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Comparative Poisson Trials often test interventimngrevent rare adverse binomial outcomes.
We extend Gail's “Design A” approach to continules trial until a predetermined total number of dse
casesp, occur into comparing>1, treatments to one control. Controlling ovetgtle | error and a post-
hoc procedures to identify which treatments aréebatre addressed.

With the Poisson as the underlying distributiomditoning onD disease cases total, the number
in each group is multinomial distributed with paeters that depend on the incidence ratios of treatnho
the control arms. Rejection regions based on thufijbers of cases that occur in control and/or 2)
minimum number of cases among treatment groupsansidered to test the global null hypothesis tizat
treatment is superior to the control. A tool knoasthe stochastic matrix simplifies size and power
computations. Decision rules which are robust taet¢reatments being inferior to the control are
discussed. There is no uniformly most powerful &gginst all alternatives, but rejection regionsusth
have the Lower Left Quadrant Rule property. Themiteness of multinomial complicates derivation of
theoretical results. Still, some identities areverofor comparind<=2 treatments to the control that we
believe will extend td > 3.

ForK=2, the post-hoc procedure that applies standawhtial tests to each individual treatment
vs. control hypothesis when the global hypothesigjected is superior to the Bonferroni adjustment

reducing by 7 % to 18 % the follow up disease casggired for the range of settings we studied. We



considered unbalanced allocation of follow up timéreatment and control groups. While discretenéss
the multinomial distribution prevents analytic d@n, a systematic point by point search that coiepu
powers for a range of treatment / control allocatiatios with small increments is applied to fihe t
optimum allocation ratio. In most cases the optinalimcation ratios do not perform substantiallyteet
than equal allocation in terms of minimization leé D or expected subject time needed to obiafor

given Type-1 error or power.
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Notation

Symbol Description

K Numbers of new treatment groups (fixed for the gied{=k)

D Total number of disease cases (this is fixed feigieA, D=d)

D¢ Numbers of disease cases in control group, theaagroup could be placebo or current

treatment (random or fixed depends on the desagrdam for design A)

Dy Numbers of disease caseskih new treatment group fée=1,... K (random)

D) Minimum number of disease cases observed in a reatntent group among the new

treatment groups (random)

D+ Total numbers of disease cases in all new treatgrenips =D - D¢

N Total population (or follow up) size in control andw treatment groups (random for design
A, fixed, N=n, for design B)

Nc Population (or follow up) size in control grouprfdmm for design A)

Nr Population (or follow up) size in each new treattrgmoup (random )

pc =Nc/N  Portion ofN in control group (fixed for the design)
Pk Portion ofN in thekth new treatment groupy £ p,=...= px in the design)

pr=Ny/N  Portion ofN in each new treatment groyps p,=...= px=p+ (fixed for the design)
Note:pc + Kpr = 1. For equal allocation among control and neatment arms,
pc=px=1/K+lfork=1, 2,....K.

p=pclpr Ratio of the portion of total population in the canitgroup to the portion in each new
treatment group (fixed for the design)

D’ Minimum numbers of disease cases required for gsvamlevel and power for design A for

unequal allocation ratip

ic Incident rate per subject year/time in the congrolup (fixed, but typically unknown)
i Incident rate per subject year/time in #tle new treatment group (fixed, but unknown) kor
=12, ..K

re=ix/lpic  the tru but unknown relative risk of the new treattngroupk to the control group for

k=1,2,...K 0<r,and assumg, <1 unless otherwise stated

Ac Poisson intensity rate for number of events in @rsubjects for a giveNg, Ac = icNc
M&T A Poisson intensity rate for all subjects in newtment grougk for a given N.
R, The rejection region defined ob¢, D))for the global null hypothesis that all Treatment

groups are equal to the control Group. This reggatenoted to have an overall Type-1 Error

of a when none of the treatment groups exceed theaontr
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Chapter 1 INTRODUCTION AND OBJECTIVES
1.1 Motivation — Comparative Poisson Trials with Mdtiple New Treatments and One Control

Studies are often conducted to compare outcomelénce rates in different groups when these
outcomes either have a Poisson distribution orkanemial with a very low probability that can be
approximated by a Poisson distribution. This probis well studied for one new treatment compared to
one control and the Comparative Poisson methodthtdistical inference was proposed and designed by,
among others, by Gail (1974), Brown and Green ().982

However, there are many settings where multiplatinents are compared to one control. For
example, wherK normally distributed new treatment outcomes areheeompared to one normally
distributed control with all having the same unkmowariance, Dunnet (1955) reduced the numerical
dimensionality of the distribution of the test mtts fromK+2 to 3 by an integration that conditions on the
distribution of the control mean and the indepewdenf the treatment means. While Dunnet’s metlsod i
widely used and has been expanded to many relattdgs(Hochberg, Tamhane, 1987), no analogous
approach has yet been proposed for comparativedtotsals.

However, settings with more than one treatmentgmpared to 1 control group with rare binary
outcomes exist. For example, a randomized HIV imidlalawi, N.I. Kumwenda et. al. (2008) compared
K=2 new treatments, i) extended 14 week nevirapiitie 1 week zidovudine and ii) extended 14 week
nevirapine and zidovudine to the control 1 wealozudine / nevirapine and found that the two exéghd
prophylaxie reduced breast-milk HIV transmissiaanfrmother to non-infected infant more than control
group by using Kaplan-Meier analyses. For a migtiaccine study in an experiment on animals
(chickens), Allen, Danforth, and Vinyard (2004) quared the protective index KE5 new vaccines to a
control. The design was divided into four subgrowjh each vaccine group to challenge with onehef t
three Eimeria maxima isolated strains or water lallenged control). The comparison outcome of that
study was a continuous outcome protective indexkvbould be derived through other measurements and
is done in each subgroup against the challengmstidowever, in other settings, the outcome cdeald
binary such as shedding virus yes/no and compar®tisson methods might be applicable.

We consider here, in particular, a clinical trigdttsi)g where K different new treatments or

prophylactic interventions to prevent an uncommizease are each compared to one control interventio



For exampleK new experimental vaccines for influenza (or Hurpapillomavirus) are each given to a
large numben of subjects and compared to a control vaccine wisi@lso given to say the same numfber
subjects; ori{+1)n total subjects vaccinated. The objective isinautaneously compare these treatments
to the control in a way that preserves the ovéyak one error at a given level

The test statistic will be based on the numberigdake cases that occurs in each new treatment
groupDy (for k =1, ...,K) and the number of disease cases in the contwapddc at least one of the new
treatmentk will be deemed better than the Control by a denisule designed to maintain this type 1 error
and have power to identify important differenceswlhey exist first. We discuss procedures for

statistically finding which new treatment(s) is/&etter than the control .

1.2 Objectives

The purpose of this thesis is to propose and etajuacedures to do exact comparison for
comparative Poisson trials compariidgreatment groups to one control group while manng an
specific overall Type-1 error to falsely find aaft one treatment is better than the control wheruth
none are superior to the control. We begin by agsgiequal allocation of subject time or subjectrgea
into each treatment and control groblk=Nc. Chapter 2 provides more background information o
comparative Poisson studies and multiple compasismal further develops the study notation. Chapter
proposes a test statistic approach that maintaamsyerall Type-I error for falsely finding at I¢ase ofK
new treatments to be better than the control tieg®or equal ta for the global hypothesis testing with
emphasis oiK=2. Chapter 4 presents a post-hoc approach foinfinaghich treatment is superior to the
control while the global hypothesis is rejecteda@ier 5 provides sample size calculation to find
superiority when in fact a treatment is bettertferK=2 setting. Chapter 6 explores study design stiegeg
for this procedure for the unequal allocation théght minimum the follow up cases required for give
power for the purposed procedures. Chapter 7 cdeslwith a conclusion and suggests future worke Th
Appendix contains some proofs for properties andggacomputation illustration and R software package

to implement this design is included.



Chapter 2 BACKGROUND
2.1 Background on Comparative Poisson Trials
In designing studies to comparing incidence ofra thsease, it is often appropriate to assume that
cases of disease occurred follow a Poisson disinibu.This includes settings where the diseaseahas
binomial distribution Bing, p) approximated to PoissohE& np) with sample siza is sufficient large and
the ratep is very small (Ross, 2000), with= np fixed. Since the binomial probability of the nuentof

disease caseabis

/] n
n! Fjj( - p)n—d - r(n_l)...(n— d+1)£ (1—3)

P(X=d)=z——
n
For n is large, (ii N=e™ ,n(n—l)...gn— d* 1. 1, 61i o1, (Eq. 2.1.1)
n n
d
Thus PK =d = €’ % , Which is the distribution futian of Poissor{ |

One important issue with comparative Poisson triglsvhen to stop the study for analysis. With
Comparative Poisson Trials comparing one new treatrnto the control, Gail proposed two approaches
which he referred to as “Design A” and “Design BHese designs readily extended to studids sk new
treatments vs 1 control. Design A has the studyicoe until a fixed number of disease cag&soccurs in
all groups. For example, continue the study ubtié 50 cases of influenza occur in all groups arehth
make the comparison. Design B has the study aomtimtil the predetermined number of subjects (or
subject time) occurs. For example, with a vacsitgly, continue the study until 50,000 subject ydwve
been observed and then make the comparison.

Both of these designs can be problematic if theadis incidence is lower than expected. For example
with Design A, if the incidence was only 0.0001 petreated subject year and the follow up was m@dnn
until D = 50, this might requirdl = 500,000 person years (or longer if the treatmeatices disease) which
could be too costly. But if Design B was used fos study with the strategy that stops after 50,06Gon
years, then only approximately = 5 cases (or less if the treatment works) wouldehaccurred giving
very small power to compare. Sometimes “hybrid"igles are used. For example, a study could be pthnne

for D=50 cases with a contingency that it wouldsbepped at 200,000 subject years to limit cos&0if



cases had not occurred yet. Since, as we willpmeer of comparative Poisson tests depen@onot on
N, Design A which fixe® is used most often and we will focus on DesignnAlas design study.

For comparing two Poisson trial incident rates witted duration, Przyborowski and Wilenski
(1940) presented to do the test conditional onstira of the two variableBc+D+= D whereDc is the
number of cases in control aridy is the number of cases in the single treatmentmrdet two
independent Poisson seriese and D with known rateslc andi+, the joint distribution oD¢ = dc and
Dt = drcan be expressed as Eq. 2.1.2.

/]gT ATd-r g Vet

P(Dc =d, Dy = dp [Ac,A4) = d.'d.! (Eq.2.1.2)
or if we letd =dy + dc
A
P(Dc =d., Dy = dTl/] + ActAr)=
T (Eq. 2.1.3)
(/10+/1T)de_uc+m d! ( A )dT - A )d—dr o
d! d 1(d=-d)! A+, A+,

The form of Eq. 2.1.3 shows that the joint disttibn of D andD+ can be decomposed into two product

terms:

(e +A) e
d!

i. P(D=d|A.+A;)= whereD is only depends on sum of the two rates Ay and

thus contains no information on the ratid/c.

h o dt Ak
Ao+ A

¥ (1- A Y~% which is Binomial with

i. P(B =dr | D=d del(d=d)t Ac+A;” T A+

A A .
parameters =d andp = l and thus can be used to test the raHeﬁI— or equivalently to test
C T C T

Inlic.

From ii above, the conditional distributi@x andD of two Poisson distributions with ratg andA; given

D =d cases is Binomial with two parameters d andp =—

. Through this approach, conditional

C T
binomial rejection regions can define a UMPU (umifity most powerful unbiased) test on whether the tw

ratesAc andir are equal versus not equal (Lehmann, 2005).



2.2 Background on Comparisons of Multiple Treatmeng to One Control
For the normal outcome setting ~ N(u1, 69, ...., X« ~ N(uo 6%, Xec ~ N(ie, 6%). Without loss of
generality, assume that a smaller mganjs better, then the general testing problent{s > . for
k=1,...K vs.Hy: ux< l for at least on&=1,2,....K. In other words, the control treatment will con#énto
be used unless at least one experimental treaisménind to be better.
This overall testing problem could be expressekl separate hypothesis tests as follows:
Ho1: #1- Me> 0 VSHaq: p1g - Pe < 0,

Hoz: tt2- He > 0 VSHaz! 12~ e < O, (Eq.2.1.4)

Hok: stk = He = 0 VSHgk: px - e < 0,
the original null hypothesisHy: w> U for k=1,...K, is the intersection of the each individual null
hypothesis and the general alternatiig, .y < | for at least on& = 1,2,....K with inequality holds, is the
union of all theH, for k=1,2,...K.
Shaffer (1995) discussed the multiple ways tot tilea multiple testing problems with tolerance of

a particular error rate. One acceptable errorigatalled family wise error rate (FWER) in strongntrol
which is the probability of at least rejecting amal hypothesidHq, wrong under any combination of true
or false null hypothesibly for k = 1,2,...K is less than or equals &0 As the error rate only be controlled
under all the hypotheses is true, i.e. probabtlityreject at least one hypothesis as all null hypses
Hoa,...,Ho are true< a, we called it weak control.

In the absence of a better approach for comparief ef K treatments to one control, the Bonferroni
(1936) method which makes each comparison with peTlyerror ofa/K to falsely reject each dfiy,,
Hoz, .., Hok Will have an overall Type-I error of a = Y o/K to falsely find any new treatment superior to
the control when none are sfa. However, this method is often too conservating sacrifices power as
the overall type 1 error is often substantiallysléisana. Holm (1979) proposed a step-down method that
compares ordered p-values from the smallest tatlhested size levelsuK, o/(K-1),...,a). We will stop
the procedure once the new treatment is not regdtie null and conclude that all the corresponding
rejected new treatments are better than the cotl@im’s step-down procedure is not as conservaiis/e

Bonferroni and has higher power under normallyritisted settings.



Dunnett(1955) developed an approach for comparinljipfe treatments with one control group for
normally distributed outcomes that had an overgpel'| error ofo and performed substantially better (in
terms of size and power) than Bonferroni's methdldo, Paulson (1952) compared the K treatments to
one control through comparing the best observaitiothe treatment groups to the control for normal
variables and for Binomial variables using the igeesine transformation approximation to normalitis

procedure reduces K comparisons to 1 comparison,

2.3 Summary and Goals of this Research

In chapter 3, we extend Prozyborowski and Wilerssgdnditional distribution of two Poisson
random variables given sum of the random varialgekerive a multinomial distribution thé€ + 1 setting
in Section 3.1. In Section 3.2, we will reduce dimaensionality of the problem from K+1 down tod? f
using the test statisti@c, D(;) which is much as Dunnet reduced the dimensionfdityhe continuous
normal setting. Then in Section 3.3, we will ext&@wirado’s stochastic matrix approach to derive the
exact distribution oD¢, D(;)for K>2. In the rest of chapter 3, we will introduce thays to construction
the rejection regions for the global hypothesitingsproblem and discuss the non-robustness of some
rejection methods under some particular patholdgizaditions.

In chapter 4, we will purpose a test method fodifig the new treatment which is better than the
control once the global hypothesis is rejected tigcsimilar to the concept of Fisher Least Sigrifit
Difference Test in section 4.1 and then in seclic) we compare the results to the test based on
Bonferroni correction method in terms of power.

In chapter 5, a table of minimum sample size nedoledifferent settings is provided in section
5.1. The expected follow up time which follows gaadistribution is discussed in section 5.2. The
procedure is illustrated with an example in secid

In chapter 6, we discussed the strategy for theualeallocation design that minimized total
follow up disease cases for our procedure in se@id. Followed by section 6.2, we discussed thdyst
strategy for unequal allocation design that shedethe expected follow up time. And then, we previd

optimum allocation design for some possible segtiimgsection 6.3.



Chapter 3 METHODS TO TEST IF ANY TREATMENT IS BETTE R THAN THE CONTROL
3.1 Multiple Comparative Poisson Trial Design and Kpothesis
3.1.1 Underlying Distribution for the Comparative Trial Design

Consider a Comparative Poisson trial with one @d@indK > 2 new treatment groups. The extended
Gail's Design A approach is used and the studyigoes untilD cases are seen in &i+1 groups
according to the following person allocation pan8p¢ into the control group ang into each
experimental treatment group, wik+Kpr = 1. (Note thapc = p; = ... =px = 1/ K+1 for equal proportions
of people recruited in each group.) A totaNo§ubject-years-follow-up will need to be recruitedall K
groups in order to obtain theBecases wherdl is random wittNc =pcN subject years seen in the control
group and\t = p7N subject years seen in each treatment group, aisg bandom.

Letic andiy be the true unit incident rates of disease pesguefollow up time in the control group
and each respective new treatment grougk#fdr... K. Note, that in the extended Gail's Design B
approachN would be predetermined and the number of everttseircontrol group is Poisson distributed
with parametefc = icNc and the number of events in each treatment gm&pisson distributed with
parameted, =i N inkth treatment group fde=1,... K.

For design AD¢, Dy, ..., D¢ does not directly follow the unconditional Poissatting when the total
subject years or subject time of follow up is unkndor this Design. However, we will show that the
conditional joint distribution ob¢, Dy, ..., Dk givenD = d events does not depend on the follow-up-
subject-yeardN. Letr, =iy [pic be the ratio of per subject follow up time uniiogor treatment groufy to
control groupc. SinceDc and O are from independent Poisson with known radtes icpcN andiy = ip1N
= rilc Wwhen we known the subject yedds We begin by assuming is known (similar to Design B). By
extension of (Eq. 2.1.3) to K+1 groups, o= D¢+ Y Dy,

P(Dc, Dy, ..., Dkl ¢, A1, ... A, N) =

(G +3A) e > D 1
X
DC D1 DK

r
*ME—=)". Eqg.3.1.1
D! 1+ rk) I_|(1+Zrk) (Eq )

where the terms 1/($4r,) and rc/(1+>r,) do not depend on the follow up subject yedrsSo the

conditional distribution oD¢, Dy, ..., D givenD is



(AC+ZAK>De“°+ZAk)x( i ]( AL Yal
D! D. D, Dy ) 1+)'r, +>r"
(e + X AN e 2 )
D!
D 1 5 e o . N
(Dc D, DKJ(1+Zrk) c |_| (1+Zrk) k or the standard multinomial with parametBrsl/(1+>ry)

and r /(1+>ry, k=1,2,...K,.

Now, for Design A, we predetermined the total nunmdfeeventd, so the first part of (Eq. 3.1.1)

is no longer random. However, since for any gidgn

P(Dc, Dy, ..., Dk | 4c, A1, --- ks N, D) = POg, Dy, ..., Dk | 4c, A1y --- Ak N | D)
which as we showed was Multinomial distributiontwitarameters D, 1/($3r,) and r/(1+Xry), fork =
1,2,...K, this distribution does not depend on the subjeatsN. Hence, we could tredt as a random
variable without affecting the conditional distrttnn of D¢, Dy, ..., Dk givenD.

The comparison of the ratesdg, Dy, ..., Dk given a fixedD thus reduces to the comparison of
the different portions in the multinomial distrirt 1/(1+yr,) and r, /(1+>ry), k=1,2,...K. Since the
denominators of all terms are the samey fi+these comparisons are most directly driven by the
magnitude of differences in 1 ang wherer, =iy Ipic, for k=1,... K. Through this setting, we also know
that the conditional distribution & givenN person years is Poisson with a weighted averaated r
=icpct T per unit subject years. SinBegivenN is a Poisson with waiting rai, the waiting time for
one case to occur is exponential distributed wattameters 1/If the trial ends afteld cases occur (Design
A) and the occurrence of each case is indepenttentlistribution oN at which the study ends for design
A is Gamma with parameteBsand 1i. Therefore, the expected duration for design &l {s the
expectation of (D, 1/) which isD/i. For example, if the incidence was 0.0001 paxjexct year in control
subjects and none of the treatments changed tidsthe design was follow up tiD=50 cases. Then, the
expected duration for this designNsD/i=50/0.0001=500,000 persons would need to be rectuit
3.1.2 Global Hypothesis Testing for the Comparativ@®oisson Design

For comparative Poisson design problem, we areeisted in seeing if the new treatment(s) is

(are) more effective than the control. If the negatment is more effective than the control, thedence



rate in that new treatment group will be less tti@nincidence rate in control group. Hence, theoklypsis

testing problem would be express as following:
Ho: i1=io= ...=ik=ic v.8. Ky i1 =Cy ic, I, =Cyig, ..., I, = Cic, Where at least ong, ..., is less

than 1.
Focusing again on the Design A followed to tddatases occurred, the global testing hypothesis
adapted to our design is to test the rate in eamlpgs equal to the control is as following:
Ho:ri= ... =rg=1lp vsH,: ry = culp, k=1,2,...K for at least oney,...,G is less than 1 ang = iy /pic. (Note
thatry is the relative risk of the new treatméatb the control under equal allocation design).
Or the testing hypothesis is to test each indiMithypaothesis simultaneously:
Hop: r1= 1jp vsHay: 1= cilp for c<1,

Hoz: ro= 1lp vSHay: 1= Colp for c<1,

Hok: rk= 1lp vSHay: r1= clp for ce<1,
wherer, =iy lpic.. We want an overall type | error to falsely re¢jeoyHq, when all null are true to beu.
For equal allocation, the test of global hypothasisve withp=1 becomes
Ho:ri=ry=...=r.=1vsH,: r, = ¢, <1 for some=1,2,...,K, wherea, =i, fic.
Or to test each individual hypothesis simultanegusl
Hoi: ri=1 vsHairp=c1< 1, ....,Hok: rk =1 vSH,q: rg = ¢ <1 wherer, =iy fic.

Since we will restate the global hypothesis oftea,will simplify the notation for the global
hypothesis and indicates its portion rate of thabpbility of the multinomial distribution by usiregvector.
The first element of the vector is the allocatiatia in the design and the following elements efwector
represent the relative risk of the each treatnettie¢ control group. For example of equal allogafis=1),
Ho: (1:1,...,1) is always the null while the specifigiternative as follows: iH,: (1:r,=r,1,...,1) is the
specified alternative that only the first treatmgrdgup is better than the control group with theident rate
of the first treatment group istimes less than the rate of the control and dtleatment groups i, (1:
r{=r,r,=r,..., rg =r) is that all new treatment groups are better tharcontrol with the same specified
incidence rate, and iii)Hg: (1:r; =cq, = C,,..., k= Cx ) is the specified alternative that all new

treatment groups are superior but at differenti§ipecratioscy, c,,..., ck. As the case of unequal allocation
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with ratep for control group to each new treatment groupuse similar terminology and express
(p:1,...,1) under the nullp(ri=r,...,1), p: ry =r,..., Ik =r) Or (p: r{ =Cy,...,Fxk = Cx) under the specified
alternative we mentioned above(i), (ii), and (iii).

There are too many possible combinations of théqrorate for the alternative to comprehensively
cover. However, heuristically the conservativeralidive is where only one treatment among the
treatments works better than the control at a matlinspecified level that must be detected with a
specified power B. We thus often focus on the setting with two nesatments with one contrdk€2) of

Ho: (2:1,1) v.sHg: (Lir1=r,1).

3.2 Test Statistics for the Global Hypothesis Testg

We focus on comparing the best performing new mmeatsDj(or in the case of ties &) to
the controls. It is intuitive to assume that 1§ theatment(s) having the minimum disease caggg) bas
the most statistical evidence to be the best ohtwe treatments and thus 2) compaiihg to the number
of disease cases in the control gradg)( most directly addresses whether the treatmextishmost likely
to be the best is better than the control, andC&)trolling the type-lI error for this comparison thie
control to the treatments with the fewer cases fisshstep to be<o makes the overall Type-I error to
falsely reject any of thelg when all nulls are true to @.

To illustrate this graphically, all possible comiions ofDc andD(;) could be represented as the
table shown in lllustration 3.2.1 with rows repnatieg D and columns representirig;). Note that,
mathematicallyD;y must be the integer that is less than or equBlkoasDc = 0. We define the rejection
regionR, of Dc andD(;y as some collection ofdc and Dy, pair} which cumulatively have less than or
equal toa probability to obtain under the null hypothesist lvould be much more likely (i.e., >® to
obtain under alternative hypotheses in which onmore treatments are better than the control. &hee
several ways to constru&, and as we will show, there is no sindge that is UMP (uniformly most
powerful) for all possible alternatives simultansigu

However, there are some important rules that cansled in the construction of optimal. Most
notably rule is referred t OWER LEFT QUADRANT RULE” (LLQR).  Once, we decide to reject a

given cell (D¢ = dc, Dy = dqy), then all other cells for whichDg > dg, D1y < d1)) from its left and down
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should be rejected as well since there is moreeene to reject null hypothesis whba is larger oD, is
smaller while the other one is fixed. This medrs the left-lower quadrant of the table wibxE dc, Dy

=d)) as the upper—right vertex should be includeB,ithence the LLQR).

Dy 0 1 | ... dgy | - |D/K |
0
1
dc reject
D v

lllustration 3.2.1 LOWER LEFT QUADRANT RULE (LLQRj the combination¢ = dc, D(3)= dy)) is
rejected

The rejection region based on this rule will beelidombination of rectangles and it could be one

rectangle or stair down shape with non-constamt Is¢égght and depth as following (lllustration 3)2.2

S Dy 0 I T LD/ K J
0
1
reject
* reject
_ reject
D 4 ) v +

lllustration 3.2.2 One possible rejection regiosdzhon LLQR

3.3 Probabilities for Each Combination of Test Stastics Under Different Hypotheses
We are now going to look at strategies to iderdifgjection regioiR, which optimizes power for
given size level and fixedD. As a first step, an approach to calculate prdibigsito be in the different

cells of theDc, Dy table must be developed. To do this, we first tiaé for any combinatioD¢, D, that
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P{Dc, Dy| D } = P{Dc¢| D} x P{ D3| D¢, D }. Since the conditional distribution @fc is Bin(D p/(p+K)),

i.e.

D [») D-D
P(DA|D} = [D j(pr) (G507

Now, for any giverDc, D), the distribution oD;,...,Dg is multinomial§, =, ..., 7 ), whereS=
D-Dc andr =ri/ Xr;, fork=1,... K. We now present an approach to compute the pritybr a

minimum of a multinomial distribution.

3.3.1 Representation of Table with the Probabilitie Under Different Hypotheses

First we restrict our setting to K=2. For the rfujbothesis against any specified alternative
hypothesis of any incidence rate we interestedstirtg, we could fill in the probabilities for eacéll of
the all possible combinations oD, D)} with its correspondinddc andD(y). For equal allocatiorpgl)
and follow up till 10 case$X=10), the table would be as follows and the vabfe=ells could be filled for
different probability or under different hypothesi$e impossible combination dd¢, D;)) are removed

from the table as shown in lllustration 3.3.1.

c 0 1 2 3 4 5
0
1
2 Would be filled in based on different
3 hypothesis/ probability
4
5
6 Here are the impossible cells
7 (Dc, Dgyy) which are removed
8
9
10

lllustration 3.3.1 Possible cells (above the boltiee) to define the rejection region with impodsibells
which is being beyond the bolded line being remoWrdbabilities of D¢, D(;y) could be filled in under
null or specified alternatives

The filled in probabilities for@c = dc, D(1y= d1)) could be obtain through the sum of all possible
probabilities D¢ = dc, D, = di, D,=d,) where minimum of the, d, is d;;). Since the probability o, D,
D,) is followed by multinomial distribution, the fdt in value could be calculate easily k2. For the
same case dd=10 andK=2, under the null hypothedit: (1:1,1), the table with filled in probabilities as

lllustration 3.3.2. Since the distribution @d, D;, D,) under the null hypothesis is followed by Multi(10
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1/3, 1/3, 1/3). The value 0.0122 is the probabityDc = 2, D(;y= 1) which would be calculate asiR&2,

Dy=1) =P{Dc=2,D:=1,D,=7} U{Dc=2,D,=7,D,=1}) = POc = 2,D,= 1,D,= 7) + PDc=2,

D;=7,D,= 1). And in the case ob¢ = 8, D(;y= 1), there is only one possible combinatidg € 8,D;=1,

D,=1). Hence, A= 8,Dyy= 1) = P(Q:= 8,D,= 1,D,= 1) = 0.0015.

D¢ 0 1 2 3 4 |10/2]=5
0 <0.0001 | 0.0003| 0.0015 0.004]  0.0071 0.0043
1 0.0003 0.0031| 0.0122]  0.0285  0.0447
2 0.0015 | 0.0122 | 0.0427 | 0.0854 | 0.0534
3 0.0041 0.0285| 0.0854]  0.142
4 0.0071 0.0427] 0.1067|  0.071}

5 0.0085 0.0427|  0.0854
6 0.0071 0.0285|  0.0213
7 0.0041 0.0122

8 0.0015 | 0.0015

9 0.0003

10 <0.0001

lllustration 3.3.2 Probabilities of possible corrdtions {Dc, D)} under null hypothesis (1:1,1) for equal
allocation

As mentioned earlier, we can fill in the probaBkt under any specific alternative hypothesis. For

example, the following tables (lllustration 3.3lBystration 3.3.4) are filled in the probabilitiésr all

possible cells under the specific possible altévaat(1:r;= 0.2, 1) or (1r;=0.2,r,= 0.2), respectively for

K=2,D=10. Those probabilities can be applied to caleulaé power once we have decided the rejection

region.
D¢ 0 1 2 3 4 |10/2]=5

0 0.0004 0.0008 0.0007 0.0004 0.0001 0.0001
1 0.0038 0.0068 0.0054 0.0026 0.0009
2 0.0169 0.0271 0.0190 0.0079 0.0019
3 0.0452 0.0633 0.0383 0.0152
4 0.0791 0.0950 0.0493 0.0127
5 0.0949 0.0956 0.0455
6 0.0792 0.0658 0.0190
7 0.0455 0.0325
8 0.0176 0.0068
9 0.0045
10 0.0004

lllustration 3.3.3 Probabilities of possible comdtions {Dc, D)} under one possible alternative
hypothesis (1r,= 0.2,1) for equal allocation
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c 0 1 2 3 4 |10/2]=5
0 <0.00001 | <0.00001|  <0.0000]  0.00000 0.000001 040D
1 <0.00001 | <0.00001 0.00001 0.00003 0.000q4
2 0.00001 0.00006 0.00022 0.00045 0.00028
3 0.00011 0.00074 0.00223 0.00377
4 0.00093 0.00558 0.01394 0.0092¢
5 0.00558 0.02788 0.05576
6 0.02323 0.09293 0.06970
7 0.06638 0.19913
8 0.12446 0.12446
9 0.13829
10 0.03457

lllustration 3.3.4 Probabilities of possible comdtions {Dc, D)} under other one possible alternative

hypothesis (1r,=0.2,r,=0.2) for equal allocation

Similarly, we could filled in the probabilitiesfanequal allocation with allocation rapaunder

null hypothesisd: 1, 1) and alternativep(ry =r, 1) or p: ry =r, r, =r). For example witlp=1.5 andD=10,

the probabilities of possible combinatioBd, D(;)} under null hypothesisp(1,1) could be seen as

following lllustration 3.3.5. Under allocation imp=1.5 and null hypothesis that the incident ratecfach

new treatment group is the same as the controlpgtbe conditional distribution @¢, D,, D, givenD is

multinomial®, %,.,, ¥,+2, ¥»+»)- The probability that@c= 10,D;,= 0) as follow up till 10 disease occur

is PO¢=10,D;=0|D ) = PDc= 10,D;=0,D, = 0 |D =10) = (1.5/3.5}° (1/3.5f= 0.0002.

D¢ 0 1 2 3 4 |10/2]=5
0 <0.0001 0.0001 0.0003 0.0009 0.0015 0.000%
1 0.0001 0.0010 0.0039 0.0091 0.0137
2 0.0007 0.0059 0.0206 0.0411 0.0257
3 0.0029 0.0206 0.0617 0.1028
4 0.0077 0.0462 0.1156 0.0771
5 0.0139 0.0694 0.1387
6 0.0173 0.0694 0.0520
7 0.0149 0.0446
8 0.0084 0.0084
9 0.0028
10 0.0002

lllustration 3.3.5 Probabilities of possible corrdions {Dc, D)} under null hypothesisy(= 1.5:1, 1) for
unequal allocation ratip= 1.5

For some reasons, it might be good to include tifierination of its marginal probabilities for

given D¢ or D). The table undeil, could be looked like as the following. The secoad of the table is

the marginal probability giveB )=t which is the sum of alDc for fixed Dy, i.e. ZD P(D;, Dy =1).
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The second column of the table is the marginal abdidy givenD¢ = ¢ which is the probability sum over

all Dy, for fixed D¢ = ¢, i.e. ZD P(D. = ¢, D,) . The marginal value 0.1716 is the marginal proligbi
(1)

of P(Dx=1) and which could be calculated Ez _,P(D; =d, Dy =1) and the value of 0.0867 is the

4
dT(

marginal probability oP(Dc = 1) = > _ P(D; =1,D, = d,,) or simply computé(Dc = 1) whereD¢
1
| D ~ Binomial(10,1/3).

ZDC P(Dy, D(1)\: t)

e Margind(| 0 1 2 3 4 | [10/2]=5
Marginal __1 __14_00347 | 01716 | 0.3551 | 0.3313] _ 0.1031| _ 0.0043

0 0.0173 | <0.0001] 0.0003 0.0015  0.0041 _ 0.0071 0.004B

1 0.0867 ! 0.0003 | 0.0031] 0.0122 00285 0.042f

2 0.1951 | 0.0015| 0.0122 0.0427 0.0854  0.05}4

3 0.2601 ! 0.0041| 0.0285 0.0854 0.14}3

4 0.2276 | 0.0071| 0.0427 0.1067  0.07}1

5 0.1366 | 0.0085| 0.0427 0.085}

6 0.0569 | 0.0071| 0.0285 0.021B

7 0.0163 ! 0.0041 0.0124

8 0.0030 ! 0.0015| 0.001§

9 0.0003 |  0.0003

10 <0.0001 1 <0.0001

Zom P(D. =¢ D(l))

lllustration 3.3.6 Possible probabilities with miaxg probabilities added in under null hypothegis (1)
for equal allocation

For K>2, we could obtain similar table and the filledpirobabilities, however, it is not as simple

to calculate as the ca&e=2. Next section 3.3.2, we will apply stochastictmxamethod introduced by K.
C. J. CORRADO to compute the minimum of the multmal distribution.
3.3.2 Computing Exact Joint Distribution for the Minimum of a Multinomial Distribution for K >2

This section contains some notation unique to firmbabilities of the minimum of the multinomial
that will only be used here. As stated above,gg andD, the conditional distribution dd;, D,. ..., Dg
is multinomial (Szy,...,7«), where S=D-Dc andz, = r¢ / Yr;, for k=1,...,K. C. J. CORRADO (2007)
presented the stochastic matrix method to comptel tminus the cumulative density of the minimum of
multinomial distribution;P(D¢y > € | S, m,..., mk). Once this probabilityP(Dgy > ¢ | S, my,..., 7k), is

calculated, we can obta®(Dg)=c | S,7y,..., 7«) throughP(Dyy>c| S,zy,..., k) - P(Dy = ¢+l | S,my,...,
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7). In this method, let§ = szldi be the total of disease cases of the first | tneat groups. The idea of

the stochastic matrix approach is to define thesiteon matrice$), where each element in the matrices is

the conditional probability of§ given S.;, which could be express as a Binomial distributigith

parametes-S.; and 7, /Z:; 7T, , assumex=0,

[ —Sa
P(S=s| .= 8,,77T)= S8
0 otherwise

j(ﬂf)s_Sl (1_77": )S_S fOrS 2 $—1 (Eq 331)

and 71 =11 /Z:_:I 71, since we could think that during the rest of dieease casess 4, there ard, =s-

S.1 cases in théth treatment group with probability, /Z:; 7, as we know that there asg disease

cases in the firdt1 treatment groups. Hence, we could define theicestas follows:

PO|07) PO )~ P07 )
0 P17 ) - P(s|1/7
Q =[P0|0,z),P1|0r, ),...P 6107, ), Q = : ( '|“”J) (S! 7 ) for
0 0 o P(s|sm)=1

j=2,...K-1,andQ, =[1L 1 1 --- 1]. The product 0Q;x Q,x ... x Qx represents the sum of all the
probabilities of the trace &,=d; — D,=d,—... »Dy = dx through the trace of
$=00%. §=5=d0f- S=s=d+d0B-...00- S

where S, = Z d. is known. The value of the produ€gx Q;X ... X Qx should be the same as the
probability of all possible combinations which ebsut 1.

However, we are interested in obtainihg P(Dyy > ¢ | S, 7y,..., 7k) in the current stage, the
conditional probability of the minimum number okdase cases observed in a treatment group is more o
equal toc given total sum of numbers of disease cases itmeatment groups and their incidence rates. In

this case, we know that the number of disease aasss exceed or equalin all the treatment groups

which is equivalent to saying that the different®p= 5 —5.; can’t be less thaafor eachj=1,..K. As the

result, we setP(§ = s| S, = s,,77 )= 0 whenevers —s_, < c forl =1,2,...K, in each element of the

transition matrices and call the new stochastiaiceg Q for | =1,2,...K after replacing
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P(S=s|S,=5,,/7)=0ass -5, < cforeach =1,2,..K..
Then the product of matric&g, x---x Q. givesP(Dguy > ¢ | S,7,..., 7k) exactly since we have

zeroed out all the possibilities 8 =5 — .. < ¢ forj = 1,...K, and thus summed over all the possible

tracesD, to Dk under the constraid; = 5 — s> ¢, 0j=1,...K . Then the mass probability of the

minimum of the multinomial distribution would betained through (Eqg. 3.3.2) and have numerical tesul
through computing.
P(Dgy=c|Sm,...,7) =P(Dwy=c| S,my,..., 7)) -P(Dgy=c+1|Smay,..., 7) (Eqg. 3.3.2)

For example, if there are three treatment groups3jand one control group with equal allocation
(0 = 1) and the equal incidence rate in each groyps 1 fork=1,... K), and the trials were followed until
10 disease cases accrueB, £ 10 ). We could obtain the conditional joint distition of Dc andD,, given
D = 10 disease cases through the equation:

P(Dc = dc, Dy = d | D = 10) =P(D(y) = diz)| D = 10,D¢ = dc)P(Dc = dc | D = 10).

Since it's the product of two distributions aR(D)| D = 10,Dc¢ = dc) = P(D(y)| Dt = 10 -dc) is the
minimum of the multinomial distribution for knowdg, we could obtaifP(D;)> ¢| D = 10,D¢ = dc) andc
through the products of stochastic matrices. Assbgme 7 andc=1, P(D(3y> 1|D = 10,Dc = 7) =P(D(3)>

1 |Ydy = 3) would be given througk), x Q, x G, , where
Q =[Pr(S, =01 =0/m)=0 Pr§=11$= Oay) PI§= 2I§= ;) Pr(§= 3§ B,

Pr(82:0|Sl:OJT*2):0 Pr§,= 11§= 07,';2) Pr$= 2|$= 0;2) Prs= 3|§F )6,2)

Q= 0 PiS; = 11§ = 1y )= 0 P = 21§= Wy ) Pr@= 31§ &y )
2 0 0 PrS, = 21§ =2/, )= 0 Pr&= 3|§= 275 )
0 0 0 PrS, = 31§ = 3, F

Q,=[1 1 1 0]. In those new matrices, we reset some elementkeirmatrices to be 0 to eliminate
settings where the minimal number of disease calsssrved in the treatment groups is less thaxyX1).

Based on the (Eg. 3.3.1), we could calculate efghent in the matrice§, and Q, .
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3.4 Criteria to Obtain the Rejection Region

Due to the wide range of potential alternativesthte global null as well as anomalies from
discreteness of the multinomial distribution, (as will show later) no rejection region is uniformtyost
powerful against all alternatives. Therefore, amiig on the Lower Left Quadrant Rule (LLQR), we tp
define rejection regions based on different heigristiteria that will perform well from a power fa@ize
standpoint against reasonable and likely altereatiand evaluate their performances against these
alternatives.
3.4.1 Use the Control

UseDc > c to define rejection regiofiR, and the smallest value of ¢ for whi¢h (D; >c) is<a.

We denote this method “control only”, or abbrevittis sizeo rejection region asR,.c". While largerD¢
provides evidence that the control group is wohsa tthe treatments collectedly, it ignores infoliorat
contained irD ) that could reflect one treatment being very g&idce the rejection region is only based
on D¢, the conditional distribution ddc givenD is Bin(D, 1/(1+K)) under null hypothesis of (1:1,...,1) for
equal allocation or Bi, p/(p+K)) under null hypothesis andis the allocation ratio for the control to each
new treatments. The probability of falsely rejéwt tull hypothesis would be calculated based an thi
Binomial distribution. However, due to discretenesthe binomial, in many settings, the Type | erro
could be much smaller than the nominal lev&r D¢ > ¢, but the type | error exceeds the requestes lev
a for the rejection regioB¢ > c-1. This sacrifice in actual size undeywlll also be associated with a loss
power (compared to a rejection rule with actuag siloser to the nominalwhen a given Hlis true). One
approach to lessen this loss would be to incorpdrdbrmation from a smald;y when the number in the
control group falls on the boundaby = c. The smalleD, is for givenD¢ = ¢, the more evidence there is
that the incidence rate for the best treatmenniller than the control. The rejection region isntKD¢ > ¢

andDg,) <t whenDc = c} where c is the smallest value for whigl) (D. > c| D) is<a and tis the largest
value for which

R, (D >cU{D, <tND.=4|D) <a.
This method is called “Control Boundary Augmenteat’ abbreviate this augmented sizeesjection region

as Ry cen”-
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In the following example, we are going to demonstfaow the rejection region is constructed by
“controls only” and “controls boundary augmented’other methods which we will purposed and illura
this example again later for given size leweFor comparing two new treatment grous2) to one
control group with equal allocatiop£1) and the trial is followed up until 10 diseass&s P=10). For
testing (1r; =r, 1) or (1:r; =r, rp =r) as alternative (in a scenario where one of therew treatments
fully works while the other is ineffective) and thequired type | error of 0.05. By section 3.3dr, éach
different value oD, we could compute the probability Bt = d. from Bin(10, 1/3) undeH,. Also, for
any values oDy | Dc = dc, we could compute its probability on the boundamgerH, and the
probabilities are shown in lllustration 3.4.1. Foe “control only” method, if we define the rejemtiregion
to beD¢ > 6 the type | error would be 0.0197 but abDer> 5, the type-1 error is 0.0766. The later one
exceeds required level 0.05. As the result, thectigin region should then bel{¢, D(;))| Dc > 6} for a
level 5% test. For the “control boundary augmenteéthod, the rejection region i3, D(;))| Dc> 6,
(Day= 0N D¢ = 6)} with a type | error 0.0268 as including ;)= 1 N D¢ = 6)} will increase the overall

Type 1 error to 0.0553. The rejection regions &eeed in the following table.

D¢ Marginal 0 1 2 3 4 |10/2]=5
Marginal | __ 1 ___1 00347 | 0.1716] 03553 _ 03313 01031 ___(8004
0 0.0173 1 <0.0001 0.0003 0.001% 0.0041 0.0071 0.004
1 0.0867 | 0.0003 0.0031 0.0122 0.0285 0.04p7
2 0.1951 ! 0.0015 0.0122 0.0427 0.0854 0.05B4
3 0.2601 ! 0.0041 0.0285 0.0854 0.1433
4 0.2276 1  0.0071 0.0427 0.1067 0.0711
5 0.1366 |  0.0085 0.0427 0.0854 - Rejection region by
6 0.0569 ! 0.0071 0.0285 0.0213 “controls only”
7 0.0163 I 0.0041 0.0122
8 0.0030 | 0.0015 0.0015 |:| LD : Rejection region by
9 0.0003 : 0.0003 “controls boundary augmented”
10 <0.0001 ! <0.0001

lllustration 3.4.1 Rejection Region through “Cotér@®nly” or “Controls Boundary Augmented” for K =2,
D =10, andx = 0.05 for equal allocation

For unequal allocation case anddet 1.5 be the allocation ratio for the control txle new
treatment, the probabilities for each combinatib®gandD;, and the marginal probabilities under null

hypothesis for comparing 2 new treatmets) to one control and = 10 are in the following table.
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For leveloa = 0.05, the rejection region based on “ControlyOid { Dc > 7} since the size of the
rejection region P > 6} is about 0.0595 which excesses 0.05. Fordfextion region based on “Control

Boundary Augmented”, the rejection region i)c( D)) | Dc > 7 or Oc = 7,Dy) = 0) } with size 0,0316.

D¢ Marginal 0 1 2 3 4 |10/2]=5
Varginal | ___ 1 __| 00689 |__02654__ 03928 _ 02310 __ 00409 ____®000
0 0.0037 1 <0.0001 0.0001 0.0003 0.0009 0.0015 0.0009
1 0.0278 i 0.0001 0.0010 0.0039 0.0091 0.01B7
2 0.0940 I 0.0007 0.0059 0.0206 0.0411 0.02p7
3 0.1879 | 0.0029 0.0206 0.0617 0.1028
4 0.2467 | 0.0077 0.0462 0.1156 0.07711
5 0.2220 : 0.0139 0.0694 0.138 . Rejection region by
! :
6 0.1387 | 0.0173 0.0694 0.052 “controls only”
7 0.0595 1 0.0149 0.0446
1
8 0.0167 : 0.0084 0.0084 |:| LD : Rejection region by
9 0.0028 ;| 0.0028 “controls boundary augmented”
10 0.0002 1 0.0002

lllustration 3.4.2 Rejection Region through “Cotér@nly” or “Controls Boundary Augmented” for K =2,
D = 10, andk = 0.05 for unequal allocation witgh= 1.5

3.4.2 Use the Minimal New Treatment

Conversely to use only the “controls” we could onge the “minimal new treatmeri;, < t, to
defineR, and it called “Minimal New Treatment Only”, or alelviate this size rejection region ask,.".
A smallerD; could reflect either only one treatment being vgopd or even all treatments being better
than the control. This, however ignores informatfiiamm D¢ that could comparatively reflect the control
being worse (or for that matter if something hasegborribly wrong, better) that all treatments agaup.
However, due to discreteness of the multinomial,tyipe | error could again be much smaller than the
nominal level for D)< t for a given t with the type | error exceedihg requested levelfor the
rejection region expanded I, < t+1. This sacrifice in actual size unddy will also be associated with a
loss power (compared to a rejection rule with dcdize closer to the nominalwhen a giverH, is true).
One approach to lessen this impact would be torprarate information from a largec whenD )=t on
the boundary, i.e. the rejection region iBg,< t and x> ¢ |D(;, = t} where t is the largest value for which

P(Dq<t) is<a asHgis true anda is the smallest value for which

R, (D <tU{Dy =tND. >¢) is<a.
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The method which accumulates extra cells on the@iaty based on above as the rejection region
is called “Minimal new Treatment Boundary Augmeritaat abbreviate this rejection region a8, ga”".
Continuing with the previous example, with K=2 agual allocationg = 1) followed up until 10 disease
cases[D=10), if we define the rejection region from treatm the type | errors are 0.0347 and 0.206 for
the rejection region {§c, Dyy)| Day< 1} and {(D¢, D))l D)< 2} respectively. For a level 5% test, the
rejection region is {Pc, D))| Dy < 1} based on “Minimal New Treatment Only”. Howeyére type |
error for this rejection region is far below themiaal 5% level. The type | error of the rejecti@gion
based on “treatment boundary augmente@{(D(1))| D)< 1 or Oc= 6, D3)= 1)} is 0.0696 (which
exceeds 0.05) but for e, Dy))| Diy< 1 or Oc>7,D1)=1)} is 0.0484 which is not greater than level 5%
and should have greater power than the rejectigiomébased on {§c, Di))| Dyy< 1}. The rejection region

based on “minimal new treatment only” and “minimalw treatment boundary augmented” are illustrated

below.
D¢ Marginal 0 1 2 3 4 |10/2]=5
Marginal | __ 1 ___1 00347 | 01716/ _ 0.3553 _ 03313 _0.1031 _ __(BO04
0 0.0173 | <0.0001 0.0003| 0.0015]  0.004] 0.007[L 0.0043
1 0.0867 ! 0.0003 0.0031| 0.0122]  0.028" 0.042
2 0.1951 | 0.0015 0.0122| 0.0427] 0.085 0.053
3 0.2601 I 0.0041 0.0285| 0.0854]  0.142]
4 0.2276 ; 0.0071 0.0427| 0.1067] 0.071]
5 0.1366 ! 0.0085 0.0427 | 0.0854 D . Rejection region by
6 0.0569 ! 0.0071 0.0285 0.0213 “Minimum New Treatment 0n|y
7 0.0163 | 0.0041 | 0.0122
8 0.0030 | 0.0015 | 0.0015 [ ] U] : Rejection region by
9 0.0003 ! 0.0003 “Treatment boundary augmented”
10 <0.0001 | <0.0001

lllustration 3.4.3 Rejection Region through “Minihidew Treatment Only” or “Minimal New Treatment
Boundary Augmented” for K =2, D = 10, and-= 0.05 for equal allocation

For unequal allocation ratio wigh= 1.5, there will be no rejection for the rejeatiegion based
on “new treatment only” since B{;, = 0} under null hypothesis is 0.0689>0.05 while tiejection region

based “treatment boundary augmentedDg ¥5,D(;) = 0) with size 0.0434.
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Dc Marginal 0 1 2 3 4 |10/2]=5
Marginal | __ 1 __ ; 0.0689 | 02654 _ 03928 02310 _ 0.0409 ___®000|
0 0.0037 | <0.0001 0.0001 0.0003 0.0009 0.0015 0.0008
1 0.0278 1  0.0001 0.0010 0.0039 0.0091 0.01B7
2 0.0940 |  0.0007 0.0059 0.0206 0.0411 0.02p7
3 0.1879 | 0.0029 0.0206 0.0617 0.1048
4 0.2467 1|  0.0077 0.0462 0.1156 0.0771
5 0.2220 : 0.0139 0.0694  0.1387
6 0.1387 : 0.0173 0.0694 0.0520 D . Rejection region by
7 0.0595 ; 0.0149 0.0446 “treatment boundary augmented”
8 0.0167 | 0.0084 0.0084
9 0.0028 I 0.0028
10 0.0002 ; 0.0002

lllustration 3.4.4 Rejection Region through “Minihidew Treatment Boundary Augmented” for K £2=
10, anda = 0.05 for unequal allocation wigh= 1.5
3.4.3 Difference Between Control And The Minimal Teatment

For equal allocatiop=1, useDc¢ - D(;)> d to defineR,. Unlike the previous two approaches, here
we simultaneously takBc andD into account. A larger difference Bt - D(;y suggests there is more
evidence to show that at least one treatment terbidian the control. We denote this method “Dfere
Only”, or abbreviate asR, ". Again, due to discreteness of the multinomilag type | error could be
much smaller than the required lewgkhat is PDc - Dy > d} <a while P{D¢ - D¢gy> d+1} > o. This
sacrifice in actual size undely will also be associated with a loss power (compaoea rejection rule with
actual size closer to the nomiralvhen a giverH, is true). In an alternate approach targeting the
alternative hypothesis of (1; =r,1), we could incorporate information from a snial whenDc - D;)=
d to lessen this impact. If the alternative hypoihés(1:r,=r, r, =r), we could incorporate information
from largeDc whenDc - D(;y= d to lessen the impact of loss power. Here, we esipbahe worst case
scenario of only one treatment work better tharcti@rol, (1:r;=r,1).and use the augmented rejection
region {Dc- Diy>d U (D)<t |Dc- Dyy= d )} whered is the smallest value for whid¥ D¢ - D) > d}
underH is< o andt is the largest value for which PR - Digy>d) U (Dgy< t N Dc- Dy =d)} underHy is
< a. This method is denoted “Difference Boundary Augted”’(DBA), or abbreviate this rejection region
as ‘R..pga-

Continuing with the previous example 2, p=1 andD=10, the rejection region for size =

0.0268< 5 % level obtained from method “difference onlg'Dic - D(;y> 5 since the size foldc - D5y > 4}
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is 0.0638 which exceeds request 0.05. The sizkeofejection region based on “difference boundary

augmented” from worst case scenario,{(8c, D())|Dc - Day> 5 U {D@y= 0N D¢ - D(yy= 5} is} 0.0353

which improves the power computation comparinghrejection region based on “difference only” and

addingDy= 1,Dc- Dyy= 5 as a sufficient condition increases the tygertr to 0.0638. The top number

in each cell of the lllustration 3.4.5 below sha¥s rejection regions we just described for diffee of

the control and the minimum treatmeBi(- D(;)) and the second item of the cells has the size of

corresponding combination 8f;, D(;) under the null hypothesis for the settirg0.05,K=2 andD = 10.

S 0 1 2 3 4 |10/2|=5
0 DC - D(l): 0 DC - D(l):-l DC - D(l) =2 DC - D(l):'3 DC - D(l) =4 DC - D(l):-5
Size<0.0001| Size=0.0003| Size=0.0015| Size=0.0041| Size=0.0071| Size=0.0043
1 DC - D(l)zl DC - D(l) =0 DC - D(l):-l DC - D(l):-2 DC - D(l) =-3
Size=0.0003| Size=0.0031| Size=0.0122| Size=0.0285| Size=0.0427
2 DC - D(1)=2 DC - D(l)zl DC - D(1)=0 DC - D(l)z-l DC - D(1)=-2
Size=0.0015| Size=0.0122| Size=0.0427| Size=0.0854| Size=0.0534
3 DC - D(l):3 DC - D(l):2 DC - D(l):1 DC - D(l) =0
Size=0.0041| Size=0.0285| Size=0.0854| Size=0.1423
4 DC - D(l) =4 DC - D(1)=3 DC - D(1)=2 DC - D(l)zl
Size=0.0071| Size=0.0427| Size=0.1067| Size=0.0711
5 DC - D(l) =5 DC - D(l) =4 DC - D(l) =3
Size=0.0085| Size=0.0427| Size=0.0854
6 Dc 0 D(l) =6 DC - D(1)=5 DC - D(l) =4
Size=0.0071| Size=0.0285| Size=0.0213
7 Dc = D(l) =7 Dc = D(l) =6
8 Dc-D@=8 | Dc-Dw)=7 “Difference only”
Size=0.0015| Size=0.0015
9 Dc - D=9 |:| U|:| : Rejection region by “Difference
Size=0.0003 boundary augmented”
10 DC o D(l):10
Size<0.0001

lllustration 3.4.5 Rejection Region through “Difégrce Only” or “Difference Boundary Augmented” for K
=2,D =10, andx = 0.05 for equal allocation

For the case of unequal allocation with allocatiatio p, there are different numbers of subject
recruited in the control group and each new treatrgeoup. Hence, the differenced¢ andDy), D¢ - D),
is not the best way to compare the control to e treatment group and some modification should be
applied. It could be more reasonable to compardlifference of estimated incident rate for the coint
group to the minimum new treatment group. Sincedifference of incident rate B¢/ N - Digy/Nr = D/
pcN - Dy ptN = (Dc —p Dy)/pcN wherep, pc andD are determined and fixed before the trial studydn

is also fixed since it only depends on thand total follow up casd3, the modified difference, defined as
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Dc —p Dy, could be seen as a modified criteria to obtairréjection region using “difference” for
unequal allocation with ratie. For example oK=2, D=10, and the unequal allocation that allocates 0.5
times more subjects to control group than the tneat group £=1.5), we define the rejection region based
on the modified difference. In lllustration 3.4tBe first row of each cell of is the modified difésmce and
the second row is the size of its correspondinglination Oc, D;)) under the null hypothesis with
allocation rate=1.5 where the conditional distribution B, D4, D, givenD = 10 is from Multinomial

(10, 1.5/3.5, 1/3.5, 1/3.5). FdD{=8, D(1y=1), the first row is modifiedD¢ - p Dyy= 8 — 1.5 x1 = 6.5 and

P(Dc = 8,Dg)= 1 |D = 10) undeH, is POc= 8,D;=1,D,=1 |D = 10) = 90 x (1.5/3.8) (1/3.5} x (1/3.5)

=0.0084.
Dg 0 1 2 3 4 |10/2]=5
0 DC'pD(l) =0 DC'pD(l) =15 DC'pD(l) =3 DC'pD(l) =45 DC'pD(l) =-6 DC'pD(l) =75
size<0.0001 | size =0.0001 size =0.0003 | Size =0.0009 | size =0.0015 | size =0.0009
1 DC'pD(l) =1 Dc'pD(]_) =-0.5 DC'pD(l) =2 Dc'pD(]_) =35 DC'pD(l) =5
size =0.0001 | size =0.0010 | size =0.0039 | Size =0.0091 | size =0.0137
2 DC'pD(l) =2 Dc'pD(]_) =0.5 DC'pD(l) =1 Dc'pD(]_) =25 DC'pD(l) =4
size =0.0007 | size =0.0059 | size =0.0206 | Size =0.0411 | size =0.0257
3 DC'pD(l) =3 Dc'pD(1)=1.5 DC'pD(l) =0 Dc'pD(]_) =-15
size =0.0029 | size =0.0206 | size =0.0617 | Size =0.1028
4 DC'pD(l) =4 DC'pD(l) =25 DC'pD(l) =1 DC'pD(l) =-0.5
size =0.0077 | size =0.0462 | size =0.1156 | Size =0.0771
5 DC'pD(l) =5 DC'pD(l) =3.5 DC'pD(l) =2
size =0.0139 | size =0.0694 | size =0.1387 _ o .
5 DcpDyy=6 | DcpDyy=45 | DcpDyy=3 : Rejection region by
size =0.0173 | size =0.0694 | size =0.0520 Difference only
7 Dc-pD(l) =7 Dc'pD(]_) =5.5
size =0.0149 | size =0.0446
8 DcpD1y=8 | Dc-pD1y=6.5
size =0.0084 | size=0.0084
9 Dc-pD1y=9
size =0.0028
Dc-pD(1y=10
10 size =0.0002

lllustration 3.4.6 Rejection Region through “Diffgrce Only” or “Difference Boundary Augmented”

(shaded]] ) for K =2D = 10, anch = 0.05 for unequal allocation designgad.5. The first row is the
modified difference while the second row is thelyaoility of the combination under null hypothesis.

For the rejection region using modified differenae, reject the null as f{c, D(3))[Dc- pD(1)> d}
and determined through PDc - pD(;y> d) < a under null hypothesis. In this example, the régectegion

use “difference only” could be determined aBd( D))|Dc—1.5D1y> 6.5} which is {{Dc>7, D1y= 0), Oc
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> 8,Dg= 1)}. Since there is no tie on modified differenees do not consider the “Difference Boundary

Augmented” in this case.

3.4.4 Cumulative Binomial Metric For Control And The Minimal Treatment

One could argue that the differeride - D3, for equal allocation as a metric is problematidt as
does not factor in the sum Df;yandDc. For exampld¢ - D)= 3 might have stronger implications when
this sum is 3Pc= 3,D(3)= 0 , than it does when this sum iD= 5,Dy= 2. In order to account for this
possibility, one could instead use as a metriccthaulative probability to obsen®,, cases based on a
binomial distribution BinD¢ + D(y), 0.5) for equal allocation i.e., with only onediment K=1) (D)) with
one control P¢) or Bin(Dc+ D), 1/ p+1) for unequal allocation with allocation ragidor the control to
each treatment group. While in taking the minimointheK > 1 treatments, one would exp&xgt,to be
shifted to the leftinderH, conditional orDy + D¢, than it would under the binomial conditional [0,
+ D¢, as we have seen, there is no simple closed netatle formula to quantify this. Thus we have used
the Bin(D¢ + Dyy), 0.5) for equal allocation or Biri§c + Dy), 1/p+1) for unequal allocation with
allocation ratigp as a metric for the likelihood &y givenD¢ + D(;y as a convenient surrogate. Although
the true conditional distribution @&,y givenDc + Dy is not Binomial distribution, a smaller cumulative
probability on this metric indicates the less likéte chance to obseve(;) givenD¢ + Dy if no treatment
is better than the control. Hence, the metric waiddletermined from Binomial distribution: for each
combination oD¢ = ¢ andD;)= t, such that c+t=Q, we would calculate CB=P{,<t |Dc + D)= c + t}.
The smaller this CB is, the more evidence (amoigydhmulative binomial metric) the data provides to
conclude that at least one rate of the treatmentpy has a lower rate than the control group. Toerewe
could accumulate the rejection region using thewative binomial metric from the smallest as shawn
the following section 3.4.5. The size lewealejection region based on this metric is callediclative
binomial” or abbreviated afR:_ 5".

Continuing with the example of equal allocationtha2 treatment group&€2) and D=10). We
could obtain the cumulative binomial through BibY + Dyy), 1/2). If we take a look at lllustration 3.4.7¢th
top number in each cell is the cumulative binomi@bability, CB = PD ;)< t| Dc + D)= c + 1), of the

corresponding@c = ¢, D;) = t) obtained fronDy | Dc+ D)= ¢ + t ~ Bin(Dc + D(3)= ¢ + t, 1/2) and the
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second number in each cell is the probability ef¢tbmbination@c, D(;)) under null hypothesis. For

example the celllic = 9,D;)=0), in red for lllustration 3.4.7, shows that €®.00195 (top number)

which is calculated by CB = B(3y< 0| Dc+ D)=

c+t= 9) Wherd:)(l)l Dc+ D(]_):

9 ~ Bin(9, 1/2) and the

size = 0.0003 (lower number) = 9,D(;;=0) = POc =9D; =0,D,=1) + PDc=9,D;=1,D,=0)

under the distribution dbc, D;, D, givenD is multinomial(10,1/3,1/3,1/3) under null hypotlses

IS 0 1 2 3 4 5

0 CB=1.00000| CB=1.00000| CB=1.00000{ CB=1.00000| CB=1.00000| CB=1.00000
size <0.0001] size=0.0003 | size =0.0015| size =0.0041| size =0.0071| size =0.0043

1 CB=0.50000| CB=0.75000| CB=0.87500| CB=0.93750| CB=0.96875] CB=0.98438
size =0.0003| size =0.0031]| size =0.0122| size =0.0285| size =0.0427

5 CB=0.25000| CB=0.50000| CB=0.68750| CB=0.81250| CB=0.89063] CB=0.93750
size =0.0015| size =0.0122| size =0.0427| size =0.0854| size =0.053

3 CB=0.12500| CB=0.31250| CB=0.50000| CB=0.65625] CB=0.77344| CB=0.85547
size =0.0041| size =0.0285| size =0.0854| size =0.1423

4 CB=0.06250| CB=0.18750| CB=0.34375| CB=0.50000] CB=0.63672| CB=0.74609
size =0.Q071]| size =0.0427| size =0.1067| size =0.0711

5 CB= 0(?((2\2’\5 CB=0.10938| CB=0.22656] CB=0.36328| CB=0.50000| CB=0.62305
S|ze size =0.0427| size =0.085

6 é&B\:o.oa%o CB=0.14453] CB=0.25391| CB=0.37695| CB=0.50000
Si le = O e =0.0285| size =0.0213

7 000\76\1 CB%0.03516] CB=0.08984| CB=0.17188| CB=0.27441| CB=0.38721

=0.0041 Size =0.0122]

8 03—0.00391 ®B=0.01953] CB=0.05469] CB=0.11328| CB=0.19385| CB=0.29053
siZe =0.0015| size =0.0015
C®=0.00195] CB=0.01074| CB=0.03271| CB=0.07300| CB=0.13342| CB=0.21198

9 1
Size=0.0003

10 CB=0.00098] CB=0.00586 CB=0.01929| CB=0.04614| CB=0.08978| CB=0.15088
size <0.0001

lllustration 3.4.7 Rejection Region through “Cuntiva Binomial” (shadeD ) fok =2,D = 10, and. =

0.05. For eachdc = ¢, Dy
P(D(]_)S tl Dc+ D(l)

=c+t) whereD(,| Dc+ Dy

=c+t~ Bin@c + D(l)

y= 1), the numbers followed by “CB” are the cumulatbisomial calculated by
=c+t, 1/2) and the number

followed by “size” is the probability offc = ¢, Dy = t) under the null hypothesis discussed in secti@n 3.

For example, In the celD¢ = 9, Dy

=0), CB=PP1)<0 | D¢ + D)=

multinomial distribution from sect|0n 3.3 under Hmypothe5|s for equal allocation

9) =0.00195 and size = 0.0003 is by

Under the null hypothesis that the incident ratdnéssame in the control and each treatment

group, based on the cumulative binomial metric ¢tamber of the cell), as the arrows connecting the

bolded top boxes on the figure show we would refieetcombinationc = 10,D;
is the lowest CB and followed bp{= 9, D)=
combinationsPc= 8, D)=

(Dc=7,D

0), Oc=7,Dg

1=1), Oc=4,Dy=

y=0), Oc= 6, Dy

y=0), Oc=8,Dy=

y= 0) first since 0.00098

0) which is the next lowest CB and then so ojeftethe
1), Oc=5,Dy=0),

0) based on the next lowest CB).This path i®fe#id until the cumulated

binomial probability (top number in the cells) ameserving the LLQR property (as shown in the next
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section) until the type | error reaches the maxinuatne that does not exceed 5% level of type Irerro

Also, combinations such aB§,=10,D;)=1), Dc,=9, D1y=1),... do not put into the rejection region since

those combinations are impossible witk= 10. The shaded cells of the following table esgnt the

rejection region obtained through this method. eNbite cells beyond the bolded line are impossible

combinations of D¢, D)) but are shown as we need the information in tice#is to compute the

cumulative binomial in the metric being used.

c 0 1 2 3 4 5
0 CB=1.00000| CB=1.00000{ CB=1.00000{ CB=1.00000| CB=1.00000{ CB=1.00000
size <0.0001]| size =0.0001| Size=0.0003| size =0.0009| size =0.0015| size =0.0009
1 CB=0.60000| CB=0.84000| CB=0.93600| CB=0.97440| CB=0.98976
size =0.0001] size =0.0010| Size=0.0039| size =0.0091] size =0.0137
5 CB=0.36000| CB=0.64800| CB=0.82080| CB=0.91296| CB=0.95904
size =0.0007| size =0.0059| Size=0.0206| size =0.0411| size =0.0257
3 CB=0.21600| CB=0.47520| CB=0.68256| CB=0.82080
size =0.0029| size =0.0206]| size =0.0617| size =0.1028
4 CB=0.12960| CB=0.33696| CB=0.54432| CB=0.71021
size =0.0077| size =0.0462| size =0.1156| size =0.0771
5 CB=0.07776| CB=0.23328| CB=0.41990
size =0.0139| size =0.0694| size =0.1387
6 CB=0.04666| CB=0.15863| CB=0.31539
size =0.0173| size =0.0694 size =0.0520
7 CB=0.02}99| CB=0.10638
size =0.0149| size =0.0444
8 CB=0.01¢80| CB=0.07054
size =0.0084| size =0.008
9 CB:0.01§108
size=0.0(28
10 CB=0.00605
size =0.0002

lllustration 3.4.8 Rejection Region through “Cuntiva Binomial” (shadeD ) when K =2, D = 10, and
= 0.05 for unequal allocation ratpo= 1.5. For each (DC = ¢, D(1) =t), the numbetfeed by “CB” are
the cumulative binomial calculated by P(D&)| DC + D(1) = c +t) where D(1) | DC +D(1) = ¢ +
Bin(DC + D(1) = ¢ +t, 1/2.5) and the number folledvby “size” is the probability of (DC = ¢, D(1)tF
under null hypothesis discussed in section 3.3 example, In the cell (DC = 9, D(1) = 0), CB=P(D£D |
DC + D(1) =9) =0.01008 and size = 0.0028 is lmtimomial distribution from section 3.3 under null
hypothesis for unequal allocation.

From the example of unequal allocation with alla@atatiop = 1.5 with 2 treatment groups
(K=2) and followed up until 10 disease cases odoatl(), the surrogate cumulative binomial metric and
the probabilities for all possible combinations endull hypothesis could be determined as following
lllustration 3.4.8. Again, the second row of eaeh is the probability for ),Dc under the null hypothesis
for the allocation ratio 1.5 which is discussedettion 3.3 and the first row in each cell is tbenalative

binomial which is calculated by B)<t | Dc+ D)= ¢ +t) whereD(y | Dc + Digy= ¢ + t ~ Bin(Dc + Dy =
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c+t, 1/2.5). For the combinatio®¢ = 9, D(;) = 0) (shown in red), the cumulative binomial cobiel

calculated as By < 0| Dc + Dy = 9) = (1.5/2.5) = 0.01008.

3.4.5 Optimal Power/Size Ratio Based on a Specifiédternative

Optimal Power/Size Ratio is a metric and basecdhervalue to define the rejection region. This
method is denoted as “PowRatio”. For each combwnatf D andDy;), we could have two probabilities,
one is obtained under the specified alternativeothygsis and the other is the one under null hymighé
that probability under specified alternative is mi&rger than the probability under the null, orreno
precisely, the ratio of these two probabilitietaigier since both values are less than one, wel @murisider
that at least one treatment is better than therabrfito illustrate this we will present a table whicontains
all the values of the ratio of the specified alegive / null probabilities for each combination$ and
D). Hence, we look the ratios and see the combimnsitidrich might have bigger power with smaller size.
Then, we accumulate the rejection region basedl.@pR_and this ratio from the largest to smaller.

For a specific alternative, the rejection regiofirda as power/ratio is larger than a number under
size levelo. However, the shape of the rejection based omtikihod could be very different as the
alternative changes. Here we will discussed thpesloé the rejection region under the alternative; @

r,1) or (Liry=r,rp=r),r <1, for the case d{=2. As the alternative is as (&:=r,1) forr < 1, the power
could be represent as the following formula:

PHa(DC =G D(l) =t) = PHa(DC =C D(1) =tD < D2)+PHa(DC =G D(l) =t,D, > D,)

R.(D.=¢D=tD<D,)+PR, (D =cD,=tD>D,)

D ( r Jt(ijD—t +(1_ ) D ( r jD—c—t[ich
IOc t D-c—t)\2+r )\ 2+r P c D-c-t t)\2+r 2+r )

wheret<D-c-tand 1» =R, (D, <D,) > 1p>0 under alternative hypothesis asi(il=r,1) forr <1 and

which does not depend on t. Similarly, under nypdthesisy = 1, andp” = R, (D <D,),

D
D
P, (D.=c¢D,=1) = 1 . The ratio of the Power/Size could be express as
ot ™ c t D-c-t
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R, (D =c D(l)

_ D D
) O (proportional to)p(i] r'+(1- p)(ij r°=t O pr'+(1- p)r°*t = £(1).
= 2+r 24T

HO( (R
The derivative of(t) is f (t) =p In(r) r' - (1-p) In(r) P < In(r) (r “r°*Y/2 <0 asIn(r) < 0, r “r°'>0
for r < 1 andt < D-c-tandf (t) is decreasing op and with maximum gb = 1/2(in this casesp is always
larger than 1/2). Therefore, the ratio of the Pd®%ize under K=2 has following properties under
alternative (Ir,1):
(1) Power/Size ratio is increasing tedecreases for fixed numbers of contmol,
(2) the ratio is increasing as the numbers of contmlisicreasing given fixet
(3) the ratio is increasing aslecreases for fixed of total numbers of diseases< the control group
and the minimum treatment group+f)
Hence, for any giver)c = ¢, D, =t) to be rejected, the lower and left cells whicll Wave larger ratio and
tend to have more evident to be rejected. Thisaamhr forK=2 and alternative is (X; =r,1), it satisfies
the property LLQR directly. And also, the rejecti@gion tends to accumulated from the small minimum
treatment (smali) first and might be similar to the rejection reagisased on “minimum treatment” since
the impact for power/size ratio is more for smaithimum treatment than the large control by (1), é&)d
(3). However, it is hard to show the rejection cegexactly by mathematical formula since it is hiard
compare the ratio which has different combinatioh®c andD;)in some case. Hence, similar to the
method of “cumulative binomial”, there is a mefiilied with power/size ratio in the table of comhtions
(Dc, D(1y) and the rejection region based on this conditionld not be decided as directly as other
methods. Instead, the rejection region could bainbtl through this metric and LLQR which is shown i
the following section. But through the computatiomsults, we found that the rejection region based
this method is similar to the “treatment boundaugraented”.
For special cases &=2 and the alternative is as (1=r, r, =r) forr < 1, the rejection region

based on “PowRatio” is exactly the same as thebased on “Use the controls”. The Power/Size ratio i

Rl

r
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and for given r, the ratio is only dependsinand is constant for the saide. Also, the ratio is larger as
D¢ increase sinceis less than 1 which has the same metric as thevendiscussed in “Use the Control”.
Hence it is more evidence to get rejection fordddg. Also, similar to the method of “control boundary
augmented”, the accumulated extra cells from thallestDj)for givenDc would increase the poweFhe
rejection region based on Power/Size ratio is #mesas the one based on “control only” and “control
boundary augmented”.

The power ratio could be seen as the likelihodid tast for a specific alternative. Based on
Neyman-Pearson Lemma, the most powerful test fosiimple test 5 (1:1,1) v.s. H(1:r1=r,r,=1)is
the rejection region based on “control” and the thpasverful test for test §4(1:1,1) v.s.H:(1:r =r,1) is
similar to the rejection region based on “minimugatment”. Hence there is no UMP for the tegt H
(1:1,1) v.s. composite alternative:H1:r,r,) wherery, r, <1 with one strict inequality since the shape
changes on the different alternative dramatically.

The rejection region for the power ratio approaepahds on the alternative hypothesis too much
and it is hard to decide which specific alternatiypothesis to pick to construct the rejection eagi
Hence, we will not consider this method for the rfghe study after this section.

Continuing the example wittkKE2) and D=10) occur under equal allocatiop=1). For each
possible cell, we show the Power as the top nundlims,as the middle number and the power/size aatio
the third number. First, for the rejection regiarar alternative (Ir; = 0.2, 1), the ratio gets smaller for
larger value oDg)and smalleDc. As the result, we could reject tHeq D(y)) in the shaded area as shown
in below (lllustration 3.4.9) which is the sameioggwe had for the “treatment boundary augmented”.

For the alternative of interest is change tor(& 0.2,r, = 0.2) and other setting remain the same,
we could find that the ratio value is the sametlier samddc and the value is larger for largeg and is the
same metric as the one from “Use the control”. fidjection region based on “PowRatio” and LLQR (as i
lllustration 3.4.10) is to rejecDc= 10,Dy) = 0) first, and then reject the cells as the follmyworder Dc =
9,D)=0), Oc= 8, allDyy), (Dc=7, allDyy), and collect the cellXc=6, D;)= 0), for increasing the
power from the boundary. Hence the rejection re@iorihis alternative is the same as the one bared

“controls boundary augmented” as shown in the ieviparagraph.
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I 0 1 2 3 4 5
Power:0.0004 | Power:0.0008 | Power:0.0007 | Power:0.0004 | Power:0.0001 | Power<0.0001
0 Size<0.0001 Size:0.0003 Size:0.0015 Size:0.0041 Size:0.0071 Size:0.0043
Ratio:11.1162 | Ratio:2.2232 | Rati0:0.4447 | Ratio:0.0891 | Ratio:0.0185 | Ratio:0.0071
Power:0.0038 | Power:0.0068 | Power:0.0054 | Power:0.0026 | Power:0.0009
1 Size:0.0003 Size:0.0031 Size:0.0122 Size:0.0285 Size:0.0427
Ratio:11.1162 | Ratio:2.2233 | Ratio:0.4448 | Ratio:0.0896 | Ratio:0.0213
Power:0.0169 | Power:0.0271 | Power:0.0190 | Power:0.0079 | Power:0.0019
2 Size:0.0015 Size:0.0122 Size:0.0427 Size:0.0854 Size:0.0534
Ratio:11.1162 | Ratio:2.2234 | Ratio:0.4454 | Ratio:0.0925 | Ratio:0.0356
Power:0.0452 | Power:0.0633 | Power:0.0383 | Power:0.0152
3 Size:0.0041 Size:0.0285 Size:0.0854 Size:0.1423
Ratio:11.1163 | Ratio:2.2239 | Rati0:0.4482 | Rati0:0.1067
Power:0.0791 | Power:0.0950 | Power:0.0493 | Power:0.0127
4 Size:0.0071 Size:0.0427 Size:0.1067 Size:0.0711
Ratio:11.1169 | Ratio:2.2268 | Rati0:0.4624 | Rati0:0.1779
Power:0.0949 | Power:0.0956 | Power:0.0455
5 Size:0.0085 Size:0.0427 Size:0.0854
Ratio:11.1197 | Ratio:2.2410 | Ratio:0.5336
Power:0.0792 | Power:0.0658 | Power:0.0190
6 Size:0.0071 Size:0.0285 Size:0.0213
Ratio:11.1340 | Ratio:2.3122 | Ratio:0.8893
Power:0.0455 | Power:0.0325
7 Size:0.0041 Size:0.0122 : Rejection region based on “PowRatio”
Ratio:11.2051 | Ratio:2.6679 In each possible cell, the power of corresponding
Power:0.0176 | Power:0.0068 combinations will be located on the top, size Wélin
B e the middle, and the Power/Size ratio will be attttied.
Ratio:11.5608 | Ratio:4.4465
Power:0.0045
9 Size:0.0003
Ratio:13.3394
Power:0.0004
10 Size<0.0001
Ratio:22.2324

lllustration 3.4.9 Rejection Region through “Povvia(shadedj ) for K =2D = 10,0 = 0.05 and under
specified alternative (f; =0.2,1). The power, size, and its ratio are caled and located as top, middle,
and third in each cell.
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c 0 1 2 3 4 5
Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001| Power<0.000]]
0 Size<0.0001 | Size:0.0003 Size:0.0015 Size:0.0041 Size:0.0071 Size:0.0043
Ratio:0.0002 | Rati0:0.0002 | Ratio:0.0002 | Ratio:0.0002 | Ratio:0.0002 | Ratio:0.0002
Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001
1 Size:0.0003 Size:0.0031 Size:0.0122 Size:0.0285 Size:0.0427
Ratio:0.0010 | Ratio:0.0010 | Ratio:0.0010 | Ratio:0.0010 | Ratio:0.0010
Power<0.0001| Power:0.0001 | Power:0.0002 | Power:0.0004 | Power:0.0003
2 Size:0.0015 Size:0.0122 Size:0.0427 Size:0.0854 Size:0.0534
Ratio:0.0052 | Rati0:0.0052 | Ratio:0.0052 | Ratio:0.0052 | Ratio:0.0052
Power:0.0001 | Power:0.0007 | Power:0.0022 | Power:0.0037
3 Size:0.0041 Size:0.0285 Size:0.0854 Size:0.1423
Ratio:0.0261 | Ratio:0.0261 | Ratio:0.0261 | Ratio:0.0261
Power:0.0009 | Power:0.0056 | Power:0.0139 | Power:0.0093
4 Size:0.0071 Size:0.0427 Size:0.1067 Size:0.0711
Ratio:0.1307 | Rati0:0.1307 | Ratio:0.1307 | Ratio:0.1307
Power:0.0056 | Power:0.0279 | Power:0.0558
5 Size:0.0085 Size:0.0427 Size:0.0854
Ratio:0.6533 | Rati0:0.6533 | Rati0:0.6533
Power:0.0232 | Power:0.0929 | Power:0.0697
6 Size:0.0071 Size:0.0285 Size:0.0213
Ratio:3 Ratio:3 Ratio:3
Power:0.0664 | Power:0.1991
7 Size:0.0041 Size:0.0122
Ratio:16 Ratio:16 : Rejection region based on “PowRatio”
Power:0.1245 | Power:0.1245 In each possible cell, the power of corresponding
8 Size:0.0015 | Size:0.0015 combinations will be located on the top, size wélin
Ratio:82 Ratio:82 the middle, and the Power/Size ratio will be attthied.
Power:0.1383
9 Size:0.0003
Ratio:408
Power:0.0346
10 Size<0.0001
Ratio:2041

lllustration 3.4.10 Rejection Region through “PowiBa(shaded] ) for K =2D = 10,a = 0.05 and under
specified alternative (; =0.2r, = 0.2). The power, size, and its ratio are catedand located as top,
middle, and third in each cell.

Other example for the alternatives such as$0:2,r,=0.5) and others conditions remain the

same would be obtained through Power/Size ratisionatd LLQR. As the table below (lllustration

3.4.11) shows, in this case(0.2,r,=0.5), the rejection region is no longer like “ca$ boundary

augmented” or “treatment boundary augmented” agique examples.

Again, since the shape of the rejection region thase“PowRatio” depends on the alternative

hypothesis and could be quite different; theresisiniformly most powerful test based these twastias

for un-specific alternative for our study. Also, & looking for a rejection region method thagaesd for

different alternatives. From now on, we only stdidg rejection regions that do not depend on altemma

settings which are discussed in section 3.4.1¢tise3.4.4.



33

Ie 0 1 2 3 4 5
Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001| Power<0.0001
0 Size<0.0001 | Size:0.0003 Size:0.0015 Size:0.0041 Size:0.0071 Size:0.0043
Ratio:0.1430 Ratio:0.0572 Ratio:0.0230 Ratio:0.0094 Ratio:0.0042 Ratio:0.0029
Power:0.0001 | Power:0.0003 | Power:0.0006 | Power:0.0006 | Power:0.0004
1 Size:0.0003 Size:0.0031 Size:0.0122 Size:0.0285 Size:0.0427
Ratio:0.2861 Ratio:0.1146 | Ratio:0.0462 Ratio:0.0195 Ratio:0.0103
Power:0.0009 | Power:0.0028 | Power:0.0040 | Power:0.0036 | Power:0.0016
2 Size:0.0015 Size:0.0122 Size:0.0427 Size:0.0854 Size:0.0534
Ratio:0.5725 Ratio:0.2298 Ratio:0.0939 Ratio:0.0425 Ratio:0.0293
Power:0.0047 | Power:0.0132 | Power:0.0166 | Power:0.0146
3 Size:0.0041 Size:0.0285 Size:0.0854 Size:0.1423
Ratio:1.1460 Ratio:0.4623 | Ratio:0.1948 Ratio:0.1025
Power:0.0163 | Power:0.0401 | Power:0.0453 | Power:0.0208
4 Size:0.0071 Size:0.0427 Size:0.1067 Size:0.0711
Ratio:2.2977 Ratio:0.9388 Ratio:0.4247 Ratio:0.2929
Power:0.0395 | Power:0.0831 | Power:0.0875
5 Size:0.0085 Size:0.0427 Size:0.0854
Ratio:4.6235 Ratio:1.9478 | Ratio:1.0252
Power:0.0668 | Power:0.1208 | Power:0.0625
6 Size:0.0071 Size:0.0285 Size:0.0213
Rati0:9.3875 Ratio:4.2471 Ratio:2.9290
Power:0.0792 | Power:0.1250
7 Size:0.0041 Size:0.0122 L . u -
Ratio:19.4780 | Ratio:10.2516 : Rejection region based on “PowRatio
Power-0.0647 | Power:0.0446 In each possible cell, the power of corresponding
8 Size:0.0015 Size:0.0015 combinations will be located on the top, size Wwélin
Ratio:42.4709 | Ratio:29.2903 the middle, and the Power/Size ratio will be attthied.
Power:0.0347
9 Size:0.0003
Ratio:102.516
Power:0.0050
10 Size<0.0001
Ratio:292.903

lllustration 3.4.11 Rejection Region through “PowiRa(shaded] ) for K =2D = 10,a = 0.05 and under
specified alternative (i; =0.2r, = 0.5). The power, size, and its ratio are catedland located as top,
middle, and third in each cell.

3.5 Accumulated Rejection Region Based on LLQR anits Representation

As discussed in section 3.4, the rejection regismgi “cumulative binomial” metric can not be

obtained from simple way. Here, we introduce a métto accumulate the cells until the size of thgae

is not exceeded levelbased on LLQR. The rejection region is obtaineduh comparison of its ordering

criteria among the candidate cells where are the ogght be sequentially rejected and accumulatetie

rejection region based on the current rejectiorioreginder LLQR given the cumulative type | error

remains less or equal to We accumulate the rejection region starting ata&ll which is located in the

last row and first column.



34

In this process, the celD¢ = D, D)= 0) where all cases are controls would start Keefitst included
in) the reject region which is the current rejeatregion at start. The rejection region would bentigrow
with new cells added as we continue to add by dHeviing 2 steps until the type | error exceeds
1. Given the current rejection region and the critenetric, we first search for the set of candidatisc

which may be accumulated to new reject region it sgage followed by LLQR and then compare the

criteria among candidate cells. For the casespfwe might pick either from the smallé&tor
largestD¢ depends on the alternative of interests.

2. Computed the size (undElg) of the new rejection region which combine the rai chosen in Step 1
and the existing rejection region.

a. If the size of new rejection region is less tham tdrgetr level we are pursuing, we
assume the new rejection region as the currerttiejeregion and go back to Step 1 to
add a new cell

b. If the size is equal or more than the targégtvel, then do not add the cell and keep the
current rejection region as the final result.

In step 1, in order to maintain the LLQR propethg candidate cells should have two properties: A.
the candidate cells to be added must be immeditaghye right or immediately above the currentctgm
region. B. furthermore, the candidate cells cafmaoe any cells in the same row to the left or eelis in
the same column below them which are not in thectan region. For the case as shown in the thtisin
3.5.1, suppose we have current rejection regiodeshas gray, we could find thaf{¢ = 1, D(3y= 0), Oc=
3,Dwy=1), Oc=3,Duy=2), Oc= 2, D)= 3)} are the cells immediately right or above therent
rejection region which are possible cells to bedtwedidate cells. However, when we take a clogs, lif
we pick the cellDc= 3, Dy = 2), the rejection region is not followed by LL@#ice a cell that is not in
the rejection regiondc = 3, Dyy= 1) is in the same row to the left @{= 3, Dy = 2). Similarly, Oc= 2,
D)= 1) could not be the candidate cell since a cethe same column below D¢= 3, Dy = 1) should be
collected in the reject first. Hence, the candidati#s for increasing the rejection region at gtage are

{(Dc, Dy)| Oc=1,Dy=0), Oc= 3,Dy)= 1)}
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¢ Dy 0 1 2 3 4

0 Based on LLQR, we have to

1 collect this cell located lower
T first, and then this one

2 | B rd

3

4 I i

5 Based on LLQR, we have to

—> collect the cell located left

6 first, and then this one

7

8 —>

lllustration 3.5.1 Possible Candidate Cells Givemr€nt Rejection Region; gray colored cells areenir
rejection region, and the green colored cells laeectindidates to be accumulated to the new refectio
region

Here, we construct a simple algorithm to find taedidate cells based on LLQR which could be
programmed through computer directly. The cellalgeabove a cell in the current rejection regioithw
D= 0 will always to be considered to be a candithatefor other cells to be the candidate cells sthdve!
satisfied two conditions below:

(a) Consider only cells that are the lowest poesiiell in a column that is not in the rejectionioag
(b) But do not consider cells in () if there isal in the same row to the left of that cell whismot in the
current rejection region

Once the cells have been included in (a) and (bjpeoe all the candidate cells according to the
criteria being used and find the one which had#st value. For instance, we would pick the cell
satisfying (a) and (b) that has the smallest pe/&u “cumulative binomial” metric. If the criteriscores
are tied in for two candidates, we could pick the aith the smalledd; to break the tie as this more
directly suggests that one specific treatment wbstter than the control. Or alternatively, we copick
the one from the largeBX; as this more directly suggests that all treatmemtk better than the control, or
use some other tie breaking criteria.

Form the previously used examplekaf2, D=10,p=1 unde, andH,: (1:r; = 0.2, 1), the
cumulative binomial metric being used to form @o#ipn region, suppose the shaded area is thenturre
rejection region where this current rejection regias been obtained through several iterationeof th

proposed 2 steps (a) and (b) above. The cellsateahe lowest possible cells in each column trenat
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in the current rejection region and do not havelhie the row to the left which is also not in tberrent

region are {Dc= 4, D)= 0), Oc= 6, D)= 1)}. Pick the cell to be in the new rejection regiortasvalue

of criteria metric corresponding to the cell®{(= 4, D)= 0), Oc=6, D)= 1)} with the smallest values.

We found that the values are tied and pick thewitte smallerD; as the alternative of interests is (1=

0.2, 1).
D¢ 0 1 2 3 4 5

0 CB=1.00000| CB=1.00000| CB=1.00000| CB=1.00000| CB=1.00000| CB=1.00000
size <0.0001| Size=0.0003| size =0.0015| size =0.0041| size =0.0071| size =0.0043

1 CB=0.50000| CB=0.75000| CB=0.87500| CB=0.93750| CB=0.96875] CB=0.98438
size =0.0003| size =0.0031| size =0.0122]| size =0.0285| size =0.0427

5 CB=0.25000| CB=0.50000| CB=0.68750| CB=0.81250| CB=0.89063] CB=0.93750
size =0.0015| size =0.0122| size =0.0427| size =0.0854| size =0.053

3 CB=0.12500| CB=0.31250| CB=0.50000| CB=0.65625] CB=0.77344| CB=0.85547
size =0.0041| size =0.0285| size =0.0854| size =0.1423

4 CB=0.06250| CB=0.18750| CB=0.34375| CB=0.50000] CB=0.63672| CB=0.74609
size =0.0071| size =0.0427| size =0.1067| size =0.0711

5 CB=0.03125| CB=0.10938| CB=0.22656] CB=0.36328| CB=0.50000| CB=0.62305
size =0.0085| size =0.0427| size =0.085

6 CB=0.01563| CB=0.06250| CB=0.14453] CB=0.25391| CB=0.37695| CB=0.50000
size =0.0071| size =0.0285| size =0.0213

, CB=0.00781| CB=0.03516] CB=0.08984| CB=0.17188| CB=0.27441| CB=0.38721
size =0.0041| size =0.0122]

8 CB=0.00391| CB=0.01953] CB=0.05469| CB=0.11328| CB=0.19385| CB=0.29053
size =0.0015| size =0.0015
CB=0.00195] CB=0.01074| CB=0.03271| CB=0.07300| CB=0.13342| CB=0.21198

9 o
Size=0.0003

10 CB=0.00098] CB=0.00586| CB=0.01929| CB=0.04614| CB=0.08978| CB=0.15088
size <0.0001

lllustration 3.5.2 Candidate cells (bolded) for tiext rejection region given current rejection ogg{gray

colored)

current rejection region plus the probability o ttombinatiorDc, D3y underH,. Since the size of the new

In the step 2, we could calculate the size of @ rejection region which is the size of the

rejection region is 0.0424 which is less than Oti&,new rejection region are considered to theeotir

rejection region plus the chosen candidate celiscamtinue to the step 1 till the size of the nejection

region is larger than 0.05.
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3.6 Robustness of the Different Rejection Regions Pathological Null and Pathological Alternatives
While one of the cardinal assumptions that is mad®ne of the new treatments can be worse than

the control, it can never be ruled out that a n@atment could be equivalent or worse and this has
happened before (Hirschel, 2003).

We refer to settings where a new treatment is witvae the control as “pathological”. For the
pathological setting of (1:R), whereR > 1 we call gpathological null(as nothing is superior to the
control) and the setting of (&; R), we call apathological alternativesince one treatment is better than the
control. In these pathological casesRasecome larger, both thi&. andD ;) are pushed to zero with large
probability as all of the cases tend to accumulatheR treatment arm. Tests based on nulls of (1:1,1) and
alternatives of (I, r,) fail in pathological settings. While one woulkpect that the problem of one
treatment performing worse than the control wowdddime apparent to investigators either post-hoc or
preferably in interim analyses and the extremely tbaatment should be indicated obviously and elexiu
in the trial. Here, we will discuss the impactpafthological cases focus &2 (andR=5) using the
rejection regions based on the previously descrnibethods. Also, we will focus on comparison of two
new treatment groups to one control for equal alion { = 1).
3.6.1 Robustness of Rejection Regions to False Riesi Findings in the Pathological Null Setting

ForK=2, pathological nulls are single (1R), for R>1, i.e. there is one treatment which is worse
than the control or double (R, Ry) for 1 <R; <R, i.e. both treatments are worse than the corfial.
the double pathological null (R, R;) whereR; = R,, Dc will tend to be smaller and,, will tend to be
larger than for the null (1:1,1) which pushes tigribution away from the rejection region for amgthod
considered here. F&; << R, (R; is much smaller thaR; ) the setting becomes similar to (1R), Hence,
we focus on comparing two treatmerits=2) to the control under the single pathologicdl (1, R) for R
> 1 in the examples and check if there are rejpagions that exceed the requested size levehfake it
falsely appear a new treatment is successful).

For comparing the mass bt andD;yunder (1:1R) to this mass under (1:1,1), the mass under
(1:1,R) tends to have higher probability to be locategaals smaller minimum treatment (as well as fewer
controls). Hence rejection regions that focus oalsminimum treatments might have larger size tten

required leveb. Rejection regions based on “minimum treatmeny’oal “minimum treatment boundary
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augmented” reject small minimum treatment numbeith(or without small control numbers) might
exceed the nominal level. On the other hand, the rejection regioredam “controls only” could always
controls the type | error under pathological nirice the conditional distribution @i | D ~ Binomial(D,
1/(2+R) ) and the probability to reject the pathologicall based on the sizetest under regular null of
(1:1,1) is Rathologicsl Dc > €| D) < Preguiaf Dc > €| D) <o as the conditional distribution under regular null

hypothesis iD¢ | D ~ BinomialQ, 1/3) and 1/(2R) < 1/3.

N 0 1 2 3 4 5 6 7
Dc
0 | Pi<0.0001| P,<0.0001 | P,<0.0001 | P;=0.0001 | P,=0.0002| P,=0.0004 | P;=0.0007 | P,=0.0009
P,<0.0001| P,=0.0002 | P,=0.0008 | P,=0.0017 | P,=0.0026 | P,=0.0030 | P,=0.0027 | P,=0.0023
| | Pi<0.0001| P;=<0,0001| P,=0.0002 | P,=0.0008 | P;=0.0021| P;=0.0042 | P,=0.0063 | P;=0.0036
P,=0.0002| P,=0.0016 | P,=0.0052 | P,=0.0105| P,=0.0145| P,=0.0152 | P,=0.0134 | P,=0.0061
, | P1<0.0001| P;=0.0002 | P,=0.0011 | P=0.0042['P;=0.0105[ P,=0.0188 | P,=0.0251
P,=0.0008| P,=0.0052 | P,=0.0157 | P,=0.0289} P,=0.0369| P,=0.0362 | P,=0.0322
3 | Pi=0.0001 P,=0.0008 | P,=0.0042P;=0.0140] P=0.0314|P,=0.0502 | P=0.0293
P,=0.0017| P,=0.0104 | P,=0.0288 P,=0.0485| P,=0.0571} P,=0.0537 | P,=0.0251
4 | P=0.0002| P=0.0021 ['P=0.0105] P;=0.0314] P,=0.0628| P;=0.0879
P,=0.0026 | P,=0.0143 | P,=0.0361| P,=0.0554] P,=0.084| P,=0.0564
5 | P=0.0004| P;=0.0042 | P;=0.0188f P;=0.0502 P;=0.0879 7&.3()).8527
P,=0.0029| P,=0.0144 | P,=0.0327} P,=0.0456 P,=0.0470} P,=0:0226
6 | P1=0.0007| P;=0.0063 [ P,=0.0251] P;=00586 P;=0.0879
P,=0.0024| P,=0.0108 | P,=0.0222| P,=0.0282 P,=0.0282
P,=0.0009| P,=0.0072 | P,=0.0251 P,=0.0502f P,=0.0314 .
7 | p,=0.0015| P,=0.0062 | P,=0.0114} P,=0.0134Y P,=0.0067 About 60% of mass
— - - - under pathological null
8 P,=0.0009| P,=0.0063 | P,=0.0188 | P,=0.0314 of (1:1,2) in the bolded
P,=0.0008| P,=0.0028 | P,=0.0045 | P,=0.0050 area
9 | P1=0.0007| P,=0.0042 | P,=0.0105 | P;=0.0070
P,=0.0003| P,=0.0010 | P,=0.0014 | P,=0.0007
P,=0.0004| P,=0.0021 | P,=0.0042
10 | p,0.0001| P,=0.0003 | P,=0.0003| | Area of 60% mass
11 | P=0.0002[ P=0.0008 | P=0.0006] | under the null of
P,<0.0001| P,=0.0001 | P,<0.0001] | (1:1,1)inred area
1> | P=0.0001] P1=0.0002
P,<0.0001 | P,<0.0001
13 | Pi<0.0001] P<0.0001
P,<0.0001 | P,<0.0001
P,<0.0001
141 p,<0.0001
P,<0.0001
15 1 p,<0.0001

lllustration 3.6.1 Probability mass fér= 15. The top probability#n the cell is the probability mass
under regular null hypothesis (1:1,1) while theosetprobability R in the cell is the probability mass
under pathological hypothesis (1:1,2). 60% of trebpbility mass for each hypothesis is marked éddab
(red colored is under regular null and the bladkied is under pathological null)

For example considé¢=2, size level 0.05 and follow up unbl= 15. We first present the

distribution mass oD, D(;yunder null hypothesis (1:1,1) and then the distitiumass oDc, D) under
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the pathological null hypothesis (1:1,2). The litasion 3.6.1 shows the probability mass By, D) under
both the null hypothesis of (1:1,1) and pathololgiedl hypothesis of (1:1,2). The top numbey, iR each
cell is the probability mass that is under null biesis (1:1,1) and the second numberjrPeach cell is
the probability mass under pathological null (1)1 The area of highest density containing ~60% a$
is bolded in black under pathological null while tlegion of highest density with ~60% mass from ().
is bolded in red.

Under pathological null hypothesis of (1:1,2), messcentration is more spread than the one
under the null hypothesis (1:1,1) and is shiftaslaals less controls and less minimal treatment. The
probability mass is higher in the small control anaall minimum treatment than the ones from thé nul
hypothesis.

But what is most important in terms of size is pinebability under pathological null hypothesis of
(1:1,2) forDg, Dgyyto fall into a giveru level (sayo=0.05) rejection region for (1:1,1). If this prolilép to
rejectHo under the pathological (1:1,2) is (substantidyyer than 0.05 for a given method , then rejectio

region based on that method is failure since the tyerror is not well controlled under a pathotadinull.

Method of Rejection Region applied to a rejection  Probabilities to reject

region based on (1:1,1) (1:1,2)
Control Only 0.0042
Control Boundary Accumulated 0.0077
Minimum Treatment Only 0.0807 > 0.05
Minimum Treatment Boundary Accumulated 0.0810 > 0.05
Difference 0.0085
Difference Boundary Accumulated 0.0172
Cumulative Binomial 0.0200

Table 3.6.1 Probability to reject the pathologieall (1:1,2) using th@=0.05 level on a rejection region
based on regular null hypothesis (1:1,1)

The Table 3.6.1 presents probabilities to rejeetphthological null (1:1,2) using a0.05
rejection region for (1:1,1) fdp=15. We find for this example, except the methoasell on “minimum
treatment only” and “minimum treatment boundarywaoualated”, other methods have smaller probability
to reject under the pathological null hypothesi¢lot,2) tharm=0.05 with the (1:1,1) based region and in
fact smaller than the probability to reject unther null hypothesis of (1:1,1 (Data not shown))eTh

methods based on the “minimum treatment only” amthimum treatment boundary accumulated” are
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larger than the required level 0.05. Hence, thg,{}rejection region based on “minimum treatmeny’d
or “minimum treatment boundary” is not robust te fathological null hypothesis.

The Table below (Table 3.6.2) gives actual protliddsl to reject the null hypothesis under
pathological null hypotheses (1:1,2) and (1:1,5)f0.01,0=0.025 andx=0.05 using the minimum
treatment only which deterministically is at leastlarge as the minimum treatment boundary accuetlla
In all of these settings the other methods mairtteémominal Type 1 error (data not shown). For the
rejection region using “minimum treatment only”, st@izes exceeded nominal type | error and this-typ
error was increasing with D. Also, we found thaReas large as 5 and the follow up size until 30, the
probability to reject the null hypothesis is larglean 35% no matter which nominal size level iSsTh
results in high probability to find the false pagitand is not good for our design as using “midima

treatment only” or “minimal treatment boundary awgned” to construct our rejection region.

D 4=0.01 4=0.025 4=0.05

112) (115) | (112) (@15| (112) (L15)

15 0.0134  0.0990 | 0.0134  0.0990] 0.0807  0.3466
30 0.0375  0.3617 | 0.0979  0.5691| 0.0979  0.5691
60 0.0859  0.7684 | 0.1476  0.8593| 0.2316  0.9211
90 0.1653  0.9501 | 0.2356  0.9723| 0.3189  0.9855
120 0.2328  0.9898 | 0.3821  0.9973] 0.4650  0.9987

Table 3.6.2 Size based on the rejection regiongusmnimal treatment only” for its correspondingléw
up cases and the pathological null under nominal ke equals to 0.01 and 0.025

Again, the reason that the rejection probabilitissig minimum treatment rejection regions
derived from (1:1,1) exceed the nominalhen the pathological null hypothesis (RiLhold is thatD
tends to be smaller for pathological null hypothegl:1,R) compared to the null hypothesis: (1:1,1). The
method based on “control only” or “control boundarygmented” does not suffer this problem since it
tends to have less observed controls for pathadbgiall hypothesis compared to the null which pgshe
further away from the rejection region. The rejestiegions based on methods of “Difference only”,
“Difference boundary augmented” and “Cumulative @iial” tend to reject the smdll;) with largeD¢
and while we could not find a universal proof fbistobservation due to discreteness of the bingmial
have seen empirically that those probabilities urftiel,2), (1:1,5) (and for other (1R)) tend to be
smaller than are the ones under (1:1,1). Hencegriteabilities to fall into (1:1,1) rejections regs based

on “control only”, “control boundary augmented”,iffidrence only”, “difference boundary augmented”,
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and “cumulative binomial” under the pathologicallal:1,R) are typically smaller than the nominal
alphao.
3.6.2 Robustness of the Rejection Region to Pathgloal Alternatives

A reasonable rejection region is to be an unbiasstli.e. the power of the test should be much
greater than the type | error. We have shown thdeuthe regular hypothesis testing problems, the
rejection region satisfying LLQR will be an unbidgest. For regular alternative under null hypoithes
(1:1,1) andK=2, the rejection regions based on the methodsragoged in section 3.4 are unbiased and is
shown in Appendix A. However, the unbiased struetmight be failed for pathological alternative and
should be aware of before the analysis.

Here, we are looking for a rejection region witgthprobability to reject the null under the
alternatives. Here, we look at casesKe? under alternative (*; =r, 1),r<1 and pathological
alternatives (1r, =r, R) for r<1 andR>1. The power of different rejection method shawddhigh for
smallr. In the case of (I; =r,1), most probabilities tend to be moved towardsaller minimum
treatment QOy))while D¢ tends to be larger making any of the rejectionomgperform well in terms of
power. In the case of pathological alternatives (% r, R) for R>1, D¢ tends to be smaller (whe#®R > 2)
asD(tends to be even smaller. The rejection region wtends to reject on large controls might suffer
from small power while rejection regions that calesithe minimum treatment perform well.

For the rejection region based on “control onR}, , the probability to reject any treatment is
smaller than the type | error in the pathologid@raative (11, =r, R) if r+R>2 (which means I#R > 3)
since the distribution dd¢ ~ Bin(D,1/3) under the null hypothesis abd ~ Bin(D,1/(1++R)) under the
pathological alternative (1; =r, R) and the probability ob¢ > ¢ is less under pathological alternatives as
r + R> 2 than the probability under the null hypothessmatter how large the follow up cagess. As
the result, the rejection method based on “comndy” is biased against rejection when there igeattment
that performs better than the control. For theat&@ region using “control boundary augmentedg, th
probability to reject any treatment is larger thia@ “control only” rejection region but does not

substantially increase power.
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5 0 1 2 3 4 5 6 7
0 P,<0.0001 | P,<0.0001 | P;<0.0001 | P,<0.0001 | P,<0.0001 | P,<0.0001 | P,<0.0001 | P;<0.0001
P,=0.0014 | P,=0.0010 | P,=0.0004 | P,=0.0001 | P,<0.0001 | P,<0.0001 | P,<0.0001 | P,<0.0001
1 P,=0.0002 | P,=0.0003 | P,=0.0002 | P,=0.0001 | P,<0.0001 | P,<0.0001| P,<0.0001 | P;<0.0001
P,=0.0105 | P,=0.0073 | P,=0.0024 | P,=0.0005 | P,=0.0001 | P,<0.0001 | P,<0.0001 | P,<0.0001
5 P,=0.0015 | P;=0.0020 | P;=0.0012 | P,=0.0004 | P,=0.0001 | P,;<0.0001 | P,<0.0001
P,=0.0367 | P,=0.0238 | P,=0.0071 | P,=0.0013 | P,=0.0002 | P,<0.0001 | P,<0.0001
3 P,=0.0067 | P,=0.0080 | P;=0.0044 | P,=0.0015 | P,=0.0003 | P,=0.0001 | P,<0.0001
P,=0.0794] P,=0.0477 | P,=0.0131 | P,=0.0022 | P,=0.0002 | P,<0.0001 | P,<0.0001
4 P,=0.0200 P,=0.0220] P;=0.0110| P,=0.0033 | P,=0.0007 | P,=0.0001
P,=0.1191 P,=V: P,=0.0164 | P,=0.0025 | P,=0.0002 | P,<0.0001
5 P,=0.0441 P;=0.0441 W P,=0.0053 | P,=0.0009 | P,=0.0001
P,=0.1310 P,=0.0655] P,=0.0147~R,=0.0020 | P,=0.0002 | P,<0.0001
s [P=00735]P.=00661] P=0.0264| P,=0.00B2{-p,0.0010 —
P,=0.1092]] P,=0.0491 ] P,=0.0098 | P,=0.0011| P,=0:80q1| | ~60% mass in this area
7 P,=0.0945] P,=0.0756] P,=0.0265 | P,=0.0053 | P,=0.0007 [~} under (1r;=0.1,R=2)
P,=0.0702] P,=0.0281 ,&P,=0.0049 | P,=0.0005 | P,<0.0001
8 P,=0.0945 P;=0.0661] Px0.0199 | P;=0.0036
P,=0.0351 P,=0.0123] P,=0\0018 | P,=0.0002
o | P=00735 P=0.0441 P1=O.O\1\%\ P,=0.0015
P,=0.0137 | P,=0.0041 | P,=0.0005\ P,<0.0001
10 | Pi=0.0441] P;=0.0221| P,=0.0048
P,=0.0041| P,=0.0010 | P,=0.0001 About 54% mass in this area under
11 | P=0.0200| P,=0.0081| P=0.0012| | (1:r, =0.1,1)
P,=0.0009 | P,=0.0002 | P,<0.0001
1p | Pi=0.0067 | P;=0.0022
P,=0.0002 | P,<0.0001
13 | P=0.0016] P,=0.0003
P,<0.0001 | P,<0.0001
P,=0.0002
14| p<0.0001
P,<0.0001
15 | p<0.0001

lllustration 3.6.2 Probability mass fér = 15. The top probability;#n the cell is the probability mass
under regular alternative hypothesisr(l= 0.1, 1) while the second probability iR the cell is the
probability mass under pathological alternativer(x 0.1,R = 2). 60% of the probability mass for each
hypothesis is marked as bolded (red colored isredgilar alternative and the black colored is unde
pathological alternative)

Continuing the example witk=2, size level 0.05 and follow up unbE15 with a regular
alternative (1r; = 0.1, 1) or pathological alternative {1:= 0.1,R = 2), the ideal rejection region methods
should have high power to reject both alternatiredllustration 3.6.2, Pis the probability mass &,
Dyunder alternative (I; = 0.1,1) while Ris the probability mass under pathological altéwea(1:r; =
0.1,R = 2). The area of highest 60% probability magsuisin bold for the probability under pathological
alternative (1r; = 0.1,R = 2) and the corresponding area of highest 54@abability mass from the non-
pathological alternative (1; = 0.1, 1) is colored in red which is in the snrmalhimum treatment and in the
middle of the control. Comparing the alternativgtfr; = 0.1,R = 2) to (1:r; = 0.1, 1) the area with

approximated 60% major probability mass shifts® wp and right, i.e. smalléx; and smalleD;yand the
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probability mass become much smaller for ldbgeln this case, the rejection region using the “cointr
only” or “control boundary augmented” becomes les®rable under the pathological alternative.
Therefore, the power is much smaller under theradteve of (1r; = 0.1,R= 2) than for (1r, = 0.1, 1)
when using “control only” or “control boundary augnted” as the rejection method. Based on the
rejection region using “control boundary augment&” gpa={(D ¢, D(1))| Dc> 8 or D)< 1 asDc= 8) }, it
only covers very few major probability mass whhe rejection region using “minimal treatment bounyda
augmented’R,. tga = { (Dc, D)) | Dyy< 1or (D > 9 asD(;y = 2) }, covers most major probability mass
under pathological alternative. As the result,réjection region based on “minimal treatment” tetwls
have higher power as the rejection region usingitfad’ tends to have smaller power than other mesho
We computed the probability to reject any treatmamer the non-pathological alternative r({l=
0.1, 1) and the pathological alternative for thmeg, = 0.1 andR = 2, i.e., (1r; = 0.1,R = 2) for size level
o= 0.05 and null hypothesis (1: 1, 1)(Table 3.6E)rD = 15 and alternative (t; = 0.1, 1), we found that
the rejection region based on “control boundarynagigted” results in much lower probability comparing
to other rejection methods. As pathological altéwea(1:r; = 0.1,R = 2), the probability to reject any
treatment under the “control boundary augmente@.0522 which is not far from level 0.05. For other
rejection methods, we found that the small prolitghitd reject under (1r; = 0.1,R = 2) as using the

rejection region based on “difference only”, “dié@ce boundary augmented” and “cumulative binomial

since it is caused by not enough follow up casesdd, forD = 30, we found that probability to reject null
under (1r, = 0.1,R = 2) increase for the rejection region based dffieidnce only”, “difference boundary
augmented”, and “cumulative binomial’. However, grebabilities to reject null under (3= 0.1,R= 2)
do not increase as using rejection region basédantrol boundary augmented”. Hence, we will do mor
analysis of the rejection region using “controlydr(las shown that it is biased test, and the prdibpaks

always less than the size level) and “control baupdugmented” (the probability to reject remaiw io

this two follow up cases).
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Rejection methods Probability to reject nullProbability to reject null
under (1:0.1,1) under (1:0.1,2)

e e

Control Only 0.2415 0.0249

Control boundary augmented 0.4021 0.0722

Minimum treatment Only 0.8421 0.9172

Minimum treatment boundary augmented 0.8474 0.9174

Difference Only 0.4951 0.1424

Difference boundary augmented 0.6441 0.2797

Cumulative binomial 0.6882 0.4107
S

Control Only 0.4677 0.0327

Control boundary augmented 0.6100 0.0705

Minimum treatment Only 0.9871 0.9975

Minimum treatment boundary augmented 0.9923 0.9976

Difference Only 0.9125 0.5266

Difference boundary augmented 0.9440 0.6619

Cumulative binomial 0.9679 0.8419

Table 3.6.3 Probabilities to be reject under thedtlyesis of (1r; = 0.1,R = 2) and under (Ir; = 0.1,1)
based on different types of rejection regionDerl5 andD=30 for size levek = 0.05

Although the probability to reject using “contradindary augmented” increases to 61% under (1:
r. = 0.1, 1), the probability to reject null undetihpzlogical alternative (Ir; = 0.1,R= 2) is still as low as
0.0705 when using “control boundary augmentedfierrejection region method comparing to the one,
0.0722, aP=15. As the result, the rejection method usingntoa boundary augmented” is hard to
achieve the required power under the pathologitadreative (1:r; = 0.1,R = 2). From the table below
(Table 3.6.4), we could find that under the patgadal alternatives of (I; = 0.1,R=2) or (1:r; = 0.1,R
= 5), the power under the rejection region usingntool only” and “control boundary augmented” does
increase and remains very low no matter how langéddllow up cases are. When the follow up cases ar
larger than 60 anB=5, the probability to reject pathological alteiwat(1:r; = 0.1,R=5) is very small
and although there is one treatment works mucleib#tan the control it is hard to determine thatireent

which is better than the control.

D Control only Control boundary augmented
(0=0.05) (1:0.1,1) (1:0.1,2) (1:0.1,5) (1:0.1,1) (1:0.1,2) 1:Q.1,5)
15 0.2415 0.0249 0.0002 0.4021 0.0722 0.0011
30 0.4677 0.0327 =0 0.6100 0.0705 0.0001
60 0.7031 0.0264 =0 0.7860 0.0472 ~0
90 0.8711 0.0300 =0 0.9105 0.0481 ~0
120 0.9191 0.0190 =0 0.9434 0.0296 ~0

Table 3.6.4 Probability to reject under the altéxma(l:r = 0.1, 1) and two pathological alternativesrgl:
=0.1,R=2) and (1r, = 0.1,R = 5) based on the rejection region using “conrd}/” and “control
boundary augmented” for size level 0.05 and foligwcases 15, 30, 60, 90, or 120
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In this section we have shown that rejection regibased on “control only” and “control
boundary augmented”, are problematic under pathedbglternative hypotheses while rejection regions
based on “minimum treatment only”, and “minimumatent boundary augmented” are problematic for
pathological null hypotheses. Other rejection ragitethods based on “difference boundary augmented”
and “cumulative binomial” appear to be robust mdthfor different type of null hypotheses and aliitre
hypotheses including pathological. From now onfeas on the rejection methods using “difference
boundary augmentedR,. pga @and “cumulative binomial'R.. s for the remaining study since the power of
rejection method based on “difference only” is aferamaller comparing to the method based on
“difference boundary augmented,. gs We only focus on the later.

3.7 Summary

In this chapter, we have proposed a method to narighe rejection region for testing the global
hypothesis to find if any treatment is better thi@ control. The probability mass @4, D(;)) is computed
using stochastic matrices and the statifdig, O(1)) is used to construct two dimensional rejectiagiors
based on several criteria metrics combining witlQR properties. FOK = 2, the rejection regions based
on LLQR is unbiased as is proved in Appendix A. Bédieve this unbiased property remains truekfor 2
although we could not show it analytically. Sinbere is no UMP test for all possible alternatiwes,
addressed several criteria metrics based on 1¢ laughbers of control cases; 2) small numbers afscas
the minimum new treatment; 3) large differencesveen the number of control cases and the number
ocases in the minmimal new treatment gourp; 4) @lssumulative binomial metric based on the number
of control cases and minimal treatment group casaddition to LLQR to construct rejection regioAsd
we studied whether any of the criteria metric wepmsed failed to control overall type | error osuked in
smaller power under pathological settings whereesofithe new treatments were worse than the control

The pathological null and pathological alternatiygothesis cases are presented in section 3.6.
The overall type | error seems to be controlled tiedpower remain high for the rejection regionsdabon
the criteria “difference boundary augmented” orrfauative binomial” metrics under pathological cases
Other rejection methods such as using controlsredllt in lower power for pathological alternative
such as using minimal new treatment that failureawotrol type | error for pathological null are not

recommended to apply to this type of design st&tgm now on, we will only recommend using these
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criteria “difference boundary augmented” and “cuativie binomial” metric for global hypothesis tegfin
for comparative Poisson trial and will only consitleese criteria in subsequent section . In thé nex
chapter, we will propose a post-hoc testing prooed find which treatment(s) is(are) better thae t

control as comparing two new treatments to onerobnt
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Chapter 4 METHODS TO TEST WHICH TREATMENT(S) IS (AR E) BETTER THAN THE
CONTROL

As discussed in the section 3.1,rgtlenote the ratio of the incident rate in the nesgtiment group
Tk to the incident rate in the control group. Oueiest would be to find if there is any new treattrbat is
superior to the control. The global hypothesisxigressed as

Ho: ri=ry=...=rx=1 vsH,: some ofr, are less than 1 fd=1,... K

When the null hypothesis that no treatment is béltn the control is rejected, the next immediate
guestion in the minds of investigators would be ithhof the new treatments are better than the otintr
and “how to determine this”. This is equivalentegsting each individual hypothesis:

Hop: ri=1vsHairp <1,

Hoo: ro= 1 vsHai o< 1,

Hok: rk=1 vsH,p: re < 1.

In this chapter, we want to identify a procedureéaide which specific treatment(s) is (are) better
than the control for the multiple comparative Poissthen the global hypothesis has been rejected.
Methods to do this developed for comparing multipdsv treatments to a control based on independent
normal outcomes can't be applied directly to tleigisg as unlike the normal setting because the
constrained number of disease cases sulm the outcomes here are not independent.

As before, our focus here will be on the comparigbtwo treatments=2) to the control. We will
discuss one approach which would control overalktyerror at leved for K=2 no matter what
combination of true/falskly; andHy, is. Then, we will compare this approach to Borderadjustment of
individual test in the absence of a global comaris
4.1 Fisher's L.S.D Adapted Approach (FLSDA)

Let dc be the number of disease cases in the contropgdpandd, be the numbers of disease cases
in the new treatment 1 and new treatment 2 gragspectively. Letl;) = min(d;,d;). We adapted the
concept from Fisher’s Least Significant Differefioethe normal distribution problem (Hsu 1996) lte t
multiple comparative Poisson model. We call thisrapch FLSDA (the “A” being for “Adapted”) and do

this test as the following two steps for lewel
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Step one Test the global hypothesis, i.e. test the hypgithe
Ho: ri =r, =1 vsH,: some ofr, are less than 1 fde=1,2.
The rejection region of this global test was diseukin Section 3.4, 3.5, and 3.6. If the observed £ dc,
D(1)=dy) is not rejected in this step, we stop the tedt@nclude that there is no new treatment that is
superior to the control. If the observeDd = dc, D)= dyy) is rejected in step one, we continue to step two
to decide which (if any) of the new treatments bardeemed superior to the control.
Step Twa Test each individual hypothesis at the sanas the overall test
How: ri=1vsHairi<1
Ho: ro= 1 vsH 1< 1
Reject the null hypothesidy if p-value of thekth hypothesispy, is less than or equal towherep=P([Dy <
di | D¢ + D¢ = dc+ dy), the conditional distribution ddy givenD¢ + Dy = dc + d¢ under null hypothesidg,
is Binomialdc + d,1/2) for equal allocation and Binomidf{+ d,1/ p+1) for unequal allocation with
allocation ratig. If we rejectHg in this step, we conclude that tkih new treatment is better than the
control. In most case, we consider balanced desigrequal allocation to each new treatment grangh
the control group. We will focus on equal allocatia this section.
ForK=2, FLSDA approach could control type | error watiny combination of true/faldé,; and
Hgo. This is because: (1) whéhy, andHo, are both true, the type | error = Prob(Reject treatment 1 or
new treatment 2) under the setting (1:1,1) is tessqual tax by step one. (2) whef;, is true butH, is
false, the type | error = P(Reject new treatmens 18ss than or equal toby step two. (3) similarly when
Hoy is false buHy, is true, the type | error = P(Reject new treatn®nwhich is less than or equalddy
step two. (4) whehly; andHg, are false, the type | errors for each new treatrasnundefined since there
will be no false rejection dfly; andHo,
For example witliK=2, D=15 with size level 0.05 and equally allocate if elmserved; = 2,
D,=5, andD¢ = 8 as we end the trial. Here, the rejection regiocumulates through conditional binomial
metric discussed in section 3.4.4 for the globstl &d the rejection region (shaded in gray) isvshas
following (lllustration 4.1.1). In step one, thesalbved combinatiorD = 8, D(;j=2) does not reject the
global null hypothesis. Hence, we stop and do natlude that any of the new treatments are béttar &s

the control.
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lllustration 4.1.1 Rejection Region (shaded in iiaythe step one of FLSDA witt=0.05,K=2,D=15

Assume now we observé}: = 9,D;= 2, andD,= 4 in the end of trial in the previous example. In
step one, the observeld = 9, D;)=2) rejects the global hypothesis. Then, we cosmtitaustep two and

compare individual treatment to the control. Theapie of D¢ = 9,D;=2) for individual tesHy; could be

2 11 11
calculate ap, = Z[ j(%] = 0.0327 which is less than= 0.05. We conclude that the new treatment 1

D,=0 D,

is better than the control. For the new treatmethé p-value ofc = 9D, =4) for the individual tedt,

4 (13 v
is calculated ap, = Z [D ](1) = 0.1334 which is greater than 0.05 and could ejetct the individual
D=0\ “1

null hypothesid,.
4.2 Comparison of FLSDA to Bonferroni Adjustment
A Bonferroni approach that would guarantee an dvfge 1 error <o and individual type 1
errors of <a/K could also be used. This would test each indivitdypothesis,
Ho1 VSHay, ..., Hok VSHak,
comparing to the size levelK and reject the nuMHy if the corresponding p-valyg is less than or equal
to a/K wherep=P(Dy < di |Dc +Dy = dc +dy), the conditional distribution db, given D¢ + Dy = dc + dg

under null hypothesisly is Binomial@c +d,,1/2) as we focus on equal allocation here.
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Figure 4.2.1 Power Comparison based on diffeuen0.05, 0.025 levels under the settingr¢¥0.1,1), (1:
r;=0.2,1) and (1r,=0.5,1) under equal allocation

In this section, we will compare the power of theSBA approach to Bonferroni adjustment
under the alternative (Ir; = r, 1) for different value ofr < 1 under equal allocation. The power
computation method used here is discussed in AppebdThe above figures show the power based on
FLSDA vs the power based on Bonferroni for 0.5, 0.2 or 0.1 and=0.05 or 0.025 (x-axis is the power
based on Bonferroni and the y-axis the power basedLSDA). In the figures (Figure 4.2.1), the nmtat

“FLSDA-DBA” and “FLSDA-CB” denote the rejection remn using “Difference Boundary Augmented” or
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“Conditional Binomial” in the step one of FLSDA apach, respectively. Thizolded solid black lineis
the reference line which shows if the power of thjection method is equivalent to Bonferroni apgtoa
Being above the line means the FLSDA is more paverhile below the line means the Bonferroni is
more powerful. Thelashed red lineandsolid blue line are the power comparison based on FLSDA-DBA
and FLSDA-CB, respectively, to the power based onfBrroni approach.

The figures show that FLSDA-CB approach consisyehtls larger power than the Bonferroni
approach for each given total numbers of diseasescand is also higher than FLSDA-DBA in most cases
as well. The FLSDA-DBA approach is not as good eSIPA-CB approach and sometimes results in lower
power than Bonferroni approach does especiallysfoall r and small size level Therefore, it seems that
FLSDA-CB will require less numbers of follow up easthan the Bonferroni approach for a given power
and a size level regardless the combination ofrtiee or false null hypothesét,. Thus, from now on, we
only consider FLSDA-CB approach in our analysisiraging the new treatment is better than the cdntro

For comparing the minimum disease cases requireddban FLSDA-CB and Bonferroni (shown
in Table 4.2.1) for at least 80% power and the ssizelevel under different alternative settingsr¢t=r,

1), we found that FLSDA-CB will reduce about 7%8% the number of disease cases from Bonferroni
correction For example, under the alternativer{E 0.2, 1) and size level 0.025 for at least 80%vgro it

requires 35 disease cases to follow up based oBESB and it requires 40 disease cases to follovif up

applying Bonferraqi adjustment. The disease casqaired using FLSDA/CB procedure will be reduced

about (40-35) / 40 = 12.5% than applying Bonferamjustment.

| (Lir=r1) FLSDA-CB | Bonferrgni | Reduction(%)
0.1 22 23/ 12 %
o =0.025 0.2 35 4 125 %
0.5 138 148 7.2%
0.1 19 22 13.6 %
o =0.05 0.2 27 33 18.2%
0.5 112 124 9.7 %

Table 4.2.1 Sample size reduction from FLSDA-CBumferroni adjustment on different size levels
0.025 and 0.05 under the settingri=r, 1) forr = 0.1, 0.2, or 0.5 for at least 80% power

4.3 Summary
In this chapter, we have proposed a testing praeechalled FLSDA to find which treatment(s) is

(are) better than the control for comparing K >e2vrtreatments to one control. B$r= 2, we have shown
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that FLSDA procedure does control overall typerbeand we conjecture that the FLSDA also controls
type | error fork > 2,

The power using FLSDA approach was compared tpoieer using Bonferroni adjustment
procedure as the alternative of interest is thafitlst new treatment is superior to the controilevthe
second new treatment is the same as the cont&o(lir; =r,1). In section 4.2, we found that while the
FLSDA-CB which tests the global hypothesis usirgijection regioR,. s first and then individual
hypothesis in the second step has higher powejéatrcompared to the Bonferroni adjustment but
FLSDA-DBA procedure did not consistently has highewer than the Bonferroni adjustment. Hence, only
FLSDA-CB approach will be used for our remaininglgsis/study. Follow up disease cases required to
obtain 80% power whemis either 0.025 or 0.05 for different settingsker2 and one of the two
treatments superior to the control were comparethfo procedure FLSDA-CB to Bonferroni correction.

The numbers of disease cases required for usinALGB was somewhat less comparing to Bonferroni.
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Chapter 5 SAMPLE SIZE CALCULATIONS; EXPECTED WAITIN G TIME; WITH AN
EXAMPLE FOR K=2 AND EQUAL ALLOCATION DESIGN

5.1 Disease Casd3 Needed for Given Power and Size for Finding New Batment(s) is (Are) Better
Than the Control Using FLSDA-CB

In Chapter 4, we discussed FLSDA-CB to find whiehwvrtreatment(s) is (are) better than the
control. In the balanced/ equally allocated desiginial, we are questioned on how much the diseases,
D, required to stop the trial for the powep Biven type | error is less than or equals teith a specific
alternative, especially for (%:=r,1) asr < 1.

In appendix C, we discussed power computation fgrgnumbers of follow up casds, size level
a under null hypothesis and specific alternativedilipsis (1r; =r,1) for equal allocation,. The power
could be seen as a function@f denote apow(D), for fixed size level and alternative. Hence the
minimum numbers of follow up cases requirBd, for certain powerq, and alternative would be
determined througB’ (1- ) = arg miry, {pow(D)= 1- 5}.

Here, we assume the leveequals to 0.05 or 0.025 with the requested powgatlleast 80%. The
alternative here are (1; =r, 1) withr = 0.1, 0.2,..., 0.6 and the power, the probabilitydject new
treatment 1, could be at least 80%, 85% or 90%.filled in values are the minimum disease cases

required for a certain combination of setting.

Power 80% 85% 90%
0.025 0.05 0.025 0.05 0.025 0.05

0.1 22 w_ 19 25 21 28 24
0.2 35 27 38 31 44 37
0.3 54 43 60 49 70 58
0.4 84 \68\ 95 78 110 91
0.5 138 112 155 128 178 148
0.6 240 195 271 225 313 263

Table 5.1.1 Minimum numbers of follow u
size level 0.025 or 0.05 with the alternative

iseassesarequired for given power 80%, 85% or 90% and
:ry=r1,1), wherer=0.1, 0.2, 0.3, 0.4, 0.5, or 0.6.

In Table 5.1.1, each filled in values are the exp@aumbers of follow up diseases cases required

for given power, size level, and alternative (I; =r,1). The bolded value22’ means that the hypothesis
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testing:Ho: (1:1,1) v.sHg: (1:r;=0.1,1), required to follow up till 22 diseaseswacto obtain at least 80%

power for a size 0.025 test.

5.2 Expected Subject Time/Subject Yearll Followed up for Given Disease Casd3

For equally allocatedil subject years to each group, the distributiorotiltdisease cas&= D¢
+D; + ...+Dg is Poisson distributed with raifd, wherei =ic +i; +...+i¢ is the total incident rate
regardless of the control or new treatment grolips. waiting time for a case to happen from a Poisso
distribution is exponential distributed with raté dnd each disease cases to occur are randomly and
independently. Hence, time to wait Idrdisease cases to occur is summing @vardependent
exponential variable and the distribution followgamma with paramet& and 1i. Therefore, we will
expect to follow uD/i total subject time foD disease cases to occur. Continue with the prevdzample,
the setting oHg: (1:1,1) v.sH,: (11 =0.1,1) and 22 disease cases required to occat feast 80%
power and the 0.025 size level. If the true tataldence is 0.001 per subject year, the expectemMap
subject years is 22/0.001 = 22000 total subjeatsiomder null hypothesis and about 31429

(22/((0.001+0.0001+0.001)/3) = 31428.57) totaljsubtimes to each group under alternative hypaghes

5.3 Example on Prevention of HIV Transmission

The human immunodeficiency virus (HIV) is transeittoy sharing injection needles for drug
users through contaminated blood left on the neeattel the incidence of HIV transmission could be
considered rare. This multiple comparative Poissesign could be applied to a study of HIV transioiss
among a high risk group if for example two promisitew interventions were being tested. Suppose that
the incidence of HIV transmission for the peopléhaut intervention is 0.01 and we would apply ohe o
the following two interventions to high risk injémh drug users (IDU) that are not already infecté€elre
are two therapies we might be interested in: 1)aBalr intervention to reduce needle sharing aloitg w
prophylactic use of highly active antiretroviraétapy (HAART) to prevent transmission to prevenvHlI
infection. 2) Prophylactic use of highly active iegtroviral therapy (HAART) to prevent transmissiand
to prevent HIV infection from establishing everthié person has contact with contaminated bloodutiiro

needles;
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For each therapy, we will follow up the same nurstErhigh risk injection drug users that
initially are not infected with HIV (HIV-) until @redetermined numbers of IDUs in all groups contrac
HIV (D). For example, we follow up 300 drug users tharesthinjection needles with HIV infected people
who do not have any therapy. Also, we follow up 8@0g users that share needles with HIV infected
people and have behavior/HAART intervention therapgt 300 drug users that share needles with HIV
infected people with HAART.

In this study, there are two interventiois=@) and we want to see which intervention/therapy i
better (less HIV transmission rate) than the uméegroup. We would like to determine the numbérs o
drug users in all three arms that contract HIV fraimaring injection needles with HIV infected person
required to obtain 80% under size leweD.05 for equal allocation. In addition to the detmation ofD,
we also want to identify the rejection regionsdar design.

If our hypothesis of interest is as follows:
Ho:ri=ry=1vsH,; r,=0.1and,=1
While the power is 78.7% as the study only follopvtili 18 people contracting HIV and the power is
81.3% for following up till 19 people present HIVider size leved=0.05 based on our proposed
procedure FLSDA-CB, we would like to end our tadler 19 people present HIV infection among the un-
treat and therapy groups. Then, the numbers ofirfidéttions in each group would be compared anedest
as follows:
(1) The rejection region for global hypothesis:
R.-ce = {(Dc, D) | (Dc>5, D1y=0), (Dc>7, D(1y=1), (Dc>9, D1)=2), (Dc>11, D(1)=3)},
is as lllustration 5.3.1. I, D)) is inR.. cs, then we continue to next step (2). Otherwisesiop the

procedure and conclude that no new treatment ierbiian the control.

(2) The following lllustration 5.3.2 is the rejemti region for each individual hypothesis that tingt fow is
D¢+ Dywhich ranges from 0 to19, and the second row isthieal valuet, that PD,< t | D-+ Dy) < 0.05
for each correspondingd> Dy. For example, iDc+ D=19, the null hypothesidg, will be rejected if we

observeD,<6.
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lllustration 5.3.2 Rejection region for each indival hypothesis fok=2, D=19,0=0.05 anck=1,2. AsD¢
+Dy = 19, we will reject the null dfip, asDg< 6 and conclude that the new treatmerst better than the

control

For example, assume that the following scenarimbserved:

(i) 11 people in the un-treat group infected wittYH3 people infected in the behavior/HAART

intervention and 5 people are infected HIV in HAABMuUp as predetermined total number of disease

cases 19 infected people.

In the first step,Dc = 11,D(;)= 3) is in the rejection regioR,. ez, SO we would conclude in the

first step that at least one new treatment is b#tn the control and continue to the second §tep.

testing for the alternative that behavior/HAARTbitter than un-treat group, the individual nulllvgié

rejected ifD; < 4 asD¢ +D;=14 for this case. Since we obsefwe=11,D,=3, we would reject the null

hypothesis that prophylactic behavior/HAART intamtien works the same as no intervention. On the

other hand, for comparing HAART therapy to the teat group, the individual null hypothesis will be

0

0
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rejected ifD, <5 asD¢ + D,=16. There is no enough evident that the HAARTakdr than un-treat group
sinceD,= 5 and is not in the rejection region for the indiual test.

Now assume that among the 19 predetermined casesliowe observe:
(ii) 16 infected people in un-treat group, 1 infgtperson in the behavior/HAART, and 2 infectedpbeo
in prophylactic HAART. In the first stepD¢ = 16,Dqy= 1) is in the rejection region for the global
hypothesisR,. . We reject the null hypothesis and conclude thatet is at least one no new treatment
that is better than the control and continue toséeond step. Sindg, = 1 <5 ad¢ + D; = 17 for
comparing behavior/HAART to the control abd= 2 < 6 ad¢ + D,=18 for comparing HAART only to
the un-treated group, we could conclude that Huthaipies are better than the control.

Finally, assume that after the predetermined 1€chefd case occur, we observe;
(iii) 11 infected people in the control group, 4eicted people in behavior/HAART, and 4 infectedleo
in HAART. Neither treatment is considered to betdaethan the control sinc®{= 11, D= 4) is not

rejected in the global hypothesis of Step one.
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Chapter 6 OPTIMIZING ALLOCATION RATIO OF CONTROL TO TREATMENT

Until now, we have assumed in most cases thataime ssumbers of subjects (or subject time) will
be allocated to the controls and each new treatgrenfp. However, most of the results here derfeed
equal subject allocation can be extended to unegjlamiation. It is difficult to think of reasons &tlocate
more subjects to one new treatment group versuhansay twice as many subjects ibtpthanD, as
this would skew the comparisons towards being moeeise for the treatment(s) that are allocatedemor
subjects and less precise for those which arealddess. Perhaps if it was already known in acwahat
one new treatment was likely to be worse (or mostlg to study) than another, then this would infa
subject allocation. But in such a setting, the t@atment which is likely to be worse (or morethy)s
would not be used in the comparisons.

We, therefore, restrict our considerations heralticate same numbers of subjects to each new
treatment group and the allocation ratio that ésrttio of subjects to the control group over eaeh
treatment group (under equal allocation into eamh treatment). For example, each of kheew
treatments is being compared to the same conttbtte@new treatments are not compared to each. other
Dunnet showed that witlk treatments compared to one controls and each&uigging a normally

distributed outcome that given a constrained totmhber of subjects, the [Control] / [Each New
Treatment] allocation ratio gb =¥/ subjects minimized the variance of the test stesisX, — X .

While the setting differs here, i) as in Dunnegstisig, the K new treatments are compared to thesa
control, but the underlying distribution assumpsdtiffer. ii) In this setting, the fact that disescases
accrue at a slower rate in the new treatment gradyen the treatment(s) are good may impact therapti
control to new treatment allocation. Since in cefting for given power and size, we might tendltocate
more to the control when the new treatment(s) eaiyr good to reduce the total follow up tinié.
Discreteness properties of the multinomial here albow the threshold test size to be closer tdfiaher
from) the specifiedt under unequal allocation schemes which would spordingly also result in greater
(or less) power from a test that meets the spekbifievel.

As a theoretical solution is untenable, we tremapirically identify optimal allocation ratio that

maximize power per size under two settings.
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A. Minimize the number of disease casd3 needed for the study.Perhaps for ethical reasons
and/or because disease cases are particularly ixpeit is important to minimize these. Perhapsih
can be made smaller by allocating less or moré@&tibject to each new treatment group (versus the
controls) than the under equal allocation

B. Minimize the expected subject follow up time. The trial could be long and costly and the costs
could be directly proportional to the number ofjsgks or subject follow up time. In that case, imizing
the expected subjects (or subject time) needebttirotheD cases is important. If the new treatment(s) is
(are) effective, the trial length required for #pecified number of cases may be shortened byadiiar
more to the control groups due to the more rapiusd of cases in the enlarged control arm. Hewee,
might like to allocate more to the control to mitemthe cost or to minimize the total waiting tifioe a
trial. While if it costs more for the new treatmgitan the control this would push the design towar
allocating more subject time to the controls. Hogregince such cost differential will differ by éac
setting, we do not focus on this potential here.

In this chapter, we will thus focus on the optimatocation ratio that will A. minimize the follow

up cases requirear B. minimize the expected follow up time neettedccrue the D caséisere we call it

“expected waiting time”) under the alternative #ocertain power and type | errorl&s2 adapted from the

method we applied to equal allocation.

6.1 Optimum Allocation Ratio that Minimizes the Folow Up Cases Required

Letp be the allocation ratio for the control to eachh& new treatment groups. The
methodologies we proposed for equal allocatipa) can be modified to suit the unequal allocativs
discussed in section 3.1, the hypothesis for urlegjlecation could be express as

Ho: r1 =1, =1 vsHy: r < 1 for somek=1,2, wherey =iy Ipic

or the rejection region could be designed as rarkered as( 1, 1) and alternative considered as
(p:ry,ro) for somer, <1. From now on, we will focus on the settidg (0:1,1) v.s.Hz: (p:ry=r,1) forr< 1
for unequal allocation with allocation rajidor the control to each treatment group.

Again, Appendix C, discusses the specific compurtatused to identify powers for given

numbers of follow up caseb, size level, under null hypothesis and specific alternativpdtizesis (1r,
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=r, 1) for equal allocatiory = 1and that would be extended it to unequal allocatase easily. The power
could be seen as a function@f denote apow(D), for fixed size level and alternative,Denote that the
minimum numbers of follow up cases requirBd;* for certain powerg, andr as
D?™(1- B) = arg mir, {pow(D)= 1- S3}.

And D’*! could be determined by i) repeating the power agmtjpn discussed in Appendix C for a given
D and then ii) by increasing follow up numb@&sntil the power based d» exceeds . For the unequal
allocation setting with a specified allocation oatj we could first adjust the power computation by
modifying the null hypothesis and alternative hymastis as described above according to the allatatio
ratiop. Then we could use the same method to find thenmoim disease cases required, denote’agor
requested power, size level, allocation ratiandr again in the (1t; =r, 1) setting.

Here, we will first show how to minimize the folloup cases needed in the case ©f0.1 andy =
0.05 with 80% power. We systematically evaluatesiectrum of possible allocation ratjpand find the
corresponding follow up disease caPésieeded to obtain power80% under size level 0.05 and
alternative hypothesis (; = 0.1, 1) and the givem Here, the allocation ratjois selected by its
logarithm, logp), from -1.1 to 1.1 and increment by 0.01. Putgiran the log scale symmetries about 1
and the range -1.1 to 1, corresponds roughpydoing from 0.33 to 3 by multiples of 1.01. Notiewas
clear that havingp < 0.33 orp > 3 would not minimizéd”. The points in Figure 6.1.1 (minimum follow up
cases required” as y-axis against allocation ratias the x-axis) are the minimum follow up cases
requiredD” v.s. allocation rati@. Each point4, D) shows that the minimum disease cd3&sequired to
have at least 80% power when the allocation rdtmatrol to the each treatment group igiven size
level a=0.05. The blue poinp(= 0.3753,D” = 24) shows that for an allocation ratio 0.37%®)(0.3753) =
-0.98), D’"%37*3= 24 disease cases are needed to have at leagi®@86. As we can see, there are 24
optimum allocation ratios that achieve the minifiodlbw up disease cas& =18 needed for this setting

due to the discreteness property of inte@&j.(Hence, the optimum allocation ratio is not unique.
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minimum follow up disease cases required for size = 0.05, 80% power under alternative hypothesisr =0.1
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Figure 6.1.1 Minimum follow up number of diseassesarequired for size 0.05 with 80% power undelr nul
hypothesis when alternative hypothegisr(= 0.1,1). Each point ig{D”) whereD” is the number of
follow up cases required to obtain 80% power fersbttingn = 0.05,r = 0.1, and the its corresponding

Also, due to the discreteness of distribution dredrejection region, the follow up disease cases
needed for at least 80% power could jump up or dasvallocation ratio is slightly changed at a gisee
level. Continuing with previous example, for alltioa ratio, 0.3716 (whose log is -0.99) (showned in
Figure 6.1.1), it need®’~%3"'%23 to obtain at least 80% power while with a dligicrease of 0.01 log
units in the allocation ratio to 0.3753, the diseeases required for the request power jumpgto’53=
24. As allocation ratio increases another 0.01uloigjto 0.3791 (whose log is -0.07), the diseasesa
needed drops back to 23 again. In the practicayewdd start with the optimum allocation ratio that
minimized the numbers of disease cases requirbdue 80% power. But due to the uncontrollable
participants randomly drop off during the trialethllocation ratio might slightly vary than the
predetermined setting and required more diseass tadave 80% power.

While we could try to look further to see whichtb& 14 allocation ratios that minimized the
number of needed disease cases at 23 for this éxdrag the maximum true power and/or minimum true
size, but it is impossible to come up with an unayubus metric on this basis to break the tie. Atke,

slightly different of allocation ratio from the aptum allocation ratio might result in the increasthe
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numbers of disease cases needed for given sizpaavgr. Therefore, to reduce the effect of discressn

we tried to smooth the discreteness from the optinaillocation ratig through locally weighted regression
(Cleveland, 1979) (LOWESS Cleveland 1981) or smapime. The red / green curves in the Figure 6.1.2
are the fitted curve using function LOWESS in saiiterR with smoothing parameters f = 0.2 and f = 0.3
Also, the blue fitted curve uses the function srhagiline in R with 5 degrees of freedom. Sincectinwes
are V-shaped the pseudo-optimum allocation ratithisyapproach could be determined as shown in the

figure below.

minimum follow up disease cases required for size = 0.05, 80% power under alternative hypothesisr =0.1

= o G
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Figure 6.1.2 Minimum follow up disease cases reglifor size 0.05 with 80% power under null
hypothesis with an alternative hypothegisr¢ = 0.1, 1) and smoothing spline curves. Each gsift, D”)
whereD” is the numbers of follow up cases required to iokB8% power for the setting= 0.05,r = 0.1,
and the its correspondipg The smoothing curve is obtained through localgighted regression by
function LOWESS in R software with smoothing paréené=0.2 (red) and 0.3 (green) and through
smoothing spline by function smooth.spline in saftevR with degrees of freedom df = 5 (blue).
6.2 Optimum Allocation Ratio that Minimizing the Expected Follow Up Subjects / Time

Once the minimum follow up cases requirBd, is determined for the allocation ragipthe

expected waiting time fdp” cases to occur 3”/i wherei is the averaged incident rate across all groups

and which would be achieved by

i =pcict priv+ priz=pr(pictii+iz) = pic+ir+i)/(p+2)
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=f+r+1)ic /(p+2) since=ri c andi, = ic under any hypothesis of form: (¢, =r, 1).

Hence for the (1r; =, 1 setting), the expected waiting time to acdigs D’ /i = (p+2) D’ /
ic(p+r+1) which is proportional tg¢2) D” /(p+r+1) sinceic is fixed as the allocation ratio differs. Since
the multiplicative effect ofc is invariant to the allocation rati; can be set to 1 and the minimization of
the expected waiting time is equivalent to the miaation of p+2) D’ /(p+r+1). Note that under the null
hypothesisr = 1, the optimum allocation ratio that has shamepected waiting time is equivalent to the
optimum allocation ratio that minimized follow upses require®” since p+2)/(p+r+1) = 1. Except for
pathological settings noted earlier where the tneat groups do worse than the controls, under the
alternative hypothesis where r < 1, it is true {paf)/(p+r+1)>1 for everyp, meaning the expected waiting
time will always be longer than the expected waitime under null hypothesis.

Here, we will continue the previous example talfthe optimum allocation ratio which minimizes
the expected waiting time under a specific alteveatypothesis,g r, =r, 1) forr < 1, for the null
hypotheses tested at an overall type-1 error & @ith 80% power.

To identify the optimum allocation ratio to achigbe shortest expected waiting time to obtain the
given number of cased D for a given power, we capldly similar methodology as searching for the
optimum allocation ratio which minimized the numioéfollow up disease cases to achieve that polmer.
Figure 6.2.1 (labeled the expected waiting timeeurile alternativép: r; = 0.1, 1): p+2) D* /(p+1.1) as
y-axis andp as x-axis) it shows that there was one unique smoothed exdichom allocation ratio,
1.32313, (log(1.32313) = 0.28) which resulted ia $hortest expected follow up time needed to accrue
D’~1-32313= 18 cases among the allocation rafidbat are selected by its logarithm, |legrom -1.1 to 1.1
and increment by 0.01. But similarly as with thentner ofD required in 6.1, the expected waiting time to
obtain the needed cases could jump up or dowrnl@sa#ibn ratio is slightly different for requestyer
and a given size level. Hence, in practice, thénmoh allocation ratio might not guarantee the shsirt
expected waiting time since the optimum allocatiatio were impractical to achieve due to the random
dropout and might result in slightly less or molleaation ratio than the pre-determined optimum
allocation ratio. Hence, locally weighted regressimd smoothing spline are applied to search fr th
optimum allocation ratio that is considered to fthd optimum allocation ratio that shortest expecte

waiting time locally and averagely.
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The red / green colored curves are the smoothingesuthat are fitted by locally weighted
regression (LOWESS; f = 0.2 and f= 0.3) and the ldurve is fitted using a smoothing spline
(smooth.spline; df = 5). Unique smoothed optimulocation ratios to minimize expected subject-tiroe f
this setting through the three locally weightedresgion approaches (LOWESS) and smooth spline

(smooth.spline) roughly coincided.

! Expected waiting time for size = 0.05, 80¢ power under alternative hypothesis ar=0.1

38
I

f=02
f=03
@\ smooth spline df =5

36
I

34

Expected waiting time under alternative hypothestrue
32

0.5 1.0 20

allocation ratio
Figure 6.2.1 Expected waiting time fe= 0.05 with 80% power under alternative hypothésigp: r =
0.1, 1). Each point i9(D”) whereD” is the numbers of follow up cases required to iol#8% power for
the settingr = 0.05,r = 0.1, and the its correspondingThe smoothing curve is obtained through locally
weighted regression by function LOWESS in R sofevaith smoothing parameter f=0.2 (red) or 0.3

(green) or through smoothing spline by function sthaspline in software R with degrees of freedoms df
5 (blue).

6.3 Results: Optimum Allocation Ratio For Different Alternatives
6.3.1 Optimum Allocation Ratio that Minimizes the Follow Up Disease Cases for Different
Alternatives

In this section, we are going to discuss the optmnaliocation ratio that minimizing the required
follow up cases for 80% power and size lavel 0.025 or 0.05 foK = 2 through different smoothing

methods we mentioned in Section 6.1 under diffeattetnative settings. Noting that we are not disaugy
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the optimum allocation ratio based on “exact” methiwat allocation ratio is optimum among the altaoa

ratiosp which are selected by its logarithm scale, fpgffom -1.1 to 1.1 and increment by 0.01 due t th

tie and no unique solution.

Again, the allocation ratigs are selected through logarithmgmofrom -1.1 to 1.1 and incremented

by 0.01 and the smoothing methodologies are apgdlie@iable 6.3.1, the optimum allocation ratio to

minimized follow up disease cases required for &@er under size level= 0.05 or 0.025 and

alternative f: ry =r,1) wherer is from 0.1 to 0.5 is obtained through smoothirgthndologies. Most

approaches show that the smoothed optimum allotaaio to minimize the follow up cases is near 1.

a=0.025 a=0.05

r LOWESS Smooth r LOWESS Smooth
f=0.2 f=0.3 Spline f=0.2 F=0.3 Spline

0.5 0.8694 0.8187 1.1201 | 0.5 1.1275 1.1052 1.1158

0.4 0.9608 0.9418 1.0748 | 0.4 1.0202 1.0202 1.0538

0.3 1.0000 1.0000 1.0140 0.3 1.0408 0.9802 1.0083

0.2 1.0408 1.0618 0.9687 0.2 0.9418 0.8869 0.9653

0.1 1.1275 1.1275 0.9164 0.1 0.8694 0.8521 0.9040

Table 6.3.1 Smoothed optimum allocation ratio taimize number of cases required for 80% power under
size levelo = 0.05 and 0.025 as alternative is t: r, =r,1) (wherer = 0.1, 0.2, 0.3, 0.4, and 0.5) based on
LOWESS with parameter f = 0.2 or 0.3 and smootlsipiine with degrees of freedom df =5

Using a balanced design, i.e. same numbers of pegsigned to the control and to each new

treatment group gF = 1, has some advantages such as being easigpliorandomization and double-

blinded design trials. Since the optimum allocatiatio to minimize the follow up cases in each daseot

far from 1, even when there is a penalty for havimgye disease cases occur in the study, we miiht st

prefer to allocate equal number of subjects tactherol and each treatment group in order to mhke t

randomization and double-blind design easier tdyappd to prevent some biased issues that mightrocc

from unbalanced design.
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6.3.2 Optimum Allocation Ratio that Minimizing the Follow Up Subjects / Time for Different
Alternatives
In this section, we are going to determine theropth allocation ratio that would result in shortest
follow up time for a certain required number ofedise cases for 80% power and size leveD.025 or
0.05 for K = 2 using the exact or smoothing methdidsussed in Section 6.2 under different altevesti
Table 6.3.2 shows the optimum allocation ratio tiestilt in shortest the follow up time to achieve
the needed number of cases for 80% power, sizé devd.05 or 0.025 when the alternatiyery =r, 1) is
true where is from 0.1 to 0.5 under the following methodg‘ékact” - the optimum allocation ratio
among the allocation ratigsthat are selected by its logarithm scale, Apdgfom -1.1 to 1.1 and increment
by 0.01. (2) based on LOWESS with parameter f =00.2.3, and (3) based on smoothing spline with 5
degrees of freedom. In most case, the optimumatiloe ratio is located from 1.2 to 1.4. Hence,rfer0.1
to 0.5 at 80% power and overall sided one typerai0.025 or 0.05 foK=2, we would like to allocate 1.2
to 1.4 times more subjects to control group thashesew treatment group to shorten the expectedngait

time if we were convinced that the alternative hizeses were true.

a=0.025 a=0.05

Exact LOWESS Smooth | Exact LOWESS Smooth
r f=0.2 f=0.3 Spline f=0.2 f=0.3 Spline
0.5 1.4192 1.2712 1.2712 1.2886 1.2214 1.296D 1.323 1.2876
0.4 1.1388 1.3771 1.2461 1.2881 1.1853 1.2461 1.323 1.2606
0.3 1.4049 1.3499 1.2969 1.2553 1.2337 1.1508 2271 1.2418
0.2 1.3771 1.3499 1.3231 1.2418 1.3771 1.43338 2271 1.2378
0.1 1.2093 1.2969 1.3231 1.2344 1.3231 1.3499 1.323 1.2555

Table 6.3.2 Smoothed optimum allocation ratio tor&m expected waiting time f@” cases to accrue of
= 0.05 and 0.025 with power = 80% under @:r, = r,1) is true (where = 0.1, 0.2, 0.3, 0.4, and 0.5)
based on exact search, LOWESS with parameter2 0100.3, and smoothing spline with degrees of
freedomdf=5
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Chapter 7 CONCLUSIONS AND FUTURE WORK

Comparative Poisson trials can be long and cossipecially when there are several prophylactic
intervention candidates or several different doggg®ns. It might be ideal to find the best camadéd
treatment. In this study, first, we suggested usiagjstic D¢, D(;)) to construct the rejection region for
testing if there is any new treatment that is siopeo the control and the probability mass DE(D))
could be computed through products of stochastitiose Since there is no UMP for this multiple
comparison setting based on this statistic, we @dd€R which will reject from large numbers of dise
cases in the control and from small numbers ofadiseases in the minimum new treatment group. For
comparing two new treatments to one contkok(2), the rejection region satisfying LLQR is urdsd has
been proved. FdK > 2, we believe that this unbiased property remains but it is hard to extend and
prove mathematically. In addition to LLQR, we atliscussed several criteria to construct the rejacti
region. The metric criteria include “controls”, “nimum new treatment”, “difference”, and “cumulative
binomial”. We tried to find if the criteria couldatrol type | error under pathological null hypatlseeand
remain high power under pathological alternativpdifiesis. We eliminated the first two criteria sirthe
one using “controls” results in small power undathplogical alternative and the one using “minimum
new treatment” could not control type | error ungathological null. The rejection region using
“difference” and “cumulative binomial” metric is plied for constructing the rejection region for I
hypothesis.

Second, we purpose a procedure, FLSDA, to testhwingev treatment(s) is(are) superior to the
control for comparing two new treatments or twoptrglactic methods to a control. This post-hoc
procedure is to test each individual hypothesisedhe global hypothesis is rejected. The FLSDA
procedure has been shown to control overall tygredr forK = 2, however, this property is hard to extend
to or prove folK>2. The rejection region using “difference” metige global hypothesis is eliminated since
FLSDA-DBA does not have higher power in some sgticompared to Bonferroni adjustment. On the
other hand, FLSDA-CB has consistent higher powen the Bonferroni adjustment for the same total
numbers of disease cases to end the trial. ThexeftuSDA-CB is applied for comparative Poissonltria
design to compare 2 new treatments to one cofithan, we extended the design strategy to unequal

allocation case for FLSDA-CB procedure. We triedind the optimum allocation ratio that minimizduet
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total disease cases required to follow up or therapnm allocation ratio that could shorten the fellap
time.

In this type of design for comparative Poissorl,tsame properties could be shown and provedKfor
= 2, but these properties might be hard to exterat prove the properties f&r> 2 cases mathematically.
The difficulty results from the dependent multiplgpotheses and is caused by the setting of desitpatA
conditioning the total numbers of disease cased igroups.

For the future work, we would like to explore otlagaproach design; we call Design C (Appendix D),
which is to end the trial when a certain numberdis¢ase cases occur in the control group. Thigudes
would be an alternative and might work especialgli fior extended casds > 2. Also, the distribution that
the numbers of disease cases in a new treatmeu gothe trial end based on design C follows a
Negative Binomial distribution and the numbers iskdse cases in each new treatment group is
independent as conditional on the numbers of déseeases in the control gratfence, there might be a
better theoretical approach for this type problenki=2 and easier to extend the theorie&te 2 new
treatments. In addition, the expected waiting ttmeecruit/follow up a certain numbers of diseaases in
control group only depends on the incidence rateéncontrol group (which is better known than the
incidence in treatment groups that depend on tremttefficacy) based on design C. The expected npiti

time for design C could thus be better predeterchine
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Appendix A UNBIASED PROPERTY FOR REJECTION REGION SATISFYING LLQR FOR K=2

In this appendix, we prove that if a rejection cegsatisfies LLQR, the power will be larger than
the size (unbiased property) for comparing twottreats to one controKE2). We will (i) first show that
under the alternative of (1j, rp) asry, r,< 1 with at least one strict inequality hold, théiased property
holds for the rejection region using number in‘timénimum treatment group” only, and then (ii) wellwi
extend the unbiased property to any rejection regmlong as it satisfies LLQR. Hence, any LLQR
rejection region, including rejection regions usbagh the number of controls and the minimum tresatim
we proposed in chapter 3 and 4, satisfy the unbipseperty.
A.1 Unbiased Properties for the Rejection Region Uisg “Minimal Treatment Only”

The probability to reject using the rejection reglmsed on “minimum treatment only” under the

alternative setting (;,r;) is denoted aB,, , (D@ <dw)| D) andP.1 1 Dgy< diyy| D) is the size under

the null hypothesis (1:1,1). We will first show thiaree propositions: (A.1-1), (A.1-2), and (A.1{3)low
hold, and then combine these properties to proae th

R, 1) ( D= dy| D) = P s Dy< diyy| D) for all possibled).

Proposition A.1-1: The conditional distribution of dy,|D givenD; + D, =D+ is stochastically smaller

under the setting (1ry,r,) than (1:1,1), i.e.F{lzrl,,z) (D= dw)| Dr, D) = P11y Dwy< digy | D, D) with

strictly inequality for some d,

Pf:

By using the incomplete beta function, RgX = (n- k)(:]'[:_pt”“(l— t)“dt as X~Binf,p). SinceD; |
D, + D, = D+ is Binomially distributed with paramete®, p;) wherep; =r,/(r,+r,) for the setting (I3,r,)
andp, = ¥ for setting (1:1,1) and, | D, + D,= Dt is Binomially distributed with paramete® p,)
wherep,=r,/(ry+r,) for the setting (1ry, rp) andp, = ¥ for setting (1:1,1).
Fork> D+/2,

PO <k| Dr) =1.
Fork< Dy /2,

POw=<Kkl D) =P0D1 <K Dy) + PO2<k|Dy)
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D; ) 1p,p ka K Dr ) (e 0,k k
=(D, —k)[ 3 jjo P (- t)* dt+ (D, —k)( 3 ]jo O k11— t) dt
= c-(j:'”tDT**l(l—t)kdt+j0"tDr*k*1(1—t)kdt) =C+h(p),
where CHD; —k)(?;] and h(p):j:’”tm-k'l(l—t)kdt+j0”tDT-k-1(1—t)kdt.
Here, h(0)=h(1), ifp)=0 asp=1/2 and h(0)=h(1)>h(1/2).(will show as follows)

The maximums (and minimums) for this function arerfd by setting the first derivative to zero, i.e.

dP(Dy < kI D) _ ., dh(p)
d

g =0 which happens whea(1- p)> " p“+ p **(1- p)* = 0 and this only
p

happens wherp® ™ = (1- p)®> " which for 0< p< 1 for all possibléD-2k-1 Hencep=1-p, i.e.
p=1/2 is the solution for the first derivative equ#d 0O and is the minimum if the boundarips@ andp=1)

are both greater than this extreme valug=dt2.

For p=0,
— (YD k11 _ 1k 0D =k=17q _+1k 45 — [L4Dr—k-17q _ 41k
h(O)—jO t Lty dt+ [t -t dt_jot @-t) dt
_ (Y2.D-k-17q _ 41k L Dr—k-1p9 _+\k
= jo o (1-1) dt+jl/2t 1-t) dt

> 2[ 7 @-t) dt =h(1/2).
The last inequality of above holds because

1/2

Lo Dr—k-1/q _ s \kdp — e\Dr—k-1.k Y2 bok-1pq _4\k
[ a-tkd= [ Ta-n>*de [ - dt

_ $\Dr—k-14k _ Dy -k-1 k _ Dy -2k-1
Since(l_Bl—tk = (u] (Lj = (uj >1 for k<D¢/2 and t<1/2.
to T (1-1) t 1-t t

Forp=1,

h(1) = [t A=ty dt+ [t @ty dt= [ 1> @-t)“dt =h(0)=h(1/2)
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Therefore, h(1)=h(0xh(1/2).

Hence there is a global minimumpatl/2 no matter what combination Bf andk, i.e.

R ) ( Day< K Dr) = P11y (Dy< k [Dr) under setting for any giveDdy

In order to show thdd;)| Dy is stochastically smaller under (i1t,) than the setting under (1:1,1), we need
to show the strict inequalitys,, , ,( D)< k| Dr) = Pq.1,1) (D)< k [Dr) for somek:

Fork=0 and letp=ry/(1+ry),

P(D(1)=0| Dy) under setting (1i,ry)

D;
=p” +(1-p)™ >2[%) = P(D(1y=0| D) under setting (1:1,1)
The inequality holds ap® +(1- p)° has global minimum gi=1/2 sincediln(pDT +(1-p)™ ) =0 as
p

d? - ;
p=1/2 andd—lozln(pDT +(1-p)> ):—DT (1-p) ? - . p 2 <0.

PO =0 |D+) under setting (1i,r,) is strictly larger than BY;)=0| Dr) under setting (1:1,1).

As the result, the distribution @f;)| D+ under (1r1,r;) is stochastically smaller than the distributidrDg,

| Dy under (1:1,1).

Proposition A.1-2: The conditional distribution of D [D+,D is stochastically smaller for smalleD+,
ie.
P(D@< du,|Dr =dr, D) > P(D(3)< diyy | Dt =dr +1, D)
with strictly inequality for some d
Pf:
First, we will show that the binomialf) will stochastically smaller than binomigifp) if n<m. And then

extended to the cases of distributiorDef; | Dr.
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For T>1, let X =D, | Dy =T and Y =D, | D; =T+1

Let X and Y be binomial distributed, with X ~ Bin@) and Y ~ Bin(T+1p).

We want to show that X is stochastically smallemtfy. To achieve this, we only need to show tbat f
anyk, Prob(¥<k) < Prob(>Xk) and that for somk Prob(Y<k) < Prob(>¢k). Since
P(Y<K)=pP(X<k-1)+(1-p)P(X<k)=P (X<k)-p{ P(X<k)- P(X<k-1)}= P(X<k)-pP(X=K)

< P(X<k) with “=" hold only asp=0.

Hence, X (i.eD | D1 =T ) is stochastically smaller than Y (i[®,| Dy =T+1 ), that is,
ProbO; <k |D; =T+1 )< ProbD;<k |Dr =T ) for anyk (*1)
Similarly,

Prob0,<k | D =T+1 )< ProbO,<k | D+ =T ) for anyk (*2)

Now we will extend above result to show tlgfy| D+ = T (minimum of the binomial distribution) is
stochastically smaller thady, | D+ = T+1. We only need to show that for any k,

ProbQg)<k|Dr=T+1 )< ProbQy<k|Dr=T) *)

If k>T/2, the right side of (*) is 1 since at least afiehe groups must have fewer tharso (*) will hold.
If k< T/2,

ProbQu)<k|Dy=T+1) = PD;<k| D=T+1) + PP, < k | D;=T+1) since only one group will ek with
the other being D - k

ProbO;<k|[Dr=T) =P0:<k|Dr=T) + PO,<k|D=T)

By (*1) and (*2), it is clear that (*) will hold fiok < T/2.

Hence, the distribution dd;)| Dt is stochastically smaller for sm&i since for any > 0 for the smaller

Dr.
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Proposition A.1-3: The distribution of Dy | D is stochastically smaller under the setting (1i,r») than
(1:1,1).

Pf:

SinceD+| D ~ Bin@,p) asp=(r+ry)/(1+r+r,) for setting (1r4,r,)

andD+| D ~ Bin 0,2/3) for setting (1:1,1).

Forry, r, <1 with at least one strict inequality holds,;H )/ (1+r+r5)<2/3.

We now show that Bi,p) is stochastically smaller than Bin@/3) for p<2/3.

A D) rp ok ok .
For anyk, Prob(Dr<k| D) = (D -k) K .[ t (@-t)*dt through incomplete Beta

0

And forp < 2/3,

Prob(Dt <k | D, p) - Prob(Dr<k | D, 2/3)

D) tp .y v D123 5y K
=(D—k)(k]j P L(1-1) dt-(D—k)[k]j P L (1-t)dt

0 0

D _
= (D —k)[ k] jll P P (1-t) dt > 0 sincet®™ ™ (1-t)* >0 on (1/3, 1)

-2/3

Since (1+r,)/(1+r+r,) < 2/3, ProbO+ <k | D ) under setting (1ry,r,) is larger than Protid <k |D )

under setting (1:1,1). Hen&®; | D under (1r4, ry) is stochastically smaller than (1:1,1).

Proposition A.1-4: To prove R, , (D)< dg)| D) = Pa.11y( Dy < diy) [D) for all possibled).

Pf:
Combine Proposition A.1-1, A.1-2 and A.1-3.

Let R, ,,) (Dw|D) denoteP(D(;)| D ) under the setting (t;r2) andP.1.1( Day| D) denote A, | D)

under the setting (1:1,1).

D
I:%lzrl,rz) (D(l)S k | D) = Z I:zlzrl,rz)(D(l) < kl D! Df )F?lrlrz)(q | D)
Dr =0

D
> " Puy(Dgy<k|D,D;)P, . (D | D) By Proposition A.1-1
Dy =0
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D
2 Z F11:1,1)(D(1) <k|D,D; )P(1:1,1)(Dr | D)
Dy =0
=Pa1,1( Dy<k|D)

D
The last inequality holds sinci Riiy(Dyys k| D, D )R, ., (D | D) could be seem as
D; =0

E(Ry.1(Dy = k| D, D)) givenDry is distributed as it would be underrlr;) and the

Pui1(Dg < K| D, Dy ) is a decreasing function @y by Proposition A.1-2.Also sinceDr under setting
(:ry,ro) is stochastically smaller than setting (1:1,1)Psgposition A.1-3 and the proposition for

stochastically smaller: If X is stochastically steathan Y, then for every non-decreasing functipn

E(g(X))= E(9(Y)).
DTZ:‘,O P(1:1,1)(D(1) <k|D, D ) P(lrl I )( D | D)

= E(Ry.1(Dg = k| D, D)) givenD+|D is distributed as it would be underrr,)

> E(Py1,(Dyy < k| D, D)) givenD+|D is distributed as it would be under (1:1,1) by the
proposition.
A.2 Unbiased Properties for Any Rejection Regionsa&isfying LLQR For K =2

Hence, once the rejection region satisfying LLQREe$ined, for each giveDc, the rejection
region satisfying LLQR is equivalent to rejecDif;, < t(Dc) wheret(Dc) is a nonnegative integer defined
once the rejection region satisfying LLQR is dedidelso, by LLQRt(D¢) is non-decreasing witlc, i.e.
t(dc+1) > t(dc). Now, we use these two properties to prove thati QR rejection region is unbiased. One
thing to be notified is that, for a givéy andD, D+ =D —Dc is also determined. Hence, we have the same
information for given D¢ andD} or given {D; andD}.

Proposition A.2-1: For a givenDc,

le:rlyrz)(reject through LLQR | D¢, D) > P.1 yy(reject through LLQR| Dg, D)
Pf:
By Proposition A.1-1, we have:

le:rlvrz)(reject through LLQR P¢, D) = P(l:rl’rz)( Day<t(Dc) | D¢, D)



> Pa11y( D@y<t(Dc) | De, D) = Pu,11freject through LLQR ¢, D)
Proposition A.2-2: P(reject through LLQR | Dc =dc+1, D) > P(reject through LLQR | D¢ = d¢, D)
Pf:
The inequality holds since by Proposition A.1-2 #ad+1)> t(dc) (from LLQR),

P(reject through LLQR Dc =d:+1, D=d)

=P(Dwy<t(dc+1)Dc=dc+1, D =d)

=P(D)< t(dc+1)Dr=d - dc-1, D = d)

>P(Dy<t(dct+1) [Dr=d-d:;, D=d) by Proposition A.1-2

=P(Dy)<t(dct1l) [IDc=dc, D=d)

>P(Dyy< t(d) |Dec = dc, D=d) byt(de+1)> t(dc) LLQR

= P(reject through LLQR D¢ =dc, D = d).

Proposition A.2-3: The distribution of D¢ | D is stochastically larger under the setting (I3, r,) than
(1,1,2).
Pf:

Since Proposition A.1-3 arfd: = D-D+, Proposition A.2-3is the same statementRposition A.1-3

Proposition A.2-4: Conditional onD, P, ., (Reject using LLQR)2> P11 (Reject using LLQR)

Pf:

Combine Proposition A.2-1, A.2-2, and A.2-3,

D
P, (Reject using LLQRD) :dz P..,,) (Reject using LLQRD, =d. D B, ., & P
c =0

D
> 3 Pyg(Rejectusing LLQRD, =d. D R, ., & P by Proposition A.2-1
=0
D
2 Z P(1:1,1)(RejeCt using LLQF{pc = dc D %;1,1) Dc p *)
=0

= Pu.1,1(Reject using LLQHRD)

75



76

The last inequality (*) holds since @(reject through LLQR D¢ = d¢, D) is increasing o by
Proposition A.2-2, (ii) by Proposition A.2-3 D¢ | D is stochastically larger under the setting ;) than
(1:1,1), and (iii) the property for stochasticatiyaller: If X is stochastically smaller than Y, thier every

non-decreasing function g, E(9(X)E(g(Y)). Therefore,

D
Z |:)(1:1,1)(RejeCt using LLQRD, =d. D %::l,rz) (PN Y
de=0

= E( Puy(Reject using LLQRP. =d. D )) given distribution oD¢ | D under (1Iry,r,)

> E(P(ﬂ'l)(Reject using LLQRD. = d. P )) given distribution oD¢ | D under (1:1,1)

D
=Y Puy(Reject using LLQRD, =d. D By 0. P
de=0

A.3 Unbiased Properties for Rejection Region Base@n LLQR for Unequally Allocation For K=2

The extension of unbiased properties to unequétigation ratio, we would like to show that
sz:rllrz) (Dwy< dw)ID) > P(,.1,1( Dy < diy) ID) for all possibled,. As proving Proposition A.1-1, A.2-1,
A.1-2, and A.2-2, the proof only use the comparigbthe probability between new treatment groups an
which does not related to the incident rate indtwetrol group. And the Proposition A.1-3 and A.2-3

remain correct for unequally allocation. The probtinbiased property for unequal allocation¥e12 is

similar to the proposition A.1-4 or A.2-4.
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Appendix B: Proof that the Cumulative Binomial Metric under Equal Allocation is LLQR

Section 3.4.4 developed the cumulative binomiakiméd construct the rejection region for the
global hypothesis with a smaller cumulative bindrnaelue being more evidence to rejétyt We now
show that the cumulative binomial rejection regionH, is LLQR for equal allocation. Showing the
LLQR property is equivalent to show the followir(d) underH, for a givenD,, the cumulative binomial
metric value will be smaller for a largBg; and (2) undeH, for a givenDc, the cumulative binomial
metric value will be smaller for a smallbyy.

Now, we only consider equal allocation and let

CB(Dc=dc, Dy = dy) = ProbD < dgy [ De + Dy = det diy)
be the cumulative binomial value applied to any €Blc = dc, D3y = d(3)) givenDy) | Dc + D¢y is Binomial
(dct dpgy, 1/2).
Proposition B.1: The cumulative binomial metric value will be smalle for larger D¢ given the same
Dy with induction, i.e.
CB(Dc= dc, Dy = dp)) 2 CB(Dc = dc + 1,D(y) = dy)).
Pf. Letting X corresponding tB, | Dc + D;y=n and Y corresponding ) | D¢ + D(3y= n+1 forn =
dct+dqy. The proposition B-1 is equivalent to show thatrfe= dc+dy),
Prob(%t) > Prob(Y<t) where X ~ Bin,1/2) and Y ~ Binf+1,1/2)
and the proof is similar to the proof that has bgl®mwn in Proposition A.1-2 in Appendix A.
Proposition B.2: The cumulative binomial metric valie will be smaller for smallerD ;) given the same
D¢ with induction, i.e.
CB(Dc=dc, D) = dq) 2 CB(Dc = dc, Dy = dy-1).

Pf. Letting X corresponding tB, | Dc + D)= n and Z corresponding © ;) | D¢ + D(3y=n-1 forn =
dc+d(). The proposition B-2 is equivalent to show thabasc + dy),

Prob(%t) > Prob(4t-1) where X ~ Binf, 1/2) and Z ~ Bing-1, 1/2).

Prob(x<t) = (n) [?] [[Psa- 9 ds

_ nfn=1\ez ., = .
= (n-t) ?(t_lljo S (1- 97 (1~ 9 d



nfn-1\1cv2 __ -
> (n-t) T(t—l]i-[o s (-9 ds

n n-1) w2 n-t-1 t-1
=—(n-t S 1- 9" ds
¢ )[t_l] J, 77a-9

-1
> (n-t) (?_1] j:lzs”"'l (1- 9" ds

= Prob(&t-1)
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inequality holds since (1:8)/2 for <s<1/2

inequality holds for £ n/2

By Proposition B.1 and B.2, the cumulative bindmigtric has smaller value &% increases or

D¢, decreases and will thus reject the null frdda € i, D)) or D¢, Dy—j ) for any possible integeror j

first before rejecting@c, D). The rejection region based on cumulative binbmietric thus satisfies

LLQR for equal allocation.
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Appendix C: Power Computations under the alternative (1r,1)
ForK=2 and under the alternative setting (1) forr<1, power is defined as the probability to reject
the right new treatment, the new treatment 1, arabtained by summing over the probabilities oDajl
D, that are in the rejection region [NOTE the chahgees fromD;, to D, as we specifically want to be
sure that treatment 1 which is better than therobi# rejected as opposed to potentially rejectiegtment
2 which is not better than the control.]

P(Reject new treatmentl)| = P(Dc, D) is in the rejection region)

= Z P(D. =d.,D =d | D)x { (D, = d., D = d) is in the rejection regionp (Eq. C.1)
all possible
D¢ =dc,Dy=d

Wherel{ (D¢ = dc, D; = d,) is in the rejection region}} is an indicator function that equals 1 if obsatve

(Dc=dc, D; =d;) rejects the new treatment 1 and equals to Owibe.

0 1 2 3 4 5 6 7 8 9 10}

0.0001 | 0.0005| 0.0012] 0.0016 0.0044 0.00p8  0.0003 .006a | <0.0001] <0.000]1 <0.004L

0.0010 | 0.0047| 0.0094 | 0.0110 | 0.0083| 0.0041] 0.0014  0.0008 <0.0001 <0.0po1

0.0047 | 0.0189| 0.0330] 0.0330 0.020 0.0083  0.00210008. | <0.0001

0.0126 | 0.0440| 0.0661 0.0551 0.027 0.0083  0.00140000.

0.0264 | 0.0661| 0.0661 0.033 0.008§ 0.00po9

6
5
0.0220 0.0661 0.0826 0.0551 0.0206 0.0041 0.0qo3
3
n

0.0220 | 0.0440| 0.0330, 0.011 0.00

0.0126 | 0.0189| 0.0094 0.001

0.0047 | 0.0047| 0.001

0.0010 | 0.0005

Slo|o|~Nlo|a|sw vk of

0.0001

lllustration C-1 Probabilities of all possible coimations of D¢, D;) givenD = 10 under the setting (i
=0.5,1)

For the first part of the (Eq. C.1), tRDc = dc, D; = d|D) for all possible combinations oD,
D,}is obtained through the distribution dbc, D; and D, given total diseases cas&s which is
multinomial©, 1/(24), r/(2+r), 1/(24)). Here, we fill in the probabilities for each kef the all possible
combinations of D¢, D.}. Again, we illustrate this foD=10 cases and now under the alternativer{ %
0.5, 1), the lllustration C-1 contains all the pbkscombinations ofjc = dc, D;= d;); under the constraint

dc + d; < D. The probabilities that) = dc, D= dy, D,, =D- (dct dy) ) from the Multinomial distribution

(D, 1/(2+0.5), 0.5/(2+0.5), 1/(2+0.5)) are filled anthe respective Table cells. For example theevalu

0.0094 (bolded probability) in the table below &atilated by
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10 1 2 7
o, 38512

For the second part of (Eq. C.1{{,Dc = dc, D;=d; ) is in the rejection regiord }, we will now
construct the rejection region for the combinatioh§Dc, D1} using different approaches and apply them
to this example. The following subsections disdus& to construct the rejection region defined By {

D4} through the two methods (described in ChapteF45DA and Bonferroni adjustments, using
combinations of ¢, D,) for K=2. After rejection region is determined, the poteereject new treatment 1
under (1r,=r, 1) for each approach is then the summation avéneamultinomial probabilities of B,

D4} which fall in the rejection region.

C.1 Rejection Region for FLSDA for Given Total Disase Case®

In FLSDA approach (Section 4.1), in order to codelthat new treatment 1 is superior to the
control, we have to first reject the global hypaildest that at least one of the two new treatsnisritetter
than the control and if this hypothesis is rejedtezh reject an individual test for new treatmeibiing
superior to the control in step 2. This is equinat® rejecting Dc = dc, D1 =d,) if (1) the global

hypothesis is rejected at the overaftom (D¢ =dc, Dy = d1)) and also (2) the conditional binomial p-

d + de +d;
value OfDlz dllDC +D= dc"‘dl <a,i.e. PD]_S dlch+ Dlzdc +dl) = Z( c ¢ dlj[%] <a, where
tsdy

D;|Dc+D1= dc + d; is binomial distributed with parameteis+ d;,1/2 under null hypothesis. Here, the
rejection of the global hypothesis is a prereqeibiit does not guarantee that new treatment bwiill

found superior to the control. For example if th@imum value observed was from new treatment 2 then
the new treatment 1 will not be rejected as beuqgsor to the control if the conditional p-value D, <

d; | dc+dy ) is greater than even though the global hypothesis is rejected.

Now the details for implementation to constructsthejection region: STEP 1 - Among the
combinations of Pc = d¢, D; = d,), first identify the values ofdg, d;) which fall in the global rejection
region (using the fact thatl{, d,)) is determined bydc, d;) throughd, = D —dc —d;) and then STEP 2 -
find the values ofd, d,) in the global rejection region from STEP 1 forigéhthe conditional Binomial p-

value is less thaa, i.e.P(D; < d; |d; + dc ) < a under the individual null hypothesis of equality.
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Note that the rejection region for global hypotsesas expressed in terms Bi( D)) in section
3.4, denoted aR™ . Here, we display the same rejection region imgeof the combination ofX, D),
and denote this 2-dimensional tableRas Now R: can be determined froR” since the observe®d¢ =
dc, D= dy) will reject the global hypothesis in two situatso
(i) Dy is the minimum of @; andD,) and D¢ = d¢, D)= dy) is inRY. or

(if) D= d —dc - Dy is the minimum of®; andD,) and D¢ = dc, Dyy= d —dc —dy) is inRP.

Dc | O 1 2 3 4 5

Dq)

0

1

2

3

4

5

6 Q. | X
7 [\ |
8 [\ ]
9 [\
10 i

lllustration C-2 Rejection region usin@f D), R” (shaded) foK=2,D=10 and size. =0.05 for the

global hypothesis, the ceD¢=6, D=0} vihich used in example is marked in red anctéi(Dc=6,
Dw=1) is marked in blue.

o
o
[
()
[
IN
ol
o
~
o)
©

10

OO |NO|O[A~|W(N|F|(O|g
\\\

[E=Y
o

lllustration C-3 Rejection region usinB4, D;), R: (shaded) fok=2, D=10, and size. = 0.05 for the
global hypothesis, correspondingRd in lllustration C-2. For example, the celB(= 6,D; = 0) and D¢
=6, D; = 4) marked in red are rejectedRhsince D=6, D;y=0) is rejected i®” and the cellsic = 6,D;
= 1) or Oc = 6,D; = 3) marked in blue is not rejectedRh as Pc=6, D;y=1) is not rejected iR”
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WhenK=2,D=10 and siz&=0.05, theR® "is shown in lllustration C-2 (shaded area) andh tive
correspondingR. (shaded in lllustration C-3) is determined fromfor example, since thB§ = 6,
Dy=0) is in the shaded rejection regionRjf, the corresponding observed combinatidds  6,D;= 0)
or (D¢ = 6,D;= 4, which mean®, = 0) are in the shaded rejection regiomRpf(each havindy= 0). For
other cells which do not reject the global hypothiémmR, such asc = 6, Dy=1), the corresponding
combination D¢ = 6,D;=1) or O¢ = 6,D,=3 andD,=1), is not in the rejection region &t .

But now that we have describB, for the STEP 2 of FLSDA approach, the rejectdtineed to

be only that part oR. that also satisfies the individual conditionaldaimial p-value,

d. + dc+d;
et
t<d

Hence, the rejection region for FLSDA will be thébset ofR} WhereZ[dC : dlj(%]dcml are less than or
t<d,
equals tau.

Continued with previous example fiir= 2,D = 10, andx = 0.05, in lllustration C-4, the p-values
of D;< d; | D¢+ Dy= dc+d; are filled in only for the cells of)¢ = d¢, D;=d;) falling inR. . For example,
the number 0.035 in tHe: = 7, D, = 1 cell in the table below is the conditional pabbity thatD,;< 7
givend;+dc:=8 under the null hypothesis of equality for colstrand new treatment 1. Since this:i8.05,
it falls into the final rejection region. Howevdor D=4, D, = 0 cell the conditional probability th& < 0

|di+dc = 4 under equality for controls and new treatnieist 0.062 > 0.05. Thus, even thowg+ 4,d; =
0 falls inR} for the minimum to be less than the control, thgividual test of new treatment 1 against the

control is not rejected sidx= 4,d, = 0 does not fall in the FLSDA rejection regioifhe bolded region is
the rejection region for FLSDA which is the ovedaejected cells for global hypothesis with thegiues

<0.05.

"RY s the rejection region for global hypothesis lobse “conditional binomial” we discussed in

Section 4.4
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Dc 0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4 0.062 0.82
5 0.031 0.623
6 0.016 0.377
7 0.008| 0.035] 0.090| 0.172
8 0.004| 0.020] 0.055
9 0.002] 0.011
10 0.001

lllustration C-4 Conditional p-values for the in@lual hypothesis of Treatment 1 versus the control
conditioning ondc +dy; filled in on the global rejection regioR" that rejects in the global hypothesis for

the minimum treatment being less than the contoDE10,K=2, ande=0.05. The bolded enclosed region
covers the conditional p-valugsy

C.2 Rejection Region for Bonferroni Adjustment forGiven Total Disease Caseld
For Bonferroni adjustment (Section 4.2), the refjegion to reject new treatment 1 for edxh+

D,is:

d. + de +d;
D, < max{d; : Z[ Ct dl](%) < a/K}.
t<d,

That is equivalent to the rejection region bf(D;) where the conditional binomial p-values
d + de+d
2 O
i\t 2

As in the previous example, f&=2, D=10 andx=0.05, forDc + D;=10,

10\( 1 10
P(D; =0 |Dc+ D;=10) = ollz) = 0.001 < 0.025,

10\( 1 10
P(D; <1 |Dc+ D;=10) = Z[ ](Ej =0.011 < 0.025, and

t<1
10\/ 1 10
P(D; <2 |Dc+ Dy=10) = ) . || 5| =0.055>0.025.
t<2

Hence, foiDc + D;=10, the rejected cells aré&f¢=10, D;=0), (D=9, D;=1)}. As we collect all rejected

d + dc+d;
cells for differentDc + D, = dc +d; that Z( ¢ ¢ dl](%) < 0.025, it is the rejection region for

t<d,
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Bonferroni adjustment. Those conditional p-valuesld be found in lllustration C-5 which is the tabl

d + de +d
filled in Z( ct dl](%) for each possible combination &, D,). In lllustration C-5, we also

t<d,
identify (D¢, D,) that the p-values that is less than or equadg2e= 0.025 which is equivalent to rejection

region created by Bonferroni adjustment. The boldggibn the rejection region by Bonferroni adjustine

with 0=0.05.
¢ 0 1 2 3 4 5 6 8 9 10
0 1 1 1 1 1 1 1 1 1 1 1
1 0.500| 0.750 0.87% 0.938 0.969 0.984 0.992 0/99®98) 0.999
2 0.250| 0.500 0.688 0.812 0.891 0.938 0.965 0./98M8
3 0.125| 0.3127 0.500 0.656 0.7Y3 0.855 0.910 0J945
4 0.062| 0.187 0.344 0.500 0.637 0.746 0.$28
5 0.031] 0.109 0.227Y 0.363 0.500 0.623
6 0.016§ 0.063| 0.145] 0.254 0.37
7 0.008§ 0.035| 0.090; 0.17
8 0.004| 0.02Q4 0.055
9 0.002] 0.011
10 0.001

lllustration C-5 Conditional p-values to reject N@weatment 1being equal to the control conditiorong
dc +d, for D=10,K=2. The bolded region covers all conditional p-estd 0.025 and is the rejection region
based on Bonferroni adjustment for the dasé&0,K=2, anda=0.05.

C.3 Power Computation after the Rejection Region I®etermined

Once a specifiD, size levek, and the rejection region are determined, the pdevethe
alternative (Ir; =r,1) is the probability that the combinatiom¥( D) fall in the rejection region under
alternative setting. And, for K=2, the probabilif/(Dc = dc, D;=d;) givenD for any possible combination

is

q 1 d-d r d
P(Dc=dc,D1=dl|D=d)=[d d d—dc-qj(%r] (2”)'

Hence, the power is obtained by summing over albabilities thatDc, D,) is in the determined rejection
region under (1r; =r,1).
For example whe®=10,a = 0.05 and = 0.01, the rejection region is given by FLSDA whaas

lllustration C-4 in C.1. Under the alternativer(¥0.01,1), the multinomial probabilities for rejeamii
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region cells Dc = dc, D= d,) are filled in the following table(lllustration 6}. The overall power from

summing over these filled probabilities in the ofiien region is about 59.7%.

c 0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5 0.2341

6 0.1951

7 0.1115| 0.0034
8 0.0418| 0.0009
9 0.0093| 0.0001
10 0.0009

lllustration C-6 Multinomial probability of combitians of D¢, D,) that are in the given rejection region
for givenD=10 under the setting (t;= 0.01,1).
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Appendix D Introduction to Design C

Gail's Design A ended the trial at a certain nurstafrfollow up disease cases and Design B
ended the trial after a certain number of subjewttHere, we propose a third design that endevollp
when certain numbers of disease cases accrued ootiirol groupDc. Design C is similar to the
following game strategy with 3 people hitting bealébat the same rate so that the number of foukbah
person has hit at a given time is a Poisson prosgkshe parameter based on how skillful the periso
One person (C) is already a member of our bastdzth. We want to see if either of the two new peass
(T, or Ty) hits foul balls with lower intensity than C. Wentinue to compete until person C hits 10 foul
balls. The final results will be examining the nwardbof balls hit by the lowest persondr T, given
stoppage when C hits 10 to see if there is stegilséividence that the best of these two peopldditsr
foul balls that C.

For Design C, the numbers of disease cases (ilelfalls for the previous example) in each new
treatmentD,, has a Negative Binomial distribution. Ligtandi, be the incidence rate per-subject time in
the control group and in theh new treatment group, respectively ketl,2,... K. For Design C, the
numbers of disease cases in the control grbdpis predetermined, but the trial length for thésidin is
unknown and depends @g. The waiting time for one disease case to occtiércontrol group could be
seen as exponential with ratécland each subsequential disease case in the cgrartgd occurs randomly
and independent of previous cases. Thereforeetigth of time folD disease cases to occli;, is the
sum of independent exponentialgl/fandom variables which follows a Gamma distribatwith o = Dc,
andp = 1fc. Once the follow up time\c, is known, the numbers of disease cases occhekth new
treatment grou®, during thisN¢ period time follows a Poisson distribution withigsmn raté,Nc and no
longer dependent ddc. (Note thaDy only depends on the length of time, hebBgés independent dd¢
onceNcis determined; i.e?( Dy = di| Dc=dc, Nc=t ) = P( D= d¢| Nc=1t) ). Hence, the numbers of disease
cases in each new treatment group for design 6vislla Negative Multinomial distribution:

Nc | Dc ~ Gammabc, 1fc); Dy | Nc ~ Poissori¢Nc) fork=1,2,...K
P(D,=d,...0 =d D= d)=[ P(Q=d,..0=d,N= t|Q= d)d

=[P(D,=d,,...0 =d |D. = d.,N.= )P(N.= t| .= d.)d
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=[P(D,=d,...0 =d IN.= )P(N.= t| Q.= d.)d
=”jP(Dk=dk|NC=t)P(NC= t| D.= d.)di

e (% o

! I'(d)

c’l ict 4t = _1 - kg’ dc+Z::1dk_l _(ic+2::1ik)t
e dt F(dC)D |t e dt

1 sy a0 i

= I'(d ) |C+Z Ikdc+2k1dk H d [

K de d
o[ der 2t ( ] H( j ~NMN(dC,. S T j
de-1 d .. d JleZi) kU2 e et e et

Then, we could design a study testing rule baseldemyative Multinomial distribution. (Note that the

marginal distribution oDy for design C follows by a Negative Binomial forca).

AgainHpisiy =i, = ... =ic with the alternative being that at least one efith< ic. We would
find the value t for which P{miri{;, D,, ..., Dx) < t}:Ho <o and reject Hiff D;) < t. While substantial
new work is needed to evaluate the propertiesisfdsign, because th&, +D¢ is no longer constrained
to equalD, theDy are now independent of each other which may fatéliderivation of statistical

properties.
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Appendix E List of R Functions Implemented In ThisThesis
Following is the list of some functions that wolld useful for this comparative Poisson design
study. For each function, we have the function néotiewed by parenthesis with some arguments
included. Here are some input arguments that shardw functions:
k — total number of new treatments + 1 controhia tomparative Poisson trial
total.events — integeBD(in our notation) - the numbers of events occuartd the Poisson trial
rho — the allocation ratio of the portion of topalpulation in the control group to the portion in
each new treatment group i our notation)
alpha — size level of the type | error
power — power level
prob — vector of multinomial probabilities; firsdmponent is the incidents rate of control group
and the rests are the rate from new treatment grqupb1: multinomial probabilities under
null hypothesis; prob2: multinomial probabilitiesder alternative hypothesis
List of functions with descriptions:
pmf.control.txmin(k, total.events, prob)
Description: Compute the probabilities of each possible contitina Oc¢ D).
diff.crit(k, total.events, rho=1), Binom.crit(k, total.events, rho = 1), powratio.crit(k, total .events, probl,
prob2)
Description: Rejection region criteria for testing global hylpesis that discussed in section 3.4.
Rej.Reg.Crit(k, total .events, prob.null.matrix, crit, alpha = 0.025)
Description:Rejection region for global hypothesis that is deiaed through criteria discussed in Section
3.4. Here the argumeptob.null.matrixis the probability matrix forfic , D)) under null hypothesis.
Rej.Reg.Compar (k, total.events, probl, prob2, rho = 1, alpha = 0.025)
Description:Construct all rejection regions discussed in Sec3id with corresponding size level and
power.
FLSDA_Rej(k=3, alpha=0.05, total.events=10, rho=1, r=0.1)
Description:Compute the size, power for FLSDA_CB and the t&geaegion constructed by FLSDA_CB

which is discussed in Section 4.1 for comparin@® treatment to 1 control under alternative,(1).
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Sample Size FLSDA(from=10,power=.80,r=0.1,alpha=0.05,rho=1)
Description:minimum disease cases required to follow up foerain settings with at least 80% power

and size level 0.05 as alternativegis ().
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