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ABSTRACT OF THE DISSERTATION

Phenomenology of Pure-Gauge Hidden Valleys at Hadron

Colliders

by Jose E. Juknevich

Dissertation Director: Professor Matthew J. Strassler

Expectations for new physics at the LHC have been greatly influenced by the Hierarchy problem

of electroweak symmetry breaking. However, there are reasons to believe that the LHC may

still discover new physics, but not directly related to the resolution of the Hierarchy problem.

To ensure that such a physics does not go undiscovered requires precise understanding of how

new phenomena will reveal themselves in the current and future generation of particle-physics

experiments. Given this fact it seems sensible to explore other approaches to this problem; we

study three alternatives here.

In this thesis I argue for the plausibility that the standard model is coupled, through new

massive charged or colored particles, to a hidden sector whose low energy dynamics is con-

trolled by a pure Yang-Mills theory, with no light matter. Such a sector would have numerous

metastable “hidden glueballs” built from the hidden gluons. These states would decay to parti-

cles of the standard model. I consider the phenomenology of this scenario, and find formulas for

the lifetimes and branching ratios of the most important of these states. The dominant decays

are to two standard model gauge bosons or to fermion-antifermion pairs, or by radiative decays

with photon or Higgs emission, leading to jet- and photon-rich signals, and some occasional

leptons. The presence of effective operators of different mass dimensions, often competing with

each other, together with a great diversity of states, leads to a great variability in the lifetimes

and decay modes of the hidden glueballs. I find that most of the operators considered in this

work are not heavily constrained by precision electroweak physics, therefore leaving plenty of

room in the parameter space to be explored by the future experiments at the LHC. Finally, I
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discuss several issues on the phenomenology of the new massive particles as well as an outlook

for experimental searches.
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Chapter 1

Introduction and overview

The last century has seen revolutionary discoveries in particle physics, where a vast number

of ambitious experiments have been conducted in concordance with major theoretical break-

throughs. The Standard Model (SM) has emerged as the best construct for explaining the

range and behavior of particle interactions, as it has ability to explain a wide range of observed

phenomena down to distances of order of 10−16 centimeters. Its electroweak sector has been

probed to better than 1% level by precision experiments at low energy as well as at the Z-pole

by LEP and SLC, severely constraining possible extensions of the SM at the TeV scale [1].

Yet, there are high hopes that new phenomena beyond the Standard Model are awaiting to

be discovered already at the TeV scale. The reason is founded on the principle of naturalness,

according to which the parameters of a low energy effective theory should not be much smaller

than the contributions that come from running them up to the cutoff. Applying this principle to

the Standard Model means that despite its incredible precision this theory cannot be complete

due to an instability in the Higgs sector: radiative corrections to the mass parameter in the

Higgs potential tend to scale with the largest mass scale in the theory M , with M being the

Planck scale or any other high energy scale. IfM is too large, the Higgs mass must be fine-tuned

to an accuracy of order (MW /M)2 to explain the weak scale. In the absence of highly unnatural

fine-tuning of the parameters in the underlying theory, the stabilization of the electroweak scale

would then suggest the existence of new particles at the TeV scale.

Our best hope for the resolution of the hierarchy problem is now at the Large Hadron

Collider (LHC) at the CERN laboratory in Geneva. With the LHC, particle physics enters a

new era of potential discovery, one which may provide insights into the many puzzles of the SM.

Given the immense challenges of hadron collider physics, and the degree to which the future of

particle physics rests on the LHC, it is important to ensure that the LHC community is fully

prepared for whatever might appear in the data. This requires consideration of a wide variety

of models and signatures in advance of the experimental program.

Most of the effort for searches of physics beyond the Standard Model (BSM) has focused on

“minimal” models which solve the hierarchy problem. The most favored solution is presently
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Supersymmetry (SUSY), with others including the little Higgs, warped extra dimensions and

technicolor. However, experience has taught us that the most striking experimental discoveries

may a priori be unrelated to the fundamental questions. We have also learned that BSM physics

may be especially difficult to discover, either because SM backgrounds are large or because

special discriminating variables are needed to extract a signal from backgrounds. Therefore,

it is prudent that we explore as many scenarios for BSM physics as possible, with particular

emphasis on models with varied experimental signatures, to ensure that their signatures would

not be missed at the LHC.

Among the extensions of the SM not directly tied to electroweak symmetry breaking, those

with an additional U(1) factor in the gauge group, associated with a heavy neutral gauge

boson Z ′, have often been considered in direct and indirect searches for new physics, and in

the studies of possible early discoveries at the LHC (for recent reviews and references, see

e.g. [2–4]). While not prescribed by compelling theoretical or phenomenological arguments,

these extensions naturally arise from Grand Unified Theories (GUTs) based on groups of rank

larger than four and from higher-dimensional constructions such as string compactifications.

Z ′ bosons also appear in little Higgs models, composite Higgs models, technicolor models and

other more or less plausible scenarios for physics at the Fermi scale.

One likely possibility for new non-minimal physics involves the presence of a hidden sector

with TeV-scale couplings to the standard model. A large fraction of these models fall within

the “hidden valley scenario” [6–11]. In the hidden valley scenario, a new hidden sector (the

“hidden valley sector”, or “v-sector” for short) is coupled to the SM in some way at or near the

TeV scale, in such a way that the cross sections for SM visible particles disappearing into the

hidden sector are small enough to evade the current experimental limits, and yet large enough

to be observable at LHC. Typically, the valley particles “v-particles” are charged under a valley

group Gv and neutral under the SM group GSM , and the SM particles are neutral under Gv.

The v-sector’s dynamics also generates a mass gap. Such a mass gap,1 independent of the

dynamics leading to that gap, ensures that there are particles that are stable or metastable

within the v-sector. These can only decay, if at all, via their very weak interactions with the

SM. A common choice is to have a coupling via a Z ′ or via loops of heavy particles carrying

both GSM and Gv charges. Processes that access the hidden valley are often quite unusual

compared to those in minimal supersymmetric or other well-studied models. Production of

v-sector particles commonly leads to final states with a high multiplicity of SM particles. Also,

1or more generally a mass “ledge” where one or more new particles in the hidden sector, unable to decay
within its own sector, is forced to decay via its weak coupling to the SM sector
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a hidden valley often leads to particles that decay with macroscopic decay distances. The

resulting phenomenological signatures can be difficult, or at least subtle, for detection at the

Tevatron or LHC; see for example [6, 7, 11].

Hidden valleys have arisen in bottom-up models such as the twin Higgs and folded supersym-

metry models [12, 13] that attempt to address the hierarchy problem, and in a recent attempt

to explain the various anomalies in dark-matter searches [17] which requires a dark sector with

a new force and a 1 GeV mass scale. They are also motivated by top-down model building:

hidden sectors that are candidate hidden valleys arise in many string theory models, see for

example [18]. In recent years string theorists have found many models that apparently have the

minimal supersymmetric standard model as the chiral matter of the theory, but which typically

have extra vector-like matter and extra gauge groups. The non-minimal particles and forces

which arise in these various models may very well be visible at the LHC [6].

Interestingly enough, the case in which the hidden sector consists of some new vectorlike

particles X and X̄ that couple to a new confining gauge group SU(nv) leads to a surprisingly

exotic phenomenology, if the following condition is satisfied:

MX ≫ Λv, (1.1)

where MX is the X mass and Λv is the scale where the SU(nv) gauge coupling gets strong.

The reason is that, once produced, the X particles are eternally bound by an SU(nv) confining

string, leading to a quite unusual, “quirky” phenomenology. By this reason, the X particles

have been dubbed “quirks”. This model was first considered in [47, 48], and more recently

in [49]. In [6], this model was also mentioned as an example of a hidden valley model.

In this dissertation we attempt to continue this effort by exploiting the ideas of hidden

valleys and quirks in order to extract concrete predictions for a variety of experiments at the

LHC. A full study of all classes of hidden valleys is not feasible, and would not be particularly

useful, given that many models are less likely to be found than others. Therefore in this thesis

we focus on a hidden valley that at low energy is a pure-Yang-Mills theory, a theory that has

its own gluons (“v-gluons”) and their bound states (“v-glueballs”) [19]. This scenario easily

arises in models; for example, in many supersymmetric v-sectors, supersymmetry breaking and

associated scalar expectation values may lead to large masses for all matter fields.

In these theories there are two interesting subjects to consider, which will comprise the bulk

of this thesis. The first subject is determining under what circumstances hidden valleys can

give signals that might result interesting and often difficult for the LHC experiments to detect,

so as to assure no phenomena are overlooked. The questions we will attempt to answer are of
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phenomenological origin: What new physics are we looking for? What are their mass scales?

How do they couple to SM fields? and what are their signatures? To answer these questions,

we will need to construct the low-energy effective action coupling the two sectors. Then we

will use it to compute formulas for the partial widths of various decay modes of the v-glueballs,

concentrating on the lighter v-glueball states, which we expect to be produced most frequently.

This is accomplished in chapters 2 and 3 in two different hidden valley models.

The “pure glue” hidden valleys are phenomenologically interesting candidates for what new

phenomena may lie at the TeV scale, which might represent our first indication of an even

richer structure at even higher energies. They have a number of attractive features from both

theoretical and experimental point of view, as well as prospects for rich LHC phenomenology.

Hidden valley confinement can indeed lead to a very rich spectrum of accessible v-glueball

physics, as we shall discuss below. But because the dominant bridge between the SM and the

new physics is provided by the very weak interactions induced by TeV scale mediator fields, the

new physics is not in conflict with existing experiments, and will be more stringently tested in the

near future. Furthermore, assuming that the mediators transform in vectorlike representation

of SM gauge group, one can naturally evade precision electroweak tests.

While pure glue hidden valleys involve very modest additions to the SM, as measured by

either the fundamental particle content or complexity of Lagrangian, it can naturally give rise

to a remarkable array of distinct experimental behaviors, including di-gauge-boson resonances,

fermion pairs, radiative decays with photon and/or Higgs emission and long-lived neutral states,

leading to jet- and photon-rich signals and perhaps displaced vertices. In this thesis we show

how such signals can arise in the hidden valley scenario which has very few parameters and

need not be tuned to avoid exclusion. Some of these signals have appeared previously in other

scenarios, but often within models which are tightly constrained already by experiments. We

will also see that there are some qualitatively distinct signals that have not been discussed

before, such as displaced vertices coexisting with prompt diphoton resonances.

The second subject is related to the question of whether the aforementioned signatures are

likely to be detectable at the LHC. To discover a promptly decaying v-glueball, the cleanest

signature would be its decay to two photons, from which a resonance can be reconstructed. Late

decaying v-glueballs are more complicated, since displaced jet pairs have no physics background

but suffer from various detector and triggering issues, and detection of displaced photon pairs

is often difficult and very dependent upon details of the detector. In either case, a full study

of signal and background is subtle because the dynamics of the production process (e.g. non-

perturbative glueball emission) are not calculable either analytically or numerically, and cannot
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be compared with any known physical process. Besides, there is little that a theorist can do

to study backgrounds from displaced vertices. So in this work we will limit ourselves to some

discussion of the signal rates and of the most likely strategies for discovery.

This thesis is aimed at highlighting some of the generic features of the rich phenomenology

in the pure-gauge hidden valley scenario as well as demonstrating consistency with all present

experimental data, both in the form of exclusion from direct searches as well as the non-

observation of any virtual effect.

This thesis focuses on the papers [19,20,40] published during the course of graduate studies

and on ongoing work [60]. Their results appear as follows:

• Chapter 2 is based on [19].

• Chapter 3 and section 5.2 is based on [20, 40]

• Section 4.6 is based on [40].

• Chapters 4 and 5 are based on [60] and contain work in progress.

The rest of this chapter contain a brief introduction to the theory of hidden valleys and

quirks. In chapter 2 we will qualitatively describe the short distance physics in the hidden

valley scenario with quirks, and set up an effective Lagrangian to compute the decay rates for

some of the most important states. Next, in chapter 3 we will extend our results on pure gauge

hidden valleys to include couplings of the quirks to the SM Higgs sector. We go on to discuss

several issues on the phenomenology of bound states of quirks and their more salient features in

chapter 4. Further details of the phenomenology as well as an outlook for experimental searches

will be presented in chapter 5. Our conclusions will be summarized in chapter 6.

1.1 Hidden valleys

A hidden valley sector (“v-sector”) is defined by the following properties, depicted in figure

1.1 [6]. First, like an ordinary hidden sector, it has its own gauge symmetries and matter

particles, with the property that no light particles carry charges under both Standard Model

gauge groups and under the v-sector gauge groups. A mass gap ensures that not all the particles

in the v-sector decay to extremely-light, invisible particles. An energetic barrier resulting from

the very weak interactions between the SM sector and the v-sector has prevented v-particle

production at LEP. However, collisions of Standard Model particles at higher energy at the

LHC may be able to go over the mountain to produce v-sector particles. Finally, massive long-

lived v-sector particles can decay back to light standard model particles. These decays have
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strongly suppressed rates but would be often observable at the LHC, sometimes with displaced

vertices.

HV

SM

Tevatron,

LEP

LHC

TeV scale

Figure 1.1: A despiction of a hidden valley. The mountain represents massive states which may connect
the Standard Model sector to light states in the valley sector.

Among the representative hidden valley models are those whose gauge groups are strongly-

interacting and confining, with the mass gap generated by the strong dynamics in the v-sector.

A vast array of v-models are possible, as many as the imagination allows for (see figure 1.2) [14].

Some of the many choices for the type of v-sectors include, but are not limited to,

• QCD-like theory with F flavors, N colors

• QCD-like theory with only heavy fermions

• Pure-Yang-Mills theory

• Randall-Sundrum (RS) or Klebanov-Strassler (KS) throat

• Partially Higgsed SU(N)

The strong interactions cause the v-sector particles to confine at the scale Λv and form v-

hadrons. A number of long-lived resonances will result. The strong-interactions also cause v-

parton showering, following which, when the energy scale of a process is large enough compared

to Λv, large numbers of v-hadrons may be simultaneously produced.

Finally, there are also many choices for the communicator fields, including many of the new

heavy states that we have discussed in the introduction, such as

• Z ′

• Higgs, or multiple Higgses
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• Loops of heavy particles

• Heavy sterile neutrinos

Communicator

Standard Model Hidden valley

Figure 1.2: The class of models we are considering for a hidden sector.

The canonical example of a confining hidden valley, proposed by the authors of [6], is that of

a QCD-like scenario, having only two light flavors with a SU(N) gauge group. The dynamics of

the model is determined by the confining scale Λv, where the strong coupling constant becomes

strong. Light or heavy flavor is defined with respect to Λv : light quarks have masses mQ < Λv

and heavy quarks have masses mv > Λv. Production and decay processes of the hidden sector

quarks (“v-quarks”) can occur, for example, through a Z ′, whose charges are from an extra

U(1)χ gauge group. As in QCD, the v-quarks undergo a v-parton shower and form v-jets of

v-hadrons. In the two light flavor model the v-hadrons are electrically neutral v-pions, π±
v and

π0
v , which are the analogue of SM π± and π0 - the labels are simply meant to indicate the

analogy with pions, they do not denote electric charge. Some of these v-hadrons can decay back

to Standard Model particles, making a complex, high-multiplicity final state. This situation is

illustrated in figure 1.3. Depending on parameters, the decays of the v-hadrons may be prompt

or displaced.

v

v

v

v
v

v

����
����
����
����
����
����
����
����
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����
����
���� π

π

π

π

+

π+

b

b

b

b
π

−

−

ο

ο

U

UZ’

q

q

Figure 1.3: The production and hadronization of v-quarks.

This scenario was investigated by Strassler and Zurek with tools analogous to the ones used

to simulate QCD [6]. It displays some rather startling features. For instance, a πv could have a

displaced decay in the muon spectrometer in the ATLAS detector, resulting in a large number
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of charged hadrons traversing the spectrometer, or it could decay in the hadronic calorimeter

producing a jet with no energy deposited in the electromagnetic calorimeter and no associated

tracks in the inner detector. Experimental studies for these scenarios are currently under way,

by the D0, CDF, LHCb, ATLAS and CMS collaborations.

This is just one simple model with two light flavors. However, the number of possibilities is

huge, and it is possible to think of other simple variants. For example, in the case of one light

flavor instead of two, the phenomenology is widely different. In this case, the light degrees of

freedom are the ηv (pseudoscalar) and the ρv (pseudovector), with masses of order mv ≃ Λv. It

was shown in [6] that the ρv will decay democratically to all SM flavors. As a result, it may be

possible to tag such events using multiple leptons from the decay of the vector. This aids the

task of extracting a signal from the background.

However, in the case of hidden valleys with many light flavors, detection may be especially

difficult [10]. These models predict a high multiplicity of v-hadrons, which in turn implies that

the number of jets in their decay products will be especially large. So for jets produced in

v-hadron decays, QCD backgrounds will be large and unknown, and any signal will be tough

to extract.

The limit where there are no light v-quarks, but only a hidden sector with a low confinement

scale is particularly interesting. In this case, the lightest states in the v-sector are glueballs of

SU(N) (“v-glueballs”). The v-color interactions ensure that all the heavy v-hadrons annihilate

efficiently into v-glueballs. These can then decay back into SM states via their coupling to

electroweak boson or the Higgs.

1.2 Quirks

Theories with an extra confining gauge group SU(nv) sector and some heavy matter fields

charged under both SM and SU(nv) gauge group such that there is a large hierarchy between

the masses of the matter fields, MX , and the confining scale, Λv, give rise to very unusual

dynamics [6, 47–49]. For this reason the quarks (or scalar quarks) of such a sector have been

dubbed quirks [49]. To understand this, let us first recall the dynamics of normal QCD. Consider

two heavy quarks that are produced back-to-back in a hard process. As the two quarks fly away

from each other and their distance approaches Λ−1
QCD, confining dynamics sets in and creates a

gluonic flux tube extending between them. When the local energy density in the flux tube is

high enough it is energetically favorable to pair create a light quark anti-quark pair, breaking

the tube. This mechanism of soft hadronization allows the two heavy quarks to hadronize



9

separately.

In the quirk scenario, on the other hand, such a soft hadronization mechanism is absent

because there are no quarks with mass less than or comparable to Λv (see figure 4). The

energy density in the flux tube, or more simply, the tension of the SU(nv) string, cannot

exceed Λ2
v which is far less than the MQ per Compton wavelength needed to create a heavy

quirk anti-quirk pair. The splitting of the SU(nv) string by a quirk anti-quirk pair is indeed

exponentially suppressed as exp (−M2/Λ2) [16]. In fact, one may view the entire process as

single production of a highly excited bound state, quirkonium. All of the kinetic energy that

the quirks posses at production,
√
s− 2MQ, which is typically of order MQ, can be interpreted

as quirkonium excitation energy. This energy is radiated away into glueballs of SU(nv) and

hadrons. Eventually the two quirks annihilate into lighter states.

Figure 1.4: Pictorial diagram of quirk confinement. A flux tube of SU(nv) chromoelectric field forms
between quirks. Since the mass of the quirks satisfies MX ≫ Λv, flux tube in SU(nv) are stable.

Because the quirks are very heavy, MQ ≫ Λv, the light degrees of freedom in the v-sector

are glueballs of SU(nv). However, the standard model is uncharged under the new SU(nv)

gauge group, and therefore a quirk loop is required to couple the sectors at low energies. As

a result, effective couplings to the v-sector are highly suppressed at low energies. Specifically,

the leading coupling between the standard model and the hiddden valley sector at low energies

arises from a loop of virtual heavy quirks. This gives rise to dimension-8 effective operators

of the form tr F 2tr G2 and F tr G3, which mediate glueball decay, for example to photons or

gluons.

The existence of additional gauge groups with matter in bifundamental representations is a

hallmark of string theory model building. A quirk sector with vectorlike quirks and an extra

gauge group SU(nv) sector can therefore arise naturally from string theory. It is also trivial

to preserve gauge coupling unification in supersymmetric theories by assuming that the quirks

come in complete GUT representations, e.g. 5⊕ 5̄ and/or 10⊕ 1̄0 [15].

In fact, a quirk-like sector has already appeared in some supersymmetric extensions of the

Standard Model motivated by the hierarchy problem. Such a sector was proposed in [15] to

give additional loop contributions to the physical Higgs mass in supersymmetry. Scalar quirks

appear in models of folded supersymmetry [13].
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The collider phenomenology of quirks depends crucially on the length of the strings [49].

This is set by the scale where the kinetic energy is converted to potential energy of the string.

Since the typical quirk pair production event is not close to threshold, the maximal length is

L =
E

Λ2
v

(1.2)

where E =
√
ŝ− 2M is the kinetic energy of the quirks upon production. One can distinguish

three different regimes.

• 100eV . Λv . 10keV: In this case oscillations will be macroscopic. Since it takes many

crossings before the quirks annihilate, one only observes the tracks of stable quirks in the

detector.

• 10keV . Λv . 1MeV: This is the case of mesoscopic strings. In this case one cannot

resolve the oscillations, and the quirks look like a stable charged particle.

• 1MeV . Λv . 100GeV: Here the strings are microscopic and the quirks get close enough

to each other that they can annihilate. For Λv & ΛQCD the annihilation is dominantly

into gluons of SU(nv) gauge group, which at long distance become glueballs.

In the following we will be mostly interested in the case of microscopic strings where the

quirks can annihilate producing visible signals.

So the overall picture in the quirk limit is that quirks are pair produced, and they fly away

from each other, sometimes macroscopic distances before the string pulls them back together.

They oscillate back and forth this way many times before the quirks can find each other and

annihilate. Whether the annihilation occurs in the detector and whether the string oscillations

are large enough to be visible will depend on the size of the confinement scale. We will see that

the collider phenomenology will be very sensitive to the confinement scale in the hidden sector,

leading to some remarkable, unstudied phenomena.
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Chapter 2

A pure-glue hidden valley

In this chapter we consider a hidden valley that at low energy is a pure-Yang-Mills theory,

a theory that has its own gluons (“v-gluons”) and their bound states (“v-glueballs”). This

scenario easily arises in models; for example, in many supersymmetric v-sectors, supersymmetry

breaking and associated scalar expectation values may lead to large masses for all matter fields.

The spectrum of stable bound states in a pure Yang-Mills theory is known, to a degree,

from lattice simulations [24]. The spectrum of such states for an SU(3) gauge group is shown

in figure 2.1. The spectrum includes many glueballs of mass of order the confinement scale Λv

(actually somewhat larger), and various JPC quantum numbers. All of the states shown are

stable against decay to the other states, due to kinematics and/or conserved quantum numbers.

Figure 2.1: Spectrum of stable glueballs in pure glue SU(3) theory [24].

In this work we will further specialize to the case where the coupling between the SM sector

and the v-sector occurs through a multiplet of massive particles (which we will call X) charged

under both SM-sector and v-sector gauge groups.1 A loop of X particles2 induces dimension-D

1Recently such states, considered long ago [47,48], have been termed “quirks”; some of their very interesting
dynamics, outside the regime we consider here, have been studied in [49].

2Much of the study covered in this and the next chapter was carried out before the proposal of [49] to name
the X particles as “quirks”. In most of the following discussion, the names “X particles” and “quirks” are used
indistinctly.
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operators of the form
1

MD−4
O(D−d)

s O(d)
v (2.1)

where M is the mass of the heavy particle in the loop. Here we have split the dimension-D

operator O(D) into a Standard-Model part O(D−d)
s of dimension D−d and a hidden-valley part

O(d)
v of dimension d. All v-glueball states can decay through these operators.

By simple dimensional analysis, these operators yield partial decay widths of order Λ2D−7
v /M2D−8.

We will see that the v-glueball decays are dominated by D = 8 operators. The next operators

have D = 10, and their effects are typically suppressed by ∼ (Λv/M)4. The D = 8 operators

induce lifetimes for the v-glueballs of order M8/Λ9, which can range anywhere from 10−20 sec-

onds to much longer than a second, depending on the parameters. Implicitly our focus is on

the case where the lifetimes are short enough that at least a few decays can be observed in an

LHC detector. This typically requires lifetimes shorter than a micro-second, if the production

cross-section is substantial.3 However, our formulas will be valid outside this regime as well.

We will need to construct the D = 8 effective action coupling the two sectors. Then we

will use it to compute formulas for the partial widths of various decay modes of the v-glueballs,

concentrating on the lighter v-glueball states, which we expect to be produced most frequently.

Application of our formulas, particularly as relevant for the LHC, will be carried out in

chapter 5. To put the present work in context, we now briefly review the results to be presented

there. Although there are some irreducible uncertainties due to unknown glueball transition

matrix elements and decay constants, we find that the various v-glueball states have lifetimes

that probably span 3 or 4 orders of magnitude. We also find that the dominant v-glueball

decays are to SM gauge-boson pairs, or radiative decays to another v-glueball and a photon (or

perhaps a Z boson.) We will demonstrate that detection should be straightforward, if the mass

M of the quirk X is small enough to give a reasonable cross-section, and Λv is large enough

to ensure the v-glueballs decay promptly. Several v-glueballs form di-photon resonances, which

should be easy to detect if their decays are prompt. Unlike [10], or especially [11], it appears

that traditional cut-based analysis on ordinary events with jets and photons will be sufficient.

For displaced decays, however, special experimental techniques are always needed. There are a

number of different signatures, and the optimal search strategy is not obvious.

This chapter is organized as follows. In Sec. 2, we introduce our model and systematically

describe the v-sector operators and the v-glueball states. In Sec. 3, we describe the effective

3To avoid any confusion, we emphasize again that these v-glueballs have extremely weak interactions with
the standard model, and do not interact with the detector (in contrast to R-hadrons, which are made from
QCD-colored constituents and have nuclear-strength interactions.) They can only be detected directly through
their decay to standard model particles.
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action coupling the two sectors and the SM matrix elements relevant for the decays. Our main

results for the decay modes and their branching fractions appear in Sec. 4. We conclude in

Sec. 5 with some final comments and perspective. Additional results appear in the Appendix.

2.1 The model and the hidden valley sector

2.1.1 Description of the Model

Consider adding to the standard model (SM) a new gauge group G, with a confinement scale Λv

in the 1–1000 GeV range. We will refer to this sector as the “hidden valley”, or the “v-sector”

following [6]. What makes this particular confining hidden valley special is that it has no light

charged matter; its only light fields are its gauge bosons, which we will call “hidden gluons”

or “v-gluons”. At low energy, confinement generates (meta)stable bound states, “v-glueballs”,

from the v-gluons. The SM is coupled to the hidden valley sector only through heavy fields Xr,

in vector-like representations of both the SM and G, with masses of order the TeV scale. These

states can be produced directly at the LHC, but because of v-confinement they cannot escape

each other; they form a bound state which relaxes toward the ground state and eventually

annihilates. The products of the annihilation are often v-glueballs. (Other annihilations lead

typically to a hard pair or trio of standard model particles.) Thereafter, the v-glueballs decay,

giving a potentially visible signal.

For definiteness, we take the gauge group G to be SU(nv), and the particles Xr to trans-

form as a fundamental representation of SU(nv) and in complete SU(5) representations of the

Standard Model, typically 5+ 5̄ and/or 10+10. We label the fields and their masses as shown4

in table 3.1. In this work, we will calculate their effects as a function of mr. The approximate

Field SU(3) SU(2) U(1) SU(nv) Mass

Xd̄ 3 1 1
3 nv md̄

Xℓ 1 2 − 1
2 nv mℓ

Xū 3̄ 1 − 2
3 nv mū

Xq 3 2 1
6 nv mq

Xe 1 1 1 nv me

Table 2.1: The new fermions Xr that couple the hidden valley sector to the SM sector.

global SU(5) symmetry of the SM gauge couplings suggests that the masses md̄ and mℓ should

4In this work, we normalize hypercharge as Y = T3 −Q, where T3 is the third component of weak isospin.
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be roughly of the same order of magnitude, and similarly for the masses mq,mū,me. It is often

more convenient to express the answer as a function of the (partially redundant) dimensionless

parameters

ρr ≡ mr/M . (2.2)

Here M is a mass scale that can be chosen arbitrarily; depending on parameters, it is usually

most natural to take it to be the mass of the lightest Xr particle.

Integrating out these heavy particles generates an effective Lagrangian Leff that couples

the v-gluons and the SM gauge bosons. The terms in the effective Lagrangian are of the

form (2.1), with operators O(d)
v constructed from the gauge invariant combinations5 tr FµνFαβ

and tr FµνFαβFδσ, contracted according to different irreducible representations of the Lorentz

group.

The interactions in the effective action then allow the v-glueballs in figure 2.1, which cannot

decay within the v-sector, to decay to final states containing SM particles and at most one

v-glueball. This is analogous to the way that the Fermi effective theory, which couples the

quark sector to the lepton sector, permits otherwise stable QCD hadrons to decay weakly to

the lepton sector. As is also true for leptonic and semileptonic decays of QCD hadrons, our

calculations for v-hadrons decaying into SM particles simplify because of the factorization of

the matrix elements into a purely SM part and a purely hidden-sector part. To compute the

v-glueball decays, we will only need the following factorized matrix elements, involving terms

in the effective action of dimension eight:

〈SM |O(8−d)
s |0〉〈0|O(d)

v |Θκ〉 , (2.3)

〈SM |O(8−d)
s |0〉〈Θκ′ |O(d)

v |Θκ〉 . (2.4)

Here d is the mass dimension of the operator in the v-sector, 〈SM | schematically represents a

state built from Standard Model particles, and |Θκ〉 and |Θκ′〉 refer to v-glueball states with

quantum numbers κ, which include spin J , parity P and charge-conjugation C. We will see later

that we only need to consider d = 4 and 6; there are no dimension D = 8 operators in Leff for

which d = 5, since there are no appropriate dimension-three SM operators to compensate. The

SM part 〈SM |O(8−d)
s |0〉 can be evaluated by the usual perturbative methods of quantum field

theory, but a computation of the hidden-sector matrix elements 〈0|O(d)
v |Θκ〉 and 〈Θκ′ |O(d)

v |Θκ〉

requires the use of non-perturbative methods.

5Here we represent the v-gluon fields as Fµν = Fa
µν Ta, where Ta denote the generators of the SU(nv)

algebra with a common normalization tr TaT b = 1
2
δab.



15

2.1.2 Classification of v-glueball states

In this section we shall classify the nonvanishing v-sector matrix elements. A v-glueball state Θκ

with quantum numbers JPC can be created by certain operators O(d)
v acting on the vacuum | 0〉.

We wish to know which matrix elements, 〈0|O(d)
v |Θκ〉 and 〈Θ′

κ|O
(d)
v |Θκ〉, are nonvanishing. This

is equivalent to finding how the operators in various Lorentz representations are projected onto

states with given quantum numbers JPC . Their classification was carried out in [46]. At mass

dimension d = 4 there are four different operators transforming in irreducible representations

of the Lorentz group. These are shown6 in table 2.2. From now on, we denote the operators

Oξ
v, where ξ runs over different irreducible operators ξ = S, P, T, L, · · · .

Operator Oξ
v JPC

S = tr FµνFµν 0++

P = tr FµνF̃µν 0−+

Tαβ = tr FαλF λ
β − 1

4 gαβS 2++, 1−+, 0++

Lµναβ = tr FµνFαβ − 1
2 (gµαTνβ + gνβTµα − gµβTνα − gναTµβ) 2++, 2−+

− 1
12 (gµαgνβ − gµβgνα)S + 1

12 ǫµναβP

Table 2.2: The dimension d = 4 operators, and the states that can be created by these operators [46].
We denote F̃µν = 1

2
ǫµναβFαβ .

The study of irreducible representations of dimension-six operators is more involved. A

complete analysis in terms of electric and magnetic gluon fields, ~Ea and ~Ba, was also presented

in [46], with a detailed description of the operators and the states contained in their spectrum.

There are only two such operators of relevance for our work, which we denote Ω
(1)
µν and Ω

(2)
µν

as shown in table 2.3. The other dimension-six operators simply cannot be combined with any

SM operator to make a dimension-eight interaction.

2.1.3 Matrix elements

As we saw, the matrix elements are factorized into a purely SM part and a purely v-sector part.

We will first consider the v-sector matrix elements relevant to v-glueball transitions, 〈0|Oξ
v|Θκ〉

6As explained in [46], when an operator Oξ
v is conserved and the associated symmetry is not spontaneously

broken, some states must decouple. For example, with

〈0| Tµν | 1−+〉 = (pµǫν + pνǫµ)F
T

1−+ ,

the conservation of Tµν requires F
T

1−+ = 0, and thus T does not create a 1−+ state. Similarly

〈0| Tµν | 0++〉 = (ap2gµν + bpµpν)F
T

0++ ,

where a and b are some functions of p2, must vanish for Tµν conserved and traceless. Note that the trace
anomaly complicates this discussion, but its effect in this model is minimal; see Sec. 3.1 below.
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Operator Oξ
v JPC

Ω(1)
µν = tr FµνFαβFαβ 1−−, 1+−

Ω(2)
µν = tr Fα

µFβ
αFβν 1−−, 1+−

Table 2.3: The important d = 6 operators. The states that can be created by these operators are
shown [46].

and 〈Θκ′ |Oξ
v|Θκ〉, where |Θκ〉 and |Θκ′〉 refer to v-glueball states with given quantum numbers

and Oξ
v is any of the operators in tables 2.2 and 2.3.

It is convenient to write the most general possible matrix element in terms of a few Lorentz

invariant amplitudes or form factors. For the annihilation matrix elements we will write

〈0|Oξ
v|Θκ〉 = Πξ

κ,µν···F
ξ
κ , (2.5)

where Fξ
κ is the decay constant of the v-glueball Θκ, and Πξ

κ,µν··· is determined by the Lorentz

representations of Θκ and Oξ
v. In table 2.4 we list Πξ

κ,µν··· for each operator.

The decay constants Fξ
κ depend on the internal structure of the v-glueball states and, with

the exception of those that vanish due to conservation laws (see footnote 6), must be deter-

mined by non-perturbative methods, for instance, by numerical calculations in lattice gauge

theory. Only the first three non-vanishing decay constants in table 2.4 have been calculated, for

SU(3) Yang-Mills theory [25], although the reported values are not expressed in a continuum

renormalization scheme. The other decay constants have not been computed.

Likewise, the transition matrix elements 〈Θκ′ |Oξ
v|Θκ〉 are of the form

〈Θκ′ |Oξ
v|Θκ〉 = Πξ

κκ′,µν···M
ξ
κ,κ′, (2.6)

where now M
ξ
κ,κ′ is the transition matrix, which depends only on the transferred momentum. In

table 2.5 we have listed Πξ
κκ′,µν··· for the simplest cases considered later in this work. In several

other cases more than one Lorentz structure Πξ
κκ′,µν··· contributes to the transition element. In

such cases, since none of these matrix elements are known from numerical simulation, we will

usually simplify the problem by using the lowest partial-wave approximation for the amplitudes.

More details will follow in Sec. 2.3.

Clearly, any numerical results arising from our formulas, as we ourselves will obtain in

our LHC study [60], will be subject to some large uncertainties, due to the unknown matrix

elements. Of course, with sufficient motivation, such as a hint of a discovery, many of these

could be determined through additional lattice gauge theory computations.

Now we turn to the SM part of the matrix element, which can be treated perturbatively,
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Oξ
v (Θκ) Πξ

κ,µν··· Fξ
κ

S (0++) 1 F
S

0++

P (0−+) 1 F
P

0−+

Tαβ (0++) gαβ − pαpβ

p2 0

Tαβ (1−+) pαǫβ + pβǫα 0
Tαβ (2++) ǫαβ F

T

2++

Lµναβ (2++) ǫµαPνβ + ǫνβPµα − ǫναPµβ − ǫµβPνα FL
2++

Lµναβ (2−+) (ǫµνρσǫ
σ
βp

ρpα − ǫµνρσǫ
σ
αpρpβ FL

2−+

+ǫαβρσǫ
σ
νp

ρpµ − ǫαβρσǫ
σ
µp

ρpν)/p
2

Ω(n)
µν (1−−) m1−(pµǫν − pνǫµ) FΩ(n)

1−−

Ω(n)
µν (1+−) m1+ǫµναβ(p

αǫβ − pβǫα) FΩ(n)

1+−

Table 2.4: Annihilation matrix elements. ǫµ and ǫµν are the polarization vectors of 1−−, 1+− and
polarization tensor of 2++, 2−+ respectively. Pαβ = gαβ − 2pαpβ/p

2. m1− ,m1+ are the masses of the
1−−, 1+− states; their appearance merely reflects our normalization convention.

Oξ
v (Θκ Θκ′) Πξ

κκ′,µν··· M
ξ
κκ′

P (0−+, 0++) 1 MP
0+0−

Ω(n)
µν (1−−, 0++) pµǫν − pνǫµ MΩ(n)

1−−0++

Ω(n)
µν (1+−, 0−+) pµǫν − pνǫµ MΩ(n)

1+−0−+

Ω(n)
µν (1−−, 0−+) ǫµναβp

αǫβ MΩ(n)

1−−0−+

Ω(n)
µν (1+−, 0++) ǫµναβp

αǫβ MΩ(n)

1+−0++

P (1−−, 1+−) ǫ+ · ǫ− MP
1−−1+−

L (1−−, 1+−) ǫµνρσp
ρǫ−

σ
(pαǫ

+
β − pβǫ

+
α) + µν ↔ αβ − traces ML

1−−1+−

Ω(n)
µν (2−+, 1+−) pµǫναǫ

α − pνǫµαǫ
α MΩ(n)

2−+1+−

Ω(n)
µν (1+−, 2++) ǫµναβǫ

αλǫ̃λp
β , ǫµναβǫ

αλpλǫ̃
β MΩ(n)

1+−2++

Table 2.5: Transition matrix elements. Momentum of the final glueball Θκ′ is denoted pµ; ǫα and ǫαβ

are polarization tensors of spin 1 and spin 2 states respectively. The bottom part of the table contains
matrix elements in the lowest partial wave approximation.

since we will only consider v-glueballs with masses well above ΛQCD.7 In all of our calculations,

the SM gauge-boson field-strength tensors, which appear in the operators, are replaced in the

matrix element by the substitution Gµν ↔ kµεν − kνεµ. For example, for a transition to two

gauge bosons, we write8

〈k1, εa1 ; k2, εb2|tr GµνGαβ |0〉 = δab(k1µε
1
ν − k1νε

1
µ)(k

2
αε

2
β − k1αε

2
β), (2.7)

where k1(2), ε1(2) are the gauge-bosons’ momenta and polarizations respectively. Later in the

7We will do all our calculations at SM-tree level; loop corrections for v-glueball decays to ordinary gluons
should be accounted for when precision is required.

8Note that one has to take into account a factor of 2 which comes from the two different ways of con-
tracting each Ga

µν operator with |k1, εa1 ; k2, εb2〉. This factor then cancels an explicit 1
2

factor appearing in the

normalization of the trace.
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text we will sometimes use the following notation for the SM matrix elements

〈SM |Oη
s |0〉 = hµν···η , (2.8)

where hµν···η = hµν···η (k1, k2, · · · ) is a function of the momenta of the SM particles in the final

state.

2.2 Effective Lagrangian

In this section we discuss the effective action Leff linking the SM sector with the v-sector, and

discuss the general form of the amplitudes controlling v-glueball decays. We will confirm that

all the important decay modes are controlled by D = 8 operators involving the d = 4 and 6

operators listed in tables 2.2 and 2.3.

2.2.1 Heavy particles and the computation of Leff

The low-energy interaction of v-gluons and v-glueballs with SM particles is induced through

a loop of heavy X-particles. In this section we present the one-loop effective Lagrangian that

describes this interaction, to leading non-vanishing order in 1/M , namely 1/M4, which we will

see is sufficient for inducing all v-glueball decays. The relevant diagrams all have four external

gauge boson lines, as depicted in figure 2.2. They give the amplitude for scattering of two

v-gluons to two SM gauge bosons, of either strong (gluons g), weak (W and Z) or hypercharge

(photon γ or Z) interactions (figure 2.2a), as well as the conversion of three v-gluons to a γ or

Z (figure 2.2b).

v

v

X SM

SM
(a)

v

v

v

SM

(b)

X

Figure 2.2: Diagrams contributing to the effective action

The dimension-eight operators appearing in the action can be found in studies of Euler-

Heisenberg-like Lagrangians in the literature. Within the SM, effective two gluon - two photon,

four gluon, and three gluon - photon vertices can be found in [42], [43] and [44] respectively.

These results can be adapted for our present purposes.
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We introduce now some notation, defining G1
µν ≡ Bµν , G

2
µν ≡ Fµν and G3

µν ≡ Gµν , which

are the field tensors of the U(1)Y , SU(2) and SU(3) SM gauge groups. We denote their couplings

gi, i = 1, 2, 3, while gv is the coupling of the new group SU(nv). In terms of the operators from

tables 2.2 and 2.3, the effective Lagrangian reads

Leff =
g2v

(4π)2M4

[

g21χ1B
µνBρσ + g22χ2tr F

µνF ρσ + g23χ3tr G
µνGρσ

]

×
(

1

60
S gµρgνσ +

1

45
P ǫµνρσ +

11

45
Tµρgνσ − 1

30
Lµνρσ

)

+
g3vg1

(4π)2M4
χ

(

14

45
BµνΩ(1)

µν − 1

9
BµνΩ(2)

µν

)

. (2.9)

The coefficients χi and χ encode the masses of the heavy particles from table 3.1 and their

couplings to the SM gauge groups. They are summarized in table 2.6.

χ , χi

χ1
1

3ρ4
d̄

+ 1
2ρ4

l

+ 4
3ρ4

ū
+ 1

6ρ4
q
+ 1

ρ4
e

χ2
1
ρ4
l

+ 3
ρ4
q

χ3
1
ρ4
d̄

+ 1
ρ4
ū
+ 2

ρ4
q

χ 1
ρ4
d̄

− 1
ρ4
l

− 2
ρ4
ū
+ 1

ρ4
q
+ 1

ρ4
e

Table 2.6: The coefficients χ arise from a sum over the SM charges of X particles running in the loop.
The χi, i = 1, 2, 3, arise from the diagram in figure 2.2(a) with two external SM gauge bosons of group
i, while χ is determined by the diagram 2.2(b) with a single hypercharge-boson on an external line.
The ρr are defined in (2.2).

The effective Lagrangian (2.9) can be compactly written as

Leff =

3
∑

i=1

∑

ξ

g
dξ
2

v g
4−

dξ
2

i

(4π)2M4
Ξi
ξOη(ξ,i)

s · Oξ
v, (2.10)

where the sum is over operators and different ways to contract Lorentz indices. The notation

η(ξ, i) is to make explicit that for each ξ and i there is at most one SM operator Oη
s multiplying

Oξ
v in the effective Lagrangian (see table 2.7).

The mass dimension of Oξ
v is denoted dξ, and the Ξi

ξ are dimensionless coefficients given by

Ξi
ξ =







χiCξ dξ = 4

χCξ dξ = 6 .
(2.11)

The Cξ are coefficients that depend only on the v-sector operators and the SM operator with

which they are contracted; they are also given in table 2.7.
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These values for the Cξ are valid around the scaleM , and they will be altered by perturbative

renormalization between this scale and a lower scale closer to the glueball masses, at which the

nonperturbative matrix elements are evaluated.9 These renormalization effects (which will

impact v-glueball lifetimes but cancel out of most branching fractions) can be computed, but

are only useful to discuss once one has concrete values for the decay constants and matrix

elements in a definite renormalization scheme, which at present is not available. We will not

discuss them further here.

Oξ
v Cξ Oη

s · Oξ
v Oξ

v Cξ Oη
s · Oξ

v

S 1
60 (tr Gi

µνG
iµν) S T 11

45 (tr GiµλGiν
λ) Tµν

P 2
45 (tr Gi

µνG̃
iµν ) P Ω(1) 14

45 G1µν Ω
(1)
µν

L − 1
30 (tr GiµνGiαβ) Lµναβ Ω(2) − 1

9 G1µν Ω
(2)
µν

Table 2.7: List of coefficients Cξ and contractions of the operators Oξ
v introduced in tables 2.2 and 2.3.

Gi
µν represents the field-strength tensor of the ith SM group.

The coefficients χ and χi in table 2.6 determine the relative coupling of v-gluons to the

electroweak-sector gauge bosons W i
µ and Bµ for the SU(2) and U(1)Y factors respectively. For

applications it is convenient to convert these to the couplings to the photons γ,W and Z bosons.

We introduce the following coefficients

χγ ≡ χ1 + χ2/2, χZ ≡ sin4 θWχ1 + cos4 θWχ2/2

cos2 θW
,

χW ≡ χ2, χγZ ≡ cos2 θWχ2 − 2 sin2 θWχ1

cos θW
, χs ≡ χ3 ,

(2.12)

where θW is the weak mixing angle. We will often use these coefficients instead of χi in the

effective Lagrangian (2.9), with a corresponding substitution of field tensors and couplings.

2.2.2 Effective Lagrangian and renormalization group

The introduction of an effective Lagrangian is very helpful in the consideration of higher order

corrections in strong interactions. These corrections lead to terms αv lnM which can be summed

up in a simple way by applying the renormalization group technique. These renormalization

effects(which will impact v-glueball lifetimes but cancel out of most branching fractions) can be

computed as follows.

9Decays of v-glueballs to standard model gauge bosons are affected by the trace anomaly, but minimally,
because both sectors’ trace anomalies must be non-zero, and that of the SM is small at the scale of the v-
glueball masses.
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Let us first write the effective Lagrangian (2.9) as

Leff =
∑

ξ

CξOξ, (2.13)

where

Oξ =

3
∑

i=1

g
dξ
2

v g
4− dξ

2

i

(4π)2M4
Ξ′i
ξOη(ξ,i)

s · Oξ
v, (2.14)

with Ξ′i
ξ = Ξi

ξ/Cξ. Here the operators Oξ must be treated on equal footing with the original

terms in the Lagrangian, with the coefficients Cξ considered as some new charges.

To lowest order in αv the coefficients Cξ can be read off table 2.7. These values arise from

quirk loops and hence are valid at the scale M . To consider contributions of these operators to

v-glueball matrix elements, one must use the renormalization group to evolve the coefficients

down to a scale closer to the glueball masses, at which the nonperturbative matrix elements are

evaluated. To do this, the anomalous dimensions of the operators Oξ are required.

To calculate the anomalous dimension γξ of an operator Oξ, we add the operator to the

Lagrangian with coupling Cξ, shift A→ A+a, expand to O(a2), calculate the functional deter-

minant, and expand it in powers Gµν , looking for the appearance of Oξ with a logarithmically

divergent coefficient. Specifically, in the path integral picture,

∫

Da exp
[

i(S + a) + iCξ

∫

Oξ(A+ a)dx4
]

→ exp

[

iZ−1
ξξ′Cξ

∫

Oξ′(A)dx
4 + · · ·

]

, (2.15)

where, to lowest order,

Z−1
ξξ′ = 1 +

γξξ′

2

g2

16π
ln

[

M2

µ2

]

. (2.16)

The last expression defines the matrix of reduced anomalous dimensions.

The couplings Cξ(µ) are found by solving the generalized Gell-Mann-Low equations,

µ
dCξ

dµ
= −αv

2π
γξξ′Cξ′ , (2.17)

µ
dαv

dµ
= − b

2π
α2
v, (2.18)

with b = (11/3)nv. The required anomalous dimensions for the operators shown in table 2.7

can be calculated using a systematic algorithm developed by Morozov [23]. The anomalous

dimension for S was also obtained in [21, 22]. One finds that S, P, T, L, Ω1, Ω2 have reduced

anomalous dimensions γSS = 0, γPP = 0, γTT = b0 = 11, γLL = 6, γΩ1Ω1 = γΩ2Ω2 = 23/2 and

γΩ1Ω2 = γΩ2Ω1 = 1/2, with all remaining coefficients equal to zero.
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2.2.3 Decay amplitudes

Now, using (2.5), (2.8) and the couplings from (2.14), we obtain that the amplitude for a decay

of a v-glueball into SM particles is given by

M =
g

dξ
2

v g
4−

dξ
2

i

(4π)2M4
Ξi
ξ(ρū, ..., ρe)〈SM |Oη

s | 0〉〈0|Oξ
v|Θκ〉 =

=
g

dξ
2

v g
4− dξ

2

i

(4π)2M4
Ξi
ξ(ρū, ..., ρe)f

i
ξ,η(p, q1, q2, ...)F

ξ
κ, (2.19)

where

f i
ξ, η(p, k1, k2, ...) = hµν···η (k1, k2, ...)Π

ξ
κ, µν···(p)

encodes all the information about the matrix element that can be determined from purely

perturbative computations and Lorentz or gauge invariance, and Fξ
κ is the v-glueball decay

constant. See Eq. (2.11) for the definition of Ξ and Eq. (2.2) and table 2.6 for the definition of

ρ.

Similarly, using (2.6), (2.8) and (2.14), the amplitude for the decay of a v-glueball into

another v-glueball and SM particles reads

M =
g

dξ
2

v g
4− dξ

2

i

(4π)2M4
Ξi
ξ(ρū, ..., ρe)〈SM |Oη

s | 0〉〈Θκ′ |Oξ
v|Θκ〉 =

=
g

dξ
2

v g
4−dξ

2

i

(4π)2M4
Ξi
ξ(ρū, ..., ρe)f

i
κκ′;ξ,η(p, p

′, k1, k2, ...)M
ξ
κκ′(k). (2.20)

Here M
ξ
κκ′(k) is the glueball-glueball transition matrix, which for given masses of Θκ and Θκ′

is a function of transferred momentum k ≡ p′ − p, and

f i
κκ′; ξ,η = Πξ

κκ′, µν···(p, p
′)hµν···η (k1, k2, ...).

2.3 Decay rates for lightest v-glueballs

In this section we will compute the decay rates for some of the v-glueballs in figure 2.1. Let us

make a quick summary of the results to come.

The operators shown in tables 2.2 and 2.3 induce the dominant decay modes of the v-glueball

states appearing in figure 2.1. In the PC =++ sector, the lightest 0++ and 2++ v-glueballs

will mostly decay directly to pairs of SM gauge bosons via S, T and L operators. Three-body

decays 2++ → 0++ plus two SM gauge bosons are also possible, but are strongly suppressed by

phase space. In the PC = −+ sector the lightest states are the 0−+ and 2−+ v-glueballs. These

will also decay predominantly to SM gauge boson pairs, via P and L operators respectively.
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There are also C-changing 2−+ → 1+− + γ decays, induced by the d = 6 D = 8 operators

Ωµν (table 2.3), but the small mass-splitting found in the lattice computations [24] suggests

these decays are probably very rare or absent. In the PC =+− sector, the leading decays are

two-body C-changing processes, because C-conservation forbids annihilation to pairs of gauge

bosons, and because three-body decays are phase-space suppressed. In particular, the 1+−, the

lightest v-glueball in that sector, will decay to the lighter C-even states 0++, 2++ and 0−+ by

radiating a photon (or Z when it is possible kinematically). The same is true for the states in

the PC = −− sector, with an exception that the lightest 1−− v-glueball can annihilate to a

pair of SM fermions through an off-shell photon or Z. The latter decay is also induced by Ωµν

operators.

We shall study decays of the 0++, 2++, 0−+, 2−+, 1+− and 1−− v-glueballs in some detail.

Since for this set of v-glueballs the combination of J and P quantum numbers is unique, we

shall often omit the C quantum number from our formulas to keep them a bit shorter, referring

simply to the 0+, 2+, 0−, 2−, 1+ and 1− states. At the end we shall make some brief comments

about the other states, the 3++, 3+−, 3−−, 2+−, 2−− and 0+−.

Of course the allowed decays and the corresponding lifetimes are dependent upon the masses

of the v-glueballs. While the results of Morningstar and Peardon [24], understood as dimen-

sionless in units of the confinement scale Λ, can be applied to any pure SU(3) gauge sector,

the glueball spectrum for SU(4) or SU(7) are not known. Fortunately, at least for SU(nv), the

spectrum is expected to be largely independent of nv. Still, the precise masses will certainly

be different for nv > 3, and for some v-glueballs this could have a substantive effect on their

lifetimes and branching fractions.

For other gauge groups, however, the spectrum may be qualitatively different; in particular,

the C-odd sector may be absent or heavy. We will briefly discuss this in our concluding section.

The 0±+ and 2±+ states are expected to be present in any pure-gauge theory, with similar

production and decay channels, and as such are the most model-independent. Fortunately, it

turns out they are also the easiest to study theoretically, and, as we will see below and in our

LHC study [60], the easiest to observe.

2.3.1 Light C-even sector decays

We begin with the C-even 0++, 2++, 0−+ and 2−+ v-glueballs, which can be created by dimen-

sion 4 operators. The first three have been studied in some detail in various contexts; see for

example [25–31] and a recent review [37]. The dominant decays of these states are annihilations
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Θκ → GaGb, where Θκ denotes a v-glueball state and Ga, Gb is a pair of SM gauge bosons:

gg, γγ, ZZ, W+W− or γZ. We will also consider radiative decays Θκ → Θκ′ + γ/Z, and

three-body decays of the form Θκ → GaGbΘ′
κ, and will see they are generally subleading for

these states.

Annihilations are mediated by the dimension d = 4 operators in Eq. (3.5). In particular, we

know from the previous discussion (see [46] and table 2.2 above) that the 0++ v-glueball can

be annihilated (created) by the operator S. The 0−+ and 2−+ states are annihilated by the

operators P and Lµναβ respectively. The tensor 2++ can be destroyed by both Tµν and Lµναβ .

Radiative two-body decays are induced by the dimension d = 6 operators in Eq. (3.6).

However, the decays Θκ → Θκ′ + γ/Z are forbidden if Θκ and Θκ′ are both from the C-even

subsector. For the spectrum in figure 2.1, appropriate for nv = 3, the only kinematically allowed

radiative decay is therefore 2−+ → 1+− + γ; the 1+− + Z final state is kinematically allowed

only for very large Λv. For nv > 3, the glueball spectrum is believed to be quite similar to

nv = 3, but the close spacing between these two states implies that the ordering of masses

might be altered, so that even this decay might be absent for larger nv.

Decays of the 0++ state.

The scalar state can be created or destroyed by the operator S.

Then, according to a general discussion in Sec. 2.2, the amplitude of the decay of the scalar

to two SM gauge bosons Ga and Gb is given by the expression

αiαv

M4
χiCS〈Ga, Gb|tr GµνG

µν | 0〉 〈 0|S| 0++〉, (2.21)

where αi and χi encode the couplings of the bosons a and b of a SM gauge group i to the loop,

introduced in Sec. 2.2; see (2.14), (2.11) and table 2.6.

For the decay of the scalar to two gluons, (2.21) takes the form

αsαv

M4
χsCS〈ga1gb2| tr GµνG

µν | 0〉 〈 0|S| 0++〉 =

=
αsαv

M4

δab

2
χsCSF

S
0++2(k1µε

1
ν − k1νε

1
µ)(k

2µε2
ν − k2

ν
ε2

µ
), (2.22)

where, according to our conventions, constant FS
0++ denotes the matrix element 〈0|S| 0++〉. We

are using the notation αs ≡ α3, χs ≡ χ3. The rate of the decay (accounting for a 1/2 from Bose

statistics) is then given by

Γ0+→gg =
α2
sα

2
v

16πM8
(N2

c − 1)χ2
sC

2
Sm

3
0+(F

S
0++)2. (2.23)

Here and below we make explicit the SU(3)-color origin of a factor of 8 = N2
c − 1.
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The branching ratios for the decays to the photons, Z and W± are

Γ0+→γγ

Γ0+→gg

=
1

2

α2

α2
s

χ2
γ

χ2
s

, (2.24)

Γ0+→ZZ

Γ0+→gg
=

1

2

α2
w

α2
s

χ2
Z

χ2
s

(

1− 4
m2

Z

m2
0+

)1/2 (

1− 4
m2

Z

m2
0+

+ 6
m4

Z

m4
0+

)

, (2.25)

Γ0+→γZ

Γ0+→gg
=

1

4

ααw

α2
s

χ2
γZ

χ2
s

(

1− m2
Z

m2
0+

)3

, (2.26)

Γ0+→W+W−

Γ0+→gg
=

1

4

α2
w

α2
s

χ2
W

χ2
s

(

1− 4
m2

W

m2
0+

)1/2 (

1− 4
m2

W

m2
0+

+ 6
m4

W

m4
0+

)

, (2.27)

The coefficients χ used here were defined in Eq. (2.12). Factors of 1/2 in the above ratios come

from the color factor N2
c −1 = 8 and a difference in the normalization of abelian and non-abelian

generators. An extra 1/2 is required if the particles in the final state are not identical, such as

W+W− and γZ.

Of course these are SM-tree-level results. There will be substantial order-αs corrections to

the gg final state, so the actual lifetimes will be slightly shorter and the branching fractions to

other final states slightly smaller than given in these formulas.

Decays of the 0−+ state.

The decay of the pseudoscalar state 0−+ to two gauge bosons proceeds in a similar fashion.

This decay is induced by the operator P :

αiαv

M4
χiCP 〈Ga, Gb| tr GµνG̃

µν | 0〉 〈0|P |0−+〉. (2.28)

The amplitude leads to the following two-gluon decay rate:

Γ0−→gg =
α2
sα

2
v

16πM8
(N2

c − 1)χ2
sC

2
Pm

3
0−(F

P
0−+)2, (2.29)

and the same branching fractions as for 0++, except for the decays to ZZ and W+W−,

Γ0−→ZZ

Γ0−→gg

=
1

2

α2
w

α2
s

χ2
Z

χ2
s

(

1− 4
m2

Z

m2
0−

)3/2

, (2.30)

Γ0−→W+W−

Γ0−→gg

=
1

4

α2
w

α2
s

χ2
W

χ2
s

(

1− 4
m2

W

m2
0−

)3/2

. (2.31)

The 0−+ state can also decay to lower lying states by emitting a pair of gauge bosons, but

these decays are suppressed. For instance, the amplitude for the decay of 0−+ → 0++gg is

αiαv

M4
χiCP 〈Ga, Gb | tr GµνG̃

µν | 0〉 〈0++|P |0−+〉 . (2.32)
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The matrix element MP
0+0− = 〈0++|P |0−+〉 is a function of the momentum transferred. Let us

first treat it as approximately constant. Then we obtain the decay rate

Γ0−→0++gg =
α2
sα

2
v

256π3M8
(N2

c − 1)χ2
sC

2
Pm

5
0−f(a)(M

P
0+0−)2, (2.33)

where f is the dimensionless function of the parameter a = m2
0+/m

2
0− ,

f(a) =
1

12
(1 − a2)(1 + 28a+ a2) + a(1 + 3a+ a2) ln a, (2.34)

We plot f in figure 2.3; it falls rapidly from 1/12 to 0, because of the rapid fall of phase space

as the two masses approach each other. For the masses in figure 2.1, a = 0.44 and f ≈ 10−4.

This is in addition to the usual 1/16π2 suppression of three-body decays compared to two-body

decays. Thus the branching fraction for this decay is too small to be experimentally relevant,

and our approximation that the matrix element is constant is inconsequential. This will be our

general conclusion for three-body decays of the light v-glueball states, and in most cases we will

not bother to present results for such channels.

0.0 0.2 0.4 0.6 0.8 1.0
a10-16

10-13

10-10

10-7

10-4

0.1

100

f HaL

a=
m0++

2

m0-+
2

Figure 2.3: Kinematic suppression factor f(a). Point corresponds to a value of a taken for v-glueball
masses from the Morningstar and Peardon spectrum [24].

Decays of the 2++ state.

Decays of the 2++ glueball to two gauge bosons are induced by more than one operator in (2.9).

In particular, the 2++ decays due to the Tµν and Lµναβ operators. This corresponds to the

amplitude

αiαv

M4
χi

[

CT 〈Ga, Gb| tr GµαG
α
ν | 0〉 〈0|T µν|2++〉+

+CL〈Ga, Gb| tr GµνGαβ | 0〉〈0|Lµναβ |2++〉
]

. (2.35)
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The width of the decay to two gluons is

Γ2+→gg =
α2
sα

2
v(N

2
c − 1)

160πM8
χ2
sm

3
2+

(

1

2
C2

T (F
T
2++)2 +

4

3
C2

L(F
L
2++)2

)

. (2.36)

Here we used the following expressions for the matrix elements:

〈0|T µν|2++〉 = FT
2++ ǫµν , (2.37)

〈0|Lµναβ |2++〉 = FL
2++ [Pµαǫνβ − Pµβǫνα + Pνβǫµα − Pναǫµβ] , (2.38)

where Pαβ is defined in the caption to table 2.4.

The branching fraction for the decay to two photons is again similar to (2.24). For two Z

bosons in the final state, the width of the decay is equal to

Γ2+→ZZ =
α2
wα

2
v

40πM8
χ2
Zm

3
2+(1− 4ζ2)

1/2

(

1

2
C2

T fT (ζ2)(F
T
2++)2+

4

3
C2

LfL(ζ2)(F
L
2++)2 +

40

3
CTCLfTL(ζ2)F

T
2++F

L
2++

)

, (2.39)

where fT , fL, fTL are the following functions of the parameter ζ2 = m2
Z/m

2
2+ .

fT (ζ2) = 1− 3ζ2 + 6ζ22 , fL(ζ2) = 1 + 2ζ2 + 36ζ22 , fTL(ζ2) = ζ2(1 − ζ2) . (2.40)

The decay to W+W− is obtained from Eq. (2.39) by substituting χZ → χW , mZ → mW

and multiplying by 1/2. For the γZ final state, the decay rate is

Γ2+→γZ =
ααwα

2
v

80πM8
χ2
γZm

3
2+(1 − ζ2)

3

(

1

2
C2

T gT (ζ2)(F
T
2++)2+

4

3
C2

LgL(ζ2)(F
L
2++)2 +

20

3
CTCLζ2F

T
2++F

L
2++

)

, (2.41)

where

gT (ζ2) = 1 +
1

2
ζ2 +

1

6
ζ22 , gL(ζ2) = 1 + 3ζ2 + 6ζ22 . (2.42)

As in the case of the 0−+, we can ignore the three-body transitions 2++ → 0++ + gg, etc.

Decays of the 2−+ state.

The dominant decays of the 2−+ state occur due to the Lµναβ operator. The amplitude for

such decays is given by

αiαv

M4
χiCL〈Ga, Gb| tr GµνGαβ | 0〉〈0|Lµναβ| 2−+〉. (2.43)

The correct Lorentz structure that singles out the negative parity part of the operator Lµναβ

is as follows:

〈0|Lµναβ | 2−+〉 = FL
2−+

(

ǫµνρσǫ
σ
βn

ρnα − ǫµνρσǫ
σ
αn

ρnβ+

+ǫαβρσǫ
σ
νn

ρnµ − ǫαβρσǫ
σ
µn

ρnν

)

, (2.44)
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where nµ = pµ/m2− is a unit vector in the direction of the 4-momentum of the v-glueball.

The decay rate to two gluons is then given by

Γ2−→gg =
α2
sα

2
v

120πM8
(N2

c − 1)χs
2m3

2−C
2
L(F

L
2−+)2 (2.45)

and Γ2−→γγ is provided by the same relation as (2.24). The widths of the decay to ZZ and γZ

can be found from the ratios

Γ2−→ZZ

Γ2−→gg

=
1

2

α2
w

α2
s

χ2
Z

χ2
s

(

1− 4
m2

Z

m2
2−

)1/2(

1 + 2
m2

Z

m2
2−

− 24
m4

Z

m4
2−

)

, (2.46)

Γ2−→γZ

Γ2−→gg

=
1

4

ααw

α2
s

χ2
γZ

χ2
s

(

1− m2
Z

m2
2−

)3(

1 + 3
m2

Z

m2
2−

+ 6
m4

Z

m4
2−

)

, (2.47)

and the width for the decay to W+W− is again obtained by substituting in (2.46) χZ → χW ,

mZ → mW and dividing the result by 2.

As before, we can neglect 3-body decays. However, there is a 2-body radiative decay that

we should consider, although, as we will see, for the masses in figure 2.1 it is of the same order

as the 3-body decays. For the SU(3) spectrum in [24] (and possibly all pure glue SU(n), n ≥ 3)

the 2−+ state is slightly heavier than the lightest state in the C-odd sector, the pseudovector

1+−. Thus, we need at least to consider the decay 2−+ → 1+− + γ. This decay is induced

by the second type of operators (table 2.3) in the effective action (2.9). The amplitude of the

decay reads

eg3v
(4π)2M4

χ〈γ|Gµν | 0〉
(

CΩ(1)〈1+−|Ω(1)
µν | 2−+〉+ CΩ(2)〈1+−|Ω(2)

µν | 2−+〉
)

. (2.48)

Unfortunately nothing quantitative is known about matrix elements like 〈1+−|Ω(n)
µν | 2−+〉.

In fact each contains multiple Lorentz structures, constructed out of polarization tensors ǫα,

ǫβγ and momenta p and q of the 1+− and 2−+ v-glueballs, times functions of the momentum

transfer, cf. [38]. Some simplification can be made if one takes into account the fact that masses

of the v-glueballs are close, which we will assume below.

We start by writing the general expression for the amplitude (2.48):

〈 γ|Gµν | 0〉 〈 1+−|Ω(n)
µν | 2−+〉 = 2MΩ(n)

2−+1+−(k · p εαǫαβǫβ − p · ε kαǫαβǫβ)+

+ 2MΩ(n)′
2−+1+−(k · p ε · ǫ− k · ǫp · ε) p

αǫαβp
β

m2
2−

+

+ 2MΩ(n)′′
2−+1+−(k · p εαǫαβpβ − p · ε kαǫαβpβ)

q · ǫ
m2

2−
, (2.49)

where n = 1, 2 and k, εα are the momentum and polarization of the photon. All contributions

of the terms proportional to primed form-factors (which correspond to higher partial waves)
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are suppressed by powers of (m2− −m1+)/(m2− +m1+) ≃ 0.017, so we may neglect them.10

Note, however, that if the mass splitting is much larger for nv > 3, then there will be additional

unknown quantities that will modify our result below.

We now find

Γ2−→1++γ =
αα3

v

960πM8
χ2 (m2

2− −m2
1+)

3

m5
2−m

2
1+

×

× (3m4
2− + 34m2

2−m
2
1+ + 3m4

1+)
(

MΩ
2−+1+−

)2
. (2.50)

Here we introduced the notation

MΩ
2−+1+− ≡ CΩ(1)MΩ(1)

2−+1+− + CΩ(2)MΩ(2)

2−+1+− . (2.51)

Since the the form-factors MΩ(n)

2−+1+− are unknown, we shall not distinguish between them and

will use a collective notation, similar to (2.51), for them in the future. In the same manner we

will use the notation

Ωµν ≡ CΩ(1)Ω(1)
µν + CΩ(2)Ω(2)

µν . (2.52)

The factor (m2
2−−m2

1+)
3 strongly suppresses the amplitude, given the spectrum of figure 2.1,

and a rough estimate suggests it is of the same size as the three-body decays of the 2− state,

and consequently negligible. However this splitting is so small that it is sensitive to numerical

uncertainties in the lattice calculation, and might well be different for other gauge groups. In

particular, this decay channel might be closed, or might be more widely open than suggested

by figure 2.1, depending on the mass spectrum.

Given the uncertainty on the spectrum and the unknown v-glueball mass scale, it is worth

noting that the radiative decay of 2−+ to 1+− can in principle occur through an emission of the

Z boson. This decay is slightly more involved than the decay with photon emission considered

above. Additional unknown form factors related to the finiteness of the Z mass further reduce

the predictive power of any computation. But such a decay may be forbidden by kinematics,

and if allowed it is probably of little importance for the discovery of v-glueballs. Its rate will

almost certainly lie somewhere between 0 and tan2 θW ∼ 20% of the rate for decays to a photon.

There is no reason for the form factors M(k2) to be enhanced at k2 ≃ m2
Z . Since the Z boson

has only a few percent branching fraction to electrons and muons, the ratio of identifiable Z

decays to photon decays is less than 2%. We therefore will not present formulas for this decay

mode.

10Here we assume that the primed form-factors M are at most of the same order of magnitude as M
Ω

(n)

2−+1+− .



30

Again we emphasize that in obtaining the results (2.50) we made some assumptions and

approximations, including ∆m ≪ m2− , and these results may require generalization in other

calculations. However, we will adhere to similar simplifying approximations in the other radia-

tive decays computed below.

2.3.2 Decays of the vector and pseudovector

In the C-odd sector, the lightest v-glueballs are the pseudovector 1+− and vector 1−−. The

lowest-dimension operators that can create or destroy 1−− and 1+− v-glueballs are the d = 6

Ωµν operators (table 2.3). Direct annihilation to non-abelian SM gauge bosons would require

an operator in the effective action of dimension D = 12, and is hence negligible. Instead these

operators, combined with a hypercharge field strength tensor to form an operator of dimension

8, induce radiative decays to C-even v-glueballs, and potentially, for the 1−− state, annihilation

to SM fermions via an off-shell γ or Z. Three-body decays induced by the dimension 4 operators

S, P, T, L, although quite uncertain because of the presence of many decay channels with many

form factors, appear to be sufficiently suppressed by phase space that they can be disregarded.

Below, we will generally not write formulas for radiative decays by Z emission. As we

discussed for the 2− → 1+ + γ/Z decay, the ratio of leptonic Z bosons to photons is unlikely

to reach 2%, even if there is no phase space suppression (which there typically is.) Moreover,

decays to Z are described by a larger number of unknown form factors, making any attempt

to predict the corresponding decay widths and branching ratios even more uncertain than for

photon emission.

Decays of the 1+− state.

Since the 1+− is the lightest v-glueball in the C-odd sector, it can only decay, radiatively, to

the lighter v-glueballs in the C-even sector.

According to table 2.5, the amplitude of the decay 1+− → 0++ + γ is given by11

eg3v
(4π)2M4

χ〈 γ|Gµν | 0〉 〈0++|Ωµν | 1+−〉 = eg3vχ

(4π)2M4
2kµενǫ

µναβpαǫβM
Ω
1+−0++ , (2.53)

where εµ and ǫµ are the polarization vectors of the photon and the pseudovector v-glueball

respectively; pµ is the 4-momentum of the 0++. The Levi-Civita tensor assures the final particles

11Similar amplitudes are used in the studies of vector and pseudovector mesons. See for example [32], [33]
and [36].
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are in a p-wave, as required by parity conservation. The decay rate of this process is

Γ1+→0++γ =
αα3

v

24πM8
χ2 (m2

1+ −m2
0+)

3

m3
1+

(MΩ
1+−0++)2. (2.54)

In the case of the decay to the pseudoscalar v-glueball 1+− → 0−+ + γ, the amplitude is

given by

eg3v
(4π)2M4

χ〈 γ|Gµν | 0〉 〈0−+|Ωµν | 1+−〉 =

=
eg3v

(4π)2M4
χ 2kµεν(pµǫν − pνǫµ)M

Ω
1+−0−+ , (2.55)

where pµ is the 4-momentum of the 0−+. The rate of the decay to the pseudoscalar is then

Γ1+→0−+γ =
αα3

v

24πM8
χ2 (m2

1+ −m2
0−)

3

m3
1+

(MΩ
1+−0−+)2. (2.56)

The ratio of the decay rates to 0−+ and 0++ is

Γ1+→0−+γ

Γ1+→0++γ

=

(

m2
1+ −m2

0−

m2
1+ −m2

0+

)3(
MΩ

1+−0−+

MΩ
1+−0++

)2

. (2.57)

For the spectrum of figure 2.1, the factor involving the masses is about 0.39; the ratio of matrix

elements is unknown, but if we guess that MΩ
1−−0±+ ∼ 1/FS,P

0±+, as would be true for pion

emission, and use the lattice results from [25], we would find this ratio to be slightly larger than

1. In any case, there is no sign of a significant suppression of one rate relative to the other.

Finally, in the case of the decay to the tensor v-glueball, the amplitude 1+− → 2++ +

γ contains two independent form factors in the lowest partial wave approximation, denoted

MΩ
1+−0−+ and M′Ω

1+−0−+ ,

eg3v
(4π)2M4

χ〈 γ|Gµν | 0〉 〈2++|Ωµν | 1+−〉 =

=
eg3v

(4π)2M4
χ 2kµενǫµναβǫβλ(ǫλpαM

Ω
1+−0−+ + ǫαpλM

′Ω
1+−0−+) (2.58)

and the corresponding decay rate is

Γ1+→2++γ =
αα3

v

576πM8
χ2 (m2

1+ −m2
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2
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(

3m4
2+ + 34m2

1+m
2
2+ + 3m4
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×

×
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MΩ
1+−2++ +M′Ω

1+−2++f(m1+ ,m2+)
)2

+
(

M′Ω
1+−2++

)2

g(m1+ ,m2+)

]

, (2.59)

where f and g are the following functions of the v-glueball masses,

f(m1+ ,m2+) =

(

m2
2+ −m2

1+

) (

3m2
2+ + 7m2

1+

)

3m4
2+ + 34m2

1+m
2
2+ + 3m4

1+
, (2.60)

g(m1+ ,m2+) = 12

(

m2
2+ −m2

1+

)2
m2

1+(6m
4
2+ + 8m2

1+m
2
2+ +m4

1+)

m2
2+

(

3m4
2+ + 34m2

1+m
2
2+ + 3m4

1+

)2 . (2.61)
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Decays of the 1−− state.

The decays of the vector v-glueball are similar to the decays of the pseudovector, with a few

additions. In contrast to the case of the 1+−, the 1−− can annihilate through an off-shell vector

boson to a SM fermion-antifermion pair. But the radiative decays to light v-glueballs in the

C-even sector still typically dominate.

The radiative decay to the scalar, 1−− → 0+++γ, is analogous to the decay 1−− → 0+++γ;

see table 2.5 and (2.56). Thus, its rate is

Γ1−→0++γ =
αα3

v

24πM8
χ2 (m2

1− −m2
0+)

3

m3
1−

(MΩ
1−−0++)2. (2.62)

The decay to the pseudoscalar is analogous to the decay (3.17) and has the rate

Γ1−→0−+γ =
αα3

v

24πM8
χ2 (m2

1− −m2
0−)

3

m3
1−

(MΩ
1−−0−+)2. (2.63)

The amplitude of the decay to the 2++ state is similar to the amplitude (2.49) of the decay

2−+ → 1+− + γ. However, in this case the masses of the two states are not close, and our

approximation which allowed us to ignore the contribution of three additional form factors is

not valid. We therefore restrict ourselves to just demonstrating the general expression for the

amplitude.

eg3vχ

(4π)2M4
〈 γ|Gµν | 0〉〈2++|Ωµν | 1−−〉 = 2MΩ

1−−2++(k · p εαǫαβǫβ − p · ε kαǫαβǫβ)

+ 2MΩ′
1−−2++(k · q ε · ǫ − k · ǫq · ε) q

αǫαβq
β

m2
1−

+

+ 2MΩ′′
1−−2++(k · q εαǫαβqβ − q · ε kαǫαβqβ)

p · ǫ
m2

1−
. (2.64)

A complete formula for the decay rate is not very useful, given the large number of unknown

form factors that enter.

The 1−− state is also massive enough to decay to the 2−+ state. This decay has an amplitude

similar to the decay 1+− → 2++ + γ, given in (2.58). One can find the decay rate

Γ1−→2−+γ =
αα3

v

576πM8
χ2 (m2

1− −m2
2−)

3

m5
1−m

2
2−

(

3m4
2− + 34m2

1−m
2
2− + 3m4
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)

×

×
[

(

MΩ
1−−2−+ +M′Ω

1−−2−+f(m1− ,m2−)
)2

+
(

M′Ω
1−−2−+

)2

g(m1− ,m2−)

]

, (2.65)

where functions f and g are defined by (2.60) and (2.61) respectively.

Now we consider the decay of the 1−− to SM fermion pairs through an off-shell γ or Z. For

large m1− we can neglect the Z mass and treat the radiated particle as an off-shell hypercharge
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boson. The amplitude reads

αg3v
2πM4

χ

cos2 θW
〈f, f̄ |YLψ̄Lγ

µψL + YRψ̄Rγ
µψR| 0〉

1

p2
〈0|pνΩνµ|1−−〉. (2.66)

Here YL and YR are left and right hypercharges of the emitted fermions. The matrix element

of Ωµν can be read off from table 2.4. The width (ignoring the fermion masses) is given by

Γ1−→f̄f =
2α2α3

v

3M8

χ2

cos4 θW
(Y 2

L + Y 2
R)m

3
1−(F

Ω
1−−)2. (2.67)

For quarks a factor of 3 must be included to account for color.

The above result is valid form1− ≫ mZ . For smallerm1− one must account for the non-zero

Z mass through the substitution

(Y 2
L + Y 2

R)

cos4 θW
→
(

Q− Q cos2 θW − YL
cos2 θW

m2
1−

m2
1− −m2

Z

)2

+

+ Y 2
R

(

1 +
sin2 θW
cos2 θW

m2
1−

m2
1− −m2

Z

)2

, (2.68)

which accounts for a finite mass of the Z-boson. Here Q = T3 + Y is the charge of f . A quick

check shows that this rate, whose ratio to radiative decays is (for large m1−)

Γ1−→γ∗/Z∗→ff̄

Γ1−→0++γ

=
16πα

cos4 θW
(Y 2

L + Y 2
R)

(

m2
1−

m2
1− −m2

0+

)3 (
FΩ

1−−

MΩ
1−−0++

)2

, (2.69)

is not negligible. The first factor in curved brackets is a factor of a few, while the second factor

in curved brackets may be large, especially at large nv. Decays to electrons and muons will be

reconstructable as a resonance, so despite the uncertain branching fractions this decay mode is

worthy of careful consideration.

Decay of the 1−− state to the 1+− v-glueball can only proceed with the emission of at least

two SM gauge bosons. Although such decays are suppressed, the details of the calculation for

1−− → 1+− + gg are presented in the Appendix.

2.3.3 Decays of the remaining states

We may infer without detailed calculation that the likely decays of the other v-glueballs in

the C-odd sector are radiative. Three-body decays to two gauge bosons plus another C-odd

v-glueball are quite suppressed by phase space, because the mass splittings in the C-odd sector

are never large. Even the splitting of the 0+− state from the 1+− state is only 1.1 m0++ . By

contrast, two-body radiative decays into the C-even sector have significantly larger phase space.

(In the appendix A.1, we confirm this for decays of the 1−− state.) Meanwhile, no operator

appearing in the effective action at dimension D = 8 permits the 0+−, 2±−, or 3±− states to
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annihilate directly to standard model particles. Therefore, we should expect that all of these

states decay radiatively, emitting typically a photon or more rarely (if kinematically allowed) a

Z, to a v-glueball of opposite C. Their lifetimes will be of order or slightly shorter than that of

the 1−+, due to enhanced phase space and additional decay channels.

The 3++ state is more complicated. No operator allows it to annihilate directly to standard

model gauge bosons, so it will decay either by a two-body radiative transition to the C-odd

sector or by a three-body decay to two gauge bosons plus a C-even v-glueball. For this state,

in contrast to the C-odd states, the mass splittings tend to suppress the radiative decay and

enhance the three-body decays. With many contributing decay channels and unknown form

factors, it seems impossible to estimate which type of decay is dominant. Indeed simple estimates

suggest they are of the same order, with large uncertainties. Qualitatively, if the colored X

particles are very heavy and χs is very small, radiative decays will probably dominate, while

tight degeneracies within the X multiplet(s) could suppress χ and reverse the situation. But

quantitative prediction seems impossible.

2.4 Conclusions

Let us first summarize our results and their immediate implications.

• We have seen that annihilation decays dominate those states that can be created by

dimension d = 4 operators (the 0±+ and 2±+). Their branching fractions are dominated

by decays to gg, with decays to γγ having a branching fraction of ∼ 0.4%, assuming the

X fields form complete SU(5) multiplets of equal mass. If the colored X particles are

much heavier than the uncolored ones, then decays to electroweak bosons can dominate.

• Most other states decay by radiatively emitting a photon, or (at a rate that is at most

tan2 θW compared to photon emission) a Z boson.

• The 1−− is a special case; it typically prefers to decay radiatively but has a non-negligible

annihilation decay to an off-shell γ or Z.

• The 3++ is also special; three-body decays to gluons plus a C-even v-glueball could be of

the same order or even dominate over radiative decays to the C-odd sector.

• In all, we expect the final states from v-glueball production to be rich in jets and stray

photons, with occasional photon pairs, leptons and some missing energy from neutrinos.

The two-photon resonances from the annihilation decays of C-even v-glueballs are likely to
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be the discovery signatures, along with the γγγ and γgg resonances from cascade decays

of C-odd v-glueballs.

• Depending on the parameters, the lifetime of any given state can vary over many orders of

magnitude. But for any fixed choice of parameters, lifetimes of the v-glueballs vary over

at least three or four orders of magnitude, the details depending on unknown v-glueball

matrix elements and mass ratios, as well as the X mass spectrum. Displaced vertices can

potentially serve as a discovery channel.

• There are several opportunities for discovery of this signal in displaced vertices. One

option arises from gg decays in events triggered by photons, another from W+W− decays

triggered by the muon or electron in a leptonic W decay, and a third from photons that

arrive late or (if converted) point away from the primary vertex.

Our results are robust, but some cautionary and clarifying remarks are in order. Clearly,

numerical application of our formulas is currently subject to considerable uncertainties, due

especially to the many unknown matrix elements that arise, and due also to the unknown

spectrum for gauge groups other than SU(3). Of course these uncertainties are largely reducible

through additional lattice gauge theory computations, should a discovery of a sector of this type

be made. However, there are other potential subtleties to keep in mind. If the X fields and the

v-glueball states have comparable masses, then mixing between these states cannot be neglected.

This could lead to additional physical effects that we have not considered. We also remind the

reader that we have worked at leading non-vanishing order and that higher-order corrections

are not negligible when precise predictions are required.

A more qualitative uncertainty, and an interesting opportunity, arises from the gauge group.

For SU(n), n > 2, it is anticipated that the glueball spectrum is similar to that of SU(3), as

calculated by [24]. However the SU(2) spectrum, and more generally that of any Sp(2nv) or

SO(2nv + 1) gauge group, has no C-odd sector. The operators Ω
(i)
µν do not exist, as they are

built from the dabc symbol absent from such groups, and the corresponding C-odd states are

also absent.

For SO(2nv) the situation is more subtle. The first cases are SO(4), which is not simple

and has two sets of SU(2) v-glueballs, and SO(6), which is the same as SU(4). The d = 6 Ω
(i)
µν

operators are present for SO(6), but for general SO(2nv) the Ω
(i)
µν operators become Pfaffian

operators of dimension 2nv, built from a single epsilon symbol and nv field strengths. As

suggested by [46] and as verified by [24], there is a correlation in the QCD spectrum and

in the glueball spectrum between the dimension of an operator and the mass of the lightest
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corresponding state. For this reason we expect that for a pure SO(2nv) gauge theory with

nv > 3, the C-odd states are heavier than in figure 2.1 relative to the C-even states. Their

production rate is likely to be quite suppressed as a result, but are still interesting, since several

are likely to be unable to decay to other v-glueballs alone, and will be metastable. Certainly the

lightest C-odd state (probably still the 1+−) cannot decay to two or more C-even v-glueballs,

so it will likely decay by radiating a photon or Z. Moreover, the degeneracy of the light C-odd

states seen in SU(3) may well persist more generally, making these states potentially unable

to decay to two v-glueballs in a C-odd final state, such as 1+− + 0++. All of these states will

decay therefore to the C-even sector by radiating a photon (or Z), except the 1−− that may

again decay to standard model fermions. The larger phase space for nv > 3 means the lifetimes

may be much shorter than those of the C-even states, a fact which could be phenomenologically

important if Λv and Λv/M are so small that the C-even states are unobservably long-lived.

Thus study of the spectrum of the v-glueballs may provide some information on the gauge

group. Combined with some partial information about the X production rate and the branching

fractions of XX̄ annihilations, it may well be possible to identify the gauge group precisely.

Finally, we have assumed here that the v-glueballs are the low-energy degrees of freedom of

an asymptotically weakly-coupled gauge theory. The AdS/CFT correspondence [69, 70] allows

us to learn what one might observe if the theory has a large ’t Hooft coupling in the ultraviolet.

In particular, the low-lying glueballs of such a theory can be described as modes of a string

theory on a 10-dimensional space compactified to 5 dimensions. Such a theory [71–73] will have

light scalars, pseudoscalars, tensors, etc., but will not have any light 2−+ state. Apparently the

mass of this state may serve as a crude probe of the size of the ultraviolet ’t Hooft coupling, as

long as its mass is not so high as to render the state unstable to decay to lighter glueballs.
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Chapter 3

Pure-glue hidden valleys through the Higgs portal

Based on [20], in this chapter we shall our extend earlier results on hidden valleys to include

couplings of the messenger fields to the standard model Higgs sector, with the aim of obtaining

an acceptable phenomenology for even lower v-glueball masses.

The v-glueballs are non-interacting with the SM particles, except for higher dimension op-

erators in the effective Lagrangian induced by the heavy mediators Xr. In this work, we will

focus on the possibility of operators between the v-sector and the Higgs sector (also referred to

as the Higgs portal),

1

MD−4
OD−d

s (H†, H)O(d)
v (3.1)

where H is the standard model Higgs doublet; M is a heavy mass scale, associated with the

masses of the heavy mediator fields. Here we have split the dimension-D operator into a

Standard-Model part O(D−d)
s of dimension D− d and a hidden-valley part O(d)

v of dimension d.

The O(d)
v are constructed from gauge invariant combinations of v-gluon fields such as tr F2 or

tr F3, while the O(D−d)
s involve gauge invariant operators built out of the Higgs field, such as

H†H or H†DµH . We will see that the lowest order term is given by the dimension-six operators

of the form H†H tr F2. With some exceptions to be discussed below, most of the v-glueballs

in figure 2.1 can decay via the Higgs portal interaction (3.1), with a strong dependence of the

lifetimes on the confinement scale Λv and the mass scale M .

Loops of the heavy particles also induce dimension-eight effective interactions coupling the

v-gluons to the standard model gauge bosons, either of the form tr F 2
i tr F2 or F1 tr F3 where

Fi (F) is the field strength tensor for standard model (hidden-valley) gauge bosons. The field

strength tensors are contracted according to different irreducible representations of the Lorentz

group. A detailed study of the phenomenology of these operators in the context of hidden

valleys was carried out in [19]. In this case the v-glueball widths are dominated by decays into

SM gauge-boson pairs, or radiative decays to another v-glueball and a photon (or to a lesser

extent a Z boson), leading to jet and photon rich final states.

In this chapter, we will first extend the results of [19] on v-glueball decays in pure-Yang-Mills
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theory to allow for higher dimension interactions of the form (3.1). We will need to compute

the effective Lagrangian coupling the v-gluons to the Higgs sector. Then we will use it to find

formulas for the decay widths of the states in the spectrum shown in figure 2.1. Specifically,

we will find that the 0++ state can decay via the Higgs portal to standard model particles with

branching ratios which are determined by the couplings of the standard model Higgs boson.

Other states can decay to a lighter state by emission of a Higgs boson. For v-glueball states

which can decay either through dimension-eight operators or through the emission of a Higgs

boson the situation is rather involved, with the relative branching ratios depending on the

various parameters and the unknown v-glueball matrix elements.

Our primary motivation here is in the case where the lifetimes are short enough that at

least a few v-glueball decays can be observed at the LHC detectors. This typically requires the

lifetimes of the hidden particles to be shorter than a few micro-seconds, if the production cross-

section is substantial. The key point in our scenario is that with different operators describing

the decays, often competing with each other, we typically find a large spread in the lifetimes

of the v-glueballs, even after all the parameters have been fixed. Then there is no necessity to

adjust any parameter to obtain short lifetimes.

Incidentally, our results are also relevant for studies of dark matter, either in the case of

self-interacting dark matter [39], where the v-glueballs would be the dark matter candidates, or

indirectly, in a recent attempt to study scenarios of dark matter with novel signatures [40, 41].

This chapter is organized as follows. In section 2, we introduce our model and describe the

effective interactions coupling the two sectors. We also classify the matrix elements. Section

3 presents our computation of the decay modes. Section 4 is devoted to a summary of the

different experimental constraints on the parameters of the model. Then in section 5 we present

our numerical estimates for the branching ratios. Possible generalizations of the model are

described in section 6. Finally, we conclude in section 7 with a brief summary of our results

and some comments. Additional computations appear in the appendix.

3.1 The model and the effective action

We first set up our framework and conventions. The generic scenario of hidden valleys with a

pure-gauge hidden sector can be characterized as follows [6, 19],

• The SM is extended by the addition of an extra SU(nv) gauge group, with a mass scale

scale m0 in the 1− 1000 GeV range. We will refer to this sector as the hidden valley, or

briefly the v-sector. There are no light flavours in the v-sector, so after confinement the
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lightest states in the spectrum are bound states of v-gluons, or v-glueballs.

• There are heavy vector-like particles Xr (“mediators”) that couple the v-sector very

weakly to the visible sector at low energies. For definiteness, we will take the Xr to

transform as a fundamental representation of SU(nv) and in complete SU(5) represen-

tations of the standard model. We label the fields and their masses as shown in table

3.1. Also, for convenience, we define dimensionless parameters ρr = mr/M where M is

an arbitrarily chosen mass scale, usually taken as the mass of the lightest Xr particle1.

Field SU(3) SU(2) U(1) SU(nv) Mass

Xd̄ 3 1 1
3 nv md̄

Xℓ 1 2 − 1
2 nv mℓ

Xū 3̄ 1 − 2
3 nv mū

Xq 3 2 1
6 nv mq

Xe 1 1 1 nv me

Table 3.1: The new fermions Xr that couple the hidden valley sector to the SM sector.

In addition, we assume that the mediators Xr can get part of their mass from electroweak

symmetry breaking through Yukawa-like interactions. For concreteness, we consider the follow-

ing Lagrangian (in four-component Dirac notation),

Lmass =
∑

r=d̄,l,ū,q,ē

mrX̄rXr +
(

ylX̄lHXē + yuX̄qH̃Xu + ydX̄qHXd + h.c.
)

(3.1)

where H̃ = ǫ ·H†. For the moment, we will restrict ourselves to the case in which the Yukawa

couplings conserve both C and P independently. In general one or more of the Yukawa couplings

could be CP -violating. This CP violation can contribute new terms to the effective action and

can induce additional v-glueball decays, as will be discussed in section 6.

There are several constraints on the couplings yr and the mass scale M from precision

electroweak measurements. These constraints will be discussed in some detail in section 4. We

require that yr . 1 and M & 250 GeV in order to avoid potentially dangerous corrections

to precision electroweak bounds. A high mass scale is in any case necessary to avoid current

experimental bounds from collider searches for extra particles.

We are concerned with the low-energy effective theory of the model described above. The

effective interaction that couples the v-gluons and v-glueballs to the SM particles is induced

1In this work, we normalize hypercharge as Y = Q− T3, where T3 is the third component of weak isospin.
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through a loop of X particles. The coupling between the Higgs sector and the v-sector to non-

vanishing leading order in 1/M at low energies arises from a diagram with four external lines,

as depicted in figure 3.1a. This gives rise to the dimension-six operator

L(6) =
αv y

2

3πM2
H†H tr FµνFµν (3.2)

where αv is the SU(nv) coupling, Fµν is the v-gluon field strength tensor2. The coefficient y

depends on the mass ratios of the heavy particles from table 3.1 and their couplings to the

Higgs field. It is given by

y2 ≡ y2l
ρlρe

+
3y2d
ρqρd̄

+
3y2u
ρqρū

. (3.3)

The computation of (3.2) is presented in appendix A.2. Note that (3.2)-(3.3) are strictly valid

in the βr ≡ y2rv
2
H/2M

2 ≪ 1 limit; otherwise, the corrections to these equations can be readily

obtained by the substitutions ρrρr′ → ρrρr′ − βr in (3.3). Once the Higgs gets an expectation

value, the following interaction terms are induced between the v-sector and the physical standard

model Higgs boson (h),

L(6) =
αv y

2

3πM2
vH h tr FµνFµν +

αv y
2

3πM2

h2

2
tr FµνFµν (3.4)

where vH = 246 GeV is the Higgs vacuum expectation value3.

H

H†

v

v

SM

SM

SM

v

v

v

v

v

X X

X

(a) (b) (c)

Figure 3.1: Diagrams contributing to the effective action

While dimension-six operators are only suppressed by two powers of the mass scale M ,

further suppression can arise if the operators are suppressed by small coupling y. This requires

us to consider effective operators of dimension higher than six as well.

The next operators have D = 8, and they describe the coupling of the two v-gluons to two

SM gauge bosons (figure 3.1b), either gluons (g), weak bosons (W and Z) or photons (γ), as well

2Here we represent the v-gluon fields as Fµν = Fa
µνT

a, where Ta denote the generators of the SU(nv) algebra

with a common normalization tr TaT b = 1
2
δab.

3In (3.4), we have not included a term which is proportional to the v-gluon kinetic term. This term can be
removed by redefining the v-gluon coupling.
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as the fusion of three v-gluons into a γ or Z (figure 3.1c). Within the SM, effective two gluon

- two photon, four gluon, and three gluon - photon vertices can be found in [42], [43] and [44]

respectively. They were also extensively discussed in the previous chapter. The pure-gauge

effective Lagrangian linking the SM sector with the v-sector is given in (2.9).

We will not consider operators of dimension 8 containing both gauge-boson fields and the

Higgs field, as well as dimension-ten or higher operators, since their effects are suppressed by

extra powers of M and/or y.

The interactions in the effective action then allow the v-glueballs that cannot decay within

the v-sector to decay to final states with SM particles and at most one v-glueball. This is similar

to the weak decays of hadrons, such as π+ → lν, n → pνee
−, and so forth, where the Fermi

effective interaction allows otherwise stable hadrons to decay into leptons. To compute these

decays, we will only need the following factorized matrix elements4:

〈SM |O(D−d)
s |0〉〈0|O(d)

v |Θκ〉 , (3.5)

〈SM |O(D−d)
s |0〉〈Θκ′ |O(d)

v |Θκ〉. (3.6)

Here d is the mass dimension of the operator in the v-sector, 〈SM | schematically represents a

state built from Standard Model particles, and |Θκ〉 and |Θκ′〉 refer to v-glueball states with

quantum numbers κ, which include spin J , parity P and charge-conjugation C. The SM part

〈SM |O(D−d)
s |0〉 can be evaluated by the usual perturbative methods of quantum field theory,

but a computation of the hidden-sector matrix elements 〈0|O(d)
v |Θκ〉 and 〈Θκ′ |O(d)

v |Θκ〉 requires

the use of non-perturbative methods.

3.1.1 Matrix elements

We wish to classify the non-vanishing v-sector matrix elements of the scalar operator S ≡

tr FµνFµν in (3.2). As we saw, the matrix elements relevant to v-glueball transitions are given

by 〈0|S|Θκ〉 and 〈Θκ′ |S|Θκ〉, where Θκ and Θκ′ refer to v-glueball states with given quantum

numbers.

It is convenient to write the most general possible matrix elements in terms of a few Lorentz

invariant amplitudes or form factors. The decomposition of S into irreducible representations

of the Lorentz group contains only the 0++ quantum numbers [46]. This allows the 0++ state

to decay directly to standard model particles. For the annihilation matrix element of the 0++

4As mentioned in the introduction, decays with no SM particles in the final state are forbidden because of
kinematics and/or conserved quantum numbers.
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v-glueball, we will write

〈0|S|0++〉 ≡ FS
0+ (3.7)

where FS
0+ is the 0++ decay constant.

Likewise, we can consider the transition matrix elements of the operator S between a spin

J state with momentum p and a spin J ′ state with momentum q. For the moment we make no

assumptions about the parity or charge conjugation quantum numbers of the states. Of course,

if we impose parity some of the transitions may be forbidden. The matrix elements can be

compactly written as

〈J ′|S|J〉 ≡
∑

i

M(i)
JJ′ M

S(i)
JJ′ (3.8)

where now M
S(i)
JJ′ is the transition matrix, which depends on the transferred momentum, and

M(i)
JJ′ is determined by the Lorentz representations of |J〉 and |J ′〉. In Appendix C we have

listed M(i)
JJ′ for the simplest cases considered later in this work.

The main uncertainties in the study of decays of the v-glueballs stem from the evaluation

of the transition matrix elements M
S(i)
JJ′ which at present are unknown. Many of these could be

in principle be determined by additional lattice computations. In spite of these uncertainties,

we will still be able to obtain many interesting and robust results.

3.2 Decay rates

An interesting feature of the model described above is that it has a spectrum of v-glueballs which

can interact very weakly with the particles in the standard model through effective operators of

different mass dimensions. The dimension-six operator, as we see below, permits the v-glueballs

to decay directly into standard model particles (the 0++) or radiatively by emitting a Higgs

boson (the 2++, 2−+, 3++, 3+−, 2+−, 0+−, 1−−, 2−−, 3−−). On the other hand, dimension-

eight operators contribute with additional decay modes. As shown in [19], these include direct

annihilations into SM gauge-boson pairs (the 0++, 2++, 0−+ and 2−+) or C-changing radiative

transitions with emission of a photon or a Z boson (all others).

In this section, we will compute the decay rates for most of the v-glueballs in figure 2.1. We

will first present our results for the v-glueball decays induced by dimension-six operators given

in (3.2). Then we will make a quick review of the results of [19] for dimension-eight operators

that are relevant for our work.
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3.2.1 V-glueball decays by dimension-six operators

We begin with the 0++ v-glueball, which can be created by the operator S. The dimension-six

coupling leads to 0++ → ζζ annihilations, where ζ denote any of the final states of the Higgs

boson. Above the threshold for Higgs boson pair production, the 0++ → hh decay can also

proceed with a sizeable rate. Other decay modes induced by dimension-six couplings include

processes of the form Θκ → Θκ′h, where Θκ, Θκ′ denote two v-glueballs with given quantum

numbers. As an example of a Higgs-radiative decay, we will present the computation of the

2++ → 0++h decay with some detail. Then we will consider the general case Θκ → Θκ′h for

v-glueballs with arbitrary quantum numbers. In the end, we make some comments on the 0−+

and 1+− v-glueballs, which are the only ones that are not permitted to decay via dimension-six

operators.

Annihilation of the 0++ state

The scalar state can be created or destroyed by the S operator. Then, the effective interaction

(3.2) allows the decay of the 0++ state via s-channel Higgs-boson exchange 0++ → h∗ → ζζ,

where ζ collectively denotes a standard model particle. According to (3.2), the amplitude for

this decay reads

y2 αv

3πM2
〈ζζ|mf f̄ f +m2

ZZµZ
µ + 2m2

WW+
µ W

µ−| 0〉 1

m2
H −m2

0

〈0|S|0++〉 (3.1)

where αv = g2v/(4π) and mH is the Higgs mass. The width of the decay is given by

Γ0++→ζζ =

(

y2 vH αv F
S
0+

3πM2(m2
H −m2

0)

)2

ΓSM
h→ζζ(m

2
0+) (3.2)

where FS
0+ ≡ 〈0|S|0++〉 is the 0++ decay constant. Here ΓSM

h→ζζ(m
2
0+) is the width for the

decay h→ ζζ for a standard model Higgs boson with a mass m0+ . Then, formula (3.2) implies

that the branching ratios of the 0++ are those of the SM Higgs boson in the range of mass of

interest. Expressions for the branching ratios and full width of the Higgs boson can be found

in the literature, for masses ranging from a few MeV up to 1 TeV (for a review, see [45]).

Although these are standard model tree-level results, we should also remark that the range

of validity of (3.2) is beyond the simple perturbative QCD domain. For masses below 2−3 GeV,

the 0++ v-glueball can decay into a pair of hadrons via its interaction with two gluons through

a top-quark loop or its interaction with quarks. The hadronization of these quarks and gluons

is a rather complex and non-perturbative process. However, the branching ratios are still given

by (3.2), with ζ now running over the possible hadrons in the final states, such as π, K, and so

forth.
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If m0+ > 2mh, the decay channel 0++ → hh opens up and the partial width is given by

Γ0+→hh =
1

32πm0+

(

y2 αv F
S
0+

3πM2

)2(

1 +
3m2

H

(m2
0+ −m2

H)

)2
[

g(m2
H ,m

2
H ;m2

0+)
]1/2 (3.3)

where g(x, y; z) ≡ (1− x/z − y/z)
2 − 4xy/z2. The off-shell decays 0++ → h∗h and 0+ → h∗h∗

are also possible in the intermediate mass range. However, these channels receive an extra

suppression from the smaller available phase space, so it is reasonable to expect they will have

little effect on the full 0++ width.

As m0+ becomes larger than 2mt and 2mH , we have the following approximate relationship

among the dominant decay rates

ΓW+W− : ΓZZ : Γhh : Γtt̄ = 2 : 1 : 1 : 3 xt
√
1− xt (3.4)

where xt = 4m2
t/m

2
0+ .

An example of Higgs-radiative decays: the 2++ → 0++h case

As an illustration of the computation of the decay rates for transitions with the emission of

Higgs boson, let us first consider in some detail the decay of the 2++ v-glueball. Contrarily to

the 0++, direct annihilation of the 2++ v-glueball into Higgs bosons would require an operator in

the effective action of dimension D = 8, and is hence negligible. Instead, for m2+ −m0+ > mH ,

the S operator induces the 2++ → 0++h decay. In a parton-model picture, one may imagine

this process as being caused by the radiative emission of a Higgs boson through gv → gvh, with

one spectator v-gluon going to the final state. The amplitude of this two-body decay is given

by

y2 αv

3πM2
〈h|h|0〉〈0++|S|2++〉 = y2

3πM2
MS

0+2+ ǫµνq
µqν (3.5)

where qµ is the momentum of the 0++ and ǫµν the polarization of 2++. Here MS
0+2+ denotes

the transition matrix element defined by MS
0+2+ǫµνq

µqν = 〈0++|S|2++〉; for simplicity we have

assumed it is independent of the transferred momentum. The corresponding width of the decay

reads

Γ =
y4 α2

v

480π(3π)2M4
m3

2+

[

g(m2
0+ ,m

2
H ;m2

2+)
]5/2

(MS
0+2+)2. (3.6)

If the 2++ is not heavy enough, m2+ −m0+ < mH , it can decay to the 0++ and SM particles

through the emission of an off-shell Higgs. The corresponding amplitude for the three-body

decay 2++ → 0++ζζ is

y2αv

3πM2
〈ζζ|mf f̄f +m2

ZZµZ
µ + 2m2

WW+
µ W

µ−| 0〉 1

k2 −m2
H + iΓSM

h mH
〈0++|S|2++〉 (3.7)
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where k2 is the transferred momentum. The width is given by

Γ2++→0++ζζ =
m3

2+(M
S
0+2+)2

160π2

(

y2 αvvH
3πM2

)2 ∫

dm2
12

[

g(m2
0+ ,m

2
12;m

2
2+)
]5/2

ΓSM
h→ζζ(m12)

(m2
12 −m2

H)2 + (ΓSM
h )2m2

H
(3.8)

where the limits of integration are set by available phase space.

Higgs-radiative decays. General case J → J ′h

We now consider the 2-body decays ΘJ → ΘJ′ h, in which ΘJ , ΘJ′ are v-glueballs with spin

J , J ′ respectively. For the moment, we make no reference to the parity of the v-glueballs and

proceed generally. Parity conservation will force some of the matrix elements to be zero. Making

use of the general formulas for the matrix elements (A.24)-(A.31), we arrive at the decay rate

Γ
(i)
J→J′h(m

2
H) =

y4 v2h α
2
v

16π(3π)2M4mJ (2J + 1)
|MS

J,J′|2 Γ(i)
JJ′

[

g(m2
J′ ,m2

H ;m2
J)
]1/2

(3.9)

where i runs over the various form factors. The coefficients Γ
(i)
JJ′ are dimensionless functions

of the masses and depend on the angular momentum transfer associated with each transition.

They are summarized in table 3.2.

i 1 2 3 4 5

Γ
(i)
32

x
15 (4x

2 + 28x+ 35) 4x3

15 (x + 2) 4x5

15
2x2

15 (2x+ 7) 4x4

15

Γ
(i)
31

2x2

15 (3x+ 7) 2x4

5
8x3

15 - -

Γ
(i)
30

2x3

5 - - - -

Γ
(i)
22

1
9 (4x

2 + 30x+ 45) x2

18 (8x+ 17) 4x4

9
x
2 (x+ 5) x3

2

Γ
(i)
21

x
3 (2x+ 5) 2x3

3 x2 - -

Γ
(i)
20

2x2

3 - - - -

Γ
(i)
11 x+ 3 x2 2x - -

Γ
(i)
10 x - - - -

Table 3.2: The coefficients Γ
(i)
JJ′ arise from the average of the squared matrix elements. We denote

x =
m2

J

4m2
J′

g(m2
J′ ,m2

H ;m2
J ). The dashes denote those cases where form factors are absent.

Below the threshold for Higgs boson production, the decay rate for the 3-body decay ΘJ →

ΘJ′ ζζ reads,

ΓJ→J′ζζ =
1

π

∫

dm2
12m12Γ

(i)
J→J′h(m12)

1

∆(m2
12,m

2
H)

ΓSM
h→ζζ(m12). (3.10)

where ∆(m2
12,m

2
H) = (m2

12 −m2
H)2 +m2

H(ΓSM
h )2. The integration automatically includes the

case where the radiated Higgs boson can be close to onshell.
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Some of the transitions may be parity-forbidden (e.g. 0−+ → 1+−h). However, it is a

straightforward exercise to check that for each v-glueball Θκ in figure 2.1 , there exists at least

one other v-glueball Θκ′ such that the transition Θκ → Θκ′h is allowed, with a rate which is

given by (3.9)-(3.10). The only exceptions are the 0+− and 1+− v-glueballs that we discuss

next.

Decays of the pseudoscalar and pseudovector

The only states that are not allowed to decay via dimension-six operators are the 1+− and the

0−+ v-glueballs.

Since the 1+− state is the lightest state in the C-odd sector, it necessarily has to decay to a

v-glueball of opposite C. One possibility is that the 1+− decays by radiatively emitting a Higgs

boson (e.g. 1+− → 0−+h). However, this decay mode would violate C and, hence, is forbidden.

A second way to induce decays of the 1+− v-glueball would be via its coupling to the

hypercharge current H†DµH . In this case, there are three v-sector operators that can be

contracted with H†DµH , namely,

tr FαβDµFαβ, tr FαβDβFαµ, tr FµβDαFαβ . (3.11)

However, one can see that these operators cannot induce C-changing transitions. First, notice

that classically tr FαβDµFαβ = 1
2∂µtr FαβFαβ. As explained in [46], this implies that the

transitions induced by the first operator in (3.11) are not new. They are just the same ones

created by the operator S. Likewise, using equations of motion and conservation of the energy-

momentum tensor, the second operator in (3.11) can be related to a total derivative of the

operator S. Finally, equations of motion also imply that the last operator in (3.11) vanishes

identically. Therefore, up to operators of total mass dimension six, the 1+− state is stable. In

the next subsection, we shall see that dimension-eight operators can induce photon-radiative

decays of the 1+− v-glueball to C-even v-glueballs.

On the other hand, C-invariance by itself would allow the Higgs-radiative transition 0−+ →

0++h. However, this decay could not conserve both angular momentum and parity P : since

the initial state is 0−, angular momentum conservation requires the orbital angular momentum

of the 0+ and h final state to be L = 0, which in turn requires total parity P = +1, rather

than P = −1 as demanded by parity conservation. This decay mode is thus forbidden. This is

analogous to the way that the η meson strong interaction mode η → ππ is forbidden in the SM.

A similar argument shows that the three-body decay 0−+ → 0++hh is not permitted. In this

case, the corresponding η → πππ decay is allowed in the SM because, contrary to the 0++ and
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h, the pions have intrinsic parity −1. As we will see in section 6, this line of argument alters if

we relax our assumptions and allow for P -violating couplings.

3.2.2 V-glueball decays by dimension-eight operators

The operators in the effective action (2.9) induce decays for all of the v-glueball states in figure

2.1. The lightest states in the C-even sector (the 0++, 2++, 0−+ and 2−+) can directly decay

to pairs of standard model gauge bosons (gg, γγ, ZZ, WW or γZ) via the S, P , T and L

operators. All other states can decay by radiatively emitting a photon or, to a lesser extent, a

Z boson, via the d = 6 D = 8 operators Ωµν . Here we briefly summarize our results concerning

the computation of the decay rates induced by D = 8 operators in chapter 2.

In order to retain simplicity, we will often assume, in the subsequent discussion, the X fields

form approximately degenerate multiplets of SU(5), i.e. ρr ≈ 1. When there is a large hierarchy

between the colored and the uncolored X particles, ρd̄ ≫ ρl = ρe and ρū ≈ ρq ≫ ρe, the decay

pattern becomes slightly more complicated because the decay channels into γγ, γZ, ZZ and

WW may all play a role and even dominate in some regions of the parameter space. We will

make some comments later in this paper on some of the interesting phenomenology that arises

in this regime.

For the decay of the 0++, 2++, 0−+ and 2−+ v-glueballs into gluons we have the following

rates,

Γ(0+ → gg) =
α2
sα

2
v

2πM8
χ2
3

(

1

60

)2

m3
0+(F

S
0++)2. (3.12)

Γ(2+ → gg) =
α2
sα

2
v

20πM8
χ2
3m

3
2+

[

1

2

(

11

45

)2

(FT
2++)2 +

4

3

(

1

30

)2

(FL
2++)2

]

, (3.13)

Γ(0− → gg) =
α2
sα

2
v

2πM8
χ2
3

(

2

45

)2

m3
0−(F

P
0−+)2 (3.14)

Γ(2− → gg) =
α2
sα

2
v

15πM8
χ3

2m3
2−

(

1

30

)2

(FL
2−+)2 (3.15)

where αs = g23/(4π) is the QCD coupling constant and the coefficient χ3 is given in table 2.6.

Of great interest is the branching fraction into two photons,

Γ(Θ → γγ)

Γ(Θ → gg)
=

1

2

α2

α2
s

χ2
γ

χ2
3

(3.16)

for Θ = 0++, 2++, 0−+, 2−+. Here α is the fine structure constant and χγ ≡ χ1 + χ2/2, where

χ1 and χ2 are shown in table 2.6. The expressions for the branching fractions into electroweak

bosons are omitted for the sake of brevity but can be found in [19]. Some comments on the

weak boson decay modes will be given in section 5.
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In the C-odd sector, all the v-glueballs decay radiatively with the emission of a photon to

the lightest v-glueballs in the C-even sector. Direct annihilations into three SM gauge bosons

are suppressed since they would be induced by dimension-twelve operators. One can also show

that three-body decays are suppressed due to the small phase space that is available for these

decays [19].

The lightest states in the C-odd sector are the pseudovector 1+− and the vector 1−−. The

width of the decay 1+− → 0++ + γ is given by

Γ1+→0++γ =
αα3

v

24πM8
χ2 (m2

1+ −m2
0+)

3

m3
1+

(MΩ
1+−0++)2. (3.17)

A similar expression holds for the decay 1−− → 0++ + γ

Γ1−→0++γ =
αα3

v

24πM8
χ2 (m2

1− −m2
0+)

3

m3
1−

(MΩ
1−−0++)2. (3.18)

For the 1−− state, annihilation to SM fermions via an off-shell γ or Z is also possible, with

branching ratio

Γ1−→γ∗/Z∗→ff̄

Γ1−→0++γ

=
16πα

cos4 θW
(Y 2

L + Y 2
R)

(

m2
1−

m2
1− −m2

0+

)3 (
FΩ

1−−

MΩ
1−−0++

)2

. (3.19)

Here YL and YR are left and right hypercharge of the emitted fermions. Decay to electrons and

muons will be reconstructable as a resonance, so despite its uncertain branching fractions, this

decay mode is mode is worthy of careful consideration.

One can also generalize formulas (3.17) and (3.18) to include the radiative decays of the

heavier C-odd v-glueballs. Easy computations show that

ΓJ→0++γ =
αα3

v χ
2

4πM8

(J + 1) (J !)2

2J J (2J)! (2J + 1)

(m2
J −m2

0+)
2J+1

m2J+1
J m2J−2

0+

(MΩ
J0++)2 (3.20)

ΓJ→2++γ =
αα3

v

48πM8
χ2 (m2

J −m2
2+)

2J+1

m2J+3
J m2J

2+

2J−7(J !)2

3 J (2J)! (2J + 1)

(

2(71J + 65)m2
Jm

2
2++ + 3(5J + 3)m4

J + 3(5J + 3)mJ
2++

)

(MΩ
J2++)2. (3.21)

with similar expressions for the modes J → 0−+γ and J → 2−+γ.

3.2.3 Summary of decays

In table 3.3 we summarize the final states for the most important decay channels of the v-

glueballs in figure 2.1 for D = 6 and D = 8 operators. We therefore see the presence of

operators of different mass dimensions opens a plethora of decay modes, which is particularly

interesting from the phenomenological point of view, but complex to analyze. It is the purpose

of the next two sections to disentangle the effects from D = 6 and D = 8 operators, and extract

the most frequent decay modes.



49

State D = 6 operators D = 8 operators

0++ bb, W+W−, ZZ, hh gg, WW , ZZ, Zγ, γγ

2±+ 0±+h(h∗) gg, WW , ZZ, Zγ, γγ

0−+ - gg, WW , ZZ, Zγ, γγ

3++ 0−+h, 2±+h(h∗) 0−+gg 2++gg, 1+−γ

1+− - 0±+γ, 2−+γ

1−− 1+−h(h∗) 0±+γ, 2±+γ, ff

0+−, 2+−, 3+− JP−h(h∗) 0±+γ, 2±+γ

2−−, 3−−

Table 3.3: Possible final states of the various v-glueballs in figure 2.1 generated by D = 6 and D = 8
operators. Note the absence of Higgs-mediated decay modes for the 0−+ and 1+− v-glueballs. Here
JP− denotes a C-odd v-glueball state.

3.3 Constraints on new physics

In this section, we discuss direct experimental constraints on the operators used in this paper

from Tevatron searches for new physics, as well as potential limits from precision electroweak

measurements.

3.3.1 Electroweak oblique corrections

If new heavy particles exist, they can manifest in the standard model in terms of corrections to

the gauge-boson self-energies. When the new physics scale is much larger than MZ , this effect

can be described by just three parameters (S, T, U) at the one-loop level [58, 59] 5:

S = 16π
d

dq2
[

Π33(q
2)−Π3Q(q

2)
]

|q2=0, (3.1)

T =
4π

s2M2
W

[Π11(0)−Π33(0)] , (3.2)

U = 16π
d

dq2
[

Π11(q
2)−Π33(q

2)
]

|q2=0, (3.3)

where MW is the mass of the W , and s2 ≡ sin2 θW . The subscripts 1 and 3 refer to the weak

SU(2) currents, while Q denotes the electromagnetic current. In practise, only the S and T

parameters are relevant for our work because the U parameter is suppressed by an extra factor of

the heavy fermion masses. These parameters are a measure of the size of electroweak breaking,

which is parametrized by the breaking scale yvH . On the other hand, they must be suppressed

5The reader should not confuse these S and T which are both vacuum polarization functions with the operators
S and T in (2.9)
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by the mass scale M in the limit M → ∞. Therefore even if one introduces heavy fermions

with extremely large couplings, their contributions to the S, T and U parameters can become

small at least in the limit M ≫ yvH . This leaves ample available parameter space within which

extra vector-like fermions are in agreement with all experimental constraints.

In this section, we analyze how current limits on S and T from precision electroweak fits

can be used to obtain constraints on the mass splittings of heavy fermions. To calculate S and

T , we use exact one-loop expressions for the gauge-bosons self-energies which are valid for all

values of the new vector-like fermion masses.

Our scenario contains three vector-like fermion fields, one doublet and two singlets of

SU(2)L, transforming under the fundamental representation of SU(nv),

ψq =





QU

QD



 ψu = U ψd = D (3.4)

with hypercharge Y , Y + 1/2 and Y − 1/2, respectively. We will make our computations using

the above quark-like fermions. With a simple modification, our results can be readily applied

to the case in which the fermions have lepton quantum numbers.

The full fermionic Lagrangian is given by

L = ψ̄q(Dµγ
µ +mq)ψq + ψ̄u(Dµγ

µ +mu)ψu + ψ̄d(Dµγ
µ +md)ψd+

+ (yuψ̄qHψu + ydψ̄qHψd + h.c.) (3.5)

where mq, mu and md are Dirac masses. For simplicity we have assumed that the mass matrix

is symmetric and real, but complex masses may be present as well. Finally, the covariant

derivative is

Dµ = ∂µ − igTaW
a
µ − ig′Y Bµ. (3.6)

When the Higgs acquires an expectation value 〈H〉 =





0

v



, off-diagonal mass terms are

induced for ψq, ψu and ψd

Mu =





mq yu v

yu v mu



 Md =





mq yd v

yd v md



 (3.7)

The mass matrix M is diagonalized by





ψ1

ψ2



 =





c1 s1

−s1 c1









Qu

ψu









ψ3

ψ4



 =





c2 s2

−s2 c2









Qd

ψd



 (3.8)
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where c1 = cosφ1, s1 = sinφ1, c2 = cosφ2, s2 = sinφ2 with

tan 2φ1 =
2yuv

mq −mu
tan 2φ2 =

2ydv

mq −md
. (3.9)

The corresponding eigenvalues are given by

m1,2 =
1

2

(

mq +mu ±
√

(mq −mu)2 + 4y2u

)

(3.10)

m3,4 =
1

2

(

mq +md ±
√

(mq −md)2 + 4y2d

)

(3.11)

with the following inverse relations,

mq = c21m1 + s21m2 = c22m3 + s22m4 (3.12)

mu = s21m1 + c21m2

md = s22m3 + c22m4

2 yu v = (m1 −m2) sin 2φ1

2 yd v = (m3 −m4) sin 2φ2.

These expressions now permit the evaluation of the S and T parameters as follows,

S =
nvNc

3π

{

−c
2
1

2
(Y +

s21
2
) logm2

1 −
s21
2
(Y +

c21
2
) logm2

2 +
c22
2
(Y − s22

2
) logm2

3+

+
s22
2
(Y − c22

2
) logm2

4 +
3c21s

2
1

8
Π

′

(0,m1,m2) +
3c22s

2
2

8
Π

′

(0,m3,m4)

}

(3.13)

T =
nvNc

8πs2M2
W

{

c21c
2
2Π(0,m1,m3) + c21s

2
2Π(0,m1,m4) + s21s

2
2Π(0,m2,m4)+

+s21c
2
2Π(0,m2,m3)− c21s

2
1Π(0,m1,m2)− c22s

2
2Π(0,m3,m4)

}

(3.14)

where the functions Π(0,m1,m2) and Π′(0,m1,m2) are given by

Π (0,m1,m2) =
1

m2
1 −m2

2

(

−m4
1 + 4m3

1m2 + 4m3
1(m1 − 2m2) logm1 − 4m1m

3
2+

+4m3
2(2m1 −m2) logm2 +m4

2

)

(3.15)

Π
′

(0,m1,m2) =
2

9(m2
1 −m2

2)
3

(

−12m3
1(m

3
1 − 3m1m

2
2 + 3m3

2) logm1+

+12m3
2(3m

3
1 − 3m2

1m2 +m3
2) logm2+

+(m2
1 −m2

2)(2m
4
1 + 9m3

1m2 − 16m2
1m

2
2 + 9m1m

3
2 + 2m4

2)
)

. (3.16)

In this context, the S and T parameters are a measure of the deviation of the heavy particles

from the pure Dirac mass case. When the couplings yr are turned off, the custodial SU(2)c and
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isospin SU(2)L symmetries are restored, and both S and T vanish. To see this in more detail,

we can expand the S and T parameters in powers of (m1−m2)/(m1+m2), (m3−m4)/(m3+m4).

If mq = mu = md =M ≫ yuv, ydv we obtain,

S =
Nc nv v

2
[

(11 + 20Y )y2u + (11− 20Y )y2d
]

30πM2
(3.17)

T =
Nc nv v

4 (y2u − y2d)
2

40π s2W M2
W M2

. (3.18)

where sW = sin θW and MW is the mass of the W boson. Then we see that S, T → 0 when

yu, yd → 0, i.e., m2 → m1 and m4 → m3 . The corresponding formulas for the lepton-like

fermion case can be obtained by substituting yu → 0, yd → yl, Nc → 1 in equations (3.17) and

(3.18).

Figure 3.2: The bounds at 95% CL on the (M,y) parameters from constraints on the oblique parameters
(S, T ) for nv = 2, 3, 4 and two different regimes: ρr ≈ 1 (y =

√
7yl) (Left panel), and ρd̄ = ρū = ρq ≫

ρl = ρe ≈ 1(y = yl) (Right panel). The upper-left region is excluded in these plots.

Fits of the combined electroweak data provide constraints on the S and T parameters and

have been obtained in many places. Here we use the results from the PDG fits. The standard

model is defined by (S, T ) = (0, 0) with mt = 170.9 GeV and mH = 115 GeV. The best fit to

data is (without fixing U = 0)

S = −0.10± 0.10 (3.19)

T = −0.08± 0.11. (3.20)

These equations then imply the bounds S ≤ 0.10 and T ≤ 0.13 at 95% CL. From the ex-

perimental data, we can readily find the constraints on the parameters of the model. For

example, for lepton-like fermions, if we take Y = −1/2 and m1 = 1 TeV, then S ∼ 0.01y2l nv

and T ∼ 0.08y4l nv. Notice that the small value of S leads to only mild constraints on yl and

nv. By constrast, the parameter T provides the most stringent bounds.
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There is, however, one important effect that can mitigate the contribution to T . From

(3.18), we see that electroweak corrections to the T parameter are insensitive along the yu = yd

direction in the parameter space, where the isospin symmetry is restored. In this case, the only

constraints on the yu and yd contributions to y are given by the S parameter, which, as we have

just seen, are less stringent.

In figure 3.2 we show the bounds on y at the 95% C.L. from the X particles in table 3.1

as a function of the mass scale M and for nv = 2, 3, 4. For illustration, we have considered

yu = yd = yl and two different regimes: the degenerate case, ρr ≈ 1, (Left panel) and the non-

degenerate case, ρd̄ = ρū = ρq ≫ ρl = ρe ≈ 1, (Right panel). In this case, one has y =
√
7yl

and y = yl for the degenerate and non-degenerate cases, respectively, (cf. (3.3)). Since yu and

yd are unconstrained by T along the yu = yd line, and the limits from S are less severe, the only

bound we can obtain on y comes from the most stringent bound on yl due to the T parameter.

We then see that typical values M ≃ 1, 1.5 TeV and y ≃ 1 are permitted for nv = 2. For larger

values of nv, the allowed split between the mass eigenstates is smaller, but still large enough

that a coupling y ≃ 0.5 is not unreasonable.

To summarize, we conclude that for a sufficiently large range of the parameters the fit to

electroweak observables is in agreement with the existence of extra vector-like fermions. This

parameter space is characterized by

ρr ≈ 1 : y . 1.2− 1.6

ρd̄ = ρū = ρq ≫ ρl = ρe : y . 0.6− 1.2 (3.21)

together with the current direct search limits

Ml,Mē & 200 GeV

Mq,Mū,Md̄ & 250 GeV. (3.22)

3.4 Numerical analysis

An interesting feature of the pure-glue hidden valley is that the v-glueballs can have many decay

modes, depending on their quantum numbers and on the values of the various parameters. To

give a general survey of decays is beyond the scope of this work, since a more detailed treatment

would have to incorporate precise values of the matrix elements which at present are unknown.

However, a few examples are useful to illustrate the main qualitative features of v-glueball

decays.
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3.4.1 Decay patterns of v-glueballs

The relevant parameter space consists of the mass scale M , the 0++ mass m0, the coupling y

and the Higgs mass mH . Here we present our results in terms of m0 which is more transparent

than the confining scale Λv, since m0 is the relevant parameter for LHC studies. To simplify

the discussion in the SM, it is convenient to assume that the Higgs boson is SM-like and fix its

mass to be mH = 120 (“low mass” range) or mH = 200 GeV (“high mass” range). Moreover,

since the branching ratios depend on M and y only through the combination yM , our problem

is reduced to a two-dimensional parameter space described by yM and m0.

For our estimates below, we will use the lattice results [25] 6

4παvF
S
0++ = 3.06m3

0, FT
2++ = 0.03m3

0 (nv/3), 4παvF
P
0−+ = 0.83m3

0. (3.1)

We also need estimates of the other v-glueball decay constants and transition matrix elements,

which at this point are unknown. A reasonable educated guess is that they are of order FT
2++ ,

which is the only known decay constant that is largely independent of the size of the v-glueballs.

We can also guess MΩ
1−−0++ ∼ 1/FS

0++, as it would be true for pion emission. In the following,

we will therefore assume

FL
2±+ =

nv

3
M

S(i)

2++0++m0 ≃ FT
2++ , M

S(i)

1−−1+−m1+− =

√

nv

3
MΩ

1−−0++ ≃ nv

3
m6

0/F
S
0++ .

(3.2)

Later in this section, we will comment on how large deviations from this guess might affect our

estimates.

Using the decay rates expressed in section 3, we identify Γ(6) and Γ(8) as the summed

contributions to the decay rates from dimension-six and dimension-eight operators, respectively.

The corresponding branching ratios are denoted byBR(6) andBR(8), satisfyingBR(6)+BR(8) =

1. To illustrate the dependence of the branching fractions on yM and m0, we present in figures

3.3 and 3.4 contours of constant BR(6) in the m0 vs yM plane for various choices of v-glueball

states and mH = 120 GeV, 200 GeV. In figure 3.3, we see that the values of BR
(6)
0++ are large

over most of the parameter space plane, except at very low yM . By contrast, the values of

BR
(6)
2++ are small, except for a small region at large yM . The most interesting decay pattern is

found in the 1−− v-glueball. We see that BR
(8)

1−− typically dominates when m1−− −m1+− < mH

6Here the coupling constant 4παv is included alongside F
S

0++ and F
P

0−+ to make them renormalization

invariant so that there is no question at which point 4παv is normalized. On the contrary, FT

2++ is renormal-
ization invariant as is, since it is the matrix element of the energy-momentum tensor which is known to be scale
invariant. Also, since the values reported in [25] are not expressed in a continuum renormalization scheme, we
have converted g2FT

2++ to F
T

2++ using the value of the lattice parameter β = 6/g2 = 3.2 as an approximation

to the continuum limit.
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and the emitted Higgs boson is off-shell, whereas BR
(6)
1−− dominates when m1−− −m1+− > mH

and the emitted Higgs boson is on-shell. An analogous behaviour is found for mH = 200 GeV,

as demonstrated in figure 3.4.

Figure 3.3: Curves of constant branching ratio BR(6) in the parameter space (m0, yM) for various
representative states and mH = 120 GeV. Left: 0++, Center: 2++, Right: 1−−.

Figure 3.4: Same as figure 3.3 for mH = 200 GeV.

The values of yM determine to a large extent the decay pattern of v-glueballs with three

distinctive energy regions: (i) yM ≪ 1 TeV, (ii) yM ≫ 1 TeV and (iii) yM ≈ 1 TeV. Recall

that these ranges of parameters are further constrained by existing experimental limits, as

described in section 4. As will be discussed below, the common feature of all these different

regimes is the great diversity of decay modes and lifetimes, even for a given choice of parameters.

(i) yM ≪ 1 TeV. For sufficiently small yM , the contribution of the dimension-six operators

can be effectively disregarded and, hence, the dimension-eight operators have the largest effects

on v-glueball decays. As shown in [19], annihilation decays dominate the 0++, 2++, 0−+ and

2−+ v-glueballs. Their branching ratios are dominated by decays to gg, with decays to γγ having

a branching fraction of ∼ 0.4%, assuming the X fields form complete SU(5) multiplets of equal
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mass. If the colored particles are much heavier than the uncolored particles, then decays to

electroweak bosons and photons can dominate. Most other states decay by radiatively emitting

a photon, or a Z boson. In addition, the 1−− state can also decay to standard model fermions via

an off-shell γ or Z. The 3++ state is special in that its three-body decay mode 3++ → 0++gg

could be of the same rate as the radiative 3++ → 1+−γ decay. The clearest signatures for

this regime are likely to be the two-photon resonances from the prompt annihilation decays

of C-even v-glueballs. In addition, for part of the parameter space, the v-glueballs are rather

long-lived particles, so that they produced displaced vertices in the detectors, which can be an

experimentally challenging, but certainly important signature.

(ii) yM ≫ 1 TeV. In this case, the Higgs couplings to v-glueballs dominate over all other

couplings. As a result, the decay pattern is relatively simple. In the PC = ++ sector, we

find that the 0++ v-glueball annihilates directly into pairs of standard model particles via

0++ → h∗ , with the same final states and branching fractions of a Higgs boson with mass

m0. For m0 > 2mh, the mode 0++ → hh opens up, in addition to 0++ → h∗, contributing

20 − 25% to the total width with the decays into weak boson and top quark pairs accounting

for the remaining 75 − 80%. The 2++ v-glueball decays predominantly to the lighter 0++

by radiatively emitting a Higgs boson. In the PC = −+ sector the lightest states are the

0−+ and 2−+ v-glueballs. The 2−+ v-glueball decays in a similar way to the 2++, with the

rate dominated by 2−+ → 0−+h. Although the 2−+ v-glueball is heavier than the 0++, the

2−+ → 0++h decay is not allowed, due to parity and conserved angular momentum. The 0−+

v-glueball is a special case. Without explicit breaking of parity, the 0−+ v-glueball decays slowly

into gg via dimension-eight operators.

Turning to the PC = +− sector, we find that most of the states can decay by emission of a

Higgs boson, through processes of the form Θκ → Θκ′h, where Θκ, Θκ′ denote two v-glueballs

with given quantum numbers. Since C-changing transitions are not allowed by the S operator,

the v-glueballs in that sector typically undergo a cascade decay, radiating a Higgs boson at

each step, which ends at the lightest 1+− state. The v-glueballs in the PC = −− sector decay

in a similar manner, with the lightest 1−− v-glueball decaying to the 1+− v-glueball with the

emission of a Higgs boson. Since the 1+− v-glueball is not permitted to decay via dimension-six

operators, its dominant decay modes are photon-radiative transitions to C-even v-glueballs, as

in (i).

We should note that this theoretical regime may be difficult to access in practice. For the

2++ v-glueball (and hence the 2−+), this requires yM & 10 TeV (see figures 3.3 and 3.4). As
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Figure 3.5: The branching ratios of the 0++ v-glueball as a function of m0 for yM ∼ 1 TeV. Left Panel:
mH = 120 GeV. Right Panel: mH = 200 GeV. For clarity, only the main decay modes are shown.

shown in (3.21), the heavy mediators can at most have Yukawa couplings y ∼ 1 in order to avoid

potentially dangerous electroweak corrections. With M ∼ O(10 TeV), the rate for production

of v-glueballs (∝ σgg→XX ≪ 1fb) is rather small, rendering this region of parameter space

experimentally inaccessible to the future experiments at the LHC.

(iii) yM ≈ 1 TeV. For Higgs couplings with intermediate strength, the v-glueball decay

pattern is more complicated because the couplings to the gauge bosons become important,

leading to a interesting interplay between dimension-six and dimension-eight operators. From

the point of view of prospective experiments at the LHC, this is also the most interesting regime,

due to the diversity of v-glueball decay channels and variability of lifetimes as well.

The 0++ v-glueball still decays predominantly to pairs of standard model particles via 0++ →

h∗ or, if kinematically allowed, 0++ → hh. The branching ratios for the main decay channels

of the 0++ v-glueball are shown in figure 3.5 for yM = 1 TeV in the cases of mH = 120 GeV

and mH = 200 GeV.

For the 2++ and 2−+ v-glueballs, the dominant decay mode is gg. This is because the 2±+ →

0±+h(h∗) decay is phase-space suppressed by a 10−8 − 10−3 factor. For m2++ −m0++ > mH ,

the phase space suppression is smaller ∼ 0.01, but in this regime the (m2++/M)4 suppression

of D = 8 operators is inefficient, rendering the D = 6 operators subdominant.

The dominant decay modes of the 1−− v-glueball are transitions with a Higgs boson in the

final state, 1−− → 1+−h, for m1−− − m1+− > mH or, photon-radiative decays to the lighter

v-glueballs in the C-odd sector for m1−− −m1+− < mH . The decays of the other v-glueballs in

the C-odd sector proceed in a similar fashion. In addition, the decay of the 1−− v-glueball into

fermion pairs can play a significant role for m1−− −m1+− < mH .

Since the 1+− and 0−+ v-glueballs cannot decay via their couplings to the Higgs boson, their
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dominant decay modes are gg for the 0−+ v-glueball and radiative transitions to the C-even

states with emission of a photon for the 1+− v-glueball.

The 3++ state is more complicated. With many contributing decay channels and unknown

form factors, it seems impossible to estimate which decay mode is dominant. Indeed, a simple

estimate suggests that the 3++ → 0++gg, 3++ → 1+−γ and 3++ → 0−+h decays are all of the

same order.

Summarizing all three cases, we expect the v-glueball decays to produce any of the kinemat-

ically allowed final states of the Higgs boson, such as bb̄, τ+τ−, W+W−, etc, as well as possible

photons, both singly and in pairs, and gluon pairs. If kinematically allowed, multiple production

of standard model Higgs bosons from cascade decays can also proceeds with a sizable rate. A

typical final visible state would then be of the form bb̄bb̄, WWWWbb̄, bb̄τ+τ−, bb̄gg, bb̄γγ, and

so on.

3.4.2 Lifetimes

Meanwhile, with so many v-glueball states and decay channels, the lifetimes of the v-glueballs

can vary over many orders of magnitude. This is already clear from the fact that the lifetimes are

very sensitive to both M and m0. In our approach, the large contributions of the dimension-six

operators also suggest a wider spread of the lifetimes than that found when the Higgs couplings

are absent, as in [19]. In figure 3.6, we plot the lifetimes of some of the v-glueballs as a function

of m0 for the three representative regimes studied in the last subsection. We see that for

yM ≈ 1 − 10 TeV the various v-glueball states have lifetimes that typically span 5-6 orders of

magnitude, for any given choice of the parameters.

An important consequence of the large spread in the lifetimes is that there is a significant

probability that one or more of the v-glueballs will often decay a macroscopic distance away

from the primary interaction vertex. Only one of these states needs to be both long-lived and

frequently produced to provide a strong signature of new physics.

If production rates are substantial, displaced vertices are expected for average decay lengths7

cτ of the order 10−4 − 100m, resulting in lifetimes of 10−12 − 10−6 sec. Outside this range, the

displaced-vertex signature is no longer present, either because the lifetime is much longer than

10−6 sec, so that a typical v-glueball produced at the LHC will escape the detectors, or because

7Note that the actual v-glueball decay length l in the laboratory frame, distributed according to P (l) ∝
e−l/γcτ with the Lorentz boost factor γ = 1/

√

1− β2 , may be actually much smaller than the average decay
length cτ . So even if cτ far exceeds the dimensions of the detector, there is still a significant chance that these
v-glueballs will be observable, providing the rates are substantial.
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the decays are prompt and the v-glueball decay lengths cannot be resolved.

As shown in figure 3.6, displaced vertices could be observed for 10 GeV . m0 . 200 GeV

and 0 . yM . 1 TeV or for 10 GeV . m0 . 400 GeV and yM ≫ 1 TeV. As long as m0

becomes greater than about 400 GeV, all v-glueball decays will be prompt and the displaced-

vertex signature will be absent. In the case yM ≈ 0 the 1+− and 1−− v-glueball lifetimes reach

values high enough for displaced vertices for m0 between 50 GeV and 150 GeV. The 0++, 0−+,

2++ and 2−+ v-glueballs may also decay with displaced vertices in the very low mass range

m0 . 70 GeV. On the other hand, in the case yM ≈ 10 TeV the spread in the lifetimes is two

or three orders of magnitude larger, so even larger v-glueball masses 150 GeV < m0 < 400 GeV

may allow for displaced vertices. This is the case of the 2++ and 2−+ v-glueballs, as shown in

the middle panel of figure 3.6. Their lifetimes are so long that these v-glueballs may escape the

detectors for m0 . 100 GeV. In the low mass range 50 GeV < m0 < 200 GeV other v-glueballs

such as the 1+− and 1−− also have a significant chance to decay with displaces vertices. In

this case, the 0++ and 2++ v-glueballs will remain short-lived over most of the parameter space

down to masses of order 50 GeV where displaced vertices may start to occur for these states as

well. Finally, the case yM ≈ 1 TeV shown in the right panel of figure 3.6 is an example of an

intermediate situation, with the 0++ v-glueball being short-lived, except for very-low masses

m0 . 50 GeV, and at least five states having a chance to decay with displaced vertices in some

part of the parameter space: the 1+− and 1−− v-glueballs for m0 . 200 GeV, and the 2++,

2−+ and 0−+ v-glueballs for 20 GeV . m0 . 100 GeV.

From the analysis above it is quite evident that long-lived resonances are a common feature

of pure-glue hidden valleys for an ample range of parameters. Nonetheless, detecting long-lived

particles presents several experimental challenges. Displaced jets, though they have no stan-

dard model background, suffer from substantial detector backgrounds from secondary vertices

inside the detector material. On the other hand, displaced leptons are technically easier, and

have much less background, but branching ratios to leptons are usually quite small. Displaced

photons also present several experimental challenges, since one has to detect not only the posi-

tion where the photons enter the electromagnetic calorimeter but also their angle of incidence.

Thus the issue of detecting displaced vertices is not straightforward, and requires novel analysis

strategies.

Interestingly enough, the v-glueball masses can be as low as a few GeV’s and at the same

time the lifetimes could be short enough that a few v-glueball events could be observed at the

LHC. Specifically, let us examine closely the case of the scalar 0++ v-glueball. From (3.2) we
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Figure 3.6: Lifetimes of the v-glueballs as a function of the v-glueball mass scale m0 for three rep-
resentative regimes: yM ≈ 0 (Left panel), yM ≈ 10 TeV (Middle panel), and yM ≈ 1 TeV (Right
panel).

see that for X particles of order 1 TeV the lifetime of the 0++ v-glueball is of order

cτ ∼ 1cm

(

M

1 TeV

)4(
20 GeV

m0

)7(
5 GeV

mb

)2
(

1−
4m2

f

m2
0

)−1.5

. (3.3)

We see that for m0 & 10 GeV the 0++ state can decay inside the detector. It is important to

remark that even for cτ well above 10 meters, a significant fraction of the v-glueballs will still

decay inside the detector. If detector backgrounds are sufficiently low, and production cross-

section is substantial, discovery would also be possible, in principle, for states in the low-mass

range 1 GeV . m0 . 10 GeV.

3.4.3 Uncolored X particles

If there is a substantial hierarchy between the coloredX particles and the uncoloredX particles,

the latter may dominate v-glueball decays. Decay rates to a pair of SM gluons in the C-even

sector are proportional to the coefficients χ2
3 (3.12), which would be suppressed. If the particles

carrying QCD color are heavier by factors of 2 or more, the hierarchy of decay rates changes,

as χ2
3/χ

2
γ ∼ 10−2 − 10−4. In this case, decays to gluons no longer dominate the partial widths

Γ(8) for the C-even states. Also, the regime for m0 and yM in which Γ(8) dominates over Γ(6)

is somewhat reduced. Without any detailed computation, we may infer from figures 3.3 and 3.4

that the decays of the 0++ v-glueball, with its large branching fraction to off-shell Higgs boson,

will not be much affected. For m0− < 2mW , the dominant decay mode of the 0−+ v-glueball

is now γγ with a branching ratio of 90% with the decays into gg and Zγ accounting for the

remaining 10%. In the high mass range m0− > 2mW , the 0−+ v-glueball decays dominantly

into WW with a branching ratio of ∼ 70% followed by the decays into ZZ, γγ and Zγ with

branching ratios of 20%, 5% and 5%, respectively. Also, the lifetime of the 0−+ v-glueball

is longer. For the 2++ and 2−+ v-glueballs, the decays into photon pairs typically dominate



61

for m2±+ −m0±+ < mH , while the Higgs-radiative transitions 2±+ → 0±+h can dominate for

m2±+ −m0±+ > mH . The decays of the v-glueballs in the C-odd sector are largely unaffected.

We will comment further in the conclusions and in our LHC study [60], but suffice it to say that

the fact that the annihilation into photon pairs may dominate the lifetimes of some v-glueballs

(the 0−+, 2++, 2−+) has important consequences for experimental searches.

3.4.4 Uncertainties in the v-glueball matrix elements

In another respect, we should emphasize that even though our estimates are in general robust,

they are subject to significant uncertainties, due especially to the many unknown v-glueball

matrix elements. Although lattice computations are at present not available, it is of interest to

see what one might expect once lattice computations are incorporated. Of course, the decays

of the 0++ v-glueball will remain unchanged, since its branching ratios are independent of the

decay constant Fs
0+ . The same is true for the 1+− and 0−+ v-glueballs. On the contrary,

the decays of the 2++ and 1−− v-glueballs depend on ratios of the unknown non-perturbative

matrix elements,

r2+ =
MS

2++0++m0

FT
2++

r1− =
MS

1−−1+−m1+−

MΩ
1−−0++

. (3.4)

Since there is no reason for the form factors MS
2++0++ and MS

1−−1+− to be significantly sup-

pressed or enhanced at k2 = m2
H , the ratios r2+ and r1− are probably of order O(1) (actually

somewhat smaller8, especially at large nv). To illustrate the possible range of impact lattice com-

putations may lead to, we can simply make the rescaling yM → yM
√
r2+ and yM → yM

√
r1−

in figure 3.3. One can see that when r2+ is varied by a factor of 10 in both directions around

r2+ ∼ 1 for yM ∼ 1 TeV, the ratio BR
(6)
2+ changes by around 10 − 20%, and the dominant

mode of the 2++ v-glueball is still gg. A similar conclusion is obtained for the 2−+ v-glueball.

For the 1−− v-glueball, in contrast to the 2++ and 2−+, the branching ratios are more uncer-

tain. The reason is that the contributions from D = 6 and D = 8 operators are comparable

in strength, so a small enhancement in one of the matrix elements can lead to a large effect

on the branching ratios. For r1− ∼ 0.1, the photon-radiative decay gets enhanced very greatly

and could dominate the branching ratio in most of the mass range, while r1− ∼ 10 tends to

enhance the Higgs-radiative decay. Therefore, additional lattice computations would be needed

to distinguish between these two modes. Fortunately, it turns out that the impact of precise

lattice computations on the phenomenology of the lightest v-glueballs 0++, 2++, 0−+ and 2−+,

8Using standard large-nv counting rules and taking into account explicit factors of 1/
√
nv in the coupling

constant, one obtains r2+ ∼ O(1/nv) and r1− ∼ O(1/
√
nv); see (3.2).
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which, as will be argued in our LHC study, are probably the most copiously produced, is in

general very mild.

3.5 Other extensions

In this section, we consider two simple extensions that may alter the phenomenology of v-

glueballs in a number of ways, with a special emphasis on the 0−+ and 1+− v-glueballs. Firstly,

we analyze the two Higgs doublet model (2HDM), which is the simplest extension of the standard

model Higgs sector, and secondly, we study the possibility of CP violation in the theory and

its implications for v-glueball decays. We will not attempt to systematically compute all the

decay rates, but simply point out a few salient features of these extensions.

3.5.1 2HDM

As in the MSSM, we consider the SM with two Higgs doublets Hu and Hd, where Hu only

couples to up-type quarks and neutrinos and Hd only couples to down-type quarks and leptons.

In this model, there are five physical Higgs bosons: two charged scalars (H±); two neutral

scalars (H and h); and a neutral CP -odd scalar (A). The presence of the CP -odd scalar A is

of particular interest. Since the A is CP -odd, a gauge invariant CP -conserving coupling to the

v-gluons must be of the form ǫµναβtr FµνFαβAΦ, with Φ = 1, H, h. Because of this coupling,

new possible decays of the pseudoscalar 0−+ state emerge in the 2HDM. These are

0−+ → A∗ → ff, (3.1)

0−+ → HA, (3.2)

0−+ → hA (3.3)

0−+ → 0++A. (3.4)

For all other v-glueballs, there are new contributions to their decays in the 2HDM, but the decay

pattern as described in sections 3 and 5 remains basically unchanged. For the 0++ v-glueball,

the new channels include 0++ → hh,Hh,AA as well as the off-shell Higgs decay 0++ → h∗. For

all other states, new decay modes arise from the processes Θκ → Θκ′φ, where now φ = H,h,A.

Recall that in the single-Higgs model, the lowest-dimension operators that can induce decays

of the 1+− v-glueball arise at mass dimension eight. A similar conclusion applies to the 1+−

v-glueball in the context of the 2HDM. Therefore, while the CP -odd scalar A makes a drastic

change on the 0−+, it does not affect the 1+− v-glueball.
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To estimate the effect of the CP -odd scalar A on the branching ratios, we will need to find

the effective Lagrangian. Using the basic results of section 2, the effective Higgs couplings to

v-gluons, induced at one-loop by the X particles, is given by

L(6) =
αv

3πM2

[

y2uH
†
uHu + y2dH

†
dHd

]

tr FµνFµν+

+
αv

2πM2

[

y2d

(

Hd −H∗
d

2i

)†(
Hd +H∗

d

2

)

+ y2u

(

Hu −H∗
u

2i

)†(
Hu +H∗

u

2

)

]

tr FµνF̃µν . (3.5)

Here yu and yd represent the couplings of the X particles to the Higgs doublets Hu and Hd,

respectively. The couplings of the physical Higgs bosons to v-gluon pairs are readily obtained

by including the appropriate mixing angle factors

L(6) =
αv

6πM2

(

ξHHH
2 + ξhhh

2 + ξHhHh+ ξAAA
2
)

tr FµνFµν +
αv vH
2πM2

ξAA tr FµνF̃µν

+
αv vH
3πM2

(ξHH + ξhh) tr FµνFµν +
αv

4πM2
(ξAHAH + ξAhAh) tr FµνF̃µν (3.6)

where the coeffients ξij and ξi are given by

ξHH = y2us
2
α + y2dc

2
α ξhh = y2uc

2
α + y2ds

2
α ξHh = 2sαcα(y

2
u − y2d)

ξAH = y2usαcβ − y2dcαsβ ξAh = y2ucαcβ + y2dsαsβ ξAA = y2uc
2
β − y2ds

2
β

ξH = y2usαsβ + y2dcαcβ ξh = y2ucαsβ − y2dsαcβ ξA = sβcβ(y
2
u − y2d) (3.7)

where α the mixing angle and the ratio of the vacuum expectation values tanβ = vu/vd. The

combination v2d + v2u is fixed by the electroweak scale vH =
√

v2d + v2u = 246 GeV.

The decay rates can be readily extracted from our general results in section 3 by replacing

y2 with the appropriate couplings in (3.7). For the scalar 0++ state, the decay rates for the

off-shell Higgs decay 0++ → H∗/h∗ → ζζ can be read from (3.2) through the substitution

y2

m2
0 −m2

H

→ ξH
m2

0 −m2
H

+
ξh

m2
0 −m2

h

, (3.8)

while the rate for the two-body decays 0++ → HH, hh, Hh, AA is obtained from (3.3) by

replacing

y2
(

1 +
3m2

Z

2(m2
0 −m2

H)

)

→ ξij +
ξHgHij

m2
0 −m2

H

+
ξhghij

m2
0 −m2

h

, (3.9)

where i, j = HH,Hh, hh,AA and gijk are the cubic self-couplings in the 2HDM. Likewise,

the width of the decays Θκ → Θ′
κΦi, Φi = H,h,A, can be obtained from (3.9) and (3.10) by

substituting y2 → ξi. Finally, we summarize the rates for the new decay modes of the 0−+

v-glueball (3.1-3.4),

Γ0−+→ff̄ =

(

ξA tanβ vH FP
0+

2πM2(m2
A −m2

0)

)2

ΓSM
h→ff̄(m

2
0−) (3.10)
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Γ0−+→0++A =
1

16πm0−

(

MP
0−0+ξA

2πM2

)2
[

g(m2
H ,m

2
A;m

2
0−)
]1/2 (3.11)

Γ0−+→AH =
1

16πm0−

(

FP
0−

2πM2

)2(

ξAH +
3ξA

2(m2
0− −m2

A)

)2
[

g(m2
H ,m

2
A;m

2
0−)
]1/2

(3.12)

Γ0−+→Ah =
1

16πm0−

(

FP
0−

2πM2

)2(

ξAh +
3m2

ZξA
2(m2

0− −m2
A)

)2
[

g(m2
h,m

2
A;m

2
0−)
]1/2

. (3.13)

The expressions above are clearly very model dependent. First, notice that for yu ≃ yd, ξA

is very small, and the decay rate of the 0−+ v-glueball is suppressed. On the other hand, for

yd ≃ 0, a quick check shows that this rate, whose ratio to the 0++ width is (for small masses

m0 < mh)

Γ0−+

Γ0++

≃ 0.5

(

sα
m2

A

m2
H

+ cα
m2

A

m2
h

)−2

, (3.14)

is not negligible. This ratio may be anywhere from ∼ 0.1 up to about 4 depending on the

mixing angle and the masses of the scalars. Unless the 0−+ decay rate is unduly suppressed,

the lifetimes of the 0++ and 0−+ v-glueballs are in general within one order of magnitude from

each other.

3.5.2 Models of explicit CP violation

It is of interest to see what one might expect once CP -violation effects are incorporated in the

theory, in the context of a single-Higgs model. For example, parity-violating interaction terms

can be induced in the effective Lagrangian if we assume that the couplings of the heavy particles

Xr to the Higgs boson are complex. In this case, a P -odd C-even interaction is generated of

the form H†H tr FµνF̃µν . As in the 2HDM, this interaction drastically changes 0−+ decays,

since without it, the 0−+ v-glueball would decay via dimension-eight operators, suffering an

extra suppression. The 0−+ v-glueball can then decay via 0−+ → h∗, producing any of the

kinematically-allowed final states of the Higgs boson.

Similarly, one can contemplate interactions that explicitly break C-invariance. Interestingly

enough, the lowest-dimension operators of this kind (e.g. H†HdabefcdeFa
µνFb

µνFc
αβFd

αβ) arise

at dimension ten and, therefore, their effects are extremely suppressed by extra powers of 1/M .

The dominant decay modes of the 1+− v-glueball are then induced by dimension-eight operators,

even if we allow for CP -violation.

In the rest of this section, then, we will focus on P -violating but C-conserving interactions.

To estimate the decay widths, let us consider the following Lagrangian, in two-component

notation,

Lmass = ydXqH
†Xc

d + ydX
c
qHXd + h.c. (3.15)
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where yd is a complex Yukawa coupling. By integrating out the Xq and Xd particles, we obtain

the following dimension-six operators9:

L(6) =
αv (y

2 − ỹ2)

3πM2
H†H tr FµνFµν +

αv (2 y ỹ)

πM2
H†H tr FµνF̃µν . (3.16)

where y = Re yd and ỹ = Imyd. Here F̃µν = (1/2)ǫµνλσFµν denotes the dual of the field

strength tensor. The first term on the right-hand side of (3.16) is the same operator that we

had already found in (3.2). The second term of (3.16) is new and violates P . As mentioned

above, the P -odd interaction allows the pseudoscalar 0−+ state to decay into SM particles via

s-channel Higgs-boson exchange 0−+ → h∗ → ζζ, where ζ denotes a standard model particle.

The width of the decay is given by

Γ0−+→ζζ =

(

2yỹ vH αv F
P
0−

πM2(m2
H −m2

0−)

)2

ΓSM
h→ζζ(m

2
0−) (3.17)

where FP
0− ≡ αv 〈0|tr FµνF̃µν |0++〉 is the 0−+ decay constant. The same operator also induces

the decay 0−+ → 0++h, with partial width

Γ0−+→0++h =
1

16πm0−

(

2yỹ vH αv M
P
0−0+

πM2

)2
[

g(m2
H ,m

2
0+ ;m

2
0−)
]1/2 (3.18)

where now MP
0−0+ is the transition matrix. This decay is phase-space suppressed for m0−+ −

m0++ < mh, but may be quite significant for m0−+ − m0++ > mh when the radiated Higgs

boson is onshell. For example, for mh ∼ 100 GeV we obtain BR(0−+ → 0++h) ∼ 0.3.

In the SM, the most stringent limits on the size of the CP violation effects come from

experimental limits on the electric dipole moment of the neutron. The same experimental

constraints also allow us to place limits on the CP -violating operator in (3.16). To see this,

let us recall that the X particles can also carry QCD color. Then, the following dimension-six

operators are induced:

L(6) =
αs (y

2 − ỹ2)

3πM2
H†H tr GµνG

µν +
αs (2 y ỹ)

πM2
H†H tr GµνG̃

µν . (3.19)

where now Gµν denotes the SM gluon field strength tensor and G̃µν its dual. The CP violating

term in (3.19) with the Higgs field replaced by its vacuum expectation value contributes to the

9The effective Lagrangian (3.16) can be evaluated either by following the procedure displayed in appendix A
or, equivalently, in the limit of vanishing Higgs momentum by taking derivatives of the v-gluon self-energy and
the axial anomaly:

L(6) = H†H/v2H (y2d∂
2/∂y2d + y∗d

2∂2/∂y∗d
2)L,

where
L = (αv/6π) ln(Λ

2
UV /detM†M) tr FµνFµν + (αv/2πi) ln(detM/detM†) tr Fµν F̃µν

with M =

(

M ydvH
ydvH M

)

.
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θ angle. We assume that this contribution to the θ angle is removed by whatever mechanism

that solves the strong CP problem in QCD. The next operators in the expansion around the

Higgs VeV contain one or two powers of the Higgs field. Their contribution to the electric dipole

moment of the neutron can be estimated using Naive Dimensional Analysis [61, 62]. Following

the analysis of [63, 64], we estimate the neutron electric dipole moment as

dn =
e

2πfπ

αs (2 y ỹ)

4πM2

(2πfπ)
2

(4π)2
∼ 10−25e− cm × (2yỹ)αs

8π2
× (1 TeV/M2). (3.20)

where 2πfπ ≃ 1190 MeV is the chiral-symmetry-breaking scale. Combining this result with the

current experimental bound on dn, we derive a limit on 2yỹ

|2yỹ| < 10× (M/1 TeV)2. (3.21)

Consequently, values for |y|, |ỹ| in the range 0.01−1 are consistent with the existing experimental

limits.

3.6 Conclusions

In this work, we have investigated a particularly challenging hidden valley scenario with a

broader class of couplings to SM particles than those considered in [19]. In particular, we have

focused on the effect of dimension-six operators by which the hidden sector interacts with the

standard model through the Higgs sector.

The resulting v-glueball phenomenology is fairly complex in this scenario, but there are some

simple features. In particular, we find the following interesting signatures:

• Decays of the 0++ v-glueball through h∗, producing any of the kinematically-allowed Higgs

final states such as bb̄, τ+τ−, WW , etc.

• Multiple Higgs boson emission, from cascade decays Θκ → Θκ′h, or annihilations 0++ →

hh.

• Due to the diversity of v-glueball states, and the presence of operators of different mass

dimension, the lifetimes can vary at least over 5 or 6 orders of magnitude, for any given

choice of parameters (see figure 3.6). This has two immediate consequences: (i) Displaced

vertices are quite common, which could potentially serve as a discovery channel, and (ii)

v-glueballs can be as light as a few GeV’s and still be visible.

• For sufficiently small v-glueball masses, a different opportunity arises in the form of non-

standard Higgs decays such as h → ΘκΘκ′ , with branching ratio to v-glueballs of order

10−3 − 10−2.
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In addition, other possible final states include gg, γγ, and radiative transitions with emission

of a photon, all of which are induced by dimension-eight operators [19]. The rare diphoton

channel is particularly interesting because, thanks to its moderate QCD background, it may

serve as the discovery channel for the v-glueballs at the LHC.

We should nevertheless emphasize that some of our results are subject to significant theoret-

ical and numerical uncertainties. In this respect, it would be interesting to know the spectrum

of pure-Yang-Mills theory for gauge groups other than SU(3), as well as the various v-glueball

matrix elements that arise. With enough motivation, such as a hint for discovery, these could

in principle be determined by additional lattice computations. If the v-sector gauge group is

not SU(nv), some of the v-glueballs may not be present; for instance, for SO(nv) or Sp(nv)

gauge groups the C-odd sector is absent or heavy. However, as explained in [19], the lightest

C-even v-glueballs are expected to be present in any pure-gauge theory, with similar production

and decay channels, so at least for them, the basic features of a pure-gauge hidden valley are

expected to be retained. We also have not considered higher-order corrections to the decay

rates, and they should be taken into account when precise predictions are required.

We have seen that the operators considered in this paper are not heavily constrained by

current experimental searches or precision electroweak data, thus leaving ample parameter space

to be explored by the next generation of hadron collider experiments. Application of our results

for phenomenological studies, particularly as relevant for the LHC, will be carried out in a

companion paper [60]. We expect that detection should be feasible, if the mass M of the X

particles is small enough to give a reasonable large cross-section, and Λv is large enough to

ensure the v-glueballs decay inside the detectors. Decays to bottom quarks and gluons often

dominate, but they suffer from a huge multijet background. At the Tevatron and at the LHC,

the v-glueballs are most likely to be found in searches for diphoton resonances in events with

2 photons plus jets or with 3 or more photons and possibly additional jets, or in searches for

displaced decays to jet pairs, W/Z pairs, or photon pairs. A potentially novel signature, which

could be currently searched for at the Tevatron, arises in the form of two b-tagged jets plus

diphoton events. Contrary to the models of [65–67], the branching ratio to bb̄γγ in our model

can be O(1), since the bb̄ and γγ final states originate in different resonances, leading to a

potentially discoverable signal despite the background of 2j + 2γ. Altogether, these signatures

provide an interesting opportunity to search for new physics at the Tevatron and at the LHC,

which motivates further theoretical and experimental study.
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Chapter 4

Phenomenology of quirkonia

The quirk limit has a splendid simplicity, largely devoid of all the complications of relativistic

quantum fields, in particular multiparticle production and pair creation. Recall that this theory

can be regarded as a certain limit of SU(nv) gauge theory with heavy quarks such that their

masses are much larger than the scale Λv where the gauge group SU(nv) becomes strong. One

of the reasons for its simplicity is absence of string breaking. Heavy quirks are confined by a

flux tube with energy per length unit of order Λ2
v. Hence the v-color field contained in the flux

tube is too feeble to create a quirk-antiquirk pair: that would require an energy of order ∼ 2M

localized in a small region of radius ∼M i.e. an energy density ∼ M2 ≫ Λ2
v. This mechanism

is indeed exponentially suppressed.

Furthermore, for sufficiently heavy quirks, one might hope that the characteristic time scale

associated with the motion of the constituents quirks inside the quirk mesons is much larger

than the time scale associated with the motion of the fast surrounding v-gluons [51]. In this

case the adiabatic approximation applies and the effect of the v-gluons can be represented by an

average instantaneous interaction potential V (r) between the heavy quirk sources. Moreover,

the bound state problem will become non-relativistic, and in the leading order in β the dynamics

will be controlled by the Schödinger equation,

− ~
2

2µ
∇2Ψ(r) + [V (r)− E] Ψ(r) = 0, (4.1)

where µ = m1m2/(m1 + m2) is the reduced mass of the system formed by the quirks with

masses m1 and m2, r is the distance between the quirks, V (r) is the interaction potential, E is

the energy eigenvalue, and Ψ(r) is the wave function.

In this work, we assume the quirk mass is in the phenomenologically interesting range

200 GeV . MX . 1 TeV that is not excluded by existing experiments but may be probed at

the LHC. The emphasis is on models in which the confining scale in the hidden valley sector,

Λv, is higher than about 5 GeV, where the v-glueballs produced in quirk annihilation and/or

relaxation may decay inside the detectors. Also, for simplicity, we will first consider the case of

colored quirks, which are expected to have a larger production cross section than the uncolored
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ones unless the mass of the colored quirks is of order 3 times larger than that of the uncolored

ones. Then we will comment on the uncolored quirk case.

In this model, quirks can be copiously produced at the LHC via normal QCD interactions.

The subsequent evolution of the quirk-antiquirk pair is not familiar so we review it here [47–49].

It is easiest to first view the evolution in the center of mass frame. In that frame the quirks

simply oscillate back and forth between their classical turning points. The amplitude of the

oscillation can be approximately estimated as E/σ, where E is the energy given to the quirk

pair by the collision and σ is the string tension, or energy per unit length of the string, and

is about ∼ Λ2
v. Eventually the oscillations will be damped. In the case of a high confinement

scale, two mechanisms are in principle responsible for energy lost. The first is emission of v-

glueballs. These can be modeled as bits of closed flux tube, with mass of order a few Λv and

size ∼ Λ−1
v . Because v-glueballs have a non-perturbative, extended structure their coupling

constant to quirks is uncertain. But there is not much reason to expect it to be extremely

small, except perhaps the poor overlap between the wave functions of the initial and final quirk

states and the fact that v-glueball emission is suppressed by powers of 1/nv.

A second mechanism is emission of perturbative gluons. This mechanism appears to be

highly important, as it can effectively work to suppress quirk annihilation at high orbital angular

momentum waves. Other damping mechanisms may also be present, e.g. non-perturbative

hadron emission or radiative transitions with emission of a photon. But it is almost sure that

the oscillations will be highly underdamped.

When the quirk and antiquirk come near to rest they will annihilate. The annihilation can

be into SM gauge bosons and/or fermion pairs, but also into v-gluons, which at long distance

become two or more v-glueballs. The annihilation rate can be estimated using factorization,

as in the quarkonium system, where the decay rate is factored into a short-distance part that

is related to the annihilation rate of the heavy quirk and antiquirk, and a long-distance factor

containing all the nonperturbative effects of SU(nv) gauge theory. The short-distance factor

is calculated in terms of the running coupling constant αv(M) of SU(nv), evaluated at the

scale of the heavy quirk mass M , while the long-distance factor is expressed in terms of the

nonrelativistic quirk meson wavefunction, or its derivatives, evaluated at the origin.

In this work, we focus on some of the key issues outlined above. Our results extend a

previous study on quirk phenomenology [49] to our current interest in high confinement scale

quirks, Λv ≫ 1 GeV. We will consider only one generation of vector-like quirks. Extension to

multiple quirk generations is straightforward. First, we need to find formulas for production

of colored quirks. We also show that the majority of quirks are produced with kinetic energy
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of order M or less. In this regime, the typical separation of the quirk and antiquirk is shorter

than Λ−1
QCD and therefore nonperturbative QCD effects will in general be unimportant.

Second, we want to solve for the spectrum of quirkonium bound states, particularly to exam-

ine mass splittings in different regimes. We will proceed by numerically solving the Schrödinger

equation in a appropriately chosen nonrelativistic potential. As part of this process we prove

that in general the mass splittings between color octet and color singlet states can be signifi-

cantly large so that one needs to keep track of quirk color states in detail. 1

In addition to the production and spectrum calculations, we set up detailed formulas for

decay properties of the color-singlet and color-octet quirkonium states. The computation of the

rates for gluon radiation and quirk annihilation is relatively simple and can be carried out by

following closely the corresponding results for charmonium/bottomium systems. However, the

energy loss due to v-glueball emissions is harder to estimate and we will content ourselves by

giving some general qualitative arguments.

The organization of the present work is as follows. In the next section, we present the

cross-sections for open production of quirks and use them to find the corresponding formulas

for production of quirkonium bound states. In section 3, we review the nonrelativistic potential

model and its application to the quirkonia spectrum. In section 4, we present the results

on the radiative transitions and annihilations of quirkonium and discuss the decay patterns.

Conclusions are made in section 5.

4.1 The problem of quirkonium production

The total cross-section σXX̄ for production of quirkonium states can be estimated using the

operator product expansion, as in the QCD rate for e+e− → hadrons, where the rate is well-

estimated by treating the quarks as free, plus a small αs correction, where αs is evaluated

at the center-of-mass energy
√
s [76]. We can thus consider the production of quirkonium as

proceeding in two steps. The first step is the production of a XX̄ pair, and the second step is

the binding of the XX̄ pair into a quirkonium state. Any Feynman diagram for the production

of a quirk pair must involve virtual particles that are off their mass shells by amounts on the

order of M or larger. The part of the amplitude in which all internal lines are off-shell by such

amounts is called the short-distance part, and it is calculable by using perturbation theory in

αv(M) . The parts of the amplitude in which the X and X̄ lines are off-shell by amounts much

1This is in contrast to the case of very small Λv studied in [49] where the bound states are very closely spaced
in the spectrum and the QCD color of colored quirks is uncorrelated, so averaging over quirk colors is a good
approximation.
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less than M can be considered part of the amplitude for the formation of the bound state.

The short-distance part of the amplitude describes the production of a XX̄ pair with a

spatial separation that is of the order of 1/M or smaller. This follows from the fact that the

short-distance part is insensitive to changes in the relative 3-momentum of the X and X̄ that

are much less than M . Since 1/M is much smaller than the time scale associated with the

quirkonium wavefunction, M/Λ2
v, the XX̄ pair is essentially pointlike on that scale. By that

time, the original quirks are far away from each other so that a residual interaction cannot

significantly alter the transition cross section which was decided at the first quirk stage. Thus,

we need only consider the amplitude for a pointlike XX̄ pair to bind to form a quirkonium

state. This amplitude will necessarily depend on the quirkonium state and on the quantum

numbers of the quirk pair.

In the local duality approach [76–79], the cross section for producing any quirkonium bound

state is equal to the cross section for producing a free quirk-antiquirk pair in an appropriately

chosen energy interval. The physical picture is that the quirkonium resonances introduce large

fluctuations of the cross-section as a function of
√
ŝ, and these ought to be convolved with the

parton distribution functions. But the resonances are closely spaced well above threshold, so

averaging over them is a reasonable approximation for an estimate of an overall rate.

The production of XX̄ bound states in hadroproduction can then be estimated by the free

XX̄ cross section integrated from the kinematical lower limit up to proton energy
√
s,

∑

ΘXX̄

σ(pp→ ΘXX̄ + X ) ≃
∫

√
s

2M

dσ

dŝ
(pp→ XX̄; s; ŝ), (4.2)

where the sum on the LHS of (4.2) is over all possible quirkonium resonances in the energy

interval 2M · · · √s. Here s denotes the squared beam energy. The differential cross section

for heavy quirk pair production can be read off the corresponding differential cross section for

heavy quark production.

Hadroproduction of open colored quirks in leading perturbative QCD proceeds via quark-

antiquark annihilation and gluon-gluon fusion in lowest order [78]. In the former case, a highly

virtual gluon is produced, which materializes into a XX̄ pair. The XX̄ state is thus produced

exclusively in the color-octet state. The cross section is given by:

σ̂qq̄→XX̄(ŝ) =
2

9

4π nv α
2
s

3ŝ

(

1 +
1

2
z

)

β. (4.3)

Here we have defined z = 4M2/ŝ, β =
√
1− z. The subprocess g + g → X + X̄ is similar

to γγ → e+e− but contains in addition the fusion of two incident gluons into a virtual gluon,
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which then decays into a XX̄ state

σ̂gg→XX̄ (ŝ) =
π nv α

2
s

3ŝ

[

(1 + z +
1

16
z2) ln

1 + β

1− β
− β

(

7

4
+

31

16
z

)]

. (4.4)

Hence, gg gives a mixture of color-singlets and color octets.

The cross section for free XX̄ production is

dσ

dŝ
(AB → XX̄; s; ŝ) =

1

s

∫ 1

τ

dx

x
HAB(x,

τ

x
; ŝ), (4.5)

where τ = ŝ/s. We have introduced the function

HAB(xA, xB; ŝ) = gA(xA, µ
2)gB(xB, µ

2)σ̂(gg → XX̄; ŝ)+

∑

q

{

qA(xA, µ
2)q̄B(xB , µ

2) + q̄A(xA, µ
2)qB(xB , µ

2)
}

σ̂(qq → XX̄; ŝ) (4.6)

where the sum is over light quark flavors relevant to XX̄ production. The mass scale µ is of

the order of the heavy quirk mass.

In figures 4.1-4.3 we present the LO XX̄ differential cross sections at
√
s = 14 TeV as a

function of
√
ŝ for different quirk masses M = 250, 500, 1000 GeV and µ2 = M2. Notice that

the cross sections are proportional to nv.
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Figure 4.1: The differential cross-section for colored quirk pair production at the LHC (
√
s = 14 TeV)

for M = 250 GeV.

With the above formulas (4.2) and (4.5) we present in figure 4.4 the total cross section for

colored quirk production at the LHC at leading order in perturbation theory. The production

rates are significant at to several TeV even though the quirks are heavy.
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Figure 4.2: The differential cross-section for colored quirk pair production at the LHC (
√
s = 14 TeV)

for M = 500 GeV.
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Figure 4.3: The differential cross-section for colored quirk pair production at the LHC (
√
s = 14 TeV)

for 1000 GeV.

4.2 Non-relativistic potential model

It is an experimental and theoretical fact that for heavy-quark bound states (“quarkonia”) the

orbital splittings are smaller than the quark massM [51,80,81]. This suggests that all the other

dynamical scales of these systems are smaller than M . Consistently with this fact, the quark

velocity v in these systems is believed to be a small quantity, v ≪ 1. Therefore, a non-relativistic

(NR) picture holds. The nonrelativistic approach has been successfully used for describing the

physics of heavy quarkonia since the discovery of the J/ψ meson and we expect it to provide

reasonable guidance to the dynamics of heavy quirk-antiquirk systems as well.

There are many possible states of a heavy quirk-antiquirk system. For any given quirkonium

state, the Fock state consists of a v-color-singlet quirk pair in a definite angular-momentum



74

500 1000 1500 2000

10
- 6

10
- 5

10
- 4

0.001

0.01

0.1

1

Figure 4.4: Quirk production cross section at the LHC (
√
s = 14 TeV) as a function of the quirk mass.

state. We denote the two possible QCD color states of a quirk pair by 1 for color-singlet

and 8 for color-octet. In the nonrelativistic approximation, the states of quirkonium can be

cataloged according to the standard spectroscopic notation n2s+1LJ , where n denotes the

radial excitations and L denotes the orbital angular momenta S, P , D, · · · for L = 0, 1, 2, · · ·

respectively. Each constituent quirk has spin 1
2 , and so the total spin quantum number can be

either S = 0 or 1. J is the quantum number of the total momentum, a vector sum of the spin

and orbital momenta. An alternative notation used to denote the quirkonium states is JPC

, where P is the space parity and C is the charge conjugation parity. For a quirk-antiquirk

system these can be expressed as P = (−1)L+1 and C = (−1)L+S , respectively. In table 4.1 we

have collected the quantum numbers of the lightest quirkonium states in the spectrum.

State JPC 2S+1LJ

η1, η8 0−+ 1S0

ψ1, ψ8 1−− 3S1

h1, h8 1+− 1P1

χJ,1, χJ,8 J++ 3PJ

Table 4.1: The quantum numbers of the low lying states in the spectrum.

A complete treatment of the spectrum of quirkonium in non-relativistic effective field theory

(NREFT) is beyond the scope of this work. We will discuss briefly when the nonrelativistic

potential model is expected to work. The validity of the potential model rests upon the existence

of a hierarchy of energy scales, M ≫ Mv ≫ Mv2 in nonrelativistic systems with mass M

and velocity v [81]. This hierarchy allows for the construction of a sequence of effective field

theories: nonrelativistic (NREFT) and potential NREFT (pNREFT). First, the transition is
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from the effective field theory with relativistic quirks to NRQCD with the quirks (and larger

momenta ∼ M) integrated out. The theory describes dynamics of heavy quirk-antiquirk pairs

at energy scales in the center-of-mass frame much smaller than their masses. A higher degree

of simplification can be achieved by exploitingMv ≫Mv2 and building the so-called potential-

NREFT (or pNREFT), where degrees of freedom of ∼ Mv are integrated out. In this way, an

analytical calculation of the spectrum becomes possible.

As in QCD, the choice of the potential is not unique, in view of the absence of a consis-

tent theory at all distances. However, it is restricted by theoretical arguments concerning the

properties of the interaction between quirks at different distances. The shape of the potential is

determined by asymptotic freedom at very short distances and by quirk confinement at very long

quirk separations. In the first case, the potential can be computed accurately in SU(nv) pertur-

bation theory, and in the lowest order it is dominated by single v-gluon exchange between the

static quirks. At distances of roughly 1/Λv, αv increases significantly and one-gluon-exchange is

no longer a good approximation. In long distances one calculates the potential in a model which

is assumed to be a good approximation to pure-Yang-Mills theory, usually in quenched lattice

QCD but also in string or flux tube models. A popular suggestion is that at long distances the

potential should behave as a linearly growing function of the quirk separation. Qualitatively

this linear behavior can be seen as arising from the chromoelectric lines of force that bunch

together into a flux tube which leads to a distance independent force or the potential. Thus, in

the case of interest the v-color potential has the following asymptotic limits:

r ≫ 1

Λv
: Vv(r) = σ r (4.7)

r ≪ 1

Λv
: Vv(r) = −C αv(r)

r
(4.8)

where σ is the string tension, αv(r) is the SU(nv) running coupling constant. The color factor

C is obtained by evaluating the product of SU(nv) generators. Labeling the particles 1 and 2,

this product is −T a
1 T

a
2 = 1

2 ((T
a
1 )

2) + (T a
2 )

2)− (T a
1 + T a

2 )
2), which leads to

C =
1

2

(

C1 + C2 − C(12)

)

, (4.9)

where C1 and C2 are the quadratic Casimirs for the two particles and C(12) that for the bound

state. For the case of a quirk-antiquirk pair, the v-color decomposition

nv ⊗ n̄v = 1⊕ (n2
v − 1) (4.10)

shows that quirkonium can be a v-color singlet or a v-color adjoint. Then

C1 = CF =
n2
v − 1

2nv
CAdj = CF − CA

2
= − 1

2nv
. (4.11)
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Thus the v-color Coulomb force is always attractive in the v-color singlet channel.

One can then use a smooth interpolating function for the transition region, smoothly join

the non-perturbative potential to the perturbative one or simply add the perturbative and

nonperturbative contributions.

In our numerical study, we have considered the following potential-model choices.

(1) Cornell potential [84]. This is the simplest possibility of a quirk potential satisfying the

asymptotic limits above. The potential is simply given by the sum of (4.7) and (4.8) with

αv(r) = αv = const,

V (r) = −4

3

αv

r
+ σr. (4.12)

(2) Richardson potential [85]. A different possibility which incorporates the two concepts

of asymptotic freedom and linear confinement in a unified manner is the Richardson

potential. In this case the potential is constructed by Fourier transforming a smartly

chosen, ad-hoc expression for the potential in momentum space

V (q2) = −4

3

1

q2

4π/11

ln (1 + q2/Λ2
v)
. (4.13)

The potential grows linearly at long distances and has the short-range behavior to one-loop

order in perturbation theory,

V (q2) = −4

3

16π2αv(q
2)

q2
, (4.14)

where

αv(q
2) ∼ 4π/11

ln (q2/Λ2
v)

q2 → ∞. (4.15)

Upon performing the Fourier transform of (4.13) Richardson showed that the potential

V (r) can be written in the form

V (r) =
8π

33
Λv

(

Λvr −
f(Λvr)

Λvr

)

, (4.16)

where

f(t) =
4

π

∫ ∞

0

dq
sin (qt)

q

[

1

ln (1 + q2)
− 1

q2

]

. (4.17)

The potential (4.16) has the nice feature that its behavior is determined by a single

parameter, the scale Λv. The value of Λv is conveniently chosen to reproduce the large-

distance string tension, i.e. σ = 8πΛ2
v/33.

(3) Wisconsin potential [86]. In order to be able to relate the short-distance behavior of the

potential to the parameter ΛM̄S
v , perturbative corrections up to two loops have to be
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included [82]. As an alternative we have adopted the potential proposed in [86] which

incorporates the asymptotic behavior predicted by the two-loop calculation, with ΛM̄S

not directly tied to the string tension,

Vv(r) = σr − 4

3

1

r

4π

b0f(r)

{

1 +
c

f(r)
− b1 ln f(r)

b20f(r)

}

(4.18)

where

f(r) = ln
{

(rΛv)
−2 + b

}

b0 = 11− 2

3
nf (4.19)

b1 = 102− 38

3
nf c =

1

360

(

31− 10

3
+ 2γE

)

. (4.20)

Here nf denotes the number of effective flavors; nf = 0 in the hidden sector, and nf =

3, 4, 5 in QCD. The parameter b is introduced to regularize the potential at large distances

r. The potential (4.18) grows linearly at long distances and has a short-range asymptotic

behavior to two-loop in perturbation theory.

One should be aware of what is being neglected in calculations within the naive potential

model. Relativistic and quantum effects such as spin dependence and pair creation, as well as

mixing between among states induced by coupling to decay channels, are ignored in the present

discussion. Also, as is, the potential model has little to say on the important question of how

v-gluonic degrees of freedom may affect the computation of the spectrum.

The size of the relativistic corrections can be estimated by computing the average relative

velocity v of quirks in a specific state [87]. At long distances, the potential behaves approx-

imately linearly, V (r) ∼ σr. In such a potential the expectation value of the kinetic energy

〈T 〉 = 〈 r2 dV
dr 〉 is just 〈T 〉 = 〈V/2〉 = E/3 with σ = m2

0/3.7
2. Since 〈T 〉 = 2(̇1/2)Mv2, one has

v2 ≃ 1/3 for quirk pairs with kinetic energy E ∼ M/4, where the majority of the states are

produced. Thus a nonrelativistic description for highly excited quirkonium states is quite crude,

whereas it is substantially better for the states produced near threshold.

In writing the XX̄ interaction for colored quirks we must also keep track of the color state

c of the quirk pair. The SU(3)C color potentials in momentum space take the form,

Vs(q) = −4

3
g2

1

q2
, Vo(q) =

g2

6

1

q2
= −1

8
Vs(q), (4.21)

governing interactions between colored quirks in color-singlet and color-octet states, respectively.

The force in the singlet channel is attractive while that in the octet channel is repulsive and

smaller in size.

We shall use the two-loop expression for αs,

αs(Q
2) =

4π

β0 log [Q2/ΛM̄S ]
2

{

1− 2β1
β2
0

log
[

log
[

Q2/Λ2
M̄S

]]

log
[

Q2/Λ2
M̄S

]

}

, (4.22)
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with β0 = 11− 2
3nf , β1 = 51− 19

3 nf and ΛM̄S ≃ 250 GeV.

We distinguish a priori three regimes in r:

1. For large r the interaction is negligible and the QCD color of colored quirks (which is

irrelevant to their motion) is uncorrelated so, to a good approximation, we can average

over quirk colors.

2. For intermediate r one must keep track of the color state in detail, and propagate the

quirks according to the potential appropriate to their color state. This the regime of

non-perturbative QCD transitions, such as pion emission.

3. For small r the large gap between color singlet and octet might induce a large transition

rate due to gluon radiation, which changes the color state of the quirks.

The boundaries of these regions must be determined by explicit computation.

0.02 0.04 0.06 0.08 0.10 0.12 0.14

- 100

- 50

50

100

Figure 4.5: Spectrum of the system consisting of two heavy quirks. In the case shown, horizontal lines
correspond to the binding energies of a color-singlet bound state of quirkonium.

The energy spectrum of the system of two heavy quirks therefore looks as shown schemati-

cally in figure 4.5. The low-lying states are Coulombic, with energy splittings of order α2
vM ≫

Λv ∼ m0/7, while the states near the continuum threshold are dominated by the linear term.

Spin-dependent interactions are suppressed by 1/M , so spin excitations are small and we do not

expect them to play an important role in the process we are considering. The energy splitting

between highly-excited states scale as ∼ n−1/3, where n denotes the radial quantum excitation

number. Hence, as n goes to infinity, the highly excited states become closely spaced.

4.3 Decay modes of heavy quirkonia

In this section, we present formulas for the decay widths of color-singlet and color-octet states

of heavy quirkonia.
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If the quirks are colored, the quirkonium states have many possible ways to decay. To a great

extent, the decays of quirkonium fall naturally into three main classes: hard annihilations, SM

radiative decays and radiative decays by the v-color strong interaction (“v-glueball radiative

decays”).

(a) Hard annihilations: The quirk and antiquirk pair annihilates into v-gluons, which at long

distance become two or more v-glueballs, or into SM gluons and quarks, which fragment

into two or more jets. Note that color-octet quirkonium states cannot annihilate into

v-glueballs alone.

(b) SM radiative decays: The quirk and antiquirk pair undergo a cascade decay with emission

of a perturbative gluon or two soft gluons which materialize into hadrons (mostly pions

and kaons). In the transitions with single-gluon emission a color singlet state is promoted

to a color octet state. Electromagnetic cascade transitions with emission of a photon are

possible for electrically-charged quirks, but these will be typically suppressed with respect

to the hadronic decays.

(c) v-glueball radiative decays: Non-perturbative v-color transitions ΨI → ΨJ + Θκ are an

example of this kind. Here, ΨI, ΨJ and Θκ stand for the initial state quirkonium, final

state quirkonium and emitted v-glueball, respectively.

Some comments are in order. First, we should note that the decays are constrained by

conserved quantum numbers. For instance, it is impossible for a color-singlet quirkonium state

with JPC = 1−− to decay through a single gluon as the particle is colorless but a gluon carries

color. Decays to two SM gluons are also forbidden by C conservation.

Also, as explained in the introduction to this chapter, the coupling of quirkonium to v-

glueballs is due to non-perturbative v-color effects and is subject to significant uncertainties.

Therefore, in this work we will consider two extreme scenarios: one where there is no suppression

of v-glueball production, and one where nonperturbative v-color interactions are effectively

absent. In the first case, the quirkonium states can decay quickly down to the ground state

by emitting a few v-glueballs if Λ is sufficiently high, or lot of v-glueballs for low Λ. In the

second case, the main mechanisms of energy loss are soft-gluon emission or perturbative-gluon

emission, depending on the spacing of the excited quirkonium states.
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4.3.1 Annihilation decays

In this section we present the decay widths of all color-singlet and color-octet quirkonium states

to two-body final states within the hidden valley or the standard model.

The fact that the decay rate factors into a short-distance and a long-distance part was

already explained in the introduction. The first is related to the probability that quirk and

antiquirk pair annihilate when they are near each other. Since the mass M of the quirks is

large the annihilation takes place in a small region of size ∼ 1/M and is described by the small

coupling constant of strong or v-color interactions. Therefore, one can use perturbation theory

to compute the corresponding matrix elements. This is analogous to the way annihilation decays

of charmonium are calculated in QCD. In fact, the calculations of the short-distance part in

QCD, QED or Pure-Yang-Mills theory are very similar. The reason is that we are considering

decays with the minimum number of particles in the final states. Besides, the details of strong

or v-strong interactions take place at a much longer time scale, so they should not affect the

total annihilation rates. The only difference between photonic, gluonic or v-gluonic annihilation

amplitudes reduces to a simple multiplicative color or v-color factor and to the difference of the

coupling constants. We will elaborate these factors in detail below.

The evaluation of the long-distance part of the annihilation rate is slightly more subtle. It

was shown in [49] that one needs to distinguish between two different cases: λ ≫ M−1 and

λ≪ M−1, where λ is the de Broglie wavelength of the quirks

λ =
2π~√
2µE

. (4.23)

where K = E − 2µ is the kinetic energy, µ = M/2 is the invariant mass of the reduced

system. For λ ≪ M−1, one obtains that in a highly excited state the probability to find the

quirks near each other is proportional to the fraction of time that the quirks spends in a small

region of radius M−1. In the opposite limit λ ≫ M−1 one obtains the familiar result from

positronium and quarkonium physics that the S-wave annihilation probability is proportional

to the wavefunction at the origin.

It turns out that in the cases considered the majority of the events that produce quirks are

such that λ≫M−1. Hence inclusive decay widths of quirkonia take the factorized form

Γ(XX̄ → v-glueballs) =

∣

∣

∣

∣

dl

drl
Rnl(0)

∣

∣

∣

∣

2

F (αv), (4.24)

and a similar expression for Γ(XX̄ → hadrons). In (4.24) F (αv) comes from the short-distance

matrix element.
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One cannot expect to compute Rnl(0) from perturbative theory in an expansion in αv. The

reason is that the majority of quirkonium states have a mean radius rXX̄ ≫ 1/Λv, a distance

at which nonperturbative effects are important. Thus Rnl(0) will be determined in part by the

long range part of the potential (4.7), as in the determination of the spectrum. Perturbation

theory will only be applicable to quirkonium states whose average radius is smaller than 1/Λv,

which is predicted for the ground state of XX̄ for large quirk masses.

The rate also depends crucially on the angular momentum and spin of the quirk-antiquirk

pair. Using the semiclassical formulas for the wave function at the origin (A.46) and (A.47),

one can show that

Γl 6=0

Γl=0
∼ 1

l

(

β

l

)l+1

. (4.25)

This suppression implies that annihilation is dominated by small l.

We now present our results for the annihilation rates of S-wave quirkonia. As explained

above most of the results can be obtained from previous similar calculations for quarkonium

decays with appropiate modifications to include color or v-color factors (see for example [42,49,

88]). Let us start with the case of color-singlet annihilations.

A. Color-singlet quirkonium

1. η1(S) → gvgv, gg, γγ For the color-singlet η1(S) quirkonium the leading decay mode is

gvgv with rate:

Γ(η1(S) → gvgv) =
n2
v − 1

4nv
Nc

4πα2
v

M2
|ψ(0)|2 (4.26)

where the gauge coupling is to be evaluated at the renormalization scale M . For the

v-color coupling, we use

αv(M) =
6π

11nv lnM/Λv
. (4.27)

These v-gluon fields are converted into v-glueballs at long distance, which in turn can

decay back to standard model fields as discussed in the previous chapters.

For quirks carrying QCD color, we also have

Γ(η1(S) → gg) =
N2

c − 1

4Nc
nv

4πα2
3

M2
|ψ(0)|2, (4.28)

The QED annihilation processes are

Γ(η1(S) → γγ) = nvNce
4
X

4πα2

M2
|ψ(0)|2, (4.29)

where eX is the electric charge of the quirk and Nc = 3 is the number of QCD colors .
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We have neglected the contribution from Z boson exchange, which gives a small correction.

There are similar expressions for annihilation through a W in the case where the electric

charge of the quirks differs by one unit.

2. ψ1(S) → Z∗/γ∗, gvgvgv, γgvgv

Γ(ψ1(S) → γ∗ → f f̄) =
4nvNcNCfe

2
Xe

2
f

3

4πα2

M2
|ψ(0)|2, (4.30)

For the color-singlet ψ1(S) quirkonium the leading decay mode is gvgvgv. The width of

this decay is

Γ(ψ1(S) → gvgvgv) =
α3
v

9π

(n2
v − 1)(n2

v − 4)Nc

4n2
v

4π|ψ(0)|2
M2

(π2 − 9). (4.31)

Γ(ψ1(S) → γgvgv) =
4α2

vα e
2
XNc

3π

(n2
v − 1)

nv

4π|ψ(0)|2
M2

(π2 − 9). (4.32)

B. Color-octet quirkonium

We now present the results for S-wave annihilation decays of color-octet quirkonium. In this

case, annihilations to v-gluons are forbidden in decays with less than four gauge bosons in the

final state.

1. η8(S) → gg.

For the η8(S) quirkonium, the dominant decay mode is gg with width

Γ(η8(S) → gg) =
N2

c − 4

Nc
nv

4πα2
3

M2
|ψ(0)|2, (4.33)

2. ψ8(S) → g∗, ggg, ggγ, gγγ.

Since the ψ8(S) quirkonium has the same quantum numbers of a gluon, it can decay to

SM quarks of either flavor through an off-shell gluon. The width of the decay is given by

Γ(ψ8(S) → f f̄) =
nv

4

4πα2
3

M2
|ψ(0)|2. (4.34)

It is important to observe that the decay involving two on-shell SM gluons, ψ1(S) → gg,

vanishes as a consequences of Yang’s theorem which forbids a massive J = 1 vector boson

from decaying to two massless J = 1 bosons [92]. The leading decay modes involving SM

gauge bosons are ggg, ggγ and gγγ, and their respective rates read

Γ(ψ8(S) → ggg) =
α3
s

9π

(N4
c − 4N2

c + 12)nv

64N2
c

4π|ψ(0)|2
M2

(π2 − 9) (4.35)
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Γ(ψ8(S) → ggγ) =
α2
sα

9π

(N2
c − 4)nv

4N2
c

4π|ψ(0)|2
M2

(π2 − 9), (4.36)

Γ(ψ8(S) → gγγ) =
αsα

2

9π

nv

4N2
c

4π|ψ(0)|2
M2

(π2 − 9). (4.37)

4.4 Radiative transitions in quirkonium

Another class of transition rates that can be calculated in the nonrelativistic potential model

are the radiative ones. We have seen in the last section that annihilation is dominated at small l.

This means that annihilations can be effectively suppressed if there are other interactions that

can change the orbital angular momentum of the quirks. Therefore the radiative transitions be-

tween quirkonium states which have this property certainly deserve consideration. Interestingly

enough, the soft particles emitted during quirk radiation could, in some regimes, potentially

serve as the discovery channel for hidden valleys [50].

The multipole expansion in electrodynamics has been widely used for studying radiation

processes in which the electromagnetic field is radiated from local sources [42]. If the radius a

of a local source is smaller than the wave length λ of the radiated electromagnetic field such

that a/λ ∼ ak < 1 (k stands for the momentum of the photon), ak can be a good expansion

parameter, i.e., we can expand the electromagnetic field in powers of ak. This is the well-known

multipole expansion in QED. The multipole expansion in QED has also been generalized by

many authors to describe hadronic transitions in quarkonium systems (See for example [89,90]

for a review).

We now discuss gluon radiative decays in quirkonium systems. We begin with the case

r ≪ Λ−1
QCD. For sufficiently excited quirks to use the WKB approximation, the typical radius

a = 〈r〉 obtained by using the virial theorem is of order

a ≃ 2

3

K

σ
, (4.38)

where K is the kinetic energy of the quirk pair and σ is the string tension. A similar estimation

for the typical energy splitting at binding energies of order K ∼ 0.5M gives ∆E ∼ .25m2
0/M .

For a gluon emission with gluon energy k = ∆E, ka ∼ 1. Therefore, this suggests that one

can apply the idea of multipole expansion in QCD to calculation of the transitions between

quirkonium levels with emission of a gluon2. Aside from color factors, the radiative transitions

2In classical electrodynamics, the coefficient of the (ak)l term in the multipole expansion contains an extra
factor 1

(2l+1)!!
. Hence the multipole expansion actually works better than what is expected by simply estimating

the size of (ak)l.
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in quirkonium are similar to those in quarkonium, so many of the formulas presented below will

look familiar to the readers with an expertise in quarkonium physics.

The leading terms in the interaction of a nonrelativistic quirkonium with the gluon field that

will be important in our further discussion of the realistic processes are the chromoelectric and

the chromomagnetic dipoles, E1 andM1 [90]. The corresponding terms in the Hamiltonian can

be written as

HE1 = −1

2
ξar · Ea HM1 = − 1

2M
ξa∆ ·Ba, (4.39)

where ξa = ta1 − ta2 is the difference of the color generators acting on the quirk and antiquirk

(e.g. ta1 = λa/2 with λa being the Gell-Mann matrices), and r is the vector for relative position

of the quirk and the antiquirk. Finally E and B are the chromoelectric and chromomagnetic

components of the gluon field strength tensor.

From the Hamiltonian (4.39), one can extract selection rules for the radiative transitions.

These rules are completely equivalent to the ones found in electric dipole transitions in electro-

dynamics. The chromoelectric dipole term is odd under space reflection and hence links states

with opposite parities. Moreover, it is independent of spin and that means ∆S = 0. On the

other hand, the chromomagnetic dipole term is parity even. Therefore, it generates transitions

only between spin-singlet (S = 0) and spin-triplet (S = 1) states of the same parity. Also, unlike

electromagnetic transitions, a single HE1 or HM1 dipole interaction changes a color singlet XX̄

state into some color octet XX̄ state.

The general formula for the matrix element between an initial state i and a final state f in

this approximation reads,

M = −i2πδ(Ef − Ei − ω)〈f |HI |i〉 (4.40)

where ω is the energy of the emitted gluon and I = E1,M1.

It is easy to also write the total rate. The annihilation decays discussed in the last section

depend on the quirkonium wave function at very short XX̄ separations. In contrast, the E1 and

M1 radiative widths involve overlaps of radial wave functions. We consider first electric dipole

transitions. One sums over gluon polarizations, integrates over phase space and finds [91]

Γ(i
E1−−→ f + g) =

4αs

3
(2J ′ + 1)CifSE

ifω
3|Rif |2, (4.41)

where the gluon energy is ω = (M2
i −M2

f )/(2Mi); Mi and Mf are the masses of the initial and

final states. Here the spin factor Sif is

SE
if = max(l, l′)







J 1 J ′

l′ s l







2

(4.42)
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and the color factor Cif is shown in table 4.2. The overlap integral Rif is given by

Rif =
3

ω

∫

drr2Ri(r)Rf (r)
[ωr

2
j0

(ωr

2

)

− j1

(ωr

2

)]

(4.43)

where Ri(r) (Rf (r)) is the initial (final) state wave function and jn(x), n = 0, 1 are spherical

Bessel functions of the first kind. This expression is valid for quirkonium states of any size. A

widely used approximation is the long wave length approximation which consists in taking the

limit ω → 0 in (4.43). In this case the overlap integral simplifies as

Rif =

∫

drr2Ri(r)Rf (r)r (4.44)

For the typical E1 transitions one expects Rif very nearly to the average radius of the initial

state, because ωr ≪ 1 and the initial and final states are sufficiently close to produce a good

overlap. On the other hand, E1 transitions between S and P states with changes in the number

of nodes by greater than one are suppressed due to poor overlap between initial and final wave

functions. The larger the difference in number of nodes, the greater the suppression.

Transition Cif
singlet-singlet 0
singlet-octet (N2

c − 1)/2Nc

octet-singlet 1/2Nc

octet-octet 2(N2
c − 1)/Nc

Table 4.2: List of coefficients Cif introduced in (4.41).

Magnetic transitions flip the quirk spin. These transitions have ∆l = 0, ∆s = ±1. The

spin-flip radiative transition between an initial state n2s+1lJ , i, and a final state n′2s′+1
l′
′
J , f ,

is:

Γ(i
M1−−→ f + g) =

4παs

3M2
(2J ′ + 1)CifSM

if ω
3|Rif |2, (4.45)

where the overlap integral is given by

Rif =

∫

drr2Ri(r)Rf (r)j0

(ωr

2

)

. (4.46)

Here the spin factor SM
if is

SM
if = 6(2s+ 1)(2s′ + 1)







J 1 J ′

s′ l s







2





1 1
2

1
2

1
2 s′ s







2

(4.47)

and the color factor Cif is shown in table 4.2. The M1 transitions are suppressed by a factor

ω/M . Thus, unless forbidden, the E1 transitions are expected to dominate.
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For r ≫ Λ−1
QCD, quirks undergo QCD hadronization and therefore we need to consider non-

perturbative QCD interactions between the quirks and the QCD brown muck. The brown muck

will interact only when the quirks come within a distance of order Λ−1
QCD. It was argued in [49]

that these interactions will transfer an energy of order ΛQCD and an angular momuntum of order

∆l ∼ 1 from the bound state roughly once every crossing time. As a consequence, one light

QCD hadron, typically a neutral pion, will be emitted in a single brown muck interaction. If the

quirks do not annihilate for a number of crossings, a large number of hadrons ∼ 102−103 will be

emitted with energy ∼ GeV each. These new hadrons have been dubbed “hadronic fireballs”,

and may be the source of a promising discovery signal in the case of very low hidden confining

scale [50]. However, in the regime we are considering in this work, these hadronic fireballs are

not expected to contribute a significant fraction of the energy loss, as long as m0 & 50 GeV.

Before moving on to the discussion of non-perturbative v-color interactions we should con-

sider some concerns. For example, in order for a large amount of energy to be emitted in

radiation of perturbative gluons we must ensure that the quirks do not annihilate in a highly

excited state. We argue now that this is unlikely.

The probability for annihilation in a single crossing depends strongly on the angular mo-

mentum of the bound system and is dominated by low l. From our partial wave analysis in

section 4.3.1, we know that the annihilation probability scales like σann ∝ (β/l)l+2. Given that

the angular momentum will grow on average as radiation is emitted, the likelihood of early

annihilation is determined by a competition between the annihilation cross section and the ra-

diation rate. Very naively one can expect that radiation would win since the radiation rate is

proportional to αs and the annihilation cross section scales like α2
v. However to make a clear

determination a more careful estimate is required.

Since annihilation rates are dominated by low l we only need to consider S-wave states. The

S states η1(nS), ψ1(nS) can make E1 transitions to the P states: η1(nS) → h8((n − 1)P )g,

ψ1(nS) → χJ,8((n − 1)P )g (the M1 transitions are negligible). Using (4.41) with J = l =

0, J ′ = l′ = 1, we can write the width for η1(nS) → h8(P )g

Γ =
16

3
αsω

3|RSP |2, (4.48)

where RSP is the overlap integral between S- and P -wave states. For those states produced

near the point where the cross section for quirk pair production peaks, E ∼ M/4, one has

ω = ∆E ∼ πσ/M . The overlap integral is given by (4.43) and is of the order of the quirkonium

radius, RSP ∼ 2E/3σ. The probability for emitting a gluon per period is therefore estimated
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as

Prad = TΓ ≃ 4π3

27
αsβ ∼ 2αs. (4.49)

This can be compared with the probability of annihilating at low l’s. For example, in the case of

the η1(nS) quirkonium annihilation goes dominantly to v-gluons i.e. v-glueballs, with a width

given by (4.26). Using (A.33) the width can be rewritten as

Γ(η1(S)) → gvgv) =
2α2

v σ

M
(4.50)

where we have set nv = 3. Following [49], the probability for S-wave annihilation per crossing

at high velocities is

Pann = 2TΓ ∼ 4βα2
v ∼ 2α2

v (4.51)

where β is typically of order 1/2.

We see that perturbative gluon emissions will typically dominate over hard annihilations

for highly excited states. As the states approach the Coulombic regime, annihilation rates are

expected to increase. However, the change in angular momentum due to the emission of these

gluons (by ∆l ∼ 10 on average) will significantly reduce the probability to annihilate. Therefore,

we expect that the quirkonium states to radiate most of their kinetic energy before they can

pair annihilate into v-gluons or SM particles.

Calculation of color factors

The summation over colors must be done carefully because of the condition that the initial and

final states can be in either color singlet or color octet states. We define a basis of color states

|ij〉, where i, j = 1, 2, 3 denote the color indices of quirk and antiquirk, respectively. Then the

singlet state is given by

|1〉 = 1√
Nc

∑

i

|ii〉. (4.52)

while the octet can be written as

|8; a〉 =
√
2
∑

ij

T a
ij |ij〉, (4.53)

where the color matrices are normalized in the usual way tr T aT b = δab/2. When the initial

state is a singlet, and the final state and octet, the matrix element contains a color factor

〈8; a|T b|1〉 = δab√
2Nc

, (4.54)

where the color operator T a acts on either the quirk or the antiquirk state only. Squaring the

matrix element, summing over the final color of the emitted gluon and final octet gives

∑

ab

|〈8; a|T b|1〉|2 =
N2

c − 1

2Nc
. (4.55)
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The transitions in which the initial state is an octet can be computed analogously, with the

addition that one also needs to average over initial color. This way we obtain the color factors

in table 4.2.

4.5 Non-perturbative v-color interactions

Although the spectrum of heavy quirkonium systems can be adequately explained by nonrela-

tivistic potential models, some of their decays concerning nonperturbative v-color interactions

are difficult to deal with. Non-perturbative v-color transitions

ΨI → ΨJ +Θκ (4.56)

are an example of this kind. In (4.56), ΨI, ΨJ and Θκ stand for the initial state quirkonium, final

state quirkonium and emitted v-glueball, respectively. These v-glueball radiative transitions are

important decay modes of heavy quirkonia. For instance, if the v-glueball decays into photons,

one could use the photon signature to search for these states.

In the absence of light fundamentals, the v-color tube connecting heavy quirks cannot break.

Instead, v-glueball formation in a pure Yang-Mills theory occurs heuristically through the cross-

ing of the tube onto itself, a process qualitatively different from fragmentation in QCD (see figure

4.6). In order to make crisp predictions about detection signals coming from quirkonium decay,

we therefore need to understand the process of glueball emission in pure Yang-Mills theory. In

general this is a subtle problem whose solution is unknown, so for this case we limit ourselves

to some qualitative discussion of the dynamics.

(a) (b) (c)

Figure 4.6: A depiction of a v-glueball emission process.

In the semiclassical limit, the momentum which the heavy quirk can exchange with the v-

color flux tube is of the order Λv and the corresponding uncertainty in the energy of the heavy

quirk is of the order Λ2
v/MX . No particle in the v-sector spectrum is light enough to be radiated

in this energy. When the quirks are close to one another the semiclassical limit breaks down

and v-glueball emission is possible.

Non-perturbative interactions of the quirks can convert some of the their kinetic energy into

vibrational energy of the flux tube. If enough energy is pumped into the flux tube so as to



89

excite it to a high vibrational mode, self interactions of the flux tube may result in v-glueball

emission (see figure 4.6). It follows that the rate for conversion of quirk kinetic energy into

the v-glueball radiation should be proportional to the rate of energy delivered into flux tube

vibrations.

We may thus consider the emission of v-glueballs as proceeding in two stages. The first

stage is the excitation of vibrational modes of the flux tube by the non-perturbative v-color

interactions, and the second stage is the actual radiation of a v-glueball by a vibrational excited

flux tube. The rates of these processes are determined by the population of high vibrational

levels of quirkonium. The non-perturbative v-color will only take place when the quirks come

within a distance of order Λ−1
v . Following [49], the typical energy transfer from the bound state

can be estimated from

∆E ∼ F∆r ∼ Λ2
vΛ

−1
v ∼ Λv. (4.57)

The probability that the quirks are within a distance Λ−1
v from each other is given by the

fraction of time that the quirks are within a distance Λ−1
v ,

Prob(rXX̄ . Λ−1
v ) ∼ Λ−1

v /β

T
(4.58)

where β is the classical quirk velocity at the origin and we have used the fact that the Compton

wavelength of the heavy quirk is much smaller than Λ−1
v . If we assume as in [49] that the

nonperturbative v-color interactions have a geometrical cross section, we can estimate its rate

as

Γ ∼ 1

T
∼ σ

Mβ
(4.59)

where T is the classical crossing time. Thus, we expect these interactions occur roughly once

per classical crossing.

One may naively argue that in the case Λv > ΛQCD v-glueball emission is likely to dominate

over radiation of perturbative gluons because of the strong coupling in the v-sector. However,

emission of a v-glueball may be suppressed. First, we know from figure 2.1 that the mass of the

lightest v-glueball is about 3.6 times heavier than the square root of the string tension. Therefore

we can expect that there is some suppression for v-glueball emission, depending on how many

transitions are needed to transfer an energy of order m0 to the flux tube. Furthermore, in the

large nv limit, the v-glueball emission should be suppressed by a factor O(1/n2
v), giving an order

of magnitude suppression for nv = 3. Combining this with (4.59) and including a phase space

factor, we may obtain an upper bound for the rate for v-glueball emission as

Γ .
1

n2
v

σ

Mβ
× Phase space (4.60)
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Nonetheless, one should keep in mind the possibility that the actual rates for radiation of

v-glueballs may differ substantially from the estimate (4.60).

4.6 Fragmentation Probabilities

While it is possible to work out quirkonium and v-glueball branching fractions for a given medi-

ation model with the help of lattice data for N = 3, it is considerably more difficult to arrive at

the full spectrum of visible standard model particles produced in a single quirkonium annihila-

tion. The final state of visible standard model particles depends on the number and spectra of

glueballs initially produced in the quirkonium decay. In order to make crisp predictions about

indirect detection signals coming from quirkonium decay, we therefore need to understand the

process of fragmentation in pure Yang-Mills theory. Unfortunately, this is a situation where

neither phenomenological examples from QCD nor data from the lattice can be of help. In the

absence of light fundamentals, the color tube connecting hard partons cannot break. Glueball

formation in a pure Yang-Mills theory occurs heuristically through the crossing of the tube onto

itself, a process qualitatively different from fragmentation in QCD.

One simple approach to estimating the relative abundances of different glueball species is a

thermal model. In such a model, the ratio and yield of the multiplicity of glueballs is given by

the partition function Z. In a grand-canonical ensemble of glueballs of species i the partition

function with chemical potential µ is given by

Z ∝
∑

N

∏

i

(2Ji + 1)m
3/2
i e−(nimi−µni)/T

(4.61)

where mi, Ji and ni are the mass, spin and multiplicity of a glueball of species i, respectively.

The temperature T of the spectrum would be taken to be Λv. Unlike QCD, where this temper-

ature is comparable to the masses of the pions, the corresponding temperature is much lower

than the masses of the glueballs in pure Yang-Mills theories, so that if this is true, the excited

v-glueballs are rarely produced. We may guess that, as in QCD, the effective temperature in

hadronization models is comparable to the deconfinement phase transition, which is of order

180 MeV in QCD, about 1/10 the QCD glueball mass, but which is significantly higher, about

1/5 - 1/6 m0 [], for a pure Yang-Mills theory. In particular, accounting for the fact that the

spin-two states have a spin-multiplicity of 5, we would have production of the 0++ state at

50–60%, and of the 2++ state at around 30%, with 2–4% each for the 0−+, 2−+ and 1+− states.

All other states would be produced at lower rates.

Nevertheless, we should keep in mind that the statistical quasi-thermal model is unlikely to

be accurate. Formation of hadrons in QCD occurs through the local snapping of a flux tube
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by light-quark pair production, a local effect on its world sheet. Formation of v-glueballs in

a Yang-Mills theory occurs through the crossing of a flux tube onto itself, a non-local effect

on the worldsheet that involves color rearrangement. The excitation of the flux tube created

in the X-onium annihilation may therefore influence the production of v-glueballs, and greatly

enhance the rate for the production of heavier v-glueball states, including ones which are un-

stable and decay immediately to multiple stable v-glueballs. In this scenario, the probability

of producing the heavier stable v-glueballs, and perhaps the total number of v-glueballs per

X-onium annihilation, could be much larger than estimated in the quasi-thermal model.

Strictly speaking, these estimates should be thought as a priori estimates for the relative

abundances of v-glueballs in a given quirkonium annihilation. In general, the actual fragmen-

tation probabilities will be further constrained by conservation of quantum numbers and/or

kinematics and may be significantly different from the predictions obtained by naive appli-

cation of the fragmentation thermal model. For example, because of conservation of charge

conjugation the vector ψ1 can only annihilate to final states containing an odd number of C-

odd v-glueballs. Also, the pseudoscalar η1 cannot annihilate to final states containing only two

0++ v-glueballs, because of parity and angular momentum conservation.

4.7 Numerical analysis

From the above discussion it is clear that the characteristic collider signatures of quirkonium

are determined both by the final states that the quirks can annihilate into and by the nature

of the energy loss during quirk de-excitation to the ground state. In what follows we calculate

numerically the quirkonium spectrum, and evaluate the branching ratios for radiative transitions

of quirkonium and for pair annihilation into various final states. To give a general survey

of decays is beyond the scope of this work, since a more detailed treatment would have to

incorporate precise values of the non-perturbative matrix elements for v-glueball emission which

at present are unknown. However, a few examples are useful to illustrate the main qualitative

features of quirkonium decay pattern.

4.7.1 Quirkonium spectrum

This section is concerned with the energy of a single quirk-antiquirk pair moving in a central

potential and obeying nonrelativistic quantum mechanics. The main result is the evaluation of

the energy eigenvalues. The Schrödinger equation is numerically integrated using the generalized

Runge-Kutta algorithm described in [75].
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In order to conduct an analysis of the phenomenology, we first need to have some information

about the various scales in the model. The scale, ΛQCD, where SU(3)C gauge coupling blows

up is around 250 MeV. The remaining parameter space consists of the mass scale M and the

0++ mass m0. Here we present our results in terms of m0 which is more transparent than the

confining scale Λv, sincem0 is the relevant parameter for LHC studies. To simplify the discussion

in the v-sector, it is convenient to assume that the 0++ mass is in the phenomenologically

interesting range 25 GeV . m0 . 500 GeV where v-glueballs may decay visibly. Moreover,

since the branching ratios depend on M and m0 only through the combination M/m0, our

problem is reduced to a two-dimensional parameter space described by M and ξ ≡M/m0.

The mass scale M sets the value of the total production rate and defines the energy region

where the majority of the quirks are produced. On the other hand, our focus here is on the main

qualitative features of the quirkonium spectrum and decay pattern, which to a great extent are

controlled by the single parameter ξ. Therefore it is convenient in this first attempt to fix the

quirk mass and choose three representative values of M , 250 GeV, 500 GeV and 1000 GeV.

This scenario implies that three different regimes need to be distinguished: (i): Coulombic

regime, r̄XX̄ ≪ Λ−1
v ; (ii) intermediate linear regime, r̄XX̄ ≫ Λ−1

v and r̄XX̄ ≪ Λ−1
QCD ; and (iii)

and nonperturbative QCD linear regime, r̄XX̄ ≫ Λ−1
v and r̄XX̄ ≫ Λ−1

QCD (We will not consider

the regime for which r̄XX̄ ≪ Λ−1
v and rXX̄ ≫ Λ−1

QCD, because our focus here is on the case

Λv ≫ ΛQCD where the v-glueballs can decay visibly). As explained above, there is a qualitative

difference between (ii) and (iii): for r̄XX̄ ≪ Λ−1
QCD, emitted SU(3)C gluons will be perturbative

and will change the spin of the state by one unit. In this case, the width of the decay is

proportional to αs, and the transition can occur at any moment during the quirk oscillation.

This implies that the quirkonium states can make a transition down to a lower excited state

with ∆E ≫ ΛQCD. In contrast, for r̄XX̄ ≪ Λ−1
QCD, non-perturbative QCD interactions are only

efficient in damping the quirk oscillation only when the quirk separation is of the order or less

than Λ−1
QCD. This results in an energy of order ΛQCD emitted in the form of light QCD hadrons

about once during every crossing time.

The spectrum of quirkonium binding energies is amenable to an analytical description for

both Coulombic and linear regimes, r̄XX̄ ≪ Λv and r̄XX̄ ≫ Λv. Results for these regimes give

good qualitative insight also for the crossover region of intermediate coupling constants αv ∼ 1,

where an analytical description becomes more cumbersome.

Now we want to argue that in the case of interest the Coulombic regime is in general

unimportant. We plot numerical results for the quirkonium binding energies Enl as a function

of m0 for three different values of the quirk mass, M = 250, 500, 1000 GeV. For simplicity,
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only the S-wave l = 0 energies are shown. As shown in the figure 4.7 for very low m0 many

excited states tend to gather around the crossover region where Coulombic and linear potential

are approximately of the same strength (E ≃ 0). However, in the energy interval of interest

50 GeV . m0 . 500 GeV there are only O(1) states in the Coulombic region.
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Figure 4.7: The binding energies of low-lying, S-wave color-singlet states in a quirkonium system as
a function of the v-glueball mass m0 for different values of M . For very small m0, the levels gather
around the crossover region between the linear and Coulombic parts of the nonrelativistic potential.
However, as long as m0 becomes larger than about 100 GeV only a few states remain in the Coulombic
regime.

This result agrees to a very good approximation with a quasi-analytical result for the number

of bound states in the Coulomb region. To see this, let us recall that the average radius of the

bound states in a Coulomb potential is given by

r̄n = n2 rB (4.62)

where rB = (µα)−1 is the Bohr radius,n is principal quantum number; µ =M/2 is the reduced

mass of the quirk-antiquirk and α is the gauge coupling constant. From the Cornell potential

(4.12) we can estimate the cross-over point as r2 ≃ α/σ. It follows that the number of states

in the Coulombic region is approximately given by

n2
Coulomb ∼ 1.85α3/2 M

m0
∼ M

m0
, (4.63)
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where we have used m0 = 3.7
√
σ and α ≃ (4/3)(αs + αv) ≈ 0.8. Therefore, we arrive at the

same conclusion as above that about one or two color-singlet states are in the Coulomb region

in the range of parameter of interest.

Next, we show that regime (iii) only accounts for a relatively small fraction of the total cross

section. In order to demonstrate this, we integrate (4.5) over the mass range corresponding to

r̄XX̄ > Λ−1
QCD, namely

√
ŝ− 2M > 1.5 σΛ−1

QCD, where in the last inequality we have used (A.37)

with E =
√
ŝ − 2M . The numerical results are shown in figure 4.8 as a function of m0 for

M = 250, 500, 1000 GeV. We see that for very low v-glueball masses the majority of the states

will be produced in the non-perturbative QCD regime. This is indeed the regime considered by

the authors of [49]. However, for the interval 100 GeV < m0 < 500 GeV, the states produced

in regime (iii) only contribute less than about 20% to the total cross section.
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Figure 4.8: The fraction of bound states produced in the non-perturbative QCD regime as a function
of m0 for M = 250, 500, 100 GeV.

The results above allow us to restrict attention to regime (ii). In this case, crucial simpli-

fications occur due to the fact that QCD interactions of the quirks are perturbative. This is

because rXX̄ < Λ−1
QCD and the energy transfer ∆E associated with QCD processes involving

quirks and SU(3)C gluons is greater than ΛQCD. Indeed, the mass splitting between quirkonium

states for transitions with single gluon emission are such that ∆E ≫ ΛQCD in the parameter

range of interest. This is illustrated in figure 4.9 which shows contour lines of constant ∆E in

the M -m0 plane. In figure 4.9, ∆E is evaluated at the boundary between regime (ii) and (iii),

i.e. for highly excited states such that r̄XX̄ = Λ−1
QCD. We see that for very small m0, ∆E may

be smaller than ΛQCD. However, as long as m0 & 50 GeV the energy splitting between two

consecutive states becomes larger than ΛQCD, and QCD interactions, i.e. gluon emission are

perturbative.
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Figure 4.9: The energy splitting for highly excited states such that r̄XX̄ = Λ−1
QCD as a function of M

and m0. The contour lines correspond to ∆E = 1, 2, 3, 4, 5 and 6 GeV.

We are interested in the majority of the events, which produce quirks that are not close

to threshold. The maximum of dσXX̄

d
√
ŝ

occurs when the center-of-mass energy is approximately

15− 25% greater than the threshold value. At this energy, quirks will be produced with semi-

relativistic energies β ≈ 0.3 − 0.5 and maximal separation Lmax ∼ Emax/σ, where Emax =
√
ŝ − 2M = Mβ2 is the initial kinetic energy in the quirk system upon production. The

subsequent quirk evolution depends on the number of resonances that lie in the linear regime

up to energies of order Emax. A simple estimate shows that

n2
linear ∼

(

2

3π

)2
M

σ2
E3

max. (4.64)

In table 4.3, we have collected estimates of Emax , Lmax, β
2 and ∆E for different values of M

are listed. For comparison, we include estimates for the number of radial excitations of the

quirk string for the states in the Coulomb and linear part of the XX̄ potential.

As we discussed in the last section, this creates an excited quirkonium that decays radiatively

to the ground state and finally annihilates to hard decay products. Whether a significant

fraction of Emax is lost to perturbative gluons, soft QCD hadrons or v-glueballs will depend on

the distribution of quirkonium binding energies, in particular on how many of these levels are

in the confining linear region, how many are in the Coulombic region and how closely spaced

they are.
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M( GeV) Emax/m0 n2
Coulomb nlinear β2 ∆E/

√
σ < r >max

√
σ

250 0.5ξ .8ξ 1.03ξ2 .5 1.20ξ−1 1.23ξ

500 0.4ξ .8ξ 0.73ξ2 .4 1.34ξ−1 0.99ξ

1000 0.3ξ .8ξ 0.48ξ2 .3 1.55ξ−1 0.74ξ

Table 4.3: Some quantities of interest evaluated around the point where the majority of the quirk pairs
are produced at the LHC as a function of the parameter ξ = M/m0 and for different quirk masses.

4.7.2 Decay patterns

Quirkonium phenomenology depends sensitively on the parameter ξ = M/m0. Notice that

radiative emission of v-glueballs may only be present providing Emax > m0. Also as long as

Lmax becomes of the order of or greater than 1 GeV, non-perturbative QCD interactions need

to be taken into account. Therefore we can distinguish several very different cases.

1) 0.5 . ξ . 2.5: In this case, v-glueballs are too heavy to be produced during quirk

relaxation. Instead, the quirk-antiquirk pair will lose energy by emitting a few pertur-

bative gluons, eventually (unless kinematically forbidden) annihilating into at most two

v-glueballs. Besides, only a few quirkonium resonances will be produced so the decay

pattern turns out to be very simple. The simplicity of the spectrum is likely to be spoiled

by mixing effects between the heavy v-glueballs and the quirkonia.

2)
√

M/3.7ΛQCD . ξ . 40: Here the states are very closely spaced in the spectrum. Upon

production, the size of the highly excited quirkonium states will be larger than ∼ Λ−1
QCD

so non-perturbative QCD effects will be important. The relaxation process was already

described in [49]. A significant fraction of colored quirk pairs will lose most of their kinetic

energy because of interactions of the nonperturbative QCD and/or v-color interactions,

until the typical radius of the states becomes smaller than about Λ−1
QCD. Meanwhile,

if QCD interactions dominate, an energy of order .5M will be radiated as light QCD

hadrons each with energy of order GeV (a hadronic fireball). If, on the contrary, v-color

interactions dominate around O(10) v-glueballs will be radiated. The hard annihilation

final states will contain several v-glueballs, but also some occasional SM quarks and gluons.

3) 2.5 . ξ .
√

M/3.7ΛQCD: In this range, quirk kinetic energy is converted to several

perturbative gluons and possibly a few v-glueballs. The quirk-antiquirk pair annihilates

into v-glueballs, but also into two SM quarks and gluons.

The boundary of these regions is shown in figure 4.10. The shaded region is excluded by

current experimental bounds on the mass of heavy colored particles.
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Figure 4.10: The different regimes described in section 4.7.2: 1) Most states will decay via emission of
a hard perturbative gluon. Typical energies are insufficient to radiate a glueball. 2) Some moderately
hard gluons and a few v-glueballs. 3) Non-perturbative QCD regime. Large number of soft hadrons
and possibly many v-glueballs. The shaded region represents the exclusion region.

We present the decay branching ratios of the S-wave quirkonium in figure 4.11 as a function

of the S-wave quirkonium binding energy forM = 500 GeV and m0 = 100 GeV. For the gluon-

radiative decay, we show the summed branching fraction over all the radiative decay modes. We

then see that gluon-radiative decays are the dominant decay modes of highly-excited quirkonium

states for M = 500 GeV and m0 = 100 GeV.

We expect other regions in parameter space to have a similar behavior. This fact may be

understood from the following argument. For a linear potential V (r) = σr, the gluon-radiative

width scales as

Γ(η1(S) → h8(P )g) ∼
m

8/3
0

M5/3
, (4.65)

when the quirk and v-glueball masses are changed. The annihilation decay width scales as

Γ(η1(S) → gvgv) ∼
m

10/3
0

M7/3
. (4.66)

We then see that the ratio

Γ(η1(S) → h8(P )g)

Γ(η1(S) → gvgv)
∼
(

M

m0

)2/3

(4.67)

does not decrease as M increases. This is a direct verification of our expectations that anni-

hilation decays are not significantly important until the quirkonium state has lost most of its

kinetic energy to radiation of gluons. This argument implies the quirkonium states will likely
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Figure 4.11: Simulated gluon-radiative decays vs. hard annihilations for the S-wave state of quirkonium
as a function of the binding energy for M = 500 GeV and m0 = 100 GeV. The curves show that gluon-
radiative transitions are the dominant modes of highly-excited quirkonium, except for states produced
sufficiently close to threshold. Small fluctuations are due to inherent uncertainties in the evaluation of
the wave functions for highly excited states with large radial quantum numbers.

decay radiatively to a low lying state before annihilating (see figure 4.12). This is fortunate not

only because the soft radiation may provide an interesting signal, but also because the hard

annihilation will often occur near the invariant mass of the ground state, easing its identification

independently.
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Figure 4.12: A typical cascade of decays in a quirkonium system. Full lines show a particular transition
with multiple gluon emission when non-perturbative color interactions are not efficient. Dashed arrows
are an example of a cascade decay with v-glueball emission, in which the initial quirkonium state relaxes
quickly down to the ground state in a few steps.

Finally, we should discuss the possibility of losing energy by the emission of v-glueballs. In

the case we are considering hidden glueballs may decay inside the detectors and therefore lead

to an observable signal. In fact, one may naively argue that v-glueball emission is likely to

dominate over radiation of perturbative gluons because of the strong coupling in the v-sector.

However, as we pointed out in the last section, the probability for such an emission may be

suppressed, because of a small hierarchy between the glueball mass and Λv. Using (4.59), we
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can naively estimate that the rate of energy loss due to v-glueball emission per period as

P = 2TΓ ∼ (2/n2
v). (4.68)

Given the theoretical uncertainties, and the absence of experimental evidence, the latter quantity

is rather rough, but it may well be the only semi-quantitative estimates available for some time.

If the rate of v-glueball emission dominates over the radiation of gluons, the decay pattern

is simple. This situation is illustrated in figure 4.12 by dashed arrows. The quirk and antiquirk

quickly lose their kinetic energy by radiating one or a few v-glueballs, and the orbitals of the

bound state shrink to a point where annihilation is very likely. During the last stages in the

cascade decay, a few hard gluon jets can be emitted, before the hard annihilation takes place.

The lightest states in the spectrum require a special consideration. As an example, the

low-lying spectrum of quirkonia with their transitions for M = 500 GeV and m0 = 100 GeV

is shown in figure 4.13. The pseudoscalar and vector states, η8(1S) and ψ8(1S), have the

lowest mass within the color octet sector and are stable against decay by E1 transition. The

only possible decays of these states are the hard annihilations and the M1 transitions to the

lighter η1(1S) and ψ1(1S) color singlet states. We present the decay branching ratios of the
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Figure 4.13: The low-lying quirkonium states, with selected transitions, for M = 500 GeV and m0 =
100 GeV.

S-wave color-singlet η1(1S) and ψ1(1S) quirkonium, and the color-octet η8(1S) and ψ8(1S)

in figure 4.14. In these plots we have set nv = 3 and a v-glueball mass m0 = 100 GeV. The
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pseudoscalar state, η1(1S), only decays into a pair of gauge bosons, as shown in the top left

panel of figure 4.14. The dominant mode for η1(1S) is gvgv, which is expected to be valid

for m0 & 100 GeV. In this range it gives a visible decay, from v-glueballs decaying inside the

detectors. The second largest mode is gg, followed by γγ. On the other hand, gvgvgv modes is

dominant in the decay of ψ1(1S), up to quirk masses of order M ∼ 500 GeV, followed by the

decay into fermion-antifermion pairs. The branching fraction into gvgvγ is small.

We also show the branching fractions of the color-octet states, η1(1S) and ψ1(1S), in the

bottom panels of figure 4.14. The dominant mode for η8(1S) is gg, followed by the M1 gψ8(1S)

decay mode, which accounts for less than 10% of the total width. The color-octet vector state,

ψ8(1S), decays dominantly into SM quark pairs, via an off-shell gluon. The branching fraction

for the M1 mode η1(1S)g is about 15%, and the remaining modes (ggg, ggγ and gγγ) are

suppressed by more than 10−3.
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Figure 4.14: The branching fractions of the low lying states in the quikonium spectrum as a function
of M for m0 = 100 GeV and nv = 3.

4.8 The case of uncolored quirks

In the class of theories we have studied in this thesis the collider phenomenology crucially

depends on whether or not the quirks carry SM color. While up to this point in this chapter we
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have focused on hidden valley models where the quirks are indeed charged under SM color, in

general this need not be the case. One possibility is that the quirks are only charged under SM

SU(2)× U(1)Y gauge group, but neutral under SU(3)C gauge group. The spectrum of states

in this theory is similar to that of the colored quirks, but with the crucial difference that the

color-octet bound states are absent, and the non-relativistic potential is simply given by the

v-color potential e.g. the Richardson potential, without the SM color term.

In addition to the modifications of the spectrum, the uncolored quirks will be produced at

the LHC via weak interactions by either a Drell-Yan process or gauge boson fusion. As in the

colored quirk case, they will be typically be semi relativistic upon production, with a velocity

β2 of order .5 or so. The radiation emitted during the decay from the highly excited to the

ground state is, however, different from that of the colored quirk case. In the case of uncolored

quirks the signal will consist of many unclustered soft to hard photons. The hard annihilation

products depend on whether the quirkonium bound state are electrically charged. A neutral

quirkonium state will typically decay to two hard v-glueballs, which depending on parameters

may be long-lived. However, the dominant production of uncolored quirks will be an s-channel

W± and thus the produced quirkonium is charged under SM electric charge. Its decay products

will then always contain a charged particle and leave a visible signal in detectors. An interesting

decay channel is W±γ. Because the annihilation is expected to be at or near the ground state,

a resonance peak is expected at the invariant mass of Wγ. The details of the search for the

hard annihilation of uncolored quirks were discussed in [13] for the case in which Λv is close to

ΛQCD.

4.9 Collider searches

When the quirks finally annihilate, they are essentially at rest in their center of mass frame,

so the annihilation products appear as a narrow resonance with mass ∼ 2M . The dominant

decay modes of the η1 are into v-glueballs, which in turn decay to SM gauge boson pairs. The

dominant decay modes of the v-glueballs will be to two jets, which may be a difficult signal

due to large backgrounds. The v-glueball decay to photons has a suppressed branching ratio,

but offers a cleaner signal that may be easier to look for. The hard annihilation products from

v-glueballs will provide the hard primary signal.

In the last section we argued that a significant fraction of the quirks kinetic energy may be

lost by radiating soft QCD jets, v-glueballs or a combination thereof. if nonperturbative v-color

interactions are inefficient, in most events much of it will appear as low-pT hadrons or soft jets.
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This energy could, in principle, significantly alter the appearance of the events and, importantly

for our study, impact the photon isolation cut. If too much of this energy enters the isolation

cone around the photon, then it either will reduce the signal substantially or will force the use

of a looser isolation criterion. The latter will allow in more fake photons, potentially increasing

the backgrounds significantly. The question is then, how serious a problem is this likely to be?

Keeping the issue of photon isolation in mind we leave this question for future work.

Conversely, if nonperturbative v-color interactions are efficient, additional v-glueballs might

be created either at the production stage (through radiation of hard v-gluons), or in radiation off

of quirkonium states (which may be suppressed, since it requires the quirkonium states to make

a large jump from a highly-excited state to a much less highly-excited state), Generally, if there

are more than three v-glueballs, the rare decays to photons will be more common and easier

to observe. However, the events may be more cluttered and the energy of the photons lower,

leading potentially to lower detection efficiencies and larger backgrounds from fake photons.

While high v-glueball multiplicity is unlikely here, simply due to the kinematics, events with

several v-glueballs might be common which may aid to extract a signal from the background.

4.10 Summary

In this chapter, we have discussed various aspects of quirkonium physics. We have shown

that the non-relativistic potential model inspired by heavy quarkonium physics allows one to

obtain an overall picture of the distribution of binding energies in the quirkonium system. This

potential may include both a Coulombic and a linear part for the v-color interactions and also

both a Coulombic and a linear part for the QCD color interactions. We dedicated much effort

to the regime where the majority of quirkonium states are produced, namely the linear regime

of the v-color potential up to energies somewhat below the point where non-perturbative QCD

effects set in.

The basic processes which allow excited quirks to deexcite through the bound state are

gluon emission in which an SU(3)C gluon is radiated off between the states with ∆E ≫ ΛQCD

and v-glueball radiative emission with ∆E ≫ Λv. Gluon-radiative emissions necessarily change

the color state of the quirkonium. Assuming r̄XX̄ ≫ Λ−1
v , v-glueballs may only be radiated

once ∆En,1 > m0. Because v-glueballs are non-perturbative, extended objects, their coupling

to quirks is uncertain. Therefore we consider two different scenarios, one in which v-glueball

emissions dominate, and another where v-glueball emissions are effectively absent. In the first

case, excited quirkonium decays quickly by big transitions with ∆E ≫ Λv. Once the remaining
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splittings are too small for v-glueball emission, then the states usually radiate SM-gluons and

relax down to the ground state, where they annihilate. In the second case, ∼ 10 − 100 gluons

are expected to be radiated off the quirkonium states, before the quirk can annihilate, giving a

high multiplicity of soft jets.

In both cases, the sensitivity depends strongly on the background and on the theoreti-

cal assumptions of the model. It would be interesting to combine all these efforts to invent

intelligent strategies for determining the nature of hidden valley sector. The drawback of a

model-independent framework is largely compensated by an extremely rich and exotic collider

phenomenology.
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Chapter 5

Hadron collider searches

In this chapter we will address the question of whether the signatures discussed in the previous

chapters are likely to be detectable at the LHC. These questions are subtle because, as discussed

in chapter 4, the dynamics of the production process are not calculable either analytically or

numerically, and cannot be compared with any known physical process. A full analysis of the

signal to background ratios is beyond the scope of the present study and will be considered in

a future work. Our aim here is to point out generic signals which may not yet have been fully

explored at the Tevatron or in studies for the LHC.

To discover a promptly decaying v-glueball, given the branching fractions computed in

chapters 2 and 3, one should clearly make use of its decay to two photons, from which a

resonance can be reconstructed. This motivates us to consider signals and backgrounds with 2

photons plus jets.

Late decaying v-glueballs are more complicated, since displaced jet pairs have no physics

background but suffer from various detector and triggering issues, and detection of displaced

photon pairs are subtle and very dependent upon details of the detector. There is little that a

theorist can do to study these backgrounds, so for this case we limit ourselves to some discussion

of the signal rates and of the most likely strategies for discovery.

5.1 V-glueball Production

Let us summarize the phenomenological possibilities and reemphasize the main points. Direct

resonant production of a single v-glueball, for example through gg → Θ, is extremely small,

suffering an (m0/M)8 suppression. Instead, production of v-glueballs occurs as a byproduct of

the production of quirks, X and X̄, as follows (see figure 5.1).

• An XX̄ pair is produced in a gg or qq̄ collision, possibly along with a hard v-gluon or SM

gauge boson.

• The XX̄ pair is bound by v-color interactions into a bound state of quirkonium.
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• The quirkonium state decays gradually down toward its ground state, eventually annihi-

lating.

• The annihilation is into SM gauge bosons, fermion pairs, or into v-gluons; at long-distance

the latter become two or more v-glueballs.

Much of this process is difficult to model. An attempt to address the dynamics of the quirkonium

state was made in chapter 4.

Figure 5.1: Depiction of quirkonium production and decay.

An estimate of the total rate can be obtained, conservatively, by treating the quirks as unaf-

fected by the dynamics of the v-sector. The quirkonium resonances introduce large fluctuations

of the cross-section as a function of
√
ŝ, and these ought to be convolved with the parton distri-

bution functions. However, as long as the resonances are closely spaced well above threshold,

averaging over them is a reasonable approximation for an estimate of an overall rate.

Given the high level of uncertainty in the fraction of excitation energy that is lost to v-

glueballs, a full computation of the relaxation process is subtle and beyond the scope of the

present work. A more sensible approach would be to consider two phenomenologically different

cases: case (i) in which v-glueball emission is highly suppressed and all of the energy is emitted

in SM gluons (∆En,n−1 > 1 GeV), or pions (∆En,n−1 < 1 GeV), and case (ii) in which most

of the energy is lost to v-glueballs until ∆En,1 < m0 and the rest is lost to relatively hard SM

gluons.

5.2 Tevatron results and existing experimental bounds

At the Tevatron, color-singlet quirks could be pair produced through an off-shell photon, Z, or

W . If the quirks are colored, their pair production through an off-shell gluon is also possible.
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To a great extent, the production rate is only dependent on the gauge couplings of the quirks

and so is fixed by their standard model quantum numbers. In the case of colored quirks, the

annihilation of neutral quirkonium is most often into v-gluons, which at long-distance become

two or more v-glueballs. As explained in section 3, the v-glueballs can then decay via a loop of

quirks, producing photons, gluons, bottom quarks, and so forth. As will be seen in section 5, v-

glueball decays typically result in an observable signal, providing Λv & 1 GeV. For color-singlet

quirks that are produced via an off-shell photon or Z, the primary annihilation channel is also

to v-glueballs, which can decay back to SM particles. However, the dominant cross-section for

production of color-singlet quirks is through an off-shell W boson [13]. The resulting X+X̄0

bound state is electrically charged and cannot annihilate into v-glueballs alone1. Instead, it

may annihilate to leptons or quarks via an off-shell W , to Wγ or WZ, or to Wgvgv, that is W

plus some v-glueballs. Other contributions to the final states arise from the v-glueballs radiated

during the quirkonium relaxation [6,13,49]. These might help increase the discovery reach and

deserve further investigation which we leave for future work.

The Wγ process might allow quirkonium to be discovered directly. Events with a photon,

lepton and missing energy ( l+ γ + 6ET ) would reveal a quirkonium resonance in the transverse

mass distribution above the Wγ background. On the other hand, when the v-glueballs decay,

they may produce spectacular collider signals, such as pp̄ → XX̄ → γγγγ, γγτ+τ−. The 4γ

channel, in particular, is very clean, since it is essentially background free, and would reveal the

v-glueballs, if the rate is large enough to be detected.

There have not been specific searches for quirks as yet. Present limits are in general very

mild because the cross-section for production of quirks at the Tevatron becomes very small once

the quirk masses are larger than ∼ 250 GeV and because not all the collected data has been

analyzed yet. Below we present bounds on the masses of the quirks from CDF searches for new

physics in l + γ + 6ET events and in searches for anomalous production of two photons and at

least one more energetic, isolated and well-identified object (τ lepton or γ). This analysis by no

means is exhaustive, but is meant to illustrate potential discovery signals and the bounds that

can arise.

Our estimates below are based on the following assumptions. First, we determine the rate for

production of quirks through perturbative computations; the cross-section σXX̄ is estimated as

a function of the massMX and for nv = 2, both for the cases of colored and uncolored particles.

Second, motivated by a thermal model of fragmentation [40], we have estimated the relative

1One can show that the splitting between X+ and X0 is so small that X+ is stable against decay to X0 on
the time scales of interest; for example, see [13].
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probability of producing any v-glueball in quirkonium annihilations assuming production of

the 0++ at 50 − 60%, and that of the 2++, 0−+ and 2−+ totaling 40 − 50% in all. Finally,

for the purpose of obtaining an approximate bound we assume a 100% efficiency for detecting

v-glueballs. The last two assumptions are unlikely to be accurate, as we will discuss more

thoroughly in our LHC study, but they are intended to give a rough estimate for the bounds.

(i) l+ γ+ 6ET : The CDF collaboration has searched for the anomalous production of events

containing a high-transverse momentum charged lepton and photon, accompanied by missing

transverse energy [52]. Using 929pb−1 of CDF Run II data, these searches exclude X masses

below 200 GeV for color-singlet X particles and 250 GeV for colored quirks, under the assump-

tion that the quirkonium has lost most of its energy by radiation of photons and/or v-glueballs

and the annihilation takes place at or near the ground state.

(ii) 2γ+γ and 2γ+τ : The CDF collaboration has also searched for the inclusive production of

diphoton events [53]. Using 1155 pb−1 of integrated luminosity, the diphoton plus third photon

search places lower limits on the X mass below 200 GeV for color-singlet quirks and y ∼ 0.

The corresponding limit on the X mass for colored quirks turns out to be less severe, roughly

below 150 GeV, because, in this case, the branching fraction to photons is . 0.35%. If quirks

couple to the SM Higgs boson additional constraints arise because of the 0++ branching ratio

to tau leptons ∼ 10%. Using 2014 pb−1, the diphoton plus tau search places lower limits on the

X mass for y ∼ 1 below 250 GeV for color-singlet quirks and 175 GeV for colored particles.

Some comments are in order. The mass bounds from potential v-glueball signals are neces-

sarily model dependent. Unfortunately, unlike our computations of the branching ratios, there

is no way to make a reliable estimate of the probability for producing any given v-glueball

state in quirkonium annihilation, since phenomenological input from QCD is not relevant to the

pure-glue case. V-glueballs could be created during the relaxation of quirkonia, and during their

annihilation, so events with more than two v-glueballs might be common. Generally, with more

than two v-glueballs produced in each quirkonium annihilation, events with multiple photons

would be common and easier to observe. However, the events may be more cluttered and the

energy of the photons lower, leading potentially to lower detection efficiencies. Since we cannot

model this reliably, in the simple analysis of this paper, we will rely on the model independent

bounds from the production of quirkonium through s-channel W± outlined above.

Moreover, the bounds from the W+ photon final state assume that the quirkonium state

decays to its ground state before annihilating. However, it has been argued in [49] that the

annihilation may often occur at higher energy, before the ground state is reached. With many
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quirkonium states annihilating at different energies, the signal in the transverse mass distri-

bution will be diluted. Besides, annihilation to two fermions via an off-shell W or to W+

v-glueballs becomes increasingly significant at higher energies. While the branching ratios to

Wγ/Z, f f̄ and W+v-glueballs can be estimated, the wide range of quirkonium states and

the uncertain annihilation probability as a function of the energy make any precise evaluation

almost impossible. Therefore, the Tevatron limits are in fact weaker than suggested above.

In passing, we note that the bounds on a fourth generation of particles from Higgs searches

at the Tevatron do not apply to heavy fermions that get only part of their mass from elec-

troweak symmetry breaking, such as the quirks in our work. For an additional pair of fermions

that get most of their mass from electroweak symmetry breaking, the Higgs production cross-

section σgg→H is known to increase by a factor of roughly 9, making a dramatic effect on Higgs

physics [55]. This allowed CDF and D0 to rule out fourth generation quarks for a Higgs mass

in the window 145 GeV < mH < 185 GeV. However, for heavy particles that get only part

of their mass by electroweak symmetry breaking, their contribution to the cross-section σgg→H

decreases and the bounds are generally much weaker or absent.

Before moving on to the discussion of electroweak precision constraints we should briefly com-

ment on the possibility of producing v-glueballs in Higgs decays. Up to now we have considered

the production of v-glueballs as a by-product of quirkonium annihilation and relaxation. How-

ever, there is another possibility for this production to occur. For sufficiently small v-glueball

masses, the interaction (3.2) can also mediate processes such as h→ ΘκΘκ and h→ ΘκΘκΘκ.

Assuming only minor phase space suppression, the branching ratio to v-glueballs for a SM Higgs

below 140 GeV and nv = 2−4 is of order (αvy
2v2hmh/3πM

2mb)
2 ∼ 10−3−10−2. This implies a

cross-section for producing v-glueballs at the Tevatron of order a few fb. Even though the cross-

section is small, when combined with quirkonium annihilations, the production of v-glueballs in

Higgs decays may be useful in the low mass range m0 ≃ 1− 70 GeV. The produced v-glueballs

can then decay to a wide variety of final states, including b quarks, τ leptons, and multiple

photons, among others; for small v-glueball masses, a significant fraction of these decays may

occur with displaced vertices. At the Tevatron, there may be potential to observe a few events in

the bb̄τ+τ− or bb̄bb̄ channels, although with limited statistics. In the case of displaced vertices,

the D0 collaboration has searched for pair production of neutral long-lived particles decaying

to a bb̄ pair, and found no significant excess above the background [56]. This search could only

exclude branching fractions of order 1, so that in our case it does not imply any bounds. At

the LHC, the background problem is more severe, but with a larger cross-section and a larger

integrated luminosity than at the Tevatron, the observation of a few v-glueball events may
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also be possible. Depending on kinematics, the case of photons that originate away from the

primary interaction point may also play an interesting role. A search for displaced photons has

been done at D0 [57], and may be possible at ATLAS, due to the longitudinal structure of the

electromagnetic calorimeter (ECAL). Besides, CDF and CMS allow the identification of delayed

photons from long-lived particles using ECAL timing information (see [54] for results obtained

using the CDF detector). The question then is whether at a branching ratio ∼ 10−3− 10−2 the

LHC will have some sensitivity. Keeping these non-standard Higgs decays in mind we leave the

analysis of the discovery reach for future work.

5.3 LHC searches for prompt v-glueballs

5.3.1 Colored quirks

A priori, the most spectacular signal is from high pT photons from the v-glueball decays, which

typically have pT of order 100 GeV or more. The search strategy would be to detect at least

two photons and reconstruct their invariant mass.

Given the high pT of the photons and the simplicity of the measurement, detection could

be possible, but challenging. The effects of parton showering, hadronization, initial and final

state radiation, and the underlying event impact this measurement in reducing the efficiency

for photon detection through the failure of a photon isolation criterion. We should impose a

rather simple photon isolation cut, demanding any photon be isolated from any gluon from the

second v-glueball decay, to account for the largest effect. Some small efficiency loss should be

expected mainly due to ISR and FSR jets, to the underlying event, and to particles emitted in

quirkonium relaxation, such as discussed in [13, 49, 50].

To study the signal, we have to choose a fragmentation model; in the last chapter we

described a simple way to compute the fragmentation probabilities in the case they are described

by a thermal model. Then we allow the v-glueballs to decay according to the branching fractions

given in chapters 2 and 3. An important point to note is that only the color singlet states, η1

and ψ1, are expected to annihilate significantly into v-glueballs, and only a fraction of the decays

will produce the 0±+ and 2±+ states. The color octet states, η8 and ψ8, will decay mostly to

gg or g∗, but the backgrounds will be larger in this case. Therefore, even if a small fraction of

events leads to final states with the 0±+ and 2±+ states, the diphoton decay mode might still

be the cleanest signature.

Since the signal photons are very high-pT , we believe (based on conversations with LHC

experimental experts, and on the fact that fake and real photons play a comparable role in the
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lower-pT light-Higgs search) that the contribution to the background from fake photons is prob-

ably comparable to or smaller than the real-photon background. The real-photon background

arise from production of two photons plus two quarks or gluons. In the case that M/m0 is very

large, the two gluons from a v-glueball decay will merge into a single very-high-pT jet, so we

also should consider backgrounds from two photons plus one higher-pT quark or gluon.

Since we will be relying on very crude estimates, in a first attempt signal and background

can be both computed at leading order. Next-to-leading-order corrections are likely to increase

both signal and background by a comparable amount. Since we do not count the number of

jets or impose a jet veto, initial and final state radiation should not significantly change the

acceptance or efficiency. The extra radiation and the underlying event will slightly reduce our

photon isolation efficiency.

The abundance of radiative decays also leads to new signatures, which might not not be the

discovery modes, but which will nevertheless be of great interest, and should be studied further

if any excess of multi-photon events or two photon plus Z events are observed at the LHC.

First, there is the possibility of three-photon resonances in the decays such as 1+− → γ0++

followed by 0++ → γγ. Of course the branching fraction of this process may be low, but the

signal has very low background, so a few events may suffice. Other +− and −− states may

also have radiative decays, giving three-photon resonances. These states may also decay to γgg,

which may provide a third photon in events where some other v-glueball decays to γγ; again

this may help separate the signal from backgrounds. Second, there is the possibility of double-

radiative decays such as 3++ → 1−+γ followed by 1−+ → γ0++. Even if the 0++ state decays

to jets, one expects an edge in the two photon invariant mass, and rare three- and four-photon

events will show additional kinematic structure. Radiative decays of v-glueballs to Z bosons

may not always be kinematically allowed, and even when present, the small branching fraction

to dileptons makes leptonic Z’s relatively rare compared to photons. Nevertheless, they should

clearly be included in this search, since ℓ+ℓ−γγ events with jets are rare, and since kinematic

features in this channel would not only help identify the signal but would constrain the effective

action generating the radiative decay.

5.3.2 Uncolored quirks

Uncolored quirks are produced with much lower rates, and colored quirks will dominate over

uncolored ones unless the mass of the colored quirks is of order 3 times larger than that of

the uncolored ones. In this case, decays to gluons are no longer dominant, as we showed in
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the section 3.4.3. The lower rates for quirkonium production are somewhat compensated by

the higher rate for two and even four photons. Also, the v-glueball lifetimes are longer. Since

m0 < M , the regime for m0 in which all v-glueballs decay promptly is much reduced.

Annihilation to W plus one or more v-glueballs will consume a substantial fraction of the

quirkonium states. This in turn can lead to final states with two photons plus jets, or to events

with two photons, a lepton, missing transverse momentum, and possibly jets. Although it is

plausible that this channel will be sufficient for a discovery, the probability of four-photon events

is not negligible. For heavier v-glueballs (m0 > 160 GeV) these make up of order 4 percent

or more of v-glueball-pair final states, while for light v-glueballs (m0 < 160 GeV) they will

make up as many as 60 percent, enough that a simple counting of 3- and 4-photon events may

reveal a signal without kinematic constraints. (However in this case the photons may also be

highly displaced, undermining kinematic reconstruction; we will comment on this in more detail

below.) If the decays are prompt, a four-photon signal from a two-glueball final state would be

fully reconstructable with high resolution, and the spectrum of quirkonium would be identified

much more clearly and precisely than in the Wγ final states from charged quirkonium.

More precisely, the ratio of charged quirkonium prodution to neutral quirkonium production

is about 4. Even if the branching fraction of charged quirkonium annihilation toWγ is 1/3 (the

other 2/3 going to WZ), the branching fraction of the W to an electron or muon is 2/9, and

measurement of a structure in transverse mass requires more than a few events. Meanwhile, the

probability of neutral pseudoscalar quirkonium production to produce v-glueballs is about 70%.

Thus the four-photon signal, with a tiny background and a spectacular signature, is likely to be

at least 15 percent as large as the Wγ signal, and possibly larger. Geometrical acceptance will

reduce the four photon signal, but its special nature still probably makes it the best target for

a search — assuming the v-glueballs are long-lived enough to decay within the detector. If the

v-glueballs decay invisibly, the Wγ signal reemerges as the ideal approach. And if the decays

are displaced, other issues arise, to which we now turn.

5.4 Signal and Background for Displaced Decays

Despite a long history of theoreticians predicting the possibility of new long-lived particles at

the Tevatron or LHC, displaced vertices from new particles are often treated as unlikely exotica

to be searched for when all else has failed. Few Tevatron studies of displaced particle decays

have been performed until very recently, and few LHC studies were performed until this past

year. No Tevatron triggers are optimized for signatures of displaced vertices, and until recently
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there was no discussion of adding trigger pathways at the LHC. Specialized tracking algorithms

could only be applied at the Tevatron through full reconstruction of very large event samples.

Recently this has changed [94–96].

Of course if m0 is small, there are a variety of states to consider, with a wide variety of

lifetimes. Only one of these need be both long-lived and regularly produced to provide a strong

signature for new physics.

New long-lived particles, though they have no standard model backgrounds, pose special

challenges at the Tevatron and the LHC. The ATLAS and CMS detectors were not designed to

detect displaced vertices beyond the beampipe; indeed, they are designed with so much material

that they create displaced vertices from secondary pion-detector interactions at a distressingly

large rate. Even CDF and D0, with less material, have very substantial detector backgrounds

from secondary vertices.

The LHCb detector may have an interesting role to play if there are new particles with

displaced vertices in the 1 to 100 cm range [7]. It has a material-free region extending out

to tens of centimeters, somewhat compensating for the small angular acceptance of the de-

tector. However, it can only handle an instantaneous luminosity of 3 × 1032cm−2s−1, a tenth

of the moderate-luminosity running expected in the early years of the LHC. Even the colored

quirkonium production process is typically too small, unless M ≪ 1 TeV, to contribute many

v-glueballs into the LHCb detector.

In models with a single new metastable resonance (such as the next-to-lightest supersym-

metric particle in gauge-mediated models) it is somewhat fine-tuned for this single long-lived

state to have a lifetime between picoseconds and microseconds, so that it has a reasonable

chance of decaying with a displaced vertex inside the detector. However, in many hidden valley

models, there are multiple metastable states, making this possibility much less fine-tuned. In

our current case, there are numerous v-glueball states with quite different lifetimes, and at least

one is long-lived in a wide range of the parameter space. The v-glueballs decay to a wide variety

of final states, all of which might appear at displaced vertices. These include

• jet pairs (from gg, or from ZZ with one Z decaying to neutrinos)

• jet quartets (from WW or ZZ),

• photon pairs,

• lepton pairs (µ+µ−, e+e−, µ±e∓) (from ZZ with one Z decaying to neutrinos, or from

WW leptonic decays),
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• jets and photons (from radiative decays such as γgg or Zγγ)

• leptons and photons (from γWW , γZZ, Zγγ)

• jets and leptons (from Zgg, WW , ZZ)

Here we view taus as either jets or leptons, since their displacement is far more striking than

their identity.

All of these signatures are easy in principle — there are no standard model backgrounds —

but all are challenging in practise, with the possible exception of displaced muon pairs. For this

reason, along with the various possible arrangements of branching fractions, it is by no means

obvious which of the various final states is best for an analysis. Moreover the optimal choices

are likely to vary from detector to detector. We limit ourselves, therefore, to comments that

may be useful to an experimentalist considering this type of signature.

If only colorless quirks are light and mΘ < 2mW , then, as we saw in chapter 2 and chapter

3, decays to γγ will dominate. Four-photon events are sufficiently striking that discovery with

few events may not require observation of displacement; whether and how to measure the long

lifetime is a subtle issue we will discuss further below. For mΘ > 2mW , 2mZ the WW and ZZ

signals come into play. There are several possible strategies. The first would be to select events

with two photons and look for displaced jets from WW or ZZ; nearly half of the quirkonium

annihilations would be of this type. But displaced jet pairs have large backgrounds, depending

on the precise kinematics, from secondary interactions (hard hadrons striking the beampipe,

detector material, or even air molecules), which will be all too common at the LHC detectors.

A second approach would be to select events with two hard (possibly non-isolated) leptons and

see if they reconstruct a displaced Z boson, possibly with additional tracks (from the second Z

emerging from the same vertex.) The rate for this process could be of order 2.5% per glueball,

or 5% per quirkonium annihilation. This signal is technically easier, much cleaner, and has

much lower background, so it might be an earlier priority and perhaps is better overall than the

displaced-jet signature. One could also drop the mass constraint and look merely for two leptons

from WW , with a large opening angle and invariant mass larger than the Z, that reconstruct

a vertex.

If the colored quirks are sufficiently light compared to their colorless partners, jet pairs

will dominate. The first non-pure-jet signals by branching fraction are di-photon and lepton-

plus-jets (from WW ). For di-photon signals, the displacement hurts twice; it is hard to detect

the displacement, unless it is quite substantial, and it will also degrade the di-photon mass

resolution since the reconstructed photon three-momenta will be incorrect. Meanwhile it is far
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from obvious that a vertex with two jets and a lepton is much easier to reconstruct than a vertex

with two jets alone. The first ultra-clean signature is again e+e− or µ+µ− (plus two neutrinos)

from WW or ZZ. Unfortunately the branching fraction is now quite small, approximately 0.06

percent of all v-glueball decays, and thus perhaps 0.12 percent of all quirkonium annihilations.

Moreover, this signal is only present for those v-glueballs with mass well above 2mZ . Thus one

may try to find displaced Z bosons, but one must also be prepared to observe displaced jets or

photons.

An event with two pairs of displaced jets may not even pass jet triggers in some cases.

New trigger strategies for events in which one of the v-glueballs decays in the calorimeters or

muon system are under development [94,95] but their effectiveness and practicality are not yet

demonstrated. Moreover, this strategy is only useful if one of the v-glueballs serves as a trigger,

in which case it is unlikely to be reconstructable, and at least one other v-glueball has decayed

sufficiently early in the tracker that its tracks can be reconstructed convincingly. Even then,

there will be backgrounds from secondary interactions.

Fortunately, the reasonable rate for photon pairs will ensure some fraction of quirkonium

events are captured. An interesting strategy, therefore, will be to take two-photon-plus-jets

events and search for a displaced vertex involving pairs of jets. (One should also remember

that the jets might merge, if M/m0 is large enough, so vertices involving single high-pT jets

must also be considered.) An intermediate step would be to detect the presence of a high-pT jet

with no normal tracks, for which outside-in tracking and calorimetry information might detect

charged tracks entering at unusual angles.

Eventually, one would hope to maximize the ability to detect displaced jets, especially

ones with high pT . For instance, if m ∼ 1.5 TeV and m0 ∼ 300 GeV, then the number of

quirkonium events may be quite small. In this case the diphoton events will be very few.

The jets, meanwhile, will have pT above 500 GeV. Thus one might also consider looking at

the tracking in events with three or four jets at high pT . Such high-pT jets in QCD events

will unfortunately have a high hadron multiplicity and a corresponding high probability of

high-energy secondary interactions [96]. However, the signal will have special characteristics

unlike most QCD events: no hard primary tracks near the secondary vertex; two or more such

secondary vertices; a possible large opening angle at the vertex. One would hope that such a

signal could be extracted from the background of secondary interactions, but this requires a

detailed study, and probably some actual LHC data, as opposed to mere simulation.
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Chapter 6

Conclusion and open problems

We discussed the importance and relevance of hidden valley models in the realm of Beyond

the Standard Model physics. To ensure that such physics does not go undiscovered requires

precise understanding of how new physics will reveal itself in the current and future generation

of particle-physics experiments. This thesis discussed various aspects of collider phenomenology

in the quirk and hidden valley scenario, and its implications for undergoing experiments at the

LHC.

We considered a hidden valley that at low energy is a pure-Yang-Mills theory, a theory that

has numerous metastable v-glueballs built from the hidden valley gluons. A v-glueball can decay

into a set of SM particles through a loop of heavy charged or colored particles. We constructed

the D = 8 effective action coupling the two sectors. We considered the phenomenology of this

scenario, and found formulas for the lifetimes and branching ratios of the most important of

these states. The dominant decays are to two standard model gauge bosons, or by radiative

decays with photon emission, leading to jet- and photon-rich signals.

With the similar objective of studying phenomenologically rich models, we considered models

in which glueballs may be able to decay inside inside the detectors even for low confinement

scale. Our scenario is motivated by Higgs portal hidden valleys models , in which the hidden

glueballs interact with the SM sector through Higgs interactions. One of the most remarkable

features of this scenario is the large spread in v-glueball lifetimes, even for a fixed choice of

the parameters. The formalism of Peskin and Takeuchi was employed to show that operators

considered in this work are not heavily constrained by precision electroweak physics, therefore

leaving plenty of room in the parameter space to be explored by the future experiments at the

LHC. We further investigated its phenomenology and possible discovery signatures.

In order to determine whether the aforementioned signatures are likely to be detectable

at the LHC, it remains to investigate the dynamics of the production process. We studied

several aspects of v-glueball production and discussed in some detail the dynamics of colored

quirkonia. It would be interesting to extend these results by determining whether the energy

lost during quirk relaxation may contribute with another discovery channel for glueballs and
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quirks in other regions of parameter space. It remains an open problem to determine the non-

perturbative couplings of glueballs to quirks and whether the amplitudes for glueball emission

are further suppressed.

We also commented on the issue of hadron collider searches and discussed briefly the most

likely strategies for discovery. For promptly decaying v-glueballs, the di-photon resonance from

C-even glueball decays is likely to be the discovery channel for these glueballs at the LHC. The

case of late decaying v-glueballs deserves further investigation.

Our models predict that a significant amount of energy is lost during quirkonium decay

to v-glueballs and/or perturbative gluons. The latter will affect photon isolation, potentially

increasing the backgrounds and lowering the sensitivity. It would be interesting to determine

the effect on photon isolation of the quirkonium relaxation in order to get concrete predictions

for the background. To accomplish this task, it is near certainty that new MonteCarlo tools

will have to be designed or modified from existing ones to deal with backgrounds from multijets

signal events.

We have seen that the pure-glue hidden valley scenario gives rise to spectacular phenomeno-

logy at hadron colliders. These phenomena are sufficiently exotic that they could be missed

unless a reasonable strategy is designed to search for them. Given the simple nature of these

models, it is worthwhile to put some effort in this direction. We plan to continue our investi-

gations by doing an analysis of signal to background ratios. The next step will be to produce

event generators for this exotic physics that can be used to develop concrete search strategies.

It is important in this data driven era, however, to continue to take a pragmatic and impartial

approach and investigate both minimal and non-minimal theories. It remains for the LHC to

confirm whether there is a role for any of these particular theories in what physics lies beyond

the SM.
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Appendix A

A.1 Three-body decays

In the main body of the text we have argued that three-body decays of states in the C-odd

sector are largely suppressed as compared to their radiative decays to light C-even states. As

an example, here we consider a three-body decay 1−− → 1+−gg and demonstrate that there is

a substantial suppression of its rate. We will restrict ourselves to consider the case of the s-wave

decay mode since this is expected to give the highest contribution to the decay rate in a partial

wave expansion. In this approximation only P and Lµναβ operators contribute (table 2.2). This

corresponds to the amplitude

αsαv

M4
χs

[

CP 〈ga, gb| tr GµνG̃
µν | 0〉 〈1+−|P |1−−〉 +

+CL〈ga, gb| tr GµνGαβ | 0〉〈1+−|Lµναβ |1−−〉
]

,

where the s-wave approximation implies the following form of the matrix elements;

〈1+−|P |1−−〉 = ǫ+ · ǫ−
m1−

MP
1−−1+− ,

〈1+−, q|Lµναβ |1−−, p〉 = ML
1−−1+−

m3
1−

(ǫµνρσp
ρǫ−

σ
(pαǫ

+
β − pβǫ

+
α)+

+ ǫαβρσp
ρǫ−

σ
(pµǫ

+
ν − pνǫ

+
µ)− traces) + . . . ,

The above amplitude gives a decay rate

Γ1−→1+gg =
α2
sα

2
v

29π3M8

1

3
(N2

c − 1)χ2
sm

3
1−

(

4C2
L(M

L
1−−1+−)2 fL(a)+

+C2
P (M

P
1−−1+−)2 fP (a)

)

+ . . . , (A.1)

where we define the dimensionless functions fL(a) and fP (a) of a ≡ m2
1+/m

2
1− as

fL(a) = − 1

15120a
(171a7 − 1295a6 + 4410a5 − 9450a4 + 11025a3−

− 4221a2 − 630a− 10)− 1

36
a(5a− 9) log(a),
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fP (a) = − 1

120a

(

a6 + 36a5 + 1305a4 − 1305a2 − 36a− 1
)

+

+
1

2
a
(

9a2 + 28a+ 9
)

log(a).

For the values of v-glueball masses from the spectrum in figure 2.1, a ≃ 0.6, fL(0.6) ≃ 3× 10−5

and fP (0.6) ≃ 7× 10−5.

The ratio of the decay rate (A.1) to the radiative two-body decay (3.18) is

Γ1−→1+gg

Γ1−→0+γ

= 6× 10−6 α
2
s

ααv

χ2
s

χ2

(

4C2
L(M

L
1−−1+−)2 +

fP
fL
C2

P (M
L
1−−1+−)2

(MΩ
1−−0++)2

)

.

Unless there is an extreme degeneracy in the SU(5) multiplet of X particles, which is

unnatural due to SU(5)-asymmetric renormalization of the masses, we expect χ is at least of

order 0.1, so the coefficient in front of the ratio of the form-factors will be around 10−2 or

smaller.

For other states in the C-odd sector, a rough estimate confirms that the ratio of the three-

body decays to the radiative decays is never greater than 1/10 and is typically much smaller.

Thus, we conclude that the three-body decays in this sector are never dominant. Since most

such decays are to gluons, and are therefore very difficult to observe, the three-body processes

can for current purposes be ignored.

A.2 Computation of L(6)
eff

Definitions

In the following the momenta of the initial gluons (p1, p2) and final Higgs bosons (k1, k2) are

all chosen to be incoming. We make use of the following invariants

s = (p1 + p2)
2 t = (p1 + k4)

2 u = (p1 + k3)
2 (A.2)

obeying the condition

s+ t+ u = k23 + k24 (A.3)

where we have assumed that the gluons are massless, p21 = p22 = 0.

Pasarino-Veltman functions C0 and D0

The computation of the Feynman graphs is performed using the Passarino-Veltman decompo-

sition of the one-loop tensor integrals [68]. For our results below we will make use of the 3 and

4 point scalar functions C0 and D0. The explicit expressions are rather lengthy and have to be
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handled numerically. However, one can derive an integral representation

C0(r1, r2, s,M1,M2,M3) =

∫ 1

0

∫ x

0

[

−r2x2 − r1y
2 + (−s+ r1 + r2)xy+

+(M3 −M2 + r2)x+ (M2 −M1 + s− r2)y −M3]
−1
dydx (A.4)

D0(r1, r2, r3, r4, s, t,M1,M2,M3,M4) =

∫ 1

0

∫ x

0

∫ y

0

[

−r3x2 − r2y
2 − r1z

2+

+(−t+ r1 + r4)xy + (s+ t− r2 − r4)xz + (−s+ r1 + r2)yz + (M4 −M3 + r3)x+

+ (M3 −M2 + t− r3)y + (M2 −M1 + r4 − t)z −M4]
−2 dz dy dx (A.5)

Fermion loop

Figure A.1: Graphs contributing to gg → HH

The amplitude for the fusion of two massless v-gluons into a pair of Higgs boson fields arises

at lowest order in perturbation theory from a loop of heavy particles. The relevant graphs are

depicted in figure A.1. We assume that there is a pair of vector-like fermion fields, a doublet and

a singlet of SU(2)L, transforming under the fundamental representation of SU(nv). The doublet

and singlet have masses M and m, respectively. Gauge invariance constrains the amplitude to

be

M� =
y2g2v
8π2

(pν1p
µ
2 − p1 · p2gµν)F� ǫ1µǫ

2
νδab + · · · (A.6)

where ǫ1µ, ǫ
2
µ are the polarization vectors of the incoming v-gluons. The form factor F� is given

by:

F� = f(s, t, u, k23, k
2
4 ,m,M) + f(s, t, u, k24, k

2
3 ,m,M) + (M ↔ m) (A.7)
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where

f(s, t, u, k23, k
2
4 ,m,M) =

− 1

s2
(k23+k

2
4−2(M+m)2)

[

(k24 − u)C0(0, k
2
4 , u,M

2,M2,m2) + (k24 − t)C0(0, k
2
4, t,m

2,m2,M2)

+(k23 − u)C0(0, u, k
2
3,m

2,m2,M2) + (k23 − t)C0(0, t, k
2
3 , u,M

2,M2,m2)
]

+ 8
m2

s
C0(0, 0, s,m

2,m2,m2)

− 2
m2

s
(−2(m+M)2 + k23 + k24 +

M

m
s)
[

D0(0, 0, k
2
3, k

2
4 , s, t,m

2,m2,m2,M2)

+D0(0, 0, k
2
4, k

2
3 , s, u,m

2,m2,m2,M2)
]

+

1

s2
(

2m4s+ 4m3Ms+m2(s(4M2 − k24) + 2k33k
2
4 − k23(2k

2
4 + s)) + 2mM(2M2s− 2k23(k

2
4 − t)

+2k24t− s2 − 2st− 2t2) + (2M2 − k23 − k24)(sM
2 + k33k

2
4 − k23k

2
4)

+s(2m2 + 2M2 − k23 − k24)p
2
t

)

D0(0, k
2
4, 0, k

2
3 , t, u,m

2,m2,M2,M2) + 4 (A.8)

with pt = 2(p1k3)(p2k3)/(p1p2)− k23 .

Large fermion mass limit and effective Lagrangian

The form factor can be evaluated by taking the limit M,m≫ s, t, u, k23, k
2
4 . At leading order in

the mass splitting of the heavy fermions M ≈ m, the form factor reads

F� =
8

3Mm
+O(s/M2). (A.9)

The matrix element for gagb → HH can be obtained in perturbation theory from the following

non-renormalizable interaction

L(6)
eff =

y2αv

3πMm
H†Htr FµνFµν . (A.10)

A.3 The form factors M(i)
JJ ′

In addition to the momenta p and q, we introduce a pair of tensors ǫµ1,··· ,µJ
(p) and ǫ̃µ1,··· ,µJ′ (q)

to represent the polarizations of the spin-J and spin-J’ states respectively. It will be convenient

to define ”reduced” polarization tensors by contracting some of the indices with the vectors p

and q,

ǫµ1,··· ,µJ−K
(p) = ǫµ1,··· ,µJ

(p)qµJ−K+1 · · · qµJ ǫ̃µ1,··· ,µJ′−K′ (q) = ǫ̃µ1,··· ,µJ
(q)pµJ′−K′+1 · · · pµJ′ .

(A.11)

The invariant form factors are constructed from the reduced polarization tensors and the vectors

p and q. For the simplest J → 0 case, the only form factor is obtained when all the indices of
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the polarization tensor are fully contracted with q,

ǫ(p) = ǫµ1,··· ,µJ
(p) qµ0 · · · qµJ . (A.12)

This gives the matrix element

〈0, q|S|J, p〉 = MS
0J ǫµ1,··· ,µJ

(p) qµ0 · · · qµJ (A.13)

where now MS
0J is the transition matrix which depends on the transferred momentum. For the

more complex J → J ′ = 1 case, there are two form factors parametrizing the matrix element,

ǫµ,µ2··· ,µJ
(p) qµ2 · · · qµJ ǫ̃µ(q), ǫµ1,µ2··· ,µJ

(p) qµ1 · · · qµJ ǫ̃ν(q) p
ν . (A.14)

In the reduced notation, these are simply ǫµ ǫ̃
µ = and ǫ ǫ̃. In addition, we can contract the

polarization tensors with a Levi-Civita tensor as follows,

ǫµνρσǫµ(p) pρ qσ ǫ̃ν(q) = ǫµνρσǫµ,µ2··· ,µJ
(p) qµ2 · · · qµJ pρ qσ ǫ̃ν(q) (A.15)

Collecting all terms, we obtain the following matrix element

〈1, q|S|J, p〉 = MS
1Jǫµ,µ2··· ,µJ

(p) qµ2 · · · qµJ ǫ̃µ(q) +MS
′

1Jǫµ1,µ2··· ,µJ
(p) qµ1 · · · qµJ ǫ̃ν(q) p

ν+

MS′′

1J ǫ
µνρσǫµ,µ2··· ,µJ

(p) qµ2 · · · qµJ pρ qσ ǫ̃ν(q) (A.16)

We next turn to the more complicated matrix element for the J → J ′ = 2 transition. Firstly,

we define the auxiliary tensors

ǫµν(p) = ǫµ,ν,µ3··· ,µJ
(p) qµ3 · · · qµJ , ǫµ(p) = ǫµ,µ2··· ,µJ

(p) qµ2 · · · qµJ (A.17)

and

ǫ̃µ(q) = ǫ̃µν(q) p
ν . (A.18)

From ǫµν(p), ǫµ(p), ǫ̃µν(q) and ǫ̃µ(q) we can form the following three invariants

ǫµν(p) ǫ̃µν(q), ǫµ(p) ǫ̃µ(q), (ǫµ(p) q
µ) (ǫ̃ν(q) p

ν) (A.19)

In addition, contracting with the Levi-Civita tensor gives two more invariants,

ǫµνρσǫµ(p) pρ qσ ǫ̃ν(q), ǫµνρσǫµλ(p) pρ qσ ǫ̃
λ

ν (q). (A.20)

Therefore, there are five form factors in the J → J ′ = 2 case. The general rule to find all the

form factors in the case J → J ′ case is now clear. Without loss of generality we can assume

J > J ′. First we construct the reduced spin-J tensor with J ′ indices,

ǫµ1,··· ,µJ′ (p) = ǫµ1,··· ,µJ
(p)qµJ−J′ · · · qµJ (A.21)
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so that we have two tensors with J ′ indices. Then we form the invariants

ǫµ1,··· ,µJ′ (p)ǫ̃
µ1,···µJ′ (q), · · · , ǫµ(p) ǫ̃µ(q), ǫ(p) ǫ̃(q), (A.22)

for a total of J ′+1 invariant form factors. Secondly, there are contractions with the Levi-Civita

tensor as follows

ǫµνρσp
ρqσǫµ,µ2,··· ,µJ′ (p)ǫ̃

νµ2,···µJ′ (q), · · · , ǫµνρσpρqσǫµ(p) ǫ̃ν(q) (A.23)

giving J ′ additional invariants. Hence, the total number of Lorentz invariant form factors is

2J ′ +1 for the transitions J → J ′, J ′ < J . To see that this contemplate all the possibilities, we

can apply angular momentum counting rules. By composing the spin J and spin J ′ states we

obtain total spin |J − J ′|, · · · , J + J ′. For a scalar operator, these have to be combined with

total angular momentum L = |J − J ′|, · · · , J + J ′ in order to give total spin 0. So for J ′ < J

we get 2J ′ + 1 form factors associated with the different values of L.

i 1 2 3 4 5

M(2,i)
αβρσ gαρ gβσ gαρ q̂β p̂σ q̂αp̂ρ q̂β p̂σ gβρ ǫασzw p̂

z q̂w q̂β p̂ρ ǫασzw p̂
z q̂w

M(1,i)
αρ gαρ qα p̂ρ ǫαρzw p̂

z q̂ w - -

Table A.1: The auxiliary tensors M(J,i). Here q̂α = qα/
√

q2 and p̂α = pα/
√

p2.

To summarize, we show the matrix elements up to spin 3 that are needed to compute the

decays of the v-glueballs in figure 2.1. In terms of the auxiliary tensors shown in table A.1, the

matrix elements read,

M(i)
32 = q̂γ ǫ

αβγ(p) ǫ̃ ρσ(q)M(2,i)
αβρσ

(A.24)

M(i)
31 = q̂γ q̂β ǫ

αβγ(p) ǫ̃ ρ(q)M(1,i)
αρ

(A.25)

M30 = q̂α q̂β q̂γ ǫ
αβγ(p) (A.26)

M(i)
22 = ǫαβ(p) ǫ̃ ρσ(q)M(2,i)

αβρσ
(A.27)

M(i)
21 = q̂β ǫ

αβ(p) ǫ̃ ρ(q)M(1,i)
αρ

(A.28)

M20 = q̂α q̂β ǫ
αβ(p) (A.29)

M(i)
11 = ǫα(p) ǫ̃ ρ(q)M(1,i)

αρ
(A.30)

M10 = q̂α ǫα(p) (A.31)
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where we denote q̂α = qα/
√

q2. For the sake of brevity, we have not shown the seven matrix

elements that correspond to the 3 → 3 transition. These can be obtained along the same line

that led to (A.24)-(A.31).

A.4 The virial theorem and related theorems

Two results of considerable general utility for the study of bound states in a central potential

are the virial theorem,

〈T 〉 = E = 〈V 〉 = 〈r
2

dV

dr
〉 (A.32)

and the connection between the s-wave wave function at the origin and the gradient of the

potential,

|ψ(0)|2 = µ 〈dV
dr

〉, (A.33)

where µ = M/2 is the reduced mass, T , V and E are the kinetic, potential and total energy,

respectively. An important case occurs for power law potential of the form

V (r) = λ rν , (A.34)

for which kinetic, potential and total energy are related by

〈T 〉 = ν

2
〈V 〉 = ν

ν + 2
E, (A.35)

or equivalently,

< V >=
2

ν + 2
E. (A.36)

Thus for the linear potential (ν = 1) we find

〈r〉 = 2E

3λ
. (A.37)

The mass and coupling strength dependences of the level spacings are prescribed by the

Schrödinger equation as

∆E ∝ (2µ)
−ν/(2+ν) |λ|2/(2+ν). (A.38)

Thus for the Coulomb potential (ν = −1), ∆E ∝ µ|λ|2, while for the linear potential (ν =

1),∆E ∝ (λ2/µ)1/3.

According to the scaling rules of the Schrödinger equation, quantities with the dimensions

of length scale as

L ∝ (µ/|λ|)1/(2+ν). (A.39)
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An important quantity is the probability density at the origin, |ψ(0)|2, which has dimensions

of inverse volume and so scales as

|ψ(0)|2 ∝ (µ|λ|)3/(2+ν). (A.40)

For a Coulomb potential, therefore, |ψ(0)|2 ∝ (µ|λ|)3, while for a linear potential |ψ(0)|2 ∝ µλ.

Transition matrix elements of electric and magnetic multipole operators and sizes of bound

states with given quantum numbers are other examples of quantities to which the scaling rule

(A.39) may be applied. Electric dipole matrix elements scale as

〈n′ | E |n〉 ∝ L (A.41)

while the magnetic dipole matrix element behaves as

〈n′ |M |n〉 ∝ 1. (A.42)

Since radiative widths are given by

Γ(E or M) ∝ ω3〈n′ | E or M|n〉 (A.43)

with ω ∼ ∆E, we find

Γ(E) ∝ µ−(2+3ν)/(2+ν)λ4/(2+ν) (A.44)

and

Γ(M) ∝ µ−(4+5ν)/(2+ν)λ6/(2+ν). (A.45)

The WKB approximation is a very useful and powerful method to solve bound state problems

for highly excited states. An useful result is

|Rn,0(0)|2 =
(2µ)3/2

π
E1/2

n

dEn

dn
, (A.46)

where Rn,0 ≡
√
4πψ(0) is the S-wave radial wavefunction. This expression has been generalized

to include higher angular momentum waves,
∣

∣

∣

∣

dl

drl
Rnl(0)

∣

∣

∣

∣

2

=
1

π

[

l!

(2l + 1)!!

]2

(2µEn,l)
l+1/2 ∂(2µEn,l)

∂n
. (A.47)

For a potential (A.34) the energy eigenvalues in the WKB approximation are given by

Enl = λ2/(2+ν) (2ν)−ν/(2+ν)

[

A(ν)

(

n+
l

2
− 1

4

)]2ν/(2+ν)

, (A.48)

A(ν) =
2ν

√
πΓ(32 + 1

ν )

Γ( 1ν )
, ν > 0. (A.49)

Plugging (A.48) into (A.50) one can show that the squares of S-wave radial wavefunctions at

the origin are given by

|Rn,0(0)|2 =
2

π
(2µλ)3/(2+ν) ν

2 + ν
[A(ν)]3ν/(2+ν)

(

n− 1

4

)2(ν−1)/(2+ν)

(A.50)

with A(ν) given by (A.49).
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