
 
 

A STUDY OF STAGEWISE PHASE II AND 

PHASE II/III DESIGNS FOR CLINICAL TRIALS 

By GAOHONG DONG 

 

A Dissertation submitted to 

The School of Public Health 

University of Medicine and Density of New Jersey 

and  

The Graduate School – New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

UMDNJ – School of Public Health 

Awarded jointly by these institutions  

Written under the direction of 

Professor Weichung Joe Shih, PhD 

and approved by 

_____________________________ 

______________________________ 

______________________________ 

______________________________ 

 

New Brunswick, New Jersey 

October 2010 



 
 

ii 
 

ABSTRACT OF THE DISSERTATION 

 

A STUDY OF STAGEWISAE PHASE II AND PHASE II/III DESIGNS 

FOR CLINCIAL TRIALS 

 

By GAOHONG DONG 

Dissertation Director: Professor Weichung Joe Shih 

 

Clinical trials play vital roles in drug development. Traditionally, phase II and 

phase III studies are conducted separately. However, in the pharmaceutical industry 

there is a recent trend toward combining phase II and phase III in a seamless fashion 

(a so-called phase II/III clinical trial). To first understand traditional phase II clinical 

trial designs, we develop two two-stage single-arm phase II clinical trial designs: a 

Bayesian-frequentist design and a Bayes factor-based design. Both designs control 

frequentist Type I and Type II error rates. Then we develop a varying-stage adaptive 

phase II/III clinical trial design. In this design, in addition to traditional initial learning 

stage (phase II) and final confirmatory stage (phase III), we also consider whether 

there is a need to have an intermediate stage to obtain more data, so that a more 

informative decision can be made to advance the trial to the final confirmatory stage. 

With respect to adaptations, we consider dropping dose arm(s), changing the primary 

study endpoint, determining sample size, and early stopping for futility. We use an 

adaptive combination test to perform final statistical analyses. Under conditional 

distribution of p-values or combined p-values, we derive Type I error rate and 
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statistical power for each decision path. By applying closed testing procedure, we 

control family-wise Type I error rate at nominal level of α in the strong sense.  
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Preface 

This dissertation consists of the following two parts: 

• Two-stage single-arm phase II clinical trial designs: a Bayesian-frequentist 

design and a Bayes factor-based design 

• A varying-stage adaptive phase II/III clinical trial design 

An overview of this dissertation by chapters is presented as below. 

Chapter 1 describes the background for our proposed two-stage single-arm 

phrase II clinical trial designs and the varying-stage adaptive phase II/III clinical trial 

design. The objectives of this dissertation are also addressed. 

Chapter 2 reviews the literature for existing two-stage single-arm phrase II 

clinical trial designs including frequentist designs, Byesian designs and Bayesian 

clinical trial monitoring. 

Chapter 3 develops a Bayesian-frequentist two-stage single-arm phase II 

clinical trial design. This design allows both early acceptance and rejection of the null 

hypothesis. The frequentist setting is very similar to Fleming (1982), Chang et al 

(1987) and Shuster’s design (2002). Equivalently, upper and lower boundaries are 

determined with predictive probability of trial success outcome. With respect to other 

Bayesian settings, given a beta prior and a sample size for stage I, based on marginal 

distribution of the responses at stage I, Bayesian Type I and Type II error rates are 

derived. Our design controls both frequentist and Bayesian error rates. The properties 

of this design are demonstrated with examples and comparisons with other frequentist 

and Bayesian designs. 
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Chapter 4 develops a Bayes factor-based two-stage single-arm phase II clinical 

trial design using an iMOM prior. The property of prior distribution mis-specification 

and the property of iMOM prior are discussed. This new design is also demonstrated 

with examples and comparisons with other frequentist and Bayesian designs. 

Chapter 5 reviews literature for adaptive phase II/III clinical trial designs. 

Chapter 6 introduces the main concept of our varying-stage adaptive phase 

II/III clinical trial design. Under this new design, an intermediate stage can be added 

if the data from the first stage are not sufficient to make informative decisions. By 

deriving the distributions of p-values or combined p-values conditional to a trial 

decision path, the method of the final analysis is proposed and type I error control is 

proved. 

Chapter 7 discusses dose selection and multiple comparisons on the primary 

endpoint of our varying-stage adaptive phase II/III clinical trial design. In our design, 

the closed testing procedure (Marcus et al, 1976) is used to protect Type I error rate 

control. 

Chapter 8 addresses statistical power and sample size determination of our 

varying-stage adaptive phase II/III clinical trial design. The statistical power for each 

decision path is derived based on the distribution of p-values under the alternative 

hypothesis (Hung, O’Neil, Bauer and Kohne, 1997). The sample size for the final 

stage is determined based on conditional power (Shih et al, 2004). 

Chapter 9 demonstrates our varying-stage adaptive phase II/III clinical trial 

design with an illustration and simulations. The simulations are carried out for the two 

study endpoints that are assumed following normal distributions, thus, Dunnett test is 

used to perform many-to-one comparisons. However, our design and analysis 
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approach are not limited to normally distributed study endpoints. In addition, a special 

case of our design is discussed. 

Chapter 10 discusses practical issues and trial implementation for our design. 
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1 Introduction 

Clinical trials play vital roles in drug development. Phase II studies are the 

basis for planning of phase III clinical trials. Traditionally, these two phases are 

conducted separately. However, in the pharmaceutical industry there is a recent trend 

towards combining phase II and phase III in a seamless fashion (a so-called phase 

II/III clinical trial). In order to develop a phase II/III clinical trial design, which is 

more complex, it is important to first understand traditional phase II clinical trial 

designs. In this dissertation, we discuss traditional phase II clinical trial designs first, 

then the newer phase II/III clinical trial design. The first part of this dissertation 

considers two two-stage single-arm phase II clinical trial designs (Bayesian-

frequentist design and Bayes factor-based design), and the second part develops a 

varying-stage adaptive phase II/III clinical trial design.  

1.1 Two-stage designs for single-arm phase II clinical trials 

It is well known that frequently trial designers are uncertain about the initial 

estimates of variation, treatment effect, recruitment pattern, patient compliance, etc 

(Shih, 2001) since limited information regarding the new therapy is available at the 

time of clinical trial planning, particularly for phase I and phase II clinical trials. 

Under a Bayesian framework, uncertainty of initial estimate of clinical trial design 

parameters can be considered, and the outcome of a clinical trial at the end of the 

study can be predicted based on accumulated interim data. Due to these advantages, 

the Bayesian approach has gained popularity during the past decades. However, there 

are some obstacles of Bayesian approach being widely used including: (1) obtaining 

prior information for some situations; (2) less familiarity to investigators on Bayesian 
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trial design and Bayesian data analysis (Tan, Machin, 2002); and (3) potential 

resistance by regulatory agencies (Berry, 2006).  

In contrast, conventional clinical trial designs have their own advantages, such 

as Type I and Type II error rate control, familiarity to investigators, etc. In addition, 

preventing drug approval with false positive results is always a concern for regulators. 

For Bayesian medical device trials, the FDA requires evaluations of trial operating 

characteristics including frequentist Type I and Type II error rates (FDA, 2010).  

Therefore, in this dissertation, we develop two new two-stage designs for 

single-arm phase II clinical trials. These two proposed new designs have both 

Bayesian and frequentist properties. In fact, Bayesian-frequentist approach has been 

used in various areas. For example, dose response trials (Chang and Chow, 2005), 

treatment selection strategy (Thall et al, 2007) and trial reproducibility and power 

evaluation (Shao, Mukhi and Goldberg, 2008).  

Our first proposal is a strict Bayesian-frequentist two-stage design. The second 

design is a Bayes factor-based two-stage design using an inverse moment (iMOM) 

prior. The main feature of the second design is that a Bayes factor is used to derive 

posterior probabilities, which are used for constructing the stopping rules. By using a 

Bayes factor, mis-specification of prior densities for the trial design parameters of 

interest from an alternative model in the single-arm phase II clinical trial setting can 

only decrease the expected weight of evidence in favor of the alternative model 

(Johnson and Cook, 2009). Hence the more severely the alternative model deviates 

from the true parameter model, the more penalty Bayes factor-based hypothesis 

testing would pay, no matter whether the prior density model is optimistic or skeptical 

as long as it is mis-specified. 
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The Table 1-1 summarizes what have been done in single-arm phase II clinical 

trial designs and what are to improve in this dissertation. 

Table 1-1 What have been done in single-arm phase II clinical trial 
designs and what are to improve in this dissertation 

Characteristic  What have been done What are to improve in 
this dissertation 

Bayesian Type I and 

Type II error rate 

Derived based on the 

prior probability of the 

null hypothesis being true 

(Lee & Zelen, 2000). 

Bayesian version of 

Simon’s two-stage design 

(Wang, et al, 2005) 

following Lee & Zelen’s 

derivation (2000) on 

Bayesian Type I and Type 

II error rate. 

To derive based on the 

marginal probability of the 

number of responses s1 at 

stage I. s1 follows a 

Dirichlet-multinomial 

distribution given a beta 

prior for the parameter of 

response rate. [Section 3.4] 

Stopping rules based 

on Bayesian predictive 

probability 

Threshold (boundary) 

probabilities are obtained 

mathematically from 

search space (Lee & Liu, 

2008). The boundary 

predictive probability 

may not be practical. e.g. 

the low boundary is 0.001 

in one of their examples 

of trial designs.  

To pre-specify practical 

threshold (boundary) 

predictive probabilities to 

construct stopping rules. 

e.g. set the low boundary 

probability = 0.5 to accept 

the null hypothesis of the 

treatment response rate is 

equal to the maximum 

uninteresting response rate. 

[Section 3.2] 

Stopping rules based 

on Bayes factor 

Continuously monitor a 

phase II trial (Johnson & 

Cook, 2009) 

To derive for two-stage 

design. [Section 4.3] 

Control Bayesian and 

frequentist error rates 

None. To derive. [Section 3.6 and 

4.3] 



4 
 

 

The objectives of this dissertation on single-arm two-stage phase II clinical 

trial design are: 

1. To develop new designs for single-arm phase II clinical trials. 

• Bayesian-frequentist two-stage design. 

• Bayes factor-based two-stage design using an iMOM prior. 

2. To characterize the new designs. 

a. To derive Bayesian Type I and Type II error rates. 

b. To demonstrate Bayesian and frequentist properties, particularly 

for the 2nd design to theoretically and/or numerically demonstrate 

Bayes factor’s property of mis-specification for the trial design 

parameters and the property of iMOM as a non-local alternative 

prior. 

c. To control both Bayesian and frequentist Type I and Type II error 

rates for the Bayesian-frequentist, and control frequentist Type I 

and Type II error rates for the Bayes factor-based design. 

d. To establish an algorithm to find an optimal design (minimax 

design). 

3. To demonstrate the new designs with numerical examples. 

4. To compare the new designs with typical Bayesian and frequentist designs. 

1.2 A varying-stage adaptive phase II/III clinical trial design 

Currently, adaptive phase II/III clinical trials are typically carried out with a 

strict two-stage design. In general, the first stage is a learning stage as phase II, and 

the second stage is a confirmatory stage as phase III. During interim analysis, 
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inefficacious or harmful dose arms are dropped, then one or two promising dose arms 

are selected for the second stage. Based upon interim results, other adaptations, such 

as change of primary study endpoint and/or primary hypothesis, adjustment of sample 

size, etc, could be applied. 

Frequently there are some situations, in which researchers are in dilemma to 

make “go or no-go” decision and/or to select “best” dose arm(s), since interim data 

from the first stage may not provide sufficient data for their decision making. In this 

case, it is challenging to follow a strict two-stage plan. Therefore, we propose a 

varying-stage adaptive phase II/III clinical trial design, in which we also consider 

whether there is a need to have an intermediate stage to obtain more data, so that a 

more informative decision could be made regarding whether the trial can be advanced 

to the final confirmatory stage. Hence, the number of further investigational stages in 

our design is determined based upon data accumulated up to the current interim 

analysis. 

During the past two decades, adaptive designs have been well studied by many 

researchers; however, existing adaptive phase II/III designs only discuss one or two 

aspects of adaptations, and their focus is stagewise design, in which the number of 

stages is fixed in order to construct decision rules, control Type I error rate and test 

hypotheses. In contrast to a conventional design with a fixed number of stages, under 

the framework of our varying-stage adaptive phase II/III clinical trial design, we 

consider the adaptations of dropping dose arm(s), changing primary study endpoint, 

adjusting sample size, and early stopping for futility. In our design, two study 

endpoints are considered. The endpoint 1 is initially designated as the primary study 

endpoint. The endpoint 2 can be switched as the primary study endpoint if the 

endpoint 1 does not seem sensitive to show treatment effect whereas the endpoint 2 
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appears a better measure of clinical benefit for the study treatment. We use an 

adaptive combination test to perform final statistical analyses. 

Table 1-2 provides a summary of what have been done in adaptive phase II/III 

clinical trial designs and what are to improve in this dissertation. 

Table 1-2 What have been done in adaptive phase II/III clinical trial design 
and what are to improve in this dissertation 

Characteristic  What have been done What are to improve in this 
dissertation 

Flexible number of 

stages 

Typically strict two-stage 

design. The first stage is 

a learning stage (phase 

II), and the 2nd (final) 

stage is for a 

confirmatory stage 

(phase III).  

To add an intermediate stage if 

the data from the first stage is 

not sufficient to make 

decisions, such as selecting 

doses, advancing the trial to the 

final confirmatory stage, etc. 

[Section 6.1, 6.2, 6.3 and 6.4] 

Number of 

adaptations 

Consider one or two 

adaptations. 

To consider more adaptations 

including dropping 

inefficacious/harmful dose 

arm(s), changing primary study 

endpoint, adjusting sample 

size, and early stopping for 

futility. [Section 6.1, 6.2, 6.3, 

6.4, 8.3.4 and 8.3.5] 

Type I error rate 

control 

The secondary endpoints 

are tested only if the 

primary endpoint 

achieves statistical 

significance (Hung, 

Wang, O'Neill, 2007). 

To control Type I error rate by 

considering both study 

endpoints. [Section 6.5, 7.2] 
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The objectives of this dissertation on adaptive phase II/III design are: 

1. To propose a new design of varying-stage adaptive phase II/III clinical 

trial design. 

2. To characterize the proposed design. 

a. To consider multiple adaptations including dropping 

inefficacious/harmful dose arm(s), changing primary study 

endpoint, adjusting sample size, and early stopping for futility. 

b. To define decision paths regarding primary study endpoint change 

and other adaptations. 

c. To develop final analysis methods with adaptive p-value 

combination. 

d. To derive Type I error rate for each decision path, and to prove 

Type I error rate control. 

e. To derive statistical power for each decision path. 

f. To derive algorithms to determine the sample size for the next 

stage. 

3.   To demonstrate the proposed design with illustrations/simulations. 

The remainder of this dissertation is organized as follows. In Chapter 2, we 

will review the literature for existing single-arm phase II clinical trial designs. In 

Chapter 3, we will present our new design – Bayesian-frequentist single-arm phase II 

clinical trial design. A second new design – Bayes factor-based phase II design will 

be presented in Chapter 4. The literature review for phase II/III clinical trial designs is 

provided in Chapter 5. In Chapter 6, we will discuss our varying-stage adaptive phase 
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II/III clinical trial design. The other topics of the varying-stage adaptive phase II/III 

clinical trial design include dose selection and multiple comparisons on the primary 

endpoint, statistical power and sample size, simulations and a special case of the 

proposed design, and practical issues and trial implementation. These topics are 

discussed in Chapter 7, Chapter 8, Chapter 9 and Chapter 10. 
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2 Literature review for single-arm phase II clinical trial 

designs 

In a phase II clinical trial, several doses of the new therapy are considered. In 

some diseases or medical conditions, phase II trial could be conducted without an 

active control treatment arm when the standard therapy is not established. In addition, 

placebo control might not be feasible due to ethical considerations. For example, 

single-arm phase II clinical trials are sometimes conducted in cancer research. In this 

chapter, based on our literature review, we introduce frequentist and Bayesian two-

stage designs and continuous monitoring for single-arm phase II clinical trials. 

2.1 Frequentist two-stage design 

A typical frequentist single-arm phase II clinical trial design is Simon’s two-

stage design (1989). This design is widely used in cancer research. Under a 

frequentist framework, a two-stage single-arm phase II trial is designed to test the 

following hypotheses. 

 H0: θ ≤ θ0, vs. H1: θ ≥ θ1     (2.1) 

Where θ is the unknown response rate of the new therapy, θ 0 and θ 1 are the 

maximum uninteresting response rate and the minimum response rate of interest, 

respectively. The acceptance boundaries are determined under the constraints of Type 

I and Type II errors. By allowing trial early termination at stage I due to insufficient 

responses, Simon’s design is flexible and requires less expected sample size compared 

to a single stage design. Simon developed two two-stage designs: the optimal design 

that minimizes the expected sample size under the null hypothesis, and the minimax 

design that minimizes the maximal sample size. Simon’s two-stage designs have been 



10 
 

 

extended by many researchers, including admissible two-stage design (Jung et al, 

2004), two-stage design minimizing median sample size (Hanfelt, Slack and Gehan, 

1999) and others.  

Early acceptance of the new therapy is appropriate for situations where 

patients are very limited or the new drug is very expensive. Fleming (1982) applied 

O’Brien-Fleming bounds in his design, in which early rejection of null hypothesis 

occurs only when the interim results are quite extreme. Chang et al (1987) proposed a 

multi-stage phase II clinical trial design that minimizes the average of the expected 

sample size under null and alternative hypotheses with sample size in multiples of 

five. Shuster’s minimax two-stage design (2002) has the smallest globally maximized 

expected sample size. 

In practice, it is difficult to have a trial conducted exactly as initially planned. 

Green and Dahlberg (1992) investigated planned vs attained designs in Phase II 

clinical trials. Wu and Shih (2008) constructed ways to handle four different scenarios 

of deviation or interruptions from original Simon’s two-stage design. Instead of rigid 

two-stage designs, some flexible or adaptive two-stage designs have been developed 

during the past decades. Typically, Chen and Ng (1998) proposed flexible optimal and 

minimax two-stage designs as a collection of two-stage designs such that the sample 

size and boundary for each stage are a set of consecutive values. Lin and Shih (2004) 

pointed out that there is a very high probability to reject a promising new treatment if 

the initial expectation in Simon’s two-stage design is set too high.  Lin & Shih’s 

adaptive two-stage design (2004) allows both low and high expected response rate be 

considered. Other adaptive two-stage designs include the designs by Johns and 

Andersen (1999), and by Banerjee and Tsiatis (2006).  
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The conventional clinical trial designs described above are typical frequentist 

phase II clinical trial designs, which use information of treatment effect (target 

response rate of the new therapy vs. uninteresting response rate) to determine the 

sample size with sufficient statistical power and appropriate Type I error rate control. 

A common drawback of these designs is that the treatment effect is considered as a 

fixed value. With the constraints of controlling Type I and Type II error rates, 

frequentist clinical trial designs are rigid and not optimal in terms of sample size 

saving and decision making due to the lack of consideration on uncertainty, utility or 

loss function. In contrast, The Bayesian approach has the advantages of flexibility and 

accounting for uncertainties, utility or loss function. 

2.2 Bayesian two-stage design 

Under a Bayesian framework, Tan and Machin (2002) published single 

threshold design (STD) and dual threshold design (DTD). These two types of designs 

are based on evaluation of whether the posterior probability of the response rate 

exceeding a threshold response rate plus a pre-specified small value ε (e.g ε=0.05) is ≥ 

a threshold posterior probability (λ). Although Tan and Machin’s STD has been 

extended by some researchers including Mayo and Gajewski (2004), Gajewski and 

Mayo (2006), and Sambucini (2008), like Tan and Machin’s designs, error rate 

control is not considered. 

Lee and Zelen (2000) argued that conventional type I error rate α = 0.05 may 

result in an excessive number of false positive trial outcomes in clinical trial practice. 

They proposed a method to calculate posterior false positive and false negative error 

rates conditional on the trial outcome. These two probabilities are considered as 

Bayesian Type I and Type II error rates.   The Bayesian Type I and Type II error rates 

Lee and Zelen (2000) constructed are based on the prior probability of the null 
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hypothesis being true. Simon (2000) and Bryant and Day (2000) criticized this 

method for ignoring observed data and hence violating likelihood principles. 

Technically, as Lee and Zelen (2000) described, this prior probability can be 

estimated as the ratio of the number of clinical trials with positive outcome among 

historical trials. Obviously, this is a difficult task in some clinical practices. Moreover, 

this prior (especially, if it is based on subjective assessment in favor of the difference 

between treatments) needs to be updated with the new trial data under general 

consideration of the Bayesian framework and likelihood principle, in contrast to 

designing a trial by controlling Type I and Type II error rates directly defined based 

on this prior.  

Wang, Leung, Li and Tan (2005) introduced a Bayesian version of Simon’s 

two-stage design, which inherits the features of Simon’s design but also possesses 

attractive Bayesian attributes. However, following Lee and Zelen’s derivation on 

Bayesian Type I and Type II error rate (2000), Wang, Leung, Li and Tan (2005) used 

the prior probability that the study therapy is promising; therefore, Bayesian and 

frequentist error rates are related in their designs. 

2.3 Bayesian clinical trial monitoring 

  To take account of the uncertainty of future data, the Bayesian predictive 

probability approach has been used by many researchers for clinical trial monitoring 

and designs (e.g. Herson, 1979; Grieve, 1991; Johns, Anderson, 1999; Dmitrienko, 

Wang, 2006; Lee and Liu, 2008; Sambucini, 2008). The predictive approach for 

clinical trial designs was first introduced by Herson (1979). Lee and Liu (2008) 

developed a predictive probability (PP) design, such that if PP < PL (lower boundary), 

then the trial is stopped and the new therapy is rejected; if PP> PU(upper boundary), 

then the trial is stopped and the new therapy is accepted; otherwise the trial is 
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continued to the next stage. Unlike other Bayesian designs, Lee and Liu’s approach 

(2008) controls strict frequentist Type I and Type II error rates using the recursive 

method from Schultz et al (1973). Through a three-dimensional search, a minmax 

design can be obtained with optimal parameters of PL, PU, Nmax and PT (threshold 

value for posterior probability). However, this search is performed mathematically. 

For the two examples in their paper, the optimal PL (lower boundary of predictive 

probability to reject the test treatment) was 0.001 and 0.075-0.079. For such very low 

boundary, it is almost impossible to reject the new therapy even if it is not promising 

for further investigation.  

  Johnson and Cook (2009) developed a Bayes factor-based, continuous 

monitoring approach for single-arm phase II studies. In their approach, a non-local 

prior for the alternative hypothesis was used such that no mass was assigned to 

parameter values that were consistent to the null hypothesis. Furthermore, they 

pointed out that mis-specification of a prior density on the treatment effect can not 

increase the expected weight of evidence; therefore, Bayes factor-based design can 

reduce potential bias from a prior density. 
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3 A Bayesian-frequentist two-stage single-arm phase II 

clinical trial design 

As set in Section 2.1, we assume that the response from each patient follows a 

Bernoulli distribution with parameter θ, which is the unknown response rate of the 

new therapy. Let θ 0 and θ 1 denote the maximum uninteresting response rate and the 

minimum response rate of interest, respectively. Under a frequentist framework, the 

single-arm phase II clinical trial is designed to test the null hypothesis H0: θ ≤ θ0, 

versus the alternative hypothesis H1: θ ≥ θ1. If the null hypothesis H0 is rejected at the 

pre-specified significance level α, then the test treatment is accepted for further 

investigation; otherwise, the new therapy is concluded to be an unpromising 

treatment. 

In this section, we propose a new design – Bayesian-frequentist two-stage 

single-arm phase II clinical trial design. This design consists of two components: 

frequentist setting and Bayesian setting. 

3.1 Frequentist setting 

a.  Two-stage design 

Unlike Simon’s design (1989), we propose a two-stage design allowing early 

stopping due to either futility or efficacy. Following Fleming (1982), Chang et al 

(1987) and Shuster’s design (2002), a two-stage clinical trial can be designed as 

follows. 

a.1  Stage I 

For the first stage, n1 patients are enrolled in the study. If the number of 

responses s1 at stage I is greater than or equal to the upper boundary r1 (s1≥ r1), then 
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reject the null hypothesis H0 : θ ≤ θ0 and stop the trial due to efficacy. The probability 

of the rejecting this null hypothesis is  

R1(θ) = P(S1 ≥ r1| θ) = 1- Bin(θ, r1 – 1, n1)    (3.1) 

where Bin denotes cumulative binomial distribution function. 

If s1 ≤ a1 (the lower boundary), then accept the null hypothesis H0: θ ≤ θ0 and 

stop the trial due to futility. The probability of accepting the null hypothesis is 

A1(θ) = P(S1 ≤ a1| θ) =  Bin(θ, a1, n1)                      (3.2) 

Otherwise, if s1 is between r1 and a1 (a1 < s1 < r1), then continue the trial and 

enroll n2 patients into stage II. 

a.2  Stage II 

If the cumulative number of the responses s at the end of stage II is greater 

than or equal to r (s ≥ r), then reject the null hypothesis H0: θ ≤ θ0 and claim that 

further investigation of the study therapy is warranted. The probability of rejecting the 

null hypothesis H0: θ ≤ θ0 at the stage II is 
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where bin is the probability density function of binomial distribution. 

Otherwise, the test treatment is rejected and no further investigation is 

warranted. 

b.  Measures of frequentist two-stage design 

One of the main advantages of having a two-stage design is to have a smaller 

average sample size compared to a single stage design. For the two-stage design 

described above, the probability of early termination is the sum of the probabilities of 

stopping a trial at stage I. This probability can be expressed as 

PETf(θ) = R1(θ) + A1(θ)     (3.4)  
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The expected sample size is 

  Ef(n| θ) = n1 + [1-PETf(θ)]*n2    (3.5)  

Here the subscript f denotes frequentist properties. In the late sections, we will 

use the superscript f to denote frequentist properties as well. In contrast, we will use 

subscript or superscript B to denote Bayesian properties. 

For the frequentist setting, it is important to control Type I error rate and 

maintain study power. The Type I error rate is the probability of stopping the trial due 

to efficacy given the null hypothesis H0 : θ ≤ θ0 is true, while power is the probability 

of claiming the test treatment being promising given the alternative hypothesis H1: θ ≥ 

θ1 is true. 

  Type I error rate: αf=R1(θ0) + R2(θ0)     (3.6a) 

Power: 1 - βf
 = R1(θ1) + R2(θ1)     (3.6b) 

where αf and βf are the frequentist Type I and Type II error rate, respectively. 

3.2 Bayesian setting 

At stage I, suppose that s1 responses among total number of n1 patients are 

obtained. Given the data (s1, n1) at stage I, the posterior distribution of the response 

rate (θ) of the study therapy is a beta distribution as (3.7) if a conjugate beta prior - 

beta(a, b) is applied.  

P(θ|(s1, n1)) = beta(a+s1, b+ n1 - s1)    (3.7)  

 where beta is the probability density function of beta distribution. 

Let s2 denote the number of responses in future n2 patients in stage II, whose 

predictive distribution is a beta-binomial distribution. Let s denote total number of 

responses (s = s1+ s2) and n be total number of patients enrolled in the whole study (n 

=n1+ n2), then success of the trial can be measured by the posterior probability P(θ 

>θ0|(s, n)) = P(θ >θ0|(s1, n1), (s2, n2)) exceeding a threshold probability PT, namely, 
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P(θ >θ0|(s, n))>PT. This probability is a non-decreasing function with respect to 

number of responses s1 at stage I (see Appendix A.4 for proof).  

Given the hypothetical stage I data (s1, n1) and sample size n2 for stage II, the 

posterior probability of the trial outcome can be predicted with the predictive 

probability defined as follows.  

 ∑
=

>>=
2

2 0
221102112211 )})),(),,(|((*)),,(|({),,|(

n

s
TPnsnsPInnssPnnsTSPP θθ     (3.8) 

 where TS denotes trial success outcome measured 

by TPnsnsP >> )),(),,(|( 22110θθ . For convenience, we have abbreviated the notation 

P(S2=s2) by P(s2) in (3.8). We will continue to use the similar abbreviations in the 

sequel.  

The probability defined above is the predictive probability of success of a trial 

given the number of responses (s1) at stage I and sample size in stage I (n1) and stage 

II (n2). In this thesis, we use the simple term ‘predictive probability’ (PP) for the 

predictive probability of trial success as defined in (3.8), unless otherwise indicated. 

Lee and Liu (2008) proposed a predictive probability design; we use similar 

decision rules as follows: 

• If PP ≤PL, then stop the trial for futility and claim the study therapy is not 

promising. Since PP defined in (3.8) is a non-decreasing function of number of 

responses in stage II (s1), determine if PP ≤PL is equivalent to evaluating if s1 ≤ a1 

(lower boundary for futility).  

• If PP ≥PU, then stop the trial for efficacy and claim the study therapy is 

promising. Similarly, this criteria can be equivalently assessed with if s1 ≥ r1 (upper 

boundary for efficacy).  
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• Otherwise if PL< PP <PU, (or equivalently a1 <s1 < r1), then continue the 

trial to stage II with additional n2 patients.   

In Lee and Liu (2008)’s work, they searched for the optimal PL (threshold 

predictive probability to reject the test treatment) mathematically. For the two 

examples in their paper, optimal PL is 0.001 and 0.075-0.079. For such very low 

predictive probabilities, it is almost impossible to reject the study therapy even if it is 

not promising for further investigation. In our research, we pre-specify the lower and 

upper boundaries of  predictive probabilities PL and PU from a real clinical practice 

point of view, e.g PL = 0.5 and PU = 0.95.  

3.3 Probability of early termination and expected sample size 

under Bayesian framework 

Given a beta(a, b) prior and sample size n1 for stage I, the number of responses 

s1  from stage I follows a Dirichlet–multinomial distribution. 
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 where )(/)()(),( bababaB +ΓΓΓ= , which is a beta function. 

 Therefore, the probability of early termination (PETB) under Bayesian setting 

is as follows. 
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 The expected sample ENB under the Bayesian framework is 

  ENB = n1 + (1- PETB)*n2     (3.11) 
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3.4 Bayesian error rates 

As described in Section 2.2, Lee and Zalen (2000) constructed Bayesian error 

rates based on the prior probability of the null hypothesis being true. Simon (2000) 

and Bryant and Day (2000) criticized this method for ignoring observed data and 

hence violating likelihood principles. Unlike Lee and Zalen (2000), we define 

Bayesian Type I and Type II error rates based on marginal probability of s1 as derived 

in (3.9). 

Let A denote acceptance of the null hypothesis H0: θ ≤ θ0, and R denote 

rejection of the null hypothesis H0: θ ≤ θ0. Namely A and R are for claiming negative 

trial outcome and positive trial outcome respectively. Bayesian error rates can be 

defined as follows: 

  αB = P(θ ≤ θ0|R)      (3.12a)         

  βB= P(θ ≥ θ1|A)      (3.12b) 

In order to derive the Bayesian error rates αB and βB, we first derive the 

distributions of θ ≤ θ0∩R and θ ≥ θ1∩A. At stage I, the distribution of θ ≤ θ0 and (s1, 

n1) is. 

)|()),(|()),(( 11110110 nsPnsPnsandP θθθθ ≤=≤   (3.13) 

The number of responses s1 given n1 follows a Dirichlet–multinomial 

distribution as derived in (3.9), hence,  
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where Beta(θ,a,b) is the cumulative beta distribution function. 

And  

))(()( 1100 rsandPRP ≥≤=≤ θθθθ I  
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Assume that responses s1 and s2 are independent, the distribution of θ ≤ θ0 and 

(s1,n1,s2,n2) is  
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Therefore, the Bayesian Type I error rate is 

  BBB
21 ααα +=  
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 Similarly, the Bayesian Type II error rate is 
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3.5 Beta prior  

Single-arm phase II clinical trials are typically conducted in cancer research. 

At the time of phase II trial initiation, usually, there are limited data available from 

historical clinical trials; therefore, priors for the clinical trial design parameters have 

to be elicited from experts. For phase II cancer trials with a binary response as the 

primary study endpoint, conjugate beta priors are widely used for Bayesian 

inferences. Thall and Simon (1994) used W90 for beta prior elicitation, which is the 

width of the 90% probability interval running from 5th to 95th percentiles.  
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For a beta prior beta(a, b), a + b - 2 can be interpreted as the prior sample size, 

a-1 as prior successes and b-1 as prior failures (Gelman, 2004). This interpretation is 

intuitive and easily understood by clinical trial practitioners. Further, Hetjan (1997) 

expressed beta priors with the parameters a = n0π0 + 1, and b = n0(1- π0 ) + 1. The 

hyper parameters n0 and π0  can be interpreted as the prior sample size and the prior 

mode for a beta prior. When n0 = 1, the prior distribution is very flat, hence it provides 

less prior information. As n0 increases, the prior distribution becomes more 

concentrated at the prior mode π0. When n0 is equal to infinity (∞), the prior density is 

completely condensed at π0. Tan and Machin (2002) used prior sample size n0=1 in 

their Bayesian two-stage designs (STD and DTD). Sambucini (2008) used this beta 

prior as well for his predictive two-stage design. Mayo and Gaewski (2004) compared 

the non-informative prior with n0=1, the informative prior with n0>1, beta priors 

elicited by median with W90, and by mean with W90 for Bayesian sample size 

calculation. 

Wu, Shih and Moore (2008) provided methods of eliciting beta priors from 

clinical information. It is straightforward to elicit prior response rate of the test 

treatment from medical investigators. One elicitation question could be like ‘the 

response rate that is most likely to occur”. In fact, this elicited response rate is the 

mode θ1 of a prior beta distribution. Another elicitation question could be for tail 

probability of P(θ ≤θ0). With the mode θ1 and tail probability P(θ ≤θ0), the parameters 

a and b can be determined for a beta prior. In this thesis, we use this elicitation 

method. 

3.6 Algorithm to find optimal design 
 

In single-arm phase II studies, many researchers choose a design by 

minimizing the expected sample size under the frequentist null or alternative 



23 
 

 

hypothesis. For example, one with skeptical view on the study therapy may minimize 

expected sample size under the null hypothesis, whereas it is also reasonable to 

choose a design by minimizing the expected sample size under the alternative 

hypothesis if the study therapy is anticipated promising. In this thesis, our optimal 

design is defined as the design with minimal expected sample size under the Bayesian 

framework. This approach can avoid arguing on minimization of expected sample size 

under the null vs the alternative hypothesis.  

To find the optimal design, the following parameters need to be given.  

• Maximum uninteresting response rate and minimum response rate of 

interest: θ0  and θ1; 

• Beta prior beta(a,b) for θ; 

• Lower and upper boundaries of predictive probability: PL, PU; 

•  Threshold posterior probability: PT; 

• Type I and Type II error rates: α and β. 

• Maximum sample size Nmax: set Nmax = 1.5* size for a single stage trial 

The algorithm to numerically find the optimal design is described as follows 

(1) For each possible n ranging from 15 to Nmax,  

(2) Set n1 ranging from max(5, n/3) to n -1 

(3) Determine the boundaries r1 and a1 

(3.1) Calculate predictive probability (PP) from (3.8) corresponding to 

possible number of responses at stage I (s1), which ranges from 0: n1 

(3.2) Determine a1 and r1 by comparing PP against the boundaries PL and 

PU. 

(4) Search r ranging from r1+1 to n -1. 

(4.1) Calculate Bayesian and frequentist type I and Type II error rates 
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(4.2) If  all the calculated error rates < pre-specified thresholds α and β, 

then a design of (a1, r1, n1, r, n) is obtained. 

(4.3) For each obtained design, determine Bayesian and frequntist 

properties (e.g probability of early termination, expected sample size, 

and Bayesian posterior probabilities). 

(5) Choose the design with the minimum expected sample size under the Bayesian 

setting from (3.11) as the optimal design. 

3.7 Some properties of Bayesian-frequentist two-stage single-

arm phase II clinical trial design 

3.7.1 Posterior probability of θ > θi |(s,n) 
 
Definition 3.1: optimistic (enthusiastic) and pessimistic (skeptical) prior 

Many researchers, for example, Heitjan (1997), use a prior with information 

centered at the minimum response rate of interest (θ1) as an optimistic (enthusiastic) 

prior. Similarly, a prior with information centered at the maximum uninteresting 

response rate (θ0) is used as a pessimistic (skeptical) prior. In addition, a prior 

centering information at the half-way between θ0 and θ1 is used as an ‘indifference’ 

prior (Cronin, 1999). The degree or strength of enthusiasm or pessimism can be 

measured by the prior size n0 = a + b of a prior beta(a, b).  

Definition 3.2: more optimistic (enthusiastic) prior 

In general, under two-stage single-arm phase II clinical trial setting, a beta 

prior expecting a higher mean response rate or a higher mode of response rate of the 

study therapy is considered as a more optimistic (enthusiastic) prior compared to 

another beta prior that result in a lower mean response rate or a lower mode of 

response rate. Let’s consider two beta priors: beta(a1, b1) and beta(a2, b2) with the 
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same size a1 + b1 =  a2 + b2 = n0. If a1 > a2, then the prior beta(a1, b1) is considered as 

the more optimistic (enthusiastic) prior than the prior beta(a2, b2) since a higher mean 

response rate or a higher mode of response rate of the study therapy is expected from 

the prior beta(a1, b1). In other word, the prior beta(a2, b2) is considered as the less 

optimistic or the more pessimistic (skeptical) prior compared to the prior beta(a1, b1). 

Please note that a “more optimistic” prior defined here is not necessarily an 

optimistic prior, which centers the prior information at the minimum response rate of 

interest (θ1) or above, but rather a prior that presents more optimistic belief compared 

to another prior. 

Proposition 3.1: A more optimistic prior results in a higher posterior probability of 

θ>θi | (s, n) (i = 0, 1) compared to another beta prior with the same size of a + b = n0. 

Proof: As shown in Appendix A.1, the data (s1, n1) obtained from the first stage does 

not affect the posterior distribution of θ|(s,n). θ|(s,n) follows a beta distribution if 

conjugate beta prior - beta(a, b) is used. 

    P(θ|(s,n))= beta(a + s, b + n – s)      

The posterior probability θ > θi |(s,n) is 

   P(θ > θi |(s,n)) = 1 - Beta(θi, a + s, b + n – s)  (3.22) 

Appendix A.5.1 provides the relation of beta and binomial probability 

calculation. Apply (A.5.5a) to the right side of (3.22), (3.22) can be written in 

binomial form as: 

   P(θ > θi |(s,n)) = 1 - Beta(θi, a + s, b + n – s) 

 = Bin(θi, a + s - 1, n + a + b - 1)  (3.23) 

 For the designs using the two priors given previously in the definition 3.2: 

beta(a1, b1) and beta(a2, b2) where a1>a2 and a1 + b1 = a2 + b2 = n0:   

    P1(θ > θi |(s,n)) =Bin(θi, a1 + s - 1, n + n0 - 1)  (3.24a) 
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and 

    P2(θ > θi |(s,n)) = Bin(θi, a2 + s - 1, n + n0 - 1)    (3.24b) 

 Given a1>a2, apparently, P1(θ > θi |(s,n))> P2(θ > θi |(s,n). This proves that for 

the design with a more optimistic prior, the posterior probability of θ>θi |(s, n) (for 

example, θ>θ0 or θ>θ1|(s, n)) is higher than another design with the same size a + b 

of prior beta(a, b). 

Definition 3.3: stronger beta prior 

A beta prior with a larger size of a + b is considered as a stronger prior. Let’s 

consider two beta priors: beta(a1, b1) and beta(a2, b2), the prior sizes are n01 = a1 + b1 

for beta(a1, b1) and n02 = a2 + b2 for beta(a2, b2). If n01 > n02, then the prior beta(a1, b1) 

is considered as the stronger prior compared to the prior beta(a2, b2). 

Proposition 3.2: For the optimistic beta priors with the same mean response rate or 

mode of response rate, a stronger optimistic prior results in a higher posterior 

probability of θ>θi | (s, n) (i = 0, 1) if s < nθi. 

Proof:  Given the two priors described in the definition 3.3: beta(a1, b1) and beta(a2, 

b2) where n01 = a1 + b1, n02 = a2 + b2, and n01 > n02, the posterior probabilities of  θ > 

θ1 |(s, n) are 

  P1(θ > θ1 |(s,n)) =Bin(θ1, a1 + s - 1, n + n01 - 1)  (3.25a) 

and 

  P2(θ > θ1 |(s,n)) = Bin(θ1, a2 + s - 1, n + n02 - 1)  (3.25b) 

 Suppose the two priors beta(a1, b1) and beta(a2, b2) have the same mode as 
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 then (3.25a) and (3.25b) can be written as 
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  P1(θ > θ1 |(s,n)) =Bin(θ1, s + (n01-2) θ1, n + n01 - 1)  (3.26a) 

  P2(θ > θ1 |(s,n)) = Bin(θ1, s + (n02-2) θ1, n + n02 - 1)  (3.26b) 

 Apply the incremental property of binomial distribution as proved in 

Appendix A.5.7, 

  Bin(θ1, s, n)  < Bin(θ1, s + (n02-2) θ1, n + n02 - 2)  if s < nθ1 

            < Bin(θ1, s + (n01-2) θ1, n + n01 - 2)  per Appendix A.5.4 

            < Bin(θ1, s + (n01-2) θ1, n + n01 - 1)  (3.27) 

 Therefore, P1(θ > θ1 |(s,n)) > P2(θ > θ1 |(s,n)) and the Proposition 3.2 holds if 

s < nθ1. Appendix A.5.5 shows that there exist the most probable number of 

responses k such that (n+1)θ-1<k≤(n+1)θ. nθ1 is approximately equal to k, therefore, 

the condition s < nθ1 indicates that Proposition 3.2 holds when s is less than the most 

probable number of responses k. 

 Similarly, the Proposition 3.2 can be proved for the posterior probability of 

θ>θ0 | (s, n).   

3.7.2 Sufficient prior conditions satisfying Bayesian error rates < 

corresponding frequentist error rates in stage I 

3.7.2.1 Sufficient prior condition satisfying Bayesian Type I error rate < 

frequentist Type I error rate in stage I 

The aim of this section is to find a condition on beta priors to ensure that the 

Bayesian Type I error rate is les than the frequentist Type I error rate in the 1st stage 

as expressed below.  

B
1α ≤R1(θ0)       (3.28) 

Namely 
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                                                                                                                       (3.29) 

Base on the Proposition A3 in Appendix A.5.2, Beta(θ0, a+s1, b+n1-s1) is a 

monotonic decreasing function as s1 increases given a+b+n1, which is sum of prior 

size n0= a+b and sample size n1 for the 1st stage. Therefore, to show (3.29), we can 

show the following (3.30). One should note that this consideration is conservative by 

reducing the right side of (3.29) to Beta(θ0, a+r1, b+n1-r1) as the right side of (3.30), 

which is the largest value of Beta(θ0, a+s1, b+n1-s1) when s1=r1 given a+b+n1. 

  Beta(θ0, a+r1, b+n1-r1)< 1- Bin(θ0, r1 – 1, n1)  (3.30) 

Following (A.5.5a) per the relation between beta and binomial probability 

calculation provided in Appendix A.5.1, (3.30) can be written in binomial form as 

  1-Bin(θ0, r1 -1+a, n1+a+b-1) < 1- Bin(θ0, r1 – 1, n1)  

Simplify further, 

  Bin(θ0, r1 -1+a, n1+a+b-1)> Bin(θ0, r1 – 1, n1)  (3.31) 

If n1 is not small, and θ0 is not close to 0 or 1, apply normal approximation to 

the binomial distributions, (3.31) can be written as  
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In practice,  

1

1 1
n

r − > θ0                    (3.34) 

To satisfy (3.33), we need to have 
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In practice, 
1

1 1
n

r −  is approximately equal to θ1, then we have 

  a > (n0-1) θ1       (3.36) 

The (3.36) is a sufficient condition to (3.31), hence it is a sufficient condition 

to (3.28). But it is not a necessary condition to (3.28) since for some a≤ (n0-1) θ1, 

(3.28) is still true. For example, when n0=12, θ0=0.2, θ1=0.4 and n1=22, a1=6, 

r1=10, if a =3 < (n0-1) θ1=4, (3.28) is still true. This design is included in Section 3.9 

with the prior beta(3,9). 

3.7.2.2 Sufficient prior condition satisfying Bayesian Type II error rate 

< frequentist Type II error rate in stage I 

The aim of this section is to find a condition on beta priors to ensure that the 

Bayesian Type II error rate is les than the frequentist Type II error rate in the 1st stage 

as expressed in (3.37) below. 

B
1β <A1(θ1)        (3.37) 
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Namely 
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                                                                                                             (3.38) 

Following similar process as Section 3.8.2.1, conservatively, (3.38) can be 

written in binomial form as 

  Bin(a1+a-1, n1+a+b-1, θ1) < Bin(a1, n1, θ1)   (3.39) 

If n1 is not small, and θ1 is not close to 0 or 1, apply normal approximation to 

the binomial distributions in (3.39), 
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In practice,  
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 This formula can be simplified as 
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Apply (3.42) into (3.43), the condition is 

  a < (n0-1)θ0 +1                 (3.44) 

The condition (3.44) is a sufficient condition to (3.39), hence it is a sufficient 

condition to (3.37). But it is not a necessary condition to (3.37) since for some a≥(n0-

1)θ0 +1, (3.37) is still true. For example, when n0=12, θ0=0.2, θ1=0.4 and n1=24, 

a1=6, r1=9, if a =5>(n0-1)θ0 +1=3, (3.37) is still true. This design is included in 

Section 3.9 with the prior beta(5,7). 

3.7.2.3 Existence of a sufficient prior condition satisfying Bayesian 

error rates < frequentist error rate in stage I 

Comparing the sufficient conditions (3.36) and (3.44), they conflict to each 

other. One requires the prior parameter a>(n0-1)θ1, but the other requires a<(n0-1)θ0 

+1. This conflict may be due to too conservative consideration in simplifying the 

Bayesian Type I and Type II error rates in binomial form as the right side of (3.30) 

and (3.39).  

3.8 Examples 

Based on the algorithm described in Section 3.6, we developed R programs to 

perform the Bayesian-frequentist two-stage design for single-arm phase II clinical 

trials. This section presents numerical examples with various priors under the design 

parameters θ0 = 0.2, θ1 = 0.4, PL= 0.5, PU = 0.90, PT  = 0.95, frequentist Type I error 

rate α = 0.05 and Type II error rate β = 0.2.  
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We also use these examples to investigate the roles of a beta prior to a two-

stage clinical trial design. Two groups of priors are considered: one group is for 

pessimistic priors that set the mode or mean of beta prior equal to the maximum 

uninteresting response rate of θ0; another group for optimistic priors, which set the 

minimum response rate of interest θ1 as the prior mode or mean. For each group, two 

priors are used, one is for a weak beta prior with parameters a + b =1, another one for 

a relatively strong beta prior with a + b =12. That is, the following 4 beta priors are 

under considerations. 

• Weak pessimistic prior: beta (0.2, 0.8) with mean = 0.2, variance = 0.08; 

P(θ≤θ0) = 0.68 and P(θ≥θ1) = 0.21 

• Strong pessimistic prior: beta (3, 9) with mode = 0.2, variance = 0.014; 

P(θ≤θ0) = 0.38 and P(θ≥θ1) = 0.12 

• Weak optimistic prior: beta (0.4, 0.6) with mean = 0.4, variance = 0.12; 

P(θ≤θ0)=0.41 and P(θ≥θ1)=0.44 

• Strong optimistic prior: beta (5, 7) with mode = 0.4, variance = 0.018; 

P(θ≤θ0)=0.05 and P(θ≥θ1)=0.53 

In each situation, we identify an optimal design that gives the smallest 

expected sample size under the Bayesian framework (EN.b as denoted in the tables 

given below). 

a) Examples 

a.1)   Designs obtained with beta prior (0.2, 0.8)  

      a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b PET(θ0)  EN(θ0)  PET(θ1)  EN(θ1)  Post.θ0 Post.θ1  PET.b  EN.b 

 [1,]  8 11 27 12 39   0.044   0.197   0.023   0.046   0.937   27.8   0.725   30.3   0.0646  0.0996   0.966  27.4 

 [2,]  7 10 25 13 40   0.038   0.193   0.017   0.054   0.908   26.4   0.729   29.1   0.0371  0.1430   0.962  25.6 

 [3,]  5  8 19 13 41   0.048   0.199   0.017   0.037   0.860   22.1   0.675   26.1   0.0450  0.1180   0.950  20.1 

 [4,]  8 11 27 13 42   0.038   0.199   0.018   0.042   0.937   27.9   0.725   31.1   0.0540  0.0967   0.966  27.5 

      a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b PET(θ0)  EN(θ0)  PET(θ1)  EN(θ1)  Post.θ0 Post.θ1  PET.b  EN.b 

 [5,]  7 10 25 13 43   0.050   0.170   0.022   0.030   0.908   26.7   0.729   29.9   0.0641  0.0786   0.962  25.7 

 [6,]  5  8 19 14 44   0.043   0.198   0.014   0.034   0.860   22.5   0.675   27.1   0.0377  0.1139   0.950  20.2 
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 [7,]  5  8 19 14 45   0.047   0.191   0.015   0.028   0.860   22.6   0.675   27.4   0.0453  0.0938   0.950  20.3 

 [8,]  8 11 27 13 46   0.049   0.188   0.025   0.019   0.937   28.2   0.725   32.2   0.1017  0.0407   0.966  27.6 

 [9,]  6  9 22 15 47   0.036   0.191   0.011   0.034   0.887   24.8   0.704   29.4   0.0317  0.1099   0.957  23.1 

 
Note: The bolded in blue is the optimal design. 
 
Notation: 

• Type1.f, Type2.f: Frequentist Type I and Type II error rate. 

• Type1.b, Type2.b: Bayesian Type I and Type II error rate. 

• PET(θ0), PET(θ1):  Frequentist PET (probability of early termination) under 

null and alternative hypothesis. 

• EN(θ0), EN(θ1): Frequentist expected sample size under null and alternative  

hypothesis. 

• Post.θ0, Post.θ1: Posterior probability of θ<θ0 and θ>θ1 given the trial data 
(s,n). 

• PET.b: Bayesian PET 

• EN.b: Bayesian expected sample size. 

 

a.2)   Designs obtained with beta prior (3, 9)        
      a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b PET(θ0) EN(θ0) PET(θ1) EN(θ1)  Post.θ0 Post.θ1 PET.b EN.b  

[1,]  8 11 27 12 39   0.044   0.197   0.030   0.035   0.937   27.8   0.725   30.3    0.0607  0.0540  0.869  28.6 

[2,]  8 11 27 12 40   0.047   0.193   0.032   0.030   0.937   27.8   0.725   30.6    0.0707  0.0436  0.869  28.7 

[3,]  7 10 25 13 41   0.042   0.183   0.027   0.033   0.908   26.5   0.729   29.3    0.0436  0.0648  0.852  27.4 

[4,]  9 12 30 13 42   0.037   0.189   0.025   0.034   0.948   30.6   0.745   33.1    0.0512  0.0528  0.880  31.4 

[5,]  8 11 27 13 43   0.041   0.195   0.027   0.029   0.937   28.0   0.725   31.4    0.0597  0.0429  0.869  29.1 

[6,]  7 11 25 14 44   0.032   0.187   0.016   0.032   0.896   27.0   0.568   33.2    0.0367  0.0631  0.798  28.8 

[7,]  6 10 22 14 45   0.036   0.187   0.018   0.027   0.873   24.9   0.534   32.7    0.0432  0.0517  0.777  27.1 

[8,]  8 11 27 13 46   0.049   0.188   0.031   0.021   0.937   28.2   0.725   32.2    0.0908  0.0222  0.869  29.5 

[9,]  8 11 27 14 47   0.038   0.193   0.024   0.025   0.937   28.3   0.725   32.5    0.0585  0.0341  0.869  29.6 

 

Note: The bolded in blue is the optimal design. 
 

a.3)   Designs obtained with beta prior (0.4, 0.6)  

      a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b  PET(θ0) EN(θ0)  PET(θ1) EN(θ1)  Post.θ0  Post.θ1  PET.b  EN.b 

 [1,]  7 10 25 12 37   0.043   0.193   0.017   0.075   0.908   26.1   0.729   28.3   0.0379  0.1654   0.946  25.6 

 [2,]  7 10 25 12 38   0.048   0.183   0.019   0.062   0.908   26.2   0.729   28.5   0.0463  0.1366   0.946  25.7 

 [3,]  8 11 27 12 39   0.044   0.197   0.019   0.060   0.937   27.8   0.725   30.3   0.0559  0.1120   0.951  27.6 

 [4,]  7 10 25 13 40   0.038   0.193   0.013   0.068   0.908   26.4   0.729   29.1   0.0317  0.1585   0.946  25.8 

 [5,]  5  8 19 13 41   0.048   0.199   0.013   0.050   0.860   22.1   0.675   26.1   0.0388  0.1315   0.930  20.5 

 [6,]  6  9 22 13 42   0.049   0.183   0.015   0.045   0.887   24.3   0.704   27.9   0.0468  0.1083   0.939  23.2 

 [7,]  7 10 25 13 43   0.050   0.170   0.018   0.040   0.908   26.7   0.729   29.9   0.0559  0.0886   0.946  26.0 

 [8,]  5  8 19 14 44   0.043   0.198   0.010   0.046   0.860   22.5   0.675   27.1   0.0325  0.1266   0.930  20.8 

 [9,]  5  8 19 14 45   0.047   0.191   0.012   0.040   0.860   22.6   0.675   27.4   0.0392  0.1048   0.930  20.8 

[10,]  5  8 20 15 46   0.046   0.174   0.009   0.045   0.836   24.3   0.710   27.5   0.0224  0.1458   0.932  21.8 

 

Note: The bolded in blue is the optimal design. 
 

a.4)   Designs obtained with beta prior (5, 7)  

      a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b  PET(θ0)  EN(θ0) PET(θ1) EN(θ1)  Post.θ0  Post.θ1  PET.b  EN.b 

 [1,]  6  9 24 13 38   0.047   0.181   0.004   0.172   0.847   26.1   0.768   27.2   0.0049  0.2724   0.832  26.4 

 [2,]  7 10 29 15 39   0.050   0.195   0.002   0.182   0.840   30.6   0.842   30.6   0.0009  0.4465   0.865  30.4 

 [3,]  6  9 24 14 42   0.048   0.160   0.003   0.147   0.847   26.7   0.768   28.2   0.0053  0.2259   0.832  27.0 

 [4,]  7 10 29 17 43   0.049   0.197   0.002   0.181   0.840   31.2   0.842   31.2   0.0004  0.4927   0.865  30.9 
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 [5,]  5  9 25 16 44   0.049   0.177   0.002   0.125   0.663   31.4   0.756   29.6   0.0014  0.3429   0.781  29.2 

 [6,]  3  7 17 16 46   0.045   0.172   0.002   0.128   0.587   29.0   0.599   28.6   0.0024  0.2691   0.682  26.7 

 [7,]  4  8 21 17 47   0.046   0.185   0.002   0.128   0.629   30.6   0.687   29.1   0.0012  0.3271   0.740  27.8 

 [8,]  5  9 25 17 48   0.050   0.152   0.002   0.107   0.663   32.7   0.756   30.6   0.0016  0.2907   0.781  30.0 

 [9,]  4  8 21 18 51   0.046   0.160   0.002   0.110   0.629   32.1   0.687   30.4   0.0014  0.2776   0.740  28.8 

[10,]  5  9 25 19 52   0.048   0.167   0.002   0.112   0.663   34.1   0.756   31.6   0.0007  0.3337   0.781  30.9 

 

Note: The bolded in blue is the optimal design. 

b) Summary of characteristics of the optimal Bayesian-frequentist two-

stage designs 

As described in Section 3.7, in this thesis, the optimal Bayesian-frequentist 

two-stage design is defined as the design with minimal expected sample size under 

the Bayesian framework. The following is the summary of characteristics of the four 

aforementioned optimal designs. 

Table 3-1 Characteristics of the optimal Bayesian-frequentist two-stage 
designs 

 Beta prior     a1 r1 n1  r  n Type1.f Type2.f Type1.b Type2.b  PET(θ0)  EN(θ0) PET(θ1) EN(θ1)  Post.θ0  Post.θ1 PET.b  EN.b 

 Beta(0.2, 0.8)  5  8 19 13 41   0.048   0.199   0.017   0.037   0.860   22.1   0.675   26.1   0.0450  0.1180  0.950  20.1 

 Beta(  3,   9)  6 10 22 14 45   0.036   0.187   0.018   0.027   0.873   24.9   0.534   32.7   0.0432  0.0517  0.777  27.1 

 Beta(0.4, 0.6)  5  8 19 13 41   0.048   0.199   0.013   0.050   0.860   22.1   0.675   26.1   0.0388  0.1315  0.930  20.5 

 Beta(  5,   7)  6  9 24 13 38   0.047   0.181   0.004   0.172   0.847   26.1   0.768   27.2   0.0049  0.2724  0.832  26.4 

b.1) Frequentist properties 

Total sample size  

For the four optimal designs under the different beta priors: weak pessimistic 

prior - beta(0.2, 0.8), strong pessimistic prior – beta(3,9), weak optimistic prior – beta 

(0.4, 0.6), and strong optimistic prior – beta(5, 7), the respective total sample size is 

41, 45, 41 and 38. Although the differences among these total sample sizes are not 

large, this example shows the roles of a beta prior to a two-stage sing-arm clinical trial 

design: 1) under weak priors, the total sample sizes are very similar. For the examples 

presented here, both weak priors beta(0.2, 0.8) and beta(0.4, 0.6) result in the same 

total sample size 41; 2) under the strong pessimistic prior beta(3, 9), the total sample 
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size is 45, which is the largest; 3) under the strong optimistic prior beta(5, 7), the total 

sample size is 38, which is the smallest.  

The above findings from the examples are intuitive. Weak priors result in the 

similar total sample sizes since these priors provide less prior information on the 

response rate of the study therapy. When a strong pessimistic prior is used, in order to 

claim efficaciousness of the study therapy, more data need to be obtained to 

overweigh the skeptical opinion from the pessimistic prior. On the other hand, when a 

strong optimistic prior is used, less total sample size is required. 

Expect sample size and early termination probability (PET) 

 For the four optimal designs presented in Table 3-1, although the weak priors 

lead to the same expected sample sizes EN(θ0) and EN(θ1), in general, the sizes 

should be similar since weak priors only provide little prior information for a trial 

design.  

Under strong beta priors, the strong optimistic prior beta(5, 7) result in a larger 

expected sample size of 26.1 compared to the size of 24.9 by the strong pessimistic 

prior beta (3, 9) under the null hypothesis. This is due to less likely the trial is to be 

terminated early under the null hypothesis if the optimistic prior belief is true (PET = 

0.847 vs 0.873 for beta(5, 7) vs beta(3, 9)). Under the alternative hypothesis, it is 

more likely that the trial could be terminated early for efficacy if the optimistic prior 

belief is true (PET = 0.768 vs 0.543 for beta(5, 7) vs beta(3, 9)), therefore the strong 

optimistic prior beta (5,7) result in a smaller expected sample size of 27.2 compare to 

the size of 32.7 by the strong pessimistic prior beta (3, 9). 

Summary of the examples 

 In summary, the trial design characteristics under weak priors are very similar. 

Compared to a strong pessimistic prior, a strong optimistic prior with same “strength” 
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(e.g a + b is same for both priors) result in a smaller expected sample size under the 

alternative hypothesis, a larger expected size under the null hypothesis, a smaller total 

sample size, a lower probability of early termination under the null hypothesis, and a 

higher probability of early termination under the alternative hypothesis. 

b.2) Bayesian properties 

Bayesian error rates 

 The four single-arm phase II clinical trial designs summarized in Table 3-1 are 

controlled under frequentist Type I error rate α = 0.05 and Type II error rate β = 0.2. 

For these four designs, the Bayesian Type I error rate ranges from 0.004 to 0.018, and 

the Bayesian Type II error rate ranges from 0.027 to 0.172. Both Bayesian Type I and 

Type II error rates are lower than the corresponding frequentist Type I and Type II 

error rates. However, as discussed in Section 3.7.2, we have not found a sufficient 

condition for setting a beta prior so that the Bayesian Type I and Type II error rates 

are less than the corresponding frequentist Type I and Type II error rates. 

Posterior probability 

 For the four designs, posterior probability of θ<θ0 given hypothetical trial data 

(s, n) range from 0.0049 to 0.0450. With respect to posterior probability of θ>θ1 given 

hypothetical trial data (s, n), the optimistic priors beta (0.4, 0.6) and beta(5,7) result in 

the posterior probabilities of 0.1315 and 0.2724, which are higher than the posterior 

probability of 0.1180 obtained with the weak pessimistic prior beta(0.2, 0.8), and 

much higher than the posterior probability of 0.0517 from the strong pessimistic prior 

beta(3, 9). This finding is consistent with what theoretically demonstrated in Section 

3.7.1. 
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Summary of the examples 

 In summary of the examples, for the clinical trials designed by controlling 

frequentist Type I and Type II error rates, an optimistic prior result in a higher poster 

probability of θ>θ0 or θ>θ1 than a pessimistic prior with the same size of a + b; and 

the stronger the optimistic prior, the higher the posterior probability is. 

3.9 Comparisons with typical frequentist and Bayesian single-

arm phase II clinical trial designs 

To demonstrate the performance of our Bayesian-frequentist design, in this 

section, we compare our Bayesian-frequentist two-stage design with the following 

typical frequentist and Bayesian single-arm phase II clinical trial designs.  

a. Bayesian predictive probability continuous monitoring design with early 

acceptance boundaries (Lee & Liu, 2008) 

b. Frequentist two-stage design with early rejection and acceptance 

boundaries 

• Fleming’s design (1982) 

• Chang’s design (1987) 

• Shuster’s design (2002) 

c. Frequentist two-stage design with an early acceptance boundary 

• Simon’s optimal design (1989) 

• Simon’s minimax design (1989) 

d. Frequentist single stage design 

In order to have fair comparisons, we evaluate these designs under the same 

design parameters: θ0 = 0.2, θ1 = 0.4, Type I error rate α = 0.05 and Type II error rate 

β = 0.2. For Bayesian designs, the four beta priors as described in Section 3.8 are 

used. The operating characteristics of these designs are summarized in Table 3-2. For 
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Lee & Liu’s Bayesian predictive probability continuous monitoring design (Lee & 

Liu, 2008), the trial early acceptance boundaries are only listed for the first stage and 

the last stage. Figure 3-1 though Figure 3-5 present probability of rejecting H0, 

probability of accepting H0, probability of early termination (PET), expected sample 

size, and expected sample size per correct decision for each design if applicable.  

Table 3-2 Comparisons of single-arm phase II designs for θ0=0.2, θ1 = 0.4, 
α = 0.05 and β = 0.2 

Probability of rejecting and accepting H0 

As shown in Figure 3-1, the probability of rejecting H0 is almost same for all 

these designs. This is due to these designs are performed by controlling Type I error 

rates at the same level of α = 0.05. Similarly, the probability of accepting H0 (Figure 

3-2) is almost same for all these designs. 

Bayesian-frequentist two-stage design (BF)
  PL= 0.5, PU = 0.90, PT  = 0.95 

 
a1  r1  n1  r   n     

  Prior beta(0.2, 0.8)  5   8  19  13  41  

  Prior beta(  3,   9)   6  10  22  14  45    

  Prior beta(0.4, 0.6)   5   8  19  13  41 

  Prior beta(  5,   7)   6   9  24  13  38 

Bayesian predictive probability continuous 
monitoring design with early acceptance boundary 
Lee & Liu, 2008) 
PL=0.01, PU=1, PT=0.95  

 

  Prior beta(0.2, 0.8)   1  11  NA  13  36 

  Prior beta(  3,   9)  1  12  NA  13  36   

  Prior beta(0.4, 0.6)  1  11  NA  13  36   

  Prior beta(  5,   7)  0  13  NA  13  36   

Frequentist two-stage design with early an 
acceptance boundary 

  

  Simon’s optimal design  3  NA  13  13  43 

  Simon’s minimax design  4  NA  18  11  33 

Frequentist two-stage design with early acceptance 
and rejection boundaries 

 

  Fleming’s design  4   9  20  12  35 

  Chang’s design  7   9  25  17  50 

  Shuster’s design  5   8  20  13  39 

Single-arm             12  35 
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Probability of early termination 

With respect to the probability of early termination shown in Figure 3-3, 

Chang’s design has highest early termination probabilities for futility or efficacy. This 

is due to the fact that Chang’s design requires the largest total samples size and the 

largest number of responses to stop a trial early for futility, and requires the smallest 

number of responses to stop a trial early for efficacy. The requirement on number of 

responses for early termination by Fleming’s design is exactly the opposite to Chang’s 

design, hence, Fleming’s design has the lowest early termination probabilities for 

futility or efficacy. For our Bayesian-frequentist design, in general under a weak 

prior, its probability of early termination is comparable to Shuster’s design, which is 

lower than Chang’s design, but higher then Fleming’s design. Under a strong 

optimistic prior, the probability of early termination for efficacy by our design is 

higher than Shuster’s design, but lower than Shuster’s design. This is due to the fact 

that our design under a strong optimistic prior requires less responses to stop a trial 

early for efficacy. 

For the designs with early acceptance boundary, Lee & Liu’s design seems not 

sensitive to priors. Under the four priors, the design’s operating characteristics are 

almost same. However, in general, its probability of early termination for futility is 

higher than Simon’s design. This result is expected since Lee & Liu’s design monitors 

the trial for each new patient, therefore, there are more chances to terminate a trial 

with Lee & Liu’s design than a two-stage trial. 

Expected sample size 

As shown in Figure 3-4, Fleming’s design and Chang’s design require larger 

expected sample size than Shuster’s design. This is due to Shuster’s design is a 

minimax design, which has the smallest globally minimized expected sample size 
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under the frequentist framework. Our Bayesian-frequentist design under a weak prior 

is comparable to Shuster’s design. However, under a strong optimistic prior, the 

expected sample size around θ1 (for the example, around θ = 0.35 ~ 0.55) is lower 

than that for a design under a strong pessimistic prior. 

Not surprisingly, expected sample size from Simon’s optimal design is the 

lowest around θ0, but is the largest when θ>θ1. For Lee & Liu’s design, a prior does 

not have much impact on the expected sample size when θ>θ1, but the expected size is 

larger around θ0 when a strong optimistic prior is used. 

Expected sample size per correct decision 

Following Johnson and Cook (2009), we define expected sample size per 

correct decision as the ratio of the expected sample size to the probability of correctly 

stopping the trial. In these examples, we assume that it is correct to accept H0 when 

θ≤0.3, which is (θ0 + θ1)/2. As shown in Figure 3-5, our Bayesian-frequentist design 

under a weak prior has the smallest expect sample size per correct decision, and is 

comparable to Shuster’s design. When a strong optimistic prior is used, lower 

expected sample size per correct decision is needed compared to the design with a 

strong pessimistic prior when θ = 0.3 to 0.55. Whereas, when θ ≤ θ0, slightly higher 

expected sample size per correct decision is required for the design with a strong 

optimistic prior compared to the design with a strong pessimistic prior. These results 

explicitly imply the impact of a prior to decision-making.  

Lee & Liu’s design has highest expected sample size per correct decision, and 

there is no much impact from a prior. This is not surprising as explained in the 

previous sections regarding expected sample size and probability of early termination. 

When response rate is around  θ>θ1, the designs with only early acceptance boundary 

including Simon’s design and Lee & Liu’s design, their expected sample size per 
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correct decision are larger than that by designs with both early rejection and 

acceptance boundaries. This is due to the fact that the decision of rejecting H0 is more 

likely correct when true θ is great than θ1. 

Summary of the comparisons 

In summary, we have observed the following from the comparisons between 

our Bayesian-frequentist design and typical Bayesian and frequentist designs with the 

examples described previously: 1) Our two-stage design for single-arm phase II 

clinical trials is comparable to Shuster’s minimax design when a weak prior is used; 

2) In our design, a strong optimistic prior results in a smaller total sample size and 

higher posterior probabilities. In contrast, Lee & Liu’s predictive probability 

continuous monitoring design has limited advantages of incorporating prior 

information. 



 

 

Figure 3-1 Probability of rejecting H0 



 

 

Figure 3-2 Probability of accepting H0 

 



 

 

Figure 3-3 Probability of early termination (PET) 

 



 

 

Figure 3-4 Probability of expected sample size 

 



 

 

Figure 3-5 Expected sample size per correct decision 
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4 A Bayes factor-based two-stage design using an iMOM 

prior for single-arm phase II clinical trials 

In Chapter 3, we presented our Bayesian-frequentist two-stage design for 

single-arm phase II clinical trials. The hypotheses tested in that design are θ ≤ θ0, vs. 

H1: θ ≥ θ1, which are based on the frequentist setting. Under the Bayesian framework, 

the alternative hypothesis is not a simple negation of the null hypothesis. Instead, the 

Bayesian hypothesis testing requires parametric sampling density for data and prior 

density on model parameters.  However, it is always challenging to have a prior 

density on model parameters. One could use a vague prior, but others could argue 

with an objective prior (e.g. optimistic or skeptical prior). Therefore, mis-specification 

of model parameter is a concern. Johnson and Rossell (2009, 2010) pointed out that 

conventionally Bayesian tests use local alternative priors, which assign positive 

probability to the regions of the parameter space that are consistent with the null 

hypothesis. Therefore, these tests provide exponential accumulation of evidence in 

favor of the true alternative hypothesis, but only sub-linear accumulation of evidence 

in favor of true null hypothesis. However, inverse moment (iMOM) priors provide 

approximately linear convergence for the logarithm of the Bayes factor under both 

null and alternative hypothesis. By using an iMOM prior, Johnson and Cook (2009) 

developed a Bayes factor-based continuous monitoring approach for single-arm phase 

II clinical trials. They argued that by using the Bayes factor, mis-specification of prior 

density from the alternative model in a single-arm phase II clinical trial setting can 

only decrease the expected weight of evidence in favor of the alternative model, hence 

the more severely the alternative model deviates from the true parameter model, the 
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more penalty the Bayes factor-based hypothesis testing would pay, no matter whether 

the prior density model is optimistic or skeptical as long as it is mis-specified.  

Taking advantages of the Bayes factor, in this chapter we discuss our Bayes 

factor-based two-stage single-arm phase II clinical trial design.  

4.1 Bayes factor and weight of evidence 

Suppose θ is the parameter of the response rate of the study treatment, and 

θ0∈Θ0 and θ1∈Θ1=Θ-Θ0 are uninteresting response rate and minimum response rate 

of the study treatment under null (H0) and alternative hypothesis (H1) respectively. 

The marginal distribution function mk(x) of the data X under the hypothesis Hk (k = 0, 

1) can be defined as in (4.1), where Pk(x|θ) is the likelihood function and πk(θ) is the 

prior distribution for θ under the hypothesis Hk. 

 ∫
Θ∈

=
k

dHHxPxm kkk
θ

θθπθ )|(),|()(  

           ∫
Θ∈

=
k

dxP kk
θ

θθπθ )()|( ,    k = 0, 1                     (4.1) 

 The Bayes factor BF1 from the alternative hypothesis H1 against the null 

hypothesis H0 is defined as follows, which is the ratio of the marginal densities under 

the hypotheses H1 and H0. 

)(
)(

0

1
1 xm

xmBF =                (4.2a) 

Suppose that πt(θ) is the true distribution of θ, and the prior density π1(θ) is 

incorrect. This means that θ is from the true distribution πt(θ) rather than the 

distribution π1(θ). Define mt(x) similarly using πt(θ) as in (4.1), then the Bayes factor 

BFt from the true distribution of θ against the null hypothesis H0 is: 
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Logarithm of Bayes factor is called weight of evidence. The expected weights 

of evidence EWOEt and EWOE1 from the true distribution πt(θ) and the incorrect 

prior π1(θ) against the null hypothesis H0 are as follows.  

dx
xm
xmxmdxBFxmEWOE

X
t

tX ttt ∫∫ == )
)(
)(log()()log()(

0

   (4.3a) 

dx
xm
xmxmdxBFxmEWOE

X tX t ∫∫ == )
)(
)(log()()log()(

0

1
11    (4.3b) 

As demonstrated by Johnson and Cook (2009), based on Gibbs’ inequality 

(see Appendix A.6 for the details), we can have the following 

 dx
xm
xmxmdx

xm
xmxmEWOEEWOE

X tX
t

tt ∫∫ −=− ]
)(
)(log[)(]

)(
)(log[)(

0

1

0
1  

 0]
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)(log[)(

1

≥= ∫ dx
xm
xmxm

X
t

t          (4.4a) 

 Namely, 

 1EWOEEWOEt ≥         (4.4b) 

 The above inequality implies that the expected weight of evidence against the 

null hypothesis H0 from the true density πt(θ) is always greater than that from an 

incorrect density π1(θ). Moreover, 1EWOEEWOEt = only if πt(θ) = π1(θ). Table 4-1 

shows the classifications of weight of evidence (Kass and Raftery, 1995). A negative 

weight of evidence indicates the evidence in favor of H0. 
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Table 4-1 Classifications of weight of evidence (Kass and Raftery, 1995) 

Evidence 
Weight of evidence 

Against H0 In favor of H0 

Not worth more than a 
bare mention 0 to 1 -1 to 0 

Positive 1 to 3 -3 to -1 

Strong 3 to 5 -5 to -3 

Very strong >5 < -5 

To demonstrate the property with respect to the mis-specification of priors for 

an alternative model as described in (4.4a) and (4.4b), let’s consider the number of 

responses X following a binomial distribution with the parameter θ and sample size n, 

and the prior distributions π0(θ) = I(θ = θ0), π1(θ) = I(θ = θ1) and πt(θ) = I(θ = θt), 

where I(θ) is an indicator function. For example, π0(θ) = 1 if θ = θ0, otherwise π0(θ) = 

0. Suppose θ0 = 0.2, θ1 = 0.4, θt = 0.3 and sample size n =100, the expected weights of 

evidence EWOEt and EWOE1 are: 
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Therefore, as theoretically described in (4.4a) and (4.4b), the expected weight 

of evidence against the null hypothesis H0 can not be increased by assigning an overly 
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optimistic prior for the parameter of interest, which is the treatment effect under the 

framework of single-arm clinical trials. 

4.2 iMOM prior 

4.2.1 iMOM prior 
One of the main advantages of Bayesian clinical trial design is to consider 

external information or an expert opinion as a prior for a trial design. However, 

sometimes it is hard to obtain a reasonable prior. For binary response, historically, 

conjugate beta priors are widely used. However, such priors as local alternative 

probability models (see definition in (4.6) in this section), as Johnson and Cook 

(2009) pointed out, assign positive probability to the regions of the parameter space 

that are consistent with the null hypothesis. 

For Bayesians, under the null and alternative hypotheses, the parameter θ 

follows a prior distribution (Johnson and Rossell, 2008). 

     H0: θ ~ P(θ|H0) ,        (4.5a) 

where P(θ|H0)>0 for any 0Θ∈θ  and P(θ|H0)=0 for any 0Θ−Θ∈θ           

    H1: θ ~ P(θ|H1) ,       (4.5b) 

                   where P(θ|H1)>0 for any 0Θ−Θ∈θ                      

For some ε>0 and ζ>0, if the prior P(θ|H1) satisfies the form (4.6) as defined 

below, then this prior is a local alternative prior density. As indicated in (4.6), this 

prior assigns positive densities to the regions of the parameter space that are 

consistent with the null hypothesis. 

 P(θ|H1)> ε for all Θ∈θ  such that ζθθ
θ

<−
Θ∈

||inf 0
00

                (4.6) 
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However, for every ε >0, if there exists ζ>0 such that the prior P(θ|H1) satisfies 

(4.7), then this prior is a non-local alternative prior density. Based on (4.7), this prior 

has the property of assigning negligible densities to the regions of the parameter space 

that are consistent with the null hypothesis. 

P(θ|H1) < ε for all Θ∈θ such that ζθθ
θ

<−
Θ∈

||inf 0
00

      (4.7) 

Johnson and Rossell (2008) defined an inverse moment (iMOM) prior density. 

By adding the normalization factor Q, we define the normalized iMOM prior density 

in (4.8). This iMOM prior is a non-local alternative prior density, which assigns no 

mass to the values of the parameter θ that are consistent with the null hypothesis. 
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where k, v, and τ > 0. The normalization factor Q is calculated as 
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As θ approaches θ0, the iMOM density is getting closer to 0. This is a property 

of non-local alternative prior density. The tail of an iMOM density is similar to the 

tail of a student’s t-distribution with v degrees of freedom (Johnson and Rossell, 

2008). As an example, Figure 4-1 below shows an iMOM prior when k=1, v=2, τ = 

0.06 and θ0 =0.2. 
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Figure 4-1 iMOM prior density when k=1, v=2, τ = 0.06 and θ0 =0.2 

 

4.2.2 Mis-specification of iMOM prior 

In this section, we use the iMOM prior to demonstrate the Bayes factor’s 

property of mis-specification of priors as described in (4.4a) and (4.4b). Suppose that 

the number of responses X follows binomial(θ, n). Let’s consider the following 

hypotheses. 

 H0: θ ~ π0(θ) = I(θ = θ0), θ0 = 0.2            

 H1: θ ~ π1(θ) = ),,,,( 0 τθθ vkPiMOM ,   k = 1, v = 2 and τ = 0.06  

  Since the mass is condensed at θ0 under the null hypothesis H0, the 

Bayes factor BF1 against the null hypothesis H0 can be defined as follows. 
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Let’s consider the following three hypothetical true distributions for θ: 

(1) πt1(θ) = π0(θ) = I(θ = θ0) 

(2) πt2(θ) = )(
3
1)(

3
2

10 θπθπ +  

(3) πt3(θ) = )(
3
2)(

3
1

10 θπθπ +  

 The expected weight of evidence EWOE1i from the alternative hypothesis H1 

against the null hypothesis H0 with respect to the hypothetical true distribution πti(θ) (i 

= 1, 2, 3) can be calculated as: 
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i = 1, 2, 3           

 The expected weight of evidence EWOEti from the hypothetical true density 

πti(θ) (i = 1, 2, 3) against the null hypothesis H0 is: 
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 Suppose θ0 = 0.2 and θ1 = 0.4 (the mode of the iMOM prior). As presented in 

Table 4-2, the expected weights of evidence from H1 against H0 are -3.53, 1.37 and 

6.28 when sample size n is 40 and the hypothetical true prior distributions for θ are 

πt1(θ) = π0(θ) = I(θ = θ0), πt2(θ)= )(
3
1)(

3
2

10 θπθπ +  and  πt3(θ)= )(
3
2)(

3
1

10 θπθπ +  respectively. 

The corresponding expected weights of evidence are -8.26, 9.98 and 28.23 when 

sample size is 160. In summary of Table 4-2, we can see the following trends: 

• The expected weight of evidence from H1 against H0 increases as hypothetical 

true prior for θ approaches π1(θ).  

• The expected weight of evidence from H1 against H0 is lower than that from 

the true prior distribution of θ.  

• When the true prior distribution πt(θ) is same as the distribution π0(θ) under 

H0, the expected weights of evidence are negative. These negative expected 

weights of evidence are actually in favor of the null hypothesis H0. As sample 

size increases, the expected weight of evidence in favor of H0 increases. 

• When the true prior distribution πt(θ) is closer to π1(θ) under the alternative 

hypothesis H1, as the sample size increases, the expected weight of evidence 

from H1 against H0 increases.   

• As sample size increases, the expected weight of evidence from the true prior 

distribution for θ against H0 increases unless the true prior distribution is π0(θ) 

= I(θ = θ0), which is the density for θ under H0.  In the later case, the expected 

weight of evidence is equal to 0. 
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Table 4-2 Expected weight of evidence against H0 

Sample 

size (n) 

 

πt1(θ) = I(θ = θ0) πt2(θ)= )(
3
1)(

3
2

10 θπθπ +  πt3(θ)= )(
3
2)(

3
1

10 θπθπ +  

EWOE11 EWOEt1 EWOE12 EWOEt2 EWOE13 EWOEt3 

40 -3.53 0 1.37 3.23 6.28 6.97 

80 -5.45 0 3.99 7.05 13.42 14.68 

120 -6.97 0 6.91 10.95 20.78 22.50 

160 -8.26 0 9.98 14.88 28.23 30.37 

4.2.3 Property of iMOM prior 

By using an iMOM prior as a non-local alternative prior density, it is much 

efficient to accumulate evidence in favor of the null hypothesis if the null hypothesis 

is true. To demonstrate this property, let’s consider the following hypotheses. Again, 

suppose that the number of responses X follows binomial (θ, n). 

 H0: θ ~ π0(θ) = I(θ = θ0), θ0 = 0.2        

 H1a: θ ~ ),,,,( 0 τθθ vkPiMOM ,   k = 1, v = 2 and τ = 0.06 

 H1b: θ ~ Beta(θ, 5, 7), 0 < θ ≤ 1       

Under the alternative hypothesis H1a, the parameter θ follows the iMOM 

distribution ),,,,( 0 τθθ vkPiMOM . Whereas, under the alternative hypothesis H1b, the 

parameter θ follows the beta distribution Beta(θ, 5, 7) that is a local alternative prior 

density. Beta(θ, 5, 7)  is a strong optimistic prior used in Section 3.8. Both the Beta(θ, 

5, 7) and ),,,,( 0 τθθ vkPiMOM  where k = 1, v = 2 and τ = 0.06 have the same mode of 

0.4.       
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The expected weight of evidence EWOEa from H1a against H0 when H0 is true 

is same as EWOE11 as described in the previous section. EWOEb in favor of the 

alternative hypotheses H1b when H0 is true can be calculated as follows. 

 ∑
=

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−++

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

x
xnx

xnx
b B

xnxB
x
n

EWOE
0 00

00
)1()7,5(

)7,5(log)1(
θθ

θθ   

where B(a,b) is a beta function with parameters a and b. 

Table 4-3 shows the expected weights of evidence EWOEa, and EWOEb in 

favor of the alternative hypotheses H1a and H1b when the null hypothesis H0 is true. 

These results are also graphically displayed in Figure 4-2 with the classifications of 

the weight of evidence per Kass and Raftery (1995). As shown in Table 4-3 and 

Figure 4-2, all the expected weights of evidence are negative, this means that these 

evidence are actually in favor of the null hypothesis H0.  As the sample size increases, 

both EWOEa and EWOEb in favor of H0 increase, however, EWOEa in favor of H0 

increases much greater as the sample size increases compared to EWOEb. When the 

sample size is between 40 and approximately 70, the iMOM alternative hypothesis 

provides strong evidence in favor of the null hypothesis H0 when H0 is true, and 

provides very strong support to H0 when the sample size is approximately greater then 

70. Whereas, even with the sample size = 160, the local alternative hypothesis 

beta(θ,5,7) is unable to provide strong evidence to support H0 when H0 is true.  

Table 4-3 Expected weight of evidence when H0 is true 

 

Sample size 
(n) 

Alternative hypothesis 

H1a: iMOM H1b: beta(θ,5,7) 

40 -3.53 -1.35 

80 -5.45 -1.71 

120 -6.97 -1.91 

160 -8.26 -2.06 
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Figure 4-2 Expected weight of evidence when H0 is true 

 

Figure 4-3 shows the expected weights of evidence when the true prior 

distribution for θ is πt(θ) = I(θ = θt) with sample size n = 80. For this particular 

example, the expected weight of evidence from iMOM is equal to 0 when θt = 0.21. 

From 0.2 to 0.21, a little increase in θt results in much larger increase in the expected 

weight of evidence from iMOM against H0, whereas, only little increase in the 

expected weight of evidence from Beta(θ, 5, 7) is obtained. After θt = 0.21, both 

iMOM and Beta(θ, 5, 7) provide the similar expected weight of evidence. 
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Figure 4-3 Expected weight of evidence when θ follows πt(θ) = I(θ = θt) and  
n = 80 

 
 

4.3 Two-stage design with Bayes factor and iMOM prior 

For iMOM prior, as Johnson and Cook (2009) suggested, k=1 and v=2 are 

good in general. Set the prior mode of iMOM density at θ1, then we can have (4.9) as 

below by maximizing the non-local alternative prior density as defined in (4.8). 
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τ can be resolved from (4.9) as follows. 
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       (4.10) 

To construct a single-arm two-stage phase II clinical trial design, following 

Johnson and Cook (2009), we define the null and alternative hypotheses as follows. 
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 H0: θ ~ π0(θ) = I(θ = θ0)                (4.11a) 

 H1: θ ~ ),,,,( 0 τθθ vkPiMOM                 (4.11b) 

Let X be the data to be observed. Based on the Bayes rule, P(Hk| X) can be 

expressed as follows. 
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Hence, the (4.13a) can be written as 

 Posterior odds = Bayes factor × prior odds   (4.13b) 

Assume P(H1) = P(H0) = 0.5, then the posterior odds are equal to the Bayes 

factor. Let X1 be the data observed from the first stage, and X be the data from the 

whole study. The decision rules for the two-stage design are constructed as follows. 

• Stop the trial at the first stage for inferiority if the posterior probability 

P(H0|X1) >Pinf  

• Stop the trial at the first stage for superiority if P(H1|X1) > Psup1  

• Claim superiority at the end of the trial if P(H1|X) > Psup2 

where Pinf, Psup1 and Psup2 are threshold posterior probabilities. In practice, 

these threshold values need to be pre-specified. For example, Pinf = 0.8, Psup1 = 0.9, 

and Psup2 ∈ (0.6, 0.8). 
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Besides the Bayesian setting, we control frequentist Type I and Type II error 

rates at the nominal level, for example, control Type I error rate at α = 0.05 and Type 

II error rate at β = 0.2. The frequentist setting is same as what given in Section 3.2. 

4.4 Examples 

 Similar to the examples used to demonstrate our Bayesian-frequentist two-

stage design as discussed in Section 3.8, we use the same design parameters to show 

our Bayes factor-based two-stage design: θ0 =0.2, θ1 =0.4 (the mode of iMOM prior as 

in (4.8)) and the frequentist Type I error rate (α )=0.05, and Type II error rate(β)=0.2. 

We choose the threshold posterior probabilities: Pinf = 0.8, Psup1 = 0.9, and Psup2 ∈  (0.6, 

0.8). The parameters for the iMOM prior are k=1 and v=2.  

In the examples presented below, the design bolded in black is the minimax 

design that minimizes total sample size, and the one bolded in blue is the optimal 

design that minimizes the expected sample size under H0. 

a) Examples  

When Psup2 = 0.6 
      a1 r1 n1  r  n PET(θ0) EN(θ0)PET(θ1)EN(θ1) Type1 Type2 

 [1,]  3  8 16 11 33  0.605  22.7  0.349  27.1 0.049 0.187   

 [2,]  5 10 23 12 35  0.704  26.6  0.498  29.0 0.035 0.198 

 [3,]  2  6 12 12 36  0.578  22.1  0.418  26.0 0.050 0.193 

 [4,]  3  7 14 12 37  0.710  20.7  0.432  27.1 0.047 0.198 

 [5,]  5 10 22 13 38  0.739  26.2  0.448  30.8 0.029 0.199 

 [6,]  2  7 13 13 39  0.509  25.8  0.287  31.5 0.037 0.178 

 [7,]  2  7 13 13 40  0.509  26.3  0.287  32.3 0.043 0.155 

 [8,]  3  8 16 14 41  0.605  25.9  0.349  32.3 0.026 0.197 

 [9,]  3  7 15 14 42  0.666  24.0  0.481  29.0 0.038 0.184 

[10,]  3  7 14 14 43  0.710  22.4  0.432  30.5 0.036 0.194 

[11,]  3  7 15 14 44  0.666  24.7  0.481  30.1 0.048 0.152 

[12,]  3  7 15 15 45  0.666  25.0  0.481  30.6 0.035 0.180 

[13,]  3  7 15 15 46  0.666  25.3  0.481  31.1 0.038 0.164 

[14,]  3  8 16 15 47  0.605  28.2  0.349  36.2 0.036 0.134 

[15,]  3  8 16 16 48  0.605  28.6  0.349  36.8 0.024 0.165 
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[16,]  3  8 16 16 49  0.605  29.0  0.349  37.5 0.027 0.147 

[17,]  4  8 17 16 50  0.769  24.6  0.485  34.0 0.030 0.175 

 

Notation:  

• PET(θ0), PET(θ1): Frequentist PET (probability of early termination) under 

null and alternative hypothesis. 

• EN(θ0), EN(θ1): Frequentist expected sample size under null and alternative  

hypothesis. 

• Type1, Type2: Frequentist Type I and Type II error rate. 

 

When Psup2 = 0.7 
      a1 r1 n1  r  n PET(θ0) EN(θ0)PET(θ1)EN(θ1) Type1 Type2 

 [1,]  5 10 23 12 35  0.704  26.6  0.498  29.0 0.035 0.198 

 [2,]  5 10 22 13 38  0.739  26.2  0.448  30.8 0.029 0.199 

 [3,]  3  8 16 14 41  0.605  25.9  0.349  32.3 0.026 0.197 

 [4,]  3  7 15 14 42  0.666  24.0  0.481  29.0 0.038 0.184 

 [5,]  7 12 30 15 43  0.770  33.0  0.612  35.0 0.020 0.194 

 [6,]  3  7 15 15 44  0.666  24.7  0.481  30.1 0.031 0.198 

 [7,]  3  7 15 15 45  0.666  25.0  0.481  30.6 0.035 0.180 

 [8,]  5 10 23 16 46  0.704  29.8  0.498  34.6 0.019 0.194 

 [9,]  3  8 16 16 47  0.605  28.2  0.349  36.2 0.021 0.185 

[10,]  3  8 16 16 48  0.605  28.6  0.349  36.8 0.024 0.165 

[11,]  3  8 16 16 49  0.605  29.0  0.349  37.5 0.027 0.147 

[12,]  4  8 18 17 50  0.733  26.6  0.531  33.0 0.025 0.187 

 

 When Psup2 = 0.8 
      a1 r1 n1  r  n PET(θ0) EN(θ0)PET(θ1)EN(θ1) Type1 Type2 

 [1,]  7 12 30 15 43  0.770  33.0  0.612  35.0 0.020 0.194 

 [2,]  5 10 23 16 46  0.704  29.8  0.498  34.6 0.019 0.194 

 [3,]  3  8 16 16 47  0.605  28.2  0.349  36.2 0.021 0.185 

 [4,]  7 12 30 17 48  0.770  34.1  0.612  37.0 0.015 0.199 

 [5,]  5 10 22 17 49  0.739  29.1  0.448  36.9 0.015 0.199 

 [6,]  4  8 18 17 50  0.733  26.6  0.531  33.0 0.025 0.187 

 [7,]  7 12 29 18 51  0.797  33.5  0.567  38.5 0.012 0.200 

 [8,]  4  8 18 18 52  0.733  27.1  0.531  34.0 0.022 0.199 

 [9,]  4  8 18 18 53  0.733  27.4  0.531  34.4 0.024 0.183 

[10,]  4  8 18 18 54  0.733  27.6  0.531  34.9 0.026 0.168 

[11,]  4  8 18 19 55  0.733  27.9  0.531  35.4 0.021 0.194 

[12,]  4  9 19 19 56  0.680  30.8  0.402  41.1 0.014 0.170 

[13,]  4  9 19 19 57  0.680  31.2  0.402  41.7 0.016 0.154 

[14,]  4  9 19 20 58  0.680  31.5  0.402  42.3 0.012 0.183 

[15,]  5  9 20 20 59  0.814  27.2  0.530  38.3 0.015 0.198 

[16,]  5  9 20 20 60  0.814  27.4  0.530  38.8 0.016 0.186 
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b) Summary of characteristics of the Bayes factor-based two-stage 

designs using an iMOM prior  

Total sample size 

The characteristics of the Bayes factor-based two-stage design are summarized 

in Table 4-4. For optimal designs, the total sample sizes are 37, 42 and 50 

corresponding to the criterion of claiming superiority when P(H1|X)>0.6, >0.7 and 

>0.8 respectively. For minimax designs, the respective total sample sizes are 33, 35 

and 43.  Apparently, for both optimal and minmax designs, the more stringent 

criterion is used to claim superiority (e.g P(H1|X) > 0.8), the larger total sample size is 

required. 

Probability of early termination and expected sample size 

 For minimax designs, probabilities of early termination under the null 

hypothesis are 0.605, 0.704 and 0.770, and expected sample sizes are 22.7, 26.6 and 

33.0 corresponding to the criterion of claiming superiority at the end of the trial by 

P(H1|X)>0.6, >0.7 and >0.8. Therefore, as the more stringent criterion of claiming 

superiority is applied, although the higher probability of early termination is 

anticipated, the larger expected sample size is required. This is mainly due to the fact 

that the sample size for the first stage n1 increases when the more stringent criterion of 

claiming superiority is applied. In addition, a larger total sample size is required by a 

more stringent criterion of claiming superiority. 

The above findings also apply to the probability of early termination and the 

expected sample size under the alternative hypothesis, as well as for the optimal 

designs under the alternative hypothesis. 
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As expected, the minimax designs require smaller total sample size and larger 

expected sample size under the null hypothesis compared to the optimal designs with 

the same criterion of claiming superiority at the end trial. For example, the total 

sample sizes for the minimax designs are 33, 35 and 43, whereas the total sample 

sizes of 37, 42 and 50 are for the optimal designs corresponding to the criteria of 

P(H1|X)>0.6, >0.7 and >0.8 respectively. 

Table 4-4 Characteristics of Bayes factor-based two-stage designs using 
an iMOM prior 

 

Summary 

In summary of Bayes factor-based two-stage single-arm phase II clinical trial 

designs with an iMOM prior, the more stringent criterion of claiming superiority is 

used for the design, the larger total sample size is required. In addition, for the 

minimax design, although a higher probability of early termination is expected as a 

more stringent criterion of claiming superiority is applied, a larger expected sample 

size is anticipated since a larger sample size for the first stage is required. 

4.5 Comparisons with typical frequentist and Bayesian single-

arm phase II clinical trial designs 

In this Section, we compare our Bayes factor-based two-stage design with 

typical frequentist and Bayesian two-stage designs aforementioned in Section 3.9. 

Bayes factor design with iMOM prior a1 r1  n1  r   n  PET(θ0) EN(θ0) PET(θ1) EN(θ1)  

Optimal(P(H1|X)>0.6 end of the trial)  3  7  14  12  37  0.710  20.7   0.432   27.1  

Optimal(P(H1|X)>0.7 end of the trial)  3  7  15  14  42  0.666  24.0   0.481   29.0  

Optimal(P(H1|X)>0.8 end of the trial)  4  8  18  17  50  0.733  26.6   0.531   33.0  

Minimax(P(H1|X)>0.6 end of the trial)  3  8  16  11  33  0.605  22.7   0.349   27.1  

Minimax(P(H1|X)>0.7 end of the trial)  5 10  23  12  35  0.704  26.6   0.498   29.0  

Minimax(P(H1|X)>0.8 end of the trial)  7 12  30  15  43  0.770  33.0   0.612   35.0  
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Again, in order to have fair comparisons, we evaluate these designs under the same 

design parameters: θ0 = 0.2, θ1 = 0.4 (for the Bayes factor-based designs, θ1 is the 

mode of an iMOM prior), Type I error α = 0.05 and Type II error rate β = 0.2. Similar 

to Section 3.9, we compare these designs with respect to probability of rejecting H0, 

probability of accepting H0, probability of early termination (PET), expected sample 

size, and expected sample size per correct decision. These operating characteristics 

are plotted in Figure 4-2 though Figure 4-6. The properties of the other Bayesian and 

frequentist designs have been provided in Section 3.9, therefore, this section only 

describes Bayes factor-based two-stage designs. 

Probabilities of rejecting and accepting H0 

The probabilities of rejecting and accepting H0 are shown in Figure 4-4 and 

Figure 4-5. Since all of these designs are performed by controlling error rates at the 

same levels of 0.05 for Type I error rate and 0.2 for Type II error rate, their 

probabilities of rejecting and accepting H0 are very similar.  

Probability of early termination 

 As shown in Figure 4-6, When the criterion of P(H1|X)>0.8 is used, the 

probabilities of early termination for our iMOM minimax and optimal design are 

lower than that from Shuster’s design, but higher than Fleming’s design. When the 

criterion of P(H1|X)>0.6 is used, the probabilities of early termination for our iMOM 

minimax and optimal design are slightly lower than Fleming’s design. In addition, 

when θ is around θ0, the probabilities of early termination for the Lee & Liu’s design 

are higher than Bayes factor-based two-stage design with an iMOM prior.  
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Expected sample size 

As described in Section 4.4, the more stringent criterion of claiming 

superiority is used, the larger expected sample size is required by Bayes factor-based 

design. As shown in Figure 4-7, when the criterion P(H1|X)>0.8 is used, the expected 

sample sizes for iMOM designs (optimal and minimax designs) around θ ∈(θ0, θ1) are 

larger than any other two-stage designs with acceptance and rejection boundaries. 

When the criterion P(H1|X)>0.6 is used, there is no much difference in the expected 

sample size among iMOM designs (optimal and minimax designs), Shuster’s, 

Fleming’s or Chang’s design. 

Expected sample size per correct decision 

The expected sample size per correct decision is presented in Figure 4-8. 

When the criterion P(H1|X)>0.8 is used, the expected sample sizes per correct 

decision for  iMOM designs (optimal and minimax designs) at ),
2

( 1
10 θθθθ +

∈ are 

larger than that for other designs. Whereas, when the criteria P(H1|X)>0.6 is used, the 

expected sample size per correct decision is lower compared to other designs. 

Summary 

In summary, for the Bayes factor-based two-stage design using an iMOM 

prior, the criterion based on posterior probability P(H1|X) at the end of the study plays 

an important role. In general, the criterion with a higher P(H1|X) is used, the larger 

samples size (including expected sample size, expected sample size per correct 

decision and total sample size) is required, and higher probability of early termination 

is expected. 

 
 
 



 

 

Figure 4-4 Probability of rejecting H0 

 



 

 

Figure 4-5 Probability of accepting H0 

 



 

 

Figure 4-6 Probability of early termination (PET) 

 



 

 

Figure 4-7 Probability of expected sample size 

 



 

 

Figure 4-8 Expected sample size per correct decision 
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5 Literature review for phase II/III clinical trial design  

Under the conventional drug development framework, phase II and Phase III 

clinical trials are conducted separately in terms of clinical trial operation and 

statistical inference. In a phase II trial, several doses of the new therapy are compared 

to an active control or placebo to identify the “best” one or two doses for further 

investigation. Upon success of phase II trial, a phase III trial as a stand-alone 

confirmatory trial is conducted with the goal of seeking marketing approval from 

health authorities. 

5.1 Phase II/III clinical trial design 

A phase II/III trial design is a program that addresses within a single trial the 

objectives that are normally achieved through separate trials in phase IIb and phase III 

(Gallo, 2006). This uninterrupted adaptive design has advantages of combining 

conventional phase II and phase III operationally and statistical inferentially into a 

single study (e.g. Bretz et al, 2006; Gallo, 2006; Jennison and Turnbull, 2006), 

particularly (1) accelerate drug development process by reducing “white space” 

between the two clinical trial phases; (2) gain statistical efficiency by using first stage 

data on the patients treated with the new therapy with the dose selected for the second 

stage, thus reduce the sample size needed for the second stage. (3) get long term 

safety data earlier since the patients in stage I are followed longer as compared to 

conventional phase II study. 

The idea of combining phase II and phase III trials was proposed as early as in 

1988 by Thall, Simon and Ellenberg for a two-stage design with binary outcome. 

Inoue, Thall and Berry (2002) discussed a seamless phase II/III trial using sequential 

Bayesian design in an oncology study. By use of mixture model-based predictive 

probabilities of concluding superiority of the new therapy to the active control, they 
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repeatedly assessed whether to stop the trial early, continue or shift the phase II into 

phase III. Bretz et al (2006) comprehensively discussed general concepts with respect 

to confirmatory seamless phase II/III clinical trials, and subsequently Schmidli et al 

(2006) provided extensive applications and practical considerations for such seamless 

phase II/III clinical trial designs. Shih (2006), Jennison and Turnbull (2006), and 

Gould (2006) commented Bretz et al (2006)’s and Shimidli et al (2006)’s papers. In 

the comments on dose selection, Shih (2006) emphasized that rather than saying that a 

“winner” dose is selected, it should really be saying that “loser” doses are dropped; 

the futility condition needs to be set clearly to direct selection process, not for the sake 

of controlling the overall Type I error rate, but for the interpretability of the study. 

Gallo et al (2006) provided executive summary of a PhRMA group on 

adaptive trial designs, and addressed logistics, operational, procedural and statistical 

challenges associated with adaptive designs in three areas: dose finding, phase II/III 

trial designs, and sample size reestimation. Maca et al (2006) outlined the feasibilities 

to conduct a phase II/III clinical trial. The most important feasibility consideration is 

the amount of time needed to follow up a patient to reach the study endpoint, on 

which the selection decision is based. If the time needed to reach this endpoint is short 

relative to the total enrollment time of the study, then the enrollment could be 

continued without interruption during this “transition” period. With respect to 

shortening the drug development time by the use of a phase II/III clinical trial, it is 

very important to consider whether this trial setup would achieve the drug 

development objectives within the reduced time frame. Another point to consider is 

drug supply (or drug packaging), which is challenging since the number of treatment 

groups would change during the study. A phase II/III clinical trial is more suitable if 

the drug regimens are not costly and not complicated. 
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5.2 Dose selection 

Stallard and Todd (2003) and Todd and Stallard (2005) proposed an 

unconditional approach to select a single winner dose under normally distributed 

study endpoint. Shun, Lan and Soo (2008) discussed a normal approximation method 

to this unconditional approach. Sampson and Sill (2005) proposed a conditional 

approach to select a single winner dose. Bretz, Schmidli, Koenig, Racine and Maurer 

(2006) elaborated the closed testing procedure for confirmatory seamless phase II/III 

clinical trial designs. Under the closed testing principle, there is no need to pre-

specify dose selection rules in order to control the multiple level type I error rate. 

Recently, Kimani et al (2009) proposed a dose-selection procedure with logistic dose-

response relationship for seamless phase II/III clinical trials. Their approach 

incorporated both efficacy and safety. The choice of the doses to be continued to stage 

II is made by comparing the predictive power of the potential sets of the doses, which 

might continue. 

In some clinical trials, a short-term study endpoint (or early endpoint) is 

considered for dose selection at the interim analysis. Liu and Pledger (2005) proposed 

an adaptive seamless strategy to combine phase II and phase III under a two-stage 

design framework with the consideration of patient long term follow-up for a clinical 

endpoint (or long-term endpoint). In their design, two interim analyses are planned for 

the first stage. The first interim analysis is used to determine a “go or no-go” decision, 

dose selection and sample size adjustment based on the early endpoint; the second 

interim analysis estimates the dose-response curve using the clinical endpoint. The 

second stage starts when the last patient in the first stage is randomized. For the 

second stage, trend statistics are adaptively chosen based on the estimated dose-

response curve in the clinical endpoint of the first-stage patients. At the end of the 
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trial, pairwise statistics for the first stage and adaptive trend statistics for the second 

stage of the clinical endpoint are combined to establish dose-response and to identify 

the lowest effective dose.   

Todd and Stallard (2005) proposed a phase II/III clinical trial design using 

group sequential design, which incorporates treatment selection based upon a short-

term endpoint and final analyses on a long-term primary study endpoint. Through an 

example, they demonstrated that their approach may reduce the total number of 

patients required for the trial.  

5.3 Multiple study endpoints and multiple hypothesis testing 

In general, clinical trials are designed with a primary study endpoint, a main 

secondary endpoint and several other secondary endpoints. The primary study 

endpoint is most clinically relevant in terms of characterizing treatment effect; hence, 

the study design and statistical analysis plan are mainly driven by this endpoint. 

Although the secondary endpoints are intended to enhance characterization of clinical 

benefits of the study treatment, they can not stand alone to demonstrate the treatment 

effect. To evaluate several study endpoints, frequently multiple null hypotheses are 

tested in a hierarchical priori order. For a clinical trial design with a fixed sample size, 

when the statistical test with regard to the primary endpoint achieves statistical 

significance, the secondary endpoints are tested at the same nominal significance level 

α as the primary endpoint. The hypothesis testing process continues in a pre-specified 

hierarchical order until the statistical significance is not achieved. This testing strategy 

ensures a strong control of overall Type I error rate (Hung, Wang, O'Neill, 2007). 

However, in some disease areas, the primary endpoint that completely 

characterizes the disease and best captures treatment effect under clinical 

investigation is not well-established in the clinical community. Hence, changing the 
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primary endpoint seems intuitively acceptable to some researchers (Hung, et al, 

2006). For example, there is no consensus on the single most important primary 

endpoint in the management of primary biliary cirrhosis (PBC), which is a chronic, 

cholestatic disease of unknown etiology involving inflammation and subsequent 

obliteration of the interlobular bile ducts in the liver. Using multiple endpoints is still 

common in clinical trials in these diseases (Sankoh, et al, 2003). Another example of 

disease area is heart failure. The primary study endpoint is a composite of death, 

hospitalization due to worsening heart failure, myocardial infarction, etc. In this 

example, the primary composite endpoint may not be a good measure for the 

treatment effect.  

In some clinical indications, the distinction between the primary and the main 

secondary endpoint is not clear. If the result from the primary endpoint is not 

statistical significant, but the findings based on the main secondary endpoint are very 

positive, then the question arises on whether the trial could be interpreted with this 

main secondary endpoint. Alosh and Huque (2010) proposed a consistency-adjusted 

alpha-adaptive strategy for sequential testing. Under their approach, although a larger 

portion of alpha is allocated to the first endpoint as the designated primary study 

endpoint, the alpha allocated to the main secondary endpoint is adaptive to the 

findings from the first endpoint if a consistency criterion is met. Even if the first 

endpoint does not achieve statistical significance at the pre-allocated significance 

level, it still has a chance to be considered significant when the first consistency 

criterion is satisfied and the second endpoint achieves statistical significance at the 

adaptive significance level. If only the second consistency criterion is met, then only 

the second endpoint has a chance to be used to claim trial success. However, if the 
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first endpoint fails the hypothesis testing and no consistency criteria are met, no 

hypothesis testing is permitted for the second endpoint. 

Frequently, multiple doses of the study drug and multiple endpoints are 

simultaneously considered in a clinical trial. The commonly used multiplicity 

adjustment approaches are Bonferroni, Hochberg and Hommel procedures. However, 

these conventional approaches do not consider the dose-response relationship on each 

endpoint. For this two-dimensional multiplicity problem, by taking into account the 

dose order, Quan et al (2005) proposed six procedures to control family-wise Type I 

error rate in the strong sense:  Bonferroni-closed, Hochberg-Bonferroni, modified 

Hochberg-Bonferroni, improved Bonferroni-closed, improved Hochberg-Bonferroni 

and improved modified Hochberg-Bonferroni procedure. Through numerical 

examples, they showed that these newly proposed procedures in general have higher 

power than the commonly used procedures. 

5.4 Type I error rate control 

Adaptive clinical trial designs have paid much attention to improving the 

efficiency of current drug development processes. For example, the Pharmaceutical 

Research and Manufacturers of America (PhRMA) initiated a working group to 

facilitate a wider usage and regulatory acceptance of these designs (Gallo et al, 2006). 

However, it is well recognized that bias is introduced because of the opportunity to 

choose the successful result from among the multiplicity of options. There are two 

principle issues raised by adaptive design methods (FDA, 2010): 

• Whether the adaptation process has led to design, analysis, or conduct flaw 

that have introduced bias that increases the chance of a false conclusion that 

the treatment is effective (a Type I error) 
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• Whether the adaptation process has led to positive study results that are 

difficult to interpret irrespective of having control of Type I error. 

Controlling Type I error rate has been widely addressed by many researchers. 

For example, p-value combination based on Fisher’s product method (Bauer and 

Köhne, 1994); group sequential test procedure with weighted test (Cui et al., 1999); 

conditional power approach (Shih et all, 2004); p-value combination based on inverse 

normal combination function (Lehmacher and Wassmer, 1999); adaptive group 

sequential design (Müller and Schäfer, 2001); and conditional error function 

(Proschan and Hunsberger, 1995).  

In particular for a phase II/III clinical trial design, Bretz et al (2006) and Bretz 

(2009) discussed Type I error control in the strong sense following the closed testing 

procedure (Marcus, 1976) and conditional invariance principle (Brannath et al, 2002 

and 2007). 

5.5 Application of phase II/III clinical trial designs  

Since logistics, operational, procedural and statistical challenges associated 

with adaptive designs are addressed (e.g. Gallo, 2006), there are some phase II/III 

clinical trials designed recently. A typical example is the adaptive seamless trial of 

integrating indacaterol dose selection in the respiratory field (Barnes et al, 2010). This 

is a conventional two-stage phase II/III trial. At the learning phase II stage, the total 

number of 805 patients were randomized into four indacaterol doses, one placebo and 

two active control groups in a 1:1:1:1:1:1:1 ratio. The primary objective of stage I was 

to determine the risk-benefit of the four doses of indacaterol in order to select two 

doses to be carried forward into the 2nd stage as confirmatory phase. The dose 

selection criteria were pre-set based on two co-primary endpoints: FEV1 and 

FEV1AUC1-4h. At stage II, the additional patients were equally randomized into the 



79 
 

 

two selected indacaterol doses, placebo and an active control groups, which resulted 

in a total of 1683 patients in the four treatment groups continued to the final stage. 

Since there were four indacterol doses studied in this trial, the 1-sided significance 

level of alpha = 0.025/4=.006 were used for the hypothesis testing with respect to the 

primary endpoint - 24 h post dose (trough) FEV1 in patients with COPD (Chronic 

Obstructive Pulmonary Disease) following 12 weeks of treatment.   

In the next sections, we will discuss our varying-stage adaptive phase II/III 

design. Similar to the trial described above, the dose selection in our design is not 

necessarily based on statistically significant difference between treatment arms at an 

interim analysis, instead, more flexibility of dose selection is granted to decision 

makers. However, the dose selection rules have to be pre-specified in the protocol. 

Different from the indacaterol trial, our design requires hypothesis testings at the 

interim analyses in order to determine which trial decision path to be taken. Another 

major difference is that p-value combination test is used to perform final statistical 

analysis in our design. 
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6 A varying-stage adaptive phase II/III clinical trial 
design 

6.1 Introduction 

Suppose a phase II/III clinical trial is planned. Although this is a stagewise 

adaptive study, based on the results from the first interim analysis, the number of 

future stages varies depending on whether an intermediate stage is needed in order to 

obtain adequate information for decision making, such as “go or no-go” and/or dose 

selection. In practice, in addition to dose selection, multiple study endpoints could be 

considered in a phase II study. Due to limited efficacy and safety data on the new 

therapy available at the time of phase II/III trial planning, it could be challenging to 

decide which endpoint should be regarded as primary among several potential 

endpoints. Therefore, the first stage of the study should be designed as a learning 

stage. 

Figure 6.1 shows the flow chart of our varying-stage adaptive phase II/III 

clinical trial design. Following the initial learning stage, the first interim analysis will 

be performed. The goal of this interim analysis is to determine the primary study 

endpoint and choose the optimal dose arm(s) of the study treatment for further 

confirmatory investigation. 

Consider a clinical trial that is initially planned with two study endpoints, up 

to three stages, K dose arms of the study treatment and one control arm. Let θik be the 

parameter of interest with respect to the ith endpoint for the kth dose arm (k=0 for the 

control arm), pijk be the p-value of the hypothesis testing for the difference between 

the kth dose arm (k=1, 2, … K) and the control arm with respect to the ith endpoint (i = 

1, 2) at the jth stage (j = 1, 2, 3), and pij be the p-value of the global null hypothesis 

test across all dose arm(s) at the jth stage with respect to the ith endpoint (see Section 
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6.2 for statistical hypotheses). The p-values pij is based on the data from the jth stage 

only. Let )( j
iα  be the threshold probability for the ith endpoint at the jth interim 

analysis, and )( j
Fα  be futility stop level for the jth interim analysis.  

Initial learning stage (phase II) 

The initial stage (phase II) is considered as a learning stage. Following this 

stage, the first interim analysis is performed. The goal of this interim analysis is to 

decide the primary study endpoint, drop inefficacious/harmful dose arm(s), and adjust 

sample size for the next stage. As shown from the flow chart in Figure 6.1, if 

p11 < )1(
1α , the endpoint 1 is kept as the primary study endpoint as initially planned. 

Following this, inefficacious/harmful dose arm(s) will be dropped and sample size 

adjustment for the final stage will be performed. 

If p11 ≥ )1(
1α  and p21 < )1(

2α , then the endpoint 2 will be considered as the 

primary study endpoint. With respect to the new primary study endpoint (endpoint 2), 

inefficacious/harmful dose arm(s) will be dropped, and sample size adjustment will be 

performed for the next stage.  

Otherwise, if p11 ≥ )1(
1α  and p21 ≥ )1(

2α , the primary endpoint can not be 

decided based on the current interim data. If the p-value p11 ≥ )1(
Fα , then the trial can 

be terminated for futility. Otherwise, two further study stages need to be planned: one 

is intermediate stage; another one is confirmatory stage. The intermediate stage is 

considered as an extension of phase II, from which more data will be obtained, so that 

more informative decisions can be made particularly regarding whether the trial can 

be advanced to the final confirmatory stage.  
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Intermediate stage (extended phase II) 

The intermediate stage is considered as an extended Phase II. The second 

interim analysis is conducted following the intermediate stage. For this interim 

analysis, a combination test is performed to incorporate data obtained from the initial 

stage and the intermediate stage. The combined p-values are based on a combination 

function C(pi1, pi2), where pi1 and pi2 are p-values from the two disjoint stages – initial 

stage and intermediate stage respectively for the ith endpoint. There are mainly two 

approaches available to combine p-values from different stages: one approach is 

Fisher’s product combination method; another approach is based on inverse normal 

combination function (Lehmacher and Wassmer, 1999). In this thesis, Fisher’s 

product combination method is used to combine p-values. Hence C(pi1, pi2) = pi1 pi2, i 

= 1, 2 for study endpoint. 

If combined overall p-value C(p11, p12) < )2(
1α , or C(p11, p12) ≥ )2(

1α  and C(p21, 

p22) < )2(
2α , then the similar design flow as the first interim analysis can be followed to 

change primary study endpoint, drop inefficacious/harmful dose arm(s), and perform 

sample adjustment for the final confirmatory stage. 

If the combined p-value )2(
1α ≤ C(p11, p12) < )2(

Fα  and C(p21, p22) ≥ )2(
2α , the trial 

will be continued to the final stage with the endpoint 1 as the primary study endpoint. 

Similar to the scenarios described above, dose selection and sample size adjustment 

will be carried out for the final stage.  

Otherwise if C(p11, p12) ≥ )2(
Fα  and C(p21, p22) ≥ )2(

2α , the trial will be stopped 

for futility.  
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Figure 6-1 Flow chart of varying-stage adaptive phase II/III clinical trial 
design 
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Final confirmatory stage (phase III) 

The final stage is considered as a confirmatory phase III stage. Similar to the 

second interim analysis, the final analysis incorporates data from previous stage(s) via 

a combination test. The statistical significance will be demonstrated by comparing the 

combined p-value C(pi1, pi2) for two-stage setting or C(pi1, pi2, pi3) for three-stage 

setting against a critical value with respect to the primary study endpoint. 

Determination of the critical values will be discussed in Section 6.4. 

6.2 Statistical hypotheses 

Let D = {1, 2, … , K} be the index set of dose arms of the study treatment. 

The null hypothesis for the comparison between the kth dose arm of the study 

treatment and the control arm is.  

H0ik: θik = θi0,  vs  H1ik : θik > θi0, where, i=1, 2 for endpoint; Dk ∈   (6.1) 

This hypothesis is called elementary null hypothesis. The global null 

hypothesis with respect to the ith endpoint is  

] I I II iKii
Dk

iki HHHHH 0201000 ...: =
∈

, where i=1,2 for endpoint (6.2) 

The global null hypothesis for both study endpoints is 

I 02010 : HHH        (6.3) 

6.3 Conditional distribution of combined p-value  

6.3.1 No primary study endpoint change 

a) Two-stage setting  

If p11 < )1(
1α , the trial will be designed as a two-stage study with the endpoint 1 

as the primary study endpoint. Given this condition, the cumulative distribution 

function of p11 under the global null hypothesis (6.2) is as follows. 
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 Therefore, given the two-stage setting with p11 < )1(
1α  at the interim I, p11 

under the global null hypothesis (6.2) follows the truncated uniform distribution - 

Uniform(0, 
)1(

1α ). 

b) Three-stage setting with p11p12 < )2(
1α  at the interim II 

If 1
1α ≤ p11 < )1(

Fα and p21 ≥ )1(
2α  at the interim I, an intermediate stage will be 

planned. At the interim II, if p11p12 ≤ )2(
1α , the study will be designed as a three-stage 

trial with the endpoint 1 as the primary study endpoint. In this Section, we prove that 

given this condition, p11p12 under the global null hypothesis (6.2) follows the 

truncated uniform distribution Uniform(0, )2(
1α ). We assume p-values from different 

stages are independent. 
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In practice, )2(
1α < )1(

1α , hence, 0 < p11p12 < )2(
1α < )1(

1α . The numerator in (6.5) 

can be derived as: 
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Similarly, the denominator in (6.5) can be derived as: 
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Therefore, given the three-stage setting (p11p12 < )2(
1α ) with the endpoint 1 as 

the primary study endpoint, the cumulative distribution function of p11p12 under the 

global null hypothesis (6.2) is the ratio of (6.6) to (6.7): 
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 where 0 < x < )2(
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1α .  

which is the truncated uniform distribution - Uniform(0, )2(
1α ). 

c) Three-stage setting with )2(
1α ≤ p11p12 < )2(
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2α  at interim II 

At the interim II, if )2(
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2α , then the study will be 
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endpoint. Given this condition, the cumulative distribution function for p11p12 is: 
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The numerator in (6.9) can be derived as: 
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Similarly, the denominator in (6.9) can be derived as: 
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Therefore, given the three-stage setting ( )2(
1α ≤ p11p12 < )2(

Fα  and p11p12 ≥ )2(
2α ) 

with the endpoint 1 as the primary study endpoint, the cumulative distribution 

function of p11p12 under the global null hypothesis (6.2) is the ratio of (6.10) to (6.11): 
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where )2(
1α ≤ x < )2(

Fα .  

Therefore, the conditional distribution function of )2(
1

)2(

)2(
11211

αα
α

−
−

F

pp  is 

Uniform( )2(
1α , )2(

Fα ). 
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6.3.2 With primary study endpoint change 

a) With primary endpoint change at the interim I 

If p11 ≥ )1(
1α  and p21 < )1(

2α , the endpoint 2 is considered as the primary study 

endpoint. Given this condition, the cumulative distribution function of p21 under the 

global null hypothesis (6.2) is as follows. 
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 which is the truncated uniform distribution - Uniform(0, )1(
2α ). 

b) With primary study endpoint change at the interim II  
If )1(

1α ≤ p11 < 1
Fα  and p21 ≥ )1(

2α  at the interim I, an intermediate stage is 

planned. At the interim II, if p11p12 ≥ )2(
1α and p21p22 < )2(

2α , the endpoint 2 is considered 

as the primary study endpoint. Given this condition, the cumulative distribution 

function of p21p22 under the global null hypothesis (6.2) is. 
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In practice, )2(
2α < )1(

2α , hence, 0< p21p22 < )2(
2α < )1(

2α . The numerator in (6.14) 

can be derived as: 
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Similarly, the denominator in (6.14) can be derived as: 

∫ <=≥<=<≥
1

2121
21

)2(
2

22
)1(

221
21

)2(
2

22
)2(

22221
)1(

221 )1(
2

)|Pr(),Pr(),Pr(
α

ααααα dpp
p

pp
p

pppp  

)ln(|)ln( )1(
2

)2(
2

1
21

)2(
2

1

21
21

)2(
2

)1(
2)1(

2

αααα
αα

−=== ∫ pdp
p

   (6.16) 

Therefore, given primary study endpoint change at the interim II, the 

cumulative distribution function of p21p22 under the global null hypothesis (6.2) of is 

the ratio of (6.15) to (6.16). 
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α
αα xpppxpp =<≥<    (6.17)  

where 0 < x < )2(
2α < )1(

2α . 

which is the truncated uniform distribution - Uniform(0, )2(
2α ). 

6.4 Final analysis on the primary study endpoint under H0i 

In this section, we discuss the final analysis on the primary study endpoint 

under the global null hypothesis H0i. The analyses of the comparison between the 

selected dose and the control at multiple level α is presented in Section 7.2. 

6.4.1 Two-stage setting 

(a) No primary study endpoint change at the interim I 

If there is no primary study endpoint change at the interim I, the combined p-

value for the final analysis is defined based on the study endpoint 1 as: 

C(p11, p12) = p11p12      (6.18) 

 The global null hypothesis H01 as specified in (6.2) is rejected if the combined 

p-value = p11p12 < )1(
1α cα*. The critical probability cα* is defined as follows 

corresponding to the significance level α*: 
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  cα* = exp(-0.5 2
4,*α

χ )      (6.19) 

The critical value for the combine p-value is )1(
1α cα*. This is because p11/ )1(

1α  

follows Uniform(0,1) under the null hypothesis H01 given the two-stage setting with 

the endpoint 1 as the primary study endpoint as determined from the interim I.  

(b) With primary study endpoint change at interim I 

If primary study endpoint is changed at the interim I, the combined p-value for 

final analysis is defined based on the endpoint 2. 

C(p21, p22) = p21p22      (6.20) 

The global null hypothesis H02 as specified in (6.2) is rejected if the combined 

p-value = p21p22 < )1(
2α cα*. The critical value of the combine p-value is determined as 

)1(
1α cα* since conditional distribution of p21/ )1(

2α  follows Uniform(0,1) under H02.  

6.4.2 Three stage setting 

Similar to two-stage setting, depending on whether the primary endpoint is 

changed at the interim II or not, final analysis can be carried out as follows. 

(a) No primary study endpoint change at the interim II  -  p11p12 < )2(
1α   

If the primary study endpoint is not changed at the interim II (p11p12 < )2(
1α ), 

the combined p-value is defined as. 

C(p11, p12, p13) = p11p2p13     (6.21) 

The global null hypothesis H01 is rejected if the combined p-value = p11p12p13 

< )2(
1α cα*. The critical value for the combine p-value is )2(

1α cα*. This is because 

p11p12/ )2(
1α  follows Uniform(0,1) under null hypothesis H01 given the three-stage 

setting with the endpoint 1 as the primary study endpoint (p11p12 < )2(
1α ).  
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(b) No primary study endpoint changed at the interim II - )2(
1α ≤ p11p12 

< )2(
Fα  and p21p22 ≥ )2(

2α  

 If )2(
1α ≤ p11p12 < )2(

Fα  and p21p22 ≥ )2(
2α , the primary study endpoint is not 

changed at the interim II. The combined p-value from the three stages is defined as  

P-value = C(p11, p12, p13) = 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
−    (6.22) 

Given )2(
1α ≤ p11p12 < )2(

Fα  and p21p22 ≥ )2(
2α , conditional distribution of 

)2(
1

)2(

)2(
11211

αα
α

−
−

F

pp  is Uniform(0,1). Therefore, the global null hypothesis H01 is rejected if 

the combined p-value = 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα*.  

c) With primary study endpoint change at the interim II 

 If the primary study endpoint is changed at the interim II (p11p12 ≥ )2(
1α  and 

p21p22 < )2(
2α ), the combined p-value is defined based on study endpoint 2 as: 

C(p21, p22, p23) = p21p22p23     (6.23) 

The global null hypothesis H02 is rejected if the combined p-value = p21p22p23 < 

)2(
2α cα*. The critical value for the combine p-value is )2(

2α cα*. This is because 

p21p22/ )2(
2α  follows Uniform(0,1) under H02 given the primary study endpoint change 

at the interim II. 

6.4.3 Summary 

To simplify notation, we use “CP-value” for the combined p-value for the final 

analysis, which is  

• p11p12, two-stage setting, no endpoint change at the interim I 

• p21p22, two-stage setting, endpoint change at the interim I 
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• p11p12p13, three-stage setting, no endpoint change at the interim II (p11p12 

< )2(
1α ) 

• 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− , three-stage setting, no endpoint change at the interim II 

( )2(
1α ≤ p11p12 < )2(

Fα  and p11p12 ≥ )2(
2α ) 

• p21p22p23, three-stage setting, endpoint change at the interim II 

We use acα* denote critical value for CP-value, which is corresponding to the 

significance level of α*, where a is equal to 

• )1(
1α ,   two-stage setting, no endpoint change at the interim I 

• )1(
2α ,   two-stage setting, endpoint change at the interim I 

• )2(
1α ,   three-stage setting, no endpoint change at the interim II (p11p12 

< )2(
1α ) 

• 1,      three-stage setting, no endpoint change at the interim II ( )2(
1α ≤ 

p11p12 < )2(
Fα  and p11p12 ≥ )2(

2α ) 

• )2(
2α ,  three-stage setting, endpoint change at the interim II 

To perform the final analysis, the global null hypothesis H0 as defined in (6.3) 

is rejected at α level if CP-value < acα*. The proof of overall Type I error control is 

provided in the next section. 

6.5 Proof of overall Type I error rate control 

The proof provided here only considers Type I error control for hypothesis 

testing on overall comparison across all the dose arms over the control arm with 

respect to both study endpoints. 
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6.5.1 Trial decision paths 

Trial decision paths are shown in Figure 6-2. Each area in Figure 6-2 is also 

indicated in Figure 6-1 with the same indicator as Am (m=1, 2, 3, 4) or Bn (n=1, 2, 3, 

4). 

6.5.2 Overall Type I error rate control 

Let RH0 denote “reject H0 | H0 is true”, and ER for Type I error rate, then ER 

= Pr(RH0). The global null hypothesis H0 is defined in (6.3), which considers both 

study endpoints. The Type I error rate is calculated based on the trial decision paths as 

shown in Figure 6-2. We use the same notations of Am and Bn (m, n = 1, 2, 3, 4) for 

decision elements, and 
nmBAER  for the Type I error rate for the decision AmBn. We 

assume that the p-values from different stages are independent 

The overall Type I error rate is 

ER = Pr(RH0) = ∑
=

4

1m
Pr(RH0 |Am)P(Am)  

= Pr(RH0|A1) Pr(A1) + Pr(RH0|A2) Pr(A2) + Pr(RH0|A3) Pr(A3)  

   + Pr(RH0|A4) Pr(A4)       (6.24) 

Since Pr(RH0|A4) =  Pr(RH0|B1, A4) Pr(B1 |A4) + Pr(RH0|B2, A4) Pr(B2 |A4)  

                                             + Pr(RH0|B3, A4) Pr(B3 |A4) + Pr(RH0|B4, A4) Pr(B4 |A4) 

The total Type I error rate is 

 ER = Pr(RH0) = Pr(RH0|A1) Pr(A1) + Pr(RH0|A2) Pr(A2) + Pr(RH0|A3) Pr(A3) 

                             + Pr(A4)[ Pr(RH0|B1, A4) Pr(B1|A4) + Pr(RH0|B2, A4) Pr(B2|A4) 

                                           + Pr(RH0|B3, A4) Pr(B3|A4) + Pr(RH0|B4, A4) Pr(B4|A4)] 

                          = Pr(RH0|A1) Pr(A1) + Pr(RH0|A2) Pr(A2) + Pr(RH0|A3) Pr(A3) 

                 + Pr(RH0|B1, A4) Pr(B1, A4) + Pr(RH0|B2, A4) Pr(B2, A4)  

                             + Pr(RH0|B3, A4) Pr(B3, A4) + Pr(RH0|B4, A4) Pr(B4, A4)   
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          (6.25) 

 Since the final analysis is performed at the significance level of α*,  

  Pr(RH0|A1) = Pr(p11p12< )1(
1α cα*| A1, H01) = α*   

  Pr(RH0|A2)= Pr(p21p22< )1(
2α cα*| A2, H02) = α*  

  Pr(RH0|A3) = 0 

 Pr(RH0|B1, A4) = Pr(p11p12 p13< )2(
1α cα*| B1, A4, H01) =α* 

 Pr(RH0|B2, A4) = Pr(p21p22 p23< )2(
2α cα*| B2, A4, H02) =α* 

 Pr(RH0|B3, A4) = 0 

 Pr(RH0|B4, A4) = Pr( 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα* | B4, A4, H01) =α* 

Therefore, Type I error rate for each decision path can be calculated as follows 

 
1AER  = Pr(RH0|A1) Pr(A1)  

           = α* Pr(A1) = α* Pr(p11< )1(
1α ) 

            = α* )1(
1α       (6.26a) 

        
2AER  = Pr(RH0|A2) Pr(A2)  

           = α* Pr(A2) = α* Pr(p11≥ )1(
1α , p21< )1(

2α ) 

           = α* )1(
2α  (1- )1(

1α )     (6.26b) 

        
3AER  = Pr(RH0|A3) Pr(A3)  

     = 0       (6.26c)   

           
14 BAER  = Pr(RH0|B1, A4) Pr(B1, A4) 

   = α* Pr(p11p12< )2(
1α , )1(

1α ≤p11< )1(
Fα , p21≥ )1(

2α ) 

   = α* Pr(p11p12< )2(
1α , )1(

1α ≤p11< )1(
Fα ) Pr(p21≥ )1(

2α )  
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αααα F−      (6.26d) 

        
24BAER  = Pr(RH0|B2, A4)Pr(B2, A4)  

   = α* Pr(p21p22< )2(
2α , p21≥ )1(

2α , )1(
1α ≤p11< )1(

Fα , p11p12≥ )2(
1α ) 

   = α* Pr(p21p22< )2(
2α , p21≥ )1(

2α ) Pr( )1(
1α ≤p11< )1(

Fα , p11p12≥ )2(
1α ) 
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2
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F −−−   (6.26e) 

         
34 BAER  = Pr(RH0|B3, A4)Pr(B3, A4) 

    = 0       (6.26f) 

        
44BAER  = Pr(RH0|B4, A4)Pr(B4, A4)  

   = α* Pr( )2(
1α ≤p11p12< )2(

Fα , p21p22≥ )2(
2α , )1(

1α ≤p11< )1(
Fα , p21≥ )1(

2α ) 

   = α* Pr( )2(
1α ≤p11p12< )2(

Fα , )1(
1α ≤p11< )1(

Fα )Pr(p21p22≥ )2(
2α , p21≥ )1(

2α ) 

   = ∫∫ ≥⋅<≤
1

2121
21

)2(
2

221111
11

)2(

12
11

)2(
1*

)1(
2

)1(

)1(
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)|Pr()|Pr(
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p

pdpp
p

p
p

F F  

    = )ln()( )1(
1

)1(
)2(

1
)2(*

α
αααα F

F − [1- )1(
2α + )2(

2α ln( )1(
2α )]   (6.26g) 

The Type I error rate for the two-stage setting is  
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 ERII = ∑
=

3

1m
Am

ER   

        = 
1AER  + 

2AER  

        = α* [ )1(
1α + )1(

2α  (1- )1(
1α )]     (6.27a) 

The Type I error rate for the three-stage setting is  

 ERIII = ∑
=

4

1
4

n
BA n

ER  

    = 
14 BAER  + 

24BAER  + 
44BAER  

           = α* { )ln()1( )1(
1

)1(
)1(

2
)2(

1 α
ααα F−                  

                                       )ln()]ln([ )1(
2)1(

1

)1(
)2(

1
)1(

1
)1()2(

2 α
α
ααααα F

F −−−   

    + )ln()( )1(
1

)1(
)2(

1
)2(

α
ααα F

F −  [1- )1(
2α + )2(

2α ln( )1(
2α )]} (6.27b) 

 Therefore, the overall Type I error rate is 

     ER = ERII + ERIII  

           = α* { )1(
1α +(1- )1(

1α ) )1(
2α  + )ln()1( )1(

1

)1(
)1(

2
)2(

1 α
ααα F−                  

                                      - )ln()]ln([ )1(
2)1(

1

)1(
)2(

1
)1(

1
)1()2(

2 α
α
ααααα F

F −−   

  + )ln()( )1(
1

)1(
)2(

1
)2(

α
ααα F

F −  [1- )1(
2α + )2(

2α ln( )1(
2α )]} 

        ≤ α       (6.28) 

where α is nominal significance level, under which the overall Type I error is 

controlled. In practice for a clinical trail design, the threshold values )1(
1α , 

)1(
2α , )2(

1α , 
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)2(
2α , )1(

Fα and )2(
Fα , and allowable type I error rate α are given, the significance level 

α* for the final analysis can be resolved from (6.28). 

The above overall Type I error rate control (6.28) is carried out for the primary 

endpoint. However, the another endpoint (the second endpoint) is also a pre-

determined endpoint that could be potentially kept or switched as the primary 

endpoint based on the interim data. Therefore, in practice, it is of interest to test 

whether this endpoint achieves statistical significance. Further, this endpoint could be 

a co-primary endpoint in some therapeutic area. In our future research, we plan to 

develop a statistical method to test the second endpoint under Type I error rate 

control. 
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Figure 6-2 Diagram of trial decision paths 
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7 A varying-stage adaptive phase II/III clinical trial 

design: Dose selection and multiple comparisons on 

the primary study endpoint 

7.1 Dose selection 

At the time of phase II/III clinical trial planning, since limited efficacy and 

safety information on the study treatment is available, several doses are included in 

the initial learning phase or intermediate stage to cover wide range of dosing. The 

goal of the interim analyses is to select doses, and determine sample size to ensure 

adequate statistical power for the final confirmatory stage.  

With respect to dose selection, as described in Section 5.2, many researchers 

have proposed different approaches. For our varying-stage adaptive phase II/III 

clinical trial design, we use closed testing procedure to perform hypothesis testings. 

This approach has been used by many researchers, such as Bauer and Kieser (1999), 

Bretz, Schmidli, Koenig, Racine and Maurer (2006), and Koenig, Brannath, Bretz, 

and Posch (2008). The details of hypothesis testing under closed testing procedure at 

multiple level α for the final analysis is provided in Section 7.2. Since closed testing 

procedure is used, the dose selection rules do not impact Type I error control. 

Therefore, the specific dose selection methods are not covered in this thesis. To apply 

our design, one may choose dose selection criteria based on their own situation. 

Again, Type I error rate is protected by using closed testing procedure here. 

For illustration purpose, in Section 7.2.2 and Chapter 9, two dose arms are 

selected for the final stage; and in our simulation as presented in Section 9.2, the dose 

arm with the smallest p-value or the smallest combined p-value is chosen for the final 

confirmatory stage. 
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7.2 Final analysis of multiple comparisons on the primary 

study endpoint 

7.2.1 Family-wise error rate under multiple comparisons 

The issue of multiplicity rises in practice under multiple comparisons for 

multiple endpoints or multiple treatment arms. In these cases, Family-wise error 

(FWE) rate has to be considered for overall Type I error rate control. FWE is defined 

as the probability that we reject one or more of true null hypotheses (see Section 6.2 

for null hypotheses) in a set of comparisons. FWE is controlled in a ‘weak’ sense if 

FWE rate from a multiple testing procedure is less than or equal to a specified Type I 

error rate (α) when all null hypotheses are true simultaneously, while FWE is 

controlled in a ‘strong’ sense if the FWE rate is maintained less than or equal to a 

specified α level for any subset of true null hypotheses, regardless of which and how 

many of the individual null hypotheses are true. The former FWE control is referred 

as global level α control, and the later FWE control is referred as multiple level α 

control (Bauer, 19991). 

We have addressed the global level α control in Section 6.5. In the next two 

sections, we discuss closed testing procedure and multiple level α control. 

7.2.2 Closed testing procedure 

Marcus et al (1976) introduced the closed testing procedure. Let W be a set of 

null hypotheses, and wi and wj be arbitrary elements of W. The set W is closed under 

intersection if ji ww I  is also an element of W. Following the closed testing principle, 

an elementary null hypothesis is rejected if it is rejected at significance level α and all 

other intersection null hypotheses containing this elementary null hypothesis are 

rejected at the same significance level α. This closed testing procedure preserves FWE 

rate in the strong sense. 
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Apparently, the global null hypothesis H0 defined in (6.3) is closed under 

intersection since all the intersection null hypotheses are nested within the global null 

hypothesis H0. Hence the closed testing procedure can be performed in a stepdown 

process. That is, the global null hypothesis H0 is tested first, if it is rejected, then test 

the intersection null hypotheses one level below, and so on. This process is conducted 

until the level of the elementary null hypothesis. All these hypotheses should be tested 

at the same significance level. 

7.2.3 Multiple level α control 

Multiple level α control is carried out under framework of closed testing 

procedure, so that FWE rate is controlled in the strong sense. As described in Section 

6.4, the global null hypothesis H0 is rejected if CP-value < acα*. In this Section, we 

discuss final analysis to reject elementary null hypothesis H0is (i=1, 2 for endpoint, s 

for a selected dose arm) as defined in (6.1) under closed testing procedure.  

For phase II/III clinical trials, based on interim results, usually one or two 

doses of the study drug are chosen for the final confirmatory stage. Let S be the index 

set of the doses chosen for the final confirmatory phase III. To reject the null 

hypothesis H0is, Ss∈ , all the intersection null hypotheses I
1

1 0:,0
Sk

ikSi HH
∈

 containing 

H0is, SSs ⊆∈ 1  have to be rejected. For example, suppose there are four doses 

included in the initial stage, D = {1, 2, 3, 4}. Based on the interim results, the dose 

arm 2 and 4 are chosen for the final confirmatory phase III stage, S = {2, 4}. To reject 

H0i2, both the intersection null hypothesis H0i,{2, 4} and the elementary null hypothesis 

H0i2 need to be rejected under closed testing procedure.  

However, the intersection null hypothesis testing described above is only 

based on the set S for the dose arms chosen for the final stage. To take full scale of the 

closed testing procedure, the intersection null hypotheses should not be limited to the 
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dose arms in the final stage. Rather, all the intersection null hypotheses including dose 

arms dropped from an interim analysis should be considered as long as these 

intersection null hypotheses contain H0is, such that 

I
1

1 0:,0
Dk

ikDi HH
∈

, },...,2,1{1 KDDs =⊆∈ . For the previous example, to reject H0i2, all 

the null hypotheses H0i,{1,2,3,4}, H0i,{1,2,3}, H0i,{1,2,4}, H0i,{2,3,4}, H0i,{1,2}, H0i,{2,3}, H0i,{2,4}, 

and H0i2 have to be rejected at the same significance level.  

To perform hypothesis testing for the intersection null 

hypothesis I
1

1 0:,0
Dk

ikDi HH
∈

, the p-values from the final stage and previous stage(s) are 

combined. For example, the combined p-value – CP-value = )(
2

)(
1

11 S
i

D
i pp  

},...,2,1{11 KDDSs =⊆⊆∈  under two-stage setting. To simplify notation, we use 

),( 11 SDvalueCP −  to denote the combined p-value for the final analysis to test an 

intersection null hypothesis, which containing H0is and is constructed based on the set 

S1 and D1, such that },...,2,1{11 KDDSs =⊆⊆∈ . Specifically, ),( 11 SDvalueCP −   is 

defined as: 

• )(
12

)(
11

11 SD pp , two-stage setting, no primary endpoint change at interim I 

• )(
22

)(
21

11 SD pp , two-stage setting, primary endpoint change at interim I 

• )(
13

)(
12

)(
11

111 SDD ppp , three-stage setting, no primary endpoint change at 

interim II (p11p12 < )2(
1α ) 

• )(
13)2(

1
)2(

)2(
1

)(
12

)(
11 1

11
S

F

DD

ppp
αα

α
−

− , three-stage setting, no endpoint change at 

interim II ( )2(
1α ≤ p11p12 < )2(

Fα  and p11p12 ≥ )2(
2α ) 

• )(
23

)(
22

)(
21

111 SDD ppp , three-stage setting, primary endpoint change at interim 

II 
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where i =1, 2 for a study endpoint. 

The null hypothesis H0is is rejected if the ),( 11 SDvalueCP −  <acα* for any D1 and 

S1 such that },...,2,1{11 KDDSs =⊆⊆∈ . One should note that the critical value acα* 

for the combined p-value under this closed testing procedure is same as those 

described in Section 6.4 for global null hypothesis (H0) testing. Bauer and Kieser 

(1999) applied the same approach regarding the use of critical value for the combined 

p-values. Also one should note that some researchers consider the intersection null 

hypotheses based on the set D1 since S1 is a reduced set from D1 or S1 is a subset of 

D1 with dropped dose arms excluded.  

The above hypothesis testing strategy follows the closed testing procedure. 

Hence the Type I error rate is controlled in the strong sense. 

Go back to the previous example, to reject the null hypothesis H0i2 (i=1,2 for 

endpoint) under the closed testing procedure, all the intersection null hypotheses 

containing H0i2 and the elementary null hypothesis H0i2 have to be rejected. Hence, the 

following combined p-values have to be calculated and compared to their 

corresponding critical values: CP-value({1,2,3,4}, {2,4}), CP-value({2,3,4}, {2,4}), CP-

value({1,2,4}, {2,4}, CP-value({2,4}, {2,4}), CP-value({1,2,3}, {2}), CP-value({2,3}, {2}), CP-

value({1,2}, {2}) and CP-value({2}, {2}). 

7.2.4 Stagewise p-value adjustment for intersection null hypothesis 

testing 

There are statistical methods available to test intersection null hypotheses. For 

multivariate normally distributed study endpoints, Hotelling’s T2 test can be used. For 

normal and other types of response variables, Bonferroni, Sidak and Simes test can be 

used for stagewise p-value adjustment for intersection null hypothesis testings. 

Suppose there are m comparisons; Bonferroni-adjusted stagewise p-value is min(1, 
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m*min(pk)), k=1, 2, ... , m, where m is the total number of comparisons; Sidak-

adjusted p-value is 1-[1-min(pk)]m; Simes-adjusted p-value is m p(k)/k, where p(k) are 

ordered p-values. 

It is well-known that Bonferroni-type p-value adjustments are conservative. 

Our varying stage adaptive phase II/III clinical trial design is more complex by 

considering varying number of stages, dropping inefficacious/harmful doses and 

choosing a more sensitive study endpoint as the primary study endpoint. To fully 

utilize pre-specified α (allowable Type I error rate) and achieve better statistical 

power, we use statistical models (e.g. ANOVA, ANCOVA, or mixed effect models) 

to obtain stagewise p-values for intersection null hypothesis testings.  
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8 A varying-stage adaptive phase II/III clinical trial 

design: Statistical power and sample size 

determination 

8.1 Distribution of p-value under alternative hypothesis 

Statistical power calculation is performed under the alternative hypothesis 

with effect size τ. For our proposed design, the test statistic is a combined p-value. 

Therefore, to define statistical power, we need to know the distribution of p-value 

under alternative hypothesis. 

The distribution of p-value under alternative hypothesis has been studied by 

many researchers, particularly by Hung, O’Neil, Bauer and Kohne (1997). The 

density function of a p-value p under the alternative hypothesis for a single treatment 

arm trial is 

)(/)()( 11 pp ZmZpg −− −= φτφ ,  0<p<1   (8.1) 

where φ  is the density function of standard normal distribution, τ is effect 

size calculated as treatment effect δ divided by square root of variance σ 

( σδτ /= ). Z1-p is the (1-p)th percentile of the standard normal distribution. 

For two sample scenario with equal number of patients in each treatment arm,  

 
2

2
2

2
1 σσσ +

= , where 2
1σ  and 2

2σ  are variance for both treatment 

groups. 

 m = n/2, where n is sample size per treatment group. 

8.2 Statistical power 

For our varying stage phase II/III clinical trial design, the statistical power is 

calculated based on the trial decision paths as shown in Figure 6-2. We use the same 
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notations of Am and Bn (m, n = 1, 2, 3, 4) for decision elements, 
nm BAPW  for the 

statistical power for the decision AmBn. Again, we assume that the p-values from 

different stages are independent. 

• Decision path A1: Two-stage setting with the study endpoint 1 as the primary 

study endpoint 

Under decision the path A1, for which p11< )1(
1α , the statistical power 

1APW  is 

calculated as 

1APW  = Pr(p11p12 < )1(
1α cα*|A1, τ1)Pr(A1) 

                  = Pr(p11p12 < )1(
1α cα* , p11< )1(

1α | τ1) 

             = 11110

/

0 1212 )()(
)1(

1 11*
)1(

1 dppgdppg
pc

∫ ∫ ⎥⎦
⎤

⎢⎣
⎡α α α

  (8.2a) 

 To claim treatment success, p11p12 < )1(
1α cα* has to be satisfied. However,  

based on the interim I data, if p11< )1(
1α cα* is obtained, then the 2nd stage is deemed not 

necessary, since no matter how much p12 would be, p11p12 < )1(
1α cα* will be met 

anyway. In this case, the trial could be terminated early due to efficacy. Hence, (8.2a) 

can be partitioned as follows with respect to )1(
1α cα*≤p11< )1(

1α  and p11< )1(
1α cα*. 

1APW  = 1111

/

0 1212 )()(
)1(

1

*
)1(

1

11*
)1(

1 dppgdppg
c

pc

∫ ∫ ⎥⎦
⎤

⎢⎣
⎡α

α

α

α

α

 

 + 110 11
*

)1(
1 )( dppg

c

∫
αα

      (8.2b) 

• Decision path A2: Two-stage setting with the study endpoint 2 as the primary 

study endpoint 

2APW  = Pr(p21p22 < )1(
2α cα*|A2, τ1, τ2)Pr(A2) 

     = Pr(p21p22 < )1(
2α cα*, p21< )1(

2α , p11≥ )1(
1α | τ1, τ2) 
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     = Pr(p21p22 < )1(
2α cα*, p21< )1(

2α | τ2) Pr(p11≥ )1(
1α | τ1)   

    Since if p21 < )1(
2α cα* and p11≥ )1(

1α , the 2nd stage is deemed not necessary, 
2APW  can 

be expressed as 

2APW = })()()({ 210 212121

/

0 2222
*

)1(
2

)1(
2

*
)1(

2

21*
)1(

2 dppgdppgdppg
c

c

pc

∫∫ ∫ +⎥⎦
⎤

⎢⎣
⎡ α

α

α αα

α

α

  

11

1

11)1(
1

)( dppg∫⋅ α
      (8.3) 

• Decision path A3: early stop due to futility  

  Under the decision path A3, since the trial is stopped due to futility, the 

statistical power is equal to zero. 

 
3APW  = 0        (8.4) 

• Decision path A4B1: Three-stage setting with the endpoint 1 as the primary 

endpoint (p11p12< )2(
1α ) 

 
14BAPW  = Pr(p11p12p13 < )2(

1α cα* |A4&B1, τ1, τ2)Pr(A4&B1) 

   = Pr(p11p12p13< )2(
1α cα*,  p11p12<

)2(
1α , )1(

1α ≤p11< )1(
Fα |τ1)Pr(p21≥ )1(

2α | τ2)     

                                                                                                             (8.5a) 

Similar to the previous arguments, p11p12 < )2(
1α cα* leads to trial success 

without the need for the final stage. Therefore, the statistical power for the decision 

path A4B1 is 

14BAPW  = 1111

/

/ 1212

/

0 1313 )()()({
)1(

)1(
1

11
)2(

1

11*
)2(

1

1211*
)2(

1 dppgdppgdppgF p

pc

ppc

∫ ∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡α

α

α

α

α

α

α

 

   21

1

211111

/

0 1212 )1(
2

)1(

)1(
1

11*
)2(

1 )(})()( dppgdppgdppgF pc

∫∫ ∫ ⋅⎥⎦
⎤

⎢⎣
⎡+

α

α

α

α α

   (8.5b) 
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• Decision path A4B2: Three-stage setting with the endpoint 2 as the primary 

endpoint  

    
24 BAPW  = Pr(p21p22p23 < )2(

2α cα* |A4&B2, τ1, τ2)Pr(A4&B2) 

     =Pr(p21p22p23< )2(
2α cα*, p21p22< )2(

2α  p21≥ )1(
2α |τ1) 

·Pr(p11p12≥ )2(
1α , )1(

1α ≤p11< )1(
Fα |τ2) 

    = 2121

1 /

0 2222

/

0 2323 )()()()1(
2

21
)2(

2 2221*
)2(

2 dppgdppgdppg
p ppc

∫ ∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

α

α α α

 

  1111

1

/ 1212 )()(
)1(

)1(
1 11

)2(
1

dppgdppgF

p∫ ∫ ⎥⎦
⎤

⎢⎣
⎡⋅

α

α α
   (8.6a) 

Similarly, partition (8.6a) with respect to )2(
2α cα*≤p21p22 < )2(

2α  and p21p22 

< )2(
2α cα*, we have  

           
24 BAPW  = 2121

1 /

/ 2222

/

0 2323 )()()({
)1(

2

21
)2(

2

21*
)2(

2

2221*
)2(

2 dppgdppgdppg
p

pc

ppc

∫ ∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

α

α

α

α

α

α

 

   })()( 2121

1 /

0 2222)1(
2

21*
)2(

2 dppgdppg
pc

∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧+

α

α α

  

   1111

1

/ 1212 )()(
)1(

)1(
1 11

)2(
1

dppgdppgF

p∫ ∫ ⎥⎦
⎤

⎢⎣
⎡⋅

α

α α
   (8.6b) 

• Decision path A4B3: stop due to futility at interim II 

  Since the trial is stopped due to futility under the decision A4B3, the statistical 

power is equal to zero. 

  
34BAPW  = 0       (8.7) 

• Decision path A4B4:Three-stage setting with the study endpoint 1 

( )2(
1α ≤p11p12< )2(

Fα  and p21p22 ≥ )2(
2α ) as the primary study endpoint 

44BAPW  = Pr( 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα* |A4&B4, τ1, τ2)Pr(A4&B4) 
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     = Pr( 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα*, )2(

1α ≤p11p12< )2(
Fα , )1(

1α ≤p11< )1(
Fα |τ1) 

·Pr(p21p22≥ )2(
2α , p21≥ )1(

2α  |τ2) 

                  = 1111

/

/ 1212

)/()(

0 1313 )()()(
)1(

)1(
1

11
)2(

11
)2(

1

)2(
11211

)2(
1

)2(
* dppgdppgdppgF F Fp

p

ppc

∫ ∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−α

α

α

α

αααα

 

  2121

1 1

/ 2222 )()(
)1(

2 21
)2(

2

dppgdppg
p∫ ∫ ⎥⎦

⎤
⎢⎣
⎡⋅

α α
   (8.8a) 

 To satisfy 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα*, we need to have )2(

11211

)2(
1

)2(
*

13
)(

α
ααα

−
−

<
pp

cp F . 

However, if )2(
1α ≤p11p12 < )2(

1
)2(

1
)2(

* )( αααα +−Fc , 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
− <cα* satisfies no 

matter how much p13 would be. Therefore, (8.8a) can be partitioned with respect to 

)2(
1

)2(
1

)2(
* )( αααα +−Fc ≤p11p12 < )2(

Fα  and p11p12< )2(
1

)2(
1

)2(
* )( αααα +−Fc .  
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dppgdppg
p∫ ∫ ⎥⎦

⎤
⎢⎣
⎡⋅
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   (8.8b) 

Overall statistical power is 

 Power = ∑
=

3

1m
Am

PW +∑
=

4

1
4

n
BA n

PW  

  = 
1APW  + 

2APW  + 
14BAPW  + 

24 BAPW  + 
44BAPW   (8.9) 
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8.3 Threshold probabilities and sample size determination 

8.3.1 α1
(1) and  αF

(2) 

Under the decision path A4B3, the conditions p11 p12 ≥ αF
(2) and )1(

1α ≤p11< )1(
Fα  

have to be met. Hence p12 ≥ αF
 (2)/ p11 ≥ αF

 (2)/ )1(
1α . In order to have the p-value p12 ≤ 1, 

the following condition has to be met. 

 αF
(2) ≤ )1(

1α         (8.10) 

8.3.2 α1
(1),  αF

(1) and sample size n1 
 

We assume the two study endpoints follow normal distributions. As described 

previously, based on the first interim analysis, the study could be designed as a two-

stage trial or a three-stage trial. In our proposed design, we determine the sample size 

n1 for the initial stage to detect the treatment effect at significance level α1
* with 

statistical power 1- γ1. 

         2

2
1

1

)(2
1*

1

τ
γα

ZZ
n

+
= −                                                                   (8.11) 

We recommend α1
(1)= 0.05 ~ 0.1, and αF

(1) = 0.2 ~0.35. We noticed that, in 

general, if α1
*

 = α1
(1)

 is used, the sample size n1 per (8.11) is relatively larger, whereas 

if α1
*

 =  αF
(1)

 is used, the smaller sample size n1 is obtained. Although one may use a 

α1
*

 level he/she prefers, α1
*

 = (α1
(1) + αF

(1))/2 gives us reasonable sample size n1. On 

the other hand, one may use a feasible sample size n1 for the first stage based on their 

financial resource and drug development timeframe. 

In practice, γ1 and τ are given for a trial design. The formula (8.11) provides 

sample size per treatment group for the initial stage. One may use different effect size 

τ for each dose arm and get a different sample size for each treatment group. Also one 

may use an average effect size, and plug it into (8.11) to get a sample size per 



111 
 

 

treatment group. In this thesis, the latter approach is used for simplicity, but without 

loss of generality. 

8.3.3 Sample size n2(3) under three-stage setting 
 

Under the three-stage setting, the sample size for the intermediate stage n2(3) 

can be determined based on a updated effect size τ* (e.g average effect size observed 

from the first stage) at significance level α2
* with power 1-γ2(3).  

  2*

2
1

)3(2 )(

)(2
)3(2*

2

τ
γα

ZZ
n

+
= −      (8.12) 

In practice, the same stagewise significance level can be used for the 

intermediate stage and the initial stage, therefore, α2
* can be set as follows although 

this is not required and one may use other reasonable significance levels. 

  α2
* = exp(-0.5 2

4*,1α
χ ) /p11       

In practice, γ2(3) is given (e.g γ2(3)
 = 80%). 

8.3.4 Sample size determination for the final confirmatory stage 

under two-stage setting 

Following the concept of Shih et al (2004), for our varying stage adaptive 

phase II/III clinical trial design, we propose the use of conditional power to determine 

sample size for the final confirmatory stage. In this section, we introduce sample size 

determination for the final confirmatory stage under two-stage setting - n2(2). Sample 

size determination under three-stage setting will be discussed in the next section. 

As described in Section 6.1, if p11< )1(
1α , or p11> )1(

1α  and p12 < )1(
2α , the trial is 

designed under two-stage setting with the 2nd stage as the confirmatory stage. Given 

the p-value pi1 from the first interim analysis and the updated effect size τ* (based on 

internal and/or external information), the conditional power is calculated as. 

*),|/Pr(*),|Pr( 11*21*21 ττ αα iiiiii ppacppacpp <=<  
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= ∫
1* /

0 212 *),|(ipac

iii dpppgα τ  

> 1-γ2(2)       (8.13) 

where i =1, 2 for endpoint; 1- γ2(2) is the pre-specified conditional power; a = 

)1(
1α  if the primary study endpoint is not changed; a = )1(

2α  if the primary study 

endpoint is changed to the endpoint 2. 

Since the density function g for the p-value is a function of sample size n2(2), 

by solving the inequality (8.13), the sample size n2(2) can be determined. 

8.3.5 Sample size determination for the final confirmatory stage 

under three-stage setting 

Under three stage setting, when p11p12< )2(
1α , or p11p12> )2(

1α  and p21p22< )2(
2α , 

the conditional power is calculated as follows given the combined p-values pi1pi2 from 

the 2nd interim analysis and updated effect size τ*. 

   *),/Pr(*),|Pr( 21*321*321 ττ αα iiiiiiii ppacpppacppp <=<  

= ∫
21* /

0 3213 *),|(ii ppac

iiii dppppgα τ  

> 1-γ3         (8.14) 

where i = 1, 2 for endpoint, and γ3 is pre-specified conditional power. 

If )2(
1α ≤p11p12< )2(

Fα  and p21p22 ≥ )2(
2α , the significance of trial results is 

evaluated by whether the combined p-value 13)2(
1

)2(

)2(
11211 ppp

F αα
α

−
−  exceeds the critical 

value cα*. Therefore, the conditional power is  

*)),/()(Pr(*),|Pr( )2(
11211

)2(
1

)2(
*131211*13)2(

1
)2(

)2(
11211 τααατ

αα
α

αα −−<=<
−
− ppcpppcppp

F
F

           

 = ∫
−− )/()(

0 13121113

)2(
11211

)2(
1

)2(
* *),|(

αααα τ
ppc F dppppg  
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> 1-γ3  (8.15) 

The conditional power as presented in (8.14) or (8.15)  is a function of sample 

size n3 given the combine p-value and updated effect size, therefore, the sample size 

n3 for the final confirmatory stage under three-stage setting can be obtained by 

solving the inequality (8.14) or (8.15). 
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9 A varying-stage adaptive phase II/III clinical trial 

design: simulations and a special case of the 

proposed design 

9.1 Illustration 

To demonstrate our proposed design, in this section, we illustrate the design 

with a hypothetical example. Suppose an adaptive phase II/III clinical trial is planned, 

for which two potential endpoints and four doses of the study drug and a control are 

considered. Hence, D = {1,2,3,4} and K = 4. Assume the two endpoints follow 

normal distributions, and anticipated effect size τ = 1/3 by average over the four dose 

arms. Effect size here is defined as anticipated treatment difference between a dose 

arm and the control arm divided by the common standard deviation.  

Suppose the trial is designed with overall Type I error rate α = 0.05 (two-

sided) and power = 1 - β = 80%. We choose )1(
1α  = )1(

2α = 0.15, and )1(
Fα = 0.35. To 

have the thresholds probabilities at the 2nd stage same to the 1st stage, we choose 

)2(
1α = )2(

2α = exp(-0.5 2
4,15.0χ ) = 0.034, and  )2(

Fα = exp(-0.5 2
4,35.0χ ) = 0.109. Plug in these 

parameters into (6.28), we get α* = 0.1378 and cα* = exp(-0.5 2
4,1378.0χ ) = 0.0307. 

Per (8.11), the sample size for the initial stage is 42 per treatment group, 

which is determined to detect effect size τ = 1/3 at significance level of α1
* = 

( )1(
1α + )1(

Fα )/2 = 0.25 with statistical power 1 - γ1 = 80%. Suppose analyses based on 

ANOVA models are performed with respect to the study endpoints. From the first 

interim analysis, p11 = 0.1 < )1(
1α = 0.15 is obtained for the global null 

hypothesis 01401301201101:01 HHHHHH
Dk

k IIII =
∈

. Hence the trial is designed as a 
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two-stage study. In comparing efficacy and safety profiles, suppose the dose arm 2 

and 4 are chosen for the final stage (S = {2. 4}). 

Suppose the updated effect size τ* is same as initial effect size τ. From (8.13), 

we get the sample size for the final confirmatory stage (2nd stage) is 115 per treatment 

arm, which satisfies conditional power = 80%.  

With respect to the primary study endpoint – endpoint 1, suppose the p-values 

from both stages are obtained as summarized in the following table under the 

corresponding null hypotheses. 

Stage Null hypothesis P-value 

I H01,{1,2,3,4} 0.100 

H01,{1,2,3} 0.141 

H01,{1,2,4} 0.091 

H01i,{2,3,4} 0.096 

H01,{1,2} 0.130 

H01,{2,3} 0.135 

H01,{2,4} 0.070 

H012 0.085 

     II H01,{2,4} 0.031 

H012 0.025 

The critical value for combined p-value = )1(
1α cα* = 0.15*0.0307 = 0.0046. The 

Combined p-values are as follows:  

CP-value({1,2,3,4}, {2,4}) = 0.100*0.031= 0.0031< )1(
1α cα* 

CP-value({1,2,4}, {2,4}) = 0.091*0.031= 0.0028< )1(
1α cα*

 

CP-value({2,3,4}, {2,4}) = 0.096*0.031 = 0.0030 < )1(
1α cα* 

CP-value({2,4}, {2,4}) = 0.070*0.031 = 0.0022 < )1(
1α cα* 

CP-value({1,2,3}, {2}) = 0.141*0.025 = 0.0035> )1(
1α cα* 



116 
 

 

CP-value({1,2}, {2}) = 0.130*0.025 = 0.0033< )1(
1α cα* 

CP-value({2,3}, {2}) = 0.135*0.025 = 0.0034< )1(
1α cα* 

CP-value({2}, {2}) = 0.085*0.025 = 0.0021< )1(
1α cα* 

Apparently, the CP-values for all the intersection null hypothesis containing 

H012 as well as for the elementary null hypothesis H012 are less than the critical value 

)1(
1α cα*. Hence, we can reject H012 at significance level of two-sided α = 0.05 in the 

strong sense, and claim dose arm 2 is superior compared to the control with respect to 

the primary endpoint – endpoint 1, which is chosen based on interim I analysis. 

The similar analysis can be carried out for the dose arm 4. 

9.2 Simulations 

The objective of this simulation is to demonstrate the properties of the 

proposed design. Suppose for an adaptive phase II/III clinical trial, two potential 

endpoints and three doses of the study drug and a control are considered. Hence, D = 

{1, 2, 3} and K = 3. Assume both endpoints follow normal distributions. The 

following are assumed distributions for each treatment arm and study endpoint. The 

average effect size τ1 = 0.35 for both endpoint 1 and endpoint 2.  

Study 
Endpoint 

Distribution 
Control Dose 1 Dose 2 Dose 3 

1 N(40, 202) N(45, 202) N(47, 202) N(49, 202) 
2 N(10, 152) N(14, 152) N(15, 152) N(17, 152) 

 
We choose )1(

1α  = )1(
2α = 0.1, and )1(

Fα = 0.3. To have the threshold probabilities 

at the 2nd stage same to the 1st stage although this setup is not necessary, we choose 

)2(
1α = )2(

2α = exp(-0.5 2
4,1.0χ ) = 0.0205, and )2(

Fα = exp(-0.5 2
4,3.0χ ) = 0.0872. We control 

the family wise Type I error rate α = 0.05 (two-sided). By plugging in these 

parameters into (5.28), we obtain α* = 0.1778 and cα* = exp(-0.5 2
4,0.1778 χ ) = 0.0428. 
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Based on (8.11), the sample size for the initial stage is 47 per treatment group, 

which is determined to detect effect size τ = 0.35 at significance level of α1* = 

( )1(
1α + )1(

Fα )/2 = 0.2 with statistical power 1 - γ1 = 80%. To determine sample size for 

next stage based on interim results, we use 80% conditional power.  

Same as illustration as presented in the previous section, to control Type I 

error rate in the strong sense, the closed testing procedure (Marcus, 1976) is used in 

the simulations.  

9.2.1 Dunnett test 

For simplicity, we choose the dose arm with the smallest p-value from stage I 

or the smallest combined p-value from the first two stages as the dose arm together 

with the control for the final stage under two-stage or three-stage setting respectively. 

To compute the p-values, Dunnett test (Dunnett, 1955) under one-way ANOVA 

analysis is used for many-to-one comparisons (each treatment vs control). Dunnett's 

test holds the family wise error rate to a level not exceeding the pre-specified 

allowable Type I error rate α. Let kX  (k =1, 2, …, K ) and 0X  be the mean values of 

the primary endpoint, and nk and n0 be the number of subjects for the treatment k and 

the control group. Define tk representing two-sample t-statistic as follows. 

0

0

11
nn

s

XXt

k

k
k

+

−
=       (9.1) 

where s is the square root of the ANOVA mean square error (MSE). The 

treatment k is significantly different from the control (two-sided test) if the following 

condition is satisfied. 

  ),...,,,,,(|| 21 K
vKdtk ρρρα≥      (9.2) 
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where ),...,,,,,( 21 K
vKd ρρρα  is the critical value of the "many-to-one t 

statistic" (Miller 1981; Krishnaiah and Armitage 1966) for the treatment group k to be 

compared to a control, with v  = ∑
+

=

+−
1

1
)1(

K

i
i Kn  degrees of freedom and correlations 

K
ρρρ ,...,, 21 , where )/( 0 iii nnn +=ρ . The correlation terms arise because each of 

the treatment means is being compared to the same control.  

The critical value ),...,,,,,( 21 K
vKd ρρρα  is the solution of the following 

equation with respect to the variable q (Hsu 1996). 

αγ
ρ

ρ
ρ

ρφ −=
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ii
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 (9.3) 

where φ  and Φ are probability density function and cumulative distribution 

function of standard normal distribution. )(sγ  is defined as 

21
12/

2/ 2

2)2/(
)(

vs
v

v

v

es
v

vs
−−

−Γ
=γ  

The following formula (9.4) defines the Dunnett adjusted p-value (two-sided) 

under the global null hypothesis H0. The adjusted p-values for intersection null 

hypotheses can be calculated in a similar way. For the final stage, since only one dose 

arm is chosen together with the control arm in the simulations to be presented in the 

next section, the Dunnett test is reduced to a t-test. 

 )),...,,,,,(|)||,...,||,(max(| 2121 K
vKdtttP K ρρρα>    (9.4) 

9.2.2 Simulation on overall Type I error rate 

As defined in (6.1), the elementary null hypothesis for kth treatment vs the 

control is H0ik: θik = θi0 (k=1, 2, 3 for treatment group, i = 1, 2 for endpoint). As 

defined in (6.2), the global null hypotheses with respect to the endpoint 1 and 
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endpoint 2 are I I 01301201101 : HHHH  and I I 02302202102 : HHHH . The global null 

hypothesis for both study endpoints is I 02010 : HHH .  

Table 9-1a Type I error rates (per simulation vs per theory) 

Decision path Per simulation Per theory 

A1 0.0169 0.0178 

A2 0.0166 0.0160 

A4B1 0.0036 0.0036 

A4B2 0.0017 0.0015 

A4B4 0.0107 0.0111 

Total  0.0495 0.05 

  

For each decision path AmBn (m, n = 1, 2, 3, 4), the Type I error rate under the 

global null hypothesis H0 can be calculated theoretically per (6.26) as derived in 

Section 6.5.2. Table 9-1a presents Type I error rates per simulation vs per theoretical 

calculation for each decision path. The simulated overall Type I error rate is 0.0495 

based on 100,000 replicates of adaptive phase II/III clinical trials. This simulated 

Type I error rate is very close to the theoretically calculated rate of 0.05. For each 

decision path, the difference in Type I error rate between the simulation result and 

theoretical result is less than 0.001. 

Further simulations are performed with the consideration of the correlation 

between the two endpoints within a stage. Table 9-1b summarizes the simulated Type 

I error rates based on 20,000 replicates. The simulated overall (total) Type I error 

rates are 0.05, 0.0483, 0.0472 and 0.0398 when the correlation coefficient between the 

two endpoints is assumed 0, 0.25, 0.5 and 0.75 respectively. Apparently, as the two 

endpoints are more correlated, the overall Type I error rate becomes smaller. 

Therefore, it is conservative to assume the independence of the two endpoints when to 

calculate Type I error rate. 
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Table 9-1b  Simulated Type I error rates 

Decision 

path 

Correlation coefficient  

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 

A1 0.0173 0.0192 0.0192 0.0175 

A2 0.0156 0.0132 0.0130 0.0080 

A4B1 0.0035 0.0032 0.0034 0.0031 

A4B2 0.0020 0.0014 0.0013 0.0006 

A4B4 0.0116 0.0114 0.0102 0.0106 

Total 0.0500 0.0483 0.0472 0.0398 

 
9.2.3 Simulation on statistical power 

Simulation on statistical power under the alternative hypothesis for the 

endpoint 1 

Under the alternative hypothesis HA1: θ11, θ12 or θ13 differ from θ10 for the 

endpoint 1, we simulate 50,000 adaptive Phase II/III trials. Table 9-2 presents the 

simulated statistical powers vs theoretical results per (8.2a) through (8.9) as derived in 

Section 8.2. The simulated overall statistical power is 70.99%, which is similar to the 

power of 72.40% per theoretical calculation. As expected, the statistical powers 

concentrated on the decision paths A1, A4B1 and A4B4 since the simulation is 

performed under the alternative hypothesis with respect to the endpoint 1 and null 

hypothesis for the endpoint 2. The powers for the decision path A2 and A4B2 are 

actually Type I error rates under the null hypothesis H02 with respect to the endpoint 

2. The total Type I error rate from the decision path A2 and A4B2 is 0.0064 + 0.0007 = 

0.0071, which is much less than α = 0.05 (two-sided). The mean sample sizes are 38 

and 39 for the final stage under the decision path A1 and A2; 33 for the intermediate 

stage; and 45, 31 and 61 for the final stage under the decision path A4B1, A4B2 and 

A4B4 respectively.  
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Table 9-2 Statistical power under the alternative hypothesis for the 
endpoint 1 

Decision path Per simulation Per theory 

A1 0.5719 0.5714 

A2 0.0064 0.0060 

A4B1 0.0822 0.0924 

A4B2 0.0007 0.0003 

A4B4 0.0487 0.0539 

Total  0.7099 0.7240 

 
Simulation on statistical power under the alternative hypothesis for the 

endpoint 2 

Similar to the simulation given in the previous section, 50,000 adaptive Phase 

II/III trials are simulated under alternative hypothesis HA2: θ21, θ22 or θ23 differ from 

θ20 for the endpoint 2. Table 9-3 summarizes the simulated statistical powers vs 

theoretical results. The simulated overall statistical power is 58.17%, which is close to 

the power 56.21% per theoretical calculation. The mean sample sizes are 38 and 37 

for the final stage under the decision path A1 and A2; 37 for the intermediate stage; 

and 38, 43 and 43 for the final stage under the decision path A4B1, A4B2 and A4B4 

respectively. 

Table 9-3 Statistical power under the alternative hypothesis for   
endpoint 2 

 
Decision path Per simulation Per theory 

A1 0.0177 0.0178 

A2 0.5338 0.5117 

A4B1 0.0014 0.0014 

A4B2 0.0264 0.0292 

A4B4 0.0025 0.0020 

Total  0.5817 0.5621 
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Simulation on statistical power under the alternative hypotheses for 

both endpoints 

Table 9-4a shows the simulated statistical powers vs theoretical results. The 

simulations are carried out with 50,000 adaptive phase II/III trials under both 

alternative hypotheses HA1: θ11, θ12 or θ13 differ from θ10 for the endpoint 1 and HA2: 

θ21, θ22 or θ23 differ from θ20 for the endpoint 2. The simulated overall statistical power 

is 83.57%, which is similar to the power 82.67% per theoretical calculation. The mean 

sample sizes are 38 and 37 for the final stage under decision path A1 and A2; 33 for 

the intermediate stage; and 45, 45 and 61 for the final stage under the decision path 

A4B1, A4B2 and A4B4 respectively. Since the statistical powers mainly come from the 

decision paths A1 and A2, more weights are put on the two-stage setting in this 

varying-stage adaptive Phase II/III design. 

To consider the correlation of the two endpoints within a stage, we performed 

further simulations on statistical power. Table 9-4b presents the simulation results 

based on 15,000 replicates. 

Table 9-4a Statistical powers under alternative the hypotheses for both 

endpoints 

 
Decision path Per simulation Per theory 

A1 0.5721 0.5714 

A2 0.2094 0.1927 

A4B1 0.0306 0.0388 

A4B2 0.0126 0.0136 

A4B4 0.0111 0.0102 

Total  0.8357 0.8267 

 
The simulated overall (total) statistical powers are 83.18%, 80.58%, 78.18% 

and 75.78% when the correlation coefficient between the two endpoints is assumed 0, 
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0.25, 0.5 and 0.75 respectively. From this simulation, as the two endpoints are more 

correlated, the simulated overall statistical power becomes smaller.  

Table 9-4b Simulated statistical powers under alternative the hypotheses 
for both endpoints 

Decision  

path 

Correlation coefficient 

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75 

A1 0.5693 0.5677 0.5647 0.5696 

A2 0.2091 0.1782 0.1472 0.1076 

A4B1 0.0310 0.0363 0.0411 0.0487 

A4B2 0.0114 0.0105 0.0113 0.0103 

A4B4 0.0110 0.0131 0.0175 0.0217 

Total 0.8318 0.8058 0.7818 0.7578 

 
9.3 A special case of the varying-stage adaptive phase II/III 

clinical trial design 

 For the varying-stage adaptive phase II/III clinical trial design presented in the 

previous sections, the probability of having the three-stage setting is much lower than 

that for the two-stage setting. For the example presented in the previous simulations 

with )1(
1α  = )1(

2α  = 0.1, )1(
Fα  = 0.3, )2(

1α  = )2(
2α  = 0.0205, and )2(

Fα  = 0.0872, the 

probabilities of the decision paths under the global null hypothesis are 

Pr(A1) = Pr(p11< )1(
1α ) = )1(

1α = 0.1       

Pr(A2) = Pr(p11≥ )1(
1α , p21< )1(

2α ) =  )1(
2α (1- )1(

1α ) =  0.09 

Pr(A3) = Pr(p11> )1(
Fα , p21≥ )1(

2α ) = (1- )1(
Fα )(1- )1(

2α ) = 0.63 

Pr(A4B1) = Pr(p11p12< )2(
1α , )1(

1α ≤p11< )1(
Fα , p21≥ )1(

2α ) 

     = )ln()1( )1(
1

)1(
)1(

2
)2(

1 α
ααα F−  = 0.020 

Pr(A4B2) = Pr(p21p22< )2(
2α , p21≥ )1(

2α , )1(
1α ≤p11< )1(

Fα , p11p12≥ )2(
1α ) 
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     = )ln()]ln([ )1(
2)1(

1

)1(
)2(

1
)1(

1
)1()2(

2 α
α
ααααα F

F −−−  = 0.008 

Pr(A4B3) = Pr(p11p12> )2(
Fα , p21p22≥ )2(

2α , )1(
1α ≤p11< )1(

Fα , p21≥ )1(
2α ) 

     = )]ln()[( )1(
1

)1(
)2()1(

1
)1(

α
αααα F

FF −− [1- )1(
2α + )2(

2α ln( )1(
2α )] = 0.089 

Pr(A4B4) = Pr( )2(
1α ≤p11p12< )2(

Fα , p21p22≥ )2(
2α , )1(

1α ≤p11< )1(
Fα , p21≥ )1(

2α ) 

     = )ln()( )1(
1

)1(
)2(

1
)2(

α
ααα F

F − [1- )1(
2α + )2(

2α ln( )1(
2α )] = 0.062 

Therefore, the probability of having the three-stage setting = Pr(A4B1) + 

Pr(A4B2)  + Pr(A4B4)  = 0.020 + 0.008 + 0.062 = 0.09, which is much lower than the 

probability for the two-stage setting = Pr(A1) + Pr(A2) = 0.1 + 0.09 = 0.19. However, 

both of these two probabilities are relatively low compared to the probability for the 

futility stopping at interims, which is Pr(A3) + Pr(A4B3) = 0.63 + 0.089 = 0.719.  

In clinical practice, the sample size for the initial stage is usually small; hence, 

the information obtained from the initial stage may not be adequate for decision 

making. In this case, an intermediate stage will be carried out to get more data. To 

fully utilize the advantage of this intermediate stage, by dropping the decision paths 

A3 and B4 as shown in Figure 9-1, a special case of the varying-stage adaptive phase 

II/III clinical trial design is discussed in this section. In this special case, the threshold 

value )1(
Fα  is set to 1 (no stopping for futility at the interim I) and )2(

Fα  is set to 0 

(stopping for futility if neither endpoint is promising per data cumulated to the interim 

II).  
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Figure 9-1 Flow chart of the special case of the posposed design 
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9.3.1 Alpha allocation 

For this special case of the proposed design, the cumulative distribution 

function of p11, p21, p11p12 and p21p22 under the global null hypothesis (6.3) are same as 

what derived in (6.4), (6.13), (6.8) and (6.17) respectively. That is, conditionally, p11 ~ 

Uniform(0, 
)1(

1α ) and p21 ~ Uniform(0, 
)1(

2α ), p11p12 ~ Uniform(0, )2(
1α ) and p21p22 ~ 

Uniform(0, )2(
2α ) under the global null hypothesis (6.3). 

Let λ be the percent of alpha allocated for the two-stage setting. The Type I 

error rate for the two-stage setting is 

  ERII = α* [ )1(
1α +(1- )1(

1α ) )1(
2α ] = λα    (9.5)  

 The Type I error rate for the three-stage setting is 

  ERIII = α*{ )ln()1( )1(
1

)1(
2

)2(
1 ααα −− )]ln(1)[ln( )1(

1
)2(

1
)1(

1
)1(

2
)2(

2 ααααα +−− }    

         = (1- λ)α       (9.6) 

 Without loss of generality for clinical practice, let )1(
1α  = )1(

2α  and )2(
1α  = )2(

2α . 

Given λ and )1(
1α , the significance level α* can be obtained from (9.5). Apply α* to 

(9.6), )2(
1α (or )2(

2α ) can be solved.  

 As shown in Appendix A.7, under null hypothesis of no treatment difference, 

the logarithm of the combined p-value pi1pi2 (i = 1, 2 for endpoint) multiplied by -2 

follow the Chi-square distribution with four degrees of freedom, namely -2ln(pi1pi2) 

~ 2
4χ . Based on the threshold )2(

1α  or )2(
2α  for the combined p-values p11p12 and p21p22, 

we define the probability α2 be the threshold value as follows. 

  )2(
1α  = )2(

2α  = exp(-0.5 2
4,2α

χ )     (9.7) 

  α2 = 1 - )4),ln(2( )2(
12 α

χ
−F      (9.8) 
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 where ),(2 kxF
χ

 is the cumulative distribution function of the Chi-square 

distribution with k degrees of freedom, and x ~ 2
kχ . As an example, when α = 0.05 

(two-sided), λ = 60% and )1(
1α  = )1(

2α  = 0.07, α2 = 0.0932 is obtained from (9.5) 

through (9.8), which enables 60% and 40% of alpha to be allocated to the two-stage 

and three-stage setting respectively.  

Table 9-5, 9-6 and 9-7 present the threshold α2 and the critical values )1(
1α cα* 

and )2(
1α cα* for various scenarios of λ and )1(

1α  when α = 0.05 (two-sided), )1(
1α  = )1(

2α  

and )2(
1α  = )2(

2α . Given the threshold value )1(
1α  or )1(

2α  ( )1(
1α  = )1(

2α ), the lower value 

of α2, the higher critical value of 
)1(

1α cα* and lower critical value of )2(
1α cα* are 

required as the percent (λ) of alpha allocated in the two-stage setting increases. This 

means that, given )1(
1α  or )1(

2α , to allocate more alpha for the two-stage setting, the 

less stringent requirement on the critical value )1(
1α cα* is needed to reject the null 

hypothesis H0i (i = 1, 2 for endpoint) for the two-stage setting. However, as an 

expense, the more stringent requirement on )2(
1α cα* has to be put in place regarding 

rejecting H0i for the three-stage setting. On the other hand, given λ, the higher value of 

α2 is allowed as )1(
1α  or )1(

2α  increases. This implies that, in order to have the same 

alpha allocation, the requirement on the threshold α2 (to have three-stage setting) 

relaxes as the threshold value )1(
1α  or )1(

2α  (to have two-stage setting) increases. 

However, the change in )1(
1α cα* is very minimal, but the requirement on )2(

1α cα* is less 

stringent as )1(
1α increases. 
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Table 9-5 Threshold value α2 when α = 0.05 (two-sided), )1(
1α  = )1(

2α   
and )2(

1α  = )2(
2α  

)1(
1α  λ 

50% 55% 60% 65% 70% 75% 

0.05 0.0888 0.0752 0.0634 0.0531 0.0438 0.0355 

0.06 0.1089 0.0780 0.0924 0.0654 0.0541 0.0438 

0.07 0.1298 0.1102 0.0932 0.0781 0.0647 0.0525 

0.08 0.1513 0.1286 0.1088 0.0913 0.0757 0.0615 

0.09 0.1736 0.1476 0.1250 0.1050 0.0871 0.0708 

0.10 0.1965 0.1672 0.1417 0.1191 0.0989 0.0805 

 

Table 9-6 Critical value )1(
1α cα* when α = 0.05 (two-sided), )1(

1α  = )1(
2α   

and )2(
1α  = )2(

2α  
)1(

1α  λ 

50% 55% 60% 65% 70% 75% 

0.05 0.0128 0.0141 0.0154 0.0167 0.0179 0.0192 

0.06 0.0129 0.0142 0.0155 0.0168 0.0180 0.0193 

0.07 0.0130 0.0142 0.0155 0.0168 0.0181 0.0194 

0.08 0.0130 0.0143 0.0156 0.0169 0.0182 0.0195 

0.09 0.0131 0.0144 0.0157 0.0170 0.0183 0.0196 

0.10 0.0132 0.0145 0.0158 0.0171 0.0184 0.0197 

 
Table 9-7 Critical value )2(

1α cα* when α = 0.05 (two-sided), )1(
1α  = )1(

2α   
and )2(

1α  = )2(
2α  

)1(
1α  λ 

50% 55% 60% 65% 70% 75% 

0.05 .0045 .0040 .0036 .0031 .0027 .0022 

0.06 .0049 .0044 .0039 .0034 .0029 .0024 

0.07 .0053 .0047 .0042 .0036 .0031 .0026 

0.08 .0056 .0050 .0044 .0039 .0033 .0027 

0.09 .0060 .0054 .0047 .0041 .0035 .0029 

0.10 .0064 .0057 .0050 .0044 .0037 .0031 
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9.3.2 Relation of statistical power and sample size to λ and )1(
1α  

 In this section, we use simulations to demonstrate the relationship of statistical 

power and sample size to the parameters λ and )1(
1α . For each scenario of λ and )1(

1α as 

displayed in Table 9-5, we simulate 15,000 trials with the same two endpoints 

assumed in Section 9.2. The 15,000 simulations imply that the simulated overall 

power has standard error of 0.0039 or less. For all the simulations, the conditional 

powers are set to 80% and allowable Type I error rate α = 0.05 (two-sided). Following 

Section 8.3.2, the sample size for the initial stage is determined as follow. 

         2

2
1

1

)(2
1*

1

τ
γα

ZZ
n

+
= −   

where α1
*

 = (α1
(1) + αF

(1))/2 = (α1
(1) + 1.0)/2, and τ is the initial treatment effect 

size. Again in the simulation γ1 = 80% is used. To avoid the sample size n2(3) for the 

intermediate stage too large, the smaller of the following sizes is chosen as the sample 

size for the intermediate stage in the simulation. 

• Calculated based on (8.12) as described in Section 8.3.3 

  2*

2
1

)3(2 )(

)(2
)3(2*

2

τ
γα

ZZ
n

+
= −         

Where α2
* = exp(-0.5 2

4,2α
χ ) /p11, τ* is the updated treatment effect size, 

and the power γ2(3) is set to 80%.  

• 0.65*n – n1, where n is the sample size for a single-stage design, and n1 is 

the sample size determined previously for the initial stage. 

 In this section, we simulate for the following parameters. 

• Statistical power for each decision path and total power 

• Probability for each decision path (
iDobPr , Di for ith decision path) 



130 
 

 

• Sample size for each decision path (
iDn ) and average sample size for 

the selected dose arm and the control 

• Sample size for each stage and average total sample size 

 The average sample size (EN) for the selected dose arm and the control is 

calculated as follows. 

  EN = ∑
=

5

1
Pr

i
DD ii

obn  

         = ∑∑
==

+
3

1

2

1
44

PrPr
k

BABA
j

AA kkjj
obnobn  

 Let n1 denote the sample size for the first stage, n21 and n22 for the 2nd stage 

under two-stage setting for the endpoint 1 and 2 as the primary endpoint respectively, 

n2(3) for the 2nd stage under the three-stage setting, n31 and n32 for the 3rd stage for the 

endpoint 1 and 2 as the primary endpoint Respectively. The sample sizes for each 

decision path are as follows. 

  
1An = n1 + n21  

  
2An = n1 + n22 

  14BAn = n1 + n2(3) + n31 

  24BAn = n1 + n2(3) + n32 

  34BAn = n1 + n2(3)  

 For the example presented in this simulation with three doses of the study 

treatment and one control group in the initial stage, and one selected dose arm and the 

control are continued to the final confirmatory stage, the average total sample size is 

calculated as 

  ENT = 4*n1 + 2*n21* 
1

Pr Aob + 2*n22* 2
Pr Aob   
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                                  + 4*n2(3)*(
3

Pr Aob + 
14

Pr BAob + 
24

Pr BAob ) 

      + 2*n31* 14
Pr BAob + 2*n32* 24

Pr BAob  

 The simulations are performed under the alternative hypothesis (hypotheses): 

(1) for the endpoint 1; (2) for the endpoint 2; (3) for both endpoints. Table 9-8a, 9-8b 

and 9-8c present the simulation results under alternative hypothesis for the endpoint 1. 

From these simulation results, we can see the following trends. 

• Given λ, as )1(
1α  increases, the power for the decision path A1, total power, 

sample sizes (n21, n22, n31, n31, EN and ENT) increase; the probability of the 

decision path A1 increases and the probability of the decision path A4B3 

decreases; however, there is no much change in the power for the decision 

path A4B1 and the probability of the decision path A4B1. 

• Given )1(
1α , as λ increases, the total power, sample sizes (n21, n22, n31, n31, EN 

and ENT) decrease; the probability of the decision path A4B3 increase; 

however, there is no much change in the power and probability of the decision 

path A1. 

• The total power of the decision paths A2 and A4B2 is less than 0.015. As matter 

of fact, this is Type I error rate under the null hypothesis H02. 

 The simulation results under alternative hypothesis for the endpoint 2 are 

provided in Table 9-9a, 9-9b and 9-9c. The trends of the simulation results are very 

similar to those under alternative hypothesis for the endpoint 1, but for the parameters 

related to the endpoint 2. 

 Table 9-10a, 9-10b and 9-10c summarize the simulation results under the 

alternative hypothesis for both endpoints. From these simulation results, we can see 

the following trends. 
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• Given λ, as )1(
1α  increases, the power for the decision path A1, total power, 

sample sizes (n21, n22, n31, n31, EN and ENT) and the probability of the decision 

path A1 increase; the probability of the decision path A4B1 decrease; however, 

there is no much change in the power and probability for other decision paths. 

• Given )1(
1α , as λ increases, the sample sizes (n21, n22, n31, n31, EN and ENT) 

decrease; however, there is no much change in power and probability for any 

decision paths. 

In summary, the total power and sample size increase as )1(
1α  increases given 

λ; and sample size decreases as λ increases given )1(
1α . Hence, the parameters )1(

1α and 

λ play important roles in clinical trial designs. These parameters can be determined 

based on the feasibility of sample size, statistical power, and anticipated alpha 

allocation. For example, under alternative hypotheses for both endpoints, when λ = 

50% and )1(
1α =0.10, the average total sample size is 303.5 (n21= 66, n22= 65, n31= 52, 

n31= 48 and EN=106.8) and power = 0.9020; whereas, when λ = 70% and )1(
1α =0.05, 

the average total sample size is 256.9 (n21= 29, n22= 29, n31= 25, n31= 24 and 

EN=76.9) and power = 0.8404. 
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Table 9-8a Simulated power under the alternative hypothesis for the 
endpoint 1 

 
 

λ 
 

)1(
1α  

Decision path Total 

power A1 A2 A4B1 A4B2 

 

 

50% 

0.05 0.3802 0.0065 0.3198 0.0035 0.7100 

0.06 0.4129 0.0069 0.3075 0.0023 0.7296 

0.07 0.4291 0.0057 0.3065 0.0013 0.7426 

0.08 0.4441 0.0061 0.3051 0.0024 0.7577 

0.09 0.4714 0.006 0.2972 0.0024 0.7770 

0.10 0.4941 0.0053 0.2890 0.0013 0.7897 

 

 

60% 

0.05 0.3815 0.0083 0.2792 0.0029 0.6719 

0.06 0.4080 0.0078 0.2929 0.0027 0.7114 

0.07 0.4202 0.0076 0.2798 0.0024 0.7100 

0.08 0.4539 0.0084 0.2711 0.0024 0.7358 

0.09 0.4688 0.0076 0.2635 0.0013 0.7412 

0.10 0.4711 0.0066 0.2722 0.0024 0.7523 

 

 

70% 

0.05 0.3873 0.0101 0.2417 0.0022 0.6413 

0.06 0.4164 0.0096 0.2348 0.0028 0.6636 

0.07 0.4289 0.0092 0.2457 0.0013 0.6851 

0.08 0.4522 0.0100 0.2404 0.0023 0.7049 

0.09 0.4676 0.0097 0.2291 0.0022 0.7086 

0.10 0.4711 0.0085 0.2380 0.0018 0.7194 
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Table 9-8b Simulated sample size for each stage under the alternative 
hypothesis for the endpoint 1 

 
λ )1(

1α  n1 n21 n22 n2(3) n31 n32 ENT 

 

 

50% 

0.05 36 42 65 48 32 63 312.8 

0.06 36 47 73 48 39 75 317.7 

0.07 35 53 80 49 42 82 322.4 

0.08 35 58 88 49 45 84 328.9 

0.09 35 63 92 49 47 89 332.3 

0.10 34 66 100 50 51 97 333.4 

 

 

60% 

0.05 36 35 55 48 28 55 300.4 

0.06 36 44 67 48 36 67 310.0 

0.07 35 46 74 49 37 71 311.8 

0.08 35 50 76 49 41 79 312.7 

0.09 35 54 83 49 45 89 317.3 

0.10 34 60 90 50 48 83 323.6 

 

 

 

70% 

0.05 36 29 46 48 26 47 290.6 

0.06 36 35 56 48 30 53 293.8 

0.07 35 40 63 49 34 63 298.2 

0.08 35 45 71 49 39 63 302.7 

0.09 35 49 75 49 41 71 305.0 

0.10 34 52 77 50 45 76 308.9 

 



 

 

 
 
 
Table 9-8c Simulated sample size for each decision path under the alternative hypothesis for the endpoint 1 
 
 

 
λ 

 
)1(

1α  
Decision path  

EN A1 A2 A4B1 A4B2 A4B3 
Prob n Prob n Prob n Prob n Prob n 

 
 

50% 

0.05 0.4169 78 0.0281 101 0.3478 116 0.0106 147 0.1966 84 93.8 
0.06 0.4539 83 0.0337 109 0.3340 123 0.0110 159 0.1674 84 98.2 
0.07 0.4723 88 0.0362 115 0.3348 126 0.0129 166 0.1438 84 102.1 
0.08 0.4844 93 0.0416 123 0.3345 129 0.0141 168 0.1254 84 106.2 
0.09 0.5142 98 0.0431 127 0.3216 131 0.0145 173 0.1066 84 109.5 
0.10 0.5422 100 0.0452 134 0.3146 135 0.0113 181 0.0867 84 112.1 

 
 

60% 

0.05 0.4195 71 0.0295 91 0.3021 112 0.0094 139 0.2395 84 87.7 
0.06 0.4487 80 0.0338 103 0.3187 120 0.0108 151 0.1880 84 95.0 
0.07 0.4628 81 0.0373 108 0.3042 121 0.0102 155 0.1855 84 95.5 
0.08 0.4949 85 0.0397 113 0.2959 125 0.0106 163 0.1589 84 98.6 
0.09 0.5147 89 0.0428 118 0.2896 129 0.0104 173 0.1425 84 102.0 
0.10 0.5233 94 0.0472 124 0.2972 132 0.0111 167 0.1212 84 106.3 

 
 

70% 

0.05 0.4236 65 0.0292 82 0.2621 110 0.0070 131 0.2781 84 83.0 
0.06 0.4578 71 0.0314 92 0.2553 114 0.0076 137 0.2479 84 86.4 
0.07 0.4681 75 0.0364 98 0.2680 118 0.0066 147 0.2209 84 89.8 
0.08 0.4952 80 0.0399 106 0.2615 123 0.0079 147 0.1955 84 93.6 
0.09 0.5159 84 0.0429 110 0.2497 125 0.0076 155 0.1839 84 95.9
0.10 0.5184 86 0.0461 111 0.2598 125 0.0090 160 0.1667 84 97.6 
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Table 9-9a Simulated power under the alternative hypothesis for the 
endpoint 2 

 
 

λ 
 

)1(
1α  

Decision path Total 

power A1 A2 A4B1 A4B2 

 

 

50% 

0.05 0.0125 0.3764 0.0080 0.3072 0.7041 

0.06 0.0141 0.4003 0.0070 0.2873 0.7087 

0.07 0.0136 0.4147 0.0061 0.2904 0.7248 

0.08 0.0126 0.4313 0.0078 0.2802 0.7319 

0.09 0.0123 0.4417 0.0081 0.2643 0.7264 

0.10 0.0127 0.4433 0.0083 0.2667 0.7310 

 

 

60% 

0.05 0.0155 0.3763 0.0068 0.2782 0.6768 

0.06 0.0140 0.4010 0.0054 0.2845 0.7049 

0.07 0.0138 0.4123 0.0039 0.2703 0.7003 

0.08 0.0165 0.4312 0.0054 0.2581 0.7112 

0.09 0.0157 0.4439 0.0046 0.2471 0.7113 

0.10 0.0169 0.4509 0.0039 0.2394 0.7111 

 

 

70% 

0.05 0.0186 0.3777 0.0036 0.2452 0.6451 

0.06 0.0164 0.4073 0.0047 0.2314 0.6598 

0.07 0.0188 0.4238 0.004 0.2309 0.6775 

0.08 0.0170 0.4267 0.0040 0.2224 0.6701 

0.09 0.0182 0.4460 0.049 0.2185 0.6876 

0.10 0.0180 0.4435 0.0042 0.2207 0.6864 
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Table 9-9b Simulated sample size for each stage under the alternative 
hypothesis for the endpoint 2 

 
 
λ )1(

1α  n1 n21 n22 n2(3) n31 n32 ENT 

 

 

50% 

0.05 36 65 41 48 65 31 311.7 

0.06 36 72 47 48 73 38 319.2 

0.07 35 80 51 49 83 41 322.8 

0.08 35 88 56 49 88 45 330.0 

0.09 35 92 61 49 93 47 335.3 

0.10 34 98 64 50 95 48 337.9 

 

 

60% 

0.05 36 53 34 48 56 28 300.3 

0.06 36 67 42 48 71 34 309.9 

0.07 35 71 46 49 74 37 310.8 

0.08 35 78 49 49 77 41 313.9 

0.09 35 84 53 49 85 45 319.2 

0.10 34 87 58 50 92 45 321.8 

 

 

 

70% 

0.05 36 47 28 48 48 25 290.1 

0.06 36 56 34 48 55 31 293.5 

0.07 35 63 39 49 64 35 296.1 

0.08 35 70 44 49 72 38 302.0 

0.09 35 75 47 49 73 40 304.4 

0.10 34 80 52 50 82 43 309.6 

 



 

 

 
 
 
Table 9-9c Simulated sample size for each decision path under the alternative hypothesis for the endpoint 2 
 
 

 
λ 

 
)1(

1α  
Decision path  

EN A1 A2 A4B1 A4B2 A4B3 
Prob n Prob n Prob n Prob n Prob n 

 
 

50% 

0.05 0.0529 111 0.4115 77 0.0288 149 0.3307 115 0.1761 84 94.6 
0.06 0.0617 108 0.4367 83 0.0372 157 0.3094 122 0.1550 84 99.6 
0.07 0.0694 115 0.4512 86 0.0376 164 0.3107 125 0.1311 84 102.8 
0.08 0.0793 123 0.4629 91 0.0426 172 0.2995 129 0.1157 84 107.6 
0.09 0.0882 127 0.4807 96 0.0491 177 0.2848 131 0.0972 84 111.5 
0.10 0.0978 132 0.4798 98 0.0494 179 0.2858 132 0.0872 84 113.8 

 
 

60% 

0.05 0.0479 89 0.4101 70 0.0222 140 0.3006 112 0.2192 84 88.2 
0.06 0.0568 103 0.4362 78 0.0258 155 0.3043 118 0.1769 84 94.6 
0.07 0.0687 106 0.4472 81 0.0235 158 0.2909 121 0.1697 84 96.7 
0.08 0.0814 113 0.4673 84 0.0268 161 0.2783 125 0.1462 84 99.8 
0.09 0.0886 119 0.4846 88 0.0320 169 0.2656 129 0.1292 84 103.7 
0.10 0.1048 121 0.4870 92 0.0330 176 0.2601 129 0.1151 84 106.5 

 
 

70% 

0.05 0.0480 83 0.4084 64 0.0117 132 0.2640 109 0.2679 84 82.9 
0.06 0.0584 92 0.4423 70 0.0140 139 0.2500 115 0.2353 84 86.8 
0.07 0.0713 98 0.4606 74 0.0159 148 0.2484 119 0.2038 84 90.1 
0.08 0.0808 105 0.4658 79 0.0179 156 0.2396 122 0.1959 84 93.8 
0.09 0.0918 110 0.4815 82 0.0201 157 0.2351 124 0.1715 84 96.3
0.10 0.1046 114 0.4840 86 0.0228 166 0.2379 127 0.1507 84 100.2 
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Table 9-10a Simulated power under the alternative hypotheses for both 
endpoints 

 
 

λ 
 

)1(
1α  

Decision path Total 

power A1 A2 A4B1 A4B2 

 

 

50% 

0.05 0.3826 0.2334 0.1843 0.0709 0.8712 

0.06 0.4048 0.2338 0.1753 0.0643 0.8782 

0.07 0.4231 0.2368 0.1743 0.0547 0.8889 

0.08 0.4312 0.2352 0.1691 0.0551 0.8906 

0.09 0.4614 0.2389 0.1526 0.0436 0.8965 

0.10 0.4768 0.2353 0.1534 0.0365 0.9020 

 

 

60% 

0.05 0.3779 0.2322 0.1715 0.0769 0.8585 

0.06 0.4061 0.2380 0.1672 0.0627 0.8740 

0.07 0.4238 0.2380 0.1526 0.0671 0.8815 

0.08 0.4574 0.2305 0.1471 0.0516 0.8866 

0.09 0.4672 0.2440 0.1364 0.0457 0.8933 

0.10 0.4684 0.2415 0.1367 0.0469 0.8935 

 

 

70% 

0.05 0.3851 0.2352 0.1436 0.0765 0.8404 

0.06 0.4120 0.2298 0.1350 0.0736 0.8504 

0.07 0.4255 0.2385 0.1355 0.0692 0.8692 

0.08 0.4448 0.2313 0.1306 0.0630 0.8697 

0.09 0.4659 0.2393 0.1243 0.0554 0.8849 

0.10 0.4779 0.2385 0.1221 0.0484 0.8869 
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Table 9-10b Simulated sample size for each stage under the alternative 
hypotheses for both endpoints 

 
λ )1(

1α  n1 n21 n22 n2(3) n31 n32 ENT 

 

 

50% 

0.05 36 42 41 48 33 31 279.9 

0.06 36 47 46 48 37 38 285.8 

0.07 35 52 52 49 43 41 290.4 

0.08 35 58 57 49 47 44 299.3 

0.09 35 62 61 49 48 48 300.5 

0.10 34 66 65 50 52 48 303.5 

 

 

60% 

0.05 36 35 35 48 28 28 260.1 

0.06 36 43 42 48 35 35 263.2 

0.07 35 46 45 49 38 38 268.2 

0.08 35 51 49 49 42 38 272.0 

0.09 35 54 53 49 44 45 273.9 

0.10 34 58 58 50 48 44 280.0 

 

 

 

70% 

0.05 36 29 29 48 25 24 256.9 

0.06 36 34 34 48 30 29 262.0 

0.07 35 40 39 49 35 34 266.7 

0.08 35 45 45 49 37 37 273.1 

0.09 35 47 48 49 43 40 274.7 

0.10 34 54 51 50 43 43 278.4 

 



 

 

   
 
 
 
Table 9-10c Simulated sample size for each decision path under the alternative hypotheses for both endpoints 
 
 

 
λ 

 
)1(

1α  
Decision path  

EN A1 A2 A4B1 A4B2 A4B3 
Prob n Prob n Prob n Prob n Prob n 

 
 

50% 

0.05 0.4226 78 0.2577 77 0.1993 117 0.0762 115 0.0442 84 88.6 
0.06 0.4483 83 0.2565 82 0.1912 121 0.0684 122 0.0356 84 92.7 
0.07 0.4692 87 0.2561 87 0.1890 127 0.0598 125 0.0259 84 96.8 
0.08 0.4786 93 0.2555 92 0.1843 131 0.0589 128 0.0227 84 101.6 
0.09 0.5113 97 0.2576 96 0.1658 132 0.0463 132 0.0190 84 103.9 
0.10 0.5289 100 0.2520 99 0.1667 136 0.0397 132 0.0127 84 106.8 

 
 

60% 

0.05 0.4141 71 0.2514 71 0.1854 112 0.0829 112 0.0662 84 82.9 
0.06 0.4477 79 0.2591 78 0.1808 119 0.0686 119 0.0438 84 88.9 
0.07 0.4645 81 0.2578 80 0.1661 122 0.0720 112 0.0396 84 89.9 
0.08 0.5036 86 0.2504 84 0.1600 126 0.0555 124 0.0305 84 93.9 
0.09 0.5165 89 0.2610 88 0.1484 128 0.0493 129 0.0248 84 96.4 
0.10 0.5163 92 0.2620 92 0.1490 132 0.0512 128 0.0215 84 99.6 

 
 

70% 

0.05 0.4216 65 0.2556 65 0.1540 109 0.0835 108 0.0853 84 76.9 
0.06 0.4541 70 0.2509 70 0.1462 114 0.0801 113 0.0687 84 80.8 
0.07 0.4658 75 0.2593 74 0.1474 119 0.0738 118 0.0537 84 84.9 
0.08 0.4884 80 0.2525 80 0.1441 121 0.0672 121 0.0478 84 88.9 
0.09 0.5080 82 0.2586 83 0.1343 127 0.0600 124 0.0391 84 90.9 
0.10 0.5247 88 0.2565 85 0.1313 127 0.0523 127 0.0352 84 94.3 
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10 A varying-stage adaptive phase II/III clinical trial 

design: Practical issues and trial implementation 

10.1 What need to be specified in the clinical study protocol 

For our varying-stage adaptive phase II/III design, the followings need to be 

specified in the clinical study protocol. 

• Trial decision paths as shown with the flow charts in Figure 6-1 or Figure 

9-3. 

• Threshold values: )1(
1α , )1(

2α , )2(
1α , )2(

2α , )1(
Fα , )2(

Fα and λ. Usually, the same 

threshold values can be applied to both study endpoints ( )1(
1α  = )1(

2α  and 

)2(
1α  = )2(

2α ). In order to have the thresholds at the same level for both 

initial stage and intermediate stage, the threshold values for the 

intermediate stage can be specified as  )2(
1α  = )2(

2α  = exp(-0.5 2
4,)1(

1α
χ ) and 

)2(
Fα = exp(-0.5 2

4,)1(
Fα

χ ). In addition, to ensure plausibility of thresholds, as 

described in Section 8.3.1, the requirement of )2(
Fα  ≤ )1(

1α  has to be met.  

When )1(
Fα  = 1 and )2(

Fα = 0, the varying-stage adaptive two-stage phase 

II/III clinical trial design is reduced to the special case as presented in 

Section 9.3. 

• Statistical method to perform hypothesis testing. In our simulations, we 

assume that the two study endpoints follow normal distributions; therefore, 

Dunnett test under one-way ANOVA is used. However, the principle of 

statistical analysis to perform hypothesis testing for our design is adaptive 

combination test, which is not limited to normally distributed study 

endpoints. Even for normally distributed study endpoints, one may use 
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Dunnett test under general linear model (Hsu, 1996) or mixed effect 

model. 

• Type I error rate. Our design is more complex, we propose to use closed 

testing procedure (Marcus, et al, 1976) to preserve Type I error rate in the 

strong sense.  

• Conditional statistical power for sample size determination. In this thesis, 

we propose to use conditional power to determine sample size for the final 

stage. Based on our experience, ≥ 80% conditional power is sufficient to 

ensure adequate overall statistical power. 

• Overall statistical power and simulation. Due to trial design complexity, no 

derivation of overall statistical power can be obtained theoretically. We 

recommend performing simulations under various scenarios to 

characterize the design and to ensure sufficient statistical power for the 

trial with feasible sample size. 

10.2 What does not need to be specified in the clinical study 

protocol 

There is no need to specify dose selection rules in the study protocol. The 

decision of dose selection can be made using trial interim data and/or information 

external to the trial, thus, more flexibility is granted to decision makers on dose 

selection. We propose to use closed testing procedure (Marcus, et al, 1976) to perform 

the final analyses. This procedure preserves Type I error rate in the strong sense, 

obviating the need to specify the specific dose selection rules in the study protocol. 

10.3 Blinding issues 

In our design, the interim decisions need to be made to adaptively switch the 

primary study endpoint, to select a dose (doses), and to determine sample size for the 
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next stage. Although these decisions are based on unblended interim analysis results 

with stagewise p-value or combined p-value, in general, in order to preserve the 

integrity of the trial, the clinical trial team should be blinded to treatment allocation 

related data during the trial execution. The interim analyses should be carried out by 

an independent team including independent statisticians and independent clinicians 

who do not involve in daily activities of the trial.  

The Data Monitoring Committee (DMC) plays important roles in reviewing 

interim data and making interim decision. Therefore, the scope of interim analyses 

and adaptation strategies should be clearly specified in the DMC charter. Our design 

is more complex, the sponsor should ensure the transparent and efficient 

communication with the DMC. In addition, the appropriate documentation of adaptive 

process should be put in place with restricted access only to the independent team 

during trial execution. 

10.4 Unblinded sample size determination 

During past decades, many researchers studied sample size re-estimation. If 

the sample size re-estimation is based on nuisance parameters such as common 

variance for a normally distributed primary study endpoint or pooled event rate for a 

binary response variable, the Type I error rate will not be materially inflated (e.g. 

Gould & Shih, 1992; Shih & Gould, 1995; Shih & Zhao, 1997; Shih & Long, 1998).  

Regarding sample size re-estimation using unblended interim results, Chen, 

DeMets and Lan (2004) pointed out that increasing the sample size when conditional 

power under current trend is great than 0.5 will only decrease the Type I error rate 

conditional on the data observed. In our design, as aforementioned, we recommend 

80% or higher conditional power to determine sample size for the next stage, 



145 
 

 

therefore, sample size determination in our design using updated treatment effect τ* 

from the data cumulated to the interim analysis should not inflate Type I error rate. 

10.5 Clinical utility index 

Recently, some researchers (e.g. Poland et al, 2009) proposed to use clinical 

utility index (CUI) to support drug development decision. The CUI is defined as. 

 ∑
=

=
m

i
iii xUwCUI

1
)(       (10.1) 

where m is total number of drug attributes, wi is the importance weight to the 

ith attribute, and Ui(xi) is a utility function for that drug attribute. The attributes 

typically limited to the drug efficacy and safety profiles, and those related to market 

value, development cost or time are omitted from the CUI. Therefore, CUI can be 

used to evaluate the study drug’s benefit-risk (efficacy-safety) ratio; hence, it can be a 

useful tool to facilitate trial interim decisions. Further, some researchers (e.g 

Skrivanek, 2008) propose to use CUI to perform adaptive randomization, in which 

patients are randomized to the dose arm with the best CUI at the time being.  It is 

worthwhile to investigate in the future regarding how CUI can be incorporated in our 

design. 
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Appendix 

A.1 Relation of the posterior probability p(θ|s) at stage II and data 

(s1, n1) obtained from stage I 

Sambucini (2008) showed the relation of  the posterior probability p(θ|s) at 

stage II and data (s1, n1) obtained from stage I for a two-stage setting with an 

acceptance boundary at the interim I. In this appendix, we extend this work to the 

two-stage setting with both acceptance and rejection boundaries at the interim I. 

Proposition A1: the data (s1, n1) obtained from stage I do not affect the posterior 

probability of p(θ|s) at stage II. 

Proof: 

a) Stage I 

 Prior: θ ~ beta (a, b)       (A.1.1) 

 Hypothetical data: S1 | θ ~ binomial(n1, θ)    (A.1.2) 

 Posterior: p(θ| a1<S1<r1) ∝ p(θ)p(a1 < S1 < r1| θ) 

    ∝  θa-1(1- θ)b-1[Bin(r1-1, n1, θ)-Bin(a1, n1, θ)]  (A.1.3) 

b) Stage II 

 Likelihood: p(s|a1 < S1 < r1, θ) =
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posterior probability : p(θ|s, a1 < S1 < r1) ∝  p(θ| a1<S1<r1) p(S|a1 < S1 < r1, 

θ) 

   ∝  θa-1(1- θ)b-1 ∑
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Therefore, p(θ|s, a1 < S1 < r1)= p(θ|s). This indicates that the data (s1, n1) 

obtained from stage I do not affect the posterior probability of p(θ|s) at stage II, and 

explains why the predictive probability is constructed as in (3.8). 

A.2 Prior predictive probability  
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A.3 Predictive probability of continuing the trial to stage II 
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A.4 Monotonic property of predictive probability 

Proposition A2: Predictive probability defined in (3.8) is a non-decreasing function 

with respect to the responses s1. 
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Proof: Let s2 denote number of future responses at stage II, Whitehead at el. (2008) 

demonstrated that the following posterior probability is an increasing function with 

respect to number of responses (s1) at stage I. 

)),(),,(|(Pr),,|( 221102211 nsnsobnsnsP θθ >=    (A.4.1) 

Given conjugate beta prior beta(a, b), and responses s1 among n1 patients at 

stage I, the future s2 responses among n2 patients at stage II follows beta-binomial 

distribution, the mean and variance can be expressed as follows.  
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From above mean value and variance expression, also as shown in Figure 

A.4.1, the distribution of the future s2 responses moves toward right side as response 

s1 increases given size n1 and n2 for stage I and stage II respectively, therefore, sum of 

)),,(|( 2112 nnssP is non-decreasing with respect to s1. Hence predictive probability 

defined in (3.8) is a non-decreasing function, and boundaries a1 and r1 for stage I 

exist. 
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Figure A.4.1 Beta-binomial distribution of s2 given s1, n1=20, n2=25, a=2 and 
b=4 

  
A.5 Some properties of beta and binomial distribution 

A.5.1 Relation of beta and binomial probability calculations 

The regularized (normalized) incomplete beta function is defined based on the 

incomplete beta function Bθ(u,v) and the complete beta function B(u,v) as follows. 
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,   u>0 and v>0 (A.5.1) 

Using integration by parts, the regularized incomplete beta function can be 

expressed as (formula 6.6.4, Abramowitz and Stegun, 1965)  
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anaI )1()1,( θθθ     (A.5.2)  

Let u = a, v = n – a + 1 and n = u + v - 1, then the above formula can be 

written as 
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Revise the term at the right side of (A.5.3) based on binomial distribution, 
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 where bin and Bin are binomial density function and cumulative distribution 

function. 

The left side of (A.5.4) is the probability of x≤θ based on x~beta(u, v), therefore, 

  )1,1,(1),,( −+−−= vuuBinvuBeta θθ    (A.5.5a) 

 where beta and Beta are density function and cumulative distribution function 

for beta distribution. The (A.5.5a) can be written as 

),1,(1),,( xmxBetamxBin −+−= θθ     (A.5.5b) 

The formula (A.5.5a) shows that beta probability can be calculated based on a 

binomial distribution; vice verse, binomial probability can be calculated based on a 

beta distribution as shown in (A.5.5b). 

A.5.2 A monotonic property of beta probability function 

Proposition A3: Beta(θ, u, v) is a monotonic decreasing function as u increases given 

u+v is fixed. 

Proof: The probability Bin(u-1, u+v-1, θ | u+v) is a monotonic increasing function as 

u increases, therefore, from (A.5.5a), Beta(θ, u, v) is a monotonic decreasing function 

as u increases given u+v is fixed. 

A.5.3 Beta(θ, u, v) ≥ Beta(θ, u+k, v), k>0 

Proposition A4: Beta(θ, u, v) ≥ Beta(θ, u+k, v), k>0 

Proof: Abramowitz and Stegun (1965) provided the following as formula 26.5.16, 
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vuvuI ba ++−
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= θθ θθ           (A.5.6) 
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Apparently, Beta(θ, u, v) ≥ Beta(θ, u+1, v). This was also described by Thall 

(1994). As consequence of such decomposition, Beta(θ, u, v) ≥ Beta(θ, u+1, v) ≥ 

Beta(θ, u+2, v) ≥ …… . In short expression,  

Beta(θ, u, v) ≥ Beta(θ, u+k, v), k≥1      (A.5.7) 

A.5.4 Bin(θ, x, m)≤Bin(θ, x+k, m+k) 

Proposition A5: Bin(θ, x, m)≤Bin(θ, x+k, m+k), k>0. 

Proof: Following (A.5.5a), (A.5.7) can be expressed in binomial form as 

  1-Bin(θ, u-1, u+v-1)≥1-Bin(u-1+k, u+v-1+k) 

Let x=u-1 and m=u+v-1, then we have 

  Bin(θ, x, m)≤Bin(θ, x+k, m+k), k>0    (A.5.8) 

A.5.5 A monotonic property of binomial distribution 

To study monotonic property of binomial distribution, let’s compare binomial 

density functions bin(θ, k, m) and bin(θ, k-1, m). 
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         (A.5.9) 
 

From (A.5.9) , apparently, binomial density function bin(k, m, θ) is monotone 

increasing as k increases for x < (m + 1)θ;  and monotone decreasing as k increases for 

k > (m + 1)θ. There exists an integer k that satisfies the following (A.5.10), which is 

known as the most probable (most likely) outcome of Bernoulli trials; when (m + 1)θ 

is an integer, there are two maximum binomial density values for k = (m+ 1)θ and 

k − 1.  

  (m + 1)θ - 1 < k ≤ (m + 1)θ     (A.5.10) 

A.5.6 Compliment property of binomial probability 

Proposition A6: compliment property of binomial probability:  
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Bin (θ, x, m) = 1 – Bin(1- θ, m-x-1, m)   (A.5.11a) 

1 – Bin(θ, x, m)  = Bin(1- θ, m-x-1, m)   (A.5.11b) 

Proof: The following was given by Abramowitz and Stegun (1965, formula 6.6.3), 

),(1),( 1 uvIvuI θθ −−=       (A.5.12) 

Let u = x + 1, v=m-x, then (A.5.12) can be written as 

  )1,(),1(1 1 +−=−+− − xxmIvmxI θθ     (A.5.13) 

Apply (A.5.5a) to replace incomplete beta functions in both side of (A.5.13) 

with binomial probabilities, and then we can obtain the formula (A.5.11a). The 

formula (A.5.11b) can be derived similarly.

  A.5.7 Incremental property of binomial probability 

Proposition A7: for 0<k<m, the following incremental property of binomial 

probability is true if x <mθ. 

Bin(θ, x, m)<Bin(θ, x+kθ, m+k)    (A.5.14) 

Proof: The proof of (A.5.14) is carried out by finding a condition which satisfies 

(A.5.14). Use normal approximation to binomial probability, (A.5.14) can be written 

as 
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 (A.5.15) can be simplified as 
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 Multiply (A.5.16) by )( kmm +  and further simplify, 
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 Solve x from (A.5.17),  
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 Let 0<k<m, equivalently, c
m
k
= , 0<c<1, (A.5.18) can be simplifies as 
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 For any 0<c<1, 1
11

+−
−+

c
c

c  is approximately equal to 1 (the difference 

between this term and 1 is less than 10-10 by numerical calculation), therefore, the 

incremental property specified in (A.5.14) holds if number of responses x satisfies 

(A.5.20). 

  x < mθ        (A.5.20) 

A.6  Gibbs’ inequality (Gibbs, 1902, 1960) 
Let P = {p1, p2, ..., pn} and Q = {q1, q2, ..., qn} are two probability 

distributions. The following Gibbs’ inequality holds. 

 ∑
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 This was first presented by Josiah Willard Gibbs in the 19th century. 

  

Proof: Because log(x) ≤ x- 1 for any x≥0, we have 
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 Sum up the both sides of the above equation , and then we have 
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 Moreover, the equality holds if and only if P=Q. 

 When p(x) and q(x) are continuous probability density function for Rx∈ , then  

 0
)(
)(log)( ≥∫

R xq
xpxp ,  Rx∈  

A.7  Proof of unconditional distribution of a combining p-value 
under the null hypothesis 
a) Proof based on logarithmic transformation 

P-value under the null hypothesis (H0) of no treatment difference follows 

Uniform(0,1), namely p ~ Uniform(0,1), where 0<p<1.     

    

Let x = -2ln(p), 0<x<∞. Then the probability density function (pdf) for x can 

be derived as follows by using Jacobin transfer. 

2/

2
1)()( xe

dx
dppfxf −== , which is pdf of 2

2χ . 

Therefore, x = -2ln(p) ~ 2
2χ , where 0<x<∞ and 0<p<1.     

Let p1 and p2 are independent p-values from stage I and stage II, such that 

p1~Uniform(0,1) and p2~Uniform(0,1) under H0. Following Fisher’s product method, 

p1 and p2 can be combined as follows. 

Y = C(p1, p2) = p1p2 .          

Hence, -2ln(y) = -2ln(p1) – 2ln(p2) ~ 2
4χ        

The cumulative distribution function (cdf) of y is 

F(y) = Pr(Y≤y) = Pr(-2ln(Y) ≥ -2ln(y)) = Pr(w ≥ -2ln(y)), where w = -2ln(Y) ~ 

2
4χ , herefore, F(y) = ∫

− − −=−=−
)ln(

0
)ln(1))ln(2(2

4

y t yyydtteyF
χ

    

Hence the probability density function (pdf) of y is 
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 f(y) = -ln(y)          

The Figure A.7.1 and A.7.2 show the cdf and pdf of y. 

Figure A.7.1 Cumulative density function (cdf) of combined p-value (y) 

 
Figure A.7.2 Probability density function (pdf) of combined p-value (y) 
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b) Alternative proof based on Jacobian transformation: 

As indicated before, p1~Uniform(0,1) and p2~Uniform(0,1) under H0. 

Assume p1 and p2 are independent, the join pdf of p1 and p2 is as follows 

 f(p1, p2 ) =1, 0≤p1≤1 and 0≤p2≤1       

Let  
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The marginal pdf of Y is 
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Therefore, the cdf of Y is 
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c) Alternative proof based on definition of cdf: 
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Hence, 

f(y) = -ln(y),   0≤y≤1 

A.8 Notation and glossary  

θ – Response rate of the testing treatment (0≤ θ≤1) 

beta(a, b) – Beta prior with parameters a and b 

PP – Predictive probability defined in (3.8) 

PL, PU  – Lower and upper threshold predictive probability  

PT – Threshold posterior provability to evaluate trial success 

θ0 – Maximum uninteresting response rate 

θ1 – Expected or target response rate of testing treatment 

R – Rejection of null hypothesis H0: θ ≤ θ0   

A – Acceptance of null hypothesis H0: θ ≤ θ0   

αf, βf – Frequentist Type I, and Type II error rate 

αB, βB – Bayesian Type I, and Type II error rate 

s1, s2 – Number of responses at stage I, and stage II. 

s – Number of responses from the whole trial (s = s1 + s2). 

r1, r – Upper boundary to declare θ ≥ θ1  at stage I, and stage II. 

a1, a – Lower boundary to reject θ ≥ θ1 at stage I, and stage II. 

n1, n2 – Sample size for stage I, and stage II. 

n – Sample size for the whole trial (n = n1 + n2). 

PETf, PETB – Probability of early termination under frequentist, and Bayesian  

         framework. 

bin – Binomial probability density function 
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Bin – Cumulative binomial distribution function 

B – Beta function 

Iθ(u, v) – Incomplete beta function 

beta – Beta probability density function 

Beta – Cumulative beta distribution function 

π0(θ), πt(θ) – Distribution for θ under H0 and true prior distribution for θ 

BF1, BFt -  Bayes factor under H1 and πt(θ) 

EWOE1, EWOEt – expected weight of evidence from H1 and πt(θ) 

mk(x), mt(x) – Marginal density of X under the hypothesis Hk (k = 0, 1) and πt(θ) 

iMOM – Inverse moment prior 

ER – Type I error rate 

PW – Statistical power 

C(pij, pij`) – Combination of the p-values pij and pij` from jth
 and j`th stage for the ith  

                  study endpoint 

λ - Percent of alpha allocated for the two-stage setting 
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