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Dissertation Directors: 
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How do people evaluate data on the basis of sample size?  Normatively, sample 

size is an important factor that one should consider when making judgments and 

inferences from sample data.  Previous research is mixed regarding whether or not 

laypeople are sensitive to sample size.  However, in this paper I show that laypeople 

attend to sample size, but that their sensitivity decreases as sample sizes become larger.  

This curvilinear functional form is found for both high and low numerate subjects across 

two different judgment tasks.  However, high numerate subjects consistently show 

greater sensitivity to sample sizes than lower numerates, although they still underweight 

sample size relative to normative standards.  Low numerate subjects’ sensitivity to 

sample size may be increased by providing raw data and instructions that sample size 

matters.   
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SAMPLE SIZE WEIGHTING IN PROBABILISTIC INFERENCE 

INTRODUCTION 

Psychologists have long been interested in whether or not laypeople have 

intuitions about the role that sample size should play in their judgments and decisions.  

Everyday, people make inferences on the basis of information.  Normatively one should 

be more confident that a sample provides a good estimate of a population parameter when 

that sample is based on a larger, rather than a smaller, number of observations.  For 

example, one might feel more confident purchasing a car that has been highly 

recommended by 1000, compared to only 10, people.   

The idea that larger samples are better than smaller ones is referred to as the law 

of large numbers (Bernoulli, 1713).  Although the law the large numbers is highly 

familiar to most psychologists, some research has shown that laypeople’s judgments do 

not reflect this concept (Kahneman & Tversky, 1973, Pitz, 1967).  Indeed, Tversky and 

Kahneman even propose that humans have a “Belief in the law of small numbers” (1971), 

referring to the idea that laypeople think that even small samples should be highly 

representative of the population from which they are drawn.     

In contrast to the heuristics and biases research (Tversky & Kahneman, 1974), a 

number of studies have shown that humans do consider sample size when making 

inferences (Irwin, Smith, & Mayfield, 1956, Kaufmann & Betsch, 2009, Nisbett, Krantz, 

Jepson, & Kunda, 1983, Obrecht, Chapman, & Suárez, 2010).  Some previous failures to 

demonstrate sample size intuition can be at least partially accounted for by problem 

complexity (Evans & Dusior, 1977) and distribution type (i.e. sampling vs. frequency 

distributions, Sedlmeier & Gigerenzer, 1997, Sedlmeier, 1998).   
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The majority of the studies that have examined lay intuitions about sample size 

have focused on whether subjects use or fail to use the law of large numbers.  However, 

in this paper I will go beyond this dichotomy and argue that 1) sample size intuitions 

follow a curvilinear functional form, 2) individual differences in numeracy and the 

magnitude of the numbers being considered affect sample size sensitivity (the steepness 

of the curvilinear slope), and that 3) providing raw data and instructions can improve use 

of sample size, especially for subjects who are lower in numerical ability.   

OVERVIEW OF PAST RESEARCH 

About 50 years ago, the view of psychologists was fairly optimistic regarding lay 

use of statistical factors, such as sample size.  Irwin, Smith, and Mayfield (1956) showed 

subjects samples of cards drawn from a large deck that was said to have been shuffled so 

to be random (but it was not).  Each card displayed a number that was either positive or 

negative in value; they were displayed sequentially to subjects.  Participants judged 

whether they thought that the average value of the entire deck of cards was greater or less 

than zero, and how confident they were in their judgment.  Subjects were more confident 

in their judgments when they were shown 20, rather than 10, samples of cards from the 

deck.  This sensitivity to sample size was replicated in a second experiment in which 

subjects considered cards from two separate decks, and judged which deck had the higher 

mean.  Again, Irwin et al. showed that subjects were sensitive to sample size in the 

normative direction, as well as to the other statistical factors that were manipulated.  

Kahneman and Tversky (1972) paint a quite different view of lay intuitions of 

sample size.  They showed that laypeople fail to incorporate sample size into their 

representations of sampling distributions.  For example, they asked subjects which of two 
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hospitals will have more days in a year in which over 60% of babies born are male.  

Subjects read that in a smaller hospital about 15 babies are born each day, while in a 

larger hospital about 45 babies are born each day.  The majority of subjects said that the 

two hospitals will have about the same number of days in which more than 60% of births 

are male.  The normatively correct answer is that the smaller hospital can expect to have 

more days than the larger hospital where the percentage of male births diverges from the 

expected value of 50%.  Evan and Dusior (1977) and Sedlmeier (1998), however, show 

that more subjects answer correctly once the problem is reworded to be simpler.  For 

example, a larger percentage of subjects are able to recognize that on a single day, the 

small hospital is more likely than the larger to have a male birth rate of 60%. 

 A number of studies have examined how humans use sample size to make 

inferences on the basis of data.  Nisbett et al. (1983) gave adult subjects sample data and 

asked them to make inferences about their population characteristics.  The sample size of 

the data was manipulated between subjects to be 1, 3, or 20.  For example, one group of 

subjects read about a sample of 3 Barrotos people, each of whom was obese.  From this 

sample, subjects inferred the percent of the whole population that they thought shared the 

sample characteristic (e.g. what percent of all Barrotos people are obese).  Subjects’ 

inferences depended on both the sample size and the implied variability of the category.  

When inferring the percent of the Barrotos population who are obese, subjects were 

relatively conservative in their estimates when they had read about 1 or 3 sample 

individuals being obese, but gave higher percent estimates after reading about a sample of 

20 individuals, all of whom were obese.  When subjects read about samples of ludium, a 

fictitious element, that conducts electricity, they readily inferred that almost the whole 
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population also conducts electricity, even when only given samples of size 1 or 3.  This 

makes sense because we know that different samples of the same element kind should 

share exactly the same properties, that is, they should not vary among one another, while 

body weight varies within a group.  From this work, it appears that laypeople are not only 

are sensitive to sample size, but also jointly able to incorporate their variability 

knowledge into their inferences (also see Obrecht et al, 2010).   

Following the Nisbett et al. (1983) finding, developmental psychologists have 

examined how humans use sample size to make inferences at different ages.  Jacobs and 

Narloch (2001) asked children and adult subjects to make inferences about populations 

on the basis of sample data.  Like the Nisbett et. al. study, their sample data were always 

identical in regard to the characteristic of interest.  For example, in one condition subjects 

were told that in a sample of 3 children at a school, all 3 were wearing green shirts.  From 

this information subjects inferred what percent of the whole population, i.e. the school, 

shared this characteristic, i.e. wearing a green shirt (personal communication with 

Narloch, April 24, 2009).  They varied between subjects whether participants were given 

data about samples of size 1, 3, or 30, and also whether the domain in which the data 

were described implied high verses low variability.  Regardless of their age, when the 

sample data described outcomes in the low variability domain of biological 

characteristics (e.g. number of eyes that an animal kind has), subjects gave low 

population estimates based on samples of size 1, but high estimates for samples of size 3 

or 30.  However, when variability was assumed to be high in the behavioral domain, as in 

the tee-shirt example, subjects treated samples of 1 and 3 the same, but gave higher 

percentage estimates for samples of size 30.  From this it seems that when variability is 
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very low, one only needs a few examples to draw a strong generalization to the 

population, but a sample of size 1 is insufficient.  When variability is high, larger 

samples, in this case, of size 30, are better.  

 In a related developmental study, Masnick and Morris (2008) asked adult and 

children subjects to compare pairs of datasets to decide if they differ.  The sample data 

used by Masnick and Morris had variability, that is, the data within a sample were not 

identical as they were in the previous Nisbett et al. (1983) and Jacobs and Narloch (2001) 

studies.  In their task, the data given to subjects were said to come from two balls that 

were thrown or hit some distance.  Based on the distances for Ball A vs. Ball B, subjects 

drew a conclusion regarding whether there was a difference between the two balls (or the 

person throwing them), and how confident they were in that choice.  Sample size was 

manipulated to be 1, 2, 4, or 6 within a dataset pairing.  For example, in a given 

comparison, a subject might compare the 4 recorded distances that Baseball A was 

thrown, and the 4 recorded distances that Baseball B was thrown.  Adult subjects’ 

confidence in a difference between the two balls’ distances went up sharply as sample 

size increased; however, sample size had only a small effect on 6th graders’ confidence, 

and 3rd graders showed a nearly significant effect of sample size in the counter-normative 

direction.  In a second experiment in which data were presented sequentially, adult 

subjects again showed a significant increase in confidence as sample size increased, but 

the two groups of children did not.  Despite that this comparison task used by Masnick 

and Morris was probably more difficult (because of the data variability and pairwise 

comparisons) than that used by Nisbett et al. or Jacobs and Narloch (2001), adult subjects 

still showed sensitivity to sample size information.   
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 Obrecht et al. (2007) also asked subjects to make inferences on the basis of paired 

datasets.  In each comparison pair, subjects viewed consumer rating data from two 

fictitious products and judged whether the product with the higher mean rating was 

actually better than the product with the lower mean rating.  Obrecht et al. varied sample 

sizes across comparison pairs to be either 10 or 37, and also varied the difference 

between group means, and the within-product variability to have two levels.  They 

selected the two levels of the three statistical factors (sample size, mean difference, and 

standard deviation) so that they were equated in terms of their effect on statistical power.  

That is, if subjects were statisticians performing a between subjects t-test on the sample 

data given for two products, their probability of finding a difference, given that it existed, 

would be equally affected by a change in sample size, mean difference, or standard 

deviation level.  Obrecht et al. found that subjects’ confidence ratings in a difference 

between products were affected by all three statistical factors.  However, participants 

primarily focused on the difference between product means, and gave much less attention 

to the sample size or within group variability, despite the fact that these factors should 

have equally affected their confidence.   

Obrecht et al. (2010) used a similar comparison task to Obrecht et al. (2007) in 

which subjects compared groups on the basis of sample data and decided whether their 

populations differed.  However, they used samples size levels of 2 and 10 instead of 10 

and 37.  In these studies, the effect of sample size was much larger, actually larger than 

the effect of mean difference.  One possible explanation of this difference in effect size is 

that laypeople’s sensitivity to sample size is dependent on the specific numerical values 

provided.  This suggests that laypeople weigh sample size in a negatively accelerating 
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functional form where differences between smaller values (2 vs. 10) are perceived to be 

greater than those between of larger values (10 vs. 37).  Another explanation is that 

sample size sensitivity could be related to the ratio of the values being considered (e.g. 1 

vs. 5 compared to 1 to 3.7).  Notably, the Nisbett et al. (1983) and Masnick and Morris 

(2008) studies both employed some sample sizes of less than 10.  Thus, lay people may 

be sensitive to differences among small sample sizes but less sensitive to differences 

among large sample sizes.  I further discuss this idea in the Hypotheses section below. 

Other indirect evidence for how people value sample size comes from work in the 

decisions from experience literature.  The majority of this work has been done using 

choices between gambles where subjects experience data from two populations and then 

choose from which population they would like to draw an outcome.  For example, one 

might choose between a deck of cards with a 100% chance of winning $3 or a deck with 

an 80% chance of winning $4 and a 20% chance of winning nothing.  In order to discover 

the payout structure of each deck, subjects are allowed to sample, one by one, cards from 

the two decks until they feel comfortable that they can make a choice between them.   

These experiments have been used to compare how subjects choose between 

gambles when they either learn about the payout structure by sampling from the 

population (the experience condition), verses when they are simply told what the payouts 

and probabilities are (the description condition).  Subjects choose differently depending 

on which method of obtaining information is employed (Hertwig, Barron, Weber, & 

Erev, 2004, Hau, Pleskac, Kiefer, and Hertig, 2008, Gottlieb, Weiss, Chapman, 2007).   

However, another interesting aspect of these studies is how many cards subjects 

choose to sample in the experience condition.  Participants are allowed to view as many 

  



8 

cards as they would like.  How many samples do people feel they need in order to 

accurately compare two groups?  Of course this will partly depend on how much 

variability subjects assume the card populations have.  However, in these studies the only 

cost to sampling was the time it took to click a button to flip over a virtual card.  

Nevertheless, when people are free to sample data from two populations in order to infer 

which offers the better gamble, they choose relatively small samples.  Hertwig et al.’s 

(2004) subjects only sampled a median of 15 items in total across two populations (e.g. a 

sample of 7 outcomes from one population and a sample of 8 from the other).  Hau et 

al.’s (2008) subjects sampled on average 11 cards in total (e.g. 5 samples from one deck 

and 6 from the other); when given a greater payout scheme, subjects increased sampling 

to be about 33 cards in total.  This suggests that people feel that the amount of data they 

will gain from subsequent samples rapidly diminishes such that further information is of 

little value.  This is consistent with Tversky and Kahneman’s (1971) point that people 

assume that samples are highly representative of their respective population. 

HYPOTHESES 

Research on sample size intuition has largely focused on whether or not people 

use sample size in the normative direction when making inferences.  However, here I will 

take this inquiry further by describing the functional form of sample size weighting.  This 

is an important advance because it will help to reconcile discrepant past findings while 

also providing insight regarding how, and to what extent, the presentation of statistical 

information affects judgment.   

Looking across previous work, it appears that sample size sensitivity might be 

greater when smaller sample size values are used (Masnick and Morris, 2008, Obrecht et 
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al, 2010), compared to when larger values are being compared (Obrecht et al., 2007).  

This pattern could suggest a nonlinear diminishing sensitivity function such that 

judgments made as a function of sample size may be well fit by a negatively accelerating 

curve (e.g. power function with an exponent between 0 and 1, or a logarithmic function), 

rather than a linear weighting function.  In the current paper, the shape of this functional 

form will be examined across four experiments that employ two quite different tasks. 

Furthermore, subjects’ numeracy levels will be examined in relation to their 

sample size judgments.  A number of studies have shown that individual differences in 

numeracy (Lipkus, Samsa, and Rimer, 2001) relate to peoples’ decisions (e.g. Peters, 

Vastfjall, Slovic, Mertz, Mazzocco, & Dickert, 2006).  Peters, Slovic, Vastfjall, and 

Martz (2008) argue that higher numerate subjects, compared to those lower in numeracy, 

have more precise mental numerical representations that relate to the numerical choices 

that they make.  If higher numerate subjects do indeed have more precise numerical 

representations, then we can predict that they should be more sensitive to differences 

between sample sizes compared to less numerate subjects; their representations of 

numerical values should overlap less, making different sample sizes feel more different 

compared to those with less precise representations.  Thus, high numerate subjects’ 

sensitivity to sample size should be best fit by a function with a steeper slope, compared 

to subjects who score lower in numeracy.  Also, if low numerate subjects lack a precise 

mapping between the magnitude of a numerical quantity and an Arabic numeral that it is 

represented by (Peters et al, 2008), then they should benefit from presentation formats 

that make clearer these quantities. 

OVERVIEW OF THE CURRENT STUDIES 
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In Experiments 1 and 2 (using a paradigm similar to Obrecht et al., 2007 and 

2010), subjects compared pairs of hypothetical consumer products and judged their 

confidence in a difference.  For each product within a comparison pair they were 

provided average consumer ratings, the number of raters (sample size), and the within-

group standard deviation of those ratings.  Sample size was varied to have 10 levels.  In 

Experiment 1, confidence ratings as a function of sample size showed the expected 

curvilinear functional form, and higher numerate subjects showed greater sensitivity than 

lower numerate subjects.  Also, lower numerate subjects benefited from enhanced 

presentations that highlight sample size by showing individual rating data.   

In Experiment 2 half of the subjects were explicitly told that sample size matters 

and should be incorporated into their judgments.  The curvilinear weighting function 

pattern was replicated and the instruction increased the use of sample size for low 

numerate subjects.    

When making inferences from samples to populations, the amount of information 

gained increases by the square root of N (sample size).  This value ( ) was compared 

as a normative standard to subjects’ judgments in Experiments 1 and 2. 

.5N

In Experiments 3 and 4, subjects were given a different task.  They viewed 

percentage data from multiple sources and were asked to combine these to make a 

judgment regarding the chances of an event occurring.  Each percentage that was 

provided in a set was paired with a sample size.  It is clear from subjects’ combined 

estimates that they do not weight the percentage data using a weighted linear average as 

they should, but instead appear to weigh percentage data using a curvilinear weighting 
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function for sample size.  Furthermore, the slope of the weighting function decreases 

when the magnitude of the sample sizes increases (Experiment 4).  

EXPERIMENT 1 

 The purpose of Experiment 1 was to examine the weighting function of sample 

size in a task where participants made pairwise comparisons.  Subjects compared pairs of 

products based on their rating data.  They judged how confident they were that the 

product with the higher mean rating was actually better than its comparison.  That is, 

subjects were asked to make an intuitive t-test inference, similar to the procedure in 

Obrecht et al. (2007). 

METHOD 

Undergraduate subjects taking introductory psychology at a large, diverse 

university (N=104) participated for course credit.  In all subsequent experiments, subjects 

were drawn from similar undergraduate psychology subject pools.  All materials were 

presented online.   

Design 

Within subjects factors 

 Subjects were asked to compare pairs of fictitious products on the basis of 

consumer ratings.  For each product within a comparison, they were told how many 

consumers rated the product (i.e. the sample size), the mean rating of the product, and the 

standard deviation of the product’s ratings.  Sample size, difference between paired 

product means, and within-product standard deviation were varied within subjects.  

Sample size was manipulated to have 10 levels (i.e. 1, 2, 5, 8, 10, 13, 16, 20, 27, 37).  The 

mean difference in a comparison pair was varied to be high or low; specifically, either 
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M1=8 and M2=7 (on a 1 to 15 rating scale) for a difference of 1 or M1=9 and M2=7 for a 

difference of 2.  Within-product standard deviations were either high or low (i.e. 

SD=2.83 or SD=1.41).  Figure 1 shows an example comparison pair where sample size 

was 8, mean difference was high (i.e. 2), and standard deviation was low (i.e. 1.41). 

Within a comparison pair, the sample size of the two products was always equal 

(e.g. both products were rated by 10 consumers), as were the standard deviations (e.g. the 

SD of the ratings for Product A was 1.41 and the SD of the ratings given to Product B 

was also 1.41).  Thus, these factors, sample size and standard deviation, were varied 

between the different pairs of products.  In total, every subject compared 38 product 

pairs.  This was the result of crossing the 9 levels of sample size that ranged from 2 to 37 

with the 2 levels of mean difference and two 2 levels of standard deviation.  When 

sample size equaled 1 only mean difference could be manipulated, not standard deviation.  

These combinations yielded a 9 × 2 × 2 + 2 design. 

Between subjects factors 

 Between subjects I manipulated data type and order (2 × 2).  Data type refers to 

whether subjects were given just the three summary statistics (i.e. sample size, mean, and 

standard deviation) or the summary statistics and, additionally, the corresponding raw 

rating data.  The top of Figure 1 above the dotted line shows what subjects viewed in the 

statistics-only condition.  The full figure, excluding the dotted line, shows the 

information given to those in the statistics+data condition.  The presentation order of the 

product pairs was varied so that about half of subjects viewed the 38 pairs in one order, 

while the other half received the information in an alternative order.   

Introductory Materials 
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 Subjects were told that they would be shown information summarizing the ratings 

that consumers gave to products.  Each product could be given a rating from 1 to 15 

where 15 was the best possible rating.  They read that they would be given three pieces of 

information about each product: the number of people who rated it, the average consumer 

rating, and the standard deviation of those ratings.  These correspond, respectively, to 

sample size, mean rating, and standard deviation.  Participants were given brief 

explanations of each of the statistical concepts, along with simple examples using 

hypothetical products and their consumer rating data.  Subjects were told that because six 

people rated Product Z, the number of raters would be six.  They were also shown how 

the mean consumer rating for Product Z is calculated using the six ratings that the 

product had received.  Finally, participants were shown how the ratings given to Product 

Z differed a lot and had a standard deviation of 3.9.  In contrast, they saw how the ratings 

given to another fictitious product, Product Y, were identical and thus had a standard 

deviation of zero.  These two examples were used to explain the idea of standard 

deviation where larger values indicate more disagreement among raters.   

Next, subjects were shown how the three descriptive statistics could be displayed 

on number lines.  The Number of Raters line ranged from 0 to 40 with labels of no raters 

and many raters at either end.  The Average Rating line went from 1 to 15 with labels of 

lowest rating and highest rating, respectively.  Finally, the Standard Deviation of Ratings 

line ranged 0 to 4; the end points were labeled high rater agreement and low rater 

agreement (see Figure 1).  Subjects were given check questions about each of the 

statistical concepts.  For example, they had to indicate which product had a standard 
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deviation value that indicated dissimilar opinions among consumers.  They were allowed 

to proceed in the experiment only once they answered all 6 check questions correctly.   

Experimental Materials 

 Following the introduction and check questions, subjects viewed the 38 pairs of 

products, each presented on a separate webpage.  For each pair, they were asked to rate 

on a 9-point scale how confident they were that the product with the higher mean was 

really better than its comparison.  The 9-point dependent measure was labeled from 

Extremely Unconfident to Extremely Confident at its endpoints.   

Numeracy measure 

 A multiple choice version of the Lipkus, et al. (2001) numeracy scale was used to 

assess subjects’ numerical literacy (see Appendix I).  The scale was one of many 

individual difference measures provided in a prescreening battery given to all research 

participants the psychology subject pool.  Subjects’ numeracy scores were simply the 

number of questions correctly answered out of 10. 

RESULTS 

As expected, subjects’ sensitivity to sample size showed a curvilinear pattern (see 

Figure 2) 1.  Power and logarithmic regression models were tested and both showed 

reasonable fits and significant effects of sample size (although the log likelihood 

associated with the log regression model did 51 times better than the power model).  A 

linear model was tested, but unsurprisingly, failed to provide as good of a fit to the data 

                                                 
1 To confirm that this pattern was not the result of some subjects showing normative sensitivity and others 
showing no sensitivity, I conducted a simple analysis to see what percent of subjects showed at least some 
use of sample size.  I found each subjects’ average confidence for each level of sample size, collapsing 
across mean difference and standard deviation.  I then calculated the percentage of subjects whose 
confidence was higher for the 5 largest sample sizes, compared to the 5 lowest sample sizes.  77% of 
subjects fell into this category.  The majority of subjects who did not show higher confidence with the 
larger sample sizes scored low on the numeracy measure.  
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when compared to the nonlinear models (e.g. the data were 175 times in favor of the 

power model over the linear model)2.   

Just the power model ( ) will be further discussed because it offers a clear 

normative standard to which subjects’ judgments can be compared.  From a statistical 

perspective, confidence should increase by the square root of sample size.  This translates 

into a power function with an exponent of .5 (i.e. ).   

ba N

.5N

 Mixed model nonlinear regression (Proc nlmixed in SAS) was used to test how 

sample size and other factors affected subjects’ confidence judgments.  Sample size (10 

levels, from 1 to 37), mean difference (1 vs. 2), and standard deviation (2.83 vs. 1.41) 

were within subjects factors.  Numeracy (0 to 10), data type (statistics-only vs. 

statistics+data), and presentation order (order 1 vs. order 2) were between subjects 

variables.  The levels of each factor, except sample size and numeracy, were coded as -.5 

and .5.  Actual sample size values were used, while numeracy scores were transformed 

into z-scores.   

The nonlinear mixed regression model was used to find the best fitting power 

coefficient given subjects’ data.  To start, a simple model was used to test just the main 

effects of the sample size coefficient, mean difference, standard deviation, data type, 

numeracy, and order: 

1
0 2 3 4 5 6( ) ( ) ( _ ) ( ) (bconfidence b N b md b sd b data type b numeracy b order       )

                                                

 

 
2 Power regression model: , log regression model:ba N ln( )a N ,  linear regression model: a bN .  

The log likelihood of log model fit minus the log likelihood of the power model fit was 13841-13892=-51; 
lower log likelihoods indicate a better fit.  The log likelihood of the power model fit minus the log 
likelihood of the linear model fit was 13892-14067=-175. All subsequent log likelihoods comparisons in 
this paper were calculated in the same fashion. 
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  This model yielded a significant (different from zero) power coefficient for 

sample size (β = .31, t (103) = 48.59, p<.0001).  Thus, subjects’ confidence in a 

difference between two products increased as sample size became larger, but at a 

shallower rate than should be normatively expected, that is, the 95% C.I. of .30-.32 does 

not include .5.   

Mean difference (β = .52, t (103) = 12.56, p<.0001), and standard deviation (β = 

.30, t (103) = 7.24, p<.0001) also affected confidence ratings in the normative direction.  

Subjects were more confident in a difference when the difference between product means 

was large, rather than small, and when the standard deviation of ratings was low, rather 

than high.  No main effects of numeracy, data type, or order were found.   

Next, the nonsignificant main effect of order was removed from model, and all 

possible interactions among sample size, data type and numeracy were entered.  Sample 

size and numeracy interacted (β = .47, t (103) = 11.32, p<.0001).  Subjects higher in 

numeracy showed greater sensitivity to sample size.  Sample size and data type also 

interacted (β = .34, t (103) = 4.69, p<.0001) showing that participants were more 

sensitive to sample size when they were provided with raw data in addition to the 

summary statistics.   However, these effects were qualified by a 3-way interaction among 

sample size, numeracy, and data type (β = -.20, t (103) = -2.58, p=.0114).  Lower 

numerate subjects were more sensitive to sample size when provided with raw data 

compared to when only given summary statistics.  For subjects higher in numeracy, the 

addition of raw data had little effect on sample size sensitivity.  This interaction can be 

seen in Figure 2 and is further analyzed in the section below.  There was no interaction 

between numeracy and data type. 
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Sample size weighting by group 

Based on the regression results reported above, the data were divided into two 

groups according to numeracy (high versus low using a median split) and data type.  For 

each group, I found the best fitting power function parameter collapsing across mean 

difference, standard deviation, and order (see Figure 2).  For high numerate subjects in 

the statistics+data condition, the best predicting sample size weighting function was .  

For high numerates in the statistics-only condition the best predicting equation was .  

Low numerate subjects’ data in the statistics+data condition was well fit by .  Data 

from low numerates in the statistics-only condition was best described by .  The 

standard errors of these exponents ranged from .010 to .022, meaning that no confidence 

interval included the normative value of .5. 

.38N

.37N

.27N

.17N

Analysis excluding small sample sizes 

 In examining Figure 2, it appears that confidence ratings for sample sizes of 1 and 

2 may drive the observed relationships among sample size, numeracy, and data type.  To 

test whether these small sample sizes account for the relationship, I reanalyzed the data, 

but excluded confidence ratings for samples of size 1 and 2.  I used the power regression 

model that included main effects and all possible interactions among sample size, 

numeracy, and data type.  The previously found main effects of sample size, mean 

difference, and standard deviation remained.  Also, the interaction between numeracy and 

sample size weighting was again found, but the interactions involving data type, sample 

size weighting, and numeracy did not remain significant.  Thus, for subjects lower in 

numerical ability, presenting raw data appears to increase sample size sensitivity by 
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decreasing confidence for comparisons that are being made on the basis of very small 

samples.   

DISCUSSION 

 Experiment 1 shows that laypeople weigh sample size in a nonlinear fashion and 

that people higher in numerical ability are more sensitive to differences in sample size 

than are lower numerate people.  The curvature of the weighting function shows that 

confidence generally increases as sample size increases, but sensitivity to differences 

between sample sizes decrease as the magnitude of sample size goes up.  This means that 

people use sample size, but they appear to become less sensitive as the values increase. 

Interestingly, responses from subjects who scored higher on the numeracy scale 

were better fit by a steeper sample size sensitivity functions compared to those lower in 

numeracy.  This is consistent with Peters et al.’s (2008) account that higher numerates 

have more precise numerical representations than do lower numerates.  Also, subjects 

lower in numeracy were more sensitive to sample size when they were provided with raw 

rating data in addition to statistical summaries; this effect appears to be driven by lower 

confidence ratings for samples of size 1 and 2.  That is, it seems that presenting raw data 

to lower numerate subjects highlights for them just how small samples of size 1 and 2 

are.  As a result, they give lower confidence ratings for these values compared to 

participants who were not given raw data presentations.  Although raw data presentations 

improved lower numerate subjects’ sensitivity to sample size, their sensitivity function 

was still shallower than the power coefficients for both groups of high numerate subjects.   

Additionally, it is interesting to note, as seen in Figure 2, that subjects do not 

readily use the lowest end of the 9-point scale.  Even when they are only given samples 
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of size 1 participants’ judgments still reflect some amount of confidence in a difference 

between groups.    

Normatively, confidence should increase with the square root of sample size 

(power function with an exponent of .5).  However, the best fitting power function 

exponents for the data ranged from .17 to .38 indicating that laypeople’s weighting 

functions are shallower than they should normatively be.  Can laypeople be pushed to 

weigh sample size in a normative fashion?  An extreme way to test this is to directly 

inform subjects that sample size is an important factor that should affect their confidence.   

EXPERIMENT 2 

Experiment 2 was identical to Experiment 1, except for an additional between 

subjects manipulation.  Approximately half of the subjects were given instructions that 

sample size should matter and that they should incorporate it into their judgments.  These 

subjects were specifically told that they should be more confident “in a difference 

between two products when more people provided product ratings, as opposed to when 

fewer people provided ratings”.   

The goal here was to test whether subjects could normatively incorporate sample 

size when explicitly told that this factor should affect their judgments.  This additional 

independent variable will be referred to as the use-N factor.  The remaining subjects were 

not given these additional instructions; they serve both as a comparison to the those told 

to use sample size and also offer a replication of the parameters found in Experiment 1.  

METHODS 

 Undergraduate subjects again compared 38 pairs of products and rated their 

confidence in a difference between each pair.  As in Experiment 1, sample size (10 levels 
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ranging from 1 to 37), mean difference (1 vs. 2), and standard deviation (2.42 vs. 1.41) 

were varied within subjects (see Figure 1).  Use-N, data type, and order were manipulated 

between subjects.  Subjects answered the same numeracy questionnaire used in 

Experiment 1.  They participated for partial fulfillment of course credit (N=159). 

RESULTS 

 Again using a power model in a nonlinear mixed regression, I found a main effect 

of sample size (β = .39, t (158) = 92.28, p<.0001) such that subjects’ data were fit by .  

Also, effects of mean difference (β = .51, t (158) = 13.40, p<.0001), and standard 

deviation (β = .31, t (158) = 8.18, p<.0001) were found, replicating the effects of 

Experiment 1.  Subjects’ confidence increased as sample size

.39N

3 and mean difference 

increased and as standard deviation decreased.  Unlike Experiment 1, a main effect of 

data type was uncovered (β = .48, t = (158) 2.52, p=.0126) such that subjects were 

overall more confident in a difference between groups when they viewed both the 

statistical summaries and corresponding raw data, compared to when they only saw the 

statistical information on the number lines.   There were no main effects of numeracy, 

order, or use-N.   

The non-significant main effect of order was removed from the model and all 

possible interactions among sample size, numeracy, data type, and use-N were added.  

An interaction was found between sample size and use-N (β = .30, t (158) = 6.96, 

p<.0001).  Subjects who were explicitly told that they should be more confident in a 

difference when sample sizes were larger did in fact appear more sensitive than those not 

given these instructions.  Also, as in Experiment 1, an interaction was found between 

                                                 
3 As in Experiment 1, I found each subjects’ average confidence across the 5 largest sample sizes, and 
compared this to their mean confidence ratings when sample size was at the 5 lowest levels.  86% fit the 
pattern of more confidence for higher, as compared to lower, sample size values.  
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sample size and numeracy (β = .17, t = 7.98, p<.0001) such that higher numerate subjects 

were more sensitive to changes in sample size.   

The interactions between sample size and data type (p=.57), and sample size, data 

type, and numeracy (p=.22) did not replicate.  However, a three-way interaction was 

uncovered among sample size, data type and use-N (β = -.19, t = -2.18, p=.0311) such 

that the use-N instructions had a larger effect for subjects in the statistics-only group, 

compared to those who were also given raw data.  The four-way interaction among 

sample size, numeracy, data type and use-N missed significance (β = -.14, t = -1.92, 

p=.0568).  As regards the latter, inspection of the sample size coefficients presented in 

the next section reveal that subjects higher in numeracy weighted sample size similarly 

regardless of data type or use-N instructions.  In contrast, lower numerates tended to be 

more sensitive to sample size when told that sample size should affect their confidence 

judgments.   

Sample size weighting by group 

As shown in Table 1, subjects were assigned to one of eight groups on the basis of 

data type, use-N, and numeracy (based on a median split to form two groups).  Collapsing 

across all other factors (mean difference, standard deviation, and order), I fit the power 

function where  (see Figure 3). bconfidence a N 

The best predicting coefficients for high numerate subjects ranged from .40 to .42 

( to ), all with overlapping confidence intervals.  Low numerate subjects in the 

use-N condition showed sample size sensitivity on par with high numerates (.44 and .41 

in the statistics-only and statistics+data conditions, respectively).  Low numerate subjects 

not given instructions to use sample size appeared less sensitive to this factor regardless 

.40N .42N
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of data type ( and  with overlapping confidence intervals).  All eight sample size 

coefficients are shown in Table 1; also, see Figure 3. 

.29N

.42N

.31N

Analysis excluding small sample sizes 

Again, as in Experiment 1, it appears that between group differences might be 

driven by differences between how samples of size 1 and 2 are treated.  I employed the 

regression analysis used above that looked at main effects and also interactions among 

sample size, use-N, data type, and numeracy.  The three-way interaction among sample 

size, use-N and data type disappears without these judgments.  However, sample size 

weighting was still significantly affected by numeracy, data type, and use-N instructions.    

DISCUSSION 

Experiment 2 demonstrates that laypeople higher in numeracy are more sensitive 

to sample size than are lower numerate individuals.  However, people lower in numeracy 

show a sample size weighting function that is similar to high numerates when they are 

told that sample size matters and should affect their judgments.  Regardless of 

instructions or presentation format, high numerate subjects’ confidence judgments were 

well fit by a power model with a sample size exponent of about , while lower 

numerates judgments were best fit by a power function of except when told to use 

sample size ( ).  These results show that the effects of low numeracy can be 

counteracted with appropriate instructions.  Presenting raw data along with statistical 

summaries boosted subjects’ general confidence in a difference, but did not significantly 

increase their weighting of sample size as in Experiment 1.   

.41N

.30N

Overall, the power coefficients found here are higher than those found in 

Experiment 1, but are still significantly below the normative value of .5.   
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PRODUCT COMPARISON DISCUSSION 

Experiments 1 and 2 show that laypeople use sample size when making inferences 

regarding whether two group differ.  Their confidence increases as sample size goes up.  

However, sensitivity to sample size appears to be nonlinear such that subjects give less 

weight to changes in sample size as the magnitude of those numbers becomes larger.  

This power (or logarithmic) weighting function is consistent with past research findings 

in which subjects seem highly sensitive to sample size when examining relatively small 

values (Obrecht et al., 2010), but less sensitive when the numbers are larger (Obrecht et 

al., 2007).   

These experiments show a consistent difference between sample size sensitivity 

as a function of numerical ability.  Confidence judgments of higher numerate subjects 

change more as a function of sample size, compared to lower numerate subjects.  This is 

consistent with the evidence that higher numerate subjects obtain more affective, precise 

feelings from numbers than do lower numerates (Peters et al., 2006) and also with the 

finding that high numerates’ nonverbal numerical magnitude representations are more 

precise than are low numerates’ (Peters et al., 2008). 

From Experiment 1, it seems that low numerate subjects appear to benefit from 

seeing the datasets that correspond to sample size information.  This suggests that for 

some individuals, the magnitude of a sample size may be better appreciated when viewed 

as a set whose size increases linearly with the number of items compared to when given 

as an Arabic numeral on a number line.  Such presentation formats may make clear just 

how small samples of size 1 or 2 really are relative to larger values.  Also, subjects lower 

in numeracy show greater sensitivity to sample size when given brief instructions that 
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pointed out its importance.  That simple instructions have such an effect suggests that 

laypeople have intuitions about the importance sample size that is easily tapped into.  

Interestingly, higher numerate subjects do not become more sensitive to sample 

size, that is, give judgments consistent with a larger power function exponent, under these 

conditions.  Perhaps high numerate people already have a good representation of how 

large, for example, a sample size of 10 is, and so seeing the corresponding raw data does 

not provide further information.  Also, the instructions to use sample size may seem 

redundant with high numerates’ intuition that sample size matters.  Perhaps high 

numerate subjects do not feel that they need to increase their weighting of this factor 

because it is something they already know to consider.  Nevertheless, high numerates do 

not use sample size in a normative fashion.  Their sensitivity to sample size is 

consistently shallower than the normative square root function. 

I choose to model subjects’ sample size sensitivity in terms of a power function so 

that exponents could be compared between groups, and also to the normative standard of 

.  Experiments 1 and 2 show that laypeople’s intuitions about sample size fall short of 

the square root of N standard.  Exponents ranged from .17 to .44, all significantly below 

.5.  However, it is nevertheless impressive that laypeople do have an intuition that sample 

size should matter and that they integrate it into the judgments.   

.5N

Next, I switch to a different judgment task with a linear, rather than a square root, 

normative standard for weighting sample size.  I test whether the curvilinear weighting of 

sample size shown in Experiments 1 and 2 is task dependent, or if a similar functional 

form will again be found. 

OVERVIEW OF EXPERIMENTS 3 AND 4 
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From Experiments 1 and 2 it appears that laypeople attend to sample size.  Their 

sensitively is well fit by a curvilinear function where the subjective difference between 

sample sizes decreases as it become larger.  From a statistical perspective, this curvilinear 

shape makes sense because the power to find a difference between groups increases by 

the square root of sample size.   

However, if given a task in which the normative action is to weigh sample size in 

a linear fashion, will people do so?  Or, do laypeople apply a nonlinear sample size 

weighting function regardless of the task?  In order to test the generality of the weighting 

function modeled in Experiments 1 and 2, I next employ a different sample size task with 

a linear normative function in Experiments 3 and 4. 

If someone were trying to decide the chances of experiencing a side effect from a 

medication, she might collect information from multiple sources.  For example, imagine 

that one source reports that out of 10 people he knows, 10% experienced side effects 

from the medication of interest.  Perhaps a different person says that 20% of the 30 

people she knows had side effects from the medication.  When trying to judge the overall 

chances of an effect (e.g. of experiencing side effects), one should consider both the 

sample percentages obtained, and also their relative sample sizes.  In this example the 

20% figure should be given more weight because it comes from a larger sample. 

A recent paper by Obrecht et al. (2009) showed that when combining percentages 

from multiple sources to estimate the likelihood of an event, people tend to provide 

estimates that look like they ignore sample size.  Obrecht et al.’s data are consistent with 

an averaging model that excludes sample size (or a power model with an exponent near 0, 

i.e. ).  Given the example above, a subject might be expected to report that the 0N
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chances of side effects are 15%, the value right in between 10% and 20%, despite that 

these two percents are based on differing amounts of data.  Obrecht et al. put forth the 

encounter frequency hypothesis which states that people are sensitive to the frequency of 

encounters they have with information.  Thus, when one receives multiple pieces of 

information, the relevant denominator, so to speak, is the sum of the number experiences, 

not the relative sample sizes of each encounter.   

Normatively, data should be combined using a weighted average such that values 

are weighted in a linear fashion according to their corresponding sample sizes 

(e.g.
10% 10 20% 30

17.5%
10 20

  



).  Obrecht et al. (2009, Experiment 3) used sample size 

values that ranged from 10 to 100,000 in their study; subjects largely ignored this factor.  

However, given the findings of Experiments 1 and 2, it could be that subjects are 

sensitive to sample size, but that this is difficult to detect with larger numerical values 

because of a curvilinear weighting function.   

Next, Experiment 3 replicates the Obrecht et al. study, but uses much smaller 

sample sizes.  In Experiment 4, sample size magnitude is directly manipulated.  If 

subjects are unable to integrate sample size into their judgments in this paradigm 

regardless of sample size magnitude then the Obrecht et al. (2009) results should be 

replicated and the best fitting power model should have an exponent of about 0.  

However, if subjects do consider sample size, but apply a nonlinear weighting function as 

suggested in Experiments 1 and 2, then I should find evidence that judgments incorporate 

sample size when smaller magnitudes are used.   

EXPERIMENT 3 
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  The purpose of Experiment 3 was to test whether subjects use sample size 

information in a different experimental paradigm compared to the previous experiments.  

Subjects were asked to consider sets of percentages and their corresponding sample sizes 

in order to make judgments about the overall percent chance of an event occurring.  

Sample sizes ranging from 1 to 250 were used; these were much lower than the sample 

sizes used by Obrecht et al. (2009).  If subjects are more sensitive to differences between 

sample sizes when they are lower in magnitude, then judgments should reflect some 

incorporation of sample size leading to a sample size power coefficient greater than zero. 

METHOD 

Undergraduate subjects (N=186) participated for course credit.  All materials were 

presented online. 

Materials 

Subjects were given the following introduction. 

Imagine that you work at a very large nature preserve where many animals live.  

You are interested in learning more about the animals that you help.  At a zoology 

conference you get a chance to talk to other nature preserve workers who have 

carefully recorded the chances of various outcomes. 

Participants then were given six stories in which they read that an animal could 

have one of two possible outcomes for a given characteristic.  For example, they read that 

leopards can have round or square spots.  Within each story, subjects were given 

information from six different nature preserve caretakers about how many animals they 

had seen with the outcome of interest.  These caretakers each reported a sample size and 

percentage (e.g. One of the caretakers tells you that of the 5 leopards he has seen, 100% 
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had round markings.  Another nature preserve worker says that of 1 leopard she saw, 

100% had round markings…).  The percent provided was always possible; for example, 

when a person reported the outcome of a single event, only percents of 0 or 100% were 

given.  Even though it is unusual to use percentage terminology with single cases, this 

language was used for consistency.  The data from each individual nature preserve 

worker was given on its own webpage.  After viewing reports from six different people, 

subjects were told that an animal (e.g. leopard) would soon be born on their nature 

preserve and were asked to estimate the chances that it would have the outcome of 

interest (e.g. round markings).   Subjects gave both a percent estimate from 0 to 100 and a 

likelihood rating using a 9 point scale where a rating of 1 corresponded to extremely 

unlikely and a rating of 9 corresponded to extremely likely. 

Design 

 Subjects considered six datasets; each consisted of six percentages and their 

corresponding sample size.  For example, one of the six datasets was presented in the 

leopard story; within this story subjects received information from six people.  The six 

sample sizes within each dataset were always the same (1, 2, 3, 5, 80, 250).  The 

percentages within a dataset were varied within subjects to be either low, medium, or 

high in value.  Within subjects, I manipulated how the percentages within a dataset were 

paired with the sample sizes.  Either the larger percentages were paired with the larger 

sample sizes (large N-large percent pairing), or the smaller percentages were paired with 

the larger sample sizes (large N-small percent pairing); see Table 2.  The two levels of 

percent-N pairing were crossed with the three levels of the percent range variable to 

create the six datasets in total.  All subjects were given all six datasets.   
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Between subjects, the pairing of datasets and stories was manipulated to have two 

levels.  Thus, for example, the leopard story was paired with two different datasets 

between subjects.  Also between subjects, I varied the presentation order of the data 

within each dataset to have two levels.  Finally, two possible story presentations orders 

were chosen, again between subjects.   

Predictions 

The main independent variable of interest in this study is percent-N pairing.  

According to the encounter frequency hypothesis (Obrecht et al., 2009), subjects should 

give larger percent estimates when the average of the percentages in a dataset is greater, 

regardless of their respective sample sizes.  Thus, subjects’ weighting of sample size 

should follow a power function with an exponent of 0 ( ).   0N

Normatively, if subjects weigh percentages according to sample size, they should 

give higher estimates when the weighted average of percents is higher such that their data 

should be fit by a sample size power function with 1 as the exponent ( ).  However, if 

subjects instead apply a curvilinear weighting of sample size, then their estimates will fall 

in between these two extreme predictions.   

1N

Below I use two methods to examine these hypotheses.  First, I will apply the 

regression modeling used in Experiments 1 and 2 in order to find the best predicting 

power model parameter for sample size.  If subjects ignore sample size, the best fitting 

sample size parameter will be close to 0.  In contrast, the normative model predicts a 

coefficient of 1.  Although the previously presented experiments are quite different, their 

parameters will be compared to those found in the current study.  From Experiments 1 

and 2, the overall average power coefficient was  for those subjects who were not .32N
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provided with raw data or instructions to use sample size4; if subjects here apply a 

curvilinear function, a similar power coefficient may be found.  In order to allow the 

reader to compare these results to those reported in the Obrecht et al. (2009) paper in 

which an ANOVA was used, after presenting the modeling analyses, I will also present 

an ANOVA to test for main effects and interactions among the independent variables.   

RESULTS   

Regression modeling 

Regression modeling was used with the percent estimate dependent measure.  As 

in the previous experiments, a power regression model was used to determine the best 

fitting sample size coefficient for the data. 

6
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Where ip = percent within a dataset, = sample size within a dataset raised to 

some power b, and i counts across the items within a dataset.  The nonlinear regression 

model assumes a weighted average form where, depending on the value of the power 

coefficient, sample size may be taken into account to a greater (b=1), lesser (b=0), or 

intermediate (0<b<1) extent. This model took subjects’ repeated measures into account 

across each of the 6 datasets they considered.  The power coefficient, b, was the only free 

parameter in the regression formula; the remaining variables, p and N, came from the 

percentages and sample sizes provided in the datasets given to subjects. 
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Overall, subjects’ judgments were best fit by (β = .28, t (185) = 15.14, 

p<.0001) indicating that they considered sample size to some extent.  This value is 

surprisingly similar to the value of .32 observed in the relevant conditions from 

Experiments 1 and 2.  This power model provided a better fit to the data than either the 

normative ( ) or encounter frequency model ( ).  Comparing log likelihood fit 

statistics for the different models showed that the .28 exponent was 224 times more likely 

than the encounter frequency predicted exponent of 0, and 400 times more likely than the 

normative predicted exponent of 1

.28N

1N 0N

5.      

I computed separate regression analyses for high verses low numerate subjects.  

The sample size coefficient for high numerates was  with a confidence interval of 

.29-.40; this was significantly greater than zero (β = .34, t (185) = 12.46, p<.0001).  Low 

numerates’ percents were fit by  with a confidence interval of 17 to .27 (β = .22, t 

(185) = 8.64, p<.0001); see Table 4.  Figure 4 shows the predictions of the normative and 

encounter frequency models, along with the best fitting power model predictions and 

subjects actual average percent estimates for all six datasets.   

.34N

.22N

ANOVA 

                                                 

5 The log model was entered as
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. The log likelihoods associated with the models were 

subtracted in a pairwise fashion to test their relative fits to the data. 
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In order to allow for a comparison between the current experiment and that 

reported by Obrecht et al. (2009), I will next report a mixed-model ANOVA using the 

percent dependent measure.  Analysis of the rating scale dependent measure will be 

excluded here and in Experiment 4 because it provided redundant results. 

The percent measure showed an effect of percent-N pairing (F(1,170)=12.92, 

p=.0004, MSE=212.21).  Subjects gave significantly higher chance estimates when 

considering the large N-small percent pairing datasets, compared to the large N-large 

percent datasets.  This means that, overall subjects’ data favored the encounter frequency 

model over the normative model.  However, percent-N pairing interacted with percent 

range (F(2,340)=28.96, p<.0001, MSE=142.74) such that subjects’ judgments were in the 

direction predicted by the encounter frequency hypothesis for the high and low range 

dataset, but in normative direction for the medium range dataset. 

As expected, percent-N pairing interacted with numeracy (F(1,170)=11.71, 

p=.0008, MSE=212.21) such that lower numerate subjects gave percentages estimates 

that were closer in line with the encounter frequency hypothesis ( ) compared to the 

normative model ( ); in contrast, higher numerates’ estimates did not significantly 

favor either model’s predictions, but rather, estimates fell in between the values predicted 

by the two models.   

0N

1N

 Unsurprisingly, there was a main effect of percent range (F(2,340)=1696.15, 

p<.0001, MSE=201.82).  This simply means that subjects gave percent estimates that 

were in line with the percentages provided in each dataset (i.e. gave lower percent 

estimates when given lower percents, gave higher percent estimates after viewing high 
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percents).  There were also effects of little interest involving the counterbalancing 

factors.6 

DISCUSSION 

The results of Experiment 3 suggest that subjects treat sample size in a curvilinear 

fashion.  The task employed here was quite different from that used in the first two 

experiments.  Also, its normative standard requires weighting sample size linearly, rather 

than according to its square root.  Therefore, it is surprising that subjects’ judgments 

nevertheless suggest a similar power weighting function as in Experiments 1 and 2.  Here 

subjects’ judgments were well fit by a sample size power function with an exponent of 

about .28.  This value is in the ballpark of the average exponent of .32 shown by subjects 

who were not given raw data or special instructions from the two earlier experiments.   

Also, as in Experiments 1 and 2, high numerate subjects appear to consider 

sample size to a greater extent than low numerates.  Their judgments reflect a power 

function with a steeper slope ( ) compared to lower numerate subjects ( ). .34N .22N

The ANOVA analysis showed, overall, that subjects’ judgments significantly 

favored the encounter frequency hypothesis over the normative model.  However, a 

comparison of model fits showed that subjects’ data were still better fit by a model where 

sample size was weighted to a power.  That is, subjects’ responses were not described as 

well by a linear normative model ( ), or by an encounter frequency model that ignores 1N

                                                 
6 Percent estimates were affected by a main effect of data order (F(1,170)=3.96, p=.0482, MSE=236.40).  
Story order and data order interacted (F(1,170)=7.40, p=.0072, MSE=236.40).  Story-data pairing 
interacted with numeracy (F(1,170)=5.04, p=.0261, MSE=236.40).  Percent-N pairing interacted with story 
order (F(1,170)=10.35, p=.0016, MSE=212.21); this was qualified by interactions among percent-N 
pairing, percent range, story-data pairing and story order (F(2,340)=3.73, p=.0251, MSE=142.74), as well 
as percent-N pairing, percent range, story-data pairing and numeracy (F(2,340)=3.35, p=.0362, 
MSE=142.74).  There were 3-way interactions among percent range, story-data pairing, and story order 
(F(2,340)=4.57, p=.0110, MSE=203.82), and also among percent range, story order and numeracy 
(F(2,340)=6.71, p=.0014, MSE=203.82). 
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sample size ( ), as they were by a curvilinear weighting model with an intermediate 

power exponent for N. 

0N

.3 22

.3N

.2N

The results of Experiment 3 differ from that found by Obrecht et al. (2009).  The 

only obvious procedural difference between these two studies is that Obrecht et al. used 

larger sample size values.  There are two independent aspects of sample size magnitude 

that could account for this difference.   

First, a power function with an exponent of less than 1 implies that, for a given 

difference between two values, one will be more sensitive to the difference between two 

smaller sample sizes, compared to two larger samples sizes.  For example, the difference 

between samples of size 6 and 2 will feel larger than the difference between 26 and 22, 

despite that both numbers pairs differ by 4.  This is because, for example, with , 

.  Thus, laypeople could apply a constant sample size weighting 

function (e.g. ), but appear less sensitive to differences between larger numbers. 

.3N

.3 .3 .36 2 26 

In contrast, an alternative account is that the coefficient of a power weighting 

function could change as a result of the sample size magnitude.  Perhaps subjects are 

fairly sensitive to differences between samples sizes when they are under 100 (e.g. give 

judgments consistent with ), but when asked to consider larger values, sensitivity 

drops (e.g. ).  Although the power coefficients found in Experiment 3 are larger than 

those found by Obrecht et al. (2009), it is not clear which or what combination of these 

two explanations account for this difference.   

.4N

The second account can be tested by multiplying sample sizes by a constant such 

that the relationship among the values stays the same, but the magnitude increases.  If 

subjects’ percent estimates are better fit by a lower power coefficient when sample sizes 
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are larger, compared to when they are smaller, then I will have strong evidence that 

subjects’ weighting of sample size depends on the range or magnitude of the values, not 

just the curvilinear decreasing sensitivity functional form.  In Experiment 4, this 

hypothesis is tested.   

EXPERIMENT 4 

 The goal of Experiment 4 was to test whether sample size sensitivity is affected 

by sample size magnitude.  In Experiment 4, sample size was manipulated between 

subjects to be either low or high in magnitude.  This was done by multiplying the smaller 

sample sizes by a factor of 10 so that the relationship among them stayed constant, but 

the magnitude increased.  If subjects apply a general curvilinear weighting function of 

sample size, then their data should be best fit by similar power functions, regardless of 

the sample size magnitude.  However, if subjects give less consideration to sample size 

when it is larger, then they should show lower power exponents in the high magnitude, 

compared to the low magnitude, condition.   

METHOD 

Undergraduate subjects (N=373) participated for course credit.  All materials were 

presented online.   

Materials 

Subjects were given the same nature preserve introduction as in Experiment 3.  

For each of the six stories they read about, they judged the chances of an outcome by 

indicating the percent chance of the event and also by giving a rating on the 9-point scale.  

However, because both the percent chance and rating scale showed similar results, only 

the percent dependent measure will be further discussed. 
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Design 

As in Experiment 1, subjects viewed 6 datasets.  Each dataset provided 8 

percentages that were paired with a sample size.  Between subjects, participants were 

either given sample sizes that were relatively small (1, 1, 1, 1, 5, 25, 125, 625) or large 

(10, 10, 10, 10, 50, 250, 1250, 6250) in magnitude (see Table 3).   

Within subjects, the range of the percentages within a dataset was manipulated to 

be either low (0 to 40%), medium (20 to 60%), or high (78 to 100%).  These ranges only 

describe the percentages that were paired with samples of size 25, 125, 625 or 250, 1250, 

6250, depending on condition.  The percentage values were constrained to be possible 

given the sample size that each was paired with.  Thus, samples of size 1 could only 

provide percentages of 0 or 100%.  This also meant that the analogous samples of size 10 

in the large sample size magnitude condition could also only be paired with either 0 or 

100%.  As samples of size 5 could only provide 6 possible percentages, percents paired 

with 5 or 50 sometimes fell outside of the low, medium, and high ranges listed above.   

Also within subjects, I manipulated how percentages and sample sizes within 

datasets were paired together.  Within a dataset, larger sample sizes were either paired 

with smaller percentages (large N-low percent paring) or they were paired with larger 

percentages (large N-high percent pairing).  This means the small sample sizes were 

paired with larger percentages in the former case, while in the latter, small sample sizes 

were paired with smaller percents.  This sample size-percentage pairing was crossed with 

the three percentage ranges to give the 6 datasets.  Each of the 6 datasets contained the 

same 8 sample sizes, either low or high magnitude, shown above.  To make this design 
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clearer, Table 3 shows the two high percent range datasets given to subjects in both 

sample size magnitude conditions. 

The pairing of the 6 datasets within stories was manipulated between subjects to 

have two levels.  Also between subjects, two presentations orders of the 6 datasets and 

two possible orderings of the 8 percentages within each dataset were used. 

RESULTS 

Regression Modeling 

As in Experiment 3, subjects’ percentage estimates were fit by a regression power 

model.   
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Where ip = percent within a dataset, = sample size within a dataset raised to 

some power b, and i counts across the items in the datasets given to each subject.  As in 

the analysis for Experiment 3, this model was implemented so to account for repeated 

measures. 

b
iN

Overall, sample size was weighted by (β = .30, t (372) = 20.75, p<.0001).  

However, as the between group analyses show, this coefficient differed across groups. 

.30N

Between group analyses 

In order to test for main effects of sample size magnitude and numeracy, two 

regression analyses were computed.  Overall, the percent estimates of subjects given the 

low magnitude sample sizes were fit by a sample size power function of  (C.I. = .30-

.38, β = .34, t (372) = 16.01, p<.0001).  For subjects in the high magnitude condition, this 

.34N
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function was  (C.I. = .22-.30, β = .26, t (372) = 13.19, p<.0001).  Figure 5 shows two 

hypothetical sample size power weighting functions with these respective slopes. 

.26N

High numerates had higher coefficients of (C.I. = .33-.42, β = .37, t (372) = 

16.23, p<.0001) as compared to lower numerates (C.I. = .21-.28, β = .24, t (372) = 

12.88, p<.0001). 

.37N

.24N

To further break this down, I computed the regression analyses for each group.  

High numerate subjects in the low sample size magnitude condition (β = .42, t (372) = 

12.17, p<.0001) seemed to show greater sample size sensitivity compared to high 

numerates in high magnitude group (β = .33, t (372) = 10.61, p<.0001).  The same 

pattern was observed between low numerates in the low magnitude sample size group (β 

= .28, t (372) = 10.17, p<.0001) compared to low numerates in high magnitude group (β 

= .21, t (372) = 8.01, p<.0001); see Table 4. 

Thus, there are main effects of sample size magnitude and numeracy.  People are 

less sensitive (show lower power coefficients) when sample size is larger, rather than 

smaller, in magnitude.  Also, high numerates show greater appreciation of sample size 

compared to low numerates.  

ANOVA 

The apparent main effect of magnitude on sample size weighting was confirmed 

in a mixed model ANOVA in which there was a significant interaction between N-

percent pairing and magnitude (F(1,340)=5.51, p=.0195, MSE=244.08).  The N-percent 

pairing factor reflects whether subjects’ percent judgments are significantly in the 

direction favoring the normative ( ) or the encounter frequency ( ) model 

predictions.  This factor’s interaction with N-magnitude shows that the group of subjects 

1N 0N
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who received higher magnitude sample sizes gave percent estimates that were closer to 

the encounter frequency hypothesis than those given low magnitude sample sizes.  That 

is, higher magnitude sample sizes translate into lower power coefficients that are closer to 

.    0N

Percent-N pairing also interacted with numeracy (F(1,340)=15.07, p=.0001, 

MSE=244.08) such that lower numerate subjects’ estimates were closer to the encounter 

frequency hypothesis ( ) than higher numerates’ percent estimates. 0N

Main effects of N-percent pairing (F(1,340)=14.28, p=.0002, MSE=244.08) and 

percent range (F(2,680)=2215.00, p<.0001, MSE=297.68) were also found.  Thus, 

subjects judgments overall favored the  over the  model, and their percent 

estimates reflected whether they viewed low, medium, or high percentages in a given 

dataset.  Also, subjects’ judgments were influenced by interactions between percent range 

and magnitude (F(2,680)=10.31, p<.0001, MSE=297.68) and percent range and numeracy 

(F(2,680)=12.53, p<.0001, MSE=297.68).  That is, percent estimates were significantly in 

favor of the encounter frequency, over the normative, predictions for the high and low 

percent ranges, but neither model was favored for the medium percent range datasets.  

Also, higher numerate subjects showed a larger effect of percent range than lower 

numerate subjects.  Counterbalancing effects of minor theoretical interest were 

uncovered

0N 1N

7.   

                                                 
7 There were main effects of story-data pairing (F(1,340)=4.16, p=.0423, MSE=302.64) and story order 
(F(1,340)=4.13, p=.0429, MSE=302.64).  Story order interacted with numeracy (F(1,340)=5.92, p=.0155, 
MSE=302.64).  Percent-N pairing interacted with magnitude, story order, and numeracy (F(1,340)=3.94, 
p=.0479, MSE=244.08).  Interaction were uncovered among percent range, magnitude, story-data pairing, 
and story order (F(2,680)=3.21, p=.0426, MSE=297.68), as well among percent range, magnitude, story-
data pairing and numeracy (F(2,680)=3.47, p=.0315, MSE=297.68).  Percent-N pairing interacted with 
percent range and story-data pairing (F(2,680)=4.92, p=.0076, MSE=167.64).  This was qualified by an 
interaction among percent-N pairing, percent range, magnitude, story-data pairing, and story order 
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Modeling previous findings 

 Using the data from Obrecht et al.’s (2009, Experiment 3) study, I reanalyzed 

their results to find the best fitting power parameters.  They gave subjects sample sizes 

that ranged from 10 up to 100,000.  If the scale of sample sizes being compared affects 

the slope of the weighting function, then I should find a smaller power exponent for these 

data, compared to Experiments 3 and 4 in the current paper.  In line with Obrecht et al.’s 

conclusion that subjects appear to nearly ignore sample size, the best predicting power 

exponent was .06 with a confidence interval of .03-.09 (t (98) = 4.30, p<.0001).  When 

broken down by numeracy level, it appeared that low numerates gave sample size no 

weight (β = -.01, C.I. = -.05 to -.003, t (98) = -.44, p=.66), but those higher in numeracy 

still showed slight sample size sensitivity (β = .13, C.I. = .09 to.16, t (98) = 6.54, 

p<.0001).   

DISCUSSION 

 The results of Experiment 4 show a clear effect of sample size magnitude.  When 

asked to consider percentages paired with sample sizes that ranged from 1 to 250, 

subjects’ percent estimates were fit by a power model of .   When the same exact 

percentages were presented, but with corresponding sample sizes that were ten times 

larger (ranging from 10 to 2,500) subjects’ percent estimates were fit by a  model.  

This suggests that laypeople do not treat sample sizes according to one function, but that 

their sensitivity is affected by the scale or magnitude of the values (see Figure 5).   

.34N

.26N

                                                                                                                                                 
(F(2,680)=5.62, p=.0038, MSE=167.64).  Finally, percent-N pairing interacted with percent range, 
magnitude, story order and numeracy (F(2,680)=3.25, p=.0396, MSE=167.64).    
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Further bolstering this conclusion, a reanalysis of the Obrecht et al. (2009, 

Experiment 3) data shows that when subjects consider datasets that include sample sizes 

going up to 100,000, they show almost no sensitivity to this factor ( ).   .06N

 Consistent with the previous experiments presented in this paper, Experiment 4 

demonstrates a clear relationship between numerical ability and the extent to which 

subjects consider sample size into their judgments.  Higher numerate subjects again 

appear to have a steeper sample size sensitivity function slope compared to lower 

numerates.   

GENERAL DISCUSSON 

 These experiments demonstrate that laypeople have intuitions about how sample 

size should affect their judgments.  When making inferences, people’s confidence 

generally increases as sample size goes up.  Also, when combining data, they give greater 

weight to percentages that describe more information, compared to percentages that 

summarize less data.   

However, the experiments presented here show that weighting of sample size 

follows a nonlinear pattern that is consistent with a power or logarithmic function.  A 

function with this curvilinear shape has the property of decreasing sensitivity; that is, 

sensitivity to a given difference will seem larger at the lower end of the scale, compared 

to a higher end of the scale.  For example, a difference of 5 will feel larger when 

considering samples sizes of 3 and 8, compared to when considering values of 33 and 38.  

This property could account for some of the discrepancies found in the literature in which 

laypeople appear highly sensitive to sample size in some cases where the values under 

consideration are relatively small (Masnick & Morris, 2008, Jacobs & Narloch, 1999, 
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Nisbett et al, 1983, Obrecht et al., 2010), but not others where the values under 

consideration are larger (Obrecht et al., 2007, Obrecht et al. 2009). 

However, Experiment 4 shows that an alternative explanation is possible for the 

discrepant findings regarding lay sensitivity to sample size.  In this study, subjects 

considered datasets containing percentages and their corresponding sample sizes.  They 

used this information to judge the chances of some event occurring.  I manipulated 

sample size directly and found that, when sample sizes were lower in magnitude, 

subjects’ percent estimates were consistent with a sample size power function with a 

higher coefficient, compared to when the sample sizes were multiplied by a constant to 

make them larger in magnitude.  This means that some aspect of sample size magnitude 

affects people’s sample size sensitivity curve; it’s not simply that subjects have one 

general sensitivity curve that appears to have a different slope depending on which 

section of the curve is being measured, but rather, that the steepness also changes as a 

function of the values being considered.  Sample size magnitude could plausibly affect 

the slope of the power function in a couple of ways.  It could be that sensitivity decreases 

as the range of values increases; e.g. the range from 1 to 650 is smaller than the range 

from 10 to 6,500.  Or, it is possible that sample size weighting is curvilinear up to some 

value, but then the function levels off for values beyond some threshold.  For example, it 

could be that subjects are sensitive to differences between numbers under 1,000, but 

weight all numbers over this threshold equally, leading to an overall lower power 

function value.  The current experiments do not allow for such a fine grain analysis, but 

nevertheless still show that sample size weighting is affected in part by the magnitude of 

the values under consideration.   
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Overall, it appears that both the nonlinear shape of subjects’ sample size 

weighting functions, and also the magnitude of samples sizes, play a role in how 

laypeople attend to this factor (see Table 4). 

Nonlinear Implications 

 Across four experiments in two different tasks, subjects’ weighting of sample size 

was well fit by a power function with an exponent of about .3.  How should this exponent 

be interpreted?  It could indicate a systematic bias such that laypeople consistently 

transform sample sizes according to a curvilinear function.  Alternatively, laypeople’s 

representations of sample size could be linear with scalar variability.  This would mean 

that, on average, their sense of sample size magnitudes map the actual values linearly, but 

are represented in an increasingly imprecise fashion as values become larger; this would 

lead to reduced discrimination among larger numbers.  These different accounts have 

been debated in the nonverbal numerical magnitude literature in which some argue for 

compressed logarithmic representations of number (Siegler & Booth, 2005), while others 

contend that humans represent numerical magnitudes linearly, but with scalar variability 

proportional to the magnitude (Gallistel & Gelman, 2005).  Both of these positions could 

account for the numeracy findings reported in the current paper; compared to higher 

numerate subjects, those lower in numeracy may treat sample size according to power 

function with a low exponent or they may have more scalar variability in their 

representations.   

Memory Considerations 

In Experiments 3 and 4, subjects viewed percentage and sample size data 

sequentially.  In Experiment 4 I found that subjects were less sensitive to changes in 
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sample size when these values were higher, compared to lower, in magnitude.  Memory 

could play a role in explaining this result.  If subjects attempted to explicitly hold all of 

the data that was presented within a story in working memory, this task might have been 

more difficult in the large magnitude sample size condition.  For example, if 

remembering the value 10 requires more working memory resources than remembering a 

sample size of 1, then it could be that the sample size magnitude effect is related to 

subjects’ ability to hold all of the information in mind for consideration.  That is, 

forgetting some sample size values might relate to lower sample size sensitivity.  The 

process by which people combine information over time, be it implicitly or explicitly, 

remains for future exploration. 

Ties to Previous Research 

Consistent with the decisions from experience literature (e.g. Hertwig, et al., 

2004, Gottlieb et al, 2007, Hau et al., 2008), subjects appear to have a sharply 

diminishing sensitivity to sample size values.  When sampling from a population in order 

to gain an understanding of a payout structure, subjects choose to view a median of about 

7 samples.  Obviously, many factors will affect how large of a sample seems large 

enough, such as incentives to gain an accurate understanding of the population (Hau et 

al., 2008) and the expected population variability (e.g. Nisbett, et al, 1983).  

Nevertheless, the low number of cards selected by subjects in these studies suggests that 

laypeople feel satisfied with small sample sizes; although additional samples would be 

easy to obtain, they are apparently not worth the time it takes to collect them.  Although it 

is highly speculative to posit, this suggests a sample size sensitivity function with a slope 

that quickly drops off.   
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Also of interest given the current results, Obrecht et al. (2009) put forth the 

encounter frequency hypothesis in which they state that laypeople are sensitive to the 

frequency of encounters that they have with information, rather than the sample size 

values that correspond to that data.  Experiments 3 and 4 in the current paper replicated 

Obrecht et al.’s Experiment 3, but used smaller sample sizes.  Experiments 3 and 4 show 

that subjects do give greater weight to percentages with higher, as compared to lower, 

sample sizes.  However, this sample size sensitivity decreases off as the magnitude of the 

values increases.  A reanalysis of the Obrecht et al. (2009) Experiment 3 data shows that 

when subjects are given percentages with corresponding samples as large as 100,000, 

their sensitivity drops down to be near zero.  Thus, the results of this paper provide a 

refinement of the encounter frequency hypothesis; laypeople do use sample size, but 

more so when they are dealing with numbers that are relatively small (1 to 650) 

compared to when numbers are larger in size (10 to 6,500).  Further work needs to be 

done to explore whether the relevant factor is the range, overall magnitude of the sample 

size values under consideration, or other factors that related to sample size magnitude.   

Numeracy 

All four experiments presented here show a consistent relationship between 

numerical literacy and sample size weighting.  Subjects who score higher on our 

modified version of the Lipkus et al. (2001) numeracy scale show steeper sample size 

weighting functions.  This effect may be even more pronounced in the general population 

because, presumably, the university student samples used in the current experiments 

provided a somewhat limited and optimistic range of numerical ability across adults.   
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Recently, Peters et al. (2008) showed evidence that individual differences exist in 

the precision of the people’s nonverbal mental numbers, and importantly, that these 

differences relate to the numerical choices subjects make (also see Halberda, Mazzocco, 

and Feigenson, 2008 regarding the relationship between nonverbal magnitudes and math 

achievement).  Peters et al. measured how quickly subjects respond when asked whether 

a quantity was larger or smaller than a target value.  As expected, reaction times (RTs) 

were faster when subjects compared values that were further, rather than closer, from one 

another (e.g. 5 vs. 9 compared to 5 vs. 6).  However, the size of this distance effect 

(Moyer and Landauer, 1967) differed between subjects; some individuals showed smaller 

differences between their near versus far RTs compared to others for whom this 

difference was larger.   

Peters et al. infer from this that the former subjects (those with smaller differences 

in their near verses far RTs) have more precise nonverbal numerical representations than 

do the latter.  They describe these high verses low precision representations as relating to 

mental logarithmic number lines with different bases.  Log functions, regardless of their 

base, share the same ratio-dependent relationships and have the same functional shape.  

However, as the base of the log function decreases, discriminability between a given pair 

of values increases.  Considering the Gallistel and Gelman (2005) position, the analogous 

account would be to posit that smaller distance effects relate to proportionally less scalar 

variability among individuals’ representations compared to those individuals showing 

larger distance effects.   

When choosing between receiving $10 now or $15 later, overall, Peters et al.’s 

(2008) subjects preferred the $15 later.  However, preference for the $15, as rated on a 

  



47 

preference scale, was higher for subjects with more precise numerical representations, 

compared to those with less precise representations.  Similar effects were shown in other 

tasks, which together make a strong case for the idea that nonverbal numerical 

magnitudes influence how people make higher level decisions and choices involving 

numbers.  Peters et al. (2008) note that subjects’ scores on a numeracy scale showed 

some relationship to mental magnitude precision.   

If higher numeracy indicates greater precision in nonverbal numerical 

magnitudes, then perhaps higher numerate subjects show consistently steeper sample size 

weighting functions because they are better able to distinguish between different sample 

size values, compared to lower numerate subjects.  Also, it could be that, regardless of 

numeracy level, once numbers reach a certain size (e.g. 1,000 or 10,000) that people do 

not have a strong sense of the how large these values are.  For example, perhaps one has 

mapped, from the nonverbal numerical system to Arabic numerals, values from 0 to 

about 1,000.  However, Arabic numerals greater than about 1,000 may not have an 

underlying mapping to an analog magnitude.  Thus, numbers above this cut off may all 

feel similarly large.  Just because we can count to 1,000 or even a million does not mean 

that we have an intuitive understanding of how large these values are.  In the current 

media environment in which very large numbers, including sample size values, are 

described, it may be the case that people have little sense of what these values refer to.  

Although people higher in numerical ability have more precise representations than lower 

numerate individuals, they still show decreased sensitivity when considering larger 

sample size values.   

Improving Sample Size Use 
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 In terms of intervention effects, Experiment 1 shows that people lower in 

numerical literacy benefit from viewing the raw data that correspond to sample size 

values.  If low numerate subjects have imprecise representations of how large sample size 

values are, their number sense may be enhanced by providing displays that increase in 

magnitude as a function of sample size.  This finding parallels work showing that 

subjects benefit from pictograph displays of statistical information compared to standard 

numerical presentations involving Arabic numerals (Zikmund-Fisher, Ubel, Smith, Derry, 

McClure, Stark, et al., 2008); also, the benefits gained from a pictograph appear more 

pronounced for lower numerate individuals, in comparison to higher numerates (Hawley, 

Zikmund-Fisher, Ubel, Jankovic, Lucas, and Fagerlin, 2008). 

However, this boost in sample size sensitivity as a function of raw data 

presentation was not replicated in Experiment 2.  There, instead, raw data presentations 

generally boosted subjects’ confidence ratings.  Also, low numerate subjects appeared to 

benefit from a brief instruction stating the importance of considering sample size 

information; subjects lower in numeracy who received these instructions weighted 

sample size similarly to high numerates.   

High numerate subjects’ best fitting power coefficient for sample size did not 

change as a result of these manipulations.  It may be that higher numerate subjects 

already have fairly accurate representations of how large a sample size is and that they 

know that it should matter to their judgments.  Thus, presenting the corresponding raw 

data, or giving instructions to use sample size may seem redundant to them.  However, 

despite that high numerate subjects showed a steeper sample size weighting function than 
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those lower in numeracy, their judgments still consistently fell short of, and were 

insensitive, to normative standards.   

Normative vs. Descriptive Gap 

 Although it is clear that laypeople do integrate sample size into their judgments 

and inferences, they consistently fall short of normative standards.  In Experiments 1 and 

2 subjects’ weighting of sample size was on average .34, below the normative standard of 

.5.  In Experiments 3 and 4 the overall best fitting power coefficient was .298, even 

further below the normative standard of 1.  It appears that subjects have little 

understanding of the normative standards that were relevant in these studies.  Given that 

the sample sizes in Experiments 3 and 4 were larger than those used in Experiments 1 and 

2, and that sample size magnitude affects the slope of the best fitting power function (as 

shown in Experiment 4), it may be reasonable to find lower power coefficients for the 

latter studies, despite the drastic differences between normative standards.   

However, it important to note that although judgments fell short of the normative 

standards in these studies, laypeople nevertheless have the intuition that sample size 

matters.  This is probably why the simple manipulations employed in Experiments 1 and 

2 were able to improve low numerate subjects’ weighting of sample size.   

One particularly interesting aspect of these studies is that subjects appear to weigh 

sample size in a similar fashion across two completely different tasks with different 

normative standards.  In the first two experiments, sample size was manipulated across 

pairs.  Subjects judged how confident they were that there was a difference between two 
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products.  Normatively, because this task is analogous to an intuitive t-test, their 

confidence in a difference should have increased with the square root of sample size.   

In contrast, in the last two experiments, subjects were to combine percentage 

estimates regarding the chances of some event occurring.  Each percent was given with a 

sample size.  Based on this dataset, subjects’ were to estimate the percent chance of the 

event of interest.  Normatively, judgments should reflect a weighted average where 

percents are weighted linearly according to their sample sizes.  Here, sample size values 

were not manipulated across trials like in the first two studies, but the same sample size 

values appears in each story.   

Despite these major differences, subjects’ percent chance estimates were 

consistent with the sample size power exponents found in Experiments 1 and 2; across all 

four experiments power coefficient values were always under .5 and tended to be around 

.3 or .4 in value.  It seems that when people consider data on the basis of sample size, 

sample size values are evaluated in a task independent manner.  Also, regardless of the 

task, sensitivity to sample size is well fit by a curvilinear function.  Overall it appears that 

laypeople may generally weigh sample size in a nonlinear fashion regardless of the 

relevant normative standard.   

Low Level Influences 

Currently, perhaps the most dominate theoretical account for how people make 

judgments and decisions is the dual system view.  It is thought that people have two 

reasoning systems, System 1 and System 2.  System 1 is thought to be an automatic, 

affective, intuitive system, while System 2 is a slow, deliberative, and more rational 

system (Kahneman, 2002, also see Stanovich, 1999 for an in-depth review).  Tversky and 
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Kahneman’s (1971) work points to the idea that humans neglect sample size because they 

rely on System 1 heuristics, such as representativeness.  The idea seems to be that if 

subjects would instead employ their deliberative systems (i.e. System 2s), then they 

would make more rational judgments.   

In my view, focus on the dual system account somewhat skirts the issue of 

representation.  This is because it explains non-normative behavior by pointing to System 

1 processes.  It seems that there is a tacit assumption that people perceive sample size 

values veridically, as if they always represent an exact quantity.  Problems with reasoning 

and inferences are primarily attributed to how people use these numbers, not how they 

represent them.  Surely, both issues of representation and information processing are 

important to study.   

Thus, it may be useful to take a step back and ask how humans represent 

quantities.  We may give subjects a number such as 1,000, but we don’t necessarily know 

what their representation of that value is.  Recent work by Halberta et al. (2008) and 

Peters et al. (2008) is exciting because it suggests that lower level numerical 

representations influence higher level reasoning and mathematics.  Therefore, it is 

important to understand how numbers are represented at a basic level in order to inform 

higher level judgment research. 

Related to this point, it is interesting that similar curvilinear functions were found 

across the four experiments presented in this paper.  This suggests that laypeople may 

generally treat sample size in similar, task independent, fashion.  Also, the shapes of the 

curves appear similar to Weber fractions that are usually associated with perceptual 

magnitudes where the discriminability of two stimuli is proportional to their ratio.  This 
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could suggest that low level representations may affect how people make presumably 

higher level, explicit judgments on the basis of numerical data, such as sample size.   

Assumptions and Limitations 

 The modeling work in this paper makes a number of assumptions about how 

subjects attend to and combine statistical information.  In Experiments 1 and 2, from 

looking at the data, it was clear that subjects treated sample size in a nonlinear fashion.  

This was backed up statistically by comparing the fits of power and logarithmic models 

to linear models.  However, in this paper I am not claiming that laypeople definitively 

treat sample size according to a power function; other nonlinear models, such as a 

logarithmic model, also model the data well.  However, because the power model 

allowed for comparison to a normative standard, it was a reasonable functional form to 

use for the sake of comparison in this paper. 

 With the modeling work from Experiments 3 and 4, I assumed that subjects 

attended to all of the data that they were provided with and that they combined the 

information in a weighted average fashion.  It could be that different subjects employ 

different strategies or heuristics for combining data.  Also, primacy or recency effects 

could lead subjects to give greater weight to data presented first or last in a scenario.  

However, because sample sizes within datasets were presented in a pseudorandom 

fashion, and data ordering within datasets was varied between subjects, such effects 

cannot account for the modeling results found.  I tested a number of different heuristic 

models not described in this paper and none appeared to clearly predict subjects’ percent 

estimates.   
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 Furthermore, although I describe subjects’ judgments in relation to power and 

weighted average models, I am not claiming that these are processes by which people 

cognitively combine and weight information.  I do not assume that subjects are 

consciously keeping track of data so to explicitly compute a weighted value.  Instead, I 

am interested in describing functional form that is consistent with laypeople’s intuitive 

judgments.  

Conclusions 

The studies presented here show that laypeople are sensitive to the law of large 

numbers.  They give greater weight to data that describe larger, as compared to smaller, 

sample sizes.  However, people’s treatment of sample size is best modeled by a 

curvilinear, negatively accelerating weighting function with decreasing sensitivity to 

larger values.   Given that large sample size values are common in the modern world (e.g. 

a medical study with 9,000 subjects) it is important to understand how lay sensitivity to 

sample size can be improved in the large number range.   

Individual differences in numerical ability relate to sample size sensitivity.  

Individuals with higher numerical abilities consistently show greater sensitivity to sample 

size than do people lower numerical ability.  However, lower numerate people’s attention 

towards sample size is improved by simple interventions.   

Although lay use of sample size is non-normative, the results presented here 

suggest that people have intuitions regarding the utility of sample size.  These intuitions 

provide a basis upon which training interventions may build in order to improve how 

humans draw inferences from data.  
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Table 1. Sample size coefficients by numeracy level (high verses low), data type 

(statistics-only verses statistics+data), and use-N (told to use sample size verses no 

instructions) from Experiment 2. 

 
Group/Condition bN  (95% C.I.) 
High Numeracy  

Statistics-only, no Use-N .40 (.38-.43) 
Statistics-only, Use-N .42 (.40-.45) 

Statistics+data, no Use-N .41 (.39-.43) 
Statistics+data, Use-N .42 (.40-.44) 

Low Numeracy  
Statistics-only, no Use-N .29 (.25-.33) 

Statistics-only, Use-N .44 (.42-.46) 
Statistics+data, no Use-N .31 (.28-.34) 

Statistics+data, Use-N .41 (.38-.43) 
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Table 2. Low data percent range datasets used in Experiment 3. In the large N-small 

percent pairing sample sizes of 80 and 250 were paired with the smaller percentages than 

the sample sizes of 2, 3, or 5.  In the large N-large percent pairing the opposite was true.  

Normatively one would judge the percentages according to their sample size.  However, 

if sample size is completely ignored according to the encounter frequency model, then the 

opposite pattern would predicted across these datasets.  Power model predictions are 

shown if subjects weigh sample size similarly to Experiments 1 and 2, where the average 

exponent was .32 for subjects not given raw data or instructions to use sample size.  

 
Large N-small % pairing  Large N-large % pairing 

N Percent  N Percent 
1 0%  1 0% 
2 50%  2 0% 
3 33%  3 0% 
5 20%  5 0% 
80 10%  80 11% 
250 3%  250 24% 

Normative, 
 1N

5%  
Normative, 

 1N
20% 

Encounter 
Frequency, 

 0N
19%  

Encounter 
Frequency, 

 0N
6% 

Predicted 
Power,  .32N

13%  
Predicted 

Power,  .32N
12% 
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Table 3. High data percent range datasets used in Experiment 4. In the large N-small 

percent pairing sample sizes of 125 (or 1250 in the high magnitude condition) and 625 

(or 6250) were paired with the smaller percentages than the sample sizes of 5 (50) or 25 

(250).  In the large N-large percent pairing the opposite was true.  A normative judge 

would weigh each percentage in a dataset according to its sample size.  In contrast, if 

subjects ignore sample size altogether, according the encounter frequency model, they 

would show the opposite pattern.  Predictions are also shown if subjects weigh sample 

size according a power model with an exponent of .32 (the average exponent from 

Experiments 1 and 2 for subjects who were not given raw data or use-N instructions). 

 
Large N-small % pairing  Large N-large % pairing 

N Percent  N Percent 
1 (10) 100%  1 (10) 100% 
1 (10) 100%  1 (10) 100% 
1 (10) 100%  1 (10) 100% 
1 (10) 100%  1 (10) 0% 
5 (50) 100%  5 (50) 80% 

25 (250) 96%  25 (250) 80% 
125 (1250) 87%  125 (1250) 85% 
625 (6250) 78%  625 (6250) 98% 
Normative, 

 1N
80%  

Normative, 
 1N

95% 

Encounter 
Frequency, 

 0N
95%  

Encounter 
Frequency, 

 0N
80% 

Predicted 
Power,  .32N

88%  
Predicted 

Power,  .32N
87% 
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Table 4. Best fitting power exponents across all four experiments and Obrecht et al.’s 

(2009) previous data broken down by sample size range and numeracy. 

 
Power Exponent  (95% C.I.) bN

Experiment Sample Sizes 
Between Ss 

Manipulations High Numerate Low Numerate 

Exp 1 
1, 2, 5, 8,  
10, 13, 16,  
20, 27, 37 

Data type .37 (.36-.39) .22 (.20-.25) 

Exp 2 
1, 2, 5, 8,  
10, 13, 16,  
20, 27, 37 

Data type and 
use N 

.41 (.40-.43) .37 (.35-.38) 

Exp 3 
1, 2, 3, 5,  
80, 250 

N/A .34 (.29-.40) .22 (.17-.27) 

Exp 4a 
1, 1, 1, 1, 5,  
25, 125, 625 

N/A .42 (.35-.48) .28 (.22-.33) 

Exp 4b 
10, 10, 10,  
10, 50, 250, 
1250, 6250 

N/A .33 (.27-.39) .21 (.16-.26) 

Obrecht et al. 
(2009) Exp 3 

10, 100, 750, 
1,000, 10,000, 

100,000 
N/A .13 (.09-.17) -.01 (-.05-.03) 
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Figure 1. An example comparison pair from Experiments 1 and 2.  Here sample size was 

8, mean difference was high (i.e. 9-7=2, rather than 8-7=1), and standard deviation was 

low (i.e. 1.41, rather than 2.84).  Subjects in the statistics-only condition were given just 

the statistical summary information displayed on the three number lines (shown above the 

dotted line).  Subjects in the statistics+data condition were given both the number line 

and raw data representations.  
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Figure 2. Subjects’ confidence ratings in Experiment 1 as a function of sample size 

broken down by numeracy and data type. Higher numerates were more sensitive to 

sample size.  Lower numerate subjects were more sensitive to sample size when they 

were given both statistical summaries and the corresponding raw data, rather than just the 

summary presentations. 
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Figure 3. Subjects’ confidence as a function of sample size in Experiment 2.  The first 

graph shows the high numerates’ average ratings at each level of sample size collapsing 

across data type and use-N.  The second graph shows low numerates’ confidence ratings 

when provided with raw data and given instructions to use sample size.  The final graph 

gives low numerates’ ratings from both statistics-only conditions and the statistics+data 

condition in which subjects were not given the use-N instructions.  Standard errors bars 

are in larger in graphs where fewer subjects’ ratings are represented. 
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Figure 4. Gray and black bars represent the large N-large percent pairing, and the large 

N-small percent pairing conditions, respectively. Normative, encounter frequency, and 

power model predictions are shown in the first 4 pairs of bars in each graph.  The last two 

pairs of bars show percent rating data from high and low numerate subjects in 

Experiment 3.  Power model predictions are broken down for high and low numerate 

subjects.  The first graph displays the predictions and data for the two low probability 

datasets.  The second and third graphs display the predictions and subject data for the 

medium and high percent range datasets, respectively.  
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Medium Probability Datasets
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Figure 5. Hypothetical power functions for subjects in the low verses high magnitude 

sample size conditions in Experiment 4.  The low magnitude function is only shown up to 

625 because that was the highest sample size that subjects considered in this group.  

Subjects in the higher magnitude group viewed sample sizes up to 6250; the x-axis is 

truncated to show this endpoint.  The power function for the high magnitude condition 

starts at 10 because this was the lowest value shown to subjects in this condition. 
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Appendix: Numeracy scale 
 

1. Imagine that we roll a fair, six-sided die 1,000 times. Out of 1,000 rolls, how many 

times do you think the die would come up even (2, 4, or 6)?  

a) 500  b) 450  c) 200  d) 750  

 

2. In the BIG BUCKS LOTTERY, the chances of winning a $10.00 prize are 1%. What is 

your best guess about how many people would win a $10.00 prize if 1,000 people each 

buy a single ticket from BIG BUCKS?  

a) 100  b) 5  c) 1  d) 10  

 

3. In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 

1,000. What percent of tickets of ACME PUBLISHING SWEEPSTAKES win a car?  

a) .01%  b) .001%  c) .1%  d) 1%  

 

4. Which of the following numbers represents the biggest risk of getting a disease?  

a) 1 in 100  b) 1 in 1000  c) 1 in 10000  d) 1 in 10   

 

5. If Person A’s risk of getting a disease is 1% in ten years, and Person B’s risk is double 

that of A’s, what is B’s risk?  

a) 20% in 10 years  b) 2% in 10 years  c) 1% in 1 year  d) 2% in 5 years  

 

6. If Person A's chance of getting a disease is 1 in 100 in ten years, and Person B's risk is 

double that of A, what is B's risk in ten years?  
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a) 2 in 50  b) 1 in 50  c) 2 in 200  d) 1 in 1000  

 

7. If the chance of getting a disease is 10%, how many people would be expected to get 

the disease out of 100?  

a) 1  b) 5  c) 100  d) 10  

 

8. If the chance of getting a disease is 10%, how many people would be expected to get 

the disease out of 1000?  

a) 1000  b) 10  c) 100  d) 1  

 

9. If the chance of getting a disease is 20 out of 100, this would be the same as having a 

____% chance of getting the disease.  

a) 20%  b) 2%  c) 5%  d) 10%  

 

10. The chance of getting a viral infection is .0005. Out of 10,000 people, about how 

many of them are expected to get infected?  

a) 5  b) 2  c) 1  d) 50  
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