
EMBEDDING SPANNING SUBGRAPHS INTO
LARGE DENSE GRAPHS

by

ASIF JAMSHED

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

written under the direction of

Endre Szemerédi

and approved by

New Brunswick, New Jersey

October, 2010

ABSTRACT OF THE DISSERTATION

Embedding Spanning Subgraphs into Large Dense Graphs

by

Asif Jamshed

Dissertation Director: Endre Szemerédi

In this thesis we are going to present some results on embedding spanning subgraphs

into large dense graphs.

Spanning Trees

Bollobás conjectured that if G is a graph on n vertices, δ(G) ≥ (1/2 + ε)n for some

ε > 0, and T is a bounded degree tree on n vertices, then T is a subgraph of G. The

problem was solved in the affirmative by Komlós, Sárközy and Szemerédi for large

graphs. They then strengthened their result, and showed that the maximum degree of

T need not be bounded: there exists a constant c such that T is a subgraph of G if

∆(T) ≤ cn/ log n, δ(G) ≥ (1/2 + ε)n and n is large. Both proofs are based on the Reg-

ularity Lemma-Blow-up Lemma Method. Recently, using other methods, it was shown

that bounded degree trees embed into graphs with minimum degree n/2+C log n, where

C is a constant depending on the maximum degree of T . Here we show that in general

n/2 + O(∆(T) · log n) is sufficient for every ∆(T) ≤ cn/ log n. We also show that this

bound is tight for the two extreme values ofm i.e. whenm = C and whenm = cn/ log n.

ii

Powers of Hamiltonian Cycles

In 1962 Pósa conjectured that if δ(G) ≥ 2
3n then G contains the square of a Hamiltonian

cycle. Later, in 1974, Seymour generalized this conjecture: if δ(G) ≥ (k−1
k)n then G

contains the (k−1)th power of a Hamiltonian cycle. In 1998 the conjecture was proved

by Komlós, Sárközy and Szemerédi for large graphs using the Regularity Lemma. We

present a “deregularised” proof of the Pósa-Seymour conjecture which results in a much

lower threshold value for n, the size of the graph for which the conjecture is true. We

hope that the tools used in this proof will push down the threshold value for n to around

100 at which point we will be able to verify the conjecture for every n.

iii

Acknowledgements

I would like to thank my family for being so supportive and having faith in me all along.

I am indebted to my parents and siblings for always being there for me. My wife Saima

has been a wonderfully encouraging and radiant presence in my life ever since I met

her.

My advieor Endre Szemerédi has shown infinite patience and kindness to me during

this endeavor and he has generous contribution in this work.

I would like to thank my friends Imdad, Mudassir, Ahsan and Ashar for all the nice

times that we had together. Imdad, in particular, spent untold hours with me, dis-

cussing the topics covered in this thesis. I thank all my friends for all the contributions,

big and small, direct and indirect.

During the course of my schooling, a lot of teachers affected and influenced me, but

none more so than my friend and mentor Sarmad Abbasi. He gave me my first glimpse

of The Book and, in a sense, is to blame for all that transpired as its consequence.

iv

Dedication

This thesis is dedicated to my parents who devoted the prime of their lives to the

education of their children.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Figures . x

1. Introduction . 1

1.1. Generalizations of Dirac’s Theorem . 1

1.1.1. Spanning Trees . 2

1.1.2. Powers of Hamiltonian Cycles . 3

1.1.3. Future Work: Generalizations of Ore’s Theorem 5

2. Embedding Spanning Trees . 7

2.1. Introduction . 7

2.1.1. Outline of the embedding method 8

2.1.2. On the minimum degree bound of G 10

2.2. Some tools for the embedding . 11

2.3. T has essential height two . 18

2.3.1. T has a few vertices at a distance at least three from the root . . 24

2.4. T has larger height and T0 is a broad forest 25

2.4.1. Finding T0 . 26

2.4.2. Decomposing T into small forests 26

Classification of forests . 27

Preprocessing of narrow forests 27

Preprocessing of wide forests . 28

vi

Partitioning the level sets of F 29

Decomposition of wide forests . 30

Forests in the decomposition that have more than one root . . . 32

2.4.3. Preparations for the embedding 34

2.4.4. Embedding wide forests with the LL procedure 35

Initializing – Blowing-up F . 35

Embedding the broom rooted at r′ ‘almost randomly’ – First part

of the LL procedure . 36

Embedding heavy brooms – the second part 38

Embedding very heavy brooms 41

Matching level-by-level for the light vertices – the third part of

the LL procedure . 41

2.4.5. Embedding narrow forests . 42

Embedding T0 . 43

The first CM procedure . 44

The second CM procedure . 45

The third CM procedure . 46

Embedding a very small forest F 49

Making connections between subtrees 49

Finishing the embedding . 49

2.5. T has only a few leaves . 50

2.5.1. Preparations for the embedding 51

2.5.2. Embedding T̂ into G . 53

2.5.3. Finishing the embedding . 53

2.6. G is extremal and close to Kn/2 ∪Kn/2 54

2.6.1. T has height two . 54

Preprocessing . 54

C is large . 55

C is small . 55

vii

C is large . 56

C is small . 57

2.6.2. T has essentially height two . 57

2.6.3. T has larger height . 58

Decomposition of G . 59

Decomposition of T . 59

Covering vertices with small inner degree 60

The actual embedding method 61

2.7. G is extremal and close to Kn/2,n/2 . 62

2.7.1. T has larger height . 63

3. A New Proof of the Pósa-Seymour Conjecture 64

3.1. Introduction . 64

3.1.1. Notations and Definitions . 64

3.1.2. Powers of Cycles . 64

3.2. Outline of the Proof . 66

3.3. Main Tools . 67

3.3.1. Complete k-Partite Subgraphs 68

3.3.2. The Connecting Lemma . 70

Extending the path by k − 1 vertices into F 71

Connecting X and Y inside F . 76

3.4. The Non-Extremal Case . 76

3.4.1. The Optimal Cover . 77

3.4.2. Dealing with the vertices in I . 78

3.4.3. Finding the Cycle . 80

3.5. The Extremal Case . 80

3.5.1. Finding the Cycle . 81

G has k extremal sets . 81

G has less than k extremal sets 85

viii

References . 91

Vita . 95

ix

List of Figures

2.1. Decomposition of a wide forest . 32

2.2. Decomposition of a tree . 33

2.3. Embedding the heavy brooms using the random greedy method 38

2.4. Embedding levels L2, L3 and L4 of F with the CM Procedure 45

3.1. Non-Extremal Case: Dashed lines represent the (k−1)-paths constructed

using the Connecting Lemma. Vertices from I are incorporated into the

(k − 1)-paths made inside the cliques as described in Section 3.4.2 . . . 67

3.2. The (k − 1)-path may be extended if W ∩ F is large 71

3.3. The (k − 1)-path may be extended if Wlow is large 72

3.4. Extending the (k − 1)-path when G|W is almost complete and W is

disjoint from F . 73

3.5. Inserting a into the (k − 1)-path being constructed in the complete bal-

anced (k + 1)-partite graph Cj , where k = 5 and b = 4 79

3.6. Unfolding the cliques in the order defined by H∗ gives us the required

power of a Hamiltonian cycle . 82

3.7. Finding the exceptional clique when |Xi| > 1 83

3.8. Finding the exceptional clique when |Xi| = 1 84

3.9. Unfolding the vertices in a compatible triplet gives us a (k − 1)-path . . 86

3.10. The shaded region indicates the compatible triplets. The l-cliques c1 and

c2 are a good pair. Here k = 5 and l = 2 87

3.11. Handling the exceptional vertices in the non-clean case 88

x

3.12. The shaded region indicates where the l-cliques from A will be inserted

into the (k− l−1)th power of a Hamiltonian cycle in B. The heavy edges

represent the portion of the path that is actually a (k − l)-path. Here

k = 5 and l = 2. 89

xi

1

Chapter 1

Introduction

Broadly speaking, this thesis focuses on structural problems in extremal graph theory.

The unifying theme of the questions that have been tackled therein involves the appli-

cation of the probabilistic method to investigate properties required of graphs with a

certain given structure. This area of combinatorics has a distinctly Hungarian flavor

and as Bollobás (see [6], Preface) has said: “Extremal graph theory, in its strictest sense,

is a branch of graph theory developed and loved by Hungarians.” The impact of these

kind of results has been felt in many areas of computer science and is not restricted

just to some abstract domains (see for example [2, 4, 10, 46, 55]).

This thesis considers two generalizations, in different directions, of a celebrated

theorem of Dirac on graphs. First let us fix the notation. We will always talk about

simple, undirected graphs G(V,E) and by deg(v), we denote the degree of the vertex

v ∈ V . The minimum degree of a vertex in G is denoted by δ(G) whereas ∆(G) denotes

the maximum degree of a vertex. A cycle of length j is denoted by Cj and a cycle that

contains all the vertices of the graph is called a Hamiltonian cycle. A graph is called

Hamiltonian if it contains a Hamiltonian cycle.

1.1 Generalizations of Dirac’s Theorem

One of the basic theorems of graph theory is Dirac’s Theorem [15] giving a sufficient

condition for the existence of a Hamiltonian cycle in a graph.

Theorem 1 (Dirac 1952). Let G be a simple graph on n ≥ 3 vertices. If each vertex

has degree at least n/2 then G is Hamiltonian. �

This result, along with Turán’s Theorem, is a quintessential example of the type of

2

questions considered in extremal graph theory.

In 1975 one of the most important tools in extremal graph theory, the Regularity

Lemma, was introduced by Szemerédi [54]. The remarkable lemma asserts that, roughly

speaking, any large enough dense graph can be approximated by a random-looking

graph so that one may use the properties of random graphs to prove certain facts easily.

However, the main drawback of the result is that it is true only for astronomically large

graphs. Hence, one recent trend has been to avoid the use of the Regularity Lemma

(see for example [43, 12]). The use of elementary random arguments instead, drastically

brings down the threshold size of graphs for which the results become true.

The work in this doctoral dissertation has focused on proving two generalizations of

Dirac’s Theorem without resorting to the use of the Regularity Lemma. The questions

investigated have had a very rich history and a lot of prominent mathematicians have

worked on them. It is pertinent to note that the proofs given using probabilistic tech-

niques are inherently algorithmic and are relatively straightforward to derandomize to

give deterministic procedures that output the required structure in the graph.

1.1.1 Spanning Trees

One possible generalization of the Dirac’s Theorem might be to look for a degree con-

dition on a graph if instead of looking for a specific spanning tree (a Hamiltonian path

is a spanning tree with maximum degree two) one looks for a general spanning tree

with some degree bounds. In this vein Bollobás conjectured that if G is a graph on

n vertices, δ(G) ≥ (1/2 + ε)n for some ε > 0, and T is a bounded degree tree on n

vertices, then T is a subgraph of G. The conjecture was resolved in the affirmative by

Komlós, Sárközy and Szemerédi [39] for large graphs. They then strengthened their

result [41], and showed that the maximum degree of T need not be bounded by a con-

stant: there exists a constant c such that T is a subgraph of G if ∆(T) ≤ cn/ log n,

δ(G) ≥ (1/2 + ε)n and n is large. Both proofs are based on the Regularity Lemma-

Blow-up Lemma Method [36]. Recently, using other methods, it was shown by Csaba,

Levitt, Nagy-György and Szemerédi [12] that bounded degree trees embed into graphs

with minimum degree n/2+C log n, where C is a constant depending on the maximum

3

degree of T .

In this thesis we provide a substantial generalization of these results.

Theorem 2. There exist two positive constants c and K such that the following holds.

Assume that T = (V,E(T)) is a tree on n vertices with ∆(T) = m ≤ cn/ log n and

G = (W,E(G)) is a graph on n vertices with minimum degree δ(G) ≥ n/2 +Km log n.

Then there exists an n0 such that T ⊂ G for n ≥ n0. �

We show that, apart from the Dirac’s Theorem condition of n/2 just another

Km log n extra minimum degree is required to ensure that any tree on n vertices with

maximum degree m ≤ cn/ log n is a subgraph of G.

As in many questions of this type, the proof is divided into the so-called extremal

and the non-extremal case. Basically, the non-extremal case is where the edges of the

graph are distributed relatively evenly all over the graph, whereas in the extremal case

we may be able to find induced subgraphs that are either almost complete or almost

empty. Different methods are used to solve the problem in these different cases.

A variety of techniques are used to solve the problem depending on the type of tree

that needs to be embedded. We make a distinction between height two trees and larger

height trees. In the non-extremal case, a greedy embedding method is combined with

an “augmenting path” type argument at the end to embed the height two tree. If the

tree is of larger height we check whether the tree has many leaves, or only a few. In

both cases we leave out some vertices of the tree and first embed the resulting smaller

subtree in a particular way. This partial embedding enables us to finish the embedding

of the tree using a König-Hall type argument at the end.

The case when G is extremal is handled by an involved averaging argument in

conjunction with a generalized matching theorem. We note that the lowerbound on the

degree of G is tight in this case.

1.1.2 Powers of Hamiltonian Cycles

A second quite natural generalization of the Dirac’s Theorem might be to look for

structures stronger than simple Hamiltonian cycles in a given graph. Let C be a cycle

4

in a graph G on n ≥ 3 vertices. Then the graph Ck is called the kth power of C if for

every pair of vertices u, v ∈ V (C), uv is an edge in Ck if and only if the distance between

u and v is at most k in C. Obviously powers of cycles are much stronger structures

than simple cycles. A question extending Dirac’s Theorem was asked by Pósa (see [20])

in 1962:

Conjecture 3 (Pósa 1962). Let G be a graph on n vertices. If δ(G) ≥ 2
3n, then G

contains the square of a Hamiltonian cycle.

This conjecture was further generalized by Seymour [51] in 1974:

Conjecture 4 (Seymour 1974). Let G be a graph on n vertices. If δ(G) ≥ k−1
k n, then

G contains the (k − 1)th power of a Hamiltonian cycle.

Substantial amount of work has been done on these problems. A long series of

papers made several steps towards the resolution of the conjectures (see for example

[21, 23, 24, 25, 27]).

Then using the Regularity Lemma–Blow-up Lemma method first in [37] Komlós,

Sárközy and Szemerédi proved Conjecture 4 in asymptotic form, then in [38] and [40]

they proved both conjectures for n ≥ n0. The proofs used the Regularity Lemma [54],

the Blow-up Lemma [36] and the Hajnal-Szemerédi Theorem [32]. Since the proofs

used the Regularity Lemma the resulting n0 is very large (it involves a tower function).

The use of the Regularity Lemma was removed by Levitt, Sárközy and Szemerédi in a

new proof of Pósa’s Conjecture in [43]. In this dissertation we give another proof of the

Pósa-Seymour conjecture that avoids the use of the Regularity Lemma, thus resulting

in a much smaller threshold size of G as compared to the bound given in [40].

Theorem 5. There exists a natural number n0 such that if G is a graph on n ≥ n0

vertices and δ(G) ≥ (k−1
k)n then G contains the (k−1)th power of a Hamiltonian cycle.

The proof uses a number of probabilistic techniques in extremal graph theory. The

proof again treats the extremal and the non-extremal cases separately. The basic step

in finding the (k − 1)th power path is to go around a k-partite complete graph picking

one vertex in each color class until there are no vertices left. What we end up with

5

is a (k − 1)th power of a path. Our main thrust, therefore, is to try to cover the

vertices of the graph with balanced k-partite complete graphs. These complete graphs

are then connected together in a cycle using the Connecting Lemma. This lemma is

a powerful result of independent interest and what it asserts is that we can find a very

short (k− 1)th power path (of size about 8k2 + o(k2)) between any two disjoint (k− 1)-

cliques in the non-extremal graph with δ(G) ≥ k−1
k n. This is a major improvement

over the similar statements in other related papers (see the Connecting Lemma’s in

[43, 49, 48]) where the length of the connecting path had been a huge constant. In

particular, for k = 3 (Pósa’s Conjecture) the Connecting Lemma gives us a procedure

to construct a square path of length 16 between any two edges of the graph.

So in the end, by “unfolding” the connected balanced k-partite complete graphs

into (k − 1)th power of a paths, we get our (k − 1)th power of a Hamiltonian cycle.

Future Work: Completely Resolving Pósa’s Conjecture

After bringing down the threshold value n0 for which the Pósa-Seymour conjecture

has been shown to be true, our next goal is, to solve Pósa’s Conjecture completely.

The major improvement has been the much more efficient Connecting Lemma. We

think we can further improve this slightly, so that we can push the n0 down to around

one hundred, after which, we may check for all the cases by computer search. This is

possible since the very strict structure that is required of the graphs with such a high

degree and the ideas presented in the thesis preclude many graphs, so that the brute

force search for the remaining cases becomes feasible.

1.1.3 Future Work: Generalizations of Ore’s Theorem

A result closely related to Dirac’s Theorem is the following:

Theorem 6 (Ore 1960). Let G be a simple graph on n ≥ 3 vertices. If deg(u)+deg(v) ≥
n for every pair of non-adjacent vertices u, v ∈ V (G) then G is Hamiltonian. �

We believe that the methods used to generalize Dirac’s Theorem can be very useful

to make advances on similar generalizations for Ore’s Theorem e.g. we can look for

6

lowerbounds on the sum of the degrees of non-adjacent vertices of a graph that guarantee

existence of certain spanning trees or powers of Hamiltonian cycles.

7

Chapter 2

Embedding Spanning Trees

2.1 Introduction

We will only deal with simple graphs, without loops or multiple edges. Given a graph

F = (V,E), and U ⊂ V, the subgraph of F induced by the vertices of U will be denoted

by F |U . The degree of a vertex v ∈ V (F) is denoted by degF (v), or by deg(v) if F

is clear from the context. The minimum degree and maximum degree of F will be

denoted by δ(F) and ∆(F), respectively. We will let N(v) represent the neighborhood

of a vertex v, hence deg(v) = |N(v)|. Let A ⊂ V (F). Then we denote |N(v) ∩ A| by

deg(v,A). The number of vertices in a graph F is written v(F), and the number of

its edges is e(F). If A,B ⊂ V (F), then e(A,B) is the number of edges of F with one

endpoint in A and the other endpoint in B, and e(A) = e(A,A) = e(F |A). For a tree

T we denote the set of its leaves by `(T).

Given a bipartite graph H, a proper 2-coloring of H is a partition of the vertices of

H into two color classes such that adjacent vertices of H are assigned to different color

classes.

For graphs J and F , we will write J ⊂ F if and only if there exists an adjacency

preserving injection I : V (J)→ V (F). If I(x) = v then we say that x maps onto v and

that v is covered by x. If a vertex of F is not covered by any vertex of J then we call

it uncovered.

Throughout the chapter we use a � b to denote that a is sufficiently smaller than

b so that the ensuing calculation holds true. Our goal is to show the following:

Theorem 7. There exist two positive constants c and K such that the following holds.

Assume that T = (V,E(T)) is a tree on n vertices with ∆(T) = m ≤ cn/ log n and

8

G = (W,E(G)) is a graph on n vertices with minimum degree δ(G) ≥ n/2 +Km log n.

Then there exists an n0 such that T ⊂ G for n ≥ n0.

Bollobás [6] conjectured that if G is a graph on n vertices, δ(G) ≥ (1/2 + ε)n for

some ε > 0, and T is a bounded degree tree on n vertices, then T ⊂ G. The problem

was solved in the affirmative by Komlós, Sárközy and Szemerédi [39] for large graphs.

They then strengthened their result (see [41]), and showed that ∆(T) need not be

bounded: there exists a constant c such that T ⊂ G if m ≤ cn/ log n, δ(G) ≥ (1/2+ ε)n

and n is large. Notice that their result does not tell if a smaller minimum degree is

sufficient when m� cn/ log n. Both proofs are based on the Regularity Lemma – Blow-

up Lemma Method. Recently, using other methods, it was shown in Csaba et al. [12]

that bounded degree trees embed into graphs with minimum degree n/2+C log n, where

C is a constant depending on the maximum degree of T. In this chapter we show that

in general n/2 +O(m log n) is sufficient for every m ≤ cn/ log n.

Throughout the chapter we reserve the letters u, v, w (sometimes with subscripts)

for vertices of G, and use the letters x, y, z for vertices of T. We may assume that G

is minimal with respect to edge deletion, retaining the property that δ(G) ≥ n/2 +

Km log n. In particular, there are no edges uv ∈ E(G) such that both vertices u, v have

degree larger than n/2 +Km log n.

Let us remark that throughout the chapter we make no attempt to optimize the

absolute constants.

2.1.1 Outline of the embedding method

We divide the problem into two subproblems, depending on whether G is extremal or

non-extremal. We call G γ-extremal for γ > 0 if either G or its complement G contains

a subgraph on n/2 vertices with at most γn2 induced edges. Otherwise G is γ-non-

extremal. Observe that since G is minimal with respect to deleting edges, if A,B ⊂W
such that |A| = |B| = n/2 then e(A,B) ≥ γn2. Set γ = 2−20 and K = 2γ

−50
. We first

classify all the graphs as either γ-non-extremal or γ-extremal for some suitable value

of γ and then prove the statement of our theorem for each of these two classes.

9

In each case we will construct the adjacency preserving mapping I : V →W step by

step. It is worth noting that while at any time in the course of the embedding we have

an adjacency preserving partial mapping, the final I is not necessarily an extension of

it. It is possible that we modify the original mapping of certain subtrees.

If G is non-extremal, we will have three cases. The first case is when T has essentially

height two, that is, most vertices are close to the root. In the other two cases first we

find a subtree T0 that has about γ5n vertices. If T0 has many leaves, then it is broad,

otherwise it is long. Depending on T0 we will choose different methods when finishing

the embedding of T. In both cases we leave out some vertices of T, and first embed

the resulting smaller subtree in a particular way. This partial embedding enables us to

finish the embedding of T. More details as follows.

Case 1: T has essential height two

In this case T has a root r and almost all vertices are at a distance at most two from

the root. We mostly apply a greedy embedding method and heavily use the minimum

degree condition for G, in particular the m log n additive term.

Case 2: T0 is a broad subtree

We leave out several leaves from T, and embed the resulting smaller tree in the first

phase. During the embedding we use a linear size random set M for connecting the

already embedded parts with newly embedded forests. Most of this random set will

remain intact during the first phase, and therefore can be used in the second phase for

mapping the unmapped leaves by a matching procedure. We apply two basic methods

for mapping large chunks of T in the first phase.

One of these, the CM procedure is used for mapping the so called narrow forests. A

rooted forest is called narrow if the set of vertices at a distance at most two from the

roots is small compared to the size of the forest, otherwise it is wide. It is possible that

a narrow forest has to be remapped during the embedding. The CM procedure is very

similar to the Main Mapping Procedure in [12].

For embedding wide forests we use another method that we refer to as the LL

procedure, which maps level after level, using matchings. Unlike in the case of narrow

10

forests, we do not remap wide subtrees but map them once and for all. We remark that

there are mixed cases: a wide forest may contain a narrow sub-forest, and a narrow

forest may contain a wide sub-forest. In such cases we will divide the mixed forests in a

preprocessing procedure. The fact that T has many leaves is only used at the very end,

when finishing the embedding by the matching procedure.

If T has a large portion in wide forests, then we will divide T0 into subforests as

well. These new forests will be handled as the other forests in the decomposition. If

there are at least n/2 vertices in narrow forests, then we need T0 at the end in order to

finish the embedding. The main idea here is that after the almost embedding only very

few vertices (about γ13n) can be left out. If we put this ‘noise’ to the ‘large’ I(T0), this

results in a subgraph of G into which we can embed T0.

We remark that a simplified version of Case 1 is used when embedding wide forests,

it is one of the basic building blocks of the LL procedure.

Case 3: T0 is a long subtree

This time T0 is long, and therefore contains many long paths p0p1 . . . pk such that

degT (pi) = 2 for 1 ≤ pi ≤ k. We call such paths induced paths. We leave out several

vertices from these paths, and embed the resulting smaller tree with the method of

phase one of Case 2. Then we re-insert the left out vertices by a matching procedure.

This method is very similar to the one discussed in [12].

When G is γ-extremal we have two cases. In the first case G is very close to the

union of two complete graphs, both on n/2 vertices. In the second case Gis very close to

a complete bipartite graph, that has color classes of size n/2. The embedding algorithms

in these cases are similar to each other, and based on the method for the non-extremal

case. As in the case where T has height two, here we need the full strength of the

minimum degree condition on G.

2.1.2 On the minimum degree bound of G

In [12] it was shown that δ(G) − n/2 = Ω(log n) for T to be embedded into G where

the maximum degree of T is bounded by a constant. Let T be a complete ternary tree

11

on n vertices. An explicit n-vertex graph G was constructed with minimum degree

δ(G) = n/2 + (log3 n)/16− 1 such that T 6⊂ G.
In [41] it is proved that for every constant ε > 0 there exist constants c > 0 and n0

such that if m ≤ cn/ log n and δ(G) ≥ n/2 + εn then T ⊂ G. They also showed that

their result is optimal up to a constant factor. Their construction is as follows. Let

T be rooted tree with root r. Let deg(r) = (log n)/c1, where c1 is a sufficiently large

constant, and assume that the degrees of the children of r are as equal as possible. If

G is an Erdős-Rényi random graph on n vertices with edge probability 0.9, say, then

with high probability T 6⊂ G, while δ(G) > 0.8n with high probability.

The reader will see from the proof of Theorem 7 that in case G is non-extremal and

m = o(
√
n) then there exists an ε > 0 constant such that even δ(G) = (1/2 − ε)n is

sufficiently large in order to embed a spanning tree T with maximum degree m. This

resembles the constant degree case considered in [12]. However, when m = Ω(
√
n) our

proof requires that δ(G)− n/2 = Ω(m log n), and we conjecture that this is indeed the

true bound.

2.2 Some tools for the embedding

Definition 1. Assume that we are given a rooted tree F with root ρ. Let x and y be

any two vertices of F. We say that y is below x if the simple path connecting y with ρ

goes through x. Let F (x) denote the subtree rooted at x containing every vertex which

is below x. Sometimes we will call x the tip of the subtree F (x).

We can decompose a rooted tree into levels: the ith level contains those vertices of

F which are at a distance i − 1 from r. We denote the ith level set of F by Li(F) or

Li, if F is clear from the context. We say that F has height two if it has three levels.

The first one includes ρ, the second level contains the neighbors of r, and the third level

contains all the rest. We say that F has essentially height two, if there are at most

γ4v(F) vertices below the third level.

Observe that if G is not γ-extremal, then it has many triangles: there are at least

γn2 edges in the neighborhood of every vertex, since these neighborhoods are of size

12

larger than n/2. As any such edge is in a triangle, summing over vertices will count

each triangle three times. We get that there are at least γn3/3 triangles in G.

We record here a simple statement, which is also very useful throughout the proof:

Lemma 8. Let H be a tree of size m. If J is a graph with δ(J) ≥ m, then there is

an embedding of H into J. If J ′ = J ′(A,B) is a bipartite graph such that every b ∈ B
has at least m/2 neighbors in A and every a ∈ A has at least m neighbors in B then

H ⊂ J ′.

Proof: We leave the proof of the first part to the reader. For the second part we

remark that H is 2-colorable, and one of its color classes has size at most m/2. �

We will frequently apply the following folklore statement (proof is omitted):

Lemma 9. Every graph H has a subgraph H ′ such that δ(H ′) ≥ e(H)/v(H). �

Remark 1. We will frequently use the above two lemmas in the following way: whenever

we find a dense subgraph in the uncovered part of W, we can find a subgraph of it with

large minimum degree into which we can map a large subtree of T.

Let F = F (A,B) be a bipartite graph satisfying the following requirements:

• |A| = t and |B| = γ−10t,

• γ−4 � t,

• every b ∈ B has at least (1/2 + γ4)t neighbors in A.

Then we have the following Cleaning Lemma.

Lemma 10 (Cleaning lemma - first version). F has a subgraph F ′ = F ′(A′, B′) such

that A′ ⊂ A, B′ ⊂ B, every b ∈ B′ has at least (1/2 + γ4/2)t neighbors in A′ and every

a ∈ A′ has at least t neighbors in B′.

Proof: First we assume, that every vertex in B has exactly (1/2 + γ4)t neighbors in

A – if necessary, we discard edges incident to those vertices of B which have larger

degrees. Then we have e(F) = (1/2 + γ4)γ−10t2. We will find the desired subgraph F ′

step-by-step in the following way.

13

Let A1 = {a ∈ A : |N(a) ∩ B| < t}, and let B1 = {b ∈ B : |N(b) ∩ (A − A1)| ≤
(1/2 + γ4/2)t}. In the first cleaning step we delete the vertices of A1 from A and the

vertices ofB1 fromB. Removing these vertices deletes at most |A1|t+2|A1|t(1/2+γ4)/γ4

edges from F.

In the ith cleaning step we first identify a subset Ai ⊂ A − ∪i−1
j=1Aj and a subset

Bi ⊂ B − ∪i−1
j=1Bj :

Ai = {a ∈ A− ∪i−1
j=1Aj : |N(a) ∩ (B − ∪i−1

j=1Bj)| < t}

and

Bi = {b ∈ B − ∪i−1
j=1Bj : |N(b) ∩ (A− ∪ij=1Aj)| < (1 + γ4)t/2}.

Clearly e(Ai, B − ∪i−1
j=1Bj) < |Ai|t, and moreover,

|Bi| ≤ 2
e(Ai, B − ∪i−1

j=1Bj)
γ4t

< 2
|Ai|
γ4

.

Deleting the vertices of Ai and Bi therefore removes at most |Ai|t+2|Ai|(1/2+γ4)t/γ4

edges. Let us assume that after k cleaning steps the cleaning process stops: either every

vertex left satisfies the degree requirements of the lemma, or there are no vertices left.

The total number of edges we lose from F is at most

∑
1≤i≤k

|Ai|(t+ 2t(1/2 + γ4)/γ4) < t2(1 +
1 + 2γ4

γ4
) = t2(3 + 1/γ4)� γ−10t2.

We must have the former case, as most of the edges are still present when the process

stops. The induced subgraph on A−∪k1Ai and B −∪k1Bi will be denoted by F ′, and is

easily seen to satisfy the requirements of the lemma. �

For the second version of the Cleaning Lemma we assume that F satisfies the fol-

lowing:

• |A| = t and |B| = γ−10t,

• γ−3 � t,

• every b ∈ B has at least (1/2− γ3/2)t neighbors in A.

14

While the setup is somewhat different, the proof of the lemma below is very similar to

that of the first version, we omit the details:

Lemma 11 (Cleaning lemma - second version). F has a subgraph F ′ = F ′(A′, B′) such

that A′ ⊂ A, B′ ⊂ B, every b ∈ B′ has at least (1/2 − γ3)t neighbors in A′ and every

a ∈ A′ has at least γ−5t neighbors in B′. �

Random methods play an important role in the thesis. We will frequently use

Azuma’s inequality, in a bit more general form than how it is usually considered. Let

(Ω,A, P) be a finite probability space with the filtration (in this case a sequence of

partitions of Ω)

(∅,Ω) = A0 ⊂ A1 ⊂ . . . ⊂ At = A.

Let X be a measurable random variable. For each 1 ≤ i ≤ t we define the martingale

difference di = E(X|Ai)−E(X|Ai−1), and assume that |di| ≤ σi. We have the following

important inequality, see e.g. in [3, 45].

Theorem 12 (Azuma’s inequality). For all a > 0

P (|X − EX| ≥ a) ≤ 2e−a
2/2σ2

where σ2 =
∑t

i=1 σ
2
i .

Throughout the chapter we will use Azuma’s inequality in the following context: X

will be the sum of t not necessarily independent variables such that σi, the absolute

value of the martingale difference will never be larger than t/(k log n) for some real

number k. We let a = t/
√
k. Then the probability that |X − EX| ≥ t/

√
k will be at

most n−k. Usually k will be some positive power of K.

Throughout the embedding we will frequently use random subsets of W for various

purposes. We will mostly use the well known fact that the degree of a vertex of G to

a random set R is about |R|/2 with high probability, if R is not very small. We will

also need that non-extremality and bipartite non-extremality are inherited by random

subsets with high probability if the random sets are not very small, with parameter γ/2

instead of γ.

15

Let us define when we call a bipartite graph non-extremal. Given R1, R2 ⊂W,R1 ∩
R2 = ∅, the induced bipartite subgraph on R1 and R2 is γ/2-non-extremal if for every

A ⊂ R1, B ⊂ R2, where |A| = |R1|/2 and |B| = |R2|/2 we have that e(A,B) ≥
γ|R1||R2|/2. The proof of the statement below is fairly standard, and can be found

in [12].

Lemma 13. Let R1, R2 ⊂W with R1 ∩R2 = ∅ chosen randomly such that |R1|, |R2| ≥
K log n. Then for every v ∈ W we have that deg(v,Ri) ≥ (1 − γ20)|Ri|/2 with high

probability. Furthermore, the induced subgraphs on R1, R2 and the bipartite subgraph

with color classes R1 and R2 will be γ/2-non-extremal with high probability.

Let J(P,Q) be a bipartite graph, with |P | = a and |Q| = b. Let γ be a small positive

real number. We assume that a > γ−4, deg(x) ≥ (1/2 − γ4)b for every x ∈ A and

deg(y) ≥ (1/2− γ4)a for every y ∈ B. We further assume that J is γ/2-non-extremal,

that is, if P ′ ⊂ P, Q′ ⊂ Q such that |P ′| = a/2 and |Q′| = b/2, then e(P ′, Q′) ≥ γab/2.

Let f : P ∪ Q → N be a function. For a set S ⊂ V (J) let f(S) =
∑

z∈S f(z).

The following conditions guarantee the existence of an f -factor, see the Lovász problem

book [44].

(i) f(P) = f(Q)

(ii) ∀X ⊂ P, Y ⊂ Q we have that f(X) ≤ e(X,Y) + f(Q− Y)

When the degrees of the vertices are all in a small range, and Condition (i) above

is satisfied, there exists an f -factor. More precisely, we have the following:

Lemma 14. Set q = b/a. Let us assume that f satisfies condition (i), and q(1− γ5) ≤
f(x) ≤ q(1 + γ5) for every x ∈ P and f(y) = 1 for every y ∈ Q. Then condition (ii) is

satisfied as well. Hence, F has an f -factor.

Proof: We assume that condition (i) is satisfied, and verify that condition (ii) holds

by dividing the problem into several cases, depending on the size of X and Y.

16

Case 1. 1 ≤ |X| ≤ (1− 2γ4)a/2. This case is divided into two sub-cases.

Case 1.1. |Y | ≤ (1 + γ4)b/2. This case is easy to check, since f(Y) =

b− |Y | will be at least (1− γ4)b/2. This is an upper bound for f(X), since

(1− 2γ4)(1 + γ5) < (1− γ4).

Case 1.2. Here we assume that |Y | > (1 + γ4)b/2. We have the following

estimation for the number of edges between X and Y :

e(X,Y) ≥ |X|(|Y | − (1 + γ4)b/2).

Using the above bound for f(X) it is sufficient to check the following in-

equality:

(1− γ4)b/2 ≤ b− |Y |+ |X|(|Y | − (1 + γ4)b/2),

which is equivalent to

0 ≤ (1 + γ4)b/2− |Y |+ |X|(|Y | − (1 + γ4)b/2).

Setting s = |Y | − (1 + γ4)b/2 we get

0 ≤ −s+ |X|s = s(|X| − 1),

which clearly holds.

Case 2. (1− 2γ4)a/2 < |X| ≤ (1 + γ4)a/2. Then f(X) ≤ (1 + γ4)(1 + γ5)b/2 <

(1 + 1.5γ4)b/2. Again, we consider sub-cases.

Case 2.1. |Y | ≤ (1 − 2γ4)b/2. This case can be verified very similarly to

Case 1.1.

17

Case 2.2. (1−2γ4)b/2 < |Y | ≤ (1+γ/4)b/2. This is the case when the non-

extremality of J plays an important role: e(X,Y) ≥ γab − 3γ4ab > γab/2.

Since f(Y) = b− |Y | ≥ (1− γ/4)b/2 we are done if

(1 + 1.5γ4)b/2 ≤ (1− γ/4)b/2 + γab/2,

which easily seen to hold because a > γ−4.

Case 2.3 |Y | > (1 + γ/4)b/2. In this case it is sufficient if

(1 + 1.5γ4)b/2 ≤ b− |Y |+ |X|(|Y | − (1 + γ4)b/2).

Set s = |Y | − (1 + γ/4)b/2, then the above is equivalent to

(1.5γ4 + γ/4)b/2 + s ≤ |X|(s+ (γ/4− γ4)b/2).

This last inequality holds, since |X| ≈ a/2.

Case 3. |X| > (1 + γ4)a/2. Set s = f(X)− (b− |Y |). Note that s ≤ |Y | always.

If s ≤ 0, then we are done, so assume that s > 0. Using that

e(X,Y) ≥ |Y |(|X| − (1 + γ4)a/2),

we check the following inequality:

f(X) ≤ f(X)− s+ |Y |(|X| − (1 + γ4)a/2).

This is easily seen to hold since s ≤ |Y | and |X| > (1 + γ4)a/2.

�

At certain points we will use another result that is based on finding f -factors in

bipartite graphs satisfying conditions (i) and (ii). The following lemma is a special case

of the main result of Csaba [11].

Lemma 15. Let H be a bipartite graph having two color classes of size N and assume

that δ(H) > N/2. Then H has a spanning N/4-regular subgraph Hr. �

Another useful result is the following:

18

Lemma 16. Assume that G is non-extremal and u, v ∈ W . Then there are at least

γn/5 vertex disjoint paths of length 3 connecting u and v.

Proof: Set a = |N(u) ∩ N(v)|. If a ≥ n/2 − γn/2 then, by the non-extremality

of G, there are at least γn2/2 edges in N(u) ∩ N(v). One can therefore find γn/2

vertex disjoint edges in N(u) ∩N(v), determining γn/2 vertex disjoint paths of length

3 between u and v. At the other extreme, if a ≤ γn/2 then there are at least γn2 edges

in N(u) induced by G, again since G is non-extremal. If v′ is the endpoint of an edge

in G|N(u), then it has a neighbor in N(v). It follows that there are at least γn2/2 edges

between N(u) and N(v), and we can easily find the vertex disjoint paths of length 3

between u and v.

Assume now that γn/2 ≤ a ≤ n/2 − γn/2. Then the number of edges connecting

N(u)∩N(v) with N(u)∪N(v) is at least a(n/2−a) ≥ γn2/5. From these one can easily

choose γn/5 vertex disjoint edges to yield the desired vertex disjoint paths of length 3.

�

2.3 T has essential height two

In this section we consider the case when T has essentially height 2, that is, when at

most γ4n vertices of T are farther than 2 from the root. First we consider the case

when there are no vertices at level four or higher, then we discuss how to modify that

method to embed trees with a few vertices at higher levels.

Notice, that in these cases m, the maximum degree of T has order Ω(
√
n). The

vertices adjacent to r are denoted by xi and we let X = ∪xi. The leaves of T are

denoted by yj , and we let Y = ∪yj . We also assume without loss of generality that

degT (xi) ≥ degT (xj) if i < j.

We first define two auxiliary graphs. Let u be an arbitrary vertex of G. We assume

that deg(u) = n/2 +Km log n – if it is larger, then discard edges arbitrarily. The first

auxiliary graph is the bipartite graph AG. We will construct an embedding of T − r
into AG. This embedding after some modifications will provide the embedding of T

into G. The first color class of AG is N(u), the other color class is W, the vertex set of

19

G. There is an edge vw ∈ E(AG) if v ∈ N(u), w ∈W and vw ∈ E(G).

In order to discover the structure of AG we define another auxiliary graph F. We

define F as follows. The vertex set of F is N(u), and v1v2 ∈ E(F) for v1, v2 ∈ N(u)

if |NG(v1) ∩NG(v2)| ≥ γ3n. It is easy to see that if v1, v2, v3 ∈ N(u) then at least one

of the N(vi) ∩ N(vj), i 6= j sets has at least n/6 vertices, hence, every three element

subset of N(u) spans at least one edge in F. This implies that even after deleting a few

vertices from N(u) (which will be done later), F will have at most two components.

Observe, that F cannot have an induced path of length four or longer.

We call F highly connected if deleting at most γ3n/10 vertices of N(u) cannot make

it disconnected such that both components have size at least γ3n. In this case the vertex

u is called non-extremal, otherwise it is extremal. We will show that if u is an extremal

vertex, then N(u) contains many non-extremal vertices. Our goal is to map r, the root

of T onto a non-extremal vertex.

Assume, that u is an extremal vertex, that is, after deleting at most γ3n/10 vertices

from N(u) the leftover of F falls apart into two components, A and B. We assume that

|A| ≥ |B| ≥ γ3n. The following simple fact is given without a proof.

Fact 1. Let v1, v2 ∈ A and w ∈ B. Then

|N(vi) ∩N(w)| ≤ γ3n

for i = 1, 2, and

|N(v1) ∩N(v2)| ≥ n/2− 2γ3n.

�

Let v ∈ A be arbitrary and let C ⊂ N(v) be defined as follows: C = {w ∈ N(v) :

|N(w) ∩ A| ≥ |A|(1 + 5γ3)/2}. That is, every two vertices of C have many common

neighbors in A. One can prove the following fact by counting the edges between A and

N(v).

Fact 2. |N(v)− C| ≤ 5γ3n.

Notice that every two vertices of C have a common neighborhood of size at least γ3n.

Hence, N(v) can be divided into two sets, C and N(v)−C such that |C| ≥ n/2−5γ3n.

20

If u is non-extremal then we let u = I(r). If u is extremal, then we choose an arbitrary

vertex v ∈ A. For simpler notation we rename v to u, and let u = I(r). Moreover, we

set A = C and B = N(v)− C.
Our first goal is to embed the second and third level of T into AG such that the

second level is mapped into a subset of N(u) and the third level is mapped into W.

Later we need to modify this mapping in order to have the embedding of T into G.

For that we need to introduce some randomness when embedding T into AG. Let us

consider the first t for which ∑
i≤t

degT (xi) ≥ γ2n.

Recall, that the xis are in degree-decreasing order, hence t is a well-defined number.

Next, we choose a random set R having exactly t elements {v1, v2, . . . , vt}. Observe that

t� log n even in case m = cn/ log n if c is sufficiently small. If deleting a few vertices

would not make F disconnected then R is chosen from N(u), otherwise R ⊂ A. We

have the following.

Claim 17. With high probability the subgraph of F spanned by R cannot be made

disconnected by deleting less than γ3t/9 vertices.

Proof: Assume to the contrary that by deleting at most γ3t/9 vertices the leftover will

be disconnected. First, the number of components is two, since every three element

subsets of F spans at least one edge. Denote these components by A and B. Let v′ ∈ A
and v′′ ∈ B be arbitrary vertices. Let v ∈ N(u)−R. Then we have three possibilities:

1. vv′ ∈ E(F), but vv′′ 6∈ E(F), 2. vv′ 6∈ E(F), but vv′′ ∈ E(F), 3. vv′ ∈ E(F) and

vv′′ ∈ E(F). Denote the set of those vs for which the third case holds by D. Removing

the set D cuts F into two parts, hence |D| ≥ γ3n/10. Using Azuma’s inequality and

the fact that t� log n we get that with high probability R will contain at least γ3t/9

vertices from D. �

We will also make use the following property of F.

Observation 1. Every vertex of F has degree at least γ3n/10.

Proof: If there were a vertex with less neighbors, then by deleting those neighbors we

would disconnect F. �

21

Given the set R we let vi = I(xi) for 1 ≤ i ≤ t and W = W −R. Then we repeat the

following procedure for mapping the neighbors of the xis. Randomly choose a set of

size degT (xi)− 1− di from NAG(v). Here the deficiency di is a non-negative integer, we

say more about the dis later. Map the yj neighbors of xi onto them arbitrarily. Then

delete the recently covered vertices from W and N(u) and repeat the above for xi+1 if

i < t.

As it was indicated above the role of R is to help to find an embedding of T into G,

given an embedding into AG. It is also used to finish the embedding of T into AG at

the very end. That is why we need the deficiencies. We let
∑
di = 2m/γ, and assume

that the deficiencies are distributed evenly, that is, |di − dj | ≤ 1 for every i, j.

A greedy embedding procedure

Throughout the embedding a greedy embedding procedure will play an important

role. Let U ⊂ W be an arbitrary subset. Every w ∈ U has at least Km log n − m
neighbors in N(u) even if m vertices of N(u) are covered and therefore deleted. Hence

the average number of neighbors a vertex of N(u) has is at least |U |Km log n/(2n).

That is, unless |U | < 2n/(K log n), we can find a vertex v ∈ N(u) that has m uncovered

neighbors in U. Then we pick the leftmost unmapped x from the second level of T, let

v = I(x), and map the at most m neighbors of x onto the above found neighbors of v.

After this we delete v from N(u) and its covered neighbors from U.

Denote S the set of those vertices of W which has less than γn neighbors in N(u).

By the non-extremality of G we have that |S| ≤ n/2− γn. We let L = W − S. We will

first take care of the vertices of S, this means that we will cover them right away, and

at the end we will have only such vertices which have degree at least γn into N(u).

Observe that if v ∈ L then |N(v) ∩ A| ≥ (γ − 5γ3)n, thus, v has many neighbors in R

with high probability.

Covering the vertices of S

We will use the greedy embedding procedure for covering most of S, at most

2n/(K log n) vertices of S will be left out. Let h1 = n/(K log n). Observe that if

|S| > h1 then we can find a vertex v ∈ N(u) having at least m/2 neighbors in S.

22

Since |S| ≤ n/2− γn we can cover at least h1 vertices of S, in each step using at least

m/2 vertices from S and at most m/2 more from the rest of W. This follows from the

minimum degree condition of G and that for every m/2 vertices of S we use up at most

m/2 vertices from W. Hence, at the end the degree of any v ∈ N(u) will be at least

n/2 +Km log n− |S| − h1 ≥ γn− h1. Next we will reduce the number of vertices of S

to h2 = h1/2. By the greedy procedure we will always find a vertex v ∈ N(u) having

at least m/4 neighbors in S. Those neighborhoods will be complemented by at most

3m/4 uncovered neighbors of v in W. This is again possible since the degree of v into

W is at least γn − h1 − 3h2 even at the end. In general, we can reduce the size of S

to hq = 2−qh1 in a similar fashion. At every embedding step we use up at least m2−q

vertices from S, and at most (1− 2−q)m vertices from W. That is, at the end of the qth

iteration, we have that every v ∈ N(u) has at least γn − h1 − 3h2 − . . . − (2q − 1)hq

neighbors left in W. Noticing that K � 1/γ we get that the number of neighbors is

always at least γn/2, hence, this procedure will not get stuck. Moreover, we use up at

most n/2− γn/2 vertices from W in order to cover every vertex of S.

Covering most of L

It is easy to cover most of L by the help of the greedy embedding procedure. This

time notice that in the beginning every vertex of L had at least γn neighbors in N(u).

Since |B| < 5γ3n, vertices of L have more than γn/2 neighbors in A. Therefore, we can

build the tree further in such a way that the majority of the vertices of L are matched

to vertices of A.

Since γn/2 is much larger than Km log n, the greedy procedure will stop later.

Simple averaging argument shows that if |L| > 2m/γ then one can find a vertex v ∈ A
with m neighbors from L. This fact can be used to cover most of L greedily. We will

need to be a bit more precise, however. We always proceed in a left to right order when

embedding the second level of T, in particular, when covering R we used the xis with

the t largest degree. Set m1 = degT (xt) − 1. It is easy to see that when the greedy

algorithm gets stuck, L will have at most 2m1/γ vertices.

Finishing the embedding

23

Our strategy will be as follows. First, there can be at most m repeated vertices in

AG which are used in the second and in the third level as well. In the first phase we will

take care of the vertices having a repeated leaf. Then, in the second phase, we insert

those vertices of L that could not be inserted with the greedy embedding procedure.

In both cases we will use R and structural properties of F.

We will erase the leaves which are repeated in the second level. Let us first assume

that v ∈ B (recall, that B is the small component in F) has a repeated leaf w and

w = I(y). Since |L| ≥ n/2 + γn/2, every vertex has several neighbors in it. Moreover,

the vast majority of L have been covered by some leaf of T such that its parent is

mapped onto a vertex of A. Let w′ ∈ L be adjacent to v, and assume that x is the

parent of I−1(w′) and v′ = I(x) ∈ A. We change I and let w′ = I(y). Iterating this

procedure we can achieve that no vertex of B will have a repeated leaf at the end.

From now on we assume that only vertices of A lost leaves when deleting repeated

leaves. We will use the fact that F and F |R are highly connected. Say that a vertex

v ∈ A lost some leaves. By Observation 1 and Azuma’s inequality we conclude, that v

has at least γt/11 neighbors in F |R. We will find many paths in F |R of length at most

3 which go from v to vertices of I−1(y) where I(x) ∈ R and xy ∈ E(T). Then v will

steal the leave from I(x).

Stealing goes as follows. Say, vvi ∈ E(F). Then the probability that a neighbor of xi

is mapped onto a neighbor of v, is at least γ3/2 (at the end of mapping R we may lose

a few vertices from the intersection). By Azuma’s inequality at least γ3m1/3 neighbors

of xi are mapped onto a neighbor of v. Such a neighbor can be stolen by deleting it

from the subtree originating at vi and inserting it to the subtree of v. Stealing can also

be done on a directed v − v3 stealing path, say. Assume, that vv1, v1v2, v2v3 ∈ E(F).

Then v can steal from v1, the missing leaf of v1 will be stolen from v2, and finally v2

will steal from v3. At the end only v3 will miss a leaf. Notice that overall at most m

leaves will be stolen at this point, and the number of stealing paths is at most 3/γ3.

Second, we have to take care of the leftover vertices of L. Since R is a random set of

size t, every vertex of L will be adjacent to at least γt/2 vertices from R with very high

probability. If v ∈ L is adjacent to vi ∈ R then we insert v into the subtree originating

24

from vi. Since every v ∈ L has γt/2 choices, we can do this insertion evenly. Simple

computation shows that no more than 2m1/(γ2t) will be inserted into the subtree of

any vi. If t > 1/γ4 then at most γ2m1 new vertices will be inserted into a subtree at

this step, that is, a very small proportion of the size of the subtrees. Since the subtrees

below x1, . . . , xt has a total of about γ2n vertices, t� 1/γ4 if n is sufficiently large.

When we are done with the above, there will be vertices in R with more neighbors

than needed, some vertices with less neighbors and there will be vertices with the

required number of leaves. Also, if v 6∈ R and is covered by some x from the second

level, then the subtree of v has the right number of leaves after stealing. Then we

will find many vi − vj-paths of length at most 3 where vi has less leaves and vj has

more leaves than needed, and vi, vj ∈ R. After stealing we can reduce the discrepancies.

Observe that we need a total of at most 2m1/γ stealing paths, and no vertex will be

in many stealing paths, except perhaps those which are the first vertices of such a

path. Hence, this procedure will not get stuck before inserting every vertex of L, since

the sizes of the intersections are large enough to find these paths. This finishes the

embedding of T in case it has height two.

The following remark plays a crucial role later, when we embed trees with larger

height.

Remark 2. Assume that we have a subgraph G′ ⊂ G on at most t(1 + γ2) vertices,

where a t element set H1 comes randomly from W and the rest, at most γ2t vertices,

denoted by H2, are chosen arbitrarily from W −H1. Then we can embed a tree T ′ on

v(G′) vertices having height two into G′ as follows: We choose u from H1, and let

N ′(u) = N(u)∩H1. The small set H2 will be taken care of first. Since any of these will

have at least Km log t neighbors in N ′(u), we can handle these greedily, the same way

as we did with the vertices of S. Then we will continue as before.

2.3.1 T has a few vertices at a distance at least three from the root

Let us now discuss the case when T has essentially height two, but there are at most

γ4n vertices at a distance at least three from the root.

25

Let us denote the number of vertices farther than two from r by N. By our assump-

tion N ≤ γ4n. Since the embedding method is very similar to the one for embedding

trees of height two, we will focus on the differences.

• As before, we start from a non-extremal vertex u = I(r).

• We choose R as before, but embed less leaves, more precisely we leave out an

additional ` leaves, where ` = max{√n, 2N/γ}.

• We identify L and S, and then choose a random set LR ⊂ L with size |LR| = `.

Since |L| ≥ n/2 + γn and LR ⊂ L is random and not very small, every vertex of

W has at least γ`/2 neighbors in LR with high probability.

• Embed T, except those vertices from the higher levels, and the leaves we left out.

• Let x ∈ V (T) be any vertex at distance two from r which has a non-empty subtree

T (x) originating from it. We will embed T (x) in a greedy way into LR, using the

fact that every vertex has more neighbors in LR than the total number of vertices

below the third level.

• The leftover of LR will be inserted as leaves to the vertices of R. This is easy,

since LR ⊂ L, hence, all these vertices has many neighbors in R.

2.4 T has larger height and T0 is a broad forest

In this section we assume that at least γ20n vertices of T belong to higher levels of

T than the first three levels, and that T0 has at least γ7n leaves. Our first goal is to

present an algorithm for embedding most of T into G, a forest of size at most γ20n

can be left out. Later we will extend this “almost embedding” into a proper one. The

almost embedding algorithm comprises two main parts.

First, we will discuss a method for decomposing T into subtrees/forests of linear

size. The set of these subtrees/forests is divided into three parts, that is, classified

depending on certain properties. If the first three level sets of a forest is small, then it

is a narrow forest, we also say it is remappable. Forests of the second type have wide

26

levels, we will call them wide or lossless forests. Finally, there can be very small forests

which will be embedded at the very end greedily, since the total number of vertices in

small forests is very small.

The embedding will go as follows. Wide forests will be embedded into randomly

chosen subsets, level by level, using matchings. This method is called the LL procedure.

The word “lossless” refers to the fact that these forests can be embedded into a random

set of the same size, using perhaps a little help from a universal random subset chosen

at the beginning. Narrow forests will be embedded by the CM procedure, using a

dense subset in the uncovered part of G, very similarly to the Main Mapping Procedure

of [12]. We do not always have such a dense subset, but already embedded subtrees of

this type can be remapped in such a way that we gain a dense subset in G. For applying

this latter mapping procedure we may need many more vertices than their actual size.

Finally, very small forests will be easy to embed into a random subset.

2.4.1 Finding T0

In the first step we find a forest T0 with size about γ5n. Observe first that if T has

very few leaves, at most γ2n, then we can always find several long induced paths, their

union will be T0. If T has more leaves then starting from the root we either pick some

neighbors of the root, or go down in the tree, until we find a forest having size in

between γ5n and 2γ5n. This forest will be T0. If the number of leaves in T0 is very

small, less than γ7n, then T0 is a long forest, otherwise it is broad. Clearly, if T0 is the

union of long induceds path then it is a long forest. The role of T0 is to help turn the

almost embedding into a proper one at the end.

In this section we consider the case when T0 is broad, in the next section we will

consider the case when T0 is long. As we will see, we may not need T0 if at least n/2

vertices of T are in wide forests. More details follows below.

2.4.2 Decomposing T into small forests

An important component of the decomposition is the following folklore result.

27

Lemma 18. Let J be any tree on t vertices. Then J has a split vertex x ∈ V (J) such

that it is possible to group the vertices of J − x into two forests, J1 and J2 such that

t/3 ≤ v(J1), v(J2)(≤ 2t/3) and there is no edge connecting J1 and J2 in J − x.

We first repeatedly apply Lemma 18 until we get a decomposition of T − T0 into

a set of forests {F1, F2, . . . , F`} such that γ40n ≤ v(Fi) ≤ 2γ40n for every i. It is easy

to see that for this we need to cut out at most γ−40 split vertices. A forest of the

decomposition may contain many components. However, all forests are connected to

the rest of T through at most γ−40 vertices.

We associate a tree ST with this decomposition, the skeleton of T −T0. ST is given

by the split vertices and the paths connecting them in T − T0. It is immediate, that

the leaves in ST are split vertices, but not every split vertex is necessarily a leaf of ST.

It is also clear, that every forest of the decomposition is connected to ST via at most

γ−40 vertices.

Classification of forests

Let us assume that F is a forest with v(F) = Ω(n) containing the subtrees T̃j , j =

1, 2 . . . , s and denote the roots of these subtrees by rj . We let L1 = ∪rj , and Li =

the children of Li−1, the Lis are the level sets of F. We call the forest F narrow if

|L1 + L2 + L3| ≤ γ20v(F),

otherwise, if the second and third levels contain several vertices we call F wide. Observe,

that F is always narrow if m = o(
√
n). For embedding narrow forests we will use the

CM procedure and wide forests will be embedded with the LL procedure. Both methods

will be discussed later. In order to apply these methods we need a preprocessing step

for both kind of forests.

Preprocessing of narrow forests

Let F be a forest with a single root r′. Let us color red every vertex x of F for which

v(F (x)) ≥ γ3v(F). Consider a ‘last red vertex’ y, that is, y has the property that on

28

the r′ − y path every vertex is red, and no child of y is red. Denote the parent of y

by x, it is the red vertex just above y on the r′ − y path. Denote the children of y

by z1, z2, . . . , zl. Since the trees below every zi are small, we may assume that the sum

of the subtrees below the first s vertices, z1, . . . , zs is at least γ3v(F), but not larger

than 2γ3v(F). The subtree rooted at y containing z1, . . . , zs will be called a separable

subtree. During the embedding we may have to embed this part separately. Observe

that this subtree is remappable: the first level of it contains x, the second level of it

contains y, and the third level has the children of y, this is o(n) vertices.

It is easy to see that the union of narrow forests is also a narrow forest: let F1, F2

be two narrow forests with roots r1 and r2, respectively. Then F1 ∪ F2 with roots r1

and r2 is a narrow forest, since the second and third level is small compared to the total

number of vertices of F. This remark will prove to be useful when embedding narrow

forests.

Preprocessing of wide forests

This case is considerably more involved than the previous one, since we may have to

decompose Fi into several forests, some wide and some narrow or very small.

Recall that a forest F is wide if |L1 +L2 +L3| ≥ γ20v(F). If the number of subtrees

(and hence the number of roots) is a constant, then this implies that m = Ω(
√
n). Let

us call broom the forest of the first three levels of F . In general, a broom is a subtree

that has height two and one root. The second level of a broom will not necessarily

contain every children of its root, but the third level contains every children of the

second level.

In order to prepare for finishing the embedding of T, we may delete some leaves of

wide forests temporarily. Assume that the number of leaves in wide forests is at least

half the number of leaves in T, hence, it is more than γ3n/2. Let z ∈ F be a vertex not

in the broom and assume that it has l leaf neighbors. Then we delete γ4l leaves out

of these. At the end of the embedding we will insert these leaves back easily using a

matching argument, since the z vertices will be mapped using a random procedure.

29

If most of the vertices of F are concentrated in L3, then we can use the method for

embedding a tree having height essentially 2. Assuming that F has several levels we

call it partly narrow if there exist an i ≥ 4 such that

|Li| < γ40v(F)

and there are at least γ20v(F) vertices in levels below Li. In such a case we recognize

a narrow subforest F ′ ⊂ F as follows. Denote the parents of Li by P (Li), and the

grandparents by P 2(Li). Clearly, both these sets will be small. Then F ′ will be the

forest which is rooted at the grandparents P 2(Li). These roots are part of the wide

forest, while we cut off the subforest F ′. We need to preprocess F ′ as is described above

for narrow trees.

If below a certain level the number of vertices is at most γ20v(F) then the lower

levels will be taken care of using the random set M (more details follow later). Since

we also chop off levels from F if it has a small level set, we can assume that the depth

of a wide forest is at most γ−40, and that every level of it has at least γ40v(F) vertices.

Partitioning the level sets of F

We give a partitioning Cl of the set {0, 1, 2, . . . , n} as follows. The integer l ∈ {1, 2, . . . , n}
will belong to Cli if (1 +β)i−1 ≤ l < (1 +β)i where β = γ60. We let Cl0 = {0}. Clearly,

there are O(log n) classes.

We repeatedly use a partitioning method for bipartite graphs. Let H be a bi-

partite graph with vertex classes A and B. Assume that B has a partitioning Λ =

{Λ1,Λ2, . . . ,Λk}, and denote the elements of A by x1, x2, . . . , xt.

We introduce the relation ‘∼’ on A: x ∼ x′ if for every Λj we have that deg(x,Λj)

and deg(x′,Λj) belong to the same class in Cl, that is, if x and x′ have about the same

number of neighbors in every Λj ∈ Λ. It is easy to see, that ‘∼’ induces a partitioning

Π = {Π1, . . . ,Πs} on A.

In the important special case when Λ is trivial, that is, when |Λ| = 1, A will have

at most O(log |B|) partition sets, since the degree from A to B is bounded above by

|B|. We also have the following.

30

Remark 3. One can give an upper bound on |Π| based upon |Λ| and the maximum

degree of H. In particular, if |Λ| and ∆(H) are constants, then |Π| is also a constant.

Given a wide forest F , we will repeatedly apply the above partitioning method. Let

L` be the last level set having size at least γ40v(F). We assume that its partition is

trivial (has one partition set), and in a bottom-up manner we construct the partitions

of every level starting from L`.

Decomposition of wide forests

Let F be a wide forest rooted at r′ (the discussion is very similar in case there are more

roots). We define the weight of a vertex x ∈ V (F) to be v(F (x)), that is, the number

of vertices of F below x.

We begin with an observation. Assume that some x ∈ L2 has weight at least
√
Km.

Since ∑
x∈L2

v(F (x)) = v(F)− 1

there can be at most v(F)/(
√
Km) such vertices. Since the total number of neighbors

of such vertices is at most mv(F)/(
√
Km) we get that the forest originating at the root

of F containing those xs at its second level that have such a large subtree is a narrow

forest, since its third level has at most v(F)/
√
K vertices. Hence, we can deal with this

narrow forest separately using the CM procedure, and assume that below every x ∈ L2

we have a relatively small subtree.

Denote the partition of L3 by Π = {Π1,Π2, . . . ,Πt}, and let πi = |Πi| for all i.

Notice the following fact: using Remark 3 there are at most a finite number of partition

sets that contain vertices of weight at most K2. Denote this number by C. Observe that

partition sets that contain at most γ20|L3|/(K3C) vertices with low weight (at most

K2) have at most v(F)/K vertices combined.

We call a partition set Λ heavy if its vertices have weight more than K2, where Λ

is partition set in some level of F. We also call a vertex heavy if its weight is larger

than K2. Otherwise we call the vertex and the partition set containing it light. Heavy

31

partition sets will be very small. In the LL procedure we have to deal with heavy

partition sets separately.

Assume that the union of heavy partition sets at some level has at most K log n

vertices. Then the total number of their children is at most Kcn log n/ log n� γ40v(F).

Hence, the forest originating at their parents having these heavy partitions at the second

level with everything below them will be a narrow forest, and will be separated from

the wide part.

Consider the brooms rooted at the heavy vertices at some levelLi of F with second

level of the broom being the heavy children. We call these heavy brooms. If the total

number of the vertices in the third level of the heavy brooms is at most γ40v(F) then

we again can find a narrow forest. This implies that on the average a heavy broom has

at least K times more vertices in its third level than in its second level. Assume that

the total number of heavy vertices is t in some Li. Let x ∈ Li be a heavy vertex. If the

third level of the heavy broom of x contains at most |Li+2|/(Kt) vertices, then we will

separate the subtree originating at x from F. Either it contains at least n/K vertices

and hence this subtree will be a narrow subtree, or it is very small, and will be dealt

with as such. If a heavy broom rooted at x contains at least v(F)/(
√
K log n) vertices,

then we will call x very heavy. Thus, we may assume that the heavy brooms all have

about average size or larger in a wide forest at every level, if there are any.

Summarizing, beginning with L3 there will be light and heavy partition sets. The

light sets are large, each has linear size, while the heavy partitions are small. Every

vertex in a large partition set will have weight at most K2, while heavy vertices in

the heavy partitions have weight more than K2. Clearly, no children of a light vertex

can be heavy, while a heavy vertex can have heavy and light children at the same time.

Moreover, every heavy broom will have many vertices in its third level, at least K times

more than in the second level. The procedure is depicted in Figure 2.1.

When embedding, we will map the heavy brooms using a randomized version of the

greedy mapping procedure that was applied when embedding a tree with height 2. The

light partition sets will be embedded using matchings.

32

r′

L2

L3

L4

......

......

...

Figure 2.1: Decomposition of a wide forest

Forests in the decomposition that have more than one root

So far we have considered forests which are hanging from a split vertex. But ST may

contain several vertices other than split vertices, and there can be very small or large

subtrees hanging from them. Below we will consider the case of forests which has

vertices from the skeleton ST. By cutting out at most γ60n vertices from the forest we

will achieve that every component of the leftover of the forest will be connected to at

most one split vertex.

Denote the split vertices by x1, x2, . . . , xτ , where τ ≤ γ−40. Assume the leaves of the

forest Fi are the split vertices x1, x2, . . . , xs. Start a path from each of these, at time

t reaching those vertices of ST which are at most distance t from the leaves, always

staying in Fi. These paths at any time will give us a sub-forest of Fi. If we find an

induced path of length 3 such that the subforests hanging from the endpoints of the

edge have at most γ100n then we cut out the middle edge with its endpoints and the

subforests. The cut out forest is very small, we will embed it at the very end using

the random reservoir M. By averaging if we can find an induced path of length at least

33

F1

F2

F3

F4

F5

F6

F7

Figure 2.2: Decomposition of a tree

2γ−60 then we can find an edge that can be cut out.

This way we can separate some split vertices from the rest of Fi. Clearly, if a

component of ST has 4γ−100 vertices in ST , it will contain an edge that can be cut out.

Continue the process only for those components which are not separated from the leaves

x1, x2, . . . , xs. At the end we will get some components of size at most 4γ−100 having

the split vertices, and perhaps large independent components. We choose an arbitrary

vertex in every independent component, that will be the root. Finally, if a component

contains a split vertex, then that split vertex will be the root. The subtrees hanging

from these components of ST will give the Fi forest together with the vertices of the ST

component. Notice that the number of components is not more than 3τ. With this we

are prepared to apply the classification and preprocessing procedures. On Figure 2.2

the triangles indicate split vertices, and the rectangles are the cut-out edges. One can

see that a split vertex can be the root of several forests, and that by cutting out edges

we can achieve that no forest in the decomposition will have many roots. Moreover,

34

the connected parts of ST that have at least one split vertex will have a constant total

number of vertices.

Observe that the number of small forests that arise this way is at most 3τ small,

each having at most γ100n vertices, the total size is at most 3γ20n. This many vertices

will be easily taken care of at the end with the help of the random reservoir M.

2.4.3 Preparations for the embedding

Before starting the actual embedding, we choose our random reservoir set M ⊂ W (G)

with |M | = γ13n. By Lemma 13 every v ∈ M will have about |M |/2 neighbors in M

with high probability, and moreover, G|M will be a γ/2-non-extremal subgraph with

high probability. The set M will be used as a reservoir. We will use up a few vertices

of M during the embedding, but not more than γ2|M |, hence, even at the very end it

can be considered as a random set for our purposes.

Then for every wide forest F we will choose a random set WF ⊂ W with |WF | =

v(F). Denote W ′ = ∪WF . As in the case of M, with high probability we will have a

minimum degree condition and non-extremality for every WF . The set of uncovered

vertices of W −W ′ during the embedding will be denoted by Q. If Q is dense, that is,

contains many edges, then it is not hard to embed a narrow subtree.

In the next step we decide if we need T0 for finishing the embedding. If the wide

forests contain at least γ2n then we don’t need T0. We decompose T0 into small forests

the same way as we did for T − T0. If not, we keep T0, and its root will be the root of

T. Next we embed the skeleton ST. The forests of the decomposition will be embedded

using the LL and CM procedures, as follows below.

There is an important step here: in case the wide forests contains at least γ2n leaves

then we randomly, with probability γ4, discard a few leaves from every wide forest. If

these are from a light partition set, at the end it will be easy to map these leaves finding

factors with Lemma 14 since their parents will be embedded randomly. If it is a leaf in

a heavy broom then we will map the parent randomly: we randomly find a neighbor of

the image of the grandparent, and then randomly choose some of its neighbors for the

leaves. Then at the end we will insert the leftover leaves using the stealing paths, the

35

same way we did in case T had height 2. Otherwise, we will extend a partial embedding

of T0 in order to finish the embedding of T. More details will follow after we discussed

the main embedding methods of forests.

2.4.4 Embedding wide forests with the LL procedure

We will make use of the partitions of the level sets of the forest F to be mapped.

Assume that F is rooted at r′, and we are given a u ∈ W such that u = I(r′). The

case when F has more (but a constant number) of roots can be dealt with easily by

repeating the method for every root. Recall that we have a random set WF reserved

exclusively for embedding F. The LL procedure consists of three parts. The first part

is on embedding the broom of F that is rooted at r′. In the second part we will map

the heavy brooms with a different method, but that also has similarities with the one

we considered for embedding a tree with height 2. In the third part, for mapping light

vertices we will use matchings.

Initializing – Blowing-up F

We begin with ’blowing-up’ the forest F with a factor of (1 + γ20). This is a technical

detail, which is helpful when embedding, and it means only a very small number of

extra vertices. This means the following: Consider the next-to-last level of F. Assume

that it is partitioned into the sets Π1,Π2, . . . ,Πs. For every Πi we take the maximum

degree of the vertices of Πi, and if a vertex has a smaller degree, then we will add

‘imaginary’ children to it. This way we will get that every vertex that belongs to the

same partitions set of that level will have the same number of neighbors. We continue

this procedure in a bottom-up manner. It is possible that we add not only imaginary

neighbors, but a whole imaginary subtree, in order to achieve that if two vertices, x, y

belong to the same partition set then F (x) and F (y) are isomorphic subtrees. Notice

that we will increase the total size but at most

`−2∑
i=0

(1 + γ60)
i∑

j=0

|L`−j | ≤ γ20v(F)

36

where ` ≤ γ−40 is the number of levels of F. We take γ20v(F) vertices at random from

M and make WF larger such that we will have enough vertices to embed the blown-up

forest. During the embedding of F we will embed the blown-up forest. When we will

be done, we delete those vertices that are not needed for F and set this leftover aside.

We will take care of these vertices at the end, when finishing the embedding. Observe

that overall (for every wide forest) we need at most γ20n vertices from M in order to

perform the blow-up procedure.

Embedding the broom rooted at r′ ‘almost randomly’ – First part of the LL

procedure

Embedding the first three levels of F is very similar to embedding a tree with height 2,

but there are differences. The main obstacle is that we want to embed the third level

of F in such a way that “sufficient randomness” is involved.

The method is the following. First, take a random set U ⊂ WF such that |U | =

|L2| + |L3|, and then take at random 2|U |/K vertices from M, and put these to U.

Hence, U contains a little bit more vertices than what the second and third level of

F has. Recall that we embed the blown-up F. Hence, L2 is partitioned into at most

O(log n) sets where the ith set, Xi contains those vertices that have the same degree

which is about (1 + γ60)i. Notice that if |N(Xi)| < |L3|/(
√
K log n) then the number

of vertices right below Xi is very small, and the forest with root r′ and second level

Xi is a narrow forest, and can be dealt with the CM procedure. So we will assume

that |N(Xi)| ≥ |L3|/(
√
K log n). We divide U randomly into the subsets Ui where

|Ui| = |Xi +N(Xi)|(1 + 2/K).

Then we construct a bipartite graph with color classes Ai = N(u)∩Ui and Bi = Ui

for every i and connect v ∈ Ai and v′ ∈ Bi by an edge if vv′ ∈ E(G). Since Ui is large, G

restricted to Ui is 2γ-non-extremal with high probability, and every v ∈ Bi will have at

least
√
Km/2 neighbors in Ai (recall, that m = Ω(

√
n)). As before when T had height

2, we will divide Bi into two parts: Bi = S ∪ L, where S contains those vertices which

have less than 2γ|Ui| neighbors in Ai.

37

Recall that we greedily found vertices from N(u) in order to insert most of S into

the tree T in case T had height 2. We basically repeat that method: embed random

parts first, then take care most of S but this time we allow a small error, and don’t

want to embed all of S. Then we insert most of the vertices of L, and finally eliminate

the repeated leaves using the random parts. We are able to cover most of Ui, less than

2|Ui|/K vertices will be left out. That is, we embed a bit more than what we have

in N(Xi). Then we randomly decide how the children and grandchildren of r′ will be

mapped. First, we choose randomly a v for a children x, then we randomly distribute

the children of x among those neighbors of v that we have found.

We repeat this procedure for every i thereby finding a random-like mapping of

∪(Xi+N(Xi)). A quasi-random property will be satisfied. Roughly speaking, if S ⊂ U
is a fixed subset with |S| � |L3|/K and y ∈ L3 then the probability that I(y) ∈ S is

very close to |S|/|L3|. More precisely, we will have that

|S| − |L3|/K
|L3| ≤ P(I(y) ∈ S) ≤ |S||L3| .

Let Π be a light partition set that have size π ≥ γ60v(F)/(K3C). Let S be the set

of the heavy vertices in L3. We have the following lemma.

Lemma 19. Let v ∈ G be an arbitrary vertex. Then

(i) P(|degG(v,Π)− π/2| > 2π/K) <
1
n2

and

(ii) P(|degG(v, S)− |S|/2| > |S|/K1/4) <
1
n2
.

Proof: We apply Azuma’s inequality with X = degG(v,Π) for (i). Since the probability

that I(y) ∈ N(v) is almost 1/2, Π is large and σi ≤ cn/ log n for every i we get

the inequality of the lemma. Very similarly we can show that every v ∈ G will be

neighboring to about half of the heavy vertices with high probability, since the number

of heavy vertices is at least
√
K log n. �

38

Embedding heavy brooms – the second part

In this section we focus on the heavy vertices, we will discuss how to embed the children

of light vertices in the next section. If a vertex is very heavy, it will be easy to handle

it, too, using greedy embedding directly.

After mapping the broom rooted at r′ we have a random set for embedding the

leftover of F, denote it W ′F . Assume that a total of N vertices belong to heavy but not

very heavy brooms in F. Here a heavy broom originates at a heavy vertex, it has every

heavy children of the heavy root but no light children, and every children (light and

heavy) of the second level of the broom. We choose at random γ30N vertices from M,

and randomly choose N vertices from W ′F . Denote the union of these random sets by

A, and set N = |A|.
We construct an auxiliary bipartite graph H = H(A,B,E) as follows. The first

color class is A, and the second class, B is a copy of A, i.e., B = A. We will have an

edge between v ∈ A and w ∈ B if degG(w,N(v)) ≥ γn/2 and v 6= w. It is easy to see

that δ(H) > (1 + γ)N/2 since G is γ-non-extremal and we choose A randomly. Hence,

by Lemma 15 we get that H has a spanning N/4-regular subgraph Hr.

Hr

v

w1 . . . wl

v = I(x)

M

I(y1)
I(yt)

.

w1 = I(z1) wl = I(zl). . .

Figure 2.3: Embedding the heavy brooms using the random greedy method

The outline of embedding the heavy brooms is as follows. Given I(y) = v ∈ A and

its neighbors in B in Hr, we build several copies of the heavy broom rooted at y with the

greedy embedding method using vertices of M for the second level of the broom. Notice

that at most 3m/γ vertices will be left out from the neighborhood in Hr, because the

degrees into NG(v) are large. The vertices that are left out at this point will be called

39

discarded vertices. Then we randomly select among the copies of the heavy broom. We

will embed the heavy broom onto the selected copy. Since the second level contains

only heavy vertices, we use up a very small number of vertices from M. We call this

method random greedy. We will apply several rounds of the random greedy method.

After embedding a heavy broom we delete the newly covered vertices from A and B.

We will show that an almost regular property of Hr can be maintained, since we select

the images of the heavy brooms randomly. In fact we will have a similar quasi-random

property to the one we had when embedding the broom rooted at r′.

We need one more lemma. For that let J(D1, D2, E) be a bipartite graph with

t = |D1| = |D2|. We also assume that e(J)(1 − 1/q)/t ≤ degJ(v) ≤ e(J)(1 + 1/q)/t

for some large q. That is, J is ‘almost regular’. Then if we choose a random neighbor

of an almost randomly chosen vertex of D1, the distribution of the neighbor is almost

uniform in D2, as the lemma shows below.

Lemma 20. Assume that there is a probability p(v) associated with every vertex v ∈ D1

and (1 − ε)/t ≤ p(v) ≤ (1 + ε)/t, where ε > 0. Choose a vertex v ∈ D1 randomly

according to the above probabilities. Then choose a random neighbor of v from D2. The

probability that we choose a given w ∈ D2 is at least (1− ε)(1− 1/q)/t(1 + 1/q) and at

most (1 + ε)(1 + 1/q)/t(1− 1/q).

Proof: Let us first assume that p(v) ≡ 1/t. Notice that in this case we choose from edges

of J uniformly. Easy computation shows that the probability that one endpoint of a

random edge is a fixed w ∈ D2 is in between (1−1/q)/t(1+1/q) and (1+1/q)/t(1−1/q).

Perturbing the probabilities of choosing a vertex with (1± ε) will affect on the chance

of choosing one endpoint of an edge. Edges will not be uniformly chosen anymore,

however, the probability of choosing a particular edge will still be between (1− ε)/e(J)

and (1+ε)/e(J), that is, almost uniform. From this the statement of the lemma follows

easily. �

We will use Lemma 20 repeatedly when embedding heavy brooms. Observe that if

we choose the s leaves of a heavy broom with the random greedy method, and then

randomly choose which leaf will be mapped onto which vertex of the randomly selected

40

broom, then the above lemma applies.

In the beginning Hr is N/4-regular. Recall that there are at most m but at least
√
K log n heavy vertices. Delete these vertices from A and B, and keep the name Hr.

It is still almost N/4-regular, every degree will be between (1 − 1/K1/4)N and N/4

since N = O(n). In the first round we use the random greedy method for mapping the

vertices of L5 that are grandchild of a heavy vertex in L3.

Before mapping n/K1/4 vertices (there are many more to be mapped in the first

round) Hr is almost regular since the degrees are much larger. Then we can apply

Azuma’s inequality as in Lemma 20 since the leftover degrees will depend on at least

n
√
K log n/K1/4n = K1/4 log n randomly chosen heavy vertices and conclude that with

high probability the leftover of Hr is almost regular – except the discarded vertices.

However, one can see that there are only a very few vertices that are discarded several

times. Overall their number is o(n), hence if we delete those vertices that have degree

larger (1 + 2/K1/4) than the average, at the end we lose a very a few vertices, and the

graph will be almost regular. Observe that since Hr is almost regular at every point

of time and the heavy vertices are almost randomly distributed, we almost uniformly

map the leaves of the heavy brooms.

We repeat the above method for the second round, when we map the heavy brooms

that are rooted at vertices of L5. The Hr graph is almost regular even at the end of

the first round, hence, the heavy vertices of L5 are almost uniformly distributed in A.

Hence, Hr will be almost regular throughout the second round, every vertex will have

degree (1±4/K1/4) times the average – except those that were discarded several times,

which will be deleted from Hr.

In the jth round we begin with a graph Hr in which every degree is (1± 2j/K1/4)

times the average. We will embed the heavy brooms that are rooted at the heavy

vertices of L2j+1 and have leaves in L2j+3. Since Hr has γ30N more vertices and the

number of discarded vertices is very small, we can maintain the almost regularity of Hr

till the end of every round, when every degree will be (1± 2j/K1/4) times the average.

We have at most γ40/2 rounds, since there are at most γ−40 levels of the forest.

41

Embedding very heavy brooms

Assume that x ∈ L3 is a very heavy vertex. Recall that a very heavy vertex has at

least n/(
√
K log n) leaves in its broom. This can be embedded directly into a random

set, using the same randomized procedure we used for embedding the broom of the

root r′ of F. The degrees will be large enough, since the very heavy broom and hence

the random set is large. Then we continue the same procedure, starting from the third

level of the broom of x. This finishes the part of the LL procedure which handles the

heavy brooms.

Matching level-by-level for the light vertices – the third part of the LL

procedure

By now we considered how to embed a heavy or a very heavy broom. A light vertex

may belong to L3, it can be below a light vertex, or it is the children of a heavy vertex.

We will use different methods for mapping in the latter two cases. Notice that if a light

vertex is in L3 then we have already mapped it when embedding the broom of r′.

Assume that Πj is a light partition set, and either it is in the 4th level or it is below

a heavy partition. The outline of this case is as follows. The Ti subtrees rooted at

the vertices of Πj are isomorphic (recall the blow-up of F), and the parents of Πj are

randomly mapped. We will build the Ti subtrees into random sets level-by-level in a

top-down fashion, and then match the roots of the subtrees with the already mapped

parents. This latter matching is possible to find since both sets are random. Notice that

we don’t have to make distinction between the subtrees of the blown-up F rooted at

the vertices of Πj . Thus a matching argument works. Finally, we delete the unnecessary

vertices from the mapped blown-up forest.

A more detailed description is as follows. For embedding the Tis first recall that

every light partition is large. Therefore, we have a large number of trees to embed,

and every level of the union of these trees is also large. We choose random subsets

for the levels. Since these are large, by Lemma 13 every two consecutive random level

sets will be a non-extremal bipartite graph with large minimum degree. Then we apply

42

Lemma 14 in order to build the levels of these trees. Finding a new level amounts to

finding an f -factor between to consecutive random level sets, for some f. Assume that

x belongs to level s of Ti, and x has f children. Then by Lemma 14 we find stars with f

leaves centered at the images of the sth level of the Tis. Given I(x) and its f neighbors

in the factor, we randomly assign the f neighbors of x to the f neighbors of I(x) in the

factor. This way we can keep the randomness, and we can continue building the trees

further with the next level.

When we are done with every level of the Tis, we have to connect them to their

parents. These parents are either in L3 or are heavy vertices. In both cases, we used

the random greedy method in order to map these parents. We can apply Lemma 19 in

order to conclude that the condition of Lemma 14 are satisfied, hence, we can connect

the roots of the subtrees (the vertices of Πj) to their parents. It is easy to see that

repeating this method will lead to embedding every subtree that contain light vertices.

This finishes the embedding of blown-up wide forests.

In order to find the embedding of the original F, we have to delete at most γ20v(F)

vertices that belong to the blown-up F but not to F. That is a total of at most γ20n

vertices.

2.4.5 Embedding narrow forests

A rough description of this case is as follows. We will embed most of the narrow forests

into WN = W − ∪WF − M − I(T0) in case the wide forests has only a few leaves.

Otherwise there is no T0 and WN = W −∪WF −M. However, when the narrow forests

occupy only γ14n or less vertices of T, we will take care of the narrow forests greedily.

We say more about this when we discuss how to finish the embedding.

The CM procedure goes smoothly until Q, the set of uncovered vertices of WN has

many edges. Then we find an already mapped narrow forest H such that many vertices

of Q will have at least (1/2 + γ4)v(H) neighbors in I(H). This is very similar to the

method in [12]. We may not always find any forest that can be remapped this way such

that many vertices of Q has more than half degree in their images. However, because

43

of the minimum degree condition it follows that in this case almost every vertex of Q

is adjacent to almost half of the vertices of the images of almost all narrow forests.

This, and the fact that in this case there will be many edges between almost all pairs

of narrow forests, helps in finding an uncovered dense subgraph in G. When the size of

Q drops below γ15n, we stop with the CM procedure. The details are as follows.

Embedding T0

Recall that in case wide forests has a very few leaves and T0 is a broad forests then we

need T0 in order to finish the embedding. We will have a few cases depending on the

structure of T0.

• If T0 has essential height 2 then we find a good vertex for the root of T0 in WN .

Then randomly reserve v(T0) − γ13n vertices for T0. We will embed T0 into this

set plus the leftover we will have after the almost embedding of T − T0. Using

Remark 2 we will be able to embed T0.

• T0 has essential height 3. Randomly reserve a set S for L4 that has a bit less

vertices then the size of L4, |S|/|L4| ≈ 1− γ5. Then we map the first three levels

of T0 using the random method for embedding the broom of a wide forest. In

this case |L3(T0)| > 10 log n, otherwise T0 would have more levels. Then we can

continue with the LL procedure for light vertices - however, we don’t map the last

level of T0. We will do it using Lemma 14 at the end, when we put the leftover

vertices to S.

• T0 has larger height. This will be done very similarly to the case when we embed

the heavy brooms of a wide forest. The goal, as before, is to map the parents of

many leaves to a random set, and then either using Lemma 14 or stealing path

finish the embedding even with a little noise, that is, a few leftover vertices added

in the end.

We may assume that the width T0 is increasing, if we go 4 levels deeper we see

at least twice as many vertices. If not, then T0 will contain an induced path of

44

length at least 3. It is easy to connect any two vertices with a path of length at

least 3 using WN , and then we will choose the endpoint of the path randomly. As

v(T0)� γn and G restricted to WN is non-extremal, we never get stuck.

We take the tip of T0 which is defined to be the upper part of T0 ending at a level

Li such that |Li+1| > 10 log n. Notice that even Li+2 is much smaller then the

number of leaves in this case. We use the random embedding method of brooms

to map the height-2 subtrees originating at the vertices of Li.

Then we construct a bipartite graph H(A,B) as follows. The set of so far un-

covered vertices of WN will be A and B. We will connect u ∈ A and v ∈ B if

|N(u)∩N(v)| ≥ γn/2. Since G is non-extremal, δ(H) ≥ |A|/2. Hence we can find

a dense regular spanning subgraph Hr ⊂ H. Then we continue the same way as

we did for wide forests.

The first CM procedure

This is very similar to the Main Mapping Procedure of [12]. We assume that the root

r′ of F is already mapped, and that Q spans at least 2γ40n2 edges. If Q has this many

edges, then it contains a subgraph spanned by some Q′ ⊂ Q with minimum degree at

least 2γ40n. Let N(r,M) = N(r) ∩M, then |N(r,M)| ≥ (1 − γ2)|M |/2. Every v ∈ Q′

has at least (1−γ2)|M |/2 neighbors in M, hence, M has at least (1−2γ2)|M |/2 vertices

such that each has at least 2γ40n neighbors in Q′. Denote the set of these vertices by

MQ. Notice, that there are at least γ|M |2/2 edges between N(r,M) and MQ. Then

the embedding of F will go as follows. We map the vertices of L2 on those vertices of

N(r,M) which have many neighbors in MQ. Then L3 will be mapped onto arbitrary

vertices of N(I(L3))∩MQ. The rest of F can be embedded greedily, since the minimum

degree in Q′ is larger than F. If F has more roots (not connected), we repeat the above

for every subtree.

45

r′

M

Q

Figure 2.4: Embedding levels L2, L3 and L4 of F with the CM Procedure

The second CM procedure

Assume that we want to map the narrow forest F that has t vertices. Let Q denote

the set of those vertices of WN that have not yet been covered by a vertex of T . We

allow Q to be very sparse, but assume that |Q| > γ15n. The goal is to replace some of

the covered vertices of G by those in Q in such a way that we gain a dense subgraph

in the new Q.

Let T ′ ⊂ T denote the portion of T that has already been embedded. Assume

that T ′ contains k narrow forests T̂i in the decomposition such that the number of

vertices of Q with degree at least
∑

i(1/2 + γ4)ti into T̂ = ∪iT̂i is at least γ−15t, and

γ4v(T̂)/2 ≤ t ≤ γ4v(T̂)/2. Observe that the union of narrow forests is also a narrow

forest having several roots. Thus, T̂ is a narrow forest.

If the above is satisfied, we will first remap T̂ in the following way. Let Z = {z ∈
Q : |N(z) ∩ I(T̂)| ≥ (1/2 + γ4)v(T̂)}, and construct the bipartite graph H = H(A,B),

where A = I(T̂i) and B ⊂ Z with |Bi| = γ−10v(T̂). We connect a ∈ A and b ∈ B by

an edge if they are adjacent in G. We apply the first version of the Cleaning Lemma to

find a subgraph H ′(A′, B′) ⊂ H(A,B) such that A′ ⊂ A, B′ ⊂ B, every b ∈ B′ has at

least (1 + γ4)v(T̂)/2 neighbors in A′ and every a ∈ A′ has at least v(T̂) neighbors in

B′.

46

We apply Lemma 8 to find a mapping of T̂ onto H ′ such that at most v(T̂)/2 vertices

of the new mapping cover vertices from A = I(T̂) and the rest cover vertices from B.

We re-embed T̂ using vertices from M for the second and third levels, and then greedily

using H ′ as in the first CM procedure, but we have not mapped F so far - seemingly it

is a loss. On the other hand, there is a leftover bipartite graph H ′′(A′′, B′′) ⊂ H(A,B)

where A′′ ⊂ A and B′′ ⊂ B, |A′′| ≥ v(T̂)/2 and |B′′| ≥ γ−10v(T̂), and every vertex

of B′′ has at least γ4v(T̂) neighbors in A′′. This dense bipartite subgraph can then be

used to map F using the first CM procedure. Notice that even the smaller vertex class

of H” is larger than F itself, hence, we can proceed greedily.

The third CM procedure

As before, we denote the new narrow forest to be embedded by F, and we let t = v(F).

As in the second mapping method we assume that Q is very sparse and |Q| > γ15n.

Denote the narrow forests of the decomposition by T̂1, T̂2, . . . , T̂`, all having size ti =

v(T̂i) ≈ γ−4t (here we again take union of narrow forests if needed, as in the second

CM procedure). Assume that only a few vertices in Q have many neighbors in these

forests, and so we cannot apply the second CM procedure. More precisely, for every i

there are less than γ−10ti vertices having at least (1/2 + γ4)ti neighbors in T̂i.

We look for narrow forests that can be weakly remapped. That is, we look for forests

T̂j for which there are at least γ20n vertices in Q each having at least (1/2 − γ3/2)tj

neighbors in T̂j .

Assume that T̂j can be weakly remapped, and apply the second version of the

Cleaning Lemma. We get a bipartite graph H ′j(A
′
j , B

′
j) where A′j ⊂ V (T̂j), B′j ⊂ Bj ⊂

Q, |Bj | = γ−10tj , and every a ∈ A′j has at least γ−5t neighbors in B′j and every b ∈ B′j
has at least (1/2− γ3)tj neighbors in A′j .

If the sizes of the color classes of T̂j differ by at least 2γ3tj , then T̂j ⊂ H ′j . Moreover,

after embedding T̂j into H ′j we would get a leftover dense subgraph of H ′j in which every

b has at least γ3tj neighbors in the leftover of A′j . Such dense subgraphs can then be

used to embed F. Hence, if T̂j is weakly remappable but we cannot proceed the way we

described above, then the sizes of its color classes differ by at most 2γ3tj , the forest is

47

approximately balanced.

Another important observation is that if T̂j is weakly remappable, then we can

embed most of it into H ′j , a subtree T̃j of size at most γ3tj will be left out, this will be

chosen to be the separable subtree we found in the preprocessing.

We will see, that we can find pairs (T̂j , T̂i)s such that about half of the smaller color

classes of Hi and Hj will become vacant, moreover, there are a lot of edges in between

these parts. These are large sets since these forests are approximately balanced. Then

we will use this dense bipartite graph to re-embed the separable subtrees of T̂j and T̂i,

and then embed F. The details of this procedure are as follows.

From now on we assume that the color classes of the weakly remappable subtree T̂j

are roughly of equal size, and apart from a few vertices, the neighbors of the vertices

of B′ are concentrated in a subset of A′ of size (1/2− 2(γ4 + γ3))tj .

Set q = |Q| and let n′ = |WN |. We omit the proof of the following fact.

Lemma 21. If Q does not have a subset Q′ such that the induced subgraph on Q′ has

minimum degree at least γ20n′, then Q has at most γ10q vertices which have more than

γ10n′ neighbors in Q.

We claim that most of the subtrees are weakly remappable if none of them can be

remapped using the second CM procedure. More precisely:

Lemma 22. In the above setup if none of the good T̂j forests can be remapped then at

least (1− γ/2)n′ vertices are in weakly remappable forests.

Proof: First we consider the case when n′ ≥ n/2. Observe that most vertices in Q

have at most 5γ5n′ neighbors out of n′/2 that are are not in the union of the T̂i. This

follows from Lemma 21 and the fact that T0 has size at most 2γ5n. Set q′′ = |Q′′| where

Q′′ is the subset of Q containing those vertices having at most γ10n′ neighbors in Q.

Assume that T̂j is not a weakly remappable subtree. Then there are at most γ20n′

vertices in Q′′ which have more than (1/2−γ3/2)tj neighbors in T̂j , with the remaining

q′′−γ20n′ vertices having fewer. On the other hand, the number of edges going between

Q′′ and the union of the good subtrees is at least (1/2− 5γ5)q”n′.

48

Putting these together we get the following inequality:

(γ20n′+(q′′−γ20n′)(1/2−γ3/2))c+(γ20n′+(q′′−γ20n′)(1/2+γ4))(n′−c) ≥ q′′n′(1/2−5γ5),

where c denotes the number of vertices in subtrees which are not weakly remappable.

The dominating term on the left is −q′′γ3c, while the dominating term on the right is

−q′′n′γ4. Therefore c < γn/2, which implies the statement of the lemma in case n′ is

large. If γ8n ≤ n′ < n/2 then we have a very similar computation except that there is

no T0 and the defect on the degrees on the left-hand side of the above inequality is at

most γ10n′ as is given by Lemma 21. Hence, the lemma follows in this case as well. �

Without loss of generality let {T̂1, T̂2, . . . , T̂k} be the set of already embedded weakly

remappable forests. By the second version of the Cleaning Lemma there is a partial

remapping of T̂i which leaves a subtree of size at most γ3ti unmapped. Let Ri ⊂ I(T̂i)

denote the vertices in the image of T̂i that are not used in the remapping. Let ri = |Ri|.
Observe that ri is roughly half of ti.

Let us assume that we cannot remap any of T̂1, T̂2, . . . , T̂k such that a dense subgraph

is left in Q. Then (Ri, Q) is sparse for every i, and n′/2 >
∑
ri ≥ (1/2− 2γ/3)n′.

Consider the set ∪Ri. It has many edges, e(∪Ri) ≥ γn2/3, since G is non-extremal.

We will show that there is a pair (Ri, Rj) which has many edges.

Lemma 23. There exists i, j such that e(Ri, Rj) ≥ γ
2 rirj .

Proof: Clearly,

γn′2/3 ≤ e(∪Ri) ≤ γ/4
∑
i 6=j

rirj +
∑
i

e(Ri).

It is easy to see that
∑

i e(Ri) ≤ γ40n2, hence, there exist a pair (Ri, Rj) which is very

dense. �

Putting these together, we see that if we fail to apply the second CM procedure,

after remapping we can always find a large dense subgraph (Ri, Rj) on vacant vertices

(although these were previously covered), unless Q is very small. Then we can greedily

embed the new narrow forest F. Observe, that we use up at most 4γ−4γ20t vertices

from M in order to embed t vertices, hence, we don’t use up M fast.

49

Embedding a very small forest F

This time we don’t have to be cautious. Every very small forest will be embedded in

the end into M greedily. Recall, that the total number of vertices in small forests is at

most 3γ−40γ60n� γ15n.

Making connections between subtrees

In the beginning we will embed the skeleton ST except the independent components

and the cut-out edges. Notice, that this part is of constant size, hence it is easy to

embed. Then the forests which are connected to a split vertex in ST will be embedded

using the above procedure. We do the same with the independent components, if these

are large enough. Given an independent component, it is easy to connect it to the rest,

since it was separated by cutting an edge. Assume that everything is embedded except

the cut-out edges and the forests hanging from them. Let xy be a cut-out edge, and

assume that z1x, z2y ∈ E(T). (there are no other neighbors, since a cut-out edge is the

middle edge in an induced path of length 3) By now we have mapped z1 to I(z1) and

z2 to I(z2). Then we connect z1 and z2 using M with the CM procedure. If the forest

below xy is large, has at least γ60n vertices, then we have already determined, if it is

wide or remappable, and we will embed it according to this classification. If it is very

small, we embed it greedily into M.

Finishing the embedding

Earlier we discussed most of the details on how to finish the embedding, so here we just

sketch the method. We assume that T0 is not a long forest, perhaps it is not even used.

We are at the end, the leftover is M and perhaps some other vertices.

• If the wide forests contain several leaves then we don’t have T0. We will insert the

leftover as leaves into the wide forests. We prepared for this mapping such that

the parents are mapped onto randomly chosen vertices. Then we can finish the

embedding either using stealing paths or Lemma 14.

50

• T0 has essential height 2. Then the root of T0 has been mapped already. We put

the leftover to the random set that was reserved for T0 and using Remark 2 we

can embed T0 and hence finish the embedding of T.

• T0 has larger height. In this case we basically used the method of embedding a

wide forest for T0, except that we left out several leaves. The parents of these

leaves are mapped onto randomly chosen vertices. The leftover vertices are put

into the random set reserved for the left out leaves. Using stealing paths or

Lemma 14.

2.5 T has only a few leaves

In this section we discuss the case of embedding T when there is a subtree T0 ⊂ T with

about γ5n vertices and at most γ7n leaves. We first give a sketch of the procedure.

First we note that the existence of T0 follows from a simple averaging argument:

split T into forests of size about γ5n, there will be one with only a few leaves, if T has

a few leaves. A line in a tree T is a path P such that every vertex on P apart from

possibly the endpoints has degree 2 in T . In this case, T0 must contain several long

lines. We find a set of 2γ10n lines, each of length 1/(5γ2). We will cut out the midpoint

from each of these lines, set aside the cut-out vertex, and glue the two new endpoints

together. The result is a tree T̂ on (1− 2γ10)n vertices.

We prepare G for the embedding of T̂ . First we reserve a random set WF ⊂W for

every wide forest F. The union M2 = ∪WF contains only a small number of vertices

since T has only a few leaves. Then we find the vertices to be covered by the long lines

by the help of a randomized procedure. Then we apply the embedding method of the

previous section for embedding T̂ into G. Since T̂ is smaller than G, the embedding

goes easily, even with the restriction that the long lines of T̂ are mapped onto the

pre-determined long paths of G.

Finally we address the cut-out vertices. We will extend the embedding of the long

lines by finding a perfect matching in an appropriately defined bipartite graph in G.

With high probability, this procedure finds an embedding of T into G.

51

2.5.1 Preparations for the embedding

Finding random paths in G

In the first step we pick two random subsets M,M2 ⊂W (G). M will have size γ15n

as before, while M2 is reserved for the wide forests of T. Then we find the paths Ui by

the following randomized procedure:

Set k = 2γ9n. Pick randomly and independently k
20γ2 edges from G−M −M2 with

replacement. From these, form k sets of size 1/(20γ2). We can connect the edges of

each subset into a path of length 1
5γ2 by way of the paths of length three guaranteed

by Lemma 16. Denote the paths by U1, U2, . . . , Uk. We discard those paths containing

repeated vertices, where a vertex is repeated if either it appears twice in some Ui or it

is contained by Ui and Uj for i 6= j.

Let v be any vertex in G. Let Xv denote the number of occurrences of v in the

randomly chosen edges, then EXv < γ7. This number follows a Poisson distribution,

Pr(Xv > 2) ≤
∑
i≥2

γ7ie−γ
7

i!
� γ13.

That is, on average we expect to have less than γ13n repeated vertices. The probability

that there are more than 10γ13n repeated vertices is by Markov’s inequality at most

1/10. We call a path bad if either it contains a vertex at least twice, or it contains a

vertex which appears in another path. In the latter case we call only one of those a

bad path. After discarding the bad paths, the vast majority of the paths remain. With

probability at least 90% we have at most 10γ13n
8γ2 < 2γ11n bad paths.

A vertex v can be inserted into a path Ui if v has two consecutive neighbors on the

path. We also say that v is adjacent to Ui. Let us estimate the probability that v is

not adjacent to a given path Ui. There are at least γn2 edges in the neighborhood of v,

since G is non-extremal. The probability that none of the 1
20γ2 randomly chosen edges

is in the neighborhood of v is at most

(1− γ)
1

20γ2 ≤ e− 1
20γ < γ20.

It is easy to upper bound the number of those paths for which there are less than

52

(1 − γ11)n adjacent vertices. By Markov’s inequality, the probability that one cannot

insert more than (1− γ11)n vertices into a path is γ9. Using Markov’s inequality again

the number of such paths is at most γ10n with probability ≥ 1− γ/3.
Hence, one can find k′ = γ9n paths such that these do not contain repeated vertices,

and one can insert at least (1− γ11)n vertices into any of them.

Finding long lines in T

First we show that if F is a tree having only a few leaves then it contains many long

lines.

Lemma 24. Let F be a tree on t vertices with ct leaves for some 0 < c � 1. Then it

is possible to find s = ct vertex disjoint lines p1, . . . , ps in F such that |pi| = 1/(4c).

Proof: Choose a root ρ. Substitute every maximal line in F by one edge (but we keep

ρ as is). Then every vertex in the new tree F ′ will have degree 1 or at least 3 except

possibly the root. Since in a tree the number of leaves is bounded by the number of

vertices with degree at least 3 plus 2, we have at most 2ct + 1 vertices and 2ct edges

in F ′. There were t − 1 edges in F , hence an average edge of F ′ corresponds to a line

of length a least 1/(2c). Cut out a part of this line of length 1/(4c) and glue together

the resulting two endpoints. Repeat this procedure: construct a new F ′ as before, and

then find a long path again by an averaging argument. We can continue this way, and

find many paths of length 1/(4c), as long as the leftover number of edges in F is larger

than t/2. �

Apply the tree decomposition for T − T0. We return edges of the lines to T as

necessary in order to ensure that any two are at a distance of at least three from

each other and that they are exactly 1/(5γ2) long. We denote the resulting lines by

P1, P2, . . . , Pk′ .

Let Pi be a long line. Let yi be the midpoint of Pi and xi and zi its neighbors.

Remove yi from the path, and include the xizi edge. This yields a new line P̂i and the

cut-out vertex yi. We repeat this for every 1 ≤ i ≤ k′, after which we arrive at a tree

T̂ which has (1− k′)n vertices. Let T̂0 denote the subtree of T̂ which arises by cutting

out the midpoints.

53

2.5.2 Embedding T̂ into G

Our next goal is to embed T̂0 into G, this is done greedily. Since the minimum degree

of G is large, it is easy to embed the Pi lines into the randomly constructed paths of

G, and then finish the embedding with the rest of T̂0. Recall, that the Pi lines are at a

distance at least three from each other.

After we are done with T̂0, the embedding procedure of the previous section is

able to proceed as long as there are enough vertices in G that are uncovered. As we

have retained k′ � |M | vertices to embed at the very end, this condition is always

maintained.

2.5.3 Finishing the embedding

Recall that the probability that a vertex v cannot be inserted into any of the 1
20γ2

randomly chosen edges is at most

(1− γ)
1

20γ2 ≈ e− 1
20γ .

Since we choose the edges and then form the edge sets randomly, by Chernoff’s in-

equality every vertex v can be inserted to at least (1 − e− 1
20γ)γ9n − o(n) paths with

probability ≥ 1− 1/n2.

After embedding T̂ , we have the uncovered A ⊂ W (G) such that |A| = k′. If we

can insert exactly one vertex of A to each of the Ui paths, then we are done with the

embedding of T into G. For showing that these insertions are possible we will apply the

König-Hall marriage theorem.

Construct a bipartite graph F (A,B) where A is as above and the vertices of B

correspond to the randomly chosen Ui paths. We connect a ∈ A and b ∈ B if the

corresponding vertex can be inserted to the the path of b. We have γ9n vertices in A

and B. Recall that we discarded those paths into which less than (1 − γ11)n vertices

could be inserted. Furthermore, with high probability every vertex in A is adjacent to

most of the paths, thus, the minimum degree in F is large with high probability. Hence,

the König-Hall conditions are satisfied with high probability. Therefore, we can find a

perfect matching in F. This finishes the proof of the second non-extremal case. �

54

2.6 G is extremal and close to Kn/2 ∪Kn/2

In this case W (G) is partitioned into A and B such that |A| = |B| = n/2, and e(G|A)

and e(G|B) is at most
(
n/2
2

) − γn2. We state a simple lemma on the degrees of the

vertices of A and B, we omit the proof.

Lemma 25. Let 0 ≤ η ≤ 1/2. Then the number of vertices of A having less than

n/2− ηn neighbors in A is at most 2γn
η . Analogous is true for B. �

The case of extremal G is divided into subcases depending on the structure of T .

First, we will separately deal with the case when T has height 2, then we consider the

embedding of trees with height at least 3.

2.6.1 T has height two

In this case T is a height-two tree rooted at r. The embedding method of this case

is very similar to the one we used for embedding height-two trees in the non-extremal

case, although there are differences as well.

Preprocessing

The vertices in the second level are denoted by xi and we call them parents. The vertices

in the third level of T are the leaves, and we denote them by yj . We also assume that

degT (xi) ≥ degT (xj) if i < j. We say that a vertex v ∈ W is good if at least half the

vertices of the graph have more than n
4 − 4γn neighbors in N(v).

Lemma 26. If G is γ-extremal and close to Kn/2∪Kn/2 then G contains a good vertex

v.

Proof: Let A and B be the two given partitions of the extremal graph G. Let a ∈ A be

the vertex with the highest degree in A and similarly let b ∈ B be the vertex with the

highest degree in B. By Lemma 25 we know that deg(a,A), deg(b, B) ≥ n/2−4γn. For

every vertex v of the graph the degree of v in N(a)∪N(b) is greater than n
2 − 8γn. By

the pigeonhole principle at least n
2 vertices of the graph have at least n

4 −4γn neighbors

in N(a) or have n
4 − 4γn neighbors in N(b). �

55

Without any loss of generality we can assume that the good vertex came from A

and we set I(r) = a. We then exchange the at most 4γn non-neighbors of a in A with

the neighbors of a in B and we call the adjusted partitions A and B as well. The

exchange of vertices between the partitions could have resulted in an additional 2γn2

missing edges within each of the partitions so that our new partitions may be treated

as being part of a 3γ-extremal graph. Moreover, at least half the vertices of G have

a large intersection with A which is now a subset of N(a). Now we define the set

C = {v ∈ A : deg(v,A) ≤ 1
100n}. By Lemma 25 we know that |C| ≤ 13γn.

It is possible, however, that C is very small, when |C| < Km. We will follow similar

procedures, but there will be differences.

C is large

Assume first that C is large. Define L = {v ∈ V (G) : deg(v,A) ≥ n
4 − 4γn}. We choose

only as many vertices from B for L so as to make the size of (A \C) ∪L exactly equal

to n/2 (recall that a is a good vertex). Next consider those vertices in B \L that have

low degree into C. Call that set Z and define it as Z = {z ∈ B \L : deg(z, C) ≤ 9
10 |C|}.

Using the fact that the degree in B of any vertex in C is more than 49
100n, simple

edge-counting argument shows that |Z| ≤ n
10 = 1

5 |B|. Call all the remaining set Z ′ i.e.

Z ′ = (B \ L) \ Z.

C is small

In this case we will find |C| vertices from B ∩ L and interchange these with C. Since

we move only at most Km vertices, the number of edges between the two sets is still

at most Kmn/2 + 3γn2 < 4γn2/2, that is, the partition is 4γn-extremal. Furthermore,

vast majority of A is adjacent to a and all vertices of A has at least n/100 neighbors

in A.

56

C is large

Having done the preprocessing and defining all the appropriate sets, we now start the

actual embedding process for T . All the parents should come from A∪L. The embedding

of parents is done in decreasing order of the indices of the xis.

• Choose a random set RC ⊂ A−C and RZ ⊂ A−C −RC , both having size n/50.

• We begin with covering the vertices of Z ′. All the vertices of Z ′ have at least

9
10 |C| degree into C. We use the familiar greedy strategy for embedding a height-

2 tree. Since the degrees to C are large, we can proceed as long as there are

at least 5m/4 vertices left in Z ′. For the leftover of Z ′ we will find parents in

(A−C)∪L. This latter set has exactly n/2 elements, therefore, every vertex has

at least Km log n neighbors in it. If needed, we will choose “outside leaves” from

A−C −RC −RZ , this means at most m+ 2m log n� Km log n vertices that we

cover from (A− C) ∪ L.

• For the set C we look for parents in (A − C) ∪ L, as we did for Z ′. If we have

some vertices left, we find the outside leaves in RC .

• We follow the same procedure for the set Z, we find parents in (A− C) ∪ L, and

if necessary, we find the outside leaves in RZ .

• The leftover of RC ∪ RZ is put back to A. Observe, that we have no parent-leaf

conflict. Every uncovered vertex is from the set (A−C)∪L. The minimum degree

in this set is larger than n/200, since only a very few vertices were covered so far,

and C had the vertices with smaller degrees in A. Also, a very few vertices can

have degree smaller than 0.55n/2 in A − C. We will first cover them right away.

After this only such vertices are left that are each adjacent to at least 51% of

the uncovered vertices. Therefore we can embed the leftover using the method of

Section 2.3.

57

C is small

This case is easier than the previous one. In this case we have no set Z ′, and we may

assume that the set B = Z. We first take care of B using the greedy strategy. There

is no problem until we have at most O(n/ log n) vertices left in B. Then we can follow

the familiar strategy: if there is not enough neighbors in B, we take neighbors from A.

At this point we could use up all the neighbors of the leftover in B, hence we have

to be careful. We will choose the outside leaves from A randomly. Since every vertex of

A has at least n/100 neighbors in A and we choose at most m neighbors randomly at a

step, we can apply Azuma’s inequality and get that the probability that we do not use

up more than K
2 m log n vertices from the neighborhood in A of a vertex of B is larger

than 1− 1/n3. Thus, we don’t get stuck and can cover every vertex of B this way.

When we are done with B, it is easy to continue as before. First we take care of

those vertices in A that have less than 0.55n/2 neighbors in A and those that are not

neighbors of A (recall, that we can have a few, but each of these have several neighbors

in A). We can use the same greedy procedure what we used in case C was large. Then

covering the large degree vertices of A is easy. This finishes the case when T has height

two.

2.6.2 T has essentially height two

Define L≥4 = L4∪L5∪ . . . , and let L′3 ⊂ L3 denote the leaves in L3. We say that T has

essentially height two if |L≥4| ≤ n/500. Clearly, this implies that |L′3| ≥ 499n/500−m.
It turns out that a very similar procedure to the above will embed T with some minor

modifications. We will not go into the details but will just outline the procedure briefly.

• We choose a good image for the root r as before.

• Then we define the sets L, C, Z and Z ′ in the sets A and B as was done in the

previous case. We distinct the cases whether C is large or small.

• If C is large:

58

– we find the random sets RC , RZ ⊂ A − C as above. Also, we find another

random set RZ′ ⊂ A− C −RC −RZ , each having n/300 vertices.

– We take care of the vertices of Z ′ as above, that is, parents come from

(A− C) ∪ L, but we find outside leaves and parts from L≥4 in RZ′ .

– Similarly, we find parents for the vertices of C from (A − C) ∪ L, and find

outside leaves and parts from L≥4 in RC .

– We follow a similar procedure for Z. That is, find parents from (A−C)∪L,
and find outside leaves and parts from L≥4 in RC .

– Put back the leftover of the random sets to A−C. Only vertices from (A−
C) ∪ L are left. First we take care of those vertices that are adjacent to at

most 55% of (A − C) ∪ L. Then every uncovered vertex is adjacent to at

least 52% of the other uncovered vertices. We can use the tree embedding

procedures of Sections 2.3 and 2.4 in order to embed leftover.

• If C is small:

– In this case we will find |C| vertices from B ∩ L and interchange these with

C.

– We find a random set RB ⊂ A such that |RB| = n/300.

– We apply the greedy strategy for the vertices of B, but use RB for the outside

leaves and the parts in L≥4. Then put back the leftover of RB to A.

– As in the previous case, take care of the small degree uncovered vertices of

A first, then apply the tree embedding procedures of Sections 2.3 and 2.4 in

order to finish the embedding.

2.6.3 T has larger height

In this case we assume that there are more than n/500 vertices at a distance more

than two from the root, r, of the tree. In the previous extremal cases we began with

preprocessing G and then embedded T using the decomposition of G and the structural

properties of the essentially height-2 tree T. Since the structure of T could be much

59

more subtle here, we have to decompose T. Moreover, we will apply another kind of

decomposition for G.

Decomposition of G

First we discuss the decomposition of G, assuming that we already have the sets A and

B. We define the inner degree of v ∈ A as |NG(v)∩A| and the outer degree of v ∈ A as

|NG(v) ∩B|. The inner and outer degree of u ∈ B is defined similarly.

Assume that u ∈ A and v ∈ B are such that e(A− u+ v) + e(B − v + u) > e(A) +

e(B). Switch u to B and v to A, and look for another pair of vertices which can be

switched. At every switching step the total number of edges inside A and B is increased,

therefore this process will stop in a finite number of steps. Observe that if there exists

u ∈ A and v ∈ B such that both have inner degrees of at most n/4, then it is still

possible to perform a switching step. Hence, at the end of the switching procedure we

have that every vertex in one of the parts, say A, has an inner degree of at least n/4.

Observe, that after the switching even the sparser set will contain at least n2/4− 2γn2

edges, so both sets will be 2γ-extremal. There may be up to 5γn vertices in B which

have at most n/100 neighbors in B (see Lemma 25). Denote the set of these vertices

with low degree in B by B′. We adjust the A−B partitioning of G, we let B := B−B′

and A := A+B′.

Decomposition of T

Let I and II be two sets that are originally empty. During the decomposition we will

put the vertices of T either into I or into II. In the end we will have that |I| = |A|
and |II| = |B|. The vertices of I will be embedded onto vertices of A, the vertices of

II will be embedded onto vertices of B. We start from the root r, and as we proceed

downwards we assign subtrees either to the set I, II, or will further decompose the

subtree. We say that an edge is separated if one of its endpoints is put into I, the other

is put into II.

There is always an active vertex x, in the beginning r is the active vertex. Denote

the children of the active vertex by x1, x2, . . . , xk. We consider several cases.

60

1 Subtrees that fit into II. If for some i we have that |B| − |II| > v(T (xi))

then we put the vertices of T (xi) into II, and look for another child of the active

vertex that satisfies this property.

2 Subtrees that do not fit into II. Assume that there are more than one children

that do not fit into II. Let v(T (xj)) be minimal among these. Then we let xj to

be the new active vertex, and the previous active one is put into II. If there was

at least one subtree that fitted into II then we call xj a bridge.

3 Height-2 subtrees. If one of the subtrees that do not fit into II is essentially a

height-2 tree, then we can finish the decomposition: It is easy to cut the subtree

into two pieces such that one piece has size |B| − |II|, and there will be at most

O(m) newly separated edges and bridges.

4 Finishing the decomposition. If k = 1 and v(T (x1)) = |B|− |II|, then we put

the vertices of T (x1) into II. The decomposition finished.

Notice that since the new active vertex we always comes from the smallest subtree

that does not fit into II, |A| − |I| decreases fast, and we finish in at most 2 log n steps,

and there will be at most 2 log n bridges and 2m log n separated edges since every

separated edge is incident to a bridge. Also, every bridge vertex belongs to II.

This is not necessarily the final decomposition of T. If the vast majority of I are

coming from a subtree with root in II that has essentially height 2, then we put the

root into I, and one leaf of that subtree is put into II. Observe that in such a case most

vertices that are a distance at least 3 from the root are in II.

Covering vertices with small inner degree

Recall, that every vertex of B has inner degree at least n/100. Assume that there is

a subtree in II such that below level 2 it contains at least 100γn vertices. If it has

essentially height 2, then we do the following. Use the greedy embedding method with

the small inner degree vertices being used up as leaves. We will perhaps cover a few

other vertices as well.

61

If the subtree is higher, we use a version of the above greedy method. We decompose

its levels into 3 sets, S1, S2 and S3. Here Si contains the levels that has index i mod 3.

Clearly, one of Si will be large. Say, that S3 is the largest.

Every vertex has at least n/100 neighbors in B, hence we can apply the following

method. We begin with a vertex v ∈ S1 on the actual level (we start from the root). It

has a very large neighborhood since it will be mapped onto a vertex with large inner

degree. Every small inner degree vertex has several neighbors in N(v). This determines

a height-2 subtree, that will be embedded such that S3 is mapped onto leaves of this

subtree we have found. Then we continue with other large degree vertices of the level

of v. If there are no more such vertices left, we continue with the level that is adjacent

to the recently mapped S3 vertices. We make sure that these vertices have large inner

degree. This is possible since even the small inner degree is much larger than the

number of vertices with small inner degree. Then we can continue the above procedure

with mapping two new levels, the second one being used to map the vertices of S3.

If the subtree is much larger than what we need in order to cover small inner degree

vertices, we find a smaller subtree of it, that will be used for the covering.

The actual embedding method

Our goal will be to map vertices of I into A and vertices of II into B. First, we map

the skeleton that contains the bridge vertices, and those that are adjacent to two bridge

vertices. Clearly, the skeleton has size at most 4m log n. We also fix the neighbors of the

skeleton vertices in A. Observe that this is possible since A is larger, therefore, every

vertex has at least Km log n neighbors in A.

If there is a subtree having essential height 2 such that except its root all its vertices

are in A then we apply the random greedy method to embed that subtree. The second

level of the subtree may come from A or from B. For every vertex of the second level

for which we use a vertex from B we will map a leaf of this subtree into B. There can

be at most one such subtree in I.

After this only such subtrees are assigned to I that are higher. Start the embedding

of such a subtree (or subtree of a subtree or the union of subtrees) that contains about

62

100γn vertices. We will cover every vertex of A that has inner degree at most 0.6n/2

when embedding this subtree. Then the rest that is mapped into A using the methods

of Sections 2.3 and2.4. This is possible since the leftover of A is large and therefore

non-extremal with high minimum degree.

Covering B is very similar. First, we cover the vertices with small inner degrees.

Since we have subtrees in II with their roots that have height at least 2, this is doable.

Then the subgraph spanned by B will be non-extremal with high minimum degree, and

we finish as in the previous case.

2.7 G is extremal and close to Kn/2,n/2

In this case V (G) is partitioned into A and B such that |A| = |B| = n/2 and e(A) +

e(B) ≤ γn2. We state a fact very similar to Lemma 25

Lemma 27. Let 0 < η < 1/2. Then the number of vertices of A having less than

n/2− ηn neighbors in B is at most 2γn
η . Analogous is true for B.

Embedding procedure in this case is very similar to the one used in the previous

extremal case. We will outline the procedure briefly.

• Using Lemma 26 we choose a vertex a such that I(r) = a that has large set, L,

with high degree into N(a). Only this time a large proportion of L would lie in

B.

• Define a set C = {c ∈ B : degA(c) ≤ 1
100n}.

• This implies that |A ∩ L| ≥ |C|.

• Define Z = {z ∈ A \ L : degA∩L(z) ≤ 9
10A ∩ L} and Z ′ = (A \ L) \ Z.

• First cover C with parents from A using at most n
K leaves from outside C to

completely cover it. The “outside” leaves come from A or B \ C depending on

where the parent is embedded.

• Next cover the vertices in |Z| completely in a similar manner.

63

• Then cover vertices in Z ′ completely using parents from A ∩ L.

• Resolve the parent-leaf conflicts.

• Cover vertices of A ∩ L greedily using parents from A \ Z.

• In the end we cover B \ C by reserving some randomly chosen parents from A,

partitioning them into classes according to the number of their children, and

finding children for each of the sets of the parents separately as we did in the

previous extremal case.

2.7.1 T has larger height

In this extremal case T will have an essentially larger height. The embedding method

despite some differences is very similar: first we get rid of the noise, and then apply

embedding into a very dense graph.

Here again we will partition the tree into two parts, but now the parts are repre-

senting color classes. We have to find an almost proper 2-coloring of the vertices of

a tree on n vertices, such that there are at most O(m log n) edges which connect two

vertices with the same color.

Lemma 28. Let J be a tree on n vertices, n being an even integer, and let 1/3 ≤
ρ ≤ 2/3. Then J can be divided into vertex disjoint subtrees J1, J2, . . . , Js plus at most

2 log2 n split vertices, such that there is a proper 2-coloring of the vertices of the subtrees

with such that one color class has size ρn and the other has size (1− ρ)n.

We sketch the embedding method in this case. First, we perform a switching in

order to have that one color class, say A, has vertices with outer degree at least 0.5n/2.

Then the vertices of the other class, B having large inner degree will be put to A. Then

we partition the tree T such that the almost proper coloring of it reflects the sizes of A

and B. Finally, we first get rid of vertices having small outer degree, then the leftover

can be embedded easily.

64

Chapter 3

A New Proof of the Pósa-Seymour Conjecture

3.1 Introduction

3.1.1 Notations and Definitions

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E)

denotes a bipartite graph G = (V,E), where V = A ∪ B, and E ⊂ A× B such that A

and B are disjoint. For a graph G and a subset U of its vertices, G|U is the restriction

of G to U . N(v) is the set of neighbors of v in V , and NS(v) is the set of neighbors

of v in S. Hence the size of N(v) is |N(v)| = deg(v) = degG(v), the degree of v.

δ(G) stands for the minimum and ∆(G) for the maximum degree of a vertex in G.

Kr(t) is the balanced complete r-partite graph with color classes of size t. We write

N(p1, p2, . . . , pl) =
⋂l
i=1N(pi) for the set of common neighbors of p1, p2, . . . , pl. When

A and B are subsets of V (G), we denote by e(A,B) the number of edges of G with one

endpoint in A and the other in B. In particular, we write degU (v) = e({v}, U) for the

number of edges from v to U . For non-empty A and B,

d(A,B) =
e(A,B)
|A||B|

is the density of the graph between A and B. In particular, we write d(A) = d(A,A).

A graph G on n vertices is γ-dense if it has at least γ
(
n
2

)
edges. A bipartite graph

G(A,B) is γ-dense if it contains at least γ|A||B| edges. Throughout the chapter log

denotes the base 2 logarithm.

3.1.2 Powers of Cycles

Let C be a cycle on a vertex set V (C). Then the kth power of C, denoted by Ck, is

defined as follows: V (Ck) = V (C) and uv is an edge in Ck if and only if the distance

65

between u and v in C is at most k. The kth power of a path P is defined in an analogous

manner. For notational convenience we call the kth power of a path a k-path. A classical

result of Dirac [15] asserts that if δ(G) ≥ n/2, then G contains a Hamiltonian cycle.

A natural question generalizing Dirac’s theorem was asked by Pósa (see Erdős [20]) in

1962:

Conjecture 29 (Pósa). Let G be a graph on n vertices. If δ(G) ≥ 2
3n, then G contains

the square of a Hamiltonian cycle.

This conjecture was further generalized by Seymour [51] in 1974:

Conjecture 30 (Seymour). Let G be a graph on n vertices. If δ(G) ≥ (k−1
k)n, then G

contains the (k − 1)th power of a Hamiltonian cycle.

Substantial amount of work has been done on these problems. Jacobson (unpub-

lished) first established that the square of a Hamiltonian cycle can be found in any

graph G given that δ(G) ≥ 5n/6. Later Faudree, Gould, Jacobson and Schelp [27]

improved the result, showing that the square of a Hamiltonian cycle can be found

if δ(G) ≥ (3/4 + ε)n. The same authors further relaxed the degree condition to

δ(G) ≥ 3n/4. Fan and Häggkvist lowered the bound first in [21] to δ(G) ≥ 5n/7

and then in [22] to δ(G) ≥ (17n + 9)/24. Faudree, Gould and Jacobson [26] further

lowered the minimum degree condition to δ(G) ≥ 7n/10. Then Fan and Kierstead [23]

achieved the almost optimal δ(G) ≥ (2
3 + ε

)
n. They also proved in [24] that already

δ(G) ≥ (2n − 1)/3 is sufficient for the existence of the square of a Hamiltonian path.

Finally, they proved in [25] that if δ(G) ≥ 2n/3 and G contains the square of a cycle

with length greater than 2n/3, then G contains square of a Hamiltonian cycle.

For Conjecture 30, in the above mentioned paper of Faudree et al in [27], it is proved

that for any ε > 0 and positive integer k there is a C such that if graph G, on n vertices,

satisfies

δ(G) ≥
(

2k − 1
2k

+ ε

)
n,

then G contains the kth power of a Hamiltonian cycle.

Using the Regularity Lemma – Blow-up Lemma method first in [37] Komlós, Sárközy

and Szemerédi proved Conjecture 30 in asymptotic form, then in [38] and [40] they

66

proved both conjectures for n ≥ n0. The proofs used the Regularity Lemma [54], the

Blow-up Lemma [36, 35] and the Hajnal-Szemerédi Theorem [32]. Since the proofs

used the Regularity Lemma the resulting n0 is very large (it involves a tower function).

The use of the Regularity Lemma was removed by Levitt, Sárközy and Szemerédi in a

new proof of Pósa’s conjecture in [43]. The purpose of this thesis is to present another

proof of the Pósa-Seymour conjecture that avoids the use of the Regularity Lemma,

thus resulting in a simpler proof and a much smaller n0.

Theorem 31. There exists a natural number n0 such that if a graph G has order n

with n ≥ n0 and

δ(G) ≥ (
k − 1
k

)n (3.1)

then G contains the (k − 1)th power of a Hamiltonian cycle.

3.2 Outline of the Proof

Our proof is divided into two main cases, the extremal case when G satisfies the fol-

lowing so-called extremal condition and the non-extremal case when this condition is

not satisfied.

Extremal Condition (EC) with parameter α: There exists an A ⊂ V (G) such

that

• (1
k − α)n ≤ |A| ≤ (1

k + α)n and

• d(A) < α

In this case we say that the set A and the graph G are α-extremal, otherwise we say

that they are α-non-extremal.

Non-Extremal Case: The basic fact that we make use of in the non-extremal case

is that if we go around a complete k-partite graph picking vertices from each of the

color classes sequentially we end up with a (k − 1)-path. We use this fact repeatedly

throughout the chapter. We first try to cover a constant fraction of the vertices in

G by Kk+1(O(log n))’s and then the maximum number of the remaining vertices with

67

Kk(O(log n))’s. We refer to the set of Kk+1(O(log n))’s and Kk(O(log n))’s by C and

K respectively. We would inevitably be left with a set I consisting of few vertices that

cannot be covered in such a manner. However, we show that the number of such vertices

is small. Then, using a Connecting Lemma, we “connect” the cliques by (k − 1)-paths

of length at most 9k2 to get a cycle of cliques. This process would force us to move

a small number of vertices from C ∪ K to I. As observed before, we can now get our

required Hamiltonian cycle if we go around each of the cliques in C ∪ K in a sequential

manner. However, we need to accommodate the vertices in I. Hence we perform the

“going around” process with a little more care and incorporate the vertices in I into

the paths that we are constructing.

C K

Figure 3.1: Non-Extremal Case: Dashed lines represent the (k − 1)-paths constructed
using the Connecting Lemma. Vertices from I are incorporated into the (k − 1)-paths
made inside the cliques as described in Section 3.4.2

Extremal Case: The extremal case uses a relatively simple König-Hall type argu-

ment in order to find the (k − 1)th power of a Hamiltonian cycle in G. The details are

left to Section 3.5.

3.3 Main Tools

We shall assume that n is sufficiently large and use the following main parameters:

0 < η � α� 1, (3.2)

68

where a � b means that a is sufficiently small compared to b. In order to present the

results transparently we do not compute the actual dependencies, although it could be

done.

3.3.1 Complete k-Partite Subgraphs

In [40] the Regularity Lemma [54] was used to prove the Pósa-Seymour conjecture, how-

ever, here we use more elementary methods using only the Bollobás-Erdős-Simonovits

bound [42].

Lemma 32 (Theorem 3.1 on page 328 in [6]). There is an absolute constant β1 > 0

such that if 0 < ε < 1/s and we have a graph G with

|E(G)| ≥
(

1− 1
s

+ ε

)
n2

2

then G contains a Ks+1(t1), where

t1 =
⌊
β1 log n
s log 1/ε

⌋
.

The following two observations will be useful later on.

Fact 3. If G(A,B) is an η-dense bipartite graph, then there must be at least η|B|/2
vertices in B for which the degree in A is at least η|A|/2.

Indeed, otherwise the total number of edges would be less than

η

2
|A||B|+ η

2
|A||B| = η|A||B|,

a contradiction with the fact that G(A,B) is η-dense.

Lemma 33. Let the sets A1, A2, . . . , Ak form a complete k-partite graph, and for 1 ≤
i ≤ k, |Ai| = c1 log n, and let B be a set of vertices such that |B| = c2n. If for

every b ∈ B degAi(b) ≥ η|Ai|/2, then we can find a complete (k + 1)-partite graph

G(A′1, A
′
2, . . . , A

′
k, B

′) such that A′i ⊂ Ai, B′ ⊂ B, |A′i| ≥ η|Ai|/2k and |B′| ≥ c2n(1−kc1).

The proof of the above statement uses standard counting arguments and we omit

the details.

69

Lemma 34. There exist constants n0 and β2 > 0 such that if G is a non-extremal

graph on n ≥ n0 vertices with δ(G) ≥ (k−1
k −

√
η)n, then G contains a Kk+1(t), where

t = bβ2 log nc.

Proof. We apply Lemma 32 on G to get k disjoint sets A1, A2, . . . , Ak each of size

t1 =
⌊
β1 logn
s log 1/ε

⌋
= O(log n) such that they form a complete balanced k-partite graph.

Define A :=
⋃k
i=1Ai and let B ⊂ V (G) \ A be the set of vertices that have more than

η|Ai| degree into each Ai. Our first observation is that we can assume that |B| ≤ η2n.

Indeed otherwise by Lemma 33 we get our desired Kk+1(t).

Let C = V (G) \ (A ∪B) and for 1 ≤ i ≤ k let Ci = {c ∈ C : degAi(c) < η|Ai|}. By

definition of B it follows that C =
⋃k
i=1Ci. From the minimum degree condition and

the definition of Ci we have that for every i:((
k − 1
k
−√η

)
n− |B| − |A|

)
|Ai| ≤ e(Ai, C) ≤ η|Ai||Ci|+ |Ai|(|C| − |Ci|)

which gives us that |Ci| ≤ (1 + 3
√
η)n/k.

This together with the definition of C implies that |Ci ∩ Cj | < 4
√
ηn for all i 6= j

hence |Ci| ≥ (1 − √η)n/k. Since G is α-non-extremal e(G|Ci) > α(n/k)2 for every i.

Consider any Cj and group the vertices in it by their neighborhood in A\Aj . There can

be at most 2t1 < nkβ1 groups. We can safely ignore those groups which have at most

ηnkβ1 vertices in them since they can contain at most ηn2kβ1 vertices in them. Similarly

those groups may be disregarded which are connected to less than 2/3 fraction of any

of the Ai’s. Indeed, from the minimum degree condition and the size of Cj we have that

e(Ai, Cj) ≥ (1 − kη)n|Ai| for any i 6= j, and thus the total number of vertices in such

groups is at most 20kηn. Then either two such groups form a dense bipartite graph

between them or one of the groups is internally dense. An application of Lemma 32

ensures that in either case we will find a K2(O(log n)) in Cj that together with A \Aj
forms the required Kk+1(t). �

We will also use the following simple fact on the size of a maximum set of vertex

disjoint paths in G (see [6]).

70

Lemma 35. In a graph G on n vertices, we have

ν1(G) ≥ max{δ(G), δ(G)
n

4∆(G)
} and ν2(G) ≥ (δ(G)− 1)

n

6∆(G)

where νi(G) denotes the size of maximum set of vertex disjoint paths of length i in G.

3.3.2 The Connecting Lemma

Given a non-extremal graph G(V,E) on n vertices with δ(G) ≥ (k−1
k)n we can make

the following observation:

Fact 4. For every v ∈ V there are more than (k−1)!
4 (nk)2k−2 (k − 2)-paths of length

(2k − 3) in N(v).

We call a (k − 2)-path of length 2k − 3 bad if it is contained in the neighborhoods

of at most α10kn vertices of G. It is called good otherwise. A vertex f ∈ V is said to

be feasible if there are at most α4kn2k−2 bad paths in N(f).

Claim 36. At most α6kn vertices of G are not feasible.

Proof. The proof uses a straightforward counting argument and the details are left to

the reader. �

We now state the Connecting Lemma:

Lemma 37 (Connecting Lemma). For every two disjoint ordered (k− 1)-cliques of G,

A = (a1, a2, . . . , ak−1) and B = (bk−1, . . . , b2, b1) there is a (k − 1)-path of length at

most 9k2 which connects A and B even if o(n) of the vertices of G are forbidden to be

used in the path.

Proof. Our general strategy will be to first specify a feasible vertex f and then to start

building a (k − 1)-path from A towards N(f). Once we extend the path by k − 1

vertices into N(f) we use the same procedure to get inside N(f) from B. Then we

connect the two ends by a (k − 2)-path using vertices only from N(f). Finally, to

convert the entire path into a (k − 1)-path we make use of the fact that since v is

feasible, N(f) contains very few bad path, and hence we should be able to find a lot

71

of vertices that may be placed at k−1 intervals of the path to make it into a (k−1)-path.

Fix a feasible vertex v in G and let F = N(f). If needed, we ignore a few vertices

of F so that |F | = (k−1
k)n. We will construct a short (k − 1)-path:

(a1, a2, . . . , ak−1, w1, w2, . . . , wk−1, x1, x2, . . . ,

xk−1, . . . , yk−1, . . . , y2, y1, zk−1, . . . , z2, z1, bk−1, . . . , b2, b1)

between the two given ordered cliques that the xi’s and the yi’s come from the set F .

Extending the path by k − 1 vertices into F

Let W = N(a1, a2, . . . , ak−1) which is of size at least n/k. Then we can make the

following claim:

Claim 38. We may assume that W ∩F ≤ αn/10 otherwise we can extend our (k− 1)-

path into F by k − 1 vertices with at least αn/10 choice for each vertex.

W F

w1

x1

x2

x3

x4

x5

A

a1 a2 a3 a4

V \ (W ∪ F)

a5

Figure 3.2: The (k − 1)-path may be extended if W ∩ F is large

Proof. Pick any vertex fromW and call it w1. We now considerNF (a2, a3, . . . , ak−1, w1).

If this intersection is of size less than αn/10 then we can simply assume that our starting

clique was (a2, a3, . . . , ak−1, w1) instead of A (we call this new starting clique A as well).

If, on the other hand, the intersection size is more than αn/10 we can pick any vertex

from the intersection and call it w2. We now consider NF (a3, a4, . . . , ak−1, w1, w2). If

this intersection is of size less than αn/10 then we can again assume that our starting

72

clique was (a3, a4, . . . , ak−1, w1, w2) instead of A (and we again call this new starting

clique A). Otherwise we can choose a w3 from amongst the intersection. We then

consider NF (a4, a5, . . . , ak−1, w1, w2, w3) and repeat the process. If at each step we end

up with an intersection of size more than αn/10 then after k − 1 steps we will end up

with a (k − 1)-clique entirely inside F (with at least αn/10 choices at each step). �

Therefore we can assume that W ∩ F < αn/10. Let Wlow be the set of vertices

in W that have low degree inside W . More precisely Wlow = {w ∈ W : deg(w,W) ≤
(1
k − α

10)n}.

Claim 39. If |Wlow| > α10n then we can extend our (k−1)-path into F by k−1 vertices

with at least αn/10 choice for each vertex.

W F

w1

x1

x2

x3

x4

x5

A

a1 a2 a3 a4

Wlow

a5

Figure 3.3: The (k − 1)-path may be extended if Wlow is large

Proof. We note that any w ∈Wlow has at least αn/10 neighbors in NF (a2, a3, . . . , ak−1).

In fact, w has at least αn/10 neighbors in any n/k sized subset of F . So one can choose

any vertex from Wlow to be w1 and any of its neighbors in NF (a2, a3, . . . , ak−1) to be

x1. Then x2 may be chosen from NF (a3, a4, . . . , ak−1, x1, w1) which is also of size about

αn/10 by the previous observation. We can continue extending the (k − 1)-path since

x3, x4, . . . , xk−1 may be chosen from F and we are always guaranteed to have at least

αn/10 choices for each of the xi’s until we end up with a (k−1)-clique that lies entirely

inside F . �

73

Hence we may assume that |Wlow| ≤ α10n, which in turn implies that d(G|W) >

(1 − α/10), i.e. G|W is an almost complete graph. We find a (k − 1)-clique W1 =

(w1, w2, . . . , wk−1) inside the set W which is easy to find since we have already es-

tablished that G|W is an almost complete graph. Let U1 =
⋃
w∈W1

NF (w) and I1 =⋂
w∈W1

NF (w). The minimum degree condition implies that |U1| ≥ (k−2
k)n. In fact we

can make an even stronger assertion:

Claim 40. If |U1| < (k−2
k + α

k)n then we can extend our (k − 1)-path into F by k − 1

vertices with at least αn/10 choice for each vertex.

Proof. If |U1| < (k−2
k + α

k)n it means that U1 and I1 almost completely coincide and

|I1| > (k−2
k − α)n and so one can proceed as follows. Pick any vertex from I1 and call

it x1. We can choose x2 from I2 = I1 ∩ N(x1) which is of size at least (k−3
k − α)n.

In general, let Ii = Ii−1 ∩ N(xi−1) for 2 ≤ i ≤ k − 3 so that |Ii| ≥ ((k−1)−i
k − α)n.

Hence we can choose xi’s from respective Ii’s for 1 ≤ i ≤ k − 3 and for each xi we

have a lot of choices. We still need to choose xk−2 and xk−1. For that we observe that

|Ik−3 ∩ N(xk−3)| > (1
k − α)n and since we are not in the extremal case we can find

α(n/k)2 edges in this set. We can choose any of these edges to be our required xk−2 and

xk−1 and thus we have extended our (k − 1)-path by k − 1 vertices that lie completely

inside F . �

W F

w1

w2

w3

w4

w5
x1

x2

x3

x4

x5

A

a1 a2 a3 a4 a5

Figure 3.4: Extending the (k− 1)-path when G|W is almost complete and W is disjoint
from F

In case |U1| ≥ (k−2
k + α

k)n for every (k − 1)-clique W1 inside W we can show that

74

there exists a (k − 1)-clique W2 such that |⋂w∈W2
NF (w)| ≥ αn/10. Pick a k-clique

W ′ = (w1, w2, . . . , wk) inside W . If for some pair of vertices, say w1, w2 ∈W ′, it is true

that |NF (w1, w2)| ≥ (k−3
k + α/10)n then the clique W2 = (w1, w2, . . . , wk−1) serves our

purpose since by the minimum degree condition we know that |NF (w3, w4, . . . , wk−1)| ≥
(2
k)n which intersects NF (w1, w2) by at least αn/10. On the other hand, if there is no

such pair then clearly NF (w1) ∪NF (w2) ≥ |F | − αn/10. Since |NF (w3, w4, . . . , wk)| ≥
n/k hence either NF (w1, w3, w4, . . . , wk) or NF (w2, w3, w4, . . . , wk) is at least αn/10.

For clarity of calculations let us set U2 =
⋃
w∈W2

NF (w) and m = |F | = k−1
k n so

that |U2| = (k−2
k−1 +c1)m = (k−2)+c1(k−1)

k−1 m for α/(k−1) < c1 ≤ 1/(k−1). The following

series of facts are then easily deducible from the minimum degree condition and Claim

(40):

Fact 5. For any j-subset W ′ of W2,

|N(W ′) ∩ U2| ≥ (k − 2)− (j − 1)(k − 1)c1
(k − 2) + (k − 1)c1

|U2|. �

Fact 6. For any i-subset F ′ of F ,

|N(F ′) ∩ U2| ≥ ((k − 2)− i) + (k − 1)c1
(k − 2) + (k − 1)c1

|U2|.

Actually, this fact holds for any i-subset of V (G). �

Fact 7. For every j, such that 3 ≤ j ≤ k− 1, there exists j-subset W ′j of W2 such that

|N(W ′j) ∩ U2| ≥ (k − 2)− (j − 1)(k − 1)c1
(k − 2) + c1(k − 1)

|U2|+ ε1m. �

We have the (k− 1)-clique W2 whose vertices we now rename as (w1, w2, . . . , wk−1).

We choose our x1 from amongst I1. We note that x2 has to be chosen from the common

neighborhood of x1 and a (k − 2)-subset of (w1, w2, . . . , wk−1). We consider W ′k−2, say

(w2, w3, . . . , wk−1) that has ε1m extra neighborhood as guaranteed by Fact 7. As we

saw earlier, any vertex in F , and in particular x1, has about εm common neighborhood

with the neighborhood of W ′k−2 in U2. Therefore x2 may be chosen from amongst this

overlap. Similarly x3 will have to come from the combined neighborhood of x1, x2, and

W ′k−3 ⊂ W ′k−2 = (w2, w3, . . . , wk−1). For notational convenience we assume that this

W ′k−3 = (w3, w4, . . . , wk−1) and in general W ′k−j = (wj , wj+1, . . . , wk−1) for j, such that

75

2 ≤ j ≤ k − 2. We can go on choosing the xi’s upto xk−3 making use of Fact 7. It is

pertinent to note that the actual order of the wi’s in W2 is determined by the set W ′k−j

that we find at each step.

Now xk−2 and xk−1 need to be chosen from U2 ∩ N(wk−2, wk−1, x1, x2, . . . , xk−3).

As previously xk−2 may be chosen with ε1m choices by Fact 7 so that by Fact 6

|N(x1, x2, . . . , xk−2) ∩ U2| ≥ k−2
(k−2)+(k−1)c1

+ α|U2|. There are now two cases to con-

sider:

Case 1: |U2 ∩N(wk−2, wk−1)| ≥ k−2
(k−2)+(k−1)c1

+ α|U2|
In this case

N(x1, x2, xk−2) ∩ (N(wk−2) ∪N(wk−1)) ≥ α|U2|

hence without loss of generality we can claim that U2 ∩N(x1, x2, . . . , xk−2) ∩N(w2) ≥
α|U2|/2 and xk−1 may be chosen from amongst this set. The final order of the vertices

in the path would be

a1, a2, . . . , ak−1, w1, w2, . . . , wk−3, wk−1, wk−2, x1, x2, . . . , xk−2, xk−1, . . .

Case 2: |U2 ∩N(w1, w2)| < k−2
(k−2)+(k−1)c1

+ α|U2|
In this case

|(N(wk−2, wk−1)| ≥ (
k − 2

(k − 2) + (k − 1)c1
− α)|U2|

A simple calculation shows that

|N(x1, x2, . . . , xk−3, wk−2) ∩N(wk−1)| ≥ n

k
− αn

hence by the non-extremality condition this set has α(n/k)2 edges. We can pick any of

these edges, say x′k−2, x
′
k−1 and so our path will look as follows:

a1, a2, . . . , ak−1, w1, w2, . . . , wk−3, wk−2, wk−1, x1, x2, . . . , xk−3, x
′
k−2, x

′
k−1, . . .

It is clear that we can extend the path from B into F using the same reasoning so

that we have k − 1 vertices inside F such that the path from the other end looks as

follows:

b1, b2, . . . , bk−1, z1, z2, . . . , zk−3, zk−2, zk−1, y1, y2, . . . , yk−2, yk−1, . . .

76

where yi ∈ F for every i. Let us define two ordered (k − 2)-cliques as follows: X =

(x2, x3, . . . , xk−1) and Y = (y2, y3, . . . , yk−1). Out next task will be to connect X and

Y using a (k − 1)-path that lies entirely inside F .

Connecting X and Y inside F

We note that δ(G|F) ≥ (k−2
k−1)|F | and that G|F is non-extremal by virtue of G being

non-extremal. Hence by induction we can find many (k−2)-paths connecting X and Y .

Once we have fixed a (k − 2)-path, P ′, connecting X and Y we convert this path into

a (k− 1)-path, P , which can be accomplished as follows: after every (k− 1) vertices of

P ′ we insert a vertex which is adjacent to the (k − 1) vertices on its either side on P ′.

Since f was chosen to be a feasible vertex, it contains at most α4kn2k−2 bad paths, but

each subpath of P ′, on 2k − 2 vertices can be chosen in at least α2k−2n2k−2 different

ways, thus ensuring that each of these subpaths may be chosen so that it is good. Since

each good path is contained in the neighborhoods of at least α10kn vertices of G we can

find a distinct vertex to insert after every k − 1 vertices of P ′. Hence we end up with

a (k − 1)-path connecting the original (k − 1)-cliques A and B.

Let Lk be the length of the (k − 1)-path connecting two given (k − 1)-cliques as

detailed above. Then the following recurrence relation holds with the initial value

L2 ≤ 2:

Lk ≤ 8(k − 1) + Lk−1 + ((Lk−1)/(k − 1)− 1) = 8k2 + o(k2)

�

3.4 The Non-Extremal Case

Before we start the actual construction of the Hamiltonian cycle we need some prepa-

ration in the graph. Throughout this section we assume that we have a graph G and

that the Extremal Case does not hold for G, i.e. there exists no A ⊂ V (G) such that

(1
k − α)n ≤ |A| ≤ (1

k + α)n and d(A) < α.

77

3.4.1 The Optimal Cover

We are going to work with a cover (C,K, I) where C is a collection of balanced complete

(k + 1)-partite graphs, K is a collection of balanced complete k-partite graphs disjoint

from C and I is the set of remaining vertices. By V (C) and V (K) we represent the set

of vertices covered by the (k + 1)-partite and k-partite graphs in C and K respectively.

Our goal is to find the optimal cover, where we cover ηn vertices of G by C and the

maximum number of remaining vertices by K such that we cannot significantly increase

the number of vertices covered by K. For 1 ≤ i ≤ k we say that a vertex v is i-

sided to a Kj ∈ K if we have d(v,Kj) ≥ ((i − 1)/k + η) i.e. v has a large degree to

at least i color classes of Kj . Similarly a vertex v is i-sided to a Cj ∈ C if we have

d(v, Cj) ≥ ((i− 1)/(k + 1) + 2η).

By Lemma 34 we know that we can find a Kk+1(O(log n)) in G. However, we

note that the conditions for the Lemma hold until the number of vertices covered by

these (k+ 1)-cliques becomes
√
ηn, at which point we do not have the minimum degree

guarantee, hence we conclude that at least
√
ηn vertices can be covered by (k + 1)-

cliques. In fact, we just cover exactly
√
ηn vertices in G and no more.

Still the minimum degree is at least (k−1
k −
√
η)n in G′, the remaining induced graph.

We can apply Lemma 32 on G′ since δ(G′) ≥ (k−1
k −
√
η)n > (k−1

k −
√
η)|V (G′)| and can

also show that almost all of the remaining vertices can be covered by k-cliques. Using

Lemma 32 we find a collection of Kk(t)’s , where t = O(log n), such that it covers the

maximum number of vertices in G′. Let I be the vertices of G′ that are not part of any

Kk(t). Since we can no longer apply Lemma 32 with s = k − 1 to increase |V (K)| we

either have that:

|E(G′|I)| <
(
k − 2
k − 1

+ η

) |I|2
2
. (3.3)

It is easy to see that in the optimal cover d(I,K) < (k−1
k + η). Indeed otherwise we

can significantly increase the size of K. Assume that d(I,K) ≥ (k−1
k + η) and let

each k-partite graph Ki ∈ K be composed of the color classes V 1
i , V

2
i , . . . , V

k
i , and let

V j =
⋃
i V

j
i for 1 ≤ j ≤ k. Since I is at least η-dense to every V j , it follows that it

is also η-dense to most of the individual color classes V j
i of the cliques in K. However,

78

if I is k-sided to more than η-fraction of the cliques in K, a modified form of Lemma

33 gives us a large complete (k + 1)-partite graph. This (k + 1)-partite graph may be

split into k + 1 separate graphs that can be added to K hence significantly increasing

its size, a contradiction to the optimality of the cover.

On the other hand, by the minimum degree of G′ we have

e(I,K) ≥
(
k − 1
k
− η
)
|V (G′)||I| −

(
k − 2
k − 1

+ η

) |I|2
2
. (3.4)

From (3.4) and the above observation on d(I,K) we get that |I| < 4ηn.

3.4.2 Dealing with the vertices in I

Consider the cover (C,K, I). We will insert the vertices in I = {a1, a2, . . . , a4ηn} one

by one into a (k − 1)-path that we are constructing within each clique in C ∪ K. We

will first prove an easy consequence of the degree condition in G:

Lemma 41. Every vertex a ∈ I is k-sided to at least η fraction of the cliques in C ∪K.

Proof. For contradiction, assume that we are given a vertex a ∈ I that is not at least

k-sided to an η fraction of the cliques in C ∪ K. Then

degG(a) < |I|+ ηn+ (|V (C)| − ηn)
(
k − 1
k + 1

+ 2η
)

+ |K|
(
k − 1
k

+ η

)
<
k − 1
k

n

A contradiction to the minimum degree condition. �

Case 1: When a is k-sided to a (k + 1)-clique, say Cj = (V 1
j , . . . , V

k+1
j) ∈ C, we

assume that a has high degree to all the color classes of Cj except V b
j . Assume that

that (k− 1)-path that we are making within Cj has its end point v0.k+1 in V k+1
j which

we want to extend now, incorporating a into it. We will proceed as follows: we continue

constructing the path in the natural order, that is: . . . v0.k+1, v1.1, v1.2, v1.3 . . . where vx.y

is any arbitrary vertex in V y
j that has not yet been used in our path. However, we use a

instead of the vertex v1.b in our path and continue on till v1.k+1. However treating a as

a vertex in V b
j , creates an imbalance in sizes of the color classes of Cj , that is, there is

one extra vertex in V b
j . We remedy this by successively skipping one vertex each from

79

a

V 1
j

V 2
j

V 3
j

V 4
j

V 5
j

V 6
j v1.6v0.6

v1.1

v1.2

v1.3

v1.5

v2.1

v2.2

v2.4

v2.5

v2.6

v3.1

v3.3

v3.4

v3.5

v3.6

v4.2

v4.3

v4.4

v4.5

v4.6

v5.1

v5.2

v5.3

v5.4

v5.5

v6.1

v6.2

v6.3

v6.4

v6.6

v0.1

v0.2

v0.3

v0.4

v0.5

v7.1

v7.2

v7.3

v7.4

v7.5

v7.6

Figure 3.5: Inserting a into the (k−1)-path being constructed in the complete balanced
(k + 1)-partite graph Cj , where k = 5 and b = 4

V i
j , (i 6= b) in the next k iterations in a cyclic manner. The process of inserting a into

our (k − 1)-path is depicted in Figure 3.5, for k = 5 and b = 4. The final (k − 1)-path

in the figure is as follows:

(. . . v0.5, v0.6, v1.1, v1.2, v1.3, a, v1.5, v1.6, v2.1, v2.2, v2.4, v2.5, v2.6, v3.1, v3.3, v3.4, v3.5,

v3.6, v4.2, v4.3, v4.4, v4.5, v4.6, v5.1, v5.2, v5.3, v5.4, v5.5, v6.1, v6.2, v6.3, v6.4, v6.6, v7.1, v7.2, . . .)

Insertion of any vertex a ∈ I and the subsequent rebalancing takes a total of k + 1

iterations over the color classes hence we use up only O(k2) vertices to insert a into our

path while regaining a balanced (k + 1)-clique. Since a is k-sided to many cliques in C
and K we can evenly distribute the vertices from I among different cliques so that the

insertion is always possible.

Case 2: When a is k-sided to a k-clique, that is, to a Kj = (V 1
j , V

2
j , . . . , V

k
j) ∈ K

we can simply insert a into the path anywhere and continue in the natural order. It is

easy to verify that all the required edges are present. Thus we have placed a into our

path.

Using the procedure outlined above we can insert all the outside vertices into the

(k − 1)-paths inside the cliques.

80

3.4.3 Finding the Cycle

Using the Connecting Lemma we first connect together the cliques in C ∪ K through

(k − 1)-paths. For each vertex in the connecting paths that comes from C ∪ K we need

to discard at most k other vertices to maintain the balance in the color classes of the

cliques in the cover. Hence, in total at most 9k3 × O(n/ log n) = o(n) vertices would

need to be moved into I. Then we start constructing a (k − 1)-path inside each of the

cliques in the cover by going around each of the color classes in a sequential manner.

During this construction we can incorporate all the vertices in I into the paths using

the procedure outlined in the previous section. When we finish covering up the vertices

in C ∪ K we end up with the required (k − 1)th power of a Hamiltonian cycle.

3.5 The Extremal Case

In this case, the graph G satisfies the extremal condition. We take the maximum

number of disjoint α-extremal sets A1, A2, . . . , Al. We assume for 1 ≤ i ≤ l, |Ai| = bnk c
because if some |Ai| > bnk c, then since δ(G|Ai) ≥ |Ai| − bnk c, there exists a matching

of size |Ai| − bnk c in G|Ai by Lemma (35). We may contract every e = {u, v} of these

matched edges into a vertex xe, such that xe is connected to the common neighbors of

u and v. We denoting the resulting set by Ai as well. We let B = V (G)\ (A1∪· · ·∪Al)
for l ≤ k. Furthermore, we say that v ∈ Ai is bad if we have

degAi(v) ≥ α1/3|Ai|. (3.5)

Note that by the fact that d(Ai) < α, there are at most α2/3|Ai| bad vertices in any

Ai. A vertex v ∈ Ai (or B) is exceptional for Aj (for j 6= i) if degAj (v) < α1/3|Aj |. By

(3.1), for each v ∈ Ai (or B), there can be at most one j 6= i, such that v is exceptional

for Aj . We denote the set of vertices in Ai (or B) that are exceptional for Aj by Ei(j)

(or EB(j)). By the minimum degree condition a vertex can be in Ei(j) for at most one

j 6= i. The following two remarks are easy to deduce.

Remark 4. If a vertex v is in Ei(j) for some j then it is bad, indeed degAi(v) >

(1− α1/3

2)|Ai|.

81

Remark 5. Switching a bad vertex in Ai with a vertex in Ej(i) reduces the number

of exceptional vertices. Hence we may assume that either there are no bad vertices in

Ai or Ej(i) is empty for every j 6= i.

3.5.1 Finding the Cycle

To convey the basic idea of the proof we deal separately with cases when l = k and

when l < k.

G has k extremal sets

In this case the vertex set V can be partitioned into A1, A2, . . . , Ak such that |Ai| = bnk c
and d(Ai) < α for 1 ≤ i ≤ k − 1, that is, l = k (and hence B = φ). We will further

subdivide this case into two subcases.

The Clean Case: There are no bad or exceptional vertices in any Ai, (hence Ei(j) is

empty for all i, j by Remark 4). We will cover A1∪· · ·∪Ak with k-cliques such that every

clique uses a vertex from each Ai. For each v ∈ Ai, we have degAj (v) ≥ (1− α1/3)|Aj |
for all j 6= i. Furthermore, since in this case there are no bad vertices it is relatively

straightforward to find k-cliques by a simple greedy procedure that uses the König-Hall

theorem as follows. We first find a perfect matching M1 between A1 and A2. Then we

find a perfect matching between M1 and A3, such that e = {x, y} ∈M1 is matched with

a vertex z ∈ N(x, y) ∩ A3. We can continue this process to find the desired k-cliques.

Indeed, let Mk−2 be the (k − 1)-cliques made so far, from A1, A2, . . . , Ak−1. For any

clique (x1, x2, . . . , xk−1), xi ∈ Ai we have that |N(x1, x2, . . . xk−1)∩Ak| ≥ (1−α1/4)|Ak|,
therefore, by König-Hall theorem there exists a perfect matching between the (k − 1)-

cliques and vertices in Ak, therefore we can extend these (k − 1)-cliques to k-cliques.

Call this clique cover Ck = {c1, c2, . . . , cbn
k
c}.

Let c1 = (x1, x2, . . . , xk) and c2 = (y1, y2, . . . , yk) be any two such k-cliques in

Ck(note that xi, yi ∈ Ai). We say that c1 precedes c2 if xi is connected to y1, . . . , yi−1

for 1 ≤ i ≤ k. c1 precedes c2 basically means that x1, x2, . . . , xk, y1, y2, . . . , yk is a

(k−1)-path. We say that {c1, c2} is a good pair, if c1 precedes c2 and c2 precedes c1. By

82

H∗

c1 c2 c3 c4

w1

w2

w3

w4

x1

x2

x3

x4

y1

y2

y3

y4

z1

z2

z3

z4

w1 w2

w3

w4

x1

x2

x3

x4y1
y2

y3

y4

z1

z2

z3

z4

A1

A2

A4

A3

Figure 3.6: Unfolding the cliques in the order defined by H∗ gives us the required power
of a Hamiltonian cycle

the degree conditions above, any ci ∈ Ck makes a good pair with at least (1−α1/5)|Ck|
other cliques in Ck.

We define an auxiliary graph G∗ in the following way: the vertex set of the graph

G∗ is Ck = {c1, c2, . . . , cbn
k
c} and {ci, cj} is an edge in G∗ if and only if {ci, cj} is a good

pair. By the above observation δ(G∗) > |Ck|/2, hence there exists a Hamiltonian cycle

H∗ in G∗. If we take the cliques in the order of H∗ and unfold individual cliques in the

natural order defined by A1, A2, . . . , Ak, it is easy to see that this gives us the (k− 1)th

power of a Hamiltonian cycle in G.

Handling the Exceptional Vertices: In this case we have some Ej(i)’s that are non-

empty. The main idea is to reduce this case to the clean case where there are no

exceptional vertices. Handling bad vertices is similar to (and simpler than) handling the

exceptional vertices and we omit the details for that case.

Define Xi to be the set of all the vertices that are exceptional for Ai, that is,

Xi =
⋃k
j=1Ej(i).

Case 1: If |Xi| > 1, we would want to find paths of length 2 with endpoints inAi and

centers either inside Ai or at exceptional vertices in Ej(i) for some j. For this purpose

we note that δ(G|Ai∪Xi) ≥ |Xi| by the minimum degree condition. Furthermore, since

d(Ai) < α it follows that ∆(G|Ai∪Xi) ≤ α1/3|Ai|+ |Xi|. Thus by Lemma 35 we can find

more than |Xi| vertex disjoint paths of length two. However, not all such paths may

have their endpoints in Ai or their centers in Xi. This can easily be handled by noting

83

A1

A3

A4

A5

A6

A2 = Ai

R S T

r1

r2

r3

r4

r5

r6

s1

s3

s4

s6

t1

t3

t4

t5

t6

s2 = ui t2 = ūi

s5 = cj

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

Figure 3.7: Finding the exceptional clique when |Xi| > 1

that any vertex in Xi may be switched with any of the vertices in Ai and the exchanged

vertices become exceptional or not bad in their respective new sets. Therefore we may

assume that there is a set, Pi, of |Xi| disjoint paths of length 2, such that the two

endpoints of each path are vertices in Ai and the center is an exceptional vertex in some

Ej(i).

We embed each of these paths in a distinct unit of three k-cliques as follows: let

(ui, cj , ūi) ∈ Pi be one of the paths such that ui, ūi ∈ Ai, and cj ∈ Aj . Select a clique

in the natural order S = (s1, s2, . . . , sk) such that si = ui and sj = cj , (so we use the

{ui, cj} edge). Now we select another clique T = (t1, t2, . . . , tk) such that ti = ūi and S

precedes T . Then we select a clique R = (r1, r2, . . . , rk) which precedes S.

It is easy to see that there are many cliques with the given restrictions such that

only si is the bad vertex among all the three cliques. The cliques, unfolded in the order

R,S, T , make a (k− 1)-path. We replace this set of three k-cliques by a single k-clique

(which we call an exceptional clique) with one vertex each from A1, . . . , Ak. The new

vertex of the exceptional clique in Am is connected to all the common neighbors of

rm and tm. Since rm and tm are not bad vertices for 1 ≤ m ≤ k, therefore these new

84

vertices have high degree in all the sets Ai where i 6= m. We deal with all the exceptional

vertices in this manner and get exceptional cliques for each of them. In the remaining

graph, we use the procedure described in the previous section to find a cover consisting

of k-cliques and add the exceptional cliques to the cover. Then, as previously, we find

a Hamiltonian cycle of the cliques in the cover and unfold the vertices in the cliques in

the order defined by the cycle to get (k− 1)th power of a Hamiltonian cycle. In Figure

3.7 the relevant portion in the final (k − 1)th power of a Hamiltonian cycle looks as

follows: (. . . , v5, v6, r1, r2, r3, r4, r5, r6, s1, s2, s3, s4, s5, s6, t1, t2, t3, t4, t5, t6, v7, v8, . . .)

Case 2: When |Xi| = 1, we may not be able to find the length 2 path as above, for

A1

A3

A4

A6

A2 = Ai

R S T U

A5 = Aj

r1

r3

r4

r5

r2

r6

s1

s2 = ui

s3

s4

s5 = cj

s6

t1

t2 = w̄i

t3

t4

t5 = uj

t6

u′
1

u′
2 = wi

u′
3

u′
4

u′
5

u′
6

v1

v2

v3

v4

v5

v6

v7

v8

v12

v11

v10

v9

Figure 3.8: Finding the exceptional clique when |Xi| = 1

example, when the exceptional vertex cj ∈ Ej(i) for some j has exactly one neighbor

y ∈ Ai (it has to have at least one neighbor). Then all the vertices in Ai (except y)

may have exactly one neighbor inside Ai. Note that by the minimum degree condition

this case can only happen if |Xi| = 1. Therefore we find a path pi = (ui, cj , uj) of

length 2, where ui ∈ Ai and cj , uj ∈ Aj such that cj is an exceptional vertex for Ai.

Additionally, we select an edge {wi, w̄i} inside Ai disjoint from all the length 2 paths

pj for 1 ≤ j ≤ k.

85

Select a clique in the natural order S = (s1, s2, . . . , sk) such that si = ui and sj = cj

so that we use the {ui, cj} edge. Now select another clique T = (t1, t2, . . . , tk) such that

ti = wi and tj = uj . However, we are going to consider T in the following order:

T ′ = (t1, t2, . . . , ti−1, tj = uj , ti+1, . . . , tj−1, ti = wi, tj+1, . . . tk)

(i.e. this order switches the positions of ti and tj). Note that T ′ utilizes the {cj , uj}
edge of pi and that S precedes T ′.

Next we find a clique U such that T ′ precedes U . Such a clique exists, because

we can utilize the edge {wi, w̄i} and wi and w̄i are not bad vertices. There are many

cliques U = (u′1, . . . , u
′
k), and u′i = w̄i, such that T ′ precedes U . Then we find another

clique R which precedes S. We replace this set of four k-cliques by a single k-clique (the

exceptional clique) with one vertex each from A1, . . . , Ak. As previously, the new vertex

of the exceptional clique in Am is connected to all the common neighbors of rm and u′m.

Since rm and u′m are not bad vertices for 1 ≤ m ≤ k, therefore these new vertices have

high degree in all the sets Ai where i 6= m. We deal with all the exceptional vertices

in this manner and get exceptional cliques for each of them. We get (k − 1)th power

of a Hamiltonian cycle using the same method as was done in the previous cases. In

Figure 3.8 the relevant portion in the final (k− 1)th power of a Hamiltonian cycle looks

as follows:

(. . . , v5, v6, r1, r2, r3, r4, r5, r6, s1, s2, s3, s4, s5, s6,

t1, t5, t3, t4, t2, t6, u
′
1, u
′
2, u
′
3, u
′
4, u
′
5, u
′
6, v7, v8, . . .)

G has less than k extremal sets

We first assume that A1, A2, . . . , Al are the extremal sets where l < k and we let

A =
⋃l
i=1Ai and B = V (G) \ A. We say that v ∈ B is bad if degA(v) ≤ (1− α1/3)|A|.

While the bad vertices in Ai’s are defined exactly as before. Then

δ(G|B) ≥
(
k − 1
k

)
n−

(
l

k

)
n ≥

(
k − l − 1

k

)
n ≥

(
k − l − 1
k − l

)
|B|

and since there is no extremal set A′ ⊂ B with |A′| = bnk c = b(1
k−l)|B|c therefore, G|B

does not satisfy the extremal condition.

86

The Clean Case: For now we assume that there are no bad or exceptional vertices.

By the non-extremality of G|B and its minimum degree δ(G|B), using the procedure

given in previous sections on the non-extremal case, we can find (k− l−1)th power of a

Hamiltonian cycle H = (p1, p2, . . . , p|B|) in B. We will insert l vertices after every k− l
vertices in H such that we get (k − 1)th power of a Hamiltonian cycle.

For this purpose we divide H into consecutive intervals of k − l vertices each. We

define B′ = {b1, b2, . . . , bbn
k
c} as follows: b1 corresponds to {p1, p2, . . . , p(k−l)}; b2 cor-

responds to {p(k−l)+1, p(k−l)+2, . . . , p2(k−l)} and so on, and bbn
k
c corresponds to the set

{p(bn
k
c−1)(k−l)+1, . . . , p|B|}. We also have that |A1| = |A2| = · · · = |Al| = |B′| = bnk c.

cj

bi bi+1

v1

v2

v3

v4

v5

p1 p2 p3 p4 p5 p6 p7 p8

v1 v2 v3 v4 v5p1 p2 p3 p4 p5 p6 p7 p8

Figure 3.9: Unfolding the vertices in a compatible triplet gives us a (k − 1)-path

Next we define an auxiliary graph G∗ where V (G∗) = A ∪ {b1, b2, . . . , bbn
k
c}. If

u, v ∈ A form an edge in G then {u, v} is also in E(G∗). Additionally, every bi has

edges to all the vertices in

NG(p(i−1)(k−l), p(i−1)(k−l)+1, . . . , pi(k−l)) ∩A.

That is, bi is connected to all the common neighbors in A of the vertices it represents.

We cover A1 ∪ · · · ∪ Al with l-cliques, each of which uses a vertex from each Ai. Since

for each v ∈ Ai, we have that degAj (v) ≥ (1 − α1/3)|Aj | for all j 6= i and there are no

bad vertices, it is straightforward to find l-cliques by a simple greedy procedure that

uses the König-Hall theorem. We call this clique cover Cl.

Let c1 = (y1, y2, . . . , yl) and c2 = (z1, z2, . . . , zl) be any two cliques in Cl. Note that

by the degree conditions above any given ci ∈ Cl is good for at least (1 − α1/4)|Ck|

87

A1

A2

B

c1 c2

y1

y2 z2

z1

b1 b2 b3 b4 b5 b6

Figure 3.10: The shaded region indicates the compatible triplets. The l-cliques c1 and
c2 are a good pair. Here k = 5 and l = 2

l-cliques in Cl. Furthermore, we say that an adjacent pair {bi, bi+1} and a cj ∈ Cl is a

compatible triplet if the vertices in bi, cj , bi+1 make a (k− 1)-path when unfolded in the

natural order. Since for every pair {bi, bi+1} in B′, NG∗(bi, bi+1)∩Ai ≥ (1−α1/4)|Ai| it
follows that every adjacent pair of vertices in B′ forms a compatible triplet with at least

(1 − α1/5)-fraction of the l-cliques in Cl. So we match every adjacent pair {bi, bi+1},
such that i is odd, with an l-clique, cj ∈ Cl, to make compatible triplets greedily.

For the leftover adjacent pairs {bi, bi+1} where i is even, we also match them to

l-cliques with the added restriction that {bi, bi+1} form a compatible triplet with an

unused l-clique cj and cj is good for cj−1 and cj+1. From the observations above the

König-Hall criteria is easily satisfied hence we may find the required matching. We

can now unfold the compatible triplets giving us the required (k − 1)th power of the

Hamiltonian cycle.

Handling the Exceptional Vertices: Most of the techniques and methods involved

in this case have already been covered in the previous sections. We will refer to these

methods extensively in solving this case. There is a small set of exceptional vertices⋃l
i=1EB(i) = XB ⊂ B and some Ej(i)’s are non-empty (handling bad vertices is simpler

and the details are omitted). This time we define Xi to be the set of all the vertices in

A that are exceptional for Ai, that is, Xi =
⋃l
j=1Ej(i).

We find length 2 paths (and one more required edge if needed) and units of three

88

or four l-cliques in A (as was done for exceptional vertices in Section 3.5.1) for each

of the exceptional vertices in Xi ∪XB. However, this time we do not replace them by

exceptional l-cliques. We cover the rest of A with l-cliques by a greedy approach that

uses the König-Hall Theorem. Since B is non-extremal we find can an optimal cover

in B∗ = B \XB that consists of balanced Kk−l+1(O(log n))’s, Kk−l(O(log n))’s and a

small set of left over vertices, represented by C,K and I. This is possible since even

after the removal of the exceptional vertices the minimum degree of the vertices in G|B∗
is still greater than (1− 1

k−l−1 + ε)|B∗| for some small ε > 0.

B XB

ui ūi

cj

A1

A2

Figure 3.11: Handling the exceptional vertices in the non-clean case

We start making the (k − l − 1)th power of a Hamiltonian cycle in B∗ using the

procedure in Section 3.4 on the non-extremal case. However, we note that since all the

vertices in XB are almost completely connected to B∗, any such vertex is completely

connected to almost all the cliques in C. Therefore we insert the vertices in XB into

the (k − l)-paths that are constructed within every Kk−l+1(O(log n)) in C so that each

such vertex is far apart (at least k distance on the (k − l)-path) from each other. Due

to the minimum degree condition, we can thus assign the exceptional vertices in XB to

cliques in C in a balanced manner by a greedy approach.

After we have made the (k−l−1)th power of a Hamiltonian cycle, H ′ = (p1, . . . , p|B|)

in B, we divide the cycle into consecutive intervals of k − l vertices as before. As

was previously done, we define B′ = {b1, b2, . . . , bbn
k
c} as follows: b1 corresponds to

89

A1

A2

B

y1

y2 z2

z1

b1 b2 b3 b4 b5 b6

x

cs ct

Figure 3.12: The shaded region indicates where the l-cliques from A will be inserted
into the (k − l − 1)th power of a Hamiltonian cycle in B. The heavy edges represent
the portion of the path that is actually a (k − l)-path. Here k = 5 and l = 2.

{p1, p2, . . . , p(k−l)}; b2 corresponds to {p(k−l)+1, p(k−l)+2, . . . , p2(k−l)} and so on, and

bbn
k
c corresponds to the set {p(bn

k
c−1)(k−l)+1, . . . , p|B|}. We note that all the vertices

from XB are located in those sections of H ′ that are actually (k − l)-paths and due

to the way we distributed these vertices, at most one vertex can appear in any single

interval bi of H ′.

Suppose an exceptional vertex x ∈ EB(i) ⊂ XB, and |EB(i)| > 1 (the case |EB(i)| =
1 is dealt with analogously) is the center of the length 2 path that has its endpoints in the

l-cliques cs and ct, then we find two compatible triplets {bi−1, cs, bi} and {bi, ct, bi+1}.
We can move x from its original position in H ′ to before the bi interval. This relocation

is possible since deleting x from its original position still leaves behind a (k− l−1)-path

and since x is connected to all of B, we can find a pair of consecutive intervals bi−1, bi

and bi, bi+1 that form compatible triplets with cs and ct and at the same time form a

(k − l − 1)-path when taken in the order of bi−1, cs, x, bi, ct, bi+1. All the exceptional

vertices in XB are thus associated with two (or three) l-cliques in A and relocated in

H ′.

Next we find consecutive pairs of intervals bj−1, bj and bj , bj+1 for each of the excep-

tional vertices in x′ ∈ Xi (if there is only one vertex in Xi we have a similar procedure

in which xi is associated with three l-cliques in A), for every i, such that they form

90

compatible triplets with cs and ct (the associated l-cliques of x′). This is again possible

because of the high minimum degree of the graph. Finally we find compatible triplets

for all of the remaining consecutive pairs of intervals in H ′ in two stages as we did in

the clean case. To get the final (k−1)th power of a Hamiltonian cycle we unfold all the

compatible triplets.

91

References

[1] S. Abbasi, A. Jamshed, A degree constraint for uniquely Hamiltonian graphs,
Graphs and Combinatorics, 22 (2006), pp. 433–442.

[2] N. Alon, R. Duke, H. Lefmann, V. Rödl, R. Yuster, The algorithmic aspects of the
Regularity Lemma, Journal of Algorithms, 16(1) (Jan. 1994), pp. 80–109.

[3] N. Alon, J. Spencer, The Probablistic Method, 3nd edn. John Wiley and Sons, New
York, (2008).

[4] N. Bansal, R. Williams, Regularity Lemmas and combinatorial algorithms, FOCS
2009.

[5] J. Beck, On 3-chromatic hypergraphs, Discrete Mathematics, 24 (2) (1978), pp.
127–137.

[6] B. Bollobás, Extremal Graph Theory, Dover Publications, New York, (2004).

[7] B. Bollobás, Some remarks on packing trees, Discrete Math., 46 (1983), pp. 203–
204.

[8] B. Bollobás, P. Erdős, M. Simonovits, On the structure of edge graphs II, J. London
Math. Soc., 12 (2), (1976), pp. 219-224.

[9] J. Bondy, B. Jackson, Vertices of small degree in uniquely Hamiltonian graphs, J.
Comb. Theory (B), 74 (1998), pp. 265–275.

[10] A. Chandra, M. Furst, R. Lipton, Multi-party protocols, Proceedings 15th ACM
STOC (1983), pp. 94–99.

[11] B. Csaba, Regular spanning subgraph of bipartite graphs of high minimum degree,
The Electronic Journal of Combinatorics, 14 (2007).

[12] B. Csaba, I. Levitt, J. Nagy-György, E. Szemerédi, Tight bounds on embedding
bounded degree trees, Proc. Fete of Combinatorics, Bolyai Society Mathematical
Studies X (2009), pp. 1–44.

[13] B. Cuckler, J. Kahn, Hamiltonian cycles in Dirac graphs, Combinatorica, 29 (3)
(2009), pp. 299–326.

[14] R. Diestel, Graph Theory, 3rd edn., Graduate Texts in Mathematics, vol. 173,
Springer-Verlag, Berlin, (2005).

[15] G. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathe-
matical Society, 2(1952), pp. 68–81.

92

[16] R. Entringer, H. Swart, Spanning cycles of nearly cubic graphs, J. Combin. Theory
(B), 29 (1980), pp. 303–309.

[17] P. Erdős, On a combinatorial problem, Nordisk Mat. Tidskr, (1963), pp. 5–10.

[18] P. Erdős, On a combinatorial problem II, Acta Mathematica Academiae Scien-
tiarum Hungaricae, 15 (1964), pp. 445–447.

[19] P. Erőds, On some problems in graph theory, Combinatorial Analysis and Com-
binatorial Number Theory, Graph Theory and Combinatorics, (Ed. B. Bollobás),
pp. 1–17.

[20] P. Erdős, Problem 9, Theory of graphs and its applications (M. Fieldler ed.), Czech.
Acad. Sci. Publ., Prague (1964), p. 159.

[21] G. Fan, R. Häggkvist, The square of a Hamiltonian cycle, SIAM J. Disc. Math.,
(1994), pp. 203–212.

[22] G. Fan, H. Kierstead, The square of paths and cycles, manuscript.

[23] G. Fan, H. Kierstead, The square of paths and cycles, Journal of Combinatorial
Theory, Ser. B, 63 (1995), pp. 55–64.

[24] G. Fan, H. Kierstead, Hamiltonian square-paths, Journal of Combinatorial Theory,
Ser. B, 67 (1996), pp. 167–182.

[25] G. Fan, H. Kierstead, Partitioning a graph into two square-cycles, Journal of Graph
Theory, 23 (1996), pp. 241–256.

[26] R. Faudree, R. Gould, M. Jacobson, On a problem of Pósa and Seymour,
manuscript.

[27] R. Faudree, R. Gould, M. Jacobson, R. Schelp, On a problem of Paul Seymour, Re-
cent Advances in Graph Theory (V. R. Kulli ed.), Vishwa International Publication
(1991), pp. 197–215.

[28] D. Gerbner, B. Keszegh, C. Palmer, Packing trees of different sizes into graphs, in
preparation.

[29] A. Gyárfás, J. Lehel, Packing trees of different order into Kn, Coll. Math. Soc. J.
Bolyai, 18 (1978), pp. 463–469.

[30] E. Györi, On the number of C5’s in a triangle-free graph, Combinatorica, 9(1)
(1989), pp. 101-102.

[31] R. Häggkvist, On F -hamiltonian graphs, Graph Theory and Related Topics (J. A.
Bondy and U. S. R. Murty eds.), Academic Press, New York (1979), pp. 219–231.

[32] A. Hajnal, E. Szemerédi, Proof of a conjecture of Erdős, Combinatorial Theory
and its Applications vol. II (P. Erdős, A. Rényi and V.T. Sós eds.), Colloq. Math.
Soc. J. Bolyai 4, North-Holland, Amsterdam (1970), pp. 601–623.

[33] S. Janson, T. Luczak, A. Ruciński, Random graphs, Wiley, New York, (2000).

93

[34] H. Kierstead, J. Quintana, Square Hamiltonian cycles in graphs with maximal
4-cliques, Discrete Mathematics, 178 (1998), pp. 81–92.

[35] J. Komlós, G. Sárközy, E. Szemerédi, An algorithmic version of the Blow-up
Lemma, Random Structures and Algorithms, 12 (1998), pp. 297–312.

[36] J. Komlós, G. Sárközy, E. Szemerédi, Blow-up Lemma, Combinatorica, 17 (1)
(1997), pp. 109–123.

[37] J. Komlós, G. Sárközy, E. Szemerédi, On The Pósa-Seymour conjecture, Journal
of Graph Theory, 29 (1998), pp. 167–176.

[38] J. Komlós, G. Sárközy, E. Szemerédi, On the square of a Hamiltonian cycle in
dense graphs, Random Structures and Algorithms, 9 (1996), pp. 193–211.

[39] J. Komlós, G. Sárközy, E. Szemerédi, Proof of a packing conjecture of Bollobás,
Comb. Probab. Comput. 4 (1995), pp. 241–255.

[40] J. Komlós, G. Sárközy, E. Szemerédi, Proof of the Seymour conjecture for large
graphs, Annals of Combinatorics, 2 (1998), pp. 43–60.

[41] J. Komlós, G. Sárközy, E. Szemerédi, Spanning trees in dense graphs, Comb.
Probab. Comput. 10 (2001), pp. 397–416.

[42] P. Kővári, V. Sós, P. Turán, On a problem of Zarankiewicz, Colloq. Math., 3 (1954),
pp. 50–57.

[43] I. Levitt, G. Sárközy, E. Szemerédi, How to avoid using the Regularity Lemma:
Pósa’s Conjecture revisited, Discrete Mathematics, 310 (2010), pp. 630–641.

[44] L. Lovász, Combinatorial problems and exercises, 2nd edn. North Holland, Ams-
terdam (1993).

[45] J. Matousek, J. Vondrak, The Probabilistic Method, Lecture notes, (2008).

[46] P. Pudlák, An application of Hindman’s Theorem to a problem on communica-
tion, The Electronic Journal of Combinatorics, Combin. Probab. Comput. 12, 5-6
(2003), pp. 661–670.

[47] J. Radhakrishnan, A. Srinivasan, Improved bounds and algorithms for hypergraph
2-coloring, Random Structures and Algorithms, 16 (1) (2000), pp. 4–32.

[48] V. Rödl, A. Ruciński, E. Szemerédi, An approximate Dirac-type theorem for k-
uniform hypergraphs, Combinatorica, 28 (2) (2008), pp. 229–260.

[49] V. Rödl, A. Ruciński, E.Szemerédi, A Dirac-type theorem for 3-uniform hyper-
graphs, Combinatorics, Probability and Computing, 15 (2006), pp. 229–251.

[50] G. Sárközy, S. Selkow, E. Szemerédi, On the number of Hamiltonian cycles in Dirac
graphs, Discrete Mathematics, 265 (2003), pp. 237–250.

[51] P. Seymour, Problem section, Combinatorics: Proceedings of the British Combi-
natorial Conference 1973 (T. P. McDonough and V.C. Mavron eds.), Cambridge
University Press (1974), pp. 201–202.

94

[52] J. Sheehan, Problem section, Nash-Williams, C. St. J.A., Sheehan, J. (eds.) Fifth
British Combinatorial Conference, Congressus Numerantium XV, Utilitas Mathe-
matica (1975), p. 691.

[53] H. Straight, Packing trees of different size into the complete graph, Topics in Graph
Theory (Ed., F. Harary), Annals of the New York Academy of Science, vol. 328
(1979), pp. 190–192.

[54] E. Szemerédi, Regular partitions of graphs, Problmes combinatoires et thorie des
graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), 260 of Colloq. In-
ternat. CNRS (1978), pp. 399–401.

[55] P. Tesson, Computational complexity questions related to finite monoids and semi-
groups, PhD Thesis, McGill University (2003).

[56] C. Thomassen, Independent dominating sets and a second Hamiltonian cycle in
regular graphs, Graphs, J. Combin. Theory (B), 72 (1998), pp. 104–109.

95

Vita

Asif Jamshed

2010 Ph.D. in Computer Science from Rutgers – The State University of New
Jersey

2003-2005 M.S. in Computer Science from Lahore University of Management Sci-
ences, Pakistan

1999-2003 B.Sc. (Hons.) in Computer Science from Lahore University of Manage-
ment Sciences, Pakistan

1999 Graduated from Aitchison College Lahore

