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ABSTRACT OF THE DISSERTATION
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by Nan Li

Dissertation Director: Xiaochun Rong

In this thesis we recall the basic definitions and properties for Alexandrov space and
describe two geometry phenomenons controlled via volume (Hausdorff measure or rough
volume) conditions. (1) For a path in X € Alex"(k) (the compact n-dimensional
Alexandrov spaces with curvature > k.), the sum of the length and the turning angle
is bounded from below in terms of x, n, diameter and volume of X. This generalizes
a basic estimate by Cheeger on the length of a closed geodesic in closed Riemannian
manifold ([Ch]). (2) Let X, be the space of directions at p € X and the pointed
radius R = inf{r : X C B,(p)}. If X € Alex"(k), then vol(X) < vol(CE(X,)), where
CE(%,) is the metric R-ball at the vertex in the s-suspension C,(¥,). We give an
isometric classification of X € Alex"(x) whose volume achieves the maximal possible
value vol(CH(X,)). We also determine homeomorphic types of such X when X is a
topological manifold. These results are natural extension of K. Grove and P. Petersen’s

work in 1992 ([GP 92]).
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Chapter 1

Introduction

An n-dimensional Alexandrov space X with curvature > x (denoted as X € Alex"(k))
is an n-dimensional complete length metric space such that any geodesic triangle looks
‘fatter’ than a comparison triangle in S?, the 2-dimensional space form of constant
curvature k. A basic motivation for studying Alexandrov spaces is that the Gromov-
Hausdorff limit of a converging sequence of Riemannian manifolds with sectional curva-
ture > k is an Alexandrov space with the same curvature lower bound, but an Alexan-
drov space in general may have geometrical or topological singularities. There followed
throughout the 90’s an explosion of work starting with a seminal paper [BGP] centered
on Alexandrov geometry. Many important results have been obtained in understanding
both local and global structures of an Alexandrov space and in applications ([BBI],
[BGP], [Kap 07], [Pet 07] and references within). Because tools from Alexandrov geom-
etry played a significant role in Perel’'man’s proof of the famous Poincare’s conjecture,
Alexandrov geometry has been getting a lot of attention lately.

The theory of Alexandrov geometry is not easy to apprehend, partially because it
deals with the metric space with possibly both geometrical and topological singularities,
and thus most conventional tools from differential geometry may not be applied. In
Chapter 2 we recall the definitions and basic prosperities on Alexandrov spaces. To
make this thesis more self contained, we give proofs for most of the theorems, while the
rest of them are referred to [BGP].

The main body of this thesis is in Chapter 3 and 4, in which we show some new
results via the volume conditions. Theses are joint work with Xiaochun Rong and will

be published in [LR 09, 10].



In Chapter 3 we consider a loop ¢ in X € Alex"(k). There are two basic ge-
ometric invariants for a continuous curve, the length and the turning angle (which
measures the closeness from being a geodesic, the definition can be found in Definition
3.0.5). For example, an m-broken geodesic 7, has a finite turning angle ©(vy,,) =
>ty 0;, where 0; is the difference between 7 and the angle of the adjacent broken
geodesics. If X is a Riemannian manifold, then any C?-curve ¢ on X has the turning
angle O(c) = fol |V |dt. Let Haus, denote the “normalized” n-dimensional Haus-
dorff measure such that Haus,(I™) = 1, where I" is the unit n-cube in R". Let

sng(r) = L sin/kr, 7, ﬁsinh V—kr for K > 0, = 0, < 0 respectively. For r > 0,

K

B

let 7, = {t : sn,(t) achieves its maxima in [0, 7]}, i.e. 7, = ﬁ for the case k > 0 and

r > ﬁ; r« = r otherwise (an analog definition is applied for d, given d > 0). One of

our main results is the following estimate.

Theorem 3.A. Let X € Alex (k) (n > 2), and let ¢ be a loop at p € X and ¢ C By(p).
Then the length L(c) and the turning angle ©(c) satisfy:

(n — 1)Haus, (B, (p))
Le)+(n=Dr-6(e) 2 vol(ST2) - snit ! ()

This Theorem indicates that, for any loop, the sum of the length and the turning

angle is bounded from below in terms of k, the dimension, the radius and Hausdorff
measure of a metric ball containing ¢. We also give an application on local injectivity
radius estimate (see Theorem 3.B). When B,(p) = X is a closed Riemannian mani-
fold, this generalizes a basic estimate by Cheeger on the length of a closed geodesic in
[Ch]. (Note that when U is an open subset of an n-dimensional Riemannian manifold,
Haus,,(U) = vol(U)) This is useful when one estimates the injectivity radius at a point

where it is realized by a geodesic loop (see the following discussion).

Theorem 1.0.1 (J. Cheeger). Let M be a closed n-manifold (n > 2) with sectional
curvature secyr > k (k< 0). For any closed geodesic 7,

(n — 1)vol(M)
L(’Y) > UOZ(SIL_Q) . Snz_l(d’lam(M))

The lower bound in Theorem 3.A is optimal in all dimensions; the inequality becomes
an equality when c is a great circle in an n-dimensional spherical space form (note that

vol(S7) = 2% - vol(S] %), n > 2).



Corollary 1.0.2. Let X € Aled" (k) (n > 2), diam(X) < d and Haus,(X) > v > 0. If
¢ C X is a loop, then the sum of L(c) and O(c) is bounded below by a constant,
L(c) 4+ O(c) > ¢(n, k,d,v) >0,

v-min{1,[(n—1)d]~1}
vol( ST 2)-smt ™ (du)

where c(n, k,d,v) =

Corollary 1.0.2 reveals an interesting geometric property on the loop space over a
compact Alexandrov space X: any short loop has turning angle not small, or equiva-

lently, any loop with small turning angle is not short. For instance, given 0 < € < 1,

we call a loop, ¢, e-close to a geodesic, if O(c) < e - ol ;{{La_u;;;é)_l @) Theorem 3.A

implies the following:
Corollary 1.0.3. Let X € Alex™ (k) (n >2). If ¢ is a loop e-close to a geodesic, then

(n — 1)Haus,(X)
vol(S72) - snit 1 (dy)

L) > (1—¢)-

Theorem 3.A can be useful in analyzing local geometry concerning the injectivity
radius of a point p in a complete Riemannian manifold M (e.g., secys has no upper
bound). If ¢ € M is a point such that [pg| = injrad, < oo (the injectivity radius at
p), then either ¢ is a conjugate point to p or there is a geodesic loop 7 at p passing
through ¢. In the later case, 2 - injrad, = L(7) and ©(y) satisfy Theorem 3.A. In the
former case (e.g, no geodesic loop with L(v) = 2 - injrad, ), using Theorem 3.A we can
establish a similar relation.

To have the discussion also including an Alexandrov space X, we need the following
notions: we call a point p € X a regular point, if there is a non-trivial minimal geodesic
along any direction in the space of directions at p, 3,. As in the Riemannian case, we
define the cut locus, C), at a regular point as the collection of points ¢ € X such that ¢
is the furthest point on a radial curve from p with arc length equal to |pq|. Let ¢ € C,
such that [pg| = |pCy|, call the injectivity radius of p, and denoted by injrad,,. Clearly,
the gradient-exponential map is a homeomorphism on the ball of radius < injrad,,. Let
geod(p,q) = {[pq]} denote the set of minimal geodesic [pq] from p to q. We call the

following number in [0, 27],

0, =21 — sup {£(#41(0),42(0)) + £(=41(1), =52(1)), 71,72 € geod(p,q)},
q€Cyp,|pg|=injrad,,



the geodesic angle of p. Observe that 6, = 0 if and only if 2 - injrad,, is realized by the
length of a closed geodesic at p, and 6, = 27! if and only if there is a unique minimal
geodesic [pq] (e.g., a flat cone with angle < 7, and p is close to the vertex). Hence, 6,
measures the existence of such a closed geodesic at p.

A consequence of Theorem 3.A is:

Theorem 3.B. Let X be an n-dimensional Alexandrov space (n > 2) with curv > k.
If p € X is a regular point, then for any r > injrad,,,

n—1 Haus,(Br(p))
2 vol(ST~%)snp (1)

injrad, > —r-0p.
Theorem 3.B provides a local estimate for injrad, in terms of local geometry when

Hausy, (Br(p))
r-vol(&'?_z)vsn,?_1 (r)

8, is relatively small (e.g., 0, < ). On the other hand, ), not relatively
small indicates that geodesics from p to ¢ are confined in a narrow region.

Theorem 3.A substantially improves an analog of Theorem 1.0.1 in Alexandrov
geometry by [BGP] (see Corollary 1.0.4 and Proposition 2.7.4), which gives an implicit
lower bound on the length of an almost closed geodesic (when m fixed and § — 0, §;
cannot be very small; see Remark 8.7 in [BGP]), implicitly in terms of k,n,d and the
rough volume V,. (X). However, because x,(01,d) — oo as m — oo, Proposition 2.7.4
fails to imply a lower bound on the length of an m-broken geodesic loop (of length, say
one) with m large while md are very small (so both d; and ¢ are small).

In view of the above, it is natural to ask if a similar estimate in Theorem 3.A holds
in terms of the rough volume. First, the rough volume is not a measure since it’s not
countably additive (e.g., rationales in [0, 1] has rough volume 1 while a point has rough

volume 0). However, we find the equivalency of the two measures on open subsets (see

Remark 3.3.7).
Theorem 3.C. Let X € Alex" (k). Then
Vi, (X) = ¢(n) - Haus,(X),

VT”(IR)) =V,,(I"™) is a constant depending only on the dimension, and

where ¢(n) = Haws (1)

I™ denotes the Fuclidean unit n-cube.

"When X is a Riemannian manifold, 8, = 27 implies that ¢ is a conjugate point of p.



Theorem 3.C can be useful in practice; once proving a result involving V., (X)
(which is easier to estimate than Haus, (X)), one gets automatically a result in terms
of Haus,,(X). As for the value of ¢(n), except ¢(1) = 1 and ¢(2) > %, it seems hard to
have an estimate in general.

A consequence of Corollary 1.0.3 and Theorem 3.C is:

Corollary 1.0.4. Let X be a compact n-dimensional Alexandrov space (n > 2) with

curvature > k. If ¢ is a loop e-close to a geodesic, then

Ve, (X)
C(n) - sn(d,)’

Lic) > (1—¢)-

n—2
where C'(n) = % and c(n) is the constant in Theorem 3.C.

Comparing Corollary 1.0.4 with Proposition 2.7.4; the former gives an explicit sharp
estimate and applies to all m-broken geodesic loops with md relatively small.

In Chapter 4 we describe a rigidity/almost rigidity phenomenon in Alexandrov ge-
ometry which is a natural extension of K. Grove and P. Petersen’s work in 1992 ([GP
92]). Let M be a Riemannian manifold with sectional curvature > x and the radius
of M be rad(M) = inf{r : Ip € X, X C B,(p)}, then vol(M) < vol(B,(S%)), where
B, (S) is the r-ball in the simply connected space S with constant curvature . In the
rest of the introduction we will assume r < ﬁ or r = ﬁ for the case k > 0 (because

otherwise the above volume estimate is not optimal). For a sequence of M; reaches the

above maximal volume, the following theorem has been proved by Grove and Petersen.

Theorem 1.0.5. [Grove-Petersen] Let M; be a sequence of Riemannian manifold with
sectional curvature > k. Assume that rad(M;) < r and vol(M;) — vol(B,(S)). Then
there is a subsequence of M; which Gromove-Hausdorff converges to a metric space X,
where X = B,(S%)/x ~ ¢(x), and ¢ : OB,.(S?) — 0B,(S?) is an antipodal map or a
reflection by a totally geodesic hyperplane. Moreover, M; is homeomorphic to ST or

RP™ for i large enough.

On Alexandrov spaces, given ¥ € Alex" (1), let M7(X) = {X € Alex"(x)| I p €

X, ¥, =%, B.(p) = X}, where ¥, is the space of directions of p, namely, the equivalent



class of geodesics from p (see Chapter 2.6). By Toponogov triangle comparison, it’s not
difficult to see that for X € M (), vol(X) < vol(C%(X,)), where CI(X) denotes the
closed r-ball centered at the vertex of the x-suspension Cy(X) (see Chapter 2.3.1) and
‘vol’ denotes the n-dimensional Hausdorff measure or the rough volume. The following
is our result which gives an isometric classification for X € Alex" (k) whose volume

achieves the maxima above.

Theorem 4.A (relatively maximal volume). Let X € M7(X). Then vol(X) = vol(C’(%,)),

if and only if both of the following are satisfied

(1) k<0 ork>0,r< g0, r= o
(2) X is isometric to C(X))/x ~ f(z), where f: X x {r} — ¥ x {r} is an isometric

involution (which can be trivial).

A significant difference in Theorem 4.A than the classical volume rigidity discussion
(using S as the model space) is that, the isometric types rely on an arbitrary space of
direction ¥ (which has infinitely many types). Thereafter the isometric classification of
Alexandrov spaces in M7, (X) with relatively maximal volume reduces to a classification
for equivariant isometric Zs-actions on Y. When let ¥ = S?‘l and X be a limit of
Riemannian manifolds, Theorem 4.A implies the rigidity part in Theorem 1.0.5 (the al-
most rigidity part can be implied by letting > = S{lil in Theorem 4.B and 4.C). When
let > = Sf‘l and r = ﬁ for k > 0, Theorem 4.A implies the maximal volume rigidity
theorem (see Theorem 2.7.5, which takes S} as the uniform model space) in Alexandrov
geometry, which generalizes the maximal volume rigidity theorem in Riemannian geom-
etry with an analogue conditions. In the proof of the “isometric involution”, because of
the lack of smooth structure, our proof relies on the elementary triangle comparisons.
The significant difference in the proof of “open ball isometry” will be discussed in the
comments of Theorem 4.D.

We also determine the homeomorphic types when X € M. (X) achieves the maxi-
mal volume and is a topological manifold (such X, rather than a limit of Riemannian

manifolds, may have large singularities).



Theorem 4.B. Let X € M[.(X) with vol(X) = v(X,k,r). If X is a closed topological

manifold, then X is homeomorphic to the unit sphere ST or a real projective space RP"™.

An interesting point in Theorem 4.B is that 3 may not be a topological manifold (in
particular, S?™1), but its suspension C}(¥) (which has the relatively maximal volume)
is homeomorphic to a sphere (e.g. ¥ is a spherical suspension of a homology 3-sphere).
Indeed, we show that at any topological point p € X € Alex"(k), ¥, is homotopically
equivalent to a sphere (see Lemma 4.4.1).

Using Theorem 4.A and the Perel’'man’s stability theorem, we obtain a homeo-
morphic classification for the Alexandrov spaces whose volumes are almost relatively

maximal.

Theorem 4.C (Almost relatively maximal volume). There exists a constant € =
e(X,n,k,r) >0 such that if X € M(X) satisfies that vol(X) > v(X, k,r) — €, then X

is homeomorphic to some element some element described in Theorem 4.A (2).

A basic tool we developed in proving our rigidity results is a pointed version of
Bishop-Gromov’s relative volume comparison with open ball rigidity in Alexandrov

geometry.

Theorem 4.D. Let X € Alex" (k). Foranyp € X, and 0 <t <,

vol(Bt(p)) - vol(By(p)) in vol(Bt(p)) _1
vol(CL(Xp)) — wol(CL(%p))" =0 vol(CL(Ep))
and “ =" holds if and only if the open metric ball B,(p) is isometric to C},(3,) with

respect to the intrinsic distance.

When let 3 = S{L*l, this will imply Theorem 2.7.5. However, using an arbitrary
instead of S?_l will cause a significant diffulty. We observe that the proof for rigidity
Theorem 2.7.5 mentioned in [BGP], relies on an induction applied to the property that
each cross section S, = {x € X : |pz| = r} achieves the maximal volume of ST~ ' x {t},
on which the maximal volume rigidity holds. (This method can be viewed as a singular
case for the proof in Riemannian geometry.) In our case, the cross section can only be

compared to the model space ¥ x{t}, on which rigidity may not holds. Comparing to the



Bishop-Gromov relative volume comparison in Alexandrov geometry (and Riemannian
geometry) (see Theorem 2.7.6), the monotonicity for volume ratio is essentially same
(a verification is not trivial, see Proposition 4.1.7). In our proof for the monotonicity
for the volume ratio, we take an elementary (calculus) approach which relies on a right
partition for applying triangle comparison; in particular it does not rely on a co-area
formula for Hausdorff measure which is used in the proof of Theorem 2.7.6 in [BGP]. As
a consequence, we show that the absolute rigidity is equivalent to the relative rigidity

(respective to the radius, see Lemma 4.2.2).



Chapter 2

Definitions and Basic Properties

Our main goal in this Chapter is to recall the definitions of Gromov-Hausdorff distance,
Alexandrov space and dimension, volume, burst point, space of directions, ect. We give
proofs for most of the properties, while the rest of them are referred to [BGP]. We will

use these properties in Chapter 3 and 4 frequently.

2.1 Gromov-Hausdorff distance

Let X,Y be bounded subsets in a metric space (Z,d). We let

d(X,Y)=inf{d(z,y):x € X,y € Y},
B(X)={ze€ Z :d(z,X) <€},

dg(X,Y) =inf{e: X C B.(X),Y C B(Y)}.

It’s clear that d(X,Y") is small if a pair of points are close to each other; di(X,Y) is
small if X and Y almost cover each other, i.e. each point in X is close to some point

in Y and vice versa.

Definition 2.1.1 (Gromov-Hausdorff distance). Let X and Y be metric spaces of finite

diameter. The Gromov-Hausdorff distance (GH-distance) of X and Y is
dep(X,Y) = (izng){dH(X,Y) : X and Y are isometrically embedded into (Z,d)}.

Let Met be the collection of isometric classes of compact metric spaces. By the
following proposition, (Met, dgy) is a complete metric space, where dgg(, ) measures
the distance of two metric spaces from being isometric to each other. We say that a
sequence of compact metric spaces X; converges in the sense of Gromov-Hausdorff to

a compact metric space X if dgp(X;,Y) — 0 as i — oo, and denote by X; den, y
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Lemma 2.1.2.
(1) dgu(, ) satisfies the triangle comparison.
(2) dea(X,Y) =0 if and only if X is isometric to Y .

(8) The metric space (Met,dgr) is complete.

The dgy defined above is not easy to calculate even for very simple spaces (for
example, the GH-distance between a square and a disk). Now we recall an alternative
formulation which is more convenience in the sense of convergence.

The map f: X — Y (is not necessarily continuous) is called a (Gromov-Hausdorff)
e-approximation if || f(z1)f(x2)| — |r122|| < € for any x1, 22 € X and Y is contained in

the e-neighborhood U.(f(X)).

Definition 2.1.3. Let X and Y be compact metric spaces, define
da(X,Y) = inf{e: there are GH e-approximations f: X — Y and g: Y — X}.

Let X be a compact metric space, and Y = {p}, it’s not hard to see that dgyg =
diam(X)/2 and dg = diam(X). This shows that dgy # dg in general. However, due
to the following lemma, they are equivalent in the sense of convergence. An advantage to
use dg:p is that one can measure the convergence by an e-approximation, i.e. X; den,

if and only if chH(Xi,Y) — 0, or equivalently, for any small € > 0, there exists an e-

approximations f; : X; — X for large 7.
" 2 5
PI‘OpOSlthn 2.1.4. gdGH < dGH < QdGH.

We also can define the pointed GH-convergence, which is useful for the non-compact
spaces. A pointed map, f : (X,p) — (Y,q), f(p) = gq, is called an e-pointed GH-
approximation, if ||f(z1)f(x2)| — |z122|| < € for any z1,22 € B%(p) and B%(q) C
Be(f(B% (p))). We say that a sequence (X;, p;) converges to (X, p), if there is a sequence

of e;-pointed GH-approximation f; : (X;,p;) — (X, p), with ¢, — 0.

Proposition 2.1.5. (X, p;) pointed converges to (X, p) if and only if B-(p;) converges

to By(p) and p; — p for all r > 0.
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2.2 Basic concepts

In this section we give the basic definitions of the Alexandrov spaces and show some

equivalent definitions.

Definition 2.2.1. We call a metric space (M, |-,-|) an intrinsic metric space if for
any x,y € M, ¢ > 0 there is a sequence of points = = zg, 21, -+, 2 = y such that
k-1

|zizit1| < € and Z |zizit1] < |zy| + €. A (minimal) geodesic is a continuous curve
whose length is eczpzlal to the distance between its ends. In a locally compact complete
space with intrinsic metric any two points can be joined by a geodesic. A collection of
three points p,q,r € M and three geodesics pq, pr, qr is called a triangle in M and is

denoted by Apgr.

For Apgqr in M we may construct a triangle qur on S2? with vertices p, ¢, ¥ and
sides of lengths |pg| = |pq|, |p7| = |pr|, |g7| = |gr| (if such triangle exists), where S}
denotes the n-dimensional space form of constant sectional curvature x. The triangle
Apgr always uniquely exists up to a rigid shift for K < 0. For k > 0 it exists only with

the additional assumption that the perimeter of Apgr is less than 2Z. We let Lpgr

N
denote the angle at § of the triangle Apgr.

Definition 2.2.2. A locally complete space M with intrinsic metric is called an Alezan-
drov space with curvature > k (will be denoted by Alex (x)) if for any point x € M

there exists a neighborhood U, such that:
(D) For any four (distinct) points (a;b, ¢, d) in U,
Lbac + £bad + £cad < 2.
Proposition 2.2.3. Let space M be locally compact, then the condition (D) is equiva-

lent to any of the following:

(A) for any triangle Apqr with vertices in U, and any point s on the side qr, we have
|ps| > |ps|, where § is the point on the side GF of the triangle qur corresponding to s,

ice. las = 18], |rs| = |73].
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P D
q r q 7
S
S
U, 52

(B) Let q,r be points on arbitrary geodesics vy, o from the origin p, then the angle Lqpr
is mon-increasing with respect to |pq| and |pr|.
(C) and (C))
(C) For any triangle Apqr contained in U,, none of its angles is less than the
corresponding angle of the triangle qur on S2.
(C1) If r is an interior point of the geodesic pq, then for any point s, Lsrp +

Lsrq=T.
We will state some consequences of the above proposition and give the proof later.

Definition 2.2.4. If (B) is satisfied, the limit ‘ |l‘im| Oqur (which does not depend
pql, [pr|—

on k) exists. We call it the angle between 7,0 at p. It is easily verified that the angles

between three geodesics with common origin satisfy the triangle inequality.

A consequence of the condition (C;) is that geodesics do not bifurcate. Thus if a
geodesic is extendable, the extension is unique. We list a few other properties of spaces

of curvature bounded below which follow easily from (C) and (C;).

Proposition 2.2.5.

(1) If the geodesics p;q; converge to pq and the geodesics p;T; converge to pr, then
£pgr < lim inf Lq;p;r;. (follows by (C))
11— 00

(2) If pa, pb, pc are geodesics, then Lapb+ £bpc+ £cpa < 2m. (follows by (C) and (C1))

Proof.
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a
(1) By (C), this is obvious. d
(2) If d € pa, then by (Cy), p/ b
Ladb+ALade+£bde < (Ladb+4£Lbdp)+(Lade+4Ledp) = 2. c

To complete the proof using (1), it’s sufficient to check if pb, p¢ are unique. This can

be guaranteed by taking b, ¢ as the interior points of the geodesics. O
Proof of Proposition 2.2.3.

(1) To prove (D) = (A) it’s sufficient apply to the technique Lemma 2.2.6 on (a; b, ¢, d).
(2) (A) & (B). Just notice the property that Lgpr > £Lbac < |qr| > |bc| in the k-plane
provided [pg| = |ab], [pr| = |ac].

(3) (B) = (C) + (Cy). Obvious.

(4) (C) + (C1) = (A). Let’s use the graph in (A). By (C) + (Cy), <psq + Lpsr <
Apsq+ Apsr = . Then by Lemma 2.2.6, £pgs > Apgqr, hence Ips| > |ps|.

(5) Proposition 2.2.5(2) + (C) = (D). Obvious. O

Lemma 2.2.6. Let triangles Apgs, Aprs be given on a S2, which are exteriorly adja-
cent to each other with the common side ps. Construct another triangle Abed on S?,
where |bc| = |pq|, |bd| = |pr|, |cd| = |gs| + |sr|, and |bc| + |bd| + |cd| < 2—\/7% in the case
k > 0. Then Lpsq + £Lpsr < w (> 7) if and only if £pqs > ALbed and Lprs > Lbdc

(respectively, £pqs < Lbed and Lprs < Lbdc).

P b

S2 S2

Proof. The proof can be easily produced by applying the cosine law on S on the given

triangles. 0
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Example 2.2.7 (Examples of Alexandrov space with curvature > k).

(1) Riemannian manifolds without boundary or with locally convex boundary, whose

section curvatures are not less than x.

(2) The quotient space M/G € Alex (k) if M is an Riemannian manifolds with curv

> k and G acts isometrically on M (see Chapter 2.3.2).

(3) The k-suspension constructed in Chapter 2.3.1.

Some 2 dimensional simple examples:
(4) The 2-dimensional flat cone.

(5) The space produced by gluing two 2-dimensional unit disks via boundary isometric

identification.

In the above we define the space with curvature bounded from below using local
conditions. In general, the local conditions may not be satisfied globally. For example,
a plane with a closed disk removed. If we add the completeness to the space, these
conditions can be “globalized”. This was first proved by A.D. Alexandrov for dimension
2. For Riemannian manifolds it is the well known Toponogov’s Comparison Theorem.
The argument in proofing Proposition 2.2.3 is still valid if the conditions are defined
“globally”. Hence it’s enough to prove the globalization theorem for one of the local

conditions.

Theorem 2.2.8. Let M be a complete space satisfying condition (D). Then for any

quadruple of points (a;b,c,d) we have Lbac + Abad + Lcad < 27.

The proof is fairly technique and we will omit it here. In the following, we will

always assume that the geodesic exists, otherwise just make an easy modification.

2.3 Natural construction

2.3.1 k-suspensions

We will construct metric cones from a given metric spaces, and list some propositions

when the base space is an Alexandrov space without giving the proofs (c.f. [BGP]).
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Definition 2.3.1 (Flat cone). Let X be a metric space. The flat cone over X with
vertex p is the quotient space Cy(X) = X x [0,00]/ ~, where (z1,a1) ~ (x2,a2) ~ p <
a; =az =0. Let IT: Cp(X) —p — X be the natural projection. The metric of the cone

is defined from the cosine formula:
Z1Z2|* = a? + a3 — 2a1ag cos(min{|x1 22|, 7}), (2.1)
where 7; = (x1,a1), To = (22, a2).

Proposition 2.3.2. Let X be a complete metric space. The following two conditions

are equivalent:
(a) X € Alex(1).

(b) Co(X) is not a straight line and belongs to Alex(0).

The construction of the cone can be more general by using the spherical or hyperbolic
cosine formula S? instead of the Euclidean cosine formula. We call these cones k-
suspensions. In particular, the above is the case k = 0 and the following are the cases

k=1 and —1.

Definition 2.3.3 (Spherical suspension). Let X be a metric space of diameter < 7.
The spherical suspension is the quotient space C1(X) = X x [0,7]/ ~, where (z1,a1) ~

(z2,a2) < a1 = ag = 0 or a3 = az = w. The metric is defined from the cosine formula:
cos |T1Z2| = cosaj cos ag + sin aj sin ag cos |z122|, (2.2)
where 71 = (x1,a1), T2 = (22, a2).

Proposition 2.3.4. Let X be a complete metric space of diameter < w. Then the

following two conditions are equivalent:
(a) X € Alex(1).

(b) C1(X) is not a circle and belongs to Alex(1).

Definition 2.3.5 (Hyperbolic Suspension). Let X be a metric space of diameter <

w. The elliptic cone over X is the quotient space C_1(X) = X x [0,00]/ ~, where
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(z1,a1) ~ (x2,a2) < a1 = ag = 0. The metric is defined from the cosine formula:
cosh |Z1Z2| = cosh ay cosh ag — sinh a; sinh ay cos |z123], (2.3)
where 71 = (x1,a1), To = (22, a2).

Proposition 2.3.6. Let X be a complete metric space of diameter < w. Then the

following two conditions are equivalent:
(a) X € Alex(1) is a space with curvature > 1.

(b) C_1(X) is not a straight line and belongs to Alex(—1).

In Chapter 4, we will discuss more properties about the x-suspensions and show
that they (with a boundary gluing) shall be regarded as the model spaces who have the

relatively maximal volume.

2.3.2 Quotient spaces

Proposition 2.3.7. Let the group G act isometrically on a space X € Alex (k) with
curvature > k. Then the quotient space X/G € Alex(k), whose points correspond to

the closure of the orbits of G.

Proof. 1t’s obvious that X /G is locally complete with respect to the intrinsic metric. We
now check condition (D). For a quadruple (@; b, ¢, d) in X/G and the quadruple (a; b, ¢, d)
in X such that II(a) = a,...,1I(d) = d, where Il : X — X/G is a natural projection.
Additionally, because the action is isometry, we can choose the points b, ¢, d such that
labl, lac], |ad| do not differ much from the corresponding distances |ab|, |acl, |ad|. Since
|bc| > |bel, |bd| > |bd|, |éd| > |cd]|, the angles with vertex a in X are not smaller than

the angles with vertex a in X/G. Thus if X/G violates condition (D), so does X. [

2.4 Burst points

At every point in a Riemannian manifold there exists a smooth coordinate system,
however, Alexandrov spaces may have “singular” points. For example, the boundary

and the vertex of a cone. We will give a constraint to describe the “non-singular”
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points and show that these points can be associated with a small neighborhood which
is bi-Lipschitz homeomorphic to a ball in R" (see Theorem 2.4.2). Moreover, the bi-
Lipschitz constant is arbitrarily close to 1 (depending on the size of the neighborhood,

see Theorem 2.8.4).

Definition 2.4.1. Let M € Alex (k). A point p € M is called the (n,d)-burst point if

there are n-pairs (a;, b;), such that the following hold for all 1 < ¢ #< j:

Lagpb; > w — 6, Zaipaj > g — 90,

Zaipbj > g -9, Zbipbj > g -0, (2.4)

The n-pair (a;, b;) is called an (n, d)-explosion (or (n,d)-strainer or simply an explosion

or strainer) at the point p.

Together with condition (D), condition (2.4) also implies the upper bounds Zaipaj <
5+ 26, Laipb; < T +26, sz-pbj < § +26. Clearly the set of (n,§)-burst points is open.
By condition (D), the explosion (a;, b;) can be chosen arbitrarily near to p if there exists

one.

Theorem 2.4.2. Let p be an (n,d)-burst point with explosion (a;,b;), i = 1,...,n
and there is no (n + 1,40)-burst points near p, where § < ﬁ Then the map ¢(q) =
(larql, |azql, - .., |anqg]) gives a bi-Lipschitz homeomorphism between a neighborhood of

the point p and a domain in R™.

To prove Theorem 2.4.2 we need the following lemma which will be useful later on.

The proof of Theorem 2.4.2 (see [BGP] §5) is omitted here.

Lemma 2.4.3. Let p,q,r,s be the points in X € Alex(k). If |gs| < dmin{|pq|,|rq|}

and Apqr > 7 — 01, then
\qus + Lrqs — | <106+ 481 and |dpsq + £rsq — nt| < 106 + 0;.

In particular, if geodesics exist, then the angles qus, qus are little different from the

corresponding angles £pqs, £rqs.
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Proof. The inequality £pgs + £rqs —m < 8 follows directly from condition (D) for the
quadruple (g; p, s, 7). Consider the triangles Aprs, Apgr. Since lgs| < 0 min{|pgl, |rq|},
we get Lpsr > m — 46 — &;. Then by condition (D), Apsq + Lrsq — m < 46 + 6.
Together with £pgs + £psq > 7 — 26 and £rqs + Lrsq > © — 25. Then we have

Apqs + £rqs — > —85 — &1 and Apsq + Arsq —m > —45 — b1. O

Corollary 2.4.4. Let p,q,r,s,t be points in X € Alex (k) such that |gs| < d min{|pq|, |rq|},
Apqr > 7 — 6, llpg| — |ps|| < d|gs| and Lqts > 7 — 8. Then each of the angles Aptq,

Apts, Lrtq, Lrts differs from % less than 1004.
q

S

M
Proof. Obviously, |gs| < 26 min{|ps|, |rs|} and £psr > 7 — 55. By Lemma 2.4.3,
|Aptq + £rtq — w| <200 and |<pts + Lrts — 7| < 20. (2.5)

Since Lqts > m — &, by condition (D), it remains to show that |Zptq — 5| < 206 or
|dpts — 5| < 200, which is equivalent to ||pt| — |pq|| < d|qt| or ||pt| — |st|| < d|st|. Let

[lpt|—Ipql| llpt|—|st]
o= —— and = . Then
i B=""

algt| + Blst| < |lpq| — |st|| < dlgs| (2.6)

Let A = %, then % > % =1—A. Thus (2.6) becomes Ao+ (1 — )3 < 6, which

enforces that either o < d or 5 < 4. O
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Using the construction idea in the proof of Theorem 2.4.2, one can see the following

lemma, which is useful to show the dimension theorem in Chapter 2.5.

Lemma 2.4.5. Any (n,d)-burst point can be approached by a sequence of (n,d')-burst

with &' > 0 arbitrarily small, where § < 8%.

Corollary 2.4.6. The set of (n,d)-burst points is open dense in X € Aled”" (k) for any
5> 0.

2.5 Dimension

For a space X € Alex (k), one can define the canonical Hausdorff dimension. Another
idea is to take the maximal number n such that the (n,d)-explosion exists for some
point in X, or equivalently, the number n such that a neighborhood of burst point is
homeomorphic to a region in R™. In the following we will first define the burst index
and rough dimension (rough volume) and show that the they are the same as Hausdorff
dimension for an X € Alex (k). In the rest of this thesis, we will use Alex" (k) to denote

the n-dimensional space of curvature > k.

Definition 2.5.1. Let p € X € Alex (k). The number n is called the burst index near
p if there are (n,d)-burst points in any neighborhood of this point but the analogous
condition with n replaced by (n + 1) is not satisfied (n is a natural number or 0). If

there is no such n, then we suppose the burst index to be oco.

Definition 2.5.2.

(1) The a-dimensional rough volume V,. (U) of a bounded set U C X in a metric space
is lim sup €“ Gy (€), where [y (e) is the largest number of points in U that are at least
e—0

€ pairwise distance from each other (we call it e-net). inf{a : V, (X) = 0} = sup{a :

V. (X) = oo} is called the rough dimension of X (denoted as dim,(X)).

(2) The n-dimensional Hausdorff measure of a subset A C X is defined as H"(A) =

lin(l) H!'(A), where

H!(A) = inf {Z diam(U;)" : U U; D A, diam(U;) < e} .
i=1

i=1
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inf{n : H*(X) = 0} = sup{n : H"(A) = oo} is called the Hausdorff dimension
dimg(A).

Obviously the Hausdorff dimension dimg(X) < dim,(X). If f : X — Y is a
Lipschitz map, then dimy f(X) < dimg(X) and dim, f(X) < dim,(X); if f is bi-
Lipschitz, then dimgy f(X) = dimy(X) and dim, f(X) = dim,(X).

Lemma 2.5.3. Let u,v € X € Alex(k), and let U and V' be their neighborhoods which

are sufficiently small, then dim,(U) = dim, (V).

Proof. 1t’s sufficient to prove for the case k = 0. Assume limsup ey (€) = oo, then
e—0

for each i large there is an €;-net x1,...,xy, € U such that €'N; > i, where ¢, — 0 and
Ni = Bu(e).

We now construct an e,-net in V. Let R > 0 small such that B,(R) C V. Let y; be
the point on some geodesic ¥Z; so that |vy;| = £|vz;|, where D = sup{|uz|: 2 € V'}.

Clearly the points y; are in B and for an ¢, = % - e-net. Thus we have

()*Bv(€f) > (g)a €N; > i @)a .

We conclude that V,_ (U) > 0 and dim, U > dim, V. Similarly dim, U < dim, V by

switching the position U and V. O

Remark 2.5.4. If the triangle comparison is only satisfied locally (such as a square from
which remove a closed disk), the above proof still valids if the points can be passed
through from each other by a sequence of intersected balls which satisfy the triangle

comparison.

Proposition 2.5.5. Let point p € X € Alex(k). Then for a sufficiently small neighbor-
hood U of p, the burst index of X near p is equal to dim, U and dimy U. In particular,

the burst index is equal to dim, X and equal to dimg X.

Proof. Let the burst index of M near p be n and let n be a natural number (the case

n = 0 is trivial - M is a point; the case n = oo is analogue). Then by definition

of the burst index and Lemma 2.4.5 there are no (n + 1, m)—burs‘c points in some

neighborhood U 3 p. Then by Theorem 2.4.2 there is a bi-Lipschitz homeomorphism
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1

from some neighborhood U; C U of an (n, 155

)-burst point p; € U onto a domain in
R"™. Thus dim, U; = dimyg U; = n. By Lemma 2.5.3 we get dim, U = dim, U; = n and

finally dimgy U = n, since dimy Uy < dimg U < dim, U. O

2.6 Tangent cones and space of directions

We will define the tangent cone for a point p in X € Alex" (), which is a generalization
of the tangent space in Riemannian geometry. One natural definition is the Hausdorff
limit of the blow up metric in a small neighborhood of the point. Because of the
singulary, the tangent cone metrically may not be an Euclidean space. However, we
will show that it is a flat cone (0-suspension) over the space of directions, where the
space of directions is the equivalent class of the geodesics from p (in fact, it is a space
in Alex"1(1)). The space of directions is very useful to characterize the infinitesimal
structure near the point. [BGP] §7 shows that the space of directions is continuous
along the interior of a geodesic and semi-continuous up to the end points. In this
section we will modify the proof and show that the space of directions is isometric

along the interior of a geodesic. This was proved by A. Petrunin in [Pet 98].

2.6.1 Definitions and properties

As a formal definition, let’s first define the space of directions, and construct the tangent
cone as the flat cone over the space of directions, then show that such cone is a metric

blow up near the point.

Definition 2.6.1 (Space of directions). Let p € X € Alex" (k). Geodesics with origin
p are said equivalent if one is the extension of another. Let Z;, denote such equivalent
class, associated with the distance (between two geodesics from p) as the angle at p
between the two geodesics. The metric completion of E;, is called the space of directions
at the point p (denoted by X,). We will use pg or briefly [g] to represent the geodesic
class pg (or one of the geodesics if they are multiple) in 3,. Note that by definition,

E;, C X, is also the collection of directions in which there is a geodesic goes out.

An important property for the space of directions is:
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Theorem 2.6.2. The space of directions at any point of X € Alex" (k) is compact.

We will omit the proof of Theorem 2.6.2 but list a technical lemma which is required

in the argument, since this lemma is useful in some other situations.

Lemma 2.6.3. Let {pa;} be a finite collection of geodesics in X € Alex (k). Then for
any 6 > 0 there is a neighborhood U of the point p (depending on 6 and the collection of
geodesics) such that the angles of all the triangles Apqr with vertices q, r on the parts
of the geodesics pa; in U differ from the corresponding angles of the triangles qur by

no more than 9.

Proof. Tt is sufficient to consider the case of two geodesics pa,pb. Let R > 0 small
such that if a1 € pa, by € pb with |pa;| < R, |pb1| < R, then Laipb; — Laypb; < 5/2.
Consider the Apaib; with a1 € pa, by € pb and |pai| < (0.1)dR, |pbi| < (0.1)dR, we
then have Lajboby < §/2. Let the point by € pb be such that |pbs| = R. Put the
triangles Apalbl and Aalblbg on the k-plane externally along the side &151, then by

comparing this with the triangle Aalpbg we get

Zalpb1 + Zalbgbl - Zalpbg — Zalbgp
= (Zpalbg — Zpalbl — Zblalbg) + (’ﬂ' — Zpblal — Zbgblal)
Z ™ — Zpblal — Zbgblal.
Therefore
0 < Kpblal - Zpblal < (&pblal + Kbgblal) - (Zpblal + Z_bgblal)
< (Zalpbl — Zalpbg) + (Zalbgbl — Zalbgp)
<6/24(6/2-10) <.
Similarly we get 0 < £paiby — Lpaib; < 4. O

Definition 2.6.4. The tangent cone C), at the point p € X € Alex" (k) is the flat cone

(see Chapter 2.3.1) over the space of directions ¥,,.

Up to this point we don’t know if curv(Cp) > 0, or curv(X,) > 1. However, by

Proposition 2.3.2, they are equivalent to each other. The map exp,, : C;, — X is defined
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in the canonical way, but the domain Czlo is a star-shape subset of C), (for example, p is
the glued point on the glued two disks via boundary identification). The inverse map
exp,, L considered as a multi-valued map, is defined on all X. For our purpose, in the
rest of the thesis exp, 1 will mean a single-valued function by choosing one direction
of the geodesics. The map exp, 1: X — C, may not be onto or continuous, even
in a small neighborhood of p. We also can construct exp;}, : X — Cy(p) which will
become a distance non-decreasing map using the natural map from the flat cone to the

K-suspension.

Theorem 2.6.5. Let (X, p) € Alex" (k) and let p € X. Then the spaces with base point

(X,p, Ap) Gromov-Hausdorff converge to the tangent cone C) as A — oc.

Corollary 2.6.6.
(1) The tangent cone Cp € Alex(0). Thus if dim X > 1, then ¥, € Alex(1).

(2) dim ¥, = dim X — 1, or equivalently, dim C), = dim X.

Proof. (1) It’s clear that (X, Ap) € Alex"(A~2k). Then as the limit space, the curvature

of Cj is bounded from below by 0 = lim A2k,

(2) Because exp; 3, : X — Ck(p) is distance non-decreasing, and the map Cx(p) — Cp
is bi-Lipschitz, we get dim C}, > X. We now prove dim 3, < dim X — 1 by lifting an
n-explosion (aj,b;) for a point ¢’ € X}, to an (n + 1)-explosion (a;,b;) in X. Select

1771

(a}, b)) arbitrarily close to ¢/, i.e. La;pqg < €, £bijpq < e. Take g as the interior point

2771

of the geodesic ¢’ and a;,b; on the geodesics a,b; such that |pa;| = |pb;| = |pg| for
1 < i < n. It’s easy to check that (a;,b;) form an n-explosion at q. We will get the
(n + 1)-explosion when take a,41,b,+1 as the points on geodesic pg with the opposite

directions from q. O

Remark 2.6.7. One may compare this argument to Lemma 4.2.9 (2).

2.6.2 The continuity of tangent cones

For compact metric spaces X and Y, we say X <Y if there exists a non-contracting

(not necessarily continuous) map f: X — Y ie. |f(z)f(y)ly > |zry|x. Toshow X <Y,
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it’s sufficient to check the condition over a dense subset of X. It can be verified that if
X <Y < X, then X and Y are isometric. We say liminf X; > X if the GH-limit space
1—00

X'’ of any subsequence satisfies that X’ > X. Similarly one can define the inequality

limsup X; < X.

1—00
Proposition 2.6.8. For compact metric spaces X and Y, if X <Y < X, then X and Y

are isometric to each other.

Proof. 1t suffices to show that if f : X — X is a non-contracting map, then f is an
isometry. Let A be the collection of all e-net (the most number is Gx(e)) of X and
define a map ¢ : A — RY {z;} — Z |zj x|. Note that any sequence of elements in
A has point-wise convergent Subseqjufa’;ce, and ¢ is bounded by (x(e¢)diamX, hence ¢
takes maximum at some element {a;}. Together with
o(f{ai})) =Y 1f(ag) flaw)| =D lajax] = d({ai}),
i<k i<k
we get that f is isometric when restricted on {a;}. Now it remains to show that {a;}

is e-dense in X. Because ¢ takes maximum at {a;}, {a;} gets the maximal number of

points as the e-nets, and this implies the e-density. ]

Theorem 2.6.9 (The semicontinuity of tangent cones). If g;, p are points in X € Alex" (k)

and p; — p, then liminf ¥, > 3.

1—00

Proof. Not losing generality, we can assume X, 1,5, We will show that & > %,. Take

an e-net A, = {pai,...,pan} in ¥,- By Proposition 2.2.5, we have liinigf Lajpiaj >

Lajpajr, i.e., liminf |]Ta}piaj/\zp. > |@W|zp. Let b; € 3 be the limit points of the
1—00 v

sequence p;a; as i — oo. Then [piaj piajils, —|0jb|s — 0. Thus [V;b,|s > |paj pajils,

and we can define a non-contracting map f. : Ac — ¥ as f.(pa;) = b;-. O

Theorem 2.6.10. Let p,r be interior points of the geodesic ab in X € Alex™ (k). Then
Yp =%,

The above two theorems state that, the space of directions (as well as the tangent

cones) doesn’t change along the interior of a geodesic, but at the limit point it can be
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“smaller” (but not collapse). For example, consider the 2-dimensional flat cone with
vertex p and ¥, = S(3), where S(r) denotes the circle with radius r. Let a; be points
on the geodesic pg, hence ¥, = S(1). If llg(r)lo a; = a # p, then ¥, = S(1) = X,,. If
Zli)rgo a; = p, then ¥, = S(%) < 8(1) = X,,, because any geodesic can not pass through
the vertex p.

In the approach in [BGP] (§7), the space of direction 3, is first reduced to a spherical
suspension of I', provided that ¢ is an interior point of the geodesic. Then a technical
lemma describing the “similar triangles” prosperities is established for the points p1, 71
near ab with that ppy, 77 are almost perpendicular to ab. In the following, we modify
the original proof without using the condition “almost perpendicular”. We show that

the “similar triangles” properties almost hold (depending on the size and location of

the triangles) for any shape of triangles along the interior of a geodesic.

Lemma 2.6.11 (Infinitesimal similar triangles). Let the points r,p,q be points on the

geodesic ab with the order: a,r,p,q,b and |qr| < d min{|ar|, |bg|}. Let the point r1 near

Irig] M Then

lpigl  pal’

r such that |rri| < 62|rq|, and py be the point on qry so that

(b) Zrqu > Arirq — 20,

lpp1|  |rq|
C * ——
) | rra] o

(d) |£p1pq — £rirq| < 36,

’ < 159,

Proof. Due to the comment in Definition 2.2.4, it’s sufficient to give a proof for x = 0.

For convenience, in the following we always assume that r; is not on the geodesic ab.
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(a) By applying condition (C) and the cosine formula in Aarr, we get

lari| < (|ar\2 + \Tn]z + 2|ar||rri| cos Krlrb)l/Q

|rry |2 sin? Lrirb
(lar| + |rr1| cos £Lry1d)

<lar| + |rri| cos Lrirb+ 5

1 ’TT1‘2

1= 2ar] sin? £r17b, (2.7)

< |ar| + |rr1| cos Lrirb +
since the function

f(x) = ( + 2® + 2cx cos 0)/?
= ((c £ zcos0)? + x%sin? §) 1/

9 9 .9 x4 sin* 6 1/2
S <(C:E$COSQ) + x° sin 0+4(C:|:33CO89)2)
z?sin? 6

2(ctxzcosh)’ (23)

=ctxzcosf+
provided £ < ¢ < 1. Similarly, in Arirq we get

Ir1q] < (|7“q\2 + |7“r1]2 — 2|rq||rry]| cos énrb)l/Q

|rr1 ]2 sin? £ryrb

< — Arirb
< lrql = lrryf cos £ryrb + 2(|rq| — |rr1| cos £Lryrd)

1 711 |2
1—-62 2|rq|

< |rq| — |rri|cos Lrirb + sin® £ry7b. (2.9)

In Arigb we get

r1b] < (Jgb]* + |r1q]? + 2|gb||r1q] cos Lriqr)*/?

|gbl[r1q]

— (1 — £ . 2.1
bl + gl <N 210

< lgbl + |r1q| -

Summing up inequalities (2.7)-(2.10) and taking in account that |ar| + |rq| + |¢b| =

lab| < |ary| + |br1], we get

|gb||r1q] 1 1 1 1 -
g+ Jraq) L~ oS £man) < ] Lryrb. 2.11
|qb| + |qu|( COS qur) =1_ (52 |ar‘ + ’Tq| 2‘TT1| S1n rr ( )

Thus

1 rq|\ [rq| gl el oo
1 —cos&Lrigr < 152 (1 + W) ] <1 + b ) . g sin® £ryrb
14+ 01+ 621 +6+6%) |rr|?
1— 42 ' 2|rq|?
7|2
2[rq|?

< sin? Lrirb

sin? £r17b, (2.12)

< (1+30)-



27

consequently,
. |rr1] . 771 |
Arigr < (1420)sin Lryrb- —— < (sin Lryrb+ 26) - ——, 2.13
) 2frg] = Vo B
provided ||T;‘| < 0% and £ryqr is small in terms of § by (2.12).

Remark 2.6.12. (1) The condition |rq| < d|gb| (which controls the size of the triangle)

can not be removed since we used Arigb and it will not work if use Ariqa instead.

(2) In estimates (2.7) and (2.9), |ar|+ |rri|cos £rirb (|rq| — |rri| cos £rirb respectively)

is the “distance” from a (g respectively) to the projection point of 71 on ab.

(b) Let 8 = £Lrirq = £rirb, and not losing generality, assume 6 > 24. If Arirq < 6—26,

then in &rrlq,

|r1iq| = (|7“q|2 + |rr1]2 — 2|rql|rri| cos Zrqu)1/2

1 711 |2
1-462 2lrq|
2

sin? Lrirq

< |rq| — |rri| cos Zm?“q +

< |rq| — |rri| cos(8 — 26) + 109 |rr1 . (2.14)
Similarly, in &arrl, Zarrl < Larri =7m — 0.

lary| = (|a7"|2 + |r7"1|2 — 2|ar||rr1| cos Zarﬁ)l/Q

52
< _ _ v .
< |ar| — |rr1| cos(m — 0) + ) |77
2
= |ar| + |rri| cos @ + 109 |r71]. (2.15)

Summing up (2.14) and (2.15), we get

lag| < |rig| + |ar|
2

< |rq| + |ar| — |rr1] - (cos@ — cos(f — 20)) + 1i762 - rry|

2

= lag| + |rri| - (—2sin(f — §) sind) + 1%

5 |rre], (2.16)

or equivalently,
2

1—6%

2sin(f — 0)sind < (2.17)

This is a contradiction for small § > 0.
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(c) To show the desired inequality, we need the following estimate:

0< Aiplqp Arlqr < 55“ || (2.18)
rq

By (a) and condition (B) and (C),

Krlqr < Aplqp < Arigr < (sin £rirq + 29) |‘TT1||, (2.19)
rq
consequently,
Ap1gp + Lrigr < (2sin Lrirq + 49) “WIH (2.20)
rq

On the other hand, in &rlqr, |r1g| sin Zrlqr = |rry|sin Zrqu. Plugging (b) into this

equation, we get

Zrlqr > sin Zrlqr = sin anq . 7]
IT14|
> sin(£Lrirq — 26) - il > (sin Lryrq — 20) - |TT1’. (2.21)
14| 714
Combining (2.19) and (2.21) we get (2.18). Now let Ipal _ Ipral = t, then
ral — Jriq]
pp1l* = |pal? + |p1al* — 2lpg|lp1g| cos £p1gp
= t*(Irq|* + |r1q]® — 2|rq||r1q| cos £p1gp)
= t2(|rr1)? + 2|rq||r1q| - (cos Zrlqr — cos Zplqp)), (2.22)
or equivalently,
lpp1|? 2|rg|lr14] ~ ~
2lrr P —1= W - (cos Lr1qr — cos £p1gp). (2.23)

By (2.18) and (2.20) and select ¢ such that (sin £Lrirb + 20) r:(;“ < (14260)6* < %, we

get that
y ~ o |&rigr + Lpigp| . |Lrigr + <pigp
| cos Lr1qr — cos £p1gp | = 2sin 5 - sin 5
< 2sin ((Sin £rrb + 26) |m|> . sin (35'””)
Irq Irq|
2 2
< o1+ 2036 T 75 ‘T”'Q . (2.24)
rq|? Irq|
Plugging (2.24) in to (2.23), we get
2
t[rrl t2lrr |2 Irq|
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(d) The lower bound
Apipq > Apipq > £rirq — 8 > Lrirq — 30 (2.25)

follows easily from (b) and (c). It remains to show £p;pq < £Lr1rq+39. Apply condition

(A) on Arppy, we get

Irp1|* < |rpl® + |pp1]? + 2|rpl|pp1| cos £p1pg. (2.26)

Now consider the comparison triangle Arryq in R2. Take p on 7 and p1 on 714 such that

lpa|

gl £P1P4 = Lrirq < Lrirq

|7p| = |rp| and |F1p1| = |rip1]. It’s clear that [pp1| = |rr1]-

and |rp1| > |7p1| by condition (A). Thus

rp1|* > |7p1|? = |7pI? + |p1]? + 275| 1| cos £p15g
2
bq pbq
> ]rp|2 + <|r7"1| . ||7"q||> + 2|rp| <|’I“7’1| . ITC]:) cos £rqrq. (2.27)

Combine (2.26) and (2.27), and get

2 2
|pm|2 2\rpllpz;1\ cos dpipq > |pQ|2 o Irpllpal Lrirg.
|rr] |rr |rq| [rry||rq]
By (c),
(1+ 156)2 2lpl +2 Irpl cos £p1pq > |pq| +2 Irpl cos £r17q,
[rgl "] [rql = "l
or,
1663 - |pq| > 166 - M > cos £rirq — cos £p1pq.
[rpl rql|rp

If £p1pg > £Lrirq + 39, then

£ — £ 39
0= lim 1662 - P4 > jiy 05 4T17a —cos(Lrirg +39) _ o
d—0 ‘Tp| 5—>O (5
a contradiction. I

Proof of Theorem 2.6.10. Let r,p,q be points on the geodesic ab such that |gr| <

§min{|ar|,|bg|}, and the points ry,r2 be near to r with |rr;| < 6%|rp|, j = 1,2. Let

p1, p2 lie on the geodesics qr1, g3 so that Zfill = “Zfz‘l ‘|q { Then by Lemma 2.6.11(c),
lpp;| . M — 1| < 156, j = 1,2. Therefore, since Pap2| > |qp! by condition (B), it’s
Il Ipgl [rira| g

not difficult to check that

cos £p1pp2 < (1 + 155)2

cos £rirrg — \1— 150
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Let 6 — 0 (which also forces r; — r along the geodesic 77;) we get Lpippa > Lrirr,
and this will imply ¥, > ¥,. When switch ¢ to be between ar and apply an analogous

setup, we get X, < X,. Thus ¥, = X, by Proposition 2.6.8. ]

2.6.3 Conventions and notations

We now summarize the notations we have used so far and introduce some new ones
which will be frequently used in the rest of this thesis.

(1) Let X, C X, be the collection of directions in which there is a geodesic goes out.
Let pg € ¥, denote one of the directions of the geodesics jointing p, g. If A is a subset,
let T, C X, denote the directions {pa € Yp:a€ A a#p}.

(2) We let c(a,b,...) denote positive constant depending on a,b,.... If just say ¢, it
means a constant does not depending on anything, or determined arbitrary.

(3) We let x(6,0,...) denote the positive function of 6,7, ... (but may depend on other
parameters), where x(d,0,...) — 0 as d,0,--- — 0 for any fixed values of the other
parameters.

(4) We let sn,(r) denote the canonical trigonometric functions on S2, that is,

ﬁsin(\/ﬁ- r), for k > 0,

sng(r) = T, for k =0,

\/%7 sinh(y/—k-r), for k <O0.

\

The cosine law for a triangle Apab in S2 is

(

k=1, cos |ab| = cos |pa| cos |pb| + sin |pa| sin |pb| cos Lapb;
k=0, |ab]® =[pal® + |pb]* — 2|pa||pb| cos Lapb;

k=—1 cosh |ab| = cosh |pal cosh |pb| — sinh |pa|sinh |pb| cosh £Lapb,

or equivalently (by several steps of applying trigonometric identities),

b —Ipb
lab] _ olpal =¥l |

Lapb
sn2 5 5 sin’ %snﬁ\palsnﬁ|pb|.

The second type is convenience in some comparison cases since it only consists of

increasing functions.
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2.7 Rough volume and Hausdorff measure

2.7.1 Rough volume

Rough volume is not a measure, since it may not have countable additivity. For example,
let @ be the rational numbers in [0, 1]. Then V,,(Q) = 1, but V;,,(x) = 0 for any = € Q.
However, one of the reasons to define rough volume is that the Hausdorff measure is
not easy to compute or estimate in the lack of smooth coordinates, but for a subset
in X € Alex"(k) one can give an upper bound of the n-dimensional rough volume
depending on an arbitrary point p and the (n — 1)-dimensional rough volume of the
directions (a subset of ¥,) from the point to the subset. To state the result, let’s first

introduce a function ¥ (k, D), D > 0 defined as:

pr
w(s.0) = e {2 g farl. or| < D1 lorl > 2lapl ~ o]}
gpreSy L 4pgr

In fact, we have (see Lemma 3.3.3)
2
3 -sn, (D) <Y(k,D) < 2-sn,(D),

provided D < ZWW when £ > 0. If Kk >0 and D > ﬁ, it’s easy to see that ¥(k, D) =

U(k, g) = dlirfrrli Y(k,d). We will often omit x in the function ¢ in this section.

2
Lemma 2.7.1. Let p € M € Alex™(k), A C M and T be defined as in Chapter 2.6.5.
Then

Vo (A) < Vi, () - 2Dy - 9" (D),
where D = diam(AU {p}), D1 = max lap| — min lap].

Remark 2.7.2. By a different approach, Theorem 3.C gives a better estimate but with

some priori conditions on A.

h = mi = .
where d Erél£|ap],d2 r;leaj(\ap]

Proof of Lemma 2.7.1. Assume (4(€) is the maximal number of e-net in A. Consider

the distribution of these points between the balls By(d; + je), 7 = 1,2,..., df, where
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2Dq

-1
d; = min |ap| and d = max |ap|. There are at least B4(¢) - ( + 1> of them such
acA acA €

that their distance to p differ pairwise by not more than §. Thus by condition (C)
2D -
we get Ba(e) - <1 + 1> points in I')} at a pairwise distance (which is the angle
€

between geodesics) of at least . Therefore we obtain the inequality

¥(D)

s () 2 a0 (22 41)

(i) (i) 20 (P2 1) ()

Let € — 0, we get the assertion of the Lemma. O

or

Corollary 2.7.3. For X € Alex"(k), we have the bound V., (X) < c¢(n, K, diam(X)). In

addition, Bx(€) < ¢(n, Kk, diam(X)) - €™ for all € > 0.

The proof is carried out by the proof of Lemma 2.7.1 and an induction taking into
account that diamM < %
We will give a generalization in Chapter 3 of the following;:

Proposition 2.7.4. Let X € Alex" (k). If vm is an m-broken geodesic loop, then the

n-dimensional rough volume,
‘/;'n(X) < Xm(617 5) “d - @Z}n_l(’%v d)7

where d = diam(X), & = mma}(ﬂpmiﬂh 1 < ¢ < m}, max;{0;} < § and
Xm(01,0) is a constant depending on m, 01 and 6 such that xm(d1,0) — 0 as 61,6 — 0
(m fized).

2.7.2 Some results on Hausdorff measure and Hausdorff dimension

Let Haus,, denote the n-dimensional Hausdorff measure and B, (S)) be the open r-ball
in S7'. We now state some results without giving the detailed proofs. The proof can be

found in [BGP].

Theorem 2.7.5. Let X € Alex" (k). Then for any p € X and r > 0, Haus,(B,(p)) <
Haus, (Br(S?)). The equality holds if the open ball By(p)) is isometric to B,(S}) in
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terms of their intrinsic metric. In particular, if K > 0 and r = % in which case

Haus, (X) = Haus,(S?), we have that X is isometric to S}

Haus, (B, )
Theorem 2.7.6. Let p be a point in X € Alex" (k). Then the ratio Haiii((Br(gg))) is a

non-increasing function of r > 0.

We omit the proofs for these two theorem, however, we note that the proofs men-
tioned in [BGP] rely on a “singular” version of co-area formula. For the isometry part
in Theorem 2.7.5, the co-area formula is used to reduce the n-dimensional Hausdorff
measure to the (n — 1)-dimensional Hausdorff measure on the cross section S, = {x €
X : |pz| = r}, so that the induction can be applied. However, this idea can not be
carried out in our situation in Chapter 4.

If A itself is an Alexandrov space, then dimgy(A) = dim,(A) (see Proposition 2.5.5).

For a subset A of X € Alex"(k), we only have dimg(A4) < dim,(A).

Theorem 2.7.7. Let X € Alex™(k) and X2, denote the collection of all (m,d)-burst

points. Then dimy (X — X2) <m — 1.

For technical reason, we define the boundary points in X € Alex" (k) inductively as

the following way.

Definition 2.7.8. One dimensional Alexandrov space is a manifold (circle or interval),
we define the boundary as the way in manifold. For X € Alex"(k), a point p € X is
said to be a boundary point if ¥, has boundary. If not so, the point p is called the

interior point.
Theorem 2.7.9. Let X € Alea™ (k) and N{ = {q € X — X2, and q is an interior point}.

Then dimg (N?) < n — 2.

2.8 A theorem on almost isometry at (n,J)-burst points

Recall that the map ¢(q) = (|aiql,|azql,...,|anq|) defined in a neighborhood U of
the n-burst point p is a bi-Lipschitz homeomorphism between U and a domain in R",

provided that (a;,b;) is an (n,d)-explosion for § small (see Theorem 2.4.2). In this
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section we will show that such map is an almost isometry depending on 4, the size of

the neighborhood and the diameter of the explosion.

Definition 2.8.1. We say that a complete space X € Alex" !(1) has an (m, 6)-explosion

(4;,B;), 1 <i<m<n,if A;, B; C X are compact subsets such that

A;
A B >m—6 A Bj|> T 5
‘ ) | ) )y 27 9 )
s T
‘Ai,Aj’ > 5 — 5, ’BZ',B]" > E — (5, (2.28) Aj ' Bj
for any i # j. B;

Comparing to Definition 2.4.1 which is for a point, this defines explosion over the
whole space and the maximal number of pairs can be up to n = dim(X) + 1. Clearly
a point p € X € Alex" (k) has an (m, d)-explosion if and only if its space of directions
., € Alex" (1) has an (m, §)-explosion.

We list the technical lemmas needed in the following proofs. The proof of these
assertions is based directly on the triangle comparison and some elementary spherical

geometry (see the graphs).

Lemma 2.8.2. Let X € Alea™ 1 (1).

A;
(1) Let the sets (Aj;, B;) form an (m,0d)-explosion in
X; p € X such that |pA;| > § — 0, |pBi| > § —0 A; B;
for alli. Then the sets (Fii,f‘%i) form an (m, x(9))- v
explosion in X,. B;

(2) Let (A, B) forms a (1,6)-explosion in X; p,q € X such that [pA| > 5 -0, |pB| >
5 — 0. Let the points a, B,ﬁ,ij be given on the unit sphere S% such that ]d5| =T,

5l = [pbl = Z, ||pg| — |5dl| < 8, and also

|[4apq — [TTh|| < 6, |£bpg — |TRTH|| <, (2.29)
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D &8

X € Alex”™1(1) S2
where T% T, C 2, are defined as in Chapter 2.6.3. Then
|1 Aq| — |agl| < x(8) and ||Bq| — [bdl| < x(5)- (2.30)
(8) Let conditions (b) be all satisfied except for (2.29) and assume instead that
| 4q| —|agl| <6, ||Bal —[bql| < 6. (2.31)
Then either for the direction T') € ¥,, we have
|£apq — |TOTH]| < x(6), and |£bpg — [TRTH|| < x(6), (2.32)

or |pq| > m— x(9).

(4) Let conditions (c) be satisfied and let there be given points r on the geodesic pq and

7 on pq so that ||pr| — [pF|| < 6.

STANNS -

X € Alea” (1) S?

Then either

| Ar| — [aF|| < x(8) and ||Br| —[bF]] < x(6), (2.33)
or |Ap| + |Aq| + |Ar| > 27 — x(), or |Bp| + |Bq| + |Br| > 21 — x(9).

Lemma 2.8.3. Let X € Alex (1) have an (n,d)-explosion (A;, B;). Then for any point

q € X, we have

n

z:cos2 |Aiq| — 1

=1

< x(9).
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Proof. We use induction with respect to the dimension. If n = 2,

2
Zcos |Aiq] — 1 = cos? |Aq| + cos® |Aaq| — 1
i=1
1+ cos2|A1q] 14 cos2|Aaq|
- 2 * 2 !

1
= §(COS 2|A1q| + cos2|Azq|)

= cos(|Aiq| + |Azg]) cos(|Arg| — [Az2q]).

Because dim X = 1, X is either an interval or a circle, either |A;q| + |A2q| = |A1 As| or
|A1q| — |Aaq| = | A1 Az|, which is close to 7.

Note that in the unit sphere ST, if take (a;,b;) as an (n — 1,0)—(;:lxplosion, ie.
la;bi| = 7, |a;b;j| = |a;a;| = |bibj| = 5, 1 < i < n, then for any p € syt ZCOS2 |pa;| =
1. Now let point p € A,, and construct an (n — 1, 0)-explosion A, B; (1 ;:zl <n-—1)on
the unit sphere S{L_l. Take p € S’f_l with [pA;| = |pB;| = 5 for all 4. Take ¢ € S{L_l
with [pg| = |pg| and |£ A;pG — [T%, T4l < x(9) for all i by solving the following (n — 1)-
system: |pg| = |pq|, LAipG = ]FZZ_Fg\, i =1,2,...n — 2. By the inductive hypothesis,
the (n — 1)th inequality | A, 1pd — T, Tall < x(9) is automatically satisfied . If
we also can show that |£B;pg — T, T4ll < x(0), then by Lemma 2.8.2 (2), we get that
|| Asq| — |Aig]| < x(0), which implies that

n n n—1
z:cos2 |Aiq| — 1 z:cos2 |Aiq| — (Z cos? | A;| + cos? \ﬁ(j]) |
i=1 i=1

i=1
n—1 n—1
Z cos? |Aiq| — Z cos? | A
i=1 i=1

Now let’s check |£B;pg — T3, T4l < x(6). By Lemma 2.8.2 (1), (I} ,T’p ) form an

[

< x(9).

(n — 2, x(9)-explosion in ¥, in particular,
|FZiI‘Z| + |F’]’3ifg| > ]FZZ_F%Z_] > — x(9).
Plugging this into [T Tg| + [T, TG + [T T, | < 27, we get
[T, T01 + [T T8 — 7| < x(6).

Clearly, £Aipg + £B;pG = m. Thus | BipG — [T’ || < x(6). O
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Theorem 2.8.4. Let X € Alex" (k) and p € X have an (n,d)-explosion (a;, b;). Then the

map f: X — R"™ given by f(q) = (|arql, ..., |ang|) maps a small neighborhood U of the

@O 4| o 5.6)) for
lqr| 7

point p almost isometrically onto a domain in R™, i.e. ‘

any points q,r € U, where

_ 1-1; 1-1g;
51—121%>;{|pa,] diamU,  |pb;| ™ diamU } .

7]
triangle Aa;rq and let a = |rq|, b = |a;r|, and ¢ = |a;q|. Then a < d1¢ and we have

n

Proof. Let’s first investigate the term M = E Hazq\‘—’]aZrH‘ Consider the
: qr
=1

- a®+c —b?
cos Laqr = ———
2ac
A= g_c—b_(c—b)2+i
 2ac 2 a 2ac 2¢
- 2 2
Since(c ) +g§a7+i:g<51,weget
ac 2c ~ 2ac  2c c
2
~ a;iq| — |a;r
cos? Laqr — W < x(61).

n
Thus it’s sufficient to show that Z:cos2 Zaiq'r’ -1

i=1
and selecting U small, we get |La;qr — £La;qr| < x(d,d1). By Lemma 2.8.3 we have

< x(6,01). By Lemma 2.4.3

n
Z cos® La;qr — 1‘ < x(8,01). Thus the desired inequality holds. O
i=1
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Chapter 3

Bounding Geometry of Loops in Alexandrov Spaces

The goal of this Chapter is to prove Theorem 3.A - 3.C.

Let’s first define the turning angle.

Definition 3.0.5. Let ¢ : [0,1] — X be a continuous curve. Given a partition, P : 0 =
t1 < -+ <ty = 1, let p; = ¢(t;), and let v, = {[pipit1]}/~, denote an m-broken

geodesic, vy = [pipi+1], @ minimal geodesic jointing p; and p;+1. We call the

itit1)

following number,

©(c) = lim sup {ZH}

0| Pl=m
the turning angle of ¢, where 0; = 7 — £p;_1p;pir1 and 01 = Lpmr1p1p2 for pmi1 = p1
(the loop case) and #; = 0 otherwise. For convenience, we assign 27 as the turning

angle of a trivial loop.

Clearly, a curve is a geodesic if and only if O(c) = 0, and thus ©(c) measures the
closeness of a curve from a geodesic. An m-broken geodesic v, has a finite turning
angle ©(v,,) = .5 0;. If M is a Riemannian manifold, then any C%-curve ¢ on M
satisfies that O(c) = fol |Ved|dt. Because an Alexandrov space in general may not
contain any closed geodesic (nor any m-broken geodesic loop with small turning angle;
e.g., a flat cone), a loop with the minimal turning angle should be the counterpart of a
closed geodesic on a (closed) Riemannian manifold.

We now give an indication for the proof of Theorem 3.A. First, it is worth to note
that our arguments also imply a new (metric) proof for Theorem 1.0.1; which does not
require a Riemannian structure. Our approach is different from the proof of Proposition
2.7.4 in [BGP] which follows the lines of the proof of Theorem 1.0.1 in [Ch]. Indeed,

we found Theorem 3.A after an unsuccessful attempt to remove the dependence on m
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from X (d1,0) in Proposition 2.7.4.

We take an elementary approach to estimate Haus,, (X)) (say the case r = diam(X)):
expressing Haus,(X) as a ‘Riemann sum’, bounding each term and evaluating the
“Riemann sum” of the bounds via identifying a proper integrant. Let v,, = {[pipi+1]}1"4
be an m-broken geodesic loop approximating to a loop ¢ in Theorem 3.A; and divide
X = U2, X; such that Haus,(X) = > ", Haus,(X;), where X; = {z € X |zp;| <
|zp;|, for all 1 < j#i<m}. Observe that if ~,, is a closed geodesic and |p;p;11| is
sufficiently small, then X is like the ‘union of normal slices’ over [p;p;+1] (when X is a
Riemannian manifold). So in spirit, we are estimating Haus, (X) via a Riemann sum
of a double integral: first over a normal slice at 7, (t), followed by integral over 7,,. To
obtain a sharp estimate for Haus, (X;), we establish a basic Hausdorff measure estimate
(see Lemma 3.1.2), which bounds the Hausdorff measure of any subset A C X in terms
of the Hausdorff measure of the space of directions at any point p € X, |pA| and
diam(A U {p}). Note that this result also substantially improves a basic rough volume
estimate in [BGP] (Lemma 8.2 in [BGP]). The key point in our proof is an estimate
of the maximal and minimal angles between some fixed direction and all directions in
Iy, = {[piz] C £,,(X), = € X;—{p;}}, in which we find a (right) link between £Lzp;p;;+1
and |zp;| (see Lemma 3.1.3). The main ingredient in the proofs of Lemmas 3.1.2 and
3.1.3 is the cosine law in x-space forms.

In Chapter 3.1, we will prove Theorem 3.A by assuming two technical lemmas.

In Chapter 3.2, we will complete the proof of Theorem 3.A by proving the two
technical lemmas.

In Chapter 3.3, we will prove Theorem 3.C.

3.1 Proof of Theorem 3.A (I)

The goal in this section is to prove the following basic estimate modulo two technical

results. The proofs of the technical results will be given in Chapter 3.3.

Theorem 3.1.1. Let X € Alex"(k) (n > 2). If ym is an m-broken geodesic loop at p
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such that vy, C By(p), then

sy (ro)

Haus, (B, (p)) < vol(S72) L(vm) + O(vm) /OT snﬁl(t)dt] ,

n—1
where rg = r for k <0 and ro = min{r, ﬁ} for k>0, and c(n) is constant depending

on n.

Theorem 3.1.1 provides a sharp bound for Haus,, (B, (p)) explicitly in terms of L(7,)
and O(vy,) (comparing to Proposition 2.7.4). Because the bound in Theorem 3.1.1 is

independent of m, Theorem 3.1.1 easily implies Theorem 3.A.

Proof of Theorem 3.A by assuming Theorem 3.1.1. Since p € C C By(p)), we may
assume a sequence of m-broken geodesics, p € 7, C B,(p) (m large), such that
L(vm) — L(c) and O(ym) — O(c), as m — oco. Applying Theorem 1.1 to ~,,, we
get

sn™L(r r
Haus, (B,) < vol(57~2) [NL(%H@(%) /0 sn’,};l(t)dt] (3.1)

Note that max{sn,(r)} = sn,(r¢). Then

/ sn? () dt < sn™ " (ro)r. (3.2)
0

Plugging (3.2) into (3.1), we derive

Haus, (B, (p)) < vol(S7~2)snf~(ro) ’;(1’"1) +O(m)r| .

Taking limit as m — oo, we obtain the desired inequality. O

Given an m-broken geodesic loop, p € v = {[pipi+1]}7%; C Br(p), we will divide

B, (p) into m subsets,

Clearly, X; C B,(p;) for all i, B,(p) = U; Xs and V,,(B;(p)) < >, Vs, (X;). In our

estimate for Haus,, (X;), we will use the following general estimate.

Lemma 3.1.2. Let X € Alex" (k). Given any bounded subset A C X, and p € X, then

Haus,(A) < Haus,_1(T) / " sn~L(t)dt. (3.3)

T1
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If A satisfies that Vy, (A) = V;, (A) (A denotes the interior of A), then

Vi (4) < 0() Vi, (0) [ s 0 (3.4)

71
where r9 = maxgea{lzpl}, 1 = mingea{lpz[}, I'p = {[pz] € E,(X),z € A—{p}} and

Note that Theorem 3.C actually holds for any open subsets of X (see Remark 3.3.7),
and thus (3.3) and (3.4) are equivalent on open subsets. One may compare (3.4) with
Lemma 8.2 in [BGP] (see Lemma 3.3.2 in Chapter 3.4); the former gives an explicit
sharp inequality.

We will further partition X; into thin annulus 4;;, and use Lemma 3.1.2 to estimate
Haus,(A;i;). To estimate Haus,_1(I"), we shall choose a direction in ), C Xy (X)
and estimate the maximal and minimal angles of directions in I" with and the fixed

direction, where I, = {[piz] € ,,(X), = € A;j — {p:i}}. This will be done in the

following lemma.

Lemma 3.1.3. Let the assumptions be as in Theorem 8.1.1. For € > 0, there isn > 0

such that if max;{|pipi+1|} < n, then for any x € X; — {p;}, the following inequality

holds:
3 3
ec|pipi 36m2 T ef|pipi— 36m2
_ lppinal 7 7 < Lrpipiy1 — 5 < pipi-1| 1 5 + 0;,
2 tany |zp;| | tan,, |xp;||2 2 7 2tan, [zpi] | tany, |xp;||2
where tan, r = sf;}?:), and when £ > 0 and |xp;| = ﬁ, the first term on the right of

the inequality is zero.

It turns out that the inequality in Lemma 3.1.3 is in the right form; based on it we
get the explicit sharp estimate in Theorem 3.A.
Using Lemmas 3.1.2 and 3.1.3, we will establish the following basic estimate. The

proof of Lemmas 3.1.2 and 3.1.3 will be given in Chapter 3.3.

Proposition 3.1.4. Let By(p) C X € Alex"(k), and let [pq] denote a geodesic in X from

ptog. Gwen0<a<mw, 0<60<mand Ly > Lsy>0, let
A([pq]7a7LlaL2>9)

3613 I

| tan, |$pH% ~ tang [zp)|

Loy
tany |xp|

={z € B,(p) — {p}, < Lapg— o+

10} (3.5)
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Then the Hausdorff measure of A = A([pq|,a, L1, L2, 0) satisfies

Ly + La)sn ! (ro)
n—1

Haus,(A) < vol(S72) ( +6- / sy (t)dt + 0(77%)
0

where 1o = r for k <0 and ro = min{r, ﬁ} for k > 0.
We will give a proof for Proposition 3.1.4 using Lemma 3.1.2.

Proof of Proposition. 3.1.4

Let A = A([p,q|,a, L1, L2,0). Given a partition for [0,1] : 0 = ap < a1 < -+ <
ay =1, let rj; = ajr, Aj ={z € A, r; <|ep| <rjpa}, 1 <j < N. If k>0 and
d > ﬁ, we will chose {a;} such that some r; = ﬁ (note that some A; may be

an empty set; for instance, if = 0, then A; = @ when r; > NG because otherwise,

tan |xp;| < 0).

For x € Aj,
L 3612 L 3612
2 2
_ 2 U < dapg—a< ——— 46 P 3
tane [zp| | tan, zp||2 tany |zp| | tan,, |xp]||2
implies
L 3612 L 3672
2 2
—— T < sapg—a< : 0+ T (3.6)
tang(cj) | tan, |zp||2 tan,(c;) | tan,, |xpl||2
where ¢; = rj41 when kK < 0 or K > 0 and rj; < ﬁ, otherwise ¢; = r;. Let

Ly = {[zp] € p(X), x € Aj}. Because curv(Xp, (L)) > 1, vol(Xp(T)) < vol(S72),

where Z[

»g)(I'j) denotes the space of directions of T'; at [pg] € T';. Applying Lemma

3.1.2 to I'; at [pq], by curv(I';) > 1 and (1.4.1) we derive

3
L 36n2
at tan,l«ul(cjv)<ko+ .

3
2

e Pl gin™ =3 (¢)dt
__ Ly 3692
tann(‘:j)

Hausn_g(Fj) < VOl(E[pq}(Fj)) .

| tany |opl| 2
LitLly 203 )

3.7
tany (c;) | tan, (c;)| o

< vol(S772) - (

[S]Ie]

n—1¢ .
For € > 0, when A; = ;11 — r; is sufficiently small, we may assume that Sngnﬁigj)ﬂ) <

eEan*Q(rj).
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Case 1. Assume k < Qor k > 0 and d < ﬁ By applying Lemma 3.1.2 to A;:

from (3.7) we get

Tt
Haus,(A4;) < Hausnl(Fj)/ sn~(t)dt

J

< Haus,—1(T;)(rj41 — ;)50 1 (c;)

3

L+ L 7203 ~
AT g ) anle)A,
tan,(c;) | tan,(c;)|2

< vol(S72) (

< ¢ - vol(SP2) [(Ly + Lo)sn 2 (c;)sly(c;) + 6 -sul ' (c))

3 n*% / 3
+72n2snx *(cj) - smg(c;)2 | A;. (3.8)
Then

N
e “-Haus,(A) =e - Z Haus,(4,)
j=1

=2

< vol(ST™2)(Ly + Lo) Z sn? % (c;)snl () A
j=0
N 5 N 5 5
+0) s (o)A + 7202 > sn 2 (ep) - [sm(cp)|24,. (3.9)
j=0 j=0

Finally, view (3.9) as Riemann sum of some integrals and let N — oco. Note that

_1 1
forn =2, [Jsne2(t)- ]sn;(t)]%dt < oo because sny, % (t) = 2 4 o(t), we get
ro
Haus,, (A) < e - vol(S72) [(Ll + Lg)/ sn” 2 (t)snl (t)dt
0

T . r 5 .
+0 / sn” 1 (t)dt + 7277% snp 2(t) - ]sn;(t)lgdt]
0 0
e (L1 + Lo)sni~'(ro)

= vol(S72) [e : " +0- /O "snn (1)t + O(ni)] (3.10)

Letting ¢ — 0, we see the desired result.

Case 2. Assume k > 0 and d > ﬁ For A; with ¢; < ﬁ, the estimate in (3.8)

still valid. If ¢; > then we modify the estimate (3.7) by throwing out the negative

_Tm
2R’

term with “tan,(c;) < 07, and obtain

_5
Haus,, (4;) < e - vol(S]2)[0 - snl " (cj) + 7277%an 2 () (50 ()4 A (3.11)
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Combining (3.8) and (3.11), we derive

N
Haus, (A) = >V, (4))

J=1

< e -vol(SP2)(Ly + Ly) sny 2 () ()4,
7=0
N
+0> sn 7 (r)A; + O(n

=0

3
2

). (3.12)
In (3.12), letting N — oo and € — 0, we get

Haus, (A) < vol(S72) [(Ll + L) /07“0 sn”~2(t)snl (t)dt + 6 /07“ snﬁl(t)dt]

— vol(572) [(Ll + %)_S“f_l(m 10 /0 ' snﬁ_l(t)dt} . (3.13)

As mentioned in the Introduction, we did not success in an early attempt to modify
the proof of Proposition 2.7.4 in [BGP] in order to remove the dependence on m from
Xm(61,9) and factor out L(7y,) out from X, (d1,0). We like to conclude this section by
explaining the reason for this failure. The proof in [BGP] is, following the idea in [Ch],
to divide X into two parts and estimate their rough volumes: one part, Us,, is like a
01-tube around ,,, and the other part, X — Us,. Since points in X — Uy, is a definite
distance away from {p;}, this allowed [BGP] to have an estimate for the diameter of
the directions pointing to points in X —Us,, in terms of 4, and m. Unfortunately, the
rough volumes of two parts in terms of d; are in different order, that makes it impossible

to remove the dependence on m, nor to factor L(7y,), from x,,(d1,9). O

3.2 Proof of Theorem 3.A (II)

In this section, we will give proofs for Lemmas 3.1.2 and 3.1.3, and thus complete the
proof of Theorem 3.A. The main ingredient in the proof is the cosine law in the k-space
form.

For ¥ € Alex" (1), one can construct an n-dimensional Alexandrov space Cj (%)
with curvature > & (cf. [BGP]): for k < 0, let Cx(X) = (¥ x R)/(X x {0}) denote

a cone over X, and for k > 0, let Cx(X) = (¥ x |0, %])/(E x {0}, % x {ﬁ}) denote
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the suspension over ¥. We define a metric d on Cx(X) via the cosine law in the space

form of constant sectional curvature x. For instance, if k = 0, then for (z,t), (2/,t') €

(X xR)/(E x{0}),
d((z,t), (', 1) = t2 + ()% = 2tt’ cos |z2'|x).

Note that for any X € Alex"(x) and p € X, the space of directions ¥, € Alex""1(1),
and thus we get C(X,) € Alex" (k) for a given x. If £ > 0, then diam(C. (X)) = 7.

Given ¥ € Alex" (1) and 0 < 71 < 79, let
AR([) ={r € Cu(®) : [px] € T" and 1 < [pz| < 1o},

where p is the vertex of the k-cone Cj (I") which is a k-suspension for k£ > 0 (in particular,

rggﬁforn>0).

The following integral formula for the Hausdorff measure of an annulus in a k-cone

easily implies Lemma 3.1.2.

Lemma 3.2.1. Let A72(T") be defined as in the above. Then

Haus,(A72(I')) = Haus,—1(T) - /T2 sn™~(t)dt. (3.14)

T1

Corollary 3.2.2.
Haus, (B, (Ck (")) = Haus,—1(I) / sn™~(t)dt. (3.15)
0

Let A and I' = ', be as in Lemma 3.1.2. Consider the map, log, : A — A72(T'),
defined by x € A, log,z = |zp| - [pr]. Because log, is a distance non-decreasing map,

by Lemma 3.2.1 we can conclude Lemma 3.1.2:

r2
Haus,,(A) < Haus, (4;2(T'y)) = Haus,—1(I') / sn 1 (t)dt.

1

Proof of Lemma 3.2.1. Note that for k > 0, Cy;(I") is a k-suspension over I". If r; > ﬁ,

Ty
by the symmetry we see that Haus, (A472(I")) = Hausn(Agi (). Ifr < ﬁ < r,

T2
then similarly we may identify

Ly

Haus,,(4}2(T")) = Haus, (A2 (I")) + Haus,, (4 (D))

sk
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™

2R

We will divide A72(T") into small annulus and express Haus, (A472(I")) as a Rieman-

Hence, without loss of generality we may assume that ro <

nian sum of the Hausdorff measure of these small annulus. The key in the proof is an
estimate the Hausdorff measure of a small annulus in terms of the Hausdorff measure of
a cross section and the width of the small annulus (one may view this as a local co-area
formula estimate).

Let {t;} be an N-partition of [ri,ro] and At = ™5™ be sufficiently small. By the
above assumption, sn,(t) is increasing in each [t1,t,11]. Let Sy = {z € A : |pz| = t}
and AZ“ ={z € A:t; < |pzx| < tiz1}. Define the product metric |(a,u), (b,v)| =
\/W over Sy, X [ti,tiy1]. Because Sy, is an Alexandrov space and the nor-

malized Haus,, has countable additivity, we have

Haus, (St x [ti, tit1]) Haus,, (I™)
Haus,_1(S,) - (tiy1 —t;)  Haus,_1(I"~1) - Hausy (11)

Consider the map f : AZ“ — Sy, X [r1,r2] defined as the following: for x € AZ“, let

=1. (3.16)

a2’ € Sy, be the point on geodesic [px] such that |pz’| = ¢;, then f(z) = (2, |pz|) and
(1) f(22) P = [} 25]* + (Ipz1] — [pal)*.
For any z1, 19 € AZ“ Assume |pza| > |pxi|. We will show that

|z122|
| f(@1) f(22)]

Applying the following version of cosine law (which can be easily derived) to the

=1+ O(At) (3.17)

triangle Apzixe and Apzzh, we get that

— £
sn? ]x12x2] = snii‘pxll 5 [P 4 sin SLPT2 - SNy, [pry sng |prs]
! .0 A / /
sn? [7125| — sin Z21P%2 -sn2(t;)
2 2
Since Lx1pry = L pak,
. I,
2192 _ ol = el | snlpfsnglpral o b
2 2 sn2(t;) 2
. ’od
- sniw + (14 O(At))sn? "”12”’“2 (3.18)
By the Taylor expansion of (sng!(y/sn2(z) + (1 + O(At))snZ(y)))?, we get that

|w122f? = ([pa1| — |paal)? + |2125]” + O(At)|a) 25

= | f(21)f(22)]* + O(At)]ayzh].
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which leads to (3.17). By the cosine law, it’s easy to see that
Haus,,—1(S,) = sn? ! (t;)Haus,—1(T)). (3.19)
Together with (3.16) and (3.17),

Haus,, (A;*") = (1 + O(At))"Haus, (S, x [r1,72])
= (1 + O(At))"Haus,,—1 (S, ) At

= (1+ O(At))"Haus,_ (T)sn” () At.

Summing up the above for ¢ = 0,1,--- ;N — 1 and letting max{At} — 0 we prove
Lemma 3.2.1. O

Proof of Lemma 3.1.3. For e > 0, we may chose n small so that for all 7, 7|Pip21‘+1| <mn

implies that tan, W%ﬂ <e- mpzil‘. We first claim that

e - |pipit1|

_— 2
2 tan, (|xp;|)’ (3.20)

cos £xpipit1 <

where ZajpipiH denotes the corresponding angle in the comparison triangle Al'pipi_i_l -

S2. The proof of the claim relies on the cosine law in the s-space form, and is thus

divided into three cases: Kk =0,k = —1 and xk = 1.
Case 1. Assume k = 0. By the cosine law and by the fact that |xp;| < |xpiy1|, we

derive

- 12 . 2 ) 2
cos Zupipiss — |zpil” + |pipita|” — |zpisa|
2|api| - [pipis]
lzpil? + |pipis1|® — |zpi
2|ps| - [pipisi]

|DiDit1] |DiDit1]

— = . 3.21
Slapi] ~ 2tang(api) (3.21)

’ 2

Case 2. Assume x = —1. By the cosine law and |zp;| < |zp;+1|, we derive

cosh |xp;| cosh |p;pi+1| — cosh |zpit1]

cos £Tpipit1 = : :
Wt sinh |zp;| sinh |p;p;41]

cosh [zp;| cosh|pipit1] —1

~ sinh |zp;| sinh |pipit1]

_ tanh [Pzl s 522)
tanh |zp;| — 2tan |zp;] )
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Case 3. Assume k = 1. Again by the cosine law and |zp;| < |zp;+1], we derive:

cos [&pit1| — cos [zpi| cos |pipit1|
sin |&p;| sin [pipit1 |
cos |zpi| — cos [zp;| cos |pipit1|
sin [zp;| sin [pipi+1]

cos Lxpipit1 =

cos |zp;|2 sin

. ) - |pipit] |pipiti]
sin |zp;|2 sin 5 cos

|pipita]

t (S ..

_ an —; < € |Pzpz+1’. (3_23)
tan |zp;| T 2tan, |zp;

By now, (3.20) follows from (3.21)-(3.23). Next, we shall show that the inequality,
u > cos «, implies

a> g —u—36|u]%. (3.24)

(this will give the left hand side inequality in Lemma 3.1.3.) Note that in our case, we
may assume 0 < a < 7. Thus, if u > 1 or u < —1, then (3.24) holds. On the other
hand, for u € (—1,1), it’s sufficient to show cos™'u > 5 —u— 36]u|?/2, equivalently,
the function

U :u+36u3/2—z+cos_1u20.
2
By calculation,

1 27 U

, o o 12 - " = —
f'(w) =1+ 54 sign(u)|u] — fi(w) W|l/2 (1 —u2)3/2

It’s easy to see that f”(u) > 0, for —1 < u < 5‘ﬁ Land f"(u) < 0 for @ <wu<l.
Hence u = 0 is the only critical point (f'(u) = 0) for 0 < u < 5‘ﬁ L Together with

f(0) =0 and f(1) > 0, we get that f(u) > 0 for all uw € (—1,1). Plugging in (3.24)

e |pipiti]

with o = Lxp;p;+1 and u = Ttang |opi|

, we obtain

€ € 3/
T e |plpl+1’ € |p2p2+1‘
Axpipip) > — — ——— 36| —————
TPiPitl Z 5 2 tany, |2p;] (Q\tannmpi!\
€l 3/2
> T e |pzpz+1’ _ 367 . (3.25)
2 2tan, |ap)|  |tan, |zpg][3/2
Similarly applying |zp;| < |zpit1],
e 36n3/2
Lappy > T lpipi-1| N . (3.26)

2 2tan, |zpi| | tan, |zp;|]3/2
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Plugging (3.25), (3.26) and Ap;_1p;pi+1 = ™ — 6; into
Api—1pipiy1 + Lxpipi—1 + Lxpipiy1 < 2, (the condition (B) in [BGP])

we get the right hand side of the inequality in Lemma 3.1.3. O

3.3 Proof of Theorems 3.B and 3.C

Proof of Theorem 3.B. Let q € Cp such that |pg| = injrad,. We may assume 71,72 €

geod(p, q) such that
Op = 21 — £(71(0),72(0)) + £(=71 (1), —75(1)).
(note that if geod(p, q) = {7}, then 71 = 72 = v.) By Theorem 3.A, we have

2 -injrad, = L(71 * 5 t)

R —
1. [ HEusa(Be)
=(n—-1) [vol(S?_Q) e ]

O

Our proof of Theorem 3.C relies on the local structure of an Alexandrov space,
which we briefly recall (see [BGP] for details). The notion of an (n,d)-strainer maybe
viewed as a counterpart of a normal coordinate on a Riemannian manifold, defined as

follows: for p € X, n-pairs of points {(p;, ¢;) }I~; is called an (n,d)-strainer at p, if

T < Apipgi — T <0, Lgpg; — = <6 (1<i#j<n)

£pippj — 5 5

We call the number, p = min{|pp;|, |pgi|}, the radius of the (n,d)-strainer. By the
continuity, the subset of points with an (n, d)-strainer is open in X. Let S5 denote the
set of points admitting no (n,d)-strainer. Then Sj is a closed subset whose Hausdorff
dimension dimg(Ss) < n — 1. Recall that on a Riemannian manifold, the exponential
map on a small r-ball is an e-bi-Lipschitz map and € — 0 as r — 0. A similar property

is true on a finite-dimensional Alexandrov space.
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Lemma 3.3.1 ([BGP]). Let X € Alex" (k). If p € X has an (n,d)-strainer with radius
p > 0, then there are € = €(n,d,p) > 0 and n(n,d,p) > 0 such that B, (p) is e bi-

Lipschitz to an open subset in R™. Moreover, ¢ — 0 as § — 0.

In the proof of Theorem 3.C, we will also need the following rough volume estimate

in [BGP].

Lemma 3.3.2 (Lemma 8.2 in [BGP] or Lemma 2.7.1). Let X be an n-dimensional

Alexandrov space of curvature > k. Given any subset A C X, and p € M,
Via(A) < Vi, (Tp)2d19" " (5, ),

where di = diam(A U {p}), d = maxyea{|pz|} — mingeca{|pz|} and I, C 3, consists of

geodesic [pa] for every point a € A — {p}.
Lemma 3.3.2 is used in our proof together with the following estimate for v (k, d).
Lemma 3.3.3. The function 1(k,d) satisfies the following inequalities:
2
3 sng(d) < P(k,d) <2 sne(d),

provided d < ﬁ when k > 0, where the sng(r) is defined in Theorem 3.A.

Corollary 3.3.4. Let A € Alex™(k), p € A. Then for all r < min{ﬁ, 1} when k > 0,

Vi (Br(p)) < ¢(n, k) - 1™, where ¢(n, k) > 0 is a constant depending only on n and k.
We will leave the proof of Lemma 3.3.3 at the end of this section.

Lemma 3.3.5. Let A € Alex"(k). For § > 0, there is a sequence p; — 0, such that
Vo (B (85)) = 0 as i — oo,

Proof. Recall that the Hausdorff dimension, dimg(Ss) < n — 1 ([BGP]), and thus
Haus,(S5) = 0. We claim that V;,,(S5) = 0. Let B; denote the j~'-tubular neigh-
borhood of S5. Then By D By D -+, and S5 = (; Bj. Consequently, Haus,(B;) —
Haus, (S5) = 0. Assume V. (Ss) = ¢ > 0. By definition, there is a sequence, ¢; — 0,

1

and €;-net {z¥} C S5 such that € - [{z¥}| — ¢. Given any large j, choose ¢; < j~!, and

we have

(@) N Bei (2}) = 0,k #1
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and thus

[{xk}| -mkin{Hausn( o (zf))) < ZHausn (zF))

i
2 2

< Haus, (B;) — 0.

By the Bishop-Gromov relative volume comparison for Alexandrov space ([BGP]), we

have, for any p € A and r > 0,

Haus, (A)
Haus,, (B, (p)) > - vol(By) = c¢(n,k, A) - ™ >0
VOl(Bdlam(A) )
In particular, Haus, (B« (z7)) > c(n, &, A) - (5)", and thus
A
W)y A b < Huas(By) — 0,

a contradiction.

Since V. (S5) = 0, we may assume a sequence of ¢; — 0 and a sequence of finite
e;-net {z¥} such that €7 - [{z¥}| < i~1. Since {B,,(x¥)} is a finite open cover for Ss, we

may assume 0 < p; < €; such that

and thus

Vi (B, (S5)) <D Vi, ) < {ai} - max{V, (Be,(27))}

By Corollary 3.3.4,

and thus

The following is special case of Theorem 3.C.

Lemma 3.3.6. If U C R™ is a bounded region, then

V., (U) = c(n) - Haus,(U),

Ve, (IM)

"M\ J n L4 _ . n
Haus, (I7) and I™ is an n-cube in R™.

where c(n) =
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Proof. Let OU = U — U. Because 9U is closed and bounded, OU is compact. Clearly,
dimg (0U) = 0. Following the proof of Lemma 3.3.5, we may assume a sequence p; — 0
such that V., (B, (0U)) — 0, as i — oo.

It is easy to check that Haus,, (I*) = vol(I}') = r™-vol(I™) and V,, (I]}) = r™-V, (I"),

Ve (17')
vol(IRr) *

disjoint n-cube I,f;k CU:U; CU;C---CU; C--- and Haus, (U — Uj) < jfl. Then

and thus c(n) =

We may approximate U by U; consisting of finitely many

vol(U) = lim vol(U;) = Jim > vol(I}! )
k

Jj—00
— lim — > V(1) = L im ()
~ j=oo c(n) - TS e(n) imee

1 L .
- @VM(U) — @kh—{l;o%"((] —Uj).

Clearly, for each p;, we may assume that j large such that U —U; C B,,,(0U), and thus
Vi, (U =Uj) <V, (B,,;(0U)), and thus lim V, (U —U;) = 0. O
Jj—00

Proof of Theorem 3.C. Step 1. Fixing small § > 0, by Lemma 3.3.5 we may assume a

sequence u; — 0 such that
Vi (X = By, (55)) = Ve (X) = V2, (B (S5)) — Ve, (X), i — o0, (3.27)

For each p = p;, by the compactness of X —B,,(S5) we can conclude that every point
in X —B,,(S5) has an (n, ¢)-strainer with radius p = p(n,d, ) > 0 (if not, then there is a
sequence x; € X — B,,(S5) such that the (n,J)-strainer at x; has radius p; — 0. Passing
to a subsequence, we may assume x; — = € X — B,(Ss). Because the (n,d)-strainer
at  has radius p > 0, by definition we see that for large i, the (n,d)-strainer at x; has
radius at least p/2, a contradiction).

By Lemma 3.1, we may assume that 7(d,p) > 0 and € > 0 such that B,(p) is e‘-

e

bi-Lipschitz to an Euclidean region By,

and € — 0 as § — 0 and n — 0 (equivalently,
d — 0 and p — 0).
Step 2. Decompose X — B,,(S5) into the disjoint small region, X — B,(Ss) = |, Ui,

such that each U; is contained in an {5-ball. Let U be the corresponding subset in R"

(or equivalently, Uf denotes an Euclidean metric on U; which is e®-bi-Lipschitz to Uj;).
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In particular,
Ve (Ui) _ e _ Haus, (Ui)
< e, e ——=~
~ Ve (U) T Haus,, (Uy)

8—6

<e,
together with Lemma 3.3.5 imply

Haus,(Uf) — Haus,(U;) =  Haus, (Uf)

e *c(n) = e % = e*¢(n).

Because V., is finitely additive, we obtain
e_zgc(n) Z Haus, (U;) < Z V., (U;) < ezgc(n) Z Haus, (U;),
and thus
e~ *c(n) - Haus, (B,(Ss)) < Vo, (X — Bu(S5)) < e*c(n) - Haus, (X — B,(Ss)). (3.28)

In (3.28), letting § — 0 and . — 0, we then have e — 0, V;, (X —B,(S5)) — V;.,(X) (see
(3.27)) and Haus, (X — B,(S5)) — Haus,(X). By now we obtain the desired result. [J

Proof of Lemma 3.3.3. We will first reduce the proof to the case when |gp| = |qr| (see
(3.29) below). We may assume that |gp| > |gr|, and let s be a point on the geodesic
from g to p such that |¢s| = |gr| = x. From the condition that 2(|gp| — |gr|) < |pr|, we

derive
1
lpr| — |rs| < |ps| = |qp| — |qr| < 5\197“!,

and thus [pr| < 2|rs|. From
1
s < lpr| + lps| = lpr| + lapl —lar| < pr| + Slprl,

we get that [pr| > 2|rs|, and therefore

2frs| _lprl _lrs|
36 — 6 — 0

where § = £pqr. In the above inequality, taking maximum over p, ¢,r € S? under the

conditions for ¥ (k,d), we get

2 s B |rs| _
5w 0 jast = farl < af < i) <2 o {50 vl = ol < ).
(3.29)
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We claim that for each fixed z,

max {‘7;|, lgr| = |gs| = a:} = SN,Z. (3.30)

|s]
Clearly, Lemma 3.3.3 follows from (3.29) and (3.30). In the rest of the proof, we will
verify (3.30).

Case 1. For k < 0, applying the cosine law to the triangle Agrs we derive

cosh(v/—k|rs|) = cosh?(v/—kz) — sinh?(v/—kz) cos 0
=1+ sinh?(v/—kz)(1 — cosb)

9
= 1+ 2sinh?(v/—kx) sin? >

and thus

sinh

V= 0
/2<c|7“s| = sin 5 sinh(v/ —kKx). (3.31)

Since sin z < z and z < sinh z for z > 0, from (3.31) we get

— - 0 0
\/75|7‘5| < sinh \/7;|TS| = sin B sinh(v/—rz) < 9 sinh(v/—#z),

and thus

6 — V—r
On the other hand, |rs| — 0 < 6 — 0. Using (3.31), we derive
. |rs] . ] sin g sinh(v/—kx)  sinh(y/—kx)
lim — = lim . _
0=0 0 6=0 ginp Yoplrel 0 Nar

By now, we can conclude (3.30) for k < 0.
Case 2. For k = 0, applying the cosine law to Agrs, we get that |rs| = 2x sing <0z

and thus % < z. On the other hand,

Similarly, we can conclude (3.30) for k£ = 0.

Case 3. For k > 0, applying the cosine law to Agrs, we get

k 0
sin \f2|rs| = sin 3 sin(Vkx). (3.32)
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By (3.32), we get

rs| _ 5 sin
¢ sin \/52\7»5\ kS
_ \/i'm' sin & sin(y/kz) (3.33)
sin ‘/EQ‘TS‘ 5 VE
We claim that Vil
a0
H27‘S . SII; b <1
sin ‘/Ez‘rs‘ 5
Because § — 0 if and only if |rs| — 0,
Ve|rs| .y

T S Lt

6—0 sin \/EZ‘TS‘ g
and consequently we conclude from (3.33) that (3.30) holds for £ > 0.

To see the claim, let A = sin(y/kz), and rewrite (3.32) as
0 6
sin \/E2lr3 = Asin 2 \/i’rs’ = sin~!(Asin 5)
Then
‘/i'rs' sing _sin e smg) smg B sin™H(\ sing) -1
m YAl LT Xsin L)\ =
sin Y5— 3 2 2 2

because for all 0 < A <1 and 0 < g < 3, and thus )\sin% < sin()\g). O

Remark 3.3.7. It is easy to see that the proof of Theorem 3.C goes through when
replacing X with any open subset U of X (note that all we need is that V. (SsNU) <

Ezample 3.3.8. We will calculate an example showing that when L(c) << 1, the esti-
mate for ©(c) is not sharp.

Consider a sector of angle # (0 < 6 < 7) in a flat 2-disk of radius d. We obtain a
flat cone, X2, by identifying the two sides of the sector. Then vol(X?) = %9d2. Let ¢
denote a geodesic loop at a point near the vertex. Then L(c) << 1 and O(c) = 6. In

this case, the inequality in Theorem 3.A reads:

L)+ O(c) - a > 2= 1) volX?)

y
~ vol(8%).-a 2
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Let B denote a closed ball of radius d in R™, and let Xl = X2 x B be the metric

product. Then X™*2 is compact Alexandrov space of cur > 0, and

m—1
diam(X™+?) = v/2d, vol(X™2) = vol(X?) - vol(BT) = m G- dmT2

Let (pi,z) € X™2 = X2 x BT such that p; converges to the vertex of X2, and let
7 C X2 be a sequence of geodesic loops at p;. Then (v, ) C X™*2 is a sequence of
geodesic loops such that L(vy;,z) = L(y;) — 0 and ©((v;,0)) = 6. Applying Theorem
3.A to (74,0) and taking limit as i — oo, one gets (we also assume m = 2s is even)
(m + 1) - vol(X™*2)
(m —1) - vol(S]*) - dm+!
vol(S7 1)

0-d>

= 3m—1)-vol(sm) 0
2%71'@2772
_ (mfl)!!% 0.d
(m =1) -ty
1 1 (2s)-(2s—2)---4-2
- . ) .0-d
T 2s—1 [(2s—1)-(2s—3)---3-1
1
0-d.
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Chapter 4

Alexandrov Spaces of Relatively Maximal Volumes

The goal of this Chapter is to prove Theorem 4.A — 4.D.

Let’s explain our approach to Theorem 4.A. Recall that given 3 € Alex ”_1(1), we
let MZ(X) ={X € Alex"(k)| 3p€ X, ¥, =%, B.(p) = X}, i.e. X € M’(X), there
is p € X such that ¥, = ¥ and X = B,(p). Our proof consists of two parts: using the
maximal volume condition vol(X) = vol(C[(X,)), we first show that exp,, : C5(£,) — X
is well defined and the open ball B, (p) is isometric to C[(¥,) via exp, with respect
to the intrinsic distance. (Note that the continuous non-expanding map gexpp can
be defined in the general case, c.f. [Pet 07] , and it’s the same as exp,, provided the
maximal volume condition in our case.) Thus X = C’(X,)/ ~, where the relation ~ is
over ¥, x {r}: z ~ y if and only if exp,(z) = exp,(y). Secondly, we will show that an
equivalent class coincides with an orbit of an isometric Z-action on %, x {r}.

By Bishop volume comparison, an r-ball in S} is characterized as the r-ball of
(absolute) maximal volume, among all r-balls on any Riemannian n-manifold with
sectional curvature > k. This has been extended to Alexandrov spaces with curvature
> k (10.13 in [BGP]), but still using S? as the model space. Obviously, the present
Bishop (or Bishop-Gromov) volume comparison is inadequate for our purpose, and the
original proof can not be carried on in our case since the induction (for volume rigidity)
can not be applied on the cross section S, = {z € X : |pz| = r}. Instead, the pointed
version of the Bishop-Gromov relative volume comparison (Theorem 4.D) is required
for the proof of Theorem 4.A.

A difficulty in proving the rigidity part in Theorem 4.D is: a distance non-increasing,
volume preserving map (it’s exp, in our case) between Alexandrov spaces is not nec-

essary to be isometry. For example, a gluing map from a flat sector to a flat cone.
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However, we observe that the isometry holds over the sets of interior points in terms of
their intrinsic metrics. Thus we prove that exp,, is an isometry by first showing that it is
an almost isometry over the set of non-singular points ((n,d)-burst points, near which
exists a neighborhood e-bi-Lipschitz (¢ << 1) to a ball in R", see Theorem 2.8.4),
and then continuously approximate dpg,,) by piece-wised geodesics which bypass the
singular points. The existence of such approximation is guaranteed by (1) exp,, maps
singular points to the singular points (which excludes the previous counterexample);
(2) the set of interior singular points has codimension at least 2.

To show that the equivalent class coincides with orbits of an isometric involution.
We first show that if z1 # y1 € ¥, x {r} with ¢; ~ g2, then the union of the two
geodesics exp,(pqr) and exp,(pgz) forms a local geodesic near ¢ = exp,(q1) = exp,(qg2)-
Because geodesics do not bifurcate, the equivalent classes defines an involution f :
Y, x {r} = 3, x {r}, and thus X = C7"(%,)/z ~ f(z),z € 5, x {r}.

It remains to show that f is an isometry: assuming four distinct points, x1, x2, y1,yo €
Xp X {r} such that z; ~ x9 and y; ~ yo. It’s sufficient to show that when points a;,
b; on px; and py, approaches to z; and y; respectively, the ratio of the corresponding
|a1b|

m approaches to 1. We observe that the desired property
a202

holds, if we are allowed to apply triangle comparison argument on the geodesic triangle

distances (in C7(%,))

formed by pz, * pT4 and Dy, * Py, (these are not minimal geodesics). We overcome the
above trouble by proving that one can construct the above triangles (only for non-fixed
points of f) in the doubling space X = Cr(xh) Uy CL(%,), in which pz;  pTy and
DY, * pyY, become minimal geodesics and the triangle comparison holds for the above
structure. We need to show that the set of fixed points is closed, which guarantees
that the above triangle comparison and that the isometry on non-fixed points can be
extended to 3, x {r}.

We also show that the space of directions of the glued fixed points (of f) in X has
an analogue boundary “self-gluing” structure induced by f. Moreover, if f # id, then
dim(Fix(f)) < n —2). It’s worth to point out that our argument do not require the
condition that f is an isometry.

In Chapter 4.1, we will prove the monotonicity part for the Bishop-Gromov relative
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volume comparison Theorem 4.D.
In Chapter 4.2, we will prove the open ball rigidity in Theorem 4.D

In Chapter 4.3, we will prove Theorem 4.A; the gluing map f is an isometric invo-

lution.

In Chapter 4.4, we will prove Theorem 4.B and 4.D.

4.1 Proof of Theorem 4.D (the monotonicity)

In this section, the ‘vol’ denote the Hausdorff measure or rough volume. For p € X,
let B,(p) denote the open r-ball in X centered at p and A% (p) denote the annulus
{x e X :r <|pz|] < R}, 0 <r < R. Let C[(¥,) denote the r-ball centered at the

vertex in Cx(3,) and AR (X,) denote the corresponding annulus.

Theorem 4.1.1. Let X be a complete n-dimensional Alexandrov space with curvature

cur(X) > k. Then forp € X and R3 > Ry > Ry > 0,

UOZ(A% (p)) UOZ(A% (2p))

v

vol(A% (p)) UOKA% ()
In particular,

vol(Br,(p)) S U01(052(2p))

vol(Bry(p)) ~ wol(CH# (%))

Lemma 4.1.2.

(1) For A € [0,1] and z € [0, 7], sin \x > Asinz.
(2) For X € [0,1] and x > 0, sinh Az < Asinhz.
(8) For A\>0 and x > 0, % >1— (A\r)%/6.

(4) For A\ >0 and x > 0, sinhdz ~ _2 > 1 _ g

Asinhxz = sinhax =

(5) Let Apab be a triangle in S2. The cosine law can be written as

ab al — |pb . o Lapb
|2‘ = snzw + sin® ?psnﬁlpa\sn,{]pb].

2
sn
® 2

Proof. (1) Let f(z) = sin Az — Asinz, then

f'(z) = Acos Ax — Acosz = A(cos A\x — cosx) > 0
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since 0 < Ax < x <.

(2) Let f(z) = sinh Az — Asinhz, then
f'(z) = Acosh Az — Acosh x = A(cosh Az — coshz) <0

since 0 < Ax < z.
(3) For 2 > 0, one can show that = > sinx > x — 23/6. Then

sin \z S A — (\z)3/6

Asinz — AT

=1— (\z)%/6.

(4) The first equality is easy to see through sinh Az > Az. Obviously. the second

equality is true for z > 1. For 0 < x < 1,

sinh + - +o<z(l+z+a®+-) °
6 - 1—-x
(5) By trigonometric metric identities. O

For R—90 > 0 and » — Ad > 0, define a map f : Aﬁ_‘s(p) — AT7M(p), where

x +— f(x) = 2 is the point on a choice of minimal geodesic pZ such that
p’| = r — A(R — |pa|).

Clearly, f is injective and well defined, since the geodesic does not branch. The following

lemma shows that f behaves like a bi-Lipschitz function.

Lemma 4.1.3. Let A = S0 for x,y € ART(Y)), let 2,y € AL72(%,) denote f(z),

snx R’
fly). Then for small 6 > 0 independent of r,

ol

lz"y’|

SNy

ck(0)A < 2 < (6)7I,
sn,{|x—2y|
where cg = 1, ¢1(6) = :Eg;g =1- ﬁ and c_1(6) =1 -6 - %, for 6 > 0

sufficiently small.

Remark 4.1.4. In the above inequalities, We only need the left half estimate in the
purpose of the proof of monotonicity. However, the right half estimate is useful in
calculating vol(C},(2,)) (Proposition 4.1.7) and concluding the monotonicity as the

“vol” form (see the proof of Theorem 4.1.1).
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Proof. 1t’s sufficient to prove for kK = 1, —1. The case k = 0 is straight forward.
(Case 1, k = 1) Noting that

[pe’| — |py'| _ Alpa] —Ipyl) _ |
lpx| — |pyl lpx| — |pyl

Y

by Lemma 4.1.2(3) and 0 < |[pz| — |py|| < § < 1 sin R, we have

| / .
sin <pr|2‘py‘|) — sin (A . w>

2 _

> <1_ (A0) ))\-sin <|Ip:v| Ipyl\)
6 2

2 _

> <1_ .52 >A'Sin<!m| \pyH>
6sin” R 2

26 ([ [lpz| = |pyl|
> = . Q neel gl
- <1 sinR+5))\ 51n< 2

— ) -sin <|Ipx| - !pyll) '
2
Thus
(| = py']] _
sin <f) ez =lpyl] 5
) < < 2 <A — < (4.1)
sin (Ilpfclg\pyH> sin (Hmfl;lpyH) sin §
For any = € Aﬁ*é(zp), by Lemma 4.1.2(1), we have
! Y r — ST b
sin|pa:’|zmsinrzrisinrzﬂsinrz <1— - )sinr,
r r T sin R

N ’
Together with sin |pz’| — sinr = 2sin Wz' " cos |px2‘+r <r—|pz| < A\, we get

<1— '5R> sinrﬁsin]px'|§sinr+)\5:<1—|— '5R> sinr.

S11 S1n

Similarly, sin |px| > %sinR > RT?‘ssinR > (1- sirfR) sin R and sin [pz| — sin R =

2sin ‘pmliR cos |px‘2+R < R — |pz| < J, hence

) 0
1— — sin R <sin|pz|<sinR+d= |1+ — sin R.
sin R sin R
So
sint _ sin|p2’|  _;sinr

—_—. 4.2
“UsinR = sinlpr| = ! sinR (42)

Let 6 = Lapy. Since 5 < %, by the cosine law and inequalities (4.1), (4.2),

: -2 |pz'|—|py’| 220 oo /

22 _ SI07 sin® —5=— + sin 581n|px|sm|py|<

ar = sin2 124l sin2 lpzl-lpy| —|—sin2Qsin] x| sin |py|
2 2 2 p Py

—242
cl A%

)
B
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(Case 2, k = —1) By Lemma 4.1.2(2), A§ = Sohe . I < £ . R = r. Together

with Lemma 4.1.2(4), we get
sinh (M) sinh (,\ : M)

- - > (1=0)A>ca) 4.3
~ sinh (lzegl) i (Ll >2(1=0Arzear  (43)

d

: coshR ~ 1+R%/2 R Y )
SIHCQTZT>1If5<m<R,theD§< ‘ﬂ—ﬁ<l.Hencewecan

==

apply Lemma 4.1.2(2) with A = Ssiir?}}lllg < &, to get

sinhr — sinh(r — \J) < 2sinh(A\d/2) - coshr < AS coshiy < 0-coshR
< S —F

)

sinh r sinh r

thus

sinh(r — A\0) > (1 —0- COS:]}%}R> sinh r.
For 2/ € AT72(%,), (1 —5-%) sinhr < sinh(r — Ad) < sinh |pa’| < sinhr. For
T € Ag_/\‘s(Ep),

sinh R — sinh(R — ¢) - 2sinh(6/2) cosh R < d-cosh R
sinh R - sinh R - R

and (1—6- %) sinh R < sinh(R — A\d) < sinh |pz| < sinh R. Then

sinhr _ sinh|pz/| ~ _; sinhr

c_ c 4.4
'sinh R ~ sinh lpr| = “'sinh R (44)
By the cosine law and inequalities (4.3),(4.4),
5, .o _ sinh? —'x;y/‘ sinh? 7|m/|;|pyl‘ + sin? & sinh |pa’| sinh [py/| 9.9
NS — oyl oz peEl=lpyl | 20 . < e A
sinh® == sinh® ™= 4 sin” § sinh [px| sinh |py|
O

Lemma 4.1.5. Let U, V be subsets of X € Alex™(k) and f : V. — U be an injection.
If f satisfies snnw > c- snn@, where ¢ is a constant independent of a,b, then

vol(U) > ™ - wol(V').

Proof. For the rough volume case, assume there is an e-net {x;} in V, where |[{x;}| =
By (€). Note that when £ > 0, max{diam(V'), diam(U) } < % Hence {f(z;)} becomes

an 2sn,; ! (c-sn.§)-net in U. We get Sy (2sn;! (¢-sne§)) > By (e), or
€

e (2 () b i () =

Let € — 0, we get —vol(U) > vol(V).

n

An analog proof is applied for the Hausdorff measure case. O
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The following corollary easily follows by Lemma 4.1.5 and 4.1.3:

Corollary 4.1.6. For the f : Agf‘s(p) — AT7N(p) defined above, where X = ST e

sne R’
vol( AT~ (p)) sner \ "
vol( A (p)) <5”KR) ' 4

Proof of Theorem 4.1.1. By a rescaling, it’s sufficient to prove for the case k = 1,0 and

have

Y

a3

Cc

—1. The proof is based on the volume comparison estimate in Lemma 4.1.5. The key
is to get the integral by taking Riemann sums of (4.5) in a right form. We only give a
prove for the case k = 1, other cases are analogous. We first claim that
R R . _
vol(AR! (p)) - Jg, (sint)" Lat
R = rR3/ . _ K
vol(Agi(p)) [ (sint)~1dt

(4.6)

then by the following Proposition 4.1.7, we get the desired comparison theorem. Not
losing generality, we may assume 0 < Ry < Ry < R3 < 7. Let A}, be the shorthand of
AL (p). We will show (4.6) by the following 2 steps.

STEP 1. For a fixed r € [Ry, R3], take small § < Isinr. Define a monotonic

sequence in [0,1]: ap = 1, ajy1 = a; — 55706, 0 = 0,1,--- ,00. If assume a; € [0,1],
then

a;0 _ sina;r a;r 1 .

— < ——0< —— - csinr <a,

r rsinr rsinr

which follows 0 < a;41 < (1 — g) a;. Thus by induction a; \, 0 as ¢ — oo for sufficiently

small 0 independent of r, provided R; < Re <7 < R3. (In the case k = —1,

a;0 a;r sinh a;r a;
—— =——§<———§< 25 <a,
sinhr  rsinhr rsinhr T

and 0 < a;11 < (1—%) a;i. )

Apply Corollary 4.1.6 for Ag7'" and A%, where \; = a;f(fj;)r — sinair,

sinr

vol(Agi™") - <1 2 >n (sinair)" (47)

vol(AL~°) sinr sinr

Not losing generality, we can assume ayr = R; for some j by taking a smaller 9.

Summing up (4.7) for i =0,1,--- ;N — 1, we get

N-1
R n 2o (sinar)”
vol(A;i) > (1 B ?5 ) i=0 . (4.8)
Vol(AZ:_‘S) sinr (sinr)n
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N-1
Let g(r) = Sifw >~ (sina;r)"™. Then
i=0
N-1 :
or) = Y- (simair) air — aiar) =7(6) + [ Gsimeyat,
=0 R

where 7(0) depends only on ¢, Ry, Ry and 7(§) — 0 as § — 0, since Aa;r = a;r —a;41m =

singig < 0 _, (a5 — 0. (In the case k = —1, Aa;r = sinhair 5 5. ) Plugging this

sinr © — sinr sinh r

into (4.8), we get

vol(Afr) - <1 2 >” 7(6) +f;l(sint)”_1dt

vol(Al~%) ~ sinr d(sinr)n—1
(i 25 \" f;l(sint)”*ldt - 7(6)
N sinr d(sinr)n—1 fﬁl (sint)n—1dt
[r, (sint)"~tdt
> (1 = - .
> (14 ) B (4.9
or equivalently,
1( A7 —9 ; n—1
L"R) < (1+r(5)),§($F—T). (4.10)
vol(A4;™) g, (sint)n=1dt

STEP 2. Let r; = Ry + jo, i = 0,1,--- ,m be a partition of [Ry, R3], where m =

[R3 ] Apply inequality (4.10) to such r;:

vol (A~ §(sinr;)nt

(7;21) <1+ r(a))(&Lﬁ1 = o(9). (4.11)

vol(A;}) R, (sint)"~tdt
Sum (4.11) for j =0,1,---,m

- vol(A:j_l) smr] -t

_ 4.12
= vol(AfEl) Z  (sint) Lt (4.12)

Using —log(1 — x) = = + o(x?) and (4.11), the left hand side of (4.12)

vol(A;7 ™) " VOl(ARl)
Ny +o 52
Z vol(Af) Z( ® vol(4f ) @9

=0 J
vol(AR1)
= log —=2- + 0(9). 4.13
gvol(Aﬁ;) (9) (4.13)
To rewrite the right hand side of (4.12), let ¢, (r fR (snxt)"~1dt, (Here k = 1 and

= [, (sint)"~'dt) then

(sinr;)" vy B (1) o ORs)
Zle sint)r—1dt Z /2 0 dt +7(6) =1 g¢(R2) +7(9). (4.14)
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Combing (4.12), (4.13) and (4.14), we get

vol(A)
vol(A)

5 (sn,.t)vld
log (sm) ! (6)) .

+0(8) < (1+7(5)) | log 22 +7
(5) < ( <>>( i

Letting 6 — 0, we get the desired inequality (4.6). O

Proposition 4.1.7. vol(CE(%,)) = v - vol(%,) fOR(ant)“_ldt, where 7 is a constant de-

pending only on X,.

Proof. Not losing generality, let’s assume r < R < ﬁ in the case k > 0. By the above

proof,
Vol(C(Sy)) _ Jy (snet)dt
vol(CE(Ep)) — [F(snt)n—tdt

Noting that in C,(X,), we can also consider the inverse function f~1 : A:*)“S(Ep) —
Ag_‘s(Zp). By an analog argument applied on the upper bound in Lemma 4.1.3, we
can show that ”<” also holds for the above inequality. Hence

vol(CL(%y)) fg(sn,{t)”*ldt _ vol(X,) for(sn,{t)"*ldt

vol(CE () fOR(SnHt)”—ldt a vol(X,) fOR(sn,{t)"—ldt.

Let » — 0 we get the desired equation, where

i WICGHE)
r—0 vol(X,) [, (snxt)"~1dt

4.2 Proof of Theorem 4.D (the open ball rigidity)

The goal of this section is to prove the following open ball rigidity Theorem 4.2.1.
Comparing to the proof in [BGP], we avoid using co-area formula and induction on the
cross sections, since the cross section is not known to be an Alexandrov space, and even
if so, there is no maximal volume rigidity for the model space being ¥, € Alex (1),
Let’s briefly explain our approach. We first show that the exp, : Cf(Ep) — Bpg(p) is
well defined and preserves the volume (see Lemmas 4.2.2 and 4.2.3). Given a,b € X,

the key point to establish the isometry using the volume preserving is to estimate the

distance |ab| via the volume of a small tubular neighborhood of geodesic ab (Lemma
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4.2.6). Unfortunately, in Alexandrov spaces, this can only be done when ab is contained

in the set of (n,d)-burst points X (on which exist neighborhoods almost isometric to
b

lab] — 1+ x(5) if

B | expy(a), exp, ()]
geodesics ab and exp,(a) exp, (b) are both contained in X 9. Finally, we extend the above

a ball in R™). In fact (Lemma 4.2.7), we show that

x(8)-isometry (in terms of the intrinsic metric over X?) to X using a basic property of

the interior singular points in Alexandrov spaces (Lemma 4.2.8) and Lemma 4.2.9.

Theorem 4.2.1. If UZ?Z(C%EB) = UZ(;(Z(C]%%}?(IJ)) , for some R > r > 0, then Br(p) is isometric

to CI(X,) respect to their intrinsic metric.

vol(Br(p)) __ _vol(Br(p
00l(CT(Xp)) vol(CR(Z )

Lemma 4.2.2. for some 0 < r < R if and only if vol(Br) =

vol(CE(%,)).

vol(Br(p)) vol(Br(p)) _ : vol(By(p))
P'I"OOf. ( ) If W ]., then V()(I)W(Epp)) =1 for any O<r< R, since Wép))

is non-increasing and lim,_g % =1.

vol(Br(p)) __ vol(Br(p))
vol(CL(Xp)) — vol(CE(Xp))’

vol(Bgr(p)) _ VOI(CE(EP))
Vol (Ap(p) ~ Vol(Ap(Sy)

(=) Assume for some 0 < r < R, then

For any 0 <t < r,

vol(Bi(p))  vol(Al(p))  vol(CL(E,))  vol(AL(X,))

Vol(An(p) T Vol(AT(p))  VOl(AL(S,) T vol(AL (%)’

By the relative comparison Theorem 4.1.1, Xgl(ff((p )))) > :gf((gg(éz;))))’ d Zg}g Rg ig >
vol(CL (3p)) vol(B _ vol(CL(Zp)) vol(B _ vol(A%(p))

Sol(At (51> hence vol((ATt ((p)))) = Sol(AT () OF equivalently, vol((ctt(g,),))) = ol (x,)) - et
t — 0 we get vol(AR(p)) = vol(A%(Z,)). Thus vol(Br(p)) = vol(CE(%,)). O

Lemma 4.2.3. If vol(Br(p)) = vol(CE(3,)), then the exponential map exp, : CE(Z,) —
Bpgr(p) is well defined. Moreover, it is a distance mon-expanding bijection, and any
geodesic in Br(p) from p can be extended. Consequently, exp, s a homeomorphism

and satisfies the following condition exp,'(By(r)) D Bosor () (r).

Proof. (1) Consider the distance non-distorting map exp,' : Br(p) — CE(x,) (If
there is more than one image, we just select one) whose inverse map exp, defined

over exp, ' (Bg(p)) is a distance non-expanding. We claim that exp,!(Bg(p)) is dense
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in CE(,) then exp, can be extended to a the map over CE(x,). If exp,, (Br(p))
is not so, then CH(X,) — exp, '(Bgr(p)) contains an open ball, and vol(CE(%,)) >

vol(exp;, ' (Br(p))) > vol(Br(p)), a contradiction.

(2) We will show that any geodesic from p to ¢ € Br(p) can be extended longer, hence
exp,, is a bijection. Let ¢’ = exp,(¢') where ¢’ € CE(%,) is the extended point of the
geodesic exp,, ! (pg). Then [pg| + |qq'| < [pd| +13q'| = |pq'| = |pg'|. which forces pgU g’
being a geodesic. To show the bijection, assume exp,,(q;) = exp,(q¢3) = ¢, then there are
two geodesics pg; and pg, jointing p and q. Let’s extend the geodesic pg; = expp(gTq’l)

to ¢ and take an interior point z2 € pg,. Note that [pg;| = [pgs,|, then

Ipxa| + |z2gi| < |px2| + |220| + |9gi| = [PGa| + |aai| = [Pq:1] + lagi] = Ipail,

which contradicts to that pg* is a minimal geodesic. O

For a subset A in X € Alex™(k) and 6 > 0 small, let A° be the collection of points
in A admitting (n,d)-explosions. The following two lemmas are the preparations to
calculate the volume of a tubular neighborhood (Lemma 4.2.6).

Lemma 4.2.4. Let = vol(T™(1)) be the rough volume
(or Hausdorff measure) of the n dimensional cube with
stde length 1 in R™. Let Hy be a half ball in R™ with
a removed cap. Then vol(Hy) = p(n) - volo(Hy) =

w(n)r - volo(By~(r)) 97T/2 sin” tdt, where voly is the
Euclidean volume and p(n) is a constant depending Hy

on n.

Proof. (1) For Hausdorff measure and Rough volume, we both have vol(Hg) = p(n)voly(Hp).
For any cube T'(1) in R™, by rescaling, vol(T'(1)) = pu(n)-1" = p(n)-volo(T(1)). We can ap-
proximate Hy by the union of finite many non-intersected cubes T;(l;), i =1,2,--- | N,
such that vol(Hy — UN, (T;(1;))) — 0, as N — oo. Then

vol(Hyp) = ]%[imo vol UN | (T;(1;))) = pu(n) ]l[imo volg UN, (T3(1;))) = u(n) - volg(Hp).
(2) Tt remains to show that voly(Hy) = volo(By ™1 (r)) 97r/2 sin" tdt. Let s € [0,h] be

the parameter for the height and ¢ € [0, 5] be the parameter for corresponding angle.
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Then s = rcost and
h /2
volg(Hp) = / volo(By ! (rsint))ds = / volo(By~* (rsint))rsin tdt
0 0
/2
=r-volg(By~1(r)) / sin” tdt.
0
O

Lemma 4.2.5 (BGP Theorem 9.4). For any x € X°(p) associated with an (n,d)-
explosion (a;, b;), where p = min;{|xa;|, |xb;|} > 0. Then the map f : M — R™ given by
f(q) = (larql, - .., |ang|) maps a small neighborhood U of the point x almost isometri-
cally onto a domain in R", i.e. ||f(q)f(r)|—lqr|| < x(3,61)|qr| for any q,r € U. where
61 =p~t - diamU. Particularly, B.(3p) is x(0)-isometric to B§(Sp) in R™.

In the following lemma we estimate the volume of the union of balls Uff{l By, (r)

N
(a “tubular” neighborhood) in terms of r and Z |xixis].

i=1
Lemma 4.2.6. Let X be an n-dimensional metric space and x; € X%(p), i =1,2,--- , N+
1. Let 0 <r < dp/4 and By(r) be the r-ball in R™. Assume |x;xiv1| =1; <1 <2r and

By (r) N By (r) N By, (r) = @, where 1 <i# j# k < N. Then

N+1 N
p~H(n)(1+ x(9)) - vol ( U B.. (T)) = vol(Bf () + volo(By ' (r)) ) _ i
=1 ;

where p(n) is the constant in Lemma 4.2.4.

GOQDQ0:0-0-CH0 O
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Proof. Since l; < 2r and By, (r) N By, (r) N By, (r) = 2,

N+1
vol < U Ba, (7«)> = vol(By, (r)) + vol(By, ., (r))

N+1

N
+ Y vol(H; (r)) + > vol(Hj (r))
=2 =1

where BZ (r) denotes the left and right half balls and H *(r) denotes the left and right
trapezoid ball with height /;/2. By Lemma 4.2.5, every two adjacent balls By, (r) U
By, (r) in contained in a ball By, (6p) which is 1 + x(d)-bi Lipschitz to a ball in R",

then
N /2
(14 x(8)) - vol(H; (r)) = vol(Hp) = pu(n)r - volo(BE~(r)) Z/@ sin” tdt,
=10

where 7 cosf; = 1;/2 and p(n is the constant in Lemma 4.2.4. Hence

N+1
(1+x(d)) - vol ( U Bm(ﬂ)
i=1
N /2
= p(n)volo(By(r)) + 2u(n)r - volo(By (1)) Z/e sin” tdt. (4.15)
i=1 /0

/2
Let f(I) = / sin” tdt, where r cos @ = [/2. Noting that [ = 0 when 6 = 7/2, we have
[4

f(0) =0 and
df = —sin" 0 - df = —sin™ 0 - _;;ne - Sm;l o a.
Using the Taylor expansion of f(I) at [ = 0:
F)=0+ o +O0@),
2r
and [; < [, we get
N r/2 N I N N
2r - ;/91 sin” tdt = 2r - (;% +1; - O(l)) = ;li +2r- (;lz> o().
Together with (4.15), we get the desired estimate provided [ < 2r. O

Now we can establish an almost isometry over the set of d-burst points.
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Lemma 4.2.7. Let f : US — V9 be a distance non-expanding surjection, where U® C X,
VO C Y are subsets containing only 5-burst points. Assume that for € > 0 small and

any A C V9,
vol(f~1(A))

< .
vol(A)  — e

Then for sufficiently small § > 0,
(1) if |ab| = r is sufficiently small, then |f~'(a)f~1(b)| < 2r;

(2) if the geodesics ab C U° and f(a)f(b) C V?, then
~|ab]
[f(a)f(b)]

Proof. (1) For a,b € V% = U,~0V?(p), there exists p > 0 such that a,b € V(p) since

<1+ e+ x(6).

V(p2) C VO(p1)if p1 < pa and VO(p) are all open. We can also assume f~!(a), f~1(b) €
U’(p) by taking a smaller p (if f~!(z) contains more than one point, then only take
one point).

If |ab| = 7 but |f~1(a)f~1(b)| > 2r, consider the balls B,(r) and By(r). By Lemma

4.2.6,

w/2

(14+x(8))vol( By (r)UBy(r)) = pu(n)voloBE (r)+2u(n)r-~volo( By~ (r)) //3 sin” tdt+O(r" ).

Since By-1(4)(1) N Bp-1()(1) = 9,

(1 +x(8))vol(Bg-1(q)(r) U Br-133)(r))

= (1+x(8))(volBy-1(q)(r) + vol(By-1()(r)))

= 2u(n)voly By ().
We can take r > 0 small enough such that B (r) U By(r) C V?, then Bj-1(g)(r) U
By (r) C F7Y(Ba(r) U By(r)) because f is a distance non-expanding surjection.

Hence

vol(f~'(A))
Ltez vol(A)

> (1 x(3) 2ol B ()

p(n)voloBE (r) + 2u(n)r - volo(By (1)) fﬂ/Q sin™ tdt + O(rnt1)

2 f /2 gin™ tdt

= (1 -x(9)) :
fOW/Q sin”™ tdt + fw/2 sin™ tdt + O(r)

This leads to a contradiction for sufficiently small 7, €, §.
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(2) Consider the geodesic f(a)f(b) C V? = Up=oV°(p), there exists p > 0 such that
f(a)f(b) € VO(p). Select p > 0 such that f(a)f(b) C V¥(p) and ab C U®(p). Let {y;}
be an N-partition of f(a)f(b) with |yiyit1| =7 = |f(a)f(b)|/N < p/4 for alarge N € N.
We take a small 7 such that By, (r) C V? for all y;. To apply the estimate in Lemma
4.2.6 on Uff{l By, (r), we need to check if By, (1) By, (r)N By, (r) = @ fori # j # k. In

this case it’s sufficient to show that By, (r)NB,,,,(r) = @. If p € By, (r)NBy,,,(r), then

Yit2
lpyi| < r and |pyiye| < 7, hence 2r = |y;yit1| < |pyi|l + |pyitr1| < 2r, a contradiction.

By Lemma 4.2.6,

N+1
p(n) "1+ x(9)) - vol ( U B.. (7“))
i=1
= volo(B"(r)) + volo(B"(r))Nr + O(r" T )Nr
= volg(B"(r)) + volo(B" (1)) |f(a) f (b)] + O(r" )| f(a) f (b))
= volo(B"~(r))|f(a) f(b)| + O(™).

Let z; = f~'(y;). By (1), l; = |zjzi41| < 2r. Because f is distance non-expanding,

By, (r) N By, ,(r) = @. Thus by Lemma 4.2.6,

N+1

p(n) 11+ x(8)) - vol ( U Bxi(r)> = volo(B"}( Zl +O(r
=1

Under the intrinsic metric of U,

N N
Zli = Z wizipa| > | f 7 a) fHD)],
i1 i—1

hence
N+1

pu(n) "1+ x(9)) - vol ( U BMT)) > volo(B"(r))f~H(a) fH(0)] + O (™).
=1

Let A = UfV:Jlrl By,(r). Again because f is distance non-expanding, UN+1 B, (r) C

f~1(A). By the assumption,

e YU vol (U4 B, (1)
- Vol(A) - VOI( N+1 (T‘))

_ volo(B"~H(r)|f () f 1 (b)[ + O(™)

> (1—-x(9))- volo(B" (1) [f(a) f(B)| + O(r™)
)

f
@) e+ o
[f(@)f®)+O(r)
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Let r — 0, we get

O]

For a subset A in X € Alex"(k), let 0A = AN 0X be the boundary of A as
defined in [BGP]. In particular, 9CE(X,) = 0%, x [0, R). We let A° = A — 9A and
N°(A) = A — A°. Clearly, A° D A° and N°(A) = N(A°) U 9A, where N°(A°) is the
interior d-singular points. The following two lemmas guarantee the extension of the

intrinsic metric.

Lemma 4.2.8 ([BGP]). Let X € Alea”™(k), then dim(N?(X°)) < n—2. Thus dys(z,y) =

dXo(x7y) fOT‘ T,y € X(s'

Lemma 4.2.9. Let ¢ = exp,(q).
(1) If ¢ € OBR(p) then q is not an (n,d)-burst point.

(2) If q is an (n,d)-burst point, then pq is an (n— 1, x(8))-burst point in ¥,. Thus § is

n (n, x(9))-burst point and exp;l(BR(p)‘s) C CE(x,)x0@),

Proof. (1) Assume not so, then the e-ball B.(§) is x(d)-isometric to a ball BY in R®
for € > 0 small. Since Y, has boundary, by induction, it’s not hard to show that
vol(E,) < ivol(S]7~1), thus vol(Be(q)) < ivol(SP™1) ) s snj~(t)dt. Because exp;, !
is distance non-decreasing and keeps the volume, vol(B¢(q)) = Vol(exp; (Be(q))) >
vol(B(q)) = (1 + x(9))vol(B2) = (1 4 x(8))vol (S}~ 1) - Jo t"1dt. We get that

(1+ v (8))vol(SP1) /0 Cnlgr < %VOI(S{“l)- /0 “snr (),

a contradiction as 9, e > 0 small.

(2) Since geodesic pg can be extended and the interior points of a geodesic have the
same space of direction, we can assume that ¢ is in a neighborhood U, of p in which any
triangle with vertex p is d-close to the comparison triangle. Because a neighborhood of
q is almost to a small ball in R™, there exists an (n, d)-explosion at ¢, where ay, b, are

points on the extended geodesic pg. In addition, we can assume |qa;|, |gb;| to be short
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such that a;, b; € U, and £La;pq, £bipq < 25. We claim that {([a;] = pai, [b;] = pa;) ?:_11

forms an (n — 1, 6)-explosion at [q] = pg.

It’s easy to check that La;pq = ||‘;f;‘| + x(0). Thus

_ laigl + 2591 — |aiz;]
2|a;q|z;q|

cos Z[ai][q]le] +X(8) = cos Zaigw; + X(6),

where i,7 = 1,2,...,n — 1, ; = a; or b;. Then the claim is proved by the assumption

that U, is small. O

Proof of Theorem 4.2.1. Let a,b € CE(Z,) and a = exp,(a), b= expp(l;) € Bgr(p). It’s
clear that the interior part of the geodesic ab either contains only boundary point or does
not contain any boundary point. In any case, for § > 0 small, since dim(N°(Br(p)°)) <

n — 2, there is a sequence of piece-wise geodesics L; = Ul‘il'i+1 C BR(p)(s such that

1
S ool ~ bl <

By Lemma 4.2.9 (2), exp;l(Lj) contains only (n,x(d))-burst points. Because exp, is

homeomorphic and, one can modify L; such that in addition,
L 5 1
’Z |ZiZia| — [ablor(s,)| < L

where Z; = exp,!(z;). By Lemma 4.2.7 (2) and because exp, is distance decreasing,

|Z:Zi1] = (14+x(0))|zizis1]|. Let § — 0, j — oo, then we get |ab|p, ) = |65\C§(2p). O

4.3 Proof of Theorem 4.A

The aim of this section is to prove Theorem 4.A. Assume X € M, (3, R) and vol(X) =
vol(CE(X,)). In this section, X always satisfies such maximal volume condition. By
Theorem 4.D, the open ball Bg(p) is isometric to CF(¥,) in terms of their intrinsic
metrics, hence exp,, : CE(¥,) — X can be viewed as a self gluing map along the
“bottom” X, x {R}.

We now introduce some notations. Let p, denote the vertex of CZ(%,). For M €
Alex" (k) and a point p € X, let L,(M) = {q € M : |pq| > |pz| for any x € M}. In
particular, L, (CE(%,)) = ¥, x {R} and L,(X) = X — Bg(p) for the above X. In
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the following Lemma 4.3.1 we show that exp,, 1(g) contains at most 2 points for any
q € Lp(X), which implies that R < ﬁ or R = ﬁ for K > 0. Let LL(X) = {q €
Ly(X) : exp,'(g) has i points}, i = 1,2. Let X! = X — L2(X) denote the collection
of points z in X such that exp, L(x) is unique. Usually, we let 2¢ denote a point in
CR(Zp). If ¢ € LA(X), we will say {q5,q°} = exp,*(q). Let gr denote the geodesic
jointing p and ¢ in X and qr¢ C CE(%,) is the lifting, if exp;l(qT") is not broken. If
q,r € XY, let qr, = exp,(q°r¢) be the projection of the geodesic jointing ¢° and r in the
cone CE(%)). It’s clear that [¢or¢| = 14°r°|er(s,) = lar|x = [gr]. The equality holds if
and only if |gr|x is realized by gr.. Let Apgr = A.pdi denote the comparison triangle

in S2, and qur = £,p¢r denote the comparison angle in S2. Let gr € >4 denote the

equivalent class of the geodesic gr in X.

Lemma 4.3.1. Assume exp,(qf) = exp,(¢5) = q¢ € Ly(X) and ¢f # ¢5. Let pg; =
exp,(poq°®) denote the image of the geodesic poq5, i = 1,2. Then the joint pg, U pgs
forms a local geodesic in a small neighborhood of q. Therefore, exp;l(q) contains at

most 2 points.

Proof. Let z; € pg; and z§ = expgl(aﬁi), 1 = 1,2. We first show that if x1, x9 are both
close to ¢ enough, the geodesic Z1Zy intersects with L,(X). If not, then z773 C X —
Ly(X) = Bgr(p). By the open ball isometry (Theorem 4.2.1), [z122|x = [2{25[cn(s,)-
This leads to a contradiction when let z1, 29 — ¢ since z§{ — ¢f # ¢§ «— 5.

Let a € 7172 N Ly(X), it remains to show that a = ¢. If not, consider the triangles
Aipga C X formed by pg;, pa and qa, i = 1,2. Let Apiqia; and Apagaas be their
comparison triangles in S2 . Take #; € p1q1, such that |¢171| = |gz1|. By [BGP]
condition (A), |z1a| > |T1a1| > |Z1q1| = |x1¢]- (The inequality |Z1a1| > |Z1q1| holds for
|z1a| small even in the case k > 0, ﬁ <R < %) By a same argument applied on
Apagaas, we will get that |z9a| > |29g|. Thus |z129| = 10|+ |29a| > |21¢| + |22¢|, and

implies that T1qz2 is a geodesic. O

We now can define the self gluing map f : ¥, — ¥,. Since ¥, = {poq%, ¢ € L,(X)},

—_— —_— —_ —_— .
for q € LZ%(X), let f: pogi = poq® and f (poqc) = pog¢ if q € L:})(X). Such f is
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naturally an involution and equivalent to a map fr over %, x {R} = L,(CE(%,)), and
it’s clear that X = CE(X,)/x ~ fr(x).

In the following we will carefully analyze the structure of ¥, for ¢ € L,(X) (the
clear result is in Lemma 4.3.7). Lemmas 4.3.1 to 4.3.6 are preparation to show Lemma
4.3.7, while Lemma 4.3.4 plays a key role in showing the self gluing structure of ¥, for
q € L)(X). Lemma 4.3.8 plays a key role in the proof of isometry of f.

For z € CF(%,), let T,e € Alex" 2(1) be the space of directions of;?xC> in 3,. It’s
easy to check that if [p,x°| < R, then ;e = CT(I'ze). Extend the geodesic p,a® to ¢°,
where [po,q°| = R, then I'je =T'je and Xye = C_'lg (I'4e). The following Corollary gives a

necessary condition for the gluing points and immediately implies Lemma 4.3.7 (1).
Corollary 4.3.2. If {¢5,q° } = exp, *(q), then Ygs = Yge .

Proof. Because pg, UDpq_ is a local geodesic near ¢, there are v € pg, and v_ € pg_
such that ¥,, =X, =3, . Since |pr4|, |[pr—| < R and the open ball isometry, we get
that Zx:_ = Em+ = in = Emi' Thus I';e = F‘Ti = Fmi = Fqi and qu!— = Eqi' ]

9+

The following corollary concludes that the estimate vol(X) < vol(CE(%,)) is not

optimal in the case x > 0 and ﬁ <R< ﬁ

Corollary 4.3.3. Assume vol(X) = vol(CE(%,)) and k > 0, then R < ﬁ or R = ﬁ

In the second case, X = C\ (X)) which is the k-suspension of ¥,.

Proof. Assume ﬁ <R< ﬁ We claim that L,(X) = {q} has only one point. By
Lemma 4.3.1, ¥, x {R} = exp;l(q) contains at most 2 points, a contradiction. Let
a # b € Ly(X), consider the triangle Apab and the compared triangle Apab € S2.

Take ¢ € ab and the corresponding & € @b with lac| = |ac]. By the triangle comparison,

pc| > |p¢| > R, a contradiction.
lpc| > |pé| > R tradicti O
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Lemma 4.3.4. Let g € Ly(X) and r € X. If qr, = P
exp,,(¢°r°) is the minimal geodesic jointing q, v in
X, then for any a € pq with |pa| > |pr|, ar. is the
minimal geodesic in X. Immediately, we get that

Lpgr = £p,q°re for any q € LIIJ(X).

Remark. This Lemma also holds for g € LIQ,(X ) if
q

we take a in the selected pq, which is the image of
b Lp(X)

Poq¢ and p,q© forms a hinge with ¢°rc. S

Proof. Argue by contradiction, assume a # ¢ and a7, is not minimal, then the minimal
geodesic ar has to intersect with L,(X). Not losing generality, we can assume that
s € Ly(X) is the only intersection, i.e. @s, 57 C Br(p). Let ps be the geodesic such that

its lifting ps© forms a triangle with p,a® and @s¢ in C¥(X,). Extend P to b € L, (X).

Since @S, is the minimal geodesic in X, we have |as| = [as.| and by the cosine law,
as, £
5ni|a28| = sn? ]a§c| = sniM +sin? P2 sng|palsng|ps|.

In Apgs, we have (g5 may intersects with L,(X), but the following still holds)

lgs| _ . 4spq
sng—— < sin —— - sn,|pq|.
2 2
Hence
2las| _ snklpal 2 |gs]
il . i by 4.16
Ty sn|pq| g (4.16)
Since |qr| = |g7],
ar — £
sniM = sn? 7| = sniM +sin? 221 sn|pg|sng|pr|.
2 2 2 2
Together with
olare] —  olpal —lpr| | . 5 4rpa
S = S 5~ — + sin 5 sny;|palsng|pr|,

we get,

2@l _ snalpal - olarel (o lpal = lpr|  snslpal o lpal = [pr]
"2 sng|pal ) " 2 sng|pal " 2
snelpg|l o lar|

sng|pal )

(4.17)
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The last inequality is verified by the following property: Let = = |pr|, y = |pa| and
z=|pq|. If x <y < z, then

SN2 oY — @

fly) = " ST < f(z) = sng

It’s true because

sng L5t eng S5 sngy — snZizE

!
= sniz -
() k snZy
SNz - SN LSE T
I 2'[” 2 -sn,{y—; > 0.
sn2y

Let t = ZZ:‘@Z" € (0,1) and rewrite (4.16) and (4.17) as

1 _
|q;‘ > sn ! <t - STy ’ag6’> . (4.18)

Note that |gs| + |sr| > |gr| and |ar.| > |as| + |sr| by the assumption that @7, is not

minimal. we get |gs| + [a7| > |qr| + |as|. Together with (4.18):

s 1 ar,
(lgs| + |are|) > sn,; ! <t : sn,€|q2|) +sn, ! (tsn,{- | ;’) ) (4.19)

N =

Because |ag| < |rb|, we have
lgs] < las| + |ag| < [aTc| — |sr| + |ag]
< [are| — |or| + |ag| < [aT|.

|aT|

Let u = sn. ! < v = sn, <L and g(t) = sn; ! (tu) + sn,; ' (v/t). Then

2
, u v
t) = — <0
IO = A BVIL e
Thus g(t) > g(1) = 3 (|gs| + [ar¢|), a contradiction to (4.19). O

Lemma 4.3.5. Let a,b € Ci(X,) and |pa| > |pb|. For the case Kk > 0, we assume

Ipa| < ﬁ Then £pab < T. In particular, if |pa] < |pb|, then £pab < 7.

Proof. We argue by contradiction for the cases x = 0,1, —1. Assume £pab > 7. Extend
the geodesic pa shortly to @’ with |aa’| sufficiently small, then Ldab < Ld'ab < 5. Then

apply the cosine law to the triangles Aaa’b, Apa’b and Apab.



Case 1, k = 0.

a'b?> = |ad')? + |ab]? — 2|ad’||ab| cos La'ab,
|a'b* = |pa’|* + [pb|* — 2|pd’||pb| cos Lapb

— (Ipal + Jaa’])? + [pbl2 — 2(Ipal + |aa'|)|pb| cos Lapb.
Together with |ab|? = |pa|? + |pb|?> — 2|pal|pb| cos Lapb, we get
0 = |ab| cos La'ab + |pa| — |pb| cos Lapb > 0,

a contradiction.

Case 2, k = 1. In this case |pb| < |pa| < 7.

cos |a'b| = cos |aa’| cos |ab| + cos La'absin |ad’| sin |ab| > cos |ad’| cos |ab],

cos |a’b| = cos |pa’| cos |pb| + cos Lapbsin |pd’| sin |pb|.
Together with cos |ab| = cos |pa| cos [pb| + cos Lapbsin |pal sin |pb|, we get
cos |pa’| cos |pb| + cos £Lapbsin |pa’| sin |pb|
> cos |aa’|(cos |pa| cos |pb| + cos Lapbsin |pal sin |pb]),
ie.
cos |pb|(cos |pa’| — cos |ad’| cos |pal)
> cos £Lapbsin |pb|(cos |ad’| sin |pa| — sin |pd’|).

Noting that |pa’| = |pa| + |ad’|, we get
cos |pb|(— sin |ad’| sin |pa|) > cos Lapbsin |pb|(sin |ad’| cos |pal).

Therefore,

0 > cos |pb| sin |pa| — cos Lapbsin |pb| cos |pal
> cos |pb| sin |pa| — sin |pb| cos |pal

= sin(|pal — |pb]) > 0,

a contradiction.

78
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Case 3, kK = —1. An analog proof.

cosh |a’b| = cosh |aa’| cosh |ab| — cos £a’absinh |ad’| sinh |ab| < cosh |ad’| cosh |ab],

cosh |a'b| = cosh |pa’| cosh |pb| — cos £Lapbsinh |pa’| sinh |pb).
Together with cosh |ab| = cosh |pa| cosh |pb| — cos £Lapbsinh |pa|sinh [pb|, we get

cosh |pa’| cosh |pb| — cosh Lapbsinh |pa’| sinh |pb|
< cosh |aa’|(cosh |pa| cosh |pb| — cos Lapbsinh |pa| sinh |pb|),
ie.
cosh [pb|(cosh |pa’| — cosh |aa’| cosh |pal)
< cosh £Lapbsinh |pb|(sinh |pa’| — cosh |ad’| sinh |pal).

Noting that |pa’| = |pa| + |ad’|, we get

cosh |pb|(sinh |aa’| sinh |pa|) < cos Lapbsinh |pb|(sinh |aa’| cosh |pal).

Therefore,
0 > cosh |pb| sinh |pa| — cos Lapb sinh |pb| cosh |pal
> cosh |pb| sinh |pa| — sinh |pb| cosh |pal
— sinh([pal — [pb]) > 0,
a contradiction. O

Lemma 4.3.6. Let X € Alex (k) and qa,qb be geodesics in X. Take a; € qa, b; € gb

such that a;,b; — q. Let ¢; be points on the geodesics a;b;. Then

lim La;qe; + lim 4b;qe; = Lagb.

71— 00

Proof. For € > 0 small, let U, be the deleted neighborhood of p such that for any
triangle Apgr with ¢,r € U, each angle of Apgr differs from the corresponding angle
of Apqr by less than € (See [BGP] Lemma 11.2 for the existence of such U,). For

ai, bi,c; € Up, consider the comparing triangles Aaiqci and Abiqci which take ¢¢; as
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the common side. Then Zaiqci + Zbiqci > KLajqc; + £bige; — 2¢ = m — 2e. Thus
|aibs| < |@ié;| + |bici| < |ashi| + 3e. Together with |a;é| + |biés| = |aici| + |bici| = |aibs),
we get that Zaiqbi differs from A&iﬁﬁ)i = Zaiqci + Zbiqci by less than 10e. Again, by
the property of Up,

|La;qgb; — (Laiqe; + £biqe;)| < 20e.

Let i — 0o and € — 0, we get the desired assertion. O

We now can give a structure of ¥, for ¢ € L,(X).

Proposition 4.3.7. Let q € L,(X). By Corollary 4.3.2, let 'y = T'ye for q € L})(X) and
Pg=Tg =Tg4 forqe Lf,(X).

(1) If g € L2(X), then $q = CT(Ty) is a spherical suspension of Ty.

(2) If ¢ € Ly(X), then the open ball Bz (@) = Bq — Lz(5,) is isometric to C’lg (Ty),

and ¥, = C’lg (Ty)/[x] ~ fqo([z]) is produced by some self-gluing map f; induced by
f:3, =%, atq.

Proof. (1) Let {q$,q¢%} = exp;l(q) and z € pg,. By Lemma 4.3.1, x can be chosen
as the interior point of the local geodesic pg, Upg_ at q. Then ¥, = ¥, = CT(I'z) =
CT(Tg).

(2) First of all, by Lemmas 4.3.4 and 4.3.5, ¥, C Bg(@) Let (ﬁi,% be two points
in 3, where qa, ¢b are the corresponding geodesics. Take a; € ga, b; € ¢b such that
a;,b; — q (see the graphs below). Assume that each of the geodesics a;b; intersects

with L,(X) at ¢;. By Lemma 4.3.4 and 4.3.5,

s
@, 4€ils, = <paci = 4pog°c§ — 3.

Thus [¢] = lim g¢; is a point in Lz (3,). By lemma 4.3.6,
1— 00
’—>

e . . — —
qd, gbls, = Lagb = lim Lasqe; + lim Lbige; = |qa, []]s, + [[c], ¢bls,-

Therefore, |ga, gbls, is realized by a geodesic qa, [c] U [c], ga which crosses Lz;(%).

The above argument implies that |[gal, [gb]| g, g, the intrinsic distance in the open

jus
2

ball Bz (@D), is realized by taking limit of £La;gb;, where all a;b; C Bgr(p), i.e., Bz (qp)

is isometric to X = CZ (Ty).
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X =Cf(%p)/z ~ fr(@)

Using Lemma 4.3.7, we can analyze the topology of the fix points of f.
Lemma 4.3.8.
(1) Fiz(f) is closed in ¥, x {R}. Thus NFiz(f) = X, — Fiz(f) is open.

(2) If LL(X) contains a subset of dimension > n — 2, then X = CE(%,).

Proof. (1) If not, there is a sequence ¢; € Lj(X) but Zlirgo g = q€ LZ(X). Let pq .,
pG_ be the two geodesics jointing p and ¢. Since there is a unique geodesic jointing pg;,
passing to a subsequence, we may assume pg; — pq,. By Lemma 4.3.1, there exists
x4 € pqy and x_ € pq_ such that 7 qUgzr— forms a minimal geodesic. Since ¢; — ¢, we
may assume g;7_ — gZ_. By Lemma 4.3.7(2) (or Lemmas 4.3.4 and 4.3.5), {pg;z_ < 3.
According to [BGP] 2.8.1, it follows that % > ilirgoinfépqim_ > Lxiqr_ = 7, a

contradiction.

(2) It’s sufficient to show that exp;l(Lll,(X)) =3, x {R}. Not losing generality, we can
assume 0%, = @&. If not so, consider the open Alexandrov space E; =¥, - 0%, and the
corresponding X’ = X —exp,, (8%, x [0, R]). When we have exp, —1(L,(X")) = X/ x{R},
we get that exp;l(L]l,(X)) =X, x {R} since exp;l(L}l)(X)) is close. In the following we
first show a claim in (a) and then prove the lemma in (b).

(a) If X # @, then Ly(X) = ¥, x {R}. Because 9%, = @, for any ¢ € L3(X),
Iy has no boundary and ¥, = CT(I'y) has no boundary, thus X C L,(X). Therefore
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exp, 1(0X) is a closed subset in ¥, x {R}. We then show that exp,!(9X) is open in
¥, x {R} and get X = CE(%,).

Argue by induction. For any ¢ € 0X, ¥, = 01% (Tq)/[z] ~ fq([z]) has boundary.
Since I'; has no boundary, by induction hypothesis, 3, = C_'lg (I'y). Then one can find
a neighborhood U, C X such that U, is isometric to exp, ' (U,). Thus U, N L (X) is an
open neighborhood of ¢ contains only fixed points.

The existence of such Uy is equivalent to the existence of a neighborhood in which
any geodesic has no intersection with L}(X). Because X4 is compact, let {gz;} be
an e-dense subset of ¥,. Through the argument of Lemma 4.3.7(2), one can find a
neighborhood Uy such that there is no pair of points on any of the above two directions
jointing by a geodesic crossing L,(X). Since {qz;} is dense for any e small, the above
property also holds for all points Uj.

(b) If L}J(X) contains a subset of dimension > n — 2, because the points in L}?(X)
admit no d-explosion and the set of interior J-explosions has dimension at most n — 2

(see [BGP] Corollary 12.8), L.(X) has to contain boundary point of X. Then the

assertion follows By (a). O

Now view ]?as a map between Z;‘ and X and fg: Xy x {R} — ¥, x {R} as a
map between the “bottom” of two copies of Cy(Z,): C’H(E;), C’R(E;), namely, f;g :
¥ x{R} — X, x {R}. We construct a metric length space X = CR(=)) U CR(=;)
in terms of the intrinsic metric. For any & € X , it’s not hard to see that ptip— is

a minimal geodesic (Note that the extension of geodesic pZ is no longer minimal for

€ L2(X)).

Lemma 4.3.9. Assume X € Alex™ (k). Let [z],[y] € ¥, such that the geodesic [z][y] C
NFiz(f). Let z¢,y° € X be the points on the geodesic [z], [y] with |pz¢| = |py°| = R, and

Z,7 be the corresponding points in X constructed as the above. Then the joint geodesics

pTIp~ and pTyp~ satisfy the condition (B) for the same comparison curvature k.

Proof. This can be easily seen by the argument of Globalization Theorem ([BGP]) since

~ I ~
NFix(f) is open and a small neighborhood of § € X with p*¢ € NFix(f) and [pt¢| = R
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is identical same as the one of the corresponding ¢ € L2(X) (which is a union of two

small neighborhoods). O

Proof of Theorem 4.A.

(=) (1) has been proved as in Corollary 4.3.3. The involution is proved in Lemma

4.3.1. We now show that f: ¥, — 3, is an isometry.

(i) For [q],[r] € %, we first show that f performs an isometry, if the geodesic [¢][r] C
NFix(f). Let ¢,7 € X on the directions [g], [r] such that |pg| = |pr| = R. Let X =
C’E(Z;) Uz C’f(E;) be constructed as the above. Let |ab|¢ denote the distance in
X and |ab|+ denote the distance in CR(S%) respectively. We shall show that |gr| =
|;"E(q)f}\g(7’)],. Let {x;}¥, z0 = ¢, Tn+1 = 7 be a partition of the geodesic gr in X
such that A:Uipixiﬂ < ¢ for all 1.

Let a; be the point on ptx; such that |p*a;| = R — \/e. For € small,

. LT
|aiait1|+ — sin LiP " Tit+1 - sne(R — v/€)

"2 2
< sin% ~sng(R — Ve) < sng(Ve).

Thus |ajai1]+ < 2V, so the minimal geodesic @air1 C CR(SY) and [aiaiqi]z =

|aja;11]+. Therefore,

< 2V/e. (4.20)

N-1
lqr|+ — Z |a;ait1]+
i=0

N-1
lqr|+ — Z |a;ait1] 3
i=0

Similarly, select b; € p~x; such that [p~b;| = R — y/e. We get

N-1 N-1
‘%(qﬁw_— S fbibisilg| = ‘|fR<q>fR<r>|_— > bibigal-| <2ve (421
1=0 1=0

By Lemma 4.3.9, we can feel free to apply Toponogov’s Triangle Comparison over

the joint geodesics ptZ;p~ and pt&;11p~. For each i, because ptz;p~ forms a minimal

geodesic connecting p™ and p~, we have

sng(R — +/¢) - sn,i% < sng (R + 24/€)
B2V S g BT S s (R0
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lasait1]g
[bibi+1] ¢

(4.20) and (4.21), we get

ie. 1—o(e) <

< 1+ o(e). Summing up for i =0,1,--- , N — 1, together with

1-— 0(6) < % <
| fr(q) fr(r)|-

Let ¢ — 0, we get |qr|+ = |fr(q)Fa(r)|—.

1+ o(e).

(ii) fr is continuous. Let ¢f € ¥, x {R}, and ¢ — ¢°. By (i) and because NFix(fg) is
open, it’s sufficient to prove for the case ¢ € Fix(fr). We now show that Zli)rg) flg) =
f(¢°) = ¢°. Consider the sequences exp,(qf), exp,(f(¢f)) in X. Because exp, is dis-
tance decreasing, exp,(qf) and exp,(f(qgf)) converge to the same limit point z. Thus
lim f(qf) = f(¢°) = ¢° = lim ¢, since z = exp,(¢°) € Ly(X),

(iii) Finally, we prove that f is an isometry. For any z,y € ¥,, because NFix(f)
is open, the geodesic Ty can be decomposed into the pieces and each piece contains
only fixed point or no fixed point of f. Consequently, |zy| = Length(f(Zy)). By (ii),

f(zy) is also a curve. Thus |zy| > |f(x)f(y)|. Since f is an involution, we also have
[f (@) f(y)] = |yl

(«) We only need to check that X = CE(S,)/x ~ fr(z) is an Alexandrov space,

provided that f : ¥, — ¥, is an isometric involution. By the doubling theorem ([BGP]),

X € Alex" (k). Now we construct a Zp-isometric action Z% (induced by f) on X such

that X = )A(/Z?c Then X € Alex"(k). View f as a map between ¥} and X For
—_— ~

—
any r € CE(E;), let Z%(m) be the point in C’f(E;), such that p‘Z?(z) = f(p*x) and

Iptzx| = ]p*Z%m)]. Parallel definition is applied for the case z € CE(%,). O

4.4 Proof of Theorems 4.B and 4.C

Lemma 4.4.1. Let A € Alex (k). Assume that A is a topological manifold. Then for
any p € A, ¥, is homotopically equivalent to a sphere S?il. In particular, ¥, is a

sphere if and only if ¥, is a topological manifold.

Proof. Let T, X denote the tangent cone at p. Because p is a topological manifold

point, T, X is a flat cone homeomorphic to R". In particular, an r-ball B, (o) C T, X is
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homeomorphic to an Euclidean ball and thus B, (o) is homeomorphic to ST, where
o is the vertex of T, X. We may identify Cy(X,) with an Alexandrov metric on 7, X,
and we will construct a homotopy equivalence on T, X, from a Euclidean sphere to ¥,,.
Consider two Euclidean balls of radii e < R such that 3, x {r} is contained in the
annulus bounded by the two FEuclidean balls. Starting with idsg—l, and continuously
deforms it into X, x {r} (using the Alexandrov metric on 7,X). Then, using the
Euclidean metric, continuously deforms ¥, into 0B (0).

We now construct a deformation: ¢ : S x [0,1] — T, X such that ¢((s,),0) =

(s,z) and ¢((s,z),1) = (r,x) € ¥, x {r}. Define

o((s,x),t) = (s — (s = r)t,x).

Similarly, using the Euclidean metric one can define a map, ¢ : ¥, x {r} x [0,1] — T, X
such that ¥((s,),0) = (s,z) and ¥ ((s,z),1) = (¢, z) € S»~1. By the construction, we

have ¥ o ¢ ~ idgn-1. O

Proof of Theorem 4.B. Let X € M}.(X) with vol(X) = v(X,k,r). By Theorem A, X
is isometric to C%(X))/z ~ f(x), f : ¥ — ¥ is an isometric involution. Recall that
in the proof of Theorem A, we construct, unless k > 0 and r = ﬁ (in this case X
is isometric to Cy (X)), an Alexandrov space (double) X = Cr(X)t Uy CL(X)) ™. Since
X is a topological manifold, X is also a topological manifold. By Lemma 4.4.1, ¥ is
homotopically equivalent to S7'~' and thus ¥ is simply connected. Because C7(X) is
contractible, by Van-Kampen theorem we see that X is simply connected, and from
Mayer-Vietoris exact sequence of (CT(X)+, CT (X)) we see that X is a homology sphere,
and thus a homotopy sphere. By the Poincaré conjecture, Xisa homeomorphic sphere.

We now naturally extend the isometric Zo-action on ¥ to an isometric Zs-action on
X such that X = X /Zo and that the extended Zy has the same fixed point set F' C X.
Then dim(F) < n — 2. If the Zy-action on X is free, then X is homeomorphic to a
real projective space RP". Otherwise, X = X /Zs is simply connected. Note that if
dim(F') < n — 2, then X is not a homology manifold at a point p € F', a contradiction.

Thus dim(F) = n — 2. By the Smith theorem, the Zs-fixed point set F' is connected
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and F' is a Zo-homology sphere. In this case, it is easy to check that X is a homology

sphere. O

Ezample 4.4.2. Let N = S3/T" denote a homology sphere (Poincaré sphere) of constant
curvature one, and let ¥ = C1(N) denote the spherical suspension over N. Then ¥ is
not a topological manifold (only a homology manifold). It is known that the spherical
suspension, X = C1(X) is homeomorphic to S}. Note that X € MT(X) achieves the

maximal volume.

Proof of Theorem 4.C. We argue by contradiction: assuming a sequence X; € M/, (%)
such that vol(CL(X))) < vol(X;) + € and ¢ — 0, but X; is not homeomorphic to any
element in M. (X) with the relatively maximal volume.

Let p; € X;, ¥p, = X and X; = B, (p;) for all i. Since the sequence has a uniform
lower bound on volumes, we may assume, passing to a subsequence if necessary, that
(Xi,pi) _9cm, (X,p) € Alex" (k). By Perel’'man’s stability theorem, X; is homeomor-
phic to X when ¢ large. Taking limit as i — oo, vol(C},(Xp,))) < vol(X;) + €, we see
that vol(C},(2,,))) < vol(X). By the volume comparison, vol(Cy.(X)) > vol(X;), and
taking a limit,

vol(CL(%)) > lim vol(X;) = vol(X),

i—00
and therefore vol(X) = vol(CJ(X)). We will show that X € M}, (X), and this, because
X has the relatively maximal volume, leads to a contradiction.

We will first construct a distance non-increasing continuous onto map from C7,(X))
to X. Since the two spaces have the same volume, following the proof of Theorem D we
may conclude that B, (p) is isometric to B;(Cx (X)) with respect to the intrinsic metric.
In particular, ¥, X is isometric to 3 (note that the boundary points, 0B, (Cx (X)) —{z €
Cy(X), d(p,z) = r}, have no self-gluing in X, and thus the interior isometry actually
extends to this part).

Recall that gexp,, : By(Ck(Xp,)) — X; is a continuous distance non-increasing map.
Let f; : (Xi,pi) — (X,p) be an ¢; Gromov-Hausdorff approximation (¢; — 0). Then

¢i = fiogexp, : By(Cx(Xp,)) — X is an ¢; distance non-increasing and €;-onto map.
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Passing to a subsequence, we may assume ¢; — ¢ : By(Cy(X)) — X. Clearly, ¢ is a
distance non-increasing continuous onto map.

Finally, for x > 0, it is clear that ¢ = diam(X) < ﬁ, or ¢! = diam(X) = %,
because for ﬁ <l < ﬁ, By (Ck(X)) ¢ Alex" (k) since By (Cy(X)) C Ck(X) is not a

convex subset. O
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