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This dissertation develops an operational tool for predicting and monitoring drought 

applicable to the humid tropics. Using Sri Lanka as a case example, it examines whether 

droughts in the humid tropics are predictable on an operational basis, and investigates 

how moisture stress may be monitored as a season unfurls.   

Droughts in Sri Lanka occur when rainfall during the main cultivation season – 

the Maha (October-March) – fails. Such droughts profoundly impact rice production. 

From 1951-2008, there were 4 extreme [Standardized Precipitation Index (SPI) <-2.0], 1 

severe (-1.9<SPI<-1.5), 5 moderate (-1.49<SPI<-1.0) and 4 mild (-0.99<SPI<-0.5) 

droughts.  

Maha droughts can be operationally predicted by forecasting the failure of the two 

rainfall regimes during the season. The contemporaneous westerly zonal wind at 850hPa 

(U850), over 60⁰E-105⁰E and 5⁰S-15⁰N, controls the strength of the October-November 

convective rains – with rain failure associated with anomalously strong U850. The 

contemporaneous northerly vertical shear of the mean meridional wind (  ), over 80⁰E-

90⁰E and 0⁰N-20⁰N, controls the strength of the December-February northeast monsoon 
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rains – with rain failure associated with an anomalously weak   . Drought forecast skill 

was assessed for 1981-2002 using predicted fields of U850 issued in September, and   , 

issued in November, from the NCEP Climate Forecast System and the ECHAM4.5 

forced with two scenarios of prescribed sea surface temperature (SST) anomalies. 

October-November rain failure can be predicted with good skill over the rice cultivation 

areas in the central and southeastern regions using forecast U850 from the two versions 

of the ECHAM4.5.  December-February rain failure can be predicted with good skill in 

the rice cultivation areas in the eastern, central and north central regions with forecast    

from the ECHAM4.5 forced with constructed analogues of SST anomalies.   

The utility of the Vegetation Temperature Condition Index (VTCI) – calculated 

with Terra-MODIS Land Surface Temperature and Normalized Difference Vegetation 

Index products – as an indicator of abnormally wet or dry conditions was tested for the 

Maha season. Results show that the VTCI is a suitable metric for the near-real time 

monitoring of Maha drought because it captures the onset and progression of moisture 

stress as the season unfurls and complements the seasonal rainfall forecast. 

  



 

 

 iv 

 

Acknowledgement and Dedication 

I am profoundly grateful to my advisor Prof. David A. Robinson for guiding my 

dissertation research and for his unstinting support, advice and guidance since I joined the 

Graduate Program in Geography at Rutgers University in the fall of 2006.  He was 

always accessible whenever I needed to get his advice.  Discussions with him always 

opened my eyes to directions of research I should consider exploring or delve at greater 

depth.  I do not remember ever having left his office without the thought: “Oh, now that 

is an aspect I had not considered before” crossing my mind.   

I am very grateful to Dr. Neil Ward for his advice and support on tackling the 

seasonal climate prediction section of the dissertation and for guiding me on how to 

access relevant climate model output datasets.  I am very grateful to Dr. Laura Schneider 

who advised me on the remote sensing section of this dissertation.  It was by working 

with her as a Teaching Assistant and as a Research Assistant that I learned and mastered 

remote sensing analysis techniques while at Rutgers.  I thank her for her patient 

mentoring and advice.  I thank Dr. Ming Xu for useful discussions during the formative 

stages of the dissertation – particularly related to the influence of the Asian winter 

monsoon over Sri Lanka and statistical analysis techniques.   

My graduate studies and dissertation research at Rutgers were supported in the 

first two years through Teaching Assistantships awarded by the Department of 

Geography, and in the third and fourth years through the William H. Greenberg 

Dissertation Fellowship awarded by the Rutgers Climate and Environmental Change 

Initiative. A pre-dissertation travel award from the Graduate School-New Brunswick and 



 

 

 v 

discretionary funding from the Chair, Department of Geography, Rutgers facilitated field 

work in Sri Lanka and helped offset costs of data purchased for the dissertation.    

I am very thankful to Mr. K.H.M.S. Premalal and Dr. B.R.S.B. Basnayake, at the 

Sri Lanka Department of Meteorology, who were extremely helpful in providing me 

access to essential meteorological datasets for Sri Lanka.  Mr. Premalal has, over the last 

3 years, also provided helpful feedback and suggestions on my dissertation research. I 

thank Mr. D.H.P. Dharmwardena (former Director-General, Sri Lanka Department of 

Meteorology), Ms. Janaki Meegastenna (Sri Lanka Department of Irrigation), Prof. R.B. 

Mapa (Department of Soil Science, University of Peradeniya, Sri Lanka), Dr. B.V.R. 

Punyawardena (Agro-climatology Unit, National Resource Management Center, 

Department of Agriculture, University of Peradeniya, Sri Lanka), and Dr. P. Thenkabail 

(International Water Management Institute) for useful and leading discussions during the 

pre-dissertation stage that helped identify gaps in knowledge related to droughts in Sri 

Lanka.   

I thank Ousmane Ndiaye for helping me understand the archival structure of 

GCM retrospective hindcasts. I thank Zach Christman for advice on extracting and 

interpreting MODIS QC images.  

I thank Robin Rašín, Ramya Kumar and John Mioduszewski who provided 

comments and proof read drafts of various chapters of the dissertation.  

 My heartfelt gratitude to Deniz Kustu, Ramya Kumar, Robin Rašín, Imtiaz 

Rangwala and Kritee, Rosana Grafals-Soto, Patricia Alvarez, Gwangyong Choi, Asher 

Siebert, Monalisa Chatterjee, John Mioduszewski, Debjani Ghatak, Lisa Ojanen, Kalpana 

Venkatasubramanian, Hasula Rajapakse, Kanthi Vitarana, Nimanthi Rajasingham, Kari 



 

 

 vi 

Burnett, Michelle Martel, Kusala Wettasinghe, Arthur and Janet Askew, Shamala Kumar 

and Savitri Kumar for their friendship and moral support during my graduate career and 

particularly during the final “dissertating phase”.   

 I am very grateful to Betty Ann Abbatemarco, Theresa Kirby, Michelle Martel 

and Mike Siegel at the Rutgers Department of Geography for administrative, cartographic 

and essential computing assistance.  I also thank Melissa Arnesen, Rutgers Center for 

Environmental Prediction, who handled administrative and financial matters related to 

disbursement of the Greenberg fellowship.   

 I am deeply indebted to my father, my stepmother and my sister and her family 

for their love and unstinting support throughout the years I have spent in graduate school.  

My little daughter Kahthi brightened my days particularly during the last few months of 

intensive dissertating!  She was a constant reminder, yet consoling presence, of my other 

little children far away back home in Sri Lanka. 

 This dissertation is dedicated to the memory of my mother whose enthusiasm for 

observing and reading about natural phenomena – be it weather events, geomorphological 

features, comets or eclipses – greatly influenced my interest in the fascinating field of 

physical geography.     



 

 

 vii 

Table of Contents 

 

Section page 

  

Abstract ii 

Acknowledgements and dedication iv 

List of figures x 

List of tables xvi 
 

Chapter 1:  Introduction 
 

1 
 

1.1:  Drought in the humid tropics 1 

1.2:  Drought in Sri Lanka 4 

1.3:  Knowledge gaps regarding drought in Sri Lanka 12 

1.4:  Research goal and objectives 14 
  
 

Chapter 2:  Maha seasonal drought 
 

16 

2.1:  Introduction 
 

16 

2.2:  Methodology and datasets used 16 

2.2.1:  Drought analysis based on the Standardized Precipitation Index 

(SPI) 
16 

2.2.2:  Drought return periods 19 

2.2.3:  Spatial dimension of drought 21 

2.2.4:  Influence of drought on the Maha season 21 

2.2.4.1:  Influence of drought on rice production during the Maha 21 

2.2.4.2:  Influence of the October-November and December-February 

rains on Maha drought 
22 

2.2.5:  Dominant modes of drought variability and change in such modes 

over time (Wavelet Transform Analysis), and spatial trends in 

drought occurrence 

23 

2.3: Results 29 

2.3.1:  Drought occurrence 29 

2.3.2:  Drought return periods 30 

2.3.3:  Spatial dimension of drought 31 

2.3.4:  Effect of Maha droughts on rice production and influence of 

October-November and December-February rainfall on Maha 

drought 

35 

2.3.4.1:  Effect of Maha droughts on rice production 35 

2.3.4.2:  Influence of October-November and December-February 

rainfall on Maha drought:   
36 

2.3.5:  Dominant modes of drought variability and change in such modes 

over time (Wavelet Transform Analysis), and spatial trends in 

drought occurrence 
 

39 

2.4:  Conclusion 48 



 

 

 viii 

 

Chapter 3:  Predictability of the October-November season 51 
  

3.1:  Introduction 51 

  

3.2:  Methodology and datasets used 55 

3.2.1:  Analysis of atmospheric factors influencing October-November rain 

failure 
55 

3.2.1.1:  Datasets used 55 

3.2.1.2:  Analysis method 55 

3.2.2:  Assessment of the predictability of October-November rain failure 60 

3.2.2.1:  Datasets used 60 

3.2.2.2:  Analysis method 62 

3.3:  Results 63 

3.3.1:  Atmospheric dynamics driving failure of the October-November 

rains 
63 

3.3.2:  Predictability of the October-November season 66 

  

3.4:  Conclusion 71 
  
 

Chapter 4:  Predictability of the December-February season 73 
  

4.1:  Introduction 73 

  

4.2:  Methodology and datasets used 76 

4.2.1:  Analysis of atmospheric factors influencing December-February 

rain failure 
76 

4.2.1.1:  Datasets used 76 

4.2.1.2:  Analysis method 77 

4.2.2:  Assessment of the predictability of December-February rain failure 78 

4.2.2.1:  Datasets used 78 

4.2.2.2:  Analysis method 78 

  

4.3:  Results 78 

4.3.1:  Atmospheric dynamics driving the failure of December-February 

rainfall 
78 

4.3.2:  Predictability of the December-February season 

 
82 

4.4:  Conclusion 88 

  
 

Chapter 5:  Monitoring moisture conditions on the ground in near-real time 90 
  

5.1:  Introduction 90 

  

5.2:  Methodology and datasets 95 

5.2.1:  Generating the Vegetation Temperature Condition Index (VTCI) for 

the two seasons 
95 



 

 

 ix 

5.2.2:  Datasets used 97 

  

5.3:  Results 100 

5.3.1:  VTCI analysis for October-November 100 

5.3.2:  VTCI analysis for the entire Maha season 107 

  

5.4:  Conclusion 114 
  
 

Chapter 6:  Conclusion 116 

  

Annexures  
  

1. Modifications made to original Matlab Code for Wavelet Transform 

Analysis 
125 

  

2. Sri Lanka rice production statistics 1952-2009 130 

  

3. List of identification numbers of original MODIS imagery analyzed in 

Chapter 5 
132 

 

 
 

References 137 

  

Curriculum Vitae 146 

 

  



 

 

 x 

List of Figures 

 

Chapter 1:  Introduction 
 

  

Figure 1.1:  Location of Sri Lanka 4 

Figure 1.2:  Cultivation seasons in Sri Lanka and associated rainfall regime.  

The yellow box highlights the main cultivation season known as the Maha.   

6 

  

Figure 1.3:  Distribution of rice fields and the “Dry Zone” and “Wet Zone” 

delineated by the 2000mm isohyet (thick blue line).  The  isohyets were 

obtained by interpolating annual average rainfall from 1971-2000 at a 132 rain 

gauges (red dot) used in the study. 

7 

  

Figure 1.4:  Elevation map generated using the ASTER 30m resolution digital 

elevation model (DEM) product.  

8 

  

Figure 1.5(a):  Spatial distribution of rainfall during the first inter-monsoon 

from March-April (i), during the southwest monsoon (May to September) and 

the first month of the second inter-monsoon (October) (ii) (Adapted from 

Wickramagamage, 2009, Figure 3(a) and 3(b), pp 6) 

9 

  

Figure 1.5(b):  Spatial distribution of rainfall during the second month of the 

second inter-monsoon (November) (i) and during the northeast monsoon 

(December-February) (ii) (Adapted from Wickramagamage, 2009, Figure 3(c) 

and 3(d), pp 7) 

10 

  

 

Chapter 2:  Maha seasonal drought 

 

  

Figure 2.1:  District boundaries (data source:  http://www.iwmidsp.org) 20 

  

Figure 2.2:  Location of stations with long precipitation records used to 

generate wavelet transforms of Maha drought time series.   

28 

  

Figure 2.3:  Mean drought occurrence during the period 1951-2008 derived by 

calculating the 6-monthly Standardized Precipitation Index (SPI) on district-

wise interpolated rainfall data.   

30 

  

Figure 2.4:  Drought severity category at district level for the extreme drought 

events of (clockwise from top left) 1976, 2000, 2001 and 2002.  Colour coding 

is by severity level with dark orange indicating “extreme” drought, light 

orange indicating “mild” drought and white indicating “non-drought”.   

32 

  

Figure 2.5:  Drought severity categories at district level for the 2003 “severe” 

drought event  

33 

http://www.iwmidsp.org/


 

 

 xi 

  

Figure 2.6:  Districts affected by moderate droughts in (clockwise from left) 

1956, 1980, 1983 and 2005 

34 

  

Figure 2.7:  Detrended total Maha production and yield per hectare versus 6-

monthly SPI (October)   

36 

  

Figure 2.8:  ON standardized anomalies (solid bright blue line) and DJF 

standardized anomalies (broken light blue line) plotted against 6-month SPI 

(solid orange bars) for October for the period 1961-2005. 

35 

  

Figure 2.9:  Standardized anomalies of ON (a) and DJF (b) rainfall in 2002.  

Blue circles indicate negative anomalies and red circles indicate positive 

anomalies 

35 

  

Figure 2.10 (a):  Wavelet Transform for Trincomalee where the predominant 

frequency is 2-8 years.  The top panel is the original SPI time series.  The 

second panel is the Wavelet Power Spectrum (WSP) with frequencies 

significant at the 95% confidence level contoured in bold.  The thin curved 

line running from left to right in the WSP is the Cone of Influence (COI) 

indicating the region below which edge effects distort results.  The right box 

is the Global Wavelet Spectrum where the broken line indicates the 95% 

confidence level.  Frequencies below the dashed line are the significant 

spectral peaks in the time series.  The bottom panel shows the scale-average 

wavelet power (expressed as SPI variance) – where the scale is selected based 

on significant frequency bands identified from the WSP.  

38 

  

Figure 2.10 (b):  Same as in 2.10(a) but for Hambantota 39 

  

Figure 2.10 (c):  Same as in 2.10(a) but for Jaffna 40 

  

Figure 2.10 (d):  Same as in 2.10(a) but for Kandy 41 

  

Figure 2.11 (a):  Same as in Figure 2.10 but for Galle where the predominant 

frequency band is 16-32 years 
42 

  

Figure 2.11(b):  Same as in Figure 2.11(a) but for Colombo 43 

  

Figure 2.11 (c):  Same as in Figure 2.11(a) but for Negombo 44 

  

Figure 2.11 (d):  Same as in Figure 2.11(a) but for Mannar 45 

  

Figure 2.12:  Dominant wavelet frequencies at stations used in wavelet 

transform analysis   

46 

  

  



 

 

 xii 

Figure 2.13:  Interpolated map of trend in 6-month SPI for October at the 132 

rain gauges.  Orange depicts an increase in drought and blue depicts a 

decrease in drought.  Trend values show changes in units of SPI per year.   

47 

  

 

Chapter 3:  Predictability of the October-November season 

 

 

Figure 3.1:  Mean 850hPa wind field over Sri Lanka for October, November, 

December, January and February from NCEP-NCAR reanalysis data for 

1951-2005 

54 

  

Figure 3.2:  Correlation between zonal winds at 850hPa and mean ON 

rainfall over Sri Lanka.  Broken lines show regions negatively correlated, and 

solid lines show regions positively correlated, with ON rainfall. Blue 

(negative correlation) and orange (positive correlation) shading depict 

correlation significant at the 95% confidence level. The contour interval is 0.2 

correlation units. 

59 

  

Figure 3.3: Temporal composites of the October-November U850 field (left) 

and associated negative anomalies in mean ON rainfall over Sri Lanka in 

years when ON rainfall failed (right) 

63 

  

Figure 3.4:  Temporal composites of October-November anomalies of the 

vertical shear of the zonal wind (a), vertical velocity at 500hPa (b) and 

relative vorticity at 850hPa (c) in years when ON rainfall failed 

64 

  

Figure 3.5:  Mean October-November U850 for the domain 5⁰S-15⁰N and 

60⁰E-105⁰E (yellow bars); mean SOI for September-November (red line); the 

Indian Ocean Dipole mode index (dashed green line) calculated as the 

standardized difference between the spatial mean SST over the western (50E-

70E and 10S-10N) and eastern (90E-110E and 10S-0S) Indian Ocean 

(Vinayachandran et al., 2002); and years when ON rainfall anomalies were 

negative (black circles above yellow bars) 

65 

  

Figure 3.6:  Leading canonical modes and associated temporal scores of the 

spatial loadings for the ECHAM4.5_PSST (a); the ECHAM4.5_CA (b); and 

the CFS (c).  Red in the spatial loadings of U850 spatial loadings and ON 

rainfall anomalies indicates positive anomalies and blue indicates negative 

anomalies.  The red line in the temporal scores depicts the predictor and the 

green line depicts the predictand.  

67 

  

Figure 3.7:  Pearson‟s correlation skill maps for the ECHAM4.5_PSST (a); 

the ECHAM4.5_CA (b); and the CFS (c).  Contour interval is 0.1 correlation 

units.  Correlation values significant at the 95% confidence level are depicted 

as solid black lines and correlation values significant at the 99% confidence 

level are depicted as solid red lines.   

68 



 

 

 xiii 

  

Figure 3.8:  Examples of predicted (from ECHAM4.5_PSST) versus 

observed rainfall at rain gauge stations with an average Hit Skill Score (a) and 

at a station with a Hit Skill Score in the 90
th

 percentile (b).  Filled orange 

circles in the map of rain gauge stations (right) show the location of the 

stations selected randomly.   

69 

  

Figure 3.9:  Tercile probability forecasts of ON rainfall in 2001 generated 

from the CFS depicting the above-normal (a), near-normal (b) and below-

normal (c) categories.  Blues indicates lower probabilities and reds indicate 

higher probabilities.   

71 

  

 

Chapter 4:  Predictability of the December-February season 

 

 

Figure 4.1:  Plot of standardized anomalies of mean DJF rainfall (blue bar) at 

a 132 rain gauges versus August-September (ASO) mean value of the 

Southern Oscillation Index (SOI) (red line) for the period 1961-2005.  Values 

on the y-axis are units of standardized anomalies. 
 

75 

Figure 4.2:  Temporal composites of the December-Febuary    field (left) and 

associated negative anomalies in mean DJF rainfall over Sri Lanka in the 

drought years 1976, 1980, 1984, 1986, 1996, 2001 and 2003 when DJF rainfall 

was below normal.  Blues indicate negative    anomalies and reds indicate 

positive anomalies. 

79 

  

Figure 4.3:  Mean December-February wind vector at 850hPa in drought 

years (a) and mean DJF wind vector (1961-2004) (b).  Red square in (a) 

denotes region where the wind stream weakens in drought years. 

80 

  

Figure 4.4:  Same as in 4.2 but for the domain 40⁰E-270⁰E and 30⁰S-65⁰N.  

Blues indicate negative    anomalies and red indicate positive anomalies. The 

black box encloses the broad region of reduced   . 

80 

  

Figure 4.5:  Leading canonical modes and associated temporal scores of the 

spatial loadings for the ECHAM4.5_CA (a); the ECHAM4.5_PSST (b); and 

the CFS (c).  Red in the spatial loadings of    and DJF rainfall anomalies 

indicates positive anomalies and blue indicates negative anomalies.  The red 

line in the temporal scores depicts the predictor and the green line depicts the 

predictand. 

84 

  

Figure 4.6:  Pearson‟s correlation skill maps for the ECHAM4.5_CA.  

Contour interval is 0.05 correlation units.  Correlation values significant at the 

95% confidence level are depicted as solid black lines and correlation values 

significant at the 99% confidence level are depicted as solid red lines.  Broken 

blue lines depict values of negative correlation.  Thin grey lines depict positive 

correlation values that are not statistically significant. 

85 



 

 

 xiv 

  

  

Figure 4.7:  Examples of predicted (from ECHAM4.5_CA) versus observed 

rainfall at rain gauge stations with an average Hit Skill Score (a) and at a 

station with a Hit Skill Score in the 90
th

 percentile (b).  Filled orange circles in 

the map of rain gauge stations (right) show the location of the stations selected 

randomly. 

86 

  

Figure 4.8:  Tercile probability forecasts of DJF rainfall in 2001 generated 

from the ECHAM4.5_CA depicting the above-normal (a), near-normal (b) and 

below-normal (c) categories.  Blues indicates lower probabilities and reds 

indicate higher probabilities. 

87 

  

 

Chapter 5:  Monitoring moisture conditions on the ground in near-real time 

 

 

Figure 5.1:  Schematic of the LST-NDVI scatterplot depicting the physical 

interpretation of the VTCI (Adapted from Wan et al., 2004, Figure 1, pp 65) 

93 

  

Figure 5.2:  Two tiles of the MODIS MOD11A2 day time LST product for 

the period 7 September to 14 October 2000 

97 

  

Figure 5.3:  Two tiles of the MODIS MOD13A2 day time NDVI product for 

the period 29 September to 14 October 2000 

98 

  

Figure 5.4:  Observed (a) and predicted (b) standardized anomalies of 

October-November rainfall in 2000. VTCI images for early-October 2000 (c), 

late-October 2000 (d), early-November 2000 (e) and late-November 2000 (f).   

102 

  

Figure 5.5:  Observed (a) and predicted (b) standardized anomalies of 

October-November rainfall in 2001. VTCI images for early-October 2001 (c), 

late-October 2001 (d), early-November 2001 (e) and late-November 2001 (f). 

103 

  

Figure 5.6:  Observed (a) and predicted (b) standardized anomalies of 

October-November rainfall in 2002. VTCI images for early-October 2002 (c), 

late-October 2001 (d), early-November 2002 (e) and late-November 2002 (f). 

104 

  

Figure 5.7: Observed (a) and predicted (b) standardized anomalies of October-

November rainfall in 2004. VTCI images for early to mid-October 2004 (c) 

and late-November 2004 (d). 

105 

  

Figure 5.8:  Observed (a) and predicted (b) standardized anomalies of 

October-November rainfall in 2005. VTCI images for early-October 2005 (c), 

late-October 2005 (d) and late-November 2005 (e).   

106 

  

  



 

 

 xv 

Figure 5.9: Observed (a) and predicted (b) standardized anomalies of October-

November rainfall in 2003.  VTCI images for early-October 2003 (c), late-

October 2003 (d), and mid-November 2003 (e). 

108 

  

Figure 5.10: Observed (a) and predicted (b) standardized anomalies of 

December-February rainfall in 2003. VTCI images for early-December 2003 

(c), late-December 2003 (d), early-January 2003 (e), late-January 2003 (f), 

early-February 2003 (g), and late-February 2003 (h). 

110 

  

Figure 5.11:  Examples of VTCI images and relevant MODIS Quality Control 

(QC) images for late-October 2003 (left panel) and early-December (right 

panel).  Left panel:  VTCI image for late-October (a); LST QC (b); NDVI QC 

(c) and Combined QC mask (d) prepared by intersecting raster masks of „Good 

Quality‟ pixels extracted from the LST QC and NDVI QC images. Right 

panel:  same as for left panel but for early-December. 

111 

  

Figure 5.12:  Time series of VTCI presented for three locations in the four 

districts affected by extreme drought (dark orange) in 2003 (a).  Top right (b) 

is an image created by stacking the nine images used to study the entire Maha 

season in 2003 and extracting the cells falling within the districts affected by 

extreme drought. The display shows three of the nine images. The yellow 

squares are the areas-of-interest (AOIs) selected to plot VTCI values at each 

time step.  Reds indicate higher VTCI (wetter) values and blues and greens 

indicate lower VTCI (dryer) values in the three images used in the display.  

The lower plot (c) shows mean VTCI values within each AOI from early-

October to late-February. The numerals 1-9 along the x-axis indicate each 

VTCI image stacked in chronological order from early-October (1) through 

late-February (9).   

113 

  

 

  



 

 

 xvi 

 

List of Tables 

 

Chapter 2:  Maha seasonal drought 

 

 

Table 2.1:  Names and  location  for stations used in Wavelet Transform 

analysis 

28 

  

Table 2.2:  Drought return periods calculated using non-exceedance 

probability 

30 

  

Table 2.4:  Rainfall anomalies associated with each drought event  37 

  

 

Chapter 3:  Predictability of the October-November season 

 

 

Table 3.1:  Summary of tercile probability forecasts of ON rainfall from the 

two versions of the ECHAM4.5 and the CFS.  BN refers to below-normal and 

AN refers to above-normal.   

70 

  

 

Chapter 4:  Predictability of the December-February season 

 

 

Table 4.1:  Summary of tercile probability forecast of DJF rainfall  

from the ECHAM4.5_CA.  BN refers to below-normal.   

87 

  

 

Chapter 5:  Monitoring moisture conditions on the ground in near-real time 

 

Table 5.1:  VTCI images produced and LST and NDVI composites used for 

each VTCI image 

96 

  

 
 



1 

 

 

 

Chapter 1:  Introduction 

1.1:  Drought in the humid tropics 

 Droughts like floods are natural extremes of the hydrological cycle.  Droughts are 

“creeping” phenomena with no clearly distinguishable onset or end.  Their impacts are 

spread over a much larger area than other natural hazards (Wilhite, 1996).  With the 

likely increase in extreme events due to climate change (Parry et al., 2007), there is a 

greater need for the explicit understanding of how droughts currently affect different 

parts of the globe.  Such understanding is essential not only to design drought adaptation 

measures appropriate to a given location under future scenarios of drought but also to 

design and implement adaptive measures to cope with drought in the present day, as 

drought is a recurrent phenomenon.   

 Drought is a condition of insufficient moisture caused by a deficit in precipitation 

over time (McKee, et al., 1993).  It is distinct from aridity or seasonal aridity as found in 

locations with a distinct dry season (WMO, 2006).  A universal definition of drought 

does not exist and any study on drought requires a functional definition of drought 

accounting for drought duration, magnitude, intensity and frequency
1
 – all aspects 

intrinsically linked to timescale (McKee et al., 1993).   

 This dissertation focuses on droughts that occur in the humid tropics.  The humid 

tropics are regions of the Earth under the rising limb of the Hadley Cell stretching on 

average from 30⁰S to 30⁰N.  Convection associated with the north-south migration of the 

Inter-tropical Convergence Zone (ITCZ) and monsoonal troughs provide rainfall to the 

                                                           
1
 Drought duration is the time period in which precipitation or any other form of usable water source (e.g. 

soil moisture, groundwater, snow pack, streamflow or reservoir storage (McKee, et al., 1993)) remains 

below average; drought magnitude is: “the deviation from a threshold value” (Sheffield and Wood, 2007); 

drought intensity is: “the mean magnitude over the duration” (Sheffield and Wood, 2007); and drought 

frequency is the number of drought events within a given timescale. 
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humid tropics.  The high inter-annual variability in the strength and location of the ITCZ 

and the monsoon troughs results in the humid tropics experiencing a high inter-annual 

variability in rainfall (Stahl and Hisdal, 2006) and hence soil moisture.  High inter-annual 

variability in soil moisture results in higher drought intensities in the humid tropics 

compared to other regions of the globe (Sheffield and Wood, 2007).  A majority of the 

world‟s population resides in countries located within the humid tropics where rice is the 

staple food crop cultivated.  Rice is a crop with a high water demand.  Water stress 

during the growing and maturing phases of a cropping season can have a devastating 

impact on rice production.  Droughts, therefore, affect food security in countries in the 

humid tropics.  Droughts also have dramatic impacts on the livelihoods of people in 

locations such as the densely populated tropical regions of South Asia where agriculture 

is the main livelihood (Stahl and Hisdal, 2006).   

 Drought, unlike other hydro-meteorological hazards such as flooding, often has a 

gradual onset.  Thus, there is sufficient lead time in most cases to initiate drought 

adaptation measures.  Drought adaptation is contingent on the existence of a drought 

prediction and early-warning system.  Identifying factors causing drought provides the 

basis for the design of such a drought prediction and early-warning system.   

 Droughts occur due to a combination of reasons including:  the failure of seasonal 

rainfall; local factors such as land cover change that exacerbate an initial deficiency in 

water availability on the ground; and significant shifts in mean climatic conditions.   

The failure of seasonal rainfall is the key driver of recurrent drought in the humid 

tropics.  Therefore, this dissertation focuses primarily on understanding factors 

controlling the failure of seasonal rainfall with the aim of proposing a drought forecasting 
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methodology applicable to locations in the humid tropics.  It recognizes the critical 

importance of the two other factors in determining the overall magnitude of drought at a 

given location.  Delving into the finer details of either land change or global change-

induced shifts in mean climatic conditions is beyond the scope of the dissertation and will 

be addressed in detail in future studies.   

Seasonal rainfall failure may be attributed to factors driving seasonal climate 

variability.  The overall strength of the seasonal cycle is a result of the interaction of 

processes active at intraseasonal (30-90 days), interannual to multi-decadal timescales.  

Foremost among factors influencing seasonal climate variability are boundary conditions 

such as sea surface temperatures (SSTs) and land surface characteristics.  The surface 

boundary layer has a relatively longer time scale of variability and thus allows for 

predictability that extends to the seasonal time scale – i.e. a few months.  Such an 

extended range of predictability is believed to exist due to atmospheric-oceanic-land 

coupling (Palmer, 1993). Anomalous boundary conditions can produce statistically 

significant anomalies in the seasonal mean atmospheric circulation.  Such anomalous 

boundary conditions are more influential in the tropics than in the midlatitudes (Shukla 

and Kinter, 2006).  If such boundary conditions and associated climate impacts are 

predictable, skillful seasonal climate forecasts may be generated (Goddard et al., 2001). 

The primary mode of seasonal predictability in the tropics is the El Niño Southern 

Oscillation (ENSO) (Hastenrath, 1995).  Many studies have attempted to characterize the 

influence of ENSO on droughts over the Indian subcontinent (Kumar et al., 2006; 

Rajeevan and Pai, 2007).  All such studies have focused on droughts associated with the 

failure of the Indian summer monsoon.  There is a noticeable dearth of studies looking at 
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droughts caused by the failure of the winter monsoon over South Asia and the failure of 

convective rainfall regimes in equatorial regions.   

 

1.2:  Drought in Sri Lanka 

“The occurrence of dry spells and droughts would not normally be expected to be a 

feature of the weather of a tropical island.  However, prolonged periods of dry, or at 

least relatively dry, weather are not uncommon in Sri Lanka……….” (Jayamaha, 1975). 

  

Drought, as the above quote reflects, is not an uncommon phenomenon in Sri Lanka 

located southeast of the Indian subcontinent between 5⁰55‟-9⁰50‟N and 79⁰42‟-81⁰53‟ 

(Fig. 1.1)..  It is a frequent occurrence that has been documented since ancient times 

(Maddumabandara, 1982; and Basnayake, 1990).   

 

Figure 1.1:  Location of Sri Lanka 
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Droughts in Sri Lanka occur when the  precipitation regime associated with the Maha 

cultivation season fails.  The Maha is the main rice cultivation season in the country that 

lasts from October to March in a given year.  These droughts have durations of 6 to 9 

months (Lyon et al., 2009) and are, thus, typical of droughts in the humid tropics where 

drought duration is normally 6 months (Sheffield and Wood, 2007).  Multi-year droughts 

are rare but have taken place (Basnayake, 1990).   

The dissertation uses Sri Lanka as a case study as it is a representative example of 

a location in the humid tropics that is frequently subject to droughts.  It also has a dense 

network of over 300 rain gauges with quality-controlled rainfall data.  Some of these 

rainfall records extend as far back as 1870, Furthermore, certain aspects of the geography 

of Sri Lanka – including marked topographical variations, proximity to the equator, and 

location in the central Indian Ocean – add interesting dimensions to the study of drought 

there.   

Proximity to the equator results in there being four distinct rainfall seasons over 

the country:  the first inter-monsoon (March-April); the southwest monsoon (May to 

September); the second inter-monsoon [October-November (ON)] and the northeast 

monsoon [December to February (DJF)].  The second inter-monsoon and the northeast 

monsoon are the two rainfall regimes that provide critical moisture during the Maha (Fig. 

1.2).   
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Figure 1.2:  Cultivation seasons in Sri Lanka and associated rainfall regime.  The yellow box highlights the 

main cultivation season known as the Maha.   

 

Mean Maha rainfall is 1160mm (with a standard deviation of 260mm), with a 

mean ON rainfall of 590mm (standard deviation - 140mm) and mean DJF rainfall of 

480mm (standard deviation - 190).  The failure of either or both of these regimes leads to 

drought, particularly over the northern, north-central, and southeastern portions of the 

island.  These areas fall within the “Dry Zone” – often delimited by the 2000mm isohyet 

– of the country (Domrös, 1974; Yoshino and Suppiah, 1984) that covers approximately 

65% of the land mass.  Rice is the main crop cultivated, and approximately 75% of the 

country‟s rice fields are located, in the “Dry Zone” (Fig. 1.3).  This zone experiences a 

dry season during the months of May to September when the southwest monsoon (Indian 

summer monsoon) is in swing due to the rain shadow effect of the central highlands of 

Sri Lanka.  The central highlands extend up to 2800m (Fig. 1.4) and have a significant 

impact on the spatial distribution of rainfall across the island [Fig. 1.5(a) and (b)].  The 
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dry season is an annual occurrence.  It does not result from the failure of seasonal rainfall 

and, therefore, cannot be considered as seasonal drought.     

 
 

Figure 1.3:  Distribution of rice fields and the “Dry Zone” and “Wet Zone” delineated by the 2000mm 

isohyet (thick blue line).  The  isohyets were obtained by interpolating annual average rainfall from 1971-

2000 at a 132 rain gauges (red dot) used in the study.   
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Figure 1.4:  Elevation map generated using the ASTER 30m resolution digital elevation model (DEM) 

product.  
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Figure 1.5(a):  Spatial distribution of rainfall during the first inter-monsoon from March-April (i), during 

the southwest monsoon (May to September) and the first month of the second inter-monsoon (October) (ii) 

(Adapted from Wickramagamage, 2009, Figure 3(a) and 3(b), pp 6) 

 

 

 

(i) 

(ii) 
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Figure 1.5(b):  Spatial distribution of rainfall during the second month of the second inter-monsoon 

(November) (i) and during the northeast monsoon (December-February) (ii) (Adapted from 

Wickramagamage, 2009, Figure 3(c) and 3(d), pp 7) 

 

(i) 

(ii) 
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Sri Lanka‟s location in the central Indian Ocean makes it a good test bed to 

contribute to ongoing research efforts in the region because the central Indian Ocean is a 

“happening” ocean basin – both in terms of the observed increased warming in ocean 

temperatures over the last three decades, and in terms of increased efforts underway in 

the climate and oceanography communities to better understand coupled ocean-

atmospheric processes at work there.     

Although regular, drought occurrence over Sri Lanka exhibits no clear periodicity.  

It thus poses a challenge to seasonal crop planning, irrigation scheduling and hydropower 

generation.  Knowing in advance the likelihood of whether a forthcoming season could 

be affected by drought is essential for planning adaptive measures – particularly for 

drought-sensitive crops like rice.  Such knowledge needs to be generated through a 

characterization of past drought occurrence – including frequency, intensity and return 

periods – and an assessment of factors that induce drought.  Seasonal forecasts of 

precipitation expected during a forthcoming Maha season could be utilized for drought 

prediction in Sri Lanka.  Key decisions on what to plant during the Maha season are 

made at a seasonal conference convened in September each year by the Sri Lanka 

Department of Agriculture.  If seasonal forecasts of rainfall expected during a 

forthcoming Maha season could be made in time for the September seasonal conference, 

they could aid decisions in drought preparedness and adaptation, particularly in the 

agriculture sector.   

  



12 

 

 

 

1.3:  Knowledge gaps regarding drought in Sri Lanka 

Several recent studies have characterized the influence of ENSO on rainfall over Sri 

Lanka (Rasmusson and Carpenter, 1983; Suppiah, 1996; Zubair et al., 2007).  Others 

have addressed the influence of Indian Ocean sea surface temperatures (SSTs) and the 

Indian Ocean Dipole (IOD) Mode (Li et al., 2003; Saji and Yamagata, 2003) on rainfall 

over Sri Lanka (Malmgren et al., 2007; Zubair et al., 2003).  These studies have not 

specifically delved into the predictability of drought or other climate extremes.   Their 

focus has consistently been to explain the influence of various teleconnection 

mechanisms on the inter-annual variability of precipitation over Sri Lanka.  Studies on 

the seasonal predictability of rainfall over Sri Lanka are limited and have focused 

primarily on ENSO-driven predictability (e.g. Suppiah, 1989; Zubair et al., 2007).  These 

investigations provide invaluable insight into some of the atmospheric processes 

influencing seasonal rainfall.  However, they are not directly applicable to operational 

planning due to two reasons.  First, the predictor fields – most often SSTs in the Nino3.4 

region, the Southern Oscillation Index (SOI)
2
 or the IOD mode index – do not account for 

all the variance in seasonal rainfall and their associated empirical relationships are not 

constant through time.  Second, past studies on the predictability of seasonal rainfall over 

Sri Lanka have considered the months October to December (OND) as comprising a 

single season – often referring to it as the northeast monsoon season (Zubair and 

Ropelewski, 2006;  Zubair et al., 2007).  Critical information on processes influencing a 

particular rainfall season is lost if different seasons are clustered together.   

This dissertation differs from prior studies by identifying critical factors that 

control the strength of the October-November and December-February rainfall seasons 

                                                           
2
 The SOI is the difference in mean sea level pressure between Tahiti and Darwin (Walker and Bliss, 1932) 
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with the explicit aim of assessing the predictability of rain failure and, hence, drought 

over Sri Lanka.  Such an investigation has not been undertaken before.   

While seasonal precipitation forecasts provide an indication of whether an 

oncoming season in its entirety is likely to be susceptible to drought, they cannot provide 

information on how moisture stress might evolve on the ground as the season progresses.  

Farmers, agricultural extension officers and other decision-makers in the agriculture and 

irrigation sectors in Sri Lanka need information on where moisture stress, and hence 

drought, may be setting in, to launch protective measures such as mulching or increasing 

releases of irrigation water.  Therefore, drought prediction must be complemented with a 

spatially explicit real or near-real time monitoring of moisture stress at the ground.  

Remote sensing techniques could be utilized to monitor the onset, progression and spatial 

variability of moisture stress.  This dissertation tests the applicability of the Vegetation 

Temperature Condition Index (VTCI) (Wang et al., 2001; Wan et al., 2004a) that 

combines vegetation indices (derived from remotely sensed data in the optical 

wavelengths) with land surface temperature (derived from remotely sensed data in the 

thermal infrared wavelengths) to monitor moisture stress on the ground in Sri Lanka.  

The technique has not previously been applied to monitor moisture stress in Sri Lanka.   
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1.4:  Research goal and objectives 

The study demonstrates a methodology that combines seasonal climate forecasting with 

remote sensing so that the spatial characteristics of drought onset and progression are 

identified at a scale useful for the implementation of drought adaptation measures.  The 

study will contribute to understanding atmospheric circulation patterns that drive drought 

over Southeastern India and Sri Lanka.  It contributes to enhancing current capacity to 

predict rainfall during the inter-monsoonal and northeast (winter) monsoonal seasons, 

and to improving  drought early warning capacity in Sri Lanka.  In the long-term it will 

inform drought preparedness and drought adaptation measures in the country. The 

specific research objectives of the study are to:  

 Characterize drought occurrence in Sri Lanka over the last 6 decades 

 Develop a methodology for predicting drought in Sri Lanka  based on seasonal 

climate forecasts  

 Develop a methodology to monitor seasonal moisture stress in near-real time 

during the Maha cultivation season.   

The dissertation has three major research thrusts based on the above research objectives.  

The first  thrust, covered in Chapter 2, characterizes Maha seasonal drought occurrence 

by addressing the following specific research questions: 1) How frequently has drought 

affected the Maha cultivation season during the period 1951-2008?  2) What are the 

return periods of different categories of drought?  3) What regions of Sri Lanka are 

particularly vulnerable to drought?  4) How does Maha drought affect rice cultivation and 

how do the October-November rains and the northeast monsoon (December-February) 

over Sri Lanka influence Maha drought?  5) What are the dominant modes of drought 
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variability, how do such modes vary over time, and is there any spatial trend in drought 

occurrence? 

The second research thrust, covered in Chapters 3 and 4, proposes a methodology 

for predicting drought in Sri Lanka by addressing the following specific research 

questions:  1) What atmospheric factors drive the failure of the October-November 

(Chapter 3) and December-February (Chapter 4) rains? 2) Can seasonal forecasts from 

Global Climate Model (GCM) ensembles be used to predict the failure of October-

November and December-February rainfall?  

The third research thrust, covered in Chapter 5, proposes a methodology to 

monitor moisture stress in near-real time during the Maha season by addressing the 

following specific research questions:  1) Does the Vegetation Temperature Condition 

Index (VTCI) capture drought progression during the early-Maha (October-November) 

season for the period? and 2) Can the VTCI be applied to monitor drought progression 

through the entire Maha season? 

 The datasets and methodologies used to address the research questions listed 

above are explained in the chapters covering each research thrust.  Key results are 

presented at the end of each chapter.  A summary of all the results, their wider 

implications and future research directions are presented in Chapter 6.   

 

  



16 

 

 

 

Chapter 2:  Maha seasonal drought 

2.1:  Introduction 

The objectives of this chapter are: to characterize past Maha seasonal droughts; 

and to characterize the influence of the ON and DJF rains on such droughts.   

The specific research questions addressed by this chapter are:  1) How frequently 

has drought affected the Maha season? 2) What are the return periods of the different 

drought categories? 3) What regions of Sri Lanka are particularly vulnerable to drought?  

4) How does Maha drought affect rice cultivation and how do the October-November 

rains and the northeast monsoon (December-February) over Sri Lanka influence Maha 

drought?, and, 5) What are the dominant modes of drought variability, how do such 

modes vary over time, and is there a spatial trend in drought occurrence?  

 

2.2:  Methodology and datasets used 

2.2.1:  Drought analysis 

Analysis method: 

The Standardized Precipitation Index (SPI)
 3

 (McKee et al., 1993) is the metric used to 

identify drought incidence in this study.  The SPI can be calculated for a variety of 

timescales ranging from 1-, 3-, 6-, 12- to 24-months (McKee et al., 1993, Guttman, 1999, 

Quiring, 2009).  The 6-monthly timescale was selected for this study as droughts in the 

humid tropics, and in Sri Lanka, have a typical duration of 6 months (Section 1.2, 

Chapter 1).  Calculation of the SPI requires the selection of a probability density function 

(PDF) that fits historical precipitation observations (Guttman, 1999).  The selected PDF 

                                                           
3
 The Standardized Precipitation Index (SPI) has been recommended as the index that national 

meteorological and hydrological services across the world should use to characterize meteorological 

drought (Castillo, 2009).   
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is used to normalize precipitation at a given location.  The normalized value of 

precipitation is the SPI value for the given location.   

The gamma     distribution is flexible at representing a variety of precipitation 

distributions and is thus commonly used to calculate SPI (Husak et al., 2007).  It is 

defined by the following probability density function: 

      
      

          

     
                                        

Where,  

                
 

 

                     

and   = shape parameter;   = scale parameter and   = precipitation 

The parameters of shape and scale needed to estimate the gamma function are 

obtained from the historical precipitation record using a Maximum Likelihood Estimator 

(Husak et al., 2007).  The shape estimator is expressed as:  

    
        

  
                       

Where,  

          
 

 
                            

 

   

 

 

Where,    = sample mean;   = number of observations 

The scale estimator is derived such that:  
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The gamma function needs to be evaluated numerically (Wilks, 2006, pp 78).  

Therefore, the SPI program available through the National Drought Mitigation Center, 

University of Lincoln-Nebraska (http://drought.unl.edu/monitor/spi.htm) was used to 

calculate SPI.  The program permits the specification of timescale for which the SPI 

should be calculated.  As droughts in Sri Lanka are typically of 6-month duration, 6-

month SPI values were calculated for each data point.  SPI values for the month of 

October were then extracted for further analysis.  

For the purposes of this study, drought is defined as instances when the SPI over a 

6-month period is greater than one standard deviation below the mean.  The thresholds 

for categories of drought are:  extreme drought (SPI < -2.0), severe drought (-1.9 < SPI <-

1.5) and moderate drought (-1.49 < SPI < -1.0). The category of mild drought (-0.99 <SPI 

< -0.5) is also considered for the purposes of characterizing all drought events that have 

taken place during the period of analysis.   

 

Data used for SPI calculation: 

A district
4
-wise (Fig. 2.1) interpolated monthly precipitation dataset from 1951-2008 was 

used for SPI calculation.  The dataset is a new product generated by the Sri Lanka 

Department of Meteorology
5
 using all available quality controlled stations across the 

country with the Thiessen Polygon interpolation method.   

  

                                                           
4
 A district is the second level of regional administration in Sri Lanka.  There are 25 districts in the country.   

5
 The Sri Lanka Department of Meteorology is the national meteorological service of the country.   

http://drought.unl.edu/monitor/spi.htm
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2.2.2:   Return periods 

A mean SPI value for each year was obtained by averaging the district-wise SPI data 

from 1951-2008.  Return periods of the different drought categories were calculated 

using non-exceedence probability (Tallaksen et al., 2004; pp 204-206).  Non-exceedence 

probability is the average time interval between events and is expressed as: 

   
 

 
                

Where,  

    Average time between the occurrence of an event      

   Cumulative probability with the following Cumulative Distribution Function (CDF):   

                               

Where,  = a random variable;   = a real number 
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Figure 2.1:  District boundaries (data source:  http://www.iwmidsp.org) 

  

http://www.iwmidsp.org/
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2.2.3:  Spatial dimension of drought occurrence 

The spatial distribution of the severity of each drought event was analyzed by calculating 

the SPI using the district-wise interpolated precipitation dataset.  The results were then 

visualized using attribute table manipulation in ArcGIS.   

 

2.2.4:  Influence of drought on the Maha season 

 

2.2.4.1:  Influence of drought on rice production during the Maha 

As the Maha season is the main rice cultivation season, the first step was to establish 

whether or not there is a significant difference in rice production between drought and 

non-drought years (identified in section 2.2).  A two-tailed t-test for differences in mean 

under independence (Wilks, 2006; pp 140) was undertaken to establish whether or not the 

difference in total rice production and yield
6
 in years of drought versus years of non-

drought is significant.  The test statistic is expressed as: 

   
        

 
  

 

  
 

  
 

  
 

                    

Where,    ,     = means of the two samples;      = variances of the two samples and 

     = number of elements in each sample (i.e. drought and non-drought years).  The t-

distribution is used to test the test statistic when the sample size is small (n<30) (Wilks, 

2006; pp 141).  The null hypothesis is that the means are equal.  If the test statistic 

exceeds the critical value of 2.02 (at the 95% confidence level), the null hypothesis is 

rejected.   

                                                           
6
 Total production is a gross figure of rice harvested in a given season.  Yield is a measure of the 

productivity of rice cultivation and is expressed as yield per hectare.    
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The period of analysis used in the t-test was 1961-2005
7
. Rice production and 

yield data were obtained from the Sri Lanka Department of Agriculture.   

 

2.2.4.2:  Influence of the ON and DJF rains on Maha drought 

Next, the influence of the two rainfall regimes on Maha drought was analyzed using 

partial correlation analysis where : 

 

            
   

    
   

       
        

 

         

Where, 

   
 - simple correlation of the dependant variable    and the causative variable    

   
- simple correlation between    and    

    - correlation between     and    

   - correlation between y and    from which   has been partialled 

 

The significance of     is assessed using a t-test where t is expressed as: 

           
     

     
             

Where, k = number predictor variables 

6-monthly SPI for October was the predictand and standardized anomalies of ON 

and DJF rainfall were the predictors.  Standardized anomalies of ON and DJF rainfall 

were calculated using a second precipitation dataset with daily rainfall data from 1961-

                                                           
7
 The period of analysis was limited to 1961-2005 as analysis beyond this point required use of the station-

based dataset that had data from 1961-2005.   
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2005 at 132 rain gauges (Fig. 1.3) maintained by the Sri Lanka Department of 

Meteorology.  The data at these stations have been subjected to quality control 

procedures by the Department of Meteorology.  The stations were selected based on 

longevity of record and spatial distribution
8
.  The daily rainfall values at the stations were 

aggregated to monthly values prior to calculating the SPI. The anomalies of seasonal 

rainfall associated with each drought event are also presented in tabular form.  

 

2.2.5:  Dominant modes of variability, change in such modes over time, and spatial 

trends in drought occurrence 

Dominant modes of variability in drought occurrence, and change in such modes over 

time, were analyzed using Wavelet Transform (WT).  A climate signal is the culmination 

of processes operating at the local and global scale.  The WT is invaluable to climate data 

analysis as it is able to simultaneously represent both the local and global signals and can 

be used to study non-stationary processes occurring over a finite spatial and temporal 

domain (Lau and Weng, 1995).  It has been used to study numerous geophysical 

phenomena (Torrence and Compo, 1998 and references therein; Lau and Weng, 1995 and 

references therein).  WT differs from spectral analysis – which is often used to isolate 

dominant frequencies in a given time series (Wilks 2006; pp 383) – as it is able to capture 

how such frequencies change with time.   

WT uses local base functions known as “wavelets” that are windows with 

flexibility in the time and frequency domain.  Wavelets are described as:  “….small 

packets of waves with a specific frequency that approach zero at both ends” (Trauth, 

2007).  Wavelets are able to map changes in the time-frequency domain precisely 

                                                           
8
 An attempt was made to ensure as wide a spatial coverage as possible.   
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because they can be stretched and translated with a flexible resolution in both domains 

(Trauth, 2007).  There are many different wavelets that could be applied to a time series – 

for example, Morlet wavelet, Paul wavelet, Haar wavelet and Daubechies wavelet 

(Torrence and Compo, 1998; Trauth, 2007).  The Morlet wavelet is the most popular 

wavelet in the geosciences (Trauth, 2007).   

A WT decomposes a signal      into elementary functions  
   

     - also called 

“wavelets” – derived from a mother wavelet      by dilation and translation. The 

elementary functions are expressed as: 

 

     
 

      
  

   

 
                      

 

Where,    position or length (translation) of a wavelet;        scale (dilation) of a 

wavelet 

 

The WT of the signal      about the mother wavelet      is defined as the convolution 

integral: 

       
 

   
 
 

    
   

 
                           

 

Where,    complex conjugate of   

 

The commonly used Morlet wavelet is defined by: 
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Where,   non-dimensional time;     wavenumber representing the number of 

oscillations with the wave (=6 for the Morlet wavelet) 

A set of scales   to use in the WT needs to be chosen after selecting a wavelet 

function, (Torrence and Compo, 1998).   

      
                                 

                                    

 

Where,    smallest resolvable scale;     sampling interval 

 

For a Morlet wavelet,     0.5 is the largest value that could be used to ensure 

adequate sampling in scale.  Smaller values of    provide for finer resolution in the 

analysis (Torrence and Compo, 1998). 

 The absolute value squared of the wavelet transform produces the wavelet power 

spectrum that provides a measure of the variance of a time series at each scale (Torrence 

and Webster, 1999).    

It is common to pad the ends of a finite time series with zeroes prior to 

performing a wavelet transform so that errors that could occur at the beginning and end 

of a time series could be reduced.  A cone of influence (COI) is plotted to indicate the 

area in the wavelet spectrum where edge effects become important.  It is defined as the e-

folding time    for the autocorrelation of wavelet power at each scale.  For the Morlet 

wavelet,       .  The true power spectrum of a time series can be obtained using 

global wavelet spectra (Torrence and Compo, 1998).  The global wavelet spectrum is 

calculated by time-averaging a wavelet spectrum over all local wavelet spectra using:  



26 

 

 

 

          
 

 
                         

   

   

 

Where,   number of points in a time series 

A background Fourier red noise spectrum is assumed for each scale.  The red noise 

spectrum can be modeled by fitting a lag-1 autoregressive model (AR1) (Wilks, 2006; pp 

352; Von Storch and Zwiers 1999, pp 255) to the time series using: 

 

            
        

  
 

                

Where,  

 

   lag-1 autocorrelation;      
 = variance of time series      

 

And, 

                        
 

     
                                  

   

   

 

Where, 

   (first time lag);   data points sample at constant time intervals    

 

Once the lag-1 autocorrelation is calculated, the normalized Fourier red noise spectrum is 

generated using 

   
    

            
   
  

                  

Where,     
 

 
 is the Fourier frequency index 
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Once the Fourier red noise spectrum is calculated for each scale, the chi-square 

distribution is used to find frequency contours significant at the 95% confidence level 

(Torrence and Compo, 1998). 

 Fluctuations in power over selected scales    to    scales can be defined using the 

scale-averaged wavelet power using: 

 

         
    

  
 

        
 

  
                   

  

    

 

Where, 

   a constant for each wavelet function (0.776 for the Morlet wavelet) 

  Precipitation data from 15 rain gauges, for the period 1870-2005
9
, were obtained 

from the Global Historical Climatology Network (Vose et al., 1992).  These gauges are 

well-distributed across the island (Fig. 2.2).  Wavelet transforms were generated on 6-

monthly SPI values for October for each rain gauge.   The following values were selected 

for the different variables in the WT: 

     (representing the annual sampling resolution of the dataset) 

         

        (the smallest resolvable scale is 1 year) 

The lag-1 autocorrelation parameter was estimated for each station  prior to 

generating the red noise Fourier spectrum for each station.  Time scales with significant 

power at each station were identified from the Wavelet Spectrum prior to averaging the 

wavelet power for those particular time bands.   

                                                           
9
 A few stations had records commencing in 1881 while one had records commencing in 1901.   
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Wavelet software was provided by C. Torrence and G. Compo and is available at 

URL: http://paos.colorado.edu/research/wavelets/.   Annex No. 1 provides an example of 

modifications made to the original Matlab code prior to running the WT analysis.    

 
Figure 2.2:  Location of stations with long precipitation records used to generate wavelet 

transforms of Maha drought time series.  Station names are given in Table 2.1. 

 

Station No. Station name and location 

1 Hambantota (southeast) 

2 Galle (southwest) 

3 Ratnapura (southwestern slopes, wet zone) 

4 Bandarawela (central hills, wet zone) 

5 Kandy (central hills, wet zone) 

6 Nuwara Eliya (central hills, wet zone) 

7 Badulla (southeastern slopes, dry zone) 

8 Batticaloa (east) 

9 Trincomalee (east) 

10 Negombo (west) 

11 Colombo (west) 

12 Puttalam (northwest) 

13 Mannar (northwest) 

14 Anuradhapura (central plains) 

15 Jaffna (north) 
 

Table 2.1:  Names and  location  for stations used in Wavelet Transform analysis 

 

http://paos.colorado.edu/research/wavelets/
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Spatial trends in drought incidence was studied for the period 1961-2005 using 

rain fall data at a 132 quality controlled rain gauges obtained from the Sri Lanka 

Department of Meteorology (Fig. 1.3).  6-monthly SPI for October was first calculated at 

each station.  Next, trend values at each station were obtained by fitting a least squares fit 

to the SPI time series.  A continuous surface of SPI trend values for Sri Lanka was 

generated by interpolating the SPI trend (slope) values at each station using Ordinary 

Kriging.   

 

2.3: Results  

2.3.1:  Drought occurrence: 

There were 14 drought years and 31 non-drought years during the period 1951-2008 (Fig. 

2.3).  Of the 14 drought years, 4 were “extreme” droughts, 1 was a “severe” drought, 5 

were “moderate” droughts and 4 were “mild” droughts.  An outstanding feature of 

drought occurrence during the period of study is the increased occurrence of droughts of 

all categories in the post-1975 period.  Not a single severe or extreme event is recorded 

from 1951-1975.  Another feature of note is the consecutive occurrence of droughts in the 

severe to extreme category from 2000-2005.   
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Figure 2.3:  Mean drought occurrence during the period 1951-2008 derived by calculating the 6-monthly 

Standardized Precipitation Index (SPI) on district-wise interpolated rainfall data.   

 

2.3.2:  Drought return periods 

The average time between the occurrences of droughts of a particular category are listed 

in Table 2.2 

 
 

Table 2.2:  Drought return periods calculated using non-exceedance probability 
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The return periods need to be interpreted with caution – particularly in the case of 

extreme droughts.  Although, the average time between the occurrence of extreme 

drought events is 14.5 years, that return period does not hold for the extreme droughts of 

2000, 2001 and 2002.   

 

2.3.3:  Spatial dimension 

The spatial extent and severity differs with each drought event.  Comparison of the 

district-wise distribution of drought severity for each extreme drought event clearly 

highlights such differences (see Figure 2.4).  In terms of the number of districts affected 

by drought, those of 1976 and 2000 are the worst as all 25 districts are under some 

category of drought.  Similarly, although the 2003 drought falls within the “severe” 

category, there were a number of districts that fell under the “extreme”  category that year 

(see Figure. 2.5).  It is clear, therefore, that some drought events are characterized by the 

localized occurrences of “extreme” or “severe” categories. 
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Figure 2.4:  Drought severity category at district level for the extreme drought events of (clockwise from 

top left) 1976, 2000, 2001 and 2002.  Colour coding is by severity level with dark orange indicating 

“extreme” drought, light orange indicating “mild” drought and white indicating “non-drought”.    
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Figure 2.5:  Drought severity categories at district level for the 2003 “severe” drought event   

 

 

Moderate droughts affect far fewer districts than extreme and severe droughts.  Yet, such 

droughts could still affect agriculture and other water sectors of water demand depending 

on where such droughts take place.  As with the extreme and severe categories, the 

spatial extent of drought occurrence varies by event (see Figure 2.6). 
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Figure 2.6:  Districts affected by moderate droughts in (clockwise from left) 1956, 1980, 1983 and 2005 
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2.3.4:  Effect of Maha droughts on rice cultivation and influence of ON and DJF 

rainfall on Maha drought 

 

2.3.4.1:  Effect of Maha droughts on rice cultivation: 

The null hypothesis in the t-test undertaken to assess whether there is a significant 

difference in rice production between drought and non-drought years is rejected as the t-

statistic exceeds the t-critical value.  The result is the same using both metrics of 

production – i.e.  total Maha production (t Stat = 2.18) and yield per hectare for the Maha 

season (t Stat = 2.47).  The rejection of the null hypothesis implies that there is indeed a 

significant difference in Maha rice production and yield between years of drought and 

non-drought.    The result is clearly evident when detrended
10

 rice production and yield 

are plotted against 6-monthly SPI values (Fig. 2.7).  The plot further reveals that rice 

production is also adversely affected in years of excess rainfall such as in the years 1963-

1965, 1971-1973 and 1993.   

 

                                                           
10

 Rice production increased dramatically from the late 1970 onwards with the increase in land under rice 

cultivation following the development of major irrigation schemes in the Dry Zone (Annex 2). 
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Figure 2.7:  Detrended total Maha production and yield per hectare versus 6-monthly SPI (October)   

 

2.3.4.2:  Influence of the ON and DJF rains on Maha drought: 

 

The partial correlation between Maha drought and ON rainfall (   
) is 0.46 while the 

partial correlation between Maha drought and DJF rainfall     
) is 0.15.  The partial 

correlation between ON and DJF rainfall (   ) is -0.08.  The strength of     is not 

significant (t = -0.4971).  This implies that we accept the null hypothesis that there is no 

correlation between ON and DJF rainfall.  The result can be interpreted as ON rainfall 

being the most important driver of Maha rainfall.   

 A close look at the rainfall anomalies in each drought year shows that ON failure 

is quite common in most drought years and DJF failure occurs in some years (see Table 

2.3 and Fig. 2.8). The only exception is the drought of 2002 that appears to have occurred 
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without negative departures in either rainfall season.  This discrepancy was clarified by 

examining the spatial distribution of rainfall anomalies for 2002.  It is a case where 

spatial averaging resulted in strong localized positive anomalies overriding the influence 

of localized negative anomalies in both the ON and DJF seasons (Fig. 2.9).   

On average, the reduction in ON and DJF rainfall during extreme drought years is 

125mm and 42mm; during severe drought years 109mm and 278mm; and during 

moderate drought years 41mm and 72mm respectively.  Negative ON anomalies in the 

extreme and moderate categories are larger than DJF anomalies.  In the single severe 

drought of 2003, negative DJF anomalies are stronger.    

 

Drought 

category Years 

Magnitude 

(SPI) ON anomaly 

DJF 

anomaly 

          

Extreme 1976 -2.4 0.27 -0.23 

  2000 -2.25 -0.95 0.47 

  2001 -2.73 -0.74 -0.16 

  2002 -2.29 0.31* 0.45* 

          

Severe 2003 -1.69 -0.34 -1.01 

          

Moderate 1956 -1.03 n/a n/a 

  1980 -1.15 -0.11 -0.44 

  1983 -1.15 -0.79 2.44 

  1986 -1.38 -0.64 -0.57 

  2005 -1.21 0.62 -0.24 

          

Mild 1952 -0.72 n/a n/a 

  1984 -0.56 -0.54 -0.05 

  1990 -0.75 -0.03 0.32 

  1996 -0.55 -0.62 -1.05 
 

Table 2.3:  Rainfall anomalies associated with each drought event  

(*- special case of 2002; n/a – not available) 
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Figure 2.8:  ON standardized anomalies (solid bright blue line) and DJF standardized anomalies (broken 

light blue line) plotted against 6-month SPI (solid orange bars) for October for the period 1961-2005. 

 

 

 

 

 

 

 

 

 

Figure 2.9:  Standardized anomalies of ON (a) and DJF (b) rainfall in 2002.  Blue circles indicate 

negative anomalies and red circles indicate positive anomalies 

  

(a) (b) 
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2.3.5:  Dominant modes of variability and changes in such modes over time 

The dominant and statistically significant drought frequency at most stations is 2-8 years.  

The 2-8 year frequency band is clearly seen (see Figure 2.10) in the stations located in the 

east [Batticaloa (not shown) and Trincomalee], southeast [Badulla (not shown), 

Hambantota], north (Jaffna), central plains [Anuradhapura (not shown)] and the central 

hills [Kandy, Ratnapura, Nuwara Eliya and Bandarawela (only Kandy is shown)].  The 

power spectra at stations in the east (Batticaloa and Trincomalee) also display significant 

power in the decadal frequency band around 8-16 years – particularly post-1960.  Three 

stations in the central hills (Kandy, Nuwara Eliya and Ratnapura) and one station in the 

southeast (Hambantota) also display significant frequencies in the 8-16 band around 

1925-1950.   

The predominant frequency band for stations along the southwestern, western and 

northwestern coast [Galle, Colombo, Negombo, Puttalam (not shown) and Mannar] is 

between 16-32 years (see Figure 2.11).  In certain periods, however, some of these 

stations [e.g. Mannar, Galle and Puttalam (not shown)] also show significant power in the 

4-8 year band.  Figure 2.12 shows the spatial distribution of stations with their dominant 

wavelet frequencies. The hill station Nuwara Eliya also displays significant frequencies at 

multi-decadal timescale (30-40 years).  

 SPI variance in the significant 2-8 year frequency band at stations in the east 

(Batticaloa and Trincomalee) and in the southeast (Hambantota and Badulla) has 

increased from the late-1980s to the early-2000s.    

 Examination of spatial trends in drought occurrence for the period 1961-2005 

shows that drought occurrence is increasing along the wester, eastern and southeastern 
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region of the island (Fig. 2.13).  Reasons for the increase in drought incidence and the 

marked increase in SPI variance at stations along the east and southeast may be related.  

The eastern and southeastern regions receive the most rainfall during the December-

February season.  Could the strength of the northeast monsoon winds be weakening due 

to global change as observed in a study on wind speeds over East Asia during the winter 

monsoon (Xu, et al., 2006)?  Or could observed decreases in winter monsoonal 

precipitation over the Bay of Bengal attributed to regional aerosol loadings (Krishnamurti 

et al., 2009) be a contributing factor?  A definite conclusion requires further investigation 

and will be addressed in future studies analyzing mean wind fields over Sri Lanka and the 

adjacent Bay of Bengal region.    
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Figure 2.10 (a):  Wavelet Transform for Trincomalee where the predominant frequency is 2-8 years.  

The top panel is the original SPI time series.  The second panel is the Wavelet Power Spectrum (WSP) 

with frequencies significant at the 95% confidence level contoured in bold.  The thin curved line running 

from left to right in the WSP is the Cone of Influence (COI) indicating the region below which edge 

effects distort results.  The right box is the Global Wavelet Spectrum where the broken line indicates the 

95% confidence level.  Frequencies below the dashed line are the significant spectral peaks in the time 

series.  The bottom panel shows the scale-average wavelet power (expressed as SPI variance) – where the 

scale is selected based on significant frequency bands identified from the WSP.  
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Figure 2.10 (b):  Same as in 2.10(a) but for Hambantota 

 

 

 
 

Figure 2.10 (c):  Same as in 2.10(a) but for Jaffna 
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Figure 2.10 (d):  Same as in 2.10(a) but for Kandy 

 

 

 

 
 

Figure 2.11 (a):  Same as in Figure 2.10 but for Galle where the dominant frequency band is 16-32 years  
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Figure 2.11(b):  Same as in Figure 2.11(a) but for Colombo 

 

 

 

 
 

Figure 2.11 (c):  Same as in Figure 2.11(a) but for Negombo 
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Figure 2.11 (d):  Same as in Figure 2.11(a) but for Mannar
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 Figure 2.12:  Dominant wavelet frequencies at stations used in wavelet transform analysis    
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Figure 2.13:  Interpolated map of trend in 6-month SPI for October at the 132 rain gauges.  Orange depicts 

an increase in drought and blue depicts a decrease in drought.  Trend values show changes in units of SPI 

per year.    
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2.4:  Conclusion 

Results show that there were 14 drought years and 31 non-drought years during the 

analysis period of 1951-2008.  There is a  marked increase in the occurrence of drought 

in the post-1975 period.  Droughts of the extreme and severe category have also only all 

occurred in post-1975 period.   Whether the increase in drought occurrence and 

magnitude in the post-1975 period is linked to the change in SST background state over 

the Indian Ocean around 1976-1977 (Terray and Dominiak, 2005), and/or to the warming 

of the Indian Ocean (Alory et al., 2007) requires further study.  Whether there is a role for 

changes in land surface characteristics, such as snow cover over the Eurasian landmass, 

in determining the occurrence and magnitude of post-1975 drought events also requires 

further study.   

There is no clear periodicity to drought occurrence apart from 1975-1990 when 

every other year appears to have been a drought year, and from 2000-2005 when 

droughts in the severe to extreme category occurred simultaneously.   Thus, drought 

return periods do not appear to be a metric that could reliably be incorporated in decision-

making as they do not capture actual return periods in certain categories of drought.  It 

could well be that a longer record is required to obtain more accurate return periods.  The 

wavelet transform provides valuable insights on the dominant modes of variability in 

drought occurrence.  This is differs from drought return periods.  It provides valuable 

insight on the timescales of processes driving drought over Sri Lanka.  Such information 

is useful when identifying and selecting predictors for drought forecasting.   

Droughts have a significant negative impact on rice production and yield.  Given 

the lack of clear periodicity in drought occurrence, advance knowledge of whether a 
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forthcoming season could be affected by drought is essential for cropping decisions and 

irrigation scheduling.  Past drought events have not been uniform in terms of their 

severity and spatial extent.  However, in most drought years (except for 2001), the region 

most affected falls within the “Dry Zone”.   

 The October-November (ON) convective rainfall is significantly correlated with 

Maha seasonal drought.  The December-February (DJF) northeast monsoon is only 

weakly correlated with Maha seasonal drought.  However, negative DJF rainfall 

anomalies are seen in most drought years.  Therefore, the importance of the DJF season 

cannot be dismissed simply because its correlation with Maha drought is weak.   

As the ON rains provide critical moisture to the growing season, advance 

knowledge of the likely strength of the ON rains in a forthcoming season could be 

invaluable to decision-making in agriculture.  Failure of the DJF rains could also ruin a 

rice crop at the maturing stage.  Advance knowledge of the strength of the forthcoming 

DJF rains could be critical for decisions such as (but not limited to) when, where and how 

much irrigation water should be released.  Such knowledge could be generated through a 

careful study of factors (and thus potential predictors) influencing the strength of the ON 

and DJF rains. 

 Results from Wavelet Transforms on dominant modes of variability in drought 

incidence indicate a dominant 2-8 year frequency that is similar to the documented 

dominant variance in the El Niño Southern Oscillation (ENSO) (Rasmussen and 

Carpenter, 1982; Torrence and Webster, 1999).  The 8-16 (decadal) frequency significant 

at certain stations is similar to the dominant variance of the Indian Ocean Dipole (IOD) 

(Ashok et al., 2004).  Does such a similarity indicate that ENSO and IOD are controlling 
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factors in the occurrence of Maha seasonal droughts?  If so, what phase of ENSO and 

IOD are critical?  These are examples of some of the questions addressed in Chapters 3 

and 4 that focus on the issue of predictability of the ON and DJF rains respectively.  The 

multi-decadal frequency (30-40 years) observed at Nuwara Eliya may stem from 

precipitation changes induced by extensive deforestation in the local over the last 100-

150 years.  Further research is needed to establish if land change could be a driver of the 

multi-decadal frequency observed at this station.   

 Drought occurrence and variability appears to be increasing along the eastern and 

southeastern regions of the island.  Whether such a trend could be attributed to the 

influence of global change on factors affecting the strength of Maha rainfall requires 

further study.   
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Chapter 3: Predictability of the October-November rains 

3.1:  Introduction 

Several recent studies have characterized the influence of ENSO on rainfall over Sri 

Lanka (Rasmusson and Carpenter, 1983; Suppiah, 1996; Zubair et al., 2007).  Others 

have addressed the influence of Indian Ocean sea surface temperatures (SSTs) and the 

IOD Mode (Li et al., 2003; Saji and Yamagata, 2003) on rainfall over Sri Lanka 

(Malmgren et al., 2007; Zubair et al., 2003).  Findings of these studies relevant to 

understanding atmospheric factors driving rainfall during the Maha include the 

enhancement of boreal fall rainfall during El Niño events and positive IOD events 

(Rasmusson and Carpenter, 1983; and Zubair and Ropolewski, 2006); and the association 

of droughts in Sri Lanka with the cold phase of ENSO (Lyon et al., 2009).   

 These studies have not specifically delved into the predictability of drought or 

other climate extremes.  Their focus has consistently been to explain the influence of 

various teleconnection mechanisms on the inter-annual variability of precipitation over 

Sri Lanka.  Studies on the seasonal predictability of rainfall over Sri Lanka are limited 

and have focused primarily on ENSO-driven predictability (e.g. Suppiah, 1989; Zubair et 

al., 2007).  The ENSO-rainfall correlation has been extended to characterize ENSO‟s 

influence on rice production (Zubair, 2002) and to predict coconut production (Pieris, et 

al. 2008).  

These investigations provide invaluable insight into some of the atmospheric 

processes influencing seasonal rainfall.  However, they are not directly applicable to 

operational planning due to two reasons.  First, the predictor fields – most often SSTs in 

the Nino3.4 region, the SOI or the IOD mode index – do not account for all the variance 
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in seasonal rainfall and their associated empirical relationships are not constant through 

time.  Many previous studies on the ENSO-monsoon coupling report epochal changes 

and periodic degradations in skill when using ENSO indices as the predictor fields 

(Rajeevan, 2001; Parthasarathy et al., 1991).  While the influence of positive IOD events 

on rainfall over Sri Lanka has been documented (Zubair et al., 2003), the influence of 

negative IOD events has not been documented as yet.  Negative IOD events may not 

necessarily have the inverse influence to positive IOD events as the influence of positive 

and negative phase IOD events on rainfall during the boreal fall over South Asia is 

asymmetric (Prasanna and Yasunari, 2008).  Such findings alert us to the dangers of 

relying entirely on empirical predictors without understanding their underlying physical 

mechanisms.    

Second, past studies on the predictability of seasonal rainfall over Sri Lanka have 

considered the months October to December (OND) as comprising a single season – 

often referring to it as the northeast monsoon season (Zubair and Ropelewski, 2006;  

Zubair et al., 2007).  OND is the northeast monsoon season over southern and 

southeastern India.  As Sri Lanka is closer to the equator than southern peninsular India, 

it is influenced by a transition season from October-November referred to as an “inter-

monsoon”.  The separation of the inter-monsoon from the monsoon season is not a new 

concept.  Many studies on tropical climate have reported that there is such a transition 

season in locations in close proximity to the equator (Hastenrath 2000; Hastenrath and 

Polzhin, 2004).  Numerous past studies on Sri Lankan climate have delineated four 

rainfall seasons:  the first inter-monsoon (March-April); the southwest monsoon (May-

September); the second inter-monsoon (October-November); and the northeast monsoon 
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(December-February) (Domrös, 1974; Yoshino and Suppiah, 1984).   The October-

November (ON) season in Sri Lanka is distinct from the northeast monsoon season 

(DJF).  Such distinction is evident when comparing the monthly mean lower atmospheric 

wind field at 850hPa directly over Sri Lanka for October-November and December-

February (Fig. 3.1).  In October (Fig. 3.1 (a)), westerly winds prevail to the immediate 

south with no distinct direction to the mean wind field over the island.  In November 

(Fig. 3.1(b)), the band of westerlies is placed further south and the mean wind field over 

the island has no distinct direction.  Winds during December, January and February have 

a distinct northeasterly or easterly direction (Fig. 3.1 (c)-(d)).  As useful information on 

processes influencing a particular rainfall season is lost if different seasons are lumped 

together, this study sticks to the traditional delineation of rainfall seasons over Sri Lanka 

as it has a consistent physical basis.     
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Figure 3.1:  Mean 850hPa wind field over Sri Lanka for October, November, December, January and 

February from NCEP-NCAR reanalysis data for 1951-2005 

 

The chapter seeks to elucidate the atmospheric factors that induce the failure of 

the ON rains.  It proposes a methodology that could be adopted to forecast ON rainfall in 

an operational manner.   Specific research questions addressed include:  What 

atmospheric factors drive the failure of the ON rains? and, Can seasonal forecasts from 

GCM ensemble runs predict the failure of ON rainfall?  It reports on the factors driving 

the failure of the October-November rains, and on the predictability of these rains using 

selected predictor fields generated by GCM seasonal forecasts.   Chapter 4 reports on the 

atmospheric factors influencing DJF rainfall and its predictability.   

(a) 

Oct. 

(b) 

Nov. 

(a) 

(c) 

Dec. 

(d) 

Jan. 

(e) 

Feb
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3.2:  Methodology and datasets used 

3.2.1:  Analysis of atmospheric factors influencing ON rain failure 

3.2.1.1:  Datasets used: 

Daily quality-controlled rainfall data at 132 rain gauges (Fig. 2.1, Chapter 2) across Sri 

Lanka were obtained from the Sri Lanka Department of Meteorology for the period 1961-

2005.  Total ON rainfall was calculated after aggregating the daily data to monthly 

rainfall.     

 NCEP-NCAR Reanalysis (Kistler et al., 2001) data, at 2.5⁰x2.5⁰ resolution, of the 

following fields for the period 1961-2005:  September mean sea level pressure (domain:  

40°E-270°E and 30°S-45°N); October-November mean geopotential heights at 850hPa, 

500hPa and 200hPa (domain: 40°E-270°E and 30°S-45°N); and October-November 

mean zonal and meridional wind at 850hPa (domain: 40°E-270°E and 30°S-45°N).   

 

3.2.1.2:  Analysis method: 

Cross-validated Canonical correlation analysis (CCA) was the method adopted to identify 

the large-scale atmospheric patterns influencing ON rainfall and to build the statistical 

downscaling model.  CCA identifies a sequence of pairs of patterns in two multivariate 

datasets. Linear combinations of the original data are then produced by projecting the 

original data onto the identified patterns.  New variables – known as the “canonical 

variates” – that maximize the interrelationships between the two data sets are then 

identified (Wilks, 2006, pg. 509). 
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CCA is used as a purely statistical forecasting technique if one of the data fields 

(e.g. the   or the predictor) is observed prior to the other field (e.g. the   or the 

predictand) (Von Storch and Zwiers, 2002; Wilks, 2006).  Such application of CCA has 

been undertaken in the forecasting of SSTs (Landman and Mason, 2001), in the 

prediction of seasonal temperatures over land (Shabbar and Barnston, 1996) and in the 

prediction of ENSO episodes (Barnston and Ropelewski, 1992).  When using CCA for 

forecasting purposes, a simple linear regression model is constructed that relates the 

predictand canonical variates    to the predictor canonical variates    (Wilks, 2006). 

                 

Where,  

  = 1,2……M  (M – the number of canonical pairs) 

 For the purposes of this study, the original predictor and predictand fields 

are filtered using Empirical Orthogonal Function (EOF) analysis prior to performing 

CCA on a subset
11

 of the EOF modes (Barnett and Preisendorfer, 1987; Bretherton et al., 

1992).  EOF is a data compression technique such that a dataset containing a large 

number of variables is reduced to a dataset containing fewer new variables.  The new 

variables are linear combinations of the original variables chosen in such a manner that 

the new linear combinations represent the highest possible proportion of variability found 

in the original dataset.  If there are multiple observations of a     ) data vector  , EOF 

finds       vectors   whose elements are linear combinations of the elements of the    

that contain most of the information of the original collection of   .  The components or 

new variables are defined by the eigenvectors of the covariance matrix of      .  The  th 

                                                           
11

 The subset is usually composed of just the leading EOF modes accounting for over 90% of the variance 

in the datasets. 
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orthogonal function (principal component),    is obtained as the projection of the data 

vector    (data anomalies) onto the  th 
eigenvector    such that: 

       
    

     or 

            

Where,     is a square matrix with   eigenvector columns (Wilk, 2006, pg. 463-464).   

The first few components – i.e. vectors   – contain the largest fraction of the 

variance of the original dataset.  Most often, the first 2-3 components account for 

approximately 99% of the variance of the system (von Storch and Zwiers, 1999).  Each 

consecutive component is constrained to be orthogonal to the previous component.   

Cross-validation is a technique used to reduce the problem of over-fit or artificial 

skill (Barnston and van den Dool, 1993).  A portion of the dataset is left out when 

building the forecast model
12

.  The forecast is then verified using the portion left out.  

The number of data points that could be omitted ranges from 1 (referred to as “leave-one-

out-cross-validation”) to half the sample size (Barnston and van den Dool, 1993).  A 

training period of 45 years (1961-2005) and a cross-validation window of 3 years were 

used in this study.  Thus, at each 3-year step, the 3 consecutive years are omitted from the 

training period.  Next, the forecast model is completely reconstructed and the forecast is 

generated for the middle year – i.e. the second year – in the years omitted from the 

training period.  The process is repeated for each in the training dataset.  The predictor 

                                                           
12

 The Climate Predictability Tool (CPT) - http://iri.columbia.edu/outreach/software/index.html - developed 

at the International Research Institute for Climate and Society (IRI), Columbia University, was used to run 

construct the statistical prediction model based on CCA.  The tool has three analysis options:  CCA, 

Principal Components Regression and Multiple Linear Regression.  It builds statistical prediction models 

based on one of these three analysis techniques.   

http://iri.columbia.edu/outreach/software/index.html
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fields tested were the NCEP-NCAR reanalysis fields mentioned above (section 2.1.1) and 

the predictand was total ON rainfall at the 132 rain gauges.   

The strength of the predictor fields were assessed based on the overall goodness-

of-fit between the cross-validated forecasts and the observation time series.  Goodness-

of-fit is a measure presenting an average correlation between the cross-validated forecasts 

and the observation time series.  The measure is reported for every possible combination 

of predictor and predictand modes.  When the goodness-of-fit value is closer to 1 the 

correlation between the predictor and predictand fields is stronger.  The optimum 

predictor field was selected after several iterations of varying predictor domains to 

identify the predictor and relevant domain that had the most influence on ON rainfall.   

 The optimum predictor field was the contemporaneous (ON) zonal wind at 

850hPa (referred to hereafter as U850) within the domain 40°E-105°E and 5°S-15°N.  

Studies note the presence of a zonal circulation cell with strong lower atmospheric 

westerlies that drive an eastward equatorial jet (Wyrtki Jet) in the equatorial Indian 

Ocean region during the monsoon transition months of April-May and October-

November (Hastenrath, 2000; and Hastenrath and Polzin, 2003 and 2004).  Therefore, the 

selection of U850 as a potential predictor of the ON rains has a physical basis.  Temporal 

composites of the U850 pattern in drought years associated with the failure of ON rainfall 

(Table 2.5, Chapter 2) were prepared to identify U850 wind characteristics in such years.   

The ON season receives most of its rainfall from tropical depressions and 

cyclones – most of which originate in the Bay of Bengal (Suppiah, 1996).  Rainfall is 

distributed throughout the island during this season (Yoshino and Suppiah, 1984).  The 

U850 has a significant negative correlation (blue region in Fig. 3.2) with ON rainfall and 
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thus appears to influence factors – such as vorticity at 850hPa, vertical velocity at 500hPa 

and the vertical shear of the mean zonal wind (difference in wind speed between 200hPa 

and 850hPa) – driving convection over Sri Lanka during this season.  The interplay 

between these factors in drought years was studied using composite analysis on NCEP-

NCAR reanalysis data of these fields.  Low-level vorticity and vertical shear of the mean 

zonal winds were selected as factors influencing convection, as their influence on tropical 

cyclogenesis has been reported (Frank and Roundy, 2006; and Bessafi and Wheeler, 

2006).  Mid-atmospheric (500hPa) vertical velocity was selected as it has previously been 

used to study tropical convection in conjunction with the low-level vorticity and zonal 

wind shear fields (Hastenrath and Polzin, 2004).   

 

 

 

 

 

 

Figure 3.2:  Correlation between zonal winds at 850hPa and mean ON rainfall over Sri Lanka.  Broken 

lines show regions negatively correlated, and solid lines show regions positively correlated, with ON 

rainfall. Blue (negative correlation) and orange (positive correlation) shading depict correlation significant 

at the 95% confidence level. The contour interval is 0.2 correlation units. 
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3.2.2:  Assessment of the predictability of ON rain failure 

3.2.2.1:  Datasets used: 

Retrospective forecasts of U850, issued with one month‟s lag in September, were 

obtained from archives of experimental forecasts carried out at the IRI using the 

ECHAM4.5 AGCM (Roeckner et al., 1996) forced with persisted SST anomalies 

(ECHAM_PSST) and constructed analogues of SST anomalies (ECHAM_CA) (Li and 

Goddard, 2005) and from the National Centers for Environmental Prediction (NCEP) 

fully coupled Climate Forecast System (CFS) GCM (Saha et al., 2006).  September was 

selected as the month when the forecast is issued as it is in September that the 

Department Agriculture of Sri Lanka holds the „Seasonal Conference‟ at which decisions 

on what variety and extent of rice and other annual crops should be planted during the 

oncoming Maha season are made.  Thus, the forecast of ON U850 – and hence expected 

ON rainfall – can be made with a lag of one month.  The time-lag of one month is, 

therefore, useful for operational purposes. 

The ECHAM4.5 is a spectral model with a triangular truncation at wave number 

42 (T42) – equivalent to approximately 2.8°degrees in the horizontal and 18 levels in the 

vertical (Li and Goddard, 2005).  The ECHAM_PSST retrospective forecasts for the 

period 1968-2002 were produced using a 12-member ensemble with persisted anomalies 

of the SSTs as boundary forcing.  These boundary conditions are generated by persisting 

the observed SST anomalies of the month preceding the forecast period and adding it to 

the evolving annual cycle of climatological SSTs (Li and Goddard, 2005).  The 

ECHAM_PSST retrospective forecasts have a lead time of 5 months.  Monthly 

ECHAM_PSST retrospective forecasts from January 1968 to June 2003 are archived at: 



61 

 

 

 

http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.psst/.e

nsemble12/.MONTHLY/.  The ECHAM_CA retrospective forecasts for the period 1957 

to July 2008 were produced using a 24 member ensemble with constructed analogues 

(van den Dool, 1994) of SSTs over the tropical oceans as boundary forcing (Li and 

Goddard, 2005).  The ECHAM_CA forecasts have a lead time of 7 months.  Monthly 

ECHAM_ca retrospective forecasts from January 1957 to July 2008 are archived at 

http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.ca_sst/.

ensemble24/.MONTHLY/. 

The CFS is a fully-coupled ocean-land-atmosphere seasonal climate prediction 

system.  The atmospheric component is the NCEP GFS model with a spectral triangular 

truncation at wave number 62 (T62) – equivalent to an approximately 200km Gaussian 

grid.  It has 64 vertical layers.  The ocean is represented by the GFDL Modular Ocean 

Model version 3 (MOM3) with a latitudinal domain from 74°S to 64°N.  The zonal 

resolution is 1°.  The meridional resolution is 1/3° between 10°S and 10°N and gradually 

increases towards the tropics and remains fixed at 1° poleward of 30°S and 30°N (Saha et 

al., 2006).  There are 40 vertical levels.  The vertical resolution from the surface to 240m 

depth is 10m and increases to a maximum of 511m downward of 240m (Saha et al., 

2006).  Retrospective forecasts from 1981 to the present were generated using a 15-

member ensemble.  The CFS forecasts have a lead time of 9 months.  Monthly CFS 

retrospective forecasts from January 1981 to December 2008 are archived at 

http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCEP/.EMC/.CFS/.MONTHL

Y/. 

http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.psst/.ensemble12/.MONTHLY/
http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.psst/.ensemble12/.MONTHLY/
http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.ca_sst/.ensemble24/.MONTHLY/
http://iridl.ldeo.columbia.edu/expert/SOURCES/.IRI/.FD/.ECHAM4p5/.Forecast/.ca_sst/.ensemble24/.MONTHLY/
http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCEP/.EMC/.CFS/.MONTHLY/
http://iridl.ldeo.columbia.edu/expert/SOURCES/.NOAA/.NCEP/.EMC/.CFS/.MONTHLY/
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The predictand dataset used was ON rainfall at the 132 rain gauges (mentioned in 

section 2.1.1).   

 

3.2.2.2:  Analysis method: 

The statistical forecasting model was constructed with Model Output Statistics (MOS)
13

 

using CCA (same as in section 2.1.2).   

The skill in predicted precipitation at the rain gauges was measured using 

Pearson‟s moment correlation (Wilks, 2006, pg.50).  Strength of the correlation 

represents the degree to which predicted precipitation matches the observed.  Skill in 

predicted tercile (whether below-, above- or near-normal) precipitation was measured 

using the Hit Skill Score (Baigorria et al., 2008) where: 

 

                 
                              

                                   
       

 

The HSS is a measure of the percentage of times, beyond that expected by chance, the 

tercile forecast category corresponds to the observed category.  The Hit Skill Score (HSS) 

has a range from -100% (complete lack of predictability) to +100% (maximum 

predictability).   

Tercile forecast probabilities in years of known drought was the metric used to 

assess whether seasonal forecasts from the GCMs could predict ON rain failure.   

  

                                                           
13

 The term Model Output Statistics (MOS) is used to refer to statistical downscaling performed using 

model generated output as predictor variables.   
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3.3:  Results 

3.3.1:  Atmospheric dynamics driving failure of the October-November rains 

Anomalously strong contemporaneous zonal winds at 850hPa, in the domain 5°S-15°N 

and 60°E-105°E (hereafter referred to as the central Indian Ocean) suppress convection 

over Sri Lanka during the ON season (Fig. 3.3).   

 

 

 

 

 

 

 

Figure 3.3:  Temporal composites of the October-November (contemporaneous) U850 field (left) and 

associated negative anomalies in mean ON rainfall over Sri Lanka in years when ON rainfall failed (right) 

 

In years when the zonal winds are anomalously strong, a strong vertical shear of 

the mean zonal wind, weak low-level vorticity, and anomalously low mid-tropospheric 

vertical velocity act in concert to suppress convection over Sri Lanka (Fig. 3.4).  
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Figure 3.4:  Temporal composites of October-November anomalies of the vertical shear of the zonal wind 

(a), vertical velocity at 500hPa (b) and relative vorticity at 850hPa (c) in years when ON rainfall failed 

(a) 

(b) 

(c) 
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The strength of the contemporaneous U850, over the central Indian Ocean, in drought 

years is often (but not always) in sync with the high phase of the Southern Oscillation 

(SO) (Fig 3.5). This corroborates prior investigations that have noted that the equatorial 

westerlies are often strengthened during the high phase of the SO (Hastenrath 2000; 

Hastenrath and Polzin, 2003; and Suppiah, 1989) and that there is a strong negative 

correlation between ON rainfall and the SOI (Suppiah, 1997).  Zonal wind anomalies in 

the Indian Ocean are also strongly coupled to the IOD Mode (Saji et al., 2003; Ashok et 

al., 2004) that matures in the months September to October.  Most years of anomalously 

strong zonal winds coincide with negative IOD events (Fig. 3.5).  However, as with the 

SOI, the relationship is not constant.          

 

 
 

Figure 3.5:  Mean October-November U850 for the domain 5⁰S-15⁰N and 60⁰E-105⁰E (yellow bars); 

mean SOI for September-November (red line); the Indian Ocean Dipole mode index (dashed green line) 

calculated as the standardized difference between the spatial mean SST over the western (50E-70E and 

10S-10N) and eastern (90E-110E and 10S-0S) Indian Ocean (Vinayachandran et al., 2002); and years 

when ON rainfall anomalies were negative (black circles above yellow bars) 
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3.3.2:  Predictability of the October-November season  

All three GCMs were able to capture quite well the leading canonical mode of the zonal 

wind associated with ON rain failure/enhancement (Fig. 3.6) as identified in the 

diagnostic analysis (section 3.1).  The pattern of the spatial loadings of the zonal wind 

field in the CFS (Fig. 3.5 (c)) matches the observed pattern (Fig. 3.3 (left)) better than the 

two versions of the ECHAM4.5.    

Pearson‟s correlation skill values were significant at the 95% confidence level in 

the southern, southeastern and west-central regions of the island for the two versions of 

the ECHAM4.5 (Fig. 3.7(a) and (b)).  The ECHAM4.5_PSST also had a region of 

significant skill in the north-central region.  Skill values for the CFS were not significant 

(Fig. 3.7(c)) and many stations in the southwestern region recorded negative correlation 

values not seen in the two versions of the ECHAM4.5.   

The average and maximum Hit Skill Scores (HSS) for the downscaled forecasts 

from all three GCMs were 20% and 45% respectively.   Figure 3.8 shows examples of 

time series of observed versus predicted precipitation at a station with an average HSS 

(Fig. 3.8(a)) and at a station with an HSS in the 90
th

 percentile (Fig. 3.8(b)).  Of the 132 

stations used in the analysis, the percentage of stations with no skill (HSS ≤0) was 9% in 

the ECHAM4.5_PSST, 14% in the ECHAM4.5_CA, and 17% in the CFS.  Stations with 

no skill in the two versions of the ECHAM4.5 were located along the western coastal 

region while some of the stations with no skill in the CFS were located in the interior of 

the island.   

 Forecast skill in rice cultivation areas in the central, north-central, southern and 

southeastern parts of the country is promising.  Skill over rice cultivation areas in the east 
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is limited.  Overall, the two versions of the ECHAM4.5 have better skill over the rice 

cultivation area than the CFS.   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

Figure 3.6:  Leading canonical modes and associated temporal scores of the spatial loadings for the 

ECHAM4.5_PSST (a); the ECHAM4.5_CA (b); and the CFS (c).  Red in the spatial loadings of U850 

spatial loadings and ON rainfall anomalies indicates positive anomalies and blue indicates negative 

anomalies.  The red line in the temporal scores depicts the predictor and the green line 

depicts the predictand.  

(a) 

(b) 

(c) 
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Figure 3.7:  Pearson‟s correlation skill maps for the ECHAM4.5_PSST (a); the ECHAM4.5_CA (b); and 

the CFS (c).  Contour interval is 0.1 correlation units.  Correlation values significant at the 95% confidence 

level are depicted as solid black lines and correlation values significant at the 99% confidence level are 

depicted as solid red lines.   

  

(a) (b) (c) 
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Figure 3.8:  Examples of predicted (from ECHAM4.5_PSST) versus observed rainfall at rain gauge 

stations with an average Hit Skill Score (a) and at a station with a Hit Skill Score in the 90
th

 percentile (b).  

Filled orange circles in the map of rain gauge stations (right) show the location of the stations selected 

randomly.    

(a) 

(b) 
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The ECHAM4.5_PSST and the CFS had their tercile probability forecasts for ON rainfall 

weighted towards the below-normal category in the years of extreme drought when ON 

rainfall anomalies were below normal (i.e. 2000 and 2001).  An example of the tercile 

probability forecast for ON rainfall in 2001 from the CFS clearly shows weighting of the 

probabilities towards the below-normal category (Fig. 3.9).  The tercile probability 

forecast of the ECHAM4.5_CA got the tercile forecast for 2000 correct but was weighted 

towards the above-normal category in 2001.  None of the GCM ensemble predictions was 

able to get the tercile forecast for ON rainfall in moderate drought years correct (Table 

3.1).   

 

Drought 

category 
Years ECHAM4.5_PSST ECHAM4.5_CA CFS 

     Extreme 2000 BN (correct) BN (correct) BN (correct) 

 

2001 BN (correct) AN (wrong) BN (correct) 

     Moderate 1983 AN (wrong) AN (wrong) AN (wrong) 

 

1986 AN (wrong) AN (wrong) AN (wrong) 
 

Table 3.1:  Summary of tercile probability forecasts of ON rainfall from the two versions of the 

ECHAM4.5 and the CFS.  BN refers to below-normal and AN refers to above-normal.   
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Figure 3.9:  Tercile probability forecasts of ON rainfall in 2001 generated from the CFS depicting the 

above-normal (a), near-normal (b) and below-normal (c) categories.  Blues indicates lower probabilities 

and reds indicate higher probabilities.   

 

 

3.4:  Conclusion 

The study finds that the strength of the contemporaneous zonal (westerly) winds at the 

850hPa level over the domain 60⁰E-105⁰E and 5⁰S-15⁰N controls October-November 

precipitation over Sri Lanka.  Drought occurs when anomalously strong zonal winds over 

the central Indian Ocean suppress convection over Sri Lanka.  The exact reason for the 

strengthening of the westerly zonal winds is as yet unclear.  It could be a consequence of 

strong summer monsoon winds increasing upwelling along the east African coast and 

thus setting up a marked SST gradient between the eastern and western Indian Ocean.  

Results show that in some years the anomalous strengthening of the zonal winds can be 

attributed to La Niña events and negative IOD events.  1983 and 2000 were two Maha 

drought years – coinciding with La Niña events – when only October-November rainfall, 

(a) (b) (c) 
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and not December-February rainfall, failed.  December-February rainfall was above 

normal in those two years.  Whether ENSO leads IOD influence on the zonal wind or 

vice versa, or whether both simply act in concert, is as yet unclear.  The reason for there 

being years when the zonal winds are strong without either of these phenomena exerting 

a discernible influence is also unclear.   

It is evident that the zonal wind field is consistently above normal in years when 

ON rainfall is below normal.  This alone is an improvement on predictions relying on 

indices of the Southern Oscillation or the IOD given that the influences of those modes 

are not consistent through time.   

Droughts associated with the failure of ON rainfall can be predicted on an 

operational basis using GCM predicted fields of ON U850 issued in September of a given 

year.  Statistically significant forecast skill was observed over the rice cultivation areas of 

the southern, southeastern, central and north-central portions of the island in the two 

versions of the ECHAM4.5.  Therefore, estimates of expected rainfall at station-level 

from the two versions of the ECHAM4.5 can be utilized to aid specific decisions on the 

variety and extent of rice to be planted in these areas.  Tercile forecasts from the CFS and 

the ECHAM4.5_PSST can be consulted to predict whether the upcoming Maha season is 

likely to be susceptible to drought.   
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Chapter 4: Predictability of the December-February rains 

 

4.1:  Introduction 

The December-February (DJF) northeast monsoon season coincides with the Asian 

winter monsoon.  The northeast monsoon brings rainfall to the eastern seaboard and the 

eastern slopes of the central hills of Sri Lanka (Suppiah, 1989).   

The Asian monsoon system dominates the tropics and sub-tropics of the entire 

eastern hemisphere (Wang, 2006).  It is a coupled land-ocean-atmosphere phenomenon 

where the Pacific and the Indian Oceans and the Eurasian continent play significant roles 

(Bamzai and Shukla, 1999).   It is driven by a combination of land-sea temperature 

contrast and latent heat release (Ramage, 1971).  The land-sea contrast fueling the Asian 

summer monsoon sets in with the advent of spring as the Asian landmass and adjacent air 

column warm to a temperature higher than that of the surrounding oceans (Barnett et al., 

1989).  A land-to-sea surface circulation takes place in the boreal winter when the oceans 

south of the Asian landmass warm with the southward migration of the of the inter-

tropical convergence zone (ITCZ).  The winter-time land-to-sea circulation is known as 

the Asian winter monsoon.   

The winter monsoon over South Asia has received little emphasis in prediction 

studies compared to the extensive research undertaken to predict the South Asian summer 

monsoon and the East Asian winter monsoon.   

 As with predictability studies on the October-November (ON) season, past 

research on the South Asian winter monsoon has focused on ENSO driven predictability.  

Findings of such studies of potential relevance to assessing predictability of the DJF rains 

over Sri Lanka are:  El Niño events strengthen northeast monsoonal rainfall over 
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Southeast India and Sri Lanka (Kumar et al., 2007; Zubair and Ropelewski, 2006); the 

correlation between El Niño and northeast monsoonal rainfall has been strengthening 

since the mid-1970s (Kumar et al., 2007); and that DJF rainfall over Sri Lanka has a 

significant negative correlation with the Southern Oscillation Index (SOI) for August-

October (ASO) (Suppiah, 1989).   A study characterizing the influence of the Indian 

Ocean Dipole Mode (IODM) on the northeast monsoon, finds that the positive (negative) 

phase enhances (decreases) the total northeast monsoon over southern and southeastern 

India (Kripalani and Kumar, 2004).  Another study proposes the use of mean upper air 

temperatures for September as potential predictors of winter monsoonal precipitation 

over stations in southern India (Kumar et al., 2004).   

Apart from the study that finds a significant negative correlation between DJF 

rainfall over Sri Lanka and the SOI (Suppiah, 1989), all the above consider October-

December (OND) as the season when the northeast monsoon prevails.  Chapter 3 

discusses reasons why such delineation is not useful for studies on the seasonal 

predictability of rainfall over Sri Lanka.   

Correlation between standardized anomalies of DJF rainfall at the 132 rain gauges 

with the SOI for ASO for the period 1961-2004 shows that the relationship established by 

Suppiah (1989) is neither significant nor consistent (Fig. 4.1).  It is evident that there are 

years when DJF rainfall is suppressed during SOI negative (i.e. El Niño) years and 

enhanced during SOI positive (i.e. La Niña) years.  As discussed in Chapter 3, this result 

confirms that epochal changes in the relationship between SOI versus seasonal rainfall 

render its use as a potential predictor of DJF rainfall questionable. 
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Figure 4.1:  Plot of standardized anomalies of mean DJF rainfall (blue bar) at a 132 rain gauges versus 

August-September (ASO) mean value of the Southern Oscillation Index (SOI) (red line) for the period 

1961-2004.  Values on the y-axis are units of standardized anomalies.   

 

The influences of baroclinic developments in the mid- and higher latitudes have a 

larger influence on equatorial regions during the Asian winter monsoon than during the 

summer monsoon (Chang, 2005).  Thus, many factors, such as the influence of the 

Siberian High, snow cover anomalies over Eurasia, cold surge dynamics, etc., could 

potentially influence the strength of the northeast monsoon over Sri Lanka.   

Unfortunately, prior research has not examined the potential impact of such factors in 

detail.  The only reference to the potential influence of the Eurasian landmass on DJF 

rainfall refers to dry conditions prevailing throughout the island when airstreams 

travelling southwards from the subtropical anticyclonic ridge in the Northern Hemisphere 

r = 0.07, r
2
 =0.004 
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have a larger proportion of their trajectories over the Indian subcontinent (JayaMaha, 

1975).   

This chapter seeks to elucidate the atmospheric factors that induce failure of the 

DJF rains.  It examines the potential for forecasting DJF rains in an operational manner.  

Specific research questions addressed include:  What atmospheric factors drive the failure 

of the DJF rains?; and Can seasonal forecasts from GCM ensemble runs predict the 

failure of DJF rainfall?  It reports on the factors driving the failure of the DJF rains, and 

on the predictability of these rains using selected predictor fields generated by GCM 

seasonal forecasts.   

 

4.2:  Methodology and datasets used 

4.2.1:  Analysis of atmospheric factors influencing DJF rain failure 

4.2.1.1:  Datasets used: 

Total DJF rainfall was calculated by aggregating daily quality-controlled data for 

the months December-February at the 132 rain gauges (mentioned in Chapter 2 and 

Chapter 3) for the period 1961-2004.   

 NCEP-NCAR Reanalysis (Kistler et al., 2001) data, at 2.5⁰x2.5⁰ resolution, of the 

following fields for the period 1961-2004:  Monthly and two- and three-month averages 

of mean sea level pressure (domain:  40°E-270°E and 30°S-80°N) for the months 

September to February; November, December and December-February mean 

geopotential heights at 850hPa, 500hPa and 200hPa (domain: 40°E-270°E and 30°S-

50°N); and December-February mean zonal and meridional winds at 850hPa, 500hPa and 

200hPa (domain: 70°E-105°E and 0°N-30°N).  Vertical wind shear (i.e. the difference in 
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wind speeds between 850hPa and 200hPa) of the zonal and meridional components of the 

mean December-February wind was also tested as a potential predictor variable.   

 

4.2.1.2:  Analysis method:  

Cross-validated canonical correlation analysis (section 3.2.1.2, Chapter 3), with a training 

period of 44 years (1961-2004) and a cross-validation window of 3 years, was the 

analysis technique used to identify the large-scale atmospheric patterns influencing DJF 

rainfall and to build the statistical downscaling model.   

 The optimum predictor field was the contemporaneous (December-February) 

vertical shear of the mean meridional wind (referred to hereafter as   ) in the domain 

80⁰E-90⁰E and 0⁰N-20⁰N.     has not previously been suggested as a predictor of the 

strength of the northeast monsoon over Sri Lanka.  However, an index known as the 

Monsoon Hadley Circulation Index (MHI) – based on the area averaged mean    for the 

months June-September – has been suggested as an index to measure the strength of the 

South Asian summer monsoon (Goswami et al., 1999; Wang and Fan, 1999).   

Precipitation during the northeast monsoon is primarily in the form of waves in 

the easterly air stream, cyclonic wind circulations and convection (de Silva, 1997).  

Unlike the October-November season, the DJF season is not a convective storm season.  

It, thus, falls within the “rains” category of monsoonal precipitation characterized by 

Ramage (1971).  A strong vertical shear of the mean meridional wind is conducive for the 

prevalence of such a “rains” regime.   
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4.2.2:  Assessment of predictability of DJF rain failure 

4.2.2.1:  Datasets used: 

Retrospective forecasts of   , issued with one month‟s lag in November, from archived 

experimental hindcasts from the ECHAM4.5_PSST, the ECHAM4.5_CA and the NCEP 

CFS (see section 3.2.2.1, Chapter 3 for a description of these GCM ensembles) for the 

period 1961-2004.  The predictand dataset used was DJF rainfall at the 132 rain gauges 

from 1961-2004.   

 

4.2.2.2:  Analysis method: 

The statistical forecasting model was constructed with Model Output Statistics (MOS) 

using CCA (same as in section 4.2.1.2).  The skill in predicted precipitation at the rain 

gauges was measured using Pearson‟s moment correlation.  Skill in predicted tercile 

(whether below-, above- or near-normal) precipitation was measured using the Hit Skill 

Score (see section 3.2.2.2 in Chapter 3).  Tercile forecast probabilities in years of known 

drought was the metric used to assess whether seasonal forecasts from the GCMs could 

predict DJF rain failure.   

 

4.3: Results 

4.3.1:  Atmospheric dynamics driving the failure of December-February rainfall 

An anomalously weak contemporaneous (DJF) vertical shear of the mean meridional 

wind (   , in the domain 80⁰E-90⁰E and 0⁰N-20⁰N, suppresses rainfall over Sri Lanka.  

The reduction in rainfall is marked in the northern, north central, southeastern and 

western parts of the country (Fig. 4.2).   
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Figure 4.2:  Temporal composites of the December-Febuary (contemporaneous)    field (left) and 

associated negative anomalies in mean DJF rainfall over Sri Lanka (right) in the drought years 1976, 1980, 

1984, 1986, 1996, 2001 and 2003 when DJF rainfall was below normal.  Blues indicate negative    

anomalies and reds indicate positive anomalies.   

 

The exact reason for the reduction in wind shear in the years when the DJF rains failed is 

unclear.  A comparison of mean wind field at 850hPa in drought years with climatology 

shows that the wind stream flowing towards Sri Lanka from the northern Bay of Bengal 

region is weakened or non-existent in drought years.  (Figure 4.3).   
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Figure 4.3:  Mean December-February wind vector at 850hPa in drought years (a) and mean DJF wind 

vector (1961-2004) (b).  Red square in (a) denotes region where the wind stream weakens in drought 

years.   

An examination of    in drought years over a larger domain showed a broad region of 

reduced    along eastern and southeastern Asia (Fig. 4.4).   

 

 

 
 

Figure 4.4:  Same as in 4.2 but for the domain 40⁰E-270⁰E and 30⁰S-65⁰N.  Blues indicate negative    

anomalies and red indicate positive anomalies. The black box encloses the broad region of reduced   . 

(a) (b) 
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Literature on the East Asian Winter monsoon (DJF) was consulted to find out if 

factors affecting the strength of the East Asian Winter monsoon could influence the 

strength of the wind anomalies near Sri Lanka.  The connection between the Asian winter 

monsoon and the northeast winter monsoon over Sri Lanka is evident in terms of the 

extent of the convective activity and the mean climatological wind fields for DJF.  Deep 

convection occurs near the Maritime Continent during the boreal winter (DJF).  Such 

deep convection extends into the eastern Indian Ocean.  Northeasterly winds blowing 

towards the South China Sea are deflected to the west and south by the topography of the 

Malayan Peninsula and Sumatra.  Such a deflection results in easterly winds extending 

into the Bay of Bengal (Chang et al., 2005).   

Factors influencing the strength of convection in the Maritime continent include:  

the Borneo Vortex
14

, northeast cold surges and the Madden Julian Oscillation
15

 (Chang et 

al, 2005).  The relative position of the Siberian High and the convective heat source over 

the Maritime Continent affect the penetration of transient cold surges
16

 during the winter 

season (Zhang et al., 1997).  Such surges are significantly correlated with anomalies in 

the zonal and meridional components of lower-tropospheric winds.  Such anomalies 

extend into the Bay of Bengal and the eastern Indian Ocean (Compo et al., 1999) through 

modification of the strength and relative location of the Borneo Vortex.  The presence of 

surges strengthen the Borneo Vortex, shift it westward and induce enhanced convection 

along the west coast of Borneo and the South China Sea.  The MJO decreases the 

                                                           
14

 The Borneo Vortex is defined as a closed counterclockwise circulation of the 925hPa wind within the 

domain 107.5⁰E- 117.5⁰E and 2.5⁰S-7.5⁰N (Chang et al., 2005).   
15

 The Madden Julian Oscillation (MJO) is the dominant mode of intra-seasonal variability in the tropical 

troposphere (Madden and Julian, 1971).   
16

 Cold surges are characterized by a sharp drop in temperature, an increase in surface pressure and a 

strengthening of the northerly winds in the region of East Asia (Compo, et al., 1999).   
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frequency of cold surges and the number of days that the Bornex Vortex prevails (Chang, 

et al., 2005).   

 Thus, it appears that cold surge dynamics, the Siberian High, the MJO and the 

relative location of the Borneo Vortex, and the interplay between each of these, could 

influence the strength of the northeast monsoon over Sri Lanka.  Whether anomalies in    

are a direct manifestation of the influence of such factors needs further investigation.  

Such investigation requires studying sub-monthly (i.e. weekly or daily) data as opposed 

to the monthly fields used in this study.   

 

4.3.2:  Predictability of the December-February season 

The three GCMs were able to capture the leading canonical mode of   associated with 

DJF rain failure (Fig. 4.5) as identified in the diagnostic analysis.  However, only the 

prediction using forecast    fields from the ECHAM4.5_CA had skill
17

.   

The literature on experimental forecasts generated using prescribed sea surface 

temperature anomalies to force the ECHAM4.5 AGCM shows that seasonal prediction 

skill for the ECHAM4.5_CA is better than the ECHAM4.5_PSST during the January-

March season (Lee and Goddard, 2005).  Coupled models have deficiencies in 

representing atmosphere-land interaction and have only moderate prediction skill in the 

Asian-Australian monsoon region (Wang et al., 2008).  Whether these are the reasons 

why the ECHAM4.5_PSST and the full-coupled CFS had no skill in predicting the DJF 

season needs further investigation.   

 Pearson‟s correlation skill values of the downscaled precipitation from the 

ECHAM4.5_CA were significant at 95-99% confidence levels in northern, north central 

                                                           
17

 The prediction model run with forecast fields from the ECHAM4.5_PSST and the NCEP CFS had 

negative goodness-of-fit.   
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and eastern parts of the island (Fig. 4.6).  Negative correlation values are concentrated in 

the western and southwestern region.  The average and maximum Hit Skill Score (HSS) 

was 11% and 45%.  Figure 4.7 shows examples of time series of observed versus 

predicted precipitation at a station with an average HSS (Fig. 4.7(a)) and at a station with 

an HSS in the 90
th

 percentile (Fig. 4.7(b)).  Fourteen percent of the 132 stations used in 

the analysis had no skill (HSS ≤ 0).  All these stations were located within the 

southwestern region of the island (not shown).  Forecast skill in rice cultivation areas in 

the eastern, central and north-central parts of the country is promising.  Skill over the rice 

cultivation areas in the south and southeast is limited.   
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Figure 4.5:  Leading canonical modes and associated temporal scores of the spatial loadings for the 

ECHAM4.5_CA (a); the ECHAM4.5_PSST (b); and the CFS (c).  Red in the spatial loadings of    and DJF 

rainfall anomalies indicates positive anomalies and blue indicates negative anomalies.  The red line in the 

temporal scores depicts the predictor and the green line depicts the predictand.  

(a) 

(b) 

(c) 



85 

 

 

 

 

 

 
Figure 4.6:  Pearson‟s correlation skill maps for the ECHAM4.5_CA.  Contour interval is 0.05 correlation 

units.  Correlation values significant at the 95% confidence level are depicted as solid black lines and 

correlation values significant at the 99% confidence level are depicted as solid red lines.  Broken blue lines 

depict values of negative correlation.  Thin grey lines depict positive correlation values that are not 

statistically significant.   
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Figure 4.7:  Examples of predicted (from ECHAM4.5_CA) versus observed rainfall at rain gauge stations 

with an average Hit Skill Score (a) and at a station with a Hit Skill Score in the 90
th

 percentile (b).  Filled 

orange circles in the map of rain gauge stations (right) show the location of the stations selected randomly.    

(a) 

(b) 
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The tercile forecast for DJF rainfall for the year 2001 (extreme drought) was ambiguous 

because no category was clearly weighted (Fig. 4.8).  The tercile forecast for 1986 

(moderate drought) was correct.  (Table 4.1).   

 

 

Drought 

category 

 

Years ECHAM4.5_ca 

      

Extreme 2001 Ambiguous 

      

Moderate 1986 BN (correct) 
 
Table 4.1:  Summary of tercile probability forecast of DJF  

rainfall from the ECHAM4.5_CA.  BN refers to below-normal 

 

 

 

 

 

 

 

 

 

Figure 4.8:  Tercile probability forecasts of DJF rainfall in 2001 generated from the ECHAM4.5_CA 

depicting the above-normal (a), near-normal (b) and below-normal (c) categories.  Blues indicates lower 

probabilities and reds indicate higher probabilities.   

 

  

(a) (b) (c) 
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4.4:  Conclusion 

The vertical shear of the contemporaneous (December-February) meridional wind (     in 

the domain 80⁰E-90⁰E and 0⁰N-20⁰N, controls DJF rainfall over Sri Lanka.  DJF rainfall 

is suppressed when    is anomalously low and vice versa.  A reduction in    decreases the 

passage of storm-bearing weather systems reaching Sri Lanka.  Reasons for the 

variability in the strength of    are as yet unclear.  Studies on the East Asian Winter 

monsoon indicate that factors such as the Siberian High, cold surges, the Borneo Vortex 

and the Madden Julian Oscillation influence DJF convection over the Maritime 

Continent, the Eastern Indian Ocean and the Bay of Bengal.  Whether such factors play a 

role in determining the strength of    and, hence, the northeast monsoon over Sri Lanka 

needs further investigation.   

 In the La Niña years of 1983 and 2000, DJF rainfall showed positive anomalies 

while ON rainfall had negative anomalies. These are two Maha drought years when DJF 

rain failure was not a contributory factor.  La Niña episodes are known to strengthen the 

Siberian High, increase the number of cold surges reaching the South China Sea and 

increase the number of days when the Borneo Vortex prevails (Zhang et la., 1997).  

Whether the influence of La Niña on DJF rainfall is manifest via the former‟s modulation 

of the strength of the Siberian High, cold surges, etc., is an area that requires further 

investigation.   

Droughts associated with the failure of DJF rainfall can be predicted with a 

month‟s lead time using forecast fields from the ECHAM4.5 forced with constructed 

analogues of sea surface temperature anomalies. Statistically significant prediction skill 

was observed over the rice cultivation regions in the eastern, central and north-central 
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parts of the island.  Forecasts of expected rainfall at stations in such locations could be 

consulted to determine whether drought conditions might affect rice crops at their 

maturing stage. Such information could guide decisions on changes to irrigation 

scheduling and advisories on the need to adopt mulching techniques in the advent of 

imminent water stress.   
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Chapter 5:  Monitoring moisture conditions on the ground in near-real time 

5.1:  Introduction  

Chapters 3 and 4 focused on the predictability of total season precipitation for the 

October-November and December-February seasons.   Rainfall prediction provides an 

indication of whether the coming season in its entirety will be above-, below- or near-

normal.  Such predictions are of potential use to pre-season decisions on the extent and 

variety of crops that should be planted.  However, pre-season information alone is not 

sufficient.  Knowledge on how a season – particularly moisture stress – evolves is critical 

for farmers and agricultural extension officers tasked with monitoring crop development.  

Such information on where moisture stress, and hence drought, may be developing is 

needed to launch protective measures such as mulching or increasing releases of 

irrigation water. 

  Soil moisture, a key component of the hydrological cycle, controls the 

partitioning of water and energy fluxes (Teuling, et al., 2007).  It determines whether 

latent or sensible heat fluxes dominate over a particular location.  The importance of soil 

moisture in drought monitoring stems from its role in land surface feedback processes.  

Ideally the spatio-temporal variability of soil moisture would be monitored to identify 

locations that are most susceptible to drought incidence in the event of below-normal 

precipitation over Sri Lanka.  Unfortunately, there is no gauge network dedicated to 

measuring soil moisture in Sri Lanka
18

.  Soil moisture products derived from passive 

microwave remotely sensed data – such as from the Advanced Microwave Scanning 

Radiometer (AMSR-E) sensor (Njoku et al., 2003) – could be used in the absence of 

                                                           
18

 Personal communication with Prof. R.B. Mapa (7 August 2007), Department of Soil Science, Faculty of 

Agriculture, University of Peradeniya, Peradeniya, Sri Lanka. 
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ground-based measurements.  However, the coarse spatial resolution (25km) of such soil 

moisture products, and the limited ability of microwave sensors to penetrate further than 

the surface skin of a soil layer, renders passive microwave soil moisture products of 

marginal use in drought monitoring.   

 Indices using remotely sensed data acquired in the optical, near-infrared and 

thermal wavelengths, have been widely used to monitor drought from space (Kogan, 

1997 and references therein; Karnieli et al., 2010; Thenkabail et al., 2004).  Vegetation 

indices – particularly the Normalized Difference Vegetation Index (NDVI)
19

 – have 

commonly been used for drought monitoring, as vegetation state and cover are affected 

by droughts (Karnielli et al., 2010 and references therein).  However, such indices alone 

are not sufficient to detect drought onset (Wan, 2004a; Thenkabail et al., 2004) as 

vegetation has a lagged response to drought and thus cannot detect the commencement of 

drought events (Park et al., 2004).   

Land Surface Temperature (LST) represents the instantaneous state of the energy 

flux from a land surface and has an empirically-established negative relationship with 

ground-based soil moisture measurements (Park et al., 2004).  LSTs derived from 

remotely sensed data in the thermal infrared wavelengths (8-14μm) provide valuable 

                                                           
19

 The NDVI is the difference between reflectance in the visible and infrared wavelengths (Tucker et al., 

1979) and is represented as: 

     
       

       

 

 

where, 

 

  - reflectance;  = red portion of the electromagnetic spectrum; and    - infrared portion of the spectrum. 

 

The physical interpretation of NDVI is the difference between maximum absorption of reflectance in the 

visible wavelengths due to chlorophyll pigments and maximum reflectance in the infrared wavelengths due 

to leaf cellular structure (Tucker et al., 1979).  The NDVI ranges from -1 to +1 with negative values 

indicating unhealthy vegetation and vice versa.   
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information on the status of soil moisture because evapotranspiration affects land-surface 

temperature (Anderson et al., 2007).    

  Drought indicators that combine vegetation state and land surface temperature 

state have been developed based on the assumptions that optical, infrared and thermal 

bandwidths are complementary in characterizing phenomena at the land surface, 

(Karnieli et al., 2010).   

 The Vegetation Temperature Condition Index (VTCI) is one such indicator, 

integrating remotely sensed surface reflectance and thermal properties to monitor drought 

(Wang et al., 2001; Wan et al., 2004a).  The VTCI is defined as the ratio of the LST 

difference among pixels with a specific NDVI value in an area large enough to provide 

wide ranges of NDVI and soil moisture at the surface (Wang et al., 2001; Wan et al., 

2004a).  It is expressed mathematically as: 

      
                     

                         
 

where: 

                     

                       

where, 

             and              – maximum and minimum LSTs of pixels with the same 

      value 

         – LST of a pixel with NDVI value       

         - Coefficients determined from the LST-NDVI scatterplot  
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The LST-NDVI scatterplot has a triangular shape (Figure 5.1) if it is drawn from 

a study site providing a range of NDVI and surface moisture conditions ranging from 

wilting point to field capacity (Carlson et al., 1995).   

 

 
 

Figure 5.1:  Schematic of the LST-NDVI scatterplot depicting the physical interpretation of the VTCI 

(Adapted from Wan et al., 2004a, Figure 1, pp 65) 

 

The numerator of the VTCI is the difference between maximum LST of the pixels 

and the LST of one pixel and the denominator is the difference between maximum and 

minimum LSTs of the pixels (Wan et al., 2004a).         is the “warm edge” where 

vegetation is subject to drying due to limited soil moisture.         is the “cold edge” 

where there is no moisture restriction on plant growth (Carlson et al., 1995; Wan et al., 

2004a).  The coefficients           are expressed as: 

 



94 

 

 

 

  = Maximum LST value 

  = Slope of the warm edge or hypotenuse of the LST-NDVI triangle 

  = Minimum NDVI value 

  = Slope of the cold edge (= 0) 

  

VTCI values range from 0 to 1 with lower values indicating drought conditions.  

The index is site- and time-specific (Wang et al., 2001) and more suitable for use during 

growing seasons (Wan et al., 2004a).  The VTCI is recognized as a near-real time 

approach to drought monitoring as it is related to departure from normal precipitation 

over a selected study period (Wan et al., 2004a).   

The VTCI is based on the assumption of a negative correlation between NDVI 

and LST (Sun and Kafatos, 2007).  Such a negative correlation between NDVI and LST 

exists only when water and not energy (i.e. solar radiation) is the limiting factor for 

vegetation growth such as in the low latitudes (Karnieli et al., 2010).   

During the Maha cultivation season, particularly during the October-November 

growing season, water is the limiting factor for vegetation growth in rice cultivation 

areas.  Therefore, conditions are appropriate to apply the VTCI to monitor drought 

conditions in rice cultivation areas in near-real time during the early-Maha season in Sri 

Lanka.   

 The specific research questions addressed by this chapter are:  1) Does the VTCI 

capture drought progression during the early-Maha (October-November) season? 2) Can 

the VTCI be applied to monitor drought progression through the entire Maha (i.e. both 

October-November and December-February) season?  
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5.2:  Methodology and datasets 

5.2.1:  Generating the VTCI for the two seasons 

For question 1, the VTCI was calculated at four stages of the season – i.e. early 

October, late-October, early-November and late-November – whenever cloud-free 

imagery could be obtained for such stages in the years 2000-2005.  The years 2000, 2001 

and 2002 were years of extreme drought; 2002 was a year of severe drought; 2004 was 

not a drought year; and 2005 was a year of moderate drought.  In some years, one scene 

had to be selected – e.g. mid-October – if cloud contamination affected the early- or late- 

phases of a month.  Table 5.1 provides a list of the VTCI scenes generated and the LST 

and NDVI imagery used.   

For question 2, the year 2003 was selected as the case year because it was a 

drought year when both ON and DJF rainfall were below normal and the negative DJF 

rainfall anomalies were the largest in the period under study (see Table 2.5, Chapter 2).   

Nine VTCI were generated spanning the early- and late-phases of the months October-

February based on the availability of cloud-free imagery (Table 5.1).    

  



96 

 

 

 

 

VTCI image 

 

8-day composite LST image 

 

16-day composite NDVI 

image 

 

   

1: Early-Oct 2000 7-14 Oct 2000 29 Sep – 14 Oct 2000 

2: Late-Oct 2000 23-30 Oct 2000 15-30 October 2000 

3: Early-Nov 2000 31 Oct – 7 Nov 2000 1-15 Nov 2000 

4: Late-Nov 2000 24 Nov – 1 Dec 2000 16 Nov – 1 Dec 2000 

5: Early-Oct 2001 7-14 Oct 2001 30 Sep – 15 Oct 2001 

6: Late-Oct 2001 23-30 Oct 2001 16-31 Oct 2001 

7: Early-Nov 2001 31 Oct – 7 Nov 2001 1-16 Nov 2001 

8: Late-Nov 2001 24 Nov – 1 Dec 2001 17 Nov – 2 Dec 2001 

9: Early-Oct 2002 8-15 Oct 2002 30 Sep– 15 Oct 2002 

10: Late Oct 2002 24-31 Oct 2002 16 – 31 Oct 2002 

11: Early-Nov 2002 1-8 Nov 2002 1-16 Nov 2002 

12: Late-Nov 2002 25 Nov – 2 Dec 2002 17 Nov – 2 Dec 2002 

13: Early-Oct 2003 8-15 Oct 2003 30 Sep – 15 Oct 2003 

14: Late-Oct 2003 24-30 Oct 2003 16-31 Oct 2003 

15: Mid-Nov 2003 17-24 Nov 2003 17 Nov – 2 Dec 2003 

16: Early-Dec 2003 3-10 Dec 2003 3-18 Dec 2003 

17: Late-Dec 2003 27-31 Dec 2003 18 Dec – 3 Jan 2004 

18: Early-Jan 2004 1-8 Jan 2004 1-16 Jan 2004 

19: Late-Jan 2004 25 Jan – 1 Feb 2004 17 Jan – 1 Feb 2004 

20: Early-Feb 2004 2-9 Feb 2004 2-17 Feb 2004 

21: Late-Feb 2004 18-25 Feb 2004 18 Feb – 4 Mar 2004 

22: Early-Oct 2004 7-14 Oct 2004 29 Sep – 14 Oct 2004 

23: Late-Nov2004 24 Oct – 1 Dec 2004 16 Nov – 1 Dec 2004 

24: Early-Oct 2005 8-15 Oct 2005 30 Sep – 15 Oct 2005 

25: Late-Oct 2005 24-31 Oct 2005 16-31 Oct 2005 

26: Late-Nov 2005 25 Nov – 2 Dec 2005 17 Nov – 2 Dec 2005 

 
Table 5.1:  VTCI images produced and LST and NDVI composites used for each VTCI image (Annex 3 

provides a list of the original LST and NDVI image identification numbers (IDs) used) 
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5.2.2:  Datasets used 

Data products based on data acquired in the reflective and thermal infrared wavelengths 

by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra 

Satellite (Justice et al., 2002) were used in the study.  The data were downloaded from 

the EOS data portal WIST (http://wist.echo.nasa.gov).   

 For LST, daytime values of the 8-day MOD11A2 product at 1km resolution were 

used.  MOD11A2 is a level-3 product composed as the average value of clear-sky LST 

during an 8-day period from the daily 1km LST product (MOD11A1) (Wan et al., 2004b; 

Wang, 2008; Wan, 2009).   The product is originally derived using a generalized split-

window algorithm (Wan and Dozier, 1996) on MODIS bands 31 10.780μ–11.280μ) and 

32 (11.770 μ –12.270μ).  It is a research-ready product that has been corrected for 

atmospheric noise and geo-rectified.  The product is tile-based and stored in a Sinusoidal 

Grid.  Sri Lanka is covered by two tiles (Figure 5.2).   

 

 

 

 

Figure 5.2:  Two tiles of the MODIS MOD11A2 day time LST product for the period 7 September to 14 

October 2000  

http://wist.echo.nasa.gov/
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   For NDVI, daytime values of the 16-day
20

 MOD13A2 product at 1km resolution 

were used.  MODIS Vegetation Indices are derived from reflectance in the blue, red and 

near-infrared wavelengths centered at 469 nanometers (nm), 645nm and 858nm 

respectively
21

.  It is a research-ready product that has been corrected for atmospheric 

noise and geo-rectified.  MOD13A2 is a gridded level-3 product in a Sinusoidal Grid.  Sri 

Lanka is covered by two tiles (Figure 5.3).   

 

 

 

 

Figure 5.3:  Two tiles of the MODIS MOD13A2 day time NDVI product for the period 29 September to 

14 October 2000 

 

                                                           
20

MODIS Vegetation Index products are available either as 16-day or monthly composites 

(https://lpdaac.usgs.gov/lpdaac/products/modis_products_table). MODIS surface reflectance data are 

available at 1km resolution as daily products and at 250m and 500m resolution as daily and 8-day 

composite products.  If NDVI scenes were to be derived from scratch using surface reflectance data at the 

temporal and spatial resolution matching that of the LST product, it would be necessary to either create 

temporal composites from the daily 1km resolution data or degrade the spatial resolution of the 8-day 

composite products.   Given the lagged response of vegetation to moisture stress, it was assumed that using 

a 16-day NDVI product with the 8-day LST product would not influence VTCI results much.  Thus, the 

option of deriving NDVI based on MODIS surface reflectance data was not pursued in this study.  The 

assumption will be tested in the future.  
 

21
 https://lpdaac.usgs.gov/lpdaac/products/modis_products_table/vegetation_indices/16_day_l3_global_1km/v5/terra 

 

https://lpdaac.usgs.gov/lpdaac/products/modis_products_table
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 Both products were subjected to the following pre-processing:  mosaicking the 

tiles to obtain a single image; subsetting the image to limit the spatial coverage to just Sri 

Lanka; reprojection of imagery from the Sinusoidal grid to the WGS-84 Geographic 

Coordinate System; and rescaling data based on a conversion factor provided in image 

metadata.  ERDAS Imagine 9.1 was used for image pre-processing and processing.  Maps 

of results were generated used ArcGIS9.2.  

 Minimum and maximum LST and NDVI values and the           coefficients, 

needed to calculate VTCI, were obtained from the NDVI-LST scatterplots.  VTCI results 

are presented for the rice cultivation areas.     

 MODIS Quality Control (QC) images were extracted using the MODISQC tool in 

IDRISI-Taiga.  Sample QC images are presented for selected VTCI images in 2003 to 

demonstrate the spatial distribution of pixels flagged under the three levels of quality – 

for LST categorized as:  „LST not produced (clouds)‟; „LST produced‟; and „Good 

Quality; and for NDVI categorized as:  „Cloud Contaminated‟; „Unreliable Quality‟ and 

„Good Quality‟.  Results presented for the four districts affected by extreme drought in 

2003, are for pixels flagged as „Good Quality‟ in both the original LST and NDVI 

images.   
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5.3:  Results and discussion 

5.3.1:  VTCI analysis for October-November 

VTCI scenes for October-November in the years, 2000, 2001, 2002, 2004 and 2005, are 

presented with observed and predicted October-November (ON) rainfall anomalies for 

those years.  VTCI scenes for October-November 2003 are presented in section 3.2.  

Comparison of the VTCI images with observed ON rainfall anomalies, shows that the 

VTCI captures quite clearly the overall spatial pattern of moisture stress and wet 

conditions observed particularly in the drought years 2000, 2002 and 2005 (see Figures 

5.4, 5.6 and 5.8).   

The year 2002 had marked variations in the spatial distribution of rainfall 

anomalies (see Chapter 2 for discussion).  The VTCI images are able to capture that 

marked variation (Figure 5.6).  In the drought year 2001, the VTCI images (Figure 5.5) 

do capture the observed gradients in rainfall.  However, VTCI values are not clustered 

near zero – giving the impression that the 2001 drought was not a drought of extreme 

magnitude.  Districts under the category of „Extreme drought‟ in 2001 are located 

primarily along the southwest of the island (see Fig. 2.5 in Chapter 2).  In any given year, 

the southwest of the island is considerably wetter than the rest of the island (Chapter 2, 

section 2.1 and Fig. 2.1).  Therefore, while the VTCI does capture the progression of 

moisture stress in a given year, its absolute values may not be ideal for comparing one 

drought year with the next.  For such an analysis the Vegetation Condition Index (VCI) 

and Temperature Condition Index (TCI) (Kogan, 1997; Thenkabail et al., 2004) – 

developed to study the deviation of moisture at a given location from the long-term mean 

for that location (Wang et al., 2001) – might be a better option.   VTCI images for 2004 
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clearly indicate large regions of wet conditions (Figure 5.7).  Unfortunately, only two 

VTCI images could be derived for 2004 as cloud contamination severely affected other 

scenes for that year.   

Gradients in moisture stress in the VTCI match observed ON rainfall anomalies 

better in most years than do predicted ON anomalies for those years.  The VTCI images 

also indicate that it is often in November that moisture stress is most widespread as in 

2001 (Fig. 5.5), 2002 (Fig. 5.6), and 2005 (Fig. 5.8).  Thus, VTCI does capture the onset 

and spread of moisture stress.  It is thus a crucial metric for drought monitoring 

complementing the ON seasonal rainfall forecast.   
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Figure 5.4:  Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 

2000. VTCI images for early-October 2000 (c), late-October 2000 (d), early-November 2000 (e) and late-

November 2000 (f).   

(a) (b) 

(a) 

(c) (d) 

(e) 
(f) 
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Figure 5.5:  Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 

2001. VTCI images for early-October 2001 (c), late-October 2001 (d), early-November 2001 (e) and late-

November 2001 (f).   

(a) 

(a) 
(b) 

(a) 

(c) 
(d) 

(e) (f) 
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Figure 5.6:  Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 

2002. VTCI images for early-October 2002 (c), late-October 2001 (d), early-November 2002 (e) and late-

November 2002 (f).   

(a) 

(a) (b) 

(a) 

(c) 
(d) 

(e) 
(f) 
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Figure 5.7: Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 2004. 

VTCI images for early to mid-October 2004 (c) and late-November 2004 (d).   

  

(a) 

(a) (b) 

(a) 

(c) (d) 
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Figure 5.8:  Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 

2005. VTCI images for early-October 2005 (c), late-October 2005 (d) and late-November 2005 (e).   

 

(a) 

(a) 

(b) 

(a) 

(c) (d) 

(e) 
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5.3.2:  VTCI analysis for the entire Maha season 

VTCI scenes for October-November (Fig. 5.9) and December-February (Fig. 5.10) are 

presented with observed and predicted rainfall anomalies for both seasons. QC maps of 

the LST and NDVI products are presented for selected scenes (Fig. 5.11).   

 The VTCI scenes for October-November capture the observed anomalies for the 

season – particularly for the moisture stressed regions in the central and southern portions 

of the island (Fig. 5.9).  Furthermore, a comparison of the VTCI image for late-October 

with QC maps for that scene shows that the VTCI values in the central and southeastern 

portions of the island are reliable (i.e. pixels flagged as „good quality‟) (Fig. 5.11 (a) and 

(d)). 
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Figure 5.9: Observed (a) and predicted (b) standardized anomalies of October-November rainfall in 2003.  

VTCI images for early-October 2003 (c), late-October 2003 (d), and mid-November 2003 (e).     

 

(a) 

(a) (b) 

(a) 

(c) (d) 

(e) 
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VTCI images for the December-February period capture the observed patterns in rainfall 

anomalies (Fig. 5.10).  The observed concentration of negative rainfall anomalies in the 

southwestern and eastern parts of the country are reflected in the VTCI imagery for early-

December (Fig. 5.10(a)), late-December (Fig. 5.10(b) and early-January (Fig. 5.10(c).  

Comparison of the VTCI image for early-December with the QC maps for that scene 

shows that reliable VTCI pixels are concentrated in the southwestern portions of the 

island (Fig. 5.11 (e) and (h)). 
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Figure 5.10: Observed (a) and predicted (b) standardized anomalies of December-February rainfall in 

2003. VTCI images for early-December 2003 (c), late-December 2003 (d), early-January 2003 (e), late-

January 2003 (f), early-February 2003 (g), and late-February 2003 (h). 
 

(a) (b) 

(a) 

(c) (d) (e) 

(a) 

(f) (h) (g) 
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Figure 5.11:  Examples of VTCI images and relevant MODIS Quality Control (QC) images for late-

October 2003 (left panel) and early-December (right panel).  Left panel:  VTCI image for late-October 

(a); LST QC (b); NDVI QC (c) and Combined QC mask (d) prepared by intersecting raster masks of 

„Good Quality‟ pixels extracted from the LST QC and NDVI QC images. Right panel:  same as for left 

panel but for early-December.   

(a) 

(a) 

(e) 

(a) 

(b) (f) 

(a) 

(c) (g) 

(d) (h) 
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Figure 5.12 presents a time series plot of VTCI variation at three sites in the four 

districts affected by extreme drought in 2003.  The VTCI plots for the first two locations 

clearly indicate moisture stress (with VTCI values close to zero) throughout the season 

(red and blue line graphs in Fig. 5.12 (c)).  VTCI for the third location shows that the 

moisture stress for the October-November reverses to wet conditions during the 

December-February season.  These results indicate that moisture stress was not uniform 

within the districts affected by extreme drought in 2003.  
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Figure 5.12:  Time series of VTCI presented for three locations in the four districts affected by 

extreme drought (dark orange) in 2003 (a).  Top right (b) is an image created by stacking the nine 

images used to study the entire Maha season in 2003 and extracting the cells falling within the 

districts affected by extreme drought. The display shows three of the nine images. The yellow squares 

are the areas-of-interest (AOIs) selected to plot VTCI values at each time step.  Reds indicate higher 

VTCI (wetter) values and blues and greens indicate lower VTCI (dryer) values in the three images 

used in the display.  The lower plot (c) shows mean VTCI values within each AOI from early-

October to late-February. The numerals 1-9 along the x-axis indicate each VTCI image stacked in 

chronological order from early-October (1) through late-February (9).   

(a) (b) 

(c) 
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5.4:  Conclusion 

Results show that the VTCI is a metric that captures the progression of moisture stress 

during both the October-November and December-February seasons.  It is thus a valuable 

tool for monitoring drought conditions during the entire Maha season.  It also 

complements the seasonal rainfall forecast by capturing the onset and progression of 

moisture stress.   

 Moisture stress is not uniform – even in locations affected by extreme conditions 

of drought as denoted by the Standardized Precipitation Index (SPI).  Soil moisture is an 

integrated variable affected by a host of local factors such as soil type, vegetation cover 

and local topography.  The VTCI, as a proxy for soil moisture, provides a continuous 

surface – as opposed to point based rainfall estimates at raingauges – of moisture 

conditions at different stages in a season.  VTCI can be calculated in near real-time as 

MODIS LST and NDVI products are available at a lag of just around 5 days. This short 

time-lag is critical as there is a time-lag of almost a month before rainfall data at a 

majority of the rain gauges scattered across the island is reported to the main office of the 

Sri Lanka Department of Meteorology
22

.  

This chapter demonstrates that the VTCI is a tool that could be used to monitor 

the onset and progression of anomalous wet and dry conditions during the Maha season 

because it provides an integrated signal of vegetation vigour and moisture stress.  

Whether actual values of VTCI could be input as a variable to crop models is an area 

requiring further investigation.  How well the VTCI performs in capturing moisture stress 

                                                           
22

 Rainfall received at the 22 main meteorological stations is transmitted immediately to the Department of 

Meteorology.  Rainfall at some stations is reported via telephone the next day.  It takes a month before 

rainfall reports for a majority of the rain gauges reach the Department of Meteorology (Personal 

communication with Mr. K.H.M.S. Premalal, Deputy Director, Sri Lanka Department of Meteorology, 10 

May 2010).  



115 

 

 

 

in regions under irrigation (as is the case in much of north central and northeastern Sri 

Lanka) is also an area that needs further investigation.   
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Chapter 6:  Conclusion 

The dissertation finds that drought in locations in the humid tropics can be 

predicted on an operational basis if the failure of rainfall regimes in such regions could be 

predicted.  It also finds that the near-real time monitoring of moisture stress, using 

remotely sensed data, complements drought prediction by providing critical information 

on the onset and progression of moisture stress. The dissertation demonstrates that an 

operational drought prediction and monitoring framework suitable for locations in the 

humid tropics should be based on a systematic study of atmospheric factors driving the 

suppression of seasonal rainfall over such locations, an assessment of the predictability of 

such atmospheric factors, and a near-real time assessment of moisture conditions over a 

continuous surface.   

 The focus of the dissertation is the humid tropics, a region highly susceptible to 

recurrent drought at the seasonal time scale.  The specific geographical focus of the study 

is Sri Lanka where drought is a frequent occurrence that has been documented since 

ancient times.  Such droughts take place when rainfall regimes associated with the main 

cultivation season – the Maha – fail.  The Maha rainfall regimes are:  the second inter-

monsoon (a convective rainfall season from October-November); and the northeast 

monsoon (that coincides with the Asian winter monsoon from December-February). 

The study objectives are:  to characterize drought occurrence over Sri Lanka over 

the last 6 decades, to propose a methodology for predicting drought in Sri Lanka  based 

on seasonal climate forecasts, and to propose a methodology to monitor seasonal 

moisture stress in near-real time during the Maha cultivation season.  The dissertation has 

three major research thrusts based on these objectives.   
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The first research thrust characterizes Maha seasonal drought occurrence during 

the period 1951-2008.  It finds that there is a marked increase in the occurrence of 

drought in the post-1975 period, with droughts of extreme and severe magnitude 

occurring only post-1975.  Although drought occurrence during the Maha season is 

frequent, there is no clear periodicity to drought occurrence apart from 1975-1990 when 

every other year appears to have been a drought year, and from 2000-2005 when 

droughts in the severe to extreme category occurred simultaneously.  Droughts have a 

significant negative impact on rice production and yield.  Given the lack of clear 

periodicity in drought occurrence, advance knowledge of whether a forthcoming season 

could be affected by drought is essential for cropping decisions and irrigation scheduling.  

The October-November convective rainfall is significantly correlated with Maha seasonal 

drought.  The December-February northeast monsoon is only weakly correlated with 

Maha seasonal drought.  However, as negative anomalies in December-February rainfall 

are evident in most drought years, the importance of the December-February season as a 

factor in Maha drought cannot be dismissed.  The October-November rains provide 

critical moisture to the growing season, advance knowledge of the likely strength of the 

October-November rains in a forthcoming season could be invaluable to decision-making 

in agriculture.  Failure of the December-February could devastate a rice crop at the 

maturing stage.  Advance knowledge of the strength of the forthcoming December-

February rains could be critical for decisions such as (but not limited to) when, where and 

how much irrigation water should be released.   

Past drought events have not been uniform in terms of their severity and spatial 

extent.  However, in most drought years (except for 2001), the region most affected falls 
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within the “Dry Zone” (region receiving an annual rainfall of less than 2000mm) of the 

island.  Results from Wavelet Transforms on dominant modes of variability in drought 

incidence indicate that the 2-8 year frequency is the dominant mode of variance at most 

stations.  This frequency is similar to the documented dominant variance in ENSO.  The 

8-16 (decadal) frequency significant at certain stations is similar to the documented 

dominant mode of variance of the IOD.  Drought occurrence and variability appears to be 

increasing along the eastern and southeastern regions of the island.   

The second research thrust proposes a methodology for predicting drought in Sri 

Lanka.  It first identifies large-scale atmospheric dynamics influencing the strength of the 

October-November and December-February rains.  Next, it builds a seasonal forecast 

model using cross validated Canonical Correlation Analysis with the identified large-

scale atmospheric field as the predictor and observed October-November and December-

February rainfall at a 132 rain gauges across Sri Lanka as the predictand. It tests the 

operational utility of the forecast model by obtaining forecast predictor fields from three 

Global Climate Model (GCM) ensembles.  The GCM output used in the study came from 

archived experimental forecasts carried out at the International Research Institute for 

Climate and Society (IRI) using the ECHAM4.5 AGCM forced with persisted sea surface 

temperature anomalies (ECHAM_PSST) and constructed analogues of sea surface 

temperature anomalies (ECHAM_CA), and from the National Centers for Environmental 

Prediction (NCEP) full coupled Climate Forecast System (CFS) GCM.   

The study finds that the October-November rains fail when anomalously strong 

contemporaneous zonal winds at the 850hPa level (U850) over the central Indian Ocean 

suppress convection over Sri Lanka.  The exact reason for the strengthening of the 
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westerly zonal winds is as yet unclear.  It could be a consequence of strong summer 

monsoon winds increasing upwelling along the east African coast and thus setting up a 

marked SST gradient between the eastern and western Indian Ocean.  Results show that 

in some years the anomalous strengthening of the zonal winds can be attributed to La 

Niña events and negative IOD events.  Whether ENSO leads IOD influence on the zonal 

wind or vice versa, or whether both simply act in concert, is as yet unclear.  The reason 

for there being years when the zonal winds are strong without either of these phenomena 

exerting a discernible influence is also unclear.  It is evident that the zonal wind field is 

consistently above normal in years when October-November rainfall is below normal.  

This finding is a significant improvement on seasonal climate predictions relying purely 

on indices of the Southern Oscillation or the IOD given that the influences of those 

modes are not consistent through time.  Drought years attributed only to the failure of ON 

rainfall (1983 and 2000) are La Niña years. 

Droughts associated with the failure of October-November rainfall can be 

predicted on an operational basis using predicted fields of the contemporaneous zonal 

wind at 850hPa issued in September of a given year from Global Climate Model (GCM) 

ensembles.  Statistically significant forecast skill was observed over the rice cultivation 

areas of the southern, southeastern, central and north-central portions of the island using 

predicted fields from the two versions of the ECHAM4.5 GCM.  Estimates of expected 

rainfall at station-level from the two versions of the ECHAM4.5 can, therefore, be 

utilized to aid specific decisions on the variety and extent of rice to be planted in these 

areas.  Tercile forecasts – indicating the likelihood of whether rainfall in an oncoming 

season will be below-, near- or above-normal – from the CFS and the ECHAM4.5_PSST 
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can be consulted to predict whether the upcoming Maha season is likely to be susceptible 

to drought.   

The study finds that the vertical shear of the contemporaneous (December-

February) meridional wind (     in the domain 80⁰E-90⁰E and 0⁰N-20⁰N, controls 

December-February rainfall over Sri Lanka.  December-February rainfall is suppressed 

when    is anomalously low and vice versa.  Reasons for the variability in the strength of 

   are as yet unclear.  There may be a connection between    and factors such as the 

Siberian High, cold surges and the Borneo Vortex that influence the strength of the East 

Asian winter monsoon. December-February rainfall in the two Maha drought years of 

1983 and 2000 – La Niña years – was above normal.  It could be that the influence of La 

Niña on    – and hence December-February rainfall over Sri Lanka – is manifest through 

the former‟s modulation of the strength of the Siberian High, cold surges and the Borneo 

Vortex.   

 Droughts associated with the failure of December-February rainfall can be 

predicted with forecast fields of contemporaneous    issued in November from the 

ECHAM4.5 forced with constructed analogues of sea surface temperature anomalies.  

Statistically significant prediction skill was observed over the rice cultivation regions in 

the eastern, central and north-central parts of the island.  Forecasts of expected rainfall at 

stations in such locations could be consulted to determine whether drought conditions 

might affect rice crops at their maturing stage.  Such information could guide decisions 

on changes to irrigation scheduling and advisories on the need to adopt mulching 

techniques in the advent of imminent water stress.   
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The third research thrust proposes a methodology to monitor moisture stress in 

near-real time during the Maha season.  It finds that the Vegetation Temperature 

Condition Index (VTCI) – that combines vegetation indices (derived from remotely 

sensed data in the optical wavelengths) with land surface temperature (derived from 

remotely sensed data in the thermal infrared wavelengths) – to be a metric that captures 

the progression of moisture stress during both the October-November and December-

February seasons.  It is thus a valuable tool for monitoring drought conditions during the 

entire Maha season.  It also complements the seasonal rainfall forecast by capturing the 

onset and progression of moisture stress.   

The study finds that moisture stress is not uniform – even in locations affected by 

extreme conditions of drought as denoted by the Standardized Precipitation Index (SPI).  

The finding underscores the need to  have a continuous field of soil moisture (or proxies 

for soil moisture) observations, as soil moisture is an integrated variable affected by a 

host of local factors such as soil type, vegetation cover and local topography that may 

vary drastically across space.  The VTCI, as a proxy for soil moisture, provides such a 

continuous surface – as opposed to point based rainfall estimates at raingauges – of 

moisture conditions at different stages in a season.  VTCI for Sri Lanka can be calculated 

in near real-time using the Land Surface Temperature (LST) and Normalized Difference 

Vegetation Index (NDVI) products, based on data acquired in the optical and thermal 

infrared wavelengths by the Moderate Resolution Imaging Spectroradiometer (MODIS) 

aboard the Terra Satellite (Terra-MODIS), available free-of-charge at time lag of ~5 

days.  This short time-lag is critical as there is a time-lag of almost a month before 

rainfall data at a majority of the rain gauges scattered across the island is reported to the 
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main office of the Sri Lanka Department of Meteorology. The VTCI is thus an ideal 

technique for operational monitoring of the onset and progression of anomalous wet and 

dry conditions at the ground.   

 The dissertation identifies a number of areas requiring further investigation.  

Some of the critical areas that need to be addressed in the near-future include the 

following:   

 

1) Is the increase in drought occurrence and magnitude in the post-1975 period 

linked to the change in SST background state over the Indian Ocean around 1976-

1977?  How does the documented change in ENSO influence on the Indian Ocean 

region affect trends in Maha drought incidence?   How does global warming 

affect ocean-atmosphere coupling in the Indian Ocean region and what are the 

implications for the interplay between the Madden Julian Oscillation (MJO), the 

IOD, the Tropical Biennial Oscillation and ENSO? How could changes in the 

interplay between these phenomena influence seasonal predictability skill and 

hence drought predictability for Sri Lanka? 

Coupled ocean-atmospheric modeling is required to answer the above 

questions.  Research hypotheses to explore through such studies could include:  

„Increased warming of the Indian Ocean decreases the strength of the winter 

monsoon (and hence increases Maha drought incidence)‟; and „Decreased 

influence of ENSO on the Indian Ocean region strengthens the zonal circulation 

cells within the basin – leading to either increased droughts or floods during the 

boreal fall.‟   
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2) Do factors like the Siberian High, cold surges, the Borneo Vortex and the MJO 

control the strength of the contemporaneous vertical shear of the mean meridional 

wind (  ) and hence December-February rainfall over Sri Lanka?   

The dissertation found an apparent link between these phenomena and 

DJF rainfall.  A definite answer requires an atmospheric modeling study.  A 

plausible hypothesis to explore is whether snow cover anomalies over Eurasia 

control the Siberian High, cold surges, the Borneo Vortex and the MJO.  Such a 

study may unravel different pathways through which all such phenomena are 

connected.  Such understanding would definitely help improve predictability of 

the DJF season. 

 

3) Is the observed increased trend in drought incidence and variability in the eastern 

and southeastern regions related to a weakening of the mean December-February 

wind field over eastern, north central and southeastern Sri Lanka?  If yes, could 

such trends in the wind field be attributed to the increase in anthropogenic green 

house gases in the atmosphere or to the increased presence of industrial aerosol 

loadings in the Bay of Bengal area?     

These questions could be addressed by analyzing wind data from IPCC 

CMIP model output scenarios and remotely sensed data of aerosol loadings over 

the Bay of Bengal.   

 

4) Can actual values of the VTCI be input as a variable to crop models?  How well 

does the VTCI perform in capturing moisture stress irrigated areas?    
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The VTCI could be input as a variable to crop models after calibrating VTCI 

values with variables such as evapotranspiration commonly used in crop models.  

The performance of VTCI in capturing moisture stress in irrigated areas requires 

field observations and a comparison of results in irrigated versus non-irrigated 

areas.  The incorporation of VTCI in crop models and a disaggregated analysis of 

VTCI in irrigated versus non-irrigated areas would improve its utility to decision 

makers.   

 

In conclusion, the dissertation presents an operational methodology for predicting and 

monitoring drought applicable to locations in the humid tropics where rain failure is the 

primary causal factor for drought.  Using Sri Lanka as a case study, it demonstrates a 

framework for drought prediction based on an assessment of seasonal rainfall 

predictability.  It also demonstrates how a proxy for soil moisture complements the 

seasonal rainfall prediction by capturing moisture stress as a season unfurls.  The study 

finds that the seasonal rainfall prediction can be issued with a lag time of one month prior 

to the commencement of the main cultivation season.  It also finds that the proxy for soil 

moisture can be generated in near-real time.  Such time frames are of utility for key 

decisions in agriculture at the study site.  The wider applicability of the study stems from 

the proposed methodologies for drought prediction and monitoring being directly 

applicable to other locations in the humid tropics.  The areas identified for future research 

could strengthen existing drought prediction capacity particularly in the humid tropics 

and sub-tropics and improve the overall utility of drought monitoring techniques to 

decision makers.   
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Annex 1: 

 

Modifications made to original Matlab Code for Wavelet Transform Analysis 

 

Modifications are indicated in red lettering.  Yellow highlighted sections include code 

added to the original code.  (Acronym NF=Nelun Fernando) 

 

%WAVETEST Example Matlab script for WAVELET, using NINO3 SST dataset 

% 

% See "http://paos.colorado.edu/research/wavelets/" 

% Written January 1998 by C. Torrence 

% 

% Modified Oct 1999, changed Global Wavelet Spectrum (GWS) to be 

sideways, 

%   changed all "log" to "log2", changed logarithmic axis on GWS to 

%   a normal axis. 

  

load 'battispi.mat'   % input SPI time series 

SPI2 = battispi; 

  

%------------------------------------------------------ Computation 

  

% normalize by standard deviation (not necessary, but makes it easier 

% to compare with plot on Interactive Wavelet page, at 

% "http://paos.colorado.edu/research/wavelets/plot/" 

variance = std(SPI2)^2; 
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SPI2 = (SPI2 - mean(SPI2))/sqrt(variance) ; 

  

% [NF comment:  the next three lines of code fit a lag1 autocorrelation 

(AR-1) to the data] 

 

xvec=reshape(SPI2,length(SPI2),1); % The time series data 

Xmat=[ [xvec; 0] [0; xvec] ]; Rxx=Xmat'*Xmat; 

laga=-Rxx(2,1)/Rxx(2,2);  

  

n = length(SPI2); 

dt = 1 ; %(NF comment - sampling is yearly) 

time = [0:length(SPI2)-1]*dt + 1870.0;  % construct time array 

xlim = [1870, 2005];  % plotting range 

pad = 1;      % pad the time series with zeroes (recommended) 

dj = 0.125;    % this will do 8 sub-octaves per octave (NF comment 

modified) 

s0 = 1*dt;    % this says start at a scale of 1 year (NF comment 

modified) 

j1 = 7/dj;    % this says do 7 powers-of-two with dj sub-octaves each 

lag1 = laga;  % lag-1 autocorrelation for red noise background 

mother = 'MORLET'; 

  

%MOTHER = the mother wavelet function. 

%             The choices are 'MORLET', 'PAUL', or 'DOG' 

  

% Wavelet transform: 

[wave,period,scale,coi] = wavelet(SPI2,dt,pad,dj,s0,j1,mother); 

power = (abs(wave)).^2 ;        % compute wavelet power spectrum 
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% Significance levels: (variance=1 for the normalized SST) 

[signif,fft_theor] = wave_signif(1.0,dt,scale,0,lag1,-1,-1,mother); 

sig95 = (signif')*(ones(1,n));  % expand signif --> (J+1)x(N) array 

sig95 = power ./ sig95;         % where ratio > 1, power is significant 

  

% Global wavelet spectrum & significance levels: 

global_ws = variance*(sum(power')/n);   % time-average over all times 

dof = n - scale;  % the -scale corrects for padding at edges 

global_signif = wave_signif(variance,dt,scale,1,lag1,-1,dof,mother); 

  

% Scale-average between drought periods of 1--16 years 

avg = find((scale >= 1) & (scale < 16)); 

Cdelta = 0.776;   % this is for the MORLET wavelet 

scale_avg = (scale')*(ones(1,n));  % expand scale --> (J+1)x(N) array 

scale_avg = power ./ scale_avg;   % [Eqn(24)] 

scale_avg = variance*dj*dt/Cdelta*sum(scale_avg(avg,:));   % [Eqn(24)] 

scaleavg_signif = wave_signif(variance,dt,scale,2,lag1,-

1,[2,7.9],mother); 

  

whos 

  

%------------------------------------------------------ Plotting 

  

%--- Plot time series 

subplot('position',[0.1 0.75 0.65 0.2]) 

plot(time,SPI2) 
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set(gca,'XLim',xlim(:)) 

xlabel('Time (year)') 

ylabel('SPI (unitless)') 

title('a) Batticaloa station: October 6-monthly Standardized 

Precipitation Index (1870-2005)') 

hold off 

  

%--- Contour plot wavelet power spectrum 

subplot('position',[0.1 0.37 0.65 0.28]) 

levels = [0.0625,0.125,0.25,0.5,1,2,4,8,16] ; 

Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period)))); 

contour(time,log2(period),log2(power),log2(levels));  %*** or use 

'contourfill' 

%imagesc(time,log2(period),log2(power));  %*** uncomment for 'image' 

plot 

xlabel('Time (year)') 

ylabel('Period (year)') 

title('b) October 6-monthly SPI Wavelet Power Spectrum') 

set(gca,'XLim',xlim(:)) 

set(gca,'YLim',log2([min(period),max(period)]), ... 

    'YDir','reverse', ... 

    'YTick',log2(Yticks(:)), ... 

    'YTickLabel',Yticks) 

% 95% significance contour, levels at -99 (fake) and 1 (95% signif) 

hold on 

[cc1 hh1]=contour(time,log2(period),sig95,[-99,1],'k'); 

set(hh1,'linewidth',2); 

hold on 
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% cone-of-influence, anything "below" is dubious 

plot(time,log2(coi),'k') 

hold off 

  

%--- Plot global wavelet spectrum 

subplot('position',[0.77 0.37 0.2 0.28]) 

plot(global_ws,log2(period)) 

hold on 

plot(global_signif,log2(period),'--') 

hold off 

xlabel('Power (SPI^2)') 

title('c) Global Wavelet Spectrum') 

set(gca,'YLim',log2([min(period),max(period)]), ... 

    'YDir','reverse', ... 

    'YTick',log2(Yticks(:)), ... 

    'YTickLabel','') 

set(gca,'XLim',[0,1.25*max(global_ws)]) 

  

%--- Plot 1--16 yr scale-average time series 

subplot('position',[0.1 0.07 0.65 0.2]) 

plot(time,scale_avg) 

set(gca,'XLim',xlim(:)) 

xlabel('Time (year)') 

ylabel('Avg variance (SPI^2)') 

title('d) 1-16 yr Scale-average Time Series') 

hold on 

plot(xlim,scaleavg_signif+[0,0],'--') 

hold off 
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Annex 2: 

Sri Lanka rice production statistics 1952-2009 

National Annual Sown and Harvested Extent, Average Yield and Production of Paddy 1952 - 2009 

  

Cultivation 
Year 

Sown Harvested Average Yield Production 

000 
Acres 000 Ha 

000 
Acres 000 Ha. Bushels/Acre Kg/Ha 000 Bushels 

000 
Mt. 

1952 1,162 471 1,102 446 30.8 1,588 28,900 604 

1953 1,049 425 952 385 27 1,392 21,900 458 

1954 1,253 508 1,201 486 30.02 1,548 31,100 650 

1955 1,347 545 1,285 520 32.45 1,673 35,700 746 

1956 1,177 476 1,052 426 30.03 1,549 27,500 575 

1957 1,208 489 1,139 461 32.35 1,668 31,280 654 

1958 1,383 559 1,239 502 34.4 1,774 36,600 765 

1959 1,330 538 1,228 497 34.91 1,800 36,400 761 

1960 1,469 595 1,393 564 36.38 1,875 43,000 899 

1961 1,472 596 1,407 570 36.13 1,863 43,100 901 

1962 1,536 622 1,492 604 37.9 1,954 48,000 1,003 

1963 1,562 633 1,526 618 37.91 1,955 49,200 1,028 

1964 1,586 643 1,535 622 38.72 1,996 50,505 1,056 

1965 1,456 590 1,243 503 34.32 1,770 36,252 758 

1966 1,617 655 1,512 612 35.62 1,837 45,787 957 

1967 1,639 664 1,567 634 41.27 2,127 54,962 1,149 

1968 1,743 705 1,634 661 46.49 2,397 64,500 1,348 

1969 1,709 692 1,540 624 50.33 2,595 65,864 1,377 

1970 1,875 759 1,776 719 51.31 2,645 77,447 1,619 

1971 1,793 726 1,714 694 45.91 2,367 66,895 1,398 

1972 1,795 727 1,578 639 46.87 2,417 62,901 1,315 

1973 1,789 724 1,660 672 44.58 2,299 62,900 1,315 

1974 2,038 825 1,969 797 45.65 2,353 76,794 1,605 

1975 1,720 697 1,475 597 44.05 2,271 55,315 1,156 

1976 1,789 724 1,570 636 44.9 2,315 60,034 1,255 

1977 2,046 828 1,933 783 48.88 2,520 80,387 1,680 

1978 2,163 875 2,074 840 50.83 2,621 90,605 1,894 

1979 2,075 839 1,936 783 53.29 2,747 91,886 1,919 

1980 2,087 844 2,030 815 56.83 2,931 102,237 2,134 

1981 2,166 877 2,081 837 57.84 2,982 106,845 2,229 

1982 2,086 844 1,844 745 62.37 3,215 103,312 2,156 

1983 2,036 824 1,922 777 70.36 3,628 119,027 2,484 

         



131 

 

 

 

         
1984 2,447 990 2,189 886 59.74 3,080 115,968 2,413 

1985 2,176 881 2,139 864 66.77 3,443 127,552 2,661 

1986 2,212 895 2,064 835 67.41 3,475 123,956 2,588 

1987 1,931 781 1,677 679 69.11 3,564 101,987 2,127 

1988 2,145 868 2,015 816 66.19 3,413 118,704 2,477 

1989 1,797 727 1,704 690 65.45 3,375 98,916 2,063 

1990 2,109 853 2,046 825 66.97 3,452 121,674 2,538 

1991 2,018 817 1,954 791 65.89 3,397 114,471 2,389 

1992 1,985 803 1,893 766 66.52 3,430 112,184 2,340 

1993 2,061 835 2,026 820 67.97 3,504 123,213 2,570 

1994 2,297 930 2,215 897 65.23 3,363 128,630 2,683 

1995 2,261 915 2,198 889 68.58 3,536 134,678 2,810 

1996 1,850 749 1,631 660 68.15 3,514 98,807 2,061 

1997 1,804 730 1,705 690 70.19 3,619 107,333 2,239 

1998 2,096 848 2,048 829 70.52 3,636 129,044 2,692 

1999 2,205 892 2,154 872 71.1 3,665 136,942 2,857 

2000 2,169 878 2,056 832 74.79 3,857 137,085 2,860 

2001 1,973 798 1,890 765 76.68 3,953 129,134 2,695 

2002 2,106 852 2,025 820 75.5 3,893 137,029 2,860 

2003 2,428 983 2,250 911 72.94 3,761 146,983 3,067 

2004 1,924 779 1,779 720 79.25 4,086 125,943 2,628 

2005 2,316 937 2,261 915 76.86 3,963 155,577 3,246 

2006 2,250 910 2,224 900 80.24 4,137 160,163 3,341 

2007 2,018 816 1,966 796 85.38 4,386 150,059 3,131 

2008 2,602 1,053 2,552 1,033 81.2 4,184 185,723 3,875 

2009 2,415 977 2,329 941 84.11 4,337 175,009 3,652 

 

Source: 

  

http://www.statistics.gov.lk/agriculture/Paddy%20Statistics/PaddyStatsPages/PaddyAnn

ualSHYP.html 
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Annex 3: 

List of identification numbers of original MODIS imagery analyzed in Chapter 5 

October-November 2000 LST 

1. MOD11A2.A2000281.h25v08.005.2006324141248.hdf 

2. MOD11A2.A2000281.h26v08.005.2006324141217.hdf 

3. MOD11A2.A2000297.h25v08.005.2006329041928.hdf 

4. MOD11A2.A2000297.h26v08.005.2006329041915.hdf 

5. MOD11A2.A2000305.h25v08.005.2008211035808.hdf 

6. MOD11A2.A2000305.h26v08.005.2008211034846.hdf 

7. MOD11A2.A2000329.h25v08.005.2006340104014.hdf 

8. MOD11A2.A2000329.h26v08.005.2006340103856.hdf 

October-November 2000 NDVI 

1. MOD13A2.A2000273.h25v08.005.2008203110759.hdf 

2. MOD13A2.A2000273.h26v08.005.2008203111052.hdf 

3. MOD13A2.A2000289.h25v08.005.2008205091753.hdf 

4. MOD13A2.A2000289.h26v08.005.2008205091950.hdf 

5. MOD13A2.A2000305.h25v08.005.2008211022803.hdf 

6. MOD13A2.A2000305.h26v08.005.2008211024053.hdf 

7. MOD13A2.A2000321.h25v08.005.2006341035628.hdf 

8. MOD13A2.A2000321.h26v08.005.2006341040350.hdf 

October-November 2001 LST 

1. MOD11A2.A2001281.h25v08.005.2007065000100.hdf 

2. MOD11A2.A2001281.h26v08.005.2007065002840.hdf 

3. MOD11A2.A2001297.h25v08.005.2007068095843.hdf 

4. MOD11A2.A2001297.h26v08.005.2007068154605.hdf 
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5. MOD11A2.A2001305.h25v08.005.2007070100610.hdf 

6. MOD11A2.A2001305.h26v08.005.2007070100814.hdf 

7. MOD11A2.A2001329.h25v08.005.2007076000607.hdf 

8. MOD11A2.A2001329.h26v08.005.2007076000411.hdf 

October-November 2001 NDVI 

1. MOD13A2.A2001273.h25v08.005.2008285074944.hdf 

2. MOD13A2.A2001273.h26v08.005.2008285081744.hdf 

3. MOD13A2.A2001289.h25v08.005.2007076164733.hdf 

4. MOD13A2.A2001289.h26v08.005.2007076170302.hdf 

5. MOD13A2.A2001305.h25v08.005.2008289060815.hdf 

6. MOD13A2.A2001305.h26v08.005.2008289061647.hdf 

7. MOD13A2.A2001321.h25v08.005.2007082153926.hdf 

8. MOD13A2.A2001321.h26v08.005.2007082154934.hdf 

October-November 2002 LST 

1. MOD11A2.A2002281.h25v08.005.2007242215944.hdf 

2. MOD11A2.A2002281.h26v08.005.2007242220003.hdf 

3. MOD11A2.A2002297.h25v08.005.2007243204811.hdf 

4. MOD11A2.A2002297.h26v08.005.2007243204810.hdf 

5. MOD11A2.A2002305.h25v08.005.2007245015554.hdf 

6. MOD11A2.A2002305.h26v08.005.2007245015546.hdf 

7. MOD11A2.A2002329.h25v08.005.2007257031136.hdf 

8. MOD11A2.A2002329.h26v08.005.2007257031102.hdf 

October-November 2002 NDVI 

1. MOD13A2.A2002273.h25v08.005.2008253170058.hdf 

2. MOD13A2.A2002273.h26v08.005.2008253135501.hdf 
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3. MOD13A2.A2002289.h25v08.005.2007228045703.hdf 

4. MOD13A2.A2002289.h26v08.005.2007228071513.hdf 

5. MOD13A2.A2002305.h25v08.005.2007235122937.hdf 

6. MOD13A2.A2002305.h26v08.005.2007235124227.hdf 

7. MOD13A2.A2002321.h25v08.005.2007243225153.hdf 

8. MOD13A2.A2002321.h26v08.005.2007243225155.hdf 

October - February 2003/2004 LST 

1. MOD11A2.A2003281.h25v08.005.2008010145213.hdf 

2. MOD11A2.A2003281.h26v08.005.2008010143725.hdf 

3. MOD11A2.A2003297.h25v08.005.2008017212652.hdf 

4. MOD11A2.A2003297.h26v08.005.2008017155818.hdf 

5. MOD11A2.A2003321.h25v08.005.2008025120854.hdf 

6. MOD11A2.A2003321.h26v08.005.2008025153025.hdf 

7. MOD11A2.A2003337.h25v08.005.2008042135514.hdf 

8. MOD11A2.A2003337.h26v08.005.2008042135146.hdf 

9. MOD11A2.A2003361.h25v08.005.2008047160920.hdf 

10. MOD11A2.A2003361.h26v08.005.2008047161255.hdf 

11. MOD11A2.A2004001.h25v08.005.2008173034600.hdf 

12. MOD11A2.A2004001.h26v08.005.2008173034557.hdf 

13. MOD11A2.A2004025.h25v08.005.2008173063913.hdf 

14. MOD11A2.A2004025.h26v08.005.2008173063926.hdf 

15. MOD11A2.A2004033.h25v08.005.2007243092607.hdf 

16. MOD11A2.A2004033.h26v08.005.2007243092609.hdf 

17. MOD11A2.A2004049.h25v08.005.2007248182046.hdf 

18. MOD11A2.A2004049.h26v08.005.2007248162910.hdf 
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October – February 2003/2004 NDVI 

1. MOD13A2.A2003289.h25v08.005.2008264025847.hdf 

2. MOD13A2.A2003289.h26v08.005.2008264025844.hdf 

3. MOD13A2.A2003305.h25v08.005.2008022204054.hdf 

4. MOD13A2.A2003305.h26v08.005.2008022204943.hdf 

5. MOD13A2.A2003321.h25v08.005.2008037142318.hdf 

6. MOD13A2.A2003321.h26v08.005.2008037091534.hdf 

7. MOD13A2.A2003337.h25v08.005.2008266113359.hdf 

8. MOD13A2.A2003337.h26v08.005.2008266113529.hdf 

9. MOD13A2.A2003353.h25v08.005.2008041074831.hdf 

10. MOD13A2.A2003353.h26v08.005.2008041080417.hdf 

11. MOD13A2.A2004001.h25v08.005.2007236192932.hdf 

12. MOD13A2.A2004001.h26v08.005.2007236193854.hdf 

13. MOD13A2.A2004017.h25v08.005.2008224143324.hdf 

14. MOD13A2.A2004017.h26v08.005.2008224153913.hdf 

15. MOD13A2.A2004033.h25v08.005.2007246191251.hdf 

16. MOD13A2.A2004033.h26v08.005.2007246190722.hdf 

17. MOD13A2.A2004049.h25v08.005.2007251100843.hdf 

18. MOD13A2.A2004049.h26v08.005.2007251115917.hdf 

October-November 2004 LST 

1. MOD11A2.A2004281.h25v08.005.2007324171917.hdf 

2. MOD11A2.A2004281.h26v08.005.2007325024856.hdf 

3. MOD11A2.A2004329.h25v08.005.2007337203800.hdf 

4. MOD11A2.A2004329.h26v08.005.2007337200111.hdf 
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October-November 2004 NDVI 

1. MOD13A2.A2004273.h25v08.005.2008254160357.hdf 

2. MOD13A2.A2004273.h26v08.005.2008254181955.hdf 

3. MOD13A2.A2004321.h25v08.005.2008227011051.hdf 

4. MOD13A2.A2004321.h26v08.005.2008227012446.hdf 

 

October-November 2005 LST 

1. MOD11A2.A2005281.h25v08.005.2008073200814.hdf 

2. MOD11A2.A2005281.h26v08.005.2008073193918.hdf 

3. MOD11A2.A2005297.h25v08.005.2008077092311.hdf 

4. MOD11A2.A2005297.h26v08.005.2008077074156.hdf 

5. MOD11A2.A2005329.h25v08.005.2008086220038.hdf 

6. MOD11A2.A2005329.h26v08.005.2008086214952.hdf 

 

October-November 2005 NDVI 

1. MOD13A2.A2005273.h25v08.005.2008074022517.hdf 

2. MOD13A2.A2005273.h26v08.005.2008074022109.hdf 

3. MOD13A2.A2005289.h25v08.005.2008077173028.hdf 

4. MOD13A2.A2005289.h26v08.005.2008077123053.hdf 

5. MOD13A2.A2005321.h25v08.005.2008263124621.hdf 

6. MOD13A2.A2005321.h26v08.005.2008263134458.hdf 

 

  



137 

 

 

 

References 

Alory, G., Wijffels, S., and Meyers, G. (2007), Observed temperature trends in the Indian 

Ocean over 1960-1999 and associated mechanisms, Geophysical Research 

Letters, 34, L02606. 

 

Anderson, M. C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., and Kustas, W.P. (2007), 

A climatological study of evapotranspiration and moisture stress across the 

continental United States based on thermal remote sensing: 2. Surface moisture 

climatology, Journal of Geophysical Research, 112, D11112. 

 

Ashok, K., Chan, W.-L., Motoi, T., Yamagata, T. (2004), Decadal variability of the 

Indian Ocean dipole, Geophysical Research Letters, 31, L24207. 

 

Baigorria, G. A., Hansen, J.W., Ward, N., Jones, J.W., and Brien, J.J. (2008), Assessing 

predictability of cotton yields in the southeastern United States based on regional 

atmospheric circulation and surface temperatures, Journal of Applied 

Meteorology and Climatology, 47, 76-91. 

 

Bamzai, A. S., and J. Shukla (1999), Relation between Eurasian Snow Cover, Snow 

Depth, and the Indian Summer Monsoon: An Observational Study, Journal of 

Climate, 12, 3117-3132. 

 

Barnett, T. P., Dumenil, L., Schlese, U., Roeckner, E., Latif, M. (1989), The effect of 

Eurasian snow cover of regional and global climate variation, Journal of the 

Atmospheric Sciences, 46, 661-685. 

 

Barnett, T. P., and R. Preisendorfer (1987), Origins and Levels of Monthly and Seasonal 

Forecast Skill for United States Surface Air Temperatures Determined by 

Canonical Correlation Analysis, Monthly Weather Review, 115, 1825-1850. 

 

Barnston, A. G., and Ropelewski, C.F. (1992), Prediction of ENSO Episodes Using 

Canonical Correlation Analysis, Journal of Climate, 5, 1316-1345. 

 

Barnston, A. G., and van den Dool, H.M. (1993), A degeneracy in cross-validated skill in 

regression-based forecasts, Journal of Climate, 6, 963-977. 

 

Basnayake, B. K. (1990), Droughts in the dry zone of Sri Lanka, in Irrigation and Water 

Resources, edited by E. R. N. Gunawardena, pp. 18-39, Postgraduate Institute of 

Agriculture, University of Peradeniya, Sri Lanka. 

 

Bessafi, M., and Wheeler, M.C. (2006), Modulation of South Indian Ocean tropical 

cyclones by the Madden-Julian Oscillation and convectively coupled equatorial 

waves, Monthly Weather Review, 134, 638-656. 

 

Bretherton, C. S., et al. (1992), An Intercomparison of Methods for Finding Coupled 

Patterns in Climate Data, Journal of Climate, 5, 541-560. 



138 

 

 

 

Carlson, T. N., Gillies, R.R., and Schmugge, T.J. (1995), An interpretation of 

methodologies for indirect measurement of soil water content, Agricultural and 

Forest Meteorology, 77, 191-205. 

 

Castillo, V. (2009), Brief note on the Inter-Regional Workshop on Indices and Early 

Warning Systems for Drought, paper presented at Inter-Regional Workshop on 

Indices and Early Warning Systems for Drought, United Nations Secretariat of the 

Convention to Combat Desertification, Lincoln, Nebraska, U.S.A., December 11, 

2009. 

 

Chang, C.-P. (2005a), The Asian winter-Australian summer monsoon:  an introduction, in 

The global monsoon system:  research and forecast, edited by C.-P. Chang, Wang, B., 

and Lau, N.-C.G., pp. 136-137, Secretariat of the World Meteorological Organization, 

Geneva, Switzerland. 

 

Chang, C. P., Harr, P. A., and Chen, H. J. (2005b), Synoptic Disturbances over the 

Equatorial South China Sea and Western Maritime Continent during Boreal 

Winter, Monthly Weather Review, 133, 489-503. 

 

Compo, G. P., Kiladis, G.N., and Webster, P.J. (1999), The horizontal and vertical 

structure of east Asian winter monsoon pressure, Quarterly Journal of the Royal 

Meteorological Society, 125, 29-54. 

 

de Silva, M. B. G. (1997), Climate, in Arjuna's Atlas of Sri Lanka, edited by T. 

Somasekaram, Colombo, Sri Lanka. 

 

Domroes, M. (1974), The agro-climate of Ceylon:  a contributions towards the ecology of 

tropical crops, Franz Steiner, Wiesbaden. 

 

Frank, W. M., and Roundy, P.E. (2006), The Role of Tropical Waves in Tropical 

Cyclogenesis, Monthly Weather Review, 134, 2397-2417. 

 

Goddard, L., Mason, S. J., Zebiak, S. E., Ropelewski, C. F., Basher, R., and Cane, M. A. 

(2001), Current approaches to seasonal to interannual climate predictions, 

International Journal of Climatology, 21, 1111-1152. 

 

Goswami, B. N., Krishnamurthy, V., and Annmalai, H. (1999), A broad-scale circulation 

index for the interannual variability of the Indian summer monsoon, Quarterly 

Journal of the Royal Meteorological Society, 125, 611-633. 

 

Guttman, N. B. (1999), Accepting the Standardized Precipitation Index: a calculation 

algorithm, Journal of the American Water Resources Association, 35, 311-322. 

Hastenrath, S. (1995), Recent Advances in Tropical Climate Prediction, Journal of 

Climate, 8, 1519-1532. 

 



139 

 

 

 

Hastenrath, S. (2000), Zonal circulations over the equatorial Indian Ocean, Journal of 

Climate, 13, 2746-2756. 

 

Hastenrath, S., and Polzin, D. (2003), Circulation mechanisms of climate anomalies in 

the equatorial Indian Ocean, Meteorologische Zeitschrift, 12, 81-93. 

 

Hastenrath, S., and Polzin, D. (2004), Dynamics of the surface wind field over the 

equatorial Indian Ocean, Quarterly Journal of the Royal Meteorological Society, 

130, 503-517. 

 

Husak, G. H., Michaelsen, J., and Funk, C. (2007), Use of the gamma distribution to 

represent monthly rainfall in Africa for drought monitoring applications, 

International Journal of Climatology, 27, 935-944. 

 

JayaMaha, G. S. (1975), An analysis of droughts in Sri Lanka, Proceedings of the Indian 

National Science Academy, 42, 133-148. 

 

Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, 

N., Roy, D. P., and Morisette, J. T. (2002), An overview of MODIS Land data 

processing and product status, Remote Sensing of Environment, 83, 3-15. 

 

Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., Panov, 

N., and Goldberg, A. (2010), Use of NDVI and Land Surface Temperature for 

Drought Assessment: Merits and Limitations, Journal of Climate, 23, 618-633. 

 

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. 

Ebisuzaki, M. Kanamitsu, V. Kousky, H. van den Dool, R. Jenne, M. Fiorino. 

(2001), The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and 

Documentation, Bulletin of the American Meteorological Society, 82, 247-267. 

 

Kogan, F. N. (1997), Global drought watch from space, Bulletin of the American 

Meteorological Society, 78, 621-636. 

 

Kripalani, R. H., and Kumar, P. (2004), Northeast monsoon rainfall variability over south 

peninsular India vis-à-vis the Indian Ocean dipole mode, International Journal of 

Climatology, 24, 1267-1282. 

 

Krishnamurti, T. N., Chakraborty, A., Martin, A., Lau, W.K., Kim, K.-M., Sud, Y., and 

Walker, G. (2009), Impact of Arabian Sea pollution on the Bay of Bengal winter 

monsoon rains, Journal of Geophysical Research, 114. 

 

Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M. (2006), 

Unraveling the Mystery of Indian Monsoon Failure During El Nino, Science, 

314(5796), 115-119. 



140 

 

 

 

Kumar, O. S. R. U. B., Naidu, C. V., Rao, S. R. L., and Rao, B.R.S. (2004), Prediction of 

southern Indian winter monsoon rainfall from September local upper-air 

temperatures, Meteorological Applications, 11, 189-199. 

 

Kumar, P., et al. (2007), On the recent strengthening of the relationship between ENSO 

and northeast monsoon rainfall over South Asia, Climate Dynamics, 28, 649-660. 

 

Landman, W. A., and Mason, S.J. (2001), Forecasts of near-global sea surface 

temperatures using Canonical Correlation Analysis, Journal of Climate, 14, 3819-

3833. 

 

Lau, K. M., and H. Weng (1995), Climate Signal Detection Using Wavelet Transform: 

How to Make a Time Series Sing, Bulletin of the American Meteorological 

Society, 76, 2391-2402. 

 

Li, S., and Goddard, L. (2005), Retrospective forecasts with the ECHAM4.5 AGCM, 16 

pp, International Research Institute for Climate and Society, Palisades, New York. 

 

Li, T., Wang, B., Chang, C.P., and Zhang, Y. (2003), A theory for the Indian ocean 

dipole-zonal mode, Journal of the Atmospheric Sciences, 60(17), 2119-2135. 

 

Lyon, B., Zubair, L., Ralapanawe, V. and Yahiya, Z. (2009), Finescale evaluation of 

drought in a tropical setting:  case study in Sri Lanka, Journal of Applied 

Meteorology and Climatology, 48, 77-88. 

 

Madden, R. A., and Julian, P.R. (1971), Detection of a 40-50 Day Oscillation in the 

Zonal Wind in the Tropical Pacific, Journal of the Atmospheric Sciences, 28, 702-

708. 

 

Maddumabandara, C. M. (1983), Effect of drought on the livelihood of peasant families 

in the dry zone of Sri Lanka, in Climatological Notes (33):  Climate, Water and 

Agriculture in Sri Lanka, edited by M. Yoshino, Kayane, I., and 

Maddumabandara, C.M., pp. 61-76, Institute of Geoscience, University of 

Tsukuba. 

 

Malmgren, B. A., Hullugalla, R., Lindeberg, G., Inoue, Y., Hayashi, Y., and Mikami, T. 

(2007), Oscillatory behavior of monsoon rainfall over Sri Lanka during the late 

19th and 20th centuries and its relationships to SSTs in the Indian Ocean and 

ENSO, Theoretical and Applied Climatology, 89, 115-125. 

 

McKee, T. B., Doesken, N.J., and Kleist, J. (1993), The relationship of drought frequency 

and duration to time scales, paper presented at Eighth Conference on Applied 

Climatology, Anaheim, California. 

 



141 

 

 

 

Njoku, E. G., Jackson, T. J., Lakshmi, V., Chan, T. K., and Nghiem, S. V. (2003), Soil 

moisture retrieval from AMSR-E, Geoscience and Remote Sensing, IEEE 

Transactions on, 41, 215-229. 

 

Palmer, T. N. (1993), Extended-Range Atmospheric Prediction and the Lorenz Model, 

Bulletin of the American Meteorological Society, 74, 49-65. 

 

Park, S., Feddema, J.J., and Egbert, S.L. (2004), Impacts of hydrologic soil properties on 

drought detection with MODIS thermal data, Remote Sensing of Environment, 89, 

53-62. 

 

Parry, M. L., Canziani, O.F., Palutikof, J.P., and Co-authors (2007), Technical Summary. 

Climate Change 2007:  Impacts, Adaptation and Vulnerability.  Contribution of 

Working Group II to the Fourth Assessment Report of the Intergovernmental 

Panel on Climate Change, Parry, M. L., Canziani, O.F., Palutikof, J.P., van der 

Linden, P.J., and Hanson, C.E. (Eds.), pp. 23-78, Cambridge University Press, 

Cambridge, UK. 

 

Parthasarathy, B., Rupakumar, K., and Munot, A.A. (1991), Evidence of secular 

variations in Indian monsoon rainfall-circulation relationships, Journal of 

Climate, 4, 927-938. 

 

Peiris, T. S. G., Hansen, J.W., and Zubair, L. (2008), Use of seasonal climate information 

to predict coconut production in Sri Lanka, International Journal of Climatology, 

28, 103-110. 

 

Prasanna, V., and Yasunari, T. (2008), Interannual variability of atmospheric water 

balance over South Peninsular India and Sri Lanka during northeast monsoon 

season, International Journal of Climatology, 28, 1997-2009. 

 

Quiring, S. M. (2009), Developing Objective Operational Definitions for Monitoring 

Drought, Journal of Applied Meteorology and Climatology, 48, 1217-1229. 

 

Rajeevan, M. (2001), Prediction of the Indian summer monsoon:  status, problems and 

prospects, Current Science, 81, 1451-1457. 

 

Rajeevan, M., and Pai, D.S. (2007), On the El Niño-Indian monsoon predictive 

relationships, Geophysical Research Letters, 34, L04704, doi:  

04710.01029/02006GL028916. 

 

Ramage, C. S. (1971), Monsoon Meteorology, Academic Press Inc., New York. 

 

Rasmusson, E. M., and Carpenter, T.H. (1982), Variations in Tropical Sea Surface 

Temperature and Surface Wind Fields Associated with the Southern 

Oscillation/El Niño, Monthly Weather Review, 110, 354-384. 



142 

 

 

 

Rasmusson, E. M., and Carpenter, T.H. (1983), The Relationship Between Eastern 

Equatorial Pacific Sea Surface Temperatures and Rainfall over India and Sri 

Lanka, Monthly Weather Review, 111(3), 517-528. 

 

Roeckner, E., Oberhuber, J. M., Bacher, A., Christoph, M., and Kirchner, I. (1996), 

ENSO variability and atmospheric response in a global coupled atmosphere-ocean 

GCM, Climate Dynamics, 12, 737-754. 

 

Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van den Dool, H. M., 

Pan, H. L., Moorthi, S., Behringer, D., Stokes, D., Peña, M., Lord, S., White, G., 

Ebisuzaki, W., Peng, P., and Xie, P. (2006), The NCEP Climate Forecast System, 

Journal of Climate, 19, 3483-3517. 

 

Saji, N. H., and Yamagata, T. (2003), Structure of SST and surface wind variability 

during Indian Ocean dipole mode events: COADS observations, Journal of 

Climate, 16(16), 2735-2751. 

 

Shabbar, A., and Barnston, A.G. (1996), Skill of seasonal climate forecasts in Canada 

using Canonical Correlation Analysis, Monthly Weather Review, 124, 2370-2385. 

 

Sheffield, J., and Wood, E.F. (2007), Characteristics of global and regional drought, 

1950-2000:  Analysis of soil moisture data from off-line simulation of the 

terrestrial hydrologic cycle, Journal of Geophysical Research, 112, doi: 

10.1029/2006JD008288. 

 

Shukla, J., and Kinter III, J.L. (2006), Predictability of seasonal climate variations:  a 

pedagogical review, in Predictability of Weather and Climate, edited by T. 

Palmer, and Hagedorn, R., pp. 306-341, Cambridge University Press. 

 

Stahl, K., and Hisdal, H. (2006), Hydroclimatology, in Hydrological drought:  processes 

and estimation methods for streamflow and groundwater, edited by L. M. 

Tallaksen, and Van Lanen, H.A.J., pp. 19-51, Elsevier. 

 

Sun, D., and Kafatos, M. (2007), Note on the NDVI-LST relationship and the use of 

temperature-related drought indices over North America, Geophysical Research 

Letters, 34, L24406. 

 

Suppiah, R. (1989), Relationships between the Southern Oscillation and the rainfall of Sri 

Lanka, International Journal of Climatology, 9, 601-618. 

 

Suppiah, R. (1996), Spatial and temporal variations in the relationships between the 

Southern Oscillation phenomenon and the rainfall of Sri Lanka, International 

Journal of Climatology, 16, 1391-1407. 

 

Suppiah, R. (1997), Extremes of the Southern Oscillation phenomenon and the rainfall of 

Sri Lanka, International Journal of Climatology, 17, 87-101. 



143 

 

 

 

Tallaksen, L. M., Madsen, H. and Hisdal, H. (2004), Frequency Analysis, in 

Hydrological drought - processes and estimation methods for streamflow and 

groundwater, edited by L. M. a. V. L. Tallaksen, H.A.J., pp. 199-271, Elsevier, 

B.V., Amsterdam. 

 

Terray, P., et al. (2005), Indian Ocean Sea Surface Temperature and El Niño-Southern 

Oscillation: A New Perspective, Journal of Climate, 18, 1351-1368. 

 

Teuling, A. J., Hupet, F., Uijlenhoet, R., and Troch, P.A. (2007), Climate variability 

effects on spatial soil moisture dynamics, Geophysical Research Letters, 34, 

L06406. 

 

Thenkabail, P. S., Gamage, M.S.D.N., and Smakhtin, V.U. (2004), The use of remote-

sensing data for drought assessment and monitoring in Southwest Asia, pp. 34 pp, 

International Water Management Institute, Colombo, Sri Lanka. 

 

Torrence, C., and Compo, G.P. (1998), A Practical Guide to Wavelet Analysis, Bulletin 

of the American Meteorological Society, 79, 61. 

 

Torrence, C., and Webster, P.J. (1999), Interdecadal Changes in the ENSO-Monsoon 

System, Journal of Climate, 12, 2679. 

 

Trauth, M. H. (2007), MATLAB recipes for earth sciences, 2nd ed., 288 pp., Springer-

Verlag, Berlin. 

 

Tucker, C. J. (1979), Red and photographic infrared linear combinations for monitoring 

vegetation, Remote Sensing of Environment, 8, 127-150. 

 

van den Dool, H. M. (1994), Searching for analogues, how long must we wait?, Tellus A, 

46, 314-324. 

 

Vinayachandran, P. N., Iizuka, S., and Yamagata, T. (2002), Indian Ocean dipole mode 

events in an ocean general circulation model, Deep Sea Research Part II: Topical 

Studies in Oceanography, 49, 1573-1596. 

 

von Storch, H., and Zwiers, F.W. (2002), Statistical analysis in climate research, 

Cambridge University Press. 

 

Vose, R. S., Schmoyer, R.L., Steurer, P.M., Peterson, T.C., Heim, R., Karl, T.R., and 

Eischeid, J. (1992), The Global Historical Climatology Network:  long-term 

monthly temperature, precipitation, sea level pressure, and station pressure data., 

324 pp, ORNL/CDIAC-53, NDP-04, Oak Ridge National Laboratory. 

 

Walker, G. T., and Bliss, E.W. (1932), World weather V, Memoirs of the Royal 

Meteorological Society, 4, 53-84. 



144 

 

 

 

Wan, Z. (2008), New refinements and validation of the MODIS Land-Surface 

Temperature/Emissivity products, Remote Sensing of Environment, 112, 59-74. 

 

Wan, Z. (2009), Collection-5 MODIS Land Surface Temperature Products Users' Guide, 

edited, ICESS, University of California, Santa Barbara, 

http://modis.datamirror.csdb.cn/resource/doc/MOD11_UserGuide.pdf. 

 

Wan, Z., and Dozier, J. (1996), A generalized split-window algorithm for retrieving land-

surface temperature from space, Geoscience and Remote Sensing, IEEE 

Transactions on, 34, 892-905. 

 

Wan, Z., Wang, P., and Li, X. (2004a), Using MODIS Land Surface Temperature and 

Normalized Difference Vegetation Index products for monitoring drought in the 

southern Great Plains, USA, International Journal of Remote Sensing, 25, 61 - 72. 

 

Wan, Z., Zhang, Y., Zhang, Q., and Li, Z. L. (2004b), Quality assessment and validation 

of the MODIS global land surface temperature, International Journal of Remote 

Sensing, 25, 261 - 274. 

 

Wang, B. (Ed.) (2006), The Asian Monsoon, 787 pp., Praxis Publishing Ltd. 

 

Wang, B., and Fan, Z. (1999), Choice of South Asian summer monsoon indices, Bulletin 

of the American Meteorological Society, 80, 629. 

 

Wang, B., Lee, J.-Y., Kang, I. S., Shukla, J., Kug, J. S., Kumar, A., Schemm, J., Luo, J. 

J., Yamagata, T., and Park, C. K. (2008a), How accurately do coupled climate 

models predict the leading modes of Asian-Australian monsoon interannual 

variability?, Climate Dynamics, 30, 605-619. 

 

Wang, P., Gong, J., and Li, X. (2001), Vegetation-Temperature Condition Index and its 

application for drought monitoring, Geomatics and Information Science of Wuhan 

University, 26, 412-417. 

 

Wang, W., Liang, S., and Meyers, T. (2008b), Validating MODIS land surface 

temperature products using long-term nighttime ground measurements, Remote 

Sensing of Environment, 112, 623-635. 

 

Wickramagamage, P (2009). Seasonality and spatial pattern of rainfall of Sri Lanka: 

Exploratory factor analysis, International Journal of Climatology, 30, 1235-1245. 

 

Wilhite, D. A. (1996), A methodology for drought preparedness, Natural Hazards, 13, 

229-252. 

 

Wilks, D. S. A. (2006), Statistical methods in the atmospheric sciences (2nd ed.), 627pp., 

Elsevier. 

 

http://modis.datamirror.csdb.cn/resource/doc/MOD11_UserGuide.pdf


145 

 

 

 

WMO (2006), Drought monitoring and early warning:  concepts, progress and future 

challenges, 24 pp., World Meteorological Organization, Geneva, Switzerland. 

 

Xu, M. C., C.-P., Fu, C., Qi, Y., Robock, A., Robinson, D., and Zhang, H. (2006), Steady 

decline of east Asian monsoon winds, 1969-2000: Evidence from direct ground 

measurements of wind speed, Journal of Geophysical Research, 111, D24111. 

 

Yoshino, M., and Suppiah, R. (1984), Rainfall and paddy production in Sri Lanka, 

Journal of Agricultural Meteorology, 40, 9-20. 

 

Zhang, Y., Sperber, K.R., and Boyle, J.S. (1997), Climatology and Interannual Variation 

of the East Asian Winter Monsoon: Results from the 1979-95 NCEP/NCAR 

Reanalysis, Monthly Weather Review, 125, 2605-2619. 

 

Zubair, L. (2002), El Niño-southern oscillation influences on rice production in Sri 

Lanka, International Journal of Climatology, 22, 249-260. 

 

Zubair, L., and Ropelewski, C. F. (2006), The Strengthening Relationship between ENSO 

and Northeast Monsoon Rainfall over Sri Lanka and Southern India, Journal of 

Climate, 19, 1567-1575. 

 

Zubair, L., Rao, S.A., and Yamagata, T. (2003), Modulation of Sri Lanka Maha rainfall 

by the Indian Ocean Dipole, Geophys. Res. Lett., doi: 10.1029/2002GL015639. 

 

Zubair, L., Siriwardhana, M., Chandimala, J., and Yahiya, Z. (2007), Predictability of Sri 

Lankan rainfall based on ENSO, International Journal of Climatology, 28, 91-

101. 

 

  



146 

 

 

 

Curriculum Vitae 

 

 

DINALI NELUN FERNANDO 

 

 

Education 

 

 

2010 

 

 

Ph.D. Geography (Specialization:  Climatology) 

Department of Geography, Rutgers The State University of New Jersey 

New Jersey, U.S.A. 

 

 

2006 

 

M.A. Climate and Society 

Columbia University 

New York, U.S.A. 

 

 

2001 

 

B.A. (First Class) Geography 

Department of Geography, University of Colombo 

Colombo, Sri Lanka 

 

 

Principal Occupations 

 

 

26/7/2010 – 15/10/2010   

 

Ph.D. Intern, Computational Modeling Center,  

Air Products and Chemicals Inc., Allentown, PA 

 

 

6/2010 – 7/2010        

 

Instructor – Geographic Information Systems,  

Department of Geography, Rutgers University 

 

 

7/2008 – 6/2010 

 

 

William H. Greenberg Fellow, Center for Environmental 

Prediction and Department of Geography, Rutgers 

University 

 

 

5/2009 – 7/2009 

 

Instructor – Geographic Information Systems,  

Department of Geography, Rutgers University 

 

 

9/2008 – 1/2009 

 

 

Teaching Assistant (Coadjutant) – Remote Sensing, 

Department of Geography, Rutgers University 



147 

 

 

 

 

 

5/2008 – 7/2008 

 

Instructor – Geographic Information Systems,  

Department of Geography, Rutgers University 

 

 

1/2007– 4/2008 

 

Research Assistant, NASA Land Use Land Cover 

Change research on „Landscape resilience-vulnerability in 

the Southern Yucatán Peninsular Region‟, Department of 

Geography, Rutgers University 

 

 

9/2006 – 6/2008 

 

 

Teaching Assistant, Department of Geography 

 

9/2005 – 5/2006 

 

Graduate Research Assistant, International Research 

Institute for Climate and Society (IRI), Earth Institute, 

Columbia University 

 

 

12/2003 – 8/2005 

 

Lecturer, Department of Geography, University of 

Colombo, Sri Lanka 

 

 

4/2002 – 12/2003 

 

 

Project Officer, Hydrology and Water Resources 

Department, World Meteorological Organization (WMO), 

Geneva, Switzerland 

 

 

8/2001 – 3/2002 

 

 

Intern, Hydrology and Water Resources Department, 

WMO, Geneva, Switzerland 

 

 

 

Publications 

 

Published: 

 Schneider, L.C. and Fernando, D.N. (2009). An untidy cover:  invasion of bracken 

fern in the shifting cultivation systems of Southern Yucatán, Mexico. Biotropica 

42(1), 41-48 

 

Accepted: 

Book chapter (invited contribution): 

 Fernando, D.N. Monsoons. Encyclopaedia of Geography. Barney Warf (Ed.). 

SAGE Publications Inc. (In press, projected release date: Sep. 2010) 

 



148 

 

 

 

Under revision: 

 Fernando, D.N., Robinson, D.A., Ward, M.N. and Premalal, K.H.M.S. Drought 

and the predictability of the October-November rains over Sri Lanka (Submitted to 

Int. J.Climatol. Oct. 2009;  currently under major recommended revision) 

 

In review: 

 Robinson, David, Fernando, D. Nelun and Mioduszewski, John. Principles of 

meteorology and weather prediction. Wilderness Medicine (6
th

 edition). Paul 

Auerbach (Ed.). Elsevier. (Submitted: Apr. 2010) 

 


