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ABSTRACT OF THE DISSERTATION

Scenario Decomposition of Risk-Averse Stochastic

Optimization Problems

by Ricardo A. Collado Soto

Dissertation Director: Dr. Andrzej Ruszczyński

In the last decade the theory of coherent risk measures established itself as an alter-

native to expected utility models of risk averse preferences in stochastic optimization.

Recently, increased attention is paid to dynamic measures of risk, which allow for

risk-averse evaluation of streams of future costs or rewards. When used in stochastic

optimization models, dynamic risk measures lead to a new class of problems, which

are significantly more complex than their risk-neutral counterparts. Decomposition,

an established and efficient approach to risk-neutral multistage stochastic optimization

problems, cannot be directly applied to risk-averse models. With dynamic risk mea-

sures, the main feature facilitating decomposition, the integral form of the objective

function, is absent. Our main objective is to overcome this difficulty by exploiting spe-

cific structure of dynamic risk measures, and to develop new decomposition methods

that extend the ideas of earlier approaches to risk-neutral problems.

In this work we develop generalizations of scenario decomposition methods, in the

spirit of J.M. Mulvey and A. Ruszczyński, A new scenario decomposition method for

large-scale stochastic optimization, Operations Research 43, 1995. The key to success
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is the use of dual properties of dynamic measures of risk to construct a family of risk-

neutral approximations of the problem. First, we define and analyze a two-stage risk-

averse stochastic optimization problem. Next, we develop methods to solve efficiently

this problem. Later, we formally define a multistage risk-averse stochastic optimization

problem and we discuss its properties. We also develop efficient methods to solve the

multistage problem and apply these to an inventory planning and assembly problem.

Finally, we analyze and compare the results of our computational experiments.
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Chapter 1

Introduction

The traditional approach of optimizing the expectation operator in stochastic programs

successfully introduces uncertainty of events in stochastic models but might fail to

convey the element of risk that certain modeling problems face. A clear example is

given by the problem of maximizing the return rate of a portfolio. The optimal solution

obtained by optimizing the portfolio’s return expectation will suggest to concentrate

the investments in the assets with the highest expected return rate. This is not a

reasonable solution because it fails to recognize the possibility of loosing money due to

changes in the market that might not benefit that sole asset with highest expectation.

Of course, a way to avoid this would be to diversify the investment taking somehow

into account the risk involved in holding a position versus the random changes of the

market.

During the last decade researchers have developed the coherent risk measures as an

alternative to the expectation operator in the traditional stochastic programs. These

operators are consistent with a systematized theory of risk as presented in [4, 5] and

by substituting the expectation operator give rise to risk-averse programs. Coherent

risk measures have a rich axiomatic theory including duality and differentiability, thus

allowing the development of efficient methods for the solution of risk-averse programs,

see for example [3, 11, 23]. In [38, 39, 37, 41] we can find a comprehensive treatment

of the coherent risk measures and risk-averse optimization including the development

of multi-stage risk-averse programs (see, e.g., [36] for a general development of multi

staged stochastic problems).

Simply speaking, a measure of risk is a function ρ : X → R which assigns to each

random variable X, from a set X of possible positions, a value that corresponds to
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the assessment of the risk involved by holding said position. These scalar measures of

risk allow the risk manager to order and compare different positions according to their

corresponding risk value. The usefulness of a particular risk measure is dependent on

its properties and how closely it models the perception of risk at the different positions

for the particular application at hand.

Until 20 years ago most of the risk-related research was performed on a case-by-case

basis where for particular applications different notions of risk measures were developed

with varying range of success. In the pre-Markowitz era, financial risk was considered

as a correcting factor of expected return and risk-adjusted returns were defined on an

ad-hoc basis. Later, Markowitz proposed to measure the risk associated to the return

of each investment by means of the deviation from the mean of the return distribution,

the variance, and covariance between all pairs of investments, see [43].

More recently the Value at Risk (VaR) measure has been increasingly used to mea-

sure and manage the market risk. The importance of VaR cannot be overestimated.

Reports and surveys from 1995 state that the measure was widely used by both finan-

cial and non-financial corporations in the U.S., see [19]. The VaR measure has such

wide acceptance that regulators in both U.S and the European Union allow VaR models

to be used provided they comply with restrictions, see [19]. Despite the fact that the

VaR has proven to be a popular measure of risk it has its detractors who point out

its lack of subadditivity and convexity as serious mathematical deficiencies that lead

to undesirable properties of the models based on the measure. See [4, 20, 21] to get a

in-depth view of the deficiencies of the VaR measure.

At the end of the 90’s Artzner, Delbaen, Eber, and Heath studied the “capital re-

quirements to regulate the risk assumed by market participants, traders, and insurance

underwriters, as well as to allocate existing capital”, see [4], and identified a handful of

desirable properties that a risk measure for such applications should have. Needless to

say that subadditivity and convexity are among these desirable properties. From this

list of properties P. Artzner et al. developed the concept of a coherent measure of risk.

In the last decade the theory of coherent risk measures established itself as an alterna-

tive to expected utility models of risk averse preferences in stochastic optimization. The



3

theory was further developed in numerous publications (see, e.g., [12, 13, 44, 34, 38] and

the references therein). This development has established the coherent risk measures

as an unified framework providing the grounds for a solid theoretical foundation on the

notion of risk aversion on which optimization models can be based on.

The notion of risk-averseness conveyed by the theory of risk measures is general

enough to model every risk-averse decision maker. The idea is to allow the decision

maker to pick a risk measure that suits his priorities the most and optimize his actions

by minimizing the risk assessed by the measure. One of the most attractive aspects of

the theory is its potential for applicability. By developing models based on the theory

of coherent risk measures one is in fact considering not one but a large family of models

each one based on a different coherent risk measure which could potentially be used

in different applications. The choice of which coherent risk measure will be used for a

particular application should be based on additional considerations on the requirements

of the application in question.

Recently, increased attention is paid to dynamic measures of risk, which allow for

risk-averse evaluation of streams of future costs or rewards (see, e.g., [2, 10, 14, 25, 27,

34, 37, 40]). When used in stochastic optimization models, dynamic risk measures lead

to a new class of problems, which are significantly more complex than their risk-neutral

counterparts (see [38, 37, 39, 41]). The progression from risk-neutral models to risk-

averse dynamic models follows a natural path. The coherent risk measures allow the

evaluation and comparison of risk of uncertain outcomes and adding these measures to

static risk-neutral stochastic programs gives rise to risk-averse optimization problems.

From the coherent risk measures we develop the conditional risk-measures which in turn

evolve into dynamic risk-measures. These measures paired with dynamic stochastic

optimization models give rise to risk-averse dynamic models. Although natural, this

progression is by no means trivial, requiring a full decade of research and development

to reach to the state where risk-averse models are postulated and applied to relevant

applications, see [23, 22, 11, 41, 3, 1]. Still there are major hurdles to overcome in the

quest of developing a general theory of risk-averse optimization.

Decomposition, an established and efficient approach to risk-neutral multistage
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stochastic optimization problems, see [8, 16, 26, 33] and the references therein, can-

not be directly applied to risk-averse models. With dynamic risk measures, the main

feature facilitating decomposition, the integral form of the objective function, is ab-

sent. Our main objective is to overcome this difficulty by exploiting specific structure

of dynamic risk measures, and to develop new decomposition methods that extend the

ideas of earlier approaches to risk-neutral problems. This research was initiated by N.

Miller and A. Ruszczyński in [22], where they developed risk-averse counterparts of the

primal (Benders-type) decomposition methods.

In this work we develop generalizations of scenario decomposition methods, in the

spirit of [24]. The key to success is the use of dual properties of dynamic measures of risk

to construct a family of risk-neutral approximations of the problem. In Chapter 2 we

introduce the coherent and conditional measures of risk and its main properties; see the

appendix for a brief overview of the necessary mathematical background. In Chapter

3 we introduce a general two-stage risk-averse stochastic optimization problem and in

Chapter 4 we show a more particular version with mean upper semideviation. Chapter

5 develops the dual cutting plane method, which is our base decomposition method. In

the development of efficient master algorithms we modify the bundle method, to better

exploit the specifics of the problem at hand. The resulting algorithm, which we call the

partial bundle method, is discussed in Chapter 6.

Chapter 7 develops the general multistage risk-averse stochastic optimization prob-

lem and methods. Since this is the main chapter of our work, it warrants an overview

of its contents. In sections 7.1 and 7.2 we formally define a multistage risk-averse

stochastic optimization problem and we discuss its properties. Section 7.3 discusses

nonanticipativity constraints. In section 7.4 we advance the duality theory of dynamic

measures of risk, by identifying the properties that are essential for our decomposition

approach. In section 7.5 we present the main idea of our new decomposition meth-

ods. In section 7.6 we analyze properties of the master (coordination) problem of the

method.
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Finally, Chapter 8 is devoted to the application of two versions of our methods,

with several coordination algorithms, to an inventory planning and assembly problem.

In this chapter we also show numerical results from our implementations and compare

the results obtained.
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Chapter 2

Coherent Measures of Risk

In this chapter we introduce and develop the basic theory of coherent measures of risk.

We follow closely the development from [34, 38, 39, 41].

2.1 Coherent Measures of Risk

Let (Ω,F , P ) be a probability space with a sigma algebra F and probability measure

P . In this work we will restrict ourselves to the spaces of uncertain outcomes Z :=

Lp(Ω,F , P ), where p ∈ [1,+∞). Each element Z := Z(ω) of Z is viewed as an uncertain

outcome on (Ω,F) and is by definition a random variable with finite p-th order moment

with respect to the reference probability measure P .

A risk measure is a proper class function ρ : Z → R. By this we mean that ρ is

constant on the classes of functions which differ only on sets of P -measure zero, i.e.

ρ(Z) = ρ(Z ′) if P{ω : Z(ω) 6= Z ′(ω)} = 0. The function ρ is proper in the sense that

ρ(Z) > −∞ for all Z ∈ Z and its domain

dom(ρ) := {Z ∈ Z : ρ(Z) < +∞}

is nonempty. We say that the probability space (Ω,F , P ) is the probability space

associated with the risk measure ρ.

For Z,Z ′ ∈ Z we denote by Z � Z ′ the pointwise partial order, meaning Z(ω) ≤

Z ′(ω) for a.e. ω ∈ Ω. We also assume that the smaller the realizations of Z, the better;

for example, Z may represent a random cost.

A coherent risk measure is a risk measure ρ : Z → R satisfying the following axioms:

(A1) Convexity : ρ (tZ + (1− t)Z ′) ≤ tρ(Z) + (1 − t)ρ(Z ′), for all Z,Z ′ ∈ Z and all
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t ∈ [0, 1];

(A2) Monotonicity : If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≤ ρ(Z ′);

(A3) Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a;

(A4) Positive homogeneity : If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

These axioms were conceived by Artzner et al. [4] in the context of risky capital markets

and it is under these circumstances that we can better understand the above definition.

Suppose that our perception of risk is an amount of a security capital that we would set

aside from our investments to protect us from the fluctuations of the market. Examining

axioms (A1) - (A4) under this context makes the definition of coherent risk measures

clear.

Axioms (A1) and (A4) imply subadditivity, which can be stated as “a merger does

not create extra risk” [4], a natural requirement. Axiom (A2) states that investing more

capital under any possible market scenario increases the investor’s perception of risk.

Similarly, Axiom (A3) says that investing an extra a units under any possible market

scenario increases the investor’s perception of risk by that same amount a. Finally,

axiom (A4) states that a change of currency in the capital investments does not change

the investor’s perception of risk under the new currency.

All the measures of risk considered in this work will have a finite associated proba-

bility space (Ω,F , P ). That is, Ω has a finite number of elements and F = 2Ω, i.e. the

power set sigma algebra. In this case we will let Z := L1(Ω,F , P ), which is just the set

of all functions f : Ω → R. For this reason we will identify the set Z with RN , where

N is the number of elements of Ω.

Leveraging on the conjugate duality theory reviewed in the appendix and the def-

inition of coherent risk measures we arrive to the representation theorem of coherent

risk measures:

Theorem 1. Suppose that (Ω,F , P ) is a finite probability space as described above with

|Ω| = N , P = (p1, . . . , pN ) and Z := L1(Ω,F , P ) = RN . If ρ : Z → R is a lower

semicontinuous coherent risk measure then ρ is subdifferentiable and for every random
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variable Z = (z1, . . . , zN ) ∈ Z:

ρ(Z) = max
µ∈∂ρ(0)

N∑
i=1

µipizi, (2.1)

where

∂ρ(0) ⊆

{
ζ ∈ RN

∣∣∣∣∣
N∑
i=1

ζipi = 1, ζ ≥ 0

}
.

Proof. First we should point out that the spaces in question are the spaces Z =

L1(ω,F , P ) = RN and Z∗ = L∞(Ω,F , P ) = RN . For Z ∈ Z and ζ ∈ Z∗ their

scalar product is defined as

〈ζ, Z〉 :=
∑
i=1

ζipizi. (2.2)

Clearly, all the results presented in the appendix hold even if we replace the conventional

scalar product by the product defined in (2.2).

Since ρ is convex, lower semicontinuous, and proper, Theorem 19 implies that ρ =

ρ∗∗. More specifically, for all Z ∈ Z,

ρ(Z) = sup
µ∈RN

{〈µ,Z〉 − ρ∗(µ)} . (2.3)

We first show that dom(ρ∗) ⊂ RN+ . Suppose there is µ ∈ dom(ρ∗) which is not

an element of the cone RN+ . Then it can be strictly separated from RN+ . There exists

W ∈ RN and ε > 0 such that:

〈W,µ〉 ≤ 〈W,µ〉 − ε for all µ ∈ RN+ .

It follows that W is in the polar of RN+ and so, W ≤ 0. Setting µ = 0 we get that

〈W,µ〉 ≥ ε > 0. Consider an arbitrary point Z ∈ RN and points Y = Z + tW , for

t ≥ 0. As Y ≤ Z, the monotonicity axiom (A2) implies that ρ(Y ) ≤ ρ(Z). From the
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definition (8.18) of the conjugate dual we deduce that

ρ∗(µ) = sup
Z∈RN

{〈µ,Z〉 − ρ(Z)} = sup
Z∈RN

{〈µ,Z + tW 〉 − ρ(Z + tW )}

≥ sup
Z∈RN

{〈µ,Z〉 − ρ(Z)}+ t〈µ,W 〉 ≥ ρ∗(µ) + tε.

Therefore, we conclude that ρ∗(µ) =∞, a contradiction. Consequently, dom(ρ∗) ⊂ RN+ .

The translation equivariance axiom (A3) implies that for all a ∈ R:

ρ∗(ζ) = sup
Z∈RN

{〈ζ, Z〉 − ρ(Z)} = sup
Z∈RN

{〈ζ, Z + a1〉 − ρ(Z + a1)}

= sup
Z∈RN

{〈ζ, Z〉 − ρ(Z)}+ a (〈ζ,1〉 − 1) = ρ∗(ζ) + a (〈ζ,1〉 − 1) ,

where 1 is the vector with all entries equal to one. This means that ρ∗(ζ) <∞ only if

〈ζ,1〉 = 1. In other words, the domain of the conjugate function is included in the set

of probability vectors

P :=

{
ζ ∈ RN

∣∣∣∣∣
N∑
i=1

ζipi = 1, ζ ≥ 0

}
.

The positive homogeneity axiom (A4) implies that for every t > 0 and every µ ∈

dom(ρ∗) we have

ρ∗(µ) = sup
Z∈RN

{〈µ,Z〉 − ρ(Z)} = sup
Z∈RN

{〈µ, tZ〉 − ρ(tZ)}

= sup
Z∈RN

{t〈µ,Z〉 − tρ(Z)} = tρ∗(µ).

This implies that ρ∗(µ) = 0. Consequently, ρ∗ is the indicator function of certain set

A ⊂ P. Formula (2.3) simplifies to

ρ(Z) = sup
µ∈A
〈µ,Z〉, (2.4)

where 〈·, ·〉 is as defined in (2.2). It is not difficult to see that the set A is closed and

convex. Therefore Lemma 21 implies that A = ∂ρ(0). By combining this with (2.4) we
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obtain representation (2.1), as we wanted.

We see from theorem 1 that if ρ is a coherent risk measure then ∂ρ(0) is a set of

probability density functions. Consequently, for any µ ∈ ∂ρ(0) we can view
∑N

i=1 µipizi

as the expectation Eµ[Z] taken with respect to the probability measure µdP , defined

by the density µ. For this reason representation (2.1) can be written as

ρ(Z) = max
µ∈∂ρ(0)

Eµ[Z].

Thus, evaluating a coherent risk measure amounts to select the “worst” expected value

out of a set of given possible density functions, namely ∂ρ(0). This is one of the main

results in the theory of coherent risk measures and it will allow us to bridge the gap

between the classical scenario decomposition methods and the coherent risk measures.

The following is the more general version of Theorem (1) for a general probability

space Ω, see [41, ch. 6] for details and proof.

Theorem 2. Let (Ω,F , P ) be a sample space with sigma algebra F and probability

measure P . Let p ∈ [1,+∞), q ∈ (1,+∞] be such that 1/p + 1/q = 1 and let Z :=

Lp(Ω,F , P ),Z∗ := Lq(Ω,F , P ) be a conjugate pair of spaces. Let ρ : Z → R be a lower

semicontinuous coherent risk measure and ρ∗ : Z∗ → R be its conjugate dual. Then ρ

is subdifferentiable and for every random variable Z ∈ Z:

ρ(Z) = max
µ∈∂ρ(0)

∫
Ω
µ(ω)Z(ω)dP (ω), ∀Z ∈ Z (2.5)

where

∂ρ(0) ⊆
{
ζ ∈ RN

∣∣∣∣ ∫
Ω
ζ(ω)dP (ω) = 1, ζ ≥ 0

}
.

2.2 Examples

In this section we will introduce several important examples of coherent risk measures

which are relevant to this work. We closely follow the examples provided in [41, Ch.

6].
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2.2.1 Conditional Value-at-Risk

Value-at-Risk

Let HZ(z) = Pr(Z ≤ z) be the cdf of the random variable Z and α ∈ (0, 1). Recall

that the left-side α-quantile of HZ is defined as

H−1
Z (α) := inf{t : HZ(t) ≥ α},

and the right-side α-quantile as sup{t : HZ(t) ≤ α}. If Z represents losses, the (left-side)

quantile H−1
Z (1−α) is also called Value-at-Risk and denoted VaRα(Z). Its meaning is

the following: losses larger than VaRα(Z) occur with probability not exceeding α. Note

that

VaRα(Z + τ) = VaRα(Z) + τ, ∀τ ∈ R.

The weighted mean deviation from a quantile is defined as follows:

qα[Z] := E
[
max

{
(1− α)(H−1

Z (α)− Z), α(Z −H−1
Z (α))

}]
. (2.6)

The functional qα[Z] is well-defined and finite-valued for all Z ∈ L1(Ω,F , P ). It can be

easily shown that

qα[Z] := min
t∈R
{ϕ(t) := E [max{(1− α)(t− Z), α(Z − t)}]} . (2.7)

Indeed, the right and left side derivatives of the function ϕ(·) are

ϕ′+(t) = (1− α)Pr[Z ≤ t]− αPr[Z > t],

ϕ′−(t) = (1− α)Pr[Z < t]− αPr[Z ≥ t].

At the optimal t the right derivative is nonnegative and the left derivative nonpositive,

and thus

Pr[Z < t] ≤ α ≤ Pr[Z ≤ t].

This means that every α-quantile is a minimizer in (2.7).
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The risk functional qα[·] can be used in mean-risk models, both in the case of mini-

mization

min
x∈X

E[Zx] + cq1−α[Zx], (2.8)

and in the case of maximization

max
x∈X

E[Zx]− cqα[Zx]. (2.9)

We use 1−α in the minimization problem and α in the maximization problem, because

in practical applications we are interested in these quantities for small α.

Conditional Value-at-Risk

The mean-deviation from quantile model is closely related to the concept of Conditional

Value at Risk. Suppose that Z represents losses and we want to satisfy the chance

constraint:

VaRα[Zx] ≤ 0. (2.10)

We have that1 Pr(Zx > 0) = E
[
1(0,∞)(Zx)

]
, and hence constraint (2.10) can also be

written as the expected value constraint:

E
[
1(0,∞)(Zx)

]
≤ α. (2.11)

The source of difficulties with chance constraints is that the step function 1(0,∞)(·) is not

convex and, even worse, it is discontinuous at zero. As a result, chance constraints are

often nonconvex, even if the function x → Zx is convex almost surely. One possibility

is to approach such problems by constructing a convex approximation of the expected

value on the left of (2.11).

Let ψ : R → R be a nonnegative valued, nondecreasing, convex function such that

ψ(z) ≥ 1(0,∞)(z) for all z ∈ R. By noting that 1(0,∞)(tz) = 1(0,∞)(z) for any t > 0 and

1Recall that 1(0,∞)(z) = 0 if z ≤ 0, and 1(0,∞)(z) = 1 if z > 0.
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z ∈ R, we have that ψ(tz) ≥ 1(0,∞)(z) and hence the following inequality holds

inf
t>0

E [ψ(tZx)] ≥ E
[
1(0,∞)(Zx)

]
.

Consequently, the constraint

inf
t>0

E [ψ(tZx)] ≤ α (2.12)

is a conservative approximation of the chance constraint (2.10) in the sense that the

feasible set defined by (2.12) is contained in the feasible set defined by (2.10).

Of course, the smaller the function ψ(·) is the better this approximation will be.

From this point of view the best choice of ψ(·) is to take piecewise linear function

ψ(z) := [1 + γz]+ for some γ > 0. Since constraint (2.12) is invariant with respect

to scale change of ψ(γz) to ψ(z), we have that ψ(z) := [1 + z]+ gives the best choice

of such a function. For this choice of function ψ(·), we have that constraint (2.12) is

equivalent to

inf
t>0

{
tE[t−1 + Z]+ − α

}
≤ 0,

or equivalently

inf
t>0

{
α−1E[Z + t−1]+ − t−1

}
≤ 0.

Now replacing t with −t−1 we get the form:

inf
t≥0

{
t+ α−1E[Z − t]+

}
≤ 0. (2.13)

The quantity

CVaRα(Z) := inf
t∈R

{
t+ α−1E[Z − t]+

}
(2.14)

is called the Conditional Value-at-Risk of Z (at level α). Note that CVaRα(Z) is well

defined and finite valued for every Z ∈ L1(Ω,F , P ).

The function ϕ(t) := t+ α−1E[Z − t]+ is convex. Its derivative at t is equal to 1 +

α−1[1−HZ(t)] provided that the cdf HZ(·) is continuous at t. If HZ(·) is discontinuous

at t, then the respective right and left side derivatives of ϕ(·) are given by the same

formula withHZ(t) understood as the corresponding right and left side limits. Therefore



14

the minimum of ϕ(t), over t ∈ R, is attained on the interval [t∗, t∗∗], where t∗ := inf{z :

HZ(z) ≥ 1 − α} and t∗∗ := sup{z : HZ(z) ≤ 1 − α} are the respective left and right

side quantiles. Recall that the left-side quantile t∗ = VaRα(Z).

Since the minimum of ϕ(t) is attained at t∗ = VaRα(Z), we have that CVaRα(Z) is

bigger than VaRα(Z) by the amount of α−1E[Z− t∗]+ (of course, E[Z− t∗]+ is positive,

unless P [Z = t∗] ≥ α, in which case it is zero). Therefore

inf
t∈R

{
t+ α−1E[Z − t]+

}
≤ 0 implies that t∗ ≤ 0,

and hence constraint (2.13) is equivalent to CVaRα(Z) ≤ 0. It is easy to see that for

any a ∈ R,

CVaRα(Z + a) = CVaRα(Z) + a.

Therefore, the constraint

CVaRα[Zx] ≤ 0 (2.15)

is equivalent to the constraint (2.13) and gives a conservative approximation of the

chance constraint (2.10).

The function ρ(Z) := CVaRα(Z), defined on a space of random variables, is convex,

i.e., if Z and Z ′ are two random variables and t ∈ [0, 1], then

ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′).

This follows from that the function t+α−1E[Z − t]+ is convex jointly in t and Z. Also

ρ(·) is monotone, i.e., if Z and Z ′ are two random variables such that with probability

one Z ≥ Z ′, then ρ(Z) ≥ ρ(Z ′). It follows that if G(·, ξ) is convex for a.e. ξ ∈ Ξ, then

the function ρ[G(·, ξ)] is also convex. Indeed, by convexity of G(·, ξ) and monotonicity

of ρ(·), we have for any t ∈ [0, 1] that

ρ[G(tZ + (1− t)Z ′), ξ)] ≤ ρ[tG(Z, ξ) + (1− t)G(Z ′, ξ)],
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and hence by convexity of ρ(·) that

ρ[G(tZ + (1− t)Z ′), ξ)] ≤ tρ[G(Z, ξ)] + (1− t)ρ[G(Z ′, ξ)],

Consequently, (2.15) is a convex conservative approximation of the chance constraint

(2.10). Moreover, from the considered point of view, (2.15) is the best convex conser-

vative approximation of the chance constraint (2.10).

We can now relate the concept of Conditional Value at Risk to mean deviations

from quantiles. See equation (2.6) for the definition of qα[Z] and [41, page 259] for the

proof of the next theorem.

Theorem 3. Let Z ∈ L1(Ω,F , P ) and H(z) be its cdf. Then the following identities

hold true

CVaRα(Z) =
1

α

∫ 1

1−α
VaR1−β(Z)dβ = E[Z] +

1

α
q1−α[Z]. (2.16)

Moreover, if H(z) is continuous at z = VaRα(Z), then

CVaRα(Z) =
1

α

∫ +∞

VaRα(Z)
zdH(z) = E [Z|Z ≥ VaRα(Z)] . (2.17)

The last equation in (2.17) explains the origin of the term “Conditional Value at

Risk.” Also motivated by the first equation in (2.16), in some publications CVaR is

called the Average Value-at-Risk . It follows from the development in this section that

the function ρ(Z) := CVaRα(Z) is a coherent measure of risk for every α ∈ (0, 1).

2.2.2 Mean-Upper-Semideviation of Order p

Let Z := Lp(Ω,F , P ) and for c ≥ 0 consider

ρ(Z) := E[Z] + c
(
E
[
[Z − E[Z]p+

])
,

where [a]p+ := (max{0, a})p. For any c ≥ 0 this function satisfies conditions (A1), (A3)

and (A4), and it can be shown (see [41, p. 277]) that the representation from Theorem
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2 holds with the set ∂ρ(0) given by

∂ρ(0) =
{
ζ ′ ∈ Z∗

∣∣ ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ c, ζ � 0
}
, (2.18)

where 1
p+ 1

q = 1 and Z∗ := Lq(Ω,F , P ) is the dual space associated to Z. See [29, 30, 41]

for more details. Since |E[ζ]| ≤ E|ζ| ≤ ‖ζ‖q for any ζ ∈ Lq(Ω,F , P ), we have that every

element of ∂ρ(0) is nonnegative and has its expected value equal to 1. It can be shown

that the monotonicity condition (A2) holds, if and only if c ∈ [0, 1]. That is, ρ is a

coherent risk measure if c ∈ [0, 1].

Since ρ is convex continuous, it is subdifferentiable. It can be shown that its subd-

ifferential, ∂ρ(Z), is formed by vectors ζ ′ = 1 + ζ − E[ζ] such that

ζ ∈ arg max {〈ζ, Y 〉 | ‖ζ‖q ≤ c, ζ � 0} , (2.19)

where Y := Z − E[Z]. Suppose that p ∈ (1,+∞). Then the set of maximizers on the

right hand side of (2.19) is not changed if Y is replaced by Y+, where Y+(·) := [Y (·)]+.

Consequently, if Z(ω) is not constant for a.e. ω ∈ Ω, and hence Y+ 6= 0, then ∂ρ(Z) is

a singleton and

∇ρ(Z) = 1 + c ζ∗Y+ − cE[ζ∗Y+ ],

where ζ∗Y+ is the contact point of Y+ (note that the contact point of Y+ is nonnegative

since Y+ � 0).

Suppose now that p = 1 and hence q = +∞. Then the set on the right hand side

of (2.19) is formed by ζ(·) such that: ζ(ω) = c if Y (ω) > 0, ζ(ω) = 0, if Y (ω) < 0, and

ζ(ω) ∈ [0, c] if Y (ω) = 0. It follows that ∂ρ(Z) is a singleton iff Z(ω) 6= E[Z] for a.e.

ω ∈ Ω, in which case

∇ρ(Z) =

ζ :
ζ(ω) = 1 + c (1− Pr(Z > E[Z])) , if Z(ω) > E[Z],

ζ(ω) = 1− cPr(Z > E[Z]), if Z(ω) < E[Z].

(2.20)
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2.3 Coherent Conditional Risk Measures

This section is an overview of the theory of conditional risk measures developed by

Ruszczyński and Shapiro in [37]. The intention is to develop the risk-measures support

for models suitable for risk-averse sequential decision making. For an in-depth view at

these topics see [37, 41].

The main issue here is our knowledge at the time when risk is evaluated. In the

classical setting of multistage stochastic optimization, the main tool used to formulate

the corresponding dynamic programming equations is the concept of conditional ex-

pectation. Given two sigma algebras F1 ⊂ F2 of subsets of Ω, with F1 representing

our knowledge when the expectation is evaluated, and F2 representing all events under

consideration, the conditional expectation can be defined as a mapping from a space

of F2-measurable functions into a space of F1-measurable functions. Of course, the

conditional expectation mapping is linear. The basic idea of this approach is to extend

the concept of conditional expectation to an appropriate class of convex mappings.

In order to construct dynamic models of risk we need to extend the concept of

risk functions. Similarly to the representation of coherent risk measures we use the

framework of Lp spaces, p ∈ [1,+∞). Let (Ω,F , P ) be a probability space with sigma

algebra F and probability measure P . Consider a filtration F1 ⊂ F2 = F . As before,

we consider spaces Zt := Lp = (Ω,Ft, P ) of Ft-measurable random outcomes, t = 1, 2.

A coherent conditional risk measure is a function ρ : Z2 → Z1 satisfying the following

axioms:

(A1′) Convexity : ρ (αZ + (1− α)Z ′) � αρ(Z) + (1−α)ρ(Z ′), for all Z,Z ′ ∈ Z2 and all

α ∈ [0, 1];

(A2′) Monotonicity : If Z,Z ′ ∈ Z2 and Z � Z ′, then ρ(Z) � ρ(Z ′);

(A3′) Predictable Translation Equivariance: If V ∈ Z1 and Z ∈ Z2, then ρ(V + Z) =

V + ρ(Z);

(A4′) Positive Homogeneity : If γ ≥ 0 and Z ∈ Z2, then ρ(γZ) = γρ(Z).
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As before, we assume that the smaller the realizations of Z, the better and that Ω and

all sigma-algebras are finite.

An example of coherent conditional risk measure is the conditional mean–upper

semideviation model defined by

ρt(Z) = E[Z|Ft] + κt E
[(
Z − E[Z|Ft]

)
+

∣∣Ft] , (2.21)

with an Ft-measurable κt ∈ [0, 1]. See [41, p. 277] for the details showing that the mean

upper semideviation is a coherent conditional risk measure, and for other examples of

conditional risk measures.

Consider a conditional risk measure ρ : Z2 → Z1. With a set A ∈ F1, such that

P (A) 6= 0, we associate the function

ρA(Z) := E [ρ(Z) | A] , Z ∈ Z2, (2.22)

where E [Y | A] := 1
P (A)

∫
A Y dP denotes the conditional expectation of random variable

Y ∈ Z1 given event A ∈ F1. Conditions (A1′)-(A4′) imply that the corresponding

conditions (A1)-(A4) hold for ρA, and hence ρA is a coherent risk measure defined on

the space Z2 = Lp(Ω,F2, P ). Moreover, for any B ∈ F1 we have by (A3′) and (A4′)

that

ρA(Z + α1B) := E [ρ(Z) + α1B | A] = ρA(Z) + αP (B|A), ∀α ∈ R. (2.23)

Since ρA is a coherent risk measure, by Theorem (2) it can be represented in the

form

ρA(Z) = sup
ζ∈B(A)

∫
Ω
ζ(ω)Z(ω)dP (ω), (2.24)

for some set B(A) of probability density functions. Let us make the following observa-

tion:

Lemma 4. Each density ζ ∈ B(A) is supported on the set A.

Proof. For any B ∈ F1 such that P (B ∩ A) = 0 and any α ∈ R, we have by (2.23)
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that ρA(Z + α1B) = ρA(Z). On the other hand, if there exists ζ ∈ B(A) such that∫
B ζdP > 0 then it follows from (2.24) that ρA(Z+α1B) tends to +∞ as α→ +∞.

Just as we obtained the representation theorem of coherent risk measures, we show

that a conditional coherent risk measure can be represented as a maximum of a family

of conditional expectations. We restrict ourselves to the situation where the subalgebra

F1 has a countable number of elementary events. That is, there is a countable partition

{Ai}i∈N of the sample space Ω which generates F1, i.e, ∪i∈NAi = Ω, the sets Ai, i ∈ N

are disjoint and form the family of elementary events of sigma algebra F1. Since F1 is a

subalgebra of F2, we have that Ai ∈ F2, i ∈ N. We also have that a function Z : Ω→ R

is F1-measurable iff it is constant on every set Ai, i ∈ N.

Consider a conditional coherent risk measure ρ : Z2 → Z1. Let

N := {i ∈ N | P (Ai) 6= 0}

and ρAi , i ∈ N, be the corresponding coherent risk measure defined in (2.22). By (2.24)

with every ρAi , i ∈ N, is associated set B(Ai) of probability density functions, supported

on the set Ai such that

ρAi(Z) = sup
ζ∈B(Ai)

∫
Ω
ζ(ω)Z(ω)dP (ω). (2.25)

Now let v = (vi)i∈N be a probability distribution on (Ω,F1), assigning probability vi

to the event Ai, i ∈ N. Assume that v is such that v(Ai) = 0 iff P (Ai) = 0 (i.e. P is

absolutely continuous with respect to v on (Ω,F1)); otherwise the probability measure

v is arbitrary. Define the following family of probability measures on (Ω,F2):

C =

{
µ̂ =

∑
i∈N

viµi

∣∣∣∣∣ dµi = ζidP, ζi ∈ B(Ai), i ∈ N

}
. (2.26)

Note that since
∑

i∈N vi = 1, every µ̂ ∈ C is a probability measure. For µ̂ ∈ C, with
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respective densities ζi ∈ B(Ai) and dµi = ζidP , and Z ∈ Z2 we have that

Eµi [Z | F1] =
∑
i∈N

Eµi [Z | F1] . (2.27)

Moreover, since ζi is supported on Ai,

Eµi [Z | F1] (ω) =


∫
Ai
ZζidP if ω ∈ Ai

0 otherwise.

(2.28)

By the max-representations (2.25) it follows that for Z ∈ Z2 and ω ∈ Ai,

sup
µ̂∈C

Eµ̂ [Z | F1] (ω) = sup
ζi∈B(Ai)

∫
Ai

ZζidP = ρAi(Z). (2.29)

Also since [ρ(Z)](·) is F1-measurable, and hence is constant on every set Ai, we have

that [ρ(Z)](ω) = ρAi(Z) for every ω ∈ Ai, i ∈ N. We obtain the following result.

Theorem 5. Let Zi := Lp(Ω,Fi, P ), i = 1, 2, with F1 ⊂ F2, and let ρ : Z2 → Z1

be a conditional coherent risk measure. Suppose that F1 has an countable number of

elementary events and let v = (vi)i∈N be a probability distribution on (Ω,F1), assigning

probability vi to the event Ai, i ∈ N. Assume that v is such that v(Ai) = 0 iff P (Ai) = 0

(i.e. P is absolutely continuous with respect to v on (Ω,F1)); otherwise the probability

measure v is arbitrary. Then

ρ(Z) = sup
µ̂∈C

Eµ̂ [Z | F1] , ∀Z ∈ F2, (2.30)

where C is a family of probability measures on (Ω,F2), specified in (2.26), corresponding

to a probability distribution v on (Ω,F1).
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Chapter 3

Scenario Decomposition of Two-Stage Risk-Averse

Problems

3.1 A Two-Stage Risk-Averse Problem

This chapter will be devoted to the study of a two-stage risk-averse problem of the form

min
x∈X

ρ1

(
c>x+Q(x, ξ)

)
, (3.1)

where ρ1 is a coherent risk measure, X ⊆ Rn is compact and polyhedral, and Q(x, ξ)

is the optimal value of the second stage problem

min
y∈Rm

ρ2[q>y]

s.t. Tx+Wy = h, y ≥ 0,

(3.2)

where ρ2 is a conditional coherent risk measure. Here ξ := (q, h, T,W ) is the data of

the second stage problem. We view some or all elements of the vector ξ as well as

the vector c as random. The ρ1 operator at the first stage problem (3.1) is taken with

respect to the probability distribution of c>x+Q(x, ξ).

We assume that the set

X ind := {x ∈ X | Q(x, ξ) <∞ w.p. 1}

is nonempty. For each x ∈ X ind, ρ1(x) is well defined. If for some x and ξ the second

stage problem (3.2) is infeasible, then by definition Q(x, ξ) = +∞. It could also happen

that the second stage problem is unbounded from below and hence Q(x, ξ) = −∞.

This is somewhat pathological situation, meaning that for some value of the first stage
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decision vector and a realization of the random data, the value of the second stage

problem can be improved indefinitely. Models exhibiting such properties should be

avoided.

We will assume that the distribution of ξ has finite support. That is, ξ has a

finite number of realizations (called scenarios) ξk = (qk, hk, Tk,Wk) with respective

probabilities pk. From now on we will assume that ξ has exactly N scenarios. In this

case we will let Z := L1(Ω,F , P ) which we will just identify with the space RN .

The representation theorem of coherent risk measures, Theorem (1), allows us to

rewrite problem (3.1)-(3.2) in the form

min
x∈X

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>x+ min

yi∈Rm
ρ2[q>i yi]

]
s.t. Tix+Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N.

(3.3)

For i = 1, . . . , N , let ci ∈ Rn and ρ2i be coherent risk measures. From now on, we

will focus on the following slight generalization of problem (3.3):

min
x∈X

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>i x+ min

yi∈Rm
ρ2i[q

>
i yi]

]
s.t. Tix+Wiyi = hi

yi ≥ 0 , i = 1, . . . , N.

(3.4)

3.2 The Dual

In this section we will obtain a dual formulation of problem (3.4).

Consider the following problem:

min
(x1,...,xN )∈XN

max
µ∈∂ρ1(0)

N∑
i=1

µipi

[
c>i xi + min

yi∈Rm
ρ2i[q

>
i yi]

]
s.t. Tixi +Wiyi = hi

yi ≥ 0, xi ∈ X, i = 1, . . . , N

(3.5)
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with the extra nonanticipativity constraints

xi =
N∑
k=1

pkxk, i = 1, . . . , N. (3.6)

The nonanticipativity constraints (3.6) play a double role in the development of our

theory and methods. First, they ensure that the first-stage decision variables of (3.5) do

not depend on the second-stage realization of the random data and thus making problem

(3.5)–(3.6) equivalent to our main problem (3.4). Second, these extra constraints will

help us obtain a dual formulation of (3.4) through their appearance in the Lagrangian

of (3.5)–(3.6). We aim to do this next.

Let X = Rn·N and L = {x = (x1, . . . , xN ) |x1 = . . . = xN}. Equip the space X with

the scalar product

〈x, y〉 =
N∑
i=1

pix
>
i yi (3.7)

and define the linear operator P : X → X as

Px =

(
N∑
i=1

pixi, . . . ,

N∑
i=1

pixi

)
.

The nonanticipativity constraints (3.6) can be compactly written as

x = Px.

It can be verified that P is the orthogonal projection operator of X , equipped with the

scalar product (3.7), onto its subspace L.

For every x ∈ RN and i ∈ {1, . . . , N} define

F (x, ωi) , c>i x+ inf
y∈Rm

ρ2i[q
>
i y]

s.t. Tix+Wiy = hi

y ≥ 0.

(3.8)

The convexity property (A1) of the coherent risk measure ρ2i implies that F (·, ωi) is a
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convex function. Also the assumptions made on the second stage problem Q(x, ξ) imply

that F (X,ωi) ⊂ R. Therefore the compactness of X implies that F (·, ωi) is continuous

relative to X (see [28, Thm. 10.4]).

By assigning Lagrange multipliers λk ∈ Rn, k = 1, . . . , N , to the nonanticipativity

constraints (3.6), we obtain that the Lagrangian of problem (3.5)–(3.6) is given by:

L(x, λ) , max
µ∈∂ρ1(0)

N∑
i=1

µipiF (xi, ωi) +
N∑
j=1

pjλ
>
j

(
xj −

N∑
t=1

ptxt

)
,

where x = (x1, . . . , xN ) ∈ XN and λ> = (λ>1 , . . . , λ
>
N ). Note that since P is an

orthogonal projection, I−P is also an orthogonal projection (onto the space orthogonal

to L), and hence

N∑
j=1

pjλ
>
j

(
xj −

N∑
t=1

ptxt

)
= 〈λ, (I − P )x〉 = 〈(I − P )λ, x〉 .

Therefore the above Lagrangian can be written in the following equivalent form

L(x, λ) = max
µ∈∂ρ1(0)

N∑
i=1

µipiF (xi, ωi) +
N∑
j=1

pj

(
λj −

N∑
t=1

ptλt

)>
xj .

Observe that shifting the multipliers λj , j = 1, . . . , N , by a constant vector does not

change the value of the Lagrangian, because the expression λj −
∑N

t=1 ptλt is invariant

to such shifts. Therefore, with no loss of generality we can assume that

N∑
j=1

pjλj = 0

or equivalently, that Pλ = 0. Under the condition Pλ = 0, the Lagrangian can be

written simply as

L(x, λ) = max
µ∈∂ρ1(0)

N∑
i=1

pi

[
µiF (xi, ωi) + λ>i xi

]
.

Putting everything together we obtain the following dual formulation of problem



25

(3.5)–(3.6):

max
λ∈Rn·N

min
x∈XN

max
µ∈∂ρ1(0)

N∑
i=1

pi

[
µiF (xi, ωi) + λ>i xi

]
(3.9)

s.t.
N∑
j=1

pjλj = 0.

Note that X is polyhedral, ∂ρ1(0) is convex and compact, and µiF (xi, ωi) + λ>i xi is

convex in x and linear in µ. Therefore we can interchange the innermost max by the

min in (3.9) (see [42, Thm. 3.1]) and obtain the following equivalent formulation for

the dual of (3.5)–(3.6):

max
λ∈Rn·N
µ∈∂ρ1(0)

N∑
i=1

pi min
xi∈X

[
µiF (xi, ωi) + λ>i xi

]
(3.10)

s.t.
N∑
j=1

pjλj = 0.

We will require that our problem satisfies the Slater’s constraint qualification con-

dition and in this way guaranteeing that the duality gap will be zero. We should first

point out that the convexity of the functions F (·, ωi) imply that the primal objective

function

max
µ∈∂ρ1(0)

N∑
i=1

µipi F (x, ωi)

is convex too. Due to this fact and the continuity of F (·, ωi) relative to X, prob-

lem (3.5)–(3.6) satisfies the Slater’s constraint qualification condition if there is x =

(x1, . . . , xN ) ∈ intXN such that

xi =

N∑
k=1

pkxk, i = 1, . . . , N.

In this case the duality gap is zero (see [35, Thm. 4.7]) and so, the optimal value of the

primal problem (3.5)–(3.6) is the same as the optimal value of the dual problem (3.10).

Suppose that once we are in scenario i, there are exactly Ni possible sub-scenarios

that could occur each with probability πij , j = 1, . . . , Ni and its own vector qij . Clearly
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πij > 0 and
∑Ni

j=1 πij = 1. The representation theorem of coherent risk measures shows

that

ρ2i[q
>
i y] = max

δ∈∂ρ2i(0)

Ni∑
j=1

δjπijq
>
ijy, (3.11)

where

∂ρ2i(0) ⊆

δ ∈ RNi

∣∣∣∣∣∣
Ni∑
j=1

δjπij = 1, δ ≥ 0

 .

From (3.8), (3.10), and (3.11) we obtain that the dual of the main problem is equivalent

to

max
λ∈Rn·N
µ∈∂ρ1(0)

min
x∈XN

N∑
i=1

pi

µic>i xi + µi min
yi∈Rm

 max
δi∈∂ρ2i(0)

Ni∑
j=1

δijπijq
>
ijyi

+ λ>i xi

 (3.12)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

This, in turn, is equivalent to

max
λ∈Rn·N
µ∈∂ρ1(0)

min
x∈XN

y∈Rm·N

max
δ∈∂ρ2(0)

N∑
i=1

pi

µic>i xi + µi

Ni∑
j=1

δijπijq
>
ijyi + λ>i xi

 (3.13)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0,

where ∂ρ2(0) := ∂ρ21(0) × · · · × ∂ρ2N (0), y = (y1, . . . , yN ), and δ = (δ1, . . . , δN ). As

before (see [42, Thm. 3.1]), we can interchange the innermost max and min and obtain
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the following equivalent formulation

max
λ∈Rn·N
µ∈∂ρ1(0)
δ∈∂ρ2(0)

min
x∈XN

y∈Rm·N

N∑
i=1

pi

µic>i xi + µi

Ni∑
j=1

δijπijq
>
ijyi + λ>i xi

 (3.14)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

Let

S :=





π11µ1δ11

...

πijµiδij
...

πNNNµNδNNN



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µi ∈ [∂ρ1(0)]i ,


δi1
...

δiNi

 ∈ ∂ρ2i(0), i = 1, . . . , N


,

where [∂ρ1(0)]i is the projection of ∂ρ1(0) on the ith axis. Note that S is a convex and

compact set. Then (3.14) is equivalent to:

max
λ∈Rn·N
µ∈∂ρ1(0)
σ∈S

min
x∈XN

y∈Rm·N

N∑
i=1

pi

µic>i xi +

Ni∑
j=1

σijq
>
ijyi + λ>i xi

 (3.15)

s.t. Tixi +Wiyi = hi, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N

N∑
j=1

pjλj = 0.

Ni∑
j=1

σij = µi , i = 1, . . . , N

Let RÑ := RN1 × · · · × RNN . For every scenario i = 1, . . . , N define the function
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χi : Rn·N × RN × RÑ → R such that

χi(λ, µ, σ) ,min
x,y

µic
>
i x+

Ni∑
j=1

σijq
>
ijy + λ>i x (3.16)

s.t. Tix+Wiy = hi (3.17)

x ∈ X, y ∈ Rm, y ≥ 0.

Then the dual of our main problem is given by:

max
λ,µ,σ

N∑
i=1

pi χi(λ, µ, σ) (3.18)

s.t.
N∑
j=1

pjλj = 0

Ni∑
j=1

σij = µi , i = 1, . . . , N

λ ∈ Rn·N , µ ∈ ∂ρ1(0), σ ∈ S.

LetAi be the set of pairs (x, y) satisfying the system of constraints (3.17), by assumption

Ai 6= ∅. The compactness of X implies that Ai is compact. From this we conclude that

χi(λ, µ, σ) ∈ R, for every (λ, µ, σ) ∈ Rn·N × RN × RÑ and χi is proper, concave, and

Lipschitz continuous (see [28, Thm. 10.4]).

3.3 The Subgradient of the Dual Function

Define the sets

Λ ,

{
λ ∈ Rn·N

∣∣∣∣∣
N∑
i=1

piλi = 0

}
, (3.19)

∆ ,

(µ, σ) ∈ ∂ρ1(0)× S

∣∣∣∣∣∣
Ni∑
j=1

σij = µi , i = 1, . . . , N

 ,
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and the function ϑi(·, ·) :
(
Rn·N × RN × RÑ

)
×Ai → R by

ϑi [(λ, µ, σ), (x, y)] , µic
>
i x+

Ni∑
j=1

σijq
>
ijy + λ>i x. (3.20)

The above definition implies that for every (λ, µ, σ) ∈ Rn·N × RN × RÑ

χi(λ, µ, σ) = min
(x,y)∈Ai

ϑi [(λ, µ, σ), (x, y)] . (3.21)

Let

χ(λ, µ, σ) ,
N∑
i=1

pi χi(λ, µ, σ). (3.22)

Then, we can rewrite our main dual problem (3.18) as

max
(λ,µ,σ)∈Λ×∆

χ(λ, µ, σ), (3.23)

where λ ∈ λ and (µ, σ) ∈ ∆.

The main purpose of this section is to calculate the subdifferential of χ, which is

key in the development of methods to solve efficiently problem (3.23). Remember that

for each i ∈ 1, . . . , N , the function χi(·, ·) is concave, continuous, and takes only real

values. Therefore we can apply the Moreau-Rockafellar theorem and obtain

∂χ(λ, µ, σ) =
N∑
i=1

pi∂χi(λ, µ, σ). (3.24)

Because of this we will focus on the subdifferentials of the χi’s. Definition (3.20) allows

us to see that the following proposition holds.

Proposition 6. The function ϑi [ · , (x, y)] is concave for every (x, y) ∈ Ai. Also, the

function ϑi [(λ, µ, σ), · ] is lower semicontinuous for every (λ, µ, σ) ∈ Rn·N ×RN ×RÑ .

Let ∂ϑi [(λ0, µ0, σ0), (x, y)] be the subdifferential of ∂ϑi [ · , (x, y)] at the point

(λ0, µ0, σ0) and let Qi be the Ni ×m matrix with rows q>ij . Then

∂ϑi [(λ0, µ0, σ0), (x, y)]> =
(
x̂>i , e

>
i · c>i x,Qiy

>
)
, (3.25)
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where x̂>i := (0, . . . , 0, x>, 0, . . . , 0) ∈ Rn·N such that the x is in the ith position

and each 0 is a vector of Rn, and Qiy
>

:=
(
0, . . . , 0, (Qiy)>, 0, . . . , 0

)
∈ RÑ such that

the (Qiy)> is in the ith position and a 0 in position t is a vector of RNt . For every

(λ, µ, σ) ∈ Rn·N × RN × RÑ define

Ai(λ, µ, σ) , arg min
(x,y)∈Ai

µic>i x+

Ni∑
j=1

σijq
>
ijy + λ>i x

 .

The set Ai(λ, µ, σ) is the set of optimal solutions to the right hand side of (3.21). Then,

since the function χi is a minimum function (see (3.21) and [35, Thm. 2.87]), we get

∂χi(λ0, µ0, σ0)> = conv

 ⋃
(x,y)∈Ai(λ0,µ0,σ0)

∂ϑi [(λ0, µ0, σ0), (x, y)]>

 (3.26)

=
{(
x̂>i , e

>
i · c>i x,Qiy

>
) ∣∣∣ (x, y) ∈ Ai(λ0, µ0, σ0)

}
.

Using (3.24) and (3.26), we obtain

∂χ(λ0, µ0, σ0)> =
N∑
i=1

pi

{(
x̂>i , e

>
i · c>i x,Qiy

>
) ∣∣∣ (x, y) ∈ Ai(λ0, µ0, σ0)

}
. (3.27)

Usually we need to find a subgradient of χ at a given point (λ0, µ0, σ0). From (3.27)

we can derive a simple procedure to accomplish this:

Step 1. For every i = 1, . . . , N , solve the linear program

min
(x,y)∈Ai

(µ0)i c
>
i x+

Ni∑
j=1

(σ0)ij q
>
ij y + (λ0)>i x

and call the obtained optimal solution (xi, yi). Note that

(xi, yi) ∈ Ai(λ0, µ0, σ0), for every i = 1, . . . , N .

Step 2. Compute α :=
∑N

i=1 pi

(
(x̂i)

>
i , e

>
i · c>i (xi), Qi(yi)

>
i

)
.

Then (3.27) implies that α ∈ ∂χ(λ0, µ0, σ0), as we wanted. Notice that the obtained

subgradient α has the following structure:
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α =



p1x1

...

pNxN

p1c
>
1 x1

...

pNc
>
NxN

p1Q1y1

...

pNQnyn



. (3.28)
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Chapter 4

The Two-Stage Risk-Averse Problem With Mean Upper

Semideviation

4.1 Specifying the Coherent Risk Measures

It is possible to obtain different formulations of the dual problem when we restrict to

consider specific risk measures in formulation (3.4). In this section we will consider

problem (3.4) where ρ1 and ρ2i are all mean upper semideviations of the first order.

Let ρ1(Z) := E[Z] + a1 E [Z − E[Z]]+ and ρ2i(Z) := E[Z] + bi E [Z − E[Z]]+, where

i = 1, . . . , N and a1, bi ∈ [0, 1].

Equation (2.18) shows that the subdifferential at 0 of ρ1 is

∂ρ1(0) =

{
1− 1

N∑
i=1

piξi + ξ

∣∣∣∣∣ ξ = (ξi)
N
i=1 and 0 ≤ ξi ≤ a1

}
, (4.1)

where 1 is the vector with all entries equal to 1. Applying the representation theorem

of the coherent risk measures (Theorem 1), we obtain that

ρ2i(q
>
i y) = max

δ∈∂ρ2i(0)

Ni∑
j=1

δjπijq
>
ijy, (4.2)

where, by (2.18),

∂ρ2i(0) =

1− 1
Ni∑
j=1

πijξj + ξ

∣∣∣∣∣∣ ξ = (ξj)
Ni
j=1 and 0 ≤ ξj ≤ bi

 . (4.3)
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Substituting (4.3) into (4.2) gives

ρ2i(q
>
i y) = max

ξ∈[0,bi]Ni

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

ξkπik

q>iky − Ni∑
j=1

πijq
>
ijy

 . (4.4)

Since πik > 0 and ξ ∈ [0, bi]
Ni , the maximum on the right hand side of (4.4) is given

by ξ∗ such that

ξ∗k =


bi if q>iky −

∑Ni
j=1 πijq

>
ijy ≥ 0

0 otherwise

,

k = 1, . . . , Ni. Therefore, we can obtain ρ2i(q
>
i y) by solving the following linear program

minimize

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk (4.5)

subject to: dk ≥ 0,

dk ≥ biπik
[
q>iky − E[q>i y]

]
,

for all k = 1, . . . , Ni.

where E[q>i y] :=
∑Ni

j=1 πijq
>
ijy.

For every scenario i = 1, . . . , N , define the function ϕi : Rn·N × RN → R such that

ϕi(λ, µ) , min
x∈X

[
µiF (x, ωi) + λ>i x

]
,

where λ = (λ1, . . . , λN ). Then by (3.10), the dual of our problem is given by:

max
λ∈Rn·N
µ∈∂ρ1(0)

N∑
i=1

pi ϕi(λ, µ) (4.6)

s.t.
N∑
j=1

pjλj = 0.

Using the definition of F (x, ωi) and the characterization of ρ2i(q
>
i y) obtained in (4.5),
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we get

ϕi(λ, µ) = min
x,y,d

µi

c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

+ λ>i x (4.7)

subject to: (4.8)

dk ≥ ckπik
[
q>iky − E[q>i y]

]
, k = 1, . . . , Ni

Tix+Wiy = hi

x ∈ X, y ≥ 0, d ≥ 0.

Note that the compactness of X implies that ϕi : Rn·N × RN → R is a proper concave

function and therefore ϕi is Lipschitz continuous (see [28, Thm. 10.4]). Formulation

(4.6)–(4.8) is practical for the application of cutting plane methods.

For every i = 1, . . . , N , let Bi be the set of triples (x, y, d) satisfying the system of

inequalities (4.8). The set Bi is closed but not bounded. Nevertheless, our assumption

of the second stage problem Q(x, ξ) having always a real optimal solution guarantees

that we could assume (by adding extra constraints) that Bi is bounded. So, from now

on we will assume that Bi is closed and bounded.

Define the function ψi(·, ·) :
(
Rn·N × RN

)
× Bi → R by

ψi [(λ, µ), (x, y, d)] , µi

c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

+ λ>i x. (4.9)

The above definition implies that for every (λ, µ) ∈ Rn·N × RN

ϕi(λ, µ) = min
(x,y,d)∈Bi

ψi [(λ, µ), (x, y, d)] . (4.10)

Let

ϕ(λ, µ) ,
N∑
i=1

pi ϕi(λ, µ). (4.11)
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Then, we can rewrite the dual problem (4.6) as

max
(λ,µ)∈Λ×∂ρ1(0)

ϕ(λ, µ). (4.12)

By definition ϕ(·, ·) is proper, concave, and continuous, so applying the Moreau-

Rockafellar theorem we obtain:

∂ϕ(λ, µ) =
N∑
i=1

pi∂ϕi(λ, µ). (4.13)

By definition (4.9) we can easily see that the following proposition holds.

Proposition 7. The function ψi [ · , (x, y, d)] is concave for every (x, y, d) ∈ Bi. Also,

the function ψi [(λ, µ), · ] is upper semicontinuous for every (λ, µ) ∈ Rn·N × RN .

For every (x, y, d) let

φi(x, y, d) = c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

and let ∂ψi [(λ0, µ0), (x, y, d)] be the subdifferential of ∂ψi [ · , (x, y, d)] at the point

(λ0, µ0). Then

∂ψi [(λ0, µ0), (x, y, d)]> =
(
x̂>i , e

>
i · φi(x, y, d)

)
, (4.14)

recall that x̂>i = (0, . . . , 0, x>, 0, . . . , 0) ∈ Rn·N has the x is in the ith position and each

0 is a vector of Rn. Also, for every (λ, µ) ∈ Rn·N × RN define

Bi(λ, µ) , arg min
(x,y,d)∈Bi

{
µiφi(x, y, d) + λ>i x

}
.

Clearly the set Bi(λ, µ) is the set of optimal solutions to the right hand side of (4.10).

Then, as before,

∂ϕi(λ0, µ0)> =
{(
x̂>i , e

>
i · φi(x, y, d)

) ∣∣∣ (x, y, d) ∈ Bi(λ0, µ0)
}
, (4.15)
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and

∂ϕ(λ0, µ0)> =
N∑
i=1

pi

{(
x̂>i , e

>
i · φi(x, y, d)

) ∣∣∣ (x, y, d) ∈ Bi(λ0, µ0)
}
. (4.16)

Just as before, (4.16) give us a simple procedure to obtain a subgradient of ϕ at

(λ0, µ0):

Step 1. For every i = 1, . . . , N , solve the linear program

min
(x,y,d)∈Bi

(µ0)i φi(x, y, d) + (λ0)>i x

and call the obtained optimal solution (xi, yi, di). Note that (xi, yi, di) ∈ Bi(λ0, µ0),

for every i = 1, . . . , N .

Step 2. Compute α :=
∑N

i=1 pi
(
(x̂i)

>
i , e

>
i · φi(xi, yi, di)

)
.

Then (4.16) implies that α ∈ ∂ϕ(λ0, µ0), as we wanted. Notice that the obtained

subdifferential α is very simple:

α =



p1 x1

...

pN xN

p1 φ(x1, y1, d1)

...

pN φ(xN , yN , dN )


. (4.17)
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Chapter 5

The Dual Cutting Plane Method

We will apply the cutting plane method to the main dual problem:

max
(λ,µ)∈Λ×∂ρ1(0)

ϕ(λ, µ), (5.1)

where

ϕ(λ, µ) =
N∑
i=1

pi ϕi(λ, µ), (5.2)

and for every i = 1, . . . , N and (λ, µ) ∈ Λ× ∂ρ1(0),

ϕi(λ, µ) = min
x,y,d

µi

c>i x+

Ni∑
j=1

πijq
>
ijy +

Ni∑
k=1

dk

+ λ>i x (5.3)

subject to:

dk ≥ ckπik
[
q>iky − E[q>i y]

]
, k = 1, . . . , Ni

Tix+Wiy = hi

x ∈ X, y ≥ 0, d ≥ 0.

As we stated before the functions ϕi : Rn·N×RN → R are proper, concave and Lipschitz

continuous. The set Λ × ∂ρ1(0) is closed but might not be bounded. In order to be

assured of finding a solution with the cutting plane method we should add, if necessary,

linear constraints to Λ in such a way that Λ × ∂ρ1(0) is compact. The set Λ × ∂ρ1(0)

should be large enough so that it contains an optimal solution to problem (5.1). From

now on we will assume that Λ× ∂ρ1(0) is a compact set.
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All the properties mentioned in the previous paragraph are the theoretical require-

ments that guarantee the convergence to an optimal solution of the cutting plane

method when applied to problem (5.1) (see [35] p. 357). The idea behind the cut-

ting plane method is to use the subgradient inequality,

ϕ(λ, µ) ≤ ϕ(λ0, µ0) + 〈g, (λ, µ)− (λ0, µ0)〉 ,

which holds true for every (λ, µ) ∈ Rn·N ×RN and each subgradient g ∈ ∂ϕ(λ0, µ0), for

constructing upper approximations of ϕ(·) (remember that ϕ(·) is concave). At each

step the method refines the approximation to ϕ(·) and selects point which is the “best

so far” approximation to an optimal solution of (5.1).

The method starts at a given point (λ1, µ1) ∈ Λ×∂ρ1(0), calculates g1 ∈ ∂ϕ(λ1, µ1),

and constructs a linear approximation of ϕ(·):

ϕ1(λ, µ) , ϕ(λ1, µ1) +
〈
g1, (λ, µ)− (λ1, µ1)

〉
.

In a general iteration k, having already generated points (λ1, µ1), . . . , (λk, µk), values

of the function ϕ(λ1, µ1), . . . , ϕ(λk, µk), and corresponding subgradients g1, . . . , gk, the

method construct an upper approximation of the function ϕ(·)

ϕk(λ, µ) , min
1≤j≤k

[
ϕ(λj , µj) +

〈
gj , (λ, µ)− (λj , µj)

〉]
. (5.4)

Then it solves the master problem:

maximize
(λ,µ)∈Λ×∂ρ1(0)

ϕk(λ, µ), (5.5)

and add its solution (λk+1, µk+1) to the set of points. After evaluating ϕ(λk+1, µk+1)

and gk+1 ∈ ∂ϕ(λk+1, µk+1), it increases k by one, and continue the calculations. If

ϕ(λk+1, µk+1) = ϕk(λk+1, µk+1),

then the method stops; at this moment the point ϕ(λk+1, µk+1) is optimal ([35, sec.
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7.2]).

The master problem (5.5) is equivalent to the following constrained optimization

problem:

maximize z

subject to z ≤ ϕ(λj , µj) +
〈
gj , (λ, µ)− (λj , µj)

〉
, j = 1, . . . , k,

(λ, µ) ∈ Λ× ∂ρ1(0),

(5.6)

whose solution
[
(λk+1, µk+1), zk+1

]
is the next approximation to the solution of (5.1)

and an upper bound for ϕ(·) on Λ×∂ρ1(0). This new formulation of the master problem

has the advantage that, after passing to iteration k + 1, just one constraint is added

to this problem, and re-optimization by a dual method is an attractive option. This is

particularly useful since the set Λ× ∂ρ1(0) is polyhedral and problem (5.6) is a linear

program, for which efficient linear programming techniques can be employed.

Now we will show an explicit reformulation of (5.6). At each iteration k, solve for

every i = 1, . . . , N the problem (4.7)-(4.8) with (λ, µ) := (λk, µk). Denote correspond-

ingly by βki and (xki , y
k
i , d

k
i ) the obtained optimal value and optimal solution. Then

φ(λk, µk) =
∑N

i=1 pi β
k
i and by equation (4.17) we obtain that



p1 x
k
1

...

pN x
k
N

p1 φ(xk1, y
k
1 , d

k
1)

...

pN φ(xkN , y
k
N , d

k
N )


∈ ∂ϕ(λk, µk).

This, the definition of Λ (see 3.19), and the characterization of ∂ρ1(0) (see (4.1)) gives

the following reformulation of the master problem:
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maximize z

subject to:

z ≤ ϕ(λj , µj) +

〈
p1 x

j
1

...

pN x
j
N

 , λ− λj
〉

+

〈
p1 φ(xj1, y

j
1, d

j
1)

...

pN φ(xjN , y
j
N , d

j
N )

 , µ− µj
〉
,

for all j = 1, . . . , k,

N∑
i=i

piλi = 0,

µi = 1−
N∑
i=1

piξi + ξi, i = 1, . . . , N,

0 ≤ ξi ≤ a1, i = 1, . . . , N,

(5.7)

where µ = (µ1, . . . , µN ). This formulation is concise and practical for implementations

of the method.
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Chapter 6

The Partial Bundle Method

The dual cutting plane method took advantage of all the particular calculations that

we developed for problem (3.4), its dual, and their restatements. There are, however,

some more possible routes of optimization that we have not explored yet. First, we

could apply a more sophisticated “cutting plane type” methods such at the bundle

method to the dual problem (5.1). Second, we could exploit the geometrical properties

of the feasible region of the problem to simplify the required calculations on the selected

method. This is exactly what we set to do in the following sections. The new method

exploits the features in the domain of the objective function to reduce the number

of variables that will be involved in the quadratic master problem. We call this new

method the partial bundle method.

The methods developed in this section follow the literature and act upon convex

functions. Despite this, our main goal is to apply these methods on problem (5.1) which

is concave. This should not present any problem since most of the “convex” results could

be easily translated into “concave” and later we will do so without explicitly stating it.

6.1 Partial Proximal Point Method

The methods and ideas appearing in this section are a slight variation of the ones

introduced by D. Bertsekas and P. Tseng in [7]. The reader is referred to [7] for an

in-depth exposition of proximal-point methods.

6.1.1 Partial Moreau-Yoshida Regularization

Consider a convex function f : Rn×Rm → R that is proper, and lower semicontinuous.
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For a fixed number % > 0, we define the function f% : Rn × Rm → R by

f%(v, w) , min
(x,y)∈Rn×Rm

{%
2
‖y − w‖2 + f(x, y)

}
. (6.1)

The function f% is called the partial Moreau-Yosida regularization of f . Since f(x, y)

is convex and lower semicontinuous the function

F (y) , inf
x∈Rn

f(x, y)

is also convex and lower semicontinuous.

Unfortunately the properties of f do not imply that F is a proper function. For

example the function f(x, y) = x satisfies all the properties stated above but F (y) =

infx∈Rm x is not proper. A proper function f : Rn × Rm → R is x-bounded if for every

bounded Y ⊂ Rm the set X := {(x, y) ∈ Rn × Y | f(x, y) ∈ R} is bounded. Notice that

if f is x-bounded then the corresponding function F is proper. From now on we will

assume that f is x-bounded.

Let f% : Rm → R be defined by

f%(w) , min
y∈Rm

{%
2
‖y − w‖2 + F (y)

}
. (6.2)

Then f% is the Moreau-Yoshida regularization of F and it is well known (see [35,

Lemma 7.10]) that f% is a real-valued, convex and continuously differentiable function

with ∇f%(w) = % (w − y%(w)), where y%(w) is the solution of (6.2). It is not difficult

to see that from the properties of f it follows that f%(v, w) = f%(w) for all (v, w) ∈

Rn × Rm. Therefore we can conclude the following about the partial Moreau-Yoshida

regularization of x-bounded functions:

Theorem 8. For every % > 0, the function f% is real-valued, convex and continuously

differentiable with ∇f%(v, w) = [0, % (w − y%(w))], where (x%(v), y%(w)) is any solution

of (6.1).
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6.1.2 The Partial Proximal Point Method

Let us consider the convex optimization problem

minimize
(x,y)∈Rn×Rm

f(x, y), (6.3)

in which f : Rn × Rm → R is convex, proper, lower semicontinuous and x-bounded.

Using the partial Moreau-Yoshida regularization of f , we construct the following iter-

ative process. At iteration k, given the current approximation (vk, wk) to the solution

of (6.3), we find a point (xk, yk) = (x%(v
k), y%(w

k)), which is a solution of the problem

minimize
(x,y)∈Rn×Rm

%

2
‖y − wk‖2 + f(x, y). (6.4)

The next approximation is defined according to the formula:

(
vk+1, wk+1

)
=
(
x%(v

k), y%(w
k)
)
, k = 1, 2, . . . (6.5)

The iterative method (6.5) is called the partial proximal point method, see [7]. Although

we will not directly apply this method, it is of theoretical importance and a natural

progression in the development of the partial bundle method in the following section.

Let us recall that it follows from Theorem 8 that if f is x-bounded then problem

(6.4) has a solution. Thus the partial proximal point method is well defined. Since

f%(v
k, wk) ≤ f(vk, wk) by construction, we have f(vk+1, wk+1) ≤ f(vk, wk), k = 1, 2 . . .

Actually, the progress made at each iteration can be estimated:

Lemma 9. Assume that there exists (x̃, ỹ) ∈ Rn × Rm such that f(x̃, ỹ) < f(v, w).

Then if ỹ = w,

f%(v, w) ≤ f(v, w)− (f(v, w)− f(x̃, ỹ)) ,

else

f%(v, w) ≤ f(v, w)− %‖ỹ − w‖2ϕ
(
f(v, w)− f(x̃, ỹ)

%‖ỹ − w‖2

)
,
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where

ϕ(τ) =


0 if τ < 0,

τ2 if 0 ≤ τ ≤ 1,

−1 + 2τ if τ > 1.

We conclude that in any case f%(v, w) < f(v, w).

Proof. Consider the segment containing points

(x, y) = (v, w) + t ((x̃, ỹ)− (v, w)) ,

where 0 ≤ t ≤ 1. Restricting the minimization in (6.4) to these (x, y)’s provides an

upper bound for the optimal value:

f%(v, w) ≤ min
0≤t≤1

[
f ((1− t) (v, w) + t(x̃, ỹ)) +

%t2

2
‖ỹ − w‖2

]
≤ f(v, w) + min

0≤t≤1

[
t (f(x̃, ỹ)− f(v, w)) +

%t2

2
‖ỹ − w‖2

]
.

(6.6)

In the last estimate we also used the convexity of f .

If ỹ = w then (6.6) implies that f%(v, w) ≤ f(v, w)−(f(v, w)− f(x̃, ỹ)). Else, ỹ 6= w

and the value of t that minimizes (6.6) is equal to

t̂ = min

(
1,
f(v, w)− f(x̃, ỹ)

%‖ỹ − w‖2

)
.

Our assertion follows now from a straightforward calculation.

At the solution (x%(w), y%(w)) of problem (6.4), Lemma 9 shows that

f (x%(w), y%(w)) ≤ f%(v, w) < f(v, w). Therefore problem (6.4) will always find a better

point if exists. Consequently, (x, y) = (v, w) is the minimizer in (6.4) if and only if (v, w)

is a minimizer of f .

We say that a sequence
{

(xk, yk)
}
⊂ Rn × Rm approximates an optimal solution

(x∗, y∗) of (6.3) if limk→∞ f(xk, yk) = f(x∗, y∗). In fact, the partial proximal point

method must approximate an optimal solution, if an optimal solution exists.
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Theorem 10. Assume that problem (6.3) has an optimal solution. Then the following

holds.

1. The sequence
{

(vk, wk)
}

generated by the partial proximal point method approxi-

mates and optimal solution of (6.3).

2. The sequence
{
wk
}

converges to a point ỹ such that there is an optimal solution

of (6.3) of the form (x̃, ỹ).

Proof. Let (x∗, y∗) ∈ Rn × Rm be an optimal solution. We have the identity

‖wk+1 − y∗‖2 = ‖wk − y∗‖2 + 2
〈
wk+1 − wk, wk+1 − y∗

〉
− ‖wk+1 − wk‖2. (6.7)

Theorem (8) implies that:

[
0, %

(
wk − wk+1

)]
∈ ∂f(vk+1, wk+1). (6.8)

By the definition of the subgradient,

f(x∗, y∗) ≥ f(vk+1, wk+1) + %
〈
wk+1 − wk, wk+1 − y∗

〉
. (6.9)

Using this inequality in (6.7) (and skipping the last term) we obtain

‖wk+1 − y∗‖2 ≤ ‖wk − y∗‖2 − 2

%

[
f(vk+1, wk+1)− f(x∗, y∗)

]
(6.10)

Several conclusions follow from this estimate. First, summing up (6.10) from k = 1 to

∞, we get
∞∑
k=2

(
f(vk, wk)− f(x∗, y∗)

)
≤ %

2
‖w1 − y∗‖2,

so f(vk, wk) → f(x∗, y∗) as k → ∞. Therefore the sequence
{

(vk, wk)
}

approximates

and optimal solution of (6.3).

Second, the sequence
{
wk
}

is bounded and so it has accumulation points. Simi-

larly, the x-boundedness of f implies that
{
vk
}

also has accumulation points. Conse-

quently the lower semicontinuity of f implies that for every accumulation point (x̃, ỹ)
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of
{

(vk, wk)
}

we have f(x̃, ỹ) = f(x∗, y∗). We choose one such (x̃, ỹ), substitute it for

(x∗, y∗) in (6.10), and conclude that the sequence
{
wk
}

is convergent to ỹ.

6.2 The Partial Bundle Method

6.2.1 The Method

We consider the problem

minimize
(x,y)∈A

f(x, y), (6.11)

in which the set A ⊆ Rn × Rm is closed convex and the function f : Rn × Rm → R

is convex, proper, and lower semicontinuous. We assume that the set A is x-bounded

in the sense that for every bounded subset Y ⊂ Rm the intersection A ∩ (Rn × Y ) is

bounded.

We define the following regularized master problem:

minimize
(x,y)∈A

%

2
‖y − wk‖2 + fk(x, y), (6.12)

where the model fk is defined by:

fk(x, y) , max
j∈Jk

[
f(xj , yj) +

〈
gj , (x, y)− (xj , yj)

〉]
, (6.13)

with gj ∈ ∂f(xj , yj), j ∈ Jk. The set Jk is a subset of {1, . . . , k} determined by a

procedure for selecting cuts. At this moment we may think of Jk as being equal to

{1, . . . , k}.

In the proximal term (%/2)‖y − wk‖2, where % > 0, the center (vk, wk) is updated

depending on the relations between the value of f(xk+1, yk+1) at the master’s solution,

(xk+1, yk+1), and its prediction provided be the current model, fk(xk+1, yk+1). If these

values are equal or close, we set (vk+1, wk+1) := (xk+1, yk+1) (descent step); otherwise

(vk+1, wk+1) := (vk, wk) (null step). In any case, the collection of cuts is updated, and

the iteration continues.

The regularized master problem can be equivalently written as a problem with a
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quadratic objective function and linear constraints:

minimize z +
%

2
‖y − wk‖2

subject to z ≥ f(xj , yj) +
〈
gj , (x, y)− (xj , yj)

〉
, j ∈ Jk,

(x, y) ∈ A.

(6.14)

If the set A is a convex polyhedron, the master problem can be readily solved by

specialized techniques, enjoying the finite termination property.

Let us observe that problem (6.14) satisfies Slater’s constraint qualification condi-

tion. Indeed, for every (xS , yS) ∈ A we can choose zs so large that all constraints are

satisfied as strict inequalities. Therefore the optimal solution of the master problem

satisfies the necessary and sufficient conditions of optimality with Lagrange multipliers

(see [35, Thm. 3.34]). We denote by λkj ∈ Jk, the Lagrange multipliers associated with

the constraints of problem (6.14).

The detailed partial bundle method is stated below. The parameter γ ∈ (0, 1) is a

fixed constant used to compare the observed improvement in the objective value to the

predicted improvement.

Step 0 Set k := 1, J0 := ∅, and z1 := −∞.

Step 1 Calculate f(xk, yk) and gk ∈ ∂f(xk, yk). If f(xk, yk) > zk then set Jk :=

Jk−1 ∪ {k}; otherwise set Jk := Jk−1.

Step 2 If k = 1 or if

f(xk, yk) ≤ (1− γ)f(vk−1, wk−1) + γfk−1(xk, yk),

then set (vk, wk) := (xk, yk); otherwise Step 2 is a null step and we set (vk, wk) :=

(vk−1, wk−1).

Step 3 Solve the master problem (6.14). Denote by (xk+1, yk+1) and zk+1 its solution

and set fk(xk+1, yk+1) := zk+1.
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Step 4 If fk(xk+1, yk+1) = f(vk, wk) then stop (the point (vk, wk) is an optimal

solution); otherwise continue.

Step 5 If Step 2 was a null step then go to Step 6. Else (Step 2 was a descent step)

remove from the set of cuts Jk−1 some (or all) cuts whose Lagrange multipliers

λkj at the solution of (6.14) are 0.

Step 6 Increase k by one, and go to Step 1.

6.2.2 Convergence

First we prove that if the algorithm gets stuck at a (v, w)-center then it will approximate

an optimal solution.

Lemma 11. Let f∗ be an optimal solution to (6.11) and suppose that the sequence,{
(xk, yk)

}
, obtained by the partial bundle method consists of only null steps from iter-

ation t on. Then

lim
k→∞

fk−1(xk, yk) = f∗ = lim
k→∞

f(xk, yk).

Proof. For any ε > 0, let

Kε :=
{
k : k > t and fk−1(xk, yk) + ε < f(xk, yk)

}

and let k1, k2 ∈ Kε with t < k1 < k2.

Since we only have null steps we get that for every k > t, (vk, wk) = (xt, yt) and

the cutting plane generated at k will remain on the master problem from k on. This

implies that the sequence
{
fk−1(xk, yk)

}
is non-decreasing from t + 1 on. Also, since

the cutting plane generated at (xk1 , yk1) will remain in the master problem at iteration

k2 − 1, we get:

f(xk1 , yk1) +
〈
gk1 , (xk2 , yk2)− (xk1 , yk1)

〉
≤ fk2−1(xk2 , yk2).

On the other hand, ε < f(xk2 , yk2) − fk2−1(xk2 , yk2) which combined with the last
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inequality yields

ε < f(xk2 , yk2)− f(xk1 , yk1) +
〈
gk1 , (xk1 , yk1)− (xk2 , yk2)

〉
.

Since all the steps made are null, the points yk, with k > t, are contained in a bounded

neighborhood of wk = yt. This and the x-boundedness of f guarantee us that B :=

Conv
{

(xj , yj)
∣∣ j ∈ Kε} is bounded. The function f is subdifferentiable in B, so there

exists a constant C such that f(x1, y1) − f(x2, y2) ≤ C‖(x1, y1) − (x2, y2)‖, for all

x1, x2 ∈ B. Subgradients on bounded sets are bounded, and thus we can choose C

large enough so that ‖gj‖ ≤ C, for all j ∈ Kε. It follows from the last displayed

inequality that

ε < 2C‖(xk1 , yk1)− (xk2 , yk2)‖ for all k1, k2 ∈ Kε, k1 6= k2.

As the set B is compact, there can exist only finitely many points in Kε ⊂ B having

distance at least ε/(2C) from each other. Thus the last inequality implies that the set

Kε is finite for each ε > 0. This means that

lim
k→∞

f(xk)− fk−1(xk) = 0. (6.15)

By construction the sequences
{
fk−1(xk)

}
and

{
f(xk)

}
satisfy the relation

fk−1(xk) ≤ f∗ ≤ f(xk), for every k ∈ N.

Therefore the eventual monotonicity of
{
fk−1(xk)

}
and (6.15) imply that

lim
k→∞

fk−1(xk, yk) = f∗ = lim
k→∞

f(xk, yk).

Next we prove another intermediate step towards convergence.

Lemma 12. Assume that problem (6.11) has an optimal solution and suppose that the
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sequence
{

(xk, yk)
}

obtained by the partial bundle method has infinitely many descent

steps. Then the following holds.

1. The sequence {(vk, wk)} approximates an optimal solution of (6.11).

2. The sequence
{
wk
}

converges to a point ỹ such that there is an optimal solution

of (6.11) of the form (x̃, ỹ).

Proof. Let us denote by K the set of iterations at which descent steps occur. If

(vk+1, wk+1) = (xk+1, yk+1) is the optimal solution of the master problem (6.12), we

have the necessary condition of optimality

0 ∈ ∂
[%

2
‖y − wk‖2 + fk(x, y)

]
+NA(x, y) at (x, y) = (vk+1, wk+1).

Hence

−
[
0, %(wk+1 − wk)

]
∈ ∂fk(vk+1, wk+1) +NA(vk+1, wk+1).

Let (x∗, y∗) be an optimal solution of (6.11). By the subgradient inequality for fk we

get (for some h ∈ NA(vk+1, wk+1)) the estimate

fk(x∗, y∗) ≥ fk(vk+1, wk+1)−
〈[

0, %
(
wk+1 − wk

)]
, (x∗, y∗)− (vk+1, wk+1)

〉
−
〈
h, (x∗, y∗)− (vk+1, wk+1)

〉
≥ fk(vk+1, wk+1)− %

〈
wk+1 − wk, y∗ − wk+1

〉
.

(6.16)

Suppose a descent step from (vk, wk) to (vk+1, wk+1) occurs, so the test of Step 2 is

satisfied (for k + 1):

f(vk+1, wk+1) ≤ (1− γ)f(vk, wk) + γfk(vk+1, wk+1).

After elementary manipulations we can rewrite it as

fk(vk+1, wk+1) ≥ f(vk+1, wk+1)− 1− γ
γ

[
f(vk, wk)− f(vk+1, wk+1)

]
. (6.17)

Combining the last inequality with (6.16) and using the relation f(x∗, y∗) ≥ fk(x∗, y∗)
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we obtain

f(x∗, y∗) ≥ f(vk+1, wk+1) +
1− γ
γ

[
f(vk+1, wk+1)− f(vk, wk)

]
− %

〈
wk+1 − wk, y∗ − wk+1

〉
.

This can be substituted into the identity:

‖wk+1 − y∗‖2 = ‖wk − y∗‖2 + 2
〈
wk+1 − wk, wk+1 − y∗

〉
− ‖wk+1 − wk‖2.

After skipping the last term we get

‖wk+1 − y∗‖2 ≤ ‖wk − y∗‖2 − %

2

[
f(vk+1, wk+1)− f(x∗, y∗)

]
+

2(1− γ)

γ%

[
f(vk, wk)− f(vk+1, wk+1)

]
for all k ∈ K.

(6.18)

The series
∑∞

k=1[f(vk, wk)− f(vk+1, wk+1)] is convergent, because {f(vk, wk)} is non-

increasing and bounded from below by f(x∗, y∗). Therefore we obtain from (6.18) that

the distance ‖wk+1 − y∗‖ is uniformly bounded, and so {wk} must have accumula-

tion points. This and the x-boundedness of f imply that the sequence {vk, wk} has

accumulation points.

Summing up (6.18) for k ∈ K we get

∑
k∈K

(
f(vk+1, wk+1)− f(x∗, y∗)

)
≤ %

2
‖w1 − y∗‖2 +

1− γ
γ

[
f(v1, w1)− lim

k→∞
f(vk, wk)

]
,

so f(vk+1, wk+1)→ f(x∗, y∗), k ∈ K. Consequently, at every accumulation point (x̃, ỹ)

of {(vk, wk)} one has f(x̃, ỹ) = f(x∗, y∗). Since (x̃, ỹ) is optimal, we can substitute it

for (x∗, y∗) in (6.18). Skipping the negative term we get

‖wk+1 − ỹ‖2 ≤ ‖wk − ỹ‖2 +
2(1− γ)

γ%

[
f(vk, wk)− f(vk+1, wk+1)

]
.

It is true not only for k ∈ K but for all k, because at k 6∈ K we have a trivial equality
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here. Summing these inequalities from k = l to k = q > l we get

‖wq+1 − ỹ‖2 ≤ ‖wl − ỹ‖2 +
2(1− γ)

γ%

[
f(vl, wl)− f(vq+1, wq+1)

]
.

Since ỹ is an accumulation point, for ε > 0 we can find l such that ‖wl − ỹ‖ ≤ ε. Also,

if l is large enough, f(vl, wl) − f(vq+1, wq+1) ≤ ε for all q > l, because {f(vk, wk)} is

convergent. Then ‖wq+1− ỹ‖2 ≤ ε2 + 2ε(1− γ)/(γ%) for all q > l, so the sequence {wk}

is convergent to ỹ.

Now we are ready to prove convergence of the partial bundle method.

Theorem 13. Assume that problem (6.11) has an optimal solution, f∗, and let{
(xk, yk)

}
be the sequence obtained by the partial bundle method. Then

lim inf
k→∞

f(xk, yk) = f∗.

Proof. If there are only finitely many descent steps then Lemma 11 gives the de-

sired result. Thus we assume that the number of descent steps is infinite and by

Lemma 12, limk→∞ f(vk, wk) = f∗. Clearly, the sequence {f(vk, wk)} is an infinite

subsequence of {f(xk, yk)}. Then, since f(xk, yk) ≥ f∗ for every k, we obtain that

lim infk→∞ f(xk, yk) = f∗.
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Chapter 7

Scenario Decomposition of Multistage Risk-Averse

Problems and Methods

7.1 A Multistage Risk-Averse Problem

Let (Ω,F , P ) be a probability space with a sigma algebra F and probability measure

P . Consider a filtration {∅,Ω} = F1 ⊂ F2 ⊂ · · · ⊂ FT = F . A random vector

x = (x1, . . . , xT ), where each xt has values in Rnt , t = 1, . . . , T , is called a policy . If

each xt is Ft-measurable, t = 1, . . . , T , a policy x is called implementable. A policy x

is called feasible, if it satisfies the following conditions:

A1x1 = b1,

B2x1 + A2x2 = b2,

B3x2 + A3x3 = b3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BTxT−1 + ATxT = bT ,

x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, . . . xT ∈ XT .

(7.1)

In these equations, for every t = 1, . . . , T , the matrices At of dimensions mt × nt,

the matrices Bt of dimensions mt × nt−1, and the vectors bt of dimensions mt are Ft-

measurable data. Each set Xt is a random convex and closed polyhedron which is

measurable with respect to Ft (in the sense of measurability of multifunctions; see [6]).

Suppose ct, t = 1, . . . , T , is an adapted sequence of random cost vectors, that is,

each ct is Ft-measurable. A policy x results in a cost sequence

Zt = 〈ct, xt〉, t = 1, . . . , T. (7.2)
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Our intention is to formulate and analyze a risk-averse multistage stochastic program-

ming problem, to minimize a dynamic measure of risk, %(Z1, . . . , ZT ), over all imple-

mentable and feasible policies x. In order to define the functional %(·), we recall some

basic concepts of the theory of dynamic measures of risk. We follow the development

given in [38, 37, 39, 41].

Consider vector spaces Zt of Ft-measurable random outcomes. As F1 is trivial,

Z1 = R. Suppose we observe a random sequence Zt, t = 1, . . . , T , adapted to the

filtration {Ft}. Its risk can be evaluated by using the following dynamic coherent

measure of risk

%1,T (Z1, Z2, . . . , ZT ) = Z1 + ρ1

(
Z2 + ρ2

(
Z3 + · · ·+ ρT−1(ZT ) . . .

))
, (7.3)

where each ρt : Zt+1 → Zt is a coherent conditional measure of risk. The structure

(7.3) was postulated in [37] and derived in [31] from abstract principles of monotonicity

and time consistency of dynamic risk measures.

Our problem is to minimize (7.3) with each Zt given by (7.2), over all implementable

and feasible policies x. In order to complete the problem formulation, we need to be

more specific about the vector spaces Zt, the vector spaces of random vectors in which

the components xt of the policy live, as well as integrability conditions on the problem

data At, Bt, bt and ct, so that Zt ∈ Zt for all t = 1, . . . , T . In this work, we assume that

all sigma-algebras are finite and all vector spaces are finite-dimensional. We discuss it

in the next section.

7.2 Scenario Trees and Recursive Risk Evaluation

In the finite distribution case, possible realizations of data form a scenario tree. It has

nodes organized in levels which correspond to stages 1, . . . , T . At level t = 1 we have

only one root node ν = 1. Nodes at levels t = 2, . . . , T correspond to elementary events

in Ft. Each node ν at level t = 2, . . . , T is connected to a unique node a(ν) at level

t− 1, called the ancestor node, which corresponds to the elementary event in Ft−1 that

contains the event associated with ν. Thus, every node ν at levels t = 1, . . . , T − 1 is
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connected to a set C(ν) of nodes at level t+ 1, called children nodes, which correspond

to elementary events in Ft+1 included in the event corresponding to ν. We denote by

Ωt the set of all nodes at stage t = 1, . . ., T . We have the relations Ωt+1 = ∪ν∈ΩtC(ν)

and C(ν) = {η ∈ Ωt+1 : ν = a(η)}. The sets C(ν) are disjoint, i.e., C(ν) ∩ C(ν ′) = ∅

if ν 6= ν ′. A scenario is a path s from the root to a node at the last stage T . By

construction, there is one-to-one correspondence between the scenarios and the set

ΩT = Ω. Let S(ν) be the set of scenarios passing through node ν. These sets satisfy

the recursive relation:

S(ν) = {ν}, ν ∈ ΩT ,

S(ν) =
⋃

η∈C(ν)

S(η), ν ∈ Ωt, t = T − 1, . . . , 1.

As the nodes of the tree correspond to events defining nested partitions of Ω, the

measure P can be specified by conditional probabilities:

pνη = P [η|ν], ν ∈ Ωt, η ∈ C(ν), t = 1, . . . , T − 1.

Every node ν at level t has a history : the path (ν1, . . . , νt−1, ν) from the root to ν.

The probability of the node ν is thus the product of the corresponding conditional

probabilities

pν = pν1ν2pν2ν3 · · · pνt−1ν . (7.4)

In particular, when t = T , formula (7.4) describes the probability of a scenario ν ∈ ΩT .

For every node ν ∈ Ωt, an Ft-measurable random variable Z has identical values on

all scenarios s ∈ S(ν). It can, therefore, be equivalently represented as a function of a

node at level Ωt, which we write ZΩt .

Consider a conditional measure of risk ρt(·). Its value is Ft-measurable, and thus

we can consider its representation as a function of a node at level t. It follows from [37,

Thm. 3.2] that for every Ft-measurable nonnegative function Γ a stronger version of

(A4) holds:

Γρt(Zt+1) = ρt(ΓZt+1).



56

Let ν ∈ Ωt, and let 1ν be the characteristic function of the event ν. Setting Γ = 1ν in

the last equation, for all Zt+1,Wt+1 ∈ Zt+1 we obtain

1νρt(1νZt+1 + (1− 1ν)Wt+1) = ρt(1νZt+1) = 1νρt(1νZt+1).

In the last equation we multiplied both sides by 1ν . We see that Wt+1 plays no role

here. The value of ρt(Zt+1) at elementary events associated with node ν depends only

on the values of Z
Ωt+1

t+1 at nodes η ∈ C(ν). We denote the vector of these values by

Z
C(ν)
t+1 , and we write the conditional risk measure equivalently as ρνt

(
Z
C(ν)
t+1

)
.

Let us define the random variables

Vt = ρt

(
Zt+1 + ρt+1

(
Zt+2 + · · ·+ ρT−1(ZT ) . . .

))
, t = 1, . . . , T. (7.5)

They are Ft-measurable, and thus we only need to consider their values V ν
t associated

with scenarios s ∈ S(ν). It follows that the value of the measure of risk (7.3) can be

written on the scenario tree in a recursive manner:

%1,T (Z1, Z2, . . . , ZT ) = Z1 + V 1
1 , (7.6)

V ν
t = ρνt

(
Z
C(ν)
t+1 + V

C(ν)
t+1

)
, ν ∈ Ωt, t = 1, . . . , T. (7.7)

7.3 Nonanticipativity Constraints

A standard approach to multistage stochastic programming is based on scenario de-

composition. With every scenario s in the tree, we associate a sequence of decision

vectors

xs = (xs1, . . . , x
s
T ), s ∈ Ω.

Such a collection of sequences forms a policy which is not necessarily implementable,

unless it satisfies a certain linear equation, called the nonanticipativity constraint . It

requires that the process x be adapted to the filtration {Ft}. Abstractly, we can write

xt = E
[
xt|Ft

]
, t = 1, . . . , T − 1. (7.8)
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For the scenario model, the nonanticipativity constraint can be written as a system of

linear equations at the nodes of the tree. For every node ν at level t = 1, . . . , T − 1 the

values xst should be identical for all s ∈ S(ν). Direct specification of (7.8) yields

xst = E
[
xt|S(ν)

]
=

∑
ω∈S(ν) pωx

ω
t∑

ω∈S(ν) pω
, s ∈ S(ν), ν ∈ Ωt, t = 1, . . . , T − 1.

(7.9)

Other constraints of problem (1)-(2)-(3) decompose by scenario:

x ∈ X = X 1 × · · · × X |Ω|, (7.10)

where for each s ∈ Ω we have

X s =
{
x ∈ Xs

1 × · · · ×Xs
T : Bs

t x
s
t−1 +Astx

s
t = bst , t = 1, . . . , T

}
. (7.11)

In (7.11) the symbols Ast , B
s
t , b

s
t , and Xs

t denote realizations of problem data at stage

t in scenario s, and the term Bs
t x

s
t−1 is omitted for t = 1.

In risk-neutral multistage stochastic programming, we can write the corresponding

optimization problem:

min
∑
s∈Ω

ps
T∑
t=1

〈cst , xst 〉

s.t. (7.9) and (7.11).

(7.12)

Then, Lagrange multipliers λst are associated with the nonanticipativity constraints

(7.9), and the following Lagrangian function is constructed:

L(x, λ) =
∑
s∈Ω

ps
T∑
t=1

〈cst , xst 〉+
T−1∑
t=1

∑
ν∈Ωt

∑
s∈S(ν)

ps
〈
λst , x

s
t − E

[
xt|S(ν)

]〉
. (7.13)

The problem

min
x∈X

L(x, λ)

decomposes into scenario subproblems, one for each s ∈ Ω. We shall not go into these

details here; the reader can find them in [41, Sec. 3.2.4]. The dual problem is to

find the optimal values of Lagrange multipliers associated with (7.9). It can be solved
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by nonsmooth optimization methods or by augmented Lagrangian methods. As the

constraints (7.9) are redundant, we can restrict the multipliers to the subspace defined

by the equations

E[λt|Ft] = 0, t = 1, . . . , T − 1. (7.14)

In the scenario tree case, these conditions translate into

∑
s∈S(ν)

psλst = 0, ν ∈ Ωt, t = 1, . . . , T − 1. (7.15)

Again, the reader is referred to [41, Ch. 3] for the details.

The difficulty with the scenario decomposition in the risk-averse setting is the def-

inition and nonlinear character of the dynamic risk measure (7.3). If a policy x is not

implementable, the sequence {Zt} is not adapted to the filtration {Ft} and formula (7.3)

makes no sense, because of the definition of ρt as a function acting on Ft+1-measurable

random variables. We cannot just substitute the dynamic risk measure for the objective

function in (7.12).

7.4 Transition Multikernels and Their Compositions

We first recall the dual representation of conditional measures of risk. Let P(C) denote

the set of probability distributions on a set of nodes C ⊂ Ωt. By theorems (2 ) and

(5), for every t = 1, . . . , T − 1 and every node ν ∈ Ωt there exists a convex closed set

At(ν) ⊂ P(C(ν)) such that

ρνt
(
Z
C(ν)
t+1

)
= max

µ∈At(ν)

〈
µ,Z

C(ν)
t+1

〉
. (7.16)

In fact, At(ν) = ∂ρνt
(
0
)
.

We shall call a set mapping K : Ωt ⇒ P(Ωt+1) a transition multikernel . IWe call it

convex, if for all ν ∈ Ωt the set K(ν) is convex. We call it closed, if for all ν ∈ Ωt the

set K(ν) is closed. The transition multikernels At associated with the conditional risk

measures ρt(·) are convex and closed, as subdifferentials of convex functions ρνt (·) at 0,
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ν ∈ Ωt. They also satisfy the conditions

At(ν) ⊂ P(C(ν)), ∀ ν ∈ Ωt. (7.17)

For t = 1 there is only one node ν = 1 ∈ Ω1, and thus A1 is simply a set probability

distributions on Ω2. If a kernel µt is a selection of At, that is, µt(ν) ∈ At(ν) for all

ν ∈ Ωt, we shall simply write µt ∈ At. The value of µ(ν) at an node η ∈ C(ν) will be

written as µ(ν, η).

Compositions of transition multikernels are germane for our analysis. Let us start

from a composition of a measure qt ∈ P(Ωt) with a kernel µt ∈ At. It is a measure on

Ωt+1 given by the following relations:

(µt ◦ qt)(η) = qt(a(η))µt(a(η), η), η ∈ Ωt+1; (7.18)

recall that a(η) is the ancestor of η. If we have a set of probability distributions

Qt ⊂ P(Ωt) and a transition multikernel At satisfying (7.17), we can define their

composition At ◦Qt as the following set of probability distributions on Ωt+1:

At ◦Qt =
{
µt ◦ qt : qt ∈ Qt, µt ∈ At

}
. (7.19)

Lemma 14. Suppose Qt is a convex and compact set of probability measures on Ωt and

a transition multikernel At satisfies (7.17) and is convex and compact. Then the set

Qt+1 = At ◦Qt is convex and compact.

Proof. To prove convexity, let qkt+1(η) = qkt (a(η))µkt (η), with µkt ∈ At, qkt ∈ Qt, k = 1, 2,

and consider their convex combination,

qt+1 = αq1
t+1 + (1− α)q2

t+1, α ∈ (0, 1).

Define qt = αq1
t + (1− α)q2

t . By the convexity of Qt, we have qt ∈ Qt, and thus the set

At ◦ {qt} is included in Qt+1. To show that qt+1 ∈ Qt+1, it is sufficient to prove that
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qt+1 ∈ At ◦ {qt}. This amounts to verifying for all η ∈ Ωt+1 the following relation:

αq1
t (a(η))µ1

t (η) + (1− α)q2
t (a(η))µ2

t (η) ∈ qt(a(η))At(a(η)). (7.20)

Let η ∈ Ωt+1 and ν = a(η). Observe that q1
t (ν) ≥ 0 and q2

t (ν) ≥ 0. If qt(ν) = 0, we

must have q1
t (ν) = q2

t (ν) = 0 and (7.20) is trivial. It remains to consider the case of

qt(ν) > 0. Define

β(ν) =
αq1

t (ν)

qt(ν)
.

By the definition of qt, β(ν) ∈ [0, 1]. The left hand side of (7.20) can be written as

follows

αq1
t (ν)µ1

t (η) + (1− α)q2
t (ν)µ2

t (η) = qt(ν)
(
β(ν)µ1

t (η) + (1− β(ν))µ2
t (η)

)
.

Due to the convexity of At, the right hand side is an element of At ◦ {qt}, which proves

(7.20).

The compactness of Qt+1 follows from the compactness of Qt and At.

We can now prove a useful dual representation of a dynamic measure of risk.

Theorem 15. Suppose a dynamic risk measure %(·) is given by (7.3) with conditional

risk measures ρt(·) satisfying conditions (A1)–(A4). Then for every adapted sequence

Z1, . . . , ZT we have the relation

%(Z1, . . . , ZT ) = max
qT∈QT

〈
qT , Z1 + Z2 + · · ·+ ZT

〉
, (7.21)

where

QT = AT−1 ◦ . . .A2 ◦ A1 (7.22)

is a convex and closed set of probability measures on Ω.

Proof. Recursive composition of transition multikernels µt yields a sequence of sets of

measures:

Qt+1 = At ◦Qt, t = 1, . . . , T − 1, (7.23)
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with Q1 = {1}. Each Qt is a set of probability measures on Ωt. Lemma 14 implies that

they are all convex and compact.

The multikernel representation (7.16) allows us to rewrite the definition of a dynamic

risk measure (7.3) as follows:

%(Z1, . . . , ZT ) = Z1 + max
µ1∈A1

(〈
µ1, Z

Ω2
2

〉
+ max
µ2∈A2

(〈
µ2 ◦ µ1, Z

Ω3
3

〉
+ . . .

· · ·+ max
µT−1∈AT−1

〈
µT−1 ◦ · · · ◦ µ2 ◦ µ1, ZT

〉
· · ·
))
. (7.24)

All the maximum operations can be put at the beginning, and we obtain:

%(Z1, . . . , ZT ) = Z1 + max
µt∈At

t=1,...,T−1

(〈
µ1, Z

Ω2
2

〉
+
〈
µ2 ◦ µ1, Z

Ω3
3

〉
+ . . .

· · ·+
〈
µT−1 ◦ · · · ◦ µ2 ◦ µ1, ZT

〉)
. (7.25)

Let qt = µt−1◦· · ·◦µ2◦µ1, t = 2, . . . , T . Each of them is an element of the corresponding

set Qt. Consider the product

〈
qt, Z

Ωt
t

〉
=
∑
ν∈Ωt

qt(ν)ZΩt
t (ν).

Suppose µt ∈ At and ν ∈ Ωt. Then µt(ν) is a probability distribution on C(ν). Since

Zt is Ft-measurable, Z
Ωt+1

t has identical values on the nodes η ∈ C(ν). Therefore,

ZΩt
t (ν) = 〈µt(ν), Z

Ωt+1

t 〉.

Recalling the definition (7.18), we conclude that

〈
qt, Z

Ωt
t

〉
=
〈
µt ◦ qt, ZΩt+1

t

〉
=
〈
qt+1, Z

Ωt+1

t

〉
.



62

Applying this relation recursively to all terms of (7.25), we obtain the identity

%(Z1, . . . , ZT ) = max
µt∈At

t=1,...,T−1

〈
µT−1 ◦ · · · ◦ µ2 ◦ µ1, Z1 + Z2 + · · ·+ ZT

〉
= max

qT∈QT

〈
qT , Z1 + Z2 + · · ·+ ZT

〉
,

(7.26)

as postulated.

7.5 Duality and Decomposition

An advantage of formula (7.21) is that its right hand side remains well-defined also

for sequences {Zt}, which are not adapted to the filtration {Ft}. This allows for the

development of the corresponding duality theory and decomposition.

Consider the extended problem formulation corresponding to to the risk-neutral

formulation (7.12). The nonanticipativity constraints (7.9) can be compactly written

as a system of linear equations x = Πx, where Π is the projection on the implementable

subspace:

Π(x1, . . . , xT ) =
(
Ex1,E[x2|F2], . . . ,E[xT−1|FT−1], xT

)
.

Employing the dual representation of the dynamic measure of risk %(·), we obtain the

following problem:

min
x

max
q∈QT

∑
s∈Ω

qs〈cs, xs〉 (7.27)

s.t. x−Πx = 0, (7.28)

xs ∈ X s, s ∈ Ω. (7.29)

We write 〈cs, xs〉 for the sum
∑T

t=1〈cst , xst 〉. By Theorem 15, this problem is equivalent

to the problem of minimizing (7.3), subject to (7.2) and (7.1).
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We now develop duality relations for problem (7.27)–(7.29), extending to the risk-

averse case the approach outlined in [41, Sec. 3.2.4]. After associating Lagrange mul-

tipliers λ with the nonanticipativity constraints (7.28), we obtain the following La-

grangian function:

L(x, λ) = max
q∈QT

∑
s∈Ω

(qs〈cs, xs〉+ ps〈λs, xs −Πsx〉) .

It is sufficient to consider λ such that Πλ = 0, because any shift of λ by by a vector in

the range of Π does not affect the last term. More specifically, we require that

∑
s∈S(ν)

psλst = 0, ν ∈ Ωt, t = 1, . . . , T − 1. (7.30)

Under this condition, the Lagrangian simplifies:

L(x, λ) = max
q∈QT

∑
s∈Ω

(qs〈cs, xs〉+ ps〈λs, xs〉) . (7.31)

The dual function is defined as follows:

LD(λ) = inf
x∈X

L(x, λ),

and the dual problem is to find

max
Πλ=0

inf
x∈X

max
q∈QT

∑
s∈Ω

(qs〈cs, xs〉+ ps〈λs, xs〉) . (7.32)

The function under the “max− inf −max” operations is bilinear in x and q, the set QT

is convex and compact, and the set X is convex. Therefore, we can interchange the

inner “inf” and “max” operations, see. [42, Thm. 3.1], to write the dual problem as

follows:

max
Πλ=0

max
q∈QT

[
inf
x∈X

∑
s∈Ω

(qs〈cs, xs〉+ ps〈λs, xs〉)

]
. (7.33)

It is convenient to replace the measure q with its density δ with respect to p. Clearly,
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δ lives in a convex compact set

∆ =
{
δ ∈ R|Ω| :

(
psδs

)
s∈Ω
∈ QT

}
. (7.34)

The dual problem takes on the form:

max
Πλ=0

max
δ∈∆

[
inf
x∈X

∑
s∈Ω

ps (δs〈cs, xs〉+ 〈λs, xs〉)

]
. (7.35)

The problem in brackets has the same structure as in the risk-neutral case, but with

scenario costs re-scaled by δs.

Theorem 16. If Problem (7.27)-(7.29) has an optimal solution then the dual problem

(7.35) has an optimal solution, and the optimal values of both problems coincide.

The theorem follows from the duality theory in convex programming (see, e.g., [35,

Thms. 4.7 and 4.8]). No constraint qualification is needed, because the constraints

(7.28) are linear and the sets X s, s ∈ Ω, are convex closed polyhedra.

Observe that the inner problem (in brackets) in (7.35) decomposes into individual

scenario subproblems

min
xs∈X s

〈δscs + λs, xs〉, s ∈ Ω. (7.36)

These subproblems can be readily solved by specialized techniques, exploiting the struc-

ture of the deterministic version of the dynamic problem in question.

Our approach can be interpreted as a construction of a family of risk-neutral ap-

proximations of the problem, one for each δ ∈ ∆.

7.6 Master Problem

Let us denote by Ψ s(λs, δs) the optimal value of problem (7.36). The main difficulty is

to solve the dual problem:

max
Πλ=0

max
δ∈∆

∑
s∈Ω

psΨ s(λs, δs). (7.37)
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As each Ψ s(·, ·) is concave and piecewise-linear, problem (7.37) is a convex programming

problem.

The optimal value of the scenario subproblem (7.36) is a composition of the linear

map (λs, δs) 7→ δscs + λs with the support function of the set Xs. Using rules of

subdifferential calculus we obtain

∂Ψ s(λs, δs) =
{(
xs, 〈cs, xs〉

)
: xs is a solution of (7.36)

}
. (7.38)

As the objective of (7.37),

D(λ, δ) =
∑
s∈Ω

psΨ s(λs, δs),

is a sum of terms that have no variables in common, we get

∂D(λ, δ) = ∂Ψ1(λ1, δ1)× · · · × ∂Ψ |Ω|(λ|Ω|, δ|Ω|). (7.39)

Therefore, to calculate a subgradient at a point (λ, δ) we need to solve subproblems

(7.36) and apply formula (7.39). In principle, problem (7.37) can be solved by any

nonsmooth optimization method. One simple possibility would be the cutting plane

method (see, e.g., [15, 35]); another choice is the bundle method (see [15, 18, 17, 35]).

The essence of the bundle method is the application of regularization with respect

to the decision variables, which are in our case λ and δ, similarly to the proximal point

method. This allows to localize the iterations and makes the bundle method more

reliable for problems of higher dimension, where the cutting plane method becomes

very slow.

Here, the specificity of problem (7.37) is that regularization is mainly needed for the

nonanticipativity multipliers λ. The densities δ are restricted to live in a compact set ∆;

in the extreme case of the risk-neutral problem we simply have ∆ = {(1, 1, . . . , 1)}. We

therefore propose a partial bundle method, which employs regularization with respect

to the variables λ only. Exactly as the bundle method, it collects for every scenario s

optimal solutions xsj of the scenario subproblems and corresponding solutions (λsj , δsj)
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of the master problem at iterations j ∈ Js. The set Js may be the set of all previous

iterations, or its subset determined by the cut selection rules of the bundle method.

The method also has the regularization center λ̄, which is updated depending on the

success of the current iteration, and uses a regularization coefficient r > 0.

The master problem of the partial bundle method has the following form

max
vs,λ,δ

∑
s∈Ω

ps
(
vs −

r

2
‖λs − λ̄s‖2

)
s.t. vs ≤

〈
δsjcs + λsj , xsj

〉
+
〈(
xsj , 〈cs, xsj〉

)
, (λs, δs)− (λsj , δsj)

〉
,

s ∈ Ω, j ∈ Js,

Πλ = 0,

δ ∈ ∆.

(7.40)

After its solution, the regularization center λ̄, the regularization coefficient r, and the

sets of cuts are updated in exactly the same way as in the bundle method (see [17, 35]).

Convergence analysis of the partial bundle method were presented in Chapter 6 for

the basic problem of minimizing a convex function of two decision vectors, without the

complications of dealing with the sum of functions, over s ∈ Ω. Our master problem

(7.40) uses disaggregated subgradients, as in [9, 32]: each vs is an upper bound on the

corresponding function Ψ s(λs, δs).



67

Chapter 8

Numerical Illustration

8.1 The Model

Our aim is to illustrate the scenario decomposition approach and the methods discussed

in previous sections on the following inventory and assembly problem. A product line

consists of several different models. Each model has its own list of parts, but different

models may have some parts in common. At the first stage, we decide how many

units of each part will be bought. After the purchase is complete, the actual demand

for the different models is revealed. Then we decide how many units of each model

will be produced, while keeping within the constraints defined by the numbers of parts

available.

There is a penalty for each unit of unsatisfied demand and there is a “storage cost”

associated to each unit that is produced over the demand. The storage cost involves

product depreciation and is a random variable which will become known only after

the second stage decisions have been made. It is assumed that all the products will

eventually be sold and the storage cost is paid only once.

Let zi be the number of parts of type i that will be purchased and let uj be the

number of units of model j that will be produced. Let M be the integer nonnegative

matrix that describes the parts needed to assemble each different model, i.e. Mu is

the vector of parts necessary to assemble the vector of models u. Random demand for

product j is denoted by Dj and random unit storage cost is denoted by Hj . Other

problem parameters, which are deterministic, are: rj - selling price of product j, ci -

cost of part i, lj - penalty for uncovered demand of product j.
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Our goal is to minimize the negative of the profit, which is composed of three parts:

Z1 =
∑
i

cizi,

Z2 = −
∑
j

rjuj , and

Z3 =
∑
j

[lj(Dj − uj)+ +Hj(uj −Dj)+] .

Since the components Z2 and Z3 are random, and our decisions u depend on the de-

mand vector observed, we express the production problem as a three stage risk-averse

optimization problem. In fact, there are no third stage decisions: only random cost

evaluation. At stages 1 and 2 we use the conditional mean–semideviation risk mea-

sures of the first order of the form (2.21) with coefficients κ1 ∈ [0, 1] and κ2 ∈ [0, 1],

respectively.

Assume that there are N possible demand realizations each occurring with corre-

sponding probability ps. Moreover, suppose that each demand realization s there are

Ns possible storage cost realizations each occurring with probability psη, η = 1, . . . , Ns.

For given decisions us at node s, the cost equals:

Zs2 + Z3 = −〈r, us〉+ 〈l, ws〉+ 〈Hsη, vs〉,

where ws and vs are the under and over production due to decision ys at node s. In this
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case a straightforward linear programming formulation of the problem is the following:

min
z,u,w,v
ρ,σ,ζ,γ

〈c, z〉+
N∑
s=1

psρ
s + κ1

N∑
s=1

psσ
s

s.t. ρs =

Ns∑
η=1

psηζ
sη + κ2

Ns∑
η=1

psηγ
sη,

σs ≥ ρs −
∑
k∈Ω2

pkρ
k, σs ≥ 0,

ζsη = −〈r, us〉+ 〈l, ws〉+ 〈Hsη, vs〉,

γsη ≥ ζsη −
Ns∑
k=1

pskζ
sk, γsη ≥ 0,

Mus − z ≤ 0, us ≥ 0,

ws ≥ Ds − us, ws ≥ 0,

vs ≥ us −Ds, vs ≥ 0,

for all s = 1, . . . , N and η = 1, . . . , Ns.

(8.1)

In the problem above, Ds := (Ds
1, . . . , D

s
m) is the sth realization of product demands,

and Hsη
i is the storage cost of product i under demand realization s and storage realiza-

tion η. The variable ρs represents the value of the conditional risk measure ρ2(Z2 +Z3)

at node s, and the value of the risk measure ρ1(·) is calculated directly in the objective

function. The variables ζ represent cost realizations in the corresponding scenarios.

The variables σ and γ represent the upper semideviations of the costs at stage 1 and

2, respectively.

The size of the linear programming representation of the production problem shows

the importance of developing efficient methods to solve multi stage risk-averse problems.

We applied to our problem the cutting plane, the classical bundle, and the partial bun-

dle method. Whenever possible, we compared the results obtained by these methods

with the result of solving the linear programming problem (8.1) directly by a simplex

algorithm. For the scenario decomposition methods, we considered two versions. One

was the full three-stage version, which is most general and applies also to problems
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involving decisions at the last stage and general non-polyhedral measures of risk. An-

other version was a model with a truncated two-stage tree, in which the problems at

the second stage are risk-averse problems themselves. This was possible due to the

polyhedral structure of the mean–semideviation risk measure and to the absence of

third stage decisions.

8.2 The Partial Bundle Method

To obtain explicitly the master problem of the partial bundle method for our application

we need to calculate the set ∆ appearing in (7.40). The structure of the subdifferential

was already given in (4.1) and in this particular case it takes the following form:

∂ρ1(0) =

{
1− 1

N∑
s=1

psτs + τ

∣∣∣∣∣ τ = (τs)
N
s=1 and 0 ≤ τs ≤ κ1

}
(8.2)

and

∂ρs2(0) =

1− 1
Ns∑
η=1

psηιsη + ιs

∣∣∣∣∣∣ ιs = (ιsη)
Ns
η=1 and 0 ≤ ιsη ≤ κ2

 , (8.3)

where 1 is the vector with all entries equal to 1. Let ∂ρ2(0) := ∂ρ1
2(0) × · · · × ∂ρN2 (0)

and π = (psη)s∈Ω1,η∈C(s). Then Q2 = A2 ◦ A1 = ∂ρ2(0) ◦ ∂ρ1(0) and ∆ =
{
δ :(

psδs
)N
s=1
∈ Q2

}
. Thanks to the structure of the subdifferentials (8.2) and (8.3) the set

∆ is polyhedral, and so, ∆ =
{(
δsη
)
s=1,...,N,η=1,...,Ns

}
such that

δsη = psη

[
1−

N∑
k=1

pkτk + τs −
Ns∑
k=1

pskεsk + εsη

]

0 ≤ τi ≤ κ1, i = 1, . . . , N,

0 ≤ εij ≤ κ2

(
1−

Ns∑
k=1

pkτk + τi

)
, i = 1, . . . , N, j = 1, . . . , Ns.
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The master problem of the partial bundle method for our application is:

max
vs,λ,δ

N∑
s=1

ps
(
vs −

r

2
‖λs − λ̄s‖2

)
s.t. vs ≤

〈
δsjcs + λsj , xsj

〉
+
〈(
xsj , 〈cs, xsj〉

)
, (λs, δs)− (λsj , δsj)

〉
,

Πλ = 0,

δs =

(
psη

[
1−

N∑
k=1

pkτk + τs −
Ns∑
k=1

pskεsk + εsη

])Ns
η=1

,

0 ≤ τs ≤ κ1,

0 ≤ εsη ≤ κ2

(
1−

Ns∑
k=1

pkτk + τs

)
, η = 1, . . . , Ns,

for all j ∈ Js, s = 1, . . . , N.

(8.4)

At every iteration j of the partial bundle method the obtained subgradient have the

following form

[(
p1z

1j
)>
, . . . ,

(
pNz

Nj
)>
, p1〈c1, z1j〉, . . . , pN 〈cN , zNj〉,

(
p1G

1y1j
)>
, . . . ,

(
pNG

NyNj
)>]

,

where xsj := (zsj , ysj) is the optimal solution of subproblem (7.36) for scenario s

at iteration j with zsj corresponding to the first stage components of xsj , and ysj

corresponding to the second and third stage components of xsj . Also, cs is the cost

vector of the first stage scenario s, and Gs is the matrix of second stage scenario costs

corresponding to the first stage scenario s. In our example cs = c and the rows of Gs

are (gsη)> =
(
r>, l>, (Hsη)>

)
, for every s = 1, . . . , N , η = 1, . . . , Ns.

After a few algebraic simplifications we derive from (8.11) the individual scenario
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subproblems for each scenario s = 1, . . . , N ,

min
z,u,w,v,ζ

αs〈cs, z〉+ 〈βs, ζ〉+ 〈λs, z〉

s.t. ζη = −〈r, u〉+ 〈l, w〉+ 〈Hsη, v〉, η = 1, . . . , Ns,

Mu− z ≤ 0, u ≥ 0,

w ≥ Ds − u, w ≥ 0,

v ≥ u−Ds, v ≥ 0,

(8.5)

where each ysj component of xsj in (8.4) has been subdivided according to (8.1), i.e.,

x := (z, y) := (z, u, v, w). Similarly, αs, βs are the corresponding z, y components of δs.

8.3 The Truncated Tree Method

In order to obtain the truncated two-stage tree method we need to find an efficient way

of evaluating the second stage upper semideviation risk measure. Applying (7.16), we

obtain for every s = 1, . . . , N ,

ρs2(Gsy) = max
δ∈∂ρs2(0)

Ns∑
η=1

δηpsηg
>
sηy, (8.6)

where ∂ρs2(0) is obtained from (8.3). Substituting (8.3) into (8.6) gives

ρs2(Gsy) = max
ι∈[0,κ2]Ns

Ns∑
η=1

psηg
>
sηy +

Ns∑
η=1

ιηpsη

g>sηy − Ns∑
ζ=1

psζg
>
sζy

 . (8.7)

Therefore ρs2(Gsy) can be obtained by solving the following linear program

min

Ns∑
η=1

psηg
>
sηy +

Ns∑
η=1

dη

s.t. dη ≥ κ2psη

g>sηy − Ns∑
ζ=1

psζg
>
sζy

 , η = 1, . . . , Ns,

dη ≥ 0, η = 1, . . . , Ns.

(8.8)

The main idea of the truncated tree method is that instead of minimizing (7.3)
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subject to (7.1) and (7.2), we minimize

%̃1,3 = Z1 + ρ1

(
Z̃2

)
, (8.9)

subject to (7.1) and (7.2), and

Z̃2 = Z2 + ρ2 (Z3) . (8.10)

We consider the truncated problem as a two-stage problem and apply to it the same

dual analysis that we did before. At the end we obtain formulation (7.37) with a few

key differences. First, λ and δ refer to the random variables Z1 and Z̃2 and have

no components directly relating to either Z2 or Z3. More importantly, the individual

scenario subproblems should take into consideration the cost of the new random variable

Z̃2 and thus (7.36) is replaced by

min
(zs,ys)∈X s

〈δscs + λs, zs〉+ δsρs2(g>s y
s), s = 1, . . . , N, (8.11)

where zs and ys are the decision variables corresponding to the first and second stage

scenarios. By substituting (8.8) and (8.11) into (7.37) we obtain the following problem

formulation for our application

max
Πλ=0

max
δ∈∆

N∑
s=1

psΨ s(λs, δs), (8.12)

where Ψ s(λs, δs) is the optimal value of the following problem

min
z,y,d

δs

(cs)>z +

Ns∑
η=1

psηg
>
sηy +

Ns∑
η=1

dη

+ (λs)>z

s. t. dη ≥ κ2psη

g>sηy − Ns∑
ζ=1

psζg
>
sζy

 , η = 1, . . . , Ns,

Bs
3z +As3y = bs3,

z ∈ X, y ≥ 0, d ≥ 0.

(8.13)
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At every iteration j of the truncated tree partial bundle method, the subgradient has

the following form

[(
p1 z

1j
)>
, . . . ,

(
pN z

Nj
)>
, p1 φs

(
z1j , y1j , d1j

)
, . . . , pN φs

(
zN,j , yNj , dNj

)]
, (8.14)

where for every s = 1, . . . , N ,

φs(z, y, d) = (cs)>z +

Ns∑
η=1

psηg
>
sηy +

Ns∑
η=1

dη,

and xsj := (zsj , ysj , dsj) is the optimal solution of subproblem (8.13) for scenario s at

iteration j.

By construction, we only consider the first scenarios for the decomposition in (8.12)

and so ∆ =
{
δ :

(
psδs

)N
s=1
∈ ∂ρ1(0)

}
, where ∂ρ1(0) was shown in (8.2). Therefore

the master problem of partial bundle method for the truncated tree method has the

following form:

max
v,λ,δ

N∑
s=1

ps
(
vs −

r

2
‖λs − λ̄s‖2

)
s.t. vs ≤

〈
δsjcs + λsj , xsj

〉
+
〈(
xsj , 〈cs, xsj〉

)
, (λs, δs)− (λsj , δsj)

〉
,

Πλ = 0,

δs = ps

[
1−

N∑
k=1

pkτk + τs

]
,

0 ≤ τs ≤ κ1,

for all j ∈ Js, s = 1, . . . , N.

(8.15)

After a few algebraic simplifications we derive from (8.11) the individual truncated tree
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scenario subproblems for each scenario s = 1, . . . , N ,

min
z,u,w,v,ζ

δst+ 〈λs, z〉

s.t. ζη = −〈r, u〉+ 〈l, w〉+ 〈Hsη, v〉,

t = 〈cs, z〉+
〈

(psk)
Ns
k=1, ζ + κ2S

〉
Sη ≥ ζη −

〈
(psk)

Ns
k=1, ζ

〉
, Sη ≥ 0,

Mu− z ≤ 0, u ≥ 0,

w ≥ Ds − u, w ≥ 0,

v ≥ u−Ds, v ≥ 0,

for all η = 1, . . . , Ns,

(8.16)

where each decision variable ysj from (8.11) has been subdivided according to (8.1), i.e.

x := (z, y) := (z, u, v, w).

8.4 Numerical Comparisons

Following the development in previous sections, we coded the methods in AMPL and

compared the running time in seconds, number of iterations, and the average time in

seconds per iteration of each method. For the numerical experiments we used Mosek

linear and non-linear solvers with the AMPL interface. Our test machine has an Intel

Core i7-920 processor with 8MB of L3 cache and 2.66GHz speed coupled with 8GB

DDR3 SDRAM memory. The data sets for the experiments was randomly generated

using a random number generator tailored for this appliction.

Table 8.1 shows the comparison of all the methods on a problem with 10 parts and 5

products, for different numbers of first-stage and second-stage scenarios. The classical

cutting plane method was inefficient and failed to converge in a reasonable time on

most instances, while being outperformed by all the other methods when it converged.

For this reason we omitted it from Table 8.1. Clearly, small problems are best solved

directly by linear programming in formulation (8.1). The usefulness of decomposition
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Size LP Truncated Tree Partial Trunc. Tree General Bundle

N ×Ns Time Time Iter. T/I Time Iter. T/I Time Iter. T/I

6× 3 0 106 476 0.223 15 97 0.155 84 492 0.171

5× 5 0 95 451 0.211 36 194 0.186 61 419 0.146

5× 6 0 75 388 0.193 13 86 0.151 48 270 0.178

6× 6 0 134 574 0.233 133 441 0.302 109 521 0.209

10× 10 0 313 435 0.720 287 419 0.685 309 501 0.617

50× 50 5 1381 510 2.708 1652 485 3.406 3283 414 7.930

100× 100 98 5570 660 8.439 1547 300 5.157 28316 579 48.91

200× 200 5767 5975 240 24.89 4722 200 23.61 54336 291 186.7

300× 300 - 19910 255 78.08 20622 255 80.87 - - -

Table 8.1: LP: Linear Programming formulation. Truncated Tree: Bundle Method
applied to the Truncated Tree formulation. Partial Trunc. Tree: Partial Bundle
Method applied to the Truncated Tree formulation. General Bundle: Bundle method
applied to the general multistage decomposition formulation. Tests were performed for
N first-stage scenarios, andNs second-stage scenarios following each first-stage scenario.

is shown when we consider large problems. For example on the instance with 200 first-

stage scenarios, with each followed by 200 second-stage scenarios, the general bundle

and the partial truncated tree methods outperformed the linear programming formula-

tion. More important is the case with 300 first-stage scenarios, with 300 second-stage

scenarios after each of them, where the linear programming approach failed, but the

truncated tree and partial truncated tree methods were able to find a solution. In this

case the meager memory requirements of these methods allowed us to obtain a solution

even when the linear programming formulation was too large for our computer memory.

In general, we saw the partial truncated tree method outperforming the truncated tree

method but this improvement might be problem-specific.

Notice that the truncated tree method moves the calculation of the second stage

risk measure from the master problem to the subproblems resulting in a smaller master

problem but larger subproblems. This is the main difference between the truncated tree

and general bundle methods. In larger instances, the dimension of the master problem

affects the number of iterations necessary to find a solution, as well as time to solve

the master problem at each iteration. For these reason, the truncated tree method

with its simpler master problem outperforms the general bundle method on the largest

instances.



77

8.5 Conclusions

We defined a multistage risk-averse stochastic problem with conditional risk measures.

Considerable work was devoted to develop the theoretical foundation of the risk-averse

problem and we used Lagrangian duality to formulate a dual representation of the

problem. Along the way we developed the tools necessary for the development of dual

cutting plane and bundle methods.

To test our techniques we considered a simple problem in manufacturing and trans-

portation with upper semideviations as risk measures and three stages. For this problem

we developed a specialized version of the bundle methods where the tree of decisions

was truncated into only two stages. We also implemented the cutting plane, general

bundle, truncated tree, and partial truncated tree methods for our application. Com-

parisons of the results allow us to reach conclusions of when these algorithms would be

better applied.
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Appendix: Mathematical Background

This appendix contains an overview of some mathematical facts needed for the devel-

opment of our theory and methods. The reader is referred to [35] for an in-depth look

at these important mathematical facts.

A.1 Conjugate Duality

Let R = R ∪ {−∞,+∞} and f : Rn → R be a function. Let α ∈ R and s ∈ Rn. An

affine minorant of f is an affine function

lα(x) = 〈s, x〉 − α, (8.17)

such that lα(x) ≤ f(x) for all x ∈ R. We call s the slope of the affine minorant lα. Let

f : Rn → R be a function. The function f∗ : Rn → R defined by

f∗(s) , sup
x∈R
{〈s, x〉 − f(x)} (8.18)

is called the conjugate function of f . Clearly, a proper function f has an affine minorant

with slope s if and only if f∗(s) < +∞.

Lemma 17. Suppose that f : Rn → R is proper and has an affine minorant. Then the

conjugate function f∗ is proper, convex, and lower semicontinuous.

Let f be a proper convex function. Then the domain of f , denoted by dom f ,

is a convex set and f is subdifferentiable in the interior of its domain. By restricting

ourselves to the linear manifold of smallest dimension containing the domain of f we can

assume that the interior of dom f is nonempty. It follows that after the restriction there

is a point x0 ∈ dom f such that f is subdifferentiable at x0. So, there is s0 ∈ ∂f(x0)
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such that for every x ∈ Rn

f(x) ≥ f(x0) + 〈s0, x− x0〉 ,

i.e. f has an affine minorant with slope s0. An application of Lemma 17 then gives

Theorem 18. If f : Rn → R is convex and proper then its conjugate, f∗ : Rn → R, is

convex, proper, and lower semicontinuous.

The biconjugate function is the conjugate function of the conjugate function f∗,

that is

f∗∗(x) , sup
s∈R
{〈s, x〉 − f∗(s)} . (8.19)

The following result is known as the Fenchel-Moreau Theorem.

Theorem 19. Suppose that f : Rn → R has at least one affine minorant. Then

epi f∗∗ = conv(epif).

In particular, if f is a proper, convex and lower semicontinuous function, then

f∗∗ = f.

The relation between a proper convex function f and its dual f∗ can be used to

characterize the subgradients of both f and f∗.

Theorem 20. Suppose that f : Rn → R is a proper convex function. Then the following

two statements are equivalent:

(i) s ∈ ∂f(x);

(ii) f(x) + f∗(s) = 〈s, x〉 .

If, in addition, f is lower semicontinuous then both statements are equivalent to

(iii) x ∈ ∂f∗(s).
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A.2 Indicator and Support Functions

Let Z be a set in Rn. The indicator and support functions of Z are defined by

δZ(x) =


0 if x ∈ Z

+∞ otherwise

, ∀x ∈ Rn

and

σZ(s) = sup
x∈Z
〈s, x〉 , ∀s ∈ Rn,

respectively. Notice that

δ∗Z(s) = sup
x∈Rn

{〈s, x〉 − δZ(x)} = sup
x∈Z
〈s, x〉 = σZ(s),

and so σ∗Z = δ∗∗Z . Theorem 19 implies that

epiσ∗Z = epi δ∗∗Z = conv(epi δZ) = epi δconv(Z).

It follows that if Z is closed and convex then the functions σZ and δZ are mutually

conjugate, i.e. σ∗Z = δZ and δ∗Z = σZ .

Lemma 21. Let Z ⊂ Rn be nonempty, closed and convex. Then σZ is subdifferentiable

and ∂σZ(0) = Z.

A.3 The Subdifferential of the Maximum Function

Consider the function

F (x) = sup
y∈Y

f(x, y),

where f : Rn × Y → R satisfies the following conditions:

(i) f(·, y) is convex for all y ∈ Y ;

(ii) f(x, ·) is upper semicontinuous for all x in a certain neighborhood of a point x0;

(iii) The set Y ⊂ Rm is compact.
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The maximum function F is convex and by (ii) it is also proper and thus it is subdif-

ferentiable at the point x0.

Let Ŷ (x) denote the set of y ∈ Y at which f(x, y) = F (x). Clearly conditions

(i)-(iii) imply that the set Ŷ (x) is nonempty and compact in a certain neighborhood of

x0. Let ∂xf(x0, y) denote the subdifferential of the function f(·, y) at x0.

The following result gives an useful reformulation of the subdifferential of F at x0.

Theorem 22. Assume conditions (i)-(iii). Then

∂F (x0) ⊃ conv

 ⋃
y∈Ŷ (x0)

∂xf(x0, y)

 .

If, in addition, the function f(·, y) is continuous at x0 for all y ∈ Y , then

∂F (x0) = conv

 ⋃
y∈Ŷ (x0)

∂xf(x0, y)

 . (8.20)
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