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ABSTRACT OF THE DISSERTATION

Multi-wavelength Applications of Gravitational Lensing

by Ross Fadely

Dissertation Director: Charles R. Keeton

Using an array of multi-wavelength data, we examine a variety of astrophysical

problems with gravitational lensing. First, we seek to understand the mass distribution

of an early-type galaxy with an analysis of the lens Q0957+561. We dissect the lens

galaxy into luminous and dark components, and model the environment using results

from weak lensing. Combining constraints from newly-discovered lensed images and

stellar population models, we find the lens has a density profile which is shallower than

isothermal, unlike those of typical early-type galaxies. Finally, using the measured time

delay between the quasar images we find the Hubble constant to be H0 = 79.3+6.7
−8.5 km

s−1 Mpc−1.

One intriguing application of lensing is to exploit the lens magnification boost to

study high-redshift objects in greater detail than otherwise possible. Here, we analyze

the mid-infrared properties of two lensed z ∼ 2 star-forming galaxies, SDSS

J120602.09+514229.5 and SDSS J090122.37+181432.3, using Spitzer/IRS spectra to

study their rest-frame ∼ 5 − 12µm emission. Both systems exhibit strong polycyclic

aromatic hydrocarbon (PAH) features in the spectra, indicating strong star formation
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and the absence of significant AGN activity. For SDSS J090122.37+181432.3, this de-

tection belies that inferred from optical measurements, indicating mid-IR spectroscopy

provides key information needed to understand the properties of high-redshift star-

forming galaxies.

While lensing provides measurements of the macroscopic properties of lens systems,

it can also shed light on small-scale structure of galaxies. To identify and understand

lens substructure, we examine the multi-wavelength properties of flux ratios for six

lenses. Variations of the flux ratios with wavelength can be used to study the lensed

quasars and the small-scale mass distribution of lens galaxies. We detect strong multi-

wavelength variations in the lenses HE 0435-1223 and SDSS 0806+2006. For HE 0435-

1223, we study its substructure with a series of lens models which add clumps of mass

near the lensed images. We detect the presence of a clump near image A, with a

mass of log(MA(<REin)

M� h
−1
70

) = 7.68+0.92
−0.85. We also find support for a second clump, near

image B, with mass log(MB(<REin)

M� h
−1
70

) = 6.6+1.02
−1.52, although evidence for this clump is not

decisive. Using Monte Carlo simulations, we connect these clumps to their associated

populations, finding the mass fraction in substructure to be fsub & 0.00092.
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Chapter 1

Introduction

Strong gravitational lensing is one of the most unique and versatile tools which can

be used to study the universe. It can provide a telescope to study distant objects,

a scalpel to dissect galaxies, and a ruler to measure cosmic distances. The range

of observational probes can span decades in angular size (10−6′′ . θ . 10′′) and in

mass (1M� . M . 1014M�), and can be used to shed light on the nature of dark

matter and dark energy. Yet in spite of the great wealth of studies possible with strong

lensing, a complete understanding of its applications is not possible without a synthesis

between constraints provided by lensing and the knowledge and methods from other

types of astrophysical studies. From light bending alone, we can learn about a limited

number of quantities, like the mass of the deflector and the luminosity distribution

of the source. However, interpreting and understanding these measurements hinges

on connections from knowledge not derived from lensing, such as that from N-body

simulations, dynamical measurements of galaxies, and studies of stars. In Section 1.1, I

introduce and discuss various studies in which the union of lensing and other analyses

jointly yield conclusions which are not possible with one method alone. Following this,

Section 1.2 discusses the some of the methodology of lensing and statistics which are

vital for detailed studies.
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1.1 Astrophysical Studies Using Strong Gravitational Lensing

1.1.1 The Structure of Massive Galaxies

Strong gravitational lensing is a powerful probe of the mass distribution of galaxies.

While able to infer the properties of mass distributions on large scales, strong lensing’s

best measure is the mass within an aperture defined by the Einstein radius. Independent

of the profile of lens mass distributions, aperture masses from lensing are precise at the

few percent level (Rusin et al. 2003), making aperture masses an excellent tool for

studying the mass of galaxies (e.g., Bolton et al. 2007). Alone, aperture masses can

provide a means to study the mass-density structure of ensembles of galaxies (Rusin

et al. 2003; Rusin & Kochanek 2005). Combined with mass measurements on other

scales (e.g., dynamical measurements), aperture masses can even test the fundamental

scaling relationships of galaxies, such as the “fundamental plane” (Bolton et al. 2008).

While clearly powerful, aperture masses provide only a limited amount of informa-

tion about the properties of lens galaxies. By using the positions (and often flux ratios)

of lensed quasar images, or the surface brightness distribution of Einstein rings or arcs,

lens modeling can go beyond aperture masses to obtain constraints on the angular and

radial properties of lens profiles, albeit with modest uncertainties. Discussed below are

some of the various measures possible of lens galaxy profiles and their components.

Radial Profiles of Lens Galaxies

A key quantity for understanding the mass distribution of massive galaxies is the inner

logarithmic slope of the mass density profile, γ′ ≡ d log ρ/d log r. For isothermal mass

distributions, γ′ = −2 and the associated circular velocity of a spherical model corre-

sponds to a flat rotation curve. Intriguingly, studies based on local kinematics (e.g.,

Gerhard et al. 2001) and lensing (e.g., Kochanek 1995) indicate the mass distributions

of massive, early-type galaxies are close to isothermal.
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Joint analyses based on lensing and stellar dynamical measurements have confirmed

this to remarkable precision. By combining these techniques, two independent mass

estimations of the lens are obtained, dramatically improving constraints (e.g., Treu &

Koopmans 2002). Using a lensing + dynamical analysis of 58 early-type lens galaxies,

the Sloan Lens ACS (SLACS) survey found an average value of 〈γ′〉 = −2.085+0.025
−0.018

(Koopmans et al. 2009), with an intrinsic scatter in γ′ around 10%. The SLACS value

of γ′, however, relies on dynamical constraints derived from an averaged, single aperture

measurement of the stellar velocity dispersion. Connecting such measurements relies

on a series of assumptions (e.g., on radial anisotropy), which may introduce bias in

both the average and scatter. Nevertheless, more detailed studies using 2D dynamical

information find 〈γ′〉 = −1.98 ± 0.05 (Barnabè et al. 2009), in agreement with other

in-depth lensing studies (e.g., Kochanek 1995).

While very intriguing, the evidence for isothermality in ellipticals should still be con-

sidered tentative. Gravitational lenses are fairly rare and unique objects whose selection

may be strongly biased, both in mass and in γ′ (Mandelbaum et al. 2009). Further-

more, evidence exists that some lenses are inconsistent with isothermal profiles (Treu &

Koopmans 2004; Kochanek et al. 2006, see also Chapter 2 here), indicating there may

in fact be a significant population of ellipticals which deviate from isothermality.

Stellar and Dark Matter Distributions in Lens Galaxies

In lens systems with complementary datasets (e.g., dynamical or stellar population

measurements), parameterizations of the lens potential need not be restricted to single,

power law profiles. Instead, a useful exercise is to deconstruct the lens into its luminous

and dark components. Doing so provides a unique opportunity to test the universality

of dark matter profiles and to study stellar populations in massive galaxies.

Numerical simulations of cold dark matter halos generically conclude their mass

density follows a profile similar to that proposed by Navarro et al. (1997) (NFW), with
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an inner logarithmic slope of γ′DM = −1. Evidence from the kinematics of local galaxies

and clusters, however, call the universality of halo profiles into question, indicating the

true profile may be shallower than predicted (Salucci et al. 2007; Sand et al. 2008). In

addition, cosmological simulations which include the effects of baryons seem to suggest

shallow or flat-cored inner profiles might better describe the dark matter distribution

(Romano-Dı́az et al. 2009).

Typically, the Einstein radius of early-type lens galaxies falls within two effective

radii of the luminosity distribution (see e.g., van de Ven et al. 2009). At such radii,

the baryonic component of the galaxy’s mass plays an important role, increasing the

difficulty of extracting dark matter specific measurements (due to the uncertainty in

the profile decomposition). A common approach, therefore, is to apply additional mass

constraints from stellar dynamics or stellar population models. Using a joint lensing +

dynamics analysis, Treu & Koopmans (2004) found the slope of the inner dark matter

profile to be 〈γ′DM〉 = −1.3+0.2
−0.4, consistent with N-body predictions. In stark contrast,

recent work combined lensing, stellar dynamics, and stellar population synthesis (SPS)

models to analyze the two-source lens, SDSSJ1538+5817, finding 〈γ′DM〉 < 0.7 (Grillo

et al. 2010). Clearly, more studies with larger samples of lenses are needed.

Another approach to examining stellar versus dark matter content within a galaxy

is to fix the dark matter profile (typically to NFW), and instead infer the properties

of the stellar population (e.g., Auger et al. 2009). Using lensing (or lensing + stellar

dynamics) in concert with SPS models, two separate estimators for stellar mass can

be obtained; one lensing based, the other SPS based. Here, the lensing measurement

provides an absolute calibration of the stellar mass. This lens-based measurement

may then be used to test SPS masses, as a function of the population parameters

(e.g., metallicity, formation history, IMF). Recent works have used lensing + dynamical

models to constrain the stellar IMF, finding it similar in form to Salpeter (Grillo et al.

2009; Grillo & Gobat 2010; Treu et al. 2010). In addition, Treu et al. (2010) detect
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a mismatch in the lensing vesus SPS derived steller masses which varies as a function

of total lens mass, indicating either non-universal dark matter profiles or non-universal

stellar IMFs. Caution must be taken, however, in interpreting SPS derived results. In

particular, complications due to dust, varying star formation histories and metallicities,

and treatments of late-stage stellar evolution carry additional uncertainties of & 0.3 dex

(Maraston 2005; Conroy et al. 2009; Maraston et al. 2009). In Chapter 2, we consider

and discuss the effects of more complicated treatments of SPS models, in combination

with lensing.

1.1.2 Dark Matter Substructure

With an understanding of the large scale, “macroscopic” mass distribution of a lens, it is

interesting to consider the effects of granularity in mass distributions. One particularly

interesting source of such structure is the large collection of satellite galaxies believed

to reside in distant galaxies (Diemand et al. 2008; Springel et al. 2008). Motivated by

studies of the Galactic satellite population, substructure gravitational lensing provides

uniques tests of the small scale structure of galaxies.

Missing Satellites

Since the inception of N-body simulations of dark matter, a tension has arisen between

predictions of Cold Dark Matter (CDM) theories and observational data. On the small-

est scales, CDM simulations invariably predict that small dark matter “subhalos” must

exist in large quantities within the virial radius of a massive galaxy (Moore et al. 1998;

Klypin et al. 1999a). Furthermore, the mass function of subhalos is predicted to follow

a power law of the form dn/dM ∝ M−α (α ∼ 1.9), such that Milky Way size galaxies

should have hundreds of satellites with masses < 107M� (Diemand et al. 2008; Springel

et al. 2008). In contrast to these predictions, observational censuses of Galactic com-

panions have historically been at odds with CDM, totaling only a few tens in number
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(Klypin et al. 1999; Moore et al. 1999).

In recent years, the disparity between CDM and Galactic satellite counts (dubbed

“The Missing Satellites Problem”) has been alleviated in part by the greater sky cover-

age provided by the Sloan Digital Sky Survey (SDSS). By filtering the data for stellar

clusters with appropriate color-magnitude and spatial properties, studies using SDSS

have begun to detect new, ultra-faint dwarf galaxies surrounding the Galaxy (e.g., Will-

man et al. 2005). With this, the number of Milky Satellites has more than doubled

the (pre-2005) count, rising from 11 to the current 35 (for a comprehensive list, see

Wadepuhl & Springel 2010). Accounting for the sky coverage and magnitude limits of

SDSS, the estimated number of luminous Galactic satellites is likely around 70 − 500,

depending on assumptions based on currently known dwarfs (Tollerud et al. 2008).

Thus, the missing satellites problem may be much alleviated (or even solved) once a

volumetrically complete survey of the Milky way is conducted.

In conjunction with improved detection of ultra faint dwarfs, suites of hydrody-

namical simulations have further improved our understanding of the Missing Satellites

Problem. Focusing on the physical processes at play in low mass halos, such studies

have shown that a number of astrophysical mechanisms may hamper the formation of

stars (for a review, see Kravtsov 2010). In particular, photo-ionization from hard UV

photons, tidal disruption, supernova and AGN feedback, cosmic rays, and ram pres-

sure stripping are amongst the processes which may render small mass halos bereft

of light (e.g., Gnedin 2000; Scannapieco et al. 2001; Strigari et al. 2007; Madau et al.

2008; Mashchenko et al. 2008; Macciò et al. 2010; Penarrubia et al. 2010; Wadepuhl

& Springel 2010). If the satellites surrounding the Milky Way are indeed sub- or non-

luminous below some mass threshold, it is possible that the Missing Satellites Problem

is in fact close to resolution. However, other solutions exist. If, for instancen dark

matter particles are not “cold” with masses in the 10s − 100s of GeV but is instead

“warm” with masses in the 10s − 100s of keV, the free streaming length of dark matter
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would increase at early times. This has the effect of washing out bound structure on

small mass scales, and would suppress the expected abundance of low mass satellites

around the Milky Way (e.g., Yoshida et al. 2003; Gao & Theuns 2007). Studies of the

smallest mass satellites, therefore, provide an unusual opportunity to examine the in-

terplay of astrophysical effects (e.g., feedback, tidal disruption, photo-ionization) versus

the effects of varying the properties of dark matter.

Substructure Gravitational Lensing

Deciphering the behavior of dark matter on small scales clearly requires a different

approach than offered by traditional optical surveys, which are limited by the luminos-

ity of low mass dwarfs. Sensitive to mass alone, gravitational lensing offers the only

technique to study substructure outside of the Local Group, regardless of luminosity.

In the strong lensing regime, image deflections are on the order of 1′′ on the sky

for typical redshifts of the lens galaxy and background source. For systems with two

lensed images, the various observables (flux ratios, positions, and time delays) are well

produced by a single, simple parametric model representing the mass distribution of

the lens (e.g., Inada et al. 2007). These smoothly varying “macro” models often include

effects of the lens environment, which manifests its effects in a tidal shear of the potential

(Keeton et al. 1997).

In the early 1990s, several new four image lenses were discovered, and with them, the

first failures of simple parametric models (Irwin et al. 1989; Kayser et al. 1990; Kormann

et al. 1994; Lawrence et al. 1995). For these new four image systems, the addition of

two more images greatly restricted the freedom available to lens models, increasing the

difficulty of reproducing observations. In particular, it was quickly realized that simple

models could adequately describe the image positions, but often failed to explain the

image flux ratios. These so-called “flux ratio anomalies” presented the first significant

challenges to lens modelers, indicating models lacked some key form of freedom.
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One clear omission in simple lens models is the presence of small scale structure in

the mass distribution. An obvious candidate for such modification, stellar perturbations

to simple models were physically well-motivated and known for some time (Irwin et al.

1989; Vanderriest et al. 1989). Once added to models, the presence of stars cause extra

light bending on small scales, resulting in changes to image magnifications. Indeed,

the inclusion of stellar “microlensing” in models is able to explain some flux anomalies.

For example, the quasar lens Q2237+0305 is known to exhibit optical flux ratios which

differ by up to ∼ 10 times those predicted from smooth macro models (Woźniak et al.

2000). A comprehensive explanation, especially across multiple wavelengths, requires

significant microlensing (Agol et al. 2009).

In the case of radio lenses, however, microlensing is unlikely the origin of anomalous

flux ratios. At masses around 1M�, typical stellar Einstein radii are ∼ 10−6 ′′. In

comparison, the size of the background radio source is & 1 pc, or & 10−4 ′′, much too

large to be affected by such tiny perturbations. Instead, radio quads seem to require

additional structure at scales of ∼ 10−3′′, corresponding to 105 − 109M� in mass.

The enterprise of detecting dark matter substructure in lens galaxies via perturba-

tions to image flux ratios has been quite successful. Early works (Mao & Schneider

1998; Chiba 2002; Metcalf & Madau 2001; Dalal & Kochanek 2002; Metcalf & Zhao

2002; Bradač et al. 2002) provided the initial theoretical understanding of substructure

“millilensing” and the first detections in individual objects. Perhaps the most influen-

tial of these works, Dalal & Kochanek (2002) examined the properties of seven radio

lenses known to exhibit flux anomalies. Their analysis of the combined sample pro-

vided the first constraints on the fraction of mass in substructure; between 0.6% and

7% within the Einstein radius of the lens galaxy (90% confidence).

Unfortunately, the utility of radio selected lenses for finding substructure is limited

in scope. Currently, . 35% of known quasar lenses exhibit significant radio emission,
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making a rare phenomenon even more scarce. More importantly, radio images are bi-

ased towards relatively large source sizes (& 10−4′′) and, therefore, larger substructure

masses of & 105M�. More recent works have explored the use of mid-infrared obser-

vations to study flux ratios (Chiba et al. 2005; MacLeod et al. 2009). With rest frame

emission in the near-infrared, mid-IR flux ratios originate from the dusty torus of gas

believed to surround the central engine of quasars (Minezaki et al. 2004; Suganuma

et al. 2006). Depending on the intrinsic luminosity of the QSO, mid-IR sources are

typically ∼ 10−5′′−10−4′′ in size and are sensitive to yet lower mass substructure than

radio lenses (Chiba et al. 2005; Minezaki et al. 2009). In Chapters 4 and 5, we consider

the use of infrared flux ratios, in conjunction with measurements at other wavelengths,

to examine the properties of dark matter substructure.

Perturbation of lens images are not solely limited to distortions of the magnifica-

tion. If a clump of dark matter lies close to the lensed image, changes to the deflection

can cause milliarcsecond-scale shifts in the image positions. With precise measure-

ments from HST or VLA/VLBI observations, astrometric data have been shown to

provide useful and complimentary constraints to image flux ratios (e.g., Chen et al.

2007; Williams et al. 2008; More et al. 2009). Moreover, astrometric changes to image

positions open up the usefulness of galaxy-galaxy lenses for substructure studies. By

modeling the distortions in high signal-to-noise Einstein rings, individual galaxy-galaxy

lenses can be used to detect substructure with masses as low as ∼ 108M� (Koopmans

2005; Vegetti & Koopmans 2009b; Vegetti et al. 2009, 2010).

For quasar lenses, dark matter substructure can also be studied using the time delay

between lensed images. In general, the time delay between images is determined by the

smooth, macroscopic distribution of the lens mass. In detail, however, the exact value

of the time delay is altered by granularity in the mass distribution. Under the presence

of substructure, the time delay is scattered from the macroscopic prediction, with the

amount of scatter dependent on the properties of the substructure population (e.g.,
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mass fraction, power-law slope, mass range) (Keeton & Moustakas 2009). Interestingly,

lensing observables (including flux and position anomalies) of substructure all depend

on different moments of the mass function of the population (Keeton 2009). While we

address some of these in Chapter 4, future studies will clearly benefit from the union

of all three techniques.

1.1.3 Gravitational Telescopes

Strong lenses provide the opportunity to study faint objects at high redshifts. With

improved spatial resolution and magnification boosts & 10, lensing allows the possibility

of detailed studies of distant objects, which might otherwise be beyond our current

observational capabilities. In the case of galaxy-galaxy lenses, with source redshifts

z ∼ 1−3, investigations of the physical properties of young, star-forming are possible in

much finer detail than for unlensed counterparts, permitting studies of their physical size

(Marshall et al. 2007), chemical compostions (Stark et al. 2008), kinematics (Riechers

et al. 2008), and star formation (Teplitz et al. 2000).

Star Forming Galaxies at High Redshift

Key questions for understanding the star formation and evolution of high redshift z ∼

2 − 3 galaxies include: How rapidly are stars being formed? How large is the gas

reservoir from which they can be formed? What are the physical conditions (i.e.,

metallicity, spectral hardness of radiation, etc.) present in high redshift ISMs? What

role do AGN play in the energetics of distant galaxies? Some of these questions are

addressable through rest-frame UV measurements of unlensed sources, albeit often at

the high luminosity tail of galaxies (e.g., Reddy et al. 2006a). Access to the rest-frame

optical, and even more so to the rest-frame infrared, is hampered by the difficulty

of conducting observations redward of 1µm, and often relies on stacking techniques

for all but the brightest objects (Reddy & Steidel 2004; Reddy et al. 2006b). This
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is particularly unfortunate since the bulk of the luminosity lies in the infrared, which

probes the gas and dust content of star forming galaxies.

Fortunately, lensing can provide the helping hand necessary to study the gas and

dust content in galaxies with sub-maximal luminosities. One extensively studied system

is the lensed z = 2.73 Lyman break galaxy (LBG), MS 1512-CB58 (Yee et al. 1996).

Unlike non-lensed LBGs, MS 1512-CB58 seems to exhibit an infrared luminosity LIR ∼

1011L� and dust extinction of 0.0 < E(B−V ) < 0.03, similar to that of typical luminous

infrared galaxies in the local universe (Baker et al. 2001; Smail et al. 2007; Siana et al.

2008). Interestingly, the star formation rate (SFR) of MS 1512-CB58 is a factor 3− 5

higher when estimated from rest frame UV versus infrared, suggesting dust reddening

may be behaving differently at high redshift (Siana et al. 2008). This deviation from

standard Calzetti extinction seems to be confirmed in the “Cosmic Eye”, a lensed LBG

at z = 3.07 (Siana et al. 2009).

In addition to estimations of the SFR, mid-IR observations of lensed high red-

shift systems have also measured the polycyclic aromatic hydrocarbon (PAH) emission

present in these young galaxies (Siana et al. 2008, 2009, also Chapter 3 here). PAH

emission originates from the reprocessing of more energetic photons in the radiation

field, and is an indicator of rapid star formation. One caveat exists, however – if the

spectrum of the radiation is very hard, PAH molecules are destroyed (see, e.g., Wu

et al. 2006). Thus, PAH emission serves as a diagnostic of the energetics present in

interstellar media, and can be used to distinguish between AGN versus star formation

dominated galaxies (Laurent et al. 2000; Baum et al. 2010). So far, all mid-IR spectra

of lensed LBG galaxies have shown significant PAH emission. While still heterogenous

in properties like metallicity, SFR, and gas content, the uniform presence of strong PAH

emission suggests AGN play a sub-dominant role in these systems (see Chapter 3). Un-

fortunately, the current sample of lensed galaxies with mid-IR observations is small and

will likely not increase much until the launch of the James Webb Space Telescope.
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Quasar Structure

To date, the majority of our understanding of AGN structure have been derived from

local Seyfert galaxies, with luminosities . 1045 erg s−1 (Urry & Padovani 1995; Kaspi

et al. 2005; Suganuma et al. 2006). At higher luminosities, AGN are quite rare in the

local universe until redshifts & 1 are reached. At these cosmological distances, under-

standing the properties and structure of highly luminous AGN (quasars) is hindered by

their small angular size and (often) faint nature. Lensing, however, not only provides a

magnification boost but also has observables which are dependent on the angular size

of the background source (Dobler & Keeton 2006; Dai et al. 2010). In particular, the

same small structure which is necessary to explain flux anomalies can also be used to

study AGN, since it is sensitive the size of the emitting region.

At rest frame UV to optical wavelengths, AGN emission originates thermally from

a hot accretion disk surrounding a supermassive black hole (Shakura & Sunyaev 1973).

For quasars, the expected size of typical accretion disks are 10−3−10−2 pc, correspond-

ing to angular scales of 10−7′′−10−6′′ (Pooley et al. 2007; Morgan et al. 2010). In the

case of strong lensing, however, the Einstein radii of lens galaxies are of the order ∼ 1′′.

The huge discrepancy in these sizes means that, effectively, QSOs are point sources for

lensing in X-ray through optical wavelengths, and their sizes have no effects on lens ob-

servables. However, this is not true in the case of microlensing by stars. With Einstein

radii of order 10−6′′, stars can alter the magnification of lens accretion disks. More-

over, since microlensing effects are comparable to the source size of disks, variations

from microlensing can be used to model the size of the emission region (Dai et al. 2010;

Poindexter & Kochanek 2010). By studying this effect across multiple wavelengths, mi-

crolensing studies have found that disk sizes are somewhat larger than expected from

Shakura & Sunyaev (1973), with somewhat under-luminous brightnesses (Poindexter

& Kochanek 2010; Morgan et al. 2010). In lenses with extensive monitoring, variations

of the source size have been shown to provide improved fits to the data, unveiling the
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act of accretion in progress (Blackburne & Kochanek 2010).

Just as stellar microlensing is sensitive to the size of the accretion disk of the back-

ground AGN, substructure millilensing is equally sensitive to other parts of the AGN

structure. Substructure with mass ranges of 103− 1010M� have Einstein radii of order

∼ 10−4′′−10−2′′, and are insensitive to the size of accretion disks (Minezaki et al. 2009).

However, more extended structures like the surrounding dust torus and broad/narrow

line regions have sizes which are comparable to the Einstein radii of substructure clumps

(e.g., Chiba et al. 2005). Thus, substructure studies using infrared or broad-line flux

measurements can not only address flux ratio anomalies, but can also be used to study

AGN structure through the size dependence of millilensing. In Chapters 4 and 5, we

explore these possibilities.

1.2 Methodology

1.2.1 Basic Gravitational Lensing Theory and Notation

In this section, the basic description and notation of strong gravitational lensing is

described. For more detailed and in depth treatments of lensing theory, some excellent

reviews are presented in Schneider et al. (1992) and Kochanek (2004).

Figure 1.1 presents the basic geometry for strong lensing, corresponding to the

presence of multiple images. We first define the optical axis as the line connecting

the observer to the center of mass in the lens plane. Relative to this line, we define

the angular position of the images, x = (x, y), and angular position of the source,

u = (u, v). The light bending which connects source to the images is then defined by

the lens equation:

u = x−∇φ (1.1)

where φ is the scaled gravitational potential. In order to relate the angular positions
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Figure 1.1 The basic geometrical scheme for strong lensing. The dotted central line,
called the optical axis, represents the vector connecting the observer to the center of
the lens mass. A background source lies at an angular position u from the optical axis.
Light from the source is deflected by the lens along the solid line, forming images at
an angular position x. Angular diameter distances DL, DLS , and DS correspond to the
distance from the observer to the lens, from the lens to the source, and from observer
to the source, respectively.

in Equation 1.1 to physical sizes, it is necessary to know the relative angular diameter

distances DL, DLS , DS , which correspond to the distance from the observer to the lens,

from the lens to the source, and from the observer to the source, respectively.

For a lens with surface mass density Σ, the potential φ is defined by

∇2φ(x) = 2κ(x) = 2Σ/Σcrit, (1.2)

where κ is the convergence and Σcrit = c2

4πG
DS

DLDLS
is the critical density for lensing. In

the case of strong gravitational lensing, the criterion for multiple images is κ & 1 or

Σ & Σcrit.
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While the lens equation (Equation 1.1) defines the positions of lensed images on

the sky, another key observable is the image flux ratios, which are determined by the

magnification. Since lensing conserves surface brightness, we can characterize the mag-

nification using the matrix:

A =
∂u

∂x
. (1.3)

From Equation 1.1, it follows that

A =

 1− φxx −φxy

−φyx 1− φyy

 (1.4)

In turn, we can define the magnification matrix as M = A−1, such that the magnifica-

tion of a lensed image is then

µ(x) =
1

detA
(1.5)

With a lens model in hand we can now define the image positions and magnifications

for any position of the background source. Equation 1.5 indicates that certain positions

have divergent magnifications, where detA = 0. The locations of such points are

referred to as “critical curves” in the image plane and “caustic curves” in the source

plane. In Section 1.2.2 examples of typical critical and caustic curves are given along

with a discussion of their utility.

For images of lensed quasars, the flux observed may change over time due to varia-

tions in brightness of the background AGN. While this complicates the interpretation

of flux ratios, it presents an additional observable through the differences in light travel

time between images. Differences in the arrival time between images originate from two

effects. The first is the difference in the path length between images and the second is
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the gravitational delay from the Shapiro effect. Combining these two effects, the time

delay between images is then

∆tij =
1 + zl
c

DLDS

DLS

{
1

2

(
|xi − u|2 − |xj − u|2

)
−
[
φ(xi)− φ(xj)

]}
. (1.6)

1.2.2 Lens Configurations

As an example, let us consider a lens mass distribution corresponding to a singular

isothermal sphere (SIS). While a simple “toy” model, the SIS profile has been used

extensively in lensing since it easy to understand, and can be solve analytically. Ad-

ditionally, SIS profiles are a somewhat fair treatment of lens galaxies, since most are

found to be close to isothermal (Koopmans et al. 2009).

Behind this SIS lens, let’s consider a background source with a spherical, Gaussian

surface brightness distribution. Figure 1.2 shows the configuration of the lensed images

and background source. Overplotted in the panels are the critical and caustic curves,

defining the regions of very high magnification and distortion. In the top row, the source

sits on the optical axis and produces an Einstein ring (coincident with the critical curve).

In the lower panels, the background source is moved away from the optical axis and

image arcs are produced.

Realistic lenses, however, are never completely spherical. Ellipticity in the lens mass

distribution, as well as tidal shear produced by the surrounding environment, destroy

the symmetry. In Figure 1.3, the lens is now replaced by a singular isothermal ellipsoid

(SIE), with the same total mass as the lens in Figure 1.2. Once spherical symmetry is

broken, the inner, “tangential” or “astroid” caustic can been seen. As the lens becomes

increasingly elliptical, the tangential caustic grows. When the size of the tangential

caustic is bigger than the size of the source, an Einstein ring is no longer produced,

resulting in four lensed images.1

1Formally, five lensed images are produced. However, the fifth image lies very close to the optical
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Figure 1.2 Lensing by a singular isothermal sphere (SIS). The left hand column repre-
sents the source plane, with a small spherical, gaussian source visible. The right hand
column shows the corresponding images. The solid black lines represent the caustics in
the source plane, and the critical curves in the image plane. In the top row, the source
sits on the optical axis and a perfect Einstein ring is formed. As the source is moved
away (lower rows), the ring is broken into two arc images.
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Figure 1.4 shows the effects of moving the source within the tangential caustic.

Typical lens configurations called “folds”, “crosses”, and “cusps” are produced. The

sign of the eigenvalues of the magnification matrix (Equation 1.4) determines the parity

of the lensed images, and is useful in describing the lensed images. For instance, im-

ages of opposite parity straddle the critical curve. Additionally, positive parity images

correspond to minima of the potential, negative parity images correspond to saddle

points, and double negative parity images correspond to maxima. From top to bottom

in Figure 1.4, the source position is varied. As the source moves outside of the tangen-

tal caustic, the number of images decreases by two and a two image configuration is

produced.

1.2.3 Statistical Analysis in Lensing

A main task in astrophysical studies is to connect a set of observations to a physically

justified model. In strong lensing studies, this involves taking observables (like image

positions, fluxes, and time delays) and using them to infer properties of the projected

mass distribution and the background source. Practically, this involves constructing a

model for the lens + source, computing the properties of the images, and comparing

them to the data. The ultimate goal of this procedure is to assess the likelihood of the

model and estimate range of acceptable model parameters.

The simplest estimator of the likelihood of a model is the chi-squared goodness-of-fit

statistic:

χ2 =

(
xM − xd
σxd

)2

(1.7)

where xd is the data values, xM is the model values, and σxd is the uncertainty as-

sociated with the data values (see, e.g., Wall & Jenkins 2003). The χ2 statistic may

axis and is usually highly demagnified, making it hard to detect.
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Figure 1.3 Lensing by a SIE mass distribution. The left hand column represents the
source plane, with a small spherical, gaussian source visible. The right hand column
shows the corresponding images. The solid black lines represent the caustics in the
source plane, and the critical curves in the image plane. From top to bottom, the
ellipticity of the lens corresponds to 0.01, 0.1, 0.3, 0.6. At low ellipticity, the tangential
(astroid) caustic is small compared to the source, and an Einstein ring is formed. As the
ellipticity increases, the tangential caustic grows and a ring can no longer be formed.
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Figure 1.4 Typical lens configurations, produced by a SIE mass distribution. The
left hand column represents the source plane, with a small spherical, gaussian source
visible. The right hand column shows the corresponding images. The solid black lines
represent the caustics in the source plane, and the critical curves in the image plane. In
the first three rows, common four-image configurations referred to as “cross”, “fold”,
and “cusp” lenses, are shown from top to bottom. The bottom row shows an example
of a two-image lens. The position of the source, relative to the caustics, determines the
configuration. As the source crosses a caustic, the number of images decreases by two.
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be used to estimate the likelihood L of the model, with L ∝ e−χ
2/2. Thus, by using

standard optimization routines one can easily compute the peak value of the likelihood

by computing χ2 for the best fitting model. If the likelihood is Gaussian in form, well

fitting models should have a reduced χ2
r ∼ 1 (Wall & Jenkins 2003).2

While the χ2 statistic gives a good estimate of the peak of the likelihood, the task of

estimating the range of allowed model parameters is not as simple. For this we want to

know the posterior probability distribution P (θ|d,M) of parameters θ, given the data

d and model M .

Parameter Estimation with Markov Chain Monte Carlo

Bayesian probability states

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d|M)
(1.8)

= Z−1P (d|θ,M)P (θ|M) (1.9)

where the normalization

Z =

∫
P (d|θ,M)P (θ|M)dθ. (1.10)

Since Z does not change the shape of P (θ|d,M), we can ignore it for the purpose of

parameter estimation. Therefore, what is needed is a technique which can compute the

combination of the likelihood L = P (d|θ,M) and the prior distribution P (d|M).

Markov Chain Monte Carlo (MCMC) provides an accurate and relatively efficient

method of sampling the shape of the posterior distribution (see, e.g., Gelman et al.

2003). The basic premise of MCMC is to use a random walk to generate many samples

of points which represent the desired distribution. The generic algorithm starts with

2The reduced chi-squared, χ2
r, is simply that of Equation 1.7 divided by the number of degrees of

freedom (Ndata −Nparameters).
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a Markov chain at a random point in the parameter space. The chain is then stepped

randomly in the space and the value of the likelihood times the prior is calculated in

the form of a χ2 value. If the χ2 goes down the step is accepted as the new location

of the chain. If it goes up, the step may be accepted with a probability P = e−∆χ2/2.

As the chain continues, it steps through the posterior distribution, eventually moving

from lower to higher likelihood regions (see Figure 1.5). To insure a robust sampling,

multiple such chains are run and compared to see if they recover similar properties

of the target distribution. Final convergence is reached once the multiple chains have

similar variances between and within themselves. See Chapter 2 (Section 2.3.4) for

details regarding MCMC algorithms, convergence, and methods.

Model Evidence and Nested Sampling

Standard chi-squared analysis allows one to determine how well a model can fit the data.

The next level of inference, the estimation of model parameter ranges, is tractable

with Monte Carlo techniques (e.g., MCMC). Difficulties arise, however, when there

are multiple models which can describe a given set of data. In particular, models

with different priors, different numbers of parameters, or disparate properties can often

provide similar and adequate fits. Which model is then judged to be more preferable?

Model comparison relies on a true calculation of the posterior distribution. Earlier

in this section, it was sufficient to ignore the normalization of the posterior, since

our focus was on single model fits to the data. To compare various models, however,

this normalization is needed since it provides a scale of the overall probability of the

model. This normalization, Z, is called the Bayesian Evidence. From Equation 1.10,

the evidence is the combination of the likelihood and the priors, integrated over the

volume of parameter space. Thus, the evidence is a measure not only of the peak of the

likelihood but how broadly a model fits the data for the range of parameters. With the

evidence in hand, models can directly be compared through the ratio of their evidences,
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Figure 1.5 Three panels showing the various stages of a MCMC exploration of a joint
posterior distribution. In this example, a single chain (red) makes steps in the para-
meter space defined by the x and y axis here. Steps of the chain (black points) are
accepted if the χ2 value decreases. If the χ2 increases, the step is taken with prob-
ability P = e−∆χ2/2. The dashed lines represent various confidence intervals of the
target distribution. Initially (top panel) the chain is far from the region(s) of high
likelihood. Though any particular step can move up or down in likelihood, eventually
the chain moves from lower to higher likelihood regions (middle panel). At the end
of the MCMC run, the chain has thoroughly sampled the posterior (bottom panel).
For a given MCMC analysis, multiple such chains are run to check convergence and to
provide large numbers of samples.
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called the Bayes Factor (see example case below).

Many techniques exist which can calculate the Bayesian Evidence for a particular

model. One particularly useful method is called Nested Sampling (Skilling 2004). Let

us write

Z =

∫
P (d|θ,M)P (θ|M)dθ (1.11)

=

∫
L(X)dX (1.12)

where dX = P (θ|M)dθ and X =
∫
L>L′ P (θ|M)dθ is the prior volume within an iso-

likelihood surface with likelihood L′. Since L(X) is monotonically decreasing with

X, we can then consider a numerical evaluation of Equation 1.12 on a sequence of

decreasing values of X:

0 < XN < ... < X1 < X0 < 1. (1.13)

With this, the integral of Z is simply a sum Z =
N∑
i=1
Liwi, where the weights wi are

given by, for example, the trapazoid rule wi = 1
2(Xi−1 −Xi+1). Figure 1.6 provides an

illustration of the Nested Sampling scheme.

In practice, the algorithm is executed in the following way. First, a Monte Carlo

sample of the full prior volume is drawn with N ‘live’ points, defining the initial prior

volume X0 which is set to 1. The initial sample is then sorted such that the point of

lowest likelihood is selected to defined the first ‘nested’ point, and is replaced by another

point drawn such that Lnew > Lold. This procedure is repeated, with the remaining

amount of unexplored prior volume decreasing towards zero. A running estimate of

the evidence is calculated from the nested points (Znest =
Current∑
i=1

Liwi) and of the live

points (Zlive ∼ 〈Llive〉Xi). Convergence is achieved when Znest is within some tolerance

of Ztotal ∼ Znest + Zlive. In all, calculating the total evidence is achieved by traversing
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Figure 1.6 Top panel A hypothetical joint posterior probability distribution of a 2D
parameter space. As the Nested Sampling algorithm runs, live points sample the re-
maining fraction of prior volume Xi (denoted by shaded regions). The live point with
the lowest likelihood Li (colored circles) then defines the iso-likelihood surface (black
lines) which corresponds the particular volume Xi. This procedure is repeated many
times, with Xi → 0. In this panel, five such iterations are shown. Bottom panel The
information in the top panel, projected into the function L(X). As the algorithm pro-
ceeds, Li is defined for each Xi, producing the black curve. The Bayesian evidence Z
is then the integral of the L(X) curve. In this example, it is clear that (even at fixed
peak likelihood) the evidence may be dramatically higher/lower if the likelihoods Li
are higher/lower for each Xi.
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the prior volume in a series of nested shells (see Figure 1.6). Below, we demonstrate

the utility of calculating the evidence by examining the lens PG 1115+080.

Example Case: PG 1115+080

Consider the case of the lens PG 1115+080, a four image quasar lens which has been well

studied previously (see e.g., the CASTLES database3). Using positions and F814W

flux ratios (with 25% uncertainties) from the CASTLES website, we can model the lens

using a projected mass distribution of the form:

κ(ξ) =
1

2

b2−α

(a2 + ξ2)1−α/2 (1.14)

where ξ = (x2 +y2/q2)1/2 is the ellipse coordinate with axis ratio q, a is the core radius,

b is a normalization parameter, and α is the power law index of the projected mass

profile. With additional terms which represent the environmental shear, we consider

the above model for Ndata−Nparameter = 12−8 = 4 degrees of freedom, leaving either a

fixed to zero (Model 1) or α fixed to 1 (Model 2). A simple χ2 optimization finds the two

models the models both have χ2
best = 3.2, indicating both models can fit the data well.

Which model is then more favorable? Without a prior preference to a particular model,

there is no means with which to determine which model is better from the χ2 alone.

Instead, we aim to calculate the posterior distribution and the Bayesian Evidence using

the Nested Sampling algorithm described above. We find that Model 1, with a fixed

core radius and varying profile index, has log(Evidence) = −17.1. Model 2, fixed to an

isothermal (α = 1) profile but with a varying core radius, has log(Evidence) = −18.1.

Computing the Bayes Factor, we find Model 1 is 10 times more likely than Model

2. Apparently, the data considered for PG 1115 strongly favors a model which has a

running power law index. Without the evidence, this conclusion would not have been

3http://www.cfa.harvard.edu/castles/
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possible. In Chapter 5, we apply the Nested Sampling technique in analyzing HE 0435-

1223, finding it an invaluable tool in understanding small scale structure in the lens

galaxy.
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Klypin, A., Gottlöber, S., Kravtsov, A. V., & Khokhlov, A. M. 1999a, ApJ, 516, 530

Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999b, ApJ, 522, 82

Kochanek, C. 2004, in Saas-Fee Advanced Courses, Vol. 33, Gravitational Lensing:

Strong, Weak and Micro, ed. G. Meylan, P. Jetzer, & P. North (Berlin, Germany;

New York, U.S.A.: Springer), 91–268

Kochanek, C. S. 1995, ApJ, 445, 559

Kochanek, C. S., Morgan, N. D., Falco, E. E., McLeod, B. A., Winn, J. N., Dembicky,

J., & Ketzeback, B. 2006, ApJ, 640, 47

Koopmans, L. V. E. 2005, MNRAS, 363, 1136

Koopmans, L. V. E., Bolton, A., Treu, T., Czoske, O., Auger, M. W., Barnabè, M.,
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Chapter 2

Improved Constraints on the Gravitational Lens

Q0957+561

This chapter is based on the published work in the journal article:

Fadely, R., Keeton, C. R., Nakajima, R., & Bernstein, G. B., 2010, ApJ, 711, 246

We present a detailed strong lensing analysis of an HST/ACS legacy dataset for the

first gravitational lens, Q0957+561. With deep imaging we identify 24 new strongly

lensed features, which we use to constrain mass models. We model the stellar component

of the lens galaxy using the observed luminosity distribution, and the dark matter

halo using several different density profiles. We draw on the weak lensing analysis by

Nakajima et al. (2009) to constrain the mass sheet and environmental terms in the lens

potential. Adopting the well-measured time delay, we find H0 = 85+14
−13 km s−1 Mpc−1

(68% CL) using lensing constraints alone. The principal uncertainties in H0 are tied to

the stellar mass-to-light ratio (a variant of the radial profile degeneracy in lens models).

Adding constraints from stellar population synthesis models, we obtain H0 = 79.3+6.7
−8.5

km s−1 Mpc−1 (68% CL). We infer that the lens galaxy has a rising rotation curve and

a dark matter distribution with an inner core. Intriguingly, we find the quasar flux

ratios predicted by our models to be inconsistent with existing radio measurements,

suggesting the presence of substructure in the lens.
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2.1 Background

Since its inception, strong gravitational lensing has been used to probe galaxy mass

distributions in a way that complements photometric and dynamical studies. In systems

with numerous lensed features, especially partial or full Einstein rings, lensing can

provide a fairly detailed description of the lens galaxy mass distribution (e.g., Kochanek

et al. 1989, 2001; Kochanek 1995; Lehár et al. 1996, 1997; Trotter et al. 2000; Koopmans

et al. 2006; Gavazzi et al. 2008; Suyu et al. 2008, 2009). In systems with only a

few lensed images, however, there may be significant systematic uncertainties in the

lens mass distribution. For example, four-image lenses typically constrain the angular

structure of the lens potential reasonably well (e.g., Keeton et al. 1997), but often

cannot determine the radial profile because the images lie at similar distances from

the center of the galaxy (e.g., Keeton & Kochanek 1997; Kochanek 2002). Two-image

lenses are better able to probe the radial profile, but provide only poor constraints on

the angular structure of the lens potential (Rusin et al. 2003). In addition, further

complications may arise if the lens galaxy lies in a group or cluster of galaxies that

significantly affect the lens potential (see Keeton & Zabludoff 2004).

These issues explain the challenges associated with modeling the first gravitational

lens discovered, Q0957+561 (Walsh et al. 1979). The two lensed images of the back-

ground quasar provide limited constraints on a lens potential that is complicated by the

presence of a cluster surrounding the main lens galaxy (e.g., Kochanek 1991). To move

beyond simple two-image reconstructions, Gorenstein et al. (1988b) and Garrett et al.

(1994) used VLBI observations to resolve the radio structure of the quasars; but Gro-

gin & Narayan (1996) and Barkana et al. (1999) found that the new radio constraints

still could not strongly constrain the lens potential. Seeking yet more constraints, Bern-

stein et al. (1997) and Keeton et al. (2000) used the Hubble Space Telescope to discover

lensed images of the quasar host galaxy, but even they found that a range of models

could reproduce all the strong lensing data (also see Bernstein & Fischer 1999). There
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were parallel efforts to obtain other kinds of data to provide independent constraints

on the lens galaxy and cluster. Tonry & Franx (1997) measured the central velocity

dispersion of the lens galaxy, which Romanowsky & Kochanek (1999) used in stellar

dynamical models. Fischer et al. (1997) studied weak lensing by the cluster. Chartas

et al. (2002) used the Chandra X-ray Observatory to detect the hot intracluster gas

and estimate the cluster mass. Despite the growing amount of data for this system, a

definitive description of the mass distribution has remained elusive.

Uncertainties in the mass distribution propagate into attempts to use the lens time

delay to determine the Hubble constant, H0. In principle, lens time delays offer a

simple measurement of the Hubble constant at cosmological distances that bypasses

the distance ladder. In practice, however, H0 is degenerate with certain aspects of

the mass model (Falco et al. 1985; Gorenstein et al. 1988a; Williams & Saha 2000;

Kochanek 2002; Saha & Williams 2006). Due to these degeneracies, measurements of

H0 in individual lens systems have yielded quite varied results. Figure 2.1 shows the

lens systems for which individual modeling of the mass distribution has been done to

determine H0. Examining the figure, it is unclear what value of H0 such studies prefer.

Roughly half of the previous studies are consistent with H0 < 60 km s−1 Mpc−1, with

most preferring H0 = 65–80 km s−1 Mpc−1. Strikingly, only two studies, of Q0957+561

(Bernstein & Fischer 1999; Keeton et al. 2000) and PKS 1830-211 (Lidman et al. 1999),

found H0 values > 85 km s−1 Mpc−1.

In non-lensing studies, measurements of H0 have reached better agreement. Us-

ing Cepheid variable stars as distance indicators, Freedman et al. (2001) obtained

H0 = 72 ± 2 (stat.) ±7 (syst.) km s−1 Mpc−1. Riess et al. (2009) recently ana-

lyzed a higher quality and more homogeneous sample of Cepheids and supernovae and

found H0 = 74.2 ± 3.6 km s−1 Mpc−1. Results from measurements of the Cosmic

Microwave Background (CMB) have given similar results. Most recently, Dunkley et

al. (2008) analyzed the 5th year data release of the Wilkinson Microwave Anisotropy
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Figure 2.1 Current H0 measurements in individual lens studies. Black errorbars indicate
the most recent measurement for a given lens. When more than one such effort has
been made, we present the second most recent effort in red. The measurements span
a range of median values and uncertainties; a simple χ2 test indicates the scatter is
not purely statistical at > 99% confidence. References— B0218+357: Wucknitz et
al. (2004); York et al. (2005), RX J0911+0551: Hjorth et al. (2002), FBQ0951+2635:
Jakobsson et al. (2005), Q0957+561: Bernstein & Fischer (1999); Keeton et al. (2000),
PG 1115+080: Treu & Koopmans (2002); Chartas et al. (2004), SDSS 1206+4332:
Paraficz et al. (2009), SBS 1520+530: Burud et al. (2002b), B1600+434: Koopmans et
al. (2000); Burud et al. (2000), B1608+656: Fassnacht et al. (2002); Koopmans et al.
(2003), SDSS 1650+4251: Vuissoz et al. (2007), PKS 1830-211: Lidman et al. (1999);
Winn et al. (2002), HE 2149-2745: Burud et al. (2002a).

Probe (WMAP) to find H0 = 71.9+2.6
−2.7 km s−1 Mpc−1, assuming a universe with a flat

geometry and a cosmological constant. With joint analyses of the various constraints,

measurements of H0 can now approach the percent level. For instance, Komatsu et al.

(2008) combined H0 measurements from the CMB, SNIa, and Baryon Acoustic Oscil-

lations (BAO) to obtain H0 = 70.5 ± 1.3 km s−1 Mpc−1 or a 2.3% determination of

H0.

Given the apparent consensus in non-lensing studies ofH0, the scatter in results from

lensing is puzzling. Are conventional lens models failing to account for variations in key
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components of lens models, such as the logarithmic density slope, angular structure,

and/or substructure? Are the (often large) uncertainties in lensing measurements of

H0 fully understood? How can the uncertainties be reduced?

One way to confront these concerns is to model a statistical ensemble of lenses

when measuring H0. Saha & Williams (2006) used non-parametric lens modeling to

generate free-form mass maps of 10 lenses and obtain H0 = 72.5+7.8
−11.3 km s−1 Mpc−1.

Adding one lens to this sample, Coles (2008) used similar techniques and found H0 =

71+6
−8 km s−1 Mpc−1. Oguri (2007) took a parametric approach but attempted to incor-

porate a reasonable amount of complexity and scatter in the models; his analysis of 16

time delay lenses yielded H0 = 68±6 (stat.) ±8 (syst.) km s−1 Mpc−1. While these re-

sults are enticing, the systematic uncertainties may still be underestimated and cannot

be beaten down with sample size. In particular, lensing constraints on H0 are known

to be affected by the “mass-sheet degeneracy”: a uniform sheet of mass can be added

to a lensing potential in a way that leaves the positions and brightnesses of the images

unchanged but rescales the inferred Hubble constant (Falco et al. 1985; Gorenstein et al.

1988a). Groups and clusters surrounding lens galaxies or along the line of sight can act

as mass sheets that bias lensing measurements of H0 (Keeton & Zabludoff 2004). While

there is considerable effort to characterize the local and line-of-sight environments of

strong lenses (e.g., Fassnacht & Lubin 2002; Fassnacht et al. 2006, 2008; Momcheva

et al. 2006; Williams et al. 2006; Auger et al. 2007), and Oguri (2007) attempted to

account for the mass sheet in several lenses for which it is expected to be significant, it

is still not clear whether the systematic uncertainties are fully understood.

In order to identify and control systematics, it seems that we still need to model

individual lens systems in detail. One advantage of this approach is the ability to

use additional sources of information, such as weak lensing (e.g., Fischer et al. 1997;

Bernstein & Fischer 1999) or stellar dynamics (e.g., Grogin & Narayan 1996; Tonry

& Franx 1997; Treu & Koopmans 2002; Barnabè & Koopmans 2007), to reduce the
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uncertainties inherent in strong lensing. With the four-image lens B1608+656 (Myers

et al. 1995), for example, Suyu et al. (2008, 2009) demonstrate that lensing and velocity

dispersion information can be combined to get a ∼ 7% determination of H0, in which the

modeling uncertainties are comparable to the uncertainties in the measured time delays

themselves (Fassnacht et al. 2002). With Q0957, we have a system whose complicated

lens potential not only presents certain challenges for measuring H0, but also bestows

certain opportunities. In particular, the presence of the cluster around the lens galaxies

offers a rare chance to do a weak lensing analysis of an individual strong lens system (as

opposed to a stacked ensemble; e.g., Gavazzi et al. 2007; Lagattuta et al. 2009), which

is key to breaking the mass sheet degeneracy and controlling that vital systematic

uncertainty. Furthermore, there is now a rich variety of data available for Q0957, which

enables a broad-based analysis. We therefore study Q0957 to investigate statistical and

systematic uncertainties in lens models and H0. The strong lensing analysis presented

here complements and draws upon the weak lensing analysis presented by Nakajima et

al. (2009); both are based on the same new HST/ACS data. In this system extensive

observational effort (e.g., Schild & Cholfin 1986; Kundic et al. 1997; Oscoz et al. 2001)

has yielded a very precise time delay with an uncertainty of just ∼ 0.02% (Colley et

al. 2003). While we do not expect to achieve that level of precision in lens models,

our goal is to see just how well we can do. We combine our new data with a number

of independent constraints from previous observations as well as stellar population

synthesis models, in order to obtain the most precise measurement of H0 to date for

Q0957.

In this paper we assume a flat universe with matter density ΩM = 0.274 and cos-

mological constant ΩΛ = 0.726, which is consistent with the 5-year WMAP+SN+BAO

constraints from Komatsu et al. (2008).
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Figure 2.2 (a, left) A false color image of the central 30′′ of our combined F606W and
F814W images of Q0957+561. (b, right) Close-up of the strong lensing region, after the
main lensing galaxy and quasar images have been subtracted. The white cross indicates
the center of the lens galaxy G1, while the green crosses indicate the quasar positions A
and B. The red boxes and yellow circles indicate the “blobs” and “knots” identified by
Bernstein et al. (1997). Newly resolved faint features are seen south and east around
quasar B and southwest of quasar A. The orange circle indicates an unknown object,
not associated with any lensed features. Since the light profile of the object is consistent
with the PSF, we surmise it is a faint halo star in the foreground of the lens.

2.2 Observations and Data Analysis

2.2.1 Observations

We conducted deep observations of Q0957+561 on 2005 October 10–11 with HST’s

Advanced Camera for Surveys as part of program GO-10569. Using four pointings of

7.7 ks in the F606W filter and 3.8 ks in the F814W filter, we created a 6′× 6′ mosaic of

the field. We arranged the pointings to overlap in the central 30′′ region, forming a 30

ks image in the F606W filter (15 ks in F814W) for our strong lensing analysis with a

final pixel scale of 0.03′′. The large number of exposures in this central region allows us

to use a simple image-combining algorithm that avoids the undesirable PSF broadening

and noise correlation of the common Drizzle algorithm (Fruchter & Hook 2002):
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1. An astrometric solution is derived for each exposure by compounding the ACS/WFC

coordinate map of Anderson (2002) with an additional affine transformation to

account for pointing errors, stellar aberration, and slight plate-scale variations

due to the HST “breathing mode.” The coefficients of the affine transformation

are derived by registering objects detected in individual exposures.

2. A grid of 0.03′′ pixels is created for the combined image. Each pixel in each

exposure is mapped to a single destination pixel. Input pixels flagged as invalid

due to detector defects, etc., are discarded.

3. For each destination pixel, we average all of the input pixels, using a sigma-

clipping algorithm to eliminate pixels contaminated by cosmic rays.

The procedure is identical to the use of Drizzle with a “drop zone” of zero size. Since

each input pixel contributes to only one output pixel, the output pixels have uncorre-

lated noise. The combining algorithm broadens the PSF only by an effective convolution

with the output pixel square. The final pixel size is chosen such that it is small enough

not to degrade the resolution, but coarse enough that there are enough input pixels for

averaging and outlier rejection. We present a false color image of our combined F606W

and F814W images in Figure 2.2a.

To look for new strong lensing constraints, we subtract the bright quasar images A

and B using the PSF derived from observations of the star HD237859. Since the PSF

varies with focal plane position as well as time, we observed the star as close as possible

in time and chip position to each quasar image in each of the four pointings.

2.2.2 Lens Galaxy Properties

We model the main lensing galaxy using the IRAF ELLIPSE task, masking out regions

where quasar subtraction takes place as well as any bright regions not associated with
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Table 2.1. Lens Galaxy Photometry

Filter Total Counts mAB Zeropoint, AB1

F606W 3328.6 18.809± 0.061 27.614
F814W 5372.9 17.743± 0.065 27.068

1Quoted zeropoints differ from standard values as we must
correct for a plate scale change from 0.05′′ to 0.03′′ pixels

the galaxy (e.g., other lensed features). Our resulting IRAF model provides a mea-

surement of the galaxy’s isophotes and total flux (see Table 2.1). As shown previously

(Bernstein et al. 1997), the isophotes of the lens galaxy exhibit an ellipticity gradient

and a position angle twist (Figure 2.3). These isophotal features may complicate the

lensing potential, so we incorporate them directly into our lens models (§2.3.2). We also

use the photometry of the lens galaxy to constrain stellar population synthesis models

and estimate the stellar mass-to-light ratio (§2.4.3).

2.2.3 Faint Strong Lensing Features

We subtract the model galaxy from the quasar-subtracted image to produce the final

image of the strong lensing region, which is shown in Figure 2.2b. This image reveals

several new, previously unresolved or undetected strongly lensed features. Since the

morphology is similar to the host galaxy arc from NICMOS (Keeton et al. 2000), we

conjecture that the optical features are most likely images of star forming regions of

the quasar host galaxy at z = 1.41.

The lensed “blobs” and “knots” indicated in Figure 2.2b were previously identified

by Bernstein et al. (1997), and were used by Bernstein & Fischer (1999) and Keeton

et al. (2000) as constraints on lens models. To derive new constraints from our new

strongly lensed features, we use the models of Keeton et al. (2000) as a starting point.
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Figure 2.3 Ellipticity and position angle of galaxy isophotes, plotted as a function of
semi-major axis. Note the increase in ellipticity beginning at ∼ 1′′ and the decrease in
position angle beginning at ∼ 0.3′′.

Using the lensmodel software (Keeton 2001), we check to see how these older models

would map new features in the image plane. Specifically, we take an observed image

position, map it to the source plane, and then find all corresponding images using

the old lens models. We then look for the predicted images in our new HST data.

Unfortunately, we find the Keeton et al. models cannot sensibly reproduce the lensing

we see in the HST data. These models fail most notably for the new features south and

east of quasar B, mapping bright peaks in the data to blank regions of the sky.

In order to make sense of the new features, we examine the morphology of the

images in the data. Specifically, in the area around the bright “knots” shown in Figure

2.2b we notice a distinct fork-like feature extending from either side of the knots. Using
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Figure 2.4 Our proposed mapping of the new lensed features (cf. Table 2.2). Corre-
sponding shapes and colors indicate proposed images of a given source. The grid-like
pattern that appears is due to the imperfect subtraction of the diffraction pattern of
the quasar images. (a, left) We use the images indicated to constrain new lens models,
and then use those models to test features in the yellow box. (b, right) We take one of
the points in each shape/color pair, map it back to the source, and then find the corre-
sponding images. The predicted positions match very well with features in the image,
which gives us confidence both that the “primary” constraints are valid and that the
additional lensed features are real. (Points in white rectangles indicate features that
are too close to the noise level to provide confident peaks.) All of the colored points
are used as constraints in our subsequent modeling.

peaks in this structure, we postulate a set of new constraints as shown in the left

panel of Figure 2.4, which we call our “primary” set of new constraints. We use these

primary features to constrain a singular isothermal ellipsoid lens model, and see how

the resulting model maps other faint features found in the HST data. Specifically, we

consider faint features to the east of quasar B, indicated by the large box in Figure 2.4a.

To our surprise, the model derived from our primary features accurately describes the

remaining faint features, mapping peaks of the images in reasonable ways (Figure 2.4b)

and giving us confidence in the identification of new lensed features. We therefore add

these features to our list of constraints, resulting in a final data set which is given in

Table 2.2. We note that all presumed multiple images of each source are observed to
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Table 2.2. Modeling Constraints

Feature Position (′′)1 Symbol in Figure 3

G1 (0, 0)± 0.00001 −
Quasar A (1.408, 5.034)± 0.03 Green Plus
Quasar B (0.182,−1.018)± 0.03 Green Plus

Jet A5 (1.392, 5.080)± 0.03 −
Jet B5 (0.164,−0.962)± 0.03 −

IA (2.878, 3.453)± 0.05 Red Circle
IB (−1.362,−0.043)± 0.05 Red Circle
IIA (2.666, 3.634)± 0.05 Blue Circle
IIB (−1.457,−0.075)± 0.05 Blue Circle
IIIA (2.395, 3.694)± 0.05 Cyan Circle
IIIB (−1.682,−0.026)± 0.05 Cyan Circle
IVA (0.021,−2.532)± 0.03 Green Diamond
IVB (0.512,−2.386)± 0.03 Green Diamond
VA (2.111, 3.664)± 0.05 Red Diamond
VB (−0.768,−2.640)± 0.05 Red Diamond
VIA (1.875, 3.488)± 0.12 Blue Diamond
VIB (−1.128,−2.777)± 0.05 Blue Diamond
VIC (1.523,−1.634)± 0.05 Blue Diamond
VIIA (1.875, 3.488)± 0.12 −
VIIB (−1.065,−2.786)± 0.05 −
VIIC (1.489,−1.688)± 0.05 −

have similar colors (within the photometric noise).

To obtain the position and uncertainty of each peak listed in Table 2.2, we examine

the brightest pixel(s) within the peak. If the brightest pixel is more than 10σnoise above

any other pixel in the peak (as for the “knots” or source IV in Table 2.2), we set the

position error to be ±1 pixel or ±0.03′′. If the brightest pixel is 3–10σnoise above the

surrounding pixels, we conservatively set the error to ±1.5 pixels or ±0.05′′. If there are

multiple pixels in the peak that are within 3σnoise of the brightest, we take the average

position of all such pixels and set the error to be the distance from this average to the

farthest of the bright pixels, plus our nominal value of 0.05′′.
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Table 2.2 (cont’d)

Feature Position (′′)1 Symbol in Figure 3

VIIIA (2.280, 3.391)± 0.09 Magenta Diamond
VIIIB (−0.454,−2.873)± 0.09 Magenta Diamond
IXA (−2.003,−2.435)± 0.05 Cyan Diamond
IXB (1.293, 3.611)± 0.05 Cyan Diamond
XA (−1.708,−1.878)± 0.08 Yellow Circle
XB (−2.181,−0.551)± 0.08 Yellow Circle
XIA (−2.070,−1.252)± 0.08 Magenta Circle
XIB (−2.112,−1.053)± 0.08 Magenta Circle
XIIA (−2.745,−0.516)± 0.08 Green Circle
XIIB (−2.781,−0.699)± 0.08 Green Circle

Note. — New features are indicated with Roman numer-
als

1Written as (x, y) where x is West and y is North.

2.3 Lens Modeling Methods

2.3.1 General Theory

In this section we present a brief review of the lensing theory that is particularly per-

tinent to our analysis of Q0957. For further discussion of strong lensing theory, please

see Schneider et al. (1992) and Kochanek (2004).

As predicted by Einstein’s General Relativity in the early 20th century, a mass

concentration near the line of sight to a background object may significantly displace

and distort a background image. The angular position u of the source and the angular

position of x of an image are related by the lens equation,

u = x−∇φ , (2.1)

where φ is the (scaled) gravitational potential due to mass at the lens redshift. The

lens potential is given by

∇2φ(x) = 2κ(x) = 2Σ/Σcrit, (2.2)
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where the convergence κ equals the surface mass density (Σ) scaled by the critical

density for lensing (Σcrit).

Since the deflected light travels along different ray paths, there is a difference in

the light travel time for different images. This difference, known as the time delay, can

be measured if the source is sufficiently variable. The time delay between images at

positions xi and xj is given by

∆tij =
1 + zl
c

DolDos

Dls
(2.3)

×
{

1

2

(
|xi − u|2 − |xj − u|2

)
−
[
φ(xi)− φ(xj)

]}
,

where zl is the lens redshift and Dol, Dos, and Dls are angular-diameter distances

from the observer to the lens, the observer to the source, and the lens to the source

respectively. Combining a measured time delay with a lens model (to infer the source

position u and the lens potential φ) provides a measurement of the distance combination

DolDos/Dls, which is inversely proportional to H0. (The distance ratio also depends

on cosmological parameters ΩM and ΩΛ, but that is typically a small effect compared

with other uncertainties in the problem.)

A well-known problem in lensing constraints on H0 is the “mass-sheet degeneracy”

(Falco et al. 1985; Gorenstein et al. 1988a). For any potential φ that fits the data, one

can construct another potential

φ′ =
1

2
κ′|x|2 + (1− κ′)φ (2.4)

that yields exactly the same image positions and flux ratios. The addition of the mass

sheet κ′ does, however, rescale the time delays and hence the inferred Hubble constant,

such that H ′0 = (1−κ′)H0. The challenge for Q0957 is that the cluster around the lens

contributes a term (κc in eq. 2.11 below) that acts like a mass sheet, which we cannot

constrain by fitting the positions and fluxes of the strongly lensed images. We therefore

set κc = 0 when doing the strong lens modeling, so we obtain some Hubble constant
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estimate H0,model. We then use weak lensing data to constrain κc, which yields our

corrected Hubble constant estimate

H0 = (1− κc)H0,model. (2.5)

Additionally, since the mass sheet correction is a rescaling of the potential, we must

multiply each term in the potential by the same factor of 1−κc as in eq. (2.5). For our

results in §2.4, we indicate all parameters to which this applies.

2.3.2 Mass Models

Stellar component

The lensing potential of Q0957+561 may be complicated by the ellipticity gradient

and isophote twist seen in the luminous component of the lens galaxy (see Figure 2.3).

To allow such features in lens models, Keeton et al. (2000) introduced “double pseudo-

Jaffe” models featuring a superposition of two ellipsoidal mass distributions, centered on

the galaxy position, with different ellipticities, orientations, and scale radii. We initially

adopted similar models, but quickly judged them to be unsatisfactory. Constrained by

the new lensed features, double pseudo-Jaffe models were adopting odd forms, such as

one round and one very flattened component, that seemed unrealistic and unlike what

is observed for giant elliptical galaxies.

A better approach is to incorporate the observed ellipticity gradient and isophote

twist directly by using our isophotal model of the stellar component. We combine the

model galaxy with an assumed stellar mass-to-light ratio to construct a convergence

map. (We vary the mass-to-light ratio during the modeling, as discussed in §2.3.4.)

To compute the corresponding lensing potential, we solve the Poisson equation using

Fourier transforms. In Fourier space, the Poisson equation (2.2) has the form

−k2F (k) = 2K(k) (2.6)



51

where K(k) is the Fourier transform of the convergence map and F (k) is the Fourier

transform of the lens potential. It is straightforward to construct the convergence

on a two-dimensional grid, calculate K(k) using FFTs, solve for F (k), and then do

an inverse Fourier transform to get φ(x). We can then obtain the lensing deflection

and magnification by computing derivatives of φ(x) in Fourier space. This method is

discussed in more detail by van de Ven et al. (2009).

Dark matter

The luminous galaxy is presumably embedded in its own dark matter halo and any

halo associated with the surrounding cluster. The cluster in Q0957 is non-negligible:

previous weak lensing studies constrained the mean convergence within 30′′ of the lens

to be κ30′′ = 0.26±0.16 and indicated a shear of γ ∼ 0.2 (Fischer et al. 1997; Bernstein &

Fischer 1999). (In §2.3.5 we report our own constraints on cluster mass models.) Also,

X-ray observations of the intracluster gas indicated a convergence from the cluster at

the quasar positions of κA = 0.22+0.14
−0.07 and κB = 0.21+0.12

−0.07 (Chartas et al. 2002).

Since the lens galaxy is the brightest and (presumably) most massive galaxy in

the cluster, it seems natural to assume as a fiducial model that the galaxy lies at the

center of the cluster. In this case the dark matter halo we insert in our models represents

some combination of dark matter associated with the galaxy and dark matter associated

with the cluster as a whole. We consider various profiles to encompass the range of

possibilities. One model we use is the Navarro-Frenk-White profile (NFW, Navarro et

al. 1997),

ρ =
ρs

(r/rs)(1 + r/rs)2
(2.7)

whose projected surface density has the form (Bartelmann 1996)

κ(r) = 2κs
1−F(x)

x2 − 1
(2.8)
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where x = r/rs, κs = ρsrs/Σcrit, and

F(x) =


1√
x2−1

tan−1
√

x2 − 1 (x > 1)

1√
1−x2 tanh−1

√
1− x2 (x < 1)

1 (x = 1)

(2.9)

While these equations describe a spherically symmetric model, we can obtain an ellip-

tical model by replacing r with the ellipse coordinate ξ = (x2 + y2/q2)1/2 where q is

the projected axis ratio. The lensing potential and its derivatives can be computed for

elliptical models using numerical integrals (Schramm 1990; Keeton 2001).

We also use three softened power law profiles with projected surface densities of the

form

κ(ξ) =
1

2

b2−αd

(a2 + ξ2)1−α/2 (2.10)

where ξ is the ellipse coordinate defined above, a is the core radius, bd is a normalization

parameter, and the power law index α is chosen such that M(R) ∝ Rα for R � a. In

this class of models we study one with an isothermal profile (α = 1), one steeper than

isothermal (α = 0.5), and one shallower than isothermal (α = 1.5). For α = 1 the

lensing potential and its derivatives can be computed analytically (Keeton & Kochanek

1998), but for α 6= 1 they require numerical integrals.

We still need to consider the possibility that the cluster may not be centered on

the lens galaxy, which is germane because the observed X-ray emission from the cluster

is slightly offset from the lens: the X-ray centroid is 4.3 ± 1.3 arcsec East and 3.2+1.2
−0.6

arcsec North of Image B, or 4.7 ± 1.2 arcsec from the lens galaxy (Chartas et al.

2002). We carry out our full modeling analysis (as described in the remainder of the

paper) treating the cluster as a distinct dark matter halo centered at the observed

X-ray position. While this approach yields fits that are formally comparable to our

fiducial results, we ultimately reject such models for two reasons. When we treat the

offset cluster with a softened power law profile, the models require a large (> 30′′)
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core radius, which makes the “cluster” basically equivalent to a uniform mass sheet on

the ∼ 6′′ scale of strong lensing and thus negates the effect of having an extra halo.

NFW models cannot mimic that behavior, of course, since they do not have a flat core.

Instead, we find that an offset NFW cluster must have an unreasonably large ellipticity

of > 0.7. We conclude that the strong lens data do not favor and in fact disfavor an

offset cluster, so we not include a separate cluster component in our main analysis.

Environmental terms

While our lens-centered mass profiles should account for the majority of the mass in

the strong lensing region (apart from a mass sheet), they should not be expected to

represent the full complexity of the cluster potential. The cluster halo may not be a

simple ellipsoid on large scales, and it presumably has some lumpiness in the form of

individual cluster galaxies. In general, we can write the lens potential due to structures

outside the strong lensing region using a Taylor series expansion of the form

φenv(r, θ) =
κc
2
r2 +

γ

2
r2 cos 2(θ − θγ) (2.11)

+
σ

4
r3 cos(θ − θσ) +

δ

6
r3 cos 3(θ − θδ) + . . .

where κc is a mass sheet, γ is an external shear, and σ and δ represent higher, third-

order terms. If the structures are “far” enough from the Einstein radius, the higher-

order terms may be sufficiently small that the expansion can be truncated after the

shear; indeed this approximation is used in many lens systems. However, as shown

by Kochanek (1991) and many subsequent studies, the third-order terms cannot be

neglected in Q0957. Bernstein & Fischer (1999) and Keeton et al. (2000) included

the third-order terms but imposed the assumptions σ = −2δ/3 and θσ = θδ, which

corresponds to the perturbation from a singular isothermal sphere. We find that this

assumption is too restrictive, so we include general third-order terms in order to allow

more freedom in the models to account for complex features we have not explicitly

modeled.
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Note that we have written eq. (2.11) in terms of the amplitudes (γ, σ, δ) and direc-

tions (θγ , θσ, θδ) of the shear and third-order terms. We can think of these as “polar”

coordinate versions of these parameters. We can equivalently define “Cartesian” coor-

dinate versions of the same parameters:

γc = γ cos 2θγ , γs = γ sin 2θγ ,

σc = σ cos θσ , σs = σ sin θσ , (2.12)

δc = δ cos 3θδ , δs = δ sin 3θδ .

While we quote results for the “polar” parameters, we actually carry out our mod-

eling analysis using the “Cartesian” parameters. The translation is straightforward.

In summary, our composite models consist of a stellar component, an elliptical halo

centered on the stellar component that accounts for dark matter in the lens galaxy

and/or cluster halo, and an additional set of terms corresponding to a third-order

Taylor series expansion of the potential from the lens environment. The 11 associated

model parameters are listed in Table 2.3.

2.3.3 Model Constraints

Table 2.2 lists the positions of the lensed images used as constraints on our models.

We supplement the faint images discussed in §2.2.3 with the quasar cores and radio

jets resolved with Very Long Baseline Interferometry (VLBI; Gorenstein et al. 1988b;

Garrett et al. 1994). With a resolution of ∼ 0.1 mas, the VLBI observations reveal

structure within the jets and provide astrometry with formal errors < 1 mas. Previous

studies of Q0957 used this excellent astrometry as strong constraints on lens models

(Barkana et al. 1999; Bernstein et al. 1997; Bernstein & Fischer 1999; Keeton et al.

2000). In this work, however, we reconsider the use of such stringent constraints. Many

recent works have shown that lens galaxies often contain substructure in the form of

CDM subhalos, which can perturb lens flux ratios by tens of percent or more and image
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Table 2.3. Model Parameters

Parameter Label

Stellar mass to light ratio ΥF606W

Halo ellipticity e
Position angle PA
Shear angle θγ
Core radius (α models) a
Scale radius (NFW models) rs
σ angle θσ
δ angle θδ
Halo mass normalization bd
External Shear γ
3rd order term σ
3rd order term δ

Note. — Power law α models use a
core radius a, while NFW models use a
scale radius rs.

positions at levels up to ∼ 10 mas (e.g., Mao & Schneider 1998; Metcalf & Madau 2001;

Dalal & Kochanek 2002; Chiba et al. 2005; Chen et al. 2007). Since our models do not

contain any substructure,1 they should not be expected to match the image positions to

better than the ∼ 10 mas residuals expected from substructure. We therefore broaden

the errorbars and adopt conservative uncertainties on the VLBI quasar and jet positions

of 30 mas. As a check, we verified that the VLBI derived positions of the quasars are

in good agreement with the positions in our HST data.

We take the image position constraints together with constraints from our weak

lensing analysis (§2.3.5) to comprise our main model constraints. Subsequently, we

consider adding supplementary constraints in the form of lensed arcs detected with

HST/NICMOS, the quasar radio flux ratio, and stellar population synthesis models

1It would certainly be interesting to add substructure to the models and use the precise radio
positions and flux ratios to constrain the amount of substructure in the lens; but that is beyond the
scope of the present work.
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(see §2.4 for details). Throughout the analysis we use the time delay 417.09±0.07 days

from Colley et al. (2003) to infer the Hubble constant.

2.3.4 Strong Lensing Analysis

In Bayesian language, our ultimate goal is to determine the posterior probability dis-

tribution for our model parameters and H0, given the observational constraints. We

have Ndata = 60 position constraints, compared with Nparam = 39 free parameters (11

parameters for the mass model plus 28 source position parameters). Hence our analysis

has Ndata − Nparam = 21 degrees of freedom. The Hubble constant analysis involves

one additional constraint (the observed time delay) and one additional parameter (H0),

so it has the same number of degrees of freedom.

Formally, the posterior probability distribution has the form

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d|M)
, (2.13)

where d denotes the data that provide constraints on the parameters θ associated with

some model M . The likelihood of the data given the model is

L ≡ P (d|θ,M) ∝ e−χ2/2 , (2.14)

where χ2 is the goodness of fit. The quantity P (θ|M) represents priors on the model

parameters, which we take to be uniform.2 The Bayesian Evidence P (d|M) is discussed

below.

To ease the search of our large parameter space, we treat the image positions using

the approximate position χ2 as defined by Keeton (2001):

χ2
p =

∑
i

δxTi · S−1
i · δxi ≈

∑
i

δuTi · µTi · S−1
i · µi · δui , (2.15)

where the sum runs over all images, δxi = xobs,i − xmod,i is the position residual for

image i, Si = diag(σ2
i , σ

2
i ) is the covariance matrix for the image positions, and µi is

2Note that our uniform priors apply to the “Cartesian” coordinate versions of the environmental
parameters (eq. 2.12) and the ellipticity (ec = e cos 2θe and es = e sin 2θe).
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the lensing magnification tensor. Using the lens equation, the position residual in the

source plane is δui = xobs,i − ∇φ(xobs,i) − umod. The last step in eq. (2.15) is valid

when the position residuals are small such that the image and source plane residuals

are related by δxi ≈ µi · δui. The benefit of using this approach is that χ2
p is quadratic

in each source position umod, so we can find the best-fit value analytically:

umod = A−1b , (2.16)

where

A =
∑
i

µTi · S−1
i · µi , (2.17)

b =
∑
i

µTi · S−1
i · µi · uobs,i , (2.18)

where these sums now run over the known images of a given source. The upshot is

that we do not have to search explicitly through the 28 dimensions corresponding to

the source parameters. An additional advantage is that we only have to compute the

lens potential and its derivatives at the known positions of the images, which is useful

for our dark matter models that require numerical integrals.

We must still search the 11-dimensional space of mass model parameters. We sam-

ple the posterior probability distribution in this space using an adaptive Metropolis-

Hastings Monte Carlo Markov Chain (MCMC) algorithm (Roberts et al. 1997; Haario

et al. 2001; Roberts & Rosenthal 2001). Each chain consists of a sequence of trial steps

drawn from a multivariate Gaussian distribution. In 95% of the steps the Gaussian is

based on an empirically updated covariance matrix to provide efficient sampling of a

high-dimensional posterior distribution. In the remaining 5% of the steps the covari-

ance matrix is diagonal so the algorithm takes independent and relatively large steps

along the coordinate axes; this feature acts as a “fail-safe” to help the algorithm escape

local minima in the χ2 surface and potentially discover new features in the posterior

distribution. The probability of accepting a trial step that modifies the likelihood from

Lold to Lnew is min(1,Lnew/Lold). In other words, if a trial step increases the likelihood
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it is automatically accepted; while if it decrease the likelihood it is accepted with a

probability given by the likelihood ratio.

We run 25 chains simultaneously and set them up to work “from the outside in.”

That is, we generate an initial sample of models by drawing ∼ 104 random points in the

parameter space and optimizing them; this provides an estimate of the allowed para-

meter ranges (although without the proper statistical sampling that MCMC provides).

We then select models with maximal/minimal values of individual parameters to use as

starting points for the MCMC chains. By starting with well spread chains, the MCMC

algorithm can establish the covariance matrix more quickly, and spend more time sam-

pling the tails of the distribution, than it would by starting with closely-spaced starting

points (Gelman et al. 1995). The choice of initial models does not matter in detail,

though, because for our final sampling we merge only the second halves of the chains

in order to avoid sensitivity to the initial “burn-in” phase.

To assess whether an MCMC run has converged, we use the criterion presented by

Gelman et al. (1995). For any given parameter θ we define

R(θ) =

[
var(θ)

1
J

∑J
j=1 varj(θ)

]1/2

, (2.19)

where varj(θ) is the variance of θ in the individual chain j, and var(θ) is the variance

of θ over the entire set of J chains. Heuristically, R is a comparison of the variance

of the entire distribution (the numerator) and the variance within individual chains

(the denominator). The ratio will be greater than 1 for disjoint chains, and it will

decrease and asymptotically approach 1 as the chains converge. Gelman et al. (1995)

find that stopping an MCMC run once R reaches values below 1.2 provides a sufficient

description of the target distribution for most samplings. To be conservative we run

until R ≤ 1.1 for every parameter. We then repeat the entire MCMC analysis a total

of three times to obtain robust sampling of the target distribution.

In general we let all 11 model parameters vary simultaneously. The only exception is
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the scale radius in models with an NFW dark matter halo. There is a strong covariance

between rs and other parameters, which produces a narrow, curved ridge in the likeli-

hood surface that is difficult for MCMC algorithms to sample efficiently. To deal with

this challenge, we discretely sample rs in logarithmic steps ranging from 0.1′′ to 1000′′.

We checked that the median values of parameters in the posterior distributions do not

vary more than 5% between steps. To combine results from individual rs runs into the

final posterior distribution, we need to normalize the individual results properly using

eq. (2.13). In particular, we need to determine the normalization factor

P (d|M) =

∫
P (d|θ,M) P (θ|M) dθ , (2.20)

which is known as the marginal likelihood or Bayesian Evidence. Computing this in-

tegral usually requires techniques that are more computationally intensive than basic

MCMC sampling, such as thermodynamic integration (e.g., Marshall et al. 2003; Lar-

tillot & Phillipe 2006). However, it is possible to obtain a simple and useful surrogate

for the evidence using the Bayesian Information Criterion,

BIC = −2 lnLmax + k lnN , (2.21)

where Lmax is the maximum likelihood of the model, k is the number of free parameters,

and N is the number points used in the fit. While the BIC does not provide a proper

statistical treatment of the evidence, it has been widely used in statistics and astronomy

(e.g., Schwarz 1978; Rapetti et al. 2007; Davis et al. 2007; Liddle 2007) and is sufficient

for this study.

As discussed in §2.4, we first examine models constrained only by the positions of

the strongly lensed images, and then add supplemental constraints from weak lensing

and various other considerations. In practice, this means we run the MCMC analysis to

sample the likelihood eq. (2.14) based on the goodness of fit χ2
p from eq. (2.15). (Since

we use uniform priors, the posterior probability distribution is proportional to the

likelihood.) Now suppose we want to add some supplemental constraints characterized
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by their own goodness of fit χ2
s. The total χ2 is just the sum χ2

p + χ2
s (i.e., χ2 values

add and likelihoods multiply), so we now want to sample

P (θ|d,M) ∝ e−χ2
s/2e−χ

2
p/2. (2.22)

Since the MCMC analysis provides a set of points drawn from e−χ
2
p/2, all we need to

do is take those points and re-weight them by a factor proportional to e−χ
2
s/2. This

provides a simple way to apply additional constraints without having to repeat the full

MCMC analysis.

2.3.5 Weak Lensing Analysis

In parallel with the strong lensing analysis, we have conducted a weak lensing analysis

of the full 6′×6′ map to constrain the mass sheet and other environmental terms in the

lensing potential (see eq. 2.11). The techniques and results of our weak lensing analysis

are presented by Nakajima et al. (2009). We find the cluster potential to be consistent

with a core-softened isothermal sphere profile, κ(r) = κ0[1+(r/rc)
2]−1/2, with a best-fit

central convergence κ0 = 0.47 ± 0.17 for a core radius rc = 5.0′′, corresponding to a

velocity dispersion of (420± 70) km s−1 for h = 0.70. Additionally, we find the cluster

to be consistent with an NFW profile but are unable to provide useful constraints on

the cluster concentration and scale radius.

One product of our weak lensing analysis is the average convergence within 30′′

of the lens: κw,30′′ = 0.166 ± 0.056. This represents the net convergence including

contributions from both the lens galaxy and the cluster. As discussed in §2.3.1, to

determine the Hubble constant we need to know the correction from the cluster mass

sheet,

1− κc =
1− κw,30′′

1− κs,30′′
(2.23)

where κw,30′′ is the net convergence inside 30′′ from our weak lensing measurement

while κs,30′′ is the contribution from our strong lensing model. Since we do not impose
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a priori limits on κs,30′′ in our models, the possibility exists that κs,30′′ could exceed

κw,30′′ . In this sense, our measurement of κw,30′′ provides an upper bound on strong

lens models. We penalize models with κs,30′′ > κw,30′′ by adding an additional χ2 term

of the form

χ2
κ =


(κs,30′′−κw,30′′ )2

σ2
κw,30′′

, κs,30′′ > κw,30′′

0, κs,30′′ < κw,30′′

(2.24)

When we apply the mass sheet correction to H0 and mass model parameters, we need

to account for the measurement uncertainties in κw,30′′ . We do this using Monte Carlo

techniques. Specifically, we take each model from our MCMC runs and generate a

distribution of values for 1− κc by drawing from a Gaussian distribution for κw,30′′ set

by the measurement and uncertainty from our weak lensing analysis. (The factor of

κs,30′′ in eq. 2.23 comes from the model itself.) We then fold this distribution into our

final results reported in §§2.4.1–2.4.4.

The weak lensing analysis also yields constraints on the average shear in an annulus

centered on the lens galaxy extending from 20′′ to 40′′: the two “Cartesian” shear

components are γc = −0.009 ± 0.045 and γs = 0.092 ± 0.045, or equivalently the two

“polar” components are γ = 0.093± 0.045 and θγ = 47.8± 13.9 deg.3 To compare this

measurement to our models, we calculate the mean shear in the same annulus. After

multiplying our value of the mean shear by the 1− κc correction, we impose the weak

lensing results as constraints on the lens models through additional χ2 terms. These

constraints penalize models with unusually small or large shears.

2.4 Results

We first present results from lens models based on our new HST/ACS data (§2.4.1). We

then consider adding additional constraints from the quasar radio flux ratio (§2.4.2),

stellar population synthesis models (§2.4.3), and physical properties of NFW halos

3Note that the uncertainties are likely to be non-Gaussian for the “polar” components.
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(§2.4.4). All values we report for the parameters (ΥF606W, bd, γ, σ, δ), as well as the

dimensionless Hubble constant h = H0/(100 km s−1 Mpc−1), are corrected for the mass

sheet through the factor 1− κc (including the associated uncertainties; see §2.3.5).

2.4.1 Basic Results: Strong and Weak Lensing

Figure 2.5 2D histograms depicting the marginalized joint probability distributions
P (θ, h) for each model parameter θ and the dimensionless Hubble constant h. (For an
explanation of parameters, see Table 2.3.) We also show the model flux ratio in the
lower left panel. The colorscale is linear in the probability density, running from black
at the peak to white at zero. These results are based on dark matter models with a
softened isothermal profile (α = 1).

For each of the four dark matter profiles we consider, we find a wide range of

models that fit the HST strong lensing data well (χ2
reduced < 1).4 For example, the

stellar mass-to-light ratio can be anywhere in the range ΥF606W ∼ 4–12, the ellipticity

e ∼ 0.1–0.7, and shear γ ∼ 0.04–0.12. Table 2.4 lists the median value and 68% and

95% confidence intervals for each model parameter (from the individual marginalized

4As shown in Table 2.4, the best-fit model in each model class has a reduced χ2 somewhat less than
unity. We used the χ2 probability distribution to check that these values are statistically reasonable
given the numbers of degrees of freedom.
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Figure 2.6 Similar to Fig. 2.5, but for models in which the dark matter halo has a power
law profile that is steeper than isothermal (α = 0.5).

posterior probability distributions). The Table also lists the relative probabilities of our

four dark matter models obtained by integrating the posterior probability distributions

over h, after weighting by the BIC. The range of allowed models is striking given that

we now have so many strong lensing constraints. Examining the relative probabilities,

we find an isothermal (α = 1) dark matter profile is favored from lensing alone. It is

interesting to note, however, that our isothermal models require a values of κs,30′′ which

are larger than, but still consistent with our weak lensing measurements.

There are various ways to examine the results, so let us begin with the Hubble con-

stant. Figures 2.5–2.8 show the marginalized joint probability distributions P (θ, h) for

each model parameter θ and the dimensionless Hubble constant h, for all four classes

of dark matter models. Viewing the results this way helps reveal any important degen-

eracies or systematics that affect the inferred value of h. The most obvious feature is a

strong degeneracy between h and the stellar mass-to-light ratio, ΥF606W, which we dis-

cuss momentarily. Focusing on h itself, Figure 2.9 shows the marginalized cumulative
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Figure 2.7 Similar to Fig. 2.5, but for models in which the dark matter halos has a
power law profile that is shallower than isothermal (α = 1.5).

posterior probability distribution for h from each of our dark matter models. Com-

bining the four models (weighted by their relative probabilities), we find H0 = 85+14
−13

km s−1 Mpc−1 (68% CL). Our measurement of H0 is somewhat higher than, but statis-

tically consistent with, the recent determinations of H0 = 74.2±3.6 km s−1 Mpc−1 from

SNe (Riess et al. 2009) and H0 = 70.5± 1.3 km s−1 Mpc−1 from WMAP5+BAO+SNe

(Komatsu et al. 2008). Compared with previous results from Q0957 (Bernstein & Fis-

cher 1999; Keeton et al. 2000), our initial results have lowered the median5 value from

∼ 90 to 85 and reduced the spread by ∼ 30%. The latter result is significant given

the new complexity in our models, the relaxation of (previously tight) quasar and jet

positions, and the elimination of the quasar flux ratio constraint.

The degeneracy between h and the stellar mass-to-light ratio ΥF606W arises because

the total mass within the Einstein radius is fixed, so varying ΥF606W changes the balance

between the concentrated stellar component and the more diffuse dark matter halo.

5The old median value for H0 is not very well determined, because the previous analyses did not
include the proper statistical sampling provided by our MCMC analysis.
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Figure 2.8 Similar to Fig. 2.5, but for models with an NFW dark matter halo. Here we
do not show P (rs, h) since we discretely sample the scale radius (see §2.3.4).

Figure 2.9 Cumulative posterior probability distribution for the dimensionless Hubble
constant h for our four dark matter halo profiles. The solid black curve shows the result
of combining these distributions, weighted by their relative probabilities.
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Figure 2.10 Monopole deflection profile for models with h = 0.60, 0.70, 0.80, 0.90 and
1.00. We actually plot the mean profile for all models within ±0.005 of the nominal
h value; the scatter among such models is < 2% across all radii and does not depend
systematically on the particular dark matter profile. The vertical dotted line indicates
the Einstein radius at Rein = 2.84′′. The scatter among models drops to < 0.5% in the
vicinity of Rein, indicating a robust and tight constraint on the Einstein radius.

That, in turn, modifies the slope of the total density profile, which is known to be

the main factor that determines h (e.g., Williams & Saha 2000; Kochanek 2002). To

illustrate these effects, we examine the monopole deflection curve, α(r) ∝M(r)/r where

M(r) is the projected mass within radius r (e.g., Blandford & Narayan 1986; Blandford

& Kochanek 1987; Cohn et al. 2001; Kochanek et al. 2006; van de Ven et al. 2009). This

is a 2D analog of the rotation curve. A flat deflection curve corresponds to an isothermal

profile, while a rising (falling) curve corresponds to a profile shallower (steeper) than

isothermal. Figure 2.10 shows the deflection curves for models with different values

of h. There is a systematic change in the slope of the deflection curve with h, with

very little (< 2%) scatter among models at a fixed value of h. In other words, even

though Q0957 has a complex lens potential, we still recover the familiar result that the

slope of the total density profile is what principally determines h. In our models, the

slope of the density profile is governed by the stellar mass-to-light ratio, which makes

ΥF606W the key parameter responsible for the range of h values. We consider external
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constraints on ΥF606W in §2.4.3 below.

One interesting aspect of Figure 2.10 is that Q0957 appears to have a rising deflection

curve, corresponding to a total density profile that is shallower than isothermal, for

any reasonable value of h. Many other lens galaxies have profiles that are closer to

isothermal (e.g., Cohn et al. 2001; Rusin & Kochanek 2005; Koopmans et al. 2006).

Q0957 is not, however, unique in this regard: Kochanek et al. (2006) found that HE

0435−1223 also has a rising deflection curve. They argue that different density profiles

and deflection curves can arise as a consequence of how galaxies populate dark matter

halos. In the halo model (see Cooray & Sheth 2002 for a review), a group or cluster

of galaxies consists of a massive central galaxy surrounded by smaller satellite galaxies.

Lying as it does at the center of the potential well, the central galaxy should have a

higher dark matter surface density compared to its satellite neighbors, which would lead

to a more diffuse mass distribution with a shallower profile and hence a rising deflection

curve. In this context, Kochanek et al. (2006) argue that HE0435 may be the central

galaxy in a group of galaxies. Q0957 seems to fit naturally into this picture because it

lies at or near the center of a modest cluster of galaxies (see §2.3.2).

One useful way to characterize a strong lens system is with the lensing critical curves

and caustics. The critical curves reveal highly magnified regions in the image plane, and

the corresponding caustics separate regions in the source plane that lead to different

numbers of lensed images. Figure 2.11 shows examples of the critical curves for our

models of Q0957. It is clear that the newly identified HST/ACS features have tightly

constrained where the critical curve lies, especially southeast of quasar B. Significant

variations do still exist near the ends of the critical curves, suggesting that constraints

from the faint, unused features indicated in Figure 2.4 could help to further constrain

the critical curves and restrict the parameter space. Unfortunately, in the current data

these features have a signal to noise ratio less then 3, making them not sufficiently

reliable.
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Figure 2.11 (a, left) A typical critical curve resulting from the new image constraints
in Table 2. Notice the fold image pairs that the curve runs though South and East
of quasar B. (b, right) Critical curves corresponding to models with minimal/maximal
values of different parameters, for our models with an NFW dark matter halo (results
are similar for other model classes). The critical curves show little variation along the
semi-minor axis due to strong constraints from new images. Significant variation still
exists along the semi-major axis of the curves.
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Figure 2.12 (a, left) Source plane caustic corresponding to the critical curve shown in
Fig. 2.11a. The points show the positions of the sources corresponding to the observed
images, with the same shape and color scheme as in Fig. 2.4. (b, right) Source plane
caustics corresponding to the critical curves shown in Fig. 2.11b. The main variation
is an overall rescaling due to different values of the convergence in the vicinity of the
Einstein radius.
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In addition to ΥF606W, our models exhibit a second degeneracy between h and

the ellipticity of the dark matter halo. While the exact origin of this is unclear, it is

likely connected to the degeneracy in ΥF606W. Since the stellar component has a fixed

angular structure whose position angle (∼ 67◦–82◦, Fig. 2.3) does not quite match the

necessary angular structure of the lens potential (with position angle closer to 63◦, see

Fig. 2.11), the dark matter component needs to make up the difference. The amount

of compensation increases as the mass of the stellar component increases, so the halo

ellipticity rises with ΥF606W.

Figure 2.12 shows the corresponding caustics in the source plane. Generically, the

tangential caustic is elongated along a roughly NE-SW direction and extends beyond

the radial caustic. There is some variation among the models, but the main effect

is just an overall rescaling by 1 − κE , where κE is the convergence at the Einstein

radius (which is related to κs,30′′). Many of our newly discovered sources are inferred

to lie within the tangential caustic and should therefore have four images. Since we

did not necessarily identify these as quad systems in our original detections (§2.2.3),

it is interesting to examine the predicted counter-images. Figure 2.13 shows all the

predicted images of the quadruply-imaged sources, for comparison with the detected

images shown in Figure 2.4. (We show results for one particular model, but results

for other models are similar.) We see that there are some predicted images that lie in

relatively blank regions West of quasar B and South of quasar A. This is not a concern,

however, because the undetected images have magnifications that are a factor of 10–100

smaller than the detected images lying to the East of quasar B, so their predicted fluxes

lie well below the noise level of the HST image. Some of the predicted counter-images

(among the ones indicated by diamonds) are not so far below the noise, but they still

lack clear peak positions and thus cannot currently provide further robust constraints

on lens models.

We consider one additional source of strong lensing constraints, namely extended
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images of the quasar host galaxy observed with HST/NICMOS by Keeton et al. (2000).

Following Keeton et al., we analyze the arcs by taking the resolved arc around quasar

A, mapping it pixel-by-pixel to the source plane using the lens model of interest, then

mapping the reconstructed source back to the image plane to predict the arc around

quasar B. Generally, we find that all models generated from our ACS data reproduce the

NICMOS arcs comparably well; the NICMOS arcs do not restrict the range of models

significantly better than the ACS data. We infer that the ACS data have captured most

of the information present in the NICMOS arcs, which is not surprising given that the

ACS and NICMOS data span similar spatial regions and (presumably) both come from

the lensed quasar host galaxy. Compared with the NICMOS arcs, the ACS data are

somewhat cleaner to interpret because they avoid complicated interpolations to and

from the image plane and offer a more straightforward counting of degrees of freedom.

We take the compatibility of the NICMOS and ACS data as additional reassurance

that the mapping of faint lensed features (§2.2.3) has been done correctly.

2.4.2 Quasar Flux Ratio

So far we have only considered image positions as lensing constraints. In order to

include some information about the lensing magnification, we consider measurements

of the quasar flux ratio. Bernstein & Fischer (1999) and Keeton et al. (2000) used

the delay corrected VLA measurements at 4 cm and 6 cm by Haarsma et al. (1999)

to constrain the quasar core flux ratio. While the VLA cannot resolve out the relative

contributions of radio compontents, if the jets are invariant on decadal time scales, the

ratio of the radio fluctuations gives a measurement of the core flux ratio. With this

assumption, Haarsma et al. derive the core flux ratio to be 0.74±0.02. Before applying

this constraint to our lens models, we must consider whether our models should be

expected to fit the observed flux ratio. The issue is whether dark matter substructure

may perturb the flux ratio (e.g., Mao & Schneider 1998; Metcalf & Madau 2001; Dalal
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Figure 2.13 Predicted images of all sources that lie inside the tangential caustic for our
lens models. Results are shown for the same model as Figure 2.12a but are similar for
other models. The two panels correspond to different sets of sources, with the same
arrangement as Figure 2.4. There are some predicted images shown here that have not
been detected (i.e., they do not appear in Fig. 2.4); they are predicted to be below the
noise in our HST data.
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& Kochanek 2002; Chiba et al. 2005; MacLeod et al. 2009) in a way that our smooth

models cannot reproduce.

High-resolution VLBI measurements show that the quasar images are . 1.2 mas in

size (Gorenstein et al. 1988b), which corresponds to a size for the emission region in

the source plane of . 0.9 mas or . 5.4h−1 pc. We use the methods of Dobler & Keeton

(2006) to estimate how a source of this size would be affected by an isothermal sphere

clump placed near one of the images. We find that a clump of mass & 106M� can easily

change the lensing magnification by a factor of order unity, and N -body simulations

predict such subhalos to be abundant (& 103) in a galaxy with a mass of ∼ 1013M�

(e.g., Springel et al. 2005; Angulo et al. 2008). Apparently we should not discount the

possibility that substructure plays a significant role in the observed VLA flux ratio.

Our basic models generally predict a flux ratio in the vicinity of ∼ 0.5 with at most

a tail extended to the range of the VLA measurement (see Figs. 2.5–2.8 and Table

2.4). The discrepancy could be interpreted as evidence that the VLA flux ratio is

indeed perturbed by substructure. Further support for this hypothesis comes from the

fact that the magnification ratio inferred from the resolved radio jets is different from

the ratio for the quasar cores, and closer to the smooth model prediction (Bonometti

1985; Gorenstein et al. 1988b; Conner et al. 1992). We should be careful, of course,

not to think that a measurement that disagrees with our smooth models is “wrong”

and one that agrees is “right” — or to assume that any discrepancy involving a flux

ratio automatically implies dark matter substructure. Nevertheless, we conclude that

existing evidence shows the flux ratio to be very intriguing and worthy of further study,

both on its own and as possible evidence for substructure in Q0957.

With this in mind, it is not clear how strongly we should impose the VLA flux ratio

as a constraint on our models. We consider using the measurement but inflating the

errorbar by various factors to obtain a range of constraints from strong to weak. Figure

2.14 shows the marginalized cumulative posterior probability distribution for h for the
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Figure 2.14 Cumulative posterior probability distribution for the dimensionless Hubble
constant h with different assumptions about the constraint from the quasar radio flux
ratio. The solid black line shows our fiducial results using the image positions alone
(from Fig. 2.9). The dashed lines show how the results change when we impose con-
straints from the VLA flux ratio constraints (Haarsma et al. 1999) with the uncertainties
increased by a factor of 3.5, 7.5, and 15, representing different levels at which effects
from substructure might be understood. These values are consistent with a increase
in the magnification of image B by a factor of 1.35, 1.20, and 1.0 due to a subhalo of
mass & 106M�. While adding flux constraints clearly tightens the h distribution, we
do not include them in our final h distribution since we do not currently understand
the extent to which substructure may be important in Q0957.

different cases. The flux ratio constraint tends to reduce the median value of h and

tighten the distribution. While such a result seems enticing, we caution that it may be

artificial if the flux ratio is really perturbed by substructure which is absent from our

model. Given the concerns, we choose not to use the flux ratio as a constraint for our

final results. If there were some way to determine the “macro” flux ratio, however, that

might help improve constraints on h.

2.4.3 Stellar Mass to Light Ratio

As shown in Figures 2.5–2.8, our models demonstrate a strong correlation between

h and ΥF606W, the stellar mass-to-light ratio, as a consequence of the radial profile

degeneracy in lensing. Any external constraints on ΥF606W could not only narrow the
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overall parameter space but also tighten constraints on h. It is possible to obtain such

constraints from stellar population synthesis (SPS) models thanks to the fact that we

have excellent HST photometry of a relatively “simple,” old stellar population in the

lens galaxy.

We use two sets of SPS models. The first are the Flexible Stellar Population Synthe-

sis (FSPS) models of Conroy et al. (2009). These models exhibit enormous flexibility

and are aimed at addressing many of the uncertainties of SPS models. In particu-

lar, the user can not only consider the traditional effects of varying the star formation

history, star formation epoch, metallicity, initial mass function (IMF), and dust, but

also account for various treatments of the thermally pulsating asymptotic giant branch

(TP-AGB), blue stragglers, and blue horizontal branch stars. See Conroy et al. (2009)

for details of the FSPS models and the SPS uncertainties they address. Using the FSPS

models, we follow the treatment of Conroy et al., adjusting 9 models parameters (see

Table 2.5) that include the effects of varying the epoch of star formation, the star for-

mation history, and dust. We consider six metallicities from 50% to 160% Solar using

a Chabrier IMF (Chabrier 2003).

The second set of SPS models we use are from Maraston et al. (2009). These models

are based on the same simple stellar populations (SSPs) as Maraston (2005), which treat

the TP-AGB contribution to the SEDs, but also include a metal poor ([Z/H] = −2.2)

population comprising 3% of the mass. As shown by Maraston et al. (2009), these

models provide a good fit to the optical colors of galaxies in the Luminous Red Galaxy

(LRG) sample from the Sloan Digital Sky Survey. This is encouraging because SPS

models have historically had trouble fitting LRG colors (e.g., Eisenstein et al. 2001;

Wake et al. 2006). Since the lens galaxy in Q0957 is luminous (L ∼ 6.5L?) and red

(mF606W −mF814W = 1.057), we postulate that these models should provide a good fit

the galaxy’s spectral energy distribution. To account for variation of the lens galaxy

from the SSPs of Maraston et al., we allow for variation in the redshift at which star



77

Table 2.5. SPS Model Parameters

Parameter Prior FSPS Maraston SPS

Formation redshift, zf 0.361− 1089 X X
SFR e-folding time, τ 0−∞ X X
Constant SFR, C 0− 1 X X
Dust around young stars, τ1 0−∞ X X
Diffuse dust1, τ2 P ∝ e−1.086τ2 X X
Fraction of blue HB stars2, fBHB 0− 0.5 X −
Specific frequency of blue stragglers2, SBS 0− 10 X −
Shift in log(Lbol) along the TP-AGB2, ∆L −0.4 − 0.4 X −
Shift in log(Teff ) along the TP-AGB2, ∆T −0.2 − 0.2 X −

1We use a exponential prior on the diffuse dust content of the form e−AF606W /1.0mag

2See Conroy et al. (2009) for details

formation begins, the star formation history, and dust. As in our FSPS models, we allow

star formation to begin anywhere from the CMB redshift, z = 1089, to the redshift of

the lens, z = 0.361. We adopt the star formation rate

Ψ(t) =
1− C
τ

e−t/τ

e−T (zform)/τ − e−T (zl)/τ
(2.25)

+
C

T (zl)− T (zform)
, T (zform) ≤ t ≤ T (zl),

where C is the fraction of stars formed at a constant rate, τ is the e-folding time of

the star formation rate, and T (z) denotes the age of the universe at redshift z. This

form of the star formation rate has the advantage of smoothly varying from a SSP to

a constant star formation history. For dust, we consider the two-parameter model of

Charlot & Fall (2000) which includes the effect of dust around young stars as well a

diffuse dust component. Parameters for our Maraston SPS models are summarized in

Table 2.5.

As constraints on the SPS models, we use our measurements of the F606W and

F814W magnitudes of the lens galaxy (see Table 2.1) together with a reanalysis of the
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NICMOS/F160W image obtained by Keeton et al. (2000). The revised AB magnitude

mF160W,AB = 16.84± 0.15 (Chien Peng, private communication) differs somewhat from

the originally reported value because it is based on a more sophistocated deconvolution

of the lens galaxy from the quasar images and host arcs. We correct for Galactic

extinction using the methods of Schlegel et al. (1998), finding the value of E(B−V ) =

0.0095.

Initial modeling found that large values of dust extinction, extending to AF606W >

2.0 mag, were allowed in the SPS models. This was unexpected since early type galaxies

are known to have modest dust content (e.g., Schawinski et al. 2007). In lensed systems,

differential extinction measurements have shown that lenses typically exhibit smaller

values of dust extinction than found in nearby, late-type galaxies: Eĺıasdóttir et al.

(2006) find a mean extinction of AV = 0.56 ± 0.04 in a sample of 10 lenses (also

see Falco et al. 1999). For Q0957 we could in principle rely on previous attempts to

measure the dust content of the lens galaxy, but the results are puzzling. Goicoechea et

al. (2005) used HST/STIS observations to measure the flux ratio FB/FA > 1 at optical

and ultraviolet wavelengths (also see the delay corrected ratios of Colley et al. 2003),

which stands in stark contrast to the VLA measurement FB/FA = 0.74± 0.02 and our

models predictions. To explain this difference Goicoechea et al. invoke dust clouds in

front of image A leading to extinction AV = 0.30. It is counterintuitive to think that

image A (at 18.6h−1 kpc from the center of the galaxy) is more heavily extinguished

than image B (just 3.7h−1 kpc from the center). If extinction is indeed the cause of the

wavelength dependence in the flux ratios, it remains unclear how the dust is distributed

throughout the rest of the galaxy, whether it is clumpy and extends to large radii in

other directions. For all these reasons, we choose not to constrain the dust in the

SPS models to a particular value. Nevertheless, in order to avoid unreasonable large

extinction values we impose a weak, exponential prior of the form e−AF606W /1.0mag.

In order to derive constraints on ΥF606W, we set up an MCMC analysis similar to
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Figure 2.15 Cumulative posterior probability distributions for the stellar mass to light
ratio, ΥF606W. The different curves correspond to different values of h, varying from
0.55 (black) to 1.10 (light orange) in increments of 0.05. (a, left) Results from the FSPS
models of Conroy et al. (2009). (b, right) Results from the SPS models of Maraston
et al. (2009). The FSPS models tend to produce higher values of ΥF606W with more
scatter than the Maraston models. Also, the FSPS models are not as systematically
dependent on h, presumably because the large freedom in the models dominates the
distribution of ΥF606W.
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what we use for lens models (see §2.3.4) to sample the posterior probability distribution.

Since the value of ΥF606W depends on h (principally through the age of the universe

as a function of redshift), we run the MCMC analysis for discrete values of h from

0.50 to 1.45 in steps of ∆h = 0.025; the small steps ensure that the median and range

of ΥF606W do not vary by more than 3% from one h value to the next, so we can

interpolate accurately. Figure 2.15 shows the cumulative distributions for ΥF606W for

different values of h, from both FSPS and Maraston models. In general, both models fit

the observed F606W−F814W and F606W−F160W colors well (χ2
reduced ≤ 1), but the

FSPS models yield a larger range for ΥF606W. This is not surprising given the amount

of freedom available in the FSPS models. Previous studies of massive ellipiticals found

values of ΥB of ∼ 4−10 (e.g., Gerhard et al. 2001; Grillo et al. 2009), in good agreement

with the values found here.6

Figure 2.16 Cumulative posterior probability distribution for h with and without con-
straints from SPS models. Since the Maraston SPS models have been shown to fit
LRG colors from the SDSS, we adopt them when quoting final values of h and model
parameters. We find H0 = 79.3+6.7

−8.5 km s−1 Mpc−1 (68% CL).

Figure 2.16 shows what happens to the posterior probability distribution for the

Hubble constant when we impose the SPS constraints on ΥF606W. Using the FSPS

6At a redshift of z = 0.36, observed ΥF606W corresponds to rest frame ΥB .
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models has little effect on the h distribution, because these models allow for a large

range of values for ΥF606W. The Maraston models, by contrast, favor ΥF606W ∼ 4.5–6.5

and such values tend to reduce the median h and tighten the distribution. Clearly it

is important to understand why the FSPS and Maraston models differ as to whether

high values of ΥF606W are acceptable. Figure 2.17 shows that the high ΥF606W values

attained in FSPS models correspond to large values of extinction — values that seem

surprising for a luminous early-type galaxy in a modest cluster at redshift z = 0.361.

We infer that the flexibility of FSPS models is allowing them to reproduce the observed

colors of the galaxy even with models that do not make much sense astrophysically.

One way to reconcile the FSPS and Maraston models is to constrain the amount of

dust in our FSPS models. We find that adopting an extinction prior of AF606W =

0.45±0.2 would bring the FSPS constraints on ΥF606W into agreement with those from

the Maraston models. Imposing such a prior has little effect on the ΥF606W constraints

from the Maraston models since those models show little or no correlation between dust

extinction and ΥF606W.

Ultimately we need to decide what to use for our final constraints on ΥF606W. Since

the Maraston models are constructed to match the SDSS LRG sample and require no

ad hoc assumptions about the dust content of the lens galaxy, we elect to use them

when reporting our final determination of h and model parameters (see Table 2.6).

With these constraints on ΥF606W we find H0 = 79.3+6.7
−8.5 km s−1 Mpc−1 (68% CL).

2.4.4 Physical Properties of NFW Halos

When fitting models with an NFW dark matter halo, we previously took both rs and

κs = ρsrs/Σcrit to be free parameters. However, in N -body simulations the two NFW

parameters are actually related to one another, albeit with some scatter. We now

consider whether our lens model parameters have reasonable values in general, and

whether they are consistent with the correlation found in simulated halos.
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Figure 2.17 2D histogram showing the joint probability distribution for the stellar mass-
to-light ratio, ΥF606W, and the amount of extinction in the F606W band, from FSPS
models. As the amount of extinction increases, the model magnitude in the F606W
filter increases, leading to a larger values of ΥF606W. Results are shown for models with
h = 0.7 and Solar metallicity, but the distributions for other values of h and metallicity
exhibit a similar behavior.

Figure 2.18 The space of scale radius, rs, and halo normalization, κs, for NFW halos at
the lens redshift z = 0.361. The shaded region indicates the parameter range occupied
by our lens models with an NFW dark matter halo. The dotted curve shows the
expected relation between κs and rs based on the median concentration/mass relation
found in N -body simulations by Macciò et al. (2007), while the dot-dash curves show
the ±3σ range, and the dashed curve in the upper left corner lies 6σ above the median.
The colored solid curves represent the theoretical predictions at fixed virial mass, with
the concentration varying ±3σ around the median, ranging from 1012M� (black) to
1016M� (orange) in steps of 0.5 dex.
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Parameterizing NFW halos with the virial mass Mvir and concentration cv, Macciò

et al. (2007) find that the parameters are related by cv(z) = 213+40
−34M

−0.109±0.005
vir (1 +

z)−1. We can express our lens model parameters in terms of Mvir and cv as follows:

κs =

(
1 + z

c

)2 [1

2
(GMvir)

1/2H2
0 Ωm∆vir

]2/3

(2.26)

×DolDls

Dos
c2
v

[
ln(1 + cv)−

cv
1 + cv

]−1

rs =
1

cv(1 + z)

[
2GMvir

H2
0 Ωm∆vir

]1/3

(2.27)

where ∆vir = 98 is the virial overdensity (Mainini et al. 2003; Macciò et al. 2007).

Figure 2.18 compares our recovered model values of rs and κs with expectations based

on the Macciò et al. (2007) relation for different values of the NFW halo mass. The

first point is that the model parameters do indeed have reasonable values. Going into

more detail, we see that our models with small scale radii (rs < 10′′) are consistent

with relatively low cluster masses (Mvir . 1013.5M�) but concentrations that are 3–6σ

above the median for that mass. As the scale radius increases, our models follow a track

corresponding to increasing mass and decreasing concentration; indeed, lens models

with rs & 200′′ require an extraodinarily large mass of Mvir & 1015M�. Such a large

mass seems unreasonable for a fairly modest galaxy cluster, especially considering that

X-ray measurements imply a mass within 1 h−1
75 Mpc of 9.9+1.9

−3.8×1013M� (Chartas et al.

2002). Therefore, we argue that our models with rs & 200′′ are disfavored but models

with rs . 200′′ have parameters that seem reasonable in comparison with simulated

NFW halos. We note that recovering a concentration that is a few sigma above the

median is not necessarily a concern, because there may be a selection bias such that

a high concentration increases the lensing cross section (see, e.g., Mandelbaum et al.

2009).
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2.5 Discussion and Conclusions

Since its discovery in 1979, Q0957 has presented many puzzles that we still cannot

definitively solve. Nevertheless, by combining new HST/ACS data and stellar popula-

tion synthesis models, we have presented a consistent picture of lensing in this system

using a realistic treatment of both the stellar and dark matter components of the mass

distribution. In §2.5.1 we discuss our results regarding measurements of H0 with Q0957.

Turning the tables, in §2.5.2 we adopt priors on H0 from other measurements and ex-

amine the inferred properties of the lens mass distribution. Looking ahead, in §2.5.3

we discuss potential ways in which these measurements can be improved.

2.5.1 Hubble Constant

Motivated by our new ACS data, we conducted a joint strong+weak lensing analysis

in the hope of obtaining the best constraints to date from Q0957. In §2.4.1 we found

H0 = 85+14
−13 km s−1 Mpc−1 (68% CL) on the basis of lensing alone. This result is higher

than, but still consistent with, measurements from other recent lensing (e.g., Jakobsson

et al. 2005; Paraficz et al. 2009; Oguri 2007) and non-lensing (e.g., Freedman et al.

2001; Riess et al. 2009; Dunkley et al. 2008; Komatsu et al. 2008) studies. In spite of

the extensive lensing data we have obtained, the uncertainty in H0 from Q0957 is still

larger than from most other lenses (see Fig. 2.1).

One source of uncertainty in Q0957 is the sheer complexity of the potential: with

ellipticity, shear, and higher-order environmental terms to play with, models can find

a wide range of combinations that fit the data well (see Figs. 2.5–2.8). The main

systematic effect in lens models is a correlation between h and the stellar mass-to-light

ratio of the lens galaxy. Varying ΥF606W changes the balance between stars and dark

matter in the lens galaxy, which modifies the net density profile, which then affects

h through the radial profile degeneracy (e.g., Kochanek 2002). We can actually turn

this degeneracy to our advantage if we can place independent constraints on the stellar



86

mass-to-light ratio. In §2.4.3 we used the stellar population synthesis models from

Maraston et al. (2009) to constrain ΥF606W and thereby reduce the uncertainties in our

Hubble constant determination to H0 = 79.3+6.7
−8.5 km s−1 Mpc−1 (68% CL).

While this is a significant reduction in the uncertainty forH0 from Q0957, we caution

that SPS models are still improving and may ultimately be even more complicated than

the Maraston models. When we used the FSPS models of Conroy et al. (2009), for

example, we did not see much tightening of the H0 constraints relative to lensing alone;

and we traced the trouble to uncertainties in the amount of dust extinction in the lens

galaxy. There is one additional source of uncertainty in SPS models that we did not

explicitly address, namely the IMF. Variations in the IMF can alter the colors and mass-

to-light ratios of SPS models (e.g., Conroy et al. 2009). In particular, a more bottom-

heavy IMF (e.g., Salpeter) would raise the inferred value of the ΥF606W and hence our

median value of H0, while a more top-heavy IMF would have the opposite effect. For

the Maraston SPS models, variations in the IMF must be relatively small or the models

would cease to provide a good fit to the SDSS LRG sample. We attempt to compensate

for IMF-related variations by allowing broad ranges for the star formation history, star

formation epoch, and dust. Nevertheless, this remains an unknown, but presumably

small, uncertainty in our models. Clearly there is a lot of room for improvement with

a better understanding of the stellar population of the lens galaxy (see §2.5.3).

2.5.2 Mass Distribution

Instead of trying to measure H0 ourselves, we can choose to place external priors on H0

to see how well we can understand the mass distribution of the lens. We consider two

determinations of H0: the refurbished distance ladder measurement of H0 = 74.2± 3.6

km s−1 Mpc−1 by Riess et al. (2009), and the combined WMAP5+SNe+BAO value of

H0 = 70.5±1.3 from Komatsu et al. (2008). In Table 2.7 we show the model parameters

recovered from this approach.
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Examining the relative probabilities of the models, it is clear that the lensing data

favor a power law profile of index α = 0.5 or 1.0 over α = 1.5 or an NFW profile. Both

of the favored models exhibit relatively large core radii: a = 5.8+1.1
−1.0 arcsec for α = 0.5,

or a = 4.2+1.0
−0.7 arcsec for α = 1. Given the reduced probability of our NFW models, we

conclude that lensing provides strong evidence for a constant-density core (rather than

a cusp) in the dark matter halo of Q0957.

In Figure 2.10 we showed that Q0957 exhibits a rising deflection profile, analogous to

a rising rotation curve and indicative of a net density profile shallower than isothermal.

While this is not the first case of a lens with a rising rotation curve (see Kochanek

et al. 2006), the origin of phenomenon is unclear. One possible explanation involves

the special location of the lens galaxy. As the central galaxy in a modest cluster, the

lens is embedded in the most concentrated part of a massive dark matter halo. The

higher than average surface density of dark matter leads to a shallow density profile

and a rising deflection curve. To further explore this idea, we shown in Figure 2.19 the

fraction of the deflection contributed by dark matter as a function of radius. This is

equivalent to the projected enclosed dark matter fraction as a function of radius. At

the effective radius, dark matter constitutes (50 ± 7)% or (57 ± 7)% of the enclosed

mass (assuming the Riess or Komatsu priors on H0, respectively). Such values are well

above the minimum dark matter fraction found (38 ± 7)% for galaxies in the SLACS

survey (Bolton et al. 2008), and are greater than 16 of the 22 lens systems considered

by (Jiang & Kochanek 2007). It is not very surprising, of course, to find a relatively

large dark matter fraction in a brightest cluster galaxy.

We find the the dark matter halo in Q0957 must be well aligned with stellar mass

distribution. With either the Riess or Komatsu H0 priors, we find the position angle of

the dark matter halo to be θe = 73+9
−10 deg, in good agreement with the measured posi-

tion angle of the stellar component θ? = 71± 5 deg at large radii (> 5′′). Perhaps more

interesting is that the ellipticity of the dark matter appears to be in good agreement
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Figure 2.19 Fraction of the monopole deflection contributed by the dark matter halo, as
a function of radius. Since α(r) ∝M(r)/r, this plots also depicts the enclosed projected
dark matter fraction as a function of radius. The vertical dotted line indicates the Ein-
stein radius at Rein = 2.84′′ while the vertical dashed line marks the effective radius of
the stellar light profile at Re = 2.21′′. The shaded regions show results from our models
when we adopt different priors on the Hubble constant: the orange region corresponds
to assuming H0 = 74.2 ± 3.6 km s−1 Mpc−1 from Riess et al. (2009), while the region
indicated with red horizontal lines corresponds to H0 = 70.5± 1.3 km s−1 Mpc−1 from
Komatsu et al. (2008).

with that of the stellar distribution. We find the ellipticity of the dark matter to be

e = 0.28+0.06
−0.07 or e = 0.25+0.07

−0.09 for the Riess or Komatsu H0 values, in good agreement

with the measured value of the stellar ellipticity e? ∼ 0.3 at large radii.

In general, we find that improving H0 constraints from 5% to 2% has little impact on

our understanding of the mass distribution, because most of our model parameters have

little or no correlation with H0. The only significant exception is in our determination

of the stellar mass to light ratio, ΥF606W. We find ΥF606W = 5.5+0.9
−0.5 using the Riess

value for H0, versus ΥF606W = 5.5+0.2
−0.3 using the Komatsu value. For comparison, the

Maraston SPS models give ΥF606W = 5.9± 1.9. It is interesting to see that combining

lensing with H0 priors can provide excellent constraints on stellar populations, which

may prove useful as SPS laboratories as multi-wavelength datasets for well-studied

lenses grow.
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We found the intriguing result that our models favor a quasar flux ratio around

FB/FA = 0.53 ± 0.06, which is substantially different from the radio measurement

of FB/FA = 0.74 ± 0.02. Since the radio emission is free from extinction by dust,

and should be insensitive to microlensing by stars, we infer the quasar flux ratio in

Q0957 seems to be “anomalous.” The putative anomaly presumably indicates additional

complexity in the lens potential. While the nature of that complexity is not yet clear, it

is worth noting that dark matter substructure can easily produce flux ratio anomalies

(e.g., Mao & Schneider 1998; Metcalf & Madau 2001; Dalal & Kochanek 2002; Chiba et

al. 2005; MacLeod et al. 2009). Invoking substructure as an explanation seems especially

enticing because the radio jets, a mere 80 mas away from the quasar images, have a

flux ratio of 0.61 ± 0.04 (Bonometti 1985), in much better agreement with the macro

models. While we cannot definitively identify substructure from the present analysis,

the evidence is fascinating and warrants future study.

2.5.3 Future Prospects

Looking ahead, there are several ways in which we can hope to improve the measurement

of H0 in Q0957. Following this work, the best improvements are likely to come from

a better understanding of the stellar population and ΥF606W. In the near term, an

extension of the photometric data to both bluer and redder wavelengths could reduce the

uncertainties in existing SPS models and, therefore, the uncertainties in H0. Over the

longer term, extensive photometry spanning UV/optical/infrared wavelengths, coupled

with a better understanding of SPS uncertainties (e.g., TP-AGB stars, blue stragglers,

IMF), should boost the reliability and reduce the uncertainties in the SPS technique.

Improved lensing constraints may also help. One source of systematic uncertainty

in our models is the uncertainty in the measurement of the total convergence from

weak lensing. Currently, the total convergence is measured to ∼ 34% precision. Deeper

imaging would be observationally expensive but worthwhile, especially if coupled with
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improved understanding of the point spread function and source redshift distribution for

the weak lensing analysis. For strong lensing, we have noted that there are additional

faint lensed features that we have not used, but that might further constrain the lensing

critical curve (see the discussion accompanying Figs. 2.11 and 2.13). We note for the

record that using the precise position and flux ratio constraints for the quasars is not

likely to help us understand the (large-scale) mass distribution or H0 any better; those

data will ultimately be most useful for probing small-scale structure in the lens.

Finally, it is interesting to consider whether stellar dynamics data could further

constrain our models. Previous studies have shown that joint lensing+dynamics analy-

ses can provide more information than lensing alone about the mass distribution (e.g.,

Treu et al. 2006; Barnabè & Koopmans 2007). The joint approach has been used to

good effect by the SLACS team to improve constraints on quantities like the total

mass to light ratio and the slope of the inner density profile (Koopmans et al. 2006).

For Q0957, Romanowsky & Kochanek (1999) have successfully combined information

from stellar dynamics and lensing to tighten constraints on mass models. Adopting

the measured central velocity dispersion from Tonry & Franx (1997), Romanowsky &

Kochanek use orbit modeling techniques to constrain a spherical power law profile,

measuring H0 = 61+13
−15 km s−1 Mpc−1 (2σ). While it is clear such an analysis would be

useful to further constrain our models, it would require orbit modeling for each of our

model classes, which is beyond the scope of this work. Furthermore, it would require

a deprojection of the stellar component that we include in our models, which could be

challenging (because of the varying ellipticity and orientation; cf. Figure 2.3) and would

have uncertainties of its own.
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Keeton, C. R., Muñoz, J. A., & Peng, C. Y., 1999, ApJ, 523, 617

Fassnacht, C. D., & Lubin, L. M., 2002, AJ, 123, 627

Fassnacht, C. D., Xanthopoulos, E., Koopmans, L. V. E., & Rusin, D. 2002, ApJ, 581,

823

Fassnacht, C. D., Gal, R. R., Lubin, L. M., McKean, J. P., Squires, G. K., & Readhead,

A. C. S., 2006, ApJ, 642, 30

Fassnacht, C. D., Kocevski, D. D., Auger, M. W., Lubin, L. M., Neureuther, J. L.,

Jeltema, T. E., Mulchaey, J. S., & McKean, J. P., 2008, ApJ, 681, 1017

Fischer, P., Bernstein, G., Rhee, G., & Tyson, J.A., 1997, AJ, 113, 521

Freedman, W. L., et al., 2001, ApJ, 553, 47

Fruchter, A. S., & Hook, R. N., 2002, PASP, 114, 144

Garrett, M. A., Calder, R. J., Porcas, R. W., King, L. J., Walsh, D., & Wilkinson, P.

N., 1994, MNRAS, 270, 457



95

Gavazzi, R., Treu, T., Rhodes, J. D., Koopmans, L, V. E., Bolton, A. S., Burles, S.,

Massey, R. J., & Moustakas, L. A., 2007, ApJ, 667, 176

Gavazzi, R., Treu, T., Koopmans, L. V. E., Bolton, A. S., Moustakas, L. A., Burles, S.,

& Marshall, P. J., 2008, ApJ, 677, 1046

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B., 1995, Bayesian Data Analysis

(New York: Chapman &Hall/CRC)

Gerhad, O., Kronawitter, A., Saglia, R. B., & Bender, R., 2001, AJ, 121, 1936

Goicoechea, Gil-Merino, R., & Ullán, A., 2005, MNRAS, 360, L60

Goicoechea, L. J., Shalyapin, V. N., Koptelova, E., Gil-Merino, R., Zheleznyak, A. P.,

& Ullán, A., 2008, New Astronomy, 13, 182

Gorenstein, M. V., Cohen, N. L., Shapiro, I. I., Rogers, A. E. E., Bonometti, R. J.,

Falco, E. E., Bartel, N., & Marcaide, J. M., 1988b, ApJ, 334, 42

Gorenstein, M. V., Shapiro, I. I., & Falco, E. E., 1988a, ApJ, 327, 693

Grillo, C., Gobat, R., Lombardi, M., & Rosati, P., 2009, A&A, 501, 461

Grogin, N. A., & Narayan, R., 1996, ApJ, 464, 92; erratum, 1996, ApJ, 473, 570

Haario, H., Saksman, E., & Tamminen, J., 2001, Bernoulli, 7, 223

Haarsma, D. B., Hewitt, J. N., Lehar, J., & Burke, B. F., 1999, ApJ, 510, 64

Hjorth, J., Burud, I., Jaunsen, A. O., Schechter, P. L., Kneib, J. P., Andersen, M. I.,

Korhonen, H., Clasen, J. W., Kaas, A. A., Østensen, R., Pelt, J., & Pijpers, F. P.,

2002, ApJ, 572, L11

Jakobsson, P., Hjorth, J., Burud, I., Letawe, G., Lidman, C., & Courbin, F., 2005,

A&A, 431, 103



96

Jiang, G. & Kochanek, C. S., 2007, ApJ, 671, 1568

Keeton, C. R. & Kochaneck C. S., 1997, ApJ, 487, 42

Keeton, C. R., Kochaneck C. S., & Seljak, U., 1997, ApJ, 482, 604

Keeton, C. R. & Kochaneck C. S., 1998, ApJ, 495, 157

Keeton, C. R., Falco, E. E., Impey, C. D., Kochanek, C. S., Lehr, J., McLeod, B. A.,
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Chapter 3

Mid-Infrared Spectroscopy of Two Lensed Star-forming

Galaxies

This chapter is based on work in the journal article:

Mid-Infrared Spectroscopy of Two Lensed Star-forming Galaxies

Fadely, R., Allam, S. S., Baker, A. J., Lin, H., Lutz, D., Shapley, A. E.,

Shin, M.-S., Smith, J. A., Stauss, M. A., & Tucker, D. L., 2010, ApJ submitted

We present low-resolution, rest-frame ∼ 5−12µm Spitzer/IRS spectra of two lensed

z ∼ 2 UV-bright star-forming galaxies, SDSS J120602.09+514229.5 and

SDSS J090122.37+181432.3. Using the magnification boost from lensing, we are able to

study the physical properties of these objects in greater detail than is possible for un-

lensed systems. In both targets, we detect strong PAH emission at 6.2, 7.7, and 11.3µm,

indicating the presence of vigorous star formation. For J1206, we find a steeply rising

continuum and significant [S IV] emission, suggesting that a moderately hard radia-

tion field is powering continuum emission from small dust grains. The strength of the

[S IV] emission also implies a sub-solar metallicity of ∼ 0.5Z�, confirming published

rest-frame optical measurements. In J0901, the PAH lines have large rest-frame equiv-

alent widths (> 1µm) and the continuum rises slowly with wavelength, suggesting that

any AGN contribution to LIR is insignificant, in contrast to the implications of optical

emission-line diagnostics. Using [O III] line flux as a proxy for AGN strength, we esti-

mate that the AGN in J0901 provides only a small fraction of its mid-infrared continuum

flux. By combining the detection of [Ar II] with an upper limit on [Ar III] emission, we
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infer a metallicity of & 1.3Z�. This work highlights the importance of combining rest-

frame optical and mid-IR spectroscopy in order to understand the detailed properties

of star-forming galaxies at high redshift.

3.1 Background

Rest-frame UV selection offers a prime view into populations of star-forming galaxies

at z > 1.5. First used to identify z ∼ 3 galaxies with sharp breaks in their spectral

energy distributions due to absorption below the Lyman limit (Steidel et al. 1996), the

Lyman break technique has now been modified and extended to both lower and higher

redshift (e.g., Steidel et al. 1999; Lehnert & Bremer 2003; Adelberger et al. 2004).

Since the development of the technique in the 1990s, thousands of star-forming galaxies

have been spectroscopically confirmed at z ∼ 1.5− 3.5 (e.g., Steidel et al. 2003; Reddy

et al. 2006a), resulting in a revolution in our understanding of galaxy formation and

evolution. However, these high-redshift galaxies suffer from a fundamental problem:

they are typically small and faint, with RAB ≥ 24 mag, making it impossible to carry

out detailed studies of individual objects unless they happen to be strongly lensed. In

particular, this limitation applies to observations of UV-bright star-forming systems at

the long wavelengths that can trace star formation even in highly obscured regions.

While stacking analyses of large samples confirm that UV-selected galaxies at z ∼ 2

have substantial fractions of their bolometric luminosities emerging in the far-infrared,

with 〈LIR/LUV〉 ' 4 − 5 (Reddy & Steidel 2004; Reddy et al. 2006b), understanding

the parameters of obscured star formation in individual unlensed objects remains out

of reach for current facilities.

The first bright lensed Lyman break galaxies, “cB58” (i.e., MS 1512-cB58) and the

“Cosmic Eye” (i.e., LBG J213512.73−010143), were discovered serendipitously in the

course of a cluster redshift survey (Yee et al. 1996) and a Hubble Space Telescope

(HST) snapshot imaging survey of X-ray-bright clusters (Smail et al. 2007), respectively.
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Since clusters are rich in strong caustics capable of producing fold arcs (like cB58) and

in individual galaxies capable of producing nearly complete Einstein rings (like the

Cosmic Eye), the circumstances of these discoveries were not surprising. More recently,

however, several teams have begun to exploit the enormous footprint of the Sloan

Digital Sky Survey (SDSS) to identify UV-bright high-redshift sources that are lensed

by individual galaxies in field or group environments. This enterprise kicked off with

the serendipitous discovery of the “8 O’Clock Arc” (Allam et al. 2007) and has now

spawned a variety of systematic searches within the SDSS object catalog that rely on

different selection criteria (e.g., Belokurov et al. 2007; Shin et al. 2008; Hennawi et al.

2008). By focusing on luminous red galaxies with multiple blue neighbors, and on close

pairs with characteristic lens+arc morphologies, various authors of this paper have now

contributed to the discovery of 11 new spectroscopically confirmed lenses at redshifts

0.4 ≤ z ≤ 2.4 (Kubo et al. 2009; Lin et al. 2009; Diehl et al. 2009).

In this paper, we present Spitzer/IRS spectroscopy of two objects from this new

SDSS sample. The first, SDSS J120602.09+514229.5 (a.k.a. the “Clone”, hereafter

J1206) is a z = 2.00 arc discovered by Lin et al. (2009), who determine a lensing

magnification M = 27 ± 1. The second, SDSS J090122.37+181432.3 (hereafter J0901)

is a z = 2.26 arc discovered by Diehl et al. (2009); preliminary lens modelling implies

its magnification is also high. Both objects are 20–30 times brighter than galaxies at

the knee of the 1.9 ≤ z ≤ 2.7 rest-UV luminosity function (Reddy et al. 2008). Here we

focus on what can be learned about the conditions in the dusty regions of these galaxies

from their integrated mid-infrared spectra, based on comparisons with local galaxies,

assuming that there is minimal differential lensing across the wavelength ranges of our

IRS spectra. Analyses of Spitzer/IRAC and (for J1206) MIPS imaging of these targets

in light of more refined HST-based lens models, together with detailed comparisons to

the source-plane properties of similar lensed star-forming galaxies (Siana et al. 2008,
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2009) and high-redshift systems selected through their dust emission rather than rest-

UV colors (e.g., Lutz et al. 2005; Weedman et al. 2006; Valiante et al. 2007; Yan et al.

2007; Pope et al. 2008; Menéndez-Delmestre et al. 2009), are deferred to future papers.

3.2 Observations and Data Reduction

We used the Infrared Spectrograph (IRS: Houck et al. 2004) on board the Spitzer Space

Telescope to obtain 14 − 38µm spectra of both J1206 and J0901 in the instrument’s

“long low” mode (R ∼ 57 − 126), for which the first (LL1) and second (LL2) orders

cover wavelength ranges of 19 − 38µm and 14 − 21.3µm, respectively. In order to

ensure optimal signal-to-noise ratios, we followed the recommendations of Teplitz et al.

(2007) and mapped the targets at six positions across the slit. Observations of J1206

were taken during Spitzer Cycle 4 (PID 40430; PI S. Allam) on 2007 December 19–20,

and consisted of 1 × 6 pointings in LL1 and LL2 for total integration times of 2.1 ks

and 2.2 ks, respectively. J0901 was observed on 2009 May 15 during Spitzer Cycle 5

(PID 50086; PI S. Allam) using 2 × 6 pointings in LL1 totaling 2.2 ks and 2.0 ks, and

1 × 6 pointings in LL1 totaling 2.2 ks. Data were obtained under nominal operating

conditions, with the exception of the second LL1 Astronomical Observation Request

(AOR) for J0901. During this AOR, Spitzer began to warm up due to the depletion

of its cryogen. The increased thermal background was marginal, raising data collection

event (DCE) values by only 6%. The IRS support team deemed the data nominal, and

we reduced them following the same procedures used for our other AORs.

Data reduction relied on standard analysis packages and followed the procedure de-

scribed by Teplitz et al. (2007). Using IRAF, we removed latent charge in the IRS

images row-by-row by fitting the linear background increase over time. Subsequently,

we masked “rogue” pixels using the IDL routine IRSCLEAN. After cleaning, we con-

structed sky images for each target position using the five other pointings from the

same mapping AOR. The resulting sky images were subtracted from the corresponding
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science frames, and the differences were then co-added to produce a final 2D spectrum

at each position. We extracted 1D spectra using the SPICE package provided by the

Spitzer Science Center, using optimal extraction. We used an extraction aperture half

the default size in order to avoid contamination from other sources (see below), but we

corrected to full-aperture fluxes using observations of standard stars.

For J0901, extraction of the 1D spectra was complicated by an interloping source,

SDSS J090125.59+181427.8 (see Figure 3.1a), lying ∼ 46′′ away from the lens. From

its IRS spectra, this object is likely to be a quasar at z ∼ 1.3, in agreement with the

assessment of its optical colors by Richards et al. (2009). Its spectrum in one pointing

often lay on or near the position of a J0901 spectrum in another pointing; combined with

the fact that J0901 itself is bright and extended, this situation meant that a given “sky”

frame included the true background, light from the interloping source, and residual flux

from J0901 at other map positions, leading to oversubtraction in our final 2D spectra

(e.g., Figure 3.1a). To correct for this effect, we measured the negative sky echoes

at different locations in the 2D spectrum whose combination should have experienced

the same oversubtractions (e.g., Figure 3.1b). By combining such measurements, we

constructed a model for our oversubtraction of each of our target spectra; correcting

led to a ∼ 10− 25% flux increase for the source.

For both J1206 and J0901, the error spectrum at each position was calculated using

SPICE and standard deviation frames constructed in IRAF. The final error spectrum is

that of all the positions added in quadrature. For J0901, we include an additional sys-

tematic uncertainty associated with our sky correction, raising the final error spectrum

by ∼
√

2.
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Figure 3.1 (a) Reduced 2D spectrum for J0901 at our third map position, after sub-
traction of a model for the sky. The black and white rectangles indicate the areas of
the array exposed to the spectrometer for LL1 and LL2, respectively, with wavelength
increasing downward. Two LL1 spectra are visible: the detection on the right is our
target J0901, while on the left is the interloping source SDSS J090125.59+181427.8.
From the pattern of the neighboring pixels, it is clear that the background is oversub-
tracted due to the relatively bright spectra of J0901 and the additional source. Plotted
below the spectrum are the data for the row corresponding to the peak of the J0901
spectrum, where the oversubtraction is the worst. (b) The same data overplotted with
the positions of the two spectra for the other map positions, indicated by the numbers
in the bottom plot. The dotted red lines mark the positions of the J0901 spectra, while
the solid green lines mark those of the additional source. For this (i.e., the third) map
position, the spectrum for J0901 lies just next to the rightmost solid green line (the
position of the interloping source for our first map position) and between two dashed
red lines (the positions of J0901 for our second and fourth map positions). To correct
for this effect, we measure the sky at appropriate positions, indicated by the blue line
segments. The combination of these measurements gives an accurate model for the
oversubtraction, which is then added to the data.
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3.3 Results

3.3.1 SDSS J120602.09+514229.5

Figure 3.2 a shows the extracted IRS spectra for SDSS J1206. On top of a rising

continuum, prominent PAH features are present at 6.2, 7.7, and 11.3µm. In addition,

a strong [S IV] feature is present at 10.5µm. In order to compare the spectrum to those

of local starbursting analogs, we fit template Infrared Space Observatory spectra of

individual galaxies from Sturm et al. (2000) and the average Spitzer starburst template

from Brandl et al. (2006). For the fit we allow a varying contribution from the templates

(normalized to 6.2µm) as well as an additional power law continuum: Fν,fit = C1 ×

[Template/Template6.2µm] + C2 × (λ/6.2µm)α. The three parameters for the fit were

sampled using a standard Metropolis-Hastings MCMC (Markov chain Monte Carlo)

algorithm. Figure 3.2b shows two of the template spectra that provide good fits. Table

3.1 shows the inferred median, 68% confidence limits, and best-fit parameters. We find

that the spectrum is well fit by the M82 template (χ2
red = 0.96), and marginally fit

by the NGC 253 and average starburst templates (χ2
red = 1.20, 1.14). In contrast, the

other templates from Sturm et al. (for 30 Doradus, Circinus, and NGC 1068) fit the

spectrum poorly (χ2
red > 10) due to the lack of strong PAH features. For each of the

acceptable templates, the best fit includes an additional, steeply-rising continuum with

a power law index of α ∼ 3.3.

To extract and interpret the features of the spectrum, we have also computed a fit

using the Drude profiles defined in Draine & Li (2007) for PAH features, Gaussian line

profiles for ionized species expected to be strong, and a simple power law continuum

(∝ λα). In addition, the fit includes extinction effects from 9.7 µm silicate absorption.

The results of this fit are plotted in Figure 3.2c and tabulated in Table 5.5. To assess

the strength of the PAH emission, we compare the rest-frame equivalent widths (EWs)

of the 6.2, 7.7 (≡ 7.41 + 7.61 + 7.85), and 11.3 (≡ 11.23 + 11.33) µm PAH features to
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Figure 3.2 (a) IRS spectrum of J1206. The observed spectrum is plotted in black after
redshifting to rest wavelength for z = 2.00. The light grey band corresponds to the 1σ
uncertainty associated with the spectrum. (b) Plotted in blue and red, respectively, are
the best fit template spectra for M82 and the average starburst of Brandl et al. (2006)
for the parameters listed in Table 3.1. (c) A comprehensive fit (red) to the spectrum
using Drude profiles for PAH features (blue), Gaussian profiles for ionic lines (orange),
and a power law continuum (green dot dashed). The fit also includes 9.7 µm silicate
extinction (black dashed).
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those of local starbursting systems. Comparisons of EWs are known to be sensitive to

the details of how authors define the underlying continuum. In particular, continuum

levels are often defined by the values of the data seen on either side of emission features

(see e.g., Brandl et al. 2006; Pope et al. 2008). Such definitions result in systematically

higher continua and lower PAH EWs than found by comprehensive fits to the spectra

(e.g., Siana et al. 2009). To facilitate interpretation of the EW values reported in

Table 5.5, we analyze the average starburst spectrum of Brandl et al. (2006) using the

same conventions as for J1206. We find EWs for the average starburst spectrum that

are factors ∼ 1 − 8 higher than derived by Brandl et al. (2006) for their own data.

Nevertheless, this approach provides a consistent way of measuring and comparing EW

values to our data. Relative to the average starburst spectrum, J1206 has EWs that

are lower by factors of 1.2, 1.5, and 1.2 for the 6.2, 7.7, and 11.3µm PAH features,

respectively. This slight deficiency is not surprising, given the additional power-law

continuum preferred by our template fitting above.

The two most striking features of the ∼ 4.5− 12µm spectrum of J1206 are its steep

underlying continuum and prominent [S IV] emission. In high-resolution studies of local

star-forming galaxies, the latter line is fairly common and appears weakly in starbursts

(Bernard-Salas et al. 2009) and ultraluminous infrared galaxies (ULIRGs) (Farrah et al.

2007), but is much stronger in blue compact dwarfs (BCDs; Hao et al. 2009). At lower

resolution this line is unresolved, and only the strongest emitters are detected (see,

e.g., Brandl et al. 2006; Wu et al. 2006). Comparing the relative strengths of [S IV] and

PAH emission of J1206 to those of local counterparts, we identify the two low-resolution

mid-IR spectra of the starburst NGC 1222 (Brandl et al. 2006) and the BCD UGC 4274

(Wu et al. 2006) as close analogs.

Using the optical spectroscopy of Liu & Kennicutt (1995) for NGC 1222 and Ho et al.

(1997) for UGC 4274, we calculate the oxygen abundance in each galaxy using the N2

and O3N2 indicators calibrated in Pettini & Pagel (2004). We find 12 + log(O/H)N2 =
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8.48, 8.43 and 12+log(O/H)O3N2 = 8.38, 8.37 for NGC 1222 and UGC 4274, respectively.

For J1206, Hainline et al. (2009) use near-IR spectroscopy to find 12 + log(O/H)N2 =

8.50± 0.18 and 12 + log(O/H)O3N2 = 8.34± 0.14, in good agreement with the putative

local counterparts. Given the consistency between the spectra and the oxygen abun-

dances, we conclude that NGC 1222 and UGC 4274 have physical conditions similar to

those of J1206.

In addition to oxygen abundances, we can consider the ratios of ionized sulfur

and neon lines [S IV] 10.5µm/[S III] 18.7µm and [Ne III] 15.6µm/[Ne II] 12.8µm for

NGC 1222 and UGC 4274. These quantities are well-known proxies for the hardness of

the radiation field (see Figure 9 of Hao et al. 2009), which is also a function of metal-

licity (Wu et al. 2006). The galaxies have similar ratios of [Ne III]/[Ne II] ∼ 1.30 and

[S IV]/[S III] ∼ 0.35, and lie between lower excitation starbursts and higher excitation

BCDs on a [S IV]/[S III] versus [Ne III]/[Ne II] excitation diagram (Hao et al. 2009),

implying a moderately hard radiation field. Using stellar models, Thornley et al. (2000)

estimate the hardness of the radiation in starbursts by relating [Ne III]/[Ne II] to the

ratio of the infrared and Lyman continuum luminosities (LIR/LLyc). Since NGC 1222

and UGC 4274 have higher [Ne III]/[Ne II] ratios than the Thornley et al. sample,

we extrapolate their results and find 3 . LIR/LLyc . 20 indicating a somewhat lower

range than for their more typical starbursts (4 . LIR/LLyc . 30). If present in J1206,

such hard radiation would cause significant heating of small dust grains and naturally

explain the steep continuum in our IRS spectrum. Unfortunately, [Ne III], [Ne II], and

[S III] all lie outside of our spectral coverage, preventing definitive confirmation of this

hypothesis.

In J1206, the apparent agreement between metallicity estimates in the optical and

the infrared implies that we are not seeing discrepancies of the sort seen in the most

violent local mergers. For ULIRGs, abundances derived from optical line diagnostics

(even after careful extinction corrections) are lower than those derived from mid-infrared
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spectra, likely because the former are depressed by inflows of metal-poor gas from the

outskirts of progenitor disks (Rupke et al. 2008) while the latter reflect rapid local

enrichment in the most deeply embedded star-forming regions (Veilleux et al. 2009). For

J1206, metallicities appear internally consistent across both obscured and unobscured

regions, suggesting a less traumatic recent history.

We can also consider the absence of other emission lines in our IRS spectrum, which

shows no significant ionic or molecular features other than [S IV]. In Table 5.5, we

report 3σ upper limits on [Ar II] at 6.99µm, [Ar III] at 8.99µm, and [Ne VI] at 7.65µm.

At first glance, it seems surprising we do not detect [Ar II], given that it is commonly

detected in starburst systems (Brandl et al. 2006), including M82 and NGC 253. As

discussed above, however, the presence of a rising continuum and [S IV] emission imply

higher excitation in J1206 than in average starbursting systems. Thus, in J1206, [Ar II]

is likely weak because most of the argon is more highly ionized. This effect is seen in

BCD galaxies, which are known to exhibit high excitation states (Hao et al. 2009; Hunt

et al. 2010). As a consistency check, we note that our upper limit for [Ar III] implies a

ratio of [Ar III]/[S IV] that is consistent with values seen in local starbursts and BCDs

(Brandl et al. 2006; Wu et al. 2006).

In principle, an alternative explanation for the steep continuum and [S IV] emission

in J1206 is the presence of an AGN. Indeed, Seyfert 2 galaxies are known to show PAH

and [S IV] features, and exhibit strong, rising continua due to heating of small dust

grains. Considering the flux ratio of 6.2 µm PAH to 5.1− 6.8 µm continuum, however,

we find that the strength of the 6.2 µm flux means J1206 more closely resembles PDR

and HII type spectra, with . 5% of the emission contributed by an AGN (Laurent et al.

2000). Reinforcing this conclusion, Seyferts with similar [S IV] and [Ar II] strengths

have 6.2µm PAH EWs that are > 2σ lower than for J1206 (Gallimore et al. 2010).1

1While such comparisons involve difficulties in continuum definitions (see above), we note that
Laurent et al. and Gallimore et al. also use comprehensive fits of all relevant mid-IR features to derive
their continua, and therefore should have results similar to ours.
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Finally, J1206 has a ratio [Ne VI]/[S IV]< 0.38 (3σ), which is lower than that in any

Seyfert for which [S IV] is detected (Sturm et al. 2002). We conclude that nuclear

activity plays little role in the mid-IR spectrum of J1206.

3.3.2 SDSS J090122.37+181432.3

Using the reduction procedure outlined in Section 3.2, we have derived the final rest-

frame spectrum for J0901 that is shown in Figure 3.3a. Following the same procedure

above, we fit the same starburst templates to the spectrum as in Section 3.1 with the

results shown in Table 3.1. As for J1206, we find that the spectrum is best fit by a scaled

version of M82 (χ2 = 0.95), less well by NGC 253 or the average starburst template

of Brandl et al. (2006) (χ2 = 1.42, 1.26, respectively), and poorly by the other Sturm

et al. templates (χ2
red > 20). For the NGC 253 and average starburst fits, the higher

χ2 values originate from the enhanced 9.7 µm silicate absorption in J0901, which is

not seen in the templates (see Figure 3.3b). In contrast to J1206, J0901 exhibits only

weak evidence for additional power-law emission, with fits favoring a component that

is negligible or has highly uncertain parameters.

As for J1206, we simultaneously fit the spectrum with a combination of continuum

and relevant PAH features and atomic emission lines. We find the degree of inferred

silicate absorption is degenerate with the contributions of weak PAH emission features

to the spectrum. In general, this degeneracy has little effect on the inferred PAH emis-

sion, except in the relative contributions of the 11.23 and 11.33µm lines to the 11.3µm

PAH feature. In fact, the 6.2µm and blended 7.7µm and 11.3µm PAH strengths are

essentially unaffected. Ultimately, we have opted to use solutions with higher silicate

extinction, in agreement with the template fits above. We present the results of this fit

in Table 5.5 and plot the results in Figure 3.3c.

The PAH emission in J0901 is strong relative to local starbursts, with EWs of each

feature that are a factor ∼ 1.6− 1.9 times larger than the Brandl et al. (2006) average
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Figure 3.3 (a) Observed IRS spectrum of J0901 plotted in black after redshifting to
rest wavelength for z = 2.26. (b) Template fits to the spectrum, with notation as in
Figure 2b. (b) Comprehensive fit, with notation as in Figure 2c. The additional dotted
line indicates the AGN contribution to the spectrum implied by rest-frame optical
measurements (see Section 3.2).
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values. The strengths of the 6.2, 7.7, and 11.3µm PAH features serve as common diag-

nostics of the source(s) of infrared emission in active galaxies (e.g., Imanishi et al. 2007;

Veilleux et al. 2009; Baum et al. 2010; Gallimore et al. 2010). In particular, suppressed

PAH emission (especially at smaller wavelengths) is indicative of a significant AGN

contribution to the bolometric infrared luminosity. Given the strength of the observed

PAH emission, coupled with the shallow continuum, we conclude that accretion plays a

small role in the mid-IR properties of J0901. However, Hainline et al. (2009) examined

the optical emission line ratios and found values of [O III]/Hβ and [N II]/Hα indicative

of an AGN, consistent with the significant [N V] and weak [Si IV] and [C IV] emission

seen in the object’s rest-UV spectrum (Diehl et al. 2009).

To assess this apparent contradiction, we consider the expected flux contribution

to our mid-IR spectrum by an AGN whose optical properties resemble those of J0901.

Specifically, we treat [O III] 5007 Å emission as a proxy for AGN strength and scale

the ISO template of NGC 1068 by the factor required to reduce the integrated [O III]

flux of NGC 1068 (Moustakas & Kennicutt 2006) to the Hainline et al. value. The

dotted line in Figure 3.3c shows the corresponding contribution of the scaled NGC 1068

spectrum: roughly 57% and 35% of the continuum flux at 5 and 10µm, respectively.

This comparison demonstrates that reliance on rest-frame UV/optical measurements

alone may provide a bolometrically unrepresentative picture of the physical properties

of high-redshift systems.

Finally, we examine our IRS spectrum of J0901 for ionic and molecular emission.

Here J0901 is quite unlike J1206, showing [Ar II] but no [S IV] emission. The EW of

[Ar II] is similar to that in the average starburst spectrum of Brandl et al. (2006) (see

Figure 3.3b). As discussed above, [Ar II] is weaker for systems with high-excitation

interstellar media. Therefore, J0901 must be bathed in a softer radiation field than

J1206, reinforcing the conclusion that AGN emission plays little role in the IR properties

of the system. With our upper limit on [Ar III] we find [Ar III]/[Ar II]< 0.83, which
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when combined with the argon excitation versus abundance relation from Verma et al.

(2003) implies a super-solar metallicity of Z & 1.3Z� for J0901.

3.4 Conclusions

We have obtained Spitzer/IRS spectra of two z ∼ 2 UV-bright star-forming galaxies,

that are magnified by strong gravitational lensing. At rest wavelengths of ∼ 5− 12µm,

the spectra reveal strong PAH emission at 6.2, 7.7, and 11.3µm, indicating that these

objects are undergoing intense star formation. The strength of the PAH emission implies

these objects have properties in line with those of local starbursting galaxies. We find

this similarity to local starburst galaxies is confirmed by our empirical template fits, in

which both galaxies are well fit by simple, rescaled versions of M82. In detail, however,

analysis of PAH strengths and emission line and continuum diagnostics reveals disparate

properties. We summarize our conclusions as follows:

1. In J1206, we find PAH EWs lower than those in the local starburst spectrum of

Brandl et al. (2006), due to an enhanced power-law continuum. In contrast, J0901

exhibits PAH EWs that are factors 1.6–1.9 times larger than the local average.

2. We detect significant [S IV] emission in J1206. By analogy with two local galax-

ies with similar mid-IR spectra, NGC 1222 and UGC 4274, we infer a sub-solar

metallicities of ∼ 0.5Z�, in agreement with the published optical measurement

(Hainline et al. 2009). The consistency of the optical and infrared metallicity esti-

mates suggests J1206 has not undergone a recent violent merger. Considering the

[S IV]/[S III] and [Ne III]/[Ne II] ratios of the local objects, we argue that J1206 is

characterized by a moderately hard radiation field, which naturally explains the

steeply rising continuum and lack of [Ar II] emission.

3. In J0901, we detect strong PAH emission but no [S IV] or significant rising con-

tinuum. These results indicate that the mid-IR properties of J0901 are consistent
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with purely starburst-driven energetics. This inference contrasts with the impli-

cations of optical spectroscopy, where emission line ratios show the presence of

an AGN; however, scaling from the [O III] flux of a local AGN implies the AGN

contributes < 57% of the mid-IR continuum. Thus, from its rest-frame UV thru

IR properties, J0901 likely hosts a narrow line AGN whose IR emission is over-

whelmed by that of its surrounding starburst. This analysis highlights the need

for future IR studies of high-redshift objects if we are to determine their physical

properties robustly.

4. With the detection of [Ar II], we are able to put an lower limit on the metallicity of

J0901. Using the argon abundance and excitation relation of Verma et al. (2003),

we find Z & 1.3Z�, similar to many local starbursts.
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Table 3.1. Local starburst template fits.

Template logC1 logC2 α Comment

J1206

M82 2.063+0.006
−0.004 3.29+0.09

−0.15 3.3+0.2
−0.2 MCMC results

2.060 3.3 3.1 Best Fit: χ2
red = 0.96

NGC 253 1.938+0.128
−0.102 3.13+0.10

−0.12 3.2+0.2
−0.2 MCMC results

2.030 3.24 3.0 Best Fit: χ2
red = 1.20

Avg. Starburst 1.960+0.051
−0.051 2.98+0.11

−0.19 3.3+0.2
−0.2 MCMC results

2.012 3.18 3.1 Best Fit: χ2
red = 1.14

J0901

M82 2.567+0.054
−0.057 3.11+0.189

−0.141 3.1+2.2
−2.1 MCMC results

2.604 3.30 2.6 Best Fit: χ2
red = 0.95

NGC 253 1.822+0.045
−0.058 3.32+0.13

−0.18 3.2+0.8
−0.6 MCMC results

1.87 3.42 3.01 Best Fit: χ2
red = 1.42

Avg. Starburst 2.449+0.038
−0.035 −0.24+0.18

−0.17 0.6+0.1
−0.1 MCMC results

2.478 −0.24 0.5 Best Fit: χ2
red = 1.26

Note. — Columns on the left use H0 = 74.2±3.6 km s−1 Mpc−1 from Riess
et al. (2009) while columns on the right use H0 = 70.5 ± 1.3 km s−1 Mpc−1

from Komatsu et al. (2008).

Note. — Fν,fit = C1 × [Template/Template6.2µm] +C2 × (λ/6.2µm)α mJy.
MCMC results report the median and 68% confidence intervals.
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Table 3.2. Derived feature strengths.

J1206 J0901
Wavelength Observed Flux Rest EW Observed Flux Rest EW
µm 10−15 erg s−1 cm−1 µm 10−15 erg s−1 cm−1 µm

6.22 PAH 21.7 (1.2) 1.12 70.2 (3.1) 2.12
6.99 [Ar II] < 1.9 < 0.12 3.5 (0.9) 0.11
7.42 PAH − − 52.0 (10.8) 1.59
7.60 PAH 24.2 (1.6) 1.21 84.7 (4.5) 2.61
7.65 [Ne VI] < 0.8 < 0.10 < 2.6 < 0.08
7.85 PAH 30.9 (1.8) 1.55 87.0 (4.1) 2.70
8.33 PAH 3.1 (1.6) 0.20 22.8 (3.9) 0.71
8.61 PAH 10.2 (1.2) 0.51 47.9 (2.9) 1.51
8.99 [Ar III] < 2.8 < 0.05 < 2.9 < 0.09
10.51 [S IV] 2.1 (0.1) 0.10 < 4.8 < 0.15
11.23 PAH 3.7 (1.3) 0.19 9.6 (6.6) 0.31
11.33 PAH 13.2 (3.4) 0.61 42.1 (15.4) 1.37
11.99 PAH 3.2 (1.4) 0.78 − −

Note. — Equivalent width values are based on the green dot dashed lines (power-
law continuum fits) in Figures 3.2c and 3.3c. Upper limits are based on 3σ uncer-
tainties in the spectra.
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Chapter 4

Multi-wavelength Studies of Lens Flux Ratios

This chapter is based on observations from the approved NOAO proposal:

A Gemini Search for Dark Matter Substructure,

GN-2008B-Q-49, R. Fadely (PI) & C. R. Keeton

Using K and L′ images obtained at the Gemini North 8m telescope, we examine

the wavelength dependence of flux ratios for six gravitational lenses. Selecting lenses

with source redshifts zs < 2.8, our K band images probe rest frame optical emission

from accretion disks, while L′ band images originate from the rest frame near-infrared,

emitted (in part) from the more extended surrounding torus. Since the observations

correspond to different source sizes, ourK and L′ flux ratios are sensitive to substructure

on different scales and may be useful for identifying and studying small structure in the

lenses. We identify two lenses, HE 0435-1223 and SDSS 0806+2006, whose flux ratios

show significant multi-wavelength variation. Additionally, we discuss the utility and

limitations of the current data for studying dark matter substructure.

4.1 Background

While the cold dark matter (CDM) paradigm for structure formation successfully de-

scribes cosmological observations on large (CMB and cluster) scales, there is notable

disagreement with small-scale observations. Among other issues, N-body simulations

(e.g., Via Lactea, Aquarius) predict the existence of many CDM subhalos, with masses
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M ∼ 104–109 M� on galaxy scales and M ∼ 108–1012 M� on galaxy cluster scales.

This has proved troubling observationally, because there are many fewer dwarf galaxies

in our own Milky Way than predicted by CDM. Since the discrepancy may be due to

baryon stripping from subhalos (e.g., Madau et al. 2008; Macciò et al. 2010), we need

ways to probe dark matter substructure directly, regardless of the presence of baryonic

material.

Gravitational lensing provides a unique way to detect CDM substructure in distant

galaxies and clusters (e.g., Metcalf & Madau 2001; Chiba 2002; Dalal & Kochanek 2002).

Stars and CDM substructure perturb the lens potential on micro- to milli-arcsecond

scales, which can have dramatic effects on the properties of lensed images. Most notably,

lensing from stars and dark matter substructure can alter the flux ratios from those

of smoothly distributed mass profiles. As shown by Dobler & Keeton (2006), lens flux

ratios depend on the size of the source compared to the size of the perturber. When the

source is very small, it is effectively a point source for the lens substructure, resulting

an additional magnification boost (µsub) on top of the macroscopic lens properties. As

the source increases in size, µsub may increase or decrease depending on the source’s

location relative to the substructure and the parity of the “macro” magnification. For

very large source sizes, the substructure is too small to affect the image and µsub →

1. Figure 4.1 provides an illustration of the behavior of µsub as a function of source

size. This phenomenon implies that by measuring flux ratios at different wavelengths,

corresponding to different source sizes, substructure may be mapped out on a variety

of scales.

Heuristically, a quasar emitting region of size RS is significantly affected by a subhalo

with Einstein radius RE only if RS . RE . For typical lens and source redshifts (zl =

0.5, zs = 2.0), the Einstein radius of a subhalo of mass M is RE ∼ 1016 cm (M/M�)1/2.

Since the optically emitting regions of QSOs have RS ∼ 1015–1016 cm (Wyithe et al.

2000; Pooley et al. 2007; Morgan et al. 2010), optical lens flux ratios are sensitive to both



125

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0.001  0.01  0.1  1  10  100

n
o

rm
a

liz
e

d
 m

a
g

n
if
ic

a
ti
o

n

source size, a

! = " = 0.7

 1

 2

 3

 4

 5

 6

 7

 0.001  0.01  0.1  1  10  100

n
o
rm

a
liz

e
d
 m

a
g
n
if
ic

a
ti
o
n

source size, a

! = " = 0.3

µ
su

b

µ
su

b

source size, a = θsrc/θEinsource size, a = θsrc/θEin

Figure 4.1 Two panels showing the additional magnification factor µsub provided by a
small singular isothermal clump near an image with positive parity (left) and negative
parity (right), as a function of the relative size of a uniform, circular source a. For
sources which are small compared to the Einstein radius of the clump (θEin), µsub is
constant and not equal to unity. As a increases, µsub changes due to lensing caustics
provided by the clump. Finally, for very large sources, the clump is unable to change
the magnification of the image and asymptotes to unity. This figure is adopted from
Figures 5 and 6 of Dobler & Keeton (2006).

microlensing by stars and millilensing by CDM substructure. By contrast, the more

extended infrared emitting regions with RS & 1 pc (Chiba et al. 2005; Minezaki et al.

2009; Agol et al. 2009) can only be affected by relatively massive subhalos. Comparing

lens flux ratios at different wavelengths therefore makes it possible to constrain the

amount of micro- and milli-lensing present in the system, as well as the sizes of the

perturbers.

Infrared studies of lens flux ratios have provided interesting investigations of sub-

structure properties. With Suburu 11µm imaging of four image lenses, substructure

with masses & 105M� has been found in the lenses B1422+231 and MG0414+0534

(Chiba et al. 2005; Minezaki et al. 2009, respectively). Additionally, the use of infrared

flux ratios has been broadly tested, with recent studies finding both luminous satellites

(More et al. 2009; MacLeod et al. 2009) and null detections (Chiba et al. 2005; Minezaki

et al. 2009; Agol et al. 2009). Expanding this work, we obtained K (2.2µm) and L′
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(3.8µm) band images of six lenses using Gemini North during the 2008B semester.1

At rest frame wavelengths upwards of 1µm, an increasing percentage (from ∼ 20% to

100%) of AGN luminosity comes from thermal emission by the inner dusty torus (∼ 1

pc) (Minezaki et al. 2004; Agol et al. 2009). Limiting our source redshifts to z < 2.8,

L′ band observations correspond to emission whose luminosity originates from large

emitting regions. In contrast, K band images originate mostly from the small accretion

disk. Thus, comparison between K and L′ flux ratios may provide the source size base-

line necessary to identify substructure. Below we discuss the observations and their

interpretation in detail.

4.2 Observations in the Near Infrared

To explore the multi-wavelength behavior of flux ratios, we obtained the first K (2.2µm)

and L′ (3.8µm) images for six gravitational lenses using the Near Infrared Imager

(NIRI) located at the Gemini North facility. Our lens sample was selected from a

set of well known lenses which can be found in the CASTLES database2. The lenses

(Table 4.2) consist of a subset of the CASTLES sources, which have relatively bright

(mH < 18.5) and well separated (> 1′′) images. The lenses were also selected to have

source redshifts z < 2.8, corresponding to rest frame emission > 1.0µm in our L′ band

observations. Information on the observations is also given in Table 4.2.

All of the lenses in the sample have been previously studied using ground and space

based photometry. As part of the CASTLES survey, all of the lenses have single epoch

Hubble Space Telescope (HST ) V , I, and H band photometry which have been used

in earlier studies to derive lens models. Many other ground based studies have been

conducted on our sample. Of these, optical monitoring efforts of Kochanek et al. (2006),

1In 2009B, two nights of classical time were granted at Gemini North. Unfortunately, poor weather
conditions prevented successful observations.

2http://www.cfa.harvard.edu/castles/
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Koptelova et al. (2008), and Goicoechea et al. (2008) are particularly useful in examining

the multi-wavelength behavior of the lenses, since they help quantify intrinsic variations

in the central engine, as well as degree of microlensing present (e.g., Kochanek et al.

2006).

Observing strategies in the near-infrared are quite different than for typical op-

tical studies. At wavelengths greater than 2µm, thermal emission from the Earth’s

atmosphere becomes an increasingly significant contributor to the flux recorded at the

telescope. In order to remove the (often dominant) emission from the foreground sky,

observations in the infrared are nodded between positions which are on and off source.

Fortunately, the targets listed in Table 4.2 are all small in size (image separations . 3′′)

and require small nods. Since our L′ observations have a field of view of 22′′, we decided

to “nod on chip” whereby a small 2× 2, 6′′ dither pattern was used. With this dither

pattern, for any single dither position, three other positions are available to construct

sky model images. This dither strategy, therefore, effectively doubles our observing ef-

ficiency by eliminating the need for off-source. In addition to providing sky subtraction

images, dithering reduces the sensitivity of the observations to hot or bad pixels in the

NIRI array.

For K band images, single exposures of 20 − 40s were selected so that the bright

quasar images (extrapolated from 1.6 to 2.2µm assuming fν ∝ ν−0.5, Stern et al. (2005))

would not exceed more than 50% of the detector well. In the L′ band, the foreground

emission is much brighter than at shorter wavelengths and exposure times of 1s were

selected to prevent saturation. To accumulate the necessary integration time, these

short exposures were co-added in 30s blocks at each dither position.

Data reduction of K and L′ images from Gemini was conducted with standard IRAF

routines provided by the Gemini Observatory. The reduction proceeded as follows. First

bad pixel masks and sigma clipping algorithms were applied to the data, accounting

for defective and hot pixels in the detector. A flat fielding was then applied to the
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data. For K band images, sky brightness is subdominant and separate calibration

flats were taken the same night as the observations. Since the sky dominates L′ band

observations, the images themselves are essentially sky flats and are used to construct

flat field images. After flat fielding, the data are sky-subtracted using observations

from other positions in the same dither. L′ sky images were limited to the positions

immediately before and after the observation, since sky brightness can vary on the scale

of minutes at 3.8µm (Glass 1999). Once each dither position has been flat fielded, sky

subtracted, and sigma-clipped, the final image is produced by combining the various

dither positions. Figure 4.2 illustrates various steps of the reduction procedure for the

lens SBS 0909+523. In Figures 4.3 and 4.4 we present the reduced K and L′ images of

the targets listed in Table 4.2.

4.3 Flux Ratio Extraction

Using the GALFIT image modeling package (Peng et al. 2002), we extract the K and L′

fluxes of the lensed images and (when detected) the lensing galaxy. GALFIT provides

not only a means of deriving accurate photometric measurements of our images, but

also provides a method to separate the flux of lensed images from that of the nearby

lens galaxy. The latter feature is particularly important in our K band images, in which

we detect the lens galaxy in every target except SBS 0909+523.

We produce our photometry using the procedure below, which is similar to that

of Sluse et al. (2008). Initially, we select the lensed quasar image with the largest

separation from the lens galaxy as our initial model for the point spread function (PSF)3.

We then perform a simultaneous fit to all the lens images (modeled as a scaled PSF)

and any galaxies present (modeled as a PSF-convolved Sérsic profile). With this fit in

hand, we subtract the galaxy (or galaxies) from the original image and then re-exact a

new PSF model from the same lens image, which now contains less contamination from

3If image separations are comparable, we select the brightest image.
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the lens galaxy. Using this cleaner PSF, a simultaneous fit is again performed and the

reduced χ2
r value of the residuals is examined. χ2

r values are calculated using the regions

defined by the PSF size for the quasar images, and in regions of 1, 2, & 3 × the PSF

size for the lens galaxy. If the χ2
r = 1 within these regions, we conclude the procedure

is converged. If not, additional iterations of PSF extraction are performed with an

improved model for the lens(es) in each step, until convergence is achieved. Our K band

images typically require 3 or 4 iterations, while our L′ images require only 1 or 2 since

the lens galaxy is rarely detected in L′. An example of our GALFIT modeling procedure is

shown in Figure 4.5. In order to calibrate of the flux measurements provided by GALFIT,

we measure the flux of standard stars for each target using aperture photometry. Lastly,

we note that the quasar image which serves as the PSF model is fit perfectly. For these

images, uncertainty is derived by computing the range in flux where ∆χ2 = 1 in the

PSF region. When images are clearly distinct, derived flux values and uncertainties are

verified using aperture photometry. We report the flux ratios for the targets in Table

4.2.
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Table 4.2. K and L′ Flux Ratios

Target Image K L′

Q0142-100 A ≡ 1.0 ≡ 1.0
B 0.128± 0.002 0.132± 0.006

SDSS 0246-0825 A ≡ 1.0 ≡ 1.0
B 0.258± 0.015 0.331± 0.016

HE 0435-1223 A 1.837± 0.130 1.706± 0.129
B 1.271± 0.073 0.991± 0.074
C ≡ 1.0 ≡ 1.0
D 0.851± 0.049 0.809± 0.102

SDSS 0806+2006 A ≡ 1.0 ≡ 1.0
B 0.406± 0.030 < 0.164 (3σ)

SBS 0909+523 A ≡ 1.0 ≡ 1.0
B 0.973± 0.028 0.973± 0.033

HE 2149-2745 A ≡ 1.0 ≡ 1.0
B 0.280± 0.006 0.240± 0.009
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Figure 4.2 The L′ band reduction sequence of SBS 0909+523. The top left panel shows
the raw data from 30s of coadded exposures (pixel counts ∼ 105 ADU). Detector defects,
like the prominent crack in the right hand corner, are clearly visible. After flat fielding,
dither positions immediately before and after are used to subtract a model for the bright
foreground sky, resulting in the image on the top right. The two lensed images (black)
and the residuals from the sky subtraction (white) are just visible in this single 30s
coadded image. The bottom panel shows the final image (noise counts at ∼ 50 ADU,
S/N > 10), after combining all the data from the four dither positions.
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Figure 4.3 From top to bottom, the K (left) and L′ (right) images of Q0142-100, SDSS
0246-0825, and HE 0435-1223 are presented. Lensed images are labeled as A − D with
the lens galaxies labeled as G or G1. Lens galaxies are clearly visible in the K band
images. With the exception of G1 in SDSS 0246-0825, lens galaxies are not seen the L′

images.
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Figure 4.4 The same as for Figure 4.3, but for the lenses SDSS 0806+2006, SBS
0909+523, and HE2149-2745.
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Figure 4.5 A photometric model for the lens SDSS 0806+2006 produced by our GALFIT
fitting of the K band data in Figure 4.4. The top left panel shows the original data
with the lens galaxy and quasar images labeled as G, A, and B, respectively. Image
A serves as the model PSF for the lens, with the model for the various components
presented in the top right panel. The bottom panel shows the residuals after model
subtraction, which follow a Gaussian distribution with mean zero and χ2

r = 1.
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Table 4.3. Existing Flux Ratio Measurements

Target Filter B/A Ref.

Q0142-100 HST F555W 0.127± 0.009 1
HST F675W 0.121± 0.004 1

Johnson R† 0.146± 0.009 2
HST F814W 0.146± 0.016 1
HST F160W 0.121± 0.004 1

SDSS 0246-0825 Sloan u 0.319± 0.033 3
Sloan g 0.310± 0.010 3

HST F555W 0.483± 0.010 4
Sloan r 0.328± 0.011 3
Sloan i 0.340± 0.016 3

HST F160W 0.291± 0.010 4
Johnson H 0.302± 0.062 3
Johnson K ′ 0.290 3

SDSS 0806+2006 Johnson V 0.581± 0.012 5
Johnson R 0.673± 0.014 5
Johnson I 0.581± 0.012 5

0.39− 1.10µm 0.7 5
0.45− 0.87µm 0.77 6

C III & Mg II BEL 0.454 6
Johnson H 0.649± 0.013 5
Johnson H 0.474± 0.043 6
Johnson K ′ 0.689 5

SBS 0909+523 0.3− 8 keV 3.125± 0.030 7
HST F555W 0.444± 0.077 1

Sloan r† 0.647± 0.003 8
HST F814W 0.705± 0.073 1
HST F160W 0.887± 0.029 1
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Table 4.3 (cont’d)

Target Filter B/A Ref.

HE 2149-2745 Johnson B 0.236± 0.009 9
HST F555W 0.209± 0.015 1

Johnson V 0.236± 0.018 9
Johnson R 0.231± 0.006 9
HST F814W 0.238± 0.005 1
HST F160W 0.238± 0.009 1

Target Filter A/C B/C D/C Source

HE 0435-1223 HST F555W 1.84± 0.11 1.08± 0.09 0.95± 0.06 10
KPNO R† 1.75± 0.10 1.00± 0.04 0.85± 0.05 10

HST F814W 1.69± 0.04 1.01± 0.04 0.82± 0.03 10
HST F160W 1.57± 0.05 1.00± 0.03 0.79± 0.03 10

†Reported flux ratio is based on ground-based monitoring. Uncertainty includes
scatter due to intrinsic and/or microlensing variability.

Note. — The above is a non-comprehensive list of existing flux ra-
tio measurements for our targets. References: 1− Lehár et al. (2000),
2− Koptelova et al. (2010), 3− Inada et al. (2005), 4− CASTLES
(http://www.cfa.harvard.edu/castles/), 5− Inada et al. (2006), 6− Sluse et al.
(2008), 7− Dai & Kochanek (2009), 8− Goicoechea et al. (2008), 9− Lopez et al.
(1998) 10− Kochanek et al. (2006)

4.4 Results

In this section, we compare the K and L′ flux ratio measurements for each lens in

Table 4.2. Since L′ emission comes (in part) from the extended torus surrounding the

AGN, difference between the two near-infrared flux ratios may indicate the presence

of substructure. In Section 4.5, we discuss and interpret the flux ratios in conjunction

with existing measurements at different wavelengths.

• Q0142-100 In K, the flux ratio FB/FA = 0.128 ± 0.002 while in L′, FB/FA =

0.132 ± 0.006. Consistent within one sigma, we do not detect any significant

difference amongst the two measurements.
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• SDSS 0246-0825 We detect a significant discrepancy between our near-infrared

flux ratios. We find FB/FA = 0.258± 0.015, 0.331± 0.016 in the K and L′ bands,

respectively. This difference is inconsistent with simple measurement error at

> 99.9% confidence.

• HE 0435-1223 From our measurements, we consider the flux ratios of the four

images with respect to the flux of image C. Though measurement errors are

< 10%, we find the flux ratios FA/FC and FD/FC are consistent between our

NIR wavebands. For the flux ratio FB/FC , however, we find a large discrepancy

of 1.271 ± 0.073 and 0.991 ± 0.074 between K and L′. These flux ratios are

discrepant at > 99% confidence, indicating significant multi-wavelength variation

in the lens.

• SDSS 0806+2006 In the L′ band, we do not significantly detect image B, with an

upper limit of FB/FA < 0.164 (3σ). Interestingly, the K band value of the flux

ratio is FB/FA = 0.406 ± 0.030, far above the L′ measurement. The difference

between the two measurements is the strongest amongst our sample, indicating

particularly intriguing wavelength behavior. In Section 4.5 we address this be-

havior in detail.

• SBS 0909+523 We measure identical flux ratios of FB/FA = 0.973 in K and

L′ images of SBS0909+523. Nevertheless, this measurement is intriguing as a

null detection, especially since the flux ratio is known to exhibit strong multi-

wavelength variation (see Section 4.5).

• HE 2149-2745 We find flux ratio of image B and image A to be FB/FA = 0.280±

0.006 in K and FB/FA = 0.240 ± 0.009 in L′, indicating a significant difference

between the two wavebands (> 99.99% CL).
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4.5 Discussion

Interpretation of the image flux ratios of our targets is complicated by a number of

factors. At optical wavelengths, lensed emission is probing the rest frame UV emission

from the accretion disk of the AGN. Therefore, the size associated with the optical flux

ratios is on micro-arcsecond scales and may significantly altered by lensing from the

stellar distribution in the lens (e.g., Chartas et al. 2009). Furthermore, optical flux

ratios can also be altered by differential extinction from dust in the lens galaxy (e.g.,

Eĺıasdóttir et al. 2006).

At near-infrared (NIR) wavelengths, the size of accretion disk is larger and less

sensitive to stellar microlensing. Depending on the source redshift, L′ flux ratios can

correspond to rest frame NIR wavelengths around 1−2µm, where the luminosity of the

accretion disk is falling rapidly and the emission from the innermost regions of the dusty

torus is quickly rising (Rowan-Robinson 1995; Nenkova et al. 2008). Thus, the source

size of our L′ observations may be small and point-like (0.01 − 0.1 pc, 10−6′′−10−5′′)

or more extended (0.5− 5 pc, 10−4′′−10−3′′) depending on the relative contribution of

of the accretion disk and dusty torus. If dark matter substructure affecting the lensed

images, flux ratios can vary strongly as a function of source size (Dobler & Keeton

2006). As a result, L′ flux ratios may exhibit the signature of substructure if the source

is indeed much more extended than at lower wavelengths.

One final complication which affects flux ratios across all wavelengths is the intrinsic

variation of the source. Since lensed light rays travel different paths, variations in source

flux arrive at different times. Thus for single epoch measurements, the images reflect

a snapshot of the source plane, seen at different times. Photometric monitoring can

be used quantify the variations, but has only been done for a limited number of lenses

(Eigenbrod et al. 2006; Kochanek et al. 2006; Vuissoz et al. 2007, 2008; Koptelova et al.

2008; Goicoechea et al. 2008). For our sample, this includes Q0142-100, HE 0435-1223,
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SBS 0909+523, and HE 2149-2745.

Clearly, disentangling the variety of effects which can alter flux ratios across wave-

lengths is difficult. Nevertheless, differences amongst multi-wavelength flux ratios pro-

vide tantalizing evidence for interesting effects which warrant further study. Below, we

discuss the multi-wavelength properties of each lens by comparing published flux ratios

in the literature (Table 4.3) and our new NIR data (Table 4.2).

• Q0142-100 We detect no significant difference between our K and L′ flux ratios.

With a source redshift of z = 2.719, the L′ flux ratios correspond to rest frame

1.0µm emission where the accretion disk luminosity is still quite strong relative

to extended torus emission, and is likely the dominant source of flux (e.g., Hönig

et al. 2008). Thus it is little surprise that we see no difference between our K and

L′ flux ratios since, even if substructure were present, the change in the size of the

emitting region is minimal (on subhalo scales). At optical wavelengths, monitoring

by Koptelova et al. (2010) gives a R band flux ratio of 0.146, quite different

from our NIR value of 0.128. The amplitude of the flux ratio variation during

their season is found to be 0.009. However, single epoch HST measurements

have found FB/FA = 0.127, 0.121, 0.121 in F555W , F657W , F160W , indicating

that variability is likely much larger for the system. We therefore attribute the

difference between R and K/L′ flux ratios to instrinsic/microlensing variation.

• SDSS 0246-0825 Comparing observations in similar filters taken at various epochs,

it is clear intrinsic and/or microlensing variability plays a role in the lens flux ratios

(see Table 4.3, and references therein). For instance, SDSS i and HST F814W

measurements taken 20 months apart found FB/FA = 0.340± 0.016 and 0.247±

0.017 respectively. Taken at the same observing periods, SDSS g andHST F555W

gave FB/FA = 0.310 ± 0.010 and 0.483 ± 0.010. In the NIR, we find the K and

L′ flux ratios disagree at the ∼ 3σ level. It is unclear whether the same variation
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responsible for discrepancies at lower wavelengths is the origin of NIR differences,

or whether millilensing by substructure might be at play. Future observations in

K and L′, or in the mid-IR may help to discriminate between the two possibilities.

• HE 0435-1223 We detect a significant difference between the K and L′ flux ratio

of images B and C. In Chapter 5, we discuss this interesting detection in detail.

• SDSS 0806+2006 In Section 4.4 we find a strong difference between the image flux

ratios in K and L′ wavebands. The origin of this discrepancy is unclear. The VLT

optical spectra of Sluse et al. (2008) show that chromatic microlensing and dust

extinction are not significant in the lens. One possibility is that intrinsic variation

of the AGN is responsible. At a redshift of z = 1.54, however, the L′ emission

comes from rest frame 1.5µm. Therefore, if intrinsic variation is responsible, an

explanation of how the source brightness can vary by a factor ∼ 2 must be made.

As an alternative, if the L′ band source is indeed much larger than at the K band,

millilensing may account for the difference. Either way the detection is exciting,

and should be investigated further with modeling and follow up observations.

• SBS 0909+523 For SBS0909+523, strong differential dust extinction is known to

affect the flux ratio (Motta et al. 2002). Even though we see no difference between

our K and L′ flux ratios, our observations may be useful in constraining dust

models in the system since they represent the longest wavelengths yet measured.

In fact, the flux ratio at F160W is FB/FA = 0.887± 0.02 and at K is FB/FA =

0.973± 0.028, indicating differential dust extinction is still significant in the rest

frame near-infrared. In terms of dark matter substructure, the agreement of our

K and L′ flux ratios is interesting as a null detection. With rest frame wavelengths

of 0.9µm (in K) and 1.6µm (in L′), there should be a significant difference in the

size of the two emitting regions. If the source sizes are indeed very different, this

implies there is no substructure near the images with the right sized Einstein
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radius to produce a chromatic effect.

• HE 2149-2745 Across all wavelengths in Tables 4.3 and 4.2 (∼ 0.5− 3.8µm), the

flux ratio measurements for HE 2149-2745 are in good agreement. The exception

to this is our K band flux ratio of 0.280. However, the system is known to vary

with recorded flux ratio fluctuations as large as 0.03 (Burud et al. 2002). Given

the source redshift (z = 2.033) and the known variability, the anomalously high

value of our K band measurement is likely due to intrinsic and/or microlensing

variability.

4.6 Conclusions

Multi-wavelength observations of lensed flux ratios are a powerful probe of quasar vari-

ability, microlensing, dust, and potentially dark matter substructure. For the latter,

chromatic effects are present if the size of the emitting region varies strongly as a func-

tion of wavelength. We have attempted to search for these effects with new K and

L′ band images of six gravitational lenses. By selecting targets with source redshifts

< 2.78, our L′ images measure emission from rest frame wavelengths > 1.0µm. Some

of this flux should originate from the extended torus of gas surrounding the central

accretion disk, possibly providing the conditions for chromatic millilensing.

Of the six lenses, we detect strong differences between our K and L′ images in HE

0435-1223 and SDSS 0806+2006. In Chapter 5, we discuss HE 0435-1223 in detail.

For SDSS 0806+2006, our upper limit on the L′ flux ratio is interesting and will be

useful for understanding the origin of the long-wavelength suppression of image B. In

particular, future lens modeling should be able to test whether substructure is capable

of producing the anomaly, or whether variability is at play.

For the remainder of the sample, variability in accretion or microlensing are likely

responsible for any differences in our NIR observations. Multi-epoch observations of
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the lenses SDSS 0246-0825 and HE 2149-2745 have shown fluctuations of ∼ 40% and

∼ 15% in the flux ratios, respectively. The possibility exists, however, that chromatic

millilensing may still be the source of the NIR discrepancies. Future observations are

needed to quantify the variability in fluxes beyond 1µm (rest frame). Alternatively,

mid-IR flux ratios would be useful in deconstructing chromatic effects, since emission

would definitively originate from the extended torus. Unfortunately, even the brightest

lenses currently require almost a full night on 8 − 10m telescopes. The James Webb

Space Telescope, therefore, will likely serve as a valuable tool in future millilensing

studies.

Finally, for the lenses Q0142-100 and SBS0909+523, we detect no difference in the

flux ratios between K and L′ measurements. These results are interesting null detec-

tions, indicating no substructure is close enough to the images for chromatic millilensing

to take place. Our observations of the lenses, therefore, may serve as useful data for

statistical studies of substructure in the future.
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Chapter 5

Substructure in the lens HE 0435-1223

This chapter is based on work in preparation for

submission to the Astrophysical Journal:

Fadely, R. & Keeton, C. R., 2010, ApJ in prep.

We investigate the properties of dark matter substructure in the gravitational lens

HE 0435-1223 (zl = 0.455) via its effects on the positions and flux ratios of the multiply

imaged background quasar (zs = 1.689). We produce a series of lens models which

add individual, truncated isothermal clumps near the lensed images and calculate the

Bayesian evidence associated with each model. Through the image flux ratios, we

decisively detect the presence of a clump near image A with a mass of log(MA(<REin)

M� h
−1
70

) =

7.68+0.92
−0.85. In addition, our models indicate support for a second clump near image

B, with log(MB(<REin)

M� h
−1
70

) = 6.6+1.02
−1.52, although evidence for this clump is not decisive.

Using Monte Carlo simulations of substructure populations, we find the mass fraction of

substructure at the Einstein radius to be fsub & 0.00092, assuming a substructure mass

function with slope α = −1.9 with upper and lower mass thresholds mhigh = 1010M�

and mlow = 107M�, respectively.

5.1 Background

A tension has arisen between cold dark matter (CDM) theories and modern astronom-

ical observations. On mass scales below 1010M�, N-body simulations of dark matter
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have produced a consensus on the small scale structure of galaxies. In particular, CDM

simulations firmly predict that small “subhalos” should should follow a power-law mass

function, dN/dm ∝ mα. Probing down to ∼ 104M�, recent simulations like Via Lactea

and Aquarius find the slope of this function to be α ≈ −1.9 (Diemand et al. 2007;

Springel et al. 2008). In total, the fractional amount of substructure, Msub/Mhost, is

found to be ∼ 8% in the Via Lactea simulation and around ∼ 11% in the Aquarius

simulation, due to the lower mass resolution of the latter.

Observationally, however, this picture of small scale structure in galaxies has yet to

be confirmed. In the Local Group, observational censuses have sought to characterize

the abundance, masses, and distribution of luminous satellites surround large galaxies

like the Milky Way and M31 (e.g., Simon & Geha 2007; Kalirai et al. 2010). Before

2005, objects known to surround the Milky Way totaled only 11 in number, as only the

most massive and luminous dwarfs galaxies had been found (Mateo 1998). After 2005,

the Sloan Digital Sky Survey (York et al. 2000) opened up the possibility to detect

extremely faint satellites (e.g., Willman et al. 2005; Irwin et al. 2007; Liu et al. 2008;

Belokurov et al. 2009, 2010). These “ultra-faint” dwarfs, with absolute magnitudes as

low as MV ∼ −2, have since more than tripled the number of Milky Way satellites to

35 (for a current list, see Wadepuhl & Springel 2010). Yet, in spite of this dramatic

leap forward, this number falls severely short of the hundreds predicted by N-body

simulations (Klypin et al. 1999; Moore et al. 1999).

A clear contributor to this disparity is the lack of a complete and thorough survey

of the local volume. Indeed, while a huge improvement over previous observational

data, the SDSS survey is limited in both sky coverage (∼ 1/5 of the sky) and in

depth (mg < 22.2). Accounting for the limitations of Sloan, a volumetrically complete

survey will likely find many more missing satellites, possibly eliminating the problem

altogether (Tollerud et al. 2008). However, depending on assumptions based on the cur-

rently known population, even such a survey may fail to find all the missing satellites. If



150

so, ant remaining discrepancy between theoretical predictions and observations may be

attributed to the intrinsic luminosity of small mass dwarfs. Recently, it has been shown

that satellites with total mass < 107M� are likely to experience extremely suppressed,

even quenched, star formation (e.g., Strigari et al. 2007; Macciò et al. 2010). In par-

ticular, effects from cosmic reionization, UV photo-evaporation, ram pressure or tidal

stripping, supernovae, or cosmic rays may all play a role in hampering the conditions for

star formation (Gnedin 2000; Scannapieco et al. 2001; Strigari et al. 2007; Madau et al.

2008; Mashchenko et al. 2008; Macciò et al. 2010; Penarrubia et al. 2010; Wadepuhl &

Springel 2010). While the precise mechanisms are still debated, the plausibility of such

arguments points to a large population of “dark dwarfs”, whose luminosities are so low

that they will elude traditional observation techniques.

Intriguingly, while local measurements of satellite galaxies seem to fall short of

CDM predictions, observations in more distant galaxies exhibit the opposite conflict.

Sensitive to mass alone, strong gravitational lensing provides a unique tool to study the

population of satellites in cosmologically distant galaxies, regardless of their luminosities

(e.g., Dalal & Kochanek 2002; Vegetti et al. 2009). On large angular scales (∼ 1′′),

the bulk of the lens properties of multiply imaged quasars are determined from the

macroscopic mass distribution of the lens galaxy and its surrounding environment.

Upon detailed inspection, however, perturbations to these large scale effects may be

caused by substructure in the mass distribution (Mao & Schneider 1998; Metcalf &

Madau 2001; Chiba 2002; Dalal & Kochanek 2002; Metcalf & Zhao 2002; Bradač et al.

2002; Koopmans et al. 2002; Chen et al. 2007; Keeton & Moustakas 2009; Keeton 2009).

Thus, from the flux ratios, positions, and time delays of images, properties of the small

scale structure of lens galaxies may be inferred.

Currently, some of the best constraints on dark matter substructure (outside of

the Local Group) come from the analysis of “anomalous” flux ratios, detected in four-

image gravitational lenses. In the radio, seven lenses have been show to violate “cusp”
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and “fold” relations predicted for smooth mass models (Keeton et al. 2003, 2005).

Performing a combined statistical analysis of the sample, Dalal & Kochanek (2002)

found the mass fraction in substructure to be 0.006 < fsub < 0.07 (90% confidence) at

the Einstein radii of the lenses. This lies in contradiction to CDM predictions, which

predict fsub ∼ 0.001 − 0.003 at similar projected radii (Mao et al. 2004; Amara et al.

2006; Macciò et al. 2006; Macciò & Miranda 2006). In fact, Xu et al. (2010) recently

showed that N-body simulations predict fsub ∼ 0.002 around typical Einstein radii,

even when considering other sources of small scale structure (e.g., globular clusters,

stellar streams).

Observational constraints, therefore, seem at odds. Around the Milky Way, tallies

of satellites seem to indicate a dearth of substructure, while lensing points to a surplus.

Confronting this on the lensing side, an expansion of sample size and methods (e.g.,

use of time delays, galaxy-galaxy lenses) is currently being sought. For quasar lenses,

investigations in the mid-infrared (see Chapter 4) have begun to increase the number of

lenses available for flux ratio studies (e.g., Chiba et al. 2005; MacLeod et al. 2009). Ad-

ditionally, it has been recently shown that the brightness distribution of lensed galaxies

can provide excellent constraints on substructure properties, detailing the mass and

even the abundance of subhalos (Vegetti et al. 2009; Vegetti & Koopmans 2009b; Veg-

etti et al. 2010). Using Bayesian inversion techniques, Vegetti et al. (2009) measured

fsub = 0.0215+0.0201
−0.0125 (assuming α = −1.9±0.1, mhigh = 109.6M� and mlow = 106.6M�),

consistent with, but higher than, predictions from simulations.

Here, we investigate the properties of the four image gravitational lens HE 0435-

1223 (hereafter HE 0435), selected for its relatively bright (F160W < 18.1) and well

separated (2.4′′) images. Since its discovery (Wisotzki et al. 2002), HE 0435 has been

extensively studied using ground- and space-based observations. From the ground,

optical spectroscopy provided early evidence for stellar microlensing and for little to no

differential dust extinction in the lens (Wisotzki et al. 2003). More recently, Kochanek
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et al. (2006) have quantified the intrinsic and microlensing variability, providing an

initial estimate of the time delays between images. Using Hubble Space Telescope (HST )

imaging, Morgan et al. (2005) studied the environment of HE 0435, finding photometric

evidence that the lens lies in a group of galaxies. Also identified by Morgan et al. was

the nearby companion galaxy, G22. Assumed to be at the lens redshift (z = 0.455), G22

was shown to be important in reproducing the lensed images (Kochanek et al. 2006).

More recently, Wong et al. (2010) studied the lens environment in detail, providing the

first spectroscopic confirmation of the group members. Using the collective set of data

available, as well as new near-infrared photometry, we examine the mass distribution

of HE 0435, focusing on substructure in the lens. New in our analysis is the inclusion

of both individual- and population-based simulations of substructure, which allow us

to constrain both the masses of the clumps and connect them to the properties of the

broader substructure distribution. In addition, we examine near infrared data from

Gemini North, illuminating the multi-wavelength behavior of the lens. In this chapter

we assume a flat cosmology with Ωm = 0.27 and H0 = 70.4 km s−1 Mpc−1, which is

similar to the mean WMAP+BAO +H0 values presented in Komatsu et al. (2010).

5.2 Infrared Observations and Data

We have obtained the first K (2.2 µm) and L′ (3.78 µm) band images of the lens

HE 0435-1223 using the NIRI instrument on the Gemini North 8m telescope. The

data were taken in queue mode over two nights during the 2008B observing semester.

During the first, August 31, 2008, the majority (84%) of the L′ data were collected.

The remaining L′ exposures were taken on December 12, 2008, the same night as our

K band observations. After data reduction was completed, L′ data from the two nights

were compared, and show no signs of variability. Seeing was better than average during

the observation nights, with mean values of 0.53′′ and 0.44′′ in the K and L′ images,

respectively.
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As discussed in Chapter 4, the observing strategy for our near-IR data was to

dither the exposures over 4 positions on the sky, using 6′′ shifts in right ascension and

declination. Advantages of this strategy were twofold. First, dithering reduced the

impact of hot or bad pixels and cosmic rays. Second, since HE 0435 has a relatively

small angular size (∼ 3′′), we were able to construct sky frames for each dithering

position by combining observations at other pointings. This effectively doubled our

observation efficiency by eliminating the need for nodding off source. The K band data

consist of a single 24s exposure at each dither, with a total integration time of 288s.

For the L′ data, short exposures of 1.0s were used to prevent saturation of the detector

by the bright foreground sky. At each dither, L′ band observations were coadded in

30s blocks and total 3870s on-source. In addition, photometric standard stars were

observed immediately adjacent to the observations on both nights.

We reduced the data using the standard NIRI IRAF packages provided by Gemini

Observatory. Special care was taken in accounting for hot and bad pixels in our data.

Specifically, we began with template bad pixel masks and used iterative sigma clipping

routines in IRAF until the noise in the final reduced images reflected a Gaussian dis-

tribution with a mean of zero. One additional concern in our K band data was the

presence of fixed pattern noise, common with low read noise observations using the

NIRI instrument. We used the Python routine nirinoise.py (provided by Gemini) to

correct the effect, with the corrected residual pattern comprising a variation of < 1%

of the median sky value.

We present the reduced K and L′ band images in Figure 5.1. To extract the observed

flux of lensed images in our data, we use the GALFIT image fitting routine (Peng et al.

2002) to construct a simultaneous model for the lens galaxy and images (method dis-

cussed previously in Chapter 4). Due to the lack of bright stars in our small (22.5′′) field

of view, we opt to construct our PSF model using the lensed quasar images themselves.

Specifically, we take the brightest quasar image (image A) and construct a model PSF
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using a 80× 80 pixel2 or 1.8′′× 1.8′′ region around the image. This PSF is then used to

construct a model for the remaining three quasar images. For the lens galaxy we use

a PSF-convolved Sérsic profile of varying index. For simplicity we fix half-light radius

to Re = 0.86′′, corresponding to the value measured in F160W by Kochanek et al.

(2006). We conduct our fitting procedure is as follows. First, we fit a model for the

lensed images and galaxy. Subsequently, the lens galaxy model is subtracted from the

data and a new PSF is measured from image A. Using this new PSF model (now with

less contaminating flux), the original data is then re-fit. After subtraction, the image

residuals and reduced χ2
r values are inspected. We calculate χ2

r values within a region

defined by the PSF size for the quasar images, and within three regions which are 1, 2 ,

and 3 times the PSF size for the lens galaxy. If the model is unsatisfactory (due to per-

sistent lens galaxy contamination of the PSF model), the PSF is then remeasured with

the new lens galaxy model subtracted. This procedure is then iteratively repeated until

there are little to no discernible residuals and χ2
r ∼ 1 in the vicinity of the quasars and

lens. As a check, our entire modeling procedure is repeated using the second brightest

quasar image as the PSF source. We find our GALFIT modeling is important in the K

band, where the lens galaxy provides a small but significant contribution to the flux

near the quasar images. In the L′ band, we do not detect the lens galaxy and our

GALFIT modeling agrees with simple aperture photometry. We report the results of our

fitting in Table 5.1.

5.3 Constraints

In addition to our new K and L′ images, we consider a suite of existing data to constrain

lens models of HE 0435. Astrometrically, we consider the HST derived centroids of the

lensed images, the lens galaxy, and the companion galaxy G22 (Morgan et al. 2005).

For the image flux ratios, we focus on the optical R band monitoring of Kochanek et al.

(2006). As shown by Kochanek et al., HE 0435 exhibits significant intrinsic quasar
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Table 5.1. Gemini Data

Filter Image A Image B Image C Image D Lens Galaxy, G1

K 16.70± 0.01 17.10± 0.02 17.36± 0.05 17.68± 0.05 15.6± 0.6
L′ 15.00± 0.02 15.59± 0.05 15.58± 0.05 15.81± 0.11 −

Note. — Apparent magnitudes in the Vega system. Not include above are the uncer-
tainties associated with the zeropoint derived from standard stars. These uncertainties
are ±0.01 and ±0.03 for K and L′ magnitudes, respectively. For our purposes, un-
certainties associated with the zeropoint are not important, since we only deal with
relative photometry.

variability (∼ 0.5 − 0.8 mag.) as well as magnification variations due to microlensing

by stars, both of which may affect image flux ratios. For simplicity, we assume the

data of Kochanek et al. to be a representative sample of the variability of HE 0435.

We then compute the mean and standard deviation of their data, treating the result

as a measurement of the true R band flux ratios with uncertainties which reflect the

variability due to intrinsic and microlensing variations. While the possibility exists

that the R band measurements may not fairly represent variablity in HE 0435, recent

work indicates the typical timescale for optical quasar variability is ∼ 200 days (Kelly

et al. 2009; Koz lowski et al. 2010; MacLeod et al. 2010). Since the Kochanek et al.

observations comprise almost 2 years of monitoring, it is likely the variability is well

sampled. In Figure 5.2, we plot the values of the R, K, and L′ flux ratios as a function

of wavelength and we report these data, along with other relevant measurements, in

Table 5.2.

Given the growing amount of observational data for HE 0435, we must carefully

consider which data to use as constraints for lens models. First, we adopt the positions

of the lens, its companion G22, and the lensed images as in Table 5.2. For the image

flux ratios, which constraints to impose is less clear. Amongst the options, there is good
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Table 5.2. HE 0435 Constraints

Images

Position R band flux K band flux L band flux
Image A −1.165± 0.003 0.573± 0.003 1.751± 0.098 1.837± 0.086 1.706± 0.085
Image B 0.311± 0.004 1.126± 0.004 0.998± 0.037 1.271± 0.063 0.991± 0.065
Image C 1.302± 0.005 0.030± 0.005 ≡ 1.0 ≡ 1.0 ≡ 1.0
Image D −0.226± 0.003 −1.041± 0.003 0.851± 0.049 0.745± 0.049 0.809± 0.090

Lens Galaxies
Position F555W (mag) F814W (mag) F160W (mag)

G ≡ 0.0± 0.002 ≡ 0.0± 0.002 21.55± 0.13 18.85± 0.13 16.86± 0.04
G22 2.585± 0.005 3.637± 0.005 22.25± 0.04 21.26± 0.01 ∼ 18.8

Note. — R band flux data is reflects the average and standard deviation from the published data of
Kochanek et al. (2006), and includes scatter from intrinsic and microlensing variability. The astrometry
of the images and lens, and well as the magnitudes of the lens are from Kochanek et al.. The data for
G22 is found in Morgan et al. (2005), with the exception of the F160W magnitude which is estimated
in Kochanek et al.
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Figure 5.1 Near infrared images of the lens HE 0435-1223, obtained with the NIRI
instrument at Gemini North. A K band image is presented in the top panel, with the
lens galaxy clearly visible. On the bottom, we present the L′ band image of the lens.
The lensed images are labeled A through D, with the lens galaxy labeled G. The dashed
box represents the PSF extraction region, used for our GALFIT photometric modeling.
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Figure 5.2 Flux ratios in R, K, and L′ bands for HE 0435-1223. Note the flux ratio
B/C has been shifted up by 0.2 for visual clarity. We find the R and L′ flux ratios in
good agreement. In K, the flux ratio of B/C is a factor 1.3 higher than corresponding
R and L′ measurements.
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agreement between the optical R band flux ratios and our Gemini data. One exception

is the value of the B/C flux ratio in our K band image, which is a factor ∼ 1.3 higher

than in R or L′. Potentially, all three wavebands are suitable to constrain our models.

At a source redshift of zs = 1.689, R and K band images represent rest-frame UV,

optical wavelengths which are dominated by thermal emission from the hot quasar

accretion disk. With sizes of order 1015−17 cm (Morgan et al. 2010), such emission is

effectively a point source for lensing masses & few × 100M�, since the source size is

much smaller than the corresponding Einstein radii (Rsrc � REin). Therefore, our R

and K band measurements should result in the same image magnifications. For image

B, this is clearly not the case. This discrepancy might be attributed to the effects of

dust extinction, variability, and/or microlensing. For the early type lens galaxy in HE

0435, dust is not a concern. Using optical integral field spectroscopy, Wisotzki et al.

(2003) found no evidence of dust extinction both from the slopes of the rest-frame UV

slopes and from the identical broad emission line profiles found in the spectra of the four

images. We postulate that our K band flux ratios are likely affected by microlensing,

which we further discuss in Section 5.7.3.

For emission in the L′ band, the story is more complicated. At a rest-frame wave-

length of 1.4µm, the quasar flux represents a combination of emission from the central

accretion disk and the surrounding dust torus (Rowan-Robinson 1995; Nenkova et al.

2008). The exact contribution of each of these radiation sources is unclear, with the

accretion disk likely contributing between 20− 80% of the luminosity (e.g., Wittkowski

et al. 2004; Hönig et al. 2008). In the case of substructure lensing, extra light bending

on small scales is significant when the source is much smaller than the Einstein radius

of the clump Rsrc < REin. If the source is larger, with a size comparable to the Ein-

stein radius (Rsrc ∼ REin), magnification can be quite different from the small source

case (see e.g., Dobler & Keeton 2006, also Chapter 4.1 here). For HE 0435, some of

the L′ emission comes from the hot accretion disk (Rsrc < REin), while the remainder
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originates from the more extended torus (Rsrc ∼ REin). In turn, the two components

of the L′ band source may experience very different magnifications due to the finite

source effects of millilensing.

Given the complexity and uncertainty associated with the source of L′ band flux ra-

tios, and the possible microlensing present in K band flux ratios, we choose to constrain

our lens models using the optical R band measurements. This has the advantage of

knowing more precisely the effects of quasar and microlensing variability, and is simple

to model as a point source. In Section 5.7.3 we revisit our new IR data, after analyzing

the existing R band data in detail.

Finally, we note that we do not use the measured time delays of Kochanek et al.

(2006) to constrain our lens models. With only 2 seasons of monitoring data, it is diffi-

cult to accurately disentangle the complicated variations from quasar and microlensing

variability, and the uncertainties of the published values are quite likely underestimated.

Indeed, Blackburne & Kochanek (2010) have recently reported that new time delay esti-

mates are discrepant by 2−5σ from the Kochanek et al. values. Since there is currently

no accurate time delay published for HE 0435, we do not constrain the delays in our

models.

5.4 Analysis of HE 0435: Motivation, Strategy, and Goals

Using the collection of data available for HE 0435, we conduct initial modeling to

examine the properties of the lens. Using a singular isothermal ellipsoid (SIE) mass

distribution for the main lens and its companion (G22), a “flux ratio anomaly” between

images A and C was identified. Seen in many previous works (e.g., Mao & Schneider

1998; Bradač et al. 2002), flux ratio anomalies arise in models which fail to reproduce

the observed flux ratio, and allude to small scale structure in a lens. In Section 5.7.1

we discuss the identified flux ratio anomaly and show it is a general phenomenon for

HE 0435, even for more complex lens models.
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Motivated by this anomaly, we aim to study the properties of substructure in the

lens HE 0435-1223. First, we seek to constrain the mass and positions of any clumps

affecting the images and quantify the related effects on the macroscopic lens model.

To accomplish this goal, we construct a highly flexible macroscopic lens model and

successively add individual clumps of mass near the lensed images. For each model

(Section 5.5), we conduct a full search of the parameter space and compute the Bayesian

evidence, using the approach discussed in Section 5.6. As a final result, for each model

we have an estimate of the clump masses (from parameter marginalization), as well as

a ranking of models with different numbers of clumps (from the evidence).

For the anomaly, we find the observed A/C flux ratio is higher than predicted from

smooth models. In order to resolve this discrepancy, therefore, we first consider sub-

structure which might affect images A and C. In HE 0435, images A and C are both

positive parity images. Under the influence of substructure, positive parity images ex-

perience an increase in magnification, while negative parity images (usually) experience

a decrease in magnification (Schechter & Wambsganss 2002; Keeton 2003). Therefore,

to explain the A/C ratio, we adopt a single clump near image A. We do not con-

sider clumps near image C, since increasing its magnification further exacerbates the

anomaly.

In addition to a clump near A, we examine the presence of substructure near the

images B and D. While neither of these exhibit striking anomalies, the possibility exists

that perturbations to these images are more subtle, affecting either the flux ratios or

the positions. In summary, we consider four models with individual clumps near images

A, A and B, A and D, and A, B, and D. For simplicity, we label these models A, AB,

AD, and ABD, respectively. In Section 5.7.1 we discuss the results of these models in

detail.

Following this analysis, we conduct Monte Carlo simulations of substructure pop-

ulations in the lens (Section 5.7.2). Doing so, we randomly generate realizations of
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the population by drawing from a mass function motivated by N-body simulations of

dark matter (e.g., Diemand et al. 2007; Springel et al. 2008). For each simulation, we

conduct many realizations, holding the fraction of mass in substructure, fsub, fixed. We

then vary the value of fsub between simulations, and compute the Bayesian evidence.

Our final result is an estimate of fsub, located at the Einstein radius of HE 0435.

5.5 Model Selection

Using the publicly available lensmodel code (Keeton 2001), we seek to construct real-

istic lens models which reproduce the observed quasar image positions and flux ratios.

Following the work of Kochanek et al. (2006), we assume a “minimal” lens model which

consists of a single power law mass model for the main lens (G1) of the form

κ(ξ) =
1

2

b2−βG1

(s2 + ξ2)1−β/2 (5.1)

where s is the core radius, ξ =
√
x2 + y2/q2 is the ellipse coordinate (in the major axis

frame), and q is the projected axis ratio. For flexibility, we allow all model parameters

of the main lens to vary. One particularly important parameter we vary is the index

of the power law, β. For HE 0435, Kochanek et al. found a projected density profile

whose inner slope is rising (β > 1.0 here), and inconsistent with steeper profiles. Thus,

varying β in our models is important if we are to account for all possible distributions

of the lens mass.

In addition, our minimal model includes the effects of tidal shear. Here, we explicitly

model the local effects of the lens companion galaxy, G22, as a SIE profile. Using an SIS

profile for G22, Kochanek et al. found a best-fit Einstein radius of 0.22′′, which should

provide negligible surface density at a projected distance of RG22 ∼ 4.4′′. Since G22

manifests itself mostly in local shear and higher order terms, its radial profile should

not effect significantly affect our lens models. We therefore assume our SIE model is

sufficient. Lastly, we also consider the effects of an additional external shear component,
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which may be provided by the surrounding group of galaxies (Morgan et al. 2005; Wong

et al. 2010).

When moving beyond our minimal lens model, we consider possible effects due to

small scale substructure in the lens. We do so by adding single clumps near the lensed

images, modeling the clumps as a spherical pseudo-Jaffe profile:

κ(r) =
bclump

2

[
1

r
− 1√

a2 + r2

]
. (5.2)

We select this clump profile since it includes the effects of tidal truncation and is

computationally easy to model. Furthermore, pseudo-Jaffe profiles have been used in

previous studies (e.g., Dalal & Kochanek 2002; Vegetti et al. 2010), and will therefore

facilitate interpretation of our results. Following Dalal & Kochanek (2002), we set the

truncation radius a =
√
〈bG1〉 bclump,max, where 〈bG1〉 is the average mass normalization

of G1 and bclump,max is the maximum Einstein radius of the clump. For HE 0435, we

consider a fixed truncation of a = 0.367′′.

In summary, we use a minimal, smoothly distributed “macro” model as the basis of

our lens models. To this model, we add sources of additional complexity in the form of

small scale structure (clumps), and consider each addition (one at a time) in detail. In

Table 5.3 we summarize our various model parameters.

5.6 Methodology

For our array of lens models, we aim to compute the posterior probability distribution

P (θ|d,M) =
P (d|θ,M)P (θ|M)

P (d|M)
(5.3)

where d is the data which constrain the parameters θ for model M . We calculate the

likelihood, L = P (d|θ,M), by using the χ2 goodness-of-fit: L ∝ e−χ
2/2. Since we are

only concerned with the relative posterior probablity, we ignore the proportionality

constant in our analysis and set L = e−χ
2/2. We take the prior distribution, P (θ|M),

to be uniform for the parameters listed in Table 5.3.
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Table 5.3. Model parameters and priors

Parameter MCMC prior Nested Sampling prior

Minimal, smooth model
log(bG1/

′′) −∞ : ∞ 0.04 : 0.13
xG1 −∞ : ∞ −0.003′′ : 0.003′′

yG1 −∞ : ∞ −0.003′′ : 0.003′′

ec,G1 −1.0 : 1.0 −0.50 : 0.50
es,G1 −1.0 : 1.0 −0.50 : 0.50
γc −1.0 : 1.0 −0.04 : 0.06
γs −1.0 : 1.0 −0.03 : 0.03
sG1 0.00′′ : ∞ 0.00′′ : 0.02′′

βG1 −∞ : ∞ 0.95 : 1.60
log(bG22/

′′) −1.7 : ∞ −1.70 : −0.22
xG22 −∞ : ∞ 2.572′′ : 2.597′′

yG22 −∞ : ∞ 3.625′′ : 3.650′′

ec,G22 −1.0 : 1.0 −0.70 : 0.70
es,G22 −1.0 : 1.0 −0.70 : 0.70

Clump models
log(bA/

′′) −∞ : ∞ −4.00 : −1.00
xA −∞ : ∞ −1.40′′ : −0.70′′

yA −∞ : ∞ 0.40′′ : 0.80′′

log(bB/
′′) −∞ : ∞ −4.00 : −1.00

xB −∞ : ∞ 0.20′′ : 0.80′′

yB −∞ : ∞ 1.00′′ : 1.50′′

log(bD/
′′) −∞ : ∞ −4.00 : −1.00

xD −∞ : ∞ −0.40′′ : 0.50′′

yD −∞ : ∞ 1.00′′ : 1.50′′

Multipole models
A3 −1.0 : 1.0 −0.05 : 0.05
A4 −1.0 : 1.0 −0.05 : 0.05

Note. — Parameter priors are uniform within the inter-
vals listed above.
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The normalization of the posterior, P (d|M), is the marginal likelihood of the model,

usually referred to as the Bayesian Evidence. In astrophysical studies, it often the case

that only one model is being tested. In such cases the evidence may simply be ignored,

since the normalization of the posterior is not needed to calculate confidence intervals of

marginalized parameters. Ignoring the evidence, the posterior is simply the combination

of the likelihood and prior distributions, and can easily be calculated with Monte Carlo

Markov Chains (MCMC).

However, this approximation of the posterior is no longer adequate once comparisons

between models are to be made. Here, the Bayesian Evidence is the key quantity which

allows one to distinguish between various models, since it quantifies the overall proba-

bility of a particular model. Since we wish to compare models of varying complexity,

we use the Nested Sampling algorithm (Skilling 2004) to calculate both marginalized

parameter ranges and the Bayesian Evidence. As a computational tool, Nested Sam-

pling has been used in a variety of astrophysical studies (e.g., Mukherjee et al. 2006;

Humphrey et al. 2009), including gravitational lensing (Vegetti & Koopmans 2009a;

Barnabè et al. 2009).

The heart of the (basic) Nested Sampling algorithm is to execute many random

draws from the parameter space defined by the prior volume, searching for the next

highest point in likelihood. In practice, this means that oddly shaped likelihood surfaces

(especially in high parameter dimensions) can be quite computationally demanding to

sample. This problem is further exacerbated when very large parameter volumes are

searched. We alleviate much of the computational demand by adopting a two step

approach to our sampling. First, we execute a MCMC sampling of the posterior using

uniform priors defined in Table 5.3. Our MCMC methods, including the algorithm,

techniques, and convergence criteria are described in Section 3.4 of Fadely et al. (2010).

Using the posterior derived from our MCMC runs, we then construct a reduced set of

priors which encompass the 99.999% CL parameter ranges (Table 5.3). The reduced
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Table 5.4. Jeffreys’ Scale

Bayes Factor Significance

1− 101/2 Barely worth mentioning

101/2 − 10 Substantial

10− 103/2 Strong

103/2 − 100 Very strong
> 100 Decisive

set of priors is then adopted for subsequent Nested Sampling runs, thus reducing the

time spent sampling regions of extremely low likelihood (χ2 > 106).

Once computed, we use the Bayesian Evidence to perform model comparison by

computing the ratio:

P (M |d)

P (M ′|d)
=
P (M)

P (M ′)

P (d|M)

P (d|M ′)
(5.4)

which provides a means of comparing two competing models given the data (MacKay

2003; Gelman et al. 2003). Since we assume equal prior probabilities between models

( P (M)
P (M ′) = 1), this ratio is simply the ratio of the evidences for models M and M ′. This

ratio, called the Bayes Factor, provides a meaningful mechanism for model comparison.

Nevertheless, the significance of Bayes factors are not clear cut and various scales are

often employed to facilitate their interpretation. The most common scale is the Jeffreys’

scale (Jeffreys 1961), which grades the Bayes Factors as shown in Table 5.4. In this

work, we use the Jeffreys’ scale as a guideline for judging between our models.

5.7 Results and Discussion

5.7.1 Individual Clump Models

As a null hypothesis, we test the ability of our minimal lens model to reproduce the

observed HST image positions and flux ratios from ground-based optical monitoring.
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The model, described in Section 5.5 and Table 5.3, accounts for the mass distribution of

the large, “macro” scale structures and does not include small scale perturbations due

to substructure. Following the procedure of Section 5.6 we have derived the parameter

ranges and model evidence, and present the results in Table 5.5. We find the model

does poorly in reconstructing the observations, with a best fit χ2 = 24.6 for Ndof =

−1. Given that the model is formally underconstrained, it is surprising that χ2 6= 0,

indicating the model lacks some key freedom. We find the primary failure of the model

is in accounting for the flux ratio of A/C. In Figure 5.3 we show the model distributions

for the three flux ratios in HE 0435. We find the smooth model is unable to account

for the flux ratio of A/C at high confidence.

The strong discrepancy between the observed A/C flux ratio and that inferred for

our minimal model motivates us to consider additional complexity in the lens in the

form of small scale structure. Doing so, we add a single clump (whose profile is described

in Section 5.5) one at a time near various images and calculate the evidence for the new

model.

We first add a single clump near image A to our macro model. As shown in Figure 5.4

and Table 5.5, we find the addition of the clump does much to alleviate the discrepancy

between the flux ratio predicted by our smooth model and that of the observations,

resulting in a model value of A/C = 1.72+0.22
−0.29. With the addition of a small scale

clump near image A, the model is now able to reproduce the data perfectly with a

corresponding χ2 = 0. It is no surprise the data can be perfectly reconstructed, given

the model is underconstrained with Ndof = −4.

In Figure 5.5, we plot the position of the clump near image A for three different

upper limits on the clump masses of MA(< REin) < 106, 107, 108M�. We find that the

position of the clump is degenerate with its mass, similar to previous studies (e.g., Dalal

& Kochanek 2002; Keeton 2009). This degeneracy is no surprise since, heuristically,

a less massive clump may be placed closer to the image and still produce the same
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Figure 5.3 Plotted are the marginalized probability distributions for the three image
flux ratios (solid lines) inferred from our minimal (smooth) mass model. Also plotted
are the values of the observed distributions (dotted lines). Interestingly, our minimal
model fails to explain the flux ratio A/C. The flux ratios for B/C and D/C, are clearly
in good agreement with the observed R band ratios.
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Figure 5.4 Same as the top left panel of Figure 5.3, but for our model with an additional
clump near image A (solid, blue) and for our model with three clumps near images A,
B, and D (dashed, red). Adding a clump near image A clearly brings the models and
data into agreement for the flux ratio A/C. The distribution of flux values is negligibly
changed when clumps near other images are added, indicating constraints on clump A
are fairly independent from the presence of clumps B and D.
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magnification. From flux constraints alone the degeneracy is, in principle, unbounded.

Formally, the magnification perturbation due to a nearby clump scales as δµ ∝ R2
Ein/d

2,

where d is the distance from the clump to the image. Thus a star, placed very close to

the image, can produce the same magnification as a massive galaxy placed further away,

so long as R2
Ein/d

2 is constant. Adding position constraints can break this degeneracy.

If the clump causes astrometric perturbations to the image, the deflection scales with

δα ∝ R2
Ein/d. Thus, if both the position and flux are affected by the clump, the two

different scalings allow constraints on the mass to be obtained. On the low mass end,

a very small mass clump is simply unable to affect the image position, regardless of

location. On the high mass side, the clump will disturb the image position too much,

and potentially affect the other lensed images. In HE 0435 we are able to find bounds

on the mass of clump A, with log(MA(<REin)

M� h
−1
70

) = 7.68+0.92
−0.85. We conclude, therefore, that

the clump is constrained by the combination of both flux and astrometric data.

We consider the possibility that more than one clump might be affecting the images

in HE 0435. Specifically, we consider models with clumps near images AB, AD, and

ABD. Figure 5.4 shows the effect of the higher number of clumps on the A/C flux ratio.

We find that adding additional substructure near images B and D does not significantly

alter the inferred A/C value. Since the flux ratio of A/C provides the main constraint

on clump A, the mass associated with the clump is also relatively unaffected (Table

5.5).

To assess the relative probabilities of the various models, we have computed the

Bayesian evidence and report the values in Table 5.5. We find our models with clumps

near images A, AB, AD, and ABD all have evidence values that are each at least three

orders of magnitude greater than our minimal smooth model. Clearly, the data strongly

prefer models with at least one clump near the lensed images. Examining the evidence

in detail, we see the model with clumps near images A and B has the highest value, and

is 0.63 dex larger than our single clump model. The model with clumps near images



171

Figure 5.5 Plotted are the positions of the clump near image A, inferred after marginaliz-
ing over all of our model parameters. The black triangle indicates the observed position
of image A. Red, blue, and black shaded regions indicate the positions of all clumps
with masses less than 106, 107, and 108M�, respectively. We find larger/smaller clumps
lie farther/closer to the position of image A.

A and D exhibits a lower evidence than model AB, with an evidence consistent with

our single clump model. Lastly, our three clump model has evidence that is equivalent

(within 1σ) to our best model, indicating firmly that models with a clump near image

D are not strongly favored. In comparison to model AB, the addition of the clump

near image D must add parameters (clump D mass and position) which do not improve

model ABD’s ability to reproduce the global constraints. Thus, the evidence seen for

model ABD is an example of Occam’s Razor in action.

Robustly, the data prefer a model with a single clump near image A. This clump has

a mass within its Einstein radius of MA(< REin) = 107.7+0.92
−0.85 M�. According to Jeffreys’

Scale (Table 5.4), there is “substantial” evidence pointing to a clump near image B,
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with a mass MB(< REin) = 106.6+1.02
−1.52 M�. We note, however, that this evidence is only

0.63 dex higher than for model A, and that both models (A and AB) carry evidence

uncertainties of 0.12 dex. Therefore, while the evidence for clump B is intriguing, it is

far from decisive.

With the addition of substructure to our minimal model, it is interesting to study

how the macroscopic distribution changes. In Figure 5.6, we plot the joint posterior

probability distribution of a few key parameters, before and after adding a single clump

near image A. In general, we find the inferred distributions are broadened by the addi-

tion of clump A (e.g., Figure 5.6, top). This result is not surprising, given the increased

flexibility afforded by the clump. For some parameters, the posterior distribution is not

simply broadened but develops significant structure, indicative of degeneracies in the

14 dimensional space. For instance, the bottom panel of shows the distribution of the

mass normalizations for the main lens and the companion G22. Before the addition of

clump A, the distribution of the parameters is relatively compact, resembling that of a

2D elliptical gaussian. After clump A is added, the distribution is clearly much more

distorted, with a clear degeneracy developing between the parameters. Nevertheless,

even under such distortions the median values of the distributions are not significantly

altered, typically shifting within the 68% confidence interval of the no-clump model.

One particularly interesting parameter of our macro model is the slope of the density

profile of the main lens, β. Using the surface brightness of the quasar host galaxy, the

(estimated) time delays, and the image positions, Kochanek et al. (2006) found the

slope to be shallower than isothermal, corresponding to β > 1.0 in our models. We find

β = 1.19+0.13
−0.13 and 1.19+0.17

−0.15 for our models with and without a clump near image A.

Thus, we conclude that the density slope in HE 0435 corresponds to a rising rotation

curve, regardless of the presence of substructure.

The mass constraints we find on substructure in HE 0435 are a first for quasar

lenses. Previous work in the radio and mid-infrared have found many lens systems
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Figure 5.6 Joint posterior probability distributions for four of our macro model para-
meters. The left column corresponds to parameters from our model with no substruc-
ture, while the right column corresponds to the same parameters for our single clump
model. Probability of parameter values increases from white (P (θ1, θ2|d,M) ≈ 0) to
black (P (θ1, θ2|d,M) = Pmax). The top row presents the distributions for the two com-
ponents (sine and cosine) of the ellipticity of the lens G1. The bottom row presents
the distributions for the mass normalizations of the lens G1 and its companion G22.
Generally, adding substructure (right column) broadens the parameter distributions of
our models. In some cases, the additional freedom from clumps distorts the shape of
the distributions and introduces parameter degeneracies (e.g., bottom row).

with evidence of substructure. However, the vast majority have been unable to place

upper and lower bounds on the substructure mass (e.g., Chiba et al. 2005; Minezaki

et al. 2009), presumably since constraints from the combination of flux ratios and image

positions are not strong enough in the lenses. More recently, studies of the lens systems

B2045+265 (McKean et al. 2007), MG 2016+112 (More et al. 2009), and H1413+117

(MacLeod et al. 2009), have been able to find proper constraints on clump masses. In all

of these cases the substructure has been linked to a luminous satellite, whose position

was subsequently constrained in lens models. Fixing the positions of these satellites,
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in turn, breaks the position-mass degeneracy associated with flux perturbations, there-

fore providing excellent constraints on the substructure masses (σM ∼ 0.1 − 0.3 dex).

Contrary to these cases, for HE 0435 we vary clump positions in our lens models and

allow the data to constrain them. Additionally, we note the masses of clumps A and

B are the smallest found in any lens system to date, and there is no known luminous

counterpart for the clumps.

5.7.2 Substructure Population Models

So far we have considered the effects of a small number of individual clumps, each lying

near one of the lensed images of HE 0435. In reality, however, these clumps are unlikely

to be isolated examples of substructure but rather the rare, fortunate few of a larger

population, which happen to lie near the lens images (Diemand et al. 2007; Springel

et al. 2008). To study the properties of such a population, we conduct Monte Carlo

simulations in which clumps are randomly drawn from a mass function of the form

dN/dm ∝ mα and added to our minimal lens model. We conduct our analysis using a

power law slope of α = −1.9 (Diemand et al. 2007; Springel et al. 2008) with a fixed

upper and lower threshold on the clumps masses ofmhigh = 1010M� andmlow = 107M�,

respectively. Clumps are drawn from a uniform spatial distribution, following the work

of Dalal & Kochanek (2002). While realistic spatial distributions of substructure are

unlikely to be uniform (e.g., Springel et al. 2008), such a distribution is sufficient for HE

0435 since we only constrain the flux ratios and positions of images, which are primarily

sensitive to clumps near the images (Keeton 2009).

Before undertaking extensive simulations, we would like to see if we can use the

clumps we have inferred so far to estimate the properties of the larger population. While

such an estimate should not be taken too seriously, it may help guide our exploration

of population models. In Appendix A we present a simple analysis based on the idea

that a clump population should have one and only one clump in a position to produce a
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strong flux perturbation in image A. Assuming the substructure has a uniform spatial

distribution, we derive an expression for the likelihood of the mean convergence in

substructure,

Lclump(κs) =
AA
mA

κsexp

[
−AA
mA

κs

]
. (5.5)

where κs is the substructure convergence, mA is the mass of clump A, and AA = πd2
A is

the area defined by the distance dA from the clump to image. Simple in form, this distri-

bution has a peak at κs = 4mAAA , a mean of κs = 3mAAA , and a standard deviation of σκs =

2mAAA . With this in hand, we can estimate the appropriate value(s) of κs to consider by

examining the range in mA
AA

from our model with a single clump near image A (Section

5.7.1). We find the range of most likely values of κs = 0.025+0.074
−0.022 (95% CL). Therefore,

we consider the values of κs = [0.00022, 0.00046, 0.001, 0.0022, 0.0046, 0.01, 0.022, 0.046,

0.10] as the amount of convergence in substructure for our simulations.

For each value of κs we conduct 5000 random realizations of the corresponding

substructure population, drawing from the mass function stated above. The ultimate

goal of these realizations is to determine which values of κs are favored given the lens

data. In the Bayesian approach, this question is answered by comparing the evidence

for each value of κs. Here, the posterior for κs is written as:

P (κs|d,M) = Z−1

∫
dcL(d|c, κs, θSM )P (c|κs)P (θSM |SM) (5.6)

where Z is the evidence, L(d|c, κs, θSM ) is the likelihood of the substructure + smooth

model (SM), and P (θSM |SM) represents the priors on the smooth macro model. P (c|κs)

is the probability of the clump positions and masses (denoted by c), given the amount

of substructure κs. In our models, P (c|κs) is uniform for clump positions and defined

by the mass function (above) for clump masses. In practical terms, evaluating Equation

5.6 amounts to drawing many realizations from the clump prior such that
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∫
dcP (c|θ, SM)→

∑
cj

(5.7)

which gives

P (θ|d,M) = Z−1
∑
j

L(d|cj , κs, θSM )P (cj |κs)P (θSM |SM). (5.8)

As a result, the average of the evidence values over all the realizations is then the

evidence for that particular value of κs. Unfortunately, calculating evidence values for

9 × 5000 models is unrealistic presently, since our current approach takes from ∼ 3

hours, up to ∼ 2 days, for a single realization, depending on the value of κs.

Instead, we explore the possibility of using the minimum χ2 value for each realization

(which is much easier to determine) as a proxy for the evidence. The minimum χ2

provides a measure of the peak likelihood, so it may be more or less indicative of

the evidence depending on how much scatter there is in the width of the likelihood

distribution. As we optimized the 14 lens (Table 5.3) and 2 source parameters for

our smooth macro model, we initially found that some realizations led to extremely

large ellipticities (∼ 0.9 for the companion G22. In order to prevent this, we adopted

a mild Gaussian prior of 0.0 ± 0.2 on both (quasi-Cartesian) ellipticity components.

While ad hoc, tests indicate the prior is tight enough to prevent unrealistic values for

the ellipticity and to stabilize the χ2 values, yet broad enough to allow large range of

ellipticity.

After optimizing all the realizations, we calculate the full Bayesian evidence for

a subset of them and investigate the relationship between the peak likelihood (best

χ2) and the evidence. Figure 5.7 shows the relationship for three different values of

κs. Examining the top panel, we find a distinct pattern in the points. At values of

χ2 . 6.5, we find χ2 is an unreliable tracer of the evidence, with normalized values

which range from ∼ 108 down to 101. Presumably, this arises from certain realizations
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being able to produce good peak likelihoods (small χ2) only for a very highly tuned

set of macro parameters, while other realizations are generally better and can have a

large range of macro parameters which produce reasonable likelihood. Above χ2 ∼ 6.5,

we find the χ2 values are much more reliable tracers of the evidence. As χ2 values

increase, the evidence values decrease. This trend continues down to χ2 ∼ 21, at which

point the values are consistent with that of the smooth, minimal model. For values

of κs . 0.01, the relationship between the best χ2 and the evidence resembles closely

the pattern seen in the top panel of Figure 5.7. As κs increases, however, we find the

scatter amongst evidence values increases (Figure 5.7 middle and bottom panels). We

attribute this increased scatter to the larger number of clumps associated with higher

values of κs. Such larger clump number densities may over-perturb image A, or affect

other lensed images, resulting in a greater range of evidence values at fixed χ2.

In Figure 5.7, we also plot the binned values of our subset of models. We use the

binned values to connect the χ2 of a particular realization to its associated evidence

by interpolating between bins to find the average and uncertainty of the evidence at

that χ2 value. We then scatter this average value by a random amount corresponding

to the (interpolated) uncertainty. Using this “lookup” scheme, we are able to calculate

the evidence values for all of our substructure realizations and compute the posterior

as in Equation 5.8.

Figure 5.8 shows the cumulative probability distribution of χ2 values for each value

of κs. As the value of κs is increased in our simulations, the distribution of χ2 values

gets broader. In other words, when more substructure is present, there is a higher

chance the images will be perturbed and the model will move away from the smooth

case. In general, models with modest values of substructure (κs . 0.046) have χ2 values

scattered moderately from our smooth model. A notable exception is our simulation

with κs = 0.10, for which ∼ 40% of the models have χ2 > 30

Figure 5.9 depicts our results for the model evidence as a function of the substructure
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Figure 5.7 χ2 versus the Bayesian evidence for a subset of our simulations. The top,
middle, and bottom panels show the values of evidence (grey points) for κs =0.001, 0.01,
and 0.10, respectively. In all cases, χ2 poorly traces the evidence below χ2 ∼ 6.5. For
values of κs . 0.0022, the evidence is tightly correlated with χ2 values above 6.5 (e.g.,
top panel). As κs increases, so does the scatter of the evidence values. Overplotted are
the binned values of the evidence, which are used to connect the evidence to a particular
χ2 of a given realization.
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Figure 5.8 The cumulative probability distribution of our models as a function of χ2.
Colors of the lines correspond to different values of κs, ranging from 0.00022 (black)
to 0.10 (light orange). The vertical dashed line corresponds to the optimized χ2 of
our smooth, minimal model. As κs is increased, the distribution is broaden since the
presence of substructure allows for better/worse fits to the data.
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convergence. We find models with κs ≥ 0.001 exhibit significantly higher values of

evidence than models without substructure. For a uniform spatial distribution, we can

write the fraction of mass in substructure as fsub ' 2κs since the surface density at the

Einstein radius is approximately Σcrit/2 for an isothermal macro model. Translating our

results to mass fraction of substructure, we find fsub > 0.00092 in HE 0435. Examining

Figure 5.9, it is interesting that the evidence for fsub is still large at high values, even

when fsub = 0.20. We speculate that such high fsub values are possible thanks to the

flexibility and freedom available to our macro model.

Figure 5.9 Values of the log of the evidence from our substructure realizations, as
a function of κs. Evidence values are normalized to the value associated with our
smooth macro model, represented by the dashed horizontal line. We find models with
κs ≤ 0.00046 exhibit evidence values similar to those without substructure. Decisively,
models with κs ≥ 0.001 are strongly favored at > 3σ.

Our lower bound of fsub > 0.00092 is consistent with other lensing based mea-

surements. Using a sample of seven radio quads, Dalal & Kochanek (2002) found

0.006 < fsub < 0.07 at 90% confidence. In the case of SDSS 0946+1006, Vegetti et al.
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(2009) found fsub = 0.0215+0.0205
−0.0125 (68% confidence), assuming α = −1.9 ± 0.1 for the

slope of the substructure mass function and mass thresholds mhigh = 109.6M� and

mlow = 106.6M�. These results, however, all point to values of fsub which are signifi-

cantly higher than those found in N-body simulations ∼ 0.002 − 0.003 (e.g., Diemand

et al. 2007; Springel et al. 2008; Xu et al. 2010). Contrary to previous results, in HE 0435

we find lens-based values of fsub which are fully consistent with N-body simulations,

with values of fsub ∼ 0.001− 0.003 capable of reproducing the lensing.

Our models also permit values of fsub which are much higher than CDM simulations

predict, similar to the previous results of Dalal & Kochanek (2002) and Vegetti et al.

(2009). Therefore, it is worth considering the origin of high fsub values, and whether

they are truly discrepant from CDM models. One possible explanation for high fsub val-

ues is that the number of surviving subhalos in N-body simulations is underestimated,

due to the lack of baryons in the simulations. In the presence of baryons, dark matter

halos are expected to contract adiabatically and become more concentrated. Thus,

baryonic material might create subhalos which are more resilient to tidal disruption

(e.g., Dolag et al. 2009). However, in the presence of baryons the primary halo of the

galaxy will also become more concentrated, providing a higher density contrast and

increasing the rate of tidal disruption (e.g., Romano-Dı́az et al. 2010). Other possible

explanations exist. Currently, the number of lenses available for studying fsub is small

in number (∼ 10). Expansion of the current sample, therefore, will greatly improve

the statistics. Additionally, lenses are known to exhibit significant observational biases

(e.g., Mandelbaum et al. 2009), favoring objects which lie in the more massive and

concentrated halos, which may have preferential orientations along the line of sight.

Furthermore, lenses are known to inhabit denser environments, possibly enhancing the

value of fsub (Oguri 2005). It is reasonable, therefore, that there may be a bias towards

higher values of fsub in lenses, if fsub depends significantly on such factors.

In addition to our results on fsub, there are a couple aspects of our analysis worth
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highlighting. First, we have sought to connect our results from individual clump models

to those for full substructure populations. We have done so by taking our individual

model, using it to infer κs, and subsequently using the same macro model to study the

population. This is a first for quasar lenses. For galaxy-galaxy lenses, Vegetti et al.

(2009) have detected a clump via gravitational imaging, and used that to infer fsub by

constructing a likelihood similar (in concept) to the likelihood we present in Appendix

A.

Another key feature of our analysis is our method used in our population simulations.

Here, the only comparable previous result is that of Dalal & Kochanek (2002). Due

to the complexity and computational demand of the study, Dalal & Kochanek chose

to linearly optimize their lens macro models. In our analysis, we not only do a full

marginalization of the macro model, but we estimate the Bayesian evidence associated

with each realization. Shown in Figure 5.7, we find the best χ2 value can be an unreliable

tracer of the evidence. Thus, the Dalal & Kochanek result may not reflect the true value

of fsub, if such behavior is present in their models. Additionally, Dalal & Kochanek

assumed a constant mass for their substructure population. Here, we consider a more

realistic population which is drawn from a mass function (with α = −1.9), with a

range of substructure masses (107 − 1010M�). Due to the computational demand of

our simulations, we have so far only considered one value of α and one range of clump

masses. Future work will explore the dependence of our fsub results on these parameters.

5.7.3 K band flux ratios

Our substructure models presented in Sections 5.7.1 and 5.7.2 are able to account for the

optical R band flux ratios and, due to their similarity, the L′ flux ratios listed in Table

5.2. As noted in Section 5.3, however, we find some of our measured K band flux ratios

discrepant from those in the R and L′ bands. Specifically, we find the magnification

of image B is a factor 1.27 higher in the K band data than in R and L′ bands. This
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anomaly is particularly perplexing since, at a rest-frame wavelength of 0.818 µm, the

K band emission presumably originates from the same (effectively) point-like accretion

disk as in the R band.

Since differential dust extinction is not likely in HE 0435 (Wisotzki et al. 2003),

we hypothesize the K band anomaly is due to microlensing by stars. We test the

reasonability of this hypothesis by simulating the expected microlensing magnification

distributions near image B, using the ray-shooting code of Wambsganss (1999).

Conceptually these simulations are simple. First a small box L is created for the

simulation. The size of L is selected such that it is much larger than the average

Einstein radius of the stellar distribution. Subsequently, a uniform convergence and

shear is applied to the box. This convergence is broken down into two components, one

associated with the stars and one with any smoothly distributed matter. The stars are

then randomly distributed by drawing from a user-specified mass function, such that

the amount of stars matches the stellar convergence. Once the mass distribution is

set up, rays are shot through the box, producing a magnification map across the box.

From here, the magnification map is convolved with the specified source, producing a

probability distribution function (PDF) for the microlensing magnification. This entire

process is then repeated many times to insure fair sampling of the PDF.

For each simulation, we set the total convergence and shear to the values predicted

by our best-fit two clump (AB) lens model: κlocal = 0.694, γlocal = 0.486. In order

to calculate microlensing magnification distributions, we first need an estimate of how

much convergence is granular in form (i.e., stars) and how much is smoothly distributed

(i.e., dark matter). To do so, we split up the local convergence into a stellar and dark

components using the models of Kochanek et al. (2006). Using separate stellar and dark

matter distributions in their lens model, Kochanek et al. relate the stellar convergence

to their dark matter profile as 〈κ?〉 = 0.05 log(hrc kpc), where rc is the NFW scale radius

in their models. We estimate the minimal and maximal stellar convergence using the
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smallest and largest of Kochanek et al. well-fitting values for rc, 2.5′′ and 20.0′′. For

these radii, the relation yields 〈κ?〉 = 0.05 and 0.10, respectively.

For both values of 〈κ?〉, we conduct 100 random realizations of the stellar dis-

tribution, drawn from a mass function dN/dm ∝ m−1.3 with mlow = 0.01M� and

mhigh = 1.5M�. Such a mass function is selected to be in agreement with measurements

from the Galactic bulge (Gould 2000), and has been used previously in microlensing

studies (Morgan et al. 2010; Poindexter & Kochanek 2010).

For each realization a magnification map is produced using a box size of L =

15RE(M�), at a resolution of L/1024. Subsequently, we convolve each map by a uni-

form circular profile whose size corresponds to the expected range in the K band source

size. To estimate the size of the source, we use the empirically derived result for the

I band source of Morgan et al. (2010). We then scale the I band source (rest-frame

0.260µm) to our K band source using the Shakura & Sunyaev (1973) R ∝ λ4/3 relation.

We find a K band source size of log(Rsrc
1′′ ) = −6.1+0.5

−0.7, a factor 0.2−3.1 (68% CL) times

the Einstein radius of the mean stellar mass (log(
R〈m?〉

1′′ ) = −6.1).

We present the results of our microlensing simulations in Figure 5.10. In order to

explain the observed K band B/C flux ratios, microlensing must provide a factor ∼ 1.27

increase to the magnification of our best fit model. In general, we find microlensing

in HE 0435 can account for our K band data for all but the largest source sizes in

our simulations. To assess which source sizes can reasonably account for the data, we

consider the range in sizes which produce magnifications > 1.27, more than 16% of

the time (i.e., a two-sided 68% confidence limit). Under our assumed stellar density

fractions and stellar mass functions, we find the needed K band magnification of image

B occurs for source sizes . 0.48 × R〈m?〉 for 〈κ?〉 = 0.05, and . 0.73 × R〈m?〉 for

〈κ?〉 = 0.10. These source sizes are well within our inferred K band source sizes

(0.2−3.1×R〈m?〉). Given the significant uncertainties in the source sizes, stellar density

fraction, stellar mass function and flux ratio measurements, we conclude microlensing
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Figure 5.10 Above we plot the probability distributions of the magnification due to
microlensing by stars for various source sizes. The magnification is normalized to that
for Image B from our best fit model. The three distributions plotted are for source
sizes corresponding to the median (dashed, blue line) and 68% CL (black, solid and
dot-dashed, red lines) sizes inferred from Morgan et al. (2010). The vertical dotted line
represents the mean value needed to reproduce our K band observations. We find small
source sizes, . 0.48, 0.73×R〈m?〉, reproduce the observations well, for 〈κ?〉 = 0.05, 0.10,
respectively.
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is a plausible explain for the image B flux in our K band data. Confirmation of this

explanation will be possible with future K band imaging of the system, which will

quantify the variability of the microlensing magnification.

5.8 Conclusions

We have conducted a fully Bayesian analysis of the lens HE 0435-1223. With pre-

cise astrometry from HST and R band flux ratios from ground-based monitoring, we

examine the mass distribution down to milli-arcsecond scales, testing various models

of substructure through their Bayesian Evidence. Additionally, we have obtained new

near-infrared images, providing insight into the multi-wavelength properties of the lens.

We summarize our conclusions as follows:

• The flux ratio of images A and C cannot be reproduced by macroscopic, smoothly

distributed lens models. The source of this failure cannot be due to microlens-

ing or intrinsic variability of the background quasar, since optical monitoring

has quantified such variations. Instead, we show that a single clump with mass

log(MA(<REin)

M� h
−1
70

) = 7.68+0.92
−0.85 can account for the flux ratio, once added to the

smooth mass distribution.

• We analyze other sources of small scale structure by including additional clumps

near the lens images. Using the Bayesian evidence to discriminate between the

various possibilities, we find a model with clumps near images A and B is most

favored. This model an associated evidence which is 0.63 dex greater than our

single clump model, and implies a mass for clump B of log(MB(<REin)

M� h
−1
70

) = 6.6+1.02
−1.52.

While interesting, the evidence uncertainties of models A and AB are 0.12 dex,

making the case for clump B much weaker than for clump A.

• Connecting these clumps to a larger population of subhalos, we conduct Monte

Carlo simulations of the full ensemble of substructures. We set the abundance (κs)
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of the clumps from the mass and location of our single clump model, and draw

realizations from a mass function with slope α = −1.9. Calculating the evidence

associated with each value of κs, we infer the mass fraction of substructure to

be fsub > 0.00092 near the Einstein radius. Our measurement of fsub, unlike

other lensing based measurements, is fully consistent with that predicted by CDM

simulations (fsub ≈ 0.003).

• Near infrared flux ratio measurements in the K and L′ wavebands generally agree

with those from optical monitoring. The lone exception is the K band value of the

flux ratio B/C. Using a series of microlensing simulations, we generate magnifi-

cation maps from the stellar distribution of the lens. We find that microlensing

may indeed be responsible for the B/C ratio, if the K band source is . 106.24′′

in size. Estimations based on results from Morgan et al. (2010) show that such a

source size is reasonable.
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Appendix A

Connecting individual clumps to the population

A.1 Likelihood for a single clump

In Section 5.7.2 we have described the form of the mass function and the spatial distri-

bution from which our subhalo population is drawn. A remaining key quantity we must

consider is the amount of substructure appropriate for our models, which we express as

κs = Σs/Σcrit, otherwise known as the convergence due to substructure in the lens.

To estimate κs, we seek to construct a likelihood that one and only one clump

drawn from a population of subhalos is close enough to perturb a given image. Let

m = M/Σcrit = πR2
E be the scaled mass of a point mass clump that has units of

angular area. For a population with a number density of clumps per unit mass of

dn/dm, the mean surface mass density in substructure is then

κs =

∫
m
dn

dm
dm. (A.1)

For clumps near an image, let A(m) be the area which defines the“region of influ-

ence” for a given clump of mass m. Examining only perturbations to the magnification

of the image, we have A(m) ∝ R2
E ∝ m (since δµ scales with R2

E). If we define the

clump near image i to have a scaled mass mi at a distance di from the image, we can

then use our individual clump models (Section 5.7.1) to calculate the proportionality

A(m) =
Ai
mi
m, (A.2)

where Ai is simply the geometric area πd2
i .
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Under these assumptions, the mean number of clumps near an image for a given

population is simply

〈
N̂i

〉
=

∫
A(m)

dn

dm
dm =

Ai
mi
κs,i (A.3)

where κs,i is the mean surface mass density in substructure in the vicinity of image

i. The probability that there are exactly Ni clumps affecting the image is a Poisson

distribution of the form

P (Ni|
〈
N̂i

〉
) =

〈
N̂i

〉Ni
e−〈N̂i〉

Ni!
. (A.4)

Finally, we can assume the clumps are independent since the clump near image i is

small enough such that it does not affect the magnification of image j 6= i. The final

likelihood for a single clump near a given number of images is then the product

Lclump =
∏
i

P (1|
〈
N̂i

〉
) =

∏
i

〈
N̂i

〉
e−〈N̂i〉. (A.5)

In Section 5.7.2, we apply Equation to the case of image A alone.
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