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DESIGNING TWO-STAGE WINNER DESIGNS WITH SURVIVAL OUTCOMES

BY FANG FANG

Dissertation Director: Yong Lin, Ph.D.

The accuracy of the treatment effect estimation is crucial to the success of phase 3

studies. The calculation of fixed sample size relies on the estimation of the treatment effect

and cannot be changed during the trial. Oftentimes, with limited efficacy data available

from early phase studies and relevant historical studies, the sample size estimation may

not accurately reflect the true treatment effect. Several adaptive designs have been pro-

posed to address this uncertainty in the sample size calculation. These adaptive designs

provide the flexibility of sample size adjustment during the trial by allowing early trial

stopping or sample size re-estimation at the interim look(s). The use of adaptive designs

can optimize the trial performance when the treatment effect is an assumed constant value.

However in practice, the treatment effect is more reasonable to be considered within an in-

terval rather than as a point estimate. Proper selection of adaptive designs will decrease the

failure rate of phase 3 clinical trials and increase the chance for new drug approval. This

dissertation proposes an optimal design based on an interval using the "regret concept". A

mathematical framework is developed to evaluate the adaptability of different designs. In

addition, this dissertation identifies the factors that may affect the performance of adap-
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tive design and derives the expected sample size for two-stage sample size re-estimation

designs.

In drug development, a phase 2 trial may not be feasible due to long follow-up or

lack of resources. So it may necessary to evaluate several promising regimens in the confir-

matory phase 3 trial. In this case, an interim analysis is often used to drop the inferior arms

and to avoid the high cost, long term trial conduction, and exposure to ineffective treat-

ment. This approach is considered as combining the two phases into one study: phase

2 portion will be carried out by the interim analysis. When appropriate surrogate end-

points exist, such as progression free survival in oncology trials, they can be used at the

interim analysis to accelerate the drug development process. The statistical frameworks

are available in the literature for designs with continuous endpoints. However, it is very

challenging to derive the correlation between log-rank statistics at interim and final analy-

sis when survival endpoints are used. An asymptotic correlation of log-rank statistics is

developed and the features for a two-stage design survival trial using same or different

endpoint at interim analysis is explored.
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Preface

This document consists of two parts:

I. Evaluation of Performance for Adaptive Design on a treatment effect interval (Chap-

ter 1 to Chapter 7).

II. Two-stage Winner Design for Survival Trials (Chapter 8 to Chapter 12).

Discussion and future directions are in Chapter 13. The dissertation is organized

as follows:

• Part I:

Chapter 1 describes the challenges for traditional fixed sample size designs, re-

search motivations and research objectives for part I.

Chapter 2 reviews the current available adaptive designs and key concepts used

in this dissertation.

Chapter 3 derives the expected sample size for two-stage sample size re-estimation

designs.

Chapter 4 discusses how to identify a treatment effect interval, identified a golden

standard for performance comparison, and proposed the measurements of adaptive de-

sign performance based on decision theory.

Chapter 5 evaluates the performance of group sequential designs, weighted sam-

ple size re-estimation designs, and unweighted sample size re-estimation designs when

treatment effects on an interval follow a uniform distribution. Comparisons are done un-

der different design parameters.
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Chapter 6 further extends the evaluation and comparison of adaptive design per-

formance to random treatment effects. Different beta distributions are assumed for treat-

ment effects on a pre-specified interval.

Conclusions of Part I are presented in Chapter 7.

• Part II:

Chapter 8 provides the background of two-stage winner design.

Chapter 9 presents the statistical framework on two-stage winner design for con-

tinuous endpoints and reviewed some theoretical works that Part II of this dissertation

built on.

Chapter 10 develops the asymptotic correlation of log-rank statistics in two-stage

winner designs when the same or different endpoint are used at the interim analysis.

Chapter 11 explores the features of two-stage winner design for survival trials

Chapter 12 presents the conclusions for Part II.
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Chapter 1

Introduction

1.1 Challenge for Traditional Fixed Sample Size Designs

It is estimated that the cost to take a new molecular entity from laboratory to mar-

ket was greater than $800 millions in 2004 [4]. The costs of drug development keeps rising

at a high rate while the new drug applications are not rising at the same rate [20]. The fail-

ure rate for phase 3 trials exceeds 50% [4]. A poorly designed phase 3 trial is one possible

reason for the high failure rate. It costs both money and patient lives [36]. The calculation

of sample size in fixed sample size designs relies on the estimation of treatment effect and

cannot be changed during the trial. The accuracy of the treatment effect estimation is cru-

cial to the success of phase 3 studies. With limited efficacy data available from early phase

studies, and relevant historical studies, the sample size estimation may not accurately re-

flect the true treatment effect. This lack of knowledge leads to an estimated sample size

either too small or too large. Thus, the trial may be either oversized or underpowered. The

results could be either a waste of finances and patient resources or trial failure.
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1.2 Available Solutions

Many adaptive designs have been proposed to address this issue [2, 5, 11, 12, 14,

15, 16, 18, 21, 22, 23, 26, 29, 30, 31, 39, 41]. A broad definition for adaptive designs given

by Shih [34] is used in this dissertation. All group sequential designs and sample size

re-estimation designs fall into adaptive design scope per this definition. In all adaptive

designs, interim analyses are built into the traditional studies; the results at the interim

look(s) are used to adjust future course of the study: early stop for futility, early stop for

efficacy, or to adjust sample size, etc. [34]. The tested hypotheses could be changed based

on the interim results. Interim results could also be used to select an optimal dose during

the study. The overall type I error rate and adequate power or conditional power need to

be maintained in all adaptive designs. Detailed reviews of all available adaptive designs

are provided in the literature review section.

1.3 Research Motivations

Currently, the discussion in the literature on the adaptive designs focus on a sin-

gle specified value as a representation of the unknown treatment difference. However

in practice, more often what is known is a treatment effect interval [23]. The following

example illustrated the existence of treatment effect interval in practice.

It is believed that if an experimental drug is added to the current standard therapy

(Carboplatin plus Paclitaxel), the remission time for ovarian cancer patients after surgery

will be prolonged. A phase 3 confirmatory trial is planned to compare the treatment effect

of the combination therapy versus the standard therapy alone. Progression free survival
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(PFS) is used as the primary efficacy endpoint. The treatment effect is estimated based on

the results of phase 2 proof of concept studies for the experimental drug and published me-

dian PFS for the standard treatment. However, different PFS medians for standard therapy

are found in the literature. In the Hellenic Cooperative Oncology Group (HeCOG) study

[1], 121 out of 247 patients were randomized to the standard (Carboplatin plus Paclitaxel)

therapy arm. At the end of study, the median PFS for standard therapy arm was 38 months.

In the Gynecologic Oncology Group (GOG) study, the median PFS for 392 patients who re-

ceived standard therapy was 19.4 months [27]. In another phase 3 study supported by

Bristol-Meyers Squibb (BMS), the median PFS was 16 months for patients who received

standard therapy [25]. Two other randomized trials indicated the median PFS was around

17.5 months [6, 28]. The standard therapy regimens including dose levels and dose fre-

quencies were similar for these studies. There were also differences in cancer stages and

tumor sizes among the patients populations enrolled into these studies. Thus, it became

very difficult to find an accurate point estimate of the true median PFS for the standard

therapy. After careful comparison of study designs including inclusion/exclusion criteria

and treatment schedules, the median PFS for standard therapy was most likely between

15 to 20 months. Thus, based on this information and the data from early proof of concept

studies on the experimental drug, it was expected that the treatment effect between the

standard therapy and the combination therapy would fall into a certain interval.

Most of the previous research and designs were focused on how to maximize the

study productivity when the treatment effect was estimated as a point value. For the ex-

amples above, the question arises as to how the current available adaptive designs can be
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used to maximize the study productivity on a treatment effect interval? How can we use

mathematical frame to evaluate the performance of different designs? What factors will

affect the performance of adaptive designs? Under the same constrains, whether certain

group sequential designs (e.g., with different boundaries or different sample size incre-

ments) have a similar performance as sample size re-estimation designs?

1.4 Research Objectives

1.4.1 Objectives

In Part I of this dissertation, the following objectives were set:

Objective I: To derive the expected sample size for sample size re-estimation de-

sign with a total of 2 looks (Chapter 3).

Objective II: To evaluate and compare the performance of adaptive designs in-

cluding group sequential designs, weighted sample size re-estimation designs, and un-

weighted sample size re-estimation designs on a pre-specified treatment effect interval

when treatment effects follow a uniform distribution (Chapter 4).

Objective III: To evaluate and compare the performance of adaptive designs on

a pre-specified treatment effect interval when treatment effects follow a Beta distribution

(Chapter 5).

1.4.2 Specific aims

The specific aims for Part I of this dissertation are described as follows:

1. To derive expected sample size for two-stage sample size re-estimation designs
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2. To determine an ideal design to be used as the gold standard for the compari-

son of performance

3. To identify appropriate measurements of performance on the treatment effect

interval

4. To compare performance of adaptive designs by using the appropriate mea-

surement(s) identified

5. To compare designs with different sample size increments including equal

spaced increments and 2-times increments

6. To estimate the performance of adaptive designs on intervals with different

adaptive indexes

7. To evaluate effect of types of boundaries on the performance of adaptive de-

signs

8. To considere treatment effect as a random variable follows a beta distribution

and evaluate the performance of the adaptive designs.
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Chapter 2

Literature Review

For a variety of reasons, interim analyses are planned in clinical trials. One of

the most important reasons is the ethics to avoid exposing patients to unsafe or ineffective

treatment [15]. Another crucial reason is to ensure that studies have adequate sample

size and power by checking important protocol assumptions including treatment effects,

variance, etc.

Wittes and Brittain proposed to using an internal pilot study to recalculate the re-

quired sample size during the study through re-estimation of variance based on unblinded

data [30]. Gould and Shih proposed a sample size re-estimation strategy without unblind-

ing of treatment codes [11, 12] to evaluate the variance.

There are several other approaches to re-evaluate the treatment effect (assume a

known variance) at the interim looks proposed. Different group sequential designs are

available to allow stopping the trial early for benefit or futility by doing interim analy-

ses [26, 30]. Several designs are proposed to provide flexibility to adjust the sample size
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through sample size re-estimation built into the group sequential designs [5, 14]. More

reviews on the re-estimation of treatment effect are provided in the sections below.

2.1 Group Sequential Designs

Since repeated significance tests need to be done after each observation or matched

pair of observations in the traditional sequential designs, this is often impracticable [30],

Pocock proposed a group sequential test in 1977. In his design, patients were divided into

several equal-sized (equal-spaced) groups. The decision to stop or to continue the trial was

to be made based on repeated significance tests of accumulated data after each group of

patients [30]. A group sequential design for a normal response with known variance was

defined in this article. A numeric method was used to find the total sample size and the

nominal alpha (Type I error rate) value for each significance test. The nominal alpha values

(critical values) were the same for repeated significance tests. It was shown by simulation

studies that a group sequential design can also be used for other types of response data

other than a normal response.

O’Brien and Fleming proposed a similar multiple testing procedure. As in the

Pocock design, the significance tests were conducted after accrual of each group of equal-

sized patients based on the accumulated data. However, the critical values were different

for each test. The earlier the look was, the larger the critical value was. A numeric method

was used to obtain the critical values [26]. Compared to Pocock boundaries, the O’Brien-

Fleming boundary makes it more difficult to stop the trial at early stage.

Haybittle [14] and Peto et al [29] suggested an approach using a fixed z-score
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boundary of 3 at the interim analyses and using critical value of 1.96 at the final analysis.

Because of the high critical values at the interim looks, the chance for early stopping under

the null hypothesis was very limited and the inflation of type I error was very small. How-

ever, the more the number of interim looks was, the larger the inflation of type I error was.

In order to maintain the overall type I error at the exact level, a modified Haybittle-Peto

method can be used. Instead of using 1.96, the final critical value needs to be adjusted to

ensure the overall α level.

2.2 Sample Size Re-estimation Designs

While group sequential designs are based on a fixed maximum number of pa-

tients or events, sample size re-estimation designs provide the flexibility to adjust the sam-

ple size at the interim look. A considerable amount of research was done in recent years

on the basis of updated information.

Cui, Hung, and Wang [5] proposed a new adaptive design in 1999 by modifying

the weights used in the traditional repeated two-sample mean test. In their article, the au-

thors elaborated the need of implementation of a valid inferential procedure that allowed

flexibility of adjusting the sample size based on the unblinded estimate of treatment effect

during the study. They evaluated the impact of sample size change based on the interim

estimation of treatment effect and demonstrated that the large gain in power increase at

the cost of a trivial inflation in type I error rate through simulation studies.

Because of the sample size re-estimation, the two sample mean test is no longer

a Brownian motion process [5]; and the total sample size becomes a random variable de-
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pending on the observed treatment effect at the interim look [5]. So obviously the tradi-

tional repeated two-sample mean test can not be used in this situation. Cui, Hung, and

Wang [5] proposed a new test procedure. In this method, the test statistic used to de-

termine statistical significance at each interim look was a weighted combination of two

independent Wald statistics, comprising the data before and after the sample size adapta-

tion. This new procedure used the same critical values as those for the traditional repeated

two-sample mean test. It was also demonstrated that the total type I error rate for the new

procedure was equal to the original test procedure. Below, some of the details of this new

procedure are summarized.

2.2.1 Traditional repeated two-sample mean test

First, let’s consider using the traditional repeated two-sample mean tests to de-

tect the mean difference in two independent normal populations with a known common

variance σ2. Suppose µ1and µ2 are the means for normal populations x and y and let N be

the total sample size for each treatment and ∆ = µ1− µ2. Then we have xi ∼ N
(
µ1, σ2),

yi ∼ N
(
µ2, σ2), and x − y ∼ N

(
µ1 − µ2, 2σ2

N

)
, where i=1, 2, . . . , N. There are total K

looks. Assume NL and NL+J are the sample sizes at Lth and (L + J)th interim looks and

1 ≤ L < L+ J ≤ K. Assume ∆L is the observed treatment difference at interim look L and

two-sample mean test statistic is TL. Then the test statistic at (L+ J)th look can be denoted

as

TL+J =

(
∑

NL+J
i=1 xi −∑

NL+J
i=1 yi

)
/NL+J√

2σ2

NL+J

= TL

√
NL

NL+J
+WL+J

√
NL+J − NL

NL+J

where TL =
∑

NL
i=1(xi−yi)√

2σ2 NL
and WL+J =

∑
NL+J
i=NL+1(xi−yi)√

2σ2(NL+J−NL)
.
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TL+J can be decomposed into two statistics ( TL and WL+J) that weighted by the

amount of information available before the Lth interim look (
√

NL
NL+J

) and the information

after Lth interim look
(√

NL+J−NL
NL+J

)
.

2.2.2 New group sequential test procedure proposed by Cui-Hung-Wang (CHW)

CHW proposed a new procedure for study with sample size re-estimation built

in at Lth interim look. Let ML+J be the new sample size at(L + J)th interim look. Then

the test statistic after sample size re-estimation for the new procedure at (L+ J)th interim

analysis is

UL+J = TL

√
NL

NL+J
+W∗L+J

√
NL+J − NL

NL+J

where W∗L+J =
∑

ML+J
i=NL+1(xi−yi)√

2σ2(ML+J−NL)
.

Compared to the traditional repeated test procedure, W∗L+J is used in the test sta-

tistic for the (L+ J)th interim test. W∗L+J is a random variable based on ∆L rather than a

fixed amount of information [16]. The weights for the two decomposed statistics, regard-

less the new sample size after the Lth interim analysis, are the same as the traditional tests.

That is the weights in the new procedure are still based on the original sample size before

the sample size re-estimation.

Both (T1, T2, . . . , TL, . . . , TK) and (T1, T2, . . . , UL, . . . , UK) follow the same multi-

variate normal distribution under the null hypothesis. Thus the total type I error rate for

the new test statistics will be the same as of the original test procedure without sample size

increase.
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Proof:

E (UL+JTL) = E

(
TL

√
NL

NL+J
+W∗L+J

√
NL+J − NL

NL+J
|TL

)

= E

TL

√
NL

NL+J
+

∑
ML+J
i=NL+1

(xi − yi)√
2 (ML+J − NL)

√
NL+J − NL

NL+J
|TL


= TL

√
NL

NL+J
+

√
NL+J − NL

NL+J
E

 ∑
ML+J
i=NL+1

(xi − yi)√
2 (ML+J − NL)

 .

Under H0, E

(
∑

ML+J
i=NL+1

(xi−yi)√
2(ML+J−NL)

)
= 0 , we have

E (UL+J |TL) = E (TL+J |TL) = TL

√
NL

NL+J
,

Var (UL+JTL) = Var

(
TL

√
NL

NL+J
+W∗L+J

√
NL+J − NL

NL+J
|TL

)

= Var

 ∑
ML+J
i=NL+1

(xi − yi)√
2 (ML+J − NL)

√
NL+J − NL

NL+J
|TL


=

√
NL+J − NL

NL+J
Var

 ∑
ML+J
i=NL+1

(xi − yi)√
2 (ML+J − NL)


=

NL+J − NL

NL+J

= Var (TL+J |TL) ,

cov (UL+I , UL+J) =

√
NL+I − NL

NL+I

√
NL+J − NL

NL+J
cov

(
W∗L+I , W∗L+J

)
,

and

cov
(
W∗L+I , W∗L+J

)
= cov

 ∑ML+I
i=NL+1

(xi − yi)√
2 (ML+I − NL)

,
∑

ML+J
i=NL+1

(xi − yi)√
2 (ML+J − NL)


= cov

(
SL+I − SL√

2 (ML+I − NL)
,

SL+J − SL√
2 (ML+J − NL)

)
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=
var

(
SL+min(I,J) − SL

)
2
√

ML+I − NL
√

ML+J − NL

=
2
(

ML+min(I,J) − NL

)
2
√

ML+min(I,J) − NL

√
ML+max(I,J) − NL

=

√
ML+min(I,J) − NL

ML+max(I,J) − NL

=

√√√√√
(

b
(

ML+min(I,J) − NL

)
+ NL

)
− NL(

b
(

ML+max(I,J) − NL

)
+ NL

)
− NL

=

√
NL+min(I,J) − NL

NL+max(I,J) − NL
.

So we have

cov (UL+I , UL+J |TL) =

√
NL+I − NL

NL+I

√
NL+J − NL

NL+J

√
NL+min(I,J) − NL

NL+max(I,J) − NL
= cov (TL+I , TL+J |TL)

and (T1, T2, . . . , TL, . . . , TK) and (T1, T2, . . . , UL, . . . , UK) follow the same multivariate nor-

mal distribution under the null hypothesis.

2.2.3 Comparison of three two-stage designs

Shih [34] summarized the commonality of adaptive designs (including both group

sequential designs and sample size re-estimation designs). All adaptive designs involve in-

terim analyses and need to maintain the overall type I error probability. Group sequential

designs were developed for early stopping to reject or accept H0; the maximum informa-

tion was fixed and required at the planning stage; the primary efficacy endpoints always

involve mortality or irreversible morbidity [34]. Sample size re-estimation designs were

usually designed to reinforce power by checking assumptions and re-estimating sample

size (blinded or unblinded analysis, or internal pilot study); the total information at the
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planning stage can be expanded; and the primary efficacy endpoints were often non-life-

threatening measures [34]. It is not like the group sequential designs in which interim

analysis can be done at very early stage, the sample size at interim look for sample size

re-estimation design should not be too small [34]. This is because the primary purpose

for sample size re-estimation is to reinforce the study power based on the information

gathered at the interim look and enough amount of information is necessary to ensure the

quality of sample size re-estimation. In this article, the author also compared a couple of

two-stage adaptive designs -CHW [5] and LR-AD [21, 22] with the traditional two-stage

group sequential design (GS).

Because of the simplicity of two-stage designs and its frequent use in practice,

Shih [34] chose three two stage designs to illustrate the characteristics of different adaptive

designs. Let n1+m be the fixed maximum number of samples, n1 and m denote the sample

sizes at stage 1 and stage 2 respectively; and n2 denote the new sample size for stage 2.

Below are shown the test statistics for the group sequential design, CHW sample size re-

estimation design, and likelihood ratio design, where Z2(n1) indicates that Z2 is dependent

of the sample size n1 at stage 1 and Z2(m) indicates that Z2 is independent of the sample

size at stage 1.

ZGS =

√
n1

n1 +m
Z1 +

√
m

n1 +m
Z2 (m) ,

ZCHW =

√
n1

n1 +m
Z1 +

√
m

n1 +m
Z2 (n1) ,

ZLR =

√
n1

n1 + n2
Z1 +

√
n

n1 + n2
Z2 (n1) .

The advantage of CHW and LR-AD designs is their flexibility. Sample size can

be re-evaluated after interim analysis in LR-AD and CHW designs while GS design has a
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fixed maximum sample size. Through sample size re-estimation, power can be reinforced

in LR-AD and CHW designs [5]. In Figure 2.1 , the difference among these three two-stage

designs was further illustrated.

It can be seen that even though the sample size re-estimation will be done for

the CHW design, the final statistic will be rescaled according to the original maximum

information and the portions of each stage. So in terms of critical values, CHW design and

group sequential design have the same critical values at the interim analysis and the final

analysis. As long as the maximum information for GS or the initial maximum information

for CHW is determined, the critical values are determined and will not be affected by the

interim analysis. This is not the case for the LR-AD design, its’ critical values depend on

the conditional power and the type I error left for the final look.
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Figure 2.1: Comparison of Two-stage Designs

2.2.4 Evaluation of Adaptability – Comparison of Adaptive Designs

Liu et al. [23] talked about the process of selecting a flexible sample size design

based on a proposed performance score, that measured the overall adaptive performance

when the treatment effect was in a pre-determined interval [δL, δU ]. The authors consid-

ered a one-sided hypothesis test with a significance level of α. The variance is known and

is equal to 1. The true treatment difference is δ and δ0 is the pre-specified treatment differ-

ence when the trial is designed. The ideal design is to achieve 100 (1− β) per cent power

and have the ideal fixed sample size which is unachievable because δ is never known in

practice. Fixed sample size can be calculated as

N1−β (δ0) =

(
Z1−β + Z1−α

)2

δ2
0

.

The following definitions are used in the paper:

Sample size ratio is defined as:

SR (N|δ, β) =
Study sample size
Ideal Sample size
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=
N1−β (δ0)

N1−β (δ)

=

(Z1−β+Z1−α)
2

δ2
0

(Z1−β+Z1−α)
2

δ2

=
δ2

δ2
0

.

Measure the adaptive performance of a flexible sample size design using the rel-

ative oversize (ROS) and underpower (RUP) functions:

ROS (δ| fs, β) = E (SR (N|δ, β)− 1)+ / ( fs − 1)× 100%,

RUP
(
δ| fp, β

)
=
[
N1−β − Npow

]
+

/
[

N1−β − N(1− fp)×(1−β)

]
× 100%,

where ‘pow’ denotes the power value of a given flexible sample size design at the true

treatment difference δ, Npow = (Zpow + Z1−α)
2/δ2 is the corresponding sample size, and

fs > 1 and fp < 1 are scaling factors. These two scaling factors can be adjusted depending

on the considerations for underpower and oversize. If underpower is viewed as a more

serious matter, then a small value of fp may be used to penalize even a small reduction in

power from the target value. On the other hand, a small fs may be used to penalize even a

small amount of oversize when oversize is the major concern[23].

Total performance function:

R
(
δ| fp, fs, β

)
= RUP

(
δ| fp, β

)
+ ROS (δ| fs, β)

Average performance score (APS):

APS
(

fp, fs, β
)
=
∫ δU

δL

R
(
δ| fp, fs, β

)
w (δ) dδ
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where w (δ) is a weight function. If it is believed that the true treatment effect is equally

likely over the given interval, a uniform weight may be used. APS value is the smaller the

better. A smaller value of APS indicates that design is closer to the optimal performance

on the considered interval [23].

Simulation studies were conducted to demonstrate that APS provides a useful

tool for the evaluation of study designs and for the determination of a better sample size

strategy through the minimization of APS across designs. In the simulation studies, equal-

spaced GS designs with total 4 looks by using O’Brien Fleming or Pocock boundaries were

used. The best design with the smallest APS was selected among GS designs in each design

category with maximum sample size varying from 40 to 1000 with an increment of 40 [23].

It was shown that both the GS designs with Pocock boundaries and O’Brien Flem-

ing boundaries had much smaller APS compared to fixed sample size designs. GS design

with O’Brien Fleming boundaries had a slightly higher APS then the designs with Pocock

boundaries.

The APS was further improved by allowing sample size re-estimation during the

study. However as the authors pointed out in their conclusion, that it was largely due to the

fact that the maximum sample size for the GS designs cannot be changed while sample size

re-estimation designs can increase the sample size based on the sample size re-estimation.

It also needs to be considered whether it is a fair comparison when different maximum

sample sizes are allowed for different designs. This maximum sample size could either be

the pre-determined maximum sample size or via sample size re-estimation.
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2.3 Key Concepts Used for Adaptive Design Research

2.3.1 Study Level Type I Error Inflation

For adaptive designs, the type I error (overall significance level) is the probability

of at least one significant difference when the null hypothesis is true. Based on Armitage et

al., type I error increases when repeated significance tests are done [2]. The total probability

of rejecting H0 increases when the number of repeated tests (type I error is 0.05 for each

test) grows. Examples are provided in the Table 2.1 [15] below.

Table 2.1: Inflation of Type I error

Number of Tests Overall Null Probability of Rejecting H0*
1 0.05
2 0.08
3 0.11
4 0.13
5 0.14
10 0.19
20 0.25
50 0.32

* Type I error for each test is 0.05.

To overcome this problem, more stringent nominal significance levels for each

repeated test at interim analysis need to be chosen to maintain the overall significance

level at a pre-specified levels.

2.3.2 Type of Boundaries for Group Sequential Designs

In general, there are three types of boundaries. Pocock boundaries use the same

critical value at each look. Similar to Pocock boundaries, Haybittle-Peto type boundaries
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for the first k-1 interim looks are the same. The boundary for the final test is similar to

the fixed sample size design and ensures the total alpha at a pre-specified level. O’Brien-

Fleming boundaries are more stringent at early looks compared to the other two types of

boundaries. Thus, it is more difficult to stop the trial at early stage by using a O’Brien-

Fleming boundary. Below is an example for a clinical trial with a total of 6 looks, a two-

sided type I error rate at 0.05, and the critical value for the first 5 looks for the Haybittle-

Peto boundaries set at α0=0.005 level. Boundaries at each interim look are provided in the

Table 2.2 and Figure 2.2 below.

Table 2.2: Boundaries from Exact Method

Type of Boundary
Modified Haybittle-Peto

Look Information Fraction O’Brien_Fleming Pocock (α0 = 0.005)
1 0.1667 5.0283 2.4532 2.8070
2 0.3333 3.5555 2.4532 2.8070
3 0.5000 2.9031 2.4532 2.8070
4 0.6667 2.5142 2.4532 2.8070
5 0.8333 2.2487 2.4532 2.8070
6 1 2.0528 2.4532 2.0400
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Figure 2.2: Different Types of Boundaries

Boundaries from Exact Method Different type of boundaries can be calculated by us-

ing numeric method. Details for boundary calculation are provided in section 2.3.5. Let

t1, t2,..., tK denote information fraction at each look, δ denote the treatment effect, and

Zt1 , Zt2 , ..., ZtK denote the test statistic at each look. Then,

1. Pocock Boundaries satisfy

P (Zt1 > c, or Zt2 > c, ... or ZtK > c|δ = 0) = α.

2. O’Brien-Fleming Boundaries satisfy

P
(
Zt1

√
t1 > c, or Zt2

√
t2 > c, ... or ZtK

√
tK > c|δ = 0

)
= α.

3. Haybittle-Peto Boundaries satisfy

P
(

Zt1 > c0, or Zt2 > c0, ... or ZtK > cα−α(K−1)|δ = 0
)
= α,
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where c0 = Φ−1 (1− α0) , α0 is predetermined and α0 (K− 1) is the cumulative alpha

spending in the first K− 1 looks.

Boundaries from Alpha Spending Function

All types of boundaries discussed above are discrete sequential boundaries. The

total number of looks needs to be specified in advance. Lan and DeMets [18] proposed a

flexible way to construct discrete sequential boundaries by using a function α∗ (t) where t

is the decision time (information fraction). The boundary at a decision time will be deter-

mined by α∗ (t) and will not be affected by the future time and total number of looks. The

proposed function for Pocock boundaries is α∗ (t) = α ln [1+ (e− 1) t] and the proposed

function for O’Brien-Fleming boundaries is α∗ (t) = 2
(

1−Φ
(

Zα/2√
t

))
. Boundaries for the

above example by using alpha spending functions are provided in the table below. They

are very close to the boundaries from the exact method.

Table 2.3: Boundaries from alpha Spendng Approach

Type of Boundary
Look Information Fraction O’Brien-Fleming Pocock

1 0.1667 5.3667 2.4951
2 0.3333 3.7103 2.4769
3 0.5000 2.9697 2.4550
4 0.6667 2.5387 2.4373
5 0.8333 2.2522 2.4233
6 1 2.0448 2.4121
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2.3.3 Bivariate Normal Distributions for Alpha Adjustment Calculations

Bivariate normal distribution plays an important role in calculating boundaries

and conditional power. Derivations for mean and variance of bivariate normal distribution

under adaptive design setting are provided below. Suppose the treatment effect variables

follow normal distributions with equal variance, i.e. xi ∼ N (µ1, 1) , yi ∼ N (µ2, 1) , where

i = 1, 2, 3, ..., n. Let ∆ = µ1 − µ2, then di = xi − yi ∼ N (∆, 2) , Sn = ∑n
i=1 di ∼ N (n∆, 2n) ,

and Zn =
Sn√
2n
∼ N

(√ n
2 ∆, 1

)
. Let Nmax denote the maximum sample size, ni denotes the

sample size at interim look i, and ti denotes the information fraction at interim look i and

ti =ni/Nmax and ni = Nmax ∗ ti.

The test statistics for any two interim looks will follow a bivariate normal distri-

bution. The test statistics when interim analysis are done after accrual n1 and n2 (> n1)

patients are

Z1 =
Sn1√
2n1
∼ N

(√
n1

2
∆, 1

)
and

Z2 =
Sn2√
2n2
∼ N

(√
n2

2
∆, 1

)
.

The covariance between Z1 and Z2 is

cov (Z1, Z2) = cov
(

Sn1√
2Nt1

,
Sn2√
2Nt2

)
= cov

(
Sn1√
2Nt1

,
(Sn2 − Sn1)− Sn1√

2Nt2

)
= cov

(
Sn1√
2Nt1

,
Sn1√
2Nt2

)
=

1√
2Nt1

1√
2Nt2

var (Sn1)
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=
1√

2Nt1

1√
2Nt2

2n1

=

√
t1

t2
.

Thus (
Z1

Z2

)
∼ N

(
√

n1
2 ∆√
n2
2 ∆

)
,

 1
√

t1
t2√

t1
t2

1


 .

2.3.4 Conditional Power at Interim

Definition of conditional power

Conditional power is the conditional probability of a significant result at the end

of the trial given the data observed thus far [31]. Conditional power is a very useful tool

to define the early stop for futility rule in clinical trials. It also can be used to calculate

the new sample size in the sample size re-estimation design. It is a function of treatment

effect ∆. Usually conditional power is calculated under different assumptions about the

trend of the future data. The trend can be assumed under the current data, under the null

hypothesis, or under the alternative hypothesis as shown in Figure 2.3.

Calculation of conditional power

Conditional power can be calculated as follow:

As we know that when (x1
x2
) ∼ N

(µ1
µ2
),

 ∑11 ∑12

∑21 ∑22


, the distribution for

x2|x1will be

x2|x1 ∼ N
(

µ2 +∑21 ∑−1
11 (x1 − µ1) , ∑22−∑21 ∑11 ∑12

)
.
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Figure 2.3: Different trends for calculation of conditional power

In the adaptive design setting, x1is the Z1 statistic based on the available data thus far and

Z2 is the statistic for a future analysis. Then

(Z2|Z1) ∼ N

(
Z1

√
t1

t2
+

√
N (t2 − t1)

2
√

t2
∆, 1− t1

t2

)
,

where N is the sample size and ∆ is treatment difference under the trend assumption. The

conditional power can be derived by plugging into the above mean and standard error

into the formula below.

CP = P∆ (Z2 > c2|Z1)

= P∆

(
Z2 − E (Z2|Z1)√

var (Z2|Z1)
>

c2 − E (Z2|Z1)√
var (Z2|Z1)

)

= 1−Φ

(
c2 − E (Z2|Z1)√

var (Z2|Z1)

)

= 1−Φ

 c2 − Z1

√
t1
t2
−
√

N(t2−t1)
2
√

t2
∆√

1− t1
t2

 .
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As an example, the conditional power formula used in the simulation study for

the sample size re-estimation in CHW design is provided below. Let nmax be the initial

sample size, nL be the cumulative sample size at interim look for sample size re-estimation,

mmax be the new sample size after sample size re-estimation, and cK be the critical value at

final analysis. The conditional power for CHW design is

CP = P (ZK > cK|ZL)

= P
(√

nL

nmax
ZL +

√
1− nL

nmax
Z∗ > cK|ZL

)

= P

Z∗ >
cK −

√
nL

nmax
ZL√

1− nL
nmax

|ZL


= P

(
Z∗ > cK

√
1+

nL

nmax − nL
− ZL

√
nL

nmax − nL
|ZL

)
,

where Z∗ is the test statistic based on Mmax − NL future observations. Because Z∗ is inde-

pendent of ZL, Z∗|ZL = Z∗ ∼ N
(√

nmax−nL
2

∆
σ , 1
)

, where ∆ is the treatment difference and

σ2 is the population variance. Therefore the conditional power is

CP = 1−Φ
(

cK

√
1+

nL

nmax − nL
− ZL

√
nL

nmax − nL
− ∆
√

mmax − nL√
2σ

)
.

Note that this formula is slightly different than the conditional power used in the

EAST 5.1 manual [6]. In EAST 5.1, the denominator in the last portion is 2σ not
√

2σ. Below

is the reason why it should be
√

2σ.

For simplicity, assume two normal populations x1i ∼ N
(
µ1, σ2) , and x2i ∼

N
(
µ2, σ2). Let ∆ = µ1 − µ2, then (x1 − x2) ∼ N

(
∆, 2σ2

n

)
, and Sn = ∑n

i=1 (x1i − x2i) .

Thus Zn =
Sn√
2nσ2 ∼ N

(√ n
2

∆
σ , 1
)
. So the denominator should be

√
2σ.
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2.3.5 Calculation of Group Sequential Boundaries

The classical approach to calculate the boundaries is to solve the following equa-

tions by using the numeric method.

Under the null hypothesis, the Pocock boundaries satisfy

PH0 (Zt1 > c, or Zt2 > c, ... or ZtK > c) = α.

Under the null hypothesis and the O’Brien-Fleming boundaries satisfy

PH0

(
Zt1

√
t1 > c, or Zt2

√
t2 > c, ... or ZtK

√
tK > c

)
= α,

where t1, t2, . . . , tK are the information fraction at each interim look. As discussed in section

2.3.2, boundaries can also be obtained approximately based on the alpha spending function

approach. Because of the flexibility it provides, the alpha spending function approach is

more often used in practice. For review purposes, the calculations based on the classical

approach is presented in this section.

Density functions of test statistics at interim look k

Denote the (pseudo) density function gk (Zk, ∆) at kth interim look:

gk (Zk, ∆) = f (Zk = x, Z1 < c1, Z2 < c2, ..., Zk−1 < ck−1) .

At each look, this pseudo density function can be computed as:

1) At first interim look:

g1 (Z1, ∆) = f (Z1, ∆) , f (Z1, ∆) is a normally distributed with mean
√

Nt1
2 ∆ and

a variance of 1. Thus g1 (Z1, ∆) = Φ
(

Z1 −
√

Nt1
2 ∆

)
.
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2) At second interim look:

Since

f (Z2|Z1, ∆) ∼ N

(√
Nt2

2
∆+

√
t1

t2

(
Z1 −

√
Nt1

2
∆

)
, 1− t1

t2

)
,

P (Z2 < x, Z1 < c1) =
∫ c1

−∞
P (Z2 < x) g1 (Z1, ∆) dZ1

=
∫ c1

−∞
P


(

Z2 −
√

Nt2
2 ∆

)
−
√

t1
t2

(
Z1 −

√
Nt1

2 ∆
)

√
1− t1

t2

<

(
x−

√
Nt2

2 ∆
)
−
√

t1
t2

(
Z1 −

√
Nt1

2 ∆
)

√
1− t1

t2

 g1 (Z1, ∆) dZ1

=
∫ c1

−∞
Φ


(

x−
√

Nt2
2 ∆

)
−
√

t1
t2

(
Z1 −

√
Nt1

2 ∆
)

√
1− t1

t2

 g1 (Z1, ∆) dZ1.

Taking derivative with respect to x, we get:

gk (Zk, ∆)=
∫ ck−1

−∞

√
tk

tk − tk−1
φ


(

x−
√

Ntk
2 ∆

)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk


∗ gk−1 (Zk−1, ∆) dZk−1.

3) Similarly, at kth interim look:

Since

f (Zk|Zk−1, ∆) ∼ N

(√
Ntk

2
∆+

√
tk−1

tk

(
Zk−1 −

√
Ntk−1

2
∆

)
, 1− tk−1

tk

)
,

P (Zk < x, Z1 < c1, Z2 < c2, ..., Zk < ck)

=
∫ ck−1

−∞
P (Zk < x) gk−1 (Zk−1, ∆) dZk−1
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=
∫ ck−1

−∞
P


(

Zk −
√

Ntk
2 ∆

)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk

<

(
x−

√
Ntk

2 ∆
)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk

 gk−1 (Zk−1, ∆) dZk−1

=
∫ ck−1

−∞
Φ


(

x−
√

Ntk
2 ∆

)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk

 gk−1 (Zk−1, ∆) dZk−1.

Taking derivative with respect to x, we get:

gk (Zk, ∆)=
∫ ck−1

−∞

√
tk

tk − tk−1
φ


(

x−
√

Ntk
2 ∆

)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk


∗ gk−1 (Zk−1, ∆) dZk−1.

Calculation of Boundaries: Under the null hypothesis, ∆ = 0. Two-sided symmetric

Pocock boundaries can be calculated numerically by solving the following equation using

the bi-section method. Integrations will be done by applying Simpson’s rule

α = PH0 (Zt1 > c, or Zt2 > c, ... or ZtK > c)

= PH0 (Z1 > c) + PH0 (Z1 < c, Z2 > c) + ...+ PH0 (Z1 < c, Z2 < c, ..., ZK−1 < c, ZK > c)

= 1−Φ (c) +
∫ c

−∞

1−Φ

 c−
√

t1
t2

Z1√
1− t1

t2

 g1 (Z1, 0) dZ1 + ...

+
∫ c

−∞

1−Φ

 c−
√

tK−1
tK

ZK√
1− tK−1

tK

 gK−1 (ZK−1, 0) dZK−1.

Same as Pocock boundaries, O’Brien Fleming boundaries can be calculated by

replacing the integration upper limit by c√
ti

, where ti is the information fraction at each

look.
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2.3.6 Expected Sample Size for Group Sequential Designs

Under the alternative hypothesis Ha : ∆ = θ, the expected sample size can be

calculated. Boundaries are known now. The expected sample size is

E (N) =
K−1

∑
k=1

PHa (Z1 < c1, Z2 < c2, ..., Zk−1 < ck, Zk > ck) ∗ nk

+ nK

(
1−

K−1

∑
k=1

PHa (Z1 < c1, Z2 < c2, ..., Zk−1 < ck, Zk > ck)

)
,

where N and nk are the total sample size and the sample size at kth look.

PHa (Z1 < c1, Z2 < c2, ..., Zk−1 < ck, Zk > ck) is the probability of stopping the trial

at kth look, we have

PHa (Z1 < c1, Z2 < c2, ..., Zk−1 < ck, Zk > ck)

=
∫ c

−∞
1−Φ


(

ck −
√

Ntk
2 ∆

)
−
√

tk−1
tk

(
Zk−1 −

√
Ntk−1

2 ∆
)

√
1− tk−1

tk

 gk−1 (Zk−1, ∆) dZk−1.
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Chapter 3

Expected Sample Size for Two-stage

Sample Size Re-estimation Designs

The expected sample size for group sequential designs can be calculated as speci-

fied in section 2.3.6. In this chapter, the expected sample size for weighted and unweighted

sample size re-estimation designs with total 2 looks (two-stage sample size re-estimation

designs) will be derived. For simplicity, it is assumed no futility test will be done at the

interim analysis and no sample size reduction will be allowed.

3.1 Notation

The following notations will be used in this section:

n1 and n2 : Planned one arm sample size at first and second stage

n2max : the maximum sample size allowed at stage 2 after sample size re-estimation
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n∗2 : adjusted sample size at stage 2

t1 : Information fraction at first stage, t1 =
n1

n1 + n2

c1 and c2 : Boundary at first and second stage

Z1 and Z2 : Z-score at first and second stage

δ : True treatment effect

δ̂ : Estimated treatment effect at interim, δ̂ = Z1

√
2
n1

CP0 : Targeted conditional power for sample size adjustment at interim look

ZCP0
: Corresponding Z-score for CP0

3.2 Weighted two-stage sample size re-estimation design

For the weighted sample size re-estimation design, the expected sample size is

derived separately based on if there is a limitation for the maximum sample size.

3.2.1 With restriction of maximum sample size at second stage

For two-stage CHW design, the conditional power is computed as:

CP = P(Z2 > c2|Z1)

= 1−Φ

 c2 −
√

n1+n∗2
2 δ̂−

√
t1(Z1 −

√
n1
2 δ̂)

√
1− t1


= 1−Φ

 c2 −
√

n1+n∗2
n1

Z1
√

1− t1

 .
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A more generalized conditional power formula for CHW design with multiple looks can

be found in Appendix A.

When CP ≥ CP0 , no sample size adjustment is needed (n∗2 = n2)

CP ≥ CP0

⇔ Z1 ≥
√

t1 (1− t1)ZCP0
+
√

t1c2.

Let b =
√

t1 (1− t1)ZCP0
+
√

t1c2, then we have

CP ≥ CP0 ⇔ Z1 ≥ b,

and

CP < CP0 ⇔ Z1 < b.

When CP < CP0 , sample size will be adjusted. By setting CP = CP0 , we have

n∗2 = n1

(√1− t1ZCP0
+ c2

Z1

)2

− 1

 .

When CP is extremely small, say when n∗2 > n2max , the adjusted sample size will be set to

n2max .

n∗2 = n1

(√1− t1ZCP0
+ c2

Z1

)2

− 1

 > n2max

⇔ Z1 <

√
1− t1ZCP0

+ c2√
n1+n2 max

n1

.

Let a =
√

1−t1ZCP0
+c2√

n1+n2 max
n1

, we have

n∗2 > n2max ⇔ Z1 < a.

Furthermore, we have

b =
√

t1 (1− t1)ZCP0
+
√

t1c2
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=
√

t1 (1− t1)

√
n1 + n2 max

n1
ZCP0

+
√

t1

√
n1 + n2 max

n1
c2

=

√
n1

n1 + n2

n2

n1 + n2

√
n1 + n2 max

n1
ZCP0

+

√
n1

n1 + n2

√
n1 + n2 max

n1
c2

=
√

1− t1

√
n1 + n2 max

n1 + n2
ZCP0

+

√
n1 + n2 max

n1 + n2
c2

= a
√

n1 + n2 max

n1 + n2
.

Since
√

n1+n2 max
n1+n2

≥ 1, we have b ≥ a. Hence the expected sample size can be computed as

E(N|δ) = 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P(CP ≥ CP0 and Z1 ≤ c1|δ)

+
∫

CP<CP0 & z1≤c1

2 (n1 + n∗2) φ (z1|δ) dz1

= 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P(b ≤ Z1 ≤ c1|δ)

+
∫

z1≤min(b,c1)

2 (n1 + n∗2) φ (z1|δ) dz1

= 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P (b ≤ Z1 ≤ c1|δ) + 2(n1+n2max)P (Z1 < min(a, c1)|δ)

+ 2
∫ b

a

n1 + n1

(√1− t1ZCP0
+ c2

z1

)2

− 1

 φ (z1|δ) I(z1 ≤ c1)dz1

= 2n1

[
P(Z1 > c1) + P (b ≤ Z1 ≤ c1) + P (Z1 < min(a, c1)) +

∫ b

a
φ (z1|δ) I(z1 ≤ c1)dz1

]
+ 2n2P (b ≤ Z1 ≤ c1) + 2n2max P (Z1 < min(a, c1))

+ 2
∫ b

a
n1

(√1− t1ZCP0
+ c2

Z1

)2

− 1

 φ (z1|δ) I(z1 ≤ c1)dz1

= 2n1 + 2n2P (b ≤ Z1 ≤ c1) + 2n2max P (Z1 < min(a, c1))

+ 2
∫ b

a
n1

(√1− t1ZCP0
+ c2

Z1

)2

− 1

 φ (z1|δ) I(z1 ≤ c1)dz1

Since the observed treatment difference follows a normal distribution with mean
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δ and variance of 2, we have Z1 ∼ N
(√

n1
2 δ, 1

)
.

Thus

E(N|δ) = 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P(CP ≥ CP0 and Z1 ≤ c1|δ)

+
∫

CP<CP0 & z1≤c1

2 (n1 + n∗2) φ (z1|δ) dz1

= 2n1 + 2n2

[
Φ
(

c1 −
√

n1

2
δ

)
−Φ

(
b−

√
n1

2
δ

)]
I(b ≤ c1)

+ 2n2max Φ
(

min(a, c1)−
√

n1

2
δ

)

+ 2
∫ b

a
n1

(√
1− t1ZCP0

+ c2

z1

)2

φ (z1|δ) I(z1 ≤ c1)dz1

− 2
∫ b

a
n1φ (z1|δ) I(z1 ≤ c1)dz1

= 2n1 + 2n2

[
Φ
(

c1 −
√

n1

2
δ

)
−Φ

(
b−

√
n1

2
δ

)]
I(b ≤ c1)

+ 2n2max Φ
(

min(a, c1)−
√

n1

2
δ

)
− 2n1

[
Φ
(

min(b, c1)−
√

n1

2
δ

)
−Φ

(
a−

√
n1

2
δ

)]
I(a < c1)

+ 2n1

(√
1− t1ZCP0

+ c2

)2 ∫ b

a

(
1
z1

)2

φ (z1|δ) I(z1 ≤ c1)dz1, (3.1)

Since there is no closed form formula for

∫ b

a

(
1
z1

)2

φ (z1|δ) I(z1 ≤ c1)dz1

=
∫ b

a

(
1
z1

)2
 1√

2π
e−

(
Z1−
√ n1

2 δ

)2

2

 I(z1 ≤ c1)dz1,

numeric method will be used to evaluate the integration. Simulations are done for two-

stage sample size re-estimation designs and two-stage group sequential designs. Compar-

isons between theoretical calculation and simulation are presented in Tables 3.1 and 3.2

and Figure 3.1. Results from simulations are very close to the theoretical results.
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Figure 3.1: Expected Sample Size for Two-stage GS Designs and Weighted Sample Size
Re-estimation Designs
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3.2.2 Without restriction of maximum sample size at the second stage

Method 1: Since

lim
n2max→∞

a = 0,

where

a =

√
1− t1ZCP0

+ c2√
n1+n2 max

n1

,

and b =
(√

1− t1ZCP0
+ c2

)√
t1 does not depend on n2max , all parts in equation 3.1 are

finite except 2n2max Φ
(

min(a, c1)−
√

n1
2 δ
)

which will go to infinity when n2max goes to in-

finity. Thus, when n2 max → ∞, the expected sample size will go to infinity.

Method 2:

E(N|δ) = 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P(CP ≥ CP0and Z1 ≤ c1|δ)

+
∫

CP<CP0 & Z1≤c1

2 (n1 + n∗2) φ (z1|δ) dz1

= 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P(b ≤ Z1 ≤ c1|δ) +
∫

z1≤min(b,c1)

2 (n1 + n∗2) φ (z1|δ) dz1

= 2n1P(Z1 > c1|δ) + 2 (n1 + n2) P (b ≤ Z1 ≤ c1|δ)

+ 2
∫ b

−∞

n1 + n1

(√1− t1ZCP0
+ c2

z1

)2

− 1

 φ (z1|δ) I(z1 ≤ c1)dz1

= 2n1

[
P(Z1 > c1|δ) + P (b ≤ Z1 ≤ c1|δ) +

∫ b

−∞
φ (z1|δ) I(z1 ≤ c1)dz1

]

+ 2n2P (b ≤ Z1 ≤ c1|δ) + 2
∫ b

−∞
n1

(√1− t1ZCP0
+ c2

z1

)2

− 1

 φ (z1|δ) I(z1 ≤ c1)dz1

= 2n1 + 2n2

[
Φ
(

c1 −
√

n1

2
δ

)
−Φ

(
b−

√
n1

2
δ

)]
I(b ≤ c1)

+ 2n1

(√
1− t1ZCP0

+ c2

)2 ∫ b

−∞

(
1
z1

)2

φ (z1|δ) I (z1 ≤ c1) dz1
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− 2n1

∫ b

−∞
φ (z1|δ) I (z1 ≤ c1) dz1

= 2n1 + 2n2

[
Φ
(

c1 −
√

n1

2
δ

)
−Φ

(
b−

√
n1

2
δ

)]
I(b ≤ c1)

− 2n1Φ
(

min(b, c1)−
√

n1

2
δ

)

+ 2n1

(√
1− t1ZCP0

+ c2

)2 ∫ b

−∞

(
1
z1

)2
 1√

2π
e−

(
Z1−
√ n1

2 δ

)2

2

 I (z1 ≤ c1) dz1,

where

b =
√

t1 (1− t1)ZCP0
+
√

t1c2.

Since 1
Z2

1
diverges for integral include 0,

∫ b

−∞

(
1
z1

)2
 1√

2π
e−

(
Z1−
√ n1

2 δ

)2

2

 I (z1 ≤ c1) dz1 = ∞.

When n2 max → ∞, the expected sample size will go to infinity. So method 1 and method 2

led to the same conclusion that the expected sample size will go to infinity when there is

no restriction on the sample size allowed in the second stage.

3.3 Unweighted two-stage sample size re-estimation design

In weighted two-stage design, the adjusted sample size n∗2 for stage 2 is calculated

by solving the equation

CP = CP0 ,

where

CP = 1−Φ

 c2 −
√

n1+n∗2
n1

Z1
√

1− t1

 ,
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and

n∗2 = n1

(√1− t1ZCP0
+ c2

Z1

)2

− 1

 ,

where c2 is the boundary at stage 2 determined by the initial sample size and the informa-

tion fraction at stage 1.

The calculation of expected sample size for unweighted design will depend on

how the conditional power (CP) is calculated. One way to calculate CP is the same as in

the weighted design,

CP = 1−Φ

 c2 −
√

n1+n∗2
n1

Z1
√

1− t1

 ,

where c2 is the boundary at stage 2 determined by the initial sample size and the informa-

tion fraction at the interim analysis. In this case, because the adjusted sample size is not

calculated based on the adjusted boundary at stage 2, the calculation of expected sample

size will be the same as the weighted method.

Another way to calculate CP is to use the adjusted boundary c∗2 and

CP = 1−Φ

 c∗2 −
√

n1+n∗2
n1

Z1
√

1− t1

 .

However, in order to calculate the expected sample size, certain relationship between c∗2

and n∗2 has to be assumed.
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Chapter 4

Methods of Evaluation of Adaptive

Design Performance

4.1 Determination of treatment effect interval

An appropriately selected treatment effect interval will have the robustness against

the unknown true treatment effect in terms of average sample size and power. Treatment

effect interval should be determined based on the combination of multiple considerations.

Determination of the lower limit of treatment effect interval should be based on (1) clini-

cal meaningful treatment difference, (2) medical policies, such as restriction of medication

price, and (3) company financial considerations. Determination of upper limit of treat-

ment effect interval should be based on (1) the minimum number of patients needed for

adequate safety evaluation of the test drug and (2) a realistic estimate of the largest treat-

ment difference.
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Figure 4.1: True Treatment Effect Function and Fixed Sample Size Design

4.2 Golden Standard for Performance Comparisons

In order to compare the performance for different adaptive designs, a function

of the true treatment effect δ on the treatment effect interval [δL, δU ] is used as the golden

standard. When comparing the sample size, this function is

u (δ) =
2
(
zβ + zα/2

)2

δ2 ,

where α and β are the pre-specified type I error and type II error for the study. Sample size

curves for the true treatment effect and for the fixed sample size design are illustrated in

Figure 4.1. When comparing the power, this function is

p (δ) = 1− β.
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4.3 Relationship between the True Treatment Effect Function and

the Fixed Sample Size Design

Without knowing the true treatment effect δ, the sample size for fixed sample

size design has to be calculated based on an estimated effect δ̂ from a previous study or

historical data. Sample size cannot be changed during the study. Only when δ̂ is equal to

true treatment effect δ, the fixed sample size design will have the ideal performance. When

δ̂ is shifted away from the δ, the fixed sample size design will be either under powered (if

δ̂ < δ) or oversized (if δ̂ > δ). Its performance will be much worse than the performance

of true treatment effect function at all other non-true treatment effects.

4.4 Measurements of Performance

4.4.1 Regret

Regret function in decision theory can be used to measure the performance of a

design at the true treatment effect δ on the interval. Define regret as

l
(

Ŝ (δ) ; S (δ)
)
=
∣∣∣Ŝ (δ)− S (δ)

∣∣∣ , δ ∈ [δL, δU ] ,

where S (δ) is the sample size or power at the true δ and Ŝ (δ) is the estimated sample size

or the power based on the design.

Regret for sample size is defined as the difference between the average sample

size of adaptive design and the sample size from the true treatment effect function at δ.

Regret for power is defined as the difference between the average power of adaptive design
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and the power from the true treatment effect function at δ. The smaller the Regret is, the

better the adaptive design performance is.

4.4.2 Failure Rate

Regret only measures the performance of adaptive design at a particular point on

a treatment effect interval. It is important to identify a criterion to measure the cumulative

performance on the treatment effect interval.

Failure and Failure Rate

At each point on the treatment effect interval, it is considered a failure when the

sample size for a particular design at that point is more than 1
fs

(usually 1
fs
= 2) times

the sample size based on the true treatment effect or the power decreased more than fp

(usually 20%) of the power for the true treatment effect, where 0 < fs < 1 and 0 < fp < 1.

The failure rate is defined as the proportion of points that meet the failure criteria on the

treatment effect interval. A lower failure rate indicates a better performance of the adaptive

design.

Failure Rate for Fixed Sample Size Design

Denote the sample size at the true treatment effect δ as U (δ) and n0 the sample

size calculated based on the fixed sample size design. Based on the above criteria, a failure

occurs when n0 is larger than 1
fs

U (δ) . Because the sample size curve for the true treatment

effect is monotone, it is very easy to see that failure occurs for all δ > δ f n on the interval,

where δ f n =

√
2(Zα/2+Zβ)

2

fsn0
.
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The targeted power on the interval for true treatment effect function is always

1− β. Using the above criteria, it is a failure when power is decreased more than fp times

of the targeted power. Also, because of the monotonicity of power curves given the sample

size n0 calculated based on the fixed sample size design, it can be seen that the failure

occurs for all δ < δ f β on the interval, where δ f β =

√
2
(

Zα/2+Z1− fp(1−β)

)2

n0
.

Thus the total failure rate on a treatment effect interval is defined as:

R f =

(
δU − δ f n

)
+
(
δ f β − δL

)
δU − δL

× 100%.

Below is an example of failure rate for fixed sample designs. When treatment

effect interval is [0.0882, 0.5] and assume fs =
1
2 and fp = 0.2, the failure rates at different

sample sizes for fixed designs are

1) Failure rate for fixed sample size design with sample size calculation at δU :

R f = (0.4131− 0.0882)/(0.5− 0.0882)× 100% = 78.9%. As indicated in Figure

4.2, when treatment effect falls into the region (0.0882< δ <0.4131), power decreases more

than 20% of the true treatment effect function for power (1− β = 80%).

2) Failure rate for fixed sample size design with sample size calculation at δL:

R f = (0.5− 0.1247)/(0.5− 0.0882)× 100% = 91.1%. As indicated in Figure 4.3,

when treatment effect falls into the region (0.1247 < δ <0.5), sample size is more than two

times of the sample size from the true treatment function.
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Figure 4.2: failure Rate of Power for Fixed Sample Size Design at δU

Figure 4.3: Failure Rate of Sample Size for Fixed Sample Size Design at δL
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3) Failure rate for fixed sample size design with sample size calculation at δM =

√
δLδU :

R f = [(0.5 − 0.2968) + (0.1738 − 0.0882)]/(0.5 − 0.0882) ∗ 100% = 70.1%. As

indicated in Figure 4.4 and Figure 4.5, when treatment difference falls into the red region

(0.0882< δ<0.1738), power decreases more than 20% of the power from the true treatment

effect function; when treatment difference falls into the red region (0.2968 < δ <0.5), sam-

ple size is more than two times of the sample size from the true treatment effect function.

Generalization of Failure Rate

A generalized formula for failure rate on a treatment effect interval is:

R f =
∫ δU

δL

1( g(x)
u(x)>

1
fs

or 1− f (x)
p(x)> fp

) (x)W (x) dx,

where g(x) and f (x) denote the sample size and power for adaptive design when treat-

ment effect is x, and u(x) and p (x) denote the sample size and power from the true treat-

ment effect function when treatment effect is x. W (x) denotes the weight assigned to

δ ∈ [δL, δU ] which will be a probability density function on the treatment effect interval.

When treatment effects have a uniform distribution, W (x) will be equal to 1/ (δU − δL).

Treatment effect also can be assumed to follow other distributions. In the later sections,

treatment effect will be considered to follow a uniform distribution or a beta distribution.
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Figure 4.4: Failure Rate of Power for Fixed Sample Size Design at δM

Figure 4.5: Failure Rate of Sample Size for Fixed Sample Size Design at δM
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4.4.3 Area Between Curves (ABC) of Adaptive Design and True Treatment Ef-

fect Function

To measure the deviation from the true treatment effect function, ABC for each

adaptive design and true treatment effect function can be calculated on the treatment effect

interval (see Figure 4.6 ). Define ABC as

ABC =
∫ δU

δL

|g (x)− u (x)| dx.

Performance can be evaluated by comparing ABC for different designs. The smaller the

area between the curves is, the better the performance is.

Area between Log Curves (ABLC) for Adaptive Design and True Treatment Effect Func-

tion

One can interpret g (x)− u(x) as the absolute sample size difference between the

adaptive design and the true treatment effect function. However, since the ratio of g (x)

to u (x) measures the relative difference, it is more appropriate to be used to measure the

deviation from the golden standard. For easier interpretation, log ratio can be calculated.

We have

log
g (x)
u (x)

= log g (x)− log u (x)

Define ABLC as

ABLC =
∫ δU

δL

| log (g (x))− log (u (x))| dx.

ABLC will be used to compare the performance in the next sections.
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Figure 4.6: Area Between Curves

Figure 4.7: Area Between Log Curves
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Chapter 5

Performance of Adaptive Designs

when Treatment Effect Follows a

Uniform Distribution

5.1 Method

In this chapter, the performance of group sequential designs, weighted sample

size re-estimation designs (CHW method), and unweighted sample size re-estimation de-

signs on an treatment effect interval are evaluated. It is assumed that treatment effect

follows a uniform distribution. Thus, the probability of observing a treatment effect is the

same on the treatment effect interval.

For group sequential designs, under a pre-specified total number of looks and

maximum sample size, study is allowed to stop for efficacy at the interim analysis. CHW
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design is used as a representation of weighted design. For design selected for unweighted

method, boundaries for the interim looks after the sample size re-estimation are adjusted to

maintain the overall type I error rate based on the original information time. For weighted

and unweighted sample size re-estimation designs, an initial sample size is selected based

on the sample size at δL, δU ,and δM. Sample size can be increased based on the interim

finding on treatment effect size during the study. But, there is a restriction for the maxi-

mum allowed sample size. Sample size re-estimation can be done based on the conditional

power at selected look before the final analysis. Effects on the patient increment types and

different adaptive index are studied. Performance scores under different patient increment

or adaptive index are compared.

Four types of boundaries - O’Brien and Fleming type boundaries (OBF), Pocock

type boundaries (PK), Haybittle-Peto boundaries with critical value of 0.01 (HP01), and

Haybittle-Peto boundaries with critical value of 0.005 (HP005) are used in the performance

comparisons (see table below). For group sequential designs and weighted sample size re-

estimation designs, boundaries at each interim look and final look are fixed. However, for

unweighted sample size re-estimation design, since sample size will be updated based on

the interim finding, the information time needs to be updated. Thus, the boundaries after

the sample size re-estimation look needs to be recalculated as well.

The effect of different patient increment patterns are also studied. Performance

is compared when patient increment is equal-spaced or unequal-spaced with 2 time incre-

ments. Information time for each analysis is calculated based on the total number of looks

and the types of increment as shown in Tables 5.1 and 5.2.
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Table 5.1: Boundaries Used for Equal-spaced Designs

Total
Looks Method Look 1 Look 2 Look 3 Look 4 Look 5 Look 6

2 Information Time 0.5000 1.0000
OBF 2.7965 1.9774
Pocock 2.1783 2.1783
HP01 2.5758 2.0027
HP005 2.8070 1.9767

3 Information Time 0.3333 0.6667 1.0000
OBF 3.4711 2.4544 2.0040
Pocock 2.2895 2.2895 2.2895
HP01 2.5758 2.5758 2.0458
HP005 2.8070 2.8070 1.9933

4 Information Time 0.2500 0.5000 0.7500 1.0000
OBF 4.0486 2.8628 2.3375 2.0243
Pocock 2.3613 2.3613 2.3613 2.3613
HP01 2.5758 2.5758 2.5758 2.0897
HP005 2.8070 2.8070 2.8070 2.0096

5 Information Time 0.2000 0.4000 0.6000 0.8000 1.0000
OBF 4.5617 3.2256 2.6337 2.2809 2.0401
Pocock 2.4132 2.4132 2.4132 2.4132 2.4132
HP01 2.5758 2.5758 2.5758 2.5758 2.1349
HP005 2.8070 2.8070 2.8070 2.8070 2.0251

6 Information Time 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000
OBF 5.0283 3.5555 2.9031 2.5142 2.2487 2.0528
Pocock 2.4532 2.4532 2.4532 2.4532 2.4532 2.4532
HP01 2.5758 2.5758 2.5758 2.5758 2.5758 2.1823
HP005 2.8070 2.8070 2.8070 2.8070 2.8070 2.0400
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Table 5.2: Boundaries Used for Unequal-spaced Designs

Total
Looks Method Look 1 Look 2 Look 3 Look 4 Look 5 Look 6

3 Information Time 0.2500 0.5000 1.0000
OBF 3.9552 2.7967 1.9776
Pocock 2.3118 2.3118 2.3118
HP01 2.5758 2.5758 2.0714
HP005 2.8070 2.8070 2.0058

4 Information Time 0.1250 0.2500 0.5000 1.0000
OBF 5.5935 3.9552 2.7967 1.9776
Pocock 2.4085 2.4085 2.4085 2.4085
HP01 2.5758 2.5758 2.5758 2.1599
HP005 2.8070 2.8070 2.8070 2.0408

5 Information Time 0.0625 0.1250 0.2500 0.5000 1.0000
OBF 7.9104 5.5935 3.9552 2.7967 1.9776
Pocock 2.4843 2.4843 2.4843 2.4843 2.4843
HP01 2.5758 2.5758 2.5758 2.5758 2.2751
HP005 2.8070 2.8070 2.8070 2.8070 2.0803

6 Information Time 0.0313 0.0625 0.1250 0.2500 0.5000 1.0000
OBF 11.1870 7.9104 5.5935 3.9552 2.7967 1.9776
Pocock 2.5464 2.5464 2.5464 2.5464 2.5464 2.5464
HP01 2.5758 2.5758 2.5758 2.5758 2.5758 2.4407
HP005 2.8070 2.8070 2.8070 2.8070 2.8070 2.1244
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5.2 Simulation Plan

Simulations for adaptive designs will be based on the steps outlined below:

Step 1: Identify an interval of exploration and the maximum and minimum allowed sam-

ple size on the basis of early study results and literature.

Step 2: Choose candidate adaptive designs to be considered - group sequential designs

with O’Brien Fleming boundary, Pocock boundary, Haybittle-Peto type boundary or

sample size re-estimation designs using CHW method etc.

Step 3: Determine the following design parameters:

1. Adaptive index

2. Maximum sample size for group sequential designs and initial sample size for

sample size re-estimation designs

3. Total number of looks

4. Types of information increment

5. Time of sample size re-estimation for sample size re-estimation designs

6. Adjustment of sample size at the predetermined interim look

Step 4: Obtain average sample size and power for 11 evenly spread treatment effects on

the selected treatment effect interval for each design via Monte Carlo simulations

Step 5: Get the sample size and power curve on the treatment effect interval through

interpolation
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Step 6: Measure the performance for each adaptive design

All simulation results are based on 10000 runs for each treatment effect. Simula-

tions are repeated based on different simulation parameters specified in step 3.

5.3 Results

5.3.1 Performance of adaptive designs

Performance for each adaptive design on the treatment effect interval [0.0882, 0.5]

was measured by failure rate and log area between curves. For group sequential design,

performance is evaluated at different maximum allowed sample sizes - 2018, 356, and 63

which are the sample sizes in fixed sample size design when treatment effects are δL, δM,

and δU . For sample size re-estimation designs, 356 is used as initial sample size (ninit) and

the maximum allowed sample size after sample size re-estimation is 2018. Sample size

re-estimation is based on a targeted conditional power of 80%. The method for calculating

the new sample size is specified in section 3.2.

Performance scores for equal-spaced (patient increment) group sequential de-

signs, weighted sample size re-estimation designs, and unweighted sample size re-estimation

designs are presented in Tables 5.3, 5.5, and 5.7 respectively. Performance for designs with

unequal-spaced 2-times increment are displayed in Tables 5.4, 5.6, and 5.8. Sample size

and power curves for selected adaptive designs when treatment effect follows a uniform

distribution are displayed in Appendix B.

In general for group sequential designs, when the maximum allowed sample size

(nmax) is 356, the performance scores are better than the scores when nmax is 63 or 2018.
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There is a exception when the unequal-spaced patient increment is used. The best per-

formance is observed when nmax is 2018. For weighted method, the best performance is

obtained when the initial sample size is 356. When the initial sample size is 63, the sample

size re-estimation is done based on very limited information and is not reliable. Thus, the

performance scores are low. When the initial sample size is 2018, since no sample size re-

estimation could be done, the sample size re-estimation designs become group sequential

designs. Based on these observations on the weighted designs, unweighted designs are

done only when initial sample size is 356.

Table 5.3: Performance Score Results for Equal Spaced GS Designs

nmax=63 nmax=356 nmax=2018
Total Looks Method R f ABLC R f ABLC R f ABLC

2 OBF 0.80 0.56 0.50 0.27 0.82 0.65
Pocock 0.86 0.64 0.45 0.27 0.79 0.64
HP01 0.81 0.58 0.46 0.27 0.81 0.65
HP005 0.80 0.56 0.50 0.27 0.82 0.65

3 OBF 0.81 0.58 0.46 0.26 0.81 0.54
Pocock 0.88 0.69 0.25 0.24 0.70 0.51
HP01 0.81 0.61 0.25 0.23 0.72 0.52
HP005 0.81 0.58 0.29 0.23 0.74 0.52

4 OBF 0.81 0.60 0.42 0.26 0.79 0.49
Pocock 0.89 0.72 0.25 0.22 0.62 0.42
HP01 0.83 0.63 0.22 0.21 0.64 0.43
HP005 0.80 0.59 0.21 0.22 0.66 0.44

5 OBF 0.80 0.61 0.37 0.25 0.76 0.46
Pocock 0.91 0.73 0.26 0.22 0.56 0.36
HP01 0.83 0.65 0.23 0.20 0.57 0.37
HP005 0.80 0.60 0.22 0.21 0.61 0.38

6 OBF 0.80 0.62 0.33 0.25 0.75 0.46
Pocock 0.92 0.75 0.26 0.22 0.50 0.32
HP01 0.85 0.67 0.24 0.20 0.51 0.32
HP005 0.82 0.61 0.22 0.20 0.54 0.33
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Table 5.4: Performance Score Results for Unequal Spaced 2-times Increment GS

Designs

nmax=63 nmax=356 nmax=2018
Total Looks Method R f ABLC R f ABLC R f ABLC

3 OBF 0.80 0.56 0.46 0.26 0.81 0.49
Pocock 0.90 0.69 0.26 0.22 0.62 0.42
HP01 0.83 0.61 0.22 0.21 0.64 0.43
HP005 0.80 0.57 0.21 0.23 0.67 0.44

4 OBF 0.79 0.56 0.46 0.26 0.81 0.47
Pocock 0.93 0.72 0.27 0.20 0.39 0.25
HP01 0.85 0.64 0.24 0.20 0.40 0.27
HP005 0.82 0.59 0.22 0.21 0.44 0.29

5 OBF 0.79 0.56 0.46 0.26 0.81 0.47
Pocock 0.96 0.74 0.28 0.21 0.05 0.15
HP01 0.90 0.67 0.25 0.20 0.07 0.17
HP005 0.83 0.60 0.23 0.21 0.14 0.21

6 OBF 0.80 0.56 0.46 0.26 0.81 0.47
Pocock 0.99 0.75 0.29 0.21 0.00 0.12
HP01 0.95 0.71 0.28 0.21 0.00 0.13
HP005 0.85 0.61 0.23 0.21 0.00 0.18

Table 5.5: Performance Score Results for Equal Spaced
Weighted Sample Size Re-estimation Designs

n_init=63 n_init=356 n_init=2018
Total Reestimation
Look Look Method R f LABC R f LABC R f LABC

2 1 OBF 0.90 0.44 0.44 0.26 0.82 0.65
Pocock 0.93 0.45 0.31 0.25 0.79 0.64
HP01 0.90 0.44 0.36 0.26 0.81 0.65
HP005 0.89 0.43 0.51 0.27 0.82 0.65

3 1 OBF 0.67 0.29 0.39 0.23 0.81 0.54
Pocock 0.71 0.30 0.07 0.17 0.70 0.51
HP01 0.68 0.30 0.10 0.19 0.71 0.51
HP005 0.71 0.31 0.17 0.21 0.74 0.52

2 OBF 0.94 0.41 0.32 0.23 0.81 0.54
Pocock 0.99 0.44 0.07 0.18 0.70 0.51
HP01 0.94 0.41 0.09 0.19 0.72 0.52
HP005 0.94 0.41 0.13 0.20 0.74 0.52

4 1 OBF 0.54 0.24 0.32 0.21 0.79 0.49
Pocock 0.54 0.23 0.06 0.14 0.63 0.42
HP01 0.50 0.23 0.05 0.15 0.64 0.43
HP005 0.53 0.24 0.04 0.18 0.67 0.44

2 OBF 0.68 0.27 0.27 0.20 0.79 0.49
Pocock 0.83 0.30 0.06 0.13 0.63 0.42



60

Table 5.5: Performance Score Results for Equal Spaced
Weighted Sample Size Re-estimation Designs

HP01 0.84 0.29 0.05 0.14 0.64 0.43
HP005 0.85 0.30 0.04 0.17 0.67 0.44

3 OBF 0.96 0.40 0.27 0.21 0.79 0.49
Pocock 1.03 0.45 0.08 0.15 0.63 0.42
HP01 0.98 0.41 0.06 0.15 0.64 0.43
HP005 0.96 0.40 0.06 0.17 0.66 0.44

5 1 OBF 0.55 0.23 0.28 0.21 0.76 0.46
Pocock 0.38 0.19 0.06 0.12 0.56 0.36
HP01 0.33 0.20 0.05 0.13 0.57 0.37
HP005 0.38 0.21 0.04 0.16 0.60 0.38

2 OBF 0.38 0.23 0.21 0.18 0.76 0.46
Pocock 0.52 0.23 0.06 0.11 0.56 0.36
HP01 0.45 0.23 0.04 0.12 0.57 0.36
HP005 0.73 0.25 0.04 0.15 0.60 0.38

3 OBF 0.81 0.27 0.21 0.18 0.76 0.46
Pocock 0.93 0.30 0.07 0.11 0.56 0.36
HP01 0.91 0.29 0.05 0.12 0.57 0.36
HP005 0.91 0.30 0.05 0.15 0.60 0.38

4 OBF 1.00 0.41 0.22 0.19 0.76 0.46
Pocock 1.07 0.45 0.09 0.13 0.56 0.36
HP01 1.02 0.42 0.07 0.13 0.57 0.37
HP005 0.99 0.41 0.07 0.15 0.60 0.38

6 1 OBF 0.57 0.23 0.29 0.21 0.75 0.46
Pocock 0.21 0.17 0.07 0.11 0.50 0.31
HP01 0.21 0.17 0.05 0.12 0.51 0.32
HP005 0.22 0.19 0.04 0.15 0.54 0.33

2 OBF 0.12 0.22 0.18 0.18 0.75 0.46
Pocock 0.16 0.20 0.06 0.09 0.50 0.31
HP01 0.13 0.20 0.05 0.10 0.51 0.32
HP005 0.11 0.22 0.04 0.14 0.54 0.33

3 OBF 0.16 0.23 0.17 0.17 0.75 0.46
Pocock 0.68 0.25 0.07 0.09 0.50 0.31
HP01 0.52 0.24 0.05 0.10 0.51 0.32
HP005 0.71 0.26 0.04 0.13 0.54 0.33

4 OBF 0.86 0.28 0.17 0.17 0.75 0.46
Pocock 0.98 0.32 0.08 0.10 0.50 0.31
HP01 0.95 0.30 0.06 0.10 0.51 0.32
HP005 0.94 0.31 0.05 0.14 0.54 0.33

5 OBF 1.02 0.41 0.19 0.18 0.75 0.46
Pocock 1.09 0.46 0.10 0.12 0.50 0.31
HP01 1.05 0.43 0.08 0.12 0.51 0.32
HP005 1.01 0.41 0.07 0.14 0.54 0.33
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Table 5.6: Performance Score Results for Unequal Spaced 2
Times Increment Weighted Sample Size Re-estimation De-
signs

n_init=63 n_init=356 n_init=2018
Total Reestimation
Look Look Method R f LABC R f LABC R f LABC

3 1 OBF 0.83 0.29 0.40 0.25 0.81 0.49
Pocock 0.57 0.26 0.06 0.15 0.62 0.42
HP01 0.62 0.27 0.05 0.18 0.64 0.43
HP005 0.85 0.29 0.04 0.21 0.67 0.44

2 OBF 0.90 0.43 0.41 0.25 0.81 0.49
Pocock 0.95 0.46 0.06 0.19 0.62 0.42
HP01 0.91 0.44 0.05 0.20 0.64 0.43
HP005 0.90 0.43 0.04 0.22 0.67 0.44

4 1 OBF 0.70 0.30 0.59 0.27 0.80 0.47
Pocock 0.19 0.19 0.07 0.13 0.39 0.25
HP01 0.18 0.20 0.06 0.16 0.41 0.26
HP005 0.61 0.23 0.05 0.20 0.45 0.29

2 OBF 0.83 0.29 0.40 0.25 0.80 0.47
Pocock 0.63 0.27 0.07 0.14 0.39 0.25
HP01 0.62 0.28 0.05 0.16 0.41 0.26
HP005 0.86 0.29 0.04 0.20 0.45 0.29

3 OBF 0.89 0.43 0.41 0.25 0.80 0.47
Pocock 0.97 0.46 0.07 0.18 0.39 0.25
HP01 0.93 0.44 0.05 0.19 0.41 0.26
HP005 0.91 0.44 0.04 0.21 0.45 0.29

5 1 OBF 0.75 0.26 0.62 0.28 0.81 0.47
Pocock 0.27 0.15 0.08 0.13 0.05 0.15
HP01 0.24 0.16 0.07 0.15 0.06 0.17
HP005 0.35 0.18 0.06 0.19 0.13 0.21

2 OBF 0.70 0.30 0.58 0.27 0.81 0.47
Pocock 0.20 0.20 0.08 0.14 0.05 0.15
HP01 0.19 0.20 0.07 0.15 0.07 0.17
HP005 0.61 0.23 0.05 0.19 0.13 0.21

3 OBF 0.83 0.29 0.38 0.25 0.81 0.47
Pocock 0.69 0.28 0.07 0.15 0.06 0.15
HP01 0.63 0.28 0.06 0.16 0.07 0.17
HP005 0.86 0.29 0.05 0.19 0.13 0.21

4 OBF 0.90 0.43 0.43 0.25 0.81 0.47
Pocock 0.99 0.48 0.22 0.19 0.06 0.15
HP01 0.95 0.46 0.06 0.19 0.07 0.17
HP005 0.92 0.44 0.05 0.20 0.13 0.21

6 1 OBF 0.75 0.26 0.66 0.30 0.81 0.47
Pocock 0.33 0.11 0.09 0.13 0.00 0.12
HP01 0.34 0.12 0.08 0.14 0.00 0.13
HP005 0.29 0.14 0.07 0.18 0.00 0.18

2 OBF 0.75 0.26 0.64 0.28 0.81 0.47
Pocock 0.27 0.16 0.09 0.14 0.00 0.12
HP01 0.26 0.16 0.08 0.15 0.00 0.13
HP005 0.38 0.18 0.06 0.19 0.00 0.18

3 OBF 0.70 0.30 0.59 0.27 0.81 0.47
Pocock 0.24 0.21 0.08 0.15 0.00 0.12
HP01 0.20 0.21 0.08 0.15 0.00 0.12
HP005 0.63 0.23 0.06 0.19 0.00 0.18

4 OBF 0.84 0.29 0.40 0.25 0.81 0.47
Pocock 0.88 0.29 0.08 0.16 0.00 0.12
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Table 5.6: Performance Score Results for Unequal Spaced 2
Times Increment Weighted Sample Size Re-estimation De-
signs

HP01 0.84 0.29 0.07 0.16 0.00 0.12
HP005 0.87 0.30 0.05 0.19 0.00 0.18

5 OBF 0.90 0.43 0.48 0.26 0.81 0.47
Pocock 0.99 0.48 0.27 0.20 0.00 0.12
HP01 0.98 0.47 0.22 0.19 0.00 0.12
HP005 0.93 0.44 0.05 0.20 0.00 0.18
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Table 5.7: Performance Score Results for Equal Spaced Unweighted Sample Size Re-
estimation Designs

Total Reestimation ninit=356
Looks Look Method R f ABLC

2 1 OBF 0.44 0.27
Pocock 0.28 0.25
HP01 0.31 0.26
HP005 0.44 0.27

3 1 OBF 0.35 0.22
Pocock 0.05 0.17
HP01 0.06 0.18
HP005 0.13 0.20

2 OBF 0.27 0.23
Pocock 0.03 0.18
HP01 0.03 0.19
HP005 0.09 0.20

4 1 OBF 0.29 0.20
Pocock 0.04 0.13
HP01 0.02 0.14
HP005 0.02 0.16

2 OBF 0.22 0.19
Pocock 0.03 0.12
HP01 0.01 0.13
HP005 0.00 0.15

3 OBF 0.21 0.21
Pocock 0.04 0.15
HP01 0.00 0.15
HP005 0.00 0.17

5 1 OBF 0.26 0.20
Pocock 0.05 0.11
HP01 0.03 0.12
HP005 0.02 0.15

2 OBF 0.18 0.17
Pocock 0.04 0.10
HP01 0.02 0.11
HP005 0.01 0.13

3 OBF 0.16 0.17
Pocock 0.04 0.10
HP01 0.01 0.11
HP005 0.00 0.13

4 OBF 0.16 0.19
Pocock 0.04 0.13
HP01 0.01 0.13
HP005 0.00 0.15
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Table 5.8: Performance Score Results for Unequal Spaced 2-times Increment Weighted
Sample Size Re-estimation Designs

Total Reestimation ninit=356
Looks Look Method R f ABLC

3 1 OBF 0.36 0.23
Pocock 0.04 0.14
HP01 0.02 0.16
HP005 0.02 0.19

2 OBF 0.48 0.26
Pocock 0.03 0.19
HP01 0.01 0.20
HP005 0.00 0.22

4 1 OBF 0.52 0.25
Pocock 0.06 0.11
HP01 0.05 0.13
HP005 0.04 0.17

2 OBF 0.36 0.23
Pocock 0.05 0.12
HP01 0.03 0.14
HP005 0.03 0.18

3 OBF 0.38 0.25
Pocock 0.04 0.18
HP01 0.02 0.18
HP005 0.00 0.21

5 1 OBF 0.58 0.27
Pocock 0.08 0.10
HP01 0.07 0.12
HP005 0.05 0.16

2 OBF 0.53 0.25
Pocock 0.07 0.11
HP01 0.06 0.12
HP005 0.04 0.16

3 OBF 0.36 0.22
Pocock 0.06 0.13
HP01 0.04 0.14
HP005 0.03 0.17

4 OBF 0.41 0.25
Pocock 0.19 0.19
HP01 0.03 0.18
HP005 0.01 0.20



65

5.3.2 Comparison of performance

A. Total number of looks

For group sequential designs, when the maximum sample size is small, perfor-

mance is improved by increasing the number of total looks. As show in Tables 5.3 and 5.4,

when maximum sample size is 63 or 356, both the failure rate and the log area between

curves are similar across designs with different total number of looks. However, when

the maximum sample size is large, the performance improved dramatically when total

number of looks is increased.

B. Type of sample size increment

Performance for adaptive designs with different patient increments are evalu-

ated. For GS designs with a maximum sample size of 2018, except designs using O’Brien

and Fleming boundaries, performance is improved when 2-times increment type is se-

lected (Table 5.9). Both the failure rate and log area between curves are decreased. Per-

formance improvement get larger when the total number of looks increases. However,

because the total sample sizes are very small for GS designs with maximum sample size

63 and 356, no apparent performance difference is observed (see Tables 5.3 and 5.4). There

is no performance improvement observed in weighted and unweighted sample size re-

estimation designs, regardless total number of looks and type of boundaries as in Tables

5.5 to 5.8.
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Table 5.9: Comparison of Group Sequential Designs with Different Patient Increments

equal space 2-times increment
nmax=2018 nmax=2018

Total Looks Method R f ABLC R f ABLC
3 OBF 0.81 0.54 0.81 0.49

Pocock 0.70 0.51 0.62 0.42
HP01 0.72 0.52 0.64 0.43
HP005 0.74 0.52 0.67 0.44

4 OBF 0.79 0.49 0.81 0.47
Pocock 0.62 0.42 0.39 0.25
HP01 0.64 0.43 0.40 0.27
HP005 0.66 0.44 0.44 0.29

5 OBF 0.76 0.46 0.81 0.47
Pocock 0.56 0.36 0.05 0.15
HP01 0.57 0.37 0.07 0.17
HP005 0.61 0.38 0.14 0.21

6 OBF 0.75 0.46 0.81 0.47
Pocock 0.50 0.32 0.00 0.12
HP01 0.51 0.32 0.00 0.13
HP005 0.54 0.33 0.00 0.18

C. Comparison of two-stage adaptive designs

Two-stage adaptive designs have one interim analysis and one final analysis. Be-

cause of the simplicity of two-stage designs, it is most often used in clinical trials. Com-

parison of performance of GS design with maximum sample size of 2018 and weighted

and unweighted re-estimation designs with initial sample size 356 is presented in Table

5.10. As there is only one interim analysis before the final look, the average sample size

for GS design is at least 1009 and it is over-sized for a large portion of the treatment effect

intervals. Weighted or unweighted re-estimation designs start with a much smaller initial

sample size and sample size will only be increased when the interim finding indicates a

small treatment effect. Thus, the performance of two-stage re-estimation designs is better
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than the two-stage group sequential designs. The performance of weighted re-estimation

designs is almost identical to the performance of unweighted re-estimation designs.

Table 5.10: Comparison of Two-stage Adaptive Designs (nmax=2018)

GS Weighted Unweighted
ninit=356 ninit=356

Method R f ABLC R f ABLC R f ABLC
OBF 0.82 0.65 0.44 0.26 0.44 0.27
Pocock 0.79 0.64 0.31 0.25 0.28 0.25
HP01 0.81 0.65 0.36 0.26 0.31 0.26
HP005 0.82 0.65 0.51 0.27 0.44 0.27

D. Comparison of two-stage group sequential designs

A two-stage design has an interim analysis at the end of stage one and the sample

size in stage two can be modified. In case a sequential design is introduced in stage two,

it becomes a two-stage group sequential design (See Figure 5.1). This design is equivalent

to the sample size re-estimation design with sample size re-estimation at the first look.

Comparison of two-stage GS designs are presented in Table 5.11 and 5.12. In general,

failure rate for unweighted designs are slightly smaller than the weighted designs, while

ABLC for these two types of designs are almost identical.
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Figure 5.1: Illustration of Two-stage Group Sequential Design

Table 5.11: Comparison of Equal-spaced Two-stage Group Sequential Designs

Weighted Unweighted
Total ninit=356 ninit=356
Looks Method R f ABLC R f ABLC

2 OBF 0.44 0.26 0.44 0.27
Pocock 0.31 0.25 0.28 0.25
HP01 0.36 0.26 0.31 0.26
HP005 0.51 0.27 0.44 0.27

3 OBF 0.39 0.23 0.35 0.22
Pocock 0.07 0.17 0.05 0.17
HP01 0.10 0.19 0.06 0.18
HP005 0.17 0.21 0.13 0.20

4 OBF 0.32 0.21 0.29 0.20
Pocock 0.06 0.14 0.04 0.13
HP01 0.05 0.15 0.02 0.14
HP005 0.04 0.18 0.02 0.16

5 OBF 0.28 0.21 0.26 0.20
Pocock 0.06 0.12 0.05 0.11
HP01 0.05 0.13 0.03 0.12
HP005 0.04 0.16 0.02 0.15
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Table 5.12: Comparison of Unequal-spaced Two-stage Group Sequential Designs

Weighted Unweighted
Total ninit=356 ninit=356
Looks Method R f ABLC R f ABLC

3 OBF 0.40 0.25 0.36 0.23
Pocock 0.06 0.15 0.04 0.14
HP01 0.05 0.18 0.02 0.16
HP005 0.04 0.21 0.02 0.19

4 OBF 0.59 0.27 0.52 0.25
Pocock 0.07 0.13 0.06 0.11
HP01 0.06 0.16 0.05 0.13
HP005 0.05 0.20 0.04 0.17

5 OBF 0.62 0.28 0.58 0.27
Pocock 0.08 0.13 0.08 0.10
HP01 0.07 0.15 0.07 0.12
HP005 0.06 0.19 0.05 0.16

E. Comparison of 5-look unequal-spaced GS designs using HP type boundaries versus

sample size re-estimation designs using O’Brien and Fleming boundaries and Pocock

type boundaries

Since sample size can be adjusted based on interim findings, failure rate and

ABLC for sample size re-estimation designs are usually low. However in practice, there

is still a lack of understanding on sample size re-estimation designs compared to group

sequential designs. Thus, sample size re-estimation designs are not well accepted by reg-

ulatory agencies (FDA, etc.). By comparing unequal-spaced (2-times increment) 5-look GS

designs using HP01 and HP005 boundaries with sample size re-estimation designs using

OBF and PK boundaries, it can be seen that failure rate and ABLC for GS designs are lower

than or similar to those of re-estimation designs as shown in Tables 5.13 and 5.14 and Fig-

ure 5.2 and 5.9.
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Table 5.13: Comparison of 5-look 2-times increment GS design with HP01 boundaries ver-
sus equal-spaced sample size re-estimation designs with OBF and PK boundaries

HP01-Weighted HP01-Unweighted
Total Reestimation Difference of Difference of Difference of Difference of
Looks Look method R f ABLC R f ABLC
2 1 OBF -0.3646 -0.0970 -0.3650 -0.0981

Pocock -0.2420 -0.0836 -0.2102 -0.0840
3 1 OBF -0.3144 -0.0580 -0.2765 -0.0529

Pocock 0.0023 -0.0041 0.0202 -0.0004
2 OBF -0.2463 -0.0610 -0.2007 -0.0613

Pocock 0.0041 -0.0140 0.0423 -0.0125
4 1 OBF -0.2471 -0.0458 -0.2210 -0.0358

Pocock 0.0133 0.0315 0.0280 0.0344
2 OBF -0.1956 -0.0274 -0.1511 -0.0210

Pocock 0.0097 0.0416 0.0357 0.0476
3 OBF -0.1982 -0.0402 -0.1389 -0.0407

Pocock -0.0103 0.0179 0.0346 0.0194
5 1 OBF -0.2127 -0.0416 -0.1869 -0.0277

Pocock 0.0100 0.0471 0.0221 0.0539
2 OBF -0.1404 -0.0160 -0.1110 -0.0054

Pocock 0.0097 0.0621 0.0309 0.0724
3 OBF -0.1365 -0.0090 -0.0871 -0.0010

Pocock 0.0021 0.0590 0.0325 0.0720
4 OBF -0.1471 -0.0255 -0.0876 -0.0248

Pocock -0.0213 0.0331 0.0297 0.0340
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Figure 5.2: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary

Figure 5.3: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary
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Figure 5.4: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Unweighted Designs using OBF & PK Boundary

Figure 5.5: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus Un-
weighted Designs using OBF & PK Boundary
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Table 5.14: Comparison of 5-look 2-times increment GS design with HP005 boundaries
versus equal-spaced sample size re-estimation designs with OBF and PK boundaries

HP005-Weighted HP005-Unweighted
Total Reestimation Difference of Difference of Difference of Difference of
Looks Look method R f ABLC R f ABLC
2 1 OBF -0.2981 -0.0568 -0.2985 -0.0579

Pocock -0.1755 -0.0434 -0.1437 -0.0438
3 1 OBF -0.2479 -0.0178 -0.2100 -0.0127

Pocock 0.0688 0.0361 0.0867 0.0398
2 OBF -0.1798 -0.0208 -0.1342 -0.0211

Pocock 0.0706 0.0262 0.1088 0.0277
4 1 OBF -0.1806 -0.0056 -0.1545 0.0044

Pocock 0.0798 0.0717 0.0945 0.0746
2 OBF -0.1291 0.0128 -0.0846 0.0192

Pocock 0.0762 0.0818 0.1022 0.0878
3 OBF -0.1317 <0.0001 -0.0724 -0.0005

Pocock 0.0562 0.0581 0.1011 0.0596
5 1 OBF -0.1462 -0.0014 -0.1204 0.0125

Pocock 0.0765 0.0873 0.0886 0.0941
2 OBF -0.0739 0.0242 -0.0445 0.0348

Pocock 0.0762 0.1023 0.0974 0.1126
3 OBF -0.0700 0.0312 -0.0206 0.0392

Pocock 0.0686 0.0992 0.0990 0.1122
4 OBF -0.0806 0.0147 -0.0211 0.0154

Pocock 0.0452 0.0733 0.0962 0.0742
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Figure 5.6: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Weighted Designs using OBF & PK Boundary

Figure 5.7: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Weighted Designs using OBF & PK Boundary
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Figure 5.8: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Unweighted Designs using OBF & PK Boundary

Figure 5.9: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Unweighted Designs using OBF & PK Boundary
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F. Comparison of performance under different treatment effect intervals

Is adaptive design always the best choice? As shown in Tables 5.15 to 5.18, per-

formance of the adaptive design is also affected by the location and length of the treatment

effect interval. For some of the intervals, both the failure rate and ABLC can be very low.

As indicated in Figure 5.10, when the adaptive index is small, performance on the treat-

ment effect interval could be very robust. In this case, regardless what treatment effect on

the interval we chose to design a fix sample size study, the performance for fixed sample

size design and adaptive designs will be very close to each other. Thus, we can just either

pick the lower limit or the middle point of the treatment effect interval to design a fixed

sample size study. However, in order to obtain such a treatment effect interval, we have to

have sufficient data to support the determination of this interval. Thus, it might be quite

difficult to find such an accurate estimate of interval. And in terms of adaptive index,

how small is small? So even if a small interval can be obtained, simulations may still need

to be done to compare the performance before making a decision to use fixed sample size

design rather than adaptive designs.

Figure 5.10: Illustration of performance on a narrow treatment effect interval
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Chapter 6

Performance of Adaptive Designs

when Treatment Effect Follows a Beta

Distribution

6.1 Method

In the previous chapter, performance of the adaptive designs were evaluated

when considered treatment effect follows a uniform distribution on an treatment effect

interval. However, some treatment effects may be more likely observed in practice. So it

is logical to consider treatment effect as a random variable on the treatment effect interval.

In this chapter, it is assumed that the treatment effect follows a beta distribution.
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Figure 6.1: Beta distributions for treatment effect

6.2 Simulation Plan

The same simulation procedures and parameters in the previous chapter were

used. Treatment effects were randomly generated and assumed follows a beta distribution

- Beta (5, 2), Beta (2, 5), or Beta (4, 5) (see Figure 6.1). For each randomly generated treat-

ment effect, sample size and result (whether accept the null hypothesis or the alternative

hypothesis) were obtained from the simulation study. Based on grouped treatment effects,

sample size curve and power curve were obtained by interpolation. Performance scores

were calculated by comparing size or power curve with the curve for true treatment effect

function. 10,000 treatment effects are random generated for each simulation study.
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6.3 Results

6.3.1 Performance of adaptive designs

Performance for each adaptive design on the treatment effect interval [0.0882,

0.5] was measured when treatment effect follows a beta distribution. For group sequen-

tial design, performance was evaluated when maximum allowed sample size is 2018.

Performance of sample size re-estimation designs were evaluated with the initial sam-

ple size is 356 and the sample size can be adjusted to maximum 2018 after sample size

re-estimation.. Performance scores for equal-spaced (patient increment) group sequen-

tial designs, weighted sample size re-estimation designs, and unweighted sample size re-

estimation designs are presented in Tables 6.1, 6.3, and 6.5, respectively. Performance for

designs with unequal-spaced (2-times) patient increment are displayed in Tables 6.2, 6.4,

and 6.6 respectively. Sample size and power curves for selected adaptive designs when

treatment effect follows a beta distribution are displayed in Appendix C. Performance for

designs with treatment effect follows a distribution of beta(5, 2) is much better than the

performance for designs with treatment effect follows a beta(2, 5) or bets(4, 5).

Table 6.1: Performance Score Results for Equal Spaced GS Designs

Beta(5, 2) Beta(2, 5) Beta(4, 5)
Total Looks Method R f ABLC R f ABLC R f ABLC

2 OBF 0.7812 0.6458 0.8096 0.6529 0.8301 0.6597
Pocock 0.7812 0.6466 0.7894 0.6416 0.8035 0.6487
HP01 0.7812 0.6460 0.8004 0.6490 0.8155 0.6538
HP005 0.7812 0.6460 0.8092 0.6522 0.8280 0.6603

5 OBF 0.5680 0.3765 0.7592 0.5146 0.7894 0.5242
Pocock 0.5310 0.3934 0.6209 0.3705 0.6216 0.3929
HP01 0.5315 0.3923 0.6239 0.3809 0.6535 0.4009
HP005 0.5320 0.3877 0.6531 0.3936 0.7125 0.4255
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Table 6.2: Performance Score Results for Unequal Spaced GS Designs

Beta(5, 2) Beta(2, 5) Beta(4, 5)
Total Looks Method R f ABLC R f ABLC R f ABLC

5 OBF 0.5848 0.3813 0.7890 0.5205 0.8160 0.5336
Pocock 0.0469 0.2519 0.3705 0.2205 0.5382 0.2564
HP01 0.0628 0.2502 0.5121 0.2447 0.5628 0.2720
HP005 0.0943 0.2362 0.6251 0.2891 0.7294 0.3225

Table 6.3: Performance Score Results for Equal Spaced Weighted Sample Size Re-
estimation Designs

Total Reestimation Beta(5, 2) Beta(2, 5) Beta(4, 5)
Looks Look Method R f ABLC R f ABLC R f ABLC

2 1 OBF 0.1602 0.2426 0.6353 0.3256 0.7382 0.3787
Pocock <0.0001 0.2426 0.6387 0.3140 0.7584 0.3748
HP01 <0.0001 0.2375 0.6066 0.3217 0.7538 0.3655
HP005 <0.0001 0.2261 0.6688 0.3249 0.7362 0.3747

5 1 OBF 0.1275 0.2467 0.5433 0.2766 0.5910 0.3017
Pocock <0.0001 0.2580 0.2684 0.2051 0.3392 0.2406
HP01 <0.0001 0.2453 0.3594 0.2141 0.4533 0.2453
HP005 <0.0001 0.2331 0.4352 0.2418 0.5288 0.2752

2 OBF 0.1233 0.2505 0.4280 0.2374 0.5484 0.2829
Pocock <0.0001 0.2608 0.1777 0.1830 0.3504 0.2275
HP01 <0.0001 0.2453 0.2779 0.1941 0.3967 0.2435
HP005 <0.0001 0.2331 0.4676 0.2279 0.5072 0.2716

3 OBF 0.1233 0.2505 0.4192 0.2313 0.5562 0.2778
Pocock <0.0001 0.2608 0.0570 0.1690 0.4123 0.2384
HP01 <0.0001 0.2537 0.2064 0.1838 0.4394 0.2623
HP005 <0.0001 0.2401 0.3660 0.2107 0.5489 0.2683

4 OBF 0.1210 0.2511 0.4590 0.2408 0.6734 0.3002
Pocock <0.0001 0.2542 0.2705 0.2118 0.5389 0.2831
HP01 <0.0001 0.2488 0.3119 0.2063 0.4948 0.2681
HP005 <0.0001 0.2417 0.4635 0.2137 0.5353 0.2845
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Table 6.4: Performance Score Results for Unequal Spaced Weighted Sample Size Re-
estimation Designs

Total Reestimation Beta(5, 2) Beta(2, 5) Beta(4, 5)
Looks Look Method R f ABLC R f ABLC R f ABLC

5 1 OBF 0.2654 0.2428 0.6327 0.3543 0.6530 0.3816
Pocock <0.0001 0.2311 0.3879 0.2299 0.3901 0.2392
HP01 <0.0001 0.2222 0.4515 0.2398 0.5201 0.2669
HP005 <0.0001 0.2095 0.5252 0.2749 0.6442 0.2977

2 OBF 0.2530 0.2396 0.6019 0.3278 0.7453 0.3627
Pocock <0.0001 0.2271 0.4931 0.2333 0.4343 0.2721
HP01 <0.0001 0.2141 0.4548 0.2402 0.4817 0.2872
HP005 <0.0001 0.2066 0.5523 0.2728 0.6965 0.3265

3 OBF 0.1875 0.2389 0.5741 0.3054 0.7230 0.3528
Pocock <0.0001 0.2248 0.4478 0.2295 0.6385 0.2828
HP01 <0.0001 0.2133 0.4478 0.2415 0.5550 0.2959
HP005 <0.0001 0.2031 0.5647 0.2908 0.7041 0.3303

4 OBF 0.1620 0.2271 0.6388 0.3253 0.7564 0.3733
Pocock <0.0001 0.2087 0.7011 0.3230 0.6807 0.3461
HP01 <0.0001 0.2033 0.6259 0.2875 0.6230 0.3296
HP005 <0.0001 0.1935 0.6147 0.3012 0.7181 0.3510
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Table 6.5: Performance Score Results for Equal Spaced Unweighted Sample Size Re-
estimation Designs

Total Reestimation Beta(5, 2) Beta(2, 5) Beta(4, 5)
Looks Look Method R f ABLC R f ABLC R f ABLC

2 1 OBF 0.2212 0.2404 0.6361 0.3287 0.7378 0.3656
Pocock 0.2023 0.2484 0.6245 0.3065 0.7525 0.3622
HP01 0.2161 0.2470 0.6391 0.3188 0.7394 0.3712
HP005 0.2195 0.2437 0.6352 0.3268 0.7359 0.3649

5 1 OBF 0.1337 0.2494 0.4656 0.2602 0.5672 0.2863
Pocock <0.0001 0.2473 0.3132 0.2094 0.2854 0.2174
HP01 <0.0001 0.2470 0.3040 0.2157 0.3258 0.2318
HP005 <0.0001 0.2352 0.3883 0.2378 0.5063 0.2586

2 OBF 0.1208 0.2531 0.3770 0.2380 0.5288 0.2674
Pocock <0.0001 0.2635 0.2415 0.1875 0.2748 0.2177
HP01 <0.0001 0.2550 0.2020 0.1968 0.2740 0.2219
HP005 <0.0001 0.2372 0.3333 0.2135 0.5067 0.2562

3 OBF 0.1277 0.2573 0.3701 0.2322 0.5201 0.2675
Pocock <0.0001 0.2624 0.1011 0.1799 0.3136 0.2254
HP01 <0.0001 0.2573 0.2619 0.1901 0.3323 0.2296
HP005 <0.0001 0.2448 0.3535 0.2043 0.4187 0.2447

4 OBF 0.1072 0.2490 0.3930 0.2324 0.7007 0.3035
Pocock <0.0001 0.2560 0.2696 0.2100 0.5552 0.2814
HP01 <0.0001 0.2469 0.3333 0.2111 0.5190 0.2659
HP005 <0.0001 0.2374 0.3524 0.2182 0.5329 0.2808
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Table 6.6: Performance Score Results for Unequal Spaced Unweighted Sample Size Re-
estimation Designs

Total Reestimation Beta(5, 2) Beta(2, 5) Beta(4, 5)
Looks Look Method R f ABLC R f ABLC R f ABLC

5 1 OBF 0.2514 0.2452 0.6163 0.3339 0.6730 0.3560
Pocock <0.0001 0.2518 0.2987 0.2048 0.3511 0.2128
HP01 <0.0001 0.2384 0.3474 0.2140 0.3839 0.2333
HP005 <0.0001 0.2221 0.4676 0.2405 0.5410 0.2744

2 OBF 0.2180 0.2333 0.5571 0.3088 0.6306 0.3365
Pocock <0.0001 0.2437 0.3688 0.2063 0.3299 0.2355
HP01 <0.0001 0.2358 0.3500 0.2140 0.4340 0.2492
HP005 <0.0001 0.2230 0.4603 0.2432 0.5668 0.2822

3 OBF 0.1778 0.2432 0.5282 0.2812 0.6070 0.3149
Pocock <0.0001 0.2338 0.4804 0.2269 0.4452 0.2488
HP01 <0.0001 0.2252 0.4597 0.2348 0.4532 0.2614
HP005 <0.0001 0.2109 0.5014 0.2570 0.5735 0.2905

4 OBF 0.1707 0.2245 0.6009 0.3166 0.7343 0.3689
Pocock <0.0001 0.2061 0.6566 0.3002 0.7129 0.3562
HP01 <0.0001 0.2063 0.6465 0.2777 0.6509 0.3369
HP005 <0.0001 0.1983 0.6182 0.2949 0.6381 0.3325
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6.3.2 Comparison of performance

Comparison of 5-look unequal-spaced GS designs using HP type boundaries ver-

sus sample size re-estimation designs using O’Brien and Fleming boundaries and Pocock

type boundaries are presented in Tables 6.7 to 6.12 and Figures 6.2 to 6.25. Similar to

the comparisons when treatment effect follows a uniform distribution, performance for 5-

look unequal spaced GS designs are consistently comparable to the performance of equal-

spaced sample size re-estimation designs with OBF and PK boundaries. However, the two

performance scores may not always show the same magnitude of improvement. When

sample size or power for those treatment effects is substantially deviated from the true

treatment effect function, it could happen that failure rate shows improvement while ABLC

doesn’t. On the other hand, when sample size or power for those treatment effects is only

slightly deviated from true treatment effect function, it could happen that ABLC shows

improvement while failure rate doesn’t.
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A) Treatment effect follows Beta(5,2)

Table 6.7: Comparison of 5-look 2-times increment random GS design with HP01 bound-
aries versus equal-spaced random sample size re-estiamtion designs with OBF and PK
boundaries when treatment effect follows Beta(5,2)

HP01-Weighted HP01-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.1599 0.0038 -0.1584 0.0098

Pocock -0.1402 0.0039 -0.1395 0.0018
5 1 OBF -0.0974 0.0076 -0.0709 0.0008

Pocock 0.0628 0.0076 0.0628 0.0029
2 OBF -0.0647 0.0035 -0.0580 -0.0029

Pocock 0.0628 -0.0078 0.0628 -0.0133
3 OBF -0.0605 -0.0003 -0.0649 -0.0071

Pocock 0.0628 -0.0106 0.0628 -0.0122
4 OBF -0.0582 -0.0009 -0.0444 0.0012

Pocock 0.0628 -0.0040 0.0628 -0.0058
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Table 6.8: Comparison of 5-look 2-times increment random GS design with HP005 bound-
aries versus equal-spaced random sample size re-estiamtion designs with OBF and PK
boundaries when treatment effect follows Beta(5,2)

HP005-Weighted HP005-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.1284 -0.0102 -0.1269 -0.0042

Pocock -0.1087 -0.0101 -0.1080 -0.0122
5 1 OBF -0.0659 -0.0064 -0.0394 -0.0132

Pocock 0.0943 -0.0064 0.0943 -0.0111
2 OBF -0.0332 -0.0105 -0.0265 -0.0169

Pocock 0.0943 -0.0218 0.0943 -0.0273
3 OBF -0.0290 -0.0143 -0.0334 -0.0211

Pocock 0.0943 -0.0246 0.0943 -0.0262
4 OBF -0.0267 -0.0149 -0.0129 -0.0128

Pocock 0.0943 -0.0180 0.0943 -0.0198

Figure 6.2: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5, 2)
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Figure 6.3: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5, 2)

Figure 6.4: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5, 2)
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Figure 6.5: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus Un-
weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5, 2)

Figure 6.6: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5,
2)



93

Figure 6.7: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5, 2)

Figure 6.8: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary
versus Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows
Beta(5, 2)
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Figure 6.9: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(5,
2)
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B) Treatment effect follows Beta(2,5)

Table 6.9: Comparison of 5-look 2-times increment random GS designs with HP01 bound-
aries versus equal-spaced random sample size re-estiamtion designs with OBF and PK
boundaries when treatment effect follows Beta(2,5)

HP01-Weighted HP01-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.1232 -0.0809 -0.1240 -0.0840

Pocock -0.1266 -0.0693 -0.1124 -0.0618
5 1 OBF -0.0312 -0.0319 0.0465 -0.0155

Pocock 0.2437 0.0396 0.1989 0.0353
2 OBF 0.0841 0.0073 0.1351 0.0067

Pocock 0.3344 0.0617 0.2706 0.0572
3 OBF 0.0929 0.0134 0.1420 0.0125

Pocock 0.4551 0.0757 0.4110 0.0648
4 OBF 0.0531 0.0039 0.1191 0.0123

Pocock 0.2416 0.0329 0.2425 0.0347

Table 6.10: Comparison of 5-look 2-times increment random GS designs with HP005
boundaries versus equal-spaced random sample size re-estiamtion designs with OBF and
PK boundaries when treatment effect follows Beta(2,5)

HP005-Weighted HP005-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.0102 -0.0365 -0.0110 -0.0396

Pocock -0.0136 -0.0249 0.0006 -0.0174
5 1 OBF 0.0818 0.0125 0.1595 0.0289

Pocock 0.3567 0.0840 0.3119 0.0797
2 OBF 0.1971 0.0517 0.2481 0.0511

Pocock 0.4474 0.1061 0.3836 0.1016
3 OBF 0.2059 0.0578 0.2550 0.0569

Pocock 0.5681 0.1201 0.5240 0.1092
4 OBF 0.1661 0.0483 0.2321 0.0567

Pocock 0.3546 0.0773 0.3555 0.0791
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Figure 6.10: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary vs
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)

Figure 6.11: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)
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Figure 6.12: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary
versus Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows
Beta(2,5)

Figure 6.13: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)
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Figure 6.14: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)

Figure 6.15: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)
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Figure 6.16: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary
versus Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows
Beta(2,5)

Figure 6.17: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(2,5)
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C) Treatment effect follows Beta(4,5)

Table 6.11: Comparison of 5-look 2-times increment random GS designs with HP01 bound-
aries versus equal-spaced random sample size re-estiamtion designs with OBF and PK
boundaries when treatment effect follows Beta(4,5)

HP01-Weighted HP01-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.1754 -0.1067 -0.1750 -0.0936

Pocock -0.1956 -0.1028 -0.1897 -0.0902
5 1 OBF -0.0282 -0.0297 -0.0044 -0.0143

Pocock 0.2236 0.0314 0.2774 0.0546
2 OBF 0.0144 -0.0109 0.0340 0.0046

Pocock 0.2124 0.0445 0.2880 0.0543
3 OBF 0.0066 -0.0058 0.0427 0.0045

Pocock 0.1505 0.0336 0.2492 0.0466
4 OBF -0.1106 -0.0282 -0.1379 -0.0315

Pocock 0.0239 -0.0111 0.0076 -0.0094

Table 6.12: Comparison of 5-look 2-times increment random GS designs with hp005
boundaries versus equal-spaced random sample size re-estiamtion designs with OBF and
PK boundaries when treatment effect follows Beta(4,5)

HP005-Weighted HP005-Unweighted
Total Reestimation Difference Difference difference Difference
Looks Look Method of R f of ABLC of R f of ABLC
2 1 OBF -0.0088 -0.0562 -0.0084 -0.0431

Pocock -0.0290 -0.0523 -0.0231 -0.0397
5 1 OBF 0.1384 0.0208 0.1622 0.0362

Pocock 0.3902 0.0819 0.4440 0.1051
2 OBF 0.1810 0.0396 0.2006 0.0551

Pocock 0.3790 0.0950 0.4546 0.1048
3 OBF 0.1732 0.0447 0.2093 0.0550

Pocock 0.3171 0.0841 0.4158 0.0971
4 OBF 0.0560 0.0223 0.0287 0.0190

Pocock 0.1905 0.0394 0.1742 0.0411
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Figure 6.18: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary ver-
sus Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(4,5)

Figure 6.19: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(4,5)
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Figure 6.20: Failure Rate of 5-look Unequal-spaced GS Design using HP01 Boundary
versus Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows
Beta(4,5)

Figure 6.21: ABLC of 5-look Unequal-spaced GS Design using HP01 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(4,5)
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Figure 6.22: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Effect
Beta(4,5)

Figure 6.23: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Weighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(4,5)
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Figure 6.24: Failure Rate of 5-look Unequal-spaced GS Design using HP005 Boundary ver-
sus Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Effect
Beta(4,5)

Figure 6.25: ABLC of 5-look Unequal-spaced GS Design using HP005 Boundary versus
Unweighted Designs using OBF & PK Boundary when Treatment Effect Follows Beta(4,5)
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Chapter 7

Conclusion

In the part I of this dissertation, the expected sample size for two-stage sample

size re-estimation designs were derived, the golden standard for performance comparison

was identified, the failure rate and the area between log curves as the performance mea-

surements were defined, and the performance of adaptive designs when treatment effect

follows a uniform or a beta distribution were compared.

The formula for expected sample size for two-stage weighted sample size re-

estimation designs were derived in part I of this dissertation. Different formulas were

provided for designs with or without the restrictions on the maximum sample size. The-

oretical calculations through numerical method and simulations were done for both the

sample size re-estimation designs and the group sequential designs when the maximum

allowed sample size was 2018. Simulation results were very close to the results from the

theoretical calculation. The expected sample size for unweighted sample size re-estimation

designs was also discussed in part I. However, because more assumptions are required, to
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derive expected sample size for unweighted sample size re-estimation designs will be con-

sidered as a future work.

Measurements of performance were also proposed in part I of this dissertation.

Based on decision theory, failure rate and area between the log of sample size or power

curves of adaptive designs and true treatment effect function were defined to evaluate the

performance of adaptive designs on a treatment effect interval. Simulations were done to

obtain the average sample size and power. Performance was measured based on different

design parameters including different treatment effect intervals, maximum sample size,

initial sample size for re-estimation designs, total number of looks, types of information

increment, time of sample size re-estimation, etc. Treatment effect was assumed to follow

either a uniform distribution or a beta distribution.

When the two-stage group sequential designs and sample size re-estimation de-

signs with initial sample size of 356 were compared, both the failure rate and the ABLC

were much smaller in sample size re-estimation designs. This is because the interim analy-

sis for GS design was at half of the maximum sample size which was 1009. For those large

treatment effects on the interval, the real sample sizes needed as shown on the true treat-

ment effect function curve was much smaller than 1009. Comparisons of GS designs with

different increments indicate that when other design parameters were the same, the perfor-

mance for designs with 2 time unequal-spaced increment was better than the performance

of GS designs with equal-spaced increment. The more the total looks was, the more the

performance improvement in unequal spaced designs. For the comparison of two-stage

group sequential designs (i.e. sample size re-estimation designs with re-estimation done
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at the first interim look), the performance for weighted designs was almost identical to the

performance of unweighted designs.

The most interesting comparison done was to compare the 5-look unequal-spaced

GS design with HP type boundaries with sample size re-estimation designs with OBF and

PK boundaries. It is known that the use of group sequential designs in clinical trials is well

established. However, for sample size re-estimation designs, in a most recently published

FDA guideline for adaptive designs, it is clearly indicated that adaptation of sample size

based in the interim treatment effect estimates is still a less understood area [13]. So, by

comparing performance of GS designs with different design parameters, if a GS design

that can achieve the same as or better performance than sample size re-estimation designs

can be found, it will be very meaningful. Results show that 5-looks unequal-spaced GS

designs with HP01 and HP005 boundaries can achieve similar or better performance than

the sample size re-estimation designs. Especially when the total number of looks for re-

estimation designs is small, performance improvement is larger. However, since more

interim analysis need to be done, it will require more careful planning on the timing and

resources in advance when group sequential design with more interim looks is used.

Adaptive designs may not always be the best choice. Exploratory analysis indi-

cates that when the treatment effect interval was very narrow, i.e. when there is a relatively

accurate estimation of treatment effect, performance will be very robust on the interval re-

gardless of the design chosen. Thus, a fixed sample size design may be good for some

circumstances. However, because of the difficulty of obtaining such a narrow treatment

effect interval, one should be cautious and may use simulations to confirm the point esti-
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mate before the fixed sample size design instead of adaptive design is used.
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Part II

Methods of Designing Two-stage

Winner Designs with Survival

Outcomes
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Chapter 8

Introduction

8.1 Background

A common practice in drug development is to conduct a phase 2 study to provide

dose and frequency information for a large scale phase 3 confirmatory trials. However, de-

pendent on the nature of the disease, a phase 2 trial may not be feasible due to the long

follow-up or the lack of resources. So it may be necessary to evaluate several promising

regimens in the confirmatory phase 3 trial. In this case, an interim analysis is often used to

drop the inferior arms and to avoid high cost, long term trial conduction, and patient ex-

posure to ineffective treatments. This approach is considered as combining the two phases

into one study: phase 2 portion will be carried out by the interim analysis. When appro-

priate surrogate endpoints exist, such as progression free survival in oncology trials, they

can be used at the interim analysis to accelerate the drug development.

The study design of interest in this research was a two-stage winner design. In

such a design (Figure 8.1), the study starts with two treatment groups and a control group.
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Figure 8.1: Two-stage Winner Design

The two treatment groups are compared at the interim analysis and only one treatment

arm is allowed to enter the second stage of study. At the second stage, accrual continues

onto the winning group and the control group till possibly the end of the study. The final

analysis was based on all data in winner and control arms. Endpoint used at the first stage

could be the same as or different from the primary endpoint used for final analysis. Or

surrogate endpoints can be used in the first stage.
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8.2 Research Objectives

Objective I: To derive the asymptotic correlation between log-rank statistics when

the same endpoint is used at the interim and final analysis.

Objective II: To derive the asymptotic correlation between log-rank statistics

when different endpoints are used at the interim and final analysis.

Objective III: To identify the formulas for approximate design parameter calcula-

tion and evaluate the accuracies of the approximations through simulations for two-stage

winner designs when the same endpoint is used at interim and final analysis.

Objective IV: To identify the formulas for approximate design parameter calcula-

tion and evaluate the accuracies of the approximations through simulations for two-stage

winner designs when different endpoints are used at interim and final analysis.
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Chapter 9

Literature Review

With increasing interest in winner selection strategy, several designs were pro-

posed. Shun et al [35] proposed a two-stage winner design with two treatments and a

control group at the beginning. The inferior arm was dropped at the interim and only the

winner arm and the control group carried over to the second stage. Continuous endpoints

were used in this design. Exact method, as well as normal approximation, is provided for

the tail probability, power, and sample size calculations. Since log-rank test statistics for

survival outcomes were approximately normally distributed, the statistical frameworks

for this design can also be used for two-stage designs with survival outcomes. Dunnett-

type [7] testing procedure was proposed to compare the survival distribution of each ex-

perimental arm with the control arm. Jung et al. [17] proposed a procedure to choose a

common critical value to control the family-wise error probability and a sample size calcu-

lation method using the log-rank statistics. Schaid et al., [33] offered an efficient two-stage

design which screens out those new regimens not demonstrating a minimum pre-specified
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survival advantage over standard regimen. Royston et al., [32] presented a design utiliz-

ing a surrogate to compare the experimental arms with the control at the first stage and

comparing the winner arm with the control on the outcome measure of primary interest at

the second stage. Progression free survival (PFS) was used for interim analysis and overall

survival (OS) used for final analysis.

9.1 Two-stage winner design for continuous endpoints

Two-stage winner design was first proposed by Lan et al [19, 35]. Such a design

starts with one control and two treatment groups. At the end of stage one, interim analysis

was done to select a better treatment to continue to the second stage with the control group.

Either a surrogate or the primary endpoint was used in the interim analysis for the two-

stage winner design are studies in [19, 35]. The critical assumption of this design was that

the interim and final test statistics were normally or asymptotically normally distributed.

A normal approximation approach was described to simplify the calculations. The results

of those paper can be generalized to time-to-event data and binary data, as long as the test

statistics were asymptotically normal. But, the estimation of the covariance between the

test statistics is challenging for survival outcomes.

9.1.1 Distribution of test statistics

When continuous variables are used as surrogate endpoint at the interim analysis,

denote the continuous measurements {X(j)i |i = 1, ..., n1} i.i.d. with a normal distribution

N
(

vX
j , σX

)
, j = 0, 1, 2 for the interim analysis and {Y(j)i |i = 1, ..., n} i.i.d. with a normal
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distribution N
(

µY
j , σY

)
, j = 0, 1, 2 for the final analysis, where j = 0, 1, 2 is used to indicate

the control and the two treatment groups respectively. Assume the correlation between

{X(j)i |i = 1, ..., n1} and {Y(j)i |i = 1, ..., n} is ρ and the information time is τ = n1/n, where

n1 and n are the sample size at interim and final analysis. The estimations for vX
j and µY

j

are X(j)n1
= (1/n1)∑n1

i=1 X(j)i and Y(j)n = (1/n)∑n
i=1 X(j)i , f or j = 0, 1, 2.

At the interim, winner selection will be done based on the numeric value of X(1)n1

and X(2)n1
. When X(1)n1

> X(2)n1
, treatment 1 will be selected. Otherwise treatment 2 will be

selected. The hypotheses are H0 : ∆1 = ∆2 = 0 versus Ha : ∆1 > 0 or ∆2 > 0, where

∆j = µY
j − µY

0 is the treatment different between jth treatment and the control group. Let

δj be the estimation of ∆j. Let the test statistics

Z(j)n =

√
n

2σ2
Y

(
Y(j)n −Y(0)n

)
=
√

τZ(j)0,n1
+
√

1− τZ(j)n1,n2 ,

where j = 1 or 2, Z(j)0,n1
= 1

n1

(
∑n1

i=1 Y(1)i −∑n1
i=1 Y(0)i

)
is the test statistic based on the first n1

patients, and Z(j)n1,n2 =
1

n−n1

(
∑n

i=n1+1 Y(1)i −∑n
i=n1+1 Y(0)i

)
is the test statistic based on the

rest of the patients.

The test statistic at the interim is

Vn1 =

√
n1

2σ2
X

(
X(1)n1
− X(2)n1

)
,

and the final test statistic is

W =


Z(1)n , if Vn1 > 0,

Z(2)n , if Vn1 < 0.

The covariance η between Z(j)n and Vn1 can be derived as follow:
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η = cov
(

Z(1)n , Vn1

)
= cov

(√
τZ(1)n1 +

√
1− τZ(1)l , Vn1

)
= cov

(√
τZ(1)n1 , Vn1

)
= cov

(√
n1

2σ2
Y

√
τ

(
∑n1

i=1 Y(1)i
n1

− ∑n1
i=1 Y(0)i

n1

)
,

√
n1

2σ2
X

(
∑n1

i=1 X(1)i
n1

− ∑n1
i=1 X(2)i

n1

))

= cov

(√
n1

2σ2
Y

√
τ

∑n1
i=1 Y(1)i

n1
,

√
n1

2σ2
X

(
∑n1

i=1 X(1)i
n1

− ∑n1
i=1 X(2)i

n1

))

=

√
n1

2σ2
Y

√
τ

√
n1

2σ2
X

1
n2

1
cov

(
n1

∑
i=1

Y(1)i ,
n1

∑
i=1

X(1)i

)

=

√
n1

2σ2
Y

√
τ

√
n1

2σ2
X

1
n2

1
n1ρσXσY

=

√
τ

2
ρ = −cov

(
Z(2)n , Vn1

)
The distribution of W is

FW (w) = pF1 (w− w1) + qF2 (w− w2) ,

and the density function of W is

fW (w) = p f1 (w− w1) + q f2 (w− w2) ,

where p is the winning probability, w1 =
√

n
2σ2

Y
δ1, w2 =

√
n

2σ2
Y

δ2. Since under Ha : Vn1 ∼N (λ, 1)

and λ =
√

n1
2σ2

X

(
vX

1 − vX
2
)

, it can be calculated as p = Pr (Vn1 > 0) = Pr (Vn1 − λ > −λ) =

1−Φ (−λ) = Φ (λ) . Also we have q = 1− p, f1 (w) = 1
p Φ (k0 + kw) φ (w) , and f2 (w) =

1
q Φ (−k0 + kw) φ (w) . Let W1 ∼ f1 and W2 ∼ f2 be two random variables defined by f1

and f2. The means and variances of W1 and W2 under Ha are

µ1 =
Λ
p

, σ2
1 = 1− ληµ1 − µ2

1,
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µ2 =
Λ
q

, σ2
2 = 1− ληµ2 − µ2

2,

respectively, where

Λ =
η√
2π

e−(1/2)λ2
.

Type I error rate can be computed as:

Pr (W > Zα) = Pr
(

Z(1)n > Zα, Vn1 > 0
)
+ Pr

(
Z(2)n > Zα, Vn1 < 0

)
.

This probability can be computed numerically since under H0 :

 Z(1)n

Vn1

 ∼

 0

0

 ,

 1
√

τ
2 ρ

√
τ

2 ρ 1




and  Z(2)n

Vn1

 ∼

 0

0

 ,

 1 −
√

τ
2 ρ

−
√

τ
2 ρ 1


 .

9.1.2 Normal Approximation

To simplify the calculation, a normal approximation approach is proposed. W1

and W2 can be approximated by the following normal random variables:

Z1 ∼ N
(
µ1, σ2

1
)

and Z2 ∼ N
(
µ2, σ2

2
)

.

And fW (w) can be approximated as

p
σ1

φ

(
w− w1 − µ1

σ1

)
+

q
σ2

φ

(
w− w2 − µ2

σ2

)
.

Type I error rate, power and sample size calculation can also be done based on the normal

approximation.
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9.2 Asymptotic distribution of unstandardized log-rank test sta-

tistics

Based on the work of Tsiatis [37, 38] the asymptotic joint distribution of unstan-

dardized log rank statistics is given by Schaid et al. [33]. Use similar notations as in Schaid

et al. [33]. The nonnegative random variables Yi, Vi and Wi denote the real time of entry

during the accrual period [0, ta], the time from entry until failure, and the time to censor,

respectively. Assume the total accrual is at a constant rate. Let the vector Zi= (Z0i, ..., ZKi)

indicate treatment assignment; zji = 1 if the ith patient is assigned to treatment j, zji = 0

otherwise (j = 0, 1, ..., K; z0i represents control). Denote the distribution of entry times

and censoring times as H(y) = P(Yi ≤ y) and G(w) = P(Wi ≤ w) respectively, and define

Ḡ(w) = 1−G(w). The hazard rate function for the time from entry until failure is λ0(t) for

the control arm and the cumulative hazard function is Λ0(t) =
∫ t

0 λ0(x)dx. Furthermore,

let

Xi(t) = max{min(Vi, t−Yi, Wi), 0},

4i(t) = I[Vi<min(t−Yi ,Wi)],

where I[A] denotes the indicator function of event A.

The log-rank statistic, not standardized by its variance, for the comparison at time

t of treatment j versus control may be written as

Sj
N(t) =

N

∑
i=1
(z0i + zji)4i(t)[zji − z̄j{t, Xi(t)}],
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where N denotes the maximum total number of patients in the study,

z̄j(t, x) = ∑
i∈Rk(t,x)

zji/ ∑
i∈Rk(t,x)

I[Xi(t)≥x],

and Rj(t, x) denotes the risk set for patients in either treatment j or control with Xi(t) ≥ x.

it is shown that

N−1/2{S1
N(t1), S1

N(t2), ..., Sk
N(t1), Sk

N(t2)}

has an asymptotic multivariate normal distribution [38]. Under H0, E{N−1/2Sj
N(t)} = 0,

the asymptotic covariance between N−1/2Sj
N(t) and N−1/2{Sj′‘

N(t
′) are

σjj′{t, t′} = ψ(t)(ν0ν2
j + ν2

0νj)/(ν0 + νj)
2, when j = j′and t ≤ t′

σjj′{t, t′} = ψ(t)ν0νjν
′
j/(ν0 + νj)(ν0 + ν′j), when j 6= j′and t ≤ t′

where

ψ(t) =
∫ t

0
λ0(x) exp(−Λ0(x)}H(t− x)Ḡ(x)dx, νj = E(zj) (j = 0, 1, ..K).

In Tsiatis [37], for without censoring process, the unstandardized log-rank test

statistic is denoted as D (t) . Let

D (t) =
N

∑
i=1
(Zi − µZ) [4i(t)−Λ{Xi(t)}] ,

where Λ(s) is the cumulative hazard function defined as

Λ(s) =


∫ s

0 λ(y)dy if s ≥ 0,

0 if s < 0.
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The asymptotic joint distribution of N1/2 {D (t) , D (t′)} is the same as the asymp-

totic joint distribution of N1/2 {D (t) , D (t′)
}

, which is equal to

N1/2

[
N

∑
i=1
(Zi − µZ) [4i(t)−Λ{Xi(t)}] ,

N

∑
i=1
(Zi − µZ)

[
4i(t′)−Λ{Xi(t′)}

]]
. (9.1)
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Chapter 10

Asymptotic correlation of log-rank

statistics in two-stage winner design

In drug development, especially the development of treatments for cancer, sur-

rogate endpoints are often used as a substitute for the primary endpoint. Since the dis-

tribution of log-rank test statistics for survival endpoints are asymptotically normal, the

critical assumption of two-stage winner design is still valid. The statistical framework for

two-stage winner design using continuous endpoints can be used for survival endpoints.

As the calculations in the normal approximation approach is based on a bivariate normal

distribution, the most challenging part in two-stage winner design using survival end-

points is how to estimate the covariance between interim and final log-rank statistics. In

the next sections, extended work on two-stage winner design using survival endpoints is

presented.
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10.1 Asymptotic correlation of log-rank test statistics

Based on the work of Tsiatis [37, 38], when there are more than two treatment

groups in the study, the asymptotic joint distribution of unstandardized log rank statistics

is given by Schaid et al [33]. However, the log rank statistics Schaid studied was based

on the same endpoint at different time points. When the same survival endpoint was

used at the interim and final analysis, the derivation of asymptotic correlation of log rank

statistics at interim and final was straightforward. But, when surrogate endpoint was used

at interim, there was no covariance matrix given in the literature. In order to estimate the

type I error inflation in two-stage winner design, covariance matrix is derived below.

Use similar notations as in Schaid et al. [33]. Let the nonnegative random vari-

ables Yi, Vi and Wi denote the real time of entry of ith patient during the accrual period

[0, ta], the time from entry until failure, and the time to censor, respectively. Assume

there are two treatment groups in addition to the control group. Let the vector Zi with

three elements indicate treatment assignment; zji = 1 if the ith patient is assigned to treat-

ment j, zji = 0 otherwise (j = 0, 1, 2; z0i represents control). And the allocation ratio is

ν0 : ν1 : ν2 = 1 : 1 : 1, where ν0 + ν1 + ν2 = 1. Denote the distribution of entry times

and censoring times as H(y) = P(Yi ≤ y) and G(w) = P(Wi ≤ w) respectively, and define

Ḡ(w) = 1−G(w). The hazard rate function for the time from entry until failure is λ0(t) for

the control arm and the cumulative hazard function is Λ0(t) =
∫ t

0 λ0(x)dx. Furthermore,

Xi(t) = max{min(Vi, t−Yi, Wi), 0},

4i(t) = I[Vi<min(t−Yi ,Wi)],
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where I[A] denotes the indicator function of event A.

The log-rank statistic, not standardized by its variance, for the comparison at time

t of control versus treatment j may be written as

Sj
N(t) =

N

∑
i=1
(z0i + zji)4i(t)[z0i − z̄j{t, Xi(t)}],

where N denotes the maximum total number of patients in the study,

z̄j(t, x) = ∑
i∈R(t,x)

(z0i + zji)z0i/ ∑
i∈R(t,x)

(z0i + zji)I[Xi(t)≥x],

and R(t, x) denotes the risk set for all patients in the study with Xi(t) ≥ x. Treatment j is

considered better than the control if the statistic is greater than 0.

Denote the unstandardized log-rank statistic for comparison of treatment 2 ver-

sus treatment 1 at time t as

S∗N(t) =
N

∑
i=1
(z1i + z2i)4i(t)[z2i − z̄∗{t, Xi(t)}],

where

z̄∗(t, x) = ∑
i∈R(t,x)

(z1i + z2i)z2i/ ∑
i∈R(t,x)

(z1i + z2i)I[Xi(t)≥x],

and R(t, x) denotes the risk set for all patients in the study with Xi(t) ≥ x. Note that

treatment 1 is better if the statistic is greater than 0.

10.1.1 Using the same endpoint at interim and final analysis

Under H0, E{N−1/2Sj
N(t)} = 0 and E{N−1/2S∗N(t)} = 0, j = 1, 2. Based on

Schaid et al (1990), the asymptotic variances are

σ2{N−1/2Sj
N(t)} = ψ(t)(ν0ν2

j + ν2
0νj)/(ν0 + νj)

2, j = 1, 2,
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σ2{N−1/2S∗N(t)} = ψ(t)(ν1ν2
2 + ν2

1ν2)/(ν1 + ν2)
2,

where

ψ(t) =
∫ t

0
λ0(x) exp(−Λ0(x)}H(t− x)Ḡ(x)dx, νj = E(zj) (j = 0, 1, 2).

The asymptotic covariances for t ≤ t′ are

cov{N−1/2S1
N
(
t′
)

, N−1/2S∗N(t)} = ψ(t)ν1ν0ν2/{(ν1 + ν2)(ν1 + ν0)}

cov{N−1/2S2
N
(
t′
)

, N−1/2S∗N(t)} = ψ(t)ν1ν0ν2/{(ν2 + ν1)(ν2 + ν0)}.

It can be derived from the above that the increment N−1/2(Sj
N(t
′)− Sj

N(t)) is asymptoti-

cally independent of N−1/2S∗N(t). From the variance and covariance formulas we have the

asymptotic correlations

corr{N−1/2S1
N
(
t′
)

, N−1/2S∗N(t)}

=
cov{N−1/2S1

N (t
′) , N−1/2S∗N(t)}

σ{N−1/2S1
N(t)}σ{N−1/2S∗N(t)}

= ψ(t)ν1ν0ν2/
√

ψ(t)(ν0ν2
1 + ν2

0ν1)ψ(t′)(ν1ν2
2 + ν2

1ν2)

=
√

ψ(t)/ψ(t′)
√

ν0ν2/[(ν0 + ν1)(ν1 + ν2)]

corr{N−1/2S2
N
(
t′
)

, N−1/2S∗N(t)}

=
cov{N−1/2S2

N (t
′) , N−1/2S∗N(t)}

σ{N−1/2S2
N(t)}σ{N−1/2S∗N(t)}

= −ψ(t)ν1ν0ν2/
√

ψ(t)(ν0ν2
2 + ν2

0ν2)ψ(t′)(ν1ν2
2 + ν2

1ν2)

= −
√

ψ(t)/ψ(t′)
√

ν0ν1/[(ν0 + ν2)(ν1 + ν2)].

Similarly,

corr{N−1/2S1
N(t), N−1/2S2

N(t)}
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=
cov{N−1/2S1

N(t), N−1/2S2
N(t)}

σ{N−1/2S1
N(t)}σ{N−1/2S2

N(t)}

= ψ(t)ν1ν0ν2/
√

ψ(t)(ν0ν2
1 + ν2

0ν1)ψ(t)(ν0ν2
2 + ν2

0ν2)

=
√

ν1ν2/[(ν0 + ν1)(ν0 + ν2)].

Let LR(1
′) =

S1
N(t)√
Nσ11 and LR(2

′) =
S2

N(t)√
Nσ22 denote the standardized log-rank test

statistic at stage 1 and stage 2 respectively. Since

N−1/2
{

S1
N (t) , S2

N (t)
}

d→ N

(0
0

)
,

 σ11 σ12

σ12 σ22




and

corr
{

S1
N(t), S2

N(t)
}

=
cov

{
N−1/2S1

N(t), N−1/2S2
N(t)

}√
var

(
N−1/2S1

N(t)
)√

var
(

N−1/2S2
N(t)

)
=

Nσ12

N
√

σ11σ22
=

σ12
√

σ11σ22
,

we can get the distribution for standardized log-rank statistics

{
LR(1

′), LR(2
′)
}

d→ N

(0
0

)
,

 1 σ12√
σ11σ22

σ12√
σ11σ22 1


 .

By Slutsky’s theorem , we know that
(

LR(1), LR(2)
)

have the same asymptotic distribution

as
(

LR(1
′), LR(2

′)
)

, where LR(1) = S1
N(t)√
Nσ̂11

and LR(2) = S2
N(t)√
Nσ̂22

for any consistent estima-

tions of σ11 and σ22. Thus the asymptotic correlation between the standardized statistics

are σ12√
σ11σ22 , which is equal to the asymptotic correlation between the unstandardized log-

rank statistics.

At the first stage, let LR(1)01 and LR(1)02 denote the log-rank statistics for treatment

1 versus control and treatment 2 versus control respectively. Similar to the notation used
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in the Shun, Lan & Soo paper [35], use V to denote log-rank statistic for treatment 1 vs

treatment 2.

Since if t = t
′
, then

√
ψ(t)/ψ(t′) = 1, the correlation

corr(LR(1)01 , V) =
√

ν0ν2/[(ν0 + ν1)(ν1 + ν2)],

and

corr(LR(1)02 , V) = −
√

ν0ν1/[(ν0 + ν2)(ν1 + ν2)].

The correlation between LR(1)01 and LR(1)02 is

corr(LR(1)01 , LR(1)02 ) =
√

ν1ν2/[(ν0 + ν1)(ν0 + ν2)].

When the allocation ratio is 1:1:1, the correlations will be

corr(LR(1)01 , V) = 1/2,

corr(LR(1)02 , V) = −1/2,

and

corr(LR(1)01 , LR(1)02 ) = 1/2.

At the second stage, we know the asymptotic correlation between LR(1)0j and LR(2)0j

is
√

τ, where τ = d1/d2 is the information time. The relation between V and the increments

of the second stage log-rank statistics Ij for treatment j versus control is

LR(2)0j =
√

τLR(1)0j +
√

1− τ Ij,

and
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Ij = [LR(2)0j −
√

τLR(1)0j ]/
√

1− τ, j = 1, 2.

We know

corr(I1, V) = 0,

and

corr(I2, V) = 0.

Then it can be shown, asymptotically, that

η1 ≡ cov(LR(2)01 , V) =
√

τcov(LR(1)01 , V) +
√

1− τcov(I1, V)

=
√

τcov(LR(1)01 , V)

=
√

τν0ν2/[(ν0 + ν1)(ν1 + ν2)], (10.1)

and

η2 ≡ cov(LR(2)02 , V) =
√

τcov(LR(1)02 , V) +
√

1− τcov(I2, V)

=
√

τcov(LR(1)02 , V)

= −
√

τν0ν1/[(ν0 + ν2)(ν1 + ν2)]. (10.2)

When allocation ratio 1:1:1, we have

η1 =

√
τ

2
= −η2.

Now we know that (V, LR(2)01 ) and (V, LR(2)02 ) both approximately have bivariate

normal distribution. They have unit variance and the covariances are given in Formulas

10.1 and 10.2. The critical value could be determined once τ is known. The power under
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Ha will be

P(W > w) = P(V ≥ 0, LR(2)01 > w) + P(V < 0, LR(2)02 > w).

With these results, one can design the trial using numerical bivariate normal cu-

mulative distribution function or the normal approximation method of Shun et al [35].

10.1.2 Using surrogate endpoint at interim analysis

In clinical trial development, it may not be feasible to use primary endpoint to do

the interim analysis due to the long follow up, such as survival. Thus, it is necessary to

use a surrogate endpoint at the first stage. In this section, the correlation between log-rank

statistics based on different survival endpoints is developed.

A. Covariance matrix for log rank statistics

Tsiatis [38] discussed the asymptotic distribution of test statistics in survival analy-

sis. When there are two treatment groups (treatment versus control), the covariance matrix

for the log-rank test statistics at two different time points (t1and t2) based on the same end-

point is

Ω′ =

 σ′11 σ′12

σ′12 σ′22

 ,

where

σ′11 =
∫ t1

0
E[
(

zj − µzj

)2
]H(t1 − x)Ḡ(x) exp{−Λ1(x)}λ1(x)dx,

σ′12 =
∫ t1

0
E[
(

zj − µzj

)2
]H(t1 − x)Ḡ(x) exp{−Λ1(x)}λ1(x)dx,

σ′22 =
∫ t2

0
E[
(

zj − µzj

)2
]H(t2 − x)Ḡ(x) exp{−Λ2(x)}λ2(x)dx,
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and

µzj
=
[
E
{

zjH
(
t− x|zj

)
G
(
x|zj

)}]
/
[
E
{

H
(
t− x|zj

)
G
(
x|zj

)}]
.

However, in two-stage design, there are two major differences than the design

Tsiatis used. One is that there are three treatment groups instead of two. The second is that

two different survival endpoints will be used at interim and final analysis. For simplicity,

we assume no censoring process (Ḡ(x) = 1) and patient entry patterns in each treatment

arm are the same. The covariance terms can be written as

Ω =

 σ11 σ12

σ12 σ22

 ,

where

σ11 = E[{(z1i + z2i) (z2i − µ12)}2]
∫ t1

0
H(t1 − x) exp{−Λ1(x)}λ1(x)dx,

σ12 = E[{(z1i + z2i) (z2i − µ12)}
(
zji + z0i

) (
z0i − µ0j

)
}]

× E[{41(t1)−Λ1(X1(t1))}{42(t2)−Λ2(X2(t2))}],

σ22 = E[{
(
zji + z0i

) (
z0i − µ0j

)
}2]

∫ t2

0
H(t2 − x) exp{−Λ2(x)}λ2(x)dx. (10.3)

The covariance term σ12 is derived using the same approach in Tsiatis (1982) [38]. We need

to solve

E[{41(t1)−Λ1(X1(t1))}{42(t2)−Λ2(X2(t2))}], for 0 6 t1 6 t2,

and all other expectation terms.
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B. Expectation terms in covariance matrix

Based on Schaid et al [33],

Sj
N (t) =

N

∑
i=1

(
z0i + zji

)
∆i (t)

[
zji − zj (t, xi (t))

]
,

where N is the total number of patients in the study and

zj (t, x) = ∑
i∈R(t,x)

(
z0i + zji

)
zji/ ∑

i∈R(t,x)

(
z0i + zji

)
I [Xi (t) ≥ x]

= ∑
i∈R(t,x)

zji/ ∑
i∈R(t,x)

(
z0i + zji

)
I [Xi (t) ≥ x] .

R (t, x) denotes the risk set for patients in the study. By the Law of Large Number, since

∑
i∈R(t,x)

zji/N =
N

∑
i=1

zji I (X (t) ≥ x)
N

P−→ E
{

zj1 I (X (t) ≥ x)
}

,

and

E
{

zj1 I (X (t) ≥ x)
}
= E

{
E
{

zj1 I (X (t) ≥ x) |zj1
}}

= E
{

zj1E
{

I (X (t) ≥ x) |zj1
}}

= E
{

zj1P
{

X (t) ≥ x|zj1
}}

,

we have

∑
i∈R(t,x)

zji/N P−→ E
{

zj1P
{

X (t) ≥ x|zj1
}}

,

∑
i∈R(t,x)

(
z0i + zji

)
I (X (t) ≥ x) /N P−→ E

{(
z01 + zj1

)
P
{

X (t) ≥ x|zj1
}}

,

and

P {X (t) ≥ x} = E {I (X (t) ≥ x)} = E
{

P
{

X (t) ≥ x|zj1
}}
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= Pr
(
V̇ ≥ x, t−Y ≥ x, W ≥ x|zj1

)
= exp {−Λ (x)} E

{
H
(
t− x|zj1

)
G
(
x|zj1

)}
.

As E
{

zj1H
(
t− x|zj1

)
G
(
x|zj1

)}
and E

{(
z01 + zj1

)
H
(
t− x|zj1

)
G
(
x|zj1

)}
are constants,

∑
i∈R(t,x)

zji/ ∑
i∈R(t,x)

(
z0i + zji

)
I (Xi (t) ≥ x)

converges in distribution to

µj (t, x) =
E
{

zj1H
(
t− x|zj1

)
G
(
x|zj1

)}
E
{(

z01 + zj1
)

H
(
t− x|zj1

)
G
(
x|zj1

)} .

Because assuming no censoring process and patient entry patterns are identical

in each treatment arm. µj (t, x) will not dependent on time. Thus the notation for µj (t, x)

can be simplified as

µj =
E
(
zj1
)

E
(
z01 + zj1

) .

So when comparing treatment 2 versus treatment 1 at the interim analysis, we have

µ12 =
E (z21)

E (z11 + z21)
=

ν2

ν1 + ν2
.

When comparing control versus winning arm at the final analysis, we have

µ0j =
E (z01)

E
(
z01 + zj1

) = ν0

ν0 + νj
.

Thus for the covariance matrix in (10.3), the expectation part in σ11 is

E[{(z11 + z21) (z21 − µ12)}2]

= E[(z11 + z21)
2 (z21 − µ12)

2]

= E[(z11 + z21)
(
z21 − 2z21µ12 + µ2

12

)
]
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= E[z11µ2
12 +

(
z21 − 2z21µ12 + z21µ2

12

)
]

= E[z11µ2
12 + z21 (1− µ12)

2]

= E[z11]µ
2
12 + E[z21] (1− µ12)

2

= ν1

(
ν2

ν1 + ν2

)2

+ ν2

(
1− ν2

ν1 + ν2

)2

=
ν1ν2

2

(ν1 + ν2)
2 +

ν2
1ν2

(ν1 + ν2)
2

=
v1ν2

ν1 + ν2
.

For the expectation part in σ22, we have

E[{
(
zj1 + z01

) (
z01 − µ0j

)
}2] =

v0νj

ν0 + νj
.

For covariance σ12, we have

E[
(
zj1 + z01

) (
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= E[zj1

(
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= E[zj1

(
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= E[zj1 (z11 + z21)
(

z01 − µ0j

)
(z21 − µ12)]

= E[zj1

(
z01 − µ0j

)
(z21 − µ12)]

= E[−µ0jzj1 (z21 − µ12)]

= −µ0jE[zj1 (z21 − µ12)]

When j = 1,

E[
(
zj1 + z01

) (
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= −µ01E [z11 (z21 − µ12)]
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= −µ01E [−z11µ12]

= µ01µ12E [z11]

=
v0

ν0 + ν1

ν2

ν1 + ν2
v1

=
v0ν1ν2

(ν0 + ν1) (ν1 + ν2)
,

and when j = 2

E[
(
zj1 + z01

) (
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= −µ02E [z21 (z21 − µ12)]

= −µ01E [z21 (1− µ12)]

= −µ01 (1− µ12) E [z21]

=
−v0

ν0 + ν1

(
1− ν2

ν1 + ν2

)
v2

=
−v0ν1ν2

(ν0 + ν1) (ν1 + ν2)
.

Thus

E[
(
zj1 + z01

) (
z01 − µ0j

)
(z11 + z21) (z21 − µ12)]

= (−1)j−1 v0ν1ν2

(ν0 + ν1) (ν1 + ν2)
.

C. Covariance of log-rank test statistics in the case of bivariate exponential distribution

Suppose θ0 ∼ Exp (λ0) , θ2 ∼ Exp (λ2) . Let θ1 ∼ min (θ0, θ2) . Then θ1 ∼ Exp (λ1) ,

with λ1 = λ0 + λ2. It assumed that θ0 is the time of PFS , θ2 is the time of death, and θ1

is the recorded time of PFS. Let Y denote the real time of entry. We will first consider

everything conditional on Y, that is, treat Y as fixed.
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Similar in Tsiatis [38], denote

X1 (t1) = max (min (θ1, t1 −Y) , 0)

X2 (t2) = max (min (θ2, t2 −Y) , 0)

∆1 (t1) = 1 iff θ1 < t1 −Y

∆2 (t2) = 1 iff θ2 < t2 −Y.

We want to show

Theorem

E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)]} =
λ2

λ1

(
1− e−λ1(t1−Y)

)
, for 0 6 t1 6 t2.

Lemma 1:

E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)]}

= E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t1)− λ2X2 (t1)]} , f or 0 6 t1 6 t2

i.e

E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]} = 0

Proof: We consider two cases: θ2 > θ0 and θ2 ≤ θ0. Denote the integration on the

first set as A and the integration on the second set as B. Thus we have

A = E
{

I{θ2>θ0} [∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]
}

= E
{

E
{

I{θ2>θ0} [∆1 (t1)− λ1X1 (t1)] |θ2
}
[∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]

}
and

B = E
{

I{θ2≤θ0} [∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]
}
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= E
{

E
{

I{θ2≤θ0} [∆1 (t1)− λ1X1 (t1) |θ2]
}
[∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]

}
.

For the first set, consider the conditional expectation on θ2 (> t1 −Y) ,

E
{

I{θ2>θ0} [∆1 (t1)− λ1X1 (t1)] |θ2
}

= E
{

I{θ2>θ0}
[

I{θ0<t1−Y} − λ1θ0 I{θ0<t1−Y} − λ1 (t1 −Y) I(θ0≥t1−Y)

]
|θ2

}
= E

{
I{θ0<t1−Y} − λ1θ0 I{θ0<t1−Y} − λ1 (t1 −Y) I(θ2>θ0≥t1−Y)|θ2

}
=
∫ t1−Y

0
λ0e−λ0θ0 dθ0 −

∫ t1−Y

0
λ1θ0λ0e−λ0θ0 dθ0 − λ1 (t1 −Y)

∫ θ2

t1−Y
λ0e−λ0θ0 dθ0

= 1− e−λ0(t1−Y) + λ1

∫ t1−Y

0
θ0de−λ0θ0 − λ1 (t1 −Y)

(
e−λ0(t1−Y) − e−λ0θ2

)
= 1− e−λ0(t1−Y) + λ1 (t1 −Y) e−λ0(t1−Y) − λ1

∫ t1−Y

0
e−λ0θ0 dθ0 − λ1 (t1 −Y)

(
e−λ0(t1−Y) − e−λ0θ2

)
= 1− e−λ0(t1−Y) + λ1 (t1 −Y) e−λ0θ2 − λ1

λ0

(
1− e−λ0(t1−Y)

)
= λ1 (t1 −Y) e−λ0θ2 − λ2

λ0

(
1− e−λ0(t1−Y)

)
.

Therefore

A = E
{[

λ1 (t1 −Y) e−λ0θ2 − λ2

λ0

(
1− e−λ0(t1−Y)

)]
[∆2 (t2)− λ2X (t2)− (∆2 (t1)− λ2X (t1))]

}
= E

{
λ1 (t1 −Y) e−λ0θ2 [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]

}
.

In the above, notice that

∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))

= I{θ2<t2−Y} − λ2θ2 I{θ2<t2−Y} − λ2 (t2 −Y) I{θ2≥t2−Y}

− I{θ2<t1−Y} + λ2θ2 I{θ2<t1−Y} + λ2 (t1 −Y) I{θ2≥t1−Y}

= I{t1−Y≤θ2<t2−Y} − λ2θ2 I{t1−Y≤θ2<t2−Y} + λ2 (t1 −Y) I{t1−Y≤θ2<t2−Y}

− λ2 (t2 − t1) I{θ2≥t2−Y}
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= I{t1−Y≤θ2<t2−Y} − λ2 (θ2 − (t1 −Y)) I{t1−Y≤θ2<t2−Y} − λ2 (t2 − t1) I{θ2≥t2−Y}

is not zero only when θ2 > t1 −Y.

Now let’s look at set B. Consider the conditional expectation on θ2 (> t1 −Y) .

E
{

I{θ2≤θ0} [∆1 (t1)− λ1X1 (t1) |θ2]
}

= E
{

I{θ2≤θ0}
[

I{θ2<t1−Y} − λ1θ2 I{θ2<t1−Y} − λ1 (t1 −Y) I(θ2≥t1−Y)|θ2

]}
= E

{
−I{θ2≤θ0}λ1 (t1 −Y) I(θ2≥t1−Y)|θ2

}
= −e−λ0θ2 λ1 (t1 −Y) I(θ2≥t1−Y)

= −λ1 (t1 −Y) e−λ0θ2 I(θ2≥t1−Y).

Hence

B = −E
{

λ1 (t1 −Y) e−λ0θ2 [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]
}

and

E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t2)− λ2X2 (t2)− (∆2 (t1)− λ2X2 (t1))]}

= A+ B = 0.

That finishes the proof of lemma 1. The covariance of PFS part with the increment

of OS part is zero.

Proof of theorem

Again we divide E {[∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]} into two parts.

A = E
{

I{θ2>θ0} [∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]
}

,

B = E
{

I{θ2≤θ0} [∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]
}

.
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B = E
{

I{θ2≤θ0} [∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]
}

= E
{

I{θ2≤θ0}
[

I{θ2<t−Y} − λ1θ2 I{θ2<t−Y} − λ1 (t−Y) I(θ2≥t−Y)

]
×
[

I{θ2<t−Y} − λ2θ2 I{θ2<t−Y} − λ2 (t−Y) I(θ2≥t−Y)

]}
= E

{
e−λ0θ2

[
I{θ2<t−Y} − (λ1 + λ2) θ2 I{θ2<t−Y} + λ1λ2θ2

2 I{θ2<t−Y} + λ1λ2 (t−Y)2 I(θ2≥t−Y)

]}
=
∫ t−Y

0
λ2e−λ2θ2 e−λ0θ2 dθ2 − (λ1 + λ2)

∫ t−Y

0
λ2e−λ2θ2 θ2e−λ0θ2 dθ2

+ λ1λ2

∫ t−Y

0
λ2e−λ2θ2 θ2

2e−λ0θ2 dθ2 + λ1λ2 (t−Y)2
∫ ∞

t−Y
λ2e−λ2θ2 e−λ0θ2 dθ2

=
λ2

λ0 + λ2

(
1− e−(λ0+λ2)(t−Y)

)
+ λ1λ2 (t−Y)2

λ2

λ0 + λ2
e−(λ0+λ2)(t−Y)

− λ2 (λ1 + λ2)

λ0 + λ2

[
1

λ0 + λ2

(
1− e−(λ0+λ2)(t−Y)

)
− (t−Y) e−(λ0+λ2)(t−Y)

]
+

λ1λ2
2

λ0 + λ2

[
− (t−Y)2 e−(λ0+λ2)(t−Y) +

2

(λ0 + λ2)
2

(
1− e−(λ0+λ2)(t−Y)

)
− (t−Y)

2
λ0 + λ2

e−(λ0+λ2)(t−Y)
]

=

[
λ2

λ0 + λ2
− λ2 (λ1 + λ2)

(λ0 + λ2)
2 +

2λ1λ2
2

(λ0 + λ2)
3

] (
1− e−(λ0+λ2)(t−Y)

)
+

[
λ2 (λ1 + λ2)

λ0 + λ2
− 2λ1λ2

2

(λ0 + λ2)
2

]
(t−Y) e−(λ0+λ2)(t−Y)

+

(
λ1λ2

2
λ0 + λ2

− λ1λ2
2

λ0 + λ2

)
(t−Y)2 e−(λ0+λ2)(t−Y)

=
λ2

2

(λ0 + λ2)
2

(
1− e−(λ0+λ2)(t−Y)

)
+

λ0λ2

λ0 + λ2
(t−Y) e−(λ0+λ2)(t−Y)

As for A, we calculate it as follow:

A = E
{

I{θ2>θ0} [∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]
}

= E
{

I{θ2>θ0}
[

I{θ0<t−Y} − λ1θ0 I{θ0<t−Y} − λ1 (t−Y) I(θ0≥t−Y)

]
×
[

I{θ2<t−Y} − λ2θ2 I{θ2<t−Y} − λ2 (t−Y) I(θ2≥t−Y)

]}
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= E
{[

I{θ0<t−Y} − λ1θ0 I{θ0<t−Y} − λ1 (t−Y) I(θ0≥t−Y)

]
×E

{
I{θ2>θ0}

[
I{θ2<t−Y} − λ2θ2 I{θ2<t−Y} − λ2 (t−Y) I(θ2≥t−Y)

]
|θ0

}}
.

To calculate the conditional expectation,

E
{

I{θ2>θ0}
[

I{θ2<t−Y} − λ2θ2 I{θ2<t−Y} − λ2 (t−Y) I(θ2≥t−Y)

]
|θ0

}
= E

{
I{θ0<θ2<t−Y} − λ2θ2 I{θ0<θ2<t−Y} − λ2 (t−Y) I(θ2≥(t−Y)∨θ0)|θ0

}
= I{θ0<t−Y}

(
e−λ0θ0 − e−λ2(t−Y)

)
− I{θ0<t−Y}λ2

∫ t−Y

θ0

θ2λ2e−λ2θ2 dθ2 − λ2 (t−Y) e−λ2(t−Y)∨θ0

= I{θ0<t−Y}
(

e−λ0θ0 − e−λ2(t−Y)
)

− I{θ0<t−Y}λ2

[
1

λ2

(
e−λ2θ0 − e−λ2(t−Y)

)
+ θ0e−λ2θ0 − (t−Y) e−λ2(t−Y)

]
− λ2 (t−Y) e−λ2(t−Y)∨θ0

= −I{θ0<t−Y}λ2θ0e−λ2θ0 + I{θ0<t−Y}λ2 (t−Y) e−λ2(t−Y) − λ2 (t−Y) e−λ2(t−Y)∨θ0

= −λ2 ((t−Y) ∧ θ0) e−λ2θ0

That implies that,

A = E
{[

I{θ0<t−Y} − λ1θ0 I{θ0<t−Y} − λ1 (t−Y) I(θ0>t−Y)

] [
−λ2 ((t−Y) ∧ θ0) e−λ2θ0

]}
= E

{
−λ2θ0e−λ2θ0 I{θ0<t−Y} + λ1λ2θ2

0e−λ2θ0 I{θ0<t−Y} + λ1λ2 (t−Y)2 e−λ2θ0 I(θ0>t−Y)

}
= −λ2

∫ t−Y

0
θ0e−λ2θ0 λ0e−λ0θ0 dθ0 + λ1λ2

∫ t−Y

0
θ2

0e−λ2θ0 λ0e−λ0θ0 dθ0

+ λ1λ2 (t−Y)2
∫ ∞

t−Y
e−λ2θ0 λ0e−λ0θ0 dθ0

= − λ0λ2

λ0 + λ2

(
1

λ0 + λ2

(
1− e−(λ0+λ2)(t−Y)

)
− (t−Y) e−(λ0+λ2)(t−Y)

)
+ λ1λ2 (t−Y)2

λ0

λ0 + λ2
e−(λ0+λ2)(t−Y)

+
λ0λ1λ2

λ0 + λ2

[
− (t−Y)2 e−(λ0+λ2)(t−Y)
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+
2

λ0 + λ2

(
1

λ0 + λ2

(
1− e−(λ0+λ2)(t−Y)

)
− (t−Y) e−(λ0+λ2)(t−Y)

)]
=
(

1− e−(λ0+λ2)(t−Y)
) [
− λ0λ2

(λ0 + λ2)
2 +

2λ0λ2

(λ0 + λ2)
2

]

+ (t−Y) e−(λ0+λ2)(t−Y)
[

λ0λ2

λ0 + λ2
− 2λ0λ2

λ0 + λ2

]
+ (t−Y)2 e−(λ0+λ2)(t−Y) [λ0λ2 − λ0λ2]

=
(

1− e−(λ0+λ2)(t−Y)
) λ0λ2

(λ0 + λ2)
2 − (t−Y) e−(λ0+λ2)(t−Y) λ0λ2

λ0 + λ2
.

Therefore, from Lemma 1, the theorem is proved. Since

E {[∆1 (t)− λ1X1 (t)] [∆2 (t)− λ2X2 (t)]}

= A+ B

=
(

1− e−(λ0+λ2)(t−Y)
) [ λ0λ2

(λ0 + λ2)
2 +

λ2
2

(λ0 + λ2)
2

]

− (t−Y) e−(λ0+λ2)(t−Y)
[

λ0λ2

λ0 + λ2
− λ0λ2

λ0 + λ2

]
=

λ2

λ0 + λ2

(
1− e−(λ0+λ2)(t−Y)

)
=

λ2

λ1

(
1− e−λ1(t−Y)

)
.

In addition, we can show that

Lemma 2:

E {[∆1 (t2)− λ1X1 (t2)] [∆2 (t1)− λ2X2 (t1)]}

= E {[∆1 (t1)− λ1X1 (t1)] [∆2 (t1)− λ2X2 (t1)]} , for 0 ≤ t2 ≤ t1.

Proof. For lemma 2, we only need to show that

E {[∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]} = 0.
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Similarly, we let

A = E
{

I[θ2>θ0] [∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]
}

,

B = E
{

I[θ2≤θ0] [∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]
}

.

On the set θ2 > θ0,

∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))

= I{θ0<t2−Y} − λ1θ0 I{θ0<t2−Y} − λ1 (t2 −Y) I(θ0>t2−Y)

− I{θ0<t1−Y} + λ1θ0 I{θ0<t1−Y} + λ1 (t1 −Y) I(θ0>t1−Y)

= I{t1−Y≤θ0<t2−Y} − λ1θ0 I{t1−Y≤θ0<t2−Y} + λ1 (t1 −Y) I{t1−Y≤θ0<t2−Y}

− λ1 (t2 − t1) I(θ0>t2−Y)

= I{t1−Y≤θ0<t2−Y} − λ1 (θ0 − (t1 −Y)) I{t1−Y≤θ0<t2−Y} − λ1 (t2 − t1) I(θ0>t2−Y)

This is not zero only on θ0 > t1 − Y. Therefore, we consider the conditional ex-

pectation on θ0 (> t1 −Y) .

E
{

I{θ2>θ0} (∆2 (t1)− λ2X2 (t1)) |θ0
}

= E
{

I{θ2>θ0}
[
I{θ2<t1−Y} − λ2θ2 I{θ2<t1−Y} − λ2 (t1 −Y) I{θ2≥t1−Y}

]
|θ0
}

= E
{
−λ2 (t1 −Y) I{θ2>θ0}

}
= −λ2 (t1 −Y) e−λ2θ0 .

A = E
{

I[θ2>θ0] [∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]
}

= E
{

I{t1−Y≤θ0<t2−Y} − λ1 (θ0 − (t1 −Y)) I{t1−Y≤θ0<t2−Y} − λ1 (t2 − t1) I(θ0>t2−Y)

×
[
−λ2 (t1 −Y) e−λ2θ0

]
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= −λ2 (t1 −Y)
∫ t2−Y

t1−Y
e−λ2θ0 λ0e−λ0θ0 dθ0

+ λ1λ2 (t1 −Y)
∫ t2−Y

t1−Y
(θ0 − (t1 −Y)) e−λ2θ0 λ0e−λ0θ0 dθ0

+ λ1λ2 (t2 − t1) (t1 −Y)
∫ ∞

t2−Y
e−λ2θ0 λ0e−λ0θ0 dθ0

= −λ2 (t1 −Y)
λ0

λ0 + λ2

[
e−(λ0+λ2)(t1−Y) − e−(λ0+λ2)(t2−Y)

]
+

λ0λ1λ2 (t1 −Y)
λ0 + λ2

[
− (t2 − t1) e−(λ0+λ2)(t1−Y)+

+
1

λ0 + λ2

(
e−(λ0+λ2)(t1−Y) − e−(λ0+λ2)(t2−Y)

)]
+

λ0λ1λ2 (t2 − t1) (t1 −Y)
λ0 + λ2

e−(λ0+λ2)(t2−Y)

= 0.

On the set θ2 ≤ θ0,

∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))

= I{θ2<t2−Y} − λ1θ2 I{θ2<t2−Y} − λ1 (t2 −Y) I(θ2>t2−Y)

− I{θ2<t1−Y} + λ1θ2 I{θ2<t1−Y} + λ1 (t1 −Y) I(θ2>t1−Y)

= I{t1−Y≤θ2<t2−Y} − λ1 (θ2 − (t1 −Y)) I{t1−Y≤θ2<t2−Y} − λ1 (t2 − t1) I(θ2>t2−Y).

We consider the conditional expectation on θ2 (> t1 −Y) .

E
{

I{θ2≤θ0} (∆2 (t1)− λ2X2 (t1)) |θ2
}

= E
{

I{θ2≤θ0}
[
I{θ2<t1−Y} − λ2θ2 I{θ2<t1−Y} − λ2 (t1 −Y) I{θ2≥t1−Y}

]
|θ2
}

= −λ2 (t1 −Y) I{θ2≥t1−Y}e
−λ0θ2 .

B = E
{

I[θ2≤θ0] [∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]
}
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= E
{

I{t1−Y≤θ2<t2−Y} − λ1 (θ2 − (t1 −Y)) I{t1−Y≤θ2<t2−Y} − λ1 (t2 − t1) I(θ2≥t2−Y)

×
[
−λ2 (t1 −Y) I(θ2≥t2−Y)e

−λ0θ2
]

= −λ2 (t1 −Y)
∫ t2−Y

t1−Y
e−λ0θ2 λ2e−λ2θ2 dθ2

+ λ1λ2 (t1 −Y)
∫ t2−Y

t1−Y
(θ2 − (t1 −Y)) e−λ0θ2 λ2e−λ2θ2 dθ2

+ λ1λ2 (t2 − t1) (t1 −Y)
∫ ∞

t2−Y
e−λ0θ2 λ2e−λ2θ2 dθ2

= −λ2 (t1 −Y)
λ2

λ0 + λ2

[
e−(λ0+λ2)(t1−Y) − e−(λ0+λ2)(t2−Y)

]
+

λ1λ2
2 (t1 −Y)

λ0 + λ2

[
− (t2 − t1) e−(λ0+λ2)(t1−Y) +

1
λ0 + λ2

(
e−(λ0+λ2)(t1−Y) − e−(λ0+λ2)(t2−Y)

)]
+

λ1λ2
2 (t2 − t1) (t1 −Y)

λ0 + λ2
e−(λ0+λ2)(t2−Y)

= 0

So E {[∆1 (t2)− λ1X1 (t2)− (∆1 (t1)− λ1X1 (t1))] [∆2 (t1)− λ2X2 (t1)]} = A+ B = 0.

Based on the derivation above, the covariance term is

E[{(z1i + z2i) (z2i − µ12 (t, x))}
(
zji + z0i

) (
z0i − µ0j (t, x)

)
}]

× E[{41(t1)−Λ1(X1(t1))}{42(t2)−Λ2(X2(t2))}]

=
v0ν1ν2

(ν0 + ν1) (ν1 + ν2)

(
λ2

λ1

(
1− e−λ1(t1−Y)

))
, f or 0 6 t1 6 t2.

Similarly the variances can be calculated as

E[{(z1i + z2i) (z2i − µ12 (t, x))}2]E
[
(∆1 (t1)−Λ1 (X1 (t1)))

2
]
=

v1ν2

ν1 + ν2

(
1− e−λ1(t1−Y)

)
and

E[{
(
zji + z0i

) (
z0i − µ0j (t, x)

)
}2]E

[
(∆2 (t2)−Λ2 (X2 (t2)))

2
]
=

v0ν2

ν0 + ν2

(
1− e−λ2(t2−Y)

)
.
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Summary:

1) Covariance of log-rank test statistics in the case of bivariate exponential distri-

bution is

Ω =

 σ11 σ12

σ12 σ22

 ,

where

σ11 =
v1ν2

ν1 + ν2

(
1− e−λ1(t1−Y)

)
σ12 =

v0ν1ν2

(ν0 + ν1) (ν1 + ν2)

(
λ2

λ1

(
1− e−λ1(t1−Y)

))
σ22 =

v0ν2

ν0 + ν2

(
1− e−λ2(t2−Y)

)
, for 0 6 t1 6 t2.

2) If assume that patients have the same entry time (Y = 0), then

σ11 =
v1ν2

ν1 + ν2

(
1− e−λ1t1

)
σ12 =

v0ν1ν2

(ν0 + ν1) (ν1 + ν2)

(
λ2

λ1

(
1− e−λ1t1

))
σ22 =

v0ν2

ν0 + ν2

(
1− e−λ2t2

)
, for 0 6 t1 6 t2.

3) If assume that patient entry time Y ∼ h (y), then

σ11 =
∫ ∞

0

v1ν2

ν1 + ν2

(
1− e−λ1(t1−y)

)
h (y) dy

=
v1ν2

ν1 + ν2

(
1−

∫ ∞

0
e−λ1(t1−y)h (y) dy

)
σ12 =

∫ ∞

0

v0ν1ν2

(ν0 + ν1) (ν1 + ν2)

(
λ2

λ1

(
1− e−λ1(t1−y)

))
h (y) dy

=
v0ν1ν2

(ν0 + ν1) (ν1 + ν2)

λ2

λ1

(
1−

∫ ∞

0
e−λ1(t1−y)h (y) dy

)
σ22 =

∫ ∞

0

v0ν2

ν0 + ν2

(
1− e−λ2(t2−y)

)
h (y) dy

=
v0ν2

ν0 + ν2

(
1−

∫ ∞

0
e−λ2(t2−y)h (y) dy

)
, for 0 6 t1 6 t2.
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Chapter 11

Two-stage winner designs with

survival outcomes

In this section, two-stage winner design with survival outcomes using the same

or different survival endpoints at the interim and final analysis is studied.

11.1 Notations

The following notations will be used in this chapter:

ν0 : ν1 : ν2 : allocation ratio for control arm, treatment arm 1, and treatment arm 2,

where ν0 + ν1 + ν2 = 1

ν : for simplicity, set ν1 = ν2 = υ

ω1 : hazard ratio for treatment 1 versus control

ω2 : hazard ratio for treatment 2 versus control
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N1i : number of patients at risk at the 1st stage in treatment 1 when ith event occurred

N2i : number of patients at risk at the 1st stage in treatment 2 when ith event occurred

N(2)
0i : number of patients at risk at the 2nd stage in control arm when ith event occurred

N(2)
ji : number of patients at risk at the 2nd stage in the winning treatment

arm j when ith event occurred

d0 : total number of events in the two treatment arms in the first stage

d1 : total number of events in the control arm and winning treatment arm at the end

of the first stage

d2 : total number of events in the control arm and winning treatment arm at the end

of the second stage

τ : information time for stage 1, τ = d1/d2

11.1.1 Log-rank test statistics and its distribution

Assuming no ties, the standardized log-rank test statistic to compare the two

treatments at the end of stage 1 is

LR1 =
∑d0

i=1(I2i − N2i
N1i+N2i

)√
∑d0

i=1
N1i N2i

(N1i+N2i)2

,

where I2i = 1 if the event occurred in treatment arm 2 and 0 otherwise. For fixed d0, when

assuming ω1 6= ω2, LR1 is approximately normally distributed with unit variance and

mean (Wassmer 2006)

λ ≡ E(LR1) =
√

d0

√
ν1ν2

ν1 + ν2
ln(ω2/ω1).
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The log-rank test statistic comparing control arm and winning arm at the end of stage 2 is

LR(2)0j =

∑d2
i=1(I0i −

N(2)
0i

N(2)
ji +N(2)

0i

)√
∑d2

i=1
N(2)

ji N(2)
0i

(N(2)
ji +N(2)

0i )
2

,

where I0i = 1 if the event occurred in the control arm and 0 otherwise. For fixed d1, d2,

LR(1)0j and LR(2)0j are approximately normally distributed with unit variance and means

E(LR(2)0j ) =
√

d2

√
ν0νj

ν0 + νj
ln(1/ω j).

At the interim look, the following decision rules will be used to pick the winning

arm: drop treatment 1, when LR1 < 0; drop treatment 2 when LR1 > 0. If we denote the

interim statistic as

V = LR1,

then the final test statistic of the two-stage winner design will be

W =


LR(2)01 if V ≥ 0,

LR(2)02 if V < 0.

The winning probability of treatment 1 can be calculated as in Shun et al (2008):

p = P(V ≥ 0) .
= P(V − λ > −λ) = 1−Φ(−λ) = Φ(λ),

where Φ(·) is the standard normal cdf. Note that both V and LR(1)0j are asymptotically

normally distributed with asymptotically unit variance. Since they both summarize infor-

mation of two arms and have one common arm, they are correlated.
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11.2 Approximate Parameter Calculations

In practice, when a clinical trial is designed, one of the considerations is to chose

the appropriate winning probability (p) and the time doing the interim analysis (τ = d1/d2).

The inferior treatment group is terminated at the interim stage to increase the efficiency

(saving time and resources) of the clinical trial. The earlier the interim analysis is, the

more efficiency the design may have. On the other hand, the later the interim analysis is,

the more reliable the interim treatment selection is. In the section below, some practical

considerations are provided for the approximate calculation of sample sizes and critical

values.

11.2.1 Fix the winning probability approach

A) Total number of events d0 in the two treatment arms at interim analysis:

Since

P (V ≥ 0) .
= Φ (λ) = Φ

(
−
√

d0

√
ν1ν2

ν1 + ν2
ln(ω1/ω2)

)
= p,

we have

d0 =
(ν1 + ν2)2

ν1ν2

(
zp/ ln(ω1/ω2)

)2 ,

where p is the winning probability.
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B) Interim time t1 and total number of events d1 in the winning arm and control arm at

interim analysis:

The total event number of events d1 in the winning treatment arm and control

arm is determined by the time t1 when d0 events are observed in the two treatment arms.

In order to calculate d1, one needs to know when the expected total event number of the

two treatment groups reaches d0.

Denote the cdf for the event time of the control arm and the two treatment arms

as F0(·), F1(·) and F2(·), respectively. Assume a constant accrual rate of one patient per a

unit time. Then at t1, the expected total number of events in the two treatment arms can

also be denoted as

d0 = ∑
i≤t1/a

[ν1F1(t1 − ai) + ν2F2(t1 − ai)].

Since d0 is already determined, by solving this equation, we can get the t1.

C) Total number of events in the winning arm and control arm at anytime t2 ≥ t1 :

The expected event number for the winning arm and the control arm at time

t2 ≥ t1 is approximately calculated as

d1 = ∑
i≤t1/a

[pν1F1(t1 − ai) + qν2F2(t1 − ai) + ν0F0(t1 − ai)],

d2 = ∑
i≤t1/a

[pν1F1(t2 − ai) + qν2F2(t2 − ai) + ν0F0(t2 − ai)]

+ ∑
i≤(t2−t1)/a

[
pν

ν+ ν0
F1(t2 − t1 − ai) +

qν

ν+ ν0
F2(t2 − t1 − ai) +

ν0

ν+ ν0
F0(t2 − t1 − ai)]

where q = 1− p.
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D) Wasted number of events and number of patients in the dropped arm:

The wasted number of events in the dropped arm at the interim analysis is

∑
i≤t1/a

[qν1F1(t1 − ai) + pν2F2(t1 − ai)].

And the wasted number of patients in the dropped arm is

n0 = νt1/a.

E) Critical value and power:

For a given type I error rate, the critical value and power of the design can be

calculated by using the bivariate normal distribution function. Note that the critical value

may depend on the information time τ = d1/d2. However, the power will generally in-

crease as d2 increases, therefore, a unique d2 value can be found for a given power and the

type I error requirement.

F) Examples

I) Same endpoint at interim and final analysis In this example, overall survival (OS) is

the endpoint of interest. An accrual rate of 23 patients per month is used for the calculation.

The allocation ratio is 1 : 1 : 1 in the first stage and 1:1 in the second stage. Assume the

median survival for OS of the control group is 7.5 months. The hazard ratio for treatment

1 versus control is fixed at ω1 = 0.8 . The hazard ratio ω2 for treatment 2 versus control

used in the calculations varies from 0.5 to 0.75 with an increment of 0.05. The desired one-

sided type I error and power used in the calculation is 0.025 and 0.9 respectively. Based

on these assumptions, the following parameters are calculated and presented in Table 11.1
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and Figures 11.1 to 11.7: Information time τ, total number of events in the two treatment

arms d0, total number of events in the control and winning arm at stage 1 d1 and at stage 2

d2, critical value at final analysis, and the time (months) required to finished the first stage

and second stage.

As in Table 11.1, when the winning probability is 0.7 , d0 is only 5 when ω2 = 0.50.

When ω2 increases to 0.70 with increment of 0.05, d0 increases slowly to 61.7. When ω2

reach 0.75, d0 jumped to 264.1. The same trend is observed when the winning probability

is 0.8 and 0.85. For a fixed winning probability, when the treatment difference between

the two treatment arms is large, the required number of events to pick the winner arm

at the interim analysis will be very small. When the treatment effects of two treatment

arms are very close, the number of events required to pick a winner increases dramatically.

Information time τ, d1, critical value, interim analysis time are all positive correlated to d0.

When ω2 is 0.75, to maintain a winning probability of 0.8 at the interim analysis, d0 is 1.4213

times of the total number of events required at the final analysis. This indicates that when

the winning probability is very large, the required number of events could be larger than

the total number of events required at the end of the study. In this case, two-stage winner

design will not be applicable any more. Thus, there exists a maximum winning probability

for pre-specified ω1 and ω2. This maximum winning probability will be reached when the

information time at the interim is 1. The maximum winning probabilities are presented in

Table 11.2 and Figure 11.8 for several scenarios.
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Table 11.1: Two-stage Winner Designs Using Same Endpoints When ω1 = 0.8
Winner Probability

ω2 Parameter p=0.7 p=0.8 p=0.85
0.5 τ 0.0133 0.0526 0.1300

d0 5.0 12.8 19.5
d1 6.0 15.0 22.4
d2 450.2 285.0 172.3
critical value 2.0039 2.0434 2.0841
interim time(months) 3.5 5.7 7.0
final time(months) 33.6 26.0 19.9

0.55 τ 0.0206 0.0823 0.1757
d0 7.8 20.2 30.6
d1 9.2 23.2 34.7
d2 447.7 282.0 197.6
critical value 2.0149 2.0618 2.1006
interim time(months) 4.3 7.0 8.8
final time(months) 33.4 26.0 21.8

0.6 τ 0.0346 0.1311 0.2436
d0 13.3 34.2 51.9
d1 15.4 38.7 57.9
d2 444.6 295.0 237.7
critical value 2.0289 2.0845 2.1201
interim time(months) 5.6 9.2 11.6
final time(months) 33.3 27.0 24.6

0.65 τ 0.0645 0.2162 0.3677
d0 25.5 65.7 99.7
d1 28.9 72.7 108.9
d2 448.8 336.3 296.2
critical value 2.0514 2.1128 2.1468
interim time(months) 7.7 13.0 16.6
final time(months) 34.0 30.0 28.9

0.7 τ 0.1401 0.4186 0.6740
d0 61.7 158.9 241.0
d1 68.2 171.2 256.2
d2 486.9 409.0 380.1
critical value 2.0880 2.1555 2.1876
interim time(months) 12.4 21.6 28.2
final time(months) 37.0 35.9 35.9

0.75* τ 0.4928 1.4213
d0 264.1 680.2
d1 279.8 701.2
d2 567.8
critical value 2.1666
interim time(months) 29.6
final time(months) 45.6

* When p=0.8 or 0.85, number of events required at
interim is larger than the final analysis.
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Figure 11.1: Information Time for Two-stage Winner Design with Same Endpoint when
ω1 = 0.8

Figure 11.2: Critical Values for Two-stage Winner Designs with Same Endpoint when ω1 =
0.8
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Figure 11.3: Total Events in Treatment Groups for Two-stage Winner Design with Same
Endpoint when ω1 = 0.8

Figure 11.4: Total Events in Winning and Control Groups at First Stage for Two-stage Win-
ner Designs with Same Endpoint when ω1 = 0.8
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Figure 11.5: Total Events in winning and Control Groups at Final Stage for Two-stage
Winner Designs with Same Endpoint when ω1 = 0.8

Figure 11.6: Interim Analysis Time for Two-stage Winner Designs with Same Endpoint
when ω1 = 0.8
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Figure 11.7: Final Analysis Time for Two-stage Winner Designs with Same Endpoint when
ω1 = 0.8

Figure 11.8: Maximum Winning Probability for Two-stage Winner Designs with Same End-
point when ω1 = 0.8
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Table 11.2: Two-stage Winner Designs with Maximum Winning Probability when ω1 = 0.8

ω2
Parameter 0.50 0.55 0.60 0.65 0.70 0.75
maximum winning probability 0.9882 0.9821 0.9705 0.9467 0.8928 0.7645
d0 92.8 125.4 172.4 241.7 345.8 498.9
d1 101.2 136.6 184.7 256.5 363.3 518.7
d2 101.2 135.6 184.7 256.5 363.4 518.7
critical value 2.2121 2.2121 2.2121 2.2121 2.2121 2.2121
interim time(months) 16.7 19.6 23.4 28.6 35.9 46.1
final time(months) 16.7 19.6 23.4 28.6 35.9 46.1

Two-stage winner design property based on various winning probability was also

explored (see Table 11.3). The hazard ratios used for the calculation are ω1 = 0.8 and ω2 =

0.70. The winning probability cannot be smaller than 0.5. So the the winning probability

used for calculations starts from 0.5. In Table 11.3, when p = 0.5, d0 is zero. When p is

getting larger, d0, information time, critical values, and interim time at final analysis are

also getting larger until p reaches its limit. However the final analysis time will not be

shorten any more when winning probability is larger than 0.7.

Table 11.3: Two-stage Winner Designs with Different Winning Probabilities when ω1 = 0.8
and ω2 = 0.7

Winning Probability
Parameter p=0.6 p=0.7 p=0.8 p=0.85 p=0.8927923 p=0.9
τ 0.0286 0.1401 0.4186 0.6740 1 1.0691*
d0 14.4 61.7 158.9 241.0 345.8
d1 16.3 68.2 171.2 256.2 363.3
d2 570.9 486.9 409.0 380.1 363.4
critical value 2.0230 2.0880 2.1555 2.1876 2.2121
interim time(months) 5.6 12.4 21.6 28.2 35.9
final time(months) 38.7 37.0 35.9 35.9 35.9
Number of events required at interim analysis is larger than at final analysis

To simplify the calculation, the results shown above is based on the assumption
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that the accrual will not stop until the target event number is reached. When accrual is

stopped earlier, longer time will be needed to observe the same number of events as shown

in Table 11.4. The earlier the accrual is stopped, the longer time is needed to finish the

study.

Table 11.4: Two-stage Winner Designs with Different Accrual Stopping Time when ω1 =
0.8 and ω2 = 0.7

p=0.7 p=0.8 p=0.85
Accrual stopped accrual final accrual final accrual final
at percentage time time time time time time
of total events (months) (months) (months) (months) (months) (months)
0.7 29.8 41.3 29.3 40.0 28.9 42.0
0.8 32.2 38.4 31.6 37.2 31.4 37.6
0.9 34.6 37.3 33.8 36.2 33.7 36.3
1.0 37.0 37.0 35.9 35.9 35.9 35.9

The effect of different accrual rates on the two-stage winner design was also stud-

ied. As shown in Table 11.5, when the accrual rate was as low as 10 patients per month,

both the interim time and final time had to be sufficiently long to reach the target event

number. On the contrary, when a study has a fast enrollment of 50 patients per month,

both the interim and final time is shortened. When winning probability is 0.7, it only takes

8 months to do the interim analysis. When the difference between two hazard ratio is

larger, this time will be further shortened. However, when the target winning probability

is high (0.85), the interim time will take 17.4 months which is only 4 months to the end of

2nd stage. This indicates that when accrual rate is high the two-stage winner design may

not be a good choice when a high winning probability is required.
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Table 11.5: Two-stage Winner Designs with Different Accrual Rates When ω1 = 0.8 and
ω2 = 0.7

Accrual Winner Probability
Rate Parameter p=0.7 p=0.8 p=0.85

10 per month τ 0.1374 0.4080 0.6565
d0 61.7 158.9 241.0
d1 66.9 167.1 250.0
d2 487.2 409.6 380.9
critical value 2.0870 2.1538 2.1859
interim time(months) 20.3 37.3 50.3
final time(months) 68.2 65.8 66.6

23 per month τ 0.1401 0.4186 0.6740
d0 61.7 158.9 241.0
d1 68.2 171.2 256.2
d2 486.9 409.0 380.1
critical value 2.0880 2.1555 2.1876
interim time(months) 12.4 21.6 28.2
final time(months) 37.0 35.9 35.9

50 per month τ 0.1420 0.4268 0.6889
d0 61.7 158.9 241.0
d1 69.1 174.3 261.4
d2 486.7 408.5 379.5
critical value 2.0887 2.1568 2.1891
interim time(months) 8.0 13.6 17.4
final time(months) 22.2 21.6 21.5

II) Different endpoints Fix the winning probability approach was used to do the calcu-

lation when surrogate endpoint was used at the interim analysis. The formulas used when

the same endpoint used at interim and final are still applicable here. Calculations were

done for the following scenarios: 1) fix the two hazard ratios for OS and one of the hazard

ratios for PFS and let the other hazard ratio for PFS vary from 0.5 to 0.75 by an increment

of 0.05 (See Table 11.6 and Figures 11.9 to 11.15). 2) fix the two hazard ratios for PFS and

one of the hazard ratios for OS and let the other hazard ratio for OS vary from 0.5 to 0.75

by an increment of 0.05 (See Table 11.7 and Figures 11.16 to 11.22). The similar trends were
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observed for relationships between the different design parameters. When the magnitude

of PFS difference between two treatment group is larger than the difference of OS, the total

number of PFS events required at the interim analysis was very small as shown in Table

11.6. The larger the PFS difference was, the less the PFS events was required. However,

when the difference of PFS was smaller than the difference of OS, the number of PFS events

at the interim analysis was increased substantially. When both the hazard ratios for PFS

were fixed, the expected number of PFS events required at the interim analysis were fixed

(See Table 11.7).
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Table 11.6: Two-stage Winner Designs Using Different Endpoints When OS ω1 = 0.8 and
ω2 = 0.7 and PFS ω2 = 0.8

Winner Probability
PFS ω1 Parameter p=0.7 p=0.8 p=0.85

0.50 τ 0.0037 0.0114 0.0191
d0 5.0 12.9 19.5
d1 1.9 5.0 7.8
d2 508.8 439.6 408.8
critical value 1.9715 1.9793 1.9841
interim time(months) 1.9 3.1 3.8
final time(months) 34.6 31.8 30.6

0.55 τ 0.0056 0.0180 0.0307
d0 7.8 20.2 30.6
d1 2.9 7.9 12.5
d2 508.3 439.5 408.6
critical value 1.9740 1.9834 1.9893
interim time(months) 2.3 3.9 4.9
final time(months) 34.7 32.0 30.9

0.60 τ 0.0096 0.0320 0.0546
d0 13.3 34.6 51.9
d1 4.9 14.0 22.3
d2 507.9 439.2 408.6
critical value 1.9777 1.9897 1.9967
interim time(months) 3.0 5.2 6.7
final time(months) 35.0 32.5 31.5

0.65 τ 0.0191 0.0656 0.1162
d0 25.5 65.7 99.7
d1 9.7 28.8 47.4
d2 507.1 438.4 408.1
critical value 1.9838 1.9992 2.0086
interim time(months) 4.3 7.6 10.1
final time(months) 35.3 33.2 32.5

0.70 τ 0.0517 0.1925 0.3537
d0 61.7 158.9 241.0
d1 26.2 84.1 144.1
d2 506.0 436.8 407.4
critical value 1.9954 2.0176 2.0315
interim time(months) 7.2 14.0 19.4
final time(months) 36.2 35.1 35.2

0.75 τ 0.3227 0.9999 0.9999
d0 264.1 680.2 1031.6
d1 161.7 542.0 888.0
d2 501.0 542.0 888.0
critical value 2.0277 2.0594 2.0565
interim time(months) 20.8 48.0 70.9
final time(months) 40.2 48.0 70.9
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Figure 11.9: Information Time for two-stage Winner Designs with Different Endpoints
when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8

Figure 11.10: Critical Values for two-stage Winner Designs with Different Endpoints when
OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8



162

Figure 11.11: Total Events in Two Treatment Groups for Two-stage Winner Designs with
Different Endpoints when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8

Figure 11.12: Total Events in Winner and Control Groups at First Stage for Two-stage Win-
ner Designs with Different Endpoints when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8
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Figure 11.13: Total Events in Winner and Control Groups at Final Stage for Two-stage
Winner Designs with Different Endpoints when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8

Figure 11.14: Interim Analysis Time for Two-stage Winner Designs with Different End-
points when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8
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Figure 11.15: Final Analysis Time for Two-stage Winner Designs with Different Endpoints
when OS ω1=0.8 and ω2 = 0.7 and PFS ω1 = 0.8
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Table 11.7: Two-stage Winner Designs Using Different Endpoints When PFS ω1 = 0.8 and
ω2 = 0.7 and OS ω1 = 0.8

Winner Probability
OS ω1 Parameter p=0.7 p=0.8 p=0.85

0.50 τ 0.0536 0.2665 0.7494
d0 61.7 158.9 241.0
d1 24.2 77.4 132.6
d2 452.0 290.3 177.0
critical value 1.9963 2.0271 2.0597
interim time(months) 7.2 14.0 19.4
final time(months) 34.9 28.8 23.0

0.55 τ 0.0548 0.2706 0.6629
d0 61.7 158.9 241.0
d1 24.7 79.2 135.7
d2 451.5 292.5 204.7
critical value 1.9966 2.0275 2.0545
interim time(months) 7.2 14.0 19.4
final time(months) 34.6 28.6 24.6

0.6 τ 0.0558 0.2613 0.5592
d0 61.7 158.9 241.0
d1 25.2 80.9 138.7
d2 452.4 309.5 247.9
critical value 1.9968 2.0264 2.0477
interim time(months) 7.2 14.0 19.4
final time(months) 34.3 29.2 27.1

0.65 τ 0.0557 0.2328 0.4544
d0 61.7 158.9 241.0
d1 25.7 82.5 141.4
d2 461.4 354.3 311.3
critical value 1.9967 2.0229 2.04
interim time(months) 7.2 14.0 19.4
final time(months) 34.4 31.3 30.5

0.70 τ 0.0517 0.1925 0.3537
d0 61.7 158.9 241.0
d1 26.2 84.1 144.1
d2 506.0 436.8 407.4
critical value 1.9954 2.0176 2.0315
interim time(months) 7.2 14.0 19.4
final time(months) 36.2 35.1 35.2

0.75 τ 0.0433 0.1477 0.2600
d0 61.7 158.9 241.0
d1 26.6 85.6 146.6
d2 615.4 579.5 563.7
critical value 1.9924 2.0109 2.0220
interim time(months) 7.2 14.0 19.4
final time(months) 41.1 41.6 42.5
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Figure 11.16: Information Time for Two-stage Winner Designs with Different Endpoints
when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8

Figure 11.17: Critical Values for Two-stage Winner Designs with Different Endpoints when
PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8
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Figure 11.18: Total Events in Two Treatment Groups for Two-stage Winner Designs with
Different Endpoints when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8

Figure 11.19: Total Events in Winner and Control Groups at First Stage for Two-stage Win-
ner Designs with Different Endpoints when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8
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Figure 11.20: Total Events in Winner and Control Groups at Final Stage for Two-stage
Winner Designs with Different Endpoints when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8

Figure 11.21: Interim Analysis Time for Two-stage Winner Designs with Different End-
points when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8
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Figure 11.22: Final Analysis Time for Two-stage Winner Designs with Different Endpoints
when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8
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The design parameters were also calculated when all the hazard ratios for OS and

PFS were fixed under different winning probabilities (Table 11.8). Similar to the results

when with the same endpoint was used at the interim and final analysis, the higher the

winning probability was, the larger the number of PFS events at interim analysis is. Thus,

more alpha spending penalty was needed to pay due to the interim analysis. The critical

value for the final analysis becomes larger when the winning probability is increased.

The effects of PFS medians was also explored (see Table 11.9 ). When the hazard

ratios were fixed, the total number of PFS events at the interim analysis was fixed. Only

the time for interim analysis was affected by the median of PFS. The larger the PFS median

was, the more time was required to reach the target number of PFS events.

Table 11.8: Two-stage Winner Designs with Different Winning Probabilities when ω1 = 0.8
and ω2 = 0.7 for Both OS and PFS

Winning Probability
Parameter p=0.6 p=0.7 p=0.8 p=0.85 p=0.9
τ 0.0088 0.0517 0.1925 0.3537 0.6531
d0 14.4 61.7 158.9 241.0 368.4
d1 5.1 26.2 84.1 144.1 250.2
d2 576.6 506.0 436.8 407.4 383.1
critical value 1.9770 1.9954 2.0176 2.0315 2.0484
interim time (months) 3.1 7.2 14.0 19.4 27.8
final time (months) 38.1 36.2 35.1 35.2 36.0
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Table 11.9: Two-stage Winner Designs with Different PFS Medians When ω1 = 0.8 and
ω2 = 0.7 for Both OS and PFS

PFS Winner Probability
Median Parameter p=0.7 p=0.8 p=0.85
4 month τ 0.0865 0.2789 0.4716

d0 61.7 158.9 241.0
d1 43.2 119.8 189.5
d2 500.1 429.5 401.7
critical value 2.0331 2.0764 2.1007
interim time (months) 9.5 17.3 23.1
final time (months) 36.7 35.7 35.9

6 month τ 0.1175 0.3586 0.5848
d0 61.7 158.9 241.0
d1 57.9 150.0 228.9
d2 492.5 418.9 391.4
critical value 2.0668 2.1253 2.1554
interim time (months) 11.3 19.9 26.1
final time (months) 36.9 36.0 36.1

11.2.2 Fix the information time approach

Another approach is to fix the information time τ. Instead of specifying a wining

probability, an information time needs to be selected. When τ is decided, the critical value

at the final analysis will be fixed given the type I error and the power requirement. One

way to obtain the design parameters is to try different winning probabilities until one with

desired information time is found. Another way is to calculate the parameters directly.

For a given information time, the number of events in the winner and control groups can

be calculated. Then the interim time, the event number in the two treatment arms at the

interim and final analysis, can be determined iteratively.

Example (continued): Instead of using a fixed winning probability, the interim

information time was fixed. Furthermore, it was assumed that all other parameters are the
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same as in example 1. The information times selected are 0.3, 0.5, 0.7, and 1.0.

Results: The calculated parameters are presented in Tables11.10 and 11.11 and

shown in Figures 11.23 to 11.28. Similar trends as shown in example 1 are observed here.

When information time increases, the wining probability increases. The smaller the dif-

ference between two hazard ratios, the more the number of events at interim and final

analysis are required. When τ = 1, the two-stage winner design will have the largest

winning probability at interim analysis.
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Table 11.10: Two-stage Winner Designs Using Same Endpoints When ω1 = 0.8
Information Time

ω2 Parameter τ=0.3 τ=0.5 τ=0.7 τ=1
0.5 p 0.9073 0.9477 0.9708 0.9882

d0 31.8 47.7 64.9 92.8
d1 35.9 53.2 71.6 101.2
d2 119.7 106.4 102.3 101.2
critical value 2.1334 2.1676 2.1901 2.2121
interim time (months) 9.2 11.5 13.6 16.7
final time (months) 17 16.5 16.6 16.7

0.55 p 0.8917 0.9348 0.9608 0.9821
d0 43.5 65.2 88.2 125.4
d1 48.8 72.0 96.5 135.6
d2 162.5 144.0 146.1 135.6
critical value 2.1334 2.1676 2.1901 2.2121
interim time (months) 10.7 13.4 15.9 19.6
final time (months) 20.1 19.5 19.5 19.6

0.60 p 0.9 0.9145 0.9440 0.9705
d0 60.4 90.6 122.0 172.4
d1 67.0 99.2 132.2 184.7
d2 223.4 198.3 188.9 184.7
critical value 2.1334 2.1676 2.1901 2.2121
interim time (months) 12.6 15.9 19.0 23.4
final time (months) 24.1 23.3 23.3 23.4

0.65 p 0.8304 0.8804 0.9137 0.9467
d0 84.7 128.5 172.5 241.7
d1 93.1 139.3 185.2 256.5
d2 310.3 278.5 264.5 256.5
critical value 2.1334 2.1676 2.1901 2.2121
interim time (months) 15.1 19.3 23.1 28.6
final time (months) 29.3 28.6 28.6 28.6

0.70 p 0.7671 0.8183 0.8541 0.8928
d0 119.3 185.3 249.3 345.8
d1 129.7 198.7 264.7 363.3
d2 432.3 397.4 378.2 363.3
critical value 2.1333 2.1676 2.1901 2.2121
interim time (months) 18.2 23.8 28.8 35.9
final time (months) 36.1 35.9 36.0 35.9

0.75 p 0.6616 0.7012 0.7307 0.7645
d0 166.8 267.6 363.0 498.9
d1 179 283.5 381.0 518.7
d2 596.8 566.9 544.3 518.7
critical value 2.1334 2.1676 2.1901 2.2121
interim time (months) 22.0 29.8 36.7 46.1
final time (months) 44.8 45.7 46.3 46.1
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Figure 11.23: Winning Probabilities for Two-stage Winner Designs using Same Endpoint
when ω1 = 0.8

Figure 11.24: Total Events in Two Treatment Groups for Two-stage Winner Designs using
Same Endpoint when ω1 = 0.8
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Figure 11.25: Total Events in Winner and Control Groups at First Stage for Two-stage Win-
ner Designs using Same Endpoint when ω1 = 0.8

Figure 11.26: Total Events in Winner and Control Groups at Final Stage for Two-stage
Winner Designs using Same Endpoint when ω1 = 0.8
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Figure 11.27: Interim Time for Two-stage Winner Designs using Same Endpoint when
ω1 = 0.8

Figure 11.28: Final Time for Two-stage Winner Designs using Same Endpoint when ω1 =
0.8
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11.2.3 Simulations

A. Same endpoint

Simulations were done to verify the calculations of winning probability, power,

interim time, and the final time. To simulate the study, it was assumed that the accrual

rate was 23 patients per month, and median survival for control was 7.5 months, ω1 = 0.8,

and ω2 = 0.7. Various d0 and d2 were assumed under different design scenarios. All

simulations were based on 10,000 repetitions.

As shown in Tables 11.12 and 11.13, the difference between the calculated results

and the simulations results was very small. It is difficult to see the difference from Figures

11.29 to 11.34.
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Figure 11.29: Comparison of Simulation Results for Information Time, Winning Probabil-
ity, and Power in Fixed Winning Probability Approach

Figure 11.30: Comparison of Simulation Results for Total Events in Two Treatment Groups
Power in Fixed Winning Probability Approach
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Figure 11.31: Comparison of Interim and Final Time in Fixed Winning Probability
Approach

Figure 11.32: Comparison of Simulation Results for Information Time, Winning Probabil-
ity, and Power in Fixed Information Time Approach
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Figure 11.33: Comparison of Simulation Results for Total Events in Two Treatment Groups
in Fixed Information Time Approach

Figure 11.34: Comparison of Simulation Results for Interim and Final Time in Fixed Infor-
mation Time Approach
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B. Different endpoints

I) Bootstrap simulation plan

Step 1: Generate the original sample.

1. Assume uniform enrollment, randomly assign treatment arms (control, low, and

high dose) with a 1:1:1 ratio

2. Under the null hypothesis H0:

(a) based on OS median, get the hazard rate (λ2) for OS

(b) based on PFS median, get the hazard rate (λ1) for PFS

(c) based on a) & b), get the hazard rate (λ0 = (λ1 − λ2)) for T which is the

recorded PFS

(d) generate random sample for T for all treatment arms follow the same expo-

nential distribution with parameter λ0

(e) generate random sample for OS for all treatment arms follow the same ex-

ponential distribution with parameter λ2

(f) generate random sample for PFS based on paired T and OS: PFS = min (T, OS)

3. Under the alternative hypothesis Ha: repeat step 2 based on different medians

for each arm

4. Interim time t1 is determined by the total number d0 of PFS events in two treat-

ment groups at the interim.

5. Calculate PFS log-rank statistic to select a winner
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6. Continue to assign the rest of the patients randomly to the winner and control

arms

7. Final stopping time t2 is determined by the total number of OS events

8. Calculate OS log-rank statistic LR at final analysis based on the original sample

Step 2: Bootstrap resampling (sample the same number of patients with replacement

within each stage)

1. Bootstrap steps in stage 1

(a) Based on those n1 patients who enrolled in the 1st stage in the original sam-

ple, resample n1 observations with replacement

(b) randomly assign these observations to 3 treatment arms with 1:1:1 ratio

(c) calculate PFS hazard ratio HR (low dose versus high dose)

(d) pick a winner. If HR > 1 then pick high dose. If HR < 1 then pick low

dose.

2. Bootstrap steps in stage 2

(a) Based on the rest of the n2 patients who enrolled in the 2nd stage in the

original sample, resample n2 observations with replacement

(b) Randomly assign these observations to the winner and control arms with

1:1 ratio

(c) Combine observations that assigned to the winner and control arms in the

stage 1 and stage 2

(d) Calculate OS log-rank statistic for the bootstrap sample



186

Step 3: Repeat Step 2 for 1000 time

Step 4: Determine the a critical value or a p-value based on the log-rank statistics from

step 2

1. Critical value will be the 95th percentile of all log-rank statistics

2. P-value is p = ∑1000
i=1 I(LRi≥LR)/1000, where LRi is OS log rank statistic from ith

bootstrap sample.

Step 5: Repeat Step 1 to 4 for 1000 times to determine the overall critical value and boot-

strap power.

1. Overall critical value is c = ∑1000
i=1 ci/1000, where ci is the critical value deter-

mined in Step 4 in the ith repetition.

2. Resampling power is 1− β = ∑1000
i=1 I(LR≥ci)/1000

II) Simulation results

Summary of the simulation results for critical values are presented in Table 11.14.

The average critical values from the simulations were compared with the calculated values.

As shown in Table 11.15, the calculated values and simulated values are very close to each

other.
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Table 11.14: Simulation Results for Two-stage Winner Designs with Different Endpoint
when PFS ω1=0.8 and ω2 = 0.7 and OS ω1 = 0.8

Critical Winner Probability
OS ω2 Value p=0.7 p=0.8 p=0.85

0.50 min 1.7275 1.7985 1.7711
p25 1.9414 1.9744 2.0100
p50 1.9991 2.0347 2.0658
p75 2.0615 2.0893 2.1283
max 2.2596 2.2885 2.3412
mean 2.0018 2.0353 2.0686
std 0.0874 0.0856 0.0859
power* 0.8990 0.9090 0.9110

0.70 min 1.7550 1.7195 1.7881
p25 1.9445 1.9676 1.9721
p50 1.9948 2.0291 2.0285
p75 2.0557 2.0789 2.0888
max 2.2880 2.3120 2.3696
mean 2.0006 2.0263 2.0320
std 0.0838 0.0836 0.0880
power* 0.9140 0.9400 0.9440

* nominal=0.90

Table 11.15: Comparison of Simulation Results for Two-stage Winner Designs with Differ-
ent Endpoint when PFS ω1 = 0.8 and ω2 = 0.7 and OS ω1 = 0.8

Winning Probability
OS p=0.7 p=0.8 p=0.85
ω1 Parameter calculated simulated calculated simulated calculated simulated
0.50 critical value 1.9663 2.0018 2.0271 2.0353 2.0597 2.0686
0.70 critical value 1.9954 2.0006 2.0176 2.0263 2.0315 2.0320
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Chapter 12

Conclusion

In Chapter 10, the correlation between the log-rank test statistics based on either

the same or different survival endpoints used at the interim and final analysis were de-

rived. The covariance matrix for log-rank test statistics were identified. Since the log-rank

test statistics at the interim and final analysis were asymptotically normally distributed,

the statistical framework for the two-stage winner design discussed by Lan et al [19, 35]

could be extended to the trails with survival outcomes.

In Chapter 11, the two-stage winner design parameters were calculated in several

scenarios. In practice, before choosing a two-stage winner design as the study design, one

needs to do a best estimation of design parameters: how big is the treatment difference

between the two treatment arms? Are there any time requirements to complete the whole

study? Is there a patient or a resource limitation? A higher winning probability will en-

sure efficacious treatment can be selected to the final stage and reduce exposure to inferior

treatment. When treatment difference between two treatment arms is fixed, more sample
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size is required to obtain a higher winning probability. The larger the difference between

two treatment arms is, the higher winning probability can be achieved by using a limited

sample size. However the winning probability will reach its maximum value when the

information time is approaching to 1. When a surrogate endpoint is used at the interim

analysis, the time for interim analysis is determined by the treatment effect of surrogate

endpoint. When the magnitude of surrogate treatment effect is larger than the treatment

effect of primary endpoint, only a limited number of surrogate events are required at the

interim. However, when the magnitude of surrogate treatment effect is smaller, the re-

quired event number for surrogate endpoint will increase dramatically. So an appropriate

selected surrogate endpoint is crucial in two-stage winner design.
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Chapter 13

Discussion and Future Works

13.1 Discussion

In part I of this dissertation, the expected sample size for the two-stage sample

size re-estimation design was derived. Performance of adaptive designs were measured

and compared. In part II of this dissertation, asymptotic correlation of log-rank statistics

in two-stage winner design while using the same endpoint or using different endpoints at

interim and final analysis was derived. Design features were studied and compared.

The most interesting conclusion in part I is that 5-looks unequal-spaced GS de-

signs with HP01 and HP005 boundaries can achieve similar or better performance than

sample size re-estimation designs. Especially when the total number of looks for re-estimation

designs is small, performance improvement is prominent. While group sequential designs

are well accepted by regulatory agencies, other types of adaptive designs like sample size

re-estimation designs are still not fully understood and accepted. Thus, this finding be-

comes very crucial under the current FDA guidance on adaptive design use in clinical
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trials. Pharmaceutical companies can use group sequential trials to achieve similar per-

formance as sample size re-estimation trials by simply adding additional interim analysis,

using selected type of boundaries, and adjusting the patient increment type between in-

terim looks. Adding more interim looks in a clinical trial may require additional work on

the trial operation side. However, it will become trivial, if we can save resources and less

patients can be exposed to non-efficacious treatments.

Using interim analysis to do treatment selection becomes popular. However,

some efficacy endpoints, such as death, may not be a good choice for quick efficacy analy-

sis at the interim analysis. Thus, using surrogate endpoints should be necessary. Theo-

retical work for two-stage winner design using continuous endpoints was developed by

Shun, Lan, and Soo. It is very challenging to derive the correlation of log-rank test statistics

when different survival endpoints are used at interim and final analyses. The correlation is

crucial in Type I error adjustment and boundary calculations. Thus, derivation of asymp-

totic correlation of log-rank statistics is the key item in part II. All other two-stage winner

design features are studied based on the results of this asymptotic correlation.

13.2 Future Work

Expected sample size for weighted two-stage sample size re-estimation designs

are developed in part I. However, because there are more assumptions required, the deriva-

tion for unweighted designs was not done. Thus, this needs to be further explored. Also

the expected sample size was derived for re-estimation designs with total 2 looks. It could

be generalized to designs with multiple looks.
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In part II of this dissertation, a two-stage winner design was studied when con-

sidering a uniform patient enrollment and assumed no censoring process. As future work,

instead of uniform distribution, other patient enrollment functions can be considered. A

more complicated design with a censoring process may make two-stage winner design

more practical. Thus, this could be explored in the future.
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Appendix A

Conditional Power CP for Weighted

Method (CHW)

Notation:

N : Final sample size

nL and nk: Planned one arm sample size at Lth and kth look, L<k

tL and tk : Information fraction for Lth look (
nL

N
) and kth look (

nk

N
).

ck: Boundary at kth look

ZL and Zk : Z-score at Lth and kth look

δ : Assumed treatment effect

Since

CP = P(Zk ≥ ck|ZL)

= P
(√

nL

N
ZL +

√
1− nL

N
Zk ≥ ck|ZL

)
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= P

Zk ≥
ck −

√
nL
N ZL√

1− nL
N

|ZL


= P

Zk ≥
ck −

√
nL
N ZL√

1− nL
N


= P

(
Zk ≥

ck −
√

tLZL√
1− tL

)

where

Zk =

nk

∑
i=1
(xi − yi)

nk
∼ N

(√
nk

2
δ, 1
)

,

we have

CP = 1−Φ

[
ck −
√

tLZL√
1− tL

−
√

N − nL

2
δ

]

= 1−Φ

 ck −
√

tLZL −
√

1− tL

√
N−nL

2 δ
√

1− tL

 .

For L = 1 and k = 2,

CP = 1−Φ

 c2 −
√

t1Z1 −
√

1− t1

√
n2
2 δ

√
1− t1

 ,

hence CP ≥ CP0,

1−Φ

 c2 −
√

t1Z1 −
√

1− t1

√
n2
2 δ

√
1− t1

 ≥ CP0 ,

and
c2 −
√

t1Z1 −
√

1− t1

√
n2
2 δ

√
1− t1

≤ Z1−CP0
,

and
c2 −
√

t1Z1 −
√

1− t1

√
n2
2 δ

√
1− t1

≤ −ZCP0
,
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therefore

Z1 ≥
√

1− t1ZCP0
−
√

1− t1

√
n2
2 δ+ c2

√
t1

.
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Appendix B

Sample Size and Power Curves for

Adaptive Designs with Treatment

Effect Follow Uniform Distribution
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Figure B.1: Sample Size and Power Curves for Two-look Group Sequential Designs when
Treatment Effect Follows Uniform Distribution



198

Figure B.2: Sample Size and Power Curves for Five-look Equal-spaced Group Sequential
Designs when Treatment Effect Follows Uniform Distribution
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Figure B.3: Sample Size and Power Curves for Five-look Unequal-spaced Group Sequen-
tial Designs when Treatment Effect Follows Uniform Distribution
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Figure B.4: Sample Size and Power Curves for Two-look Weighted Sample Size Re-
estimation Designs when Treatment Effect Follows Uniform Distribution (re-estiamtion
at look 1)
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Figure B.5: Sample Size and Power Curves for Five-look Equal-spaced Weighted Sam-
ple Size Re-estimation Designs when Treatment Effect Follows Uniform Distribution (re-
estiamtion at look 1)
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Figure B.6: Sample Size and Power Curves for Five-look Unequal-spaced Weighted Sam-
ple Size Re-estimation Designs when Treatment Effect Follows Uniform Distribution (re-
estiamtion at look 1)
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Figure B.7: Sample Size Curves for Two-look Unweighted Sample Size Re-estimation De-
signs when Treatment Effect Follows Uniform Distribution

Figure B.8: Power Curves for Two-look Unweighted Sample Size Re-estimation Designs
when Treatment Effect Follows Uniform Distribution
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Figure B.9: Sample Size Curves for Five-look Equal-spaced Unweighted Sample Size Re-
estimation Designs when Treatment Effect Follows Uniform Distribution (re-estiamtion at
look 1)

Figure B.10: Power Curves for Five-look Equal-spaced Unweighted Sample Size Re-
estimation Designs when Treatment Effect Follows Uniform Distribution (re-estiamtion
at look 1)
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Figure B.11: Sample Size Curves for Five-look Unequal-spaced Unweighted Sample Size
Re-estimation Designs when Treatment Effect Follows Uniform Distribution (re-estiamtion
at look 1)

Figure B.12: Power Curves for Five-look Unequal-spaced Unweighted Sample Size Re-
estimation Designs when Treatment Effect Follows Uniform Distribution (re-estiamtion at
look 1)
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Appendix C

Sample Size and Power Curves for

Adaptive Designs with Treatment

Effect Follow Beta Distribution
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Figure C.1: Sample Size and Power Curves for Two-look Group Sequential Designs when
Treatment Effects follow Beta Distributions
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Figure C.2: Sample Size and Power Curves for Five-look Equal-spaced Group Sequential
Designs when Treatment Effects follow Beta Distributions
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Figure C.3: Sample Size and Power Curves for Five-look Unequal-spaced Group Sequen-
tial Designs when Treatment Effects follow Beta Distributions
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Figure C.4: Sample Size and Power Curves for Two-look Weighted Sample Size Re-
estimation Designs when Treatment Effects follow Beta Distributions
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Figure C.5: Sample Size and Power Curves for Five-look Equal-spaced Weighted Sam-
ple Size Re-estimation Designs when Treatment Effects follow Beta Distributions (re-
estimation at look 3)
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Figure C.6: Sample Size and Power Curves for Five-look Unequal-spaced Weighted Sam-
ple Size Re-estimation Designs when Treatment Effects follow Beta Distributions (re-
estimation at look 3)
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Figure C.7: Sample Size and Power Curves for Two-look Unweighted Sample Size Re-
estimation Designs when Treatment Effects follow Beta Distributions
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Figure C.8: Sample Size and Power Curves for Five-look Equal-spaced Unweighted Sam-
ple Size Re-estimation Designs when Treatment Effects follow Beta Distributions (re-
estimation at look 3)
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Figure C.9: Sample Size and Power Curves for Five-look Unequal-spaced Unweighted
Sample Size Re-estimation Designs when Treatment Effects follow Beta Distributions (re-
estimation at look 3)
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