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My graduate studies involved three broad classes of problems, each of which are

presented in different chapters of this thesis. The first two parts of my work

were related to studying dynamics of biochemical networks. I studied a mean-

field/stochastic model of epigenetic chromatin silencing in yeast. The model gives

rise to different dynamical behaviors possible within the same molecular model

and provides qualitative predictions that are being investigated experimentally.

In another part of my work, I studied a model of segment polarity network in

Drosophila and analyzed the parameter space of the system. I particularly studied

the relation between the geometry of parameter space and the robustness of the

network. I will show that, in addition to the volume, the geometry of this region

has important consequences for the robustness and the fragility of a network. A

major part of my PhD work involved applications of high-throughput sequencing

technologies for extracting information at the genomic level. I present SOPRA,

a new algorithm for exploiting the mate pair information for assembly of short

reads. I have successfully applied SOPRA to real data and were able to assemble

scaffolds of significant length with very few errors introduced in the process.
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Chapter 1

Robustness of Biochemical Networks

The concept of robustness of regulatory networks has received much attention

in the last decade. Robustness, in the context of biological networks, broadly

indicates that the system remains viable under different perturbations. Defining

robustness in a precise form is a challenging task, given that robustness to differ-

ent kinds of perturbations, e.g., environmental variation, intrinsic fluctuations in

chemical networks or changes due to mutations, might involve different features

of an existing network [1, 2]. In this chapter, we are concerned with the robust-

ness of functionality to changes in the kinetic parameters for a given network

architecture.

Understanding the robustness of predictions of a biochemical network model

to the choice of parameters is important for two reasons. One reason concerns

fitting of biological data and making predictions. We need to know which com-

binations of parameters are strongly constrained by data and also which combi-

nations seriously affect a particular prediction. The other reason has to do with

understanding biochemical network evolution. If the functioning of the network

requires fine-tuning in many parameters then mutations causing changes in reg-

ulatory interactions could quickly make the network dysfunctional. We expect

naturally evolved networks to be somewhat robust to such perturbations.

One measure of robustness has been associated with the volume of the fea-

sible region, namely the region in the parameter space in which the system is

functional. Our point of view is that, in addition to volume, the geometry of this
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region has important consequences for the robustness and the fragility of a net-

work. I will present an analysis of the segment polarity gene network to illustrate

our approach. Our method provides a more complete measure of robustness to

parameter variation. In addition, as a general modeling strategy, our approach is

an interesting alternative to Boolean representation of biochemical networks.

1.1 Introduction

Many organisms (like humans) begin life with one cell and proliferate until there

is a full functioning multicellular organism. An interesting question is: how it

is possible to begin life with one cell but end up with many different cell types

(muscle, blood, nerve, etc.)? There are two parts to this question. The first

aspect of this question is related to how different cell types are robustly generated

starting from one cell (zygote) and going through several rounds of cell divisions.

The other part has to do with maintaining the pattern of cell fates, once it is

generated. Such heritable locking of different cells into different fates without

irreversible change in genetic information is called an epigenetic phenomenon.

In this chapter, we will analyze the segment polarity network in Drosophila

(fruit fly), one of the best studied system for cell differentiation during devel-

opment. In the next chapter, our focus will shift to studying a mechanism of

epigenetic silencing. This section includes the basic biological background nec-

essary to follow the subsequent materials. A more through presentation can be

found in biology textbooks [3, 4].

1.1.1 Gene regulation

The genes encoded in the sequence of DNA contain the instructions necessary to

build their associated proteins. This process is accomplished via an intermediate

step called transcription. During transcription, the genetic information is used to
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produce a molecule called mRNA. In ribosomes, mRNA is used as a template to

build protein. This last step is referred to as translation:

Transcription Translation
DNA −−−−−−−−−−−−→ mRNA −−−−−−−−−−−−→ Protein

At each moment, in each cell, only a fraction of the genes are actively tran-

scribed, and the rest are inactive or silenced. Generally speaking, the known

mechanisms of heritable gene silencing fall into two categories:

• mechanisms involving transcription factor (TF) networks,

• mechanisms involving reversible modification of DNA or histone.

The second kind of mechanism usually affects a particular contiguous locus of the

genome, and distinct loci can often be silenced independently. Such epigenetic

mechanisms are the subject of the next chapter. In TF networks, genes from

different loci could interact with each other through diffusible gene products.

For example, genes have nearby sequence signatures which can bind regulatory

proteins like TFs, and affect whether a gene is active or not. Different genes

may have different TF binding sites and be regulated by different groups of TF

proteins.

1.1.2 Fly development

The origin of cell differentiation in Drosophila is believed to start during egg

formation. The developing egg is not homogeneous. Instead, it is maternally

deposited with bicoid and nanos mRNA at the anterior and posterior parts of

the embryo, respectively. After about 1 hour, translation of these mRNAs leads

to protein concentrations with a gradient along the egg. Both bicoid and nanos

are transcription factors, namely, each of them activates or represses a new set

of genes. In this way, maternally deposited bicoid and nanos initiate a cascade
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of gene families, where each of the families initiates the expression of the next

family (Figure 1.1). In addition, members of each family affect the expression of

other members as well. At each step of the cascade, various members of the gene

family are expressed inhomogeneously along the embryo. In other words, their

expression forms a particular pattern. This pattern gets more and more complex

and fine-tuned as the cascade progress.

The above procedure is an example involving one of the main concepts in

development biology, the so called morphogens. It refers to the idea of having

molecules that are unevenly distributed across a field of cells. The local con-

centration levels of these molecules are read by the cells, producing a specific

phenotype.

The second family in the cascade, after the maternally deposited genes, is the

gap genes (Figure 1.2). Mutation of gap genes produces large gaps, or missing

parts, in the embryo body pattern. The next family is the pair-ruled genes,

which are expressed in periodic bands. Pair-rule genes have complex promoters.

A promoter is a combination of control points (TF binding sites) which decide

the activity of a particular gene. The promoters of pair-ruled genes allow them

to read out the coordinates from the completely aperiodic patterns set by Bicoid

and the gap genes, and produce seven stripes of expression. For example, the

second stripe of even-skipped (Figure 1.1) is activated by Bicoid and repressed by

Kruppel and another gap gene product called Giant (Figure 1.2).

The next set of genes, arising from the initial queue of the pair-rule genes, is

the segment polarity genes. As the fly develops, the expression of pair-rule genes

disappears, making it necessary for the segment polarity system to hold on to its

pattern. In the next part, I present the important segment polarity genes and

the biological knowledge of how they interact with each other.
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Figure 1.1: Pattern formation along the Anterior/Posterior axis of the Drosophila
embryo. The inhomogeneously deposited maternal genes initiate a cascade of
transiently expressed gene families. In each family, the spatial concentration of
different genes results in a pattern which is more complex and refined compared
to the pattern produced by the previous family. Before the expression of bicoid
and nanos fade away, they activate the gap genes. Transiently expressed gap
genes start the expression of pair-rule genes. The segment polarity genes and the
Hox genes are activated by the pair-rule genes, but a subset of gap genes also
influences directly the Hox genes. Both segment polarity and Hox genes affect
the differentiation of each segment in the future larva. Adapted from [5].
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Figure 1.2: Gap genes (From [6].). A) The expression pattern along the embryo.
B) The network of interaction among gap genes and the input from bicoid (bcd)
and nanos (nos).
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1.1.3 Segment polarity gene family

In the segment polarity pattern, genes are expressed periodically in 14 paraseg-

ments along the fly embryo. Each parasegment consists of four stripes of cells.

Because of this periodicity, one could focus only on one parasegment (i.e. 4 cells).

Figure 1.3 shows the gene expression pattern for two of the key components:

Wingless (WG) and Engrailed (EN ).

Wingless is a signaling molecule which diffuses to its neighboring cells and ac-

tivate Engrailed. EN, itself a transcription factor, in turn triggers the production

of another signaling molecule, Hedgehog (HH ). HH gets secreted to the neigh-

boring cell and maintains WG expression by stabilizing an activator of wg, called

Cubitus interruptus (CI ). In summary, it is known that WG and EN maintain

the expression of each other through cell-to-cell communication. In this manner,

we end up with a repeated four-cell pattern of (WG, EN and HH,none, none).

Although the above explanation superficially seems satisfactory, it leaves room

for the following questions. Why is EN expressed only posterior to the WG ex-

pressing stripe? The anterior cell also receives WG signal but does not produce

EN. Similarly, one could ask why WG is expressed only anterior to the EN ex-

pressing stripe. It is not clear why one should not get a pattern like (WG, EN

and HH, WG, EN and HH ). , which has a periodicity of two cells. Although,

looking back, this problem is obvious, it was pointed out by von Dassow et al.

[7], who made a mathematical model of the system. We will study their model

in the next section. However, before that, we will give an overview of our point

of view on the subject of robustness of biological networks.

1.1.4 Robustness

In modeling biological systems, it is common to be in a situation where much of

the available data is of a qualitative nature. For example, one might only know
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Figure 1.3: The segment polarity system. The segment polarity pattern emerges
from such a cascade of events. Interactions amongst the segment polarity genes
should maintain this pattern as the embryo grows through cell division. From [6].
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that the expression of a certain gene is necessary for the expression/repression

of another gene. However, the exact quantitative relations and the values of

the parameters necessary to describe the associated dynamical system are not

available. Still, the unavailability of the parameters or incompleteness of biological

facts does not stop one from creating a quantitative model. Such a model will have

a set of unknown parameters. One can associate a parameter space to the model

where each point of this space corresponds to a set of values for the parameters.

The first question one would want to ask is whether there is any set of pa-

rameters for which the model explains all the known data. Are the values of the

parameters for those sets within a reasonable range? Investigation of such ques-

tions may lead to suggestion of new interactions necessary to explain the data. In

this chapter, we will be involved with answering questions of this kind. Another

way in which mathematical modeling could be useful is to provide qualitative pre-

dictions. An example would be to predict the effect of mutations or change in the

concentrations of certain molecules in the environment. In turn, such predictions

can guide us in planning more refined experiments. In fact, this is going to be

the situation that we face in the next chapter, while studying a mechanism for

epigenetic silencing.

As we mentioned, when the value of the parameters are unknown, one can look

for the region in the parameter space for which the system is functional. We will

call this region the feasible region. The motivation for the study presented in this

chapter is to analyze the relation between the robustness of a biological network

and the shape of its feasible region in the parameter space. Robustness, in the

context of biological networks, broadly indicates that the system remains viable

under different perturbations. One measure of robustness has been associated

with the volume of the feasible region. For example, in an influential study of the

Drosophila segment polarity network (SPN), robustness has been associated to

the fractional volume of the region in parameter space associated with the wild
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type1 gene expression pattern [7]. Our point of view is that the geometry of the

feasible region contains additional information on essential aspects of robustness

and the fragility of the network.

In the context of fitting biochemical kinetic models to time series data, inves-

tigators have looked at effects of small parametric perturbations on the quality

of the fit. Sensitivity analysis [8, 9], namely considering the effect of changing

parameters one at a time, is common practice by now. Brown and Sethna have

looked at correlated changes of parameters and study how moving in different di-

rections in parameter space affects the predictions [10]. Based on the eigenvalues

and the eigenvectors of the Hessian of the cost function at the minimum, these

authors and their collaborators find that, for many known biochemical networks,

only a few directions in parameter space have stiff constraints, whereas the rest

of the directions are ‘sloppy’ [11, 12]. In this chapter, we will consider the exam-

ple of SPN and explicitly characterize the region in parameter space where the

network could be functional. The anisotropy in the shape of this feasible region

will become apparent from our analysis.

If a functional biological system is represented by a point in the feasible region

of parameters, then a mutation causes the system to jump to a new point. If

this new point also belongs to the feasible region, the system is robust with

respect to that mutation. Otherwise the mutation is deleterious. If the jump

in parameter space caused by a mutation is relatively large, then the result of

successive mutations is to quickly probe different regions of the parameter space.

In this case, robustness essentially depends on the volume of the feasible region.

On the other hand, if the jumps in parameter space are relatively small, evolution

of parameters due to successive mutations can be represented by a random walk

in parameter space. The idea of representing evolution as a continuous random

process has already been used in the adaptive landscape approach [13]. In this

1Wild type means the typical form of a species as it occurs in nature.
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case, random walk exiting the feasible region in the parameter space corresponds

to a deleterious mutation. The exit time distribution is very sensitive to the shape

of the feasible region. Robustness to mutation is now related to the features of this

distribution (e.g. half-life, asymptotic decay rate,..) [14] and therefore depends

upon the shape and not just the volume of the feasible region.

If we want to choose a single measure for robustness, the inverse of the asymp-

totic decay rate is a good candidate [14]. This measure is sensitive to the geometry

(both volume and shape) of the feasible region. For example, even if the total

volume of the feasible region is relatively large, the existence of “narrow” direc-

tions will greatly affect the decay rate; or if the feasible region is constituted of

several disconnected part, the decay rate will again be affected. In addition, this

rate is independent of the initial conditions. Also, in the theoretical case where

every mutation leads to a new uncorrelated point in parameter space, the inverse

of the asymptotic decay rate is a simple function of the fractional volume of the

feasible region.

In our study, we will estimate the half-life, a different but closely related

measure of robustness. If the probability of remaining in the feasible region were

given by a single exponential in time, these two measures of robustness would be

proportional to each other. In practice, half-life depends partially on short time

properties of the system and is initial condition dependent. On the other hand,

measuring the asymptotic decay rate accurately for a high dimensional stochastic

system needs more computational effort than estimating half-life.

Before we go on, let us explain what measure of distance we use when we

talk about narrow or wide directions in the parameter space. If we consider the

continuous random walk approximation to parameter evolution, then the short-

time properties of diffusion set up a metric for the space of parameters. The

metric tensor of this space is the inverse of the covariance matrix of infinitesimal

displacements divided by the infinitesimal time interval. Once we have this metric,
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we could decide whether, from a generic point, the distance to reach the boundary

in a certain direction is relatively small or large. This definition of distance

is closely tied to the time the system typically takes to diffuse over a certain

separation.

Once we characterize the feasible region in parameter space, we explore how

the system fails as a result of such a random walk. For two alternative network

models, we compare the exit time distributions. More importantly, we can see

how, in a particular model, certain directions in the space of admissible parameter

sets are narrower than others. These narrow directions are associated with the

predominant modes of failure of the system in the random walk process. We

end by speculating how these methods could be extended to generic biochemical

network problems.

1.2 Mathematical Analysis of Segment Polarity Network

The segment polarity network (SPN) is part of a cascade of gene families re-

sponsible for generating the segmentation of the fruit fly embryo. Genes involved

in initiating this pattern are transiently expressed, and interactions among the

segment polarity genes should maintain and fine-tune this pattern as the embryo

grows through cell division. Our goal in this section is to study how the inter-

action between segment polarity genes maintains their expression. Much of the

information about this network comes from genetic analysis and is, therefore, of

qualitative nature. In particular, we do not know many of the parameters nec-

essary to describe this dynamical system. This is a common situation faced in

modeling most biochemical networks.

In their work on modeling the SPN, von Dassow et al. [7] encountered the

same problem. Their approach was to solve an ODE model of the network for

random choices of parameters and then score the resultant expression patterns
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based on compatibility with the experimentally observed wild type pattern. If this

score is found to be above a certain threshold, the given parameter combination

is said to belong to the feasible region of the parameter space. Robustness of a

particular architecture is then ascertained by the fractional volume of the feasible

region, estimated from their simulation. Ingolia [15] looked at a set of criteria

for bistability in particular submodules of the network and studied the extent

to which these criteria describe this feasible region. In general, providing an

approximate description of the structure of feasible region, even for a medium

size biochemical network, remains an important challenge.

One could also get some insight into the functioning of the network by con-

structing a model where each gene or gene product is mostly ON or OFF. For

example, in the context of this particular network, Boolean models have been em-

ployed to study dependence upon initial state or the effect of deletion of particular

components [16]. Unfortunately, addressing the questions related to parameter

dependence is not possible within the conventional Boolean framework. There-

fore, we develop a new approximation, within which the treatment of our model

shares the simplicity of Boolean analysis without sacrificing the possibility of ex-

ploring parameter dependence issues. This approximation enables us to explicitly

characterize the feasible region in the parameter space of the model.

In the wild type segment polarity pattern, genes are expressed periodically

in 14 parasegments along the fly embryo, and each parasegment consists of four

stripes of cells. Because of this periodicity, one can focus only on one parasegment

or in other words only on 4 cells. Figure 1.4A shows the wild type gene expression

pattern for three key components of the SPN. For simplicity, each cell is assumed

to have four faces, rather than six as in the original model [7]. When using abbre-

viated names for components of the network, we use uppercase letters to refer to

proteins and lowercase letters for the corresponding mRNAs. As we mentioned
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in the previous section, Wingless (WG) is a signaling molecule known experimen-

tally to activate Engrailed (EN ) through cell-to-cell communication. EN, itself

a transcription factor, in turn triggers the production of Hedgehog (HH ), which

is another signaling molecule. HH then gets secreted to the neighboring cell and

maintains WG expression by stabilizing an activator of wg, called Cubitus in-

terruptus (CI ). Without HH signaling, CI gets proteolytically cleaved, leaving

only its amino terminus (denoted by CN ), which becomes a repressor of wg. In

summary, experimentally it is known that WG and EN maintain the expression

of each other through cell-to-cell communication. We represent the wild type

expression pattern of these mRNA components as follows:

wg
WT

1,2,3,4 = (0, 1, 0, 0) , en
WT

1,2,3,4 = (0, 0, 1, 0) , hh
WT

1,2,3,4 = (0, 0, 1, 0) , (1.1)

where the four entries of each of the vectors correspond to the gene expression in

the four cells of a parasegment. The value ‘0’ means the gene is turned off and

the value ‘1’ means it is maximally expressed.
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Figure 1.4: Expression pattern for key segment polarity genes and the interac-
tion network. A) Four cells in a parasegment with periodic boundary conditions
in both dimensions. Each cell is represented by a square. The convention for
numbering cells and cell faces is shown. B) Interaction network used in reference
[3]. Two green lines indicate interactions added by authors to achieve the target
pattern. Black lines indicate interactions based on experimental data. The shape
of the node indicates the corresponding component: Ellipses represent mRNAs;
rectangles, proteins.
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The above mentioned explanation has to have some missing pieces, as high-

lighted in the following questions. Why is EN expressed only posterior to the

WG expressing stripe? The anterior cell also receives WG signal but does not

produce EN. Similarly, one could ask why WG is expressed only anterior to the

EN expressing stripe.

Figure 1.4B shows the interaction network used in reference [7]. The authors

started only with interactions shown by black lines but were unable to reproduce

the right pattern in their simulations. The best pattern the authors could achieve,

using only black lines, was an alternative expression of wg and en in all cells.

Therefore, authors decided to add two new interactions shown with green lines.

With these links in place, they were able to find many parameter combinations

to reproduce the target pattern. The wild type expression pattern for various

components of the network is shown in Figure 1.5.

To explore the dependence of robustness of the network on its topology, Albert

and Othmer [16][10] developed a Boolean model of the segment polarity network,

a discrete logical model where each species has only two states (OFF or ON),

but no kinetic parameters need to be defined. This Boolean model is amenable to

various methods for systematic robustness analysis [17, 18, 19, 16]. Unfortunately,

the ease of analysis comes at the cost of not being able to address questions

related to the parameter dependence. We propose an approach which retains the

information about kinetic parameters, but, at the same time, keeps part of the

simplicity of a Boolean model by having most genes either in the fully ON or the

fully OFF state. The detail of our treatment is presented in the following part.

1.2.1 Step function approach to the SPN model

Our strategy for analyzing the problem is as follow. First, we will solve the

algebraic equations coming from the steady state conditions and write the steady

state solutions in terms of the parameters. Since one of the steady state solutions
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Figure 1.5: The wild type gene expression pattern for various components of the
segment polarity network. If a gene is not expressed in a cell, the cell is in black.
Adapted from [7].
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should match the wild type pattern, one can look for the constraints on parameters

that yield this pattern. This procedure provides a family of conditions defining

regions of feasible parameters for the wild type steady state. One thing that we

ignore is that although all of the parameters in the feasible region can maintain

the desired pattern, we do not check whether the system can reach the wild type

pattern from particular initial conditions.

In our analysis, we used the fact that many of the differential equations in the

model involve terms of the Hill form:

φ(χ, κ, ν) =
χν

κν + χν
,

where χ is the concentration of some species, κ is the dissociation constant and

ν is the Hill coefficient. The steepness of the Hill function is characterized by

the Hill coefficient ν. As χ increases from zero and passes the threshold κ, the

function φ has a transition from OFF to ON state. For moderately large Hill

coefficient, this transition becomes quite steep, and φ is practically insensitive to

the actual value of ν. In the model presented in reference [7], ν is indeed found to

be often quite large, between 5 to 10 [20]. Any such term may thus be replaced

by a step function with two levels:

φ(χ, κ, ν)→ θ(χ− κ) =

 0 if χ− κ < 0 ,

1 if χ− κ > 0 .

Using this, the steady state gene expression is characterized by the following
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equations:

wgi =
αCIwgθ(CIi − κCIwg)θ(κCNwg − CNi) + αWGwgθ(IWGi − κWGwg)

1 + αCIwgθ(CIi − κCIwg)θ(κCNwg − CNi) + αWGwgθ(IWGi − κWGwg)
(1.2)

IWGi =
HIWGrendo

1 +HIWGrexo

EWGi,T +
1

1 +HIWGrexo

wgi (1.3)

EWGi,j

HWG

=
1

4
rexoIWGi − rendoEWGi,j + rM(EWGn,j+2 − EWGi,j) +

rLM(EWGi,lr − 2EWGi,j) (1.4)

eni = θ(EWGi − κWGen) θ(κCNen − CNi) (1.5)

ENi = eni (1.6)

hhi = θ(ENi − κENhh) θ(κCNhh − CNi) (1.7)

HHi,j =
1

4
hhi − κPTCHHHHH [PTC]0PTCn,j+2HHi,j +

rLMHHHHH (HHi,lr − 2HHi,j) (1.8)

ptci = θ(CIi − κCIptc) θ(κCNptc − CNi) (1.9)

PTCi,j =
1

4
ptci − κPTCHHHPTC [HH]0HHn,j+2PTCi,j +

rLMPTCHPTC(PTCi,lr − 2PTCi,j) (1.10)

PHi,j

HPH

= κPTCHH [HH]0HHn,j+2PTCi,j (1.11)
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cii = θ(κENci − ENi) (1.12)

CIi =
θ(κENci − ENi)

1 +HCICCI θ(PTCi,T − κPTCCI )
(1.13)

CNi =
HCICCI

1 +HCICCI

θ(κENci − ENi) θ(PTCi,T − κPTCCI ) (1.14)

Here we use the same notation as in [7]. Xi , i = 1, 2, 3, 4, denotes the total

concentration of the protein species X in cell i, with lower case xi referring to the

concentration of the corresponding mRNA molecules. In addition, for three of

the components involved in cell-to-cell communication, namely, external Wingless

(EWG), Patched (PTC ) and HH, the concentration on each of the four cell faces

could be different. For any of these components, the concentration in cell i at

face j is denoted by Xi,j , i = 1, 2, 3, 4, , j = 1, 2, 3, 4. For these three species,

the sum of the concentrations over all four faces of cell i is denoted by Xi,T . The

adjacent cell face to face j of cell i is shown by Xi,lr. The opposite cell face to

face j of cell i is shown by Xn,j+2.

Also, κXY denotes the dissociation constant for species Y corresponding to

the binding that regulates the species X. The range for κXY is chosen to be

between zero and one. The equations are in normalized form, meaning that the

concentrations of the components have been scaled so that the maximal steady

state level is one.

1.2.2 Study of the two new interactions

The structure of this particular network allows one to draw several interesting

conclusions immediately. For example, the steady state levels for HH and PTC

are completely determined once one specifies the mRNA levels of en, hh and ptc

(this does not depend on the high Hill coefficient approximation). Assuming that
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en and hh are expressed only in the cell 3, which is the case in the wild type

pattern, it can be shown that ptc2 = ptc4, and PTC2,T = PTC4,T . The reason is

as follows. If ptc2 > ptc4, cell 2 ends up producing more PTC, part of which get

bound to HH diffusing over from cell 3. However, the symmetric nature of the

diffusion leads to more PTC in cell 2 than in cell 4: PTC2,T > PTC4,T . A higher

level of PTC results in a higher rate of proteolysis of CI. Therefore, in the steady

state, CIi is a decreasing function of PTCi and CNi is an increasing function of

PTCi. This means that (given en is not present in cells 2 and 4, and therefore

has no repressive effect on ci production):

CI2 < CI4 , CN2 > CN4 . (1.15)

However, CI is an activator and CN is a repressor of ptc, which together with

Equation 1.15 implies ptc2 < ptc4, which contradicts the assumption we started

with. Of course, we could have started with ptc2 < ptc4 and again ended up

with contradiction (for the formal proof see [21]). This argument shows that the

concentration levels of ptc, PTC, CI, CN, and PH are exactly the same in cells 2

and 4:

ptc2 = ptc4 , PTC2 = PTC4 , CI2 = CI4 , CN2 = CN4 , PH2 = PH4 . (1.16)

This observation will turn out to be quite significant for the following reason.

The wg level in a cell is controlled by the CI-CN pathway and the postulated

feedback [7] from internal Wingless (IWG). Since cells 2 and 4 do not differ when

it comes to CI and CN levels, any difference in the WG expression has to be

attributed to the wg autoregulation.

In order to analyze the wg sector, we note that, in this model, the EWG

and IWG levels are uniquely determined by a set of linear equations once the wg

levels are given. After solving these linear equations, using the periodic boundary
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conditions and the fact that wg is produced only in cell 2, we find that:

EWG1 = EWG3 < EWG2 . (1.17)

This result is not surprising because the distribution of WG is determined by

a symmetric diffusion process from the source in cell 2, the only wg producing

cell in each parasegment. Therefore, we expect cells 1 and 3 to have identical

amounts of WG signaling. It turns out that EWG at the source, cell 2, is higher

than that of the flanking cells (for the formal proof see [21]). These observations

have important consequences for the regulation of en, as explained below.

Since en is expressed in cell 3, we have:

EWG3 > κEWGen . (1.18)

This, together with Equation 1.17, implies:

EWG1 , EWG2 > κEWGen . (1.19)

Had the en production been solely controlled by EWG, the model would have

implied that if EWG3 is high enough to activate en in cell 3, en will be also

activated in cells 1 and 2. This is why, in reference [7], adding repression of en by

CN was necessary to achieve the wild type expression pattern. The two new links

introduced in reference [7] (green lines in Figure 1.4B) give rise to two positive

feedback loops. The wg autoactivation gives rise to bistability, allowing cells 2

and 4 to have distinct levels of wg expression. The other loop (En a ci → CI

→ CN a en → EN), generated by adding repression of en by CN, is required to

prevent en from being expressed in cells 1 and 2. This also requires CN to be

expressed in those cells. The bistability of the EN -CI-CN system allows cells 1

and 3 to have different en level even when the external WG signal is the same
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for both of them.

We should note that autoactivation as a way for maintaining the WG ex-

pression is problematic in the following sense. In the model described above,

wg is always activated via autoactivation and the preexisting CI-CN pathway

never contributes to the pattern. This is in contrast with the experimental data

which suggest that HH signaling from the neighboring cell plays a crucial role in

maintaining the wg expression. The fact that model [7] does not depend upon

HH signaling for maintaining the expression of wg manifests itself when cell di-

vision is considered. In this model, both daughters of a cell in the wg-expressing

stripe are able to retain the wg ON state through autoactivation. This causes the

stripe to grow wider and wider over cell divisions. However, in wild type fly, the

wg-expressing stripe should remain one cell wide. The daughter which is further

from the en-expressing stripe, and therefore not exposed to HH signaling, loses

wg expression. This means that one stripe of WG is left after each division.

Ingolia [15] has also noticed that in this model, IWG level must always be

above κwgwg (the autoactivation threshold) in the cell that expresses wg. When

we removed the CI-CN cycle for activation of wg from the simulation performed

in reference [7], the fraction of ‘good solutions’ increased by a factor of 3. This

suggests that most of the time the CI-CN pathway is either not contributing to

WG expression or it leads to misexpression of WG in cell 4.

The model is too dependent on the bistability of the two sub-networks with

positive feedback for maintaining four cell expression patterns. One could avoid

this problem by making some of the four cells special, either by inclusion of other

genes in the network or by explicitly breaking the symmetry via introducing

different gene expression rates from cell to cell for some of the genes already in

the model.

The major candidate for inclusion in the model is the Sloppy-paired protein

(SLP) as has already been suggested by others [22, 16, 15]. SLP is only present in



24

cells 1 and 2: SLP
WT

1,2,3,4 = (1, 1, 0, 0). It is a necessary (but not sufficient) factor

for activation of wg and it also represses en. In the presence of SLP, the reason

en is not expressed in cell 1 despite WG signaling is that it is being repressed

by SLP. Also, despite HH signaling, wg is not produced in cell 4 because SLP is

not present there. With SLP added, the two new interactions introduced in [7]

are not necessary anymore, and also WG expression will depend on the CI-CN

pathway.

In later sections, we will analyze the effect of including SLP. We keep SLP

as an external factor, meaning the expression pattern of SLP is given. However,

it can easily be incorporated into the network. If WG activates SLP, a positive

feedback loop is formed which allows for bistability: both WG and SLP can be

ON or both can be OFF. On the other hand, if EN represses SLP, another positive

feedback loop is formed which again allows for bistability: SLP can be ON and

en OFF or vice versa. A model with explicitly different rates of production of ptc

and ci from cell to cell has been presented in [[21].

1.2.3 Characterizing the feasible region

Here, we consider two particular cases:

I) The regulatory network used by von Dassow et al. [7]. This network is shown

in Figure 1.4B. We will refer to this case as von Dassow et al. model.

II) The regulatory network including Sloppy-paired protein, but without the two

positive feedback links introduced in [7]. This network is shown in Figure 1.6.

We will refer to this case as SLP model.

We can explicitly write down the conditions characterizing the feasible region

for these two models. The results are presented in Tables 1.1 and 1.2. The

derivation of these conditions is presented below. However, one can skip to the

next section, since, the details of the derivation will not be necessary.
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Figure 1.6: Segment polarity regulatory network including sloppy-paired protein.
In this model, the possibility of Wg autoactivation and en repression by CN is
not included.
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0 < κPTCCI < PTCm
1 , PTCm

2 , PTCm
4 (1)

1 > κCIwg > 1− Zc or 0 < κCNwg < Zc (2)

Zc := min(1− κCIptc , κCNptc ,
HCICCI

1+HCICCI
)

0 < κEWGen < EWG3 (3)

0 < κCNen < Zc (4)

max{IWG1,3,4} < κWGwg < IWG2 (5)

Table 1.1: Conditions characterizing the feasible region for the regulatory network
used by von Dassow and collaborators. This network, shown in Figure 1.4B,
includes two positive feedback loops achieved by adding WG autoactivation and
en repression by CN.

Having explicitly characterized the feasible region, we could easily estimate

its volume by randomly choosing points in parameter space and checking whether

they satisfy the appropriate conditions. In addition, we are able to explore the

geometry of the feasible region by following random walks starting from random

points in this space. As we discussed in the introduction, the fate of random

walks, especially where they exit the feasible region, teaches us a lot about the

relative vulnerability of different constraints. This will be the subject of the next

section.
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PTCm
2 = PTCm

4 < κPTCCI < PTCm
1 (1)

( 1 > κCIwg > 1− Zc and 0 < κCNwg < 1 )

or (2)

( 1 > κCIwg > 0 and 0 < κCNwg < Zc )

Zc := min(1− κCIptc , κCNptc ,
HCICCI

1+HCICCI
)

EWG4 < κEWGen < EWG3 (3)

Table 1.2: Conditions characterizing the feasible. region for the regulatory net-
work including Sloppy-paired protein. In this network, shown in Figure 1.6, the
two links of WG autoactivation and en repression by CN are absent.

Derivation of the conditions

Here we analyze two particular cases: I) The regulatory network used by von

Dassow et al. [7] which we refer to as the von Dassow et al. model (Figure 1.6B).

II) The regulatory network including Sloppy-paired protein, but without the two

positive feedback links introduced in [3]. We will refer to this case as the SLP

model (Figure 1.6).

We first focus on case I. This network is characterized by Equations 1.2 - 1.14.

The wild type expression pattern for wg, en and hh is given in Equation 1.1. Since

en is only expressed in cell 3, ci and ptc are expressed in all cells except cell 3:

ci
WT

1,2,3,4 = (1, 1, 0, 1) , ptc
WT

1,2,3,4 = (T1, T2, 0, T4) . (1.20)

This is because in the absence of EN, ci is basally expressed which also leads to

production of ptc. We will allow Ti to take values between zero and one. The

reason for the special, non-Boolean, treatment of ptc has to do with capturing
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the effect of the negative feedback loop in the CI-CN-PTC sector properly. This

negative feedback loop leads to lower ptc level in cell 1 than in cells 2 and 4, as

we shall see. The ptc level in cells 2 and 4 turn out to be comparable (T2 = T4).

This is also the experimentally observed expression pattern of ptc [23].

How could we ever get such an intermediate values in our approach? First,

from Equations 1.13 and 1.14, in the cells where en is not expressed and therefore

ci is not repressed, namely in cells 1, 2 and 4, we have CI + CN = 1 ⇒ CI =

1−CN (this does not depend on the high Hill coefficient approximation). Since ptc

is regulated by CI-CN, we could draw one nullcline expressing ptc concentration

as a function of CN. This curve is represented by the green graph in Figure 1.7.

We will call it the ptc-nullcline. Here it is assumed that the negative feedback on

ptc coming from repression by CN is active. This means that CN and ptc are

not expressed maximally. For ptc to be expressed, the activation by CI requires .

In addition, we need CN to be smaller than κCNptc to avoid repression of ptc by

CN. Thus, for values of CN smaller than the threshold of min(1− κCIptc , κCNptc),

ptc is fully expressed. As CN passes this point, the value of ptc will drop sharply.

In the high Hill coefficient limit, ptc will abruptly fall to zero.

On the other hand, CN production itself is dependent upon PTC protein.

PTC is a monotonically increasing function of ptc and a decreasing function of

HH signaling. Therefore, for a fixed value of HH level, we can also look at the

concentration of CN as a function of ptc. This provides us with the CN -nullcline

which depends upon the HH signaling strength. If we think of CN as a function

of ptc level, the transition in CN from low level to its highest value happens at a

particular ptc threshold, where the PTC level is just enough to start producing

CN. If the cell is exposed to more HH signaling, sequestering away a larger fraction

of total Patched protein, one needs more ptc to reach this threshold. The blue

and the red graphs in Figure 1.7 show the CN -nullclines for relatively higher and

lower values of HH signaling levels, respectively.
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Figure 1.7: The nullclines for ptc and CN . The green curve shows the ptc-
nullcline. In the high Hill coefficient limit, the ptc value drops sharply from one
to zero as CN passes the threshold of min(1−κCIptc , κCNptc). Blue and red curves
show the CN -nullclines for relatively higher and lower values of HH signaling
levels, respectively. Intersection points 1 and 2 determine CI, CN and ptc in
cell 1 and 2/4, respectively. Here it is assumed that the negative feedback on
ptc coming from repression by CN is active. Therefore, ptc and CN are not
maximally expressed. Dashed blue line shows the CN -nullcline for a fine-tuned
set of parameters.
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Because cell 1 receives less external HH signaling than cells 2 and 4, generally

the red curve could be associated to cell 1 and the blue one to cells 2 and 4. The

intersection points 1 and 2 determine CI, CN and ptc levels in cell 1 and 2/4,

respectively. As we see, the ptc value could indeed be higher in cell 2 than in

cell 1. However, CN concentration seems to be comparable in those cells. This

is an artifact of our model where Hill coefficients are very large, which causes the

transition from high to low in concentration value to happen in a very narrow

range. The only way to have CN2 to be non-zero but different from CN1 is to be

in the situation where the CN -nullcline for cell 2 is like the dashed blue line in

Figure 1.7. In this case, the ptc threshold for CN production in cell 2 is fine-tuned

to be very close to maximal ptc level. In a model with small Hill coefficients in

the CI-CN-PTC sector, we would get CN1 > CN2 and ptc1 < ptc2 without such

fine-tuning. We will come back to this point later.

We should point out that, in this study, we places down the conditions only

on the expression levels of key components en, wg and hh as specified in Equation

1.1. The reason, other than simplicity of analysis, is that we believe that segment

formation lays much stronger constraints on the key components. It is not clear

to us that the CI-CN-PTC negative feedback has an extremely important role

in the segment formation stage of development. The study of von Dassow et al.

[3] also uses an scoring function which rewards wild type levels only for these key

components

Having specified the requirements of functionality, let us now analyze what

conditions are laid on the parameters of the model. Table 1.1 shows the set of

inequalities characterizing the feasible region in the parameter space. Here we

present the arguments leading to these conditions. The presence of EN in cell 3

requires the WG signaling for this cell to be above the activation threshold for en.

This requirement is condition 3 in Table 1.1 (recall that κXY can take values only

between zero and one). Also, in this cell, EN will shut off the expression of ci
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(Equation 1.12 ) which is necessary for the production of CI, ptc, PTC and PH.

Therefore, none of those components are expressed in cell 3. In cells 2 and 4, the

expression level of these components has been shown to be the same (Equation

1.16). Therefore, we only need to focus on the expression of these components in

cells 1 and 2.

Let PTCm
i be the PTC level corresponding to the maximal ptc mRNA (ptc =

1) in cell i. If the threshold to produce CN is above PTCm
i , then cell i would not

produce CN. As was pointed out before, the presence of CN in cells 1 and 2 is

essential to repress en in those cells. These facts together necessitate condition 1

in Table 1.1.

What would the CN level in cells 1 and 2 be when condition 1 is satisfied?

As one sees from Figure 1.8A, there are two possibilities depending upon whether

min(1− κCIptc , κCNptc) is smaller or larger than HCICCI

1+HCICCI
. The case corresponding

to the ptc-nullcline in solid green has been discussed before. This is the case

where ptc levels are affected by the negative feedback, and the CN level is equal

to min(1−κCIptc , κCNptc), which is less than its maximal possible value of HCICCI

1+HCICCI
.

When the ptc-nullcline is like the dashed green line in Figure 1.8, CN levels in

both cell 1 and cell 2 are equal to the maximal amount of HCICCI

1+HCICCI
, which is lower

than min(1− κCIptc , κCNptc). In this case, the negative feedback is not active and

ptc is maximally expressed (ptc = 1). We conclude that the CN level is given

by min(1 − κCIptc , κCNptc ,
HCICCI

1+HCICCI
) which we call Zc. We will now discuss the

conditions to be satisfied by Zc for proper expression pattern of en and wg.
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Figure 1.8: The nullclines for ptc and CN . A) Blue and red curves show the
CN -nullclines for relatively higher and lower HH signaling levels, respectively.
The green curve shows the ptc-nullcline when min(1− κCIptc , κCNptc) <

HCICCI

1+HCICCI
.

In this case, the negative feedback on ptc coming from repression by CN is
active. Therefore, ptc and CN are not maximally expressed. The dashed green
curve shows the other case where min(1 − κCIptc , κCNptc) > HCICCI

1+HCICCI
. In this

case, both CN and ptc are maximally expressed. This means that the negative
feedback on ptc is inactive. B) The green curve shows the ptc-nullcline. Blue and
red curves show the CN -nullclines for relatively higher and lower HH signaling
levels, respectively. The blue curve shows the situation where HH signaling is
strong enough so that the ptc concentration needed to produce CN is higher
than the maximal possible value for ptc, namely, one. Therefore, CN will not be
produced in the corresponding cell. In the high Hill coefficient approximation,
this is the only way that we can have CN level in cell 2 (intersection point 2) be
different from that in cell 1 (intersection point 1).
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The en repression in cells 1 and 2 gives rise to condition 4 in Table 1.1. The

fact that theCI-CN pathway should not activate wg in cell 4 is guaranteed by

condition 2 in Table 1.1. Consequently, WG in cell 2 has no contribution from the

CI-CN pathway (remember that cells 2 and 4 have the same CI and CN levels)

and is solely produced by the autoactivation term. The autoactivation should

only operate in cell 2 and nowhere else. This is condition 4 in Table 1.1.

von Dassow and Odell analyzed randomly generated solutions for the segment

polarity model in reference [7] and plotted the marginal distribution of parameters

(see Figure 6 of [20]). We can relate their results to the constraints presented in

Table 1.1. From condition 1, we expect κPTCCI to have a tendency towards lower

values. From condition 2, we expect κCNwg to have a tendency towards lower

values and κCIwg for higher values. Also, in order to have higher values for Zc,

we expect κCIptc to have a tendency towards lower values and κCNptc for higher

values. From conditions 3 and 4, we expect κEWGen and κCNen to have tendencies

towards lower values. From condition 5, we expect κWGwg to have a tendency

towards intermediate values. These expectations agree qualitatively with the

results presented in Figure 6 of [20].

From Figure 6 of reference [20], we see that many of the parameters are

uniformly distributed. One should note that a uniform distribution for a certain

parameter could arise from two different scenarios. It could be the case that

changing that parameter in a wide range of values does not influence the final

outcome of the network. The other possibility is that the effect of changing that

particular parameter could be compensated by changes in other parameters in

such a way that for each value of the parameter, there is roughly equal number

of solutions.

Now, let us contrast these sets of conditions to the one obtained for the SLP

model. Table 1.2 shows the conditions defining the feasible region for this case.

For this regulatory network (Figure 1.6), instead of Equations 1.2 and 1.5, we
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have:

wgi = θ(slpi − κslpwg) θ(CIi − κCIwg)θ(κCNwg − CNi) , (1.21)

eni = (κslpen − slpi) θ(EWGi − κWGen) . (1.22)

The rest of the equations are the same as before (Equations 1.3, 1.4 and 1.6 -

1.14). Since SLP is present only in cells 1 and 2, wg has the possibility to be

expressed only in those two cells. The decisive factor is CN levels in cells 1 and

2 (remember that, in these cells, CI = 1 − CN). In the wild type pattern, wg

is expressed only in cell 2 and this means that CN levels cannot be the same in

cells 1 and 2. The only way to have less CN in cell 2 compared to cell 1 is to have

PTCm
2 ≤ κPTCCI ≤ PTCm

1 . The condition PTCm
2 ≤ κPTCCI corresponds to the

plateau in the CN -nullcline for cell 2 being higher than or equal to the maximal ptc

level (blue graph in Figure 1.8B). When it is higher, CN2 is zero and when it is fine-

tuned to be equal, CN2 is between 0 and 1. If we had PTCm
1 ≤ κPTCCI , given that

PTCm
2 ≤ PTCm

1 , we would have CN1 = CN2 = 0. This is inconsistent with our

requirement that CN1 and CN2 be different. Therefore, we have κPTCCI ≤ PTCm
1 .

For our discussion, we will ignore the fine-tuned cases, leaving us with condi-

tion 1 in Table 1.2. This means CN2 = 0 and CN1 = min(1−κCIptc , κCNptc ,
HCICCI

1+HCICCI
),

which we again call Zc. Conditions 2 in Table 1.2 guarantees the absence of wg

in cell 1. The fact that external WG signaling has to be strong enough in cell 3

to activate en but has to be weak enough in cell 4 not to produce en is coded in

condition 3 of Table 1.2.



35

1.3 Random Walk in the Feasible Region

We explore the feasible region by following random walks starting from random

points. Whenever one of the random trajectories hits a boundary and exits the

feasible region, we terminate the walk and keep track of the inequality that was

violated. This process can be viewed as a simulation of parameter evolution due

to mutations in a fitness landscape that looks like a plateau. The points in the

feasible region have a constant high fitness, and the rest of the points have zero

fitness.

1.3.1 Calculation of half-life

To get an estimate for the fractional volume of feasible region in the parameter

space, we randomly chose 106 parameter combinations and check if they satisfy

the conditions given in Table 1.1 and 1.2 for the corresponding model. We perform

the random walk by first selecting a random point, P 0, from the set of admissible

parameters and follow successive random perturbations (
−→
P k =

−→
P k−1 + d

−→
P k,

k = 1, 2, ...). Each component of d
−→
P k is selected from an independent Gaussian

distribution with standard deviation of 2×106 . We follow this random walk until

it hits a boundary and exits the space. This happens when one of the inequalities

which characterize the feasible region is violated. Whenever the random walk exits

the region, we record the time as well as the condition which was violated and

therefore caused the exit. The parameter ranges were similar to those used in [7],

except that we facilitated the transport processes for hh and PTC. We simulated

the random walk for 30,000 runs. The result of the simulation is presented in

Figure 1.9.

The graphs in Figure 1.9A show the probability of survival as a function of

time for both models. This is the probability that the random walk has not exited

the feasible region in the first t steps. From the graph, we can easily measure
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T1/2, defined as the time for which there is a 50% chance that the system has

already suffered a deleterious mutation. As we discussed in the introduction, this

number is a possible indicator of robustness.

1.3.2 Main modes of network failure

Figure 1.9B shows the histogram of violated conditions. The number below each

bin indicates the corresponding condition in Table 1.1 and 1.2. The lead cause

of failure in the von Dassow et al. model is the constraint on κWGwg whereas in

the SLP model it is the constraints on κEWGen. Higher vulnerability of the SLP

model with respect to the constraint on κEWGen can be understood by comparing

condition 3 in Table 1.1 and the corresponding condition in Table 1.2. In the SLP

model there is a lower bound on κEWGen coming from the fact that κEWGen should

be greater than EWG4 to prevent activation of en in cell 4. However in the von

Dassow et al model, en is being repressed by CN and therefore there is no lower

limit on κEWGen.

One might raise the question of whether including repression of en by CN in

the SLP model changes the constraints on κEWGen. In the high Hill coefficient

limit, adding this interaction does not change the conditions in Table 1.2. To see

this, note that as was mentioned before, requiring CI and CN levels to be different

in cells 1 and 2 forces us to have CN2 = CN4 = 0. In cell 4, CN is not expressed,

and in cells 1 and 2, en is already being repressed by SLP. Therefore, adding the

possibility of en repression by CN does not change any of the constraints.

If we consider the case where Hill coefficients in the CI-CN-PTC sector are

small, the transition from high to low in concentration value for the ptc-nullcline

and CN -nullcline would not be sharp. Instead, the transition would happen over

a wide range. This means that we would get a non-zero value for CN4. In that

case, adding repression of en by CN can indeed help in maintaining the wild type

pattern, thereby increasing the robustness of the model.
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Figure 1.9: Random walk in the space of admissible parameters. We choose a
random point from the admissible parameter set and follow a random walk until
it hits a boundary after t steps. A) The red and the blue graphs represent the
probability of survival as a function of time for von Dassow et al. and SLP models,
respectively. These graphs results from 30,000 runs of random walks. The results
given for volume are based on the fraction of feasible parameter combinations
found in 1,000,000 randomly chosen combinations. B) Histogram of violated
conditions for the random walk in A. The number above each bin indicates the
corresponding condition in Table 1.1 and 1.2.
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The parameters κCIwg, κCNwg and κWGwg are related to alternative routes con-

trolling wg expression. The first two parameters play an important role in deciding

WG expression in the SLP model, while this role is played by κWGwg in the von

Dassow et al model. Comparison of the frequency of failure for conditions 2 and

5 in the histogram in Figure 1.9B suggests that controlling wg via the CI-CN

pathway in the presence of SLP is the more robust way of achieving the target

gene expression pattern for wg.

What about adding the WG autoactivation to the SLP model? If one just

cares about producing the right four cell pattern for en, hh and wg, then this

addition could give rise to more solutions. However, as we discussed before, not

having wg production to be sensitive to HH signaling from the neighboring cell

is problematic and gives rise to wide stripes of wg expression under cell division.

If we constrain the model so that wg is sensitive to HH signaling via CI-CN

pathway, we find that adding wg autoactivation to a functional solution in the

SLP model often leads to misexpression of wg in cell 1 or cell 3, thereby shrinking

the feasible region in parameter space.

1.4 Discussion

Our results imply that the lack of robustness is not only dependent upon the size

of the feasible region, but also upon the existence of critical directions along which

this region is globally very narrow. We found relatively few constraints on the

parameters given that we have specified the gene expression patterns for en, hh

and wg in each of the four cells. Much has been said about the relation between

the topology of the network and robustness. In practice, we found that it is not

only the structure of the network but also the nature of the wild type expression

pattern which plays an important role in the ultimate simplicity of the constraints

that dictate robustness. For example, the fact that only one cell is expressing en
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and hh and that wg had no direct effect on the CI-CN-PTC sector allowed us

to draw several conclusions about certain variables being the same in cell 2 and

cell 4. If one stares only at the network structure, wg indeed has an effect on the

CI-CN-PTC sector via its effect on en. However, specifying the en expression

pattern hides the influence of wg and helps us disentangle the constraints. The

role of wg shows up only when one insists upon self-consistency, namely, the wg

expression pattern is going to lead to the target en expression pattern. Simplicity

of the final constraints is not a result of some obvious modularity in the network

itself but some combination of the network structure as well as of the sparseness of

the expression pattern. We cannot be sure that this is a general feature of robust

genetic networks. A broader study which takes into account the role of the wild

type pattern on the robustness of a network would be a welcome deviation from

discussions centered purely on network architecture.

We noted that capturing the CI-CN-PTC negative feedback in the Boolean

model is difficult. For example, in the Boolean model constructed by Albert and

Othmer [16], they are forced into a situation where ptc mRNA is OFF but PTC

protein is ON. This is achieved because of an exception made in PTC production

rule, namely, PTC can continue to be in the ON state even if there is no ptc.

Of course, this implausible rule results in a distribution of ptc and ci products

which mimics the wild type pattern. For example cell 1 has less ptc but more

CN compared to cell 2. In our model, we partially capture the effect of the

feedback. We can indeed get the ptc levels to vary between cell 1 and cell 2.

Unfortunately, we saw that in the high Hill coefficient model, producing different

CN levels requires fine-tuning of the parameters. Therefore, we understand why

von Dassow et al. find that setting the Hill coefficients in the CI-CN-PTC sector

to be small enhances their chance of finding good solutions [20].

The present approach shows that, in addition to volume, the topology and

geometry of the feasible region have important consequences for the robustness
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of a system. Of special interest is the structure of the boundary in the parameter

space that separates between functional and non-functional systems. In the mod-

els studied here, it was possible to describe this boundary explicitly as a collection

of constraints. For a generic biochemical network model with a scoring function it

may not be feasible to explicitly write down the boundary surface corresponding

to the threshold of functionality. However, one could generate a sampling of the

boundary surface by following random walks in the parameter space until they

hit the boundary of the functional region (decided by a threshold score). Instead

of what we did in this study, we could slightly alter our strategy and let the walk

be reflected off the boundary. In that process the same walk would hit many

neighboring points on the boundary surface. If one generates a large enough sam-

ple of boundary points, one could use methods like manifold learning [24, 25] to

approximately reconstruct the boundary.

Contrast this method to boundary reconstruction from uncorrelated random

sampling. One could generate many points some of which are inside the region

and many others which are outside. Indeed, many machine learning techniques for

classification involve learning decision boundaries from such data. However, when

the good region has a very small fractional volume and many of the randomly

sampled points outside this region are far from the decision boundary, most of

the sampled points have very little impact on boundary reconstruction. The

uncorrelated nature of the sampling is useful for getting a good estimate for the

fractional volume, but makes the process of mapping the geometry inefficient. It

would be better to take advantage of one good solution to generate other good

ones for the purpose of exploring local geometry.

To summarize, our analysis of the segment polarity network provides us with

insights regarding the constraints that are crucial for functioning of the system.

We showed how the system is particularly vulnerable to parametric perturbations

in certain directions in the parameter space. We believe that the ideas developed
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here could be applied to other regulatory networks, to explore how the shape of

feasible region in the parameter space contributes to its robustness. Hill terms

appear often in models of biochemical networks. A simpler model, obtained by

replacing these terms with step function, could be useful, because such a model

enjoys some of the simplicity of the Boolean networks, while retaining many of

the parameters of the original model.
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Chapter 2

Epigenetic Chromatin Silencing

In a multicellular organism, there are many different cell types (e.g. muscle, blood,

nerve, etc.) despite the fact that all the cells have the same DNA. Once it is gen-

erated, this pattern of cell fates has to be maintained through cell division. Such

heritable locking of different cells into different fates without irreversible change

in genetic information is called epigenetic phenomenon. Building a mathematical

model of epigenetic chromatin silencing based on current biological knowledge,

and exploring the consequences and predictions of the model is the subject of this

chapter.

2.1 Biological Background

In this section, we will go over some basic biological background relevant to the

material discussed in this chapter. A more through presentation can be found in

biology textbooks [3, 4].

2.1.1 DNA packaging and gene activity

Organisms are divided into two groups: eukaryotes and prokaryotes, depending,

respectively, whether or not their cells contain a distinct nucleus compartment.

Many unicellular organisms, like bacteria, belong to prokaryotes. Typical mul-

ticellular organisms happen to be eukaryotes. DNA of eukaryotes is not a free

polymer. Instead, it is packaged into a certain structure. The basic unit of this

packaging is nucleosome, which is composed of 147 bp of DNA wrapped around a
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Figure 2.1: Several levels of DNA packaging. The basic unit of packaging is nu-
cleosome, composed of a protein complex made of histones with 147 base pair of
DNA wrapped around it. Histones have tails which can be chemically modified.
The modification of tails correlates with the formation of higher level structures.
Therefore, depending on the local modifications, the degree of packaging varies
for different regions of DNA. Genes located in heterochromatin, i.e. the more
condensed regions, are systematically silenced. In contrast, genes located in eu-
chromatin can be active. Adapted from wikipedia.com

core complex formed from eight proteins called histones (Figure 2.1). The diame-

ter of the histone core is around 11 nm. In between two consecutive nucleosomes,

there is some unwrapped DNA named linker DNA typically smaller than 100

bp. The mixture of DNA and structural proteins is called chromatin. Higher

order organisms have more than one DNA molecules, each of which is called a

chromosome (e.g. humans have 24 chromosomes).

The array of nucleosomes can fold and have more levels of packaging. This

packaging requires association of specialized proteins with the nucleosomes. Specif-

ically, histone cores have long tails sticking out which can get chemically modified

and affect the degree of compactification. This local modification of histone tails

plays a central role in the mechanism of epigenetic silencing that we will discuss.

Each gene encodes the instruction necessary to build its associated protein.

All the cells within a multicellular organism have the same DNA. However, in

each cell, depending on the cell type, certain proteins are never expressed and
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associated regions of DNA are systematically silenced. That is why, even though

all the cells of a multicellular organism have the same genetic instruction, they

can have different types.

The systematically silenced regions correspond to highly condensed and packed

areas of DNA called heterochromatin. In contrast, the other parts of DNA called

euchromatin are lightly condensed and are often under active transcription. In

order for the cell type to be preserved in cell division, the pattern of heterochro-

matin and euchromatin regions has to be inherited to daughter cells. In fact, for

a region to be qualified as epigenetically silenced, by definition, the pattern has

to be inheritable to daughter cells during cell divisions.

As a side note, it should be mentioned that genes located in euchromatin are

not necessarily always active. It is possible that such genes get silenced for certain

amount of time through the mechanisms involving transcription factors. This

type of gene silencing, which works at the level of individual gene (as opposed to

a longer region of DNA) and can change by time, is not the focus of this chapter.

The first indication for the existence of systematically silenced regions which

are inheritable during cell division came from the phenomenon of position effect

variegation, explained in the next subsection. Another example of epigenetic

silencing is the HML and HMR Loci in budding yeast, which I will explain below

as well.

2.1.2 Position effect variegation

Position effect variegation is a consequence of the fact that, for eukaryotes, not

only the average activity of a gene, but also the variability of the expression

depends on gene’s position along the genome. Typically, the boundary between

heterochromatin and euchromatin region is not fixed and can move one way or

the other. However, the boundary is quite stable and only occasionally displaces

significantly. Imagine a gene is located in the euchromatin region, however, close
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to the boundary with heterochromatin. This gene gets transcribed and produces

certain protein which has some observable effect. For example, in the case of

fruit fly and the so-called white gene, the expression of the gene causes the eye

to become red. The daughters of this cell will also be red. In this manner, after

several rounds of division, we a get a patch of cells in red color.

Once after several cell cycle, in one of the red cells, the heterochromatin

region may spread into the euchromatin and cover the aforementioned white gene.

Therefore, the gene gets silenced which causes the cell to become white. Since, the

newly formed heterochromatin boundary is stable under cell cycle, the progenies

of this white cell will be white as well. In this way, we get a patch of white cells

within the bigger red patch. After several rounds of division, one of the white

cells may go back to the red state, i.e. the heterochromatin region shrinks and

the white gene becomes active again. The overall effect of the above phenomenon

is that we get several patches of red and white color in the fly eye. Each patch

has been created because of a switching event caused by the displacement of the

boundary between heterochromatin and euchromatin.

2.1.3 Silencing in budding yeast

Budding yeast (Saccharomyces Cerevisiae) can be found in two forms: haploid

and diploid. Haploid cells have only one set of 16 chromosomes. Diploids, on the

other hand, have two sets of 16 chromosomes, i.e. 32 chromosomes or 16 pairs.

Each pair of chromosomes have the same set of genes. The copies of a gene on

the two chromosomes can be exactly the same or can be two different versions of

the same gene.

Figure 2.2 shows different states of yeast cells. In normal conditions, diploid

cells divide (via budding) into two diploid cells. However, in starvation condition,

a diploid cell divides into four haploid cells (referred to as sporulation). Haploid

cells exist in two types, a and α, which can be considered as two opposite sex
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Figure 2.2: Life cycles and different states of budding yeast. 1: budding of a cell
into two cells; 2: Mating of two haploid cell into one diploid cells; 3: Sporulation
or division of a diploid cell into four haploids. From wikipedia.com

types. Two haploid cells of opposite cell type (a and α) can fuse together and

form a diploid cell. This fusion is called mating.

Haploid cells of a particular type can always divide (via budding) to form more

haploid cells of the same type. A haploid cell can also switch its type during cell

division, namely, an α cell can switch to an a cell or vice versa. These cells can

they mate with other haploid and form diploids. The process of mating type

switching allows even an isolated haploid budding yeast to give rise to a colony

of mostly diploid cells.

The cell type and type switching during cell division in haploids are associated

with three regions on chromosome III. The cell type is determined by the genes

contained in the MAT locus (mating type locus). For α type cells, α1 and α2

genes are at MAT locus. Instead a type cells have a1 and a2 genes. The MAT

locus is always active. There are two other regions on the chromosome called
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HML and HMR (hidden mating type loci), which are always silenced. HML

contains a copy of the α genes, whereas, HMR contains the a genes. These two

loci save a silenced copy of genetic information for both mating types. However,

the particular set of the genes at MAT locus determines the mating type. During

the budding of a new haploid cell, one of the genes from HML or HMR loci gets

copied to the MAT locus, which is the reason why the mating type can change.

If the silencing at HML and HMR gets disrupted, the haploid cell will express

both a-specific and α-specific genes. This leads to the production of a1-α2 het-

erodimer complex which can be found in diploids as well. This complex represses

the transcription of haploid-specific genes (e.g. genes necessary for pheromone

production). Such haploid cells are unable to mate with other haploids. In par-

ticular, they are resistant to pheromone of the opposite type. This defective

behavior can be used in experiments to detect any disruption in the repression of

HML and HMR loci.

In addition to HML and HMR loci, there are other parts of the genome which

are silenced. One example is telomeric silencing [26, 27]. Telomeres are the regions

located at the two ends of each chromosome. Telomeric silencing is not specific

to yeast, rather, it is the case for all eukaryotic genomes. In the case of yeast, the

mechanism and the proteins involved in the silencing of both telomeres and cell

type related regions are similar. Below, I present the biological model of silencing

for these regions.

2.1.4 A mechanism for silencing: nucleation & spreading

Different models have been proposed for silencing in different organisms and even

for different regions of the genome in one organism [28]. However, there is some

similarity between these mechanisms [29]. In general, whether a region of chro-

mosome is in the heterochromatin or euchromatin state depends on the type of

modification of histone proteins in the nucleosomes of the corresponding region.



48

Here, we will discuss one of the silencing models which applies to HML, HMR

and telomeric silencing in yeast.

In this system, nucleosomes in silenced regions are bound by three proteins:

Sir2p, Sir3p and Sir4p. These proteins form a complex named Silenced Infor-

mation Regulator (SIR) complex. Also, in silenced regions, acetyl group from

particular lysines (K) in histone tails are removed. Histone acetylation is nor-

mally associated with transcriptionally active regions. One of the main sites of

acetylation is H4K16, a lysine at position 16 on the amino tail of histone H4.

It is believed that the silencing originates from a nucleation center which re-

cruits histone modifying enzymes, specifically certain histone deacetylases. These

enzymes modify neighboring histone tails to create a binding site for the SIR com-

plex. Sir2p, a member of the complex, is a histone deacetylase which modifies the

neighboring histones and provides more binding sites for SIR complex. In this

manner, several rounds of histone modifications and SIR binding results in the

spreading of the silenced region. There are some other proteins which work in an

opposing way to the silencing propagation. Particularly, Sas2, a histones acetyl

transferase, attaches acetyl groups to certain lysine in histone tails and prevents

SIR complex binding [30, 31].

Although the silencing nucleation step for telomeric and HML/HMR regions

involve somewhat different sets of proteins, the spreading step seems to be similar

[32]. Another difference is that for HML/HMR loci, the nucleation center exists

on both end of the silenced regions, whereas, for telomeres, there is only one

nucleation site.

One immediate question is what stops the spreading of the silenced region?

There are two possible scenarios. One is that there are some explicit boundary

elements (e.g. strong gene promoters) stopping the propagation [34, 35]. The

other possibility is that, because of finite supply of SIR complex, a stationary

state between silenced and unsilenied region is reached. I will explain what I
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Figure 2.3: Biological model of silenced chromatin domain formation in yeast.
The nucleation site initiates the process by recruiting specific histone modifying
enzymes, which then modify neighboring histones. The modified histones allow
binding of Sir complex. This complex, in turn, modifies the neighboring histones
and provides more binding sites for Sir complex. Consecutive rounds of modica-
tion and binding result in the stepwise spreading of silencing complexes along the
chromosome. From [33].
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mean by this last sentence in the following section, once a mathematical model

for the above mechanism and the corresponding bifurcation diagram is presented.

Before getting there, let me give an overview of some experimental knowledge

about silencing in yeast.

2.1.5 Experimental observations

As we mentioned, the silencing in the HML and HMR loci initiates from a nucle-

ation center. A protein named Sir1 seems to play a role in the nucleation step.

In one of the early experiments done in 1989 by L. Pillus and J. Rine [36], it

was found that in sir1 mutants (where the nucleation effect is defective if not

absent), a population of yeast cells is divided into two distinguishable groups. In

one group, composed of around 20% of the population, HML and HMR loci are

silenced similar to normal cells. In the other group, those loci are active and cells

would not mate like a normal haploids. Both of the epigenetic states (silenced

vs active) are quite stable and are inherited most of the time during cell divi-

sion. In fact, it was observed that switching from active to silenced state occurs

approximately once in every 250 cell divisions, or with the small probability of

4 ∗ 10−3. This observation suggests that the system can be thought of as being in

a bistable regime, where two stable states can exist under the same conditions.

Another experimental fact comes from the mutants of SAS2, the gene encod-

ing a protein responsible for acetylation of histones. In the current biological

picture, the histone acetylation prevents SIR complex from binding to the his-

tones [30, 31]. In other words, Sas2 activity is essential in preventing the silenced

region from spreading into the active region. Therefore, one may expect that

over-expression of Sas2 should cause the silenced region to shrink. This effect

has been indeed observed. On the other hand, one may also expect that in Sas2

mutant (where acetylation is defective or absent) some active regions should turn

silenced. Contrary to this expectation, it was found that the deletion of Sas2
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decreases the level of silencing, rather than improving it [37]. In the absence of

deacetylation activity, cells lose the bistability at mating-type loci and demon-

strates an intermediate state which is neither silenced nor fully active [38]. This

intermediate state can be considered as a promiscuous silenced state where SIR

proteins can be bound at random places along the DNA.

We have performed some experiments on different yeast mutants as well. Our

experiments were motivated by qualitative predictions of our mathematical model

of silencing in yeast. We will study this model and the experimental results in

the subsequent sections.

2.2 Mathematical Model of the Silencing Mechanism

I present a stochastic model for the process of silencing introduced in the previ-

ous section. I give a mean field formulation to describe the state of the system

and analyze the conditions under which it becomes bistable, allowing different

epigenetic states. Many of the materials presented in this section have received a

similar treatment in [33].

2.2.1 Stochastic equation

One can think of a chromosome as a 1 dimensional lattice, where each site corre-

sponds to a nucleosome (or a histon core complex). Each site i can be in one of

four possible states:

• Bound by silenced proteins with probability Si

• Not bound by any proteins with probability Ei

• Bound by one acetyl group with probability Ai

• Bound by two acetyl groups with probability AAi
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Figure 2.4 shows these possible states and the transition rates between them.

The rate of SIR binding, which is a function of the concentration of ambient SIR

proteins, is denoted by ρ. Free Sir2p, Sir3p and Sir4p proteins in the environment

do not form SIR complex. Instead, they form the complex when they are attached

to a nucleosome1. In the case where each protein is in low abundance, ρ is

proportional to the product of the three concentrations for Sir2p, Sir3p and Sir4p.

For our analysis, we will not need to know the exact form of dependence of ρ.

We will just keep it as an effective parameter, monotonically increase with the

concentration of each of SIR proteins.

The histone acetylation rate, caused by Sas2 activity, is represented by α.

The rate at which SIR complex fall off the nucleosomes is shown by η. Also, the

basal rate at which acetyl group falls off the nucleosomes is denoted by λ. The

deacetylation rate increases if adjacent sites are in the silenced state. This increase

is given by the term ΓijSj, where Γij is a function of |i−j| and drops significantly

as this separation increases. All the above parameters may be position and/or

time dependent. However, for the sake of brevity, this dependence is not explicitly

written.

We have included a double acetylation state. One justification could be that in

each nucleosome, there are two lysine tails (H4k16) which host the main binding

sites for acetyl group. However, there is no evidance that the chemical process of

acetyl binding to these tails involves cooperativity. For example, it could be that

one of them can be bound by an acetyl group whereas the other one is bound by

SIR complex. The reason we insist our model to have a double acetylation state

is to get bistability (see below). One reasonable scenario is that the incorporation

of cooperativity (via inclusion of double acetylated state) originates from the fact

that some other players and degrees of freedom (e.g. certain methylation marks)

1This sentence is not intended to imply anything on the exact order of various proteins
attachment and multimerization
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Figure 2.4: Four possible states for each nucleosome. Chromosome is modeled
as a 1 dimensional lattice, where each site corresponds to one nucleosome (see
Figure 2.3). Site i can be either in silenced (Si), unbound (Ei), monoacetylated
(Ai) or double-acetylated (AAi) state. The deacetylation rate depends on the
silencing state of neighboring nucleosomes (the term ΓijSj).

are not included in this model.

dSi
dt

= ρEi − ηSi

(2.1)

dEi
dt

= (ηSi − ρEi) + ((λ+ ΓijSj)Ai − 2αEi)

dAi
dt

= 2α Ei + 2(λ+ ΓijSj)AAi − (α + λ+ ΓijSj)Ai

dAAi
dt

= αAi − 2(λ+ ΓijSj)AAi

2.2.2 Uniform solutions

We consider uniform steady state solutions for the set of equations 2.1, namely,

we drop the subscript i and put the left hand side of the equations equal to zero.
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In this section, we analyze the system with constant parameters. Let us define

γ = ΣjΓij. This quantity is independent of i, hence, the drop of the subscript.

Using the above notation, the uniform solutions of the set of equations 2.1 has to

satisfy:

0 = ρE − ηS

(2.2)

0 = (ηS − ρE) + ((λ+ γS)Ai − 2αE)

0 = 2α E + 2(λ+ γS)AA− (α + λ+ γS)A

0 = αA− 2(λ+ γS)AA

By eliminating the variables in the above equations, we find:

E =
η

ρ
S; A =

2 α η

ρ (λ+ γS)
S; AA =

α2 η

ρ (λ+ γS)2
S . (2.3)

Let us also redefine the parameters as follow:

ρ =
ρ

η
; α =

α

λ
; γ =

γ

η
. (2.4)

Since sum of the probabilities has to be 1, we have:

S

(
1 +

1

ρ
+

2 α

ρ (1 + γS)
+

α2

ρ (1 + γS)2

)
= 1 ;

which we can rewrite as:

S =
ρ (1 + γS)2

[(1 + ρ) (1 + γS)2 + 2α(1 + γS) + α2]
. (2.5)
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Figure 2.5 shows the graph of left hand and right hand side of the above equation,

as a function of S, for a few different combination of the parameters. The above

equation is of degree 3 and can have maximum of three real roots. For certain

set of parameters, there is only one real solution (Figure 2.5A-B). This situation

is referred to as monostable. For relatively small values of α (or high values of

γ or ρ), this solution happens at high S (Figure 2.5A), whereas, for relatively

high values of α, the solution is at low S (Figure 2.5B). There is also a regime

of parameters where there are three real solutions (Figure 2.5C). The middle

solution is unstable, whereas, the other two solutions at low and high values of S

are stable. We will denote these two stable solutions by Sl and Sh, respectively

(See Appendix A for more detail). When the parameters allow us to have two

stable solutions, we are in the bistable regime. As we play with the parameters,

for example by increasing/decreasing γ, two of the three solutions merge together

(Figure 2.5D). At this point, the graphs are tangent to each other. If we continue

increasing/decreasing γ, we fall in the one solution regime, as in Figure 2.5A and

B.

For each set of parameters α, ρ and γ, we would like to be able to charac-

terize how many solutions exist. The bifurcation diagram, helps to visualize this

characterization.

Bifurcation diagram

As we mentioned, by changing the parameters continuously, we can switch be-

tween the two regimes of monostability and bistability. At the transition between

these two state, the two curves in Figure 2.5 touch each other at a point. This is

the point where two of the solutions merge and disappear or a degenerate solution

appears and eventually give rise to two solutions, depending on the direction that

we change the parameters. At this point, not only the equation 2.5 is satisfied,

but also the derivative of both sides with respect to S should be equal. Let us
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Figure 2.5: The intersections of nullcline curves. Graphs shows the left hand side
(magenta) and the right hand side (blue) of equation 2.5, for different sets of
parameters α, ρ and γ.
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rewrite equation 2.5 as:

ρ (1 + γS)2 = S
[
(1 + ρ) (1 + γS)2 + 2α(1 + γS) + α2

]
. (2.6)

Putting the derivative of both sides equal, and using equation 2.6, we get:

2ρ γS (1 + γS) = ρ (1 + γS)2 + S2 [2γ(1 + ρ) (1 + γS) + 2αγ] . (2.7)

This implies for the transition point:

α = (1 + γS)

[
ρ(1− S)

S
− 1− ρ (1 + γS)

2γ S2

]
. (2.8)

After replacing α in 2.6 by the above equation, and dividing both sides by S(1 +

γS)2, we get:

ρ(1− S)

S
=

[
ρ(1− S)

S
− ρ (1 + γS)

2γ S2

]2

=⇒
√
ρ(1− S)

S
=
ρ(1− S)

S
−ρ (1 + γS)

2γ S2
.

The reason we take the positive root is because α > 0; therefore, the term in the

bracket in equation 2.8 is positive. We can solve the above equation for γ:

γ =

(
S − 2S2 −

√
4(1− S)S3

ρ

)−1

. (2.9)

We can replace the above equation in 2.8 to get:

α =

(
2(1− S)−

√
4ρ−1(1− S)S

)(√
ρS(1− S)− S

)
S
(

1− 2S −
√

4ρ−1(1− S)S
) . (2.10)

In Equations 2.9 and 2.10, for each value of ρ, S can take any value between 0

and 1, as long as both α and γ are positive real numbers.

There is one more case that we did not mention and is not shown in 2.5. It is
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possible to have a situation where all three solutions merge together. This case

is similar to 2.5D, with the difference that the two curves intersect only at one

point. To be in such a situation, in addition to Equations 2.6 and 2.7, the second

derivative of both sides of the Equation 2.6 with respect to S have to be equal.

Putting the second derivatives equal, and using Equation 2.6 and equation 2.7,

we get:

SC =
γρ− 2α− 2(1 + ρ)

3γ(1 + ρ)
. (2.11)

The subscript C is meant to indicate the critical point. Note that the parameters

in the above equation have to satisfy Equations 2.6 and 2.7 as well.

Equations 2.9 and 2.10 are the consequence of the two conditions 2.6 and 2.7

that we have imposed. Instead of solving for α and γ, we could have chosen to

solve for α and ρ, or ρ and γ. If we solve for ρ and γ in equations 2.6 and 2.7, we

find:

γ =
(α− 2(1 + αS))

2S
±

√[
(α− 2(1 + αS))

2S

]2

− (1 + α)

S2
, (2.12)

ρ =
4(1− S)S3

(S − 2S2 − γ−1)2 , (2.13)

where γ in the second equation has to be replaced from the first one.

Equations 2.9 and 2.10 can be used to draw a plane in the three dimensional

ρ - α - γ coordinates (note that S can be replaced by any value between 0 and 1,

as long as parameters remain positive real numbers). In fact, Equations 2.12 and

2.13 gives us exactly the same plane in the 3-dimensional coordinates. This plane

separate the the two regimes of monostability and bistability. It is convenient

to draw the intersections of this plane with, for example, the constant ρ or the

constant α surface. To get the former one, we should keep ρ in Equations 2.9 and

2.10 constant. Instead, for the later case, we should keep α in Equations 2.12 and

2.13 constant. In the next section, we find it convenient to work with Equations
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2.12 and 2.13. However, for now, we stick with Equations 2.9 and 2.10.

Figure 2.6 shows the bifurcation diagram in the α - γ plane (constant ρ). The

correspondence between this diagram and Figure 2.5 is as follow. The monostable

silenced region corresponds to Figure 2.5A; monostable active to Figure 2.5B;

Bistable to Figure 2.5C; the magenta to Figure 2.5D. At the cusp is the critical

point, where three solutions merge together (Equation 2.11). Figure 2.7 show

how this curve moves as one increases ρ.

One might ask, why the critical point defined by the condition used to get

Equation 2.11 is actually located at the cusp of the magenta curve in Figure 2.6

and not at any other point along the magenta curve? From Equations 2.9 and

2.10, we have:

γ = γ(S) & α = α(S) , (2.14)

where the dependence on ρ has not been written. The cusp is located at the point

where

∂γ

∂S
=
∂α

∂S
= 0 . (2.15)

There one has to show that these equalities are satisfied at the critical point. Let

us rewrite Equation 2.5 as:

f(γ, α, S) = 0 , (2.16)

where f is a function and we have not written the dependence on ρ. The condition

for the first derivative to be zero implies:

∂f(γ, α, S)

∂S
= 0 . (2.17)
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Equations 2.16 and 2.17 result in2.14. We can rewrite 2.16 and 2.17 as:

f(γ(S), α(S), S) = 0 ⇒ ∂f

∂γ

∂γ

∂S
+
∂f

∂α

∂α

∂S
= 0 , (2.18)

∂f(γ(S), α(S), S)

∂S
= 0 ⇒ ∂2f

∂γ∂S

∂γ

∂S
+

∂2f

∂α∂S

∂α

∂S
+
∂2f

∂S2
= 0 . (2.19)

In the first equation, we have used the fact that ∂f
∂S

is always zero on the bifurcation

line. In addition, at the critical point, ∂2f
∂S2 is also zero. Therefore, the above

equations become:

∂f

∂γ

∂γ

∂S
+
∂f

∂α

∂α

∂S
= 0 , (2.20)

∂2f

∂γ∂S

∂γ

∂S
+

∂2f

∂α∂S

∂α

∂S
= 0 . (2.21)

We see that the condition 2.15 satisfies the above requirement for the critical

point (one can satisfy himself that the determinant of the coefficients is not zero,

e.g. ∂f
∂α

, ∂2f
∂α∂S

> 0 ). This implies that the critical point is indeed at the cusp of

the bifurcation curve in Figure 2.6.

In the bistable regime, there are two stable solutions. Given that we are

dealing with an stochastic system, we should really call these metastable solutions,

in the sense that for a real system with noise, there is a possibility of switching

between the two state. We would like to know, for each part of the bistable

regime, which of the two solutions are more stable. Another interesting question

is whether it is possible to have different parts of the lattice to be in different

states (silenced vs active) and these states can have a stable boundary. The

subject of the next chapter is addressing such issues.
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Figure 2.6: Bifurcation diagram in the ρ constant surface. The magenta line is
obtained using Equations 2.9 and 2.10. The blue and green points in the lower
panel shows the result of stochastic simulation where the system is simulated
using two initial conditions (high and low S). Monostable and bistable regimes
can be differentiated based on whether the two initial conditions lead to one (blue)
or two (green) different states.
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Figure 2.7: Position of the cusp point as a function of gamma (blue curve).

2.2.3 Non-uniform solutions, continuum limit

Since we are dealing with an spatially extended system, in addition to uniform

solutions, we would like to explore the possibility of having non-uniform spatial

solutions (i.e. coexistence of different domains) for the parameter sets located in

the bistable regime. In particular, we will be interested in the dynamics of the

front between silenced and active domains.

For a system with N nucleosomes, there are 4N possible distinct states. We

cannot directly solve the time-independent solutions of the stochastic system given

by the set of equations 2.1. Therefore, we will resort to the continuum limit
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approximation2. In this limit, we have:

dS(x)

dt
= ρE(x)− ηS(x) , (2.22)

dE(x)

dt
= ηS(x)− ρE(x)− 2αE(x) +

(
λ+

∫
Γ(x− y)S(y)dy

)
A(x) ,

dA(x)

dt
= 2α E(x) + 2

(
λ+

∫
Γ(x− y)S(y)dy

)
AA(x)−(

α + λ+

∫
Γ(x− y)S(y)dy

)
A(x) ,

dAA(x)

dt
= αA(x)− 2

(
λ+

∫
Γ(x− y)S(y)dy

)
AA(x) .

We can Taylor expand S(y) around x. Since Γ(x − y) falls sharply as |x − y|

increases, we will only keep up to the second order in the exapnsion:

∫
Γ(x− y)S(y)dy =

∫
Γ(x− y)

(
S(x) + (y − x)

dS(X)

dx
+

(y − x)2

2

d2S(X)

dx2
+ ...

)
dy

' γS(X) + γ2
d2S(X)

dx2
. (2.23)

The second term in the Taylor expansion disappears since Γ(x− y) is symmetric.

We have also defined:

γ =

∫
Γ(x− y)dy & γ2 =

∫
Γ(x− y)

(y − x)2

2
dy (2.24)

Replacing 2.23 in the set of equation 2.22 and simplifying the equation we arrive

at:

γ2
d2S(X)

dx2
= −1− γS(X) + α

S(X) +
√
ρS(X)(1− S(X))

ρ(1− S(X))− S(X)
. (2.25)

2Note that, given our system, there is not really a parameter which gives the continuum
limit as it converge to some limit.
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If we define:

V (S) = +S +
γ

2
S2 − α

∫ S S ′ +
√
ρS ′(1− S ′)

ρ(1− S ′)− S ′
dS ′ . (2.26)

then Equation 2.25 can be written in the following form:

γ2
d2S(X)

dx2
= −dV (S)

dS
. (2.27)

The similarity between 2.27 and the formula for the motion of a particle in a

potential field in classical mechanics is clear.

For the two uniform stable solutions of Equations 2.22, Sl and Sh, the right

hand side of Equations 2.25 and 2.25 is zero. At those points, the potential V ,

defined in Equation 2.26, is flat (dV (Sl)/dS = dV (Sh)/dS = 0). Using this

equation, we can numerically calculate the value of V , for the points between

the two stable solutions. Figure 2.8 shows the result of numerical integration for

different combination of parameters within the bistable regime.

Coexistence of different domains

We are looking for a solution which starts from one of the stable solutions (e.g.

Sl) and ends in the other solution (e.g. Sh). From biology point of view, this case

is of special interest. As we mentioned in the previous section, heterochromatin

and euchromatin domains can occupy close by regions along the DNA without

clear boundary element stopping them from invading into each other. An example

would be the region around the boundary of telomeres.

From our experience in classical mechanics with equations in the form of 2.27,

we now that the necessary condition is (Figure 2.8B):

V (Sl) = V (Sh) . (2.28)
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Figure 2.8: Potential V (S) for different combination of parameters in the bistable
regime. At each point in the bistable regime, there are two stable solutions for
Equation 2.22, Sl and Sh. The graph is only drawn for values of S between
these two solutions. Note that, we are able to use this potential only to describe
zero-velocity fronts, and not for the general traveling solution.

We would like to characterize the points in the bistable regime which satisfy

the above condition. It turns out that in the bifurcation diagram in the α - γ

plane (constant ρ), this conditions define a line that we will call zero-velocity line.

Figure 2.9 show the zero velocity line. This line starts from the critical point

and divides the bistable regime into two sections. In the lower part, close to the

monostable silenced regime, the Sh solution is more stable than the Sl one. This

means, if we start from a non-uniform solution, the domain associated to the

Sh solution invades into the active domain. The opposite happens in the upper

section. In summary, the coexistence of different domains is possible only if we

are around the zero-velocity line. Otherwise, in region I or II of Figure 2.9, the

front between two domains is unstable and moves in the direction of the favorite

state.



66

Figure 2.9: Zero-velocity line subdividing the bistability region. The correspon-
dence with Figure 2.8 is as follow: the case shown in Figure 2.8B is located on the
zero-velocity line; the one in Figure 2.8A is located in Region II; and finally the
case in Figure 2.8C is in Region I. The slope of the blue line has been manually
reduced slightly so that Region I will be more clear.

The effect of lattice discreteness on domain boundary

In the above discussion on coexistence of different domains, we considered a con-

tinuum system. One might wonder how our results would change if we had,

instead, studied a discrete lattice model. To get insight into this, we simulated

the stochastic system. As one may have expected, in the discrete version, the

zero-velocity line broadens into a band of propagation failure [39, 33]. In the

stochastic version of the model, within this band, the boundary seems to fluctu-

ate without any noticeable drift. In addition, even for very large values of the

parameters (α, γ and ρ), the time scale of fluctuation in the boundary position

is quite slow. One of our future plans is to have a theoretical estimate on the

relation between boundary fluctuation and the parameters of the system.
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2.2.4 Where is real system located on the bifurcation di-

agram?

Let us go back and see whether the model of stepwise spreading of silencing

introduced in the previous section fits into our mathematical description. First,

we will assume all the parameters are constant.

In Region I of Figure 2.9, we do not expect the silenced domain to spread

from the nucleation center. Instead, this domain should be localized around the

nucleation center. In contrast, in Region II, the silenced domain spreads out from

the nucleation center. Although this behavior is similar to the stepwise spreading

model, however, it requires an explicit boundary element to stop it from taking

over the whole active domain.

In some heterochromatin (silenced) part of the DNA, e.g. telomeres, there

does not seem to be an explicit boundary element stopping the spread of silenced

domain. For example, by over expressing the SIR complex, the silenced domain

invades into the active one to some extent and then stops again [40]. This implies

that, instead of being fixed by some element, the boundary between the two

domains is, in principle, dynamic. At first glance, this behavior seems to indicate

that the system is actually on the zero-velocity line in Figure 2.9, which, in turn,

implies that there is an stable dynamic boundary between the two domains.

Assuming the system is on the zero-velocity line raises two concerns. The

first one is that being on this line requires fine tuning of the parameter. The

other issue is that if one of the parameters changes, e.g. ρ increases because of

over-expression of SIR complex, the system moves away from the zero-velocity

line. This will cause one domain to invade the other domain. However, in reality,

this invasion happens only to certain extent and the boundary stabilizes at a

new place. So far, our mathematical description does not seem to capture this

behavior.
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In the above discussion, we assumed that all the parameters are constant. In

particular, the available ambient concentrations of Sir complexes, reflected in ρ,

was held constant. It turns out that by relaxing this assumption, not only our

mathematical description captures the experimental observation (stable dynamic

boundary between two domains), but also leads to some interesting prediction

which we are exploring experimentally. In the next section, we will get into the

detail of this subject.

2.3 Consequences of Finite Supply of Sir Proteins

One of the assumption was that the available ambient concentrations of Sir com-

plexes, reflected in ρ, was constant. Instead, one can consider the case where the

total number of SIR complexes, which is the sum of the complexes in the ambient

and the ones bound to the nucleosomes, is fixed. In other words, there is a finite

supply of SIR complexes:

ρ v +
∑
i

Si = Stot = constant . (2.29)

Here, v is proportional to the volume of the system. This equation means that

whenever a SIR complex gets bound to the nucleosome, the ambient concentration

of available complexes drops. Therefore, ρ is now a self-adjusting parameter, as

opposed to being constant. We will see that there will be two implications from

this assumption: boundary stabilization and coupling of different silenced regions

on the genome. Before going forward, let us look at the bifurcation diagram from

another angle.

As we mentioned, the bifurcation diagram is a surface in the three dimensional

space formed by α, γ and ρ axis. For the convenience, so far we have chosen to

look at the intersection of this surface with the constant ρ plane (formed by α

- γ axis). For our discussion in this section, we change this choice and switch
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Figure 2.10: The bifurcation diagram in the ρ - γ plane (constant α). The
correspondence between different regions of this graph and Figure 2.9 is shown
on the picture

to constant α plane. The graph is shown in Figure 2.10. This diagram can be

sketched using Equations 2.12 and 2.13.

2.3.1 Boundary stabilization without requirement for fine-

tuning

Consider a system located in Region II of Figure 2.10 and assume there exist a

small silenced domain or silencing has been initiated from a nucleation center.

Being the favorite solution in Region II, this silenced domain invades into the

active one. However, as silencing is spreading and SIR complexes get bound to

the chromosome, the available SIR proteins in the environment reduces, namely,

ρ drops. This means, on Figure 2.10, the system moves vertically downward and

approaches the zero-velocity line. In this way, the system automatically goes on

the zero-velocity line and the two silenced and active domains will have a stable
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boundary between them.

The same would have happened if we had started with a system in Region

I with some sites in the silenced domain. This time, the silenced domain would

shrink and the system moves upward in Figure 2.10 until it reaches the zero-

velocity line. In the sense of the above discussion, the constraint 2.29 acts as a

negative feedback on the perturbation to the system.

In conclusion, if the system has an stable free boundary between silenced and

active domain, then it has to be on the zero-velocity line. The only way a system

can be not on this line is if all the sites are in one domain. If a system is stably

in Region I (Region II) of Figure 2.10, then all the sites will be in Sh state (Sl

state).

For a given system with certain length (L), Stot, v and γ, we want to de-

termine where in the bifurcation diagram it is located. If the system is in the

bistable regime, there are two possible states, Sl(ρ, α, γ) and Sh(ρ, α, γ). In the

silenced monostable or active monostable region, there is only one possible solu-

tion, Sm(ρ, α, γ). Note that for fixed α and γ, these solutions are monotonically

increasing function of ρ.

Consider a particular value of γ. Assume this value is high enough so that,

for certain range of ρ, the system is in the bistable regime. In other words, γ is

greater than γcritical point (for Figure 2.10 this value is around 10). Lets consider

the following function.
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Figure 2.11: Constraint imposed by finite supply of SIR proteins. Adapted from
[33].

φ(ρ, α, γ, x) =



φ1 = Sm(ρ, α, γ) L+ ρ v if ρ in active monostable region ,

φ2 = Sl(ρ, α, γ) L+ ρ v if ρ in Region I of bistable regime ,

φ3 = Sl(ρ, α, γ) (1− x) L + if ρ on the zero-vecity line (0 ≤ x ≤ 1) ,

Sh(ρ, α, γ) x L+ ρ v

φ4 = Sh(ρ, α, γ) L+ ρ v if ρ in Region II of bistable regime ,

φ5 = Sm(ρ, α, γ) L+ ρ v if ρ in silenced monostable region .

(2.30)

The variable x represents the fraction of the system in the Sh domain. It is present

only for a particular value of ρ for which the system is located on the zero-velocity

line (See Figure 2.11). Note that φ is a monotonically increasing function of ρ

and x.

For a fixed value of γ, α and Stot, to determine what the configuration of a

system is and where in the bifurcation the system is located, one has to:

find ρ(α, γ) and x(α, γ) such that φ(ρ, α, γ, x) = Stot . (2.31)
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Note that, we should have really written ρ(α, γ, Stot, L) and x(α, γ, Stot, L), how-

ever, for the sake of brevity, we did not write the last two parameters. How can

we calculate ρ(α, γ) and x(α, γ)? Let us consider some particular values of ρ

which are of interest. In the active monostable region, the minimum value of ρ

is 0 and the maximum value happens when we touch the bifurcation line (green

line) in Figure 2.10 from below. We call this value ρbu(α, γ) (b stands for bifurca-

tion and u for active). Let us refer to the value of ρ on the zero-velocity line by

ρz(α, γ). As we increase ρ, we hit the green line again, this time on the boundary

between bistable regime and the silenced monostable one. Let us call this value

ρbs(α, γ) (b stands for bifurcation and s for silenced). With this notation, we

have: ρbu < ρz < ρbs. Using this notation and the definitions given in Equation

2.30, we have:

φ1(ρbu(α, γ), α, γ) < φ3(ρz(α, γ), α, γ, x = 0) < φ3(ρz(α, γ), α, γ, x = 1) < φ5(ρbs(α, γ), α, γ) .

(2.32)

Also, note that:

φ1(ρbu(α, γ), α, γ) = φ2(ρbu(α, γ), α, γ) and φ4(ρbs(α, γ), α, γ) = φ5(ρbs(α, γ), α, γ) .

The first step in determining the configuration of a system and where in

the bifurcation diagram it is located is to compare Stot with the 4 values given

in Equation 2.32. If Stot < φ1(ρbu(α, γ), α, γ), the system is located in the

active monostable region. Similarly, if Stot > φ5(ρbs(α, γ), α, γ), the system

is located in the silenced monostable region. If φ1(ρbu(α, γ), α, γ) < Stot <

φ3(ρz(α, γ), α, γ, x = 0) The system will be in Region I of Figure 2.10. On the

other hand, if φ3(ρz(α, γ), α, γ, x = 1) < Stot < φ5(ρbs(α, γ), α, γ), the system

will be in Region II. For each of these regions, one can numerically solve the

corresponding φi in Equation 2.30 for different values of ρ and find the one that
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satisfies constraint 2.31.

The only remaining case is when

φ3(ρz(α, γ), α, γ, x = 0) < Stot < φ3(ρz(α, γ), α, γ, x = 1) ,

which corresponds to a system with domains of silenced and active regions coex-

isting with each other. The fraction of the system in the Sh domain is determined

by satisfying:

Sl(ρz(α, γ), α, γ) (1− x) L + Sh(ρz(α, γ), α, γ) x L+ ρz(α, γ) v = Stot ,

which, in turn, implies:

x =
(Stot − ρz(α, γ) v − Sl(ρz(α, γ), α, γ) L)

(Sh(ρz(α, γ), α, γ) L− Sl(ρz(α, γ), α, γ) L)
. (2.33)

In summary, we showed how to calculate the self-adjusting parameter ρ, as well

as the configuration of the corresponding system.

Self-adjusting path in the bifurcation diagram

Imagine we have a knob which allows us to play with the value of γ. In fact,

experimentally, such a knob is available. By changing the concentration of nicoti-

namide (NAM), an inhibitor of Sir2p, one can effectively modulate γ [41]. We

would like to know how a system changes as one varies the value of γ. Let us first

consider the simple case where ρ is constant, as opposed to being a self-adjusting

parameter. Figure 2.12A shows the path of such a system which is simply a

horizontal line (magenta line). Figure 2.12B shows the fraction of this system

in the high S solution. For this particular case, since the path is close to the

cusp point, the size of the Region I and II is relatively very small. However, the

shape of Figure 2.12B, up to a shift along the γ axis, is independent of how close
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or far from the cusp the path crosses the bistable regime. As long as we are in

the monostable silenced regime or Region II (above the zero-velocity line) of the

bistable regime, the system is in the high S domain, namely, the fraction is 1. On

the zero-velocity line itself, the fraction can be any number. As soon as we cross

the zero-velocity line into the Region I and monostable active regime, the system

will be in the low S domain, namely, the fraction is 0.

How about when there is a finite supply of ρ and constraint 2.29 is in action?

Figure 2.12C and D show the results. Basically, the magenta line and the pink

line in Figure 2.12C and D are, respectively, the functions ρ(α, γ) and x(α, γ)

satisfying the Equation2.31. For very large values of γ, all the sites are in the

high S solution and the system is either in the monostable silenced regime (not

shown in the picture) or Region II of the bistable regime. As one decreases γ, the

system hits the zero-velocity line and the fraction x start to drop to values lower

than 1. Depending on the parameters, Figures 2.12B and C could have looked

different. For example, on the zero-velocity line, the fraction x is not necessarily

a monotonically increasing function of γ.

2.3.2 Coupling different regions via ambient SIR concen-

tration

We want to analyze a situation which is inspired by our model system, budding

yeast. Each of the 16 chromosomes in a haploid yeast has 2 telomeric regions,

one at each end. In addition, there are two regions named HML and HMR

located on chromosome III. The HML/HMR loci are relatively small in size (∼ 10

sites). In both HML/HMR loci and telomeres, silencing is initiated by nucleation

centers. One important difference is that HML and HMR loci are surrounded by

boundary elements stopping the silencing domain from spreading. On the other

hand, telomeric regions have free boundary between silenced and active domains.
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Figure 2.12: The self-adjusting path in the bifurcation diagram as γ varies. A)
Assuming ρ is constant. B) Fraction of the system in the high S solution for
(A). C) Assuming there is finite supply of ρ (constraint 2.29). D) Fraction of the
system in the high S solution for (C). For all graphs, we chose L = 200 sites,
Stot = 110, α = 60 and v = 1.
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Our goal is to study the effect of variation in γ on this system. Since HML/HMR

loci are small in size, let us ignore their contribution to the constraint 2.29. Telom-

eric regions have free boundary and from our discussion in the previous section,

we know how to determine the self-adjusting path in the bifurcation diagram or

equivalently the self-adjusting parameter ρ(α, γ). This parameter is the ambient

concentration of SIR proteins which is also available to HML/HMR loci. In other

words, HML/HMR loci read out the value of ρ(α, γ) as it changes due to variation

of γ and the resulting effect on the state of the telomeric silenced domain. The

possible states for HML/HMR loci depends on the value of ρ(α, γ), α and γ. In the

bistable regime, the two possible states are Sl(ρ(α, γ), α, γ) and Sh(ρ(α, γ), α, γ).

In the monostable regime, there is only one possible solution, Sm(ρ(α, γ), α, γ).

Let us start with the following initial condition. The system is initially on

the zero-velocity line. The silenced domain at telomeric regions coexist with the

active domain (free boundary separating them). Both HML and HMR loci are

in the silenced state, i.e. Sh(ρ(α, γ), α, γ). For the sake of example, imagine the

system is represented by the bifurcation diagram in Figure 2.12C. In this case,

the above scenario is consistent with an initial value of γ, for example, around

30. Point a in Figure 2.13 corresponds to the the value of Sh(ρ(α, γ), α, γ) at this

initial point.

As we decrease γ, to stay on the zero-velocity line, ρ(α, γ) increases. A priori,

it is not obvious whether Sh(ρ(α, γ), α, γ) is going to increase or decrease. How-

ever, it can be easily obtained numerically. Point b in Figure2.13 corresponds

to a value of γ for which the system is still on the zero-velocity line. In certain

range, Sh(ρ(α, γ), α, γ) increases, whereas, in another range, it decreases. We are

not sure if small changes in the value of Sh(ρ(α, γ), α, γ) are experimentally ob-

servable. Note that, as long as the system is on the zero-velocity line, the change

in Sh is smooth.
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Figure 2.13: Hysteresis effect on the state of HML and HMR loci.

An interesting thing happens when the path of the system exit the zero-

velocity line and enters Region I of the bistable regime (γ ∼ 11.4). By this

time, the silencing on the telomeric regions has shrunken to zero. Now, the

Sl(ρ(α, γ), α, γ) solution is more favorite than Sh(ρ(α, γ), α, γ). Therefore, the

state of HML and HMR loci would change to the lower, more active solution

(point c in Figure 2.13). As we keep decreasing γ, the Sl(ρ(α, γ), α, γ) solution

decreases as well. Eventually, the system crosses the bifurcation line (point d)

and goes into the active monostable regime (point e).

What happens if we start to increase γ? From point e to d to c in Figure 2.13,

the state of HML and HMR loci goes back on the same path as before. However,

at point c, where the system hits the zero-velocity line, the level of silencing at

HML and HMR loci takes a new path. Previously, when we approached point

c from right, HML and HMR loci were in the Sh(ρ(α, γ), α, γ) solution, whereas
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this time, they are in the Sl(ρ(α, γ), α, γ) solution. If we increase γ, the state of

these loci will stay on the lower branch and move towards point f. The counter-

intuitive behavior is that, at point f compared to point c, although γ is higher,

the silencing has reduced:

S
f

l (ρ(α, γ), α, γ) < S
c

l (ρ(α, γ), α, γ) . (2.34)

We are also performing experiments on yeast cells by monitoring the state of

HML,HMR and telomeric regions, while changing γ. We have seen signs consistent

with the counter-intuitive behavior of silencing reduction from point c to f in

Figure2.13. One has to make sure the point where the silencing start to reduce

indeed happens at point c, namely, the point where the system hits the zero-

velocity line. At this point, the silencing domain at telomeric region should start

to expand as well. In conclusion, we have to verify that the reduction in HML and

HMR silencing happens when the silencing domain starts to form and expands at

telomeric regions. This requires monitoring HML, HMR and telomeric activity

at the same time. We hope to accomplish this in future.

2.4 Discussion

In this chapter, we concerned ourselves with epigenetic aspect of cellular differen-

tiation. We studied a model of chromatin silencing in budding yeast. We analyzed

the bifurcation diagram of the system and found the conditions under which it

becomes bistable. Our model gives rise to different dynamical behaviors possi-

ble within the same molecular model and guides the formulation of more refined

hypotheses that could be addressed experimentally. The model also helped us

to understand the phenotype of some mutants. One issue which still remains to

be addressed is how different genomic domains (silenced vs active) get inherited

during cell division.
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We are also performing experiments to verify qualitative features of our model.

Our goal is to sweep different points in the parameter space by changing concen-

tration of certain chemicals affecting γ. We analyze single cell gene expression

data as the system goes through different parts of the parameter space. We are

looking to compare the experimental results with qualitative predictions of our

model. In particular, we consider the case where there is a finite supply of SIR

proteins. The resulting depletion effect gives rise to interesting counter-intuitive

behaviour.

In the biology context, the discussion on the process of silencing is mostly fo-

cused on the case where the silencing propagation is initiated through a nucleation

center. However, an important aspect which has not received much attention yet

is the degree of the robustness of the system to spontaneous nucleation. One of

our future goal is to analyze the stability of solutions of our model to the noise

and the switching between different states. It is very well a possibility that there

is more to the control mechanism of epigenetic states and our theoretical consid-

erations might shed some light on this aspect, for example, by suggesting specific

signatures to look for in experimental studies.



80

Chapter 3

De Novo Genome Assembly Using Paired Reads

In this chapter, I will present SOPRA (Statistical Optimization of Paired Read

Assembly), a new tool for de novo assembly of paired reads produced by next-

generation sequencing platforms.1

3.1 Background

The instruction set of living organisms is stored in their DNA using a language

composed of four letters A, T , C and G. Expectedly, knowledge of the DNA

sequence is of central importance. To name a few, the sequence is used to look

for genes, regulatory elements and pathways, evolutionary comparison of different

species, relation between mutations/rearrangements and diseases, etc. In this

section, an overview of the sequencing history and the bioinformatic challenge

faced in extracting information from the sequencing data is presented.

Before we continue, I should mention that DNA is composed of two paral-

lel strands attached together by hydrogen bonds. The sequence of each strand

uniquely determines the sequence of the other one, which is why they are named

complementary strands. The reason is that hydrogen bonds only happen between

A and T , or between C and G. Therefore, A, T , C or G on one strand will be

complemented respectively by T , A, G or C on the other strand. Figure 3.1A

shows what a piece of DNA would look like.

1SOPRA is available freely, under the GNU Public License, at
http://www.physics.rutgers.edu/∼anirvans/SOPRA/
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3.1.1 Brief history

The field of modern DNA sequencing started in 1977 and has been followed by

a rich and exciting history [42]. In 1977, Frederick Sanger used his method to

sequence a virus (bacteriophage ΦX174 with genome length of 5386 bp), the first

organism to be fully sequenced [43]. A series of improvements in the technology,

over nearly 20 years, allowed complete sequencing of a cellular genome from two

bacteria in 1995 (H. influenzae and M. genitalium with genomic length in the or-

der of 1 Mb). The first sequenced eukaryotic genome was from yeast S. cerevisiae

(12.0 Mb), in late 1996. Today, several hundred bacterial genomes up to around

10 million base pairs and several eukaryotic genomes with up to a few billion base

pairs have been sequenced and submitted to online databases 2.

The length of DNA varies from a few thousands to a few billion base pairs.

There is no current technology to simply read the whole genome sequence from

one end to the other. Currently, the longest read length that can be read is

around 1000 bases. For this reason, the traditional method of whole genome

sequencing involved a process named chromosome walking. In this process, the

genome is divided into several large fragments, each of which had to carefully be

constructed and mapped to the original genome. This was an inconvenient and

extremely time consuming step. In 1995, Craig Venter and collaborators applied a

new method referred to as whole genome shotgun sequence (WGS) to the organism

H. influenzae [44]. Today, WGS is the prevalent method of sequencing. WGS

simply refers to the idea of randomly breaking up the DNA into little pieces and

sequencing the pieces separately. The process of breaking up the DNA is applied

to many copies of the same DNA. This produces fragments which come from

overlapping regions and share similar sequences. Using this overlap, one can try

to stitch the small pieces back together to reconstruct the original sequence. The

2For example, http://www.ncbi.nlm.nih.gov/ or http://www.ensembl.org/index.html
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general strategy of sequencing a DNA fragment at random places had been used

before. However, in the H. influenzae paper, it was applied for the first time on

a whole genome of relatively long length (1.8 Mb).

During the 90’s, the growing need for DNA sequencing resulted in the estab-

lishment of many specialized sequencing centers based on the Sanger biochemistry,

where many of the steps were performed in an automated and parallelized fash-

ion. However, the demand of biological research required far higher throughput

and lower cost.

A new generation of sequencing methodologies started to appear in 2005

[45, 46]. By producing gigabases of data per run at a moderate cost (< $50,000),

the new high-throughput sequencing (HTS) platforms have dramatically increased

the sequencing capacity. In contrast to factory-like Sanger sequencing centers, the

new sequencers can be hosted in a room and be operated by a single person. For

the above reasons, application of new sequencing technologies is engaging large

communities of scientists in different areas and holds the promise of revolution-

izing the field of biological research [46]. To name a few, the list of applications

includes gene expression analysis, mutation mapping, non-coding RNA discovery,

metagenomics, and protein binding site identification [47, 48].

We do not get into the detail of the methodology employed in various se-

quencing technologies (see [46] for a review). However, on the practical level,

one has to deal with a set of drawbacks that came along with the advantages of

HTS sequencers. The drawbacks of the new technologies are the read length and

the raw accuracy. Current implementation of Sanger sequencing can achieve read

length of up to 1,000 bp. However, the read length for HTS platforms is between

30 to 100 bp. The error rate of HTS technologies is also more than one order of

magnitude higher than the traditional methods. These challenges have provided

major motivation for our work which I present in this chapter.

Possibly, both of the above limitations drawbacks will be ameliorated by the



83

future advances in the technology. In addition, considering the huge demand for

the sequencing, there is still a need for the cost to be reduced. The catch phrase

of ‘$1000 genome’ refers to the goal of reducing the cost such that the genome of

an individual person can be resequenced for $1000. This is specially going to be

important in an era of personalized medicine. One can truly recognize that the

discoveries done starting from early signs of existence of a hereditary element [49]

to the current goal of ‘$1000 genome’ is an amazing landmark in the history of

human kind.

3.1.2 De novo assembly

As we mentioned, shotgun sequencing is the method of choice today. From bioin-

formatics point of view, there are essentially two types of problems faced in ex-

tracting data from shotgun sequencing data: alignment or mapping and de novo

assembly. The first case is related to the situation where the reference genome (or

a close-by genome) is known. Examples of this case include mutation discovery,

protein binding site discovery, etc. In case the reference genome is not available,

one can use the overlap between small reads to stitch them back together and

build longer sequences. These longer sequences are named contig and the process

of reconstructing the genome is named de novo assembly.

There are a few reasons that in de novo assembly, we typically do not get

one contig covering the whole original sequence. The first reason is that short

reads are sampled randomly from the genome. Therefore, there is always a chance

that there is not enough reads from certain region of the genome and there will

be a break in the contig assembly at that point. This issue is quantified in the

Lander-Waterman formula given below.
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Figure 3.1: Whole genome shotgun sequencing. A) DNA is composed of two
complementary strands. Base A only pairs with base T , whereas, base C can
only pair with base D. B) The maximum length of a fragment that current
technology can read is less than 1,000 bp, much shorter than DNA length. One
strategy, named shotgun sequencing, is to randomly break up many copies of the
DNA into short pieces and sequencing the pieces separately. The short reads
which come from overlapping regions will share similar sequences. Note that two
overlapping pieces have to come from different copies of the DNA. Also, for each
short read, it is not known which strand of the DNA it is coming from. Whole
genome shotgun sequencing is the prevalent method of sequencing today (the
other alternative method is called primer walking or chromosome walking). C)
The process of joining back the short reads together into larger pieces goes by the
name of contig assembly.
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Lander-Waterman formula

Let us introduce a few notations. Let N be the total number of short reads, each

with the length of L. Let G denotes the genome length. The coverage is defined

as c = NL
G

. This is the average number of reads covering any given point on

the genome. The average number of reads starting from a particular position is

α = N
G

= c
L

. For two reads to be declared overlapping and be joined together,

their overlap needs to be greater than a minimum length. Let us represent this

minimum length by (1−σ)L. Then, the average length of contigs, < x >, is given

by:

< x >= L

[
ecσ − 1

c
− (1− σ)

]
This formula is easily obtained by considering the probability for a read to be

followed by another read after certain number of bases: assume you have a contig

starting from one read. The contig is composed of one or more reads. The

minimum length of a contig is L (this happens when the contig contains only one

read). P (x) is the probability that the length of a contig is equal to x.

P (x) = δL,xe
−ασL +

σL∑
y=1

e−α(y−1)(1− e−α)P (x− y) .

Note that e−α(y−1) is the probability that no read starts in an interval of length

(y − 1). Similarly (1 − e−α) is the probability that at least one read starts from

a particular position. By applying the Laplace transform, we find:

P̂ (s) =
∞∑
x=1

sxP (x) =
sLe−ασL

1− s(1− e−α)1−e−ασLsσL
1−se−α

.

Taking the derivative of P̂ (s) at s = 1 gives the average of x:

< x >= L+
eσc − 1

1− e− c
L

− σL .
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This is the Lander-Waterman formula in the limit of small α = c
L

.

Apart from the random sampling, there are two more factors that affects

contigs length. The first one is that the real data is error prone. As the technology

advances, this factor can be greatly reduced. The second factor is the presence of

repetitive sequences in the genome. To see this, assume there is a repeat sequence,

R, appearing twice in the genome. Once it is flanked by two other sequences, A

and B, i.e., it appears as ARB. In another place, R is flanked by C and D:

CRD. After breaking up the genome and sequencing, we end up with 5 pieces:

A, B, C, D and R. the right side of both A and C overlap with the left side of R.

Similarly the left side of B and D overlap with the right side of R. In the process

of contig assembly, we will be left with the confusion of building ARB or ARD

or CRB or CRD. At this point, contig assemblers typically stop the extension

of these sequences.

In the Lander-Waterman formula, the shortness of read length can be com-

pensate by providing high coverage. However, in practice, typical contig length

obtained from short read data is much smaller than the estimation. For exam-

ple, using some reasonable values for the parameters in the Lander-Waterman

formula, we get:

c = 50 , L = 50 , σ = .3 ⇒ < x > ∼ 3 ∗ 106 .

Instead, in practice, < x > is typically in the order of a few hundred to few thou-

sand base pairs. The main reason is that the shorter the read length, the higher

is the chance that a read maps to several places on the genome. In fact, dealing

with HTS data required a new set of strategies and algorithms, both for contig

assembly and for other applications [50]. The above limitations encountered in

contig assembly could be partially overcome by utilizing mate pair technology,

explained below.
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Mate pair technology

Consider randomly sheared DNA fragments with varying lengths and unknown

sequences. Using gel electrophoresis technique, one can select the fragments which

have their length approximately equal to some targeted value. Sequencing both

ends of such fragments provides us with pairs of read separated by a known

distance along the genome. In addition, depending on the sequencing method,

one knows if the two reads are coming from the same strand or from the opposite

strand of the DNA. This technique is called mate pair or paired-end technology.

If two legs of a mate pair are incorporated into two separate contigs, we can infer

the relative orientation (i.e. strand) and relative position of those two contigs

on the genome. Such ordering of contigs using mate pair information is called

scaffold assembly.

Mate pair/paired-end sequencing was a key innovation that allowed shotgun

sequencing of large complex genomes such as humans and Drosophila [51]. In the

following, unless we are explicitly contrasting the two methods, we will use the

term mate pair to refer to both of these technologies.

Over the past few years, several algorithms have been developed for assembly

of short reads. These algorithms can be divided into two broad categories. Some

methods, based on 3’ kmer extension, use particular data structures to efficiently

search for short reads overlapping and extending a seed sequence [52, 53, 54].

In contrast, the graph-based methods pose the sequence assembly as a problem

of finding paths on a graph that encodes the short read overlap information (de

Bruijn graph) [55, 56, 57, 58].

The current version of some of the above-mentioned short read assemblers

can handle mate pair information. However, the use of this information was not

central to the concepts that led to the design of most of these algorithms. The

sole exception is the ALLPATHS assembler [57], where the use of mate pairs is

essential. From a practical point of view, one drawback of ALLPATHS is that
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it requires at least two paired libraries, with very different insert sizes. Also,

the performance of this assembler degrades rapidly as the coefficient of variation

of insert size in a library increases past a few percent [57]. This sensitivity is

a problem for assembly of real sequence data, as we will see. In the context of

previous generations of sequencing technologies with longer reads, the incorpora-

tion of mate pair information has also been addressed, either in conjunction with

contig assembly [59, 60] or as a scaffolding module [61].

I worked on developing SOPRA (Statistical Optimization of Paired Read As-

sembly), a tool designed to exploit the mate pair/paired-end information for as-

sembly of short reads. The main focus of the algorithm is selecting a sufficiently

large subset of simultaneously satisfiable mate pair constraints to achieve a bal-

ance between the size and the quality of the output scaffolds. Scaffold assembly

is presented as an optimization problem for variables associated with vertices and

with edges of the contig connectivity graph. Vertices of this graph are individ-

ual contigs with edges drawn between contigs connected by mate pairs. Similar

graph problems have been invoked in the context of shotgun sequencing and scaf-

fold building for previous generation of sequencing projects. However, given the

error-prone nature of HTS data and the fundamental limitations from the short-

ness of the reads, the ad hoc greedy algorithms used in the earlier studies are

likely to lead to poor quality results in the current context. SOPRA circum-

vents this problem by treating all the constraints on equal footing for solving the

optimization problem, the solution itself indicating the problematic constraints

(chimeric3/repetitive contigs, etc.) to be removed. The process of solving and

removing of constraints is iterated till one reaches a core set of consistent con-

straints.

Generally speaking, current scaffolding algorithms fall into two categories.

3Chimeric refers to contigs which are formed by mistakenly joining two or more distinct part
of the genome together.
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Figure 3.2: Mate pair technology. By sequencing the ends of size-selected frag-
ments, one obtains pairs of short reads separated by a known distance along the
genome. From the sequencing method, the relative orientation (strand)
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Prominent de Bruijn graph based contig building algorithms (e.g. Velvet [58] and

Euler [59]) utilize mate pairs to improve the path/walk in the same de Bruijn

graph. The other category of scaffolding algorithms [60, 61], formulate the prob-

lem in terms of graph theoretic constructs in which vertices of the graph are

associated to contigs and edges encode mate pair information. Although our ap-

proach to the scaffolding problem has partial similarity to this last category, our

solution strategy is different, as we will explain. Our algorithm could be imple-

mented, in principle, for any kind of mate pairs, from Sanger reads to the HTS

data. However, the special challenges inherent in scaffolding with short read data

necessitate an approach that is more sophisticated than those developed so far.

That is why we implemented and tested SOPRA in the context of short reads

from next-generation technologies.

Existence of repetitive regions in DNA, errors in the sequencing process and

mis-assembly of short reads into contigs are all factors which contribute to the

complexity of scaffold building using mate pair information. This complexity

arises in the form of apparent inconsistency among the set of constraints laid by

the mate pairs. Detecting and eliminating the sources of these inconsistencies is

essential for the success of any algorithm dealing with mate pair data. This issue

is especially important in the context of short read data, since, we expect a higher

number of problematic mate pair constraints in the process of scaffold building.

Existing scaffolding algorithms follow a greedy approach, starting with certain

schemes of ordering the contigs and pairing information. The mate pairs are then

iteratively incorporated as long as the new information does not conflict with

the previously assembled scaffolds. In other words, at each step, only a subset

of contigs and links in between are considered to improve the assembly. Given

the nature of short read data, solution strategies employed in previous studies

face difficulties for such kind of data [50]. In the next chapter, I will explain our

approach in detail and compare it with existing algorithms.
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Color-space data

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is a novel HTS

platform. It uses four fluorescent color probes (coded as 0-3) for reading dinu-

cleotides, namely, two neighboring bases at a time. The sixteen possible dinu-

cleotide combinations are divided into groups of four, each of which is assigned

a unique color (e.g. color 2 is assigned to combination AG, GA, TC and CT).

However, the groups are designed in such a way that, every combination of the

first base and the color call uniquely determines the second base. In other words,

each color encodes a transition matrix in the base-space.

Each SOLiD read starts with a reference base, the last base in the primer

(usually T or G), followed by a certain number of color calls e.g. G10223330.

Using the reference base and the first color call, we can find the first letter base,

which in turn can be combined with the second color call to obtain the second

letter base. Continuing so forth, we can translate the whole sequence from color-

space to the conventional base-space.

The issue is if one of the color calls is wrong (because of an error in the se-

quencing process), the whole translation from that point on will be wrong. In

other words, one error in the color-space will propagate into many errors in the

base-space. It is because of this error rate magnification that we do not simply

translate the SOLiD output directly to the letter-space. Instead, SOPRA trans-

lates the resulting color-space assembly using a dynamic programming method

that avoids such error propagation, as we will explain below.

Among the available de novo assemblers, as far as we are aware, Velvet [58] is

the only one that can handle color-space data. Adapting available assemblers for

color-space data is not a trivial task, since, naive translation from color-space to

base-space leads to serious error amplification [62]. Particular attention was paid

so that SOPRA could handle data from the SOLiD platform. The final output,

given in base-space, is constructed from the color-space assembly, as well as from
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additional information obtained by translating only the first color call of all the

reads. This method will prevent the propagation of the error that can happen in

the naive translation.

3.2 Methods

The design of SOPRA is especially targeted to exploit the mate pair information

in the process of scaffold assembly. In other words, SOPRA is a module that

can be combined with any of the available algorithms for contig assembly. Such

a modular design allows greater flexibility and control over the scaffold building

process, as has been noted before [61]. SOPRA proceeds in an iterative fashion

where at each step problematic mate pair constraints are detected and removed.

At each step, one finds a solution consistent with most of the constraints by

statistically optimizing over a cost function. Then, one relaxes the most violated

constraints. This alternation between removing suspicious data and optimization

continues, till we get scaffolds consistent with the remaining trusted constraints.

For color-space data, there is one additional step of translating the assembled

contigs to base-space. For SOLiD sequencer data, SOPRA uses a dynamic pro-

gramming approach to robustly translate the color-space assembly to base-space.

For assessing the quality of an assembly, we report the no-match/mismatch error

rate as well as the rates of various rearrangement errors. Conclusions: Applying

SOPRA to real data from bacterial genomes, we were able to assemble contigs into

scaffolds of significant length (N50 up to 200Kb) with very few errors introduced

in the process.

The flow chart of the assembly process is shown in Figure 3.3. Below, we will

explain each section in more details.
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Figure 3.3: Flow chart of the algorithm. In principle, the contig assembly can
be performed using any of the available contig assembly algorithms. SOPRA
uses the mate pair information to assemble contigs into scaffolds. S-SOPRA
and V-SOPRA correspond to the integration of SOPRA with SSAKE and Velvet
respectively.
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3.2.1 Contig assembly preliminaries

As we mentioned, SOPRA is focused on scaffold assembly. The information SO-

PRA needs from a contig assembler is the computed positions of reads in each

contig. SOPRA reconstructs the contigs based on this information. Note that,

in the case where these reads do not show perfect overlap, reconstruction of the

contigs by SOPRA may not agree with the output of the original contig assembler.

In this work, I present the performance of SOPRA integrated with two partic-

ular contig assembly algorithms, namely, SSAKE [52] and VELVET [58]. We will

refer to these two versions as S-SOPRA and V-SOPRA, respectively. This inte-

gration is relatively straightforward and described in Appendix F. However, for

color-space data, there is one additional step of translating the assembled contigs

to base-space.

Robust translation of contigs assembled in color-space

As we pointed out, the issue with the naive translation of color-space to base-space

is that if one of the color calls is wrong (because of an error in the sequencing

process), the whole translation from that point on will be wrong. In other words,

one error in the color-space will propagate into many errors in base-space. It is

because of this error rate magnification that we do not simply translate the SOLiD

output directly to the base-space. Instead, SOPRA translates the resulting color-

space assembly using a dynamic programming method that avoids such error

propagation, as we will explain below.

We only translate the first color call (using the reference base) to the base-

space but keep the rest of the sequence in color-space. This means a library of

sequences, each of which consists of a reference base and L color calls, will become

a library of sequences that start with a DNA base followed by L − 1 color calls.

If we ignore for a moment the first DNA base, we can use the L − 1 base long
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sequences for contig assembly in the same way as in regular base-space data. Of

course, the result of this assembly will be contigs in the color-space. Although we

do not use the first letter base of the sequences in the assembly process, once a

sequence is used in building a contig, we record where on the contig the first letter

base of the corresponding sequence lies (Figure 3.4). Notice that the first letter

base lies between two color calls and serves as a suggestion for what the DNA base

at that position should be. On the other hand, each color call is located between

two neighboring DNA bases and provides information about the corresponding

dinucleotide.

At this point, the assembly result is a sequence in color-space, C, plus some

letter base suggestions at certain locations of each contig, F . In Figure 3.5, the

color-space contig is represented using blue numbers 0-3, whereas, base-space

suggestions are shown in magenta. Now, we pose the following question: Given a

color-space sequence plus its letter base suggestions, what is the most likely DNA

sequence which gave rise to this data? We will set up a model that allows for

mistakes in the base suggestions as well as in the assembled color-space contigs.

To each arbitrary base-space sequence, the model assigns a probability for that

sequence to be the real DNA sequence. The final translation output would be the

base-space sequence that maximizes this probability.

The reason why this method prevents propagation of error can be counter-

intuitively understood as follows. If the presence of a color call error is ignored,

the nave translation will disagree with most of the base-space suggestions. If this

disagreement goes on for a long stretch, from the perspective of the probability

function, it is better to declare that particular position to be a color call error

and replace it with another color such that the translation becomes consistent

with the stretch of base-space suggestions. The ability to alter a color call to

enhance the consistency with base suggestions in long stretches helps not only

with substitution errors, but also helps to compensate for inconsistency arising
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Figure 3.4: Robust translation from color-space to base-space. The base-space
suggestions, obtained by translating only the first color call of each read, are shown
in magenta. Contig assembly is performed using only the color part (indicated
by numbers 0-3) of each sequence. Inconsistencies between the color-space calls
and the base-space suggestions, signals the presence of errors. We use an error
probability model to find the most likely DNA sequence consistent with this data.
The underlined color calls and suggestions in the figure are declared as mistakes
in the final translation.

from indels. The details of the model are explained in Appendix B.

Contig self-consistency check

We implemented the self-consistency checks described below only in S-SOPRA.

The reason for these checks is that the programs, like SSAKE, which use a greedy

algorithm for contig assembly, are particularly vulnerable to generating chimeric

contigs. If two legs of a mate pair are located on the same contig, then their rela-

tive orientation and position in the contig should match the ones suggested from

the mate pair link. If we observe more than certain number of times (threshold is

a parameter of the software) cases where the orientation disagrees or the separa-

tion between reads is more than one standard deviation different from the insert



97

size, we discard that contig. This method, however, does not necessarily detect

chimeric contigs where two or more regions from different parts of the genome

have been mis-assembled into one contig. Mate pair information can be used to

detect such mis-assemblies, as explained below.

If a contig is genuine, there should be several mate pairs connecting different

locations on the same contig (assuming the contig is at least a few times longer

than the insert size of mate pairs). However, if it is the case that the contig is

composed of two or more sequences coming from different parts of the genome,

there should not be as many mate pair links connecting those sequences together.

For each point on a contig, we count how many mate pair links connect the right

side of that point to the left side. If this number is particularly low for some

region, we cut the contig into two at that position.

Estimation of insert size

In the case where there are enough long contigs, the typical value of the insert

size can be estimated from the mate pairs located on the same contig. To do so,

we first remove the outliers for which the separation between the pair is different

from the suggested insert size by more than the value of the suggested insert size

(or equivalently, more than five times the standard deviation, if we assume it is

20% of the suggested insert size). The empirical insert size is equal to the mean

value of the separation for the remained pairs. The user needs to know only an

approximate value for the insert size based on the library preparation protocol.

Prior knowledge of the typical insert size needs to be accurate only when almost

all contigs are smaller than the typical inserts.

In case the insert size targeted by the library preparation methods is not

available to the user, he/she could take advantage of the empirical distribution of

insert sizes output by SOPRA and determine the typical insert size by inspection.

In any case, it is a good idea to inspect this distribution, to ascertain the quality
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of the mate pair library.

Removal of reads in high coverage regions from scaffolding process A contig

containing repetitive regions can provide conflicting mate pair constraints and

cause mis-assembly in the scaffolding process. Although, one could take up the

problem of resolving the repeat structures, our approach currently is to identify

and remove such contigs from the scaffolding process. One way of detecting

repeats is by looking for high coverage regions in each contigs. If a contig has

high mean coverage (determined by a parameter of the software) we remove such a

contig from scaffold assembly before starting the process. Some contigs have high

coverage locally without having high mean coverage. We exclude mate pairs with

reads falling in such local high coverage regions for the scaffolding considerations

as well (the threshold is a parameter of the software).

3.2.2 Scaffold assembly

If two legs of a mate pair are incorporated into two separate contigs, we can infer

the relative orientation and relative position of those two contigs on the genome.

However, such ordering of contigs is not an easy task, since, the constraints im-

posed by mate pairs are often not self-consistent. The best one can do is to

assign the orientations and positions so that as many constraints as possible are

satisfied. In addition, there can be misleading or incorrect information. These

dubious constraints arise not only from issues like erroneous contig assembly, but

also from innate problems in mate pair data itself.

To elucidate this point, let us examine the two real libraries discussed below

in the performance comparison section. In Figure 3.5, we plot the histogram of

separation between the two reads belonging to a mate pair, obtained by matching

the reads to the reference genome. As we can see, the distribution of separation

could be thought of as a combination of a sharp peak and a broad background that

spans over the entire length of the genome. Even if we limit ourselves to the sharp
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peak (Figures 3.5B and 3.5D), the standard deviation is around 20% of the mean

value. The variability in separation is much larger than values used for generating

simulated data in some studies [57, 58]. The algorithm for position assignment

has to be robust to such large degree of uncertainties. As will be discussed in

the coming sections, in our approach, this goal is achieved by identifying and

removing those mate pairs that belong to the broad background as well as from

averaging effect of imposing all the remaining constraints together.

For contig building, it is often convenient to represent the sequence overlap

information using graph theoretic constructs, e.g. in terms of an overlap graph

or a de Bruijn graph. Similarly, it is useful to encode the constraints given by

mate pair information into a graphical model. In this model, the underlying

undirected graph has vertices corresponding to each contig. Any two contigs

connected through mate pairs have an edge in between. We call this graph the

contig connectivity graph. This graph is similar to the contig-mate-pair graph

introduced in [60], except that here each contig is represented by a single vertex

as opposed to two. This kind of graph structure has been used in other studies

as well [61]. The structure of the contig connectivity graph, at different stages

of the assembly, can be visualized with the help of programs such as GraphViz

package [30].

In our formulation, orientations and positions for each contig are variables

living on the vertices of this graph. If we introduce the mate pair information

as probabilistic constraints on relative orientations and positions of neighboring

vertices on the graph, this graphical model has the structure of a Markov random

field model [63]. Markov random field models were originally inspired by problems

in statistical physics. There are relatively obvious connections between finding

the ground state (the most probable configuration of Markov random field) of

certain statistical physics models and well-known graph optimization problems

as was pointed out by several researchers in the eighties [64]. Such analogies
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Figure 3.5: Histogram of separation between locations of two reads of a mate
pair on the reference genome. This histogram appears to be a combination of
two parts. One part is a distribution peaked around the insert size of the mate
pair library, as expected. However, in addition, there is a broad background.
(A) E. coli data from SOLiD platform. (B) E. coli dataset, but limited to pairs
for which the separation is around the peak region in (A). (C) P. syringae data
from Illumina platform. (D) P. syringae dataset, but limited to pairs for which
the separation is around the peak region in (C). Both distributions in (B) and
(D) have large standard deviations, each around 20% of the corresponding mean
values.
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also led to the simulated annealing [65] as a heuristic method for solving hard

combinatorial optimization problems (see [66] for a review). We will explain our

procedure by invoking the physical analogies, but one could often describe the

same procedure using a language familiar to computer scientists.

We perform the scaffolding in two steps. We first assign the orientation of

contigs, without considering their positions. Once the orientation is determined,

in the second step, we calculate the position of contigs. In this second step, we

only use those mate pair links which are consistent with the orientation assigned in

the first step. In principle, one could have optimized for orientation and position

together, however, our two steps process simplifies the algorithm.

One additional constraint is that distinct contigs cannot be assigned to the

same or overlapping positions. This should be true for every possible pair of

vertices. This means that if we want to impose this condition in the contig

connectivity graph, every possible pair of vertices will be connected by an edge

representing this non-overlapping condition. In other words, every vertex will

be directly connected to all other vertices. In this sense, the Markov random

field structure on the contig connectivity graph is violated. We first solve for

orientations and positions ignoring the non-overlapping constraints. The resulting

solution typically includes some scaffolds for which the non-overlap condition is

not satisfied. We segment these scaffolds into smaller scaffolds satisfying the

non-overlap condition using another Markov random field model living on a new

graph obtained by augmenting the contig connectivity graph with additional edges

between apparently overlapping contigs.

Determining the relative orientation

We indicate the two possibilities for the orientation of contig by Si = 1 and

Si = 2. If two contigs i and j are connected through mate pair links, we associate

a number to it, denoted by Ji,j. The sign of Ji,j is positive if the links suggest
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that two contigs have the same orientation, otherwise it is negative. The absolute

value of Ji,j is equal to the number of links that connect the two contigs. If all the

mate pairs connecting two contigs do not agree with each other, we require that

at least a significant majority do. To be a significant majority, we require the

percentage of the mate pairs in the dominant group to be higher than a certain

threshold, which is a parameter in the software. Otherwise, all the links between

those contigs are ignored.

The reason for rejecting all these links is as follow. For two close-by genuine

contigs, not belonging to repeats, the source of orientational conflicts is the pres-

ence of spurious mate pairs. Usually, these inconsistent spurious links form a

small minority. However, when a part of a contig belongs to repetitive regions or

one of the contig is chimeric, the nature of the orientational conflicts is different.

For example, it is likely that part of the mate pair information suggests the contig

belongs to one strand while some other part of the information suggest it belongs

to the other strand. In such cases, the majority group and the minority group

can have comparable number of links. If a significant majority of links do agree,

the minority links are ignored suspecting that they are spurious. If the numbers

are comparable, then all links are ignored for the reason mentioned above.

For each configuration of orientations, S = (S1, S2, ..., SN), N being the num-

ber of contigs, we define the following cost function:

E[S] =
∑
<ij>

Ji,jSiSj . (3.1)

This quantity, a measure of how many of the mate pair links are satisfied, could

be thought of as the energy of an Ising spin system with interactions Ji,j. If it

were possible to find a configuration to satisfy all the constraints, we would have:
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sign(Ji,j) = sign(SiSj), ∀ i, j. The energy of this configuration would be:

Emin =
∑
<ij>

|Ji,j| .

As we mentioned before, it is often the case that such a configuration does not

exist. Therefore, our goal is to find the best configuration in which as many mate

pair links as possible are satisfied. Effectively, we want to find the orientation as-

signment that minimizes the energy function in Equation 3.1 (Figure 3.6A). This

minimization is equivalent to the maximum weight cut problem, which appeared

in the context of shotgun sequencing [67] and of scaffold assembly [61]. Given that

this problem is NP-complete [68, 69], it is natural to search for heuristic methods.

The approach of these earlier studies is to resolve the constraints in the scaffold

assembly problem through particular greedy algorithms that depend upon ad hoc

schemes of ordering the contigs. The contrast between such approaches and ours

will become clear, as we will explain our algorithm in the Appendix C.

Determining the relative position

For determining the relative positions of contigs, we only use the mate pair links

that are orientation-wise consistent with the optimal configuration found in the

previous section. Consider a set of contigs connected through mate pair links.

Let X = (0, x2, ..., xN), denotes the positions of the start points of these contigs.

By putting x1 = 0, we have chosen a particular system of coordinates. Each

mate, r, connecting contigs i and j, provides us with some information about

xi − xj, encoded in the probability distribution pr(xi − xj). This distribution is

picked around certain value, l
r

i,j, which can be determined from the location of

the two reads in the corresponding contigs and the insert size of the mate pairs

(the formula is presented in the Appendix D).

Had we not assigned the orientations, one could still define l
r

i,j(Si, Sj), with the
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Figure 3.6: Modeling constraints on the contig connectivity graph. (A) For two
contigs i and j connected through mate pairs, the quantity Ji,j encodes the in-
formation about relative orientation (sign of Ji,j) and number of mate pairs con-
necting those contigs (absolute value of Ji,j). Minimizing the energy produces
an orientation assignment that satisfies as many constraints as possible. The
constraints that are not satisfied in the optimal configuration (shown in red) are
ignored in the next part. (B) To determine the relative position of contigs, we
model the collection of mate pairs connecting contigs i and j as a spring attached
to the start points of those contigs. The relaxed length of this spring, l̄ij, is equal
to the average suggested distance between the start points of those contigs given
by mate pair constraints.
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orientations only affecting the sign of the quantity. Note that |lri,j| is the suggested

distance between the corresponding contigs, whereas, the sign determines the

ordering (i.e. which one is to the left and which one is to the right). In Figure

3.6A, next to each edge, we just show Ji,j’s. However, each edge also carries

the additional information on the relative position of the corresponding contigs

(l
r

i,j’s). Before assigning the orientation, the contig connectivity graph does not

fully capture the ordering of contigs, since, as we explained, l
r

i,j is determined up

to a sign. After the orientation assignment, the full information about relative

position of contigs is captured by this graph.

The overall information provided by all the mate pairs linking contigs i and j

is given by
|Ji,j |∏
r=1

pr(xi − xj)

Note that |Ji,j| is the number of mate pairs bridging between contigs i and j. We

do not know the exact form of pr(xi−xj); however, if we take it to be a Gaussian

centered around l
r

i,j, we will have:

pr(xi − xj) ∝ e−(xi−xj−l
r

i,j)
2/2σ2

, (3.2)

where σ corresponds to the variance in the insert size of mate pairs. Our approach

is to determine the relative position of contigs by maximizing the joint probability

distribution:

P (X) =
∏
<ij>

|Ji,j |∏
r=1

pr(xi−xj) ∝
∏
<ij>

|Ji,j |∏
r=1

e−(xi−xj−l
r

i,j)
2/2σ2 ∝

∏
<ij>

e−|Ji,j |(xi−xj−l̄i,j)
2/2σ2

,

(3.3)

where l̄i,j = (
∑|Ji,j |

r=1 l
r

i,j)/|Ji,j| is the average suggested distance between the start
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points of contigs i and j. Equivalently, one could minimize the function:

E(X) =
∑
<ij>

|Ji,j|
2

(xi − xj − l̄i,j)2 . (3.4)

. This function has an alternative interpretation as the energy of a coupled system.

In this analogy, the collection of mate pairs between two contigs i and j is replaced

by a spring connecting the start points of those contigs. The spring constant is

equal to |Ji,j| , and the relaxed length of the spring is given by l̄i,j. In this way, the

original system of contigs connected through a network of mate pairs is modeled

as a system of objects connected through a network of springs (Figure 3.6B). The

solution maximizing the probability given in Equation 3.3 corresponds to the

equilibrium position (X∗) of the objects in the spring system. These positions

could be calculated by solving a set of linear equations corresponding to the force

on each object being zero.

In the equilibrium position, if the distance between two contigs is equal to the

distance suggested by the mate pairs connecting them, then the corresponding

spring is relaxed; otherwise, the spring is either stretched or compressed. In other

words, we could define ∆ij = |x∗i − x∗j − l̄ij| as a measure of the degree to which

the mate pair constraints are violated. If all the suggested distances were self-

consistent, all ∆ij’s would be nearly zero (no stretch/compression in the springs).

In real data, it is possible that some sequences match in several locations on the

genome, and therefore, mate pair information would not uniquely determine the

position of contigs. In our model, the sign of this non-uniqueness is that in the

equilibrium solution, X∗, some of the springs will be stretched or compressed.

The same situation can arise because of contig mis-assembly where two separate

regions of the genome are joined into one contig.

When there is a stretched or compressed spring, we remove the contigs at-

tached to the end of that spring from the system and restart the scaffold assembly
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on the remaining contigs. In other words, we go back to the orientation assign-

ment step (Figure 3.3). The cycle stops when in the equilibrium position, all the

springs are close to their relaxed state, namely, all ∆ij’s are below a certain thresh-

old. Note that X∗ is the positions of the start points of contig. If the orientation

of contig i is positive, it means that it covers the interval (x∗i , x
∗
i + lengthi − 1)

on the scaffold. If i has negative orientation, we assign the reverse complement

of i to the interval (x∗i − lengthi + 1 , x∗i ).

The greedy algorithms, previously applied to the combinatorially difficult

problem of assigning relative positions, consider contigs in a certain order; an

order that depends on the number of links associated with each contig [61, 60].

Potentially, such methods could be prone to incorporating repeats/chimeric con-

tigs which could have significant number of links associated with it. In contrast,

our method has the advantage of providing an unambiguous means for flagging

misleading distance constraints with having to commit to any such order.

Detecting tangled scaffolds by the contig density profile

We calculated the position of the contigs in a scaffold from a set of linear equa-

tions based on the assumption in Equation 3.2. Of course, position intervals cor-

responding to distinct contigs should be non-overlapping. However, the solution

of these linear equations is not guaranteed to satisfy this non-overlap condition.

In fact, such overlapping configurations do arise in practice. Below, we explain

some of the causes leading to this problem.

Consider the scenario described in Figure 3.7A. There are two sets of contigs,

shown in green and magenta, belonging to distinct regions of the genome. Contigs

within each set are self-consistently connected through mate pairs. Assume during

contig assembly, contig 3 from the first set and contig 7 from the second set get

mis-assembled into one contig. In this case, we obtain a scaffold that contains all

the contigs and yet, does not have any stretched or compressed spring.



108

In addition to contig mis-assembly, existence of repetitive regions in the genome

is another factor that can cause improper joining of multiple scaffolds. In that

case, contigs 3 and 7 in Figure 3.7A are seen as one contig in the assembly, whereas

they are really copies of the same sequence that matches on multiple places on

the genome. Each copy can cause the mis-incorporation of a new set of contigs

from its neighbors.

In order to detect this type of complication, we define the ‘density profile’,

a quantity that represents how many contigs cover each region of a scaffold. In

the final assembly output, this density should be near one for all regions of each

scaffold (except for gaps where the density is zero). For a configuration like in

Figure 3.7A most of the points in the problematic region are covered by two

contigs, leading to a higher density. Therefore, by inspecting the density profile,

we expect to detect these cases where two or more scaffolds are mis-assembled

into one scaffold. Figure 3.7B shows the density profile obtained in the assembly

process of a real dataset from E. coli genome (discussed below in the performance

comparison section). Notice that there are two regions with density above the

background density of one, and that those high densities are in fact very close

to integers (3 and 2). The nearly integral values indicate how many potentially

distinct scaffolds have been joined together.

Scaffold segmentation

After detecting high-density regions, we need a procedure to identify and remove

the problematic contigs that lead to the merger of disjoint scaffolds. We will call

these contigs ‘junctures’ for future references. We wish to assign the rest of the

contigs into distinct scaffolds in such a way that each scaffold has an acceptable

density profile. With that goal in mind, we provide each contig i with a variable

σi. One could think of σi’s as a putative scaffold label. From the density profile,

we can determine q, the total number of distinct labels (scaffolds) that we need.
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Figure 3.7: Detecting and resolving scaffold mis-assembly using density profile
and Potts model. (A) Two scaffolds, shown in green and magenta, belong to the
different regions of the genome. Mis-assembly of a chimeric contig composed of
contig 3 from the green scaffold and contig 7 from the magenta scaffold causes
the two distinct scaffolds to join together. In the new scaffold, many positions
are covered by two contigs. (B) For a genuine scaffold, the density profile (see
text for definition) should be close to one (or zero for gaps). The plot shows the
density profile for a mis-assembled scaffold obtained in the assembly process of
a real dataset from the E. coli genome. Each point along the x-axis represents
a window of length 1000 bases along the scaffold. The y-axis shows the average
density for positions located within each window. From this profile, we can infer
that at least four scaffolds have been mis-assembled together. (C) Our labeling
method for dividing contigs into distinct groups for the case shown in (A) can
lead to any of the three possibilities shown here. We use color to present different
labels. Note that the problematic contig (3-7) always lies at the boundary between
different groups.
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For example, the profile in Figure 3.7B implies q = 4.

We want to assign the labels according to two criteria. On one hand, we

want the contigs that are directly connected by mate pairs to have the same

label. On the other hand, we want the contigs that lie over each other to have

different labels. To present these criteria mathematically, we define two matrices

D and O. If contigs i and j are directly connected by mate pairs, the matrix

element Dij is one; otherwise, it is zero. The matrix element Oij is a positive

number monotonically increasing with the length of the region that contigs i and

j cover simultaneously. We want to find the label assignment that minimizes the

following cost function:

E[σ] = −
∑
i,j

Dij δσi,σj +
∑
i,j

Oij δσi,σj . (3.5)

Here, δσi,σj is the Kronecker delta; it is one if σi and σj are equal and zero

otherwise. This cost function is exactly the energy of a q-state Potts model

with both ferromagnetic and antiferromagnetic interactions. We use a simulated

annealing method [65] to find a configuration of label assignment that minimizes

the above energy (details explained in the Appendix E).

In the minimum energy configuration, neighboring contigs belonging to the

same scaffold prefer to have the same label while contigs belonging to different

scaffolds, juxtaposed in position space, prefer to have different labels. This is a

direct consequence of the two criteria with which we began. However, these two

criteria cannot be satisfied everywhere at the same time. Around the junctures,

namely, contigs joining such juxtaposed scaffolds, the two criteria are at conflict

with each other. The result of this conflict is the formation of domain boundaries

(change of label) in the neighborhood of the junctures. To get a better sense of

this phenomenon, let us revisit the example in Figure 3.7A. The result of label

assignment by our algorithm could give rise to any of the three configurations
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in Figure 3.7C (different labels are shown by different colors). Note that the

juncture is always located at the boundary where different labels meet.

Motivated by this discussion, we form an initial list of suspected junctures

from the contigs located at label boundaries, namely, contigs having at least one

neighbor with a different label. This list often has much fewer members than the

original set that we started with. Ideally, one would like to consider the result of

removing all the different combinations of suspected contigs from the original set

to check if it resolves the problems in density profile. An exhaustive search over

all combinations becomes possible when the list is small. Otherwise, one has to

limit the list to members located at the densest part of the scaffold. If the list is

still too large, we have to proceed with a randomly chosen subset.

After removing any subset of these suspected junctures from the original set of

contigs, the remaining set of contigs will form one or more connected components.

We score each subset by combining two numbers, one penalizing the formation

of too many small components and the other penalizing the presence of high-

density regions. We choose the best scoring subset to be removed and focus on

the resulting connected components.

For each connected component, we check whether the corresponding density

profile is free of high-density regions. All connected components with satisfactory

density profiles are declared to be new scaffolds. For the rest, we restart the

labeling process individually for each component, and continue this process until

all the components have satisfactory density profiles. The removed contigs, either

in the Potts model or in the spring model, are reported as single contigs at the

end of the assembly.

The Potts model based approach is different from the formulation in terms of

non-self-overlapping path introduced in Pop et al. [61]. The method of arbitrarily

picking the longest non-self-overlapping path [61] through the tangle might end

up joining two scaffolds wrongly. In our method, we remove the problematic
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contigs, even if, in some cases, it could lead to some good scaffold breaking up. If

there are mate pairs overarching the removed contigs, it is possible for scaffolds

to have the correct continuation. This is the case for the example in Figure 3.7A,

since contigs 6 and 8 are connected by a mate pair overarching contig 7.

Contig joining and gap estimation

In the last stage of scaffold assembly, we decide whether neighboring contigs in

a scaffold are to be joined or be separated by a gap. Notice that according to

the computed positions, the end of two neighboring contigs might still have a

small positional overlap (the density profile is sensitive only to overlaps larger

than a few bases); otherwise, they will be separated by a gap. In either the case

of positional overlap or the case where the estimated gap is smaller than certain

value (e.g. 10 bases), if the ends of neighboring contigs are similar, we join those

two contigs. For the rest of the cases, we insert a sequence composed of letter

‘N’ between the contigs. The length of each sequence is decided by rounding

the length of the corresponding gap to the closest multiple of 50. In the special

case where there is no sequence similarity, despite the positions indicating a small

overlap, we separate the contigs by a 50 base long sequence of ‘N’.

3.2.3 Assembly performance on real data

Metrics of assembly quality

Before we discuss our results, we need to define how we assess the quality of a

de novo assembly. The first obvious measure of performance is the typical size of

assembled contigs and scaffolds. This quantity is often reported in terms of an

N50 value. Roughly speaking, half of the bases are covered by contigs/scaffolds

that are longer than the N50 value. However, N50 provides no indication of the

accuracy of the assembled contigs/scaffolds. In order to evaluate the quality of the
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assembly, it is common to study the performance of the algorithm on data from

known genomes. While comparing the assembled components to the reference

genome, we need to pay attention to different kinds of errors that could arise and

define the metrics of performance accordingly.

To define such metrics, let us bear the following question in mind: In order

to map a contig to the reference genome, what type of different operations do we

need to do? For example, it might be possible for an entire contig to be matched

to a continuous part of the genome with a few mismatches and indels. However, it

could also be the case that the contig cannot be matched to a continuous region

of the genome; instead, different parts of the contig might match to different

regions of the reference genome. Of course, for some contigs, one might not find

any significant match at all. In addition to errors in the contigs, there would also

be errors in the assignment of relative positions and orientations of contigs in a

scaffold.

It is common in the sequence assembly literature to single out mismatch rates

and combine some of the other kinds of errors in the no-match category. The

emphasis of our algorithm is on using the mate pair information for orienting,

positioning and joining contigs. Improper execution of these tasks leads to the

formation of chimeric contigs, dislocation and inversion of contigs in a scaffold, as

well as merger of distinct scaffolds. Metrics for quality assembly corresponding

to these categories of errors are essential for fair comparison among different

algorithms. In general, for each algorithm, there is a trade-off between building

large scaffolds and making small number of mistakes. For example, a cautious

algorithm might produce smaller scaffolds rather than keep on joining suspicious

fragments together.

Following the spirit of the above discussion, we will define four categories

of errors in order to assess the quality of the assembly. We used MegaBLAST

[70] with a minimum identity threshold of 92% to align the sequences against
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the reference genome (Refseq: NC 007005 for P. syringae and NC 010473 for

E. coli). The sum of the length of all the contigs for which no BLAST hit is

found, expressed as a percentage of total assembled bases, is reported as the

no-match error rate, εno m. Each BLAST hit for a contig comes with a number

of mismatches and short indels. Mismatch error rate, εmis m, reports the total

number of mismatches and indels as a percentage of total assembled bases. In

addition, if only some parts of a contig do not match to the reference genome,

the total length of those parts contributes to mismatch counts as well.

As we discussed above, there are other types of error that lead to large-scale

‘rearrangements’ of genomic sequence. The use of the term ‘rearrangement error’

is inspired by the analogy with the process of genome evolution. Just as local

errors in assembly have similarity to mutations and indels, the large scale errors

in assembly, have their evolutionary analogues: inversion, translocations etc.

These rearrangement errors, measured in the unit of number of events per

Mbp of assembly, are divided into the following categories. The error rate εch

is associated with chimeric mis-assemblies, namely, the cases where two distinct

parts of the genome have been joined into one contig. For chimeric contigs, we

would like to differentiate between the cases where the real gap between mis-

assembled parts is in the order of few hundred bases and the cases where this gap

is in the order of, for example, a few megabases. Therefore, overall error rate εch

is broken down to two parts, εsch and εlch, accounting for chimeric contigs involving

gaps smaller or larger than 500 bases, respectively.

Apart from the issue of chimeric contigs, we also have erroneous assignment of

orientations and positions of contigs in a scaffold. Each time the relative orienta-

tion of two neighboring contigs on a scaffold disagrees with that in the reference

genome, we have an event contributing to the error rate εosc. In addition, for

any two consecutive contigs in a scaffold, we have an estimated separation, which

decides the number of ‘N’ bases we insert in between those contigs in the final
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output. For consecutive contigs with verified relative orientations, we compare

the estimated separation with the real separation on the reference genome. The

last category of rearrangement error rate, εpsc, is associated with the cases where

the difference between those values is greater than 500 bases. The two categories

of error, presented in this paragraph, keep track of events where two contigs from

different strands or from far apart regions have been brought together.

Description of the libraries

We present the assembly result for two real datasets, one being a mate pair library

from SOLiD, while the other is of the paired-end kind from Illumina. In paired-end

technology, mainly used by Illumina, two reads in a pair come from the opposite

strands. In mate pair technology, both reads in a pair are from the same strand.

The insert size is also typically larger for the mate pair libraries, which is beneficial

for many applications. At the same time, owing to the particular enzymatic steps

required to make the mate pairs, there is a higher rate of production of molecules

which do not represent true ends of the large DNA molecule. The sequence

information from these molecules has to be properly identified and handled so as

not to lead to inconsistent scaffolds.

The first dataset is a 50 bp mate pair dataset, generated by SOLiD platform,

for the 4.7 Mb genome of Escherichia coli DH10B4. After we used an in-house

filter [71] to remove polyclonal and error-laden reads, we were left with 7.4 million

pairs of 50 bp long sequences. For this mate pair library, we used the insert size

of 1350 bp (Figure 3.5). Assembly of these reads resulted in very poor quality

output. Therefore, we decided to trim down the reads to 35 bp, expecting most

of the sequencing errors are concentrated towards the end of the reads [71]. Even

after filtering and trimming, the remaining reads provided 100x coverage, and

produced better assembly than the raw data set (data not shown).

4http://solidsoftwaretools.com/gf/project/ecoli2x50/
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The other dataset contains 3.5 million pairs of 36bp long reads from the Il-

lumina platform, providing 40x coverage of the 6.09Mb genome of Pseudomonas

syringae pv. syringae B728a [72]. For this paired-end library, we used the insert

size of 350bp (Figure 3.5).

Performance comparison

We compare the performance of our algorithm to that of Velvet [58]. One reason

for selecting Velvet is that several studies found that the performance of Velvet

was either better or at least competitive with other available programs [72, 73, 55].

The other reason is that we wanted to study the platform dependence of the per-

formance of SOPRA. Velvet is the only program among the popular assemblers

that handles color-space data. For P. syringae dataset from the Illumina platform,

the original study [72] from which we obtained the library has compared perfor-

mance of several assemblers. The authors attempted assembly using EULER-SR

[56] and SHARCGS [54], but they ran out of random access memory (32 Gb avail-

able). It also turned out that Velvet outperforms SSAKE [52], VCAKE [53] and

EDENA [55]. These last two assemblers do not incorporate mate pair information

and were run only in unpaired mode. ALLPATHS [57] requires multiple paired

libraries with different insert sizes. Given the above issues, we decided to proceed

with comparison Velvet.

In many areas, including biological data mining, a common exercise for assess-

ing the performance of a binary classifier is to consider the DET or ROC curve

[74, 75]. As one reduces the stringency of the classifier, false negative rate de-

creases at the cost of increasing the false positive rate. DET/ROC curves provide

a quantitative representation of this trade-off and are essential for finding optimal

operating point that balances the conflicting goals of keeping both of these error

rates down. As we mentioned before, in the context of de novo assembly, there

is a similar trade-off between N50 and the assembly quality [72]. In this analogy,
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smaller N50 corresponds to having a high false negative rate, while low quality of

the assembly plays the role of high false positive rate.

The comparative assembly performance, in the form of N50 versus error rate,

is shown in Figures 3.8 and 3.9. Ideally, one would like to be on the top left

corners of these graphs, which corresponds to large sizes and low error rates. We

present the performance of the algorithms both for contig assembly (triangles)

and scaffold assembly (circles).

In the case of E. coli data produced by SOLiD platform, for contig assembly,

the mismatch rate for V-SOPRA is lower than that for Velvet (Figure 3.8A). This

is partly because of error correcting feature of our algorithm for translating color-

space data. In contrast, S-SOPRA produces much shorter contigs compared to

the other two. Running Velvet with the paired option did not particularly improve

the N50, but it increased the mismatch rate significantly. In comparison to Velvet,

both V-SOPRA and S-SOPRA perform better in term of scaffold size and error

rate, with V-SOPRA outperforming S-SOPRA.

In contrast to the case of the E. coli mate pair dataset from SOLiD, pairing

information helps Velvet generate much larger scaffolds from the P. syringae

paired-end Illumina dataset. Figure 3.8B shows the results of running Velvet,

with paired option, on the P. syringae reads, for two different parameter sets.

Note that the two-fold increase in N50 comes at the cost of increasing the error

rate by more than one order of magnitude. This trade-off pattern is consistent

with a study comparing, among other things, the performance of Velvet for many

combinations of parameters [72]. V-SOPRA produces comparable N50 at a much

lower mismatch rate. For this particular dataset, the contig building performance

of V-SOPRA and Velvet is nearly identical. Like in the E. coli dataset, the

performance of S-SOPRA is worse than V-SOPRA.

More or less the same pattern continues with the large-scale rearrangement

error rates. In Figure 3.9 we report N50 versus the combined rearrangement error
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Figure 3.8: N50 vs. combined mismatch and no-match error rate for de novo
assembly of real data. See main text and the caption for Table 3.1 for explanation
of the error rates.

Figure 3.9: N50 vs. combined rearrangement error rate for de novo assembly of
real data. See main text and the caption for Table 3.1 for explanation of the error
rates.
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rates. In the case of Illumina dataset, V-SOPRA did not produce any errors in

certain categories (Table 3.1).

In general, for both datasets and all categories of error, our algorithm utilized

the mate pair information to enhance N50 by one or two orders of magnitude

without significantly increasing the error rates (see details in Tables 3.1 and 3.2).

The N50 gain from contigs to scaffolds, for the SOLiD dataset is remarkable

for SOPRA when compared to the corresponding gain for Velvet. We believe,

based on our simulations (data not shown), that our gain for the Illumina dataset

would have been much larger if, instead of being around 350 bases, the insert size

of this library were close to a kilobase. Another reassuring aspect of SOPRA as

compared to Velvet is that for SOLiD dataset, the algorithm managed to keep the

mismatch error rate low, partly thanks to the robust handling of the color-space

translation.

We also used MegaBLAST to analyze the contigs which SOPRA removed

from the scaffolding process during the assembly. The result is presented in Table

3.3. For the P. syringae dataset from Illumina platform, most of the removed

sequences were either chimeric or belonged to repeats (referred to as problematic

contigs). For the E. coli dataset from SOLiD sequencer, slightly more than half

of removed sequences were determined to be problematic. In both cases, the

total length of removed sequences remains a small fraction of the total assembly.

It should be noted that for a removed contig which was not determined to be

problematic, there is a possibility that it contains a short stretch of sequence

belonging to repeats which was not identified by MegaBLAST.
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Assembler εnom εmism εsch εlch εosc εpsc N50
Genome
coverage

% of tot. assembly No. of events/Mbp of assembly Kbp %

S-SOPRA (unpaired) .2 .14 .33 5.25 - - 2.1 98.4

V-SOPRA (unpaired) .17 .01 0 0 - - 6.6 97.7

Velvet (unpaired) .16 .01 0 0 - - 7 97.2

S-SOPRA (paired) .3 .13 0.49 5.58 0.66 3.12 44.2 98.4

V-SOPRA (paired) .18 .01 0.33 0 0 0 74 97.7

Velvet (paired1) .16 .02 3.28 0.82 0 0.16 46.7 97.7

Velvet (paired2) .14 .81 4.93 4.1 1.64 7.56 118.8 96.6

Table 3.1: De novo assembly statistics for P. syringae. The error rate εnom represents the
sum of length of the contigs/scaffolds with no BLAST hit as a percentage of total assembled
bases. Mismatch error rate εmism reports the total number of mismatches and indels as a
percentage of total assembled bases. The error rates εsch and εlch are associated with chimeric
mis-assemblies, involving gaps smaller or larger than 500 bases, respectively. The error rate
εosc accounts for the number of cases where the relative orientation of two neighboring contigs
disagrees with that in the reference genome. The cases where the estimated separation
between two consecutive contigs on a scaffold differs from the real separation in the reference
genome by more than 500 bases are associated with εpsc. These last four categories of errors
are measure as the number of erroneous events per megabases of assembly.
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Assembler εnom εmism εsch εlch εosc εpsc N50
Genome
coverage

% of tot. assembly No. of events/Mbp of assembly Kbp %

S-SOPRA (unpaired) .2 .14 .43 2.13 - - .5 92.7

V-SOPRA (unpaired) .02 .03 .22 0 - - 1.5 94

Velvet (unpaired) .02 .2 0.22 0.64 - - 1.5 94.3

S-SOPRA (paired) .2 .15 0.43 2.13 0.43 2.55 125.5 92.7

V-SOPRA (paired) .02 .03 0.21 0 0.43 1.7 200.6 94

Velvet (paired) 0.06 0.67 2.55 1.7 0.65 0.87 2.3 94.2

Table 3.2: De novo assembly statistics for E. coli. For the definition of different error rates,
see the caption for Table 3.1.

E. coli dataset P. syringae dataset

V-SOPRA S-SOPRA V-SOPRA S-SOPRA

Total number of
removed contigs

106 338 61 189

Total genomic length
of removed contigs
(% of total assembly)

192 kb
(4.1%)

313 kb
(6.7%)

77 kb
(1.3%)

272 kb
(4.5%)

Number of
problematic contigs

130 kb
(2.8%)

184 kb
(3.9%)

76 kb
(1.2%)

233 kb
(3.8%)

Total genomic length
of problematic contigs
(% of total assembly)

58 128 60 164

Table 3.3: Analysis of contigs removed from the scaffolding process. Problematic
contigs refer to contigs which are either chimeric, belong to repeats, or do not
match to the reference genome. Genomic length means that for repeats, the
length is multiplied by the corresponding copy number.
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3.3 Discussion

The goal of scaffold assembly is to arrange contigs such that most of the mate

pair constraints are satisfied. Given the inconsistencies in the constraints, any

solution strategy inevitably has to decide upon a subset of constraints to be

ignored. In our algorithm, this choice is made iteratively, going back and forth

between the optimization step and removal of offending constraints. For example,

in the process of assigning the optimal orientations, we also detect the links that

are not satisfied and are to be removed. The same was true for the next step,

where, by modeling the links as springs, we both assign the positions and remove

the constraints that cause stretch/compression in this solution.

Taking the entire set of remaining mate pair constraints into account simul-

taneously at each round of optimization is critical to the success of our approach.

Some algorithms, at each step, consider only a small subset of contigs and links in

between to improve the assembly in a particular region [61, 59, 60]. This manner

of local processing of mate pair information stands in stark contrast to our global

approach.

In a sequencing project, the issue of large variability in separation of mate

pairs (Figures 3.5B and 3.5D) has an important implication for the choice of the

insert size in the library preparation. The insert size should preferably be large

enough to bridge over most of the small repeats or the shallowly sequenced regions.

However, as the typical insert size increases, so does the standard deviation of the

separation for individual mate pairs. The averaging effect from having multiple

mate pairs between two contigs depends upon the number of such pairs, which,

in turn, is limited by the size of the corresponding contigs. Therefore, beyond

a certain point, larger insert size might result in higher uncertainty in contig

positioning. We expect the optimal insert size to be dependent upon the typical

size of the contigs, the depth of coverage, and most importantly, the ability to
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restrict size variation in the library preparation. In our simulations for assembly

of some bacterial genomes, the optimal insert size is typically around 1 Kb, if

we were to choose only one insert size (data not shown). However, if the contig

assembly mostly produces small fragments, namely, the contig N50 is much less

than 1 Kb, the quality of scaffold assembly suffers significantly.

In our study, we emphasized the possible conflict between getting larger scaf-

folds and avoiding mis-assembly. We showed that the N50/error rate trade-off

characteristics for V-SOPRA is excellent. In a practical de novo assembly project,

mis-assembly rates are hard to estimate. As a result, one may be tempted to

increase the N50 without consideration of accumulating inaccuracies [76]. There-

fore, it is important for such projects to develop a set of independent benchmarks

to assess the accuracy of assembly. The N50/error rate trade-off curve, based on

such benchmarks, can be used to set the optimal parameters for the assembler.

Currently, SOPRA is quite conservative and it errs on the side of breaking up

things whenever there is any confusion. As we have seen, this tendency has not

resulted in smaller N50s compared to other algorithms. However, it is possible

that a more sophisticated algorithm could partially reconstruct the structure of

repeat regions while solving the orientation and positions of different contigs. One

may also be able to breakup some chimeric contigs at the right place rather than

remove the whole contig. We hope to include these features in the future versions

of the algorithm.

The current HTS platforms not only read sequence fragments but also gen-

erate additional information regarding relative position and orientation of pairs

of reads. Our methodology is particularly adept at exploiting this extra informa-

tion. The approach developed here could be easily adapted to any new technol-

ogy that provides additional positional and orientational constraints on multiple

reads. Combination of efficient algorithms for utilization of such constraints and

improvements in accuracy of reads leading to better quality contig building will
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bring us closer to the goal of assembling genomes from the next generation of

HTS data.



125

Chapter 4

Appendix A: Steady State Solutions of the

Silencing Model

Equation 2.5 is a third degree equation in S and has 3 solutions. Either 1 or all

3 of the solutions are real. The solutions are easily found using the formula for

third degree equations. Let us use a few notations:

a = (1 + ρ)γ2 ,

b = −ργ2 + 2γ(1 + ρ) + 2αγ ,

c = −2γρ+ (1 + ρ) + 2α + α2 ,

d = −ρ ,

k = (−2b3 + 9abc− 27a2d+ (4(−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2).5)1/3 .

Using these notations, the three solutions are:

S1 = −b/(3a)− (2(1/3)(−b2 + 3ac))/(3ak) + k1/(3a2(1/3)) ,

S2 = −b/(3a) + ((1 + i3.5)(−b2 + 3ac))/(2(2/3)3ak)− (1− i3.5)k/(6a2(1/3)) ,

S3 = −b/(3a) + ((1− i3.5)(−b2 + 3ac))/(32(2/3)ak)− (1 + i3.5)k/(6a2(1/3)) .
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Chapter 5

Appendix B: Robust Translation of Color-space

Data

We saw how the output of our color-space contig assembly consists of a sequence in

color-space, C, plus some base-space suggestions, F , at certain locations (Figure

3.4). However, it may not be possible to find a base-space sequence that agrees

with all the color-space calls and base-space suggestions. Therefore, we turn the

issue of translating this color-space sequence into a search for the most likely

DNA sequence that gave rise to this data (C and F ). Basically, we set up a

hidden variable model. The hidden states of the model are the real letter bases.

The color calls and letter base suggestions are the observations. There are two

unknown parameters: the probability that a given color call is wrong, and the

probability that a letter base suggestion is wrong. For the sake of convenience in

calculations, we parameterize these two probabilities as 1/(1+erc) and 1/(1+ers),

respectively.

We can then ask for a given C, F , rc and rs, what is the probability for a

particular base-space sequence, B, to be the real DNA sequence? Let ci represent

the color call between position i and i+1 of a contig. At each position, we can have

different first base suggestions (one for each short read starting at that position).

Let fi,b denote the number of times a particular base b ∈ {A, T, C,G} is suggested

at position i. If at certain position there is no suggestion for a particular base,

the corresponding fi,b is equal to zero. Let us represent a base-space sequence of

length N as B1,N = b1b2...bN , where bi ∈ {A, T, C,G} for all 1 ≤ i ≤ N . For each

sequence B1,N , there is an associated sequence C̃1,N = c̃1c̃2...c̃N−1 in color-space
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such that c̃i is the color associated to the dinucleotide bibi+1. Let us also represent

the probability of B1,N being the real DNA sequence, given C, F , rc and rs, as:

p1,N(B1,N) = prob(B1,N |C,F, rc, rs). Using the above notation, we have:

p1,N(B1,N) =

 N∏
i=1

∏
b∈{A,T,C,G}

(
ersδbi,b

1 + ers

)fi,b× [N−1∏
i=1

ercδc̃i,ci

1 + erc

]
. (5.1)

δc̃i,ci is the Kronecker delta; it is equal to one if the color call between position

i and i + 1 (i.e. ci) agrees with the color associated with the dinucleotide bibi+1

(i.e. c̃i); otherwise, it is zero. δbi,b is the Kronecker delta as well. The next step

is to find the base-space sequence that maximizes the above probability. The

particular structure of this model allows us to efficiently solve for the optimal

sequence using dynamic programming as follows. Consider an arbitrary position

k. Equation 5.1 can be written as:

p1,N(B1,N) = p1,k(B1,k)

[
ercδc̃k,ck

1 + erc

]
pk+1,N(Bk+1,N) .

The middle term on the right hand side contains c̃k, which depends on both bk and

bk+1. The term pk+1,N(Bk+1,N does not contain any variable which corresponds

to positions smaller than k + 1, however, it depends on bk+1. Similarly, the term

p1,k(B1,k) does not contain any variable which corresponds to positions greater

than k, however, it depends on bk. There are four possibilities for bk, namely, A,

T , C and G. For each of these possibilities, we can ask what B1,k−1 = b1b2...bk−1

will optimize p1,k(B1,k). Imagine we know the answer to this question for some ar-

bitrary k. Then, we can easily find the answer to the following question: For each

of the four possibilities for bk+1, what B1,k = b1b2...bk will optimize p1,k+1(B1,k+1)?

The reason is that we can write:

p1,k+1(B1,k+1) = p1,k(B1,k)×
(
ercδc̃k,ck

1 + erc

)
×

∏
b∈{A,T,C,G}

(
ersδbk+1,b

1 + ers

)fk+1,b

.
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For each particular choice of bk+1, there are four possibilities for bk. For each

of these possibilities, we know the first term in the right hand side and we can

calculate the second and the third term. The information that we have to save

at step k + 1 is that for each bk+1, what is the maximum value of p1,k+1(B1,k+1)

and what base bk corresponds to this value.

We start with k = 1 where for each of four possibilities for b1 we can calculate:

p1,1(B1,1) =
∏

b∈{A,T,C,G}

(
ersδb1,b

1 + ers

)f1,b
.

We continue as explained above to find, for each of four possibilities for bN , what

sequence B1,N−1 = b1b2...bN−1 will maximize p1,N(B1,N). We have four options

for bN and four corresponding values for p1,N(B1,N). We pick the bN for which

the probability p1,N(B1,N) is highest. We then go backward and check, for this

choice of bN , what base bN−1 was used. We continue this backward process until

we get the whole optimum sequence.

The only remaining issue is the choice of values for rc and rs. Ideally, we

would like to choose these values such that the quantity

∑
B

prob(C,F |B, rc, rs)

is maximized. This quantity represents the probability of observing the data,

namely, the color-space contig and first base suggestions. One could use iterative

methods like expectation maximization in order to find the optimal values of error

rates. However, the translation result is robust for a wide range of parameters and

training the rate is not particularly essential in all cases that we encountered, for

simulated and for real data. counter-intuitively, the reason for this robustness is as

follows. If an error were propagated, it would disagree with most of the subsequent

base pair suggestions. The relative strength of rc versus rs decides how many such



129

mismatches would be tolerated before a color call error is declared. If the density

of first base suggestion is high, color call errors get found out within a few bases,

as long as the ratio rc over rs is within a reasonable range. The density of first

base suggestions is usually high for short read data, given the high coverage and

the fact that there is one base suggestion for each incorporated short read. As a

first estimate, we can put the probability for a letter base suggestion to be wrong

equal to, es, the sequencing error rate generated by SOLiD platform. The rough

estimate for the probability of a color call being wrong would be eds, where d is

the average depth of coverage of the corresponding contig.



130

Chapter 6

Appendix C: Optimization Strategy for

Orientation Assignment

We solve the orientation assignment problem by finding the ground state of an

Ising model. In general, this is an NP-complete problem [69, 68]. However, for

moderate quality mate pair data, the typical optimization problems that we face

have a redeeming feature. In many cases, most of the vertices in the contig

connectivity graph are connected to only a few neighboring contigs, thanks to

the nearly linear structure of the scaffold. This feature allows us to partition

the graph into smaller components on which the optimization can be performed

independently. We can then put the partitioned components back together to

find the optimal configuration. Below, we explain this procedure in more detail.

An articulation vertex is defined as a vertex such that by removing it from

the graph, the graph splits into two or more disconnected components. For each

connected component of the graph, we search for articulation vertices that have

more than two neighbors (an articulation vertex with only two neighbors is just

part of a linear chain in the graph for which the energy optimization can be

solved efficiently). After finding an articulation point, we split the graph into

the corresponding disconnected components. We give a copy of the articulation

vertex to each of these newly formed components. We iteratively continue this

procedure on each of these components until we end up with non-reducible ones

i.e. components without articulation points that have more than two neighbors.

Finding the articulation points and dividing up the graph takes O(N2) time,

where N is the total number of the vertices. We can separately optimize the
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orientation configuration for these non-reducible components. Notice that, in

each component, the optimal configuration has a degeneracy of two, namely, if

we reverse all the orientations, we get the same energy (E[s] = E[−S]).

Once we have the optimized configuration for each of these components, we re-

verse the process of iterative partitioning. At each step we join back components

formed by removal an articulation vertex. Each of these components was provided

with a copy of the articulation vertex. Using the freedom of an overall flip within

each component, we arrange to have the same orientation for the copies of the ar-

ticulation vertex in different components. We can stitch the components together

by merging the different copies into a single vertex. The order of merging the ar-

ticulation vertices is the reverse of the order in which they were split. The reason

we can find the global optimum solution by separately optimizing non-reducible

components and joining them back together is as follows. Given the definition of

the articulation points, there is no edge connecting the non-reducible components

in the original graph. In other words, in the energy function, there is no term

that includes two vertices which belong to different non-reducible components.

As a result, the total energy can be broken up into sums of energies of the non-

reducible components. Thus, we can optimize the orientational configuration for

each of these components separately, up to an overall reversal within each com-

ponent. The only set of constraints that has to be satisfied is that the copies of

each articulation vertex should have the same orientation. This goal can be easily

achieved using the freedom of overall reversal within each component.

In order to optimize the non-reducible components, we proceed as follow. For

a given component, we pick a random vertex i and name the singleton set {i} to

be Z1. Next, take all the vertices connected to the vertex in Z1 and call this new

set Z2. We will then consider all the vertices adjacent to the vertices in Z2, and

for each of them, if it does not already belong to Z1 or Z2, we put it in a new

set called Z3. We continue until all the vertices in the corresponding connected
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component have been visited.

For a general graph, the size of Zk, denoted by |Zk|, grows exponentially

as k increases. However, for the contig connectivity graph, because of the linear

structure of the scaffolds, in many cases |Zk| remains a small number and does not

grow as increases. For a given non-reducible component, depending on the sizes

of s, we choose different strategies. In the case where all the sizes are smaller than

a threshold value (e.g. six), we use a dynamic programming approach, similar to

the Viterbi algorithm, to optimize the energy, E[S] (Equation 3.1). In the other

case, we use the simulated annealing method as explained in Appendix E.

The dynamic programming approach is very similar to the procedure explained

above for translation of color-space data into base-space. Note that by construc-

tion, a vertex belonging to a set Zk can only be connected to the vertices belonging

to Zk−1, Zk or Zk+1. In other words, we can write:

E1,N = E1,k + Econnection
k,k+1 + Ek+1,N ,

where the expressions for E1,k, E
connection
k,k+1 and Ek+1,N , only contain orientations

from vertices belonging to the sets Z1

⋃
Z2...

⋃
Zk , Zk

⋃
Zk+1 and Zk+1...

⋃
ZN ,

respectively. This means that if we fix orientations of all the vertices belonging

to Zk (there are 2|Zk| possibilities for the choice of these orientations), we can

optimize E1,k without any knowledge of the orientations associated with vertices

belonging to Zl, ∀ l > k . At this point, it is clear how we can implement the

dynamic programming procedure.

Let ok = (Sk1 , S
k
2 , ..., S

k
|Zk|) be an arbitrary set of orientations for all the vertices

belonging to Zk. There are 2|Zk| possibilities for ok. For each of these possibilities,

we can ask what choice of O1,k−1 = (o1, o2, ..., ok−1) will minimize E1,k. If we

know the answer to this question for some arbitrary k, then, we can easily find

the answer to the following question: For each of the 2|Zk+1| possibilities for ok+1,
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what O1,k = (o1, o2, ..., ok) will minimize E1,k+1? The reason is that we can write:

E1,k+1 = E1,k + Econnection
k,k+1 . For each particular choice of ok+1, there are 2|Zk|

possibilities for ok. For each of these possibilities, we know the first term in the

right hand side and we can calculate the second term. The information that we

have to save at step k + 1 is that for each choice of ok+1, what is the minimum

value of E1,k+1 and what choice of ok corresponds to this value.

We start with k = 1 where for each of 2 possibilities for o1 (note that Z1 only

has one member), we can calculate E1,1 which is equal to zero in both cases. We

continue as explained above to find, for each of 2|Zk| possibilities of oN (N being

the total number of Zk’s), what choice of O1,N−1 = (o1, o2, ..., oN−1) will minimize

E1,N . We have 2|ZN | options for oN and 2|ZN | corresponding values for E1,N . We

pick the oN for which the energy is lowest. Note that because of the degeneracy in

the energy function (E[S] = E[−S]), there are two choices of oN with exactly the

same energy. We can arbitrary pick either one of them. We then go backward and

check, for this choice of oN , what set of orientation oN−1 was used. We continue

this backtracking until we get the optimum orientation for all the vertices.

As mentioned before, for a generic graph, size of Zk’s grow with k and the step

of going from k to k+ 1 requires a large number of calculations. This is expected

as the problem of minimizing Ising energy on an arbitrary graph is NP-complete

[69, 68]. However, if the structure of a particular graph allows efficient use of the

dynamic programming approach, then the above procedure results in an exact

solution. We might have to abandon this method and adopt a heuristic one when

there are highly-connected components of moderate or large size.

Figure 6.1A shows a typical region of the contig connectivity graph for the

E. coli dataset. As one can see, the contig connectivity graph is mostly quite

sparse. Assume if we only consider a small part of the graph, similar to the one

shown in Figure 6.1B, and defines the Zk sets starting from an arbitrary point.

Given the typical structure in the graph, it is clear why the size of Zk’s do not
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often grow as k increases. If by removing the articulation points we manage to

break up parts of the contig connectivity graph into small components, the above

exact method can be applied to most of such components. Some of the branches

in Figure 6.1A are part of bigger loops which cannot be seen here. When several

such relatively big loops get interconnected, the above optimization strategy often

becomes impractical.
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Figure 6.1: A typical region of the contig connectivity graph for the E. coli dataset.
(A) The graph typically has a sparse structure. Some of the branches shown are
part of bigger loops which cannot be seen here. (B) The blow up of the region
indicated by arrow in (A).
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Chapter 7

Appendix D: Calculation of li,j

In a SOLiD mate pair library, each pair is composed of two reads, denotes by

R3 and F3. They come from the same strand and F3 read is located to the

right of R3 as one goes from 5’ to 3’. Imagine the R3 read was used in contig

iR and the F3 read was used in contig iF . Now, let us define the variables τR

and τF . If the R3 read itself (and not its reverse compliment) was used in contig

iR, then τR = 1; otherwise. τR = −1. Similarly, if the F3 read itself (and not

its reverse compliment) was used in contig iF , then τF = 1; otherwise. τF = −1.

The position of the R3 and F3 reads in contigs iR and iF is denoted by pF and

pF , respectively. Also, let Ins denote the insert size of the library. Then, for the

suggested distance between contigs iR and iF (i.e. xF − xR), we have:

liF ,iR = τR SiR (Ins+ τR pR − τF pF ) .

Here, SiR is the orientation assigned to contig iR. For an Illumina paired-end

library, the two short reads are located on the opposite strand and face each

other. Let us still use the same notation as above, namely, call the first read R

and the second one F , etc. Then, the above formula becomes:

liF ,iR = τR SiR (Ins+ τR pR + τF pF ) .

Each mate pair, connecting contigs iR and iF , provides us with its own suggested

distance which we calculate using the above formula. The average of all these

suggested distances for contigs iR and iF is denoted by l̄iF ,iR .
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Chapter 8

Appendix E: Simulated Annealing Method

We explain the procedure in the context of finding the optimal orientation config-

uration. Simulated annealing [70] is a Monte Carlo method in which one samples

the configuration, s, with probability P [S] ∝ exp(−E[S]/T ), while slowly de-

creasing the temperature parameter, T , towards zero. If the energy of the system

reaches a value close to Emin as the temperature goes to zero, it indicates that

most of the orientational constraints are satisfied. The advantage of this method

over certain greedy approaches is that in simulated annealing, all the contigs and

the constraints are treated democratically. Also, in the presence of multiple local

optima, one expects simulated annealing to perform better than various domain

specific greedy algorithms. In practice, much depends on the particular greedy

algorithm and the structure of the graph, as was found in the context of several

optimization problems on graphs ([77]). In that study ([77]), it was found that for

relatively sparse and regular graphs, simulated annealing did better than some

well-established greedy algorithms. This fact, along with many other examples

of successful use of simulated annealing[65, 66], motivated our choice.

In simulated annealing, we start from an arbitrary configuration, e.g. Si =

1, ∀ i. At each step, we randomly choose a contig and check whether by flipping

its orientation the energy would decrease or increase. If the energy decreases,

we flip the orientation. Otherwise, if the energy increases by ∆E, we flip the

orientation with probability exp(−∆E/T ) where T is a parameter. We start

with a large value of T which will allow orientation flip in most cases. After each

step, we slightly decrease T according to an exponential cooling schedule [65]. As
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we go forward, the energy of the system will on average decrease and get closer

and closer to Emin. This continues until the energy curve reaches a plateau, at

which point the search is stopped.

For the Potts model, the only difference is that, instead of the variable Si,

we assign the variable σi to contig i. We start with a random label assignment

and at each step we make a decision to whether or not change the label of a

randomly chosen contigs to a new randomly chosen label. We find that, although

the final label configuration may depend upon the choice of initial configuration,

the domain boundaries are robustly reconstructed.

In the optimization problems that we face, if the inconsistencies were too se-

vere, the degree of frustration in the system would be very high, and any heuristic

method would typically produce a suboptimal solution. In our experience, this

is not the case as evidenced by the fact that the energy of the final orientation

configuration is close to the minimum energy (data not shown). This fact, on one

hand, allows simulated annealing to find the solution. On the other hand, being

able to satisfy most of the constraints indicates that the mate pair data is on the

whole trustworthy.
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Chapter 9

Appendix F: Parameters of the Softwares

SOPRA was implemented in Perl and tested both on a 64-bit Linux and on a

Mac OS X server machine. The available memory for both machines was 16 GB.

9.1 V-SOPRA Parameters

For contig assembly part of V-SOPRA, we directly used Velvet v0.7 without

invoking the paired option. We get the output in the format of sequence positions

in contigs. For base-space data, this information is stored in the afg file generated

by Velvet. For color-space data, Velvet is part of a pipeline called SOLiD system

de novo accessory tools (http://solidsoftwaretools.com/gf/project/denovo/). In

this pipeline, color-space data has to be preprocessed before inputting to Velvet.

Velvet output also has to go through a post-processing step. We use the output

of this post-processor that contains the information related to the position of

sequences in contigs (the sequences are still in color-space). There is one last step

in the pipeline that outputs the final contigs in base-space. However, we do not

use this last step. The parameters used for running Velvet in the fragment mode

as the first step in V-SOPRA are the same as those described below in the Velvet

parameter subsection.

For scaffold assembly, parameter determines the minimum number of mate

pairs that have to join two contigs in order for those contigs to be considered

connected. For E. coli data, we set , whereas for P. syringae data we put .

Parameter , determining the minimum length that a contig must have in order
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to be used in the scaffold assembly, was set to for both datasets.

On the Linux machine, the first step of the program, reconstructing the contigs

from Velvet output and recording the mate pair information, took 50 minutes for

both E. coli and P. syringae dataset. The color-space translation for E. coli data

took 14 minutes. The scaffold assembly part took 1.2 hours for E. coli and 5

minutes for P. syringae dataset. The runtimes were similar for the Mac OS X

server.

9.2 S-SOPRA Parameters

S-SOPRA performs contig assembly based upon our modification of SSAKE v3.2

which can also handle color-space data. The crucial parameter for contig assembly

is the parameter that determines the minimum required overlap length between

two reads. For E. coli data we used , whereas for P. syringae data we set . For

scaffold assembly, we set for E. coli data, whereas for P. syringae data we put .

For E. coli data, we set , whereas for P. syringae data we put .

The first step of the program that builds the contig based on SSAKE algorithm

and records the mate pair information took 8.5 hours for E. coli and 6 hours for

P. syringae dataset. The color-space translation for E. coli data took 16 minutes.

The scaffold assembly part took 7 hours for E. coli and 1.8 hours for P. syringae

dataset. These numbers are for the Linux machine with similar runtime for the

Mac OS X server.

9.3 Velvet Parameters

For Velvet, we tried different combinations of parameters and report results for

the ones giving the best performance. For E. coli data, Velvet in the fragment

mode was run with a hash length of 19 and coverage cutoff of 6x. We ran Velvet

in the paired mode using a hash length of 19, coverage cutoff of 6x and coverage
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expectation of 50.

For P. syringae data, Velvet in the fragment mode was run with a hash length

of 21 and coverage cutoff of 6x. We ran Velvet in the paired mode using two

different parameter sets noted by paired1 and paired2 in Table 3.1 and 3.2. Both

parameter sets used hash length of 21 and coverage cutoff of 6x. The coverage

expectation for the first parameter set was 12, whereas for the second parameter

set we used 50.
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