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ABSTRACT OF THE THESIS 

System Integration and Performance Evaluation of   
WINLAB Network Centric Cognitive Radio Platform for 

802.11a Like Protocol 
                       

By Madhura Joshi 

     Thesis Director: Prof. Predrag Spasojevic 

A Cognitive Radio (CR) is an intelligent transceiver that is able to support 

multiple technologies. It can also be dynamically reconfigured and be easily 

programmed to achieve high flexibility and speed. 

The WiNC2R platform is based on the concept of Virtual Flow Paradigm. The key 

characteristic of this concept is that the software provisions the flow by 

determining the roles of hardware and software modules whereas the runtime 

processing flow is controlled by the hardware. The revision1 of WiNC2R platform 

was a proof of concept implemented on an FPGA with the basic processing 

engines to achieve an 802.11a-light OFDM flow, and a simple Virtual Flow 

Pipeline (VFP) control unit. In the new revision, we have an advanced shared 

VFP control unit, cluster based SoC architecture, and all the processing engines 

in an 802.11a like OFDM transmitter flow. 

The focus of this thesis was to integrate the WiNC2R platform as an 802.11a like 

transmitter with the advanced VFP control unit and perform a performance 

analysis for the realistic application scenario. The performance evaluation 

revolves around system throughput and latency as a function of frame size, 
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bandwidth, pipelining granularity, number of traffic flows, and flow bandwidth. 

The analysis is performed for various traffic mix scenarios. We analyze also how 

effectively the VFP control scheme performs run time task control for a single 

and multiple OFDM flows. 

The thesis starts with the comparative study between the two revisions of 

WiNC2R and continues to describe in detail the new revision features. The 

programming techniques are described next, followed by a performance 

evaluation section and suggestions for future work. 
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CHAPTER 1 

INTRODUCTION 
 

The next generation wireless technologies clearly impose heterogeneity in their 

infrastructures, with devices using different radio access technologies and 

operating at different spectrum bandwidths. (1)Emerging wireless technologies 

call for solutions with frequent spectrum sensing in addition to per packet 

adaption of interference, adaption of frequency bands, and yet remain power 

friendly.  

Simultaneous support of such diverse traffic streams and dynamic adaption 

drives the need of virtualization that can guarantee proper sharing of resources, 

yet maintaining the end to end latency requirements for each flow. 

Cognitive Radio (CR) platforms strive to achieve adaptability, inter-operability 

and efficient spectrum usage at fast data rates. The following section describes 

some of the cognitive radio platforms in brief. 
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1.1 Classification of CR Platforms 

The current CR platforms are classified into four types(2)(3).  

1. Multimodal Hardware-based Platforms: These platforms implement 

different technologies by implementing separate modules that support a 

particular technology. Once programmed, the modules cannot be 

reprogrammed to implement a different MAC protocol or modify the 

system parameters. Thus, this type of platform lacks the re-configurability 

of an ideal cognitive radio. Also, this kind of platform is not scalable, as 

new modules need to be implemented to support more number of 

technologies. 

2. Portable Software Platforms: These platforms implement the radio 

functionalities in a high level programming language such as C, C++ or 

JAVA. As the modules are implemented in software, they are easily re-

configurable and also scalable to support multiple technologies. These 

platforms run as application software on a general purpose or real time 

operating system on a general-purpose processor. Since RF 

functionalities such as filtering, up/down conversion, analog to digital 

conversion and digital to analog conversion are cumbersome to implement 

in software, RF boards are used to provide a wireless interface. The GNU 

Radio is one such portable software platform. The performance of these 

platforms depends on the general purpose processor and the underlying 

operating system. 
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3. Reconfigurable Hardware Platforms: These platforms implement the 

physical and the MAC layer functions in FPGA blocks or a combination of 

FPGA and DSP processor. The platform can support either one or a 

limited number of protocols, but can be re-configured to support a different 

protocol by uploading a different bit image onto the FPGA. The modules 

performing the radio functions are implemented either in low-level 

hardware or embedded languages and hence difficult to program. The 

performance of these platforms is limited by the logic capacity of FPGA 

and the clock rates supported by FPGA and DSP processors. The RICE 

university WARP platform is one such platform. 

4. SoC Programmable Radio Processors: These platforms are based on an 

array of special purpose processors and hardware accelerators for 

implementing physical layer radio functions. The MAC and the physical 

layer functions are software programmable. There is no underlying 

operating system like in the case reconfigurable platforms. The 

performance of these platforms mainly depends on the number of the 

processors used and the choice of hardware accelerators. 

 

1.2 WINLAB Network Centric Cognitive Radio Platform 

The WINLAB Network Centric Cognitive Radio (WiNC2R) is a platform that 

targets speed, simple programming and flexibility in the multilayer domain of 

mobile IP based communication. Its goal is to provide a scalable and adaptive 

radio platform for the range of cost-capacity configurations, so the architecture is 
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suitable for both standard cell SoC and FPGA based implementations. The 

WiNC2R is an excellent platform for the research and development 

communication labs in academia, industry and government institutions. It can be 

used for the analysis of the mobile applications computing, communication and 

control requirements, performance analysis of communication algorithms in a 

realistic radio propagation environments and hardware versus software 

implementation tradeoff analysis. This paradigm introduces the concept of Virtual 

Flow pipelining (VFP) which combines the high-speed computation capabilities of 

FPGA hardware and flexibility of software. The data flow and parameter inputs to 

processing blocks are fed by the user in the form of function calls, but the 

processing happens on hardware. The WiNC2R board is differentiated from the 

other cognitive radio projects in the sense that the design uses hardware 

accelerators to achieve programmability and high performance at each layer of 

the protocol stack. 

The WiNC2R revision1 framework was a successful proof of concept 

implementation on an FPGA. The framework consisted of basic 802.11a 

processing elements and a low level VFP controller. The transmitter and receiver 

were implemented on separate FPGA’s and successful transmission and 

reception of packets was achieved. The next revision of WiNC2R is targeted 

towards an ASIC implementation and hence is a re-configurable SoC based 

architecture. This revision aims to achieve successful transmission and reception 

of 802.11a frames with the advanced VFP controller for scalable SoC solutions. 

The following chapters describe a comparative analysis between the two 
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frameworks, in detail description of different processing engines and an 

evaluation of the new framework. 
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CHAPTER 2 

Cluster Based WiNC2R Architecture 

 

2.1: WiNC2R Revision 1 Architecture 

 

 

Figure 2-1: WiNC2R Revision1 Architecture 

  

The above figure shows the top-level architecture of WiNC2R (revision 1). 

The architecture can be split into two main sections – software and hardware. 
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The upper block represents the software components that perform the task of 

initial configuration of the system. Since WiNC2R revision1 was FPGA based 

architecture, the CPU core used on the software side was a standard Xilinx soft-

core CPU called Microblaze which connected to its own GPIO ports (General 

Purpose IO), Timer and Interrupt peripheral modules using an IBM standard bus 

structure called Processor Local Bus (PLB). The hardware components are 

initialized and the data flow between them was configured through software. The 

lower block represents the hardware components that perform the actual radio 

processing tasks. The data processing occurs in the Functional Units (FU) and 

the data transfer from one FU to another occurs over the PLB. All FU’s were 

implemented in VLSI Hardware Description Language (VHDL). The FU interfaces 

to the PLB through Xilinx standard Intellectual Property Interface (IPIF). 
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2.1.1: Functional Unit Architecture     

 

Figure 2-2: Functional Unit Architecture 

The FU consists of Processing Engine (PE), VFP controller, input and 

output memories as shown in the above figure.  The operations performed by an 

FU are split into two categories – data and control. The data operation refers to 

the data processing handled by the PE, while the control operation refers to the 

tasks performed by the VFP controller to initiate and terminate the PE tasks. The 

inputs required by the PE for data processing is stored in the input memory 

buffer, while the data generated after processing is stored in the output memory 

buffer. The memory buffers are implemented as Dual Port Random Access 

Memory (DPRAM) generated using Xilinx CoreGen. The Register MAP (RMAP) 
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within the PE stores software configurable control information required for PE 

processing. 

 The VFP controller manages the operation of FU-s achieving re-

configurability. WiNC2R uses a direct architectural support for task-based 

processing flow. The task flow programming is performed by two control data 

structures: Global Task-descriptor Table (GTT) and Task-Descriptor Table (TD 

Table). Both control tables are memory based. GTT was implemented as a block 

RAM connected to the PLB and common to all FUs while each FU had its own 

TD Table. Based on its core functionality, each PE was assigned a set of input 

tasks and the PE was idle until it received one of those tasks. The PE handles 

two types of tasks: data and control. Data task indicated that data to be 

processed was present in the input buffer of the PU. For example, data task 

“TxMod” told the Modulator block that there was data in the input buffer that 

needed to be modulated. This data was first transferred to the input buffer of FU 

before the task was sent to the PE. Control tasks do not operate on the payload 

but behave as pre-requisites for data tasks in some PE’s. For example, 

“TxPreambleStart” control command initiated the preamble generation task in the 

PE_TX_IFFT engine before handling a data task. This was necessary, as the 

preamble is attached to the beginning of the data frame before transmitting.  

 The TD Table stores all the required information for each task for the FU. 

When the FU received a data task, the VFP controller Task Activation (TA) block 

fetches the information from the TD table and processes it. It then forwards the 

task to PE along with the location and size of input data. The PE processed the 

data and stored it in the Output Buffer. Once the processing was over, PE 
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relayed the location and size of processed data in Output Buffer to the VFP 

controller through Next Task Request and Next Task Status signals. The Next 

Task Status bits indicate the location of the processed data in the output buffer. 

Depending on the PU, the output data may be stored at more than one location. 

The Next Task Request signal informs the VFP controller Task Termination (TT) 

block how the output data at locations indicated by status bits should be 

processed. The TT processing includes transferring the data to next FU/FUs in 

the data flow. The NT Request tells the TT to which FU the data is to be sent. 

The FU in the data flow in determined by the information stored in TD table. By 

updating the information in TD table, software can change the next FU in the 

data flow path. Thus, the PE has no information regarding the next processing 

engine in the flow. As a result, all the PE’s are independent of each other and 

only perform the tasks allocated to them. The next processing engine in the flow 

can thus be changed on-the-go and hence a complete reconfigurable 

architecture is achieved. 
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2.1.2: WiNC2R Revision 1 Shortcomings 

 As shown in Figure 2-2, currently each functional unit has a dedicated VFP 

controller. Initial analysis has revealed that this scheme keeps each VFP 

controller unutilized for more that 70% of the time(2). This incurs a high hardware 

as well as power cost. Moreover, the need for synchronization among the various 

distributed VFP controllers requires the maintenance and access of a common 

global control memory structure. These accesses over the common bus increase 

bus traffic and latency, eventually delaying task termination. This impacts the 

system performance as well as end-to-end protocol latency, thus limiting the 

application of the platform. The above-mentioned issues with VFP controller per 

functional unit scheme have prompted us to explore new architectures 

implementing a centralized approach. 

 The data generated by a PE can exceed several 100 bytes and the transfer 

of data occurs over the system bus. Hence it is mandatory that the bus does not 

create a bottleneck in the system. The PLB is the system bus used in WiNC2R 

revision1 over which data is transferred from one FU to another depending on 

the programmed application. The PLB has a limitation where it can transfer a 

maximum of 64bytes (16 words) in a single burst transfer. After transferring the 

16 words, the master has to place a request to access the bus and can resume 

transferring the data once PLB has granted access to the requesting master. A 

case of data transfer from FU_MODULATOR to FU_IFFT was analyzed, where 

the FU_MODULATOR generates data of size 768 bytes. Due to the PLB bus 

limitation the entire transfer of 768 bytes occurs as of 12 chunks each of 64 
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bytes. 

 The above-mentioned shortcomings of WiNC2R revision1 architecture led 

us to explore different options to overcome the shortcomings. Centralizing the 

VFP controller for several FU’s and using a system bus of better throughput such 

as AMBA AXI, are the highlights of the WiNC2R revision2 architecture. 

2.2: WiNC2R Revision2 Architecture 

 WiNC2R revision2 is a Cluster Based System on Chip architecture (SoC) as 

shown in the Figure 2-3. The system interconnect used in revision2 architecture 

is AMBA AXI. Hierarchical bus architecture is implemented as shown in Figure 2-

3. The communication between the clusters occurs over the main system bus 

while the communication between the FU’s within a cluster occur over another 

AXI bus within a cluster. The dedicated VFP controller in the previous 

architecture is replaced with a VFP Controller that is common to several FU’s 

within a cluster. The architecture of the FU is similar to the one in revision1 

architecture consisting of a dedicated processing engine, input, output buffer 

memories and a Dynamic Memory Access (DMA) Engine to transfer data 

between FU’s over the AXI bus present with a cluster. The communication 

between the VFP controller and FU’s occur over a dedicated bus to each FU. As 

in the previous architecture, the PE handles both the data and the control tasks 

while the VFP controller schedules the tasks to each FU.  
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Figure 2-3: WiNC2R Revision2 Architecture 

Source: Onkar Sarode, Khanh Le, Predrag Spasojevic, Zoran Miljanic: Scalable Virtual Flow 

Pipelining SoC Architecture, IAB Fall 2009 Poster   
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 The VFP controller’s functions are divided into – task scheduling and 

activation, communication between the tasks and scheduling of processing 

resources to the tasks. The task activation function includes dynamically 

scheduling a task, identifying the FU corresponding to the task and initiating it. 

The Task Activation (TA) block that is local to every FU performs the actual 

initiation of a task. Once the VFP activates a particular FU, it is free to perform 

task activation of other FU’s. Once the PE within an FU completes processing 

the data, it activates the task termination blocks within the VFP. The Next Task 

Table (NTT) within the VFP contains information regarding the task to be 

performed next. Hence, the VFP initiates the data transfer between the producer 

and consumer FU. The consumer FU can be placed either in the same (local) 

cluster or a different (remote) cluster. If the consumer FU is present in the local 

cluster, the data transfer occurs over the AXI bus within the cluster. But if the 

consumer FU is present in a remote cluster, the data transfer occurs over the  

system-interconnect.   
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Figure 2-4: VFP Processing Flow 

Source: Onkar Sarode, Khanh Le, Predrag Spasojevic, Zoran Miljanic: Scalable Virtual Flow 

Pipelining SoC Architecture, IAB Fall 2009 Poster 

 Due to centralization of the VFP and a cluster-based architecture, the 

decoding scheme to identify a particular FU is different from the revision1 

architecture. The following section describes the WiNC2R revision1 and 

revision2 memory maps in detail.  
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2.2.1 WiNC2R Revision1 Memory Map 

All the blocks in the revision1 platform are of size 64k and can be visualized as 

seen in the figure 2-5 

 

Figure 2-5: WiNC2R revision1 memory map 

Source: Khanh Le, Shalini Jain: ncp_global_memory_map.doc 

As shown, each FU consists of the following sub-blocks: IPIF DMA, UCM 

(dedicated VFP controller), PE, input buffer and output buffer. Each FU has a 64k 

address range divided into five main regions as shown in figure 2-6. 



17 

 

 

Figure 2-6: WiNC2R revision1 FU memory map 

Source: Khanh Le, Shalini Jain: ncp_global_memory_map.doc 

Since, each FU has a dedicated VFP controller, address decoding of the different 

FU’s is based only their base memory address. Secondly, each FU has its own 

TD table and Task Scheduler Queue.  

Due a centralized VFP controller in the new revision, the address decoding of the 

different FU’s is based on an FU_ID and CLUSTER_ID. These id’s allow the VFP 
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controller to identify a particular FU. This feature was unnecessary in the 

previous revision because of a dedicated VFP controller. 

2.2.2: WiNC2R Revision2 System Memory Map 

 The WiNC2R revision2 architecture has a maximum of 16 clusters and each 

cluster can have a maximum of 16 FU’s.  

 Size of 1 FU = 512KB 

 Size of 1 Cluster = 16 * 512KB = 8MB 

 Size of 16 Clusters = 16 * 8MB = 128MB. 

Hence, the total system memory is of size 128MB.  The base address of each 

cluster and the decoding of the FU address are shown in figure 2-7.  

To access a memory space of 128MB, we require 27bits. Its “Cluster ID” 

identifies the cluster while the FU is identified by its “FU ID”. The cluster and FU 

ID are 4 bits wide. As shown, the bits 26 to 23 represent the cluster ID and bits 

22 to 19 represent the FU ID. For example, the base address of FU 1 in cluster 0 

is 0x0008000. 
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Figure 2-7: WiNC2R Base Address Calculation 

Source: Akshay Jog, Khanh Le: WiNC2R Global Memory Map – Release 2 

The revision2 framework consists of certain new FU’s in addition to the FU’s from 

the revision1 architecture. The processing engine within the FU is either a native 

C/C++ function from GNU Radio or a SystemC wrapped Tensilica Application 

Specific Instruction Set Processor Entity or a VHDL entity from revision1 

architecture. Figure 2-8 represents the VFP, General FU and Tensilica based FU 

memory map. The base address of each memory entity is also shown. 
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     Figure 2-8: WiNC2R System Memory Map 

Source: Akshay Jog, Khanh Le: WiNC2R Global Memory Map – Release 2 

 

2.2.2: VFP Memory Map 

 Since the VFP is a centralized entity controlling several FU’s, certain 

memories that were local to an FU in the previous architecture are now a 

common memory entity in the VFP.  

 

 Global Task Table (GTT):  The GTT is a 64KB memory that resides within 

the VFP. Since the GTT is local to VFP, there is one GTT per cluster. The GTT 

describes the flow of tasks depending on the application. The GTT was a global 

memory table in the revision 1 framework and hence was common to all FU’s . 

 

 Task Scheduler Queue (TSQ): Each FU in the revision 1 framework had a 

local TSQ. Depending on the nature of the task, the task descriptors were either 

stored in the synchronous or the asynchronous queues. Since the common VFP 

controller handles the scheduling of tasks of different FU’s, the TSQ is now made 
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local to the VFP rather than having a separate TSQ in each FU.  

 To begin with, it is assumed that a cluster consists of 8 FU’s. Hence the 

128KB memory space of TSQ is divided into 8 resulting in a 16KB TSQ per FU. 

The tasks corresponding to every FU is placed in the appropriate TSQ by the 

VFP controller. 

 

 VFP RMAP:  The VFP controller can be initialized by the software by writing 

into the VFP RMAP. Currently the VFP RMAP is not used. 

 Next Task Table (NTT):  The NTT contains information regarding the next 

task to be activated the VFP after the completion of a particular task by the FU. 

This information previously resided in the TD table that was local to each FU. It is 

now stored in a different memory entity and is local to the VFP.  

2.2.3: General FU Memory Map 

 The general FU memory map is similar to the one in the previous revision, 

except for some minor changes that are described below. 

 PE RMAP: The processing engine can be configured and initialized by 

writing into its RMAP. The software writes into the RMAP during system 

configuration. 

 PE IBUF: The PE IBUF is divided into two sections – the IBUF and the TD 

table. The PE reads the required data for it’s processing from the PE IBUF, while 

the TD table consists of information that describe the task being performed. 

Hence each FU has a local TD table describing the tasks that the particular FU 

can perform. 
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 PE OBUF: After processing the data read from IBUF, the PE writes the data 

into the OBUF. When the VFP controller initiates a DMA transfer, the data from 

the OBUF is transferred into the IBUF of the FU that is next in processing flow. 

 

2.2.4: Tensilica FU Memory Map 

 

 Instruction RAM (IRAM): The Instruction RAM stores the instruction set 

required for the processor to execute the data processing algorithm. 

 Data RAM (DRAM): The Data RAM stores the variables required by the 

processor to execute the data processing algorithm. 

 The data stored in PE RMAP,IBUF and OBUF is similar to the one 

described in the general FU memory map section. 

The second bottleneck in the revision 1 framework was created by the PLB. We 

decided to replace the PLB with the AMBA AXI bus. The following section 

describes the AXI bus in detail. 
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2.3: AMBA Advanced eXtensible Interface (AXI) 

 The AMBA AXI bus extends the AMBA Advanced High performance Bus 

(AHB) with advanced features to support next generation high performance SoC 

architectures. The AXI bus has channel architecture and can be configured to 

have separate write and read address and data channels. The AXI architecture 

for read and write requests is shown in Figure 2-7 and Figure 2-8. 

 

Figure 2-9: AXI Read Channel Architecture 
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Figure 2-10: AXI Write Channel Architecture 

The channel architecture for read transactions depicts a separate channel for 

address and data. The master sends the address and control information over 

the address channel to the slave. The slave in response sends the data over the 

data channel. 

 Similar to the read transaction, the write transaction channel architecture is 

also depicted. The master sends the address and the control information over the 

address channel to the slave, while the data to be written is sent over the data 

channel as shown. The slave sends out the response to the master over the write 

response channel. As the read and write address and data channels are 

separate, the AXI bus can handle simultaneous read and write transactions. In 

addition to performing simultaneous read and write operations, the AXI bus can 

also handle multiple outstanding instructions and out of order completion of 
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transactions. The read and write transaction protocols are described below. 

2.3.1: Read Burst Transaction 

 

Figure 2-11: AXI Read Burst Transaction 

Source: AMBA AXI v1.0 Specifications 

 

The above figure represents a read burst transaction.(4) 

• The master asserts the “arvalid” signal along with a valid address on 

the “araddr” signal.  

• The slave asserts the “arready” signal, indicating that the slave is 

ready to accept the address and the corresponding control signals. 

• The master asserts the “rready” signal, indicating to the slave that it is 

ready to accept the data and the responses. 

• The slave asserts the “rvalid” signal along with the valid data on the 

“rdata” signal. The slave indicates the master that the data on the 

“rdata” signal is the last in the burst transaction by asserting the 

“rlast” signal. 
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2.3.2: Write Burst Transaction 

 

Figure 2-12: AXI Write Burst Transaction 

Source: AMBA AXI v1.0 Specifications 

 

The above figure represents a write burst transaction.(4) 

• The master the “awvalid” signal along with a valid address on the 

“awaddr” signal. 

• The slave asserts the “awready” signal, which indicates that the slave 

is ready to accept the address and other control signals. 

• The slave asserts the “wready” signal, which indicates that the slave is 

ready to accept the data. 

• The master then asserts the “wvalid” signal and also puts valid data on 

the “wdata” signal. Along with this, the master also asserts the 

“bready” signal indicating that it is ready to accept the response from 

the slave. 
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• The master asserts the “wlast” signal along with the “wvalid” and 

“wdata” signal, indicating that the word is the last word in the burst 

transaction. 

• The slave sends back the response on the “bresp” signal along with 

asserting the “bvalid” signal, indicating that the response on “bresp” 

channel is valid. 

 

The maximum number of data transfer in a burst is defined by the “awlen” or 

“arlen” signal. The signal can be configured to have a maximum of 256-byte 

transfer in a single burst. This provides an improved performance over the PLB, 

which handles only 64-byte transfer in a single burst transaction. The size of data 

in each burst is configured by the “awsize” and “arsize” signals and is set as 32 

bit word. The AXI bus can perform burst transfers of 3 kinds. 

 

• Fixed Burst: In a fixed burst, the address remains the same for every 

transfer in the burst. This burst type is for repeated accesses to the 

same location such as when loading or emptying a peripheral FIFO. 

 

• Incremental Burst: In an incrementing burst, the address for each 

transfer in the burst is an increment of the previous transfer address. 

The increment value depends on the size of the transfer. For 

example, the address for each transfer in a burst with a size of four 

bytes is the previous address plus four. 
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• Wrap Burst: A wrapping burst is similar to an incrementing burst, in 

that the address for each transfer in the burst is an increment of the 

previous transfer address. However, in a wrapping burst the address 

wraps around to a lower address when a wrap boundary is reached. 

The wrap boundary is the size of each transfer in the burst multiplied 

by the total number of transfers in the burst. 

2.3.3 AXI Bus Configuration Parameters 

The AXI bus core is configured using Synopsys DesignWare CoreConsultant. 

There are various design parameters that determine the behavior of the AXI 

core. Some of the parameters that are relevant to the system are mentioned in 

the table below. 
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AXI Core 

Parameter 

Parameter Definition Configuration 

Chosen 

Reason 

AXI Data Bus 

Width 

This is the width of the data bus 

that applies to all interfaces. 

Legal values: 8, 16, 32, 64, 128, 

256 or 512 bits 

32 bits Standard data 

size width 

AXI Address Bus 

Width 

This is the width of the address 

bus that applies to all interfaces. 

Legal values: 8, 16, 32, 64, 128, 

256 or 512 bits 

32 bits Standard address 

size width 

Number of AXI 

Masters 

Number of masters connecting 

the to AXI master port.  

Maximum value = 16 

9 System consists 

of 7 functional 

units, 1 VFP 

controller and 

OVM 

environment. All 

act as masters  

Number of AXI 

slaves 

Number of slaves connecting to 

the AXI slave port 

8 The 7 functional 

units and VFP act 

as slaves 

AXI ID: Width of 

Masters 

(AXI_MIDW) 

This is the ID bus width of all five 

AXI channels connected to an 

external master. All masters have 

the same ID width for all five AXI 

channels. 

4 4 bits are 

sufficient to 

access 9 masters 

AXI ID: Width of 

Slaves 

This is the ID bus width of all five 

AXI channels connected to an 

8 Generated 

automatically 
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(AXI_SIDW) external slave. It is a function of 

the AXI ID Width of Masters 

(AXI_MIDW) and the number of 

masters (AXI_NUM_MASTERS). 

AXI_SIDW=AXI_MIDW 

+ceil(log2(NUM_AXI_MASTERS)) 

This parameter is calculated 

automatically, and the same width 

is applied to all slaves. 

using the 

mentioned 

formula 

AXI Burst Length 

Width 

This is the width of the burst 

length signal for both read and 

write address channels on both 

the master and slave ports. The 

AXI protocol specifies this is a 4 

bit value, but this width is 

configurable to 8 bits wide to 

support longer bursts up to 256 

data beats. 

8 bits Maximum value of 

burst length width 

is selected to 

enable the 

transfer of 256 

words in a single 

burst. 

Slave Port 

Arbiters (read 

address, write 

address and write 

data channels) 

Selects the type of arbiter to be 

used at the slave port read 

address, write address and write 

data channels. 

Priority Arbitration: Highest 

priority master wins 

First Come First Serve: Masters 

are granted access in the order of 

the incoming requests. 

Fair Among Equals – 2 tier 

First Come First 

Serve 

All the slaves are 

of equal priority 

and hence first 

come first is 

chosen 
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arbitration: First tier is dynamic 

priority; second tier shares grants 

equally between masters of the 

same highest requesting priority 

on a cycle-by-cycle basis. 

User Defined: instantiates a plain-

text arbitration module which the 

user can edit to their own 

requirements 

 

Master Port 

Arbiters ( read 

data channel and 

burst response 

channel) 

Selects the type of arbiter to be 

used at the master port read data 

and burst response channels. 

Priority Arbitration: Highest 

priority master wins 

First Come First Serve: Masters 

are granted access in the order of 

the incoming requests. 

Fair Among Equals – 2 tier 

arbitration: First tier is dynamic 

priority; second tier shares grants 

equally between masters of the 

same highest requesting priority 

on a cycle-by-cycle basis. 

User Defined: instantiates a plain-

text arbitration module which the 

user can edit to their own 

requirements 

First Come First 

Serve 

All the masters 

are of equal 

priority and hence 

first come first is 

chosen 
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Table 2-1: AXI Core Configuration Parameters 

 

We decided to test the new architecture by implementing the 802.11a protocol 

and build a system consisting of two clusters – one implementing the transmitter 

side and the other implementing the receiver side. Each cluster consists of 7 

FU’s and 1 VFP controller. The next chapter describes the 802.11a protocol in 

detail and the WiNC2R transmitter implementation of the protocol. The scope of 

the thesis is limited to describing the transmitter cluster. 
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CHAPTER 3 

WiNC2R Revision2 Programming Flow 
 

The nature of the revision2 system flow is similar to that of the revision1 flow with 

slight differences because of a centralized VFP controller. This chapter describes 

the system flow – starting from scheduling the task to a producer FU till inserting 

a new task for a specific consumer FU. The interfaces between the three control 

structures – GTT, TD and NTT are also described in detail. 

3.1 GTT, TD and NTT Interface 

The Task_ID field in the TD table provides the offset that points to that particular 

task entry in the GT table, which is local to the VFP. The GTT also contains a 

TD_Pointer field, which is the physical address of the first word in the TD table 

for that particular task. The GTT also contains FU_ID field using which the VFP 

can identify the different FU’s. The TD table contains an NT_Pointer field, which 

is the physical address of first word in the NT table. The NT table resides within 

the VFP and contains information of the next task to be triggered after the 

producer FU has completed its current task.  The NT table consists of a 

NextTask_ID field that is the offset address, pointing to the next task to be 

performed in the GTT. The NT table also has a FUID field. This field contains the 

FUID of the consumer FU. Using this FUID, the VFP controller can trigger the 

task in the consumer FU. The NT table contains the “OutData_Ptr” field, which is 

the physical address of the input buffer of the consumer FU and is used by the 
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VFP controller to initiate a DMA transfer from producer to the consumer FU. The 

figure 3-1 shows the interface betweeokn the three control structures.  

 

Figure 13-1: GTT, TD and NT table interface 

 

3.2 Input Buffer and Output Buffer Indexing 

The input and the output buffers reside within every functional unit. The partitions 

of the input and output buffer and the method of indexing is shown in figure 3-2 

and 3-3 respectively. 
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3.2.1 Input Buffer 

The input buffer is of size 64Kb, off which 32Kb is dedicated to the TD table. The 

other half is partitioned into 16 buffers. The buffer 0 is of size 4Kb and contains 

the data to be operated on by the PE. The buffer 1 contains the control 

parameter information that is passed on by every FU and is of 64 bytes. The 

remaining buffers can be programmed to be of variable sizes. The accessing of 

the input buffer is as shown in the figure 3-2. 

 

Figure 14: Input Buffer Partitions 
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3.2.2 Output Buffer 

The output buffer is of size 64Kb and is accessed in a way similar to the input 

buffer. The “out_data_ptr” for every region is specified in the register map local to 

every PE. The PE accesses the register map to obtain the pointer information 

and then writes into the address contained by the pointer.  In case of flow context 

the information is stored in the local register map. 

 

Figure 15: Output Buffer Partitions 
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3.3 System Flow 

The figure 3-4 depicts the system flow in detail. The sequence of operations is 

also shown. 

1. The VFP controller consists of dedicated Task Scheduler Queues (TSQ) 

for every FU. The descriptor consists of the FUID, using which the 

scheduler within the VFP controller schedules the task to the producer FU. 

The descriptor formats are shown in the Appendix. The task can be 

asynchronous, in which case it is scheduled immediately, or synchronous, 

in which case it is scheduled once its start time occurs. The scheduler also 

sets the “Busy Vector” field in the GTT that indicates that the particular FU 

is busy in processing a task. 

2. The Task Activation (TA) unit within the producer FU, accesses the TD 

table whose pointer it received from the VFP controller. The TD table 

contains all the relevant information required by the TA to trigger the PE, 

such as the command number and flow context information. It also 

updates the input buffer pointer and size information in the input buffer 

that are required by the PE. 

3. The PE reads the input data from the input buffer and operates on the 

data. 

4. The PE writes the result into the output buffer. On completing the task, the 

PE sends out a “cmd_done” and a “next_task_en” signal.  
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5. The producer FU then sends out two messages, one corresponding to the 

“cmd_done” to initiate the termination of task and the other corresponding 

to “next_task_en” to trigger the next task – {5a, 5b}.  

6. On receiving the command termination message, the Command 

Termination (CT) block within the VFP, clears the Busy Vector in the GTT, 

which marks the termination of the scheduled task. The producer FU is 

now free to cater to other tasks. The “next_task_en” message sent by the 

FU contains the physical address of the NT pointer. Using this address, 

the Consumer Identification (CID) unit within the VFP, accesses the NT 

table to identify the consumer FU’s. The producer FU also sends out the 

physical address of the output buffer, where the processed data is stored. 

It also sends out the size of the processed data. The output buffer address 

serves as the source address during the data transfer over the bus, while 

the “OutData_Ptr” field read from the NT table, serves as the destination 

address. The CID sends out a message to the Data Transfer Initiator (DTI) 

with the necessary source and destination address to activate the DMA 

transfer. 

7. The source and destination address and the size of the data transfer is 

sent to the consumer FU identified by the VFP. The consumer FU now 

initiates a transfer over the AXI bus.  

8. The data is transferred by reading from the output buffer of the producer 

FU and writing into the input buffer of the consumer FU. 

9. Once the data transfer is completed, the consumer FU messages the VFP 

controller. The Task Inserter (TI) unit within the VFP inserts a task into the 
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TSQ dedicated to the identified consumer FU. The local TI within the 

consumer FU updates the TD table with the input buffer pointer and size 

information. 

 

Figure 16: System Flow 

 

3.4 Task Scheduling 

The two types of data tasks handled by the WiNC2R platform are asynchronous 

and synchronous. Although, the actual processing engine is unaware of the type 

of data task, the method of scheduling these tasks are different. The 

“Sync/Async” field in the GTT determines the nature of the task; a value of 1 

corresponds to asynchronous task while 0 corresponds to a synchronous task. 

The synchronous task can be two kinds – chunking and non-chunking. The 

chunking and non-chunking tasks are described in the later sections. 

The asynchronous tasks are demand tasks, and hence are scheduled 

immediately by the scheduler. In case the asynchronous task does not terminate 
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before the start time of a synchronous task, the asynchronous task can be 

interrupted and is resumed after the completion of the synchronous task.  

The synchronous tasks have pre-allocated time slots, and on the arrival of the 

particular time, the synchronous task is scheduled. The synchronous task can 

repeated based on the rescheduling period or the repetition number, both of 

which are pre-defined in the GTT. The scheduler uses the rescheduling period to 

repeat a particular synchronous task termed as a chunking task, while it uses the 

repetition number to repeat the task incase of a non-chunking synchronous task. 

3.4.1 Concept of Chunking 

The input data can be broken up into smaller pieces called “chunks” of a pre-

defined size (chunksize) to improve the overall end-to-end latency of the system. 

The “ChunkFlag” parameter in the GTT indicates whether the current task to be 

scheduled is a chunking or non-chunking task. The current task is a chunking 

task if the parameter is set. The functional unit handling the chunking task 

obtains the chunksize and the first_chunksize information by reading the TD 

table. It is the responsibility of the scheduler to keep a track of the number of 

chunks. The “first_chunkflag” bit is set in the message sent by the scheduler to 

the FU in case of first chunk and the “last_chunkflag” bit is set indicating that the 

chunk is the final chunk. In case of the first chunk, the TA unit within the FU, 

updates the size pointer in the input buffer with the first_chunksize and address 

pointer with address obtained from the “InDataPtr” field in the TD table. The TA 

unit then updates the “InDataPtr” field in the TD table with the previous 

“InDataPtr” + first_chunksize and updates the “InDataSize” field in the TD by 
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deducting the first_chunksize from the total size. When the first_chunkflag bit is 

not set, the TA updates the information the TD according to the chunksize. The 

chunksize and the first_chunksize information are available in the GTT, which is 

accessible by the scheduler. The scheduler deducts the chunksize or 

first_chunksize (in case of first chunk only) from the total frame size and 

schedules the next chunk only after a period called the “Reschduling Period”. 

The last chunk is scheduled when the remaining frame size is lesser than the 

chunksize and the last_chunkflag bit is set. 

The following functional unit(s) can terminate the chunking or pass them along. If 

the unit is passing along the chunks of data (i.e. it is neither chunking nor 

terminating the chunking) the chunks will processed like the full frame – i.e. the 

unit passing it along is not even aware of the chunking. If the unit it is terminating 

the chunking for the particular task (TerminateChunking[x] == 1 in the Task 

Descriptor) it will pass the results of each chunk processing to the following unit 

as the chunks are being processed but it will enable the next task only when the 

last chunk is processed. In this case the chunks are gathered into the frame at 

the consumer task input buffer. Since the chunk termination unit needs to pass 

the pointer to the beginning of the frame buffer to the consumer task it needs to 

keep the OutDataPtr original value while the chunks are being processed and 

passed along. For that purpose, in the de-chunking mode the output consumer 

task entries (NextTaskIDx and associated pointers) are paired together so that 

OutDataPtrx keeps the working pointer that gets incremented with the transfer of 

each chunk by the corresponding OutDataSizex and OutDataPtr+1 that contains 

the original OutDataPtr (before the transfer of the first chunk). The 
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OutDataSizex+1   is incremented after each chunk transfer by OutDataSizex, so 

that it contains the whole frame after the last chunk has been transferred. 

An optimum chunksize must be determined to achieve good system latency. The 

following chapters discuss about the calculation of chunk size and its effect on 

the latency of the system. The concept of chunking also helps in supporting 

multiple flows (of different or same protocol) in the system. The analysis related 

to multiple flows is also described in detail in the later chapters. 
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Chapter 4 

  WiNC2R Revision 2 Processing Engines  
 

4.1: 802.11a Protocol Description 

 802.11a is an amendment to the IEEE 802.11 specification that added a 

higher data rate of up to 54 Mbit/s using the 5 GHz band. It has seen widespread 

worldwide implementation, particularly within the corporate workspace. The 

802.11a standard uses the same core protocol as the original standard, operates 

in 5 GHz band, and uses a 52-subcarrier orthogonal frequency-division 

multiplexing (OFDM) with a maximum raw data rate of 54 Mbit/s, which yields 

realistic net achievable throughput in the mid-20 Mbit/s. The data rate is reduced 

to 48, 36, 24, 18, 12, 9 then 6 Mbit/s if required. The OFDM PHY contains three 

functional entities: the physical medium dependent function, the PHY 

convergence function, and the management function.(5) 

• Physical Layer Convergence Procedure (PLCP) Sublayer:  

In order to allow the IEEE 802.11 MAC to operate with minimum 

dependence on the Physical Medium Dependent (PMD) sublayer, a PHY 

convergence sublayer is defined. This function simplifies the PHY service 

interface to the IEEE 802.11 MAC services. The PLCP sublayer is 

described in detail in the following sections. 
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• Physical Medium Dependent (PMD) Sublayer: 

The PMD sublayer provides a means to send and receive data between 

two or more stations in the 5 GHz band using OFDM modulation. 

• Physical Management Entity (PLME): 

The PLME performs management of the local PHY functions in 

conjunction with the MAC management entity. 

 

4.1.1:PLCP Frame Format 

(5)Figure 4-1 shows the format for the PLCP Protocol Data Unit (PPDU) 

including the OFDM PLCP preamble, OFDM PLCP header, Physical layer 

Service Data Unit (PSDU), tail bits, and pad bits. The PLCP header contains the 

following fields: LENGTH, RATE, a reserved bit, an even parity bit, and the 

SERVICE field. In terms of modulation, the LENGTH, RATE, reserved bit, and 

parity bit (with 6 “zero” tail bits appended) constitute a separate single OFDM 

symbol, denoted SIGNAL, which is transmitted with the most robust combination 

of BPSK modulation and a coding rate of R = 1/2. The SERVICE field of the 

PLCP header and the PSDU (with 6 “zero”tail bits and pad bits appended), 

denoted as DATA, are transmitted at the data rate described in the RATE field 

and may constitute multiple OFDM symbols. The tail bits in the SIGNAL symbol 

enable decoding of the RATE and LENGTH fields immediately after the reception 

of the tail bits. The RATE and LENGTH are required for decoding the DATA part 

of the packet. 
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                                    Figure 4-1: PPDU Frame Format 

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications 

The individual fields of the 802.11a PPDU frame are described below: 

• PLCP Preamble: The PLCP preamble field is used for synchronization. It 

consists of 10 short symbols and two long symbols as shown below in the 

OFDM training sequence. 

 

Figure 4-2: OFDM Training Sequence 

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications 

t1 – t10 denote the 10 short symbols, each symbol duration being 0.8us. T1 and T2 

denote the 2 long symbols each of duration 3.2us. Thus, the total training 

sequence sums up to 16us. The SIGNAL and the DATA fields follow the PLCP 

preamble field. 
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• SIGNAL: The SIGNAL field is composed of 24 bits. Bits 0-3 encode the 

RATE field, bit 4 is reserved for future use, bits 5-16 encode the LENGTH 

field, bit 17 denotes the PARITY field and bits 18-23 denote the TAIL field. 

o RATE:  802.11a protocol supports data rates ranging from 6 

Mbits/sec to a maximum of 54Mbits/sec. The RATE field conveys 

information about the coding rate to be used for the SIGNAL and 

the PPDU. The encoding of the various rates is shown in the table 

below: 

RATE R0 – R3 

6 1101 

9 1111 

12 0101 

18 0111 

24 1001 

36 1011 

48 0001 

54 0011 

Table 4-1: Rate Field Encoding 

 

o Reserved:  Bit 4 is reserved for future use. 

o LENGTH: The PLCP length field is an unsigned 12-bit integer that 

indicates the number of octets in the PSDU that the MAC is 

currently requesting the PHY to transmit. This value is used by the 

PHY to determine the number of octet transfers that will occur 
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between the MAC and the PHY after receiving a request to start 

transmission. 

o PARITY:  Bit 17 denotes the parity bit. Even parity is selected for 

bits 0 – 16. 

o TAIL:  Bits 18-23 constitute the TAIL field. All the 6 bits are set to 

zero. 

The SIGNAL field forms 1 OFDM symbol and is coded, interleaved, 

modulated and converted to time domain. The SIGNAL field is NOT 

scrambled and is BPSK modulated at a coding rate of ½ and transmitted 

at 6Mbps. 

• DATA: The DATA field of the 802.11a frame consists of PLCP header 

SERVICE field, PSDU, 6 TAIL bits and PAD bits. Each field is described 

below: 

o SERVICE:  SERVICE field has 16 bits, which shall be denoted as 

bits 0 - 15. The bit 0 shall be transmitted first in time. The bits from 

0 - 6 of the SERVICE field, which are transmitted first, are set to 

zeros and are used to synchronize the descrambler in the receiver. 

The remaining 9 bits (7 - 15) of the SERVICE field shall be 

reserved for future use. All reserved bits shall be set to zero. 

o PSDU: PSDU represents the contents of PPDU i.e. actual contents 

of the 802.11a frame. 

o TAIL: TAIL bit field shall be six bits of “0” which are required to 

return the convolutional encoder to the “zero state”. This 
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procedure improves the error probability of the convolutional 

decoder, which relies on future bits when decoding and which may 

be not be available past the end of the message. The PLCP tail bit 

field shall be produced by replacing six scrambled “zero” bits 

following the message end with six nonscrambled “zero” bits. 

o PAD: The number of bits in the DATA field of the PPDU frame is a 

multiple of the number of coded bits (NCBPS) in an OFDM symbol. 

To achieve that, the length of the message is extended so that it 

becomes a multiple of NDBPS, the number of data bits per OFDM 

symbol. At least 6 bits are appended to the message, in order to 

accommodate the TAIL bits. The number of OFDM symbols, NSYM; 

the number of bits in the DATA field, NDATA; and the number of pad 

bits, NPAD, are computed from the length of the PSDU (LENGTH) as 

follows: 

NSYM = Ceiling ((16 + 8 * LENGTH + 6) / NDBPS 

NDATA = NSYM * NDBPS 

NPAD = NDATA – (16 + 8 * LENGTH + 6) 
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4.2: 802.11a TRANSMITTER 

 The processing units involved in an 802.11a transmitter are shown in the 

Figure 4-3: 

 

 

Figure 4-3: 802.11a Transmitter 

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications 

The 802.11a processing engines specifications are described in the sections that 

follow. Since, WiNC2R Revision 1 implementation was a proof of concept, it did 

not comprise of certain 802.11a processing engines such as scrambler, coder, 

puncturer and interleaver. In revision2 we include all the processing blocks 

involved in an 802.11a transmitter flow to achieve an ideal 802.11a transmission 

flow. 
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4.3 WiNC2R 802.11a Transmitter Flow: 

 

 

 

Figure 4-4: WiNC2R 802.11a Transmitter 

The above figure depicts the WiNC2R transmitter flow. Some processing engines 

such as PE_MAC, PE_HEADER(PE_HDR), PE_MODULATOR(PE_MOD) and 

PE_IFFT are reused from the previous version of WiNC2R. The IFFT engine 

performs the task of Preamble Generation, Cyclic Extension, IFFT and Pilot 

Insertion. Engines such as scrambler, convolutional encoder and interleaver are 

C functions which are imported from various sources, one being GNU Radio. 

Thus, we have a combination of processing engines, some implemented in RTL 

(VHDL/Verilog) and some C/C++ functions.  

The following section gives a brief introduction of GNU Radio and the method 

adopted to integrate the C / C++ functions into an RTL environment such as 

WiNC2R. 
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4.3.1: GNU Radio 

 (6)The GNU Software Radio is an open source project that is hardware 

independent to a certain extent. The free software kit consists of a library of 

signal processing functions, which can be connected together to build and deploy 

a software-defined radio (SDR). In order to implement an SDR, a signal graph 

needs to be created which connects the source, signal processing blocks and the 

sink together. The signal processing blocks, source and sink are C++ functions 

and are connected together using a Python script.  

4.3.2: Integrating GNU functions in WiNC2R 

 The revision2 of WiNC2R is a mixed HDL environment, where certain 

blocks are coded in Verilog/SystemVerilog, while the blocks from revision 1 are in 

VHDL. It was required to integrate the C++ GNU Radio functions into this mixed 

HDL environment to implement an 802.11a transmission and reception. The C++ 

functions were integrated into the system using the concept of SystemVerilog 

Direct Programming Interface (DPI). 

 

4.3.3: Direct Programming Interface 

 (7)Direct Programming Interface (DPI) is an interface between 

SystemVerilog and a foreign programming language. It consists of two separate 

layers: the SystemVerilog layer and a foreign language layer. Both sides of DPI 

are fully isolated. Which programming language is actually used as the foreign 

language is transparent and irrelevant for the SystemVerilog side of this 

interface. Neither the SystemVerilog compiler nor the foreign language compiler 
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is required to analyze the source code in the other’s language. Different 

programming languages can be used and supported with the same intact 

SystemVerilog layer. For now, however, SystemVerilog 3.1 defines a foreign 

language layer only for the C programming language. DPI allows direct inter-

language function calls between the languages on either side of the interface. 

Specifically, functions implemented in a foreign language can be called from 

SystemVerilog; such functions are referred to as imported functions. 

SystemVerilog functions that are to be called from a foreign code shall be 

specified in export declarations.  

 

4.3.4: Implementation 

 The desired processing block functions were taken from GNU radio and a 

stand-alone C++ program was generated using the functions. The C++ 

processing functions were imported to a SystemVerilog wrapper file-using DPI. 

The SV wrapper passes the arguments required for the C++ function to execute, 

and the function returns back the final output to the SV wrapper. The SV module 

can be port mapped with either the existing WiNC2R revision1 VHDL blocks or 

revision2 Verilog/SystemVerilog modules. The figure below depicts the hierarchy 

of WiNC2R revision2 implementation. The intermediate VHDL layer can be a 

stand-alone processing engine from revision1 or can instantiate a SystemVerilog 

wrapper that calls the C/ C++ function. 



53 

 

 

Figure 4-5: WiNC2R System Hierarchy 

In this fashion the inputs required by the C++ function are passed from the top 

level SystemVerilog file to middle layer of VHDL to the SystemVerilog wrapper 

that calls that C++ function. In the similar manner, the outputs generated by C++ 

functions are passed to the top-level SystemVerilog file. In this way, it is possible 

to integrate the GNU radio extracted C++ functions with the rest of WiNC2R. 

4.3.5: Compiling 

 We required a simulator that had the capability to analyze, compile and 

simulate mixed HDL designs descriptions. In addition to mixed HDL simulations, 

it was also required that the simulator has the capability to handle imported 

function calls from C++ or DPI. The VCS-MX simulator by Synopsys is a mixed 

HDL simulator that catered to all our requirements. 
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 4.4: WiNC2R Processing Engine Specifications 

 

• PE_MAC_TX: This PE performs the tasks of a reconfigurable MAC and 

currently supports two protocols – ALOHA and CSMA-CA back off. It also 

uses 802.11a compatible inter-frame spacing (IFS) durations and fame 

formats. 

 

• PE_HEADER: This engine performs the task of appending the PLCP 

header as shown in the PPDU frame format. It appends the header to the 

frame sent by the PE_MAC_TX engine. This engine also instructs the 

PE_IFFT to generate the PLCP preamble sequence by sending in a task 

request to PE_IFFT engine. Apart from appending the PLCP header to the 

frame, the PE_HEADER works on small parts of the frame termed as 

“chunks”. The VFP controller dictates the size of each chunk and the 

PE_HEADER operates on the specified size and treats each chunk as an 

individual task. The successive processing engines now operate on 

chunks and not the entire frame. The type of modulation scheme in use 

and the data rate determine the size of individual chunk. In terms of 

OFDM symbols, each chunk is equal to four OFDM symbols except the 

last chunk. The PE_HEADER engine has two modes of operation – with 

coder and no coder. The “with coder” mode implies that the frame is 

encoded before modulation, while the “no coder” mode implies that no 

encoding operation is being performed on the frame. 
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Chunk Size Calculation: 

No Coder Case: 

Chunk Size = (#OFDM symbols + Coded bits per OFDM symbol) / 8 

  With Coder Case: 

  Chunk Size = (#OFDM symbols + Data bits per OFDM symbol) / 8 

 

The size of the first chunk is always different than the chunk size, 

as the first chunk consists of the PLCP header and 16 service bits 

in addition to the data. 

 

  FirstChunk = PLCP Header + 16 Service Bits + Data 

  PLCP Header = 1 OFDM symbol. 

  First Chunk Size = Chunk Size – (PLCP Header + 16 Service Bits) 
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  Table 4-2 shows the computed values for chunksize and 

firstchunksize for different data rates and modulation schemes. 

 

Data Rate 

(Mbps) 

Modulation 

Scheme 

Coding 

Rate 

Coded bits 

per OFDM 

symbol 

Data bits 

per OFDM 

symbol 

FirstChunkSize 

(bytes) 

ChunkSize 

(bytes) 

6 BPSK ½ 48 24 7 12 

9 BPSK ¾ 48 36 12 18 

12 QPSK ½ 96 48 16 24 

18 QPSK ¾ 96 72 25 36 

24 16 – QAM ½ 192 96 34 48 

36 16 – QAM ¾ 192 144 52 72 

48 64 – QAM 2/3 288 192 70 96 

54 64 – QAM 3/4 288` 216 79 108 

Table 4-2: ChunkSize Calculation 

 

 

The chunk size parameter dictates the performance of the WiNC2R architecture. 

A smaller chunk size results in more number of chunks of the input frame, which 

in turn leads to aggressive utilization of the VFP controller. Hence, there is a 

direct relationship between chunk size and latency to transmit a frame belonging 

to one flow.  When the VFP controller handles multiple flows, each flow has a 
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different chunk size, which again affects the over-all system latency. The effect of 

changing chunk size is discussed in detail in Chapter 5. 

 

• PE_SCRAMBLER: Scrambler is a device that manipulates the data 

stream before transmitting. A scrambler replaces sequences into other 

sequences without removing undesirable sequences, and as a result it 

changes the probability of occurrence of vexatious sequences. A 

scrambler is implemented using memory elements (flip-flops) and modulo 

2 adders (XOR gates). The connection between the memory elements 

and modulo 2 adders is defined by the generator polynomial. Figure 4-6 

below illustrates a scrambler. An appropriate descrambler is required at 

the receiving end to recover back the original data.  

 

 

Figure 4-6: Data Scrambler 

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications 

The PE_SCRAMBLER processing engine performs the task of 

scrambling the DATA field of the PPDU frame format. The PLCP header 

and the preamble bits of the PPDU frame are not scrambled. (5)The 



58 

 

scrambler is length-127 frame synchronous scrambler with a generator 

polynomial  

S(x) = x7 + x4 + 1 according to 802.11a protocol.  A C++ scrambling 

function from GNU Radio is integrated using SystemVerilog DPI into a 

processing engine called PE_SCRAMBLER. 

 

• PE_ENCODER: A convolutional code is a type of error correcting code in 

which each “m” bit information symbol is transformed into an “n” bit symbol 

where “m/n” is the code rate. A transformation function of “K” information 

symbols is required, where “K” is the constraint length. An encoder 

consists of “K” memory elements and “n” modulo 2 adders (XOR gates). 

Figure 4-7 depicts a convolutional encoder of constraint length 7. 

The DATA field, composed of SERVICE, PSDU, tail, and pad parts, 

is encoded with a convolutional encoder of coding rate R = 1/2, 2/3, or 3/4, 

corresponding to the desired data rate. (5)The convolutional encoder uses 

the industry-standard generator polynomials, g0 = 1338 and g1 = 1718 for R 

= ½. The bit denoted as “A” is the output from the encoder before the 

bit denoted as “B”. Higher rates are derived from it by employing 

“puncturing”. Puncturing is a procedure for omitting some of the encoded 

bits in the transmitter (thus reducing the number of transmitted bits and 

increasing the coding rate) and inserting a dummy “zero” metric into the 

convolutional decoder on the receive side in place of the omitted bits. 

Puncturer is not implemented in WiNC2R revision2.  
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A C function performing the task of convolutional encoder of rate ½ 

is integrated using SystemVerilog DPI into a processing engine called 

PE_ENCODER. The engine supports only rate ½ encoding scheme. 

 

 

Figure 4-7: Convolutional Encoder (Constraint Length 7) 

Source: IEEE 802.11a-1999, Wireless LAN MAC and PHY Specifications 

• PE_INTERLEAVER: Interleaving is method adopted in digital 

communication systems to improve the performance of the forward error 

correcting codes. 

  A C function of a block interleaver is integrated in the WiNC2R 

system using SystemVerilog DPI. The C function implements a block 

interleaver with block size equal to number of bits in a single OFDM 

symbol. It performs a two-step process: 

 Permutation of bits in matrix by transposing it. The matrix is 

16 column wide and “n” rows deep, where “n” varies 

depending on the standard and code rate. 
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 Carrying out logical and bit shift operations depending on the 

standard and code rate. 

• PE_MODULATOR: 802.11a protocol supports BPSK, QPSK, 16-QAM 

and 64-QAM modulation schemes. We use the modulator that was 

implemented in WiNC2R revision1, which is a VHDL entity supporting all 

the above-mentioned modulation schemes. The PLCP header is always 

BPSK rate ½ modulated, while the DATA field of the PPDU frame is 

modulated depending on the data rate to be achieved, which is encoded in 

the RATE field of the PLCP header. 

 

• PE_IFFT: The PE_IFFT engine performs the task of pilot insertion for 

each OFDM symbol, Inverse Fourier Transform (IFFT) of the data from the 

modulator, cyclic prefix for each OFDM symbol and prefixing the preamble 

bits at the beginning of the PPDU frame. The preamble generation is 

triggered when the PE_IFFT engine receives a control task from 

PE_HEADER. The PE_IFFT engine is a VHDL entity that was 

implemented in WiNC2R revision 1.  
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CHAPTER 5 

Performance Evaluation of WiNC2R 
 

5.1 WiNC2R Test – Bench Using OVM 

The verification platform used to validate WiNC2R revision2 architecture is based 

on the concept of Open Verification Methodology (OVM) as against Xilinx Bus 

Functional Module (BFM) used in revision1. The verification environment using 

BFM was mainly used to load data into memories and did not serve the purpose 

of validating the environment. On the other hand, by having a verification 

environment based on OVM, one can load data into memories and also execute 

random tests to validate the system architecture and hence have higher 

confidence in the design. Figure 5-1 depicts the verification environment for 

WiNC2R revision2 framework. 
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Figure 5-1: WiNC2R Verification Environment 

As shown in the figure, the FU’s, VFP and OVM verification environment reside 

within a cluster all connected to the main system bus The FU’s and VFP are 

configured as master and slaves on the bus while the OVM verification 

environment is configured as a master only. During initial system configuration, 

the OVM loads the GTT, NTT and local TD tables. It also writes randomly 

generated data into the FU_MAC_TX input buffer and triggers the system by 

writing a descriptor into the FU_MAC_TX TSQ. On writing the descriptor, the 

scheduler within the VFP gets triggered which later initiates the MAC_TX 

processing engine.  

The evaluation of the system is broadly divided into two sections: 

• Effect of chunk size on the system latency 

• Evaluation of multiple flow handling capability of the VFP 
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The following sections describe the experiments in detail and the results deduced 

from each of the experiments. The basic experiment is described in detail that 

gives an idea about the entire system flow. 

5.1.1 Basic Experiment 

The first experiment carried out to validate the system was to transmit a single 

frame of size 64bytes at a rate of 6mbps. The frame is inserted into the 

FU_MAC_TX engine and is propagated to the FU_IFFT engine. The figure 5-2 

shows the command flow set up for the basic experiment. The 

“Tx_Send_Data_Frame” task is inserted in the FU_MAC_TX and the successive 

commands triggered are shown. The figure 5-3 depicts the transfer of the frame 

starting from PE_MAC_TX and ending at PE_IFFT engine. The PE_IFFT engine 

consists of FIFO from which the data is read at a constant rate and passed onto 

the RF side for transmitting.  

 

Figure 5-2: Single Flow Data Transfer 

To avoid corruption of data before transmitting, it is necessary that the data being 

read from the FIFO is continuous, i.e., the FIFO must never empty out or 

overflow once reading has been initiated. The empty or overflow error conditions 
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are the ones that define the successful propagation of frame from PE_MAC_TX 

to PE_IFFT engine.  

 

Figure 5-3: WiNC2R Transmitter Frame Flow 

The empty out or overflow condition at the PE_IFFT FIFO depends on the 

latency of the system. The system latency is the difference between the times 

when the FU_MAC_TX is triggered with the first command and the first data byte 

appears at the output of FU_TX_IFFT. The system latency has a direct relation 

with the Rescheduling Period parameter that is defined in the GTT for the task at 

the PE_HDR and the processing time of each PE. The task at the FU_HDR is a 

synchronous chunking task, i.e., the entire frame is broken up into smaller 

number of chunks and each chunk is scheduled at a definite start time. The 

Rescheduling Period parameter defines the difference between the start times of 

2 chunks at the FU_HDR. The smaller the Rescheduling Period, the lesser is the 

system latency as the chunks get scheduled quicker. On the other hand, with a 

larger Rescheduling Period, the system latency increases as the chunks are 

scheduled slower. Thus, overflow or empty out condition at the FU_IFFT FIFO 
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has a direct relation with the Rescheduling Period. If the FIFO empties out, it 

implies that the chunks were scheduled too far apart. As a result the data chunks 

did not reach the FU_IFFT in time and the FIFO was read out completely. This 

causes data corruption and to avoid this scenario, we need to decrease the 

Rescheduling Period. If the FIFO overflows, it means that the chunks were 

scheduled too close to each other, and hence new data chunks are being written 

in the FIFO, even before the existing chunks in the FIFO have been read out. 

This cause corruption of data again and this scenario can be avoided by 

increasing the Rescheduling Period. 

The second parameter defining the latency of the system is processing time 

required by each processing engine. The processing time determines the latency 

introduced at every stage in the pipeline. Off the seven processing engines, we 

have three processing engines that are C function based (scrambler, encoder 

and interleaver) and hence their processing time can be varied. At present the 

processing time for these engines have been set to a realistic number to build an 

802.11a flow. 

Pitfall: As shown in figure 4-2, the preamble generation task at the FU_IFFT is 

triggered by the FU_HDR. Hence this task jumps the stages of the pipeline and is 

activated. The FU_IFFT generates the preamble and stores it in the FIFO from 

where it is read at a constant rate. To avoid data corruption, it is required that the 

first data chunk is written into the FIFO before the preamble is completely read 

out from the FIFO. From revision1 task flow, the preamble generation was an 

asynchronous control task that gets scheduled immediately at the FU_IFFT with 

the highest priority. In the new revision task flow, with addition of new processing 
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engines, the preamble generation task would get scheduled immediately and the 

FIFO would empty out as there is an increase in latency of the data chunk. The 

FIFO empty condition would occur even after reducing the rescheduling period 

parameter to schedule the data chunks at FU_HDR faster. To overcome this 

scenario, it was required to schedule the preamble generation task at the 

FU_IFFT later in the pipeline stage. This was achieved by converting the 

asynchronous control preamble generation task to a synchronous task. By 

converting the task to a synchronous task, we have a greater control on 

scheduling the task. The preamble task can now be triggered at a later stage in 

the flow, thus ensuring that the FIFO empty error does not occur. The change 

from asynchronous to synchronous task was easily achievable as it required only 

changing the task type in the GTT. The error could have been overcome by 

triggering the preamble generation at the FU_ENCODER or FU_INTERLEAVER 

instead of the FU_HDR. This would have resulted in changing the PE’s to give 

out the specific next task and status vector. On comparing the pros and cons of 

the two solutions, it is seen that by changing the task to a synchronous task 

would always give us more control on the start time of the preamble generation 

task even in the future where there might be more processing engines in the 

flow. This clearly brings out the flexibility in the WiNC2R system. 

Throughput: The throughput of the system is defined as the number of data bits 

transmitted per second. The revision2 WiNC2R supports rates of 6, 12 and 24 

Mbps. We tested the throughput of our system for the mentioned rates only. 

In an actual system, once the PE_IFFT writes the data into the FIFO, the data is 

read by the DAC at a constant rate. Thus, by setting the reading rate of the FIFO 
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to an appropriate value we achieve the target throughput. The output of the IFFT 

consists of complex symbols and hence the total size at the output of the IFFT is 

greater than the input data size fed into the system. The formula to calculate the 

required FIFO reading rate is shown below: 

Information data (bits) / Rate = Complex data (bits) / FIFO Reading Rate 

Thus, 

FIFO Reading Rate = (Complex Data * Required Rate)/ Information Data 

Once the reading rate of the FIFO is fixed to achieve the required throughput, the 

Rescheduling Period must be altered in a way to avoid the FIFO from getting 

empty. As we reduce the Rescheduling Period, the throughput increases. The 

achieved throughput is calculated at the PE_HDR by measuring the time 

required by the PE_HDR to process all the data chunks. The table 5-1 shows the 

throughput achieved for different target rate requirements in a system supporting 

a single flow. The throughput is calculated at the PE_HDR as explained. The 

throughput calculated is the rate through the WiNC2R system before it is sent out 

of the IFFT FIFO. If the throughput is measured at the FIFO, it will be at the 

nominal rate. 
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Target Rate (Mbps) Peak Throughput 

Measured at 

HDR(Mbps) 

6 7.47 

12 16.25 

24 34 

Table 5-1: System Throughput 

5.1.2 System Latency Experiment 

This experiment deals with finding the latency of the system while supporting a 

single flow of different rates. A total of 11 frames of size 400 bytes are sent  

back – to – back for each rate. 
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Figure 5-4: Single Flow Latency 

As noticed from the above graph, transmitting the first frame is always the best- 

case scenario as all the processing engines are in their idle state and the 

overhead introduced by the VFP controller is minimum. As more frames get lined 

up in the pipeline, all the processing engines are busy at the same time and the 

overhead introduced by the VFP controller also increases. 

 

The system latency is a sum of three quantities. 

1. Processing time of PE: This is the processing time taken by each PE to 

process a single chunk of data. 

2. DMA transfer time: This is time required to transfer a single data chunk 

from FU_HDR to FU_IFFT. 
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3. VFP Processing Time: This is the time taken by the VFP controller to 

schedule a task to the producer FU, identify the consumer FU and insert 

the next task in the flow in the appropriate consumer FU. 

 

5.1.3 Variation of chunk size on system latency 

The chunk size described in section 3.4 plays an important role in defining the 

latency of the system. As depicted in the Figure 4-2, the FU_MAC_TX transfers 

the entire frame to the FU_HDR. The task executed by FU_HDR is a chunking 

task, and hence FU_HDR works only on small chunks of the frame and passes 

on the chunks to the successive FU’s. The final output is obtained at the 

FU_IFFT. Thus, determining an optimum chunksize is necessary as it has a 

direct effect on the latency of the system. 

This experiment deals with varying the chunk size as shown in Table 3.2. We 

send single frames of size 400 bytes at data rates of 6 and 12 Mbps. The chunk 

size and the first chunk sizes are different for every rate and thus the aim of the 

experiment is to see the effect of a larger chunk size on the system latency.  The 

chunksize and the first-chunksize calculated in Table 4.1 are under the 

assumption that one chunk consists of four OFDM symbols. To vary the 

chunksize, we have to vary the number of OFDM symbols in each chunk. The 

Table 5-2 illustrates the variation in chunksize with different number of OFDM 

symbols and the overall effect on system latency. 
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Rate 

(Mbps) 

OFDM 

symbols 

per chunk 

Chunk 

Size 

(bytes) 

First 

Chunk 

Size 

(bytes) 

Number of 

chunks 

Avg.Latency 

(clk cycles) 

6 4 12 7 34 3605 

 8 24 19 17 14099 

12 4 24 16 17 4819 

 8 48 40 9 13437 

24 4 48 34 9 5479 

 8 96 82 5 13450 

Table 5-2: Variation of latency with chunksize 

As the chunksize increases, the rescheduling period also increases. As a result, 

the system latency increases even if the number of chunks is lesser. An optimum 

number of OFDM symbols per chunk are required to support multiple flows. If the 

number of OFDM symbols per chunk is less, lesser number of flows is supported, 

as the rescheduling period is lesser. On the other hand, with greater number of 

OFDM symbols per chunk, the system can support more multiple flows, but at 

the expense of increased system latency.  

 

5.1.4 Evaluation of Multiple Flow Support by VFP 

An important feature of a cognitive radio is its ability to support multiple 

technologies at the same time and also reusing the existing hardware. Hence, 

the underlying hardware must be easily re-configurable to support different 
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technologies at the same time. The aim of this experiment is to see how 

effectively the VFP switches between multiple flows. In the earlier revision of 

WiNC2R, the VFP was local to every FU and hence would remain idle most of 

the time after completing tasks allocated to the particular FU. To have a better 

utilization of VFP, the VFP is centralized and hence it becomes important to see 

the VFP utilization in case of multiple flows. 

To support multiple flows, it is necessary that each flow have their own set of 

tasks pre-defined. The tasks for every flow are populated in the GTT, NTT and 

TD tables. The FU_TX_IFFT can handle a maximum of four OFDM flows. Each 

flow is assigned a different channel id. On the basis of the channel id, the 

FU_TX_IFFT engine is able to differentiate between flows, and stores the output 

of each flow in a different FIFO, hence ensuring that the data from different flows 

is not mixed with each other and corrupted. The number of channels imposes a 

limitation on the system, as only a maximum of four flows can be supported at a 

time. As the FU_MAC engine works on a single task a time, the earliest the next 

flow can be inserted in the system is only after the FU_MAC completes operating 

on the first flow.   

Figure 5-4 depicts the command flow in case of a multiple flow scenario and 

figure 5-5 shows the multiplexing of 2 flows. 



73 

 

 

Figure 5-5: Multiple Flow Data Transfer 

 

 

Figure 5-6: Multiplexing of chunks in 2 flows 

  

The experiment was carried out at rates 6, 12 and 24 Mbps for a frame size of 

400 bytes and the effect of adding an extra flow on the latency and throughput of 

the system was observed.  

Limitation: As mentioned before, there are four FIFO’s available in FU_IFFT 

which store the data to be sent to the DAC. Each FIFO is dedicated to a flow. 
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When the system is supporting multiple flows, it may happen that before a frame 

is completely read out from the FIFO, the PE_IFFT engine gets the task of 

generating the preamble for the succeeding frame of the same flow. In this case, 

the preamble of the succeeding frame gets inserted into the FIFO even before 

the preceding frame is completely read out leading to a channel error. To 

overcome this scenario, we dedicate two FIFO’s to one flow. This way the first 

frame is written into FIFO1 and the succeeding frame of the same flow gets 

written into FIFO2. This pattern then gets repeated over multiple frames. As the 

current implementation supports only four FIFO’s, we carried out the experiments 

for two flows only. 

The first experiment is to support to two flows of the same rate. The frame size 

for both the flows is 400 bytes and frames are sent back-to-back in both flows. 

The figures show the difference in the latency of a system supporting a single 

flow versus two flows for rates 6 and 12 Mbps. 
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Figure 5-7: Variation in latency between single and two flows at rate 

6Mbps 

An increase in the latency of the system is noticed with the addition of one flow. 

An increase of close to 88% is noticed in case of 12Mbps and 121% in case of 

6Mbps. We suspect the increase in the latency is due to scheduling of the 

available resources and are looking further into the different aspects that might 

cause this problem. 
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Figure 5-8: Variation in latency between single and two flows at rate 12Mbps 

 

Figure 5-9: Variation in latency between single and two flows at rate 24Mbps 
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It is necessary to increase the clock speed to meet the throughput requirement in 

case multiple OFDM flows. The throughput achieved in case of running two flows 

is shown at a higher clock rate is shown in table 5-2. 

 

Target Rate (Mbps) Number of Flows Peak Throughput Measured 

at HDR (Mbps) 

6 2 26.98 

12 2 51.06 

24 2 88.5 

Table 5-3: Throughput for two flows 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 
 

The WiNC2R was developed with an aim to achieve speed of operation through 

hardware and re-configurability through software. From the analysis of the 

system architecture, it is definitely proven that the WiNC2R platform is 

reconfigurable to a great extent. In the new revision of WiNC2R, we have tried to 

overcome the disadvantages of the previous revision, by having a new 

centralized VFP controller catering to all the functional units. We replaced the 

PLB bus with the AMBA AXI bus, which proves to be more efficient and helps in 

reducing the bottleneck caused due to data transfer in the previous revision. We 

have also set up a realistic transmitter having all the processing engines of the 

802.11a protocol. The processing engines are now a mixture of hardware 

engines and software engines having realistic latencies. This ensures that the 

platform is able to support different types of processing engines depending on 

the application. 

The latency and throughput of the system was calculated for frames of rates of 6, 

12 and 24 Mbps in a single flow. The system is able to support all the three rates. 

We then analyzed the effect of changing the chunksize on the latency and 

throughput. A higher throughput is achieved at a cost of higher latency by 

increasing the chunksize. A chunksize of 4 OFDM symbols is considered 

optimum to balance the tradeoff between latency and throughput. 
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An analysis was also done on the multiple flow support of the WiNC2R engine, 

which is the core feature of any cognitive radio platform. The experiments were 

run for flows supporting rates of 6, 12 and 24 mbps. A maximum of 2 flows is 

supported by the current implementation. The system supports all the three rates 

without any degradation in the throughput. 

Future Work 

The current architecture of the PE_IFFT engine imposes a limitation on the 

latency and throughput of the system by ensuring that the FIFO’s don’t underflow 

or overflow. This can be improved by terminating the chunks at the PE_IFFT 

engine by the process of de-chunking. By de-chunking, the task at PE_IFFT will 

be activated only once all the chunks have arrived. The PE_IFFT engine can also 

generate the preamble on receiving the first chunk, hence removing the need to 

trigger the task from FU_HDR. 

As seen from the results, the latency increases drastically in case of multiple 

flows as against a single flow. We need to analyze the overhead introduced by 

the VFP controller to support multiple flows. 
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