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Comparative Poisson Trials often test interventions to prevent rare adverse binomial outcomes. 

We extend Gail’s “Design A” approach to continues the trial until a predetermined total number of disease 

cases, D, occur into comparing K>1, treatments to one control. Controlling overall type I error and a post-

hoc procedures to identify which treatments are better are addressed.  

With the Poisson as the underlying distribution, conditioning on D disease cases total, the number 

in each group is multinomial distributed with parameters that depend on the incidence ratios of treatment to 

the control arms. Rejection regions based on the 1) numbers of cases that occur in control and/or 2) 

minimum number of cases among treatment groups are considered to test the global null hypothesis that no 

treatment is superior to the control. A tool known as the stochastic matrix simplifies size and power 

computations. Decision rules which are robust to some treatments being inferior to the control are 

discussed. There is no uniformly most powerful test against all alternatives, but rejection regions should 

have the Lower Left Quadrant Rule property. The discreteness of multinomial complicates derivation of 

theoretical results. Still, some identities are proven for comparing K=2 treatments to the control that we 

believe will extend to K ≥ 3.  

For K=2, the post-hoc procedure that applies standard binomial tests to each individual treatment 

vs. control hypothesis when the global hypothesis is rejected is superior to the Bonferroni adjustment;  

reducing by 7 % to 18 % the follow up disease cases required for the range of settings we studied.  We 
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considered unbalanced allocation of follow up time to treatment and control groups. While discreteness of 

the multinomial distribution prevents analytic solution, a systematic point by point search that computes 

powers for a range of treatment / control allocation ratios with small increments is applied to find the 

optimum allocation ratio. In most cases the optimum allocation ratios do not perform substantially better 

than equal allocation in terms of minimization of the D or expected subject time needed to obtain D for 

given Type-1 error or power. 
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Notation 

Symbol Description 
K Numbers of new treatment groups (fixed for the design, K=k) 

D Total number of disease cases (this is fixed for design A, D=d) 

DC Numbers of disease cases in control group, the control group could be placebo or current 

treatment (random or fixed depends on the design; random for design A) 

Dk Numbers of disease cases in kth new treatment group for k=1,…,K (random) 

D(1) Minimum number of disease cases observed in a new treatment group among the new 

treatment groups (random) 

DT Total numbers of disease cases in all new treatment groups = D - DC 

N Total population (or follow up) size in control and new treatment groups (random for design 

A, fixed, N=n, for design B) 

NC Population (or follow up) size in control group (random for design A) 

NT Population (or follow up) size in each new treatment group (random ) 

ρC  = NC/N Portion of N in control group (fixed for the design) 

ρk Portion of N in the kth new treatment group, (ρ1= ρ2=…= ρK in the design) 

ρT = NT/N Portion of N in each new treatment group, ρ1= ρ2=…= ρK=ρT (fixed for the design) 

Note: ρC + KρT = 1. For equal allocation among control and new treatment arms,  

ρC = ρk = 1 / K+1 for k = 1, 2,…, K. 

ρ = ρC / ρT Ratio of the portion of total population in the control group to the portion in each new 

treatment group (fixed for the design) 

Dρ Minimum numbers of disease cases required for given size level and power for design A for 

unequal allocation ratio ρ 

iC Incident rate per subject year/time in the control group (fixed, but typically unknown) 

ik Incident rate per subject year/time in the kth new treatment group (fixed, but unknown) for k 

= 1, 2, …, K 

rk = ik /ρiC the tru but unknown relative risk of the new treatment group k to the control group for 

k=1,2,…,K 0≤ rk and assume rk  ≤ 1 unless otherwise stated 

λC Poisson intensity rate for number of events in control subjects for a given NC, λC = iCNC 

λk=r k λC Poisson intensity rate for all subjects in new treatment group k for a given NT. 

Rα  The rejection region defined on (DC, D(1))for the global null hypothesis that all Treatment 

groups are equal to the control Group. This region is denoted to have an overall Type-1 Error 

of α when none of the treatment groups exceed the control 
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Chapter 1 INTRODUCTION AND OBJECTIVES 

1.1 Motivation – Comparative Poisson Trials with Multiple New Treatments and One Control 

Studies are often conducted to compare outcome incidence rates in different groups when these 

outcomes either have a Poisson distribution or are binomial with a very low probability that can be 

approximated by a Poisson distribution. This problem is well studied for one new treatment compared to 

one control and the Comparative Poisson method for statistical inference was proposed and designed by, 

among others, by Gail (1974), Brown and Green (1982).  

However, there are many settings where multiple treatments are compared to one control. For 

example, when K normally distributed new treatment outcomes are each compared to one normally 

distributed control with all having the same unknown variance, Dunnet (1955) reduced the numerical 

dimensionality of the distribution of the test statistics from K+2 to 3 by an integration that conditions on the 

distribution of the control mean and the independence of the treatment means.  While Dunnet’s method is 

widely used and has been expanded to many related settings (Hochberg, Tamhane, 1987), no analogous 

approach has yet been proposed for comparative Poisson trials. 

However, settings with more than one treatment group compared to 1 control group with rare binary 

outcomes exist.  For example, a randomized HIV trial in Malawi, N.I. Kumwenda et. al. (2008) compared 

K=2 new treatments, i) extended 14 week  nevirapine with 1 week zidovudine and ii) extended 14 week 

nevirapine and  zidovudine to the control 1 week zidovudine / nevirapine and found that the two extended 

prophylaxie reduced breast-milk HIV transmission from mother to non-infected infant more than control 

group by using Kaplan-Meier analyses.  For a multiple vaccine study in an experiment on animals 

(chickens), Allen, Danforth, and Vinyard (2004) compared the protective index of K=5 new vaccines to a 

control. The design was divided into four subgroups with each vaccine group to challenge with one of the 

three Eimeria maxima isolated strains or water (unchallenged control). The comparison outcome of that 

study was a continuous outcome protective index which could be derived through other measurements and 

is done in each subgroup against the challenge strains. However, in other settings, the outcome could be 

binary such as shedding virus yes/no and comparative Poisson methods might be applicable. 

We consider here, in particular, a clinical trial setting where K different new treatments or 

prophylactic interventions to prevent an uncommon disease are each compared to one control intervention.  
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For example, K new experimental vaccines for influenza (or Human papillomavirus) are each given to a 

large number n of subjects and compared to a control vaccine which is also given to say the same number n 

subjects; or (K+1)n total subjects vaccinated.   The objective is to simultaneously compare these treatments 

to the control in a way that preserves the overall type one error at a given level α.   

The test statistic will be based on the number of disease cases that occurs in each new treatment 

group Dk (for k = 1, …, K) and the number of disease cases in the control group DC at least one of the new 

treatments k will be deemed better than the Control by a decision rule designed to maintain this type 1 error 

and have power to identify important differences when they exist first. We discuss procedures for 

statistically finding which new treatment(s) is/are better than the control . 

 

1.2 Objectives 

The purpose of this thesis is to propose and evaluate procedures to do exact comparison for 

comparative Poisson trials comparing K treatment groups to one control group while maintaining an 

specific overall Type-1 error to falsely find at least one treatment is better than the control when in truth 

none are superior to the control. We begin by assuming equal allocation of subject time or subject years 

into each treatment and control group; NT =NC.  Chapter 2 provides more background information on 

comparative Poisson studies and multiple comparisons and further develops the study notation. Chapter 3 

proposes a test statistic approach that maintains the overall Type-I error for falsely finding at least one of K 

new treatments to be better than the control to be less or equal to α for the global hypothesis testing with 

emphasis on K=2. Chapter 4 presents a post-hoc approach for finding which treatment is superior to the 

control while the global hypothesis is rejected. Chapter 5 provides sample size calculation to find 

superiority when in fact a treatment is better for the K=2 setting. Chapter 6 explores study design strategies 

for this procedure for the unequal allocation that might minimum the follow up cases required for given 

power for the purposed procedures. Chapter 7 concludes with a conclusion and suggests future work.  The 

Appendix contains some proofs for properties and power computation illustration and R software package 

to implement this design is included. 
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Chapter 2 BACKGROUND 

2.1 Background on Comparative Poisson Trials  

In designing studies to comparing incidence of a rare disease, it is often appropriate to assume that 

cases of disease occurred follow a Poisson distribution. .This includes settings where the disease has a 

binomial distribution Bin(n, p) approximated to Poisson(λ = np) with sample size n is sufficient large and 

the rate p is very small (Ross, 2000), with λ = np fixed.  Since the binomial probability of the number of 

disease cases d is 

(1 )! ( 1)...( 1)
( ) (1 )

( )! ! ! (1 )

( 1)...( 1)
For n is large, (1 ) ,  1,  (1 ) 1,
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e
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X d e
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          (Eq. 2.1.1) 

One important issue with comparative Poisson trials is when to stop the study for analysis. With 

Comparative Poisson Trials comparing one new treatment to the control, Gail proposed two approaches 

which he referred to as “Design A” and “Design B.” These designs readily extended to studies of K = k new 

treatments vs 1 control. Design A has the study continue until a fixed number of disease cases, D, occurs in 

all groups. For example, continue the study until D = 50 cases of influenza occur in all groups and then 

make the comparison.  Design B has the study continue until the predetermined number of subjects (or 

subject time) occurs.  For example, with a vaccine study, continue the study until 50,000 subject years have 

been observed and then make the comparison.   

Both of these designs can be problematic if the disease incidence is lower than expected. For example 

with Design A, if the incidence was only 0.0001 per untreated subject year and the follow up was planned 

until D = 50, this might require N = 500,000 person years (or longer if the treatment reduces disease) which 

could be too costly. But if Design B was used for this study with the strategy that stops after 50,000 person 

years, then only approximately D = 5 cases (or less if the treatment works) would have occurred giving 

very small power to compare. Sometimes “hybrid” designs are used. For example, a study could be planned 

for D=50 cases with a contingency that it would be stopped at 200,000 subject years to limit costs if 50 
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cases had not occurred yet. Since, as we will see, power of comparative Poisson tests depend on D, not on 

N, Design A which fixes D is used most often and we will focus on Design A on this design study. 

For comparing two Poisson trial incident rates with fixed duration, Przyborowski and Wilenski 

(1940)  presented to do the test conditional on the sum of the two variables DC+DT = D where DC is the 

number of cases in control and DT is the number of cases in the single treatment group. Let two 

independent Poisson series be DC and DT with known rates λC and λT, the joint distribution of DC = dC and 

DT  =  dT can be expressed as Eq. 2.1.2. 

 
( )

( , | , )
! !

λ λλ λλ λ
− +

= = =
C TT Td d

C T
C C T T C T

C T

e
P D d D d

d d
 (Eq. 2.1.2) 

or if we let d = dT + dC 
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 (Eq. 2.1.3) 

The form of Eq. 2.1.3 shows that the joint distribution of DC and DT can be decomposed into two product 

terms:  

i. 
( )( )

( | )
!

C Td
C T

C T

e
P D d

d

λ λλ λλ λ
− ++

= + =  where D is only depends on sum of the two rates λC + λT and 

thus contains no information on the ratio λT /λC. 

ii. 
!
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which is Binomial with 

parameters n = d and p = T

C T

λ
λ λ+

 and thus can be used to test the ratio T

C T

λ
λ λ+

 or equivalently to test 

λT/λC. 

From ii above, the conditional distribution DC and DT of two Poisson distributions with rate λC and λT given 

D = d cases is Binomial with two parameters n = d and p = T

C T

λ
λ λ+

. Through this approach, conditional 

binomial rejection regions can define a UMPU (uniformly most powerful unbiased) test on whether the two 

rates, λC and λT are equal versus not equal (Lehmann, 2005).
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2.2 Background on Comparisons of Multiple Treatments to One Control 

For the normal outcome setting X1 ~ N(µ1, σ
2),…., Xk ~ N(µk, σ

2), XC ~ N(µc, σ
2). Without loss of 

generality, assume that a smaller mean, µ, is better, then the general testing problem is H0: µk≥ µc for 

k=1,…,K vs. Ha: µk < µc for at least one k=1,2,….,K. In other words, the control treatment will continue to 

be used unless at least one experimental treatment is found to be better.  

This overall testing problem could be expressed as k separate hypothesis tests as follows: 

H01: µ1 - µc ≥ 0 vs Ha1: µ1 - µc < 0, 

H02: µ2 - µc ≥ 0 vs Ha2: µ2 - µc < 0,                                (Eq. 2.1.4) 

                                             ⋮                             ⋮                                        

H0K: µK - µc ≥ 0 vs HaK: µK - µc < 0, 

the original null hypothesis, H0: µk≥ µc for k=1,…,K, is the intersection of the each individual null 

hypothesis and the general alternative, Ha: µk < µc for at least one k = 1,2,….,K with inequality holds, is the 

union of all the Hak for k=1,2,…,K.  

 Shaffer (1995) discussed the multiple ways to treat the multiple testing problems with tolerance of 

a particular error rate. One acceptable error rate is called family wise error rate (FWER) in strong control 

which is the probability of at least rejecting one null hypothesis H0k wrong under any combination of true 

or false null hypothesis H0k for k = 1,2,…,K is less than or equals to α. As the error rate only be controlled 

under all the hypotheses is true, i.e. probability to reject at least one hypothesis as all null hypotheses 

H01,…,H0K are true ≤ α, we called it weak control.  

In the absence of a better approach for comparing each of K treatments to one control, the Bonferroni 

(1936) method which makes each comparison with a Type I error of α/K to falsely reject each of H01, 

H02,…, H0K will have an overall Type-I error of ≤ α = ∑α/K to falsely find any new treatment superior to 

the control when none are of ≤ α.  However, this method is often too conservative and sacrifices power as 

the overall type 1 error is often substantially less than α. Holm (1979) proposed a step-down method that 

compares ordered p-values from the smallest to the adjusted size levels (α/K, α/(K-1),…,α). We will stop 

the procedure once the new treatment is not rejecting the null and conclude that all the corresponding 

rejected new treatments are better than the control. Holm’s step-down procedure is not as conservative as 

Bonferroni and has higher power under normally distributed settings.  
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Dunnett(1955) developed an approach for comparing multiple treatments with one control group for 

normally distributed outcomes that had an overall Type I error of α and performed substantially better (in 

terms of  size and power) than Bonferroni’s method. Also, Paulson (1952) compared the K treatments to 

one control through comparing the best observation in the treatment groups to the control for normal 

variables and for Binomial variables using the inverse sine transformation approximation to normality. His 

procedure reduces K comparisons to 1 comparison, 

*

0
H : *∆  = 0 versus *

a
H : *∆ < 0 where *∆ =min{  µ1 - µC, µ2 - µC,…, µK - µC }. 

 

2.3 Summary and Goals of this Research 

In chapter 3, we extend Prozyborowski and Wilenski’s conditional distribution of two Poisson 

random variables given sum of the random variables to derive a multinomial distribution the K + 1 setting 

in Section 3.1.  In Section 3.2, we will reduce the dimensionality of the problem from K+1 down to 2 for 

using the test statistics DC, D(1) which is much as Dunnet reduced the dimensionality for the continuous 

normal setting. Then in Section 3.3, we will extend Corrado’s stochastic matrix approach to derive the 

exact distribution of DC, D(1) for K≥2. In the rest of chapter 3, we will introduce the ways to construction 

the rejection regions for the global hypothesis testing problem and discuss the non-robustness of some 

rejection methods under some particular pathological conditions. 

In chapter 4, we will purpose a test method for finding the new treatment which is better than the 

control once the global hypothesis is rejected which is similar to the concept of Fisher Least Significant 

Difference Test in section 4.1 and then in section 4.2, we compare the results to the test based on 

Bonferroni correction method in terms of power.  

In chapter 5, a table of minimum sample size needed for different settings is provided in section 

5.1. The expected follow up time which follows gamma distribution is discussed in section 5.2. The 

procedure is illustrated with an example in section 5.3.  

In chapter 6, we discussed the strategy for the unequal allocation design that minimized total 

follow up disease cases for our procedure in section 6.1. Followed by section 6.2, we discussed the study 

strategy for unequal allocation design that shortened the expected follow up time. And then, we provide 

optimum allocation design for some possible settings in section 6.3. 
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Chapter 3 METHODS TO TEST IF ANY TREATMENT IS BETTE R THAN THE CONTROL 

3.1 Multiple Comparative Poisson Trial Design and Hypothesis  

3.1.1 Underlying Distribution for the Comparative Trial Design 

Consider a Comparative Poisson trial with one control and K ≥ 2 new treatment groups. The extended 

Gail’s Design A approach is used and the study continues until D cases are seen in all K+1 groups 

according to the following person allocation portions ρC into the control group and ρT into each 

experimental treatment group, with ρC+KρT = 1. (Note that ρC = ρ1 = ... = ρK = 1/ K+1 for equal proportions 

of people recruited in each group.) A total of N subject-years-follow-up will need to be recruited to all K 

groups in order to obtain these D cases where N is random with NC =ρCN subject years seen in the control 

group and NT  = ρTN subject years seen in each treatment group, also being random. 

Let iC and ik be the true unit incident rates of disease per person follow up time in the control group 

and each respective new treatment group for k=1,…,K.  Note, that in the extended Gail’s Design B 

approach, N would be predetermined and the number of events in the control group is Poisson distributed 

with parameter λC  = iCNC and the number of events in each treatment group is Poisson distributed with 

parameter λk  = ik NT  in kth treatment group for k=1,…,K. 

For design A, DC, D1, …, DK does not directly follow the unconditional Poisson setting when the total 

subject years or subject time of follow up is unknown for this Design. However, we will show that the 

conditional joint distribution of DC, D1, …, DK given D = d events does not depend on the follow-up-

subject-years N.  Let rk = ik /ρiC be the ratio of per subject follow up time unit ratio for treatment group ik to 

control group iC. Since DC 
and Dk are from independent Poisson with known rates λC = iCρCN and λk = ikρTN 

= r kλC when we known the subject years N.  We begin by assuming N is known (similar to Design B). By 

extension of (Eq. 2.1.3) to K+1 groups, for D = DC + ∑Dk,  

P(DC, D1, …, DK | λC, λ1, …,λK, N) = 

( )

1

( ) 1
( ) ( )

...! 1 1

C k

k C k

D

C k D Dk

C K k k

e D r

D D DD r r

λ λλ λ − +∑+
×

+ +

 
 
 

∑ ∏
∑ ∑

.                                     (Eq. 3.1.1) 

where the terms 1/(1+∑rk) and  rk /(1+∑rk) do not depend on the follow up subject years N.  So the 

conditional distribution of DC, D1, …, DK given D is  
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or the standard multinomial with parameters D, 1/(1+∑rk) 

and  rk /(1+∑rk), k =1,2,…,K,. 

Now, for Design A, we predetermined the total number of events D, so the first part of (Eq. 3.1.1) 

is no longer random.  However, since for any given N,  

P(DC, D1, …, DK | λC, λ1, …,λK, N, D) = P(DC, D1, …, DK | λC, λ1, …,λK, N | D) 

which as we showed was Multinomial distribution with parameters D, 1/(1+∑rk) and  rk /(1+∑rk), for k = 

1,2,…,K, this distribution does not depend on the subject years N. Hence, we could treat N as a random 

variable without affecting the conditional distribution of DC, D1, …, DK given D.  

The comparison of the rates of DC, D1, …, DK given a fixed D thus reduces to the comparison of 

the different portions in the multinomial distribution 1/(1+∑rk) and  rk /(1+∑rk), k =1,2,…,K. Since the 

denominators of all terms are the same; 1+∑rk, these comparisons are most directly driven by the 

magnitude of differences in 1 and rk, where rk = ik /ρiC, for k=1,…,K. Through this setting, we also know 

that the conditional distribution of D given N person years is Poisson with a weighted averaged rate 

=iCρC+∑ikρT per unit subject years. Since D given N is a Poisson with waiting rate iN, the waiting time for 

one case to occur is exponential distributed with parameters 1/i. If the trial ends after D cases occur (Design 

A) and the occurrence of each case is independent, the distribution of N at which the study ends for design 

A is Gamma with parameters D and 1/i. Therefore, the expected duration for design A trial is the 

expectation of Γ(D,1/i) which is D/i.  For example, if the incidence was 0.0001 per subject year in control 

subjects and none of the treatments changed this, and the design was follow up till D=50 cases. Then, the 

expected duration for this design is N=D/i=50/0.0001=500,000 persons would need to be recruited. 

3.1.2 Global Hypothesis Testing for the Comparative Poisson Design 

For comparative Poisson design problem, we are interested in seeing if the new treatment(s) is 

(are) more effective than the control. If the new treatment is more effective than the control, the incidence 
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rate in that new treatment group will be less than the incidence rate in control group. Hence, the hypothesis 

testing problem would be express as following:  

H0: i1=i2= …=iK= iC v.s. Ha: i1 =c1 iC , 
2

T
i =c2 iC, …, 

K
T
i = cK iC, where at least one c1,…,cK is less 

than 1.  

Focusing again on the Design A followed to total D cases occurred, the global testing hypothesis 

adapted to our design is to test the rate in each group is equal to the control is as following:  

H0: r1 = … = rK =1/ρ vs Ha: rk = cK/ρ, k=1,2,…,K for at least one c1,…,cK is less than 1 and rk = ik /ρiC. (Note 

that rk is the relative risk of the new treatment k to the control under equal allocation design). 

Or the testing hypothesis is to test each individual hypothesis simultaneously:  

H01: r1 = 1/ρ vs Ha1: r1 = c1/ρ for c1<1, 

H02: r2 = 1/ρ vs Ha1: r2 = c2/ρ for c2<1, 

                                                 ⋮                     ⋮                                        

H0K: rK = 1/ρ vs Ha1: r1 = cK/ρ for cK<1, 

where rk = ik /ρiC.. We want an overall type I error to falsely reject any H0k when all null are true to be ≤α. 

For equal allocation, the test of global hypothesis above with ρ=1 becomes  

H0: r1 = r2 =…= rk = 1 vs Ha: rk = ck <1 for some k=1,2,…,K, where rk = ik /iC. 

Or to test each individual hypothesis simultaneously:  

H01: r1=1 vs Ha1: r1 = c1 < 1, …., H0K: rK =1 vs Ha1: rK = c1 <1 where rk = ik /iC. 

Since we will restate the global hypothesis often, we will simplify the notation for the global 

hypothesis and indicates its portion rate of the probability of the multinomial distribution by using a vector. 

The first element of the vector is the allocation ratio in the design and the following elements of the vector 

represent the relative risk of the each treatment to the control group. For example of equal allocation (ρ=1), 

H0: (1:1,…,1) is always the null while the specified alternative as follows:  i)  Ha: (1: r1 = r,1,…,1) is the 

specified alternative that only the first treatment group is better than the control group with the incident rate 

of the first treatment group is r times less than the rate of the control and other treatment groups ii) Ha: (1: 

r1 = r , r2 =r ,…, rK =r ) is that all new treatment groups are better than the control with the same specified 

incidence rate r, and iii) Ha: (1: r1  = c1, r2 = c2 ,…, rK = cK ) is the specified alternative that all new 

treatment groups are superior but at different specified ratios c1, c2,…, cK.  As the case of unequal allocation 
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with rate ρ for control group to each new treatment group, we use similar terminology and express 

(ρ:1,…,1) under the null, (ρ, r1 = r,…,1), (ρ: r1 = r,…, rK =r ) or (ρ: r1 = c1,…,rK = cK) under the specified 

alternative we mentioned above(i), (ii), and (iii). 

There are too many possible combinations of the portion rate for the alternative to comprehensively 

cover. However, heuristically the conservative alternative is where only one treatment among the 

treatments works better than the control at a minimally specified level r that must be detected with a 

specified power 1-β. We thus often focus on the setting with two new treatments with one control (K=2) of 

H0: (1:1,1) v.s. Ha: (1:r1 = r,1). 

 

3.2 Test Statistics for the Global Hypothesis Testing 

We focus on comparing the best performing new treatments D(1)(or in the case of ties at D(1)) to 

the controls. It is intuitive to assume that  1) the treatment(s) having the minimum disease cases  (D(1)) has 

the most statistical evidence to be the best of the new treatments and thus 2) comparing D(1) to  the number 

of disease cases in the control group(DC), most directly addresses whether the treatment that is most likely 

to be the best is better than the control, and  3) Controlling the type-I error for this comparison of the 

control to the treatments with the fewer cases as a first step to be ≤α makes the overall Type-I error to 

falsely reject any of the H0k when all nulls are true to be ≤α.  

To illustrate this graphically, all possible combinations of DC and D(1) could be represented as the 

table shown in Illustration 3.2.1 with rows representing DC and columns representing D(1). Note that, 

mathematically, D(1) must be the integer that is less than or equal to D/K as DC = 0. We define the rejection 

region Rα of DC and D(1) as some collection of {DC and D(1) pair} which cumulatively have less than or 

equal to α probability to obtain under the null hypothesis, but would be much more likely (i.e.,  > > α) to 

obtain under alternative hypotheses in which one or more treatments are better than the control.  There are 

several ways to construct Rα and as we will show, there is no single Rα that is UMP (uniformly most 

powerful) for all possible alternatives simultaneously. 

However, there are some important rules that can be used in the construction of optimal Rα. Most 

notably rule is referred to “LOWER LEFT QUADRANT RULE” (LLQR).   Once, we decide to reject a 

given cell ( DC = dC, D(1) = d(1) ), then all other cells for which  (DC ≥ dC, D(1) ≤ d(1)) from its left and down 



11 

should be rejected as well since there is more evidence to reject null hypothesis when DC is larger or D(1) is 

smaller while the other one is fixed.  This means that the left-lower quadrant of the table with (DC = dC, D(1) 

= d(1) ) as the upper–right vertex should be included in Rα (hence the LLQR).  

DC     D(1) 0 1 ….. d(1) ….. /D K    

0       

1       

…       

dC    reject   

…       

…       

D       

Illustration 3.2.1 LOWER LEFT QUADRANT RULE (LLQR) if the combination (DC = dC, D(1) = d(1) ) is 
rejected 

The rejection region based on this rule will be like combination of rectangles and it could be one 

rectangle or stair down shape with non-constant step height and depth as following (Illustration 3.2.2). 

 

DC          D(1) 0 1 ….. … ….. /D K    

0       

1       

…  reject     

…    reject   

…       

…     reject  

D       

Illustration 3.2.2 One possible rejection region based on LLQR 

 

3.3 Probabilities for Each Combination of Test Statistics Under Different Hypotheses 

We are now going to look at strategies to identify a rejection region Rα which optimizes power for 

given size level α and fixed D. As a first step, an approach to calculate probabilities to be in the different 

cells of the DC, D(1) table must be developed. To do this, we first note that for any combination DC, D(1) that 
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P{DC, D(1) | D } = P{DC| D} x P{  D(1) | DC, D }. Since the conditional distribution of DC is Bin(D,ρ/(ρ+K)), 

i.e. 

P{DC| D } = ( ) ( )C CD D DK
K K

C

D

D
ρ

ρ ρ
−

+ +

 
 
 

. 

Now, for any given DC, D(1), the distribution of D1,…,DK is multinomial(S, π1,…, πK ), where S= 

D-DC and πk  = rk / ∑ri, for k=1,…,K. We now present an approach to compute the probability for a 

minimum of a multinomial distribution. 

 

3.3.1 Representation of Table with the Probabilities Under Different Hypotheses 

First we restrict our setting to K=2. For the null hypothesis against any specified alternative 

hypothesis of any incidence rate we interested in testing, we could fill in the probabilities for each cell of 

the all possible combinations of {DC, D(1)} with its corresponding DC and D(1). For equal allocation (ρ=1) 

and follow up till 10 cases (D=10), the table would be as follows and the values of cells could be filled for 

different probability or under different hypothesis. The impossible combination of (DC, D(1)) are removed 

from the table as shown in Illustration 3.3.1. 

DC         D(1) 0 1 2 3 4 5 
0       
1       
2       
3       
4       
5       
6       
7       
8       
9       
10       

Illustration 3.3.1 Possible cells (above the bolded line) to define the rejection region with impossible cells 
which is being beyond the bolded line being removed; Probabilities of (DC, D(1)) could be filled in under 
null or specified alternatives 

The filled in probabilities for (DC = dC, D(1) = d(1)) could be obtain through the sum of all possible 

probabilities (DC = dC, D1 = d1, D2=d2) where minimum of the d1, d2 is d(1). Since the probability of (DC, D1, 

D2) is followed by multinomial distribution, the filled in value could be calculate easily for K=2. For the 

same case of D=10 and K=2, under the null hypothesis H0: (1:1,1), the table with filled in probabilities is as 

Illustration 3.3.2. Since the distribution of (DC, D1, D2) under the null hypothesis is followed by Multi(10, 

Here are the impossible cells 
(DC, D(1)) which are removed 

Would be filled in based on different 
hypothesis/ probability 
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1/3, 1/3, 1/3). The value 0.0122 is the probability of (DC = 2, D(1) = 1) which would be calculate as P(DC=2, 

D(1) = 1) = P({DC = 2, D1 = 1, D2 = 7} U {DC = 2, D1 = 7, D2 = 1}) = P(DC = 2, D1= 1, D2= 7) + P(DC=2, 

D1=7, D2 = 1). And in the case of (DC = 8, D(1) = 1), there is only one possible combination (DC = 8, D1=1, 

D2=1). Hence, P(DC = 8, D(1) = 1) = P(DC = 8, D1 = 1, D2 = 1) = 0.0015. 

DC         D(1) 0 1 2 3 4 10 / 2   =5 

0 <0.0001 0.0003 0.0015 0.0041 0.0071 0.0043 
1 0.0003 0.0031 0.0122 0.0285 0.0427  
2 0.0015 0.0122 0.0427 0.0854 0.0534  
3 0.0041 0.0285 0.0854 0.1423   
4 0.0071 0.0427 0.1067 0.0711   
5 0.0085 0.0427 0.0854    
6 0.0071 0.0285 0.0213    
7 0.0041 0.0122     
8 0.0015 0.0015     
9 0.0003      
10 <0.0001      

Illustration 3.3.2 Probabilities of possible combinations {DC, D(1)} under null hypothesis (1:1,1) for equal 
allocation 

As mentioned earlier, we can fill in the probabilities under any specific alternative hypothesis. For 

example, the following tables (Illustration 3.3.3, Illustration 3.3.4) are filled in the probabilities for all 

possible cells under the specific possible alternatives (1: r1 = 0.2, 1) or (1: r1 = 0.2, r2 = 0.2), respectively for 

K=2, D=10. Those probabilities can be applied to calculate the power once we have decided the rejection 

region. 

DC         D(1) 0 1 2 3 4 10 / 2   =5 

0 0.0004 0.0008 0.0007 0.0004 0.0001 0.0001 
1 0.0038 0.0068 0.0054 0.0026 0.0009  
2 0.0169 0.0271 0.0190 0.0079 0.0019  
3 0.0452 0.0633 0.0383 0.0152   
4 0.0791 0.0950 0.0493 0.0127   
5 0.0949 0.0956 0.0455    
6 0.0792 0.0658 0.0190    
7 0.0455 0.0325     
8 0.0176 0.0068     
9 0.0045      
10 0.0004      

Illustration 3.3.3 Probabilities of possible combinations {DC, D(1)} under one possible alternative 
hypothesis (1: r1= 0.2,1) for equal allocation 
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DC         
(1)TD  0 1 2 3 4 10 / 2   =5 

0 <0.00001 <0.00001 <0.00001 0.000001 0.000001 <0.00001 
1 <0.00001 <0.00001 0.00001 0.00003 0.00004  
2 0.00001 0.00006 0.00022 0.00045 0.00028  
3 0.00011 0.00074 0.00223 0.00372   
4 0.00093 0.00558 0.01394 0.00929   
5 0.00558 0.02788 0.05576    
6 0.02323 0.09293 0.06970    
7 0.06638 0.19913     
8 0.12446 0.12446     
9 0.13829      
10 0.03457      

Illustration 3.3.4 Probabilities of possible combinations {DC, D(1)} under other one possible alternative 
hypothesis (1: r1=0.2, r2=0.2) for equal allocation 

 Similarly, we could filled in the probabilities for unequal allocation with allocation ratio ρ under 

null hypothesis (ρ: 1, 1) and alternative (ρ: r1 = r, 1) or (ρ: r1 = r, r2 = r). For example with ρ=1.5 and D=10, 

the probabilities of possible combination {DC, D(1)} under null hypothesis (ρ:1,1) could be seen as 

following Illustration 3.3.5.  Under allocation ratio ρ=1.5 and null hypothesis that the incident rate for each 

new treatment group is the same as the control group, the conditional distribution of DC, D1, D2 given D is 

multinomial(D, 2
ρ

ρ + , 1
2ρ + , 1

2ρ + ). The probability that (DC = 10, D(1) = 0) as follow up till 10 disease occur 

is P(DC = 10, D(1) = 0 | D ) = P(DC = 10, D1 = 0, D2 = 0 | D =10 ) = (1.5/3.5)10 (1/3.5)0= 0.0002. 

DC         D(1) 0 1 2 3 4 10 / 2   =5 

0 <0.0001 0.0001 0.0003 0.0009 0.0015 0.0009 
1 0.0001 0.0010 0.0039 0.0091 0.0137  
2 0.0007 0.0059 0.0206 0.0411 0.0257  
3 0.0029 0.0206 0.0617 0.1028   
4 0.0077 0.0462 0.1156 0.0771   
5 0.0139 0.0694 0.1387    
6 0.0173 0.0694 0.0520    
7 0.0149 0.0446     
8 0.0084 0.0084     
9 0.0028      
10 0.0002      

Illustration 3.3.5 Probabilities of possible combinations {DC, D(1)} under null hypothesis (ρ = 1.5: 1, 1) for 
unequal allocation ratio ρ = 1.5 

For some reasons, it might be good to include the information of its marginal probabilities for 

given DC or D(1). The table under H0 could be looked like as the following. The second row of the table is 

the marginal probability given D(1)= t which is the sum of all DC for fixed D(1), i.e. (1)( , )
C

CD
P D D t=∑ . 
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The second column of the table is the marginal probability given DC = c which is the probability sum over 

all D(1) for fixed DC = c, i.e. 
(1)

(1)( , )CD
P D c D=∑ . The marginal value 0.1716 is the marginal probability 

of P(D(1)=1) and which could be calculated as 
8

(1)0
( , 1)

C
C Cd

P D d D
=

= =∑  and the value of 0.0867 is the 

marginal probability of P(DC = 1) = 
(1)

4

(1) (1)0
( 1, )

T
Cd

P D D d
=

= =∑  or simply compute P(DC = 1) where DC 

| D ~ Binomial(10,1/3). 

(1)( , )
C

CD
P D D t=∑  

DC         
(1)TD  Marginal 0 1 2 3 4 10 / 2   =5 

Marginal 1 0.0347 0.1716 0.3551 0.3313 0.1031 0.0043 
0 0.0173 <0.0001 0.0003 0.0015 0.0041 0.0071 0.0043 
1 0.0867 0.0003 0.0031 0.0122 0.0285 0.0427  
2 0.1951 0.0015 0.0122 0.0427 0.0854 0.0534  
3 0.2601 0.0041 0.0285 0.0854 0.1423   
4 0.2276 0.0071 0.0427 0.1067 0.0711   
5 0.1366 0.0085 0.0427 0.0854    
6 0.0569 0.0071 0.0285 0.0213    
7 0.0163 0.0041 0.0122     
8 0.0030 0.0015 0.0015     
9 0.0003 0.0003      
10 <0.0001 <0.0001      

      
(1)

(1)( , )CD
P D c D=∑  

Illustration 3.3.6 Possible probabilities with marginal probabilities added in under null hypothesis (1:1,1) 
for equal allocation 

For K>2, we could obtain similar table and the filled in probabilities, however, it is not as simple 

to calculate as the case K=2. Next section 3.3.2, we will apply stochastic matrix method introduced by K. 

C. J. CORRADO to compute the minimum of the multinomial distribution. 

3.3.2 Computing Exact Joint Distribution for the Minimum of a Multinomial Distribution for K ≥2 

This section contains some notation unique to find probabilities of the minimum of the multinomial 

that will only be used here.  As stated above, given DC and D, the conditional distribution of D1, D2. …, DK 

is multinomial (S,π1,…,πK), where S= D-DC and πk = rk / ∑r i, for k=1,…,K. C. J. CORRADO (2007) 

presented the stochastic matrix method to compute the 1 minus the cumulative density of the minimum of 

multinomial distribution; P(D(1) ≥ c | S, π1,…, πK). Once this probability, P(D(1) ≥ c | S, π1,…, πK), is 

calculated, we can obtain P(D(1) = c | S, π1,…, πK)  through P(D(1) ≥ c | S, π1,…, πK) - P(D(1) ≥ c+1 | S, π1,…, 
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πK). In this method, let 1I
I dTk kS ∑ ==  be the total of disease cases of the first I treatment groups. The idea of 

the stochastic matrix approach is to define the transition matrices QI where each element in the matrices is 

the conditional probability of SI given SI-1, which could be express as a Binomial distribution with 

parameter S-SI-1 and /
K

I jj I
π π

=∑ , assume S0=0, 

 
11 * *

1*
1 1 1

( ) (1 )  for  
( | , )

0                                            otherwise

I I II s s s s
I I I I

I I I I I I I

s s
s s

P S s S s s s
π π

π
−− − −

−
− − −

 − 
− ≥ = = = − 




 (Eq. 3.3.1) 

 

and * /
K

I I jj I
π π π

=
= ∑ , since we could think that during the rest of the disease cases s-sI-1, there are DI = s-

sI-1 
cases in the I-th treatment group with probability /

K

I jj I
π π

=∑  as we know that there are sI-1 disease 

cases in the first I-1 treatment groups. Hence, we could define the matrices as follows: 

1 1 1 1[ (0 | 0, ), (1| 0, ),..., ( | 0, )]Q P P P sπ π π= , 

* * *

* *

*

(0 | 0, ) (1| 0, ) ( | 0, )

0 (1|1, ) ( |1, )

0 0 ( | , ) 1

j j j

j j
j

j

P P P s

P P s
Q

P s s

π π π
π π

π

 
 
 =
 
 

=  

⋯

⋯

⋮ ⋯ ⋯ ⋮

⋯

 for 

j=2,…,K-1, and '[1 1 1 1]kQ = ⋯ . The product of Q1× Q2× …× QK represents the sum of all the 

probabilities of the trace of D1 = d1 → D2 = d2 →… →DK = dK  through the trace of 

0 0S = 1d→ 1 1 1S s d= = 2d→ 2 2 1 2S s d d= = + 3d→ … Kd→ KS  

where K kS d=∑  is known. The value of the products Q1× Q2× …× QK should be the same as the 

probability of all possible combinations which equals to 1.  

            However, we are interested in obtaining the P(D(1) ≥ c | S, π1,…, πK) in the current stage, the 

conditional probability of the minimum number of disease cases observed in a treatment group is more or 

equal to c given total sum of numbers of disease cases in all treatment groups and their incidence rates. In 

this case, we know that the number of disease cases must exceed or equal c in all the treatment groups 

which is equivalent to saying that the difference of Dj = sj – sj-1 can’t be less than c for each j=1,..,K. As the 

result, we set *
1 1( | , ) 0I I I I IP S s S s π− −= = =  whenever 1I Is s c−− <  for I = 1,2,…,K, in each element of the 

transition matrices and call the new stochastic matrices *  for 1,2,...,IQ I K=  after replacing  
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*
1 1( | , ) 0I I I I IP S s S s π− −= = =  as 1I Is s c−− <  for each I = 1,2,…,K.. 

                Then the product of matrices, * *
1 KQ Q× ×⋯  gives P(D(1) ≥ c | S, π1,…, πK) exactly since we have 

zeroed out all the possibilities of Dj = sj – sj-1 < c for j = 1,…,K, and thus summed over all the possible 

traces D1 to DK under the constraint Dj = sj – sj-1 ≥ c,  1,...,j K∀ = . Then the mass probability of the 

minimum of the multinomial distribution would be obtained through (Eq. 3.3.2) and have numerical results 

through computing. 

P(D(1) = c | S, π1,…, πK) = P(D(1) ≥ c | S, π1,…, πK)  - P(D(1) ≥ c + 1 | S, π1,…, πK)         (Eq. 3.3.2) 

For example, if there are three treatment groups (K=3) and one control group with equal allocation 

(ρ = 1) and the equal incidence rate in each groups (rk = 1 for k=1,…,K), and the trials were followed until 

10 disease cases accrued, ( D = 10 ). We could obtain the conditional joint distribution of DC and D(1) given 

D = 10 disease cases through the equation: 

P(DC = dC, D(1) = d(1) | D = 10) = P(D(1) = d(1) | D = 10, DC = dC)P(DC = dC | D = 10). 

Since it’s the product of two distributions and P(D(1) | D = 10, DC = dC) = P(D(1) | DT = 10 - dC) is the 

minimum of the multinomial distribution for known dC, we could obtain P(D(1) ≥ c| D = 10, DC = dC) and c 

through the products of stochastic matrices. Assume DC = 7 and c=1, P(D(1) ≥ 1| D = 10, DC = 7) = P(D(1) ≥ 

1 | ∑dk = 3) would be given through * * *
1 2 3Q Q Q× × , where  

*
1Q  = [Pr( 0 | 0, ) 0 Pr( 1 | 0, ) Pr( 2 | 0, ) Pr( 3 | 0, )]1 0 1 1 0 1 1 0 1 1 0 1S S S S S S S Sπ π π π= = = = = = = = =   

*
2

* * * *
Pr( 0 | 0, ) 0 Pr( 1 | 0, ) Pr( 2 | 0, ) Pr( 3 | 0, )2 1 2 2 1 2 2 1 2 2 1 2

* * *
0 Pr( 1 | 1, ) 0 Pr( 2 | 1, ) Pr( 3 | 1, )2 1 2 2 1 2 2 1 2

* *
0 0 Pr( 2 | 2, ) 0 Pr( 3 | 2, )2 1 2 2 1 2

*
0 0 0 Pr( 3 | 3, ) 02 1 2

S S S S S S S S

S S S S S S

S S S S

S S

Q

π π π π

π π π

π π

π

= = = = = = = = =

= = = = = = =

= = = = =

= = =

 
 
 =
 
  

 

*
3Q = '[1 1 1 0] . In those new matrices, we reset some elements in the matrices to be 0 to eliminate 

settings where the minimal number of disease cases observed in the treatment groups is less than 1(D(1) ≥1). 

Based on the (Eq. 3.3.1), we could calculate each element in the matrices,*1Q and *
2Q .  
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3.4 Criteria to Obtain the Rejection Region 

Due to the wide range of potential alternatives to the global null as well as anomalies from 

discreteness of the multinomial distribution, (as we will show later) no rejection region is uniformly most 

powerful against all alternatives.  Therefore, anchoring on the Lower Left Quadrant Rule (LLQR), we try to 

define rejection regions based on different heuristic criteria that will perform well from a power for size 

standpoint against reasonable and likely alternatives and evaluate their performances against these 

alternatives. 

3.4.1 Use the Control 

Use DC > c to define rejection region, Rα and the smallest value of c for which 
0
( )H CP D c>  is ≤ α. 

We denote this method “control only”, or abbreviate this size α rejection region as “Rα-C”. While larger DC 

provides evidence that the control group is worse than the treatments collectedly, it ignores information 

contained in D(1) that could reflect one treatment being very good. Since the rejection region is only based 

on DC, the conditional distribution of DC given D is Bin(D, 1/(1+K)) under null hypothesis of (1:1,…,1) for 

equal allocation or Bin(D, ρ/(ρ+K)) under null hypothesis and ρ is the allocation ratio for the control to each 

new treatments. The probability of falsely reject the null hypothesis would be calculated based on this 

Binomial distribution. However, due to discreteness of the binomial, in many settings, the Type I error 

could be much smaller than the nominal level α for DC > c, but the type I error exceeds the requested level 

α for the rejection region DC > c-1. This sacrifice in actual size under H0 will also be associated with a loss 

power (compared to a rejection rule with actual size closer to the nominal α when a given Ha is true). One 

approach to lessen this loss would be to incorporate information from a small D(1) when the number in the 

control group falls on the boundary DC = c. The smaller D(1) is for given DC = c, the more evidence there is 

that the incidence rate for the best treatment is smaller than the control. The rejection region is then {DC > c 

and D(1) < t when DC = c} where c is the smallest value for which
0
( | )H CP D c D>  is ≤ α and t is the largest 

value for which 

{ }( )0 (1) |H C CP D c D t D c D> < =∪ ∩  ≤ α. 

This method is called “Control Boundary Augmented”, or abbreviate this augmented size α rejection region 

as “Rα-CBA”.  
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In the following example, we are going to demonstrate how the rejection region is constructed by 

“controls only” and “controls boundary augmented” or other methods which we will purposed and illustrate 

this example again later for given size level α. For comparing two new treatment groups (K=2) to one 

control group with equal allocation (ρ=1) and the trial is followed up until 10 disease cases (D=10). For 

testing (1: r1 = r, 1) or (1: r1 = r, r2 = r) as alternative (in a scenario where one of the two new treatments 

fully works while the other is ineffective) and the required type I error of 0.05. By section 3.3.1, for each 

different value of DC, we could compute the probability of DC = dc from Bin(10, 1/3) under H0. Also, for 

any values of D(1) | DC = dC, we could compute its probability on the boundary under H0 and the 

probabilities are shown in Illustration 3.4.1. For the “control only” method, if we define the rejection region 

to be DC > 6 the type I error would be 0.0197 but at or DC > 5, the type-1 error is 0.0766. The later one 

exceeds required level 0.05. As the result, the rejection region should then be {(DC, D(1))| DC > 6} for a 

level 5% test. For the “control boundary augmented” method, the rejection region is {(DC, D(1))| DC > 6, 

(D(1) = 0 ∩ DC = 6)} with a type I error 0.0268 as including {( D(1) = 1 ∩ DC = 6)} will increase the overall 

Type 1 error to 0.0553. The rejection regions are shaded in the following table.   

DC      D(1) Marginal 0 1 2 3 4 10 / 2   =5 

Marginal 1 0.0347 0.1716 0.3551 0.3313 0.1031 0.0043 
0 0.0173 <0.0001 0.0003 0.0015 0.0041 0.0071 0.0043 
1 0.0867 0.0003 0.0031 0.0122 0.0285 0.0427  
2 0.1951 0.0015 0.0122 0.0427 0.0854 0.0534  
3 0.2601 0.0041 0.0285 0.0854 0.1423   
4 0.2276 0.0071 0.0427 0.1067 0.0711   
5 0.1366 0.0085 0.0427 0.0854    
6 0.0569 0.0071 0.0285 0.0213    
7 0.0163 0.0041 0.0122     
8 0.0030 0.0015 0.0015     
9 0.0003 0.0003      
10 <0.0001 <0.0001      

Illustration 3.4.1 Rejection Region through “Controls Only” or “Controls Boundary Augmented” for K =2, 
D = 10, and α = 0.05 for equal allocation 

 
For unequal allocation case and let ρ = 1.5 be the allocation ratio for the control to each new 

treatment, the probabilities for each combination of DC and D(1) and the marginal probabilities under null 

hypothesis for comparing 2 new treatments (K=2) to one control and D = 10 are in the following table.  

: Rejection region by    
  “controls only”  

  
        U        : Rejection region by 
“controls boundary augmented”  
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For level α = 0.05, the rejection region based on “Control Only” is { DC > 7} since the size of the 

rejection region {DC > 6} is about 0.0595 which excesses 0.05. For the rejection region based on “Control 

Boundary Augmented”, the rejection region is { (DC, D(1) ) | DC > 7 or (DC = 7, D(1) = 0) } with size 0,0316. 

DC      D(1) Marginal 0 1 2 3 4 10 / 2   =5 

Marginal 1 0.0689 0.2654 0.3928 0.2310 0.0409 0.0009 
0 0.0037 <0.0001 0.0001 0.0003 0.0009 0.0015 0.0009 
1 0.0278 0.0001 0.0010 0.0039 0.0091 0.0137  
2 0.0940 0.0007 0.0059 0.0206 0.0411 0.0257  
3 0.1879 0.0029 0.0206 0.0617 0.1028   
4 0.2467 0.0077 0.0462 0.1156 0.0771   
5 0.2220 0.0139 0.0694 0.1387    
6 0.1387 0.0173 0.0694 0.0520    
7 0.0595 0.0149 0.0446     
8 0.0167 0.0084 0.0084     
9 0.0028 0.0028      
10 0.0002 0.0002      

Illustration 3.4.2 Rejection Region through “Controls Only” or “Controls Boundary Augmented” for K =2, 
D = 10, and α = 0.05 for unequal allocation with ρ = 1.5 

 
3.4.2 Use the Minimal New Treatment 

Conversely to use only the “controls” we could only use the “minimal new treatment” D(1) < t, to 

define Rα and it called “Minimal New Treatment Only”, or abbreviate this size α rejection region as “Rα-T”. 

A smaller D(1) could reflect either only one treatment being very good or even all treatments being better 

than the control. This, however ignores information from DC that could comparatively reflect the control 

being worse (or for that matter if something has gone horribly wrong, better) that all treatments as a group. 

However, due to discreteness of the multinomial, the type I error could again be much smaller than the 

nominal level α for D(1) < t for a given t with the type I error exceeding the requested level α for the 

rejection region expanded to D(1) < t+1. This sacrifice in actual size under H0 will also be associated with a 

loss power (compared to a rejection rule with actual size closer to the nominal α when a given Ha is true). 

One approach to lessen this impact would be to incorporate information from a large DC when D(1) = t on 

the boundary, i.e. the rejection region is { D(1) < t and DC > c | D(1) = t} where t is the largest value for which 

P(D(1) < t) is ≤ α as H0 is true and c is the smallest value for which  

{ }( )0 (1) (1)H CP D t D t D c< = >∪ ∩  is ≤ α. 

: Rejection region by    
  “controls only”  

  
        U        : Rejection region by 
“controls boundary augmented”  
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The method which accumulates extra cells on the boundary based on above as the rejection region 

is called “Minimal new Treatment Boundary Augmented”, or abbreviate this rejection region as “Rα-TBA”.  

Continuing with the previous example, with K=2 and equal allocation (ρ = 1) followed up until 10 disease 

cases (D=10), if we define the rejection region from treatment, the type I errors are 0.0347 and 0.206 for 

the rejection region {(DC, D(1))| D(1)< 1} and {(DC, D(1))| D(1)< 2} respectively. For a level 5% test, the 

rejection region is {(DC, D(1))| D(1) < 1} based on “Minimal New Treatment Only”. However, the type I 

error for this rejection region is far below the nominal 5% level. The type I error of the rejection region 

based on “treatment boundary augmented” {(DC, D(1))| D(1)< 1 or (DC ≥ 6, D(1)= 1)} is 0.0696 (which 

exceeds 0.05) but for {(DC, D(1))| D(1)< 1 or (DC≥7, D(1)=1)} is  0.0484 which is not greater than level 5% 

and should have greater power than the rejection region based on {(DC, D(1))| D(1)< 1}. The rejection region 

based on “minimal new treatment only” and “minimal new treatment boundary augmented” are illustrated 

below. 

DC      D(1) Marginal 0 1 2 3 4 10 / 2   =5 

Marginal 1 0.0347 0.1716 0.3551 0.3313 0.1031 0.0043 
0 0.0173 <0.0001 0.0003 0.0015 0.0041 0.0071 0.0043 
1 0.0867 0.0003 0.0031 0.0122 0.0285 0.0427  
2 0.1951 0.0015 0.0122 0.0427 0.0854 0.0534  
3 0.2601 0.0041 0.0285 0.0854 0.1423   
4 0.2276 0.0071 0.0427 0.1067 0.0711   
5 0.1366 0.0085 0.0427 0.0854    
6 0.0569 0.0071 0.0285 0.0213    
7 0.0163 0.0041 0.0122     
8 0.0030 0.0015 0.0015     
9 0.0003 0.0003      
10 <0.0001 <0.0001      

Illustration 3.4.3 Rejection Region through “Minimal New Treatment Only” or “Minimal New Treatment 
Boundary Augmented” for K =2, D = 10, and α = 0.05 for equal allocation 
 

For unequal allocation ratio with ρ = 1.5, there will be no rejection for the rejection region based 

on “new treatment only” since P{D(1) = 0} under null hypothesis is 0.0689>0.05 while the rejection region 

based “treatment boundary augmented” is (DC >5, D(1)  = 0) with size 0.0434. 

 

 

 

: Rejection region by    
  “Minimum New Treatment only”  

 
       U        : Rejection region by 
“Treatment boundary augmented”  
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DC      D(1) Marginal 0 1 2 3 4 10 / 2   =5 

Marginal 1 0.0689 0.2654 0.3928 0.2310 0.0409 0.0009 
0 0.0037 <0.0001 0.0001 0.0003 0.0009 0.0015 0.0009 
1 0.0278 0.0001 0.0010 0.0039 0.0091 0.0137  
2 0.0940 0.0007 0.0059 0.0206 0.0411 0.0257  
3 0.1879 0.0029 0.0206 0.0617 0.1028   
4 0.2467 0.0077 0.0462 0.1156 0.0771   
5 0.2220 0.0139 0.0694 0.1387    
6 0.1387 0.0173 0.0694 0.0520    
7 0.0595 0.0149 0.0446     
8 0.0167 0.0084 0.0084     
9 0.0028 0.0028      
10 0.0002 0.0002      

Illustration 3.4.4 Rejection Region through “Minimal New Treatment Boundary Augmented” for K =2, D = 
10, and α = 0.05 for unequal allocation with ρ = 1.5 
 

3.4.3 Difference Between Control And The Minimal Treatment 

For equal allocation ρ=1, use DC - D(1) > d to define Rα. Unlike the previous two approaches, here 

we simultaneously take DC and D(1) into account. A larger difference of DC - D(1) suggests there is more 

evidence to show that at least one treatment is better than the control. We denote this method “Difference 

Only”, or abbreviate as “Rα-D”. Again, due to discreteness of the multinomial, the type I error could be 

much smaller than the required level α, that is P{DC - D(1) > d} <α while P{DC - D(1) > d+1} > α. This 

sacrifice in actual size under H0 will also be associated with a loss power (compared to a rejection rule with 

actual size closer to the nominal α when a given Ha is true). In an alternate approach  targeting the 

alternative hypothesis of (1: r1 = r,1), we could incorporate information from a small D(1) when DC - D(1) = 

d to lessen this impact. If the alternative hypothesis is (1: r1 = r, r2 = r), we could incorporate information 

from large DC when DC - D(1) = d to lessen the impact of loss power. Here, we emphasize the worst case 

scenario of only one treatment work better than the control, (1: r1 = r,1).and use the augmented rejection 

region {DC - D(1) > d U (D(1) < t | DC - D(1)= d )} where d is the smallest value for which P{ DC - D(1) > d} 

under H0 is ≤ α and t is the largest value for which P{ (DC - D(1) > d ) U (D(1) < t ∩ DC - D(1) =d)} under H0 is 

≤ α. This method is denoted “Difference Boundary Augmented”(DBA), or abbreviate this rejection region 

as “Rα-DBA”. 

Continuing with the previous example for K=2, ρ=1 and D=10, the rejection region for size = 

0.0268 ≤ 5 % level obtained from method “difference only” is DC - D(1) > 5 since the size for {DC - D(1) > 4} 

 
             : Rejection region by 
“treatment boundary augmented”  
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is 0.0638 which exceeds request 0.05. The size of the rejection region based on “difference boundary 

augmented” from worst case scenario, i.e. {( DC, D(1))|DC - D(1)> 5 U  { D(1) = 0 ∩ DC - D(1) = 5} is} 0.0353 

which improves the power computation comparing to the rejection region based on “difference only” and 

adding D(1) = 1, DC - D(1)= 5 as a sufficient condition increases the type 1 error to 0.0638.  The top number 

in each cell of the Illustration 3.4.5 below shows the rejection regions we just described for difference of 

the control and the minimum treatment (DC - D(1)) and the second item of the cells has the size of 

corresponding combination of DC, D(1) under the null hypothesis for the setting α=0.05, K=2 and D = 10. 

DC  D(1) 0 1 2 3 4 10 / 2   =5 

0 
DC - D(1) = 0 
Size<0.0001 

DC - D(1) =-1  
Size=0.0003 

DC - D(1) =-2  
Size=0.0015 

DC - D(1) =-3 
Size=0.0041 

DC - D(1) =-4 
Size=0.0071 

DC - D(1) =-5 
Size=0.0043 

1 
DC - D(1) =1  
Size=0.0003 

DC - D(1) =0 
Size=0.0031 

 DC - D(1)=-1 
Size=0.0122 

DC - D(1) =-2 
Size=0.0285 

DC - D(1) =-3 
Size=0.0427 

  

2 
DC - D(1) =2  
Size=0.0015 

DC - D(1) =1 
Size=0.0122 

DC - D(1) =0 
Size=0.0427 

DC - D(1) =-1 
Size=0.0854 

DC - D(1) =-2 
Size=0.0534 

 

3 
DC - D(1) =3  
Size=0.0041 

DC - D(1) =2  
Size=0.0285 

DC - D(1) =1 
Size=0.0854 

DC - D(1) =0 
Size=0.1423 

   

4 
DC - D(1) =4  
Size=0.0071 

 DC - D(1) =3 
Size=0.0427 

DC - D(1) =2 
Size=0.1067 

DC - D(1) =1 
Size=0.0711 

   

5 
DC - D(1) =5  
Size=0.0085 

DC - D(1) =4 
Size=0.0427 

DC - D(1) =3 
Size=0.0854 

    

6 
DC - D(1) =6  
Size=0.0071 

DC - D(1) =5 
Size=0.0285 

DC - D(1) =4 
Size=0.0213 

     

7 
DC - D(1) =7  
Size=0.0041 

DC - D(1) =6 
Size=0.0122 

     

8 
DC - D(1) =8  
Size=0.0015 

DC - D(1) =7 
Size=0.0015 

      

9 
DC - D(1) =9  
Size=0.0003 

       
 

10 
DC - D(1) =10  
Size<0.0001 

     

Illustration 3.4.5 Rejection Region through “Difference Only” or “Difference Boundary Augmented” for K 
=2, D = 10, and α = 0.05 for equal allocation 

For the case of unequal allocation with allocation ratio ρ, there are different numbers of subject 

recruited in the control group and each new treatment group. Hence, the difference of DC and D(1), DC - D(1), 

is not the best way to compare the control to the new treatment group and some modification should be 

applied. It could be more reasonable to compare the difference of estimated incident rate for the control 

group to the minimum new treatment group. Since the difference of incident rate is DC / NC - D(1)/NT = DC / 

ρCN - D(1)/ ρTN = (DC – ρ D(1))/ρCN where ρ, ρC and D are determined and fixed before the trial study and N 

is also fixed since it only depends on the ρ and total follow up cases D, the modified difference, defined as 

     : Rejection region by    
      “Difference only”  

               
U          : Rejection region by “Difference  
             boundary augmented”  
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DC – ρ D(1), could be seen as a modified criteria to obtain the rejection region using “difference” for 

unequal allocation with ratio ρ. For example of K=2, D=10, and the unequal allocation that allocates 0.5 

times more subjects to control group than the treatment group (ρ=1.5), we define the rejection region based 

on the modified difference. In Illustration 3.4.6, the first row of each cell of is the modified difference and 

the second row is the size of its corresponding combination (DC, D(1)) under the null hypothesis with 

allocation rate ρ=1.5 where the conditional distribution of DC, D1, D2 given D = 10 is from Multinomial 

(10, 1.5/3.5, 1/3.5, 1/3.5). For (DC=8, D(1) =1), the first row is modified DC - ρ D(1) = 8 – 1.5 ×1 = 6.5 and 

P(DC = 8, D(1) = 1 | D = 10) under H0 is P(DC = 8, D1=1,D2=1 | D = 10) = 90 × (1.5/3.5)8 × (1/3.5)1 × (1/3.5)1 

= 0.0084. 

 

DC    D(1) 0 1 2 3 4 10 / 2   =5 

0 DC-ρD(1) =0 
size<0.0001 

DC-ρD(1) =-1.5 
size =0.0001 

DC-ρD(1) =-3 
size =0.0003 

DC-ρD(1) =-4.5 
Size =0.0009 

DC-ρD(1) =-6 
size =0.0015 

DC-ρD(1) =-7.5 
size =0.0009 

1 DC-ρD(1) =1 
size =0.0001 

DC-ρD(1) =-0.5 
size =0.0010 

DC-ρD(1) =-2 
size =0.0039 

DC-ρD(1) =-3.5 
Size =0.0091 

DC-ρD(1) =-5 
size =0.0137 

 

2 DC-ρD(1) =2 
size =0.0007 

DC-ρD(1) =0.5 
size =0.0059 

DC-ρD(1) =-1 
size =0.0206 

DC-ρD(1) =-2.5 
Size =0.0411 

DC-ρD(1) =-4 
size =0.0257 

 

3 DC-ρD(1) =3 
size =0.0029 

DC-ρD(1) =1.5 
size =0.0206 

DC-ρD(1) =0 
size =0.0617 

DC-ρD(1) =-1.5 
Size =0.1028 

  

4 DC-ρD(1) =4 
size =0.0077 

DC-ρD(1) =2.5 
size =0.0462 

DC-ρD(1) =1 
size =0.1156 

DC-ρD(1) =-0.5 
Size =0.0771 

  

5 DC-ρD(1) =5 
size =0.0139 

DC-ρD(1) =3.5 
size =0.0694 

DC-ρD(1) =2 
size =0.1387 

   

6 DC-ρD(1) =6 
size =0.0173 

DC-ρD(1) =4.5 
size =0.0694 

DC-ρD(1) =3 
size =0.0520 

   

7 DC-ρD(1) =7 
size =0.0149 

DC-ρD(1) =5.5 
size =0.0446 

    

8 DC-ρD(1) =8 
size =0.0084 

DC-ρD(1) =6.5 
size=0.0084 

    

9 DC-ρD(1) =9 
size =0.0028 

     

10 DC-ρD(1) =10 
size =0.0002 

     

Illustration 3.4.6 Rejection Region through “Difference Only” or “Difference Boundary Augmented” 

(shaded  ) for K =2, D = 10, and α = 0.05 for unequal allocation design as ρ=1.5. The first row is the 
modified difference while the second row is the probability of the combination under null hypothesis. 

 
For the rejection region using modified difference, we reject the null as {(DC , D(1))|DC - ρD(1) ≥ d} 

and determined d through P(DC - ρD(1) ≥ d) ≤ α under null hypothesis. In this example, the rejection region 

use “difference only” could be determined as {(DC, D(1))|DC –1.5 D(1) ≥ 6.5} which is {(DC≥7, D(1) = 0),  (DC 

: Rejection region by    
“Difference only”  
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≥ 8, D(1) = 1)}. Since there is no tie on modified difference, we do not consider the “Difference Boundary 

Augmented” in this case.  

 

3.4.4 Cumulative Binomial Metric For Control And The Minimal Treatment 

One could argue that the difference DC - D(1) for equal allocation as a metric is problematic as it 

does not factor in the sum of D(1) and DC.  For example DC - D(1) = 3 might have stronger implications when 

this sum is 3; DC = 3, D(1) = 0 , than it does when this sum is 7, DC = 5, D(1) = 2.  In order to account for this 

possibility, one could instead use as a metric the cumulative probability to observe D(1) cases based on a 

binomial distribution Bin(DC + D(1), 0.5) for equal allocation i.e., with only one treatment  (K=1) (D(1)) with 

one control (DC) or Bin(DC + D(1), 1/ ρ+1) for unequal allocation with allocation ratio ρ for the control to 

each treatment group.  While in taking the minimum of the K > 1 treatments, one would expect D(1) to be 

shifted to  the left under H0 conditional on D(1) + DC,  than it would under the binomial conditional on D(1) 

+ DC, as we have seen, there is no simple closed interpretable formula to quantify this. Thus we have used 

the Bin( DC + D(1), 0.5) for equal allocation or Bin( DC + D(1), 1/ ρ+1)  for unequal allocation with 

allocation ratio ρ as a metric for the likelihood of D(1) given DC + D(1) as a convenient surrogate. Although 

the true conditional distribution of D(1) given DC + D(1) is not Binomial distribution, a smaller cumulative 

probability on this metric indicates the less likely the chance to obseve  D(1) given DC + D(1) if no treatment 

is better than the control. Hence, the metric would be determined from Binomial distribution: for each 

combination of DC = c and D(1)= t, such that c+t=Q, we would calculate CB=P{ D(1) ≤ t | DC + D(1) = c + t}. 

The smaller this CB is, the more evidence (among this cumulative binomial metric) the data provides to 

conclude that at least one rate of the treatment groups has a lower rate than the control group. Therefore, we 

could accumulate the rejection region using the cumulative binomial metric from the smallest as shown in 

the following section 3.4.5. The size level α rejection region based on this metric is called “cumulative 

binomial” or abbreviated as “Rα-CB”. 

Continuing with the example of equal allocation, with 2 treatment groups (K=2) and (D=10). We 

could obtain the cumulative binomial through Bin( DC + D(1), 1/2). If we take a look at Illustration 3.4.7, the 

top number in each cell is the cumulative binomial probability, CB = P(D(1) ≤ t| DC + D(1) = c + t),  of the 

corresponding (DC = c, D(1) = t) obtained from D(1) | DC + D(1) = c + t ~ Bin(DC + D(1) = c + t, 1/2) and the 
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second number in each cell is the probability of the combination (DC, D(1)) under null hypothesis. For 

example the cell (DC = 9, D(1) =0), in red for  Illustration 3.4.7, shows that CB = 0.00195 (top number) 

which is calculated by CB = P(D(1) ≤ 0| DC + D(1) = c + t = 9) where D(1) | DC + D(1) = 9 ~ Bin(9, 1/2) and the 

size  = 0.0003 (lower number)  P(DC = 9, D(1) =0) = P(DC = 9,D1 = 0, D2 = 1) + P(DC = 9, D1 = 1, D2 = 0) 

under the  distribution of DC, D1, D2 given D is multinomial(10,1/3,1/3,1/3) under null hypothesis. 

DC    D(1) 0 1 2 3 4 5 

0 
CB=1.00000 
size <0.0001 

CB=1.00000 
size=0.0003 

CB=1.00000 
size =0.0015 

CB=1.00000 
size =0.0041 

CB=1.00000 
size =0.0071 

CB=1.00000 
size =0.0043 

1 
CB=0.50000 
size =0.0003 

CB=0.75000 
size =0.0031 

CB=0.87500 
size =0.0122 

CB=0.93750 
size =0.0285 

CB=0.96875 
size =0.0427 

CB=0.98438 
 

2 
CB=0.25000 
size =0.0015 

CB=0.50000 
size =0.0122 

CB=0.68750 
size =0.0427 

CB=0.81250 
size =0.0854 

CB=0.89063 
size =0.0534 

CB=0.93750 
 

3 
CB=0.12500 
size =0.0041 

CB=0.31250 
size =0.0285 

CB=0.50000 
size =0.0854 

CB=0.65625 
size =0.1423 

CB=0.77344 
 

CB=0.85547 
 

4 CB=0.06250 
size =0.0071 

CB=0.18750 
size =0.0427 

CB=0.34375 
size =0.1067 

CB=0.50000 
size =0.0711 

CB=0.63672 
 

CB=0.74609 
 

5 CB=0.03125 
size =0.0085 

CB=0.10938 
size =0.0427 

CB=0.22656 
size =0.0854 

CB=0.36328 
 

CB=0.50000 
 

CB=0.62305 
 

6 CB=0.01563 
size =0.0071 

CB=0.06250 
size =0.0285 

CB=0.14453 
size =0.0213 

CB=0.25391 
 

CB=0.37695 
 

CB=0.50000 
 

7 CB=0.00781 
size =0.0041 

CB=0.03516 
size =0.0122 

CB=0.08984 
 

CB=0.17188 
 

CB=0.27441 
 

CB=0.38721 
 

8 CB=0.00391 
size =0.0015 

CB=0.01953 
size =0.0015 

CB=0.05469 
 

CB=0.11328 
 

CB=0.19385 
 

CB=0.29053 
 

9 CB=0.00195 
Size=0.0003 

CB=0.01074 
 

CB=0.03271 
 

CB=0.07300 
 

CB=0.13342 
 

CB=0.21198 
 

10 CB=0.00098 
size <0.0001 

CB=0.00586 
 

CB=0.01929 
 

CB=0.04614 
 

CB=0.08978 
 

CB=0.15088 
 

Illustration 3.4.7 Rejection Region through “Cumulative Binomial” (shaded  ) for K =2, D = 10, and α = 
0.05. For each (DC = c, D(1) = t), the numbers followed by “CB” are the cumulative binomial calculated by 
P(D(1) ≤ t| DC + D(1) = c + t) where D(1) | DC + D(1) = c + t ~ Bin(DC + D(1) = c + t, 1/2) and the number 
followed by “size” is the probability of (DC = c, D(1) = t) under the null hypothesis discussed in section 3.3. 
For example, In the cell (DC = 9, D(1) = 0), CB=P(D(1) ≤0 | DC + D(1) = 9 ) = 0.00195 and size = 0.0003 is by 
multinomial distribution from section 3.3 under null hypothesis for equal allocation 

Under the null hypothesis that the incident rate is the same in the control and each treatment 

group, based on the cumulative binomial metric (top number of the cell), as the arrows connecting the 

bolded top boxes on the figure show we would reject the combination (DC = 10, D(1) = 0) first since 0.00098 

is the lowest CB and followed by (DC = 9, D(1) = 0) which is the next lowest CB and then so on (reject the 

combinations (DC = 8, D(1) = 0), (DC = 7, D(1) = 0), (DC = 6, D(1) = 0), (DC = 8, D(1) = 1), (DC = 5, D(1) = 0), 

(DC = 7, D(1) = 1), (DC = 4, D(1) = 0) based on the next lowest CB).This path is followed until the cumulated 

binomial probability (top number in the cells) and preserving the LLQR property (as shown in the next 
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section) until the type I error reaches the maximum value that does not exceed 5% level of type I error. 

Also, combinations such as (DC,=10, D(1)=1), (DC,=9, D(1)=1),… do not put into the rejection region since 

those combinations are impossible with D = 10. The shaded cells of the following table represent the 

rejection region obtained through this method.  Note The cells beyond the bolded line are impossible 

combinations of (DC, D(1)) but are shown as we need the information in these cells to compute the 

cumulative binomial in the metric being used. 

DC     D(1) 0 1 2 3 4 5 

0 
CB=1.00000 
size <0.0001 

CB=1.00000 
size =0.0001 

CB=1.00000 
Size=0.0003 

CB=1.00000 
size =0.0009 

CB=1.00000 
size =0.0015 

CB=1.00000 
size =0.0009 

1 
CB=0.60000 
size =0.0001 

CB=0.84000 
size =0.0010 

CB=0.93600 
Size=0.0039 

CB=0.97440 
size =0.0091 

CB=0.98976 
size =0.0137 

CB=0.99590 

2 
CB=0.36000 
size =0.0007 

CB=0.64800 
size =0.0059 

CB=0.82080 
Size=0.0206 

CB=0.91296 
size =0.0411 

CB=0.95904 
size =0.0257 

CB=0.98116 

3 
CB=0.21600 
size =0.0029 

CB=0.47520 
size =0.0206 

CB=0.68256 
size =0.0617 

CB=0.82080 
size =0.1028 

CB=0.90374 CB=0.95019 

4 
CB=0.12960 
size =0.0077 

CB=0.33696 
size =0.0462 

CB=0.54432 
size =0.1156 

CB=0.71021 
size =0.0771 

CB=0.82633 CB=0.90065 

5 
CB=0.07776 
size =0.0139 

CB=0.23328 
size =0.0694 

CB=0.41990 
size =0.1387 

CB=0.59409 CB=0.73343 CB=0.83376 

6 CB=0.04666 
size =0.0173 

CB=0.15863 
size =0.0694 

CB=0.31539 
size =0.0520 

CB=0.48261 CB=0.63310 CB=0.75350 

7 CB=0.02799 
size =0.0149 

CB=0.10638 
size =0.0446 

CB=0.23179 CB=0.38228 CB=0.53277 CB=0.66521 

8 CB=0.01680 
size =0.0084 

CB=0.07054 
size =0.0084 

CB=0.16729 CB=0.29628 CB=0.43818 CB=0.57440 

9 CB=0.01008 
size=0.0028 

CB=0.04636 CB=0.11892 CB=0.22534 CB=0.35304 CB=0.48585 

10 CB=0.00605 
size =0.0002 

CB=0.03023 CB=0.08344 CB=0.16858 CB=0.27926 CB=0.40322 

Illustration 3.4.8 Rejection Region through “Cumulative Binomial” (shaded  ) when K =2, D = 10, and α 
= 0.05 for unequal allocation ratio ρ = 1.5. For each (DC = c, D(1) = t), the numbers followed by “CB” are 
the cumulative binomial calculated by P(D(1) ≤ t| DC + D(1) = c + t) where D(1) | DC + D(1) = c + t ~ 
Bin(DC + D(1) = c + t, 1/2.5) and the number followed by “size” is the probability of (DC = c, D(1) = t) 
under null hypothesis discussed in section 3.3. For example, In the cell (DC = 9, D(1) = 0), CB=P(D(1) ≤0 | 
DC + D(1) = 9 ) = 0.01008 and size = 0.0028 is by multinomial distribution from section 3.3 under null 
hypothesis for unequal allocation. 

From the example of unequal allocation with allocation ratio ρ = 1.5 with 2 treatment groups 

(K=2) and followed up until 10 disease cases occur (D=10), the surrogate cumulative binomial metric and 

the probabilities for all possible combinations under null hypothesis could be determined as following 

Illustration 3.4.8. Again, the second row of each cell is the probability for D(1),DC  under the null hypothesis 

for the allocation ratio 1.5 which is discussed in Section 3.3 and the first row in each cell is the cumulative 

binomial which is calculated by P(D(1) ≤ t | DC + D(1) = c + t) where D(1) | DC + D(1) = c + t ~ Bin(DC + D(1) = 
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c + t, 1/2.5). For the combination (DC = 9, D(1) = 0) (shown in red), the cumulative binomial could be 

calculated as P(D(1) ≤ 0| DC + D(1) = 9) = (1.5/2.5)9 = 0.01008. 

 

3.4.5 Optimal Power/Size Ratio Based on a Specified Alternative 

Optimal Power/Size Ratio is a metric and based on the value to define the rejection region. This 

method is denoted as “PowRatio”. For each combination of DC and D(1), we could have two probabilities, 

one is obtained under the specified alternative hypothesis and the other is the one under null hypothesis. If 

that probability under specified alternative is much larger than the probability under the null, or more 

precisely, the ratio of these two probabilities is larger since both values are less than one, we could consider 

that at least one treatment is better than the control. To illustrate this we will present a table which contains 

all the values of the ratio of the specified alternative / null probabilities for each combination of DC and 

D(1). Hence, we look the ratios and see the combinations which might have bigger power with smaller size. 

Then, we accumulate the rejection region based on LLQR and this ratio from the largest to smaller.  

For a specific alternative, the rejection region defined as power/ratio is larger than a number under 

size level α. However, the shape of the rejection based on this method could be very different as the 

alternative changes. Here we will discussed the shape of the rejection region under the alternative (1:r1 = 

r,1) or (1: r1 = r, r2 = r), r < 1, for the case of K=2. As the alternative is as (1: r1 = r,1) for r < 1, the power 

could be represent as the following formula:  

(1)( , )
aH CP D c D t= =  = (1) 1 2( , , )

aH CP D c D t D D= = ≤ + (1) 1 2( , , )
aH CP D c D t D D= = >   

= 1 1 2( , , )
aH CP D c D t D D= = ≤  + 2 1 2( , , )

aH CP D c D t D D= = >  

= 
1

2 2

t D tD r
p

c t D c t r r

−
    
    − − + +    

 + 
1

(1 )
2 2

D c t c tD r
p

c D c t t r r

− − +
    −     − − + +    

, 

where t ≤ D-c-t and 1>p = 1 2( )
aHP D D≤  > 1-p>0 under alternative hypothesis as (1: r1 = r,1) for r < 1 and 

which does not depend on t. Similarly, under null hypothesis, r = 1, and p* = 
0 1 2( )HP D D≤ , 

0 (1)( , )H CP D c D t= =  = 
1

3

D D

c t D c t

  
   − −   

. The ratio of the Power/Size could be express as 
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0

(1)

(1)

( , )

( , )
aH C

H C

P D c D t

P D c D t

= =
= =

 ∝  (proportional to) 
1

2

D
tp r

r
 
 + 

+
1

(1 )
2

D
D c tp r

r
− − −  + 

∝ tpr + (1 ) D c tp r − −− ≐ f(t). 

The derivative of f(t) is ' ( )f t  = p ln(r) rt - (1-p) ln(r) rD-c-t < ln(r) (r t-rD-c-t)/2 <0 as ln(r) < 0, r t-rD-c-t ≥ 0 

for r < 1 and t ≤ D-c-t and f’(t) is decreasing on p and with maximum at p = 1/2 (in this cases, p is always 

larger than 1/2). Therefore, the ratio of the Power/Size under K=2 has following properties under 

alternative (1:r,1):  

(1) Power/Size ratio is increasing as t decreases for fixed numbers of control, c.  

(2) the ratio is increasing as the numbers of controls, c, increasing given fixed t. 

(3) the ratio is increasing as t decreases for fixed of total numbers of disease cases in the control group 

and the minimum treatment group (c+t) 

Hence, for any given (DC = c, D(1) =t) to be rejected, the lower and left cells which will have larger ratio and 

tend to have more evident to be rejected. This approach for K=2 and alternative is (1: r1 = r,1), it satisfies 

the property LLQR directly. And also, the rejection region tends to accumulated from the small minimum 

treatment (small t) first and might be similar to the rejection region based on “minimum treatment” since 

the impact for power/size ratio is more for small minimum treatment than the large control by (1), (2), and 

(3). However, it is hard to show the rejection region exactly by mathematical formula since it is hard to 

compare the ratio which has different combinations of DC and D(1) in some case. Hence, similar to the 

method of “cumulative binomial”, there is a metric filled with power/size ratio in the table of combinations 

(DC, D(1)) and the rejection region based on this condition could not be decided as directly as other 

methods. Instead, the rejection region could be obtained through this metric and LLQR which is shown in 

the following section. But through the computational results, we found that the rejection region based on 

this method is similar to the “treatment boundary augmented”.  

For special cases of K=2 and the alternative is as (1: r1 = r, r2 = r) for r < 1, the rejection region 

based on “PowRatio” is exactly the same as the one based on “Use the controls”. The Power/Size ratio is  

1 2

1 2

1
1 2 1 2

1
3

C CD D D

C

D

C

D r
D D D r r
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D D D
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    + +    

  
  

  

 = 
3 1

1 2

CD D

r r
   
   +   

, 



30 

and for given r, the ratio is only depends on DC and is constant for the same DC. Also, the ratio is larger as 

DC increase since r is less than 1 which has the same metric as the one we discussed in “Use the Control”. 

Hence it is more evidence to get rejection for large DC. Also, similar to the method of “control boundary 

augmented”, the accumulated extra cells from the smallest D(1) for given DC would increase the power. The 

rejection region based on Power/Size ratio is the same as the one based on “control only” and “control 

boundary augmented”.  

 The power ratio could be seen as the likelihood ratio test for a specific alternative. Based on 

Neyman-Pearson Lemma, the most powerful test for the simple test H0: (1:1,1) v.s. Ha:(1: r1 = r, r2 = r) is 

the rejection region based on “control” and the most powerful test for test H0: (1:1,1) v.s.Ha:(1: r1 = r,1) is 

similar to the rejection region based on “minimum treatment”. Hence there is no UMP for the test H0: 

(1:1,1) v.s. composite alternative Ha: (1:r1,r2) where r1, r2 ≤1 with one strict inequality since the shape 

changes on the different alternative dramatically.  

The rejection region for the power ratio approach depends on the alternative hypothesis too much 

and it is hard to decide which specific alternative hypothesis to pick to construct the rejection region. 

Hence, we will not consider this method for the rest of the study after this section. 

Continuing the example with (K=2) and (D=10) occur under equal allocation (ρ=1). For each 

possible cell, we show the Power as the top number, size as the middle number and the power/size ratio as 

the third number. First, for the rejection region under alternative (1: r1 = 0.2, 1), the ratio gets smaller for 

larger value of D(1) and smaller DC. As the result, we could reject the (DC, D(1)) in the shaded area as shown 

in below (Illustration 3.4.9) which is the same region we had for the “treatment boundary augmented”. 

For the alternative of interest is change to (1: r1 = 0.2, r2 = 0.2) and other setting remain the same, 

we could find that the ratio value is the same for the same DC and the value is larger for larger DC and is the 

same metric as the one from “Use the control”. The rejection region based on “PowRatio” and LLQR (as in 

Illustration 3.4.10) is to reject (DC = 10, D(1) = 0) first, and then reject the cells as the following order (DC = 

9, D(1) = 0), (DC = 8, all D(1)), (DC = 7, all D(1)), and collect the cell, (DC=6, D(1) = 0), for increasing the 

power from the boundary. Hence the rejection region for this alternative is the same as the one based on 

“controls boundary augmented” as shown in the previous paragraph. 
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DC D(1) 0 1 2 3 4 5 

0 
Power:0.0004 
Size<0.0001 
Ratio:11.1162 

Power:0.0008 
Size:0.0003 
Ratio:2.2232 

Power:0.0007 
Size:0.0015 
Ratio:0.4447 

Power:0.0004 
Size:0.0041 
Ratio:0.0891 

Power:0.0001 
Size:0.0071 
Ratio:0.0185 

Power<0.0001  
Size:0.0043 
Ratio:0.0071 

1 
Power:0.0038 
Size:0.0003 
Ratio:11.1162 

Power:0.0068 
Size:0.0031 
Ratio:2.2233 

Power:0.0054 
Size:0.0122 
Ratio:0.4448 

Power:0.0026 
Size:0.0285 
Ratio:0.0896 

Power:0.0009 
Size:0.0427 
Ratio:0.0213     

 

2 
Power:0.0169 
Size:0.0015  
Ratio:11.1162 

Power:0.0271 
Size:0.0122 
Ratio:2.2234 

Power:0.0190 
Size:0.0427 
Ratio:0.4454 

Power:0.0079  
Size:0.0854 
Ratio:0.0925 

Power:0.0019 
Size:0.0534  
Ratio:0.0356     

 

3 
Power:0.0452 
Size:0.0041  
Ratio:11.1163 

Power:0.0633  
Size:0.0285 
Ratio:2.2239 

Power:0.0383 
Size:0.0854 
Ratio:0.4482 

Power:0.0152 
Size:0.1423 
Ratio:0.1067     

  

4 
Power:0.0791 
Size:0.0071 
Ratio:11.1169 

Power:0.0950 
Size:0.0427 
Ratio:2.2268 

Power:0.0493 
Size:0.1067 
Ratio:0.4624 

Power:0.0127 
Size:0.0711 
Ratio:0.1779     

  

5 
Power:0.0949 
Size:0.0085 
Ratio:11.1197   

Power:0.0956 
Size:0.0427 
Ratio:2.2410    

Power:0.0455 
Size:0.0854 
Ratio:0.5336     

   

6 
Power:0.0792 
Size:0.0071 
Ratio:11.1340 

Power:0.0658 
Size:0.0285 
Ratio:2.3122 

Power:0.0190 
Size:0.0213 
Ratio:0.8893     

   

7 
Power:0.0455 
Size:0.0041 
Ratio:11.2051 

Power:0.0325 
Size:0.0122 
Ratio:2.6679  

    

8 
Power:0.0176 
Size:0.0015 
Ratio:11.5608 

Power:0.0068 
Size:0.0015 
Ratio:4.4465     

    

9 
Power:0.0045 
Size:0.0003 
Ratio:13.3394     

     

10 
Power:0.0004   
Size<0.0001 
Ratio:22.2324    

     

Illustration 3.4.9 Rejection Region through “PowRatio” (shaded  ) for K =2, D = 10, α = 0.05 and under 
specified alternative (1:r1 =0.2,1). The power, size, and its ratio are calculated and located as top, middle, 
and third in each cell.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       : Rejection region based on “PowRatio” 
In each possible cell, the power of corresponding 
combinations will be located on the top, size will be in 
the middle, and the Power/Size ratio will be at the third.  
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DC   D(1) 0 1 2 3 4 5 

0 
Power<0.0001 
Size<0.0001 
Ratio:0.0002   

Power<0.0001 
Size:0.0003 
Ratio:0.0002   

Power<0.0001 
Size:0.0015 
Ratio:0.0002 

Power<0.0001 
Size:0.0041 
Ratio:0.0002 

Power<0.0001 
Size:0.0071 
Ratio:0.0002 

Power<0.0001 
Size:0.0043 
Ratio:0.0002 

1 
Power<0.0001 
Size:0.0003 
Ratio:0.0010   

Power<0.0001  
Size:0.0031 
Ratio:0.0010   

Power<0.0001 
Size:0.0122 
Ratio:0.0010   

Power<0.0001 
Size:0.0285 
Ratio:0.0010   

Power<0.0001 
Size:0.0427 
Ratio:0.0010   

 

2 
Power<0.0001 
Size:0.0015 
Ratio:0.0052   

Power:0.0001 
Size:0.0122 
Ratio:0.0052   

Power:0.0002 
Size:0.0427 
Ratio:0.0052   

Power:0.0004 
Size:0.0854 
Ratio:0.0052   

Power:0.0003 
Size:0.0534 
Ratio:0.0052   

 

3 
Power:0.0001  
Size:0.0041 
Ratio:0.0261   

Power:0.0007 
Size:0.0285 
Ratio:0.0261   

Power:0.0022 
Size:0.0854 
Ratio:0.0261   

Power:0.0037  
Size:0.1423 
Ratio:0.0261   

  

4 
Power:0.0009 
Size:0.0071 
Ratio:0.1307  

Power:0.0056 
Size:0.0427 
Ratio:0.1307 

Power:0.0139 
Size:0.1067 
Ratio:0.1307 

Power:0.0093 
Size:0.0711 
Ratio:0.1307 

  

5 
Power:0.0056 
Size:0.0085 
Ratio:0.6533   

Power:0.0279 
Size:0.0427 
Ratio:0.6533   

Power:0.0558 
Size:0.0854 
Ratio:0.6533   

   

6 
Power:0.0232 
Size:0.0071 
Ratio:3 

Power:0.0929 
Size:0.0285 
Ratio:3 

Power:0.0697 
Size:0.0213    
Ratio:3 

   

7 
Power:0.0664 
Size:0.0041 
Ratio:16 

Power:0.1991 
Size:0.0122 
Ratio:16 

    

8 
Power:0.1245 
Size:0.0015 
Ratio:82 

Power:0.1245 
Size:0.0015 
Ratio:82 

    

9 
Power:0.1383 
Size:0.0003 
Ratio:408 

     

10 
Power:0.0346 
Size<0.0001 
Ratio:2041 

     

Illustration 3.4.10 Rejection Region through “PowRatio” (shaded  ) for K =2, D = 10, α = 0.05 and under 
specified alternative (1:r1 =0.2,r2 = 0.2). The power, size, and its ratio are calculated and located as top, 
middle, and third in each cell.  

  

Other example for the alternatives such as (1:r1=0.2, r2=0.5) and others conditions remain the 

same would be obtained through Power/Size ratio metric and LLQR. As the table below (Illustration 

3.4.11) shows, in this case (1:r1=0.2, r2=0.5), the rejection region is no longer like “controls boundary 

augmented” or “treatment boundary augmented” as previous examples.  

Again, since the shape of the rejection region based on “PowRatio” depends on the alternative 

hypothesis and could be quite different; there is no uniformly most powerful test based these two statistics 

for un-specific alternative for our study. Also, we are looking for a rejection region method that is good for 

different alternatives. From now on, we only study the rejection regions that do not depend on alternative 

settings which are discussed in section 3.4.1 to section 3.4.4.  

        : Rejection region based on “PowRatio” 
In each possible cell, the power of corresponding 
combinations will be located on the top, size will be in 
the middle, and the Power/Size ratio will be at the third.  
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 DC D(1)  0 1 2 3 4 5 

0 
Power<0.0001 
Size<0.0001 
Ratio:0.1430   

Power<0.0001 
Size:0.0003 
Ratio:0.0572 

Power<0.0001 
Size:0.0015 
Ratio:0.0230 

Power<0.0001 
Size:0.0041 
Ratio:0.0094 

Power<0.0001 
Size:0.0071 
Ratio:0.0042 

Power<0.0001 
Size:0.0043 
Ratio:0.0029   

1 
Power:0.0001 
Size:0.0003 
Ratio:0.2861   

Power:0.0003 
Size:0.0031 
Ratio:0.1146 

Power:0.0006 
Size:0.0122 
Ratio:0.0462 

Power:0.0006 
Size:0.0285 
Ratio:0.0195 

Power:0.0004 
Size:0.0427 
Ratio:0.0103 

 

2 
Power:0.0009  
Size:0.0015 
Ratio:0.5725   

Power:0.0028   
Size:0.0122 
Ratio:0.2298 

Power:0.0040   
Size:0.0427 
Ratio:0.0939 

Power:0.0036 
Size:0.0854 
Ratio:0.0425 

Power:0.0016 
Size:0.0534 
Ratio:0.0293     

 

3 
Power:0.0047  
Size:0.0041 
Ratio:1.1460   

Power:0.0132 
Size:0.0285 
Ratio:0.4623 

Power:0.0166 
Size:0.0854 
Ratio:0.1948 

Power:0.0146 
Size:0.1423 
Ratio:0.1025     

  

4 
Power:0.0163  
Size:0.0071 
Ratio:2.2977   

Power:0.0401 
Size:0.0427 
Ratio:0.9388 

Power:0.0453 
Size:0.1067 
Ratio:0.4247 

Power:0.0208 
Size:0.0711 
Ratio:0.2929     

  

5 
Power:0.0395  
Size:0.0085 
Ratio:4.6235   

Power:0.0831 
Size:0.0427 
Ratio:1.9478 

Power:0.0875 
Size:0.0854 
Ratio:1.0252     

   

6 
Power:0.0668  
Size:0.0071 
Ratio:9.3875   

Power:0.1208 
Size:0.0285 
Ratio:4.2471 

Power:0.0625 
Size:0.0213    
Ratio:2.9290 

   

7 
Power:0.0792  
Size:0.0041 
Ratio:19.4780  

Power:0.1250 
Size:0.0122 
Ratio:10.2516    

    

8 
Power:0.0647  
Size:0.0015 
Ratio:42.4709 

Power:0.0446 
Size:0.0015 
Ratio:29.2903    

    

9 
Power:0.0347 
Size:0.0003 
Ratio:102.516 

     

10 
Power:0.0050 
Size<0.0001 
Ratio:292.903 

     

Illustration 3.4.11 Rejection Region through “PowRatio” (shaded  ) for K =2, D = 10, α = 0.05 and under 
specified alternative (1:r1 =0.2,r2 = 0.5). The power, size, and its ratio are calculated and located as top, 
middle, and third in each cell.  

 

3.5 Accumulated Rejection Region Based on LLQR and its Representation 

As discussed in section 3.4, the rejection region using “cumulative binomial” metric can not be 

obtained from simple way. Here, we introduce a method to accumulate the cells until the size of the region 

is not exceeded level α based on LLQR. The rejection region is obtained through comparison of its ordering 

criteria among the candidate cells where are the cells might be sequentially rejected and accumulated in the 

rejection region based on the current rejection region under LLQR given the cumulative type I error 

remains less or equal to α. We accumulate the rejection region starting at the cell which is located in the 

last row and first column.  

       : Rejection region based on “PowRatio” 
In each possible cell, the power of corresponding 
combinations will be located on the top, size will be in 
the middle, and the Power/Size ratio will be at the third.  
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In this process, the cell (DC = D, D(1) = 0) where all cases are controls would start (be the first included 

in) the reject region which is the current rejection region at start. The rejection region would be then grow 

with new cells added as we continue to add by the following 2 steps until the type I error exceeds α.  

1. Given the current rejection region and the criteria metric, we first search for the set of candidate cells 

which may be accumulated to new reject region in next stage followed by LLQR and then compare the 

criteria among candidate cells. For the cases of tie, we might pick either from the smallest D(1)or 

largest DC depends on the alternative of interests.  

2. Computed the size (under H0) of the new rejection region which combine the new cell chosen in Step 1 

and the existing rejection region.  

a. If the size of new rejection region is less than the target α level we are pursuing, we 

assume the new rejection region as the current rejection region and go back to Step 1 to 

add a new cell  

b. If the size is equal or more than the target α level, then do not add the cell and keep the 

current rejection region as the final result. 

In step 1, in order to maintain the LLQR property; the candidate cells should have two properties: A. 

the candidate cells to be added must be immediately to the right or immediately above the current rejection 

region.  B. furthermore, the candidate cells cannot have any cells in the same row to the left or any cells in 

the same column below them which are not in the rejection region.  For the case as shown in the Illustration 

3.5.1, suppose we have current rejection region shaded as gray, we could find that {(DC = 1, D(1) = 0), (DC = 

3, D(1) = 1), (DC = 3, D(1) = 2), (DC = 2, D(1) = 3)} are the cells immediately right or above the current 

rejection region which are possible cells to be the candidate cells. However, when we take a closer look, if 

we pick the cell (DC = 3, D(1) = 2), the rejection region is not followed by LLQR since a cell that is not in 

the rejection region (DC = 3, D(1) = 1) is in the same row to the left of (DC = 3, D(1) = 2). Similarly, (DC = 2, 

D(1) = 1) could not be the candidate cell since a cell in the same column below it (DC = 3, D(1) = 1) should be 

collected in the reject first. Hence, the candidate cells for increasing the rejection region at this stage are 

{( DC, D(1))| (DC = 1, D(1) = 0), (DC = 3, D(1) = 1)}. 

 

 



35 

DC         D(1) 0 1 2 3 4 

0      

1      

2      

3      

4      

5      

6      

7      

8      

Illustration 3.5.1 Possible Candidate Cells Given Current Rejection Region; gray colored cells are current 
rejection region, and the green colored cells are the candidates to be accumulated to the new rejection 
region 

Here, we construct a simple algorithm to find the candidate cells based on LLQR which could be 

programmed through computer directly. The cell directly above a cell in the current rejection region with 

D(1)= 0 will always to be considered to be a candidate but for other cells to be the candidate cells should be 

satisfied two conditions below: 

(a) Consider only cells that are the lowest possible cell in a column that is not in the rejection region .  

(b) But do not consider cells in (a) if there is a cell in the same row to the left of that cell which is not in the 

current rejection region 

Once the cells have been included in (a) and (b) compare all the candidate cells according to the 

criteria being used and find the one which has the best value. For instance, we would pick the cell 

satisfying (a) and (b) that has the smallest p-value for “cumulative binomial” metric.  If the criteria scores 

are tied in for two candidates, we could pick the one with the smallest D(1) to break the tie as this more 

directly suggests that one specific treatment works better than the control. Or alternatively, we could pick 

the one from the largest DC as this more directly suggests that all treatments work better than the control, or 

use some other tie breaking criteria. 

Form the previously used example of K=2, D=10, ρ=1 under H0 and Ha: (1: r1 = 0.2, 1), the 

cumulative binomial metric being used to form a rejection region, suppose the shaded area is the current 

rejection region where this current rejection region has been obtained through several iteration of the 

proposed 2 steps (a) and (b) above. The cells that are the lowest possible cells in each column that are not 

Based on LLQR, we have to 
collect the cell located left 
first, and then this one 
 

Based on LLQR, we have to 
collect this cell located lower 
first, and then this one 
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in the current rejection region and do not have a cell in the row to the left which is also not in the current 

region are {(DC = 4, D(1) = 0), (DC = 6, D(1) = 1)}. Pick the cell to be in the new rejection region as the value 

of criteria metric corresponding to the cells {(DC = 4, D(1) = 0), (DC=6, D(1) = 1)} with the smallest values. 

We found that the values are tied and pick the one with smaller D(1) as the alternative of interests is (1: r1 = 

0.2, 1). 

DC      D(1) 0 1 2 3 4 5 

0 
CB=1.00000 
size <0.0001 

CB=1.00000 
Size=0.0003 

CB=1.00000 
size =0.0015 

CB=1.00000 
size =0.0041 

CB=1.00000 
size =0.0071 

CB=1.00000 
size =0.0043 

1 
CB=0.50000 
size =0.0003 

CB=0.75000 
size =0.0031 

CB=0.87500 
size =0.0122 

CB=0.93750 
size =0.0285 

CB=0.96875 
size =0.0427 

CB=0.98438 
 

2 
CB=0.25000 
size =0.0015 

CB=0.50000 
size =0.0122 

CB=0.68750 
size =0.0427 

CB=0.81250 
size =0.0854 

CB=0.89063 
size =0.0534 

CB=0.93750 
 

3 
CB=0.12500 
size =0.0041 

CB=0.31250 
size =0.0285 

CB=0.50000 
size =0.0854 

CB=0.65625 
size =0.1423 

CB=0.77344 
 

CB=0.85547 
 

4 CB=0.06250 
size =0.0071 

CB=0.18750 
size =0.0427 

CB=0.34375 
size =0.1067 

CB=0.50000 
size =0.0711 

CB=0.63672 
 

CB=0.74609 
 

5 
CB=0.03125 
size =0.0085 

CB=0.10938 
size =0.0427 

CB=0.22656 
size =0.0854 

CB=0.36328 
 

CB=0.50000 
 

CB=0.62305 
 

6 
CB=0.01563 
size =0.0071 

CB=0.06250 
size =0.0285 

CB=0.14453 
size =0.0213 

CB=0.25391 
 

CB=0.37695 
 

CB=0.50000 
 

7 
CB=0.00781 
size =0.0041 

CB=0.03516 
size =0.0122 

CB=0.08984 
 

CB=0.17188 
 

CB=0.27441 
 

CB=0.38721 
 

8 
CB=0.00391 
size =0.0015 

CB=0.01953 
size =0.0015 

CB=0.05469 
 

CB=0.11328 
 

CB=0.19385 
 

CB=0.29053 
 

9 
CB=0.00195 
Size=0.0003 

CB=0.01074 
 

CB=0.03271 
 

CB=0.07300 
 

CB=0.13342 
 

CB=0.21198 
 

10 
CB=0.00098 
size <0.0001 

CB=0.00586 
 

CB=0.01929 
 

CB=0.04614 
 

CB=0.08978 
 

CB=0.15088 
 

Illustration 3.5.2 Candidate cells (bolded) for the next rejection region given current rejection region (gray 
colored) 
 

In the step 2, we could calculate the size of the new rejection region which is the size of the 

current rejection region plus the probability of the combination DC, D(1) under H0. Since the size of the new 

rejection region is 0.0424 which is less than 0.05, the new rejection region are considered to the current 

rejection region plus the chosen candidate cells and continue to the step 1 till the size of the new rejection 

region is larger than 0.05.  
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3.6 Robustness of the Different Rejection Regions to Pathological Null and Pathological Alternatives 

While one of the cardinal assumptions that is made is none of the new treatments can be worse than 

the control, it can never be ruled out that a new treatment could be equivalent or worse and this has 

happened before (Hirschel, 2003). 

We refer to settings where a new treatment is worse than the control as “pathological”. For the 

pathological setting of (1:1, R), where R > 1 we call a pathological null (as nothing is superior to the 

control) and the setting of (1: r, R), we call a pathological alternative since one treatment is better than the 

control. In these pathological cases, as R become larger, both the DC and D(1) are pushed to zero with large 

probability as all of the cases tend to accumulate to the R treatment arm. Tests based on nulls of (1:1,1) and 

alternatives of (1:r1, r2 ) fail in pathological settings. While one would expect that the problem of one 

treatment performing worse than the control would become apparent to investigators either post-hoc or 

preferably in interim analyses and the extremely bad treatment should be indicated obviously and excluded 

in the trial.  Here, we will discuss the impact of pathological cases focus on R=2 (and R=5) using the 

rejection regions based on the previously described methods. Also, we will focus on comparison of two 

new treatment groups to one control for equal allocation (ρ = 1). 

3.6.1 Robustness of Rejection Regions to False Positive Findings in the Pathological Null Setting 

For K=2, pathological nulls are single (1:1, R) for R>1, i.e. there is one treatment which is worse 

than the control or double (1: R1, R2) for  1 < R1 ≤ R2, i.e. both treatments are worse than the control. For 

the double pathological null (1: R1, R2) where R1 ≈ R2, DC will tend to be smaller and D(1) will tend to be 

larger than for the null (1:1,1) which pushes the distribution away from the rejection region for any method 

considered here. For R1 << R2 (R1 is much smaller than R2 ) the setting becomes similar to (1:1, R). Hence, 

we focus on comparing two treatments (K=2) to the control under the single pathological null (1:1, R) for R 

> 1 in the examples and check if there are rejection regions that exceed the requested size level (i.e. make it 

falsely appear a new treatment is successful).  

For comparing the mass of DC and D(1) under (1:1, R) to this mass under (1:1,1), the mass under 

(1:1, R) tends to have higher probability to be located towards smaller minimum treatment (as well as fewer 

controls). Hence rejection regions that focus on small minimum treatments might have larger size than the 

required level α. Rejection regions based on “minimum treatment only” or “minimum treatment boundary 
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augmented” reject small minimum treatment numbers (with or without small control numbers) might 

exceed the nominal α level. On the other hand, the rejection region based on “controls only” could always 

controls the type I error under pathological null since the conditional distribution of DC | D ~ Binomial(D, 

1/(2+R) ) and the probability to reject the pathological null based on the size-α test under regular null of 

(1:1,1) is Ppathological(DC > c| D) ≤ Pregular(DC > c| D) ≤α as the conditional distribution under regular null 

hypothesis is DC | D ~ Binomial(D, 1/3) and 1/(2+R) < 1/3.  

  D(1) 
DC 

0 1 2 3 4 5 6 7 

0 P1<0.0001 
P2<0.0001 

P1<0.0001 
P2=0.0002 

P1<0.0001 
P2=0.0008 

P1=0.0001 
P2=0.0017 

P1=0.0002 
P2=0.0026 

P1=0.0004 
P2=0.0030 

P1=0.0007 
P2=0.0027 

P1=0.0009 
P2=0.0023 

1 P1<0.0001 
P2=0.0002 

P1=<0.0001 
P2=0.0016 

P1=0.0002 
P2=0.0052 

P1=0.0008 
P2=0.0105 

P1=0.0021 
P2=0.0145 

P1=0.0042 
P2=0.0152 

P1=0.0063 
P2=0.0134 

P1=0.0036 
P2=0.0061 

2 P1<0.0001 
P2=0.0008 

P1=0.0002 
P2=0.0052 

P1=0.0011 
P2=0.0157 

P1=0.0042 
P2=0.0289 

P1=0.0105 
P2=0.0369 

P1=0.0188 
P2=0.0362 

P1=0.0251 
P2=0.0322 

 

3 P1=0.0001 
P2=0.0017 

P1=0.0008 
P2=0.0104 

P1=0.0042 
P2=0.0288 

P1=0.0140 
P2=0.0485 

P1=0.0314 
P2=0.0571 

P1=0.0502 
P2=0.0537 

P1=0.0293 
P2=0.0251 

 

4 P1=0.0002 
P2=0.0026 

P1=0.0021 
P2=0.0143 

P1=0.0105 
P2=0.0361 

P1=0.0314 
P2=0.0554 

P1=0.0628 
P2=0.0604 

P1=0.0879 
P2=0.0564 

  

5 P1=0.0004 
P2=0.0029 

P1=0.0042 
P2=0.0144 

P1=0.0188 
P2=0.0327 

P1=0.0502 
P2=0.0456 

P1=0.0879 
P2=0.0470 

P1=0.0527 
P2=0.0226 

  

6 P1=0.0007 
P2=0.0024 

P1=0.0063 
P2=0.0108 

P1=0.0251 
P2=0.0222 

P1=0.0586 
P2=0.0282 

P1=0.0879 
P2=0.0282 

   

7 P1=0.0009 
P2=0.0015 

P1=0.0072 
P2=0.0062 

P1=0.0251 
P2=0.0114 

P1=0.0502 
P2=0.0134 

P1=0.0314 
P2=0.0067 

   

8 P1=0.0009 
P2=0.0008 

P1=0.0063 
P2=0.0028 

P1=0.0188 
P2=0.0045 

P1=0.0314 
P2=0.0050 

    

9 P1=0.0007 
P2=0.0003 

P1=0.0042 
P2=0.0010 

P1=0.0105 
P2=0.0014 

P1=0.0070 
P2=0.0007 

    

10 P1=0.0004 
P2=0.0001 

P1=0.0021 
P2=0.0003 

P1=0.0042 
P2=0.0003 

     

11 P1=0.0002 
P2<0.0001 

P1=0.0008 
P2=0.0001 

P1=0.0006 
P2<0.0001 

     

12 P1=0.0001 
P2<0.0001 

P1=0.0002 
P2<0.0001 

      

13 P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

      

14 P1<0.0001 
P2<0.0001 

       

15 P1<0.0001 
P2<0.0001 

       

Illustration 3.6.1 Probability mass for D = 15. The top probability P1 in the cell is the probability mass 
under regular null hypothesis (1:1,1) while the second probability P2 in the cell is the probability mass 
under pathological hypothesis (1:1,2). 60% of the probability mass for each hypothesis is marked as bolded 
(red colored is under regular null and the black colored is under pathological null) 

 

For example consider K=2, size level 0.05 and follow up until D = 15. We first present the 

distribution mass of DC, D(1) under null hypothesis (1:1,1) and then the distribution mass of DC, D(1) under 

About 60% of mass 
under pathological null 
of (1:1,2) in the bolded 
area 

Area of 60% mass 
under the null of 
(1:1,1) in red area 
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the pathological null hypothesis (1:1,2). The Illustration 3.6.1 shows the probability mass for DC, D(1) under 

both the null hypothesis of (1:1,1) and pathological null hypothesis of (1:1,2). The top number, P1, in each 

cell is the probability mass that is under null hypothesis (1:1,1) and the second number, P2, in each cell is 

the probability mass under pathological null (1:1,2). The area of highest density containing ~60% of mass 

is bolded in black under pathological null while the region of highest density with ~60% mass from (1:1,1) 

is bolded in red. 

Under pathological null hypothesis of (1:1,2), mass concentration is more spread than the one 

under the null hypothesis (1:1,1) and is shifted towards less controls and less minimal treatment. The 

probability mass is higher in the small control and small minimum treatment than the ones from the null 

hypothesis.  

But what is most important in terms of size is the probability under pathological null hypothesis of 

(1:1,2) for DC, D(1) to fall into a given α level (say α=0.05) rejection region for (1:1,1). If this probability to 

reject H0 under the pathological (1:1,2) is (substantially) larger than 0.05 for a given method , then rejection 

region based on that method is failure since the type I error is not well controlled under a pathological null.  

Method of Rejection Region applied to a rejection 
region based on (1:1,1) 

Probabilities to reject 
(1:1,2) 

Control Only 0.0042 
Control Boundary Accumulated 0.0077 
Minimum Treatment Only 0.0807 > 0.05 
Minimum Treatment Boundary Accumulated 0.0810 > 0.05 
Difference 0.0085 
Difference Boundary Accumulated 0.0172 
Cumulative Binomial 0.0200 

Table 3.6.1 Probability to reject the pathological null (1:1,2) using the α=0.05 level on a rejection region 
based on regular null hypothesis (1:1,1) 

 
The Table 3.6.1 presents probabilities to reject the pathological null (1:1,2) using an α=0.05 

rejection region for (1:1,1) for D=15. We find for this example, except the methods based on “minimum 

treatment only” and “minimum treatment boundary accumulated”, other methods have smaller probability 

to reject under the pathological null hypothesis of (1:1,2) than α=0.05 with the (1:1,1) based region and in 

fact smaller than the  probability to reject under the null hypothesis of (1:1,1 (Data not shown)). The 

methods based on the “minimum treatment only” and “minimum treatment boundary accumulated” are 
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larger than the required level 0.05. Hence, the (1:1,1) rejection region based on “minimum treatment only” 

or “minimum treatment boundary” is not robust to the pathological null hypothesis.  

The Table below (Table 3.6.2) gives actual probabilities to reject the null hypothesis under 

pathological null hypotheses (1:1,2) and (1:1,5) for α=0.01, α=0.025 and α=0.05 using the minimum 

treatment only which deterministically is at least as large as the minimum treatment boundary accumulated. 

In all of these settings the other methods maintain the nominal Type 1 error (data not shown). For the 

rejection region using “minimum treatment only”, most sizes exceeded nominal type I error and this type-1 

error was increasing with D. Also, we found that as R as large as 5 and the follow up size until 30, the 

probability to reject the null hypothesis is larger than 35% no matter which nominal size level is. This 

results in high probability to find the false positive and is not good for our design as using “minimal 

treatment only” or “minimal treatment boundary augmented” to construct our rejection region. 

α=0.01 α=0.025 α=0.05 D 
(1:1,2) (1:1,5) (1:1,2) (1:1,5) (1:1,2) (1:1,5) 

15 0.0134 0.0990 0.0134 0.0990 0.0807 0.3466 
30 0.0375 0.3617 0.0979 0.5691 0.0979 0.5691 
60 0.0859 0.7684 0.1476 0.8593 0.2316 0.9211 
90 0.1653 0.9501 0.2356 0.9723 0.3189 0.9855 
120 0.2328 0.9898 0.3821 0.9973 0.4650 0.9987 

Table 3.6.2 Size based on the rejection region using “minimal treatment only” for its corresponding follow 
up cases and the pathological null under nominal level α equals to 0.01 and 0.025 

 
Again, the reason that the rejection probabilities using minimum treatment rejection regions 

derived from (1:1,1) exceed the nominal α when the pathological null hypothesis (1:1,R) hold is that D(1) 

tends to be smaller for pathological null hypothesis: (1:1, R) compared to the null hypothesis: (1:1,1).  The 

method based on “control only” or “control boundary augmented” does not suffer this problem since it 

tends to have less observed controls for pathological null hypothesis compared to the null which pushes 

further away from the rejection region. The rejection regions based on methods of “Difference only”, 

“Difference boundary augmented” and “Cumulative Binomial” tend to reject the small D(1) with large DC 

and while we could not find a universal proof for this observation due to discreteness of the binomial, we 

have seen empirically that those probabilities under (1:1,2), (1:1,5) (and for other (1:1,R)) tend to be 

smaller than are the ones under (1:1,1). Hence, the probabilities to fall into (1:1,1) rejections regions based 

on “control only”, “control boundary augmented”, “difference only”, “difference boundary augmented”, 
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and “cumulative binomial” under the pathological nulls (1:1, R) are typically smaller than the nominal 

alpha α. 

3.6.2 Robustness of the Rejection Region to Pathological Alternatives 

A reasonable rejection region is to be an unbiased test, i.e. the power of the test should be much 

greater than the type I error. We have shown that under the regular hypothesis testing problems, the 

rejection region satisfying LLQR will be an unbiased test. For regular alternative under null hypothesis 

(1:1,1) and K=2, the rejection regions based on the methods we proposed in section 3.4 are unbiased and is 

shown in Appendix A. However, the unbiased structure might be failed for pathological alternative and 

should be aware of before the analysis. 

Here, we are looking for a rejection region with high probability to reject the null under the 

alternatives. Here, we look at cases for K=2 under alternative (1: r1 = r, 1), r<1 and pathological 

alternatives (1: r1 = r, R) for r<1 and R>1.  The power of different rejection method should be high for 

small r. In the case of (1: r1 = r,1), most probabilities tend to be moved towards a smaller minimum 

treatment ( D(1) )while DC tends to be larger making any of the rejection regions perform well in terms of 

power.  In the case of pathological alternatives (1: r1 = r, R) for R>1, DC tends to be smaller (when r+R > 2) 

as D(1) tends to be even smaller. The rejection region which tends to reject on large controls might suffer 

from small power while rejection regions that consider the minimum treatment perform well.  

For the rejection region based on “control only”, Rα-C, the probability to reject any treatment is 

smaller than the type I error in the pathological alternative (1: r1 = r, R) if r+R>2 (which means 1+r+R > 3) 

since the distribution of DC ~ Bin(D,1/3) under the null hypothesis and DC ~ Bin(D,1/(1+r+R)) under the 

pathological alternative (1: r1 = r, R) and the probability of DC > c is less under pathological alternatives as 

r + R > 2 than the probability under the null hypothesis no matter how large the follow up cases D is. As 

the result, the rejection method based on “control only” is biased against rejection when there is a treatment 

that performs better than the control. For the rejection region using “control boundary augmented”, the 

probability to reject any treatment is larger than the “control only” rejection region but does not 

substantially increase power. 
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DC D(1) 0 1 2 3 4 5 6 7 

0 P1<0.0001 
P2=0.0014 

P1<0.0001 
P2=0.0010 

P1<0.0001 
P2=0.0004 

P1<0.0001 
P2=0.0001 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

1 P1=0.0002 
P2=0.0105 

P1=0.0003 
P2=0.0073 

P1=0.0002 
P2=0.0024 

P1=0.0001 
P2=0.0005 

P1<0.0001 
P2=0.0001 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

2 P1=0.0015 
P2=0.0367 

P1=0.0020 
P2=0.0238 

P1=0.0012 
P2=0.0071 

P1=0.0004 
P2=0.0013 

P1=0.0001 
P2=0.0002 

P1<0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

 

3 P1=0.0067 
P2=0.0794 

P1=0.0080 
P2=0.0477 

P1=0.0044 
P2=0.0131 

P1=0.0015 
P2=0.0022 

P1=0.0003 
P2=0.0002 

P1=0.0001 
P2<0.0001 

P1<0.0001 
P2<0.0001 

 

4 P1=0.0200 
P2=0.1191 

P1=0.0220 
P2=0.0655 

P1=0.0110 
P2=0.0164 

P1=0.0033 
P2=0.0025 

P1=0.0007 
P2=0.0002 

P1=0.0001 
P2<0.0001 

  

5 P1=0.0441 
P2=0.1310 

P1=0.0441 
P2=0.0655 

P1=0.0198 
P2=0.0147 

P1=0.0053 
P2=0.0020 

P1=0.0009 
P2=0.0002 

P1=0.0001 
P2<0.0001 

  

6 P1=0.0735 
P2=0.1092 

P1=0.0661 
P2=0.0491 

P1=0.0264 
P2=0.0098 

P1=0.0062 
P2=0.0011 

P1=0.0010 
P2=0.0001 

   

7 P1=0.0945 
P2=0.0702 

P1=0.0756 
P2=0.0281 

P1=0.0265 
P2=0.0049 

P1=0.0053 
P2=0.0005 

P1=0.0007 
P2<0.0001 

   

8 P1=0.0945 
P2=0.0351 

P1=0.0661 
P2=0.0123 

P1=0.0199 
P2=0.0018 

P1=0.0036 
P2=0.0002 

    

9 P1=0.0735 
P2=0.0137 

P1=0.0441 
P2=0.0041 

P1=0.0111 
P2=0.0005 

P1=0.0015 
P2<0.0001 

    

10 P1=0.0441 
P2=0.0041 

P1=0.0221 
P2=0.0010 

P1=0.0048 
P2=0.0001 

     

11 P1=0.0200 
P2=0.0009 

P1=0.0081 
P2=0.0002 

P1=0.0012 
P2<0.0001 

     

12 P1=0.0067 
P2=0.0002 

P1=0.0022 
P2<0.0001 

      

13 P1=0.0016 
P2<0.0001 

P1=0.0003 
P2<0.0001 

      

14 P1=0.0002 
P2<0.0001 

       

15 P1<0.0001 
P2<0.0001 

       

Illustration 3.6.2 Probability mass for D = 15. The top probability P1 in the cell is the probability mass 
under regular alternative hypothesis (1: r1 = 0.1, 1) while the second probability P2 in the cell is the 
probability mass under pathological alternative (1: r1 = 0.1, R = 2). 60% of the probability mass for each 
hypothesis is marked as bolded (red colored is under regular alternative and the black colored is under 
pathological alternative) 

Continuing the example with K=2, size level 0.05 and follow up until D=15 with a regular 

alternative (1: r1 = 0.1, 1) or pathological alternative (1: r1 = 0.1, R = 2), the ideal rejection region methods 

should have high power to reject both alternatives. In Illustration 3.6.2, P1 is the probability mass of DC, 

D(1) under alternative (1: r1 = 0.1,1) while P2 is the probability mass under pathological alternative (1: r1 = 

0.1, R = 2). The area of highest 60% probability mass is put in bold for the probability under pathological 

alternative (1: r1 = 0.1, R = 2) and the corresponding area of highest 54% of probability mass from the non-

pathological alternative (1: r1 = 0.1, 1) is colored in red which is in the small minimum treatment and in the 

middle of the control. Comparing the alternative of (1: r1 = 0.1, R = 2) to (1: r1 = 0.1, 1), the area with 

approximated 60% major probability mass shifts to the up and right, i.e. smaller DC and smaller D(1) and the 

~60% mass in this area 
under (1: r1 = 0.1, R = 2) 

About 54% mass in this area under 
(1: r1 = 0.1,1) 
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probability mass become much smaller for large DC. In this case, the rejection region using the “control 

only” or “control boundary augmented” becomes less favorable under the pathological alternative. 

Therefore, the power is much smaller under the alternative of (1: r1 = 0.1, R = 2) than for (1: r1 = 0.1, 1) 

when using “control only” or “control boundary augmented” as the rejection method. Based on the 

rejection region using “control boundary augmented”, Rα-CBA={(D C, D(1) )| DC > 8 or (D(1) ≤ 1 as DC = 8) }, it 

only covers very few major probability mass while the rejection region using “minimal treatment boundary 

augmented”, Rα-TBA = { (DC, D(1) ) | D(1) ≤ 1or (DC > 9 as D(1) = 2) }, covers most major probability mass 

under pathological alternative. As the result, the rejection region based on “minimal treatment” tends to 

have higher power as the rejection region using “control” tends to have smaller power than other methods. 

We computed the probability to reject any treatment under the non-pathological alternative (1: r1 = 

0.1, 1) and the pathological alternative for the same r1 = 0.1 and R = 2, i.e., (1: r1 = 0.1, R = 2) for size level 

α = 0.05 and null hypothesis (1: 1, 1)(Table 3.6.3). For D = 15 and alternative (1: r1 = 0.1, 1), we found that 

the rejection region based on “control boundary augmented” results in much lower probability comparing 

to other rejection methods. As pathological alternative (1: r1 = 0.1, R = 2), the probability to reject any 

treatment under the “control boundary augmented” is 0.0722 which is not far from level 0.05. For other 

rejection methods, we found that the small probability to reject under (1: r1 = 0.1, R = 2) as using the 

rejection region based on “difference only”, “difference boundary augmented” and “cumulative binomial” 

since it is caused by not enough follow up cases. Hence, for D = 30, we found that probability to reject null 

under (1: r1 = 0.1, R = 2) increase for the rejection region based on “difference only”, “difference boundary 

augmented”, and “cumulative binomial”. However, the probabilities to reject null under (1: r1 = 0.1, R = 2) 

do not increase as using rejection region based on “control boundary augmented”. Hence, we will do more 

analysis of the rejection region using “control only” (as shown that it is biased test, and the probability is 

always less than the size level) and “control boundary augmented” (the probability to reject remain low in 

this two follow up cases).  
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Rejection methods Probability to reject null 
under (1:0.1,1) 

Probability to reject null 
under (1:0.1,2) 

D = 15 
Control Only 0.2415 0.0249 
Control boundary augmented 0.4021 0.0722 
Minimum treatment Only 0.8421 0.9172 
Minimum treatment boundary augmented 0.8474 0.9174 
Difference Only 0.4951 0.1424 
Difference boundary augmented 0.6441 0.2797 
Cumulative binomial 0.6882 0.4107 
D = 30 
Control Only 0.4677 0.0327 
Control boundary augmented 0.6100 0.0705 
Minimum treatment Only 0.9871 0.9975 
Minimum treatment boundary augmented 0.9923 0.9976 
Difference Only 0.9125 0.5266 
Difference boundary augmented 0.9440 0.6619 
Cumulative binomial 0.9679 0.8419 

Table 3.6.3 Probabilities to be reject under the hypothesis of (1: r1 = 0.1, R = 2) and under (1: r1 = 0.1,1) 
based on different types of rejection region for D=15 and D=30 for size level α = 0.05 

Although the probability to reject using “control boundary augmented” increases to 61% under (1: 

r1 = 0.1, 1), the probability to reject null under pathological alternative (1: r1 = 0.1, R = 2) is still as low as 

0.0705 when using “control boundary augmented” for the rejection region method comparing to the one, 

0.0722, as D=15.  As the result, the rejection method using “control boundary augmented” is hard to 

achieve the required power under the pathological alternative (1: r1 = 0.1, R = 2). From the table below 

(Table 3.6.4), we could find that under the pathological alternatives of (1: r1 = 0.1, R = 2) or (1: r1 = 0.1, R 

= 5), the power under the rejection region using “control only” and “control boundary augmented” does not 

increase and remains very low no matter how large the follow up cases are. When the follow up cases are 

larger than 60 and R=5, the probability to reject pathological alternative (1: r1 = 0.1, R = 5) is very small 

and although there is one treatment works much better than the control it is hard to determine the treatment 

which is better than the control. 

Control only Control boundary augmented D 
(α=0.05) (1:0.1,1) (1:0.1,2) (1:0.1,5) (1:0.1,1) (1:0.1,2) (1:0.1,5) 

15 0.2415 0.0249 0.0002 0.4021 0.0722 0.0011 
30 0.4677 0.0327 ≈0 0.6100 0.0705 0.0001 
60 0.7031 0.0264 ≈0 0.7860 0.0472 ≈0 
90 0.8711 0.0300 ≈0 0.9105 0.0481 ≈0 
120 0.9191 0.0190 ≈0 0.9434 0.0296 ≈0 

Table 3.6.4 Probability to reject under the alternative (1: r = 0.1, 1) and two pathological alternatives (1: r1 
= 0.1, R = 2) and (1: r1 = 0.1, R = 5) based on the rejection region using “control only” and “control 
boundary augmented” for size level 0.05 and follow up cases 15, 30, 60, 90, or 120 
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In this section we have shown that rejection regions based on “control only” and “control 

boundary augmented”, are problematic under pathological alternative hypotheses while rejection regions 

based on “minimum treatment only”, and “minimum treatment boundary augmented” are problematic for 

pathological null hypotheses. Other rejection region methods based on “difference boundary augmented” 

and “cumulative binomial” appear to be robust methods for different type of null hypotheses and alternative 

hypotheses including pathological. From now on, we focus on the rejection methods using “difference 

boundary augmented”, Rα-DBA, and “cumulative binomial”, Rα-CB, for the remaining study since the power of 

rejection method based on “difference only” is always smaller comparing to the method based on 

“difference boundary augmented”, Rα-DBA, we only focus on the later.  

3.7 Summary 

In this chapter, we have proposed a method to construct the rejection region for testing the global 

hypothesis to find if any treatment is better than the control. The probability mass of (DC, D(1)) is computed 

using stochastic matrices and the statistic (DC, D(1)) is used to construct two dimensional rejection regions 

based on several criteria metrics combining with LLQR properties. For K = 2, the rejection regions based 

on LLQR is unbiased as is proved in Appendix A. We believe this unbiased property remains true for K > 2 

although we could not show it analytically. Since there is no UMP test for all possible alternatives, we 

addressed several criteria metrics based on 1) large numbers of control cases; 2) small numbers of cases in 

the minimum new treatment; 3) large differences between the number of control cases and the number 

ocases in the minmimal new treatment gourp; 4) a small cumulative binomial metric based on the number 

of control cases and minimal treatment group cases in addition to LLQR to construct rejection regions. And 

we studied whether any of the criteria metric we proposed failed to control overall type I error or resulted in 

smaller power under pathological settings where some of the new treatments were worse than the control.. 

The pathological null and pathological alternative hypothesis cases are presented in section 3.6. 

The overall type I error seems to be controlled and the power remain high for the rejection regions based on 

the criteria “difference boundary augmented” or “cumulative binomial” metrics under pathological cases. 

Other rejection methods such as using controls will result in lower power for pathological alternative or 

such as using minimal new treatment that failure to control type I error for pathological null are not 

recommended to apply to this type of design study. From now on, we will only recommend using these 
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criteria “difference boundary augmented” and “cumulative binomial” metric for global hypothesis testing 

for comparative Poisson trial and will only consider these criteria in subsequent section . In the next 

chapter, we will propose a post-hoc testing procedure to find which treatment(s) is(are) better than the 

control as comparing two new treatments to one control. 
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Chapter 4 METHODS TO TEST WHICH TREATMENT(S) IS (AR E) BETTER THAN THE 

CONTROL   

As discussed in the section 3.1, let rk denote the ratio of the incident rate in the new treatment group 

Tk to the incident rate in the control group. Our interest would be to find if there is any new treatment that is 

superior to the control. The global hypothesis is expressed as  

H0: r1 = r2 = …= rK = 1 vs Ha: some of rk are less than 1 for k=1,…,K 

When the null hypothesis that no treatment is better than the control is rejected, the next immediate 

question in the minds of investigators would be “which of the new treatments are better than the control” 

and “how to determine this”. This is equivalent to testing each individual hypothesis:  

H01: r1 = 1 vs Ha1: r1 < 1, 

H02: r2 = 1 vs Ha1: r2 < 1, 

⋮                     ⋮  

H0K: rK = 1 vs Ha1: rK < 1. 

In this chapter, we want to identify a procedure to decide which specific treatment(s) is (are) better 

than the control for the multiple comparative Poisson when the global hypothesis has been rejected. 

Methods to do this developed for comparing multiple new treatments to a control based on independent 

normal outcomes can’t be applied directly to this setting as unlike the normal setting because the 

constrained number of disease cases sum to D, the outcomes here are not independent.  

As before, our focus here will be on the comparison of two treatments (K=2) to the control. We will 

discuss one approach which would control overall type I error at level α for K=2 no matter what 

combination of true/false H01 and H02 is. Then, we will compare this approach to Bonferroni adjustment of 

individual test in the absence of a global comparison. 

4.1 Fisher’s L.S.D Adapted Approach (FLSDA) 

Let dC be the number of disease cases in the control group, d1 and d2 be the numbers of disease cases 

in the new treatment 1 and new treatment 2 groups, respectively. Let d(1) = min(d1,d2). We adapted the 

concept from Fisher’s Least Significant Difference for the normal distribution problem (Hsu 1996) to the 

multiple comparative Poisson model. We call this approach FLSDA (the “A” being for “Adapted”) and do 

this test as the following two steps for level α. 
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Step one: Test the global hypothesis, i.e. test the hypothesis: 

H0: r1 = r2 = 1 vs Ha: some of rk are less than 1 for k=1,2. 

The rejection region of this global test was discussed in Section 3.4, 3.5, and 3.6. If the observed ( DC = dC, 

D(1) =d(1)) is not rejected in this step, we stop the test and conclude that there is no new treatment that is 

superior to the control. If the observed ( DC = dC, D(1) = d(1)) is rejected in step one, we continue to step two 

to decide which (if any) of the new treatments can be deemed superior to the control. 

 Step Two: Test each individual hypothesis at the same α as the overall test 

H01: r1 = 1 vs Ha1: r1 < 1 

H02: r2 = 1 vs Ha2: r2 < 1 

Reject the null hypothesis H0k if p-value of the kth hypothesis, pk, is less than or equal to α where pk=P(Dk ≤ 

dk | DC  + Dk = dC + dk), the conditional distribution of Dk given DC + Dk = dC + dk  under null hypothesis H0k  

is Binomial(dC + dk,1/2) for equal allocation and Binomial(dC + dk,1/ ρ+1) for unequal allocation with 

allocation ratio ρ.  If we reject H0k in this step, we conclude that the kth new treatment is better than the 

control. In most case, we consider balanced design, i.e. equal allocation to each new treatment group and 

the control group. We will focus on equal allocation in this section. 

For K=2, FLSDA approach could control type I error with any combination of true/false H01 and 

H02.  This is because: (1) when H01 and H02 are both true, the type I error = Prob(Reject new treatment 1 or 

new treatment 2) under the setting (1:1,1) is less or equal to α by step one. (2) when H01 is true but H02 is 

false, the type I error = P(Reject new treatment 1) is less than or equal to α by step two.  (3) similarly when 

H01 is false but H02 is true, the type I error = P(Reject new treatment 2) which is less than or equal to α by 

step two.  (4) when H01 and H02 are false, the type I errors for each new treatment are undefined since there 

will be no false rejection of H01 and H02. 

For example with K=2, D=15 with size level 0.05 and equally allocate if we observed D1 = 2, 

D2=5, and DC = 8 as we end the trial. Here, the rejection region accumulates through conditional binomial 

metric discussed in section 3.4.4 for the global test and the rejection region (shaded in gray) is shown as 

following (Illustration 4.1.1). In step one, the observed combination (DC = 8, D(1)=2) does not reject the 

global null hypothesis. Hence, we stop and do not conclude that any of the new treatments are better than as 

the control. 
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DC    D(1) 0 1 2 3 4 5 6 7 
0         
1         
2         
3         
4         
5         
6         
7         
8   X      
9   X      
10         
11         
12         
13         
14         
15         

Illustration 4.1.1 Rejection Region (shaded in gray) in the step one of FLSDA with α=0.05,K=2,D=15 

Assume now we observed DC = 9, D1= 2, and D2= 4 in the end of trial in the previous example. In 

step one, the observed (DC = 9, D(1)=2) rejects the global hypothesis. Then, we continue to step two and 

compare individual treatment to the control. The p-value of (DC = 9, D1=2) for individual test H01 could be 

calculate as p1 = 
1

112

0 1

11 1

2D D=

  
  

  
∑ = 0.0327 which is less than α = 0.05. We conclude that the new treatment 1 

is better than the control. For the new treatment 2, the p-value of (DC = 9,D1 =4) for the individual test H02 

is calculated as p2 = 
1

134

0 1

13 1

2D D=

  
  

  
∑ = 0.1334 which is greater than 0.05 and could not reject the individual 

null hypothesis H02.  

4.2 Comparison of FLSDA to Bonferroni Adjustment 

A Bonferroni approach that would guarantee an overall type 1 error < α and individual type 1 

errors of < α/K could also be used. This would test each individual hypothesis,  

H01 vs Ha1, …, H0K vs HaK, 

comparing to the size level α/K and reject the null H0k if the corresponding p-value pk is less than or equal 

to α/K where pk=P(Dk ≤ dk |DC +Dk = dC +dk), the conditional distribution of Dk given DC + Dk = dC + dk 

under null hypothesis H0k  is Binomial(dC +dk,1/2) as we focus on equal allocation here. 
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α=0.05, (1: r1=0.1,1) α=0.025, (1: r1=0.1,1) 
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Figure 4.2.1 Power Comparison based on different α = 0.05, 0.025 levels under the setting (1: r1=0.1,1), (1: 
r1=0.2,1) and (1: r1=0.5,1) under equal allocation 

In this section, we will compare the power of the FLSDA approach to Bonferroni adjustment 

under the alternative (1: r1 = r , 1) for different value of r < 1 under equal allocation. The power 

computation method used here is discussed in Appendix C. The above figures show the power based on 

FLSDA vs the power based on Bonferroni for r = 0.5, 0.2 or 0.1 and α=0.05 or 0.025 (x-axis is the power 

based on Bonferroni and the y-axis the power based on FLSDA). In the figures (Figure 4.2.1), the notation 

“FLSDA-DBA” and “FLSDA-CB” denote the rejection region using “Difference Boundary Augmented” or 
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“Conditional Binomial” in the step one of FLSDA approach, respectively. The bolded solid black line is 

the reference line which shows if the power of the rejection method is equivalent to Bonferroni approach. 

Being above the line means the FLSDA is more powerful while below the line means the Bonferroni is 

more powerful. The dashed red line and solid blue line are the power comparison based on FLSDA-DBA 

and FLSDA-CB, respectively, to the power based on Bonferroni approach. 

The figures show that FLSDA-CB approach consistently has larger power than the Bonferroni 

approach for each given total numbers of disease cases and is also higher than FLSDA-DBA in most cases 

as well. The FLSDA-DBA approach is not as good as FLSDA-CB approach and sometimes results in lower 

power than Bonferroni approach does especially for small r and small size level α Therefore, it seems that 

FLSDA-CB will require less numbers of follow up cases than the Bonferroni approach for a given power 

and a size level regardless the combination of the true or false null hypotheses H0k. Thus, from now on, we 

only consider FLSDA-CB approach in our analysis as finding the new treatment is better than the control. 

For comparing the minimum disease cases required based on FLSDA-CB and Bonferroni (shown 

in Table 4.2.1) for at least 80% power and the same size level under different alternative settings (1: r1 = r, 

1), we found that FLSDA-CB will reduce about 7% - 18% the number of disease cases from Bonferroni 

correction For example, under the alternative (1: r1 = 0.2, 1) and size level 0.025 for at least 80% power, it 

requires 35 disease cases to follow up based on FLSDA-CB and it requires 40 disease cases to follow up if 

applying Bonferroni adjustment. The disease cases required using FLSDA-CB procedure will be reduced 

about (40-35) / 40 = 12.5 % than applying Bonferroni adjustment. 

 (1: r1= r,1) FLSDA-CB Bonferroni Reduction(%) 

 0.1 22 25 12 % 
α =0.025 0.2 35 40 12.5 % 

 0.5 138 148 7.2 % 
 0.1 19 22 13.6 % 

α =0.05 0.2 27 33 18.2 % 
 0.5 112 124 9.7 % 

Table 4.2.1 Sample size reduction from FLSDA-CB to Bonferroni adjustment on different size levels α = 
0.025 and 0.05 under the setting (1: r1 = r, 1) for r = 0.1, 0.2, or 0.5 for at least 80% power 

 

4.3 Summary 

In this chapter, we have proposed a testing procedure called FLSDA to find which treatment(s) is 

(are) better than the control for comparing K > 2 new treatments to one control. For K = 2, we have shown 
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that FLSDA procedure does control overall type I error and we conjecture that the FLSDA also controls 

type I error for K > 2.  

The power using FLSDA approach was compared to the power using Bonferroni adjustment 

procedure as the alternative of interest is that the first new treatment is superior to the control while the 

second new treatment is the same as the control, i.e. (1: r1 = r,1). In section 4.2, we found that while the 

FLSDA-CB which tests the global hypothesis using the rejection region Rα-CB first and then individual 

hypothesis in the second step has higher power to reject compared to the Bonferroni adjustment but 

FLSDA-DBA procedure did not consistently has higher power than the Bonferroni adjustment. Hence, only 

FLSDA-CB approach will be used for our remaining analysis/study. Follow up disease cases required to 

obtain 80% power when α is either 0.025 or 0.05 for different settings for K=2 and one of the two 

treatments superior to the control were compared for the procedure FLSDA-CB to Bonferroni correction.  

The numbers of disease cases required for using FLSDA-CB was somewhat less comparing to Bonferroni.  
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Chapter 5 SAMPLE SIZE CALCULATIONS; EXPECTED WAITIN G TIME; WITH AN 

EXAMPLE FOR K=2 AND EQUAL ALLOCATION DESIGN 

5.1 Disease Cases D Needed for Given Power and Size for Finding New Treatment(s) is (Are) Better 

Than the Control Using FLSDA-CB 

In Chapter 4, we discussed FLSDA-CB to find which new treatment(s) is (are) better than the 

control. In the balanced/ equally allocated designed trial, we are questioned on how much the disease cases, 

D, required to stop the trial for the power 1-β given type I error is less than or equals to α with a specific 

alternative, especially for (1:r1 = r,1) as r < 1. 

In appendix C, we discussed power computation for given numbers of follow up cases, D, size level 

α under null hypothesis and specific alternative hypothesis (1: r1 = r,1) for equal allocation,. The power 

could be seen as a function of D, denote as pow(D), for fixed size level and alternative. Hence the 

minimum numbers of follow up cases required, D*, for certain power, α, and alternative would be 

determined through * (1 ) arg min { ( ) 1 }DD pow Dβ β− = ≥ − . 

Here, we assume the level α equals to 0.05 or 0.025 with the requested power 1-β at least 80%.  The 

alternative here are (1: r1 = r, 1) with r = 0.1, 0.2,…, 0.6 and the power, the probability to reject new 

treatment 1, could be at least 80%, 85% or 90%. The filled in values are the minimum disease cases 

required for a certain combination of setting.  

 

Power 80% 85% 90% 
R       α 0.025 0.05 0.025 0.05 0.025 0.05 

0.1 22 19 25 21 28 24 
0.2 35 27 38 31 44 37 
0.3 54 43 60 49 70 58 
0.4 84 68 95 78 110 91 
0.5 138 112 155 128 178 148 
0.6 240 195 271 225 313 263 

Table 5.1.1 Minimum numbers of follow up disease cases required for given power 80%, 85% or 90% and 
size level 0.025 or 0.05 with the alternative setting (1: r1 = r,1), where r=0.1, 0.2, 0.3, 0.4, 0.5, or 0.6. 

 

In Table 5.1.1, each filled in values are the expected numbers of follow up diseases cases required 

for given power, size level α, and alternative (1: r1 = r,1). The bolded value “22” means that the hypothesis 
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testing: H0: (1:1,1) v.s. Ha: (1:r1 = 0.1,1), required to follow up till 22 diseases occur to obtain at least 80% 

power for a size 0.025 test. 

 

5.2 Expected Subject Time/Subject Years N Followed up for Given Disease Cases D 

For equally allocated N subject years to each group, the distribution of total disease cases D = DC 

+D1 + …+DK is Poisson distributed with rate iN, where i = iC + i1 +…+ iK is the total incident rate 

regardless of the control or new treatment groups. The waiting time for a case to happen from a Poisson 

distribution is exponential distributed with rate 1/i and each disease cases to occur are randomly and 

independently. Hence, time to wait for D disease cases to occur is summing over D independent 

exponential variable and the distribution follows a gamma with parameter D and 1/i. Therefore, we will 

expect to follow up D/i total subject time for D disease cases to occur. Continue with the previous example, 

the setting of H0: (1:1,1) v.s. Ha: (1:r1 = 0.1,1) and 22 disease cases required to occur for at least 80% 

power and the 0.025 size level. If the true total incidence is 0.001 per subject year, the expected follow up 

subject years is 22/0.001 = 22000 total subject times under null hypothesis and about 31429 

(22/((0.001+0.0001+0.001)/3) =  31428.57) total subject times to each group under alternative hypothesis. 

 

5.3 Example on Prevention of HIV Transmission 

The human immunodeficiency virus (HIV) is transmitted by sharing injection needles for drug 

users through contaminated blood left on the needles and the incidence of HIV transmission could be 

considered rare. This multiple comparative Poisson design could be applied to a study of HIV transmission 

among a high risk group if for example two promising new interventions were being tested. Suppose that 

the incidence of HIV transmission for the people without intervention is 0.01 and we would apply one of 

the following two interventions to high risk injection drug users (IDU) that are not already infected. Here 

are two therapies we might be interested in: 1) Behavior intervention to reduce needle sharing along with 

prophylactic use of highly active antiretroviral therapy (HAART) to prevent transmission to prevent HIV 

infection. 2) Prophylactic use of highly active antiretroviral therapy (HAART) to prevent transmission and 

to prevent HIV infection from establishing even if the person has contact with contaminated blood through 

needles;  
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For each therapy, we will follow up the same numbers of high risk injection drug users that 

initially are not infected with HIV (HIV-) until a predetermined numbers of IDUs in all groups contract 

HIV (D). For example, we follow up 300 drug users that share injection needles with HIV infected people 

who do not have any therapy. Also, we follow up 300 drug users that share needles with HIV infected 

people and have behavior/HAART intervention therapy and 300 drug users that share needles with HIV 

infected people with HAART. 

In this study, there are two interventions (K=2) and we want to see which intervention/therapy is 

better (less HIV transmission rate) than the untreated group. We would like to determine the numbers of 

drug users in all three arms that contract HIV from sharing injection needles with HIV infected persons 

required to obtain 80% under size level α=0.05 for equal allocation. In addition to the determination of D, 

we also want to identify the rejection regions for our design.  

If our hypothesis of interest is as follows: 

H0: r1 = r2 = 1 vs Ha: r1 = 0.1 and r2 = 1 

While the power is 78.7% as the study only follow up till 18 people contracting HIV and the power is 

81.3% for following up till 19 people present HIV under size level α=0.05 based on our proposed 

procedure FLSDA-CB, we would like to end our trial after 19 people present HIV infection among the un-

treat and therapy groups. Then, the numbers of HIV infections in each group would be compared and tested 

as follows:  

(1) The rejection region for global hypothesis: 

Rα-CB = {(DC, D(1)) | (DC≥5, D(1)=0), (DC≥7, D(1)=1), (DC≥9, D(1)=2), (DC≥11, D(1)=3)}, 

is as Illustration 5.3.1. If (DC, D(1)) is in Rα-CB, then we continue to next step (2). Otherwise, we stop the 

procedure and conclude that no new treatment is better than the control. 

 

(2) The following Illustration 5.3.2 is the rejection region for each individual hypothesis that the first row is 

DC + Dk which ranges from 0 to19, and the second row is the critical value, t, that P(Dk < t | DC + Dk) ≤ 0.05 

for each corresponding DC + Dk. For example, if DC + Dk=19, the null hypothesis H0k will be rejected if we 

observe Dk<6. 
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DC              D(1) 0 1 2 3 4 5 6 7 8 9 
0           
1           
2           
3           
4           
5           
6           
7           
8           
9           
10           
11           
12           
13           
14           
15           
16           
17           
18           
19           

Illustration 5.3.1 Rejection Region (shaded) for global hypothesis based on conditional binomial, Rα-CB, for 
K=2, D =19, α=0.05 

 

DC+Dk 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Dk< 6 6 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 0 

Illustration 5.3.2 Rejection region for each individual hypothesis for K=2, D=19, α=0.05 and k=1,2. As DC 

+Dk = 19, we will reject the null of H0k as Dk< 6 and conclude that the new treatment k is better than the 
control 

 

For example, assume that the following scenario we observed:  

(i) 11 people in the un-treat group infected with HIV, 3 people infected in the behavior/HAART 

intervention and 5 people are infected HIV in HAART group as predetermined total number of disease 

cases 19 infected people.  

In the first step, (DC = 11, D(1) = 3) is in the rejection region Rα-CB, so we would conclude in the 

first step that at least one new treatment is better than the control and continue to the second step. For 

testing for the alternative that behavior/HAART is better than un-treat group, the individual null will be 

rejected if D1 < 4 as DC +D1=14 for this case. Since we observe DC =11, D1=3, we would reject the null 

hypothesis that prophylactic behavior/HAART intervention works the same as no intervention. On the 

other hand, for comparing HAART therapy to the un-treat group, the individual null hypothesis will be 
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rejected if D2 <5 as DC + D2=16. There is no enough evident that the HAART is better than un-treat group 

since D2 = 5 and is not in the rejection region for the individual test. 

Now assume that among the 19 predetermined cases overall, we observe: 

(ii) 16 infected people in un-treat group, 1 infected person in the behavior/HAART, and 2 infected people 

in prophylactic HAART. In the first step, (DC = 16, D(1) = 1 ) is in the rejection region for the global 

hypothesis, Rα-CB. We reject the null hypothesis and conclude that there is at least one no new treatment 

that is better than the control and continue to the second step. Since D1 = 1 < 5 as DC + D1 = 17 for 

comparing behavior/HAART to the control and D2 = 2 < 6 as DC + D2 =18 for comparing HAART only to 

the un-treated group, we could conclude that both therapies are better than the control.  

Finally, assume that after the predetermined 19 infected case occur, we observe; 

(iii) 11 infected people in the control group, 4 infected people in behavior/HAART, and 4 infected people 

in HAART. Neither treatment is considered to be better than the control since (DC = 11, D(1) = 4) is not 

rejected in the global hypothesis of Step one. 
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Chapter 6 OPTIMIZING ALLOCATION RATIO OF CONTROL TO  TREATMENT 

Until now, we have assumed in most cases that the same numbers of subjects (or subject time) will 

be allocated to the controls and each new treatment group.   However, most of the results here derived for 

equal subject allocation can be extended to unequal allocation. It is difficult to think of reasons to allocate 

more subjects to one new treatment group versus another, say twice as many subjects into D1 than D2 as 

this would skew the comparisons towards being more precise for the treatment(s) that are allocated more 

subjects and less precise for those which are allocated less.  Perhaps if it was already known in advance that 

one new treatment was likely to be worse (or more costly to study) than another, then this would inform a 

subject allocation.  But in such a setting, the new treatment which is likely to be worse (or more costly) 

would not be used in the comparisons. 

We, therefore, restrict our considerations here to allocate same numbers of subjects to each new 

treatment group and the allocation ratio that is the ratio of subjects to the control group over each new 

treatment group (under equal allocation into each new treatment).  For example, each of the K new 

treatments is being compared to the same control and the new treatments are not compared to each other. 

Dunnet showed that with K treatments compared to one controls and each subject having a normally 

distributed outcome that given a constrained total number of subjects, the [Control] / [Each New 

Treatment]  allocation ratio of 1
Kρ =  subjects minimized the variance of the test statistics k CX X− . 

While the setting differs here, i) as in Dunnet’s setting, the K new treatments are compared to the same 

control, but the underlying distribution assumptions differ.  ii) In this setting, the fact that disease cases 

accrue at a slower rate in the new treatment groups when the treatment(s) are good may impact the optimal 

control to new treatment allocation. Since in our setting for given power and size, we might tend to allocate 

more to the control when the new treatment(s) are really good to reduce the total follow up time. iii) 

Discreteness properties of the multinomial here may allow the threshold test size to be closer to (or further 

from) the specified α under unequal allocation schemes which would correspondingly also result in greater 

(or less) power from a test that meets the specified α level.   

 As a theoretical solution is untenable, we try to empirically identify optimal allocation ratio that 

maximize power per size under two settings.   
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A. Minimize the number of disease cases D needed for the study.  Perhaps for ethical reasons 

and/or because disease cases are particularly expensive, it is important to minimize these. Perhaps the D 

can be made smaller by allocating less or more of the subject to each new treatment group (versus the 

controls) than the under equal allocation.   

B. Minimize the expected subject follow up time.   The trial could be long and costly and the costs 

could be directly proportional to the number of subjects or subject follow up time.  In that case, minimizing 

the expected subjects (or subject time) needed to obtain the D cases is important.  If the new treatment(s) is 

(are) effective, the trial length required for the specified number of cases may be shortened by allocating 

more to the control groups due to the more rapid accrual of cases in the enlarged control arm. Hence, we 

might like to allocate more to the control to minimize the cost or to minimize the total waiting time for a 

trial. While if it costs more for the new treatments than the control this would push the design towards 

allocating more subject time to the controls. However, since such cost differential will differ by each 

setting, we do not focus on this potential here.  

In this chapter, we will thus focus on the optimum allocation ratio that will A. minimize the follow 

up cases required or B. minimize the expected follow up time needed to accrue the D cases (here we call it 

“expected waiting time”) under the alternative for a certain power and type I error as K=2 adapted from the 

method we applied to equal allocation. 

 

6.1 Optimum Allocation Ratio that Minimizes the Follow Up Cases Required 

Let ρ be the allocation ratio for the control to each of the new treatment groups. The 

methodologies we proposed for equal allocation (ρ =1) can be modified to suit the unequal allocation. As 

discussed in section 3.1, the hypothesis for unequal allocation could be express as 

H0: r1 = r2 = 1 vs Ha: rk < 1 for some k=1,2, where rk = ik /ρiC 

or the rejection region could be designed as null considered as (ρ: 1, 1) and alternative considered as 

(ρ:r1,r2) for some rk <1. From now on, we will focus on the setting H0: (ρ:1,1) v.s. Ha: (ρ: r1 = r,1) for r < 1 

for unequal allocation with allocation ratio ρ for the control to each treatment group. 

 Again, Appendix C, discusses the specific computations used to identify powers for given 

numbers of follow up cases, D, size level α, under null hypothesis and specific alternative hypothesis (1: r1 
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= r, 1) for equal allocation, ρ = 1 and that would be extended it to unequal allocation case easily. The power 

could be seen as a function of D, denote as pow(D), for fixed size level and alternative, r. Denote that the 

minimum numbers of follow up cases required, Dρ=1, for certain power, α, and r as 

1(1 ) arg min { ( ) 1 }DD pow Dρ β β= − = ≥ − . 

And Dρ=1 could be determined by i) repeating the power computation discussed in Appendix C for a given 

D and then ii) by increasing follow up numbers D until the power based on D exceeds 1-β. For the unequal 

allocation setting with a specified allocation ratio ρ, we could first adjust the power computation by 

modifying the null hypothesis and alternative hypothesis as described above according to the allocation 

ratio ρ. Then we could use the same method to find the minimum disease cases required, denote as Dρ, for 

requested power, size level, allocation ratio ρ, and r again in the (1: r1 = r, 1) setting. 

Here, we will first show how to minimize the follow up cases needed in the case of r = 0.1 and α = 

0.05 with 80% power. We systematically evaluate the spectrum of possible allocation ratios ρ and find the 

corresponding follow up disease cases Dρ needed to obtain power ≥ 80% under size level 0.05 and 

alternative hypothesis (1: r1 = 0.1, 1) and the given ρ. Here, the allocation ratio ρ is selected by its 

logarithm, log(ρ), from -1.1 to 1.1 and increment by 0.01.  Putting ρ on the log scale symmetries about 1 

and the range -1.1 to 1, corresponds roughly to ρ going from 0.33 to 3 by multiples of 1.01. Note, it was 

clear that having  ρ < 0.33 or ρ > 3 would not minimize Dρ. The points in Figure 6.1.1 (minimum follow up 

cases required Dρ as y-axis against allocation ratio ρ as the x-axis) are the minimum follow up cases 

required Dρ v.s. allocation ratio ρ. Each point (ρ, Dρ) shows that the minimum disease cases Dρ required to 

have at least 80% power when the allocation ratio of control to the each treatment group is ρ given size 

level α=0.05. The blue point (ρ = 0.3753, Dρ = 24) shows that for an allocation ratio 0.3753 (log(0.3753) = 

-0.98),  Dρ=0.3753 = 24 disease cases are needed to have at least 80% power. As we can see, there are 24 

optimum allocation ratios that achieve the minimal follow up disease cases Dρ =18 needed for this setting 

due to the discreteness property of integer (Dρ). Hence, the optimum allocation ratio is not unique.  



61 

0.5 1.0 2.0

18
19

20
21

22
23

24
25

minimum follow up disease cases required for size = 0.05, 80% power under alternative hypothesis r = 0.1

allocation ratio for control to new treatment group

m
in

im
um

 fo
llo

w
 u

p 
di

se
as

e 
ca

se
s 

re
qu

ire
d

 

Figure 6.1.1 Minimum follow up number of disease cases required for size 0.05 with 80% power under null 
hypothesis when alternative hypothesis (ρ: r = 0.1,1). Each point is (ρ, Dρ) where Dρ

  is the number of 
follow up cases required to obtain 80% power for the setting α = 0.05, r = 0.1, and the its corresponding ρ 

Also, due to the discreteness of distribution and the rejection region, the follow up disease cases 

needed for at least 80% power could jump up or down as allocation ratio is slightly changed at a given size 

level. Continuing with previous example, for allocation ratio, 0.3716 (whose log is -0.99) (shown in red in 

Figure 6.1.1), it needs Dρ=0.3716=23 to obtain at least 80% power while with a slight increase of 0.01 log 

units in the allocation ratio to 0.3753, the disease cases required for the request power jumps to Dρ=0.3753 = 

24. As allocation ratio increases another 0.01 log unit to 0.3791 (whose log is -0.07), the disease cases 

needed drops back to 23 again. In the practice, we would start with the optimum allocation ratio that 

minimized the numbers of disease cases required to have 80% power. But due to the uncontrollable 

participants randomly drop off during the trial, the allocation ratio might slightly vary than the 

predetermined setting and required more disease cases to have 80% power.   

While we could try to look further to see which of the 14 allocation ratios that minimized the 

number of needed disease cases at 23 for this example had the maximum true power and/or minimum true 

size, but it is impossible to come up with an unambiguous metric on this basis to break the tie. Also, the 

slightly different of allocation ratio from the optimum allocation ratio might result in the increasing the 

ρ= 0.3753 
D=24 
Size= 0.028 
Power= 81.52% 
 

ρ= 0.3716 
D=23 
Size= 0.0302 
Power= 83.20% 
 

ρ= 0.3791 
D=23 
Size= 0.028 
Power= 80.04% 
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numbers of disease cases needed for given size and power. Therefore, to reduce the effect of discreteness, 

we tried to smooth the discreteness from the optimum allocation ratio ρ through locally weighted regression 

(Cleveland, 1979) (LOWESS Cleveland 1981) or smooth spline. The red / green curves in the Figure 6.1.2 

are the fitted curve using function LOWESS in software R with smoothing parameters f = 0.2 and f = 0.3. 

Also, the blue fitted curve uses the function smooth spline in R with 5 degrees of freedom. Since the curves 

are V-shaped the pseudo-optimum allocation ratio by this approach could be determined as shown in the 

figure below. 
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Figure 6.1.2 Minimum follow up disease cases required for size 0.05 with 80% power under null 
hypothesis with an alternative hypothesis (ρ: r1 = 0.1, 1) and smoothing spline curves. Each point is (ρ, Dρ) 
where Dρ

  is the numbers of follow up cases required to obtain 80% power for the setting α = 0.05, r = 0.1, 
and the its corresponding ρ. The smoothing curve is obtained through locally weighted regression by 
function LOWESS in R software with smoothing parameter f=0.2 (red) and 0.3 (green) and through 
smoothing spline by function smooth.spline in software R with degrees of freedom df = 5 (blue). 
 

6.2 Optimum Allocation Ratio that Minimizing the Expected Follow Up Subjects / Time 

 Once the minimum follow up cases required, Dρ, is determined for the allocation ratio ρ, the 

expected waiting time for Dρ cases to occur is Dρ/i where i is the averaged incident rate across all groups 

and which would be achieved by  

i = ρCiC+ ρT i1 + ρT i2 = ρT ( ρiC + i 1 + i 2 ) = (ρiC + i 1 + i 2)/(ρ+2)  
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              = (ρ+r+1) iC /(ρ+2) since i1=ri C and i2 = iC under any hypothesis of form (ρ: r1 = r , 1). 

Hence for the (1: r1 = r, 1 setting), the expected waiting time to accrue Dρ is Dρ
 / i = (ρ+2) Dρ / 

iC(ρ+r+1) which is proportional to (ρ+2) Dρ /(ρ+r+1) since iC is fixed as the allocation ratio differs. Since 

the multiplicative effect of iC is invariant to the allocation ratio, iC can be set to 1 and the minimization of 

the expected waiting time is equivalent to the minimization of (ρ+2) Dρ /(ρ+r+1). Note that under the null 

hypothesis, r = 1, the optimum allocation ratio that has shortest expected waiting time is equivalent to the 

optimum allocation ratio that minimized follow up cases required Dρ since (ρ+2)/(ρ+r+1) = 1. Except for 

pathological settings noted earlier where the treatment groups do worse than the controls, under the 

alternative hypothesis where r < 1, it is true that (ρ+2)/(ρ+r+1)>1 for every ρ, meaning the expected waiting 

time will always be longer than the expected waiting time under null hypothesis.   

 Here, we will continue the previous example to find the optimum allocation ratio which minimizes 

the expected waiting time under a specific alternative hypothesis, (ρ: r1 = r, 1) for r < 1, for the null 

hypotheses tested at an overall type-1 error of 0.05 with 80% power.  

To identify the optimum allocation ratio to achieve the shortest expected waiting time to obtain the 

given number of cased D for a given power, we could apply similar methodology as searching for the 

optimum allocation ratio which minimized the number of follow up disease cases to achieve that power. In 

Figure 6.2.1 (labeled the expected waiting time under the alternative (ρ: r1 = 0.1, 1): (ρ+2) Dρ /(ρ+1.1) as 

y-axis and ρ as x-axis), it shows that there was one unique smoothed exact optimum allocation ratio, 

1.32313, (log(1.32313) = 0.28) which resulted in the shortest expected follow up time needed to accrue 

Dρ=1.32313 = 18 cases among the allocation ratios ρ that are selected by its logarithm, log(ρ), from -1.1 to 1.1 

and increment by 0.01. But similarly as with the number of D required in 6.1, the expected waiting time to 

obtain the needed cases could jump up or down as allocation ratio is slightly different for request power 

and a given size level. Hence, in practice, the optimum allocation ratio might not guarantee the shortest 

expected waiting time since the optimum allocation ratio were impractical to achieve due to the random 

dropout and might result in slightly less or more allocation ratio than the pre-determined optimum 

allocation ratio. Hence, locally weighted regression and smoothing spline are applied to search for the 

optimum allocation ratio that is considered to find the optimum allocation ratio that shortest expected 

waiting time locally and averagely. 
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The red / green colored curves are the smoothing curves that are fitted by locally weighted 

regression (LOWESS; f = 0.2 and f= 0.3) and the blue curve is fitted using a smoothing spline 

(smooth.spline; df = 5). Unique smoothed optimum allocation ratios to minimize expected subject-time for 

this setting through the three locally weighted regression approaches  (LOWESS) and smooth spline 

(smooth.spline) roughly coincided. 
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Figure 6.2.1 Expected waiting time for α = 0.05 with 80% power under alternative hypothesis for (ρ: r = 
0.1, 1). Each point is (ρ, Dρ) where Dρ

  is the numbers of follow up cases required to obtain 80% power for 
the setting α = 0.05, r = 0.1, and the its corresponding ρ. The smoothing curve is obtained through locally 
weighted regression by function LOWESS in R software with smoothing parameter f=0.2 (red) or 0.3 
(green) or through smoothing spline by function smooth.spline in software R with degrees of freedom df = 
5 (blue). 

 

6.3 Results: Optimum Allocation Ratio For Different Alternatives 

6.3.1 Optimum Allocation Ratio that Minimizes the Follow Up Disease Cases for Different 

Alternatives 

In this section, we are going to discuss the optimum allocation ratio that minimizing the required 

follow up cases for 80% power and size level α = 0.025 or 0.05 for K = 2 through different smoothing 

methods we mentioned in Section 6.1 under different alternative settings. Noting that we are not discussing 
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    Expected waiting time for size = 0.05, 80% power under alternative hypothesis as r=0.1 
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the optimum allocation ratio based on “exact” method that allocation ratio is optimum among the allocation 

ratios ρ which are selected by its logarithm scale, log(ρ), from -1.1 to 1.1 and increment by 0.01 due to the 

tie and no unique solution. 

Again, the allocation ratios ρ are selected through logarithm of ρ from -1.1 to 1.1 and incremented 

by 0.01 and the smoothing methodologies are applied. In Table 6.3.1, the optimum allocation ratio to 

minimized follow up disease cases required for 80% power under size level α = 0.05 or 0.025 and 

alternative (ρ: r1 = r,1) where r is from 0.1 to 0.5 is obtained through smoothing methodologies. Most 

approaches show that the smoothed optimum allocation ratio to minimize the follow up cases is near 1.  

 

α = 0.025 α = 0.05 

LOWESS LOWESS r 

f = 0.2 f = 0.3 

Smooth 

Spline 

r 

f = 0.2 F = 0.3 

Smooth 

Spline 

0.5 0.8694 0.8187 1.1201 0.5 1.1275 1.1052 1.1158 

0.4 0.9608 0.9418 1.0748 0.4 1.0202 1.0202 1.0538 

0.3 1.0000 1.0000 1.0140 0.3 1.0408 0.9802 1.0083 

0.2 1.0408 1.0618 0.9687 0.2 0.9418 0.8869 0.9653 

0.1 1.1275 1.1275 0.9164 0.1 0.8694 0.8521 0.9040 

Table 6.3.1 Smoothed optimum allocation ratio to minimize number of cases required for 80% power under 
size level α = 0.05 and 0.025 as alternative is Ha: (ρ: r1 = r,1) (where r = 0.1, 0.2, 0.3, 0.4, and 0.5) based on 
LOWESS with parameter f = 0.2 or 0.3 and smoothing spline with degrees of freedom df = 5 

Using a balanced design, i.e. same numbers of people assigned to the control and to each new 

treatment group or ρ = 1, has some advantages such as being easier to apply randomization and double-

blinded design trials. Since the optimum allocation ratio to minimize the follow up cases in each case is not 

far from 1, even when there is a penalty for having more disease cases occur in the study, we might still 

prefer to allocate equal number of subjects to the control and each treatment group in order to make the 

randomization and double-blind design easier to apply and to prevent some biased issues that might occur 

from unbalanced design. 
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6.3.2 Optimum Allocation Ratio that Minimizing the Follow Up Subjects / Time for Different 

Alternatives 

In this section, we are going to determine the optimum allocation ratio that would result in shortest 

follow up time for a certain required number of disease cases for 80% power and size level α = 0.025 or 

0.05 for K = 2 using the exact or smoothing methods discussed in Section 6.2 under different alternatives.  

Table 6.3.2 shows the optimum allocation ratio that result in shortest the follow up time to achieve 

the needed number of cases for 80% power, size level α = 0.05 or 0.025 when the alternative (ρ: r1 = r, 1) is 

true where r is from 0.1 to 0.5 under the following methods: (1)“exact” - the optimum allocation ratio 

among the allocation ratios ρ that are selected by its logarithm scale, log(ρ), from -1.1 to 1.1 and increment 

by 0.01. (2) based on LOWESS with parameter f = 0.2 or 0.3, and (3) based on smoothing spline with 5 

degrees of freedom. In most case, the optimum allocation ratio is located from 1.2 to 1.4. Hence, for r = 0.1 

to 0.5 at 80% power and overall sided one type error of 0.025 or 0.05 for K=2, we would like to allocate 1.2 

to 1.4 times more subjects to control group than each new treatment group to shorten the expected waiting 

time if we were convinced that the alternative hypotheses were true.  

α = 0.025 α = 0.05 

LOWESS LOWESS 

 

 

r 

Exact 

f = 0.2 f = 0.3 

Smooth 

Spline 

Exact 

f = 0.2 f = 0.3 

Smooth 

Spline 

0.5 1.4192 1.2712 1.2712 1.2886 1.2214 1.2969 1.3231 1.2876 

0.4 1.1388 1.3771 1.2461 1.2881 1.1853 1.2461 1.3231 1.2606 

0.3 1.4049 1.3499 1.2969 1.2553 1.2337 1.1503 1.2712 1.2418 

0.2 1.3771 1.3499 1.3231 1.2418 1.3771 1.4333 1.2712 1.2378 

0.1 1.2093 1.2969 1.3231 1.2344 1.3231 1.3499 1.3231 1.2555 

Table 6.3.2 Smoothed optimum allocation ratio to shorten expected waiting time for Dρ cases to accrue of α 
= 0.05 and 0.025 with power = 80% under Ha: (ρ:r 1 =  r,1) is true (where r = 0.1, 0.2, 0.3, 0.4, and 0.5) 
based on exact search, LOWESS with parameter f = 0.2 or 0.3, and smoothing spline with degrees of 
freedom df = 5  
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Chapter 7 CONCLUSIONS AND FUTURE WORK 

Comparative Poisson trials can be long and costly, especially when there are several prophylactic 

intervention candidates or several different dosage options. It might be ideal to find the best candidate 

treatment. In this study, first, we suggested using statistic (DC, D(1)) to construct the rejection region for 

testing if there is any new treatment that is superior to the control and the probability mass of (DC, D(1)) 

could be computed through products of stochastic metrics. Since there is no UMP for this multiple 

comparison setting based on this statistic, we added LLQR which will reject from large numbers of disease 

cases in the control and from small numbers of disease cases in the minimum new treatment group. For 

comparing two new treatments to one control (K = 2), the rejection region satisfying LLQR is unbiased has 

been proved. For K > 2, we believe that this unbiased property remains true but it is hard to extend and 

prove mathematically. In addition to LLQR, we also discussed several criteria to construct the rejection 

region. The metric criteria include “controls”, “minimum new treatment”, “difference”, and “cumulative 

binomial”. We tried to find if the criteria could control type I error under pathological null hypothesis and 

remain high power under pathological alternative hypothesis. We eliminated the first two criteria since the 

one using “controls” results in small power under pathological alternative and the one using “minimum 

new treatment” could not control type I error under pathological null. The rejection region using 

“difference” and “cumulative binomial” metric is applied for constructing the rejection region for global 

hypothesis.  

Second, we purpose a procedure, FLSDA, to test which new treatment(s) is(are) superior to the 

control for comparing two new treatments or two prophylactic methods to a control. This post-hoc 

procedure is to test each individual hypothesis once the global hypothesis is rejected. The FLSDA 

procedure has been shown to control overall type I error for K = 2, however, this property is hard to extend 

to or prove for K>2. The rejection region using “difference” metric for global hypothesis is eliminated since 

FLSDA-DBA does not have higher power in some settings compared to Bonferroni adjustment. On the 

other hand, FLSDA-CB has consistent higher power than the Bonferroni adjustment for the same total 

numbers of disease cases to end the trial. Therefore, FLSDA-CB is applied for comparative Poisson trial 

design to compare 2 new treatments to one control. Then, we extended the design strategy to unequal 

allocation case for FLSDA-CB procedure. We tried to find the optimum allocation ratio that minimized the 
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total disease cases required to follow up or the optimum allocation ratio that could shorten the follow up 

time.  

In this type of design for comparative Poisson trial, some properties could be shown and proved for K 

= 2, but these properties might be hard to extend to or prove the properties for K > 2 cases mathematically. 

The difficulty results from the dependent multiple hypotheses and is caused by the setting of design A that 

conditioning the total numbers of disease cases in all groups.  

For the future work, we would like to explore other approach design; we call Design C (Appendix D), 

which is to end the trial when a certain numbers of disease cases occur in the control group. This design 

would be an alternative and might work especially well for extended cases K > 2. Also, the distribution that 

the numbers of disease cases in a new treatment group as the trial end based on design C follows a 

Negative Binomial distribution and the numbers of disease cases in each new treatment group is 

independent as conditional on the numbers of diseases cases in the control group. Hence, there might be a 

better theoretical approach for this type problem for K=2 and easier to extend the theories to K > 2 new 

treatments. In addition, the expected waiting time to recruit/follow up a certain numbers of disease cases in 

control group only depends on the incidence rate in the control group (which is better known than the 

incidence in treatment groups that depend on treatment efficacy) based on design C. The expected waiting 

time for design C could thus be better predetermined.  
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Appendix A UNBIASED PROPERTY FOR REJECTION REGION SATISFYING LLQR FOR K=2 

In this appendix, we prove that if a rejection region satisfies LLQR, the power will be larger than 

the size (unbiased property) for comparing two treatments to one control (K=2). We will (i) first show that 

under the alternative of (1: r1, r2) as r1, r2 ≤ 1 with at least one strict inequality hold, the unbiased property 

holds for the rejection region using number in the “minimum treatment group” only, and then (ii) we will 

extend the unbiased property to any rejection region as long as it satisfies LLQR. Hence, any LLQR 

rejection region, including rejection regions using both the number of controls and the minimum treatment 

we proposed in chapter 3 and 4, satisfy the unbiased property. 

A.1 Unbiased Properties for the Rejection Region Using “Minimal Treatment Only” 

The probability to reject using the rejection region based on “minimum treatment only” under the 

alternative setting (1:r1,r2)  is denoted as
1 2(1: , )r rP (D(1) ≤ d(1) | D ) and P(1:1,1)( D(1) ≤ d(1) | D ) is the size under 

the null hypothesis (1:1,1). We will first show that three propositions: (A.1-1), (A.1-2), and (A.1-3) below 

hold, and then combine these properties to prove that  

1 2(1: , )r rP ( D(1) ≤ d(1) | D ) ≥ P(1:1,1)( D(1) ≤ d(1) | D ) for all possible d(1). 

Proposition A.1-1: The conditional distribution of d(1) |D given D1 + D2 =DT is stochastically smaller 

under the setting (1:r1,r2) than (1:1,1), i.e. 
1 2(1: , )r rP  (D(1) ≤ d(1) | DT, D) ≥ P(1:1,1)( D(1) ≤ d(1) | DT, D) with 

strictly inequality for some d(1) 

Pf :  

By using the incomplete beta function, P(X≤k) = 
1 1

0
( ) (1 )

p n k kn
n k t t dt

k

− − − 
− − 

 
∫  as X~Bin(n,p). Since D1 | 

D1 + D2 = DT is Binomially distributed with parameters (DT, p1) where p1 =r1/(r1+r2) for the setting (1:r1,r2) 

and p1 = ½ for setting (1:1,1) and D2 | D1 + D2 = DT is Binomially distributed with parameters (DT, p2) 

where p2=r2/(r1+r2) for the setting (1: r1, r2) and p2 = ½ for setting (1:1,1).  

For k ≥ DT/2,  

P(D(1) ≤k| DT ) =1. 

For k< DT /2,  

P(D(1) ≤ k| DT) = P(D1  ≤ k| DT) + P(D2 ≤ k | DT) 
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=
1 1

0
( ) (1 )T

pT D k k
T

D
D k t t dt

k

− − − 
− − 

 
∫ + 1

0
( ) (1 )T

pT D k k
T

D
D k t t dt

k
− − 

− − 
 

∫  

=  C•(
1 1

0
(1 )T

p D k kt t dt
− − − −∫ + 1

0
(1 )T

p D k kt t dt− − −∫ ) = C • h(p), 

where C=( ) T
T

D
D k

k

 
−  

 
 and h(p)= 

1 1

0
(1 )T

p D k kt t dt
− − − −∫ + 1

0
(1 )T

p D k kt t dt− − −∫ . 

 

Here, h(0)=h(1), h’(p)=0 as p=1/2 and h(0)=h(1)>h(1/2).(will show as follows) 

 

The maximums (and minimums) for this function are found by setting the first derivative to zero, i.e. 

(1)( | )TdP D k D

dp

≤
=C• 

( )dh p

dp
=0 which happens when 1(1 ) TD k kp p− −− − + 1(1 )TD k kp p− − − = 0 and this only 

happens when 2 1TD kp − −  = 2 1(1 ) TD kp − −−  which for 0 ≤ p ≤ 1 for all possible DT-2k-1. Hence p=1-p, i.e. 

p=1/2 is the solution for the first derivative equals to 0 and is the minimum if the boundaries (p=0 and p=1) 

are both greater than this extreme value at p=1/2.  

 

For p=0, 

h(0) = 
1 0 1

0
(1 )TD k kt t dt

− − − −∫ +
0 1

0
(1 )TD k kt t dt− − −∫ =

1 1

0
(1 )TD k kt t dt− − −∫  

= 
1/ 2 1

0
(1 )TD k kt t dt− − −∫ +

1 1

1/ 2
(1 )TD k kt t dt− − −∫  

≥ 2
1/ 2 1

0
(1 )TD k kt t dt− − −∫ =h(1/2). 

The last inequality of above holds because 

1 1

1/ 2
(1 )TD k kt t dt− − −∫ = 

1/ 2 1

0
(1 ) TD k kt t dt− −−∫ ≥ 

1/ 2 1

0
(1 )TD k kt t dt− − −∫  

Since 
1

1

(1 )

(1 )

T

T

D k k

D k k

t t

t t

− −

− −

−
−

 = 
1

1

1

TD k k
t t

t t

− −−   
   −   

 = 
2 1

1 TD k
t

t

− −− 
 
 

≥1 for k<DT/2 and t<1/2. 

 

For p=1, 

h(1) = 
1 1 1

0
(1 )TD k kt t dt

− − − −∫ +
1 1

0
(1 )TD k kt t dt− − −∫ =

1 1

0
(1 )TD k kt t dt− − −∫ =h(0) ≥h(1/2) 
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Therefore, h(1)=h(0) ≥h(1/2). 

 

Hence there is a global minimum at p=1/2 no matter what combination of DT and k, i.e.  

1 2(1: , )r rP ( D(1) ≤ k| DT ) ≥ P(1:1,1) (D(1) ≤ k |DT ) under setting for any given DT  

 

In order to show that D(1) | DT is stochastically smaller under (1:r1,r2) than the setting under (1:1,1), we need 

to show the strict inequality 
1 2(1: , )r rP ( D(1) < k| DT ) ≥ P(1:1,1) (D(1) ≤ k |DT ) for some k: 

For k=0 and let p= r1/(1+r1),  

P(D(1) =0| DT) under setting (1:r1,r2) 

= (1 )T TD Dp p+ − >
1

2
2

TD
 
 
 

= P(D(1) =0| DT) under setting (1:1,1) 

The inequality holds as (1 )T TD Dp p+ −  has global minimum at p=1/2 since ( )ln (1 )T TD Dd
p p

dp
+ − =0 as 

p=1/2 and ( )
2

2
ln (1 )T TD Dd

p p
dp

+ − = ( ) 2 21T TD p D p
− −− − − <0. 

P(D(1) =0 | DT ) under setting (1:r1,r2) is strictly larger than P(D(1) =0| DT) under setting (1:1,1). 

 

As the result, the distribution of D(1) | DT  under (1:r1,r2) is stochastically smaller than the distribution of D(1) 

| DT  under (1:1,1). 

 

Proposition A.1-2: The conditional distribution of D(1) |DT,D is stochastically smaller for smaller DT, 

i.e. 

P(D(1) ≤ d(1) |DT =dT, D) ≥ P(D(1) ≤ d(1) | DT =dT +1, D) 

with strictly inequality for some d(1) 

Pf :  

First, we will show that the binomial(n,p) will stochastically smaller than binomial(m,p) if n<m. And then 

extended to the cases of distribution of D(1) | DT. 
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For T≥1, let X = D1 | DT =T and Y = D1 | DT =T+1  

 

Let X and Y be binomial distributed, with X ~ Bin(T,p) and Y ~ Bin(T+1,p). 

We want to show that X is stochastically smaller than Y.  To achieve this, we only need to show that for 

any k,  Prob(Y≤k)  ≤  Prob(X≤k) and that for some k Prob(Y≤k )  <  Prob(X≤k). Since 

P(Y≤k)=pP(X≤k-1)+(1-p)P(X≤k)=P(X≤k)-p{ P(X≤k)- P(X≤k-1)}= P(X≤k)-pP(X=k) 

< P(X≤k) with “=” hold only as p=0. 

 

Hence, X (i.e D1 | DT =T ) is stochastically smaller than Y (i.e. D1 | DT =T+1 ), that is, 

Prob(D1 ≤k | DT =T+1 ) ≤ Prob(D1 ≤k | DT =T )  for any k       (*1) 

Similarly,  

Prob(D2 ≤k | DT =T+1 ) ≤ Prob(D2 ≤k | DT =T )  for any k        (*2) 

. 

Now we will extend above result to show that D(1) | DT = T (minimum of the binomial distribution) is 

stochastically smaller than D(1) | DT = T+1. We only need to show that for any k,  

 Prob(D(1) ≤ k | DT = T+1 ) ≤ Prob(D(1) ≤ k | DT = T)     (*) 

 

If k ≥ T/2, the right side of (*) is 1 since at least one of the groups must have fewer than k, so (*) will hold. 

If k < T/2,   

Prob(D(1) ≤ k | DT = T+1) = P(D1 ≤k| DT=T+1) + P(D2 ≤ k | DT=T+1) since only one group will be ≤ k with 

the other being ≥ D - k 

Prob(D(1) ≤ k | DT = T) = P(D1 ≤k | DT = T) + P(D2 ≤ k | DT = T) 

By (*1) and (*2), it is clear that (*) will hold for k < T/2. 

 

Hence, the distribution of D(1) | DT is stochastically smaller for small DT since for any p > 0 for the smaller 

DT.  
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Proposition A.1-3: The distribution of DT | D is stochastically smaller under the setting (1:r1,r2) than 

(1:1,1). 

Pf :  

Since DT | D ~ Bin(D,p) as p=(r1+r 2)/(1+r1+r 2) for setting (1:r1,r2) 

and DT | D ~ Bin (D,2/3) for setting (1:1,1). 

For r1, r2 ≤1 with at least one strict inequality holds, (r1+r 2)/(1+r1+r 2)<2/3.  

 

We now show that Bin(D,p) is stochastically smaller than Bin(D,2/3) for  p<2/3. 

For any k, Prob( DT ≤k | D ) = 
1 1

0
( ) (1 )

p D k kD
D k t t dt

k

− − − 
− − 

 
∫  through incomplete Beta  

And for p < 2/3, 

Prob( DT ≤k | D, p) - Prob( DT ≤k | D, 2/3)  

=
1 1

0
( ) (1 )

p D k kD
D k t t dt

k

− − − 
− − 

 
∫  - 

1 2 / 3 1

0
( ) (1 )D k kD
D k t t dt

k

− − − 
− − 

 
∫  

= 
1 1

1 2 / 3
( ) (1 )

p D k kD
D k t t dt

k

− − −

−

 
− − 

 
∫  > 0 since 1(1 )D k kt t− − −  > 0 on (1/3, 1) 

 

Since (r1+r 2)/(1+r1+r 2) < 2/3, Prob( DT ≤k | D ) under setting (1: r1,r2) is larger than Prob( DT ≤k | D ) 

under setting (1:1,1). Hence DT | D under (1: r1, r2) is stochastically smaller than (1:1,1). 

 

Proposition A.1-4: To prove 
1 2(1: , )r rP ( D(1) ≤ d(1) | D ) ≥ P(1:1,1)( D(1) ≤ d(1) |D) for all possible d(1). 

Pf:  

Combine Proposition A.1-1, A.1-2 and A.1-3. 

Let 
1 2(1: , )r rP  (D(1) |D) denote P(D(1) | D ) under the setting (1:r1,r2) and P(1:1,1)( D(1) | D ) denote P(D(1) | D ) 

under the setting (1:1,1). 

1 2(1: , )r rP  (D(1) ≤ k | D ) = 
1 2 1 2(1: , ) (1) (1: , )

0

( | , ) ( | )
T

D

r r T r r T
D

P D k D D P D D
=

≤∑  

≥ 
1 2(1:1,1) (1) (1: , )

0

( | , ) ( | )
T

D

T r r T
D

P D k D D P D D
=

≤∑  By Proposition A.1-1  
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≥ (1:1,1) (1) (1:1,1)
0

( | , ) ( | )
T

D

T T
D

P D k D D P D D
=

≤∑   

= P(1:1,1)( D(1) ≤ k | D ) 

The last inequality holds since 
1 2(1:1,1) (1) (1: , )

0

( | , ) ( | )
T

D

T r r T
D

P D k D D P D D
=

≤∑  could be seem as 

E( (1:1,1) (1)( | , )TP D k D D≤ ) given DT is distributed as it would be under (1:r1,r2) and the 

(1:1,1) (1)( | , )TP D k D D≤ is a decreasing function on DT by Proposition A.1-2. Also since DT under setting 

(1:r1,r2) is stochastically smaller than setting (1:1,1) by Proposition A.1-3, and the proposition for 

stochastically smaller: If X is stochastically smaller than Y, then for every non-decreasing function g, 

E(g(X))≤ E(g(Y)). 

1 2(1:1,1) (1) (1: , )
0

( | , ) ( | )
T

D

T r r T
D

P D k D D P D D
=

≤∑   

= E( (1:1,1) (1)( | , )TP D k D D≤ ) given DT|D is distributed as it would be under (1:r1,r2)  

≥ E( (1:1,1) (1)( | , )TP D k D D≤ ) given DT|D is distributed as it would be under (1:1,1) by the 

proposition. 

A.2 Unbiased Properties for Any Rejection Regions Satisfying LLQR For K = 2 

Hence, once the rejection region satisfying LLQR is defined, for each given DC, the rejection 

region satisfying LLQR is equivalent to reject if D(1) ≤ t(DC) where t(DC) is a nonnegative integer defined 

once the rejection region satisfying LLQR is decided. Also, by LLQR t(DC) is non-decreasing with  DC, i.e. 

t(dC+1) ≥ t(dC). Now, we use these two properties to prove that the LLQR rejection region is unbiased. One 

thing to be notified is that, for a given DC and D, DT = D – DC is also determined. Hence, we have the same 

information for given {DC and D} or given {DT and D}.  

Proposition A.2-1: For a given DC,  

1 2(1: , )r rP (reject through LLQR | DC, D) ≥ P(1:1,1)(reject through LLQR| DC, D) 

Pf :  

By Proposition A.1-1, we have: 

1 2(1: , )r rP (reject through LLQR | DC, D) = 
1 2(1: , )r rP ( D(1) ≤ t(DC) | DC, D )   
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≥  P(1:1,1)( D(1) ≤ t(DC) | DC, D ) = P(1,1,1)(reject through LLQR | DC, D) 

Proposition A.2-2: P(reject through LLQR | DC = dC +1, D) ≥  P(reject through LLQR | DC = dC, D) 

Pf :  

The inequality holds since by Proposition A.1-2 and t(dC+1)≥ t(dC) (from LLQR),  

P(reject through LLQR | DC = dC +1, D = d)  

= P(D(1) ≤ t(dC +1)|DC = dC +1, D = d ) 

=P(D(1) ≤ t(dC +1)|DT =d - dC - 1, D = d)     

≥ P(D(1) ≤ t(dC+1) | DT = d - dC , D = d )   by Proposition A.1-2 

= P(D(1) ≤ t(dC+1) | DC = dC , D = d )     

≥ P(D(1) ≤ t(dC) | DC = dC , D = d )   by t(dC+1)≥ t(dC) LLQR  

= P(reject through LLQR | DC = dC, D = d). 

 

Proposition A.2-3: The distribution of DC | D is stochastically larger under the setting (1:r1, r2) than 

(1,1,1). 

Pf :  

Since Proposition A.1-3 and DC = D-DT, Proposition A.2-3 is the same statement as Proposition A.1-3.  

 

Proposition A.2-4: Conditional on D, 
1 2(1:r ,r )P (Reject using LLQR) ≥ P(1:1,1)(Reject using LLQR) 

Pf : 

Combine Proposition A.2-1, A.2-2, and A.2-3, 

1 2(1: , )r rP (Reject using LLQR|D)  =
1 2 1 2(1: , ) (1: , )

0

(Reject using LLQR| , ) ( | )
C

D

r r C C r r C
d

P D d D P D D
=

=∑   

≥ 
1 2(1:1,1) (1: , )

0

(Reject using LLQR| , ) ( | )
C

D

C C r r C
d

P D d D P D D
=

=∑   by Proposition A.2-1 

≥ (1:1,1) (1:1,1)
0

(Reject using LLQR| , ) ( | )
C

D

C C C
d

P D d D P D D
=

=∑    (*)  

= P(1:1,1)(Reject using LLQR|D) 
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The last inequality (*) holds since (i) P(reject through LLQR | DC = dC, D) is increasing on DC  by 

Proposition A.2-2, (ii) by Proposition A.2-3, DC | D is stochastically larger under the setting (1:r1,r2) than 

(1:1,1), and (iii) the property for stochastically smaller: If X is stochastically smaller than Y, then for every 

non-decreasing function g, E(g(X))≤ E(g(Y)). Therefore,   

1 2(1:1,1) (1: , )
0

(Reject using LLQR| , ) ( | )
C

D

C C r r C
d

P D d D P D D
=

=∑  

= ( )(1:1,1)(Reject using LLQR| , )C CE P D d D=  given distribution of DC | D under (1:r1,r2) 

≥ ( )(1:1,1)(Reject using LLQR| , )C CE P D d D=  given distribution of DC | D under (1:1,1) 

= (1:1,1) (1:1,1)
0

(Reject using LLQR| , ) ( | )
C

D

C C C
d

P D d D P D D
=

=∑  

A.3 Unbiased Properties for Rejection Region Based On LLQR for Unequally Allocation For K=2 

The extension of unbiased properties to unequally allocation ratio, we would like to show that 

1 2( : , )r rPρ ( D(1) ≤ d(1) |D) ≥ P(ρ:1,1)( D(1) ≤ d(1) |D) for all possible d(1). As proving Proposition A.1-1, A.2-1, 

A.1-2, and A.2-2, the proof only use the comparison of the probability between new treatment groups and 

which does not related to the incident rate in the control group. And the Proposition A.1-3 and A.2-3 

remain correct for unequally allocation. The proof of unbiased property for unequal allocation for K=2 is 

similar to the proposition A.1-4 or A.2-4. 
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Appendix B: Proof that the Cumulative Binomial Metric under Equal Allocation is LLQR 

Section 3.4.4 developed the cumulative binomial metric to construct the rejection region for the 

global hypothesis with a smaller cumulative binomial value being more evidence to reject H0. We now 

show that the cumulative binomial rejection region for H0 is LLQR for equal allocation. Showing the 

LLQR property is equivalent to show the following: (1) under H0 for a given D(1), the cumulative binomial 

metric value will be smaller for a larger DC; and (2) under H0 for a given DC, the cumulative binomial 

metric value will be smaller for a smaller D(1).  

Now, we only consider equal allocation and let  

CB(DC = dC, D(1) = d(1)) = Prob(D(1) ≤ d(1) | DC + D(1) = dC+ d(1)) 

be the cumulative binomial value applied to any cell ( DC = dC, D(1) = d(1)) given D(1) | DC + D(1) is Binomial 

(dC+ d(1), 1/2). 

Proposition B.1: The cumulative binomial metric value will be smaller for larger DC given the same 

D(1) with induction, i.e.  

CB(DC = dC, D(1) = d(1)) ≥ CB(DC = dC + 1, D(1) = d(1)). 

Pf: Letting X corresponding to D(1) | DC + D(1) = n and Y corresponding to D(1) | DC + D(1) = n+1 for n = 

dC+d(1). The proposition B-1 is equivalent to show that for n = dC+d(1), 

Prob(X≤t) ≥ Prob(Y≤t) where X ~ Bin(n,1/2) and Y ~  Bin(n+1,1/2) 

and the proof is similar to the proof that has been shown in Proposition A.1-2 in Appendix A. 

Proposition B.2: The cumulative binomial metric value will be smaller for smaller D(1) given the same 

DC with induction, i.e.  

CB(DC = dC, D(1) = d(1)) ≥ CB(DC = dC, D(1) = d(1)-1). 

Pf: Letting X corresponding to D(1) | DC + D(1) = n and Z corresponding to D(1) | DC + D(1) = n-1 for n = 

dC+d(1). The proposition B-2 is equivalent to show that as n= dC + d(1), 

Prob(X≤t) ≥ Prob(Z≤t-1) where X ~ Bin(n, 1/2) and Z ~ Bin(n-1, 1/2). 

Prob(X≤t) = (n-t) 
1/ 2 1

0
(1 )n t tn

s s ds
t

− − 
− 

 
∫  

  = (n-t) 
1/ 2 1 1

0

1
(1 ) (1 )

1
n t tnn

s s s ds
tt

− − −− 
− − − 

∫  
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   ≥ (n-t) 
1/ 2 1 1

0

1 1
(1 )

1 2
n t tnn

s s ds
tt

− − −− 
− − 

∫   inequality holds since (1-s)≥1/2 for 0≤s≤1/2 

   =
2

n

t
(n-t) 

1/ 2 1 1

0

1
(1 )

1
n t tn

s s ds
t

− − −− 
− − 

∫  

   ≥ (n-t) 
1/ 2 1 1

0

1
(1 )

1
n t tn

s s ds
t

− − −− 
− − 

∫   inequality holds for t ≤ n/2  

    = Prob(Z≤t-1)  

 

 By Proposition B.1 and B.2, the cumulative binomial metric has smaller value as DC increases or 

D(1) decreases and will thus reject the null from (DC + i, D(1) ) or (DC, D(1) – j ) for any possible integer i or j 

first before rejecting (DC, D(1) ). The rejection region based on cumulative binomial metric thus satisfies 

LLQR for equal allocation. 
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Appendix C: Power Computations under the alternative (1:r,1) 

For K=2 and under the alternative setting (1:r,1) for r<1, power is defined as the probability to reject 

the right new treatment, the new treatment 1, and is obtained by summing over the probabilities of all DC, 

D1 that are in the rejection region [NOTE the change here from  D(1)  to D1 as we specifically want to be 

sure that treatment 1 which is better than the control is rejected as opposed to potentially rejecting treatment 

2 which is not better than the control.]  

P(Reject new treatment 1|D) = P((DC, D1) is in the rejection region | D)   

= 

1 1

1 1 1 1
      all possible 

,

( , | ) { ( , ) is in the rejection region |  }

C C

C C C C

D d D d

P D d D d D I D d D d D

= =

= = × = =∑                (Eq. C.1) 

Where I{ (DC = dC, D1 = d1) is in the rejection region | D} is an indicator function that equals 1 if observed 

(DC = dC, D1 = d1)  rejects the new treatment 1 and equals to 0 otherwise. 

DC D1 0 1 2 3 4 5 6 7 8 9 10 
0 0.0001 0.0005 0.0012 0.0016 0.0014 0.0008 0.0003 <0.0001 <0.0001 <0.0001 <0.0001 

1 0.0010 0.0047 0.0094 0.0110 0.0083 0.0041 0.0014 0.0003 <0.0001 <0.0001  

2 0.0047 0.0189 0.0330 0.0330 0.0206 0.0083 0.0021 0.0003 <0.0001   

3 0.0126 0.0440 0.0661 0.0551 0.0275 0.0083 0.0014 0.0001    

4 0.0220 0.0661 0.0826 0.0551 0.0206 0.0041 0.0003     

5 0.0264 0.0661 0.0661 0.0330 0.0083 0.0009      

6 0.0220 0.0440 0.0330 0.0110 0.0014       

7 0.0126 0.0189 0.0094 0.0016        

8 0.0047 0.0047 0.0012         

9 0.0010 0.0005          

10 0.0001           

Illustration C-1 Probabilities of all possible combinations of (DC, D1) given D = 10 under the setting (1: r1 
= 0.5, 1) 

For the first part of the (Eq. C.1), the P(DC = dC, D1 = d1|D) for all possible combinations of {DC, 

D1}is obtained through the distribution of DC, D1 and D2 given total diseases cases D which is 

multinomial(D, 1/(2+r), r/(2+r), 1/(2+r)). Here, we fill in the probabilities for each cell of the all possible 

combinations of {DC, D1}. Again, we illustrate this for D=10 cases and now under the alternative (1: r1 = 

0.5, 1), the Illustration C-1 contains all the possible combinations of (DC = dC, D1= d1); under the constraint 

dC + d1 < D. The probabilities that (DC = dC, D1= d1,
2TD =D- (dC+ d1) ) from the Multinomial distribution 

(D , 1/(2+0.5), 0.5/(2+0.5), 1/(2+0.5)) are filled into the respective Table cells.  For example the value 

0.0094 (bolded probability) in the table below is calculated by  



80 

P(DC = 1, 
1TD =2|D = 10) = 

1 2 710 1 0.5 1

1 2 7 2.5 2.5 2.5

      
      

      
. 

For the second part of (Eq. C.1), I{( DC = dC, D1 = d1 ) is in the rejection region | D }, we will now 

construct the rejection region for the combinations of {DC, D1} using different approaches and apply them 

to this example. The following subsections discuss how to construct the rejection region defined by {DC, 

D1} through the two methods (described in Chapter 4), FLSDA and Bonferroni adjustments, using 

combinations of (DC, D1) for K=2. After rejection region is determined, the power to reject new treatment 1 

under (1: r1 = r, 1) for each approach is then the summation over all the multinomial probabilities of {DC, 

D1} which fall in the rejection region. 

 

C.1 Rejection Region for FLSDA for Given Total Disease Cases D  

In FLSDA approach (Section 4.1), in order to conclude that new treatment 1 is superior to the 

control, we have to first reject the global hypothesis test that at least one of the two new treatments is better 

than the control and if this hypothesis is rejected then reject an individual test for new treatment 1 being 

superior to the control in step 2. This is equivalent to rejecting (DC = dC, D1 = d1) if (1) the global 

hypothesis is rejected at the overall α from (DC =dC, D(1) = d(1)) and also (2) the conditional binomial p-

value of D1= d1|DC +D1= dC+d1 ≤ α, i.e. P(D1 ≤ d1|DC + D1=dC +d1) = 
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑  ≤ α, where 

D1|DC +D1= dC + d1 is binomial distributed with parameters dC + d1,1/2 under null hypothesis. Here, the 

rejection of the global hypothesis is a prerequisite but does not guarantee that new treatment 1 will be 

found superior to the control. For example if the minimum value observed was from new treatment 2 then 

the new treatment 1 will not be rejected as being superior to the control if the conditional p-value for D1 ≤ 

d1 | (dC +d1 ) is greater than α even though the global hypothesis is rejected.  

Now the details for implementation to construct this rejection region: STEP 1 - Among the 

combinations of (DC = dC, D1 = d1), first identify the values of (dC, d1) which fall in the global rejection 

region (using the fact that (dC, d(1)) is determined by (dC, d1) through d2 = D – dC – d1) and then STEP 2 - 

find the values of (dC, d1) in the global rejection region from STEP 1 for which the conditional Binomial p-

value is less than α, i.e. P(D1 ≤ d1 | d1 + dC ) ≤ α under the individual null hypothesis of equality. 
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Note that the rejection region for global hypothesis was expressed in terms of (DC, D(1)) in section 

3.4, denoted as(1)Rα . Here, we display the same rejection region in terms of the combination of (DC, D1), 

and denote this 2-dimensional table as1Rα . Now 1Rα can be determined from(1)Rα since the observed (DC = 

dC, D1= d1) will reject the global hypothesis in two situations:  

   (i) D1 is the minimum of (D1 and D2) and (DC = dC, D(1) = d(1)) is in (1)Rα . or    

  (ii) D2 = d – dC - D1 is the minimum of (D1 and D2) and (DC = dC, D(1)= d – dC – d1) is in (1)Rα . 

 DC          
D(1) 

0 1 2 3 4 5 

0       
1       
2       
3       
4       
5       
6 O X     
7       
8       
9       
10       

Illustration C-2 Rejection region using (DC, D(1)),
(1)

R
α

 (shaded) for K=2, D=10 and size α =0.05 for the 

global hypothesis, the cell (DC=6, D(1)=0) which used in example is marked in red and the cell (DC=6, 
D(1)=1) is marked in blue. 

 
 
 

DC   D1  0 1 2 3 4 5 6 7 8 9 10 
0            
1            
2            
3            
4            
5            
6 O X  X O       
7            
8            
9            
10            

Illustration C-3 Rejection region using (DC, D1),
1Rα  (shaded) for K=2, D=10, and size α = 0.05 for the 

global hypothesis, corresponding to(1)
R

α
 in Illustration C-2.  For example, the cells (DC = 6, D1 = 0) and (DC 

= 6, D1 = 4) marked in red are rejected in1Rα since (DC=6, D(1)=0) is rejected in (1)
R

α
 and the cells (DC = 6, D1 

= 1) or (DC = 6, D1 = 3) marked in blue is not rejected in1Rα  as (DC=6, D(1) =1) is not rejected in(1)
R

α
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When K=2, D=10 and size α=0.05, the (1)Rα
∗ is shown in Illustration C-2 (shaded area) and then the 

corresponding 1Rα  (shaded in Illustration C-3) is determined from it.  For example, since the (DC = 6, 

D(1)=0) is in the shaded rejection region of(1)Rα , the corresponding observed combinations (DC = 6, D1= 0) 

or (DC = 6, D1= 4, which means D2 = 0) are in the shaded rejection region of1Rα  (each having D(1)= 0). For 

other cells which do not reject the global hypothesis from (1)Rα , such as (DC = 6, D(1)=1), the corresponding 

combination (DC = 6, D1=1) or (DC = 6, D1=3 and D2=1), is not in the rejection region of 1Rα . 

But now that we have described1Rα , for the STEP 2 of FLSDA approach, the rejected cell need to 

be only that part of 1Rα  that also satisfies the individual conditional binomial p-value,  

P(D1≤ d1 |DC + D1= dC  + d1) =
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ ≤α. 

Hence, the rejection region for FLSDA will be the subset of 1Rα where 
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ are less than or 

equals to α. 

Continued with previous example for K = 2, D = 10, and α = 0.05, in Illustration C-4, the p-values 

of D1 ≤ d1 | DC + D1= dC +d1 are filled in only for the cells of (DC = dC, D1=d1) falling in 1Rα .  For example, 

the number 0.035 in the DC = 7, D1 = 1 cell in the table below is the conditional probability that D1 ≤ 7 

given d1+dC=8 under the null hypothesis of equality for controls and new treatment 1.  Since this is ≤ 0.05, 

it falls into the final rejection region.  However, for DC=4, D1 = 0 cell the conditional probability that D1 ≤ 0 

|d1+dC = 4 under equality for controls and new treatment 1 is 0.062 > 0.05.  Thus, even though dC = 4, d1 = 

0 falls in 1Rα  for the minimum to be less than the control, the individual test of new treatment 1 against the 

control is not rejected so dC = 4,d1 = 0 does not fall in the FLSDA rejection region.   The bolded region is 

the rejection region for FLSDA which is the overlaid rejected cells for global hypothesis with the p-values 

≤ 0.05. 

 

                                                           
∗ (1)Rα  is the rejection region for global hypothesis based on “conditional binomial” we discussed in 

Section 4.4 
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DC        D1 0 1 2 3 4 5 6 7 8 9 10 
0            
1            
2            
3            
4 0.062      0.828     
5 0.031     0.623      
6 0.016    0.377       
7 0.008 0.035 0.090 0.172        
8 0.004 0.020 0.055         
9 0.002 0.011          
10 0.001           

Illustration C-4 Conditional p-values for the individual hypothesis of Treatment 1 versus the control 
conditioning on dC +d1; filled in on the global rejection region (1)Rα  that rejects in the global hypothesis for 

the minimum treatment being less than the control for D=10, K=2, and α=0.05. The bolded enclosed region 
covers the conditional p-values ≤ α  

 

C.2 Rejection Region for Bonferroni Adjustment for Given Total Disease Cases D 

For Bonferroni adjustment (Section 4.2), the reject region to reject new treatment 1 for each DC + 

D1 is:  

D1 ≤ max{d1 : 
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ ≤ α/K}. 

That is equivalent to the rejection region of (DC, D1) where the conditional binomial p-values  

1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ ≤ α/K. 

As in the previous example, for K=2, D=10 and α=0.05, for DC + D1=10,  

P(D1 = 0 | DC + D1=10) = 
1010 1

0 2

  
  

  
= 0.001 < 0.025,  

P(D1 ≤1 | DC + D1=10) = 
10

1

10 1

2t t≤

  
  

  
∑ = 0.011 < 0.025, and 

P(D1 ≤2 | DC + D1=10) = 
10

2

10 1

2t t≤

  
  

  
∑ = 0.055 > 0.025.  

Hence, for DC + D1=10, the rejected cells are{(DC=10, D1=0), (DC=9, D1=1)}. As we collect all rejected 

cells for different DC + D1 = dC +d1 that 
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ ≤ 0.025, it is the rejection region for 
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Bonferroni adjustment. Those conditional p-values could be found in Illustration C-5 which is the table 

filled in 
1

1

1 1

2

Cd d
C

t d

d d

t

+

≤

+  
  

  
∑ for each possible combination of (DC, D1). In Illustration C-5, we also 

identify (DC, D1) that the p-values that is less than or equals to α/2 = 0.025 which is equivalent to rejection 

region created by Bonferroni adjustment. The bolded region the rejection region by Bonferroni adjustment 

with α=0.05.  

 

DC   
1TD  0 1 2 3 4 5 6 7 8 9 10 

0 1 1 1 1 1 1 1 1 1 1 1 
1 0.500 0.750 0.875 0.938 0.969 0.984 0.992 0.996 0.998 0.999  
2 0.250 0.500 0.688 0.812 0.891 0.938 0.965 0.980 0.989   
3 0.125 0.312 0.500 0.656 0.773 0.855 0.910 0.945    
4 0.062 0.187 0.344 0.500 0.637 0.746 0.828     
5 0.031 0.109 0.227 0.363 0.500 0.623      
6 0.016 0.063 0.145 0.254 0.377       
7 0.008 0.035 0.090 0.172        
8 0.004 0.020 0.055         
9 0.002 0.011          
10 0.001           

Illustration C-5 Conditional p-values to reject New Treatment 1being equal to the control conditioning on 
dC +d1 for D=10, K=2. The bolded region covers all conditional p-values ≤ 0.025 and is the rejection region 
based on Bonferroni adjustment for the case D=10, K=2, and α=0.05. 

 

C.3 Power Computation after the Rejection Region Is Determined 

Once a specific D, size level α, and the rejection region are determined, the power for the 

alternative (1:r1 = r,1) is the probability that the combinations (DC, D1) fall in the rejection region under 

alternative setting. And, for K=2, the probability of (DC = dC, D1=d1) given D for any possible combination 

is  

P(DC = dC, D1= d1| D = d) = 
1 1

1 1

1

2 2

d d d

C C

d r

d d d d d r r

−
    
    − − + +    

. 

Hence, the power is obtained by summing over all probabilities that (DC, D1) is in the determined rejection 

region under (1: r1 = r,1). 

For example when D=10, α = 0.05 and r = 0.01, the rejection region is given by FLSDA shown as 

Illustration C-4 in C.1. Under the alternative (1:r1=0.01,1), the multinomial probabilities for rejection 
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region cells (DC = dC, D1= d1) are filled in the following table(Illustration C-6). The overall power from 

summing over these filled probabilities in the rejection region is about 59.7%. 

DC    D1 0 1 2 3 4 5 6 7 8 9 10 
0            
1            
2            
3            
4            
5 0.2341           
6 0.1951           
7 0.1115 0.0033          
8 0.0418 0.0008          
9 0.0093 0.0001          
10 0.0009           

Illustration C-6 Multinomial probability of combinations of (DC, D1) that are in the given rejection region 
for given D=10 under the setting (1: r1 = 0.01,1). 
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Appendix D Introduction to Design C 

Gail’s Design A ended the trial at a certain numbers of follow up disease cases and Design B 

ended the trial after a certain number of subject time. Here, we propose a third design that ends follow up 

when certain numbers of disease cases accrued in the control group, DC. Design C is similar to the 

following game strategy with 3 people hitting baseballs at the same rate so that the number of foul ball each 

person has hit at a given time is a Poisson process with the parameter based on how skillful the person is. 

One person (C) is already a member of our baseball team.  We want to see if either of the two new persons 

(T1 or T2) hits foul balls with lower intensity than C.  We continue to compete until person C hits 10 foul 

balls. The final results will be examining the numbers of balls hit by the lowest person T1 or T2 given 

stoppage when C hits 10 to see if there is statistical evidence that the best of these two people hits fewer 

foul balls that C.  

For Design C, the numbers of disease cases (i.e foul  balls for the previous example) in each new 

treatment, Dk, has a Negative Binomial distribution. Let iC and ik be the incidence rate per-subject time in 

the control group and in the kth new treatment group, respectively for k=1,2,…,K. For Design C, the 

numbers of disease cases in the control group, DC, is predetermined, but the trial length for this design is 

unknown and depends on DC. The waiting time for one disease case to occur in the control group could be 

seen as exponential with rate 1/iC and each subsequential disease case in the control group occurs randomly 

and independent of previous cases. Therefore, the length of time for DC disease cases to occur, NC, is the 

sum of independent exponential(1/iC) random variables which follows a Gamma distribution with α = DC, 

and β = 1/iC. Once the follow up time, NC, is known, the numbers of disease cases occur in the kth new 

treatment group Dk during this NC period time follows a Poisson distribution with Poisson rate ikNC and no 

longer dependent on DC. (Note that Dk only depends on the length of time, hence Dk is independent of DC 

once NC is determined; i.e. P( Dk = dk | DC=dC, NC=t ) = P( Dk = dk | NC = t ) ). Hence, the numbers of disease 

cases in each new treatment group for design C follows a Negative Multinomial distribution: 

NC | DC ~ Gamma(DC, 1/iC); Dk | NC ~ Poisson(ikNC) for k = 1,2,…,K 

1 1 1 1( ,..., | ) ( ,..., , | )k k C C k k C C CP D d D d D d P D d D d N t D d dt= = = = = = = =∫  

1 1( ,..., | , ) ( | )k k C C C C C CP D d D d D d N t P N t D d dt= = = = = = =∫  
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Then, we could design a study testing rule based on Negative Multinomial distribution. (Note that the 

marginal distribution of Dk for design C follows by a Negative Binomial for each k).   

Again H0 is i1 = i2 = … = iC with the alternative being that at least one of the iK < iC. We would 

find the value t for which P{min(D1, D2, …, DK ) < t}:H0 < α and reject H0 iff D(1) < t.  While substantial 

new work is needed to evaluate the properties of this design, because the ∑Dk +DC is no longer constrained 

to equal D, the Dk are now independent of each other which may facilitate derivation of statistical 

properties.   
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Appendix E List of R Functions Implemented In This Thesis 

Following is the list of some functions that would be useful for this comparative Poisson design 

study. For each function, we have the function name followed by parenthesis with some arguments 

included. Here are some input arguments that shared in the functions:  

k – total number of new treatments + 1 control in the comparative Poisson trial 

total.events – integer (D in our notation) - the numbers of events occur to end the Poisson trial 

rho – the allocation ratio of the portion of total population in the control group to the portion in 

each new treatment group (ρ in our notation) 

alpha – size level of the type I error 

power – power level 

prob –  vector of multinomial probabilities; first component is the incidents rate of control group 

and the rests are the rate from new treatment groups; prob1: multinomial probabilities under 

null hypothesis; prob2: multinomial probabilities under alternative hypothesis 

List of functions with descriptions: 

pmf.control.txmin(k, total.events, prob) 

Description: Compute the probabilities of each possible combinations (DC, D(1)). 

diff.crit(k, total.events, rho=1), Binom.crit(k, total.events, rho = 1), powratio.crit(k, total.events, prob1, 

prob2) 

Description: Rejection region criteria for testing global hypothesis that discussed in section 3.4. 

Rej.Reg.Crit(k, total.events, prob.null.matrix, crit, alpha = 0.025) 

Description: Rejection region for global hypothesis that is determined through criteria discussed in Section 

3.4. Here the argument prob.null.matrix is the probability matrix for (DC , D(1)) under null hypothesis. 

Rej.Reg.Compar(k, total.events, prob1, prob2, rho = 1, alpha = 0.025) 

Description: Construct all rejection regions discussed in Section 3.4 with corresponding size level and 

power. 

FLSDA_Rej(k=3, alpha=0.05, total.events=10, rho=1, r=0.1) 

Description: Compute the size, power for FLSDA_CB and the rejection region constructed by FLSDA_CB 

which is discussed in Section 4.1 for comparing 2 new treatment to 1 control under alternative (ρ:r, 1). 
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Sample_Size_FLSDA(from=10,power=.80,r=0.1,alpha=0.05,rho=1) 

Description: minimum disease cases required to follow up for a certain settings with at least 80% power 

and size level 0.05 as alternative is (ρ:r,1).  
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