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ABSTRACT OF THE THESIS

Dynamics and Rheology of a Dilute Suspension

of Elastic Capsules

by

Ram Chandra Murthy Kalluri

Thesis Director: Prof. Prosenjit Bagchi

Three-dimensional numerical simulations using front-tracking method are con-

sidered to study the dynamics and rheology of a suspension of elastic capsules

in linear shear flow over a broad range of viscosity contrast (ratio of internal-

to-external fluid viscosity), shear rate (or, capillary number), and aspect ratio.

First, we focus on the coupling between the shape deformation and orientation

dynamics of capsules, and show how this coupling influences the transition from

the tank-treading to tumbling motion. At low capillary numbers, three distinct

modes of motion are identified: a swinging or oscillatory (OS) mode at a low vis-

cosity contrast in which the inclination angle θ(t) oscillates but always remains
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positive; a vacillating-breathing (VB) mode at a moderate viscosity contrast in

which θ(t) periodically becomes positive and negative, but a full tumbling does

not occur; and a pure tumbling mode (TU) at a higher viscosity contrast. At

higher capillary numbers, three types of transient motions occur, in addition to

the OS and TU modes, during which the capsule switches from one mode to the

other as (i) VB to OS, (ii) TU to VB to OS, and (iii) TU to VB. It is shown that

the coupling between the shape deformation and orientation is the strongest in

the VB mode. The numerical results are compared with the theories of Keller and

Skalak, and Skotheim and Secomb. Significant departures from the two theories

are discussed and related to the strong coupling between the shape deformation,

inclination, and transition dynamics.

We then address the rheology of a dilute suspension of liquid-filled elastic

capsules. We consider capsules of spherical resting shape for which only a steady

tank-treading motion is observed. It is shown that the suspension exhibits a shear

viscosity minimum at moderate values of the viscosity ratio, and high capillary

numbers. The normal stress differences are shown to decrease with increasing

capillary number at high viscosity ratios. Such non-trivial results can neither be

predicted by the small-deformation theory, nor can be explained by the capsule

geometry alone. Physical mechanisms underlying these novel results are studied

by decomposing the particle stress tensor into a contribution due to the elastic

stresses in the capsule membrane, and a contribution due to the viscosity differ-

ences between the internal and suspending fluids. It is shown that the elastic
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contribution is shear-thinning, but the viscous contribution is shear-thickening.

The coupling between the capsule geometry, and the elastic and viscous contri-

butions is analysed to explain the observed trends in the bulk rheology.
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Chapter 1

Introduction

1.1 Blood

Human blood is a multiphase fluid comprising of red blood cells, white blood

cells, and platelets suspended in a Newtonian liquid called plasma. Erythrocytes

or red blood cells (shown in Fig. 1.1a) constitute the major particulate component

of blood which is 40 − 45% by volume. Red blood cells are filled with a New-

tonian liquid called hemoglobin, an iron-containing protein, which facilitates the

transportation of oxygen to the tissues. The resting shape of an erythrocyte is a

biconcave disk of diameter 8 microns, flattened and depressed in the center, with

a dumbbell-shaped cross section as depicted in Fig. 1.1b. Their outer structure is

made of a lipid bilayer and a two-dimensional network of spectrin filaments [1,2].

It shows resistance to any change in surface area and has bending stiffness. This

structure gives the cell an extreme flexibility, a unique characteristic which, in a

major way, determines the dynamics and rheology of blood. Understanding the

dynamics of erythrocytes in flow is fundamental to understanding the complex

motion of blood in vivo and in vitro.

Modeling of the whole cell on the molecular level is however prohibitive if
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Figure 1.1: (a) Image showing red blood cells. (b) Schematic of the cross-section
of an RBC showing its dimensions and the typical values of hemoglobin and
plasma viscosities. The image to its right is the zoomed view of a slice of the
RBC membrane. Source: http://www.wellcome.ac.uk

interaction among multiple cells are considered, or the long-time dynamics of

individual cell is of interest. At typical length scales of the cells, the bilayer-

cytoskleton complex can be modeled as a zero-thickness elastic membrane. Con-

tinuum approaches then become useful by modeling the cells as either capsules or

vesicles. A capsule is a viscous drop enclosed by thin elastic membrane. A vesicle

is a liquid viscous droplet enclosed by a phospholipid bilayer membrane. Unlike

a capsule, a vesicle does not have the shear resistance; rather it has a bending re-

sistance, and its surface area and volume are conserved. Typically four quantities

determine the mechanical behavior of such deformable particles - the viscosity

contrast, the shear and extensional moduli of the membrane, and the bending
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Capsules Vesicles RBCs
Shear Resistance X X

Bending Resistance X X

Constant Surface Area X X

Constant Volume X X X

Viscosity Contrast X X X

Table 1.1: Summary of the membrane properties.

resistance. Accurate description of the dynamics of these capsules or vesicles

based on theoretical models might also provide a sensitive way of measuring their

mechanical properties.

1.2 Dynamics of Erythrocytes in Shear flow

Erythrocytes, or their simplified models, capsules and vesicles, exhibit complex

dynamics when subject to a shear flow. Early [3,4] and recent [5–10] experiments

show primarily two types of motion of the particle - tank-treading and tumbling.

Tank-treading is the motion of the particle in which it inclines at a steady

angle with the flow direction while the interior liquid and the membrane make a

continuous rotation. This is illustrated in Fig. 1.2a using a lagrangian point on

surface of an ellipsoidal particle. With the passage of time, this point moves on

the surface of the particle while the particle maintains its shape and orientation

with the horizontal. In tumbling motion, the cell flips like a rigid body and the

membrane tank-treading ceases. Therefore any point on the membrane stays at

the same location relative to the particle irrespective of the particle’s orientation.

Experimental observations of both these kinds of motion are shown in Fig. 1.3.
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Figure 1.2: Schematic showing the a) tank-treading motion and b) tumbling
motion of a capsule in shear flow.

1.3 Mathematical models for tank-treading and tumbling

1.3.1 Keller and Skalak model [11]

The tank-treading and tumbling motion of a particle in a shear flow u = {γ̇y, 0, 0}

can be predicted analytically by the Keller-Skalak (KS) theory [11]. In the KS

model, the particle is assumed to be a shape-preserving ellipsoid of semi-major

and minor axes lengths L and B enclosed by an inextensible membrane. The

viscosity of the internal fluid is λµo, and the particle is immersed in a fluid of

viscosity µo (Fig. 1.4). Both fluids are assumed to be incompressible Newtonian

liquids. The membrane is assumed to have zero shear viscosity. The motion of

the particle is determined by equilibrium and energy conditions.

From the equilibrium considerations KS model predicts that the only non-zero
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Figure 1.3: Experimental observations of tank-treading and tumbling motions in
red blood cells. Shear flow is in the x-direction in both cases. A) Observations
of tank-treading motion with a time interval of 40 ms by Fischer et al. [4] B)
Observations of tumbling motion with a time sequence of 1 s by Abkarian et al.

[5].

moment on the particle, M3 is given by,

M3 = MS
3 + MF

3 + MT
3 (1.1)

where, MS
3 is the moment due to shear flow acting on a stationary rigid

ellipsoid inclined at an angle θ, MF
3 is the moment acting on a rigid ellipsoid

flipping about the x3 axis with angular speed θ̇ in a fluid at rest at infinity and

MT
3 is the moment acting on a stationary ellipsoid undergoing the tank-treading

motion in an otherwise quiescent liquid.

Assuming that there are no external forces or moments, and that inertial

effects are negligible, equilibrium requires M3 = 0. This gives the following



6

Figure 1.4: Schematic showing a capsule in shear flow. Here θ is the inclination
angle of the major axis with the flow direction (x), and φ is the phase angle
of a surface Lagrangian point. 0 < θ < π/2 is the extensional quadrant, and
−π/2 < θ < 0 is the compressional quadrant of the shear flow u = {γ̇y, 0, 0}.

equations of motion.

θ̇ = Ã + B̃ cos 2θ , (1.2)

where,

Ã = −

(

1

2
γ̇ +

2LB

L2 + B2
φ̇

)

(1.3)

B̃ =
1

2
γ̇
L2 − B2

L2 + B2
. (1.4)

It is to be noted that these equations do not depend on a3 and the viscosity
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of the outer liquid µ. In addition to these equilibrium equations, energy consid-

erations impose further constraints on the motion of the particle. Conservation

of energy requires that the total work done by the external fluid on the particle

is equal to the energy dissipation in the membrane and the internal fluid com-

bined. However, KS model neglects the dissipation in the membrane for the sake

of simplicity.

Thus using the energy conditions, we arrive at the following final set of equa-

tions describing capsule dynamics.

θ̇ = −
γ̇

2
−

2LB

L2 + B2
φ̇ +

γ̇

2

L2 − B2

L2 + B2
cos 2θ , (1.5)

φ̇ = −
γ̇f3

f2 − λf1

cos 2θ (1.6)

where f1, f2 and f3 are dimensionless, and they depend on the axes ratios [11,12].

The steady state inclination angle θ∗ of the major axis of the capsule in tank-

treading mode can be found by equating the Eq. 1.2 to zero.

θ∗ =
1

2
arccos

(

−
A

B

)

(1.7)

Fig. 1.5 shows the steady state inclination angle of the major axis with respect

to viscosity contrast of the particle for four aspect ratios i.e. α = 0.6, 0.7, 0.8

and 0.9. The viscosity ratio where the inclination angle becomes zero is called
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Figure 1.5: Steady state inclination angle θ∗ w.r.t. the viscosity ratio λ as pre-
dicted by KS theory for four cases. The solid line, dashed line, dash dot line and
dotted lines represent α = 0.6, 0.7, 0.8 and 0.9 respectively.

critical viscosity ratio λc. It corresponds to the transition between tank-treading

and tumbling modes. For a given geometry, the tank-treading motion is predicted

when the viscosity contrast λ is less than a critical value λc, and the tumbling

motion is predicted when λ > λc. λc depends on the aspect ratio of the particle.

At λ = λc, θ∗ = 0. From this we get the following expression for λc.

λc =
1

f1



f2 −
2f3

1
2

(

r2 + 1
r2

)

− z1



 (1.8)

Fig. 1.6 shows the variation of critical viscosity ratio with aspect ratio.

1.3.2 Limitations of Keller and Skalak model

The major limitations of the KS theory, among others, are that it assumes a

shape-preserving particle, and that the results are independent of the shear rate.
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Figure 1.6: Critical viscosity ratio w.r.t. the aspect ratio α of the particle.

Erythrocytes, capsules and vesicles can undergo a large amplitude shape deforma-

tion in shear flow [3–10]. Analytical theories exist for capsules and vesicles in the

limit of small deformation [13–15]. Numerical simulations are required when large

deformation is considered which have successfully predicted the tank-treading and

tumbling motions of capsules [16–19] and vesicles [20–25].

Recent experiments have suggested the existence of a swinging or oscillatory

motion of red blood cells [5], nonspherical capsules [6], and vesicles [7, 8], in

addition to the tank-treading and tumbling modes. Numerical simulations have

also predicted swinging of capsules [18, 19] and vesicles [25]. Experiments by

Abkarian et al. carried out on a red blood cell illustrate the swinging behavior.

RBC’s were suspended in a liquid of viscosity η0 = 47 mPa.s and the shear rate

was varied. For high shear values, RBC’s exhibited a quasisteady tank-treading

motion (shown in Fig. 1.7A) as previously reported [4]. When the shear rate was

decreased, the RBC’s inclination oscillated about a mean angle as shown in Fig.
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1.7B. In addition, an intermediate regime was also observed where the particle

alternatively oscillates and tumbles. However, it was not established conclusively

due to experimental constraints.

Experiments [5] and simulations [18] have shown that the transition from

tank-treading to tumbling of erythrocytes and capsules as seen from Fig. 1.7C

can be triggered by decreasing the shear rate while the viscosity contrast remains

a constant, thus departing from the KS theory. The oscillatory dynamics and the

shear-dependent transition are recently addressed theoretically by Skotheim and

Secomb (SS) [12] within the framework of the KS theory.

Figure 1.7: Experimental observations by Abkarian et al. [5]. (A) RBC swinging
(γ̇ = 1.33 s−1 and time sequence of 2 s). (B) Rotation of a bead stuck on the
membrane of a RBC (γ̇ = 6 s−1 and time sequence of 1 s). (C) Transition
from swinging to tumbling induced by decreasing shear rate is associated with a
transient localized deformation (γ̇ = 2.66 s−1 and time sequence of 1 s).

1.3.3 Skotheim and Secomb’s model [12]

Skotheim and Secomb’s [12] model considers the same problem of capsule de-

formation as described in the section 1.3.1. Further, it takes into account the
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deformation of the capsules by introducing an additional elastic energy term of

the form E = Eo sin2 φ into the equations 1.5 and 1.6. From the conservation of

energy, work done by the external liquid on the capsule is equal to the dissipation

inside the capsule plus change in its membrane elastic energy. This gives the

following conservation equation -

V µ0

(

f2∂tφ
2 + f3γ̇∂tφcos2θ

)

= V µf1∂tφ
2 + E0sin(2φ)∂tφ (1.9)

Solving for φ̇ from this gives the following modified form of equation 1.6

φ̇ =
f3γ̇

(f2 − λf1)
(Ue sin 2φ − cos 2θ) (1.10)

where, Ue = Eo/V µoγ̇f3, and V is the volume of the particle. Ue is the ratio

of the change in the elastic energy to the work done by the external fluid during

the rotation. It signifies the stiffness of the capsule relative to the external shear

flow. By incorporating the elastic energy term into the KS model, SS model can

successfully predict the shear-dependent dynamics and the intermittent behavior

of the particle between tank-treading and tumbling modes observed by Abkarian

et al. [5].

1.3.4 Limitations of Skotheim and Secomb model

Though the SS model can predict the shear-rate dependent transition from tank-

treading to tumbling, it neglects large deformation in shape. Experiments on
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Figure 1.8: Snapshots of a vacillating vesicle by Deschamps et al. [10].

viscous vesicles have shown that the shape deformation plays a very significant role

in the inclination and transition dynamics [9, 10]. A vacillating-breathing mode

of vesicles has been observed experimentally [8–10], and predicted analytically

[14, 15, 26, 27] and numerically [24, 25].

Vacillating-breathing mode appears in the vicinity of λ = λc, and is character-

ized by the vesicle swinging about its mean inclination angle θ0 ≈ 0 accompanied

by a large amplitude shape deformation. Fig. 1.8 shows snapshots of a vacillating

vesicle by Deschamps et al. [10]. Initially it is in the elongated ellipsoidal shape.

Slowly it undergoes strong shape deformation to almost a sphere and then regains

back its original shape.

It appears, therefore, that the shape deformation plays a major role in in-

clination and transition dynamics of vesicles and capsules, and most likely for

erythrocytes, despite the differences in their mechanical characteristics [28]. Both

the KS and SS theories neglect the influence of deformability. Experiments have

shown that even in the pure tumbling mode, the shape deformation makes θ(t)

deviate from that predicted by the KS theory [9]. Understanding the influ-

ence of shape deformation on the transition dynamics of capsules and vesicles
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is receiving a growing interest in recent years using state-of-the-art experimen-

tal [7–10] and computational [18–25,29], approaches, and higher-order analytical

theories [14, 15, 26, 27, 30].

1.4 Scope of the thesis

The thesis is divided into two parts as follows:

Role of deformation on the capsule dynamics

In the first part (chapter 3), we focus on the dynamics of capsules with initially

oblate shapes. Using three-dimensional numerical simulations of capsules in large

deformation, we present results over a broad range of the parameters, namely,

viscosity contrast, shear rate, and aspect ratio. Our main objective is

(i) to further improve our understanding of the coupling between the shape

deformation and orientation dynamics, and,

(ii) to show how this coupling influences the transition from tank-treading to

tumbling motion, and leads to significant departures from the KS and SS theories.

The emphasis is on how the dynamics changes, with increasing viscosity contrast,

from the oscillating to vacillating-breathing to tumbling motions when large shape

deformation is considered.

Rheology of dilute suspensions of capsules

In the second part (chapter 4), we extend our understanding of capsule dy-

namics to the study of rheology of suspension of spherical capsules. We consider

capsules of spherical resting shape for which only a steady tank-treading motion
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is observed. A comprehensive analysis of the suspension rheology is presented

over a broad range of viscosity ratio (ratio of internal-to-external fluid viscosity),

shear rate (or, capillary number), and capsule surface area dilatation. It is shown

that the suspension exhibits a shear viscosity minimum at moderate values of

the viscosity ratio, and high capillary numbers. The normal stress differences are

shown to decrease with increasing capillary number at high viscosity ratios. Such

non-trivial results neither can be predicted by the small-deformation theory, nor

can be explained by the capsule geometry alone. Physical mechanisms underlying

these novel results are studied by decomposing the particle stress tensor into a

contribution due to the elastic stresses in the capsule membrane, and a contribu-

tion due to the viscosity differences between the internal and suspending fluids.

It is shown that the elastic contribution is shear-thinning, but the viscous contri-

bution is shear-thickening. The coupling between the capsule geometry, and the

elastic and viscous contributions is analysed to explain the observed trends in the

bulk rheology.
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Chapter 2

Numerical Methodology

2.1 Flow Configuration and Simulation Technique

2.1.1 Problem setup

We consider a three-dimensional computational domain shown in Fig. 2.1 for

studying the dynamics of single capsule deformation. The domain is bounded

by two infinite flat plates placed parallel to the X-axis in the XY Z coordinate

system as shown. The height of the channel is H . In absence of a capsule, we

have linear shear flow at zero pressure-gradient driven by the two walls of the

channel as

u0 = [γ̇Y, 0, 0] , (2.1)

where γ̇ is the shear rate. Here Z is the direction of vorticity of the undisturbed

flow. The channel is assumed to be infinitely long in the X and Z directions.

We use periodic boundary conditions in these directions to reduce the size of

the computational domain. This also allows us to use Fourier transforms for

accelerating the computation.
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Figure 2.1: Three-dimensional flow domain for simulating capsule deformation.

The initial undeformed shape of the capsule can be spherical, ellipsoidal or

biconcave. However, in the present work, we consider only spherical or ellipsoidal

shapes. The particle is placed at the center of the cubical domain. The resting

shape of the capsule can be specified using a dimensionless parameter called aspect

ratio, α which is defined as the ratio of the minor axis to the major axis. Aspect

ratio can theoretically vary from 0 to 1 depending on whether the particle is a

thin rod or a sphere.

2.1.2 Fluid-structure interaction

We model capsules as liquid drops surrounded by infinitesimally thin elastic mem-

branes. The simulation technique considered here is the front-tracking/immersed

boundary method (Peskin et al. [31]; Unverdi & Tryggvason [32]; Tryggvason et

al. [33]) for multiple fluids with different properties. The main idea of the front-

tracking method is to use a single set of equations for both the fluids, inside and
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Figure 2.2: The Eulerian and Lagrangian grids and region of the distribution of
nodal forces.

outside of the capsule. The fluid equations are solved on a fixed Eulerian grid,

and the interface is tracked in a Lagrangian manner by a set of marker points as

seen from Fig. 2.2. All the fluids inside and outside the capsule are considered to

be incompressible. Therefore, the fluid motion is governed by the continuity and

Navier-Stokes equations as:

∇ · u = 0 , (2.2)

ρ

[

∂u

∂t
+ u · ∇u

]

= −∇p + ∇ · µ(∇u + (∇u)T ) (2.3)

where u (x, t) is the fluid velocity, ρ is density, p is pressure, and µ is the viscosity.

Here µ (x, t) is a single variable used to denote the viscosity of the entire fluid.

Therefore, µ = µc inside the capsule and µ = µ0 outside. It is mathematically

defined using an indicator function I(x) which is unity inside the capsule and zero
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outside. Thus, µ is given by a single expression for every point in the fluid as

µ(x) = µ0 + (µc − µ0)I(x). (2.4)

The capsule surface is then recognized by adding a source-like term F to the

right hand side of the equation 2.3. The force on the capsule surface is f the

elastic force which arises due to its deformation. The source term F is related to

f as

F(x, t) =

∫

∂S

f(x′, t)δ(x − x′)dx′ . (2.5)

Here x is a point in the flow domain, x′ is a point on the capsule-fluid interface ∂S,

and δ is the Delta function which vanishes everywhere except on the membrane.

The δ function used in equation 2.5 is constructed by multiplying three 1D δ

functions as

δ(x − x′) = δ(x − x′)δ(y − y′)δ(z − z′) . (2.6)

For numerical implementation, a smooth representation of the δ-function is used

as

D(x − x′) =
1

64 ∆3

3
∏

i=1

(

1 + cos
π

2∆
(xi − x′

i)
)

for |xi − x′

i| ≤ 2∆, i = 1, 2, 3,

D(x − x′) = 0 otherwise, (2.7)

where ∆ is the Eulerian grid size (Unverdi & Tryggvason [32]). As a result, the

membrane force varies smoothly over four Eulerian grid points surrounding the
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interface. In discrete form, the integral in equation 2.5 can be written as

F(xj) = ΣiD(xj − x′

i)f(x
′

i) (2.8)

where i and j represent Lagrangian and Eulerian points, respectively.

2.1.3 Numerical treatment of membrane deformation

The constitutive law governing the capsule membrane is described by a strain

energy function W due to Skalak et al. [34] as

W =
Es

12

[

I2
1 + 2 (I1 − I2)

]

+
Ea

12
I2
2 (2.9)

where I1 = ǫ2
1 + ǫ2

2 − 2 and I2 = ǫ2
1ǫ

2
2 − 1 are the surface strain invariants. ǫ1 and

ǫ2 are the principal stretch ratios and Es and Ea are the shear elasticity and area

dilatation moduli, respectively. The first term in the right hand side of Eq. 2.9

represents the shear resistance of the membrane, while the second term represents

the resistance against area dilatation. The membrane is nearly incompressible

when Ea ≫ Es. In our simulations, the ratio C = Ea/Es is fixed at unity. Thus

the area incompressibility condition of the membrane is not satisfied. We assume

that the bending resistance of the membrane is negligible. The elastic forces

acting on the three vertices of a triangular element are obtained from the strain

energy function W using the principal of virtual work as f(x′, t) = −∂W/∂x′.

The deformation of the membrane is treated using a finite element model
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developed by Charrier et al. [35]; Shrivastava & Tang [36]), and later implemented

by Eggleton & Popel [37] within the framework of immersed boundary method to

consider large deformation of capsules. First, the membrane is discretized using

flat triangular elements. The triangulated surface mesh needed for the simulations

is obtained from the GNU Triangulated Surface (GTS) Library. GTS is an Open

Source Free Software Library intended to provide a set of useful functions for

scientists dealing with 3D computational surface meshes. The main idea is that

a general 3D deformation of the membrane can be reduced to a 2D problem by

assuming that individual triangular element on the membrane remains flat even

after deformation. The forces acting on the three vertices of a triangular element

are obtained by computing the displacements of the vertices of the deformed

element with respect to the undeformed element. The details of the method can

be found in Doddi [38], Doddi & Bagchi [39] and Doddi & Bagchi [40].

2.1.4 Flow solver

The Navier-Stokes equations are discretized spatially using a second-order finite

difference scheme, and temporally using a two-step time-split scheme. In this

method the momentum equation is split into an advection–diffusion equation

and a Poisson equation for the pressure. The body-force term is retained in the

advection–diffusion equation. The nonlinear terms are treated explicitly using a

second–order Adams–Bashforth scheme, and the viscous terms are treated semi-

implicitly using the second-order Crank-Nicholson scheme. The resulting linear
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equations are inverted using an ADI (alternating direction implicit) scheme to

yield a predicted velocity field. The Poisson equation is then solved to obtain

pressure at the next time level. Using the new pressure, the velocity field is

corrected so that it satisfies the divergence-free condition. Details of the time-

step scheme can be found in Doddi [38], Doddi & Bagchi [39] and Doddi &

Bagchi [40].

2.1.5 Interface tracking

The capsule membrane is tracked in a Lagrangian manner. After solving the

Navier-Stokes equations for pressure and velocity fields, no-slip condition on the

capsule surface is imposed by extracting the surface velocity from the surrounding

fluid at each time step as

uS(x′, t) =

∫

S

u(x, t)δ(x − x′)dx, (2.10)

where S indicates the entire flow domain. Though the summation is over all

Eulerian nodes, only the ‘local’ nodes contribute to the membrane velocity. The

discrete form of the delta function used here is the same given by equation 2.6.

In this way, a weighted interpolation of the Eulerian fluid velocity is performed

which ensures that the continuity of velocity across the membrane is satisfied.

The Lagrangian points on the membrane are then advected as

dx′

dt
= uS(x′, t). (2.11)
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Numerically, the above equation is treated explicitly using the second-order Adams-

Bashforth scheme as

x′

n+1 = x′

n + ∆t

[

3

2
uS(x′

n) −
1

2
uS(x′

n−1)

]

, (2.12)

where n, n + 1, etc. are the time instances.

As the capsule moves and deforms, µ needs to be updated. This is done by

solving a Poisson equation for the indicator function I(x, t) as

∇2I = ∇ · G, (2.13)

where, G =
∫

S
δ(x − x′)ndx, and n is the unit vector normal to the capsule

surface.

The inertia effect is considered small as the Reynolds number defined as Re =

ργ̇a2/µ ≈ O(10−2). Typical Eulerian resolution used in this study is 80 × 80 ×

80, and Lagrangian resolution used is 5120 triangular elements. Dimensionless

timestep used in the simulation is O(10−4).

A detailed validation of the immersed boundary method, in the context of

capsule deformation, is provided in Doddi [38], Doddi & Bagchi [39] and Doddi

& Bagchi [40].

The results presented in the following chapters are from the publications [41]

and [42].
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Chapter 3

Effect of Deformation on Capsule Dynamics

3.1 Introduction

In this Chapter, three-dimensional numerical simulations using front-tracking

method are presented on the dynamics of oblate shape capsules in linear shear flow

by considering a broad range of viscosity contrast (ratio of internal-to-external

fluid viscosity), shear rate (or, capillary number), and aspect ratio. We focus

specifically on the coupling between the shape deformation and orientation dy-

namics of capsules, and show how this coupling influences the transition from

the tank-treading to tumbling motion. At low capillary numbers, three distinct

modes of motion are identified: a swinging or oscillatory (OS) mode at a low vis-

cosity contrast in which the inclination angle θ(t) oscillates but always remains

positive; a vacillating-breathing (VB) mode at a moderate viscosity contrast in

which θ(t) periodically becomes positive and negative, but a full tumbling does

not occur; and a pure tumbling mode (TU) at a higher viscosity contrast. At

higher capillary numbers, three types of transient motions occur, in addition to

the OS and TU modes, during which the capsule switches from one mode to the

other as (i) VB to OS, (ii) TU to VB to OS, and (iii) TU to VB. Phase diagrams
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showing various regimes of capsule dynamics are presented. For all modes of mo-

tion (OS, VB, TU), a large amplitude oscillation in capsule shape, and a strong

coupling between the shape deformation and orientation dynamics are observed.

It is shown that the coupling between the shape deformation and orientation is

the strongest in the VB mode, and hence at a moderate viscosity contrast, for

which the amplitude of shape deformation reaches its maximum. The numerical

results are compared with the theories of Keller and Skalak, and Skotheim and

Secomb. Significant departures from the two theories are discussed and related

to the strong coupling between the shape deformation, inclination, and transition

dynamics.

3.1.1 Dimensionless parameters

The shear rate of the undisturbed flow is given by γ̇. The length scale is chosen

to be the radius a of a sphere of equal volume as that of the oblate capsule. The

governing equations are made dimensionless using a as the characteristic length

scale, 1/γ̇ as the time scale, and γ̇a as the velocity scale. The dimensionless time

is denoted by t∗ = γ̇t. Since deformation of the capsule occurs, the semi-major

and minor axes lengths vary with time, and are denoted by L(t) and B(t). The

half axis length in the vorticity direction is Z(t). The Taylor deformation param-

eter D, is a dimensionless measure of capsule deformation. Major dimensionless

parameters defined are:

α = B0/L0, (3.1)
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λ = µ/µ0, (3.2)

Ca = µ0γ̇a/Es, (3.3)

D = (L − B)/(L + B). (3.4)

where, α is the aspect ratio of the particle, λ is the viscosity ratio and Ca is capil-

lary number. Here L0, B0 are semi-major and semi-minor axes of the undeformed

capsule and µ, µ0 are the inner and outer viscosities of the capsule. We vary Ca

from 0.02 to 0.4, λ from unity to 25, and α between 0.6 and 0.9.

3.2 Capsule Dynamics at Low Shear

We begin with a detailed description of the capsule dynamics at ‘low shear’ at

Ca = 0.05. Fig. 3.1 shows the time-dependent inclination angle θ(t), deformation

parameter D, and semi-major (L) and semi-minor (B) axes. Here we describe

the transition in the capsule dynamics that is observed in the simulations as the

viscosity contrast λ is increased. We show the results for three viscosity contrasts,

λ = 3, 7 and 10, all for aspect ratio α = 0.7.

For λ = 3 case in Fig. 3.1(a), the numerical results show that the inclination

angle θ(t) does not remain a constant, rather it oscillates with time. Here θ(t)

is always positive (0 < θ(t) < π/2) and it varies periodically between θmax and

θmin. The capsule shape is also not stationary, and the angular oscillation is

accompanied by a periodic shape deformation as evident from D, L, and B plots

in Fig. 3.1(a). The lengths of the major and minor axes oscillate with a large
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Figure 3.1: (Color online). Capsule dynamics at ‘low shear’ (Ca = 0.05) showing
oscillatory (OS), vacillating-breathing (VB) and tumbling (TU) motions. Left
panel shows the inclination angle θ(t) (solid black line) and the deformation pa-
rameter D (dash red line). The black dotted line is Do = D(t = 0). Right panel
shows the semi-major (L, red solid line) and minor (B, green solid line) axes, and
the half axis length in the vorticity direction (Z, dash blue line). All lengths are
scaled by a, and time by 1/γ̇. Note that (L−B)min and Dmin are nearly zero for
the VB case shown in (b).
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Figure 3.2: (Color online). Phase angle φ(t) for the three cases shown in Fig. 3.2.
λ = 3, solid line; λ = 7, dash line; λ = 10, dotted line.

amplitude. The oscillatory (or, swinging) motion of the capsule is superimposed

with a tank-treading motion of the membrane. The tank-treading motion is

described in Fig. 3.2 where the of the undeformed capsule phase angle φ(t) of a

surface Lagrangian point is shown. For λ = 3 case, φ(t) decreases smoothly from

π/2 to −π/2 (and, φ̇ < 0 in accordance with the direction of vorticity of the flow)

implying the tank-treading motion of the capsule membrane.

Consider now λ = 10 case as shown in Fig. 3.1(c). A tumbling motion is

observed here which is indicated by the inclination angle θ(t) going from +π/2

to −π/2. Even for this tumbling case, a significant shape deformation is evident

as D, L and B oscillate with a large amplitude. The phase angle φ(t) oscillates

between its maximum and minimum (Fig. 3.2) whose magnitude remains less
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than π/2, and φ̇ is both positive and negative, implying that a Lagrangian point

oscillates back and forth along the capsule surface, and that the tank-treading

motion is inhibited.

Consider now an intermediate viscosity contrast at λ = 7 in Fig. 3.1(b). Here

θ(t) periodically becomes positive and negative, but does not reach ±π/2. Hence

the capsule does not make a full tumbling. Instead, it makes large amplitude

swinging motion about a mean inclination which is close to zero. A sharp increase

in θ(t) occurs while going from θmin to θmax which is associated with a large

amplitude shape oscillation as evident from D, L, and B plots in Fig. 3.1(b).

From Fig. 3.2 we see that for this case the phase angle φ ranges in ±π/2, and φ̇

is always negative, implying that the tank-treading motion still exists.

The numerical results presented above suggest that the capsule dynamics at

the intermediate viscosity contrast (λ = 7 here) is distinct from the oscillatory

motion at a lower λ and the tumbling motion at a higher λ. This can be further

understood by comparing the amplitude of shape deformation for the three cases.

The amplitudes of D(t), L(t), and B(t) are higher at λ = 7 than those at λ = 3

and 10. Most interestingly, the minimums of L − B and D, that is, (L − B)min

and Dmin, first decrease as λ is increased from 3 to 7, but then increase as λ is

increased further to 10. At λ = 7, both (L − B)min and Dmin are nearly zero

meaning that the capsule momentarily attains a near-circular shape in the plane

of shear. This happens when θ(t) becomes negative.

It is interesting to note that for λ = 7 the inclination angle θ(t) and the major
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to bottom, λ varies as 3, 7, and 10 (compare with Fig. 3.1).
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and minor axes presented here look qualitatively similar to those of a vacillating-

breathing vesicle as predicted theoretically in [26] (see Figs. 3.2 and 3.3 therein)

and observed experimentally in [10].

Fig. 3.3 shows the capsule shapes at different times for the three viscosity

contrasts (λ = 3, 7, 10). Swinging or oscillatory motion for λ = 3, and tumbling

motion for λ = 10 are evident here. For λ = 7 case, the shape becomes nearly

circular in the shear plane during θ(t) < 0, while it is elongated during θ(t) >

0. This clearly shows that for the intermediate viscosity contrast, the capsule

undergoes a significant elongation and compression. The shape at θ(t) < 0 is not

a mirror image of the shape at θ(t) > 0. Further, a full tumbling motion does not

occur though θ(t) becomes negative. A qualitative explanation of this dynamics

was given in [14], and is applicable here as well. When θ(t) > 0, the capsule is in its

elongational state for which the hydrodynamic torque is maximum, and it tends

to tumble. As θ(t) becomes negative, compression starts, and the hydrodynamic

torque is reduced preventing the capsule from making a full tumbling motion.

At even higher viscosity contrast (e.g., λ = 10 here), the compression is not

significant, and a full tumbling is possible.

The numerical results presented in Figs. 3.1–3.3 describe the transition in

the capsule dynamics at a low Ca as λ is increased. Three types of motion are

evident here that can be characterized using θ(t) and (L − B)min. (i) At a low

λ, a swinging or oscillatory (OS) motion occurs in which the major axis always

lies in the extensional quadrant of the shear flow, with 0 < θ(t) ≤ π/4, and
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(L − B)min > 0. (ii) At higher λ, a pure tumbling motion (TU) occurs that is

characterized by θ(t) varying between ±π/2, and (L − B)min > 0. (iii) At the

intermediate viscosity contrast, a vacillating-breathing (VB) type motion occurs

which is characterized by an increased shape deformation, (L − B)min ≈ 0, and

θ(t) being periodically positive and negative without a full tumbling motion.

The above results on the capsule dynamics show two significant departures

from the KS theory. First, the KS theory predicts either a steady inclination angle

(at a low viscosity contrast), or a tumbling motion (at a higher viscosity contrast),

unlike the OS and VB modes seen here. Second, and more interestingly, at the

intermediate viscosity contrast, the inclination angle θ(t) periodically becomes

positive and negative without a full tumbling, while in the KS theory the tumbling

motion starts as soon as θ(t) < 0.

The half axis length Z(t) along the vorticity direction is also shown in Fig.

3.1. For all modes (OS, VB, TU), Z(t) shows a small amplitude oscillation. For

the OS case Z is mostly less than L. For the VB and TU modes, Z(t) can be

greater than L(t), and the capsule momentarily attains a prolate shape whose

major axis lies along the vorticity direction.

The deformation parameter D at t = 0, Do is marked in Fig. 3.1. By compar-

ing Do with D(t), we can infer if the capsule is in an elongational or compressional

state. For the OS case at λ = 3 (Fig. 3.1(a)), D(t) is mostly greater than Do,

implying that the capsule spends more time in an extensional state. For the VB
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oscillatory (OS), (b) vacillating-breathing (VB), and (c) tumbling (TU) motion
at Ca = 0.05. For all cases, α = 0.7. From top to bottom, λ varies as 3, 7, and
10 (compare with Fig. 3.1).
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(λ = 7) and TU (λ = 10) modes, D(t) is mostly less than Do, and hence the cap-

sule spends a significant time in the compressional state. To elucidate this point

further, we plot in Fig. 3.4 the contours of a principal tension on the capsule

membrane defined as T P
2 = (∂W/∂ǫ2)/ǫ1.

Since the area is not conserved, the membrane can be locally under elongation

or compression, and accordingly, T P
2 is either positive or negative. Fig. 3.4 shows

that T P
2 varies over the capsule surface and becomes periodically positive/negative

as the capsule oscillates. When D(t) is maximum, T P
2 > 0 over the most of

the surface. When D(t) < Do, a compressional stress develops over a large

area around the equatorial region of the capsule. Surprisingly, the compressional

stress exists even when the inclination angle θ(t) is positive. Thus the part of

the capsule may be under compression even when its major axis is oriented along

the extensional direction of the flow. For all modes (OS, VB, TU) the maximum

magnitude of the compressive stress exceeds that of the extensional stress. We

also see (not shown in the figure) that stress magnitude decreases with increasing

λ. Further, for low Ca, the compressive stress leads to onset of buckling in which

the capsule membrane folds. Since T P
2 goes periodically positive and negative, we

observe that the capsule goes through repeated membrane folding and recovery

stages when D(t) < Do and D(t) > Do, respectively.

The angular orientation and shape deformation are strongly coupled to each

other. This coupling has a major influence on the capsule dynamics during the

transition from swinging to tumbling mode. We now explore the coupling between
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the orientation dynamics and the shape deformation in more detail. Fig. 3.5(a)

shows the inclination angle at which the maximum elongation occurs. We see that

the angle at which the capsule elongation reaches its maximum is less than the

extensional direction of the flow (π/4). This angle decreases with increasing Ca

(and hence increasing shear). With respect to λ, the angle first decreases rapidly

during the OS and VB modes, but becomes nearly independent of λ in the TU

mode. Further, this angle is independent of α. At low Ca and low λ, the shape

relaxation is fast compared to the flow time, and the elongation is in phase with

the shear flow. At high Ca and high λ, the relaxation is slow, and the elongation

continues for θ(t) < π/4. Fig. 3.5(b) shows the inclination angle at which D(t)

reaches its minimum. In the OS mode, this angle is positive. With increasing

λ the angle decreases rapidly as the transition to VB and TU modes occur. In

the VB mode, minimum D occurs for −π/4 < θ < 0. In the TU mode, the

compression continues beyond −π/4 due to slower relaxation, and the minimum

D occurs near θ = −π/2.

We now show that the shape deformation is maximum for the intermediate λ

values when the VB modes occur. For this, we consider the amplitude ∆D of the

deformation parameter in Fig. 3.6(a). We also show the value of (L−B)min in Fig.

3.6(b). Several interesting results are noted here which further elucidate the role

of shape deformation on the emergence of the VB modes: (i) For a given Ca and α,

the amplitude ∆D first increases but then decreases, and (L−B)min first decreases

to nearly zero but then slightly increases, with increasing λ. The maximum of
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∆D occurs at an intermediate λ for which the VB-type motion occurs so that

the capsule momentarily attains a circular shape in the shear plane leading to

(L − B)min ≈ 0. (ii) ∆D and hence, shape oscillation, increases with decreasing

Ca and α. (iii) The viscosity ratio at which ∆D reaches its maximum increases

with increasing Ca and α, implying that the VB-type mode onsets at a lower λ

for lower shear rates and α.

Now we present results showing the role of shape deformation in causing de-

partures from the KS and SS models. The time average inclination angle θo is

shown in Fig. 3.7(a)–(b), and compared with the KS theory. Both the numerical

results and the KS theory show a decrease in θo with increasing λ. The agreement

between the theory and the numerical results is better for weakly deformable cap-

sules (low Ca), but poor for more deformable capsules (higher Ca). A significant

difference between the theoretical and the numerical results occurs in the VB and

TU modes, and hence, at higher λ. In the KS theory, the transition from the

tank-treading to tumbling occurs when θo = 0 via a saddle-node bifurcation; θo

decreases faster as λ approaches λc. In contrast, the numerical results show a

very slow decrease of θo near the transition. In the simulations, tumbling occurs

even for θo > 0. Such a slow decrease in θo has been reported earlier for vesicles

with viscous membranes in [24] using stochastic simulations. Our results show

that a qualitatively similar trend occurs for capsules as well, and can be predicted

by deterministic simulations. This slow decrease in θo is due to a nonharmonic

variation of θ w.r.t time arising from the large amplitude shape deformation, and
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is discussed later.

Figure 3.8 shows the variation of θo with Ca, and compares the results with

the SS theory in the OS regime. Note that in the SS theory, the effect of shear

rate is considered via 1/Ue which is proportional to but not equal to Ca. Thus

a qualitative comparison can be obtained between the theory and the numerical

results by choosing a range of values of 1/Ue. The numerical results show that

in the OS regime, θo decreases with increasing Ca (or, γ̇). In contrast, the SS

theory predicts that θo is nearly insensitive to γ̇ in the OS regime. This discrep-

ancy is because the SS theory neglects the large deformation of capsules which is

important at high γ̇. More elongated shapes that occur at an increasing γ̇ lead

to a reduced θo. The decrease in θo with increasing Ca has been observed earlier

in experiments [6] and numerical simulations [16,17] for spherical capsules, and is
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in qualitative agreement with the present results for non-spherical capsules.

One important effect of the shape deformation on the orientation dynamics

is a nonharmonic variation of the inclination angle θ(t) with time which results

in an ‘asymmetry’ about its time-average value θo. The ‘asymmetry’ in θ(t), in

turn, leads to non-zero values of θo, even in the TU regime (Figs. 3.7(a)–(b)),

thus departing from the KS theory. We now quantify the ‘asymmetry’ in θ(t) as
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follows. For an OS mode, θ(t) is always positive, and the ‘asymmetry’ in θ(t)

can be defined by the ratio τ2/τ1 where τ1 is the time taken by the capsule to

go from θmin to θmax, and τ2 is the time to go from θmax to θmin. In absence of

an asymmetry, the ratio τ2/τ1 would be unity. The numerical results for τ2/τ1

is shown in Fig. 3.9 as a function of the viscosity contrast λ. In the OS regime,

the numerical results show that τ2/τ1 > 1. This apparently implies that the

capsule swings faster in direction opposite to the rotational motion of the flow.

This is because the compression occurs over a longer time, while the elongation

occurs much rapidly (Fig. 3.1). As λ increases, the ratio τ2/τ1 increases. It then

approaches to ∞ as the VB-mode onsets at higher λ. In the VB and TU regimes,

θ(t) becomes negative. Then τ1 and τ2 are computed as the times for which θ(t)

is negative and positive, respectively (see inset of Fig. 3.9). The numerical results

show that as the capsule transits from VB to TU-type motion with increasing λ,

the ratio τ2/τ1 decreases from large values and approaches unity at higher λ. The

KS theory predicts τ2/τ1 is always unity for a tumbling capsule. The numerical

results show that τ2/τ1 can be greater than unity in the TU regime. This implies

that the capsule spends more time in the extensional quadrant of the shear flow

(though the capsule actually may be under compression even in this orientation,

Fig. 3.4).

Another example of the coupling between the shape deformation and orien-

tation dynamics is shown by the amplitude ∆θ of the inclination angle as in Fig.

3.10. The numerical results are compared with the SS theory. Fig. 3.10(a) shows
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the variation of ∆θ with respect to the viscosity contrast λ for a given Ca. As

λ increases, ∆θ/π increases from small values in the OS regime and approaches

unity in the TU regime. In this respect, a qualitative agreement between the

numerical results and the SS theory is observed. However, the SS theory predicts

a sharp jump in ∆θ near λ = λc, while the numerical results show a much slower

increase. The slower increase of ∆θ is due to the emergence the VB modes for

which large-amplitude shape deformation occurs which is not considered in the

SS model.

Figure 3.10(b) shows the variation of ∆θ with respect to Ca for a given λ. Here

we have chosen the data in the OS regime for clarity. The prediction based on the

SS theory is also shown by choosing a range of 1/Ue for which the numerical data

closely follows the theoretical prediction. Similar to the SS theory, the numerical

∆θ decreases with increasing Ca (and so γ̇). So the SS theory can capture the

qualitative trend of ∆θ with respect to γ̇, but not with λ.

Figure 3.11(a) shows the variation of the lengths of the semi-major and minor

axes w.r.t the inclination angle θ for OS, VB and TU cases. A large variation

in the axis lengths is evident here. For all cases, the major axis shows a greater

change in its length than the minor axis, that is, |Lmax −Lmin| > |Bmax −Bmin|.

For the OS case, we see that there is a small asymmetry in L and B about

the mean inclination angle θo. Elongation of the major axis (i.e. when L is

increasing) occurs over a smaller variation of θ than its contraction. Similarly,

the contraction of the minor axis occurs over a smaller variation of θ than its
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elongation. This asymmetry implies that the capsule shape at θ(t) > θo is not

a mirror image of that at θ(t) < θo. The asymmetry increases further in the

VB mode. When the TU mode is considered for which θo ≈ 0, we see that L

and B are still asymmetric about θo = 0. The major axis starts to grow, and

the minor axis starts to contract, when θ = θmax (OS and VB modes), or π/2

(TU modes). Elongation of the capsule continues for θ < π/4. Contraction of

the major axis, and elongation of the minor axis, start even for θ > 0, when the

capsule is oriented in the extensional quadrant of the flow.

Figure 3.11(b) shows the rates of elongation and contraction, dL/dt and

dB/dt, over θ. For all modes (OS, VB, TU), the elongation and contraction

rates show asymmetry, that is, they are higher when θ is positive than that when

it is negative. Note that the overall deformation is described by the Taylor pa-

rameter D. The results imply that dD/dt is higher when the capsule is aligned

with the compressional direction of the shear flow. Thus the elongation of the

capsule from a compressional state occurs faster than the other way.

Figure 3.12 shows the variation of the angular velocity θ̇ with respect to θ.

Results for the OS and TU regimes are shown in Fig. 3.12 and Fig. 3.13, respec-

tively. In Fig. 3.12 we compare the numerical results (θ̇num) with the SS theory

(θ̇SS) by choosing a value of 1/Ue (but for same λ and α) for which the best

agreement is found.

The horizontal axis in the plot is (θ(t) − θmin)/(θmax − θmin). In this regime,

θ̇ becomes positive and negative due to capsule oscillation. However, |θ̇num| is
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47

-0.4-0.200.20.4

-0.4

-0.3

-0.2

-0.1

0(b)
θ̇/

(γ̇
π
)

θ/π

Figure 3.13: (Color online). Angular velocity θ̇. Results for TU cases: Symbols
are numerical results for α = 0.7 for Ca = 0.05, λ = 10 (green squares), and
Ca = 0.02, λ = 5 (blue squares). Solid black line is the KS theory for α = 0.7,
λ = 10. Dash and dash-dot black lines are the SS theory for α = 0.7 for 1/Ue = 1,
λ = 10, and 1/Ue = 1.43, λ = 5, respectively.

lower when the capsule swings clockwise in the direction of rotation of the flow

(i.e, when θ goes from θmax to θmin) than that when it goes the other way. This

asymmetry is the result of the shape deformation in which elongation occurs faster

and over a smaller extent of θ(t) as discussed before. The magnitude of θ̇num in

the counter-clockwise swing increases rapidly with increasing λ, while that in the

clockwise swing increases at a slower rate. The asymmetry also increases with

decreasing Ca.

The numerical results can be matched with the SS theory by choosing an

appropriate value of 1/Ue. We also noted that the effect of changing Ca can also

be matched when we proportionately change Ue, as shown in the figure. However,
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the effect of changing λ is not predicted correctly by the SS theory which shows

that θ̇SS is nearly insensitive to changing λ.

Figure 3.13 shows θ̇ for the TU cases, and compares the numerical results with

the KS and SS theory. Unlike the KS theory for which θ̇KS is symmetric about

θ = 0, the numerical results show a significant asymmetry. Further, |θ̇num| > |θ̇KS|

for θ < 0, but |θ̇num| < |θ̇KS| for θ > 0. Hence the numerical tumbling velocity is

lower than that predicted by the KS theory when the capsule is in the extensional

quadrant of the shear flow. This is because the capsule spends more time in

the extensional quadrant as shown earlier (τ2/τ1 > 1). When the capsule is in

the compressional quadrant, the numerical tumbling velocity is higher than that

predicted by the KS theory because the capsule spends less time here. When we

compare the numerical results with the SS theory, we see that the SS theory can

capture the asymmetrical nature of θ̇num to some extent, but it still differs from

the numerical results.

3.3 Capsule Dynamics at High Shear

We now consider the capsule dynamics at ‘high shear’ (Ca ≥ 0.2, typically) as

shown in Fig. 3.14. Here we show time dependent inclination angle θ(t), defor-

mation parameter D(t), and the length of the semi-major and minor axes, L(t)

and B(t). These simulations are performed for longer times (t∗ > 50). Very

interestingly, we see that the same capsule transits from one mode to other over

time. For example, in Fig. 3.14(a) which is for Ca = 0.2 and λ = 13, we see
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that the capsule switches from TU to VB mode at around t∗ ≈ 25, after making

one full tumbling motion. In Fig. 3.14(b) which is for Ca = 0.4 and λ = 9, the

capsule switches from VB to OS mode at around t∗ ≈ 15. In Fig. 3.14(c) which

is for Ca = 0.4 and λ = 13, we see that two transitions occur: from TU to VB at

t∗ ≈ 20, and VB to OS at t∗ ≈ 30. We conducted a large number of simulations

going up to λ = 25. Based on all simulations, we observe three types of transient

states which occur with increasing viscosity contrast as VB —> OS, TU —> VB

—> OS, and TU —> VB. The transition is always one-way; a transition in the

reverse direction is not observed.

In agreement with the results in [19], therefore, we do not observe any inter-

mittent dynamics as theoretically predicted by the SS model [12].

Based on our simulation results, we present phase diagrams on λ—Ca plane

identifying different dynamical regimes in Fig. 3.15. At a low Ca, three regimes

are observed, namely OS, VB, and TU, with increasing λ. The VB mode occurs

in the neighborhood of λ = λc immediately before transition from the OS to

TU modes. Our results show that the VB mode exists over a large range of

the viscosity contrast. The critical viscosity contrasts at which OS —> VB and

VB —> TU transitions occur increase with increasing Ca and α. The phase

diagrams show that the transitions can be triggered below λc by decreasing Ca.

This behavior is in qualitative agreement with the SS theory, and the experiments

of Abkarian et al. [5] using erythrocytes in shear flow. At higher Ca, the three

transient regimes, VB —> OS, TU —> VB —> OS, and TU —> VB, exist
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in the region between the OS and TU modes. The range of λ over which these

transient modes occur increases with increasing Ca. Hence, these transient modes

would be important for capsule dynamics at high shear.
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Chapter 4

Rheology of a Dilute Suspension of Liquid-filled

Elastic Capsules

4.1 Introduction

Understanding rheology of blood is a fundamental problem of immense biological

importance, and has been a subject of in vivo and in vitro studies over nearly

a century. These studies have addressed blood rheology on a macroscale, and

demonstrated several non-Newtonian behaviors, such as, the shear-thinning vis-

cosity and the Fahraeus-Lindqvist effect. In contrast, there has been relatively

fewer studies which seek to connect the macroscopic rheology with the microhy-

drodynamics of individual erythrocytes.

Following Batchelor’s theory of suspension [43], Barthes-Biesel & Chhim [44]

derived expressions of shear viscosity and normal stress differences of a dilute

suspension of spherical capsules undergoing small deformation. The salient fea-

tures of their result are: (i) the suspension exhibits shear-thinning behavior with

shear viscosity µs ∝ λγ̇, where γ̇ is the shear rate; (ii) normal stress differences,

to the leading order, depend linearly on γ̇ but independent of λ. Using boundary

integral simulations, Pozrikidis [45] and Ramanujan & Pozrikidis [16] computed
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dilute suspension rheology for spherical capsules undergoing large deformation.

Pozrikidis [46] also briefly addressed time-dependent rheology of a dilute suspen-

sion of biconcave capsules.

For a dilute suspension of vesicles, a remarkable result is recently discovered

by Misbah and co-workers [14, 47, 48]. In the limit of small vesicle excess area,

they theoretically predict that the shear viscosity of the vesicle suspension first

decreases reaching a minimum, and then increases with increasing λ. Thus the

shear viscosity is higher when the vesicle is either in a pure tank-treading motion,

or in a pure tumbling motion. The pronounced minimum of the shear viscosity

occurs in the vicinity of the critical viscosity contrast λc, and, hence, it is as-

sociated with the onset of the vacillating-breathing motion as the vesicle makes

transition between the tank-treading and tumbling motions. Their theoretical re-

sult is later supported by viscometric experiments using erythrocyte and vesicle

suspensions [49].

In this chapter, we address the rheology of a dilute suspension of capsules.

We focus exclusively on initially spherical capsules for which only a steady tank-

treading motion is observed. Using three-dimensional numerical simulations of

capsules in large deformation, we present a very comprehensive analysis of the

suspension rheology over a broad range of viscosity contrast and shear rate for

both strain-hardening and strain-softening membrane. We also investigate

(i) whether the shear viscosity anomaly (i.e. shear viscosity minimum at moderate

values of viscosity ratio, and at high shear rates) exists for capsule suspensions,
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similar to that found for a vesicle suspension [14, 47–49].

(ii) whether the anomaly is a result of the onset of the vacillating-breathing mode,

or it can occur even when the capsule is undergoing a steady tank-treading motion,

and,

(iii) how the viscosity difference between the interior and exterior fluids, and

the elastic stresses on the capsule membrane individually contribute to the bulk

rheology.

We observe that a capsule suspension exhibits a shear viscosity minimum

even when the capsule makes a steady tank-treading motion. We then show that

the viscosity minimum is a result of non-trivial contributions coming from the

capsule membrane stresses and the viscosity difference between the interior and

suspending fluids.

4.2 Methodology

Three-dimensional numerical simulations using front-tracking methods are per-

formed to simulate capsule dynamics and rheology. We consider an initially spher-

ical capsule of radius a suspended in a linear shear flow u∞ = {γ̇y, 0, 0}. The

constitutive law describing the membrane material of the capsule is described in

terms of a strain energy function W . We consider both strain-hardening and

strain-softening membranes. For the former, we use the strain energy function
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developed by Skalak et al [34] (hereafter refered to as SK model):

W =
Es

8

[

(ǫ2
1 + ǫ2

2 − 2)2 + 2(ǫ2
1 + ǫ2

2 − ǫ2
1ǫ

2
2 − 1)

]

+
Ea

8

(

ǫ2
1ǫ

2
2 − 1

)2
(4.1)

where ǫ1 and ǫ2 are the principal stretch ratios, and Es and Ea are the mod-

uli of shear elasticity, and area dilatation, respectively. For a strain-softening

membrane, we use the neo-Hookean law (hereafter refered to as NH model):

W =
Es

6
(ǫ2

1 + ǫ2
2 + ǫ−2

1 ǫ−2
2 − 3) (4.2)

We scale all lengths by a, and time by 1/γ̇. The three major dimensionless

parameters are capillary number Ca = µoaγ̇/Es, the viscosity ratio λ, and the

ratio of area-dilatation to shear deformation moduli C = Ea/Es.

Following Batchelor, the bulk stress of a dilute suspension can be written as

Σbulk = Σ∞ + Σ (4.3)

where Σ∞ = 2µoE is the contribution due to the imposed linear flow u∞, E is

the strain-rate tensor, and Σ is the particle stress tensor that accounts for the

contribution from the capsules [43]. For M number of identical capsules in a

volume of V , the particle stress tensor is given by

Σij =
1

V

∑

M

∫

A

[

σiknkx
′

j − µo (uinj + ujni)
]

dA (4.4)
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where σ is the stress in the suspending fluid at the capsule membrane, n is the

unit vector normal to the capsule surface and directing outward, x′ and u are

the position and velocity on a capsule surface, and the integral is taken over

the surface A. In the front-tracking method, we find it convenient to use an

alternative expression

Σij =
1

V

∑

M

∫

A

[

fix
′

j + µo (λ − 1) (uinj + ujni)
]

dA (4.5)

where f is the elastic force in the membrane [16, 45].

It is of interest to study the individual contributions of the membrane stress

and viscosity difference to the particle stress. Hence we introduce the elastic and

viscous contributions as

Σel
ij =

1

V

∑

M

∫

A

fix
′

jdA , (4.6)

and

Σvis
ij =

µo (λ − 1)

V

∑

M

∫

A

(uinj + ujni) dA , (4.7)

respectively, so that,

Σij = Σel
ij + Σvis

ij . (4.8)

The elastic contribution Σel arises due to the stresses developed in the capsule
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membrane, while the viscous contribution Σvis arises due to the viscosity differ-

ence between the internal and suspending fluids.

Quantities of interest are the particle shear stress Σxy, the first normal stress

difference N1 = Σxx−Σyy , and the second normal stress difference N2 = Σyy−Σzz.

The shear viscosity is given by

µeff = µo

(

1 +
Σxy

µoγ̇

)

(4.9)

In the following sections, the particle stresses are presented by scaling them by

µoγ̇φ where φ is the capsule volume fraction. For the present simulations, φ =

0.017.

4.3 Results

4.3.1 Capsule shape and orientation

We consider capsules of spherical resting shape for which only the steady tank-

treading motion is observed. When placed in a shear flow, the capsule deforms

and eventually attains a steady oblate shape, and aligns at a steady inclination

angle with the flow direction. Figs. 4.1a and 4.1b show the final capsule shape

for λ = 1 and 13, both at Ca = 0.6, for capsules with SK model (C = 1). Large

deformation resulting to an elongated shape is observed at λ = 1, whereas less

deformed shape is observed at λ = 13. Fig. 4.1c shows the evolution of the Taylor
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Figure 4.1: (Color online) Sample results for spherical capsules with SK model
(C = 1). (a) and (b) show the final shapes for Ca = 0.6, λ = 1 and Ca=0.6,
λ = 13, respectively. (c) Time-dependent Taylor deformation parameter D (left
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deformation parameter D = (L − B)/(L + B) where L and B are the semi-

major and minor axes of the deformed capsule in the shear plane. Also shown

is the incination angle θ that the major axis makes with the flow direction (x-

axis). The λ = 1 case quickly reaches the steady state, whereas the λ = 13 case

exhibits damped oscillations before reaching a steady state. Damped oscillations

are typically observed for higher values of Ca and λ. Simulations are run for longer

times (as shown in Fig. 4.1c) to ensure that such oscillations become negligible.

Time evolution of Σxy, N1 and N2 are presented in Fig. 4.1d showing that they

also reach steady values.

Steady-state values of D and θ as functions of Ca for various λ are shown
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in Fig. 4.2 for SK model (C = 1). Deformation increases and θ decreases with

increasing Ca and decreasing λ. These results agree well with previously published

data [17, 50, 51].

4.3.2 Shear stress

We now come to the main focus of this article, which is the particle shear stress

Σxy. The SK model with C = 1 is considered in Fig. 4.3. The variation of Σxy

with Ca presented in Fig. 4.3a shows that Σxy decreases with increasing Ca for

all values of λ. Hence, the capsule suspension exhibits a shear-thinning behavior.

The effect of the viscosity ratio λ is shown in Fig. 4.3b by keeping the capillary

number fixed. Two different trends are observed at low and high values of Ca.

Consider first the low values of Ca in the range Ca ≤ 0.1. In this range Σxy

decreases uniformly with increasing λ. This result is counter-intuitive as capsule

deformation decreases with increasing λ (Fig. 4.2), and a reduced deformation

should result an increase in Σxy. This result suggests that the trend of Σxy

cannot be explained by capsule geometry alone.

The above result of decreasing Σxy with increasing λ is also in contradiction

to that of a dilute emulsion of liquid drops with constant interfacial tension [52].

For a liquid drop emulsion, in the limit of small deformation, we have

Σxy =
1 + 5λ/2

1 + λ
µoγ̇ φ , (4.10)

which gives an increasing Σxy with increasing λ, unlike the computed results for
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63

capsules. We however note that the small deformation theory of capsule suspen-

sion does predict a (linear) decrease of Σxy with increasing λ [44]. Furthermore, a

similar trend is also predicted for emulsions of surfactant-covered liquid drops [53].

Consider now the trends of Σxy versus λ at higher shear rates (Ca > 0.1, Fig.

4.3b). We see a remarkably non-intuitive result: Σxy first decreases reaching a

minimum, and then increases with increasing λ.

Hence, the capsule suspension exhibits a shear viscosity minimum at moderate

values of viscosity ratio, and at high shear rates. In this respect, there is some

qualitative similarity between the present results and those for vesicle suspension

as predicted and observed by Misbah and co-workers [14, 47–49]. However, since

the capsules in our simulations are in steady tank-treading motion, the physical

mechanisms underlying the shear viscosity anomaly are completely different in

capsule and vesicle suspensions, as will be shown later.

We note again that the shear viscosity minimum cannot be explained based on

the capsule shape alone, as D and θ both decrease continually with increasing λ

(Fig. 4.2). This anomalous behavior was not predicted by the small deformation

theory of suspension of capsule or surfactant-covered drops [44, 53].

We now show that the shear viscosity minimum exists for strain-softening

membranes as well. For this we present simulation results for capsules with NH

model in Fig. 4.4. As before, the salient features of Fig. 4.4 are: (i) a shear-

thinning behavior with respect to Ca, (ii) a uniform decrease of Σxy with increas-

ing λ at low shear rates (Ca ≤ 0.05), and (iii) an initial decrease of Σxy reaching
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a minimum, followed by an increase with λ at high shear rates (Ca > 0.1).

The non-trivial behavior of the shear stress observed in Figs. 4.3 and 4.4,

and its differences with the results predicted by the small deformation theory for

capsules, and vesicles, suggest that the bulk rheology is dictated not only by the

capsule geometry (deformation and inclination), but also by the contributions

coming from the membrane stress and viscosity contrast. Hence, we look at the

elastic component Σel
xy and the viscous component Σvis

xy .

Fig. 4.5 shows Σel
xy and Σvis

xy as functions of Ca for various λ values. We see

that the elastic contribution Σel
xy decreases with increasing Ca for all λ. More

interestingly, however, we see that the viscous contribution Σvis
xy increases with

increasing Ca. Thus the elastic contribution is shear-thinning in nature, but the

viscous contribution is shear-thickening. At a fixed Ca, the elastic contribution
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decreases, but the viscous contribution increases, with increasing λ. At low values

of Ca and λ, the viscous contribution is smaller than the elastic contribution

resulting a decreasing trend of Σxy with increasing Ca as observed in Figs. 4.3a

and 4.4a. This trend is completely reversed at high values of Ca and λ, leading

to a reduced shear-thinning behavior of the bulk suspension.

Next we explore the origin of shear viscosity minimum as observed in Fig. 4.3b.

For this, we plot the variation of Σel
xy and Σvis

xy as a function of λ for different values

of Ca in Fig. 4.6. The elastic contribution decreases, but the viscous contribution

increases, with increasing λ. At low Ca, Σel
xy is mostly higher than Σvis

xy , and thus

the total shear stress Σxy decreases with increasing λ as observed in Figs. 4.3b and

4.4b. At higher Ca, Σel
xy > Σvis

xy for smaller values of λ, but Σel
xy < Σvis

xy for larger
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values of λ. Thus a minimum of Σxy occurs at intermediate values of λ, as observed

in Figs. 4.3b and 4.4b. This analysis clearly shows that the opposite trends in Σel
xy

and Σvis
xy with respect to λ are responsible for shear viscosity minimum in capsule

suspension.

We now seek to explain the trends of the elastic and viscous components. The

elastic component Σel
xy can be further decomposed into two contributions. The

first one depends on capsule shape and alignment alone and can be written as

Σel,iso = −Γ

∫

A

(

nn −
I

3

)

dA (4.11)

where the constant Γ represents an isotropic membrane tension. The second

contribution arises from the anisotropic distribution of the membrane tension.

For a liquid drop with a constant surface tension, Γ becomes the surface tension,

and the anisotropic part vanishes. Then, Σel = Σel,iso which depends only on the

drop shape and alignment. For a capsule, the anisotropic contribution is non-

zero. We seek to address if the above isotropic model can qualitatively explain

the trends of Σel
xy as observed in Figs. 4.5 and 4.6.

Fig. 4.7 shows Σel,iso evaluated using Eq. 4.11 for oblate spheroids of aspect

ratio (semi-major to minor axes) α = 1, 1.25, and 1.67, as a function of the

inclination angle θ. The results are shown in arbitrary units, and taking Γ = 1.

For the stationary capsule dynamics, only the results between θ = π/4 and 0

are of interest. We see that Σel,iso = 0 for α = 1 at any inclination angle, as

expected. For α 6= 1, Σel,iso
xy is maximum at θ = π/4, and it decreases with
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decreasing θ and increasing α. This result can completely explain the qualitative

trends of numerically obtained Σel
xy seen in Figs. 4.5 and 4.6. Increasing the

capillary number results increasing deformation (i.e. increasing α, in this model),

and decreasing θ. Increasing the viscosity contrast causes decreasing deformation

(i.e., decreasing α) and decreasing θ. Thus, the qualitative trend of Σel
xy follows

that of Σel,iso
xy .

Now we analyze the qualitative trends of the viscous contributions Σvis
xy . At

steady-state, the shape of the capsule and its alignment with the flow direction

are fixed (for the unstressed spherical shape considered here) while the capsule

membrane undergoes the tank-treading motion. Then the membrane velocity can

be expressed as u(x′, t) = |u(x′, t)|t where t is tangent to the capsule surface in

shear plane. Approximating the membrane velocity u by a/T where T is the

tank-treading period, we write

Σvis ≈
aµo(λ − 1)

TV

∫

A

(tn + nt) dA (4.12)

Then, we introduce Σvis,geom as

Σvis,geom =

∫

A

(tn + nt) dA (4.13)

which depends only on the geometry. Neglecting the effect of T , the integral

in Eq. 4.13 is used to illustrate the trends of Σvis
xy . For this purpose, Σvis,geom

xy is

evaluated using Eq. 4.13 for oblate spheroids for aspect ratios α = 1, 1.25, and
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1.67, and plotted in Fig. 4.7 as a function of θ. We see that Σvis,geom
xy = 0 for

α = 1, as expected. For α > 1, Σvis,geom
xy is minimum at θ = π/4, and it increases

with decreasing θ and increasing α. Recalling that deformation increases and θ

decreases with increasing Ca, we see that the trend of Σvis,geom
xy can explain the

trends of Σvis
xy with Ca. Recalling further that both deformation D and inclination

θ decrease with increasing λ, we see again that Σvis
xy follows the same trend as

Σvis,geom
xy with varying λ.

4.3.3 Effect of area dilatation

Next we consider the effect of capsule surface area dilatation. Fig. 4.8 shows

the steady-state deformation parameter D and inclination angle θ as functions

of Ca for five cases: the NH model, and the SK model with C = 0.1, 1, 50, and
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100. The viscosity contrast is fixed at λ = 1. For all cases, D increases and θ

decreases with increasing Ca. In contrast, increasing the values of C results in

reduced deformation and higher inclination angle. Reduced deformation at higher

values of C is achieved via reduced surface area dilatation. The area dilatation is

maximum for the neo-Hookean membrane for which the area increases by 4.5%

and 29% of the initial area for Ca = 0.05 and 0.4, respectively. For the SK

model at C = 1, the area increases by 1.5% and 14.1% for Ca = 0.05 and 0.4,

respectively. At C = 100, the respective area increases are only 0.16% and 1.8%.

The effect of area-dilatation on Σxy is shown in Fig. 4.9 by considering four

cases: the NH model, and the SK model with C = 0.1, 1, and 50. Fig. 4.9a shows

Σxy as a function of Ca at a constant viscosity contrast λ = 1. The shear-thinning

behavior is prominent for the NH model, and for SK model at high area dilatation

(i.e., low to moderate values of C). At C ≥ 50, the shear-thinning behavior is

nearly absent due to a reduced capsule deformation.

Increasing the values of C also results in increasing values of Σxy. This can

be understood based on the reduction of capsule deformation with increasing C

as observed in Fig. 4.8.

Fig. 4.9b shows the variation of Σxy with respect to λ by keeping the capillary

number fixed at 0.4. For the SK model with C = 0.1 and 1, Σxy first reaches a

minimum, and then increases with increasing λ. For C ≥ 50, Σxy is observed to

decrease continually with increasing λ. Thus, for a capsule suspension, the shear
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Figure 4.9: Effect of area dilatation on Σxy. (a) variation with respect to Ca at
λ = 1; and (b) variation with respect to λ at Ca = 0.4. Symbols represent NH
model (∆), and SK models with C = 0.1 (3), 1 (2), and 50 (◦).
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viscosity minimum is observed for area-dilating membranes but not for nearly-

incompressible membranes.

The absence of shear viscosity minimum for nearly-incompressible membranes

can be understood again by decomposing the shear stress Σxy in to its elastic and

viscous components. Fig. 4.10a shows Σel
xy and Σvis

xy with increasing λ. We see

that with increasing λ, the elastic contribution Σel
xy decreases, but the viscous

contribution Σvis
xy increases. At a fixed value of λ, the elastic contribution is the

lowest for the NH model, and it increases with increasing values of C for the

SK model. In contrast, the viscous contribution is the maximum for the NH

model, and it decreases with increasing values of C for the SK model. For the

SK model with C = 50, Σel
xy is significantly higher than Σvis

xy for lower values of

λ. At higher λ values, Σel
xy continues to drop at a faster rate. This explains the

monotonically declining trend of Σxy with λ for the C = 50 case, and hence, for

nearly-incompressible membranes.

Some interesting results for the SK model can be deduced by further decom-

posing the elastic component as

Σel = Σsh + Σdi (4.14)

where Σsh represents the contribution from the shear elasticity Es, and Σdi repre-

sents the contribution from the area-dilatation modulus Ea. Fig. 4.10b shows Σsh
xy

and Σdi
xy as functions of λ for various values of C. Both Σsh

xy and Σdi
xy decline with
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Figure 4.10: (Color online) Effect of area dilatation on Σel
xy and Σvis

xy . Symbols
represent NH model (∆), and SK models with C = 0.1 (3), 1 (2), and 50 (◦).
(a) Variation of Σel
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0.4. (c) Variation of Σsh

xy (long dash lines) and Σdi
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λ = 1.
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increasing λ. At a fixed value of λ, Σsh
xy decreases, but Σdi

xy increases, with increas-

ing C. At large values of λ and C, Σdi
xy exceeds Σsh

xy by several factors implying

that the area-dilatation characteristics strongly affects the bulk rheology.

Ca-dependence of Σsh
xy and Σdi

xy is shown in Fig. 4.10c. Opposite trends for Σsh
xy

and Σdi
xy are observed. Σsh

xy decreases but Σdi
xy increases with increasing Ca. For

nearly incompressible membranes (C = 50) at high capillary numbers, Σdi
xy ex-

ceeds Σsh
xy by several factors. Hence, as noted above, the membrane area-dilatation

significantly affects the bulk shear stress.

4.3.4 Normal stress differences

The normal stress differences N1 and N2 for capsules with the SK model are shown

in Fig. 4.11. Positive values of N1 and negative values of N2, with |N2| < N1,

are observed for all cases, as typical of emulsions. The dependence of the normal

stress differences on Ca and λ is counterintuitive. At λ = 1, both N1 and |N2|

increase with increasing Ca indicating an increasing elastic nature of the emulsion.

At λ = 3, N1 and |N2| first increase with increasing Ca, but attain constant values

at higher shear rates. For λ = 5 and 7, N1 and |N2| first increase to maximum

values, but then decrease with increasing Ca. For λ = 10, and 13, N1 and |N2|

monotonically decreases with increasing Ca, thus completely reversing the trend

seen at λ = 1.

It is worth mentioning that the trends of computed N1 and N2 as observed in

Fig. 4.11 are completely different from those predicted by the small deformation
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Figure 4.11: (Color online) N1 and N2 for capsules with SK model (C = 1). λ = 1
(thick red lines), 3 (thin red lines), 5 (dash red lines), 7 (black dash-dot lines), 10
(blue dotted lines), and 13 (black dash-dot-dot lines).
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Figure 4.12: (Color online) Effect of Ca on the elastic contributions (a) N el
1 , and

(b) N el
2 for SK model with C = 1. Line patterns represent different values of λ

as in Fig. 4.11. λ = 1 (thick red lines), 3 (thin red lines), 5 (dash red lines), 7
(black dash-dot lines), 10 (blue dotted lines), and 13 (black dash-dot-dot lines).

theories. As mentioned before, the second-order theory of capsule deformation,

and the thrid-order theory for surfactant-covered liquid drops predict that N1

and |N2| depend linearly on Ca but independent of λ [44, 53]. In contrast, the

computed values show a non-linear dependence on Ca and λ.

It is also worth noting the differences with the theoretical results for vesicle

suspension. Similar to Σxy, the theoretical analysis for vesicle suspension predicts

that N1 first reaches a minimum and then increases with increasing values of

λ [48]. In contrast, our computations suggest that N1 and |N2| decrease uniformly

with increasing λ.

We now explain the trends of N1 and N2 by looking at the viscous and elastic
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components. We recall from Eq. 4.8 that

N1 = N el
1 + Nvis

1 , (4.15)

and

N2 = N el
2 + Nvis

2 . (4.16)

The elastic components N el
1 and N el

2 with Ca are shown in Fig. 4.12. We see that

N el
1 is positive, and larger than N1, whereas N el

2 is negative, and its magnitude

is larger than |N2|. This is because, as will be seen later, the viscous component

Nvis
1 is negative, and Nvis

2 is positive. We also note that for λ = 1, N el
1 = N1

and N el
2 = N2 since the viscous component is absent, and that N el

1 and |N el
2 |

increase with increasing Ca following the trends of N1 and |N2|. For λ > 1,

however, a remarkably different behaviour is observed. For λ = 3, N el
1 and |N el

2 |

rapidly increase but then become independent of Ca. For λ ≥ 5, N el
1 and |N el

2 |

first increase to a maximum, but then decrease with increasing Ca. This trend

is completely different from that observed at λ = 1. This behavior implies that

at high viscosity contrast, the elastic nature of the suspension diminishes with

increasing shear rates. Thus, the capsule suspension exhibits elastic normal stress

maximums at moderate viscosity differences and shear rates.

The anomalous trends of N el
1 and N el

2 at high viscosity contrast are further

explored in Fig. 4.13 where the variations with respect to λ at fixed values of
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Figure 4.13: (Color online) Effect of λ on the elastic contributions (a) N el
1 , and

(b) N el
2 for SK model with C = 1. Line patterns represent different values of Ca

as indicated.

Ca are considered. The figure clearly shows that at smaller values of λ, the

magnitudes of the elastic components increase with increasing Ca, while the trend

is reversed at larger values. For Ca = 0.05 and 0.1, N el
1 and |N el

2 | first increase,

and then decrease with increasing λ. For Ca ≥ 0.6, N el
1 and |N el

2 | continually

decrease with increasing λ.

We now investigate if the complex trends of N el
1 and N el

2 can be predicted by

the isotropic model given by Eq. 4.11, which accounts for capsule geometry only.

Fig. 4.14 shows N el,iso
1 and N el,iso

2 computed using Eq. 4.11 for oblate spheroids

of aspect ratio α = 1, 1.25, and 1.67, with varying θ. The results are shown in

arbitrary units taking Γ = 1. For α = 1, we see that N el,iso
1 = N el,iso

2 = 0 at

any θ, as expected. For α > 1, N el,iso
1 and |N el,iso

2 | increase with increasing α and

decreasing θ. This trend is the same that was observed for N el
1 and N el

2 for λ = 1,
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but not for λ > 1 (Figs. 4.12 and 4.13). Thus, the isotropic model fails to explain

the trends of N el
1 N el

2 for λ > 1.

For λ > 1, it appears that the anisotropy of the membrane tension contributes

significantly to the elastic components. This can be illustrated by looking at the

distribution of the membrane principal tensions

τ1 =
1

ǫ2

∂W

∂ǫ1

, τ2 =
1

ǫ1

∂W

∂ǫ2

. (4.17)

Figs. 4.15 and 4.16 show the contours of τ1 and τ2 for λ = 1 and 7, respectively,

for two capillary numbers, 0.05 and 0.4. Consider first the λ = 1 case (Fig. 4.15).

We see that τ1 is always positive, but τ2 can be negative (which is indicative of a

compressive stress). The magnitudes of τ1 and τ2 contours increase with increasing

Ca, and positive values of τ2 dominate at higher capillary numbers. Thus, the

integrated effect of the membrane tensions is to increase the magnitudes of N el
1

and N el
2 with increasing Ca as observed in Fig. 4.12 for λ = 1. Consider now the

λ = 7 case (Fig. 4.16). At Ca = 0.05, the contours of τ1 and τ2 are similar to

those obtained at λ = 1. But at Ca = 0.4, we see that τ1 has become negative,

and τ2 is dominantly negative. The integrated effect of such negative membrane

tensions is to reduce the values of N el
1 and |N el

2 |. Hence, N el
1 and N el

2 , unlike N el,iso
1

and N el,iso
2 , exhibit non-monotonic trends with respect to Ca and λ due to the

non-monotonic trends of the membrane tensions.

The viscous components of the normal stress differences, Nvis
1 and Nvis

2 , are

shown in Fig. 4.17. The viscous components have opposite signs when compared
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from red to blue as the values change from positive to negative, respectively. The
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Figure 4.17: (Color online) Effect of Ca on the viscous contributions (a) Nvis
1 , and

(b) Nvis
2 for SK model with C = 1. Line patterns represent different values of λ

as in Fig. 4.11. λ = 1 (thick red lines), 3 (thin red lines), 5 (dash red lines), 7
(black dash-dot lines), 10 (blue dotted lines), and 13 (black dash-dot-dot lines).

with their elastic counterparts; Nvis
1 is negative, and Nvis

2 is positive. Figs. 4.17a

and 4.17b illustrate the Ca-dependence of Nvis
1 and Nvis

2 . Interesting behavior is

noted when variations with respect to Ca at λ ≥ 5 are considered. In this range,

|Nvis
1 | and Nvis

2 first increase reaching maximum values, and then decrease with

increasing Ca. This non-monotonic trend is quite different from that observed for

Σvis
xy which monotonically increases with increasing Ca.

The trends of |Nvis
1 | and Nvis

2 versus Ca can be partly explained based on

the isotropic model. Using Eq. 4.13 we can evaluate Nvis,geom
1 and Nvis,geom

2 for

oblate spheroids for different values of aspect ratio α and inclination angle θ.

It appears that |Nvis,geom
1 | and Nvis,geom

2 are maximum at θ = π/4, and they

decrease with decreasing θ and increasing α. In the limits that α −→ 1 (i.e., Ca
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−→ 0), and θ −→ 0 (Ca −→ ∞), both Nvis,geom
1 and Nvis,geom

2 vanish. Then, the

maximum values of |Nvis,geom
1 | and Nvis,geom

2 (and, hence, |Nvis
1 | and Nvis

2 ) occur

at intermediate values of Ca. As a result, Nvis
1 and Nvis

2 exhibit non-monotonic

trends with increasing Ca.

Based on the above results on elastic and viscous components, we can now

explain the trends of N1 and N2 as seen earlier in Fig. 4.11. The above observa-

tion suggests that the magnitudes of elastic and viscous components first rapidly

increase, and then decrease with increasing Ca for moderate to large values of λ;

the larger the value of λ, the faster the decrease. This explains why N1 and N2

approach to zero with increasing Ca and at a faster rate with increasing λ.

Effect of area dilatation on normal stress differences is shown in Fig. 4.18
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by considering three cases: the NH model, and the SK model with C = 0.1,

and 50. For all cases, N1 and |N2| increase non-linearly, and eventually tend to

saturate with increasing Ca. As expected, N1 > 0, N2 < 0, and N1 > |N2|,

for all cases. However, N1 and |N2| decrease with increasing C due to reduced

capsule deformation. Thus the elastic nature of the bulk suspension is reduced

with decreasing area-dilatation of the membrane.
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Chapter 5

Conclusion

5.1 Dynamics of Ellipsoidal Capsules

In Chapter 3, we presented numerical results on the dynamics of oblate shape

capsules in shear flow by considering a broad range of viscosity contrast, capillary

number, and aspect ratio. The focus is on the coupling between the shape de-

formation and orientation dynamics, and how this coupling affects the transition

dynamics as a function of the viscosity contrast. At low values of Ca, three dis-

tinct modes of capsule dynamics are identified: (i) At a low value of λ, a swinging

or oscillatory (OS) mode occurs during which the capsule oscillates about a mean

inclination angle, but the major axis always lies in the extensional quadrant of the

shear flow, so that 0 < θ(t) < π/4; the oscillatory motion co-exists with the tank-

treading of the membrane. (ii) At a moderate value of λ, a vacillating-breathing

(VB) mode occurs during which the capsule swings vigorously about the mean

inclination angle which is close to zero, and θ(t) periodically becomes positive

and negative, but a full tumbling does not occur; a significant compression occurs

in this mode leading to the maximum shape deformation. (iii) At even higher

values of λ, a pure tumbling mode (TU) occurs; even in this mode, significant
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shape deformation is observed.

The VB mode of capsules as shown in this chapter is qualitatively similar

to that for vesicles described in earlier works, e.g, [9,10,14,26–28]. These modes

occur because, at the intermediate values of λ, the capsule undergoes a significant

compression when θ(t) becomes negative, leading to the near-circular shape, and

a reduced hydrodynamic torque. The capsule, as a result, is unable to make a full

tumbling motion. Due to the significant compression, the capsule shapes in the

extensional and compressional quadrants of the flow are not mirror images about

the mean inclination angle. Furthermore, the compression of the capsule occurs

at a slower time scale, while the elongation occurs much faster. Thus, in the VB

mode, the clockwise swing occurs slower than the counter-clockwise swing.

At higher capillary numbers, three types of transient motions occur, in addi-

tion to the OS and TU modes, during which the capsule switches from one mode

to the other. With increasing λ, these modes appear as (i) VB —> OS, (ii) TU

—> VB —> OS, and (iii) TU —> VB.

We analyze the coupling between the shape deformation and orientation dy-

namics, and show how this coupling influences the transition from tank-treading

to tumbling motion as the viscosity contrast is increased. For all modes of mo-

tion (OS, VB, TU), a large amplitude oscillation in capsule shape is observed.

The coupling between the shape deformation and orientation is the strongest in

the VB mode during which the amplitude of shape deformation ∆D reaches its

maximum, and the capsule shape shows the maximum compression. Hence the
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shape deformation is most important at an intermediate viscosity contrast around

λ = λc.

The coupling between the orientation dynamics and the shape deformation

leads to a number of significant departures from the KS theory. (i) According to

the KS model, a steady inclination angle exists for λ < λc, whereas the numerical

results show that a steady inclination angle does not exist at a low value of λ. (ii)

In the KS model, tumbling starts as soon as θ(t) becomes negative which happens

at λ = λc. The numerical results show that as λ approaches λc, the inclination

angle θ(t) can become negative without a full tumbling of the capsule. This results

in the occurrence of the VB mode. (iii) In the KS model, the inclination angle

is independent of the shear rate. In the numerical results, the mean inclination

angle θo decreases with increasing Ca and, hence, shear rate. (iv) In the KS

model, the inclination angle goes to zero at a faster rate as λ approaches λc. In

the simulations, θo is found to decrease at a much slower rate near the transition.

As a result, tumbling occurs in the simulations even when θo > 0. (v) The KS

theory predicts that the ellipsoid spends equal amount of time in the extensional

and compressional quadrants of the shear flow during the tumbling motion. In

the simulations, we find that the capsule spends more time in the extensional

quadrant of the flow than in the compressional quadrant.

The major departures from the SS theory are (i) the existence of the VB mode

at a low Ca for which the shape deformation is the maximum, (ii) the emergence

of the transient modes VB —> OS, TU —> VB —> OS, and TU —> VB, at
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higher Ca, and (iii) absence of any intermittent dynamics. The occurrence of the

VB mode cannot be predicted by the SS theory, as this mode corresponds to the

maximum shape deformation. Further discrepancies between the SS theory and

the numerical results are as follows: (iv) the SS theory predicts that the mean

inclination angle θo is independent of γ̇ in the OS regime, but the numerical results

show that θo decreases with increasing Ca. (v) The large amplitude oscillation

of the inclination angle at the intermediate λ is also not predicted by the SS

theory. Unlike in the SS theory, here the shape deformation drives the orientation

dynamics at the intermediate viscosity contrasts.

Several other interesting results are presented. The amplitude of shape de-

formation ∆D first increases reaching its maximum, but then decreases, with in-

creasing λ. The major axis shows a greater variation in length over time than the

minor axis. Compression of the capsule occurs at a slower rate than its elongation.

Compression starts even when the major axis lies in the extensional quadrant of

the flow. Elongation continues for θ < π/4; the maximum elongation occurs pro-

gressively at an angle lower than π/4 with increasing λ and Ca. Further, though

the capsule spends more time aligned with the extensional direction of the flow,

it is actually subjected to a high compressive stress. These results could help in

developing a phenomenological model of nonspherical capsule dynamics that can

further improve the SS model.
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5.2 Rheology of Dilute suspension of Capsules

In Chapter 4, we presented numerical results on the rheology of a dilute suspension

of elastic capsules in linear shear flow. This study is partly motivated by the recent

discovery that a dilute suspension of vesicles exhibits a shear viscosity minimum

during the transition between the tank-treading and tumbling modes [14,47–49],

keeping is mind that fundamental differences exist between a vesicle and a capsule.

In this chapter, we consider capsules of spherical resting shape for which only a

steady tank-treading motion is observed. The important results obtained here

are summarised as follows.

The suspension exhibits a shear-thinning behavior that is most prominent at

moderate values of viscosity ratio λ. When variation with respect to λ is con-

sidered, two non-intuitive results are observed. First, at low capillary numbers,

the shear stress decreases with increasing λ. This trend is opposite to that of a

liquid drop suspension. Second, at high capillary numbers, the shear stress first

decreases reaching a minimum, and then increases with increasing λ. Thus, unlike

a vesicle suspension, the capsule suspension exhibits a shear viscosity minimum

even in a steady tank-treading motion. Existence of the shear viscosity mini-

mum can neither be explained by capsule shape, nor can be predicted by small

deformation theory of capsule suspension.

However, this anomaly can be explained by decomposing the bulk stress in to

an elastic contribution due to the membrane tension, and a viscous contribution

due to the viscosity difference between the interior and suspending fluids. It is
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shown that the elastic component is shear-thinning, but the viscous component

is shear-thickening. Hence, the opposite trends of the elastic and viscous com-

ponents are responsible for the occurance of the shear viscosity minimum in a

capsule suspension. It is further shown that the trends of the elastic and viscous

components can be qualitatively explained based on an isotropic model taking in

to consideration capsule shape and inclination.

The normal stress differences N1 and N2 show much more complex trends. At

low viscosity ratio, their magnitudes increase with increasing Ca, as typical on an

emulsion. But this trend is completely reversed at high viscosity ratio. Further,

N1 and |N2| decrease uniformly with increasing λ, in stark departure from the

predictions of small deformation theory.

The elastic and viscous components of N1 and N2 are analysed to explain

the observed trends. It is shown that the viscous components can be described

by the isotropic model, but not the elastic components. However, the elastic

components can be explained by considering the distribution of the membrane

tension which is indeed anisotropic in nature. It appears that at high capillary

number and viscosity ratio, emergence of a compressive membrane stress results

in a reduction of the normal stress magnitudes.

The effect of area dilatation is also studied. Shear-thinning behavior grad-

ually diminishes with reduced area dilatation. The shear viscosity minimum is

observed for area dilating membranes, but not for nearly-incompressible mem-

branes. This result is in stark contrast to that of the vesicle suspension because



93

the vesicle surface is incompressible. In closing, we note that no shape change is

possible for a volume- and surface-area preserving object with a spherical initial

shape. Thus, a vesicle has an excess area to start with. In contrast, the area of an

initially spherical capsule is allowed to dilate in order for it to deform. However, a

nonspherical capsule (e.g., a biconcave shape) can change its shape without area

dilatation. Thus, it would be of interest to extend our simulations to suspension

of nonspherical capsules with nearly-incompressible membranes to see if the shear

viscosity minimum exists for such cases. Further, the nonspherical capsules ex-

hibit tank-treading, tumbling and vacillating-breathing motions. It would be of

interest to study the effect of such dynamics on the time-dependent and mean

rheology of the suspension. Finally, it would be of great scientific value to address

these issues for a dense or semi-dense suspension.
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