

SYSTEM INTEGRATION AND PERFORMANCE

EVALUATION OF WiNC2R PLATFORM FOR 802.11a

LIKE PROTOCOL

BY MADHURA JOSHI

A Thesis submitted to the

Graduate School -- New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Dr. Predrag Spasojevic

and approved by

New Brunswick, New Jersey

October 2010

 © 2010

Madhura Joshi

ALL RIGHTS RESERVED

ii

ABSTRACT OF THE THESIS

System Integration and Performance Evaluation of
WINLAB Network Centric Cognitive Radio Platform for

802.11a Like Protocol

By Madhura Joshi

 Thesis Director: Prof. Predrag Spasojevic

A Cognitive Radio (CR) is an intelligent transceiver that is able to support

multiple technologies. It can also be dynamically reconfigured and be easily

programmed to achieve high flexibility and speed.

The WiNC2R platform is based on the concept of Virtual Flow Paradigm. The key

characteristic of this concept is that the software provisions the flow by

determining the roles of hardware and software modules whereas the runtime

processing flow is controlled by the hardware. The revision1 of WiNC2R platform

was a proof of concept implemented on an FPGA with the basic processing

engines to achieve an 802.11a-light OFDM flow, and a simple Virtual Flow

Pipeline (VFP) control unit. In the new revision, we have an advanced shared

VFP control unit, cluster based SoC architecture, and all the processing engines

in an 802.11a like OFDM transmitter flow.

The focus of this thesis was to integrate the WiNC2R platform as an 802.11a like

transmitter with the advanced VFP control unit and perform a performance

analysis for the realistic application scenario. The performance evaluation

revolves around system throughput and latency as a function of frame size,

iii

bandwidth, pipelining granularity, number of traffic flows, and flow bandwidth.

The analysis is performed for various traffic mix scenarios. We analyze also how

effectively the VFP control scheme performs run time task control for a single

and multiple OFDM flows.

The thesis starts with the comparative study between the two revisions of

WiNC2R and continues to describe in detail the new revision features. The

programming techniques are described next, followed by a performance

evaluation section and suggestions for future work.

iv

ACKNOWLEDGEMENTS

I would first like to thank my parents for their constant support without which my

journey of completing the MS degree would not have been possible. I would like

to thank my advisors Prof. Predrag Spasojevic and Prof. Zoran Miljanic for their

time and guidance during the course of completing my thesis. Their advice and

suggestions have proven to be very helpful in successfully accomplishing my

task. I would also like to thank Ivan Seskar for his support despite being on a

very busy schedule.

Being a part of the WiNC2R team has been a fun experience, which would not

have been possible without Onkar, Akshay and Mohit. I would like to thank them

from the bottom my heart, and I will truly miss working with them. I would also

like to thank Khanh, Sumit, Tejaswy, Renu and Prasanthi who have always

helped me to resolve my doubts.

v

Table of Contents
ABSTRACT OF THE THESIS .. ii	

ACKNOWLEDGEMENTS.. iv	

Table of Contents .. v	

List of Abbreviations.. viii	

List of Tables .. ix	

List of Figures.. x	

CHAPTER 1 .. 1	

INTRODUCTION... 1	

1.1 Classification of CR Platforms .. 2	

1.2 WINLAB Network Centric Cognitive Radio Platform... 3	

CHAPTER 2 .. 6	

Cluster Based WiNC2R Architecture... 6	

2.1: WiNC2R Revision 1 Architecture ... 6	

2.1.1: Functional Unit Architecture.. 8	

2.1.2: WiNC2R Revision 1 Shortcomings ... 11	

2.2: WiNC2R Revision2 Architecture .. 12	

2.2.1 WiNC2R Revision1 Memory Map .. 16	

2.2.2: WiNC2R Revision2 System Memory Map .. 18	

2.2.2: VFP Memory Map ... 20	

2.2.3: General FU Memory Map ... 21	

vi

2.2.4: Tensilica FU Memory Map .. 22	

2.3: AMBA Advanced eXtensible Interface (AXI) ... 23	

2.3.1: Read Burst Transaction .. 25	

2.3.2: Write Burst Transaction .. 26	

2.3.3 AXI Bus Configuration Parameters .. 28	

CHAPTER 3 .. 33	

WiNC2R Revision2 Programming Flow... 33	

3.1 GTT, TD and NTT Interface .. 33	

3.2 Input Buffer and Output Buffer Indexing.. 34	

3.2.1 Input Buffer .. 35	

3.2.2 Output Buffer.. 36	

3.3 System Flow.. 37	

3.4 Task Scheduling ... 39	

3.4.1 Concept of Chunking ... 40	

Chapter 4.. 43	

WiNC2R Revision 2 Processing Engines.. 43	

4.1: 802.11a Protocol Description ... 43	

4.1.1:PLCP Frame Format.. 44	

4.2: 802.11a TRANSMITTER... 49	

4.3 WiNC2R 802.11a Transmitter Flow: .. 50	

4.3.1: GNU Radio.. 51	

4.3.2: Integrating GNU functions in WiNC2R.. 51	

4.3.3: Direct Programming Interface ... 51	

4.3.4: Implementation ... 52	

vii

4.3.5: Compiling .. 53	

4.4: WiNC2R Processing Engine Specifications.. 54	

CHAPTER 5 .. 61	

Performance Evaluation of WiNC2R.. 61	

5.1 WiNC2R Test – Bench Using OVM .. 61	

5.1.1 Basic Experiment ... 63	

5.1.2 System Latency Experiment .. 68	

5.1.3 Variation of chunk size on system latency ... 70	

5.1.4 Evaluation of Multiple Flow Support by VFP.. 71	

CHAPTER 6 .. 78	

CONCLUSION AND FUTURE WORK ... 78	

Bibliography .. 80	

viii

List of Abbreviations

CR: Cognitive Radio

WiNC2R: WINLAB Network Centric Cognitive Radio

VFP: Virtual Flow Pipeline

FU: Functional Unit

PE: Processing Engine

PLB: Processor Local Bus

AXI: Advanced eXtensible Interface

OVM: Open Verification Environment

DPI: Direct Programming Interface

SV: System Verilog

ix

List of Tables
Table 2-1: AXI Core Configuration Parameters... 32	

Table 4-1: Rate Field Encoding... 46	

Table 4-2: ChunkSize Calculation ... 56	

Table 5-1: System Throughput.. 68	

Table 5-2: Variation of latency with chunksize .. 71	

Table 5-3: Throughput for two flows.. 77	

x

 List of Figures

Figure 2-1: WiNC2R Revision1 Architecture ... 6	

Figure 2-2: Functional Unit Architecture.. 8	

Figure 2-3: WiNC2R Revision2 Architecture ... 13	

Figure 2-4: VFP Processing Flow.. 15	

Figure 2-5: WiNC2R revision1 memory map... 16	

Figure 2-6: WiNC2R revision1 FU memory map... 17	

Figure 2-7: WiNC2R Base Address Calculation.. 19	

Figure 2-8: WiNC2R System Memory Map... 20	

Figure 2-9: AXI Read Channel Architecture .. 23	

Figure 2-10: AXI Write Channel Architecture .. 24	

Figure 2-11: AXI Read Burst Transaction ... 25	

Figure 2-12: AXI Write Burst Transaction.. 26	

Figure 3-1: GTT, TD and NT table interface.. 34	

Figure 3-2: Input Buffer Partitions ... 35	

Figure 3-3: Output Buffer Partitions... 36	

Figure 3-4: System Flow ... 39	

Figure 4-1: PPDU Frame Format .. 45	

Figure 4-2: OFDM Training Sequence .. 45	

Figure 4-3: 802.11a Transmitter.. 49	

Figure 4-4: WiNC2R 802.11a Transmitter... 50	

Figure 4-5: WiNC2R System Hierarchy... 53	

Figure 4-6: Data Scrambler ... 57	

xi

Figure 4-7: Convolutional Encoder (Constraint Length 7) 59	

Figure 5-1: WiNC2R Verification Environment .. 62	

Figure 5-2: Single Flow Data Transfer .. 63	

Figure 5-3: WiNC2R Transmitter Frame Flow... 64	

Figure 5-4: Single Flow Latency.. 69	

Figure 5-5: Multiple Flow Data Transfer .. 73	

Figure 5-6: Multiplexing of chunks in 2 flows... 73	

Figure 5-7: Variation in latency between single and two flows at rate 6Mbps..... 75	

Figure 5-8: Variation in latency between single and two flows at rate 12Mbps... 76	

Figure 5-9: Variation in latency between single and two flows at rate 24Mbps... 76	

1

CHAPTER 1

INTRODUCTION

The next generation wireless technologies clearly impose heterogeneity in their

infrastructures, with devices using different radio access technologies and

operating at different spectrum bandwidths. (1)Emerging wireless technologies

call for solutions with frequent spectrum sensing in addition to per packet

adaption of interference, adaption of frequency bands, and yet remain power

friendly.

Simultaneous support of such diverse traffic streams and dynamic adaption

drives the need of virtualization that can guarantee proper sharing of resources,

yet maintaining the end to end latency requirements for each flow.

Cognitive Radio (CR) platforms strive to achieve adaptability, inter-operability

and efficient spectrum usage at fast data rates. The following section describes

some of the cognitive radio platforms in brief.

2

1.1 Classification of CR Platforms

The current CR platforms are classified into four types(2)(3).

1. Multimodal Hardware-based Platforms: These platforms implement

different technologies by implementing separate modules that support a

particular technology. Once programmed, the modules cannot be

reprogrammed to implement a different MAC protocol or modify the

system parameters. Thus, this type of platform lacks the re-configurability

of an ideal cognitive radio. Also, this kind of platform is not scalable, as

new modules need to be implemented to support more number of

technologies.

2. Portable Software Platforms: These platforms implement the radio

functionalities in a high level programming language such as C, C++ or

JAVA. As the modules are implemented in software, they are easily re-

configurable and also scalable to support multiple technologies. These

platforms run as application software on a general purpose or real time

operating system on a general-purpose processor. Since RF

functionalities such as filtering, up/down conversion, analog to digital

conversion and digital to analog conversion are cumbersome to implement

in software, RF boards are used to provide a wireless interface. The GNU

Radio is one such portable software platform. The performance of these

platforms depends on the general purpose processor and the underlying

operating system.

3

3. Reconfigurable Hardware Platforms: These platforms implement the

physical and the MAC layer functions in FPGA blocks or a combination of

FPGA and DSP processor. The platform can support either one or a

limited number of protocols, but can be re-configured to support a different

protocol by uploading a different bit image onto the FPGA. The modules

performing the radio functions are implemented either in low-level

hardware or embedded languages and hence difficult to program. The

performance of these platforms is limited by the logic capacity of FPGA

and the clock rates supported by FPGA and DSP processors. The RICE

university WARP platform is one such platform.

4. SoC Programmable Radio Processors: These platforms are based on an

array of special purpose processors and hardware accelerators for

implementing physical layer radio functions. The MAC and the physical

layer functions are software programmable. There is no underlying

operating system like in the case reconfigurable platforms. The

performance of these platforms mainly depends on the number of the

processors used and the choice of hardware accelerators.

1.2 WINLAB Network Centric Cognitive Radio Platform

The WINLAB Network Centric Cognitive Radio (WiNC2R) is a platform that

targets speed, simple programming and flexibility in the multilayer domain of

mobile IP based communication. Its goal is to provide a scalable and adaptive

radio platform for the range of cost-capacity configurations, so the architecture is

4

suitable for both standard cell SoC and FPGA based implementations. The

WiNC2R is an excellent platform for the research and development

communication labs in academia, industry and government institutions. It can be

used for the analysis of the mobile applications computing, communication and

control requirements, performance analysis of communication algorithms in a

realistic radio propagation environments and hardware versus software

implementation tradeoff analysis. This paradigm introduces the concept of Virtual

Flow pipelining (VFP) which combines the high-speed computation capabilities of

FPGA hardware and flexibility of software. The data flow and parameter inputs to

processing blocks are fed by the user in the form of function calls, but the

processing happens on hardware. The WiNC2R board is differentiated from the

other cognitive radio projects in the sense that the design uses hardware

accelerators to achieve programmability and high performance at each layer of

the protocol stack.

The WiNC2R revision1 framework was a successful proof of concept

implementation on an FPGA. The framework consisted of basic 802.11a

processing elements and a low level VFP controller. The transmitter and receiver

were implemented on separate FPGA’s and successful transmission and

reception of packets was achieved. The next revision of WiNC2R is targeted

towards an ASIC implementation and hence is a re-configurable SoC based

architecture. This revision aims to achieve successful transmission and reception

of 802.11a frames with the advanced VFP controller for scalable SoC solutions.

The following chapters describe a comparative analysis between the two

5

frameworks, in detail description of different processing engines and an

evaluation of the new framework.

6

CHAPTER 2

Cluster Based WiNC2R Architecture

2.1: WiNC2R Revision 1 Architecture

Figure 2-1: WiNC2R Revision1 Architecture

The above figure shows the top-level architecture of WiNC2R (revision 1).

The architecture can be split into two main sections – software and hardware.

7

The upper block represents the software components that perform the task of

initial configuration of the system. Since WiNC2R revision1 was FPGA based

architecture, the CPU core used on the software side was a standard Xilinx soft-

core CPU called Microblaze which connected to its own GPIO ports (General

Purpose IO), Timer and Interrupt peripheral modules using an IBM standard bus

structure called Processor Local Bus (PLB). The hardware components are

initialized and the data flow between them was configured through software. The

lower block represents the hardware components that perform the actual radio

processing tasks. The data processing occurs in the Functional Units (FU) and

the data transfer from one FU to another occurs over the PLB. All FU’s were

implemented in VLSI Hardware Description Language (VHDL). The FU interfaces

to the PLB through Xilinx standard Intellectual Property Interface (IPIF).

8

2.1.1: Functional Unit Architecture

Figure 2-2: Functional Unit Architecture

The FU consists of Processing Engine (PE), VFP controller, input and

output memories as shown in the above figure. The operations performed by an

FU are split into two categories – data and control. The data operation refers to

the data processing handled by the PE, while the control operation refers to the

tasks performed by the VFP controller to initiate and terminate the PE tasks. The

inputs required by the PE for data processing is stored in the input memory

buffer, while the data generated after processing is stored in the output memory

buffer. The memory buffers are implemented as Dual Port Random Access

Memory (DPRAM) generated using Xilinx CoreGen. The Register MAP (RMAP)

9

within the PE stores software configurable control information required for PE

processing.

 The VFP controller manages the operation of FU-s achieving re-

configurability. WiNC2R uses a direct architectural support for task-based

processing flow. The task flow programming is performed by two control data

structures: Global Task-descriptor Table (GTT) and Task-Descriptor Table (TD

Table). Both control tables are memory based. GTT was implemented as a block

RAM connected to the PLB and common to all FUs while each FU had its own

TD Table. Based on its core functionality, each PE was assigned a set of input

tasks and the PE was idle until it received one of those tasks. The PE handles

two types of tasks: data and control. Data task indicated that data to be

processed was present in the input buffer of the PU. For example, data task

“TxMod” told the Modulator block that there was data in the input buffer that

needed to be modulated. This data was first transferred to the input buffer of FU

before the task was sent to the PE. Control tasks do not operate on the payload

but behave as pre-requisites for data tasks in some PE’s. For example,

“TxPreambleStart” control command initiated the preamble generation task in the

PE_TX_IFFT engine before handling a data task. This was necessary, as the

preamble is attached to the beginning of the data frame before transmitting.

 The TD Table stores all the required information for each task for the FU.

When the FU received a data task, the VFP controller Task Activation (TA) block

fetches the information from the TD table and processes it. It then forwards the

task to PE along with the location and size of input data. The PE processed the

data and stored it in the Output Buffer. Once the processing was over, PE

10

relayed the location and size of processed data in Output Buffer to the VFP

controller through Next Task Request and Next Task Status signals. The Next

Task Status bits indicate the location of the processed data in the output buffer.

Depending on the PU, the output data may be stored at more than one location.

The Next Task Request signal informs the VFP controller Task Termination (TT)

block how the output data at locations indicated by status bits should be

processed. The TT processing includes transferring the data to next FU/FUs in

the data flow. The NT Request tells the TT to which FU the data is to be sent.

The FU in the data flow in determined by the information stored in TD table. By

updating the information in TD table, software can change the next FU in the

data flow path. Thus, the PE has no information regarding the next processing

engine in the flow. As a result, all the PE’s are independent of each other and

only perform the tasks allocated to them. The next processing engine in the flow

can thus be changed on-the-go and hence a complete reconfigurable

architecture is achieved.

11

2.1.2: WiNC2R Revision 1 Shortcomings

 As shown in Figure 2-2, currently each functional unit has a dedicated VFP

controller. Initial analysis has revealed that this scheme keeps each VFP

controller unutilized for more that 70% of the time(2). This incurs a high hardware

as well as power cost. Moreover, the need for synchronization among the various

distributed VFP controllers requires the maintenance and access of a common

global control memory structure. These accesses over the common bus increase

bus traffic and latency, eventually delaying task termination. This impacts the

system performance as well as end-to-end protocol latency, thus limiting the

application of the platform. The above-mentioned issues with VFP controller per

functional unit scheme have prompted us to explore new architectures

implementing a centralized approach.

 The data generated by a PE can exceed several 100 bytes and the transfer

of data occurs over the system bus. Hence it is mandatory that the bus does not

create a bottleneck in the system. The PLB is the system bus used in WiNC2R

revision1 over which data is transferred from one FU to another depending on

the programmed application. The PLB has a limitation where it can transfer a

maximum of 64bytes (16 words) in a single burst transfer. After transferring the

16 words, the master has to place a request to access the bus and can resume

transferring the data once PLB has granted access to the requesting master. A

case of data transfer from FU_MODULATOR to FU_IFFT was analyzed, where

the FU_MODULATOR generates data of size 768 bytes. Due to the PLB bus

limitation the entire transfer of 768 bytes occurs as of 12 chunks each of 64

12

bytes.

 The above-mentioned shortcomings of WiNC2R revision1 architecture led

us to explore different options to overcome the shortcomings. Centralizing the

VFP controller for several FU’s and using a system bus of better throughput such

as AMBA AXI, are the highlights of the WiNC2R revision2 architecture.

2.2: WiNC2R Revision2 Architecture

 WiNC2R revision2 is a Cluster Based System on Chip architecture (SoC) as

shown in the Figure 2-3. The system interconnect used in revision2 architecture

is AMBA AXI. Hierarchical bus architecture is implemented as shown in Figure 2-

3. The communication between the clusters occurs over the main system bus

while the communication between the FU’s within a cluster occur over another

AXI bus within a cluster. The dedicated VFP controller in the previous

architecture is replaced with a VFP Controller that is common to several FU’s

within a cluster. The architecture of the FU is similar to the one in revision1

architecture consisting of a dedicated processing engine, input, output buffer

memories and a Dynamic Memory Access (DMA) Engine to transfer data

between FU’s over the AXI bus present with a cluster. The communication

between the VFP controller and FU’s occur over a dedicated bus to each FU. As

in the previous architecture, the PE handles both the data and the control tasks

while the VFP controller schedules the tasks to each FU.

13

Figure 2-3: WiNC2R Revision2 Architecture

Source: Onkar Sarode, Khanh Le, Predrag Spasojevic, Zoran Miljanic: Scalable Virtual Flow

Pipelining SoC Architecture, IAB Fall 2009 Poster

14

 The VFP controller’s functions are divided into – task scheduling and

activation, communication between the tasks and scheduling of processing

resources to the tasks. The task activation function includes dynamically

scheduling a task, identifying the FU corresponding to the task and initiating it.

The Task Activation (TA) block that is local to every FU performs the actual

initiation of a task. Once the VFP activates a particular FU, it is free to perform

task activation of other FU’s. Once the PE within an FU completes processing

the data, it activates the task termination blocks within the VFP. The Next Task

Table (NTT) within the VFP contains information regarding the task to be

performed next. Hence, the VFP initiates the data transfer between the producer

and consumer FU. The consumer FU can be placed either in the same (local)

cluster or a different (remote) cluster. If the consumer FU is present in the local

cluster, the data transfer occurs over the AXI bus within the cluster. But if the

consumer FU is present in a remote cluster, the data transfer occurs over the

system-interconnect.

15

Figure 2-4: VFP Processing Flow

Source: Onkar Sarode, Khanh Le, Predrag Spasojevic, Zoran Miljanic: Scalable Virtual Flow

Pipelining SoC Architecture, IAB Fall 2009 Poster

 Due to centralization of the VFP and a cluster-based architecture, the

decoding scheme to identify a particular FU is different from the revision1

architecture. The following section describes the WiNC2R revision1 and

revision2 memory maps in detail.

16

2.2.1 WiNC2R Revision1 Memory Map

All the blocks in the revision1 platform are of size 64k and can be visualized as

seen in the figure 2-5

Figure 2-5: WiNC2R revision1 memory map

Source: Khanh Le, Shalini Jain: ncp_global_memory_map.doc

As shown, each FU consists of the following sub-blocks: IPIF DMA, UCM

(dedicated VFP controller), PE, input buffer and output buffer. Each FU has a 64k

address range divided into five main regions as shown in figure 2-6.

17

Figure 2-6: WiNC2R revision1 FU memory map

Source: Khanh Le, Shalini Jain: ncp_global_memory_map.doc

Since, each FU has a dedicated VFP controller, address decoding of the different

FU’s is based only their base memory address. Secondly, each FU has its own

TD table and Task Scheduler Queue.

Due a centralized VFP controller in the new revision, the address decoding of the

different FU’s is based on an FU_ID and CLUSTER_ID. These id’s allow the VFP

18

controller to identify a particular FU. This feature was unnecessary in the

previous revision because of a dedicated VFP controller.

2.2.2: WiNC2R Revision2 System Memory Map

 The WiNC2R revision2 architecture has a maximum of 16 clusters and each

cluster can have a maximum of 16 FU’s.

 Size of 1 FU = 512KB

 Size of 1 Cluster = 16 * 512KB = 8MB

 Size of 16 Clusters = 16 * 8MB = 128MB.

Hence, the total system memory is of size 128MB. The base address of each

cluster and the decoding of the FU address are shown in figure 2-7.

To access a memory space of 128MB, we require 27bits. Its “Cluster ID”

identifies the cluster while the FU is identified by its “FU ID”. The cluster and FU

ID are 4 bits wide. As shown, the bits 26 to 23 represent the cluster ID and bits

22 to 19 represent the FU ID. For example, the base address of FU 1 in cluster 0

is 0x0008000.

19

Figure 2-7: WiNC2R Base Address Calculation

Source: Akshay Jog, Khanh Le: WiNC2R Global Memory Map – Release 2

The revision2 framework consists of certain new FU’s in addition to the FU’s from

the revision1 architecture. The processing engine within the FU is either a native

C/C++ function from GNU Radio or a SystemC wrapped Tensilica Application

Specific Instruction Set Processor Entity or a VHDL entity from revision1

architecture. Figure 2-8 represents the VFP, General FU and Tensilica based FU

memory map. The base address of each memory entity is also shown.

20

 Figure 2-8: WiNC2R System Memory Map

Source: Akshay Jog, Khanh Le: WiNC2R Global Memory Map – Release 2

2.2.2: VFP Memory Map

 Since the VFP is a centralized entity controlling several FU’s, certain

memories that were local to an FU in the previous architecture are now a

common memory entity in the VFP.

 Global Task Table (GTT): The GTT is a 64KB memory that resides within

the VFP. Since the GTT is local to VFP, there is one GTT per cluster. The GTT

describes the flow of tasks depending on the application. The GTT was a global

memory table in the revision 1 framework and hence was common to all FU’s .

 Task Scheduler Queue (TSQ): Each FU in the revision 1 framework had a

local TSQ. Depending on the nature of the task, the task descriptors were either

stored in the synchronous or the asynchronous queues. Since the common VFP

controller handles the scheduling of tasks of different FU’s, the TSQ is now made

21

local to the VFP rather than having a separate TSQ in each FU.

 To begin with, it is assumed that a cluster consists of 8 FU’s. Hence the

128KB memory space of TSQ is divided into 8 resulting in a 16KB TSQ per FU.

The tasks corresponding to every FU is placed in the appropriate TSQ by the

VFP controller.

 VFP RMAP: The VFP controller can be initialized by the software by writing

into the VFP RMAP. Currently the VFP RMAP is not used.

 Next Task Table (NTT): The NTT contains information regarding the next

task to be activated the VFP after the completion of a particular task by the FU.

This information previously resided in the TD table that was local to each FU. It is

now stored in a different memory entity and is local to the VFP.

2.2.3: General FU Memory Map

 The general FU memory map is similar to the one in the previous revision,

except for some minor changes that are described below.

 PE RMAP: The processing engine can be configured and initialized by

writing into its RMAP. The software writes into the RMAP during system

configuration.

 PE IBUF: The PE IBUF is divided into two sections – the IBUF and the TD

table. The PE reads the required data for it’s processing from the PE IBUF, while

the TD table consists of information that describe the task being performed.

Hence each FU has a local TD table describing the tasks that the particular FU

can perform.

22

 PE OBUF: After processing the data read from IBUF, the PE writes the data

into the OBUF. When the VFP controller initiates a DMA transfer, the data from

the OBUF is transferred into the IBUF of the FU that is next in processing flow.

2.2.4: Tensilica FU Memory Map

 Instruction RAM (IRAM): The Instruction RAM stores the instruction set

required for the processor to execute the data processing algorithm.

 Data RAM (DRAM): The Data RAM stores the variables required by the

processor to execute the data processing algorithm.

 The data stored in PE RMAP,IBUF and OBUF is similar to the one

described in the general FU memory map section.

The second bottleneck in the revision 1 framework was created by the PLB. We

decided to replace the PLB with the AMBA AXI bus. The following section

describes the AXI bus in detail.

23

2.3: AMBA Advanced eXtensible Interface (AXI)

 The AMBA AXI bus extends the AMBA Advanced High performance Bus

(AHB) with advanced features to support next generation high performance SoC

architectures. The AXI bus has channel architecture and can be configured to

have separate write and read address and data channels. The AXI architecture

for read and write requests is shown in Figure 2-7 and Figure 2-8.

Figure 2-9: AXI Read Channel Architecture

24

Figure 2-10: AXI Write Channel Architecture

The channel architecture for read transactions depicts a separate channel for

address and data. The master sends the address and control information over

the address channel to the slave. The slave in response sends the data over the

data channel.

 Similar to the read transaction, the write transaction channel architecture is

also depicted. The master sends the address and the control information over the

address channel to the slave, while the data to be written is sent over the data

channel as shown. The slave sends out the response to the master over the write

response channel. As the read and write address and data channels are

separate, the AXI bus can handle simultaneous read and write transactions. In

addition to performing simultaneous read and write operations, the AXI bus can

also handle multiple outstanding instructions and out of order completion of

25

transactions. The read and write transaction protocols are described below.

2.3.1: Read Burst Transaction

Figure 2-11: AXI Read Burst Transaction

Source: AMBA AXI v1.0 Specifications

The above figure represents a read burst transaction.(4)

• The master asserts the “arvalid” signal along with a valid address on

the “araddr” signal.

• The slave asserts the “arready” signal, indicating that the slave is

ready to accept the address and the corresponding control signals.

• The master asserts the “rready” signal, indicating to the slave that it is

ready to accept the data and the responses.

• The slave asserts the “rvalid” signal along with the valid data on the

“rdata” signal. The slave indicates the master that the data on the

“rdata” signal is the last in the burst transaction by asserting the

“rlast” signal.

26

2.3.2: Write Burst Transaction

Figure 2-12: AXI Write Burst Transaction

Source: AMBA AXI v1.0 Specifications

The above figure represents a write burst transaction.(4)

• The master the “awvalid” signal along with a valid address on the

“awaddr” signal.

• The slave asserts the “awready” signal, which indicates that the slave

is ready to accept the address and other control signals.

• The slave asserts the “wready” signal, which indicates that the slave is

ready to accept the data.

• The master then asserts the “wvalid” signal and also puts valid data on

the “wdata” signal. Along with this, the master also asserts the

“bready” signal indicating that it is ready to accept the response from

the slave.

27

• The master asserts the “wlast” signal along with the “wvalid” and

“wdata” signal, indicating that the word is the last word in the burst

transaction.

• The slave sends back the response on the “bresp” signal along with

asserting the “bvalid” signal, indicating that the response on “bresp”

channel is valid.

The maximum number of data transfer in a burst is defined by the “awlen” or

“arlen” signal. The signal can be configured to have a maximum of 256-byte

transfer in a single burst. This provides an improved performance over the PLB,

which handles only 64-byte transfer in a single burst transaction. The size of data

in each burst is configured by the “awsize” and “arsize” signals and is set as 32

bit word. The AXI bus can perform burst transfers of 3 kinds.

• Fixed Burst: In a fixed burst, the address remains the same for every

transfer in the burst. This burst type is for repeated accesses to the

same location such as when loading or emptying a peripheral FIFO.

• Incremental Burst: In an incrementing burst, the address for each

transfer in the burst is an increment of the previous transfer address.

The increment value depends on the size of the transfer. For

example, the address for each transfer in a burst with a size of four

bytes is the previous address plus four.

28

• Wrap Burst: A wrapping burst is similar to an incrementing burst, in

that the address for each transfer in the burst is an increment of the

previous transfer address. However, in a wrapping burst the address

wraps around to a lower address when a wrap boundary is reached.

The wrap boundary is the size of each transfer in the burst multiplied

by the total number of transfers in the burst.

2.3.3 AXI Bus Configuration Parameters

The AXI bus core is configured using Synopsys DesignWare CoreConsultant.

There are various design parameters that determine the behavior of the AXI

core. Some of the parameters that are relevant to the system are mentioned in

the table below.

29

AXI Core

Parameter

Parameter Definition Configuration

Chosen

Reason

AXI Data Bus

Width

This is the width of the data bus

that applies to all interfaces.

Legal values: 8, 16, 32, 64, 128,

256 or 512 bits

32 bits Standard data

size width

AXI Address Bus

Width

This is the width of the address

bus that applies to all interfaces.

Legal values: 8, 16, 32, 64, 128,

256 or 512 bits

32 bits Standard address

size width

Number of AXI

Masters

Number of masters connecting

the to AXI master port.

Maximum value = 16

9 System consists

of 7 functional

units, 1 VFP

controller and

OVM

environment. All

act as masters

Number of AXI

slaves

Number of slaves connecting to

the AXI slave port

8 The 7 functional

units and VFP act

as slaves

AXI ID: Width of

Masters

(AXI_MIDW)

This is the ID bus width of all five

AXI channels connected to an

external master. All masters have

the same ID width for all five AXI

channels.

4 4 bits are

sufficient to

access 9 masters

AXI ID: Width of

Slaves

This is the ID bus width of all five

AXI channels connected to an

8 Generated

automatically

30

(AXI_SIDW) external slave. It is a function of

the AXI ID Width of Masters

(AXI_MIDW) and the number of

masters (AXI_NUM_MASTERS).

AXI_SIDW=AXI_MIDW

+ceil(log2(NUM_AXI_MASTERS))

This parameter is calculated

automatically, and the same width

is applied to all slaves.

using the

mentioned

formula

AXI Burst Length

Width

This is the width of the burst

length signal for both read and

write address channels on both

the master and slave ports. The

AXI protocol specifies this is a 4

bit value, but this width is

configurable to 8 bits wide to

support longer bursts up to 256

data beats.

8 bits Maximum value of

burst length width

is selected to

enable the

transfer of 256

words in a single

burst.

Slave Port

Arbiters (read

address, write

address and write

data channels)

Selects the type of arbiter to be

used at the slave port read

address, write address and write

data channels.

Priority Arbitration: Highest

priority master wins

First Come First Serve: Masters

are granted access in the order of

the incoming requests.

Fair Among Equals – 2 tier

First Come First

Serve

All the slaves are

of equal priority

and hence first

come first is

chosen

31

arbitration: First tier is dynamic

priority; second tier shares grants

equally between masters of the

same highest requesting priority

on a cycle-by-cycle basis.

User Defined: instantiates a plain-

text arbitration module which the

user can edit to their own

requirements

Master Port

Arbiters (read

data channel and

burst response

channel)

Selects the type of arbiter to be

used at the master port read data

and burst response channels.

Priority Arbitration: Highest

priority master wins

First Come First Serve: Masters

are granted access in the order of

the incoming requests.

Fair Among Equals – 2 tier

arbitration: First tier is dynamic

priority; second tier shares grants

equally between masters of the

same highest requesting priority

on a cycle-by-cycle basis.

User Defined: instantiates a plain-

text arbitration module which the

user can edit to their own

requirements

First Come First

Serve

All the masters

are of equal

priority and hence

first come first is

chosen

32

Table 2-1: AXI Core Configuration Parameters

We decided to test the new architecture by implementing the 802.11a protocol

and build a system consisting of two clusters – one implementing the transmitter

side and the other implementing the receiver side. Each cluster consists of 7

FU’s and 1 VFP controller. The next chapter describes the 802.11a protocol in

detail and the WiNC2R transmitter implementation of the protocol. The scope of

the thesis is limited to describing the transmitter cluster.

33

CHAPTER 3

WiNC2R Revision2 Programming Flow

The nature of the revision2 system flow is similar to that of the revision1 flow with

slight differences because of a centralized VFP controller. This chapter describes

the system flow – starting from scheduling the task to a producer FU till inserting

a new task for a specific consumer FU. The interfaces between the three control

structures – GTT, TD and NTT are also described in detail.

3.1 GTT, TD and NTT Interface

The Task_ID field in the TD table provides the offset that points to that particular

task entry in the GT table, which is local to the VFP. The GTT also contains a

TD_Pointer field, which is the physical address of the first word in the TD table

for that particular task. The GTT also contains FU_ID field using which the VFP

can identify the different FU’s. The TD table contains an NT_Pointer field, which

is the physical address of first word in the NT table. The NT table resides within

the VFP and contains information of the next task to be triggered after the

producer FU has completed its current task. The NT table consists of a

NextTask_ID field that is the offset address, pointing to the next task to be

performed in the GTT. The NT table also has a FUID field. This field contains the

FUID of the consumer FU. Using this FUID, the VFP controller can trigger the

task in the consumer FU. The NT table contains the “OutData_Ptr” field, which is

the physical address of the input buffer of the consumer FU and is used by the

34

VFP controller to initiate a DMA transfer from producer to the consumer FU. The

figure 3-1 shows the interface betweeokn the three control structures.

Figure 13-1: GTT, TD and NT table interface

3.2 Input Buffer and Output Buffer Indexing

The input and the output buffers reside within every functional unit. The partitions

of the input and output buffer and the method of indexing is shown in figure 3-2

and 3-3 respectively.

35

3.2.1 Input Buffer

The input buffer is of size 64Kb, off which 32Kb is dedicated to the TD table. The

other half is partitioned into 16 buffers. The buffer 0 is of size 4Kb and contains

the data to be operated on by the PE. The buffer 1 contains the control

parameter information that is passed on by every FU and is of 64 bytes. The

remaining buffers can be programmed to be of variable sizes. The accessing of

the input buffer is as shown in the figure 3-2.

Figure 14: Input Buffer Partitions

36

3.2.2 Output Buffer

The output buffer is of size 64Kb and is accessed in a way similar to the input

buffer. The “out_data_ptr” for every region is specified in the register map local to

every PE. The PE accesses the register map to obtain the pointer information

and then writes into the address contained by the pointer. In case of flow context

the information is stored in the local register map.

Figure 15: Output Buffer Partitions

37

3.3 System Flow

The figure 3-4 depicts the system flow in detail. The sequence of operations is

also shown.

1. The VFP controller consists of dedicated Task Scheduler Queues (TSQ)

for every FU. The descriptor consists of the FUID, using which the

scheduler within the VFP controller schedules the task to the producer FU.

The descriptor formats are shown in the Appendix. The task can be

asynchronous, in which case it is scheduled immediately, or synchronous,

in which case it is scheduled once its start time occurs. The scheduler also

sets the “Busy Vector” field in the GTT that indicates that the particular FU

is busy in processing a task.

2. The Task Activation (TA) unit within the producer FU, accesses the TD

table whose pointer it received from the VFP controller. The TD table

contains all the relevant information required by the TA to trigger the PE,

such as the command number and flow context information. It also

updates the input buffer pointer and size information in the input buffer

that are required by the PE.

3. The PE reads the input data from the input buffer and operates on the

data.

4. The PE writes the result into the output buffer. On completing the task, the

PE sends out a “cmd_done” and a “next_task_en” signal.

38

5. The producer FU then sends out two messages, one corresponding to the

“cmd_done” to initiate the termination of task and the other corresponding

to “next_task_en” to trigger the next task – {5a, 5b}.

6. On receiving the command termination message, the Command

Termination (CT) block within the VFP, clears the Busy Vector in the GTT,

which marks the termination of the scheduled task. The producer FU is

now free to cater to other tasks. The “next_task_en” message sent by the

FU contains the physical address of the NT pointer. Using this address,

the Consumer Identification (CID) unit within the VFP, accesses the NT

table to identify the consumer FU’s. The producer FU also sends out the

physical address of the output buffer, where the processed data is stored.

It also sends out the size of the processed data. The output buffer address

serves as the source address during the data transfer over the bus, while

the “OutData_Ptr” field read from the NT table, serves as the destination

address. The CID sends out a message to the Data Transfer Initiator (DTI)

with the necessary source and destination address to activate the DMA

transfer.

7. The source and destination address and the size of the data transfer is

sent to the consumer FU identified by the VFP. The consumer FU now

initiates a transfer over the AXI bus.

8. The data is transferred by reading from the output buffer of the producer

FU and writing into the input buffer of the consumer FU.

9. Once the data transfer is completed, the consumer FU messages the VFP

controller. The Task Inserter (TI) unit within the VFP inserts a task into the

39

TSQ dedicated to the identified consumer FU. The local TI within the

consumer FU updates the TD table with the input buffer pointer and size

information.

Figure 16: System Flow

3.4 Task Scheduling

The two types of data tasks handled by the WiNC2R platform are asynchronous

and synchronous. Although, the actual processing engine is unaware of the type

of data task, the method of scheduling these tasks are different. The

“Sync/Async” field in the GTT determines the nature of the task; a value of 1

corresponds to asynchronous task while 0 corresponds to a synchronous task.

The synchronous task can be two kinds – chunking and non-chunking. The

chunking and non-chunking tasks are described in the later sections.

The asynchronous tasks are demand tasks, and hence are scheduled

immediately by the scheduler. In case the asynchronous task does not terminate

40

before the start time of a synchronous task, the asynchronous task can be

interrupted and is resumed after the completion of the synchronous task.

The synchronous tasks have pre-allocated time slots, and on the arrival of the

particular time, the synchronous task is scheduled. The synchronous task can

repeated based on the rescheduling period or the repetition number, both of

which are pre-defined in the GTT. The scheduler uses the rescheduling period to

repeat a particular synchronous task termed as a chunking task, while it uses the

repetition number to repeat the task incase of a non-chunking synchronous task.

3.4.1 Concept of Chunking

The input data can be broken up into smaller pieces called “chunks” of a pre-

defined size (chunksize) to improve the overall end-to-end latency of the system.

The “ChunkFlag” parameter in the GTT indicates whether the current task to be

scheduled is a chunking or non-chunking task. The current task is a chunking

task if the parameter is set. The functional unit handling the chunking task

obtains the chunksize and the first_chunksize information by reading the TD

table. It is the responsibility of the scheduler to keep a track of the number of

chunks. The “first_chunkflag” bit is set in the message sent by the scheduler to

the FU in case of first chunk and the “last_chunkflag” bit is set indicating that the

chunk is the final chunk. In case of the first chunk, the TA unit within the FU,

updates the size pointer in the input buffer with the first_chunksize and address

pointer with address obtained from the “InDataPtr” field in the TD table. The TA

unit then updates the “InDataPtr” field in the TD table with the previous

“InDataPtr” + first_chunksize and updates the “InDataSize” field in the TD by

41

deducting the first_chunksize from the total size. When the first_chunkflag bit is

not set, the TA updates the information the TD according to the chunksize. The

chunksize and the first_chunksize information are available in the GTT, which is

accessible by the scheduler. The scheduler deducts the chunksize or

first_chunksize (in case of first chunk only) from the total frame size and

schedules the next chunk only after a period called the “Reschduling Period”.

The last chunk is scheduled when the remaining frame size is lesser than the

chunksize and the last_chunkflag bit is set.

The following functional unit(s) can terminate the chunking or pass them along. If

the unit is passing along the chunks of data (i.e. it is neither chunking nor

terminating the chunking) the chunks will processed like the full frame – i.e. the

unit passing it along is not even aware of the chunking. If the unit it is terminating

the chunking for the particular task (TerminateChunking[x] == 1 in the Task

Descriptor) it will pass the results of each chunk processing to the following unit

as the chunks are being processed but it will enable the next task only when the

last chunk is processed. In this case the chunks are gathered into the frame at

the consumer task input buffer. Since the chunk termination unit needs to pass

the pointer to the beginning of the frame buffer to the consumer task it needs to

keep the OutDataPtr original value while the chunks are being processed and

passed along. For that purpose, in the de-chunking mode the output consumer

task entries (NextTaskIDx and associated pointers) are paired together so that

OutDataPtrx keeps the working pointer that gets incremented with the transfer of

each chunk by the corresponding OutDataSizex and OutDataPtr+1 that contains

the original OutDataPtr (before the transfer of the first chunk). The

42

OutDataSizex+1 is incremented after each chunk transfer by OutDataSizex, so

that it contains the whole frame after the last chunk has been transferred.

An optimum chunksize must be determined to achieve good system latency. The

following chapters discuss about the calculation of chunk size and its effect on

the latency of the system. The concept of chunking also helps in supporting

multiple flows (of different or same protocol) in the system. The analysis related

to multiple flows is also described in detail in the later chapters.

43

Chapter 4

 WiNC2R Revision 2 Processing Engines

4.1: 802.11a Protocol Description

 802.11a is an amendment to the IEEE 802.11 specification that added a

higher data rate of up to 54 Mbit/s using the 5 GHz band. It has seen widespread

worldwide implementation, particularly within the corporate workspace. The

802.11a standard uses the same core protocol as the original standard, operates

in 5 GHz band, and uses a 52-subcarrier orthogonal frequency-division

multiplexing (OFDM) with a maximum raw data rate of 54 Mbit/s, which yields

realistic net achievable throughput in the mid-20 Mbit/s. The data rate is reduced

to 48, 36, 24, 18, 12, 9 then 6 Mbit/s if required. The OFDM PHY contains three

functional entities: the physical medium dependent function, the PHY

convergence function, and the management function.(5)

• Physical Layer Convergence Procedure (PLCP) Sublayer:

In order to allow the IEEE 802.11 MAC to operate with minimum

dependence on the Physical Medium Dependent (PMD) sublayer, a PHY

convergence sublayer is defined. This function simplifies the PHY service

interface to the IEEE 802.11 MAC services. The PLCP sublayer is

described in detail in the following sections.

44

• Physical Medium Dependent (PMD) Sublayer:

The PMD sublayer provides a means to send and receive data between

two or more stations in the 5 GHz band using OFDM modulation.

• Physical Management Entity (PLME):

The PLME performs management of the local PHY functions in

conjunction with the MAC management entity.

4.1.1:PLCP Frame Format

(5)Figure 4-1 shows the format for the PLCP Protocol Data Unit (PPDU)

including the OFDM PLCP preamble, OFDM PLCP header, Physical layer

Service Data Unit (PSDU), tail bits, and pad bits. The PLCP header contains the

following fields: LENGTH, RATE, a reserved bit, an even parity bit, and the

SERVICE field. In terms of modulation, the LENGTH, RATE, reserved bit, and

parity bit (with 6 “zero” tail bits appended) constitute a separate single OFDM

symbol, denoted SIGNAL, which is transmitted with the most robust combination

of BPSK modulation and a coding rate of R = 1/2. The SERVICE field of the

PLCP header and the PSDU (with 6 “zero”tail bits and pad bits appended),

denoted as DATA, are transmitted at the data rate described in the RATE field

and may constitute multiple OFDM symbols. The tail bits in the SIGNAL symbol

enable decoding of the RATE and LENGTH fields immediately after the reception

of the tail bits. The RATE and LENGTH are required for decoding the DATA part

of the packet.

45

 Figure 4-1: PPDU Frame Format

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications

The individual fields of the 802.11a PPDU frame are described below:

• PLCP Preamble: The PLCP preamble field is used for synchronization. It

consists of 10 short symbols and two long symbols as shown below in the

OFDM training sequence.

Figure 4-2: OFDM Training Sequence

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications

t1 – t10 denote the 10 short symbols, each symbol duration being 0.8us. T1 and T2

denote the 2 long symbols each of duration 3.2us. Thus, the total training

sequence sums up to 16us. The SIGNAL and the DATA fields follow the PLCP

preamble field.

46

• SIGNAL: The SIGNAL field is composed of 24 bits. Bits 0-3 encode the

RATE field, bit 4 is reserved for future use, bits 5-16 encode the LENGTH

field, bit 17 denotes the PARITY field and bits 18-23 denote the TAIL field.

o RATE: 802.11a protocol supports data rates ranging from 6

Mbits/sec to a maximum of 54Mbits/sec. The RATE field conveys

information about the coding rate to be used for the SIGNAL and

the PPDU. The encoding of the various rates is shown in the table

below:

RATE R0 – R3

6 1101

9 1111

12 0101

18 0111

24 1001

36 1011

48 0001

54 0011

Table 4-1: Rate Field Encoding

o Reserved: Bit 4 is reserved for future use.

o LENGTH: The PLCP length field is an unsigned 12-bit integer that

indicates the number of octets in the PSDU that the MAC is

currently requesting the PHY to transmit. This value is used by the

PHY to determine the number of octet transfers that will occur

47

between the MAC and the PHY after receiving a request to start

transmission.

o PARITY: Bit 17 denotes the parity bit. Even parity is selected for

bits 0 – 16.

o TAIL: Bits 18-23 constitute the TAIL field. All the 6 bits are set to

zero.

The SIGNAL field forms 1 OFDM symbol and is coded, interleaved,

modulated and converted to time domain. The SIGNAL field is NOT

scrambled and is BPSK modulated at a coding rate of ½ and transmitted

at 6Mbps.

• DATA: The DATA field of the 802.11a frame consists of PLCP header

SERVICE field, PSDU, 6 TAIL bits and PAD bits. Each field is described

below:

o SERVICE: SERVICE field has 16 bits, which shall be denoted as

bits 0 - 15. The bit 0 shall be transmitted first in time. The bits from

0 - 6 of the SERVICE field, which are transmitted first, are set to

zeros and are used to synchronize the descrambler in the receiver.

The remaining 9 bits (7 - 15) of the SERVICE field shall be

reserved for future use. All reserved bits shall be set to zero.

o PSDU: PSDU represents the contents of PPDU i.e. actual contents

of the 802.11a frame.

o TAIL: TAIL bit field shall be six bits of “0” which are required to

return the convolutional encoder to the “zero state”. This

48

procedure improves the error probability of the convolutional

decoder, which relies on future bits when decoding and which may

be not be available past the end of the message. The PLCP tail bit

field shall be produced by replacing six scrambled “zero” bits

following the message end with six nonscrambled “zero” bits.

o PAD: The number of bits in the DATA field of the PPDU frame is a

multiple of the number of coded bits (NCBPS) in an OFDM symbol.

To achieve that, the length of the message is extended so that it

becomes a multiple of NDBPS, the number of data bits per OFDM

symbol. At least 6 bits are appended to the message, in order to

accommodate the TAIL bits. The number of OFDM symbols, NSYM;

the number of bits in the DATA field, NDATA; and the number of pad

bits, NPAD, are computed from the length of the PSDU (LENGTH) as

follows:

NSYM = Ceiling ((16 + 8 * LENGTH + 6) / NDBPS

NDATA = NSYM * NDBPS

NPAD = NDATA – (16 + 8 * LENGTH + 6)

49

4.2: 802.11a TRANSMITTER

 The processing units involved in an 802.11a transmitter are shown in the

Figure 4-3:

Figure 4-3: 802.11a Transmitter

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications

The 802.11a processing engines specifications are described in the sections that

follow. Since, WiNC2R Revision 1 implementation was a proof of concept, it did

not comprise of certain 802.11a processing engines such as scrambler, coder,

puncturer and interleaver. In revision2 we include all the processing blocks

involved in an 802.11a transmitter flow to achieve an ideal 802.11a transmission

flow.

50

4.3 WiNC2R 802.11a Transmitter Flow:

Figure 4-4: WiNC2R 802.11a Transmitter

The above figure depicts the WiNC2R transmitter flow. Some processing engines

such as PE_MAC, PE_HEADER(PE_HDR), PE_MODULATOR(PE_MOD) and

PE_IFFT are reused from the previous version of WiNC2R. The IFFT engine

performs the task of Preamble Generation, Cyclic Extension, IFFT and Pilot

Insertion. Engines such as scrambler, convolutional encoder and interleaver are

C functions which are imported from various sources, one being GNU Radio.

Thus, we have a combination of processing engines, some implemented in RTL

(VHDL/Verilog) and some C/C++ functions.

The following section gives a brief introduction of GNU Radio and the method

adopted to integrate the C / C++ functions into an RTL environment such as

WiNC2R.

51

4.3.1: GNU Radio

 (6)The GNU Software Radio is an open source project that is hardware

independent to a certain extent. The free software kit consists of a library of

signal processing functions, which can be connected together to build and deploy

a software-defined radio (SDR). In order to implement an SDR, a signal graph

needs to be created which connects the source, signal processing blocks and the

sink together. The signal processing blocks, source and sink are C++ functions

and are connected together using a Python script.

4.3.2: Integrating GNU functions in WiNC2R

 The revision2 of WiNC2R is a mixed HDL environment, where certain

blocks are coded in Verilog/SystemVerilog, while the blocks from revision 1 are in

VHDL. It was required to integrate the C++ GNU Radio functions into this mixed

HDL environment to implement an 802.11a transmission and reception. The C++

functions were integrated into the system using the concept of SystemVerilog

Direct Programming Interface (DPI).

4.3.3: Direct Programming Interface

 (7)Direct Programming Interface (DPI) is an interface between

SystemVerilog and a foreign programming language. It consists of two separate

layers: the SystemVerilog layer and a foreign language layer. Both sides of DPI

are fully isolated. Which programming language is actually used as the foreign

language is transparent and irrelevant for the SystemVerilog side of this

interface. Neither the SystemVerilog compiler nor the foreign language compiler

52

is required to analyze the source code in the other’s language. Different

programming languages can be used and supported with the same intact

SystemVerilog layer. For now, however, SystemVerilog 3.1 defines a foreign

language layer only for the C programming language. DPI allows direct inter-

language function calls between the languages on either side of the interface.

Specifically, functions implemented in a foreign language can be called from

SystemVerilog; such functions are referred to as imported functions.

SystemVerilog functions that are to be called from a foreign code shall be

specified in export declarations.

4.3.4: Implementation

 The desired processing block functions were taken from GNU radio and a

stand-alone C++ program was generated using the functions. The C++

processing functions were imported to a SystemVerilog wrapper file-using DPI.

The SV wrapper passes the arguments required for the C++ function to execute,

and the function returns back the final output to the SV wrapper. The SV module

can be port mapped with either the existing WiNC2R revision1 VHDL blocks or

revision2 Verilog/SystemVerilog modules. The figure below depicts the hierarchy

of WiNC2R revision2 implementation. The intermediate VHDL layer can be a

stand-alone processing engine from revision1 or can instantiate a SystemVerilog

wrapper that calls the C/ C++ function.

53

Figure 4-5: WiNC2R System Hierarchy

In this fashion the inputs required by the C++ function are passed from the top

level SystemVerilog file to middle layer of VHDL to the SystemVerilog wrapper

that calls that C++ function. In the similar manner, the outputs generated by C++

functions are passed to the top-level SystemVerilog file. In this way, it is possible

to integrate the GNU radio extracted C++ functions with the rest of WiNC2R.

4.3.5: Compiling

 We required a simulator that had the capability to analyze, compile and

simulate mixed HDL designs descriptions. In addition to mixed HDL simulations,

it was also required that the simulator has the capability to handle imported

function calls from C++ or DPI. The VCS-MX simulator by Synopsys is a mixed

HDL simulator that catered to all our requirements.

System	 Verilog	
Top	

VHDL	

SystemVerilog	
Wrapper	

C	 /	 C++	
Functions	

VHDL	

54

 4.4: WiNC2R Processing Engine Specifications

• PE_MAC_TX: This PE performs the tasks of a reconfigurable MAC and

currently supports two protocols – ALOHA and CSMA-CA back off. It also

uses 802.11a compatible inter-frame spacing (IFS) durations and fame

formats.

• PE_HEADER: This engine performs the task of appending the PLCP

header as shown in the PPDU frame format. It appends the header to the

frame sent by the PE_MAC_TX engine. This engine also instructs the

PE_IFFT to generate the PLCP preamble sequence by sending in a task

request to PE_IFFT engine. Apart from appending the PLCP header to the

frame, the PE_HEADER works on small parts of the frame termed as

“chunks”. The VFP controller dictates the size of each chunk and the

PE_HEADER operates on the specified size and treats each chunk as an

individual task. The successive processing engines now operate on

chunks and not the entire frame. The type of modulation scheme in use

and the data rate determine the size of individual chunk. In terms of

OFDM symbols, each chunk is equal to four OFDM symbols except the

last chunk. The PE_HEADER engine has two modes of operation – with

coder and no coder. The “with coder” mode implies that the frame is

encoded before modulation, while the “no coder” mode implies that no

encoding operation is being performed on the frame.

55

Chunk Size Calculation:

No Coder Case:

Chunk Size = (#OFDM symbols + Coded bits per OFDM symbol) / 8

 With Coder Case:

 Chunk Size = (#OFDM symbols + Data bits per OFDM symbol) / 8

The size of the first chunk is always different than the chunk size,

as the first chunk consists of the PLCP header and 16 service bits

in addition to the data.

 FirstChunk = PLCP Header + 16 Service Bits + Data

 PLCP Header = 1 OFDM symbol.

 First Chunk Size = Chunk Size – (PLCP Header + 16 Service Bits)

56

 Table 4-2 shows the computed values for chunksize and

firstchunksize for different data rates and modulation schemes.

Data Rate

(Mbps)

Modulation

Scheme

Coding

Rate

Coded bits

per OFDM

symbol

Data bits

per OFDM

symbol

FirstChunkSize

(bytes)

ChunkSize

(bytes)

6 BPSK ½ 48 24 7 12

9 BPSK ¾ 48 36 12 18

12 QPSK ½ 96 48 16 24

18 QPSK ¾ 96 72 25 36

24 16 – QAM ½ 192 96 34 48

36 16 – QAM ¾ 192 144 52 72

48 64 – QAM 2/3 288 192 70 96

54 64 – QAM 3/4 288` 216 79 108

Table 4-2: ChunkSize Calculation

The chunk size parameter dictates the performance of the WiNC2R architecture.

A smaller chunk size results in more number of chunks of the input frame, which

in turn leads to aggressive utilization of the VFP controller. Hence, there is a

direct relationship between chunk size and latency to transmit a frame belonging

to one flow. When the VFP controller handles multiple flows, each flow has a

57

different chunk size, which again affects the over-all system latency. The effect of

changing chunk size is discussed in detail in Chapter 5.

• PE_SCRAMBLER: Scrambler is a device that manipulates the data

stream before transmitting. A scrambler replaces sequences into other

sequences without removing undesirable sequences, and as a result it

changes the probability of occurrence of vexatious sequences. A

scrambler is implemented using memory elements (flip-flops) and modulo

2 adders (XOR gates). The connection between the memory elements

and modulo 2 adders is defined by the generator polynomial. Figure 4-6

below illustrates a scrambler. An appropriate descrambler is required at

the receiving end to recover back the original data.

Figure 4-6: Data Scrambler

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications

The PE_SCRAMBLER processing engine performs the task of

scrambling the DATA field of the PPDU frame format. The PLCP header

and the preamble bits of the PPDU frame are not scrambled. (5)The

58

scrambler is length-127 frame synchronous scrambler with a generator

polynomial

S(x) = x7 + x4 + 1 according to 802.11a protocol. A C++ scrambling

function from GNU Radio is integrated using SystemVerilog DPI into a

processing engine called PE_SCRAMBLER.

• PE_ENCODER: A convolutional code is a type of error correcting code in

which each “m” bit information symbol is transformed into an “n” bit symbol

where “m/n” is the code rate. A transformation function of “K” information

symbols is required, where “K” is the constraint length. An encoder

consists of “K” memory elements and “n” modulo 2 adders (XOR gates).

Figure 4-7 depicts a convolutional encoder of constraint length 7.

The DATA field, composed of SERVICE, PSDU, tail, and pad parts,

is encoded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4,

corresponding to the desired data rate. (5)The convolutional encoder uses

the industry-standard generator polynomials, g0 = 1338 and g1 = 1718 for R

= ½. The bit denoted as “A” is the output from the encoder before the

bit denoted as “B”. Higher rates are derived from it by employing

“puncturing”. Puncturing is a procedure for omitting some of the encoded

bits in the transmitter (thus reducing the number of transmitted bits and

increasing the coding rate) and inserting a dummy “zero” metric into the

convolutional decoder on the receive side in place of the omitted bits.

Puncturer is not implemented in WiNC2R revision2.

59

A C function performing the task of convolutional encoder of rate ½

is integrated using SystemVerilog DPI into a processing engine called

PE_ENCODER. The engine supports only rate ½ encoding scheme.

Figure 4-7: Convolutional Encoder (Constraint Length 7)

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications

• PE_INTERLEAVER: Interleaving is method adopted in digital

communication systems to improve the performance of the forward error

correcting codes.

 A C function of a block interleaver is integrated in the WiNC2R

system using SystemVerilog DPI. The C function implements a block

interleaver with block size equal to number of bits in a single OFDM

symbol. It performs a two-step process:

 Permutation of bits in matrix by transposing it. The matrix is

16 column wide and “n” rows deep, where “n” varies

depending on the standard and code rate.

60

 Carrying out logical and bit shift operations depending on the

standard and code rate.

• PE_MODULATOR: 802.11a protocol supports BPSK, QPSK, 16-QAM

and 64-QAM modulation schemes. We use the modulator that was

implemented in WiNC2R revision1, which is a VHDL entity supporting all

the above-mentioned modulation schemes. The PLCP header is always

BPSK rate ½ modulated, while the DATA field of the PPDU frame is

modulated depending on the data rate to be achieved, which is encoded in

the RATE field of the PLCP header.

• PE_IFFT: The PE_IFFT engine performs the task of pilot insertion for

each OFDM symbol, Inverse Fourier Transform (IFFT) of the data from the

modulator, cyclic prefix for each OFDM symbol and prefixing the preamble

bits at the beginning of the PPDU frame. The preamble generation is

triggered when the PE_IFFT engine receives a control task from

PE_HEADER. The PE_IFFT engine is a VHDL entity that was

implemented in WiNC2R revision 1.

61

CHAPTER 5

Performance Evaluation of WiNC2R

5.1 WiNC2R Test – Bench Using OVM

The verification platform used to validate WiNC2R revision2 architecture is based

on the concept of Open Verification Methodology (OVM) as against Xilinx Bus

Functional Module (BFM) used in revision1. The verification environment using

BFM was mainly used to load data into memories and did not serve the purpose

of validating the environment. On the other hand, by having a verification

environment based on OVM, one can load data into memories and also execute

random tests to validate the system architecture and hence have higher

confidence in the design. Figure 5-1 depicts the verification environment for

WiNC2R revision2 framework.

62

Figure 5-1: WiNC2R Verification Environment

As shown in the figure, the FU’s, VFP and OVM verification environment reside

within a cluster all connected to the main system bus The FU’s and VFP are

configured as master and slaves on the bus while the OVM verification

environment is configured as a master only. During initial system configuration,

the OVM loads the GTT, NTT and local TD tables. It also writes randomly

generated data into the FU_MAC_TX input buffer and triggers the system by

writing a descriptor into the FU_MAC_TX TSQ. On writing the descriptor, the

scheduler within the VFP gets triggered which later initiates the MAC_TX

processing engine.

The evaluation of the system is broadly divided into two sections:

• Effect of chunk size on the system latency

• Evaluation of multiple flow handling capability of the VFP

63

The following sections describe the experiments in detail and the results deduced

from each of the experiments. The basic experiment is described in detail that

gives an idea about the entire system flow.

5.1.1 Basic Experiment

The first experiment carried out to validate the system was to transmit a single

frame of size 64bytes at a rate of 6mbps. The frame is inserted into the

FU_MAC_TX engine and is propagated to the FU_IFFT engine. The figure 5-2

shows the command flow set up for the basic experiment. The

“Tx_Send_Data_Frame” task is inserted in the FU_MAC_TX and the successive

commands triggered are shown. The figure 5-3 depicts the transfer of the frame

starting from PE_MAC_TX and ending at PE_IFFT engine. The PE_IFFT engine

consists of FIFO from which the data is read at a constant rate and passed onto

the RF side for transmitting.

Figure 5-2: Single Flow Data Transfer

To avoid corruption of data before transmitting, it is necessary that the data being

read from the FIFO is continuous, i.e., the FIFO must never empty out or

overflow once reading has been initiated. The empty or overflow error conditions

64

are the ones that define the successful propagation of frame from PE_MAC_TX

to PE_IFFT engine.

Figure 5-3: WiNC2R Transmitter Frame Flow

The empty out or overflow condition at the PE_IFFT FIFO depends on the

latency of the system. The system latency is the difference between the times

when the FU_MAC_TX is triggered with the first command and the first data byte

appears at the output of FU_TX_IFFT. The system latency has a direct relation

with the Rescheduling Period parameter that is defined in the GTT for the task at

the PE_HDR and the processing time of each PE. The task at the FU_HDR is a

synchronous chunking task, i.e., the entire frame is broken up into smaller

number of chunks and each chunk is scheduled at a definite start time. The

Rescheduling Period parameter defines the difference between the start times of

2 chunks at the FU_HDR. The smaller the Rescheduling Period, the lesser is the

system latency as the chunks get scheduled quicker. On the other hand, with a

larger Rescheduling Period, the system latency increases as the chunks are

scheduled slower. Thus, overflow or empty out condition at the FU_IFFT FIFO

65

has a direct relation with the Rescheduling Period. If the FIFO empties out, it

implies that the chunks were scheduled too far apart. As a result the data chunks

did not reach the FU_IFFT in time and the FIFO was read out completely. This

causes data corruption and to avoid this scenario, we need to decrease the

Rescheduling Period. If the FIFO overflows, it means that the chunks were

scheduled too close to each other, and hence new data chunks are being written

in the FIFO, even before the existing chunks in the FIFO have been read out.

This cause corruption of data again and this scenario can be avoided by

increasing the Rescheduling Period.

The second parameter defining the latency of the system is processing time

required by each processing engine. The processing time determines the latency

introduced at every stage in the pipeline. Off the seven processing engines, we

have three processing engines that are C function based (scrambler, encoder

and interleaver) and hence their processing time can be varied. At present the

processing time for these engines have been set to a realistic number to build an

802.11a flow.

Pitfall: As shown in figure 4-2, the preamble generation task at the FU_IFFT is

triggered by the FU_HDR. Hence this task jumps the stages of the pipeline and is

activated. The FU_IFFT generates the preamble and stores it in the FIFO from

where it is read at a constant rate. To avoid data corruption, it is required that the

first data chunk is written into the FIFO before the preamble is completely read

out from the FIFO. From revision1 task flow, the preamble generation was an

asynchronous control task that gets scheduled immediately at the FU_IFFT with

the highest priority. In the new revision task flow, with addition of new processing

66

engines, the preamble generation task would get scheduled immediately and the

FIFO would empty out as there is an increase in latency of the data chunk. The

FIFO empty condition would occur even after reducing the rescheduling period

parameter to schedule the data chunks at FU_HDR faster. To overcome this

scenario, it was required to schedule the preamble generation task at the

FU_IFFT later in the pipeline stage. This was achieved by converting the

asynchronous control preamble generation task to a synchronous task. By

converting the task to a synchronous task, we have a greater control on

scheduling the task. The preamble task can now be triggered at a later stage in

the flow, thus ensuring that the FIFO empty error does not occur. The change

from asynchronous to synchronous task was easily achievable as it required only

changing the task type in the GTT. The error could have been overcome by

triggering the preamble generation at the FU_ENCODER or FU_INTERLEAVER

instead of the FU_HDR. This would have resulted in changing the PE’s to give

out the specific next task and status vector. On comparing the pros and cons of

the two solutions, it is seen that by changing the task to a synchronous task

would always give us more control on the start time of the preamble generation

task even in the future where there might be more processing engines in the

flow. This clearly brings out the flexibility in the WiNC2R system.

Throughput: The throughput of the system is defined as the number of data bits

transmitted per second. The revision2 WiNC2R supports rates of 6, 12 and 24

Mbps. We tested the throughput of our system for the mentioned rates only.

In an actual system, once the PE_IFFT writes the data into the FIFO, the data is

read by the DAC at a constant rate. Thus, by setting the reading rate of the FIFO

67

to an appropriate value we achieve the target throughput. The output of the IFFT

consists of complex symbols and hence the total size at the output of the IFFT is

greater than the input data size fed into the system. The formula to calculate the

required FIFO reading rate is shown below:

Information data (bits) / Rate = Complex data (bits) / FIFO Reading Rate

Thus,

FIFO Reading Rate = (Complex Data * Required Rate)/ Information Data

Once the reading rate of the FIFO is fixed to achieve the required throughput, the

Rescheduling Period must be altered in a way to avoid the FIFO from getting

empty. As we reduce the Rescheduling Period, the throughput increases. The

achieved throughput is calculated at the PE_HDR by measuring the time

required by the PE_HDR to process all the data chunks. The table 5-1 shows the

throughput achieved for different target rate requirements in a system supporting

a single flow. The throughput is calculated at the PE_HDR as explained. The

throughput calculated is the rate through the WiNC2R system before it is sent out

of the IFFT FIFO. If the throughput is measured at the FIFO, it will be at the

nominal rate.

68

Target Rate (Mbps) Peak Throughput

Measured at

HDR(Mbps)

6 7.47

12 16.25

24 34

Table 5-1: System Throughput

5.1.2 System Latency Experiment

This experiment deals with finding the latency of the system while supporting a

single flow of different rates. A total of 11 frames of size 400 bytes are sent

back – to – back for each rate.

69

Figure 5-4: Single Flow Latency

As noticed from the above graph, transmitting the first frame is always the best-

case scenario as all the processing engines are in their idle state and the

overhead introduced by the VFP controller is minimum. As more frames get lined

up in the pipeline, all the processing engines are busy at the same time and the

overhead introduced by the VFP controller also increases.

The system latency is a sum of three quantities.

1. Processing time of PE: This is the processing time taken by each PE to

process a single chunk of data.

2. DMA transfer time: This is time required to transfer a single data chunk

from FU_HDR to FU_IFFT.

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

La
te
n
cy
	 (
cl
k
	 c
yc
le
s)
	

Frame	 Number	

Single	 Flow	 Latency	

6mbps	

12mbps	

24mbps	

70

3. VFP Processing Time: This is the time taken by the VFP controller to

schedule a task to the producer FU, identify the consumer FU and insert

the next task in the flow in the appropriate consumer FU.

5.1.3 Variation of chunk size on system latency

The chunk size described in section 3.4 plays an important role in defining the

latency of the system. As depicted in the Figure 4-2, the FU_MAC_TX transfers

the entire frame to the FU_HDR. The task executed by FU_HDR is a chunking

task, and hence FU_HDR works only on small chunks of the frame and passes

on the chunks to the successive FU’s. The final output is obtained at the

FU_IFFT. Thus, determining an optimum chunksize is necessary as it has a

direct effect on the latency of the system.

This experiment deals with varying the chunk size as shown in Table 3.2. We

send single frames of size 400 bytes at data rates of 6 and 12 Mbps. The chunk

size and the first chunk sizes are different for every rate and thus the aim of the

experiment is to see the effect of a larger chunk size on the system latency. The

chunksize and the first-chunksize calculated in Table 4.1 are under the

assumption that one chunk consists of four OFDM symbols. To vary the

chunksize, we have to vary the number of OFDM symbols in each chunk. The

Table 5-2 illustrates the variation in chunksize with different number of OFDM

symbols and the overall effect on system latency.

71

Rate

(Mbps)

OFDM

symbols

per chunk

Chunk

Size

(bytes)

First

Chunk

Size

(bytes)

Number of

chunks

Avg.Latency

(clk cycles)

6 4 12 7 34 3605

 8 24 19 17 14099

12 4 24 16 17 4819

 8 48 40 9 13437

24 4 48 34 9 5479

 8 96 82 5 13450

Table 5-2: Variation of latency with chunksize

As the chunksize increases, the rescheduling period also increases. As a result,

the system latency increases even if the number of chunks is lesser. An optimum

number of OFDM symbols per chunk are required to support multiple flows. If the

number of OFDM symbols per chunk is less, lesser number of flows is supported,

as the rescheduling period is lesser. On the other hand, with greater number of

OFDM symbols per chunk, the system can support more multiple flows, but at

the expense of increased system latency.

5.1.4 Evaluation of Multiple Flow Support by VFP

An important feature of a cognitive radio is its ability to support multiple

technologies at the same time and also reusing the existing hardware. Hence,

the underlying hardware must be easily re-configurable to support different

72

technologies at the same time. The aim of this experiment is to see how

effectively the VFP switches between multiple flows. In the earlier revision of

WiNC2R, the VFP was local to every FU and hence would remain idle most of

the time after completing tasks allocated to the particular FU. To have a better

utilization of VFP, the VFP is centralized and hence it becomes important to see

the VFP utilization in case of multiple flows.

To support multiple flows, it is necessary that each flow have their own set of

tasks pre-defined. The tasks for every flow are populated in the GTT, NTT and

TD tables. The FU_TX_IFFT can handle a maximum of four OFDM flows. Each

flow is assigned a different channel id. On the basis of the channel id, the

FU_TX_IFFT engine is able to differentiate between flows, and stores the output

of each flow in a different FIFO, hence ensuring that the data from different flows

is not mixed with each other and corrupted. The number of channels imposes a

limitation on the system, as only a maximum of four flows can be supported at a

time. As the FU_MAC engine works on a single task a time, the earliest the next

flow can be inserted in the system is only after the FU_MAC completes operating

on the first flow.

Figure 5-4 depicts the command flow in case of a multiple flow scenario and

figure 5-5 shows the multiplexing of 2 flows.

73

Figure 5-5: Multiple Flow Data Transfer

Figure 5-6: Multiplexing of chunks in 2 flows

The experiment was carried out at rates 6, 12 and 24 Mbps for a frame size of

400 bytes and the effect of adding an extra flow on the latency and throughput of

the system was observed.

Limitation: As mentioned before, there are four FIFO’s available in FU_IFFT

which store the data to be sent to the DAC. Each FIFO is dedicated to a flow.

74

When the system is supporting multiple flows, it may happen that before a frame

is completely read out from the FIFO, the PE_IFFT engine gets the task of

generating the preamble for the succeeding frame of the same flow. In this case,

the preamble of the succeeding frame gets inserted into the FIFO even before

the preceding frame is completely read out leading to a channel error. To

overcome this scenario, we dedicate two FIFO’s to one flow. This way the first

frame is written into FIFO1 and the succeeding frame of the same flow gets

written into FIFO2. This pattern then gets repeated over multiple frames. As the

current implementation supports only four FIFO’s, we carried out the experiments

for two flows only.

The first experiment is to support to two flows of the same rate. The frame size

for both the flows is 400 bytes and frames are sent back-to-back in both flows.

The figures show the difference in the latency of a system supporting a single

flow versus two flows for rates 6 and 12 Mbps.

75

Figure 5-7: Variation in latency between single and two flows at rate

6Mbps

An increase in the latency of the system is noticed with the addition of one flow.

An increase of close to 88% is noticed in case of 12Mbps and 121% in case of

6Mbps. We suspect the increase in the latency is due to scheduling of the

available resources and are looking further into the different aspects that might

cause this problem.

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	 9	

La
te
n
cy
	 (
cl
k
	 c
yc
le
s)
	

Frame	 Number	

6mbps	 (Flow	 1)	

6mbps	 (Flow	 2)	

6mbps	 (Single	 Flow)	

76

Figure 5-8: Variation in latency between single and two flows at rate 12Mbps

Figure 5-9: Variation in latency between single and two flows at rate 24Mbps

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	

La
te
n
cy
	 (
cl
k
	 c
yc
le
s)
	

Frame	 Number	

12	 mbps(Flow	 1)	

12	 mbps	 (Flow	 2)	

12	 mbps	 (single	 Flow)	

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	

La
te
n
cy
	 (
cl
k
	 c
yc
le
s)
	

Frame	 Number	

24Mbps(Single	 Flow)	

24Mbps(Flow1)	

24Mbps(Flow2)	

77

It is necessary to increase the clock speed to meet the throughput requirement in

case multiple OFDM flows. The throughput achieved in case of running two flows

is shown at a higher clock rate is shown in table 5-2.

Target Rate (Mbps) Number of Flows Peak Throughput Measured

at HDR (Mbps)

6 2 26.98

12 2 51.06

24 2 88.5

Table 5-3: Throughput for two flows

78

CHAPTER 6

CONCLUSION AND FUTURE WORK

The WiNC2R was developed with an aim to achieve speed of operation through

hardware and re-configurability through software. From the analysis of the

system architecture, it is definitely proven that the WiNC2R platform is

reconfigurable to a great extent. In the new revision of WiNC2R, we have tried to

overcome the disadvantages of the previous revision, by having a new

centralized VFP controller catering to all the functional units. We replaced the

PLB bus with the AMBA AXI bus, which proves to be more efficient and helps in

reducing the bottleneck caused due to data transfer in the previous revision. We

have also set up a realistic transmitter having all the processing engines of the

802.11a protocol. The processing engines are now a mixture of hardware

engines and software engines having realistic latencies. This ensures that the

platform is able to support different types of processing engines depending on

the application.

The latency and throughput of the system was calculated for frames of rates of 6,

12 and 24 Mbps in a single flow. The system is able to support all the three rates.

We then analyzed the effect of changing the chunksize on the latency and

throughput. A higher throughput is achieved at a cost of higher latency by

increasing the chunksize. A chunksize of 4 OFDM symbols is considered

optimum to balance the tradeoff between latency and throughput.

79

An analysis was also done on the multiple flow support of the WiNC2R engine,

which is the core feature of any cognitive radio platform. The experiments were

run for flows supporting rates of 6, 12 and 24 mbps. A maximum of 2 flows is

supported by the current implementation. The system supports all the three rates

without any degradation in the throughput.

Future Work

The current architecture of the PE_IFFT engine imposes a limitation on the

latency and throughput of the system by ensuring that the FIFO’s don’t underflow

or overflow. This can be improved by terminating the chunks at the PE_IFFT

engine by the process of de-chunking. By de-chunking, the task at PE_IFFT will

be activated only once all the chunks have arrived. The PE_IFFT engine can also

generate the preamble on receiving the first chunk, hence removing the need to

trigger the task from FU_HDR.

As seen from the results, the latency increases drastically in case of multiple

flows as against a single flow. We need to analyze the overhead introduced by

the VFP controller to support multiple flows.

80

Bibliography
[1]Resource Virtualization with Programmable Radio Processing Platform. Zoran

Miljanic, Predrag Spasojevic. 2008. WICON 2008.

[2] Satarkar, Sumit. PERFORMANCE ANALYSIS OF THE WINC2R PLATFORM.

Electrical and Computer Engineering, Rutgers, State University of New Jersey.

2009. Thesis.

[3] The winlab network centric cognitive radio hardware platform - WiNC2R.

Zoran Miljanic, Ivan Seskar, Khanh Le, and Dipankar Raychaudhuri. August

2007. Cognitive Radio Oriented Wireless Networks and Communications, 2007.

CrownCom 2007. 2nd International Conference. pp. 155 - 160.

[4] ARM. AMBA Open Specifications. [Online]

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php.

[5] IEEE . IEEE 802.11a Physical and MAC Layer Specifications. 1999.

[6] Blossom, Eric. GNU Radio. [Online] www.gnuradio.org.

[7] Accellera. SystemVerilog 3.1a Language Reference Manual. [Online] 2004

http://www.vhdl.org/sv/SystemVerilog_3.1a.pdf.

[8] Cognitive radio: making software radios more personal. III Mitola, J. and Jr.

Maguire, G.Q. Aug 1999. Personal Communications, IEEE. pp. 13-18.

[9] Hari, Tejaswy. Physical Layer Design and Analysis of the WINLAB Network

Centric Cognitive Radio. Electrical and Computer Engineering, Rutgers, The

State University of New Jersey. 2009. Thesis.

