed of real �i and

complex klj in the thermodynamic limit for U > 0. The same situation also occurs in the special

limit where U → ∞ where P. Schlottmann [65] has done also in the one lead case. The proof for two

leads ground state is similar to the one lead case and is shown explicitly for the finite temperature
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calculation for the infinite U case in Chapter 6.

As has been mentioned above in the ground state all �i are real (and distinct) and klj form bound

state for j = 1, .., 2M with bound state momenta given by the poles or zeros in the S-matrix defined

in Eq.(3.20)

B(kl±j ) = �j ± iUΓ = B(kl±(�j)) = B(x(�j)± iy(�j)) + ±(�j) (3.25)

where ± = O(exp(−L)) and from Eq.(3.25) we have

x(�) = �d +
U

2
− (

�+ (�d +
U
2 )

2 + ((� + (�d +
U
2 )

2)2 + U2Γ2)1/2

2
)1/2

y(�) = (
−(�+ (�d +

U
2 )

2) + ((�+ (�d +
U
2 )

2)2 + U2Γ2)1/2

2
)1/2

Note that the bound state can be formed from four possible configurations for B2 < �� <∞ which

we denote bound state from lead i and lead j quasi momenta denoted as �ij� . The bound state

between B1 < �� < B2 can only be formed by quasi momenta both coming from lead 1. Below

we surpass the index of lead in � and put back the index dependence in the end for simplification.

Inserting Eq.(3.25) into Eq.(3.23,3.24) we get

eik
+
�L =

M
∏

�=1

�� − �� + i2UΓ

�� − �� + +�
(3.26)

eik
−
�L =

M
∏

�=1

�� − �� + −�
�� − �� − i2UΓ

(3.27)

M
∏

�=1

�� − �� + +�

�� − �� + −�
= 1 (3.28)

Thus for L→ ∞ from multiplication of Eq.(3.26) and Eq.(3.27) we have

e2ix(��)L =
∏

�

�� − �� + i2UΓ

�� − �� − i2UΓ
(3.29)

Taking the logarithm of Eq.(3.29) we have:

2�J� = −2x(��)L−
∑

�

(2�2(
�� − ��
2UΓ

) + �) (3.30)
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with �n(x) ≡ tan−1(2x/n) and J� some integers. We can extend the definition of J� to include

integers or half integers and rewrite Eq.(3.30) as

�

L
J� = −x(��)−

1

L

∑

�

�2(
�� − ��
2UΓ

) (3.31)

Now let us put back the dependence in lead indices. Note that there is one one correspondence

between �� and J� from Eq.(3.31) and by the method of quantum inverse scattering we have the

constraint of all �� being different. Thus �ij� is uniquely determined by one J�. For notational sim-

plification we relabel {ij} = {11, 22} as {l} = {1, 2}. Now define
∑

ij �(�
ij
� ) =

1
L
dJ�

d��
≡
∑

l �
(l)(��)

and using ∂x�n(x) = 2/n
1+(2x/n)2 we can write Eq.(3.31) in continuous form (by taking L → ∞ and

differentiate Eq.(3.31) with respect to �) as the following two regions. For B2 < � <∞ we have all

particle state labeled by different l as

2
∑

l=1

�(l)(�) =
−1

�

dx(�)

d�
− 1

�

∫ ∞

B2

d�′�(2)(�′)
2UΓ

(2UΓ)2 + (�− �′)2

− 1

�

∫ ∞

B1

d�′�(1)(�′)
2UΓ

(2UΓ)2 + (�− �′)2
(3.32)

For B1 < � < B2 we can introduce hole state for distribution of �(2)(�). Denote hole state as �̃(l)(�)

we get

�(1)(�) + �̃(l)(�) =
−1

�

dx(�)

d�
− 1

�

∫ ∞

B2

d�′�(2)(�′)
2UΓ

(2UΓ)2 + (�− �′)2

− 1

�

∫ ∞

B1

d�′�(1)(�′)
2UΓ

(2UΓ)2 + (�− �′)2
(3.33)

Since �̃(l)(�) obeys the same equation as �(1)(�) as seen from Eq.(3.33) and structure of Eq.(3.33)

is the same as Eq.(3.32) (apart from different region in �) we may combine Eq.(3.32) and Eq.(3.33)

together to get

2�(�) =
−1

�

dx(�)

d�
− 1

�

∫ ∞

B2

d�′2�(�′)
2UΓ

(2UΓ)2 + (�− �′)2

− 1

�

∫ B2

B1

d�′�(�′)
2UΓ

(2UΓ)2 + (�− �′)2
(3.34)
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with B1 < � <∞. From Eq.(3.26) we get dx(�)
d� as

dx(�)

d�
= −(

1 +
(�+ 1

4 (U+2�d)
2)√

U2Γ2+( 1
4 (U+2�d)2+�)2

2
√
2

√

1
4 (U + 2�d)2 + �+

√

U2Γ2 + (14 (U + 2�d)2 + �)2
) (3.35)

Thus to describe in the Bethe basis the two leads as two Fermi seas filled up to �1 and �2, respectively,

these densities must satisfy the SBA equations,

2�i(�) = − 1

�

dx(�)

d�
�(� −Bi)−

∑

j=1,2

∫ ∞

Bj

d�′ K(�− �′)�j(�
′) (3.36)

with

K(�) =
1

�

2UΓ

(2UΓ)2 + �2

.

Each density is defined on a domain extending from Bi to the cutoff D - to be sent to infinity.

The Bi play the role of chemical potentials for the Bethe-Ansatz momenta and are determined from

the physical chemical potentials of the two leads, �i, by minimizing the charge free energy,

F =
∑

i

(Ei − �iNi) = 2
∑

i

∫ ∞

Bi

d� (x(�) − �i)�i(�) (3.37)

with �1 the lead 1 particle density and �2 the lead 2 particle density. Note that �1 and �2 obeys the

same integral equation Eq. (3.36) with different boundary (�1(�) with � ⊂ (B1,∞) and �2(�) with

� ⊂ (B2,∞)). The connection between �i and Bi are shown explicitly in the following discussion.

Minimization of charge free energy

The free energy of the system at zero temperature is given by

F = F1 + F2 =

∫ ∞

B1

2(x(�) − �1)�
(1)(�)d� +

∫ ∞

B2

2(x(�) − �2)�
(2)(�)d� (3.38)
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where �1 and �2 are chemical potential of the system. The condition of minimization is given by

∂F
∂B1

= 0 and ∂F
∂B2

= 0. From Eq.(3.38) we get

∂F

∂B1
= 0 = −(x(B1)− �1)2�

(1)(B1) +

∫ ∞

B1

(x(�) − �1)
∂2�(1)

∂B1
+

∫ ∞

B2

(x(�) − �2)
∂2�(2)

∂B1

∂F

∂B2
= 0 = −(x(B2)− �2)2�

(2)(B2) +

∫ ∞

B1

(x(�) − �1)
∂2�(1)

∂B2
+

∫ ∞

B2

(x(�) − �2)
∂2�(2)

∂B2

Now we simplify the notation by noticing that both �(1)(�) and �(2)(�) obeys Eq.(3.34) so we

have ∂�(1)(�)
∂Bi

= ∂�(2)(�)
∂Bi

= ∂�(�)
∂Bi

and also by definition �(1)(B1) = �(B1), �
(2)(B2) = �(B2). Thus

above equations are simplified as:

0 = −(x(B1)− �1)2�(B1) +

∫ ∞

B2

(2x(�)− �1 − �2)
∂2�

∂B1
+

∫ B2

B1

(x(�) − �1)
∂2�

∂B1

0 = −(x(B2)− �2)2�(B2) +

∫ ∞

B2

(2x(�)− �1 − �2)
∂2�

∂B2
+

∫ B2

B1

(x(�) − �1)
∂2�

∂B2
(3.39)

From Eq.(3.34) we have ∂�
∂Bi

as:

∂2�(�)

∂B1
= − 1

�

∫ ∞

B2

∂2�

∂B1

2UΓ

(2UΓ)2 + (�− �′)2
d�′ − 1

�

∫ B2

B1

∂�

∂B1

2UΓ

(2UΓ)2 + (�− �′)2

+
1

�
�(B1)

2UΓ

(2UΓ)2 + (� −B1)2

∂2�(�)

∂B2
= − 1

�

∫ ∞

B2

∂2�

∂B2

2UΓ

(2UΓ)2 + (�− �′)2
d�′ − 1

�

∫ B2

B1

∂�

∂B2

2UΓ

(2UΓ)2 + (�− �′)2

+
1

�
�(B2)

2UΓ

(2UΓ)2 + (� −B2)2
(3.40)

These formulas can be simplified by dividing the first line in both Eq.(3.39) and Eq.(3.40) by

2�(B1) and those of second line by 2�(B2). Define f(�,Bi) ≡ ∂2�(�)
∂Bi

1
2�(Bi)

and follow Eq.(3.39) and

Eq.(3.40) we have

(x(B1)− �1) =

∫ ∞

B1

(x(�) − �1)f(�,B1) +

∫ ∞

B2

(x(�) − �2)f(�,B1) (3.41)

(x(B2)− �2) =

∫ ∞

B1

(x(�) − �1)f(�,B2) +

∫ ∞

B2

(x(�) − �2)f(�,B2)
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with f(�,Bi) given by:

f(�,Bi) = − 1

2�

∫ ∞

B1

f(�′, Bi)
2UΓ

(2UΓ)2 + (�− �′)2
− 1

2�

∫ ∞

B2

f(�′, Bi)
2UΓ

(2UΓ)2 + (�− �′)2

+
1

2�

2UΓ

(2UΓ)2 + (�−Bi)2
(3.42)

It is unclear how to solve these coupled integral equations exactly. The practical way to solve these

equations is to use numerical methods to solve Eq.(3.42) and plugging back the results to Eq.(3.41)

to find the corresponding (�1, �2) from arbitrary choice of (B1, B2). Now let us define the following

parameters and write chemical potential �1 and �2 explicitly:

A ≡
∫ ∞

B1

f(�,B1)

B ≡
∫ ∞

B2

f(�,B1)

G ≡
∫ ∞

B1

x(�)f(�,B1) +

∫ ∞

B2

x(�)f(�,B1)

C ≡
∫ ∞

B1

f(�,B2)

D ≡
∫ ∞

B2

f(�,B2)

F ≡
∫ ∞

B1

x(�)f(�,B2) +

∫ ∞

B2

x(�)f(�,B2) (3.43)

Using these definitions and solve Eq.(3.41) we have:

�1 =
(F − x(B2))B + (x(B1)−G)(D − 1)

(D − 1)(1−A) +BC

�2 =
(x(B1)−G)(−C) + (x(B2)− F )(A− 1)

(D − 1)(1−A) +BC
(3.44)

⇒ V = �1 − �2 =
(A+B − 1)(F − x(B2)) + (C +D − 1)(x(B1)−G)

(D − 1)(1−A) +BC

For the numerical analysis of nonequilibrium situation we may keep dot level �d fixed at certain

value and change �1 and �2. Here we choose �1 to be fixed with some (B1, B2) and then find the

corresponding �2 for the sake of simplicity in numerical process. In this way we may plot the I − V

curves and find the nonequilibrium differential conductance.

Now let us consider the special case of equilibrium and quasi-equilibrium. In equilibrium we

have B1 = B2 which leads to the solution of �1 = �2 from Eq.(3.38) to Eq.(3.40). The equations
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decoupled when B1 = B2 ≡ B and we may define the dressed energy �(�) for the single quasi-particle

excitation as:

�(�) = (x(�) − �)− 1

�

∫ ∞

B

2UΓ

(2UΓ)2 + (�− �′)2
�(�′) (3.45)

This definition can be obtained by iteration of Eq.(3.40) on Eq.(3.39) in B1 = B2 = B case with a

factor of two in the driving term removed as we are discussing a single quasi-particle rather than

a bounded pair of quasi-particles. In the case of quasi-equilibrium we can take B1 ≃ B2 and from

Eq.(3.45) we have the voltage difference as (by taking the difference of Eq(3.45) nearby B1 = B2 = B

and take �B → 0):

eV12 = �1 − �2 = 2�′(B)�B ≃ �B(−2x′(B)− 1

�

∫ ∞

B

2UΓ

(2UΓ)2 + (�− �′)2
2�′(�′)) (3.46)

Notice that in the Fock space we may define voltage difference as the energy difference due to

different number of particles:

V =
2�

e
(
N1 −N2

L
) =

4�

e

∫ B2

B1

�(�)d� (3.47)

Nearby equilibrium we can take B1 ≃ B2 or B2 = B1 + �B with �B → 0. Comparing Eq.(3.46) with

Eq.(3.34) we have 2�′(B) = 4��(B) or the voltage difference V12 ≃ 4��(B)�B as given in Eq.(3.47).

To find this quasi-equilibrium boundary B we have to solve Eq.(3.45) with �(B) = 0. The equation

is written as

�(B) = (x(B) − 0)− 1

�

∫ ∞

B

2UΓ

(2UΓ)2 + (B − �′)2
�(�′) = 0

= (�d +
U

2
− (

B + (�d +
U
2 )

2 + ((B + (�d +
U
2 )

2)2 + U2Γ2)1/2

2
)1/2)

− 1

�

∫ ∞

B

2UΓ

(2UΓ)2 + (B − �′)2
�(�′) (3.48)

Determination of equilibrium Bethe boundary B for � = 0

There are two ways to solve Eq.(3.48). One way is to use Weiner Hopf method to obtain exact

result. The second approach is to use numerical approach suggested by G. Palacios[68]. First let us

discuss the computation by using Weiner Hopf method.
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Define �±(�) ≡ �(�)�(±� ∓ B) and ℎ(� − �′) ≡ − 1
�

2UΓ
(2UΓ)2+(�−�′)2 . Using the convention of

Fourier transform as

f(!) =

∫ ∞

−∞
f(t)ei!tdt

Thus we have the Fourier transform of ℎ(�−�′) as ℎ(!) = −e2UΓ∣!∣. Now write �±(�) = �(�)�(±�∓

B) then we can rewrite Eq.(3.68) in Fourier transformed form as

�+(!) + �−(!) = 2x(!) + ℎ(!)�+(!)

Next we connect the integration kernel term with lower and upper plane by rewriting (1 − ℎ(!)) ≡
1

G+(!)G−(!) . The functions G±(!) are [46]:

G−(!) = G+(−!) =
√
2�(

i2UΓ! + 0

2�e
)

i!2UΓ
2� /Γ(

1

2
+
i!2UΓ

2�
) (3.49)

Thus we have �+(!) as

�+(!) = G+(!)
ei!B

2�i

∫

d!′ 1

!′ − ! − i�
2x(!′)G−(!′)e−i!

′B (3.50)

→ �+(�) =
1

2�

∫ ∞

−∞
e−i!��+(!)d!

First let us compute x(!) =
∫∞
−∞ x(�)ei!�d�:

x(!) = 2��(!)(�d +
U

2
) + e−i!(�d+

U
2 )2

√
2�

(∣!∣ − i!)(cosh(UΓ!)− sinh(UΓ!))

4∣!∣5/2

Plugging this back to Eq.(3.50) we have

�+(�) = 2(�d +
U

2
) + 5

√

2UΓ

�
(−1)1/4(−i�(−1

2
,
3

4
+ i

�+ (�d +
U
2 )

2

4UΓ
) + �(−1

2
,
3

4
− i

�+ (�d +
U
2 )

2

4UΓ
)

− �(−1

2
,
1

4
+ i

�+ (�d +
U
2 )

2

4UΓ
) + i�(−1

2
,−1

4
− i

�+ (�d +
U
2 )

2

4UΓ
) (3.51)

with �(s, a) defined as the generalized Riemann zeta function.

The following trick in numerical computation can also solve this equilibrium boundary B. Let
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us define a new parameter �̄ ≡ �+ (�d +
U
2 )

2 then we can rewrite Eq.(3.48) as

�(�̄) = (�d +
U

2
−

√

�̄+
√

�̄2 + (UΓ)2

2
)− 1

�

∫ D̄

B̄

2UΓ

(2UΓ)2 + (�̄− �̄′)2
�(�̄′) (3.52)

Since the Eq.(3.52) is a linear equation we can separate the driving term and �(�̄) into two parts by

�(�̄) ≡ �d�1(�̄) + �2(�̄) with the new parameters defined by:

�1(�̄) = 1− 1

�

∫ ∞

B̄

2UΓ

(2UΓ)2 + (�̄− �̄′)2
�1(�̄′)

�2(�̄) = (
U

2
−

√

�̄+
√

�̄2 + (UΓ)2

2
)− 1

�

∫ ∞

B̄

2UΓ

(2UΓ)2 + (�̄− �̄′)2
�2(�̄′)

We choose the boundary B̄ satisfying �(B̄) = 0 = �d�1(B̄) + �2(B̄). So we can find the relationship

between B̄ = B + (�d +
U
2 )

2 and �d as �d = − �2(B̄)

�1(B̄)
. We will use this relation in the discussion

of equilibrium property such as dot occupation as a function of impurity level �d and the linear

response conductance given by the Friedel sum rule.

3.3 Expectation value of current and dot occupation: SBA to pSBA

Solving the SBA equations subject to the minimization of the charge free energy fully determines

the current-carrying eigenstate, ∣Ψ, �i⟩ and allows for calculation of physical quantities by evaluating

expectation value of the corresponding operators. In the following we shall discuss our results from

equilibrium cases to non-equilibrium ones, starting with the expression for various expectation value

of physical quantities.

For �1 = �2 all Bi are equal to some equilibrium boundary B fixed by the choice of �i. The

dot occupation is given by the expectation value
∑

�⟨Ψ, �i∣d†�d�∣Ψ, �i⟩. Taking the limit L→ ∞ (L

being the size of the lead) one can express nd as an integral over the density of � and some matrix

element �(�) ≃ ⟨p+(�)p−(�)∣∑� d
†
�d�∣p+(�)p−(�)⟩

⟨p+(�)p−(�)∣p+(�)p−(�)⟩ taken to order 1
L . Here we address the different

choice of sep (with sop = −4 fixed to have the same S-matrix in all channels) which gives rise to

different forms of �(�). We shall first discuss sep = 0 and show it reproduces the exact result for

the dot occupation in equilibrium. While in checking the condition for out-of-equilibrium it fails.

Thus we propose sep ∕= 0 schemes to circumvent this difficulty and check our proposed scheme

against the exact equilibrium answer in the second part of the discussion. The nonzero choices of



46

sep introduces two types of single particle phase shifts which we introduce phenomenologically their

respective distribution function. Thus we call the later approach as phenomenological SBA (pSBA).

The numerical results in out of equilibrium regime are all done with this pSBA approach.

3.3.1 SBA result with sep = 0: Its success in equilibrium and problem in

out of equilibrium

We choose sep = 0 as in the case of the 1-lead Anderson impurity model. Denote �(�) = �SBA(�)

in this choice. The dot occupation expectation value in equilibrium is given by

nd =
⟨Ψ, �1 = �2∣

∑

� d̂
†
� d̂�∣Ψ, �1 = �2⟩

⟨Ψ, �1 = �2∣Ψ, �1 = �2⟩
= 2

∫ ∞

B

d��(�)�SBA(�) (3.53)

where the factor 2 in front of the integral accounts for the spin degeneracy. The matrix element of

the operator d†�d� in the SBA state is given by

�SBA(�) =
2Γ

x̃2(�) + ỹ2+(�)
+

16y(�)Γ2

[x̃2(�) + ỹ2−(�)][x̃
2(�) + ỹ2+(�)]

(

x̃(�)

2x̃(�)− U

)2

.

where we introduced, for simplified notations, the functions x̃(�) = x(�) − �d and ỹ±(�) =

y(�)± Γ.

Eq.(3.53) can be proved to be exact by comparing with the traditional Bethe Ansatz where

⟨
∑

� d
†
�d�⟩ = 2

∫∞
B d��imp(�) with impurity density �imp(�) given by

�imp(�) =
�p+ + �p−

2�
−
∫ ∞

B

d�′K(�− �′)�imp(�
′) (3.54)

By comparing Eq.(3.54) and Eq.(3.36) in equilibrium (�i(�) = �b(�) describing bulk quasi-particle

density when B1 = B2 = B.) we get

∫ ∞

B

d��imp(�)

(−1

�

dx(�)

d�

)

= 2

∫ ∞

B

d��b(�)

(

�p+ + �p−

2�

)

(3.55)

by noting that the integration kernel K(�− �′) is symmetric in � and �′. Since the equality is true
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for arbitrary B we can also rewrite Eq.(3.55) as

∫ ∞

B

d��imp(�) = 2

∫ ∞

B

d��b(�)

(

�p+ + �p−

−2 dx(�)d�

)

≡ 2

∫ ∞

B

d��b(�)�
TBA(�)

and the resulting �TBA(�) is given by

�TBA(�) =
−x̃(�) y

′(�)
x′(�) − ỹ−(�)

x̃2(�) + ỹ2+(�)
+
x̃(�) y

′(�)
x′(�) + ỹ+(�)

x̃2(�) + ỹ2+(�)
(3.56)

Now let us show the computation for �SBA(�). First we write one particle state of Eq.(3.1) in even

channel (with sek = 0 for the moment) as

∣k, �⟩ =
∫

eikx�†
ek,�(x)dx∣0⟩ (3.57)

=

∫

eikx{(�̄ +Ak�) 
†
e� +Bkd

†
��(x)}dx∣0⟩

Solving Ĥ ∣k, �⟩ = k∣k, �⟩ we get

−i(−1 +Ak) +Bkt = 0

�dBk + t
1 +Ak

2
= kBk

Thus we get Ak =
k−�d−i t

2

2

k−�d+i t22
and Bk = t

k−�d+i t22
. We may also define gk(x) = eipx(�̄ + Ak�) and

ek = Bk to have easier comparison with Wiegmann and Tsvelick’s work[46]. The two particles state

is obtained by constructing product of two �†
ep,�(x) particles state with appropriate two particles

S-matrix expressed in Zk+k−(x1 − x2).

In principle we shall use ∣Ψ, N1, N2⟩ as the many body state to compute expectation value. How-

ever the simplification here, similar to the case of IRLM in Ref.[16], is that different � (corresponding

to different p(�)) are orthogonal to each other in L → ∞ limit. Thus the many body expectation

value can be obtained via two body computation and the rest just get canceled by normalization

factor. We shall demonstrate the explicit computation for two particles in the following.
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Denote ∣Ψ⟩ as the two particles solution. We may write spin singlet state as

∣Ψ⟩ =

∫

dx1dx2A
{

ei(kx1+px2)Zkp(x1 − x2)�
†
ek,↑(x1)�

†
ep,↓(x2)

}

∣0⟩

=

∫

dx1dx2

{

Zkp(x1 − x2){gk(x1)gp(x2) †
↑(x1) 

†
e↓(x2) + gk(x1)ep 

†
↑(x1)d

†
↓�(x2)

+ ekgp(x2)d
†
↑�(x1) 

†
↓(x2) + ekepd

†
↑d

†
↓�(x1)�(x2)} − Zkp(x2 − x1){gk(x2)gp(x1) †

e↓(x2) 
†
e↑(x1)

+ gk(x2)ep 
†
e↓(x2)d

†
↑�(x1) + ekgp(x1)d

†
↓�(x2) 

†
e↑(x1) + ekepd

†
↓d

†
↑�(x1)�(x2)}

}

∣0⟩

=
{

∫

dx1dx2[Zkp(x1 − x2)gk(x1)gp(x2) + Zkp(x2 − x1)gk(x2)gp(x1)] 
†
e↑(x1) 

†
e↓(x2)

+

∫

dx[Zkp(x)gk(x)ep + Zkp(−x)gp(x)ek]( †
e↑(x)d

†
↓ −  †

e↓(x)d
†
↑) + 2ekepZ̃kp(0)d

†
↓d

†
↑

}

∣0⟩

With A denoting anti-symmetrization and Z̃kp(0) =
k+p−2�d

k+p−U−2�d
Zkp(0).

Solving Ĥ ∣k, �; p,−�⟩ = (k + p)∣k, �; p,−�⟩ we obtain

Zkp(x1 − x2) = �(x1 − x2) +
(k − p)(k + p− 2�d − U)− iUt2

(k − p)(k + p− 2�d − U) + iUt2
�(x2 − x1)

For the case of bound state the two particle S-matrix is given by Zk+k−(x1−x2) = �(x1−x2) ≡ �x12.

The normalization factor and matrix element of dot occupation given by the even channel two

particles wavefunction are

⟨Ψ∣Ψ⟩ =

∫

dy1dy2

∫

dx1dx2(�
y
12gk+(y1)gk−(y2) + �y21gk+(y2)gk−(y1))

∗

×(�x12gk+(x1)gk−(x2) + �x21gk+(x2)gk−(x1))�(x1 − y1)�(x2 − y2)

+2

∫

dy

∫

dx[�(y)gk+(y)ek− + �(−y)gk−(y)ek+ ]∗[�(x)gk+ (x)ek− + �(−x)gk−(x)ek+ ]�(x − y)

+4(ek+ek− Z̃k+k−(0))
∗(ek+ek−Z̃k+k−(0))

∑

�

⟨Ψ∣d̂†� d̂�∣Ψ⟩ = 2

∫

dy

∫

dx[�(y)gk+ (y)ek− + �(−y)gk−(y)ek+ ]∗[�(x)gk+ (x)ek− + �(−x)gk− (x)ek+ ]�(x− y)

+8(ek+ek− Z̃k+k−(0))
∗(ek+ek−Z̃k+k−(0))

= 2

{∫

dx[�(x)∣gk+ (x)ek− ∣2 + �(−x)∣gk− (x)ek+ ∣2] + 4∣ek+ek− Z̃k+k−(0)∣2
}

Note that the even channel bound state can be written as sum over bound state of {11, 12, 21, 22}

(4 strings type) or {11, 22} (2 strings type) with the same real part of energy k = x(�). This can be

viewed as the consistency counting from Fock basis to Bethe basis as electrons in lead 1 and lead 2
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has 4 fold degeneracies in its initial state (2 different spins in each lead). Also note that

∫

dx1dx2 �
x
12∣gk+(x1)gk−(x2)∣2 =

∫

dx1dx2∣ei(k
+x1+k

−x2)(�̄1 + �1Ak+)(�̄2 + �2Ak−)∣2�12

=

∫

dx1dx2 e
−2�k(x1−x2)∣�̄1�̄2�12 + �1�̄2�12Ak+ + �1�2�12Ak+Ak− ∣2

=

(

L

2�k
− 1− e−2�kL

(2�k)2

)

(

1 + ∣Ak+Ak− ∣2
)

+

(

1− e−2�kL

2�k

)2

∣Ak+ ∣2

∫

dx �(x)∣gk+ (x)ek− ∣2 =

∫

dx �(x)∣ei(k+i�k)x(�(−x) +Ak+�(x))ek− ∣2 =

∫ L

0

dx e−2�kx∣Ak+ek− ∣2

=
1

2�k

∣

∣

∣

∣

∣

k − �d + i�k − iΓ

k − �d + i�k + iΓ

t

k − �d − i�k + iΓ

∣

∣

∣

∣

∣

2

=
1

2�k

∣

∣

∣

∣

∣

t

k − �d + i�k + iΓ

∣

∣

∣

∣

∣

2

∫

dx �(−x)∣gk− (x)ek+ ∣2 =

∫

dx �(−x)∣ei(k−i�k)x(�(−x) +Ak−�(x))ek+ ∣2 =

∫ 0

−L
dx e2�kx∣Ak−ek+ ∣2

=
1

2�k

∣

∣

∣

∣

∣

t

k − �d + i�k + iΓ

∣

∣

∣

∣

∣

2

with Z̃k+k−(0) = 2(k−�d)
2(k−�d)−UZk+k−(0) and Zk+k−(0) = 1

2 based on our regularization scheme. By

expressing k = x(�) and �k = y(�) and taking L→ ∞ thus preserving 1
L terms only we get

⟨Ψ∣∑� d̂
†
� d̂�∣Ψ⟩

⟨Ψ∣Ψ⟩ =
1

L
�SBA(�) (3.58)

=
1

L

{

2Γ

x̃2(�) + ỹ2+(�)
+

16y(�)Γ2

(x̃2(�) + ỹ2−(�))(x̃
2(�) + ỹ2+(�))

(

x̃(�)

2x̃(�) − U

)2
}

.

By expressing �TBA(�) and �SBA(�) in � explicitly we see that �TBA(�) = �SBA(�). Since

⟨
∑

� d
†
�d�⟩ = 2

∫∞
B d��imp(�) in TBA we have proved that the expectation value evaluated by

the state we constructed is exact and the equivalence of SBA and TBA in equilibrium in this two-

lead Anderson model. This observation that the SBA and TBA results for nd agree in equilibrium

shows the connection between the dot occupation and the dressed phase shift across the impurity. It

also proves unambiguously that the approximation L→ ∞ we made in obtaining the matrix element

and therefore the orthogonality between different � states for dot occupation computation are valid.

To describe the out-of-equilibrium state we first check if the steady state condition d⟨n̂d⟩
dt = 0 (or

equivalently, d⟨N̂1+N̂2⟩
dt = 0) is satisfied in this basis. As mentioned earlier these scattering states are

formed by bounded quasi-particles with complex momenta and therefore the single particle phase

across the impurity is not well defined in the sense that ∣ei�p± ∣ ∕= 1. This problem begins to surface
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as we set out to evaluate transport expectation value and renders

d⟨n̂d⟩
dt

=

∫ B22

B11

d��b(�)Δ(�) ∕= 0 (3.59)

with

Δ(�) =
y2(�)Γ2

[x̃2(�) + ỹ2−(�)][x̃
2(�) + ỹ2+(�)]

.

Thus it appears that using this basis the steady state condition is not observed. This problem does

not appear when the momenta are real as in the IRLM case[16].

3.3.2 SBA phenomenology (pSBA) : Choosing sep ∕= 0

To remedy this problem we redefine the single particle phase shifts across the impurity, in analogy

to the results for the IRLM[16], through the choice of nonzero sep in Eq.(4.2). With a suitable

choice of sep we may restore a well defined single particle phase ∣ei�̃±p ∣ = 1 with �̃±p denoting this new

phase. The way we judge whether we make the correct choice for the new phases �̃±p is to compare

the dot occupation nd in equilibrium before and after the redefined phase. The explicit form of sep

and phase �̃±p will be motivated below but first we shall show that a single redefined phase is not

sufficient to satisfy the constraint of dot occupation comparison.

Again the choice of new phases is constrained by the requirement that we shall obtain the same

result for ⟨
∑

� d
†
�d�⟩ as given by �SBA(�) in equilibrium. Based on this constraint it can be shown

explicitly that a single well defined phase (in the sense of ∣ei�̃p ∣ = 1) is not sufficient to reproduce

the equilibrium �SBA(�) as following: The new dot amplitude ẽp+ and ẽp− have to satisfy

∣ẽp+ ∣2 + ∣ẽp− ∣2 =
4Γ

x̃2(�) + ỹ2+(�))
,

∣ẽp+ ∣2∣ẽp− ∣2 =
4Γ2

[x̃2(�) + ỹ2+(�)][x̃
2(�) + ỹ2−(�)]

.

As both ∣ẽp+ ∣2 and ∣ẽp− ∣2 are positive we see that a single redefined phase cannot satisfy the above

constraints simultaneously. Therefore we have to choose at least two sets of redefined phases �̃ip±

(with i = s, ℎ denoting spin-fluctuation or charge-fluctuation to be addressed later) and, along with

them, some distribution functions f i to set the weight for these phases.

To motivate the idea of searching the correct phase shifts we shall come back to the derivation of
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dot occupation in traditional Bethe Ansatz (TBA) picture. In TBA the total energy of the system

is described by energy of the leads electrons and energy shifts from the impurity,

E =
∑

j

pj =
∑

j

(

2�nj
L

+
1

L
�j

)

(3.60)

Based on Feynman-Hellman theorem, which is applicable in equilibrium (closed) system, we have

⟨n̂d⟩ =
∂E

∂�d
=

1

L

∑

j

∂�j
∂�d

=
1

L

∑

j

∂(�p+j
+ �p−j

)

∂�d
(3.61)

The result for Eq.(3.61) agrees with those obtained from Eq.(3.55) and can be viewed as a third

approach to obtain the expectation value of the dot occupation. The key observation here is that

this quantity is related to the bare phase shift �p+ + �p− and therefore the redefined phases must be

proportional to this quantity. Among them there are two likely candidates with redefined phase shift

given by �p++�p− , describing the tunneling of a bounded pair, and
�
p++�

p−

2 , describing the tunneling

of a single quasi-particle. In a sense this is the echo for the elementary excitations above the Fermi

surface in the Bethe basis characterized by N. Kawakami and A. Okiji[51] as charge-fluctuation

excitation, which describes bounded pair quasi-particles excitation, and spin-fluctuation excitation,

which describes one quasi-particle excitation. Another similar picture is the spin-fluctuation and

charge-fluctuation two fluids picture proposed by D. Lee et al[52] albeit in a different context. We

identify the phase defined by

�̃p− = �̃p+ =
�p+ + �p−

2
≡ �̃sp

(with sep± ≡ ssep± = 2
Γ (i(p

± − �d)− Γ)(ei(
�
p+

+�
p−

2 ) − 1)) as spin-fluctuation phase shift and

�̃p− = �̃p+ = �p+ + �p− ≡ �̃ℎp

(with sep± ≡ sℎep± = 2
Γ (i(p

± − �d)− Γ)(ei(�p++�
p− ) − 1)) as charge-fluctuation phase shift.

The out-of-equilibrium current is evaluated by the expectation value of current operator Î with

⟨Î⟩ defined by

⟨Î⟩ = −
√
2iet

ℏ
⟨
∑

�

(( †
1�(0

±)−  †
2�(0

±))d� − ℎ.c.)⟩ (3.62)

in the state ∣Ψ, �i⟩. Notice that  †
i�(0

±) ≡ lim�→0( 
†
i�(−�) +  †

i�(+�))/2 is introduced in transport
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related quantity to be consistent with our regularization scheme which introduces another local

discontinuity in odd channel at impurity site.

From Eq.(3.62) and the expression for the phases �̃sp and �̃ℎp we have the expression for current

as

I(�1, �2) = ⟨Ψ, �1, �2∣Î∣Ψ, �1, �2⟩ =
2e

ℏ

∫ B2

B1

d� �b(�)(fs(�)J
s(�) + fℎ(�)J

ℎ(�)) (3.63)

The corresponding spin-fluctuation and charge-fluctuation matrix element of the current opera-

tor, denoted as Js(�) and Jℎ(�), are given by

Js(�) = 1 +
sgn(x̃(�))(x̃2(�) + y(�)2 − Γ2)

√

(x̃2(�) + y2(�)− Γ2)2 + 4Γ2x̃2(�)
(3.64)

Jℎ(�) =
2Γ2x̃2(�)

(x̃2(�) + Γ2)2 − 2y2(�)(Γ2 − x̃2(�)) + y4(�)
. (3.65)

Here sgn(x) = x
∣x∣ is the sign function. It is introduced in order to pick up the correct branch

when taking the square root in denominator of Eq.(3.64). This way we ensure that Js(�) has the

proper limit when U is sent to infinity (cf Chap 4). Other than the motivations mentioned above

for identifying spin and charge fluctuation phase shifts the functional forms of Js(�) and Jℎ(�) as a

function of bare energy x(�) can also be used to identify these two type of phase shifts (See Fig.4.4

in Chap.4 for infinite U Anderson model, the finite U is similar).

Next we shall choose the appropriate weight for each type of phase shift. So far we have not

yet been able to deduce the form of these weight functions fs(�) and fℎ(�) and we introduce them

phenomenologically. Let us define phenomenological spin-fluctuation and charge-fluctuation weight

functions as

fs("(�)) =
Ds("(�))

Ds("(�)) +Dℎ("(�))
(3.66)

and

fℎ("(�)) =
Dℎ("(�))

Ds("(�)) +Dℎ("(�))
. (3.67)

Here Ds("(�)) is the spin-fluctuation density of state, Dℎ("(�)) is the charge-fluctuation density of

state as defined in Ref.[51], and "(�) is the corresponding dressed energy i.e. the energy required to

produce these spin- and charge-fluctuation excitations above the Fermi level. Their functional forms

are plotted in Fig.(3.1). Here dressed energy refers to the sum of the bare energy of adding/removing
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one bound state, as in charge fluctuation, or single quasi particle, as in spin fluctuation, and the

energy shift from other quasi particles due to this change. The equation that solves a single quasi-

particle’s dressed energy "(�) reads[53]
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Figure 3.1: Left: Holon density of state vs holon dressed energy for U
Γ = 2, 4, 6 (blue, purple, brown)

with �d = −U
2 . Right: Spinon density of state vs spinon dressed energy for U

Γ = 4, 6, 8 (blue, purple,

brown) with �d = −U
2 .

"(�) = (x(�) − �)−
∫ ∞

B

d�′K(�− �′)"(�′) . (3.68)

We wish to compare at this point our approach to the one taken by Konik et al[42, 43]. The authors’

Landauer approach is based on an ensemble of renormalized excitations, the holons and spinons, and

the conductance is expressed in terms of their phase shift crossing the impurity. However, the leads

are built of bare electrons and thus the difficult problem arises of how to construct a bare electron

out of renormalized excitations in order to be able to impose the voltage boundary condition. The

basic approximation adopted,electron ≈ antiholon + spinon, is valid only when the electron is on

the Fermi surface (see N. Andrei[54]), and the approach is valid therefore only for small momenta.

In contrast we construct the eigenstates of the Hamiltonian directly in terms of the bare electron

field and can therefore impose the asymptotic boundary condition that the wave function tend to a

product of two free Fermi seas composed of bare electrons. While we do not have a mathematically

rigorous derivation of the weight functions we introduced, the validity of the scattering formalism is

not restricted to any energy window other than energy cutoff.
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3.4 pSBA: In and Out of Equilibrium

In the following section we focus on the numerical results of pSBA, both in and out of equilibrium.

First we check the consistency in equilibrium by comparing pSBA with SBA/TBA. We find overall

quantitative agreement between the two except some mismatch in the mixed valence region. We

then perform the computation for finite voltage and see that the obtained results agree with the

scaling relation in Kondo region. The obtained current and dot occupation out of equilibrium are

compared with other theoretical results.

3.4.1 Results for equilibrium and linear response

In the numerical computation, for the practical purpose, we assumed Kondo limit (U = −2�d,

U
Γ ≫ 1) form of the spin-fluctuation and charge-fluctuation distributions, i.e.

Ds("(�)) ≃
1

�

Tk
"2(�) + T 2

k

(3.69)

and

Dℎ("(�)) ≃
1√
2UΓ

Γ2

("(�) + �d)2 + Γ2
(3.70)

with Tk being the Kondo scale derived in Ref. [51] as

Tk =

√
2UΓ

�
e�

�d(�d+U)+Γ2

2UΓ . (3.71)

We also take "(�) ≃ x(B) − x(�) for numerical convenience with B denoting the Bethe momenta

given by �1 = �2 = 0. The dot occupation ⟨
∑

� d
†
�d�⟩ evaluated by these new phases is given by

⟨
∑

�

d†�d�⟩ = 2

(

∫ ∞

B1

d��b(�)(�
s(�)fs(�) + �ℎ(�)fℎ(�)) +

∫ ∞

B2

d��b(�)(�
s(�)fs(�) + �ℎ(�)fℎ(�))

)

(3.72)

with �s(�) and �ℎ(�) given as

�s(�) =
1

Γ

[

1− (x̃2(�) + y(�)2 − Γ2)
√

(x̃2(�) + y2(�)− Γ2)2 + 4Γ2x̃2(�)

]

×
[

1 + 8y(�)
1

Γ

(

1− (x̃2(�) + y(�)2 − Γ2)
√

(x̃2(�) + y2(�) − Γ2)2 + 4Γ2x̃2(�)

)

(

x̃(�)

2x̃(�)− U

)2
]

(3.73)



55

�ℎ(�) =

[

2Γx̃2(�)

(x̃2(�) + Γ2)2 − 2y2(�)(Γ2 − x̃2(�)) + y4(�)

]

×
[

1 +
36y(�)Γx̃2(�)

(x̃2(�) + Γ2)2 − 2y2(�)(Γ2 − x̃2(�)) + y4(�)

(

x̃(�)

2x̃(�)− U

)2
]

(3.74)

respectively. We may check whether this choice of phenomenological distribution functions satisfy

the condition in equilibrium that

⟨
∑

�

d†�d�⟩ = 4

∫ ∞

B

d��b(�)�
SBA(�) = 4

(∫ ∞

B

d��b(�)(�
s(�)fs(�) + �ℎ(�)fℎ(�))

)

. (3.75)

We can see from the Left of Fig.3.2 that the comparison between the phenomenological and the

exact result for the dot occupation in equilibrium is good deep into the Kondo regime (�d ≃ −U
2 )

and far away from it (�d ≫ 0) but is worse when we are in mixed valence region (�d ≃ 0). This

discrepancy, due in part to the approximations we made for Ds(") and Dℎ("), may go away if we

took more realistic form of Ds("(�)) and Dℎ("(�)) also in mixed valence regime as suggested in

Fig.3.2. However the numerical procedure is much more complicated there. We confine ourself to

this simpler limit in our phenomenological approach.

Another check on our result in equilibrium is to find the linear response conductance through

our formulation and compare with the exact linear result given by the Friedel sum rule[40, 41]. The

Friedel sum rule, which relates the equilibrium dot occupation to the phase shift experienced by

electrons crossing the dot, is related to zero voltage conductance by dI
dV ∣V=0 = 2 sin2(�⟨n̂d⟩/2). The

zero bias conductance in our construction can be analyzed easily[55] by noting that at low-voltage

eV = �1 − �2 ≃ 2�
L (N1 −N2) = 4�

∫ B2

B1
�b(�)d�. By taking B2 ≃ B1 = B in the expression for the

current across the impurity Eq. (3.63) we get the zero bias conductance expressed as

dI

dV

∣

∣

∣

V=0
=
e2

ℎ

[

fs(B)Js(B) + fℎ(B)Jℎ(B)
]

(3.76)

Here B = B(�, �d,Γ, U) is determined by �1 = �2 = 0. The comparison between Friedel sum rule

(FSR) result and the conductance given by Eq. (3.76) (denoted as (pSBA)) is shown at the Bottom

of Fig. 3.2. It displays the consequence of the equilibrium Kondo effect in the quantum dot set

up: due to the formation of the Kondo peak attached to the Fermi level the Coulomb blockade is

lifted and a unitary conductance is reached for a range of gate voltages �d around −U/2. Again we

see that the comparison is good for large U/Γ but poorer in mixed valence regime for smaller U/Γ,
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Figure 3.2: Left: ⟨n̂d⟩ as a function of �d from the exact result (dotted line) and from Eq. (3.75)
(solid line). Right: The differential conductance in the linear-response regime, as a function of �d
from the phenomenological Scattering Bethe Ansatz (pSBA) and exact linear response conductance
from Friedel sum rule (FSR) for Γ = 0.5, 0.25, 0.1, and U = 8.

which is consistent with the observation we made when evaluating ⟨n̂d⟩ as shown in top figure of

Fig. 3.2. Having checked our results in equilibrium we shall go on to compute the current and the

dot occupation in the out-of-equilibrium regime.

3.4.2 Results Out-Of-Equilibrium

Now let us begin to investigate the current and dot occupation change as we turn on the voltage. We

start with the discussion on current vs voltage for various regime. The current vs voltage is plotted

in the inset of figure of Fig. 3.3 for different values of U and at the symmetric point �d = −U/2. Note

that we use an asymmetric bias voltage when solving numerically the integral equations originating

from Eq. (3.36) with constraint of minimizing the charge free energy Eq. (3.38): Namely we fix

�1 ≃ 0 (around 10−3 − 10−5) and lower �2. Therefore, a direct confrontation between the results

obtained from real-time simulations of the Anderson model out-of-equilibrium [27, 30, 26] is difficult

but the main features of our calculation match the predicted results: a linear behavior of the I-V

characteristics at low-voltage, the slope being obtained from the FSR (2 in units of e2/ℎ at the

symmetric point), and a non-monotonic behavior at higher voltage, the so-called non-linear regime.

In particular, our calculations show clearly that the current will decrease as U/Γ is increased which

is in agreement with other numerical approaches (e.g. cf Fig. 2 of Ref.[27] for a comparison).

The plots of the differential conductance vs source drain voltage for different dot levels, �d,

tunneling strengths Γ and interaction strengths U are shown in Fig.3.3 and Fig.3.5. Two major
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features emerge from these plots: 1) A narrow peak around zero bias reaching maximal value of

2e2/ℎ (the unitary limit) for values of the gate voltage close to the symmetric point (�d ≃ −U/2).

2) A broader peak developing at finite bias. The first peak is a non-perturbative effect identified

as the many body Kondo peak, characteristic of strong spin fluctuations in the system. But the

broad peak is due to renormalized charge fluctuations around the impurity level. Notice the two

features merge as the gate voltage, �d is raised from the Kondo regime, �d = −U/2, to the mixed

valence regime, �d = 0, with the Kondo effect disappearing. As a function of the bias the various

curves describing the Kondo peak for different values of the parameters can be collapsed onto a

single universal function dI/dV = dI/dV (V/T ∗
k ) as shown in Fig. 3.4. Here T ∗

k is defined as

T ∗
k = c1

√
2UΓ

�
e

�d(�d+U)+Γ2

2UΓ (3.77)

with c1 = 0.002. The energy scale T ∗
k was extracted from the numerics by requiring that the function

dI/dV (V/T ∗
k ) decreases to half its maximal value when V ≃ T ∗

k . The expression for T ∗
k as given by

Eq.(3.77) differs from the thermodynamic Tk as defined in Eq. (3.71). The difference of prefactor in

the exponential is certainly related to the unusual choice of regularization scheme in the SBA [49].

The other possible implication for this different formulation for the Kondo scale is also addressed

later when we discuss the experiment done by L. Kouwenhoven et al[9].

The small voltage behavior for differential conductance in symmetric case, i.e. �d ≃ −U
2 , is

expected to be [23, 20]

dI

dV

∣

∣

∣

V≪T∗
k

≃ 2e2

ℎ

(

1− �V

(

V

T ∗
k

)2
)

and allows us to identify the constant �V from the quadratic deviation from 2e2/ℎ. The quadratic

fit of the universal curve around V ≃ 0, as shown in Fig.3.4, gives �V ≃ 1. It is also expected for

T ∗
k ≪ V ≪ U

2 that the tail of the peak decays logarithmically [20] as

dI

dV
∼ 2e2

ℎ

1

ln2( VT∗
k

)
.

The latter behavior is observed (see inset of Fig.3.4 ) in the regime U
Γ ≫ 1 for 102 < V

T∗
k

< 104 with
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Figure 3.3: dI/dV vs V/Γ for Γ = 1, �d = −U/2, and various U . Inset: Steady state current vs
voltage curves for Γ = 1, �d = −U/2, and various U . Dashed line is a line with constant conductance
2e2

ℎ plotted for comparison.

the logarithmic function given by

dI

dV
=
e2

ℎ

[

f

(

U

Γ

)

+
c2

ln2( VT∗
k

)

]

with the parameter c2 = 0.055. Here f(UΓ ) is simply a constant (in V ) shift. As suggested from

the bottom plot of Fig.3.4 (see also Fig.4.6 for the infinite U case) the charge fluctuation side peak

does not fall into the same scaling relation but the strong correlations shift the center of the side

peak closer to V = 0 (see Fig.3.3 and Fig.3.5). In other words the position of the resonance in the

dI/dV curve naively expected around V = ∣�d∣ is renormalized[58] by the presence of interactions.

In the inset of Fig.3.5 we show the logarithm of the voltage obtained at half width half maximum

(HWHM) of the zero voltage peak and compare it with

lnT ∗
k =

�d(�d + U) + Γ2

2UΓ
+ ln

(

c1

√
2UΓ

�

)

(after subtracting the constant ln c1). What is important and universal is that both quantities

(lnVHWHM and lnT ∗
k ) exhibit a quadratic behavior in the gate voltage �d. Similar results had been
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Figure 3.4: Left: Zoomed in picture of the differential conductance vs voltage nearby zero voltage.
Inset shows the universality in conductance vs voltage scaled by T ∗

k when V
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≤ 1. The quadratic
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k

< 0.5 as indicated by the fitted curve. Right: Differential conductance vs

voltage scaled by T ∗
k nearby the Kondo peak structure. Inset shows the logarithmic behavior when

V
T∗
k

≫ 1. Γ = 0.5 for all these data sets.

found experimentally by L. Kouwenhoven et al[9] when they compare the full width half maximum of

dI/dV (from which they obtain a Kondo scale Tk1 at finite voltage) with the temperature dependence

of the linear response differential conductance (from which another Kondo scale Tk2 is extracted). It

is suggested from our numerical results that both ln Tk2 (in analogy with our Tk) and lnTk1 (which

is our T ∗
k ) follows similar quadratic behavior in �d but differ in their curvatures by a factor of �. In

Ref.[9] the curvatures of the quadratic behavior differ by a factor of around 2 (see Fig.3B in Ref.[9])

which is attributed to dephasing of spin fluctuations at finite voltage.

Notice that in all the numerical data shown for current vs voltage we have chosen U
Γ ≥ 8 to explore

the scaling relation in the Kondo regime. Another reason is that our phenomenological distribution

functions introduced to control the relative weight for spin- and charge-fluctuation contributions

work is much better in the large U
Γ regime (cf. Fig. 3.2).

Next let us study the change in the dot occupation as a function of the voltage. The extension

of the computation of the dot occupation out of equilibrium is straightforward. Suppose we find the

correct distribution functions fs(�) and fℎ(�) then we have �SBA(�) = �s(�)fs(�) + �ℎ(�)fℎ(�).

Under this assumption �SBA(�) retains its form in and out-of-equilibrium and the general expression
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for ⟨n̂d⟩ is

nd(�1, �2) = ⟨Ψ, �1, �2∣n̂d∣Ψ, �1, �2⟩ (3.78)

= 2

(

∫ ∞

B1

d� �b(�)�
SBA(�) +

∫ ∞

B2

d� �b(�)�
SBA(�)

)

As the form for �SBA(�) is proved to be exact in equilibrium, we shall regard Eq.(3.78) as an

exact result for ⟨n̂d⟩ in and out of equilibrium and valid in all different range of U , �d, Γ. In the

numerical results shown hereafter we shall use this exact expression, Eq.(3.78), for matrix element

of dot occupation rather than Eq.(3.75). We adopt the same voltage drive scheme by fixing �1 and

lowering �2.

By using this exact result we do not need to confine ourself for large U
Γ . The case for different

U
Γ

with �d = −U
2 and for U = 8,Γ = 0.25 with different �d are shown in Fig.3.6 and Fig. 3.7. The main

features of these plots are a relatively slow decrease of the dot occupation at low voltage followed

by an abrupt drop of ⟨nd⟩. The decrease of ⟨nd⟩ takes place within a range of voltage of the order
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Figure 3.6: Left figure: ⟨n̂d⟩ vs V/Γ for different U with �d = −U
2 and Γ = 1 case. Inset: The

corresponding nonequilibrium charge susceptibility. A small peak shows up nearby V = 0 for all
these curves.

Figure 3.7: Right figure: − d⟨n̂d⟩
dV vs V/4Γ for Γ = 0.25, U = 8, and various �d from Kondo to mixed

valence regime. We see that the small peak nearby V = 0 only appears when �d → −U
2 . Inset: The

corresponding ⟨n̂d⟩ vs V/4Γ.

of Γ. Then as we increase the voltage further another plateau develops. Note that, as expected,

the bigger U is the higher the voltage needed to drive the system out of the ⟨nd⟩ = 1 plateau. In a

sense the charge fluctuations are strongly frozen at large U and it costs more energy to excite them.

The voltage where the abrupt drop in ⟨nd⟩ occurs corresponds to the energy scale at which the

”charge fluctuation peak” was observed in the conductance plots. This can be seen by comparing

the position of the broader peak in Fig.3.5 with that of the abrupt dot occupation drop in Fig.3.7.

Similar to the differential conductance we may define the nonequilibrium charge susceptibility as

�c(V )∣�d = −∂⟨n̂d⟩
∂V

that we obtain by taking a numerical derivative of the dot occupation data with respect to the

voltage. In the case of U = −�d/2 there are two features as can be seen from the inset of Fig.3.6

and main figure of Fig.3.7. Nearby V ≃ 0 we see a first small peak arising with width and height

decreasing with increasing U
Γ . We identify this peak as a small remnant of the charge fluctuations in

the Kondo regime. This statement is confirmed by noticing that this peak goes away as U
Γ increases,

vanishing when U → ∞ as shown in Section III where the infinite U Anderson model is discussed.

The second peak is located at the same voltage as the charge fluctuation peak observed in the

conductance plots and is therefore associated to the response of the renormalized impurity level to
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for various fixed voltages as a function of �d for Γ = 0.25, U = 8. Inset shows

⟨n̂d⟩ vs �d for various fixed voltage.

the charge susceptibility. This can be seen when comparing Fig.3.5 and Fig.3.7.

Another interesting quantity, the usual charge susceptibility, defined by �c(�d)∣V = −∂⟨n̂d⟩
∂�d

, can

also be qualitatively described. In Fig.3.8 we plot −Δ⟨n̂d⟩
Δ�d

as a function of �d as we only have a few

points in fixed �d for finite voltage. Notice that �c(�d)∣V tends to be an universal curve in large

voltage, indicating charge on the dot remains at some constant value in the steady state with large

voltage. This constant value at large voltage, as pointed out by C. J. Bolech, is around 0.65 for

�d = −U
2 case. In preparing this article we noticed that a similar computation, adopting the same

asymmetric voltage drive protocol as we have here, is carried out by R. V. Roermund et al[28] for the

dot occupation out of equilibrium by using equation of motion method. We do get a similar value for

the dot occupation at large voltage. This value is different from the dot occupation value nd ≃ 0.5

at large voltage when the interaction U is turned off as shown in Fig.4.5. This difference might have

to do with the 0.7 structure observed in quantum point contact[8] in high temperature (temperature

is high compared with the Kondo scale but still small compared with phonon modes or electronic

level) and zero magnetic field as the linear response conductance given by nd = 0.65 by using Friedel

sum rule is around 0.73. In a sense the voltage seems to play a similar role to the temperature on

the way it influences the dot occupation. Further connection between these two behaviors could be
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clarified by computing the decoherence factor as in Ref. [28]. This decoherence factor is related to

the dot correlation function out of equilibrium which can be computed in three-lead setup[63] by

using our approach.

3.5 Comparison with other theoretical and experimental results

In most of the other theoretical approaches[25, 26, 42, 43, 28, 29, 27] the symmetric voltage drive

(�1 = −�2) is usually assumed to preserve particle-hole symmetry in symmetric case (�d = −U
2 ). It

is thus difficult for us to make any definite comparison with other theoretical results. The qualitative

feature, as shown by the black curves in Fig.3.9 done by D. Matsumoto[29] by using perturbation

expansion in U at strong coupling fixed point, is similar to our results in the sense that the height

of the charge fluctuation side peak and width are almost the same. The major differences are in

the shape of Kondo peak and the position of the charge fluctuation side peak. A clear signature

of renormalized dot level �d as hinted in renormalization computation[59, 58] is clearly seen in our

result. The shape of Kondo resonance nearby zero voltage deviates from its quadratic behavior

expected from Fermi liquid picture at smaller voltage in our case as is expected for asymmetric

voltage drive[22, 24].

We can also compare our results with experiments. As shown in the inset of Fig.3.10 is the dI
dV

vs V measured in Co ion transistor by J. Park et al. [10]. We rescaled the differential conductance

and superimposed our numerical results on the data graph. The measurement was done by using an

asymmetric drive of the voltage (by keeping �1 = 0 and changing �2 to be larger or smaller than zero)

and thus there is an asymmetry in the differential conductance as a function of voltage as illustrated

in the data curve. In our numerics we only compute the scenario for �1 = 0 and lowering �2 (only for

V > 0 region of Fig.3.10). The V < 0 region is plotted by just a reflection with respect to the V = 0

axis which illustrates the case of �2 = 0 and lowering �1. To compare with the correct voltage setup

on the V < 0 side as in experiment will involve computations within a different parametrization for

bare the Bethe momenta which is beyond our current scope. The comparison on the V > 0 region

shows good agreement between our theory and experimental result. The discrepancy on the width

of the charge fluctuation side peak could be due to the vibron mode[60]. To describe these type of

transistors we shall start with the Anderson-Holstein Hamiltonian. We are currently exploring the

possibility of solving this model by the Bethe Ansatz approach.
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Figure 3.9: Comparison of our theory with perturbation expansion in U done by D. Matsumoto on
dI/dV (y-axis in unit of 2e2/ℎ) vs V/U (x-axis). Our data (Blue, purple, and brown lines correspond
to Γ

U = 0.13, 0.083, 0.063 respectively. Δ shown in inset is Γ in our notation. EQ in the inset is
conductance computed by equilibrium density of state which is not relevant to our discussion here.)
is shown as the main figure and Fig.8 in Ref [29] is shown in the inset. In Ref [29] the voltage
is driven symmetrically, i.e. �1 = −�2, rendering the factor of two difference in the voltage (i.e.
V
U = 0.5 in our case corresponds to eV

U = 1 in the inset. e = 1 in our convention.) in comparing our
result with that in Ref [29].

3.6 Concluding Remarks

In this chapter we have explicitly computed the non-equilibrium transport properties in the Anderson

model for all voltages using the Scattering Bethe Ansatz. In the case of equilibrium we have also

shown the equivalence of traditional Bethe Ansatz and Scattering Bethe Ansatz by evaluating dot

occupation in equilibrium. For the expression of current we have introduced phenomenological

distribution functions to set the weight for spin-fluctuation and charge-fluctuation contributions to

the current. The result shows correct scaling relation in Kondo regime as well as satisfying the

Friedel sum rule for linear response for large U
Γ .

Other interesting quantities, such as the nonequilibrium charge susceptibility or the usual charge

susceptibility, are computed numerically via exact expression for dot occupation as a function of

voltage and impurity level. We believe this is the first report of an exact computation of the dot
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Figure 3.10: Comparison of theory with experiment of dI/dV (y-axis in unit of e2/ℎ) vs V (x-axis
in unit of mV ). Inset is the original data graph published in Ref. [10]. The red dots are given by
our theory for U

Γ = 8 with voltage rescaled to fit with original data in unit of mV . The value of
differential conductance (experiment data in black line) is rescaled from (0.6, 1.3) to (0, 2) in unit of
e2

ℎ .

occupation out-of-equilibrium and it may have interesting application in quantum computing as we

understand more the dephasing mechanism. We have also compared our results with perturbation

calculation and experimental measurement of nonlinear differential conductance of a quantum dot.

The major difficulty we encounter by using SBA comes from the single particle phase shift for

complex momenta which leads to a breakdown of steady state condition when out of equilibrium.

One possible issue resulting in this is the local discontinuity at odd channel sop, the choice we

made to enable us to construct a scattering state with fixed particles from lead 1 and lead 2. It

can be proved that without this choice we cannot write down fixed number of particles incoming

from each lead[50] in this Anderson impurity model and similarly for IRLM. The other issue in

the study for Anderson model is whether we shall include all possible bound states in the ground

state construction. From the mathematical structure we shall choose 4 type of bound states but

the results from charge susceptibility seems to suggest 2 type of bound states is the correct choice.

To check whether this is in general correct we plan to come back to study the whole spectrum,

which include bound state when Bethe energy higher than impurity level, of IRLM as this model

bares structure similarity to the Anderson model described in this article. Following the SBA on
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IRLM[16] there are lots of numerical approach and different exact methods[38] developed for this

model and detailed comparison for different approaches is desired for better understanding its physics

and scaling relation. By learning how to deal with complex momenta in this model we may also find

the rule which may lead us to the exact expression for current in this Anderson impurity model.
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Chapter 4

Two leads Infinite U Anderson model and Kondo model

4.1 Infinite U Anderson model

In the limit of UΓ → ∞ the finite U two-lead Anderson impurity Hamiltonian becomes the two-lead in-

finite U Anderson model. The latter model is closely related, via the Schrieffer-Wolff transformation[61],

to the notorious Kondo model, a model of spin coupled to a Fermi liquid bath. The reason for that is

simple: since U → ∞ the charge fluctuations are essentially frozen out and only the spin fluctuations

dominate the low-energy physics. We shall come back to this discussion in the latter part of this

chapter. The Hamiltonian for infinite U Anderson model is given by

Ĥ =
∑

i=1,2

∫

dx †
i�(x)(−i∂x) i�(x) + �dd

†
�d� + ti( 

†
i�(0)b

†d� + d†�b i�(0)) (4.1)

Here the bosonic operator b is introduced to conserve b†b+
∑

� d
†
�d� = 1 and by applying the slave

boson technique we project out the phase space of double occupancy occurring in finite U case.

4.1.1 Scattering state construction

We first rewrite Eq.(4.1) in the even-odd basis as

Ĥ = Ĥe + Ĥo

Ĥe =
∑

�

∫

dx †
e�(x)(−i∂x) e�(x) + �dd

†
�d� + t( †

e�(0)b
†d� + d†�b e�(0))

Ĥo =
∑

�

∫

dx †
o�(x)(−i∂x) o�(x)

With

 e�(x) =
t1 1�(x) + t2 2�(x)

√

t21 + t22

 o�(x) =
t2 1�(x) − t1 2�(x)

√

t21 + t22
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and t =
√

t21 + t22. In what follows we again consider the case t1 = t2 = t√
2
for simplicity and

defer the discussion for the t1 ∕= t2 case in the IRLM. We show from single particle to two particles

solution and show the integrability in the following sections.

single particle solution

The single particle solution for even and odd basis is: ∣e, p�⟩ =
∫

dx (eipxgp(x) 
†
e�(x)+ep�(x)d

†
�b)∣0⟩

and ∣o, p�⟩ =
∫

dx eipxℎp(x) 
†
o�(x)∣0⟩, with ∣0⟩ the vacuum state and gp(x), ℎp(x), ep independent

of spin and given by

gp(x) = �(−x) + ei�p�(x) + sep �(x)�(−x) ,

ℎp(x) = �(−x) + �(x) + sop �(x)�(−x) , (4.2)

ep =
t(1 + ei�p + sep/2)

2(p− �d)
.

Here �p ≡ 2 tan−1( Γ
�d−p ) is the single particle scattering phase shift of the electrons off the impurity

with Γ ≡ t2

2 being the width of the resonance level. We adopted a symmetric regularization scheme

�(±x)�(x) = 1
2�(x) and imposed ∣p∣ ≤ D, D being the bandwidth cut-off [49]. The s(x) = �(x)�(−x)

term is a local constant (∂xs(x) = 0) in this scheme and it is included in the odd channel function

to allow the same two particle S-matrices, Eq.(4.19), in all channels[50]. The �(x)�(−x) term in the

even channel wave function is introduced in order to modify the single particle phase shift across

the impurity. The choice of sop and sep will be addressed later. In the lead basis, ∣i, p�⟩, the single-

particle scattering eigenstates with the incoming particle incident from lead i, can be restored by

taking a proper linear combination of even-odd states. For example, ∣1, p�⟩ = 1√
2
(∣e, p�⟩ + ∣o, p�⟩)

is written as

∣1, p�⟩ =
∫

dx eipx
{

[�(−x)+1

2
(ei�p+1)�(x)] †

1�(x)+
1

2
(ei�p−1)�(x) †

2�(x)+epd
†
�b�(x)+s

†
1p�(x)

}

∣0⟩

(4.3)

with ∣2, p�⟩ = 1√
2
(∣e, p�⟩ − ∣o, p�⟩) and s†ip�(x) related to the �(x)�(−x) terms. These states have

a single incoming particle (x < 0) from lead i, that is reflected back into lead i with amplitude,

Rp = (ei�p + 1)/2 and transmitted to the opposite lead with amplitude Tp = (ei�p − 1)/2. Similar

single particle states are discussed in the finite U Anderson model.
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From two particles solution to multi particles solution

The multi-particle Bethe-Ansatz wave-function is constructed by means of the two-particle S-matrix,

S(p, k), describing the scattering of two electrons with momenta p and k. The two-particles solution

in spin singlet state takes the following form

∣ik, ↑; jp, ↓⟩ =
∫

dx1dx2A{ei(kx1+px2)Zkp(x1 − x2)�
†
ik,↑(x1)�

†
jp,↓(x2)}∣0⟩

Here
∫

dxeikix�†
iki,ai

(xi) = ∣iki, ai⟩ with the exception that there is no d†↑d
†
↓bb

† term due to Pauli

exclusion. The explicit form for this two particles case is derived in the following. For the two

particles solution we follow similar construction in P Scholotman’s work[65] and the Scattering Bethe

Ansatz approach developed by P. Mehta and N. Andrei[16]. Since Eq.(4.1) is rotational invariant

the spin quantum number is conserved. We show the solution with both particles with spin singlet

incoming from lead 1 as an example in the following. Spin quantum number in z direction Sz is a

good quantum number and we can write the two particle solution of Sz = 0 state as:

∣Ψ⟩ = {
∫

dx1dx2{Ag(x1, x2) †
e↑(x1) 

†
e↓(x2) + Cℎ(x1, x2) 

†
o↑(x1) 

†
o↓(x2) +Bj(x1, x2)( 

†
e↑(x1) 

†
o↓(x2)

− †
e↓(x1) 

†
o↑(x2))}+

∫

dx(Ae(x)( †
e↑(x)d

†
↓ −  †

e↓(x)d
†
↑)b+Bo(x)( †

o↑(x)d
†
↓ −  †

o↓(x)d
†
↑))b}∣0⟩

Here A,B,C are arbitrary constants to be determined later. To satisfy Ĥ∣Ψ⟩ = E∣Ψ⟩ = (k + p)∣Ψ⟩

we have:

[−i(∂x1 + ∂x2)− E]g(x1, x2) + t[�(x1)e(x2) + �(x2)e(x1)] = 0 (4.4)

[−i(∂x1 + ∂x2)− E]ℎ(x1, x2) = 0 (4.5)

[−i(∂x1 + ∂x2)− E]j(x1, x2) + t[�(x1)o(x2)] = 0 (4.6)

(−i∂x − E + �d)e(x) + tg(0, x) = 0 (4.7)

(−i∂x − E + �d)o(x) + tj(0, x) = 0 (4.8)

We derive the solution of this form

g(x1, x2) = Zkp(x1 − x2)gk(x1)gp(x2) + Zkp(x2 − x1)gk(x2)gp(x1) (4.9)
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Plug Eq.(4.9) into Eq.(4.4) we get

e(x) = Zkp(−x)gp(x)ek + Zkp(x)gk(x)ep (4.10)

Plugging above two results into Eq.(4.7) we get

(−i∂xZkp(−x))gp(x)ek + (−i∂xZkp(x))gk(x)ep − tZkp(−x)ep�(x)ek − tZkp(x)ek�(x)ep = 0 (4.11)

Now take Zkp(x) = e−i�kp�(−x) + ei�kp�(x) we get

tan(�kp) =
t2

k − p
.

From Eq.(4.5) we can write ℎ(x1, x2) as:

ℎ(x1, x2) = Zookp(x1 − x2)ℎk(x1)ℎp(x2) + Zookp(x2 − x1)ℎk(x2)ℎp(x1) (4.12)

with arbitrary Zookp(x1 − x2). Now write j(x1, x2) as:

j(x1, x2) = Zeokp(x1 − x2)gk(x1)ℎp(x2) + Zeokp(x2 − x1)ℎk(x2)gp(x1) (4.13)

again with Zeokp(x1 − x2) undetermined. Plug Eq.(4.13) into Eq.(4.6) we get o(x) is written as:

o(x) = Zeokp(−x)ℎp(x)ek + Zeokp(x)ℎk(x)ep (4.14)

Now if we choose Zeokp(x1 − x2) = Zkp(x1 − x2) and plug Eq.(4.13) and Eq.(4.14) into Eq.(4.8) we

get:

(−k + �d)Zkp(−x)ℎp(x)ek + (−p+ �d)Zkp(x)ℎk(x)ep + t(Zkp(−x)ℎp(x)gk(0) + Zkp(x)ℎk(x)gp(0))

+(−i)(∂xZkp(−x))ℎp(x)ek + (−i)(∂xZkp(x))ℎk(x)ep = −2 sin(�kp)(ℎp(0)ek − ℎk(0)ep) = 0 (4.15)

To satisfy Eq.(4.15) we can set ℎp(0) = 0 for arbitrary p. This can be done by choosing sop = −4 in

Eq.(4.3). Now since Zookp(x1 −x2) is arbitrary we can choose Zookp(x1 −x2) = Zkp(x1 −x2). Since the

Hamiltonian in Eq.(4.1) has rotational invariance the general form of scattering matrix for particles
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with momentum k, p and spins �1, �2 is given by:

S
�
′

1�
′

2
�1�2 (k, p) = b(k, p) + c(k, p)P̂12 (4.16)

where P̂12 = 1
2 (1 ⋅ 1 + �⃗1 ⋅ �⃗2) is the permutation operator in spins. For antiparallel spins (singlet

state) as shown above P̂12 = −1. Denote Γ = t2

2 we have:

b(k, p)− c(k, p) =
Zkp(x > 0)

Zkp(x < 0)
=
k − p− i2Γ

k − p+ i2Γ
(4.17)

For the triplet state (P̂12 = 1) the interaction term with the impurity is absent and the particles

passing through each other without changing their phase

b(k, p) + c(k, p) = 1 (4.18)

Thus from Eq.(4.17) and Eq.(4.18) we get the two particle S-matrix as:

Ŝ(k, p) =
(k − p)I�,� ′ + i2ΓP�,� ′

(k − p) + i2Γ
(4.19)

In general we denote the Ŝ(ki, kj) as S
aia

′

i

aja
′
j

(ki, kj) with ai denotes the spin index before the scattering

and a
′

i the spin index after the scattering. These matrices satisfy the Yang-Baxter equations

S
a1a

′

1

a2a
′
2

(k1, k2)S
a1a

′

1

a3a
′
3

(k1, k3)S
a2a

′

2

a3a
′
3

(k2, k3)

= S
a2a

′

2

a3a
′
3

(k2, k3)S
a1a

′

1

a3a
′
3

(k1, k3)S
a1a

′

1

a2a
′
2

(k1, k2)

Thus the integrability of two leads with infinite U Anderson type dot system is similar to the

integrability of one lead infinite U Anderson model.

The choice of identical two particles S-matrices (by choosing sop = −4; the choice of sep will

be discussed later and does not affect the result here) enables us to construct the scattering state

labeled by lead indices by choosing appropriate A,B,C in this even-odd basis. For example, if

both particles are coming from lead 1, we shall choose (A,B,C) = A0(
t2

t22
, −t2
t1t2

, t
2

t21
) such that the

amplitude of incoming state from lead 2 is zero (A0 being an overall renormalization constant). We

can therefore label the eigenstate by the incoming state from lead i and/or lead j. Without this
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sop term we cannot write back from even-odd basis to lead indices basis in this two leads infinite U

Anderson model.

Since the S-matrix is the same for all even-odd combinations the S-matrix does not depend

on the lead index i, and the number of electrons in a lead, Ni, can change only at the impurity

site. This circumstance allows us to construct the fully-interacting eigenstates of our Hamiltonian

characterized by the incoming quantum numbers, N1 and N2 the numbers of incident electrons from

lead 1 and 2 respectively. These quantum numbers are subsequently determined by the chemical

potentials �1 and �2. This leads us to the topic of fixing these momenta distribution by imposing

the asymptotic boundary condition in the next section.

4.2 Asymptotic boundary condition: Distribution of Bethe momenta

The corresponding Bethe momenta distribution function for the infinite U Anderson model is given

by

2�(Λ) =
1

�
−
∫ B2

−∞
dΛ′K(Λ− Λ′)�(Λ′)−

∫ B1

−∞
dΛ′K(Λ− Λ′)�(Λ′) (4.20)

with K(Λ) = 1
�

2Γ
(2Γ)2+(Λ−Λ′)2 .

Eq. (4.20) can be derived directly following the same procedures as in the finite U Anderson

model by taking U → ∞. We shall sketch the derivation of this equation in the following.

The two particle S-matrix derived by solving two particles scattering eigenstate takes the form

Ŝ(k, p) =
k − p− iP̂ t2

k − p− it2
(4.21)

By using quantum inverse scattering method we solve the eigenstate of quasi particle momenta and

spin rapidity by

eik
l
jL =

M
∏

�=1

klj − Λ� − i t
2

2

klj − Λ� + i t
2

2

(4.22)

∏

l=R,L

Nl
∏

j=1

klj − Λ� + i t
2

2

klj − Λ� − i t
2

2

=

M
∏

� ∕=�

Λ� − Λ� − it2

Λ� − Λ� + it2
(4.23)

The ground state is composed by real Λi and complex klj with bound state momenta given by
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k± = Λ± it2/2 obtained by taking poles or zeros of Eq.(4.21). For two leads with different number

of particles (due to different chemical potentials) where total energy is given by
∑

jl k
l
j =

∑M
�=1 2Λ�

with S = N
2 −M = 0 we shall find the appropriate distribution function for the bound state momenta

which describes two free electron baths. With that in mind let us first write down the Eq.(4.22,4.23)

for bound state infinite U case:

eik
+
�L =

M
∏

�=1

Λ� − Λ� + +�
Λ� − Λ� + it2

(4.24)

eik
−
�L =

M
∏

�=1

Λ� − Λ� − it2

Λ� − Λ� + −�
(4.25)

M
∏

�=1

Λ� − Λ� + +�

Λ� − Λ� + −�
= 1 (4.26)

Thus multiplication of Eq.(4.24) and Eq.(4.25) gives rise to

e2iΛ� =

M
∏

�=1

Λ� − Λ� − it2

Λ� − Λ� + it2
(4.27)

Taking the logarithm of Eq.(4.27) and denoting Γ = t2

2 we have:

2�J� = −2Λ�L+
∑

�

(2�2(
Λ� − Λ�

2Γ
) + �) (4.28)

Now take the thermodynamic limit and follow the same argument as the finite U case we have the

continuous form of infinite U Anderson model as

2�(Λ) =
1

�
+

1

�

∫ B2

−∞
dΛ′2�(Λ′)

2Γ

(2Γ)2 + (Λ − Λ′)2
+

1

�

∫ B1

B2

dΛ′�(Λ′)
2Γ

(2Γ)2 + (Λ − Λ′)2
(4.29)

Solving this Fredholm equation can give us the Λ distribution.

It can also be derived from the finite U result, Eq. (3.36), by taking the large U limit (U ≫ �d,
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U ≫ Γ):

x(�)

U
→ 1

2
−

√

√

√

⎷

�
U2 + 1

4 +
√

( �U2 + 1
4 )

2 + Γ2

U2

2

→ 1

2
−

√

�
U2 + 1

4 + ∣ �U2 + 1
4 ∣

2
(4.30)

→ 1

2
− 1

2
(1 +

2�

U2
+ . . .) → − �

U2
=

Λ

U

y(�)

U
→

√

−( �U2 + 1
4 ) + (( �U2 + 1

4 )
2 + Γ2

U2 )1/2

2

→

√

√

√

⎷

( �U2 + 1
4 )(−1 + (1 +

( Γ
U
)2

( �

U2 + 1
4 )

2 )
1/2)

2
(4.31)

→
(

1

4

( Γ
U )

2

1
4

)1/2

+O(U−2) ≃ Γ

U

with Λ ≡ − �
U .

4.3 Dot occupation and current: pSBA

Similar procedures as in evaluating dot occupation for finite U Anderson model give the matrix

element �SBA∞ (Λ) for the dot occupation in the infinite U Anderson model in equilibrium to be

�SBA∞ (Λ) =
2Γ

(Λ− �d)2 + (2Γ)2
. (4.32)

In going to the out-of-equilibrium regime (�1 ∕= �2) we follow the same phenomenological method

(pSBA) as for the finite U case. The result for the spin-fluctuation and charge-fluctuation contribu-

tions to the dot occupation are given by

�s∞(Λ) =
1

Γ

(

1− �d − Λ
√

(�d − Λ)2 + 4Γ2

)

�ℎ∞(Λ) =
2Γ

(Λ− �d)2 + (2Γ)2
. (4.33)

Note that in this case it seems to suffice the equilibrium dot occupation condition by just choosing

the charge fluctuation part. This part alone, however, misses the Kondo physics which shall always

occur when the dot level is below the Fermi surface in equilibrium regime. In what follows we assume
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the necessity of introducing both spin and charge fluctuation part by its analogy with finite U case.

4.3.1 Dot occupation in equilibrium

We check the consistency with the exact result for the dot occupation in equilibrium, namely

⟨
∑

�

d†�d�⟩ = 4

∫ B

D

dΛ �b(Λ)�
SBA
∞ (Λ)

= 4

∫ B

D

dΛ �b(Λ)(�
s
∞(Λ)f∞

s (Λ) + �ℎ∞(Λ)f∞
ℎ (Λ)) .

Here D is related to the bandwidth and B is determined by the equilibrium Fermi energy �1 = �2 =

0. f∞
s (Λ) =

D∞
s (Λ)

D∞
s (Λ)+D∞

ℎ
(Λ) and f∞

ℎ (Λ) =
D∞

ℎ (Λ)
D∞

s (Λ)+D∞
ℎ

(Λ) . D
∞
s (Λ), the spinon density, and D∞

ℎ (Λ),

the holon density, are expressed as

D∞
s (Λ) =

T∞
k /�

(Λ −B)2 + (T∞
k )2

(4.34)

D∞
ℎ (Λ) =

2Γ

(Λ −B − �d)2 + (2Γ)2
. (4.35)

Here the Kondo scale T∞
k used in fs(Λ) takes the form[62]

T∞
k =

√

10∣D∣Γ
�

e−�
∣�d∣

Γ .

Here we digress from the main topic and discuss the spinon and holon density in the infinite Anderson

U model.

Discussion on spinon and holon density

Following the idea of N. Kawakami and Okiji in Ref.[47] we carry out the computation for spinon

and holon density and their respective excitation energy in the following. First let us compute the

spinon and holon excitation energy and compare them with the dressed energy of a bounded pair

derived from iterations of charge free energy.

The spinon energy is given by the sum of the bare energy of adding/removing (± for k value)

a single quasi-particle with Bethe momenta k and the back flow energy from other electrons within

the bath due to this change:
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Figure 4.1: Left: �s(k) vs k (black square) and �ℎ(k) vs k (red circle). The symbol in the main text
for bare energy is Λ0 but changed to k for convenience. D

Γ = −100 and �d
Γ = −5. Right: �(k) vs k

(black empty square) and �s(k)− 0.5�ℎ(k) vs k (red empty circle) with same sets of parameters.
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Figure 4.2: Left: ΓDs(�) vs �
Γ with D

Γ = −100 and �d
Γ = −3,−5,−10 (blue,purple,brown lines).

Right:ΓDℎ(�) vs �
Γ with D

Γ = −100 and �d
Γ = −3,−5,−10 (blue,purple,brown dots). Equilibrium

chemical potential is chosen at zero.

�s(k) = ±k +
∫ B

D

2�sb(Λ, k)ΛdΛ (4.36)

with back flow density for spinon �sb (Λ, k) given by

�sb (Λ, k) =
±1

�

(Γ/2)2

(Λ− k)2 + (Γ/2)2
−
∫ B

D

�sb (Λ
′, k)K(Λ,Λ′)dΛ′. (4.37)

The holon energy is given by the sum of the bare energy of adding/removing a pair of quasi-particles

with Bethe momenta 2Λ0 (coming from bare energy of a bounded pair of k± = Λ0 ± iΓ) and the
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back flow energy from other electrons within the bath due to this change:

�ℎ(Λ0) = ±2Λ0 +

∫ B

D

2�ℎb (Λ,Λ0)ΛdΛ (4.38)

with back flow density for holon �ℎb (Λ,Λ0) given by

�ℎb (Λ,Λ0) = ∓(�(Λ− Λ0) +
1

�

Γ2

(Λ − Λ0)2 + Γ2
)−

∫ B

D

�ℎb (Λ
′,Λ0)K(Λ,Λ′)dΛ′. (4.39)

In the left figure of Fig.(4.1) both spinon and holon dressed energy are plotted as a function of bare

energy above/below the equilibrium Fermi surface. The equilibrium Fermi surface in bare Bethe

momenta is chosen at B = 0 and the lower bound is set at D
Γ = −100. The impurity level is

fixed at �d
Γ = −5. From this plot we can see that for bare energy higher than the impurity level

the dominant fluctuation is in the spinon sector. For bare energy less than the impurity level the

dominant fluctuation is in the holon sector.

Another interesting thing to compare is the dressed energy for adding/removing one electron in

the incoming state. The dressed energy for adding/removing one electron from a pair in singlet state

(the groud state is formed by many singlet states) is given by

�(k) = k − 2

∫ B

D

�(Λ)K(Λ, k)dΛ (4.40)

which is derived from iterating the bare energy in the expression for the charge free energy. From

the right figure of Fig.(4.1) we can see that this dressed energy is roughly equaled to dressed energy

of spinon minus half of the dressed energy of holon. In the other words this provide a numerical

evidence for the assumption that electron ≃ spinon+half of antiholon above the Fermi surface. This

assumption seems to work better for infinite U Anderon model than the finite U Anderson model.

The density of state for spinon and holon, denoted as D∞
s (�s) and D∞

ℎ (�ℎ) respectively, are

defined by

D∞
s (�s) =

�J0
��s

=
�J0

�k
��s
�k

and

D∞
s (�ℎ) =

�I0
��ℎ

=
�I0
�k
��ℎ
�k

. Here J0 and I0 represent the integers corresponding to the added/removed bare momenta k in
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the case of spinon and holon excitation. These density of state as a function of respective dressed

energy are shown in Fig.4.2. From the left figure of Fig.4.2 the spinon density essentially diverges

at � ≃ 0 and the numerical results at Fermi surface is not very precise. We may, however, try to

approximate this spinon density of state by a simple form as in Eq.(4.35) with Kondo scale T∞
k

given by thermodynamic scaling relation which gives a rough estimate of the width of the divering

peaks nearby equilibrium Fermi surface. By the same token we may approximate the holon density

of state by Eq.(4.35). The right figure of Fig.4.2 actually shows the anti-holon density of state as the

energy axis in the plot has been flipped, but we call it holon density based on the convention in the

literature. The main feature of this holon density of state is that it has a Lorentzian-like structure

nearby � ≃ �d with a width controlled by Γ. Notice that the height of holon density is scaled up

by a factor of � in the Eq.(4.35) compared with the numerical results shown in the right figure of

Fig.4.2.

The idea of the pSBA is to take both spin-fluctuation and charge-fluctuation into consideration

when dicussing the phase shift of electrons through the impurity. Thus the distribution functions

fs(�) and fℎ(�) are intrdocued to account for the weight in each part. We have also made further

approximations by assuming the bare energy is sufficient good to approximate the bare energy, or

Λ ≃ �(Λ), for practical numerical computation. We check the validity of these assumptions by

comparing our pSBA results in equilibrium with the exact dot occupation evaluated by TBA in the

following subsection.

4.3.2 Consistency check in equilibrium

The results for the dot occupation and Friedel sum rule check in the infinite U case are shown in

Fig.4.3. Again we see a nice match between our phenomenological approach and the exact result

for ∣ �dΓ ∣ ∕= 0 and some mismatch in the mixed valence region ∣ �dΓ ∣ ≃ 0. This is consistent with the

results for finite U .

The corresponding spin and charge fluctuation matrix element for current, Js∞(Λ) and Jℎ∞(Λ),

are given by

Js∞(Λ) = 1− �d − Λ
√

(�d − Λ)2 + 4Γ2

Jℎ∞(Λ) =
2Γ2

(Λ− �d)2 + (2Γ)2
(4.41)
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Figure 4.3: Left: ⟨n̂d⟩ vs �d
Γ for exact TBA result and pSBA. Right: Linear response conductance

dI/dV ∣V→0 vs �d
Γ for exact result (FSR) and pSBA in the infinite U Anderson model. D

Γ = −100.
Similar to the case of finite U the comparison nearby mixed valence region (�d ≃ 0) is poorer.

The current expectation value is given by

⟨Î⟩ = 2e

ℏ

∫ B1

B2

dΛ�(Λ)(Js∞(Λ)f∞
s (Λ) + Jℎ∞(Λ)f∞

ℎ (Λ))

where B1 and B2 are related to �1 and �2 by minimizing charge free energy F

F = 2

(

∫ B1

D

dΛ �(Λ)(Λ − �1) +

∫ B2

D

dΛ �(Λ)(Λ − �2)

)

.

Before we proceed to discuss the numerical results for current vs voltage in this infinite U model

let us look at the structure of Js∞(Λ) and Jℎ∞(Λ) as a function of Λ as shown in Fig. 4.4. Λ

here represents the bare energy of the quasi-particle and plays the same role as x(�) in the finite

U Anderson model. Js∞(Λ) alone would reproduce the main feature in the Friedel sum rule for

�d ≪ 0. In this region the linear response conductance comes mainly from the spin fluctuations.

The left figure of Fig. 4.4 fixes �d and shows Js∞(Λ) vs Λ. We may also fix Λ = 0 (in the sense of

choosing the equilibrium Fermi surface energy at Λ = 0) and plot Js∞(�d) vs �d as shown in the right

figure of Fig. 4.4. In this way we can see that Js∞(�d) vs �d reproduces the overall structure of the

linear response conductance from the Kondo region (�d ≤ 0) to the mixed valence regime (�d ≃ 0).

Therefore we identify the phase shift
�
p++�

p−

2 , contributing to Js∞(Λ), as the phase shift related to

spin-fluctuation.

Jℎ∞(Λ) gives a Lorentz shape in bare energy scale Λ. This structure is akin to the charge
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Figure 4.4: Left: Js(Λ) and Jℎ(Λ) vs Bethe momenta Λ (scaled by Γ) in infinite U Anderson model.
�d
Γ = −4 in this graph. Similar graph appears for finite U case with x-axis replaced by real part of
Bethe momenta x(�). Right: Js(Λ = 0) vs �d by fixing the chemical potential at B1 = B2 = 0 and
changing �d. It shows the main feature of Friedel sun rule.

fluctuation side peak with peak position at energy scale around �d as seen from lower plot of Fig. 4.4.

Thus we identify the phase shift �p+ + �p− , contributing to Jℎ∞(Λ), as the phase shift related to

charge-fluctuation. These structures also apply to the case of the finite U Anderson model.

4.3.3 Out of equilibrium results

Now let us discuss the out of equilibrium numerical results. The voltage is again driven asymmet-

rically by fixing �1 ≃ 0 and lowering �2. The exact dot occupation vs voltage for different �d for

infinite U and U = 0, �dΓ = −6 case (black dots) are shown in Fig. 4.5. We see again the dot occu-

pation decreases slowly at low voltage and develops an abrupt drop at a voltage scale corresponding

to impurity level �d. Also notice the apparent difference between the U = 0 plot (black dots) and

the U → ∞ case (red dots) and for the same value of �dΓ . For U → ∞, the dot occupation at large

voltage is around 0.65 for �d
Γ ≪ 0 which is consistent with the result of the finite U case when U

Γ is

large (cf. Chap 2 section??). In contrast the non-interacting case (U = 0) shows that ⟨nd⟩ → 0.5 at

large bias. The phenomenological current vs voltage and the corresponding differential conductance

vs voltage are plotted in the top figure of Fig. 4.6. Again we see the zero bias anomaly and a broad

charge fluctuation side peak in the differential conductance vs voltage. The scaling relation of dif-

ferential conductance vs voltage expected in small voltage region can also be extracted by rescaling
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Figure 4.5: Left:⟨n̂d⟩ vs V
Γ in infinite U Anderson model (for Red, Blue, and Purple dots. The Black

dots are U = 0 case shown for comparison). Right: −∂⟨n̂d⟩∂V vs V
Γ in infinite U Anderson model

(for Red, Blue, and Purple lines corresponding to �d
Γ = −6,−5,−4. The Black line is U = 0 and

�d
Γ = −6 case shown for comparison). D

Γ = −100 in these graphs.

the voltage by T∞∗
k as shown in bottom figure of Fig. 4.6. Here T∞∗

k is given by

T∞∗
k =

√

10∣D∣Γ
�

e−�
∣�d∣

2Γ .

Notice this T∞∗
k differs from T∞

k with a factor of two within the exponent. This factor of two

difference represents the difference in the curvature of the parabola as function of �d (the logarithm

of half width at half maximum of the Kondo peak vs �d shows parabolic curve as in inset of Fig. 3.6

for finite U case). This factor of two ratio bears even closer resemblance to the results shown in

Ref. [9]. Note that in bottom figure of Fig. 4.6 the positions of the side peak are different and show

no universality in that region. It shows universality for V
T∗
k

≤ 1.

4.4 Kondo model

For infinite U Anderson model the phase space of doubly occupied state is projected out from the

finite U Anderson model. We can represent the mulitparticle eigenstate as �0 and �1, characterizing

zero dot electron and one dot electron state. If the ground state of the system is described by one

dot electron state such as the case of Kondo model, we could express the Schordinger equation in
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Figure 4.6: Left: dI
dV vs V
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voltage for �d
Γ = −6,−5,−4 (Blue, Purple, Brown).

the form

⎡

⎢

⎣

H00 H01

H10 H11

⎤

⎥

⎦

⎡

⎢

⎣

�0

�1

⎤

⎥

⎦
= E

⎡

⎢

⎣

�0

�1

⎤

⎥

⎦
(4.42)

HereHnn′ = PnHPn′ and Pn is a projection operator on to the subspace with dot electron occupation

n. For example, P0 = (1−nd,↑)(1−nd,↓) and P1 = nd,↑+nd,↓−2nd,↑nd,↓. Together with the fact that

in nd = 1 subspace d†↑d↓ can be replaced by the spin operator S+ for spin 1/2 we may express the

dot operators by S+ = d†↑d↓, S− = d†↓d↑, and Sz =
1
2 (nd,↑−nd,↓) with the constraits nd,↑+nd,↓ = 1

and nd,↑nd,↓ = 0. In this way we obtain the Hamiltonian for two leads Kondo model

H = −i
∫ ∞

−∞
dx
∑

ja

 †
ja(x)∂x ja(x) + JŜ ⋅ (( †

1a(0) +  †
2a(0))�̂ab( 1b(0) +  2b(0)) (4.43)

with J =
∑

k
t2

�k−�d . This Schrieffer-Wolff transformation for finite U Anderson is written explcitily

in A. C. Hewson’s book[61]. To solve this Hamiltonian we again transform it to even and odd bases,

defined by

 e/o,�(x) =
 1,�(x) +  2,�(x)√

2
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Thus the Hamiltonian is decoupled into interacting Hamiltonian in even channel and non-interacting

one in odd channel

H = He +Ho

Ho = −i
∫ ∞

−∞
dx
∑

a

 †
oa(x)∂x oa(x)

He = −i
∫ ∞

−∞
dx
∑

a

 †
ea(x)∂x ea(x) + 2JŜ ⋅ ( †

ea(0)�̂ab eb(0))

The equilibrium version of this two leads Kondo has been solved by N. Andrei and A. Jerez[66] as a

special case (anisotropic 2 channels Kondo model) in their article on anisotropic multichannel Kondo

model. To couple the flavors (channels degree of freedom) with spin degree of freedom a curvature

term (second oder derivative) is introduced in the kinetic part. This regularization scheme leads to

correct counting in the isotropic mulitchanel Kondo model[67].

To construct the scattering eigenstate in lead bases which enables us to compute out of equi-

librium state, however, requires the conservation of number of particles from the incoming leads.

Thus far we have not yet been successful in finding the regularization scheme (or equivalently, sop

in the odd channel in finite U or infinite U Anderson model) to achieve this goal. The trick used in

P. Mehta’s thesis[15] is not correct as it does not include the regularization scheme in checking the

Yang -Baxter equation and the results obtained in there is also incorrect.

In the following we check the consistency condition (Yang-Baxter equation) with an arbitrary

chosen two particle S-matrix on the scattered side (denoted as SR). First we show the S-matrices

which satisfy these equations. Then we show that this S-matrix structure does not conserve number

of particles from the incoming leads. Thus this Hamiltonian is integrable but we could not obtain

out of equilibrium information from there. We also show some of the failed attempts to obtain leads

preserving S-matrix in the incoming channel.

4.4.1 Consistency check for two particle S-matrix

The consistency equation for exchanging particles across the impurity is given by Sij(L)Si0Sj0 =

Sj0Si0Sij(R) and Sjk(L)Slk(L)Sjl(L) = Sjl(R)Slk(R)Sjk(R). Let us check the first condition. Expressing
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the electron impurity S-matrix in even-odd basis we have

Si0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sei0 0 0 0

0 Soi0 0 0

0 0 Sei0 0

0 0 0 Soi0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;Sj0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0 0 0 0

0 Sej0 0 0

0 0 Soj0 0

0 0 0 Soj0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.44)

The explicit form satisfying Sij(L)Si0Sj0 = Sj0Si0Sij(R) is given by

Sij(L)Si0Sj0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Seeij 0 0 0

0 Soeij 0 0

0 0 Seoij 0

0 0 0 Sooij

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sei0 0 0 0

0 Soi0 0 0

0 0 Sei0 0

0 0 0 Soi0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0 0 0 0

0 Sej0 0 0

0 0 Soj0 0

0 0 0 Soj0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Seeij S
e
i0S

e
j0 0 0 0

0 Soeij S
o
i0S

e
j0 0 0

0 0 Seoij S
e
i0S

o
j0 0

0 0 0 Sooij S
o
i0S

o
j0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0S
e
i0S

ee
ij 0 0 0

0 Sej0S
o
i0S

oe
ij 0 0

0 0 Soj0S
e
i0S

eo
ij 0

0 0 0 Soj0S
o
i0S

oo
ij

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0 0 0 0

0 Sej0 0 0

0 0 Soj0 0

0 0 0 Soj0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sei0 0 0 0

0 Soi0 0 0

0 0 Sei0 0

0 0 0 Soi0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Seeij 0 0 0

0 Soeij 0 0

0 0 Seoij 0

0 0 0 Sooij

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Sj0Si0Sij(R)

(4.45)

Here electron-electron S-matrix

S��ij =
(�i − 1

J�
)− (�j − 1

J�
)− iP̂ij

(�i − 1
J�

)− (�j − 1
J�

)− i

and the electron-impurity S-matrix is

S�i0 =
(�i − 1

J�
)− iP̂i0

(�i − 1
J�

)− i
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with P̂ij representing the spin exchange operator and subindex � or � refers to even or odd here.

�i =
�̃i

Ji
and �̃i =

ki
Λ with Λ being the cut-off momenta taken to be ∞ in the end of the calculation.

In this case Sij(L) = Sij(R) and we shall call this minimum two particle S-matrix. (Minimum in the

sense when Je = Jo it corresponds to two channel Kondo without coupling between flavor and spin.)

Let us first check its form in lead indices basis by rotating back from even-odd to lead indices

basis:

USijU
† =

1

4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2Sij + Seoij + Soeij Soeij − Seoij Seoij − Soeij 2Sij − Seoij − Soeij

Soeij − Seoij 2Sij + Seoij + Soeij 2Sij − Seoij − Soeij Seoij − Soeij

Seoij − Soeij 2Sij − Seoij − Soeij 2Sij + Seoij + Soeij Soeij − Seoij

2Sij − Seoij − Soeij Seoij − Soeij Soeij − Seoij 2Sij + Seoij + Soeij

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.46)

The Sij inside the matrix refers to the case as even-even and odd-odd (� = � case) and thus the

form is given by Sij =
�̃i−�̃j−iP̂ij

�̃i−�̃j−i
. The other relevant terms are given by

Seoij − Soeij = − 2iJeJo(P̂ij − 1)(Je − Jo)

(Jo + Je(−1 + Jo(�i − �j − i)))(−Jo + Je(1 + Jo(�i − �j − i)))
(4.47)

Seoij + Soeij =
2
(

J2
e

(

−1 + J2
o (�i − �j − i)(−iP̂ij + �i − �j)

)

+ 2JeJo − J2
o

)

(Jo + Je(−1 + Jo(�i − �j − i)))(−Jo + Je(1 + Jo(�i − �j − i)))
(4.48)

Notice that by taking Je ≫ 1 and Jo ≫ 1 the off-diagonal terms reduce to zero in 1
J order. Thus

to the order of 1
J approximation we may have the minimum S-matrix as the lead indices preserving

one.

The case we are really interested in is Je = 2J and Jo = 0. This leads to Seoij − Soeij = 0 and

Seoij + Soeij = 2. This form does not preserve the lead indices.
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4.4.2 Possible extension?

Now let us explore more possibility by using arbitrary form of S-matrix on the right hand side. The

matrix form relating to consistency condition is given by

Sj0Si0Sij(R) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0 0 0 0

0 Sej0 0 0

0 0 Soj0 0

0 0 0 Soj0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sei0 0 0 0

0 Soi0 0 0

0 0 Sei0 0

0 0 0 Soi0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Sej0S
e
i0a1,1 Sej0S

e
i0a1,2 Sej0S

e
i0a1,3 Sej0S

e
i0a1,4

Sej0S
o
i0a2,1 Sej0S

o
i0a2,2 Sej0S

o
i0a2,3 Sej0S

o
i0a2,4

Soj0S
e
i0a3,1 Soj0S

e
i0a3,2 Soj0S

e
i0a3,3 Soj0S

e
i0a3,4

Soj0S
o
i0a4,1 Soj0S

o
i0a4,2 Soj0S

o
i0a4,3 Soj0S

o
i0a4,4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.49)

The am.n here refers to the two particle S-matrix in spin space on the right hand side. The general

form which preserving SU(2) symmetry in spin space is given by

aij =
�Ri − �Rj − iP̂ij

Rij
(4.50)

By comparing with the matrix structure in Eq.(4.51) we set a1,2 = a1,3 = a2,1 = a3,1 = a4,2 =

a4,3 = a2,4 = a3,4 = 0. However this general structure does not give consistency condition in off-

diagonal terms even for arbitrary form of S-matrix (still preserving SU(2)) on the left. Also along

the diagonal we shall expect a2,2 = a3,3 while the minimum S-matrix shown in Eq.(??) does not

have this property. Thus it seems unlikely to have any extension at the moment.
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4.4.3 An explicit check on lead conserving form

The general form of two particle S-matrix on the incoming side SL with conserving lead indices (no

channel mixing) can be written in even odd basis as

Sij(L) = Sspin

ij (
1

2
{1 + �x ⊗ �x}+

b

2
{1− �x ⊗ �x}+ i

c

2
{�z ⊗ �z + �y ⊗ �y})

= 0.5Sspin

ij

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b + ic+ 1 0 0 −b− ic+ 1

0 b− ic+ 1 −b+ ic+ 1 0

0 −b+ ic+ 1 b− ic+ 1 0

−b− ic+ 1 0 0 b+ ic+ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.51)

In this section we check the general structure following by Eq.(4.51) in the consistency equation

with an arbitrary S-matrix satisfying SU(2) symmetry on the right hand side. The S-matrix on the

left hand side has structure as

Sij(L) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

S1
ij 0 0 S3

ij

0 S2
ij S3

ij 0

0 S3
ij S2

ij 0

S3
ij 0 0 S1

ij

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.52)

Here S1
ij = Seeij = Sooij is given by the usual S-matrix in spin space. Let S2

ij =
(�L−�L)−iP̂ij

�L−�L−i and the

corresponding right hand side S
2(R)
ij =

(�L−�L)−iP̂ij+P̂io+�P̂jo+�P̂ioP̂jo

N we write down the form of

(2, 2) component in the consistency equation:

(�L − �L)− iP̂ij
�L − �L − i

(�̃i − 1
Jo
)− iP̂i0

(�̃i − 1
Jo
)− i

(�̃j − 1
Je
)− iP̂j0

(�̃j − 1
Je
)− i

=
(�̃j − 1

Je
)− iP̂j0

(�̃j − 1
Je
)− i

(�̃i − 1
Jo
)− iP̂i0

(�̃i − 1
Jo
)− i

(�L − �L)− iP̂ij + P̂io + �P̂jo + �P̂ioP̂jo
N
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Expanding above equation terms by terms we get

PPP term : N = �L − �L − i

PP term :
(�̃j − 1

Je
) + (�L − �L)

(�L − �L)− i
=

1

N
{(�̃i −

1

Jo
) + (�̃j −

1

Je
)� + (�̃j −

1

Je
)(�̃i −

1

Jo
)�}

(�̃i − 1
Jo
)

(�L − �L)− i
=

1

N
{(�̃j −

1

Je
) + (�R − �R) + (�̃i −

1

Jo
)}

P term
(�̃i − 1

Jo
)(�̃j − 1

Je
)

(�L − �L)− i
=

1

N
{(�̃j −

1

Je
)(�̃i −

1

Jo
)}

(�L − �L)(�̃j − 1
Je
)

(�L − �L)− i
=

1

N
{(�̃j −

1

Je
)(�R − �R) + (�̃j −

1

Je
)(�̃i −

1

Jo
)}

(�L − �L)(�̃i − 1
Jo
)

(�L − �L)− i
=

1

N
{(�̃i −

1

Jo
)(�R − �R) + (�̃j −

1

Je
)(�̃i −

1

Jo
)�}

1 term
(�L − �L)(�̃i − 1

Jo
)(�̃j − 1

Je
)

(�L − �L)− i
=

1

N
{(�̃j −

1

Je
)(�̃i −

1

Jo
)(�R − �R)− i(�̃j −

1

Je
)− i�(�̃i −

1

Jo
)}

The only solution we have is  = � = 0 = �. That is, S2
ij = Soeij as described in Eq.(4.45). By

writing down similar equations in (3, 3) component in consistency equation we get S2
ij = Seoij , which

is not consistent with the form we would like to have.

Besides from this issue in diagonal term the off diagonal term in two particle S-matrix does not

seem to work even in this generalized form of S-matrix as you can see from PPP term and Pij term.

For example, the (2, 3) component for PPP term is

(�L − �L − i)(�̃i −
1

Jo
− i)(�̃j −

1

Je
− i) = (�̃j −

1

Jo
− i)(�̃i −

1

Je
− i)N

While the case for Pij term we have

(�̃i − 1
Jo
)(�̃j − 1

Je
)

(�L − �L − i)(�̃i − 1
Jo

− i)(�̃j − 1
Je

− i)
=

(�̃j − 1
Je
)(�̃i − 1

Jo
)

(�̃j − 1
Jo

− i)(�̃i − 1
Je

− i)N

Thus this general structure does not help us extend the two particle S-matrix into off diagonal form.
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Chapter 5

Two leads Interacting Resonance Level Model

5.1 Introduction

Two leads Interacting Resonant Level model can be used to describe tunneling current through

the resonant tunneling devices (RTD). These devices, often grown by molecular beam epitaxy, can

be viewed as larger quantum dots or quantum wells. This model is also the first example of SBA

by P. Mehta and N. Andrei[16, 15] and the interesting results from their work kindled numerous

theoretical work[37, 38, 72] on this model. Here we reexamine their work, redo the numerics, and

show the formulation for Bethe momenta higher than impurity level. We compare the real momenta

case with the other theoretical results.

5.2 Two leads Interacting resonant level model

The Hamiltonian for Interacting Resonant level model is:

HIRLM = �dd
†d+

∑

i=1,2

−i
∫

dx †
i (x)∂ i(x) + ti�(x)( 

†
i (0)d+ ℎ.c.) + U †

i (0) i(0)d
†d (5.1)

We can shift to even and odd basis defined by:  e(x) =
t1 1(x)+t2 2(x)√

t21+t
2
2

and  o(x) =
t2 1(x)−t1 2(x)√

t21+t
2
2

thus the above Hamiltonian becomes:

H = He +H0

He = −i
∫

dx †
e(x)∂ e(x) + U †

e(0) e(0)d
†d+ t�(x)( †

e(0)d+ ℎ.c.) + �dd
†d

Ho = −i
∫

dx †
o(x)∂ o(x) + U †

o(0) o(0)d
†d

with t =
√

t21 + t22. In this even-odd bases there is no coupling terms between the odd bath electrons

and the dot electrons. This decoupling helps
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5.2.1 single particle solution

The most general single particle solution for even and odd basis is:

∣e, p⟩ = (

∫

dxgp(x) 
†
e(x) + epd

†)∣0⟩

∣o, p⟩ =

∫

dxℎp(x) 
†
o(x)∣0⟩

Substituting into above Hamiltonian equations we get the one particle Schordinger equations:

−i∂gp(x) + tep�(x) = pgp(x)

tgp(0) = (p− �d)ep

−i∂ℎp(x) = pℎp(x)

We take the ansatz:

gp(x) = eipx[a�(−x) + b�(x)]

ℎp(x) = ceipx(x ∕= 0)

ℎp(x) = deipx(x = 0)

Plugging into above Schordinger equations and using �(x)�(±x) = 1
2�(x) we get:

b

a
=
i+ t2

2(p−�d)

i− t2

2(p−�d)
≡ ei�p (5.2)

with �p = −2 tan−1 t2

2(p−�d) . d is chosen to satisfy ℎp(0) = d = gp(0) =
a(1+ei�p )

2 and c = a. Take

the case of t1 = t2 to simplify the discussion in the following. By choosing these sets of parameter

we may write the incoming state from lead 1 as

∣1p⟩ =
1√
2
(∣e, p⟩+ ∣o, p⟩) =

∫

dxeipx�†
1p(x)∣0⟩

=
a√
2

∫

dxeipx{(�(−x) + ei�p + 1

2
�(x)) †

1(x) +
ei�p − 1

2
�(x) †

2(x) +
2Γ/t

(p− �d) + iΓ
�(x)d†}∣0⟩

=
a√
2

∫

dxeipx{(�(−x) +Rp�(x)) 
†
1(x) + Tp�(x) 

†
2(x) +

2Γ/t

(p− �d) + iΓ
�(x)d†}∣0⟩



91

with Γ = t2

2 and a an overall normalization constant. Tp = ei�p−1
2 as transmission amplitude and

Rp = ei�p+1
2 as reflection amplitude. �†

ip(x) is a compact notation indicating the incoming state

from lead i with Bethe momenta p. The incoming state from lead 2 can also be constructed in this

way by writing

∣2p⟩ = 1√
2
(∣e, p⟩ − ∣o, p⟩) =

∫

dxeipx�†
2p(x)∣0⟩

The purpose of choosing discontinuous ℎp(0) is to make the two particle S-matrix identical in

all different channels and this prescription is essentially the same as inserting sop�(x)�(−x) in the

odd sector as prescribed in finite U and infinite U Anderson model in previous two chapters. Next

we study this IRLM scattering eigenstate from two particles to multi particles through the check of

consistency conditions.

5.2.2 From two particles to multi particles solution

Here we start with the computation for two particles solution. The most general two particles

solution has the form:

∣ip, jk⟩ =
∫ ∫

dx1dx2(Ag(x1, x2) 
†
e(x1) 

†
e(x2) + Cℎ(x1, x2) 

†
o(x1) 

†
o(x2)

+Bj(x1, x2) 
†
o(x1) 

†
o(x2))∣0⟩+

∫

dx (Ae(x) †
e(x)d

† +Bf(x) †
0(x)d

†)∣0⟩

with A, B, and C arbitrary constants to be determined by the incoming state i and j with Bethe

momenta p and k. The Schrondinger equations for this system are:

(−i∂x1 − i∂x2 − E)g(x1, x2)−
t

2
[�(x1)e(x2)− �(x2)e(x1)] = 0 (5.3)

(−i∂x1 − i∂x2 − E)ℎ(x1, x2) = 0 (5.4)

(−i∂x1 − i∂x2 − E)j(x1, x2)− t�(x1)f(x2) = 0 (5.5)

(−i∂x − E + �d)f(x)− tj(0, x) + U�(x)f(x) = 0 (5.6)

(−i∂x − E + �d)e(x)− 2tg(0, x) + U�(x)e(x) = 0 (5.7)

We take this form of two particles solution

2!g(x1, x2) = gp(x1)gk(x2)Z(x1 − x2)− gp(x2)gk(x1)Z(x2 − x1) (5.8)



92

with Z(x) an arbitrary function. Plugging this form into Eq.(5.3) gives a form for e(x)

e(x) = −epgk(x)Z(−x) + ekgp(x)Z(x) (5.9)

We also assume

j(x1, x2) = gp(x1)ℎk(x2)Y (x1 − x2)− gk(x1)ℎp(x2)Ỹ (x2 − x1) (5.10)

with Y (x) and Ỹ (x). Plugging this into Eq.(5.5) one has

f(x) = −epℎk(x)Y (−x) + ekℎp(x)Ỹ (x) (5.11)

Finally, one takes

2!ℎ(x1, x2) = ℎp(x1)ℎk(x2)W (x1 − x2)− ℎp(x2)ℎk(x1)W (x2 − x1) (5.12)

Plugging the form of e(x) and f(x) into Eq.(5.7) and Eq.(5.6) respectively yields

i[epgk(x)∂xZ(−x)− ekgp(x)∂xZ(x)] = U�(x)[epgk(x)Z(−x) + ekgp(x)Z(x)] (5.13)

i[epℎk(x)∂xY (−x)− ekℎp(x)∂xỸ (x)] = U�(x)[epℎk(x)Y (−x) + ekℎp(x)Ỹ (x)] (5.14)

Consider first the Eq.(5.13). We take the ansatz that Z(x) = C�(−x) +D�(x). Then, we get

D

C
=

i[epgk(0) + ekgp(0)]− U
2 [epgk(0)− ekgp(0)]

i[epgk(0) + ekgp(0)] +
U
2 [epgk(0)− ekgp(0)]

D

C
=

i+ U
2

p−k
k+p−2�d

i− U
2

p−k
k+p−2�d

≡ e2iΦ(p,k) (5.15)

where Φ(p, k) ≡ tan−1(
U
2 (p−k)
p+k−2�d

). To get from the first to the second equation we have used the

relationship Eq.(5.2) between gp(0) and ep. Thus, the S-matrix between even flavored particles is

simply See = e2iΦ(p,k). From this we get that

Z(x) = eiΦ(p,k)sgnx (5.16)
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We now make the assumption that Y (x) = Ỹ (x). We do an analogous calculation for Eq.(5.14) and

taking the ansatz Y (x) = A�(−x) +B�(x) to get the equations

B

A
=

i[epℎk(0) + ekℎp(0)]− U
2 [epℎk(0)− ekℎp(0)]

i[epℎk(0) + ekℎp(0)] +
U
2 [epℎk(0)− ekℎp(0)]

→ B

A
=

i+ U
2

p−k
k+p−2�d

i− U
2

p−k
k+p−2�d

= e2iΦ(p,k) (5.17)

In the last step in Eq.(5.17) we have used the condition of ℎp(0) = gp(0) by inserting a local

discontinuity at ℎp(0). This gives the S-matrix between the even and odd particles as the same form

as even and even particles S-matrix. Hence, we get that:

Y (x) = eiΦ(p,k)sgnx (5.18)

Note that W (x) is arbitrary and we can write it the same as Y (x). Since all the S-matrices are U(1)

phases the Yang-Baxter equation is trivially satisfied. Thus, the explicit form of the two particle

wave function is just Eq.(5.3) with e(x) and f(x) given by Eq.(5.9) and Eq.(5.11) and g(x1, x2),

ℎ(x1x2), j(x1, x2) given by Eq.(5.8), Eq.(5.12) and Eq.(5.10) respectively.

Now we construct the two particle scattering eigenstates. Let us fix some notation. Denote the

two particle state with particles only coming from lead 1 (or 2) as ∣1p, 1k⟩ (or ∣2p, 2k⟩). Explicitly,

this means that in the scattering state ∣1p, 1k⟩, the wavefunction amplitude disappears when there

is a particle of flavor 2 to the left of the impurity. As such it will be helpful to rewrite Eq.(5.3) in

the 1, 2 basis. This gives

∣1p, 1k⟩ =
∫

dx1 dx2 [A g(x1, x2) + B j(x1, x2) + Ch(x1, x2)] 
†
1(x1) 

†
1(x2)

+ [A g(x1, x2)− B j(x1, x2) + Ch(x1, x2)] 
†
2(x1) 

†
2(x2)

+ [2Ag(x1, x2)− B (j(x1, x2) + j(x2, x1)) + 2Cg(x1, x2)] 
†
1(x1) 

†
2(x2)

+
∫

dx [Ae(x) + Cf(x)] †
1(x) + [Ae(x)− Cf(x)] †

2(x)∣0⟩ (5.19)
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We write down the explicit form of each of the above components:

g(x1, x2) = ei(px1+kx2)
[

�(−x1) + ei�p�(x1)
] [

�(−x2) + ei�k�(x2)
]

eiΦ(p,k)sgn(x1−x2) − (x1 ↔ x2)

ℎ(x1, x2) = ei(px1+kx2)eiΦ(p,k)sgn(x1−x2) − (x1 ↔ x2)

j(x1, x2) = ei(px1+kx2)
[

�(−x1) + ei�p�(x1)
]

eiΦ(p,k)sgn(x1−x2)

− ei(kx1+px2)
[

�(−x1) + ei�k�(x1)
]

eiΦ(p,k)sgn(x2−x1) (5.20)

Now we use these forms in Eq.(5.19) and require that the amplitude vanishes when any particle in

the incoming region is in lead 2. This yields

[2A g(x1, x2)− B (j(x1, x2) + j(x2, x1)) + 2Cg(x1, x2)] = 0 x2 < 0
[

Ag(x1, x2)−
B

2
(j(x1, x2)− j(x2, x1)) + Ch(x1, x2)

]

= 0 x1 < 0

[

Ag(x1, x2)−
B

2
(j(x1, x2)− j(x2, x1)) + Ch(x1, x2)

]

= 0 x1 < 0 (5.21)

Solving these sets of equations give (A,B,C) = A0(1, 1, 1). Similar computation can also give

scattering state of ∣ip, jk⟩ with (i, j) ⊂ (1, 2). Since the consistency equations (Yang-Baxter equa-

tions) are satisfied trivially in this case we can write down the multi particles scattering eigenstate

∣Ψ, N1, N2⟩ as

∣Ψ, N1, N2⟩ =
∫

∏

j

dxje
ipjxje

∑
s<t iΦ(ps,pt)sgn(xs−xt)

N1
∏

u=1

�†
1pu

(xu)

N2
∏

v=N1+1

�†
2pv

(xv)∣0⟩ (5.22)

Notice that the compact form shown in Eq.(5.22) is only valid if the two particle S-matrix is a simple

phase. For solutions involving spin degree of freedom the multi particles solution does not have this

compact form.

The next step is to determine these particles’ Bethe momenta distribution which describes the

incoming two Fermi seas.

5.2.3 Determining Bethe momenta by asymptotic boundary condition

To analyze the structure of the eigenvalues of these scattering eigenstates we again look for poles (or

zeros) structure of two particle S-matrix. Denoting �i = ki− �d and c = U
2 we have the two particle
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S-matrix as

S12 =
�1 + �2 − ic(�1 − �2)

�1 + �2 + ic(�1 − �2)
(5.23)

Eq.(5.23) has a pole at �1+�2+ic(�1−�2) = 0 with complex solution for �i. Let �1/2 = �+/− = k±i�

with � > 0 by our convention we have

(k + i�) + (k − i�) + ic((k + i�)− (k − i�)) = 0 = 2k − 2c�.

Thus for c > 0 we have bound state solution if �i > 0 and for c < 0 we only have real �i solution.

Further investigation on the pole structure given by the bound state for c > 1 case implies more

type of complex solution which does not located at the locale assumed by string hypothesis[69, 70].

We focus our discussion on c < 1 or U < 2 in the rest of this chapter.

As stated above we have two regions we need to consider for repulsive interaction (U > 0): For

p < �d all Bethe momenta are real. For p > �d Bethe momenta could have real or complex. Again

the complex solution or bound state solution does not correspond to physical (measurable) bound

state here. It is just a solution from the pole structure of two particle S-matrix. First lets discuss

the case for p < �d.

Two leads with real Bethe momenta: p < �d regime

Eq.(5.22) reduces to the following form describing the incoming states in the asymptotic region

(x≪ 0):

∣Ψ, N1, N2⟩∣xi≪0 →
∫

∏

j

dxje
ipjxje

∑
s<t iΦ(ps,pt)sgn(xs−xt)

N1
∏

u=1

 †
1pu

(xu)

N2
∏

v=N1+1

 †
2pv

(xv)∣0⟩ (5.24)

To describe the two Fermi seas with chemical potentials �1 and �2 we apply periodic conditions (by

assuming the lead with size L and then take L→ ∞) on the Bethe momenta to get

eipjL = ei
∑

i∕=j Φ(pj ,pi) =⇒ pj =
1

L

∑

i∕=j
Φ(pj , pi) +

2�nj
L

(5.25)
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We may check these momenta do describe Fermi seas of the two leads by summing all momenta

∑

j

pj =

N1+N2
∑

j=1

2�nj
L

=

N1
∑

j=1

2�nj
L

+

N1+N2
∑

j=N1+1

2�nj
L

as
∑

j

∑

i∕=j Φ(pj , pi) = 0 due to the antisymmetric nature of the two particles scattering phase shift

Φ(pj , pi) = −Φ(pi, pj). Unlike the case for finite U Anderson model or infinite U Anderson model

there is no exclusion of identical Bethe momenta in different leads[71]. We shall argue, however,

that similar constraint of exclusion in the backflow part of the Eq.(5.25) also exists which renders

the continuous version of Eq.(5.25) taking the form:

�i(p) =
�(Bi − p)

2�
−
∫ B1

D

K(p, k)�1(k)dk −
∫ B2

D

K(p, k)�2(k)dk (5.26)

K(p, k) =
U

2�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
=

1

4�

∂Φ(p, k)

∂p

Here �i(pj) =
1
L
dnj

dpj
represents the Bethe momenta density in lead i and Bi is the upper bound of

the integral which represents the Bethe momenta at the Fermi surface. D is the lower bound of the

linearized spectrum. We will come back to discuss Eq.(5.26) in more details in analyzing equilibrium

dot occupation for IRLM. Now we continue to discuss the regime of complex momenta, or p > �d

case, in the following subsection.

Two leads with complex Bethe momenta: p > �d regime

For the bare Bethe momenta p > �d there could be complex solutions above this impurity level based

on the poles (or zeros) structure of the two particles S-matrices. Let us assume that the solutions

above �d are all complex or bound state solutions and position �d between the two Fermi surface of

the two lead system (say B0
2 < �d < B0

1). In this case we have:

pjL = 2�Nj + i
∑

l

ln(Suu(pj , pl)) + i
∑

l

ln(Sub(pj , k̄l))

2k̄jL = 2�M̄j + i
∑

l

ln(Sbb(k̄j , k̄l)) + i
∑

l

ln(Sbu(k̄j , pl)) (5.27)
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where k̄j is defined as the real part of the complex momentum. Note that the summation for real

momenta include both lead 1 and lead 2. The S-matrices are defined as:

Suu(k, p) =
(k + p− 2�d)− iU2 (k − p)

(k + p− 2�d) + iU2 (k − p)

Sub(p, k̄) =
2k̄ + p− 3�d + iU2 ((k̄ − �d)(1 − (U2 )

−2)− (p− �d))

2k̄ + p− 3�d − iU2 ((k̄ − �d)(1 − (U2 )
−2)− (p− �d))

× p− �d + iU2 ((k̄ − �d)(1 + (U2 )
−2)− (p− �d))

p− �d − iU2 ((k̄ − �d)(1 + (U2 )
−2)− (p− �d))

Sbu(k̄, p) =
2k̄ + p− 3�d − iU2 ((k̄ − �d)(1 − (U2 )

−2)− (p− �d))

2k̄ + p− 3�d + iU2 ((k̄ − �d)(1 − (U2 )
−2)− (p− �d))

× p− �d − iU2 ((k̄ − �d)(1 + (U2 )
−2)− (p− �d))

p− �d + iU2 ((k̄ − �d)(1 + (U2 )
−2)− (p− �d))

Sbb(p̄, q̄) = −2p̄+ 2q̄ − 4�d − iu2 ((p̄− q̄)(1− (U2 )
−2))

2p̄+ 2q̄ − 4�d + iu2 ((p̄− q̄)(1− (U2 )
−2))

× 2p̄− 2�d − iU2 ((p̄− �d)(1− (U2 )
−2)− (q̄ − �d)(1 + (U2 )

−2))

2p̄− 2�d + iU2 ((p̄− �d)(1− (U2 )
−2)− (q̄ − �d)(1 + (U2 )

−2))

× 2q̄ − 2�d − iU2 ((p̄− �d)(1 + (U2 )
−2)− (q̄ − �d)(1− (U2 )

−2))

2q̄ − 2�d + iU2 ((p̄− �d)(1 + (U2 )
−2)− (q̄ − �d)(1− (U2 )

−2))

The Sub, Sbu and Sbb represents the Bethe Ansatz S-matrices derived from Suu with the complex

solution substituting the real momenta. For example, Sbu(k̄, p) = Suu(k+, p)Suu(k−, p) where k± =

k̄(1 ± i 2U )∓ i 2U �d. This k± is obtained by letting Suu(k+, k−) = 0 which corresponds to the bound

state solution of Bethe Ansatz.

Next let us rewrite Eq.(5.27) in its differential form. Denote L�2(p) =
dN
dp for density of state in

lead 2 and L�1(p) =
dN
dp for density of state in lead 1 with p < �d and L�1(p̄) =

dM̄
dp̄ for density of

state in lead 1 with p > �d and 0 < U < 2 with p̄ as real part of the complex solution p±. Denote

Kij =
i

4�
∂i lnSij .
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The Bethe Ansatz equations are:

�2(p) =
�(B2 − p)Θ(p+D)

2�
−
∫ �d

D

�1(k)Kuu(p, k) dk −
∫ B2

D

�2(k)Kuu(p, k) dk −
∫ B1

�d

�1(k̄)Kub(p, k̄) dk̄

�1(p) =
�(�d − p)�(p+D)

2�
−
∫ �d

D

�1(k)Kuu(p, k) dk −
∫ k02

D

�2(k)Kuu(p, k) dk −
∫ B1

�d

�1(k̄)Kub(p, k̄) dk̄

�1(p̄) =
�(B1 − p̄)�(p̄− �d)

�
−
∫ �d

D

�1(k)Kbu(p̄, k) dk −
∫ B2

D

�2(k)Kbu(p̄, k) dk −
∫ B1

�d

�1(k̄)Kbb(p̄, k̄) dk̄

With the integration kernels given by:

Kuu(p, k) =
U

2�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2

Kub(p, k̄) =
− (3U− 4

U
)

4� (k̄ − �d)

(p+ 2k̄ − 3�d)2 + (U2 (k̄ − p) + 2
U (k̄ − �d))2

−
(U+ 4

U
)

4� (k̄ − �d)

(p− �d)2 + (U2 (p− k̄)− 2
U (k̄ − �d))2

Kbu(p̄, k) =
(3U− 4

U
)

4� (k − �d)

(k + 2p̄− 3�d)2 + (U2 (k − p̄) + 2
U (p̄− �d))2

+

(U+ 4
U
)

4� (k − �d)

(k − �d)2 + (U2 (k − p̄)− 2
U (p̄− �d))2

Kbb(p̄, k̄) =
(k̄ − �d)

(U− 4
U
)

�

4(p̄+ k̄ − 2�d)2 + (U2 − 2
U )

2(p̄− k̄)2
+

(k̄ − �d)
(U+ 4

U
)

2�

4(p̄− �d)2 +
U2

4 ((p̄− �d)(1− 4
U2 )− (k̄ − �d)(1 +

4
U2 ))2

+
(k̄ − �d)

(U+ 4
U
)

2�

4(k̄ − �d)2 +
U2

4 ((p̄− �d)(1 +
4
U2 )− (k̄ − �d)(1 − 4

U2 ))2

The upper limit B1 and B2 are determined by the incoming number of particles Ni from lead i:

N1

L
=

∫ �1

D

1

2�
dp =

∫ �d

D

�1(p) dp+

∫ B1

�d

2�1(p̄) dp̄

N2

L
=

∫ �2

D

1

2�
dp =

∫ B2

D

�2(p) dp

�i is again connected with Bi by minimizing the free energy F =
∑

i(Ei − �iNi). To simplify

the discussion and avoid the issue of non-steady state, which also occurs for IRLM with complex

momenta, we focus on the case of real momenta, or Bi < �d, in the rest of the numerical results.

5.3 Current and Dot expectation for real momenta case

In this section we compute expectation value of dot occupation, both in and out of equilibrium, and

current as a function of voltage. We start with equilibrium dot occupation and check against our
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result for one lead limit by taking t1 ≫ t2 → 0 or equivalently, t ≃ t1, limit. The resulting dot

occupation formulation suggests Eq.(5.25) is the correct distribution equation which implies some

sort of implicit exclusion for the Bethe momenta.

We also compute dot occupation out of equilibrium and current as a function of voltage numeri-

cally at zero temperature. Negative differential conductance is seen for large voltage when the upper

bound of Bethe momentum B1 is close to the impurity level �d. This non monotonicity in current vs

voltage has the physical meaning of Fermi edge singularities and is more apparent as the interaction

strength U is stronger.

In numerics the upper bound B1 is fixed and we lower the other lead’s upper bound B2. This

protocol roughly corresponds to fixing �1 and lowering �2 with �1 deviating from its fixed value

about few percentage (typically less than five percent) of the fixed value. Same protocol was also

adopted in Ref.[16] although they used different equations to solve the density distribution functions.

5.3.1 Equilibrium Bethe momenta density and dot occupation

To discuss the equilibrium dot occupation for two leads IRLM it is useful first to derive the dot

occupation for a single lead in IRLM. For a single lead IRLM the Hamiltonian is given by
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Figure 5.1: Equilibrium Bethe momenta density plots. The color code represents different U
Γ .

U
Γ =

0.1, 0.5, 1, 1.5, 2 for blue, purple, brown, green, and light blue. The vertical axis starts at 1
2� which

is the density value of U = 0 (RLM) case. Left: �(k) vs k computed from Eq.(5.33), the published
results in Ref.[16] and in P. Mehta’s thesis[15] (There is a sign error in the backflow part so the
numerical results shown in [15] is for U < 0 case). Inset shows the tendency to be divergent at the
upper bound when U increases. For U larger than 2.8 the density becomes negative nearby the upper
bound. It is not shown in the graph. Right: D

Γ = −100 in this graph. Right: �(k) vs k computed
from Eq.(5.26), the one including exclusion in backflow part. Inset shows the well behaved tendency
at the upper bound when U increases.
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HIRLM = −i
∫

dx †(x)∂ (x) + �dd
†d+ t(1)�(x)( †(0)d+ ℎ.c.) + U †(0) (0)d†d (5.28)

We may follow the same procedure as in the two leads case to construct the multi particles eigenstate,

starting with a single particle solution with energy eigenvalue E = p as

∣p⟩ =
∫

eipx{(�(−x) + ei�p�(x)) †(x) + epd
†�(x)}∣0⟩.

The single particle phase shift �p = −2 tan−1 Γ(1)

(p−�d) and ep = 2Γ(1)/t(1)

(p−�d)+iΓ(1) with Γ = (t(1))2

2 . The

multi particles eigenstate is constructed with the product form of these single particle eigenstate

with two particle S-matrices similar to Eq.(5.24) (with �†
p(x) replaced by ∣p⟩ essentially). The dot

occupation nd is then evaluated by

nd = ⟨n̂d⟩ =
⟨p1, p2, p3..., pN ∣d†d∣p1, p2, p3..., pN ⟩
⟨p1, p2, p3..., pN ∣p1, p2, p3..., pN ⟩ =

1

L

∑

p

∣ep∣2

=

∫ B

D

�(1)(p)
2Γ(1)

(p− �d)2 + (Γ(1))2
(5.29)

with the single lead Bethe momenta density �(1)(p) given by

�(1)(p) =
�(B − p)

2�
−
∫ B

D

U

�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
�(1)(k)dk (5.30)

In Eq.(5.29) we take only 1
L terms and neglect 1

L2 or smaller terms as we take L → ∞. Similar

computation as Eq.(5.29) for two leads case gives the two leads dot occupation

nd =
⟨p1, p2, p3..., pN1 ; k1, k2, k3..., kN2 ∣d†d∣p1, p2, p3..., pN1 ; k1, k2, k3..., kN2⟩
⟨p1, p2, p3..., pN1 ; k1, k2, k3..., kN2 ∣p1, p2, p3..., pN1 ; k1, k2, k3..., kN2⟩

=
∑

p

1

L

Γ

(p− �d)2 + Γ2
=

∫ B

D

dp(�1(p) + �2(p))
Γ

(p− �d)2 + Γ2
(5.31)

Eq.(5.31) can be checked by comparing with the exact result of Resonance Level Model (RLM, U = 0

case for IRLM). In RLM the matrix element is the same as this IRLM and �1(p) = �2(p) =
1
2� for

RLM. Thus the limit of U → 0 for IRLM (which renders �1(p) = �2(p) ≃ 1
2� ) gives the correct

expression for dot occupation both in and out of equilibrium.

If we took t1 ≫ t2 ≃ 0 we would get t =
√

t21 + t22 ≃ t1 or, in another words, Γ ≃ Γ(1). As lead 2

is essentially decoupled from the dot when t2 → 0 we can treat this special case as one lead problem.
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Thus the formulation of dot occupation for one lead and two leads are the same in this special case.

From Eq.(5.29), Eq.(5.30), and Eq.(5.31) we find the equilibrium Bethe momenta density equation

for two leads IRLM should take this form

�(p) =
�(B − p)

2�
−
∫ B

D

U

�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
�(k)dk (5.32)

with B1 = B2 = B. This leads us to the assumption that there exists similar exclusion rule for the

backflow term as Anderson model in the Bethe Ansatz equation and the out of equilibrium density

equation is given by Eq.(5.26). The original Bethe Ansatz equation published in Ref.[? ] shown in

Eq.(5.33)

�i(p) =
�(Bi − p)

2�
−
∫ B1

D

K(p, k)�1(k)dk −
∫ B2

D

K(p, k)�2(k)dk (5.33)

K(p, k) =
U

�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
=

1

2�

∂Φ(p, k)

∂p

does not give the correct dot occupation in equilibrium in the limit of t1 ≫ t2 → 0 (notice the factor

of two in the integration kernel). The original derivation [15] does not consider exclusion of equal

momenta between different leads which seems to be physically reasonable. So there are both pro

and con for this answer and at this moment we do not know in a priori why we need to resort back

to some kind of exclusion in the backflow part as shown in Eq.(5.26).

Another issue of Eq.(5.33) is that the density of Bethe momenta obtained numerically has di-

vergence issue nearby the boundary of B → �d. The density computed vis Eq.(5.26) is more well

behaved at this boundary value. Both are shown in Fig.(5.1).

Now lets come back to the discussion for equilibrium dot occupation in two leads case. We take

the Bethe density computed by Eq.(5.26) and compute the dot occupation in equilibrium. As we

are confined in real solution we can only investigate the region for Bethe momenta p smaller than

impurity level �d. The numerical results for nd vs �d (�1 = �2 ≃ −2.16 or B = −2 in this case) is

plotted in Fig.(5.2). The left figure of Fig.(5.2) shows U > 0 case and the right figure shows U < 0

case of dot occupation as a function of impurity (dot) level �d. The equilibrium Fermi surface is

fixed at � ≃ −2.16 which corresponds to upper bound of Bethe momenta B = −2. We increase the

impurity level �d from −2.05 to 2. The lower bound D = −100. Hybridization strength Γ is fixed

at 1 which serves as the unit of U and �d. Different interaction strengths U are plotted in different
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Figure 5.2: Left: nd vs �d with U > 0 case. Different U are shown in different color lines. Right: nd
vs �d with U < 0 case. Different U are shown in different color lines. Notice the non monotonicity
for U = −4 in the U < 0 case. B = −2, Γ = 1 and D = −100 for both figures.
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Figure 5.3: Left: nd vs U with U > 0 case. Right: nd vs −U with U < 0 case. �d = −1.99, B = −2,
Γ = 1 and D = −100 for both figures in IRLM.

colors. For U > 0 case the dot occupation increases monotonically with increasing U at fixed

chemical potential and impurity level �d. For U ≃ 0.67 the dot occupation is already approaching 1

as �d is close to B = −2. Thus it seems to be problematic for this formulation as this will eventually

violates exclusion principles on the dot.

The figures for dot occupation vs U for fixed boundary B and D and fixed hybridization strength

Γ are shown in Fig.(5.3). For the case of U < 0 the dot occupation is always less than 0.5 in the

range of B = −2 < �d < 2. We also see non monotonicity in dot occupation number for negative U

which is expected from duality in U as suggested by A. Schiller and N. Andrei [37]. For positive U

the dot occupation seems to increase monotonically which renders it to be non physical (in the sense

that dot occupation higher than one) for U > 0.67. As the physical meanings of these discrepancies

are not clear at the moment we shall show both U > 0 and U < 0 results in the following discussion.
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Before carrying on the discussion to non equilibrium case let us first investigate the Friedel sum rule

in equilibrium in IRLM.

5.3.2 Issue of Friedel sum rule in equilibrium

The idea of Friedel sum rule is to evaluate the change of bulk density of state due to the addition of

the impurity. When an impurity is embedded in the metal the itinerant electrons would modify their

distributions to screen out the impurity given the thermal fluctuation is lower compared with the

energy scale of the onset of the screening. Thus the change in density of state of the bulk electrons is

related to the interaction between the bulk electrons and the impurity electrons and the sum of this

change must compensate the impurity charge or spin quantity (thus it is named sum rule). Kondo

effect is one of the example related to the screening of spin. Here in IRLM the screening part is

related to the charge degree of freedom. However as the interaction in IRLM is between the dot and

the leads we shall show that Friedel sum rule does not apply to this model. In the other words, we

show

nimp ∕= nd

in equilibrium in the following. To simplify the discussion let us take just one lead formulation.

As we stated earlier the one lead problem is essentially the same as two leads if the system is in

equilibrium.

The equilibrium dot occupation nd is evaluated in Eq.(5.29). Let us address how to computed

the change in bulk density of state which gives nimp. From the traditional Bethe Ansatz (TBA) the

change of bulk density due to impurity part is in the order of 1
L where L refers to size of the system.

By imposing periodic boundary condition including the contribution of the impurity we obtain

�(1)(p) +
1

L
�
(1)
imp(p) =

�(B − p)

2�
+
∂�p/∂p

2L�
−
∫ B

D

U

�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
(�(1)(k) +

1

L
�
(1)
imp(k))dk

or equivalently by taking out the 1
L terms only and carrying out the partial differential on single

particle phase shift �p we get

�
(1)
imp(p) =

1

�

Γ

(p− �d)2 + Γ2
−
∫ B

D

U

�

(k − �d)

(p+ k − 2�d)2 +
U2

4 (p− k)2
�
(1)
imp(k)dk (5.34)
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The change in the bulk charges is then computed by

nimp =

∫ B

D

�
(1)
imp(p)dp (5.35)

By comparing Eq.(5.29) and Eq.(5.35) we can see that these two results are different, showing that

Friedel sum rule does not apply to this model. Similar proof can also be done by evaluating retarded

dot green function. It would also require extra caution when trying to use Landauer Buttiker formula

to compute linear response conductance.

5.3.3 Dot occupation vs voltage

Now let us come back to discuss the out of equilibrium case. We start with the discussion on the

out of equilibrium dot occupation. The out of equilibrium dot occupation is computed by

nd =

∫ B1

D

dp�1(p)
Γ

(p− �d)2 + Γ2
+

∫ B2

D

dp�2(p)
Γ

(p− �d)2 + Γ2
(5.36)

following the evaluation of impurity matrix element computation shown in Eq.(5.31). The voltage
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Figure 5.4: Left: nd vs V
Γ with U > 0 in IRLM. Right: nd vs V

Γ with U < 0 in IRLM.

is given by �1 − �2 with �i connected with Bi by minimization of charge free energy.

F =
∑

pj

(pj − �jNj) =

∫ B1

D

dp�(p)(p− �1) +

∫ B2

D

dp�(p)(p− �2) (5.37)
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Equivalently we can also obtain the voltage difference by comparing the voltage difference ob-

tained in Fock basis and in Bethe basis:

V = �1 − �2 = 2�(

∫ �1

D̄

dp
1

2�
−
∫ �2

D̄

dp
1

2�
) = 2�

N1 −N2

L
= 2�(

∫ B1

D

dp�(p)−
∫ B2

D

dp�(p)) (5.38)

with D̄ representing the Fock space energy lower bound.

This has also been shown in the case of two leads Anderson model. The discrepancy of voltage

obtained in this model from Eq.(5.38) and Eq.(5.37) is larger (about ten percentage difference in

IRLM compared with one percentage difference in Anderson model at large voltage). It could be

due to the fact that we choose the boundary D to be finite and the issue of divergence in Bethe

momenta density when Bi is close �d as shown in Fig.(5.1).

Fig.(5.4) shows the dot occupation as a function of voltage for U > 0 case in IRLM. The lower

bound of the integral D is fixed at −100. The protocol of driving the system out of equilibrium is

fixing the �1 close to impurity level �d and lowering �2. In P. Mehta’s thesis[15] the plots shown for

dot occupation as a function of voltage is in fact for U < 0 case due to a mistake in the sign of the

integration kernel in the numerical program. From Fig.(5.4) we know that as the voltage increases the

dot occupation decreases and eventually reaches a plateau. For U > 0 the dot occupation increases

monotonically with increasing interaction strength U which again does not show the duality property

expected from Ref.[37]. For U < 0 we also see the non monotonicity in interaction strength U as

has been seen in the equilibrium case.

The common feature for U > 0 case compared with two leads Anderson model is that both

repulsive interaction increases the value of dot occupation albeit their differences in their interaction

form. In the case of Anderson model the reason of this increment in dot occupation is due to

the virtual excitations or spin fluctuations at high voltage. For the IRLM the physics behind this

increment of dot occupation is related to Fermi Edge singularities. The repulsive interaction between

the leads and dot electron depletes the electrons within the leads and therefore the occupation

number on the dot increases with increasing U . The effect of removing the electrons from the leads

increases the available states for transmission (not to be blockaded by the electrons sitting on those

levels) and thus the enhancement of conductance. This can be seen in the following discussion on

current vs voltage relation in IRLM.
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5.3.4 Current vs voltage

The expectation value for current is obtained by evaluating summation over all momenta in the

ground state of the leads in this zero temperature problem. The current is given by

⟨Î⟩ =
∫ B1

B2

(�1(p)− �2(p))
Γ2

(p− �d)2 + Γ2
(5.39)

The result of current vs voltage and differential conductance vs voltage are shown in the Fig.(5.5)
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Figure 5.5: Left: Current I vs V
Γ in two leads IRLM. Different colors represent different interaction

strength U . D
Γ = −100 and B1 = −2.05, �d = −2 in this graph. Right: The differential conductance

G vs voltage V . G is normalized by conductance at zero voltage G0. The plot is obtained by taking
numerical derivative on the left figure.

for U > 0 cases and in the Fig.(5.6) for U < 0 cases. The voltage is computed by Eq.(5.38). From

Fig.(5.5) we can see that the differential conductance becomes negative at high voltage region for

U
Γ > 0.5. While from Fig.(5.6) there is no such change in the sign of the differential conductance

for U < 0 in all range of voltage. For U > 0 the effect of this repulsive interaction between the

leads and the dot pushes away the electrons at the energy level close to the dot level. Therefore for

U > 0 it would produce more conduction channels and thus increases the conductance. This is also

confirmed by the various plots shown in Fig.(5.5).

For U < 0 the attractive interaction between the leads and the dot would decrease the available

states for transmitting electrons, and therefore the conductance becomes smaller with U < 0. This

is seen in the Fig.(5.6). In U < 0 case we do not see the region of negative conductance but the

interesting feature here is there is again non monotonic dependence in interaction strength U . This

non monotonicity in U is not seen in the case of U > 0 even for U > 2. The negative U results could
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be non physical as in the case of attractive interaction the lowest energy state is usually formed by

bound state or complex momenta. Thus the physically correct feature for U < 0 case still needs

further numerical work in complex momenta case.
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Figure 5.6: Left: Current I vs V
Γ in two leads IRLM. Different colors represent different interaction

strength U . D
Γ = −100 and B1 = −2.05, �d = −2 in this graph. Right: The differential conductance

G vs voltage V . G is normalized by conductance at zero voltage G0. The plot is obtained by taking
numerical derivative on the left figure.

For U > 0 the negative conductance at large voltage has been observed experimentally in tun-

neling junctions or larger quantum dot experiments. The physics of this negative conductance is

related to the Fermi Edge Singularity[11]. The idea is that the tunneling of electrons between the

leads is bound to hole state (or vice versa) of the dot and it produces a power law decay for voltage

higher than some threshold voltage. In the case of larger quantum dot the dominant fluctuation in

the system is caused by Coulomb repulsion between the electrons in the leads and those in the dot.

The spin fluctuation or Kondo effect is less significant in a larger quantum dot or tunneling junctions

compared with this electronic interaction. In the following we compare our numerical results with

experiments and other theoretical results of IRLM.

5.4 Comparison with other theories and experimental results

Numerous amount of literatures have popped out after the pioneering work by P. Mehta and N.

Andrei[16] on this two leads IRLM. Perturbation renormalization group[72], different scattering

eigenstates methods by Hershfield Y-operators[73, 74], and exact two particles eigenstates[75] had

been proposed. Another exact solutions of this model at the so-called self-dual point[37] by E. Boulat

et al. in Refs.[38, 39] uses the conformal field theory and compares with t-DMRG results. Here we
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compare the results by L. Borda et al.[72].

To compare with the current vs voltage results in Ref.[72] we rescale the voltage and current axis

by the Fock space cutoff D. In their weak RG results there seems to be no negative conductance

region. Thus ths signature of FES is not apparent there. It could be related to their choice of voltage

as they use symmetric voltage drive ±V
2 on the leads to take advantage of particle hole symmetry.

They saw the non monotonic behavior for U
D > 0.5 but the results in that regime are not reliable.
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Figure 5.7: Left: Current I
D̄

vs V
D̄

in two leads IRLM. Γ = 1, �d = 0 and Bethe lower bound D

is fixed at D = −100. D̄ is the corresponding Fock space energy lower bound. The voltage is
driven by fixing B1 = −0.005 and lowering B2 which corresponds to fixing �1 ≃ −0.01 and lowering
�2. Different colors represent different interaction strength U . Note the non monotonic behavior in
U > 0 occurs in this rescaled I-V curve. Right: The same plots as left figure with region changed to
be the same as in Fig.5.8 from Ref.[72]. The U = 0.001 in our plot is used to compare with U = 0
in Fig.5.8 and we find that there seems to be a factor of 10 missing in their voltage scale and Δ

D .

The correct scale in Fig.5.8 should be from 0 to 0.016 and Δ
D = 0.01.

By rescaling the voltage and current with Fock space cutoff D in our results we find that even for

U > 0 we have non monotonic behavior in the I −V curves for U > 2. There are also clear negative

conductance for lager U results at voltage V
D ≥ 0.005.

Further comparisons with other theoretical and experimental results are currently underway.
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Figure 5.8: Left: (Color online) Current obtained by weak coupling RG for Δ
D = 0.1 and U

D =
0, 0.005, 0.03, 0.05, 0.10. For this range of interaction strength the weak-coupling method was reliable
in equilibrium. Right: (Color online) Current obtained by the scattering formalism for Δ

D = 0.1

(should be 0.01) and U
D = 0, 0.10, 0.20, 0.30, 0.50, 0.60, 0.85. Note that the weak-coupling result is

reliable for U
D < 0.2 only. Captions and figures taken from Ref.[72]. Notice that Δ in their notation

is our Γ. Δ
D should be 0.01 and their ⟨I⟩ is also scaled by D.
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Chapter 6

Further extensions of SBA

6.1 Introduction

This chapter is mainly about some extensions of the SBA and most of the work shown here are still

in their preliminary stages. It is thus more pedagogical in nature without many concrete results.

However this could give an overview of what are the possible questions we can try to tackle with

this SBA method as well as providing some ideas how we approach these problems. The order of

ths sections follows the sequence of introductions stated below.

As we have mentioned in the introduction of the Scattering Betha Ansatz method, there could

be many possible extensions other than evaluating transport property of quantum dot system at

zero temperature and zero field. One of the extensions is to describe the quantum dot system at

finite temperature and/or at finite magnetic field. This extension is closely connected with the one

lead Thermodynamic Bethe Ansatz as we use Bethe basis to construct the multi particles scattering

eigenstates. The asymptotic boundary condition we have to solve is thus very similar to the equations

we solve in equilibrium system at finite temperature and/or finite magnetic field. We use infinite U

Anderson model to illustrate this type of computation in two leads system and show the proof of

the ground state configurations are composed of bound state solutions in the Bethe basis.

We can also apply this SBA method to multi leads connect with a dot. Explicit calculations for

three leads case, which can be used to measure out of equilibrium dot spectral function when the

coupling of the third leads is small, are carried out in the case of three leads IRLM.

Another interesting application of SBA is to apply this method on quantum wire system. In

this case we set up the problem by modeling the quantum wire connected with two leads and side

coupled to a quantum dot. Transport measurement on this quantum wire system can reveal the

information regarding the size of the screening effect related to the interaction between the wire and

the dot. We have carried out the Shordinger equations for this problem but we are still working on

solving the two particles problem. Thus this work is still in its infant stage.

We give a brief summary in the end of this chapter and comment on the recent work by D. Iyer
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and N. Andrie where they applied the scattering formulation to time dependent problem in one lead

resonance level model.

6.2 Finite temperature and finite magnetic field

From Chapter 3 to Chapter 5 we have been discussing various models for two leads connected with a

quantum dot system at zero temperature and zero field. Often the real experiments are carried out at

finite temperature. Magnetic fields are used to determine whether the enhancement of conductance

they see in the experiment is really due to the screening effect of magnetic impurity or due to

other sources. Thus far the temperature dependence or the change in magnetic field are both well

understood in equilibrium system. However in the non equilibrium case, despite numerous theoretical

efforts, finite temperature or finite field nonequilibrium quantum dot transport still remains an open

question.

Here we give an example of extending this SBA method to finite temperature and finite field

by evaluating the free energy in the asymptotic region. We show by explicit calculation that in

taking zero temperature and zero field limit the ground state configuration for two leads system is

also described by bounded state solution. The main line of the work is done by C. J. Bolech. The

modification here is basically put in the correct distribution of states in the two leads case.

We have not yet carried out the computation for matrix element of the physical quantity. Thus

the work shown here is just the first step of extending the SBA method to finite temperature and

finite field. Further work is required in reaching some results which can really be compared with

experimental results and some technical problem not encountered in zero temperature case is also

expected. One of the issue is the inability to identify the entropy and magnetization by the lead

index.
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6.2.1 Free energy of two leads infinite U Anderson model in asymptotic

region

Here we write down the main result for finite temperature computation for infinite U Anderson

model

N l

L
=

∫

k

�l(k) +
∑

lb,lb′

∫

q

(�llb + �llb′ )�
lblb′
b (q) (6.1)

E

L
=

∑

lu

∫

k

k�l(k) +
∑

lb,lb′

∫

q

(�llb + �llb′ )2q�
lblb′
b (q)

Sz
L

=
1

2

∑

l

∫

k

�l(k)−
∑

m

∫

�

m�sm(�)

The free energy of the system is given by

F = E − TS −
∑

l

�lN
l − 2ℎSz (6.2)

with S being the entropy of the system expressed by

S{�, �̂}
L

= (�+ �̂) ln(�+ �̂)− � ln(�)− �̂ ln(�̂) = � ln(1 + �) + �̂ ln(1 + �̂)

with � ≡ �̂
� and �̂ ≡ �

�̂ = �−1. Notice here that we cannot label Sz nor entropy S by lead indices

as the spin rapidities are shared by both leads inherited by quantum inverse scattering method.

This casts some doubts on the idea that we are using different basis to describe the same system

as in Fock bases the identification has no ambiguity. Let us postpone this issue and continue the

discussion for free energy at the moment.

Define f ≡ ln(1 + �) and f̂ ≡ ln(1 + �̂) and minimize the free energy by requiring variations of

free energy to be zero:

�F

L
=

∑

l

∫

k

{(k − �l − ℎ− T ln(1 + �lu))��
l
u(k)− T ln(1 + �̂lu)��̂

l
u} (6.3)

+
∑

l,l′

∫

q

{[(2q − �l − �l′)− T ln(1 + �ll
′

b )]��ll
′

b − T ln(1 + �̂ll
′

b )��̂ll
′

b }

+
∑

n

∫

�

{[2ℎn− T ln(1 + �sn)]��sn − T ln(1 + �̂sn)��̂sn}
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Use the continuous limit of the counting function and the idea of equal distribution in lead indices

we have the Bethe Ansatz equation as

�l(k) + �̂l(k) =
1

4�
− 1

2

∑

lal′a

∫

q′
K1(k − q′)�

lal
′
a

b (q′)− 1

2

∞
∑

m=1

∫

�

Km(k − �′)�sm(�′) (6.4)

�ll
′

b (q) + �̂ll
′

b (q) =
1

4�
− 1

4

∑

la

∫

k

K1(q − k)�la(k)− 1

4

∑

lal′a

∫

q′
K2(q − q′)�

lal
′
a

b (q′)

�sn(�) + �̂sn(�) =
∑

l

∫

k

Kn(�− k)�l(k)−
∑

m

∫

�′

Knm(�− �′)�sm(�′)

The expression for hole distribution can be obtained from above as:

�̂l =
1

4�
−K0 ∗ �l −

1

2

∑

lal′a

K1 ∗ �lal
′
a

b − 1

2

∑

m

Km ∗ �sm (6.5)

�̂ll
′

b =
1

4�
−K0 ∗ �ll

′

b − 1

4

∑

la

K1 ∗ �la − 1

4

∑

lal′a

K2 ∗ �lal
′
a

b

�̂sn =
∑

l

Kn ∗ �l −
∑

m

Knm ∗ �sm −K0 ∗ �sn

with ∗ indicating the convolution. By substituting hole distribution Eq.(6.5) into Eq.(6.3) we get

�F

L
= 0 =

∑

l

∫

k

{(k − �l − ℎ− Tf lu)��
l + T f̂ lu(K0 ∗ ��l +

1

2

∑

lal′a

K1 ∗ ��lal
′
a

b +
1

2

∑

m

Km ∗ ��sm)}

+
∑

ll′

∫

q

{(2q − �l − �l′ − Tf ll
′

b )��ll
′

b + T f̂ ll
′

b (K0 ∗ ��ll
′

b +
1

4

∑

lal′a

K2 ∗ ��lal
′
a

b +
1

4

∑

l

K1 ∗ ��l)}

+
∑

n

∫

�

{(2ℎn− Tfsn)��sn + T f̂sn(−
∑

l

Kn ∗ ��l +
∑

m

Knm ∗ �sm − ��sn)} (6.6)

Use Kn as even function of its argument and divide Eq(6.6) by temperature T and pull out the

appropriate varied terms we get

0 =
∑

l

∫

k

{[ (k − �l − ℎ)

T
− f lu +K0 ∗ f̂ lu +

1

4

∑

lal′a

K1 ∗ f̂ lal
′
a

b −
∑

n

Kn ∗ f̂sn]��l}

+
∑

ll′

∫

q

{[ (2q − �l − �l′)

T
− f ll

′

b +K0 ∗ f̂ ll
′

b +
1

4

∑

lal′a

K2 ∗ f̂ lal
′
a

b +
1

2

∑

l

K1 ∗ f̂ lu]��ll
′

b }

+
∑

n

∫

�

{[ 2ℎn
T

− fsn +
1

2

∑

l

Kn ∗ f̂ lu +
∑

m

Knm ∗ f̂sm − f̂sn]��sn}
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Thus we get

f lu =
k − �l − ℎ

T
+K0 ∗ f̂ lu +

1

4

∑

lal′a

K1 ∗ f̂ lal
′
a

b −
∑

n

Kn ∗ f̂sn

f ll
′

b =
2q − �l − �l′

T
+

1

2

∑

l

K1 ∗ f̂ lu +K0 ∗ f̂ ll
′

b +
1

4

∑

lal′a

K2 ∗ f̂ lal
′
a

b

fsn =
2ℎn

T
+

1

2

∑

l

Kn ∗ f̂ lu +
∑

m

Knm ∗ f̂sm − f̂sn (6.7)

Eq.(6.7) is the general equations for distribution functions in Bethe state. To connect these distri-

bution functions with the density functions we used earlier we may identify

�x ≡ sx
T

2�nl
∂kf̂x

�̂x ≡ s̄x
T

2�nl
∂kfx

with su = sb = −1, ssn = 1, nl = 2 for unbound state � and nl = 4 for bound state distribution �b.

Using these conventions we have �l = − T
4�∂f̂

l
u, �

ll′

b = − T
8�∂f̂

ll′

b , and �sn = T
2�∂f̂sn. By using these

expression we may rewrite Eq.(6.7) as

�̂l =
1

4�
−K0 ∗ �l −

1

2

∑

lal′a

K1 ∗ �lal
′
a

b − 1

2

∑

m

Km ∗ �sm (6.8)

�̂ll
′

b =
1

4�
−K0 ∗ �ll

′

b − 1

4

∑

l

K1 ∗ �l −
1

4

∑

lal′a

K2 ∗ �lal
′
a

b

�̂sn =
∑

l

Kn ∗ �l −
∑

m

Knm ∗ �sm − �sn

This connects the Thermodynamics Bethe Ansatz (TBA) with the Scattering Bethe Ansatz equa-

tions. The zero temperature limit of these density equations gives back Eq.(4.20). We may fur-

ther reformulating the TBA by deriving recursive relations: G̃(!) ≡ K̃1(!)

K̃0(!)+K̃2(!)
= 1

2 cosh(!c
2 ) ,

G(z) = F−1{G̃(!)}(z) = 1
2c cosh(�z

c
) .

Kn −G ∗ (Kn+1 + �̂n,1Kn−1) = �n,1G (6.9)

An,m −G ∗ (An+1,m + �̂n,1An−1,m) = �n,m

Kn+1 ∗An,m −Kn ∗An+1,m = −�m>n(Km−1 +Km+1)

with �̂n,1 ≡ 1 − �n,1. By using these recursive relation in Eq.(6.9) the spin (n-string) distribution
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has the form of fxn = gxn+Anm ∗ f̂xm with gxn ≡ 2ℎn
T + 1

2

∑

lKn ∗ f̂ lu (x = s in the notation here).

Using second line of Eq.(6.9) we get

f̂xn = Anm ∗ f̂xm −G ∗ (An+1,mf̂xm + �̂n,1An−1,m ∗ f̂xm)

= fxn − gxn −G ∗ (fx(n+1) − gx(n+1) + �̂n,1(fx(n−1) − gx(n−1)))

Now we define f − f̂ = ln(1+ �)− ln(1+ �−1) = ln � ≡ �
T . The above expression can be rewritten as

fxn − f̂xn =
�xn
T

= gxn +G ∗ (fx(n+1) + �̂n,1fx,n−1)−G ∗ (gx(n+1) + �̂n,1gx,n−1)

gxn −G ∗ (gx(n+1) + �̂n,1gx(n−1)) =
1

2

∑

l

�n,1G ∗ f̂ lu +
2ℎn

T
−G ∗ (2ℎn

T
)× 2 =

1

2

∑

l

�n,1G ∗ f̂ lu

Thus for spin rapidity:

�sn
T

=
1

2

∑

l

�n,1G ∗ f̂ lu +G ∗ (fs(n+1) + �̂n,1fs(n−1)) (6.10)

For unbounded charge rapidity we use the identity: G ∗A1m = Km and noting that

G ∗ fs1 =
ℎ

T
+

1

2

∑

l

G ∗K1 ∗ f̂ lu +Km ∗ f̂sm

⇒ Kn ∗ f̂sn = − ℎ

T
− 1

2

∑

l

G ∗K1 ∗ f̂ lu +G ∗ fs1

G ∗ f ll′b =
q − �l+�l′

2

T
+

1

2

∑

l

G ∗K1 ∗ f̂ lu +G ∗ f̂ ll′b +
1

4

∑

lal′a

K1 ∗ f̂ lal
′
a

b

⇒ 1

4

∑

lal′a

K1 ∗ f̂ lal
′
a

b = −q − �̄

T
− 1

2

∑

l

G ∗K1 ∗ f̂ lu +G ∗ (f ll′b − f̂ ll
′

b )

Rewriting the TBA for unbounded charge rapidity:

f lu =
k − �l − ℎ

T
+ f̂ lu +

1

4

∑

lal′a

K1 ∗ f̂ lal
′
a

b −
∑

n

Kn ∗ f̂sn

=
�̄− �l
T

+ f̂ lu −G ∗ fs1 +G ∗ (f ll′b − f̂ ll
′

b )

⇒ f lu − f̂ lu =
�u
T

=
�̄− �l
T

+G ∗ (f ll′b − f̂ ll
′

b )−G ∗ fs1 (6.11)
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Similarly for bounded charge rapidity

�ll
′

b

T
=

2q − �l − �l′

T
+

1

2

∑

l

K1 ∗ f̂ lu +
1

4

∑

lal′a

K2 ∗ f̂ lal
′
a

b (6.12)

6.3 Three leads coupled to a quantum dot in IRLM

In this section we show the calculation of the three leads connected with a single quantum dot in

the Interacting Resonant Level model. From the current in the third probe we may obtain the dot

density of state. We show explicit computation of the current through the third lead and comment

on the possible issue in the SBA on this problem.

6.3.1 Model Hamiltonian and calculations

The Three-lead interacting resonance level model describes a resonant level, �dd
†d, coupled to three

baths of spinless electrons via tunneling junctions with strength ti. There is also a Coulomb inter-

action U between the the level and the baths.

HIRL = −i
∑

i=1,2,3

∫

dx †
i (x)∂ i(x) + �dd

†d (6.13)

+ (
∑

i=1,2,3

ti 
†
i (0)d+ ℎ.c.) +

∑

i=1,2,3

Ui 
†
i (0) i(0)d

†d.

In general the Coulomb interaction and hopping strength can be different for different leads. The

simplification can be achieved when we consider all Coulomb interactions are the same. The idea is

to write the particle operators in orthogonal bases and decouple the hopping terms. We choose the

following bases:

 e(x) =

∑

� t� �
√

t21 + t22 + t23

 o1(x) = − t2 1(x)− t1 2(x)
√

t21 + t22

 o2(x) = − t1t3 1(x) + t2t3 2(x) − (t21 + t22) 3(x)
√

(t21 + t22 + t23)(t
2
1 + t22)

(6.14)

This choice is done by observing that the hopping term is related to even combination of the

particle operators from each lead. The other two orthogonal bases are chosen by the cross product

in the operator bases. These bases obey the similar anti-commutation rule as the Fermion operators
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Figure 6.1: A schematic sketch of the proposed apparatus. An ultrasmall quantum dot is coupled
by tunneling to three metallic leads, each of which is kept at a separate chemical potential. The
corresponding tunneling matrix elements are controlled by varying the potential barriers, while the
dot energy level is adjusted by applying a gate voltage. The dot level and the couplings are to be
tuned such that the dot is in the Kondo regime, and the coupling to the third lead is much weaker
than to the other two leads. Fixing the source-drain voltage bias at �2 − �1 = eVsd and sweeping
the chemical potential �3 by varying V31, one measures the current I3(V31) between the dot and
the third lead. Up to thermal broadening and rescaling, the differential conductance G3 = dI3/dV31
traces the out-of-equilibrium two-lead dot DOS. Figure and caption taken from Ref.[63]

in different leads. Let us define t and t
′

as t =
√

t21 + t22 + t23 and t
′

=
√

t21 + t22. By choosing

U1 = U2 = U3 = U we can rewrite the original Hamiltonian in the following form:

H = He +Ho1 +Ho2

He = −i
∫

dx †
e(x)∂ e(x) + �dd

†d+ t( †
e(0)d+ ℎ.c.) + U †

e(0) e(0)d
†d

Hoi = −i
∫

dx †
oi(x)∂ oi(x) + U †

oi(0) oi(0)d
†d (6.15)

We can see that the odd terms are decoupled from the hopping term.

6.3.2 Single particle eigenstate

The single particle eigenstate for Eq.(6.15) is obtained by solving the Shordinger equation. The

most general form of single particle eigenstate with eigenvalue p is:

∣p⟩ =
∫

dxA[gp(x) 
†
e(x) + epd

†] +Bℎp(x) 
†
o1 (x) + Cℎp(x) 

†
o2(x)
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Where A ,B ,and C are arbitrary parameters determined by the boundary condition. We choose our

regularization scheme as �(±x)�(±x) = 1
2�(x). The functions gp(x) and ℎp(x) and the parameter

ep are given by:

gp(x) =
2eipx

1 + ei�p
[�(−x) + ei�p�(x)]

ℎp(x) =
2eipx

1 + ei�p
x ∕= 0

ℎ±p (0) = ± (p− �d)ep
t

eipx = ±eipx x = 0 (6.16)

ep =
t

p− �d

with �p defined as �p = −2 arctan[ t2

2(p−�d) ]. Again we have introduced a local discontinuity in the

odd function the same way as we have done in the two leads case in IRLM.

The boundary condition can be imposed by specifying the origin of incoming particles. The

particle coming from lead 1 is described by scattering state with no particles coming from lead 2 or

3. Thus we can get the following equation describing the incoming state from lead 1 as:

A
t2
t
+B

t1
t′

− C
t2t3
tt′

= 0

A
t3
t
+ C

t21 + t22
tt′

= 0

⇒ (A,B,C) = C1(−
t
′

t3
,
tt2
t1t3

, 1) = (− t1
t
,
t2
t′
,
t1t3
tt′

)

Where we choose C1 = t1t3
tt′

as the proper normalization constant. Follow the same procedure we

can write down the solution for incoming state from lead 2 and lead 3. The results are:

(A,B,C) = C2(−
t
′

t3
,− tt1

t2t3
, 1) = (− t2

t
,− t1

t′
,
t2t3
tt′

)

(A,B,C) = C3(
t3
t′
, 0, 1) = (

t3
t
, 0,

t
′

t
)

Thus the particle coming from lead i is written as:

∣ip⟩ =
∫

dxAi[gp(x) 
†
e(x) + epd

†] +Biℎp(x) 
†
o1(x) + Ciℎp(x) 

†
o2(x)∣0⟩
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6.3.3 Construction of N particle state

From the single particle solution we can try to construct the N-particle solution if a proper two body

S-matrix can be found. We begin this construction from finding the solution for two particle state.

Two particle eigenstate

The general two particle eigenfunction ∣Ψ⟩ can be written as:

∣Ψ⟩ =

∫ ∫

[Ag(x1, x2) 
†
e(x1) 

†
e(x2) + C1ℎ(x1, x2) 

†
o1(x1) 

†
o1(x2) + C2ℎ(x1, x2) 

†
o2(x1) 

†
o2(x2)

+ C3ℎ(x1, x2) 
†
o1(x1) 

†
o2(x2) +B1j(x1, x2) 

†
e(x1) 

†
o1(x2) +B2j(x1, x2) 

†
e(x1) 

†
o2(x2)

+ Ae(x) †
e(x)d

† +B1f(x) 
†
o1(x)d

† +B2f(x) 
†
o2(x)d

†∣0⟩

Substitute into the Schordinger equation we have:

Ĥg(x1, x2) 
†
e(x1) 

†
e(x2) = −i(∂1 + ∂2)g(x1, x2) 

†
e(x1) 

†
e(x2) + t[g(0, x2)d

† †
e(x2)− g(x1, 0)d

† †
e(x1)]

Ĥℎ(x1, x2) 
†
oi(x1) 

†
oj (x2) = −i(∂1 + ∂2)ℎ(x1, x2) 

†
oi(x1) 

†
oj (x2)

Ĥj(x1, x2) 
†
e(x1) 

†
oi(x2) = −i(∂1 + ∂2)j(x1, x2) 

†
e(x1) 

†
oi(x2) + tj(0, x2)d

† †
oi(x2)

Ĥe(x) †
e(x)d

† = −i(∂xe(x)) †
e(x)d

† + Ue(0) †
e(0)d

† − t †
e(0)e(x) 

†
e(x) + �d 

†
e(x)e(x)d

†

Ĥf(x) †
oi(x)d

† = −i(∂xf(x)) †
oi(x)d

† + Uf(0) †
oi(0)d

† − t †
oi(0)f(x) 

†
e(x) + �d 

†
oi(x)e(x)d

†

Collecting the same operators term we can get the following equations:

(−i∂x1 − i∂x2 − E)g(x1, x2)−
t

2
[�(x1)e(x2)− �(x2)e(x1)] = 0

(−i∂x1 − i∂x2 − E)ℎ(x1, x2) = 0

(−i∂x1 − i∂x2 − E)j(x1, x2)− t�(x1)f(x2) = 0

(−i∂x − E + �d)f(x)− tj(0, x) + U�(x)f(x) = 0

(−i∂x − E + �d)e(x)− 2tg(0, x) + U�(x)e(x) = 0

From the above work we can see that the two particle S-matrix for three leads is the same as that

of two leads. The two particle S-matrix in momentum space (p+ k = E for this linear spectrum) in
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the asymptotic region is again given by:

S(p, k) = ei2�(p,k) =
i+ u

2
p−k

p+k−2�d

i− u
2

p−k
p+k−2�d

(6.17)

The N-particle state can be written as:

∣ ⟩s =
∫

dxei
∑
pjxjei

∑
�(pi,pj)sgn(xi−xj)

∏

�†
1pu

(xu)
∏

�†
2pv

(xv)
∏

�†
3pw

(xw)∣0⟩ (6.18)

With �†
ipu

(xu) = Ai[gpu(xu) 
†
e(xu) + epud

†] + Biℎpu(xu) 
†
o1(xu) + Ciℎpu(xu) 

†
o2(xu) given as the

single particle state coming from lead i. Notice that the two particle S-matrix is a U(1) phase and

it satisfies the Yang-Baxter equation. Thus the generalization to multi particles is valid by Bethe

Ansatz method.

6.3.4 Orthogonality of single particle state

Once we have the scattering eigenstate constructed the next thing to do is to evaluate the matrix

element of the physical quantity. Again the simplification here is that different Bethe momenta are

orthogonal to each other. This is shown in the single particle inner product as following. The inner

product of single particle state is quite straightforward:

⟨ik∣jp⟩ =
∫

dx dy [Ai[gk(y) 
†
e(y) + ekd

†] +Biℎk(y) 
†
o1(y) + Ciℎk(y) 

†
o2(y)]

†

[Aj [gp(x) 
†
e(x) + epd

†] +Bjℎp(x) 
†
o1(x) + Cjℎp(x) 

†
o2 (x)]

=

∫

dx dy {AiAj [g∗k(y)gp(x)�(x − y) + ekep�(x)�(y)] + (CiCj +BiBj)ℎ
∗
k(y)ℎp(x)�(x − y)}

Note that:

g∗k(x)gp(x) =
4ei(p−k)x

(1 + ei�p)(1 + e−i�k)
(�(−x) + ei(�p−�k)�(x))

ℎ∗k(x)ℎp(x) =
4ei(p−k)x

(1 + ei�p)(1 + e−i�k)
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For the infinite L limit we have:

⟨ik∣jp⟩ = �ij�(p− k)
4L∣Ci∣2

(1 + ei�p)(1 + e−i�p)

= �ij�(p− k)L(1 + (
t2

2(p− �d)
)2)∣Ci∣2

In which we neglected the order 1 result. In this infinite L limit we can see that the incoming particle

state are orthogonal in lead and momentum index.

6.3.5 Physical quantity calculation

In this section we show the matrix element results of the current and the dot occupation expectation

value.

Current calculation

For the current flowing from lead 1 we have:

Î =
−ie
2ℏ

[N̂1 − N̂2 − N̂3, Ĥ ]

=
−ie
ℏ

[t1( 
†
1(0)d− ℎ.c.)− t2( 

†
2(0)d− ℎ.c.)− t3( 

†
3(0)d− ℎ.c.)]

To calculate the steady state current we need to calculate the expectation value for single particle

state. The lead 1 current is thus:

⟨Î⟩ = −2e

ℏ

∑

(
t1t2
tt′

AiBi +
t21t3
t2t′

AiCi)
(t2/2)2

∣Ĉi∣2[(p− �d)2 + (t2/2)2]
(6.19)

Dot Occupation

The dot occupation value is evaluated by the expectation value of n̂d = d†d. The result is:

⟨n̂d⟩ =
∑

∣Ai
Ci

∣2 1
L

t2

(p−�d)2

1 + ( t2

2(p−�d) )
2

=

∫

dp(∣A1

C1
∣2�1(p) + ∣A2

C2
∣2�2(p) + ∣A3

C3
∣2�3(p))

t2

(p− �d)2 + ( t
2

2 )
2

(6.20)
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6.3.6 Current through the 3rd lead and its relation to dot occupation

For the current flowing through the 3rd lead the computation is carried out by first computing the

single particle expectation value:

⟨Î⟩ij = ⟨[N̂3, Ĥ ](− ie
ℏ
)⟩ij = ⟨(− ie

ℏ
)2t3[ 

†
3(0)d− d† 3(0)]⟩ij

= ⟨(− ie
ℏ
)2t3[(

t3
t
 e(0) +

t′2

t′t
 o2(0))

†d− d†(
t3
t
 e(0) +

t′2

t′t
 o2(0))]⟩ij

= −2ie

ℏ
(
t23
t
AiAj(g

∗
pep − ℎ.c.) +

t′t3
t

(CiAjℎ
∗
pep −AiCje

∗
pℎp))

The actual expectation value for the 3rd lead current is thus:

⟨Î3⟩ = −2ie

ℏ

∑

t23
t ∣Ai∣2(g∗p(0)ep − ℎ.c.) + t′t3

t (AiCi)
it3

(2(p−�d))2

∣Ci∣2L(1 + ( t2

2(p−�d) )
2)

=
2e

ℏ

∑ Ai
Ci

t′t3
t2

( t2

2(p−�d) )
2

L(1 + ( t2

2(p−�d))
2)

(6.21)

If we partial differentiate this 3rd lead current with respect to its chemical potential �3 and assume

the other two distribution function �1(p) and �2(p) are more or less independent of �3 (which is true

when the coupling from the 3rd lead is weak, or t3 ≪ t1 or t2. We can then write down the 3rd lead

conductance as:

G3(�3) = ⟨ dI3
d�3

⟩ = 2e

ℏ

∫

dp
∂�3(p, �3)

∂�3
(
t23
t2
)

( t
2

2 )
2

(p− �d)2 + ( t
2

2 )
2

(6.22)

Comparing with Eq.(6.20) we can see that, up to some scaling factor, the differential conductance

in the 3rd lead is proportional to the density functional (or more generally, the spectral function) of

the dot occupation. The spectral function Ad(p) of the impurity level is obtained by the integrand

of the energy integral within the evaluation of ⟨n̂d⟩. We can write down the form of Ad(p) as:

Ad(p) = 2(∣A1

C1
∣2�1(p) + ∣A2

C2
∣2�2(p) + ∣A3

C3
∣2�3(p))

t2

2

(p− �d)2 + ( t
2

2 )
2

= 2(
t21 + t22
t23

(�1(p) + �2(p)) +
t23

t21 + t22
�3(p))

t2

2

(p− �d)2 + ( t
2

2 )
2

(6.23)

Comparing Eq.(6.22) with Eq.(6.23)we can see that the differential conductance of lead 3 is propor-

tional to the density of state on the impurity level under the assumption that the function �i(p) does
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not change much in the regime of interest. This assumption, however, is not quite clear whether it is

still true in this Bethe basis. The reason is in the Bethe basis all particles can ”sense” the change of

other particles through the two particle S-matrices. In the case of IRLM this two particles S-matrix

does not depend on the coupling strengths ti. Thus it casts some doubts whether this assumption

is still valid in this basis.

6.4 Quantum wire side coupled with a quantum dot

Quantum wire side coupled with a quantum dot is an interesting proposal for measuring the real

space length of the screening cloud in the Kondo effect[76–78]. The Hamiltonian used to describe

the leads and the quantum wire coupled with a dot is given by

H = H0 +Hi

H0 = −i
∑

j

∫

 †
j∂ j − iu

∫

(�†
R∂�R − �†

L∂�L) + VG

∫

(�†
R�R + �†

L�L) + �dd
†d

+ t1( 
†
1(−

l

2
)(�R + �L)(−

l

2
) + ℎ.c.) + t2( 

†
2(
l

2
)(�R + �L)(

l

2
) + ℎ.c.) + td((�R + �L)

†(0)d+ ℎ.c.)

Hi = U(�†
R�R(0)d

†d+ �†
L�L(0)d

†d)

The single particle solution is expressed as

∣p⟩ = {
∫

(F p1 (x) 
†
1(x) + F p2 (x) 

†
2(x)) +

∫ l
2

− l
2

(F pR(x)�
†
R(x) + F pL(x)�

†
L(x) + epd

†�(0))}∣0⟩

The functions F pi (x) and ep are obtained from single particle Schordinger equation H ∣p⟩ = p∣p⟩:

(−i∂ − p)F p1 (x) + t1(F
p
R + F pL)(−

l

2
) = 0

(−i∂ − p)F p2 (x) + t2(F
p
R + F pL)(

l

2
) = 0

(−i∂̄ − p)F pR(x) + t1F
p
1 (−

l

2
) + t2F

p
2 (
l

2
) + tdep�(0) = 0

(i∂̄ − p)F pL(x) + t1F
p
1 (−

l

2
) + t2F

p
2 (
l

2
) + tdep�(0) = 0

td(F
p
R + F pL)(0) = (p− �d)ep
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Here ∓i∂̄ ≡ ∓iu∂ + VG is used to simplify the notation and up̄+ VG = p.

F p1 (x) = eipx(A�(−x− l

2
) +B�(x +

l

2
)

F p2 (x) = eipx(C�(−x+
l

2
) +D�(x − l

2
)

F pR(x) = eip̄x(E�(−x) + F�(x))�(−x +
l

2
)�(x +

l

2
)

F pL(x) = e−ip̄x(G�(−x) +H�(x))�(−x +
l

2
)�(x +

l

2
)

ep =
td(F

p
R+Fp

L)(0)

p−�d is obtained by the last equation. There are 9 free parameters with 7 constraints

from above equations. We may select the remaining two parameters to write the eigenstate as
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scattering eigenstate incoming from lead 1 or lead 2. There are 14 terms for two particles equations

(−i∂1 − i∂2 − E)G11(x1, x2) + t1(G1R(x1,−
l

2
) +G1L(x1,−

l

2
)−G1R(−

l

2
, x2)

−G1L(−
l

2
, x2)) = 0 (6.24)

(−i∂1 − i∂2 − E)G22(x1, x2) + t2(G2R(x1,
l

2
) +G2L(x1,

l

2
)−G2R(

l

2
, x2)−G2L(

l

2
, x2)) = 0(6.25)

(−i∂1 − i∂2 − E)G12(x1, x2)− t1(G2R(x2,−
l

2
) +G2L(x2,−

l

2
)) + t2(G1R(x1,

l

2
)

+G1L(x1,
l

2
)) = 0 (6.26)

(−i∂1 − i∂̄2 − E)G1R(x1, x2)− t1(G11(−
l

2
, x1)−G11(x1,−

l

2
)) + t2G12(x1,

l

2
))

+tdG1d(x1, 0)�(x2) + t1(GRR(−
l

2
, x2)−GRL(x2,−

l

2
)−GRR(x2,−

l

2
)) = 0 (6.27)

(−i∂1 + i∂̄2 − E)G1L(x1, x2)− t1(G11(−
l

2
, x1)−G11(x1,−

l

2
)) + t2G12(x1,

l

2
))

+tdG1d(x1, 0)�(x2) + t1(GLL(−
l

2
, x2)−GRL(x2,−

l

2
)−GLL(x2,−

l

2
)) = 0 (6.28)

(−i∂ + �d − E)G1d(x, 0) + td(G1L(x, 0) +G1R(x, 0)) + t1GLd(−
l

2
, 0) + t1GRd(−

l

2
, 0) = 0(6.29)

(−i∂1 − i∂̄2 − E)G2R(x1, x2)− t2(G22(
l

2
, x1)−G22(x1,

l

2
))− t1G12(−

l

2
, x1)) (6.30)

+tdG2d(x1, 0)�(x2) + t2(GRR(
l

2
, x2)−GRL(x2,

l

2
)−GRR(x2,

l

2
)) = 0 (6.31)

(−i∂1 + i∂̄2 − E)G2L(x1, x2)− t2(G22(
l

2
, x1)−G22(x1,

l

2
))− t1G12(−

l

2
, x1))

+tdG2d(x1, 0)�(x2) + t2(GLL(
l

2
, x2) +GRL(

l

2
, x2)−GLL(x2,

l

2
)) = 0 (6.32)

(−i∂ + �d − E)G2d(x, 0) + td(G2L(x, 0) +G2R(x, 0)) + t2GLd(
l

2
, 0) + t2GRd(

l

2
, 0) = 0 (6.33)

(−i∂̄1 − i∂̄2 − E)GRR(x1, x2) + t1G1R(−
l

2
, x2) + t2G2R(

l

2
, x2) + tdGRd(x1, 0) = 0 (6.34)

(i∂̄1 + i∂̄2 − E)GLL(x1, x2) + t1G1L(−
l

2
, x2) + t2G2L(

l

2
, x2) + tdGLd(x1, 0) = 0 (6.35)

(−i∂̄1 + i∂̄2 − E)GRL(x1, x2) + t1G1L(−
l

2
, x2) + t2G2L(

l

2
, x2)− t1G1R(−

l

2
, x1)

−t2G2R(
l

2
, x1) + tdGRd(x1, 0) + tdGLd(x2, 0) = 0 (6.36)

(−i∂̄ + �d − E)GRd(x, 0)− td(GRR(0, x)−GRR(x, 0)) + tdGRL(x, 0) + UGRd(0, 0) = 0 (6.37)

(i∂̄ + �d − E)GLd(x, 0)− td(GLL(0, x)−GLL(x, 0)) − tdGRL(0, x) + UGLd(0, 0) = 0 (6.38)
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Observing Eq.(6.36,6.37,6.38) we have

GRL(x1, x2) = (ApkRL�(−x1 − x2) +BpkRL�(x1 + x2))F
p
R(x1)F

k
L(x2) (6.39)

− (AkpRL�(−x1 − x2) +BkpRL�(x1 + x2))F
k
R(x1)F

p
L(x2)

GRd(x, 0) = (ApkRd�(−x) +BpkRd�(x))F
p
R(x)ek − (AkpRd�(−x) +BkpRd�(x))F

k
R(x)ep (6.40)

GLd(x, 0) = (ApkLd�(−x) +BpkLd�(x))F
p
L(x)ek − (AkpLd�(−x) +BkpLd�(x))F

k
L(x)ep (6.41)

Similar structure also exists for terms like GRR(x1, x2), GLL(x1, x2), G12(x1, x2), etc. The two

particles computation for this quantum wire coupled with a dot is still underway.

6.5 Summary and extension to time dependent problem

This chapter applies the Scattering Bethe-Ansatz to more general description of quantum impurity

model. The first extension is to discuss finite temperature and finite field for a two leads single

quantum dot system. The second and third parts is basically discussing different physical structure

such as multi leads connection and quantum wire. Apart from those we have mentioned this method

can also be applied to compute current current correlation functions which gives information of noise

measurement. This has been attempted by G. Palacios in the case of two leads IRLM.

Fairly recently computations done by D. Iyer and N. Andrei has brought this method to another

exciting level. By performing some special contour integrations they are able to compute time

dependent dot occupation in the quench problem (Quench here means the interactions between

leads and the dot is turned on suddenly rather than adiabatically.) of RLM by using Bethe Ansatz

scattering state. It would be interesting to see if the computation can be extended to two leads

system where comparison between the SBA results and perturbative Keldyshi calculations by A.

Jahuo[79] et al., which is also exact in this non interacting model, is possible.
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Chapter 7

Concluding remarks and outlook

We apply the Scattering Bethe Ansatz (SBA) approach on the quantum impurity model to compute

steady state transport property of the system. The general ideas of SBA are presented in Chap. 2.

The general setups of quantum impurities, ranging from small (with length around 100nm) quantum

dots to larger (a few �m) quantum dots or quantum wells, are introduced in Chap. 1. The quantum

dot or quantum well is connected with two leads. By using SBA we obtain the steady state current

vs voltage and dot occupation vs voltage at zero temperature.

In applying this method to the two leads Anderson impurity model, the standard model to

describe Kondo physics in small quantum dot, we encountered some difficulties, which we summarize

below, in evaluating the current matrix element. We proposed phenomenological approach, named

pSBA, to extract the important physics of the model[64]. In a close analogy to the fundamental

excitations in Bethe bases in equilibrium[51] we identify two types of phase shifts, one related to

spin fluctuations and the other related to charge fluctuations, related to phase shifts for current

transport. We checked pSBA by comparing the dot occupation and Friedel sum rule results in

equilibrium and obtain qualitative agreement. The nonequilibrium numerical results for current vs

voltage show correct scaling relations in the Kondo regimes as is expected from strong coupling to

weak coupling Fermi liquid picture[22].

Other interesting quantities, such as the nonequilibrium charge susceptibility or the usual charge

susceptibility, are computed numerically via exact expression for dot occupation as a function of

voltage and impurity level. The expression of dot occupation is proved to be exact in equilibrium by

comparing with traditional Bethe Ansatz and same expression is valid both in and out of equilibrium.

This statement is based on the results of SBA since matrix element computation takes the same

form in and out of equilibrium for dot occupation[15].

We believe this is the first report of an exact computation of the dot occupation out-of-equilibrium

and it may have interesting application in quantum computing once we understand more about

the dephasing mechanism. We have also compared our results with perturbation calculation and

experimental measurement of nonlinear differential conductance of a quantum dot. Overall nice
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agreements are shown in Chap. 3. Similar applications of pSBA have also been done in infinite U

Anderson model. Similar scaling behaviors for voltage V ≪ Tk are shown in Chap. 4.

In Chap 5. we reexamine the Interacting Resonant Level Model (IRLM) and extend its formula-

tions to complex momenta case. Detailed analysis on both positive interaction strength and negative

interaction strength, assuming Bethe momenta are real, is shown in this chapter. It should be noted

that the negative U results may not correspond to the ground state configuration for negative U case

(since bound states configurations could exist in this case). We also compare our numerical results

with other theories such as weak coupling RG by L. Borda et al [72]. In Chap 6. we mention some

possible extensions of the SBA method.

We summarize the major difficulties we have encountered by using SBA approach here. One of

the main issues in constructing the many particles scattering eigenstate is that we introduce local

discontinuity term of the form sop�(x)�(−x) in the odd bases of the solutions. By using this term

we may transform from even-odd bases back to the lead bases[50] as this choice leads to identical

two particle S-matrices in all the channels.

This regularization scheme has two apparent problems. First the criteria ∂xsop�(x)�(−x) is zero

under two cases: (1) We carried out the spatial integral with sop being even function of x. (2)

∂x�(±x) = ±�(x) and �(x)�(x) = 1
2�(x). In solving the Schordinger equations we may take case (1)

to avoid the issue of a particular regularization scheme. Had we taken case (2) the partial derivative

on the theta function needs to be a sharp Dirac delta function[71], otherwise the derivative is nonzero

and we cannot say that the eigenstates we have found is truly the eigenstate.

The other problem related to this is that we need to define the current operators away from

x = 0. Due to the regularization scheme we choose the matrix element of current ⟨Î⟩ would be

trivially zero if we insisted on defining

⟨Îi⟩ ∝
∑

�

⟨ †
i�(0)d� − d†� i�(0)⟩ (7.1)

rather than choosing electron operators defined around x = 0. i and � denote lead and spin index.

This problem is the same for all the models we have mentioned, including the IRLM in Ref.[16].

The temporary solution to this problem is to choose the current operator acting around this x = 0
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and this choice would be consistent with another current operators definition

⟨Îi⟩ ∝ lim
�→0+

∑

i�

⟨ †
i�(�) i�(�) −  †

i�(−�) �(−�)⟩ (7.2)

The third problem in the SBA is the matrix element evaluation in the case of bound state

or complex momenta. Although the equilibrium results in the case of finite U Anderson shows the

validity of our integrations schemes and orthogonality between different real part of the bound states

(see also Appendix B), the computations involving out of equilibrium quantity are far from clear.

The major issue is that the time variation of dot expectation value

d⟨nd⟩
dt

∕= 0

is nonzero, which violates the steady state assumption. This quantity is indeed zero for real Bethe

momenta. So far this problem is still unsolved and we have to use phenomenological ideas to figure

out the possible formulation for the current matrix element. One of the reasons leading to this

problem could again come from the choice of �(x)�(−x) term. However given the same choice the

real Bethe momenta does not have this issue. So the deeper origin of this problem aside from being

complex solutions is not clear.

The last issue is related to the asymptotic boundary conditions. It is not clear a priori which type

of bound states solution should describe the free Fermi seas. As we have mentioned in Appendix

A the most general choice would be four type of strings solutions. However by performing the

computation we find unphysical results. Had we not known the physical properties of the system we

could not be able to make this judgment. This also makes SBA less useful in predicting or exploring

the physics of the new models.

We have been working on different models to see if we could avoid to use the sop�(x)�(−x)

terms in constructing the scattering eigenstates. So far the likely candidate would be the quantum

wire coupled with dot. We also plan to go back to work out the IRLM and make more detailed

comparison with other numerical or analytical results in this model. By using proper mapping we

can also connect this model with the anisotropic Kondo model[80] and enhance our understanding

of both models by this SBA method.
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Appendix A

Discussion of 2 strings vs 4 strings

As we have discussed in the main text the bounded pair, formed by p±(�) = x(�) ∓ iy(�), can be

formed by quasi-momenta from lead 1 or lead 2. We have shown the results for two type of strings

(bound states). Namely the strings are formed by {ij} = {11, 22} with i, j denoting incoming

lead indices. In this section we discuss the case of 4 type of strings and show their corresponding

numerical results in out of equilibrium regime (In equilibrium the 2 strings and 4 strings give the

same result for dot occupation).

The density distribution for the Bethe momenta (rapidities) is denoted by �ij(�) with {ij} =

{11, 12, 21, 22} indicating the incoming electrons from lead i and lead j. The �ij(�) is given by

4�ij(�) = − 1

�

dx(�)

d�
−
∑

i,j=1,2

∫ ∞

Bij

d�′ K(�− �′)�ij(�
′) (A.1)

The factor of 4 indicates 4 type of possible configurations and the constraint of exclusions in rapidities

� in solving the quantum inverse scattering problem. The idea is that in equilibrium four type of

distributions are equally possible for each bound state bare energy 2x(�). The Bij play the role of

chemical potentials for the Bethe-Ansatz momenta and are determined from the physical chemical

potentials of the two leads, �i, by minimizing the charge free energy,

F =
∑

i

(Ei − �iNi) =
∑

i

∫ ∞

Bij

d� (x(�) − �i)�(i)(�)d�

with �(1) ≡ 2�11 + �12 + �21 the lead 1 particle density and �(2) ≡ 2�22 + �12 + �21 the lead 2

particle density. In the case of �1 > �2 we have B11 < B12 = B21 < B22 for this finite U Anderson

model but the equation for �ij(�) is the same for different combination of i and j. The reason is we

put a quasi-hole state, rather than a quasi-particle, in the integral equation Eq.(A.1) similar to the

treatment of Wiener-Hopf approach. For example, for B11 < � < B22 there could be three type of

quasi-particle state {ij} = {11, 12, 21} and we put {ij} = {22} state as quasi-hole state. This hole

state still count one weight of the probability of 4 distributions and therefore the factor of 4 on the

left hand side of Eq.(A.1) retains even out of equilibrium. Similar idea is also applied in two type
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of bound state (strings) solution.

Other than their differences in the density distribution the computations for the current and dot

occupation expectation value are quite similar to the two strings case. We show their numerical

results in the following.

The differential conductance vs voltage as shown in Fig.A.1, obtained by taking numerical deriva-

tive on current vs voltage data, essentially gives the same picture as in two strings case, namely a

sharp Kondo peak nearby V = 0 and a broad side peak corresponding to charge fluctuations. In

the case of ⟨nd⟩ vs V , however, there is an additional feature occurring at an energy scale higher

than the energy scale of the charge fluctuation side peak (corresponding to the voltage position of

2nd peak shown in the inset) as shown in Fig. A.2. This is especially apparent if we looked at the

nonequilibrium charge susceptibility as shown in inset of Fig.A.2.

As we do not expect there should be any further charge fluctuations, we rule out, by physical

argument, the possibility of 4 strings configuration.
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Figure A.1: dI
dV vs V

4Γ for U = 8, Γ = 0.25 and various �d from �d = −U
2 to �d = 1. The inset is the

enlarged region nearby zero voltage.
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∂V ∣�d vs V voltage.

A third peak shows up in U = 4 case.
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Appendix B

Expectation value for IRLM in bound state case

In this section we carry out explicit matrix element computation for complex momenta in the case

of IRLM (where imaginary part of Bethe momenta �p = 2(p−�d)
U ). The computation for finite U

Anderson model is very similar and will not be repeated here. The summary here is that we show the

indication of orthogonality for bound state solution. Due to the complexity of different integration

regions this is not a solid mathematical proof. However the exact results for dot occupation in

equilibrium strongly suggests the validity of this orthogonality even in complex momenta case.

B.1 Normalization

We may categorize each term related as ”no mixing terms” (preserving channel quantum number)

and ”one mixing term” and ”two mixing terms”. Those with no mixing terms have normalization

factor as:

⟨p+p−∣∣p+p−⟩ =

∫

e−2�p(x1−x2)(∣Rp+ ∣2 + ∣Tp+ ∣2)(∣Rp− ∣2 + ∣Tp− ∣2)�1�2�12

+

∫

e−2�p(x1−x2)�12�̄1�̄2 +

∫

e−2�p(x1−x2)(∣Rp+ ∣2 + ∣Tp+ ∣2)�12�1�̄2

+

∫

e−2�p(x1−x2)∣
√
2i

t
Tp+ ∣2�1�̄2�12 +

∫

e−2�p(x1−x2)(∣Rp+ ∣2 + ∣Tp+ ∣2)∣
√
2i

t
Tp− ∣2�2�1�12

= (
L

2�p
− 1

(2�p)2
)(∣Rp+ ∣2 + ∣Tp+ ∣2)(∣Rp− ∣2 + ∣Tp− ∣2) + (

L

2�p
− 1

(2�p)2
)

+
2

(2�p)2
(∣Rp+ ∣2 + ∣Tp+ ∣2) +

1

2�p
∣
√
2i

t
Tp+ ∣2 +

1

2�p
∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)

Those with one mixing term in p− region:

⟨p+1p−∣∣p+2p−⟩ =

∫

e−2�p(x1−x2)(∣Rp+ ∣2 + ∣Tp+ ∣2)(Rp−T ∗
p− +R∗

p−Tp−)�1�2�12

+

∫

e−2�p(x1−x2)(∣Rp+ ∣2 + ∣Tp+ ∣2)∣
√
2i

t
Tp− ∣2�2�1�12

= (
L

2�p
− 1

(2�p)2
)(∣Rp+ ∣2 + ∣Tp+ ∣2)(Rp−T ∗

p− +R∗
p−Tp−) +

1

2�p
(∣Rp+ ∣2 + ∣Tp+ ∣2)∣

√
2i

t
Tp− ∣2
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Those with one mixing term in p+ region:

⟨1p+p−∣∣2p+p−⟩ =

∫

e−2�p(x1−x2)(∣Rp− ∣2 + ∣Tp− ∣2)(Rp+T ∗
p+ +R∗

p+Tp+)�1�2�12

+

∫

e−2�p(x1−x2)(Rp+T
∗
p+ +R∗

p+Tp+)�̄2�1�12 +

∫

e−2�p(x1−x2)∣
√
2i

t
Tp+ ∣2�1�̄2�12

+

∫

e−2�p(x1−x2)(Rp+T
∗
p+ +R∗

p+Tp+)∣
√
2i

t
Tp− ∣2�1�2�12

= (
L

2�p
− 1

(2�p)2
)(∣Rp− ∣2 + ∣Tp− ∣2)(Rp+T ∗

p+ +R∗
p+Tp+) +

1

2�p
∣
√
2i

t
Tp+ ∣2

+
2

(2�p)2
(Rp+T

∗
p+ +R∗

p+Tp+) +
1

2�p
∣
√
2i

t
Tp− ∣2(Rp+T ∗

p+ + R∗
p+Tp+)

Those with two mixing terms:

⟨1p+2p−∣∣2p+1p−⟩ =

∫

e−2�p(x1−x2)(Rp+T
∗
p+ +R∗

p+Tp+)(Rp−T
∗
p− +R∗

p−Tp−)�1�2�12

+

∫

e−2�p(x1−x2)(Rp+T
∗
p+ +R∗

p+Tp+)∣
√
2i

t
Tp− ∣2�1�2�12

= (
L

2�p
− 1

(2�p)2
)(Rp+T

∗
p+ +R∗

p+Tp+)(Rp−T
∗
p− +R∗

p−Tp−)

+
1

2�p
(Rp+T

∗
p+ +R∗

p+Tp+)∣
√
2i

t
Tp− ∣2

B.2 Dot occupation

The general form of dot occupation is given by

⟨i′p+ip−∣∣d̂†d̂∣∣j′p+jp−⟩ =
∫

∣
√
2i

t
Tp+ ∣2⟨�†

ip− ∣�
†
jp− ⟩�1�12 +

∫

∣
√
2i

t
Tp− ∣2⟨�†

i′p+ ∣�
†
j′p+⟩�2�12

Those with no mixing term has the form:

⟨p+p−∣∣d̂†d̂∣∣p+p−⟩ =

∫

∣
√
2i

t
Tp+ ∣2�1�12�̄2e−2�p(x1−x2)

+

∫

∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)�1�2�12e−2�p(x1−x2)

=
1

2�p
∣
√
2i

t
Tp+ ∣2 +

1

2�p
∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)
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Those with one mixing term in p− sector:

⟨p+2p−∣∣d̂†d̂∣∣p+1p−⟩ =

∫

∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)�1�2�12e−2�p(x1−x2)

=
1

2�p
∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)

Those with one mixing term in p+ sector:

⟨1p+p−∣∣d̂†d̂∣∣2p+p−⟩ =

∫

∣
√
2i

t
Tp+ ∣2�1�12�̄2e−2�p(x1−x2)

+

∫

∣
√
2i

t
Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)�1�2�12e−2�p(x1−x2)

=
1

2�p
(∣
√
2i

t
Tp+ ∣2 + ∣

√
2i

t
Tp− ∣2(Rp+T ∗

p+ +R∗
p+Tp+)

Those with two mixing terms:

⟨1p+2p−∣∣d̂†d̂∣∣2p+1p−⟩ =

∫

∣
√
2i

t
Tp− ∣2(Rp+T ∗

p+ +R∗
p+Tp+)�1�2�12e

−2�p(x1−x2)

=
1

2�p
∣
√
2i

t
Tp− ∣2(Rp+T ∗

p+ +R∗
p+Tp+)

The general expressions after divided out by the normalization factors are categorized as following:

⟨d̂†d̂⟩rr =
1
Γ (∣Tp+ ∣2 + ∣Tp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2))

((∣Rp+ ∣2 + ∣Tp+ ∣2)(∣Rp− ∣2 + ∣Tp− ∣2) + 1)

=

1
Γ (

Γ2

(p−�d)2+(Γ+�p)2
+ Γ2

(p−�d)2+(Γ−�p)2
(p−�d)2+�2p+Γ2

(p−�d)2+(Γ+�p)2
)

(p−�d)2+�2p+Γ2

(p−�d)2+(Γ+�p)2
(p−�d)2+�2p+Γ2

(p−�d)2+(Γ−�p)2 + 1

⟨d̂†d̂⟩rt =
1
Γ ∣Tp− ∣2

Rp−T
∗
p− +R∗

p−Tp−
=

Γ
(p−�d)2+(Γ−�p)2

2�pΓ
(p−�d)2+(Γ−�p)2

⟨d̂†d̂⟩tr =
1
Γ (∣Tp− ∣2(Rp+T ∗

p+ +R∗
p+Tp+) + ∣Tp+ ∣2)

(Rp+T
∗
p+ +R∗

p+Tp+)(∣Rp− ∣2 + ∣Tp− ∣2)

=

1
Γ (

Γ2

(p−�d)2+(Γ+�p)2
+ Γ2

(p−�d)2+(Γ−�p)2
−2�pΓ

(p−�d)2+(Γ+�p)2
)

−2�pΓ
(p−�d)2+(Γ+�p)2

(p−�d)2+�2p+Γ2

(p−�d)2+(Γ−�p)2

⟨d̂†d̂⟩tt =
1
Γ ∣Tp− ∣2

Rp−T
∗
p− +R∗

p−Tp−
=

Γ
(p−�d)2+(Γ−�p)2

2�pΓ
(p−�d)2+(Γ−�p)2

(B.1)
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A common factor 1
L is implied in the expression above. Some useful identities are listed below:

Rp± =
(p− �d)± i�p

(p− �d) + i(Γ± �p)
(B.2)

Tp± =
−iΓ

(p− �d) + i(Γ± �p)

Rp+T
∗
p+ +R∗

p+Tp+ =
−2�pΓ

(p− �d)2 + (�p + Γ)2

Rp−T
∗
p− +R∗

p−Tp− =
2�pΓ

(p− �d)2 + (Γ− �p)2

∣Rp+Tp+ ∣2 =
((p− �d)

2 + �2p)Γ
2

((p− �d)2 + (�p + Γ)2)2

∣Rp−Tp− ∣2 =
((p− �d)

2 + �2p)Γ
2

((p− �d)2 + (Γ− �p)2)2

∣Rp+ ∣2 + ∣Tp+ ∣2 =
(p− �d)

2 + �2p + Γ2

(p− �d)2 + (�p + Γ)2

∣Rp− ∣2 + ∣Tp− ∣2 =
(p− �d)

2 + �2p + Γ2

(p− �d)2 + (Γ− �p)2

Eq.(B.2) will be handy for the computation of physical quantity in this section.

B.3 Expectation value of current

The expectation value of current for one bound state is given by

⟨ij∣∣Î∣∣i′j′⟩
⟨ij∣∣i′j′⟩ =

it√
2

⟨ij∣∣( ̂†
1(0)−  ̂†

2(0))d̂− d̂†( ̂1(0)−  ̂2(0)))∣∣i′j′⟩
⟨ij∣∣i′j′⟩ ≡ ⟨ij∣∣ô− ô†∣∣i′j′⟩

⟨ij∣∣i′j′⟩ (B.3)

The expressions involving no mixing term have the following property: ⟨11∣∣ô∣∣11⟩ = ⟨12∣∣ô∣∣12⟩ =

−⟨21∣∣ô∣∣21⟩ = −⟨22∣∣ô∣∣22⟩ with ⟨11∣∣ô∣∣11⟩ given by

⟨11∣∣ô∣∣11⟩ = −1

�p
ℜ(Tp+ + Tp−(∣Rp+ ∣2 + ∣Tp+ ∣2))

Those with one mixing term in p− sector have the following property: ⟨11∣∣ô∣∣12⟩ = −⟨12∣∣ô∣∣11⟩ =

−⟨21∣∣ô∣∣22⟩ = ⟨22∣∣ô∣∣21⟩ with ⟨11∣∣ô∣∣12⟩ given by

⟨11∣∣ô∣∣12⟩ = −1

�p
ℜ(Tp−(

1 +Rp− − Tp−

2
)∗(∣Rp+ ∣2 + ∣Tp+ ∣2))
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Those with one mixing term in p+ sector have the following property: ⟨21∣∣ô∣∣11⟩ = −⟨12∣∣ô∣∣22⟩ and

⟨11∣∣ô∣∣21⟩ = −⟨22∣∣ô∣∣12⟩ with ⟨11∣∣ô∣∣21⟩ and ⟨21∣∣ô∣∣11⟩ given as

⟨11∣∣ô∣∣21⟩ = −1

�p
ℜ(Tp+(

1 +Rp+ − Tp+

2
)∗ + Tp−(

1 +Rp− − Tp−

2
)∗(Rp+T

∗
p+ +R∗

p+Tp+))

⟨21∣∣ô∣∣11⟩ = −1

�p
ℜ(Tp+(

Tp+ −Rp+ − 1

2
)∗ + Tp−(

1 +Rp− − Tp−

2
)∗(Rp+T

∗
p+ +R∗

p+Tp+))

Those with two mixing terms ⟨11∣∣ô∣∣22⟩ = −⟨22∣∣ô∣∣11⟩ = ⟨21∣∣ô∣∣12⟩ = −⟨12∣∣ô∣∣21⟩ with ⟨11∣∣ô∣∣22⟩

given by

⟨11∣∣ô∣∣22⟩ = −1

�p
ℜ(Tp−(

1 +Rp− − Tp−

2
)∗(Rp+T

∗
p+ +R∗

p+Tp+))

The general expressions after divided out by the normalization factors and timed by the appropriate

pre factor are categorized as following:

⟨Î⟩rr = 2

Γ(Γ−�p)((p−�d)2+Γ2+�2p)
((p−�d)2+(Γ−�p)2)((p−�d)2+(Γ+�p)2)

+
Γ(Γ+�p)

(p−�d)2+(Γ+�p)2

(p−�d)2+�2p+Γ2

(p−�d)2+(Γ+�p)2
(p−�d)2+�2p+Γ2

(p−�d)2+(Γ−�p)2 + 1

⟨Î⟩rt = 2

Γ(Γ−�p)((p−�d)2+Γ2+�2p)
((p−�d)2+(Γ−�p)2)((p−�d)2+(Γ+�p)2)

(p−�d)2+�2p+Γ2

(p−�d)2+(Γ−�p)2
−2�pΓ

(p−�d)2+(Γ+�p)2

⟨Î⟩tt = 2

Γ(Γ+�p)
(p−�d)2+(Γ+�p)2

− 2Γ2�(Γ−�p)
((p−�d)2+(Γ−�p)2)((p−�d)2+(Γ+�p)2)

2�pΓ
(p−�d)2+(Γ−�p)2

−2�pΓ
(p−�d)2+(Γ+�p)2

The common feature of ⟨Î⟩rr from Fig.(B.1) is that the expectation value for current is zero at

p = �d.

In the case of real momenta there exist another equivalent definition for current:

⟨Î⟩ = e⟨ †
1(−∞) 1(−∞)−  †

1(∞) 1(∞)⟩ (B.4)

To compute this quantity let us take ±∞ at some finite value (say �1 < 0, �2 > 0) and then take
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Figure B.1: ⟨Î⟩ vs p for different U or Γ in Interacting Resonance Level Model. Top left: ⟨Î⟩rr vs
p for U=0.4 (blue), 1(purple), 2(brown) with �d = −U

2 , Γ = 0.5. Top right: ⟨Îrr⟩ vs p for Γ=1

(blue), 0.5(purple), 0.2(brown) with �d = −0.2, U = 0.4. Bottom left: ⟨Î⟩rt vs p for U=0.4 (blue),
1(purple), 2(brown) with �d = −U

2 . Bottom right: ⟨Î⟩tt vs p for U=0.4 (blue), 1(purple), 2(brown)

with �d = −U
2

the limit. We then get:

⟨1p+1p−∣ †
1(�1) 1(�1)−  †

1(�2) 1(�2)∣1p+1p−⟩

=

∫

⟨�1p− ∣�1p−⟩��1,2e−2�p(�1−x2) − ∣Rp+ ∣2⟨�1p− ∣�1p−⟩��2,2e−2�p(�2−x2)

+

∫

⟨�1p+ ∣�1p+⟩�1,�1e−2�p(x1−�1) − ∣Rp+ ∣2⟨�1p+ ∣�1p+⟩�1,�2e−2�p(x1−�2)

=
1

2�p
− ∣Rp+ ∣2(

e−2�p�2

2�p
+ (∣Rp− ∣2 + ∣Tp− ∣2)

1− e−2�p�2

2�p
+

∣Tp− ∣2
Γ

e−2�p�2)

+(∣Rp+ ∣2 + ∣Tp+ ∣2)
e2�p�1

2�p
+

∣Tp+ ∣2
Γ

e2�p�1 +
1− e2�p�1

2�p
− ∣Rp− ∣2(∣Rp+ ∣2 + ∣Tp+ ∣2)

1

2�p

B.4 Orthogonality for bound state solution in IRLM

Here we show the orthogonality between different value of real part of Bethe momenta is still valid.

The proof is not complete in all possible regions but it shows strong indications that the orthogonality
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is still correct.

B.4.1 Normalization and impurity computation

The normalization factor can be expressed as

∫

xi

∫

yj

�x12�
x
34e

i[p(x1+x2)+k(x3+x4)]−�p(x1−x2)−�k(x3−x4)Zp+k+(x1 − x3)Zp+k−(x1 − x4)

Zp−k+(x2 − x3)Zp−k−(x2 − x4)�
†
p+(x1)�

†
p−(x2)�

†
k+(x3)�

†
k−(x4)(�

y
12�

y
34

ei[p(y1+y2)+k(y3+y4)]−�p(y1−y2)−�k(y3−y4)Zp+k+(y1 − y3)Zp+k−(y1 − y4)

Zp−k+(y2 − y3)Zp−k−(y2 − y4)�
†
p+(y1)�

†
p−(y2)�

†
k+(y3)�

†
k− (y4))

†

=

∫ ∫

e−2�p(x1−x2)−2�k(x3−x4)�(x1 − y1)�(x2 − y2)�(x3 − y3)�(x4 − y4)�12�34

∣Zp+k+(x1 − x3)∣2∣Zp+k−(x1 − x4)∣2∣Zp−k+(x2 − x3)∣2∣Zp−k−(x2 − x4)∣2

⟨�̄p+ ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)⟨�̄k+ ∣�̄k+⟩(x3)⟨�̄k− ∣�̄k−⟩(x4)

−eip(x1−x3)+ik(x3−x1)−�p(x1+x3−2x2)−�k(x1+x3−2x4)�(x1 − y3)�(x2 − y2)

�(x3 − y1)�(x4 − y4)�12�34�32�14Zp+k+(x1 − x3)Zp+k−(x1 − x4)

Zp−k+(x2 − x3)Zp−k−(x2 − x4)(Zp+k+(x3 − x1)Zp+k−(x3 − x4)

Zp−k+(x2 − x1)Zp−k−(x2 − x4))
†⟨�̄k+ ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)

⟨�̄p+ ∣�̄k+⟩(x3)⟨�̄k− ∣�̄k−⟩(x4)

−eip(x1−x4)+ik(x4−x1)−�p(x1+x4−2x2)−�k(2x3−x1−x4)�(x1 − y4)�(x2 − y2)

�(x3 − y3)�(x4 − y1)�12�34�42�31Zp+k+(x1 − x3)Zp+k−(x1 − x4)

Zp−k+(x2 − x3)Zp−k−(x2 − x4)(Zp+k+(x4 − x1)Zp+k−(x4 − x1)

Zp−k+(x2 − x3)Zp−k−(x2 − x1))
†⟨�̄k− ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)

⟨�̄k+ ∣�̄k+⟩(x3)⟨�̄p+ ∣�̄k−⟩(x4) + 15 other nonzero terms..

The 18 nonzero terms can be understood as following. There are 4! = 24 possible combinations

in (xi, yj) while the convergence constraints coming from two particle S matrix �x12�
x
34 and �y12�

y
34

exclude the combinations such as �(x1 − y4)�(x2 − y3) etc. These combinations take 2 × 2 + 2 ×

1 = 6 possible combinations out of the 4! and leave 18 nonzero terms. Note that there exist

oscillating term in position coordinates except for xi = yi. In what follows we shall show a few terms

related to normalization and impurity computation explicitly. Lets first compute normalization
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factor contributed by first term:

∫

xi

∫

yj

e−2�p(x1−x2)−2�k(x3−x4)�(x1 − y1)�(x2 − y2)�(x3 − y3)�(x4 − y4)�12�34

(�13 + ∣Sk+p+ ∣2�31)(�14 + ∣Sk−p+ ∣2�41)(�23 + ∣Sk+p− ∣2�32)(�24 + ∣Sk−p− ∣2�42)

⟨�̄p+ ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)⟨�̄k+ ∣�̄k+⟩(x3)⟨�̄k− ∣�̄k−⟩(x4)

=

∫

xi

e−2�p(x1−x2)−2�k(x3−x4)⟨�̄p+ ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)⟨�̄k+ ∣�̄k+⟩(x3)⟨�̄k− ∣�̄k−⟩(x4)

{�1234 + �12�34�31�14�23�24∣Sk+p+ ∣2 + �12�34�13∣Sk−p+ ∣2�41�23�24 + . . .}

=

∫

xi

e−2�p(x1−x2)−2�k(x3−x4)⟨�̄p+ ∣�̄p+⟩(x1)⟨�̄p− ∣�̄p−⟩(x2)⟨�̄k+ ∣�̄k+⟩(x3)⟨�̄k− ∣�̄k−⟩(x4)

{�1234 + ∣Sk+p− ∣2�1324 + ∣Sk+p+ ∣2∣Sk+p− ∣2�3124 + ∣Sk−p− ∣2∣Sk+p− ∣2�1342

+∣Sk+p+ ∣2∣Sk+p− ∣2∣Sk−p− ∣2�3142 + ∣Sk+p− ∣2∣Sk+p+ ∣2∣Sk−p+ ∣2∣Sk−p− ∣2�3412}

In general there are 4 × 4 = 16 terms and at most C4
2 = 4!

2!2! = 6 nonzero combinations and at

least 1 nonzero term. These nonzero term give specific ordering in position space of the form �ijkl

which means xi > xj > xk > xl. In turn they are also multiplied by �i, �j , �k, �l etc. coming from

⟨�̄p∣�̄p⟩(xi). We write down each term explicitly as following

∫

dxidxjdxkdxl�ijkl{a�i�j�k�l + b�i�j�k�̄l + c�i�j �̄k�̄l + d�i�̄j �̄k�̄l + e�̄i�̄j �̄k�̄l}

with a, b, c, d, e referring to Tp, Rp, Γ etc. �i = �(xi) and �̄i = �(−xi). Thus we see that there are 5

nonzero terms associated with each �ijkl. The integrals we need to carry out in order to get the full

expression for normalization or impurity related quantity is therefor ranged between 18× 1× 5 = 90

and 18× 6× 5 = 540 terms.

Let us evaluate some spatial integrals explicitly in the following.

∫

dx1dx2dx3dx4�1234�1�2�3�4e
−2�p(x1−x2)−2�k(x3−x4) (B.5)

=

∫

dx1dx2dx3e
−2�p(x1−x2)−2�kx3

e2�kx3 − 1

2�k
=

∫

dx1dx2e
−2�p(x1−x2)(

x2
2�k

+
e−2�kx2 − 1

(2�k)2
)

=

∫ L

0

dx1{
x1e

2�px1

(2�p)(2�k)
− e2�px1 − 1

(2�p)2(2�k)
+

e2(�p−�k)x1 − 1

(2(�p − �k))(2�k)2
− e2�px1 − 1

(2�p)(2�k)2
}e−2�px1

=
L2

8�k�p
− L

8�k�2p
+

1

16�k�3p
+

1

16�3k(�p − �k)
− 1

16�2k(�p − �k)�p
− L

8�2k(�p)
+

1

16�2k�
2
p
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The L → ∞ limit picks up L2 term in Eq.(B.5). Now let us evaluate another nonzero term con-

tributing to normalization which contains the oscillating term.

∫

dx1dx2dx3dx4e
ip(x1−x4)+ik(x4−x1)−�p(x1+x4−2x2)−�k(2x3−x1−x4)�3412�3�4�1�2

=

∫

dx3dx4dx1e
ip(x1−x4)+ik(x4−x1)−�p(x1+x4)−�k(2x3−x1−x4)(

e2�px1 − 1

2�p
) (B.6)

=

∫

dx3dx4dx1e
i(k−p)x4−�px4−�k(2x3−x4)ei(p−k)x1−(�p−�k)x1(

e2�px1 − 1

2�p
)

=

∫

dx3dx4e
i(k−p)x4−�px4−�k(2x3−x4){ ei(p−k)x4+(�p+�k)x4 − 1

(i(p− k) + (�p + �k))(2�p)
− ei(p−k)x4−(�p−�k)x4 − 1

(i(p− k)− (�p − �k))(2�p)
}

=

∫ L

0

dx3e
−2�kx3{ (e2�kx3 − 1)

(i(p− k) + (�p + �k))(2�p)(2�k)
− (e(i(k−p)−(�p−�k))x3 − 1)

(i(p− k)− (�p − �k))(i(p− k) + (�p + �k))(2�p)

− (e−2(�p−�k)x3 − 1)

(i(p− k)− (�k − �p))(2�p)(2(�k − �p))
+

(e(i(k−p)−(�p−�k))x3 − 1)

(i(p− k)− (�p − �k))(i(p− k)− (�p − �k))(2�p)
}

= { L

(i(p− k) + (�p + �k))(2�p)(2�k)
+

−1

(i(p− k) + (�p + �k))(2�p)(2�k)2

− e(i(k−p)−(�p+�k))L − 1

(i(p− k) + (�p + �k))(i(k − p)− (�p − �k))(i(k − p)− (�p + �k))(2�p)

+
1

(i(p− k) + (�p + �k))(i(k − p)− (�p − �k))(4�p�k)
+

1

(i(p− k)− (�k − �p))(2(�k − �p))(2�p)2

− 1

(i(p− k)− (�k − �p))(8�p�k(�p − �k))
− 1

(i(k − p)− (�p − �k))(i(p− k)− (�p − �k))(4�p�k)

+
e(i(k−p)−(�p+�k))L − 1

(i(p− k)− (�p − �k))(i(k − p)− (�p − �k))(i(k − p)− (�p + �k))(2�p)
}

The L → ∞ limit picks up order L term in Eq.(B.6). Note that this expression should also be

multiplied by Sk−p+ ∣Sk+p+ ∣2∣Sk+p− ∣2∣Sk−p− ∣2 in comparing with Eq.(B.5). By using the convention

Zp+p−(x1, x2) = �12+Sp−p+�21 = �12 we have Sk+p+ =
(p+k−2�+U

2 (�k−�p))+i(�k+�p−U
2 (k−p))

(p+k−2�−U
2 (�k−�p))+i(�k+�p+U

2 (k−p)) , Sk+p− =

(p+k−2�+U
2 (�k+�p))+i(�k−�p−U

2 (k−p))
(p+k−2�−U

2 (�k+�p))+i(�k−�p+U
2 (k−p)) , Sk−p− =

(p+k−2�−U
2 (�k−�p))−i(�k+�p+U

2 (k−p))
(p+k−2�+U

2 (�k−�p))−i(�k+�p−U
2 (k−p)) , and Sk−p+ =

(p+k−2�−U
2 (�k+�p))+i(−

(p+k−2�+U
2 (�k+�p))+i(−

The factor Sk−p+ ∣Sk+p+ ∣2∣Sk+p− ∣2∣Sk−p− ∣2 approaches to zero for p → k and does not diverge in

all range of (p, k). Thus Eq.(B.6) is smaller by an order L than Eq.(B.5). Also note that the limit

p→ k does not change the order of magnitude in both Eq.(B.5) and Eq.(B.6) as can be observed in

both expressions there are counter terms to cancel this possible divergence.

Now let us compute the impurity related term by putting one of the position coordinate to be
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zero. For the first term (no oscillating term in position coordinate) we take x4 = 0 and we get

∫

dx1dx2dx3e
−2�p(x1−x2)e−2�kx3�1234�1�2�3�4 (B.7)

=

∫

dx1dx2e
−2�p(x1−x2)

e−2�kx2 − 1

−2�k

=
−1

(2�k)2(2(�p − �k))
+

1

(2�k)(2�p)(2(�p − �k))
+

L

(2�k)(2�p)
− 1

(2�k)(2�p)2

For those come with oscillating term we choose x2 = 0 in Eq.(B.6) and compute impurity related

term. The integral we need to carry out is of the form:

∫

dx3dx4dx1e
ip(x1−x4)+ik(x4−x1)−�p(x1+x4)−�k(2x3−x1−x4)�3412�3�4�1�2 (B.8)

=
1

(i(p− k)− (�p − �k))(−2(�p − �k))(2�p)
− 1

(i(p− k)− (�p − �k))(−2(�p − �k))(2�k)

− e(i(k−p)−(�p+�k))L − 1

(i(p− k)− (�p − �k))(i(k − p)− (�p − �k))(i(k − p)− (�p + �k))

+
1

(i(p− k)− (�p − �k))(i(k − p)− (�p − �k))2�k

Thus we see that the oscillating terms is smaller by an order L in impurity related computation.

It is therefore consistent with the normalization results that those with oscillating term in position

coordinates contribute less than order L compared with non oscillating term.

The above results can be analyzed in the general case as following. Let us discuss normalization

factor first and ignore the regional separations coming from inner product of �†
p(xi) terms. The

results we get thus will be overestimated as we integrate out larger phase space.

∫

xi−xj

∫

xi+xj

∫

xk−xl

∫

xk+xl

e−2�p(xi−xj)e−2�k(xk−xl)�ijkl =
L2

2�p�k

∫

xi−xl

∫

xi+xl

∫

xj

∫

xk

ei(p−k)(xi−xl)−�p(xi+xl−2xj)−�k(2xk−(xi+xl))�klij

=

∫ 0

−L
d(xi − xl)

∫ L

−L
dxk

∫ xk

−L
d(xi + xl)

∫ xi+xl

−L
dxje

i(p−k)(xi−xl)−�p(xi+xl−2xj)−�k(2xk−(xi+xl))

=
1− e−i(p−k)L

i(p− k)

L

2�k�p
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∫

xi

∫

xj

∫

xk

∫

xl

eip(xj−xl)+ik(xl−xj)−�p(2xi−xj−xl)−�k(xj−xl)�ijkl

=
L

�p(i(k − p) + (�p + �k))2
+

e−4�pL − 1

(2�p)2(i(k − p) + (�p + �k))2

− e−2(�p+�k)L − 1

(i(p− k) + (�p − �k))(i(k − p) + (�p + �k))2(i(p− k)− (�p + �k))

− e−4�pL − 1

2�p(i(p− k) + (�p − �k))(i(k − p) + (�p + �k))2
+

Le2(i(p−k)−(�p+�k))L + L

(i(p− k) + (�p − �k))(i(p− k)− (�p + �k))2

− e2(i(p−k)−(�p+�k))L − 1

(i(p− k) + (�p − �k))(i(p− k)− (�p + �k))3
− Le−4�pL − L

2�p(i(p− k) + (�p − �k))(i(k − p) + (�p + �k))

+
e2(i(p−k)−(�p+�k))L − 1

(i(p− k) + (�p − �k))2(i(p− k)− (�p + �k))2
− e−4�pL − 1

2�p(i(p− k) + (�p − �k))2(i(k − p) + (�p + �k))

+
Le2(i(p−k)−(�p+�k))L − L

(i(p− k) + (�p − �k))(i(p− k)− (�p + �k))2
− Le−4�pL − L

2�p(i(p− k) + (�p − �k))(i(k − p) + (�p + �k))

∫

xi

∫

xj

∫

xk

∫

xl

ei(p−k)(xi+xj−xk−xl)e−(�p+�k)(xi−xj+xk−xl)�ijkl

=
e4i(p−k)L − 1

2i(p− k)(i(p− k) + (�p + �k))2(i(p− k)− (�p + �k))
− e2(i(p−k)−(�p+�k))L − 1

(i(p− k) + (�p + �k))2(i(p− k)− (�p + �k))2

− 2Le2(i(p−k)−(�p+�k))L

(i(p− k) + (�p + �k))(i(p− k)− (�p + �k))2
+

e2(i(p−k)−(�p+�k))L − 1

(i(p− k) + (�p + �k))(i(p− k)− (�p + �k))3

+
e4i(p−k)L − 1

(2i(p− k))2((p− k)2 + (�p + �k)2)
− e2(i(p−k)−(�p+�k))L − 1

2i(p− k)(i(p− k) + (�p + �k))((p− k)2 + (�p + �k)2)

+
L

i(p− k)(i(p− k)− (�p + �k))2
− e2(i(p−k)−(�p+�k))L − 1

2i(p− k)(i(p− k)− (�p + �k))(i(p− k)− (�p + �k))2

B.4.2 summary

In above we have shown explicit results in 2 bound state computation both in normalization factor

and impurity related term. By taking the L→ ∞ limit the present results suggest the orthogonality

in real part of the bound state is valid. Further investigation into other cases (regions of integrals) is

underway and to compute complete results a further simplification is required to reduce the number

of integrals being carried out.
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