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ABSTRACT OF THE DISSERTATION

BIOINFORMATIC ANALY SIS OF POLYADENYLATION SITE

ACTIVITY IN VERTEBRATES

By Eric Sau-chum Ho

Dissertation Director:

Samuel I. Gunderson

Most eukaryotic protein coding precursor messenger RNAs (pre-mRNAs)
undergo polyadenylation after transcription. Polyadenylation is a two-step
enzymatic reaction, in which the emerging pre-mRNA is cleaved from the
transcription complex, and then followed by the polymerization of adenosine
nucleotides starting from the cleaved 3’ end to form the poly(A) tail. Biologically,
poly(A) tail increases mRNA stability, protein translatability, and mRNA nuclear
export. Surprisingly, large numbers of protein factors were found to be involved in
this apparently simple cleavage and polymerization steps, suggesting that
polyadenylation is under complex regulation. Hence in this study, | am interested

to investigate the regulatory elements of eukaryotic polyadenylation.



The proposed close species comparison approach revealed an
asymmetric selection pressure around the polyadenylation cleavage site (PAS).
The region from the PAS to approximately 200 nucleotides (nts) upstream was
found to be under a much higher conservation than the downstream region and
other part of the 3’'UTR. Furthermore, over 2,000 long (>30 nts) conserved
fragments at or close to upstream of the PAS were identified through remote
species comparison. A substantial portion of them are longer than 100 nts, which

is much longer than any known RNA protein recognition sites.

A PAS classifier was built using logistic regression in order to study the
characteristics of PAS. Not only it does improve the computational recognition of
mammalian PAS than existing methods, it is also helpful in identifying a small
number of genes that lack of typical PAS characteristics such as the poly(A)
signal and/or the U/GU rich region. These findings provide useful experimental
candidates for the study of the still unclear polyadenylation compensatory and/or

regulatory elements.

At present, no sequence consensus has been identified for the
downstream U/GU enriched region yet. Thus, | have designed a novel rule-based
nucleotide sequence motif finding algorithm, called iTriplet, to target long and
degenerative motifs with special attention to the PAS downstream sequence.
iTriplet has been demonstrated to handle motifs longer than 20 nts, which is still
a challenge to existing methods. The utility of iTriplet has been confirmed by
showing it accurately predicts PAS downstream elements using a dual Luciferase

reporter assay.
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LUCIFERASE WERE NORMALIZED TO THOSE OBTAINED FROM A CO-TRANSFECTED FIREFLY LUCIFERASE PLASMID. THE PRL-
GAPDHWT PLASMID EXPRESSES 2.2 FOLD MORE RENILLA THAN PRL-G APDH MT PLASMID THUS MOTIF A IS ENHANCING
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THESE PLASMIDS WERE TRANSFECTED AND ANALYZED AS IN PANELA. (C) PRL-ULAWT(NM_004596) WAS MADE LIKE
PRL-GAPDHWT BUT FROM THE HUMAN U1A GENE SEQUENCES AS INDICATED. PRL-U1AMT MATCHES PRL-U1 AWT

BUT HAVING MOTIF A MUTATED AS SHOWN. THESE PLASMIDS WERE TRANSFECTED AND ANALYZED AS IN PANEL A. ....141
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CHAPTER1

INTRODUCTION

A. Background

The majority of eukaryotic protein-coding messenger RNA precursors
(pre-mRNAs) undergo required maturation processing in the nucleus before
being exported to the cytoplasm. This maturation process consists of three
modifications viz. 5 capping, splicing, and polyadenylation. Although these
modifications are often called post-transcriptional processing, they actually occur
simultaneously and cooperatively during transcription. RNA modifications serve
vital biological functions and are thought to facilitate diversity. Splicing can lead
to the production of more than one species (isoform) of mMRNA of a single gene,
as many as 80% of human genes are detected with alternatively spliced isoforms
[reviewed in Matlin et al 2005]. Alternative splicing often alters the protein-coding
region of a gene, resulting in different proteins from the same gene without any
change in its genome. 5’ capping and polyadenylation modify the 5’ and 3’ ends
of the mRNA molecule, respectively. They are critical to mRNA nuclear export,
stability, and translatability. Intriguingly, polyadenylation is the only pre-mRNA
modification out of the three that is preserved in all domains (super-kingdoms)
i.e. prokaryotes, archaea, and eukaryotes. During the three billion years of
evolution, additional complexity was selected in the mammalian polyadenylation
machinery. Thus in this thesis, my focus is to study the more complicated

polyadenylation activity in mammals.



All  eukaryotic protein-coding messenger RNAs (mRNAs) are
polyadenylated except histones. Polyadenylation consists of two tandem
enzymatic reactions i.e. the endonucleolytic cleavage of nascent pre-mRNA
emerging from the transcription complex, and the polymerization of adenosine
nucleotides to the 3’ end of the pre-mRNA. The endonucleolytic cleavage site is
called the polyadenylation site (PAS). The choice of PAS is selective even
though human and mouse genes are found to possess more than one PAS [Tian
et al 2005]. The polyadenosine nucleotides polymerized at the 3’ end of the
MRNA is collectively called the poly(A) tail. The typical length of the poly(A) tail in
mammals is 200-250 nucleotides (nts) long, but lower organisms tends to have a
shorter poly(A) tail e.g. it is about 70 nts in yeast, 10-20 nts in bacteria.
Polyadenylation is a non-template driven process, in contrast to transcription and
DNA replication. It takes place in the nucleus, however not without exception as
cytoplasmic polyadenylation can undergo shortening and lengthening in the
cytoplasm. Example of cytoplasmic polyadenylation was reported in Xenopus

during oocyte maturation and early embryogenesis [Pique et al 2008].



B. Polyadenylation core factors

lllustrated below in Figure 1.1 is the core eukaryotic polyadenylation complex,

which consists of six protein factors comprised of fourteen different polypeptides.
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Figure 1.1 Core protein factors of the mammalian polyadenylation complex.
The carboxyl terminal domain (CTD) of RNA polymerase Il is tightly
coupled to the polyadenylation complex. Figure is adopted from [Mandel et
al 2008], where the authors suggested that CstF-64 dimerizes at the
downstream region.

This complex is highly conserved in eukaryotes. Yeast homlogs can be
found in 10 out of 14 mammalian proteins [Mandel et al 2008, Shi et al 2009].
This complex takes about 10 seconds to assemble according to one study [Chao
et al 1999]. As mentioned in [Mandel et al 2008], it is surprising that so many

proteins are required to perform such a simple cleavage and polymerization



process. In addition, a recent proteomic study has identified as many as 85
different proteins in the polyadenylation complex, including known
polyadenylation factors, indicating up to 50 other proteins may influence
polyadenylation [Shi et al 2009]. The polyadenylation molecular machinery
utilizes two cis elements to recognize the PAS. The upstream element of PAS
consists of a highly conserved hexanucleotide, called the poly(A) signal, which is
located 10-30 nts from the PAS. The two most prevalent forms of poly(A) signal
in vertebrates are AAUAAA and AUUAAA', collectively called the canonical
poly(A) signal. According to my own and other data [Beaudoing et al 2000, Tian
et al 2005], AAUAAA and AUUAAA are found in approximately 66% and 16% of
mammalian genes, respectively. The poly(A) signal is recognized by cleavage
and polyadenylation specificity factor (CPSF) CPSF-160 during complex

formation.

On the contrary, no sequence consensus can be identified for the
downstream element (DSE) except that an U and G enriched region is found at
~15 nts downstream from PAS, which is commonly called the U/GU-rich region.
The 64-kDa subunit of the cleavage and stimulating factor (CstF), CstF-64, was
found to target the U/GU-rich region but not simple (GU), repeats through SELEX
experiments and NMR study [Takagaki et al 1997, Perez et al 2003]. In addition,
experimental data indicated that cleavage and polyadenylation occur

deterministically at a fixed location (10 nts) between the PAS and the U/GU-rich

" In this document, uracil (U) and thymine (T) are used interchangeably.



region. A recent computational study of PAS downstream sequences from
various metazoans suggested that DSE exhibits a 5’ to 3’ transition from UG-rich

to U-rich [Salibury et al 2006].

Direct binding of the two abovementioned protein factors, CPSF-160 and
CstF-64, to the poly(A) signal and DSE, respectively, are inadequate to trigger
polyadenylation. Two additional cleavage factors CF-1 and CF-Il, are reported to
increase complex stability, and to enhance CPSF-160 interaction with CstF-64,
which results in forming a closed loop in the pre-mRNA substrate between the
poly(A) signal and DSE [Takagaki et al 1989, de Vries et al 2000]. Another
subunit of the CPSF, CPSF-73, was reported to function as an endonuclease to
cleave the pre-mRNA preferentially but not necessarily after dinucleotide ‘CA’

between the poly(A) signal and the DSE [Mandel et al 2006].
C. Alternative polyadenylation

A substantial portion of human genes were found to possess more than one 3’
end [Iseli et al 2002]. With the burgeoning of genomic data, a more recent study
has determined that ~54% of human and ~32% of mouse genes were found to
have alternative PAS [Tian et al 2005]. Alternative polyadenylation results in the
alteration of the 3' UTR, and in some cases, the truncation of the carboxyl
terminal of the protein. It is still unknown whether the choice of PAS is stochastic
or regulated, as well as its activation or inactivation mechanism. At present, only
a few examples are known to delineate its biological function. An example of

alteration of the coding region through alternative polyadenylation can be



illustrated by the IgM heavy chain gene, which contains two active

polyadenylation sites. Activation of upstream PAS, ps, will result in the secretory
form of IgM, whereas the activation of the downstream PAS, um, will give rise to

the membrane-bound form [Lamson et al 1984, Phillips et al 2001]. The
difference in localization is due to the truncation of the coding region in 3’ end
that encodes the membrane anchor domain. Even though the alternative
polyadenylation of 3,108 (22%) human and 898 (8%) mouse genes were
detected to alter the protein coding region [Table 3 of Tian et al 1995], so far,
only IgM is well studied, indicating the biological function of alternative

polyadenylation in many genes is still unknown.

In most situations, alternative polyadenylation affects only the 3° UTR but
leaves the coding region intact. It is known that the 3° UTR embodies myriad of
regulatory elements such as microRNA targets [Xie et al 2005], mRNA stability
elements like AU-rich regions, polyadenylation inhibition elements, U1 binding
sites [Gunderson et al 1998], and mRNA localization "ZIPCODE" elements
[reviewed in Shav-Tal Y et al 2005]. As a result, mMRNA levels may be affected by
alternative polyadenylation, and subsequently, affects the protein level as well.
Besides the effect on 3’ UTRs, an intron enhancer located downstream of exon 4
in the calcitonin gene is also reported to regulate alternative polyadenlyation [Lou
et al 1996]. The lengthening of 3 UTR has been revealed to associate with
mouse embryonic development [Ji et al 2009] and it is believed that the
lengthened transcripts are turned into substrates of other regulatory agents like

microRNAs. On the contrary, the shortening of 3° UTR was observed in



oncogene transcripts, which is thought as a mechanism for oncogenes to escape

from microRNA repression [Mayr et al 2009].
D. Non-canonical polyadenylation

Despite the fact that the poly(A) signal is highly conserved in vertebrates, a small
fraction of genes do not conform to the canonical pattern and yet they are
polyadenlyated precisely at the same cleavage site. The first example being
reported is the gene poly(A) polymerase gamma (PAPOLG) which has no
canonical poly(A) signals but contains multiple copies of conserved UGUAN
(N=A is better than U, as better than G,C) in the upstream of PAS
[Venkataraman et al 2005]. In that study, the binding of human CF-I to UGUAN
sites was shown to stimulate polyadenylation. Note that this study lacked cell-
culture data and it failed to exclude the binding of CPSF-160 to a canonical-like
poly(A) signal, which was present in PAPOLG. Another example is the DNA
polymerase gene of Epstein-Barr virus that contains the non-canonical poly(A)
signal, UAUAAA, yet it was shown to be essential for polyadenylation though with

less efficiency [Silver Key et al 1997].

The presence of high conservation pressure to preserve the upstream
poly(A) signal but not the degenerate downstream U/GU-rich region may indicate
only the poly(A) signal is sufficient to trigger polyadenylation. In addition, | have
identified many reliable PAS without U and G enriched downstream region
(detailed discussion can be found in chapter 3). However, one study has reported

the presence of auxiliary G-rich elements further downstream is required to



maintain polyadenylation activity of that gene [Dalziel et al 2007]. The intronless
gene MC1R has a canonical poly(A) signal AAUAAA upstream but lacks the
U/GU-rich downstream element. Through mutagenesis studies, authors have
demonstrated that two downstream G-rich regions serve to rescue normal
polyadenylation activity, without which, polyadenylation diminished significantly.
Despite that, the UU dinucleotide located 21 nts downstream from PAS, which is
the favorite position of the DSE, still remains critically important to maintain

polyadenylation as disruption abolishes polyadenylation activity.

With the help of genomic and expression data, there is growing evidence
to support the view that the polyadenylation molecular machinery is flexible to
tolerate sequence variations of the poly(A) signal and/or the DSE. Such a view is
consistent with the discovery of as many as 85 proteins in the polyadenylation
complex mentioned above [Shi et al 2009]. Such additional factors may serve as
compensatory and regulatory functions. Examples have shown that the
weakness of non-canonical poly(A) signal can be compensated by a strong DSE,
and vice versa, in the absence of other auxiliary elements. This idea has been
illustrated in a recent in-vitro study about the compensatory effect of a non-
canonical poly(A) signal and a DSE without any auxiliary element [Nunes et al
2010]. Human MC4R and JunB genes are examples of this type. The intronless
human MC4R gene lacks a canonical poly(A) signal but possesses an A-rich
upstream region, and an U/GU-rich downstream region. The authors showed that
the downstream U/GU-rich region was sufficient to drive polyadenylation activity.

Interestingly, though not mentioned in that report, the mouse homolog does



possess the major canonical poly(A) signal AAUAAA and the DSE is quite U/GU-
rich too. In addition, the expression of MC4R is quite low in both species, and
their 3’ ends are not supported by ESTs. Equally interesting is the finding that the
gene of the human CPSF-160, which recognizes and binds the poly(A) signal,
does not have the canonical poly(A) signal. Based on these few examples, we
can understand that the core polyadenylation complex exhibits a wide spectrum
of flexibility, and its tolerance to variations is gene-specific. Later, | will discuss
examples of genetic disorders due to the slight variations in the flanking region of

the PAS.
E. Polyadenylation and transcription termination

Currently, there are two popular views on transcription termination viz. anti-
termination and torpedo models. Both models support the interaction between
transcription termination and polyadenylation. The anti-termination model
proposed that some proteins called anti-termination factors “piggy back” on the
transcription complex during the elongation phase. When the transcription
complex reaches an active PAS, it will trigger the release of anti-termination
factors from the transcription complex thereby causing the destabilization of the
RNA polymerase II/DNA complex. An alternate view on termination is called the
torpedo model. In this model, after the cleavage of nascent mRNA at the PAS
from the RNA polymerase |l (Pol Il), an 5’->3’ exonuclease Xrn2 will degrade the
emerging nascent mMRNA from the transcription complex until Xrn2 interacts with
the complex, which in turn will cause the transcription complex to fall off from the

DNA [West et al 2004]. According to my data, 6,000+ of human and 12,000+ of
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mouse genes are less than 1,000 nts apart, suggesting proper transcription
termination is vital to maintain transcription integrity. Early reports proposed that
both the poly(A) signal and the downstream G-rich pause element MAZ were
required to cause Pol Il transcription termination [Eggermont et al 1993, Yonaha
et al 1999, Plant et al 2005, West et al 2006], and transcription termination was
suggested to couple with polyadenylation [Yonaha et al 2000]. The nascent
MRNA was identified to tether the polyadenylation complex to the Pol Il [Rigo et
al 2005]. Other studies suggested however that the canonical poly(A) signal
alone is sufficient to induce transcription pausing, which may switch Pol Il from
an elongation state to an abortive state [Orozco et al 2002, Kim et al 2003, Nag
et al 2006]. However, my data shows that canonical poly(A) signals are
ubiquitous in transcribed regions. In order to support poly(A) signal dependent
pausing, factors other than sequence elements must be utilized by the

transcription complex to prevent premature loss of possessivity.
F. Evolutionary history of polyadenylation

The origin of mammalian polyadenylation can be traced back to the most
primitive organisms in all three domains (super-kingdoms) of life i.e. prokaryotes,
archaea, eukaryotes, including organelles like chloroplast and mitochondria.
Even though polyadenylation orchestrates quite differently in these three
domains in terms of the protein factors, the existence of the poly(A) signal, and
the sequence characteristics surrounding the PAS, a common biological role has
been preserved through evolution, which is the turnover of mMRNA molecules.

This observation suggests that mRNA turnover is the ancestral function of
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polyadenylation. Thus polyadenylation should be viewed as the counterpart of

transcription, where the former helps to recycle ribonucleotides for the latter.

Escherichia coli (E. coli) will be used as the model organism to illustrate
prokaryotic polyadenylation. The 3’ end of most E.coli transcript is marked by a
stem-loop structure, which helps to resist 3’-exonucleolytic degradation.
Endonucleases such as RNase E try to remove the stem-loop by attacking its
base so as to allow 3’->5’ degradation. However this reaction is slow. Apart from
exonucleolytic degradation, the exposed 3’ end of the RNA is also available for
polyadenylation by the poly(A) polymerase pcnB. When the poly(A) tail is formed
at the 3’ end of the transcript, it is thought to serve as a ‘toehead’ for another
enzyme polynucleotide phosphorylase (PNPase), which works synergetically with
RNase E to stimulate 3’->5’ exonucleolytic degradation [Xu et al 1995, Cohen
1995]. This mechanism was reported to account for the regulation of plasmid
copy in E.coli [Xu et al 1993, 2002, He et al 1993]. Most prokaryotic poly(A) tail
was found to be 10-20 nts long, and only 2-60% of the mRNA of a gene were
detected to have a poly(A) tail [Taljanidisz et al 1987, Karnik et al 1987]. The
stimulatory role of the poly(A) tail were also found in archaea, chloroplast, and
mitochondria [Rott et al 2003, Slomovic et al 2005, Portnoy et al 2006]. Several
good reviews of prokaryotic polyadenylation can be found in [Sarkar 1997,

Edmonds 2002, Slomovic et al 2006].

On the other hand, additional components were selected in eukaryotes
during the course of evolution. These include the presence of the poly(A) signal,

distinct nucleotide composition flanking the PAS, and the multimeric
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polyadenylation complex. These indicate that new functions are incorporated in
eukaryotic polyadenylation in addition to its ancestral mRNA turnover role. One
critical distinction between prokaryotes and eukaryotes is the non-covalent
circularization of mRNA. Circularization enhances mRNA stability and protein
translation capability. But it requires additional players to bring 5’, and 3’ ends
together. The birth of 5 capping enzyme fulfiled such 5 role. The capping
enzyme produces a cap structure (m’Gppp) in the 5’ end of the pre-mRNA by
attaching a guanosine to the 5 most nucleotide through an usual 5’-to-5’
triphosphate linkage. Regarding the 3’ end, a highly conserved poly(A) binding
protein (PABP), which binds to the poly(A) tail, is found in eukaryotes. These two
terminal modifications help the mMRNA molecule to resist exosome degradation in
the nucleus, which is essential for mRNA stability. Moreover, the nuclear export
pathway also uses these two modifications to gauge the export of mRNA to
cytoplasm for translation. Before translation, the 5’ cap interacts with the PABP-
bound poly(A) tail through the mediation of translation initiation factors elF4E and
elF4G. The circularization structure is shown to facilitate multiple rounds of

translation per mRNA molecule.

The comparison between prokaryotic and eukaryotic polyadenylation not
only provides additional understanding about this process, but also how little is
known about nucleus formation. Even by comparing the two unicellular
organisms E.coli and yeast, the vast difference between their polyadenylation
mechanisms is still puzzling. So far, little evidence is known about the

intermediate for the transition from non-nucleus to nucleus. Further investigation
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is needed to fill the missing knowledge between the two domains of life during

evolution.
G. Polyadenylation and diseases

Several studies have shown that genomic variation flanking the PAS can be
detrimental. Examples of disease-related genomic variations in regions
surrounding the PAS will be discussed here. It has been reported that aged-
related macular degeneration (AMD) is associated with the deletion-insertion
(indel) of an upstream region of PAS of gene ARMS2 [Fritsche et al 2008]. AMD
causes diminishing of central retinal vision, and 50% of AMD patients are
accounted by indel genetic variation [Edwards et al 2005, Haines et al 2005,
Hageman et al 2005]. Genotyping of AMD patients indicated a 43-nt fragment,
which carries the poly(A) signal, being replaced by a 54-nt fragment with two non
overlapping AU-rich pentamers. Homologous ARMS2 can only be found within
the primate lineage, and the biological function of ARMS2 still remains unknown.
The loss of the poly(A) signal compounded with the two extra AU-rich pentamers
not only hampers polyadenylation activity, but also reduces mRNA stability. As a

result, the protein level of ARMS2 drops drastically in retina of affected patients.

Other more subtle polymorphisms surrounding PAS were also found to be
disease related, though they were not as drastic as losing the poly(A) signal.
Their main adverse effect is the alteration of polyadenylation efficiency. One
example is the single nucleotide polymorphism (SNP) at the PAS of prothrombin

or coagulation factor Il gene (F2). Two SNPs have been discovered immediately
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5" upstream of F2’'s PAS viz. rs72550707 C—T, and rs1799963 G—A. C—T is
mostly found in Afro-Americans and Afro-Caribbeans, whereas G—A is almost
exclusively found in Caucasians [Danckwardt et al 2006]. The G—A
polymorphism was reported to elevate mRNA level of the F2 gene
[Sachchithananthan et al 2005, Danckwardt et al 2004, 2006] due to the increase
of polyadenylation efficiency but not translatability [Gehring et al 2001]. As blood
coagulation is a sensitive and responsive physiological process, the boosting of
polyadenylation efficiency increases the level of prothrombin protein in the
plasma that will result in venous thrombophilia. C—T polymorphism also

contributes to thrombophilia and complications of pregnancy.

Besides polymorphisms at the poly(A) signal and the PAS, variation in the
downstream U/GU-rich region was also found to upset thrombosis. The
fibrinogen gamma gene (FGG) consists of 10 exons and two PAS. The upstream
PAS (PA1)is located in intron 9. The use of PA1 produces the shorter isoform of
FGG (y'), whereas the use of downstream PAS (PA2) will produce the longer
FGG (YA). YA contains four more amino acids “AGDV” than y’ at the carboxyl
terminal. The last four amino acids are involved in platelet-binding. A mixture of y’
and yA are found in the blood stream, where y’ usually consists of 7-15% of total
FGG level. Maintaining the y’ to YA ratio in blood is physiologically important. A
C—T SNP located at the U/GU-rich region 3’ downstream of PA2 was found in
patients suffering from deep venous thrombosis (DVT) [Uitte de Willige et al
2005, 2007]. The same study discovered an elevated mRNA level of yA in DVT

patients. Thus, the C—T variation was believed to strengthen PA2, which led to
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the lowering of y’ and the ratio between y’ and total FGG. The strengthening of
PAZ2 is thought to be contributed by making the PAS downstream region more U-

rich, which may facilitate polyadenylation factor CstF-64 binding.

Besides genetic variation, utilizing alternative the polyadenylation
mechanism to shorten 3’ UTR was observed in six oncogenes in cancer cells that
led to changes in protein products [Mayr et al 2009]. The shortening of 3’ UTR
allows oncogenes to escape microRNA-mediated repression. In addition, one of
the oncogenes with shortened 3° UTR was IMP-1, which was found to promote
oncogenic transformation. Regarding the mechanism to activate 5’ upstream or
3’ downstream PAS, it is still unknown. Through previous microarray comparative
study, one group of the authors speculated that the elevated level of CPSF-160
(CPSF1) and CstF-64 (CSTF20) may favor the usage of 5 PAS even though the

sequence propensity is suboptimal.
H. Polyadenylation and oligonucleotide-based therapeutics

Oligonucleotide-based, or simply oligo-based, drugs like most existing drugs are
antagonists. Currently, there are two main categories of oligo-based therapeutic
methods viz. antisense oligonucleotide (ASO), and RNA interference (RNAI).
Their main difference lies in the use of different endogenous mRNA degradation
pathways. In the last two decades, growing attention has been given to harness
these mRNA degradation pathways as the therapeutic method for diseases such
as cancer, familial hypercholestrolaemia, malaria etc. [Melnikova 2008]. With the

advances in nucleic acid chemistry, delivery mechanism, and voluminous
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genomic data, the momentum of oligo-based therapeutics is growing even larger.
The key advantage of oligo-based drugs compared with traditional small
compound drugs is in the discovery of potent interacting sites between the
antagonist and the target. In the traditional drug discovery process, identification
of the active site of the target protein requires structural information, which may
be a daunting task for some protein families such as membrane proteins. Once
the target site is decided, the next step is to develop an assay in testing the
potency of small compounds from a chemical library. Required working
knowledge is completely different from one target to the next. Synthesis of small
compounds also varies from one drug to the others as well. However, the
screening process is more streamlined for oligo-based drug discovery. All one
needs is to screen for one or more unique and accessible target sequences in
the mRNA of the target gene. As variation in sequence pattern usually does not
affect the biochemical property and synthesis of the oligonucleotides, the
screening process does not depend on the target protein. In addition, oligo-based
drugs make personalized medicine more probable than traditional approaches,
as the personalization of an oligonucleotide is much easier than a small
compound. Similar advantages apply to the combat of drug resistance due to the

evolution of targets.

In addition to the above two oligo-based methods, a new method has
been invented recently which takes on a different mMRNA degradation pathway
i.e. the inhibition of polyadenylation via the U1snRNP splicing factor. Previous

studies have demonstrated that direct interaction between the U1-70k subunit of
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splicing factor U1 snRNP, and poly(A) polymerase (PAP) can inhibit
polyadenylation after cleavage [Gunderson et al 1998, Vagner et al 2000]. This
inhibition mechanism was engineered as a post-transcription gene silencing tool,

namely U1 silencing, as shownin Figure 1.2 below:
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Figure 1.2 U1 silencing. U1 snRNP consists of U1 snRNA and 10 other
proteins. A 10-nt sequence at the 5’ end of U1 snRNA targets the 5’ splice
site (5’ss) during splicing. The 10-nt sequence in the mutated U1 snRNA is
changed to basepair with the target gene. The above figure is adopted from
[Forte et al 2003]

The idea of U1 silencing is to tether the U1 snRNP to the upstream of PAS
in the terminal exon via a mutated U1 snRNA, where its natural 10-nt long 5’ end
targeting sequence is changed to form a duplex with an unique site flanking the
PAS in the target gene as illustrated in Figure 1.2 above. Various research
groups have demonstrated successes in applying this method to silence genes in
different cell lines by transfecting cells with the mutated U1 snRNA [Beckley et al

2001, Fortes et al 2003, Akum et al 2004, Abad et al 2008, Jankowska et al
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2008]. Recently, a significant improvement has been made to improve this

method by the concept of U1 Adaptor [Goraczniak et al 2009].

U1 Adapt 5* .
1

- EEETRNAL I —Poly (A)

Figure 1.3 U1 Adaptor technology. Endogenous U1 snRNA is labeled in
black, U1 Adaptor is labeled in red. Adopted from [Goraczniak et al 2009].
Instead of customizing U1 snRNA, a short adaptor oligonucleotide known
as the U1 Adaptors is used to tether U1 snRNP to the terminal exon that contains
the PAS. U1 Adaptor is a synthetic oligonucleotide of about 28-33 nucleotides in
length and comprised of a 5’ segment, the Target Domain, which binds within the
terminal exon of the target pre-mRNA, and a 3’ segment, the U1 Domain, which
binds to the 5’ end of U1 snRNA [Goraczniak et al 2009]. U1 Adaptor tethers U1
snRNP, via its U1 snRNA subunit, to a sequence near the PAS of the targeted
gene. The U1 Domain design is relatively simple as its role is to bind as strongly

as possible to U1 snRNP via base pairing to U1 snRNA. In contrast, the Target
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Domain design is a balance between high affinity to the target and low affinity to
non-targeted pre-mRNAs. A key aspect that, in part, explains the specificity of
the Adaptor method is that inhibition only occurs when the Adaptor:U1 snRNP
complex is bound in the terminal exon. Thus, Adaptor:U1 snRNP complex
binding to upstream introns or exons of either the target gene or non-targeted
genes has no effect. Even though a robust algorithm to select the U1 Adaptor
target site is still under development, several genes have been silenced by this

technology.
l. Summary

As discussed above, a seemingly straightforward two-step enzymatic
reaction turns out to be far more complex that it should. During the course of
evolution, variations of polyadenylation factors and the surrounding PAS bring in
advantageous functions as well as complexity to this modification step. Such
additional complexity is likely associated with regulatory functions. Hence | am
interested to discover the regulatory role of regions flanking the PAS. In this
report, | provide an extensive bioinformatic study to identify polyadenylation
regulatory elements and to determine how widespread they are in mammals

using bioinformatic, machine learning, and statistical techniques.

| have found an unusual asymmetric conservation pressure upstream of
the PAS but not downstream of the PAS. Around 2,000+ of highly conserved
fragments, at least 30 nts long, are found in the upstream region of remote

species. Their discovery may reveal important and yet unknown activity
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associated with these conserved fragments. Furthermore, | conducted an
extensive study to identify the features that constitute strong and weak
polyadenylation sites. Hence, | have used a supervised learning method to
construct a polyadenylation site classifier. The classifier not only allows us to
make prediction of PAS in novel genomes, but also assist in the identification of
atypical polyadenylation sites. Such polyadenylation site outliers provide
excellent examples to investigate less understood factors of polyadenylation.
Finally, the degenerate nature of downstream U/GU-rich elements has prompted
me to develop a new motif finding algorithm that is specifically capable of

identifying long and degenerate motifs, which are commonly found in RNA.
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CHAPTER 2

CONSERVATION OF POLY(A) SITE FLANKING REGION

A. Introduction

The existence of cis polyadenylation elements both upstream and
downstream of the poly(A) signal has been studied experimentally and
bioinformatically. Bioinformatic analysis discovered the enrichment of certain
hexamers upstream, up to 100 nucleotides (nts), in human [Hu et al 2005], or
downstream, up to 60 nts, of polyadenylation sites (PAS) in metazons [Salisbury
et al 2006]. Through experimental studies, various functions have been attributed
to other cis regulatory elements including, but not limited to, the inhibition of
polyadenylation through a U-rich region downstream of the PAS [Zhu et al 2006],
stabilization of the polyadenylation complex by U-rich elements upstream of the
PAS [Kaufmann et al 2004, Danckwardt et al 2007], alteration of polyadenylation
by U/GU-rich elements downstream of the PAS [Liu et al 2008], stimulation of the
cleavage step through proximal and distal G-rich elements downstream of the
PAS [Phillips et al 2004, Dalziel et al 2007], and U1A autoregulation through
polyadenylation inhibition element (PIE) [Boelens et al 1993, Gunderson et al
1994, 1997]. So far, these studies have emphasized the presence of short (<15
nts) cis regulatory elements flanking (up to 100 nts upstream) the PAS.
Furthermore, other related studies largely ignored the possibility that highly
conserved elements could be effecting 3’ end processing [Siepel et al 2005]. This

chapter attempts to establish, first, the existence of selection pressure in the
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farther upstream region (up to 200 nts) of the PAS, and second, the existence
and prevalence of longer (>30 nts) conserved fragments (CFs) in distant
mammalian species specifically, human, mouse, cow and platypus. Last but not
least, the biological implications of these conserved regions will be discussed at

the end.

B. Close species comparison reveals selection pressure on
the farther region 200nt upstream of poly(A) sites

Polyadenylation is required for expression of all eukaryotic genes (except
histone). It has long been understood that there is a strong selection pressure to
maintain the poly(A) signal upstream near the PAS. In contrast, it is not
understood whether selection pressure extends beyond the poly(A) signal and at
what range of distance from the PAS. In order to answer these questions, the
mutation rate near the PAS was measured. However, a simple comparison of
PAS flanking sequences among different species is not feasible because, unlike
ORFs, 3’ UTRs are generally not conserved. Furthermore, nucleotide sequence
comparison suffers from the homoplasy effect, i.e. recent mutation(s) can revert
a mutated nucleotide to its ancestral form over a long evolutionary time. To
overcome this issue, the approach to harness close species genomes was
adopted to examine the existence of selection pressure flanking the PAS. Two
pairs of close species were used: viz. human-chimpanzee and mouse-rat. The
human and chimpanzee genomes are almost 99% identical [Chimpanzee
genome sequencing consortium 2005], and the genome between mouse and rat

is close to 90% identical [Rat genome sequencing consortium 2004]. Results
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suggest that the proposed method is capable of pairing up orthologous (based on

ORF) PAS regions evenin less conserved 3’ UTRs of close species.

1. Methods

For a given genomic region, in the absence of selection pressure, one
would expect mutations to be distributed evenly along the genome; otherwise,
mutations are either localized or depleted in that region. Based upon this
intuition, the following procedure was devised to reveal the extent of selection

pressure flanking the PAS.

1. obtain 17,080 human and 8,799 mouse PAS from our EST-based PAS
database (described in the Appendix B)

2. consider regions [-300,+300] (see note below)

3. use NCBI-BLASTN [Camacho et al 2009] to identify chimpanzee and rat
homologous PAS of human and mouse, respectively

4. remove genes with 3' UTRs shorter than 500 nts so as to eliminate the
conservation effect caused by the ORF

5. choose two control data sets that are of the same length and same number
as the sequences from step 1. These two control sequences were taken from
random locations in the intergenic region and in the ORF

6. examine the mismatch ratio (explained below) for each position among

homologous pairs in [-300,+300] (see note below) of the PAS

Note: [-M,+N] denotes M nts upstream and N nts downstream of the PAS.



24

real poly(A) sites versus close species control sequences versus close species
* ®——x * * ——%
® x £ * ®
—% —% x ®
% x x x|
* * 3
® % x x x H—N—N——
* ® ®
X% x ® x
® ® % ® ® ®
% ® ® %
% —% ® %
® x %X ® ® ®
s Sl K R - - > L ittt - >
-300 i +300  -300 i +300

mismatch _poh(A4),

mismatch; = —
mismatch _control;

Figure 2.1 Mismatch ratio. Green lines on the left denote 600-nt long real
PAS sequences supported by EST data. Grey lines on the right represent
control sequences. Cross symbol represents mismatch. Mismatch ratio is

computed for each position, denoted by i.

Mismatch ratio. 16,835 and 8,604 pairs of homologous PAS were found
between human-chimpanzee, and mouse-rat, respectively, using NCBI-BLAST.
For both real and control result sets, the number of mismatches were counted
between each pair of species for each position in the [-300,+300] region. Then
the two mismatch counts were combined into a ratio per position as shown in
Figure 2.1. (Note: the mismatch ratio was set to undefined during plotting if the
number of mismatches in control sequences was zero. Since large number of
PAS regions were used, this situation were only found to happen in the first and
last three positions at either ends, thereby it would not affect the overall

analysis.) The mismatch ratio reflects the comparative mutation rate in PAS
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regions versus control sequences. A value close to 1, >1, and <1 indicates
neutral, faster, and lower mutation rates in the PAS region versus control.
Regarding the choice of control sequences, the decision is based on the
assumption that intergenic sequence is subjected to the least selection pressure,
whereas the strongest pressure is on the ORF. The comparison of the PAS
flanking region with these two extremes enables us to understand the magnitude
of selection pressure. Besides the PAS flanking region, other types of genomic
sequences such as 5’ splicing sites, part of the 3° UTR and introns were included
in this study in order to confirm the validity of this method. The degree and the
extent of conservation of the region flanking the PAS were examined by plotting

the mismatch ratio for these two pairs of close species.

2, Results
a) Selection pressure in human-chimpanzee and mouse-rat
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Figure 2.2 Mismatch ratio in PAS flanking region between close species. A-
B) Mismatch ratio variation for region [-300,+300], C-D) the PAS flanking
region versus 3’ UTR, E-F) mismatch ratio variation for region from 200 nts
upstream to 400 nts downstream, G-H) mismatch ratio variation for region
from 400 nts upstream to 200 nts downstream, I-J) PAS flanking region for
single PAS genes only, K-L) pseudo PAS intronic sequences, M-N)
mismatch ratio variation at the first splicing donor site (5’ ss), O-P) analysis

of non-overlapping genes.

In Figure 2.2, the blue line represents the mismatch ratio between the real

PAS and the intergenic control sequence, similarly, for the green line except that
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the control is changed to the ORF. The grey line represents the comparison

between the two types of control sequences i.e. ORF versus intergenic.

As shown in Figure 2.2A, the mismatch ratio of real PAS sequence versus
intergenic sequence (blue line) is <1 for the entire region indicating a stronger
selection pressure in the PAS sequences than in the intergenic sequences.
However, the experienced selection pressure is not as strong as the pressure to
preserve the ORF (green line) except for the region ~30 nts upstream of the
PAS, which is the preferred location of the poly(A) signal. Such a pattern
becomes more explicit in the comparison between mouse and rat plotted in
Figure 2.2B as mouse and rat diverged about 18 million years ago (mya) [Rat
genome sequencing 2004] while human and chimpanzee diverge only 6 mya. In
addition, the region upstream of the poly(A) signal not only experienced a
stronger selection pressure than the region downstream but also a wider range
as the downstream selection pressure vanishes after ~50 nts from the PAS as
shown in Figure 2.2B. This asymmetrical pressure is not caused by any possible
uneven selection pressure in the two types of control sequences along the
considered region because the mismatch ratio line (grey line) for ORF versus
intergenic stays at a steady level (~0.5) across the entire region. In order to
determine the range of the selection pressure on the upstream region starting
from the poly(A) signal, the first 600 nts of 3' UTR was chosen as control rather
than ORF. The reason to support the use of 3° UTR is that the PAS flanking
region is, in fact, part of the 3' UTR therefore it should be subjected to similar

selection pressure. One assumption is that any difference observed in the region
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flanking the poly(A) signal, no matter high or low, is related to PAS activity. As
shown in Figure 2.2C and D, when the 3'UTR is taken as the control, the
mismatch ratio (green) line asymptotically approaches 1 in the upstream direction
and becomes flat by ~200 nts upstream of the PAS. The mismatch ratio between
the 3 UTR and the intergenic region (Figure 2.2C and D) is similar to ORF
versus intergenic in Figure 2.2A and B indicating the 3’ UTR does not exhibit
uneven selection pressure across the considered region. The data also indicate
3’ UTRs do experience a lower mutation rate than intergenic sequences, in
agreement with prior studies that many expression related regulatory elements
are located in the 3 UTR [Xie et al 2005] but with less clear positional

preference.

b) Justification of close species comparison method

Although the above close species analysis supports the existence of
selection pressure flanking the PAS, it is prudent to do several types of control
analysis to rule out alternative explanations such as artifacts inherent in the
computation methods and alternative biological mechanisms. One well-known
artifact is the NCBI-BLAST algorithm favors alignment of sequences in the
middle of an alignment over sequences near the edges. To examine this, figures
2.2E to H were generated that repeated the A to B plots but with the region of
interest shifted upstream or downstream by 200 nts. As the pattern in plots E to
H remains largely unchanged, alignment bias can be ruled out in this study. To
examine whether the selection pressure pattern depends on proximal repeats of

PAS, only the single PAS genes were selected to produce figure 2.21 and J. As
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shown, the same pattern persists in both close species pairs. Another possible
reason for the selection pressure pattern may be caused by the highly conserved
poly(A) signal AWUAAA. To examine this, a set of 600-nt long intronic
sequences (17,080 from human, 8,799 from mouse) with AWUAAA positioned
~270 nts from the 5’ end was randomly sampled. We dub this the pseudo PAS
sequence set and more details on how to collect them can be found in Appendix
C. Analysis of this sequence data set is shown in Figure 2.2K and L, where it is
clear that these sequences have no selection pressure pattern. The spike located
30 nts near the middle indicates the aligned poly(A) signals AWUAAA at position
270. Thus, the poly(A) signals themselves failed to reproduce the same pattern
exhibited by the real PAS flanking region in plots A and B. Moreover, if the
distinct mismatch ratio pattern were solely caused by the highly conserved
poly(A) signal, figure 2.2A and B should show a symmetric pattern too. The same
analysis was also applied to the 5’ splice site (5’ ss) region found in the first exon
as it is well documented that 5’ss recognition is facilitated by the presence of
short sequence elements located immediately upstream of the 5’ss [Fairbrother
et al 2002, Wang et al 2004]. These sequence elements, commonly known as
exonic splicing enhancers, are targets of serine-rich proteins (SR proteins)
[Graveley 2000]. Since 5’ss splicing enhancers are essential for pre-mRNA
processing, they must be subjected to positive selection pressure. As shown in
Figure 2.2M and N, the mismatch ratio has the lowest value just upstream of the
5’ss, and then rises abruptly immediately after the exon-intron junction in the 5’ to

3’ direction. Finally, 30% and 38% of human and mouse genes were found to
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overlap (<1000nt separation) with a neighboring gene. To examine whether such
a gene overlap influences this analysis, the overlapping genes were removed
from the initial dataset leaving 12,195 and 5,553 pairs of human-chimpanzee and
mouse-rat homologous poly(A) regions. As shown in Figure 2.20 and P, there is
no observable difference in the variation of mismatch ratio with respect to the
unfiltered sequences (Figure 2.2A and B). Thus this battery of analysis has
identified that there is positive selection pressure on sequences within 0-200 nts

upstream of the PAS.

3. Discussion

Results show that close species comparison is useful in revealing the
different degree of conservation in generally non-alignable regions in remote
species. Selection pressure is found to be higher in 3’ UTR than intergenic (grey
line of Figure 2.2C and D) and intronic sequences (grey line of Figure 2.2K and
L). Such selection pressure is uniform for the whole 3° UTR except for the region
flanking the PAS. This observation indicates the conservation of position
independent sequence motifs and/or nucleotide composition along the 3’ UTR.
On the other hand, the comparison between mouse and rat (Figure 2.2D) shows
the presence of an asymmetrical selection pressure localized in the [-200,+50]
region. A similar pattern is reconfirmed in the comparison between ORF and PAS
flanking region as shown in Figure 2.2B. Such a finding reveals a longer
upstream and a shorter downstream region that may be involved in
polyadenylation than reported previously [Legendre et al 2003, Tian et al 2005,

Hu et al 2005]. Even though the requirement of upstream poly(A) signal and
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downstream U/GU-rich region are well established, the asymmetrical selection
pressure presence in up to 200 nts upstream of the PAS suggests the existence
of other unknown cis elements. Unlike 5’ss sequences, a sharp fall in the
mismatch ratio is not observed in the upstream region (Figure 2.2M and N).
Three possible explanations may account for the lack of a sharp fall. First, the
upstream binding factor(s) (not CPSF-160) is flexible in acting at a distance.
Second, the selection pressure for the region [-200,-100] is gene specific rather
than basal and thus can only be seen when comparing orthologous genes as
done here. Third, unlike frameshift mutations caused by mis-splicing, no severe
drawback would be expected if cleavage occurs at a slightly different position.
According to previous studies [Legendre et al 2003, Tian et al 2005, Hu et al
2005], one characteristic of the upstream region is the gradual elevation of uracil
composition in the 5 to 3’ direction in the region [-100,-30]. The maximum
increment is about 5% which happens immediately 5’ of the poly(A) signal. A
stronger PAS possesses higher uracil content upstream than the weaker one.
However, the entire human and mouse 3 UTRs, except the region 50 nts
immediately after the stop codon and the last 100 nts at 3’ the end, are evenly
enriched with uracil (~29%) and adenine (~27%) (Appendix D). A similar
observation has also been reported in diverse species [Graber et al 1999]. If the
polyadenylation machinery solely relies on a uracil-rich signal, false signals in the
3’ UTR should appear more frequent than the real one. Even taking the two
canonical poly(A) signals into account to enhance specificity, such an idea helps

little to improve the recognition of PAS as poly(A) signals occur ubiquitously.
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Close to 3.4 and 2.2 million canonical poly(A) signals were found in human and
mouse introns, respectively. Examination of the region [-500,+500] in those
intronic sequences show they contain 30% A and T, which is similar to the 3’
UTR in terms of nucleotide composition. Hence, additional gene-specific cis
elements may be needed to define the PAS. (Details about the recognition of true

PAS will be discussed in chapter 3).

In summary, close species comparison has revealed biased selection
pressure flanking the PAS, which is the highest within the entire 3° UTR. The
proximity of such selection pressure surrounding the PAS has inevitably led us to
associate it to polyadenylation. This result leads us to investigate further into the

extent of conservation among distant species at the level of the individual gene.

C. Identification of conserved fragments (CFs) in human,
mouse, cow, and platypus

Previous attempts were made to identify enriched short sequence motifs
(6-10 nts) in the <100 nt upstream region of PAS across all genes [Graber et al
1999, Hu et al 2005, Hutchins et al 2008]. The majority of these upstream
elements (USEs) were of low complexity in composition and their function was
proposed be related to the 3’ end processing/polyadenylation. However, their
potency was also found to be position dependent such as U-rich elements
[Danckwardt et al 2007] that can regulate polyadenylation for up to 100 nts
upstream of the PAS [Zhu et al 2007], features consistent with the conspicuous

enrichment of uracil within 40 nts upstream of the PAS [Legendre et al 2003,
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Tian et al 2005]. The close species comparison presented earlier, revealed the
presence of selection pressure farther than 100 nts upstream, namely up to 200
nts, from the PAS, supporting the existence of other non-repetitive cis elements
upstream of the PAS. Although previous approaches were successful in
capturing the enrichment of short and fixed size sequence motifs at the 3’ end of
the transcript, such approaches neglect gene-specific elements. Here, | report on
gene specific USEs in several diverse mammalian species. Four evolutionarily
distant mammalian species were chosen for this study viz. human, mouse, cow
and platypus. Results show that long conserved fragments (CFs) (30-500 nts)
flanking the PAS are widespread. But little is known about their biological
function. This finding will help to identify novel experimental targets, which may
shed light on the regulatory role of these conserved PAS flanking regions in PAS

choice and polyadenylation regulation.

1. Methods

Four species were chosen in this analysis viz. human, mouse, cow and
platypus. Gene homologous information (based on ORF) of human, mouse and
cow was obtained from the NCBI HomoloGene database [HomoloGene 2009].
As the genome of platypus was completed only recently, little expression data is
available to obtain its homologous information with other species. To circumvent
this, human PAS flanking sequences were used to search against the platypus
genome in order to identify homologous regions in platypus. Since two different
ways were used to obtain the homologous information, the four mammalian

species were divided into two homologous groups, namely HMC, which was
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composed of human, mouse and cow, and HMCP, which contained all four

species.

To explore the conservation of the region that spans the region [-
500,+500] while avoiding the influence of the ORF, genes possessing 3'UTRs
shorter than 500 nts were dropped from the dataset. Low complexity and repeat
fragments were removed from the analysis using RepeatMasker [Smit et al
2004]. The multiple sequence alignment tool T-COFFEE [Notredame et al 2000]
was then used to align the PAS flanking regions for each orthologous group. A
score value, in the range of 0 to 100, was returned for each alignment, where 0
and 100 represents no and perfect alignment, respectively. Based on the
alignment report, CF was extracted from each orthologous gene group, and
duplicated fragments were eliminated if the gene possesses multiple closely-
spaced PAS at the 3'UTR. A 15-nt sliding window was used to scan the
alignment base by base. A “good” alignment was defined to be <3 mismatches
(80% identity) and overlapping of good windows were then stitched together to

form the CF.

2, Results
a) Percentage of alignment of poly(A) flanking regions among remote
mammalian species
The multiple alignment program T-COFFEE was used to align 10,765 and
5,362 orthologous gene groups in HMC and HMCP, respectively. The

relationship between the percentage of alignment by position was plotted
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separately by alignment score as shown in Figure 2.3 below. Two alignment
score thresholds were used viz. 50 and 70. According to my experience,
alignment score above 50 generally indicates the presence of long fragments

(>30 nts). Note that higher alignment scores are often associated with longer

and/or multiple CFs.
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Figure 2.3 Percentage of alignment along the flanking positions at around
PAS. Red and blue lines denote high and low scoring groups, respectively.
A) HMC group with threshold 50, B) HMCP with threshold 50, C) HMC with

threshold 70, D) HMCP with threshold 70.
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Red and blue lines denote high and low scoring groups respectively. Each
line represents the variation in percentage of genes containing the same

nucleotide as human along the flanking region of PAS.

5,261 out of 10,765 genes or 49% were found to achieve higher than 50
alignment score in the HMC group (Figure 2.3A). In the HMCP group, 2,668 out
5,362 genes or 50%, similar to the HMC group were found to exceed alignment
score 50. When a more stringent threshold, 70, was adopted, the number of
genes dropped to 2,160 (20%) for the HMC group and the HMCP group dropped
even more to 629 genes (12%). But raising the threshold resulted in higher

percentage of alignment (compare Figure 2.3A and C or between B and D).

Not surprisingly, for both high and low scoring groups, the best alignment
was attained at around 21 nts upstream from the PAS, which is the preferred
location of the poly(A) signal. Even the peak occurred at 31 nts instead of 21 nts
upstream in the HMCP group with threshold 70 (Figure 2.3D), the percentages of
alignment between them differ by 3 percentage points only. The trend of the plot
resembles that of the close species comparison method where selection
pressure is asymmetrical, i.e. higher in strength and range in the upstream than
the downstream region. However, the degree of alignment seems to extend
farther than 200 nts upstream for a subset of high scoring genes as revealed in
Figure 2.3 C and D. 1,080 of 2,160 orthologous HMC-group genes show a high
degree of alignment, but not necessarily in one continuous stretch, for up to 400
nts upstream. This observation provides intriguing indication to look into the

conservation of the non-coding sequence of each gene.
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b) Identification of Conserved Fragments

Two independent methods presented here suggest the conservation
pressure is prominent upstream rather than downstream of the PAS, thus the
analysis concentrated on the upstream region only. Based on the multiple
alignment results, CFs were extracted from genes with alignment scores >50,
longer than 30 nts, and limited to one fragment per gene. Altogether, 3,315 and
1,265 non-redundant conserved upstream fragments were discovered in HMC

and HMCP groups, respectively. The distribution of their lengths is shown in

Figure 2.4.
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Figure 2.4 Distribution of length of human conserved upstream fragments.

A) in HMC group, B) in HMCP group.
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As shown in Figure 2.4A, almost two-thirds of the CFs was between 30-
100 nts long in the HMC group. Several CFs were found that are 400-500 nts
long (Figure 2.4A and B). As expected, smaller numbers of CFs were found in
the HMCP group however both groups exhibit similar distribution (Figure 2.4A
and B). Next, CF distance (based on 3’ end of CF) from the PAS, the relationship
between fragment length, and proximity to the PAS were examined. Figure 2.5
below displays the distribution of the distance of these human CFs from the PAS

in both the HMC and HMCP groups.
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Figure 2.5 Distance of human CFs (based on 3’ end of CF) from the PAS. A)
distance of CF from PAS in the HMC group, B) length of CF <20 nts from
the PAS in HMC group, C) distance of CF from PAS in the HMCP group, D)

length of CF <20 nts from PAS in HMCP group.
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Almost half of the CFs were found to reside within 20 nts from the PAS in
the HMC group (Figure 2.5A), and the remaining CFs were uniformly distributed
along the upstream region, suggesting there is no particular relation between the
size of the CF and proximity to the PAS. A consistent picture is found in both the
HMC and HMCP groups (Figure 2.5C). Furthermore, the length of those CFs that
were within 20 nts from the PAS were analyzed as shown in Figure 2.5B and D.
Their distribution closely resembles the overall distribution of CFs where the

majority of them were between 30-100 nts long.

c) Examples of Conserved Fragments

A sample of alignments and CFs for three genes will be illustrated viz.
polypyrimidine tract binding protein 2 (PTBP2), FBJ murine osteosarcoma viral
oncogene homolog (FOS), and oligodendrocyte transcription factor 1 (OLIG1).
These three genes manifest different degrees of conservation near the PAS like
PTBP2 and FOS are extreme examples as they contain 400 to nearly 500-nt long
CFs starting from the PAS in the 5’ direction. PTBP2 is reported to control the
assembly of other splicing regulatory proteins. It binds to intronic polypyrimidine
tracts during splicing. PTBP2 is similar to PTBP1 except for the fact that it is
abundant mainly in brain. In Figure 2.6A, it is evident there is a continuous
stretch of CFs among human, mouse and cow including the poly(A) signal. It is
richin A and T but not of low complexity as repeated and low complexity regions
were removed before alignment. The conservation is amazing which is even

higher than the coding sequence.
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human oligl TCCTTCTCGCCGTCTTGCAGTTGAAGAGCTACATACGTAGTCAGTTTCGATTTGTTACAG 322
mouse oligl AACTCCGTGGACGCGTGC - —=====~ GC-GCGTGGGTGCCGCGTCTTGGCTTGTGACTA 323
* K * * * i * K * * * K * K * * L * Kk
human oligl ACGTTARCRARTTCCTTIACCCRAGGTTATGCTATGACCTTTCCGCAGTTTACTTTGATT| 382
mouse_oligl GCGTTAGGAAAT--—--- ACCCRAGATTATTGCATAATCTT-CACCAGCTTGCTTTGATT| 377
* ok ok ok k k ok ok ok *oh ok ok k h ok * ok ok ok * Kk * * &k * * ko * Kk * ok ok ok ok ok kK
human oligl —-—4TTCTATGTTTARGGTTTT-GGTTGTTGGTAGTAGCCGAATTTARCTGGCACTTTATT | 438
mouse oligl CTTTTTTATGTTGGRAGTTTTGGGTTGTTGACAGTAGCCGAATTTARCTGGCATTTTATT | 437
* K * ok k ok kK * ke ok ke ok ok * ok k ok ok ok kK hkhkdkdhkddkd b dhbdhdhdddd * ok k ok kK
human_oligl TTACTTCTAACCTTGTT-FTCCTGACGGTGTACAGAATCAACARAATARAACATTTARAG 496
mouse oligl TGACCTCTAACTCTGTCCLTCCTGA-ACTGTACAGAARATCACAAAATARARCGTCAACAG 496
ke * & * ko ok ok ok * ko * ok ok ok ok ok * ok ok ok ok ok ok ok ok ke ke ke ok ok ok kW ok ok ke ok * ke * &
human oligl TCTG 500
mouse oligl TTGA 500 D

*

Figure 2.6 Examples of CF. A) polypyrimidine tract binding protein 2
(PTBP2), B) FBJ murine osteosarcoma viral oncogene homolog oncogene
(FOS), C) oligodendrocyte transcription factor 1 (OLIG1), D) alignment

between human and mouse OLIG1.

Another example is FOS, which is a well-studied oncogene. It regulates
cell proliferation, differentiation and transformation. The total conserved region,

excluding the repeat masked fragment, is about 400 nts.

Not all CFs discovered here include the poly(A) signal like PTBP2 and
FOS, however, many of them are close to the poly(A) signal. For instance, in
Figure 2.6 C above, a 34-nt long CF was found to locate ~100 nts upstream from
the PAS. OLIG1 is a transcription factor in oligodendrocyte development [Lu et al

2001] and it plays a role in remyelination after injury [Labombarda et al 2009].
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The presence of such a CF is unusual, suggestive of a regulatory function yet to
be discovered. Especially, the region of conservation between human and mouse
expands significantly as shown in Figure 2.6 D. A full list of alignments of the
upstream region among the four mammalian species can be found in Appendix

M.

Do these CFs share sequence similarity? To examine this, an exhaustive
pairwise comparison was performed among the CFs in order to cluster them into
groups by sequence similarity. However, no significant similarity was found
among them except for three pairs vizz. MORF4L1/MORF4L2,
RPL27AP6/RPL27A, and TUBA3C/TUBA4A. Each pair shares about 100+ nts
long of highly similar fragments. For these three pairs, their similarity is probably
due to gene duplication rather than shared regulatory pathway because their
protein sequences share 77-97% identity even though the conservation pressure

is extended beyond the coding region.

Besides these examples, the CF of one gene that has been studied
experimentally by the Gunderson group is U1A, which is a subunit of the splicing
factor U1 snRNP. U1A binds to a specific stem-loop secondary structure in the
U1 snRNA. Intriguingly, similar sequence pattern and secondary structure is
found in the PAS flanking region of U1A itself as shown in Figure 2.7A and B
[van Gelder et al 1993]. An approximately 53-nt long conserved fragment, called
the polyadenylation inhibition element (PIE), is conserved among mammalian

U1A genes (highlighted in blue in Figure 2.7B).
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B)

region A

UlA-Human AGTAGCARCCTTTICCCCCCATGLCTEECCCT - TCCCCTGTTCTGEE- ~GOCRCCOCTTTC 1436
Tla-Chimpanzes AGTAGCACCTTTICCCOCCATGCCTROCOCT-TOCCCOGTTCTGEG--GOCACCOCTTTC 1460
UlA-Dog AGTAGCACCTTTTT-COoCCC TGLCT GO oL TGOCCOCTRCTCTGEG - ~GOCACCOCTICS 963
Ulhk Cow AGTRGCACOETTT - -OCCCATGCCTGTOCCBGOCCCCTGTITC TGRS - -GoCACCOCCTO. 985
UlA Rabbit AETARGOECCTTET - ~=OCCCATACCTGECCCTEOCCCCTETTCTREG--GoOCECOCCTCOC 973
TUlA Rat AGTAGCACCTTTC- -COTACEAAGTEOCCCAGTCOOCAT IO TEEEECTEOCCOTTOOCOS BB
UlA Mouse AGTAGCGCCTTTC - ~COTATGGAGTACCCCAGTC - === == == = == = CCTTCOCCCCS 1105

FEEAEE BE @ B - - 3 EE 3 - s

—be— region B — o » region C
TUlA-Huoman OO CTTGECTCAGD OO CTGRAGETRRGTC OO 1496
UlA-Chimpanzes COCCTIGGCTCAGDCCCCTGAAGETARGTCCOCCCCTTGEEGEOCTT 1520
Ula-Dog T GG T CAGCCCCCTRARGGTARGTCOCOC - TCAGRGEOC TG 1022
ULlA Cow ST GG TTCAGCCCCCTRAAGETARGTCCCOC - ATGGRGECCTTICTTGGAGOCGTGTG 1044
UlA Rabbit CTCATTGEFCTCAFCCOC TTGRAGG TRAGTCCCCE - TOGEEEEE 1032
ULA Rat TCTCT TGECTCAGT D - TGRRAGE TRAGTCCCCD - TTGEEEEECTTCTCAGRGOEGTGRG 1042
ULk House T CTTGEC T CAGT O - TRRAGE TRAGTCC L = TTAGGGACCTTCTCAGRGOCGTGT- 1162

HEEE FdEE FEF AdeddddEdEEEEEAEAS T T AT ET TS EX R L] -
regionC —p4— region D ————
| PIE site
ULA-Human TRAGTGAGT T CHCCACACRGCATTGTACCCAGRGTC TG TCCCCAGRCATTGCACCTGE 1554
UlA-Chimpanzes TGAGTGAGTGGTCGCCACACAGCATTGTACCCAGAGTCTETCCCCAGACATTGCACCTGE 1580
ULA-Dog TOAGTGAGTHE TG CACACRGCATTGTACOCAGAGTC TETOCCCAGACATTGCACCTEE LOB2
ULA Cowr TeAGTGAGT GO T TGO CACACRGEATTGTACCCAGRGTC TOTCACCAGACATTGCACC TGS 1104
ULAR Rakbbit TGAGTGAGT GG T OGO CACACRGCATTGTACCCAGRETC TG - CTOCAGACATTGEACCTGE 1051
ULA Rat TEAGTGTFT IO TGO CACACRECATTGTACCCAGEGTCT = - TCCCAGRACATTGEACCITGE 1100
Uin Mouse - - -GG TG T GE T TGO CACACAGCATTGTACCCAGAGTC TETCCOCAGACATTGCACCTGE 1219
LR L AR E SRR R R R EE T T TR T SR TR

—» PA signal PRS
UlA-Human CECTGT TRAGEFOCGGAA T TARRGTGEETTITT -GRAGGTITGATITITCACARTCATTIGTCE 1615
UlA-Chimpanzes CGCTGTTAGGOCGGARTTAARGTGETTTTTT-GAGGTTTGETTTTTCACARTCATTIGTC 1639
U1h-Dog CECTGT TAGGCCGGAN T TAAAGTGTTTTITTTRAGGTT TGGTTTTTCACARCCAATTGTE 1142
ULk Cow T GT T RGGC T GG TTAMAGTGTTITITT -GTGGTITGTTTITTTCACARCCATTIGTT 1163
UlA Rabbit CECTETCAGEC TGEAM T TARRGTGGGTTIT - -GAGGTITGGTITITTTC----~-----~-- 1134
UlA Rat TG T TG T T TRATTARRGTGRAGTTTTT - ~RGETITGETITITCACCAGTOITGTEC 1154
UlA Mouse CeCTETTAGAT TGTRATTARAGTGRGTT ITT-GAGGTITGETITTTTACCAGTGTTGTCT 12748

i - L FEEEEE e ol FREEREE R EE -

B

Figure 2.7 Conservation of U1A PAS flanking region among mammals. A)
Secondary structure of the PIE element. Adopted from [van Gelder et al
1993], B) Multiple alignment of U1A PAS flanking regions in seven
mammals. Adopted from [Guan F, Coratozzolo R, Goraczniak R, Ho ES,

Gunderson SI12007]
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PIE has been reported to serve an auto-regulatory role in UTA expression
[Boelens et al 1993, Gunderson et al 1993, 1997]. Two molecules of U1A bind to
PIE in its own mRNA to exert inhibition activity on poly(A) polymerase (PAP).
NMR and biochemical methods show the inhibition activity was delivered through
the helix C located at the N-terminal of the U1A’s RNA binding domain

[Gunderson et al 1997, Varani et al 2000].

In addition to the highly conserved PIE, a shorter (11 nts) but conserved
5’ss-like fragment was found upstream of PIE (Figure 2.7B, highlighted in yellow)
[Guan et al 2007]. This CF is dubbed the U1 site in order to differentiate it from
splicing function. As discussed previously in Chapter 1, the binding of U1 snRNP
to the U1 site in the 3° UTR of a gene can inhibit polyadenylation via the U1-70K
subunit, which leads to the degradation of pre-mRNA in the nucleus. Owing to
that, the Gunderson group has studied the role and relationship of the two
distinct repression elements in U1A. The conserved U1 site was suggested to be
with a secondary RNA structure in the stem part of a stem-loop structure. PIE
alone was able to exhibit inhibition activity however the U1 site alone was not.
When PIE was disrupted, the binding of U1 snRNP to the U1 site alone
manifested weak inhibitory effect. When both PIE and U1 sites were active,
inhibition was stronger than PIE alone, indicating a synergetic effect of the two
sites. The cooperative work by the PIE and the U1 sites may entail evolutionary

advantage inrepression as compared to using a single site.
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D. Discussion

By taking advantage of close and distant genomic information, the
presence of asymmetrical evolutionary pressure flanking the PAS is revealed.
The preserved 200-nt upstream region but not the downstream region is likely to
function as a transcription termination signal. Although previous work has shown
the downstream (~800 nts after PAS) G-rich pause element MAZ, in human C2,

and co-transcriptional cleavage (CoTC) in human B-globin are essential for

transcription termination [Gromak et al 2006], these are likely to be gene-specific
functions. Except for the two highly conserved poly(A) signals, no sequence
consensus can be found in the upstream region besides a high elevation of uracil
content. By aligning the PAS flanking region of orthologous genes among four
distant mammalian species, 3,315 and 1,265 evolutionarily conserved non
coding fragments (>30 nts long), one per gene, were identified in HMC and
HMCP groups, respectively. They represent 31% and 24% of the orthologous
genes in the HMC and HMCP groups respectively. As shown in Figure 2.4, large
numbers of them are longer than the well-studied AU-rich, U-rich, G-rich and C-

rich regions, which regulate mRNA stability within their target proteins.

The approach discussed here complements previous work to search for
overrepresented short and fixed length cis elements of polyadenylation [Graber
et al 1999, Hu et al 2005, Hutchins et al 2008]. Previous work may be
predisposed with the model that these cis elements are binding targets of one or
two factors. But the long CF reported here may play a different role as RNA

protein recognition sites are usually short. A recent study has shown nucleosome
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depletion at around [-100,+100] region [Spies et al 2009]. Double-stranded
homopolymeric stretches of deoxyadenosine (10-20 nts) [Segal et al 2009],
poly(A) signal and T-rich content are suggested for the diminishing of
nucleosomes for both high and low usage PAS. Another important insight comes
from the study of ultraconserved elements (UCEs). By comparing human, mouse
and rat genomes, 481 identical genomic segments longer than 200 nts were
found, and they are also highly conserved in chicken and dog [Bejerano et al
2004]. Some of them function as long-range enhancers [Pennacchio et al 2006],
driving development [Woolfe et al 2005], regulating splicing [Lareau et al 2007, Ni
et al 2007], and epigenetic modification [Bernstein et al 206, Lee et al 2006]. At
present, only one report said the deletion of UCEs, postulated as enhancers,
could yield viable mice [Ahituv et al 2007]. Even though the CFs discovered here
cannot be considered as ultraconserved, their conservation among distant
mammalian species is so high and long that it is perplexing if they happen by

pure chance during the course of evolution.

What may be the possible roles of these CFs? It is well established that
the presence of a highly conserved poly(A) signal at ~20 nts upstream and a
U/GU-rich region at ~15 nts downstream from the PAS is sufficient to cause the
polyadenylation machinery to cleave the nascent pre-mRNA from the
transcription complex. Many of these CF are located less than 20 nts from the
PAS (Figure 2.5) and they lack significant sequence similarity except for the
three probably duplicated genes. These observations indicate that genes with

CFs do not regulate by common factor. One supporting evidence is the
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synergetic effect of the evolutionarily conserved U1 site and the PIE site in

mammalian U1A gene.

Half of the CFs were found closer than 20 nts upstream of the PAS,
suggesting that they may be correlated to polyadenylation activity, otherwise
there is no reason to support their biased proximity to the PAS. However, even
with such positional preference, one cannot exclude the possibility that these
CFs are required by other biological processes, such as mRNA stability and,
microRNA mediated translation regulation. Even though CFs longer than 100 nts
are unusual, one should not overlook the rest of the 30-100 nts long CFs as
known RNA protein recognition sites are short. In conclusion, the biological
function of these CFs reported here is largely unknown. Novel gene specific
regulatory mechanism may be attributed to their conservation. The pursuit
described in this chapter may contribute in the discovery of intriguing
experimental targets. Further validation is needed to confirm whether the

disruption of these CFs could cause any negative impact on polyadenylation.
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CHAPTER 3

PAS CLASSIFIER USING LOGISTIC REGRESSION

A. Introduction

There is a growing attention in the regulatory role of 3° UTR. Protein
families such as Puf [Wickens et al 2002], Hu [Hinman et al 2008], ARE-BP
[Chen et al 2001] regulate mMRNA stability post-transcriptionally through 3° UTR
binding. In addition, a multitude of both conserved and unconserved microRNAs
target sites have been discovered recently in plants, insects, and mammals
[reviewed in Bartel 2004, Griffiths-Jones et al 2008]. Many of them are attributed
to cell proliferation [Sandberg et al 2008], development [Aravin et al 2003],
translation regulation [Lim et al 2005], and differentiation [Chen et al 2004]. A
substantial portion of human (54%) and mouse (34%) genes possess more than
one PAS [Tian et al 2005], which leads to alternative 3’ UTRs, or even ORFs for
some genes. Studies have shown that alternative polyadenylation serves crucial
biological functions such as T or B-cell differentiation [Takagaki et al 1998,
Chuwpilo et al 1999] and embryonic development [Ji et al 2009]. Shortening of
global 3 UTR was found to be widespread in activating oncogenes in cancer
cells [Mayr et al 2009]. On the contrary, lengthening of 3° UTR was observed
during embryonic development in mouse [Ji et al 2009]. Mutations located
immediately downstream of PAS were found to increase polyadenylation
efficiency in F2 [Gehring et al 2001, Danckwardt et al 2004] and FGG [Uitte et al

2007] genes, leading to venous thromboembolic events. The development of
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emerging post-transcriptional gene silencing technologies triggers mMmRNA
degradation through duplex formation in the 3° UTR [Brown et al 2008,
Goraczniak et al 2009]. While the 5’ end start of the 3’'UTR is obvious to all, the
3’ end is often unclear and evenly mistakenly mapped even in well-curated
databases such as NCBI RefSeq. According to my data, | have found that the 3’
end of only 27% of human and 17% of mouse cDNA entries reviewed in the
NCBI RefSeq database are supported by polyadenylated ESTs. Therefore, a
better method is needed to accurately predict the 3’ end of the transcripts so that
the whole 3 UTR can be studied for its essential regulatory role and therapeutic

application.

Beside the proposed close species comparison method mentioned in the
previous chapter, this chapter will discuss the construction of a polyadenylation
site classifier (PAS classifier) using a supervised machine learning method
named logistic regression. Such a PAS classifier can complement commonly
used expression-data-based methods such as ESTs and next generation
sequencing to mark the 3’ end. Moreover, constructing a classifier involves the
identification of distinctive features of active PAS that will enrich current
understanding of their intrinsic properties. Inevitably, some active PAS will be
found that do not share the typical characteristics possessed by the majority.
Such outliers are valuable in expanding our existing model of polyadenylation
that may lead to the discovery of compensatory factors related to
polyadenylation. Furthermore, mutations flanking the PAS have been known to

have health implications due to the alteration of polyadenylation activity. It will be
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interesting to use the PAS classifier as a tool to score the impact of such

mutations.

Previous work has been done to predict PAS. Examples of three PAS
classifiers are Polyadq [Tabaska et al 1999], ERPIN [Legendre et al 2003], and
polya svm [Cheng et al 2006]. Polyadq used two weight matrices to capture
position scores, one for poly(A) signals upstream, the other for the downstream
U/GU-rich region. To determine the threshold for a real PAS, it used a set of real
and false 150-nucleotide (nt) long PAS sequences to train two quadratic
discriminant functions (QDF). Instead of using two weight matrices, ERPIN used
only one weight matrix to cover 300 nts upstream and downstream of the PAS,
hereinafter denoted by [-300,+300]. The values of weight matrix are the log-odd
ratio of real to false PAS. The most recent example is polya_svm. By examining
[-100,+100] region, the authors identified 15 distinguishing cis elements of a PAS
and used these to construct 15 position-specific matrices. In this method, each
sequence yielded a feature vector consisting of 15 values. A set of feature
vectors converted from real and false PAS sequences were used to train the

support vector machine in order to determine the boundary support vectors.

This chapter will describe a logistic regression based PAS classifier. One
advantage of logistic regression is that the returned model is more interpretable
than other methods because the relative contribution of each feature can be
measured, leading to a better understanding of their biological importance for a
PAS. The analysis below is broken into sections as follows: 1) describe the

method used to collect good quality real PAS sequences, 2) present the training
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procedure, 3) assess the prediction performance, 4) compare with the two
existing PAS classifiers, ERPIN and polya_svm, mentioned above, and 5)

application to analyze already collected PAS data.

B. Classifier Construction

AN
S

EST supported

poly(A) sites
i feature extraction o
17,080 in human,

8,779 in mouse

ol o

logistic regression parameters
.. (regression coefficients)
training

Figure 3.1 Workflow of logistic regression PAS classifier construction.

As illustrated in Figure 3.1, the whole procedure of PAS classifier

construction consists of four major steps:

Step 1. Polyadenylated EST sequences were used to locate PAS in genomes,
where each PAS had to be supported by at least three ESTs. In order to avoid a
“garbage-in-garbage-out situation®, different measures were used to avoid false
priming and erroneous directionality. A detailed procedure to identify EST-

supported PAS can be found in Appendix B. As human has almost doubled
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amount of ESTs than mouse (the next closest species) i.e. 8 millions in human
versus 4 millions in mouse, therefore more EST-supported PAS were found in

human than in mouse.

Step 2. Analysis of PAS collected from step 1 identified 10 distinguishing
features of a real PAS (will be discussed later). Based on these features, each
sequence was encoded as a vector of 10 numeric values, named feature vector.
The training step also included the learning of unreal PAS, which were sourced
from intronic sequences with the canonical poly(A) signal (AWTAAA), intergenic
regions, ORFs, and simulated sequences. Both positive (real PAS) and negative

(unreal PAS) feature vectors were then passed to the next step.

Step 3. Based on the positive and negative feature vectors, the logistic
regression function searched for a set of coefficients such that the overall
misclassification was minimum. This step also calculated several performance

coefficients by using the classifier to make prediction for unseen samples.

Step 4. The set of coefficients from the best model were then used to make

predictions.

C. Features Selection

Based upon the procedure briefly discussed above, 17,080 human and
8,799 mouse PAS were compiled that became the primary data set to identify
features of active PAS. Two broad aspects of these PAS were analyzed viz.

nucleotide profile and enrichment of kmers (k-sized oligomers).
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1. Nucleotide profile

Not only do 3’ UTRs contain elevated levels of A and T nucleotides as discussed
in the previous chapter, they also exhibit signatory nucleotide distribution
surrounding the PAS. By using the human and mouse PAS sequences, the

overall nucleotide profile across region [-100,+100] was plotted in Figure 3.2

below.
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Figure 3.2 Nucleotide profiles of the PAS flanking region. A) Human region
[-100,+100], B) zoomed into region [-40,+80], C) Mouse region [-100,+100],
D) zoomed into region [-40,+ 80], E-F) zoomed into region [-10,+30] in

human and mouse, respectively.
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Let N € {A,C,G,T}, and P; € {-100,-99,...,-1,1,2,...,100}. The y-axis in
Figure 3.2 is the log ratio between the actual number of N; observed and average
N; per position, i.e. log(observed/average), where the average is the occurrence
of N; in all PAS sequences divided by the total number of positions. Using
average N; per position is better than assuming equal proportion of all four
nucleotides because it avoids the mistake of taking simply A and/or T rich
sequence as PAS. Thus this method is designed to reward A/T at appropriate

positions only. Itis observed that each nucleotide exhibits a distinctive profile:

1. Nucleotide profiles highly resemble each other between human and mouse,
consistent with the fact that polyadenylation factors are largely conserved in
mammals.

2. The log ratio of all nucleotides stays flat at level zero in region [-50,0]
indicating the classifier should focus on nucleotide distribution in the region [-
50,+100].

3. Adenine exhibits the most dramatic localization pattern among all nucleotides
along [-50,+100] as it is highly enriched in the region [-40,-10], which reflects
the localization of poly(A) signals. There is an adenine spike near the
cleavage site [-5,+1] followed downstream by a depletion of adenine in the
region [+1,+30].

4. Cytosine has higher presence in the downstream region [+25,+80] but mainly

after +30.
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5. Guanine concentrates in two disjoint downstream regions [0,+10], and
[+30,+80].

6. Thymine has two spikes: one after adenine in the upstream region [-20,-10]
and a second broader spike at around [+1,+25] after the peaks of C and G in
the downstream region, an observation already reported in [Salisbury et al

20086].

Several trials were done to minimize the size of the flanking region without
sacrificing prediction accuracy and this demonstrated region [-40,+80] was
sufficient to yield good prediction. A position weight matrix captured the
nucleotide profile of this region. As polyadenylation is required for all genes
except histones one may expect the PAS exhibits a high degree of variation such
that some genes conform only partly to the above characteristics, for instance,
high A-rich upstream but poor T-rich downstream. In this case a few genes with
unfavorable features could cancel out significant findings in the main population
of genes. Hence Table 3.1 below summarizes eight separate scores that can

reflect the distinct patterns exhibited by different nucleotides at different regions.

Features Remarks

A1 Sum of log ratio of nucleotide A in [-40,-10]
A2 Sum of log ratio of nucleotide A in [-5,-1]
A3 Sum of log ratio of nucleotide A in [+1,+30]

C1 Sum of log ratio of nucleotide C in [+25,+80]
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G1 Sum of log ratio of nucleotide G in [+1,+10]
G2 Sum of log ratio of nucleotide G in [-+25,+80]
™ Sum of log ratio of nucleotide T in [-15,-5]

T2 Sum of log ratio of nucleotide T in [+1,+30]

Table 3.1 Features from nucleotide profile analysis.

2, Enriched kmers

Aside from nucleotide profiling, a second broad aspect was to identify the
enrichment of certain kmers by location. A dimensionality reduction method
called singular value decomposition (SVD) was used to reveal kmer enrichment
at specific positions relative to the PAS as well as kmer enrichment in the overall

PAS region.

Given a set of sequences, each / nts long, using a sliding window of size
k, each sequence was broken into (/-k+1) overlapping kmers. Positions of kmers
were recorded in a position-by-kmer matrix M with m rows, n columns where m=/-
k+1 and n=4X. For convenience, it is assumed m<n, i.e. the length of sequence is
less than the total possible kmers. For instance, given forty 100-nt long
sequences, and the size of kmer is set to 4, then M is a 97-by-256 matrix.
Applying SVD to M will factorize it into the product of three matrices represented

by the equation below:

M =UsV"!
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where U and V are orthogonal matrices with dimension m-by-m and n-by-n,
respectively. ¥ is an m-by-n diagonal matrix with the m eigenvalues (c1,62,

63,...,0m) 0f M, where 612622632...201, along the diagonal.

The physical interpretation of SVD is that matrix M captures the
distribution of kmers, in terms of occurrences and positions, in the sequences.
Each row represents the occurrences of different kmers at a position. To probe
for the localization of kmers, the distribution of the m rows (one for each position)
in an n-dimensional hyperspace were examined. If some kmers do prefer to stay
at particular position(s) in the sequences, the overall distribution of these n-
dimensional position vectors should be asymmetrical; otherwise its distribution is
hyperspherical. In other circumstances, if kmers (which correspond to certain
binding sites) are flexible in terms of location then they are enriched but without a
constraint in position. In similar manner, it is possible to examine the distribution
of n columns in the m-dimensional hyperspace where each column represents
the abundance and/or localization properties of a kmer. But it is hard to measure
asymmetry for high dimensional data. By SVD, the original high dimensional
matrix can be approximated in the least mean squared error by a two

dimensional matrix such that visualization becomes possible.

After factorizing M into three matrices, the distribution of positions can be
projected onto a 2-D plane by selecting the first two columns of an m-by-n matrix
Uz, ie.

op 0

My =Us |
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where M2 and U, are m-by-2 matrices, o1 and o2 are the two largest eigenvalues
of M, and 61>c2. Mathematically, M2 is the best m-by-2 approximation of the m-
by-n matrix M. The reader can refer to [Meyers 2001] for a more detailed

mathematical discussion of SVD.

The distribution of kmers can be assessed by the selection of the first two
columns of VX. To illustrate the idea, one hundred 40-nt long sequences were
generated with A, C, G and T in equal abundance. These sequences were
encoded into a position-by-kmer matrix M as discussed. M was factorized by
SVD and the kmer distribution, i.e. VX, was projected onto a 2-D plane as shown
in Figure 3.3A below. Each dot in the diagram represents a kmer, and there are
256 (4*) of them. As shown, all kmers are clustered together, meaning that no

particular kmer is enriched in the sequence set.
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2nd Component

AGGCTGATCAGGCCAGAATATGCCGACGTTTGTCTAGGGCGCAGCATCTA
CGCTTGGAAGCAACGAACGTGGAGATACGCAGGGGGTTCCTAGTATATGG
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AATGTTGCTTAGTAGTAACGCTAGCACCGTACACGTAGCCACCTTATCAC
TTGATAATTCTGATACACGTTGCGGAGTGCCTTGTACCCACACCTTTCGC

B

SVD Tetramers of Seeded Sequences

-14

1st Component

outliers

69



PCz2
0.00

0.0z 0.03 0.04

0.01

-0.02 -0.01

-0.03

tag=CCGTAG

»  selected positions

AAGT

TAAT &

2
AATA

&

& control
CGTA
ncaT .
ccea
GTAG
T |
-0.11 =010

70



71

tag=CCGTAG
.
w 78
-
“ . * selected positig
71 . 2
-3 control
g 1. i 1"5“.0 P .
s |72 ' i . .
% . 66 & =
81 . 74,
B3 79 & & A
- 64 &
A B
8 . 2 Fa
R SRR e T g
- Sl &
ds 93,
) 4%;'301 Bg5
S B T,
- »
= 3119 2 945,
10
L]
o 51
| | | | |
-0.128 -0.127 -0.126 -0.125 -0.124
PCA

Figure 3.3 SVD of simulated sequences. A) simulated sequences with no
motif planting, B) simulated sequences planted with ACGT (marked in red)
at random locations, C) SVD analysis of simulated sequences in B, D) kmer
SVD projection of simulated sequences planted with CCGTAG with one

mutation, E) position SVD projection of the same set of sequences from D.
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In the next test, a short fragment ACGT was planted at random locations
in the sequences (Figure 3.3B), factorized M by SVD, and projected kmer
distribution in a 2-D plane. In Figure 3.3C, it is clear that ACGT is the farthest
kmer from the rest, also for its overlapping neighbors such as CGTA, CGTC, etc.
To illustrate how SVD can help to discover the localization of a slightly varied
sequence elements, a short fragment CCGTAG carrying one mutation at any
position was planted in the region spanning 60 to 80 in each 100-nt long
simulated sequence. The kmer and position projections are depicted in Figure
3.3D and E, where it is evident that a handful of tetramers are located away from
the other tetramers such as CCGT, CGTA, and GTAG, although the signature
pattern is not as conspicuous as in Figure 3.3C. Examination of the position SVD
projection indicates positions from 63 to 79 are located far from the rest. The
combination of kmer and position SVD projections results in an accurate
localization and identification of a possible longer mutated sequence motif, a
result that cannot be obtained by simple counting of over or under-represented

kmers in the presence of mutations.

Below are results of application of SVD to the PAS sequences in order to
detect enriched kmers and their localization information. Figure 3.4A is a position
SVD projection for the region 100 nts upstream (in red), £5 nts around cleavage
site (in green), and downstream (in blue) of PAS where k=6. Regarding the
choice of k, i.e. the size of kmer, a large k will create a sparse matrix, which
cannot be factorized by SVD. On the other hand, a small k will make it hard to

differentiate signaling motif from background sequence. By trying a range of k
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from 4 to 8, k=6 produced the clearest picture for position and kmer analyses

along both upstream and downstream PAS sequences. However, it will be

discussed later that a smaller k may produce a better result when the analysis is

narrowed down to the downstream region only.
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Figure 3.4 Feature extraction by SVD projection. A) position SVD projection
of human 100 nts upstream and downstream from PAS, B) kmer SVD
projection of human upstream region, C) iteration of kmer SVD for human
and mouse upstream regions, D) removal of irrelevant hexamers does not

cause the positive data cloud (blue) to shrink.

In Figure 3.4A, the analysis exhibits strong position bias versus control
denoted by the black dots. The upstream region [-11,-28] indicates unusual
localization of certain hexamers and positions [+12,+21] downstream of PAS are

also located away from the majority though to a lesser extent than upstream.

To identify hexamers enriched in the upstream of these PAS sequences,
kmer SVD analysis was applied to the upstream region alone (Figure 3.4B). As
expected, the most common canonical poly(A) signal AATAAA is the obvious
outlier, however whether other outlying hexamers such as AAATAA and
ATAAAA are autonomous or simply part of the canonical poly(A) signal is difficult
to judge. To examine this, aniterative kmer SVD analysis procedure was used as
follows. After each round of kmer SVD analysis, the most pronounced outlier
kmer from the input sequences was removed and then the kmer SVD step was
repeated. Iteration of this process was done until the positive data shrunk into
the control data. Application of the iteration process as illustrated in Figure 3.4C
(left) resulted in identification of 16 hexamers that are enriched in the upstream
region. Analysis of mouse PAS sequences identified 16 hexamers of which 12

matched the 16 human hexamers (Figure 3.4C right). In order to eliminate the
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possibility that shrinking is due to the removal kmers regardless of whether they
are enriched, the iterative kmer SVD analysis was repeated using 16 randomly
selected hexamers not in the 16 enriched hexamers. As shown in Figure 3.4D,

removal of such random kmers from sequences failed to cause any shrinkage.

Previous work has identified overrepresented kmers in the upstream
region [Beaudoing et al 2000,Tian et al 2005] permitting a comparison of the

finding herein with the findings with the 13 hexamers reported by the Tian lab in

Table 3.2.
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Tian rank Beaudoing rank
SVD rank
[Tian et al 2005] [Beaudoing et al 2000]

AATAAA 1 1 1

ATTAAA 2 2 2
AGTAAA 3 4 4
TATAAA 4 3 3
AAAAAA 5 - -

TTTAAA 6 11 9
CATAAA 7 8 6
AATACA 8 7 8
AATATA 9 6 5
GATAAA 10 7
AATGAA 11 10 11
TGTAAA 12 - -

AATAAT 13 - -

AAGAAA 14 5 10
AACAAA 15 - -

ACTAAA 16 12 13
AATAGA - 13 12

Table 3.2 Comparison of upstream hexamers discovered by kmer SVD

analysis and two existing reports.
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The two sets share 12 common hexamers and our set does not have the least
common hexamer, AATAGA from Tian and Beaudoing labs. The four new

hexamers are AAAAAA, TGTAAA, AATAAT, and AACAAA.

In contrast, the analysis of the downstream region showed hexamer was
not a good size to produce a clear visualization result, presumably because of
the more degenerate nature of the downstream region. Such argument is
supported by Figure 3.4A that the downstream position bias (red) exhibits a
smaller scale when compared to the upstream region (blue). By using the same
procedure but with k being set to 4, tetramers TTTT, GTGT, TGTG and their one

point mutant variations were found to be enriched in the downstream region.

Based on these hexamers and tetramers, a position weight matrix of log
ratio values was done that was similar to the one used for nucleotide profile with
the only difference being that hexamers and tetramers were used instead of
single nucleotides. Two feature values one for upstream (pscore1), and the other
for downstream (pscore3) were calculated. (pscore 2 is a feature value for the
region [-5,+5], as the CA dinucleotide has been reported to be enriched at the
cleavage site. However, during the training step, pscore2 did not contribute much
to prediction and so it was dropped from the final logistic model.) Thus, the final

feature vector contains 10 values as shown below:

feature vector = (A1, A2, A3, C1, G1, G2, T1, T2, pscore1, pscore3)



D. Logistic Regression

To determine the likelihood of a sequence to be a PAS, | chose to assume

this was a binary classification problem using

underlying model. The logistic regression function is defined to be:

y = Bot B1'xq +

coefficients to be determined by the training procedure. x4, Xo,... ,X10 are feature

values from the feature vector. The value of p(y) is in the range of 0 to 1 and was

1
14+e™V

p(y) =

B2*x2 + Ps3*x3+... B1o*X10, Bi i=0 to 10, are the regression

called logistic score.
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Figure 3.5 Logistic function.

logistic regression as the
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The goal of the logistic regression is to determine the set of regression
coefficients, i.e. Bo, B1, B2,..., such that p (logistic score) for a positive (real)
sample should be as close to 1 as possible. Conversely, p for a negative (false)
sample should be close to 0 as possible. To determine the set of coefficients, the
classifier was calculated from the features of both positive and negative samples,
this step was called training. Below is a description of the training procedure for

the PAS classifier using human and mouse data.

1. Training datasets

Based on the EST-supported PAS, and the 10 features identified previously, the
PAS sequences were encoded into feature vectors with label 1, thereby forming

the positive dataset. For the negative dataset, the 1%

order Markov probability
was captured from real PAS sequences using empirical probabilities to generate

the negative dataset with label 0.

2, Training procedure

At each round, 2,000 feature vectors were sampled from positive and negative
datasets, they were passed to the generalized linear model function glm ()
provided by R in order to determine the set of regression coefficients. The same

step was repeated 100 times to obtain the averaged coefficients.
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Model validation.

Correlation of Coefficients:

pscorel
pscore3
Al
A2
A3
Cl
Gl
G2
T1
T2

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.21892
1.95052
0.18877
0.32878
2.25869
0.468B63
1.05626
0.81248
0.74614
1.37205
0.86012

pscorel
pscore3
Al
A2
A3
Cl
Gl
G2
Tl
T2

Signif. codes:

Tahak'

0.61689 -
0.09397
0.03777
0.06666
0.13761
0.06895
0.17778
0.23778
0.10722
0.21457
0.13423

0.001 '*x

A

(Intercept) pscorel pscore3 Al

-0.10
-0.14
-0.34
-0.35

0.45
-0.50
-0.25
-0.51
-0.22
-0.55

0.09
-0.51
0.22
0.07
0.09
0.02
0.11
0.07
0.10

0.00
0.06
-0.46
-0.02
-0.28
-0.08
0.04
-0.46

0.07
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Figure 3.6 Regression model validation. A) the best coefficients and their
significances are reflected in the p-values, B) correlation among the
coefficients, C) the comparison of coefficients between human and mouse

models.
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Here it was determined whether all features suggested in the previous section
are relevant in recognizing the PAS. The significance of each feature is reflected
in the p-value column in Figure 3.6A. The extremely small p-values indicate that

all 11 coefficients (including the intercept) are significant.

Next, it was necessary to determine whether these coefficients are
redundant, that means do any of them positively or negatively correlate to each
other, an issue called multi-colinearity. As shown in Figure 3.6B, their
correlations were within the range (-0.51, 0.45), ruling out any significant multi-
colinearity issue. Due to the fact that the polyadenylation machinery in human
and mouse are highly conserved, PAS regions of human and mouse should
manifest a high degree of similarity too, implying that the coefficients between
human and mouse models should be similar. Such a view is confirmed in Figure

3.6C, they largely agree with each other.
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4, Threshold

The logistic score returned by the logistic regression model is continuous
between 0 and 1, meaning a threshold is needed to distinguish real from false
PAS. Setting the threshold too high will increase the false negative rate.

Conversely, setting it too low will increase the false positive rate.
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Figure 3.7 ROC of PAS classifier. A) true prediction rate versus false
prediction rate for various thresholds, B) sensitivity and specificity versus

threshold.

In Figure 3.7, the true and false prediction rates for various thresholds was
measured and it was found that a threshold set to 0.5 was the most optimal
choice. For the rest of the discussion, the default threshold is 0.5 unless stated

otherwise.
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5. Relative importance of features

Understanding the degree of contribution of the 10 features can help to infer their
relative biological importance in defining the PAS. This was assessed by the
utilization of the R function addl (), which computes the prediction rate by
adding only one feature to the null model each time. The percentage reduction in
deviance stated in Table 3.3 denotes the decrease of prediction error versus
random guessing by the null model. Like the training procedure discussed
before, 2,000 positive and negative sequences were randomly selected to

conduct this study. The averaged results over 100 trials are tabulated below.

Feaure(s) Human Mouse
added to null % reduction in % reduction in
model deviance deviance
All 10 features 72 75
pscore1 51 55
A1 33 37
A3 18 21
pscore3 16 19
A2 15 17
T2 11 12
G1 3 3
G2 3 5
T 3 4
C1 2 1

Table 3.3 Relative importance of features in human and mouse models.
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As expected, the 16 hexamers (pscore1) and the A-rich region upstream (A1)
play a major role in defining the PAS, nevertheless, the contribution from the
other 8 features improves the PAS recognition by capturing PAS with slight
variations from the norm. In addition, the finding of the importance of upstream
elements is consistent with the conservation analysis discussed in the previous
chapter, confirming the presence of conservation pressure to maintain definitive
cis elements of polyadenylation in the upstream region instead of downstream.
Furthermore, this analysis has demonstrated the advantage of logistic regression
in producing interpretable parameters over other methods such as support vector

machine used by polya_svm and position weight matrices used by ERP IN.
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Results

Prediction performance
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The PAS classifier described above was used to make prediction for all human

and mouse PAS sequences, and sequences from the negative dataset. Results

were compared with two other PAS classifiers, ERPIN and polya_svm.
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TP | TN | Sp | Sn |FDR| PC | CC | F | PPV | NPV
(%) | (%)
erpin | 79.6 |77.3{0.78 | 0.80 | 0.22 | 0.65 | 0.57 | 0.79 | 0.78 | 0.79

SVM | 90.1 |79.7(082| 090 | 0.19 | 0.75 | 0.70 | 0.86 | 0.82 | 0.89

logistic | 90.9 |92.5|0.92| 090 | 0.08 | 0.84 | 0.83 | 0.92 | 0.92 | 0.91

Sp= rep oo TP*TN - FP* FN
(TP + FP) J(TP+ FP)(TP+ FN)TN + FPYTN + FN)
TP P P
ShH=—""— PC=—rreree——— PPV =————
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(TP + FP) (Sn+ Sp) (TN + FN)
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Figure 3.8 Predictions of human and mouse PAS sequences. A) score
distribution for human, B) score distribution for mouse, C) performance

parameters comparison.

As shown in Figure 3.8A-B, the classifier is able to differentiate real from
false PAS sequences in human and mouse. It can achieve 92% accuracy in
predicting positive data (PPV), and 91% accuracy in rejecting negative data
(NPV). Formulae for PPV and NPV are provided in Figure 3.8C above. The
logistic PAS classifier showed improvement in terms of PPV and NPV when
compared with the other two methods as shown in the last two columns in Figure

3.8C.
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Aside from this, the sensitivity and specificity of the prediction were also
determined. Sensitivity calculates the proportion of real PAS detected, whereas
specificity measures the proportion of predicted PAS that are real PAS indeed.
These two factors always counterbalance each other, as revealed by the ROC in
Figure 3.7B. Thus it is difficult to decide whether a model with higher sensitivity is
better than another model with higher specificity, and vice versa. This issue was
addressed by combining sensitivity and specificity into one value. Three
commonly used calculations were included in this study viz. performance
coefficient (PC), correlation coefficient (CC), and F-measure (F). They all share
one common property that is to penalize skewed sensitivity or specificity. Their
formulae are stated in Figure 3.8C. All three performance measures appeared in
Figure 3.8C were the average of 100 trials where, in each trial, 2,000 real and
false PAS sequences were sampled randomly, followed by prediction. Values of
PC, CC and F showed that the classifier exhibited improvement in prediction as

compared to other methods.
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2. Prediction for other genomic sequences

It was also important to determine how well the classifier is able to distinguish
PAS from other naturally occurring genomic regions such as the ORFs, 5’UTRs
and intergenic regions. By using the same procedure from the previous section,
the logistic method prediction was compared with the predictions from the other

two methods and the results were tabulated below in Table 3.4.

Specificity ORF 5'UTR Intergenic (human chr1)
EPRIN 0.96 0.95 0.79
SVM 0.86 0.72 0.82
logistic 0.97 0.97 0.94

Table 3.4 Predictions of other genomic regions. NPV of different classifiers

for different genomic regions are compared.

Results showed that the classifier did improve the prediction performance in
other genomic regions as compared to the other two methods. EPRIN attained a
similar high accuracy as the logistic method e xcept for the intergenic region. This
may be explained by the fact that ERPIN puts more emphasis on using the

canonical poly(A) signal to make prediction than polya_svm and logistic, and the
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intergenic region contains more canonical poly(A) signals AWTAAA than the

transcribed region.

3. Score versus strength

The usefulness of the logistic classifier was assessed by examining the
correlation between logistic score and strength of the PAS to determine whether
stronger PAS score higher than weaker PAS. As discussed in the Introduction
chapter, it was found that mutations in the PAS downstream region in F2 and
FGG increase polyadenylation efficiency, which leads to elevated mRNA level,
causing of acute blood clotting related diseases [Danckwardt et al 2004, 2006,
Sachchithananthan et al 2005]. To assess whether logistic scores are able to
reflect the outcome of such experimental studies, the dbSNP database from
NCBI [Sherry et al 2001], and specific literature articles were used to identify
SNPs and mutations for these two genes. The size of the F2 cDNA is 2,009 nts

and one C—T transition was detected 11 nts downstream of the PAS, namely
C2020T. In addition, two SNPs were documented in dbSNP viz. rs72550707
C2008T, and rs1799963 G2009A that were located right at the cleavage site. For
FGG, SNP rs2066865 C1671T was located 10 nts downstream of the PAS. As
the F2 gene carries multiple variations, it was necessary to calculate scores of all

possible combinations. Scores of wild-type and variations are listed below:
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Gene Variation Logistic Score

F2  Wild-type 0.985
C2020T 0.990
C2008T 0.985
G2009A 0.987
C2008T, G2009A 0.987
C2020T, C2008T 0.990
C2020T, G2009A 0.991
C2020T, C2008T, G2009A 0.991

FGG Wild-type 0.907
C1617T 0.932

Table 3.5 Scores of F2 and F GG wild-types and mutants.

As shown above, the logistic score of mutants do increase except for
C2008T in F2. At present, only C2020T in F2, and C1617T in FGG have been
demonstrated to have health implications. Although, the ranking based on scores
is consistent with the experimental studies, the ability to use the absolute score
value to predict relative polyadenylation efficiency between various SNPs and

mutations is far less clear.
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Besides these two genes, an extensive analysis regarding score and
strength of PAS in human and mouse was done. However, first it is useful to

discuss the concept about the strength of PAS.

PAl PA2 PA3

Figure 3.9 Schematic diagram about the strength of a PAS.

Previous work attempted to define a “strong” PAS of a gene as the site
supported by >70% of its EST for that gene [Legendre et al 2003]. One limitation
of such an approach is that since transcription proceeds from 5 to 3’, an
upstream PAS is transcribed before the downstream ones so that the upstream
PAS has a longer time to be recognized by the polyadenylation machinery. As a
result, the upstream PAS should have a higher chance to be chosen ceteris
paribus. For this reason | adopted the following as an alternative definition about
the strength of PAS for genes with multiple PAS, namely: if more ESTs support a
3’ downstream PAS than the upstream one, the downstream one is stronger than
the upstream one. For the example in Figure 3.9 above, PA3 is stronger than
PA1 and PA2. However, no conclusion can be drawn between the pair PA1 and

PA2. Additionally, the prediction by polya_svm was also used for comparison to
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investigate the correlation between score and strength. The results are tabulated

below.

Human Mouse
Number of genes with multiple PAS 3,439 920
Number of strong-weak pairs according to 3,754 674
our definition
Number of strong sites with higher score 2,476 (66%) 487 (72%)
P-value of binomial test (P¢=0.5) 2.2e-16 2.2e-16
Number of strong-weak pairs according to 1,696 279
Legendre’s definition
Number of strong sites with higher score 1,197 (71%) 192 (69%)
P-value of binomial test (P¢=0.5) 2.2e-16 2.97e-10
Number of strong sites with higher score 2,051 (55%) 320 (47%)
(smaller e-value) using polya_svm
P-value of binomial test (P¢=0.5) 1.45e-18 0.2037

Table 3.6 Correlation between score and strength of PAS in human and

mouse.
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Regardless of which definition was used, a statistically significant high proportion
of strong PAS was associated with higher score value indicating that logistic

score can reflect the strength of PAS.

4. Low score PAS in multiple PAS genes

As discussed in the previous section about PPV (Figure 3.8C), nearly 8% of PAS
were misclassified on average by the logistic classifier. Low logistic score is often
associated with the lack of poly(A) signal. However, so far only one non-
canonical polyadenylation element UGUAN was reported [Venkataraman et al
2005] to facilitate polyadenylationin two genes viz. PAPOLA and PAPLOG. Ifitis
assumed this element is unlikely to substitute for the poly(A) signal in as many as
8% of human genes, then it is likely that more than one type of PAS is present in
a gene possessing a low score PAS. Hence, an analysis was done to investigate
whether low score PAS are biased in multiple PAS genes. In this analysis, two
thresholds were used to identify low score PAS viz. 0.2 and 0.3. The results are

summarized below.
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Human Mouse
Number of genes 12,303 7,710
Number of genes with multiple PAS 3,349 (27%) 920 (12%)
Number of low score PAS in ALL genes (<0.2) 668 379
Number of low score PAS in multiple PAS 429 (64%) 172 (45%)
genes
p-value of proportion test 0.0 (Po=0.27) 0.0 (Pp=0.12)
Number of low score PAS in ALL genes (<0.3) 935 488
Number of low score PAS in multiple PAS 583 (62%) 203 (41%)
genes
p-value of proportion test 0.0 (Pp=0.3) 0.0 (Pp=0.12)

Table 3.7 Low score PAS in multiple PAS genes.

As listed in Table 3.7 above, 30% and 12% of human and mouse genes,

respectively, contain multiple PAS. Altogether, 688 and 379 of low score PAS in

human and mouse respectively used 0.2 as a threshold. In the absence of bias,

one would expect around 27% (668x0.27=180) and 12% (379x0.12=45) of these

low scoring PAS to reside in the midst of multiple PAS in human and mouse

respectively. Surprisingly, 64% and 45% of low score PAS in human and mouse,

respectively, were found in the midst of multiple PAS. Such a biased distribution
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is statistically significant. The same biased distribution was found if the threshold

for low score PAS was raised to 0.3.

These findings suggest that the polyadenylation activity of the majority of
low score PAS are compensated by other stronger PAS in the same gene.
Alternately, the weak PAS may be kept in the gene so that it can be activated to

alter the 3’ UTR in the presence of some unknown stimulating factors.

5. Score correlation between human and mouse

It is also interesting to explore whether logistic scores are conserved between
human and mouse. Only genes with single PAS were considered. Homologous
information, based on protein sequence, were obtained from HomologGene
database in NCBI [HomoloGene 2009]. 3,636 homologous pairs satisfied our

requirements.
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R=0.69 for 89% of
homologous pairs
within the margin

mouse scores

0.0 0.2 0.4 0.6 0.8 1.0

human scores

Figure 3.10 Correlation of scores between homologous genes between

human and mouse.

Each dot in Figure 3.10 represents a gene. The overall correlation of score
between human and mouse is only 0.19. However, the majority, 89% or 3,236
genes, are located diagonally as shown as darkened dots in Figure 3.10, and the
correlation of this group is 0.69, suggesting the presence of selection pressure to
conserve the core propensity of PAS though some genes exhibit great difference

between homologs.
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6. PAS Outliers

Previous work has identified 13 poly(A) signal hexamers [Beaudong et al 2000,
Tian et al 2005]. Using the kmer SVD method, 16 pronounced hexamers were
identified in the upstream region (Table 3.2). However, 4% of human and mouse
genes do not possess any of these 16 hexamers up to 60 nts upstream from the
PAS, which is double the nominal distance of the poly(A) signal from the PAS.

The percentage distribution of various poly(A) signals in human and mouse is

shown below.
human mouse
Unknown; 4% unknown; 4%
Others; 12%
Others;
14%

W AATAAA

W ATTAAA ; .
wd - Others _

& Unknown

Figure 3.11 Poly(A) signals in human and mouse.

This set of non conformant polyadenylated transcripts may provide a new insight
about alternative mechanisms in polyadenylation, hence further investigation of
them may help to discover the shared properties of these genes. Since low score
PAS is likely to be complemented by strong PAS in the same gene, the analysis

was limited to selection of single PAS genes without the 16 hexamers up to 60
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nts upstream from PAS. First, the level of EST supporting the PAS was
assessed, with the caveat that the abundance of EST in supporting a PAS
reflects its detectability rather than a true measure of its expression level. With

this caveat in mind the findings are tabulated below.

Number of
. genes EST support
Number of single without any for PAS EST support
PAS genes . for ALL
of 16 outliers

hexamers
human 6,949 121 (1.6%) u=11,0=11 p=20.64, c=3.37
Mouse 5,150 102 (2%) p=5, =3 M=9.13, 6=2.13

Table 3.8 EST support of PAS outliers in human and mouse.

Only a small percentage of single PAS genes do not have any of the 16
hexamers yet they were found to be polyadenylated. The EST support for all
single PAS genes was estimated by averaging the repeated random sampling of
single PAS genes. PAS outliers are less detectable than the mainstream as they
are supported by almost half the amount of EST on average, suggesting that
polyadenylation is rescued by a less optimal mechanism such as cis stimulating

elements.

A search was then undertaken to identify special gene-specific sequence

elements upstream and downstream of the PAS. As PAS outliers frequently
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contain C-rich elements in the region up to 100 nts upstream from the PAS, they

were searched for two known C-rich motifs [Yeap et al 2002, Kim et al 2007],

CCCCCC and CCCUCCC with up to one substitution being allowed at any

position except for U in the middle of the second motif. C-rich motifs have been

reported to affect mMRNA stability in erythropoietin (EPO) [Czyzyk-Krzeska et al

1999, reviewed in Waggoner et al 2003] but not polyadenylation. | speculate the

suboptimal polyadenylation in mRNA maturation, due to the lack of a poly(A)

signal, is compensated by increased mRNA stability in order to maintain protein

level.
cccccce genes with genes with  genes without genes with
] poly(A) motif poly(A) motif
Motif signals
human 6,828 1,463 (21%) 121 51 (43%)
mouse 5048 971 (20%) 102 29 (28%)
CcCccucccC genes with genes with  genes without genes with
] poly(A) motif poly(A) motif
Motif signals
human 6,828 949 (14%) 121 34 (29%)
mouse 5048 691 (12%) 102 11 (10%)

Table 3.9 C-rich motif in genes without poly(A) signals.

Not only were C-rich, G-rich regions discovered up to 100 to 500 nts

downstream from PAS in human but more G/C-rich were found in mouse instead.



103

A DNA motif finding program iTriplet [Ho et al 2009] was used to search for 10-nt
long motifs with up to 2 mutations. Two G-rich motifs were found viz
GGGGCTGGAG and GGGGGGCAGG. G-rich region was reported to cause
RNA polymerase |l pausing [Gromak et al 2006], which may trigger transcription
termination in eukaryotes. Also hnRNP H has been shown to bind a G-rich region
in gene MC1R [Dalziel et al 2007]. The findings reported here are different from a
previous report [Tian et al 2005], which had found G-rich regions [-100,-41]
upstream and C-rich regions [+41,+100] downstream. Such a difference is
probably due to the fact that only PAS outliers were included in the current

analysis.

In addition, two T-rich motifs, TTGTTT and TTATCT, were identified
upstream of PAS by iTriplet. It is believed that their function is to mediate stable

binding of CPSF1 via hFip1 [Kaufmann et al 2004, Danckwardt et al 2007].
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7. Conserved flanking region of PAS outliers

To eliminate the concern that the discovery of these PAS outliers may be solely
coincidental, their conservation in remote species like human, mouse and cow
was examined. Eleven PAS outlier genes were found to possess highly

conserved PAS flanking regions.

Gene Description Gene ID Putative
poly(A) signal
STX5 syntaxin 5 Hs.6811 ATTACA
MBD6 methyl-CpG binding domain Hs.114785 AATATT
PLEKHG3  pleckstrin homology domain Hs.26030 AATAAC

TBC1D10B TBC1 domain family, member Hs.26000 AAWGAA

DLG4 discs, large homolog 4 Hs.1742 AAGGAA
PRR12 proline rich 12 Hs.57479 AACGAA
BCORL1 BCL6 co-repressor-like 1 Hs.63035 -
FGFRL1 fibroblast growth factor Hs.53834 AWGAAA
DMWD dystrophia myotonica, WD Hs.1762 AATTAT
TMEM110  transmembrane protein 110 Hs.375346 AAAACA or
AAACAG
TMEM30A  transmembrane protein 30A Hs.55754 ATATTG

Table 3.10 Conserved PAS flanking regions of PAS outliers in human,

mouse and cow.
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Out of the 102 PAS outlier human-mouse homologous genes (Table 3.8), 11
exhibit high sequence conservation flanking the PAS. Inspection of the region 20
nts upstream from the PAS, failed to identify any conserved canonical-poly(A)-
signal-like hexamers from these genes. Except for BCORL1, a list of A-rich
hexamers was identified, which have not been validated experimentally.
Strikingly, even the platypus genes PLEKHG3, TBC1D10B and FGFRL1
contained these A-rich hexamers, a puzzling result as one assumes it should be
unfavorable for such genes to lack a canonical poly(A) signal. This implies that
nature preserves a seemingly suboptimal polyadenylation for this small set of
genes, and hence studying such genes experimentally may provide new insights
into less understood polyadenylation compensatory factors. For example, the
AU-rich database ARED 3.0 [Bakheet et al 2006] has an entry that FGFRL1
contains an AU-rich element (ARE) that is known to affect mRNA stablility. An
alignment report for these 11 genes among human, mouse, cow, and in some

cases platypus, can be found in Appendix E.
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F. Discussion

An improved PAS classifier using logistic regression has been discussed
thoroughly, suggesting that these ten features can represent the essence of an
active PAS. This method was able to improve prediction in spite of using a
shorter region than other methods, indicating that the core PAS elements are
largely located in the [-40,+80] region. Benefiting from the tractable nature of
logistic regression, it supports the view that the upstream sequence context
(Table 3.2) is far more important than the downstream one in defining a PAS.
However, it apparently contradicts the assertion from Chapter 2 that selection
pressure may exert in the [-200,0] region. With that said, | believe the analysis
has revealed two levels of information. The first is the core polyadenylation
elements are largely required by all genes, and the second is gene-specific

elements are positioned further upstream (up to 200nt) of the PAS.

| have also shown that logistic score corresponds to the strength of the
PAS. The occurrence of low score PAS are mostly found in the midst of strong
PAS, which is likely a compensatory mechanism to preserve at least one PAS
per gene, and acts as alternative PAS in the presence of polyadenylation

stimulating factor(s).

Although the logistic classifier was able to achieve 92% PPV for human
PAS, there were still 8% or 1,366 PAS that could not be recognized by the
method (Figure 3.8C). Moreover, 4% of PAS in human and mouse do not

possess canonical poly(A) signals as well as the enriched poly(A) hexamers
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discovered by two previous studies and the kmer SVD method (Table 3.2).
Recall that all PAS compiled herein were supported by at least three
polyadenylated ESTs. Such a perplexing observation supports the idea of the
presence of additional polyadenylation elements. Furthermore, the PAS outliers
carry C-rich and T-rich elements upstream, and G-rich or CG-rich region
downstream that presumably function to compensate for the suboptimal nature of
the PAS. To assess whether these PAS odutliers regulate differently across
different tissues, their expression profiles across different tissues was examined
using BioGPS and random sampling [Wu et al 2009]. Overall, this examination
did not find any evidence for tissue specific expression for these PAS outlier

genes.

Aside from this, | identified 11 single PAS site genes without any of the 16
poly(A) signals that had highly-conserved PAS flanking regions with some
conservation even among remote mammals. 10 out of 11 contained poly(A)-
signal-like A-rich hexamers at around 20 nts upstream, suggesting either a novel
polyadenylation factor or that CPSF1 recognition, the factor that recognizes
poly(A) signals, is more flexible than previously thought. Thus further
investigation is needed to explain the specificity of polyadenylation site

recognition.
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CHAPTER 4

iTRIPLET: A RULE-BASED NUCLEIC ACID MOTIF

FINDER

A. Introduction

With the advent of high throughput sequencing techniques, large amounts
of sequencing data are readily available for analysis. Natural biological signals
are highly variable intrinsically making their complete identification a
computationally challenging problem. Many attempts in using statistical or
combinatorial approaches have been made with great success in the past.
However, identifying highly degenerate and long (>20 nucleotides, nt) motifs still
remains an unmet challenge as high degeneracy will diminish statistical
significance of biological signals and increasing motif size will cause
combinatorial explosion. Here we present a rule-based method, named iTriplet,

to identify degenerate and long motifs in nucleic acid sequences.

We will adopt the sequence motif finding problem formulation originally
proposed by Pevzner and Sze [Pevzner et al 2000] in this chapter. We call an
oligonucleotide of length /, an Imer. A motif model is denoted by </,d>, where / is
the length of the motif, and d is the maximum number of mutations allowed with
respect to the motif. An instance of a motif is termed d-mutant. Two d-mutants of
the same motif must not differ by more than 2d differences. We call two /mers

neighbors if their difference is < 2d. Given n sequences, each of length L (could



109

be of variable length), the goal is to locate the set of d-mutants in each sequence
from the sample where the largest difference between any pair of d-mutants in
the set is < 2d. In the following we will summarize two major motif finding

approaches, viz. statistical and combinatorial.

The position weight matrix is often used as a statistical scoring system to
identify biological signals from background. This technique implies that biological
signals consist in part of conserved nucleotides that are critically important for
their potency. As a result, motifs discovered by this approach tend to contain
relatively invariant nucleotides at a few positions. Many transcription factor
binding site prediction methods were developed based on this approach. Gibbs
sampling and expectation maximization are typical techniques employed by
MEME [Bailey et al 1994,1995], AlignACE [Roth et al 1998], BioProspector [Liu
et al 2001], MDScan [Liu et al 2002] and MotifSampler [Thijs et al 2002]. The
primary advantage of this approach is its speedy runtime and minimal memory
consumption. However, statistical overrepresentation will vanish when the size of
the motif to the number of mutations ratio decreases, i.e. degeneration. One
improvement of this approach is to incorporate phylogenetic information in
background estimation. Well-known examples of this approach include
FootPrinter [Blanchette et al 2002] and PhyloGibbs [Siddharthan et al 2005].
However, such an approach is challenged by multiple substitutions occurring in
distant species (homoplasy) or motif searching in a single species. Some other
methods train a Markov model to capture nucleotide dependency information of

known binding sites in order to make prediction for unseen cases. One extension
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of the Markov model was reported in [Wang et al 2005]. The authors
incorporated several features, such as gaps and polyadic sequence elements, to

handle diversified transcription factor binding sites.

An alternative to a statistical approach is the combinatorial or enumerative
approach [Pevzner et al 2000] where the observable biological signals are
believed to be the variations of a hidden motif, and they do not exhibit
conspicuous conservation at any particular position, and yet they are similar to
each other. This approach is suitable for families of biological signals where the
affinity of the targeting protein to the binding site relies on cooperative binding in
a region rather than on a few conserved nucleotides at fixed positions. Many
such examples are found in precursor RNA processing signals including the
pyrimidine-rich region near 3’ splice sites and the U/GU-rich region downstream
of polyadenylation sites. One fundamental problem faced by the enumerative
approach is the exponential growth of computing resources when the size of the
motif increases. To circumvent this, existing methods such as MotifEnumerator
[Sze et al 2006], MITRA [Eskin et al 2002], WINNOWER [Pevzner et al 2000],
TIERESIAS [Rigoutsos et al 1998], Gemoda [Jensen et al 2006] and PMSprune
[Davila et al 2007], employ various elegant pruning strategies to abandon

unpromising pursuits as early as possible.

Both enumerative and statistical approaches have proven to be valuable
in analyzing real biological examples and both approaches are complementary to
each other. In most situations when little prior knowledge is known about the

motif, we believe both approaches should be considered. Our interest is on the
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discovery of motifs flanking polyadenylation sites, which are often degenerate
like the downstream region or long (might due to combinatorial binding sites)
therefore we have adopted the enumerative approach. We have invented a novel
rule-based algorithm to identify all optimal motif candidates without the expense
of exploring the entire 4! space exhaustively. In addition, our algorithm is
designed to be highly parallelizable so as to exploit today’s parallel computing
technology in handling massive biological data. As a proof of concept, we have
evaluated our algorithm using the simulated data described in [Pevzner et al
2000]. Also we have demonstrated that our method is able to identify motifs in
real promoter sequences, 5 and 3’ untranslated regions (UTR), and distal
enhancers from different species. Results show that our method can solve highly
degenerate and/or longer motifs that overwhelm the capabilities of other
methods. Furthermore, we have compared the prediction accuracy of our method
with the statistical motif finding methods mentioned above and find that our
method is equal to and sometimes better than these methods. Besides in-silico
simulations, we have also verified our prediction of downstream polyadenylation
motifs for three human genes using a dual Luciferase assay. Our software is
developed in C++ and standard template library (STL). It has been tested on
Linux platform. The software can be downloaded freely from this website

http://www.rci.rutgers.edu/~qundersn/i Triplet.
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B. Method

1. iTriplet Algorithm
Our rule-based enumerative algorithm is named iTriplet. It stands for inter-

sequence triplets. A triplet consists of three neighboring /mers (less than 2d

differences from each other) sampled from three different sequences. The ‘inter-
sequence’ part of the iTriplet algorithm systematically explores tripartite
combinations of Imers from different sequences in order to identify motif(s) that
span all sequences in the sample. The span of a motif refers to the number of
sequences containing its d-mutant. For clarity, we will explain our method by
limiting to only one motif in the sample, and every sequence contains at least one
occurrence d-mutant of the motif even though our method can deal with multiple
motifs and 10-20% of contamination. We will describe our iTriplet algorithm in
two parts: the ‘inter-sequence’ part will be discussed first, followed by the Triplet

algorithm.

2. The inter-sequence part of iTriplet

If sufficient numbers of sequences are given, and the motif model is not
highly degenerate, i.e. small d with respect to /, the likelihood that an /-sized motif
can span through all sequences by chance is rare. Based on this insight, we

utilize the span of a motif as the indicator to identify unusual motifs in a sample.

The inter-sequence part of iTriplet consists of two stages: initialization

stage and expansion-pruning stage. ltis illustrated in Figure 4.1 below:
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Figure 4.1 Inter-sequence algorithm. (A) For each Imer r1 in R1, identify 2d-
mutants in sequences R2, S1, S2, ... The rectangular box represents the 2d-
mutant of r1. The dotted line triangle represents a triplet. (B) Hash table to
keep track of the span of the putative motif. Hash table consists of two

parts viz. key and value. In this case, the key is the putative motif; value is
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a list of unique sequence IDs. Putative motifs are produced by the Triplet

algorithm. They are common motifs to triplets.

Here is the procedure of inter-sequence phase: given a set of n
sequences and a motif model </,d>, randomly designate two sequences from the

sample as reference sequences, namely ®7 and ®2, and the rest as non

reference sequences S1, Sy, ..., Sna.

Initialization stage: Randomly select an Imer (r1) from ®1 and a non

reference sequence, say S;. ldentify all possible triplets based on r7, Imers from
sequences ®2 and S; as illustrated in Figure 4.1 A. For each ftriplet, identify the
set of motif(s), if any, common to the triplet using the Triplet algorithm (will be
discussed later). Store the returned common motif(s) and its associated

sequence IDs ina hash table as shownin Figure 4.1 B.

Expansion-pruning stage: Randomly select an unprocessed non-reference

sequence, say S;. Similar to initialization stage, identify all triplets based on r1,
Imers from sequences ®2 and S;. ldentify the set of common motifs of all triplets
using Triplet algorithm and store them in the hash table. Prune the hash table by
removing all motifs that do not span all sequences processed so far. If the hash
table is not empty after pruning, repeat the expansion-pruning stage with the next
unprocessed non-reference sequence. If the hash table is empty after pruning,
return to the initialization stage, randomly pick a different /mer (r7) from ®1, and

repeat the same two-stage inter-sequence process again until all /mers in ®1
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have been processed. If all non-reference sequences have been processed and
the hash table is not empty, then return motif(s) in the hash table to the calling

program.

As described above, the processing of different /mer r7 in ®1 are
completely independent of each other. It means that they can be executed
simultaneously wherein not even a single synchronization point is required.
Therefore, given M processors, the algorithm can trigger up to (M-1) concurrent
processes simultaneously. Theoretically, the performance gain by parallelizing
this step is (M-1) times for a M-processor system where one processor is
designated for overall coordination purposes. Our current parallel version of

iTripletis implemented based on this idea.

3. The Triplet part of iTriplet

The purpose of this part of the algorithm is to uncover the complete set of
motifs common to all members of the triplet in a deterministic and efficient way.
The clues solely come from the similarities and differences among the three
Imers rather than the enumeration of all possible /mers. It is efficient because the
number of motifs shared among all three /mers should be small. By example, the
estimated probability of any three Imers to share at least one common motif for

models <12,3> and <30,9>,is 5.47x10™ and 2.97x10™, respectively.
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Figure 4.2 Intuition of Triplet algorithm. A triplet consists of 12mers 11, 12
and 13. 1 and 12, 1 and I3, and 12 and I3 contain 4, 6 and 5 differences
respectively as labeled in the lines connecting them. Use the 12mer as the
center to draw an imaginary circle. Each circle denotes the set of
neighboring 12mers that are no more than 3 differences from the center
12mer. In other words, each circle represents the set of putative motifs that
generate the center 12mer. Note that we do not actually generate the set of
putative motifs. Centroid Imer is denoted by a diamond shape dot. The goal
of the algorithm is to uncover all members of the set in the intersection
(dark gray) of the three sets. (B) Centroid Imer construction. Shown are
three patterns of columns viz. same nucleotide in three 12mers Pi (solid
line vertical boxes in positions 1, 5, 6 and 10), all different nucleotides
across three 12mers Pnc (vertical box with dashed boundary in position
11), and two out of three 12mers having the same nucleotides Pmn (dotted
line vertical boxes in positions 2, 3, 4, 7, 9, and 12). The centroid Imer is
constructed in stage 1 of Triplet algorithm described in the text. The
number of identical positions between the centroid Imer and /71, 12 and 13, is
represented by the score vector and the selection of nucleotides encoded
in move vector (C) Structure of move vector. (D) Exploratory scheme
discovery from stage 2 of Triplet algorithm. Centroid Imer constructed in
Figure 2B is modified by the composite operation of sac(P12) and nc(3,1) to
create three extra motifs near its neighborhood. (E) Example of applying

rule 13 to create a new move vector in (D).
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a) Data structures of Triplet

Before we describe the algorithm, we need to define two main data
structures used by this algorithm viz. move vector and score vector. The three
Imers passed into this process are stacked up conceptually to form / numbers of
three-nucleotide tall columns as shown in Figure 4.2 B. These columns must fall
into one of the three patterns: (l) with identical nucleotides denoted by P;; or (ll)
with all different nucleotides, denoted by P, or (lll) with two out of three
nucleotides being the same, denoted by P, where m and n denote the indices of
the two /mers with dominant nucleotide. We will show later that common motifs
are discovered by various ways of selecting nucleotide from these three types of
columns. Such selection is captured in a move vector as illustrated in Figure 4.2
C. In addition, each move vector is associated with a score vector which is
defined as [i1,i2,i3], where i1, i2 and i3 denote the numbers of identical positions
between the motif represented by the move vector and the three given Imers /1,

12 and I3, respectively.

b) Three stages of Triplet
Triplet algorithm consists of three stages: 1) centroid /mer construction, 2)

exploratory scheme discovery, and 3) motif generation. Below is the description:

Stage 1: centroid /mer construction. Given a triplet of three /mers from the
calling program, identify the three column types P, Pm and P, as discussed

above. Check if the triplet satisfies this inequality: /—d <|P|+| P, |*25+|P,|* 14
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(derivation is in Appendix F) where |P;|, |Pm| and |Pnc| denote the number of P;,
Pmn and Prc patterns respectively. If the given triplet fails to satisfy this inequality,
return no common motif and exit. Otherwise take these three steps to construct
the initial move and score vectors: i) take the common nucleotides from columns
P;, ii) take the dominant nucleotides from Py, and iii) for columns Py, take the
nucleotides from the /mer which is currently farthest from the work-in-progress
centroid /mer produced by the previous two steps. Pass the newly created move

and score vectors to stage 2 for further processing.

Stage 2: exploratory scheme discovery. Based on the excess score(s) (> /-
d) in one or more of the three values in the initial score vector, formulate
alternative ways to select nucleotides from P;, P and Py patterns through the
61 rules (will be discussed later). An execution of a rule produces a new set of
move vector(s) and its associated score vector. Repeat stage 2 processing of the
new move vector(s) until all newly generated score vector(s) becomes [/-d,/-d,I-d]

i.e. no excess score. Pass all move and score vectors generated to stage 3.

Stage 3: motif generation. Generate motif by going through each value in
the move vector, and select the specified number of column patterns and

associated nucleotides accordingly. When all move vectors are processed, return

all motifs to the calling program.

Regarding the rules mentioned in stage 2 of Triplet algorithm, they are

actually made of five basic operations listed in Table 4.1 below:
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Operations Description Examples based on Figure 4.2
D if possible

sac(Pm) Instead of choosing the sac(P12), take ‘G’ at position 3
dominant nucleotide from P., from /3 instead of ‘C’ from /1 or
column, choose the odd /2
nucleotide.

compl(Pm) Instead of choosing the Apply on the 2™ column,
dominant or odd nucleotide compl(P23), take nucleotides
from Py, column, choose complementary to ‘G’ and ‘T,
nucleotides complementary to i.e. choose ‘A’ or ‘C’ for
them. position 2.

nc(i.j)

Instead of taking nucleotide
from Imer;, choose from Imer; in
a Ppc column.

Apply nc(3,1) to position 11.
Instead of choose ‘A’ from /3,
choose ‘T" from /1 at position
11.

nc(i,0) Instead of taking nucleotide Apply nc(3,0) to position 11.
from Imer;, choose from the Instead of choose ‘A’ from /3,
complementary nucleotide of a assign the complementary
Pnc column. nucleotide ‘G’ to position 11.

sac_i(P)) Instead of keeping the Apply sac i(P;) to position 1.

nucleotide identical to all Imers
in the triplet, take the three
complementary nucleotides.

Take ‘A’, ‘G’ or ‘T’ instead of
‘C’ at position 1.

Table 4.1 Five basic operations for triplet processing of iTriplet algorithm.

These five basic operations are the only possible alternatives to the
selections which produce the centroid /mer. The basic operation can be applied
individually or be combined with one other basic operation to act like a single
operation, namely a composite operation. Basic or composite operations act on
the current move vector in the light of its score vector. To facilitate searching, we
pack the basic/composite operation and its impact or changes on the current

score vector, namely impact vector, into a new construct called rule as shown in
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Figure 4.2 E. These 61 rules are further organized into three non-mutually
exclusive groups, each group has 42 rules, according to which Imer in the triplet
possesses excess score (full list can be found in the Appendix G). The decision
to select a rule is determined by the three conditions. First, it has not been
chosen already. Second, the three values of the new score vector, obtained by
the addition of the impact vector and the current score vector, must be = /-d.
Third, the triplet contains the column pattern(s) required by the basic and/or
composite operation. Notice that every rule will reduce the total score value of
the new score vector. It means that successive applications of these rules will
eventually create a score vector of its minimum score values [/-d,/-d,I-d] and that

marks the terminal state.

Regarding stage 3, one move vector may generate more than one motif.
For the example in Figure 4.2 D, the new move vector due to rule 13 is
[5,2,1,2,1,0,0,1,0,0,0]. The first value specifies to select the nucleotides from the
five P; column patterns which are found in positions 1, 5, 6, 8 and 10 (see Figure
4.2 B). Since there are exactly five P; column patterns, only one way is possible.
The second value of the move vector specifies to choose dominant nucleotides
from two P42 column patterns out of three and to choose the odd nucleotide from
the remaining one. It will generate three possibilities. The rest of the values in the

move vector will be processed similarly.

We have given the full description of iTriplet algorithm. Regarding the
correctness of the algorithm, at this stage, we have not come up with a

theoretical proof yet, however we have conducted extensive testing of more than
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14,000 cases including models <11,2>, <12,3>, <13,3>, <154>, <28,8> and
<40,12>; over 2,000 cases per model. In each case, we had generated 20
sequences each of length 600 with all nucleotides occurring equally likely. In
each sequence, a single /-size d-mutant was planted at a random location. After
each run, we checked whether the returned motif from iTriplet was the same as

planted or not. iTriplet performed correctly for all cases.

4, Time and Space Complexities of iTriplet

The inter-sequence part of iTriplet mainly iterates all combinations of
triplets among sequences. Therefore, for model </,d>, we estimate the time
complexity of the inter-sequence part of iTriplet to be O(nL3pI) where n, L and p
are the number of sequences, length of sequence and probability to form a triplet
that shares at least one motif. As discussed before, we estimate p should be in
the range of 10, and L should normally be 102 Therefore, the effective time
complexity of the inter-sequence part ranges from O(nL/) to O(nL?/). Stage 2 of
Triplet part should generate all possible score vectors as long as the score value
between each /mer and the centroid /mer is at least /-d. In the worst case
scenario, there are d® score vectors. The generation of actual motifs based on
the move vector in step 3 should depend on the size of the motif /. Therefore the
time complexity of Triplet is O(d®l). Hence the overall time complexity of iTriplet is
O(nL3pl?d®). For PMSprune, the time complexity is O(nL?N(l,d)), where N(l,d) is

Z Yoo After eliminating the common terms, the main difference lies in the
=0 o

growth of Lp/?d® and N(l,d) in iTriplet and PMSprune, respectively. When the

motif model is small, N(/,d) is smaller than Lp/?d®. However, when / increases, the
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combinations of N(I,d) grows exponentially. iTriplet's space complexity depends
on the degeneracy of the model, therefore it is O(N(l,d)) before pruning. After

pruning, the space requirement will shrink.
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C. Results

1. Simulated data

In order to examine how iTriplet method can solve more degenerate and
longer motifs, we compared it with some well known enumerative methods using
simulated data. The simulated sequences were generated as described in the
Appendix H. Simulated datasets were constructed using a wide range of / and d
parameters in order to compare the performance of different methods in dealing
with various sizes of the motif and/or noisy situations. The sequential version of
our method was compared with three other well-known methods that have the
same focus to guarantee finding the optimal motif viz. MotifE numerator [Sze et al
2006], RISOTTO [Pisanti et al 2006] and PMSprune [Davila et al 2007] (see
Appendix | for program versions). Sequential tests were conducted on a Linux
machine equipped with an Intel P4 3 GHz processor and 2 Gbytes of memory. All
methods can successfully identify the planted motifs in the simulated dataset
unless the runtime was longer than 6 hours. We also repeated the same set of
tests for the parallel version of iTriplet on a three-node Linux cluster equipped
with the same processor as a sequential test. Results are tabulated in Table 4.2

below:



Models Neighborhood MotifEnumerator RISOTTO PMSprune iTriplet iTriplet
Probability (parallel)
11,2 0.7% 6s 2.2s 1s 2s 1s
12,3 5.4% m 40s 4s 33s 18s
13,3 2.4% 2m 33s 2s 6s 4s
14 4 1% -2 8m 1m 3m 2m
15,4 5.6% - 6m 16s 36s 19s
16,5 19% - 82m 13.5m 26m 13m
186  28% - - - 3h 1.5h
19,6 18% - - - 27m 14m
24,8 23% - - - 4h 2h
28,8 3% - - - 19s 10s
30,9 5% - - - 23m 1.5m
38,12 7% - - - 1h 33m
40,12 3% - - - 5m 4m

Table 4.2 Methods comparison on simulated datasets.
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Neighborhood probability refers to the probability that two /mers differ by
no more than 2d differences. The formula to calculate neighborhood probability
is stated in the Additional file 1. Time is measured in seconds (s), minutes (m) or
hours (h). (a) MotifEnumerator ran out of memory for | greater than 13. (b)
Program took more than 6 hours to handle for the model <18,6> or longer. For
the parallel version of iTriplet, reported runtime is the longest lapse time required

for all nodes to finish.

The second column of Table 4.2 is the neighborhood probability of each
model, which is the probability that any two /mers differ by no more than 2d by

chance , a good indicator to reflect the degree of degeneracy of the model.

For short motifs (<16 nucleotides) iTriplet is comparable to the fastest
(PMSprune) and is significantly faster than MotifEnumerator and RISOTTO.
When motif length is longer than 16, all other methods take longer than 6 hours
to process. Note that iTriplet is able to process highly degenerate <18,6> and
<24,8> models which cannot be handled by these other three methods as well as
other statistical based methods such as MEME, MotifSampler and
BioProspector. Based on these results, we learned that the performance of all
methods depends on / and d, but to a different extent. Intriguingly, the runtime of
PMSprune quadrupled, though still very fast, when I increased from 12 to 15
even though the neighborhood probability remained relatively at the same level.

A similar trend is also observed in RISOTTO but with even higher fold increment
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in runtime. Such a phenomenon is not observed in our method. When
neighborhood probability is doubled in models <12,3> versus <14,4>, and <14 4>
versus <16,5>, the runtime of PMSprune increased 15 and 13.5 times
respectively and RISOTTO increased 12 and 10 times respectively whereas
iTriplet only increased 6 and 9 times, respectively. Based on these observations,
we can understand that the algorithms employed by RISOTTO and PMSprune
are quite sensitive to both / and d even when the neighboring probability remains
at the same level. Thus RISOTTO and PMSprune take a longer time to search
for the optimal motif; whereas the combined effect of / and d on performance was
less severe for iTriplet. This explains why RISOTTO and PMSprune encountered
difficulty in handling longer motif models. This does not exclude that iTriplet is
unaffected by large d (high degeneracy). But one distinctive feature of our
algorithm is that it can split the task into smaller subtasks which can be run
independently in parallel. When comparing sequential and parallel versions of
iTriplet, the parallel version averaged 1.77 times performance gain in a three-
node cluster that is quite close to the theoretical gain 2.0. Testing based on the
simulated data revealed that different methods have different tradeoffs in tackling
the general </,d> motif problem therefore further investigation is still needed to

cope with various challenges of this problem.

2, Real biological sequences
Besides simulated datasets, we tested our method using multiple sets of
real biological sequences. One issue with real biological sequences is the lack of

prior knowledge about the size and maximum numbers of mutations permitted by
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the motif. The optimal motif(s) comes from the model having the smallest
neighborhood probability and produces the least number of motifs. In order to pin
down the optimal motif, the algorithm must be run for a range of / and d. But we
have found that the search of the optimal / and d can be done methodically by
making use of the neighborhood probability of each model. In the situation when
iTriplet has found too many motifs for the specified model then we can conclude
that the model is too lax and so a more stringent model should be used, by
increasing / or reducing d or both at the same time. Alternatively, once a
satisfactory model is found, one can look for shorter models with similar
neighborhood probability if the shorter alternative gives a similar result. In order
to ease the effort for searching for the optimal model, iTriplet provides an
autonomous mode option. Under autonomous mode, the program will explore
various models using the strategy just described, and return the best models with
motif length from 6 to 40 bases and maximum number of differences from 1 to
12. But the user also has the option to limit the size of motif to a specific range.
Although many models are examined, only a very limited numbers of models,
usually none or one, can provide the optimal motif unless the given sequences
contain multiple motifs. Several reasons are that a slight change in the size
and/or the maximum number of mutations will result in a substantial change in
neighborhood probability which can be seen in Table 4.2. As mentioned in the
Introduction section, we have included promoter and 5 UTR regions from four
genes commonly chosen as test cases for motif finding algorithms [Blanchette et

al 2002, Eskin et al 2002, Davila et al 2007]. In addition, we have also added a
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set of 3’ UTR sequences in our test in order to understand how our method
performs in other regions of a gene (details in Appendix J). Table 4.3

summarizes the prediction by iTriplet for various genes and genomic regions.
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" Gene: Preproinsulin (IEB1) promoter+5 UTR Remarks
iTriplet GTYYGGAAAYTGCAGCYTCAGCCCC <25,2> model
PMSprune CAGCCTCAGCCCCTT
MITRA CCTCAGCcccC

Transfac ID:
Published CTCAGCCCCCAGCCATCTGCCGACCCCCCC R04457
Gene: DHFR (promoter+5’ UTR) Remarks
iTriplet RWSTSGCGCSAAACY <15,3> model
PMSprune ATTTCGTGGGCA
MITRA TGCAATTTCGCGCCAAAC
Published ATTTCGCGCCAAA Transfac ID:
R01928
Gene: Metallothionein promoter+5’ UTR Remarks
iTriplet TTTTGCRCTCGYCCC <15,1> model
PMSprune CTCTGCACACGGCCC
MITRA TGCGCCCGG
Published TGCGCCCGG Transfac ID:
R08298
Gene: c-fos serum response element promoter+5’ Remarks
UTR
iTriplet CCATATTAGGACATCTGCGT <20,1> model
PMSprune CCAAATTTG
MITRA CCATATTAGGACA
Published CAGGATGTCCATATTAGGACATC Transfac ID:

R00466
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3'UTR Regulatory iTriplet Prediction only Published Remarks
Elements

AU-rich (ARE) TTTTATTTATTTITT WWTTATTTATTWW <14,3> model
Cytoplasmic TTTTAAT TTTTAT and TTTTAAT <6,1> model

Polyadenylation

element (CPE)

Pumillio binding TKTWAATA TGTAAATA <8,1> model
element (PBE)

Table 4.3 iTriplet prediction using real biological sequences.

Motif predicted by iTriplet is presented in consensus sequence. Bold and
underlined sequence represents correctly predicted nucleotide. Transfac IDs are

obtained from TRANSFAC database [Wingender et al 1996]

3. Distal enhancers

In addition to 5" and 3’ UTR sequences, we have also applied our method
to the search for distal enhancers. In a recent article [De Val et al 2008], a
combinatorial regulation mechanism was reported to drive the expression of
genes in the vasculogenesis pathway. The authors discovered a 44-nt
conserved, and overlapping enhancer, namely FOX:ETS motif, in the MEF2C
locus that binds transcription factors FoxC2 and Etv2. The binding of both, not
just one, are required for vascular development in mouse. Even though the 44-nt
enhancer was sufficient to cause endothelial specific expression, its effect
vanished after E10.5. However, when the longer 900-nt long flanking region of
FOX:ETS (called F10E in the original article) was used, its activity persisted
throughout embryogenesis in “blood and lymphatic vasculature”, meaning that

some other unknown cis elements in F10E may participate in vascular
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development. Moreover, the authors also discovered that FOX:ETS motif was not
only found in the MEF2C locus, but also found in 5 other vasculogenesis genes
viz. FLK1/KDR, TIE2/TEK, TAL1, NOTCH4, and CDH5/VE-CAD. At present, no
motif has been identified in F10E besides FOX:ETS. As a result, it was of interest
to identify any additional motif(s) shared by these six genes. Thus, a 886-nt long
fragment flanking the FOX:ETS motif was extracted in each of the six genes from
human. By using multiple alignment program T-COFFEE [Notredame et al 2000]
to align these six 886-nt long fragments, we did not find any conserved region
shared among them. Next, iTriplet was used to search for motifs using different
models such as <12,3>, <13,3>, and <14,3>, and it was found that model <14,3>

yielded the best motif CTCCATTGCCAGCT as shown in Figure 4.3.

CTCCATLL0A(L
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1 886
130-143 182-198
CTTCATTCCCTGCT TGTCATAACAGGAAGAG

chr5:88146661-88147546

MEF2C

FLK1/KDR 182-198 268-281
TGTCATAACAGGAAGAA CTGCATTGCCAACT
chr4:55828272-55829157
TIE? /TEK 182-198 420-415
AAAGGAAACAGGAAAAA CTCTTTAGCCAGCT
chr9:270998193-27100078
TALL 150-163 182-198
CTCCCTCCCCAGCT CACAATAACAGGATGTG
chrl:47388086-47389971
NOTCH4 182-198 808-821
AGAATAAACAGGAAAGG CTCCATTGACACCC——
chr6:32298355-32299240
84-97 182-198 257-270
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chrl6:64957774-64958659
novel motif F10E-44
cow_FlOE TAAGGTAAAGGTCAAAGACTACTTCATTCCCTGCYGAGCARATGCYCAGGAAGCACATTT 168
humaanlOE TAAGGGAAAGGTCAAAGGATHYCTTCATTCCCTGCYGAGCARATGCYCAGGAAGCACATTT 168
mouse_FlOE TAAGTTAAAGGTCAAAGAAT(CTACATTCCCTGCYGAGCTAA--CYCAGGAAGCACATTT 168
opposumiFloE TAAGGTAAAGGTCAGAGAATHCTTCATTCCCTGCYGAGCAAATGGYCAGGAAGCACATTT] 168
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Figure 4.3 Motif in vasculogenesis genes. A) 14-nt long consensus
generated by Weblogo [Crooks et al 2004], B) location of FOX:ETS and
iTriplet predicted motifs CTCCATTGCCAGCT in MEF2C, FLK1/KDR,
TIE2/TEK, TAL1, NOTCH4, and CDH5/VE-CAD, C) multiple alignment of

MEF2C orthologs in human, mouse, cow, opossum and chicken.
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The novel motif discovered by iTriplet is not only shared among vascular
development genes, it also exhibits high conservation among remote orthologs of
the MEF2C locus as shown in Figure 4.3C. Hence this result is promising for

further experimental studies about its biological function.

4. Multiple motifs

Multiple motifs are often identified by iTriplet for real biological sequences.
Four reasons account for this: 1) the number of sequences considered is small,
mostly 4 in our test therefore resulting in a higher chance to encounter random
span, 2) a naturally occurring recognition site is not necessarily represented by
one consensus, 3) it is possible for the biological sequence to carry more than
one signal especially in the 3° UTR, and 4) the presence of low complexity

repeats.

Therefore we need a scoring system to filter out random from genuine
motifs. Since only a small number of sequences are given, the set of true motif
instances must resemble each other more than a set of random /mers; otherwise
no conclusion can be made. As we have discussed in the inter-sequence
algorithm section, if members of the triplet are very similar to each other, the
intersection will become big, i.e. high numbers of common motifs. Based on this
property, we derived a straightforward scoring system based on the numbers of
common motifs uncovered to support whether the finding is statistically
significant. Due to this, the 5’ and 3’ overlapping neighbors of the true motif are
often included as part of the prediction as well. Therefore in some cases of the

genes listed in Table 4.3, the predicted motif is longer than the model specified.
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Each prediction is a consensus of a number of common motifs. The method of
constructing the consensus is similar to the frequency plot of Weblogo [Crooks et
al 2004]. Nucleotides with frequency at a position greater than 30% will be
included in the consensus sequence. As can be seen from Table 4.3, our
predictions for promoter and 5" UTR sequences, and 3’ UTR regulatory elements

are largely consistent with published experimental data.

5. Sensitivity and specificity test

We also measured the prediction accuracy of iTriplet in predicting
transcription factor binding sites in E. Coli. These binding sites are experimentally
validated and documented in the RegulonDB database [Salgado et al 2004]. The
test was conducted using the three-level testing framework described in [Hu et al
2005]. Under this testing framework, the prediction made by a method is
measured at the nucleotide, binding site and motif levels. In the first and second
levels, i.e. nucleotide and binding site levels, sensitivity, specificity, performance
coefficient and F-measure are computed based on the true positive (TP), false
positive (FP) and false negative (FN) information gathered by comparing the
predicted and actual binding sites. Performance coefficient and F-measure were
originally proposed by [Pevzner et al 2000,Tompa et al 2005] and [Hu et al 2005]
respectively. Both of them have the advantage to combine sensitivity as well as
specificity perspectives into a single number so as to ease interpretation. The
formula for these four measurements can be found in the Appendix K. Note that
at the binding site level, a prediction is considered correct when the predicted

binding site overlaps with the actual binding site by at least one nucleotide.
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These four measurements were calculated for each transcription factor
individually. Averaged measurements of all transcription factors are used for
method comparison. The Kihara group [Hu et al 2005] also suggested a third
level assessment that is motif level. The rationale of this extra level test is to
assess the adaptability of the method to make correct predictions for a wide
range of transcription factors. The motif level measures the fraction of correct
predictions out of all binding sequences and transcription factors. iTriplet was
compared with the top three performers, i.e. MEME, BioProspector and
MotifSampler, listed in Table 1 of [Hu et al 2005], and WEEDER [Pavesi et al
2004]. For each method, the parameter setup was adopted from [Hu et al 2005]
except that no background sequence information was used for BioProspector.
Motif length was set to 15, the same length used in [Hu et al 2005] except
WEEDER where the maximum supported length is 12. We chose the maximum
differences in the range from 3 to 5. For accuracy measurements, the top five
predictions were used for the three selected methods. But in our case, we
selected only the highest score consensus motif(s) instead of the top five used in
[Hu et al 2005]. Although only BioProspector and MotifSampler exhibit variation
in prediction even for the same input sequences, in order to maintain fair
treatment, we still repeat the test ten times for all methods. Results are tabulated

in Table 4 .4 below:



Algorithms Nucleotide level Binding level Motif  level

nPC nSn nSp nF sPC sSn sSp sF mSr sSr
iTriplet 0.195 0.292 0.322 0.286 0.319 0.489 0.418 0422 0.853 0.591
MEME 0.180 0.551 0.214 0.296 0.258 0.733 0.280 0.397 1.000 0.817
WEEDER 0.128 0.274 0.245 0.208 0.263 0.538 0.332 0.367 0.833 0.532
BioProspector 0.102 0.372 0.129 0.179 0.212 0.704 0.224 0.328 0.986 0.670
MotifSampler 0.052 0.257 0.068 0.091 0.106 0.422 0.111 0.162 0.461 0.392

Table 4.4 Prediction Accuracy of iTriplet versus four others motif finding methods.
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PC, Sn, Sp and F are performance coefficient, sensitivity, specificity and F-
measure level respectively. Prefixes ‘n’ and ‘s’ represent nucleotide or binding
site level measurements respectively. mSr and sSr are motif and sequence level

accuracy respectively.

Table 4.4 shows the averaged measurements of iTriplet together with four
other motif finding methods. iTriplet has demonstrated better prediction accuracy
than the other four methods at both nucleotide as well as binding site levels
except the F-measure is second at the nucleotide level. However, our mSr and
sSr scores are ranked third mainly because these two measurements tend to
favor methods with high sensitivity regardless of specificity. In the extreme
situation, if a method predicts all nucleotides are part of a motif, it will score 1 for
mSr and sSr. This point is further evidenced by the disproportionality of
sensitivity and specificity of the other three methods except WEEDER at both
nucleotide and motif levels. Therefore we think PC and F-measure are fairer

measurements of prediction accuracy than mSrand sSr.

6. In vitro verification of predicted poly(A) downstream elements

To examine whether motifs predicted by i Triplet had biological activity, we
chose to examine sequences important in the 3' end processing of mammalian
pre-mRNA, in particular sequences found just downstream of the cleavage and
polyadenylation site. Almost all eukaryotic mRNAs contain a post-

transcriptionally-added poly(A) tail that is important for many aspects of mRNA
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function. According to one bioinformatic study, 54% and 32% of genes in human
and mouse, respectively, contain more than one polyadenylation site [Tian et al
2005]. The poly(A) tail is added at the poly(A) site (PAS) in the nucleus in a 2
two-step reaction consisting of a large cleavage complex that cleaves the pre-
mRNA into two fragments followed by poly(A) tail addition to the upstream
fragment [Zhao et al 1999]. Two main sequence motifs are important for
cleavage/polyadenylation of mammalian mRNAs. The highly conserved and
well-understood AAUAAA motif (called the poly(A) signal) is found 10-25nt
upstream of the PAS. The second motif is found 10-30nts downstream of the
PAS but is poorly understood due to its low conservation both in sequence and
position. Although current bioinformatic approaches support the view that this
motif is U/GU-rich [Salisbury et al 2006], they provide only a limited
understanding of what motif(s) lies in this downstream region. First, the exact
identity of this putative downstream motif for a given mammalian gene is often
ambiguous and indeed it is a distinct possibility that there will be multiple motifs
including auxiliary motifs. Second, in some cases where the predicted motif was
examined by an extensive mutational analysis, the data supported the existence
of additional motifs important for poly(A) site function [Chen et al 1998]. Thus the
prediction of this downstream motif represents a type of problem suitable for
analysis by iTriplet. To this end the downstream sequences of a set of genes
was analyzed by iTriplet with the predicted motifs being indicated in Figure 4.4.
According to a NMR structural study of the U/GU-rich binding protein CstF-64

[Perez et al 2003], we believe the binding site should not be longer than eight
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nucleotides. Hence we applied a series of models ranging from 6 to 8 nucleotides
long to nine genes of interest to us viz. U1A, SPR40, CDC7, DATF, LBP1,
GAPDH, RAF, Mark1 and SmE. Results showed that model <8,2> yielded the
best fit with the consensus TCTGATTT and this motif agrees with previous
analysis performed by the Graber lab [Salisbury et al 2006] that the downstream
region consists of a transition from UG-rich to U-rich in the 5’ to 3’ direction.
MEME [Bailey et al 1994,1995] was used to process the same set of sequences

with the resulting motif being BTRDGSCWSA that lacks such a transition.
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Figure 4.4 Confirmation of predicted poly(A) downstream elements by dual
Luciferase reporter system. (A) pRL-GAPDHwt was made from a standard
PRL-SV40 Renilla expression plasmid by replacing the SV40-derived 3'UTR
and poly(A) signal sequences with the human GAPDH 3'UTR (NM_002046)
and 116nt past the PAS. pRL-GAPDHmt matches pRL-GAPDHwt but
having Motif A mutated as shown. Plasmids were transfected into HelLa
cells and Luciferase activity measured 24 hours later. Values for Renilla
Luciferase were normalized to those obtained from a co-transfected Firefly
Luciferase plasmid. The pRL-GAPDHwt plasmid expresses 2.2 fold more
Renilla than pRL-GAPDHmt plasmid thus Motif A is enhancing expression
by 2.2 fold. (B) pRL-RAFwt (NM_002880) was made like pRL-GAPDHwt but
from the human RAF gene sequences as indicated. pRL-RAFmt matches
PRL-RAFwt but having Motif A mutated as shown. These plasmids were
transfected and analyzed as in panel A. (C) pRL-U1Awt (NM_004596) was
made like pRL-GAPDHwt but from the human U1A gene sequences as
indicated. pRL-U1Amt matches pRL-U1Awt but having Motif A mutated as

shown. These plasmids were transfected and analyzed as in panel A.

To test whether the TCTGATTT motifs identified by iTriplet were
functional, the dual Luciferase reporter system was used where Renilla
Luciferase mRNA contained the entire 3'UTR plus sequences past the PAS of
the gene of interest. A co-transfected Firefly Luciferase reporter was included

that serves as an internal normalization control (details can be found in Appendix
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L). As diagrammed in Figure 4.4, the plasmid pRL-GAPDHwt was made from a
standard pRL-SV40 Renilla expression plasmid by replacing the SV40-derived
3'UTR and downstream poly(A) signal sequences with the human GAPDH 3'UTR
and poly(A) signal region (NM_002046) including 116nt past the poly(A) site.
iTriplet predicted that GAPDH has a motif we call GAPDH Motif A that would
potentially be important for poly(A) site activity. To determine if GAPDH Motif A is
functional, we mutated it as shown to make plasmid pRL-GAPDHmt. Plasmids
were transfected into HeLa cells and Luciferase activity was measured; values
for Renilla Luciferase were normalized to those obtained from the co-transfected
Firefly Luciferase control plasmid. The pRL-GAPDHmt plasmid expresses 43%
less Renilla Luciferase than pRL-GAPDHwt, indicating Motif A enhances Renilla

Luciferase expression by about 2.2-fold.

The same analysis was done in panels B and C but for the human RAF
and human U1A genes, respectively. As can be seen the RAF Motif A enhances
expression 3.2 fold and the U1A Motif A enhances expression by 5.1 fold. Here
we have demonstrated the predictive power of iTriplet for these three genes
however we do not exclude the existence of other binding sites that can also

affect poly(A) activity of these genes.

D. Conclusion

We have presented a novel rule-based algorithm called iTriplet to solve
the challenging degenerate and long motif finding problem that was unsolved

before. In addition, we have confirmed our prediction for real biological signals
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experimentally. The runtime of iTriplet is comparable to other well-known
methods of the same design philosophy and is significantly better at analyzing
longer motifs (>16 nucleotides). To our knowledge, iTriplet is the most
parallelizable motif finding method in the family of guaranteed optimal motif
finding algorithms developed so far. Furthermore we have shown that our
method is very competitive in prediction accuracy when compared with other
popular motif finding methods. Overall, our method has the superiority like other
exact optimal motif finding methods to find the optimal motif in the absence of
statistical overrepresentation and yet without sacrificing prediction accuracy. That
said, no single method or approach is able to solve the general </,d> motif
problem completely in terms of guaranteed solution, speed, memory
consumption and prediction accuracy. Thus, further research effort is needed to

overcome various hurdles of this problem.
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APPENDICES

Appendix A. Genomes, cDNAs, ESTs

Genomes

Human, chimpanzee, mouse, rat, and bovine genomes were downloaded from

NCBI (ftp://ftp.ncbi.nih.gov/genomes/).

Platypus genome was downloaded from UCSC genome browser website

(http://hgdownload.cse.ucsc.edu/downloads.html#platypus)

Human March 2006 (hg18)

Chimpanzee | October 2006 (panTro2)

Mouse July 2007 (mm9)
Rat July 2006 (rn4)
Bovine October 2007 (bosTau4)

Platypus March 2007 (ornAna1)

cDNAs

All cDNAs were downloaded from RefSeq database in NCBI

(ftp://ftp.ncbi.nih.gov/refseq/release/).

Human June 2008

Chimpanzee | September 2006

Mouse March 2008

Rat August 2009



ftp://ftp.ncbi.nih.gov/genomes/
http://hgdownload.cse.ucsc.edu/downloads.html#platypus

Bovine

June 2008

ESTs
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EST sequences and their mapped genomic locations were downloaded from

UCSC genome browser website (http://hgdownload.cse.ucsc.edu)



http://hgdownload.cse.ucsc.edu/
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Appendix B. EST-based poly(A) sites construction
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Figure B1 Workflow of EST-based poly(A) sites construction.

EST sequences were utilized to identify polyadenylation sites (PAS) in

human and mouse genomes. Below steps are taken for this process:

1. Screening of EST sequences: only EST sequences ending with at least 6 A

nucleotides (nts) or starting with6 T nts were included.

2. False priming validation: poly(A/T)-ended EST sequences were mapped to
the genomes. If the poly(A/T) nts is created by polyadenylation, no genomic
poly(A/T) should be found at the 3'/5° of the genomes. Otherwise, the
poly(A/T) of the ESTs were not really accounted by polyadenylation, so they

were removed from the dataset.
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3. Directionality of EST: filtered EST sequences were mapped to the genome in

order to determine the direction of transcription according to the following

conditions:
Mapped to Support transcript direction
genome
Poly(A) ended EST Plus strand plus (5’ to 3’)
Poly(A) ended EST Minus strand minus (3’ to 5’)
Poly(T) started EST Plus strand minus (5’ to 3’)
Poly(T) started EST Minus strand plus (3’ to )

4. PAS identification: filtered ESTs were separated into two groups by
directionality, one supports plus strand transription, the other supports minus
strand transcription. Within each group, ESTs were stacked up along the

genome. If the polyadenylated ends of EST (at least 3) are found to terminate

close to each other (10 nts), then such a locationis marked as a PAS.

In human, 899,786 out of 15 millions EST were found either have 6 or
more A at the 3’ end or T at the beginning. In mouse, 317,658 out of 8.5 millions

EST were found.

By this procedure, 17,080 and 8,799 EST-supported PAS were found in

human and mouse respectively.
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Appendix C. Pseudo PAS nucleotide composition

The most frequent poly(A) signals, i.e. AAUAAA and AUUAAA, were
scanned in the human and mouse intronic regions. These sites are named
pseudo PAS unless they are associated with EST-supported PAS mentioned
above in section B. [-500,+500] regions of these pseudo PAS were extracted.
Their nucleotide composition in human and mouse were analyzed. In human, it
was found that A, C, G and T compositions were 31%, 19%, 20%, and 30%
respectively. Similar composition was found in mouse as well viz. 30%, 20%,

20%, and 30% of A,C,G, and T respectively.
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Appendix D. 3’ UTR nucleotide composition

17,080 and 8,799 300-nt long fragments were randomly sampled from the
3’ UTR of genes with EST-supported PAS in human and mouse, respectively.
These random fragments were at least 50 nts downstream of the stop codon and
200 nts upstream from the PAS. Their nucleotide composition was directly
compared with the 300-nt long upstream region of PAS position by position.

Figure D.1 below illustrates the comparison separately by nucleotides:
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Figure D1 Nucleotide composition of A) human, and B) mouse 3’ UTR.

As shown above, 3’ UTRs are evenly enriched in T, and then A (red).On
the other hand, upstream regions of the PAS have a dramatic increase in A and
T frequency at around 50 nts upstream of the PAS, which likely is the location of

the poly(A) signal.
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Appendix E. Conserved flanking region of PAS outliers

As discussed in chapter 3, in order to understand the conservation of PAS
flanking region among genes that lack of the 16 hexamers (poly(A) signals), [-
500,+500] regions were aligned among human, mouse and cow. Putative poly(A)
signals are bold and underlined. They are mostly found at position 480 or 20 nts

upstream of the PAS.

STXS:
human_ stx5 -—-CTGAGCCTGTGCAGGGTACTT GGGAGAARAGGCCCTGTTTCCCTGGAACTGCTAAGAA 57
mouse stx5 CCACTGAGCCTGTGCAAGGTGGTTGGGAGAAAGGCC--ATTTCCTTGGAACTGCTAAGAA 58
cow_stx5 -——-—-TGAGCCTGTGCAGGGTGCTT GGGAGAAGGGCCCCGTTTCCTTGGAACTGCTAAGAA 56
Kk kkkkhkhkkk Kk khk Kk Kk Kk kkkkkkk Kk Kk Khkkhkk KAk hkhkkkhkkhkkkkkkhk Kk
human stx5 TGACCACTGCCCCTGATCCCCCACCCCTTGCCTCTGGCCACCCTGTCCTCCCCCCACCAC 117
mouse_ stx5 TGGCCAGTGTCCCTGATTCCCCAC -CCTTGTCTCTGGCCACTCTGTCCTATCCTCA---- 113
cow_stx5 TGACCACTGCCCTCGGTCCCCCACTCCTTGCCTCTGGCCACCCAGCCCTCCCCTCACCAC 116

*k kk Kk kk Kk*k Kk kK kAkkkkk KAk KkkAkKk KAk kkAkkkkkk kX kK kKK Kk kK

human stx5 CCTCAGGCCTATGAAACACACAGGGTTCTAGATT TGAACTCTGCTGTGAAGTGACTGGAA 177
mouse_stx5 ----- GGCCCATGAAACACACT -GGTTCTGGATT TGGACTCTGCTGTGAAGAGGCTGG——- 165
cow_stx5 CCTCCAGCCCATGAAACACACACGGTTCTGGATT TGGACTCTGCTGTGAAGTGGCTGGAA 176

kkk hkkhkkkkhkkhkk kk khkhkkkhkkhk KAk khkkhkk khhkhkkkkhkkkhkkkkkkk * Kkkkx

human stx5 GGGAGCAGAGGCCAGCTG-GGGGCCAGTGGGGGAGGT TGTTTCCACTAGGAGATTTTTAT 236
mouse stx5 -—GAACAGAAGCCAGCTA-GGGGCCAGTGGGGGAGGT TGTCTCCACCTTGAGATTTTTAT 222
cow_stx5 AGGAGCAGAGGCCAACTGAGGGGCTCGTCGGGGAGAT TGTCTCTACCAGGAGATTTTTAT 236
Kk kkkk Kk Kk k% * Kk k Kk * Kk kkkkk Kk kkkk Kk Kk k%K Kk k kk kk kkk k
human_ stx5 AAACC-CTCTCCAGCCTCTCCCAAAGGAAGCGTTGGCAGCAAAGGGAGATGATGCCCTTA 295
mouse stx5 AAGCCTATAACCAGCCTCCCCCAAACGTAAC--TGGCAGCAAGAGGAGAAAACGCCCTTC 280
cow_stx5 AAACC-CTCCCCAGCCTGTCGCAAAGGGAACT TTGGCAGCAAGGGGAGATGATGCCTTTC 295

*k kK * Kk kk Kk )k * kkk Kk kX Kk K K kkk kK Kk Kk * Kk kk * Kk kk k%K

human_stx5 CCCACCTTCCTGTGAGT GAAGAGAGGAAG ————- CAGCCCCAGGGACCAATTTTCCCAA- 349
mouse_stx5 C-----TTCTTGAGAGGCAAGAAT CCTCAAG-AAGTATCCAAGGGACCAACT TCATCATC 334
cow_stx5 CCCACATTC TTGAGAGCAAGGAGAGGAAGTGARACTGCCCCAGGGACCAACT TTCCCATC 355
- * * kk kk Kk kk * k% *k kkhkkkkhkkkhkkk kK * %
human_stx5 ———————————————TTGACCTCTTTCTTCCTCT -TT CACCATGTGAGGC-AGGGAGCCC 392
mouse_stx5 TGGGT CAGC TAGAACTTGACTGCCG-C-—CTTCT CCTCACCATGTGAGGTGAGGGGGCTC 391
cow_stx5 TGGGT - —— TAGAATTTGACCT CT T-CTTCCT CTCTTCACCACATGAGGC-AGGGGGCCC 409
- * Kk kK ok * * * Kk k% * kk kkk *kk kk *kk Kk kK Kk
human_stx5 TGAGCCCTT CAGCTGCC TGCACAACCCCTGACAT TGGCTGCT GGTGA-—CTCAATCTGCC 450
mouse_stx5 TGAGCCCTACAGTTGCCTGCACAAACC T-GACTT TGGCTACT GGTGACTCTCAATATGCC 450
cow_stx5 TGAGCCCCTCGGCGGCC TGCACAACCC C—AACTT TGGCTGCAGATGACTCTCAATCTGCC 468
- kK kkk kK * ok *hkk kk kkk kk K%k *k Kkkhkkkkk Kk k Kkk%k *kk kk Kk kkk Kk
human_stx5 AAATGTGCTGCAGC TCGTTTTC TCCCAATTACAGCAAGACTGTCAGCCTCACTAGCCATG 510
mouse_stx5 AAACATGCTGCAGC CTATTTCC TCCCAATTACAGCAAGACTGTCAGCCTCACTAGTGTTG 510
cow_stx5 AAACGTGCTGCAGC CCGTTTTC TCCCAATTACAGCAAGACTGTCAGCCTCACTAGCCATG 528
- * ) K Kk kk kkk kk R S S i R i R e I i I b i I b * *
human_stx5 TCATCATTTCTGGGTGGGAGCGTCGAA ~— -GG GC CTAGGCAGCGAGT GGAGAGAGCCCAC 567

mouse stx5 ATGTCATTTCTGGGGGGGGGGG —— -GG ——- -GGACTTCAGCAAA-AA-----GCTAACCAC 558
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TCGTCATTTCTGGGTGGGAGCGCCGAAGAAGGGCCTAGGCAGA-AAT GGAGGGAGCCTGC

*khkhkkkkkkkkkx kkk * K ** *x x * kK * * *

TGCCCAGTACCAGAACTGAAAGGGTTGGGCTAATGGCTCTGCCAGGTAT CACTGCTGACA
TGCCCAATACCAGAACCAAAAGGGTTAAGTCAGTGACTCTGATGGGC ——CCCTACTGATA
TGCCCAGTATTACAACTGAAAGGGCTGGACTGATGACCCTGAGGGGC - -C——————————

kK kkhkk Kk Kk * Kk k% Kk kkk kK K * Kk kX Kk k%) * ) *

——CAGG--CTATTTTGGGCTCTG-ACACACAGCTGCCTCTAGGCAGGGGAGAACCAAGTG
GGCAGGGTAGCTCCGGAGCTCTGTACACACAACTCCCCCCTAGAAGCGAGTAGCCAAGTA
———————-AGGCTTTGGGCTCCATGTATACAGCTGCTTCCAGC--GGGCCTAACCAAGTG

*  kk kK * kxkx kK K * * K * ok kk kkk

TTGCAACACTTCAT TAGCGTGGAAACT TCCTTTCACACAGGGGAGCAGGATCCCAGAGGG
CAGCAGCACTTCATAAGAGT-----TTTCCTTTGGACTAAGTG-—-——-————=———-—=-—=(
CAGCAGTACTTAATTATCATGGAAAAT TCCCTTCAAAGCAGGGTACACGATCCCAGAGTG

* %k k% *k kk kk K * * kk k Kk k * K *

GGTCCCTGATTGGGGGCAACTTCCAGGACTATCTCAAGCAGTGTTTGGACCTGTTTCA-—
GTTCATAATTGGGCGGCAACTTCCAAGACAGTACCCATAAG--TTTGAGCCTGTTTTGTA
ATTCTCTGATTAGTGGTAACTTCCAGGACCAT CTCCAGAAGTATTTGGACCTGTTTCA—-—

* % * * kk Kk kkkkk Kk Kk kKk * * X% ** * kK Kk *kk kk kK

TCTGT -—-ATCC--TCCAACTATTTGGCCGTAATTCTTCCTTGAGCTAAGCGA -——-—---GG
TCTTCAAAT CAAGT CATGCTCCATGCCTACCAGCACCCCATCTGCTTCCCCCTCCCACAG
TCTGC --ATCT--TCCAGTC----—-CCACCATT-TTCCTTGGGCTGGATGA-——-—---AG

* ) K * Kk K * * * * **  x * kK *

CAGAAGCTCT--GCCTGCTTCCAGGAGTGGAAGGTG- ——AAGAATTTGTTCCC--AACTC
CAGCATCTGGATCCAAGGCTGCAATAGTCCTAGCCACACCAGAAAAGTT TCCTAGAGCTC
CAGGAGTTAT--GCCTGCTGCCAGGAGTGAAAGGTG- ——AAGAATTTGTTCCC--AGCTC

K’k Kk K * * * * * * K K * x * Kk kK * Kk kK * Kk Kk

CAG-TTGAGGCTTTTGATTCCCTC --CAAGCACTTCACCAAATCAAAGCCAGTCACAG-A
TTGGGTTTGACATTAAAGT TTCAGTNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
CAG-CTGAGGCTCTTGATCCCCTGTTGAAGCCCCTCACCAATTCA-AGCCAATCACAGGA

* * * K * * *

GAATGG---AGACACCTGCCCAGAATACCCACCGTCCAGGGA---GA 1000
NN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCAGAAACCCTG 1000
GAATGAAGTAGAGATCTGCCTGGAATACCTACCCTCCAGGAA----G 1000

* Kk *

587

627
616
635

682
676
685

742
715
745

800
773
803

850
833
846

903
893
899

959
953
957
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MBDG6:
human_mbd6 —————————-——————-GGCTGCTGCCCTCCTTCCCAGT GAAAGGTACAAAGCAATAAGC 43
mouse_mbd6 -—CTGTGAGCTACTGTTGGCTGCT GCCCT CCT TC CCAGT GAAAGGTACAGAGCAATAAGC 58
cow_mbdé ACCTGTGAGCTACTGTTGGCTGCTGCCCTCCT TCCCAATGAAAGGTACAAAGCAATAAGC 60
hhkhkhkhkhkhkAhkhkhkhkAhkhkhkkhkhhkk ,hhkkkhkkhkhkkkhkx *khkdkxkkrxx*
human_mbdé ATCATGCATCCTCCCCTTACCCCT ~CCAACACCCCTC TGCCTCTGGCTCAGGTTGCTCAR 102
mouse_mbd6 ATCATGCAT CTCCCCGATTCCC —A-CTAGCACCCCTCTGCCT CTGGCTCAGGTTGCTCAA 116
cow_mbd6 ATCATGCGTCCT CCCCTCACCC CTGCCAACACCCCTCTGCCT CTGGCTCAGGTTGCTCAR 120
*k kkk kk kK * kK * %k k% * ok kkkkhkkkk Ak hkhkhk Ak hkhkk Ak hkkhkkhkkhkkkkk &
human_mbdé AGCACAGATCCT ~CTCT TACCCCGTCCCCAGGTT TGAAACACATAGCCTCAT TTCAAGGT 161
mouse mbd6 AGCACAGAT CCCCTCTTAT CCCTGTCCCCAGGACCGAAACACATAGCCTCAT TTCARAGC 176
cow mbd6 AGCACAGATCCCCCTCTTACCC TGTCCCCAGG TT TGARACACATAGCCTCATTTCAAGGT 180
*k kkk kk kk kK * *kk Kk kkk kk kkk *hkhkkhkkkkkhkhkkkkhkhkkkxk*kx*x *
human mbdé GTAGCCAGGTTCCCCCGAC TTTCC TCTGGGATATAAAAAAGGGGGTAAGGGGGCARAGAG 221
mouse_mbd6 GTAGCCAGGTTCCCTCT GCTTTCCTCT GGGATATGGA ~AAGGGGGCCAAGAGG- —————— 228
cow_mbdé GTAGCCAGC TTCCCTCCAC TTTCCTCT GGGAT ATGAA ~GAGGGGGTAAGGGGGCAARGAG 239
Kk kkhkkkhk Kk Kkkk Kk K Kk AkKkkkkhkk Ak kkhkk k% * kK Kk kK Kk * Kk Kk x
human_mbd6 AGCCCTCTGGGCCT CTCCTCCCATACACACTACACTGCCCCT TCTCCCCCCATCAARACG 281
mouse mbdé -—-ACTTTGGATCTCTCCT -CCATACACACTACACTGGC CCTTCTCCCCA--T-CAAGCG 281
cow_mbdé AGCCCTCTGGGT GT CTCCT CCCATACACACTACACTGCCCCTTCTCCCCC-ATCAAAACG 298
* Kk kk ok hhkhkkhkk Ak khkhkhkhkkhkhkArkhkhkhkhxkx Khhhkkhkrkk k% * * Kk Kk ok
human_mbd6 CTCAGAGACGTTGTGAT GATGCGACTGAGGATTATGCAACGT GGTCCAACCGGAGCGGCC 341
mouse_mbd6 CTCAGAGACGGTGT GACGATGCCACTGGGGGT TATGCAGCGT GGTCCAGCCGGAGCGGCC 341
cow_mbdé CTCAGAGACGTTGTGAC GATGCGACTGAGGATTATGCAACAT GGTCCAACCGGAGCGGCC 358
khkhkhkhkhkhkhkhk Kk hhkkkhk *hkkhkkk hkhkkk *k khkhkhkhkkk * *khkhkhkhkkk *hkkkhkhkkkhkkk
human_mbdé AGCATGACCAGC TGTCCAGGGGCT GCCTCCTGCCTTT TCTTT TGTAAAGACAAGACCCTT 401
mouse_mbd6 AGCATGACCAGC TGTCCAGGGGCTGCCTCCTGCCTTTTTTTT TGTAAAGACAAGACCCTT 401
cow_mbdé AGCATGACCAGC TGTCCAGGGGCTGCCTCCTGCCTTT TCTTT TGTAAAGACAAGACCCTT 418
KAk Ak A kA Ak A kA Ak Ak Ak hk Ak kA Ak hk kA khkhkkhkhkkhhkk dkkhkkhkhkkhkkhkkhkhk hk kk vkkx %
human_mbd6 GGGAGTTTTAATTC TGTTT TGTAC TTGCC CTGTGGGGCC TCCACTGCTT TTCTATGGGAG 461
mouse_mbd6 GGGAGTTTTCATTCTGT TT TGTACTTGCCCTGTGGGGCCTCCACTGCTT TTCTATGGGAG 461
cow _mbdé GGGAGTTTTAATTCTGT TTTGTACTTGCCCTGTGGGGCCTCCACTGCTTTICTATGGGAG 478
R i R S S b I I R I I IR i R R R I i I b I b I i R
human_mbdé ACACTCTTAATT TAACAGATGAGAATATT TTGAAACT CTGGCTCTGGCTCTGTACTCATT 521
mouse_mbd6 ACACTCT TAATT TAACAGATGAGAATATT TTGAAACT CT GGT TC TGACT CTGTACTCATT 521
cow_mbd6 ACACTCTTAATT TAACAGATGAGAATATT TTGAAACT CTGGCTCTGACTCTGTCCTCATT 538
hhkhkhkhkhkhk Ak hkhhk Ak hkhkkhk Ak hkkhkkhkrkhkhkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkdxkx *hkdkx *hkhhkxk *kxkkk*
human_mbd6 TTTT-ATTTAGT TCTTTGGTAAGAACAGGTTACAATT TAAATCCATC TCTTGTAGTATAG 580
mouse_mbd6 TTTTTATTTAGCTC TTCGGTAAGAACAGATTACAGCT GAAAT ~AGTC -~ TCAT--AATAG 576
cow_mbd6 TTTT-CCTTAGT TCTTTTGTAAGAACAGATTATAATT TARATCCTTC -— ~TGTGGTAGAG 594
*k Kk k *kkk kkkk kkkkhkkkkk Kk kkk K * ok kkk * % * * kK
human_mbd6 AGTGGCT TAGAT TGCCT GT TAT GACGAAT GAATATCT ATATCCTAGT GCTGCTTCCTCCC 640
mouse_mbd6 TGTGGCT TAGACTGTT--—-A--ACG-TTATGCACG--TCTC TCAGTGCTGCCTCTCCGA 627
cow_mbdé AGT-GCTTAGACTGTC- -~ ----ACG-CTGIGTATGT CTCTC TCAGT GCTGCCTCTTCCC 645
K,k kKkk Kk Kk Kk * Kk * * * k% *kkk kk kkk kK *
human mbdé --—CAGGAAACACAGCAGAGGC CACACAGAGT ACAACAGCAT TTAAT GGTCAGAAACAGT 697
mouse_mbd6 AATCCAGGAACACAGCAGAGACTC --CACGGTACAACAGCAT TTAATGGTCAGAGACAGT 685
cow_mbdé --—CAGGAAA--CAGCAGGGGCCAGACAGAGT ACAACAGCAT TTAAT GG TCAGAAACAGT 700
* * kK *kkkkk Kk Kk Kk * x KAk Ak hAkKhk Ak Ak khkhkhAkhAkkhkk khkk hxkk*xk*k *hk*x*
human_mbd6 TGTACAGTATTACAGTCAGCCACAGAAGC TGTGT TGGGGGACAAGACCCAAT ~CCTTCCC 756
mouse_mbd6 TGTACAGTGTTAGACTCGGCCAGAGAC AGAC- GT TAGAGGACGGGAT CCAGT CCCTCTCC 744
cow_mbdé TGTACAGTATTACAGTCAGCCACAGAAGC TGTGCTGGAGGACAGGACCCAAT ~CCTCCCC 759
kkkkkhkkkx Khkhkk k kk khkkk Kk k% * ok ok Kk kkk *k kkk Kk Kk k*k * *
human_mbdé CACACCAGGCAAAGCAG ~TATTGGACATGAGT TGGCATGTGGCTGGGCCCACGTCCTTAT 815
mouse mbd6 CACAGCAGGCAAAGCACTTACTGGACGGGAACT - GCATGTGGCT GGGCCCACAACCTCAT 803
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cow_mbdé6

human_mbdé6
mouse mbdé
cow_mbd6

human mbdé
mouse mbdb6
cow_mbdé

human mbdé6
mouse mbdb6
cow mbdé

human_mbd6
mouse mbdé
cow_mbd6

CACACCAGGCAAAGCAG-TATTGGGCAGGAGCTGGCATGTGGCTGGGCC ~ACGTCCTCAT

*k kk  kkkk kkk kk kK *k kkkx Xk * * * kkkkkhkkkkk hkkkkk kx *k xk k Kk

CCCCCAGG---CCTGAGGGGAGACCACC-TTC---TGATGATAACCAACCCCT-AGCTAC

CCAATAAGAGCCCCCAGCTCCCACTCTGTTTGTCGGGAGGGT GTGTACCCCACATGCAAG
CCCTGTGG---CCTAAGGGGAGACCATC-ATT---TAAT ——-——--—-ATCCCC-AGCTTC
* ) * * x ** * ) * * * % * *

CACTC-TGTATTCATCAGGGGA ---G-GGGTATAAACC-CCACATGCAAGAAGAACCCTT
AACCCTTGCCCTTGTCAGGTGGGCTGGGGCTGTGAGT GACCCTGTGGAAGGGTCTGA-CA
CACT-----ACTCTTCAGAGGA---GGGGGTGTAAGCC-CCACATGCAAGAAG—-CCCTT

* K * * Kk Kk * * kk x Kk * * K *k kK Kk

GCCCCCAGTGTCAAATGGGATGGGGATGCTAGAG ~TTATAGTAAAGGGGAAACCCTATG -

AAGTTCAGGGGCAAGGGTCATCCCCGCTCCCCAGCTCCCAGTGATGCTC -——-ACTTTCC
GCCCCCAGTGTICAAATGGG ————-—-ATGCAAGAG-TTACAAT TAAGGGGAAACTCTGTG -
*k Kk Kk Kk kk * * *k  x * ok Kk % *k  x
TAAGCTGTT -AACAGAGTTCAC--——---——---——--——-—= 1000
CAGCCTCTTCATCCGAGCATCA----—--———————-—--= 1000

TAAGGTATT ~-AATGGAGTTCAAAGGGGTAGGGATTACCC 1000

* * kK X * )k

817

867
863
861

921
922
910

979
978
962
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human plekhg3
mouse plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_ plekhg3

human_plekhg3
mouse_plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_ plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse plekhg3
cow_plekhg3
platypus plekhg3

——— == —————————— -~ ——- GGATGCTCCCGTGTGCAGGGGT CTCCT GCCTGTGCCATC -
GIGT--------—-=--—--GAACT CACCT GT TACCT GTGCT GGNNNNNNNNNNNNNNNN
GGGAG--—-=—=—==--=—--AGCACCT GCCAT GGACC GGGA-—-CTTG---CCGGCGAC-
GAATCTGCCACTCCCAGAACTCCCT CTGCCACCGCCCATCCTTT - ——-—-TCTGCCGTA -
* * *
-—CACTGGGG-—----—=-—--CTCGAGACRAT- --— TT CCCACTCACC TGTGAGGCCGGT —
NNNNGGGAGGT- —-- —- —-- CCCAGGATGAC- --- TGACT TTCCT TAGGT CCAGATGAG -
TTGACACAGG--—--——-—--CCCATAT GAG—-—--—-CCCCTTTCCCCTGT GAGGCCAGG -
-—CAGGAAGGTCCCCGGCAAGC CGGACCACTCGCT TCCCCGAGAC CCGACCCAGCCGGGT
* % * * *
GTGGCTGCT---—--TCCCTTGTAAATAGT TGTTC TC TGG TAAGAAGCCAAATATTTAAG
CTACTTACC---—--TTCTCTGTAAATACT —- ~-TC TCTGATAAGAAGCCAACTGTTTTAT
GTGGCCACT---—--TTTCT TGTATATAGT T-——-— CTGATAAGACGCCAGATATTTAAG
CCGGCAACCAGGGGATCATTTCTCCTTTCT T- ATCTT TAGTGTATATATATATATAARAR
* * * ok * * * * * * ok *

CTCACTTCTTCCCAGAGAGAGGA---AGCTCTGCTCAGGCCTCCAGCGTTGGCTGGCCAT
C———-—---CTGCCCAGGGAGGGCG——--AGCACTGCCCTGGCTTTCCTTACTGGCTGGCCAC
CTCATCTGTTCCCAGGGAGAGCA---AGCCCTGCTCAGGCCTCCAGCGTTGCCTGGCCAC
AGAAAAAAAACCGTTGGAGAGGACCATGAGGGGCCGTGACCTGCCCAG--AGCCAGCTCC

* K *kk K * * K * kK ok K * * K

GGCCACAGCCAGATGGAGGAGCCCATCCCCAGGAGACTCAGGCAG -TGGCCTGGAGAGGC
TGCCTGGCTGAG ————---—-AACCCA--AGGGAGAGACCTAGGAAG-CAGCCCGGGCAGGC
TGCCAGACCCAG ————-——--GGCCCACCCAGGGGACACACAGGAAGCTGGCCTGGGGAGGC
TACCCCCCCGGC ————--——-GGCCAACCCAGAGGGGAGATGGGACA -GGTTCAGGAGAGAC

* x * kK * * * % * k% *k  k

TTTGTTCTGTAACGGTGCCTTTTCT TAGGGTCCAGGCAGGAATGAAGCCAATAATTTATT
TTTGCCCTTTAAC--TGCCTTGTCATAGGACCCAGGCAGGAATGAGGCCAATAATTTATT
TTTGCTCTTTAACTGTGCCTTTTCT TAGGATCCAGGCAGGCACGAGGCCCATAATTTATT
TTTCTCCAAGCCA--CCTCAGTTTCCGGGAGCCAGCCTGGAAGGCG——--——--TCTGCT

* k% * * * * % *kkk Kk kk Kk K *  x *

GCTTTCCATTCTGTIGGTATG ———-————-———-————-—ATGTGCGTGTGCGTGAGTGTGTG
GCTTTATATCCTGTGNNNNNNNNN-N- -———-——————NNNNNNNNNNNNNNNNNNNNNNN
GCTTCCCATTCTGIGGTATGTTAGTGTTCTCGTGCACACGTGCGTGTATGCGTGTGTGTG
GGGTCTCAGCCCTTAATTT--—-ATTGC——--——-———-—---TTTCCAGACTGCAGACTTGGA

* * * * *

-GCCCCTGTITTATT------—-CCCCTCCTGTCAAGAATGAAGTGGATTCAGTTCAGGTA
NNNNNNNNNNNNNNNNNNNN -—-NNNNNCTTGTAAAGAATGTAATGGACTTAGTTCAGGTA
TGTGTGTGTGTG--TTGCTTCTCCCCTCCCAGGAAAAGTCTCGTGGCCTCTATTCAGGTA
TAGGGAATGGGGAGG —— ————-———-G--—AAAACGGAGGGGAACGGTCTCAGTCCAG ———

* * % * *  kkk

CTTTTGAGGGTTGTTGTGCTGACCCTGTGGTTGTCGCTGATGTACACACATTTCATTATT
CTCTCGAAGGTTGTCTTGCTGGCCCTGTGGTGGTTGCCAATGGACACACATTTCATTCTT
CTTTTGTGGGTTGTCTTGCTGGCCCTGTGGTTGTTGCTAATGTA--CACATTTCATTATT
——=—=—=————-AATGGGCTAGGGCTGTGC -TGTCTCTAACGTACACACATTTCATCTCC

* Kk x * kK Kk * K * * Kk % Kk kkk kk kK k)

TGCCAATGGTGCAATAACCACTGCTGACCAACCCAC-TATGTGTGAACTCCTTCCTAGGC
TACCTATGGTATAATAACCACTGCTGACCAACCAACCTGTGTGTGGCCTCCTTCCTGGGG
TGCCAATGGTGTAATAACCACTGCTGACCAACCAACCTGTGTGTGGTCTCCTTCCTGGGG
TGCCAAAGGTGCAATAACCACTGCTGAGTAGCCACCCCTCGTCCTGCCTTTTTATTGGGA

* Kk Kk Kk Kkkk *hkk kk khkk kk khkk k% * k% * * % * % * % * Kk

TT-GGCTGGGGT AGGGAAGG TTATT CATGGGCCAGGGATGTC TTAGGGAGAT GGAGACA —
A———— == === —CATGGATG— == === == === = ——— —
TCT GGCT GGG TTGGGAAGGGTCGAT TG ~TGCCCAGGGCTG TC TTAGGGGAAGGT GGGACT

TT--CCTGGGGCGGGGCGA--—-GCTCAGGGGCTGATGGCAGCCAGGCGGTAGCCAGAAG —
*

39
44
38

82

81
111

136
141
130
170

193
192
187
228

252
242
240
280

312
300
300
330

355
348
360
375

406
406
418
419

466
466
476
466

525
526
536
526

583
535
595
580
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human plekhg3
mouse plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

human_plekhg3
mouse_ plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_ plekhg3

human_ plekhg3
mouse_ plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse plekhg3
cow_plekhg3
platypus plekhg3

human plekhg3
mouse_plekhg3
cow_plekhg3
platypus_plekhg3

TGGAGGTTGT TCCTTCCAC— —— —ACTCAAT TGTCACT TGGGCTTATGAAACATAAGGCAC
————— - ————-————CTC----ACTCAAATGTC--- CGGGCACAGCAGACAAGAT-AAC
TGGG-CTTTT TGCTT CCACG TGTAC TTAGTATGCAGCCAT GCTCT CARACCACAAGG —-C
S~ GGCAACAGCCCACAGCC -AC

* * K *

CCGGGTACTGGT GGGGGAGG —~TGGGGCAGGAGGAT GTGAGGGCGGGCTTTTTCTTTCTGC
AAGGGTGCTCACGGG TCAGG-TGGGGTA-CAGAGTGTG-AGGTGGGATCT TGATTCCTCC
CCAGGTCCTGGTAGAGGAGGCT GGGGCAGCATAAT GTGCAGGAGGGGGCTTGTTCTCTGT
CTGAGCATTTACTCAAAAGGCCCAGGTTGCCCATCATG-CTCTGAGGCCTCCACCCTTGA

* * * k% * x * * *  * * *

TGCCTAGACTCCCATGGGCTTCTCTGTCTAGCAGCAGCCTGCTGTCCTGTCTAGGGTAGG
CATGTTTGCCTCTGTGCATTGCTTTGTCCACCCAAAGCGTCATGTTCTGTCTCGGGTGAG
TATTTCTACTCCCACGGGCTTC --TGTCTACCCACAGCCTGGCGTCCTGTCTAGTGGTG —
GCCTCTCGGTGTCTCAGGCCTC -—-GGCC-CTCAGGGAGAGG -ATCCTGCGGAGAGAACC

* * K * * Kk kK *x K

GGGTCCCGCATGCCAGCCTITTTGCTCTTTTCCCCAAGGGCCAGAGTTGGACCAAGAAAAA
AT-TCCCACATGGGAGCCTTGAGCTCTTTTCCCAAAGA--CAAAGTTGGGAAAAGC-———
-——---ACCGTGCCGGCCTTTAGCTCTTTTCCCCAAGAGCCAAAGTTGGATTGAAA——-—
GCTGTGTGCA-GAGGGCTCCGCGCCCTTTCTCTCTTGG--CGGGGTATTCTTCCCCC———

* * *x *k  kk kK * * * * *

GGGAGGTGGTGAGGTGGATAGACTGTT TTTCT CATAAGCAGATGCTCCCAGTATCTGGTG
-—TGGAACCGACAGGGCGAGCAGAACCCTTCAGATAAACGGGGTTTTCTAGGGTCCAGTG

——GGGGTGAGGT GGAGGGTGGGATGTTTTTCTAACAGACAGATGTTTCCA -TGACTGGTG
-——AACCTGCTTCTCAAGTCTG---CCTGCTCCTTGAACCAGCCTCGCT-~----CGAGCG
* * * * K

CCTTTTGCGT -—-TT---CTCTCCGGTCCCCAGGAAACAT CCTAGAAGACAAGGANNNNN
ACTTTTACTCATCTCTCCCTCTCAGGTCCCCAGGA -——--——--GTGGGTGAGGGTCCTA
CCTTTTATTC ---TCTCCCTCTCAGGTTCCCAAGAGGCATCCTGGGGGGTGAGGATTCTA
ACTTTC----TTCTGAAGCTATGGGTTCCCTGCCAGC ——-——--TGGGGTGTGAGGCCCG

* K Kk * **  *x * Kk k% * * *

NN NN NN NNN NN NNN NN NNNNNNNN - N NNN NN NNN NN NNNNNNNNNNN-— == == === == =
AGGTT GAGGC TTAGCAATGT CC TAAAGTGG TC TGCAGCGT TG TGGAGTGT AAGT GTATT T
AACTTAGGACCTAGGAATAT CTTAG -G TGGCT TGCAGTGT CAGGTG.
AGAATGAGCCGTAGCAAGAGTA ——— == ————————————————————————— _AGCAAGG

TATTGGAATGGT -TCCTGTTCTCAACAGCACCCACAGAAGTGTCTGGTTGCAAA —--AGG

GAGCCTCTAGCACTCGGGG-CCGGGGAG-ATGTTT ——GTTTCCG-GCTGCTGGGCTCGGG

—————————————————————————————— NN-NNNNNNNNNNNNNNNNNNN 1000
--CCAGGAATGCCCC —-————-———-—=---AT-TTCTAAATGGGCTTTTTTT 1000
e~ GG-GGTACAAGTGTGTGTTTTC 1000
AAG-GGGAGTGCCCTTT GGCAGGGC CT TAACT GCATC TGGTTACCTAGAGGT 1000

639
571
652
599

698
628
712
658

758
688
769
713

818
741
819
767

878
799
876
816

932
850
933
865

979
910
979
894

979
966
979
949




TBC1D10B:
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human tbcld10b
mouse_ tbcldl0b
cow_tbcldlOb
platypus_tbcldlOb

human tbcld1l0b
mouse_tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

human tbcld10b
mouse_tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

human tbcld10b
mouse tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

human tbcld10b
mouse_tbcldl0b
cow_tbcldlOb
platypus_tbcldlOb

human tbcld10b
mouse_tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

human tbcld10b
mouse_ tbcldl0b
cow_tbcldllb
platypus tbcldlOb

human tbcld10b
mouse_ tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

human tbcldl10b
mouse_tbcldl0b
cow_tbcldlOb
platypus_tbcldlOb

human tbcldl10b
mouse_tbcldl0b
cow_tbcldllb
platypus tbcldlOb

human tbcld10b
mouse tbcldl0b
cow_tbcldlOb
platypus tbcldlOb

CT----———---------——-CCATAGCTCCCCTTACC-ATGAGGT GGAGCTGGCTTCCT
CTGGGGTGCTGTCTTACACTCCGGTGGCTTCCCTTAG--~--ATGGTGGAGCTAGGT TCCT
C----—————-—------—-—-CAGTCACTCCCCTTACCCGTGAAGTGAATCTGGGTTCCT
CTGGATCG-——-———-————-—-TAAG-TGTCCCCAGACTTTCGCTTTGAAGCCTCCTTACC

* *x kKK * * Kk Kk Kk **x K

TTTCCCTGTCTTC-AGCCCTCCCTG-—-———-——-————-——-TCTCCCCCACTTCC———--T—-
TTTCCT -GTCTTGGGGCCCTGCCTG-~--———--——--——-TCACCCCA-CT-GCCTACTGG
TTACCC--CCTTC-AGTCCTGCCTG——-—————-——————-TCTCCCCAGC-TCCTGGCTGG
GTTTTCTCTTCTC-CACTCACACGGCGCCTAGGTTCCCTAATCCCCTCCATCC ———-TGT

* * * * K * K Kk * * *

-GGCCAGGG~-~———-———-CTCTCATTCTGGAC----CTGTGTT-GTAATTGTGTACAGA
GGGCCAAGG-CTGTTTT---—— CTCTCCTGGATATCCTTGTGTT -GTAATTATGTACAGA
GGGCCCAGG-CCCTTCTTGCTCTCCTTCTGGACATCTCTGTGTT ~-GTAATTATGTACAGA
TGGCCCGCAGCT-TTCC--—--CA--—-—-——-—--CACC-CTCCCTCCCCACTTCCCT-TTCT

* kK ok * * * k% *

GGATGGCG-TTGGCCTG-GGGTGGGGGTGCTCGCTTTGTCTTCTGTCCTTTGG ——-TTC-
AGGTCAGG-TTGGCCTG-GGGTGGGTG--CT-—— -~ ————--——-GTCCTT-——-—---TCC-
GGACCTGG-TTGGCGCA-GGGTGG