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ABSTRACT OF THE DISSERTATION

Channel Modeling Approaches to Wireless

System Design and Analysis

by Aliye Özge Kaya

Dissertation Director: Professor Wade Trappe and

Professor Larry J. Greenstein

In wireless communications, it is common practice to use mathematical models

for describing the radio channel. One approach is stochastic modeling, in which

the key properties of the signal propagation (e.g., multipath fading) are captured

by probability distributions. If the interest pertains to a specific environment, an

alternative approach is to measure channel responses for a very large population

of transmit-receive (T-R) paths; this is an effective but labor-intensive approach.

An alternative approach that is less costly and more flexible is to use environment

simulators. These are computer programs that (1) emulate the physical environ-

ment; (2) use wave propagation physics to predict the radio signal produced at any

receive point from any transmit point; and (3) account for transmission through

walls and diffraction around walls. This works best when the user has site-specific

information on the geometry and structure materials. When the physical envi-

ronment is well-specified, such as indoor areas where the layouts and materials of

walls, floors and ceilings are known, environment simulation can be employed on

a very large scale with very little effort.

In this thesis we focus on environment simulators based on ray-tracing. The

major contribution is to demonstrate and evaluate the use of ray tracing for char-

acterizing wireless channels and analyzing algorithms for various applications.

We initially demonstrate, via comparisons with physical measurements, the sta-

tistical accuracy of ray-tracing predictions of channel behavior. The comparisons
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are made for three parameters that largely characterize a radio path’s behavior:

Path loss; Ricean K-factor; and RMS delay spread. The comparisons show good

agreement over the set of paths measured and simulated, establishing confidence

that a well-designed radio simulator can be used reliably in system studies.

Environment-specific models generally assume the channel response is non-

varying over time if both ends of the path are fixed. However, in real environ-

ments, channel responses vary over time, e.g. due to movement of objects (or

people) near the transmission path. We have measured the channel response in

an office building under different scenarios of environment dynamics. We stochas-

tically modeled the time variation of the channel response about the mean using

autoregressive processes and showed that this can lead to an accurate representa-

tion. Our approach could be used to model the time-varying tap gains to further

augment the realism of ray-tracing simulations.

We then demonstrate several applications in wireless system design where

ray-tracing could be exploited. First, we present an algorithm called Emitter Lo-

calization and Visualization (ELVIS) for localizing emitters by back-propagating

the received signals via back-ray tracing. Second, we present a statistical path

loss model derived from data simulated using a ray tracing tool. The character-

ization used is a nonlinear curve of the dB path loss to the log-distance, with a

random variation about that curve due to shadow fading. Third, we devise an

evaluation approach for densely populated urban wireless systems using MIMO

links, wherein the location-specific channel gains are determined via ray-tracing.

We compare and quantify the data rate performances of MIMO systems for var-

ious transmission schemes and antenna configurations; we present algorithms for

adapting the MIMO transmission mode to varying channel conditions as a mobile

moves along a given trajectory; and we treat the case of multiple bases to cover a

full urban neighborhood and investigate the relationship among frequency reuse,

co-channel interference and achievable data rate.
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Chapter 1

Introduction

Motivation

In wireless communications, the underlying radio channel properties strongly af-

fect the performance of the system. It is common practice in the design and

evaluation studies of such systems to use mathematical models for describing the

channel. One approach is stochastic modeling, in which the key properties of the

signal propagation (e.g., multipath fading) are captured by probability distribu-

tions. These kinds of models are favored when the propagation environment is

unknown except for some high-level attributes, e.g., urban vs. suburban, flat vs.

hilly, summer vs. winter, etc.

Stochastic models serve well when the study questions are fairly generic, e.g.,

how does a particular cellular radio system perform in an environment that is

typically urban? However, there are cases where the interest pertains to a specific

environment, e.g., a wireless LAN in the corporate offices of a specific company,

a mobile moving along a given trajectory, coverage of users in a given specific

urban neighborhood. In such cases, the study questions are ‘site-specific’ and so

site-specific channel response information is needed. One very effective approach

in that case might be to measure channel responses for a very large population of

transmit-receive (T-R) paths and store them in a database that can be accessed

for system simulations. The number of such paths that must be sampled, however,

can be extremely large and require measurement campaigns that are long, labor-

intensive and costly.
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A far less costly alternative to measurements is to use environment simulators.

These are computer programs that (1) emulate the physical environment; (2) use

wave propagation physics to predict the radio signal produced at any receive

point from any transmit point; and (3) account for transmission through walls

and diffraction around walls. This works best when the user has site-specific

information on the geometry and structure materials of the area being studied.

When the physical layout is well-specified, such as indoor areas where the layouts

and materials of walls, floors and ceilings are known, environment simulation can

be employed on a very large scale with very little effort.

Related Work

Ray-tracing based methods are popular for predicting the site-specific radio prop-

agation characteristics [1], [2], [3], [4]. Although they are computationally inten-

sive they provide more accurate results than statistical models [1] when the site

geometries are known.

For urban microcell environments [5] and [6] show very good agreement be-

tween the signal strength (or path loss) statistics of environment simulators based

on ray-tracing and those from extensive measurements. In [6] the comparisons

are done for data collected in a two-square kilometer area of Rosslyn, Washing-

ton DC, and in [5] the comparisons are done for data collected in Manhattan

and Boston. The comparisons show that ray-tracing based simulators can predict

signal strengths in these outdoor environments with very good accuracy.

For indoor channels, [2] shows that the distributions of arrival times and an-

gular spreads generated with a ray-tracing tool agree excellently with those of

an empirical model based on measurements. In [7], extensive measurements in

several office buildings are used to derive statistics for the K factor and path loss,

which favorably compare with ray-tracing predictions.



3

All of these results demonstrate the validity of using a ray tracing tool for

modeling indoor and outdoor channels.

Summary of the Thesis

In this thesis, we focus on environment simulators based on ray-tracing. The

major contribution is to demonstrate and evaluate the use of ray tracing for char-

acterizing wireless channels and analyzing algorithms for various applications. We

initially demonstrate, via comparisons with physical measurements, the accuracy

of ray-tracing in predicting static channel behavior. We also augment the realism

of such ray-tracing simulations by modeling the time-varying part of the channel

response, as caused by moving objects in the environment, using stochastic pro-

cesses. We then demonstrate several applications in wireless system design where

ray-tracing can be exploited.

The thesis is organized as follows:

In Chapter 2, we investigate the reliability of radio channel simulators based

on ray tracing in predicting channel response behavior throughout a well-specified

environment. We assess the performance of this approach by comparing its pre-

dictions with measurements in a specific static environment. The good agreement

on path loss statistics, Ricean K-factor and RMS delay spread, over the set of

paths measured and simulated, suggests that a well-designed radio simulator can

be used reliably to predict system behavior.

In Chapter 3, we propose ways to augment ray-tracing simulations by treat-

ing the time-varying part of the channel response using stochastic processes.

Environment-specific models generally assume the channel response is non-varying

over time if both ends of the path are fixed. However, in real environments chan-

nel response varies over time, e.g. due to movement of objects (or people) in

the environment. We have measured the channel response in an office building
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under different environmental dynamics scenarios. We stochastically model the

time variation of the response about the mean using autoregressive processes and

show that this leads to good representations.

In Chapter 4, we propose an algorithm called Emitter Localization and Vi-

sualization (ELVIS) for localizing emitters based on backward ray tracing. Our

work uses the backward ray tracing for the first time for indoor emitter location

prediction. In an emergency situation like fire it is important to localize the per-

sonnel such that police, fire-fighters etc. We assume that the first responder emits

RF energy, which undergoes multiple reflections with the walls, ceilings and floors

of the building. There are K receivers, each of which receives ray(s) from the first

responder. Each receiver estimates the AOA (Angle of Arrival), TOA (Time of

Arrival) and power of each ray. We assume that the receivers know the blueprint

of the building and the electromagnetic characteristics of the construction mate-

rial used in the building. We show that, based on this information, the receivers

can localize the first responder to a high degree of accuracy by applying ELVIS.

We evaluated the performance of ELVIS, using both single and multiple receivers,

under a variety of channel and propagation conditions.

In Chapter 6, we use the ray tracing tool for modeling path loss in indoor

environments. The proposed path loss model takes into account the transmission

losses through the walls and leads to a median path loss that is nonlinear in log-

distance, in contrast to conventional models. One application could be the use of

environment simulators for a specified building for each of N base locations, with

N on the order of 8-12, to find a set of path loss model parameters. Using the

path loss model system planners can determine where to put bases to best cover

the area for a given system, and they do not have to store millions of data points,

just a relatively small number of parameters.
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Chapter 2

Characterizing Indoor Wireless Channels via

Ray Tracing and Validation via Measurements

2.1 Introduction

It is axiomatic that no typical environment can be perfectly emulated. Propa-

gating radio signals are affected by countless artifacts that are hard to capture

and/or predict, i.e., moldings, variations in material, furniture, etc. What can

reasonably be expected, however, is that a site-specific program predicts channel

responses throughout the area of interest that are statistically similar to the ac-

tual ones. To this end, we can cite three parameters of a radio path that largely

typify its response for both narrow and wide bandwidths. They are: (1) the path

loss, PL, which is the dB value of the transmit power divided by the (locally aver-

aged) received power; (2) the Ricean K-factor, which, together with PL, dictates

the narrowband fading distribution; and (3) the RMS delay spread, τrms, which

is a measure of the frequency selectivity (or pulse dispersion) of the channel. We

assert that a site-specific program that accurately predicts these three quantities

throughout a known environment can be relied upon to predict performance in

that environment.

In this chapter, we consider a particular environment, namely, the ORBIT

Laboratory of Rutgers University’s WINLAB [8, 9]; and we test a particular

simulator, namely, the Wireless Systems Engineering (WiSE) Tool, a ray-tracing

program developed by Bell Labs [4]. For a total of 18 chosen transmit-receive

(T-R) paths, we use a Vector Network Analyzer (VNA) to measure complex
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frequency responses over a wide bandwidth, i.e., from 3 to 4 GHz; and we use

WiSE to predict the impulse response. From both, we can compute (and make

comparisons for) the path loss, K-factor and RMS delay spread. Our findings

underscore the importance of accurately specifying the electrical properties of the

surfaces (walls, etc.) in addition to their layouts.

There is related published work in this area. For urban microcell environ-

ments [10] shows very good agreement between the signal strength (or path loss)

statistics of WiSE and those from extensive measurements. For indoor chan-

nels, [2] shows that the distributions of arrival times and angular spreads gen-

erated with WiSE agree excellently with those of an empirical model based on

measurements. In [7], extensive measurements in several office buildings are used

to derive statistics for K factor and path loss, which favorably compare with WiSE

predictions. All these results demonstrate the validity of using a ray tracing tool.

In this paper, we add to prior results on K-factor and path loss; add new results

for RMS delay spread; and show that a certain amount of preliminary trial-and-

error (measurement, comparison and adjustment) can enhance the accuracy of

such a tool.

The chapter is organized as follows. In Section 2.2, we describe the mea-

surement and ray-tracing simulation methods used here. Sections 2.3 and 2.4

describe, respectively, K-factor estimations derived from channel response data

and the estimation of RMS delay spread. Section 2.5 compares WISE predictions

with VNA measurements in terms of path gain, K-factor and RMS delay spread.
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2.2 Methodology

2.2.1 Measurements with a Vector Network Analyzer (VNA)

In our experiments, we measured the complex channel response with the Agilent

E5071B vector network analyzer (VNA) . Measurements were carried out at vari-

ous locations in the ORBIT room and office area of WINLAB, Rutgers University.

The ORBIT room is of size 20 m×25 m and it is surrounded by offices, cubicles

and hallways. The office area of WINLAB is as big as the ORBIT laboratory but

contains cubicles, lots of furniture and small office rooms.

All antennae were omnidirectional, at the same height, 1.25 m, and all trans-

mit powers were 10 dBm. The VNA measured the complex frequency response

at N equally spaced frequencies over a given frequency range. We did M trials at

each specific location. The time duration between the contiguous trials was two

seconds. This corresponds to the time spent for measuring the frequency response

at N points, and then processing and transferring the data over the network. The

impulse response in each trial was found via the inverse Fourier transform of the

complex frequency response. The resulting time sequence, h(n) represents the

complex envelope of the response, sampled at 1 ns intervals and referred to 3.5

GHz. Each term in the sequence can be regarded as a ray.

2.2.2 Simulations with the WiSE Tool

We used WiSE [4] to simulate the static radio environment of the ORBIT room

where we conducted the VNA measurements. Given a building plan and trans-

mitter location, WiSE simulates the impulse response for any path in the building

as a sum of rays. It accounts for the many rays that undergo reflection and trans-

mission, where the number of reflections included per ray is a program input. It
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takes into account path loss and the wall layer properties, such as dielectric coef-

ficient, width, conductivity, number of layers, etc. In WiSE, each wall is defined

by its geometric layout and by a parameter called ‘wall type’. An existing wall

type can be redefined or a new wall type can be defined by declaring dielectric

coefficients, width and conductivity for each layer of the wall.

2.3 K-factor Estimation Methods

2.3.1 Prior Work on Ricean K-factor Estimation

The K-factor is the ratio of the power in the line-of-sight (LOS) component to the

total power of the non-LOS (NLOS) components. It is a measure of the extent

of fading on the link, where lower K means deeper fading while a higher K-factor

would correspond to a more Ricean environment.

Various algorithms have been proposed to estimate the K-factor. The mo-

ment method reported in [11] estimates the K-factor from the second and fourth

moments of the signal fading variation over time, space or frequency. It is more

practical than many other proposed methods, as it requires power samples only

(no phase). The moment method can be generalized to use with different mo-

ments, as in [12]. The authors in [12] also propose a K-factor estimation method

using the in-phase and quadrature components, but this method is applicable only

to narrow band signals. The method of maximum likelihood (ML) estimation of

K-factor is proposed in [13], wherein the parameters of the Ricean distribution

are chosen as those parameters which maximize the joint probability density of

the observed outcomes.
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2.3.2 Estimation from Impulse Responses

The channel impulse response gives the rays received at different delays. The ray

that has the largest magnitude is designated as the line-of-sight “LOS” compo-

nent. The power sum of the other remaining rays constitute the “scatter” power.

The ratio of the LOS ray’s power to the scatter power gives the K-factor.

Note that the physical LOS component is almost always the one with the

shortest delay. Thus, the power we use for the K-factor numerator may or may

not be the actual LOS power. From the standpoint of estimating a K-factor that

accurately predicts the fading distribution, however, this is an intuitive approach

that (as we will show) leads to excellent results.

2.3.3 Estimation from Frequency Responses:

Coherent Method

The K-factor can be computed from the complex frequency response coherently.

Assume we know the complex channel response H(f) at M different frequencies.

Let V = |V |e−jϕ be the complex amplitude of the LOS component. It can be esti-

mated by minimizing the difference between the expected and measured channel

response. Thus,

V ∗ = argmin
V

Ef{|H(f)− |V |e−j(2πfτ+ϕ)|2} (2.1)

where τ is the delay at which the LOS component is received. The solution V ∗

to this minimization problem is

V ∗ = Ef{H(f)ej2πfτ}, (2.2)

where τ is found as

τ ∗ = argmax
τ

Ef{|H(f)ej2πfτ |}. (2.3)

This solution is equivalent to performing an inverse Fourier transform on the fre-

quency domain data and choosing the largest component as the LOS component.
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Therefore, the coherent method gives the same result as estimating the numerator

of the K-factor from the most powerful ray of the impulse response.

2.3.4 Estimation from Frequency Responses:

Moment Method

The moment method proposed in [11] assumed a temporal variation of the re-

ceived signal. It uses the second and fourth moments of the magnitude variation

over some long interval for the K-factor estimation. This method needs only the

absolute values of the received signal samples. It is also applicable to frequency

domain data, assuming a very wide bandwidth. Thus, the K-factor can be com-

puted by computing second and fourth moments from the samples of |H(f)|.

This method loses precision at very low K-factors, i.e., K ≤ 1. At the same

time, the fading distribution does not change much over that range of K, so that

imprecision in estimating K is not impactful.

2.4 RMS Delay Spread

The RMS delay spread is a measure of the frequency selectivity (or pulse disper-

sion) of a link. Pulse dispersion arises as a result of the signals taking different

times to cross the channel through different propagation paths. The RMS delay

spread is defined as the second central moment of the power delay profile:

τrms =
√

τ̄ 2 − τ̄ 2, (2.4)

where

τ̄ =

∑N
n=1 Pntn∑N
n=1 Pn

; τ̄ 2 =

∑N
n=1 Pnt

2
n∑N

n=1 Pn

; (2.5)
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N is the number of received rays; and Pn and tn are, respectively, the power and

arrival time of nth ray 1.

τrms =
1∑N

n=1 Pn

√√√√ N∑
n=1

N∑
m=n+1

PnPm(tn − tm)2. (2.6)

We can rewrite (2.6) as

τrms =

√√√√ N∑
n=1

N∑
m=n+1

ρnρm(tn − tm)2 (2.7)

where ρx is the normalized power of xth ray,

ρx =
Px∑N
n=1 Pn

. (2.8)

Clearly, 0 ≤ ρx ≤ 1. From (2.7) it is obvious that RMS delay spread depends

only on delay differences, and does not depend on where we set the origin, τ = 0.

It also does not depend on the transmit power, but solely on the power ratios of

the rays.

2.5 Comparing VNA Data and WiSE Predictions

2.5.1 Transmitter-Receiver Paths Measured

We report here on VNA-WiSE comparisons for 18 different transmitter-receiver

paths in the ORBIT lab. We repeated such experiments for various other paths

and found similar results. Specifically, we measured the complex frequency re-

sponse at 1601 points between 3.0 and 4.0 GHz. We repeated this VNA ex-

periment 50 times for each path. Since the differences among the experiments

were small, we show the results for only instance among 50. We chose the fre-

quency range as 3-4 GHz to avoid interference from the widely used 2.4 and 5

1We can regard Pn as the squared magnitude of the nth ray in the impulse response, as
described in Section 2.2.1 for the VNA data and in Section 5.2 for WISE. Also, N is not
necessarily the same for the VNA-derived and WISE-derived impulse responses.
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Figure 2.1: Transmitter-receiver locations within ORBIT lab: T → R, A → B
and T1 → C to T16 → C

GHz bands. Fig. 2.1 shows the 18 transmitter-receiver paths T → R, A → B

and from T1 → C to T16 → C. T and R are 3.6 m apart; and A and B are 5.9 m

apart. The transmitter locations T1 to T16 are located on a square of size 12.2

m x 12.2 m, where neighboring transmitter locations are about 3 m apart. The

receiver location C is at the center of this square.

2.5.2 Wall Properties

The walls in the ORBIT lab are made of multiple layers of different materials

used for isolation and shielding. Moreover, not every wall has the same layers;

and we do not have exact information on the properties of these layers. Therefore,

modeling of the walls is not straightforward. We considered, for each wall, various

predefined wall types in WiSE. We have chosen those wall types for which pre-

liminary experiments and comparisons between VNA and WiSE results showed

the best agreement. For the ceiling and floor we chose a concrete wall type, for

the other walls, we chose metallic and sheetrock wall types.

The pillars on the radio path cause diffraction, reflection and transmission,
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which affect the received power significantly. Therefore, accurate modeling of

the pillars is necessary. We modeled the pillar walls using a sheetrock wall type.

We know that each pillar is built with a metallic block inside. Therefore, we

added a second layer of walls made of metal inside the pillars. During our search

for the best wall type combinations, we learned how critical the electrical prop-

erties of the walls are in addition to their geometric layout. We conclude that

a certain amount of preliminary trial-and-error (measurement, comparison and

adjustment) is needed for the prediction tool to be confidently applied.

2.5.3 Path Gain, K-factor and Fade CDFs

The cumulative distribution function (CDF) of the path gain (power ratio) can

be obtained directly by sorting the measured or simulated frequency response

samples. We call this the empirical CDF. A good fit to this curve is found in

every case to be the theoretical Ricean CDF, parameterized only by the K-factor

and average power gain.

Fig. 2.2 compares the path gain CDF’s for the path T → R. We see that

the theoretical curves (obtained for K-factors estimated using either the moment

method or the impulse response method) are very good matches to the empirical

CDF’s. Also, the WiSE-based and VNA-based CDF’s of path gain are very close

to each other. We obtained similarly good matches also for the other 17 links.

Table 6.1 summarizes the average path gains and the variation of the K-factors

for the 18 paths considered. The measured and predicted values are seen to be

in good agreement. Additionally, our results show that, in indoor environments,

the K-factor is very low due to the transmissions through and reflections from the

walls and objects in the surrounding. The maximum K-factor we saw was 1.42.
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Figure 2.2: Comparison of CDF’s of path gain (T → R). The curves shown with
K-factor are the Ricean CDFs. The VNA-derived, and WISE-predicted CDFs
look like one another and like the Ricean CDFs.

2.5.4 RMS Delay Spread

The RMS delay spread, τrms, depends solely on the delay differences among the

rays and on their relative powers, (7). Because the delay spread is based on

moments of a function, impulse response rays at the larger delays can have an

important impact on the calculated result, even if their powers are very low. The

VNA-derived impulse response, being an inverse Fourier transform of measured

frequency response samples, has rays out to a maximum delay dictated by the

measurement bandwidth (1 GHz) and the number of samples (1601), i.e., out

to 1.6 µs. This is much larger than the actual maximum delay in an indoor

environment. The additional ’rays’ in the VNA-derived impulse response are the

result of measurement noise and other measurement artifacts.

To fairly compare the VNA-derived τrms with the value predicted using WiSE,

we should use a maximum delay, tη, that is common to both calculations. We

chose the delay at which the WiSE ray powers drops permanently below -30 dB

relative to the strongest ray in the impulse response. Thus, from both the VNA-

derived and WiSE-predicted impulse responses, we calculate RMS delay spread

using rays from relative delay 0 to relative delay tη.
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Table 2.1: Comparision WiSE and VNA data
Av. Path Gain [dB] K RMS d. s. [ns]
VNA WiSE VNA WiSE VNA WiSE

T→R -53.01 -52.04 1.42 1.26 41 34
A→B -56.29 -55.18 0.58 0.82 58 48
T1→C -56.07 -57.05 0.19 0.46 67 52
T2→C -54.38 -56.52 0.20 0.82 62 51
T3→C -56.86 -55.27 0.16 0.73 73 56
T4→C -54.21 -55.97 0.28 0.66 60 53
T5→C -55.55 -56.40 0.22 0.38 68 57
T6→C -53.63 -55.44 0.24 0.54 61 61
T7→C -53.18 -55.08 1.13 0.68 58 56
T8→C -53.60 -55.76 0.30 0.61 60 56
T9→C -54.21 -56.15 0.31 0.35 61 55
T10→C -53.42 -55.51 0.53 0.56 65 58
T11→C -56.96 -56.13 0.36 0.32 74 56
T12→C -55.04 -55.99 0.30 0.67 71 57
T13→C -57.74 -55.83 0.10 0.52 68 58
T14→C -55.99 -55.69 0.13 0.59 66 52
T15→C -55.13 -55.14 0.29 0.69 64 55
T16→C -55.63 -55.23 0.08 0.50 64 54

The RMS delay spreads for 18 links are shown in Table 1. They differ in most

cases by 20 percent or less, with the VNA-derived estimates always being higher.

In just a few cases, the VNA-derived value is as much as 30 percent higher.

The consistent increase of VNA-derived values over WiSE predictions may be

due to imperfect calibration of the VNA data. The VNA-derived delay spread can

be shown to be sensitive to calibration errors, and in a way that would increase

its estimated value (c.f., [14]). Correcting for this impairment would improve the

comparisons shown. This bears further study.

2.6 Conclusion

The comparisons in Table I for the 18 paths we studied show that the parame-

ters predicted using WiSE agree well with measurements. This suggests that a

well-designed ray-tracing program such as WiSE can be used with confidence for
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studying systems in indoor wireless environments.

In the course of our investigation, we identified two conditions that can com-

promise prediction accuracy of critical path properties: (1) Paths where diffrac-

tion is the primary propagation mechanism; and (2) environments for which the

material properties of the walls, floor and ceiling are not well-specified. The

first condition is relatively rare in indoor environments; the second condition can

be avoided by using a small number of preliminary measurements, augmented

by comparisons with predictions and corresponding adjustments of the assumed

material properties.

Further work in this area should include, primarily, its extension to other

paths and to other indoor environments. In addition, a limited amount of system

studies would help to test the conjecture that the parameters studied here (path

gain, K-factor and RMS delay spread) comprise a sufficient set for capturing the

properties of a channel response.
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Chapter 3

Modeling Temporal Channel Variations in

Indoor Wireless Environments

3.1 Introduction

Published models, whether stochastic or environment-specific, generally assume

the channel response is non-varying over time if both ends of the path are fixed.

However, in real environments channel responses vary over time, e.g. due to

movement of people in the environment. A question that has been open in the

propagation community is whether this variation is negligible, and how it can be

modeled in cases where the variation is not negligible. Here, we examine this

problem. We have measured the channel response in an office building under

different scenarios of environmental dynamics (i.e., movement of people), and we

have identified stochastic processes to characterize them.

If there is considerable motion of people in an otherwise fixed wireless envi-

ronment, there will be temporal changes in the response along a transmit-receive

path, i.e., the static responses predicted using the a ray-tracing tool like WiSE

will not suffice to fully characterize the channel. We can envision the full response

on a given path as being the sum of a static one (e.g., one predicted using site-

specific ray tracing) plus a zero-mean time-varying one, based on some type of

empirical model. More specifically, the time-varying part can be thought of as a

set of time-varying processes added to the rays of the static part.

Some questions that arise are: Which rays (or taps of the effective impulse

response) will be time-varying? What will be the relative strengths, e.g., the
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mean power of the time-varying part relative to the power of the static part?

How will this ratio vary across taps? Can the time variations of the tap gains

be modeled as random processes and, if so, what kind? How will the answers to

these questions depend on the channel bandwidth, the specific site, the specific

path, and the type of surrounding motion?

A full set of answers to these questions would lead to a highly useful model

for the time-varying part of the wireless channel response. At the same time,

acquiring these answers would take an extremely comprehensive measurement

program spanning many environments, paths, motion scenarios and bandwidths.

We have made numerous measurements, as we will report here, but not nearly

enough to satisfy such requirements. Our less ambitious goal is to show, for some

typical motion scenarios, that (1) only a few impulse response tap gains show

significant variations; and (2) a well-known family of Gaussian random processes

(the autoregressive processes, to be described later) can be used to characterize

the time-varying nature of the tap gains. Since these findings apply across all

the cases studied, we regard them as providing a highly useful starting point for

time-variation modeling of indoor channels with fixed transmitter and receiver.

We defined four different kinds of motion scenarios-the static one (no motion)

and three others-and we conducted a set of temporal measurements for each. Sec-

tion 3.2 describes these specific motion categories and the associated experiments.

Section 3.4 explains the use of random processes to describe these time variations.

Section 3.5 demonstrates our methodology for identifying the appropriate process

for each motion scenario. Section 3.6 summarizes our main findings.
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3.2 Measured Environments

Static Environment

We placed the antennae in the ORBIT room 3.65 m apart and measured the

channel response at N = 1601 frequencies between 3.0 and 4.0 GHz. We repeated

the measurement M = 100 times, at 2-second intervals. During the experiment,

no one was present in the room.

Quasi-Static Environment

We placed the antennae in the ORBIT room 7.9 m apart and measured the

channel response at N = 1601 frequencies between 3.0 and 3.1 GHz. We repeated

the measurement M = 600 times, at 2-second intervals. During the experiment,

10-15 people were sitting around a table placed between the antennae and were

eating lunch. Though they were sitting most of the time, people were also coming

or leaving from time to time, as would reflect a typical conference room scenario.

Random Movement

We placed the antennae in the ORBIT room 11.5 m apart and measured the chan-

nel response at N = 401 frequencies between 2.5 and 2.7 GHz. We repeated the

measurement M = 450 times, at 2-second intervals. During the experiment, only

one person was walking, running randomly between and around the antennae.

There were no other people present in the room.

Office Space

This experiment was conducted in the office area of WINLAB. The receiver was

placed near the door and the transmitter was placed at 10 m distance at a corner
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across. We measured the channel between 3.0 and 3.1 GHz at N = 1601 equidis-

tant frequencies. We repeated the measurement M = 750 times, at 2-second

intervals. During the experiment, 10-15 people were sitting in their cubicles and

walking in and out from time to time.

These experiments were conducted at different times as part of different projects

at our laboratory. For that reason, the combination of N, M and bandwidth, W,

was different for each of the four above scenarios. The point we make here is that,

despite differences in (N,M,W), the time variations of the tap gains for each cate-

gory of people motion lend themselves to characterization by well-known random

processes.

To study the four motion scenarios we defined and computed several quanti-

ties as follows: The total power gain (sum of squared magnitude of all impulse

response components) is denoted by Ptrial and is computed for each measure-

ment (trial). The average of Ptrial over the M measurements is denoted by Pavr.

Departures of the set of Ptrial values from Pavr reflect the temporal fluctuations

of the ray (or tap) gains. The mean-square fluctuation of the nth tap’s squared

magnitude about its average value is denoted by σtap(n) or just σtap.

3.3 Time Variation in Measured Environments

3.3.1 Static Environment

In the static environment the channel response is nearly constant. Ptrial deviates

at most 1% from Pavr. The variations of the individual tap power gains are also

negligible. σtap at the most variable tap corresponds to only 0.3% of Pavr. Since

the variations among the trials are insignificant, the channel response measured

for one trial suffices to describe the environment. This was the case for the

experiments that produce Table 6.1.
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Figure 3.1: Ratio of the trial power gain Ptrial to the average power gain Pavr

versus trials (Quasi-Static Environment)

3.3.2 Quasi Static Environment

Fig. 3.1 shows the ratio of Ptrial to Pavr in the quasi-static environment. Ptrial

varies at most 40% of Pavr. Fig. 3.2 shows σtap normalized by Pavr. Only four

taps have σtap/Pavr greater than 2%. This 2% threshold is used for comparing

different environments not for modeling purposes.

3.3.3 Random Movement

In this environment, Ptrial deviates up to 20% from Pavr. The variation shows

homogeneity, i.e., there are no trends or huge variations. Not all of the individual

rays contribute to this variation in the same way. We plotted σtap, normalized by

Pavr and saw that two taps contribute most to the variation of Pavr. All other

taps have σtap less than 2% of Pavr variation in this environment.

The reasons that some of the tap gains show significant variation can be

explained as follows. A moving object (e.g., a person or a clustered group of

people) corresponds to one (or possible two) delay bins of the impulse response.

The tap gain for each such delay bin will vary with time. For delays corresponding

to non-moving objects, the tap gain will be essentially constant. The sets of time
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samples taken for the highly variable tap gains showed, in most cases, a reasonable

conformity to a complex Gaussian distribution. This is likely due to the many

returns from numerous scatterers (people), and the central limit theorem.

3.3.4 Office Space

In this environment, Ptrial deviates up to 50% from Pavr. The variation has

multiple means and slopes. We plotted the standard deviations of the tap power

gains, σtap, normalized by Pavr, and saw that seven taps have normalized standard

deviations greater than 2%.

3.4 Time Variation Modeling

3.4.1 Prior Work on Autoregressive Processes

Autoregressive processes have been used for spectrum estimation purposes [15]

and for modeling the variation of the channel response across frequencies [16]. In

[16], the authors showed that a second-order AR process is sufficient to model the
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channel response across frequencies in a wideband indoor environment. Later,

this approach was used in the ultra-wideband (UWB) channel modeling of indoor

environments, [17]-[18]. A second-order AR process is proposed in [17] to capture

the main characteristics of the UWB channel. In these studies, the frequency

response is assumed to show insignificant change across time. To the best of our

knowledge, autoregressive processes have not been used to characterize temporal

variations of channel responses between fixed terminals.

3.4.2 Autoregressive Integrated Moving Average (ARIMA)

Models of the Variations

We measure the complex channel response at N equally spaced frequency bins

within a frequency range; we repeat this experiment M times within a time

interval; and we define a matrix H, where the entry in row i and column j

corresponds to the complex channel response value at frequency fi and trial tj:

H(fi, tj) = H(fi) + δH(fi, tj) i = 1 . . . N j = 1 . . .M.

H(fi) is the mean of a the channel response over M time instants at frequency fi;

δH(f, t) is the time varying part; and we model δH(f, t) through AR processes.

Specifically, we transform δH(f, t) into the time domain and obtain δh(n, t).

The (complex) variation of δh(n, t) at tap n across trials t constitutes a time

series. We denote this time series as x, and we model it using ARIMA processes.

We use the Box-Jenkins methodology, described in the Appendix, which also

classifies the different members of the ARIMA family of processes.

3.5 ARIMA Modeling and Results

We now describe the modeling of x at a single tap in each environment. Models

for the other significant taps can be found in a similar way. We will demonstrate
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Figure 3.3: Mean and standard deviation (Quasi-Static Environment)

the Box-Jenkins methodology step by step as we find an appropriate model for

the time variation in quasi-static environments. For the other environments, we

will merely summarize the results.

3.5.1 Quasi-Static Case

Figure 3.2 shows that tap#4 is the most time-varying one in this case. We now

model the discrete time series x for this tap.

Identification

Mean and Variance

A stationary time series has the window mean and standard deviation agreeing

with the overall data mean and variance to a great extent. We compute local

means and variances of the absolute tap gain shown in Fig. 3.3 using sliding

windows of size 50. 50% of the window mean samples deviate from the data

mean by at most 15% and 90% of the window mean samples are within 30% of

the data mean. Also, 90% of the window standard deviation samples are within

30% of the data standard deviation. This data can be classified as statistically

stationary.
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Figure 3.4: Auto Correlation Function (Quasi-Static Environment)

Auto Correlation Function (ACF)

For an MA process of order q the ACF is zero after the lag q. For an AR

process it decays to zero exponentially or as a mixture of damped sine waves.

Figure 3.4 shows the ACF of x. The horizontal lines at ρk = ±0.0982 show the

zero thresholds computed using the Barlett approximation (Eq.(2.1.13) in [19])

which gives the variance of the estimated autocorrelation values ρk at lags beyond

which the theoretical ACF may be deemed to have died out. The ACF decays

exponentially and is effectively 0 after the lag 33.

Partial Correlation Function (PCF)

For a stationary process X, the partial autocorrelation at the kth lag is the corre-

lation coefficient between X1 and Xk+1 after eliminating the effect of X2, . . . , Xk.

For an AR process of order p, the PCF is zero after the lag p. Fig. 3.5 shows the

PCF of x. The standard error σ of the estimated PCF values is approximately

1/
√
n, where n is the number of samples. The horizontal 2σ lines are used as zero

thresholds. The PCF is below the threshold after the third lag.
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Figure 3.5: Partial Correlation Function (Quasi-Static Environment)

Choosing the possible models

Since the PCF is effectively zero after the third lag and the ACF tails off expo-

nentially, we conclude that an AR(3) model is suitable. The value of PCF at the

second lag is very small; therefore, the AR(2) model is also worth considering.

Estimating Parameters

We have estimated AR coefficients for the AR(2) and AR(3) models. The coeffi-

cients for the AR(2) model are a2(1) = 1.0000, a2(2) = −0.5346+0.0249i, a2(3) =

−0.1833 − 0.0235i. The coefficients for the AR(3) model are a3(1) = 1.0000,

a3(2) = −0.5175+0.0221i, a3(3) = −0.1332−0.0228i, a3(4) = −0.0934+0.0032i.

Diagnostic Check

The AR(2) model and the AR(3) model in Fig. 3.6 show variations similar to

those of the data. Choosing either one of them would not make much difference.

For the cases where it is not so obvious which model is better, it is useful to

have a criterion which indicates the appropriate model. We used the Akaike

Information Criterion (AIC) to compare the models [20]. The AIC was derived

by minimizing an information theoretic function, and it includes a penalty term
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(Quasi-Static Environment)

for extra AR coefficients. The model which has the lowest AIC metric is chosen.

In this case, the AIC was nearly the same for both models: For the AR(2) model,

it was −15.68, and for the AR(3) model, it was −15.69. The comparison of

autocorrelation functions the data x and of the AR(3) process is shown in Fig.

3.7. The autocorrelation function of the AR process has the similar decay as the

data.
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3.5.2 Random-Movement Case

Here, we modeled x at the third most varying tap. For this tap, 90% of the

window mean samples deviate from the data mean by at most 18%. 90% of the

window standard deviations are within 17% of the data standard deviation. Thus,

the window mean and standard deviation agree to a great extent with the data

mean and standard deviation, so the process is deemed to be stationary. The

ACF in this case tails off as a mixture of exponential decays and damped sine

waves and PCF is zero after the first tap. Fig. 3.8 shows AR(14) process which

shows similar variations with the data.

3.5.3 Office Space

We modeled x at the most varying tap. The mean function in this case is not con-

stant. Moreover, the all-pole model has poles outside the unit circle. Therefore,

the process is not stationary. We applied a difference operator and investigated

stationarity again.

To begin, we compared the window means and standard deviations with those

for the first order difference ∇x. The local standard deviations were found to be
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Figure 3.9: ARIMA(15,1,0) model compared with data (Office Space)

close to those for the data. The all-pole model now has all of the poles inside

the unit circle. The window mean is close to zero, which is also the data mean.

Therefore, the first order difference process ∇x is deemed to be stationary.

Next, we find an ARMA model for ∇x. The ACF of ∇x decays as a mixture

tails off as a mixture of exponential decays and damped sine waves, and the PCF

has an exponential-dominated decay. It is effectively zero after 11. lag. We choose

ARIMA(15,1,0) process as shown in Fig. 3.9.

3.6 Conclusion

We have shown that the time variations of the channel response in an indoor

environment are not negligible in common scenarios such as people sitting around

a table or working in an office. We stochastically modeled the time variation of

the channel response about the mean using members of the ARIMA family of

processes and showed that this can lead to an accurate representation. Our key

finding is that ARIMA processes are capable of describing the time variation of the

impulse response terms in these environments. We obtained excellent agreement

using such processes for each of the categories identified and measured.
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Chapter 4

Emitter Localization and Visualization (ELVIS):

A Backward Ray Tracing Algorithm for

Locating Emitters

4.1 Introduction

Except for urban canyons, the localization problem for outdoor scenarios can be

effectively solved by attaching GPS devices to the transmitters that need to be lo-

calized [21]. However, the reception of GPS signals is unreliable in most buildings.

Therefore new technologies are needed to localize emitters inside buildings.

4.1.1 Prior Work

The various approaches in the literature for localizing first responders inside

buildings can be broadly classified into three categories: TOA, AOA and signal-

strength-based techniques [22] [23] [24]. These can be realized within the domain

of existing networks and technologies such as, GSM networks [21], 802.11b net-

works [25], Bayesian-based localization or ultra-wideband (UWB) techniques.

4.1.2 Our Contributions

We propose a new algorithm, called ELVIS for localizing emitters based on back-

ward ray tracing. Our work uses backward ray tracing for the first time for indoor
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emitter location prediction. ELVIS combines TOA, AOA and signal-strength-

based techniques with backward ray tracing into a single framework. One advan-

tage of our algorithm is that three dimensional (3D) localization could be done

even with one receiver.

We assume that each first responder carries a beacon emitting a signal of

known characteristics. We locate such an emitter placed inside a building based

on signals received by one or more receivers. The receivers measure received

power as a function of AOA as well as TOA.

To assess the performance of ELVIS, it would be ideal to determine location

based on data collected from high angular and temporal resolution receivers. As

a preamble to making such measurements we estimate the localization accuracy

based on synthetic data obtained from WISE (Wireless System Engineering), a

forward ray tracing program, developed at Bell Labs [4].

As an application, we apply ELVIS to localize an emitter placed in the Bell

Labs Crawford Hill building in Holmdel, NJ. We emulate this test environment

using WISE. We specify the building blueprint, emitter position and transmit

power, and WISE gives the received power, AOA etc. of all rays at any point

in the building. We run ELVIS on this data and localize the emitter. As a

practical matter, ELVIS would obtain its data from directional antennae placed

at the receiver. Measurements collected using real receivers suffer from degraded

accuracy because of finite angular and temporal resolution of the receivers. In

addition, as ELVIS relies on using the blueprint of the building to estimate the

location of the emitter; imperfect knowledge of the environment leads to errors

in the amplitude of the arriving signals, perceived as ”fading”. Additive receiver

noise is yet another source of error. We emulate such effects by perturbing the

values given by WISE with errors due to fading, noise and finite resolution before

running ELVIS.
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Figure 4.1: Backward ray tracing: Each ray becomes a new arrival at the effective
point of incidence

4.2 WISE (Wireless System Engineering)

Given a building plan, transmitter and receiver locations, WISE measures radio-

signal properties at any point in the building. WISE takes into account the layer

properties of the walls. The reflection and transmission coefficients are determined

based on the angle of incidence and layer properties at each interaction with a

wall. WISE simulates the ray traces at the receiver as in Figure 4.2. The relevant

output of WISE for generating ELVIS inputs is N received rays and their AOA’s

(both azimuth and elevation angles), powers and delays.

4.3 Backward Ray Tracing in ELVIS

In ELVIS, the N ray arrivals at the receiver which have the most received power

are considered, with N chosen to reduce complexity without sacrificing perfor-

mance. Each of these N rays is traced backward to the wall with which it last

interacted. The reflected and transmitted rays are determined at the point of

incidence, as shown in Figure 4.1. Backward ray tracing is applied until stopping

conditions are reached or the ray leaves the building. The same concept is applied

for other arrivals to determine candidate intersection points, one of which could

be a true emitter location. For backward ray tracing, we have to determine if

the ray hits a wall and if so, where. In [26] we discuss this problem in detail and

derive conditions for the 3D case.
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4.4 Emulating Degradations

We treat the case of ideal conditions (no other objects, perfectly-known blueprint

and materials), but we also treat the departures from ideal. We assume, initially,

that each receiver makes perfect measurements of time delays, arrival angles and

ray amplitudes. To obtain realistic assessments, however, we then relax these

assumptions by considering finite resolutions in delay and angles, and signal fading

plus noise. Our paper [26] discusses in detail how we emulate these degradations.

4.5 ELVIS

4.5.1 Basic Algorithm

ELVIS consists of three steps:

1. Backward ray tracing - For each arrival, we apply the backward ray trac-

ing method separately. We save all backward-traced rays along with their

powers and propagation delays. We stop backward ray tracing if any of the

stopping conditions occur.

2. Determining candidate locations - Candidate locations are pairwise inter-

sections of the back-traced rays. Under ideal conditions, emitter location

is characterized by having multiple ray intersections with all backward ray

traced powers equal to each other and to PT and with the same generation

times.

3. Choosing the actual source location - As there are usually multiple candidate

locations, there is a need to establish metrics for choosing the most likely

one. We consider the following metrics:

(a) Number of intersections in the vicinity: The regions with multiple

candidate locations are more likely to contain the emitter location
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therefore the candidate locations in these areas have higher metric.

(b) Predicted power difference between rays: At the true emitter location

the predicted powers of intersecting rays are expected to be equal.

(c) Power difference between the expected transmit power PT and predicted

power P for each intersecting ray: At the emitter location the pre-

dicted and estimated power should be equal.

(d) Relative delay between arrivals: ELVIS does not depend on the arrival

times of the rays. However, we assume the receiver is able to estimate

delay differences among arriving rays. ELVIS can also estimate these

arrival times for any given candidate location. Thus, the set of relative

delays measured by the receiver can be compared against the set of

relative delays computed for any candidate location. The difference

comprises another metric.

The metrics can be weighted differently depending on the reliability of the

measurement. The candidate location which has the highest metric sum

is chosen. In this work, we weight the metrics equally. The metrics are

explained in mathematical detail in [26].

4.5.2 Multiple Receivers

Each receiver sends to the central processing unit the AOA of each incoming ray,

TOA, received power and the coordinates of the receiver. The ELVIS algorithm

for multiple receivers is the same as for the single receiver case, except for the ray

selection. We select the N strongest (in terms of received power) rays received

among all antennas.
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Figure 4.2: WISE output: Radio paths between receiver and emitter in the Craw-
ford Hill building. This building is about 120 m x15 m

4.6 Simulation results

For investigation of the overall performance in the whole Crawford Hill building,

we fixed the location of the receivers and varied the location of the emitter among

72 sample locations uniformly distributed in the building. We have computed for

each sample point the location error, i.e. the distance between predicted and true

emitter location and determined the CDF (Cumulative Distribution Function).

We chose N = 5 as a tradeoff between computational complexity and accuracy

in our simulations.

4.6.1 Perfect Measurements

First, we assume the receiver is able to resolve rays with exact measurements of

angle, delay and power.

Single Receiver

Figure 4.3 shows the CDF of the location error using a single receiver. We see

that, for 90% of the building, the location error is less than 2 cm with a maximum

error of 9 cm.
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Figure 4.3: CDF of Prediction Error by perfect measurement of power, TOA and
AOA

Multiple Receivers

Figure 4.3 also shows the CDF of the location error using 6 receivers, which are

placed both inside and outside the building. We could localize over 90% of the

building within 1 cm using multiple receivers, with a maximum error of 3.5 cm.

4.6.2 Degraded Measurements

For angular degradation, we quantized the elevation and azimuth angles using 0,

10 and 20 degree quantization bins. For the temporal degradation, we quantized

the TOA’s of the rays using 0, 10, and 20 ns bins. We also distorted the signal

amplitude to emulate fading and added noise to the measurements. In the follow-

ing CDF’s, N denotes degradation due to noise, F+N denotes degradation due

to fading and noise and 10 ns-20 ns denote the width of the quantization bin for

degradation of TOA.

Single Receiver

We compared the CDF of location error for various degradations, assuming perfect

measurement of the AOA. In the noise-only case, we can localize an emitter within

5 m over 93% of the building. Adding fading to the signal amplitude, we can
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Figure 4.4: CDF of Prediction Error using 20 degree angular bins and various
degradations

localize over only 75% of the building within 5 m over. Figure 4.4 shows that

setting angular quantization bins to 20 degrees, we can localize within 5 m over

only 10− 20% of the building.

Multiple Receivers

Using 6 receivers and having perfect angular resolution, the location errors are

within 5 m over 90% of the building at worst. For bins of 20-degree width, Figure

4.4 shows that location error within 5 m occur over only 48% of the building and

10 m occur over 80%. Also the spread over different cases (N, F+N, etc.) is

smaller with multiple receivers.

4.7 Conclusion

We have developed and simulated ELVIS, a backward ray tracing-based local-

ization tool for indoor environments. We have determined that backward ray

tracing can be effective even with degradations, especially if multiple receivers

are used. We find that, if the angular resolution is high, ELVIS gives reliable

results with a single receiver. At lower angular resolution, multiple receivers are

necessary to localize with good accuracy. Fading and noise are not major causes
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of degradation in most cases of interest.

We have simulated the measurements at the receiver using WISE. Further

work could include (1) investigation of other metrics, to improve the perfor-

mance; (2) investigation of the performance in other buildings; (3) adding other

error sources, such as uncertainties in the blueprint and wall properties; and (4)

verification of this technique through measurements.

While we find that the backward ray tracing technique in ELVIS produces

highly accurate results using ideally accurate measurements, finite angular reso-

lution is the primary source of degradation in accuracy. In the approach taken

here the rays are traced back in the direction of the center of the angular bin

on which they were received. Finite angular resolution can lead to rays being

back-traced in wrong directions. With increased distance such rays may begin

striking wrong walls and take paths that are not even in the same area as the

transmitter. A possible remedy for this would be to back-trace multiple rays

within each angular bin, allowing better candidate locations to be discovered.
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Chapter 5

An Empirically Based Path Loss Model for

Wireless Channels in Indoor Environments

5.1 Introduction

We present a statistical path loss model derived from simulated data with a ray

tracing tool. We collected simulated data in four buildings. The characterization

used is a nonlinear curve fitting of the decibel path loss to the decibel distance,

with a Gaussian random variation about that curve due to the shadow fading.

The transmission losses across the walls makes the linear models inappropriate

for indoor scenarios. We model the transmission losses across the walls with an

additional exponential term whose parameters show variation from building to

building.

5.2 Data Collection

We predicted the received power in four different buildings using WISE at multiple

transmitter-receiver locations. In this chapter we use this data for analyzing a

new path loss model for indoor environments. In all of our simulations we set the

the receiver and transmitter antenna heights to 2 m and set the frequency at 2

Ghz.
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Figure 5.1: Building plan of AT&T Middletown Building

5.2.1 WISE Simulations for AT&T Building in Middle-

town, NJ

Figure 5.1 shows the AT&T Building plan in Middletown. It is 200-m long in each

direction. We have chosen 175 transmitter locations uniformly distributed in the

building 10 m distant from each other. For each of these transmitter locations

we predicted received power with WISE at 14093 receiver locations. The receiver

locations are uniformly distributed in the building with 1-m separations.

5.2.2 WISE Simulations for the Hynes Convention Center

in Boston, MA

Figure 5.2 shows the the building plan of the Hynes Convention Center. It is a

building of size 190 m x 140 m with large rooms. We have chosen 229 transmitter

locations uniformly distributed in the building 10 m distant from each other. For

each of these transmitter locations we predicted received power with WISE at

20331 receiver locations. The receiver locations are uniformly distributed in the



41

Figure 5.2: Building plan of Hynes Convention Center in Boston

Figure 5.3: Building plan of Crawford Hill Building

building with 1-m separations.

5.2.3 WISE Simulations for the Alcatel-Lucent Building

in Holmdel, NJ

Figure 5.3 shows the plan for this building (also called Crawford Hill Lab). It

is a building of size 120 m x 15 m . We have chosen 24 transmitter locations

uniformly distributed in the building with 10-m separations. For each of these

transmitter locations we predicted received power with WISE at 162266 receiver

locations. The receiver locations are uniformly distributed in the building with

0.1-m separations.
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Figure 5.4: Curved office Building

5.2.4 WISE Simulations for a Curved Office Building

Figure 5.4 shows the the plan for a curved building of size 90 m x 14 m. We have

chosen 37 transmitter locations uniformly distributed in the building 10 m distant

from each other. For each of these transmitter locations we predicted received

power with WISE at 9813 receiver locations. The receiver locations are uniformly

distributed in the building with 0.5-m separations.

5.3 Path Loss Model and Results

The scatter plot of path loss and distance is shown in Fig. 5.5 for the data

collected in the Curved Office Building. In this figure the circles correspond

to the means of the sample path loss values in each 0.1-dB-wide distance bin.

Unlike Fig. 1 in [27], which shows the scatter plot of path loss and distance for a

macrocell in the Seattle environment, a linear regression alone is not appropriate

in an indoor environment. We see that the bin averages follow a nonlinear shape

as the distance increases. An explanation for this would be the effect of the

transmission losses through the walls, which gets much more significant as the

receiver is located further from the transmitter.

The transmission losses are parameterized as:
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Figure 5.5: Path Loss versus distance

T = 10 log e−αd/d0 (5.1)

where α is a constant, d is the distance and d0 is the normalization factor for the

distance, i.e., a convenient ‘reference distance’. We set d0 = 1m. (5.1) can be

written as:

T = Cexp(log(d/d0)/ log e) (5.2)

where C = −10α/ loge. We extended the pathloss model in [27] by adding the

term T in (5.3). We found that, the fit to bin averages follow can be parameterized

as:

PL = A+B log d+ Cexp(log(d/d0)/ log e) (5.3)

where A, B, C are the parameters.

Figure 5.5 shows the curve fit according to this parametrization. In the other

buildings we investigated we found similar tendency as in Fig. 5.5. We clustered

the path loss samples per 0.1-dB-wide distance bin and computed the mean and

the standard deviation in each bin. Figure 5.6 show the variation of bin averages in

each of these building, and Fig. 5.7 show the corresponding curve fits. Comparing

Fig. 5.6 with Fig.5.7 we see that the parametrization is capable of modeling the
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Figure 5.6: Sample means of the path loss values in each distance bin

nonlinear decrease of pathloss. Figure 5.8 shows the standard deviations about

the mean path loss curves per 0.1-dB-wide distance bin for each building. The

standard deviation increases with the transmitter receiver locations and each

building show different variation of standard deviation with distance.

The CDF of the shadow fading component (dB variation of the path loss sam-

ples around the parameterized curve) for the Curved Office Building is shown in

Fig. 5.9. In this figure a straight line denotes a Gaussian distribution. Therefore,

we conclude that the variation of the path loss samples around the mean is log-

normal if we consider the data collected from multiple receiver and transmitter

locations together. We found similar results for the other buildings we consid-

ered. The parameters A, B, C are building specific. The specific values for each

building we considered are given in Table 6.1. These are composite values over

all Tx locations. We may want to do this differently.

We compared for the Crawford Hill Building the path loss model in (5.3) con-

taining A, B, C terms with the conventional linear path loss model containing

only the A and B terms. Figure 5.10 shows the standard deviations versus dis-

tance from the transmitter for both path loss modeling approaches. The stand
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deviations from the linear fit considering only A and B is much higher than the

standard deviation from the exponential fit with parameters A, B, C. For indoor

path loss modeling, this emphasizes the value of adding the exponential C term

to the conventional path loss model. The linear path loss model with only A, B

terms does not adequately model large indoor environments where transmission

losses gain much more importance with increasing distance.

5.4 Conclusions

Our modeling approach for indoor path loss using ray-tracing can find several

useful applications. For example, a system planner can infer overall channel char-

acteristics in a specific building. This path loss model could be used for testing

the performance of the algorithms for deploying wireless systems in indoor envi-

ronments. Instead of testing an algorithm in multiple buildings by doing extensive

measurements or simulations, the performance can be evaluated by varying the

parameters of the path loss model. Determining ranges of the parameters which

correspond to the realistic buildings bears further study. Another application

could be the use of WISE for a specified building for each of the N base location,

which are in the order of 8-12, to find the parameters of the path loss model.

That way, system planners can determine where to put bases to cover the area

for a given system, and they do not have to store millions of data points, just a

relatively small number of parameters.

Table 5.1: Parameters of the Path Loss Model
Building A B C

Hynes -40.16 -18.04 -0.18
Middletown -39.52 -21.92 -0.26
Curved -39.82 -22.79 -0.57
Crawford Hill -41.71 -22.69 -1.39
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Figure 5.7: Curve fits to the mean curves in Fig. 5.6
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buildings we considered.
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Chapter 6

Calculating MIMO Performance in Urban

Microcells Using Ray-Tracing

6.1 Introduction

The focus of our study is on urban area with a dense user population. We assume

this area is served by microcells with small, low-cost base stations; and that,

to maximize throughput and reliability, the links use multiple-input/multiple-

output (MIMO) techniques. A challenge in the evaluation of such a system is

to realistically capture the spatial variation of the channel gain matrix along a

path and throughout an area. MIMO techniques exploit the uncorrelated spatial

channels offered by wireless multipath to improve reliability and throughput. The

frequent assumption in modeling the channel is that the elements of the channel

gain matrix are complex Gaussian (Rayleigh fading) and the correlations are zero;

or there is a non-zero K-factor and a specified correlation matrix [28]. There are

also physical stochastic models which model clusters of scatters in the environment

geometrically [29] or describe the paths between the transmitter and receiver

locations by statistical parameters only [30], [31]. In using a purely stochastic

model, one is essentially modeling the channel gain matrix, in particular, the

average path gain; the fading statistics of the individual path gain matrices; and

the correlations among them [32], [33], [34], [35].

Stochastic models require many assumptions about the fading statistics; even

when they are accurate, it is not easy to model the channel gain matrix as it
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varies along a specific path. We present an evaluation approach for narrowband-

MIMO systems where the location-specific and time varying nature of MIMO

channel gains is simulated via an environment simulator based on ray tracing and

site-map. By using such a simulator in specific environments, neither the sets

of assumptions for stochastic modeling nor long measurement campaigns [36] are

needed. We determine the actual channel gain matrix at closely-spaced discrete

positions of the terminal as it moves through a given environment. This permits

us to compute performance for a specific Tx-Rx link, or a specific Tx location

and Rx trajectory.

For urban microcell environments [5] and [6] show very good agreement be-

tween the signal strength (or path loss) statistics of environment simulators based

on ray-tracing and those from extensive measurements. In [5] the comparisons

are done for data collected in Manhattan and Boston, and in [6] the comparisons

are done for data collected in a two-square kilometer area of Rosslyn, Washington

DC. The comparisons show that ray-tracing based simulators can predict signal

strengths in these outdoor environments with very good accuracy.

A ray-tracing approach for location-specific performance was also reported in

[37], wherein bit-error-rate performance was determined for specific trajectories

and terminal speeds in urban microcells for single-antenna links. Here, we do

something similar, only for throughput on MIMO links. Specifically, we simulate

MIMO channels in Manhattan and Boston, for many paths in each city. In all

scenarios, we consider the movement of mobiles along streets and compute the

channel gain matrix, capacity and throughput versus position. We also obtain the

cumulative distribution functions (CDF) of these metrics over the paths traversed.

Section 6.2 compares performance for MIMO configurations with vertical and

horizontal array orientations; different array combinations (3x1, 2x2, 4x2, 3x3,

4x4); varying antenna heights; two antenna types (dipole, isotropic); two polariza-

tions (vertical, horizontal); and four MIMO transmissions schemes (Water-filling,
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Spatial Multiplexing, Beamforming, Double Space Time Transmit Diversity (D-

STTD) [38]). We also compare MIMO performance with that for single-antenna

links. Finally, we compare, for both line-of-sight (LOS) and non-line-of-sight

(NLOS) paths, the CDFs derived using the ray-tracing emulator with those pre-

dicted using a familiar stochastic model, i.e., i.i.d. Rayleigh fading gain matrices.

On paths where none of the practical MIMO transmission modes is superior

to all others over an entire path, adapting the MIMO transmission mode to the

varying channel conditions allows additional gains. In Section 6.3, we propose

practical methods of mode adaptation. In each scheme, the transmitter switches

between diversity and spatial multiplexing modes to achieve good data rates as

the mobile moves.

In Section 6.4, we consider multiple MIMO base stations to cover a full urban

neighborhood and investigate co-channel interference (CCI) and achievable rates.

We use binary integer programming to solve for the minimum number of base

stations needed such that received SNR throughout the desired coverage area is

above a specified threshold. We then evaluate different possible frequency reuse

plans and compare them in terms of achievable rate.

6.2 Location-Specific MIMO Performance in Urban Wire-

less Channels

6.2.1 Motivation

We devise an evaluation approach for wireless systems using MIMO links wherein

the location-specific channel gains are determined for actual path geometries.

Specifically, we simulate the channel gain matrices along various paths in Boston

and Manhattan using a versatile and accurate ray-tracing tool. We compare

and quantify the performance of MIMO systems for various transmission schemes
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(spatial multiplexing, beamforming, space-time transmit diversity) and antenna

configurations (array size, array orientation, element pattern, polarization and

height). Our performance metric is the CDF of throughput for users moving

along streets. We compare, for both line-of-sight and non-line-of-sight paths, the

CDFs derived using the ray-tracing emulator with those predicted using a familiar

stochastic model, i.e., i.i.d. Rayleigh fading gain matrices.

6.2.2 Simulation Method

We use ray tracing to simulate the MIMO channel gain matrices, and also the

single-antenna channel gain, for a fixed base (transmitter) and varying mobile

(receiver) locations along a path. We predict the complex channel gain matrix,

H, in 5-cm steps along every path we considered. To compute the noise variance,

we assume a noise figure of 10 dB and a noise bandwidth of 5 MHz. Unless

otherwise noted, the total transmit power is 10 dBm; the center frequency is 2.4

GHz; and the base and mobile antenna heights are 10 m and 2 m, respectively.

Antenna elements are placed on a uniform linear array on both sides of a link.

Using blueprints (site maps) for Boston and Manhattan, we did simulations for

14 different paths on various streets in both cities. Figure 6.1 shows three sample

paths among the 14 paths we considered: 1) a 274-m LOS path on Park Avenue

in Manhattan between 48th and 52nd Streets, where the transmitter is fixed at A

and the receiver moves from P1 to P2 2) A 323-m long path on Lexington Avenue

in Manhattan, between 100th and 105th Streets, where the transmitter is fixed at

B and the receiver moves from P3 to P4 3) A 50-m NLOS path on the 103rd

Street, where the transmitter is fixed at B and the receiver moves from P5 to P6.

The ray-tracing tool we use is WiSE, a software program developed by Bell

Labs that is capable of capturing the realism of many radio approaches and envi-

ronments [?]. At each receiver position, WiSE computes the complex receive rays

and can deliver both the sum of ray powers and their complex ray sum (vector
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Figure 6.1: Street plan in Manhattan. Three paths are shown: 1) The transmitter
is fixed at A and the receiver moves from P1 to P2, a 274-m LOS path on Park
Avenue. 2)The transmitter is fixed at B and the receiver moves from P3 to P4, a
323-m LOS-path on Lexington Avenue. 3) The transmitter is fixed at B and the
receiver moves from P5 to P6, a 50-m NLOS-path on East 103rd Street.

sum) at a particular frequency. In this study, we primarily use the vector sum,

so as to obtain a gain matrix, H, under a narrowband signaling assumption.

Unless otherwise specified, we will show results for capacity, using standard

formulas from the literature [39]. In some cases, however, we will show results

for achievable data rate (throughput) for alternative MIMO transmission modes,

such as beamforming and space-time coding.

6.2.3 Results

We now present graphical results for some of the many cases we considered, both

for the specific paths shown in Fig. 6.1 and for the other paths in the two cities.
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Our primary aim is to quantify the impact of the many design parameters that

determine throughput performance. In addition, we examine various modes of

system evaluation, including different features of the ray-tracing tool and the use

of stochastic models, to see how sensitive our performance estimates are to the

evaluation method.

Array Size and Transmit Power

We compared CDFs of capacity for single antenna, 2x2, 3x1, 4x2 and 4x4 links for

the path P1-P2 shown in Fig. 6.1 along the Park Avenue. The average capacity

for 4x4 MIMO is 80% greater than the average capacity for 2x2 MIMO, less than

a 2:1 increase. Similarly, 2x2 MIMO yields only 65% more average capacity than

a single-antenna system. A 3x1 MIMO system increases the average capacity

by 19% over a single antenna system, as a result of added diversity. Similarly,

the average capacity for 4x2 MIMO is 21% higher than the average capacity for

2x2 MIMO. Finally, average capacity increases roughly linearly with dB-transmit

power. This is consistent with the capacity equation, wherein capacity is roughly

proportional to the logarithm of SNR.

Polarization

Figure 6.2 compares CDFs of capacity for 4x4 MIMO using dipole antennas with

vertical and horizontal polarizations and also using isotropic antennas. Using ver-

tically polarized dipoles yields the more capacity than using horizontally polarized

dipoles: It yields 7.3 bits/s/Hz more average capacity than use of horizontally-

polarized dipoles, which corresponds to a 31% increase; and use of isotropic an-

tennas yields additional 3 bits/s/Hz average capacity, which corresponds to a 10%

increase compared to vertically polarized dipoles.
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Figure 6.2: CDFs of capacity for 4x4 MIMO for various polarization types along
the Park Avenue path in Fig. 6.1. Use of vertically polarized dipoles yield more
capacity than the horizontally-polarized dipoles. Including diffraction effects does
not change the CDF perceptibly.

Diffraction

Figure 6.2 also compares capacity CDFs, for the case of vertically polarized

dipoles, both with and without diffraction effects considered in the ray-tracing

tool. Including diffraction effects in the simulation increases accuracy but also

running time, so it is valuable to see how much it matters. For the LOS path

along Park Avenue in Fig. 6.1 the predicted capacity CDF does not change per-

ceptibly. Here, the buildings on the both sides of the road heave heights from

20-m up to 217-m and they are much wider than the buildings along Lexington

Avenue. For the NLOS path P5-P6 on the East 103rd including diffraction effects

increases the predicted average capacity by 0.7 bps/Hz. For the LOS path on

Lexington Avenue Fig. 6.1, including diffraction effects increases the predicted

average capacity by 0.4 bps/Hz and the CDF is (very) slightly different, as seen

in Fig. 6.3.

For a 20-m long NLOS path in Boston the effect of including the diffraction

is to increase the predicted average capacity by 2 bps/Hz. The CDFs for this

case, seen in Fig. 6.3, clearly differ. At some specific locations along this path,
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Figure 6.3: CDFs of capacity for 4x4 MIMO with vertically polarized dipole
antennas, both with and without diffraction effects considered for the LOS path
P1-P2 along Lexington Avenue, for the NLOS path P3-P4 on the East 103rd

Street in Fig. 6.1 and for a 20-m NLOS path in Boston. The CDFs are only
slightly different on the paths P1-P2 and P3-P4. On a NLOS path in Boston
diffraction has more effect on the paths in Fig. 6.1.

the difference was as much as 9.3 bps/Hz. What we conclude is that diffraction

effects are of minor consequence for paths that are essentially LOS, but should

be included (the increased running times notwithstanding) in simulating NLOS

paths or locations with lower received power.

Array Orientation

Figure 6.4 shows the CDFs of capacity for 4x4 MIMO with vertically polarized

dipole antennas for two array orientations on the Park Avenue path in Fig. 6.1.

Use of horizontally oriented arrays yields 12 bps/Hz greater average capacity,

corresponding to a 68% improvement over using vertical arrays. We repeated

this experiment comparing vertical arrays with horizontally polarized dipole an-

tennas and horizontal arrays with vertically polarized dipole antennas. Use of

horizontally oriented arrays with vertically polarized dipole antennas yield 62%

improvement over using vertical array with with horizontally polarized dipole an-

tennas. The implication of this significant difference is that most angular spread

among multipath echoes occurs in the azimuth plane, not the elevation plane.
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Figure 6.4: CDFs of capacity, for horizontally and vertically oriented arrays, for
the Park Avenue path in Fig. 6.1. Use of horizontally oriented arrays yields an
average capacity increase of 11 bps/Hz, corresponding to a 68 % improvement
over using vertical arrays.

Antenna Height

For the Park Avenue path in Fig. 6.1, we kept the receiver antenna height at 2

m and, for a 4x4 MIMO array, we varied the base antenna height among the four

values 2 m, 10 m, 20 m and 30 m.

Figure 6.5 indicates that, overall, the highest capacities are obtained for a

2-m base antenna height. For LOS paths like this, we find in general that, if the

base-mobile ground separation is less than 200-m, a base height equal to that

of the mobile antenna yields the highest average capacity. This is due to the

minimum, for equal antenna heights and given base-mobile separation, in the

geometric distance between base and mobile antennas, leading to lower path loss

and thus greater received SNR. This effect is stronger when the mobile location is

closer to that of the base, and it diminishes as the mobile moves farther along the

path. Therefore, for large base-mobile ground separations the base height does

not have much effect on the capacity.

It is important to note that our ray-tracing channel emulator does not take

account of the obstacles along a street, such as buses, trucks and vehicles in
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Figure 6.5: The highest average capacity is obtained when the transmitter and
receiver antennas are at the same height.

general. Therefore, setting the base height at 2 m in our comparisons yields

capacity results that are probably optimistic. In a realistic scenario, the base

height would be set at 10 m or more, to minimize ground clutter.

Approach Based on Rayleigh Fading

For all its virtues, site-specific ray-tracing for complex environments like urban

streets can require very long running times. An alternative approach we will

consider here is as follows: (1) Use the ray-tracing tool for the same base posi-

tions and mobile paths we have considered so far. (2) For each receiver position,

compute the total power sum-of-rays, rather than the vector sum-of-rays for each

MIMO path, leading to an average path gain for each position; (3) assume that

the underlying MIMO gain matrix, given that average path gain, is made up

of i.i.d complex Gaussian elements as is assumed in many MIMO analyses; and

(4) use that stochastic assumption to analyze the various MIMO modes for the

various base-mobile paths considered.

We compared this approach with the more rigorous one of computing complex

responses for each MIMO path for each receiver position. For example, Fig. 6.6
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Figure 6.6: CDF of capacity for 4x4 MIMO on the LOS-path along Lexington
Ave and along the NLOS path along 103rd street in Fig. 6.1. The dashed curve is
obtained from H-matrices predicted via ray tracing; the solid curve corresponds
to assuming Rayleigh channel gain matrices. The Rayleigh assumption is wildly
optimistic and unreliable way for estimating performance on LOS paths. On the
NLOS path, the CDFs have much better agreement than on the LOS path.

shows CDFs of capacity for 4x4 MIMO along the LOS path on Lexington Avenue

and along the NLOS path on East 103rd Street, in Fig. 6.1. On both paths,

the Rayleigh fading assumption leads to better statistics, because it results in

gain matrices of full rank. However, there is a clear difference between the two

approaches. For the LOS path, Rayleigh assumption is wildly optimistic and an

unreliable way to estimate performance. The CDFs for the NLOS path, on the

other hand, show much better agreement, no doubt due to the greater amount of

scatter and multipath mixing for NLOS paths.

Different Cities and Neighborhoods

Figure 6.7 shows CDFs of capacity on five different paths at varying neighbor-

hoods of Boston and Manhattan. LOS paths in Boston and Manhattan have

higher average capacities than the NLOS paths.
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Figure 6.7: CDF of capacity for five different paths at varying neighborhoods
both in Boston and Manhattan

Transmission Scheme

Figure 6.8 shows the maximum attainable data rate (throughput) versus distance

on the Lexington Avenue path, P3-P4, in Fig. 6.1, for each of four possible

transmission modes: water-filling, spatial multiplexing (SM), beamforming (BF)

and D-STTD. Water-filling achieves the channel capacity, by means of its using

optimal power allocation. If the channel is not known at the transmitter, the best

strategy is to allocate equal power to each antenna; this is the case we refer to

here as spatial multiplexing. In MIMO beamforming, the total power is allocated

to the strongest eigenmode. Finally, D-STTD is a transmission scheme with two

parallel 2x2 Alamouti transmissions; this is another version of 4x4 MIMO, which

achieves both diversity and spatial multiplexing gains.

We assumed vertically polarized dipole antennas and included diffraction ef-

fects to simulate the 4x4 channel gain matrix along this path. We see that, in

this case, SM is the best transmission mode to use at most locations.

Although overall SM was superior to other transmission schemes in terms of

average rate on most of the paths we considered, there are cases where switching

between MIMO transmission modes can bring additional gains rather than using



60

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

Distance from P3 [m]

A
ch

ie
va

bl
e 

R
at

es
 [b

ps
/H

z]

 

 
Waterfilling
Spatial Multiplexing
Beamforming
D−STTD
Single Antenna

Figure 6.8: Achievable rate on the Lexington Avenue path, P3-P4, in Fig. 6.1
versus the distance from P3. Each data rate is averaged over a 1-m window. SM
is seen to be the best transmission mode to use at most locations.

a fixed transmission mode. In the next section we present algorithms for switching

between MIMO transmission modes.

6.3 Adapting MIMO Transmission Mode Along Paths in

Urban Environments

6.3.1 Motivation

We propose some practical alternatives to waterfilling power allocation. In each

scheme, the transmitter switches among diversity and spatial multiplexing modes

so as to achieve good data rates as the mobile moves. The optimal switching algo-

rithm in Section 6.3.3 gives the closest rates to the channel capacity by switching

optimally between these transmission modes. The delayed feedback (DF) and

probabilistic switching (PS) are more practical algorithms which do not require

instantaneous channel feedback. DF chooses the next transmission state based

on the average performance in the previous states. Instead, PS predicts the next

transmission state from the transition probabilities and the previous state. We
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refer to each of the channel matrices as a channel state.

6.3.2 Related Work

Performance gains through adapting the MIMO transmission mode has been also

shown previously in [40] and [41] using stochastic channel models. Gains for

other MIMO-link adaptation schemes for MIMO has been shown in [42] and

[43]. In [41], the authors demonstrate theoretical capacity gains by adapting

the MIMO transmision mode and propose a switching algorithm based on long

term channel statistics. In [40] a switching criterion between spatial diversity and

spatial multiplexing is presented that reduces the bit error rate (BER). However,

the performance gains for this algorithm were shown for i.i.d path gains; this

corresponds to a spatially white MIMOmodel, which occurs only in rich scattering

environments.

6.3.3 Optimal Switching (OS)

Here, we assume we switch at each channel state to the best MIMO transmission

mode, which gives the highest instantaneous rate. Such a scheme achieves the

closest rates to channel capacity. We call this algorithm optimal switching. It is

not very practical since it requires instantaneous channel feedback and switching

at every channel state.

6.3.4 Delayed Feedback (DF)

The channel matrices tend to be spatially correlated for consecutive channel

states. Therefore, the best transmission mode for a given state can be predicted

from the performance of the MIMO transmission modes in the previous states

instead of requiring instantaneous channel feedback.

We consider the following scenario. The transmitter has no knowledge of the
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current channel state. The receiver has full or partial knowledge of the chan-

nel by decoding the pilot symbols. The receiver computes the uncoded QAM

throughput for the available MIMO transmission mode from the estimated chan-

nel matrix for a given maximum modulation order [44]. The receiver feeds back

the throughputs with a delay of L channel states to the transmitter. Instead, the

receiver might choose to feed back to the transmitter the channel matrix H and

let the transmitter compute the throughputs. For each transmission mode i, the

transmitter computes the average throughput Ravr,i if that mode has been used

in the previous K channel states:

Ravr,i =
1

K

K∑
k=1

δk−1Ri,k 0 ≤ δ ≤ 1 (6.1)

By varying δ, the transmitter gives more and less weight to the data rates at

the most recent channel states. For the next M channel states the transmitter

switches to transmission mode i which maximizes Ravr,i and gives at least a%

average throughput increase in compare to Ravr,j where j is the most recent used

MIMO transmission mode. Switching decisions are done every M channel states

as the mobile travels.

6.3.5 Probabilistic switching (PS)

Probabilistic switching algorithm requires that the receiver feeds back to the

transmitter the MIMO transmission mode i which would have given the best

rate at a channel state k. Let mk be the transmission state, denoting the best

performing MIMO transmission mode at the channel state k. If mk has enough

information for determining mk+1 without looking to the previous states, it is

known as a Markov state. Let P [mk+1 = i|mk = j] be transition probability for

switching from the transmission mode to j to i in the next channel state. The

transmitter learns the transition probabilities as it moves in an environment, and

updates them with every new feedback from the receiver. Formulating this as
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a Markov Decision Process, at every decision state the transmitter chooses the

transmission mode i which has the maximum transition probability from the state

j.

6.3.6 Performance Metrics

We define following metrics:

Throughput Gains: The best fixed transmission mode is the mode which gives

highest average throughput if used on all locations on a path without switching

to any other mode. Let Rp,B be the average throughput for the path p using the

best fixed transmission scheme, and Rp,S the average throughput employing the

switching algorithm S. The metric ηb = Rp,S/Rp,B gives the throughput gain in

comparison to the best fixed MIMO scheme. Let Rp,W be the average throughput

for the path p using the fixed transmission scheme which gives the lowest average

throughput. The metric ηw = Rp,S/Rp,W gives the throughput gain in comparison

to the fixed MIMO scheme which gives lowest average throughput.

Switching Ratio: It is desired to obtain rate increase by minimal switching since

at each switching the MIMO system configuration needs to be changed. Assume

the switching algorithm S requires N switches to achieve the average throughput

Rp,S on a path of L channel states. The metric ηS = N/L is chosen as the

switching ratio.

6.3.7 Results

We simulate the 4x4 MIMO channel gain matrix along the 148-m path between

P5 and P7 along East 103rd Street in Fig. 6.1 using the simulation methodology

and parameters as described in Section 6.2.2. We compute the throughput for a

fixed modulation order of 64 QAM for BF and SM. We found that at 34.6% of

locations SM was the best mode to use; at 65.4% of locations BF was superior to
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spatial multiplexing. Let B the set of points on this path where BF outperforms

SM, and let S be the set of points where SM is superior. Average throughput at

the locations in set B is 3.2 bps/Hz if BF is used and 2.2 bps/Hz if SM is used.

In the set B, BF brings additional 45% average throughput gain in compare the

SM . Average throughput at the locations in set S is 6 bps/Hz if BF is used;

and 8.9 bps/Hz if SM is used. In the set S SM brings additional 48% average

throughput gain in compare the BF . The average throughput at locations in set

B are much lower than the average throughput in the set S.

The switching algorithms give average throughput close to the best fixed trans-

mission mode in each set. In the set B, the average throughput for OS, DF, PS

is 3.2 bps/Hz, 3.18 bps/Hz, 3.17 bps/Hz, respectively. In the set S, the average

throughput for OS, DF, PS is 8.9 bps/Hz, 8.87 bps/Hz, 8.82 bps/Hz, respectively.

The switching ratio ηS is 0.07 for OS; 0.004 for DF; and 0.06 for PS. DF requires

least switching and gives average throughput close to OS in each set.

Since the average throughput in set B is much lower than the average through-

put S, using SM at location in set B would not decrease the average throughput

over the entire path much. However, 45% average throughput gain by using BF

in set B could improve the performance at 65.4% of locations on this path.

6.4 MIMO Base Station Deployment in Urban Cells

6.4.1 Motivation

To provide good wireless coverage over an urban area using microcells, multiple

bases are generally required. The dual objectives in such cases are (1) to minimize

the number of bases; and (2) to determine an optimal frequency reuse plan. In the

first objective, we seek to minimize both infrastructure costs and the number of

handoffs in moving terminals. In the second objective, we seek to maximize overall

throughput as affected by co-channel interference (CCI). Ultimately, the choice
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of reuse plan is a tradeoff between the effect of CCI on link spectral efficiency (in

bps/Hz) and the system-wide effect of subdividing the available spectrum among

multiple channels.

Using our ray-tracing tool, we proceed in two steps: First, we use a binary

integer optimization program to minimize the number of base stations such that

the received SNR at every receiver location is above a specified threshold. Second,

for each of the frequency reuse factors r=1, 2, 3, 4, we determine the reuse plan

for which CCI has the least impact on overall throughput in the coverage area.

The key result is a set of CDFs of total system throughput.

6.4.2 Base Deployment for a Minimum-SNR Requirement

We begin by assigning L densely-placed locations in an urban environment as

candidates for base station deployment; and M densely-placed receiver locations.

We want to choose those base station locations among the L candidates, such

that SNR exceeds a given threshold at each of the M receiver locations. Knowing

the noise power at each location, we can determine the received power required to

reach the SNR requirement. We determine, for each of the M receiver locations,

the locally-averaged received power from each base station, and we compare it to

the required power.

Let A ∈ RM×L be the matrix of locally-averaged received powers, where the

i-j’th element of A gives the received power at the ith receiver location from the

base station j; and let pi be the minimum required received power at location i to

reach the minimum SNR threshold. We map A into the binary matrix B setting

the i-j’th element of B to 1 if the corresponding element in A is greater than pi;

otherwise we set it to 0. Let c be a vector, with jth element cj equal to 1 if the

candidate base station location j is selected, and 0 otherwise.
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We formulate the binary integer problem as follows:

min
cj≥0

cT1 (6.2a)

s.t. Bc ≥ 1. (6.2b)

cj ∈ {0, 1} (6.2c)

The solution for c (specifically, the sum of its elements) gives the minimum

number of base stations. Moreover, the locations within this column vector of the

non-zero elements identify the base locations on the streets. Although the number

of non-zero elements given by the solution is unique, there might be *multiple*

feasible solutions, i.e., multiple sets of base locations with the same (minimum)

number of bases. We choose an arbitrary one of these solutions. Further work

could include searching over the feasible solutions to find the one that yields the

best SINR or achievable rate distributions.

6.4.3 Frequency Reuse

For a given frequency reuse factor r, there are R(r,K) = rK − (r− 1)K frequency

reuse plans for assigning one of the r specific frequencies to each of the K base

stations while also utilizing all r frequencies. For each of the R(r,K) frequency

reuse plans, we determine the CDF of SINR over all receiver locations. Among

the R(r,K) plans, we choose that one which gives the highest SINR at a chosen

percentile. We repeat this for every frequency reuse factor and determine the best

frequency reuse plan for each.

We determine the MIMO channel gain matrix Hik between each base location

k and receiver locations i using the environment simulator. For a given frequency

reuse plan, each receiver i chooses the frequency to operate at, and the base

station to connect to, based on achieving the highest data rate.

For a N ×N MIMO system the received signal yi at the receiver location i is
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given by:

yi = Hidxid +
K∑

k=1,k ̸=d

Hikxik + ni (6.3)

where xik is the signal intended from the base k to receiver i. We assume

that each bases allocates the power P equally among the transmit antennae and

E{xikx
H
ik} = P

N
IN . The noise covariance matrix is E{nin

H
i } = σ2

NIN . Consider-

ing the interference from the other bases also as noise, the covariance matrix V

is:

Vi =
K∑

k=1,k ̸=d

P

N
HikH

H
ik + σ2

NIN (6.4)

The maximum achievable rate at location i is:

Ri = log

∣∣∣∣IN +
P

N
HH

idVi
−1Hid

∣∣∣∣ (6.5)

For each of the r selected frequency reuse factors, we then determine the CDF of

the maximum achievable rate for spatial multiplexing over all receiver locations.

6.4.4 Results

We consider an urban neighborhood in Manhattan, as shown in Fig. 6.9, with an

area of 0.5 km2. We choose L=177 candidate base locations 40-m apart from each

other and M=856 receivers located 13.5-m apart from each other along the streets.

Note that, on some streets in Fig. 6.9 there are multiple lines of receivers. This

reflects the fact that user densities might be generally higher on some streets.

The base antennas are at 10-m heights; and the receiver antennas are at 2-m

heights. We include the effects of diffraction and assume vertical dipole antenna

elements. We determine, using the ray-tracing tool, the locally-averaged received

power for each receiver-base pair. Solving (6.2), we find five base locations, such

that each receiver location gets a minimum SNR of 20 dB. The selected base

stations are marked with squares in Fig.6.9. We compared CDFs of SINR using

the best frequency assignment strategy at each frequency reuse factor, r. There
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Figure 6.9: M=856 receiver locations and L=177 candidate base locations. We
want to choose the minimum number of base stations such that the SNR at each
receiver location is above an SNR-threshold (chosen here to be 20 dB).

is not much difference between r-values 3 and 4 in terms of median SINR, but

increasing r from 1 to 2 improves the median SINR by 7 dB; and moving r from

2 to 3 improves the median SINR by an additional 2 dB. These benefits of higher

r are offset by the fact that higher r means more subdivision of the available

spectrum among the microcells.

We take this into account in our computations of achievable rate, in bps/Hz.

In these computations, we assume that each base uses a spatial multiplexing

transmission scheme with equal power on each antenna. For each of the selected

frequency reuse plans, as described above, we then determine CDF’s of achievable

rate. Figure 6.10 shows the results for r=1, 4 and 4x4 MIMO. We see that r=1

yields a median rate that is 4.7 bps/Hz higher than for r=2; 7.6 bps/Hz higher

than for r=3; and 9.3 bps/Hz higher than for r=4. We repeated this experiment

for 3x3 MIMO, 2x2 MIMO, and single-antenna links. The frequency reuse factor

1 outperformed the others for every configuration we considered.
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Figure 6.10: CDFs of achievable rate for system with 4x4 MIMO links for r=1,
2, 3, 4 (Small Area)

We repeated the experiment for a larger urban neighborhood in Manhattan

with an area of 2.4 km2. This area is nearly five-fold larger than the neighbor-

hood in Fig. 6.9. We used the same experiment parameters as for the 0.5 km2

neighborhood. We chose 16 dB-minimum SNR threshold and solving (6.2) we

determined 12 base station locations to cover the neighborhood fully. For the

large neighborhood, this choice of minimum SNR threshold led to the highest

data rates: Setting a larger minimum SNR threshold we got better SNRs, but

more bases were required which reduced the SIR values. Lower minimum SNR

threshold required fewer required bases and resulted in better SIR values but

SNRs were poorer. Fig.6.11 shows the achievable rates for r=1 in the large neigh-

borhood for various array sizes. The median rate for 4x4 MIMO is 10.41 bps/Hz.

The median rate for the small neighborhood was 14.46 bps/Hz for 4x4 MIMO.

For each neighborhood we computed the metric which is the sum of the average

achievable rates for all the bases for 5-MHz bandwidth, divided by the area of

the neighborhood. This metric is indicative of the downlink user rate. Table 6.1

shows this metric for the base station transmit power levels 10 dBm, 20 dBm and

30 dBm. The metrics for the small neighborhood at least twice larger than the
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Figure 6.11: CDFs of achievable rate for various array sizes and r=1 (Large Area).

Table 6.1: Average Downlink Achievable Rate, in Gb/s per km2

Array Size
1x1 2x2 3x3 4x4

Small Area 10 dBm 0.33 0.51 0.69 0.89
20 dBm 0.38 0.64 0.89 1.15
30 dBm 0.4 0.72 1.03 1.35

Large Area 10 dBm 0.14 0.19 0.25 0.32
20 dBm 0.17 0.25 0.34 0.44
30 dBm 0.18 0.30 0.42 0.54

metrics for the large neighborhood.

6.5 Conclusions

We have produced a comprehensive set of results for data rate in several urban

microcellular environments. Our general method can be used to research a wide

range of questions and the impact of a wide array of parameters, conditions and

radio techniques. We have compared location-specific MIMO performance, for

varying sizes, orientations, and polarizations of the antenna arrays and for differ-

ent MIMO transmission modes. We have also proposed algorithms for switching
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between MIMO transmission modes along a trajectory. Finally, we have investi-

gated the case of multiple bases, to cover a full urban neighborhood.

A major finding of our study is that a frequency reuse factor of 1 yields the

best spectral efficiency in an urban microcellular environment. We conclude that

CCI has less impact on the achievable rate than dividing down the available

bandwidth to reduce it.
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Chapter 7

Conclusions and Future Work

We have focused here on environment simulators based on ray-tracing. In partic-

ular, we have demonstrated and evaluated the use of ray tracing for both charac-

terizing wireless channels and analyzing algorithms for various applications.

First, via comparisons with physical measurements, we demonstrated the sta-

tistical accuracy of ray-tracing predictions of channel behavior. The comparisons

were made for three parameters that largely characterize a radio path’s behavior:

Path loss; Ricean K-factor; and RMS delay spread. The comparisons for various

paths we considered showed that, the parameters predicted using the ray tracing

tool agree well with measurements. This suggests that a well-designed ray-tracing

program such as WiSE can be used with confidence for studying systems in in-

door wireless environments. We identified two conditions that can compromise

prediction accuracy of critical path properties: (1) Paths where diffraction is the

primary propagation mechanism; and (2) environments for which the material

properties of the walls, floor and ceiling are not well-specified. The first condition

is relatively rare in indoor environments; the second condition can be avoided

by using a small number of preliminary measurements, augmented by compar-

isons with predictions and corresponding adjustments of the assumed material

properties.

Further work in this area should include, primarily, its extension to other

paths and to other indoor environments. In addition, a limited amount of system

studies would help to test the conjecture that the parameters studied here (path
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gain, K-factor and RMS delay spread) comprise a sufficient set for capturing the

properties of a channel response.

Second, we have shown by measuring the variation of the channel response

that the time variations of the channel response in an indoor environment are not

negligible in common scenarios such as people sitting around a table or working in

an office. Therefore, the assumption of most environment-specific models that the

channel response is non-varying over time if both ends of the path are fixed might

be not be true in many common scenarios. We stochastically modeled the time

variation of the channel response about the mean using members of the ARIMA

family of processes and showed that this can lead to accurate representations. Our

key finding is that ARIMA processes are capable of describing the time variation of

the impulse response rays in these environments. We obtained excellent agreement

using such processes for each of the categories identified and measured. Thus,

one can choose to model the static indoor channel response through environment

simulators and the fluctuation about it through ARIMA processes.

Note that we have not proposed specific time-variation models, but have

showed via numerous measurements what kinds of processes can be used in such

modeling. Extremely comprehensive measurement program spanning many en-

vironments, paths, motion scenarios and bandwidths would lead to highly useful

models. Future work should include extending this work to other environments

and paths.

We exploited ray-tracing for various applications in wireless systems design:

For the first application of ray-tracing, we looked to the localization of emitters

in indoor environments. We presented an algorithm called Emitter Localization

and Visualization (ELVIS) for localizing emitters by back-propagating the re-

ceived signals via back-ray tracing. We determined that backward ray tracing

can be effective even if the measured quantities such as received power, angle of

arrival, time of arrival are degraded due to the fading, noise or due to the other
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imperfections. The localization accuracy can be further improved by deploying

multiple receivers. While the backward ray tracing technique in ELVIS produces

highly accurate results using ideally accurate measurements, finite angular reso-

lution can be a primary source of degradation. If the angular resolution is high,

ELVIS provides reliable localization in 3D even with a single receiver. At lower

angular resolution, multiple receivers are necessary to localize with good accuracy.

We found that fading and noise are not major causes of degradation in most cases

of interest.

In this work, we have defined multiple metrics based on the measured quan-

tities and tested the localization accuracy at multiple locations in Crawford Hill

building of Bell Labs, under the assumption that the blueprint of the building is

perfectly known. Further work could include (1) investigation of other metrics, to

improve the performance; (2) investigation of the performance in other buildings;

(3) adding other error sources, such as uncertainties in the blueprint and wall

properties; and (4) verification of this technique through measurements.

For the second application of ray-tracing, we presented a statistical path loss

model derived from data simulated with a ray tracing tool. We collected simulated

data in four large office buildings. The characterization we used is a nonlinear

curve fitting of the decibel path loss to the log-distance, with a Gaussian random

variation about that curve due to shadow fading. The transmission loss through

the walls makes the usual linear models inappropriate for indoor scenarios. We

modeled the transmission loss through the walls with an additional exponential

term whose parameters show significant variations from building to building.

As future work, one could identify applications where such a modeling ap-

proach is valuable. With the methodology discussed here, a system planner can

infer overall channel characteristics in a specific building. This path loss model

can be used to test the performance of wireless systems and algorithms in indoor
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environments. Instead of testing an algorithm in multiple buildings by doing ex-

tensive measurements or simulations, the performance can be evaluated by vary-

ing the parameters of the path loss model. Determining ranges of the parameters

which correspond to realistic buildings is another topic worthy of further study.

For our last application, we looked at the performance of MIMO systems

in urban microcellular environments, where we determined the location-specific

channel gains by ray-tracing along various paths in Boston and Manhattan. Our

primary metric was the cumulative distribution function (CDF) of achievable

data rate along a particular trajectory of the mobile station. Specifically, we

derived achievable downlink data rates for various conditions: Array size, array

orientation, polarization, city, street, MIMO mode, and others. Our general

method can be used to research a wide range of questions and the impact of

a wide array of parameters, conditions and radio techniques. Also, we compared,

for both line-of-sight and non-line-of-sight paths, the CDFs derived using the

ray-tracing emulator with those predicted using a familiar stochastic model, i.e.,

i.i.d. Rayleigh fading gain matrices. We found that on NLOS paths, the CDFs

have much better agreement, due to the greater amount of scatter and multipath

mixing for NLOS paths. The Rayleigh assumption is wildly optimistic on LOS

paths, clearly unreliable for predicting data rate results.

We also presented algorithms for adapting the MIMO transmission mode to

varying channel conditions as a mobile moves along a given trajectory. We showed

that by switching between diversity and spatial multiplexing modes, data rates

close to channel capacity could be achieved.

Finally, we considered the case of multiple bases to cover a full urban neigh-

borhood and investigated frequency reuse, co-channel interference and achievable

rates. We presented a technique for minimizing the number of bases needed-

under a specified coverage criterion-and for determining their optimal locations.

We computed the neighborhood-wide CDFs of the downlink achievable rate for
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different array sizes (1x1, 2x2, 3x3, 4x4) and for different frequency reuse factors

r = 1, 2, 3, 4. We showed that r = 1 gives the best results for data rate, despite

the higher co-channel interference, in an urban microcellular environment.
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Appendix A

A.1 Models for Time Series Data

A.1.1 The Autoregressive (All-Poles) Processes, AR

The AR model pertains to an all-pole transfer function. A wide sense stationary

AR process of order p is generated by passing a white noise sequence through an

all-pole filter with a transfer function

H(z) =
1

1 +
∑p

k=1 ap(k)z
−k

, (A-1)

where ap(k) is the kth AR coefficient of the pth-order filter.

The Yule Walker equations [15] provide a relationship between the filter coef-

ficients and the autocorrelation sequence. The AR coefficients are determined by

solving these equations.

A.1.2 The Moving Average (All-Zeroes) Processes, MA

The MA process refers to an all-zero transfer function. This process is generated

by passing a white noise sequence through a finite impulse response (FIR) filter

having a transfer function

H(z) = 1 +

q∑
k=1

bq(k)z
−k. (A-2)

The Yule Walker equations for MA process are nonlinear in the model coef-

ficients, bq. To avoid solving non-linear equations, the coefficients can be deter-

mined from the coefficients of a higher-order all-pole filter[15].
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A.1.3 The Autoregressive Moving Average Proceses, ARMA

The ARMA process refers to the general case of a transfer function with both

poles and zeros. A wide sense stationary ARMA (p,q) autoregressive process can

be generated by passing a white noise sequence through a filter having p poles

and q zeros:

H(z) =
1 +

∑q
k=1 bq(k)z

−k

1 +
∑p

k=1 ap(k)z
−k

(A-3)

An AR process is a special case of ARMA with q = 0; and an MA process is

a special case of ARMA with p = 0. The filter coefficients aq and bq can be

estimated solving Modified Yule Walker Equations (MYWE) [15].

A.1.4 ARIMA

A desired property in applying a time series model is statistical stationarity.

Usually stationary time series can be described by their fixed mean, fixed variance

and autocorrelation function. Many empirical series do not have a fixed mean

even though they exhibit homogeneity apart from local level or trend. To make

these time series stationary, the difference operator ∇ is applied d times until the

data become stationary. The difference operator is defined as ∇x(n) = x(n) −

x(n − 1). Assume that, for a series of the dth order difference, a stationary

ARMA(p,q) model is obtained. The model for the nonstationary series can then

be found by integrating this ARMA(p,q) process d times. Such processes are

called Autoregressive Integrated Moving Average (ARIMA) (p,d,q). It is easy

to see that ARIMA is the most general class, with ARMA being the subset of

ARIMA for which d = 0.

The entire family of models called ARIMA was proposed by Box and Jenkins

[19] and is applicable to a wide variety of situations. The Box-Jenkins technique

is a methodology for constructing an ARIMA process to characterize a given

time series. It involves a three-step procedure, consisting of identification, model
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estimation and diagnostics. Identification techniques are used to find out what

particular kind of process is appropriate. They make use of the autocorrelation

and partial autocorrelation functions. In the model estimation step, the param-

eters for each process are estimated. To find out if the fitted process adequately

represent the data, diagnostic checks are done. If fit is not good, the steps are

repeated again.
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• Aliye Özge Kaya, Larry J. Greenstein, and Wade Trappe, “Characterizing
Indoor Wireless Channels via Ray Tracing Combined with Stochastic Mod-
eling,” IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp.
4165-4175, August 2009.
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