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ABSTRACT OF THE DISSERTATION

Electrorheology and particle dynamics of

single-wall-carbon-nanotube suspensions under shear and

electric fields

by Chen Lin

Dissertation Director: Prof. Jerry W. Shan

Electrorheological (ER) fluids are smart materials consisting of polarizable particles

in an insulating liquid. Under an electric field, the dispersed particles develop an

induced dipole moment and interact with each other to form chains or fibrous structures.

This anisotropic microstructure enables ER fluids to have reversible changes on their

macroscopic rheological properties, such as apparent viscosity and yield stress. As

such, electrorheological fluids have potential application in the control of devices such

as dampers, clutches, and robotics.

Single-wall-carbon-nanotubes (SWNTs), because of their nanoscale size, large aspect

ratio and high polarizability, are of interest as a possible dispersed phase of novel,

highly efficient ER fluids. In this work, we experimentally demonstrated for the first

time the ER response of dilute SWNT suspensions, with a more-than-doubling of the

apparent viscosity at moderate shear rates for a SWNT volume fraction of just Φ =

1.5×10−5. By systematically varying the shear rate and electric field, we found that the

electrorheological response can be interpreted in terms of an electrostatic-polarization

model, where the governing parameter was a modified Mason number giving the ratio

of viscous to dipole-dipole forces. Analysis of the electrostatic forces suggested that the
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magnitude of the electrorheological response in the dilute SWNT suspension, which was

much higher than conventional electrorheological fluids of comparable volume fractions,

was due to the high aspect ratio of the nanotubes.

Further studies of the particle dynamics and electrorheology of SWNT suspensions

were made to better understand the possible connection between the macroscopic rhe-

ology and microscopic particle dynamics. Using an optical polarization-modulation

method and a modified concentric-cylinder viscometer, the first experimental measure-

ments were made of ensemble-averaged SWNT orientation angles under combined shear

flow and electric fields. The particle-orientation response was found to occur on time

scales one to two orders of magnitude faster than the macroscopic electrorheological

response, indicating that the particle orientation does not directly affect the apparent

viscosity at these low concentrations. Consistent with the theory developed by Ma-

son and coworkers for ellipsoidal particles, the equilibrium particle-orientation angles

for various shear rates and electric fields collapsed when plotted against a parameter

giving the ratio of electrostatic-to-shear-flow torques. However, the measured equilib-

rium orientation angles for the SWNTs showed poor quantitative agreement with the

classical model. Analysis of the electrostatic interaction torques between large-aspect-

ratio SWNTs showed that the interactions are significant in spite of the diluteness of

the suspension, and likely account for the discrepancy between the measurement and

predicted particle orientation angles.
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Nomenclature

α0 effective polarizability of a particle in vacuum

∆n
′′

linear dichroism

∆n
′

linear birefringence

δij Kronecker delta

γ̇ shear rate

εf electric permittivity of continuous phase

εp electric permittivity of a particle

εijk Levi-Civita symbol

εij permittivity tensor

Γ′
Ei electrostatic torque in the x′i direction

Γ′
Hi hydrodynamic torque in x′i direction

ω frequency of an AC field

ω′
i angular velocity or spinning velocity of the particle about x′i direction

φ, θ, ψ a set of Eulerian angles

ψ electrical potential

ψi electrical potential inside a particle

ψo electrical potential outside a particle

σf electrical conductivity of continuous phase
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σp electrical conductivity of a particle

τmw characteristic relaxation time or Maxwell-Wagner relaxation time

Im imaginary part

Re real part

εf complex permittivity of fluid

εp complex permittivity of a particle

K complex form of Clausius-Mossotti function

~n the unit normal vector of the interface

~D displacement flux vector

~E− electric field inside a particle

~E0 external electric field

~ei unit vector along i axis

~E‖ electric field parallel to the a1 axis of an ellipsoid

~E⊥ electric field perpendicular to the a1 axis of an ellipsoid

~Fdep dielectrophoretic force

~T e torque applied by electric field

~u unit orientation vector of the particle

α̃ polarizability tensor

Ĩ identity tensor

ñ refractive index tensor

S̃(0) scattering matrix

a radius of the particle
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a1, a2, a3 semi-axes of an ellipsoid

C orbit constant

d diameter of carbon nanotube

e eccentricity of a prolate spheroid

g(re) shape distribution function

i, j imaginary unit

J Jones matrix

K Clausius-Mossotti function

k wave number

k0 initial phase angle

kf dielectric constant of fluids

l length of carbon nanotube

Lx1 depolarization factor along x1 axis

nf refractive index of ambient fluids

p (θ, φ, re) orientation distribution function of a suspension system with prolate spheroids

p′ dipole moment in the x′i (i = 1, 2, 3) in the body set frame

p0 (θ0, φ0) initial orientation distribution function

pσ (θ, φ) probability orientation distribution

Peff effective polarization

peff induced effective moment

r distance from the center of the sphere to an arbitrary point

re aspect ratio of a spheroid
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T period of particle rotation about the vorticity axis

ui velocity component in the xi axis

vs volume of a spherical particle

vps volume of a prolate spheroidal particle

W interaction potential between two dipoles

x′i (i = 1, 2, 3) body set Cartesian coordinates fixed and moves with the particle

xi (i = 1, 2, 3) Cartesian coordinate with fixed directions in space and centered at the

center of the particle

p
eff

complex form of induced effective moment
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Chapter 1

Introduction

1.1 Carbon nanotubes (CNTs) and carbon nanotube (CNT) suspen-

sions

Carbon nanotubes (CNTs), with their unique physical properties and their potential for

commercial applications, have been of great interest to many scientists and engineers

since their discovery by Iijima [1] in 1991. The ultra-high aspect ratio of their geometry,

their electrical conductivity and their enormous mechanical strength (the density nor-

malized strength is about 56 times that of steel wire [2]) make CNTs novel candidates

for variety of possible applications, including conductive and high-strength composite

materials [3], energy-storage devices [4, 5], field-emission sensors [6, 7] or drug-delivery

vessels [8].

Carbon nanotubes belong to the fullerene structural family, where each member

of the family composes entirely of carbon. These members include graphite, which is

comprised of stacked graphene sheets of linked hexagonal rings, buckyballs (C60) the

smallest, soccer-ball-shaped member of the family, and carbon nanotubes (also known as

buckytubes). There are two major categories of carbon nanotubes that can have high

structural perfection: single wall carbon nanotubes (SWNTs) and multiwall carbon

nanotubes (MWNTs). Single-wall carbon nanotubes consist of a single graphene sheet

wrapped into a cylindrical tube. Multi-wall carbon nanotubes comprise an array of such

cylindrical tubes that are concentrically rolled layer by layer. Unlike graphite which

is always conductive or has zero band gap, a SWNT can have different macroscopic

electrical properties (i.e., being metallic or semi-conducting), depending on the direction

in which the graphene sheet is wrapped to form the cylindrical tube. A pair of integers

(n,m) is used to quantify the structural arrangement and resulting type of SWNT.
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Single-wall carbon nanotubes are armchair if (m = n 6= 0), zigzag type if (n = 0 or

m = 0), or chiral (any n,m combination other than the previous two). The armchair

ones are all metallic, while those with (n − m = 3k), where k is a non-zero integer,

are semiconductors with small band gap. All other ones are semiconductors with a

band gap which depends on the tube diameter [9]. Single wall carbon nanotubes have

diameters of approximately 1 nm, and typical lengths on the order of microns.

The properties of carbon nanotubes have been studied for more than a decade.

Scientists and engineers have shown that CNTs are promising building blocks for many

applications such as polymer reinforcement [10,11] or energy conversion devices [12,13].

However, many other applications are based upon the understanding of how CNTs

behave as a particulate component in aqueous or other non-aqueous liquid suspensions.

Colloidal suspensions of CNTs are of interest in applications as diverse as polymer

composites [14], drag reduction [15] in industrial pipe flows, and for drug-delivery vessels

[16] in the human blood system.

A signifcant early challenge in the liquid-phase manipulation of CNTs was the sta-

ble dispersal of individualized (rather than bundled) CNTs in aqueous or non-aqueous

solvents. Fortunately, in recent years, many inorganic and organic solvents have been

found to be good solvents for CNTs with capacities of producing high yields of indi-

vidual CNTs. In aqueous suspensions, surfactants and other surface modification have

been used to effectly disperse CNTs. For example, high-weight-fraction (20mg/mL) dis-

persal of SWNTs in water has been reported with sodium dodecylbenzene sulfonate as

surfactant. In these aqueous suspensions, approximately 63% of SWNTs were believed

to exist in individual form [17]. Other SWNTs/organic solutions also show high stabil-

ity when SWNTs at high weight fraction are dispersed [18]. The rapid advancement in

the solubilization of CNTs has made possible the further study of CNTs suspensions

for a variety of applications.

The stable dispersal of CNTs in liquid phase has also enabled the study of the

individual and collective dynamics of nanotubes in liquids. A thorough study of the

motion of an individual CNT in a quiescent or shear flow is essential to the prediction

and manipulation of the trajectory of CNTs in suspension. Such studies would have
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application, for instance, to the behavior of CNT-based functional nanoscaled medicine

or bio-sensors for clinical usage [19]. The dynamics of CNTs in liquid suspension are

also key to large-scale processing of SWNTs fibers [20] and films [21]. Other application

of the controlled manipulation of CNTs in liquid suspension include the sorting of

SWNTs according to their different size and electronic properties [22–24]. The study

of the dynamics of nanosized, highly anisotropic CNTs in liquid suspension is of both

fundamental interest and practical application.

Investigating the behavior of CNTs in liquid suspension is interesting, challenging,

and inspiring. From the point of view of fluid mechanics, we are fortunate to be able

to draw upon a rich history of study of low-Reynolds-number (Stoke’s) flow. In this

thesis, we experimentally test the applicability of some classic creeping-flow theories

to the motion of nanosized, highly anisotropic CNTs under combined shear flow and

electric fields. The topic not only provides a great chance to review some of the greatest

work in Stoke’s flow, but also the opportunity to develop some insights to applying (and

adapting as necessary) classical theory to this newborn subject.

1.2 Literature review of electrorheology and particle dynamics of mi-

cro/nanoparticle suspensions

Electrorheology is a subject which studies the rheological properties, such as apparent

viscosity and yield stress, of colloidal suspensions upon the applications of external

electric fields. Electrorheological (ER) fluids typically consist of micro-sized dielectric

particles dispersed in an insulating liquid phase. Winslow is believed to be the first to

describe the ER effect. In his 1949 paper [25] he observed a several-orders-of-magnitude

increase in the apparent viscosity of ER fluids consisting of dielectric particles in a low-

viscosity oil. Winslow attributed this effect to the fiber-like structures spanning the

whole gap between the two electrodes which formed in ER fluids under an external

electric field. Over the years, much progress has been made on the properties of ER

fluids and the mechanisms behind the ER response [26–32]. Excellent reviews of the

phenomena and mechanisms of ER fluids are given in Refs. 30-32. The ultimate
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Figure 1.1: Images of nanoparticles in gigantic ER suspensions discovered by Wen’s
group [33].

practical motivation is to find a way to engineer highly effective and efficient ER fluids

for power transfer and dissipation in real applications such as clutches, brake systems,

and dampers for automobiles and other machinery.

Recent developments in the commercial-scale synthesis of nano-sized particles have

led to new interest in novel ER fluids having nanoparticles as the dispersed phase. For

instance, gigantic ER effects with a yield stress of 130 kPa [33] have been recently

reported for urea-coated BaTiO(C2O4)2 nanoparticles. Such a scientific discovery is

rather exciting due to the fact that the maximum yield stress achieved by most of the

conventional ER fluids is less than 10 kPa, well below the operational stress of about 30

kPa required for many mechanical devices. A mechanism with statistical mechanics of

aligned dipole layers has also been proposed to explain this gigantic ER phenomena [34].

Their numerical results from Monte Carlo simulation agree well with the experiments.

Both positive and negtive ER behaviors were observed in the case of carbon nanofiber,

CNT, and Pb3O2Cl2 nanowire laden suspensions at the concentration of 0.0125 wt%

[35]. Oscillatory shear experiments conducted to investigate the ER properties of these

suspensions found that the storage modulus (the elastic component of the viscoelastic

response) increased or decreased with electric field, depending on the particle type. The

loss modulus varied only slightly with electric-field strength. The positive and nega-

tive ER behaviors of storage modulus were attributed to differences in the electrical

conductivity of the dispersed phase resulting in different polarization behavior.
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Figure 1.2: SEM images of sea-urchin-like hierarchical Cr-doped titania particles (a,
b) and smooth Cr-doped titania particles (c, d). [36]. The nanostructure of (a,b) were
believed to be the key factor in enhancing the ER effects.

Cr-doped titania particles with sea-urchin-like hierarchical nanostructure (Fig. 1.2

b) have recently been found to effectively enhance the efficiency of ER fluids [36].

The enhancement of ER effect of the suspension of this hierarchical Cr-doped titania is

attributed to the combined effects of increased interfacial polarization and inter-particle

interaction due to the presence of urchin-like nanostructures on the ER microparticles,

which greatly increase the surface area of the particles.

Many researchers have investigated the effect of particle morphology on ER be-

havior. Titania-coated silica nanomaterials with three different shapes as in Fig. 1.3

(nanosphere, nanorod, nanotube) have been fabricated to examine the influence of par-

ticle geometry on ER fluid in nanometer-size region recently [37]. It is believed that

the geometrical effect originating from high particle aspect ratio, which brings larger

achievable polarizability and short relaxation times of interfacial polarization, play a

dominant role in enhancing the performance of the ER fluid. The results of Hong et

al. show that the increase in particle aspect ratio has a strong influence on ER activity

and provides outstanding enhancement in the shear stress value at a given shear rate

of the titania-coated silica nanotube based ER fluid.

Highly anisotropic nanowhiskers and nanotubes as possible particulate components

have been used to make non-conventional ER fluids [38–40] that could operate at low

voltage in micro or nano-scaled actuators or switches. The ER fluid was prepared by
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Figure 1.3: Evolution of electric field induced chain structure in titania-coated silica
nanomaterials under shear force: (a) nanospheres, (b) nanorods, and (c) nanotubes [37].

dispersion of titanate nano-whiskers in silicone oil with the ultrasonic technique [39]. It

was found that the stability of this nano-whisker ER fluid was very good. No signicant

sedimentation was found in this nano-whisker ER fluid after several months, due to the

supporting effect of the nano-whiskers with large aspect ratio. Under electric field, this

nano-whisker ER fluid showed notable ER activity with dynamic yield stress of about

1.1 kPa at 3 kV/mm and 10% of particle volume fraction.

A conclusion can be drawn that there are three principal advantages of using nano-

sized particles in ER fluids: (1) High particle aspect ratio, which is one of the ways to

enhance ER effect [41], is more readily achieved with nano-particles, (2) Greater surface

area per unit volume of nano-particles or porous material doped nano-particles [39] can

also increase the efficiency of ER fluid, and (3) the size of nanoparticles can improve

the stability of the ER fluids against sedimentation.

For these reasons, the high aspect ratio and electrical polarizability of single-wall

carbon nanotubes (SWNTs) makes them of interest as a possible particulate component

of electrorheological (ER) fluids. As we will show later in Sec. 3.1.3, dilute SWNT

suspensions have field-induced changes in apparent viscosity that are comparable to

spherical-particle suspensions of 3-orders-of magnitude-higher volume fraction [42]. The
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Figure 1.4: Fluorescence visualization of individual SWNTs [47].

macroscopic ER properties of such SWNT suspensions are determined by the particle

dynamics and microstructure under both shear flow and electric fields.

In the absence of an electric field, there is a rich history (cf. reviews by Happel &

Brenner [43] and Leal [44], for example) of study of the dynamics of anisotropic particles

in a viscous flow, dating back to Jeffery’s theoretical [45] and Taylor’s experimental

[46] studies of ellipsoidal particles in simple shear flow. Theories of particle motion

under both shear flow and electric field can be found in Mason’s early work in 1960s.

These classic theories will be reviewed in a thorough manner in the following chapters.

Experimentally, the particle dynamics and rheology of SWNTs in liquid suspension

have been studied in recent years in flows without external electric fields by Duggal [47],

Hobbie [48,49], and Tiwari [50], among others.

The dynamics of individual SWNTs in water was visualized directly by fluorescence

video microscopy as seen in Fig. 1.4, a series of snapshots of the video [47]. They

measured the confined rotational diffusion coefficient and find it in reasonable agreement

with predictions based on confined diffusion of dilute Brownian rods. The critical

concentration at which SWNTs in water start to interact was also determined. The

persistence length was calculated to range between 32 and 174 µm, in agreement with

theoretical estimates. Thus, it could be concluded based upon their results that SWNTs

can be treated as rigid rods in quiescent fluids.
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Optical measurements of the shear response of semidilute dispersions of polymer-

dispersed multiwalled carbon nanotubes were carried out by Hobbie [48]. The results

showed that in a highly elastic polymer solution the nanotubes orient with the flow

field at high shear rates, in the limit of large Deborah number. While in a weakly

elastic polymer melt, the data suggest that the tubes orient along the direction of flow

at low shear stress, with a transition to vorticity alignment above a critical shear stress.

Measurements of shear-induced structure and orientation in dilute dispersions of CNT

using combined polarized light scattering and optical microscopy were also conducted

[51] and a semimacroscopic model for optically anisotropic nanotube suspension was

derived [52].

On the other hand, nanotube dynamics and orientation under electric fields in a

quiescent fluid have been studied by [22,53–55]. The hydrodynamics of SWNTs rotated

in quiescent liquid suspension by an external electric field was experimentally studied

with laser polarimetry by Zimmermann and Shan [55]. Their results implied that

despite the fact that the size of SWNTs approaches that of the solvent molecules,

classical continuum hydrodynamic theory holds approximately for external flow about

carbon nanotubes.

A recent paper has reported a theoretical and computational study of the aggre-

gation behavior of rod-like particle suspensions under combined shear and electric

fields [56]. They examined from a theoretical perspective the hypothesis that a combi-

nation of AC electric and shear fields oriented at certain angles may be used to enhance

the dispersion of aggregated rod solutions. The results from computer simulations

display good agreement with their theoretical analysis and parametric regimes were

suggested in which the use of a combination of electric and shear fields may enhance

the dispersion of aggregated nanotubes. However, no experiments has been done to

date on the orientational dynamics of suspended SWNTs under combined shear flow

and electric fields. The current work seeks to fill some of the gaps in existing knowledge

concerning CNT suspensions.
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1.3 Statement of objectives

This dissertation investigates CNT suspensions from two different perspectives: First,

from the perspective of the macroscopic electrorheology of dilute SWNT suspensions,

and secondly, from the point of view of the microscopic particle dynamics of the system.

The two investigations are closely related as the author believes that the macroscopic

electrorheology is driven by the particle dynamics and microstructure formed in the

suspensions. The specific scientific objectives of the work are to:

1. Demonstrate and characterize the electrorheology of dilute SWNT suspensions.

2. Clarify the mechanisms responsible for the ER behavior by examing the validity

of conventional ER models for these SWNT suspensions. In particular, we study

the apparent viscosity as a function of a parameter (the Mason number), giving

the ratio of viscous to dipole-dipole forces acting on the particles.

3. Compare the magnitude of the ER response in dilute SWNT suspensions to that

of conventional (spherical particle) suspensions of similar volume fraction.

4. Make the first experimental measurements of the ensemble-averaged nanotube

orientation angle, and compare results with the classical theory of Mason and

coworkers for the motion of ellipsoidal particles under combined shear flow and

electric fields

5. Identify the relative contributions of particle orientation and particle chaining to

the ER response of SWNT suspensions by making simultaneous measurements of

nanotube orientation angle and the apparent viscosity .

In the following chapters, we first review in more detail the classical models for the

interfacial polarization of particles (Sec. 2.1.1-2.1.3) and the motion of particles in

shear and electric fields (Sec. 2.1.4), as well as light scattering by small particles (Sec.

2.2). Our experimental results on the macroscopic electrorheology of dilute SWNT

suspensions are discussed next (Ch. 3), followed by a description and analysis of our

measurements of the equilibrium nanotube orientation angle under shear and electric
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fields (Ch. 4). The dissertation concludes with an summary of results and suggestions

for future work.
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Chapter 2

Background

2.1 Classical electrostatic polarization models

With the development of new ER fluids having anisotropic, nano-sized particles such as

CNTs as the dispersed phase, a re-examination of classical models for the mechanisms

underlying conventional ER fluids seems warranted. Many theoretical models of ER

fluids have been proposed ever since the discovery of the ER effect by Winslow. The

most successful and generally accepted models attribute the ER response to dipolar

particle interactions caused by interfacial (Maxwell-Wagner) polarization of the par-

ticles under the electric field. A review of the theoretical models for the polarization

and resulting forces/torques and motions of particles with various morphologies and

different physical properties is briefly discussed in the following.

2.1.1 Polarization model for spherical particles

a. Lossless dielectric sphere in lossless dielectric medium in an uniform field

An ideal dielectric sphere suspended in an insulating liquid phase with conductivities

of both the particle and the fluid being neglected is the simplest case of an electrostatic

polarization model. The dielectric particle is polarized with only bound charge under

an external electric field. Assuming the particle is a perfect sphere and the field only

induces dipole moments in the particle, the electrical potential can be obtained by

solving Laplace’s equation

52ψ = 0. (2.1)

in the bulk phase with a uniform applied electric field, ~E0 = E0~ez.
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The boundary conditions at the interface of the particle and surrounding fluid are,

ψi = ψo, (2.2)

εp 5 ψi · ~n = εf 5 ψo · ~n, (2.3)

where εp and εf are electric permittivities of particle and continuous phase respectively,

and ~n is the unit normal vector of the interface. The superscript i and o indicate the

potential inside and outside the particles. The solution for the electrical potential is

ψi = −E0r
3εf

εp + 2εf
cos θ, (2.4)

ψo = −E0r

[
1−K

(a
r

)3]
cos θ, (2.5)

where K =
εp−εf
εp+2εf

, is the Clausius-Mossotti function, a is the radius of the particle,

and r is the distance from the center of the spherical particle to an arbitrary point in

the uniform electric field.

The induced potential outside the particle is the same as that of a dipole oriented

along the z-axis whose moment is

peff = 4πεfKa
3E0. (2.6)

b. Dielectric sphere with ohmic loss in dielectric medium with ohmic loss

in an AC field

The case for dielectric sphere with ohmic loss in a lossy dielectric medium is similar

to lossless case except now both the sphere and the fluid medium have finite electrical

conductivities, σp and σf , respectively. When an electric field is applied upon the

suspension, both bound charge and free charge are induced in the particle and the

medium. For an AC field of magnitude E0 and frequency ω, we have

~E(t) = Re[E0~ez exp(jωt)]. (2.7)
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Laplace’s equation (2.1) and the boundary condition of continuous potential at

the interface of Eq. (2.2) are the same as lossless case. The continuity of the normal

component of the displacement flux vector must be replaced by the instantaneous charge

conservation condition because of the time-dependent accumulation of free charge on

the interface. The resulting expression for effective moment is the same as the previous

lossless case in Eq. (2.6) except now the Clausius-Mossotti function is in a complex

form

~p
eff

= 4πεfKa
3 ~E0, (2.8)

where

K =
εp − εf
εp + 2εf

, (2.9)

and the complex permittivities are

εp = εp −
σp
ω
j

εf = εf −
σf
ω
j. (2.10)

Equation (2.9) can be re-written to reflect the characteristic relaxation time or

Maxwell-Wagner time scale τmw

K(ω) =

(
σp − σf
σp + 2σf

)[
jωτ0 + 1

jωτmw + 1

]
, (2.11)

where

τmw =
εp + 2εf
σp + 2σf

τ0 =
εp − εf
σp − σf

. (2.12)

The complex form of the Clausius-Mossotti function is very important in later calcu-

lations of interactions between particles. Two limiting cases depending on the relative

magnitude of the characteristic relaxation time constant τmw and the frequency of the

electric field are usually used to examine the direction of dielectrophoretic force at the

low and high frequency ends:

lim
ωτmw→0

K =
σp − σf
σp + 2σf

lim
ωτmw→∞

K =
εp − εf
εp + 2εf

. (2.13)
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Thus, in the low frequency limit, the magnitude of the effective moment depends on

the difference of the electrical conductivities of the particle and the liquid while in the

high frequency limit, the difference of permittivities determines the magnitude of the

effective moment. A detailed derivation of Eq. (2.13) for a more general case can be

found in Appendix I.

2.1.2 Polarization model for ellipsoidal particles

Now we extend our analysis to ellipsoidal particles. To be consistent with the discussion

on spherical particles, we first consider lossless particles and then lossy particles.

a. Lossless dielectric ellipsoid in lossless dielectric medium

The electrical potential for a dielectric ellipsoid in a uniform field is given by Stratton

[57]. The induced effective moment is

~peff =
4πa1a2a3

3
(εp − εf ) ~E

−, (2.14)

where a1 > a2 > a3 are semi-axes of the ellipsoid which are aligned with the x1, x2, x3

axes as depicted in Fig. 2.1. ~E− is the field inside the ellipsoidal particle. The x1

component of it is

E−
x1 =

E0,x1

1 +
(
εp−εf
εf

)
Lx1

, (2.15)

where Lx1 is the depolarization factor along the x1 axis and is defined as

Lx1 =
a1a2a3

2

∫ ∞

0

ds
(
s+ a21

)√(
s+ a21

) (
s+ a22

) (
s+ a23

) . (2.16)

The three depolarization factors are all positive and interrelated as

Lx1 + Lx2 + Lx3 = 1. (2.17)

In a special case where the particle is a prolate spheroid (a1 > a2 = a3), the imposed

electric field has components parallel (‖) and perpendicular (⊥) to the a1 axis of the

particle:

~E0 = ~E‖ + ~E⊥. (2.18)
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Figure 2.1: Ellipsoidal particle with semi-axes a1 > a2 > a3 aligned with the cartesian
coordinate system x1, x2, x3 is subjected to an external uniform electric field ~E0.
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The expression for the induced effective moment is the same as Eq. (2.14) with the

induced field inside the particle having two components,

~E− = ~E−
‖ + ~E−

⊥

=
~E‖

1 +
(
εp−εf
εf

)
L‖

+
~E⊥

1 +
(
εp−εf
εf

)
L⊥

. (2.19)

An analytical solution for the elliptic integral of L‖ is given by Jones [58] as

L‖ =
a1a

2
2

2

∫ ∞

0

ds
(
s+ a21

)3/2 (
s+ a22

)

=
a22

2a21e
3

[
ln

(
1 + e

1− e

)
− 2e

]
, (2.20)

where e ≡

√
1−

a2
2

a2
1

is the eccentricity of the spheroid. For high aspect ratio particles

like SWNTs, the expression for L‖ can be further approximated as

L‖ ≈
1

r2e
[ln (2re)− 1] , (2.21)

where re is the aspect ratio defined as re =
a1
a2
.

b. Dielectric ellipsoidal particle with ohmic loss in dielectric medium with

ohmic loss in an AC field

Though the expressions for effective moment and characteristic relaxation time are

similar to those of spherical particle case, a dielectric ellipsoidal particle has its unique

orientational behavior. The components of effective moment of a dielectric ellipsoid

with ohmic loss are
(
p
eff

)
i
= 4πa1a2a3εfKiE0,i, (2.22)

where i = x1, x2, x3 and the complex Clausius-Mossotti function K(ω) now also has

three components:

Ki ≡
εp − εf

3
[
εf +

(
εp − εf

)
Li
] , (2.23)

which yield three distinct Maxwell-Wagner characteristic relaxation times

(τmw)i =
(1− Li) εf + Liεp
(1− Li) σf + Liσp

. (2.24)
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Figure 2.2: The ratio of the effective polarization of a lossy prolate spheroidal particle
and that of a lossy spherical particle as a function of particle aspect ratio at various

σp
σf

values.
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In the case of a prolate spheroid with high aspect ratio in which a1 � a2 = a3,

L‖ � 1 and L⊥ = (1− L‖)/2 = 1/2, the Maxwell-Wagner relaxation times reduce to

τmw,‖ =
reεf + (ln (2re)− 1) εp
reσf + (ln (2re)− 1) σp

τmw,⊥ =
εf + εp
σf + σp

. (2.25)

The effective moment simplifies to

~p
eff

= 4πa1a
2
2εf

(
K‖

~E0,‖ +K⊥
~E0,⊥

)
, (2.26)

where

K‖ =
εp − εf

3
{
εf +

(
εp − εf

)
1
r2e

[ln (2re)− 1]
}

K⊥ =
2
(
εp − εf

)

3
(
εp + εf

) . (2.27)

Similar to what we have discussed in Sec. 2.1.1.b, two limiting cases for the expression

of K exist depending on the product of Maxwell-Wagner characteristic relaxation time

and the frequency of the applied electric field. Please see Appendix I for the details of

mathematical derivation of K for a conducting particle suspended in a dielectric liquid

medium at DC field.

It is important to note that the experiments described in the current work were

all effectively in the low frequency (DC) regime in which the effective polarizabilities

and dipole moments are independent of frequency, and depend only on the difference

in conductivities between the particle and fluid, as well as the particle geometry. In

our work, the external field was at a frequency of 4 kHz, which is much less than

the crossover frequences on the order of 1-10 MHz found by Krupke et al. in their

experiments on DEP separation of SWNTs [59]. The applicability of the low-frequency

limit to our experiments is also attested by later experiments described in Sec. 3.1.3

which verified the insensitivity of the ER behavior to the frequency of the applied field

within the range 100 Hz - 10 kHz.

In the DC or low-frequency regime, the ratio of the parallel component of the effec-

tive polarization of a lossy prolate spheroidal particle to the effective polarization of a
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lossy spherical particle is

|Peffps‖ |

|Peffsp |
=

|peffps‖/vps|

|peffsp/vs|

=

σp−σf
3[σf+(σp−σf)L‖]

σp−σf
σp+2σf

=
1 + 2

σf
σp

3
[
σf
σp

+
(
1−

σf
σp

)
L‖

] . (2.28)

Substituting Eq. (2.21) into Eq. (2.28), the ratio of polarizations for prolate and

spheroidal particles can be expressed as a function of the particle aspect ratio re and

the conductivity ratio
σp
σf
. Fig. 2.2 shows the ratio of effective polarization in terms of

re at different
σp
σf

values. As seen in the figure, highly anisotropic particles like SWNTs

(re ∼ 103) can have polarization much higher than that of spherical particles. This is an

important difference between ER fluids containing SWNTs or other high aspect ratio

nano-particles and conventional ER fluid using spherical particles. As we will see in Sec.

3.1.4 , this is also believed to be one of the reasons that lower particle concentrations

are required for ER fluids based upon highly anisotropic particles to obtain the same

ER effect as those containing spherical particles, assuming all other physical properties

of the particles remain the same.

2.1.3 Electrostatic forces and torques applied on an ellipsoidal particle

with ohmic loss in dielectric medium with ohmic loss in an AC

field

When an ellipsoidal particle polarizes in an external electric field, the field will exert

force and torque on the particle which tries to move and rotate the particle. In the

meanwhile, neighboring polarized particles will also interact with each other. The

following part reviews the methods used to evaluate the force and torque applied to the

particles by the electric field as well as the particle-particle interaction force.

a. Force and torque applied by the external electric field

The expressions for instantaneous force and torque applied on a dipole by a time-

dependent electric field are
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~Fdep(t) = ~peff · 5 ~E(t) (2.29)

~T e(t) = ~peff × ~E(t).

~Fdep is the so-called dielectrophoretic (DEP) force which is exerted on a polarizable

particle when it is subjected to a non-uniform electric field. The strength of the force

depends on the surrounding medium and particle’s electrical properties, on the particle’s

shape and size, as well as on the frequency of the electric field. ~T e is the torque applied

by the electric field which drives the ellipsoidal particle to rotate and align its major

axis in the direction of the electric field.

For a particle with permittivity εp and conductivity σp in a liquid medium with per-

mittivity εf and conductivity σf subject to an AC electric field, the general expression

of the DEP force and the torque applied by the field based on effective moment method

is given by Jones [58]

~Fdep(t) = Re
[
~p
eff

exp (jωt)
]
· 5Re

[
~E exp (jωt)

]

~T e(t) = Re
[
~p
eff

exp (jωt)
]
×Re

[
~E exp (jωt)

]
. (2.30)

These equations indicate that both force and torque by the electric field have a time-

dependent part and a DC part. The time averaged DC part can be further simplified

as

< ~Fdep(t) >=
1

2
Re
[
~p
eff

· 5~E
∗
]

(2.31)

< ~T e(t) >=
1

2
Re
[
~p
eff

× ~E
∗
]
. (2.32)

The asterisk signifies complex conjugation. For an ellipsoidal particle polarized by an

external electric field the effective moment can be obtained as:

~p
eff

= 4πa1a2a3εfK̃ · ~E0, (2.33)

where K̃ is the complex tensor form of Clausius-Mossotti function with components in

the form of Eq. (2.23)
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K̃ =




Kx1 0 0

0 Kx2 0

0 0 Kx3



. (2.34)

In a linearly polarized AC field where

~E0 = Re
(
~E0

)
= Re

(
~E
∗

0

)
= ~E0, (2.35)

the time averaged DEP force applied by the field can be obtained by replacing the

complex effective moment in Eq. (2.31) with Eq. (2.33). In a Cartesian coordinate

system the explicit form of DEP force is

< ~Fdep(t) >=
1

2
Re

[
4πa1a2a3εf

(
Kx1E0,x1

∂

∂x1
+Kx2E0,x2

∂

∂x2
+Kx3E0,x3

∂

∂x3

)
~E0

]
.

(2.36)

Similarly the time averaged alignment torque applied on the ellipsoid by the field is

< ~T e(t) >i =
1

2

[
4πa1a2a3εfE0,jE0,kRe

(
Kj −Kk

)]

=
2

3
πa1a2a3εf (Lk − Lj)E0,jE0,kRe

[
KjKk

]
. (2.37)

Note that no Einstein’s summation is applied in this work unless otherwise stated.

The subscripts i, j, k here are ordered according to right-hand rule, that is, x1 → x2 →

x3 → x1.

b. Force due to the induced dipole interaction of ellipsoidal particles

Consider a pair of ellipsoidal particles in an external electric field. Both particles are

polarized by the field, and we assume only dipoles are induced and neglect quadrupoles

and other higher order terms. To lowest order, the induced dipole moment of one

particle generates a local non-uniform electric field which applies a force on the other

particle. This is the source of neutrally charged particle-particle interaction. The

general equation for the DEP force as in Eq. (2.29) is still valid except the electric field

now is the field generated by the dipole moment of the other particle instead of the

applied external field.

Fig. 2.3 shows two prolate particles in an uniform electric field with their major

axes parallel to each other and in x2x3 plane. The electric field generated at a location
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Figure 2.3: Two lossy dielectric prolates with major axes parallel to each other in an
uniform electric field ~E0.



23

~r by a particle of effective moment ~peff centered at origin is [60]

~E (~r) =

(
1

4πεf

)
[
3
(
~peff · ~̂r

)
~̂r − ~peff

]

r3
, (2.38)

where the unit vector ~̂r = ~r/r in the direction of the line connecting the centers of the

two particles is

~̂r = cos (δ − φ) ~̂e‖ − sin (δ − φ) ~̂e⊥. (2.39)

~̂e‖ and ~̂e⊥ are unit vectors parallel and perpendicular to the major axes of the particles.

The time-averaged DEP force in Eq. (2.31) can be reformed by using the relation

~p
eff

· 5~E
∗
= 5

(
~p
eff

· ~E
∗
)
−~p

eff
×
(
5× ~E

∗
)
. (2.40)

For a DC or low frequency AC field the second term on the right hand side of Eq. (2.40)

equals zero. The time-averaged DEP force then becomes:

< ~Fdep(t) >=
1

2
Re5

[
~p
eff

· ~E
∗
]
. (2.41)

Inserting Eq. (2.38) into Eq. (2.41) the time-averaged DEP force on the particle at

vector position ~r due to the field induced by the particle at origin can be expressed as

< ~Fdep(t) > =
1

2
Re5

[
~p
eff

· ~E
∗
]

=
1

2
Re5

{
~p
eff

·

(
1

4πεf

)
1

r3

[
3
(
~p
eff

· ~̂r
)
~̂r −~p

eff

]∗}

=
1

2
Re5

{(
1

4πεf

)
1

r3

[
3
(
~p
eff

· ~̂r
)(
~p
eff

· ~̂r
)∗

−~p
eff

·~p∗
eff

]}

=
1

2
5

{(
1

4πεf

)
1

r3

(
3|~p

eff
· ~̂r|2 − ‖~p

eff
‖2
)}

, (2.42)

where |X | is the modulus of a complex number X .

In the case of a pair of prolate spheroids with high aspect ratio the expression of

effective moment of Eq. (2.26) can be substituted into Eq. (2.42). Further simplification

gives the dipole interaction force between two prolate spheroids in an AC field.
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< ~Fdep(t) >= −
6πεfa

2b4

r4

{
K‖K

∗
‖E

2
0,RMS,‖

[
3 cos2 (δ − θ)− 1

]

+K⊥K
∗
⊥E

2
0,RMS,⊥

[
3 sin2 (δ − θ)− 1

]

+3E0,RMS,‖E0,RMS,⊥ sin [2 (δ − θ)] ·
[
Re
(
K‖

)
Re (K⊥) + Im

(
K‖

)
Im (K⊥)

]}
~̂er

+
6πεfa

2b4

r4
{
K⊥K

∗
⊥E

2
0,RMS,⊥ sin [2 (δ − θ)]

−K‖K
∗
‖E

2
0,RMS,‖ sin [2 (δ − θ)]

+2E0,RMS,‖E0,RMS,⊥ cos [2 (δ − θ)] ·
[
Re
(
K‖

)
Re (K⊥) + Im

(
K‖

)
Im (K⊥)

]}
~̂eδ , (2.43)

where δ and θ are angles shown in Fig. 2.3, E0,RMS,‖ and E0,RMS,⊥ are RMS values of

E0,‖ and E0,⊥ respectively.

In the special case of dielectric spheres in a fluid medium the induced effective

moments are aligned with the direction of the electric field. So E0,RMS,⊥ = 0, K⊥ = 0

and K‖ = K in Eq. (2.43), which leads to the familiar expression of point-dipole

interaction for spheres [31,61]

< ~Fdep(t) >= −
6πεfa

6

r4
KK∗E2

0,RMS

{[
3 cos2 (δ)− 1

]
~̂er + sin (2δ) ~̂eδ

}
. (2.44)

Note that in both cases, the DEP force scales as
E2

0,RMS

r4 , although the prolate spheroid

case is more complicated and depends on the orientation of the particle itself.

2.1.4 Motion of particles in shear and electric fields

Having reviewed how dielectric particles respond to a uniform electric field and their

ensuing behavior, we now consider the motion of particles in a shear flow with or without

external electric field.

a. Rotation of particles in Newtonian shear flow

Research on motion of particles in pure shear flow can be traced back to 1922

when Jeffery [45] first published his solution on a neutrally buoyant ellipsoidal particle
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subjected to simple shear flow. In a Cartesian coordinate system fixed in the space at

the center of the particle, the expression for the undisturbed simple shear flow field is

u3 = γ̇x2; u1, u2 = 0, (2.45)

where ui (i = 1, 2, 3) are velocity components in xi (i = 1, 2, 3) axes, respectively and

γ̇ is the shear rate.

The angular velocity of Eulerian angles which will be defined later can be obtained

from Jeffery’s analysis as

dφ

dt
=

γ̇

(r2e + 1)

(
r2e cos

2 φ+ sin2 φ
)

(2.46)

dθ

dt
=
γ̇
(
re

2 − 1
)

4 (r2e + 1)
sin 2θ sin 2φ, (2.47)

where the angles φ and θ are depicted in Fig. 2.4, and re is the aspect ratio of the

spheroid. Eq. (2.46) and Eq. (2.47) can be integrated and yield

tan φ = re tan

(
2πt

T
+ k0

)
(2.48)

tan θ =
Cre

(
r2e cos

2 φ+ sin2 φ
) 1

2

, (2.49)

where C is the orbit constant and k0 is the initial phase angle. Both of them can be

determined by the intial orientation of the particle. T is the period of rotation about

the vorticity axis and is given by

T =
2π

γ̇

(
re +

1

re

)
. (2.50)

A particle with re > 1 rotates more slowly when its major principle axis is aligned

along the direction of the flow field. The orbits of the ends of the particle defined by Eq.

(2.49) trace out a symmetrical pair of spherical ellipses whose eccentricity is described

by the orbit constant C.

In a suspension system where many particles exist, the macroscopic properties of the

suspension is determined by the distribution of particle orientations and the ensemble

average of particle motions. Okagawa, Cox and Mason [62] made an argument that the

orientation distribution function in terms of (φ, θ) can be converted to a distribution
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Figure 2.4: Coordinate system for a prolate spheroid in shear flow with its axis aligned
at φ and θ. The pure shear flow is in x2x3 plane.
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function using the orbit constant C and the initial phase k0 as two parameters. Based

on this they derived the orientation distribution function as

p (θ, φ, re) =

p0

(
tan−1 (χ tan θ) , tan−1

(
tanφ−re tan

2πt
T

1+r−1
e tan θ tan 2πt

T

))

χ
(
cos2 θ + χ2 sin2 θ

) , (2.51)

where

χ2 = χ1 sin
2 φ+ χ2 sinφ cosφ+ χ3 cos

2 φ,

χ1 =
1

2

{
1 + r−2

e +
(
1− r−2

e

)
cos

4πt

T

}
,

χ2 =
(
r−1
e − re

)
sin

4πt

T
,

χ3 =
1

2

{
1 + r2e +

(
1− r2e

)
cos

4πt

T

}
, (2.52)

and p0 (θ0, φ0) is the initial orientation distribution. If an assumption has been made

that the particles are initially randomly (isotropically) oriented, then the distribution

function at time t will be

p (θ, φ, re) =
sin θ

4π
(
cos2 θ + χ2 sin2 θ

)3

2

. (2.53)

A real colloidal suspension is polydispersed and the co-existence of various sizes

and shapes of particles is common. In this case, the probability distribution of particle

aspect ratios re has to be taken into account when we calculate the orientation distri-

bution function. The expression of the orientation distribution function with a given

shape distribution function g(re) is

pσ (θ, φ) =

∫ ∞

0
p (θ, φ) g (re) dre, (2.54)

where pσ (θ, φ) is called the probability orientation distribution.

The suspension system starts to exhibit damped oscillations in time as the result of

polydispersity which leads to the phase mixing of particle orbits. Therefore particles

will eventually reach a time-independent steady state.

b. Rotation of particles in both shear and electric field

b.1 Hydrodynamic torque on an ellipsoid

For a rigid ellipsoid suspended in a viscous Newtonian fluid at creeping flow region,

the force per unit area applied on the surface of the particle can be determined and hence
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the hydrodynamic torque referring to the moving Cartesian coordinates x′i (i = 1, 2, 3)

is

Γ′
Hi =

16πηc

(
a2j + a2k

)

3
(
a2jαj + a2kαk

) ×

(
a2j − a2k
a2j + a2k

sjk′ + ζ ′i − ω′
i

)
, (2.55)

which is equivalent to equation (36) in [45]. Each ai (i = 1, 2, 3) is the semi-axis of the

ellipsoid along the ith principle axis, while sjk′ are components of distortion of fluid

and ζ ′i are components of rotation of fluid. The ω′
i are the components of particle’s

angular velocity, and αi is defined as

αi =

∫ ∞

o

dλ
(
a2i + λ

) [(
a21 + λ

) (
a22 + λ

) (
a23 + λ

)] 1
2

. (2.56)

b.2 Electrostatic torque on an ellipsoid

As discussed in previous sections, a dipole moment will be induced if a dielectric

particle is put in a uniform electric field. We assume that the ellipsoidal particle does

not have a permanent dipole and the electric permittivity tensor of the particle only

has three diagonal components so that

εij = δijεij , (2.57)

where δij is the Kronecker delta.

In this case, an electrostatic torque Γ′

E
will be applied on the particle by the field

Γ′

E
= p′ ×E′

0
, (2.58)

where p′ is the induced dipole moment and the ′ means relative to the x′i coordinates.

Okagawa and Mason [63] derived an explicit expression of the total electric torque acting

on the ellipsoid:

Γ′
Ei =

4π

3
a1a2a3εf

(
εp
εf

− 1

)
× εijk

E′
0jE

′
0k

1 + 1
2a1a2a3

(
εp
εf

− 1
)
αj
, (2.59)

where εijk is the Levi-Civita symbol. This equation is equivalent to Eq. (2.37), where

the particle has ohmic loss and the torque there is time-averaged. To keep consistant

with the discussion in Okagawa and Mason’s paper [63], in the following we use the

torque form of Eq. (2.59).
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b.3 Angular velocity and rotation under both shear and electric field

When an ellipsoid is in both viscous shear flow and an electric field, the total torque

Γ′ can be determined by the principle of superposition:

Γ′ = Γ′

H
+ Γ′

E
. (2.60)

At equilibium the hydrodynamic torque and the electrostatic torque balance each other.

Substituting Γ′

H
and Γ′

E
with the expressions in Eq. (2.55) and Eq. (2.59) yields the

angular velocity ω′
i of the ellipsoid relative to x′i coordinates

ω′
1 =

a22 − a23
a22 + a23

s′23 + ζ ′1 +
a1a2a3

(
a22α2 + a23α3

)

16πηc
(
a22 + a23

) εf

(
(q′22 − 1)

1 + 1
2a1a2a3 (q

′
22 − 1)α2

−
(q′33 − 1)

1 + 1
2a1a2a3 (q

′
33 − 1)α3

)
E′

02E
′
03 (2.61)

ω′
2 =

a23 − a21
a23 + a21

s′31 + ζ ′2 +
a1a2a3

(
a23α3 + a21α1

)

16πηc
(
a23 + a21

) εf

(
(q′33 − 1)

1 + 1
2a1a2a3 (q

′
33 − 1)α3

−
(q′11 − 1)

1 + 1
2a1a2a3 (q

′
11 − 1)α1

)
E′

03E
′
01 (2.62)

ω′
3 =

a21 − a22
a21 + a22

s′12 + ζ ′3 +
a1a2a3

(
a21α1 + a22α2

)

16πηc
(
a21 + a22

) εf

(
(q′11 − 1)

1 + 1
2a1a2a3 (q

′
11 − 1)α1

−
(q′22 − 1)

1 + 1
2a1a2a3 (q

′
22 − 1)α2

)
E′

01E
′
02. (2.63)

As illustrated in Fig. 2.5 we define the coordinate system xi (i = 1, 2, 3) as fixed co-

ordinate system in space with the origin at the center of the ellipsoid and x′i (i = 1, 2, 3)

as body coordinates which adhere to the particle. Then the orientation of the particle

can be described by the three Eulerian angles θ, φ, ψ, with θ being the angle between

the axes of x1 and x
′
1, φ being the angle between x2 axis and the line of the nodes which

is defined as the intersection of plane x2x3 and plane x′2x
′
3, ψ being the angle between

the line of the nodes and x′2 axis.
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Figure 2.5: Configuration of space fixed coordinate system xi (i = 1, 2, 3), body fixed
coordinate system x′i (i = 1, 2, 3) and Eulerian angles θ, φ, ψ.
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The rates of the change of these angles are related to the angular velocity [64] as

dθ

dt
= ω′

2 sinψ + ω′
3 cosψ (2.64)

dφ

dt
=

(
ω′
3 sinψ − ω′

2 cosψ
)
csc θ (2.65)

dψ

dt
= ω′

1 −
(
ω′
3 sinψ − ω′

2 cosψ
)
cot θ. (2.66)

In a special case where the electric field is applied parallel to the x2 axis and the

particle is electrically conductive and axisymmetric, further simplification of equations

(2.64∼2.66) can be performed once the angular velocity has been substituted by Eq.

(2.61∼2.63) for a prolate spheroid:

dθ

dt
=

γ̇
(
r2e − 1

)

4 (r2e + 1)
sin 2φ sin 2θ −

εfP (re)

ηc
E2

0 cos
2 φ sin 2θ (2.67)

dφ

dt
=

γ̇

r2e + 1

(
r2e cos

2 φ+ sin2 φ
)
+
εfP (re)

ηc
E2

0 sin 2φ, (2.68)

where

P (re) =
(3A− 2)Q(re)

8πA (A− 1)

Q(re) =
2r22 +

(
1− 2r2e

)
A

4 (r2e + 1)
, (2.69)

and

A =
r2e

r2e − 1
−
re cosh

−1(re)

(r2e − 1)
3

2

re > 1,

A =
re cos

−1(re)

(1− r2e)
3

2

−
r2e

1− r2e
re < 1,

A =
2

3
re = 1. (2.70)

Integration of Eq. (2.67) and Eq. (2.68) yields

tan θ =
Cre

(
r2e cos

2 φ+ sin2 φ− fre sin 2φ
) 1

2

× exp

(
−εfP (re)

ηc
E2

0t

)
(2.71)

tan φ = re
(
1− f2

) 1

2 × tan

(
2πt

T
+ k0

)
+ fre, (2.72)

where C and k0 are integration constants. T is the period of the rotation about the

vorticity axis which is given by

T =
2π

γ̇ (1− f2)
1

2

(
re + r−1

e

)
, (2.73)
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and f is a dimensionless quantity which is defined by

f =
−εfP (re)E

2
0

(
r2e + 1

)

γ̇ηcre
. (2.74)

It can be seen from Eq. (2.73) that the rotation period becomes infinite and imag-

inary when f2 equals to 1 and greater than 1 respectively. This means the particle

can no longer complete one full rotation and a critical field strength corresponding to

f2 = 1 exists and is given by

E2
crit =

∣∣∣∣
−reηcγ̇

εfP (re)(re + 1)

∣∣∣∣ . (2.75)

In cases where external electric fields are greater than the above critical field the

particle will eventually reach a steady state at which both Eq. (2.67) and Eq. (2.68)

equal zero. The orientation angles of a prolate particle at steady state are

θ1∞ =
π

2
(2.76)

φ1∞ = tan−1{re[f − (f2 − 1)
1

2 ]}, (2.77)

which means the particle eventually will lie on the x2x3 plane and that the particle equi-

librium angle φ1∞ will depend on the dimensionless parameter f which is a function of

field strength, aspect ratio of the particle, shear rate and the viscosity and permittivity

of the base fluid. Figure 2.6 shows the variation of φ1∞ with E2
0/γ̇ for particles having

different aspect ratios. As can be seen in the figure, at low electric field strength and

high shear rates, the particles are aligned with the flow direction with φ1∞ = 90◦ while

at high electric field and low shear rates, the particles are oriented in the direction of

the electric field. As will be discussed in more detail later in Sec. 4.5, calculations

of Ecrit for a typical case of our experiment lead to a value of 27.35 V/mm. As the

external electric fields applied in these cases are normally above 100 V/mm, thus all

the following discussion will be based on the case when f2 > 1 and E0 > Ecrit, i.e., the

particle is no longer rotating but is in equilibrium.

Another key point that Fig. 2.6 illustrates is the fact that the model predictions of

the equilibrium particle orientation angle are seen to be essentially independent of the
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aspect ratio in the high-aspect-ratio range (for aspect-ratio higher than 10). Thus, the

polydispersity (i.e., the broad distribution of nanotube lengths) in actual samples is

irrelevant to the orientation angles predicted by the model. However, the dimensionless

parameter f itself under a typical lab condition relies much on the particle aspect-ratio

as depicted in Fig. 2.7.
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Figure 2.6: Equilibrium orientation angle φ1∞ varies with E2
0/γ̇ for particles having

different aspect ratios.

Similar to the case where particles are undergoing only shear flow, the orientation

distribution function for dilute suspension at both shear and electric field can be ob-

tained. For a random initial orientation condition, Mason and coworkers [63] derived

the mathematical form of the distribution function

pt (θ, φ) =
sin θ

4π
(
cos2 θ + χ2 sin2 θ

) 3

2

exp

(
2εfP (re)

ηc
E2

0t

)
, (2.78)

where

χ2 =
(
χ1 sin

2 φ+ χ2 sinφ cosφ+ χ3 cos
2 φ
)
exp

(
2εfP (re)

ηc
E2

0t

)
. (2.79)
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Figure 2.7: Dimensionless parameter f varies with E2
0/γ̇ for particles having different

aspect ratios.
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Equations of χ1 , χ2 and χ3 in three different cases according to the strength of applied

electric field E0 are tabulated by Mason [63].
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p t
(θ
)

Figure 2.8: Separate probability distribution in terms of θ at different time intervals.
Typical values chosen to calculate f are: εf = 2.8ε0, P = −0.02157, γ̇ = 10s−1, E0 =
200V/mm, re = 1000, ηc = 40cP.

The individual probability distribution of θ and φ can be obtained by the integration

of Eq. (2.78) as

pt(θ) =

∫ 2π

0
pt(θ, φ)dφ

=
sin θ

πm1
1

2m2

E(km) exp

(
2εfPre
ηc

E2
0t

)
(2.80)

and

pt(φ) =

∫ π

0
pt(θ, φ)dθ

=
1

2π
(
χ1 sin

2 φ+ χ2 sinφ cosφ+ χ3 cos2 φ
) , (2.81)

where E(km) is the complete elliptic integral of the second kind with modulus km =
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1− m1

m2
and

m1 = cos2 θ +
1

2
{χ1 + χ3 + [(χ3 − χ1)

2 + χ2
2]

1

2 } sin2 θexp

(
2εfPre
ηc

E2
0t

)
(2.82)

m2 = cos2 θ +
1

2
{χ1 + χ3 − [(χ3 − χ1)

2 + χ2
2]

1

2 } sin2 θexp

(
2εfPre
ηc

E2
0t

)
. (2.83)

Figures 2.8 and Fig. 2.9 show the separate probability distribution of θ and φ

respectively at different time intervals. All particles are approaching to an equilibrium

state with the steady orientation angles defined by Eq. (2.76) and Eq. (2.77). Notice

that the time scales for both probability distribution of θ and φ to reach to their

equilibrium state are within about one or two seconds. Experimentally, it is difficult

for us to capture the dynamics of this orienting process at these rapid time scales. In

the following chapters, we will focus on the equilibrium orientation angles predicted by

Eq. 2.77.
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Figure 2.9: Separate probability distribution in terms of φ at different time intervals.

2.2 Light scattering by small particles

From the previous discussion a colloidal suspension of ellipsoidal/cylindrical particles

exhibits a preferential orientation upon the application of external fields, which can
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be a hydrodynamic flow field, an electric field or a magnetic field. This orientational

anisotropy usually induces changes of optical properties of the colloidal system. These

changes of optical properties would allow us to probe the microstructure of colloidal

suspensions subjected to external fields. Many applications have been carried out based

on polarimetry or the analysis of the interaction of polarized light with sample suspen-

sions. The most common material properties which are involved in these analysis are

linear dichroism and linear birefringence. Both of them are related to the refractive

index of the sample suspension, which can be represented as a complex tensor

ñ =





n11 n12 n13

n21 n22 n23

n31 n32 n33





, (2.84)

where

ñ = ñ′ − iñ
′′
. (2.85)

The linear birefringence ∆n
′
and linear dichroism ∆n

′′
are defined as the difference of

the principle eigenvalues of the tensor ñ′ and ñ
′′
respectively.

According to Van de Hulst’s treatise on light scattering by small particles, the

interaction of a plane incident wave with a scattering particle can be described by four

amplitude functions, S1, S2, S3, S4, which are all functions of θ1 and φ1 as illustrated in

Fig. 2.10. These amplitude functions form a matrix called the scattering matrix, which

relates the electric vector of the incident light to that of outgoing scattered light. In

our discussion only forward scattering is considered, so the angle θ1 becomes 0. Using

the notation of Van de Hulst in a Cartesian coordinate system, the relation can be

described as 
 Ex

Ey


 =


 S2(0) S3(0)

S4(0) S1(0)


 ·

e−ikr+iωt

ikr


 Ex0

Ey0


 , (2.86)

where


 Ex0

Ey0


 is the field vector of the incident light at the location of the particle

(the origin), r is the distance between the origin and an arbitrary point in space where

the field vector of the scattered light is calculated, and k = 2π
λ is the wave number with

λ being the wavelength of the light.
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Figure 2.10: Definition of scattering angle.
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Van de Hulst shows that the phase lag of the wave which is represented by the linear

birefringence ñ′ and the intensity decrease of the wave by the linear dichroism ñ
′′
are

related to the tensor form of scattering matrix by

ñ′ = Ĩ +
2πnfN

k3
Im{S̃(0)} (2.87)

ñ
′′
=

2πnfN

k3
Re{S̃(0)}, (2.88)

where nf is the refractive index of the fluid and Ĩ is the identity tensor.

When only particles small in size compared to the wavelength of light are considered,

the tensor form of the scattering matrix can be expanded in the power series of the

wavenumber [65, 66]. Approximations can be made by only maintaining the first real

and imaginary terms of the expansion which also agrees with the expression Van de

Hulst obtained from the expansion of higher order terms for spherical particles.

S̃(0) = ik3α̃+
2

3
k6α̃2, (2.89)

where α̃ is the polarizability tensor with 3 indices. Since S̃(0) is normally a tensor

with 2 indices, care has to be taken when different light propagation directions are

considered. With the shear flow defined as

u3 = γ̇y

u1 = 0

u2 = 0,

only light propagating in the x1 direction need be considered in this thesis. For a prolate

spheroidal particle with uniaxial polarizability, α̃ may be written as

α̃ =




αa 0 0

0 αb 0

0 0 αb



. (2.90)

in a Cartesian coordinate system of body frame fixed to the particle. Conversions from

the body frame to the general lab frame can be obtained by multiplying by the rotation

matrix. If the a1 axis of particle has polar and azimuthal angles respectively as θ and
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φ, α̃ in general lab frame system has the expression as

α̃ = αbĨ + (αa − αb) (~u~u) . (2.91)

or

α̃ =




αb + sin2 θ cos2 φ (αa − αb) sin2 θ sinφ cos φ (αa − αb) sin θ cos θ cosφ (αa − αb)

sin2 θ sinφ cosφ (αa − αb) αb + sin2 θ sin2 φ (αa − αb) sin θ cos θ sinφ (αa − αb)

sin θ cos θ cosφ (αa − αb) sin θ cos θ sinφ (αa − αb) αb + cos2 θ (αa − αb)



,

(2.92)

where ~u is the unit orientation vector of the particle, which is

~u =




sin θcosφ

sin θsinφ

cos θ



. (2.93)

Substituting the polarizability tensor in equation (2.89) with equation (2.91), the real

and imaginary parts of S̃(0) can be expressed as

Re{S̃(0)} =
2k6

3

[
α2
b Ĩ +

(
α2
a − α2

b

)
(~u~u)

]
(2.94)

Im{S̃(0)} = k3
[
αbĨ + (αa − αb) (~u~u)

]
. (2.95)

For a flow in the x − y plane and the light propagating along z direction, only

the upper left subset of the polarizability matrix in equation (2.92) matters in the

calculation of S̃(0). The linear birefringence ∆n
′
and linear dichroism ∆n

′′
as defined

above can be further calculated as ensemble averages over the orientation distribution

function and the shape distribution function for prolates

∆n
′
= 2πnfN (αa − αb)

[
< sin2 θ cos (2φ) >2 + < sin2 θ sin (2φ) >2

] 1
2 (2.96)

∆n
′′
=

2

3
πnfNk

3
(
α2
a − α2

b

) [
< sin2 θ cos (2φ) >2 + < sin2 θ sin (2φ) >2

] 1
2 , (2.97)

where <> is the averaging symbol. Since in most cases the principal polarizabilities

are coincident with the principal axes of the particle itself, the average orientation

angles of birefringence and dichroism are the same and equal to the net orientation of

the particles. And it is the angle of rotation that diagonalizes the upper subset of the
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polarization matrix α̃ and can be expressed as [67]

tan (2χ) =
< sin2 θ sin (2φ) >

< sin2 θ cos (2φ) >
, (2.98)

where χ is the orientation angle.

The optical method used in our experiments to detect the ensemble-averaged particle

orientation in SWNT suspensions is a polarization modulation technique [67,68], which

is based on the theory of light scattering by small particles discussed above. A detailed

mathematical description of our experimental setup will be provided in Ch. 4. Starting

from the next chapter, we will discuss the details of our two major experiments: the

rheology measurement and the ensemble-averaged particle orientation measurement of

SWNT suspensions under both shear and electric fields.
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Chapter 3

Rheology measurement of SWNTs/α-terpineol suspension

under both shear and electric fields

Apparent viscosity measurements of SWNTs/α-terpineol suspension under both shear

and electric fields are carried out by two individually modified rheological instruments:

a Brookfield DVII+ Pro viscometer and a Bohlin VOR rheometer. The Brookfield

DVII+ Pro viscometer, which can be easily modified due to the simplicity of its me-

chanical setup of the measurement cell, is used to perform both rheological and later

optical measurements under various shear rates and electric field strengths. The ER

apparent viscosity of SWNTs/α-terpineol suspensions is explored over a range of exper-

imental conditions and the results suggest that Maxwell-Wagner polarization model is

applicable in this particular ER fluid, the SWNTs/α-terpineol suspension. To further

study the equilibrium time scale and trend of apparent viscosity over a larger range

of the combination of shear rates and electric field strength or equivalently the pa-

rameter γ̇/E2, the Bohlin VOR rheometer was used to conduct systematic rheometry

measurements. In the following, we will discuss our experimental results with both the

Brookfield viscometer and with the Bohlin VOR rheometer.

3.1 Rheology measurement using Brookfield DVII+ Pro viscometer

3.1.1 Experimental setup

Apparent viscosity measurements of SWNTs/α-terpineol suspensions under external

electric field were first performed on the Brookfield DVII+ Pro viscometer with a mod-

ified concentric-cylinder geometry cell. The modification makes two additions to the
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Figure 3.1: Pictures of the experimental setup of electrorheology measurements.
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original concentric-cylinder cell. The first addition is a plastic insulator which is in-

serted between the top measuring unit and the metal coupling nut connecting to the

inner cylinder to provide high voltage shock protection to the main electronic unit of

the device. The second additional part is a small brass disc with a 0.2” wide and

0.1” deep groove on it which will be used to facilitate a good grounding of the inner

cylinder. A conducting wire is dipped into the groove with copper nitrate solutions in

it to make an electrical connection from the inner cylinder to the ground. It has to

be assured that the wire has no direct contact with the bottom of the groove on the

copper disc so that no significant extra torque is applied on the rotating shaft where

the rheology measurement data is collected. A radially oriented electric field is devel-

oped between the inner cylinder and the outer cylinder by charging the outer cylinder

with a high-voltage amplifier (Trek 609E-6) while keeping the rotating inner cylinder

grounded. In this arrangement, the electric field applied on the SWNT suspensions

tend to orient the nanotubes radially, perpendicular to the flow direction. At the same

time the voltage applied on the sample suspension and the current through the sam-

ple circuit were monitored by a LabView data acquisition system. A schematic of the

experimental setup of rheology measurement with an applied electric field is shown in

Fig 3.2. An AC electric field is chosen in order to minimize possible electrochemical

effects at the electrodes as well as electrophoretic motion of the nanotubes. Since this

model of Brookfield viscometer is strain-controlled instrument, only apparent viscos-

ity rather than yield stress measurement of our ER fluids can be performed. But the

simple configuration of this machine does make modifications more practical and easier

to be carried out. Modifications for optical measurements on this viscometer will be

described in another section.

3.1.2 Sample preparation

Dilute or semi-dilute SWNT suspensions were prepared by dispersing HiPCO SWNTs

(Carbon Nanotechnologies, Inc.) in α-terpineol at a volume fraction of Φ = 1.5× 10−5.

The length distribution of the SWNTs was estimated to range from 150 nm to 3000 nm,

with a mean around 1 µm as originally obtained from CNI. Acid-treatment was applied
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Figure 3.2: Schematic of the modified concentric-cylinder viscometer which measured
the apparent viscosity while simultaneously monitoring the applied voltage and current.
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by CNI to remove amorphous carbon and left over catalyst particles after the synthesis

of these SWNTs. The solvent, α-terpineol, has low electric conductivity and a viscosity

about 36.0 cPs at room temperature and was reported to be a good solvent for carbon

nanotubes [69]. Samples were prepared at room temperature with the assistance of

bath sonication. Bath sonication was chosen rather than tip sonication because it has

been shown to effectively disperse nanotubes with significantly less nanotube breakage

[17, 70]. The suspension was sonicated and rested alternately for a period of 12 hours

each for several times. This alternating sonication/rest procedure was used to make

certain the particles were sufficiently wetted by the surrounding fluids and minimized

the chance of bubble creation. At the prepared volume fraction of Φ = 1.5 × 10−5,

the suspensions were dilute in the sense that the average distance between nanotubes

was such that they were unlikely to interact through random rotations. The specific

criteria to distinguish dilute from semi-dilute suspensions will be discussed in more

detail in the next chapter. The suspensions primarily contained a mixture of individual

nanotubes and small bundles of SWNTs, as will also be discussed in more detail in the

next chapter. Particle sizing with a disk-centrifuge instrument showed that the bundles

were small, with an equivalent hydrodynamic diameter peak below 160 nm.

3.1.3 Experimental results of apparent viscosity of SWNTs/α-terpineol

suspension

The experimental setup of the rheometry measurement under external electric field was

described in Sec. 3.1.1. The Brookfield DVII viscometer with modified concentric

cylindrical cell developed a shear flow in the circumferential direction while the high

AC voltage applied between two cylinders generated a radially oriented electric field as

illustrated in Fig. 3.3.

The dependency, if any, of the ER response on the frequency of applied AC fields

were first tested to verify that all the experiments conducted were at low-frequency/DC

region of Maxwell-Wagner model as described by the equations (2.8 to 2.13), where the

conductivities of the particle and liquid phase determine the interfacial polarizability.

In an initial set of experiments, it was shown that the apparent viscosities were little
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Figure 3.3: a. Top view of the shear flow field with streamline along the circumferencial
direction. b. Top view of the applied electric field in radial direction. c. A particle in
both flow and electric field: competing hydrodynamic and electrostatic torque (includ-
ing torque applied by the field and the torque due to dipole-dipole interaction) trying to
rotate the particle. d. Particles reach equilibrium under both fields and start chaining
due to dipole-dipole interaction.
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affected by the frequency of the applied field over a tested range of 100 Hz to 10 kHz,

as was expected. For all subsequent measurements, a fixed 4 kHz field is applied based

on this insensitivity to field frequency under 10 kHz.

Reproducibility of these rheology measurements was tested by measuring selected

samples for several times and measuring different sample loadings in different days. Fig.

3.4 shows results of reproducibility tests in several typical cases. These results further

confirmed the necessity of alternately sonicating and resting the samples for many times.

Assurance of at least one hour of re-sonication before any rheology measurements were

also critical to good reproducibility of our experiments.

Representative time-traces of the measured apparent viscosity, η, normalized by the

liquid continuous-phase viscosity, ηc, are shown in Fig. 3.5 for a constant shear rate of

γ̇ = 6.12 s−1. At these extremely low volume fractions, the continuous phase viscosity ηc

is equivalent to the suspension viscosity in the absence of an electric field. Electric fields

of the indicated root-mean-square (RMS) strengths were turned on at t = 160 s. A clear

ER response is seen, with the apparent viscosity more than doubling at Erms = 213

V/mm. In contrast to conventional ER fluids, which typically have response times

ranging from a few milliseconds to several seconds [32, 72], these SWNT/α-terpineol

suspensions required hundreds of seconds to reach equilibrium. This is likely due to the

low concentrations, which are 4 − 5 orders of magnitude lower than typical ER fluids.

Another unusual characteristic of the dilute SWNT suspensions is the saturation that

is seen in the steady-state apparent viscosity at higher electric fields. Beyond a certain

field strength of around 160 V/mm (but below another critical threshold), increasing

the electric field only serves to decrease the response time of the ER suspension. Thus,

at the fields strengths of Erms = 160 and 213 V/mm, the final values of η are nearly

identical. At very high electric fields where percolation happens, the apparent viscosity

can spike suddenly due to the growth of SWNT chains that span the entire gap between

inner and outer cylinders of the viscometer. The simultaneous current monitoring result

shown in Fig. 3.6 gave significant evidence that percolation happened in the sample

suspension. One or more SWNT chains bridged the whole gap between the cylinders,

which initiated a large electrical current flow through the sample. At that moment, the
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measurement system had to be shut down in order to protect the AC amplifier which

could only handle maximum peak to peak current value of 20 mA.

Measured steady-state apparent viscosities for non-percolating suspensions are shown

in Fig. 3.7 and 3.8 for varying field strengths and shear rates. The steady state viscosi-

ties, i.e, those after long equilibration times after the field is applied, are estimated by

fitting the time-trace data to an exponential of the form η = η0 + a0 exp(−(t− t0)/τ).

The steady-state η0 are also plotted against the ratio of shear rate and electric field

squared, γ̇/E2, and an equivalent dimensionless parameter, the Mason number. Two

regimes can be easily noticed in Fig. 3.9: (1) the data for varying shear rates and

electric fields collapse well for large values of γ̇/E2 (2) At lower values of γ̇/E2, the

apparent viscosity saturates with increasing electric field, and the data for different

shear rates begin to deviate from one another after saturations are reached.

3.1.4 Analysis and discussion

To interpret these results, we consider the electrostatic particle-particle interaction

forces acting on the nanotubes in suspension. We already discussed the particle-particle

interaction forces in Sec. 2.1.3 and here we are going to do the calculation a little

differently starting from the interaction potential of two particles in an electric field. In

the simplest point-dipole approximation, the interaction potential between two particles

suspended in a liquid of dielectric constant kf is:

W =
4πε0kfα

2
0E

2

r3
(
3 cos2 θ − 1

)
, (3.1)

where α0 is the effective polarizability of the particle in vacuum, r is the distance

between the two particles, and θ is the angle between the field and a line connecting

the particles. The force between the two particles is Fdipole = −∂W/∂r, which, for

θ = 0, has a maximum value of

Fdipole,max =
24πε0kfα

2
0E

2

r4
. (3.2)

This is consistent with Eq. (2.44). The effective polarizability α0 can be calculated from

the Maxwell-Wagner interfacial polarization model (Eqns 2.8 to 2.13) as previously
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Figure 3.5: Time traces of the normalized apparent viscosity of the suspension. For the
data shown, the shear rate was maintained constant at γ̇ = 6.12 s−1, while the applied
electric-field strength was varied. For the Erms = 266 V/mm case, the field is turned
off at t = 300 s, when field-induced percolation occurs.
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Figure 3.7: Steady-state apparent viscosity varies with electric field strength.
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Table 3.1: Typical values of the dimensionless ratios of competing forces/energies in the
SWNT/α-terpineol suspension at room temperature under electric fields of magnitude
100 − 300 V/mm. The viscosity and dielectric constant of α-terpineol is 37.6 cP and
2.8 respectively. The shear rate is taken to be γ̇ = 5 s−1 and the nanotube length is
estimated to be l = 1.0 µm. The dipole-interaction strength is estimated based on a
separation distance of r = 1.0 µm and a polarizability of α0 = 0.011 µm3 derived from
our previous experiments on SWNT alignment under electric fields.

Dimensionless parameter Interpretation Typical value

Mn ≡ ηcγ̇l6

8ε0kfα
2

0
E2

Viscous
Dipole−dipole 80− 800

λ ≡
4πε0kfα

2

0
E2

l3kBT
Dipole−dipole

Thermal 0.1− 0.8

Pe ≡ 3πηcl3γ̇
kBT

Viscous
Thermal 400

[58, 61] mentioned if the complex dielectric constants of the particle and liquid are

known. The polarizability of a SWNT along the main tube axis can be estimated by

α‖ = K‖π
d2

4
l. (3.3)

where d is diameter and l is the length of a nanotube. K‖ is defined in Eq. (2.27). The

conductivities dominate the polarizability in the low-frequency limit, while the (real)

dielectric constants are most important to the polarizability in the high-frequency limit.

However, in practive, rather than estimate the polarizability based on the conductivities

of the nanotubes and fluid, it is more convenient to use α0 from earlier experiments

measuring the alignment of identical SWNTs in suspension under electric fields [54].

Based on this measured α0, the particle-interaction force can be estimated for nanotubes

near contact by assuming r = l, where the length of the nanotube is taken to be l = 1.0

µm. We note that the assumption of point dipoles makes this an underestimate of the

actual electrostatic force between nanotubes in close proximity.

Typical values of the dimensionless ratios of the viscous shear, thermal, and dipole-

dipole interaction forces for our experiment are summarized in Table 3.1. (Van der

Waals forces are neglected because they are much shorter range than the electrostatic

dipole-dipole force [73].) The Mason number, Mn, is the ratio of viscous forces to

dipole-dipole forces, while the Peclet number, Pe, gives the ratio of viscous energy
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to thermal energy, and the interaction parameter, λ, parameterizes the ratio of dipole-

dipole interaction energy to thermal energy. The Pe, value indicates that this SWNT/α-

terpineol suspension is non-Brownian. The dipole-dipole interaction energies/forces

seen in the table are within one or two orders of magnitude of the thermal energy

and viscous force, respectively. As noted before, however, the point-dipole assumption

underestimates the dipole-dipole interaction when particles are close to each other.

Moreover, unlike the conventional Mn, for spherical particles, which does not depend

on the size of the particles, the Mn, in our case depends on the sixth power of the

length scale, l, which is chosen for the SWNTs. Thus, the actual values of the Mn, and

λ in our experiments are likely to be lower and higher, respectively, than estimated.

Since our experiments were conducted at a fixed temperature, we expect that Mn,

i.e, the ratio of viscous to electrostatic particle-particle interaction force, suffices to

characterize the ER behavior of the SWNT suspension. This is supported by Fig. 3.9,

which shows that the data for apparent viscosity collapses for varying shear rate and

electric field when plotted against Mn, or γ̇/E2, at least for large Mn. At high electric

fields, however, the fluid conductivity can increase with field strength, thus causing

the electric field between two closely spaced particles to be lower than it would be if

the fluid conductivity had not increased. The dipole-dipole interaction force in this

case has been found to depend linearly [74] rather than quadratically on E. Thus, the

collapse of the apparent viscosity in Fig. 3.9 when plotted against γ̇/E, rather than

against γ̇/E2, at low Mn may be a consequence of such a field-enhanced conductivity

effect. We further determined a critical electric field strength, Ecrit, where the linear

dependence of dipole-dipole interaction on E started to take place. As illustrated in Fig.

3.9, we obtained Ecrit = 133.2Vrms/mm from where the data points at different shear

rates began to plateau. We suggest, therefore, that the ER behavior of the SWNT/α-

terpineol suspension can be interpreted in terms of a electrostatic polarization model,

where the governing parameter is the ratio of viscous to dipole-dipole forces. Only the

dependence of the dipole-dipole forces on E appears to change in the high- and low-

field limits.

The magnitude of the ER response for the SWNT suspension is surprisingly large
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in comparison to conventional ER suspensions of the same volume fraction. To illus-

trate this, we compare the SWNT suspensions to suspensions of spherical glassy carbon

particles (diameter of 0.4 µm) in the same solvent, α-terpineol. As Fig. 3.10 shows,

no discernible electrorheological response is seen for a particle volume fraction identical

to that of the SWNT suspension, despite the fact that the glassy-carbon particles are

conducting and polarizable at low frequencies like the nanotubes. In fact, the glassy-

carbon suspension require a volume fraction three-orders-of-magnitude higher than that

of the SWNT suspension to achieve similar increases in apparent viscosity, under the

same conditions (Erms = 160 V/mm, shear rate of 6.12 s−1). This is consistent with the

reports of enhanced ER response for re = 30 whiskers (as compared to spherical parti-

cles) of aluminum-borate at volume fractions of 3.4 × 10−3 to 0.125 [75, 76]. However,

the enhancement is much more pronounced for these dilute suspensions of SWNTs.

To explain the remarkably large ER response of the dilute SWNT suspension, we

compare the electrostatic and viscous forces acting on SWNTs to those of spherical

particles. Since the SWNTs have an aspect ratio of order 103, they have simultaneously

higher polarizabilities and viscous drag forces as compared to spherical particles of the

same volume. The polarizability of a conducting prolate spheroid of length l and aspect

ratio re immersed in a fluid of dielectric constant kf is, in the limit of re >> 1, [77]

α =
kf l

3

24 [log (2re)− 1]
, (3.4)

while the polarizability of a conducting sphere is α = kfa
3, where a is the radius of the

sphere. Assuming typical dimensions of l = 1.0 µm and re = 1000, the nanotube has a

polarizability comparable to a spherical particle of radius a = 0.18 µm. Such a spherical

particle would have a volume 3 × 104 times larger than that of the SWNT. Similarly,

the viscous drag force for a nanotube moving at relative speed v perpendicular to its

long axis in a fluid of viscosity ηc is [78]

FD =
4πηcl

log re
v, (3.5)

while that of a sphere is F = 6πηcav. (The drag force only differs by a factor of one-half

if the nanotube moves parallel to its long axis.) Thus, for flow at the same speeds, the
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Figure 3.10: Comparison of the electrorheological response between a SWNT suspension
and suspensions of spherical conductors (glassy carbon spheres). The SWNT suspension
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viscous force on the SWNT is equivalent to that a sphere of radius a = 0.10 µm, or

volume 4× 103 times larger than that of the SWNT. This larger viscous force can lead

to a greater energy dissipation in the flow, and possiblly a higher apparent viscosity.

But based on another experimental observation (the orders of difference in time scales

of particle orientation and the ER response) that will be discussed later in Sec. 4.5,

the higher viscous drag is likely not the cause of the enormous ER effect. In summary,

the large aspect ratio of the nanotubes, which results in higher polarizabilities and thus

particle chaining, is thus believed to be responsible for the unusually large ER response

of the SWNT suspension at low volume fractions.

3.2 Rheology measurement using Bohlin VOR rheometer

3.2.1 Experimental setup

The adaptation of the Bohlin VOR rheometer to conduct rheology measurements of

SWNT suspensions under electric field was similar to that of the Brookfield viscometer

we used earlier. To insulate the cylinder cell from the torque measurement unit to

avoid possible high voltage shock to the main electronic system, a non-conducting

polycarbonate piece was inserted in between. Unlike the Brookfield viscometer the

inner cylinder of this VOR rheometer does not rotate when the measurements are

performed. The copper disc with a groove in the Brookfield case were replaced by

two semispherical pieces of brass with a small indentation to accommodate conducting

electrolyte solutions. An acrylic coat for the outer cylinder was necessary to isolate the

outer cylinder from the rotating shaft and the temperature control chamber so that

the high AC voltage could be applied upon it. The high voltage was applied through a

connection between a wired carbon brush and the groove surface of the rotating outer

cylinder. The effects on the rotation rate of the outer cylinder due to the friction

between the tip of the carbon brush and the groove surface could be safely neglected

here. This Bohlin VOR rheometer is a strain-controlled machine, and it is a more

dedicated rheology measurement instrument with higher torque measurement range

compared to the Brookfield viscometer. Systematic measurements with large range of
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shear rates and electric field strength on the electrorheology of SWNT suspensions were

made possible by this modified Bohlin VOR rheometer.

3.2.2 Experimental results of apparent viscosity measurements of SWNTs/α-

terpineol suspension

The measured steady-state apparent viscosities of SWNT/α-terpineol suspensions using

Bohlin VOR rheometer against the electric field strength at various shear rates are

plotted in Fig. 3.11, together with the data measured previously by our Brookfield

viscometer.

Higher electric field strength were applied when the Bohlin VOR rheometer was

used to measure the apparent viscosity. The data follows the same trend as those

obtained previously but with lower apparent viscosity. This can be seen more clearly

when we plot these data against the parameter γ̇/E2 in Fig. 3.12. Similar phenomena

happened as in Fig. 3.9: at high value of γ̇/E2, all data collapse pretty well, but at

low value of γ̇/E2 the apparent viscosity saturates and level out at different saturation

values. With these data from Bohlin VOR rheometer, we further verify that our results

are consistent on these two independent rheometry setups. Testings of wider range of

electric field strength and shear rates were also achieved this time through the adapted

Bohlin rheometer.

3.2.3 Summary

In summary of this chapter, we have found, for the first time, evidence for an elec-

trorheological effect in a dilute suspension of carbon nanotubes. The ER behavior of

the SWNT/α-terpineol suspension can be interpreted in terms of an electrostatic po-

larization model, where the governing parameter is the ratio of viscous to dipole-dipole

forces. At low field strengths, the conventional Mn, characterizes the viscosity, while,

at high field strengths, a modified Mn, which accounts for the nonlinear conductivity

of the solvent, best collapses the data. At the highest field strengths, one or more

percolating chains of SWNTs can eventually span the electrodes of the viscometer, and

cause a further increase in the apparent viscosity. Most notably, the ER response is
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Figure 3.11: Steady-state apparent viscosity varies with electric field strength. Solid
dots are data from Bohlin VOR rheometer; Circles are data from Brookfield viscometer.
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Figure 3.12: Steady-state apparent viscosity of the SWNT/α-terpineol suspension as a
function of γ̇/E2.
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”strong” in the sense that the dilute SWNT suspension displays changes in the appar-

ent viscosity that are comparable to a more conventional (spherical particle) suspension

having a 3-orders-of-magnitude-higher volume fraction. The magnitude of the response

is believed to be due to the large aspect ratio of the nanotubes, which enhances the

electrostatic forces. There are still many questions left to be answered. For instance,

since we attribute the unconventionally strong ER response (apparent viscosity) to the

highly anisotropic properties (geometry, polarizability) of SWNTs, how would the pref-

erential orientations of SWNTs and small SWNT bundles affect the overall apparent

viscosity? We will try to answer this question in the following chapter on the particle

dynamics and ensemble-averaged particle orientation of SWNT suspensions under both

shear and electric fields.
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Chapter 4

Particle dynamics of SWNTs suspensions

4.1 Visualization of structure forming under electric field

To experimentally investigate the microstructure that forms under both shear and elec-

tric field, visualizations of the SWNT suspensions were first done in a quiescent fluid

under an external electric field.

The chaining of SWNT bundles and the thickening of these chains under an electric

field were visualized by Nikon 35 mm camera with a macro lens, as well as a digital

image acquisition system which consisted of a one million pixel CCD Redlake camera,

an EPIX image acquisition board and software. Two SWNT suspensions were used

in the visualization: a volume fraction of 0.001% of SWNTs in pure ethanol and a

0.0015% of SWNTs in α-terpineol. Suspension samples were housed in a glass cuvette

(L: 10mm × W: 10mm × H: 43mm) with external electrodes attached to its two out-

side surface normal to the direction of the camera view. A regular desk lamp was used

as a background illumination source. Sample images of structure forming process in

quiescent flows of ethanol and α-terpineol are shown in Fig. 4.1 and 4.2 respectively.

The process of chaining, thickening of chains of SWNT bundles with the electric field

on and the snapping of chains after the field being turned off looked similar in both

ethanol and α-terpineol cases. But the time scale for these chains to form and get-

ting thicker were quite different. It took about 5 − 6 minutes for the camera to start

capturing traces of SWNTs chains in SWNTs/α-terpineol suspension and only took

1 − 2 minutes in SWNTs/ethanol case. The slight difference in particle volume frac-

tion between the SWNTs/α-terpineol and SWNTs/ethanol suspensions is not likely

to cause this difference in the time scale of the chaining process. Instead, it is be-

lieved that the SWNT chains formation, thickening, and breaking process were faster
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Figure 4.1: Visualization of the SWNTs chain formation under an electric field in a
quiescent SWNTs/ethanol suspension.
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Figure 4.2: Visualization of the SWNTs chain formation under an electric field in a
quiescent SWNTs/α-terpineol suspension.
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Figure 4.3: Time trace of viscosity ratio at the shear rate of 12.23 1/s. Sample prepared
at 20mg/L of SWNT in α-terpineol. External electric field was turned on, off, on and off
during the experiment. Time response for the second viscosity jump shortened because
of the residual of the chains after the first turn-on and off of the electric field.

in SWNTs/ethanol suspension than that in the SWNTs/α-terpineol case because of the

difference in viscosities of the solvents, with ethanol having a viscosity almost 30 times

less than that of α-terpineol.

Besides the visualization experiments where the chaining process can be seen di-

rectly, we also have other evidence showing the chains forming in the SWNT suspen-

sions. As depicted in Fig. 4.3, during a typical apperant viscosity measurement the

external electric field was turned on and off two times to see what was the effect of the

chains forming at the first time on the second chaining process. Even though the elec-

tric field applied for the second viscosity jump was smaller than that of the first jump,

the time response from the second was faster than the first spike which indicated that

the chains formed during the first process did not break completely which facilitated

the faster chaining in the second process. As will be seen in later sections, chaining and

the micro-structure forming in the suspension are the dominant mechanisms for the
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dramatic apparent viscosity changes at dilute SWNT suspensions while the aligment of

SWNTs in the suspension may only have indirect impact on the viscosity.

4.2 A few notes on particle motion under shear and electric fields

It has been shown in Ch. 2 that a particle under both shear and electric fields will

rotate and reach an equilibrium state when the applied electric field strength is greater

than a critical value [63]. The particle orientation angles at the equilibrium state have

the form of Eqn. (2.76) and (2.77) which are recapped here as

θ1∞ =
π

2
(4.1)

φ1∞ = tan−1{re[f − (f2 − 1)
1

2 ]}, (4.2)

The complete form of the dimensionless parameter f is

f =
−εfP

(
εp/εf , re

)
E2

0

(
r2e + 1

)

γ̇ηcre
. (4.3)

where P
(
εp/εf , re

)
reflects the induced polarization of the particle and is a function of

the particle aspect ratio re and the complex permittivity ratio of the particle and the

ambient fluid. For conducting particles immersed in a dielectric fluid at low frequency

regime (conductivity dominates), as in the case of SWNTs in α−terpineol of our ex-

periments, a limiting case of σp/σf → ∞ has been taken in the expression for P given

in Eq. (2.69).

The parameter f , which is proportional to E2/γ̇ under a certain physical conditions

in which the physical properties of the particle and its ambient fluid are fixed, is a

dimensionless measure of the relative electrostatic-to-hydrodynamic torques acting on

the isolated particle in a fixed orientation. This can also be conveniently re-exammed

by calculating the ratio of the first component of the electrostatic and hydrodynamic

torque applied on the particle by the shear and electric field respectively.

In an x′1,x
′
2,x

′
3 coordinate system fixed on an ellipsoidal particle with each axis

aligned with the principal axes of the ellipsoid as shown in Fig. 4.4, the x′1-component

of the hydrodynamic torque applied by a flow on an ellipsoidal particle of semi-axes a1,
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Figure 4.4: Coordinate system used in the calculation of the torque due to the shear
flow and electric fields. The inset shows the particle pair configuration of the simplest
case considered in this work.

a2, a3, is [45]

T hx′
1

=
16πηc

3
(
a22β0 + a23γ0

){
(
a22 − a23

)
h+

(
a22 + a23

)
(ξ − ω1)}, (4.4)

where

β0 =

∫ ∞

0

ds(
a22 + s

)
Rs
,

γ0 =

∫ ∞

0

ds(
a23 + s

)
Rs
,

Rs =
√(

a21 + s
) (
a22 + s

) (
a23 + s

)
,

h =
1

2

(
∂w

∂x′2
+

∂v

∂x′3

)
,

ξ =
1

2

(
∂w

∂x′2
−

∂v

∂x′3

)
,

ηc is the dynamic viscosity of the fluid, ω1 is the angular velocity of the particle about

the x′1 axis, and u, v, w are the three fluid-velocity components in the x′1, x
′
2, x

′
3
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directions. If the particle does not rotate (as would be the case in an equilibrium state

when the hydrodynamic and electrostatic torques balance each other), Eq. (4.4) can

be simplified as

T hx′
1

=
16πηcγ̇

(
a22m2n3 − a23m3n2

)

3
(
a22β0 + a23γ0

) , (4.5)

where γ̇ is the shear rate and the direction cosines of the x′1, x
′
2, x

′
3 axes referred to x1,

x2, x3, the coordinate system fixed in space, are (l1,m1, n1), (l2,m2, n2) and (l3,m3, n3).

The torque applied by an electric field on the ellipsoidal particle can be obtained

using the effective moment method [58]. The general form of the effective moment

induced by the external field on an ellipsoidal particle of semi-axes a, b, c, can be

expressed as

~peff = 4πa1a2a3εfK̃ · ~E, (4.6)

where K̃ is the tensor form of complex Clausius-Mossotti factor,

K̃ =




Kx′
1

0 0

0 Kx′
2

0

0 0 Kx′
3



,

and Kx′
1,2,3

are defined as

Kx′
1
=

εp − εf

3
[
εf +

a1a2a3
2

(
εp − εf

)
α0

] ,

Kx′
2

=
εp − εf

3
[
εf +

a1a2a3
2

(
εp − εf

)
β0
] ,

Kx′
3

=
εp − εf

3
[
εf +

a1a2a3
2

(
εp − εf

)
γ0
] , (4.7)

and εf , εp are the complex permittivities of the fluid and particle, respectively, and α0

is defined as

α0 =

∫ ∞

0

ds(
s+ a21

)
Rs
. (4.8)

The x′1-component of the torque due to the electric field is

T ex′
1

=
2

3
πa21a

2
2a

2
3εf (γ0 − β0)Ex′

2
Ex′

3
Re
[
Kx′

2
Kx′

3

]
, (4.9)

where εf = Re
(
εf
)
and Ex′

2
, Ex′

3
are electric-field components in x′2, x

′
3 directions,

which depend on the orientation of the particle. The ratio of the x′1-components of the
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torques applied by the electric field and shear flow on the particle can be expressed

using Eq. (4.9) and Eq. (4.5) as

T ex′
1

T h
x′
1

=
a21a

2
2a

2
3εf
(
a22β0 + a23γ0

)
(γ0 − β0)Ex′

2
Ex′

3
Re
[
Kx′

2
Kx′

3

]

8ηcγ̇
(
a22m2n3 − a23m3n2

) . (4.10)

For fixed fluid-and-particle properties, the electrostatic-to-hydrodynamic torque ra-

tio is a function of E2/γ̇ and the particle orientation only, i.e.,

T e

T h
= g (θ, φ, ψ)E2/γ̇, (4.11)

where θ, φ, ψ are Eulerian angles as illustrated in Fig. 4.4. Below a critical electric-field

strength, particles are expected to rotate in a modified Jeffery orbit, while, for suffi-

ciently large field strengths, the electrostatic and hydrodynamic torques on each particle

balance and the particles should reach an equilibrium orientation angle. This equilib-

rium angle is expected to be only a function of the parameter E2/γ̇, or equivalently, f ,

for all shear rates and field strengths.

In the following, we describe our experiments on SWNT suspensions under simulta-

neous shear flow and electric fields. The particle Reynolds numbers Re = γ̇l2/ν range

from 10−10 to 10−7, for the range of shear-rates, γ̇, and particle lengths, l, of the cur-

rent study. The measured SWNT orientation angles are quantitatively compared with

the predictions of Mason-and-coworkers’ classical theory for the orientational dynamics

of an isolated ellipsoidal particle in a flowing Newtonian fluid subject to an external

electric field. The apparent shear viscosity of the suspension is also simultaneously

measured, in order to clarify what role, if any, particle orientation plays in determining

the apparent viscosity of SWNT suspensions under electric fields.

4.3 Sample specification and characterization

The same purified HiPCO SWNTs used in the previous chapter were purchased in dry-

powder form from CNI, Inc. and used as-received. The SWNTs are long, straight rods,

having diameters of 1 nm and lengths of order 102−103 nm, as seen from AFM imaging

(Fig. 4.5) [79] and also reported by the manufacturer. Individual SWNTs are rigid rods
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Figure 4.5: AFM images of HiPCO SWNTs deposited from suspension on a freshly
cleaved mica substrate. Left: Our AFM visualization, with black arrows indicating
straight, individualized nanotubes, and a white arrow showing a nanotube bundle.
Right: Similar HiPCO SWNTs also visualized by AFM by Fagan et. al [79] 2006.

with persistence lengths LP = K/kBT ∼ 40 microns [78,80] much greater than typical

nanotube lengths. Even accounting for bending due to shear flow in our suspensions, the

equivalent persistence length for individual SWNTs, calculated as LP/Per ∼ 2 microns

(where Per is the rotational Peclet number that will be discussed in more detail later), is

greater than the nanotube length. For a nanotube bundle, calculation of the persistence

length requires detailed information of the lateral coherence between the N constituent

tubes. However, if these N identical rods are aligned and can slip freely along each

other, the total additive stiffness would be N times greater than LP [80]. Thus, the

SWNTs/bundles in our suspensions are treated as long, rigid rods.

The SWNTs were dispersed in a solvent, α-terpineol, which has low electrical con-

ductivity and has been reported to be a good solvent for carbon nanotubes [69]. Samples

at four different volume fractions of SWNTs, Φ = 1.5 × 10−6, 3.7 × 10−6, 1.5 × 10−5

and 2.2× 10−5, were prepared at room temperature with the assistance of bath sonica-

tion. As before, bath sonication was chosen rather than tip sonication because it has

been shown to effectively disperse nanotubes with significantly less nanotube break-

age [17]. For suspensions of high-aspect-ratio particles such as SWNTs, the transition
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from ”dilute” to ”semi-dilute” regimes occurs at a cross-over volume fraction

Φc = c0π/4r
2
e , (4.12)

where c0 = 1 in the strict Doi-Edwards formulation, while c0 ' 30 based on experiments

with poly(γ-benzyl-L-glutamate) [81]. If the empirical value of c0 ' 30 is used, the

dilute-to-semidilute-cross-over volume fraction is calculated to be 2.4×10−5−2.4×10−3

for aspect ratios ranging from 102 to 103, and all of our samples would be considered

dilute. If the Doi-Edwards criterion [78] is used, our samples would still be likely to

be dilute at the lowest concentrations tested. Moreover, considering that a portion of

the nanotubes in solution are likely to be bundled rather than suspended as individual

tubes, the suspensions tested are even more likely to be dilute, as the effective aspect

ratio of the bundled nanotubes would be lower than the nominal value for individual

nanotubes.
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Figure 4.6: VIS-NIR absorption spectra of SWNTs/α-terpineol suspensions with and
without centrifugation. Left: Absolute absorption. Right: Absorption spectra of cen-
trifuged and uncentrifuged suspensions, normalized to have the same low wavelength
absorption.

Analysis with a Brookhaven disc-centrifuge particle sizer showed that the parti-

cles in suspension were small, with 90% of particles/bundles present in the suspension

having equivalent hydrodynamic diameters below 160nm. VIS-NIR absorbance mea-

surements confirmed the presence of individual SWNTs in the suspension. As seen in

Fig. 4.6, the absorption spectra of the SWNTs/α-terpineol suspension display char-

acteristic peaks in the absorption spectra which correspond to the first inter-band M1
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transition of individualized metallic SWNTs in suspension [21]. Such peaks would be

suppressed by bundling of SWNTs in the suspension, as shown by [71]. Thus, the

presence of such peaks indicates the presence of individual SWNTs in the suspensions.

Suspensions with an enriched fraction of individual nanotubes were also prepared by

centrifuging the original suspensions at 50,000g for 2.5 hours to remove larger particle

bundles. As seen in Fig. 4.6, the overall absorption dropped after centrifugation due

to the reduced concentration of nanotubes in the suspension. However, the relative

height of the absorption peaks (normalized by the absorption at the low wavelengths)

doubled after centrifugation, indicating an enrichment of the fraction of individualized

SWNTs after centrifugation, as expected (Fig. 4.6: Right). Assuming that the rel-

ative peak height of the absorption features in the absorption spectrum serves as a

rough measure of the degree of nanotube individualization, we may quantify the degree

of dispersion by comparing our spectra with those of well-individualized suspensions

using various surfactants, e.g. single-stranded DNA [79]. For example, the relative

peak height (with respect to the background) of the peak near 750 nm for our cen-

trifuged SWNTs/α-terpineol suspension is 0.05, while for DNA-wrapped SWNTs it is

0.15 and 0.14 (depending on the suspensions pH). Thus, our centrifuged suspensions

contain perhaps 1/3 of the fraction of individualized SWNTs that the DNA-wrapped

SWNT suspensions do. Nonetheless, the α-terpineol-SWNT suspensions studied here

contained a mixture of bundled and individualized SWNTs, with a trend toward a

greater percentage of individualized SWNTs after centrifugation. Measurement of the

ensemble-averaged particle orientation angles under simultaneous shear flow and elec-

tric field were made with both the uncentrifuged and centrifuged suspensions, although

measurements with the latter were limited due to the small sample volumes available.

It is also very important to note that the optical-polarization-modulation technique

that is used to measure the ensemble-averaged particle orientation angles is sensitive

to linear dichroism of the sample. The dichroism in this case is due to absorption

anisotropy of aligned nanotubes [54,82]. When the particles become much larger than

the wavelength of light (632.8 nm for our HeNe laser), the absorption and scattering

would no longer be anisotropic and linear dichroism is no longer be present, as discussed
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by Fuller [83], who pioneered the measurement technique. As a result, the dichroism-

based technique to measure the ensemble-averaged particle orientation is sensitive only

to individual SWNTs and their small bundles; larger bundles do not contribute to the

signal. We further confirmed that we are able to measure the orientation angles of

samples that had been centrifuged at 50,000g for two and a half hours to remove large

bundles. Thus, the measurement technique that is used in the present work ensures

that the measured orientation angles are those of individual SWNTs and small bundles.

4.4 Experimental method
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Figure 4.7: Schematic of the modified concentric-cylinder viscometer and the laser-
polarimetry system used to simultaneously measure apparent viscosities and ensemble-
averaged particle-orientation angles. L: HeNe laser, P,0: Polarizer at 0 ◦, RH: Rotating
half-wave plate, PCP: Polarization-conserving prism, PD: Photodetector.

The electrorheological (ER) measurement was carried out in a modified concentric-

cylinder cell (Fig. 4.7) of a Brookfield DVII+ viscometer at a fixed temperature of 25◦C.

The concentric-cylinder cell was redesigned in two aspects. First the gap between the

inner and outer cylinder was increased to 3.2mm to accommodate a laser beam of diam-

eter of 1.2mm. Secondly, the bottom of the outer cylinder was removed and replaced

with an optical window and a sealing cap. A shear-flow field in the circumferential

direction was generated by the strain-rate-controlled viscometer unit while an exter-

nal electric field was formed in the radial direction by applying a potential difference

between the inner and outer cylinders.
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A laser-polarimetry system, based on the optical-rheometry schemes developed by

Fuller [68], was used to measure the ensemble-averaged orientation of the individually

suspended and small bundles of SWNTs. As seen in Fig. 4.7, the optical train consisted

of a linearly polarized laser at a wavelength of 632nm, a Glan-Taylor polarizer having

1 : 106 extinction ratio, a rotary half-wave plate, a polarization-conserving, 90◦-beam-

deflecting prism [84], and a photodetector. The rotary half-wave plate, which served as

a polarization modulator, was driven by a pulley-motor system with adjustable RPM

up to 5200. Post-sample light was received by a photodetector and demodulated and

further processed by a lock-in amplifier using the signal from the motor encoder as a

reference signal. To test the optical system, a calibration was performed using another

Glan-Taylor calcite polarizer oriented at known angles. Fig. 4.8 shows the calibration

results. The calibration showed that the orientation-angle measurement was accurate

within 0.1◦, which was also the resolution of the rotation stage used in this calibration

process.

Repeatability of the results for both apparent-viscosity and ensemble-averaged orien-

tation angle measurements was examined by measuring selected samples several times,

as well as measuring different sample loadings on different days. The largest source

of error in the optical measurements came from the initial positioning of the sample

cell relative to the laser beam. This systematic error, which could be corrected in

post processing, was within 5◦ difference from trial to trial. The random error for the

apparent-viscosity measurement was within 1% of the viscosity measurement range. A

pure α-terpineol sample was tested to ensure that the viscosity and dichroism of the

solvent itself did not change upon the application of the external electric field.

For the range of shear rates of the current study, the suspensions are non-Brownian.

The rotational Peclet number , Per ≡ γ̇/Dr, defined as the ratio of the shear rate, γ̇, to

the rotary diffusion coefficient, Dr, is a measure of relative viscous and thermal effects.

For rigid, rod-like particles, the rotary diffusion coefficient is [78,85]

Dr =
3kBT [ln (l/d)− 0.8]

πηcL3
, (4.13)

where l and d are the length and diameter of the particle. For our experiment, the
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calculated values of Per are in the range of 2 ∼ 18 for the shear rates used, assuming

individual nanotubes of length l ' 1 µm in the suspensions. Even for shorter tubes,

considering that for nearly all of the conditions studied, f � 1, i.e., the electric field is

very strong, Brownian motion is not expected to have a significant effect on the results.

4.4.1 Mathematical analysis of optical polarimetry setup

We have laid the basis for light scattering by small particle in our background chapter.

Before we get into the experimental results of particle orientation measurements, it is

necessary to have a detailed description about the methodology we used in designing

and interpreting our experiments.

Two mathematical descriptions of polarized light are often utilized to analyze optical

polarimetry measurements: Jones and Mueller calculus. The Jones calculus uses a Jones

vector which is the same as the electric field vector itself to represent the polarized light,

while in the Mueller calculus the representation of the polarized light is carried out by

four quantities known as the Stokes parameters which are functions only of observables

of the electromagnetic wave. Since the analysis of the same polarimetry experiment can

be accomplished by either one of these two mathematical methods, Jones and Mueller

calculus are equivalent [86]. When the polarized light interacts with materials or passes

through any optical elements, the incident beam and the emerging light wave are linearly

related by a transformation matrix. In the case of Jones calculus, the mathematical

expression is

~Et = J ~Ei, (4.14)

where ~Ei and ~Et are Jones vectors of a polarized incident and transmitted wave re-

spectively and J is the Jones matrix for a particular sample material or an optical

component. Similarly in Mueller calculus, Mueller matrix is the transformation matrix

which relates the Stokes vectors of the incident to the transmitted wave.

~S1 =M~S0, (4.15)

where ~S0 and ~S1 are Stokes vectors of a polarized incident and transmitted wave re-

spectively and M is the Mueller matrix. Notice that Jones vector has two components
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while Stokes vector has four components, therefore Jones matrix J is a 2 × 2 matrix

and Mueller matrix M is a 4 × 4 matrix. Since Jones and Mueller calculus are inter-

changeable [86] and the latter has the direct observable, the intensity of the polarized

light, as the first component of Stokes vector, the mathematical analysis of our optical

polarimetry experiments will be described in the form of Mueller calculus. For a se-

quence of optical elements encountered in an optical train the resulting Stokes vector

of the light is the product of the incident light and each of the corresponding Mueller

matrix of the optical elements

~SN =MN ·MN−1 · · ·M2 ·M1 ·M0 · ~S0. (4.16)

The Mueller matrix of each of the optical elements depicted in Fig. 4.7 can be found

in Appendix II, assuming our sample suspensions are coaxial birefringent/dichroic

medium. Since the linearly polarized light source can be treated as a result of an

unpolarized light passing through a polarizer, a Stokes vector, ~S0 =




I0

0

0

0




, of an un-

polarized light with a polarizer as the first optical element will be used as our starting

point of the mathematical analysis.

~S1 = M0 · ~S0

=
1

2




1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0







I0

0

0

0




=
1

2




I0

I0

0

0




, (4.17)

The polarized beam is then transmitted through a rotating half-wave plate driven
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by a pulley-motor system

~S2 = M1 · ~S1

=
1

2




1 0 0 0

0 cos 4 (ωt+ β0) sin 4 (ωt+ β0) 0

0 sin 4 (ωt+ β0) − cos 4 (ωt+ β0) 0

0 0 0 −1







I0

I0

0

0




=
1

2




I0

I0 cos 4 (ωt+ β0)

I0 sin 4 (ωt+ β0)

0




, (4.18)

Finally, the rotating linearly polarized light is passed through a sample SWNT

suspension under both shear flow and electric field in the modified concentric cylindrical

cell of the Brookfield viscometer. The sample suspensions are assumed to have coaxial

dichroism and birefringence with the extinction and retardation defined as

δ
′′
= 2π∆n

′′
d/λ (4.19)

δ
′
= 2π∆n

′
d/λ, (4.20)

where d is the optical path length of the sample. The Mueller matrix for sample

materials with both dichroism and birefringence can be found in Fuller’s paper [68].
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The Stokes vector of the resulting light after the sample suspension becomes

~S3 = M2 · ~S2

=
1

2
I0




cosh(δ
′′
) − cos(2α) sinh(δ

′′
)

− cos(2α) sinh(δ
′′
) cos2(2α) sinh(δ

′′
) + sin2(2α) cos(δ

′
)

− sin(2α) sinh(δ
′′
) cos(2α) sin(2α)

(
cosh(δ

′′
)− cos(δ

′
)
)

0 − sin(2α) sin(δ
′
)

− sin(2α) sinh(δ
′′
) 0

cos(2α) sin(2α)
[
cosh(δ

′′
)− cos(δ

′
)
]

sin(2α) sin(δ
′
)

sin2(2α) cosh(δ
′′
) + cos2(2α) cos(δ

′
) − cos(2α) sin(δ

′
)

cos(2α) sin(δ
′
) cos(δ

′
)




4×4




1

cos 4 (ωt+ β0)

sin 4 (ωt+ β0)

0




=
1

2
I0




cosh(δ
′′
)− cos 4 (ωt+ β0) cos(2α) sinh(δ

′′
)

− cos(2α) sinh(δ
′′
) + cos 4 (ωt+ β0)

[
cos2(2α) sinh(δ

′′
) + sin2(2α) cos(δ

′
)
]

− sin(2α) sinh(δ
′′
) + cos 4 (ωt+ β0) cos(2α) sin(2α)

[
cosh(δ

′′
)− cos(δ

′
)
]

− cos 4 (ωt+ β0) sin(2α) sin(δ
′
)

− sin 4 (ωt+ β0) sin(2α) sinh(δ
′′
)

+ sin 4 (ωt+ β0) cos(2α) sin(2α)
[
cosh(δ

′′
)− cos(δ

′
)
]

+sin 4 (ωt+ β0)
[
sin2(2α) cosh(δ

′′
) + cos2(2α) cos(δ

′
)
]

+sin 4 (ωt+ β0) cos(2α) sin(δ
′
)




4×1

. (4.21)

A polarization conserving light bending prism [84] is used to deflect the beam before

the sample suspension due to the space limitation. Since the prism changes the prop-

agation direction of the light without changing the polarization state of the light, it is

not necessary to include the function of the the prism in the mathematical analysis.

The intensity of the after-sample beam will be collected by a photodetector as

I =
1

2
I0

[
cosh(δ

′′
)− cos 4 (ωt+ β0) cos(2α) sinh(δ

′′
)− sin 4 (ωt+ β0) sin(2α) sinh(δ

′′
)
]

=
1

2
I0 cosh(δ

′′
)
[
1− cos 4 (ωt+ β0) cos(2α) tanh(δ

′′
)− sin 4 (ωt+ β0) sin(2α) tanh(δ

′′
)
]

=
1

2
I0 cosh(δ

′′
)
{
1− cos [4ωt− (2α− 4β0)] tanh(δ

′′
)
}

=
1

2
I0 cosh(δ

′′
)
{
1− sin

{
4ωt+

[π
2
− (2α− 4β0)

]}
tanh(δ

′′
)
}

(4.22)

The signal from the photodetector will go through a DC (low-cut) filter so that



82

only the sin(4ωt) component of the signal is left. Then it is demodulated and further

processed by a lock-in amplifier. Both the magnitude and phase of sin(4ωt) component

of the signal will be extracted. Two unknown angles need to be determined, the initial

phase angle of the half-wave plate, β0, and the orientation angle of the dichroism of the

suspension, α. β0 is determined in the same fashion at the beginning of each experiment

by replacing the sample with a known angle (usually 90◦, so α = 90◦) polarizer. α, or

equivalently, the ensemble average of the particle orientations at equilibrium state will

be obtained from the phase information of signal sin(4ωt) after the β0 is known.

4.5 Results and discussion

Representative time traces of the measured apparent viscosity, η, normalized by the

viscosity of the solvent, ηc, at a volume fraction of Φ = 1.5 × 10−5 are shown in Fig.

4.9 for a constant shear rate of 2.81 s−1 and various electric-field strengths. Before the

field is turned on, the suspension viscosity is the same as the base fluid viscosity to

within the experimental precision because of the low particle concentration. With an

electric field, the shear viscosity increases, with the magnitude of the viscosity change

increasing, and the time scale of the viscosity change decreasing, with field strength.

Despite the diluteness of the suspension, the apparent viscosity nearly triples at the

highest electric field for this shear rate. The response time for the viscosity change is

very slow, on the order of 102 seconds, however. These apparent-viscosity results are

consistent with those previously obtained with a different measurement cell [42].

Ensemble-averaged particle orientations, measured simultaneously with the viscosity

measurements, are shown in Fig. 4.10 for the same electric-field strengths and shear

rate. In the absence of an electric field, the large-aspect ratio nanotubes can be expected

[45, 46, 87] to rotate periodically in Jeffery orbits, spending most of their time aligned

in the flow direction. As seen in Fig. 4.10, the ensemble-averaged particle-orientation

angle without the electric field is in the flow direction (90◦ as defined in our coordinate

system). This is consistent with the predicted Jeffery orbits, and would seem to rule

out purely chaotic orbits which might rise due to the existence of triaxial-ellipsoid-

like particles [88]. Upon application of the electric field at t = 160s, the measured
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Figure 4.9: Time traces of the normalized apparent viscosity of the suspension. Various
electric-field strength were applied while the shear rate was kept at a constant value
γ̇ = 2.81 1/s.

equilibrium orientation angles quickly deviate towards the radial direction (0◦). The

alignment of nanotubes in the radial direction is increased with an increase in field

strength, reaching 33◦ at a shear rate of 2.81 s−1 for Erms = 191 V/mm. Once the

electric field is turned off at t = 1900 s, the nanotube orientations return to the flow

direction (90◦), again consistent with Jeffery’s predictions [45] and experiments by

Taylor [46] and Mason and coworkers [87].

The alignment of the nanotubes in the simultaneous shear flow and electric field

occurs on time scales on the order of 100−101 seconds (Fig. 4.10), one to two orders of

magnitude faster than the time scales of the rheological response (Fig. 4.9). Thus, at

these low concentrations, the alignment of the particles with the electric field appears

to have little direct impact on the apparent viscosity of the suspension, despite the very
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Figure 4.10: Equilibrium particle-orientation angles, measured simultaneously with the
electrorheological data shown in Fig. 4.9.

large aspect ratio of the nanotubes. Rather, consistent with the behavior of conven-

tional ER fluids [25,30–32], the chaining of nanotubes under dipole-dipole interactions

appears to be the primary mechanism for the change in apparent viscosity under an

external electric field. In this light, the slow ER time response observed in these ex-

periments is due to the diluteness of the SWNT suspensions, which increases the mean

spacing between particles (and thus the chaining time) in the suspension. Similarly

slow response times on the order of minutes have also been reported for an ER fluid

composed of carbon-cone particles at low concentration [89].

Fig. 4.11 plots the measured ensemble-averaged particle orientation angle against

shear rate at different electric field strength. And Fig. 4.12 plots the measured orienta-

tion angle against electric field strength at different shear rate. As the effects of the two

fields applied on particles compete with each other at various electric and shear fields,
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Figure 4.11: Particle orientation angle as a function of shear rate at various electric
field strength.

the equilibrium orientation angle vary accordingly. Higher electric field strength drives

the particles more towards 0◦ while higher shear rate pushes them on the direction

perpendicular to the electric field direction, which is 90◦ as defined in our system.

Mason’s theory predicts that particles under both shear and electric field align them-

selves at a specific equilibrium orientation angle when the externally applied electric

field strength is greater than a critical value, Ecrit, at which f = 1. To experimentally

validate this Ecrit for the SWNTs/α-terpineol suspensions, the electric field applied to

the suspension was increased until deviation from preferential orientation in the flow

direction was detected. Fig. 4.13 shows the measured ensemble-averaged orientation

angles for varying electric-field strengths for the Φ = 1.5 × 10−5 sample at a fixed

shear rate of γ̇ = 5.61 s−1. Two linear curve fits were applied to data for the seven

lowest field-strengths in order to obtain an experimental Ecrit = 19Vrms/mm. Since the

real samples are polydispersed, with particles/bundles having a range of aspect ratios,

care must be taken in calculations of the theoretical value of Ecrit in Eq. (4.3). For
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Figure 4.12: Particle orientation angle as a function of electric field stength at various
shear rate.

particles/bundles with aspect ratios ranging from 102 to 103, the calculated theoretical

values of Ecrit range between 20.6Vrms/mm and 63.9Vrms/mm, which is in reasonable

agreement with the experimentally determined value Ecrit = 19Vrms/mm.

The equilibrium orientation angles for various shear rates and electric-field strengths

are plotted in Fig. 4.14 against the parameter E2/γ̇ predicted by Mason’s theory to

govern the orientation of ellipsoidal polarizable particles in simultaneous shear flow and

electric fields (Eq. 4.2). As seen in the figure, the measured orientation angles collapse

well against E2/γ̇ for an order-of-magnitude variation in both electric-field strengths

(21.3Vrms/mm ≤ E ≤ 383.7Vrms/mm) and shear rates (1.12s−1 ≤ γ̇ ≤ 11.22s−1). The

collapse of the data indicates that the E2/γ̇-dependence for the equilibrium orientation

angle predicted by Mason’s theory is essentially correct. One would also expect based

on Eq. (4.2) that particles will align along the electric field direction (0◦) when the

parameter E2/γ̇ → ∞, i.e., the electric field is much stronger than the shear flow. In

order to experimentally approach this upper limit, an electric field of 213.2Vrms/mm was
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Figure 4.13: Two linear curve fits applied to the first seven measured equilibrium
particle-orientation data points to determine Ecrit.

applied to two quiescent samples. The measured ensemble-averaged orientation angles

(not shown in Fig. 4.14) were 6.9◦ and 3.3◦ for the uncentrifuged (Φ = 1.5× 10−5) and

centrifuged suspensions, respectively, in reasonable agreement with theory.

However, significant discrepancies are found between the experimental results and

the theoretical predictions at the intermediate values of f (or E2/γ̇). Shown in Fig.

4.14 are also the predicted orientation angles from Eq. (4.2) for particles of aspect ratio

re = 10, 100, and 1000. The model predictions of the particle orientation angle are seen

to be essentially independent of the aspect ratio in this high-aspect-ratio range. Thus,

the polydispersity of the suspension (i.e., the broad distribution of nanotube lengths in

the actual sample) is irrelevant to the expected orientation angles. However, as seen in

Fig. 4.14, the measured angles fall below the theory (inclined toward the electric-field

direction) by as much as 40◦. This implies a higher aligning torque (either electrostatic

or hydrodynamic) in the electric-field direction than predicted by simple theory. Thus,
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Figure 4.14: Measured equilibrium orientation angles as a function of E2/γ̇. Predicted
angles (Eq. 4.2) are shown for three particle aspect ratios.

while the collapse of the data for various shear rates and electric fields indicates that the

particle orientation is indeed governed by the ratio between electric-field and shear-flow

torques, as parameterized by E2/γ̇, or equivalently f , Eq. (4.2) does not completely

predict SWNT orientation in these suspensions.

One possible source of the discrepancy between the experiment and Mason’s pre-

diction is particle-particle interaction, which is neglected in the classical theory. To

examine the possible role of such particle-particle interactions on the equilibrium ori-

entation angles, we further tested suspensions of different SWNT volume fraction. If

particle-particle interactions were indeed responsible for the observed discrepancies, one

would expect the measured angles to agree better with the theoretical curve at lower

SWNT concentrations, when the mean spacing between particles is larger. As seen

in Fig. 4.15, this was indeed the case, with better agreement between the measured

angles and the model for less concentrated samples. Even at the lowest concentrations
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however, which are almost certainly dilute in the sense that particles are unlikely to

interact through random rotations in the absence of an external electric field (Eq. 4.12),

significant discrepancies persist between the measurements and theoretical predictions.

Nonidealities due to bundling of the particles are unlikely to account for the differ-

ence, as a sample which had been centrifuged at 50,000g for 2.5 hours to remove large

particles still showed a significant discrepancy from theory. To better understand the

possible role that particle-particle interactions may have on the equilibrium orientation

angles, we next consider to lowest order the effect of electrostatic interaction between

two neighboring spheroidal particles.
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Figure 4.15: Concentration effects on the equilibrium orientation angle of
SWNTs/bundles under shear and electric fields. Lines show the predictions of clas-
sical theory (Eq. 4.2) for various particle aspect ratios.

The simplest model for the effect of electrostatic interactions is to consider the

disturbance field generated by a dipole and calculate its effect on a nearby dipole. For

simplicity, we present here only the special case when the major axes of the two prolate

particles are parallel and the line (vector ~r in Fig. 4.4) connecting the centroid of the
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two particles lies in the electric field direction. The special case is illustrative without

the additional complexity that would arise from considering all possible arrangements

of pairs of particles. The inset of Fig. 4.4 depicts the configuration of the particle pair,

the coordinate system, and the external electric and flow fields. The effective moment

of a particle in a uniform field ~E is

~peff = 4πab2εf

(
K‖E‖~̂e‖ +K⊥E⊥~̂e⊥

)
, (4.23)

where ~̂e‖ and ~̂e⊥ are unit vectors parallel and perpendicular to the major axes of the

particles respectively. In the limit of re � 1 for high-aspect-ratio particles, the two

Clausius-Mossotti factors in Eq. (4.23) simplify to

K‖ =
ε2 − ε1

3{ε1 +
1
r2e

(ε2 − ε1) [ln (2re)− 1]}

K⊥ =
2 (ε2 − ε1)

3 (ε2 + ε1) .
(4.24)

The electric field generated at a location ~r by a particle of effective moment ~peff

centered at origin is [60]

~Edipole (~r) =

(
1

4πεf

)
[
3
(
~peff · ~̂r

)
~̂r − ~peff

]

r3
, (4.25)

where the unit vector ~̂r = ~r/r in the direction of the line connecting the centers of the

two particles is

~̂r = cos (δ − φ) ~̂e‖ − sin (δ − φ) ~̂e⊥. (4.26)

The torque ~T = ~p× ~E due to electrostatic interactions with a neighboring particle

is calculated to lowest order using the disturbance electric field of Eq. (4.25), and the

dipole moment ~peff induced by the uniform electric field. Compared to the torque ap-

plied by the uniform external electric field (Eq. 4.9), the torque due to the electrostatic



91

interaction with a neighboring particle is, to lowest order,

T einduced
T e

=
3ab2

r3

{K‖K⊥ sin (2φ) cos [2 (δ − φ)]−
(
K⊥K⊥ sin2 φ−K‖K‖ cos

2 φ
)
sin [2 (δ − φ)]}

(
K⊥ −K‖

)
sin 2φ

∼
9Φ

4π

{K‖K⊥ cos (2φ) +
(
K⊥K⊥ sin2 φ−K‖K‖ cos

2 φ
)
}

K⊥ −K‖

, (δ = 0◦)

=





9Φ
4πK‖ (φ = 0◦)

9Φ
4πK⊥ (φ = 90◦)

(4.27)

In Fig. 4.16, this additional aligning torque due to electrostatic interaction is plotted

against particle separation distance r for the special case when the line connecting

the centers of the particles becomes parallel to the electric field (i.e., δ = 0◦). It is

also assumed that the conductivities dominate the response, as they would in the low

frequency (Ω � 2π/τMaxwell−Wagner) case [31] considered here and that σf/σp � 1.

The result does not depend strongly on the exact conductivities for σf/σp � 1, and

we assume conservatively in our calculation that σf/σp = 10−6. The polarizability of

SWNT along its main tube axis is calculated using Eq. (3.3) to be 0.034 µm3 in vacuum

which within a factor of three of independent experimental results [54]. As seen in Fig.

4.16, the electrostatic torque due to interaction with a neighboring particle is of the same

sign as that of a dipole in a uniform field, i.e., it tends to increase particle alignment

with the electric-field direction. This is consistent with the measured orientation angles

in Fig. 4.14, which consistently fell below the predictions of the theoretical model that

neglects particle-particle interactions. The additional torque acting on the particle due

to electrostatic interaction with a neighboring particle varies as r−3, and become an

appreciable fraction of electrostatic alignment torque for separation distances on the

order of microns. The samples used in the present study have mean particle spacings

between 0.3 microns (for Φ = 2.2×10−5) and 0.8 microns (for Φ = 1.5×10−6) calculated

(assuming individual particles) using

Rij = n−
1

3 =

(
πd2l

4Φ

)1

3

, (4.28)

where Rij is the mean particle spacing and n is the particle number density. Thus,

electrostatic interactions between neighboring particles can have a significant effect
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on equilibrium orientation of the nanotubes, despite the apparent ”diluteness” of the

suspension by some conventional measures.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
−6

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Distance(m)

T
e in
d
u
c
e
d
/T

e

 

 
φ = 0◦

φ = 20◦

φ = 30◦

φ = 45◦

φ = 60◦

φ = 90◦

Figure 4.16: Calculated electrostatic-interaction torque as a function of the spacing
between two neighboring particles for various particle-orientation angles. The SWNT
length is assumed to be 1 µm. Interaction torque is normalized by the torque of the
dipole in a uniform field.

It should be noted that, while it is clear that electrostatic interactions that draw

the particles together are important on long time scales, it is not a priori obvious that

electrostatic interactions would also affect particle orientations at short time scales, at

the onset of the electric field, before particles have had a chance to move together.

Moreover, electrostatic interactions need not necessarily affect the orientation of the

particles even when the dipole-dipole force is significant. For example, in ordinary ER

suspensions with spherical particles, the dipolar interaction force is significant, but there

is no electrostatic interaction torque that would change the orientation of the particles.

For the case of the SWNTs, however, it can be seen from Eq. (4.27) that, in the limiting

case when both δ = 0◦ and φ = 0◦, the electrostatic-interaction torque on a particle
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scales as ΦK‖. Although the volume fraction Φ of our samples is low, K‖ is large due

to the high particle aspect ratio and the large electrical conductivity mismatch between

the SWNTs and the solvent (Eq. 4.24). Thus, the effect of electrostatic interactions on

the particle equilibrium orientation angle at short time scales is a consequence of the

large aspect ratio of the nanotubes in these dilute suspensions.

Besides the effect of electrostatic interaction between two neighboring particles,

there are other possibilities which could contribute to the discrepancy between the

experimental results and the predictions of classical theory. Hydrodynamic interactions

between particles (in particular, particles prevented from rotating in the shear flow

by the electric field) may affect the ensemble-averaged particle orientation. Particle

interactions with the walls could also affect the equilibrium orientation of the particles,

as the transmitted laser beam, whose diameter is of the same order as the gap width,

could probe the orientations of particles close to the walls. In addition, it should be

noted that the equilibrium particle orientations that are measured are the cumulative

ensemble-averaged orientation angles along the path of the transmitted laser beam.

While the laser pathlength of 5 cm is large compared to the gap width of 3.2 mm,

the measurement necessarily includes particle orientations near the top and bottom of

the concentric cylinder, where the flow may deviate substantially from simple shear

flow, and the electric field is not uniform and radial. Although these possibilities may

contribute to the difference between the experiments and the theory, the data (Fig. 4.15)

and analysis indicate that there is a clear concentration effect, and that electrostatic

interactions between particles can be significant even at low concentrations.

The esemble-averaged particle orientation angle changes with sample suspension

concentration at various f are plotted in Fig. 4.17 and the difference between the

experimental results and the ideal value (calculated from Mason’s theory) is shown in

Fig. 4.18.
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Figure 4.17: Ensemble-averaged particle orientation angle changes with sample suspen-
sion at various f , the dimensionless parameter.

4.6 Summary

In summary, we have performed simultaneous measurements of the shear viscosity and

equilibrium particle-orientation angle of dilute SWNT/α-terpineol suspensions under-

combined shear and electric fields. The ER behavior of these suspensions shows more

than a doubling of apparent viscosity at low shear rates, with a very long time scale

to reach steady state, as consistent with previous work on low-concentration suspen-

sions [42, 89]. The measured equilibrium particle-orientation angles reach steady state

at least an order-of-magnitude faster than the apparent-viscosity response. Particle-

orientation angles for various shear rates and field strengths collapse well when plotted

against Mason’s predicted parameter E2/γ̇ or the equivalent dimensionless number f .

This is the evidence that the orientational behavior of the SWNTs/bundles in these

suspensions under both shear and electric fields can be characterized by the ratio of

electrostatic and hydrodynamic torques. The difference in time scales between the
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particle-orientation response and the macroscopic electrorheological response indicates

that the particle-orientation angle does not have a direct impact on the ER properties

of these dilute suspensions. (However, the particle orientation does affect the induced

dipole moment and thus may indirectly influence the suspension rheology by affect-

ing the particle-particle chaining process.) It is experimentally found that even for

dilute suspensions, electrostatic particle-particle interactions significantly affect equi-

librium orientation angle, with deviations from classical theory increasing with particle

concentration. Estimates of the electrostatic interaction moment for paired particles

in a simple configuration show that this interaction can be significant, and that it

tends to orient the particles additionally in the electric-field direction. Thus, even for

SWNT suspensions that are classically dilute in the sense of Eq. (4.12), electrostatic

particle-particle interactions can cause deviations from Mason’s theory for the equilib-

rium orientation angles of an ellipsoidal particle in shear flow subject to an external
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electric field.
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Chapter 5

Conclusions and perspectives for future work

5.1 Conclusion

Two closely related projects have been conducted on the macroscopic eletrorheology

and equilibrium orientation angles of SWNTs in liquid suspension. In the first project,

the apparent shear viscosity of dilute suspensions of single-wall carbon nanotubes was

experimentally investigated and found to change significantly under external electric

fields. In particular, the apparent viscosity of a dilute SWNT/α-terpineol suspension

more than doubled at moderate shear rates under an external electric field of strength

160 V/mm. By systematically varying the shear rate and electric field, we found that the

electrorheological response can be interpreted in terms of an electrostatic-polarization

model, where the governing parameter was a modified Mason number giving the ratio

of viscous to dipole-dipole forces. Analysis of the electrostatic forces suggested that

the magnitude of the electrorheological response in the dilute SWNT suspension, which

was much higher than conventional spherical-particle suspensions of comparable volume

fractions, was due to the high aspect ratio of the nanotubes. This work was the first

to our knowledge on the electrorheology of SWNT suspensions, and the first to observe

significant electrorheological activity in a suspension of such low volume fraction.

In the second project, simultaneous measurements of the apparent shear viscosity

and the ensemble-averaged equilibrium particle orientation angle of dilute SWNT/α-

terpineol suspensions under both shear and electric fields was performed. The particle

orientation time scales were found to be one to two orders of magnitude faster than

the rather slow electrorheological response. This implies that the nanotube orientation

angle does not have direct impact on the ER properties of these dilute suspensions,

although it may still indirectly do so by affecting the induced dipole moment and the
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electrostatic particle interaction. Further evidence for this comes from the results of

repeated applications of the electric field (Fig. 4.3), which showed that the electrorhe-

ological response rate increased for subsequent applications of the electric field due to

partially-remaining chain structure in the suspension. The measured ensemble-averaged

particle orientation anglse for various shear rates and electric field strengts were seen

to collapses well when plotted against Mason’s predicted non-dimensional parameter f ,

or equivalently the variable E2/γ̇. This is the evidence that the orientational behavior

of the SWNTs/bundles in these suspensions under both shear and electric fields can

be characterized by the ratio of electrostatic and hydrodynamic torques. However, sig-

nificant discrepancies are found between the experimental results and the theoretical

predictions at the intermediate values of f (or E2/γ̇), with deviations from classical

theory increasing with particle concentration. We attribute these discrepancies to the

significant particle-particle interactions in the suspension even though the suspensions

themselves are dilute by the conventional measures, e.g. Eq. (4.12). Lowest-order

estimates of the electrostatic interaction moment for paired particles in a simple con-

figuration show that this interaction can be significant, and that it tends to orient the

particles additionally in the electric-field direction.

5.2 Suggested future work

Concentration effects on the ER response of SWNT suspensions have not been studied,

apart from preliminary work by a former lab member, Peter Huang. Such studies may

further strengthen our argument here that the polarization model can characterize the

ER behavior of our suspensions by testing various inter-particle spacings and thus the

electrostatic interactions. The dipole-dipole interaction between particles in a uniform

electric field depends on the distance between neighboring particles, and thus the time

scale of the ER response is expected to depend on the particle concentration. Moreover,

we have not yet been able to quanitatively predict the precise dependence of the equi-

librium orientation angle on the particle concentration. In particular, one would seek a

description of particle orientation angle as a function of both E2/γ̇ and Φ that would
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collapse the data for different particle volume fractions shown in Fig. 4.15. Prelimi-

nary attempts to find power law or exponential dependence on particle concentration

are shown in the the log-log and semilog-log plots of Fig. 4.14 and 4.15. There does not

appear to be a simple scaling that collapses all of the data for varying concentration,

shear rate, and field strength. Surface fitting of the particle orientation angle data as a

function of two variables were also attempted as shown in Fig. 5.5, but none of these

attempts seem to successfully solve the problem.

Another possible future project as a continuation of the work on particle dynam-

ics under both shear and electric flow is to design an optical system with much faster

response time than the current experimental setup. The initial response of the nan-

otubes to the turn-on of the electric field is very rapid and well beyond the capability

of our current system. If the rate of polarization modulation in the optical system were

increased by orders of magnitude, it would be possible to capture more details on the

dynamic response of the SWNT suspensions to an external electric field. More detailed

microscopic characterization of the particle chaining process would also be desirable to

enable better understanding of the fluid microstructure and its effect on the rheology

of the suspension.
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Appendix A

Derivation of the complex Clausius-Mossotti function for

conducting particle suspended in a dielectric liquid

medium at DC field

The three component of the complex Clausius-Mossotti function K have been shown

in Eq. (2.23) as

Kx1 =
εp − εf

3
[
εf +

(
εp − εf

)
Lx1
] , (A.1)

Kx2 =
εp − εf

3
[
εf +

(
εp − εf

)
Lx2
] ,

Kx3 =
εp − εf

3
[
εf +

(
εp − εf

)
Lx3
] ,

where

εf = εf −
σf
ω
j (A.2)

εp = εp −
σp
ω
j (A.3)

The definitions of εf and εp can be found in both Jones’ book [58] and Parthasarathy

and Klingenberg’s paper [31]. ω is the frequency of the external AC field.

To demostrate, Let us take Kx1 as an example for the following derivation
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Kx1 =
εp − εf

3
[
εf +

(
εp − εf

)
Lx1
] ,

=
(εp − εf )−

1
ω (σp − σf )j

3{(εf −
σf
ω j) + [(εp − εf )−

1
ω (σp − σf )j]Lx1}

=
(εp − εf )−

1
ω (σp − σf )j

3{εf + (εp − εf )Lx1 −
1
ω [σf + (σp − σf )Lx1 ]j}

=
[(εp − εf )−

1
ω (σp − σf )j]{(εf + (εp − εf )Lx1 +

1
ω [σf + (σp − σf )Lx1 ]j}

3{[εf + (εp − εf )Lx1 ]
2 + 1

ω2 [σf + (σp − σf )Lx1 ]
2}

then,

Re[Kx1 ] =
(εp − εf )[εf + (εp − εf )Lx1 ] +

1
ω2 (σp − σf )[σf + (σp − σf )Lx1 ]

3{[εf + (εp − εf )Lx1 ]
2 + 1

ω2 [σf + (σp − σf )Lx1 ]
2}

=
(εp − εf )[(1− Lx1)εf + εpLx1 ] +

1
ω2 (σp − σf )[(1− Lx1)σf + σpLx1 ]

3{[(1 − Lx1)εf + εpLx1 ]
2 + 1

ω2 [(1− Lx1)σf + σpLx1 ]
2}

=
(εp − εf )[(1− Lx1)εf + εpLx1 ]ω

2 + (σp − σf )[(1 − Lx1)σf + σpLx1 ]

3{(1 + ω2τ2mw)[(1− Lx1)σf + σpLx1 ]
2}

(A.4)

where

τmw =
(1− Lx1)εf + εpLx1
(1− Lx1)σf + σpLx1

continue from Eq.(A.4) as

=
(εp − εf )ω

2τ2mw
3(1 + ω2τ2mw)[(1 − Lx1)εf + εpLx1 ]

+
σp − σf

3(1 + ω2τ2mw)[(1 − Lx1)σf + σpLx1 ]

=
εp − εf

3[(1− Lx1)εf + εpLx1 ]
−

εp − εf
3(1 + ω2τ2mw)[(1 − Lx1)εf + εpLx1 ]

+
σp − σf

3(1 + ω2τ2mw)[(1 − Lx1)σf + σpLx1 ]

=
εp − εf

3[(1− Lx1)εf + εpLx1 ]
+

(σp − σf )[(1 − Lx1)εf + εpLx1 ]− (εp − εf )[(1 − Lx1)σf + σpLx1 ]

3(1 + ω2τ2mw)[(1 − Lx1)εf + εpLx1 ][(1 − Lx1)σf + σpLx1 ]

=
εp − εf

3[(1− Lx1)εf + εpLx1 ]
+

σpεf − σf εp
3τmw(1 + ω2τ2mw)[(1− Lx1)σf + σpLx1 ]

2

(A.5)

For spherical particle, Lx1 = 1
3 , and Eq.(A.5) simplifies to
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Re[Kx1 ] =
εp − εf
2εf + εp

+
3(σpεfσf εp)

τmw(1 + ω2τ2mw)(2σf + σp)2

which agrees well with the formula on Page 40 in Jones’ book [58].

For general Lx1 , we have

Re[Kx1 ] =





εp−εf
3[(1−Lx1 )εf+εpLx1 ]

, for ωτmw >> 1

σp−σf
3[(1−Lx1 )σf+σpLx1 ]

, for ωτmw << 1

So when ωτmw << 1, we have

Re[Kx1 ] =
σp − σf

3[(1 − Lx1)σf + σpLx1 ]

=
1− σf/σp

3[(1 − Lx1)σf/σp + Lx1 ]

When σf/σp << 1, then Re[Kx1 ] =
1

3Lx1
is a constant.
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Appendix B

Detailed design and operation procedure of simultaneous

rheology and particle orientation measurements

The experimental setup and sample preparation of simultaneous rheology and particle

orientation measurements of SWNTs/α-terpineol suspensions were described in Ch. 4.

Detailed description of each operation steps including the alignment of the laser beam,

the determination of initial phase β0 and the time sequence of applications of shear flow

and electric field on the samples will be given here. The functions of each component

in the optical train and the related calculations will also be included.

B.1 Design and components of the optical system

The optical system we used to detect the orientation of SWNT/bundle in suspensions

consisted five parts. The first component of the whole optical system, a linearly po-

larized helium-neon laser, was secured in an alumina frame. The laser was tilted so

that the laser head was up and a 5◦ angle was formed between the laser’s longitudinal

axis and the horizontal direction (surface of our optical table). This 5◦ tilting angle

was used later to compensate the angle difference between the actual bended angle by

the polarization-conserving light bending prism (bend light 95◦ using the material hav-

ing the closest refractive index to the theoretically calculated number) and perfect 90◦

bending. The second component right after the laser was a Glan-Taylor calcite polarizer

which was aligned in the horizontal direction using square ruler. This G-T polarizer

had two basic functions in our system: (1) to make the polarization of the laser beam

only in horizontal direction; (2) to make the intensity of the light adjustable. Since the

original laser beam was linearly polarized, by rotating the laser we could change the

original polarization direction of the beam as to adjust the light intensity after the G-T
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polarizer. The next part was the pulley-motor system which rotated the polarization

direction of the light. The motor could run up to 5200 RPM and it had an encoder

assembled together with it. The encoder had two channels with each channel having

500 counts per resolution (CPR). In order to use the signals from the encoder as a

reference signal for the lock-in amplifier, an electrical device called EDivide was used

to bring the signal frequency down to 4 counts per resolution. This frequency was also

the frequency at which we were interested when we analyze the output signals from the

photodiode as can be seen in Eqn.4.22. The component after the pulley-motor system

was the polarization-conserving light bending prism. Ideally we need an optical element

which can deflect the incident laser beam 90◦ without changing the polarization state of

the light (both magnitude and phase). A specially designed prism using total internal

reflection was a good solution for us. The detailed calculation of the design of the prism

is as following:

The phase shift ∆ resulting from an internal reflection was given by

tan
∆

2
= cosφi

(
sin2 φi −

(
nair
nglass

)2
)1/2

/ sin2 φi (B.1)

where φi was the incident angle on the surface, nair and nglass were the index of re-

fraction of air and glass respectively. We could see that ∆ was a function of φi and the

ratio of the refractive index of two mediums.

The idea was we optimally select the incident angle φi and the nglass at 632nm

wavelength so that after a few times of internal reflections we could achieve 80 ∼ 100◦

bending of the original laser beam and a 180◦ or 360◦ change of ∆.

The design of this prism is illustrated in Fig. B.1., A 60◦ phase shift could be

achieved by a particular incident angle of 47.7◦ if we used a glass (H-ZF6) which had

1.74968 index of refraction at 632nm. Three times internal reflection would give us

95.4◦ deflection and 180◦ phase shift.

The last component of the optical system was the photodiode which sensed the

intensity of the light and sent the electrical signal to the lock-in amplifier.
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47.7 

Figure B.1: An example of prism design.
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B.2 Operation of the simultaneous rheology and particle orientation

measurements

Before the particle orientation measurements are conducted, the alignment of all the

optical components in the optical train and the concentric cylinder cell of the viscometer

must be performed. The procedure of the alignment are described as below: (1) Adjust

the laser so that 5◦ angle is formed between its longitudinal axis and the horizontal

direction. (2) Align the Glan-Taylor polarizer so that the transmitting axis of the

polarizer is parallel to the horizontal direction. (3) Align the rotating aluminum tube

with the half-wave plate attached so that the light spot is right in the center of the

half-wave plate. (4) Align the polarization-conserving prism to make sure that the

transmitted light from the second face of the prism is pointing up vertically. In order

to achieve this, a down-facing horizontally positioned mirror is needed. Perfect vertical

light will only be achieved when the incident and the reflected beams overlap each other.

(5) Align the outer cylinder of the concentric cylinder cell so that the 90◦ tick on the

top edge of the cylinder is parallel to the transmitting axis of G-T polarizer used in (2).

To do this, another G-T polarizer will be needed. (6) Align the photodiode so that the

laser spot is right in the center of the sensor.

After the alignment, one more step is required before we can fill sample suspensions

into the gap between the concentric cylinders: the acquirement of the initial phase of

the half wave-plate. As we can see in Eqn.4.22, β0 must be known in order to get the

essemble-averaged orientation angle of the particles in suspensions. The way to obtain

β0 is to replace the sample with a polarizer at known orientation angle. In our case we

positioned our polarizer at 90◦ referring to the transmitting axis of the first polarizer in

step (2), because this way all we need to do is take off the half-wave plate and adjust the

second polarizer so that the output signal reaches minimum. Then put the half-wave

plate back on the aluminum tube, start the measurements (only run for a couple of

minutes) and analyze the signal the same fashion as described in Ch. 4, mathematical

analysis part, the initial phase of the half-wave plate can be easily obtained. One caveat

here is that DO NOT turn off the power supply for the Edivide. As long as the 5-volts
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power is supplied to the Edivide, the initial phase of the half-wave plate will not change

unless the optical setup is changed.

Now the sample suspensions can be filled into the gap of the concentric cylinders.

The viscometer is controlled by the software called Rheocalc provided by the manufac-

turer. The lock-in amplifier installed in a PC and the motor which rotates the half-wave

plate have to be turned on first, in another words, the optical measurement should start

before anything else. 30 seconds later, the viscometer starts rotating which generates a

shear flow. The external electric field is applied 160 seconds after the beginning of the

shear flow and is on for about 10 minutes. Once the electric field is turned off, there

will be another 100 seconds of data in order to test if the particles return to the original

motion state.

The electrical signal output from the photodiode is received and further analyzed by

the Lock-In amplifier using National Instrument DSA-4472 card. For further informa-

tion of the modification of the software lock-in amplifier, please see the user manual of

NI lock-in start up kit. The programs used in our experiments are saved in the following

two files: (1) MultiChannelLockInDAQmxBinary03.vi and (2) MyBinaryRead.vi.
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