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ABSTRACT OF THE DISSERTATION 

CLASSIFICATION AND MULTIPLE  

TESTING FOR MICROARRAY DATA 

by YAUHENIYA CHERKAS 

 

Dissertation Director:  

Professor Javier Cabrera 

 

This thesis aims to provide a solution to the classification and hypothesis testing 

problems as well as to create a tool to perform clustering, hypothesis testing or 

classification tasks automatically via simple menu-driven interface. 

Since the first appearance of microarrays in 1995, they became a technique for large 

gene expression screening worldwide. The quantity of data generated from microarray 

experiments is enormous, requiring new careful methods of analysis of these high-

dimensional data. One of the problems encountered when dealing with this type of data is 

overfitting. Overfitting happens when information selected is related to the condition of 

interest only by chance. 

This thesis consists of four major parts. The first part contains the overview of 

microarray methodology and current techniques applied to analyze gene expression data. 

The second part uses partial least squares themed idea to develop the algorithm 

where one can control the FDR (false discovery rate) to extract differentially expressed 

genes in the analysis of gene expression data. The above procedure can be either used 
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separately or as a part of the scheme where it provides weights that can be used together 

with another selection method or as a part of ensemble. 

The third part of the thesis deals with the problem of comparing several treatments 

to the control. In the setting where one wants to find a ‘bump’ in measurements of several 

groups, the test statistic is considered that is based on maximum and minimum of the 

group mean differences. Then the derived distribution of a proposed test statistic can be 

used to make inferences. 

The fourth part describes the software developed to provide a menu-driven 

computing environment for data manipulation and analysis. It includes different methods 

that can be used to compare expression profiles of genes and methods for gene clustering 

and various visualization and exploration.  
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Chapter 0 

Introduction  

0.1 Introduction 

Currently technology has reached a point that massive datasets, such as 

microarray data, have established themselves as a permanent part of the statistical 

analysis. Problems arising from the high-dimensional data include classification tasks as 

well as the identification of a relevant subset of genes. A large collection of data is 

available in the public domains and much progress has been made regarding the 

development of the technologies and the analyses of the data. However, a number of 

challenges remain, mostly related to the large-scale nature of the data or to the inherent 

variability of microarray measurements. 

 

0.2 Dissertation Structure 

This dissertation is mainly concentrated on the analysis of the high dimensional 

microarray data. It starts with the introduction and the description of the datasets used for 

comparisons. Overview of microarray technology is covered in the Chapter 1. Chapter 2 

describes statistical methods for the microarray data analysis and identifies challenges 

associated with them. Chapter 3 is devoted to the partial least squares methodology and 

its applications to microarrays. It also describes the simple extension of the PLS 

algorithm to the case of non-continuous response data. In the Chapter 4 we introduce a 

modified PLS scheme which uses approximations of the regression coefficients for 

component weights. We compare this methodology to other classification methods and 

assess its performance in a variety of scenarios. Chapter 5 talks about finding a ‘bump’ in 
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measurements when comparing several groups to the control. It contains the description 

of the method based on the distribution of the proposed statistic and its application to two 

real-life datasets. Other methods considered are Dunnett’s and permutation-based tests. 

Chapter 6 is devoted to the overview of the R software package that includes methods 

allowing automatic analysis of datasets. Finally, the dissertation is finished with 

concluding remarks and perspectives for future research. 

 

0.3 Utilized Datasets  

There are several real-life datasets used for the performances comparison of 

various methods. First, for methodology illustration purpose we will use the pls package 

datasets with the continuous response variable. Then we will turn to publicly available 

datasets used for classification tasks. 

Yarn dataset. A data set with 28 near-infrared spectra (NIR) of PET yarns, 

measured at 268 wavelengths, as predictors, and density as response (density) 

(Swierenga, de Weijer, van Wijk, and Buydens 1999).  

Gasoline dataset. A data set consisting of octane number (octane) and NIR 

spectra (NIR) of 60 gasoline samples (Kalivas 1997). Each NIR spectrum consists of 401 

diffuse reflectance measurements from 900 to 1700 nm. 

Leukemia dataset. This dataset contains gene expression levels of n = 72 patients 

either suffering from acute lymphoblastic leukemia (ALL, 47 cases) or acute myeloid 

leukemia (AML, 25 cases) and was obtained from Affymetrix oligonucleotide 

microarrays.  
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Breast cancer dataset. This dataset monitors p = 7,129 genes in 49 breast tumor 

samples. The data were obtained by applying the Affymetrix technology.  

Colon cancer datase. In this dataset, expression levels of 40 tumor and 22 

normal colon tissues for 6,500 human genes are measured using the Affymetrix 

technology.  

Prostate cancer dataset. The raw data comprise the expression of 52 prostate 

tumors and 50 non-tumor prostate samples, obtained using the Affymetrix technology.  

SRBCT dataset. This dataset contains gene-expression profiles for classifying 

small round blue-cell tumors of childhood (SRBCT) into four classes (neuroblastoma, 

rhabdomyosarcoma, non-Hodgkin lymphoma, Ewing family of tumors) and was obtained 

from cDNA microarrays. There are 88 tissues associated with an expression profile of 

2,308 genes, already standardized to zero mean and unit variance across genes. 

Lymphoma dataset. This dataset contains gene-expression levels of three most 

prevalent adult lymphoid malignancies. The total sample size is n = 62, and the 

expression of p = 4,026 genes is documented. 

Brain tumor dataset. This dataset contains n = 42 microarray gene expression 

profiles from five different tumors of the central nervous system. The raw data were 

originated using the Affymetrix technology and there are 5,597 genes remained. 

National Cancer Institute (NCI) dataset. This comprises gene-expression levels 

of 5,244 genes for 61 human tumor cell lines which can be divided in 8 classes.  
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Chapter 1 

Microarrays 

 

1.1 Introduction 

In recent years, a number of novel biotechnologies have enabled biologists to 

readily monitor genome-wide expression levels. Microarray technologies, which can 

measure tens of thousands of gene expression values simultaneously in a single 

experiment, across different conditions and over time, have been widely used in 

biomedical research. Since they were introduced in the early nineties, they have found 

many applications, such as classification of tumors, assigning functions to previously 

unknown genes, grouping genes into functional pathways, etc. Microarray technology is 

based on the hybridization of RNA from tissues or cells to either cDNA or 

oligonucleotides immobilized on a glass chip or rarely on a nylon membrane.  

With the wealth of gene expression data from microarrays (such as high density 

oligonucleotide arrays and cDNA arrays) prediction, classification, and clustering 

techniques are used for analysis and interpretation of the data. Some applications are for 

example in molecular classification of acute leukemia (Golub et al., 1999), cluster 

analysis of tumor and normal colon tissues (Alon et al., 1999), clustering and 

classification of human cancer cell lines (Ross et al., 2000), diffuse large B-cell 

lymphoma (DL-BCL; Alizadeh et al., 2000), human mammary epithelial cells and breast 

cancer (Perou et al., 1999, 2000) and skin cancer melanoma (Bittner et al., 2000). These 

techniques have also helped to identify previously undetected sub-types of cancer (Golub 
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et al., 1999; Alizadeh et al., 2000; Bittner et al., 2000; Perou et al., 2000). The problem of 

‘prediction’ may come in various forms of applications as well; the prediction of patient 

survival duration with germinal center B-like DLBCL compared to those with activated 

B-like DLBCL using Kaplan–Meier survival curves (Ross et al., 2000). 

 

1.2 Biological Background 

There are four forms of life namely Eukaryote, Prokaryote (Bacteria), Archean 

and Viruses. These are distinguished from each other on the basis of the presence or 

absence of nuclei and well-structured compartments within their cells. Human life falls 

under the Eukaryote form, which makes this form of life to be of particular interest. A 

cell is the structural and functional basic unit of a living organism, and is sometimes 

called the “building block of life". Each cell is a complex system consisting of many 

different building blocks enclosed in membrane bag (Figure 1.2.1). 

 

Figure 1.2.1: A model of a eukaryotic cell (from On-Line Biology Book ) 
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An essential feature of most (prokaryote and eukaryote) living cells is their ability 

to grow in an appropriate environment and to undergo cell division. The growth of a 

single cell and its subsequent division is called the cell cycle.  

Cells consist of molecules. There are four basic types of molecules involved in 

life: (1) small molecules – amino acids, (2) proteins – main building blocks and 

functional molecules of the cell, (3) DNA – primarily serves as the storage material for 

genetic information and (4) RNA - can function as a carrier of genetic information, a 

catalyst of biochemical reactions, an adapter molecule in protein synthesis, and a 

structural molecule in cellular organelles. Proteins, DNA and RNA are known 

collectively as biological macromolecules.  

DNA is organized as a chain of small molecules, called nucleotides (Figure 1.2.2). 

There are four different nucleotides Adenosine (A), Guanine (G), Cytosine (C) and 

Thymidine (T), which are usually referred to as bases. DNA may be single or double 

stranded. DNA forms a double strand by establishing chemical bonds between pairs of 

complementary bases on the two strands. Adenine binds (only) with Thymine and 

Guanine binds (only) with Cytosine. This complementarity is a central feature of DNA 

and it is behind such important processes as replication and gene expression. 

Another important molecule is RNA which, like DNA, is constructed from 

nucleotides, but instead of the Thymine (T), it has a similar molecule, Uracil (U), which 

is not found in DNA. Because of this difference RNA does not form a double helix, 

instead they are usually single stranded, but may have complex spatial structure due to 

complementary links between the parts of the same strand. RNA has different functions 

in the cell. Mainly, we are interested in its role as an intermediate between DNA and 



8 

 

proteins. It is common to use the term polynucleotide to describe a chain of either DNA 

or RNA. Some polynucleotide chains are unstable, and, instead of working with them it is 

common to use their complementary sequence which has to be specifically synthesized. 

In this case, one talks of cDNA or cRNA. 

 

Figure 1.2.2: The DNA structure. 

A gene is the part of DNA, which contains the genetic code for the chain of amino 

acids that form a particular protein. The process of deciphering the code, referred to as 

gene-expression, consists of two steps (Figure 1.2.2).  

The first step is called transcription and takes place in the cell core, the nucleus. 

Messenger ribonucleic acid (mRNA) is created by copying a strand of DNA. The mRNA 



9 

 

then leaves the nucleus and moves into the cytoplasm, where the second part of the 

process, translation, takes place. Each codon, a triplet of nucleotides of the mRNA 

sequence, corresponds to an amino acid, which is consecutively attached to a chain 

forming the protein. 

Currently most of the research lies in the field of structural genomics – finding the 

DNA sequence of various organisms. However, functional genomics which focuses on 

describing gene functions and gene interactions, and on finding patterns in the expression 

levels of genes under different conditions is also developing rapidly. Gene-expression 

that can be quantified by the number of mRNA or proteins produced in the cell is 

measured by high-throughput technologies, such as microarrays. 
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Figure 1.2.2: Diagram of gene expression (Marieb, 2000) 
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1.3 Microarray Technology 

To understand the essence of gene expression data, it is necessary to consider the 

central dogma of molecular biology (Figure 1.3.1) that represents process of reading 

content of a gene. In order to read the information contained in DNA, first, their 

functional units, genes are transcribed during transcription into messenger ribonucleic 

acid (mRNA)), which is based on the complementary DNA strand. mRNA molecules 

serve as  templates for the protein synthesis; they are transported to the cytoplasm and 

repeatedly read by the ribosomes. Before the mRNA is ready to be translated, it 

undergoes several processes i.e. splicing, which means that the pre-mRNA is modified to 

remove certain stretches of non-coding sequences called introns. The stretches that 

remain include protein-coding sequences and are called exons. Finally, consecutive three 

nucleotide bases of the mRNA sequence are translated into corresponding amino-acids 

and linked together to form protein chains.   

 

 

Figure 1.3.1: The Central Dogma of Molecular Biology. 
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In order to understand the role and function of the genes one needs the complete 

information about their mRNA transcripts and proteins. Unfortunately, exploring the 

protein functions is very difficult due to their unique 3-dimentional complicated structure 

and a shortage of efficient technologies. To overcome this difficulty one may concentrate 

on the mRNA molecules produced by the genes of interest (gene expression) and use this 

information to investigate the functional roles of the genes. This idea was a motivation 

for the development of microarrays technique, as a method allowing for studying the 

interaction between thousands of genes based on their mRNA transcript level.        

Although the concept of using microarrays can be traced back 25 years to the 

introduction of the Southern blot, modern microarray analysis was introduced in 1995 by 

a Stanford University research team led by Pat Brown and Ron Davis. Their seminal 

publication was titled “Quantitative monitoring of gene expression patterns with a 

complementary DNA microarray” and has since been cited over 1,500 times. 

A microarray is typically a glass slide onto which DNA molecules are fixed in an 

orderly manner at specific locations called spots or features (see for example Figure 

1.3.2). A microarray may contain thousands of spots and each spot may contain a few 

million copies of identical DNA molecules that uniquely correspond to a gene. There are 

several DNA microarray technologies. Currently, two approaches are prevalent: cDNA 

arrays and oligonucleotide arrays. Both have notable and distinct advantages. 

 

Figure 1.3.2: Microarray 
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1.3.1 cDNA Microarrays 

A typical two-channel cDNA microarray (for a graphical display see Figure 1.3.3) 

is constructed as follows. Messenger RNA (mRNA) from two different biological 

samples is reverse-transcribed into cDNA, labeled with either green (Cy3) or red (Cy5) 

dye, and hybridized to DNA sequences which have been spotted onto a glass slide prior 

to the hybridization. Corresponding to the dyes and different absorption frequencies, the 

biological signals in the samples are referred to as channels. After hybridization, a laser 

scanner measures dye fluorescence of each color at a fine grid of pixels. Higher 

fluorescence indicates higher amounts of hybridized cDNA, which in term indicates a 

higher gene-expression in the sample. A spot typically consists of a number of pixels. 

Image analysis algorithms assign pixels to a spot and produce summaries of fluorescence 

at each spot, as well as summaries of fluorescence in the surrounding unspotted areas 

(background).  

 

Figure 1.3.3: Two-channel cDNA processing 
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For each spot on the array, a typical output consists of at least four quantities, one 

of each color (channel) for both the spot and the background. The use of two channels 

allows for measurement of relative gene-expression across two sources of cDNA, 

controlling for the amount of spotted DNA. One way of analyzing two channel cDNA 

arrays is to take the ratios of intensities at each spot. The advantage of the dual channel 

approach is that it prevents problems in the data that could be caused by variable 

concentrations of DNA material spotted per DNA sequence. Since both labeled cDNAs 

compete for the same spot, the relative ratio is still accurate even if the amount of spotted 

material varies from spot to spot. 

The spots of DNA correspond to multiple pixels. An image analysis algorithm 

first determines the region of the grid containing the spot. One of many types of 

segmentations techniques is then used to determine the set of pixels belonging to that 

spot, also referred to as the foreground, and those belonging to the background region. 

The signal intensity of all pixels belonging to the fore- or background is then summarized 

per spot by taking the mean or median value. Thus, an output file is created, per label, 

containing the summarized signal intensity values.  

The image files of the two labels are also pseudo-colored and merged by an image 

analysis algorithm, producing a microarray image. The red or green spots indicate the 

presence of mRNA from the test or reference population, respectively. If mRNA from 

both groups is present, the spot has a yellow color. Black spots indicate that no 

hybridization took place for the particular probe. 
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1.3.2 Oligonucleotide Microarrays 

The second platform to measure gene expression levels is the high-density 

oligonucleotide array. Here silicon chips contain probes consisting of short 

oligonucleotide strands, synthesized or deposited on their surface. There exist many types 

of oligonucleotide arrays. The most popular array type is the Affymetrix GeneChip 

(Figure 1.3.4). It is composed of 11-20 pairs of oligonucleotides, each of length of 25 

base pairs. The two types of probes in each pair are either perfect match (PM) and taken 

from the gene sequence, or mismatch (MM) and created by changing the middle (13th) 

base of the PM sequence to reduce the rate of specific binding of mRNA for that gene. 

The goal of MMs is to control for nonspecific binding of mRNA from other parts of the 

genome. 

 

Figure 1.3.4: Oligonucleotide Chip 
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The processing of an oligonucleotide array is, to some extent, similar to that of a 

cDNA microarray. mRNA, extracted from the tissue under study, is labeled with a 

fluorescent dye and allowed to hybridize with the probes on the chip. The chip is then 

scanned to obtain an image. Contrary to cDNA microarrays, GeneChips are one-channel 

arrays, containing only one biological sample per chip. The different colors on the image 

indicate the hybridization intensity. The difference in signal intensity, between the perfect 

and mismatch probes, averaged across all probe pairs of a set, provides an estimate of the 

gene-expression. 

 

1.3.3 Comparison of cDNA and Oligonucleotide Microarrays 

Each of the cDNA and oligonucleotide arrays has their own benefits and 

disadvantages. cDNA microarrays can be prepared directly from the isolated cDNA 

clones. Once a set of corresponding PCR products has been generated, microarrays can 

be created in multiple versions containing the entire set of cDNA sequences, resulting in 

large-scale arrays for identification of differentially expressed genes of interest or small-

scale arrays suitable for specific research applications. They are generally easier to 

analyze and more flexible. The most important advantage of cDNA microarrays is that 

they are less expensive to make than a single nucleotide array. However, cDNA 

microarrays rely on the use of multiple fluorescent dyes. As a result, the comparisons 

between signal measurements of different colors are subject to dye bias. On the other 

hand, the approach of using two biological samples per cDNA array leads to a reduction 

in the between-array variability. 
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Oligonucleotides can be synthesized either in plates or directly on solid surfaces 

making it easier to prepare the DNA probes. Also, the probes can be designed to 

represent unique gene sequences such that cross-hybridization between related gene 

sequences is minimized to a degree dependent upon the completeness of available 

sequence information. Oligonucleotide arrays only deal with one biological sample per 

chip. Thus, twice as many arrays are needed. This makes oligonucleotide microarrays 

more expensive. However, the fact that they are designed to estimate absolute levels of 

gene-expression makes them more easily comparable to arrays from different 

experiments. 
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Chapter 2 

Statistical Data Analysis 

 

2.1 Introduction  

In the microarray setting the following are the statistical components of a 

microarray experiment (Allison et al. 2006): 

• Design – The development of an experimental plan to maximize the quality and 

quantity of information obtained.  

• Preprocessing – Processing of the microarray image and normalization of the data 

to remove systematic variation. Other potential preprocessing steps include 

transformation of data, data filtering and, in the case of two-color arrays, 

background subtraction.  

• Inference and/or classification – Inference aims at testing statistical hypotheses 

(these are usually about which genes are differentially expressed). Classification 

refers to analytical approaches that attempt to divide data into classes with no 

prior information (unsupervised classification) or into predefined classes 

(supervised classification).  

• Validation of findings – It is the process of confirming the validity of the 

inferences and various conclusions drawn in the study. 

 

2.2 Design 

The importance of design of experiments (DOE) for microarray studies was 

emphasized by Kerr and Churchill (2001). The problem of designing a microarray 
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experiment can be decomposed into three distinct layers. First, replication of biological 

samples is essential in order to draw conclusions that are valid beyond the scope of the 

particular samples that were assayed. Second, technical replicates increase precision and 

provide a basis for testing differences within treatment groups. Third, duplication of 

spotted clones on the microarray slides increases precision and provides quality control 

and robustness to the experiment. 

The basic variation of gene expression data is due to microarray experiments 

performed with replication. The amount of data gained, quality of data, assessment of the 

sources of variation, estimation of error variation, and precision of estimates among 

others are factors contributing to the choice of the design. Usually three types of 

replication are recognized: (1) spot to spot, (2) array to array, and (3) subject to subject. 

The replication of spots (i.e., genes) is achieved by depositing probes for the same genes 

multiple times on the array. Array to array replication refers to multiple hybridizations 

using the same mix of RNA source. The third type of replication is sampling multiple 

individuals. The first assesses within array variation (spot-to-spot variation), the second 

between array variation, and the third biological variation. 

Kerr and Churchill emphasized principles of DOE. They described designs 

commonly used in practice called the reference and loop design (see Figure 2.2.1). The 

term reference design refers to the original design, where every sample is compared with 

a common reference. With T treatments and k replicates per treatment, we use kT arrays.  

If there are technical dye-swaps, these are averaged to form 1 replicate. For more than 

two varieties, Kerr and Churchill proposed a loop structure design, which collects twice 

as much data on the varieties of interest than the reference design. A loop is balanced for 
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dye effects and has two replicates at each node. For T treatments using Tk arrays we have 

2k replicates as compared to a reference design for which the same number of arrays 

yields only k replicates. In these designs, varieties are balanced with respect to dyes.  

 

 

Figure 2.2.1: Some basic designs for 2-channel microarrays. 

 

Despite potential gains, carefully designed experiments have not been widely 

adopted in microarray studies. One reason is that reference design, although inefficient, 

can be easily extended to more samples by simply adding another array using the same 

reference. Other reasons are associated cost, physical limitations of the experimental 

procedure, and innovations in sample preparation, labeling, and detection.  
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2.3 Preprocessing 

Before any kind of microarray data can be analyzed for differential expression several 

steps must be taken. Raw data must be quality assessed to ensure its integrity. 

Unprocessed raw data will always be subject to some form of technical variation and thus 

must be preprocessed to remove as many unwanted sources of variation as is possible, to 

ensure that results are of the highest attainable level of accuracy. Ideally, the data being 

assayed should be preprocessed using several different methods, the results of which 

should be compared to identify which method is of the highest level of suitability. The 

most appropriate method should then be used to preprocess the raw data before 

differential expression analysis.  

The pre-processing steps include the image analysis, quality control of arrays, 

background subtraction, summarization of intensities (for oligo microarrays), and 

normalization (within-and-across) arrays. 

Image Analysis 

The processing of scanned microarray images can be separated into three major tasks 

(Yang YH, et al. 2001): 

1. Addressing or gridding is the process of identifying the target areas or the 

combined area of a spot and its background (usually performed by a 

software). 

2. Segmentation allows the classification of pixels either as foreground or as 

background. According to the geometry of the spots they produce, existing 

segmentation methods can be categorized into fixed-circle, adaptive circle, 

adaptive shape and histogram segmentation. 
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3. Intensity extraction (reduction) involves calculating, for each spot on the 

array, foreground and background intensities, and possibly, quality measures. 

For the spot intensity calculation one can use various summary values: mean 

or median values of the pixel intensities, total sum, ratio, as well as weighted 

or trimmed mean. Comparisons performed by Yang et al. (2002c) indicated 

that the differences among the algorithms had very small impact on the spot 

intensity values. Background intensity calculation methods can be divided into 

four categories (i) local background intensities, (ii) morphological opening, 

(iii) constant background, (iv) no adjustment. The choice of background 

adjustment method can have a large impact on the final output.  

Various methods for appropriate quantification of spots on microarrays differ mainly 

in a way of how spot segmentation and distinguishing foreground from background 

intensities are carried out.  

Quality Control of Arrays 

Several methods have been proposed to develop microarray quality-control (QC) 

measures that quantify the measurement quality for any particular array (for example, 

using a graphical approach, Chen et al. 2004). A simple quality control procedure can be 

established at the moment when the spotted image is stored in the database by running a 

procedure that produces the following items (Amaratunga and Cabrera 2004): 

1. An image quality graph could be used to detect specific problems with the array.  

2. A side-by-side display of boxplots of gene-expression measures for the sequence 

of arrays, or a set of summaries based on them, could be used to check whether 

there are any changes between the arrays. 
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Normalization 

Before multiple microarray measurements can be integrated into a single analysis, 

the reported measurements need to be normalized, or modified (possibly corrected), to 

make them comparable. Normalization is useful for a number of situations including: (i) 

within-slide comparison (ii) multiple-slide comparison, and (iii) paired-slide comparison 

for dye-exchange experiments (Yang et al., 2001a). It is a matter of adjusting the overall 

brightness of each scanned microarray image, assuming that the quantity of RNA applied 

to an array is equal between the arrays. 

Regardless of array design, normalization following image acquisition requires 

two sequential steps: selection and calibration of data derived from genes known not to 

be affected by the experimental conditions under investigation (called ‘invariant’ genes).  

First, a group of non-differentially expressed or invariant genes has to be 

identified. Selection criteria include proportion of genes that are expected to change 

across samples and the availability of control DNA sequences. The following methods 

have been used:  

1. All genes or global normalization (may include trimming of upper/lower extreme 

values): the assumption underlying this approach is that the total mass of mRNA 

labeled with either Cy3 or Cy5 is equal. While the intensity for any one spot may 

be higher in one channel than the other, when averaged over thousands of spots in 

the array, these fluctuations should average out. Consequently, the total integrated 

intensity across all the spots in the array should be equal and the ratio of the 

arithmetic mean equal to one. 
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2. Housekeeping genes:  In the past, the expression levels of housekeeping genes 

were assumed to be constant and were frequently used to normalize microarray 

expression data (Camerer et al., 2000). However, it has been found that 

housekeeping genes are occasionally regulated, too (Foss et al., 1998; Schmittgen 

and Zakrajsek, 2000; Neuvians et al., 2005). Using housekeeping genes to 

normalize expression data could, therefore, lead to erroneous conclusions (Yu et 

al., 2000). Global normalization and normalization to housekeepers may be used 

when comparing similar samples or when not many changes are assumed. 

However, if the number of predetermined housekeeping genes is small or their 

intensities do not cover the full range of signal intensities, this approach may not 

provide a good fit for non-linear normalization (Tseng et al., 2001). 

3. Exogenous control genes: In contrast, exogenous control genes to normalize 

microarray data is a universally applicable normalization strategy as it does not 

depend on assumptions like the ones described above. Obviously, external control 

RNAs should be chosen not to cross-hybridize with RNA from the organism 

being studied, but should be similar in their general characteristics. 

4. Genomic DNA:  The rationale behind normalization with genomic DNA is that it 

represents a constant copy number for a given mass of DNA.  

5. Algorithmic selected: Non-differentially expressed genes may be estimated solely 

by mathematical algorithms instead of biological criteria. This may be achieved 

by a rank-invariant method that selects signals from spots where the difference of 

the rank of the Cy3 and Cy5 signals are very close to each other and where the 

rank of the mean of replicate spots is not within the highest/lowest ranks overall.  
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For the second step one has to estimate normalization constant or function (linear or 

non-linear) for either signals or ratios using set of above invariant genes. Irizarry et al. 

reviews normalization procedures for microarray data. For cDNA arrays the 

normalization procedure presented in Dudoit et al. (2002) has worked well in practice. 

For this procedure for each array, a loess curve is fitted to the MVA plot (Mean 

difference of intensities for two dyes Versus Average intensities for two dyes, Yang et al. 

2001, Heldermans et al. 2007) of intensities of the red and green labels and the residuals 

are considered the normalized log ratios. For normalizing GeneChip arrays various 

methods have been proposed and reviewed by Bolstad et al. (2002). Quantile 

normalization was found to perform best. The goal of quantile normalization is to make 

the distribution of probe intensities the same for arrays i = 1,…, I. The normalization 

maps probe level data from all arrays, i = 1,…, I, so that an I -dimensional quantile–

quantile plot follows the I -dimensional identity line.  

 

 

2.4 Inference, classification and validation 

 The objectives of a microarray studies are diverse and can be vaguely separated 

into two subgroups (Figure 2.4.1): group comparison (inference) and classification. For 

each objective, there exists a wide range of statistical techniques to analyze the data and 

to answer the research questions.  
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Figure 2.4.1 Guidelines for the statistical analysis of microarrays (Allison et al. 2005).  

 

Inference (class comparison) involves making conclusions about the truth of 

hypotheses that involve unobserved parameters about whole populations, which are based 

on statistics obtained from samples. The process of classification aims at either placing 

objects (for example, genes) into pre-existing categories (supervised classification), or 

developing a set of categories into which objects can subsequently be placed 

(unsupervised classification). To perform a validation of a method it is best to have a 

sufficiently large collection of samples to allow an independent test set and training set. 

In practice, usually only a limited number of samples are available, and these are needed 

Design 

• Biological replication should be incorporated 

• More replicates provide greater power  

• mRNA pooling can be useful when testing for differential 

expression 

• Avoid confounding by extraneous factors 

Inference 

• Use a statistic that incorporates variability 

• Fold change alone is not appropriate 

• Use variance shrinkage in analyses 

• Use FDR-estimation methods to handle 

multiple testing 

• Use gene-class testing to boost power and 

facilitate interpretation.  

Classification 

• Unsupervised: Is cluster analysis truly 

desired? If so, evaluate stability through 

resampling methods 

• Supervised: Use cross-validation and 

take selection bias into account 

Follow-up/validation 

• Determine goals of validation and 

select approach to protect against the 

most plausible threats to validity 

Preprocessing 

• High-density oligonucleotide arrays: RMA or GCRMA are 

reasonable choices 

• cDNA microarrays: Many  methods abound, however there is 

no clear winner 
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for building and training the algorithm. An alternative to using an independent test set is 

to leave out k when using the cross-validation method.  

Class Comparison 

The goal of a class comparison is usually to determine a relatively small list of 

genes, which are under- or over-expressed in one of the classes compared to others. Fold 

change was the first method used to evaluate whether genes are differentially expressed, 

and it gives a reasonable measure of effect size. It is now considered to be an inadequate 

test statistic because it does not incorporate variance and offers no associated level of 

confidence. A more appealing option is the use of basic parametric or non-parametric test 

statistics for group comparison, e.g., the t-test or the Wilcoxon rank sum test. In 2001, 

Tusher et al. proposed a modified version of the t-test, which later was modified by 

adding a constant, the ”fudge factor”, to the denominator of the t-statistic to adjust for the 

tendency of selecting low-variance genes. The latter method is known as SAM 

(Significance Analysis of Microarrays). There are many other methods to perform group 

comparison based on microarray data, they are discussed in Amaratunga, Cabrera (2004) 

and Simon et al. (2004). 

Supervised classification 

Supervised classification (also called ‘class assignment’, ‘class prediction’ or 

‘discrimination’) involves finding which features of the known samples (with known 

class labels) are most useful in separating the known samples. Many supervised 

classification algorithms are available, but they all are susceptible to overfitting. Methods 

include logistic regression, linear and quadratic discriminant analysis, nearest neighbor 

classifiers, decision trees, shrunken centroids, neural networks, random forests, support 
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vector machines, and many more. The overview of main groups of classification 

algorithms is included in Section 2.4.1. 

Unsupervised classification 

Unsupervised methods try to find internal structure or relationships in a data set, 

instead of trying to determine how to predict a correct answer best. Within unsupervised 

learning, there are three main classes of techniques:  

(1) Feature determination – finding genes with interesting properties without 

specifically looking for a particular pattern, such as principal-components analysis (PCA)  

(2) Cluster determination – assignment of groups to genes or samples with similar 

patterns of gene-expression, such as nearest neighbor clustering, self-organizing maps, k-

means clustering and hierarchical clustering 

(3) Network determination – determining graphs representing gene-gene or gene-

phenotype interactions using Boolean, Bayesian or relevance networks. 

Some of the clustering methods are described in Section 2.4.2. 

 

 

2.4.1 Overview of Supervised Learning Methods 

 Many prediction techniques are assessed in the microarray analysis literature. The 

most prominent classes of techniques are regression, classification trees, nearest neighbor 

prediction, linear discriminant analysis (LDA), support vector machines (SVM) and 

neural networks.  These methods are general categories of prediction methodologies and 

include many types of models and options to choose from.  
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Logistic regression is a technique that uses linear combinations of genes to 

predict the probability that the samples have a certain characteristic. It can only be built 

with a small number of genes and therefore will require careful gene filtering. Logistic 

regression can also be penalized (lasso, elastic net). 

A classification and regression tree (CART) is a decision tree-based method 

that searches the predictors for cut-point values that best separate the samples into 

groups. The subsets remaining at the final stage are assigned to a certain class, the one 

which is most frequently represented in the subset. In a way, the method has its own 

gene-selection procedure. It determines which genes to use at each splitting node in order 

to get the best classification. Random forests (Breiman 2001) are formed by a 

combination of tree predictors. Subsets of samples and genes are obtained by 

independently drawing samples with replacement from the training dataset and by 

selecting a number of genes at random. A classification tree is estimated for each of the 

newly formed datasets. A new sample is allocated to the class with the most votes over 

all the trees in the forest.  

Another method is K-nearest neighbors (kNN) (Ripley 1996). KNN involves 

calculating the similarity measure (such as Euclidean distance) between the unknown 

sample and all of the known samples. The unknown sample is classified by the majority 

vote in the K nearest neighbors. KNN is technically unsupervised since the correlation 

coefficients are objectively determined. However, the method could be considered semi-

supervised since the choice of the value for K can be determined by the predictability of 

the known samples, which is dependent on the total sample size.  
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Linear discriminant analysis (LDA), a classical discriminant method, identifies 

linear combinations of genes that have large ratios of between groups to within group 

variability. The method is based on the assumption of normally distributed data and equal 

covariance matrices for the considered classes. Diagonal linear discriminant analysis 

(DLDA) is a variant of LDA, whereby the covariance matrix is additionally assumed to 

have a diagonal structure. Diagonal quadratic discriminant analysis (DQDA), also a 

variant of LDA, assumes diagonal, but not equal covariance matrices for all classes. In a 

sense, both DLDA and DQDA ignore the correlation structure between expression levels 

of genes in the microarray data.  

Support vector machines, first introduced by Vapnik (2000) in the machine 

learning theory, are also used to solve classification problems. This method finds the 

optimal hyperplane in the space of the gene expression values for differentiating the 

samples based on the characteristic of interest. For this the samples are non-linearly 

mapped to a very high-dimensional feature space. In this space a hyperplane is designed 

that provides an optimal separation. SVMs can have linear, polynomial, spline, and other 

kernels to solve the optimization problem.  

Neural Networks are machine learning classification tools that represent the 

relationship between the expression values and the true classes by a network of 

connections and nodes. The networks consists of the inputs (gene expression data) 

connected to hidden layers of nodes which are then connected to the output layer of units, 

one for each possible outcomes. The connections among inputs, nodes and outputs have 

weights which are iteratively adjusted to improve the overall prediction. The process is 

repeated until a vector of weights is generated that best fits the data. 



31 

 

There are also methods to improve the accuracy of classification. One such 

method is called bagging (Breiman 1996). Bootstrap replicates are taken from the 

training dataset. A tree is constructed for each replicate and the final classification is 

determined by majority vote. That is, the sample is assumed to belong to the class, to 

which it is most frequently assigned by the different trees. Bagging is said to be a 

variance reduction technique, designed to stabilize trees. Boosting, proposed by Schapire 

and Freund (1999), is another form of aggregating trees. A series of classification trees is 

produced for the training dataset, each time with different weights assigned to the 

samples. The idea is to give samples misclassified in the previous step more weight in the 

current one. The final outcome is a weighted majority vote of all created trees. It is 

believed that bagging is much better than boosting in situations with substantial random 

noise. Boosting is however expected to reduce both the variance and bias of unstable 

trees.  

 

2.4.2 Clustering Methods 

Cluster analysis is a significant part of unsupervised classification aiming mostly 

at class discovery (can be used to either classify genes, or samples, or both 

simultaneously).  Different approaches to clustering data can be broadly separated into 

two classes as it is described with the help of the hierarchy shown in Figure 2.4.2 

(Blalock 2003). At the top level, there is a distinction between hierarchical and partitional 

approaches (hierarchical methods produce a nested series of partitions, while partitional 

methods produce only one). 
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Figure 2.4.2 Main Unsupervised Methods for Microarray Data Analysis 

  

Eisen et al. (1998) is one of the first papers to consider clustering analysis for 

discovering biologically meaningful patterns in microarray data. They used hierarchical 

clustering (Sokal, Mitchener, 1958). A wide range of algorithms have been proposed 

since to analyze gene-expression data, such as K-mean clustering, self-organizing maps, 

model-based clustering, and clustering using ABC dissimilarities.  

The K-means (or Lloyd’s) algorithm (Lloyd 1957, MacQueen 1967) is used to 

reposition the cluster centers through the following steps a) observations are assigned to 

the closest cluster center to form a partition of the data, b) the observations in each cluster 

are averaged to produce new values for the center vector of that cluster.  Steps (a) and (b) 

are iterated, and the process converges to a local minimum of the total within cluster 

variance. The self-organizing map (SOM) (Kohonen (1989)) is similar to K-means 

clustering, with the additional constraint that the cluster centers are restricted to lay in a 

one or two-dimensional manifold. Model-based clustering assumes that the data have 

been generated by some, typically probabilistic (Bayesian), model, and tries to find the 

clustering corresponding to the most probable model. Clustering using ABC 

dissimilarities (Amaratunga et al., 2008) is based on the idea of aggregating results 

Clustering  

Methods 
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Clustering 
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Agglomerative Divisive K-means SOM PCA 
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obtained from an ensemble of randomly resampled data (where both samples and genes 

are resampled) and produces a measure of dissimilarity between each pair of samples that 

can be used in conjunction with another clustering procedure. 

Other unsupervised methods, such as principal component analysis (PCA), aim at 

reducing the dimensionality of the data, making it possible to visualize the latter. 

Examples of the application of PCA to microarray data can be found in Raychaudhuri 

and Altman (2000); Yeung and Ruzzo (2001b). Additional techniques for dimension 

reduction and visualization applied to gene-expression values include correspondence 

analysis (Fellenberg et al., 2001), biplots (Chapman et al., 2002), and spectral map 

analysis (Wouters et al., 2003). 

 

2.5 Challenges in Microarray Expression Data 

 There are many issues arising in the analysis of high-dimensional data such as 

microarray data. They are mostly related to the data dimensionality and cost. The number 

of samples is small when compared to the number of variables under consideration, 

which makes statistical methods prone to overfitting. The size of the datasets is 

considerable rendering most analytical methods computationally intensive.  

 

2.5.1 Overfitting 

 A constant concern with supervised learning is the possible overfitting of the data. 

Overfitting happens when the classifier very precisely distinguishes the training data sets 

but performs poorly in future observations with new data.  The phenomenon of 

overfitting is shown in the Figure 2.5.1.  
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Figure 2.5.1 Overfitting Phenomenon 

  

Overfitting can occur when at least one of the following occurs: 

• A small training set is more likely to produce overfitting than a large training set. 

Patterns that show up in a small training set may be spurious, and due to noise. If 

they carry over to a larger training set, they are likely to reflect actual patterns in 

the domain.  

• Noise in the data is likely to lead to overfitting. It increases the likelihood of 

spurious patterns that do not reflect actual patterns in the domain.  

• Overfitting is more likely with a rich hypothesis space. Overfitting requires the 

ability to fit the noise in the data, which may not be possible with a restricted 

hypothesis space.  

• A domain with many features is more likely to lead to overfitting. This is 

particularly an issue with irrelevant features, that are in the domain but have no 
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impact on the classification. If there are many irrelevant features, it is quite likely 

that some of them will appear relevant in a particular data set.  

 

2.5.2 Adjustments for multiple comparisons 

 Due to the size of microarray expression data, multiple hypotheses testing 

problem is one of main issues in the analysis. Both rejection of true null hypotheses (type 

I error) and failures to reject false null hypotheses (type II error) can lead to wrong 

conclusions. For the case of testing multiple hypotheses, the type I error rate can have a 

variety of generalizations. The two most commonly used error rates in multiple testing 

are the family wise error rate, abbreviated as FWER, and the false discovery rate, 

abbreviated as FDR.  Multiple testing correction adjusts the individual p-value for each 

test to keep the overall error rate not exceeding some cutoff value. 

 The FWER is the probability of rejecting at least one true null hypothesis. The 

weak, exact, and strong control of FWER correspond to the situation where all the null 

hypotheses are true, an exact set of null hypotheses is true, and any subset of null 

hypotheses is true, respectively. The most commonly used method for controlling FWER 

is the Bonferroni method. The test of each hypothesis Hj is controlled so that the 

probability of a type 1 error is less that a cutoff value divided by the number of tests 

performed. Closely related to Bonferroni is Sidak (1967) method, a less conservative one 

is introduced by Holm (1979). To adjust for correlated structure of gene expression data 

Westfall and Young in 1993 introduced method that accounts for the dependence 

structure between the genes (maxT). It requires the estimation of the joint null 

distribution of the unadjusted unknown p-values. It was later suggested by Dudoit et al. 
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(2002b) to estimate the null joint distribution of test statistics for all genes by permuting 

the class labels of the samples. 

Control of the FWER can be too stringent in the microarray setting as it may lead 

to many missed findings. Hence for the purpose of identifying as many genes with 

significant differences as possible while controlling the portion of false findings, the 

concept of controlling the FDR becomes popular. The FDR is the expected proportion of 

false positives among all the rejected null hypotheses. It was first introduced by 

Benjamini and Hochberg in 1995 (abbreviated as BH procedure) and defined as the 

expected proportion of false rejection among the rejected hypotheses, FDR=E(Q), where 

Q =V/R when R > 0, and Q = 0 otherwise (see Table 2.5.1). 

The BH-FDR Procedure 

Let P(1) ≤ P(2) ≤ . . . ≤ P(m) be the ordered p-values of and let H(1), H(2), . . . , H(m) be 

the corresponding null hypotheses. The Benjamini-Hochberg (BH) procedure consists of 

rejection H(1),H(2), . . . ,H(ℓ), where ℓ is the largest value of i for which ( )i

i
P

m
α≤ .Then 

the BH-FDR adjusted p-values are given by 

( )
,...,

min min ,1i i
k i m

m
P P

i=

  =   
  

ɶ    (2.1) 

The null hypothesis H(i) is rejected if iP α≤ɶ . The BH-FDR procedure controls the 

FDR for positively dependent test statistics. 

 

Later Yekutieli and Benjamini (2001) proposed a modification of the BY-FDR 

procedure for controlling the FDR for any joint test statistic distribution. The BY-FDR 
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procedure consists of a modification factor 
1

1m

j j=
∑ . Approaches based on the control of the 

FDR have gained their popularity in the microarray setting, because they lead to a higher 

power as compared to the methods that control the FWER. 

Additionally there are notions of false non-discovery rate (FNR) (see Genovese et 

al. 2002), positive FDR (see Storey, 2003) and positive FNR.  To control the number of 

false positives, the gFWER was proposed by Hommel and Hoffmann (1988) and defined 

as the probability of rejecting at least k true null hypotheses, i.e., gFWER= P(V > k). 

Also, a generalization of the FDR, similar to the way the gFWER generalizes the FWER, 

was proposed by Sarkar and Guo (2005b). The gFDR is defined the expected proportion 

of k or more false rejections among all rejections, i.e., gFDR= E (V/R) when V > k, and 

gFDR= 0 otherwise.  

 # not rejected # rejected Total 

# true null hypotheses U V m0 

# not true null hypotheses V S m1 

Total W R m 

Table 2.5.1: Decisions in multiple testing (Benjamini and Hochberg 1995). 
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Chapter 3 

Partial Least Squares 

 

3.1 Classification for Microarray Data 

 Several approaches to microarray data classifier construction have been described 

in the literature (for a brief overview see Section 2.4.1); among the most often used are 

tree methods, classical discrimination analysis techniques, and machine learning 

methods. It is evident from literature that a universally best method for classifier creation 

does not exist. However, there is some effort put into comparison of various classification 

algorithms (see Table 3.1.1 for summary). For example, Dudoit et al. (2002) compared 

the performance of nine classification methods for classifying tumors based on gene-

expression profiles. They found that simple classifiers such as k nearest neighbor (kNN) 

and diagonal linear discriminant analysis (DLDA) performed remarkably well as 

compared to more sophisticated methods like aggregated classification trees. Here one 

can argue that authors did not pre-select many genes which lead discrimination 

techniques outperforming other methods. Lee et al. (2005) conducted a more extensive 

comparison study of the performance considering over twenty methods applied to seven 

datasets using three gene-selection techniques. Contrary to the findings of Dudoit et al. 

(2002), Lee et al. (2005) concluded that the more sophisticated classifiers gave better 

performances than classical methods such as kNN, DLDA, or diagonal quadratic 

discriminant analysis (DQDA). Additionally, they found that the choice of gene-selection 

method had much effect on the performance of the classification methods. 
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Dudoit et al. (2002) 

3 data sets 

MCCV 2:1 

• Included: LDA, DLDA, DQDA, Fisher, kNN, trees, tree-based ensembles 

• Variable selection: F-statistic 

Conclusion: DLDA and kNN perform best 

Romualdi et al. (2003) 

2 data sets 

CV 

 

•Included: DLDA, trees, neural networks SVM, kNN, PAM combined with: 

•Variable selection/dimension reduction: PLS, PCA, soft thresholding, GA/kNN 

Conclusion: PLS transformation is recommendable, No classifier uniformly 

better than the other 

Man et al. (2004) 

6 data sets 

LOOCV, bootstrap 

 

• Included: kNN, PCA+LDA, PLS-DA, neural networks, random forests, SVM 

• Variable selection: F-statistic 

Conclusion: PLS-DA and SVM perform best 

Lee et al. (2005) 

7 data sets 

LOOCV, MCCV 2:1 

 

• Included: 21 methods (e.g. tree ensembles, SVM, LDA, DLDA, QDA, Fisher, 

PAM) 

• Variable selection: F-statistic, rank-based score, soft thresholding 

Conclusion: No classifier uniformly better than the other, rank-based variable 

selection performs best 

Statnikov et al. (2005) 

11 data sets 

LOOCV, 10-fold CV 

 

• Included: SVM, kNN, probabilistic neural networks, back-propagation neural 

networks 

• Variable selection: BSS/WSS, Golub et al. (1999), Kruskal-Wallis test 

Conclusion: SVM performs best 

Huang et al. (2005) 

2 data sets 

LOOCV 

 

• Included: PLS, penalized PLS, LASSO, PAM, random forests 

• Variable selection: F-statistic 

• Random forests perform slightly better 

Conclusion: No classifier uniformly better than the other 

Table 3.1.1 Summary of comparison studies of classification methods (Boulesteix 2005). 

 

3.2 Introduction to Partial Least Squares 

PLS regression is a quite recent technique that generalizes and combines features 

from principal component analysis and multiple regression. It is particularly useful when 

one needs to predict a set of dependent variables from a large set of independent 

predictors. The PLS method was first developed by Herman Wold in the 1960’s and 

1970’s to address problems in econometric path-modeling, and was subsequently adopted 
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by his son Svante Wold (and many others) in the 1980’s to problems in chemometrics 

and spectrometric modeling. The success of PLS in chemometrics resulted in a lot of 

applications in other scientific areas including bioinformatics, food research, medicine, 

pharmacology, social sciences and physiology.  

From a data analysis point of view gene expression data are very similar to 

spectroscopic data. For example, there is often a large amount of systematic variation 

present. Additionally, a large number of genes across a grid are analogous to the large 

number of wavelengths in a spectrum. Hence, PLS is very well suited for the analysis of 

high-dimensional problems arising from the genomic experiments.  

 On the contrary, other classification methods do not handle case of p>>N very 

well. To overcome this, methods usually incorporate the extraction of a small subset of 

interesting variables as a first step using one of the univariate gene selection methods 

(such as using t-statistic (Hedenfalk et al., 2001), Wilcoxon’s rank sum statistic (Dettling 

and Buhlmann, 2003) or Ben Dor’s combinatoric ’TNoM’ score (Ben-Dor et al., 2000)). 

However, aforementioned univariate gene selection methods are all based on the 

association of individual genes with the response variables. Interactions and correlations 

between genes are omitted, which excludes biological background from the selection 

process.  

PLS technique presents a wise alternative to above in order to overcome 

dimensionality and structure issues. Unlike gene selection, this method use all the genes 

included in the data set, the components then give information or hints about the data’s 

intrinsic structure.  
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3.3 PLS Method and Algorithms 

The multivariate projection methods include partial least squares (PLS) and 

principal component analysis (PCA) for dimension reduction; correspondence analysis 

(Fellenberg et al., 2001), biplots (Chapman et al., 2002), and spectral map analysis 

(Wouters et al., 2003) for dimension reduction and visualization. Multivariate projection 

methods help to reduce the complexity of high-dimensional data (n genes versus p 

samples) and provide means to identify gene patterns or subjects in the data. Projected 

data are typically displayed in a biplot (genes and samples) in a new space. An attractive 

property of PCA, PLS and their extensions, is that they apply to almost any type of data 

matrix, e.g., matrices with many variables (columns), many observations (rows), or both.  

PLS methods are generally characterized by high computational and statistical 

efficiency. There are no distributional assumptions associated with PLS, which makes 

this method flexible and expands the range of problems that may be addressed. However, 

the literature of PLS is very diverse due to the existence of a large number of algorithmic 

variants of PLS, which makes it very difficult to understand the principle of PLS. 

PLS Method 

The underlying idea of PLS regression is to find uncorrelated linear transformations 

of the original predictor variables which have high covariance with the response 

variables. These linear transformations can then be used as predictors in classical linear 

regression models to predict the response variables. 

Assume X is a n×p matrix and Y is a n×q matrix. The PLS technique works by 

successively extracting factors from both X and Y such that covariance between the 

extracted factors is maximized. PLS method can work with multivariate response 
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variables (i.e., when Y is an n×q vector with q>1). However, we will assume for now that 

we have a single response variable i.e., Y is n×1 and X is still n×p, as before. 

Formally PLS technique tries to find a linear decomposition of X and Y such that: 

TX=TP E+  and TY=UQ F+ , 

where n rT X scores× = −  and n rU Y scores× = − , 

p rP X loadings× = −  and 1 rQ Y loadings× = − , 

nE p X residuals× = −  and n 1F Y residuals× = −  

(3.1) 

Decomposition is finalized to maximize covariance between T and U.  

 

There are multiple algorithms available to solve the PLS problem. They all follow 

an iterative process to extract the X and Y-scores. The three common algorithms for PLS 

implementation are the kernel algorithm, the classic orthogonal scores algorithm (or 

NIPALS – nonlinear iterative partial least squares algorithm) (Martens and Naes 1989) 

and the SIMPLS algorithm (de Jong 1993). The kernel and NIPALS algorithms produce 

the same results (the kernel algorithm being the fastest of the three). NIPALS (for 

algorithm see below) is the standard algorithm for computing partial least squares 

regression components (factors). The PLS Kernel algorithm proposed by Ränner, Geladi, 

Lindgren, and Wold is based on a simplified version of the EM algorithm for the 

calculation of covariances matrices when missing data are present. SIMPLS algorithm 

calculates the PLS factors directly as linear combinations of the original variables. The 

PLS factors are determined such as to maximize a covariance criterion, while obeying 

certain orthogonality and normalization restrictions. SIMPLS produces the same fit for 

single-response models, but slightly different results for multi-response models. It is also 
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usually faster than the NIPALS algorithm. Other algorithms also mentioned in the 

literature include various modifications of NIPALS, SIMPLS and kernel selection, 

weighted algorithms,   

NIPALS Algorithm 

There are many variants of the NIPALS algorithm which normalize or do not 

normalize certain vectors. The following algorithm, which assumes that the X and Y 

variables have been transformed to have means of zero, is considered to be one of most 

efficient NIPALS algorithms. 

 

Algorithm: 

Y - centered and scaled, each Xi has mean(Xi)=0, Var(Xi)=1 for all i. Initialize Y1=Y, 

X
1
=X. 

1. Calculate the individual regression coefficients of Yk on each Xi
k
 

wj
k 
= < Xi

k
 , Y k > 

2. Form the PLS component as the weighted sum of Xi 

tk =∑ wj
k
 Xi

k
 

3. Calculate the regression coefficient of Yk on the component tk 

ßk = < tk, Y >/< tk, tk >  

4. Update the Xi
k
 by orthogonalizing them with respect to tk.  

5. Update by the residuals of the previous linear fit 

Y k+1 = Y k - ßk tk 

6. Iterate these 5 steps k=1,…,g (g – number of components desired).  

The algorithm produces a sequence of orthogonal vectors {tk} and a sequence of 

estimators  { ßk }. 

Table 3.2.1 The NIPALS Algorithm 
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We have to note here that the step where the response Y is updated with the 

residuals of the previous linear fit can be omitted. This is due to the fact that the set of 

new predictors {Xi
k
} is orthogonal to previous components. Hence, the coefficients for 

any PLS component are the same whether they are calculated regressing on either Y or Yk 

due to the following reasoning: 

1 1 1

1 1 1 1

, ,

, , , ... ,

k k k

j j k j k k k

ind
k k k k

j k k j k j k j

w X Y X Y t

X Y X t X Y X Y

β

β

− − −

− − − −

=< >=< − >=

=< > − < >=< >= =< >
 (3.2) 

Throughout this dissertation we will base our calculations on the NIPALS 

algorithm. Appendix A contains the overview of R packages that implement various PLS 

approaches. 

Number of PLS Components 

There is no widely accepted procedure to determine the right number of PLS 

components. It is commonly predefined by the user or selected via cross-validation. 

However, cross-validation is often avoided because of computational limitations and poor 

performance or strong bias on small sample data sets. Nevertheless, Boulesteix (2005) 

proposed to use a simple method based on cross-validation measure and subsequently 

concluded that that for datasets with low error rates, the classes are optimally separated 

by only one component, whereas subsequent components are useful for data sets with 

high error rates. Most of the researchers do not use more than two components; only 

Nguyen and Rocke fixed the number of components at three in their experiments and 

suggested the classification accuracy is insensitive to this parameter when it is beyond 

five. Zeng et al. considered linking the threshold with the PLS regression quality via 

mean classification success (SUC) rate and concluded that the best number of latent 
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components for sensitive classifiers hardly exceeds three and heavily depends on the 

dataset. Throughout this dissertation we will consider analysis using only the first 

component. 

 

3.4 Simple PLS extension to Binary Response Data 

For the case of a discrimination between two groups one can consider various 

modifications to the PLS algorithm. In the simplest case, binary response Y can be treated 

as a continuous response variable, since PLS regression does not require any 

distributional assumptions. Other approaches include replacing the binary vector Y with a 

pseudo-response variable whose expected value has a linear relationship with the 

covariates (Fort and Lambert-Lacroix, 2005), and also the use of the IRPLS and its 

improvements for convergence by Nguyen and Rocke, Marx, Ding and Gentleman (with 

Newton-Raphson algorithm for convergence improvements).  

We propose the simple and intuitive modification of the NIPALS algorithm for the 

binary response. For the modification, we have the component weights to be based on the 

logistic regression coefficients, and we exclude the step where one updates the response Y 

with the residuals of the previous fit (as noted in reasoning 3.2 for the continuous case).  

Suppose that the response Y is binary and the set of continuous predictors X={xj} with 

j=1,…,p is already centered and scaled, i.e. mean(Xj)=0,Var(Xj)=1 for all j.  
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Modified Algorithm: 

The PLS modification for binary response could be written as a set of the following 

steps: 

1. Calculate the individual logistic regression coefficients of Y on each Xi
k
 

wi
k 
= < Xi

k
, Y > 

2. Form the PLS component as the weighted sum of Xi 

tk =∑ wi
k 
Xi

k
 

3. Update the Xi
k
 by orthogonalizing them with respect to tk.  

4. Iterate these 3 steps k=1,…,g (g – number of components desired).  

Find the PLS coefficients 
,

,

k
k

k k

t Y

t t
β

< >
=

< >
 from logistic regression of Y on components tk. 

Table 3.2.2 Algorithm Modification for Binary Response Data   

 

3.5 PLS in Microarray Setting 

Within a last few years, many researchers have considered PLS methodology for 

regression and classification problems, as well as for feature extraction and various 

modeling of the survival data (Nguyen and Rocke 2002d).  

For example, Musumarra et al. based gene selection on the weights vector. They 

introduced the ’variable influence’ measure defined as a function of PLS squared weights 

and the proportion of SS explained by the corresponding latent component. Boulesteix 

showed F statistic, which is often used in the gene selection procedure, is a monotonic 

transformation of the squared PLS weight coefficients. 

For classification tasks, two independent comparative studies by Man et al. (2004) 

and Huang et al. (2005) reported that classification based on PLS regression leads to high 



48 

 

prediction accuracy. Additionally, PLS classification analysis for binary response has 

been investigated by Huang and Pan (2003) for leukemia and colon cancer data. They 

suggest determining the best number of latent components by leave-one-out cross-

validation. A similar approach is used in a more applied study by Perez-Enciso and 

Tenenhaus (2003): various binary outcomes such as (i) before versus after chemotherapy 

treatment in a case-control study, (ii) estrogen receptor positive versus negative tumors 

and (iii) tumor types are predicted via PLS discriminant analysis. 

PLS regression is also employed for multi-class classification in Musumara et al. 

(2004) for the molecular diagnostic of cancer. Using the software SIMCA, they 

performed classification on the human cancer NCI data set consisting of the expression 

levels of 9605 genes in 60 tumor cell lines of eight different types (leukemia, non-small 

cell lung, colon, melanoma, ovarian, breast, central nervous system and renal).  

Other classification studies based on PLS regression include classification of human 

ovarian tumors (Alaiya et al. 2000), classification of acute leukemia subtypes (Cho et al. 

2002), multi-class tumor classification by discriminant partial least squares (Tan et al. 

2004), prediction of primary breast cancers (Modlich et al. 2005). A similar approach 

based on PLS regression to perform classification in the context of meta-analysis is 

suggested by Huang et al. (2005) for sample classification using weighted partial least 

squares. Datta (2001) suggests that the partial least squares (PLS) regression may in fact 

be a powerful tool for exploring relationships between genes’ expression profiles, which 

may translate into biologically meaningful interactions and associations. 

There exists another route to classification using partial least squares, first proposed 

by Nguyen and Rocke (2002a,b) and further studied by Boulesteix (2004) and compared 



49 

 

with other dimension reduction techniques by Dai et al. (2006). This approach first 

employs PLS as a dimension reduction method and subsequently uses the PLS latent 

components as predictors in a classical discrimination method (e.g. logistic regression, 

linear or quadratic discriminant analysis). To apply this method, one has to choose (i) the 

number of latent components to be extracted in the dimension reduction step and (ii) the 

classification method to be used for the classification step. In Nguyen and Rocke, three 

classification methods are studied: logistic regression, linear discriminant analysis and 

quadratic discriminant analysis. Boulesteix only investigates discriminant analysis. 

Generally, linear discriminant analysis (LDA) turns out to yield the best classification 

performance, whereas quadratic discriminant analysis gives worse results. In the 

comparison study performed by Boulesteix, PLS+LDA turns out to range among the best 

classification procedures for all the eight studied cancer data sets. According to this 

study, the most successful other methods are the nearest centroids approach by Tibshirani 

et al. (2002) and SVM. Additionally, the idea that performance may be improved by 

modifying PLS dimension reduction in order to adapt it to the specific case of categorical 

responses was explored by Fort and Lambert-Lacroix (2005). They proposed a two-stage 

method combining PLS and ridge penalized logistic regression (implemented in R 

package plsgenomics). 

Marx (1996) proposes an extension of the concept of PLS regression into the 

framework of generalized linear models. This approach, which is denoted as iteratively 

reweighted partial least squares (IRPLS or IRWPLS), embeds the univariate PLS 

regression algorithm into the iterative steps of the usual Iteratively Reweighted Least 

Squares algorithm for generalized linear models, resulting in two nested loops. The loops 
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are iterated a fixed number of times or until a convergence criterion is reached. The 

IRPLS method as well as a few adaptations overcoming the convergence problem have 

been applied both to survival analysis and classification. Binary classification is one of 

the most common applications of generalized linear models and of Marx’s IRPLS 

algorithm. It has inspired at least two recent papers on the generalization of PLS 

regression to categorical response variables. The first approach is proposed by Ding and 

Gentleman (2005) and can be seen as an adaptation of Marx’s IRPLS method which 

solves the problem of separation. The problem of (quasi)separation is avoided by 

applying bias correction to the likelihood. This method is implemented in the R package 

gpls. Another classical application of generalized linear models and IRPLS is survival 

analysis (see Nguyen and Rocke 2002,  Park et al. 2002, and Li, Gui 2004). 

In the next chapter we will consider the prediction method arising from the partial 

least squares (PLS) methodology with adjustments made for multiple testing. We will 

mainly focus on binary classification and study the performance of PLS themed approach 

in this setting.  
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Chapter 4 

PLS-FDR 

 

4.1 Introduction  

As discussed in Chapter 3, PLS methodology proved its usefulness for variety of 

tasks in microarray experiments. The main step in any PLS algorithm is the calculation of 

a partial least squares components. Each of the components can be written as a weighted 

combination of original predictors Xi. As noted by Garthwaite (1994), the PLS 

components can be obtained as linear combinations of simple linear regression predictors. 

It was then shown by Nguyen and Rocke (2003) and noted by others (Boulesteix, Fort 

and Lambert-Lacroix) that the PLS components can be expressed as weighted averages of 

the original predictor/explanatory variables, with weights depending on the partial 

correlation coefficients and sample predictor variance. We will initially consider the first 

partial least squares component and the data that has been previously centered and scaled. 

In this setting one may think of the PLS component coefficients to be based on the 

correlation between response vector and predictor variables. 

 

4.2 PLS Weights Approximation  

 Assume that the data is already centered and scaled. We will base our 

approximation on the estimation of the tails of the distribution via the p-values. We will 

initially consider the expression of normal quantile through p-value. Normal distribution 

is very useful when approximating variety of other distributions including student t and 

chi-square (see Patel K., Read C.B. 1996), for example: 



52 

 

( )2 2

,

8 3
exp / 1

8 1
n p p

n
t n z c n c

n

+
 = − =  +

 
(Prescott, 

1974) 

(4.1) 

t-

distribution 3 3 5

, 2

3 16 5
...

4 96

p p p p p

n p p

z z z z z
t z

n n

+ + +
= + + +  

(Cornish-

Fisher, 1960) 

(4.2) 

( )2

2 1

2

p

p

z
y

ν+ −
≃  (Fisher, 1974) (4.3) 

Chi-

squared 
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(Wilson-

Hilferty,1931) 

(4.4) 

 

There are also several approximations of the normal quantile through p. For 

example the following simple expression (see also Patel K., Read C.B. 1996 for others, 

pp.66-68):  

1
ln( 1)

0.39
; 1.48 , 0.108

1
ln( 1)

p

p
z a b

n
b a

p

−
= = − =

− +
 (4.5) 

J.-T. Lin et al. (1992) considered the use of (4.5) to approximate tails of the t distribution. 

First, expressing p through zp: 

1

(1/ )* 1 p

a

z b
p e

−

−
 
 = +
  

  (4.6) 

Then, solving normalizing transformation 
1/ 2

2ln(1 / )z n t n = ⋅ +   for t and substituting 

(4.6), authors derived the expression for the t value that they found to be quite accurate: 
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where 
1

ln(1/ 1) ln ln
1

p p
y p

p p

   −
= − = = −   −   

.  

To derive a simple approximation of tn,p through the p-value, we will use the following 

series expansion around zero for the logit function: 

2

ln ln
1 2

x x
x x

x

 − ≈ − − − − 
  (4.8) 

We can first write 
*

,1/ n pt  in series of y around infinity: 

2
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nbn a y b nb

ae b
y O
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 
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      
− −          

  (4.9) 

Since whenever p is close to zero we have y → ∞  as below:  

0
0 ln ln ln(0)

1 1 0

p
p y

p

   = => = − = − = − = ∞   − −  
  (4.10) 

Then the series for p0=0 are derived from (4.9) substituting y and we get the following 

expression: 

2

22 2

1

3/ 211 1

3( / )

1 1

1 ln(1/ 1)1

nb

nbn a y b nb

ae

ne b n e pn e ⋅ +

≈ +
    

− − −          

  (4.11) 

Which can then be approximated by the Taylor series for p around zero as below: 
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  (4.12) 

Coefficients in (4.12) only depend on n. Therefore, we can rewrite the above expression 

in terms of p as follows: 

( )
*

, 2

1
1/ ( ) ( ) ( )

ln( ) ln( )
n p

p
t A n B n C n

p p
≈ − +   (4.13) 

Hence, we can base the approximations on the right-hand terms of (4.13) employing only 

the -ln(p) term of the approximation for further analysis.: 

*lni ib p≈ −   (4.14) 

 

Let’s consider now the regression coefficients arising from linear or logistic 

regression. For a simple linear regression, p-values associated with each estimated 

regression coefficient are based on the test statistic Ti = bi/SE, where bi is a coefficient of 

regression Y on each predictor variable Xi. The test statistic Ti follows t distribution; SE 

only depends on number of observations n if the data has already been centered and 

scaled. Hence, we can think of Ti as directly depending on the sample regression 

coefficient bi and n. Figure 4.2.1 shows the plots of the regression coefficients versus the 

approximation (4.14) using the original (blue) and BH-FDR corrected (green) p-values.  
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In the case of a logistic regression, generally a Wald test is used to test the 

statistical significance of each coefficient bi in the model. A Wald test calculates a z 

statistic, which is  zi = bi/SE. Additionally, to assess the importance of a certain predictor 

variable, one can use the t-test for two-group comparison. Below (Figure 4.2.2) one can 

see plots of logistic regression coefficients versus the approximation (4.14) with p-values 

coming from t-test for group means for two simulation scenarios: (i) binary response is 

generated from a logistic distribution, (ii) binary response is modeled as two groups 

where mean difference is introduced for a predictor. 
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Figure 4.2.1 Plot of regression coefficients versus the approximation (4.14) 
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Figure 4.2.2 Plots of logistic regression coefficients versus  

the approximation for two simulation scenarios 

 

In the next section we will consider the modified PLS scheme (PLS-FDR) where 

component weights are based on the approximation (4.14) and the use of the BH-FDR 

procedure for adjustment of the p-values to control the false discovery rate.  

 

 

4.3 FDR-Corrected PLS Scheme (PLS-FDR) 

 Based on the approximations described in Section 4.2, we propose the modified 

PLS scheme (call it PLS-FDR), where the predictor weights for each component are 

approximated via the corrected p-values as in (4.14). The method is detailed below. 

PLS-FDR Method  

Suppose that we have the response Y (centered and scaled if continuous) and the set 

of already centered and scaled continuous predictors X={xj} with j=1,…,p, i.e. they have 

mean(xj)=0,Var(xj)=1 for all j.  
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PLS-FDR Algorithm (1
st
 component): 

The PLS-FDR modification can be written as a set of the following steps: 

1. Model the response Y versus each of the predictors Xi, i=1,…,n  

2. Calculate the p-value for each of the predictors to get the set of pi, i=1,…,n 

3. Adjust the set of p-values for the multiple testing using BH-FDR correction to 

form the set of *

ip , i=1,…,n 

4. Calculate weights {wi} for each of the predictors Xi, i=1,…,n using the 

approximation 4.14 with  *

ip , i=1,…,n  

5. Form the PLS component as the weighted sum of Xi 

t =∑ wi Xi 

6. Perform the regression of Y on t to get the regression coefficient β. 

Table 4.3.1 PLS-FDR Algorithm for the 1
st
 component 

  

If we want to calculate more than one component, the algorithm is similar to the 

one described above. Approximations in this case can for example be derived through the 

partial correlation coefficients. This is the topic for future investigation. 

For the case of the logistic regression we will use the same algorithm with p-values 

arising from a t-test that compares two groups unless there is an indication that the 

response is derived from a logistic model as for example in a dose-response studies. 

 

PLS-FDR Weights 

When viewing the approximations (4.14) as weights assigned to each of the predictor 

variables, we can also investigate two more applications associated with the approach. 

Firstly, approximations can be used as individual weights for algorithms that operate 

them. Secondly, the classifiers that do not use weights can take advantage of the idea by 
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embedding them into an ensemble as follows (see Amaratunga et al. (2008) for a scheme 

with 1/p weights): 

PLS-FDR Ensemble Algorithm: 

The PLS-FDR modification can be written as a set of the following steps: 

1. Draw a bootstrap sample from the data. Call the observations which are not in the 

bootstrap sample the "out-of-bag" data. 

2. Generate m randomly selected features according to the weights {wi} and use 

them together with the bootstrap sample to construct a classifier. 

3. Use the classifier to predict out-of-bag data to form majority votes. 

4. Repeat steps 1-3 N times and collect an ensemble of N rules. Prediction of test 

data is done by majority votes from predictions from the ensemble of rules. 

Table 4.3.2 Ensemble PLS-FDR Algorithm 

  

In the following section we will illustrate the performance of PLS-FDR method 

compared with regular PLS for the continuous response for one component. Then we will 

concentrate on the class-prediction methods. We will assess the performance of PLS-

FDR methodology when compared to other discrimination methods such as SVM, KNN, 

DL-DQDA, Random Forest, Elastic Net and various extensions of PLS for binary 

response. Additionally, the ensemble of our weighting scheme with aforementioned 

classifiers will be compared with single classifiers and the ensemble method as in 

Amaratunga et al. (2008). Finally, we will look at the weighted classifier approach. 

 

4.4 Simulation Settings and Results  

We consider simulated as well as real-life datasets for performance comparison. 

When using real-life datasets, one can be certain that they adequately represent the 

complexity of the data structure. However, to assess the performance for the variety of 
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scenarios, we will also simulate datasets controlling different settings such as sample 

size, number of predictive genes or correlation structure. 

Illustration: Continuous Case 

Let’s consider the continuous response setting for illustration purposes. We will 

use two of the real-life datasets available from the pls R package (yarn and gasoline 

data). Additionally, four scenarios will be simulated for the structure of the normally-

distributed X-Y data:  

(i) uncorrelated predictors and noise,  

(ii) correlated predictors and noise,  

(iii) uncorrelated predictors with addition of predictors mildly related to the 

response and noise,  

(iv) correlated strong and mild predictors and noise. 

 

Table 4.4.1 summarizes the rest of the parameters for the continuous case 

simulation. Figure 4.4.1 (a-d) show boxplots with the simulation results. Figure 4.4.2 

summarizes the performance of yarn and gasoline datasets. 

 

Parameter Values Description 

n=40 

p0=25 

p1=200 

p1=0-10000 

{β}~U(0,1) 

m=25% 

Number of observations 

Number of strong predictors X 

Number of weak predictors X’ 

Number of noise variables 

Regression coefficients 

Number of test set observations 

Table 4.4.1 Parameters of the simulation (continuous case) 
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Figure 4.4.1 Results of the simulation (continuous case)  

(MSEP on a test set containing random 25% of observations) 
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Figure 4.4.2 Yarn and Gasoline data performance  

(MSEP on a test set containing random 25% of observations) 
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Performance: Binary Case 

 We will now turn to the settings of interest, i.e. two-group classification problem. 

We will compare PLS-FDR with the following nine methods: Linear Discriminant PLS, 

generalized PLS, DLDA, DQDA, Elastic Net, KNN, Random Forest and SVM.  

The comparison schemes are represented in the Table 4.4.2 and we recognize 

three scenarios: classifier comparisons, combination of classifier and our weighting 

method, and ensemble of classifier and our weighting scheme. Utilized packages and 

their options are summarized in Table 4.4.3.  

For the simulated data we recognize the following four main settings (as in the 

continuous case): (i) uncorrelated predictors and noise, (ii) correlated predictors and 

noise, (iii) uncorrelated predictors with addition of predictors mildly related to the 

response plus noise, (iv) correlated strong and mild predictors and noise. For every case 

described above, datasets were simulated according to the parameters as described in 

Table 4.4.4. Normalized intensities {Xgij} were modeled as 

gij g gi gijX µ τ ε= + +  (4.15) 

where gµ  (g = 1, · · · ,G) –  the effect of the g
th

 gene, giτ  is the effect of the g
th

 gene in 

the i
th

 class (i = 1, 2), and j = 1, · · · , ni  are sample indexes. The same model was 

described in Amaratunga and Cabrera (2006). The treatment effect of the g
th

 gene is then 

1 2| |gi g gτ τ τ= − . Finally, we assume that { gijε } are iid observations from a multivariate 

normal distribution with covariance matrix defined to introduce the correlation between 

pre-specified genes.  

The simulation results for all cases are shown in Figure 4.4.3 (a-d).  
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The performance of the methods summarized in Table 4.4.2 was also assessed on 

the real-life datasets (see Section 0.3 for description). In cases where response is not 

binary (srbct, brain and lymphoma datasets), the subset was used where response takes 

{0,1} values. Datasets are preprocessed by thresholding, filtering, a logarithmic 

transformation, and standardization as in Dudoit et al. (2002). For fifty simulations, about 

25% of observations were retained for the performance assessment. For the ensemble of 

classifiers the usual square root of total number of genes was sub-sampled prior to the use 

of a single classifier. For the weighted Elastic Net the weights were constructed as the 

inverses of the approximation (4.14) to reflect the penalty for each predictor. They were 

introduced into the net through the parameter penalty.factor (number that multiplies 

lambda to allow differential shrinkage). For the weighted scheme, forty percent of 

observations were retained for testing. 

The results for each dataset are presented in Figures 4.4.4, misclassification means 

are summarized Table 4.4.5 and Figure 4.4.7. Ensemble methods are compared in Figure 

4.4.5, Figure 4.4.6 shows the weighted Elastic Net performance.  
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Method Classifier Ensemble 

Scheme 

Weighted 

Scheme 

PLS-LDA 

gPLS 

PLS-FDR 

DLDA 

DQDA 

Elastic Net 

KNN 

Random Forest 

SVM 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

Y 

– 

Y 

Y 

Y 

Y 

Y 

Y 

 

 

– 

 

 

Y 

 

 

 

Table 4.4.2 Comparison Schemes 

 

Method Package/Function Options 

PLS-LDA 

gPLS 

PLS-FDR 

DLDA 

DQDA 

Elastic Net 

KNN 

Random Forest 

SVM 

plsgenomics 

gpls 

– 

sma - stat.diag.da 

sma - stat.diag.da 

glmnet 

class-knn 

randomForest 

e1071-svm 

Default (k=1) 

IRWPLS (k=1) 

first  component 

Constant cov matrix 

Varying cov matrix 

α=0.5, λ-auto or [0, 1] 

K=3 

300 trees 

Linear kernel 

Table 4.4.3 Employed packages summary 

 

Parameter Values Description 

n=40 

p0=25 

p1=200 

p1=0-10000 

gµ ~N(0,2) 

giτ ~ MVN((µ25, µ200)
T
,I) 

gijε ~MVN(0,Σ) 

m=25% 

Number of observations generated 

Number of strong predictors X 

Number of weak predictors X’ 

Number of noise variables 

Gene Effect 

Gene-treatment effect (random means) 

Errors (correlation ranges from 0.2-0.6) 

Number of test set observations 

Table 4.4.4 Parameters of the simulation (binary case) 
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Case (ii): (b) 
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Case (iii): (c) 
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Case (iv): (d) 
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Figure 4.4.3 Results of the simulation (binary case) 
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Lymphoma Colon Leukemia 
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Figure 4.4.4 Real-life data performance of classifiers 
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Figure 4.4.5 Real-life data performance for ensembles with –log(p) and 1/p weights  
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 Classifier Ensemble - FDR Ensemble - InvP 

Brain PLS-LDA 0.052 

gPLS    0.044 

PLS-FDR 0.000 

DLDA    0.028 

DQDA    0.096 

ElNet   0.016 

KNN     0.004 

RF      0.096 

SVM     0.124 

PLS-LDA 0.036 

gPLS    0.040 

DLDA    0.028 

DQDA    0.088 

ElNet   0.064 

KNN     0.028 

RF      0.044 

SVM     0.064 

PLS-LDA 0.020 

gPLS    0.012 

DLDA    0.020 

DQDA    0.060 

ElNet   0.020 

KNN     0.016 

RF      0.012 

SVM     0.048 

Prostate PLS-LDA 0.37846154 

gPLS    0.33923077 

PLS-FDR 0.20076923 

DLDA    0.36615384 

DQDA    0.37307692 

ElNet   0.08461539 

KNN     0.16846154 

RF      0.21538462 

SVM     0.12692308 

PLS-LDA 0.3392308 

gPLS    0.3284615 

DLDA    0.3246154 

DQDA    0.3192308 

ElNet   0.1561539 

KNN     0.1723077 

RF      0.1515385 

SVM     0.1515385 

PLS-LDA 0.2069231 

gPLS    0.2007692 

DLDA    0.1961538 

DQDA    0.1938462 

ElNet   0.1130769 

KNN     0.1369231 

RF      0.1176923 

SVM     0.1123077 

Srbct PLS-LDA 0.09090910 

gPLS    0.05454546 

PLS-FDR 0.01272727 

DLDA    0.05090910 

DQDA    0.02909091 

ElNet   0.01090909 

KNN     0.18000002 

RF      0.09090910 

SVM     0.10545456 

PLS-LDA 0.08545455 

gPLS    0.07090910 

DLDA    0.06363637 

DQDA    0.06363637 

ElNet   0.05818182 

KNN     0.09090910 

RF      0.04909091 

SVM     0.09272728 

PLS-LDA 0.02181818 

gPLS    0.02181818 

DLDA    0.02000000 

DQDA    0.01636364 

ElNet   0.01636364 

KNN     0.02000000 

RF      0.02000000 

SVM     0.02545455 

Lymphoma PLS-LDA 0.01692308 

gPLS    0.01692308 

PLS-FDR 0.15230769 

DLDA    0.01384615 

DQDA    0.06769231 

ElNet   0.02615385 

KNN     0.02000000 

RF      0.06153846 

SVM     0.08307692 

PLS-LDA 0.02615385 

gPLS    0.02461539 

DLDA    0.02769231 

DQDA    0.04461538 

ElNet   0.03384616 

KNN     0.02461539 

RF      0.02461539 

SVM     0.03230769 

PLS-LDA 0.03076923 

gPLS    0.03384615 

DLDA    0.02923077 

DQDA    0.05846154 

ElNet   0.03230769 

KNN     0.02923077 

RF      0.03538462 

SVM     0.02769231 

Colon PLS-LDA 0.12875 

gPLS    0.12000 

PLS-FDR 0.15250 

DLDA    0.13000 

DQDA    0.13875 

ElNet   0.11625 

KNN     0.24125 

RF      0.23125 

SVM     0.14125 

PLS-LDA 0.17750 

gPLS    0.16250 

DLDA    0.15875 

DQDA    0.17875 

ElNet   0.19875 

KNN     0.18250 

RF      0.18125 

SVM     0.15875 

PLS-LDA 0.14875 

gPLS    0.14625 

DLDA    0.14500 

DQDA    0.14250 

ElNet   0.19750 

KNN     0.17250 

RF      0.17125 

SVM     0.16000 

Leukemia PLS-LDA 0.04555556 

gPLS    0.03000000 

PLS-FDR 0.05111111 

DLDA    0.04000000 

DQDA    0.03000000 

ElNet   0.04555556 

KNN     0.04222222 

RF      0.08888888 

SVM     0.05000000 

PLS-LDA 0.04777778 

gPLS    0.04111111 

DLDA    0.04111111 

DQDA    0.05666667 

ElNet   0.06444446 

KNN     0.04888889 

RF      0.05777778 

SVM     0.04333334 

PLS-LDA 0.02444445 

gPLS    0.02444445 

DLDA    0.02555556 

DQDA    0.03444445 

ElNet   0.03444445 

KNN     0.02555556 

RF      0.02666667 

SVM     0.02222222 

Table 4.4.5 Comparison of MSEP means for three scenarios on a real-life data 
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Figure 4.4.6 Weighted elastic net performance on a real-life data 
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Figure 4.4.7 Means for all methods (colors) for six datasets  

(1 - brain, 2 - prostate, 3 - srbct, 4 – lymphoma, 5 – colon, 6 – leukemia) 
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4.5 Discussion 

As an illustration of the PLS-FDR methodology, we applied it to continuous 

response data. In this case, proposed algorithm gives some improvement over regular 

PLS method especially when correlation exists between predictors. This difference is also 

present when looking at the real-life datasets yarn and gasoline, considering only one 

component for both cases. 

We also compared performance of various classification methods to PLS-FDR in 

terms of misclassification rate for binary response (ratio of number misclassified samples 

to the total number) for the simulated and six real-life datasets. Due to the computational 

complexity of the study described above, we limited our comparisons to six datasets and 

four scenarios for generated datasets with number of noise variables ranging from zero to 

a thousand. 

The results of simulations presented above suggest that as the number of noise 

variables increases, PLS-FDR performs best on the simulated datasets compared to nine 

other classifiers including the elastic net. One may also consider other simulated 

scenarios and non-normality of the generated data for the performance assessment of the 

proposed classification scheme. This is topic for additional investigation. 

When turning to the real-life datasets, PLS-FDR outperforms gPLS, PLS-LDA, 

DLDA and DQDA most of the time. It is often among the best classifiers for almost all 

datasets excluding the lymphoma dataset, and is comparable to the Elastic Net. Taking 

into account the fact that a single classification method is never uniformly better than the 
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others for all the datasets, we can conclude that the performance of a PLS-FDR is most of 

the time close to the optimal.    

For the ensemble methods, the experimental results show that ensembles generally 

outperform single classifiers. Additionally, we compared the performance of our 

ensemble with the one where inverses of FDR-corrected p-values are used as weight (as 

in Amaratunga et. al (2008)). The performance of an inversed p based ensemble in most 

cases is better compared to the case with the approximation (4.14). However this does not 

happen for all combinations of methods and datasets.  

Weighted elastic net algorithm with our weights introduced into model as additional 

penalty factors for each variable showed improvement over the elastic net procedure for 

all six datasets when using the same set of shrinkage parameters alpha and beta. 

We also have to note that classifier comparisons obtained from the simulated and 

real-life datasets presented in this chapter do not include a gene selection step unlike the 

studies presented in Table 3.1.1. We can consider the use of our weights for a gene 

selection procedure, and compare it with common measures, such as t-statistic, the 

Wilcoxon rank sum or PLS component based ‘variable influence’ (Musumarra et al.). 

This is a topic for further investigation.  
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PART III. 

COMPARING SEVERAL TREATMENTS  

WITH A CONTROL 
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Chapter 5 

Comparison of Several Treatments with a Control 

 

5.1 Introduction 

In a microarray experiment, the number of observations is generally very small. 

Various inference methods used for the analysis of such data mostly either rely on 

specific assumptions about the distribution of the expression measures, or rely on 

resampling of the data. Both types are used quite often. Resampling based tests has the 

advantage of being robust and flexible enough to accommodate almost any new statistic, 

without the need to derive statistic’s distribution. However, they are computationally 

intensive and p-value distribution derived from a permutation-based approach can be 

coarse or granular, and it will often be difficult to obtain significant tests.  

In this chapter, we discuss the situation of comparisons between several treatments 

and the control. In a microarray setting, the goal of these comparisons is to find subset of 

genes whose expression levels differentiate between treatments and the control. To 

illustrate this setting, we consider the following two experiments of data arising from 

microarray and also non-microarray settings: 

(I) For the first example, suppose we administer a drug and we have 4 groups of 

observations containing blood measurements at 0- hours; at 0+ hours; at 2 hours 

and at 24 hours. The dataset consists of m=2375 genes and nk=7 measurements 

for each of the 4 (k=0,...,3) groups. We are interested in selecting those genes for 

which the measurement at 2 hours is significantly higher or lower than the other 

three groups (so called ‘bump’ in measurements).  
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(II) For the second example of a non-microarray setting, we consider weight 

measurements of m=66 patients over three weeks when they are being 

administered a certain drug. There are 5 to 12 measurements for each patient 

taken at each week.  We are again interested in identifying the patients with the 

weight measurement at week 2 much higher or lower than those at weeks 1 or 3.  

Two of the most common techniques used when dealing with several group 

comparisons are Dunnett’s test (Dunnett 1955, 1964) and permutation-based approach. 

Dunnett test is a single step procedure that does the many-to-one comparisons 

simultaneously for every single gene using the multivariate-t distributed test statistic. 

Both techniques are therefore subjects to the multiple comparisons issue. We will again 

adjust for the multiple comparisons using the BH-FDR procedure (Section 2.5.2). BH-

FDR procedure does not rely on an asymptotic distribution of test statistics which is 

especially relevant for the examples (I) and (II) above, where the sample sizes for each 

group of measurements are rather small. Other authors also considered extension of 

Dunnett’s procedure (Cheung and Holland, 1991), testing of medians (Steel, 1959), 

various step procedures (Nakamura and Imada 2005; Imada and Douke 2007). 

The content of this chapter is organized as follows. In Section 5.2 we formulate 

the problem of comparing several treatments with one control as in experiments (I) and 

(II) and discuss the statistics arising from the hypotheses. In Section 5.3 we briefly cover 

Dunnett’s procedure, permutation-based approach and detail the distributional approach 

which is suitable for the settings described above. Section 5.4 presents results of 

application of these methods for the examples (I) and (II). The chapter ends with a 

discussion in Section 5.5. 
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5.2 Hypotheses Formulation 

The usual setting in the case of comparing several treatments with a control is to 

assume normal distribution for the log-transformed gene expression measurements.  

Let Xijk be the i
th

 gene-expression of array j in group k, i=1,...,m, j=1,..., nk, 

k=0,…,3. Then the following is assumed  

2( , )ijk ik iX N µ σ∼   (5.1) 

where µik is the mean expression level for the group k for gene i.  

In order to assess whether the mean of one of the groups for the gene i dominate 

the others in a ‘bump’ fashion, the following hypotheses are to be tested for i=1,...,n: 

H0i: µi0= µi1= µi2= µi3    (5.2) 

   Hai: µik<µi0 for k=1,...,3 or µik>µi0 for k=1,...,3 

To perform the above hypotheses testing we propose the test statistic 
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3
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SE
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= =

=

= − −

−

=
 

− 
 

∑∑

∑

 (5.3) 

where ikx  is the mean of gene i for group k, nk is the sample size. 

This test statistics is expected to take small positive or negative values under the 

null hypothesis. The null hypothesis will be rejected for large positive values of Ti. Note 

that the above formulation can be extended to any number of groups. 
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5.3 Approaches  

 There are several approaches to test (5.2). One alternative is to recycle a related 

test, such as the F-test or Dunnett’s test for multiple comparisons. The power in these 

cases will be reduced because these related tests are not tailored for these specific 

hypotheses. Another approach is already mentioned above permutation-based approach. 

Below we will provide the brief overview of Dunnett’s and permutation tests.   

One can also try to calculate the distribution of the statistic Ti under the null 

hypothesis. Despite the fact that different experiments have different number of groups 

and will require modifications of Ti, this approach will give us a more accurate and 

powerful result. The framework for the Ti distribution will be detailed in 5.3.3. 

 

5.3.1 Dunnett Approach 

Dunnett considered the following set of hypotheses to compare several treatments 

with a control: 

H01i: µi0- µi1=0 H11i: µi0- µi1≠0 

H02i: µi0- µi2=0 H12i: µi0- µi2≠0 

H03i: µi0- µi3=0 H13i: µi0- µi3≠0 

(5.4) 

The test statistics for the hypotheses formulated above can then be written as 

0

0

1,..., ; 1, 2,3
1 1

ik i
ik

i

k

x x
T i m k

s
n n

−
= = =

+

ɶ   (5.5) 

where si is the pooled variance for gene i. 

Author then proposed the following set of 1−α level simultaneous confidence intervals 

for comparisons for gene i (i = 1, . . . ,m) and the group k (k = 1, 2, 3): 
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( ) ( )0 0 , ,

0

1 1
| |ik i ik i k i

k

x x t s
n n

α
ν ρµ µ− ∈ − ± +   (5.6) 

where , ,| |kt α
ν ρ  is the two-sided upper α quantile of a multinomial t-distribution with the 

following parameters: k=3 variables, equicorrelated with common correlation 

ρ=nk/(nk+n0), and number of degrees of freedom 
3

0

2k

k

nν
=

= −∑ . The values of , ,| |kt α
ν ρ  

have been tabulated in Bechhofer and Dunnett (1988). Dunnett (1980) also considered 

the case of unequal variances and unequal group sample sizes. 

 

5.3.2 Permutation-based Approach 

 The Dunnett p-values are valid only if the distributional assumption in (5.6) holds. 

In order to overcome this problem, one can use permutation-based technique, which does 

not require any assumptions about the distribution of the gene expression values. The set 

of p-values for this approach are obtained by using a certain number of random 

permutations of the sample labels and by calculating the test statistics iT  for the newly 

formed treatment groups. Number of permutations N does not always equal to the total 

number of possible permutations and could be equal some pre-defined large number in 

the case when total number of observed values is large. Once the set of test statistics 

1{ ,..., }N

i iT T  is calculated for all permutations, the p-values are obtained through 

calculating the percent of values 
1{ ,..., }N

i iT T  that are larger than the observed value of 

iT . If the p-value is less some predetermined significance level then we say that the gene 

corresponding to the observations is differentially expressed.  
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5.3.3 Distributional Approach 

 Permutation-based approach also has limitations. They are mostly due to 

computational complexity and the fact that sometimes generated p-values are not tight 

enough to allow one to obtain significant tests. For a particular statistic (5.3) one can then 

obtain an approximated distribution and draw conclusions from it. 

Each of the means of k (we have 3 groups for the case (I), and 2 groups for the 

case (II)) groups follows the normal distribution for gene i, i=1,...,m 

0( ,..., ) ~ ( , )i

i ik ix x N µ Σ   (5.7) 

Let  

2 2
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  (5.8) 

 then we can rewrite the statistic iT  

0 1 0 0 1 0
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Then we need to identify the upper percentage points from the probability distribution of 

T , i.e. number ( , , )d d k fα α=  such that 

Pr[ ] 1iT dα α≤ = −   (5.10) 

If we set 2 2/u s σ= , then we can write the probability above as 
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where  

/ 2 / 2 / 2 1

/ 2
( )

( / 2) 2

f uf f

f

f e u
h u

f

− −

=
Γ ⋅

 is the chi-squared pdf with f degrees of freedom,  

(1) ( )max( , ) ( )
ky yF Y−  is the cdf of (1) ( )max( , )ky y− . 

When we assume equal variances for groups and equicorrelation of mean 

differences, then under the null hypothesis we can look at the distribution of 

0 1 0( ,..., )kx x x x− −  which is permutation-symmetric multivariate normal. Then we can 

use the joint distribution of min and -max of multivariate normal random variables and 

derive the distribution of their maximum. 

Order statistics were studied quite extensively in the literature and results were 

summarized by several authors (for example Balakrishnan and Rao (1998), David 

(2003)). The multivariate normal distribution and order statistics arising from it are 

assessed in detail in Tong (1990).  

The joint distribution of order statistics of exchangeable multivariate normal 

variables is a mixture of the joint distributions of order statistics of i.i.d. normal variables. 

It equals the following expression: 
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  (5.12) 

Then for the minimum and maximum order statistics we have the following joint 

distribution: 
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where 
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Substituting (5.13) into (5.11) with zero mean and using the fact that  

{ }(1) ( ) (1, )Pr max( , ) ( , )k ky y Y G Y Y≤ =   (5.14) 

we get the following expression 
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 (5.15) 

For the examples (I) and (II) above we have either k=2 or k=3. The expression 

(5.15) can then be evaluated for various dα  to obtain set of values corresponding to the 

set of α. Calculations for the percentage point values dα  for expression (5.15) were 

performed in Wolfram Mathematica for k=2,3 and α=0.05, 0.10. They are reported in 

Table 5.4.1 below. Additionally, the approximate plots of the T statistic distribution are 

presented in Appendix C for both cases. 

 

Number of 

groups k 

Type I 

error α 

Percentage 

points dα 

2 

 

3 

 

0.05 

0.10 

0.05 

0.10 

1.691265 

1.274361 

1.157234 

0.866303 

Table 5.4.1 Table of the percentage points 
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5.4 Application to the Data 

Microarray Data 

We will first look at the dataset (I) described in a section 5.1.  

First, we will consider the Dunnett single-step testing scheme. It produces p-

values by testing all genes simultaneously and the three null hypotheses in (5.4). Table 

5.4.2 presents the results using this approach. Among the 2375 genes, the number of 

genes with at least one significant comparison is 199.   

As a next step we applied the permutation-based approach. In our example (I) 

number of total permutations is around 4.7x10
14

, which is quite large, so the p-values can 

be calculated following the above described procedure by drawing N=20000 samples at 

random, which yielded 20000 values of Ti. The results are also summarized in the Table 

5.4.2. Among the 2375 genes, the null hypothesis is rejected for 148 tests identifying 148 

genes.  

Finally, a distribution-based approach is considered. For three groups and α=0.05 

there were only 26 genes with a statistic below the cut-off value from Table 5.4.1. Hence, 

we reject the null hypothesis for these genes. The results of distributional approach are 

also presented in the Table 5.4.2.  

Additionally, Appendix B contains identifiers of genes selected as differentially 

expressed by each approach, 25 of the genes overlap. 

Weight Data 

 Now turning to the non-microarray experiment (II) with weight data, we will 

apply the same three approaches as above. There are k=2 groups with various sample 

sizes for m=66 patients. Despite unequal number of observations in each group, we will 
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still use the distributional approximation derived in Section 5.3. This is due to 

complication in the joint distribution of order statistics, since multivariate normal 

distribution in the case of unequal group sizes is no longer permutation-symmetric.  

Results of three approaches are summarized in Table 5.4.3. Additionally, Table 

5.4.4 contains identifiers of patients, for whom the null hypothesis was rejected. 

Permutation-based approach rejects null hypothesis for 50 patients, while Dunnett test 

selects only 42. Distribution-based approach selected the smallest number of patients 

again which equals 38. The sets of selected patients overlap for 22 members.  

 

Approach (1) Dunnett  (2) Permutation (3) Approximated 

Distribution 

Number of genes 

declared significant 
199 148 26 

Table 5.4.2 Number of significant genes for dataset (I) identified using  

(1) Dunnett, (2) permutation, (3) distribution-based approaches. 

 

Approach (1) Dunnett  (2) Permutation (3) Approximated 

Distribution 

Number of patients 

declared significant 
42 50 38 

Table 5.4.3 Number of patients declared significant for dataset (II)  

 

Approach (1) Dunnett  (2) Permutation (3) Approximated 

Distribution 

Patients declared 

significant 

1  2  3  4  5  6  7  8  

9 11 14 16 17 18 19 

21 23 24 26 27 30 

31 33 34 36 38 40 

41 44 45 46 47 48 

50 51 53 54 55 56 

63 65 66 

1  2  3  4  5  6  7  8  

9 10 11 16 17 18 19 

20 21 23 24 26 27 

29 30 31 32 33 34 

36 37 38 39 41 43 

44 45 46 47 48 50 

51 52 53 54 55 56 

58 59 61 64 65 

2  3  4  7  9 10 11 14 

16 17 18 21 23 24 

25 28 30 31 32 35 

37 38 39 42 44 45 

46 49 51 52 53 56 

58 59 60 63 65 66 

Table 5.4.4 IDs of Patients declared significant for dataset (II) 
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5.5 Discussion  

 The aim of the experiments considered in this chapter was to find ‘bump’ in 

measurements for examples (I) and (II) above. In this chapter we considered three 

approaches – Dunnett’s test, permutation-based and distribution-based techniques. The 

results presented in the Section 5.4 reveal substantial differences between different 

methods employed. The distribution-based procedure led to the smallest number of 

significant findings than the other two testing methods. With a small sample size (as in 

the weight dataset case), the permutation approach tends to pick the larger number of 

patients than Dunnett’s and distribution-based techniques. When the sample size is larger 

(for the microarray dataset), the number selected by a permutation-based method is in the 

middle of other two approaches. 

The drawback of Dunnett’s method is that the correction made to the test statistic 

weakens the significance of truly significant results. For the permutation-based approach, 

the issue related to the small sample size is that p-values generated are not tight enough to 

allow one to obtain significant tests and leads to distorted conclusions. Therefore, 

distribution-based approach gives a way to correct for the above-mentioned issues and 

obtain relevant results.  
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PART IV. 

MENU-DRIVEN PACKAGE  

FOR ANALYSIS WITH R 
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Chapter 6 

PfarMineR 

6.1 Introduction 

Statistics is a fast growing field and novel methods for analysis and exploration of 

data emerge constantly. The R software (Ihaka and Gentleman (1996); R Core 

Development Team (2004)) is a tool widely used for implementation of the newly 

developed methods as R packages, which then are quickly disseminated via CRAN, 

Bioconductor or other web resources. Once these new methods prove their usefulness, 

they are incorporated into commercial software and become standard tool for the data 

exploration. However, the commercial software (primarily SAS or SPSS) while generally 

providing an excellent production environment, lack the timely implementation of state 

of the art methodology.  

A large group of statisticians who work in regulated production environments use 

SAS or SPSS software and may not have the training in R necessary to apply new 

methods to their data. Hence there is a need for the bridge software (in this case an R 

package). For this reason we introduce PfarMineR to make the transition between R and 

SAS/SPSS easy for individuals not familiar with the R command-line environment. 

PfarMineR is a menu-driven interface to a subset of methods in R that is easily 

expandable and can be tailored to users’ needs. Compared to other menu-driven packages 

(see Fox (2005)), PfarMineR does not require any add-ons, has simple intuitive menus 

and dialogs, can work automatically or with a user-specified options. This approach is 

suited the best for statisticians that are not experts in R and students of a specific course 

that uses PfarMineR as a teaching tool.  
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The purpose of this chapter is to outline the package capabilities and functions as 

well as underline options to customize and further expand the software. In the next 

section we will summarize the package design tree and give an overview of currently 

included features. Section 6.3 will describe the way to implement modifications. Then we 

will end this chapter with a discussion.  

 

6.2 Summary of the Design 

Once the PfarMineR package has been installed and loaded into R, it automatically 

creates the menu called “PfarMineR” consisting of the four main submenus and 

additional four command buttons. The summary for submenus is provided in the Table 

6.2.1. The functions of the command buttons are described in the Table 6.2.2. Extensive 

additional details for both submenus and command buttons that include options and 

names of functions can be found in the Appendix 1. 
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Submenu Data Exploratory 

Data Analysis 

Classifications Clustering 

Main Function Contains methods 

of data extraction 

and variable 

manipulation 

Contains methods 

of data extraction 

and variable 

manipulation 

Contains various 

classification 

methods  

Contains various 

clustering methods  

Description 1.Load SAS, Excel 

and TXT files.  

2.Save or load data 

frame can be saved 

or loaded 

3.Provide data 

summary  

4.Edit Variables 

1.Data 

Visualization 

2.Response 

Visualization 

3. Basic EDA Stats 

4.Data 

Transformations  

5.Robust 

Regression 

6.Lasso 

7.Simulation 

Methods and 

Bootstrap 

1.ARF 

2.CART 

3.Neural networks 

4.SVM 

5.Naive Bayes 

6.Random Forest 

7.Boosting 

1.Hierarchical 

2.PAM 

3.Silhouette Plots 

4.K-means 

5.Model-based 

Output 1. ‘Edit Variables’ 

menu contains 

variable names and 

variable 

manipulation 

options;  

2. Summary of the 

dataset 

3. Number of 

missing values. 

Depends on a 

method 1-7 (see 

Appendix 1) 

Depends on a 

method 1-7 (see 

Appendix 1) 

Depends on a 

method 1-5 (see 

Appendix 1) 

Table 6.2.1 Main sub-menus overview 

 

Report All Commands 

History 

Add Method MANUAL 

(AUTOMATIC) 

OPTIONS 

Creates the pdf file 

(REPORTALL.pdf) 

in the current 

directory that 

contains the output of 

all methods and 

functions included in 

the package. 

 

Brings up the 

window that 

shows the history 

of commands 

used in the 

current session. 

 

Creates the new 

menu button with 

the function 

assigned to it that 

was specified by 

the user. 

Switch between 

automatic default 

and manual user-

specified options. 

Table 6.2.2 Command buttons overview 
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6.3 Implementation of Modifications 

The present package is structured in a way that allows for user-specified updates 

and modifications. In this section we will describe those capabilities and provide a series 

of steps for guiding the user towards implementing the following three types of updates: 

(i) modification of the output; (ii) selection of the options; (iii) implementation of a new 

method.  

Modification of the Output 

 To allow flexibility in output destination and contents, the following are the 

options implemented in the PfarMineR. First of all, each method includes “Output to 

Window” or “Output to PDF” items for the destionation selection. Secondly, selection of 

the output contents is done via the pop-up menu. For most methods the pop-up menu 

includes options such as display of the object, object summary, graphical output or all of 

the above. Examples of the output are presented in the Appendix 2. 

Selection of the Options  

Another important feature of the software is the ability to customize any options 

of the selected method.  This feature has to be first turned on via the “MANUAL 

OPTIONS” command button in the main menu. Each method is provided with the set of 

reasonable defaults that are applied automatically. With the “MANUAL OPTIONS” 

switch turned on, the user is communicated via the dialog screen where he can either 

accept default settings or to modify them according to his preferences. Once parameters 

are specified, they are automatically substituted for the method of interest. 
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Implementation of a new method 

Finally, the user is given the ability to expand range of methods provided by the 

PfarMineR with a new method. This can be done through the “Add Method” command 

button. Then the user has to perform the following steps: 

(i)   provide the name for the new item in the menu;  

(ii)  provide the name of the function associated to this menu item; 

(iii) write the function corresponding to the template (see Table 6.3.1 for the 

template and example) 

 

Function 

Arguments 

Dataset (xdatset) and output type (pdf) and others that needed be a 

specific method 

Capture responses 

commands 

response<-xdatset[,attributes(xdatset)$tab[,2]==TRUE] 

attributes(xdatset)$tab[attributes(xdatset)$tab[,2]==TRUE,1]<-FALSE 

Capture predictors 

commands 

x<-xdatset[,attributes(xdatset)$tab[,1]==TRUE] 

Output to PDF 

commands 

pdf(file=pdfname,width=10,height=7.5) 

dev.off() 

Choose output 

type commands 

outtp<-'All' 

if (type==0) { 

outtp<-select.list(c('All','Object','Summary','Graphics'), title = 

"Choose Output Type") } 

Change 

parameters 

commands 

if (manual==TRUE)  {  

  defp<-' weights= NULL, subset= NULL,na.action= na.omit' 

  s<-winDialogString("Change options below", default=defp) 

  eval(parse(text=paste("tmp <- list(",s,")")))} 

Example myknn=function(xdatset){ library(class); 

response<-xdatset[,attributes(xdatset)$tab[,2]==TRUE] 

attributes(xdatset)$tab[attributes(xdatset)$tab[,2]==TRUE,1]<-FALSE 

x<-xdatset[,attributes(xdatset)$tab[,1]==TRUE] 

knn(x,x,cl=response,k=1,l=0,prob=FALSE,use.all=TRUE)} 

Table 6.3.1 New method template 
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6.4 Discussion 

The PfarMineR package is a simple and elegant tool that serves variety of 

purposes. First of all, it provides intuitive interface appealing to those who only begin to 

use the R software. This group of users will be able to slowly develop R programming 

skills while already using R features. Then PfarMineR can also be used by more 

advanced users to perform initial crude analysis of the dataset and then go into detailing 

the analysis options. Finally, the package provides updatable flexible environment, with a 

modular to expand architecture, which allows the implementation of new methods at 

user’s convenience. The download link is available in the Appendix 3. 
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PART V. 

CONCLUDING REMARKS 
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Chapter 7. 

Concluding Remarks and Future Research 

 

In this dissertation we considered several questions arising from the analysis of 

microarray data. We were primarily interested in classification and hypothesis testing 

problems for gene expression data.  

 

The first part of the dissertation was an introduction to the microarrays and 

statistical analysis of microarray data. Then in Chapters 3 and 4, we assessed the problem 

of classification tasks in microarray experiments and proposed the PLS-FDR scheme. We 

noted that PLS-FDR scheme can also be used in two more settings such as ensemble and 

weighting. Comparing the performance of proposed scheme with other classifiers, we 

observed that for simulated data PLS-FDR outperforms other classifiers when number of 

noise variables gets large. For real-life datasets we found that the proposed methodology 

is also among the best classifiers for most datasets. PLS-FDR generated weights also 

improve the performance of each single classifier if used as a weighting scheme or part of 

the ensemble.  

One of the interesting applications of the PLS-FDR approximations would be the 

use of weights for gene-selection purpose. It was previously noted that the gene-selection 

method that leads to the largest percentage of truly differentially expressed genes does 

not necessarily lead to the lowest misclassification rate. Hence, we can compare our 

weights with other methods such as Wilcoxon, prediction analysis of microarray, or 
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extreme-value distribution based gene selection. Additionally, we can explore relations 

between various univariate and multivariate gene-selection methods.  

Another application we would like to consider is solving clustering problems. We 

previously looked at the application of weights to the problem of gene clustering and 

observed some promising results. This topic can be explored further and the results can 

be compared with those of supervised clustering (Dettling 2005) and other methods. 

We can also look at the Sliced Inverse Regression (SIR) idea proposed by Duan 

and Li (1991). The SIR is a tool for reducing the dimension that does not require 

parametric or non-parametric model fitting. This idea deserves further research. 

 

In the next part of the dissertation we focused on the hypothesis testing for 

microarray data. We concentrated on the experiments where one wants to find a ‘bump’ 

in group measurements. We applied three approaches – Dunnett’s test, permutation-based 

and distribution-based – to the analysis of gene-expression and weight data. We 

concluded that the use of derived distribution of the test statistic has the advantage over 

Dunnett’s and permutation-based tests. It does not alter the test statistic like Dunnett’s 

method, and has no limitations for the small sample size as in the permutation-based 

approach. We may also consider the performance of the three tests in the carefully 

simulated datasets to see if the selected genes are truly those that were simulated as 

differentially expressed. Additionally, we can look at the distribution of the test statistic 

in more general settings of unequal variances and group sample sizes. These are topics 

for additional investigation. 
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The last part of the dissertation was devoted to the PfarMineR package. The 

package can also be expanded to include novel methods as they emerge in the statistical 

society. As flexible as this tool is, there is also room for simplifications and 

improvements of the interface.  

 

We would like to conclude this dissertation with the goal of functional genomics 

and microarray technology which is to understand the relationship between an organism's 

genome and its phenotype. The analysis of gene expression data is a step toward the 

fulfillment of this goal. The methods described in this dissertation contribute to the set of 

methodologies for the analysis of gene expression data. 
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APPENDIX A  

Overview of R Packages That Implement Various PLS Approaches 

Package Description 

plsgenomics 

This package implements PLS regression (using the function simpls from 

the pls.pcr package) with user-friendly features such as the choice of the 

number of components. It also implements the classification method 

PLS+LDA (discussed by Nguyen and Rocke, and Boulesteix) as well as 

the ridge PLS method. 

pls.pcr 
This package implements the two main variants of multivariate PLS 

regression SIMPLS and PLS2 as well as PCR. 

pls 
This package is an extension of the earlier package pls.pcr including, e.g. 

various plot functions and a formula interface. 

gpls 

This package implements the classification method using generalized 

PLS (see Ding B. and Gentleman R. Classification using generalized 

partial least squares. 2005.). 

plss 
These programs implement PLS regression based on splines 

transformations of the predictors. 
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APPENDIX B  

Differentially expressed genes identified by each procedure 

Approach Dunnet Permutation Approximated 

Distribution 

Genes A20   A26   A48   A64   A69   A101  

A118  A138  A152  A167  A168  

A171  A178  A193  A209  A218  

A222  A228  A240 A275  A282  

A317  A322  A364  A371  A376  

A378  A393  A394  A407  A415  

A421  A426  A430  A444  A448  

A449  A453 A461  A462  A463  

A479  A490  A512  A514  A516  

A549  A554  A558  A567  A591  

A594  A606  A609  A626  A631  

A633 A638  A639  A644  A657  

A660  A662  A664  A675  A690  

A702  A711  A716  A746  A757  

A825  A834  A851  A855  A862 

A875  A892  A898  A910  A923  

A951  A970  A975  A985  A1001 

A1011 A1036 A1040 A1071 A1093 

A1115 A1133 A1142 A1154 A1159 

A1164 A1170 A1187 A1189 A1193 

A1210 A1223 A1241 A1254 A1257 

A1259 A1279 A1297 A1307 A1323 

A1325 A1327 A1345 A1370 A1374 

A1383 A1389 A1412 A1413 A1458 

A1464 A1474 A1477 A1479 A1488 

A1504 A1506 A1507 A1512 A1513 

A1536 A1537 A1542 A1560 A1566 

A1576 A1584 A1595 A1596 A1598 

A1601 A1627 A1644 A1659 A1666 

A1683 A1700 A1711 A1720 A1729 

A1747 A1750 A1755 A1776 A1792 

A1802 A1822 A1830 A1834 A1857 

A1874 A1886 A1900 A1905 A1928 

A1945 A1952 A1978 A1987 A2004 

A2017 A2023 A2033 A2051 A2059 

A2061 A2062 A2067 A2085 A2113 

A2122 A2139 A2144 A2160 A2178 

A2185 A2190 A2200 A2220 A2248 

A2251 A2254 A2267 A2303 A2316 

A2334 A2352 A2353 

A20   A26   A48   A58   A64   

A79   A83   A138  A149  

A192  A205  A206  A218  

A222  A228  A230  A235  

A273  A322 A363  A371  

A376  A387  A407  A415  

A421  A442  A443  A448  

A449  A453  A461  A477  

A490  A498  A510  A512  

A516 A521  A522  A538  

A558  A594  A601  A618  

A632  A643  A654  A664  

A665  A690  A716  A769  

A773  A782  A825  A834 

A850  A875  A886  A887  

A910  A937  A939  A951  

A971  A1011 A1017 A1019 

A1033 A1064 A1071 A1077 

A1133 A1142 A1154 A1159 

A1164 A1170 A1180 A1187 

A1197 A1213 A1241 A1242 

A1254 A1307 A1323 A1327 

A1345 A1382 A1383 A1422 

A1425 A1458 A1463 A1477 

A1504 A1506 A1507 A1512 

A1513 A1536 A1539 A1542 

A1568 A1569 A1595 A1596 

A1598 A1601 A1602 A1626 

A1627 A1644 A1724 A1729 

A1747 A1750 A1755 A1776 

A1792 A1822 A1830 A1834 

A1882 A1928 A1937 A1940 

A1966 A2002 A2004 A2017 

A2061 A2067 A2104 A2110 

A2113 A2142 A2190 A2192 

A2199 A2303 A2316 A2319 

A2322 A2352 A2353 

A20   A26   A376  

A558  A632  

A664  A690  

A875  A951  

A1011 A1254 

A1323 A1327 

A1383 A1477 

A1507 A1513 

A1536 A1596 

A1598 A1627 

A1747 A1750 

A1830 A2061 

A211 

Intersection A20   A26   A376  A558  A664  A690  A875  A951  A1011 A1254 A1323 A1327 A1383 

A1477 A1507 A1513 A1536 A1596 A1598 A1627 A1747 A1750 A1830 A2061 A2113 
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APPENDIX C 

Approximate plots of the T statistic distribution 
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Plots of a T-statistic density for k=2 (left) and k=3 (right) 
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APPENDIX 1  

Package Tree and Layout 

DATA MENU 

Menu Name Function Input/Options 

Import Sas file (.xport) browse 

Import Excel file (.csv) browse2 

Import TXT file (.txt) browse3 

File name/location 

Dataset name 

Output Description and Notes:  Reads the dataset, identifies variables automatically as numeric or 

categorical, response (those including “RSP” or “RESP” in their name) or independent, and whether they 

are included in the analysis. Also creates additional menu with variable names and characteristics, so that 

they can be changed. Dataset name provided is for user’s use for later. Initially all variables are included 

in the analysis, and only those are considered categorical that are text variables. Output is dataset 

summary and number of missing values. 

Save Data Frame frames File Name 

Output Description and Notes: Saves the current dataset and its attributes (variable types, etc.) in the 

current folder as ‘.txt’ file with the name provided by user. File gets created in the current directory. 

Dataset can later be loaded via the ‘Load’ menu button. 

Load Data Frame framei File Name/Location 

Output Description and Notes:  Loads dataset from the file specified, prints dataset summary and number 

of missing values.  

Edit Variables edtvars Current Dataset 

Output Description and Notes: Creates or updates “Edit Variables” menu based on the current dataset – 

menu where you can choose if the variable is numeric or categorical, response or independent, included or 

not in the analysis.  

Data Summary prdatasumm Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Prints dataset summary - variable name, type, whether included in 

analysis, whether response or independent; and number of missing values.  

EXPLORATORY DATA ANALYSIS MENU 

Menu Name Function Input/Options 

Data Visualization visual 

Response Visualization rvisual 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Visualization of variables against each other and/or response(s) – done as 

scatterplot for two continuous variables, boxplot for continuous and categorical, and barplot for two 

categorical ones. To look at the distribution of a single variable, there is either histogram or barplot for 

cases of continuous or categorical variables respectively. The output is broken into pages with the largest 

dimension of a page being 5x5 and pages are arranged from left to right. 

Basic EDA Stats sumstat 

sumstatby 

Current Dataset 

Categorical Variable Name (for summary 

by this variable) 

Automatic or By Variable 

Output type to PDF or Window 

Output Description and Notes: Basic summary for categorical variable – levels, number of times each 

level happens, percentage of total number. For continuous variables – mean, standard deviation, 

minimum, first quartile, median, 3rd quartile. There is also an option to calculate those statistics for each 

level of chosen categorical variable. 

Data Transformations transf Current Dataset 

Variable Name 

Type of Transformation 

Required constant(s) 

Output type to PDF or Window 

Output Description and Notes: Transformations available for continuous variables: add a constant (x+c), 
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raise to a power (x
c
), take a root (x

1/c
), inverse (1/x), take a logarithm (log(x)), exponentiate (e

x
), 

automatic ( (x-a)
b
 where a and b are constants determined automatically to make the QQ plot straight 

line), standardization ( (x-mean)/sd ), center at zero ( x-mean ), restore original. Outputted then are the 

QQ plots - original and after transformation – and the histogram with curve over. For automatic 

transformation constants a and b are also outputted. 

For categorical variables user can recode levels and restore original. Two levels can be merged if recoded 

to the same level. Then new levels of a variable are outputted. 

Robust Regression robregr 

(via lm, rlm, and glm) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: For continuous response there is summary of the linear regression, 

ANOVA, summary of the robust regression, residual boxplot, QQ plots for least-squares and robust 

residuals, least-squares and robust residuals vs. fitted that are shown. For categorical - summary of the 

logistic regression, analysis of deviance table, response barplot, model success, ROC for prediction. 

LASSO pfarlas 

(via lars, gl1ce) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: LASSO runs with all the variables and then the summary is printed along 

with the optimum parameter value and non-zero coefficients. Plotted are cross-validated error curve and 

plot of lasso fit. 

For the categorical response there is Generalized Regression With L1-constraint on the Parameters 

performed. Output consists of lasso object, plot for residuals vs. fitted values, and link vs. response 

predicted values. 

Simulation Methods and 

Bootstrap 

simbootstr 

(via boot) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Performs a nonparametric bootstrap for continuous response predictors. 

Output is least-squares estimates, bias, standard error, percentile confidence interval (bootstrap percentile 

method), BCA confidence interval (adjusted bootstrap percentile method) 

CLASSIFICATIONS MENU 

Menu Name Function Input/Options 

ARF myarf 

(via arf) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Output consists of the report files (for PDF “arfreport.pdf”) for each 

response. 

CART cart 

(via rpart) 

Current Dataset 

Manual (then require minimum bucket size, 

minimum split, complexity parameter) or 

automatic  

Output type to PDF or Window 

Output Description and Notes: Rpart object is plotted and its summary is displayed.  

Neural networks neunet 

(via nnet) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Neural Network summary is showed for each response. 

SVMs svms 

(via svm) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Response can be either a factor (for classification tasks) or a numeric 

vector (for regression). For the continuous response output is the model summary. For the categorical one 

- model summary, SVM object plots for each combination of two predictors on a separate page (crosses 

indicate support vectors,  the colors represent the classes of the data points). 

Naive Bayes naibay 

(via naiveBayes) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: After performing the Naive Bayes Classifier for Discrete Predictors shows 

the model information and the table of predicted versus original values  

Random Forests ranfor 

(via randomForest) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Performs Breiman's random forest algorithm for classification and 

regression and output consists of  the model information, the plot of the error rates or MSE of a random 
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forest object, and the dot-chart of variable importance as measured by a random forest. 

Boosting mybst 

(via gbm) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Performs Generalized Boosted Regression Modeling. Output consists of 

the optimal number of boosting iterations for an object and the summary based on the estimated best 

number of trees. Also there are two plots - the first one shows performance measures. The second one is 

the relative influence barplot. 

CLUSTERING MENU 

Menu Name Function Input/Options 

Hierarchical clusth 

(via hclust) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Cluster Dendrogram  

PAM clustpam 

(via pam) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: Outputs the optimal number of clusters based on average silhouette width, 

the plot of number of clusters versus average silhouette width, the PAM object for the best number of 

iterations, and the silhouette plot for the above object. 

Silhouette Plots clustsilh 

(via silhouette) 

Current Dataset 

Number of clusters 

Output type to PDF or Window 

Output Description and Notes: Showed are summary of the silhouette clustering object and the silhouette 

plot for this object. 

K-means clustkmean 

(via kmeans) 

Current Dataset 

Number of clusters 

Output type to PDF or Window 

Output Description and Notes: The output consists of the k-means object summary and plots of variables 

against each other showing clusters in different colors.  

Model-based modbase 

(via Mclust) 

Current Dataset 

Output type to PDF or Window 

Output Description and Notes: The optimal model according to BIC for EM initialized by hierarchical 

clustering for parameterized Gaussian mixture models produces the following model-based clustering 

plots: BIC values used for choosing the number of clusters, pairs plot showing the classification,  

projections of the data showing location of the mixture components, classification, and uncertainty  

 

Menu Name Function Input Output type 

Report All reportall Current Dataset PDF file 

‘REPORTALL

.pdf’ in the 

current 

directory 

containing the 

output of all 

methods 

Commands History history  Window pops 

up containing 

the commands 

used in the 

current session 

Add Method addmenubutn Menu Name 

Function Name 

Source Code File 

New menu 

button with the 

function 

assigned as 

specified by 

the user 
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APPENDIX 2 

Examples of Output 

 

         Variable Type Included Response    

PAIN0    Numeric       No       Independent 

SLEEP0   Numeric       No       Independent 

PAIN     Numeric       No       Independent 

SLEEP    Numeric       No       Independent 

PNCHG    Numeric       Yes      Response    

SLPCHG   Numeric       Yes      Independent 

PNPCH    Numeric       No       Independent 

SLPPCH   Numeric       No       Independent 

RSP30    Categorical   Yes      Response    

RSP50    Numeric       No       Independent 

AGE      Numeric       Yes      Independent 

STATUS   Categorical   Yes      Independent 

RXGP     Categorical   Yes      Independent 

SITE     Numeric       No       Independent 

PTID     Numeric       No       Independent 

LASTDAY  Numeric       No       Independent 

DAY1     Numeric       No       Independent 

LASTDYDB Numeric       No       Independent 

CSITE    Numeric       Yes      Independent 
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APPENDIX 3  

Package PfarMineR 

The package can be downloaded at: 

http://stat.rutgers.edu/~ycherkas/Codes/PfarMineR_1.0.zip 
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