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ABSTRACT OF THE DISSERTATION

An Object-oriented Representation for Efficient

Reinforcement Learning

by Carlos Gregorio Diuk Wasser

Dissertation Director: Michael L. Littman

Agents (humans, mice, computers) need to constantly make decisions to survive and

thrive in their environment. In the reinforcement-learning problem, an agent needs to

learn to maximize its long-term expected reward through direct interaction with the

world. To achieve this goal, the agent needs to build some sort of internal representa-

tion of the relationship between its actions, the state of the world and the reward it

expects to obtain. In this work, I show how the way in which the agent represents state

and models the world plays a key role in its ability to learn effectively. I will introduce

a new representation, based on objects and their interactions, and show how it enables

several orders of magnitude faster learning on a large class of problems. I claim that

this representation is a natural way of modeling state and that it bridges a gap between

generality and tractability in a broad and interesting class of domains, namely those of

relational nature. I will present a set of learning algorithms that make use of this rep-

resentation in both deterministic and stochastic environments, and present polynomial

bounds that prove their efficiency in terms of learning complexity.
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Chapter 1

Introduction

El ejecutor de una empresa atroz debe imaginar que ya
la ha cumplido, debe imponerse un porvenir que sea
irrevocable como el pasado.

Jorge Luis Borges (1899-1986)
El jardin de los senderos que se bifurcan.a

aWhosoever would undertake some atrocious enterprise

should act as if it were already accomplished, should impose

upon himself a future as irrevocable as the past.

The goal of this dissertation is to introduce a new representation for reinforcement-

learning problems based on objects and their interactions. I will show how this rep-

resentation, which I call Object-Oriented Markov Decision Processes (OO-MDPs), is

a natural way of representing state in a large class of problems, enabling orders of

magnitude faster learning.

In this chapter, I will introduce reinforcement learning as the problem of sequential

decision-making and highlight some of its challenges. The proposed representation

tackles some of these challenges by enabling a compact description of environment

dynamics for a broad class of problems, while allowing smart and efficient exploration.

1.1 Learning by Direct Interaction

A computer scientist arrives at a new city for a conference and needs to get to her

hotel. She can take a taxi, an action that will be expensive but has a high probability

of reaching the destination, although the time it takes has high variance. She can also

take a train, which costs less and has low variance in the duration of the trip, but she

risks not getting off at the right stop or not finding her way from the station to the
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hotel. If taking the train, she could also spend some extra time turning on her computer

and looking for directions online, which incurs an extra cost but increases the chances

of success.

An Internet protocol needs to route packets. It has to decide where to forward each

packet, at what rate, which ones to queue and which ones to drop. The number of

packets and response times involved keep changing. Its goal is to maximize the amount

of packets successfully transmitted, and minimize the number of hops those packets

make toward their destination.

A mouse is trapped in a psychologist’s maze and needs to find food. All those

sounds, lights and shocks are stressing him out, and as time goes by he gets hungrier.

He can wait and count on the experimenter’s pity, try running around randomly, or

start pressing levers.

All of the above are examples of sequential decision-making problems. In each case,

there’s an agent (a human, an animal or a computer program) that needs to make

decisions in an unknown environment, and those decisions have both immediate and

long-term consequences, incur costs and can produce rewards.

Between the late 1980’s and the mid-1990’s, ideas from psychology (like Pavlovian

and instrumental conditioning), optimal control and economics gave birth to the field of

Reinforcement Learning (Sutton, 1988; Barto et al., 1989; Bertsekas & Tsitsiklis, 1996;

Kaelbling et al., 1996; Sutton & Barto, 1998), a sub-area of Artificial Intelligence. In

the words of Rich Sutton, the reinforcement-learning (or reward) hypothesis states that

”all of what we mean by goals and purposes can be well thought of as maximization of

the expected value of the cumulative sum of a received scalar signal (reward).” (Sutton,

1998). This idea gave place to a formal definition of intelligent behavior as the result

of the actions of an agent that is trying to maximize its long-term expected reward

(usually in an unknown environment), without the supervision of an expert that tells

it what actions to take but just being led by its own goals and purposes.

The reinforcement-learning formalism has proven incredibly productive in terms of

the algorithms and applications it has enabled. In robotics, where it has had particular
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appeal, RL applications include flying an RC helicopter (Ng et al., 2004), making it do

aerobatics (Abbeel et al., 2007), making a quadruped robot avoid complicated obstacles

(Lee et al., 2006) or enabling an AIBO robot to learn the fastest way to walk (Kohl &

Stone, 2004). RL has also been successfully applied to game playing, starting with the

now famous TD-Gammon (Tesauro, 1994), which played backgammon at the level of a

human world champion, and nowadays being successful in the game of Go, where RLGo

(Silver et al., 2007) is playing on a 9x9 Go board at the level of the best human masters.

Lately, RL is also making headways into commercial video games, where human players

confront computer agents that use RL to adapt to their opponents (Graepel et al., 2004;

Merrick & Maher, 2006). Other successful applications include autonomic computing

(Tesauro, 2005), elevator control (Crites & Barto, 1996), pricing of options (Tsitsiklis &

Roy, 2000), the treatment of epilepsy (Guez et al., 2008), and optimization of memory

controllers in the field of computer architectures (Ipek et al., 2008), among many others.

1.2 The Reinforcement Learning Problem Setting

The standard way of modeling reinforcement-learning problems is depicted in Figure

1.1 1. In the figure you can see an agent (the one-armed robot) interacting with an

environment (the gray cloud). The interaction proceeds as follows: at time t, the

environment is in state st, and the agent is provided with an observation it, which is a

function of st. The agent’s behavior function B then selects an action a and executes

it. Executing this action leads the environment to transition to a new state st+1, at

time t + 1, according to its state transition function T , and produce a reward signal r

(also a function of the state).

As stated before, the goal of the agent is to come up with a behavior B such that,

for any given state, it picks the actions that maximize the long-term reward it receives

from the environment. The learning problem deals with the situation in which the agent

does not know the transition function T that induces state changes in the environment,

1The inclusion of the original Kaelbling et al. figure was suggested by Michael Littman as a way of

starting a tradition. I hearby commit to encourage any future students to include this figure in their

dissertations too.
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Figure 1.1: The standard RL model, as depicted in Kaelbling et al., 1996.

and/or it does not know the expected rewards to be attained from a given state.

Reinforcement-learning problems are commonly formalized as Markov Decision Pro-

cesses (MDPs), which I will introduce in the next chapter. It is now worth noting that

throughout this dissertation I will make some assumptions about the types of problems

being considered:

• I only consider problems consisting of discrete state and action spaces, and assume

that time advances in discrete steps. For an example of work that considers

continuous time, states and actions, see Doya (2000).

• I assume there is a single agent interacting with the environment. Extensive work

exists on multiagent reinforcement learning, for a survey see Shoham et al. (2003).

• I assume the state is fully observable. That is, the observation i perceived by the

agent is a one-to-one correspondence with the state of the environment (in prac-

tical terms, i = s). For situations in which the state is only partially observable,

and the agent needs to make inferences about it, see Kaelbling et al. (1998).

• I assume the environment is stationary, which means that state transitions and

rewards do not depend on time. In contrast, in a non-stationary world the prob-

ability of transitioning from state si to state sj given some action a could be
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different depending on when the action a was performed. It is possible to render

non-stationary worlds into stationary problems by considering time as part of the

state space, making learning and generalization much more challenging.

• Finally, I assume environments follow the Markov property, meaning that the

state observed by the agent is a sufficient statistic for the whole history of the en-

vironment. The agent’s behavior can thus only depend on the currently observed

state, and not on any past states.

These assumptions are common in the reinforcement-learning literature and, al-

though not always realistic, they usually provide a reasonable approximation to many

real-life problems. Although they certainly simplify the problem in a number of ways,

many challenges still persist. Consider for example the games of Go or Chess, which fol-

low all of the above assumptions and remain extremely challenging, unsolved problems

in AI. In these games, states and actions are discrete and finite, and time progresses in

discrete moves. The environment is fully-observable, stationary and Markovian: at any

given time, the board is observed by the player and contains all the information needed

to make a move, the result of which is independent of the point in time in which it is

made.

1.3 Challenges in Reinforcement Learning

In reinforcement-learning problems an agent tries to maximize its long-term reward

in an unknown environment (that is, in an environment whose transition and/or re-

ward functions are unknown). In this section, I describe some commonly recognized

challenges in reinforcement learning.

1.3.1 Exploration

Imagine you have two unbalanced coins and you are offered the opportunity to make 20

tosses. For each toss you can use either one of the coins, and you get a monetary reward

when the coin comes up heads. The problem is that you do not know the probability
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of heads of each coin, so you need to experiment with them. After a few throws of each

coin, you might start getting a feel for which one is better (has a higher probability of

coming up heads). At what point do you stick with what you think is the best coin and

just play that one? How much do you keep trying out what you think is the worse one,

just to make sure? The example of the two-coins is commonly generalized to the case

where there are k options, into what is known as the k-armed bandit problem, a very

well-studied problem in RL and optimal decision-making (see Berry and Fristedt (1985)

for one of the first formal treatments of the problem, and Auer et al. (2002) for modern

approaches).

As in the coin example, an autonomous agent confronted with an unknown environ-

ment needs to explore to gain the necessary knowledge that will enable it to maximize

its long-term reward. Note that in the general case of sequential decision-making, an

agent’s actions affect future states and decisions can have long-term consequences that

are potentially much more complicated than in the simple k-armed bandit case. Explor-

ing requires the agent to take potentially suboptimal actions, with the hope of gaining

new information that will help it obtain higher rewards in the future. A purely explor-

ing agent will spend its life traveling into unknown parts of its environment, and never

enjoying the fruits of its accumulated experience. A purely exploiting agent will jump

to conclusions, assume there’s nothing else out there to see and greedily gather what-

ever reward it can based on its limited experience. A smart agent will have a strategy

that balances the two needs, facing what is known in RL as the exploration/exploitation

dilemma (Sutton & Barto, 1998).

Bayesian RL

One approach to smart exploration is to start with a Bayesian prior over the parameters

of an environment that appropriately model the agents’ beliefs about the world. In the

two-coin example, an agent could initially assume both coins have head/tail probabil-

ities that were sampled from a uniform Beta(1,1) distribution. With each experience

garnered (each toss of one of the coins), the agent updates the posterior distribution over
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these parameters. An action can now be chosen that takes into account this posterior

distribution, which accounts for both the agent’s knowledge and its uncertainty.

Bayesian approaches to RL provide a natural way of tackling the explo-

ration/exploitation dilemma by taking into account the posterior, and can be shown to

resolve it optimally (Duff, 2003). An initial problem with these approaches is that they

require specifying a prior. In the general reinforcement-learning problem, this could

mean setting a prior distribution over transition and reward functions, which might

be unfeasible in many real-life applications. Another problem is that computing the

posterior distribution can be very expensive computationally (intractable in the general

case), and completely impractical in environments with a large number of states. For a

more complete treatment of Bayesian RL and some recent advances see Strens (2000)

and Poupart et al. (2006).

Almost Solving the Problem, Most of the Time

Bayesian approaches to the exploration/exploitation dilemma can be optimal but in-

tractable. An alternative framework provides a new definition of optimality, essentially

what we can call near-optimality with high probability. This framework is called Proba-

bly Approximately Correct (PAC) and was introduced by Valiant (1984) in the context

of supervised learning. Informally, PAC requires learning a hypothesis with approxi-

mate precision, and with high probability. That is, there is a small probability of not

learning it, and even when learned, it is only approximated to some degree of accuracy.

The PAC framework has been adapted to the reinforcement-learning context, into

a framework called PAC-MDP (Kakade, 2003). This framework has enabled the design

of a host of algorithms that can now be proved to be efficient in the PAC-MDP sense.

From now on, I will talk about provably efficient algorithms meaning that the algorithm

is efficient in the PAC-MDP framework. I will provide formal definitions of PAC and

PAC-MDP in Chapter 2.
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Optimism in the Face of Uncertainty

One of the most productive approaches to the exploration/exploitation dilemma was

introduced by Kearns and Singh (2002), and further studied by Brafman and Tennen-

holtz (2002). Both approaches are efficient in the PAC framework described above.

The idea behind these approaches and the formalization they provided gave birth to a

whole family of algorithms known as the Rmax family, based on the concept of optimism

in the face of uncertainty. The main idea is that any unknown parts of an environment

are optimistically regarded as maximally rewarding. The agent will thus be naturally

drawn toward these unknown states, unless they are so hard to reach that it is not

worth it (that is, the cost of reaching unknown states compared to the reward they

can yield makes them unworthy). Many algorithms have been proposed that follow

this model of exploration (Kearns & Koller, 1999; Guestrin et al., 2002; Strehl, 2007),

and a recently introduced learning framework, KWIK, theoretically unifies all these

approaches (Li et al., 2008; Li, 2009). In Section 2.6 I will introduce KWIK in more

detail, and it will be the basic framework underlying most of the algorithms presented

in this dissertation.

1.3.2 The Curse of Dimensionality

I now introduce another major challenge in reinforcement learning. Imagine you want

to implement a reinforcement-learning algorithm to get a robot to learn how to navigate

a room. To make this problem feasible, you decide to break down the room into small

square sections, and implement a mechanism for the robot to identify in which section

it is standing. The robot can now be in a finite and relatively small number of different

states: one for each section of the room it is navigating. After a while, you realize

the robot also needs to consider the lighting conditions of the room, so you add a new

variable, which has a value of 0 if the room is dark, 1 if there is light. The size of the

state space just doubled! The robot now needs to decide what to do at each of the

sections of the room under two different circumstances: when the light is on, and when

the light is off.
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The exponential explosion in the number of states as a function of the number of

state variables used to represent a problem is known as the curse of dimensionality,

a term originally coined by Bellman (1957). Reinforcement learning researchers have

been combatting this curse since the field was created, and it represents probably the

major challenge when trying to design algorithms that scale up to large problems.

In all of the success stories in RL mentioned before, some form of approximation or

generalization is used to represent the problem, which would otherwise be simply too big

to be represented exactly. Approximation methods achieve computational efficiency at

the expense of optimality. Generalization methods seek to reduce the size of the problem

by projecting knowledge about certain already-explored states into unexplored ones.

State aggregation

One form of generalization is state aggregation. In our previous example, let us imagine

we now equip our robot with a night vision system that renders the state of the lights

irrelevant for the task at hand. We could now treat the states in which the robot is in a

certain region with or without the lights on as equivalent, ignoring the lighting variable.

At the same time, we had already made an assumption for our robot: when discretizing

its possible locations into a small number of sections, we assumed that different physical

states within each section could be treated as the same state.

State aggregation is one way of dealing with large state spaces: irrelevant features

are ignored, and different ground states are aggregated into a smaller number of ab-

stract states, therefore making the problem smaller (Singh et al., 1995; Jong & Stone,

2005). State abstraction necessarily loses information, but preferentially retains what

is needed for making near-optimal decisions. Dean and Givan (1997) define a notion of

redundancy, where two states are considered equivalent if the effect of available actions

are the same from both of them, and develop methods for automatic minimization of

domain models. This idea has been further extended to model minimization based on

exploiting symmetries in domain models, with or without information loss (Ravindran

& Barto, 2001; Ravindran, 2004; Taylor et al., 2008).
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Some formal definitions of types of state abstraction and their qualitative properties

can be found in Li et al. (2006). A major challenge that remains is applying the right

state aggregation to a given problem, perhaps by properly encoding expert knowledge

or by designing algorithms that learn to generalize correctly from experience.

1.4 A Change of Representation

In this section I argue that, when modeling many real-life problems, existing

reinforcement-learning representations of state simply make problems harder in an un-

natural way. Take the example of the robot navigating a room introduced to illustrate

the curse of dimensionality problem. Instead of discretizing the robot’s room into sec-

tions and trying to learn transition dynamics from each section, we could think of the

problem as consisting of variables indicating the robot’s location and orientation. A

learner under such representation would only need to acquire knowledge about how

actions alter these variables. For example, it could learn that a forward action al-

ters the robot’s location relative to its orientation, and that the effect of this action is

independent from the absolute value of the location parameters.

Leffler et al. (2007) introduced a representation, called Relocatable Action Models

(RAM), where states are clustered based on the outcomes of actions when executed

from them, and action dynamics are learned by cluster. In the robot navigation task,

imagine the room has two different types of terrain: slippery and carpeted. RAM

models would cluster each state according to its terrain type, and would learn relative

action outcomes for each terrain.

Consider, however, a further complication: the outcome of actions in the robot

domain depends not only on the terrain, but also on whether or not there are walls

the robot bumps against, or other obstacles on the robot’s way. RAM models could

cluster the state space further, into four clusters resulting from the combination of slip-

pery/carpeted states that are near/far away from a wall. A more natural representation

would instead define action dynamics in terms of relations between the robot and walls,

or the robot and different kinds of obstacles.
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1.4.1 Objects and the Physical World

Recent work in developmental and cognitive psychology (for a review see Baillargeon

et al. (2008)) suggests that infants even a few months old already have a notion of

objects and possess a rich model of their physical behavior. Experiments show that

infants can recognize and distinguish whether an object is inert or self-propelled, and

expectations about their behavior and interaction are affected by this distinction (Luo

et al., 2009). It has further been suggested that objects might constitute the early units

of attention in the visual system (Scholl, 2001).

The exact nature of the concept of object in infants, the exact ages at which different

aspects of their physical properties are acquired, and what the innate components are

are areas of contention and debate. However, regardless of their different positions in

these matters, researchers share the underlying assumption that objects play a key role

in our understanding of the dynamics of the physical world. This assumption is at the

core of the present dissertation.

The initial insight for this work is that existing state representations in RL fail

to model objects and their interactions appropriately. In fact, these representations

usually obscure the fact that a given represented environment is composed of objects in

a real or simulated physical domain, and so hinder the agents’ ability to learn efficiently.

In Chapter 3 I present an example of how different representation in RL dramatically

affect learning efficiency.

The introduction of an object-oriented representation for RL problems, which I call

OO-MDP, and a set of learning algorithms that takes advantage of it constitutes an

attempt to bridge the gap between what cognitive psychologists have observed about a

very basic bias of human cognition, and the kind of biases that as RL practitioners we

have been willing to build into our agents.

1.4.2 Relational Reinforcement Learning

A sub-field of Reinforcement Learning, called Relational Reinforcement Learning

(RRL), deals with a generalization of the MDP framework to first-order domains. Such
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domains are those specified through the use of logic predicates that include quantifiers

over sets of variables (for example, set of states that follow certain properties). Rep-

resentations or statements that express properties or reason about groups of states are

called lifted, and when a lifted statement is applied to a set of concrete objects it is said

to be grounded.

Representations in RRL try to bring the power and expressiveness of first-order logic

(FOL) to reinforcement learning. Multiple formalisms have been proposed that limit

the kind of FOL expressions that are allowed in an attempt to make representations

efficiently learnable (Džeroski et al., 2001; van Otterlo, 2005; van Otterlo, 2008). One

common representation is the First-Order Markov Decision Process, or FOMDP, but to

this day there is no provably efficient FOMDP learner that does not rely on significant

prior knowledge provided as input.

One representation that bears a number of resemblances with OO-MDPs is that

of Relational MDPs (RMDPs), introduced by Guestrin et al. (2003). The focus of

RMDPs is on planning, and their main goal is to generalize behavior from a simple

domain to new ones where more (or fewer) objects of known types appear, potentially

establishing new relations among them. The example that appears in the RMDP paper

is on the game Freecraft, a real-time strategy game where a player creates and con-

trols a set of peasants, soldiers and other types of units, each with different skills (for

example, resource gathering, structure building or fighting). The player faces different

scenarios with different goals, like building certain structures or fighting enemy armies.

RMDPs can represent relationships between units in a way that facilitates generalizing

to different types and numbers of units in different scenarios. For example, an agent

that learns an RMDP representation for a scenario where a fighter fights an enemy can

easily re-plan for a new scenario where multiple fighters fight multiple enemies. Theo-

retical guarantees, in the form of a polynomial PAC bound, demonstrates that accurate

planning is possible with a polynomial number of samples.

While the OO-MDP representations introduced in this dissertation have similarities

with RMDPs, the focus of my work is on grounding the representation on knowledge
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that can be directly extracted from propositional features of the environment. Features

like objects’ positions and other observable attributes constitute a representational bias

that is natural and intuitive. Essentially, the OO-MDP representation is an attempt at

bridging the gap between expressive power and efficient learning. In this dissertation,

I will introduce the general representation and establish the assumptions that enable

provably efficient learning and smart exploration.

1.5 Object-oriented Representations in Reinforcement Learning

As stated at the beginning of this chapter, this dissertation will support the statement

that object-oriented representations are a natural way of representing state, in a large

class of problems, to enable orders of magnitude faster learning. This representation

tackles the challenges mentioned above by providing a generalization method that can

drastically reduce the size of a problem, while enabling efficient exploration.

The main contributions of this work are:

• I introduce Object-Oriented Markov Decision Processes (OO-MDPs), an exten-

sion of the MDP formalism where the state is represented as a set of objects, each

of which is composed of a set of features or attributes. Dynamics will be repre-

sented by conditional effects. Given a condition represented as a conjunction over

object interactions and feature values, an effect occurs, represented as a change

in one or more features of an object.

• I show that problems represented as specific subclasses of OO-MDPs can be

learned efficiently by enabling smart exploration. I introduce learning algorithms

and prove polynomial learning bounds.

• I present experimental results that show orders of magnitude faster learning com-

pared with state-of-the-art algorithms that use standard representations not based

on objects.

The rest of this dissertation is organized as follows:
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• Chapter 2 presents background, formalizing some of the material just introduced

and adding some necessary definitions.

• Chapter 3 demonstrates the role state representations play in learning. I will

introduce many state-of-the-art learning algorithms on standard RL representa-

tions, and compare their performance on a well-know domain (the Taxi problem).

I will present experimental results on how humans solve that same task.

• Chapter 4 presents the OO-MDP representation in detail. I will introduce the

general representation, and then some sub-classes that are efficiently learnable.

• Chapter 5 shows how one particular sub-class of OO-MDPs, ones with determin-

istic action effects, can be learned efficiently under certain assumptions.

• Chapter 6 shows how a larger sub-class of OO-MDPs, with stochastic effects, can

also be learned efficiently.

• Chapter 7 concludes and presents future challenges and potential extensions.
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Chapter 2

Markov Decision Processes

Sammy Jankis wrote himself endless notes. But he’d get
mixed up. I’ve got a more graceful solution to the
memory problem. I’m disciplined and organized. I use
habit and routine to make my life possible.

From the film Memento (2000)

Reinforcement Learning problems are often formalized as Markov Decision Pro-

cesses (MDPs) (Puterman, 1994). In this chapter, I introduce the MDP formalism,

the MDP learning and planning problems and the notion of sample and computational

complexities. I then present the PAC, MB, PAC-MDP and KWIK learning frameworks.

2.1 Definitions

A Markov Decision Process is a five-tuple M = 〈S,A, T,R, γ〉, where:

• S is the set of states, which can be discrete or continuous. Unless otherwise noted,

in this dissertation I will assume S is discrete and finite.

• A is the set of actions, which can also be discrete or continuous. Once again, I

will assume a finite set of actions.

• T : S × A → PS is the transition function, with PS representing the set of

probability distributions over S. As notation, and assuming S and A to be

discrete, I will use T (s, a, s′) to denote the probability of observing a transition

to state s′ ∈ S if action a ∈ A is executed from state s ∈ S.

• R : S × A → PR is the reward function, a distribution over the real numbers

representing the amount of immediate reinforcement to be expected by executing
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an action from a given state. I will use R(s, a) to denote the expected value of

the distribution R(s, a).

• γ ∈ (0, 1] is the discount factor, and its meaning will become clear when I define

value functions.

2.1.1 The Markov Property

Markov Decision Processes are used to model dynamical systems where the state st ∈ S

at any given point in time t is a sufficient statistic for the global state of the system.

That is, the history of the system before time t is irrelevant to the prediction of the

next state st+1 ∈ S, given st and at. Notice that the transition function only depends

on S ×A. A system where this property holds is called Markovian. This definition can

be generalized to the case in which state st+1 depends on the last k states, rather than

just st, and we can say that the dynamical system is order k Markovian.

2.1.2 The Interaction Protocol

The interaction between an agent and an environment modeled as an MDP proceeds

in discrete timesteps, for a possibly infinite amount of time, in the following way (see

Figure 1.1):

1. The environment at time t is at state st ∈ S. Under the MDP representation of

the environment, we assume the agent is able to perceive this state directly, and

we call the environment fully observable. Other representations assume the agent

only perceives an observation derived from st, and we call these environments

partially observable. This work assumes fully observable environments.

2. The agent picks an action at ∈ A.

3. In response to this action, the environment randomly draws a new state st+1

according to the distribution defined by T (st, at). It also draws a reward rt from

the distribution R(s, a).

4. The clock (t) advances one timestep and the interaction is repeated.
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2.2 Policies and Value Functions

The agent picks its actions according to a policy. Formally, a stationary policy is a

function π : S → A. That is, for any given state s, π(s) returns an action a to be taken

from s. Given a policy π and a state s, the return that the agent expects to obtain

by following π from s can be defined by the following recursive function, known as the

value function:

V π(s) = Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + ...|st = s]

= Eπ[
∞
∑

t=0

γtrt|st = s]

= Eπ[rt + γV π(st+1)|st = s].

Using the transition and reward functions, it is possible to rewrite the previous

equation in the form known as the Bellman equation (Bellman, 1957; Puterman, 1994):

V π(s) = R(s, π(s)) + γ
∑

s′

T (s, π(s), s′)V π(s′).

The maximum value that can be attained by any policy is commonly written V ∗,

and can be defined as:

V ∗(s) = max
a

(R(s, a) + γ
∑

s′

T (s, a, s′)V ∗(s′)).

Similar to the value function V , it is common to define what is known as the state-

action value function, or Q function, which represents the return expected from taking

a given action a and then following policy π:

Qπ(s, a) = R(s, a) + γ
∑

s′

T (s, π(s), s′)V π(s′).

We can write the optimal state-action function as:

Q∗(s, a) = R(s, a) + γ
∑

s′

[T (s, a, s′)max
a′

Q∗(s′, a′)].
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This definition lets us derive the optimal policy, π∗, as:

π∗(s) = arg max
a

Q∗(s, a).

For formal derivations and proofs, see Puterman (1994).

2.3 Solving an MDP

A key insight, attributed to Bellman (1957), is that if we have access to an MDP model

(that is, if we know the transition function T and reward function R), we can iteratively

use the Bellman equations to compute the optimal value function and from it an optimal

policy. This is an important sub-step in the reinforcement-learning problem, known as

planning, or solving an MDP. Planning can be done exactly or approximately.

2.3.1 Exact Planning

The simplest method for exact planning in MDPs is called value iteration (Bellman,

1957), or VI for short. We will assume the transition and reward functions T and R of

our MDP are given, and compute V ∗ iteratively starting from V0, initialized arbitrarily

(for example, ∀s ∈ S, V0(s) = 0). The iterative step then updates V as follows:

Vk+1(s)← max
a

[R(s, a) + γ
∑

s′

T (s, a, s′)Vk(s
′)].

It can be show that, in the limit, Vk converges to V ∗. In practice, we can terminate

the algorithm when the norm ‖Vk+1 − Vk‖∞ drops below some threshold. It can be

shown that at such point Vk+1 is arbitrarily close to V ∗ (Bellman, 1957).

For completeness and as a reference to the reader, another simple and common

exact planning method is policy iteration and was first introduced by Howard (1960).

Finally, it is also possible to express the optimal value function as the solution to a linear

program (Hordijk & Kallenberg, 1979), which provides us with a proof that solving an

MDP is a polynomial-time problem (Littman et al., 1995).
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2.3.2 Approximate Planning and Sparse Sampling

The three exact planning methods mentioned above have their approximate counter-

parts, namely approximate value iteration (Munos, 2005), approximate policy iteration

(Munos, 2003) and approximate linear programming (de Farias & Van Roy, 2003). All

of these methods lead to the generation of policies that, albeit near-optimal, are global.

That is, all these methods produce a value fuction that can be used to derive an action

for every state.

A different approach to planning is to derive a policy only for a set of local states,

the ones that are most likely reachable from a given current state. If an agent occupies

state st, and a model of the MDP is available, a forward search algorithm (Russell &

Norvig, 2003) can be used to look ahead a number of states and compute the best next

action according to the samples taken. In the discounted reward setting it is possible

to define a time-horizon T , after which the reward to be accrued approximates 0. To

prove this, first let us define the H-step expected discounted reward as:

V ∗
H(s) = E(

H
∑

i=1

γi−1ri|s, π
∗),

where ri is the reward obtained at the ith time step when executing optimal policy π∗

starting from state s.

Let us also assume, without loss of generality, that rewards are bounded: 0 ≤ ri ≤ 1,

and call R∞ the infinite-sum of expected rewards.

Lemma 1. Let Rt(H) be an H-step discounted reward at time t:

Rt(H) =

H
∑

i=1

γi−1rt+i.

Given any ǫ > 0 and t, we can show that 0 ≤ R∞ −Rt(H) ≤ ǫ if

H ≥
1

1− γ
ln

1

ǫ(1− γ)
.

Proof. Since all rewards were assumed to be greater than 0, it is clear that R∞ ≥ Rt(H).
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To show that R∞ −Rt(H) ≤ ǫ, note that the inequality γ ≥ 1 + ln γ implies:

H ≥
ln 1

ǫ(1−γ)

ln 1
γ

= logγǫ(1− γ).

Therefore, since rewards are also assumed to be ≤ 1, we can show that:

R∞ −Rt(H) =
∞
∑

i=H

γirt+i ≤
∞

∑

i=H

γi =
γH

1− γ
≤

ǫ(1− γ)

1− γ
= ǫ.

This means that it is sufficient to compute a plan by searching T steps ahead, instead

of infinitely far into the future, as long as T is of order O(1/(1 − γ)).

In deterministic MDPs, it is sometimes feasible to compute an exact local plan,

simply by building a search tree of depth T and branching factor |A| (using depth- or

breadth- first search, for example). In stochastic MDPs, it becomes necessary to sample

multiple trajectories and approximate the expected reward, the main idea behind the

sparse sampling algorithm of Kearns et al. (2002).

Defining the 0-step value function as V ∗
0 (s) = 0, it is now possible to recursively

re-write V ∗
h as:

V ∗
h (s) = R(s, π∗(s)) + γ

∑

s′∈S

T (s, π∗(s), s′)V ∗
h−1(s

′).

What this equations tells us is that if it were possible to obtain an estimate of

V ∗
h−1(s

′), we can inductively estimate V ∗
h (s). What sparse sampling does is approximate

the expectation over all next-states s′ in the previous equation by obtaining, for each

action a, C samples from the generative model T (s, a, s′), resulting in a set of next-states

Sa. Using these samples, the value function is estimated as follows:

V̂ ∗
h (s) = max

a
[R(s, a) + γ

1

C

∑

s′∈Sa

V̂ ∗
h−1(s

′)].

Note from this equation that the approximation error in sparse sampling is a function
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of C and the lookahead depth h.

In all the experiments in this dissertation, planning will be either done exactly using

value iteration, or by sparse sampling.

Instead of uniformly sampling from the model T , Kocsis and Szepesvári (2006) pro-

posed using ideas from k-armed bandit algorithms to adaptively obtain more samples

from the most promising actions. Their algorithm, called UCT, has achieved a signifi-

cant success for planning in the game of Go (Gelly & Silver, 2007), and is pushing the

limits of what is possible in RL planning in very large state spaces.

2.4 Learning

In planning, as in the previous section, it is assumed that the transition T and reward

R functions are known. In a standard RL setting, this is not the case, and the agent

needs to estimate T and R from experience. In such situations, two approaches are

commonly taken: model-free and model-based learning (Atkeson & Santamaria, 1997).

Model-free methods try to approximate the underlying value function directly (and are

therefore sometimes called direct methods), and need no planning step (Sutton et al.,

1992). Model-based or indirect methods try to first learn approximate models of T and

R and use those models to estimate the value function (Sutton, 1991).

The proper functioning of model-based methods relies on the simulation lemma

(Kearns & Singh, 2002), which establishes that if a sufficiently accurate estimate of

T and R is available, then the (near-)optimal policy of the estimated MDP M̂ is

provably close to the (near-)optimal policy of the true MDP M . In the model-free case,

theoretical results also guarantee the convergence of direct approximation methods to

the optimal value function (Singh & Yee, 1994).

In Chapter 3, some canonical plus some state-of-the-art algorithms, both model-free

and model-based, will be introduced in some detail.
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2.5 Measuring performance

When analyzing reinforcement-learning algorithms, one important aspect is their con-

vergence to an optimal policy. However, this alone is not enough: proofs of conver-

gence in the limit do not tackle the issue of efficiency. We would like to know when

our algorithms converge, and hope that this happens within a reasonable metric (for

example, polynomial with respect to some relevant parameters). When measuring the

performance of reinforcement-learning algorithms, three aspects need to be considered:

computational costs, space and learning speed.

2.5.1 Computational complexity

The goal of a reinforcement-learning agent is to maximize long-term reward. That

is, in the general case, we expect our algorithms to run forever! This means that

by the usual definition of computational complexity, reinforcement-learning algorithms

never halt and their total running time is infinite. For this reason, the computational

complexity of reinforcement-learning algorithms is measured per step. That is, it is

measured as the amount of computation performed between action choices.

When an agent observes a state and needs to choose an action, two types of compu-

tations are usually performed: learning from the just-acquired experience, and choosing

the next action. The computation required for the learning part is highly dependent on

the algorithm being used and the representation to be updated. The action-choice part

commonly involves two operations that can be analyzed here, regardless of the algo-

rithm being used: computing an estimate of the optimal value function, and choosing

the best action given this estimate.

In model-based algorithms, the value function needs to be computed from the es-

timates for the reward and transition functions, using some of the planning methods

described in Section 2.3. While the exact computational complexity of this step depends

on the planning method, it is usually quite expensive. For example, the computational

cost of Value Iteration is O( |S|
2|A|2

1−γ ) in the worst case.

In contrast, model-free algorithms, which are defined by their attempt to estimate
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the value function directly and do not need a planning step, computational costs per

step are very low. For example, if the state-action value function Q is represented as a

table, most model-free algorithms that update a single value from each experience have

an O(1) computational cost.

The final step, choosing an action given a value function, only requires comparing

among all available actions, an O(|A|) operation (that could be improved depending on

the representation of the value function).

2.5.2 Space complexity

Space complexity measures the amount of space required by an algorithm to maintain

its data structures. An algorithm that stores the whole state-action value function

as a table requires O(|S||A|) space. Algorithms that use some sort of value-function

approximation would require less space.

2.5.3 Learning complexity

Learning complexity measures the amount of experience needed by an algorithm before

it can achieve a (near-)optimal policy. In order to learn about its environment, an agent

needs to explore it, and in the process it will take a number of sub-optimal actions.

This exploration cost has been formally defined by Kakade (2003), in what he calls

the sample complexity of exploration (or just sample complexity). Two parameters

are commonly defined when talking about sample complexity: a precision parameter

ǫ ∈ (0, 1), and a confidence parameter δ ∈ (0, 1). The precision parameter controls how

close to optimal we require the policy of our algorithm to be. The confidence parameter

controls with what probability we want to achieve such performance.

Formally:

Definition 2. (Sample Complexity) Given a reinforcement-learning algorithm A, At

is the non-stationary policy executed by A at timestep t. For any given ǫ, δ ∈ (0, 1),

the sample complexity of A is the number of timesteps t such that V At(st) ≤ V ∗(st)− ǫ

with probability 1− δ.
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PAC-MDP

Provided with a definition of sample complexity, the goal now is to define what we

mean by an efficient learning algorithm. In Strehl et al. (2006), the definition of a

Probably Approximately Correct (PAC) algorithm is extended to the MDP-learning

case, as follows::

Definition 3. (PAC-MDP) An algorithm A is PAC-MDP in an MDP M if, given

ǫ, δ ∈ (0, 1), the sample complexity of A is bounded by a polynomial function in the

quantities 1/ǫ, 1/δ, 1/(1−γ) and |M | with probability 1− δ, where |M | is some measure

of the complexity of the MDP M. Typically, |M | will be a polynomial in the number

of parameters describing M, like the number of states |S| and actions |A| in the finite

MDP case.

We will say that a reinforcement-learning algorithm is sample efficient if it is PAC-

MDP. A number of algorithms (Kearns & Singh, 2002; Kearns & Koller, 1999; Brafman

& Tennenholtz, 2002; Strehl et al., 2007), some of which I will describe in Chapter 3,

have PAC-MDP guarantees. Most of them base their exploration strategy on the notion

of optimism in the face of uncertainty (c.f. 1.3.1). A recently introduced framework,

KWIK, unifies these approaches (Li et al., 2008; Li, 2009), and I briefly introduce it in

the next section.

2.6 The KWIK Framework

Sample efficient algorithms deal with the exploration/exploitation dilemma by keeping

track of both their knowledge and their degrees of uncertainty. Smart exploration

strategies use this information to guide the agent towards parts of the state space of

high uncertainty, as long as these parts are easy-enough to reach. Otherwise, they will

exploit the knowledge they have so far. Their PAC-MDP guarantees usually rely on the

fact that, at all times, the agents are either following a near-optimal policy, or learning

something new.

Li et al. (2008) introduced a supervised-learning framework called Knows What It



25

Knows, that unifies these approaches and provides explicit properties that are sufficient

for an algorithm to be used in efficient exploration algorithms. The key idea is that if

a class of MDPs can be KWIK-learned, then there exists a smart exploration approach

that is PAC-MDP for that class (Li, 2009).

The problem setting for KWIK algorithms is as follows: there is an input set X and

an output set Y . A hypothesis class H is a set of functions mapping inputs to outputs,

H ⊂ (X → Y ). The interaction then follows this protocol:

• The hypothesis class H, accuracy parameter ǫ, and confidence parameter δ are

known to both the learner and the environment.

• The environment selects a target concept h∗ ∈ H adversarially.

• For timestep t = 1, 2, 3, . . .,

– The environment selects an input xt ∈ X in an arbitrary way and informs

the learner. The target value yt = h∗(xt) is unknown to the learner.

– The learner predicts an output ŷt ∈ Y ∪ {⊥} where ⊥ indicates that the

learner is unable to make a good prediction of yt. We call ŷt valid if ŷ 6= ⊥.

– If ŷ 6= ⊥, it should be accurate: |ŷ − y| ≤ ǫ, where y = h∗(x).

– If ŷt = ⊥, the learner makes a stochastic observation zt ∈ Z = {0, 1} of the

output yt: zt = 1 with probability yt and 0 otherwise.

We say that H is KWIK-learnable if there exists an algorithm A with the following

property: for any 0 < ǫ, δ < 1, two requirements are satisfied with probability at least

1− δ in a whole run of A according to the KWIK protocol above:

1. (Accuracy Requirement) If ŷt 6= ⊥, it must be ǫ-accurate: |ŷt − yt| < ǫ;

2. (Sample Complexity Requirement) The total number of ⊥s predicted during the

whole run, denoted ζ(ǫ, δ), is bounded by a function polynomial in 1/ǫ, 1/δ and

some measure of the size of the hypothesis class H.
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2.6.1 KWIK-RMax

As mentioned before, the key insight in the KWIK framework is that for any class

of MDP whose structure can be KWIK-learned, it is easy to construct a PAC-MDP

algorithm. Li (2009) defines a generic algorithm called KWIK-Rmax, that receives as

input two KWIK learners (among other parameters): AT and AR, KWIK-learners for

the transition and reward functions respectively. Given these sub-algorithms, KWIK-

Rmax guarantees PAC-MDP efficiency. Pseudo-code for KWIK-Rmax is presented in

Algorithm 1.

Algorithm 1: KWIK-Rmax

1: Input: S, A , γ, AT , AR, ǫT , ǫR, δT , δR, ǫP .
2: Initialize AT with parameters ǫT and δT .
3: Initialize AR with parameters ǫR and δR.
4: for all timesteps t = 1, 2, 3, . . . do
5: Update empirical known state-action MDP M̂ = 〈S,A, T̂ , R̂, γ〉:
6: for all (s, a) ∈ S ×A do
7: if AT (s, a) = ⊥ or AR(s, a) = ⊥ then
8:

T̂ (s, a, s′) =

{

1 if s′ = s
0 otherwise

9: R̂(s, a) = rmax

10: else
11: T̂ (s, a, s′) = AT (s, a)
12: R̂(s, a) = AR(s, a)
13: end if
14: end for
15: Compute a near-optimal value function Qt for M̂ .
16: Observe current state st, greedily choose action at = argmaxa∈A Qt(s, a), receive

reward rt and transition to st+1.
17: if AT (st, at) = ⊥ then
18: Provide AT with the sample 〈st, at, st+1〉
19: end if
20: if AR(st, at) = ⊥ then
21: Provide AR with the sample 〈st, at, rt〉
22: end if
23: end for
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2.6.2 Example: Learning a Finite MDP

Consider a finite MDP M , that is, one with discrete state and action sets. The transition

function T (s, a, s′) = P (s′|s, a) is a multinomial distribution over next-states for each

state and action pair. The problem of predicting a next-state in M can then broken

down into predicting a next-state from each individual state-action pair (s, a) in M .

That is, the hypothesis H over transition functions can be defined as a combination of

hypotheses for each individual pair: H = Hs1,a1
× . . .×Hs|S|,a|A|

.

Li et al. (2008) first show that, if each hypothesis Hi is KWIK-learnable, then

the combination is also KWIK-learnable. They call the algorithm for combining these

learners input-partition. Then, they also show that multinomial distributions can be

KWIK-learned, through an algorithm called dice-learning.

This shows that if we can KWIK-learn transition function with an algorithm AT ,

we can provide it as input to KWIK-Rmax and we obtain a PAC-MDP learner. In fact,

what I just described is exactly the PAC-MDP algorithm Rmax introduced by Brafman

and Tennenholtz (2002), cast into the KWIK framework.

Other Supervised Learning Frameworks: PAC and Mistake-bound

I will mention two other supervised-learning frameworks, PAC and MB (mistake-

bound), that are related to KWIK. After I introduce OO-MDPs, I will show how

some aspects of the representation can be PAC- or MB- learned, which is not suit-

able for the reinforcement-learning setting, and it will be necessary to design suitable

KWIK-learners.

The PAC framework (Valiant, 1984) for supervised learning assumes the learner is

presented with independent and identically distributed (iid) samples of input-output

pairs from the hypothesis to be learned. The learner has two parameters, ǫ and δ, and

its goal is to infer the target function that maps inputs to outputs to ǫ-accuracy, with

probability (1 − δ). Formally, if inputs follow a distribution D, the true hypothesis is
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h∗ and the learner’s estimate is ĥ, PAC requires that, with probability (1− δ),

Ex∼D[I(ĥ(x) 6= h∗(x))] ≤ ǫ

The PAC learning framework is not directly suitable for reinforcement learning

because of the iid assumption. An agent that is exploring observes samples of the type

〈st, at, rt, st+1〉 in a non-iid fashion, as they depend on the exploration strategy being

followed at time t.

The mistake bound framework (MB) (Littlestone, 1988), like KWIK, assumes inputs

can be selected adversarially. The difference is that the learner is not allowed to refuse to

make a prediction (by responding⊥), but rather is always required to predict something.

In MB, only mistaken predictions are counted against the agent, and correct output

labels are produced by the environment when a mistake has been made. A successful

MB learner is expected to make only a small number of mistakes.

2.7 Summary

In this chapter, I introduced background that will be necessary for the rest of this

dissertation. I presented the MDP formalism, how MDPs can be solved when the

transition and reward functions are known, and how these functions can be estimated

when unknown. The performance of reinforcement learning agents is measured in terms

of computational, space and sample complexities. In the rest of this dissertation I will

focus mainly on the problem of efficiently learning problems represented as OO-MDPs,

so I introduced the KWIK and PAC-MDP frameworks, which will allow us to formally

talk about efficiency.
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Chapter 3

Learning Algorithms and the Role of Representations

The computer is the first metamedium, and as such it
has degrees of freedom for representation and expression
never before encountered and as yet barely investigated.

Alan Kay, computer scientist (1940- )

Formal symbolic representation of qualitative entities is
doomed to its rightful place of minor significance in a
world where flowers and beautiful women abound.

Albert Einstein (1879-1955)

In this chapter, I present a set of learning algorithms that illustrate the ways in

which state representations, exploration and state aggregation impact learning. This

presentation will provide the reader with an overview of the state-of-the-art and a

motivation for the object-oriented representation that will be introduced in the next

chapter. It will also establish some of the comparison metrics that justify the claim

that object-oriented representations enable orders of magnitude faster learning. I start

by introducing a common domain that will be used to compare the different algorithms,

the Taxi problem of Dietterich (2000).

3.1 The Taxi Problem

Taxi is a grid-world domain (see Figure 3.1), where a taxi has the task of picking up

a passenger in one of a pre-designated set of locations (identified in the figure by the

letters Y, G, R, B) and dropping it off at a goal destination, also one of the pre-

designed locations. The set of actions the agent can take are North, South, East, West,
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Figure 3.1: The original 5× 5 Taxi problem.

Pickup and Dropoff. Walls in the grid limit the taxi’s movements. In its standard form,

the Taxi domain has 500 states: 5 x positions for the taxi, 5 y positions, 5 passenger

locations (4 designated locations plus in-taxi) and 4 destinations.

The agent receives a reward of −1 for each navigation step it takes, −10 for trying to

drop off or pick up the passenger at the wrong location, and 0 when it drops it off at the

right location, at which moment the episode ends. The optimal policy in this domain

is therefore to navigate the taxi to the passenger location using the shortest number of

movement actions possible, execute a Pickup action, navigate to the destination and

execute Dropoff.

Despite its simplicity (or because of it), the Taxi domain has been widely used in

the RL literature since its introduction. Through the course of this research, I have

come across more than 20 papers that contain experiments on the Taxi domain 1.

1A search for the query ‘"reinforcement learning" taxi’ on Google Scholar on July 20th, 2009

yielded 304 results.
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3.1.1 Taxi experimental setup

I will report on a number of different algorithms run on the Taxi problem. Each learning

trial consists of running for 100 steps or until the agent reaches the goal of delivering

the passenger to its desired location (whichever happens first). We call this trial an

episode. At the end of each episode, the agent’s learned policy thus far is evaluated on

a set of six “probe” combinations of 〈taxi (x,y) location, passenger location, passenger

destination〉. The probe states used were: 〈(2, 2), Y,R〉, 〈(2, 2), Y,G〉, 〈(2, 2), Y,B〉,

〈(2, 2), R,B〉, 〈(0, 4), Y,R〉, 〈(0, 3), B,G〉. If the policy of the agent is optimal for these

6 probes, we declare the problem solved and report the total number of steps taken to

that point.

Experiments were repeated multiple times from random start locations and the re-

sults averaged. Unless otherwise noted, all experiments reported in this and subsequent

chapters follow this experimental protocol, and I only report the values used for the

particular parameters of each algorithm and the number of times experiments were

repeated.

3.2 The Role of Models and Exploration

In this section I compare a model-free algorithm against a model-based one, both under

a flat state-space representation. The example will illustrate a long-established empir-

ical fact: that model-based approaches are more sample-efficient (Moore & Atkeson,

1993; Sutton, 1990). Plus, it will show how exploration impacts learning, by com-

paring a simple model-free exploration approach against KWIK-Rmax style of smart

exploration (cf 2.6.1).

3.2.1 Flat state representations

Under a flat representation, each state of the world is assigned a unique identifier with

no particular meaning or structure. Indeed, the only purpose of this identifier is to

serve as a hash code that lets an agent recognize whether it is visiting a state for the

first time or it has visited it before. In the MDP formalism, flat simply means that
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each element of S is identified by a unique number. In the Taxi domain, the flat states

are {s0...s499}.

3.2.2 Model-free learning: Q-learning and ǫ-greedy exploration

Perhaps the main breakthrough in the early days of Reinforcement Learning was the

development of Q-learning (Watkins, 1989; Watkins & Dayan, 1992), now the best

known model-free algorithm for learning in flat state-space representations. Through

a very simple update rule (Equation 3.1), Q-learning approximates Q∗, the optimal

action-value function. The most important result at the time was that Q-learning

converged to Q∗ regardless of the policy being followed (Watkins, 1989). That is, an

agent does not need to follow an optimal policy in order to learn the optimal action-

value function. After an action a is taken from state s, and a new state s′ and reward

r are observed, the Q state-action value of (s, a) gets updated as follows:

Q(s, a)← (1− α)Q(s, a) + α[r + γ max
a′

Q(s′, a′)]. (3.1)

This simple update rule, the crux of the Q-learning algorithm, is a convex combina-

tion of the current value of Q(s, a) and the estimated value due to the transition just

observed. The degree to which Q-learning adapts to new experience or keeps its existing

knowledge is expressed by the parameter α, known as the learning rate. The higher

α is, the more importance is given to new experience. Therefore, at the beginning of

the learning process, when Q values are still very inaccurate, it is desirable to have a

large value of α. As the Q function converges, it is wise to have a low α and not give

too much credit to new experience. A common adaptation of the standard Q-learning

algorithm presented here is to cool down (gradually decay) α as time progresses. In

stochastic domains, where the same action a from the same state s can lead to different

outcomes, the role of α is to blend new outcomes in without completely overwriting

prior experience. In deterministic domains, where the same outcome is always expected

for any (s, a) pair, it is possible to simply set α = 1.

Pseudo-code for Q-learning is presented in Algorithm 2.
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Algorithm 2: Q-learning

Input: α, γ
Initialize Q(s, a) according to initialization policy.
for all timestep t = 1, 2, 3, . . . do

Observe current state st

Choose action at according to exploration policy
Execute action at, obtain reward rt and observe new state st+1.
Set α according to learning rate polict.
Update Q: Q(s, a)← (1− α)Q(s, a) + α[r + γ maxa′ Q(s′, a′)]

end for

Notice that in the pseudo-code presentation of Q-learning the exploration policy

(that is, the policy for choosing the next action at each step) was left open. A very

common exploration policy in Q-learning is called ǫ-greedy exploration: an extra pa-

rameter, ǫ ∈ (0, 1) is provided as input so that Q-learning takes a random action ǫ

fraction of the time and a greedy action the remaining 1− ǫ fraction. The greedy action

is the one with the highest Q value from the current state s: argmaxa Q(s, a).

A known improvement for guiding exploration in a smart way is to initialize the Q

table to an optimistic value, usually the maximum possible value of any state action

pair, vmax. If the maximum possible immediate reward, rmax, is known, it suffices to

set all initial Q0(s, a) to vmax = rmax/(1 − γ). This kind of initialization will lead

Q-learning to consider unvisited state-action pairs as having high value, and it will

consider as greedy actions those that will take the agent toward these states, a smarter

type of exploration than just taking a random action ǫ percent of the times.

Q-learning results

I ran Q-learning on the Taxi problem using ǫ-greedy exploration, following the protocol

described in Section 3.1.1. For each setting, the experiment was repeated 100 times

from different random start states, and the number of steps until the optimal policy was

reached averaged. Experiments were run both with and without optimistic initialization

policy.

In the optimistic case, α was set to 1 and ǫ to 0. Since the maximum immediate

reward in this domain is 0, vmax = 0/(1− γ) = 0, so all initial Q(s, a) values are set to
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zero. Under these settings, Q-learning reaches the termination criterion in an average of

29350 steps, with standard deviation 3930. The computation time per step, as expected

in a model-free algorithm, was very low: less than 1ms on average.

Without optimistic initialization, a parameter search was conducted for the best

empirical value of the exploration rate ǫ. Although Q-learning is theoretically guaran-

teed to converge, in practice it can take an extremely long time, especially if parameters

are not set correctly.

After parameter search, the best value for ǫ was determined to be 0.6, and the

learning rate α was set to 0.1. The problem was learned in an average of 106859 steps,

with standard deviation 16474.

3.2.3 Model-based learning and KWIK-Rmax exploration

As introduced in Chapter 2, another approach to solving an RL problem like Taxi is to

estimate the transition and reward functions from experience, and use those estimates

to plan a (near-)optimal solution using a planning algorithm like Value Iteration. This

kind of approach is what we call model-based, or indirect learning (see Section 2.4). A

state-of-the-art algorithm for model-based learning is Rmax, a provably efficient algo-

rithm with an elegant approach to the exploration-exploitation dilemma (Brafman &

Tennenholtz, 2002).

In a nutshell, Rmax classifies state-action pairs into known and unknown. Rmax

keeps a count of how many times it has performed each action a from each state s,

and builds an empirical distribution of transitions to next state s′. If it has observed

enough transitions from a state s under action a, it uses the empirical model to plan. If

it does not have enough observations, it assumes an optimistic transition to a fictitious

state smax, with maximal value vmax. The number of observations it has to experience

to consider a transition to be known is given by parameter M , which has to be set

appropriately. Note that in deterministic domains, where by definition there exists only

one state s′ for each state-action pair (s, a) such that T (s, a, s′) = 1, setting M = 1 is

enough to obtain a correct model.
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The structure of the Rmax algorithm follows that of KWIK-Rmax (see Algorithm

1), and I only need to specify the learning algorithms for the transition and reward

functions, AT = RT
max and AR = RR

max, that KWIK-Rmax expects as input. I break

down these algorithms into two functions: Predict and AddExperience, corresponding

to when they are queried in line 7 of KWIK-Rmax, and when they are provided with

experience in lines 17 and 20. Predict is only presented for the transition function, as

AR is exactly the same structure, just returning R̂(s, a).

Algorithm 3: RT
max AddExperience

Input: s, a, s’
Update transition count: n(s, a, s′)← n(s, a, s′) + 1.
Increase count n(s, a)← n(s, a) + 1.
Update empirical transition distribution: T̂ (s, a, s′)← n(s, a, s′)/n(s, a)

Algorithm 4: RR
max AddExperience

Input: s, a, r
Update empirical total reward r(s, a)← r(s, a) + r.
Increase count n(s, a)← n(s, a) + 1.

Update empirical reward distribution: R̂(s, a)← r(s,a)
n(s,a)

Algorithm 5: RT
max Predict

Input: s, a
if n(s, a) ≥M then

return T̂ (s, a, s′)
else

return ⊥
end if

The optimistic assumption that Rmax makes about state-action pairs it has not yet

experienced enough leads it to naturally want to reach those unknown states and take

those actions, unless they are too hard to reach. That is, if it is the case that the cost of

reaching those states is greater than the reward expected from the imaginary transition

to smax, Rmax will greedily exploit its current knowledge rather than try to reach them.

This approach to the exploration-exploitation dilemma leads Rmax to guarantee that, in

all but a small number of steps, it is either taking a near-optimal action or it is learning

something new. This property is at the center of the proof that Rmax is guaranteed to
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reach a near-optimal policy, with high probability, in a number of steps polynomial in

(1/ǫ, 1/γ, |S|, |A|) (Brafman & Tennenholtz, 2002).

The Rmax idea is related to optimistic initialization in Q-learning. However, in Q-

learning optimistic initialization only allows the agent to choose an unknown part of

the state that is immediately reachable from its current state (the greedy action), and

plans to reach these unknown states only happen very slowly as optimistic values get

propagated back to known states. The Rmax scheme in a model-based approach lets

the agent build much more complex plans to reach unknown parts of the state space.

The experimental results in the next section show how significant this impact is.

3.2.4 Experimental results

Rmax requires only one extra parameter, M , indicating how many times each action

has to be taken from each state before the pair (s, a) is considered known. In the

deterministic case, like Taxi, this parameter can be set to 1. Experiments were run on

Taxi with this setting, repeated 20 times and averaged. Rmax learns the task in 4151

steps.

Table 3.1 summarizes the experimental results under a flat state-space representa-

tion.

Domain knowledge Algorithm # of Steps Time/step

|S|, |A| Q-learning (ǫ = 0.6) 106859 < 1ms

|S|, |A|, Rmax Q-learning - optimistic
initialization (ǫ = 0)

29350 < 1ms

|S|, |A|, Rmax Rmax 4151 74ms

Table 3.1: Summary of results for flat state-space representations.

Q-learning with no optimistic initialization serves as a baseline algorithm. By adding

optimistic initialization, we are incorporating smarter exploration, which results in a

factor of three improvement. Rmax incorporates model-based learning, which makes

better use of accumulated experience, and enables even smarter exploration, resulting

in an additional factor of 7 improvement over the baseline algorithm.
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3.3 The Role of State Representations

An environment’s state can often be viewed as a combination of a set of state vari-

ables, or features. In the Taxi domain, the state can be represented as the following

vector or 4-tuple: 〈x location, y location, passenger location, passenger destination〉.

Such a representation is called a factored-state representation in the literature (Dean

& Kanazawa, 1989; Boutilier & Dearden, 1994). Given a factored-state representation,

it is possible to represent partial dependency relations between variables, opening the

possibility to much more efficient learning. Consider navigation in the Taxi problem:

the behavior of actions North, South, East and West depends on the taxi location, but

is completely independent from the passenger’s location or destination. Such dependen-

cies are commonly represented as a Dynamic Bayes Network (DBN) (Boutilier et al.,

1999), a particular type of graphical model with nodes representing state variables at

time t and at time t + 1, and edges representing dependencies. See Figure 3.2 for an

example, within Taxi, of a DBN for action North, and Figure 3.3 for a DBN of action

East.

x-loc

x-loc

p a s st

t + 1

y-loc

y-loc

d e s t

p a s s d e s t

A c t i o n  N o r t h

Figure 3.2: Dynamic Bayes Net for Action North.

In the case of action North, each variable at time t + 1 simply depends on its value

at time t. In particular, the variables x-loc, passenger and destination will not change

under this action (x-loct = x-loct+1, etc). In the case of variable y-loc, the dynamics

follow the rule shown in table 3.2.
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x-loc
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p a s st

t + 1

y-loc

y-loc

d e s t

p a s s d e s t

Act ion  Eas t

Figure 3.3: Dynamic Bayes Net for Action East.

Action North

y-loct y-loct+1

0 1

1 2

2 3

3 4

4 4

Table 3.2: Transition model under action North, for state variable y-loc.

On the other hand, observe that the variable x-loc under action East does depend

on both x-loc and y-loc. This difference is explained by the existence of vertical walls in

some locations of the grid (see Figure 3.1). Taking action East from location (0, 1) will

not move the taxi, whereas taking it from (0, 2) will move it to (1, 2). Table 3.3 shows

the transition dynamics for action East, where the combinatorial explosion resulting

from having to consider two state variables can be observed.

If the state s is composed of n state variables: s = 〈v1, v2, . . . , vn〉, the transition

function can be factored into the product of transitions functions for each state variable:

T (s′|s, a) =

n
∏

k=1

Tk(v
′
k|s, a), (3.2)

where transition functions Tk for each state variable depend on the variables that k

depends upon, as indicated by the DBN. We will call this set of variables from which

a state variable depends its parents P. For example, for action East, the parents
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Action East

x-loct y-loct x-loct+1

0 0 0

0 1 0

0 2 1

0 3 1

0 4 1

1 0 2

1 1 2

1 2 2

1 3 1

1 4 1

2 0 2

2 1 2

2 2 3

2 3 3

2 4 3

3 0 4

3 1 4

3 2 4

3 3 4

3 4 4

4 0 4

4 1 4

4 2 4

4 3 4

4 4 4

Table 3.3: Transition model under action East, for state variable x-loc.

of variable x-loc are: Px-loc = {x-loc, y-loc}. The transition function can then be

represented as (see Figure 3.3 for DBN representation):

T (s′|s, a) =

n
∏

k=1

Tk(v
′
k|Pvk

, a), (3.3)
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which in the case of action East would be:

T (s′|s,East) = Tx-loc(x-loc|〈x-loc, y-loc〉, East)×

Ty-loc(y-loc|y-loc, East)×

Tpass(pass|pass,East)×

Tdest(dest|dest,East).

Algorithms like Rmax for provably experience-efficient exploration of MDPs have

been generalized to factored-state MDPs with transition dynamics specified by DBNs.

Two canonical examples are Factored E3 (Kearns & Koller, 1999) and Factored Rmax

(Guestrin et al., 2002), both known to behave near optimally, with high probability, in

all but a polynomial number of steps. These algorithms assume that a complete and

correct DBN structure specification is provided as input.

Factored Rmax

Factored Rmax follows the same general structure as Rmax, but instead of building a

full transition or reward model, it builds for each action a and each state variable vk, a

small transition model Tk. Now instead of counting state-to-state transitions, Factored

Rmax counts transitions to state-variable values from the state variables they depend

on.

Like Rmax, Factored Rmax can be instantiated as KWIK-Rmax by just specifying

the prediction and learning components that KWIK-Rmax expects as input. I will show

these components in Algorithms 3.3 and 3.3, only for the transition function.

Algorithm 6: Factored RT
max AddExperience

Input: s, a, s’
for all state variable vk do

Increase count n(vk, a)← n(vk, a) + 1.
Obtain next state-variable value from s′: v′k ← s′[k]
Update transition count: n(P(vk), a, v′k)← n(P(vk), a, v′k) + 1.
Update empirical transition distribution:
T̂k(P(vk), a, v′k)← n(P(vk), a, v′k)/n(vk, a))

end for
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Algorithm 7: Factored RT
max Predict

Input: s, a
if ∃k : n(vk, a) < M then

return ⊥
else

T̂ (s, a, s′)←
∏n

k=1 T̂k(Pvk
, a, v′k)

end if
return T̂ (s, a, s′)

One of the problems in Factored Rmax is in the planning step (Line 15 in the KWIK-

Rmax algorithm). In order to plan, it must still compute a full state-action value

function, with one value for each flat state s. This process is referred to as blowing

up the state space, making Factored Rmax computationally inefficient. An alternative

to this blow up is to use a method of approximate planning (for example, Structured

Value Iteration by Boutilier et al. (2000)) that loses the theoretical guarantees. In the

experiments presented here, where the focus is on sample complexity, we opted for exact

planning using regular value iteration and blowing up the state space (c.f. 2.5.1).

Another drawback of Factored Rmax and other factored-state algorithms is the as-

sumption that a DBN is provided as input. This assumption might be true in certain

domains where the experimenter understands the dynamical dependencies among state

variables, but it limits the generality of the approach. It is beyond the scope of this

chapter, but it is worth noting that Chapter 6 introduces a learning setting called the

k -Meteorologists, which can be used to relax this assumption. In Diuk et al. (2009),

we introduce a new algorithm called Met-Rmax, which learns the structure of a DBN as

well as its parameters. The only input required by Met-Rmax is the maximum in-degree

of the DBN, but not its full structure.

3.3.1 Experimental results

Table 3.4 extends the summary of Taxi results with experiments using Factored Rmax.

The main tunable parameter in Factored Rmax is M , the number of times a state-action

pair needs to be observed before its transition model is considered known. Once again,

since Taxi is a deterministic environment and therefore there exists only one next-state
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s′ for each (s, a) such that T (s, a, s′) = 1, this parameter can be set to 1 and no tuning

is necessary. The experiments were repeated 20 times, and average results are reported.

Domain knowledge Algorithm # of Steps Time/step

|S|, |A|, Rmax Rmax 4151 74ms

Rmax, DBN structure Factored Rmax 1676 97.7ms

Table 3.4: Summary of results for flat state space representations.

Observe that an almost 2.5 times improvement in performance was achieved by

changing the way state is represented and adding domain knowledge about state variable

independences.

3.4 The Role of Task Decompositions

Many tasks that agents face are hierarchical in nature or, at the very least, can be

intuitively broken down into a series of subtasks. In Taxi, it might be natural to think

of the overall task as a composition of two subtasks: picking up the passenger and

dropping it off. It would also be natural to expect these subtasks to share domain

knowledge and skills, like navigating to any of the four specially designated locations.

The notion of task decomposition has been explored by many RL researchers, even

giving rise to a subarea of the discipline commonly referred to as Hierarchical RL. See

Barto and Mahadevan (2003) or Diuk and Littman (2008) for reviews of this subarea.

MaxQ

The Taxi domain was introduced precisely as a test domain for a hierarchical task de-

composition method and learning algorithm called MaxQ (Dietterich, 2000). In MaxQ,

the global value function for the MDP is decomposed as an additive combination of

smaller value functions, each for a different subtask. Figure 3.4 shows the tree hierar-

chy used to decompose Taxi in MaxQ.

An assumption in MaxQ is that MDPs contain final states, F ⊂ S, that when

reached make the episode end. Given a task hierarchy, each subtask 1 ≤ i ≤ I can be

viewed as a self-contained MDP with final states Fi and action set Ai. Actions j ∈ Ai
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can be either the primitive actions of the MDP or any of the subtasks under i in the

hierarchy. The root task i = 1 uses Fi = F , the final states of the actual MDP.

A hierarchical policy π = 〈π1, . . . , πI〉 is a policy for each task i, πi : S → Ai.

Policy πi is considered locally optimal if it achieves maximum expected reward given

subtask policies πj for j > i. If local optimality holds for all tasks, the corresponding

hierarchical policy is called recursively optimal.

Figure 3.4: MaxQ Hierarchical Task Decomposition of the Taxi Problem.

Dietterich (2000) proposes an alternative construction of the value function V and

state-action value function Q—the completion-function form. Intuitively, a completion

function C(i, s, a) returns the cost of completing subtask i after having completed task

a from state s. In the Taxi problem, C(Dropoff, s0,Pickup) indicates how much it

would cost to dropoff the passenger after having picked him up from initial state s0.

Dietterich then proceeds to define a model-free learning algorithm, similar to Q-learning,

for completion functions.

MaxQ is therefore a model-free approach, an extension of Q-learning. As shown in

Table 3.5, MaxQ learns the Taxi task an order of magnitude faster than Q-learning with

optimistic initialization. The main reasons for this are twofold. First, it takes advantage

of the subtask abstractions to reduce the total number of state-action pairs it needs to

learn. Second, it reduces the amount of exploration it has to do because the hierarchy

limits the available actions at certain states. For example, during a navigation task,

MaxQ will never try a Pickup or Dropoff actions that —by the policy space delimited

by the hierarchy— will only be tried at any of the four special locations.
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A Model-based Version of MaxQ

A logical question to ask at this point would be if it is possible to combine task decom-

positions with model-based learning and smart exploration. In Diuk et al. (2006), we

introduced a model-based version of MaxQ, called DSHP, which does exactly that. It

uses the same hierarchy and subtask abstractions as MaxQ but builds models for each

sub-MDP. Building models allows for the use of Rmax-style exploration, dramatically

improving performance and enabling a proof of its polynomial efficiency, both in learn-

ing and computational complexities. To this date and as far as I know, DSHP is the

fastest learning algorithm on the Taxi problem (329 steps).

I ran MaxQ and DSHP on the Taxi problem. The input to both algorithms was the

MaxQ hierarchy as shown in Figure 3.4 and the DBN representation for each subtask.

Results for MaxQ and DSHP on Taxi are summarized below in Table 3.5.

Domain knowledge Algorithm # of Steps Time/step

MaxQ hierarchy, DBN struc-
ture for each subtask, Rmax

MaxQ 6298 9.57ms

MaxQ hierarchy, DBN struc-
ture for each subtask, Rmax

DSHP 329 16.87

Table 3.5: Summary of results for flat state space representations.

Although DSHP used task decompositions to achieve the best result on the Taxi

task, I claim that the type of prior knowledge introduced restricts its applicability. By

providing the MaxQ task decomposition as input, the designer of the task is encoding

a partial solution to the problem, imposing limitations on the number of policies to

be considered. A desiderata that motivates this dissertation is to achieve comparable

results with a more natural representation, one that more closely encodes the way

people would approach a problem like Taxi. That is, the hope is to present state in

a natural way and let the reinforcement-learning agent solve the problem, rather than

restrict the solution space for it. In the next section, I look at what human participants

do when tackling the Taxi problem.
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3.5 What Would People Do?

To answer this question, I used an interactive version of the Taxi environment, where a

person can actually play the role of the agent and submit actions through the computer

keyboard. A laptop computer was setup at a shopping mall and participants were asked

to play the game in exchange for a chocolate prize 2.

The screen that was presented to participants is shown in Figure 3.5. The four

locations are indicated by color squares, and the location of the passenger is indicated

by a circle in one of these locations. The taxi location is indicated by a yellow square.

Note, however, that participants are not told any of this, they just observe the screen

with the game. When the taxi successfully picks up a passenger, the circle shrinks, and

from then on when the taxi moves, the circle moves along with it. The color of the

circle indicates the desired destination.

Figure 3.5: The Taxi Domain as Presented to Human Participants.

Participants play freely until they reach the end of an episode (when they drop

the passenger off at the right location). They are then presented with a new episode,

and they keep playing repeatedly until they play a full episode optimally, with no

extra actions taken. This is considered the termination criterion for the task, and

2This experiment was run under the auspices of the Princeton University Department of Psychology,

which once a semester set up a stand at Quakerbridge Mall and allows researchers to run experiments.
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sample complexity is counted as the total number of steps taken in all the episodes.

Instructions were minimal: participants were not told the goal of the game, just the

keys they had to use and that completion of the task would be indicated once achieved.

A total of 34 people participated in the experiment. At the end, they were asked

whether or not they considered themselves videogame players. Out of the 34 partici-

pants, 17 succeeded in solving the task, whereas the other 17 either quit, or had to be

tipped off in order to solve it. Out of the 17 who did solve the task, 10 considered them-

selves videogamers and 7 did not. Out of the 17 who failed, only 4 were videogamers,

and 13 were not.

In terms of performance, I measured the number of extra steps taken by participants

(the non-optimal steps in all but the last, optimal episode). Videogamers learned the

task in an average of 48.8 steps, whereas non-videogamers needed 101. The Box-

plot on Figure 3.6 reflects the distribution of participants’ performances, showing a

clear advantage for self-defined videogamers. Using a single-tailed, 2-by-2 exact Fisher

test, it is possible to reject the null hypothesis that videogamers are as good as non-

videogamers (p < 0.039), in favor of the hypothesis that videogamers are better. It

is expected that if we tested more subjects, the statistical power of this comparison

would increase. This statistics seem to reveal a bias that humans bring to bear when

confronted with this type of game, and which is more developed in video game players.

Further analysis of the exploration policies of the participants who solved the task

are illuminating, albeit intuitive. First, all participants learned the rules of navigation

after one step. They all started with an arrow press, observed that the yellow box

(representing the taxi) moved according to the direction of the arrow, and explored no

further. After this, all but two of the participants (who wandered around for a few

extra steps), proceeded to move the taxi directly to one of the four distinct locations,

saliently identified in bright colors, and only pressed the A or B keys (for Pickup and

Dropoff) once the yellow box was in these locations. No participants seem to have tried

to explicitly bump into a wall. Although it is impossible to tell with absolute certainty,

there are only a handful of actions that move the taxi towards a wall that seem to be
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Figure 3.6: Number of extra steps taken before learning the task.

the effect of participants overshooting, just executing an extra action unintentionally,

rather than actually trying to explore the outcome of such action.

From this experiment it is clear that humans come into the task with significant prior

knowledge, although we can only speculate about its exact nature. However, analysis

of their performance and exploration policies does indicate a clear representation of the

fact that there is a taxi object that they control, the rules governing its movement, and

a desire to explore the interactions between the taxi and other salient objects in the

domain. Notice that humans who succeeded in completing the task did so 5 to 10 times

faster than DSHP.

3.6 Object-oriented Representation

The examples presented in this chapter serve as a motivation for the object-oriented

representation proposed in this dissertation, which will be formally and fully introduced
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in the next chapter. We have seen how model-based learning improves sample efficiency

over model-free methods. We have also seen the effect of smart exploration on learning

speed, in particular using Rmax-style exploration. Factored representations and DBNs

significantly reduce the number of states to be explored. Task decompositions have

proved to be very useful too, but current methods require the designer to restrict the

set of solutions considerably.

The question that motivated this dissertation is whether it is possible to find a

representation that is natural for a significant number of problems, does not require

unrealistic domain knowledge to be incorporated by the designer, and still provides all

the advantages of model-based learning, smart exploration and state aggregation.

Consider the Taxi problem and how it was described: there is a taxi, a passenger,

a set of distinguished locations, and walls that block the taxi’s movements. The taxi

needs to move to where the passenger is and pick him up, then move to the destination

and drop him off. This description can be thought of as an enumeration of the objects

in the domain, plus a set of interactions between those objects that need to occur,

aligned with the kind of prior representation that people seem to bring into the task.

This type of description is precisely the idea behind object-oriented representations.

Consider, for example, the model learned under factored-state representations. For

action North, Factored-Rmax had to learn all the elements of Table 3.2. The reader

can look at that table and immediately observe a general rule: action North increases

variable y-loc by 1, unless the taxi is hitting a wall. Learning what North does for

each and every individual value of y-loc seems unnecessary if only we could learn the

rules of taxi movements. In the case of action East, the rule is essentially the same:

it increases the x-loc by 1 unless there is a wall. However, in the case of action East,

a factored-state representation requires considering all combinations of values for x-loc

and y-loc, a total of 25 independent values. Also note that an advantage of learning

these general dynamical rules instead of each value location separately implies that if,

for example, the size of the Taxi grid increases or more walls are added, nothing extra

needs to be learned, the rules still apply.



49

Object-oriented representations allow domains to be described in terms of objects,

and the dynamics of the system to be defined in terms of rules like the one suggested

above. I will show in this dissertation that these rules can be learned efficiently, and

present the appropriate algorithms. In order to complete the running example in this

chapter, I ran one of those algorithms —DOORmax— on Taxi, and it learns in an average

of 529 steps. A detailed description of the algorithm and how the Taxi experiments

were run is presented in Chapter 4. DOORmax still takes a little bit more than the

best result so far, DSHP, which learns in 329 steps, but the solution space is not being

restricted by the designer. The only prior knowledge that DOORmax uses is a list of

objects and a set of relationships between those objects that the agent should consider,

which in the Taxi experiment included things like ‘taxi is touching a wall from the

North/South/East/West’, or ‘taxi is on top of passenger’.

3.7 Summary and Discussion

To summarize, all the results for Taxi are presented again in Table 3.6.

Domain knowledge Algorithm # Steps Time/step

|S|, |A| Q-learning 106859 < 1ms

|S|, |A|, Rmax Q-learning - optimistic
initialization

29350 < 1ms

|S|, |A|, Rmax Rmax 4151 74ms

Rmax, DBN structure Factored Rmax 1676 97.7ms

MaxQ hierarchy, DBN struc-
ture for each subtask, Rmax

MaxQ 6298 9.57ms

MaxQ hierarchy, DBN struc-
ture for each subtask, Rmax

DSHP 329 16.87ms

Objects, relations to consider,
Rmax

DOORmax 529 48.2ms

|A|, Figure 3.5 Humans (non-
videogamers)

101 NA

|A|, Figure 3.5 Humans (videogamers) 48.8 NA

Table 3.6: Summary of all Taxi results presented in this chapter.
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Chapter 4

Object-Oriented Markov Decision Processes

It is only in the world of objects that we have time and
space and selves.

T.S. Eliot (1888-1965)

In this chapter, I introduce object-oriented representations, and extend the MDP

formalism to what I call Object-Oriented Markov Decision Processes, or OO-MDPs.

A few examples are introduced and formalized as OO-MDPs. I show how OO-MDPs

differ from other representations, like Dynamic Bayes Networks, and relate this work

to existing work in the sub-field of Relational Reinforcement Learning (RRL).

4.1 Pitfall: playing with objects

The introduction of the representation and formalism will be facilitated by including

additional examples besides Taxi. I start with a videogame called Pitfall1 for the Atari

2600 game console. The goal of the game is to have the main character (Harry) traverse

a series of screens while collecting as many points as possible while avoiding obstacles

(such as holes, water, logs, crocodiles and walls), which cause a loss of points or even

death, under the time constraint of 20 minutes and 3 lives. All transitions in Pitfall,

like in many video games, are essentially deterministic.

Figure 4.1 shows the initial screen of the game. Imagine you are first confronted

with this screen: you have your Atari 2600 connected to your TV and a joystick in hand.

What would you do? I hypothesize that you would first recognize that there are a series

of objects on this screen: Harry, a Pit, a Log, a Ladder, a Wall. You would then move

1 c©1982 Activision, Inc.
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your joystick to see what happens, and would notice that Harry moves, and the way he

moves depends on the joystick action you are taking. Probably your next step would be

to make Harry interact with the other objects: make him jump the Pit, maybe climb

the Ladder down, touch or jump the Log, etc. Of course, as humans, we bring so much

prior information into these games that there are certain things we do not even try:

the mere concept of “wallness” would likely lead us to the assumption that the Wall is

impassable, and we would not even try making Harry bang himself against it. The idea

behind object-oriented representations is not to build in all this knowledge, but to allow

our agents to come into these situations with biases that I consider very elemental: the

notion of object, spatial relations and object interactions. A fundamental assumption

under this representation is that if, under two different states, the object relationships

match, then the dynamics of the environment also match.

Figure 4.1: Initial screen of Pitfall.

The problem of object recognition is beyond the scope of this dissertation, so object-

oriented representations will assume that detection of what the objects are in a domain

is provided as input. I will now introduce OO-MDPs, and use both Pitfall and Taxi as

examples.
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4.2 The Propositional OO-MDP Formalism

For the reader familiar with the Relational RL literature (see 1.4.2), I would like to

start by mentioning that some elements of this representation are similar to those of

relational MDPs, or RMDPs (Guestrin et al., 2003), with significant differences in the

way we represent transition dynamics. Similar to RMDPs, we define a set of classes

C = {C1, . . . , Cc}. Each class includes a set of attributes Att(C) = {C.a1, . . . , C.aa},

and each attribute has a domain Dom(C.a). A particular environment will consist of

a set of objects O = {o1, . . . , oo}, where each object is an instance of one class: o ∈ Ci.

The state of an object o.state is a value assignment to all its attributes. The state

of the underlying MDP is the union of the states of all its objects: s =
⋃o

i=1 oi.state.

Notationally, when referring to a class, its name will be capitalized, and when speaking

of an object, it will be in lower case. For example, Passenger refers to the class and

passenger to an object of that class.

A possible OO-MDP representation of Taxi, the one I will use in experiments, has

four classes: Taxi, Passenger, Destination and Wall. Taxi, Passenger and Destination

have attributes x and y, which define their location in the grid. Passenger also has

a Boolean attribute in-taxi, which specifies whether the passenger is inside the taxi.

Walls have x and y attributes indicating a cell in the grid, plus an attribute that

indicates their position with respect to that cell (above, below, left or right). The Taxi

domain, in its standard 5 × 5 version, has one object of each class Taxi, Passenger,

and Destination, and multiple (26) objects of class Wall. This list of objects points out

a significant feature of the OO-MDP representation. Whereas, in the classical MDP

model, the effect of encountering walls is felt as a property of specific locations in the

grid, the OO-MDP view is that wall interactions are a property of object classes and

therefore are the same regardless of their location. As such, agents’ experience can

transfer gracefully throughout the state space. Also, notice that while in the original

Taxi domain there are four distinctive locations where the passenger can be or might

want to go to, the OO-MDP representation is more general: passengers can be anywhere

on the grid and choose any arbitrary destination. In experiments, in order to be able to
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compare algorithms, I still use the pre-designated locations as passenger and destination

coordinates.

In the Pitfall case, I will just mention the classes needed to describe the first screen:

Harry, Pit, Ladder, Wall, Log and Tree. All objects have the attributes x1, y1, x2 and

y2, which constitute the object’s bounding box. In my experimental setup, I used a

simple object-detection mechanism, designed by Andre Cohen for our joint paper on

OO-MDPs (Diuk et al., 2008), that identifies the objects on the screen and builds a

bounding box around them. The attributes mentioned above are the attributes that

define those bounding boxes (see Figure 4.6) . Harry also has a Boolean attribute of

direction that specifies which way he is facing.

Actions in OO-MDPs can be parameterized by a set of objects, or be global. If

an action a(o) is parameterized, it is considered to apply to the object o. Imagine a

Taxi domain with two taxis, t1 and t2, where we would like to be able to move them

independently. In such a domain, all actions would receive one or the other taxi as a

parameter: North(t1), Pickup(t2), etc.

4.2.1 Relational transition rules

Before moving on to more definitions, I introduce Figure 4.2, a very quick summary of

the flow of OO-MDP dynamics the reader might want to refer back to while reading

this and upcoming sections.

Objects

At t r ibutes

Relat ions

Condit ions

Effects

have

def ine

comprise

d e t e r m i n e

man ipu la te

Figure 4.2: Summary of OO-MDP transition flow.
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When two objects interact, they define a relation between them (they touch, one

stands on top or inside the other, etc). As we shall see, relations are the basis for

determining behavioral effects—a change in value of one or multiple attributes in either

or both interacting objects. These behaviors are defined at the class level, meaning

that different objects that are instances of the same class behave in the same way when

interacting with other objects. Formally:

Definition 4. A relation r : Ci×Cj → Boolean is a function, defined at the class level,

over the combined attributes of objects of classes Ci and Cj . Its value gets defined when

instantiated by two objects o1 ∈ Ci and o2 ∈ Cj .

The focus and idea behind OO-MDP representations is on defining simple rela-

tions that can be easily derived directly from object attributes. For my Taxi rep-

resentation, I define 5 types of relations between the Taxi and the other objects:

touchN (Taxi, o), touchS(Taxi, o), touchE(Taxi, o), touchW (Taxi, o) and on(Taxi, o),

which define whether an object o ∈ {Passenger,Destination,Wall} is exactly one cell

North, South, East or West of a Taxi object, or if both objects are overlapping (same

x, y coordinates).

In Pitfall, similar types of relations are used between Harry and all other ob-

jects (touchN/S/E/W (Harry, o)), but I extended them to also describe diagonal re-

lations, including: touchNE(Harry, o), touchNW (Harry, o), touchSW (Harry, o) and

touchSE(Harry, o). These relations were needed to properly capture the effects of

moving on and off of ladders.

Every state s in an OO-MDP is a value assignment to all attributes of all objects

in the domain. An assumption of OO-MDP representations is that there is a function

pred(s) that, given a state, returns all relations being established in that state. For

example, if provided with the state s depicted in Figure 4.3, pred(s) returns the relations

listed in Table 4.1.

The set of classes and objects that compose an environment, as well as the set of

relations to be considered, are a form of background knowledge and, in this work, are

assumed to be provided by the agent designer. Given a set of classes and relations,
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it is also assumed that the agent designer provides a way of computing the output of

pred(s). As an example, in Pitfall an object recognizer was put in place between the

actual game and the reinforcement-learning agent. It was the task of this recognizer to

identify the relevant objects and compute the value of pred(s).

touchN (taxi, wall) ¬touchS(taxi, wall)
¬touchE(taxi, wall) touchW (taxi, wall)

¬touchN/S/E/W (taxi, passenger) ¬touchN/S/E/W (taxi, destination)

¬on(taxi, passenger) ¬on(taxi, destination)

Table 4.1: Relations induced by the state depicted in Figure 4.3

Figure 4.3: Example Taxi state, with passenger in location (0, 3).

Transitions are determined by relations, which are established by interactions be-

tween objects. Every pair of objects o1 ∈ Ci and o2 ∈ Cj, their internal states o1.state

and o2.state, an action a, and the set of relations r(o1, o2) that are true—or false—at the

current state, determine an effect—a change of value in some of the objects’ attributes.

For example, when the object taxii ∈ Taxi is on the northern edge of the grid and

tries to perform a North action, it hits some object wallj ∈ Wall and the observed

behavior is that it does not move. We say that a touchN (taxii,wallj) relation has been

established and the effect of an action North under that condition is no-change. On the

other hand, if ¬touchN (taxii,wallj) is true and the taxi performs the action North, the

effect will be taxii.y ← taxii.y + 1. As stated before, these behaviors are defined at the

class level, so we can refer in general to the relation touchN (Taxi,Wall) as producing

the same kind of effects on any instance of taxii ∈ Taxi and wallj ∈Wall.
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Similarly, in Pitfall, we will define and learn rules like: if action is StickRight and

condition is ¬touchE(Harry,Wall) ∧ ¬touchE(Harry, P it) ∧ ¬touchE(Harry, Log) ∧

¬on(Harry, Ladder), then the effect is Harry.x← Harry.x+8. We can formalize this

notion in a definition:

Definition 5. An effect is a single operation over a single attribute att in the OO-

MDP. We will group effects into types, based on the kind of operation they perform.

Examples of types are arithmetic (increment att by 1, subtract 2 from att), and constant

assignment (set att to 0). Note that actions might affect multiple attributes at the same

time, meaning that they can produce multiple effects in a single step.

Definition 6. A term t is any Boolean function. In our OO-MDP representation, we

will consider terms representing either a relation between two objects, a certain possible

value of an attribute of any of the objects or, more generally, any Boolean function

defined over the state space that encodes prior knowledge. All transition dynamics in

an OO-MDP are determined by the different possible settings of a set of terms T .

Definition 7. A condition is a conjunction Tc of terms and negations of terms from

T that must be true in order to produce a particular effect e under a given action a.

When determining if a condition holds at a given state, the environment has to

search for a grounding of the relation’s elements, which are classes, into objects of

the corresponding class. A relation r(Ci, Cj) can be interpreted as a logic statement

over objects ∃oi ∈ Ci, oj ∈ Cj : r(oi, oj). That is, the relation will be considered to

hold if it is being established by any objects of classes Ci and Cj . In the case of

conditions attached to parameterized actions, it is allowable to have relations that refer

specifically to action parameters. For example, an action a(op) can have a condition

that includes relations like r(op, Ci). This situation would translate into an expression

∃oi ∈ Ci : r(op, oi).

As a simple example, consider the domain depicted in Figure 4.4, consisting of 3

objects of class Boat (boat1, boat2, boat3) and 1 object of class Island (island). An

action WindBlowEast could be specified at the class level by the following condition-

effect (among others): nearE(Boat, Island) ⇒ Boat.aground = True. When the action
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is executed, the relation near is translated into ∃oi ∈ Boat, oj ∈ Island : nearE(oi, oj),

which becomes true under the grounding 〈oi ≡ boat1, oj ≡ island〉. While the action

WindBlowEast is unparameterized, there could be another action SailEast(o), o ∈ Boat

that only applies to the object o, and is used to move boats individually.

Figure 4.4: Simple Boats domain.

4.2.2 Formalism summary

To summarize the formalism, I define a Propositional OO-MDP as a tuple of the fol-

lowing elements:

• A finite set C of classes. A class c ∈ C has a name and a set of attributes

Att(C) = {C.a1, . . . , C.aa}. Attribute values belong to a domain Dom(C.a).

• A finite set O of objects, where each object o ∈ O belongs to some class in C.

Notationally, C(o) indicates the class to which object o belongs.

• A state s is the union of the attribute values of all objects: s =

⋃

oi∈O

⋃|Att(C(oi))|
j=1 oi.attj .

• A finite set A of actions. An action may or may not be parameterized by objects.

For notational simplicity, when actions are not parameterized, I will just refer to

them by their name.



58

• A finite set Rel of relations. A relation r : C1 × . . .×Cn → Boolean is a function

over the combined attributes of n objects oi ∈ Ci, and returns a Boolean value

indicating if relation r is being established between the n objects or not.

• A finite set F of Boolean functions defined over any set of objects in the do-

main. These Boolean functions can be used to encode domain knowledge or state

variables not defined by the attributes and relations.

• A set T of terms, which is a set of Boolean functions defined as the union of all

relations and Boolean functions in the domain: T ≡ Rel ∪ F .

• A function pred : State → 2|T |, that given a state returns the value of all terms

in T .

• A set D of rules that specify the domain dynamics. A rule d is a tuple containing

a condition, effect and probability: 〈 condition, effect, prob 〉. A condition is a

conjunction of terms. An effect is an operation (math operation, assignment) on

a single attribute of a class. Effects are functions f : Dom(C.a)→ Dom(C.a).

• A reward function R, from a state s to a real number.

• A discount factor γ.

4.3 First-Order OO-MDPs: An Extension

The representation just introduced presents a few limitations, which can be overcome

by defining a more general class of OO-MDPs, First-Order OO-MDPs. Let us first

illustrate what those limitations are by considering a simple example, depicted in Figure

4.5

The Boxes environment consists of the classes Man, Box and Wall. The dynamics

of this world allow a man to push rows of boxes around, unless they get stuck against

a wall. The rows of boxes the man can push can be of arbitrary lenght, the only

requirement is that there is free space at the side towards which the man is pushing.
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Figure 4.5: Boxes World.

Under the Propositional OO-MDP representation, a condition at the class level that

says touchE(Man,Box)∧¬touchE(Box,Wall) would not work, because there is no way of

tying the Box in the first term with the one on the second one. Such a condition would

translate into ∃bi ∈ Box, bj ∈ Box, wk ∈ Wall : touchN (man, bi) ∧ ¬touchN (bj , wk),

which does not correctly establish that bi and bj must refer to the same box. A First-

Order OO-MDP (FO-OOMDP) allows dynamics to be expressed directly as First-Order

Logic (FOL) predicates. In order to correctly represent these dynamics, the rule under a

FO-OOMDP would not be translated from a proposition, but rather be written directly

as an existential with the parameters properly tied:

∃bi ∈ Box, wk ∈Wall : touchN (man, bi) ∧ ¬touchN (bi, wk)

Likewise, conditions in Propositional OO-MDPs cannot represent recursive state-

ments, unless these statements are included as simple Boolean functions and their values

pre-computed by the environment. In the Boxes example, recursive statements are nec-

essary to express conditions on arbitrarily long lines of boxes. The following recursive

logic statement expresses this idea:

touch(man, box) ∧movable(box)⇒ box.x← box.x + 1

movable(boxi) ≡ ¬touch(boxi, wall) ∨ (touch(boxi, boxj) ∧movable(boxj)).

The main reason for defining Propositional OO-MDPs as a specific sub-class of OO-

MDPs is that, as we shall see in upcoming chapters, this subclass can be efficiently
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learned, whereas general FO-OOMDPs cannot (some negative results about learning

recursive rules are cited in Section 4.7). Propositional OO-MDPs can still be extended in

certain ways and be learnable. For example, a small bounded number of tied parameters

could be allowed, a similar assumption to the “constant depth” one commonly taken

in the Inductive Logic Programming literature (Dzeroski et al., 1992; Cohen, 1995a).

Also certain classes of recursive concepts can be PAC-learned, under some restrictive

assumptions (Khardon, 1996). For the purpose of this dissertation, I will not make any

such extensions and from now on focus on Propositional OO-MDPs.

4.4 Examples

This section presents a summarized description of how Taxi and Pitfall are represented

as (Propositional) OO-MDPs, as well as all the rules that govern their dynamics. I

also introduce a very simple domain, called Goldmine, that will serve as an example

where multiple objects of the same class coexist. Finally, I show how a different classic

videogame, Pac-Man, can also be modeled as an OO-MDP.

4.4.1 Taxi

Table 4.2 presents the classes defined in Taxi, and the attributes for each class. The

attributes x and y define grid locations. The attribute in-taxi tells us if the passenger is

inside the taxi or not. Walls have a position attribute, a value in the set {below, above,

left, right} encoding each of the 4 possible wall positions around a grid cell.

Class Attributes

Taxi x,y

Passenger x,y, in-taxi

Destination x,y

Wall x,y, position

Table 4.2: Classes in Taxi and their attributes

Table 4.3 presents the dynamics of Taxi, defined as a series of conditions and effects

for each action.

Similar rules could be used to represent reward. However, in most experiments in
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Action Condition Effects

North ¬touchN (Taxi,Wall) Taxi.y ← Taxi.y + 1

South ¬touchS(Taxi,Wall) Taxi.y ← Taxi.y − 1

East ¬touchE(Taxi,Wall) Taxi.x← Taxi.x + 1

West ¬touchW (Taxi,Wall) Taxi.x← Taxi.x− 1

Pickup on(Taxi, Passenger) in-taxi← True

Dropoff in-taxi = True ∧ on(Taxi,Destination) in-taxi← False

Table 4.3: Dynamics of Taxi

this dissertation, I will focus on learning dynamics and assume the reward function is

available as a black box function. For the completeness of this example, I still do define

the rewards in terms of conditions, as shown in Table 4.4.

Action Condition Effects

North, South, East, West ∅ −1

Pickup on(taxi, passenger) −1

Pickup ¬on(taxi, passenger) −10

Dropoff in-taxi = True ∧ ¬on(taxi, destination) −10

Dropoff in-taxi = True ∧ on(taxi, destination) 0

Table 4.4: Rewards in Taxi

Episodes in Taxi end when the following termination condition is reached: in-taxi =

False ∧ on(Taxi,Destination)

4.4.2 Pitfall

In Pitfall, a simple object recognizer is run over each screen and bounding boxes defined

over the relevant objects (see Figure 4.6). Classes are Harry, Pit, Log, Ladder, Tree

and Wall, all of them with two pairs of x and y coordinates defining the bounding box,

plus an attribute direction for Harry indicating which way he is facing. The function

pred uses the bounding boxes to determine what Harry is touching. In the example

in Figure 4.6, the only relation that is True is touchE(harry,wall), and all others are

False.

The dynamics of Pitfall involve many more rules than Taxi, so I will not list them

exhaustively. The reader should get a good idea of what the rules look like from the

examples in Table 4.5.
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Figure 4.6: Bounding boxes identifying objects in Pitfall.

Action Condition Effects

StickRight ¬touchE(Harry,Wall) ∧
¬touchE(Harry,Log) ∧
¬touchE(Harry, P it) ∧ ¬on(Harry, Ladder)

Harry.x← Harry.x + 8

StickRight touchE(Harry, P it) Harry.y ← Harry.y − 75

StickDown
on(Harry, Ladder) Harry.y ← Harry.y − 5

Harry.x← Harry.x + 8

Table 4.5: Some dynamics of Pitfall

4.4.3 Goldmine

Goldmine is a simple gridworld domain I created to make the presentation of the tran-

sition cycle easier to follow, and as an example where multiple objects of the same class

coexist. It models a very simple resource-collection scenario, where multiple miners

have to gather gold. Some cells of the grid contain gold pieces that disappear once col-

lected. At each timestep, only one of the miners can be moved using North, South, East

and West actions parameterized by the miner object that the decision maker wants to

move. Another parameterized action, GetGold, picks up a piece of gold if it is present

at the miner’s location. Each action taken incurs a cost of −1, and each gold piece col-

lected provides a reward of 5. The episode ends when all the available gold is collected.

Walls limit the miners’ movements. For simplicity, miners can be at the same location

at the same time (that is, movement is not limited by bumping into another miner).

See Figure 4.7 for an example with 2 miners and 3 pieces of gold.
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Figure 4.7: Goldmine domain example.

The classes in this domain are Miner, Gold and Wall. They all have attributes x and

y. Walls also have a position, like in Taxi. When Gold is consumed, its attributes x and

y become ∅. In the example of Figure 4.7, I will call the object of class Miner at location

(1, 3) “m1” and the object at location (4, 1) “m2”. Gold pieces will be identified, from

top to bottom, as g1, g2 and g3. I will not list here the specific identifiers of the 24 wall

objects.

Dynamics are of the same kind as the ones in Taxi, summarized in Table 4.6. Notice

that actions here are parameterized, since they can apply to any of the miners.

Action Condition Effects

North(mi) ¬touchN (mi,Wall) mi.y ← mi.y + 1

South(mi) ¬touchS(mi,Wall) mi.y ← mi.y − 1

East(mi) ¬touchE(mi,Wall) mi.x← mi.x + 1

West(mi) ¬touchW (mi,Wall) mi.x← mi.x− 1

GetGold(mi) on(mi, gold) gold.x← ∅,gold.y ← ∅

Table 4.6: Dynamics of Goldmine

Notice that the effects of actions have a symmetric property (South vs North / East

vs West). Currently, this fact is not encoded in the representation, and it would be up

to a smart learner to exploit this fact (as humans do!).

4.4.4 Pac-Man

I will complete the set of examples with another video game, the famous Pac-Man

(Figure 4.8).
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Figure 4.8: Pac-Man.

The classes in this game are Pac-Man, Ghosts, Pac-dot, PowerPellet and Wall, and

objects belonging to them will be denoted pac, g, dot, pell and w, respectively. The

conditions ruling the dynamics of Pac-Man and the ghosts are quite complicated, and

better represented in tree form, as shown below (note the convention that left branches

represent the case when condition is true). I only represent one of the movement actions,

North, the others being completely analogous.
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touchN (Pac-Man,Wall)

∅ touchN (Pac-Man,Pac-dot)

pac.y++,score++ touchN (Pac-Man,PowerPellet)

pac.power=True touchN (Pac-Man,Ghost)

pac.power = True

pac.y++,g.alive=False pac.alive=False

pac.y++

In the case of Ghosts, the rules are represented as follows:

touchN (Ghost,Wall)

∅ touchN (Ghost,Pac-Man)

pac.power = True

g.alive=False pac.alive=False

ph.y++

4.5 Transition Cycle

I will now present the transition cycle under an OO-MDP representation. That is, I

will present step by step how an agent and an environment interact, moving the domain

from state st to state st+1. This cycle repeats while the agent is acting (in the present

case, until an end of episode is reached). Table 4.7 explains the cycle and exemplifies

each step using Goldmine, with state s corresponding to the one depicted in Figure 4.7.
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Step Example

Agent observes current state s.

m1 ≡< x = 1, y = 3 >
m2 ≡< x = 4, y = 1 >
g1 ≡< x = 1, y = 4 >
g2 ≡< x = 4, y = 2 >
g3 ≡< x = 1, y = 0 >
wall{0..23} ≡ . . .

pred(s) translates s into terms.

touchN (m1, wall20)
touchN (m2, g2)
touchE(m2, wall8)
All other relations between Miners and
Gold and Miners and Walls negated.

Agent takes action a (parameterized or
global)

North(m2).

Environment searches for condition a of
action a that matches some grounding
of the classes.

North(m2)→ ¬touchN (m2,Wall) ≡
¬∃wi ∈Wall : touchN (m2, wi) ≡ True
(m2 is not touching any wall)

For each fulfilled condition, an effect
occurs. Effects are used to compute
next state s′.

m2.y ← m2.y + 1

Environment chooses reward r from
R(s, a) and tells it to the agent.

r = −1

Table 4.7: Transition cycle for OO-MDPs

4.6 OO-MDPs and Factored-state Representations Using DBNs

In this section, I will compare OO-MDPs to factored-state representations, and illus-

trate how they differ and why OO-MDPs can more succinctly represent task dynamics.

As an example, let us consider what a factored-state representation of Goldmine would

look like. One could represent this domain using a state variable for the x and y at-

tributes of each miner and each gold piece, for a total of 10 variables. In a standard

factored-state representation, actions would not be parameterized and there would be

a different set for each miner, although having a parameterized version is a simple al-

teration. A DBN representation would indicate that, for North, South, East and West

actions attached to a particular miner, x and y of that miner are enough to determine

their next values x′ and y′. In the case of the GetGold action, x′ and y′ of each gold

piece depends on its previous values, plus the values of x and y of the miner in question.

Walls would not need to be represented as objects, because the dynamics of miners’
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movements would depend on their absolute coordinates in the grid anyway. That is, a

factored-state algorithm like Factored Rmax would learn that when the x variables of

miner m1 is 0 and y is 4, action North does not change any variable, but when they

are 0 and 3, x becomes 4. For action North, it would have to learn these transitions

independently for all combinations of x and y. Notice that it cannot ignore x when

learning about moving North, because while (x, y) = (0, 3) moves the miner to (0, 4),

trying the same action from (1, 3) does not.

Notice also that without parameterized actions and types, any knowledge about

movement of one miner would have to be learned independently of any other one.

The comparison between an OO-MDP representation of Goldmine and its factored-

state representation illustrates some of the reasons why OO-MDPs can be more succinct.

In summary, the main differences between OO-MDPs and DBN representations are:

• (In-class transfer) Relational conditions allow learning about all objects of a given

class at the same time. The dynamics of miners’ movements and their interactions

with gold generalize to all miners in the domain and all gold pieces. Adding more

miners or more gold to an OO-MDP domain does not require any extra learning,

while in the DBN case it requires adding new state variables and learning their

transition dynamics anew.

• (Attribute generalization) Defining dynamics based on relations between objects

extracted from attributes allows generalization across attribute values. The abso-

lute (x, y) location of a miner does not define whether it can move North or not,

only whether or not it is touching a wall does. Making the grid bigger, moving or

adding walls or gold pieces does not require extra learning in the OO-MDP case,

but it does in a DBN representation.

• (Action generalizations) Actions are generalized by their parameterization. What-

ever is learned from executing an action North on one miner generalizes to all other

miners. In a DBN representation, the dynamics of the state variables of one miner

do not transfer to the state variables of the others.



68

• (Relative effects) Effects represented as a change in an attribute value also enable

generalization. Once an OO-MDP learner understands, for example, that if there

is no wall x or y change by 1, this knowledge applies to any particular grid

location, regardless of its absolute value. In DBN representations, transition

dynamics depend on absolute positions.

All of the above generalizations enabled by an OO-MDP representation are the crux

of its representational advantages. We will see how they enable orders of magnitude

faster learning when compared to factored-state representations.

4.7 OO-MDPs and Relational RL

In OO-MDPs without any extensions, the state is completely propositional. The set of

relations extracted from a state by the function pred(s), which returns a set of grounded

terms, is also propositional. The only lifted aspect of OO-MDPs is the way in which

transition rules and rewards are encoded in terms of classes that can be understood

as object variables. This representation can be translated into existential statements

of finite scope. De Raedt (2008) defines relational representations as those that that

are able to represent relations over a variable number of entities, as opposed to logical

representations, which can only refer to a fixed, grounded number of objects. In that

sense, the OO-MDP representation can be called relational, as objects and relations are

defined in terms of classes and are then instantiated in a variable number of objects.

OO-MDPs can be extended into FO-OOMDPs to cover the full expressive power of

FOL. In their propositional form, they do not represent recursion, unbounded existen-

tials, or many of the other constructs available in full FOL. While it would be desirable

to include and be able to learn many of these constructs, there are both negative results

as well as a number of open questions in terms of their learnability. For example, at-

tempts have been made at learning recursive rules from examples, with mixed results.

Essentially, with enough assumptions and constraints, some cases of recursion can be

efficiently learned, but a slew of negative results exist about more general cases. The

reader is encouraged to refer to two parallel papers, one with positive and one with
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negative results about the learnability of recursion in the context of Inductive Logic

Programming (Cohen, 1995b; Cohen, 1995a).

If we were willing to forgo learning guarantees, I hypothesize that it is a simple

exercise to extend the expressive power of OO-MDPs by accepting limited forms of

recursion like the cases described by Cohen (1995b), but this goal is beyond the scope

of this dissertation.

4.8 OO-MDPs and Deictic Representations in Reinforcement Learn-

ing

Another type of representations introduced to RL, with similar goals as those of OO-

MDPs, are deictic representations. The word deictic comes from the Greek deiktikos,

meaning “able to show”. Under these representations, expressions “point” to an ob-

ject, and statements are made relative to the object in question. Examples of such

expressions in linguistics are “the cup that I am holding” and “the person sitting next

to me”.

Deictic representations either have agency, or have an attentional or perceptual

component. That is, a deictic statement must be relative to an agent (“the food I am

eating”) or be centered around a particular object or entity of reference (“the cup that

is on the red table”, “the chair Mary is sitting on”).

In contrast, under standard propositional representations, objects have unique iden-

tifiers and statements are of the form over(object27,object14). Under a deictic represen-

tation in RL, expressions are usually relative to a pre-identified agent (the-object-I-

am-grasping), and further extended through chains or relationships: the-object-on-top-

of(the-object-of-the-same-color-as(the-object-I-am-grasping)).

Finney et al. (2002b) is one of the first attempts to bring deictic representations to

RL, with mixed results, as indicated by the title of their paper: The Thing that we Tried

Didn’t Work very Well: Deictic Representation in Reinforcement Learning. The result

was further extended in Finney et al. (2002a), showing that empirical performance in

a Blocks World domain, under their deictic representation, was worse than under a
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full propositional one. In their representation, the agent controls an attentional marker

that can point to an object and obtain perceptual information about it, including which

objects are in its immediate vicinity. More markers can be added and made to point

to different objects at the same time. In the extreme case, if one marker per object

is available, the representation becomes a standard propositional one. When there are

fewer markers than objects, partial observability ensues. This partial observability may

be beneficial (if it simplifies the problem by occluding irrelevant aspects of it) or it can

hinder learning (if it occludes relevant ones).

Ponsen et al. (2006) apply a similar idea to a Real-Time Strategy game. They

simulate one component of these kinds of games, which is the sub-problem of worker

units needing to navigate to a location while avoiding enemy units. For this type of task,

local information about nearby enemies is usually a sufficient statistic, and simplifies

the problem compared to the case in which all other enemy units must be considered

by the learner, no matter how far away they are. They refer to this representation as

deictic: the player controls one unit at a time (therefore focusing attention on it), and

only considers information relative to the vicinity of the unit being attended to.

A similar problem is tackled by Ravindran et al. (2007). They define a deictic

representation involving what they call relativized options. Policies are constructed as

schemas that can be applied relative to a given object in the world.

OO-MDP representations share a number of ideas with deictic representations, al-

though formally they do not exactly match any of the ones mentioned or, as far as I

know, any other existing one. Conceptually, however, relations in OO-MDPs can be

thought of as deictic, as they usually refer to a given object (which can be considered

the attentional focus) and its vicinity. As we shall see in upcoming chapters, one benefit

of the current representation is that it enables efficient learning, which has not been

demonstrated in previously existing deictic ones.
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4.9 Summary

OO-MDP representations seek to strike a balance between generality, expressive power

and efficient learning. It is already known that factored-state representations can be

efficiently learned (Kearns & Koller, 1999; Guestrin et al., 2002), even when the full

structure of DBNs is not provided as input (Strehl et al., 2007; Diuk et al., 2009), and

are very general. It is also usually the case that representations with higher expressive

power enable more succinct descriptions of domains and their transition dynamics.

However, as the expressive power increases, such representations tend to become harder

to learn. FOL representations have much higher expressive power than factored-state

ones, but they cannot be learned efficiently without a large number of assumptions or

the incorporation of prior knowledge.

OO-MDP representations enable a relational description of a domain that is fairly

natural, relying on propositional descriptions of state and relations that do not go

beyond simple computations performed directly over the attributes of the objects in-

volved. However, OO-MDP representations present a number of advantages over DBNs,

enabling, in many cases like Taxi or some of the examples presented in upcoming chap-

ters, order-of-magnitude decreases in the description size of domain dynamics, corre-

sponding to an order-of-magnitude speedup in learning time. What remains to be shown

is that OO-MDP representations can be learned efficiently. In the upcoming chapters,

I will demonstrate that OO-MDP representations provide many of the representational

advantages of lifted representations without losing theoretical learning guarantees like

the ones available for factored-state representations.
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Chapter 5

Learning Deterministic OO-MDPs

In Chapter 3, I mentioned DOORmax(Deterministic Object-Oriented Rmax), a learning

algorithm for deterministic OO-MDPs that is an instance of the KWIK-Rmax family

of algorithms. In this chapter, I fully describe it and analyze its sample complexity.

DOORmax is designed for deterministic Propositional OO-MDPs, that is, those in which

for each action and a given condition there is only one effect that can occur, and it occurs

with probability 1. I will build up the full presentation of the algorithm starting from

simpler cases. First, I introduce a KWIK algorithm called enumeration that will be

instantiated as a condition and an effect learner. Second, I present how a condition

can be learned for a known effect. Third, I show how an effect can be learned. Then,

I combine the condition and the effect learners to learn a single condition-effect pair.

Finally, I present a more realistic model, which I call the Tree Model, in which each

action can have up to k conditions, and show how it can be learned. Some of the

material in this chapter has been introduced previously in Diuk et al. (2008).

5.1 The KWIK Enumeration Algorithm

Li et al. (2008) showed that if a hypothesis class is finite and its observations are deter-

ministic, then it is KWIK-learnable, and an algorithm called enumeration can be used

to learn it. I introduce enumeration in this section, and then show how deterministic

OO-MDPs can be learned using instances of it.

If the hypothesis class to be learned is H, enumeration keeps track of Ĥ ⊂ H, the

version space that contains the hypotheses that are consistent with the data observed

so far. The algorithm initializes Ĥ to H. At each timestep t, the algorithm observes

input xt and is asked to make a prediction of the output h(xt) (which as in every KWIK
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algorithm, can be ⊥). Enumeration computes L̂ = {h(xt)|h ∈ Ĥ}, the set of outputs

computed by all the hypotheses in its current version space, and will progressively

eliminate hypotheses that contradict the observations. An assumption in KWIK is that

the correct hypothesis, h∗, is in H, so enumeration will produce at least one output:

|L̂| ≥ 1. If it has exactly one prediction, |L̂| = 1, it means that all the hypothesis

agreed on the output, and therefore the algorithm knows the answer. If |L̂| > 1, there

is a disagreement and the algorithm will have to respond ⊥, and receive as observation

the true output h(xt) = yt. This output will match some of the hypotheses in Ĥ and

contradict some others. The hypotheses that did not match yt are eliminated from Ĥ.

Note that there must be at least one agreeing hypothesis (h∗ ∈ Ĥ) and at least one

disagreeing (since |L̂| > 1). Therefore, the size of the version space will be reduced by

at least 1 with each ⊥ prediction.

The resulting KWIK bound for enumeration is H − 1, linear in the size of the

hypothesis space. The complete description is shown in Algorithm 8.

Algorithm 8: Enumeration algorithm, for KWIK learning finite hypothesis
classes with deterministic outputs.

1: Inputs: X ,Y,H, ǫ, δ.
2: Initialize Ĥ ← H.
3: for t = 1, 2, . . . do
4: Observe input xt ∈ X .
5: Compute predictions L̂ = {h(xt)|h ∈ Ĥ}.
6: if |L̂| = 1 then
7: Predict ŷt = y, the only prediction from L̂.
8: else
9: Predict ŷt = ⊥.

10: Observe yt.
11: Update version space: Ĥ ← Ĥ \ {h|h(xt) 6= yt}
12: end if
13: end for

5.2 Learning a Condition

I will show how deterministic OO-MDPs can be KWIK-learned starting from simple

cases. In this section, I will consider the case where there exists a single, known effect

in the environment, and a single condition that produces it. The learning problem is
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to find out what that condition is. Given a condition as input, the task of the KWIK

learner is to produce a True/False prediction indicating whether the effect will occur

or not.

As defined in Section 4.2.2, conditions are conjunctions of terms from the set T . A

condition can be a conjunction of any number of terms t ∈ T or their negations ¬t.

That is, a condition c is a subset c ⊂ ∪t∈T {t,¬t} (I will represent conjunctions as sets

of terms or negations of terms that need to be True). An initial approach to learning

a condition is to simply use the enumeration algorithm for the hypothesis class that

includes all possible conditions, yielding a set Ĥ of size |Ĥ| = 22|T |. However, given

that each hypothesis represents a conjunction, some generalization is possible. Let us

start with an example:

Consider a set of terms T = {A,B,C}, and imagine that the effect occurs whenever

A is true, regardless of the values of B and C. That is, the true hypothesis is h∗ = {A}.

The initial set of hypotheses Ĥ would include the following list of conditions, for a total

of |Ĥ| = 16:

A B C → True A B C → False

A B ¬C → True A B ¬C → False

A ¬B C → True A ¬B C → False

A ¬B ¬C → True A ¬B ¬C → False

¬A B C → True ¬A B C → False

¬A B ¬C → True ¬A B ¬C → False

¬A ¬B C → True ¬A ¬B C → False

¬A ¬B ¬C → True ¬A ¬B ¬C → False

Note that if h∗ = {A}, the 4 hypotheses that include A (not negated) and predict

True will always make a correct prediction. This means that a näıve approach might

require up to 12 data points before the condition is learned. However, with the extra

knowledge that hypotheses represent conjunctions, it is possible to learn with less ex-

perience (exponentially less, in fact!). In the previous example, imagine the learner is

exposed to these two examples:
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A B C → True

A ¬B ¬C → True

These examples are enough to discover that terms B and C do not matter, and that

the fact that A is true is enough to predict that the condition is satisfied. Observe,

however, that negative examples do not provide such an opportunity for generalization.

Imagine the first observation had been:

¬A B C → False

This observation only allows the enumeration learner to eliminate the hypothesis

¬A ∧ B ∧ C → True, and nothing else. If we call n = 2|T |, this asymmetry between

positive and negative examples will yield a worse-case bound for learning deterministic

OO-MDPs of O(2n) when lots of negative examples are observed, whereas in the best

case, if provided with enough positive examples, it can learn in O(n).

5.2.1 Condition Learner Algorithm

To specify the algorithm more formally, I need to specify the hypothesis class that is

provided as input, how predictions are made, and how Ĥ gets updated, corresponding

to lines 2, 5 and 11 of Algorithm 8.

The Condition Learner will make use of the fact that hypotheses represent conjunc-

tions in order to eliminate more than one hypothesis per observation, as exemplified

before. In order to show how this generalization is achieved, I introduce some notation:

• For every state s ∈ S, the function pred(s) returns the truth value of all terms in

T induced by s. For example, if there is a term t indicating whether an object is

touching a wall or not, pred(s) will return t or ¬t, depending on where the object

is in relation to the wall in state s.

• I will assume the terms in T are ordered, resulting in a set {t1, . . . tn}. A hy-

pothesis h is represented by a string hS of length n, where hi
S = 1 if it makes its

prediction based on ti being True, ci
S = 0 if it makes it based on ¬ti being True and

ci
S = ⋆ if it ignores ti when making predictions. For example, in the Taxi problem
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consider the four terms representing whether or not the taxi is touching a wall

to the N/S/E/W: touchN (Taxi,Wall), touchS(Taxi,Wall), touchE(Taxi,Wall)

and touchW (Taxi,Wall). The correct hypothesis h∗ for action North requires

only that ¬touchN (Taxi,Wall) is True. The resulting string used to represent

this hypothesis is h∗
S = 0 ⋆ ⋆⋆.

• The condition induced by state s, pred(s), can also be represented in string form

as predS(s).

• Given two hypotheses represented as strings h1 and h2, I define the element-wise

commutative operator ⊕ as follows:

hi
1 hi

2 hi
1 ⊕ hi

2

0 0 0

1 1 1

0 1 ⋆

0|1 ⋆ ⋆

• A hypothesis h1 matches another hypothesis h2, noted h1 |= h2, if ∀1 ≤ i ≤ n :

hi
1 = ⋆∨hi

1 = hi
2. Hypotheses that match the one for action North (0⋆⋆⋆) include

0100, 0011 and 0101, but not 1000 or 1010.

First, I will assume that all the hypotheses in the enumeration algorithm are rep-

resented as strings. The condition learner will keep an extra variable hT , initialized to

∅. This variable will represent all the hypotheses for which a True prediction should be

made. Back to the Taxi example, we would like to learn that hT = 0 ⋆ ⋆⋆ and predict

True for all predS(s) such that hT |= predS(s).

The prediction step (line 5 of Algorithm 5) will look through all the hypotheses in

Ĥ searching for those such that h(predS(s)) = False. Plus, it will look at whether

hT matches predS(s), or if it is ∅, and predict True if so. Formally, L̂ = {False|h ∈

Ĥ ∧ h(predS(s)) = False} ∪ {True|hT |= predS(s) ∨ hT = ∅}.

Given an observation yt, the learning step (line 11 of Algorithm 5) will depend on

whether this observation is True or False. If it is a negative example (yt = False), it
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will simply eliminate the hypothesis h that predicted True. If it is a positive example

(yt = True), first it will update hT . If hT = ∅, it will set hT ← predS(s). Otherwise, it

will update it as follows: ∀1 ≤ i ≤ n : hi
T ← hi

T ⊕ predS(s). Finally, it will eliminate all

hypotheses hi that predict False such that hT |= hi.

Analysis

The condition learner is initialized with |Ĥ| = 2|T |+1 hypotheses (2|T | conditions times

2, once for predicting True and once for predicting False). In the worst case, where

only negative examples are observed, it might take |Ĥ| − 1 examples before the right

condition is learned, an exponential dependency on the number of terms that define the

environment’s dynamics. If the number of terms is large, and many negative examples

are observed, condition learner becomes intractable. However, it takes at most two

positive examples to learn at least one term in hT . With a positive example, at least

one term either becomes the correct value 0|1, or it takes a second example to make it ⋆.

For each term in hT that is learned, an exponential number of hypotheses are eliminated.

A best-case analysis, where sufficient positive examples are observed, yields a bound of

O(|T |) to learn the condition, a linear dependency on the number of terms.

5.2.2 Example: Learning a Condition in Taxi

Let us assume a simplified Taxi domain, where there is a taxi surrounded by walls but

no passenger to pick up and drop off. We simply want to learn under which conditions

the action North moves the taxi by adding 1 to its y coordinate.

Let us assume that the terms are touch relations between the taxi and walls in

all four directions: touchN (Taxi,Wall), touchS(Taxi,Wall), touchE(Taxi,Wall) and

touchW (Taxi,Wall) (in the string notation, we will assume this ordering).

Imagine that we start in a state s0 and execute two North actions, transitioning to

states s1 and s2, as shown in Figure 5.1.

When the taxi transitions from state s0 to s1, a change in its attribute y is observed

(y = 0 to y = 1), which means that this is a positive example. That is, the condition
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Figure 5.1: Simple Taxi with walls. An initial state s0 transitions to s1 and then s2

through North actions.

that was true in state s0, pred(s0), was enough to produce an effect. Since initially

hT was ∅, it will be set to pred(s0) to become hT = 0101, which corresponds to the

conjunction:

¬touchN (Taxi,Wall) ∧ touchS(Taxi,Wall) ∧ ¬touchE(Taxi,Wall) ∧

touchW (Taxi,Wall)

Another North action is now taken, transitioning from state s1 to s2. The

condition that enabled this effect to occur was pred(s1) ≡ ¬touchN (Taxi,Wall) ∧

¬touchS(Taxi,Wall)∧¬touchE(Taxi,Wall)∧ touchW (Taxi,Wall), or 0001. Now that

hT = 0101, the ⊕ operator is applied: hT ⊕ predS(s1) = 0101 ⊕ 0001 = 0 ⋆ 01. It just

learned that the term touchS(Taxi,Wall) has no influence on action North. The current

hypothesis hT for predicting the occurrence of an effect corresponds to conjunction:

¬touchN (Taxi,Wall) ∧ ¬touchE(Taxi,Wall) ∧ touchW (Taxi,Wall).

A few steps later, we’ll imagine the taxi is in state st and transitions to st+1 after a

North action, as depicted in Figure 5.2. The condition that made this transition possi-

ble is pred(st) ≡ ¬touchN (Taxi,Wall)∧¬touchS(Taxi,Wall)∧¬touchE(Taxi,Wall)∧

touchW (Taxi,Wall), or 0010. As before, the operation hT ⊕ predS(st) is applied, re-

sulting in: hT = 0 ⋆ 01 ⊕ 0010 = 0 ⋆ ⋆⋆. This hypothesis corresponds to the correct

conjunction that determines the condition for a positive effect under action North:

¬touchN (Taxi,Wall)
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Figure 5.2: Two states st and st+1 resulting from a North action.

In the next section I will show how single effects are learned, and then combine the

two learners to learn up to k condition-effect pairs.

5.3 Learning an Effect

In the previous section, it was assumed there was a single, known effect that could either

happen or not happen depending on the condition. In this section, I will assume the

effect itself also needs to be learned. Once again, I will use the enumeration algorithm

to KWIK-learn the effect of an action.

An important assumption regarding effects is that there is a finite set of effect types

that will be considered. For example, an effect of arithmetic type would be one that

consists of applying a simple arithmetic operation to an attribute (+,−, ∗, /). An effect

of type assignment would be one that assigns a fixed constant value to an attribute.

The designer of the algorithm needs to pre-define these effect types, and provide it

with functions that compute, given two attribute values, the possible effects that can

transform one value to the other. For example, if the x position of an object changes

from the value x = 2 to the value x = 4, and the designer established as possible

effect types arithmetic and assignment, the algorithm should be able to consider as

possible effects the operations x← x + 2 (arithmetic), x← x ∗ 2 (arithmetic) or x← 4

(assignment). The set of operations that will be considered is up to the algorithm

designer as long as, given two states si and sj, the algorithm can access a function that

returns all possible operations that would transform si into sj:
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• For any states s and s′ and attribute att, the function effatt(s, s
′) returns a list of

effects of each type that would transform attribute att in s into its value in s′.

Note that although the function effatt(s, s
′) is defined over an infinite domain (for

example, arithmetic operations over Real numbers), it should always return a finite

set of possible transformations. The enumeration algorithm for effects will then start

with an empty hypothesis class, and only be initialized after the first observation (a

transition from s0 to s1) with the results of effatt(s0, s1). The prediction step will receive

as input an attribute value and it will apply all effects in its hypotheses Ĥ to it. If the

predictions for the resulting value of the attribute contradict, it responds ⊥, waits for

an observation, and deletes all hypotheses that do not match the observation.

Given that effatt returns a finite set Et for each effect type t, the effect learner can

have a sample complexity of up to (
∑

t |Et|)− 1.

5.3.1 Example: Learning an Effect

Consider as an example an infinite gridworld with no walls or obstacles, and a taxi that

can navigate freely around it, as shown in Figure 5.3.

Figure 5.3: Infinite-grid Taxi.

Let us assume that the taxi has two attributes indicating its location, x and y,

and it starts in position < x, y >=< 0, 0 >. At the beginning, the algorithm has no

hypotheses of what action North does, so it executes it and observes that the new values
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for the taxi attributes are < x, y >=< 0, 1 >. Let us also assume that the effect types

considered by our algorithm are addition and assignment. In that case, after executing

action North, the algorithm has the hypothesis that its effect is either y ← y + 1 or

y ← 1, as returned by effatt(s, s
′). If asked what would happen to the taxi from any

location in which y = 0, the algorithm can unambiguously predict, given its current

hypotheses, that in the next step y = 1. However, now that < x, y >=< 0, 1 >, if asked

to predict what another action North’s effect would be, the two hypotheses generate

a contradictory outcome: either y = 2 (if y ← y + 1 is the true effect) or y = 1 (if

y ← 1 is the correct one). The algorithm would thus not have an answer and needs to

take another exploratory action, so it responds ⊥. The result of another action North

here is < x, y >=< 0, 2 >, which is coherent with the hypothesis that y ← y + 1, but

contradicts the prediction of hypothesis y ← 1. The latter is eliminated and the only

remaining hypothesis about the effect of action North is now y ← y + 1, which is the

correct one.

5.4 Learning a Condition-Effect Pair

It is possible to combine the condition and effect learners just introduced into a single

algorithm, which I call Condition-Effect Learner (CELearn). The combination is very

simple: whenever the condition learner predicted False, it now predicts a null effect,

symbolized by ∅. Whenever it predicted True, it now calls an effect learner for a

prediction. If the effect learner responds ⊥, then CELearn also responds ⊥. Otherwise,

CELearn returns the effect returned by the effect learner.

5.5 Learning Multiple Condition-Effect Pairs: the Tree model

In the previous sections I considered the case where only one condition was being

learned, and then one effect. In this section, the model is extended to allow multiple

conditions and effects for each action. To extend the current example, let us imagine

that now the taxi is not only surrounded by walls but it also has an extra attribute

indicating its fuel level. Plus, some locations in the grid might have puddles of mud
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that force the taxi to make an extra effort. Each movement action consumes 1 unit of

fuel in regular locations, and 2 if there is a puddle. The following condition-effect pairs

now govern the behavior for action North:

¬touchN (Taxi,Wall) ∧ Taxi.fuel > 0⇒ Taxi.y ← Taxi.y + 1

¬touchN (Taxi,Wall) ∧ Taxi.fuel > 0 ∧ ¬on(Taxi,Puddle)⇒ Taxi.fuel← Taxi.fuel− 1

¬touchN (Taxi,Wall) ∧ Taxi.fuel > 0 ∧ on(Taxi,Puddle)⇒ Taxi.fuel← Taxi.fuel− 2

In this example, the action North has 3 different possible effects, based on 3 different

conditions. To make learning of multiple conditions and effects feasible, a couple of

assumptions must hold:

Assumption 8. For each action and each attribute, only effects of one type can occur.

This assumption just indicates that a given action cannot have effects of multiple

types on the same attribute. There will be situations during learning in which, for

example, a change in an attribute can either be attributed to an arithmetic operation

or the assignment of a constant value. But, ultimately, only one of these types will be the

true effect type. Since multiple condition-effect pairs are allowed, this assumption will

be required to allow the learning algorithm to know when it still needs more examples

to disambiguate between different effect types.

Assumption 9. For every action a, attribute att and effect type t, there is a set CEattt,a of

condition–effect pairs that determine changes to att given a. No effect can appear twice

on this list, and there are at most k different pairs—|CEattt,a | ≤ k. Plus, no conditions

Ti and Tj in the set CEattt,a contain each other: ¬(Ti ⊂ Tj ∨ Tj ⊂ Ti). The number of

terms or negations of terms in any condition is bounded by a known constant D.

This assumption is what gives the model the name of Tree model. We can think

of this model as consisting of a tree with at most k leaves and depth D. Each leaf

represents an effect and the internal nodes are the terms of the condition that enables

the corresponding effect. Each leaf must be unique, and the tree structure prevents
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conditions from overlapping. For example, the following tree represents the conditions

and effects for action North and attribute Taxi.y.

touchN (Taxi,Wall)

∅ Taxi.fuel > 0 > 0

Taxi.y ← Taxi.y + 1 ∅

In the case of attribute Taxi.fuel, the rules are:

touchN (Taxi,Wall)

∅ Taxi.fuel > 0

on(Taxi,Puddle)

Taxi.fuel← Taxi.fuel − 2 Taxi.fuel← Taxi.fuel − 1

∅

5.5.1 Multiple Condition-Effects Learner Algorithm

I now present an algorithm, MCELearner, that learns multiple condition-effect pairs,

assuming transition dynamics follow the Tree Model. The algorithm has two main

components: prediction and learning. Both components share access to a set of lists of

condition effects CEattt,a for each attribute att, effect type t and action a. Each element of

these lists is a single condition-effect learner —a CELearner—, as presented in Section

5.4.

The learning sub-algorithm distributes its observations to the corresponding CE-

Learners, and controls that the assumptions of the Tree Model hold. If for any effect

type the number of CELearners is greater than k, or if their conditions overlap, it

eliminates them. Details are shown in Algorithm 9.
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Algorithm 9: MCELearner learning component.

1: Inputs: s, a, s′.
2: for all Attributes att do
3: for all Effects e ∈ effatt(s, s

′) do
4: t← e.type
5: Add experience to all condition-effect learners in set CEattt,a (pred(s), e).

6: if |CEattt,a | > k then

7: Delete CEattt,a .
8: end if
9: if Two conditions overlap: ∃ci, cj ∈ CE

att
t,a s.t.ci |= cj ∨ cj |= ci then

10: Delete CEattt,a .
11: end if
12: end for
13: end for

The prediction sub-algorithm will ask, for each attribute and effect type, for pre-

dictions from the corresponding CELearners. If any of them responds ⊥, or if their

predictions contradict, then it responds ⊥. Details are shown in Algorithm 10.

Algorithm 10: MCELearner prediction component.

1: Inputs: s, a.
2: att′ ← att
3: for all Attributes att do
4: for all Effect types t do
5: Get prediction p from CEattt,a (pred(s)).
6: if p = ⊥ then
7: Return ⊥
8: else
9: Apply p to att′. If contradiction with current att′, return ⊥.

10: end if
11: end for
12: end for
13: Return s’.

5.5.2 Disjunctions and Effect Identifiability

The common assumption in this and upcoming chapters is that the conditions that de-

termine domain dynamics are conjunctions. A disjunction of two conditions producing

the same effect is not allowed, although it could be desirable. While the formalism does

not disallow disjunctions per se, I have not been able to find an efficient algorithm to
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learn them.

Based on the tree model, one might think that it could be possible to introduce

disjunctions by means of a simple trick. Since effects are defined arbitrarily by the

agent designer (as long as an adequate effatt(s, s
′) function is available), it is possible

to create equivalent effects but give them different names. Imagine a designer deciding

that there are two effects, called add and superadd, both producing the same arithmetic

additions. There would be two branches in the tree, one ending in a leaf representing

the effect add, and the other one ending in superadd. The branches would represent

two conditions in a disjunction.

The problem with this idea is that an assumption of the algorithms proposed here is

that effects can be identifiable. That is, all algorithms are able to tell when two actions

produced equivalent effects. For example, a transition of an attribute’s value from 2 to

3 and from 5 to 6 both produce an arithmetic-type effect +1, and all algorithms must

recognize the different +1s as the same effect. This assumption is required so that the

proper condition-effect pairs get updated under observations that produce the same

effect, but may correspond to different states and different conditions. Faced with a

+1 observation, the algorithm must be able to know whether to update the condition

on the add or the superadd branches. It must not update both, or just one of them

randomly, because then the condition learned will be nonsensical.

The only alternative is for the designer to introduce further prior knowledge, and

implement the effatt(s, s
′) function in a way that distinguishes between equivalent effects

with different names. If effatt(s, s
′) only and correctly produces add or superadd when

they correspond (based on knowledge of which part of the disjunction should be updated

given s and s′), then disjunctions can be learned and represented.

5.6 DOORmax

DOORmax is an instance of KWIK-Rmax that assumes that conditions and effects follow

the Tree Model, and uses MCELearner for learning transitions. In this section, I present

bounds and experiments.
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5.6.1 Analysis

As mentioned before, there is a worst-case bound for learning conditions of O(2|T |), ex-

ponential in the number of terms involved in the conjunctions that determine transition

dynamics. Consider the following example (sometimes referred to as the Combination

Lock Problem): a domain contains a locked door, and can only be opened by setting the

lock to its right combination. Assume the combination is an n-bit binary number, and

the agent can perform the actions Open and Flip-bit(i). The condition for action Open

to produce the effect of opening the door is a conjunction of n terms, representing the

correct combination. In the worst case, 2n attempts (Flip-bit followed by Open actions)

will have to be performed before this condition is learned.

The worst-case bound is reached when lots of negative examples (actions that have

no effect) are observed, and conditions need to be eliminated one by one. However,

in the face of positive examples (actions that do produce an effect), it is possible to

eliminate an exponential number of hypotheses per observation. In the remainder of

this section I analyze this best-case bound.

I split the proof in two parts. First, I show that learning the right condition-effect

pair for a single action and attribute is KWIK-learnable, and then show that learning

the right effect type for each action–attribute, given all the possible effect types, is also

KWIK learnable.

Theorem 10. The transition model for a given action a, attribute att and effect type

type in a deterministic OO-MDP is KWIK-learnable with a bound of O(nk + k + 1),

where n is the number of terms in a condition and k is the maximum number of effects

per action–attribute.

Proof. Given state s and action a, the predictor for effect type type will return ⊥ if

pred(s) is not a known failure condition and there is no condition in pred(a, att, type)

that matches pred(s). In that case, it gets to observe s′ and updates its model with

pred(s) and the observed effect e. We show that the number of times the model can be

updated until it always has a correct prediction is O(nk + k + 1).
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• If the effect e has never been observed before for this particular action, attribute

and effect type, it gets added to pred(a, att, type). This outcome happens at most

k times, which is the maximum number of different effects allowed per action-

attribute-type combination.

• If the effect e has never been observed, but |pred(a, att, type)| = k, the algo-

rithm concludes that the current effect type is not the correct one for this action–

attribute, and it removes all predictions of this type from its set P. This event

can only happen once for each type.

• if the effect e is such that there already exists a prediction for it, ⊥ is only returned

if the existing condition in the model does not match pred(s). This case can only

happen if a term in the model is a 0 or 1 and the observation is the opposite. Once

it happens, that term becomes a ⋆, so there will never be another mismatch for

that term, as ⋆ matches either 0 or 1. In the worst case, with every ⊥ returned,

one term at a time gets converted into ⋆. These updates can only happen n times

for each effect in pred(a, att, type), for a total of nk times.

Therefore, there can be at most nk + k + 1 updates to the model for a particular

action a, attribute att and effect type type before pred(a, att, type) either has a correct

prediction or gets eliminated.

Corollary 11. The transition model for a given action and attribute in a deterministic

OO-MDPs is KWIK-learnable with a bound of O(h(nk + k + 1) + (h− 1)), where n is

the number of terms in a condition, k is the max number of effects per action–attribute,

and h is the number of effect types.

Proof. Whenever DOORmax needs to predict s′ given state s and action a, it will consult

its current predictions for each attribute and effect type. It will return ⊥ if:

• For any of the h effect types typei, pred(a, att, typei) returns ⊥. As shown in

Theorem 10, pred(a, att, typei) can only return ⊥ up to nk+k+1 times. Therefore,

this case can only happen h(nk + k + 1) times.
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• For some attribute att, there are two effect types type1 and type2 such that

pred(a, att, type1) 6= pred(a, att, type2). When this happens, we get to observe the

actual effect e, which will necessarily mismatch one of the predictions. The model

will therefore be updated by removing either pred(a, att, type1) or pred(a, att, type2)

from its set of predictions. This case can only occur h−1 times for a given action

and attribute.

We have shown that, in total and in the best case, DOORmax will only predict ⊥

O(h(nk + k + 1) + (h − 1)) times before having an accurate model of the transition

dynamics for an action and attribute in the OO-MDP.

5.7 Experiments

In this section, I present experimental results on two domains: the well-known Taxi

domain, already presented in Chapter 3, and an Atari console videogame Pitfall.

5.7.1 Taxi

The Taxi domain was introduced in Section 3.1, and the experimental setup described

there is the one I used to test DOORmax. Some of the results were also anticipated in

that chapter, but are rehashed here.

We run experiments on two versions: the original 5 × 5-grid version presented by

Dietterich (2000), which consists of 500 states, and an extended 10 × 10-grid version

with 8 passenger locations and destinations, with 7200 states (see Figure 5.4). The

purpose of the extended version is to demonstrate how DOORmax scales by properly

generalizing its knowledge about conditions and effects when more objects of the same

known classes are introduced.

The set of terms T , which determines the transition dynamics of the OO-MDP,

includes the four touchN/S/E/W relations between the taxi and the walls; the rele-

vant relations between the taxi and the passenger and destination; the attribute value

passenger.in-taxi = T ; and all their negations:
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Figure 5.4: Standard 5× 5 Taxi and extended 10× 10 version.

{ touchN/S/E/W (taxi,wall), on(taxi, passenger),

¬touchN/S/E/W (taxi,wall), ¬on(taxi, passenger),

on(taxi, destination), ¬on(taxi, destination),

passenger.in-taxi = T , passenger.in-taxi = F }

The experiments for both versions of the Taxi problem were repeated 100 times,

and the results averaged. For each experiment, I ran a series of episodes, each starting

from a random start state. We evaluate the agent’s learned policy after each episode on

a set of six “probe” combinations of 〈taxi (x,y) location, passenger location, passenger

destination〉. The probe states used were: {(2, 2), Y,R}, {(2, 2), Y,G}, {(2, 2), Y,B},

{(2, 2), R,B}, {(0, 4), Y,R}, {(0, 3), B,G}. We report the number of steps taken before

learning an optimal policy for these six start states.

We also remind the reader here of how DOORmax compares against Factored-Rmax,

the state-of-the-art algorithm for factored-state representations. The results are shown

in the following table, with the last column showing the ratio between the results for

the 10× 10 version and the 5× 5 one:
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Taxi 5× 5 Taxi 10× 10 Ratio

Number of states 500 7200 14.40

Factored Rmax

# steps 1676 19866 11.85

Time per step 43.59ms 306.71ms 7.03

DOORmax

# steps 529 821 1.55

Time per step 13.88ms 293.72ms 21.16

We can see how DOORmax not only learns with significantly smaller sample com-

plexity, but also how well it scales to the larger problem. After increasing the number

of states by more than 14 times, DOORmax only requires 1.55 times the experience.

This result can be explained by the fact that what DOORmax needs to learn are the

interactions between objects, which do not change from the smaller to the larger Taxi

problem. The difference in sample complexity can be explained by the fact that in the

10×10 grid, more steps need to be taken in order to generate the necessary exploratory

interactions, pick up the passenger, deliver it, etc.

The main difference between DOORmax and Factored-Rmax is their internal repre-

sentation, and the kind of generalization it enables. After just a few examples in which

¬touchN (taxi,wall) is true, DOORmax learns that the action North has the effect of

incrementing taxi.y by 1, whereas under touchN (taxi,wall) it fails. This knowledge, as

well as its equivalent for touchS/E/W , is generalized to all 25 (or 100) different locations.

Factored-Rmax only knows that variable taxi.y′ in state s′ depends on its value in state

s, but still needs to learn the transition dynamics for each possible value of taxi.y (5 or

10 different values). In the case of actions East and West, the situation is even worse,

as walls make taxi.x′ depend on both taxi.x and taxi.y, which are 25 (or 100) different

values.

As DOORmax is based on interactions between objects, it assumes that the relation

between taxi and wall is independent of the wall location. Each new wall is therefore

the same as any known wall, rather than a new exception in the movement rules, the
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kind Factored-Rmax needs to learn.

5.7.2 Pitfall

Pitfall was previously introduced in Section 4.1. The task is to have the main character

(Harry) traverse a series of screens while collecting as many points as possible while

avoiding obstacles (such as holes, pits, logs, crocodiles and walls) and under the time

constraint of 20 minutes. All transitions in Pitfall are deterministic. My goal in this

experiment is to have Harry cross the first screen from the left to the right with as few

actions as possible. Figure 4.1 illustrates this first screen.

Experiments were run using a modified Atari 2600 emulator that ran the actual

game and detected objects from the displayed image. The necessary extensions to the

emulator and the object-detection scheme were designed by Andre Cohen (Diuk et al.,

2008). He used a simple heuristic that identifies objects by color clusters and sends

joystick commands to the emulator to influence the play. For each frame of the game, a

list of object locations is sent to an external learning module that analyzes the state of

the game and returns an action to be executed before the emulator continues on to the

next frame. If we consider that we start from screen pixels, the flat state representation

for Pitfall is enormous: 16640×420. By breaking it down into basic objects, through an

object recognition mechanism, the state space is in the order of the number of objects

to the number of possible locations of each object: (640× 420)6 , a reduction of O(105).

To be fair, it is worth noting that only a few of these states are actually reachable

during game play. OO-MDPs allow for a very succinct representation of the problem,

that can be learned with only a few experience samples.

The first screen contains six object types: Harry, Hole, Ladder, Log, Wall and Tree.

Objects have the attributes x, y, width and height, which define their location on the

screen and dimension. The class Harryalso has a Boolean attribute of direction that

specifies which way he is facing. We extended the touchX relation from Taxi to de-

scribe diagonal relations between objects, including: touchNE(oi, oj), touchNW (oi, oj),

touchSW (oi, oj) and touchSE(oi, oj). These relations were needed to properly capture
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the effects of moving on and off of ladders.

In the implementation of DOORmax, seven actions are defined: StickRight, StickLeft,

JumpLeft, JumpRight, Up, Down and JumpUp. For each of these actions, however, the

emulator has to actually execute a set sequence of smaller frame-specific actions. For

example, StickLeft requires four frames: one to tell Pitfall to move Harry to the left, and

three frames where no action is taken to allow for the animation of Harry to complete.

In the learner, effects are represented as arithmetic increments or decrements to the

attributes x, y, width, height, plus a constant assignment of either R or L to the

attribute direction.

The starting state of Pitfall is fixed, and given that all transitions are deterministic,

only one run of DOORmax was necessary to learn the dynamics of the environment.

DOORmax learns an optimal policy after 494 actions, or 4810 game frames, exploring

the area beneath the ground as well as the objects en route to the goal. Once the

transition dynamics are learned, restarting the game results in the Harry exiting the

first screen through the right, after jumping the hole and the log, in 94 actions (905 real

game frames). Faced with a similar screen, the agent would be able to escape without

any extra actions.

Planning in Pitfall was done with a forward planner, akin to sparse sampling (see

2.3.2). A heuristic function was used to extend the search through branches in the tree

that took Harry closer to the right of the screen (those that increased x).

A few examples of the (condition, effect) pairs learned by DOORmax are shown

below:

Action Condition Effects

StickRight direction = L {direction = R,

∆x = +8}

StickRight touchE(Harry,Wall) ∅

JumpRight direction = R { ∆x = +214 }

Up on(Harry,Ladder) {∆y = +8}
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5.8 Discussion

In this chapter, I showed how deterministic OO-MDPs can be learned, under certain

assumptions, very fast. Some of the assumptions, like the Tree Model, might seem

restrictive. But, by means of the OO-MDP representation, and under these assump-

tions, a large and challenging real-life problem like Pitfall was tackled, serving as a

proof-of-concept of the power of the proposed approach.

There is still a worst-case scenario in the analysis of DOORmax that leads to an

exponential bound. In the next chapter, I introduce a provable efficient algorithm for

stochastic OO-MDPs, which can of course be used to learn deterministic ones as a

special case. However, when the assumptions for DOORmax hold and the worst-case

conditions are not present in a given domain, it will be much faster than the general

algorithm and should be preferred.
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Chapter 6

Learning Stochastic OO-MDPs

Improbable as it may be, no one had until then
attempted to set up a general theory of games. A
Babylonian is not highly speculative. He reveres the
judgments of fate, he hands his life over to them, he
places his hopes, his panic terror in them, but it never
occurs to him to investigate their labyrinthian laws nor
the giratory spheres which disclose them.

Jorge Luis Borges (1899-1986), The Babylon Lottery.

In Chapter 5, I showed how, under a set of assumptions, deterministic OO-MDPs

could be learned efficiently in the presence of positive examples. In this chapter, I

will relax many of the prior assumptions (albeit adding some new ones) and show how

efficient learning is still possible. The main relaxation, which enables the representation

of a larger class of problems, is that effects need not be deterministic anymore. That is,

in this chapter, I will consider a problem in which conditions induce a distribution over

sets of effects. Unlike the Babylonians from this chapter’s epigraph, our learner will try

to understand and explain the “labyrinthian” laws governing its world’s randomness.

The problem of learning stochastic OO-MDPs will be broken down into three compo-

nents: learning conditions, learning what their effects are, and learning the probability

with which each effect occurs. The chapter will start with the problem of learning

conditions and show that it can be done efficiently. The main extra assumption will be

that the maximum number of terms involved in any condition is known, an assumption

not uncommon in a family of problems to which conjunction learning belongs. The

following part of the problem will assume that effects are known, and we only need

to learn their probability of occurring under each condition. This part, too, will be

provably efficiently learnable. Finally, the problem of learning what the effects are will
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be presented with a heuristic solution.

6.1 Learning conditions

The problem of learning conditions in Propositional OO-MDPs is the problem of learn-

ing conjunctions. That is, learning which terms out of all possible n ones need to be

simultaneously true in order to enable an effect. But, learning conjunctions is hard!

Consider a learner that receives as input a conjunction of n terms and needs to predict

a binary label that depends on (part of) that conjunction. Assume also that labels are

not arbitrarily attached to each individual conjunction of size n, but that generaliza-

tion is possible. For example, the output label might only depend on D << n of the

terms involved. Ideally, we would like to have learners that do not need to experience

examples of all possible 2n conjunctions in order to make correct predictions with high

probability.

Let’s return to the example already introduced in Chapter 5: an environment in-

cludes a combination lock of n tumblers, and the agent needs to unlock it in order to

reach some high reward area of the state space. Under the OO-MDP representation,

an action Unlock only succeeds (induces the effect that the lock unlocks) if the n-term

condition corresponding to the state of the tumblers matches the right combination. In

the worst case, learning the correct conjunction might require trying out all possible 2n

combinations.

Kearns and Vazirani (1994) showed that learning conjunctions is possible in the

PAC learning framework. The assumption in this case is that the learner is presented

with examples that are independent and identically distributed (iid), generated from

a fixed distribution. The algorithm, like DOORmax, starts by assuming all literals are

necessary for the conjunction to hold. For each positive example, the learner eliminates

literals in its hypothesis that contradict the positive example. For negative examples,

the hypothesis will always be more specific than the example presented, and will thus

guarantee that the learner does predict a correct negative outcome. Given that the

PAC learner will never err on negative examples, and it will learn from positive ones, it
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is possible to bound, using the iid distributional assumption, the maximum number of

examples necessary until the conjunction is correctly learned with high probability. Un-

fortunately, this distributional assumption is not available in a reinforcement-learning

setting. In the adversarial KWIK case, the environment could present all 2n − 1 neg-

ative examples first, forcing the agent to respond with an exponential number of ⊥s.

For a formalization and proof of the PAC-learnability of conjunctions, see Kearns and

Vazirani (1994).

Conjunctions are also learnable in the Mistake Bound (MB) framework. Remember

that in this framework learners are allowed to make guesses, and their performance

is only measured in terms of the number of wrong predictions (mistakes) they make.

A learner in this setting could always predict that a conjunction will fail. In the

combination lock, it could always predict that the lock will not open. Each time this

prediction is correct, no penalty is incurred. Whenever the learner makes its first

mistake, it will be told so. That is, when faced with the true combination, it will

predict it won’t open and be told it’s mistaken. It will therefore, with only 1 mistake

counted against it, learn the proper combination. The MB framework is not suitable

for our goals in reinforcement learning either: We want our agent to act in the world

without supervision. Predicting that no combination will open the lock would result

in an agent that doesn’t try to open it, and a teacher is not present to tell it that it

should. The only way to break the lock is to actually try out combinations (all 2n of

them) , and learn once the lock unlocks (for a setting in which a teacher is present in

a reinforcement-learning setting, making conjunctions efficiently learnable, see (Walsh

et al., 2010)).

The desiderata for this chapter is, then, to present the necessary assumptions to

make conjunctions KWIK-learnable. The main assumption for the remainder of this

chapter and the algorithm that will be presented is that conjunctions only depend on

a known (and small) number of terms, D, where D << n. In the worst case, the agent

should produce O(2D) “⊥” responses. I will now present a learning algorithm, called

the Adaptive k-Meteorologists, and show it can be used to learn conjunctions of size D
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efficiently in the KWIK framework.

6.1.1 The k-Meteorologists

The k-Meteorologist problem was introduced by Diuk et al. (2009), as a formalization

and extension of ideas presented in the original KWIK paper (Li et al., 2008). Let us

start through an intuitive presentation of what the k-Meteorologists problem is.

Imagine that you just moved to a new town that has multiple (k) radio and TV

stations. Each morning, you tune in to one of the stations to find out what the weather

will be like (to make it simpler, let’s assume you only want to know the chance of

rain). Which of the k different meteorologists making predictions every morning is

trustworthy? Let us imagine that, to decide on the best meteorologist, each morning

for the first M days you tune in to all k stations and write down the probability that

each meteorologist assigns to the chances of rain. Then, every evening you write down

a 1 if it rained, and a 0 if it didn’t. How can this data be used to determine who the

right meteorologist is?

In this section, I will present a solution to the problem, as developed by Diuk

et al. (2009). In the next section, I will show how to construct a set of meteorologists

where each of them represents a different OO-MDP condition, and the meteorologist

that contemplates the correct condition for a given action is the one that will be deter-

mined to be the best one.

Probabilistic concepts

In the previous example, each meteorologist is allowed to provide a number representing

the probability that it will rain, rather than a binary guess as to whether it will rain

or not. Such predictions are termed probabilistic concepts (Kearns & Schapire, 1994;

Yamanishi, 1992). They extend the notion of deterministic concepts (as most of the

machine-learning literature considers) by allowing an instance or example to belong to

a class with a certain probability.

Probabilistic concepts are a useful generalization of deterministic concepts and are
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able to capture uncertainty in many real-life problems, such as the weather broadcasting

example described in the previous section. Formally, a probabilistic concept h is a

function that maps an input space X to the output space Y = [0, 1]; h : X 7→ Y . In

the meteorologist example, every x ∈ X corresponds to the features that can be used

to predict chances of rain, and h(x) indicates the probability that x is in the concept.

Namely, it predicts the chance that it will rain on that day. The hypothesis class H is

a set of probabilistic concepts: H ⊆ (X → Y ).

Using tools from statistical learning theory, Kearns and Schapire (1994) study how

to learn probabilistic concepts in the PAC model, which assumes that learning is done

through iid samples and there is therefore no active exploration involved. To incorporate

efficient exploration, I present how the problem can be formulated and solved in the

KWIK framework.

The (Adaptive) k-Meteorologists Problem

In the k-Meteorologist Problem (Diuk et al., 2009), the learner is given a finite set of k

probabilistic concepts: H = {h1, h2, . . . , hk}, where hi : X → Y for all i = 1, . . . , k. The

task of KWIK-learning a target concept h∗ ∈ H can be understood as one of identifying

the true but unknown concept from a set of k candidates.

In some learning problems, the candidate concepts, hi, are not provided as input.

Instead, they have to be learned by the learner itself. This motivates a more general ver-

sion of the k-Meteorologists Problem, which is termed as the Adaptive k-Meteorologists

Problem. Here, the learner is given k classes of hypotheses, H1, . . . ,Hk, and also pro-

vided with k sub-algorithms, A1, . . . ,Ak, for KWIK-learning these classes. The goal of

the learner is to make use of these sub-algorithms to KWIK-learn the union of these

hypothesis classes: H = H1 ∪ · · · ∪Hk.

Solution

The k-Meteorologists Problem is a special case of the Adaptive k-Meteorologists Prob-

lem where every hypothesis class Hi contains exactly one hypothesis: Hi = {hi}. For
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the sake of simplicity, let us start with the simpler k-Meteorologists Problem to explain

the intuition behind the algorithm, and then provide detailed pseudo-code descriptions

for the adaptive version.

The major challenge in the k-Meteorologists Problem is that the learner only ob-

serves stochastic binary labels while it is required to make predictions about the label

probabilities. A natural idea is to get sufficient labels for the same input x and then

estimate Pr(z = 1|x) by their relative frequency. But, since inputs may be drawn

adversarially, this approach must have a sample complexity of Ω(|X|).

We can however expand an idea outlined by Li et al. (2008) to avoid the dependence

on the size of X. Suppose zt ∈ {0, 1} is the label acquired in timestep t. Define the

squared error of meteorologist hi to be et = (hi(xt)−zt)
2. We then maintain cumulative

squared prediction errors for individual meteorologists. It can be shown that the target

probabilistic concept, h∗, will have the smallest squared error on average. If any concept

hi has a much larger cumulative error than another concept hj , it follows that hi 6= h∗

with high probability. This trick now enables us to only need to observe enough data to

have a good estimate of which meteorologist has the smallest squared error. Complete

details are provided by Li (2009).

Algorithm 11 provides a solution to the Adaptive k-Meteorologists Problem, in

which the additional parameter m will be specified in Theorem 12. Essentially, the

algorithm runs all the k sub-algorithms simultaneously and does all
(k
2

)

pairwise com-

parisons among the k probabilistic concepts. If any probabilistic concept returns ⊥, the

algorithm outputs ⊥ and obtains a stochastic observation zt to allow the sub-algorithms

to learn (Lines 7–9). Now, suppose no probabilistic concept returns ⊥. If the set of

predictions is consistent then an accurate prediction can be made (Line 12) although

the algorithm does not know which concept is h∗. Otherwise, the algorithm outputs

⊥ and then acquires a label, which contributes to distinguishing at least one pair of

meteorologists (Lines 15–21). A candidate concept is removed if there is statistically

significant evidence that it is worse than another concept (Line 19). This observation

is in fact the intuition behind the proof of the algorithm’s sample complexity.
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Algorithm 11: The Adaptive k-Meteorologists Algorithm.

1: Input: ǫ, δ, m, H1, . . . ,Hk, A1, . . . ,Ak.
2: Run each subalgorithm Ai with parameters ǫ

8 and δ
k+1 .

3: R← {1, 2, . . . , k}.
4: cij ← 0 and ∆ij ← 0 for all 1 ≤ i < j ≤ n.
5: for t = 1, 2, 3, . . . do
6: Obtain xt and run each Ai to get its prediction, ŷti.
7: if ŷti = ⊥ for some i ∈ R then
8: Let ŷt = ⊥ and observe zt ∈ Z.
9: Send zt to all subalgorithms Ai with ŷti = ⊥.

10: else
11: if |ŷti − ŷtj | ≤ ǫ for all i, j ∈ R then
12: Let ŷt = (maxi∈R ŷti + mini∈R ŷti)/2.
13: else
14: Let ŷt = ⊥ and observe zt.
15: for all i, j ∈ R such that |ŷti − ŷtj| ≥

ǫ
2 do

16: cij ← cij + 1.
17: ∆ij ← ∆ij + (ŷti − zt)

2 − (ŷtj − zt)
2.

18: if cij ≥ m then
19: R← R \ {I} where I = i if ∆ij > 0 and I = j otherwise.
20: end if
21: end for
22: end if
23: end if
24: end for

Analysis

I will now present matching upper and lower sample-complexity bounds for Algo-

rithm 11. Complete details of the proofs can be found in the dissertation of Li (2009),

so I will only sketch them here.

Observe that every ⊥ output by Algorithm 11 is either from some sub-algorithm

(Line 8) or from the main algorithm when it gets inconsistent predictions from different

probabilistic concepts (Line 14). Thus, the sample complexity of Algorithm 11 is at

least the sum of the sample complexities of those sub-algorithms plus the additional

⊥s required to figure out the true h∗ among the k candidates. The following theorem

formalizes this observation:

Theorem 12. Let ζi(·, ·) be a sample complexity of sub-algorithm Ai. By setting m =
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O
(

1
ǫ2

ln k
δ

)

, the sample complexity of Algorithm 11 is at most

ζ∗ (ǫ, δ) = O

(

k

ǫ2
ln

k

δ

)

+

k
∑

i=1

ζi

(

ǫ

8
,

δ

k + 1

)

.

Proof. (sketch) The proof has four steps. First, we show that the squared error of

the target hypothesis must be the smallest on average. Second, if some hypothesis is

ǫ
8 -accurate (as required by Line 2 in Algorithm 11), its average squared error is still

very close to the average squared error of the predictions of h∗. Third, by setting m

appropriately (as given in the theorem statement), we can guarantee that only sub-

optimal hypotheses are eliminated in Line 19 with high probability, by Hoeffding’s

inequality. Finally, the condition in Line 15 guarantees that the total number of ⊥s

output in Line 14 is bounded by the first term in the desired bound of the theorem.

Theorem 12 indicates that the additional sample complexity introduced by Algo-

rithm 11, compared to the unavoidable term,
∑

i ζi, is on the order of k
ǫ2 ln k

δ . The

following theorem gives a matching lower bound (modulo constants), implying the op-

timality of Algorithm 11 in this sense.

Theorem 13. A sample-complexity lower bound for the k-Meteorologists Problem is

ζ∗ (ǫ, δ) = Ω

(

k

ǫ2
ln

k

δ

)

.

Proof. (sketch) The proof is through a reduction from 2-armed bandits to the k-

Meteorologists Problem. The idea is to construct input–observation pairs in the KWIK

run so that the first k − 1 hypotheses, h1, . . . , hk−1, have to be eliminated one by one

before the target hypothesis, h∗ = hk, is discovered. Each elimination of hi (for i < k)

can be turned into identifying a sub-optimal arm in a 2-armed bandit problem, which

requires Ω( 1
ǫ2 ln 1

δ ) sample complexity (Mannor & Tsitsiklis, 2004). Based on this lower

bound, we may prove this theorem by requiring that the total failure probability in

solving the k-Meteorologists Problem is δ.
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6.1.2 Learning Conditions using Meteorologists

In upcoming sections, I will present a complete learning algorithm for stochastic OO-

MDPs, where conditions and effects are learned simultaneously. In this section, I will

only focus on learning conditions, but not the effects. For simplicity, let us assume there

is only one action to be taken, and the action has a certain probability of producing

an effect e if a particular condition is met. The assumption is that this condition is

a conjunction of at most D terms out of all possible n ones, and D is provided as

input. Note that this assumption implies that two conditions ci and cj , each of size D,

cannot be true simultaneously and have contradictory effects for any given action and

attribute. If such were the case, then the dynamics are not truly dependent on just D

terms, but possibly on the terms involved in the union of ci and cj .

The set of all possible conditions for action a and effect e defined in this way has
(n
D

)

elements. If each condition is now assigned to a different meteorologist, we can simply

initialize Algorithm 11 with k =
(n
D

)

hypothesis, each considering a different set of D

terms, and the meteorologist making the best prediction will be the one representing

the correct condition for the corresponding action and effect.

Experiments

Assume that in the Taxi problem we want to learn the condition that enables action

North to move the taxi one position to the north. Also, assume that Taxi is now

stochastic, and under the condition ¬touchN (Taxi,Wall), action North only moves the

taxi 80% of the times, and the other 20% it stays where it is.

If we know that only one term is involved in the condition, we can cre-

ate 8 meteorologists representing conditions touchN (Taxi,Wall), touchS(Taxi,Wall),

touchE(Taxi,Wall), touchW (Taxi,Wall), ¬touchN (Taxi,Wall), ¬touchS(Taxi,Wall),

¬touchE(Taxi,Wall) and ¬touchW (Taxi,Wall). The observation will be 1 if the taxi

moved, 0 otherwise.

As an implementation detail, it is also possible to use the Adaptive k-

Meteorologists the following way: just create 4 learners considering the conditions
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touchN/S/E/W (Taxi,Wall), and the corresponding learning algorithms AN/S/E/W will

distinguish the case when the considered terms are true or false. This implementation

is the one run for this experiment, and the following table shows what probabilities

each of the 4 meteorologists assigned to each outcome and their mean squared error.

The value of m was set to 20.

Condition P(move N) P(move S) P(move E) P(move W) P(stay) Error

touchN 0.85 0 0 0 0.15 0.338

touchS 0.45 0 0 0 0.55 0.559

touchE 0.45 0 0 0 0.55 0.550

touchW 0.45 0 0 0 0.55 0.650

As you can observe, the correct meteorologist, the one considering condition touchN ,

is the one with the lowest squared error and the closest prediction to the true outcome,

which is 0.80 for moving North and 0.2 for staying in place.

Note that in this particular example outcomes are observed unambiguously. That

is, after each action North is taken, the learner is told which of the 5 possible outcomes

(moved N/S/E/W or stay) occurred and can therefore estimate probabilities directly. In

general, it might not be the case that observations are unambiguous: multiple outcomes

could lead to the same next state, and the learner might not know to which outcome

attribute the change. The next section addresses this issue.

6.2 Learning effect probabilities

As stated at the beginning of this chapter, the second aspect of the problem of learning

transition dynamics in OO-MDPs is learning the probabilities with which different

effects occur given a condition. That is, we assume that for each condition the set of

possible effects is known, and the problem is to learn a multinomial distribution over

that set. A particular difficulty in this case is that effects might be ambiguous. That

is, given a certain state, two effects might lead to the same observed outcome, making

it impossible to exactly attribute a given experience to a single effect. For example,

consider an action that can have the effect of either adding 2 to an attribute (+2) or

multiplying it by 2 (∗2), each with a certain probability. Now consider a state where
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this attribute’s value is originally 2, and after taking the action it becomes 4. Does

that observation correspond to a +2 or a ∗2 effect?

This problem was considered by Walsh et al. (2009), where an efficient KWIK

solution is provided. I will present the main result of this paper and expand on its

application to OO-MDPs.

6.2.1 KWIK Linear Regression

In this section, I will present an online approach to linear regression, and in the next one

show how it can be applied to the problem of learning the probabilities of ambiguous

effects, as it was just introduced.

Linear regression has been a powerful tool in machine learning and statistics for

decades (Bishop, 2006). In the reinforcement-learning setting, a few challenges arise.

First, regression has to be performed online: We should not have to rely on a batch of

data being available, but rather expect to update our regressor as each new datapoint

is discovered. Second, we can not make iid assumptions about the observed data when

exploration is involved. This constraint makes it hard to automatically port linear

regression methods to reinforcement-learning problems, especially if theoretical sample

and computational efficiency guarantees are sought.

Walsh et al. (2009) introduced an online regression method that does not have iid

requirements and can be proven to be KWIK. I will simply introduce the algorithm

here and refer readers to the original paper for proofs. As in that paper, I will refer to

this method as KWIK-LR.

First, I introduce some notation. Let X := {~x ∈ R
n | ‖~x‖ ≤ 1}, and let f : X → R

be a linear function with slope θ∗ ∈ R
n, ‖θ∗‖ ≤ M . That is, f(~x) := ~xT θ∗. Assume

a discrete timestep, with current value t. For each i ∈ {1, . . . , t}, denote the stored

samples by ~xi, their (unknown) expected values by yi := ~xT
t θ∗, and their observed

values by zi := ~xT
i θ∗+ηi. Here, ηi is a random variable with some unknown distribution

(for example, Gaussian noise). The only necessary assumption is that ηi must form

a martingale, that is, E(ηi|η1, . . . , ηi−1) = ηi−1, and is bounded: |ηi| ≤ S. Define
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the matrix Dt := [~x1, ~x2, . . . , ~xt]
T ∈ R

t×n and vectors ~yt := [y1; . . . ; yt] ∈ R
t and

~zt := [z1; . . . ; zt] ∈ R
t, and let I be an n× n identity matrix.

Whenever a new data point is observed (a query ~xt is presented by the environment),

it would be possible to predict output ~y = ~xT θ, where θ is the least-squares solution to

the system, if we could solve Dtθ = ~zt. However, it might not be advisable to solve this

system directly: if Dt, the inputs observed so far, is rank deficient, the system may have

more than one solution; and even if there is a unique solution we have no confidence

guarantees.

The solution presented by Walsh et al. (2009) solves these problems through a very

simple regularization trick. The system is augmented with Iθ = ~v, where ~v is an

arbitrary vector (that is, the input vector becomes







I

D






). This regularization trick

distorts the solution, but thanks to this distortion we get a measure of confidence. If

the distortion is large (this will be defined properly when the equations are presented),

the learner does not yet have enough experience and should respond ⊥ to the query.

Let us now incorporate this regularization trick into the linear system and see how

prediction should work. We will define a new matrix that results from concatenating

the identity to the input vectors: Am :=







I

D






∈ R

(m+n)×n. The solution of the system

Atθ = [(θ∗)T ; ~yT
t ]T is unique, and equal to θ∗. However, the right-hand side of this

system is unknown, so we use the approximate system Atθ = [~0T ; ~zT
t ]T , which has

a solution θ̂ = (AT
t At)

−1AT
t [~0T ; ~zT

t ]T . Define Lt := (AT
t At)

−1, ~b :=







θ∗

~y






∈ R

m+n,

~c :=







θ∗

~z






∈ R

m+n, ~d :=







~0

~z






∈ R

m+n.

The prediction error on input ~x is

ŷ − y = ~xT (θ̂ − θ∗) (6.1)

= ~xT LtA
T
t













~0

~zt






−







θ∗

~yt












= ~xT LtA

T
t













~0

ηt






−







θ∗

~0












.
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Algorithm 12 describes KWIK-LR, using the prediction error described above.

Algorithm 12: KWIK-LR

1: input: α0

2: initialize: t := 0, m := 0, L := I, ~w := ~0
3: repeat
4: observe ~xt

5: if ‖L~xt‖ < α0 then
6: predict ŷt = ~xT

t L~w //known state
7: else
8: predict ŷt =⊥ //unknown state
9: observe zt

10: end if
11: L := L− (L~xt)(L~xt)T

1+~xT
t

L~xt

, ~w := ~w + ~xtzt

12: t := t + 1
13: until there are no more samples

6.2.2 Using KWIK-LR to learn effect probabilities

In this section, I will show how KWIK-LR can be used to solve the problem of learning a

probability distribution over a set of effects for a given action and condition, even when

observations are ambiguous in terms of which effect actually occurred. Let us start

with an example of a stochastic OO-MDP on a simple 5× 5 Maze domain, illustrated

in Figure 6.1. The agent starts at location S and the goal is to arrive at G. Each step

has a cost of −0.01, and arriving at the goal results in a reward of +1. The agent’s

actions are N, S, E and W. When executing an action, the agent will attempt to move

in the desired direction with probability 0.8 and will slip to either side with probability

0.1. If it hits a wall, it stays where it is. This rule is what produces ambiguity in the

effects. For example, imagine the agent has a wall to its North and East. If it attempts

the N action, it could move to the West (with probability 0.1), or stay in place. If it

stays in place, it might be because it attempted to move North (with probability 0.8)

and hit the North wall, or it attempted to move East (with probability 0.1) and hit the

East wall. For the sake of this example, I am assuming that the function effatt(s, s
′)

does know what type of movement might have been attempted even when s′ = s.

In the example above, we can think that each state-action pair actually induces a
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S G

Figure 6.1: Stochastic Maze domain.

partition of effects into equivalence classes E(s, a) = {{ωi, ωj, ωk}, {ωl, ωm}, ...} where

each e ∈ E(s, a) contains effects that are identical given state s. In the example

of a state si that has a wall to its North and East, under action N the partition

would be: E(si, N) = {{moveN ,moveE}, {moveW }}. Notice that the probability of

an equivalence class is equal to the sum of the probabilities of the effects it contains:

the class {moveN ,moveE} has a probability 0.9 of being the effect that occurred, 0.8

for the probability of moving North plus 0.1 for the probability of slipping to the East.

This is the crux of the link to linear regression. The efficient way to leverage KWIK-LR

in this case is to construct inputs ~x where each of its elements xj represents an effect,

and xj = 1 if the effect is in the equivalence class observed, or xj = 0 otherwise. Back

to the example, if ~x = 〈moveN ,moveS ,moveE ,moveW 〉 and at timestep t on state si

we performed action N and observed no movement, we construct input ~xt = (1, 0, 1, 0).

If, on the other hand, we observed that the agent slipped to the West, the input would

be ~xt = (0, 0, 0, 1).

An alternative to this approach is to keep counts for each and every possible

equivalence class that can be generated by the states in a domain. For example, we

could have kept a separate count of how many times we observed the ambiguous ef-

fect {moveN ,moveE}, separate from the counts of the non-ambiguous {moveN} or

{moveE}. I will call this approach a Partition learner, and compare it against KWIK-

LR for the Maze domain. The experiment assumes all conditions are known, and only
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effect probabilities need to be determined. From each state, the learner predicts either

an effect distribution when known, or ⊥ when it doesn’t know it. Figure 6.2 shows the

results. We can see that KWIK-LR learns much faster than the Partition learner by

sharing information between equivalence classes.
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Figure 6.2: Results for KWIK-LR vs Partition learner in the Maze domain.

6.3 Learning effects

So far, I have assumed that the effect distribution is learned once the set of possible

effects is provided as input. In the OO-MDP framework, it is assumed that given two

states s and s′, it is possible to compute a list of effects that might have produced the

transition: effatt(s, s
′) = E1 = {ω1, ..., ωk} . It is possible then to imagine an online

implementation of KWIK-LR which, after the first transition is observed, constructs

an input vector of size k: ~x1 =< ω1, ..., ωk >. When a new transition is observed,

new effects are computed. Some of them will already be part of ~x, and some won’t.

The new effects Et = {ωm, ..., ωm+h} could then be added as an extension to the input

vector: ~xi+1 = ~xi
⋃

Et. For all prior experience, a value of 0 is added to the columns

representing the new effects.
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I will introduce an example that illustrates this approach, and also highlights one

of its problems. Let us go back to the infinite-grid Taxi example from chapter 5 (see

Figure 5.3). In this example, the Taxi had coordinates x and y, which were increased

by 1 given the appropriate action: the effect of taking action North is y ← y + 1. The

environment has no walls or other constraints, so the Taxi can keep going North forever,

with y increasing to infinity. Imagine that we start at state s0, which as a notational

abuse I will identify through the values of x and y: s0 =< 0, 0 >. After taking action

North once, we reach state s1 =< 0, 1 >. Had we defined the universe of possible effect

types as that of arithmetic addition and assignment, we obtain two possible effects:

effatt(s0, s1) = {+1, set-to(1)}, and build the following input matrix for KWIK-LR:

+1 set-to(1)

1 1

We now take one more North action, and reach state s2 =< 0, 2 >. The two possible

effects in this case are effatt(s0, s1) = {+1, set-to(2)}. We thus expand the input matrix

to:

+1 set-to(1) set-to(2)

1 1 0
1 0 1

If we take another action North, the matrix becomes:

+1 set-to(1) set-to(2) set-to(3)

1 1 0 0
1 0 1 0
1 0 0 1

I believe it is now clear where this is going: what we wish KWIK-LR would learn

is that there is only one real effect, +1, that occurs with probability 1, rather than

assigning a small probability to each of the assignments, as we shall see is the case of

KWIK-LR in the experiment of the next section.
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6.3.1 Sparsity and KWIK-LR: SKWIK-LR

The sparsification mechanism introduced in this section is due to Istvan Szita, and to

the best of my knowledge it is yet unpublished. The procedure involves two steps: a

linear regression one (using KWIK-LR) followed by a sparsification of the weight vector

obtained. Schematically:

1. Use KWIK-LR as presented in the previous section, obtaining after each step a

vector of weights θi.

2. Sparsify θi to obtain θi+1 using the following linear program:

Minimize ‖θi+1‖ subject to |θix− θi+1x| < ǫ/2

The constraint implies that θi+1 will be at most ǫ away from θi, and the minimization

of its L1 norm will make it sparse (Shalev-Shwartz & Srebro, 2008).

Experiment

The following experiment illustrates the combination of sparsification and KWIK-LR

in SKWIK-LR, as described above, and how it differs from KWIK-LR. The domain

used is the infinite-grid Taxi, and all actions taken are North actions. If it has taken i

steps, the matrix representing the accumulated experience will have i+1 columns. The

first column represents effect +1 and it will be filled with 1s, whereas the rest of the

matrix consists of a diagonal of 1s for each possible effect set-to(1) through set-to(i).

I run SKWIK-LR with accuracy parameter ǫ and 100 data points (100 North ac-

tions), and it results in a prediction that effect +1 occurs with probability 1 − ǫ, and

all other effects are assigned a probability very close to 0 (in the order of 10−9). Nor-

malizing to obtain a proper multinomial distribution, effect +1 gets a probability very

close to 1.0.

In contrast, I run KWIK-LR on the same data and it learns that the effect +1 has

probability of 0.5, while each of the set-to(i) effects has probability 0.005.

The burden in terms of computational cost of SKWIK-LR is on the linear program

used for sparsification. The code was implemented in Matlab and for 100 North actions
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it ran in less than 1.7 seconds. For 1000 actions it took slightly less than 5 seconds.

6.4 KOOL: Putting it all together

In this section, I combine the three parts of the problem of learning a stochastic OO-

MDP: learning the conditions, the effects and their probabilities. I will call the combined

algorithm KWIK Object-Oriented Learner (KOOL), and present an experiment.

The inputs to KOOL are the inputs to the three different components: the total

number of terms n, the maximum number of terms in any condition D, the tolerance

parameter for KWIK-LR α0, the sparsification parameter ǫ and the amount of experi-

ence needed before assuming something is known M . Note that different components

of the algorithm could use different values of M , but for simplicity we will assume a

unique one (which should be the largest one needed by any sub-component).

KOOL is an instance of KWIK-Rmax, where the transition learner is the Adaptive

k−Meteorologists algorithm, and each meteorologist uses SKWIK-LR to predict effects.

Algorithm 13 schematically presents KOOL.

Algorithm 13: KOOL

1: input: n, D, α0, ǫ, M
2: initialize: Create k =

(n
D

)

Adaptive meteorologists. Initialize the Adaptive
meteorologists with SKWIK-LR as learning algorithms A1, . . . ,Ak.

3: repeat
4: Observe state s
5: Use planner to choose next action a. The planner will consult the best

meteorologist for next-state predictions. If meteorologists don’t yet have a
prediction for a given state and action, assume optimistic transition to smax.

6: Execute and observe s′ and r.
7: for all meteorologist i whose terms are true in c(s) do
8: Add experience (s, a, r, s′) to SKWIK-LR learner Ai

9: end for
10: until termination criterion
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6.5 Experiments

In this section, I present two experiments that use KOOL to learn an OO-MDP with

stochastic effects and ambiguous observations. I introduce a simple domain that illus-

trates all the issues presented in this chapter, called the Mountain Climber Domain.

Then, I present a version of the Taxi Problem where movement actions have stochastic

effects.

6.5.1 The Mountain-Climber Problem

This domain simulates a climber that is trying to reach the top of a mountain. The

climber starts at the bottom and tries to make her way up. The task is episodic, ending

when the climber reaches the summit or after a maximum number of steps. At high

altitudes, the mountain gets icy and the climber needs to wear crampons1 to avoid

falling. At lower altitudes, the deciding factor is the climber’s stamina. The state of

the climber is thus defined by her altitude, her level of stamina and whether or not she

is wearing crampons.

The actions available are ClimbUp, ClimbDown, EatPowerBar and ToggleCrampons.

If the climber has high stamina and is in a non-icy area, or is in an icy area but is wearing

crampons, the action ClimbUp moves her one step higher with high probability p, and

with probability (1− p) she drops one step (staying in place is not an option). If she is

low in stamina or on icy terrain without crampons, the probability of success is q << p.

The action EatPowerBar always resets stamina to the highest level and ToggleCrampons

gets her crampons on or off. Each step taken reduces stamina regardless of whether the

action succeeds or not, and moving with the crampons on results in a penalty.

The optimal policy for our climber is to ClimbUp while stamina is high and there is

no ice. When she reaches a state of low stamina, just EatPowerBar. When she reaches

the ice, ToggleCrampons so that they are on.

The conditions induced by the state of the climber have four terms: whether the

1A crampon is an iron spike attached to the shoe to prevent slipping on ice when walking or climbing.
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climber is at the bottom of the mountain (where action ClimbDown doesn’t work),

whether she has low stamina, she’s in an icy area, and she has her crampons on or off.

An experiment was run where the altitude to be reached is 20, the maximum stamina

(after EatPowerBar) is 15, a low stamina state is reached when stamina drops to 5,

and there is ice at altitudes 14 and higher. In high-stamina and non-icy conditions,

the ClimbUp action results in an increase of +1 in altitude with probability 0.8. With

probability 0.2, the climber drops down one level. If the climber has low stamina or

there is ice when she has no crampons, the probability of a successful climb up is 0.4,

with 0.6 probability of falling one step down. Stamina is reduced by 1 at every step.

Action ClimbDown succeeds with probability 0.8, and with probability 0.2 the climber

stays where she is. EatPowerBar and ToggleCrampons always succeed. Ambiguity

exists between effects +1/−1 and all possible set-to(i) for i = 0 . . . 20. The climber

receives a reward of −1 for each step taken without crampons, −1.5 if wearing them,

and 0 when she reaches the top.

As a comparison, the experiment was ran telling the learner the correct number

of terms to consider (D = 2), and inducing it to learn the incorrect model by telling

it to consider only one term (D = 1). A coarse parameter search was performed for

parameter M , and the best value was determined to be M = 25 for the correct model,

and M = 30 for the incorrect one. In the D = 2 case, values of M lower than 20 resulted

in the algorithm sometimes failing to learn the correct model. In the incorrect-model

case (D = 1), other values of M yielded even worse performance. The other parameters

were set to α0 = 0.1 (tolerance of SKWIK-LR) and ǫ = 0.1 (precision of SKWIK-LR).

The agent ran for 15 episodes per experiment, and the experiment was repeated 10

times. Figure 6.3 shows the averaged number of steps to goal, with error bars, for each

of the 15 episodes. Note that in the case where the learner can only learn incorrect

models given that it is considering a single term (D = 1), performance diverges after a

few episodes of exploration.

This experiment shows that an OO-MDP with stochastic and ambiguous effects can

be learned.
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Figure 6.3: Mountain Climber results for M = 25 considering D = 2 terms, and an
incorrect-model learner that only considers D = 1 terms. Results averaged over 10
runs.



115

6.5.2 Stochastic Taxi

This second experiment is on a variant of the Taxi Problem introduced before, in which

the actions North, South, East and West have stochastic effects. When attempted,

there is a 0.8 probability that the taxi moves in the desired direction (walls permitting),

0.1 probability that it will slip to the right, and 0.1 that it slips left. This style of

stochastic domain was introduced by Russell and Norvig (2003).

The condition learner part of KOOL was initialized to consider a maximum of 3-term

conjunctions, which is enough to describe the dynamics of the problem. For movement

actions, the only thing that matters is whether there is a wall in the desired direction

or any of its sides. The Pickup action only needs to consider whether the taxi is at

the passenger location and Dropoff considers if the passenger is in the taxi and at the

destination. If the appropriate conditions hold, both Pickup and Dropoff succeed with

probability 1, so the only stochasticity in the domain is in the movements.

A parameter search was performed for M and the best value was determined to

be M = 20. Figure 6.4 shows the average number of steps to goal per episode, for

10 episodes. Note that after episode 6, KOOL converges on a policy that solves the

problem in an average of 67.1 steps, which is consistent with the expected number of

steps of the optimal policy. At this point, variance is due to the stochasticity of the

domain, and not to changes in policy.

6.6 Summary

In this chapter, I showed how stochastic OO-MDPs can be learned efficiently in the

KWIK framework. The problem was broken down into three sub-problems: learning

conditions, learning effects and learning effect probabilities. By connecting the learn-

ing problem to the Adaptive k-Meteorologists problem, it is possible to KWIK-learn

conditions where the number of terms involved is bounded by a known constant. Using

KWIK-LR, it is possible to learn effect probabilities even in the presence of ambigu-

ous outcomes. Finally, a sparsification trick in KWIK-LR enables an extension called

SKWIK-LR that heuristically learns an appropriate set of effects.
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Figure 6.4: Stochastic Taxi results for M = 20, averaged over 10 runs.

The combination of the sub-algorithms for the three subproblems into an algorithm

called KOOL enables learning a stochastic OO-MDP, and generalizes previous results

for the deterministic case. KOOL is, to the best of my knowledge, the first algorithm

that addresses all of these problems at the same time and has theoretical guarantees.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

This dissertation introduces a novel representation of state for reinforcement-learning

problems, based on objects, attributes of those objects, and transition dynamics based

on the interactions between them. It was designed as an attempt to bridge two gaps:

on one hand, the representational gap between how state is traditionally modeled in

RL against the natural bias humans seem to apply when describing or tackling similar

problems. On the other hand, the representation seeks to achieve a balance between the

generality of first-order relational representations, and the goal of efficient learnability.

I first showed how state representations, generalization and exploration strategies

interconnect to deeply impact learning. Through the simple Taxi domain, I showed how

an agent looking at the world as a flat, combinatorial explosion of state variables, that

goes out to näıvely explore it needs 200 times more experience than an agent that looks

at the world as a set of objects, and smartly explores their behavior and interactions.

Second, I showed how OO-MDPs can naturally model a number of domains, from

gridworlds to real-life videogames, in a natural way. In a recent paper (Walsh et al.,

2010), we further showed how OO-MDPs can be used to model the dynamics of a real

robot and be used to learn a simple navigation task in the real world. Transition dy-

namics of these domains are succinctly modeled, in an intuitive way that approximately

matches the way a person would describe them. In the Taxi example, I showed how

state-of-the-art factored representations would still require learning long tables of num-

bers to define how the taxi moves, whereas an OO-MDP description can be expressed

through a simple, “human-readable” tree.
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Given an OO-MDP, an important question is whether these representations are

efficiently learnable. I presented two algorithms for the Propositional OO-MDP

case, one for environments with deterministic dynamics (which happens to cover

most videogames!) and one for domains where actions have stochastic outcomes.

DOORmax, the algorithm for deterministic OO-MDPs, suffers from a bad worst-case

bound (exponential in the number of terms describing dynamics), but can be shown

to be very efficient in the best case. In practice, in any environment in which actions

produce effects and only a few times they fail, DOORmax will likely be the algorithm

producing the best empirical results. These results were demonstrated in Pitfall, a

real-life videogame for the Atari 2600 console, and on the Taxi problem. In stochastic

environments, or when worst-case efficient theoretical guarantees are required, KOOL

can be used with the only assumption that the maximum number of terms involved

in any condition is known and —relatively— small. I hypothesize that in the case of

deterministic domains it would not be hard to combine both algorithms to obtain the

best of both: DOORmax would provide fast learning (if possible), and KOOL would

provide a fallback best-case (if not0.

To the best of my knowledge, KOOL is the first algorithm that tackles learning

of these kinds of representations and provides theoretical guarantees. Work by Pasula

et al. (2007) tackles similar kinds of problems for probabilistic STRIPS representations

(Blum & Langford, 1999), but does it in a purely heuristic way. I hypothesize that

simple modifications to KOOL could be used to learn these representations too.

7.2 Open Problems

Some open problems still persist, and I will briefly expand on two of them. First, there

is still a gap between the performance of algorithms in the OO-MDP formalism and

humans performing the same task, like Taxi. Second, while this dissertation focused on

learning, efficient planning remains an open problem. At least, it is important to study

the applicability of existing good planning heuristics.
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7.2.1 Human Biases

In the Taxi experiments I showed how, while DOORmax requires 529 actions to learn

an optimal solution, (some) humans do it in an average of 101 steps, and those who

self-identify as videogamers solve it in 48. Of course, what humans do is bring prior

knowledge and biases to bear into the problem. Two clear examples are navigation and

the concept of walls. While humans solved navigation in one step, by assuming what

arrow keys would do, DOORmax needs to actually try out a number of actions. This

could be solved by encoding into DOORmax some notion of symmetry, for example, or

the fact that a Down action can be reversed with an Up one. At this point, I can only

speculate as to whether work on MDP symmetries (Ravindran & Barto, 2001) could

be brought to use here.

Another important bias is the concept of walls: no humans tried to bump into them

in the Taxi experiments. Moreover, no human felt the need to explore conditions like

how an Up action might be affected when there is a wall to the right or left of the

navigating object. DOORmax, in many cases, does need to explore these conditions.

In the case of Pitfall, once again humans would use prior knowledge and make

assumptions as to how objects that look like holes, staircases or walls influence the game

dynamics, and most likely not even need to explore interactions with them. It would

be interesting to devise an experiment in which these object semantics are blurred,

and see how humans compare to DOORmax or KOOL. It is noteworthy how, if we

abstract away and ignore these assumptions about identifiable objects, we can see how

DOORmax explores Pitfall in a very human-like fashion.

7.2.2 Planning

Another open problem is efficient planning. In this dissertation, I used two strategies:

either blowing up the state space into a flat representation and using exact-planning

approaches like value iteration (for Taxi), or using approximate forward-search methods

like sparse sampling (for Pitfall).

A whole research community is devoted to the planning problem, and every year a
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competition is held in which the best planners face off against each other. Recently,

this competition has even developed a track devoted to probabilistic planning (Younes

et al., 2005), tackling planning problems akin to those that KOOL faces with stochastic

OO-MDPs. Problems in these competitions are described in a well-established common

language, PDDL1 (Fox & Long, 2003). An extension to this work would be to find a way

to translate OO-MDP representations into PPDDLs, and leverage existing planners.

Another extension, which I hypothesize is easier, would be to replace the sparse-

sampling methods I have used by UCT (Kocsis & Szepesvári, 2006), a smarter forward-

search planner that has already proven to be extremely fast.

7.3 Summary

In summary, this dissertation has shown that object-oriented representations are a nat-

ural way of representing state in a large class of problems, enabling orders of magnitude

faster learning. The class of problems for which OO-MDPs are most suitable are re-

lational in nature: they involve objects interacting with each other. Object-Oriented

MDPs encode state in terms of objects and their interactions in a way that mimics

how humans would describe many environments, and efficient algorithms have been

introduced that demonstrate that OO-MDPs can be learned fast and with theoretical

guarantees.

1PPDDL for the probabilistic case.
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