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ABSTRACT OF THE DISSERTATION

Symplectic-N in strongly correlated materials

By REBECCA FLINT

Dissertation Director:

Professor Piers Coleman

Strong correlations between electrons often generate unexpected new collective behavior that we

call emergent phenomena. Strong interactions can ramp up the relevant scales, creating massive

electrons in heavy fermion materials and high transition temperatures in superconductors, or lead

to entirely new states of matter with low energy excitations containing a fraction of the original

electron. These phenomena provide unique challenges to theorists as they sit at the intersection of

kinetic and potential energy scales, where perturbative many body techniques fail.

One useful method here is the large N approach, which generalizes the number of components

of the electron spin from 2 to N , providing an artificial perturbation expansion about a strongly

correlated state which, if chosen properly, captures the essential physics. To do so, we must ensure

that the large N limit maintains the important symmetries. While SU(N) is the traditional large-N

limit, not all SU(N) spins invert under time-reversal for N > 2. To treat phenomena like frustrated

magnetism and superconductivity that contain particle-particle singlets, we must restrict ourselves

to the subgroup of time-reversing spins, SP (N), a large N limit we call symplectic-N .

The correspondance of time-reversal and symplectic symmetry, and its consequences for spin

and Hubbard operator representations are discussed in Chapter 2, which provides the mathematical

backbone of this dissertation. Chapter 3 develops a symplectic-N treatment of frustrated mag-

netism, treating ferromagnetic and antiferromagnetic correlations on equal footing, before we move

ii



on to unconventional superconductivity. First we show how composite pairs, bound states between

local moments and conduction electrons in two orthogonal symmetry channels, emerge from the

large N limit of the two channel Kondo model in Chapter 4, and then discuss how composite

pairing interacts cooperatively with magnetic pairing in Chapter 5. In Chapter 6, we examine the

interplay of composite pairing and valence fluctuations in the two-channel Anderson model. Finally,

Chapter 7 studies the effect of Coulomb repulsion on s± pairing in a t− J model of the iron-based

superconductors.
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Chapter 1

Introduction

Why is the collective behavior of macroscopic numbers of electrons such a fundamental and exciting

problem? After all, the behavior of individual electrons is incredibly well described by quantum

electrodynamics. However, when we put 10 or 1000 or 1023 electrons together, we can get wildly

different behavior that could not have been predicted from quantum electrodynamics, and yet can

be described in surprisingly simple and beautiful terms. This idea, that “more is different” [1] is the

driving force behind the study of these emergent phenomena.

The physics of macroscopic numbers of weakly interacting electrons is fairly well understood,

although the field still has some surprises [2]. Free electrons have an energy dispersion, εk =

k2/2m, and at zero temperature, electrons occupy all possible states from zero up to the Fermi

energy, εF , set by the total number of electrons. The low energy excitations of the free electron

gas are still electrons, excited out of the Fermi sea, or holes, which are missing electrons below

the Fermi energy. Amazingly, introducing weak to moderate electron-electron interactions changes

relatively little: the low energy excitations are still electron-like quasi-particles, which have all

the quantum numbers (spin, charge, and momentum) of the original free electrons. Increasing

interactions renormalize the mass of the electron - a moving electron increases its inertial mass by

scattering off other electrons [3]. While the excitations at low energies are electron-like, there are

collective modes at high energies called plasmons, which are quantized oscillations in the charge

density [4], shown in Figure 1.1.

In systems with strong interactions, the energy scales of the electron-like and collective excita-

tions can swap, and the low energy excitations are collective modes that look nothing like electrons.

Just such a swap happens in the Luttinger liquid - the one dimensional version of an interacting

electron gas. Here, the low dimensionality makes any interaction a strong interaction, and the low

energy excitations of the Luttinger liquid are charge and spin density waves [5, 6]. The electron has
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Figure 1.1: (a) Plasmons are quantized collective charge oscillations where the electrons slide as a
whole while the positive ions providing a restoring force; the plasma frequency, ωp is the minimum
energy required to excite a plasmon. (b) The low energy excitations of the 2D electron gas are
particle-hole pairs that occur when an electron is excited out of the filled Fermi sea, leaving behind
a hole. There is a continuum of these excitations, shown in green. In two dimensions, low energy
excitations are possible for any momentum because the difference in momentum between particle
and hole can span the Fermi surface. (c) In one dimension, the Fermi surface consists of two Fermi
points, and there are only low energy particle-hole pairs for k = 0, 2kF . (d) Instead, the low energy
excitations of one dimensional metals, or Luttinger liquids are fractionalized spinons and holons.
Holons are the absence of an electron on a site - a charge moving alone, while spinons are domain
walls between two antiferromagnetic domains that move by flipping a single spin, leaving the charge
distribution unchanged.

been fractionalized, and now its charge and spin are separate excitations. This situation, where the

low energy excitations are not adiabatically connected to the free constituent particles is the norm

in strongly correlated matter.

In fact, this fractionalization can be even more extreme: in very pure, two-dimensional interact-

ing electron gases at extremely high magnetic fields and extremely low temperatures, the fractional

quantum hall effect occurs. Fractional quantum hall states, indexed by rational numbers ν, contain

low energy excitations with both fractional charge and statistics [see Figure 1.2 (a)]. When one

particle is moved around another in two dimensions, the wavefunction acquires a phase eiθ, where

θ = 0 or π for bosons and fermions, respectively. The excitations of the ν = 1/3 fractional quantum

Hall state have charge e/3 and θ = π/3 [7]. Other fractional quantum hall states are believed to
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have non-Abelian statistics, where the phase becomes a matrix and the final phase of a three particle

wavefunction depends how they are moved around one another - a topological property potentially

useful for quantum computing [8].

Figure 1.2: Three strongly correlated materials. (a) Some low energy excitations found in strongly
correlated systems are found nowhere else. Fractional quantum Hall states contain excitations with
a fraction of the electron charge: the ν = 1/3 state has e∗ = e/3; these particles also have frac-
tional statistics, where taking one particle around another changes the phase of the wavefunction
by π/3. The transverse conductivity, σxy = νe2/h is quantized, where ν is a rational number.
(Reproduced from Stormer [7]). (b) Schematic phase diagram of the heavy fermion superconduc-
tors, CeM In5 (M = Co,Rh,Ir). At high temperatures, these materials contain localized spins in a
sea of free electrons, but interactions between these components generates a rich phase diagram at
low temperatures, easily tuned between antiferromagnetism and heavy fermion superconductivity.
(Adapted from Pagliuso et al. [9]). (c) The resistance of normal metals is quadratic at very low
temperatures before crossing over to a different power law. Optimally doped La2−xSrxCuO4 is an
unconventional superconductor whose resistance is linear over nearly three decades above Tc, from
35K to 800K. The origin of this linear resistance is still a mystery. (Reproduced from Takagi et al.
[10].)
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But most strongly correlated materials are not quite this bizarre. The most common effect of

strong interactions is to strip the electron of its charge degrees of freedom. Let us examine a simple

model, where we have a “half-filled” lattice of N sites on which N electrons can sit. Electrons

hop between sites, gaining kinetic energy, but when two electrons sit on the same site, the Coulomb

repulsion costs potential energy. A site generically has four possible states: empty, one electron,

with its spin up or down, and doubly occupied, where the two electrons must have opposite spin. As

the strength of the Coulomb repulsion increases, the number of doubly occupied sites is eventually

suppressed to zero. Since there are an equal number of electrons and sites, each site has only two

possible states: where the spin of the electron is up or down. We call this localized electron a spin,

as it has lost all of its charge degrees of freedom, and such a strongly correlated insulator is called

a Mott insulator [11, 12]. Spins are neither fermions nor bosons, instead obeying the commutation

relations of the Pauli matrices, [Sa, Sb] ∝ Sc, and they are the building blocks of many strongly

correlated materials:

• Magnetism: Interacting spins in a Mott insulator will usually order antiferromagnetically,

↑↓↑↓ · · · . In these materials spins behave like bosons, as they condense into an ordered

ground state. If these interactions are frustrated enough, the spins can evade long range

ordering down to zero temperature, instead forming a highly correlated quantum state with no

broken symmetries known as a spin liquid, whose excitations are further fractionalized into

bosonic or fermionic spinons, shown in Figure 1.3(c).

• Heavy fermion physics: Adding a small concentration of spins to a weakly interacting metal

can drastically alter its properties. While copper is a boring metal, adding 14% spins makes

CeCu6, a heavy fermion metal with an effective electron mass over one thousand times that

of copper [13]. These spins lost their charge degrees of freedom at very high temperatures,

yet at low energies they again form electron-like quasiparticles with the aid of the weakly

interacting electrons [Figure 1.3(a)]. They are very sensitive to their environment; changing

the material structure slightly can turn a heavy Fermi liquid into an antiferromagnet or a

superconductor [see Figure 1.2 (c)].
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• Unconventional superconductivity: Conventional superconductivity is an instability of weakly

correlated metals, where the electrons attract one another by exchanging phonons [14]. Dop-

ing a Mott insulator, as shown in Figure 1.3(b) leads to unconventional superconducting states

whose basic interaction is the repulsive Coulomb interaction, and yet have far higher transition

temperatures [15]. The phases surrounding the superconducting dome can be even stranger,

indicating metals whose constituent particles are not electrons [see Figure 1.2(b)].

Figure 1.3: (a) At high temperatures, heavy fermion materials consist of free spins immersed in a
sea of non-interacting conduction electrons. At low temperatures, the spins hybridize with the con-
duction electrons to form mobile, heavy electrons with masses 100 to 1000 times that of the bare
electrons. (b) A doped Mott insulator contains holes hopping in an antiferromagnetic background.
For high enough doping, these materials become superconducting. (c) Instead of ordering magnet-
ically, Mott insulators on frustrated lattices may become spin liquids, which consist of spin singlet
valence bonds (blue) between sites. Excitations are created by breaking valence bonds to form two
spin 1/2 spinons.

Strongly correlated problems are especially challenging to theorists, as they tend to sit at the

intersection of the kinetic and potential energy scales, where neither real space nor momentum space

capture the entire picture. Put simply, these problems lack a natural small parameter to expand about
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an exactly solvable non-interacting state, and new theoretical methods must be devised to treat them.

The search for simple, controlled approximations which capture the collective behavior of strongly

correlated electrons is a key goal of condensed matter theorists. This thesis introduces one such

approximation scheme, the symplectic large N limit and explores its consequences in several areas

of strongly correlated electrons.

The idea behind the large N approach is to take the strongly correlated model of interest and

generalize it to a family of models, where the number of internal degrees of freedom is indexed by

an integer N . As N goes to infinity, central limit effects allow the underlying collective behavior of

the model to be solved exactly (shown in Figure 1.4. Corrections to this strongly correlated mean

field theory may then be obtained from a power series expansion in 1/N , where 1/N now acts as

an artificial small parameter.

Figure 1.4: The partition function, Z is given by a sum over the possible paths of the fields Ψ(~x, τ),
where each path is weighted by an exponential of the action, exp (−S[Ψ]) of that path. In the large
N limit, the action becomes extensive in N , and is dominated by the path with the smallest action,
known as the saddle point path. Fluctuations around the saddle point path are controlled by 1/N .

Witten originally introduced the idea of large N to treat quantum chromodynamics [16], where

quarks have an SU(3) symmetry, which Witten replaced with a theory of SU(N) symmetric quarks.
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The symmetry of spins can also be generalized, from SU(2) to some larger group - SU(N) is

one possibility, but so is the symplectic group, SP (N). SU(N) expansions are extremely useful

to particle physicists because there are two types of color singlets: mesons, which are particle-

antiparticle pairs, or in condensed matter, particle-hole pairs, and baryons, which are products of

N particles, forming three quark baryons for SU(3). There is no condensed matter analog for

N > 2, and the condensed matter version of SU(N) has only particle-hole pairs. However, the

group SP (N) has both particle-hole and particle-particle singlets, which pair a particle with its

time reversed twin - e.g. valence bonds [17] or Cooper pairs [18]. The existence of these well-

defined singlets is guaranteed by maintaining the inversion of spins under time reversal as the group

is generalized from SU(2) to SP (N). The large N limit describing Hamiltonians built exclusively

out of these time-reversing, symplectic spins is what we call symplectic-N .

The rest of this introduction reviews the three areas of physics where we apply symplectic-N :

quantum magnetism, heavy fermion physics, and the unconventional superconductivity originating

from doped Mott insulators.

1.1 Magnetism

First, we will discuss insulating magnetic materials derived from Mott insulators, where the spins

are arranged in a lattice. Spins at sites i and j interact with each other though an exchange coupling,

Jij . Such systems are described by the Heisenberg model,

H =
∑
ij

Jij ~Si · ~Sj , (1.1)

where ~Sj is a Heisenberg spin, ~S = ~
2~σ at site j. The exchange couplings, Jij arise from virtual

charge fluctuations, known as superexchange, where the electron making up a spin at site i hops to

a nearby site j, either directly or through other atoms, and then back again [19]. Jij can be positive

or negative, depending on the superexchange path. The simplest lattices are either ferromagnets (all

J ′s < 0) or bipartite antiferromagnets, which can be partitioned into two sublattices, where the only
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antiferromagnetic (J > 0) couplings are between sublattices [see Figure 1.5 (a)].

At high temperatures, the spins are free, with a Curie-Weiss-like magnetic susceptibility,

χ(T ) =
µ2
eff

3kB (T − θCW )
, (1.2)

where µeff is the effective moment, µ2
eff = g2S(S + 1), and θCW ≈ −J . Simple lattices develop

long range magnetic order at Tc ∼ θCW (for ferromagnets) or TN ∼ |θCW | (for antiferromagnets).

Dimensionality and geometric frustration can suppress these ordering temperatures far below |θCW |,

and the region between TN and |θCW | is characterized by strong spin correlations, but no broken

symmetries [20]. This region is known as a spin liquid, in analogy with liquids like water, which

also do not break translational or orientational symmetries, and yet are more strongly correlated

than a gas. The free spins above |θCW | could analogously be called a spin gas. While a great deal of

experimental and theoretical effort has been made to find materials with a spin liquid ground state,

the jury is still out [21, 22]. Despite the lack of concrete examples, spin liquids have long attracted

great interest because of the high temperature superconductivity found in Heisenberg magnets doped

with charged holes, which have a similar frustrating effect. Spin liquids also have intrinsic interest

as a state of matter not described in terms of the usual symmetry breaking paradigm, which may

require topological order parameters.

1.1.1 Frustration and spin liquids

Spin liquid states were first introduced by Anderson [17], who posited that instead of forming a

long range antiferromagnetic state, pairs of neighboring spins, 〈ij〉 will form local singlets known

as valence bonds: ∆ij = (↑i↓j − ↓i↑j). These valence bonds can be arranged in a lattice, forming

a valence bond solid, which breaks the lattice symmetry (and is thus not a spin liquid), but not time

reversal or spin rotation symmetries [Figure 1.6 (a)]. Or the ground state can be a superposition

of all possible configurations, forming a resonating valence bond (RVB) state [Figure 1.6 (b)],

which breaks no symmetries, and is the spin liquid thought to underlie the cuprate superconductors
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Figure 1.5: (a) The two simple ground states: a ferromagnet and a bipartite antiferromagnet, which
can be partitioned into two sublattices (red and blue). (b) A frustrated triangle: J is antiferromag-
netic each link, yet once the first two spins are anti-aligned, the third spin can rotate freely without
any energy cost (left). The compromise ground state of the triangular lattice involves spins ro-
tated by 120◦ (right). (c) Three examples of frustrated lattices: the J1 − J2 square lattice, where
both nearest (J1) and next-nearest (J2) neighbor bonds are antiferromagnetic, and two geometri-
cally frustrated lattices, the triangular and Kagomé, where all bonds are antiferromagnetic. The less
connected the lattice, the greater the frustration.

[23, 24].

Geometric frustration is essential to stabilize spin liquid states in more than one dimension [20,

21, 22]. Any non-bipartite lattices will be frustrated, as no spin arrangement simultaneously satisfies

all exchange couplings, as can be shown simply in a triangular plaquette: when any two spins are

anti-parallel, the exchange couplings with the third spin cancel one another, and it is completely

free [Figure 1.5 (b)]. However, the triangular lattice does order at zero temperature, forming three

sublattices with 120◦ order. When discussing one and two dimensional systems, we generally mean

quasi- one and two dimensional systems. As shown by Mermin and Wagner [25], no continuous

symmetry [like the SU(2) spin symmetry] may be broken at any finite temperature in less than three

dimensions. Real materials will always have some weak coupling in the third dimension, giving rise

to a finite ordering temperature, and this temperature is the one strongly suppressed by frustration.

Additional exchange couplings also lead to frustration, as in the J1 − J2 square lattice. J1 connects

nearest-neighbor sites in different sublattices, while J2 couples spins within the same sublattice. For
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Figure 1.6: If a system does not develop long range magnetic order, the spins may form valence
bonds, ∆ij = (↑i↓j − ↓i↑j), indicated by the blue bonds. These valence bonds can either form a
valence bond solid (a), where 2S bonds emanate from each site, or exist in a superposition of all
possible configurations, forming a resonating valence bond state (b).

antiferromagnetic J2 � J1, the J1 couplings cancel, and the classical ground state consists of two

decoupled antiferromagnetic sublattices [Figure 1.7]. Thermal and quantum fluctuations select out

the collinear states from the degenerate ground state manifold [26], a phenomena known as order

by disorder [27, 28, 29].

The Heisenberg model has one energy scale, J , and the J = 0 state is that of extensively degen-

erate free spins. There are therefore no natural small parameters with which to conduct perturbation

theory, and the Heisenberg model is a prime candidate for large N expansions. Since spins do not

satisfy canonical commutation relations, like bosons and fermions, they cannot be treated directly in

quantum field theory, and must instead by represented by bilinears of fermions and bosons chosen

to satisfy the commutation relations of the spin group.

Large N theories were first introduced in quantum magnetism by Berlin and Kac, who solved

the spherical model of ferromagnetism exactly in a large N limit [30]. Simultaneously, Anderson,

Dyson and Maleev introduced spin wave theory, which takes the spin S to be large and expands

in 1/S [31, 32, 33]. The large S limit is a classical limit, where the spins behave like classical

vectors, rotating under the group O(3). The long wavelength fluctuations of quantum spins were

studied semi-classically in the nonlinear sigma model [34, 35], where quantum renormalizations

to the classical parameters were calculated in the large N limit by extending the order parameter
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Figure 1.7: (a) When J2 is large, the spins anti-align in two antiferromagnetic sublattices. Classi-
cally, the exchange coupling between these two sublattices, J1

~Si · ~Sj cancels, and the two sublat-
tices are decoupled at zero temperature. (b) Thermal and quantum fluctuations are softest around
the collinear states, and the system will spend the most time fluctuating about these states. Collinear
order is thus selected by these disordering fluctuations.

manifold of SU(2) spins, CP 1 to that of SU(N) spins, CPN−1 [36].

The large N quantum limit of magnetism was first treated by Affleck and Marston [37, 38].

They used a fermionic spin representation to treat the S = 1/2 Hubbard and Heisenberg mod-

els by extending SU(2) to SU(N), preserving the rotational invariance of the Hamiltonian under

SU(N). Since then, other extensions of SU(2) have been used, including SP (2N) by Ran and

Wen [39]. Fermionic large N theories capture the physics in the extreme quantum limit, S/N � 1,

where the ground state is always disordered. These are useful for studying the possible spin liquid

ground states [40], but not for determining if a particular model is a spin liquid in the first place.

For that, one needs a bosonic spin representation, where magnetic long range order corresponds to

the condensation of the bosons. Arovas and Auerbach introduced the bosonic SU(N) theory [41],

which can treat arbitrary ratios of S/N , and both magnetically ordered and disordered states. This

theory was quite successful at describing ferromagnets and bipartite antiferromagnets, but is un-

able to treat frustrated magnets. To resolve this, Sachdev and Read extended the theory to arbitrary

antiferromagnetic bonds by limiting the rotational invariance to the group SP (N) [42]. However,



12

neither of these theories preserve the time inversion properties of spins, because for N > 2, not

all SU(N) spins invert under time reversal. Although Sachdev and Read’s Hamiltonian is invariant

under SP (N) rotations, it still contains SU(N) spins with the wrong parity under time reversal.

Symplectic-N identifies time reversing spins with the generators of SP (N), and then builds inter-

actions exclusively from these symplectic spins. This condition is more stringent than Sachdev and

Read’s, and leads to a unique large N limit. In Chapter 3, we develop the bosonic symplectic-N ap-

proach for the Heisenberg model, which enables us to treat ferromagnetism and antiferromagnetism

on equal footing.

1.2 Heavy Fermion Physics

At high temperatures, local magnetic moments immersed in a metallic host will scatter the con-

duction electrons in two ways: ordinary potential scattering events leaving the spins of both the

local moment and the conduction electron unchanged, and spin-flip scattering events swapping the

two spins. As the temperature decreases, these spin-flip events favor the development of a cloud of

conduction electrons anti-parallel to the spin, which in turn intensifies the spin flip scattering. This

anti-screening effect makes the antiferromagnetic interaction between local moments and conduc-

tion electrons scale to strong coupling. At high temperatures, the moment is asymptotically free:

decoupled from the conduction sea, while at low temperatures it is completely compensated by the

cloud of conduction electrons, forming a Kondo singlet [43, 44]. The Kondo crossover temperature,

TK separates these two behaviors.

When the local moment is mostly screened, scattering electrons see only a large singlet state

acting as a potential scattering center with a very large cross section. As the local moment must

bind the equivalent of one conduction electron to form a singlet, the Friedel sum rule, which relates

the charge bound by a potential scatterer, Q = 1 to its phase shift at the Fermi energy, δ(εF ):∑
σ
δσ(εF )
π = 1 indicates that the Kondo singlet is a resonant bound state (δσ(εF ) = π/2) [45, 46]

pinned to the Fermi energy [47], illustrated in Figure 4.27(a).

The formation of the Kondo resonance has a well-known set of physical consequences. Most
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Figure 1.8: (a) At high temperatures, the spin and conduction electrons are decoupled, but at low
temperatures the Kondo resonance results as the local moment binds a single conduction electron to
form a local singlet bound state (Reproduced from [48]). (b)Here we show the resistivity, ρ(T ) of
CexLa1−xCu6. La is a non-magnetic analog of Ce, so x is the concentration of Kondo impurities.
For low concentrations, the resistivity reaches a maximum at low temperatures as the spin-flip scat-
tering off the impurity saturates. For larger concentrations the impurities form a Kondo lattice and
the scattering off different impurities becomes coherent, and begins to decrease as a heavy Fermi
liquid is formed [49].

notably, while the resistivity at high temperatures decreases with temperature as the phonon and im-

purity potential scattering contributions decrease, the spin-flip scattering begins to increase around

TK , leading to the characteristic Kondo resistance minimum [43, 44]. The resistance reaches a

maximum when the local moment is completely quenched, shown in Figure 4.27(b). The impurity

contributions to the zero temperature specific heat coefficient, γ = limT→0C/T and susceptibility,

χ(T = 0) resemble those of a very heavy conduction electron [50], where the bandwidth, D has

been replaced by the exponentially smaller TK .

1.2.1 The Kondo model

The formation of local moments from strongly interacting electrons was first introduced in the An-

derson model [51]. However, most of the interesting low energy physics comes from spin fluctua-

tions, contained in the Kondo model: the low energy limit of the Anderson model [52, 53] neglecting
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charge fluctuations. So we shall discuss this simpler model first, and come back to the Anderson

model in section 1.2.5. The Kondo Hamiltonian [43, 44] describes a band of free conduction elec-

trons interacting antiferromagnetically with a local moment, ~S

H =
∑
k

εkc
†
kck + JK~σ(0) · ~S, (1.3)

where ~σ(0) = c†0α~σαβc0β is the conduction electron spin density at the local moment site. As with

superexchange, the antiferromagnetic Kondo interaction, JK is generated by virtual charge fluctua-

tions [52], where the localized electron hops off into the conduction sea and a conduction electron

hops back on - a process only possible when the spins are anti-aligned. The Kondo temperature is

given by TK = D e−D/2JK , where D is the conduction electron bandwidth.

Jun Kondo first elucidated the non-perturbative nature of the Kondo problem in 1962 [43], when

he showed that the appearance of a logarithmic term in the resistivity at third order in JK signals the

failure of perturbation theory caused by the anti-screening effect. This logarithmic term explains

the upturn in the resistivity, but non-perturbative techniques are required to capture the low temper-

ature behavior, where the renormalization group concept developed by Wilson [54] was essential to

understanding the scaling properties of the Kondo singlet ground state.

Although the Kondo impurity model is amenable to several exact techniques [55, 56], the nature

of the Kondo singlet remained unclear until recently, with two competing physical interpretations.

The original picture, based on work by Nozières [57], held that the local moment is screened by

low energy conduction electrons within TK of the Fermi surface. However, this picture runs into

difficulty when there is an appreciable concentration of Kondo impurities, as only TK/EF � 1

low energy conduction electrons are available within each unit cell to screen the spins. For a rea-

sonable TK ∼ 10K, EF ∼ 10, 000K, the supply of conduction electrons available for screening is

exhausted for nimp ∼ .1%, while in practice Kondo physics is regularly seen at much larger con-

centrations [48]. This contradiction is known as Nozières exhaustion paradox, and led to the more

modern idea that screening is a local phenomena involving energies up to the bandwidth, similar to



15

the formation of Cooper pairs [58]. However, instead of a bosonic pair of two electrons, the relevant

bound state is a composite fermion, binding a conduction electron to a bosonic spin flip of the local

moment, f †↑ ∼ c†↓S+. Composite fermions have the charge, e and spin, 1/2 of electrons. This

composite fermion is injected into the Fermi sea, where it hybridizes with conduction electrons to

form the Kondo singlet, 〈c†~σc · ~S〉. This physical picture emerges from a large N solution of the

Kondo model, and is easily extended to the Kondo lattice, where the local moments form a dense

lattice [59, 60], each interacting with the same conduction sea:

H =
∑
k

εkc
†
kαckα + J

∑
j

c†jαcjβSαβ(j), (1.4)

where repeated spin indices are summed over. The composite fermions form a flat band that hy-

bridizes with the conduction electrons, shown in Figure 1.9. The effective mass of the hybridized

bands (given by the inverse of the slope) is much larger than the original conduction electron mass.

While in the impurity, spin-flip scattering leads to an increasing resistivity at low temperatures,in

the lattice the resistivity first rises, as the individual impurities spin-flip scatter, but then drops as

coherence develops across the sample at T ∗, as seen in Figure 4.27 (b). The low temperature state

is a heavy Fermi liquid [61, 62], with resistivity ρ(T ) = ρ0 +AT 2, where A is enhanced by
(
m∗

m

)2
.

Similarly, the low temperature specific heat takes a Fermi liquid form, C = γT , and the suscep-

tibility crosses over from a Curie-Weiss form at high temperatures to an constant enhanced Pauli

susceptibility, χ(T ) ∼ χ0 as the local moments quench into the heavy Fermi liquid. γ and χ0 are

both enhanced by m∗/m ∼ TF /T ∗, which ranges from 100 - 1000. Interestingly, in normal metals

like copper, Fermi liquid behavior can only be observed up to ∼ 1K before phonon corrections

wash it out, while in heavy fermion metals the enhanced electronic contributions are dominant to

higher temperatures despite their lower Fermi temperatures. The absorption of the spins into the

heavy Fermi liquid can be seen experimentally in CeRhIn5, where pressure tunes between a heavy

Fermi liquid ground state, with a large Fermi surface (including the spins) to an antiferromagnetic



16

Figure 1.9: (a) At high temperatures, the conduction electrons (blue band) and local moments are
decoupled. The conduction electrons have a small Fermi surface. The local moments form a flat
band of composite fermions (red), which (b) at low temperatures hybridizes with the conduction
electrons to form a heavy band with strongly enhanced effective mass. The Fermi surface is enlarged
to include both the conduction electrons and the spins.

ground state, where the spins order magnetically, leaving behind a small Fermi surface. de Haas-

van Alphen experiments see this jump in the size of the Fermi surface with pressure [63], shown in

Figure 1.10.

1.2.2 RKKY coupling, competition and criticality

When Doniach introduced the Kondo lattice as a model for heavy fermion materials [60], he noted

the existence of two energy scales, the Kondo scale, T ∗ and the RKKY scale, TRKKY . As a local

moment attempts to form a Kondo singlet, it spin-polarizes the conduction sea immediately sur-

rounding it, leading to an oscillating spin-polarization as the conduction sea recovers (see Figure
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Figure 1.10: (a) CeRhIn5 is an local moment antiferromagnet at ambient pressure, but as applied
pressure suppresses the Néel temperature to zero, a dome of heavy fermion superconductivity
emerges. (b) At high magnetic fields, there is a direct transition at pressure pc between an anti-
ferromagnet with a small Fermi sea of light conduction electrons to a heavy Fermi liquid with a
large Fermi surface incorporating the spins. This transition can be seen experimentally in de Haas-
van Alphen experiments done in high magnetic fields; these can measure both the size of extremal
orbits of the Fermi surface (c) and their effective mass (d). The effective masses are seen to diverge
at pc, where the size of the Fermi surface jumps.

1.11). A second local moment feels this disturbance as an effective field and orients itself along this

field. In the lattice, this interaction is typically antiferromagnetic with TRKKY ∼ J2
Kρ(εF ) [64].

The existence of two energy scales TRKKY ∼ J2
Kρ and T ∗ ∼ D exp(−D/2JK) allows for

a rich phase diagram (ρ = D−1), where by tuning JKρ (through pressure, chemical doping or

magnetic field), materials can be tuned between heavy Fermi liquids and antiferromagnets [Figure

1.11 (b)]. How the ground state passes from heavy Fermi liquid to antiferromagnet is still unclear,

although it is widely believed that the two phases are separated by a quantum critical point (QCP):

a second order phase transition at zero temperature, which has profound effects in a broad region of
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Figure 1.11: (a)A local moment polarizes the conduction sea around it, setting up Friedel oscilla-
tions in the conduction electron spin polarization. Nearby local moments align with this effective
field, giving rise to the RKKY interaction. (b) Doniach phase diagram: as Jρ changes, the relative
strength of the Kondo and RKKY temperature scales varies, tuning between antiferromagnetic and
heavy Fermi liquid ground states, with an intervening quantum critical point. (After Coleman [48]).

finite temperature above the QCP. While both the antiferromagnet and heavy Fermi liquid are Fermi

liquids, albeit with vastly different effective masses, we know from experiment that the intervening

finite temperature region can have a variety of power-law resistivities, ρ(T ) = ρ0 + ATn (n < 2)

and logarithmic specific heat, C ∼ −T log T [65].

1.2.3 Heavy Fermion Superconductivity

The discovery of superconductivity in the heavy fermion compound, CeCu2Si2 [50] in 1976 was

extremely surprising, as the current conventional wisdom was that magnetic moments were anath-

ema to superconductivity. The conventional picture of heavy fermion superconductivity avoids this

problem, as it is a two stage process. The local moments first undergo the Kondo effect to form

heavy quasiparticles at the coherence temperature, T ∗, and these heavy quasiparticles then pair at

Tc � T ∗ by exchanging residual spin fluctuation modes, just as electrons exchange phonons in

BCS superconductivity [14]. The idea that spin-fluctuation mediated superconductivity might give

rise to a d-wave superconducting gap to avoid the high Coulomb repulsion cost of on-site s-wave

pairing was first introduced in the context of heavy fermion superconductivity [66, 67, 68]. Such
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a nodal gap is observed in heavy fermion superconductors in the power law NMR relaxation rates,

1/T1 ∼ T 3 [69]. The heavy fermion superconductor, UPt3 [70] fits nicely into this model, as

T ∗ ∼ 100K, and the local moments are completely quenched by 30K [Figure 1.12 (left)]. Su-

perconductivity does not develop until Tc = 0.5K, so the scales are very well separated. While

UPt3 actually has a p-wave gap [71], many heavy fermion superconductors are in fact d-wave [72].

Many are antiferromagnetic at ambient pressure, like CePd2Si2 and CeIn3, with a superconducting

dome concealing the point where the Néel temperature vanishes with increasing pressure; these

are thought to be mediated by quantum critical spin fluctuations [73, 74, 75]. However, several

heavy fermion compounds do not fit into this weak-coupling picture, most notably the 115 family:

CeM In5 (M = Co,Rh,Ir) [76, 77, 78], PuMGa5 (M = Co,Rh) [79, 80] and NpPd5Al2 [81], which

includes the highest temperature heavy fermion superconductors. In many of these 115 materials,

local moments are present right down to the superconducting transition temperature, where they

quench into the superconductor [Figure 1.12 (right)]; the quasiparticles appear to be forming as they

pair, requiring a theory incorporating the non-trivial internal structure of the Cooper pair, as we

discuss in Chapters 4 and 5.

1.2.4 Two channel Kondo impurities

So far, we have focused on spin 1/2 local moments screened by a single channel of conduction

electrons, where both the local moment and conduction electrons have two degrees of freedom.

This equality allows the local moment to be perfectly screened, forming a ground state singlet.

However, as Nozières and Blandin realized [62], the spin degeneracy, 2S + 1 and the number of

conduction electron channels, n, may differ. For 2S + 1 > n, there are not enough conduction

electron channels to fully screen the impurity, leaving behind an underscreened moment. For 2S +

1 < n, there are too many conduction electron channels, all of which align anti-parallel to the local

moment, overscreening it. Both of these phenomena have excess entropy at zero temperature and

give rise to non-Fermi liquid behavior. The simplest example is the two channel Kondo problem,

where a spin 1/2 impurity has two types of screening conduction electrons. When the Kondo
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Figure 1.12: (a) The magnetic susceptibility, χ of UPt3(from Frings 1983 [82]) has a Curie-Weiss-
like form at high temperatures, but the local moments are completely quenched by T ≈ 30K, form-
ing a Pauli paramagnet well above Tc = 0.5K. (b) By contrast, the susceptibility of CeCoIn5(from
Petrovic et al. [83]), has a Curie-Weiss form all the way down to its Tc of 2.3K. (c) The supercon-
ducting condensation entropy (calculated by integrating C/T up to Tc) for UPt3 is ≈ 0.05R log 2 -
indicating that the spins are almost fully quenched by Tc, while in (d) CeCoIn5 the condensation
entropy is ≈ 1/3R log 2, and the spins are far from quenched.

coupling in one channel, J1 is larger than that in the other, J2, the screening in channel one scales to

strong coupling, while the second conduction electron channel decouples from the problem. At low

enough temperatures, the problem is just the one channel Kondo model. When the two channels

are degenerate (J1 = J2), neither channel decouples and the spin is overscreened, giving rise to a

QCP. This QCP can be studied with exact methods, notably the Bethe Ansatz [84, 85] and boundary

conformal field theory [86], which characterize the effects of this QCP on the finite temperature

region above it, including an extensive zero point entropy S = 1
2R log 2, logarithmically divergent

spin susceptibility and specific heat coefficient, χ ∼ C/T ∼ − log T and a sub-linear power law
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resistivity, ρ(T ) = ρ0 + A
√
T [87]. The conduction electron pair susceptibility also diverges at

the QCP [88]. This divergent susceptibility, along with the zero point entropy suggest that the

impurity quantum critical point will be screened by the development of superconductivity in the

lattice, where the channel symmetry protecting the QCP, is broken between lattice sites. Studies

of the two channel Kondo lattice in the limit of infinite dimension also suggest superconductivity

[89, 90]. The symplectic-N limit of the two channel Kondo lattice exhibits this superconductivity,

where two conduction electrons in orthogonal channels combine with the local moment to form a

composite pair, as discussed in Chapter 4.

The two channel Kondo model has a special relationship to the problem of two antiferromag-

netically coupled Kondo impurities [91], which can also be tuned through a QCP if the problem is

particle-hole symmetric. For large antiferromagnetic coupling, JH , the two local moments form a

valence bond singlet, off which the conduction electrons scatter only weakly (δσ = 0, π), but when

the Kondo coupling, JK is large, each local moment independently forms a Kondo singlet with the

conduction sea (δσ = π/2). When JH = 2.2JK , these two effects are degenerate, and the spins are

again overscreened, leading to a QCP equivalent to that of the two channel Kondo impurity, again

with S = 1
2R log 2 zero-point entropy. While the two QCPs are identical, the leading irrelevant

operators around them differ, leading to different thermodynamic behavior - two Kondo impurities

have a logarithmically divergent staggered susceptibility, and the specific heat coefficient has power

law behavior [92]. How these two QCPs relate in the lattice is an intriguing problem considered in

Chapter 5.

1.2.5 Valence fluctuations and the Anderson model

The Anderson model [51], where atoms with a strong on-site Coulomb repulsion, Uf are immersed

in a sea of non-interacting conduction electrons, encompasses both the spin fluctuations of the

Kondo model and the higher energy charge fluctuations. It describes how local moments form

at high temperatures down to how they quench into the heavy Fermi liquid at low temperatures, and

how the valence of these f-electrons changes as heavy Fermi liquids, or more exotic heavy fermion
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phases form. Well within the Kondo limit, charge fluctuations are frozen out and the valence is fixed

to an integer value. As the chemical potential of the conduction electrons is tuned, the valence be-

gins to fluctuate between two fixed values (see Figure 1.13 b) [93], and the Kondo temperature rises

monotonically with the strength of the valence fluctuations [94]. This increase is especially impor-

tant to understanding the the 115 family, where the 4f Ce 115s have a maximum Tc of 2.3K [76],

but the much more mixed valent 5f analogues, like PuCoGa5 have a maximum Tc = 18.5K [79].

A large N limit capturing both superconductivity and valence fluctuations is thus highly desirable.

Figure 1.13: (a) Energies of the Anderson atomic Hamiltonian. The zero of the energy (the con-
duction electron µ) is between εf and εf + U . (b) Relationship between the chemical potential, µ,
density of the conduction electrons, nc, and the valence of the f-electrons, nf . In the mixed valent
regimes (gray), where n < nf < n + 1, the chemical potential becomes pinned to εf (or εf + Uf )
as the f-level is filled. In this regime, mixing occurs only between fn and fn+1 valence states, in
contrast to noninteracting electrons, whose valences fluctuate between all possible values. A weak
hybridization, V between the c- and f- electrons smears out what would otherwise be a sharp cusp
between the linear dependence of nc on µ and the plateau, meaning that the chemical potential
is pinned to within a width ∆ = ρ(εf )V 2 of εf . Between these plateaus, the f-valence is nearly
integral, and this region, where ∆� εf defines the Kondo regime. (Adapted from Fazekas [93]).

The Anderson model contains two coexisting species of electrons: one weakly interacting and

mobile (c) and one strongly interacting and localized (f ),

H = Hc +Hf +Hmix. (1.5)

The first term describes free conduction electrons and the second is an atomic Hamiltonian with a
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strong on-site Coulomb repulsion (the atomic states are shown in Figure 1.13 a),

Hc =
∑
k

εkc
†
kσckσ, Hf =

∑
i

εff
†
iσfiσ + Uf n̂fi↑n̂fi↓. (1.6)

These two species mix quantum mechanically through a hybridization term [95],

Hmix = V
∑
i

c†iσfiσ + h.c., (1.7)

where here we assume an isotropic s-wave hybridization. While this approximation is sufficient to

capture much of the physics of heavy Fermi liquids, the full k- and spin- dependent hybridization

will be required to capture the nodal superconductivity explored in Chapter 4. We are primarily

interested in the Anderson lattice model given above, although the Anderson impurity model pro-

vides the foundation of many dynamical mean field theories [96, 97], which are themselves exact in

the limit of infinite dimension. The Anderson lattice model applies naturally to lanthanide and ac-

tinide materials, where the core f-electrons (4f or 5f ) are close to the nucleus, interacting strongly

with one another, while the weakly interacting outer s- and p- electrons constitute the conduction

electrons, along with electrons from any other weakly interacting atoms. The Kondo model is ob-

tained from the Anderson model by a Schrieffer-Wolff transformation integrating out the charge

fluctuations [53, 52], where the Kondo coupling,

JK =
V 2

|εf | +
V 2

εf + U
, (1.8)

arises from virtual charge fluctuations, as discussed previously.

The charge and spin features of the Anderson model can be seen in f-electron spectral function

or density of states, A(ω) which has three main features: a central Kondo resonance peak of width

TK pinned to the Fermi level, and two charge fluctuation side peaks at the energies E0 = −εf and

E2 = εf +U . These features are well-separated in the Kondo limit, as the charge fluctuation energy

scales are much larger than the hybridization scale, ∆ = ρ(εf )V 2. This separation requires strong
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Figure 1.14: (a) The Anderson model. (b) The f-electron density of states A(ω) contains a Kondo
resonance of width TK is pinned to the Fermi surface, while charge fluctuation side peaks occur
at −εf and εf + U . The energy ranges captured in the Kondo, infinite-U Anderson and Anderson
models are shown.

interactions: for U = 0, the conduction and f-electrons hybridize,A(ω) is just a Lorentzian of width

∆, the f-electron valence fluctuates between all possible values (n = 0, 1, 2), and TK = ∆ is just

this energy scale. As U increases, the charge fluctuation peaks separate out, and the central Kondo

resonance narrows significantly.

1.2.6 The infinite-U Anderson model and Hubbard operators

In the limit of large U , electrons hopping into and out of the f-orbital are strongly restricted by

the high energy cost of double occupancy. A proper treatment of this infinite U Anderson model

requires the introduction of Hubbard operators to project out any doubly occupied f-states [98].

These operators, Xab = |a〉〈b|, act within the atomic Hilbert space |a〉 = |0, ↑, ↓〉, where the diago-

nal Hubbard operators, Xaa are projection operators, and the off-diagonal Hubbard operators, Xσ0

and X0σ are projected creation/annihilation operators. The hybridization and atomic Hamiltonians
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may be rewritten with these Hubbard operators [99],

Hmix = V
∑
i

c†iσX0σ(i) + h.c., Ha = |εf |
∑
i

X00(i). (1.9)

Since Hubbard operators, like spins, do not obey canonical commutation relations, they also can-

not be treated directly within quantum field theory and must be represented as bilinears of fermions

and bosons chosen to maintain the Hubbard algebra. In the slave boson approach [100, 101], a bo-

son, b† is introduced to represent the empty state, while fermions, f †σ represent the singly occupied

spin states:

|0〉 = b†|Ω〉

|σ〉 = f †σ|Ω〉, (1.10)

where |Ω〉 is a vacuum containing no fermions or bosons. In effect, we separate the electron, X0σ =

b†fσ into charged, but spinless holons and neutral spinons, which now have the potential to move

separately - the ultimate in collective behavior. We can also ask which large N limit these slave

bosons represent. By examining the commutation relations of these operators, we can identify them

with the SU(N) large N limit, which can treat heavy Fermi liquids, but not superconductivity. In

Chapter 6, we introduce symplectic Hubbard operators, which correspond to symplectic spins to

treat the two channel Anderson model.

1.3 Adding charge fluctuations to a Heisenberg magnet

Doping holes into Mott insulators generates the cuprate family of unconventional superconductors,

the highest temperature superconductors found to date. Understanding how charge fluctuations

are slowly reintroduced into strongly correlated spin systems is widely believed to be essential to

understanding the superconducting mechanism.
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1.3.1 Strongly correlated insulators

Uncorrelated electrons (with full charge and spin fluctuations), hopping on a lattice,

Hc = −
∑
ij

tij

(
c†iσcjσ + h.c.− µ

∑
i

c†iσciσ

)
(1.11)

with amplitude tij , are best described in momentum space,

Hc =
∑
k

(εk − µ)c†kσckσ, (1.12)

where they form an energy band, εk (the Fourier transform of tij). Generally, there will be many

bands of electrons, each with spin degeneracy two, occupied up to the Fermi energy, µ. When the

Fermi energy lies between bands, there are an even number of electrons per site, and the material will

be insulating, while when µ lies within a band, it will be metallic [102]. Band theory is essentially

a theory of independent electrons, and it works extremely well for a large class of materials. It was

therefore quite surprising when, in 1937, de Boer and Verway [103], and Mott and Peierls [11],

realized that band theory fails for certain correlated insulators. These materials have an odd number

of electrons per unit cell, and should be band metals; they are instead very good insulators, known

as Mott insulators. Strong electron-electron interactions localize the electrons, which are clearly

strongly correlated, as they must know to avoid one another. Tuning the interactions induces a

metal-insulator phase transition, or Mott transition as a function of pressure or temperature.

Electrons interact through the repulsive Coulomb potential, V (ri − rj) = e2/|ri − rj |, which

is reduced to a short-ranged interaction by screening. The competition between the kinetic energy,

favoring metallic behavior, and the Coulomb repulsion, favoring electron localization is captured

most simply in the Hubbard model, introduced by Hubbard in 1963 [105],

H = −t
∑
〈ij〉

(
c†iσcjσ + h.c.

)
− µ

∑
i

c†iσciσ + U
∑
i

n̂i↑n̂i↓, (1.13)

The Hubbard U approximates the Coulomb potential with a local repulsive term, U > 0. Further
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Metallic

Magnetic Moments

4f

5f

3d

Increasing localizationIncreasing itineracy

Figure 1.15: The periodic table shows broad trends tuning itinerant electrons towards localization as
the atoms become more strongly correlated, based on Smith and Kmetko [104]. There are two trends
here: first, the decrease in localization as the strongly correlated electrons occupy orbitals with
more radial nodes, moving from the most localized 4f to 5f and 3d, and second, the contraction
within a row of the periodic table as the nuclear charge increases. Localized electrons tend to order
magnetically, but a lot of fascinating physics happens in the electrons on the edge of localization
- several of which we discuss in this dissertation (boxed atoms). In the case of the cuprates, the
atomic physics is localized, but itineracy is introduced by doping.

neighbor Coulomb interactions can be included in the extended Hubbard model, but the Hubbard

model already captures many correlated phases: metals, Mott insulators, magnets and supercon-

ductors. These ground states may be tuned by changing the ratio U/t or the filling n (by tuning

µ). For small U/t, the Hubbard model can be solved perturbatively, describing a Fermi liquid, but

perturbative techniques fail near the metal insulator transition.

Each site has four possible states: |0〉, | ↑〉, | ↓〉 or |2〉 = | ↑↓〉, with energies E0 = µ, E↑,↓ = 0,

and E2 = −µ+U , where the energy is measured from the Fermi level. The filling, n ranges from 0

to 2, and most interesting physics takes place near half-filling, n = 1. For sufficiently large U , there

are no doubly occupied sites, and the half-filled state is a Mott insulator, with only spin degrees of

freedom. At infinite U , these spins are free, and reintroducing virtual charge fluctuations leads to

antiferromagnetic order through superexchange, shown in Figure 1.16(b). This process only takes

place when the two spins are anti-parallel, andH = −4t2/U
∑
〈ij〉 PS=0(ij) projects out the singlet

configuration, where PS=0(ij) = 1/4− ~Si · ~Sj [19]. The low energy Hamiltonian of the half-filled
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Figure 1.16: (a) The Hubbard model consists of electrons hopping on a lattice with amplitude, t.
When two electrons sit on the same lattice site, it costs a Coulomb repulsion energy, U . (b) For
large U , there are virtual processes whereby an electron hops to a neighboring site, creating an
intermediate state of an empty and a doubly occupied site that costs energy U , and then hops back
again, gaining an energy ∝ t2/U . These superexchange processes can only take place when the
neighboring electrons are anti-parallel, due to the Pauli exclusion principle.

Hubbard model is therefore the antiferromagnetic Heisenberg Hamiltonian (section 1.1).

1.3.2 Doping a Mott insulator

Adding even one hole should turn a half-filled Mott insulator into a strongly correlated metal, how-

ever disorder localizes this hole immediately, and the antiferromagnetic Mott insulator is stable over

a finite region of doping. Such Mott insulators are the parent compounds of the cuprate family of

high temperature superconductors, discovered in 1986 by Bednorz and Müller [106]. Conventional,

weak-coupling superconductors are described by BCS theory [14], where the attractive phonon in-

teraction forms pairs of electrons into bosonic Cooper pairs [18], which Bose-condense to form a

superconducting state, with a maximum Tc well below the boiling point of liquid nitrogen. By con-

trast, the cuprate superconductors are strongly coupled, with a maximum Tc around 150K [107] and

their electronic pairing mechanism, resulting from the repulsive Coulomb interaction, falls outside

BCS theory. The phase diagram of these doped Mott insulators also contains a “pseudogap” phase
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reminiscent of uncondensed Cooper pairs above the superconducting dome, and a region of non-

Fermi liquid, strange metallic behavior suggesting a QCP concealed beneath the superconducting

dome [15]. Any complete theory must capture all of these exotic phases. While from 1986 to 2007,

the cuprates were the sole family of high temperature superconductors (though some heavy fermion

superconductors have similarly large values of Tc/T ∗), a new family of iron-based superconductors

was discovered in 2008, with a maximum Tc of 56K [108]. The phase diagram of these materials

shares many similarities with the cuprates (Figure 1.17) [109], however, the parent compounds are

just on the metallic side of the Mott transition [110].

Figure 1.17: (Top) Schematic phase diagrams of two high temperature superconducting families:
the cuprates (left), and the iron-pnictides (right). Both families possess a rich phase diagram, with
magnetism at low doping, Fermi liquid physics at large doping, and intermediate non-Fermi liquid
finite temperature phases above the superconducting dome, although the parent compounds are on
opposite sides of the Mott transition. (Bottom) The BCS superconducting gap, ∆k = 〈σ̃c†kσc†−k−σ〉
is isotropic around the Fermi surface, or s-wave (left). While the Coulomb repulsion disfavors
on-site pairing, it scales to weak coupling in BCS [111], allowing an s-wave gap. The Coulomb
repulsion cannot be neglected for strongly correlated superconductors, which instead develop nodal
gaps, where the pairing with a positive gap (red) is cancelled by that with a negative gap (blue).
The cuprates have a d-wave gap (middle), where this cancellation is exact, while the iron-based
superconductors have an s± gap (right) that has different signs on the two Fermi surfaces [108, 109].
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To understand these phase diagrams, we are interested in the low energy physics of the strongly

correlated large U limit. The Heisenberg model describes half-filling, but for n < 1 holes will hop

around in an antiferromagnetic background. Doubly occupied states must still be avoided, and the

hopping is not that of free electrons. Rather, it is projected hopping, described by the t− J model,

H = −t
∑
〈ij〉

Xσ0(i)X0σ(j) +
∑
ij

JijXσσ′(i)Xσ′σ(j), (1.14)

an effective Hamiltonian obtained from the Hubbard model with a canonical transformation similar

to the Schrieffer-Wolff transformation [112], and proposed as the relevant model for the cuprate

superconductors by Anderson [23]. The Hubbard operators, Xab (already discussed for the infinite-

U Anderson model) ensure that only empty sites, or holes can hop. While mean field theories have

played in important role in understanding the t − J model, to date there have been no consistent,

superconducting large N treatments. The introduction of symplectic Hubbard operators fills this

void, as we discuss in detail for the iron-based superconductors in Chapter 7.
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Chapter 2

Spins, time reversal and symplectic symmetry

2.1 What is a spin?

As we extend the theory of physical electron spins into a family of related theories, we will lose

some of the physics unique to these spins, so how do we guarantee that our resulting theories still

capture the defining characteristics of interacting spins? What defines magnetism? What defines a

spin?

The spin of an electron is an internal angular momentum quantized to have two states, ↑ and

↓, pointing along some quantization axis [113]. Thus, the electron is doubly degenerate. The spin

state of the electron wavefunction, described by a spinor, ( αβ ), is acted upon by the spin operators

~S = ~
2~σ, where ~σ = (σ1, σ2, σ3) are the Pauli matrices,

σ1 =

0 1

1 0

 , σ2 =

 0 i

−i 0

 , σ3 =

1 0

0 −1

 , (2.1)

which generate SU(2), the special unitary group of all 2× 2 unitary matrices [U †U = 1; detU =

1]. Any SU(2) matrix can be written U = exp(i~α · ~σ), and U acting on a spin rotates it within the

SU(2) spin space. Technically, the SU(2) group is generated by the su(2) algebra, defined solely

by the commutation relations of the Pauli matrices:

[σa, σb] = 2iεabcσc, (2.2)

where εabc is the Levi-Civita symbol, guaranteeing antisymmetrization. They also anticommute as

{σa, σb} = 2δab1. The Pauli matrices are a representation of this algebra, but any set of matrices

satisfying (2.2) also forms a representation, with larger representation corresponding to larger spins.

In real materials, several electrons may align to create a total spin S > 1/2. The spin quantization
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axes is still within three dimensional space, but the spins now take on 2S + 1 values, and are

proportional to a larger representation of SU(2). The Pauli matrices are the smallest, or fundamental

representation of SU(2) [114].

Figure 2.1: The three different types of spins found in real materials: Ising, XY, and Heisenberg.

In strongly correlated insulators, electrons lose their charge degrees of freedom and behave like

fixed spins. Instead of four states, |0〉, | ↑〉, | ↓〉, |2〉 = | ↑↓〉 per site, a spin points either | ↑〉 or

| ↓〉. In the simplest materials, these are Heisenberg spins, those described by SU(2), however,

microscopic details like the coupling of spin and orbital degrees of freedom or the effects of the

lattice [93] can reduce these down to XY spins, constrained within an easy plane and described by

the continuous group U(1) = {eiφ} or Ising spins, which are constrained to point along an easy

axis and are described by the discrete group Z2 = {±1}.

To understand the defining characteristics of a spin, the first, best place to look is at the symme-

tries. An SU(2) spin Hamiltonian has two symmetries - invariance with respect to SU(2) rotations

and time reversal invariance. XY and Ising spin Hamiltonians also obey time reversal and rotational

invariance, but under U(1) or Z2 rotations. The spins themselves define a unique direction on a

manifold, CP 1 for SU(2), and invert under time reversal, ~S → −~S. The ground states of mag-

netic Hamiltonians like the Heisenberg model can break the rotational and time reversal symmetries,

traditionally simultaneously, as in a ferromagnet, but more recently hypothesized states can break

either rotational symmetry, but not time inversion; e.g. a spin-nematic defines a unique direction,

but does not have magnetic long range order [115], or chiral spin states which break time reversal,
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but not rotational symmetry [116]. Certainly there are non-magnetic states, such as liquid crystal

displays, which also break rotational symmetry, so the rotational properties of spin are not enough

to define magnetism. We propose that both the rotational and time reversal properties of spins are

defining symmetries of magnetism, and that a largeN theory with broad applicability must maintain

both of these properties in the large N limit.

2.2 Time reversal in SU(2)

We begin by demonstrating the link between time reversal and symplectic symmetry. Time reversal

is an anti-unitary operator θ defined by its action on an electron wave function ψσ(x, t):

θψσ(x, t) = σ̃ψ∗−σ(x,−t), (2.3)

where ψ∗ is the complex conjugate of the wave function, and σ̃ = sgn(σ). More generally, θ is a

matrix operator, θ = ε̂K [117], where K is the complex conjugation operator, Kψ = ψ∗K and ε̂

is the antisymmetric matrix iσ2 = α̃δα,−β . A consistent definition of time reversal requires that θ

commute with the unitary rotation operators U , the members of the group SU(2), [U, θ] = 0, shown

in Figure 2.2, or written

UθU † = θ. (2.4)

Using the definition of θ = ε̂K, and noting that K converts U † to UT , we find

Uε̂UT = ε̂ (2.5)

This expression is a symplectic condition on the matrices, U because it requires the invariance of

an antisymmetric matrix ε̂ under orthogonal transformations. The unusual appearance of the trans-

pose UT rather than the Hermitian conjugate U † reflects the anti-unitary nature of time-reversal.
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Replacing U by an infinitesimal rotation, U = 1 + ~α · ~S, the symplectic condition requires that

~S → θ~Sθ−1 = ε̂~ST ε̂ = −~S. (2.6)

So the symplectic condition is equivalent to the inversion of all SU(2) spins under time-reversal.

Figure 2.2: The time reversal operator, θ and rotation operators U acting on a spin must commute.
(a) Depicts ~S θU−−→ −R~S. (b) ~S Uθ−−→ R(−~S), where R is the rotation performed by U . These two
are equivalent for all U in SU(2), and SP (N), but not in SU(N).

2.3 Time reversal in large N

To bring the powerful machinery of quantum field theory to bear on condensed matter problems, the

fields of interest must be second quantized, which is simple for fermions and bosons because they

obey canonical commutation and anti-commutation relations, e.g. - [ba, b
†
b] = δab, {fa, f †b } = δab.

Spins, on the other hand, obey the commutation relations (2.2), and cannot be second quantized

directly (to be precise, Wick’s theorem is violated [118]). However, spins may be represented with

bilinears of bosons or fermions chosen to satisfy spin commutation relations,

Ŝaj = ψ†j,ασ
a
αβψj,β, (2.7)
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where σa are the three Pauli matrices, and ψ†j = (ψ†j,+1, ψ
†
j,−1) is a two component spinor defined

on each site. These representations are known as Schwinger bosons [41] if ψ = b is bosonic, and

Abrikosov pseudo-fermions [45] if ψ = f is fermionic. The Pauli matrices here are just matrices,

not operators. Many representations satisfy (2.2) and different representations are appropriate for

different kinds of physics. Some representations, like the Holstein-Primakoff bosons [119], specify

a quantization axis and are appropriate for states with long range magnetic order, but the Schwinger

and Abrikosov representations are rotationally invariant, more appropriate for states without long

range order. These representations may be easily generalized to arbitrary groups by replacing the

Pauli matrices with the appropriate generators.

When this treatment is generalized to large N , the number of spin components increases from 2

to an even number N = 2k. Dropping the site index, we have T̂ aj = 1
2ψ
†
j,αT aαβψj,β , where

ψ† =
(
ψ†+1, ψ

†
−1, ψ

†
+2, ψ

†
−2, · · · , ψ†+k, ψ†−k

)
(2.8)

and T a are the generators some larger group, for example, SU(N). As time reversal is a defining

property of spins, we want to maintain this essential discrete symmetry as we extend our spin group.

However, the SU(N) generators divide into two classes under time reversal (Figure 2.3),

ε̂ (T a)T ε̂ =

 −T
a a ∈ {1, 2, . . . , DN}

+T a a ∈ {DN + 1, . . . , N2 + 1}
, (2.9)

where DN = 1
2N(N + 1). The first class can be identified as the generators of the symplectic

subgroup, SP (N), whose elements reverse under time reversal, just like the SU(2) spins. DN

is the number of N dimensional symplectic generators. To avoid confusion, we will label these

symplectic spins by Sa. The second class does not invert under time reversal, and does not form

a closed subalgebra of SU(N). When ψα is a fermionic operator, we can also define a charge

conjugation operator, C that converts particles into holes ψα
C→ α̃ψ†−α. The SU(N) spin operator

inverts under the combined operation Cθ, T a Cθ→ −T a, so that when the time reversal parity is
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ill-defined, the neutrality of the spin is also ill-defined. These generators then behave like electric

dipoles, not like magnetic moments, so we label them by Pa. For N = 2, SU(2) ∼= SP (2), and

there are no antisymplectic generators. However, for any N > 2, the two groups are no longer

isomorphic. For example, SU(4) consists of ten symplectic generators

Sa ∈


 i1

−i1

 ,

 ~σ

~σ

 ,

~σ
±~σ


 (2.10)

(corresponding to the four Dirac matrices γµ and their six commutators i
2 [γµ, γν ]), and five anti-

symplectic generators

Pa ∈


1

−1

 ,

 i~σ

−i~σ

 ,

 1

1


 . (2.11)

(corresponding to the γ5 matrix, and its product with the four Dirac matrices iγ5γu.)

We can derive an alternate way of writing the SP (N) generators by writing the SU(N) spin

operators as,

Tαβ = ψ†αψβ −
(nψ
N

)
δαβ, (2.12)

where nψ =
∑

α ψ
†
αψα is the number of particles that make up the spin. Under time reversal,

Tαβ θ→ α̃β̃T−β,−α, SU(N) spins have no well defined parity. By taking antisymmetric or symmet-

ric combinations of the SU(N) spins with their time-reversed version, we may again divide them

into two sets, the symplectic spins,

“magnetic” moments Sαβ = ψ†αψβ − α̃β̃ψ†−βψ−α, (θ, C) = (−,+) (2.13)

which invert under time reversal but are neutral under charge conjugation, and antisymplectic spins

“electric” dipoles Pαβ = ψ†αψβ + α̃β̃ψ†−βψ−α, (θ, C) = (+,−), (2.14)
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which are invariant under time reversal, but change sign under charge conjugation [120].

Here, the choice of SP (N) is motivated by the desire to maintain the time reversal symmetry

of spin in the large N limit, but Sachdev and Read originally developed SP (N) because, unlike

SU(N) it contains well defined particle-particle singlets [42]. SU(N) expansions are extremely

useful to particle physicists because there are two well defined color singlets - mesons and baryons.

Mesons are particle-antiparticle pairs, or in condensed matter, particle-hole pairs, while baryons

are products of N particles, forming the three quark baryons for SU(3), which have no condensed

matter analog except for N = 2, where these are particle-particle pairs - e.g. valence bonds [17] or

Cooper pairs [18]. In the large N limit, the condensed matter version of SU(N) has only particle-

hole pairs. However, the group SP (N) does have well defined particle-particle singlets, which are

the pairing of a particle and its time reversed twin, and particle-hole pairs, but no baryons. The

presence of these well defined singlets is only possible because of the existence of a well defined

time reversal symmetry of spin.

2.4 Decoupling Spin Hamiltonians

In order to treat the Heisenberg and Kondo Hamiltonians, we would like to rewrite the spin interac-

tions, J ~S1 · ~S2 without explicit reference to the spin generators. In SU(N), this is done by using

the SU(N) completeness relation:

∑
a

T aαβ · T aγη = 2δαηδβγ − 2
N
δαβδγη (2.15)

We now derive a similar SP (N) completeness relation. Any even dimensional matrix can

be split into a symplectic and antisymplectic part: M = MS + MA, where the symplectic part

satisfies MS = −ε̂MT
S ε̂

T and the antisymplectic part MA = ε̂MT
A ε̂

T . The symplectic part can be

obtained by projection, MS = PM , where P is defined such that PMA = 0. We recognize that

MA − ε̂MT
A ε̂

T = 0, and take

PM =
1
2
(
M − ε̂MT ε̂T

)
(2.16)
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This expression can be written out in terms of components,

PαβγηM
ηγ =

1
2

[Mαβ − εαγMηγεβη ]

=
1
2

[δαη δ
β
γ − εαγ εβη ]Mηγ , (2.17)

so that

Pαβγη =
1
2

[δαη δ
β
γ − εαγ εβη ]. (2.18)

Since the symplectic matrices form a group, MS can always be expanded in the symplectic genera-

tors, Sa, MS =
∑

amaSa. With the normalization Tr
[SaSb] = 2δab, consistent with the SU(2)

Pauli matrices, the coefficient ma = 1
2Tr [SaM ], giving PM = 1

2

∑
a Tr [SaM ]Sa. Expanding

both sides in terms of components and canceling Mηγ , we find

Pαβγη =
1
2

∑
a

SaαβSaγη. (2.19)

Finally, by inserting (2.18), we obtain the SP (N) completeness relation,

∑
a

(Sa)αβ(Sa)γη = [δαη δ
β
γ − εαγ εβη ]. (2.20)

Inserting the spin representation, the symplectic N spin interaction becomes the sum of two

terms

Ŝ1 · Ŝ2 = −B†21B21 + ηψA
†
21A21 (ηψ = ±1), (2.21)

where

B†21 =
1
2

∑
σ

σ̃ψ†2σψ
†
1−σ (2.22)

creates a spin singlet pair between spins 1 and 2, and

A†21 =
1
2

∑
σ

ψ†2σψ1σ (2.23)
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creates a particle-hole singlet between these two spins. The signature, ηψ depends on whether

ψ is fermionic (ηψ = −1) or bosonic (ηψ = +1). In the large N limit, these bond variables

acquire expectation values. For N = 2, this decoupling is one of many alternative mean field

theories [121, 122], however in the symplectic N limit, this decoupling is unique. In the context of

frustrated magnetism, the two spins are on different sites, 1 = i, 2 = j, and B†ji creates a valence

bond between the two sites, leading to antiferromagnetic correlations, whileA†ji resonates the end of

a valence bond between sites i and j, causing both sites to be simultaneously antiferromagnetically

correlated with a third site, thus ferromagnetically correlated with one another. In the case of Kondo

physics, the two spins are on the same site, but of different natures: S1 is the spin-density of the

conduction electrons, while S2 is the local moment, or f-electron spin. Now A†12 = c†αfα hybridizes

the c- and f-electrons, and B†12 = α̃c†αf †−α hybridizes a c-electron with an f-hole; the simultaneous

condensation of these two bond variables leads to composite pair superconductivity, as we shall

show in Chapter 4.

Now we would like to compare this representation with SU(N) [123] and the previous SP (N)

treatment [42]. The SU(N) spin Hamiltonian is a dot product between SU(N) spins, T̂ , which can

be rewritten using the SU(N) completeness relation(2.15) to obtain the usual sum of ferromagnetic

bonds [123] or Kondo hybridization [124, 125, 126],

HSU(N) =
Jij
N
T̂i · T̂j =

2Jij
N

A†jiAji (2.24)

=
Jij
N

(
P̂i · P̂j + Ŝi · Ŝj

)
, (2.25)

where Jij is rescaled byN so thatH is extensive inN . For simplicity, we have focused on the mag-

netic case with the spins at two different sites. As one would expect in SU(N), the symplectic and

antisymplectic spins are treated on equal footing, which leads to a completely ferromagnetic theory.

Bipartite antiferromagnets can also be studied in SU(N) by performing a special transformation

(not time reversal) on one sublattice, but SU(N) cannot treat more complicated, e.g.- frustrated,

antiferromagnets.



40

The SP (N) Hamiltonian, as defined by Sachdev and Read [42] was originally written in terms

of valence bonds, HSP (N) = −JijB†jiBji, in order to treat frustrated antiferromagnets. When we

rewrite it in terms of magnetic and electric dipoles, we find

HSP (N) = −Jij
N
B†jiBji (2.26)

=
Jij
2N

(
Ŝi · Ŝj − P̂i · P̂j

)
. (2.27)

Surprisingly, the SP (N) large N theory weights the physical symplectic and unphysical antisym-

plectic spins equally, but with opposite signs. SP (N) was so called because the Hamiltonian sat-

isfies symplectic symmetry, not because it describes the interactions of symplectic spins. In fact,

any combination of the two terms B†B and A†A has symplectic symmetry, including SU(N). The

requirement that our interactions include only magnetic, symplectic spins is more stringent,

and this method is what we call symplectic-N , while we will continue to refer to Sachdev and

Read’s formulation as SP (N).

Approach H(S,P) H(b†, b)

SU(N) J (S · S + P · P) JA†A

SP (N) J (S · S − P · P) −JB†B

Symplectic-N JS · S J
(−B†B +A†A

)
Why is it important to exclude the non-time reversing dipoles? Both the symplectic (Ŝi · Ŝj)

and antisymplectic (P̂i · P̂j) interactions are invariant under time reversal, however, the important

difference is not in the Hamiltonian, but in the states and the spin dynamics. These are far more

coupled than the Hamiltonian suggests because the SU(N) spin T̂ does not act as a vector, and the

antisymplectic and symplectic directions are not independent directions, so that T̂ is unable to point

in a purely symplectic direction. And even if the ground state is the one of interest, the presence of

antisymplectic interactions affects the dynamics of the symplectic spins, dynamically violating the

closure of the symplectic subgroup and disrupting any particle-particle singlets.
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2.5 Staying in the physical subspace: constraints

The Fock space of the bosonic and fermionic spin representations contain more states than the

physical spin space. In the bosonic case, the total spin on the site, nb = 2S is allowed to take on

any value. The fermionic case has similar problems, as nf can take on any value from 0 to N . In

order to faithfully represent the spin, we must fix the spin Casimir, ~S2 = S(S + 1), which depends

on the spin group and representation chosen. This constraint is then implemented by a Lagrange

multiplier on each site.

2.5.1 Fermionic constraints and SU(2) symmetry

Before we discuss the fermionic spin Casimir, we first wish to discuss the special SU(2) symmetry

appearing in the fermionic representation. The existence of this SU(2) symmetry can be seen by

introducing the isospin vector, ~Ψ = (Ψ1,Ψ2,Ψ3) = f̃ †α~τ f̃α, where

Ψ1 =
(

Ψ† + Ψ
)
, Ψ2 = −i

(
Ψ† −Ψ

)
Ψ3 =

∑
α>0

f †αfα − f−αf †−α = nf −N/2, (2.28)

where nf =
∑

α f
†
αfα is the number of fermions and Ψ† creates an s-wave pair, Ψ† = 1

2

∑
α α̃f

†
αf
†
−α.

The isospin vector satisfies an SU(2) algebra, [Ψa,Ψb] = 2iεabcΨc. The inversion of spins under

time reversal ensure that these pair creation operators, Ψ† are really creating spin singlets, or in other

words, that Ψ† commutes with Ŝ. This commutation can be seen by computing the commutation

relations directly using the spin representation, Sαβ = f †αfβ + α̃β̃f−αf
†
−β . The commutation of a

fermion with the spin is, [
Sαβ, f

†
γ

]
= 2f †δP

γδ
αβ, (2.29)

while the time-reversed fermion gives,

[
Sαβ, γ̃f

†
−γ
]

= −2δ̃f †−δP
γδ
αβ. (2.30)
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And the commutator is,

[
Sαβ, γ̃f

†
γf
†
−γ
]

= f †γ
[
Sαβ, γ̃f

†
−γ
]

+
[
Sαβ, f

†
γ

]
γ̃f †−γ

= f †γ
[
2P γδαβ − 2P γδαβ

]
δ̃f−δ = 0. (2.31)

So we see that
[
Sαβ,Ψ†

]
= 0, which means not only that pairs are invariant under SP (N) spin

rotations, but also that the SP (N) spin generators are invariant under the particle-hole rotations

generated by Ψ. Together with [nf , Sαβ] = 0, this commutation relation shows that the spin is

invariant under a continuous SU(2) particle-hole transformation,

fα −→ ufα + vα̃f †−α, (2.32)

where |u|2 + |v|2 = 1. So, for fermionic symplectic spins, the time reversal symmetry gives rise to

an SU(2) gauge symmetry. This symmetry was first discovered by Affleck et al. for SU(2) spins,

and we have now shown that this SU(2) symmetry survives for all N , in fermionic symplectic-N .

We can compute the fermionic spin Casimir, using the completeness relation(2.20), obtaining

Ŝ2 =
∑
a∈g

(f †α(σaN )αβfβ)(f †γ(σaN )γδfδ)

= (f †αfβ)(f †γfδ)[δαδδβγ + εαγεδβ]. (2.33)

This expression can also be obtained by directly expanding the unconstrained sum 1
2

∑
α,β Ŝ

αβŜβα.

By normal ordering the fermion operators in the second term, we obtain

Ŝ 2 = (f †αfβ)(f †βfα) + α̃β̃(f †αf−β)(f †−αfβ)

= nf (N + 2− nf )−
∑
α,β

(α̃f †αf
†
−α)(β̃f−βfβ),

= nf (N + 2− nf )− 4Ψ†Ψ. (2.34)
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We can use the isospin vector, (6.24) to rewrite the spin Casimir simply as,

Ŝ 2 =
N

2
(
N

2
+ 2) + 2Ψ3 − (Ψ3)2 −

Ψ2
1+Ψ2

2−i[Ψ1,Ψ2]︷ ︸︸ ︷
4Ψ†Ψ

=
N

2
(
N

2
+ 2)− ~Ψ2, (2.35)

since [Ψ1,Ψ2] = 2iΨ3. Alternatively,

1
4(S2 + ~Ψ)2 = j(j + 1), (j = N/4), (2.36)

where, since N is any even number, j is an integer or half-integer. For N = 2, this identity

shows that the sum of spin and charge fluctuations are fixed for conventional spin 1/2 fermions, and

symplectic-N generalizes this identity for all N . When the isospin is zero, ~Ψ = 0, the magnitude of

the spin is maximal, and S2 = N/2(N/2+2). When treating spin Hamiltonians, we will always use

this maximal spin constraint, however, when we reintroduce charge fluctuations, ~Ψ will be nonzero.

This constraint imposes three conditions on any physical state |ψ〉:

Ψ3|ψ〉 = (nf −N/2)|ψ〉 = 0,

Ψ†|ψ〉 =
∑
α>0

f †αf
†
−α|ψ〉 = 0,

Ψ|ψ〉 =
∑
α>0

fαf−α|ψ〉 = 0. (2.37)

The first constraint ensures that the state is half-filled, nf = N/2, while the last two terms ensure

that there are no singlet pairs in any physical state. These additional constraints are especially impor-

tant when examining superconductivity, as they enforce the strong Coulomb repulsion, eliminating

any s-wave pairing.

In the path integral formulation, we impose the above constraints through the following term in
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the action

HC = λ−f †αf
†
−α + λ3(nf −N/2) + λ+f−αfα (2.38)

where λ = (λ1, λ2, λ3) is a vector boson field coupling to the isospin τ of the f-spin and λ± =

λ1 ± iλ2.

2.5.2 Bosonic constraints

In the Schwinger boson representation, with the generators Γa, the Casimir is written,

Ŝ2
j =

∑
a

(
1
2
b†jαΓaαβbjβ)(

1
2
b†jγΓaγηbjη). (2.39)

For symplectic spins, the completeness relation(2.20) is used to rewrite the Casimir as

Ŝ2
j =

1
4

(
b†jαbjβ

)(
b†jγbjη

)
[δαηδβγ + εαγεηβ]

=
1
4

(
b†jαbjβb

†
jβbjα + α̃β̃b†jαbj−βb

†
j−αbjβ

)
=

1
4

([
b†jαbjαbjβb

†
jβ − nbj

]
+
[
α̃β̃b†jαb

†
j−αbj−βbjβ + nbj

])
=

1
4
b†jαbjαbjβb

†
jβ, (2.40)

where nbj =
∑

α b
†
jαbjα is the number of bosons on a site j. The last equality is due to the vanishing

of antisymmetric combinations of bosons, α̃b†jαb
†
j−α on site. Thus, for symplectic N , the Casimir

is given by

Ŝ2
j =

1
4
nbj (nbj +N) , (2.41)

and is set by fixing the number of bosons on each site. If we choose the convention nbj = NS, the

constraint becomes

Ŝ2
j =

1
4
N2S(S + 1).

The Casimir for SU(N) can be obtained similarly, using the SU(N) completeness relation(2.15)
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instead of (2.20):

T̂ 2
j =

1
2

(
nb(nb +N)− nb − 1

N
n2
b

)
, (2.42)

where we have dropped the j index on nb for clarity. Using the consistent convention nb = NS,

the SU(N) constraint becomes

T̂ 2
j =

1
2

(N2 −N)S(S + 1).

ForN = 2, this reduces to S(S+1) and the SU(N) and SP (N) Casimirs are identical, as required.

For all other N , T̂ 2
j will be larger. This means that the antisymplectic spins, P̂2

j = T̂ 2
j − Ŝ2

j can

never be removed for any N > 2. In the large N limit, they are forced to have equal magnitudes:

P̂2
j = Ŝ2

j .

At first sight, this requirement is quite strange. After all, there are N2 − 1 independent SU(N)

generators, which we have been treating as a vector, T , why can the spin not point in N2 − 1

directions? The answer is that not all directions of the SU(N) vector give rise to different spins.

The spin itself is given by 1
2b
†
j · T · bj , and b has N components. The constraint removes one more

degree of freedom. For a general state, b is a bosonic vector, but when the spins order,

〈Ŝj〉 =
1
2
〈b†jαSαβbjβ〉 =

1
2
〈b†〉jαSαβ〈b〉jβ, (2.43)

〈b〉 is anN component complex vector, so the spin can only take on 2N−1 different configurations.

The spins are constrained to a 2N − 1 dimensional manifoldM.

To be more mathematically precise, this manifold M is a “homogeneous space” of SU(N):

SU(N)/Hx, where Hx is the “stabilizer” of x, the subgroup which leaves an SU(N) element x

invariant:

Hx = {g ∈ SU(N)|g · x = x}. (2.44)

Without loss of generality we can choose x to be the spin defined by bT = (1, 0, . . . 0). Rotating b

by any matrix which affects only the lowestN−2 entries clearly leaves x invariant, as does rotating
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the phase of the upper two entries, so Hx = SU(N − 2) x U(1), and

MSU(N) = SU(N)/SU(N − 2)xU(1) ∼= CPN−1. (2.45)

The full SU(N) spin lives on the manifold CPN−1, while the symplectic spin 1
2b
†
j · S · bj lives on

a 2N − 1 dimensional manifold, given by

MSP (N) = SP (N)/SP (N − 2)xU(1). (2.46)

Since P̂ is nonzero, MSP (N) is not contained within MSU(N); in fact, the two manifolds have

equal dimension, although they are not isomorphic. Rather, any point onMSP (N) will correspond

to a point on MSU(N). Strictly speaking, this manifold is the order parameter manifold for a

long range ordered state, however, it paints a useful picture of the relationship between SU(N)

and SP (N) spins. Furthermore, the order parameter manifold will be essential in describing the

magnetically ordered state, where, for a spiral state which completely breaks the symmetry, the

number of Goldstone modes will be 2N − 1.

2.6 Hubbard Operators

When charge fluctuations are reintroduced into strongly correlated spin problems, they must still be

strongly restricted by the large on-site repulsion U . Electrons hopping into and out of a Hubbard

orbital are constrained by the high energy cost of double occupancy, and a proper treatment of

this projected hopping requires the introduction of Hubbard operators to project out any doubly

occupied states [98]. These operators, Xab = |a〉〈b|, act within the space |a〉 = |0, ↑, ↓〉, where the

diagonal Hubbard operators, Xaa are projection operators, satisfying the completeness relation,

X00 +
∑
σ

Xσσ = 1, (2.47)
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Figure 2.3: SU(N) spins consist of two components: symplectic directions that reverse under time
reversal, and antisymplectic directions that are invariant under time reversal, which prevent SU(N)
spins from forming two particle singlets. However, if the spins are projected into the symplec-
tic plane, these components can form two particle singlets, which are well defined as long as the
antisymplectic components are noninteracting.

and obeying bosonic commutation relations. The off-diagonal Hubbard operators, Xσ0 and X0σ are

projected creation/annihilation operators, which obey the anti-commutation relations,

{Xσ0, Xσ′0} = Xσσ′ +X00δσ,σ′ . (2.48)

We say that the Hubbard operators together satisfy a graded Lie algebra, which is bosonic for

some components and fermionic for the others. Physically, this expression encodes the relationship

between hopping an electron on and off a site and flipping the spin.

Since Hubbard operators, like spins, do not obey canonical commutation relations, they cannot

be treated directly within quantum field theory. Also like spins, Hubbard operators may be repre-

sented as bilinears of fermions and bosons. In the slave boson approach [100, 101], a boson, b†
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Figure 2.4: A spin flip, S− = X↑↓ is equivalent to hopping an electron off the site and back on again
with the opposite spin.

is introduced to represent the empty state, while fermions, f †σ represent the singly occupied spin

states:

|0〉 = b†|Ω〉

|σ〉 = f †σ|Ω〉, (2.49)

where |Ω〉 is a vacuum containing no fermions or bosons. It can be checked explicitly that the

projected hopping operators,

X0σ = b†fσ, (2.50)

satisfy the commutation relations, (6.15), and X00 = b†b counts the number of bosons. In effect,

we separate the electron into charged, but spinless holons and neutral spinons, which now have the

potential to move separately - the ultimate in collective behavior. Here, we have chosen the holon to

be bosonic and the spinon to be fermionic, but we could just have easily made the opposite choice,

called the slave fermion representation. As with spins, the physics does not depend on the particular

representation for N = 2, but as we go to the large N limit, the slave boson representation easily

captures the physics of heavy Fermi liquids and superconductivity, while slave fermions describe

magnetism. In this dissertation we are more interested in superconductivity, so we stick with the

slave boson representation.

The constraint of no double occupancy fixes the total number of particles, nb + nf = 1, en-

forced at each site by a Lagrange multiplier, λi. This constraint eliminates all but the three physical
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atomic states (2.49). Since the constraint generally commutes with the Hamiltonian, the physical

and nonphysical states do not mix. As these Hubbard operators are invariant under a local U(1)

gauge transformation, bi → bieiθi , fiσ → fiσeiθi [127, 128], they are known as U(1) slave bosons.

By examining the anti-commutation relations, we see thatXσσ′ = f †σfσ′ is an SU(N) spin flip, and

these U(1) slave bosons correspond to SU(N) spins in the large N limit.

2.7 Symplectic Hubbard operators

In order to develop a symplectic slave-boson approach, we must find a slave boson representation

where the spin-flips associated with removed and then replacing an electron,

{Xα0, Xβ0} = Xαβ +X00δα,β, (2.51)

are symplectic spin-flips,

Sαβ = f †αfβ + α̃β̃f−αf
†
−β. (2.52)

The spin operators, Sαβ are the traceless forms of the Hubbard operators, Xαβ ,

Sαβ = Xαβ − Xγγ

N
, (2.53)

where the repeated γ is summed over. We can also rewrite (2.51) as,

{Xα0, Xβ0} = Sαβ +
(
X00 +

Xγγ

N

)
δα,β. (2.54)

The algebra requires the introduction of two slave bosons,

X0α = b†fα + a†α̃f †−α

X00 = b†b+ a†a. (2.55)

Doubling the number of slave bosons preserves the symplectic character of the spins and we shall
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see that this encodes the hard-to-enforce absence of double occupancy as a more mathematically

tractable SU(2) gauge symmetry. These Hubbard operators can be written more compactly by

using the Nambu notation,

X0α = B†f̃α, X00 = B†B

where B† =
(
b†, a†

)
, and f̃α =

 fα

α̃f †−α

 . (2.56)

Due to their neutrality, the spins are invariant under a continuous particle-hole symmetry, fα →

ufα + vα̃f †−α, which is reflected in the requirement of two types of bosons. The empty state does

not distinguish between zero and two fermions, and thus requires two bosons to keep track of the

two ways of representing the empty state, b†|Ω〉 and a†f †↑f
†
↓ |Ω〉 = a†Ψ†|Ω〉, where |Ω〉 is the

vacuum containing no particles of any kind. Of course, there is only one physical empty state, as

becomes clear when we restrict these Hubbard operators to the physical subspace. As discussed in

section 2.5.1, in order to faithfully represent the symplectic spins, the sum of the spin and charge

fluctuations must be fixed, ~S2 + ~Ψ2 = N/2(N/2 + 2). In the pure spin model, this constraint is

enforced by setting ~Ψ = 0, here we must equate our two types of charge fluctuations, by setting

~Ψ = −B†~τB (these have opposite signs because B† creates holes). The constraint is therefore

~Q = B†~τB + f̃ †α~τ f̃α = 0, which commutes with the Hamiltonian, so that the physical subspace

does not mix with any unphysical spaces. Written out explicitly,

Q3 =
∑
α>0

f †αfα −N/2 + b†b− a†a = 0

Q+ =
∑
α>0

f †αf
†
−α + b†a = 0

Q− =
∑
α>0

f−αfα + a†b = 0. (2.57)

The constraint reflects the neutrality of the spins under charge conjugation: Q3 conserves total

electromagnetic charge, and prevents doubly occupancy, while Q± kills any states with s-wave

pairs on-site. It is clear from this constraint that b and a have opposite gauge charges, and the only



51

gauge invariant states satisfying the constraint (for N = 2) are,

|α〉 = = f †α|Ω〉

|0〉 = =
(
b† + a†Ψ†

)
|Ω〉. (2.58)

For N = 2, these Hubbard operators are the SU(2) slave bosons introduced by Wen and Lee in the

context of the t−J model [129]. Here, it becomes clear that the SU(2) structure is a consequence of

symplectic symmetry, present in both the symplectic-N spin and Hubbard operator representations

for all N . We can physically interpret the SU(2) symmetry as the result of charge fluctuations in

the presence of a particle-hole symmetric spin.

We apply these Hubbard operators both to the two channel Anderson model, in chapter 6 and

the t−J model in chapter 7, where the symplectic symmetry allows us to examine superconducting

ground states.
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Chapter 3

Frustrated magnetism

The search for simple, controlled approximations which capture the collective behavior of matter

is a key goal of condensed matter. In quantum magnetism, this search is hindered by the lack of a

small parameter; after more than a decade, theorists and experimentalists are still searching for a

physically realizable quantum spin liquid [21], and the ground state behavior of highly frustrated

magnets, like the kagomé [22, 130, 131], pyrochlore [132, 22] and hyperkagomé [133, 134, 135]

lattices is still unclear. One approximation that has proven successful is the “large N” expansion,

which generalizes the model of interest to a family of models where the number of internal degrees

of freedom is indexed by an integer N . As N goes to infinity, central limit effects permit the

underlying collective behavior of the model to be solved exactly, and finite N properties may be

obtained from a power series expansion in 1/N about this solution.

The basic equation of quantum magnetism is the Heisenberg Hamiltonian,

H =
∑
ij

Jij ~Si · ~Sj (3.1)

where the spin on each site, ~Si lives in the group SU(2). The exchange coupling J can be either

positive or negative, for simple lattices these lead to antiferromagnetic or ferromagnetic ground

states, respectively. Both ground states break both spin rotational and time reversal symmetries, but

the antiferromagnet is invariant under the combination of time reversal and translation by one lattice

site. More complicated lattices can lead to spins which are not collinear, so called spiral magnets,

or possibly to a state in which the spins are not ordered at all, a spin liquid.
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3.0.1 Previous large N treatments of the Heisenberg model

The Heisenberg model has one energy scale, J , and the J = 0 state is extensively degenerate.

There are therefore no natural small parameters with which to conduct perturbation theory, and the

Heisenberg model is a prime candidate for large N expansions. The first class of such limits is

semi-classical: the large S limit, which corresponds to taking arbitrarily large spin representations

was originally introduced by Anderson [31] and Dyson [32] to study spin fluctuations in magneti-

cally ordered states. In the classical limit, S → ∞, spins become three dimensional vectors with

magnitude S, and the ground state energy is E0 = −S2J( ~Q), where J( ~Q) is the Fourier transform

of the Jij evaluated at the ordering vector, ~Q; for example, ~Q = ~0, ~π describe ferromagnetic and

antiferromagnetic orders, respectively. The classical ground state is always ordered, unless there is

a degenerate manifold of ~Q’s, and the O(S) terms describe spin wave fluctuations, which diverge

when frustration, dimensionality, or simply temperature, destabilize the ordered state. However, the

large S limit gives little information about magnetically disordered states. Meanwhile, a different

semi-classical treatment, mapping the long wavelength behavior of a disordered Heisenberg magnet

to a continuum nonlinear sigma model yields a lot of information about disordered one dimensional

systems, but it is unclear how it fails for small S [36, 34, 35].

It is therefore desirable to develop a quantum large N limit, which can be done by generalizing

SU(2) to some larger group. The spins are now proportional to the generators of a representation

of this larger group. The most natural idea seems to be to generalize SU(2) to SU(N), the group

of N ×N special unitary matrices. SU(N) has many more representations than SU(2) [136, 137],

but there are two simple choices: symmetric bosonic representations, where larger representations

again represent larger spins set by nb = 2S [123]; and an antisymmetrized fermionic representation,

which represents spin 1/2 with nf = 1 [37]. The Heisenberg Hamiltonian can be rewritten,

H =
J

N

∑
ij

~Si · ~Sj =
J

N

∑
ij

Sαβ(i)Sβα(j), (3.2)

where Sαβ = ψ†αψβ are SU(N) spins, α ∈ {1, . . . , N}, ψ is either fermionic or bosonic, and J
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Figure 3.1: The various large N techniques in magnetism. Either the spin, S can become large, in a
semi-classical limit, where the ground state is generally ordered (shaded portion of the diagram), or
the spin degeneracy, N can become large, giving rise to a quantum mean field which may be either
ordered or disordered (unshaded). The fermionic large N theory captures the extreme quantum
limit, far from magnetic order, while the bosonic large N theory can keep 2S/N fixed as N → ∞
and treat both order and disorder, and the nonlinear sigma model (NLSM) treats the phase transition
between these two ground states semi-classically. Modified from [136].

is rescaled by N to make H extensive in N . Arovas and Auerbach introduced the bosonic SU(N)

(Sαβ = b†αbβ) [123], where

H = J
∑
ij

(
b†iαbjα

)(
b†jβbiβ

)
. (3.3)

(
b†iαbjα

)
coherently hops a Schwinger boson between sites, correlating them ferromagnetically. In

the large N limit,
(
b†iαbjα

)
is replaced by its expectation value, 〈b†iαbjα〉. By transforming Sαβ →

S̃αβ = −b†βbα on one of the two sublattices, this method can also treat bipartite antiferromagnets,

where
(
b†iαb

†
jα

)
creates an antiferromagnetic singlet, or valence bond, as can be seen by reversing

the transformation [138]. To get a little more technical, the transformation is equivalent to putting

spins in representation A on sublattice A and spins in the conjugate representation, Ā on sublattice

B. For SU(2), all representations are self-conjugate, and the same representation can be placed on
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every site. However, the symmetric representations of SU(N) are not self-conjugate for N > 2,

requiring this peculiar transformation. The SU(N) mean field theory agrees well with exact Bethe-

Ansatz results on spin chains [139], except for half-integral S, where the mean field theory predicts

a gap where the ground state is gapless, and the first order in 1/N corrections are necessary (and

sufficient) to restore the gapless nature of the state [136]. With this caveat, the large N limit works

well for ferromagnets and bipartite antiferromagnets, but the spin transformation is impossible for

frustrated lattices with more than two sublattices.

The fermionic SU(N) approach, introduced by Affleck and Marston [37, 140], always has an

antisymmetric self-conjugate representation, and can be used to study frustrated lattices, however,

S is fixed to 1/2 while N gets large, making S/N extremely small. The fermionic representation

describes the extreme quantum limit, and can never capture long range order, which is easily de-

scribed by Bose condensation in the bosonic representation [141]. The fermionic large N limit is

useful for studying spin liquid states, but not for determining if a particular model will have a spin

liquid ground state in the first place.

In order to treat frustrated antiferromagnets for finite S/N , Sachdev and Read [42, 142] intro-

duced the SP (N) Hamiltonian,

H = −
∑
ij

Jij
N

(
b†iαα̃b

†
j−α
)(

bj−ββ̃biβ
)
, (3.4)

where N must be even, α ∈ {−N/2, . . . , N/2} and α̃ = sgn(α).
(
b†iαα̃b

†
j−α
)

explicitly cre-

ates a valence bond singlet between sites i and j, and this Hamiltonian can treat antiferromagnetic

correlations on any lattice [130, 132, 134, 135]. It turns out (as we showed in Chapter 2) that

this Hamiltonian is not constructed from the generators of the SP (N) group; instead it breaks the

SU(N) symmetry of the Hamiltonian down to SP (N). Just as SU(N) naturally treats only fer-

romagnetism, SP (N) can only naturally treat antiferromagnetism. Here, we develop the bosonic

symplectic-N approach for the Heisenberg model, which enables us to treat ferromagnetism and

antiferromagnetism on equal footing.
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The structure of this chapter is as follows. In section 3.1, we review the bosonic representation

of symplectic spins and discuss the importance of removing the anti-symplectic spins to obtain the

correct ground states and spin dynamics. In section 3.2, we derive the mean field equations for a

generic Heisenberg magnet in the symplectic-N limit, while in section 3.3, we apply these ideas to

the two dimensional J1 − J2 model, finding both the zero temperature and finite temperature phase

diagrams. Finally, in section 3.4, we draw conclusions about the application of symplectic-N to

other models.

3.1 Time reversal and symplectic symmetry

An SU(2) spin Hamiltonian has two symmetries - invariance with respect to SU(2) rotations and

time reversal invariance, where we have shown in Chapter 2 that the inversion of spins under time

reversal,

~S → θ~Sθ−1 = ε̂~ST ε̂ = −~S, (3.5)

is equivalent to the symplectic condition,

Uε̂UT = ε̂. (3.6)

So maintaining the time-reversal symmetries of SU(2) spins in the large N limit requires the use of

symplectic spins,

Sαβ = b†αbβ − α̃β̃b†−βb−α, (3.7)

where

α ∈ {−N/2, ..,−1, 1, .., N/2}, and α̃ = sgn(α). (3.8)

The Heisenberg Hamiltonian, (3.1) is written,

∑
ij

Jij
N
Ŝi · Ŝj =

Jij
N

(
−B†jiBji +A†jiAji

)
(3.9)
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where

B†ji =
1
2

∑
σ

σ̃b†jσb
†
i−σ (3.10)

creates a valence bond, or spin singlet pair, between sites i and j, and

A†ji =
1
2

∑
σ

b†jσbiσ (3.11)

creates a ferromagnetic bond, which implies the coherent hopping of Schwinger bosons from site to

site. In the language of valence bonds, a ferromagnetic bond can be thought of as resonating one end

of a valence bond between sites i and j, causing both sites to be simultaneously antiferromagneti-

cally correlated with a third site, thus ferromagnetically correlated with one another. In this sense,

it is a frustrating field. Most generally, a ferromagnetic bond on a link with antiferromagnetic J , or

vice versa, can be considered frustrating fields, however, we will usually be dealing with entirely

antiferromagnetic lattices, where any ferromagnetic bond is a frustrated bond. This decoupling is

identical to the SU(2) mean field theory introduced by Ceccatto et al. [121], now controlled by the

large N limit of properly time reversing spins.

Antiferromagnetism Ferromagnetism

1 2

1 2

Figure 3.2: The symplectic-N Heisenberg Hamiltonian contains terms,B† that create valence bonds
(blue) that antiferromagnetically correlate two spins, and terms, A† that hop the ends of valence
bonds between two sites, so that these two sites become antiferromagnetically correlated with a
third site, and thus ferromagnetically correlated with one another (red).

This Hamiltonian must be supplemented with the constraint, derived in section 2.5.2, that nbj =
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2S on each site to ensure that Ŝ2
j = 1

4N
2S(S + 1). This constraint fixes the size of the symplectic

spins, but we must remember that because of the relationship between the spin Casimirs of the

SU(N) and SP (N) groups, the anti-symplectic spins have equal magnitudes in the large N limit:

P̂2
j = Ŝ2

j , and in general the anti-symplectic spins will always be present for any N > 2.

We now wish to compare this representation with SU(N) [123] and the previous SP (N) treat-

ment [42].

Approach H(S,P) H(b†, b)

SU(N) J (S · S + P · P) JA†A

SP (N) J (S · S − P · P) −JB†B

Symplectic-N JS · S J
(−B†B +A†A

)
The SU(N) Hamiltonian contains both symplectic and anti-symplectic spins, in equal mea-

sure as expected, but surprisingly, the SP (N) large N theory weights the physical symplectic and

unphysical antisymplectic spins equally, but with opposite signs.

Why is it important to exclude the non-time reversing dipoles? Both the symplectic (Ŝi · Ŝj)

and antisymplectic (P̂i · P̂j) interactions are invariant under time reversal, however, the important

difference is not in the Hamiltonian, but in the ground states and the dynamics. These are far more

coupled than the Hamiltonian suggests because the SU(N) spin T̂ does not act as a vector, and the

antisymplectic and symplectic directions are not independent directions, so that T̂ is unable to point

in a purely symplectic direction. The antisymplectic interactions encourage the antisymplectic spins

to order - competing with the ordering of the physical components. This competition eliminates the

antiferromagnetic[ferromagnetic] ground state completely for SU(N)[SP (N)]. And finally, even

if the ground state is the one of interest, the presence of antisymplectic interactions affects the

dynamics of the symplectic spins, dynamically violating the closure of the symplectic subgroup.
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3.1.1 Ground States

A generic Heisenberg Hamiltonian with symplectic invariance contains both antisymplectic and

symplectic interaction terms,

H =
∑
ij

JijŜi · Ŝj +KijP̂i · P̂j

=
∑
ij

(Kij − Jij)B†ijBij + (Kij + Jij)A
†
ijAij (3.12)

in a ratio K/J , which is ±1 for SU(N) and SP (N), respectively, and zero for symplectic-N . In

general, the physical, symplectic spins and and the antisymplectic spins may have different interac-

tion strengths and signs.

In the S →∞ classical limit, the system is long range ordered, and all the bosons are condensed.

The ordered state is described by the angle between neighboring spins, φij ≡ φi−φj which is 0 for

a ferromagnet and π for an antiferromagnet. If we fix 〈b〉i =
√
NS(1, 0, . . .)T , we can rotate the

top two coordinates of 〈b〉j by

R(φij) =

 cos φij2 sin φij
2

− sin φij
2 cos φij2

 , (3.13)

which makes 〈b〉j =
√
NS

(
sin φij

2 , cos φij2 , 0, . . .
)

, and the two bond expectation values will be

Bij = 〈b〉Tj 〈b〉i = NS sin
φij
2

Aij = 〈b〉Ti 〈b〉j = NS cos
φij
2

(3.14)

Thus the ground state energy for (3.12) is

E =
∑
ij

(K − J)ij sin2 φij
2

+ (K + J)ij cos2 φij
2

(3.15)
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The three special cases of interest are

Esymp−N =
∑
ij

NS2Jij cosφij

ESP (N) =
∑
ij

−NS2Jij sin2 φij
2

ESU(N) =
∑
ij

NS2Jij cos2 φij
2
. (3.16)

We see that for antiferromagnetic bonds in SU(N), the ground state energy is zero, identical to

that of the paramagnet with 〈S〉 = 0, and similarly for the ferromagnetic bonds in SP (N). Only

symplectic-N has well defined ground states for both signs of J .

Figure 3.3: A toy picture of SU(N) spins, where the symplectic, time reversing components are
represented in blue along the ŷ axis, and the antisymplectic, non time reversing components are in
red, along the x̂ axis. The purple spin shows the full SU(N) spin obtained by adding its symplectic
and antisymplectic components. (a) depicts a ferromagnetic state. (b) depicts an antiferromagnetic
state, where we obtain the antiferromagnet by time reversing every other spin. While the symplectic
components are anti-parallel, the antisymplectic components are still aligned, causing the total spins
to be orthogonal at neighboring sites.

If we turn to finite S, we can construct ferromagnetic and antiferromagnetic states explicitly out

of the SU(N) spins, see Figure 3.3. The antiferromagnetic state is defined by dividing the spins

into two ferromagnetic sublattices, where sublattice B spins are the time reverse of A. This state

satisfies the lattice translation plus time reversal symmetry of the SU(2) antiferromagnetic ground

state. The P̂’s are aligned in both ground states, and in the large N limit, the magnitudes of Ŝ and

P̂ are the same. In SU(N), K = J , so both interactions are maximally satisfied in the ferromagnet

- leading in fact to overstabilization due to excess P̂ bonds, while the antiferromagnet consists of
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orthogonal SU(N) spins, the two terms in the Hamiltonian cancel and the ground state energy is

zero, just as found classically. WhenK = −J , as in SP (N), it is the antiferromagnetic ground state

that is overstabilized by ferromagnetic P̂ bonds, and the ferromagnetic state has zero energy. These

conclusions hold not only for the full ground state, but for individual bonds; in frustrated lattices

there will be both antiferromagnetic and ferromagnetic correlations, even if all J’s are positive,

but SP (N) indicates ferromagnetic correlations only by the absence of a bond. The energy cost of

ferromagnetic correlations is zero in SP (N), but we know that in real lattices these frustrated bonds

carry a price. By eliminating the antisymplectic interactions, symplectic-N removes the extraneous

bonds between P̂’s and restores the ability of SU(2) to simultaneously treat both ferromagnetism

and antiferromagnetism.

3.1.2 Spin dynamics

Even if the ground state is correct, as for the bipartite antiferromagnet in SP (N), we still need

to be concerned about the spin dynamics. We chose to use the group SP (N) not only because its

spins all invert under time reversal, but because the group contains well defined particle-particle sin-

glets. The presence of antisymplectic interactions, even if they are only interacting with themselves

dynamically violates the closure of the symplectic subgroup.

The dynamics of a symplectic spin component at a site i are given by

dŜai
dt

=
i

~
∑
kj

(
Jkj

[
Ŝai , Ŝk · Ŝj

]
+Kkj

[
Ŝai , P̂k · P̂j

])
. (3.17)

We concentrate on the effect of the second term, which is generally nonzero when K is nonzero.

Inserting the Schwinger boson representation, we find

[
Ŝai , P̂k · P̂j

]
=

1
8

[
b†i ·Sa ·bi,

(
b†k ·Pb ·bk

)(
b†j ·Pb ·bj

)]
=

1
8
{b†j ·Pb ·bj ,

[
b†i ·Sa ·bi, b†k ·Pb ·bk

]
} (3.18)
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where {, } denotes the anticommutator. Expanding out the commutator in more detail,

[
b†i · Sa · bi, b†k · Pb · bk

]
= SaαβPbλη

[
b†iαbiβ, b

†
kλbkη

]
= δikb

†
iα

[
Sa,Pb

]
αβ
biβ

= 2iδikgab cT̂ ci . (3.19)

where gab c is the appropriate SU(N) structure factor. Since the commutator, [S,P] is odd un-

der time reversal, T ci must be an antisymplectic spin. So the evolution of Si is affected by the

antisymplectic spins, (
dŜi
dt

)
P̂·P̂

= −1
~
P̂i ×

∑
j

KijP̂j (3.20)

where × is the cross product defined by gab c. The full dynamics of the symplectic spins are given

by

dŜi
dt

= −1
~

Ŝi ×∑
j

JijŜj + P̂i ×
∑
j

KijP̂j
 . (3.21)

These dynamics are identical in form to classical spin wave theory, where the spins are torqued

by an effective magnetic field coming from neighboring spins. The symplectic and antisymplectic

components of T̂i are torqued by the effective magnetic fields given by
∑

j JijŜj and
∑

jKijP̂j ,

respectively. The effective field coming from the antisymplectic components is not strictly a mag-

netic field, as it has even time reversal parity, but most importantly, it rotates P̂ into Ŝ, and vice

versa. Ordinary SU(2) spin waves will also break spin singlets, but the excitations remain in the

SU(2) space, while the excitations for K 6= 0 will take us out of the SP (N) group. It is clear that

to have a theory of interacting SP (N) spins, all the antisymplectic interactions must be eliminated;

all other Hamiltonians with symplectic invariance describe anisotropic SU(N) spin interactions.

So we have seen that the inclusion of antisymplectic spin interactions have a rather serious effect

on the physics of the Heisenberg model. When these interactions are excluded, as in symplectic-N ,

the unphysical antisymplectic spins can no longer affect the physical spins. In a sense, they come

along for the ride, since they are always there, and they are affected by the symplectic spins, but
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have no effect on the physics. Now we move on to the application of symplectic-N to general

lattices.

3.2 Solving the symplectic-N Heisenberg model

Now we return to the symplectic-N Heisenberg model(3.9) to discuss how to solve the Hamiltonian

in the large N limit, for a general lattice specified by Jij . As a refresher, the Hamiltonian is

H[b] =
∑
ij

Jij
N
Ŝi · Ŝj =

∑
ij

Jij
N

[
−B†jiBji +A†jiAji

]
, (3.22)

where B†ji = 1
2 σ̃b
†
iσb
†
j−σ and A†ji = 1

2b
†
iσbjσ and the sum over σ is implied.

The usual prescription for solving these problems is to write the partition function as a path

integral,

Z =
∫
Db e−NS[b]

∏
jτ

δ
(
Ŝ2
j (τ)−N2S(S + 1)

)
(3.23)

where NS[b] is the action

NS[b] =
∫ β

0
dτ

[∑
i

b̄iσ(τ)∂τ biσ(τ) +H[b(τ)]

]
, (3.24)

and the constraint
∏
j δ
(
Ŝ2
j (τ)−N2S(S + 1)

)
restricts the spins to the physical subspace at every

site j and time τ . This constraint can be rewritten using a Lagrange multiplier λj(τ),

∏
jτ

δ
(
Ŝ2
j (τ)−NS

)
=

∫
Dλ exp

−∫ β

0
dτ
∑
j

iλj(τ)
(
b̄jσ(τ)bjσ(τ)−NS)

 . (3.25)

From now on we drop the explicit τ dependence of biσ and λi.

In order to evaluate the path integral, Z must be in the form of a Gaussian integral, so the quartic
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terms in H are decoupled using the Hubbard-Stratonovich identity,

N

2πiJ

∫
D∆ e−N∆̄∆/J = 1, (3.26)

After inserting this identity, ∆ can be shifted to ∆− J
NB, eliminating the quartic term J

N B̄B,

e
J
N
B̄B ∝

∫
D∆ e−N∆̄∆/J+∆̄B+B̄∆. (3.27)

Now we have exchanged a theory of bosons with four particle interactions for a theory of free

bosons interacting with a fluctuating field ∆. We can integrate out the bosons exactly, but we will

need to use the saddle point approximation to perform the path integral over ∆ (Figure 3.4(a)), an

approximation that becomes exact in the largeN limit due to the extensive dependence of the action

NS on N . First we must treat the other quartic term, − J
N ĀA. Naively, we would just change the

sign in the exponential in (3.27), which gives

e−
J
N
ĀA ∝

∫
Dh e+Nh̄h/J−h̄A−Āh. (3.28)

However, we must be careful, as the quadratic h term now has a positive sign, and the path integral

over h appears not to converge. To understand this, we step back to a simpler case, where A is real

and we decouple it with the real field a. We begin with e−Na2/J , and can rewrite

−Na2/J = +N(ia)2/J → +(ia+
J

N
A)2/J

= −Na2/J + 2iAa+
J

N
A2, (3.29)

so that the quartic term − J
NA

2 becomes −Na2/J + 2iAa. We now define the mean field value of

ia = h0 to be real. In fact, let’s redefine ia = h = h0 + iδa, and the identity becomes

e−
J
N
A2

=
∫
DheNh

2/J+2Ah, (3.30)
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which holds as long as h is integrated along the imaginary axis, with the integral maximized at

Figure 3.4: Integrating out the fluctuations. (a.) ∆ is integrated along real axes x and y, and its
saddle point is a minima at some ∆0. (b.) h is integrated along imaginary axes u and v, with a
maximum, real saddle point h0.

a real h0 (see Figure 3.4(b)). This can be generalized to a complex a = u + iv, where u, v are

imaginary instead of real. As long as we keep in mind that ∆ is integrated along the real axis and h

along the imaginary axis, we can proceed with the above decouplings,

H[b] =
∑

(ij)

(
b̄iσ σ̃bi−σ

)−hij ∆ij

∆̄ij −h̄ij


 bjσ

σ̃b̄j−σ


+

h̄ijhij − ∆̄ij∆ij

Jij
, (3.31)

where
∑

(ij) is performed only over bonds (ij) with nonzero Jij . The notation can be simplified by

defining the Nambu spinor, b̃Tj =
(
bjσ, σ̃b̄j−σ

)
. We now have the partition function

Z =
∫
D [b,∆, h, λ] e−NS[b,∆,h,λ] (3.32)

where the action can be compactly written

NS[b,∆, h, λ] =
∑

iωn,(ij)

[
1
2

¯̃
bi

(
iωnτ3 + G−1

ij

)
b̃j

+
N

Jij

(
h̄ijhij − ∆̄ij∆ij

)
+ iλiN(S +

1
2

)δij

]
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G−1
ij =

iλiδij − 2hij 2∆ij

2∆̄ij iλiδij − 2h̄ij

 . (3.33)

We have performed a Fourier transform in imaginary time, and b̃i, hij ,∆ij and λi are now functions

of the Matsubara frequencies iωn, although in practice we make the Ansatz that hij ,∆ij and λi are

all static quantities. The factors of 1
2 come from rewriting λib̄iσbiσ in terms of the Nambu spinors,

b̃i.

We can calculate the mean field values of hij ,∆ij by approximating the path integral Z by its

saddle point value, which becomes exact in the largeN limit. By minimizing the action with respect

to hij , ∆ij and λi, we find

hij =
Jij
2N
〈b†iσbjσ〉

∆ij =
Jij
2N
〈σ̃b†iσb†j−σ〉

NS = 〈b†iσbiσ〉 (3.34)

where 〈· · · 〉 denotes the thermal expectation value. However, it is simpler to eliminate the bosons

altogether by integrating them out.

In order to proceed further, we must make some Ansatz about hij , ∆ij and λi. In principle,

hij and ∆ij can take different values on every bond, but for spatially uniform states, we choose an

Ansatz with the unit cell of the lattice, where h and ∆ are defined for each different Jij . If Jij = 0

on any bond, so must hij and ∆ij . We make the approximation that iλi(τ) = λ on every site, taking

a local constraint and enforcing it only globally. As usual, this approximation becomes exact in the

large N limit.

For a square lattice with only nearest neighbor couplings, this leads to three parameters, which

can be further simplified to just λ and ∆, as there are no frustrating interactions. Thus we recover

the unfrustrated square lattice as previously studied in SP (N) [42]. However, for frustrated lattices

we cannot generally exclude either h or ∆.
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Sometimes the uniform state will not be sufficient. The ground state might break lattice rota-

tional symmetries, in which case ∆i,i+x̂ and ∆i,i+ŷ will be different, or translational symmetry,

requiring ∆i,i+x̂ 6= ∆i+x̂,i+2x̂. When rotational symmetry is broken, λ will remain the same on ev-

ery site, but broken translation symmetry requires λi 6= λi+x̂. Since the unit cell is enlarged, there

will be more than one branch of ωk, which must be summed over. However, as long as the state may

be specified by a finite number of parameters, it may be modeled within symplectic-N . Problems

with infinite parameter sets, e.g.- spin glasses [143], can also be treated within symplectic-N , but

require more complicated theoretical machinery, and will not be treated here. For the rest of this

paper, we assume translational symmetry, with iλi = λ, but this treatment can be easily generalized.

The Fourier transform of the bosonic Hamiltonian, G−1
ij is

G−1
k =

λ− 2hk 2∆k

2̄∆k λ− 2h̄k

 . (3.35)

We can now perform a Bogoliubov transformation det
(
ωτ3 −G−1

k

)
= 0 to obtain

ωk =
√

(λ− 2hk)2 − 4∆2
k, (3.36)

and integrate out the bosons to obtain the free energy, F [h,∆, λ] = −β−1Tr logZ[b, h,∆, λ], where

the trace is over sites (i, j), and the Matsubara frequencies iωn, in addition to the bosonic degrees

of freedom.

F = Nβ−1
∑
k

log
[
2 sinh

βωk
2

]
+

∑
(ij)

N

Jij

(
∆̄ij∆ij − h̄ijhij

)− λNNs(S +
1
2

). (3.37)

Let us say we have a set of {h1, h2, . . .} and {∆1,∆2, . . .}, which have the Fourier transforms

hk =
∑
a

haγak
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∆k =
∑
a

∆aδak, (3.38)

where a labels a bond. The symmetry properties of hij = hji and ∆ij = −∆ji force γak and δak to

be symmetric and antisymmetric in k, respectively. The free energy is now

F

NNs =
β−1

Ns
∑
k

log
[
2 sinh

βωk
2

]
+

∑
a

za
Ja

(
|∆a|2 − |ha|2

)
− λ(S +

1
2

) (3.39)

where za is the number of bonds of type a per unit cell - for a simple square lattice this is just the

coordination number z = 4. The free energy is now minimized by solving the mean field equations

∂F/∂λ, ∂F/∂ha, and ∂F/∂∆a:

S +
1
2

=
1
Ns
∑
k

λ− 2hk
ωk

(
nk +

1
2

)
(3.40)

2zaha
Ja

= − 1
Ns
∑
k

(λ− 2hk) 2γak
ωk

(
nk +

1
2

)
(3.41)

2za∆a

Ja
=

1
Ns
∑
k

2∆kδak
ωk

(
nk +

1
2

)
. (3.42)

nk is the Bose function
(
eβωk − 1

)−1.

3.2.1 Simple Example

Now we examine a simple model in detail, the two dimensional bipartite square lattice. We know

the mean field value of h must be zero, however, for pedagogical purposes we keep both h and ∆.

ωk =
√

[λ− 2h(cos kx + cos ky)]
2 − 4∆2(sin kx + sin ky)2 (3.43)

We wish to minimize the free energy, however, we must be careful because h and λ are integrated

along the imaginary axis. In fact, the free energy should be maximized along h and λ directions and
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minimized along ∆. To examine the nature of the extremum, we look at the Hessian

χ̄ =


∂2F
∂λ2

∂2F
∂λ∂h

∂2F
∂λ∂∆

∂2F
∂λ∂h

∂2F
∂h2

∂2F
∂h∂∆

∂2F
∂λ∂∆

∂2F
∂h∂∆

∂2F
∂∆2

 (3.44)

where ∆ and h are both zero, which is the global minimum if the temperature is well above where

∆ acquires an expectation value. All off diagonal terms vanish at this point,

χ̄ =


−1

4csch2 βλ
2 0 0

0 − 8
J − βcsch2 βλ

2 0

0 0 8
J − 2

λ coth βλ
2

 . (3.45)

Looking at λ and h independently, F is always maximized, as expected at the mean field values of

h and λ, while F is minimized along ∆̂ for small J and maximized for large J , indicating a second

order transition to nonzero ∆ at some intermediate J , dependent on temperature and spin.

3.2.2 Examining the Ground State

At zero temperature, we are interested in the ground state energy,

E0

NNs =
1

2Ns
∑
k

ωk +
∑
a

za
Ja

(
|∆a|2 − |ha|2

)
− λ(S +

1
2

), (3.46)

which must again be minimized with respect to the parameters λ, ha, and ∆a. The order of limits is

important; to obtain the correct mean field equations or χ̄, we must take the derivatives of the free

energy first and then take the limit T → 0. In the mean field equations(3.40 - 3.42), all temperature

dependence is in nk. If there is no long range order, limT→0 nk = 0. The Mermin-Wagner theorem

forbids the breaking of a continuous symmetry, like SU(2) or SP (N) at any finite temperature

in one and two dimensions [25], however at T = 0, the Heisenberg magnet may develop long

range order, which corresponds to the condensation of the Schwinger bosons [141]. The bosons
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themselves develop an expectation value,

biσ = 〈b〉i + δbiσ, (3.47)

where 〈b〉i and 〈b〉i are no longer independent variables. Instead 〈b〉i is a complex N component

vector, and 〈b〉i = 〈b〉†i . nk will no longer vanish for all k. To see the effects of the long range order,

we examine the action(3.33) again, inserting (3.47)

NS[b,∆, h, λ] =
∫
dω
∑
(ij)

1
2
〈b〉†i

(
iωτ3 + G−1

ij

)
〈b〉j +NS[δb]

=
1
2

∑
~Q

〈b〉†~Q/2G
−1

k= ~Q/2
〈b〉 ~Q/2 +NS[δb], (3.48)

The linear terms proportional to δb must vanish, and so have been neglected. ~Q/2 are the zeroes of

the Schwinger boson spectrum. For ferromagnetism, ~Q/2 = (0, 0), while for antiferromagnetism,

~Q/2 = (π/2, π/2). The long range order is indicated by the ordering of the spins, which are

the combination of two Schwinger bosons, so the Goldstone modes in classical spin wave theory

will be given by ~Q/2 ± ~Q/2 = ~0 and ~Q, which gives the traditional (π, π) ordering vector for

antiferromagnetism. Now, in addition to the mean field equations, we have the condition

∂S/∂〈b〉 ~Q/2 = G−1
~Q/2
〈b〉 ~Q/2 = 0

= ω ~Q/2〈b〉 ~Q/2 = 0. (3.49)

So either 〈b〉 ~Q/2 = 0, and we proceed as before, or ω ~Q/2 = 0, which allows us to find the value of

〈b〉 ~Q/2 in addition to the original parameters. In fact, n ~Q/2 = ω ~Q/2〈b〉2~Q/2, so we can simply define

n = n ~Q/2/ω ~Q/2 and the mean field equations become

ω ~Q/2〈b〉 ~Q/2 = 0

S +
1
2

=
1
Ns
∑
k

λ− 2hk
2ωk

+
∑
~Q

n(λ− 2h ~Q/2) (3.50)
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2zaha
Ja

=
1
Ns
∑
k

(2hk − λ)γak
ωk

+ 2
∑
~Q

nγa~Q/2(λ− 2h ~Q/2) (3.51)

2za∆a

Ja
=

1
Ns
∑
k

2∆kδak
2ωk

+ 2
∑
~Q

nδa~Q/2∆ ~Q/2. (3.52)

Now we have set up all the machinery for solving the symplectic-N Heisenberg model on a

general one or two dimensional lattice(three dimensional lattices cannot currently be treated by

Schwinger bosons [144]). Next we treat a simple example which highlights the differences between

symplectic-N and previous large N treatments, the J1 − J2 model.

3.3 Illustration: J1 − J2 model

The J1 − J2 Heisenberg model is one of the simplest two dimensional frustrated magnets,

H = J1

∑
x,µ

~Sx · ~Sx+µ + J2

∑
x,µ′

~Sx · ~Sx+µ′ , (3.53)

where J1 and J2 describe nearest and next nearest neighbor interactions, respectively. We consider

only antiferromagnetic J1 and J2.

For J1 � J2, the ground state is a Néel antiferromagnet, with ~Q = (π, π) long range order,

as long as the spin S is greater than a critical spin Sc ≈ .2. The next nearest neighbors are fer-

romagnetically aligned, so J2 introduces frustration which begins to suppress long range order by

increasing the critical spin.

For J2 � J1, the classical ground state consists of two interpenetrating but decoupled Néel

sublattices. For any finite J1, both quantum and thermal fluctuations couple the sublattices together

through the process of “order from disorder,” [27, 28, 29] which leads to a long range ordered state

with ~Q = (0, π) or (π, 0). This transition spontaneously breaks the Z4 lattice symmetry down to

Z2, which, as a Ising symmetry breaking, can survive to finite temperatures, despite the loss of the

underlying long range magnetic order [26]. In real materials, this transition couples to the lattice
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Figure 3.5: The J1 − J2 model. (a) depicts antiferromagnetic order as described by antiferromag-
netic valence bonds(blue) and ferromagnetic bonds(red, dashed), and the spin order ~Q = (π, π).
(b) depicts the collinear order, ~Q = (0, π), where there are two different antiferromagnetic valence
bonds(blue and green) and ferromagnetic bonds(red, dashed).

and causes a structural transition from tetragonal to orthorhombic symmetry [145].

The phase boundary between the two classical ground states is at J1 = 2J2. Conventional

spin wave theory predicts that the ordered moments of both states are suppressed to zero even for

S → ∞ at this critical point, leaving a quantum spin liquid state that exists for a small, but finite

range of J2/J1 for the physical spin S = 1/2 [146]. However, at this point, the 1/S expansion

fails [147], and much more theoretical work has been done to see if quantum fluctuations stabilize

or destabilize the spin liquid region [148, 149, 150]. The current consensus is that the spin liquid

ground state is most likely stable between .4 . J2/J1 . .6 for S = 1/2.

The J1− J2 model is an ideal demonstration of the importance of ferromagnetic bonds because

they enforce the frustration price in both Néel and collinear phases. This is most obvious on the

Néel side, where, without ferromagnetic bonds, the state remains unchanged as J2 increases, until

a first order transition to the collinear state. The ferromagnetic bonds also enable us to obtain the

correct temperature dependence of the Ising transition temperature in a large N theory.
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3.3.1 Valence bond structure

First we need to describe the relevant states within our valence bond picture. We assign a ∆ to each

antiferromagnetic bond and an h to each ferromagnetic bond. On the Néel side, we have ∆ on all

nearest neighbor bonds and hd on the frustrating diagonal bonds, as shown in Figure 3.5(a) . This

leads to the dispersion relation:

ωnk =
√

(λ− 4hdcxcy)2 − 4∆2(sx + sy)2). (3.54)

In the collinear state, we must allow the breaking of lattice symmetry and consider both hx, hy and

∆x,∆y on the nearest neighbor bonds, and hd, ∆d on diagonal bonds. In fact, there are two distinct

diagonal bonds corresponding to what would be the two decoupled sublattices (see Figure 3.5(b)).

Their magnitude must be the same, but the phase between them leads to a U(1) gauge symmetry. If

we fix the phase to be π it is most natural to break the lattice symmetry explicitly [151] and choose

only hx and ∆y to be nonzero of the nearest neighbor bonds, and hd = 0, which gives the dispersion

ωck =
√

(λ− 2hxcx)2 − (4∆dcxsy + 2∆ysy)2). (3.55)

3.3.2 T=0 phase diagram

To examine the frustrating effects of the ferromagnetic bonds, we focus on the border between long

and short range orders at T = 0, as a function of spin, S ≡ nb/N and frustration, J2/J1 . The

more stable the phase, the larger the region of long range order. Long range order is lost as the spin

decreases below a critical spin Sc, which is approximately 1/5 for the unfrustrated Néel lattice, e.g.

both J2/J1 = 0 and J2/J1 =∞. To compare our results to the original SP (N) [142], we calculate

the phase boundaries both with h free and with h set to zero.

Since we are interested in Sc, the onset of long range order, we know that both n = 0 and

ω ~Q/2 = 0. The Schwinger boson gap is at ~Q/2 = (π/2, π/2) for the Néel phase, and ~Q/2 =

(0, π/2) for the collinear state. The gap equation, ω ~Q/2 = 0 and the mean field equations for
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h(3.51) and ∆(3.52) can be used to solve for the mean field parameters, and then equation (3.50)

defines Sc,

Sc +
1
2

=
∫
k

λ− 2hk
2ωk

. (3.56)

Results from these calculations for both symplectic-N and SP (N) are shown in Figure 3.6.

For comparison, we have also drawn the phase boundaries given by conventional spin wave theory

[146]. First let us discuss the results far from the critical value of frustration J1 ≈ 2J2. The results
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Figure 3.6: We compare the critical spin Sc =
(
nb
N

)
c
,below which there is no long range order in

the ground state, calculated within SP (N) (bold red line), symplectic-N (blue and green lines), and
spin wave theory [146] (thin black line). For small J2/J1, the spins configurations are staggered,
while for large J2/J1, the ground state breaks lattice symmetry to develop collinear order as shown
in the figure. SP (N) (bold red line) tends to overstabilize the long range ordered phases, most
dramatically on the one sublattice side, where the critical spin is independent of the strength J2

of the frustrating diagonal bonds [132]. Symplectic-N restores the frustration-induced fluctuations
by treating both ferromagnetic and antiferromagnetic bonds, on equal footing, which corrects this
overstabilization. The physical spin, S = 1/2 is indicated by a horizontal dashed line.

are most dramatic for the Néel state, where SP (N) is oblivious to the frustrating effects of the

diagonal bonds, drastically overestimating the critical spin. For the collinear state, SP (N) neglects

the frustrating hx, again overestimating the stability of the long range ordered state. On the other

hand, symplectic-N tracks conventional spin wave theory for small amounts of frustration, but they

differ in a wide range around the critical J2/J1, where conventional spin wave theory is known

to fail, and a spin liquid ground state is predicted for S = 1/2. For symplectic-N , we calculated
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the location of the first order transition between Néel and collinear long range orders by comparing

the ground state energies of both states (see Appendix 3A). Symplectic-N indicates a weakly first

order transition for S = 1/2, with no intervening quantum spin liquid, however, 1/N corrections,

calculated as Gaussian fluctuations from Ceccatto et al.’s mean field theory lead to a small region

of spin liquid for 0.53 ≤ J2/J1 ≤ 0.64 [148].

3.3.3 Finite Temperatures: the Ising transition

Now we turn our focus to the J2 � J1 side of the phase transition and examine the finite temperature

Ising transition between decoupled sublattices and the collinear phase. This phase transition has

several possible experimental realizations, most prominently and recently in the iron arsenides [110,

152, 153, 154, 155].

At high temperatures and large J2/J1, the first bonds to develop are the diagonal bonds, ∆d.

From the mean field equations(3.40) and (3.42),

(S +
1
2

) =
∫
k
(nk +

1
2

)
λ

ωk
(3.57)

1
J2

=
∫
k
(nk +

1
2

)
2(2cxsy)2

ωk
, (3.58)

we can solve for λ and ∆d as functions of temperature and spin. They are both independent of J1.

∆d turns on at a temperature

Td =
J2(S + 1/2)

2 log(1 + 1/S)
. (3.59)

Now that we have a full description of the decoupled phase, we can look for the next bond fields to

turn on as we lower the temperature. For simplicity, we assume that the spin is large enough that

the ground state is the long range ordered collinear state, so we know that hx and ∆y must turn

on at some point. However, we can look for all possible bonds at once by examining the unstable



76

eigenvalues of the Hessian of the free energy,

χ̄ =


∂2F
∂λ2

∂2F
∂λ∂ha

∂2F
∂λ∂∆a

∂2F
∂λ∂ha

∂2F
∂h2

a

∂2F
∂ha∂∆b

∂2F
∂λ∂∆a

∂2F
∂ha∂∆b

∂2F
∂∆2

a

 , (3.60)

where this is a schematic of the seven by seven Hessian with respect to λ, hx, hy, hd, ∆x, ∆y,

∆d. When det χ̄ changes sign, the decoupled solution is changing from a free energy minimum to

a maximum, indicating the presence of a second order phase transition. By examining the unstable

eigenvectors, we know which bond fields are turning on, without having to solve the seven mean

field equations.

All of the matrix elements have similar forms, for example

∂2F

∂h2
x

=
∫

d2k

(2π)2
(nk +

1
2

)
∂2ωk
∂h2

x

− nk(nk + 1)
T

(
∂ωk
∂hx

)2

− 1
J1
. (3.61)

Since λ and ∆d are independent of J1, we can fix J2 = 1, S = 1/2 and easily evaluate χ̄ for all

J1 at a given T , since the integrals are all independent of J1. det χ̄ = 0 can then be solved for

J1c and the phase transition, Tc mapped out parametrically, as shown in Figure 3.7. The unstable

eigenvector is

φ =

 −hx
∆y

 , (3.62)

showing that the system does develop long range Ising order. This method finds all possible second

order phase transitions, however, it is blind to first order phase transitions. As we see in the figure,

there is a temperature dependent first order transition between the short range Néel and decoupled

orders which cuts off the second order line (see Appendix 3A for derivation).
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Figure 3.7: Finite temperature phase diagram for S = 1/2. Td(equation 3.59) and TN (equation
3.76) are the transitions into short range two sublattice and Néel antiferromagnetic order, respec-
tively. The Ising transition, Tc is shown for both symplectic-N (blue) and SP (N)(red). The Ising
order is long range, even though the underlying antiferromagnetic order is not. The dashed(green)
line indicates a first order transition from Ising order to short range antiferromagnetic order. Just as
we saw by examining Sc, SP (N) overstabilizes the Ising order. Insets show the appropriate valence
bond order.

Analytical form of TRVB

Now we derive the analytical form for the Ising transition temperature, in the limit of large J2/J1.

At temperatures far below the development of decoupled order Td, but above the Ising transition,

Tc, the gap in the spectrum at (0, π/2),

∆gap =
√
λ2 − (4∆d)2 (3.63)

is much smaller than T , and, assuming large S, we can apply spin wave theory to this problem,

which implies λ ≈ 4∆d ≈ csw = 4J2S. χ̄ can be restricted to the two relevant parameters hx and

∆y, and we define the quantities A1, A2 and B,

χ̄ =

 ∂2F
∂h2

x

∂2F
∂hx∂∆y

∂2F
∂∆y∂hx

∂2F
∂∆2

y

 ≡
A1 − 1

J1
B

B A2 + 1
J1

 . (3.64)
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In the limit ∆gap → 0, we find that A1 = A2 ≡ A = B to all divergent orders. This is because

our singlet bond fields are decoupled from the S = 1 spin waves becoming gapless. To find Tc, we

need to consider the short wavelength behavior which makes A−B nonzero,

det χ̄ = (A+B)(A−B)− 1/J2
1 = 0, (3.65)

where A+B is of the order T/∆2
gap, but the divergences cancel from A−B and we can calculate

this integral to zeroth order in ∆gap:

A−B =
1
2

(
∂2F

∂h2
x

+
∂2F

∂∆2
y

)
− ∂2F

∂hx∂∆y

= 2λ2

∫
d2k

(2π)2

cos2 kx cos4 ky
ω2
k

(
nk(nk + 1)

T
− nk + 1

2

ωk

)
= − 1

3T

∫
d2k

(2π)2

cos2 kx cos4 ky

1− cos2 kx sin2 ky
≡ −πγ

T
, (3.66)

where γ = .039. Altogether (3.65) gives us

8γ
∆2
gap

=
1
J2

1

. (3.67)

We can expand the constraint equation(4.36) to find the gap,

∆gap

c
= exp

(−8πJ2S
2

T

)
, (3.68)

which, combined with (3.66) leads us to the Ising transition temperature,

Tc =
4πJ2S

2

log
[

2J2S
J1
√

2γ

] . (3.69)

Chandra, Coleman and Larkin found semi-classically [26],

Ti =
4πJ2S

2

log
[

2J2

J1
√

2γT

] , (3.70)
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with γT = .318. Note that the form of the two temperatures is identical, with only numerical

differences inside the logarithm, which are negligible for small spin. This temperature dependence

has been confirmed by classical Monte Carlo [156], and quantum numerical studies have show that

finite S systems also share the temperature dependence [157].

The same calculation is much simpler in SP (N) where χ̄ is a one dimensional matrix, ∂2F/∂∆2
y ∼

−T/∆2
gap + 1/J1, giving the defining condition TSP (N)

c /∆2
gap = γSP (N)/J1. Again inserting the

gap(3.67), we find an implicit equation for TSP (N)
c ,

TSP (N)
c =

16πJ2S
2

log
[

16J2
2S

2

J1T
SP (N)
c γSP (N)

] . (3.71)

The extra TSP (N)
c in the logarithm acts to increase the Ising temperature, as was also seen in our

numerical calculation (Figure 3.7).

This phase transition has several possible experimental realizations. First, there is a direct re-

alization of the two dimensional J1 − J2 lattice in Li2VOSiO4, where a transition to long range

collinear order is immediately preceded by a lattice distortion from tetragonal to orthorhombic sym-

metry [158].

In the iron arsenides, a ~Q = (0, π) spin density wave order develops either coincident with

a tetragonal to orthorhombic structural transition, or slightly below [155, 110, 154, 153]. First

principles calculations suggest that the system can be described by the J1−J2 model with J1/J2 ≈

1/2 [152], although whether the magnetism is itinerant or local moment is still controversial.

Finally, the spin dimer system, BaCuSi2O6 [159] contains elements of J1 − J2 physics despite

being three dimensional. The alternating layers of dimers are ordered antiferromagnetically, but de-

coupled, like the J2 sublattices, while the interlayer couplings are frustrated like J1. The compound

can be thought of as a multi-layer J1 − J2 model, where the transition to three dimensionality is an

Ising transition [160].
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3.4 Discussion and Conclusions

We have identified the time reversal of spin as a symplectic symmetry and examined the conse-

quences of maintaining this symmetry in the large N limit. In order to write a theory of symplectic

spins, all interactions of the unphysical antisymplectic spins must be excluded, leading to a unique

largeN limit which we call symplectic-N . In this paper, we have examined the bosonic symplectic-

N Heisenberg model. The practical consequences are to introduce two mean field parameters,

hij = 〈 Jij
2N

∑
σ

b†jσbiσ〉

∆ij = 〈 Jij
2N

∑
σ

σ̃b†jσb
†
i−σ〉 (3.72)

where hij measures the ferromagnetic correlations along a bond {ij} and ∆ij the antiferromagnetic

correlations, and to identify the mean field theory introduced by Ceccatto et al. [121] for SU(2)

as the unique large N limit. Previous large N methods had either ferromagnetism or antiferro-

magnetism, and the presence of both means that symplectic-N can treat both ferromagnetic and

antiferromagnetic states. In frustrated antiferromagnets, this is especially important because the

frustration manifests itself through the presence of ferromagnetic correlations on antiferromagnetic

bonds; in these cases we call h the frustration field. Correctly accounting for the price of these

frustrated bonds is essential in systems with many competing states close in energy.

Frustrated bonds will occur whenever there are triangles containing two or more antiferromag-

netic bonds (see Figure 3.8(top)). In this paper, we studied collinear magnets, where the bonds on

the triangle are either exclusively ferromagnetic or antiferromagnetic, e.g. - h and ∆ do not co-

exist. In other lattices, like the triangular lattice, non-collinear states are expected. Certainly the

classical symplectic-N limit will contain coexisting bonds, as we know hij = SJij cos φij2 , and

∆ij = SJij sin φij
2 , where φij 6= 0 or π for non-collinear ground states. Whether this coexistence

persists in the quantum limit is still an open question. In a first attempt, we have examined the tri-

angular plaquette and found the ground state to be the uniform, coextant state. However, the lattice

case will likely be different; the plaquette version of the J1 − J2 model also has a uniform ground
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Figure 3.8: a. The antiferromagnetic triangular plaquette has three possible bond orderings:
(left) just a single ∆ connecting two of the spins and leaving the third completely free; (middle)
∆’s(blue) and h’s(red, dashed) segregated; and (right) the uniform state, which is the ground state
of symplectic-N .b. The tetrahedral plaquette. When all sites are assumed to be equivalent, there are
three different types of bonds - as shown in black, gray and thin black lines.

state, not the broken symmetry state found in the lattice. In the tetrahedral plaquette, as in SP (N),

there is a continuously degenerate ground state manifold [132]. In SP (N), the degeneracy is lifted

in the lattice, however, the ground state found in the SP (N) semi-classical limit is inconsistent

with linear spin wave theory [161]. Given the many competing states, it is an interesting open ques-

tion whether the frustrating fields will bring the lattice ground state into agreement with spin wave

theory. More generally, we would like to know if including the price of frustration substantially

changes the ground states or response for other highly frustrated lattices.

Now we turn to corrections beyond mean field theory, the 1/N corrections. These will not af-

fect the phase boundaries, but can change the nature of the short range phases. Sachdev and Read

have shown that the 1/N corrections for SU(N) spins manifest as a gauge field coupling to the

Schwinger bosons [136]. In SU(N), this is a U(1) gauge field, which in two dimensions contains

instantons that generate nontrivial Berry phases which enforce the discrete nature of valence bonds.

For each spin S, each site participates in exactly 2S valence bonds. The ground state alternates

periodically between spin-Peierls and valence bond solid phases as 2S(mod z), where z is the coor-

dination number of the lattice. Sachdev and Read later showed that this treatment can be extended
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to collinear states in SP (N), while non-collinear states do not generally have instantons [142]. To

examine the effects of h, we consider the U(1) gauge symmetry in symplectic-N .

In the large N limit of the J1 − J2 model, the valence bond fields ∆ develop between “even”

and “odd” sites. This breaks the local U(1) symmetry associated with boson conservation at each

site down to a global compact U(1) symmetry, under which bi → eiθbi on the even sublattice and

bi → e−iθbi on the odd sublattice (corresponding to the conservation of
∑

i∈even ni−
∑

i∈odd ni).

The instanton tunneling configurations considered by Read and Sachdev are space-time monopoles

in the electric field associated with this U(1) field. In fact, the frustration fields h link sites on the

same sublattice, so that h is invariant under the global U(1) symmetry, so it does not pick up any

phase factor when the instanton forms, and it does not modify the the phase factors associated with

instanton formation. In this way, the frustration fields do not affect the formation of valence bond

solids in collinear states. The effect of the frustration fields on non-collinear states is however, still

an open question.

Another way to move beyond the large N limit is to examine the variational wavefunctions

which are the ground state of the large N limit. The wavefunction of a pure valence bond state has

a Jastrow form [162, 163],

|Ψ〉 = PS exp

−∑
ij

bijB
†
ij

 |0〉 , (3.73)

where PS projects out the unphysical subspace where nb 6= NS, as given in equation (3.25). When

we include the effects of the frustrating fields,

|Ψ〉 = PS exp

−∑
ij

aijA
†
ij

 exp

−∑
ij

bijB
†
ij

 |0〉 . (3.74)

The exp
(
−∑ij aijA

†
ij

)
creates effective valence bonds of all lengths across the system, causing

the spins to fluctuate coherently - in the case of the Ising transition, these coherent fluctuations break

lattice symmetry without long range magnetic order.
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This chapter has addressed the bosonic representation of interacting symplectic spins, but the

principles of symplectic closure can equally well be applied to fermionic models, either in Heisen-

berg physics, where Ran and Wen have used an identical decoupling [39], or Kondo physics, as we

do in Chapter 4. In the fermionic spin representation, requiring spins that reverse under time rever-

sal also insures that the spins are neutral under particle-hole transformations, which leads to a local

SU(2) gauge symmetry. In bosonic models, this gauge symmetry reduces to the U(1) symmetry

discussed earlier because σ̃b†σb†−σ = 0 on site due to symmetrization. In parallel with our current

treatment of both ferromagnetism and antiferromagnetism in the Heisenberg model, we are able to

treat both the Kondo effect and superconductivity within the two channel Kondo model.

The next step is to introduce charge fluctuations while maintaining the symplectic spin closure.

One possibility is to introduce the symplectic-N Hubbard operators, which can used to construct

the t − J and Anderson models. These ensure that a hole hopping onto a site and off again will

generate a symplectic spin flip. In turn, the symplectic closure guarantees that the local SU(2)

gauge symmetry survives to all orders in N , even at finite doping, justifying the SU(2) slave boson

theory of Wen and Lee in a unique large N limit [129]. The application of this approach as a large

N framework for the RVB theory of superconductivity [164, 165] is a matter of great interest for

future research, and is discussed in Chapter 7.

Appendix 3A: J1 − J2 first order transitions

In principle, calculating first order transitions is simple - one calculates the parameters λ, ha and ∆a

for each of the phases from the mean field equations, plugs them into the free energy, or ground state

energy at zero temperature and compares the energies. In practice, it is difficult to solve the mean

field equations in complicated phases. Second order transitions are much easier because something

is going to zero. For the zero temperature phase diagram of the J1−J2 model, Figure 3.7, we know

that the transition between Néel and collinear long range order is first order because the second

order lines(between short and long range order of the same type) indicate that the phases overlap

for S & .4. We have calculated the location of the first order line by comparing the energy of the
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long range ordered states, shown in Figure 3.9.

0. 0.5 1.
0

1

2

3

4

5

J2�J1

1

S

Figure 3.9: Thin lines indicate the second order transitions from short range to long range Néel and
collinear orders. For points within the region of collinear long range order, the ground state energies
of the two possible orders were compared. Where the collinear order is lower, a circular, blue dot
is placed on the phase diagram; when Néel order is lower, the dot is green and square. The black
dot indicates the classical, second order phase transition, which was calculated analytically. The
physical spin, S = 1/2 is indicated by the dashed line.

As the spins become more classical, the mean field parameters become more difficult to cal-

culate, but the S → ∞ point can be calculated analytically using the energies from the previous

section(3.16). For the Néel state, φij = π for nearest neighbor bonds, and 0 for diagonal bonds,

while for the collinear state φij = π on ŷ and diagonal bonds and 0 on x̂ bonds.

EN = −4J1 + 4J2

Ec = −4J2 (3.75)

Thus, the classical transition is second order at J1 = 2J2, just as found for classical SU(2) spins.

The same calculation can be repeated with ESP (N), with the same result.

At finite temperatures, there is a first order transition between the two short range orders. We



85

already have one end of the first order line - the zero temperature point, and we can calculate the

other end, which is a second order point where both antiferromagnetic and decoupled short range

orders give way to a completely disordered high temperature phase. We already know the decoupled

temperature as a function of J2(3.59), and the antiferromagnetic temperature can be similarly found

from the mean field equations for λ and ∆ in the limit of ∆→ 0,

TN =
J1(S + 1/2)

2 log (1 + 1/S)
. (3.76)

The two temperatures have identical form - the only difference being that where TN has J1, Td has

J2. Thus the first order line ends in a second order point at J1 = J2, as show in Figure 3.7. The

intermediate line has been extrapolated, but not calculated.
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Chapter 4

The two channel Kondo model

4.1 Introduction

The recent discovery of two heavy-fermion materials, PuCoGa5 and NpPd5Al2, which trans-

form directly from Curie paramagnets into heavy fermion superconductors has revealed a new class

of strongly coupled superconductors where local moments quench directly into the superconduct-

ing condensate, shown in Figure 4.1. Unlike conventional heavy fermion superconductors, where

Cooper pairing is thought to be driven by spin fluctuations [66, 67, 68, 73, 166], these higher tran-

sition temperature materials do not appear to be close to a magnetic instability. Moreover, the su-

perconducting condensation entropy is between a quarter and a third of the free spin entropy, R ln 2

of the Curie paramagnet, indicating that the spin-quenching normally associated with the Kondo

effect is an integral part of the development of superconductivity. Motivated by these unusual su-

perconductors, we have revisited the problem of developing a large N theory of heavy fermion

superconductivity.

Figure 4.1: (a) Local moments can be seen in the Curie-Weiss-like susceptibility of NpPd5Al2,
which shows no sign of quenching into Pauli paramagnetism. (b) The superconducting condensation
entropy is ≈ 1/3R log 2, a significant fraction of the total spin entropy.

LargeN expansions involving SU(N) have been invaluable in describing heavy fermion metals,
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but thus far cannot treat superconductivity. The difficulty is that the odd time-reversal parity of the

electron spin, ~S →θ −~S is not preserved by SU(N) spins. The inversion of spins under time

reversal protects singlet superconductivity by ensuring that an electron paired with its time-reversed

twin is a singlet. However, for N > 2, some SU(N) spins do not invert under time-reversal,

and this protection is lost. The symplectic large-N limit preserves the time-reversal properties

of SU(2) spins, restoring singlet superconductivity, and allowing us to treat Kondo physics and

superconductivity on equal footing.

In this chapter, we focus on the application of symplectic-N to heavy-fermion superconductiv-

ity in PuCoGa5 and NpPd5Al2, where the appearance of an SU(2) gauge symmetry has marked

physical consequences. We show that when a lattice of magnetic ions exchange spin with their

metallic environment in two distinct symmetry channels, they can simultaneously satisfy both chan-

nels by forming a condensate of composite pairs between local moments and electrons, screening

these moments as superconductivity develops. In the tetragonal crystalline environment relevant to

PuCoGa5 andNpPd5Al2, the lattice structure selects a natural pair of spin-exchange channels and

predicts a unique anisotropic paired state with either d- or g- wave symmetry.

4.1.1 The two channel Kondo model

These materials contain a lattice of local moments immersed in a sea of electrons to form a Kondo

lattice. We assume that at low temperatures, the Pu and Np ions in these materials behave as

Kramer’s doublets. Due to the strong spin-orbit coupling, J is the only good quantum number. For

Pu3+, which is a 5f5 atom, Hund’s rules give J = 5/2, a six-fold degenerate state. The situation in

NpPd5Al2 is less certain; the Curie moment extracted from the magnetic susceptibility is closest

to that of a 5f3 ion with n = 3, which will have J = 9/2, a ten-fold degenerate state. The lattice

breaks the spherical symmetry down to a crystal point group and the degenerate levels are split by

the electric fields resulting from the crystal structure into several crystal field levels . Because J is

half-integral, the minimum degeneracy of any level is guaranteed to be two by Kramer’s theorem,

where the degenerate levels are related by time-reversal. In a tetragonal crystal, J = 5/2 splits into
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three Kramer’s doublets, denoted Γ±7 and Γ6 for group theoretical reasons,

f †
Γ̃σ

=
∑

m∈[−5/2,5/2]

〈Γ̃α|52m〉f †mσ, (σ = ±) (4.1)

where

Γ6 : f †Γ6± = |±1/2〉

Γ+
7 : f †

Γ+
7 ±

= cosβ|∓3/2〉+ sinβ|±5/2〉

Γ−7 : f †
Γ−7 ±

= sinβ|∓3/2〉 − cosβ|±5/2〉

(4.2)

Here the mixing angle β fine-tunes the spatial anisotropy of the Γ±7 states. Notice how the crystal

mixes±5/2 with the∓3/2 states: this is because the tetragonal crystalline environment transfers±4

units of angular momentum to the electron. Even though the doublets are not spin 1/2 doublets, they

have the same R log 2 entropy. The exchange of spin with its environment involves virtual valence

fluctuations into ionic configurations with one more, or one less f-electron: fn 
 fn±1 ∓ e−,

where n = 3 and 5 for NpPd5Al2 and PuCoGa5 respectively. We assume that the dominant spin

fluctuations occur via valence fluctuations into singlet states

|0〉 
 |Γ1σ〉 
 |φ〉

fn+1 fn fn−1.

(4.3)

To illustrate the situation, consider PuCoGa5, where |0〉 ≡ |f6〉 is an empty j = 5/2 f-shell. The

f5 Kramers doublet can be written |Γ1σ〉 = f †Γ1σ
|0〉 where f †Γσ creates an f-hole in one of these

three crystal field states. To form a low-energy f4 singlet, the strong Coulomb interaction between

f-electrons forces us to add a second f-hole in a different crystal field channel Γ2. We assume that

this state has the form

|φ〉 ≡ |Γ2 ⊗ Γ1〉s =
1√
2

∑
σ=±1

sgn(σ)f †Γ2σ
f †Γ1 −σ|0〉. (4.4)
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Ga

Pu

J=5/2

Pu3+(5f5) in tetragonal Ga cage

Figure 4.2: Pu3+ (a 5f5 ion) has a J = 5/2 ground state split by the tetragonal crystal field
symmetry into three Kramer’s doublets, whose electron distribution is shown on the right. The
ground doublet can fluctuate either to the “empty” half-filled J = 5/2 state (5f6) or “doubly-
occupied” (5f4) state, which is two holes in the half-filled states. Both of these excited states will
generically be singlets and have orthogonal symmetries.

In practice, there are many other excited states, but these are the most relevant, because they generate

antiferromagnetic Kondo interactions. In a conventional Anderson model, Γ2 and Γ1 are the same

channel, but here Hund’s coupling forces Γ1 and Γ2 to be different, and it is this physics that

introduces new symmetry channels into the charge fluctuations.

The simplified “atomic” model that describes this impurity is then

Hat = E0|0〉〈0|+ E1|Γ1σ〉〈Γ1σ|+ E2|φ〉〈φ| (4.5)

whereE1 < E0, E2, as shown in Figure 4.2, and we neglect the excited crystal field doublets. When

this atom is immersed into the conduction sea, the f-orbitals hybridize with conduction electrons

with the same crystal symmetry. The hybridization Hamiltonian is written

Hhybr =
∑
σ

[
VΓ1ψ

†
Γ1σ

fΓ1σ + VΓ2ψ
†
Γ2σ

fΓ2σ + (H.c)
]

(4.6)
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where ψ†Γσ creates a conduction electron in a Wannier state with crystal symmetry Γ . The matrix

elements of this Hamiltonian between the Kramer’s doublet and the two excited states are

〈0|Hhyb|Γσ〉 = VΓ1ψ
†
Γ1σ

〈φ|Hhyb|Γσ〉 = VΓ2ψΓ2−σσ̃, (4.7)

where σ̃ = sgn(σ). Thus the removal of an electron occurs in a different symmetry channel to the

addition of an electron. The projected hybridization matrix becomes

Hhybr =
∑
σ=±

(
VΓ1ψ

†
Γ1σ
|0〉〈Γ1σ|+ σ̃VΓ2 |φ〉〈Γσ|ψΓ2−σ + H.c

)
(4.8)

If we now carry out a Schrieffer Wolff transformation that integrates out the virtual charge fluctu-

ations into the high-energy singlet states, where the energy of the absorbed, or emitted conduction

electron is neglected, assuming it lies close to the Fermi energy, then we obtain

HK = −
∑

σ′,σ=±1

(
J1|Γ1σ

′〉ψΓ1σ′ψ
†
Γ1σ
〈Γ1σ|+ J2 σ̃

′ψ†Γ2−σ|Γ1σ
′〉〈Γ1σ|ψΓ2−σ′ σ̃

)
, (4.9)

where

J1 =
(VΓ1)2

E0 − E1
, J2 =

(VΓ2)2

E2 − E1
, (4.10)

This Hamiltonian can be re-written in terms of spin operators as follows

ĤK = 1
2

[
J1σ

Γ1 + J2σ
Γ2
] · Sf , (4.11)

where we have dropped potential scattering terms and introduced the notation

Sf =
∑
αβ

|Γ1α〉σαβ〈Γ1β|, σΓ = ψ†ΓασαβψΓβ, (4.12)

for the spin of the Kramer’s doublet and the conduction electron spin density at the local moment
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site in channel Γ.

If we now generalize this derivation to a lattice, the interaction (4.11) develops at each site,

Ĥ =
∑
kσ

εkc
†
kσckσ + 1

2

∑
j

[
J1ψ

†
Γ1jα

σαβψΓ1jβ + J2ψ
†
Γ2jα

σαβψΓ2jβ

]
· Sj , (4.13)

where Sj is the spin operator at site j and c†kσ creates a conduction electron of momentum k. We

can relate the Wannier states at site j as follows

ψΓ1jα =
∑
kσ

[Φ1k]ασckσeik·Rj , ψΓ2jα =
∑
kσ

[Φ2k]ασckσeik·Rj (4.14)

where

[ΦΓk]ασ = 〈kΓα|kσ〉 =
∑

m∈[−3,3]

〈Γα|3m, 1
2
σ〉Y 3

m−σ(k̂) (4.15)

is the form factor of the crystal field state. The two channel Kondo lattice Hamiltonian then takes

the form

Ĥ =
∑
kσ

εkc
†
kσckσ +

1
2

∑
j,k,k′

[
J1ψ

†
1kαψΓ1k′β + J2ψ

†
2kαψ2k′β

]
Sβα(j)ei(k

′−k)·Rj . (4.16)

The presence of two distinct scattering channels plays a central role in our model. For a single

magnetic Kondo ion, the strongest spin-screening channel always dominates, forming a local Fermi

liquid of the corresponding symmetry. Two perfectly balanced channels give rise to a critical state

in which the spin screening fluctuates between the channels. Many groups have speculated that in a

lattice environment, the spins will attempt to avoid this critical state through the development of su-

perconductivity [89, 90, 87, 122]. SymplecticN enables us to develop the first controlled realization

of this conjecture, which we apply to the new superconductors PuCoGa5 and NpPd5Al2.

4.1.2 Spins and large N

Before delving into a solution of the two channel Kondo lattice, we first discuss the largeN solution

of the single channel Kondo model, and then refresh the relevant aspects of symplectic-N .
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Large N solution of the SU(N) Kondo model

The SU(N) Kondo lattice [59, 60, 53] replicates the Kondo impurity at every site, each interacting

with the same conduction sea:

H =
∑
k

εkc
†
kαckα +

J

N

∑
j

c†jαcjβSαβ(j), (4.17)

where repeated spin indices are summed over, and we have taken a rotationally invariant hybridiza-

tion for simplicity. While the Kondo impurity is exactly solvable, solving the Kondo lattice requires

non-perturbative techniques like large N [124, 125, 167, 126], where Anderson has pointed out that

the spin degeneracy, N = 2J + 1 is already relatively large for spin-orbit coupled Ce (N = 6)

or Yb (N = 8) moments [168]. Here, the spins are treated with the fermionic representation of

SU(N): Sαβ(j) = f †αfβ , with the constraint, nf = N/2 [101]. Inserting this representation into

(4.17) leads to a quartic interaction term, which can be decoupling using the Hubbard-Stratonovich

identity [169, 170],

J

N
(c†jαfjα)(f †jβcjβ) −→ V̄j(c

†
jαfjα) + Vj(f

†
jαcjα) +

NV̄jVj
J

, (4.18)

in terms of a mean field hybridization, V . The mean field Hamiltonian is [126, 171],

H =
∑
k

(
c†kα f

†
kα

)εk V

V λ


 fkα

ckα

+NNs
(
V 2

J
− λ

2

)
, (4.19)

where λ is a Lagrange multiplier enforcing the constraint nf = N/2 on average. This Hamiltonian

describes two hybridizing bands of electrons, where V is the uniform hybridization, and λ is the

f-“electron” Fermi level [recall Figure 1.9 (a)]. The spectrum is shown in Figure 1.9 (b), which

corresponds to an enlarged Fermi surface, encompassing both the conduction electrons and the

local moments [172, 173]

N
VFS
(2π)3

= nc + nf = nc +
N

2
. (4.20)
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At finiteN , this mean field approximation is no longer exact. In the impurity, we know the violation

is temperature dependent [174], so that large N describes the finite N ground state well, but is less

appropriate at high temperatures, where, for example, it find a false phase transition at the coherence

temperature, T ∗, the lattice version of TK .

The original f-“electrons” were neutral objects; how have they acquired a charge? It is not the

original charge of the f-electron, since those degrees of freedom were frozen out at high energies.

By comparing the original Hamiltonian, (4.17) with the mean field Hamiltonian, (4.19), J
N Sαβc

†
βcα

is identified with V̄ f †αcα + V c†αfα. Comparing the coefficients of cα, we find

J

N
Sαβc

†
β = V̄ f †α. (4.21)

So the combination of a spin flip, Sαβ and a conduction electron behaves as a composite fermionic

entity at low energies and long times - this is what we call a composite fermion, V̄ f †. As it com-

bines a charge 0, spin 1 spin-flip with a charge e, spin 1/2 conduction electron, it has all the quantum

numbers of an ordinary electron [175, 48]. This composite fermion then hybridizes with the con-

duction electrons to form a band of heavy electrons. It must be emphasized that the appearance of a

composite fermion is not due to the choice of a fermionic spin representation; the fermionic spin rep-

resentation is rather the most natural representation because it contains such ready-made fermionic

excitations. When we move on to the two channel Kondo lattice, we shall see that these composite

fermions pair with conduction electrons in an orthogonal channel to form a singlet composite pair.

Symplectic-N

There is no room in the SU(N) Kondo lattice for superconductivity, a consequence of the absence

of time-reversal symmetry for any N > 2 which makes the formation of Cooper pairs impossible.

Symplectic-N restores this time-reversal symmetry, and Cooper pairs appear naturally in this the-

ory. When we are interested in Kondo physics and superconductivity, it is most natural to use the
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fermionic representation of symplectic spins,

Ŝαβ(j) = f †jαfjβ − α̃β̃f †j −βfj −α, (4.22)

where α is an integer ranging from

α ∈ {−N/2, ..,−1, 1, .., N/2}, and α̃ = sgn(α). (4.23)

SU(N) spins commute with the number operator nfj at each site, giving rise to a U(1) gauge

invariance that features heavily in many analyses of correlated electron physics. Symplectic spins

commute with nfj as well, but also with the fermion pair operator Ψj =
∑

α α̃fj,−αfjα since this

operator is an SP (N) singlet,

[Sαβ,Ψj ] = [Sαβ,Ψ
†
j ] = [Sαβ, nfj ] = 0. (4.24)

In a lattice, these symmetries apply independently at every spin site j, giving rise to a local SU(2)

gauge invariance. This symmetry was first identified for spin-1/2 by Affleck et al. [140], who argued

for its central role in defining the neutrality of spin. Symplectic spins allow us to extend this gauge

symmetry to large N , provided we build our Hamiltonian exclusively out of symplectic spins, the

process we call symplectic-N .

When using a fermionic spin representation, we must be careful to restrict the allowed states to

the physical spin subspace by fixing the spin-Casimir. For SP (N), the spin Casimir is given by,

~S2 + ~Ψ2 = N/2(N/2 + 2), (4.25)

where ~Ψ = (Ψ†+Ψ,−i[Ψ†−Ψ], nf−N/2) is the isospin vector (see section 2.5.1 for more details).

In treating a spin problem like the Kondo lattice, ~S2 must be maximized, meaning the spin-Casimir

is fixed by setting ~Ψ = 0, which fixes nf = N/2 and removes any s-wave pairs, Ψ from the local

moment site. We have already shown in (4.24) that this constraint commutes with the Hamiltonian,
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which ensures that the Hamiltonian does not mix unphysical states into the physical subspace.

The “dot product” of symplectic spins ~Si · ~Sj = 1
2Sαβ(1)Sβα(2) has a unique decoupling in

terms of both particle-hole and singlet pairs:

~S1 · ~S2 = −
(
B†21B21 +A†21A21

)
, (4.26)

whereB†21 =
∑

σ σ̃f
†
2σf
†
1−σ creates a valence bond of spins between sites one and two, whileA21 =∑

σ f
†
2σf1σ “resonates” valence bonds between sites. In the terms of the Kondo model, the two spins

are not at different sites, rather they represent different species of fermions: conduction electrons

and “f-electrons,” which are not really electrons at all, as they have no charge degrees of freedom.

Particle-hole terms hybridize conduction electrons with these “f-electrons” c†σfσ, while particle-

particle terms appear to pair conduction and “f-electrons”, σ̃c†σf †−σ. In the large N limit, these will

acquire expectation values. We shall see that both these terms are required for superconductivity,

and that two channels are required for the two terms to have real, gauge-invariant meanings.

4.2 The symplectic-N two channel Kondo lattice

Now we proceed to develop the symplectic-N treatment for the two channel Kondo lattice,

Ĥ =
∑
kα

εkc
†
kαckα +

1
N

∑
j

[
J1ψ

†
1kαψΓ1k′β + J2ψ

†
2kαψ2k′β

]
Sβα(j)ei(k

′−k)·Rj , (4.27)

To develop a solvable mean field theory, we examine the family of models where

Ŝαβ(j) = f †jαfjβ − α̃β̃f †j −βfj −α. (4.28)

are theN component symplectic representation of the magnetic moment at each site j. The physical

system corresponds to the limit N = 2. We will use a path integral approach to write the partition

function,

Z =
∫
D [f, ψ] e−NS[f,ψ]

∏
j

δ
(
~Ψj

)
, (4.29)
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where NS[f, ψ] is the action,

NS[f, ψ] = exp

− ∫ β

0
dτ
∑
jα

(
ψ†jα∂τψjα + f †jα∂τfjα +H[f, ψ]

) , (4.30)

and
∏
j δ
(
~Ψj

)
enforces the SU(2) constraint, ~Ψj = 0 at every site. When we expand the Kondo

interaction in equation (4.27), we obtain HK(j) =
∑

Γ=1,2HΓ(j), where

HΓ(j) = −JΓ

N

[
(ψ†jΓfj)(f

†
jψjΓ) + (ψ†jΓε

†
f †j )(fjεψjΓ)

]
(4.31)

describes the spin exchange at site j in channels Γ = 1, 2 and ψ†jΓ =
∑

k ψ
†
kΓe
−ik·Rj creates an

electron in a Wannier state of symmetry Γ at site j. This interaction exhibits the local SU(2) gauge

symmetry,

fα → cos θfα + sin θα̃f †−α. (4.32)

The important point here, is that this symmetry survives for all even N . Earlier efforts have been

made to develop SU(2) gauge theories of heavy electron systems [122], but were not justified in

terms of a controlled expansion.

When the Kondo interaction is factorized, it decouples into a Kondo hybridization V and pairing

field ∆ as follows

HΓ(j)→
∑
α

[(
f †αVΓ + α̃f −α∆Γ

)
ψΓα + H.C

]
+N

( |VΓ|2 + |∆Γ|2
JΓ

)
(4.33)

where we have suppressed the site indices j for clarity. The SU(2) gauge transformation becomes,

VΓ

∆Γ

→ g

VΓ

∆Γ

 ,

 fα

α̃f †−α

→ g

 fα

α̃f †−α

 (4.34)

where g =
(
u
v
v∗

−v∗
)

is an SU(2) matrix. The mean-field Hamiltonian defined by this decoupling
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becomes exact in the large N limit. Despite the appearance of “pairing terms” in the Kondo inter-

action, the formation of Kondo singlets in a single channel does not lead to superconductivity; an

SU(2) gauge transformation on the f-electron can always absorb the pairing term ∆ into a redefini-

tion of the f-electron:

V̄ f †α + ∆̄α̃f−α →
√
|V |2 + |∆|2f †α. (4.35)

For the one channel Kondo lattice, the SU(N) and symplectic-N limits are thus identical.

For two channels, this is no longer the case. Here it is convenient to rewrite the decoupled

Hamiltonian,

HΓK =
∑
j,α>0

[
(ψ̃†jΓαV†Γj f̃jα) + (f̃ †jα)VΓjψ̃Γjα

]
+

N

2JΓ
Tr[V†ΓjVΓj ] (4.36)

by introducing the Nambu spinors,

f̃jα =

 fjα

α̃f †j−α

 , ψ̃Γjα =

 ψΓjα

α̃ψ†Γj−α

 , (4.37)

and two corresponding matrix SU(2) order parameters,

VΓj =

VΓj ∆̄Γj

∆Γj −V̄Γj

 , (4.38)

which transform identically under an SU(2) gauge transformation gj , f̃j → gj f̃j , VΓj → gjVΓj .

These represent the hybridization in channel Γ at site j, and generically have both particle-hole and

particle-particle contributions.

We seek uniform mean-field solutions, where VΓj is constant at each site. In this situation,

its convenient to re-write the Wannier states and f-states in a momentum state basis, switching

back to the Bloch wave basis for the conduction electrons, c†k, and absorbing the form-factors into

Vk −→ V1Φ1k̂ + V2Φ2k̂, which is a 2 × 2 matrix in spin-space. For simplicity, we suppress the

spin indices here and consider Vk to be spin-diagonal We can group these terms into a matrix that
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concisely describes the mean-field theory as follows

H =
∑

k,α>0

(c†kα, f̃
†
kα)

εkτ3 V†k
Vk ~λ · ~τ


c̃kα
f̃kα

+NNs
(

Tr[V†1V1]
2J1

+
Tr[V†2V2]

2J2

)
. (4.39)

The summation over α is restricted to positive values to avoid overcounting, and we have absorbed

the constraint ~Ψj =
∑

α>0 f̃
†
jα~τ f̃jα = 0 into the Hamiltonian by using a Lagrange multiplier,

~λj = ~λ that enforces the constraint on average (an approximation that is exact in the large N

limit). When the two Kondo channels are orthogonal, it is sufficient to enforce the τ3 component

of the constraint, nf = N/2 with a single Lagrange multiplier, λ. This form of the mean-field

theory can be elegantly generalized to include the effects of spin-orbit coupled crystal fields by

restoring the two-dimensional matrix structure to the form-factors ΦΓk, as we discuss in Appendix

4B. Diagonalizing this mean-field Hamiltonian reveals the heavy-fermion band structure, where we

see that hybridization in channels one and two both give rise to hybridization gaps, but the second

gap is pinned to the Fermi surface, behaving as a BCS superconducting gap.

Ostensibly, our mean-field theory is that of a two-band BCS superconductor, with hybridization

processes that pair the heavy electrons, and Hamiltonian described by

H(k) =

εkτ3 V†k
Vk λτ3

 (4.40)

However, hidden beneath the hood of the theory is the underlying gauge invariance that maintains

the neutrality of the f-spins. To understand the pairing, we must look not to the hybridization pairing

terms, which are gauge dependent, but to the gauge-invariant variables in the theory. Indeed, it is

not possible to say whether the pairing is in channel one or in channel two. The SU(2) gauge

invariant quantity is the product V†2jV1j has an off-diagonal component Ψ = (V1j∆2j − V2j∆1j) :

this quantity preserves the local SU(2) invariance, but it breaks the global U(1) gauge invariance

associated with physical charge, and plays the role of a superconducting order parameter. If we

carry out an SU(2) gauge transformation that removes the ∆1j , the composite order parameter
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Ψj = V1j∆2j .

4.2.1 Composite pairing

Physically, we may understand this phenomenon as the consequence of the formation of a conden-

sate of composite pairs: where triplet pairs of conduction electrons (necessarily in orthogonal Kondo

channels) form a bound-state singlet in combination with a local moment that collectively con-

denses (Figure 4.3). Such composite order parameters were originally considered in odd-frequency

superconductivity [176], and introduced in heavy fermion superconductivity by Coleman, Andrei,

Tsvelik and Kee in 1999 [122]. Our large-N analysis provides the first solvable limit in which this

mechanism can be rigorously validated, while at the same time incorporating the detailed spin-orbit

physics of the crystal field split screening channels.

--

--

Adding a composite pair

Figure 4.3: Creating a composite pair involves adding a triplet pair of conduction electrons while
flipping the local moment, creating an overall singlet. In order to add a triplet of conduction elec-
trons, they must be in orthogonal channels, A and B.

When an electron scatters off a magnetic impurity, the quantity Ψ determines the amplitude for

emitting an Andreev hole and leaving behind a composite pair. Detailed analysis (see Appendix 4A)

confirms this insight and demonstrates the formation of composite order with expectation value

〈ΨN−2|ψ1↓(j)ψ2↓(j)S+
f (j)|ΨN 〉 ∝ (V1j∆2j − V2j∆1j). (4.41)
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The order parameter can be written explicitly as an SP (N) singlet, 〈ψ†1(σN · S)εψ†2〉, where ~σN is

the SP (N) generalization of the Pauli matrices, ~σ. In a single impurity model, this order parameter

is forbidden, because electrons can never change between scattering channels, but in the lattice,

electrons travelling between sites no longer conserve the channel index, permitting composite order.

Once composite order develops, the Kondo singlets resonate between the two screening channels,

and the resonance energy this gives rise to stabilizes the coherent state.

4.2.2 Resonant Andreev scattering

Composite pairing manifests itself as the development of an Andreev reflection component to the

resonant scattering off magnetic impurities (see Figure 4.4). We can capture this scattering in the

mean-field theory by integrating out the f-electrons, which leads to a conduction electron Green’s

function of the form

G(κ)−1 = ω − εkτ3 − Σ(κ), Σ(κ) = V†k(ω − λτ3)−1Vk

where κ ≡ (k, ω) . The hybridization matrices are written Vk = V1Φ̂1k + V2Φ̂2k where we take

V1 = iv1 and V2 = ∆2τ2.

It is convenient at this stage to examine the off-diagonal structure of the Φ̂Γk. The matrix Φ̂Γk

takes the form φΓkUΓk where φΓk
is a scalar and UΓk is a two-dimensional unitary matrix defining

the interconversion between Bloch states and spin-orbit coupled Wannier states. When an electron

“enters” the Kondo singlet, its spin quantization axis is rotated according to the matrix UΓk. When it

leaves the ion in the same channel, this rotation process is undone, and the net hybridization matrix

Φ̂†ΓkΦ̂Γk = (φΓk)2 1 is spin-diagonal. However, in the presence of composite pairing an incoming

electron in channel 1 can Andreev scatter from the ion as a hole in channel 2. This leads to a net

rotation of the spin quantization axis through an angle ζk about an axis nk that both depend on the

location on the Fermi surface, as follows

Φ̂†2k · Φ̂1k = φ2kφ1k

[
ck + isk(nk · σ)

]
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Intra-channel Kondo scattering Inter-channel composite pairing

Figure 4.4: The scattering processes which lead to Kondo hybridization are intra-channel, where
a conduction electron (solid line) enters and leaves the Kondo singlet in the same channel. The
orange insets show the angular dependence of the hybridization functions for the different channels,
where Γ1 = Γ+

7 and Γ2 = Γ6. However, the formation of a composite pair leads to Andreev
scattering of conduction electrons between the two channels, leaving behind a composite pair with
a superconducting gap symmetry given by the trace of the overlap between the two hybridization
functions. For these two channel symmetries, the Andreev scattering process transfers two units of
angular momentum, giving rise to a d-wave gap function.

where ck = cos(ζk/2), sk = sin(ζk/2).

When we expand the self energy, we obtain a normal and an Andreev component, Σ = ΣN+ΣA

where the normal component is given by

ΣN (κ) =
v2

1k

ω − λτ3
+

v2
2k

ω + λτ3

=
1

ω2 − λ2

[
ω(v2

1k + v2
2k) + λ(v2

1k − v2
2k)τ3

]
, (4.42)

denoting v1k = v1φ1k, v2k = ∆2φ2k. By contrast, the Andreev terms take the form

ΣA(κ) = V1∆2

(
iωτ2 − λτ1

(ω2 − λ2)
Φ†2kΦ1k + H.c

)
=

2v1kv2k

(ω2 − λ2)
[−λckτ1 + ωsk(nk · σ)τ2] (4.43)

Notice how the Andreev scattering contains two terms:

• a scalar term 2v1kv2k
(λ2−ω2)

λckτ1 that is finite at the Fermi energy (ω = 0), with gap symmetry of
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the form

∆k ∝ TrΦ†2kΦ1k ∼ φ1kφ2kck

• a “triplet” term −ω 2v1kv2k
(λ2−ω2)

[sk(nk · σ)τ2] which is odd in frequency and vanishes on the

Fermi surface.

In practice, the nodes of the pair wavefunction are dominated by the symmetry of the function

ck. When an electron Andreev reflects through one hybridization channel into the other, it acquires

orbital angular momentum. For example, the “up” states of the Γ+
7 ∼ | − 3/2〉 and Γ−7 ∼ |+ 5/2〉

differ by l = 4 units of angular momentum, so the resulting gap has the symmetry of an l = 4

spherical harmonic, or g− wave symmetry. By contrast, the up states of the Γ+
7 ∼ | − 3/2〉 and

Γ6 ∼ |+ 1/2〉 differ by l = 2 units of angular momentum, and the resulting gap has the symmetry

of an l = 2 spherical harmonic, or d- wave symmetry. In our model, we have chosen Γ1 ≡ Γ+
7 ,

which maximizes the overlap with the out-of-plane ligand atoms and Γ2 ≡ Γ−7 corresponding to the

in-plane ligand atoms. In this case, we find the gap has the form

φ1kφ2kck =
v1∆2

4
Tr[Φ†2kΦ1k + H.c.] = cos(2β)∆g1(k)− sin(2β)∆g2(k)

where ∆g1 and ∆g2 are g-wave gap functions of the form

∆g1(k) =
√

5
16π

cos(4φ) sin2[θ]; ∆g2(k) =
3

16π
sin2(θ)(3 + cos(2θ)) (4.44)

For small β, the gap is dominated by ∆g1(k).
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Γ+
7 ⊗ Γ6Γ+

7 ⊗ Γ−7 Γ−7 ⊗ Γ6

Figure 4.5: Three possible composite pairing gaps for the three Kramer’s doublets of a J = 5/2
ion, like Pu or Ce, where β = .1π and red (blue) indicate positive (negative) gap regions. Γ+

7 ⊗ Γ−7
(left) is g-wave, while Γ±7 ⊗ Γ6 is d-wave.

4.2.3 Solving the mean field theory

To derive the mean-field theory of the uniform composite pair state, we must diagonalize the mean-

field Hamiltonian

H(k) =

εkτ3 V†k
Vk λτ3

 (4.45)

with Vk = V1Φ1k + V2Φ2k. Treating the full spin-orbit form factors is complicated, so we relegate

this treatment to Appendix 4B, and here take a simplified model where we assume the ΦΓk =

φΓk1 are spin-diagonal. To examine the uniform pairing state we may fix the SU(2) gauge so that

hybridization in channel 1 is in the particle-hole channel, with V1 = iv1, ∆1 = 0, i.e V1 = iv1 while

the hybridization in channel 2 is in the Cooper channel, V2 = 0 and V2 = ∆2τ2. The eigenvalues

ωk of Hk are determined by

det(ω1−Hk) = ω4 − 2αkω
2 + γ2

k = 0.
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where we have introduced the notation:

αk = v2
k+ + 1

2

(
ε2k + λ2

)
, γ2

k = (εkλ− v2
k−)2 + 4(v1kv2kck)2, (4.46)

v1k = v1φ1k, v2k = ∆2φ2k, v2
k± = v2

1k ± v2
2k. (4.47)

The quantity ck measures the amplitude for singlet Andreev reflection, and is unity for the simpli-

fied spin-diagonal model. When the form factors ΦΓk contain off-diagonal components, the above

equations still hold, but with the definitions

φ2
Γk =

1
2

Tr
[
Φ†ΓkΦΓk

]

ck =
Tr
[
Φ†2kΦ1k + Φ†1kΦ2k

]
4φ1kφ2k

=
ReTr

[
Φ†2kΦ1k

]
√

Tr
[
Φ†1kΦ1k

]
Tr
[
Φ†2kΦ2k

] (4.48)

The eigenvalues of Hk are given by ω = ωk± and ω = −ωk±, where

ωk± =
√
αk ± (α2

k − γ2
k)1/2. (4.49)

The quantity

∆k ∼ v1kv2kck

plays the role of the gap in the spectrum. Quasiparticle nodes develop on the heavy Fermi surface

defined by εk = v2
k−/λ in directions where ∆k = 0.

The mean field equations are obtained by minimizing the free energy

F = −NT
∑
k,±

log[2 cosh(βωk±/2)] +NNs
∑

Γ=1,2

v2
Γ

JΓ
(4.50)
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with respect to λ and (vΓ)2 (Γ = 1, 2), which yields

1
Ns
∑
k±

tanh(ωk±/2T )
2ωk±

λ± λαk − εk(εkλ− v2
k−)√

α2
k − γ2

k

 = 0,

1
Ns
∑
k±

φ2
1k

tanh(ωk±/2T )
2ωk±

2± (εk + λ)2 + 4(v2ksk)2√
α2

k − γ2
k

 =
4
J1
,

1
Ns
∑
k±

φ2
2k

tanh(ωk±/2T )
2ωk±

2± (εk − λ)2 + 4(v1ksk)2√
α2

k − γ2
k

 =
4
J2
,

(4.51)

where we have put s2
k = 1−c2

k. In the normal phase either v1 or v2 is nonzero, corresponding to the

development of the Kondo effect in the strongest channel. Therefore, there are two types of normal

phase with two different Fermi surfaces:

• J1 > J2, v2 = 0 with spectrum

ωk± =
1
2

(
εk + λ±

√
(εk − λ)2 + 4v2

1k

)
. (4.52)

corresponding to Kondo lattice effect in channel 1, and

• J2 > J1, v1 = 0, with dispersion

ωk± =
1
2

(
εk − λ±

√
(εk + λ)2 + 4v2

2k

)
. (4.53)

corresponding to a Kondo lattice effect in channel 2.

The two normal phases are always unstable with respect to formation of the composite paired state

at sufficiently low temperature.

We have calculated the superconducting transition temperature, Tc as a function of the ratio

J2/J1, and Figure 4.6 shows the results of a model calculation, in which the band structure of the

conduction electrons is derived from the 3D tight binding model:

εk = −2t(cos kx + cos ky + cos kz)− µ (4.54)
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Figure 4.6: Phase diagram for a two-channel Kondo lattice, computed in the symplectic large-N
limit for tetragonal symmetry, where spin is exchanged via channels Γ1 = Γ+

7 and Γ2 = Γ−7 . The x-
axis co-ordinate is the parametric variable x = 2(J2/J2)/(1+J2/J1) running from x = 0 to x = 2,
corresponding to J2/J1 running from zero to infinity, as labeled. Temperature is measured in units
of the maximum Kondo temperature of the two channels T0 = max(TK1, TK2). Two Fermi liquids
of different symmetry develop in the regions of small and large J2/J1, separated by a common
region of composite-pairing, delineated by the gray area. The red-point denotes the location of the
single-impurity quantum critical point that develops when the two channels are degenerate. In the
lattice, this point is avoided through the development of composite pairing.

where µ is the chemical potential. Our choice of form factors is dictated by the corresponding crystal

structure of the PuCoGa5, where we select Φ1k̂ = ΦΓ+
7 k for the electrons in channel one and Φ2k̂ =

ΦΓ−7 k for the holes in channel two. As we lower the temperature, the superconducting instability

develops in the weaker channel. The critical temperature for the composite pairing instability is

determined from equations (4.51) by putting v2 = 0+. From the third equation with logarithmic

accuracy we have log(TK1/Tc) ' 1/J2 which yields

Tc '
√
TK1TK2. (4.55)
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signaling a maximum Tc for J1 ' J2.

It is instructive to contrast the phase diagrams of the SU(N) and symplectic large N limits.

In the former, there is a single quantum phase transition that separates the heavy electron Fermi

liquids formed via a Kondo effect about the strongest channel. In the symplectic treatment, coher-

ence develops between the channels, immersing the two-channel quantum critical point beneath a

superconducting dome. The Cooper channel in the heavy-electron normal state guarantees that the

secondary screening channel is always marginally relevant in the lattice, as first speculated in ref.

[122]. This is, to our knowledge, the first controlled mean-field theory in which the phenomenon of

“avoided criticality” gives rise to superconductivity.

4.2.4 Landau theory of composite pairing

The qualitative aspects of the symplectic large N phase diagram are simply illustrated within a

Landau theory valid in the vicinity of J1 = J2
1. Here, we again take the simplified two dimensional

example, in the vicinity of J1 = J2 and at temperatures just below Tc '
√
TK1TK2. Proximity to

the transition point guarantees the smallness of the hybridization, V and pairing field, ∆ and justifies

the Landau expansion in these quantities. In this region, the Landau free energy, F [V1,V2] =

F0 + FL divides into a single impurity term, F0 that preserves the channel symmetry and a lattice

term FL containing terms that violate channel conservation and drive superconductivity.

To obtain this Landau expansion, we again take the path integral form of the mean-field partition

function,

Z =
∫
D[f, c, λ,V]e−NS[f,c,λ,V],

NS[f, c, λ,V] =
∫ β

0
dτ

∑
k, α>0

c̃†kα(∂τ + εkτ3)c̃kα +
∑
j, α>0

f̃ †jα(∂τ + λτ3)f̃jα +
∑
j,Γ

HΓ(j),

(4.56)

where HΓ is given in equation (4.36), and we consider the translationally invariant saddle point.

1This section was primarily written by Maxim Dzero, and is included for completeness.
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Note that we have not fixed the gauge, and this Landau theory is completely gauge invariant. We can

now integrate out the fermionic fields, which yields the following effective action written explicitly

in terms of the VΓ’s and bare fermionic propagators F̂0 = [∂τ − λτ3]−1, Ĝ0 = [∂τ − εkτ3]−1:

NSeff =

β∫
0

dτ

(
1
JΓ

Tr[V†ΓVΓ]− Tr log[1− F̂0V†ΓĜ0VΓ]
)
. (4.57)

The Landau free energy is obtained by expanding the expression under the logarithm in Seff out to

fourth order in V . We have then evaluated the traces over momentum and imaginary time, to obtain

the following expressions.

The single impurity contribution to the free energy can be written,

F0 =
1
2

(t+ α)Tr
(
V1V†1

)
+

1
2

(t− α)Tr
(
V2V†2

)
+
U

4
Tr
[
(V1V†1 + V2V†2)2

]
(4.58)

where t = ρ ln
(

T√
TK1TK2

)
, α = ρ ln

(
TK2
TK1

)
describes the channel asymmetry and ρ is the con-

duction electron density of states. F0 displays a local SU(2) symmetry, VΓ → gVΓ, as well as

the individual channel symmetries, VΓ → hΓVΓ. This function captures the essence of a large N

Kondo lattice where the channel quantum number is conserved. There is simply an instability at

T
Tc

= 1 + |α| where hybridization develops in the strongest channel. The special case of α = 0

describes a bicritical point in the zero temperature phase diagram.

The lattice contribution to the free energy is given by:

FL = −ηTr
[
P−Ψ†P+Ψ

]
= −η|∆2V1 −∆1V2|2, (Ψ = V†2V1). (4.59)

where P± = 1
2(1 ± τ3) and η ∼ ρ

T 2
K

. The diagrams giving rise to this term are shown to leading

order in V in Figure 4.7). This term drives the emergence of composite pairing, nestled between

the heavy Fermi liquid phases for the two screening channels. When either J1 or J2 is small,

this second transition temperature is exponentially suppressed, but never eliminated from the phase

diagram because the Cooper channel guarantees that η contains a weak logarithmic dependence
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Figure 4.7: Leading Feynman diagrams responsible for composite pairing in the two-channel Kondo
lattice. The sum of all four diagrams (a)- (d) gives a contribution proportional to |Λ|2 = |(V1∆2 −
V2∆1)|2.

which will always drive a composite instability at low enough temperatures.

4.3 Experimental consequences

There are several concrete consequences of composite pairing that permit our ideas to be compared

with experiment:

1. Crystal fields determine the gap symmetry. When an electron scatters between the Γ =

Γ±7 channels, it scatters between the | ± 3/2〉 ↔ | ∓ 5/2〉 states, and in so doing picks

up l = 4 units of angular momentum via spin-orbit scattering. The corresponding order

parameter then acquires the symmetry of an orbital state with l = 4, and the corresponding

order parameter thus has g- wave symmetry, with eight nodal surfaces, as shown in Figure

4.5. The symmetry of this gap is independent of the microscopic details, and purely set by

the tetragonal crystalline environment of the magnetic ions.
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2. Upturn in the NMR. In the approach to the composite ordering transition, the local moments

must correlate between sites, and this manifests itself through the development of an enhance-

ment of the NMR relaxation rate. For those systems with maximal Tc, the NMR relaxation

rate in the normal state is predicted to contain a term derived from the interference between the

two screening channels, proportional to the product 1
T1T
∝ J1(T )J2(T ) of the temperature-

renormalized Kondo coupling constants. At the maximum Tc, where J1 ∼ J2, this gives

rise to an upturn in the NMR relaxation rate 1
T1T
∝ [ln2(T/Tc) + π2]−1, a result in accord

with recent measurements on PuCoGa5 [177] shown in Figure 4.8, but which has yet to be

tested in NpPd5Al2. The NMR relaxation rate can be calculated as a 1/N correction to the

mean-field theory, and is discussed in Appendix 4C.
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Figure 4.8: Upturn in the NMR relaxation rate created by the co-operative interference of the Kondo
effect in the two channels at different sites, for the extreme case of maximum Tc, where J1 = J2

(Blue line), compared with measured NMR relaxation rate in PuCoGa5 [177] (yellow points).
Inset shows Feynman diagram used to compute this contribution, where dotted lines describe the
f-fermions, blue lines describe conduction electrons propagating between sites and the curly lines
describe the Kondo interaction in the particle-hole (red) and particle-particle (blue) channels at
different sites. Temperature is measured in units of the transition temperature Tc.
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3. Andreev reflection. The main driver for this mechanism of heavy fermion superconductiv-

ity is Andreev reflection off quenched magnetic moments. Conventional Andreev reflection

involves the direct transfer of an electron from the probe into the pair condensate of the con-

duction sea. The conventional BTK theory of Andreev reflection [178] predicts that such

processes are severely suppressed by the large mismatch between the probe and heavy elec-

tron group velocities. However, in a heavy electron system, an electron can also “co-tunnel”

into the Kondo lattice - a process well-known in magnetic quantum dots, whereby the electron

flips a localized spin as it tunnels into the material [179]. In a composite paired superconduc-

tor, these processes will result in the direct absorption of the electron into the condensate of

composite pairs, giving rise to an enhanced contribution to the Andreev tunnel current with a

Fano resonant structure.

4. Internal Proximity effect. When the Kondo ions in the superconductor are substituted by

Kondo ions with a larger coupling constant, the robust nature of the gap symmetry will pro-

tect the superconductor against pair-breaking, and is expected to lead to an internal proximity

effect, where the Andreev reflection off the substituted impurities enhances the superconduct-

ing Tc. This effect requires an overlap between the gap functions of the two different ions, but

this is guaranteed by crystal symmetry, providing the same screening channels are operative

for both ions. Based on this line of argument, we expect that Pu doping of NpPd5Al2 will

lead to an enhancement of the superconducting Tc.

The direct transition from Curie paramagnetism to superconductivity inPuCoGa5 andNpPd5Al2

suggests that these materials are composite pair superconductors close to the J1 = J2 point of

maximum Tc. Our work currently leaves open the question of the link between NpPd5Al2 and

PuCoGa5 and other actinide and cerium systems of similar tetragonal structure, includingPuRhGa5

[80], and the CeM In5 superconductors [83, 77, 180]. Each of these systems develops superconduc-

tivity, but magnetic susceptibility measurements indicate that the f-moments are more completely

quenched at the superconducting transition. We are tempted to suggest that that these systems are

examples of composite pairing in the parameter range where J2/J1 is smaller, and further away
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from the maximum transition temperature. Strong Andreev reflections have recently been observed

in the tetragonal Ce 115 heavy electron superconductors, a phenomenon that could be associated

with co-tunneling into the composite pair condensate [181]. However, at the same time, supercon-

ductivity in the cerium systems clearly develops in close proximity to antiferromagnetism, so we

can not rule out antiferromagnetic spin fluctuations as the predominant pairing mechanism in these

cases, a matter we discuss in detail in the next chapter.

Appendix 4A: Composite pairing

The SU(2) invariant order parameter of the composite paired state is V†2V1. We shall show that this

matrix is equal to the amplitudes for composite pairing and composite density wave formation using

a path integral approach. Here, it proves useful to employ the following matrix representation for

the conduction and f-fields at each site j

Fj =

 fTj

f †j ε̂
T

 =

 fj1 fj−1 . . .

f †j−1 −f †j1 . . .

 , ΨΓj =

 ψTΓj

ψ†Γj ε̂
T

 =

 ψΓj1 ψΓj−1 . . .

ψ†Γj−1 −ψ†Γj1 . . .


(4.60)

whose columns are made up of Nambu spinors. In the following we drop the site index, j. This

notation can be used to recast the hybridization terms in a more compact form.

1
2

∑
α

ψ̃ΓαVΓfα =
1
2

Tr
[
Ψ†ΓV†ΓF

]
= −1

2
Tr
[
UΓV†Γ

]
, (4.61)

where UΓ = FΨ†Γ is a two-dimensional matrix operator. Adding a source term ηV†2V1, the decou-

pled interaction Hamiltonian assumes the form

HK [η] = −1
2

∑
Γ

(
Tr
[
UΓV†Γ

]
+ H.c.

)
+

1
2

Tr

VΓ

N
J1

2η

2η̄ N
J2

V†Γ′
 .
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After carrying out the Gaussian integral over VΓ, we expand HK [η] to first order in η,

HK [η] = − JΓ

2N
Tr
(
UΓU

†
Γ

)
+
J1J2

N2
Tr
[
ηU †2U1 + H.c

]

Differentiating with respect to η then gives 〈V†2V1〉 = J1J2
N2 U

†
2U1 = J1J2

N2 :
[
Ψ2F

†FΨ†1
]

: . Using

the identity : F
†
F := S · σTN , which can be found by inserting the symplectic-N representations

and expanding, we obtain

V†2V1 = −J1J2

N2

 ψ†1(σN · S)ψ2 ψ†1(σN · S)εψ†2

ψ1ε
T (σN · S)ψ2 ψ1ε

T (σN · S)εψ†2

 . (4.62)

Appendix 4B: Dispersion in the presence of strong spin-orbit coupling

To develop a mean-field theory in the presence of spin-orbit scattering, we need to diagonalize the

the conduction electron Green’s function. The eigenvalues are determined by the condition

det[ω1−H(k)] = 0

If we integrate out the f-electrons, this becomes

det[ω1−H(k)] = (ω2 − λ2)2det[G(κ)−1] = (ω2 − λ2)2det[ω − εkτ3 − Σ(κ)]

Now since Σ(κ) ∝ 1
ω2−λ2 , it is convenient to factor this term out of the determinant, so that

det[ω1−H(k)] = (ω2 − λ2)−2det[(ω2 − λ2)G(κ)−1]

Now

(ω2 − λ2)G(κ)−1 = ω(A+D(σ · nk)τ2)−Bτ3 + Cτ1 (4.63)
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where

A = ω2 − λ2 − v2
k+

B = εk(ω2 − λ2) + λv2
k−

C = 2λv1kv2kck

D = 2v1kv2ksk (4.64)

and v2
k± = v2

1k ± v2
2k.

If we project the Hamiltonian into states where (nk · σ) = ±1, we can replace A + D(σ ·

nk)τ2 → A±Dτ2, i.e

det[ω1−H(k)] =
∏
±

det[ω(A±Dτ2)−Bτ3 + Cτ1]
(ω2 − λ2)

(4.65)

The presence of the ω2−λ2 terms in the denominator results from integrating out the f-electrons. In

actual fact, there are no zeros of the determinant at ω = ±λ, and the ω2− λ2 denominators in these

expressions act to factor out the false zeros ω = ±λ in the numerator that have been introduced by

integrating out the f-electrons. If we now expand the numerator:

det[ω(A±Dτ2)−Bτ3 + Cτ1] = [ω2A2 − ω2D2 −B2 − C2]

= ω2
[
(ω2 − λ2 − v2

+)2 − (2v1kv2ksk)2
] − [

εk(ω2 − λ2) + λv2
−
]2 − [2λv1kv2kck]2 .(4.66)

Notice that we get the same result for both ±D. We know that there is a factor (ω2 − λ2) in this

expression, so we can write

det[ω(A±Dτ2)−Bτ3 + Cτ1] = (ω2 − λ2)
[
ω4 − 2ω2αk + γ2

k

]
(4.67)

By a direct expansion of this expression and a comparison of terms with (4.66), we are able to
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confirm that this factorization works, with

αk = v2
k+ +

1
2

(λ2 + ε2k)

γ2
k = (εkλ− v2

k−)2 + (2v1kv2kck)2 (4.68)

Thus

det[ω1−H(k)] =
[
ω4 − 2ω2αk + γ2

k

]2 (4.69)

The surviving yet crucial effect of the spin-flip scattering is entirely contained in the ck factor in γk.

The Bogoliubov quasiparticles in the composite paired state preserve their Kramer’s degeneracy,

with dispersion given by

ωk± =
√
αk ± (α2

k − γ2
k)1/2,

as described in section 4.2.3.

Appendix 4C: NMR relaxation rate

One of the precursor effects of co-operative interference between the two conduction channels is

an increase in the NMR relaxation rate just above the transition temperature2. The NMR relaxation

rate is determined by

R ≡ 1
T1T

= − I
2

2π
lim
ω→0

ImKR
+−(ω)
ω

, (4.70)

where I is the hyperfine coupling constant, ω is the NMR frequency and KR
+−(ω) is the Fourier

transform of the retarded correlation function of the electron spin densities at the nuclear site:

KR
+−(ω) = −i

∫ ∞
0
〈[Ŝ+(0, t), Ŝ−(0, 0)]〉eiωtdt (4.71)

At the mean field level (N →∞), the NMR relaxation rate follows a Korringa law.

Corrections to Korringa relaxation appear in the 1/N2 corrections to the mean field. To simplify

2This section was written by Maxim Dzero, and is included for completeness
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our discussion, we assume that the Kondo exchange constants are almost degenerate J1 ∼ J2. In

the approach to the superconducting transition, at T > Tc, in principle, we need to examine the

effects of fluctuations in the hybridization and pairing amplitudes in both channel one and two.

The anomalous NMR effect comes from composite pair fluctuations, and as such are driven by the

interference between hybridization fluctuations in one channel and pair fluctuations in the other, and

we restrict our attention to these corrections. The simplified Hamiltonian is thenH = Hc+H0+H2

with

H0 =
∑
k

2
J1
V̄kV̂k +

2
J2

∆̄k∆k,

H2 =
∑
k,q;σ

(
φ1k̂f

†
k+qσVqckσ + φ2k̂σ̃c

†
kσ∆qf

†
q−k,−σ + H.c.

) (4.72)

and Hc describes the conduction electrons. We ignore fluctuations in the constraint fields, which do

not couple to the fluctuations in ∆ and V to quadratic order. For simplicity, we take the form factors

to be diagonal in spin space. Our goal is to compute the corrections to the f -spin correlator due to

the channel interference terms, which will be proportional to φ∗
1k̂
φ2k̂.

The relaxation rate will be governed by the f -spin correlations:

Kff (~x; τ) = −〈T̂τ f̂ †↑(~x, τ)f̂↓(~x, τ)f̂ †↓(0, 0)f̂↑(0, 0)e
−
βR
0

Ĥ2(τ)dτ
〉c, (4.73)

where 〈...〉c denotes the connected Green’s function obtained by perturbatively expanding the time-

ordered exponential in the high-temperature state where the f-electrons and conduction electrons

are decoupled at the mean-field level. The leading contribution to the temperature dependence of

the relaxation rate is governed by the diagram in Figure 4.9 which describes the effect of inter-site

scattering associated with an electron switching from one symmetry channel to another as it hops

from site to site. To write down an analytic expression for the diagram, we employ the Matsubara

correlation functions for the f− and c− electrons together with the correlation functions of the

slave fields KV (~r, τ) = −〈T̂τ V̂ (~r, τ)V̂ †(0, 0)〉 and K∆(~r, τ) = −〈T̂τ ∆̂(~r, τ)∆̂†(0, 0)〉. Contrary
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to the single channel effect, this contribution enhances the screening of the local spins rather then

suppressing it. To compute the relaxation rate, we must include the renormalization of the slave

boson propagators due to Kondo screening. These propagators are:

KV (~p; iΩ) =
[

1
J1

+ ΠV (iΩ)
]−1

, K∆(~p; iΩ) =
[

1
J2

+ Π∆(iΩ)
]−1

, (4.74)

where ΠV,∆(iΩ) are the polarization bubbles associated with hybridization and pair fluctuations.

The analytic expression for the diagram reads:

T 3

N2

∑
iε,iΩV ,iΩ∆

∑
q,p,kV ,k∆

Gf (p− kV )Gf (p+ q − kV )KV (kV )

×Gc(p+ q)Gc(p)K∆(k∆)Gf (k∆ − p− q)Gf (k∆ − p),
(4.75)

where we employ the four-vector notation p = (~p, iω) and have absorbed the form factors into

the conduction electron propagators. The Matsubara frequency summations can be performed by

employing the spectral function representation for the correlators in expression (4.75). For example,

Gf,c(~p; iω) =

∞∫
−∞

dε

π

ρf,c(~p, ε)
iω − ε , (4.76)

where ρf,c(~p, ε) are the corresponding spectral functions. In the high temperature phase, V and

∆ have zero expectation values and the fluctuation propagators are independent of momentum

KV,∆(~p; iΩ) = KV,∆(iΩ). The resulting expression for the relaxation rate can be compactly written

as follows

1
T1T

' 1
N2

∞∫
−∞

Wfc(ω)K∆(ω)KV (−ω)
dω

2π
, (4.77)

where Wfc(ω) is proportional to ρf (ω)ρc(ω). The integral (4.77) is dominated by energies near the

Fermi surface. Finally, by approximating the slave boson functions withKV,∆(ω) ∼ J1,2/ log[(T −
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iω)/TK ] [182] we obtain the following estimate for the relaxation rate

1
T1T

∼ 1
N2

1
log2(T/TK) + π2

, (4.78)

Our result for the relaxation rate shows an upturn in (T1T )−1 with decrease in temperature, in

agreement with experimental data of Curro et al. [177], shown in Figure 4.8.

∆

1’x 2’x

KV

1 2

K

x x

Figure 4.9: Channel interference contribution to the NMR relaxation rate originating from the in-
teraction of nuclear moments with f -spins in the normal state. Solid lines are the conduction band
propagators, wiggly lines are the propagators KV and K∆ of the slave fields for the channel one
and two correspondingly. The dashed lines are the f -electron propagators.
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Chapter 5

Tandem Pairing and the Cerium 115s

5.1 Introduction

In a superconductor, zero resistance results from the formation of a condensate of pairs of quasi-

particles called “Cooper pairs”. Although the quasiparticle is a composite object, involving a bare

electron screened by a cloud of spin and charge fluctuations, it behaves as a point-like particle in-

side the Cooper pair, provided the quasiparticles are well-formed at the superconducting transition.

However, in many strongly interacting materials, quasiparticles are ill-formed at the superconduct-

ing transition, giving the Cooper pair a non-trivial internal structure. The 115 family of heavy

fermion superconductors [77, 83, 180, 79, 80, 81] provide an extreme case of this phenomenon,

where quasiparticle formation, through the screening of local magnetic moments by mobile elec-

trons, coincides with the onset of superconductivity. Here, we examine the internal structure of

the heavy fermion condensate, showing that it necessarily involves two bosonic entities: a d-wave

pair of quasiparticles on neighboring lattice sites, condensed in tandem with a composite pair of

electrons bound to a local moment, residing within a single unit cell. These two components draw

upon the antiferromagnetic and Kondo screening interactions to cooperatively enhance the super-

conducting transition temperature, explaining the multiple superconducting domes seen in the 115

phase diagram [9]. We show that tandem condensate is electrostatically active, with a small electric

quadrupole moment that couples to strain. This accounts for the linear enhancement of the transition

temperature with the c/a ratio [183] and is predicted to lead to a shift in the NQR frequency of the

nuclei of surrounding ions that can be used to test the validity of the theory.

Over the past decade, the 115 family of superconductors, CeMIn5 [77, 83, 180], PuMGa5 [79,

80], and NpPd5Al2 [81], (M= {Co,Rh,(Ir)}) has attracted great interest as a research platform for
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the interplay of Kondo physics, magnetism and superconductivity. These highly tunable, layered f-

electron materials are descendants of the cubic antiferromagnet CeIn3. Since the original discovery

of superconductivity under pressure at Tc=0.2K in CeIn3 [73], the transition temperature has risen

by two decades, up to 2.3K in the Ce 115 materials [83], and then 18.5K in PuCoGa5 [79]. The

pairing mechanism that drives this remarkable rise in Tc is an outstanding mystery which may offer

clues relevant to higher Tc transition metal superconductors.

The abundance of magnetism in the phase diagram has led to a consensus that spin fluctuations

drive the superconductivity in the Ce 115s [66, 73, 74], explaining the enhancement of Tc as MIn2

layers are added to cubic CeIn3. CeRhIn5 is a canonical example, where moderate pressure reveals

a superconducting dome as the Néel temperature, TN vanishes [77, 184]. However, there are certain

difficulties with this picture, for example, further pressure [185] or Ir doping on the Rh site [186,

9] leads to a second dome, where spin fluctuations are weaker [187]. Furthermore, the highest

transition temperatures are found in the actinide 115s, which show no signs of magnetism.

Ce || c

Np || a

Figure 5.1: Local moments are seen in the Curie-Weiss susceptibilities: CeCoIn5(Tc = 2.3K) [63]
and NpPd5Al2(Tc = 4.9K) [81] are reproduced and rescaled by χ(Tc) to show their similarity (data
below Tc not shown).

One of the common, unexplained features of this family of superconductors is the presence

of unquenched local moments at the superconducting transition temperature (Figure 5.3(a)). In

a typical heavy fermion superconductor, the local moments quench to form a Pauli paramagnet

(χ(T ) ∼ χ0) prior to the development of superconductivity; this is the situation in spin fluctuation
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mediated superconductors, which pair pre-formed f-electrons. Yet four of the six 115 superconduc-

tors: PuCoGa5 [79], NpPd5Al2 [81] and Ce{Co,Ir}In5 [83, 180] exhibit a Curie-Weiss susceptibility

χ(T ) ∼ 1/(T +TCW ) down to Tc. The disappearance of the Curie-Weiss component in the Knight

shift below Tc [188] and a concomitant loss of spin entropy ∆S ∼ 0.3R log 2 [79, 81, 83, 180],

indicate that in these systems, the local moments quench simultaneously with the development of

superconductivity.

Figure 5.2: (a) High pressure studies on CeRhIn5 show two connected superconducting
domes(reproduced from Muramatsu et al. [185]). (b) Two domes are also seen in a doping study
tuning continuously between CeM In5 forM = (Co,Rh, In) (reproduced from Sarrao and Thomp-
son [189]).

These observations led us to propose in Chapter 4 that the actinide 115s are composite pair

superconductors [176]. In a one-channel Kondo lattice, the heavy Fermi liquid is composed of

composite fermions created by binding an electron to a spin flip: f †↑ ∼ c†↓S+. In the presence of a

second screening channel, a heavy Cooper pair forms by combining two electrons with a spin flip

to form a composite pair,

ΛC = 〈N |c†1↓c†2↓S+|N + 2〉, (5.1)

where c†1,2 create electrons in two orthogonal Kondo screening channels [122, 190]. This condensate

develops an Andreev component to the resonant Kondo scattering, and this drives superconductivity.
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However, composite pairing alone cannot account for the importance of magnetism in the Ce 115

phase diagram.

We are led by these conflicting observations to propose a model for the 115 materials where the

composite and magnetic mechanisms work in tandem to drive superconductivity. Composite pairing

originates from two channel Kondo impurities, while magnetic pairing emerges from antiferromag-

netically coupled Kondo impurities. These two systems are equivalent at criticality in the dilute

limit [92], and we argue that this connection persists to the lattice superconducting state concealing

a common quantum critical point (QCP) [89].

Composite Pair

c

a

c

a

Magnetic Pair

Figure 5.3: A tandem pair contains a superposition of magnetic and composite pairing, both with
d-wave symmetry. The magnetic pair (left) contains f-electrons at neighboring sites, while the
composite pair (right) is made up of a spin flip and two conduction electrons. The unit cell is
denoted by dotted lines, with dots indicating the local moment sites.

5.2 Internal structure of a heavy fermion pair

To understand the interplay between magnetic and composite pairing, we examine the internal struc-

ture of a heavy fermion pair. In a Kondo lattice, the heavy quasiparticles are a linear combination

a†k↑ = ukc
†
k↑+ vkf

†
k↑, where (c†) creates a mobile conduction electron and (f †) creates a localized
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spin [191]. The superconducting wavefunction is a coherent state

|Ψ〉 = PG exp(Λ†)|0〉, (5.2)

where Λ† =
∑

k ∆k(a
†
k↑a
†
−k↓) creates a d-wave pair of quasiparticles and PG is the Gutzwiller

projection operator ensuring that the f-occupation at each lattice site is one. Acting the Gutzwiller

projector on the f-electron field reveals its internal structure as a composite between a conduction

electron and a spin flip at a given site j, PGf
†
j↑ ∼

(
c†j↓S+

)
PG.

The pairing field Λ† contains three terms

Λ† =
∑
k

(
c†k↑ , f †k↑

)∆e
k ∆C

k

∆C
k ∆M

k


c†−k↓

f †−k↓

 = Ψ†e + Ψ†C + Ψ†M . (5.3)

The diagonal terms, with ∆e
k = u2

k∆k and ∆M
k = v2

k∆k create f- and conduction electron pairs. A

d-wave pair of f-electrons is an inter-site operator, taking the form

Ψ†M =
∑
i,j

∆M (Rij)
[
(c†i↑Si−)(c†j↓Sj+)

]
(5.4)

outside the Gutzwiller projection. However, if we expand the off-diagonal terms in real space,

Ψ†C =
∑
i,j

∆C(Rij)
[
c†i↑c

†
j↑Sj−

]
(5.5)

where ∆C(R) =
∑

k(ukvk∆k)eik·R, we find a composite pair formed between a triplet pair of

conduction electrons and a spin flip [190, 122, 176]. Unlike its diagonal counterparts, which are

necessarily inter-site, composite pairs are compact objects formed from pairs of orthogonal Wannier

states surrounding a single local moment (Figure 5.3).

Magnetic interactions will favor the inter-site component of the pairing, while the two-channel

Kondo effect will favor the composite intra-site component. However, both components will always

be present in the superconducting Kondo lattice. If the product of the Kondo screening channels
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has a d-wave symmetry, the composite and magnetic order parameters necessarily couple linearly

to one another, a process that we will show enhances the transition temperature over a large region

of the phase diagram, providing a natural explanation for both the actinide and Ce 115s.

5.3 The two channel Kondo-Heisenberg model

To treat these two pairing mechanisms simultaneously, we introduce the two channel Kondo-

Heisenberg model,

H = Hc +HK1 +HK2 +HM (5.6)

and solve it in the symplectic-N limit [190]. There are four terms,

Hc =
∑
k

εkc
†
kσckσ, HM = JH

∑
〈ij〉

~Si · ~Sj (5.7)

HKΓ = JΓ

∑
j

ψ†jΓa~σabψjΓb · ~Sj . (5.8)

where ~Sj is the local moment on site j, and ψjΓ is the Wannier state representing a conduction

electron on site j with symmetry Γ,

ψjΓa =
∑
k

ΦΓkabckbeik·Rj , (5.9)

where the form factor ΦΓkab is only diagonal in the spin indices in the absence of spin-orbit. Micro-

scopically, the two orthogonal Kondo channels, JΓ arise from virtual fluctuations from the ground

state doublet to excited singlets, where the two channels correspond to adding and removing an

electron, respectively. The Ce 4f1 state is split by tetragonal symmetry into three Kramer’s dou-

blets, where Γ+
7 is the ground state doublet [192, 193], so we may summarize the virtual valence

fluctuations with:

4f0(·) Γ+
7

 4f1

(
Γ+

7

) Γ6

 4f2

(
Γ+

7 ⊗ Γ6

)
. (5.10)

Requiring the composite pairing to resonate with the d-wave magnetic pairing [181] uniquely selects
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Γ+
7 ⊗Γ6 as the lowest doubly occupied state, as this combination leads to d-wave composite pairing

[190]. To illustrate the basic physics, a simplified two dimensional model is sufficient, where the

d-wave composite pair now comes from the combination of s-wave hybridization in channel one and

d-wave hybridization in channel two [194, 195]. The magnetism is included as an explicit RKKY

interaction, JH between neighboring local moments 〈ij〉, generated by integrating out electron in

bands far from the Fermi surface [64]. Treating the magnetism as a Heisenberg term leads to a two

band version of resonating valence bond (RVB) superconductivity [23], where the local moments

form valence bonds which “escape” into the conduction sea through the Kondo hybridization to

form charged, mobile Cooper pairs [196].

To solve this model, we use a fermionic spin representation, ~Sj = f †j ~σfj ; symplectic-N main-

tains the time-reversal properties of SU(2) in the large N limit by using the symplectic Pauli ma-

trices ~σ to construct the spin Hamiltonians [190],

HKΓ(j) = −JΓ

N

[
(ψ†jΓfj)(f

†
jψjΓ) + (ψ†jΓε

†f †j )(fjεψjΓ)
]

HM (ij) = −JH
N

[
(f †i fj)(f

†
j fi) + (f †i ε

†f †j )(fjεfi),
]

(5.11)

where ε is the large N generalization of iσ2. Each quartic term can be decoupled by a Hubbard-

Stratonovich field, leading to normal, VΓ ∝ 〈c†Γf〉 and anomalous, ∆Γ ∝ 〈c†Γεf †〉 hybridization

in each Kondo channel, and particle-hole, hij ∝ 〈f †i fj〉 and pairing, ∆H
ij ∝ 〈f †i εf †j 〉 terms for

the spin liquid, where 〈· · · 〉 represents a thermal expectation value. This Hamiltonian possesses

an SU(2) gauge symmetry, f −→ uf + vε†f †, which we use to eliminate ∆1, and composite

pair superconductivity occurs when V1∆2 is nonzero[?]. We calculate the mean field values of

these fields using the saddle point approximation, which becomes exact as N → ∞. The lowest

energy solutions involve only pairing fields in the magnetic and second Kondo channels, giving

rise to only three nonzero Hubbard-Stratonovich fields, V1, ∆2 and ∆H [?]. We take ∆H to be

d-wave in the plane, so that ∆H
k ≡ ∆H(cos kx − cos ky); in this simple model, Φ1 = 1 and

Φ2 = (cos kx − cos ky). Using the Nambu notation, c̃†k = (c†k, εc−k), f̃ †k = (f †k, εf−k), and
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defining Vk = V1Φ1kτ3 + ∆2Φ2kτ1, the mean field Hamiltonian can be concisely written as

H =
∑
k

(
c̃†k f̃ †k

) εkτ3 V†k
Vk λτ3 + ∆Hkτ1


 c̃k

f̃k


+N

(
V †1 V1

J1
+

∆†2∆2

J2
+

4∆2
H

JH

)
, (5.12)

where λ is the Lagrange multiplier enforcing the constraint nf = 1. The mean field Hamiltonian

can be diagonalized analytically. Upon minimizing the free energy, we obtain four equations for

λ, V1,∆2, and ∆H . Solving these numerically, and searching the full parameter space of J2/J1,

JH/J1 and T to find both first and second order phase transitions, we find four distinct phases,

• A light Fermi liquid with free local moments when all parameters are zero, at high tempera-

tures.

• A heavy Fermi liquid when either V1 or ∆2 are finite, with symmetry Γ, below TKΓ.

• A spin liquid state decoupled from a light Fermi liquid when ∆H is finite, below TSL. There

is no long range magnetic order due to our fermionic spin representation [123].

• A tandem superconducting ground state with V1, ∆2 and ∆H all finite, below Tc, as shown

in Figure 5.4.

A qualitative understanding of this tandem pairing can be obtained within a simple Landau

expansion. For T ∼ Tc � TK1, Φ ≡ ∆2 and Ψ ≡ ∆H will be small, and the free energy can be

expressed as

F = α1(Tc1 − T )Ψ2 + α2(Tc2 − T )Φ2 + 2γΨΦ

+ β1Ψ4 + β2Φ4 + 2βiΨ2Φ2 (5.13)

α1,2, β1,2,i and γ are all functions of λ and V1 and can be calculated exactly in the mean field limit.

The linear coupling of the two order parameters, γ = ∂2F/∂∆2∂∆H is always nonzero in the
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SL
FL2

FL1

Figure 5.4: The superconducting transition temperature as the amounts of magnetic, JH and second
channel, J2 couplings are varied. A slice at T = TK1 shows the regions of the spin liquid and
Fermi liquids, and the orange ellipse is a path illustrating how materials could tune the relative
coupling strengths (see Figure 5.5). The phase diagram was calculated in a simple two dimensional
model with channel one s-wave and channel two d-wave (nc = .75). The transition is first order for
JH/J1 > 4, but otherwise second order.

heavy Fermi liquid, leading to an enhancement of the transition temperature,

Tc =
Tc1 + Tc2

2
+

√(
Tc1 − Tc2

2

)2

+
γ2

α1α2
. (5.14)

For β1β2 > β2
i , the two order parameters are only weakly repulsive, leading to smooth crossovers

from magnetic to composite pairing under the superconducting dome [197].

5.4 Experimental consequences

Experimentally, CeM In5 can be continuously tuned from M = Co to Rh to Ir [9]. While CeRhIn5

is a canonical example of a magnetically paired superconductor, where moderate pressure reveals a

superconducting dome as the Néel temperature vanishes [77], further pressure [185] or Ir doping on
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the Rh site [9] leads to a second dome, where spin fluctuations are weaker [187]. We assume that

the changing chemical pressure varies the relative strengths of the Kondo and RKKY couplings,

so that doping traces out a path through the phase diagram like the one in Figure 5.5, chosen for

its similarities to CeM In5. While different paths may lead to one, two or three superconducting

domes, by maintaining the same Fermi liquid symmetry throughout (TK1 > TK2), we are restricted

to one (magnetic only) or two (magnetic and tandem) domes. In real materials, weak disorder will

decrease Tc for non-stoichiometric compounds, and antiferromagnetism will appear for TSL/TK1

sufficiently large. It requires much more fine tuning to obtain a superconductor when only one

pairing mechanism is operating, explaining why Yb superconductors, where the 4f13 
 4f12 are

greatly suppressed in relation to 4f13 
 4f14 are much harder to obtain than Ce superconductors in

which the two channels have similar strengths.

Conventional superconductivity is electrostatically neutral, in that the development of a con-

densate does not change the underlying charge distribution. By contrast, tandem pairing is electro-

statically active and redistributes charge, leading to an electric quadrupole moment. The transition

temperature of the 115 superconductors is known to increase linearly with the lattice c/a ratio

[183], conventionally attributed to decreasing dimensionality. Our theory suggests an alternative

interpretation: in a condensate with a quadrupole moment, Qzz ∝ Ψ2
C , which couples linearly to

the tetragonal strain, ∆F ∝ −Qzzutet, we can rewrite the second term in the Landau free energy

(5.13) as α2[T − (Tc2 + λutet)]Ψ2
C . This coupling naturally accounts for the linear increase in Tc.

The development of a condensate quadrupole moment should be also detectable as a shift of the

nuclear quadrupole resonance (NQR) frequency at the nuclei of surrounding ions.

The link between f-electron valence and the Kondo effect is well established [199], but tandem

pairing introduces a new element to this relationship. Changes in the charge distribution around

the Kondo ion can be read off from its coupling to the changes in the chemical potential, ∆ρ(x) =

|e|δH/δµ(x) whereH is the pairing Hamiltonian (12). The sensitivity of the Kondo couplings to the

chemical potential is obtained from a Schrieffer-Wolff transformation of a two-channel Anderson

model, which gives J−1
Γ = ∆EΓ/V

2
Γ,0. Here, VΓ,0 is the bare hybridization in channel Γ, and
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FL1

SL

SC

Chemical doping

1

"Co" "Rh" "Ir" "Co"

Figure 5.5: A possible experimental path through the phase diagram in Figure 5.4, chosen for its
similarity to the Ce 115 doping phase diagram [9]. The transition temperatures for superconductiv-
ity (Tc in solid blue), spin liquid (TSL in dotted red), and Fermi liquid (TK1 in dashed orange and
TK2 in dot-dashed white) are plotted for comparison. Temperatures are scaled by TK1, which may
itself vary as one moves around the phase diagram [198]. While we always find a superconduct-
ing ground state, due to our choice of a fermionic spin representation, real materials will have an
antiferromagnetic ground state for TSL/TK1 sufficiently large.

∆EΓ are the charge excitation energies of the magnetic moment. With a shift in µ → µ + δµ(x),

δJ−1
Γ = ±|ΦΓ(x)|2δµ(x)/V 2

Γ,0, where |ΦΓ(x)|2 are the full spin-orbit crystal field charge densities.

The sign is positive for J1 and negative for J2 because they involve fluctuations to the empty and

doubly occupied states, respectively: f0
Γ1

 f1

Γ2

 f2. Differentiating (3.22) with respect to δµ(x),

the change in the charge distribution will be:

∆ρ(x) = |e|
[(

V1

V1,0

)2

|Φ1(x)|2 −
(

∆2

V2,0

)2

|Φ2(x)|2
]
, (5.15)

where V1 and ∆2 are the hybridizations in channels 1 and 2, which together make up the composite
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order parameter. For equal channel strengths, the total charge is constant, and the f-ion will develop

equal hole densities in Γ+
7 and electron densities in Γ6, leading to a positive change in the electric

field gradient, ∂Ez/∂z ∝ (Tc − T ) > 0 at the in-plane In sites that will appear as a small shift in

the NQR frequencies growing abruptly below Tc (see Figure 6.53).

Figure 5.6: Predicted NQR frequency shift, ∆νNQR in CeM In5 at the high symmetry indium
nucleus. The inset shows the relative locations of the indiums in-, In(1) and out-of-plane, In(2).
∆νNQR measures the change in the electric field gradient (EFG) due to the onset of superconduc-
tivity. For equal channel strengths, the total charge of the f-ion remains unity, but the increasing
occupations of the empty and doubly occupied sites cause holes to build up with symmetry Γ+

7

(orange) and electrons with symmetry Γ6 (blue). The change in charge distribution and resulting
electric fields are shown above in a slice along the [110] direction (the dashed line in the inset). The
positive EFG, ∂Ez/∂z at the In(1) site will lead to a sharp positive shift in νNQR starting at Tc.

A small superconducting shift should also appear in the f-electron valence, observable with core-

level X-ray spectroscopy. The valence shift is obtained by integrating (5.15): ∆nf (T ) ∝ Ψ2
C ∝

(Tc−T ), as ΨC ∝ ∆2 when J1 > J2. While the development of Kondo screening leads to a gradual

valence decrease through TK , as it is a crossover scale, the development of superconductivity is a

phase transition, leading to a sharp mean-field increase of the valence beginning at Tc. Observation

of sharp shifts at Tc in either the NQR frequency or the valence would constitute an unambiguous

confirmation of the electrostatically active tandem condensate.
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Appendix 5A: Diagonalizing the Hamiltonian in the presence of spin-orbit coupling

In the presence of spin-orbit coupling, the mean-field Hamiltonian is an 8×8 matrix, and requires a

little more effort to diagonalize. This diagonalization has already been done in the absence of mag-

netic pairing, ∆Hk in Appendix 4B. The eigenvalues of the mean field Hamiltonian are determined

by

det[ω1−Hk] = 0 (5.16)

whereHk is given by  εkτ3 V†

V λτ3 + ∆Hkτ1

 (5.17)

with V† = V1Φ†1k + ∆2Φ†2k, where Φ†Γk = φΓkU
†
k is proportional to a 2x2 unitary matrix, discussed

in detail in Chapter 4. After integrating out the f-electrons, we obtain,

det[ω1−Hk] = (ω2 − λ2 −∆2
Hk)

2 det[G−1
k ] (5.18)

where Gk is the full conduction electron Green’s function,

G−1
k = ω1− εkτ3 − Σk and Σk =

V†(ω1 + λτ3 + ∆Hkτ1)V
ω2 − λ2 −∆2

Hk

. (5.19)

Since ΣK ∝ (ω2 − λ2 −∆2
Hk)
−1, we can factor (ω2 − λ2 −∆2

Hk)
2 out of the determinant,

det[ω1−Hk] = (ω2 − λ2 −∆2
Hk)
−2 det[(ω2 − λ2 −∆2

Hk)G−1
k ] (5.20)

which can be written as

(ω2 − λ2 −∆2
Hk)G−1

k = ωA1−Bτ3 + Cτ1 +Dτ2,
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where

A = ω(ω2 − λ2 −∆2
Hk)− TrV†(ω1 + λτ3 + ∆Hkτ1)V1 (5.21)

B = (ω2 − λ2 −∆2
Hk)εk + TrV†(ω1 + λτ3 + ∆Hkτ1)Vτ3 (5.22)

C = −TrV†(ω1 + λτ3 + ∆Hkτ1)Vτ1 (5.23)

D = −TrV†(ω1 + λτ3 + ∆Hkτ1)Vτ2 (5.24)

By evaluating the traces, we find

A = ω(ω2 − λ2 −∆2
Hk)− ωV 2

+ (5.25)

B = (ω2 − λ2 −∆2
Hk)εk + λV 2

− − 2∆HkV1k∆2k cos(ζk/2) (5.26)

C = +2λV1k∆2k cos(ζk/2)−∆HkV
2
− (5.27)

D = +2ωV1k∆2k(~n · ~σ) sin(ζk/2) (5.28)

where we have defined V 2± = V 2
1k ±∆2

2k, V1k = V1φ1k,∆2k = ∆2φ2k, and

cos(ζk/2) = Tr[Φ†1kΦ2k + Φ†2kΦ1k]/(φ1kφ2k)

i(~n · ~σ) sin(ζk/2) = Tr[Φ†1kΦ2k − Φ†2kΦ1k]/(φ1kφ2k), (5.29)

which we will further simplify as ck = cos(ζk/2) and sk = sin(ζk/2), and we will project the

Hamiltonian into states where ~n · ~σ = ±1, so that the determinant can be simply written,

det[A1−Bτ3 + Cτ1 +Dτ2] = A2 −B2 − C2 −D2

= ω2[(ω2 − λ2 −∆2
Hk − V 2

+)2 − (2V1k∆2ksk)2]

− (εk(ω2 − λ2 −∆2
Hk) + λV 2

− − 2∆HkV1k∆2kck)2 − (2λV1k∆2kck −∆HkV
2
−)2(5.30)
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(ω2 − λ2 −∆2
Hk) can now be factored out from the overall expression. The result should be

det[A1−Bτ3 + Cτ1 +Dτ2] = (ω2 − λ2 −∆2
Hk)(ω

4 − 2ω2αk + γ2
k), (5.31)

and from this we find

αk =
λ2 + ε2k + ∆2

Hk

2
+ V 2

k+, γ2
k = (εkλ− V 2

k−)2 + (2V1k∆2kck + εk∆Hk)2. (5.32)

Just as in the absence of magnetic pairing, all the effects of spin-flip scattering are contained in the

one cosine term. The linear coupling between V1k∆2kck and εk∆Hk is clear.
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Chapter 6

Symplectic Anderson models

6.1 Introduction

One of the major focuses of this dissertation has been to understand the origin of unconventional su-

perconductivity in the 115 family of heavy fermion superconductors. This family has attracted great

interest for the unusual transition directly from Curie paramagnetism into heavy fermion supercon-

ductivity, which suggests that the spins play a more direct role in the superconducting mechanism

than previously believed, but also for the remarkable rise in the transition temperature between

the cerium (Tc = 2.3K for CeCoIn5) and the more mixed valent actinide 115s, where PuCoGa5

(Tc = 18.5K) is the highest temperature heavy fermion superconductor. In Chapter 4, we proposed

that the actinide 115s are composite pair superconductors, where the superconductivity is a lo-

cal phenomena involving the condensation of bound states between local moments and conduction

electrons in two orthogonal Kondo channels,

Λj = 〈ψ†1j↑ψ†2j↑S−(j)〉, (6.1)

where ψ†1,2 create local Wannier states of conduction electrons with two different symmetries. Near

the point of channel degeneracy, composite pairing can explain the presence of local moments down

to the transition temperature, however, magnetic pairing clearly plays an important role in the cerium

115s, and in Chapter 5, we discussed how magnetic and composite pairing can work in tandem

to increase the transition temperature and avoid the fine-tuning problem of channel degeneracy.

The magnetic and composite order parameters are indistinguishable at the macroscopic level, but

composite pairing has unique electrostatic properties, and the formation of composite pairs appears

to redistribute the f-electron charge within the unit cell, which should be experimentally detectable.

Thus far, we have only studied composite pairing within the two channel Kondo model, which
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cannot access these charge degrees of freedom directly. To rigorously address the charge aspects

of composite pairing, in this chapter we introduce the two channel Anderson model and solve it

in the symplectic-N limit. This model not only allows us to properly treat the charge degrees of

freedom, but also to illuminate the effects of valence fluctuations on the superconductivity, which

are especially important for the actinide 115s, PuMGa5 (M = Co,Rh) [79, 80] and NpPd5Al2 [81].

Figure 6.1: Virtual charge fluctuations of a two channel Anderson impurity, where the addition and
removal of an f-electron occur in channels of two different crystal field symmetry, Γ1 and Γ2. The
ground state is a Kramer’s doublet, while the excited states are singlets. In general, we will neglect
the excited crystal field doublet, |Γ2 : α〉. We show the corresponding valence states of Ce3+ (4f1)
ions and their 5f hole analogue, Pu3+ (5f5).

To study composite pairing in mixed valent compounds, we introduce the two channel Anderson

model. This model describes strongly correlated f-ions with a doublet ground state, |Γ1±〉 whose

valence can fluctuate either by losing or gaining an electron,

f0 + e− � f1 � f2 + h+. (6.2)

There are three relevant atomic multiplets: the empty state, |0〉, which is necessarily a singlet, the

Kramers doublet, |Γ1±〉, and a doubly occupied state, which we assume to be a singlet containing
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f-electrons in two orthogonal symmetries,

|2〉 ≡ |Γ2 ⊗ Γ1〉s =
1√
2

∑
σ=±1

sgn(σ)f †Γ2σ
f †Γ1 −σ|0〉. (6.3)

These states are shown in Figure 6.1, and are described by the atomic Hamiltonian,

Ha(j) = E0X00(j) + E2X22(j) +
∑
σ

εfXσσ(j), (6.4)

where the X’s are the Hubbard operators X00 = |0〉〈0|, X22 = |2〉〈2|, and Xσσ = |σ〉〈σ|, which

are projectors for the local atomic basis. These f-electrons coexist with a bath of non-interacting

conduction electrons, Hc =
∑

k,σ εkc
†
kσckσ, and these two species will hybridize in two different

channels, as

HV (j) = V1ψ
†
1jσX0σ(j) + h.c.+ V2ψ

†
2jσσ̃X−σ2(j) + h.c., (6.5)

where ψΓjσ are Wannier states representing a conduction electron in symmetry Γ on site j. We

have employed the Hubbard operators, X0σ = |0〉〈σ| and X2σ = |2〉〈σ| as projected annihilation

operators to ensure the absence of any doubly occupied states besides |2〉, for example, |Γ1 ⊗ Γ1〉

will be eliminated. In this sense, our two channel Anderson model,

H = Hc +
∑
j

Ha(j) +
∑
j

HV (j) (6.6)

is the combination of two infinite-U Anderson models in the two different channels. Here we have

adopted the notation of Ce atoms, whose ground state is a 4f1 doublet, but this formalism applies

equally well to Pu 5f5 atoms, which are hole analogues of Ce: |0〉 ≡ |5f6〉 represents the half-filled

J = 5/2 level, |σ〉 ≡ |5f5 : σ〉 represents one hole in this half-filled level and |2〉 ≡ |5f4〉 contains

two holes.

In order to develop a large N Anderson model capturing composite pairing, we must maintain

the time-reversal properties of the physical electrons in the large N limit. The defining feature of
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SU(2) spins is that they invert under time-reversal, S→ θSθ−1 = −S. Maintaining this property as

we generalize to largeN is essential to the survival of Cooper pairs, and corresponds to generalizing

SU(2) spins to symplectic, SP (N) spins:

Sαβ = f †αfβ + α̃β̃f−αf
†
−β

α ∈ {−N/2, ..,−1, 1, .., N/2}, and α̃ = sgn(α). (6.7)

The symplectic nature of these spins is responsible for the appearance of composite pairing in the

symplectic-N two channel Kondo model, and so to create a symplectic Anderson model, we must

ensure that the spin flip operators, Sαβ are symplectic spins. The Hubbard operators must therefore

satisfy the anti-commutation relations,

{X0α, Xβ0} = Sαβ +
(
X00 +

Xγγ

N

)
δα,β, (6.8)

where Sαβ are the traceless forms of the Hubbard operators, Xαβ . We show in Section 6.2 that a

proper symplectic slave boson representation of the Hubbard operators requires the introduction of

two slave bosons to describe a single channel:

X0α = b†1fα + a†1α̃f
†
−α

X00 = b†1b1 + a†1a1. (6.9)

As we shall demonstrate, these symplectic Hubbard operators maintain the neutrality of the singly

occupied state, which manifests itself as an invariance of the Anderson Hamiltonian with respect to

a local SU(2) gauge symmetry associated with the particle-hole transformation, fσ → cos θ fσ +

sgn(σ) sin θ f †−σ [140]. This representation was originally introduced in a mean-field treatment of

the t − J model by Wen and Lee [129], and we shall show that these Hubbard operators maintain

this gauge symmetry for all N . Here, we focus on composite pairing, and the key result is that the
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amount of composite pairing can be written in a simple gauge-invariant form as

∆SC ∝ 〈X02〉 ∝ 〈ψ†1j↑ψ†2j↑S−(j)〉, (6.10)

where the Hubbard operator X02 = |0〉〈2| mixes the empty and doubly occupied states. We show

that there will be a charge response in the composite-paired superconducting state, as the charge in

the f -orbitals rearranges to accommodate the mixing, and predict that such a rearrangement will

result in the modified electric field gradients felt by the nuclei of the surrounding In atoms, which

should be detectable by as a sharp shift in the nuclear quadrupolar resonance (NQR) frequency

below the superconducting transition. The magnitude and sign of this shift in CeCoIn5 can be

estimated quantitatively.

This chapter is organized as follows. First we review the single-channel Anderson problem and

discuss the previous SU(N) results, before introducing the symplectic Hubbard operators in section

6.2 and demonstrating that the symplectic-N and SU(N) large N limits are identical for a single

channel. We then generalize this formalism to the case of two channels in Section 6.3 and show

how composite pairing naturally appears as a mixing of the empty and doubly occupied states.

The mean-field solution is presented in Section 6.4, in which we show how the superconducting

transition temperature increases with increasing mixed valence. In Section 6.5, we calculate the

charge distribution of the f -orbitals in the state with composite pairing and predict a shift in the

NQR frequency at Tc. Finally, section 6.6 discusses the implications for the finite-U Anderson

model and examines the broader implications of our results.

6.1.1 The infinite-U Anderson model and Hubbard operators

The Anderson model combines weakly interacting conduction electrons and localized, strongly

interacting f-electrons, coexisting at the same lattice sites,

H = Hc +Hf +Hmix, (6.11)
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where the first term describes free conduction electrons and the second is an atomic Hamiltonian

with a strong on-site Coulomb repulsion,

Hc =
∑
k

εkc
†
kσckσ, Hf =

∑
i

εff
†
iσfiσ + Uf n̂fi↑n̂fi↓. (6.12)

These two species mix quantum mechanically through a hybridization term [95],

Hmix = V
∑
i

c†iσfiσ + h.c., (6.13)

where we have taken the hybridization to be isotropic. In the limit of large U , electrons hopping

on and off the f-atom are strongly restricted by the high energy cost of double occupancy. The

infinite-U Anderson model is a low energy approximation of the full Anderson model in this limit,

where the doubly occupied states are eliminated. A proper treatment of this model requires the

introduction of Hubbard operators to project out any doubly occupied states [98]. These operators,

Xab = |a〉〈b|, act within the space |a〉 = |0, ↑, ↓〉, where the diagonal Hubbard operators, Xaa are

projection operators, satisfying the completeness relation,

X00 +
∑
σ

Xσσ = 1, (6.14)

and obeying bosonic commutation relations. The off-diagonal Hubbard operators, Xσ0 and X0σ are

projected creation/annihilation operators, which obey the anti-commutation relations,

{Xσ0, Xσ′0} = Xσσ′ +X00δσ,σ′ . (6.15)

Together, we say that the Hubbard operators satisfy a graded Lie algebra that is bosonic for the pro-

jection operators and spin flips, and fermionic for the projected creation and annihilation operators.
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The hybridization and atomic Hamiltonians may be rewritten with these Hubbard operators [99],

Hmix = V
∑
i

c†iσX0σ(i) + h.c., Ha = |εf |
∑
i

X00(i), (6.16)

where here we measure the energies from the f-level, so that the energy of the empty state, E0 =

−εf > 0.

Since Hubbard operators, like spins, do not obey canonical commutation relations, they cannot

be treated directly within quantum field theory, but they may be represented as bilinears of fermions

and bosons. In the usual slave boson approach [100, 101], a boson, b† is introduced to represent the

empty state, two fermions, f †σ are introduced to represent the singly occupied spin states:

|0〉 = b†|Ω〉

|σ〉 = f †σ|Ω〉, (6.17)

where |Ω〉 is an unphysical vacuum state containing no fermions or bosons. This representation

separates the electron into two components: charged, but spinless holons and neutral spinons, which

now have the potential to move separately. It can be checked explicitly that the projected hopping

operators,

X0σ = b†fσ, (6.18)

satisfy the Hubbard algebra, (6.15). The projector into the empty state, X00 = b†b counts the

number of bosons and the constraint of no double occupancy fixing the total number of particles,

nb + nf = 1 can be enforced at each site by employing a Lagrange multiplier, λi. This constraint

eliminates all but the three physical atomic states (6.17), and because the constraint commutes with

the Anderson Hamiltonian, the physical and nonphysical states do not mix. As these Hubbard

operators are invariant under a local U(1) gauge transformation, bi → bieiθi , fiσ → fiσeiθi [127,

128], they are known as U(1) slave bosons.

The mean field solution of the infinite-U Anderson is obtained by replacing bj and λj by their
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uniform expectation values, 〈b〉 and λ. The resulting Hamiltonian is quadratic in the fermions and

can be solved exactly. This mean field limit becomes exact as the number of spin components,

N = 2j + 1 goes to infinity. In the mean field theory, 〈b〉2 not only represents the occupancy of

the empty state, but it also plays the role of the Kondo hybridization, V . As the conduction and

f-electrons hybridize, the valence of the f-electron, nf = 1− 〈b〉2 decreases from unity [199]. The

lattice Kondo temperature indicates when b first develops an expectation value,

T ∗ =
∆
π

e−E
∗
0/∆ (6.19)

where ∆ = πV 2 is the hybridization width, and E∗0 = |εf | − ∆
π log ∆

D shows how the f-level,

εf renormalizes. When E∗0 < 0, TK is no longer limited by ∆/π and grows all the way to the

conduction electron bandwidth, D for sufficiently small E0. Here, it is no longer reasonable to

think about local moments hybridizing to form a heavy Fermi liquid - the local moments never form

and the state will always be a light Fermi liquid.

Let us take a moment to ask: what largeN limit does this approach encode? The anti-commutator

of these Hubbard operators gives Sαβ = f †αfβ , the well-known form of SU(N) spins. It is no won-

der then, that this approach contains no superconductivity in the large N limit.

6.2 Symplectic Hubbard operators

As we generalize the number of spin components from 2 to N , we must maintain a well-defined

time-reversal operation (θ). Correctly incorporating time-reversal symmetry allows the formation of

Cooper pairs, which pair an electron and its time-reversed twin and thus enables the development of

superconductivity. We have previously shown that composite pairing is contained in the symplectic-

N limit of the two channel Kondo model (Chapter 4), which maintains the time-inversion properties

of spins in the large N limit by using symplectic spins,

Sαβ = f †αfβ + α̃β̃f−αf
†
−β. (6.20)
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In order to develop composite pairing within a large N Anderson model, we need to introduce a

set of Hubbard operators that maintain time-reversal symmetry in the large N limit. The Hubbard

operators describe both the charge, X0α and spin, Xαβ fluctuations subject to the constraint of no

double occupancy. To maintain time-reversal symmetry, these spin fluctuations must be symplectic

spins, Sαβ . Starting from a spin state |σ〉, hopping an electron off and then back on should give rise

to a spin flip, and this condition defines the Hubbard operators within a single channel, where the

projected hopping operators anti-commute,

{X0α, Xβ0} = Sαβ +
(
X00 +

Xγγ

N

)
δα,β. (6.21)

The traceless forms of the Hubbard operators, Sαβ = Xαβ − Xγγ
N δαβ are the symplectic spins,

satisfying the SP (N) commutation relations. As in previous work [167], we use slave bosons and

fermionic spinors to represent these Hubbard operators. Satisfying the symplectic Hubbard algebra,

(6.21) and thus preserving the symplectic symmetry of the spins requires the introduction of two

slave bosons,

X0α = b†1fα + a†1α̃f
†
−α

X00 = b†1b1 + a†1a1. (6.22)

At this point, one might wonder why we would want to exchange the elegant simplicity of the

original Hubbard operators, Xab = |a〉〈b| for this profusion of slave bosons. The answer is that,

while the original Hubbard operators appear simple, treating them is not [99], due to their non-

canonical anti-commutation algebra, (6.21). Introducing the slave boson representation allows us

to represent these complicated operators in terms of canonical bosons and fermions. Doubling the

number of slave bosons preserves the symplectic character of the spins and we shall see that this

encodes the hard-to-enforce Gutzwiller projection as a more mathematically tractable SU(2) gauge

symmetry.

In the fermionic spin representation of SP (N), the preservation of time-reversal comes hand
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in hand with the neutrality of the spins under charge conjugation. Symplectic spins thus possess a

continuous particle-hole symmetry, which can be seen most naturally by introducing the generalized

pair creation operators,

Ψ† =
1
2

∑
α

α̃f †αf
†
−α =

∑
α>0

f †αf
†
−α, (6.23)

which allow us to construct the isospin vector, ~Ψ = (Ψ1,Ψ2,Ψ3) = f̃ †α~τ f̃α, where

Ψ1 =
(

Ψ† + Ψ
)
, Ψ2 = −i

(
Ψ† −Ψ

)
Ψ3 =

∑
α>0

f †αfα − f−αf †−α = nf −N/2, (6.24)

and nf =
∑

α f
†
αfα is the number of fermions. The isospin vector was shown in section 2.5.1 to

commute with symplectic spins,
[
~Ψ, Sαβ

]
= 0, which indicates that the symplectic spins possess an

SU(2) gauge symmetry: a continuous particle-hole symmetry that allows us to redefine the spinon,

fα → ufα + vα̃f †−α. This symmetry is reflected in the requirement of two types of bosons, as

the empty state does not distinguish between zero and two fermions, and thus requires two bosons

to keep track of the two ways of representing the empty state, b†1|Ω〉 and a†1f
†
↑f
†
↓ |Ω〉 = a†1Ψ†|Ω〉,

where |Ω〉 is the vacuum. Of course, there is only one physical empty state, as becomes clear when

we restrict these Hubbard operators to the physical subspace. In order to faithfully represent the

symplectic spins, the sum of the spin and charge fluctuations must be fixed, ~S2 + ~Ψ2 = N
2 (N2 +

2) [190]. While in the pure spin model, this constraint is enforced by setting ~Ψ = 0, here we must

equate our two types of charge fluctuations, by setting

Q3 =
∑
α>0

f †αfα −N/2 + b†1b1 − a†1a1 = 0

Q+ =
∑
α>0

f †αf
†
−α + b†1a1 = 0

Q− =
∑
α>0

f−αfα + a†1b1 = 0. (6.25)

~Q commutes with the Hamiltonian, so the physical subspace will not mix with any unphysical

subspaces. It is clear from this constraint that b1 and a1 have opposite gauge charges, and the only
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gauge invariant states satisfying the constraint (for N = 2) are,

|α〉 = f †α|Ω〉

|0〉 =
(
b†1 + a†1Ψ†

)
|Ω〉. (6.26)

The constraint reflects the neutrality of the spins under charge conjugation: Q3 conserves the total

particle number, and prevents doubly occupancy, whileQ± kills any states with s-wave pairs on-site.

These Hubbard operators can be written more compactly by using the Nambu notation,

X0α = B†1f̃α, X00 = B†1B1

where B†1 =
(
b†1, a

†
1

)
, and f̃α =

 fα

α̃f †−α

 . (6.27)

The constraint becomes ~Q = B†1~τB1 + f̃ †α~τ f̃α = 0. For N = 2, we recognize these Hubbard

operators as the SU(2) slave bosons introduced by Wen and Lee in the context of the t − J model

[129]. Here, it becomes clear that the SU(2) structure not an ad-hoc construction, but rather a

consequence of the symplectic symmetry present in both the symplectic-N Kondo and Anderson

models for all N . This symmetry can be physically interpreted as the result of valence fluctuations

in the presence of a particle-hole symmetric spin.

The most important consequence of this gauge symmetry is the absence of superconductivity in

the single channel infinite U Anderson model,

H =
∑
k,σ

εkc
†
kσckσ + E0(b†1jb1j + a†1ja1j) + V1

∑
j

ψ†1jσ(b†1fσ + a†1σ̃f
†
−σ) + h.c. (6.28)

The new hybridization term, a†1ψ
†
1σσ̃f

†
−σ appears to pair the conduction electrons and “f-electrons”,

however, the SU(2) symmetry allows the f-spinon to be redefined to eliminate this pairing, b†1fα +

a†1f
†
−αα̃→ b

′†
1 f
′
α, recovering the usual U(1) slave boson Hamiltonian discussed in the introduction.
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6.3 The two channel Anderson model

We now turn to the two channel Anderson model, where the two channels involve charge fluctua-

tions to the empty and doubly occupied states taking place in orthogonal symmetry channels. The

symmetry of the channels is determined by the crystal fields, and we assume that the ground state

of the atom is a Kramer’s doublet, |Γ1±〉. For Ce3+, a 4f1 ion, the valence fluctuations will be:

f0 
 f1 
 f2. The empty state, |0〉 ≡ |f0〉 is trivially a singlet, and we choose the doubly

occupied state to be a singlet formed from electrons in two orthogonal channels,

|2〉 ≡ |f2〉 = α̃f †Γ1,α
f †Γ2−α|0〉, (6.29)

where Γ2 is an excited crystal field doublet. In the finite-U Anderson model, these two symmetry

channels are the same, but here Hund’s rules force the second electron to be placed in an orthogonal

orbital to the first. This physics is what enables the development of composite pairing, and what

gives it a nodal superconducting gap.

The local atomic Hamiltonian at site j can be expressed in terms of Hubbard operators,

Ha(j) = E0X00(j) + E2X22(j), (6.30)

where the X’s are the Hubbard operators X00 = |0〉〈0| and X22 = |2〉〈2|, and we measure the

energies from the f-electron level, so that E0 = −εf and E2 = U12 + εf are both positive, where

U12 is the Hubbard U for the |f2〉 state. Here, we ignore the excited crystal field doublet as it

does not play an important role in the Kondo physics. These f-electrons hybridize with a bath of

conduction electrons in two different channels

HV (j) =
∑
j

V1ψ
†
1jσX0σ(j) + h.c.+ V2ψ

†
2jσσ̃X−σ2(j) + h.c.. (6.31)

X0σ = |0〉〈σ| and X2σ = |2〉〈σ| are the projected hopping operators between the singly occupied
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state and empty or doubly occupied states, respectively. We have chosen to hide the angular mo-

mentum dependence the Wannier states representing a conduction electron with symmetry Γ on site

j,

ψΓjσ =
∑
k

e−ik·Rj [ΦΓk]σσ′ ckσ′ , (6.32)

where the crystal field form-factors [ΦΓk]σσ′ = 〈kΓσ′|kσ〉 are proportional to unitary matrices.

We now introduce a second set of symplectic-N Hubbard operators for the second channel,

X2α = b†2fα − a†2α̃f †−α, X22 = b†2b2 + a†2a2. (6.33)

These operators have the same form as for the first channel, except that we are free to choose the

sign of a2, and have chosen the negative sign to preserve continuity with the results from the two

channel Kondo model. They can again be written more compactly by using the Nambu notation,

X2α = B†2f̃α, X22 = B†2B2 with B†2 =
(
b†2, −a†2

)
. (6.34)

B†2 represents the creation of electrons and will have an opposite electromagnetic charge to B†1, but

since both B†1,2 remove particles from the singly occupied state, they have the same gauge charge.

b†2 and a†2, of course, have opposite gauge charges, as is again seen in the doubly occupied state,

|2〉 =
(
b†2 − a†2Ψ†

)
|Ω〉 (6.35)

These two algebras intersect, as they describe the same spin fluctuations, and the constraint

becomes,

~Q = B†1~τB1 +B†2~τB2 + f̃ †α~τ f̃α = 0, (6.36)

where the two channels come in with the same sign because they have the same gauge charge - Q3

conserves the total particle number, not the electromagnetic charge. The intersection of these two
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Figure 6.2: The six states in the physical Hilbert space of the two channel Anderson model. For
N = 2, there are ground state and excited crystal field doublets, and the empty and doubly occupied
singlets. The arrows indicate the Hubbard operators that move between states in the Hilbert space.

algebras gives rise to an extra doublet,

|Γ2α〉 =
(
b†1a
†
2 + b†2a

†
1

)
f †α|Ω〉, (6.37)

which we interpret as the excited crystal field doublet because it is reached by destroying a Γ1

electron from the doubly occupied state, leaving behind the Γ2 electron. However, X00 and X22 are

no longer projectors in this enlarged Hilbert space, as neither of them kill the new doublet. Even

though we have not explicitly included the excited crystal field doublet in our Hamiltonian, this

doublet automatically has the energy, E0 +E2. If we wish to adjust the energy of this state as a free

parameter, ∆CEF , we must add the quartic term,

[∆CEF − (E0 + E2)]
(
b†1a
†
2 + a†1b

†
2

)
(b1a2 + a1b2) , (6.38)

to the atomic Hamiltonian (6.30). We choose to omit this term, making the extra doublet the highest

energy state in the problem, and it should have little effect on the low energy physics of interest. In
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fact, as we shall see later, this term vanishes for the superconducting state, but acts as an attractive

term for uniform composite density waves.

In addition to an extra state, there are two additional operators,

X02 = {X0α, Xα2} = B†1B2 = b†1b2 − a†1a2

XΓ1α;Γ2β = −{X0α, X2β} =
(
b†1a
†
2 + a†1b

†
2

)
α̃δα,−β. (6.39)

Both of these operators mix states within the Hilbert space when they acquire an expectation value.

XΓ1α;Γ2β mixes the ground state and excited crystal field doublets, which we shall later show cor-

responds to the development of a uniform composite density wave. This mixing is similar to the

ordered state mixing ground state and excited singlets proposed for URu2Si2 [200]. On the other

hand, X02 = |0〉〈2| mixes the empty and doubly occupied states. In this sense, composite pairing

resembles an intra-site version of negative-U pairing, where the ground state tends to contain a mix-

ture of empty and doubly occupied sites [201]. Here, instead of s-wave pairing, which is forbidden

by the large, positive U , the pairs will be d-wave.

6.4 The large N two channel Anderson model

We are now able to write the symplectic-N two channel Anderson model in terms of the symplectic

Hubbard operators,

H =
∑
k

εkc
†
kαckα +

∑
j

E0B
†
1(j)B1(j) + E2B

†
2(j)B2(j)

+
V1√
N/2

∑
j

ψ†1jαB
†
1(j)f̃jα + h.c.+

V2√
N/2

∑
j

ψ†2jαα̃f̃
†
j−αB2(j) + h.c.. (6.40)

In order to keep the Hamiltonian extensive in N , we have rescaled the hybridization terms by

(N/2)−1/2, so that they recover the correct N = 2 form, (6.31). This rescaling involves the im-

plicit assumption that the slave bosons BΓ will be of order
√
N , which will be true in the large N

limit. As N gets large, there are still only two flavors of bosons, and for the bosons to have any
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contribution in the large N limit, they must be condensed.

In order to write down a translationally invariant Hamiltonian, we assume that the expectation

values of the slave bosons will be uniform, which allows us to write down the Hamiltonian in mo-

mentum space. To simplify this step, we drop the spin-orbit dependence of the Wannier functions,

and instead assume that the form factors are spin-diagonal, ψΓjα =
∑

k ckαφΓke−ik·Rj . This al-

lows us to absorb the momentum dependence of the form-factors into the hybridizations by defining

VΓk = VΓ√
N/2

φΓk. To obtain the d-wave symmetry which arises naturally from the spin-orbit form

factors, we must explicitly make V1kV2k d-wave. The full spin-orbit dependence can be restored in

a similar manner to that discussed in Appendix 4B for the two channel Kondo model. The Hamil-

tonian is,

H =
∑
k

(
εkc
†
kαckα + V1kc

†
kαB

†
1f̃kα + V2kc

†
kαα̃f̃

†
k−αB2 + h.c.

)
+Ns

(
E0B

†
1B1 + E2B

†
2B2

)
(6.41)

The SU(2) constraint is implemented with a vector of Lagrange multipliers, ~λ,

~λ ·
(∑

k

f̃ †kα~τ f̃
†
kα +B†1~τB1 +B†2~τB2

)
, (6.42)

where we have also assumed that ~λ is translationally invariant, enforcing the constraint on average.

This approximation becomes exact in the large N limit. The final step is to rewrite the Hamiltonian

with Nambu spinors in the compact form,

H=
∑
k

(
c̃†kα f̃

†
kα

) εkτ3 V1kA†1 + V2kA†2
V1kA1 + V2kA2

~λ · ~τ


 c̃kα

f̃kα


+
[
E0B

†
1B1 + E2B

†
2B2 + ~λ ·

(
B†1~τB1 +B†2~τB2

)]
, (6.43)
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where we have collected the slave bosons into the SU(2) matrices,

A†1 =

b†1 a†1

a1 −b1

 , A†2 =

a2 b2

b†2 −a†2

 . (6.44)

These matrices transform under the SU(2) gauge symmetry as AΓ → gAΓ (where g is an SU(2)

matrix), so that the product

A†2A1 =

b1a2 + b2a1 a†1a2 − b†1b2
b†2b1 − a†2a1 b†2a

†
1 + a†2b

†
1

 (6.45)

is gauge invariant. In chapter 4, we encountered a similar set of matrices for the two channel Kondo

model, VΓ =
(
VΓ
∆Γ

∆†Γ
−V †Γ

)
, and the off-diagonal elements of the product V†2V1 were identified with

composite pairing: 〈ψ†1(σN · S)iσ2ψ
†
2〉, where σN are the symplectic generalization of the Pauli

matrices. In the Kondo limit, E0, E2 � πρV 2, a Schrieffer-Wolff transformation takes b1 → V1,

a1 → ∆1, b2 → ∆2 and a2 → V2, which allows us to identify the off-diagonal components of

A†2A1 with composite pairing. This identification is why we have taken the negative sign of a2 in

the definition of the Hubbard operators. More generally, the components of A†2A1 can be identified

with the state mixing operators,

A†2A1 =

XΓ1Γ2 −X02

X20 XΓ2Γ1

 , (6.46)

which confirms the identification of 〈X02〉 with composite pairing, and implies that the composite

pair state will contain an admixture of the empty and doubly occupied states.

6.4.1 The mean field solution

In order to examine the effects of mixed valence on the superconductivity, we examine the mean

field solution of the composite pair state in the symplectic-N limit. The bosons are replaced by their

expectation values,BΓ → 〈BΓ〉 ∼ O(
√

(N)), and the Hamiltonian (6.43) becomes quadratic in the
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fermions, which may be integrated out exactly. We use the SU(2) gauge symmetry to eliminate the

a1 boson, and now the composite pair state is defined by the nonzero expectation value of 〈b†1b2〉.

If the a2 boson were to acquire an expectation value, it would lead to a uniform composite density

wave solution, which is generally unstable to the composite pair solution. The resulting free energy

can be rewritten in terms of our mean field parameters, where we replace 〈bΓ〉/
√
N/2 with bΓ for

clarity, (however keep in mind that these have lost their dynamics),

F = −NT
∑
k±

log 2 cosh
βωk±

2
+
NNs

2
[
b21(E0 + λ) + b22(E2 + λ)

]
. (6.47)

Ns is the number of sites, and the dispersion of the heavy electrons is given by ωk± and −ωk±,

where ωk± =
√
αk ± Γk, and

αk = b2+ +
1
2

(ε2k + λ2
3), Γk =

√
α2
k − γ2

k

γ2
k =

[
εkλ3 − b2−

]2 + [2V1kb1V2kb2]2 . (6.48)

We have also defined b2± = V 2
1kb

2
1 ± V 2

2kb
2
2. In a nodal composite pair superconductor, the ~λ

constraint reduces to λ3, as the λ1 constraint acts as a Coulomb pseudo-potential [111] eliminating

s-wave pairing, and it is unnecessary when we choose V1kV2k to give nodal superconductivity.

However, if we were to treat the finite U model, where V1k = V2k, this constraint is essential to

eliminate the appearance of a false s-wave superconducting phase.

The mean field parameters are determined by minimizing the free energy with respect to b1, b2,

λ3 and λ1. To understand their implications, we first present the mean field equations in real space,

〈b1j〉 =
V 2

1

E0
〈f †jαψ1jα〉

〈b2j〉 =
V 2

2

E2
〈α̃fj−αψ2jα〉

〈f †jαfjα〉 = N/2− 〈b1j〉2 − 〈b2j〉2

〈α̃f †jαf †j−α〉 = 0. (6.49)
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These equations bear a strong resemblance to the two channel Kondo equations, where 〈b1〉 plays

the role of the hybridization, V1 in channel one, while 〈b2〉 plays the role of the pairing field, ∆2

in channel two; here the hybridizations are explicitly identified as the magnitude of the valence

fluctuations to the empty and doubly occupied states. nf is no longer fixed to N/2 and instead

decreases as hybridization and pairing develop.

To calculate the phase diagram, we return to the momentum space picture, and derive the three

equations relevant for composite pair superconductivity with a nodal order parameter. For simplic-

ity, we replace 〈b1〉 and 〈b2〉 with b1 and b2. The first equation imposes the constraint Q3 = 0,

fixing nf = N/2 − b21 − b22, while the next two equations determine the magnitude of the valence

fluctuations to the empty and doubly occupied states, respectively:

∑
±

∫
k

tanh βωk±
2

2ωk±




λ

2V 2
1k

2V 2
2k

±
A

Γk


=


b21 + b22

2(E0 + λ)

2(E2 + λ)

 , (6.50)

where

A =


λαk + εk

[
b2− − λεk

]
V 2

1k(εk + λ)2

V 2
2k(εk − λ)2

 . (6.51)

In addition to these three equations, we must also fix the total electromagnetic charge in the system

by keeping the total number of conduction electrons plus physical f-electrons constant. Notice that

the number of physical f-electrons, ñf = N/2− b21 + b22 counts the electrons in both the singly and

doubly occupied states, and differs from the occupation of the spin states, nf = N/2 − b21 − b22
by 2b22. These equations can be solved numerically for a simple two-dimensional model where

we take V1k = V and V2k = V (cos kx − cos ky), and take the conduction electron dispersion,

εk = −2t(cos kx + cos ky) − µ, where µ is adjusted to fix the total charge, ñf + nc. This model

contains three non-trivial phases:

• For E0 < E2, a heavy Fermi liquid develops at T ∗1 , where b1 becomes nonzero with the
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Figure 6.3: This phase diagram for the two channel Anderson model, showing the transition temper-
atures as we vary E0/E2, is qualitatively identical to that of the two channel Kondo model. Here,
we have fixed nc + ñf = 1.8, and adjusted V2 so that T ∗1 = T ∗2 when E2 = E0.

symmetry, Γ1 of the ground state doublet. The f-electron valence will be less than N/2, and

these results will be identical to the infinite-U Anderson model discussed in the introduction.

• For E2 > E0, a heavy Fermi liquid develops at T ∗2 , where b2 becomes nonzero. This Fermi

liquid will have the symmetry, Γ2 of the excited doublet, and the f-electron valence will

be larger than N/2. Again, these results should be identical to the appropriate infinite-U

Anderson model.

• However, beginning at Tc, there will be a phase of d-wave composite pairing, where b1b2 is

nonzero. Tc is maximal atE0 = E2, where the high temperature state of free spins transitions

directly into the composite pair superconductor. As superconductivity is driven by the Cooper

channel in the heavy electron normal states, the ground state will always be superconducting.

The f-electron valence will generally differ from N/2, with nonzero contributions of both f0

and f2.

We show a phase diagram in Figure 6.3 obtained by varying E0/E2, which is qualitatively identical

to that of the two channel Kondo model for varying J2/J2: there is a superconducting dome with

maximal Tc for E0/E2 = 1. We could equally well have varied V2/V1. What is new is what
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happens to this phase diagram if we fix E0/E2 and change their overall scale, which is equivalent

to changing the degree of mixed valence. We show these results in Figure 6.4, where we plot Tc

against the occupancy of the singly occupied state, nf ; as expected, Tc increases with increasing

mixed valence, following the trend of the Kondo temperature at the maximal Tc, and explaining the

increase in Tc between CeCoIn5 and PuCoGa5.

Figure 6.4: The degree of mixed valence can be quantified by the occupation of the singly occupied
doublet, nf = N/2 − b21 − b22. Here, we plot the maximum Tc = T ∗1 = T ∗2 (for E0 = E2), which
increases monotonically with the degree of mixed valence. Tc is scaled by ∆ = πV 2

1 , and we have
fixed nc + ñf = 1.8 in units of N/2.

6.5 Charge Redistribution

As the development of composite pairing mixes the empty and doubly occupied states, each devel-

ops a non-zero occupation, and it is interesting to examine how the charge density changes. The link

between the f-electron charge, and the development of the Kondo effect in the one-channel Ander-

son model was explored by Gunnarsson and Schoenhammer [199], who showed that the f-electron

valence, ñf decreases gradually with temperature through the Kondo crossover, ñf = 1 − b21(T )

(for N = 2). The mixing of the empty and doubly occupied states adds a new element to this re-

lationship, and the consideration of real, non-s-wave hybridizations allows us to explore the higher

angular momentum components of the charge distribution. The charge density can be written,
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ρ̂(x) = ψ̂†α(x)ψ̂α(x), where ψ̂†α(x) creates a physical electron of spin α at x. An electron at x

exists in a superposition of the orbitals Γ1 and Γ2 at nearby lattice sites j,

ψ̂α(x) =
∑
j

[Φ1]αβ (x−Rj)f1jβ + [Φ2]αβ (x−Rj)f2jβ, (6.52)

where we have reintroduced the spin-orbit form factor, [ΦΓ]αβ in order to model real materials. The

charge density of an f-electron located at the origin in channel Γ is ρΓ(x) = Tr|ΦΓ(x)|2R(x), where

R(x) is the radial function for the f-electron, and |ΦΓ(x)|2 is a diagonal matrix. If we assume that

the overlap of electrons at neighboring sites is negligible, the total charge density has three terms,

ρ̂(x) =
∑
j

ρ1(x−Rj)f
†
1jβf1jβ + ρ2(x−Rj)f

†
2jβf2jβ

+
[
Φ†1Φ2

]
αβ

(x−Rj)f
†
1jαf2jβ + h.c. (6.53)

We have kept the spin indices of
[
Φ†1Φ2

]
αβ

, as it may not be diagonal in spin space. In terms of the

Hubbard operators, we can identify,

f †1jβf1jβ = X22(j) + nf (j)

f †2jβf2jβ = X22(j)

f †1jαf2jβ = XΓ1αΓ2β(j). (6.54)

The third term only acquires an expectation value only in the composite density wave state, which

mixes the two crystal field states, shifting charge from Γ1 to Γ2. In the heavy Fermi liquid and

superconducting states, a2 = 0, and we may use the constraint to rewrite f †1jβf1jβ = N/2−X00(j).

The charge distribution then becomes,

ρ̂(x) =
∑
j

ρ1(x−Rj)
[
N

2
−X00(j)

]
+ ρ2(x−Rj)X22(j). (6.55)
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Integrating this charge density around a single site gives us the f-electron valence, ñf = N/2 −

b21 + b22, which we show as a function of T in Figure 6.5 for different E2/E0. In the large N

limit, both the transition into the heavy Fermi liquid, at T ∗ and into the superconductor, at Tc are

second order phase transitions. The former is an artifact of the large N limit, and for any finite

N the transition into the heavy Fermi liquid is a crossover, however, the sharp shift in ñf at the

superconducting transition temperature survives for allN , and should be observable experimentally

with core-level valence spectroscopy. The observation of such a shift would clearly indicate the

presence of composite pairing.

Figure 6.5: The f-electron valence, ñf changes as the Kondo effect and composite pair supercon-
ductivity develop. Two examples are shown - the black curve has E0 = E2, and here Tc = TK ,
however, channel one dominates at lower temperatures, causing the valence to decrease. For the
gray curve, Tc < TK and a sharp shift in the valence is seen at Tc, where the previously increasing
valence begins to decrease.

Now we explore the quadrupole charge component. As superconductivity develops, the occu-

pation of the doubly occupied state acquires an expectation value, leading to an increase in the Γ2

charge density. This redistribution of the f-electron charge results in a quadrupole moment asso-

ciated with superconductivity, which has an indirect effect on the superconducting transition tem-

perature through its linear coupling to strain, leading to a linear dependence of Tc on the tetragonal

strain, c/a. Such a linear increase of Tc with c/a has been observed in both the Ce and Pu 115s,

although it is conventionally attributed to dimensionality effects [183]. The quadrupole moment
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of the composite condensate provides an alternate explanation. This quadrupole moment can also

be measured directly through nuclear quadrupole resonance (NQR), and hence we discuss the real

materials in detail, estimating the magnitude of the NQR frequency shift. Again, since the devel-

opment of superconductivity is a phase transition, the quadrupole moment changes sharply at Tc,

leading to electric field gradients around the f-lattice sites, which in turn lead to a shift in the nuclear

quadrupole resonance frequency, ∆νNQR at the nuclei of the nearby atoms.

To make contact with potential experiments, we examine CeM In5 in more detail. 115In atoms

have a nuclear moment I = 9/2, which results in a quadrupole moment, Q = 8.3 × 10−29m2,

which makes them “NQR active” [202]. The symmetry of the ground state doublet is Γ+
7 [192],

whose angular dependence is given by,

|ΦΓ+
7
|2(θ, φ) =

3
16

sin2 θ
[
11 + 6 cos 2ξ + 5 cos 2θ(1 + 2 cos 2ξ) + 2

√
5 cos 4φ sin2 θ sin 2ξ

]
,

(6.56)

where ξ is a crystal-field parameter depending on the microscopic details. It can be measured with

inelastic neutron scattering, and we set ξ ≈ .25 for CeCoIn5 [192]. We take the excited doublet to

be Γ2 = Γ6, whose angular dependence is,

|ΦΓ6 |2(θ, φ) =
3
32

[12 cos 2θ + 5(3 + cos 4θ)] . (6.57)

We can now use the real charge distributions of the two orbitals to estimate the magnitude of the

electric field gradient, Vab = −∂Ea/∂xb, where

ρΓ(x) = |ΦΓ|2(θ, φ)R(r). (6.58)

R(r) is the 4f radial function,

R(r) =
1

96
√

35

(
Z3/2r

2aB

)3

exp
(
− Zr

4aB

)
. (6.59)
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aB = 0.53Å is the Bohr radius, and Z = rCe/6
√

10 is adjusted so that the atomic radius is that of

Ce3+, 〈r〉 = 0.115Å[203].

Figure 6.6: The crystal structure of CeCoIn5, indicating the high symmetry In(1) sites and lower
symmetry In(2) sites.

The NQR frequency measures the electric field gradients at two different indium sites in the

crystal: the in-plane, high symmetry In(1) sites, which sit in the center of a square of Ce atoms, and

the out-of-plane In(2) sites, which are above and in-between two Ce atoms. We focus on the high

symmetry In(1) atoms because here Vzz is the only contribution to the NQR frequency [204],

νNQR =
3eVzzQ

2hI(2I − 1)
Hz, (6.60)

while the In(2) site will have an asymmetry contribution, η = Vxx − Vyy.

V Γ
zz(x,Rj) =

q

4πε0

∫
x′
ρΓ(x′ −Rj)

[
3(z − z′)2

|x− x′|5 −
1

|x− x′|3
]
. (6.61)
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Summing over the eight neighboring Ce sites is sufficient to estimate the magnitude of the NQR

shift, where we use the lattice constants of CeCoIn5, a = 4.6Å, and c = 7.4Å[83]. We find the

electric field gradients for a charge q in channel Γ to be,

V 7+
zz (x = In(1)) = −7q × 1019V/m2

V 6
zz(x = In(1)) = −q × 1020V/m2. (6.62)

For equal channel strengths, the total charge of the f-ion remains unity, and the increasing occu-

pations of the empty and doubly occupied sites cause holes to build up with symmetry Γ+
7 and

electrons with symmetry Γ6. If the channels are not equal, the valence of f-ion will not be fixed, and

we would have to consider charge coming from the conduction electrons. We now introduce x(T )

as the temperature dependent occupation of the empty/doubly occupied states, x(T ) = 〈b21〉 = 〈b22〉,

which is proportional to Tc − T just below Tc, allowing us to write

x(T ) = x0
Tc − T
Tc

, (6.63)

where x0 is the ground state occupation of the empty/doubly occupied states. In terms of x0, the

superconducting NQR frequency shift will be,

∆νNQR(T ) = 25x0
(Tc − T )

Tc
kHz. (6.64)

A reasonably large value of x0 = 0.05 will lead to an admittedly small shift in νNQR with a slope

of ≈ +5kHz/K, beginning precisely at Tc. If this shift can be distinguished, it would be an

unambiguous signal of composite pairing.

6.6 Conclusions

Our two-channel Anderson model treatment has shown that composite pairing is the low energy

consequence of valence fluctuations in two competing symmetry channels, which manifests itself
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as a mixing of the empty and doubly occupied states,

∆SC ∝ 〈|0〉〈2|〉. (6.65)

Composite pairing is primarily a local phenomena, where the pairing occurs within a single unit

cell. The mixing is reminiscent of an intra-atomic negative-U pairing with a d-wave symmetry, al-

though, amazingly it occurs in a model with only repulsive interactions. Here, it is really the atomic

physics of the f-ions, tuned by their local chemical environment that drives the superconductivity.

Such chemically driven d-wave pairing is a fascinating direction for exploring higher temperature

superconductors in the even more mixed valent 3d superconductors, as the strength of the composite

pairing increases monotonically with increasing valence fluctuations, accounting for the difference

in transition temperatures between the cerium and the actinide 115 superconductors.

The redistribution of charge due to the mixing of empty and doubly occupied states provides a

promising direction to experimentally test for composite pairing in the 115 superconductors, which

should appear as a sharp redistribution of charge associated with the superconducting transition.

Both monopole (f-valence) and quadrupole (electric field gradients) charge effects should be ob-

servable, with core-level X-ray spectroscopy or as a shift in the NQR frequency at surrounding

nuclei, respectively. We predict a shift with slope +5kHz/K in the NQR frequency of In(1) nuclei

in CeCoIn5.

Deriving these results in an exact, controlled mean field solution has required the introduction

of symplectic Hubbard operators, which maintain the time-reversal properties of SU(2) electrons

in the large N limit. It is possible to use these Hubbard operators to develop a dynamical mean field

theory treatment of the two-channel Anderson lattice, enabling us to examine composite pairing for

N = 2.

In addition to the two-channel Anderson model, the development of symplectic-Hubbard opera-

tors allows a controlled treatment of the finite-U Anderson model, which is potentially useful as an

impurity solver for dynamical mean field theory. We identify the finite-U model as a special case of
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our two channel model when the electron and hole fluctuations occur in the same symmetry channel,

Γ1 = Γ2. In the large N limit, this model simply gives a Fermi liquid solution identical to that of

the infinite-U model, once the SU(2) gauge invariance is used to eliminate the false appearance of

s-wave superconductivity. However, the 1/N corrections to this mean field limit will differ, and an

interesting future direction is to use the Gaussian fluctuations to examine the charge fluctuation side

peaks.

Appendix 6A: Full mean field solution

In the main text, we have focused on the superconducting solution, and additionally assumed that

the λ1 condition enforcing the absence of on-site pairing will be unnecessary due to the d-wave gap.

For completeness, we present here the full mean field equations for uniform solutions - allowing

uniform composite density wave solutions in addition to superconductivity. The free energy is

given by,

F = −NT
∑
k±

log 2 cosh
βωk±

2
+Ns

[
b21(E0 + λ3) + b22(E2 + λ3) + a2

2(E2 − λ3)− 2λ1b2a2

]
,

(6.66)

where ωk± =
√
αk ±

√
α2
k − γ2

k , and

αk = (V1kb1 + V2ka2)2 + (V2kb2)2 +
1
2

(ε2k + λ2
3 + λ2

1)

γ2
k =

[
εkλ3 − (V1kb1 + V2ka2)2 + (V2kb2)2

]2 + [2(V1kb1 + V2ka2)V2kb2 − εkλ1]2 ,(6.67)

The mean field equations are found by minimizing the free energy with respect to λ3, λ1, b1, b2, and

a2 and are nearly identical to the two channel Kondo equations, except that nf 6= 1. For simplicity
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we replace 〈x〉 with x. The five mean field equations are given by,

∑
±

∫
k

tanh βωk±
2

2ωk±





λ3

λ1

2(V1kb1 + V2ka2)V1k

2(V1kb1 + V2ka2)V2k

2V 2
2kb2


± A

Γk


=



b21 + b22 − a2
2

−2a2b2

2b1(E0 + λ3)

2b2λ1 + 2a2(E2 − λ3)

2a2λ1 + 2b2(E2 + λ3)


, (6.68)

where

A =



λ3αk + εk
[
(V1kb1 + V2ka2)2 − V 2

2kb
2
2 − λ3εk

]
λ1αk + εk [2V2kb2(V1kb1 + V2ka2)− εkλ1]

(V1kb1 + V2ka2)
[
(εk + λ3)2 + λ2

1

]
V1k + 2V2kV1kb2εkλ1

(V1kb1 + V2ka2)
[
(εk + λ3)2 + λ2

1

]
V2k + 2V 2

2kb2εkλ1

2(V1kb1 + V2ka2)V2kεkλ1 + V 2
2kb2

[
(εk − λ3)2 + λ2

1

]


. (6.69)

These can be solved numerically, and generally the composite density wave states will be unsta-

ble to composite pair superconductivity, although there may be exceptions for special dispersions

near the Kondo insulator regime, which we have not explored.
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Chapter 7

The symplectic t-J model

7.1 Introduction

Most strongly correlated superconductors, aside from the heavy fermions, arise upon doping strongly

correlated magnets. This basic phase diagram is captured by the t − J model, which describes the

low energy physics of a one-band Hubbard model where U is so large that double-occupancy is

essentially eliminated. The hopping term cannot be simply treated in terms of free electrons, and

must instead be represented with Hubbard operators, which act to add and remove spins from a site

while respecting the constraint of no double occupancy.

H = −
∑
ij

tij [Xσ0(i)X0σ(j) + h.c.] +
∑
ij

Jij ~Si · ~Sj . (7.1)

By defining symplectic Hubbard operators, we can generalize symplectic-N to treat the t−J model.

The anti-commutator of two distinct Hubbard operators corresponds to a spin flip operator, and

symplectic-N ensures the consistency of the spin and charge fluctuations by insisting that these

spin-flips are symplectic spins. This representation requires the introduction of two types of slave

bosons, and we show that it generalizes the SU(2) slave boson approach of Wen and Lee [129] to the

large N limit. To illustrate the differences between the symplectic-N limit and previous mean field

treatments, we examine the t − J2 model, motivated in part by the iron-pnictide superconductors,

which are widely believed to have an s± superconducting order parameter: a 45 degree rotation

of the extended s-wave order parameter considered for the t − J1 model [164]. While d-wave

order parameters automatically avoid double occupancy, the effect of Coulomb repulsion on s±

superconductors depends strongly on the Fermi surface configurations. Previous strongly correlated

approaches have neglected this Coulomb repulsion altogether. Symplectic-N not only includes this

Coulomb repulsion, but also allows the nodes of the s± gap to adjust to eliminate any on-site pairing.
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7.1.1 Brief overview of the iron-based superconductors

The discovery, in March 2008, of a new family of high temperature superconductors based on iron-

arsenic [205], rather than copper-oxygen planes, and with transition temperatures up to 56K [206],

attracted a huge amount of experimental and theoretical attention [108, 109]. Now that the dust has

settled a bit, let us make a brief (and therefore incomplete) summary of the relevant physics of these

iron-based superconductors.

As with the cuprates, there are several families of iron-pnictide superconductors: the “1111”

family, RFeAs(O1−xFx) were the first to be discovered [205] and contain Gd1−xThxFeAsO, which

has the highest transition temperature, Tc = 56K [206]; the intermetallic “122” family, AFe2As2

(A = Ba,Sr,Ca) are easier to synthesize, but have lower transition temperatures [207, 208]; while

the simplest, “11” family, Fe(Se,Te) shows that arsenic may be replaced by another pnictogen [209,

210]. These families share several key characteristics,

• Electronic structure: The parent compounds are semi-metallic, with two (or more) hole

pockets near the Γ = (0, 0) point and two electron pockets at the M = (π, π) point [211],

as shown in Figure 7.1(a). While the cuprates are described by a one-band Hubbard model,

here all five iron d-orbitals are important. While many of the Fermi surfaces have a two

dimensional character, these materials are more three dimensional than the cuprates.

• Magnetism: The magnetism of these materials has a dual character: part localized and part

itinerant [212]. From the localized point of view, superexchange paths through the arsenics

generate a J1−J2 Heisenberg model [110, 200], with J2 > J1/2 large enough to stabilize the

collinear antiferromagnetic state shown in Figure 7.1(b). The same state arises in the itinerant

picture due to Fermi surface nesting, however the experimentally determined magnetic mo-

ments are much smaller than those predicted in the itinerant picture [212], suggesting that the

formation of the moments may be local, but their ordering is itinerant, or perhaps indicating

the importance of frustration.
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• How strong are the correlations?: There is no consensus on the strength of the correla-

tions. On the side of strong correlations is the argument that the parent compounds are bad

metals, with a large resistivity at room temperature, ρ(300K) ∼ .5mΩcm suggesting that

these are intermediate between weakly correlated metals and strongly correlated Mott insu-

lators [110, 152, 213]. A relatively strong Hund’s coupling, JH can also help tune these

materials towards more localized behavior [200, 214]. However, on the weakly correlated

side, the Fermi surfaces and magnetic structures are well-described by weakly correlated first

principles calculations [215, 216, 217], and the large resistivities may be attributable to poor

sample quality. Both strongly and weakly correlated theoretical approaches obtain similar

phase diagrams.

• Symmetry of the superconducting gap: The order parameter is known to be a spin-singlet

[218], but its momentum dependence is still unresolved. The observation of c-axis Joseph-

son currents rules out a d-wave gap [219], leaving two s-wave possibilities, either uniform

(s++) or with opposite signs on the hole and electron Fermi surfaces (s±)[215]. Some ex-

periments (e.g.-ARPES [220]) find nodeless gaps, while others (e.g.-penetration depth [221])

find line or point nodes; these depend on the material, and sometimes the sample. The s±

gap shown in Figure 7.1(b) may have “accidental nodes,” depending on the Fermi surface,

which are not guaranteed by symmetry. Both strongly [110, 222, 223] and weakly correlated

[215, 224, 225, 226, 227, 228] theoretical approaches suggest the s± gap structure, as super-

conductivity mediated by repulsive interactions with characteristic wavevector Q = (π, 0),

generally requires the order parameter to change sign as, ∆k+Q = −∆k [109].

We shall take the point of view that these are moderately correlated materials, with weakly and

strongly correlated approaches providing complementary pictures. In this chapter, we address the

basic question of how strong correlations affect an s± superconductor by examining a simple, one-

band t − J model. While this model will never provide a detailed description of the five-band real

materials, it can capture the competition between d-wave and s-wave superconductivity, and the

effect of the Coulomb repulsion.
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Figure 7.1: (a) The basic building block of all the iron-based superconductors is the iron-arsenic
plane, shown here. The irons order antiferromagnetically, with a collinear structure favored by the
J1−J2 model. (b) A schematic two-dimensional slice through the Brillouin zone shows the generic
Fermi surface structure of these materials, which typically have two or more hole pockets around
the Γ = (0, 0) point and two electron pockets around the M = (0, π) = (π, 0) point. The s±
order parameter changes sign between the electron and hole Fermi surfaces (positive gap regions
shown in white, negative regions in gray). The two Fermi surfaces are roughly connected by the
Q = (π, 0) ordering vector, which characterizes both the magnetic and s± superconducting orders.
(c) A schematic phase diagram showing how the metallic, antiferromagnetic spin density wave order
of the parent compounds yields to superconductivity with either hole or electron doping.

7.1.2 t− J model and the Coulomb pseudopotential

On-site pairing is disfavored by the Coulomb pseudopotential, which will cost a bare energy,UN(0),

which is, by definition, the average of the Coulomb repulsion, V (ri − rj) = e2/|ri − rj | over the

Fermi sea. However, in the weak coupling limit, where we assume the pairing is mediated by the

exchange of a boson with characteristic frequency ωB , the time scale of the pairing is much longer

than that of the Coulomb repulsion. In other words, while the effective electron-electron interaction

is attractive, it is also retarded, meaning the electrons like to be in the same place, but at different
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times, while the Coulomb repulsion is a nearly instantaneous repulsion of two electrons at the same

place and time. The Coulomb pseudopotential is therefore renormalized [111],

µ∗ =
N(0)U

1 +N(0)U log EF
ωB

(7.2)

to weak coupling. If Tc ∝ ωB exp(−1/λ), the attractive interaction is reduced by λ → λ − µ∗,

which is usually too weak to destroy superconductivity in the weak coupling limit. In BCS su-

perconductivity, the bosons exchanged are phonons, and the Debye frequency, ωD � EF [14].

However, in more strongly correlated superconductors, the two time scales are of the same order,

and the Coulomb pseudopotential can drastically affect the superconductivity. Strongly correlated

examples, like the cuprate and heavy fermion superconductors, avoid this problem by developing a

d-wave gap, where the pairing with a positive gap is exactly cancelled out by that with a negative

gap, as guaranteed by the d-wave symmetry. This choice of gap neutralizes the Coulomb pseudopo-

tential. However, the iron-based superconductors are widely believed to have an s± gap, where the

amount of cancellation between positive and negative gap regions is not protected by symmetry, and

depends strongly on the Fermi surfaces. When this cancellation is incomplete, µ∗ reduces Tc and

it is extremely important to consider this effect when mapping out the phase diagram, as it affects

the relative stability of s- and d-wave superconducting phases. These effects have been incorpo-

rated in the weakly correlated solutions [224, 225, 227, 109], but not yet in the strongly correlated

approaches.

Here, we take the strongly correlated limit, U → ∞ to eliminate double occupancy, which

corresponds to taking µ∗ → ∞. The Heisenberg model, discussed in Chapter 3 describes the

insulating half-filled limit of the t− J model, but generally holes (n < 1) or electrons (n > 1) will

hop around in an antiferromagnetic background. As doubly occupied states must be avoided, the

hopping is not that of free electrons. Rather, it is projected hopping, described by the t− J model,

H = −
∑
ij

tij [Xσ0(i)X0σ(j) + h.c.] +
∑
ij

Jij ~Si · ~Sj . (7.3)
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Figure 7.2: (Left) In the d-wave gap, the cancellation of the superconducting order parameter over
the Fermi surface is guaranteed by symmetry, as the positive (blue) regions will exactly cancel the
negative (white) regions. (Right) However, in the s± superconducting gap, the amount of cancella-
tion is extremely sensitive to the Fermi surface.

The t − J model is an effective low energy Hamiltonian obtained from the Hubbard model by

a canonical transformation similar to the Schrieffer-Wolff transformation [112], and proposed as

the relevant model for the cuprate superconductors by Anderson [23]. The Hubbard operators,

Xab = |a〉〈b|, where |a〉 = |0〉, |σ〉 ensure that only empty sites, or holes can hop (or for n > 1

that electrons can only hop from doubly occupied sites to singly occupied sites). Here, Xσ0 are

projected hopping operators, and they satisfy the anti-commutation relations,

{Xσ0, X0σ′} = Sσσ′ +
(
X00 +

Xττ

2

)
δσσ′ , (7.4)

where Sσσ′ flips the spin; Sσσ′ is the traceless form of the Hubbard operator Xσσ′ , and X00 is a

projection operator into the empty state.

Exact solutions of the t− J model are unavailable in more than one dimension, and the typical

approach is to write down a mean field solution using the slave boson approach [229, 165, 129, 230,

231], which divides the electron into charged, but spinless holons and neutral spinons. The most
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common choice is the U(1) slave boson representation,

Xσ0 = f †σb, (7.5)

so-called because it is invariant under U(1) gauge transformations. However, mean field solutions

will in general lose some of the properties of the full model, and may not maintain the µ∗ → ∞

limit. One way to generate mean-field solutions is to extend the SU(2) spin group of the t − J

model to some N component group. When incorporating a large N treatment of the hopping term,

one must be careful that the two terms are consistent: that the charge fluctuations described by the

t term generate the spin fluctuations in the Heisenberg term. Examining the U(1) slave bosons, we

find that they give rise to SU(N) spin fluctuations,

{Xα0, X0β} = f †αfβ︸︷︷︸
SU(N)spins

+b†bδαβ, (7.6)

and the large N limit of the SU(N) t− J model can be written,

HSU(N) = −
∑
〈ij〉

tij
N
f †iαbib

†
jfjα +

∑
ij

Jij
N

(
f †iαfjα

)(
f †jβfiβ

)
. (7.7)

Decoupling the J term will yield a dispersion for the spinons, but no pairing. There is no supercon-

ductivity in this large N limit. In fact, our introduction of symplectic Hubbard operators provides

the first consistent, superconducting large N solution of the t− J model.

7.2 The symplectic t− J model

A superconducting large N limit requires a proper definition of time-reversal, as Cooper pairs can

only form between time-reversed pairs of electrons. As we have shown in Chapter 2, the inversion

of spins under time-reversal is equivalent to symplectic symmetry, and the only way to preserve
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time-reversal in the large N limit is to use symplectic spins,

Sαβ = f †αfβ − α̃β̃f †−βf−α, (7.8)

where α ranges from −N/2 to N/2 and α̃ = sgn(α). Here we use the fermionic representation

because we are interested in the doped spin liquid states that become superconductors. In most

mean field treatments of the t− J model, the electron is separated into charged holons and spin 1/2

spinons. Either the holon or the spinon may be taken to be bosonic; both representation are exact for

N = 2, but the bosonic holon condenses to give coherent Fermi liquids and superconductors in the

mean-field limit, and this is the usual choice to treat superconductivity, although it cannot describe

antiferromagnetism. First, we will briefly discuss the fermionic representation of the symplectic

Heisenberg model,

Hspin =
∑
ij

Jij ~Si · ~Sj = −
∑
ij

Jij
N

[
(f †iαfjα)(f †jβfiβ) + (α̃f †iαf

†
j−α)(β̃fjβfi−β)

]
, (7.9)

and how it differs from the bosonic approach discussed in Chapter 3. The most important property

of this large N limit is the SU(2) symmetry of the symplectic spins: a continuous particle-hole

symmetry derived from the neutrality of the symplectic spins, fα → ufα + vα̃f †−α. This symmetry

was first noticed by Affleck et al. [140] for the SU(2) Heisenberg model, but here we see that it is

present for all N . The quartic terms may be decoupled as before,

Jij
N
~Si · ~Sj = χ̄ijf

†
jβfiβ + ∆̄ij β̃fjβfi−β + h.c.+

N

Jij

(|∆ij |2 + |χij |2
)
, (7.10)

where both χ and ∆ are SP (N) singlets. In the bosonic Heisenberg model discussed in Chapter

3, the particle-hole, hij = b†iαbjα and particle-particle, ∆ij = α̃b†iαb
†
j−α enter into the Hamiltonian

with different signs (−h2/J + ∆2/J) and represent different physics: h indicates ferromagnetism,

while ∆ indicates antiferromagnetism. However, in the fermionic model, both χ2 and ∆2 enter with

the same sign: both represent antiferromagnetism, and they may be transformed into one another by
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the SU(2) gauge symmetry. The Hamiltonian can be written compactly in terms of Nambu spinors,

f̃ † = (f †α, α̃f−α),

Hspin =
∑
ij

f̃ †i Uij f̃j +
N

Jij

(|∆ij |2 + |χij |2
)

(7.11)

where Uij is an SU(2) matrix,

Uij =

−χij ∆ij

∆̄ij χ̄ij

 . (7.12)

The SU(2) gauge transformation becomes f̃i → gif̃i and Uij → g†iUijgj , where gi is an SU(2)

matrix. The mean field theory for the fermionic square lattice Heisenberg model has been discussed

extensively [38, 140, 231], and we just summarize the results here, as the J2 states of interest

are a 45◦ rotation of these states. While there appear to be many Ansatzes for mean field spin-

liquid states, the SU(2) symmetry means that many of these are identical [140, 231]. For example,

the s-wave (∆ij = ∆) and d-wave (∆x = −∆y = ∆) pairing Ansatzes are gauge equivalent

not only to each other, but also to the uniform χ phase, while the s + id-wave superconductor

(∆x = −i∆y = ∆) is gauge equivalent to the π-flux phase, χij = eiπ/4χ. The ground state for this

model is not actually a spin-liquid at all, but a spin-Peierls state that breaks translational symmetry

and generates a spin gap ∝ J in addition to the charge gap ∝ U [38]. For larger dopings, the

spin-Peierls phase gives way to one of the spin liquid phases. The fermionic representation cannot

really capture the ground state of the square Heisenberg lattice anyway, which is not a spin-liquid

nor a spin-Peierls state, but rather a long range ordered antiferromagnet. These uniform Ansatzes

will, however, be reasonable for the moderate dopings that give rise to superconductivity.

Introducing doping means introducing a small number of mobile empty states. When an electron

hops on and off a site, it can flip the spin of the site, and consistency requires that these spin flips be

symplectic as well,

{Xα0, X0β} = Sαβ +
(
X00 +

Xγγ

N

)
δαβ, (7.13)

where Sαβ is a symplectic spin. When we represent the Hubbard operators with slave bosons, the
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Figure 7.3: Charge fluctuations, where an electron hops off, X0σ and then on again, Xσ′0 generate
spin fluctuations, Xσσ′ . In order to have a consistent large N limit, the spin group of these spin
fluctuations must be the same as the spins described by the Heisenberg term.

symplectic projected creation operators take the following form,

Xα0 = f †αb+ α̃f−αa. (7.14)

Symplectic symmetry requires the introduction of two slave bosons to reflect the neutrality of the

spin, and we recognize these Hubbard operators as the SU(2) slave boson approach introduced by

Wen and Lee [129]. However, here the SU(2) symmetry appears for all N , as a consequence of the

time-inversion properties of symplectic spins. The Nambu notation, B† = (b†, a†) simplifies the

expressions, as Xα0 = f̃ †αB and the hopping term of symplectic-N t− J model can be written,

Ht = −
∑
ij

tij
N

(
f̃ †iαBiB

†
j f̃jα + h.c.

)
= −

∑
ij

tij
N

[(
f †iαbi + α̃fi−αai

)(
fjαb

†
j + α̃f †j−αa

†
j

)
+ h.c.

]
. (7.15)

To restrict the spin and charge fluctuations to the physical subspace, this Hamiltonian must be

supplemented by the constraint, ~S2
j + ~Ψ2

j = N/2(N/2 + 2) is fixed, where ~Ψj = f̃ †jα~τ f̃jα is the

isospin vector (see Chapter 2 for more details). Setting the two types of charge fluctuations equal to
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one another, B†~τB = −~Ψ requires an SU(2) constraint at every site,

b†jbj − a†jaj + f †jαfjα = N/2

b†jaj + α̃f †jαf
†
j−α = 0

a†jbj + α̃fj−αfjα = 0. (7.16)

Under this constraint, there is only a single, physical empty state, which is

|0〉 =
(
b† + a†Ψ†

)
|Ω〉, (7.17)

forN = 2. The physical interpretation of these terms becomes clearer if we pick a particular gauge.

Since we only have two flavors of bosons and N flavors of fermions, the only way the bosons can

contribute in the large-N limit is to condense. As the bosons condense at all temperatures, the only

possible states are Fermi liquids and superconductors. While this situation is clearly unphysical, and

will be resolved with 1/N corrections, it does allow us to fix the gauge in a particularly simple way

by setting a = 0 and condensing only the b bosons. 〈b〉 must be fixed to Nx/2 because the bosons

carry all the charge in the system, Nx/2, where the factor of N/2 makes the doping extensive in

N . In this gauge, the constraint simplifies to,

f †jαfjα =
N(1− x)

2
α̃f †jαf

†
j−α = 0

α̃fj−αfjα = 0, (7.18)

which is enforced by a trio of Lagrange multipliers ~λ = (λ3, λ+, λ−). The first term is clearly

recognizable as Luttinger’s theorem. When we fix the gauge, we see that symplectic-N is identical

to U(1) slave bosons [229, 165, 230], except for the important additional constraints eliminating

s-wave pairing. For the d-wave superconductors, like the cuprates, that have been the main focus of

previous t−J model studies, these constraints are satisfied automatically, and at the mean-field level,
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there is no difference between the symplectic-N limit and many of the previously considered un-

controlled mean field theories. How the symplectic 1/N corrections change this phase diagram is an

interesting open problem, especially as reducing the coherence should generate a pseudogap phase

of preformed pairs between the mean-field Tc and the onset of superconducting coherence. How-

ever, for now we focus on the large N limit, where for s± superconductors like the iron-pnictides,

these additional constraints enforce the Coulomb pseudopotential, µ∗ and have an important effect

on the stability of s± superconductivity.

Once the bosons are condensed, and the Heisenberg term decoupled, the spinon Hamiltonian is

quadratic,

H =
∑
ij

f̃ †iα

(
−xtij

2
τ3 + Uij

)
f̃jα +

N

Jij

(|∆ij |2 + |χij |2
)
, (7.19)

where χij generates a dispersion for the spinons, while ∆ij pairs them. The physical electron,

c† ∼ 〈b〉f † will hop coherently, forming a Fermi liquid when ∆ij = 0 and superconducting when

∆ij 6= 0. The phase diagram is obtained by minimizing the free energy with respect to the bond

variables, χij and ∆ij , while simultaneously enforcing the SU(2) constraint on average with the

Lagrange multipliers, ~λ. These approximations become exact in the large N limit.

Figure 7.4: Gap symmetries for the J1 − J2 model

In general, the bond variables will take different values, χη and ∆η on different links, η = (ij).

For example, in the J1 − J2 model, we will assume χ = χ1 on all nearest neighbor (J1) links

and χ = χ2 on all next-nearest neighbor (J2) links. When these are Fourier transformed, χk =∑
η χηγηk ≡ 2χ1(cx + cy) + 4χ2cxcy, where we have defined cζ = cos kζa, and a is the lattice

spacing. The pairing may be either s-wave or d-wave on a set of links, η = 1, 2, so we consider
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∆k =
∑

η,s/d ∆ηs/dδηs/dk, where for the J1 − J2 model we have the following four possibilities

2∆1s(cx + cy) Extended s

2∆1d(cx − cy) dx2−y2

2∆2s(cx+y + cx−y) = 4∆2scxcy s±

2∆2d(cx+y − cx−y) = −4∆2dsxsy dxy, (7.20)

whose nodes are shown in Figure 7.4. Complex linear combinations of these are also possible, but

tend to be unstable, so we assume both χ and ∆ are real. The full Hamiltonian takes the form,

H =
∑
k

f̃ †kα
(
−xεk

2
+ Uk + λ3τ3 + λ1τ1

)
f̃kα +Ns

∑
η

N

Jη

(|∆η|2 + |χη|2
)− 4NNsxλ3

2
(7.21)

where εk and Uk are the Fourier transforms of tij and Uij , respectively, and Ns is the number of

sites. λ1 = 1
2(λ++λ−), and λ2 = −i

2 (λ+−λ−) is automatically zero if ∆ is real. This Hamiltonian

can be diagonalized, and the spinons integrated out to yield the free energy,

F [χη,∆η, λ1, λ3] = −2NT
∑
k

log 2 cosh
βωk

2
+Ns

∑
η

4N
Jη

(|∆η|2 + |χη|2
)− NNsxλ3

2
,

(7.22)

where

ωk =
√
α2

k + β2
k, where αk = λ3 − xεk

2
+ χk, βk = λ1 + ∆k. (7.23)

This leads to the four mean field equations,

∂F/∂χη =
∫
k

tanh βωk
2

2ωk
αkγηk − 4

Jη
= 0

∂F/∂∆η =
∫
k

tanh βωk
2

2ωk
βkδηk − 4

Jη
= 0

∂F/∂λ3 =
∫
k

tanh βωk
2

2ωk
αk − x/2 = 0
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∂F/∂λ1 =
∫
k

tanh βωk
2

2ωk
βk = 0, (7.24)

where
∫
k =

∫
dx
2π

∫ dy
2π . The first three mean field equations are identical to those derived for U(1)

slave bosons, when the spins are decoupled into both χ and ∆ terms [165]. However, the last

equation enforces µ∗ →∞ by forcing the average pair density over the Fermi surface to be zero,

∫
k

tanh
βωk

2

(
λ1 + ∆k

2ωk

)
= 0. (7.25)

When ∆k is d-wave, the integral vanishes by symmetry for λ1 = 0. For the simple t1−J1 model, the

form factors εk, γ1k and δ1sk, and thus ωk are all proportional to cx + cy. The integral, (7.25) only

vanishes when both λ1 and ∆1s do, completely eliminating any s-wave phase. For more complicated

models, λ1 acts as a pair chemical potential, adjusting the gap to eliminate the onsite s-wave pairing.

This adjustment costs energy and typically depresses the s-wave transition temperature.

7.3 Mean field solutions

Now let us consider a few simple models in order to see this constraint in action. First, we consider

the t1 − J2 model, shown in Figure 7.5 (a), which is the simplest model containing s± pairing.

Here, the next-nearest neighbor coupling, J2 can induce either s± or dxy pairing, while the nearest-

neighbor hopping, t1 leads to a single large Fermi surface, with occupation 1 − x. We will restrict

ourselves to hole doping, where x > 0. Both the s-wave and d-wave transition transition tempera-

tures can be found by setting ∆2(s,d) = 0 in the mean field equations, (7.24), with the appropriate

form-factor. These equations are then solved for λ1, λ3, χ and Tc. In order to elucidate the effects

of the pair chemical potential, λ1, we have done this calculation both with and without the λ1 con-

straint. Without the pair chemical potential, the solution is identical to previous U(1) slave boson

mean field theories. The d-wave transition temperature is, of course, unaffected by λ1, but the s-

wave transition temperature is reduced when λ1 is included. However, the pair chemical potential

does not completely eliminate the s± pairing, as it does for the t1 − J1 model. Here, it is able to
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Figure 7.5: (a) The t1−J2 model. (b) The Fermi surface (holes shown in red) for the t1−J2 model at
intermediate doping. In the superconducting state, the gap nodes follow the dashed lines, separating
regions of positive and negative gap. (c) The superconducting transition temperatures for the t1−J2

model both with (solid lines) and without the λ1 constraint(dashed lines), for s-wave (blue) and d-
wave (green) superconductivity. d-wave superconductivity is unaffected by the Coulomb repulsion,
while the s-wave transition temperature is decreased. (Calculated for t1/J2 = 10).

adjust the gap nodes to eliminate the Coulomb repulsion by balancing the regions of positive and

negative gap, as shown in Figure 7.5(b). Given that there is only a single Fermi surface, this pro-

cess necessarily introduces line nodes: lines on the three dimensional Fermi surface where the gap

changes sign. Experimentally, it would be difficult to distinguish such an s-wave state from a d-

wave state. However, in gaining line nodes, s-wave pairing loses its usual energetic advantage over

d-wave pairing: the complete gapping of the Fermi surface. Thus, there is no s± superconductivity

in the t1 − J2 model.

To allow the possibility of a stable s± superconducting phase, we must consider a situation with

multiple Fermi surfaces. Such a Fermi surface may be obtained even within a one-band model by

carefully tuning the hoppings, although the Fermi surface structure is unfortunately quite sensitive

to the doping level within this one band model. For an intermediate range of dopings, the t1 −
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Figure 7.6: (a) The t1 − t2 − t3 − J2 model. (b) The Fermi surface (holes shown in red) for the
t1 − t2 − t3 − J2 model at intermediate doping, showing the two Fermi pockets. The gap nodes of
the superconducting state are indicated with dashed lines. (t1 = 2J2, t2 = −6J2, and t3 = 8J2).
(c) The doping phase diagram for the t1 − t2 − t3 − J2 model, calculated with the λ1 constraint.
There is a quantum phase transition between d-wave pairing (green) and s-wave pairing (blue) as
doping increases and the s-wave states become fully gapped.

t2 − t3 − J2 model shown in Figure 7.6(a) has two hole pockets, surrounding the Γ and M points,

respectively. Now it is possible for s± superconductivity to gap out the two Fermi surfaces with

opposite signs. We again calculate the s-wave and d-wave transition temperatures with and without

the λ1 constraint, which yields the phase diagram shown in Figure 7.6(c). The nodal structure of the

s± state is strongly dependent on doping, through the sensitivity of the Fermi surfaces. For small x,

it contains line nodes, favoring the d-wave state, but as the doping increases, the line nodes merge

to become point nodes and eventually vanish. When this change occurs, s-wave superconductivity

is favored over the d-wave, giving rise to a d-wave to s-wave quantum phase transition as a function

of doping.

In the s± phase, the pair chemical potential naturally generates two gaps, λ1 ± |∆| on the two

different Fermi surfaces, as seen in some of the iron-based superconductors[109]. The difference
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between the two gaps increases with the difference in Fermi surface occupation, so in a more realis-

tic model, with one electron and one hole Fermi surface exactly balanced at half filling, we predict

that the difference between the two gaps increases with doping.

These models may easily be made more complex by adding nearest-neighbor exchange, J1, or

multiple, independent bands, but these do not change the qualitative conclusions. Treating multiple

bands properly requires adding a ferromagnetic Hund’s coupling, −|JH |~Sµi · ~Sµ′i between spins

in different bands, µ 6= µ′ on the same site, and we do not yet know how to handle a ferromag-

netic interaction with fermionic spinons, although the infinite JH limit may prove a more tractable

possibility. However, the current models are sufficient to illustrate the importance of incorporating

the Coulomb pseudopotential for calculations on strongly correlated s± superconductors, especially

when examining the nodal structure, and are not meant to be a detailed model of the iron-pnictides.

7.4 Conclusions

The doped semi-metal Fermi surface structure of the iron-based superconductors favors the s±

pairing state, which retains the ability to fully gap out the Fermi surface while avoiding Coulomb

repulsion by switching signs between the two Fermi surfaces. We have introduced symplectic Hub-

bard operators to properly treat the effect of the Coulomb pseudopotential on the superconducting

states of the t − J model within a well-defined large N limit. While the Coulomb pseudopotential

has been incorporated into most weakly correlated approaches to the iron-based superconductors,

this work is the first time the Coulomb pseudopotential has been included in a strongly correlated

model, where it is arguably more important. We find that the mean field phases contain a pair chem-

ical potential that adjusts the nodes of the s± gap to eliminate the Coulomb repulsion by balancing

the positive and negative gap regions of the Fermi surfaces. This pair chemical potential naturally

accounts for the diversity of gaps found in the iron-based superconductors: line nodes, point nodes,

and multiple gaps are all present in our large N limit at different dopings.

The cuprate and iron-pnictide superconductors both have rich phase diagrams, containing in-

coherent strange metals and pseudogap phases, none of which can be captured within the large N
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limit of the symplectic-N t − J model because the bosons are always condensed. Reducing this

coherence is essential to gaining a real understanding of these phase diagrams, and this reduction

can be done in two ways: either by calculating the symplectic 1/N corrections to Gaussian order,

or by artificially enhancing the number of bosons, K such that K/N remains finite in the large N

limit, which corresponds to generalizing the isospin from SU(2) to either SU(K) or SP (K).
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(Paris) (1977)

[114] H. Georgi, Lie Algebras in Particle Physics, pp61, Westview Press (1999).

[115] P. Chandra and P. Coleman, Phys. Rev. Lett. 66, 100 (1991).

[116] X. G. Wen, Frank Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989).

[117] J. J. Sakurai, Modern Quantum Mechanics Revised Edition, pp 277, (Addison Wesley),
(1994).

[118] G.D. Mahan, Many Particle Physics, Third Edition (Klewer Academic/Plenum Publishers,
New York, 2000).

[119] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 - 1113 (1940).

[120] C. Wu and S. Zhang, Phys. Rev. B 71, 155115(2005).

[121] H.A. Ceccatto, C.J. Gazza and A.E. Trumper, Phys. Rev. B 47, 12329 (1993).

[122] P. Coleman, A. M. Tsvelik, N. Andrei and H. Y. Kee, Phys. Rev. B 60, 3608 - 3628 (1999).

[123] D.P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

[124] N. Read, and D. M. Newns, J. Phys. C 16, L1055, (1983).

[125] N. Read and D.M. Newns, J. Phys. C 16, 3273 (1983).

[126] A. Auerbach, and K. Levin, Phys. Rev. Lett. 57, 877 (1986).

[127] N. Read and D.M. Newns, J. Phys. C 18 2651 (1985).

[128] Note that λi → λi + ∂τθi if the gauge transformation is time dependent.

[129] X.G. Wen and P.A. Lee, Phys. Rev. Lett. 76, 503 (1996).

[130] S. Sachdev, Phys. Rev. B 45, 12377(1992).

[131] S.-H. Lee et al., Nature Materials 6, 853 - 857 (2007).

[132] O. Tchenyshyov, R. Moessner and S. L. Sondhi, Europhysics Letters 73, 278 (2006).

[133] Y. Okamoto, M. Nohara, H. Aruga-Katori and H. Takagi, Phys. Rev. Lett. 99, 137207 (2007).

[134] J. M. Hopkinson, S. V. Isakov, H.-Y. Kee, and Y. B. Kim, Phys. Rev. Lett. 99, 037201 (2007).



186

[135] M. J. Lawler, H.Y. Kee, Y. B. Kim, and A. Vishwanath, Phys. Rev. Lett. 100, 227201 (2008)

[136] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

[137] (Technical note on representations: SU(N) naturally hasN−1 fundamental representations,
labeled by the indexm. The representations can be extended to treat larger spins by increasing
n = 2S. Each of these (m,n) representations can be treated with either fermions or bosons
- the physics lies in the matrices chosen to represent the spins, not the fermionic or bosonic
operators. However, for bosonic representations, taking m > 1 requires an additional flavor
index a = 1, . . . ,m (since bosons must be symmetrized), while larger n can be treated
by modifying the constraint to nb = n. Fermions have the opposite problem - they can
represent any m by fixing nf = m, but because they must be antisymmetrized, they require
an additional flavor index to treat n > 1. We will generally take only one flavor index and
use bosons to describe S > 1/2 (in fact to represent physical S = 1/2, we wish to keep
S/N = 1/2 fixed. Fermions with one flavor index can only treat the extreme quantum limit,
S � N , but have the advantage of being able to choose the self-conjugate fundamental
representation, m = N/2, which only exists for even N . This allows antiferromagnetism to
be treated on any lattice with SU(N) spins.)

[138] A. Auerbach, Interacting electrons and quantum magnetism (Springer-Verlag, New York,
1994).

[139] H. Bethe, Z. Phys. 71, 205 (1931); L. Hultén, Ark. Mat. Astron. Fys. 26A, 1(1938).

[140] I. Affleck, Z. Zou, T. Hsu and P. W. Anderson, Phys. Rev. B 38, 745, (1988).

[141] J.E. Hirsch and S. Tang, Phys. Rev. B 39, 2850 (1989).

[142] S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219(1991).

[143] S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339(1993);A. Georges and O. Parcollet and S.
Sachdev, Phys. Rev. Lett. 85, 840(2000)

[144] T.N. De Silva, M. Ma, and F.C. Zhang, Phys. Rev. B 66, 104417 (2002).

[145] C. Weber, F. Becca and F. Mila. Phys. Rev. B 72, 024449 (2005).

[146] P. Chandra and B. Doucot, Phys. Rev. B38, 9335, 1988.

[147] J.H. Xu and C.S. Ting, Phys. Rev. B 42, 6861-6864(1990).

[148] A.E. Trumper, L.O. Manuel, C.J. Gazza and H.A. Ceccatto, Phys. Rev. Lett. 78, 2216(1997).

[149] L. Capriotti, Int. J. Mod. Phys. B 15, 1799 (2001) and references therein.
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