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ABSTRACT OF THE DISSERTATION

Hypergraph Based Visual Categorization and

Segmentation

by Yuchi Huang

Dissertation Director: Professor Dimitris N. Metaxas

This dissertation explores original techniques for the construction of hypergraph models for

computer vision applications. A hypergraph is a generalization of a pairwise simple graph,

where an edge can connect any number of vertices. The expressive power of the hypergraph

models places a special emphasis on the relationship among three or more objects, which has

made hypergraphs better models of choice in a lot of problems. This is in sharp contrast with

the more conventional graph representation of visual patterns where only pairwise connectivity

between objects is described. The contribution of this thesis is fourfold:

(i) For the first time the advantage of the hypergraph neighborhood structure is analyzed.

We argue that the summarized local grouping information contained in hypergraphs causes an

‘averaging’ effect which is beneficial to the clustering problems, just as local image smoothing

may be beneficial to the image segmentation task.

(ii) We discuss how to build hypergraph incidence structures and how to solve the re-

lated unsupervised and semi-supervised problems for three different computer vision scenarios:

video object segmentation, unsupervised image categorization and image retrieval. We compare

our algorithms with state-of-the-art methods and the effectiveness of the proposed methods is

demonstrated by extensive experimentation on various datasets.

ii



(iii) For the application of image retrieval, we propose a novel hypergraph model — prob-

abilistic hypergraph to exploit the structure of the data manifold by considering not only the

local grouping information, but also the similarities between vertices in hyperedges.

(iv) In all three applications mentioned above, we conduct an in depth comparison between

simple graph and hypergraph based algorithms, which is also beneficial to other computer vision

applications.
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Chapter 1

Introduction

1.1 Motivation: Why Hypergraphs

In computer vision and other applied machine learning problems, a fundamental task is to cluster

a set of data in a manner such that elements of the same cluster are more similar to each other

than elements in different clusters. In these problems, we generally assume pairwise relationships

among the objects of our interest. For example, a common distance measure for data points

lying in a vector space is the Euclidean distance, which is used in a lot of unsupervised central

clustering methods such as k -means [79], k -centers clustering [79] and affinity propagation [39].

Actually, a data set endowed with pairwise relationships can be naturally organized as a pairwise

graph (for simplicity, we denote the pairwise graph as simple graph in the following), in which

the vertices represent the objects, and any two vertices that have some kind of relationship are

connected together by a graph edge. The simple graph partitioning problem in mathematics

consists of dividing a graph G into k pieces, such that the pieces are of about the same size and

there are few connections between the pieces. When k = 2, the problem is also referred to as the

graph bisection problem or graph bi-partitioning problem. With a few notable exceptions, the

similarities between objects in a simple graph are utilized to present the pairwise relationships.

The simple graph can be undirected or directed, depending on whether the relationships among

objects are symmetric or not. As to undirected graphs, a typical instance is the graph based

image segmentation, in which pixel to pixel relations can be modelled as undirected edges

because those relations are symmetric. As to directed graphs, a good instance is the World

Wide Web, in which a hyperlink can be taken as a directed edge because the hyperlink based

relationships are asymmetric. Usually a computed kernel matrix is associated to a directed or

undirected graph, a lot of methods for unsupervised and semi-supervised learning can then be
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formulated in terms of operations on this simple graph and achieve better clustering results

compared to central clustering methods [92] [81] [107].

However, in many real world problems, it is not complete to represent the relations among

a set of objects as simple graphs. This point of view is illustrated in a good example used

in [113]. In this example, a collection of articles need to be grouped into different clusters by

topics. The only information that we have is the authors of all the articles. One way to solve

this problem is to construct an undirected graph in which two vertices are connected by an

edge if they have at least one common author (Table 1.1 and Figure 1.1), and then spectral

graph clustering can be applied [36] [18] [92]. Each edge weight of this undirected graph may be

assigned as the number of authors in common between two articles. It is an easy, nevertheless,

not natural way to represent the relations between the articles because this graph construction

lose the information whether the same person is the author of three or more articles or not. Such

information loss is unexpected because the articles by the same person likely belong to the same

topic and hence the information is useful for our grouping task. A more natural way to remedy

the information is to represent the data points as a hypergraph. An edge in a a hypergraph

is called a hyperedge, which can connect more than two vertices; that is, a hyperedge is a

subset of vertices. For this article clustering problem, it is quite straightforward to construct a

hypergraph with the vertices representing the articles, and the hyperedges the authors (Figure

1). Each hyperedge contains all articles by its corresponding author. Furthermore, positive

weights maybe be put on hyperedges to emphasize or weaken specific authors’ work. For those

authors working on a smaller range of fields, we may assign a larger weight to the corresponding

hyperedge. Compared to simple pairwise graph, in this example hypergraph structure more

completely illustrates the complex relationships among authors and articles.

Another reason to adopt hypergraphs is that, sometimes there does not exist a simple

similarity measure for pairwise data points. Sometimes one may consider the relationship among

three or more data points to determine if they belong to the same cluster. For example, in a

k-lines clustering problem, we need to cluster data points in a d-dimensional vector space into

k clusters where elements in each cluster are well approximated by a line [2]. In this problem,

there does not exist a useful measure of similarity only using pairs of points, because we can
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e1 e2 e3

v1 1 0 0
v2 1 0 1
v3 0 0 1
v4 0 0 1
v5 0 1 0
v6 0 1 1
v7 0 1 0

Table 1.1: An author set E = {e1, e2, e3} and an article set V = {v1, v2, v3, v4, v5, v6, v7}. The
entry (vi, ej) is set to 1 if ej is an author of article vi and 0 otherwise.

not define a line only by a pair of data points. However, it is possible to define measures of

similarity over three or more points that indicate how close they are to being collinear. This

kind of similarity/dissimilarity measured over triples ore more of points can be referred as higher

order relations, which is useful in a lot of model-based clustering task where the fitting error

of a group of data points to a model can be considered a measure of the dissimilarity among

them [1].

The study of measurement defined over triples or point sets of size greater than two is not

new. In [1], a series of algorithms for hypergraph partitioning are analyzed and compared.

These methods include clique expansion [116], star expansion [116], Rodriquez’s Laplacian [86],

Bolla’s Laplacian [10] and Zhou’s normalized Laplacian [113], etc. It is verified that that those

methods are almost equivalent to each other and can be interconverted under specific condi-

tions, especially for uniform hypergraphs whose hyperedge sizes are uniform within themselves.

Another possible representation of higher order relations is a tensor, which is a generalization

of matrices to higher dimensional arrays. The data tensor can be interpreted as a hypergraph

and a co-clustering method can be proposed to solve partitioning problem based on spectral

hypergraph clustering [19].

A powerful technique for partitioning simple graphs is spectral clustering. While the un-

derstanding of hypergraph spectral methods relative that of simple graphs is very limited, a

number of authors have considered extensions of spectral graph theoretic methods to hyper-

graphs [86] [10] [113]. In our work, we adopt Zhou’s normalized hypergraph Laplacian because

of its efficiency and simplicity of implementation. In Zhou’s work, spectral clustering techniques

are generalized to hypergraphs; more specifically, the normalized cut approach of [92]. As in
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Figure 1.1: The hypergraph and corresponding simple graph, constructed from the incidence
matrix in Table 1.1. Left: an undirected graph in which two articles are joined together by an
edge if there is at least one author in common. Right: a corresponding hypergraph.

the case of simple graphs, a real-valued relaxation of the hypergraph normalized cut criterion

leads to the eigen-decomposition of a positive semidefinite matrix called hypergraph laplacian,

which can be regarded as an analogue of the Laplacian for simple graphs [24]. Based on the

concept of hypergraph Laplacian, algorithms can be developed for unsupervised data partition,

hypergraph embedding and transductive inference.

1.2 Contributions

This thesis describes original techniques for the construction of hypergraph models of three

representative computer vision scenarios: video object segmentation, unsupervised image cat-

egorization and relevance feedback image retrieval. In the past decades, simple graph based

methods have been applied in these applications and achieved considerable results. However, as

illustrated above, the expressive power of the hypergraph models places a special emphasis on
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the relationship among three or more objects, which may make them better models of choice

in computer vision problems. This is in sharp contrast with the more conventional graph rep-

resentation of visual patterns where only pairwise connectivity between objects is described. In

this thesis, we choose to explore hypergraph incidence structures for above three applications.

Through our theoretical discussion and experimental verification, we show that hypergraphs are

better models to represent complex visual patterns on one hand and to keep important struc-

tural information on the other hand. In summary, the contribution of this thesis is fourfold:

(i) For the first time the advantage of the hypergraph neighborhood structure is analyzed.

In our work, two hypergraph based algorithms, hypergraph cut and hypergraph ranking are

adopted to solve optimization problems for computer vision under unsupervised and semi-

supervised learning settings, respectively. We argue that the summarized local grouping infor-

mation contained in hypergraphs causes an ‘averaging’ effect which is beneficial to the clustering

problems in computer vision, just as local image smoothing may be beneficial to the image seg-

mentation task.

(ii) We discuss how to build hypergraph incidence structures and how to solve the related

unsupervised and semi-supervised problems for three different computer vision applications.

We compare our algorithms with state-of-the-art methods and the effectiveness of the proposed

methods is demonstrated by extensive experimentation on various datasets.

(iii) In the application domain of image retrieval, we propose a novel hypergraph model –

probabilistic hypergraph to exploit the structure of the data manifold by considering not only

the local grouping information, but also the similarities between vertices in hyperedges.

(iv) In all three applications mentioned above, we conduct an in depth comparison between

simple graph and hypergraph based algorithms, which is also beneficial to other computer vision

and machine learning applications.

1.3 Overview

The rest of this dissertation is organized as follows. In Chapter 2, we survey the related theoretic

work on unsupervised and semi-supervised hypergraph learning. We lay heavy stress on the

normalized hypergraph Laplacian and spectral hypergraph partitioning algorithms based on
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it. Furthermore, for the first time the advantage of the hypergraph neighborhood structure is

analyzed.

From Chapter 3 to Chapter 5, we will discuss how to build hypergraph incidence structures

and how to solve the related unsupervised and semi-supervised problems for three different

computer vision scenarios: video object segmentation, unsupervised image categorization and

relevance feedback image retrieval. Two hypergraph based algorithms, hypergraph cut and

hypergraph ranking are adopted to solve optimization problems under unsupervised and semi-

supervised learning settings.

In Chapter 3, we present a framework of video object segmentation, in which we formulate

the task of extracting prominent objects from a scene as the problem of hypergraph cut. We

initially over-segment each frame in the sequence, and take the over-segmented image patches as

the vertices in the graph. Then hypergraphs are used to represent the complex spatio-temporal

neighborhood relationship among the patches. We assign each patch with several attributes that

are computed from the optical flow and the appearance-based motion profile, and the vertices

with the same attribute value is connected by a hyperedge. In this way the task of video object

segmentation is equivalent to the hypergraph partition, which can be solved by a generalized

spectral clustering technique – hypergraph cut algorithm.

In Chapter 4, we present a framework for unsupervised image categorization, in which images

containing specific objects are taken as vertices in a hypergraph, and the task of image clustering

is formulated as the problem of hypergraph partition. First, a novel method is proposed to

select the region of interest (ROI) of each image, and then hyperedges are constructed based on

shape and appearance features extracted from the ROIs. Each vertex (image) and its k-nearest

neighbors (based on shape or appearance descriptors) form two kinds of hyperedges. The weight

of a hyperedge is computed as the sum of the pairwise affinities within the hyperedge. Finally,

hypergraph cut is used to solve the hypergraph partition problem of image categorization.

In Chapter 5, we propose a new transductive learning framework for image retrieval, in

which the task of image search is formulated as the problem of hypergraph ranking. In this

application, images are also taken as vertices in a hypergraph and a hyperedge is also formed

by a centroid and its k-nearest neighbors. To further exploit the correlation information among
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images, we propose a fuzzy hypergraph, which assigns each vertex to a hyperedge in a soft way.

In the incidence structure of a fuzzy hypergraph, we describe both the higher order grouping

information and the affinity relationship between vertices within each hyperedge. After feed-

back images are provided, our retrieval system ranks image labels by a transductive inference

approach, which tends to assign the same label to vertices that share many incidental hyper-

edges, with the constraints that predicted labels of feedback images should be similar to their

initial labels.

Finally, Chapter 6 summarizes the contributions of this work, along with a discussion of

future work possibilities.



8

Chapter 2

Unsupervised and Semi-Supervised Learning with

Hypergraphs

In this chapter at first we survey the related theoretic work on hypergraph learning. We survey

a number of approaches from machine learning, VLSI CAD and graph theory that have been

proposed for analyzing the structure of hypergraphs. We mention that there are two basic graph

constructions that underlie all these studies; these constructions are essentially equivalent to

the normalized Laplacian [1]. Then we focus on the derivation of spectral graph hypergraph

theoretic methods for supervised and unsupervised learning, which is the theoretic basis of our

work. At last we give a toy example on how to construct a hypergraph for practical problem.

2.1 Previous Work

The study of measurement defined over triples or point sets of size greater than two is not

new. The primary focus of this literature is the study of topological and geometrical properties

of these generalized measures [77]. While the work on n-metrics is theoretical, more practical

works such as [48] try to measure triadic or higher order distance between its vertices. Multi-

dimensional Scaling(DMS) [11] is a technique for embedding pairwise similarity or dissimilarity

data in a low dimensional Euclidean space, which is used for the purposes of visualization and

a preprocessing step for data analysis methods that require a coordinate representation of their

input. Therefore, some researchers have developed generalizations of MDS to the case of tri-

adic data or higher order data. representitive methods include Carroll & Chang’s work which

developed an algorithm for n-adic MDS using a generalization of the SVD to the case of n-

dimensional matrices [17]; the work of Cox et al. which proposed an MDS algorithm based on

a combination of a Gradient Descent and Isotonic Regression [27]; the works of Joly & LeCalv

and Heiser & Bennani which developed axiomatic theories of triadic distances [52] [58].
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The initial practical application of hypergraph partitioning algorithms occurs in the field of

VLSI design and synthesis [2], which involves the partitioning of large circuits into k equally

sized parts in a manner that minimizes the connectivity between the parts. In this applica-

tion, the circuit elements are the vertices of the hypergraph and the nets that connect these

circuit elements are the hyperedges [3]. The development of the tools for partitioning these

hypergraphs is almost entirely heuristic and very little theoretical work exists that analyzes

their performance beyond empirical benchmarks. The leading tools are based on two phase

multi-level approaches [60]. In the first phase, a hierarchy of hypergraphs is constructed by in-

crementally collapsing the hyperedges of the original hypergraph according to some measure of

homogeneity. In the second phase, starting from a partitioning of the hypergraph at the coarsest

level, the algorithm works its way down the hierarchy and at each stage the partitioning at the

level above serves as an initialization for the next level [35] [61].

The set of tools available for partitioning graphs are generalized and used on hypergraphs.

An example is the generalization of Graph-Cut algorithms [14] for solving the max-flow min-cut

problem on hypergraphs [83]. Some works consider to construct a graph that approximates the

hypergraph and partition it; this partition in turn induces a vertex partitioning on the original

hypergraph. Other works try to construct methods that operate directly on the hypergraph

while implicitly working on its graph approximation. In this sense the previously proposed

algorithms for partitioning a hypergraph can be divided into two categories. The first category

aims at constructing a simple graph from the original hypergraph, and then partitioning the

vertices by spectral clustering techniques. These methods include clique expansion [116], star

expansion [55], Rodriquez’s Laplacian [86] and clique averaging [2] etc. Clique Expansion and

Star Expansion are two most commonly used graph approximations. Clique Expansion, as the

name suggests, expands each hyperedge into a clique. Star expansion introduces a dummy

vertex for each hyperedge and connects each vertex in the hyperedge to it [55]. As can be

expected, the weights on the edges of the clique and the star determine the cut properties of the

approximating graph [47] [57]. Another method to approximate the hypergraph using a weighted

graph is clique averaging, which is closely related to clique expansion but is able to preserve

more information contained in original hypergraphs. The second category of approaches define
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a hypergraph ‘Laplacian’ using analogies from the simple graph Laplacian. Representative

methods in this category include Bolla’s Laplacian [10], Zhou’s normalized Laplacian [113], etc.

In [1], the above algorithms are analyzed and verified that they are equivalent to each other

under specific conditions.

Another possible representation of higher order relations is a tensor, which is a generalization

of matrices to higher dimensional arrays. In recent years, co-clustering of data with two or more

than two types of entities has attracted increasing attention. The task of co-clustering is to

simultaneously cluster the different types of entities. Bi-clustering is the name for co-clustering

when there are two types of data need to be clustered. In this case not only the objects but also

the features of the objects are clustered; i.e., the data is represented in a data matrix and the

row and columns are clustered simultaneously. For example, in the text-mining scenario, we

need to co-cluster documents and keywords, where a keyword is related to a document by the

number of its occurrences in the document. The co-clustering of bi-type heterogeneous data has

been widely investigated in a number of works such as [5] [31] [21]. If the data have more than

two types, they can be represented as higher dimensional arrays. A real life example is audience-

movies-casts in the film rating (collaborative filtering) scenario, where an audience gives a rating

to a film that is cast by several actors or actresses. Although it is possible to cluster each type

separately, but this approach would miss the potential leveraging that could be obtained from

the interrelationships among different types. Representative work includes [7] [73] [74] which

generalize bi-type methods for multi-type data, and [4] [20] which consider the interrelationships

among all the entity types. In [19], the data tensor is interpreted as a hypergraph and propose

a coclustering method based on spectral hypergraph partitioning.

2.2 Notation and Terminology

The key difference between the hypergraph and the simple graph lies in that the former uses

a subset of the vertices as an edge, i.e., a hyperedge connecting more than two vertices. Let

V represent a finite set of vertices and E a family of subsets of V such that
⋃

e∈E = V ,

G = (V, E, w) is called a hypergraph with the vertex set V and the hyperedge set E, and each

hyperedge e is assigned a positive weight w(e). For a vertex v ∈ V , its degree is defined to be
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d(v) =
∑

{e∈E|v∈e} w(e). For a hyperedge e ∈ E, its degree is defined by δ(e) = |e|. Let us

use Dv,De, and W to denote the diagonal matrices of the vetex degrees, the hyperedge degrees,

and the hyperedge weights respectively. The hypergraph G can be represented by a |V | × |E|

matrix H which h(v, e) = 1 if vH ∈ eH and 0 otherwise. According to the definition of H ,

d(v) =
∑

e∈E w(e)h(v, e) and δ(e) =
∑

v∈V h(v, e).

For a vertex subset S ⊂ V , let Sc denote the compliment of S. A cut of a hypergraph

G = (V, E, w) is a partition of V into two parts S and Sc. We say that a hyperedge e is cut if

it is incident with the vertices in S and Sc simultaneously.

Given a vertex subset S ⊂ V , define the hyperedge boundary ∂S of S to be a hyperedge set

which consists of hyperedges which are cut:

∂S := {e ∈ E|e ∩ S 6= ∅, e ∩ Sc 6= ∅}. (2.1)

Define the volume volS of S to be the sum of the degrees of the vertices in S, that is, volS :=

∑

v ∈ Sd(v). Moreover, define the volume of ∂S by

vol∂S :=
∑

e∈∂S

w(e)
|e ∩ S||e ∩ Sc|

|δ(e)| . (2.2)

According to Equation 2.2, we have vol∂S = vol∂Sc. The definition given by above equations

can be understood as follows: if we treat the defined volume of the hyperedge boundary across

S and Ss as the connection between two clusters and the volume of S or Sc as the connection

inside S or Sc, we try to obtain a partition in which the connection among the vertices in

the same cluster is dense while the connection between two clusters is sparse. Then a natural

partition can be formalized as follows:

arg min
∅6=S⊂V

c(S) := vol(S, Sc)

(

1

vol(S)
+

1

vol(Sc)

)

(2.3)

For a simple graph, |e⋂S| = |e⋂Sc| = 1, and δ(e) = 2. According to the derivation in [19],

the right-hand side of above equation reduces to the simple graph normalized cut [92] up to a

factor 1
2 .
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2.3 Hypergraph Learning Algorithms

In this section we introduce a number of existing methods for hypergraph learning which are

surveyed in [1] and [2]. At first we present the methods which construct a graph representation

using the initial structure of hypergraph. Then we introduce other methods define various hyper-

graph Laplacians. Particularly we focus on the derivation of normalized hypergraph Laplacian

for supervised and unsupervised learning, which is the theoretic basis of our work.

2.3.1 Star Expansion

The star expansion algorithm constructs a graph G∗(V ∗, E∗) from original hypergraph G(V, E)

by introducing a new vertex for every hyperedge e ∈ E, thus V ∗ = V
⋃

E [116]. It connects the

new graph vertex e to each vertex in the hyperedge to it, i.e. E∗ = (u, e) : u ∈ e, e ∈ E. Each

hyperedge in E has a corresponding star in the graph G∗ and that G∗ is a bi-partite graph.

Star expansion assigns the scaled hyperedge weight to each corresponding graph edge:

w∗(u, e) =
w(e)

δ(e)
(2.4)

Then the combinatorial or normalized Laplacian of the constructed simple graph is used to

cluster vertices.

2.3.2 Clique Expansion

The clique expansion algorithm [116] constructs a graph Gx(V, ExV 2) from the original hyper-

graph G(V, E) by replacing each hyperedge e = (u1, ..., uδ(e)) ∈ E with an edge for each pair

of vertices in the hyperedge: Ex = (u, v) : u, v ∈ e, e ∈ E. The vertices in hyperedge e form a

clique in the graph Gx. The edge weight wx(u, v) minimizes the difference between the weight

of the graph edge and the weight of each hyperedge e that contains both u and v:

wx(u, v) = arg min
wx(u,v)

∑

e∈E:u,v∈e

(wx(u, v) − w(e))2. (2.5)

The solution of this criterion is
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wx(u, v) =
1

µ(n, k)

∑

e∈E:u,v∈e

w(e). (2.6)

where µ(n, k) =









n − 2

k − 2









is the number of hyperedges that contain a particular pair of vertices;

k is the size of the hyperedge and |V | = n. The relationship between a hyperedge and the edge

weights in its clique in the above approach was the simplest possible, where one assumes that

the hyperedge weight and the edge weights are equal to each other.

2.3.3 Clique Averaging

In [1], a new algorithm is proposed to transfer a hypergraph into a simple graph. In the method

of clique averaging, the relationship between a hyperedge weight and its related simple graph

weights are defined as follows:

w(e) =









k

2









−1

∑

ei,ej inE,i<j

w(vi, vj). (2.7)

the above equation states that the L1 norm of the clique weights is proportional to the hyperedge

weight. Without loss of generality we will assume that the set of hyperedges has been ordered

in a lexicographic order based on the vertices incident on each hyperedge. A similar ordering is

done on the set of graph edges too. We can now define the incidence matrix Υ. Υ is a zero-one

matrix, that represents the incidence relationship between a hyperedge in a hypergraph and an

edge in the related simple graph.

Υi,j =















1, if edge j is incident on hyperedge i

0, otherwise.

(2.8)

Denote d2 as the vector of graph edge weights of length
(

n
2

)

and, denote dk the vector of

hyperedge weights. Then Equation 2.7 can be written in matrix form as

(

k

2

)

Υd2 = dk. (2.9)
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This equation assumes that d2 ≥ 0, i.e., each element of the vector d2 is non-negative. If we

enforce an upper bound d2 ≤ 1 also, the graph approximation of hypergraph is given by the

edge weight vector d2 that minimizes the following constrained minimization problem:

min
d2

‖
(

k

2

)

Υd2 − dk‖2
F , 0 ≤ d2 ≤ 1. (2.10)

Actually, this method is closely related to clique expansion. Denote de
2 as the vector of approx-

imation graph edge weights, we can derive the following equation from the solution equation of

Clique Expansion 2.24:

µ(n, k)Υde
2 = ΥΥ>dk. (2.11)

Neglect the constants in Equations 2.9 and 2.11, they differ only in the right hand side by a

pre-multiplication by the matrix ΥΥ>. This is a symmetric matrix, the effect of multiplying this

matrix to dk is equivalent to a convolution of the hyperedge weights by a quadratically decreasing

kernel [1]. Thus ΥΥ>dk is a low passed version of dk. This implies that Clique Expansion solves

the same approximation problem as Clique Averaging, but instead of operating on the original

hypergraph it operates on a low passed version of it. Although the approximation produced by

Clique Averaging is of a higher quality theoretically, in practice there is virtually no difference

between their performance, especially when values of σ are chosen carefully [2] (the parameter

σ is used to convert a dissimilarity d into the affinity exp(−d/σ)).

2.3.4 Bolla’s Laplacian

Bolla defines a Laplacian for an unweighted hypergraph in terms of the diagonal vertex degree

matrix Dv, the diagonal edge degree matrix De, and the incidence matrix H [10]:

Lo := Dv − HD−1
e H>. (2.12)

According to [10], the eigenvectors of Bolla’s Laplacian Lo define the ‘best’ Euclidean embedding

of the hypergraph. Bolla also shows a relationship between the spectral properties of Lo and

the minimum cut of the hypergraph.
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2.3.5 Rodriguez’s Laplacian

In [86] a weighted graph Gr(V, Er = Ex) is constructed from an unweighted hypergraph

G(V, E). Like clique expansion, each hyperedge is replaced by a clique in the graph Gr. The

weight wr(u, v) of an edge is set to the number of edges containing both u and v:

wr(u, v) = |{e ∈ E : u, v ∈ e}|. (2.13)

Then the graph Laplacian applied to Gr is expressed in terms of the hypergraph structure:

Lr(Gr) = Dr
v − HH>, (2.14)

where Dr
v is the vertex degree matrix of the graph Gr. Like Bolla, Rodriguez also shows a

relationship between the spectral properties of Lr and the cost of minimum partitions of the

hypergraph.

2.3.6 Gibson’s Dynamical System

In [42] the authors have proposed a dynamical system to cluster categorical data that can be

represented using a hypergraph. They consider the following iterative process:

1. sn+1
i,j =

∑

e:i∈e

∑

k 6=i∈e wes
n
k,j

2. Orthonormalize the vectors sn
j .

And it is proven that the iterative procedure described above is the power method for calculating

the eigenvectors of the adjacency matrix S = Dv − HWH top.

2.3.7 Li’s Adjacency Matrix

[71] formally define properties of a regular, unweighted hypergraph G(V, E) in terms of the star

expansion of the hypergraph. In particular, they define the |V | × |V | adjacency matrix of the

hypergraph, HH>. They show a relationship between the spectral properties of the adjacency

matrix of the hypergraph HH> and the structure of the hypergraph.
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2.3.8 Normalized Hypergraph Laplacian for Unsupervised and Semi-

Supervised Learning

Recall the cost function in Equation 2.3:

c(S) = vol(S, Sc)

(

1

vol(S)
+

1

vol(Sc)

)

.

The above objective function characterizes how an optimal partitioning of a given hypergraph

should look like: the volume of the boundary vol(∂S) is minimized, while the ’size’ of S and Sc

are balanced; otherwise, a small vol(S) or vol(Sc) will make the objective value prohibitively

large. According the derivation in [19], the objective value c(S) coincides with a Rayleigh

quotient. Let a column vector q have elements

q(v) :=















+
√

η2/η1, if v ∈ S

−
√

η1/η2, if v ∈ Sc.

(2.15)

where η1 = vol(S) and η2 = vol(Sc), then

c(S) =
qT Lq

qT Λq
, (2.16)

where L = Dv − HWD−1
e H> is called the Laplacian of the hypergraph and Λ is the diagonal

matrix with diagonal elements equal to vol(v). We call q the partition vector. The claim implies

that the problem of finding an optimal hypergraph cut can be reduced to computing a vector q in

the form 2.15 which minimizes the quotient 2.16. However, this is a combinatorial optimization

problem that is NP-complete [41]. From standard results in linear algebra, minimizing the above

quotient over real vectors q, is equivalent to finding the bottom eigenvector of the matrix pencil

(L, Λ). According to [92], this problem can be further reduced to solve the second smallest

eigenvector of the following matrix:

∆ = I − D−1/2
v HWD−1

e H>D−1/2
v , (2.17)

where ∆ is called the normalized hypergraph Laplacian. Actually, this result can be reached

from another direction. For a hypergraph partition problem, the normalized cost function [113]

Ω(f) could be defined as
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1

2

∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

, (2.18)

where the vector f is the image labels to be learned. By minimizing this cost function, vertices

sharing many incidental hyperedges are guaranteed to obtain similar labels. Defining Θ =

D
− 1

2
v HWD−1

e HT D
− 1

2
v , we can derive Equation 5.4 as follows:

Ω(f) =
∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(

f2(u)

d(u)
− f(u)f(v)
√

d(u)d(v)

)

=
∑

u∈V

f2(u)
∑

e∈E

w(e)h(u, e)

d(u)

∑

v∈V

h(v, e)

δ(e)

−
∑

e∈E

∑

u,v∈e

f(u)h(u, e)w(e)h(v, e)f(v)
√

d(u)d(v)δ(e)

= fT (I − Θ)f, (2.19)

where I is the identity matrix. Above derivation shows that (i) Ω(f, w) = fT (I − Θ)f if and

only if
∑

v∈V

h(v,e)
δ(e) = 1 and

∑

e∈E

w(e)h(u,e)
d(u) = 1, which is true because of the definition of δ(e)

and d(u); (ii) ∆ = I − Θ is a positive semi-definite matrix introduced above – the normalized

hypergraph Laplacian and Ω(f) = fT ∆f . The above cost function has the similar formulation

to the normalized cost function of a simple graph Gs = (Vs, Es):

Ωs(f) =
1

2

∑

vi,vj∈Vs

As(i, j)

(

f(i)√
Dii

− f(j)
√

Djj

)2

= fT (I − D− 1
2 AsD

− 1
2 )f = fT ∆sf, (2.20)

where D is a diagonal matrix with its (i, i)-element equal to the sum of the ith row of the affinity

matrix As; ∆s = I −Θs = I −D− 1
2 AsD

− 1
2 is called the normalized simple graph Laplacian. In

an unsupervised framework, Equation 5.4 and Equation 5.6 can be optimized by the eigenvector

related to the smallest nonzero eigenvalue of ∆ and ∆s [113], respectively.

In the transductive learning setting [113], we define a vector y to introduce the labeling

information and to assign their initial labels to the corresponding elements of y: y(v) = 1, if a

vertex v is in the positive set Pos, y(v) = −1, if it is in the negative set Neg. If v is unlabeled,



18

y(v) = 0. To force the assigned labels to approach the initial labeling y, a regularization term

is defined as follows:

‖f − y‖2 =
∑

u∈V

(f(u) − y(u))2. (2.21)

After the feedback information is introduced, the learning task is to minimize the sum of two

cost terms with respect to f [112] [113], which is

Φ(f) = fT ∆f + µ‖f − y‖2, (2.22)

where µ > 0 is the regularization parameter. Differentiating Φ(f) with respect to f , we have

f = (1 − γ)(I − γΘ)−1y, (2.23)

where γ = 1
1+µ . This is equivalent to solving the linear system ((1 + µ)I − Θ) f = µy.

For the simple graph, we can simply replace Θ with Θs to fulfill the transductive learning.

2.3.9 The Connections between Hypergraph Learning Algorithms

In [1], different hypergraph learning algorithms are analyzed and proved to be equivalent to

each other. At first, [1] verifies that for a k-uniform hypergraph (each hyperedge contains a

fixed number of k vertices),the eigenvectors of the normalized Laplacian for the bipartite graph

G∗
c (obtained from Star Expansion) are exactly the eigenvectors of the normalized Laplacian

for the standard clique expansion graph Gx. This is a surprising result since the two graphs

are completely different in the number of vertices and the connectivity between these vertices.

Even for non-uniform hypergraphs, the difference between two formulations are not large and

may obtain similar decomposed eigenvectors.

[1] also proved that all different hypergraph Laplacians correspond to either clique or star

expansion of the original hypergraph under specific conditions. Bolla’s Laplacian corresponds to

the unnormalized Laplacian of the associated clique expansion with the appropriate weighting

function. The Rodriguez Laplacian can similarly be shown to be the unnormalized Laplacian

of the clique expansion of an unweighted graph with every hyperedge weight set to 1. Gibson’s
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algorithm calculates the eigenvectors of the adjacency matrix for the clique expansion graph.

For Zhou’s normalized Laplacian, it is equivalent to constructing a star expansion and using

the normalized Laplacian defined on it.

2.4 Toy Examples

In this section, we quote two examples to explain how to construct hypergraphs for practical

problems. The first example is also used in Zhou’s work [113].

In the first example, the zoo data set from UCI Machine Learning Depository [38] is used.

The zoo data set is usually referred to as the so-called categorical data. It contains totally 7

types and 101 animals:

1 – (41 kinds of animals) aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer,

dolphin, elephant, fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx, mink,

mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise, puma, pussycat, raccoon,

reindeer, seal, sealion, squirrel, vampire, vole, wallaby,wolf;

2 – (20 kinds of animals) chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich,

parakeet, penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, wren;

3 – (5 kinds of animals) pitviper, seasnake, slowworm, tortoise, tuatara;

4 – (13 kinds of animals) bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha,

seahorse, sole, stingray, tuna;

5 – (4 kinds of animals) frog, frog, newt, toad;

6 – (8 kinds of animals) flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp;

7 – (10 kinds of animals) clam, crab, crayfish, lobster, octopus, scorpion, seawasp, slug,

starfish, worm.

Specifically, each instance in this dataset is described by one or more attributes. Each at-

tribute takes only a small number of values, each corresponding to a specific category. Attribute

values cannot be naturally ordered linearly as numerical values. Totally there are 16 attributes

as follows:

1. hair: Boolean

2. feathers: Boolean
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3. eggs: Boolean

4. milk: Boolean

5. airborne: Boolean

6. aquatic: Boolean

7. predator: Boolean

8. toothed: Boolean

9. backbone: Boolean

10. breathes: Boolean

11. venomous: Boolean

12. fins: Boolean

13. legs: Numeric (set of values: 0,2,4,5,6,8)

14. tail: Boolean

15. domestic: Boolean

16. catsize: Boolean

In our experiments, we constructed a hypergraph for the zoo dataset, where attribute values

were regarded as hyperedges. For Boolean attribute, we construct two hyperedges according to

the value of each animal on each attribute (‘true’ or ‘false’). For numeric value attribute (the

attribute 13), we construct 6 hyperedges, according to the numerical value of each animal on

this attribute. Then we totally get 36 hyperedges. The weights for all hyperedges were simply

set to 1. How to choose suitable weights is definitely an important problem requiring additional

exploration however.

The first task we addressed is to embed the animals in the zoo dataset into Euclidean space.

We embedded those animals into Euclidean space by using the eigenvectors of the hypergraph

Laplacian associated with the smallest eigenvalues. In Figure 2.1, the eigenvectors associated

with the second and the third smallest eigenvalues are used as x and y coordinates. All the

animals are illustrated in this figure and animals in a specific type use a specific text color. For

example, all the mammals are shown red in Figure 2.1.

From this figure, It is apparent that most animals are well separated according their type

in their Euclidean representations. For example, all the mammals distribute on the left hand



21

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

aardvark

antelope

bass

bearboar

buffalo
calf

carp

catfish

cavy

cheetah

chicken

chub

clamcrab
crayfish

crow

deer

dogfish

dolphin

dove

duck

elephant

flamingo

flea

frog
afrog

b

fruitbat

giraffe
girl

gnat

goat gorilla

gull

haddock

hamster
hare

hawk

herring

honeybeehousefly

kiwi ladybird

lark

leopardlion

lobster

lynx

mink

molemongoose

moth

newt

octopus

opossum
oryx

ostrich

parakeet

penguin

pheasant

pikepiranha

pitviper

platypus
polecat

pony

porpoise

puma
pussycat

raccoon

reindeer

rhea

scorpion

seahorse

seal

sealion

seasnake

seawasp

skimmerskua

slowworm

slug

sole

sparrow

squirrel

starfish

stingray

swan

termite

toad

tortoise

tuatara

tuna

vampire

vole

vulture

wallaby

wasp

wolf
worm

wren

Figure 2.1: We embedded zoo data set animals into Euclidean space by using the eigenvectors
associated with the second and the third smallest eigenvalues.

side of Figure 2.1; all the fishes distribute on the bottom of the graph. Moreover, it deserves

a further look on the transition area of the graph. Platypus is significantly mapped to the

positions between class 1 (mammals), and class 3 (reptiles). A similar observation also holds

for sea-snake, which is very close to fish. Even in Figure 2.2 and Figure 2.3, we can still find

that animals distribute intensively according to their category.

The second example is illustrated in Figure 2.4, which shows an example to explain how

to construct a hypergraph. v1, v2, ..., v6 are six points in a 2-D space and their interrelation-

ships could be represented as a simple graph, in which pairwise distances between every vertex

and its neighbors are marked on the corresponding edges. Assuming that each vertex and

its two-nearest neighbors form a hyperedge, a vertex-hyperedge matrix H could be given as

Figure 2.4(b). For example, the hyperedge e4 is composed of vertex v4 and its two nearest
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Figure 2.2: We embedded zoo data set animals into Euclidean space by using the eigenvectors
associated with the third and the fourth smallest eigenvalues.
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Figure 2.3: We embedded zoo data set animals into Euclidean space by using the eigenvectors
associated with the fourth and the fifth smallest eigenvalues.
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neighbors v3 and v5. Among all the hyperedges constructed in this example, e1, e2, e3 corre-

spond to the vertices subset {v1, v2, v3} and e5, e6 correspond to the vertices subset {v4, v5, v6}

(Figure 2.4(c)). To measure the affinity among the vertices in each hyperedge, we can define

the hyperedge weight as the sum of reciprocals of all the pairwise distances in a hyperedge.

Figure 2.4: (a): A simple graph of six points in 2-D space. Pairwise distances between vi and
its neighbors are marked on the corresponding edges. (b) The H matrix. The entry (vi, ej) is
set to 1 if a hyperedge ej contains vi, or 0 otherwise. (c): The corresponding hypergraph w.r.t.
the H matrix. The hyperedge weight is defined as the sum of reciprocals of all the pairwise
distances in a hyperedge. (d) A hypergraph partition which is made on e4.

In order to bipartition the hypergraph in Figure 2.4(c)), intuitively the hyperedges with

the smallest weights should be removed, and at the same time as many hyperedges with larger

weights as possible should be kept. Since e4 has the smallest hyperedge weight, a hypergraph

partition could be made on it (Figure 2.4(d)) to classify v1, v2, ..., v6 into two groups. This is

exactly the result obtained by normalized hypergraph cut.
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Figure 2.5: Six images from Caltech-101 [69]. The first three images in the first row are from
the ’ferry’ class; the last three images in the second row are from the ’joshua tree’ class.

v1 v2 v3 v4 v5 v6

v1 1.0000 0.5342 0.4795 0.2566 0.4558 0.2667
v2 0.5342 1.0000 0.4603 0.2935 0.4311 0.2758
v3 0.4795 0.4603 1.0000 0.5976 0.6547 0.6083
v4 0.2566 0.2935 0.5976 1.0000 0.7062 0.8245
v5 0.4558 0.4311 0.6547 0.7062 1.0000 0.7804
v6 0.2667 0.2758 0.6083 0.8245 0.7804 1.0000

Table 2.1: The similarity matrix for the six data points corresponding to six images in Fig 2.5.

2.5 Analysis of the Advantage of the Hypergraph Structure

In order to better explain the neighborhood structure of hypergraphs, we can revisit the Clique

Expansion [116] algorithm and inversely transfer a hypergraph into a simple graph. Clique

Expansion builds a new simple graph from a hypergraph by replacing each hyperedge with

edges for each pair of vertices in the hyperedge. In this new simple graph, the pairwise edge

weight between two vertices is proportional to the sum of their incident hyperedge weights:

wx(u, v) =
1

µ(n, k)

∑

e inE:u,v∈e

w(e). (2.24)

According to the analysis in Agarwal’s work [1], for a uniform hypergraph, it is verified that the

eigenvectors of the hypergraph normalized Laplacian are equivalent to the eigenvectors of the

simple graph obtained by Clique Expansion. For a nonuniform hypergraph, the eigenvectors
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e1 e2 e3 e4 e5 e6

v1 1 1 0 0 0 0
v2 1 1 0 0 0 0
v3 1 1 1 0 0 0
v4 0 0 0 1 1 1
v5 0 0 1 1 1 1
v6 0 0 1 1 1 1

Table 2.2: The H matrix for the six data points corresponding to six images in Fig 2.5. Here
each point and its two nearest neighbors are taken as one hyperedge.

of the simple graph obtained by Clique Expansion is very close to those of the hypergraph

normalized Laplacian. Consider that we take the sum of the pairwise similarities inside a

hyperedge as the hyperedge weight (similar configurations are used in the following chapters).

We transfer this hypergraph into a simple graph by Clique Expansion. In the obtained simple

graph, the edge weight between two vertices vi and vj is not decided by the pairwise affinity

Ai,j between two vertices, but the averaged neighboring affinities close to them; furthermore,

this edge weight is influenced more by those pairwise affinities whose two incident vertices

share more hyperedges with vi and vj . Through the hyergraph, the ‘higher order’ or ‘local

grouping’ information is used for the construction of graph neighborhood. We argue that such

an ‘averaging’ effect may be beneficial to the image clustering task, just as local image smoothing

may be beneficial to the image segmentation task.

To clearly show the advantage of the hypergraph model over simple graph based model,

here we present an example including six images from two classes, shown in Figure 2.5. In Fig-

ure 2.6, these six images are denoted as six vertices v1, v2, ..., v6 and pairwise affinities between

each pair of vertices are presented in the matrix At( Table 2.1). A simple graph is built in Fig-

ure 2.6(above), in which each vertex is connected to its two nearest neighbors. The edge weight

between two vertices equals their pairwise affinity if there is an edge between them; otherwise it

is set to be 0. Intuitively this simple graph can be partitioned by removing two weakest edges

v1v3 and v2v3. This is the result of the normalized cut to minimize the follow formula:

NScut(S, Sc) := Scut(S, Sc)

(

1

assoc(S, V )
+

1

assoc(Sc, V )

)

, (2.25)

where Scut(S, Sc) =
∑

u∈S,v∈Sc ws(u, v) and ws(u, v) is a simple graph edge weight between

u and u; assoc(S, V ) =
∑

u∈S,v∈V ws(u, v) and assoc(Sc, V ) is similarly defined. According to
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Figure 2.6: The simple graph and corresponding hypergraph, constructed from the similarity
matrix in Table 2.1. Note that in the hypergraph, e3 is cut and the hypergraph is divided to
two groups: {v1, v2, v3} and {v4, v5, v6}. In the simple graph each data point is corrected to its
two nearest neighbors; the edges are cut to form two groups {v1, v2} and {v3, v4, v5, v6}. The
point v3 is not correctly classified in the simple graph.

this criterion, v3 (a ferry) is falsely classified into the ‘joshua tree’ class.

For comparison, we construct a hypergraph in Figure 2.6(Bottom). Let each vertex and

its two-nearest neighbors form a hyperedge, a vertex-hyperedge matrix H could be formed

(Table 2.1). Among all the hyperedges constructed in this example, e1 and e2 correspond

to {v1, v2, v3}; e3 corresponds to {v3, v5, v6}; e4, e5 and e6 correspond to {v4, v5, v6} (Fig-

ure 2.6(Bottom)). We take the sum of the pairwise similarities inside a hyperedge as the hyper-

edge weight. The hyperedge weights for e1 to e6 are {1.4740, 1.4740, 2.0434, 2.3111, 2.3111, 2.3111}.

In order to bipartition the hypergraph in Figure 2.6(Bottom), intuitively the ‘weakest’ vertex

group or the hyperedge set with the smallest total weights should be removed, and at the same

time hyperedge sets with larger total weights should be kept as many as possible. For the three

vertex group ({v1, v2, v3}, {v3, v5, v6} and {v4, v5, v6}) mentioned above, the total hyperedge
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weights are 2.9480, 2.0434 and 6.9333, respectively. Therefore a hypergraph partition could be

made by removing e3 and the six vertices could be correctly classified into two groups. From

another perspective, if we transfer the hypergraph on the left to a new simple graph (NOT the

simple graph shown in Figure 2.6(Above)) by Clique Average, in this simple graph the pairwise

edge weights within {v1, v2, v3} or {v4, v5, v6} will be strengthened, while edge weights within

{v3, v5, v6} will be weakened; thus this simple graph can produce the correct classification re-

sult. This is exactly the classification result achieved by above normalized hypergraph partition

algorithm.

In the following, we use hypergraph incidence structures in three computer vision applica-

tions and verified the advantage of hypergraph models statistically by extensive experiments.
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Chapter 3

Hypergraph based Video Object Segmentation

In this chapter, we present a new framework of video object segmentation, in which we formulate

the task of extracting prominent objects from a scene as the problem of hypergraph cut. We

initially over-segment each frame in the sequence, and take the over-segmented image patches

as the vertices in the graph. Then we use hypergraph to represent the complex spatio-temporal

neighborhood relationship among the patches. We assign each patch with several attributes that

are computed from the optical flow and the appearance-based motion profile, and the vertices

with the same attribute value is connected by a hyperedge. Through all the hyperedges, not only

the complex non-pairwise relationships between the patches are described, but also their merits

are integrated together organically. The task of video object segmentation is equivalent to the

hypergraph partition, which can be solved by the hypergraph cut algorithm. The effectiveness

of the proposed method is demonstrated by extensive experiments on nature scenes.

3.1 Introduction

Video object segmentation is a hot topic in the communities of computer vision and pattern

recognition, due to its potential applications in background substitution, video tracking, general

object recognition, and content-based video retrieval. Compared to the object segmentation in

static images, temporal correlation between consecutive frames, i.e., motion cues, will alleviate

the difficulties in video object segmentation. Prior works can be divided into two categories. The

first category aims at detecting objects in videos mainly from input motion itself. Representative

work is layered motion segmentation [82] [96] [111]. They assume fixed number of layers and

near-planar parametric motion models for each layer, and then employ some reasoning scheme

to obtain the motion parameters for each layer. The segmentation results are obtained by

assigning each pixel to one layer. When a non-textured region is presented in the scene, layered
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segmentation methods may not provide satisfactory results due to only using motion cues. The

methods in [66] [90] [104] also belong to this category. They predefine explicit geometric

models of the motion, and use them to infer the occluded boundaries of objects. When the

motion of the data deviates from the predefined models, the performances of these methods will

be degenerated.

The second category of approaches attempts to segment video objects with spatio-temporal

information. In [30], the mean shift strategy is employed to hierarchically cluster pixels of

3D space-time video stack, which are mapped to 7-dimensional feature points, i.e., three color

components and 4 motion components. [110] first uses the appearance cue as a guide to detect

and match interest points in two images, and then based on these points, the motion parameters

of layers are estimated by the RANSAC algorithm [37]. The method in [23] begins with a layered

parametric flow model, and the objects are extracted and tracked by both the region information

(provided by appearance and motion coherence) and the boundary information (provided by the

result of the active contour). Recently, a complicated method is introduced to detect and group

object boundaries by integrating appearance and motion cues [97]. This approach starts from

over-segmented images, and then motion cues estimated from segments and fragments are fed

to learned local classifiers. Finally the boundaries of objects are obtained by a global inference

model. Different from the above methods, Shi and Malik [91] have proposed a pairwise graph

based model to describe the spatio-temporal relations in the 3D video data and have employed

the spectral clustering analysis to solve the video segmentation problem, which is beautiful and

has achieved promising results.

As introduced in Chapter 1 and Chapter 2, in many real world problems, maybe it is more

complete to represent the relations among a set of objects as hypergraphs. For example, based

on affinity functions computed from different features, we may build different pairwise graphs.

To combine these representations, one may consider a weighted similarity measure using all the

features, but simply taking their weighted sum as the new affinity function may lead to the loss

of some information which is crucial to the clustering task. On the other hand, sometimes one

may consider the relationship among three or more data points to determine if they belong to

the same cluster. In this chapter, we propose a novel framework of video object segmentation
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Figure 3.1: Illustration of our framework.

based on hypergraph. Inspired by [97], we first over-segment the images by the appearance

information, and we take the over-segmented image patches as the vertices of the graph for

further clustering. The relationship between the image patches becomes complex due to the

coupling of spatio-temporal information, while forcibly squeezing the complex relationship into

pairwise will lead to the loss of information. To deal with this issue, we present to use the

hypergraph [113] to model the relationship between the over-segmented image patches. We

describe the over-segmented patches in spatio-temporal domain with the optical flow and the

appearance based motion profile. The hypergraph is presented to integrated them together

closely. Graph vertices which have the same attribute value can be connected by a hyperedge.

Through all the hyperedges, the complex non-pairwise relationship between image patches is

described. We take the task of attribute assignment as a problem of binary classification. We

perform the spectral analysis on two different motion cues respectively, and produce several

attributes for each patch by some representative spectral eigenvectors. Finally, we use the

hypergraph cut algorithm to obtain global optimal segmentation of video objects under a variety

of conditions, as evidenced by extensive experiments.
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The rest chapter is organized as follows: the proposed framework is introduced in Section

3.2; we address the hyperedge computation in Section 3.3; experiments are reported in Section

3.4, and followed by the conclusions finally.

3.2 Overview of the proposed Framework

Video object segmentation can be regarded as clustering the image pixels or patches in the

spatio-temporal domain. Graph model is demonstrated to be a good tool for data clustering,

including image and video segmentation [91] [93]. In a simple graph, the data points are

generally taken as the vertices, and the similarity between two data point is connected as an

edge. However, for video object segmentation, the relationship among the pixels or patches may

be far more complicated than the pairwise relationship due to the coupling of spatio-temporal

information. Within a simple graph, these non-pairwise relationships should be squeezed to

pairwise ones enforcedly, so that some useful information may be lost. In this section, we present

to use the hypergraph to describe the complex spatio-temporal structure of video sequences.

Before we overview the hypergraph based framework, we first introduce the concept of the

hypergraph.

3.2.1 HyperGraph based Framework of Video Object Segmentation

In this chapter, we develop a video object segmentation framework based on the hypergraph,

shown in Figure 4.1. There contains three main components: the selection of the vertices, the

hyperedge computation, and the hypergraph partition.

Inspired by [97], we initially over-segment the sequential images into small patches with

consistent local appearance and motion information, as shown in Figure 3.2. Using the pixel

values in the LUV color space, we get a 3-D features (l, u, v) for each pixel in the image

sequence. With this feature, we adopt a multi-scale graph decomposition method [25] to do over-

segmentation, for its ability to capture both the local and middle range relationship of image

intensities, and its linear time complexity. This over-segmentation provides a good preparation

for high-level reasoning of spatial-temporal relationship among the patches. We take these

over-segmented patches as the vertices of the graph.
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The computation of the hyperedges is actually equivalent to generating some attributes of the

image patches. We treat the task of attribute assignment as a problem of binary classification

according to different criteria. We first perform the spectral analysis in the spatio-temporal

domain on two different motion cues, i.e., the optical flow and the appearance based motion

profile, respectively. Then we cluster the data into two classes (2-way cut) on each spectral

eigenvector respectively. Some representative 2-way cut results are finally selected to indicate

the attributes of the patches. By analyzing the 2-way cut results, we assign different weights to

different hyperedges. The details are described in Section 3.3.

After we obtain the vertices and the hyperedges, the hypergraph is built. We will use the

hypergraph cut to partition the video into different objects.

Figure 3.2: A frame of oversegmentation results extracted from the rocking-horse sequence used
in [97].

3.3 Hyperedge Computation

As mentioned above, the hyperedge is used to connect the vertices with same attribute value,

so the task of hyperedges computation is actually to assign attributes for each image patch in

spatio-temporal domain. In this section, we present to use spectral analysis for the attribute

assignment. Before this, we will introduce how to represent the over-segmented patches in the
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spatio-temporal domain, and finally we discuss how to assign weights to the hyperedges.

3.3.1 Computing Motion Cues

We use the optical flow and the appearance based motion profile to describe the over-segmented

patches in the spatio-temporal domain. The Lucas-Kanade optical flow method [76] is adopted

to obtain the translations (x, y) of each pixel, and we indicate each pixel with the motion

intensity z =
√

x2 + y2 and the motion direction o = arctan(x
y ) . We assume that pixels in the

same patch have a similar motion, and then the motion of a patch can be estimated, fo = (u, d),

by computing the weighted average of all the pixel motions in a patch:

u =
1

N

∑

i

ωizi, d =
1

N

∑

i

ωioi, (3.1)

where N is the total number of pixels in a region, and wi is the weight generated from a low-pass

2-D Gaussian centered on the centroid of the patch. u, d are the motion intensity and the motion

angle of the patch, respectively. Since the motion of the pixels near the patch boundaries may

be disturbed by other neighborhood patches, we discard the pixels near the boundaries (3 pixels

to the boundaries).

Besides the optical flow, we also apply the appearance based motion profile to describe

the over-segmented patches, inspired by the idea in [91]. Based on a reasonable assumption

that the pixels in one patch have the same movement and color components and remain stable

between consecutive frames too, the motion profile is defined as a measure of the probability

distribution of image velocity to every patch based on appearance information. Let It(Xi)

denote the vector containing all the (l, u, v) pixel values of patch i centered at X , and denote

Pi(dx) as the probability of the image patch i at time t corresponding to another image patch

It+1(Xi + dx) at t + 1:

Pi(dx) =
Si(dx)

∑

dx Si(dx)
(3.2)

where Si(dx) denotes the similarity between It(Xi) and It+1(Xi + dx), which is based on on

the SSD difference between It(Xi) and It+1(Xi + dx):
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Si(dx) = exp(−SSD(It(Xi), I
t+1(Xi + dx))). (3.3)

3.3.2 Spectral Analysis for Hyperedge Computation

The idea of spectral analysis is based on an affinity matrix A, where A(i, j) is the similarity

between sample i and j [93] [81] [109]. Based on the affinity matrix, the Laplacian matrix can

be defined as L = D− 1
2 (D−A)D− 1

2 , where D is the diagonal matrix D(i, i) =
∑

j A(i, j). Then

unsupervised data clustering can be achieved by doing eigenvalue decomposition of the Lapla-

cian matrix. The popular way is to use the k-means method on the first several eigenvectors

associated with the smallest non-zero eigenvalues [81] to get the final clustering result.

To set up the hyperedges, we perform the spectral analysis on the optical flow and the

appearance based motion profile respectively. As in [93] [81] [109], only local neighbors are

taken into account for the similarity computation. We defined two patches to be spatial-temporal

neighbors if 1) in the same frame they are 8-connected or both their centroids fall into a ball of

radius R, or 2) in the adjacent frames (±1 frame in the work) their regions are overlapped or

8-connected, as illustrated in Figure 4.1.

Denote the affinity matrices of the optical flow as Ao and the motion profile as Ap respec-

tively. For the motion profile, we define the similarity between two neighbor patches i and j is

defined as:

Ap(i, j) = e−
dis(i,j)

σp , dis(i, j) = 1 −
∑

dx

Pi(dx)Pj(dx), (3.4)

where dis(i, j) is defined as the distance between two patches i and j, and σp is constant

computed as the standard deviation of dis(i, j).

Based on the optical flow, the similarity metric between two neighbor patches i and j is

defined as:

Ao(i, j) = e−
‖fm

i
−fm

j
‖2

σo , (3.5)

where σo is a constant computed as the standard deviation of ‖fo
i − fo

j ‖2.
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(1) (2)

(3) (4)

Figure 3.3: Four binary partition results got by the first 4 eigenvectors computed from motion
profile (for one frame of the sequence WalkByShop1cor.mpg, CAVIAR database. ).

Based on Ao and Ap, we can compute the corresponding Laplacian matrix of Lo and Lp and

their eigenvectors associated with the first k smallest non-zero eigenvalues respectively. Each of

these eigenvectors may lead to a meaningful but not optimal 2-way cut result. Figure 3.3 shows

some examples, where the patches without the gray mask are regarded as the vertices having the

attribute value 1 and the patches with the gray mask having the attribute 0. A hyperedge can

be formed by those vertices with same attribute values. With all the hyperedges, the complex

relationship between the image patches can be represented by the hypergraph completely.

3.3.3 Hyperedge Weights

According to [93], the eigenvectors of the smallest k non-zero eigenvalues can be used for clus-

tering. Then a nature idea is to choose the first k eigenvectors to compute the hyperedges,

and weight those heyperedges with their corresponding reciprocals of the eigenvalues. In our

experiments, we find that the eigenvalues of the first k eigenvectors are very close and may
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(1) 0.3506 (2) 0.2403

(3) 0.2378 (4) 0.0986

Figure 3.4: 4 binary partition results with largest hyperedge weights (for one frame of Walk-
ByShop1cor.mpg ). Obviously that the heperedge got from the 1st and 4th frames have a
good description of objects we want to segment according to their importance. The computed
hyperedge weights are shown below those binary images.

not absolutely reflect the importance of the corresponding eigenvectors. In order to emphasize

more important hyperedges which contain moving objects, larger weights should be assigned to

them.

We impose the weights to the hyperedges from two different cues, wo
H and wp

H , by the

following equations:

wo
H = co‖fo

1 − fo
0‖2 (3.6)

wp
H = cpdis(1, 0) (3.7)

where co and cp are constant, and dis(1, 0) means the dissimilarity between two regions in

the binary image with value 1 and 0, based on the first motion feature; fo
1 and fo

0 means the

weighted motion intensity and direction of two regions in the binary image with value 1 and 0.
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Based on above definition, a larger weight is assigned to the binary frame whose two segmented

regions have distinct appearance (motion) distributions.

In practice, we select the first 5 hyperedges with larger weights computed from appear-

ance and motion respectively; and then proper cp and co are chosen to let
∑5

i=1 wp
H(i) = 1

and
∑5

i=1 wo
H(i) = 1. In 3.4, we show the corresponding weight values under the binary at-

tribute images. It is obvious that more meaningful attributes are assigned larger weights in our

algorithm.

After the construction of hypergraphs for video object segmentation, the theoretical solution

of this real value problem is the eigenvector associated with the smallest non-zeros eigenvector

of the hypergraph Laplacian matrix ∆ = I − D
− 1

2
v HWD−1

e HT D
− 1

2
v . As in [81], to make a

multi-way classification of vertices in a hypergraph, we take the first several eigenvectors with

non-zeros eigenvalues of ∆ as the indicators (we take 3 in this work), and then use a k-means

clustering algorithms on the formed eigenspace to get final clustering results.

3.4 Experiments

3.4.1 Experimental Protocol

To evaluate the performance of our segmentation method based on the hypergraph cut, we

compare it with three clustering approaches based on the simple graph, i.e., the conventional

simple graph with pairwise relationship. In these three approaches, we measure the similarity

between two over-segmented patches using (1) the optical flow, (2) the motion profile, and

(3) both the motion cues. The similarity matrix for (1) and (2) just follow Equation 3.5 and

Equation 3.4. For (3), the similarity is defined as follows:

A(i, j) = e−
‖fm

i
−fm

j
‖2

σo −
dis(i,j)

σp , (3.8)

where σo and σp are constants. Notice that σ values in Equation 3.8, Equation 3.4 and Equa-

tion 3.5 are all tuned to get the best segmentation results for both the hypergraph based and

the simple graph based methods for comparison. Then corresponding Laplacian matrix of these

three approaches can be computed accordingly and the k-means algorithm can be performed
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on the first n eigenvectors with nonzero eigenvalues. In our experiment, we choose n = 10 for

all these three simple graph based methods.

3.4.2 Results on Videos under Different Conditions

We first report the experiments on the rocking-horse sequence and the squirrel sequence used

in [97]. We choose them because the movement of objects in these two sequences are very

subtle and their backgrounds are cluttered and similar to the objects. Figure 3.5 and 3.6 show

the ground truth frames, the results of three simple graph based methods, and the results

of hypergraph cut for these two sequences. To illustrate a distinctive comparison with the

ground truth, we plot the red edge of the segmented patches in our results. Compared with the

results in [97] and the simple graph based methods, in both sequences our method gives more

meaningful segmentation results for the foreground objects, although a few local details are lost

in the squirrel sequence. In all these figures, the number of cluster classes is set to 2 (K=2).

We also compare four algorithms on the image sequences in which the video object has com-

plicated movements. The sequence shown in Figure 3.7 (Walk1.mpg, from CAVIAR database)

contains a person browsing back and forth and rotating during the course of his movement. In

this example, we cluster the scene to two classes (K=2) too. From Figure 3.7, we can observe

that our method can give very accurate segmentation result for the moving objects, in spite of

the small perturbation in the left corners of this sequence. However, the simple graph based

methods can not completely extract the moving person from background and some unexpected

small patches are classified into the moving objects.

In the real world, the video objects may be occluded or interacted with each other during

their movements. We also test the proposed method on such examples with occlusion. In

Figure 3.8, four algorithm are compared on a running-car sequence with an artificial occlusion,

in which the hypergraph cut extracts the car and the pedestrian from the background accurately,

while the simple graph based methods can extract the car or the pedestrian. In the sequence

shown in Figure 3.9 (WalkByShop1front.mpg, from CAVIAR database), a couple walk along

the corridor, and another person moves to the door of the shop hastily and is occluded by the

couple during his moving. When we set K=2, the person with largest velocity of movement
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Sequence Name MP OP MP+OP Hypergraph Cut
Rocking-horse 0.87/0.02 0.96/0.76 0.96/0.92 0.91/0.02

Squirrel 0.91/0.86 0.89/1.32 0.72/0.02 0.89/0.01
Walk1 0.92/15.3 0.92/6.4 0.92/12.7761 0.94/0.03

car running 0.14/0.03 0.82/0.02 0.82/3.22 0.89/0.03
WalkByShop1front 0.32/0.47 0.56/0.81 0.79/0.66 0.84/0.37

Table 3.1: Average accuracy/error for all the experimental frames of every sequence, where
MP means simple graph method by the motion profile, OP means simple graph method by the
optical flow and MP+OP means the simple graph method using both cues. Mention that for
WalkByShop1front.mpg we only consider the case when K=4.

is segmented. When we set K=3, K=4 and K=5, three primary moving objects are extracted

one by one only with a small patch between the couple, which is caused by the noise of motion

estimation. For the simple graph based methods, we give the best case (the best result under

different K). For K > 3, simple graph based methods usually give very cluttered and not

meaningful results. For the simple graph based methods using the motion profile or the optical

flow, K =2 can give the most meaningful results, and K =3 can give a good extraction of the

couple for the simple graph method using both motion cues.

In Table 3.1, the average segmentation accuracy and segmentation error are estimated and

compared on the experimental frames of all the image sequences. The segmentation accuracy

for one frame is defined as the number of ’true positive’ pixels (the true positive area) divided

by the number of the ground truth pixels(the ground truth area). The segmentation error for

one frame is defined as the number of ’false positive’ pixels (the false positive area) divided by

the number of the ground truth pixels(the ground truth area).

3.5 Conclusions

In this chapter, we proposed a framework of video object segmentation , in which hypergraph

is used to represent the complex relationship among frames in videos. We first used the multi-

scale graph decomposition method to over-segment the images and took the oversegmented

image patches as the vertices of the hypergraph. The spectral analysis was performed on

two motion cues respectively to set up the hyperedges, and the spatio-temporal information is

integrated by the hyperedges. Furthermore, a weighting procedure is discussed to put larger

weights on more important hyperedges. In this way, the task of video object segmentation is



41

transferred into a hypergraph partition problem which can be solved by the hypergraph cut

algorithm. The effectiveness of the proposed method is demonstrated by extensive experiments

on nature scenes. Since our algorithm is a open system, in the future work, we may add more

motion or appearance cues (such as texture information, the occlusions between frames) into

our framework to construct more hyperedges and further improve the accuracy of these results.
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(a) (b)

(c) (d)

(e)

Figure 3.5: Segmentation results for the 8th frame of the rocking-horse sequence. (a) The
ground truth, (b) the result by the simple graph based segmentation using optical flow, (c) the
result by the simple graph based segmentation using motion profile, (d) the result by the simple
graph based segmentation using both motion cues, and (e) the result by the hypergraph cut.
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(a) (b)

(c) (d)

(e)

Figure 3.6: Segmentation results for the 4th frame of the squirrel sequence. (a) The ground
truth, (b) the result by the simple graph based segmentation using optical flow, (c) the result
by the simple graph based segmentation using motion profile, (d) the result by the simple graph
based segmentation using both motion cues, and (e) the result by the hypergraph cut.
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(a) (b)

(c) (d)

(e)

Figure 3.7: Segmentation results for one frame of Walk1.mpg, CAVIAR database. (a) The
ground truth, (b) the result by the simple graph based segmentation using optical flow, (c) the
result by the simple graph based segmentation using motion profile, (d) the result by the simple
graph based segmentation using both motion cues, and (e) the result by the hypergraph cut.
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(a) (b)

(c) (d)

(e)

Figure 3.8: Segmentation results for the 16th frame of the car running sequence with occlusion.
(a) The ground truth, (b) the result by the simple graph based segmentation using optical flow,
(c) the result by the simple graph based segmentation using motion profile, (d) the result by the
simple graph based segmentation using both motion cues, and (e) the result by the hypergraph
cut.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.9: Segmentation results for one frame of the WalkByShop1front.mpg, different colors
denote different clusters in each sub-figure. (a) The ground truth, (b) the result by the simple
graph based segmentation using optical flow (K=2), (c) the result by the simple graph based
segmentation using motion profile (K=2), (d) the result by the simple graph based segmentation
using both motion cues (K=3), (e) the result by the hypergraph cut (K=2), (f) the result by
the hypergraph cut (K=3), (g) the result by the hypergraph cut (K=4), and (h) the result by
the hypergraph cut (K=5).
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Chapter 4

Unsupervised Image Categorization by Hypergraph

Partition

In this chapter, we present a framework for unsupervised image categorization, in which images

containing specific objects are taken as vertices in a hypergraph, and the task of image clustering

is formulated as the problem of hypergraph partition. First, a novel method is proposed to

select the region of interest (ROI) of each image, and then hyperedges are constructed based on

shape and appearance features extracted from the ROIs. Each vertex (image) and its k-nearest

neighbors (based on shape or appearance descriptors) form two kinds of hyperedges. The weight

of a hyperedge is computed as the sum of the pairwise affinities within the hyperedge. Through

all the hyperedges, not only the local grouping relationships among the images are described, but

also the merits of the shape and appearance characteristics are integrated together to enhance

the clustering performance. We use the generalized spectral clustering technique to solve the

hypergraph partition problem. We compare the proposed method to several methods and its

effectiveness is demonstrated by extensive experiments on three image databases.

4.1 Introduction

Unsupervised image categorization based on some similarity measurements is a critical prepro-

cessing step in many computer vision problems. Supervised approaches (such as SVM, boosting,

etc.) of object detection and recognition typically require a lot of training images whose classes

are labelled and/or bounding boxes of the objects of interest are annotated. Generally this

training data is manually selected and annotated, which is expensive to obtain and may intro-

duce bias information into the training stage. An unsupervised technique (such as k -centers

clustering [79] and affinity propagation based clustering [39] etc) bases its categorization de-

cision directly on the data. It not only recovers image categories naturally, but also provides
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a powerful tool to collect exemplar images for learning based applications. For unsupervised

image categorization, topic model based clustering has been demonstrated to outperform clas-

sical methods such as k-means by extensive experiments [94] [70] [85]. [34] and [72] extend the

topic models with spatial information to boost categorization results. Topic models can also be

combined with image segmentation information [88] or with a hierarchical class structure [95].

In [101], a complicated model based on tree matching is proposed for unsupervised discover of

topic hierarchies. Other works, such as [40] and [84], try to discover object classes and locations

by detecting reoccurring structure or frequent features sets. [59] presents an iterative method

to amplify ‘consistency’ existing in objects of the same class, by using a novel star-like geomet-

ric model and an appearance learning tool. This unsupervised algorithm leads to precise part

localization and classification performance comparable to supervised approaches, but mainly for

class vs. non-class mixes (i.e. sets formed by some images of one specific class and some other

non-class images). Recent related works include organizing images into a tree shaped hierarchy

by a Bayesian model [46] and discovering object shapes from unlabeled images [68], etc.

Different from the above methods, recently Grauman et al. [44] and Kim et al. [62] [63]

adopt the pairwise graph (for simplicity, we denote the pairwise graph as simple graph in

the following) to model relationship between unlabeled images. These works differ in how

to measure the similarities between images: in [44], image-to-image affinities are computed by

pyramid matching kernel (PMK) [43]; while in [62] and [63], the distance metric between images

is based on link analysis techniques, which largely improves the object detection/categorization

performance on some classes of Caltech-101 [69]. [80] encodes object similarity and spatial

context between object exemplars into simple graphs with two kinds of pairwise edges. Spectral

clustering [81] is usually utilized to solve the simple graph based partitioning problem [43] [62]

and its superiority over previous methods is verified in [103].

To overcome the limitations of simple graph based methods mentioned above, we propose

a hypergraph based framework to exploit the correlation information among unlabeled images

containing distinct objects, and adopt a hypergraph partition algorithm to improve unsupervised

image categorization performance. Different from simple graph, hypergraph contains summa-

rized local grouping information, which may be beneficial to the global clustering. Moreover,
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Figure 4.1: Illustration of our framework.
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in a hypergraph we can construct several kinds of hyperedges based on different attributes,

as shown in the previous chapter. These hyperedges co-exist in a hypergraph and provide

useful and diversified grouping information for final partition. In this work, our purpose is

to use hypergraph to model the complex relationship among the unlabeled images for image

categorization. The proposed framework is shown in Figure 4.1. First, we develop an unsu-

pervised method to select the ROIs of the unlabeled images. Based on the appearance and

shape descriptors extracted from the ROIs, we use spatial pyramid matching [67] to measure

two kinds of similarities between two images. Then we can form two kinds of hyperedges and

compute their corresponding weights based on these two kinds of similarities respectively. In

this way, not only are the higher order relationships among the images described, but also

the merits of shape and appearance characteristics are integrated naturally to enhance the

clustering performance. Finally, we use the hypergraph partition algorithm [113] to solve the

image categorization problems. The proposed method is tested in three benchmarks including

the data sets of Caltech-101 [69], Caltech-256 [45], and Pascal VOC2008 [33], compared to

the-state-of-the-art by extensive experiments.

Figure 4.2: A hypergraph example and its H matrix.

According to the above definition, different hyperedges may contain different number of

vertices. For simplicity, in this work we only consider the case where all the hyperedges have

the same degree; this kind of hypergraph is called uniform hypergraph. We define a hyperedge as

a group of vertices which contain a ‘centroid’ vertex and this centroid’s k -nearest neighbors. In

Figure 4.2 an example is shown to explain how to construct such a hypergraph. According to the



51

similarities on the pairwise edges, each vertex and its two-nearest neighbors form a hyperedge.

In Figure 4.2, hyperedges are marked by ellipses. For example, the hyperedge e4 is composed of

vertex v4 and its two nearest neighbors v3 and v5. The corresponding vertex-hyperedge matrix

H could be formed as in the right side of Fig. 4.2.

In order to bipartition this hypergraph, intuitively the hyperedges with the smallest weights

should be removed, and at the same time as many hyperedges with larger weights as possible

should be kept. Since e4 has the smallest hyperedge weight, a hypergraph partition could be

made on it to classify v1, v2, ..., v6 into two groups. This is exactly the result obtained by the

normalized hypergraph partition.

4.2 Our Two-Step Method for Unsupervised ROI Detection

Besides cluttered background, various positions and scales of interesting objects in images also

make it unreliable to measure the similarities based on whole images. To overcome this problem,

previous works [12] [22] proposed to extract rectangle ROIs of object instances based on iterative

conditional model [8]. However, they are based on the assumption that the categorization

information of images is known, so they can not work when no prior information (such as the

class labels of objects) is provided. In this work, we propose a novel two-step method to detect

the ROIs from the unlabeled images.

Consider an image set S that contains not only images from one or several object classes,

but also other non-class images. At first we go over the entire set S to compute every image’s

k–nearest neighbors (KNN). We use a KNN algorithm based on vantage point trees, which is

able to provide the best performance for computer vision applications and speed up the search

effectively [64]. To measure the degree of closeness between each image with its neighbors, we

get scores by summing up the distances between each image with its five nearest neighbors.

We sort all the images in S by these scores. Then bottom 5% images with lowest scores are

selected from S and taken as the initial exemplars for the given query. Our object annotation

approach alternates between Rough Localization Phase and accurate ROI localization,

with a continuous expansion of the exemplar set. In this manner the process not only exploits
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ROI localization results at a given stage to guide the next stage, but also identifies more high-

likelihood images as exemplars related to the input query.

4.2.1 Rough Localization Phase

Initialization is a crucial step in many optimization tasks. A bad initialization may lead to a

local maximum or minimum which is far from the satisfactory solution. In this subsection we

propose efficient initialization procedures to predict the ROI s of the exemplar images. For the

initial exemplars, we create a novel feature weighting framework to divide the foreground and

background; for the new incoming exemplars in the subsequential loops, rough ROI s are found

by a query-by-example technique.

Rough Localization for initial exemplars. The dense SURF features are extracted ev-

ery 12 pixels from three pyramid scales of all the images and a 2000–bins codebook is organized

by k–means algorithm. For each image, we assume that some codewords (bins) in the codebook

are more relevant to the foreground objects while some other codewords are more relevant to

the background. Taking each initial exemplar as the centroid, we collect its npos = 3% × N

nearest neighbors as the positive set (where N is the total number of the unlabelled images); we

randomly sample nneg = 10% × N images from the top 30% farthest neighbors as the negative

set. Intuitively, foreground features should have more contribution to the similarity between

the centroid image and the images in the positive set; the similarity between the centroid image

and the images in the negative set is caused by false matches in some bins. For each code-

word, we accumulate the pairwise intersection between the histogram (on the level l = 0) of the

centroid image and the histograms of the images from the positive/ negative set respectively.

After normalization, we can obtain two density functions DESpos
i (w) and DESneg

i (w) for the

exemplar image i, which describe the overall distributions of matches on two image sets:

DESpos
i (w) =

∑

j∈Pi

min(Hisi
0(w), Hisj

0(w))

∑|V |
k=1 DESpos

i (vk)
, (4.1)

DESneg
i (w) =

∑

j∈Ni

min(Hisi
0(w), Hisj

0(w))

∑|V |
k=1 DESneg

i (vk)
. (4.2)

where Pi and Ni are the positive set and the negative set for the exemplar i, respectively.
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For simplicity, we denote these two density functions as the positive and negative distributions

respectively. The value of DESpos
i (w) − DESneg

i (w) reveals to what extend a codeword w is

related to the foreground objects or the background. Since every SURF feature is quantized

into a histogram by soft assignment according to Eq. 5.10, we can assign weights to all SURF

features based on these two distributions:

weighti(f) =

∑|V |
j=1[DESpos

i (vj) − DESneg
i (vj)]Kσ(D(vj , f))

∑|V |
j=1 Kσ(D(vj , f))

(4.3)

where weighti(f) is the weight of the SURF feature f in the exemplar image i. According to

the above analysis, localizing the ROIs roughly is equivalent to finding a rectangular region R

in the centroid image to maximize the sum of all the feature weights:

argmax
R∈R

∑

∀f∈R

weight(f) = arg max
R∈R

{F+(R) + F−(R)} (4.4)

where R is the set of all possible rectangles in the image, F+(R) and F−(R) are the sum of all

the positive weights and the sum of all the negative weights in R, respectively. To solve Eq. 4.6,

traditional methods need to exhaustively search all the possible windows in the image. In this

work, we adopt a ‘beyond sliding windows’ scheme [65] to obtain the optimal solution of Eq. 4.6

in typically sublinear time. The details are shown in Algorithm 1.

Algorithm 1 Learning the rough ROIs of initial exemplars

1: for each image i: do
2: collect its positive set Pi and its negative set Ni based on the spatial pyramid matching

algorithm [67];
3: accumulate and normalize the intersection scores between the exemplar image i and the

images in the positive set Pi, from codeword to codeword, according to Eq. 4.1;
4: accumulate and normalize the intersection scores between the exemplar image i and the

images in the negative set Ni, from codeword to codeword, according to Eq. 4.2;
5: compute the weight for each feature according to Eq. 4.3;
6: obtain the rough ROI of the exemplar image i by maximizing Eq. 4.6 by the ‘beyond

sliding windows’ [65] method.
7: end for

Rough Localization for subsequent exemplars. The rough ROI localization results in

initial exemplars can be refined with the method introduced in Section 4.2. Then those refined

ROI s in the current exemplar set are used as query examples to search for their most similar

subregions in all the non-exemplar images. In [65], the ‘beyond sliding windows’ method is

also employed to search for similar subregions efficiently in multiple images. For simplicity,
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we only search each ROI ’s most similar subregion from non-exemplar images, add that image

to the exemplar set and take the subregion as its rough ROI. The new exemplar is taken as

the ‘child’ of the query exemplar. If a new incoming exemplar has two ore more ancestors,

the rough ROI it contained is the most similar subregion to all its ancestors. Similar to those

initial exemplars, the positive and negative set of every new exemplar will be prepared for the

accurate ROI localization phase.

4.2.2 Accurate ROI Localization

After obtaining the rough ROI locations in all images of the current exemplar set, we need to

refine them and obtain the final ROIs by maximizing the following cost function:

|E|
∑

i=1

{−
∑

j∈Pi

DIS(i, j) +
∑

k∈Ni

DIS(i, k)} (4.5)

where |E| is the number of images in the current exemplar set; Pi and Ni are the positive set

and the negative set for the exemplar i, respectively. DIS is the distance function based on

the shape descriptors and the appearance descriptors, which are computed according to Eq. ??.

In Eq. 4.5, we try to optimize the ROI of each exemplar by minimizing the distance between

each exemplar and its positive set, while simultaneously maximizing the distance between each

exemplar and its negative set. It is very expensive to optimize Eq. 4.5 exhaustively. To overcome

this problem, We adopt a sub-optimal scheme based on the iterative conditional model(ICM) [8],

which is used in previous works [12] [22]. We first enlarge the rough ROIs by 15% and search

refined ROIs in this enlarged range using several window sizes(we obtain search window sizes

by extending and shrinking the width or(and) the length of a rough ROI by 5% and 10%). To

reach this goal, we define the following function and maximize it:

L(R1,...,R|V |)=

|V |
∑

i=1

{
∑

j∈Pi

(As
i,j+Aa

i,j)−
∑

k∈Ni

(As
i,k+Aa

i,k)}, (4.6)

where |V | is the number of all the images; As
i,j is the abbreviation of As(Ri, Rj), Ri is the ROI

candidate of the ith image; Pi and Ni are the positive set and negative set of the ith image,

respectively; As and Aa are two different affinity functions based on the appearance descriptor

and the shape descriptor respectively to measure the similarities between two ROI candidates.
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We will address how to define the similarities between two ROIs in Section 4.1. The idea of

Equation 4.6 is to optimize the ROI in each image by maximizing the similarity between it and

its positive set, and simultaneously minimizing the similarity between it and its negative set.

However, it is too expensive to optimize Equation 4.6 exhaustively, so we use a sub-optimal

scheme based on iterative conditional model to solve this problem, which is demonstrated to be

efficient in our experiments. For each image i, we search the best Ri by fixing ROIs in other

images, and maximizing the following function:

∑

j∈Pi

(As
i,j + Aa

i,j) −
∑

k∈Ni

(As
i,k + Aa

i,k). (4.7)

This procedure circulates through all the images until the search of 90% ROIs converges.

Figure 4.3: Positive/Negative set (for a dolphin image) and accumulated intersection scores. Based
on these scores we can decide the features in which bin are ’positive’ or ’negative’.

Figure 4.4: An illustration on how to get the rough ROI of an unlabeled image. On the second image
10 × 10 dense features are extracted. On the third image the 15 most significant positive/negative
features are shown as red/green ellipses. On the last image the rough ROI is obtained.



56

4.3 Hypergraph Partition for Image Categorization

4.3.1 Similarity Measurements Between the ROIs

As mentioned above, we represent each image by the features extracted from its ROI, and the

hyperedge defined in the proposed hypergraph is formed by an image and its k -nearest neighbor.

Therefore, how to define the similarity measurement between the ROIs is a key issue to build the

hypergraph, besides the issue of ROI refinement addressed in the last Section. In this work, we

utilize two kinds of feature descriptors on the ROIs, i.e., the SURF based appearance feature

descriptor and the PHOG (the pyramid histograms of edge oriented gradients) based shape

feature descriptor [28] [13]. Based on these two features we obtain two different similarities,

i.e., As and Aa in Equation 4.7 respectively. We use the speed up robust feature (SURF) as

the appearance descriptor [6] because it approximates or even outperforms previously proposed

local appearance features such as the SIFT [75], and it can be computed much faster. PHOG

is known as a good descriptor to capture shape information.

As shown in Figure 4.5, the SURF features are densely sampled at three scales. Given a

ROI, we densely extract SURF features from 15 × 15 rectangular grids of the ROIs. For those

very small ROIs, we double their sizes to extract the features. We create a 128-bin codebook

of SURF features by k–means, and totally 225 features are quantized into a histogram by soft

assignment as in [106], because such soft assignment technique was proven to make remarkable

improvement in object recognition [106]. For the PHOG descriptor, in each image grid we

discretize it into 20 bins (that is, the length of each ‘bin’ is 360/20 = 18 degree). Since 3

pyramid levels (the grid configurations are 1X1, 2X2, 4X4) are used, so there are actually 420

bins in a PHOG based histogram.

We adopt the spatial pyramid matching(SPM) [67] (illustrated in Figure 4.5) to calculate

the similarities because of its better performance when image ROIs are obtained. Given the

local histograms Hisl
i and Hisl

j at each level of two images i and j based on the appearance or

shape features, the similarity is computed using a kernel function as follows:

A(Ri, Rj) = exp {− 1

β

L
∑

l=0

1

2L−l
dis(Hisl

i, Hisl
j)}, (4.8)
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where β is the standard deviation of
∑

l∈L

1
2L−l dis(Hisl

i, Hisl
j) over all the data; dis is the distance

function computed with an improved pyramid matching kernel (PMK) algorithm [43] [44]. In

this work, we set L = 2, as shown in Figure 4.5.

Figure 4.5: From left to right: levels l = 0 to l = 2 of the spatial pyramid grids for the
appearance and shape descriptors.

4.3.2 Computation of the Hyperedges

In this work, we take each image as a centroid and collect its k -nearest neighbors by the

shape and appearance descriptors respectively. Then two kinds of hyperedges (based on the

shape/apperance descriptors) can be constructed over these K + 1 images with different hyper-

edge weights. The hyperedge weight w(e) is computed as follows:

w(e) =
∑

vi,vj∈e
i<j

Ai,j , (4.9)

where the affinity function Ai,j is computed according to Equation4.8. If a hyperedge is con-

structed by the appearance descriptor, the w(e) is computed by Aa. The w(e) is computed by

As when the shape descriptor is used.

For practical hypergraph partition problems, the choice of hyperedge size is crucial to the

final clustering results. Except for the hyperedge size, all the parameters in our framework

are computed from the experimental data directly. Intuitively, very small-size hyperedges only

contain ‘micro-local’ grouping information which will not help the global clustering over all the

images, and very large-size hyperedges may contain images from different classes and suppress

the diversity information. To optimize the clustering results, it is necessary to perform a sweep

over all the possible values of the hyperedge size. In Section 5.2, a sensitivity analysis is made

to investigate the robustness of our algorithm by illustrating how the clustering accuracy varies
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along with the hyperedge size.

4.3.3 Hypergraph Partition Algorithm

In this work, we adopt the algorithm proposed in [113] to partition the hypergraph because of

its efficiency and simplicity of implementation. As in [81], to make a multi-way classification

of vertices in a hypergraph, we take the first several eigenvectors with non-zero eigenvalues of

the hypergraph Laplacian matrix ∆ as the indicators (we take 3 in this work), and then use a

k-means clustering algorithm on the formed eigenspace to get final clustering results.

4.4 Experiments

4.4.1 Experimental Protocol

In the following, we first make a sensitivity analysis to show the robustness of our algorithm

when the hyperedge size varies. Then we compare our results to the-state-of-the-art [62] on

the same data sets using the same testing protocol. We also compare our method with three

different unsupervised methods: 1. the k -centers clustering [79], 2. the affinity propagation [39],

3. the simple graph based normalized cut. We test these methods and our proposed method on

three different data sets, which are Caltech-101 [69], Caltech-256 [45], and Pascal VOC2008 [33]

respectively. For above three clustering methods, the affinity between two images is defined as

Av = As + Aa based on the features in the selected ROIs. For the simple graph based method,

we build the simple graph by connecting each vertex (image) with its k -nearest neighbors by

pairwise edges. The affinity matrix is constructed as W (i, j) = Av
i,j if two vertices are connected

and W (i, j) = 0 otherwise. The spectral analysis is employed to solve an eigen-decomposition

problem, and the first several (we use 3 in this work) eigenvectors are fed to k -means algorithm to

get the final classification results. In our experiments the number of obtained clusters are set the

same as the number of true classes. To evaluate how well the unlabeled images are clustered

according to their ground truth labels, we follow the measurement used in [44] and [62] by

computing the average accuracies over all classes. The image ROI prediction error is defined as
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Figure 4.6: The sensitivity analysis on the hyperedge size. the clustering accuracy and its
standard deviation are plotted. Notice that for most of K values, the hypergraph based method
illustrates a much more stable trend of variation on the accuracy.
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Figure 4.7: An illustration for several definitions used in Eq. 4.10.

errloc =
0.5 × (FPA + FNA)

FPA + FNA + TPA
, (4.10)

where TPA denotes true positive area; FPA denotes false positive area and FNA denotes false

negative area, as shown in Fig. 4.7. Eq. 4.10 can be used as a good single-value measurement

for object localization since a small localization error guarantees small false positive and small

false negative areas at the same time.

4.4.2 Sensitivity Analysis of the Hyperedge Size

Since both the hyperedges in the hypergraph and the edges in the simple graph are formed by

each vertex and its K -nearest neighbors, we report the classification accuracy as a function of

K. To obtain an indication of significance, the bootstrap method [9] is used to estimate the con-

fidence intervals for classification accuracy. In this analysis, we provide a pool of 200 unlabeled

images from Caltech-101 (at first 4 classes are randomly selected from Caltech-101, and then 50

images are randomly chosen from each of the 4 classes). For each K value plotted, we run both

the hypergraph method and the simple graph method 50 times, each time with a different ran-

dom subset of 4 classes. We performe the sensitivity analysis under three circumstances: using

appearance descriptors, using shape descriptors and using both descriptors(if one descriptor is

used, we only use As or Aa as the similarity measure in a simple/hypergraph). In Figure 4.6

the average accuracy and the standard deviation over 50 runs are reported for each K value.

As illustrated in Figure 4.6, the hypergraph based clustering not only obtains better clustering
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accuracies on most of K values, but also illustrates a much more stable trend of variation on

the accuracy as K increases, especially when 20 < K < 100. By contrast, the simple graph

based clustering shows a lower robustness of the performance on the selection of the parameter

K. In the comparison of the following experiments, we will show the best accuracy of both two

methods by tuning K value.

Here we give an intuitive explanation for why performance of hypergraph models in Fig-

ure 4.6 is still high when K = 100 are used in the hypergraphs. Consider that we transfer

a hypergraph into an equivalent simple graph by Clique Expansion. The pairwise similarity

between two vertices is proportional to the sum of their corresponding hyperedge weights. That

is, in the obtained simple graph, the edge weight between two vertices vi and vj is not decided

by the pairwise affinity Ai,j between two vertices, but the averaged neighboring affinities close

to them; furthermore, this edge weight is influenced more by those pairwise affinities whose two

incident vertices share more hyperedges with vi and vj . In this way the adverse impact caused

by some ’noise’ similarities may be weakened by this weighted averaging or smoothing effect of

the hypergraph construction, even when K is relatively large.

4.4.3 Results on Caltech Data Sets

Compared to [62]. [62] is the latest work on unsupervised image categorization, and it is

based on simple graph partition. So we first compare to this work under the same experiment

setting to show the effectiveness of our framework. Following the approach in [62], we select

six object classes (airplane, motorbikes, rear cars, faces, watches, ketches) from Caltech-101 to

the proposed hypergraph method. For ROI localization results, we report the average errloc

and its standard deviation (std) in Table 4.1 according to Eq. 4.10. The ROI detection results

shown in Table 4.1 is desirable, since objects in images of Caltech-101 are roughly aligned and

backgrounds in those images are relatively simple. For categorization results, Table 4.2 shows

the confusion matrices with increasing number of classes (from four to six). Each experiment

is iterated ten times as in [62], in which 100 images per object are randomly picked from each

object class. As illustrated in Table 4.2, our clustering result for four object classes(98.53%)

is comparable to [62] (98.55%). In the cases of five and six object classes, our results achieve
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A M C F W K

Error 8.1 5.2 6.8 4.7 9.6 5.5
STD 7.6 4.3 5.7 8.2 6.9 7.5

Table 4.1: Average localization errors and standard deviations, computed using Eq. 4.10.
A:Airplanes, C: Cars, F: Faces, M: Motorbikes, W: Watches, K: Ketches)

97.38% and 96.05%, which are slightly better than [62] (97.30% and 95.42%). Average cluster-

ing accuracies/std errors are computed using the diagonal entries in corresponding confusion

matrices.

More results on Caltech Data Sets. To further evaluate the performance of our model,

we design a more universal and difficult experiment setting for comparison, which is rarely used

in previous work. We use all image classes from Caltech-101 and Caltech-256 respectively, and

then randomly choose 4, 8, or 12 classes to run 4-category clustering, 8-category clustering or

12-category clustering tasks. In each task, we run the experiment for 100 times to obtain the

average accuracy and the standard deviation. Before each run 4, 8 or 12 image classes are

randomly selected, and then 50 images are randomly chosen from each class to form a pool of

images (for the class in which total number of images is less than 50, all the images in this class

will be used). For the clustering results, as shown in Table 4.3, the hypergraph based method

excels the other three methods on both Caltech-101 and Caltech-256 data sets.

4.4.4 Results on the PASCAL VOC2008

We also test the proposed method on PASCAL VOC2008 database [33]. Unlike Caltech databases,

PASCAL VOC2008 is much more challenging for its class variations and cluttered backgrounds.

To decrease the difficulty, we choose around 800 images from six easier classes (person, aero-

plane, train, boat, moto-bike, and horse) of the VOC2008 for our experimental comparison.

Since in the VOC2008 one image may contain multiple objects, we classify each image to one

specific class according to the most significant object it contains. Same as above, we increase

object classes from 4 to 6 for the clustering tasks. Each experiment is iterated for 50 times, in

which 100 images per object are randomly picked from each object class. In Fig. 4.9, the first

three images are examples with accurate ROI detection results. We also show some difficult

cases in Fig. 4.9: the detection bounding boxes of the 4th and 5th images are not well located,
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A M C F

A 99.5/0.9 0.0 0.5/0.9 0.0
M 0.0 97.9/0.4 2.0/0.5 0.1/0.3
C 1.2/0.8 0.1/0.2 98.3/1.1 0.4/0.4
F 1.1/1.2 0.3/0.5 0.2/0.3 98.4/1.3

A M C F W

A 98.9/1.7 0.1/0.2 0.6/0.6 0.1/0.3 0.3/0.4
M 0.5/0.7 97.8/0.9 1.6/1.0 0.0 0.1/0.2
C 1.6/1.5 0.2/0.4 97.5/1.6 0.6/1.1 0.1/0.3
F 0.8/1.3 0.4/0.4 0.6/0.5 96.9/1.4 1.3/1.6
W 2.1/1.7 0.7/0.9 0.1/0.1 1.4/1.2 95.7/1.3

A M C F W K

A 97.3/3.0 0.2/0.3 0.3/0.5 0.1/0.3 0.1/0.2 2.0/1.8
M 0.4/0.7 94.5/2.9 1.4/1.1 0.2/0.2 0.4/0.3 3.1/3.4
C 0.9/0.6 0.2/0.4 97.6/2.1 0.1/0.3 0 1.2/1.5
F 1.0/0.8 0.4/0.8 0.1/0.4 96.1/2.5 0.9/1.3 1.5/1.8
W 1.9/1.7 0.2/0.3 0.1/0.2 0.1/0.1 94.6/3.9 3.1/3.5
K 2.2/1.6 0.2/0.4 0.3/0.5 0.4/0.2 0.7/0.9 96.2/2.4

Number of Classes 4 5 6

Our method 98.53/0.93 97.38/1.38 96.05/2.80
[62] 98.55/0.98 97.30/1.44 95.42/2.87

Table 4.2: The first three tables are confusion matrix for increasing number of Caltech-101
objects from four to six. The average accuracies (%) and the standard deviations (%) are
shown in the tables. Comparison to [62] is reported in the last table. The numbers in this table
are computed from the diagonals of first three tables.

because of cluttered background or similar objects shown in the same image. In the 6th image,

the detected ROI is misplaced because of the misleading texture in the background. As shown

in Table 4.4(Above), we obtain higher average ROI localization errors on Pascal database, com-

pared to the results on Caltech (Table 4.1). This affects the image categorization results shown

in Table 4.4(Bottom), which are not as good as the categorization results on Caltech (Table 4.2

and Table 4.3). However, based on the same ROI results, we can still see that the proposed

hypergraph partition method outperforms the other three methods for the image categorization

task.

4.5 Conclusion

In this section, we have presented a hypergraph based framework for unsupervised image cate-

gorization. We first use a new method to extract the ROIs from the unlabeled images, and then

construct hyperedges among images based on shape and appearance features in their ROIs.

The hyperedges are defined as a group formed by each vertex and its k -nearest neighbors, and

their weights are calculated by the sums of the pairwise affinities. Different from the simple
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Dataset Caltech 101 Caltech 256

Image Classes 4 8 12 4 8 12

Hypergraph Based
95.8 86.2 71.5 87.7 77.1 64.3

3.3 4.4 6.8 4.6 6.7 7.0

Simple Graph Based
92.8 82.1 66.2 77.9 72.5 59.0
4.0 6.2 7.1 5.7 7.6 8.5

Affinity Propagation
76.1 62.5 54.1 69.7 57.2 51.4
5.7 6.8 7.6 7.7 6.6 9.1

k -center
72.6 56.9 47.9 67.8 53.7 50.2
5.1 6.5 9.6 8.0 7.5 9.9

Table 4.3: Results of unsupervised image categorization on both Caltech-101 and Caltech-256.

P A T B M H

Error 17.2 9.8 16.3 21.6 7.9 13.8
STD 10.8 6.7 5.4 15.4 8.1 6.7

Dataset PASCAL VOC2008

Image Classes 4 5 6

Hypergraph Based
81.3 77.2 69.3

3.4 4.6 6.5

Simple Graph Based
74.9 71.3 63.7
4.1 5.2 6.1

Affinity Propagation
62.7 57.3 47.9
4.7 6.4 7.0

k -center
58.9 53.6 41.2
5.3 5.1 5.9

Table 4.4: The first table: average localization errors and standard deviations of the VOC2008,
computed using Eq. 4.10. (P:person, A: Aeroplane, T: Train, B:Boat, M: moto-bike, H: Horse).
The second table: results of unsupervised image categorization on PASCAL VOC2008. 4-class
case: {P,A,T,B}. 5-class case: {P,A,T,B,M}.

graph, the hypergraph not only represents the higher order relationships between the images,

but also efficiently integrates different visual feature descriptors together. We formulate the

image clustering as the problem of hypergraph partition and solve it with a generalized spec-

tral clustering technique. The effectiveness of the proposed method has been demonstrated by

extensive experiments on various database.

Figure 4.8: ROI detection results. The red bounding boxes are the ROI detection results and
the blue boxes are the ground truths. In the first three images very good detection results are
obtained. We also give three examples in which ROIs are not well detected.
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Figure 4.9: ROI detection results. The first two rows are images from Caltech 256; the last two
rows are images from PASCAL VOC2008.
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Chapter 5

Image Retrieval via Fuzzy Hypergraph Ranking

In this chapter, we propose a new transductive learning framework for image retrieval, in which

images are taken as vertices in a weighted hypergraph and the task of image search is formu-

lated as the problem of hypergraph ranking. Based on the similarity matrix computed from

various feature descriptors, we take each image as a ‘centroid’ vertex and form a hyperedge by a

centroid and its k-nearest neighbors. To further exploit the correlation information among im-

ages, we propose a probabilistic hypergraph, which assigns each vertex vi to a hyperedge ej in a

probabilistic way. In the incidence structure of a probabilistic hypergraph, we describe both the

local grouping information and the affinity relationship between vertices within each hyperedge.

After feedback images are provided, our retrieval system ranks image labels by a transductive

inference approach, which tends to assign the same label to vertices that share many incidental

hyperedges, with the constraints that predicted labels of feedback images should be similar to

their initial labels. We compare the proposed method to several other methods and its effec-

tiveness is demonstrated by extensive experiments on Corel5K, the Scene dataset and Caltech

101.

Figure 5.1: Left: A simple graph of six points in 2-D space. Pairwise distances (Dis(i, j))
between vi and its 2 nearest neighbors are marked on the corresponding edges. Middle: A
hypergraph is built, in which each vertex and its 2 nearest neighbors form a hyperedge. Right:
The H matrix of the probability hypergraph shown above. The entry (vi, ej) is set to the affinity

A(j, i) if a hyperedge ej contains vi, or 0 otherwise. Here A(i, j) = exp(−Dis(i,j)

D̄
), where D̄ is

the average distance.
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5.1 Introduction

In content-based image retrieval (CBIR) visual information instead of keywords is used to search

images in large image databases. Typically in a CBIR system a query image is provided by

the user and the closest images are returned according to a decision rule. In order to learn a

better representation of the query concept, a lot of CBIR frameworks make use of an online

learning technique called relevance feedback (RF) [87] [51]: users are asked to label images

in the returned results as ‘relevant’ and/or ‘not relevant’, and then the search procedure is

repeated with the new information. Previous work on relevance feedback often aims at learn-

ing discriminative models to classify the relevant and irrelevant images, such as, RF methods

based on support vector machines (SVM) [102], decision trees [78], boosting [100], Bayesian

classifiers [26], and graph-cut [89]. Because the user-labeled images are far from sufficient for

supervised learning methods in a CBIR system, recent work in this category attempts to ap-

ply transductive or semi-supervised learning to image retrieval. For example, [54] presents an

active learning framework, in which a fusion of semi-supervised techniques (based on Gaussian

fields and harmonic functions [115]) and SVM are comprised. In [50] and [49], a pairwise graph

based manifold ranking algorithm [112] is adopted to build an image retrieval system. Cai et

al. put forward semi-supervised discriminant analysis [16] and active subspace learning [15] to

relevance feedback based image retrieval. The common ground of [89], [54], [50] and [16] is that

they all use a pairwise graph to model relationship between images. In a simple graph both

labeled and unlabeled images are taken as vertices; two similar images are connected by an

edge and the edge weight is computed as image-to-image affinities. Depending on the affinity

relationship of a simple graph, semi-supervised learning techniques could be utilized to boost

the image retrieval performance.

In this chapter, we propose a hypergraph based transductive algorithm to the field of image

retrieval. As in the previous chapter, we take each image as a ‘centroid’ vertex and form a

hyperedge by a centroid and its k-nearest neighbors, based on the similarity matrix computed

from various feature descriptors. To further exploit the correlation information among images,

we propose a novel hypergraph model called the probabilistic hypergraph, which presents not

only whether a vertex vi belongs to a hyperedge ej , but also the probability that vi ∈ ej . In
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this way, both the local grouping information and the local relationship between vertices within

each hyperedge are described in our model. To improve the performance of content-based image

retrieval, we adopt the hypergraph-based transductive learning algorithm to learn beneficial

information from both labeled and unlabeled data for image ranking. After feedback images

are provided by users or active learning techniques, the hypergraph ranking approach tends to

assign the same label to vertices that share many incidental hyperedges, with the constraints

that predicted labels of feedback images should be similar to their initial labels. We further

design a random strategy to reduce the computational cost of the proposed method and make

it possible for larger scale image retrieval. The effectiveness and superiority of the proposed

method is demonstrated by extensive experiments on Corel5K [32], the Scene dataset [70] and

Caltech-101 [69].

In summary, the contribution of this work is fourfold: (i) we propose a new image retrieval

framework based on transductive learning with hypergraph structure, which considerably im-

proves image search performance; (ii) we propose a probabilistic hypergraph model to exploit

the structure of the data manifold by considering not only the local grouping information, but

also the similarities between vertices in hyperedges; (iii) in this work we conduct an in-depth

comparison between simple graph and hypergraph based transductive learning algorithms in the

application domain of image retrieval, which is also beneficial to other computer vision and ma-

chine learning applications. (IV) we introduce a random strategy to reduce the computational

cost rapidly.

5.2 Probabilistic Hypergraph Model

Let V represent a finite set of vertices and E a family of subsets of V such that
⋃

e∈E = V .

G = (V, E, w) is called a hypergraph with the vertex set V and the hyperedge set E, and each

hyperedge e is assigned a positive weight w(e). A hypergraph can be represented by a |V |× |E|

incidence matrix Ht:

ht(vi, ej) =















1, if vi ∈ ej

0, otherwise.

(5.1)
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The hypergraph model has proven to be beneficial to various clustering and classification

tasks [2] [98] [56] [99]. However, the traditional hypergraph structure defined in Equation 5.1

assigns a vertex vi to a hyperedge ej with a binary decision, i.e., ht(vi, ej) equals 1 or 0. In

this model, all the vertices in a hyperedge are treated equally; relative affinity between vertices

is discarded. This ‘truncation’ processing leads to the loss of some information, which may be

harmful to the hypergraph based applications.

In this work, we propose a probabilistic hypergraph model to overcome this limitation.

Assume that a |V |× |V | affinity matrix A over V is computed based on some measurement and

A(i, j) ∈ [0, 1]. We take each vertex as a ‘centroid’ vertex and form a hyperedge by a centroid

and its k-nearest neighbors. That is, the size of a hyperedge in our framework is k + 1. The

incidence matrix H of a probabilistic hypergraph is defined as follows:

h(vi, ej) =















A(j, i), if vi ∈ ej

0, otherwise.

(5.2)

According to this formulation, a vertex vi is ‘softly’ assigned to ej based on the similarity A(i, j)

between vi and vj , where vj is the centroid of ej . A probabilistic hypergraph presents not only

the local grouping information, but also the probability that a vertex belongs to a hyperedge.

In this way, the correlation information among vertices is more accurately described. Actually,

the representation in Equation 5.1 can be taken as the discretized version of Equation 5.2. The

hyperedge weight w(ei) is computed as follows:

w(ei) =
∑

vj∈ei

A(i, j). (5.3)

Based on this definition, the ‘compact’ hyperedge (local group) with higher inner group sim-

ilarities is assigned a higher weight. For a vertex v ∈ V , its degree is defined to be d(v) =

∑

e∈E w(e)h(v, e). For a hyperedge e ∈ E, its degree is defined as δ(e) =
∑

v∈e h(v, e). Notice

that these definitions are relaxed from those definition in ordinary hypergraphs. Let us use

Dv,De and W to denote the diagonal matrices of the vertex degrees, the hyperedge degrees and

the hyperedge weights respectively. Figure 5.1 shows an example to explain how to construct a

probabilistic hypergraph.
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5.3 Hypergraph Ranking Algorithm

Algorithm 2 Probabilistic Hypergraph Ranking

1: Compute similarity matrix A based on various features using Equation 5.13, where A(i, j)
denotes the similarity between the ith and the jth vertices.

2: Construct the probabilistic hypergraph G. For each vertex, based on the similarity matrix
A, collect its k-nearest neighbors to form a hyperedge.

3: Compute the hypergraph incidence matrix H where h(vi, ej) = A(j, i) if vi ∈ ej and
h(vi, ej) = 0 otherwise. The hyperedge weight matrix is computed using Equation 5.3.

4: Compute the hypergraph Laplacian ∆ = I − Θ = I − D
− 1

2
v HWD−1

e HT D
− 1

2
v .

5: Given a query vertex and the initial labeling vector y, solve the linear system
((1 + µ)I − Θ) f = µy. Rank all the vertices according to their ranking scores in descending
order.

Algorithm 3 Manifold Ranking

1: Same to Algorithm 1.
2: Construct the simple graph Gs. For each vertex, based on the similarity matrix A, connect

it to its k-nearest neighbors.
3: Compute the simple graph affinity matrix As where As(i, j) = A(i, j) if the ith and the jth

vertices are connected. Let As(i, i) = 0. Compute the vertex degree matrix D =
∑

j As(i, j).

4: Compute the simple graph Laplacian ∆s = I − Θs = I − D− 1
2 AsD

− 1
2 .

5: Same to Algorithm 1, expect that Θ is replaced with Θs.

Let’s revisit the hypergraph based transductive learning algorithm. For a hypergraph par-

tition problem, the normalized cost function [113] Ω(f) could be defined as

1

2

∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(

f(u)
√

d(u)
− f(v)
√

d(v)

)2

, (5.4)

where the vector f is the image labels to be learned in our retrieval problem. By minimizing

this cost function, vertices sharing many incidental hyperedges are guaranteed to obtain similar

labels. Defining Θ = D
− 1

2
v HWD−1

e HT D
− 1

2
v , we can derive Equation 5.4 as follows:

Ω(f) =
∑

e∈E

∑

u,v∈e

w(e)h(u, e)h(v, e)

δ(e)

(

f2(u)

d(u)
− f(u)f(v)
√

d(u)d(v)

)

=
∑

u∈V

f2(u)
∑

e∈E

w(e)h(u, e)

d(u)

∑

v∈V

h(v, e)

δ(e)

−
∑

e∈E

∑

u,v∈e

f(u)h(u, e)w(e)h(v, e)f(v)
√

d(u)d(v)δ(e)

= fT (I − Θ)f, (5.5)

where I is the identity matrix. Above derivation for probabilistic hypergraphs shows that (i)
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Ω(f, w) = fT (I −Θ)f if and only if
∑

v∈V

h(v,e)
δ(e) = 1 and

∑

e∈E

w(e)h(u,e)
d(u) = 1, which is true because

of the definition of δ(e) and d(u) in Section 2; (ii) ∆ = I − Θ is a positive semi-definite matrix

called the hypergraph Laplacian and Ω(f) = fT ∆f . The above cost function has the similar

formulation to the normalized cost function of a simple graph Gs = (Vs, Es):

Ωs(f) =
1

2

∑

vi,vj∈Vs

As(i, j)

(

f(i)√
Dii

− f(j)
√

Djj

)2

= fT (I − D− 1
2 AsD

− 1
2 )f = fT ∆sf, (5.6)

where D is a diagonal matrix with its (i, i)-element equal to the sum of the ith row of the

affinity matrix As; ∆s = I − Θs = I − D− 1
2 AsD

− 1
2 is called the simple graph Laplacian. As

shown in previous chapters, in an unsupervised framework Equation 5.4 and Equation 5.6 can

be optimized by the eigenvector related to the smallest nonzero eigenvalue of ∆ and ∆s [113],

respectively.

In the transductive learning setting [113], we define a vector y to introduce the labeling

information of feedback images and to assign their initial labels to the corresponding elements

of y: y(v) = 1
|Pos| , if a vertex v is in the positive set Pos, y(v) = − 1

|Neg| , if it is in the negative

set Neg. If v is unlabeled, y(v) = 0. To force the assigned labels to approach the initial labeling

y, a regularization term is defined as follows:

‖f − y‖2 =
∑

u∈V

(f(u) − y(u))2. (5.7)

After the feedback information is introduced, the learning task is to minimize the sum of two

cost terms with respect to f [112] [113], which is

Φ(f) = fT ∆f + µ‖f − y‖2, (5.8)

where µ > 0 is the regularization parameter. Differentiating Φ(f) with respect to f , we have

f = (1 − γ)(I − γΘ)−1y, (5.9)

where γ = 1
1+µ . This is equivalent to solving the linear system ((1 + µ)I − Θ) f = µy.
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For the simple graph, we can simply replace Θ with Θs to fulfill the transductive learning.

In [50] and [49], this simple graph based transductive reasoning technique is used for image

retrieval with relevance feedback. The procedures of the probabilistic hypergraph ranking al-

gorithm and simple graph based manifold ranking algorithm are listed in Algorithm 2 and

Algorithm 3.

5.4 Random Hypergraph Ranking

As above description, the hypergraph Laplacian matrix ∆ plays an important role in the ranking

algorithm. The dimensionality of the matrix ∆ is N×N , where N is the data size, and it directly

dominates the computational complex of the ranking algorithm. According to Equation 5.9,

we can see the computational complexity increases with the data size at least by N2. Thus,

its efficiency will be degraded in the case of large-scale data. To handle this issue, we adopt

a random strategy to speed up the proposed method, especially for the large-scale data. The

technique of random sampling has widely used in the community of machine learning [53] [108].

The basic idea is to generate multiple subsets of feature or data from the original one by

randomly sampling and to learn multiple classifiers. Finally combining all these classifiers to

make the final decision. Motivated by this idea, we present a scheme of random hypergraph

ranking for image retrieval.

Assuming in the image data X = {x1, x2, ...xl} is the label images and X ′ = {x′
1, x

′
2, ..., x

′
p}

is the unlabeled images, l + p = N . The goal of hypergraph ranking is to predict the labels of

X ′ according to the labeled images X by (9). Usually the size of X is small, so we generate

m subset of X ′ by sampling, {X ′
1, X

′
2..., X

′
m}. We denote the vector S = {s1, s2, ..., sp} to

index the selected number of each unlabeled image. In our sampling trick, we keep each sample

x′
i ∈ X ′ be selected at least one time, i.e., si ≥ 1. We combine X with each X ′

i to generate

a new image set, X∗
i = X ∪ X ′

i, and perform the hypergraph ranking algorithm on each X∗
i

respectively. Thus, for each unlabeled image x′
i, we can obtain si predictions, y1

i , y2
i , ..., ysi

i ,

and we finally decide its label by the value of ŷi = 1
si

si
∑

j=1

yj
i . With the help of sampling, we

only need to perform the hypergraph ranking learning on the image set X∗
i , which is smaller

than the original set X ∪ X ′, so the computational cost can be reduced rapidly. The detailed
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performance will be evaluated in the Section of Experiments.

5.5 Feature Descriptors and Similarity Measurements

Figure 5.2: The spatial pyramids for the distance measure based on the appearance descriptors.
Three levels of spatial pyramids for the appearance features are: 1 × 1(whole image, l = 0),
1 × 3(horizontal bars, l = 1),2 × 2(image quarters, l = 2).

To define the similarity measurement between two images, we utilize the following descrip-

tors: SIFT [75], OpponentSIFT, rgSIFT, C-SIFT, RGB-SIFT [105] and PHOG [28] [13]. The

first five are appearance-based color descriptors that are studied and evaluated in [105]. It

is verified that their combination has the best performance on various image datasets. HOG

(histogram of oriented gradients) is the shape descriptor widely used in object recognition and

image categorization. Similar to [105], we extract both the sparse and the dense features for five

appearance descriptors to boost image search performance. The sparse features are based on

scale-invariant points obtained with the Harris-Laplace point detectors. The dense features are

sampled every 6 pixels on multiple scales. For sparse features of each appearance descriptor,

we create 1024-bin by k–means; for dense features of each appearance descriptor, we create

4096-bin codebooks because each image contains much more dense features than the sparse fea-

tures. For each sparse (or dense) appearance descriptor, we follow the method in [106] to obtain

histograms by soft feature quantization, which was proven to provide remarkable improvement

in object recognition [106]:

His(wf ) =
1

n

n
∑

i=1

Kσ(D(wf , fi))
∑|V |

j=1 Kσ(D(vj , fi))
, (5.10)

where Kσ(x) =
1√
2πσ

exp (−1

2

x2

σ2
). (5.11)

In Equation 5.10 n is the number of features (of a descriptor) in an image; fi is the ith feature;
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D(wf , fi) is the distance between a codeword wf and the feature fi; His(wf ) is the histogram

value on the codeword (bin) w. In practice σ in the Gaussian kernel is tuned to make the

distance measure more discriminative by cross-validation. Equation 5.10 distributes different

probability mass to all relevant codewords(bins), where relevancy is determined by the ratio of

the kernel values for all codewords v in the vocabulary V.

For the PHOG descriptor, we discretize gradient orientations into 8 bins to build histograms.

For each of above 11 features (5 sparse features + 5 dense features + 1 HOG feature), we use

a spatial pyramid matching(SPM) approach [67] to calculate the distances between two images

{i, j} because of its good performance:

Dis(i, j) =
L
∑

l=0

1

αl

m(l)
∑

p=1

βl
pχ

2(Hisl
p(i), Hisl

p(j)). (5.12)

In the above equation, Hisl
p(i) and Hisl

p(j) are two image’s local histograms at the pth position

of level l; α and β are two weighting parameters; χ2(·, ·) are the chi-square distance function

used to measure the distance between two histograms. For the sparse and dense appearance

features, we follow the setting of [105]: three levels of spatial pyramids (as shown in Figure 5.2)

are 1 × 1(whole image, l = 0, m(0) = 1, β0
1 = 1), 1 × 3(three horizontal bars, l = 1, m(1) = 3,

β1
1 ∼ β1

3 = 1
3 ), 2 × 2(image quarters, l = 2, m(2) = 4, β2

1 ∼ β2
4 = 1

4 ); α0 ∼ α2 = 3. For the

HOG feature, we employ L = 4 levels (l = 0 ∼ 3) of the spatial pyramids as in [13]: 1 × 1,

2 × 2, 4 × 4 and 8 × 8; α0 = 2L and αl = 2L−l+1 for l = 1, 2, 3. After all the distance matrices

for 11 features are obtained, the similarity matrix A between two images can be computed as

follows:

A(i, j) = exp(− 1

11

11
∑

k=1

Disk(i, j)

Dk

), (5.13)

where Dk is the mean value of elements in the kth distance matrix.

5.6 Experiments

5.6.1 Experimental Protocol

In this section, we used SVM and similarity based ranking as the baselines. The similar-

ity based ranking method sorts retrieved image i according to the formula 1
|Pos|

∑

j∈Pos

A(i, j) −
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1
|Neg|

∑

k∈Neg

A(i, k), where Pos and Neg denote positive/negative sets of feedback images respec-

tively. We compare the proposed hypergraph ranking frameworks to the simple graph based

manifold ranking algorithm [50] [49], and we also evaluate the performances of the probabilistic

hypergraph ranking against the hypergraph based ranking. The hypergraph ranking algorithm

is the same as Algorithm 1 except for using the binary incidence matrix (where ht(vi, ej) = 1

or 0). For the parameter γ in Equation 5.9, we follow the original work [112] [114] and fix it

as 0.1 for the best performance of both the hypergraph and the simple graph based algorithms.

We use the respective optimal hyperedge size or the vertex degree (in the simple graph) in all

experiments. Other parameters are directly computed from experimental data. Three general

purpose image databases are used in this chapter: Corel5K [32], the Scene dataset [70] and

Caltech-101 [69]. Two measures are employed to evaluate the performance of above five rank-

ing methods: (1) the precision vs. scope curve, (2) the precision vs. recall curve. We use each

image in a database as a query example and both measures are averaged over all the queries in

this database.

To provide a systematic evaluation, in the first round of relevance feedback 4 positive im-

ages and 5 negative images are randomly selected for each query image to form a training set

containing 5 positive/ 5 negative examples. In the second and third round, another 5 positive/

5 negative examples are randomly labeled for training, respectively. In this way a total of 10,20

and 30 images are marked after each of the three relevance feedback cycles. The rest of the

images are used as testing data.

Besides the above passive learning setting, we also explore the active learning technique on

Corel5K. Same setting as in [50], [49], [16] and [15], the ground truth labels of the 10 top ranked

examples are used as feedback images after each round of retrieval cycle.

5.6.2 In-depth Analysis on Corel5K

We choose to conduct an in-depth analysis on Corel5K [32] because it is used as the benchmark

in [50] and [49] for the manifold ranking method and a lot of other work [29]. Since all 50

categories of Corel5K contain the same number of 100 images, the precision-scope curve is used

by [50] and [49] as the measurement. Therefore, we choose the precision-scope curve here in
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order to make a direct comparison with [50] and [49].

Manifold Ranking Hypergraph Ranking Probabilistic Hypergraph Ranking
r (scope) P(r) P(r) P(r)

20 0.695 (at K = 40) 0.728 (at K = 40) 0.748 (at K = 40)
40 0.606 (at K = 40) 0.644 (at K = 30) 0.659 (at K = 40)
60 0.537 (at K = 40) 0.571 (at K = 40) 0.583 (at K = 40)
80 0.475 (at K = 40) 0.508 (at K = 40) 0.519 (at K = 40)
100 0.424 (at K = 40) 0.450 (at K = 40) 0.459 (at K = 50)

Table 5.1: Selection of the hyperedge size and the vertex degree in the simple graph. We list the
optimal precisions and corresponding K values at different retrieved image scopes. K denotes
the hyperedge size and the vertex degree in the simple graph.

Combination of multiple complementary features for image retrieval. As presented

in Section 4, we utilize totally 11 features to compute the similarity matrix A. To demonstrate

the advantage of combining multiple complementary features, we employ the similarity based

ranking method on Corel5K using the combined feature and all 11 single features. In this group

experiment, only query image is provided and no relevance feedback is performed. As shown

in Figure 5.3, the combined feature outperforms the best single feature (sparse C-SIFT) by

5 ∼ 12% for the different retrieval scopes r. All our comparisons are made on the similarity

matrix computed with the same combined feature.

Computation cost and Selection of the sampling size. The most time consuming

parts in both Algorithm 1 and Algorithm 2 are to solve the linear system in the 5th steps,

which have the same time complexity. Thus, the computational cost of the hypergraph ranking

is similar to that of the simple graph-based manifold ranking. In Fig. 5.4(Left), it is shown that

the average cost of computation time (ms) to solve the linear system increases rapidly along

with the size of H matrix. For example, on a desktop with Intel 2.4GHz Core2-Quad CPU and

8GB RAM, our Matlab code, without code optimization, takes 12.3 and 3930.3 milliseconds

(ms) to solve a 500× 500 linear system and a 5000X5000 linear system, respectively. However,

on the other hand, too small subset sampling size of unlabelled images will lead to deteriorated

ranking accuracies. In Fig. 5.4(Right), the precision values (at r = 20) of different sampling

configurations (on Corel5K dataset, under the passive learning setting, after the 1st round of

relevance feedback) are shown and compared to the algorithm without random sampling. In

this work, we adopt the configuration (500,100) in which we randomly sample subsets of 500
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Figure 5.3: Combination of multiple complementary features for image retrieval. Best viewed
in color.
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Figure 5.4: Left: the average cost of computation time (ms) to solve the linear system increases
rapidly along with the size of H matrix. Right: the precision values (at r = 20) of different
sampling configurations are shown and compared to the probabilistic hypergraph ranking algo-
rithm without random sampling. Here (50, 1000) means that we randomly sample subsets of
50 unlabelled images for 1000 times.

images for 100 times. Using this configuration, we can achieve ranking accuracies close to the

algorithm without randomly sampling, but largely decrease the cost of computation time. In the

following, we will show both the results using the full ∆ matrices and the results by randomly

sampling.

Selection of the hyperedge size and the vertex degree in the simple graph. In-

tuitively, very small-size hyperedges only contain ‘micro-local’ grouping information which will

not help the global clustering over all the images, and very large-size hyperedges may contain

images from different classes and suppress diversity information. Similarly, in order to construct

a simple graph, usually every vertex in the graph is connected to its K-nearest neighbors. For

the fair comparison, in this work we perform a sweep over all the possible K values of the

hyperedge size and the vertex degree in the simple graph to optimize the clustering results. For

example, as shown in Table 5.1, after the first round of relevance feedback (using the passive

learning setting), almost all the methods get optimal values at K = 40 if we use full H matrices.

So we set both the hyperedge size and the vertex degree in the simple graph as 40 in the exper-

iments on Corel5K when full H matrices are used. For experiments using randomly sampling,
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Figure 5.5: Precision vs. scope curves for Corel5K (when full ∆ matrices images are used),
under the passive learning setting. Best viewed in color.
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Figure 5.6: Precision vs. scope curves for Corel5K (when the (50, 1000) random sampling
configuration is used), under the passive learning setting. Best viewed in color.
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Figure 5.7: Precision vs. scope curves for Corel5K (when full ∆ matrices images are used),
under the active learning setting. Best viewed in color.
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Figure 5.8: Precision vs. scope curves for Corel5K (when the (50, 1000) random sampling
configuration is used), under the active learning setting. Best viewed in color.
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we set K = 14.

Comparison under passive learning setting. As shown in Figure 5.5(experiments

without random sampling) and Figure 5.6(experiments with random sampling), the probabilis-

tic hypergraph ranking outperforms the manifold ranking by 4% ∼ 5% and the traditional

hypergraph ranking by 1% ∼ 3% after each round of relevance feedback. The experiments with

random sampling perform slightly worse than the experiments without random sampling.

Comparison under active learning setting. As shown in Figure 5.7(experiments with-

out random sampling) and Figure 5.8(experiments with random sampling), we start the ex-

periment from Round 0, in which only the query image is used for retrieval. Although the

probabilistic hypergraph ranking achieved similar precision to the manifold ranking and the

hypergraph ranking in the Round 0(without feedback), it progressively spaces out the differ-

ence in precision after the first round and the second round, in both two figures. At the end

of the second round, it outperforms the manifold ranking by 4% ∼ 10% and the traditional

hypergraph ranking by 1% ∼ 2.5% on different retrieval scope. Another observation is that the

manifold ranking provides much less increase on precisions at the end of the second round. For

example, in Figure 5.7, at r = 20 the precision of the manifold ranking increases from 50.4%

to 54.3%, while the precision of the probabilistic hypergraph ranking increases from 50.8% to

63.9%.

Our method outperforms the manifold ranking results in [49] and [50] by approximately

8% ∼ 20% under the similar setting.

5.6.3 Results on the Scene Dataset and Caltech-101

The Scene dataset [70] consists of 4485 gray-level images which are categorized into 15 groups.

It is also important to mention that we only use 3 features for gray-level images (sparse SIFT,

dense SIFT and HOG) to compute the similarity matrix in this experiment. For the experiments

using full ∆ matrices, the optimal hyperedge size is K = 90 and the optimal vertex degree

of the simple graph is K = 330. For the experiments using randomly sampling matrices,

the optimal hyperedge size and the optimal vertex degree of the simple graph are K = 14.

Since every category of the Scene dataset contains different number of images, we choose the
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precision-recall curves as a more rigorous measurement for the Scene dataset. As shown in

Figure 5.11(experiments without random sampling) and Figure 5.12(experiments with random

sampling), the probabilistic hypergraph ranking outperforms the manifold ranking by 5% ∼ 7%

on Precision for Recall < 0.8, after each round of feedback using the passive learning setting; the

probabilistic hypergraph ranking is slightly better than the hypergraph ranking. In addition,

we also show the per-class comparison on precisions (Figure 5.9 and Figure 5.10) at r = 100

after the 1st round. Our method exceeds the manifold ranking in 14 classes (out of the total 15

classes).

Figure 5.9: Per-class precisions for Scene dataset at r = 100 after the 1st round (when full ∆
matrices images are used). Best viewed in color.

To demonstrate the scalability of our algorithm, we also conduct a comparison on Caltech-

101 [69] which contains 9146 images grouped into 101 distinct object classes and a background

class. For Caltech-101, both the optimal hyperedge size and the optimal vertex degree of the

simple graph are K = 40 or K = 14 when the experiments using full ∆ matrices or random

sampling matices. The precision-recall curves are shown in Figure 5.13and Figure 5.14, in which

we can observe the advantage of the probabilistic hypergraph ranking on both the hypergraph

ranking and the manifold ranking.

Above analysis confirms our proposed method from two aspects: (1) by considering the local
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Figure 5.10: Per-class precisions for Scene dataset at r = 100 after the 1st round (when the
(50, 1000) random sampling configuration is used). Best viewed in color.

grouping information, both hypergraph models can better approximate relevance between the

labeled data and unlabled images than the simple graph based model; (2) probabilistic incidence

matrix H is more suitable for defining the relationship between vertices in a hyperedge.

5.7 Conclusion

We introduced a transductive learning framework for content-based image retrieval, in which a

novel graph structure – probabilistic hypergraph is used to represent the relevance relationship

among the vertices (images). Based on the similarity matrix computed from complementary

image features, we take each image as a ‘centroid’ vertex and form a hyperedge by a centroid

and its k-nearest neighbors. We adopt a probabilistic incidence structure to describe the local

grouping information and the probability that a vertex belongs to a hyperedge. In this way,

the task of image retrieval with relevance feedback is converted to a transductive learning

problem which can be solved by the hypergraph ranking algorithm. The effectiveness of the

proposed method is demonstrated by extensive experimentation on three general purpose image

databases.
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Figure 5.11: The precision-recall curves for Scene dataset under the passive learning setting
(when full ∆ matrices images are used). Best viewed in color.
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Figure 5.12: The precision-recall curves for Scene dataset under the passive learning setting
(when the (50, 1000) random sampling configuration is used). Best viewed in color.
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Figure 5.13: The precision-recall curves for Caltech-101 (when full ∆ matrices images are used).
Best viewed in color.
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Figure 5.14: The precision-recall curves for Caltech-101 (when the (50, 1000) random sampling
configuration is used). Best viewed in color.
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Chapter 6

Conclusion

In this thesis, at first we summarized the basic concept of hypergraphs and relative learning

algorithms. Then we construct hypergraph models for three scenarios: (1) video object segmen-

tations, (2) unsupervised image categorization and (3) content based image retrieval. In the

first two applications the unsupervised hypergraph cut algorithm are used for clustering, which

involves eigen-decomposition of the hypergraph Laplacian matrix. The third application uti-

lized the hypergraph based transductive learning or semi-supervised learning algorithm, which

involves the solving of a linear system.

As we indicated in Chapter 4, the advantage of the hypergraph based models lies in the

way the neighborhood structures are analyzed. By Cliuqe Expansion [116] a hypergraph can

be transferred to a simple graph, in which the pairwise similarity between two vertices is pro-

portional to the sum of their corresponding hyperedge weights. According to the analysis in

Agarwal’s work [1], it is verified that the eigenvectors of the hypergraph normalized Laplacian

are close to the eigenvectors of this pairwise graph. Under specific conditions (i.e. when the

hypergraph is uniform), the two sets of eigenvectors are even equivalent to each other. Consider

that we transfer hypergraphs constructed in this thesis into simple graphs by Clique Expansion.

In the obtained simple graphs, the edge weight between two vertices vi and vj is not decided

by the pairwise affinity Ai,j , but the averaged neighboring affinities close to them; this edge

weight between vi and vj is influenced more by those pairwise affinities whose incident vertices

share more hyperedges with vi and vj . In this way, the ‘correlation information’ or ‘high order

local grouping information’ contained in the hyperedge weights is used for the construction of

graph neighborhood. We argue that such an ‘averaging’ effect caused by the hypergraph neigh-

borhood structure is beneficial to the image clustering task, just as local image smoothing may

be beneficial to the image segmentation task. We give an example to support our argument in
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Chapter 4, Section 4.3.3. Furthermore, we compare our work with simple-graph based methods

(and other state-of-the-art work) in all three applications quantitatively and statistically. The

effectiveness of the proposed methods is demonstrated by extensive experimentation on various

datasets. It is also worth to mention that, besides the enhanced clustering/classification accu-

racies, another advantage of hypergraph based model is the stability to the parameter selection

(the selection of hyperedge size), which is mentioned in Section 4.4.2.

Since hypergraph based algorithm is a open system, in the future work, we may add more

feature descriptors (such as texture information) into our frameworks to construct more hyper-

edges to further improve the expressive power of hypergraph based models. We also plan to

introduce prior information into the hypergraph framework for video object segmentation and

solve this problem under the semi-supervised setting. Hopefully this will largely enhance the

accuracy of segmentation results.
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