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A critical component of a communication system’s design is the analysis of potential electromag-

netic interference from within the system and from outside sources. Through physical and math-

ematical modeling, we can quantify the impact of interference on key performance metrics of the

system and pursue an optimal design based on certain interference constraints. In this dissertation,

we investigate several interference related issues in three emerging technologies: Broadband over

Power Line (BPL), Dynamic Spectrum Access (DSA), and Mobile Ad Hoc Networks (MANET).

In the BPL study, we analyze the radio interference from a BPL system operating between 2

MHz and several tens of MHz. An overhead medium-voltage power line is modeled as a 3-phase

set of parallel wires above a lossy earth. Both a near-exact solution and a closed-form far-field

approximation are presented. The maximum allowable excitation voltage vs. frequency is computed

by assuming compliance with FCC field strength limits. These calibration results are used to study

the interference to both terrestrial and airborne services, using noise floor increase as a metric of

interference severity. We also quantify the relationship between BPL capacity and BPL interference.

In the DSA study, we propose a solution to spectrum policy enforcement in DSA networks in-

volving the detection of unauthorized spectrum usage. We formulate the anomalous usage detection

problem using statistical significance testing. The detection problem is investigated considering two

cases, characterized by whether the authorized (primary) transmitter is mobile or fixed. We propose

a detection scheme for each case, respectively, by exploiting the spatial pattern of received signal
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energy across a network of sensors. Analytical models are formulated when the distribution of the

energy measurements is given and we present an algorithm using machine learning techniques to

solve the general case when the statistics of the energy measurements are unknown.

In the MANET study, we propose a two-phase interference classification framework in a CSMA/

CA-based MANET. It classifies different jamming attacks in a 3-D metric space and distinguishes

unintentional interference and interference-free conditions based on the consistency of ACK errors

and received signal strength.
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Chapter 1

Introduction

1.1 Motivation

A critical component of any communication system design is the analysis of potential electromag-

netic interference from inside and outside sources. In the RF environment, interference generally

limits the useable range of communication signals. Prior to deploying a new device, either an in-

tentional RF transmitter or an unintentional emitter, an engineering analysis has to be performed

regarding its impact on incumbent users and its vulnerability to the environment. Using a physical

and mathematical description of interference, an optimal design can be pursued given the interfer-

ence constraints. Recent years have witnessed technological advances of communications devices

in terms of waveform adaptation, frequency agility, and mobility. New applications have been ini-

tiated for economic and efficient delivery of broadband signals. Consequently, higher demands

for spectrum and greater density of RF devices have brought new challenges to the management

of interference. In this thesis, we will investigate interference issues in three emerging technolo-

gies: Broadband over Power Line (BPL), Dynamic Spectrum Access (DSA), and Mobile Ad Hoc

Networks (MANET).

1.1.1 Broadband over Power Line (BPL)

The emergence of BPL communications has attracted increasing attention in the past few years

[2, 3]. Through its vast infrastructure and capability of interconnecting virtually every premise,

the electric power distribution grid presents an economically attractive option for broadband signal

delivery in the last mile. In the United States, BPL networks are categorized into two classes [4]:
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(1) Access BPL, operating at frequencies between 1.705 MHz and 80 MHz over low- and medium-

voltage power lines for interconnection between customer premises and the Internet; and (2) In-

House BPL, using low-voltage wiring and electric power outlets for networking within a user’s

premises and/or connecting end premises to access BPL networks. As a medium designed for

transmission of AC power at 60 Hz, power lines carrying broadband signals may cause perceptible

interference to incumbent radio services by leaking in their operating frequency range, including

Federal communications, shortwave and TV broadcasting, and amateur radios. The interference

concerns regarding BPL have launched several field tests and analytical studies, e.g., [5] and [6].

Nevertheless, most existing results depend on specific configurations and a general consensus has

been difficult to find. On the other hand, although several modulation and interference mitigation

techniques have been proposed, the evaluation of BPL capacity has been rarely addressed under

interference constraints, which is critical to the viability of BPL systems.

In this thesis, we investigate the electromagnetic (EM) emissions of an access BPL system on

overhead medium-voltage (MV) wires, a configuration of particular interest for US deployments.

We have chosen to focus on MV BPL instead of in-house networks because (a) its EM emissions

are more likely to interfere with the public radio services due to its large physical dimension and

near-street locations; (b) MV BPL has a simpler system structure that can possibly be abstracted

into analytical models without loss of generality. Our work is aimed at providing an analytical

framework for computing BPL-created electric fields with good accuracy and assessing the BPL

interference in a general sense so that the results will not be confined to particular system configu-

rations.

1.1.2 Dynamic Spectrum Access (DSA) Using Cognitive Radios

The increasingly scarce spectrum and its significant underutilization in today’s wireless networks

has prompted the development of a new communication paradigm to exploit existing spectrum re-

sources dynamically. This new paradigm is referred to as Dynamic Spectrum Access (DSA) using

Cognitive Radios (CR), or NeXt Generation (xG) Networks [7]. Among several forms of DSA,

opportunistic spectrum access is perhaps the most appealing solution due to its flexibility and its

compatibility with minimal interference to legacy systems. An opportunistic spectrum access net-

work has a hierarchical access structure, where CR (secondary) users sense and make opportunistic
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use of idle spectrum resources without causing harmful interference to incumbent (primary) users

(e.g., TV services between 54 to 862 MHz [8]).

The openness of the lower-layer protocol stacks in cognitive radios, and their subsequent abil-

ity to adapt their waveforms, makes them an appealing solution to DSA. The open nature of their

protocols will increase the flexibility of spectrum utilization and promote spectrally-efficient com-

munication. Nevertheless, due to the exposure of the protocol stacks to the public for development,

CR platforms can become a tempting target for adversaries or irresponsible secondary users [9]. A

misuse of a CR can significantly compromise the benefits of DSA and threaten the privileges of

incumbent users. For example, an improperly programmed CR may accidentally transmit in the

operating band of a primary user, and fail to adhere to policies requiring it to vacate that spectrum.

Therefore, having the ability to enforce spectrum etiquettes is critical to the effectiveness and cor-

rectness of a DSA system. In this thesis, we aim to provide a systematic solution to reliable DSA,

including the network structure and policy enforcement. We will propose two detection schemes

dedicated to a DSA environment according to the mobility of an authorized transmitter.

Identification of a malicious or reckless spectrum usage is an essential component of etiquette

enforcement functions. This is basically a problem of distinguishing bad (unauthorized) transmis-

sions from good (authorized) ones. While sophisticated signal processing techniques have been

designed for detecting a desired signal from interference [10, 11], they are of little help in this new

paradigm of spectrum access. In many DSA systems (e.g., spectrum leasing), there can be a hetero-

geneous collection of authorized users and it is impractical to enumerate all of their signal structures.

Even if the authorized signal is known (e.g., TV signals in IEEE 802.22), unauthorized users can

disguise themselves by emulating authorized signals [12]. Therefore, an effective detection mech-

anism should not rely on programmable features, such as signal patterns. Fortunately, there is one

aspect of the problem that cannot be easily modified—the propagation channel. This motivates us

to pursue a reliable detection approach by making use of the characteristics of radio propagation.

Specifically, our detection will be based on the measurement of received signal energy at a group

of collaborating sensors, and will incorporate propagation modeling to ascertain whether there is an

anomalous transmission present.
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1.1.3 Mobile Ad Hoc Network (MANET)

The communication protocols at different layers in a mobile ad hoc network (MANET) are designed

under the assumption that all nodes obey the given specifications. However, a MANET is built upon

a shared medium that makes it easy for selfish users to deviate from the underlying MAC protocol

or for adversaries to launch jamming attacks. These attacks can be easily accomplished by emitting

RF interference that prevents other nodes from accessing the network (i.e., denial-of-service (DoS)

attacks [13]).

Ensuring resilience to DoS attacks is essential towards building a secure and dependable MANET.

In general, a defense strategy consists of detection and appropriate countermeasures against net-

work anomalies. Significant progress have been made in the literature to thwart jamming-based

DoS threats through physical and MAC layer mechanisms. Many defense schemes are shown to

be effective against certain types of jamming attacks. Such schemes include frame masking for

protocol-aware reactive jammers [14], channel hopping for narrow band jammers [15], channel cod-

ings for low power jammers [16], and spatial retreats for powerful jammers [17]. However, existing

detection methods can only tell whether a jamming attack is present but few are able to character-

ize the attack’s behavior, which is the basis for choosing the corresponding defense schemes. The

gap between the binary-answer (i.e., ‘yes’ or ‘no’) detection and dedicated countermeasure renders

most of the existing defense proposals less effective when facing a sophisticated attacker, which can

intelligently change its jamming strategies. Moreover, interference due to hidden terminal problems

in a wireless network can cause throughput degradations similar to that caused by a jamming attack.

Although such interference can be mitigated by MAC mechanisms, such as adaptive carrier sens-

ing [18], without properly recognizing the cause of current network anomaly, we may over-react to

a nonmalicious interference problem and may artificially introduce new threats to the network.

In this part of the thesis, we aim at classifying the interference behaviors in MANETs to bridge

the gap between the existing detection solutions and effective countermeasures. Taking into account

the dynamics of MANETs and the uncertainties of interference threats, we seek simple but robust

metrics and generic classification methods.
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1.2 Thesis Overview

1.2.1 Interference Evaluation of BPL Systems

To study the aforementioned interference issues in overhead MV BPL systems, we apply a bottom-

up analytical method by modeling the electromagnetic fields from a 3-phase, arbitrarily long power

lines over a lossy earth. The near-exact fields are presented in terms of Sommerfeld integrals and

solved by direct numerical integration. For distances remote from the power line, moreover, a far-

field closed-form solution is derived.

Using our field solutions, we first obtain a profile of BPL source voltage vs. frequency for attain-

ing compliance with FCC field strength limits. Based on this profile, we evaluate BPL interference

from the following three perspectives:

1. Interference impact from a single BPL on local terrestrial receivers is quantified in terms of a

“critical distance” beyond which BPL interference is below ambient noise.

2. Aggregate radiation from a large BPL deployment could interfere with aeronautical radio

services several kilometers above the earth and also with distant HF receivers. The interfer-

ence impact to airborne receivers is quantified in terms of noise floor increase, and that to

ionospheric radio applications is quantified in terms of the transmit power of an equivalent

source.

3. Limiting the BPL transmission power can alleviate the BPL interference impact, but at the

same time reduce the system capacity. Using the derived maximum allowable launch powers,

we estimate system throughput bounds for two BPL bands, namely, a “lower band” from 2 to

30 MHz and an “upper band” from 32 to 60 MHz. In addition, we explore the possibility of

trading the system capacity for less interference by adjusting the launch powers.

1.2.2 Interference Detection in DSA Networks

A robust and dependable design of an anomaly detection should not rely on a comprehensive de-

scription about anomalous behaviors, which is generally not attainable in practice. As a result,

our detection method is based solely on energy measurements from authorized transmitters and we

formulate the detection problem as a statistical significance test. Here, we define a normal usage
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scenario as having no more than one transmitter–static or mobile–operating in each portion (e.g.,

channel) of the spectrum. Based on this assumption, our work is motivated by two properties of the

spatial distribution of the received signal strength (RSS):

• The RSS (or received power in dB) from a single transmitter1 decays approximately linearly

with the logarithmic distance from the source, but it is no longer the case when the RSS is a

sum of multiple transmitters at different locations.

• Transmitters at different locations will lead to different spatial distributions of the RSS. This

spatial map, or signalprint, is an effective characterization of a transmitter.

By making use of these properties, we propose two detection methods according to the mobility of

the authorized transmitter. Specifically, when the authorized transmitter is mobile, we exploit the

property that dB path loss tends to increase linearly with log-distance. Unauthorized transmitters can

then be detected by a significance test of the linearity of measured dB energy versus log-distance.

For the case where the authorized transmitter is fixed, we use the notion of signalprints, i.e., the

spatial pattern of RSS. Unauthorized transmitters can then be detected by a significance test by

comparing the current pattern with a stored pattern of the authorized transmitter. In each case, we

initially assume the sensor network knows the statistics of the detected energies, and thus it can

set its decision region to obtain a specified false alarm rate. We also describe a machine-learning

approach that can be used in the more general scenario when the statistics of the detected energies

are not known.

1.2.3 Interference Classification in MANETs

The objective of this work is to understand the characteristics of network anomalies due to inter-

ference and, further, to devise a method to identify various interference scenarios. Being aware

of a network anomaly, we want to know what and where the problem is. Such information is es-

sential to the proper choice of countermeasures. A preferable solution would be a classifier that

can distinguish among potential interference threats based on certain system measurements. Due to

the dynamic topologies of MANETs, many vulnerabilities of MANETs arise due to unintentional

1Since the measuring circuit we use is commonly called an energy detector, we will use ‘RSS’ and ‘energy’ inter-
changeably in subsequent discussions.
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interference and intentional jamming attacks. These vulnerabilities are highly dependent on the un-

derlying technologies being used. As a result, our study has focused on a 802.11 CSMA/CA based

MANET and we look into the problem from a packet sender’s perspective. Specifically, by watching

the statistics of the ACK (acknowledgment) from the receiver, the interference classification issue

boils down to two fundamental questions:

• Is a data packet corrupted at the receiver?

• Is an ACK corrupted at the sender?

Correspondingly, a variety of interference scenarios can be classified into: (a) unintentional inter-

ference, (b) random jamming to the sender, (c) protocol-aware reactive jamming to the sender, (d)

random or reactive jamming to the receiver, and (e) combined jamming targeting both the sender

and receiver.

Based on the above problem definition, we propose three metrics that measure the reception

of ACK’s at the sender. The three metrics form a 3-dimensional space onto which all interference

scenarios can be mapped. In addition, we utilize the consistency of the frame error rate and received

signal strength to handle the case where a malicious jammer tries to emulate unintentional interfer-

ence. The existing consistency model is extended so as to distinguish between low link quality (low

SNR), unintentional interference, and malicious jamming. We note that the proposed classification

scheme is carried out by the sender without the receiver’s collaboration (except for sending ACK’s).

Such a non-cooperative scheme improves the robustness of the classifier against interference and

thus is preferable in a dynamic MANET system.

1.3 Background Literature

1.3.1 Broadband Communications over Medium-Voltage Power Lines

Modeling the electromagnetic field from power lines in free-space above a homogenous conducting

earth is a canonical problem in electromagnetics [19, 20]. The study was begun with an electric

dipole radiating above a lossy half-space, published by Sommerfeld in 1909 [21]. The problem was

treated by solving Maxwell’s equations with the boundary conditions on the air-ground interface and

the results were presented in terms of the Sommerfeld integrals [22, 23]. Since then, the problem
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of a dipole has been extensively studied and numerous analytical approximations (e.g. [24–26])

have been proposed. For the problem of a horizontal line with finite electrical dimensions, several

numerical techniques have been employed, such as the method of moments (MoM) [27] and the

fast multipole method (FMM) [28]. Program packages are also available for this purpose, such as

NEC-4 [29].

Meanwhile, a significant amount of effort has been expended on the transmission line charac-

teristics above lossy ground. The first attempt was reported by Carson in 1926 [30]. In this classic

paper, Carson presented the solutions for distribution parameter of a quasi-TEM transmission line,

which is valid in the low-frequency range or for a highly conducting ground. A self-contained ex-

act model was developed decades later by Wait, in his well known full-wave analysis [31], which

generalizes Carson’s approximation. Further studies discovered a new pole and a new branch cut of

the modal equations in addition to the three known terms and identified the physical meanings and

significance of all five spectral current components [32, 33]. Simple formulas of transmission line

approximations were recently developed for multi-parallel line structures [34–37].

Following the push for commercialization, investigations have been carried out on various as-

pects of BPL systems, including the electromagnetic compatibility (EMC) [38], channel characteris-

tics [39], modulation techniques [40] and capacity [41]. Among these research efforts, the potential

electromagnetic interference from BPL to incumbent radio services has been recognized as the most

essential issue. Since the first regulations for BPL emissions were published in 2004 [4], interfer-

ence concerns have launched considerable field tests and analytical studies [3, 5, 6]. Nevertheless,

some key aspects of the measurement and assessment of BPL emissions remain vague, such as the

measurement height and the extrapolation factor (i.e., the dB/decade factor used to predict the field

strength falloff with lateral distance) [42]. Thus, general agreement is hard to find among existing

results. In addition, although several modulation and interference mitigation techniques have been

proposed, the evaluation of BPL capacity has been rarely addressed under emission constraints, an

issue which is critical to the viability of BPL systems.
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1.3.2 Anomaly Detection in Wireless Networks

Spectrum usage enforcement is an emerging issue with the development of cognitive radios. The

authors in [9] presented a trusted radio infrastructure dedicated to spectrum regulation in a DSA en-

vironment. The work formalized the spectrum policies and proposed a sensing architecture which is

the system basis of our study. An unauthorized user in a DSA network can either be a reckless radio

or a malicious attacker. The attack by emulating a primary user [43], is in fact a spoofing attack spe-

cially launched in DSA networks for illegal occupation of the spectrum. Detection methods based

on location verification were proposed in [43] and [44]. Given the location of the primary trans-

mitter, dedicated sensors collaboratively verify the source location of a received signal by its path

loss fading rate, time difference of arrival, and location of the maximum received signal strength.

All these methods are non-interactive and do not require modifying the incumbent system. How-

ever, they all assume the primary transmitter’s location is known and far away from the sensing

area where illegal users might reside. Otherwise, these methods may not work well due to the low

accuracy of their location estimations.

Although few research efforts are dedicated to anomaly detection in DSA networks, there is a

rich body of works addressing the detection of spoofing attacks in generic wireless networks. Re-

ceived signal strength (RSS) based detection is one of the extensively studied methods due to its

low implementation complexity and inherent correspondence to the propagation environments. The

most related work to ours was published in [45]. In that work, two transmitters at different locations

are distinguished by comparing their signalprints, which is a vector of RSS measured at multiple

receivers. The proposed method shares the same principle as fingerprint-based localization [46].

Specifically, transmitters at different locations lead to different spatial distributions of RSS and thus

an attacker can be detected by examining the difference between its signalprint and the authentic

one. Without specifying the false alarm probability, the paper reported above 95% detection accu-

racy in a testbed experiment. However, since the method is not based on the statistics of RSS, it is

impossible to choose a detection threshold according to a desired false alarm probability.

On the other hand, model-based detection methods are based on the stochastic characteristics of

RSS, where the detection threshold can be analytically determined given the false alarm probability.

In [47], the authors proposed a Gaussian Mixture Model (GMM) to characterize the distribution
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of RSS, given the fact that commercial 802.11 radio devices generally have multiple antennas.

The RSS from an authentic transmitter is profiled in terms of its GMM model parameters and

attackers are detected using a likelihood-ratio test based on this profile. The method demonstrated

superior performance to the method in [45]. However, it requires a constant transmission power at

the authentic transmitter during detection, which limits its application in a more general system. A

frequency domain fingerprint method was proposed in [48], where a profile of the channel response

is built between the legitimate transmitter and a receiver. The method also assumed a constant

transmission power of the authentic user in order to compare two measurements at different times.

1.3.3 Interference Detection and Countermeasures in MANETs

In general, interference related network anomalies can be characterized either as selfish misbehavior

or as malicious jamming attacks, both of which can lead to DoS attacks in MANETs.

Detection of a selfish misbehavior is relatively easy because the selfish node is either an internal

user of the network or an intruder who tries to maximize its own throughput. Such a misbehavior

can be detected by preventive approaches via modifying the existing protocols. The authors in

[49] addressed the MAC layer misbehavior detection by modifying a centralized 802.11 protocol.

The main idea is to let the receiver assign and send back-off values to the sender in CTS and

ACK frames and then use them to detect potential misbehavior. Based on the corrected MAC

protocol, a rapid method of detecting selfish attacks through the access point (AP) is proposed. This

mechanism has several limitations, such as the possible collusion between sender and receiver. The

authors in [50] extended this idea by presenting an algorithm that ensures honest backoff selection

among the sender and a receiver as long as one of the participants does not misbehave. While such

approaches can detect some attacks, the modification of the protocol requires an update of the IEEE

802.11 installed base, making it difficult to deploy. The authors in [51] proposed to detect a selfish

misbehavior through a system called DOMINO. Their detection scheme for backoff manipulation is

based on comparing average values of the backoff to given thresholds. The authors in [50] improved

the detection performance by proposing a new metric based on the entropy of the backoff process.

These methods are based on monitoring internal users’ behaviors and thus are not applicable for

malicious attacks in the more general cases.

The anomalous behaviors that concern us are those resulting in a throughput decrease at some
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or all users in the network. Hence, an effective DoS attack should be perceivable by monitoring

the statistical changes with legitimate users’ traffic, whether it is launched by a selfish user or a

malicious attacker. In [52], a nonparametric detection mechanism is presented for CSMA/CA MAC

layer DoS attacks that does not require any modification to the existing protocols. The authors pro-

posed a metric called “explainability”, which quantifies the probability of each collision during two

successful transmissions and performs detection based on the M-truncated sequential Kolmogorov-

Smirnov statistics. This metric is superior to the collision frequency based metric. However, the

“explainability” must be calculated offline using an approximation method, which cannot adapt to

the dynamic changes of the network.

Selfish misbehavior has been addressed mostly from a game theoretic perspective considering

all nodes to be selfish. The goal in a game theoretic setting is to design distributed protocols that

guarantee, for each node, the existence, uniqueness and convergence to a Nash equilibrium with an

acceptable throughput. In order to obtain a desired Nash equilibrium, each node is assigned a cost

for each time it accesses the channel. For example in [49], the authors consider the case of selfish

users in Aloha who attempt to maximize their throughput and minimize the cost for accessing the

channel (e.g. energy consumption). Another game theoretic scheme for CSMA/CA schemes is

presented in [53]. It shows how a Nash equilibrium is achieved among selfish users when the cost

for accessing the channel repeatedly is that the user is jammed by another node. A node jams

anonymously any other node that achieves higher throughput than the average of everyone else

(assuming nodes always have data to transmit, the throughput of every node should be fair).

Ensuring resilience to DoS attacks is essential towards building a secure and dependable MANET.

In general, a defense strategy consist of detection and appropriate countermeasures against network

anomalies. Significant progress has been made in the literature to thwart jamming based DoS threats

through physical and MAC layer mechanisms. Many defense schemes are shown effective to certain

types of jamming attacks, such as frame masking for protocol-aware reactive jammers [14], channel

hoping for narrow band jammers [15,54], channel codings for low power jammers [16,55], incentive

and punishment for selfish jammers [49, 56], and spatial retreats for powerful jammers [17, 57].
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1.4 Contributions of the Thesis

The distinctive contributions of this thesis are outlined as follows with respect to the three commu-

nication technologies.

1.4.1 BPL

In the BPL study, we investigate the radio interference from BPL based on a near-exact electromag-

netic model. Based on the numerical computations for the near emission field and the closed-form

solution for the radiation far field, we show that:

1. BPL interference to local incumbent services can be discernible (out to a “critical distance”

that can be as high as 85 meters) with high probability if the FCC limits are just met.

2. BPL interference to airborne receivers can be significant, depending on the ambient noise

level in aircraft; thus, the excluded frequency bands specified in the FCC rules for aeronautical

communications should remain.

3. The equivalent radiated transmit power of aggregate BPL deployments is far below that of a

typical ham radio and so the interference threat to ionospheric radio services is negligible.

4. Practical BPL throughputs are attainable while meeting the FCC requirements.

5. If a simple power reduction scheme is adopted to mitigate the interference, the range of BPL

interference can be reduced by 15 meters at the cost of 100 Mbps in capacity.

1.4.2 DSA

In the work involving the detection of interference in DSA networks, we first present a network

structure and a spectrum access policy to guarantee authorized users will not interfere with each

other. We then address the detection of anomalous spectrum usage through several statistical signif-

icance testing formulations. Based on this framework, we have done the following:

1. We propose two new interference detection algorithms, one for the case where the authorized

transmitter is mobile and one that works better but only for the stationary case.
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2. Provided the distribution of the authorized signal energy is known, we present analytical

solutions to determining detection thresholds based on specified false alarm probabilities.

3. In the more general case where the analysis is not tractable, we propose to utilize a machine

learning technique, Support Vector Machine, to derive empirical thresholds.

1.4.3 MANET

To classify interference in MANETs, we propose an interference classification framework, which

distinguish between interference-free, unintentional interference, and jamming attacks. Our contri-

butions include the following:

1. We remove the ambiguities in the existing consistency model of ACK errors and received

signal strength and extend the function to classify unintentional interference and jamming

attacks.

2. We introduce new metrics based on the statistics of ACK receptions, which are more reliable

thanks to the short and fixed length of ACK.

3. The new metrics form a 3-D space and map three basic jamming models onto three orthogonal

bases, which simplifies the representation of a more sophisticated attack.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the BPL study, including the

modeling and evaluation of BPL interference. Chapter 3 describes a network structure for dynamic

spectrum access and propose detection techniques to enforce the spectrum etiquette. Chapter 4

presents an interference classification framework for CSMA/CA based MANETs. Chapter 5 con-

cludes the thesis and discusses possible future work.
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Chapter 2

Interference Evaluation of Overhead Medium-Voltage Broadband
Powerline Systems

2.1 Field Model for Medium-Voltage Lines over Lossy Ground

2.1.1 Preamble

This section, along with the Appendices, comprise the mathematically intensive part of the chapter.

It sets forth the basic assumptions and formulas upon which our predictions of BPL electric field

strength are built. The outcome is a general equation from which we obtain results for regions near

the power line, and a simplification thereof, from which we compute the far (radiation) fields. Both

solutions will find use in the system-related studies that follow.

The access BPL system under study consists of three-phase aerial MV wires over lossy ground,

and couplers located at utility poles where BPL signals are injected, repeated, or extracted from the

wires, as depicted in Figure 2.1. This is intended to represent generic BPL systems in the United

States. Given equivalent lumped impedances at each coupler, a segment of the wires between every

two couplers can be modeled as horizontal parallel lines above the ground, as shown in Figure 2.2.
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Figure 2.1: BPL system on medium-voltage overhead power lines.



15

!

"

#

�$

�

�
�

%�

&
%

'

(a)

������

���
���

���
���

��

��

��

	 
 � 	 
 �


��
�������
������


��
�������

�����

(b)

Figure 2.2: Single-segment model of a three-phase medium-voltage power line. (a) Physical struc-
ture of the three-phase line above ground. There is the possibility of a BPL coupler (not shown)
on each line at x = 0. (b) Equivalent circuit of the BPL part. Regarding each coupler as a signal
injector or repeater, it can be represented by an equivalent voltage source and series impedance at
x = 0.

To facilitate a tractable analysis, in this study we ignore the effects of the insulation that might cover

these lines and also the vertical sag caused by their weight. In Appendix A, we illustrate the validity

of these simplifications for our assumed line geometry.

In this power line model, each line has a height h above ground, a spacing d from each other,

a radius a, and a length L. With the assumption of a series excitation, an equivalent voltage source

VSi, and a source impedance ZSi, connect to the i-th wire in series (i = 1, 2, 3 for the three-phase

wires), representing the configuration of source couplers (i.e., injectors or repeaters). At both ends

of the segment, attached networks are abstracted by equivalent lumped impedances. The ground is

lossy with conductivity σg, permittivity εg, and permeability μ0. Later, we will quantify our specific

assumptions for the various geometric parameters, BPL sources, and line impedances.

2.1.2 Exact Field Solution

The procedure for modeling parallel lines of infinite length above a lossy ground is well described

in [37]. That solution is to be extended here to the scenario of arbitrarily long lines (i.e., both finite

and semi-infinite length).

First, consider a horizontal electric dipole located at the point (x0, 0, h), along the x-axis, and

having the length Δl. The ground is lossy with conductivity σg, permittivity εg, and permeability

μ0. The Hertz potentials of the dipole at an observation position (x, y, z) above the ground (i.e.
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z > 0) is given by [24]:

Π = x̂Πx + ẑΠz and Πx = Πxd + Π0
xr + Π1

xr, (2.1)

where

Πxd(x, y, z)

=− I(x0)Δl

8π2ωε0

∫ ∞

−∞

∫ ∞

−∞

1

k0z
exp{−j[kx(x− x0) + kyy + k0z |z − h|]} dkx dky, (2.2a)

Π0
xr(x, y, z)

=
I(x0)Δl

8π2ωε0

∫ ∞

−∞

∫ ∞

−∞

1

k0z
exp{−j[kx(x− x0) + kyy + k0z(z + h)]} dkx dky, (2.2b)

Π1
xr(x, y, z)

=− I(x0)Δl

8π2ωε0

∫ ∞

−∞

∫ ∞

−∞

2

k0z + kgz
exp{−j[kx(x− x0) + kyy + k0z(z + h)]} dkx dky, (2.2c)

Πz(x, y, z)

=− I(x0)Δl

8π2ωε0

∫ ∞

−∞

∫ ∞

−∞

2kx(k0z − kgz)

k2
gk0z + k2

0kgz
exp{−j[kx(x− x0) + kyy + k0z(z + h)]} dkx dky.

(2.2d)

The wavenumbers of free space and the ground are

k0 = ω
√

μ0ε0, and kg = k0

√
εg

ε0
− jσg

ωε0
, (2.3)

and ε0 and μ0 are free space permittivity and permeability, respectively. From the derivation, it

can be shown that the integrating factors kx and ky represent the x- and y- components of the

wavenumbers, respectively. In (2.6),

k2
0z = k2

0 − k2
x − k2

y, and k2
gz = k2

g − k2
x − k2

y . (2.4)

The polarities of k0z and kgz are chosen to satisfy the radiation constraints, meaning that

Im[k0z ] ≤ 0 and Im[kgz] ≤ 0. (2.5)

For a single horizontal line carrying a harmonic current I(x0) = I0e
−γx0 , the Hertzian po-

tentials can be readily obtained by integrating (2.2a) over the entire length of the line (by letting

Δl = dx0). Expressing the electric and magnetic fields in terms of the Hertzian potential [58], we
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have, for an arbitrarily long line,

Ex(x, y, z)

= jM

∫ ∞

−∞

∫ ∞

−∞
A(kx)[(k2

0 − k2
x)P (kx, ky) + (k2

y + k0zkgz)Q(kx, ky)] dkx dky, (2.6a)

Ey(x, y, z)

= − jM

∫ ∞

−∞

∫ ∞

−∞
A(kx)kxky[P (kx, ky) + Q(kx, ky)] dkx dky, (2.6b)

Ez(x, y, z)

= − jM

∫ ∞

−∞

∫ ∞

−∞
A(kx)kx[k0zP (kx, ky) + kgzQ(kx, ky)] dkx dky, (2.6c)

Hx(x, y, z)

= − 1

jωμ0
M

∫ ∞

−∞

∫ ∞

−∞
A(kx)kxky(k0z − kgz)Q(kx, ky) dkx dky, (2.6d)

Hy(x, y, z)

= − 1

jωμ0
M

∫ ∞

−∞

∫ ∞

−∞
A(kx)[k2

0k0zP (kx, ky)− (k2
ykgz − k2

yk0z − k2
0kgz)Q(kx, ky)] dkx dky,

(2.6e)

Hz(x, y, z)

=
1

jωμ0
M

∫ ∞

−∞

∫ ∞

−∞
A(kx)kyk

2
0[P (kx, ky) +

k2
gk0z + k2

0kkgz

k2
0k0z + k2

0kgz
Q(kx, ky)] dkx dky, (2.6f)

where

M =
jωμ0

8π2k2
0

I0, (2.7)

P (kx, ky) =
1

k0z
[±e−jk0z|z−h| − e−jk0z(z+h)]e−j(kxx+kyy), (2.8)

Q(kx, ky) =
2k2

0

k2
gk0z + k2

0kgz
e−j[kxx+kyy+k0z(z+h)], (2.9)

and

A(kx) =
sin[L(kx + jγ)/2]

(kx + jγ)/2
ejL(kx+jγ)/2. (2.10)

The minus sign in P (·) applies to Ez when z < h. Note that P (·) and Q(·) are also functions of

(x, y, z). In the exact field solutions of (2.6), A(kx) is the only term affected by the dimension,

L, of the line. For an infinitely long line (i.e., −∞ < x < ∞), one can easily recover the same

solutions as those given by Wait’s full-wave analysis [31]. For a finitely long line, by assuming

0 ≤ x0 ≤ L in (2.2a), we have the L-dependent result in (2.10). In the following analysis, we will
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model a semi-infinitely long BPL where L goes to infinity. By assuming a lossy line (i.e. γ has a

positive real part, which is usually true in practice1), A(kx) then reduces to

A(kx) =
1

γ − jkx
. (2.11)

We see from (2.6) that the fields consist of two part, where P (·) corresponds to the case of a

perfect conducting ground and Q(·) represents the increment due to the lossy effects of the imperfect

ground. This can be verified by letting the ground conductivity σg →∞. Then, kg and thus ug will

tend towards infinite values, which eliminates the Q(·) terms in the field solutions. Also, the image

part (second term) of P (·) is canceled by the lossy term Q(·) when kg = k0, and it then yields the

solution of a single wire in the free space.

So far, we have presented an exact formula for the fields from an arbitrarily long, single power

line over lossy ground, with current propagating in one direction (left to right). We now consider a

set of N parallel lines at the same height, separated horizontally by d meters. In general, currents

in transmission lines consist of forward and backward waves, so the current in the i-th line has the

form

Ii(x) =
N∑

k=1

Ti,k(I
+
m,ke

−γkx − I−m,ke
γkx). (2.12)

The index k denotes the mode in each line, and we assume as many modes as lines. In our case,

N = 3. The propagation constant γk is the k-th diagonal element of the 3-by-3 diagonal matrix γ;

the coefficient Ti,k is the (i, k)-th element of the 3-by-3 transformation matrix T. γ and T can be

obtained by the following diagonalization [59]:

γ2 = T
−1

YZT = diag{γ2
1 , γ2

2 , . . . , γ2
n}, (2.13)

where Z and Y are the per-unit-length series impedance and shunt admittance, both of which are

3 × 3 matrices. They were derived in [35] for the condition of parallel lines over a lossy earth.

The mode current I+
m,k (I−m,k) is the k-th forward (backward) mode current [60], whose particular

solution is obtained in Section 2.1.4.

If we take the field solutions (2.6) to be functions of I0 and γ (see (2.7) and (2.10)), as well

as of x, y, and z, each of the E and H components can be obtained as a summation of the fields

1It is required that the integral contour of kx is always on the real axis. This is the case in the following numerical
computations.



19

generated by the forward and backward currents in all the lines. Thus,

Eall,ξ(x, y, z) =

N∑
i=1

N∑
k=1

Ti,k[Eξ(I
+
m,k, γk, x, y − yi, z)− Eξ(I

−
m,k,−γk, x, y − yi, z)] (2.14)

Hall,ξ(x, y, z) =

N∑
i=1

N∑
k=1

Ti,k[Hξ(I
+
m,k, γk, x, y − yi, z) −Hξ(I

−
m,k,−γk, x, y − yi, z)] (2.15)

where Eξ and Hξ are the fields having the form (2.6); ξ denotes x, y or z; and yi = (i − 1)d is the

y-coordinate of the i-th line, Figure 2.2.

2.1.3 Far-Field Approximation

Although closed-form evaluations have been extensively carried out for the Sommerfeld integrals

in (2.6) in the near field, they are either limited by certain assumptions or are too complicated to

provide tractable solutions [61]. Nonetheless, The radiation fields can be readily and accurately

approximated by using a quick method of saddle-point approximation [62]. We now present that

method.

It is easy to see that the total solutions (2.6) are Weyl-type integrals, by rewriting (2.8) and (2.9)

as

P (kx, ky) = ±Fd(kx, ky)− Fr(kx, ky) (2.16)

and

Q(kx, ky) =
2k2

0k0z

k2
gk0z + k2

0kgz
Fr(kx, ky), (2.17)

where

Fd(kx, ky) =
1

k0z
exp{−jkxx− jkyy − jk0z |z − h|} :=

e−j
−→
k
−→
R

k0z
,

Fr(kx, ky) =
1

k0z
exp{−jkxx− jkyy − jk0z(z + h)} :=

e−j
−→
k
−→
R

k0z
,

(2.18)

and
−→
k = kxx̂ + kyŷ + kz ẑ is the propagation vector of plane wave components at the observation

point and
−→
R is the distance vector from the source point to the observation point. Now we can see

the property of the far field. When |−→R| → ∞, (2.18) will be rapidly oscillatory compared with other

terms in the integrands of the field solution. According to the discussions in [63] and [62], most of

the contributions to the integrals in (2.6) are from the vicinity of the saddle point (kx0, ky0), defined

by
∂

∂kx
(
−→
k
−→
R)

∣∣∣∣
kx0

= 0,
∂

∂ky
(
−→
k
−→
R)

∣∣∣∣
ky0

= 0. (2.19)
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Thus
kx0

x
=

ky0

y
=

kz0

z
. (2.20)

It is apparent that the saddle point corresponds to the plane wave component whose propagation

vector points from the source to the observation point. Physically, this means the propagation direc-

tion (i.e. that of the Poynting vector) at that point. Therefore, we can take all terms in (2.6) out of

the integrals, except Fd(kx, ky) and Fr(kx, ky), by setting

kx =
x

R
k0, ky =

y

R
k0, k0z =

|z ± h|
R

k0, (2.21)

where R =
√

x2 + y2 + (z ± h)2. Then, the remaining integrals are
∫ ∞

−∞

∫ ∞

−∞
Fd,r(kx, ky) dkx dky = 2πj

exp(−jk0R)

R
. (2.22)

The double integrals are now completely removed from the solution. The resulting far-field approx-

imations to the E and H components are

Ex(x, y, z) = −2πk2
0M

{
A(kxd)(R

2
d − x2)

exp(−jk0Rd)

R3
d

−A(kxr)(R
2
r − x2)

exp(−jk0Rr)

R3
r

+A(kxr)[y
2 + (z + h)ug]Qr

exp(−jk0Rr)

R3
r

}
,

Ey(x, y, z) = 2πk2
0Mxy

{
A(kxd)

exp(−jk0Rd)

R3
d

−A(kxr)
exp(−jk0Rr)

R3
r

+A(kxr)Qr
exp(−jk0Rr)

R3
r

}
,

Ez(x, y, z) = 2πk2
0Mx

{
A(kxd)(z − h)

exp(−jk0Rd)

R3
d

−A(kxr)(z + h)
exp(−jk0Rr)

R3
r

+A(kxr)ugQr
exp(−jk0Rr)

R3
r

}
,

Hx(x, y, z) = −2πj
k3

0

jωμ0
MA(kxr)xy[(z + h)− ug]Qr

exp(−jk0Rr)

R4
r

,

Hy(x, y, z) = −2πj
k3

0

jωμ0
M

{
A(kxd)(z − h)

exp(−jk0Rd)

R2
d

−A(kxr)(z + h)
exp(−jk0Rr)

R2
r

−A(kxr)(y
2ug − y2(z + h)− ug)Qr

exp(−jk0Rr)

R4
r

}
,

Hz(x, y, z) = 2πj
k3

0

jωμ0
My

{
A(kxd)

exp(−jk0Rd)

R2
d

−A(kxr)
exp(−jk0Rr)

R2
r

+ A(kxr)
2(z + h)

(z + h) + ug

exp(−jk0Rr)

R2
r

}
,

(2.23)
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where A(·) is the same function defined in (2.6),

kxd =
x

Rd
k0, kxr =

x

Rr
k0, (2.24)

Rd =
√

x2 + y2 + (z − h)2, Rr =
√

x2 + y2 + (z + h)2, (2.25)

and

Qr =
2k2

0(z + h)

k2
g(z + h) + k2

0ug
, ug =

√
k2

g

k2
0

R2
r − (x2 + y2) (2.26)

Note that the solutions given there are for a single current component propagating to the right,

over an x-range from 0 to L. For the N = 3 parallel lines, each carrying three mode currents,

and each of these with forward and backward components, each field component in (2.23) must be

summed over 18 propagating current components, just as in (2.14).

The time-averaged radiation power per unit area at a receiving antenna can be readily obtained

by the Poynting vector, which is

Pr =
1

2
E×H

∗ =
|E|2
2η

, (2.27)

where η = 120π ≈ 377Ω is the characteristic impedance of free space.

2.1.4 Bidirectional BPL Line Model and Calculation of Line Currents

Due to line attenuation, a BPL signal may be regenerated one or more times before entering a sub-

scriber’s premise. At the same time, the attenuation can be sufficiently mild that several couplers

are passed before regeneration is necessary. A BPL line structure showing several evenly-spaced

couplers is shown in Figure 2.3, where the solid lines denote a multi-line (specifically, a 3-phase)

system; the bold symbols denote matrices; and a coupler is represented as either a series impedance

to a particular signal (no regeneration) or as a series impedance plus a voltage source (regenera-

tion). We call the interval between couplers a BPL section, and we call the set of sections between

regenerations a BPL span.

Here, we complete the solutions for the EM-fields in space, by making assumptions leading to

formulas for the BPL mode currents, represented by the vectors I
+
m and I

−
m. Using these solutions

to compute the total E-field magnitude at y = 30 m (y = 10 m) for f < 30 MHz (f > 30 MHz),

we will solve for the maximum allowable source voltage as a function of frequency.

Our assumptions are as follows:



22

ZS

Zleft Zright

Vs ZS Vs ZS Vs

Figure 2.3: BPL line with evenly spaced couplers.

1. Signals are injected onto and extracted from the power line system via an inductive coupler

associated with the outer conductor (i = 1 in Figure 2.2). That is, there are no source volt-

ages or impedances for i = 2, 3. The coupler is essentially a transformer which reflects an

equivalent series impedance onto the line from its secondary side and, when there is signal

regeneration, also reflects an equivalent voltage source.

2. A BPL section is 100 m long and a BPL span is six sections (600 m) long [64].

3. All attachments to the line, both physical and inductive, lead to added signal attenuations that

can amount to as much as 30 dB in 1 km [64]. We model this as 3 dB of attenuation at each

coupler; more specifically, we treat it as a smooth, continuous excess attenuation—over and

above the natural attenuation of the line—of 30 dB/km.

4. Subscribers are separated by means of frequency division multiple access (FDMA) among

the OFDM tones transmitted over the line. Moreover, the FDMA subset for a given user at a

given regenerator operates in the time-division mode between incoming and outgoing signals,

so that regenerated signals will not be interfered with by the residue from the previous span.

5. By symmetry, the effective input impedances Zleft and Zright, Figure 2.3, should have the

same statistical variations over time and sections. We exploit this to set Zleft = Zright. We

simplify matters even further by assuming the line is matched in both directions, so that

Zleft = Zright = ZC, where ZC is the characteristic impedance matrix. The effect of this

assumption is to drive I− to 0.

6. For the above simplification to be even approximately valid, the impedance of the series cou-

pler on the line should be a small fraction of the characteristic impedance. Our calculations for

ZC show that the diagonal elements of this matrix (i.e., the self impedance of the power lines)

are approximately resistant across BPL frequencies. Specifically, the diagonal elements of the
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characteristic matrix range from 90−j15 ohms at 2 MHz, to 480−j1.2 ohms at 10 MHz, and

to 487 + j1 ohms at 80 MHz. Therefore, we postulate a series impedance matrix, ZS, whose

only non-zero term, namely, the (1, 1) element, is resistant and equal to one-nineteenth of the

resistance of ZC,11. This is equivalent to coupling a very small series resistance onto one of

the 3-phase lines. Appendix B show that, under this assumption, the power launched down

the line to the right by the regenerator is 10 dB below the maximum launch power possible.

This loss in power is an acceptable price to pay for keeping the line essentially transparent to

the BPL couplers.

Based on the above assumptions, a BPL signal injected onto the lines will transmit power in

both directions, under similar propagation conditions. Therefore, the BPL model in Figure 2.2 is

now generalized into a bi-directional one, with semi-infinitely long lines on each side. Then, the

only needed modification to the field solution (2.6) is

A(kx) =
1

γ − jkx
+

1

γ + jkx
=

2γ

γ2 + k2
x

. (2.28)

The above assumptions and simplifications can certainly be challenged, and they clearly repre-

sent the least rigorous part of our formulation. At the same time, they are practical and reasonable,

and permit us to proceed numerically. Other assumptions, particularly about line matching, would

lead us, under the FCC constraints, to essentially the same values of allowable BPL currents at

x = 0, and these values largely determine the maximum E-field along x for a given y. For this

reason, we believe the numerical results of this study are robust to any reasonable departures from

the above simplifying assumptions. We can therefore proceed to set limits on source voltage, and to

then quantify BPL interference.

2.1.5 Summary

The E and H field components from a BPL segment of length L can be computed as double sums,

(2.14), of double integrals, (2.6), and are totally determined by the matrices/vectors γ, T, I
+ and

I
−, which are introduced in Section 2.1.2. A simplification of the equations, valid for the far fields,

is given in Section 2.1.3. The current vectors I
+ and I

− must be made concrete for purposes of

computation, and specific assumptions regarding the BPL line couplers (including their equivalent
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impedance, Appendix B) lead to simplified solutions. These assumptions are enumerated in Sec-

tion 2.1.4.

In the following section, the exact solutions of Section 2.1.2 are combined with numerical rou-

tines to compute the electric fields close to the power line, i.e., those too close to be regarded as far

fields. For these computations, we make use of the numerical integration package CUBPACK [65].

2.2 Evaluation of BPL Interference

The parameters listed in Table 2.1 will be used for the numerical computations. They are chosen

to reflect the prevailing MV line configurations in the United States and an “average” condition of

earth [5, 38, 64].

Table 2.1: Parameters of the 3-Phase MV Transmission Line
Line Topology Value Line Conductor Value Ground Value
h 8.5 m σw 5.8× 107 S/m σg 5 mS/m
a 5 mm εw/ε0 1 εg/ε0 15
d 0.6 m

2.2.1 Source Calibration — Setting Limits on the BPL Signal

The emissions from access BPL are subject to FCC Part 15 rules. These rules require the BPL

system to comply with the limits for intentional radiators when operating below 30 MHz and those

for unintentional radiators (Class A) when operating above 30 MHz [4]. The emission limits are

summarized in Table 2.2. The limits and related bandwidths are based on measuring equipment

using a CISPR quasi-peak detector. The measurement distance is specified as the horizontal distance

between the measurement antenna and the closest point of the equipment under test. To ensure

that the emissions from BPL meet the FCC limits, the maximum allowable excitation must be

Table 2.2: FCC Part 15 Electric Field limits for BPL on medium voltage lines [4].
Frequency Field Measured Measured
(MHz) Strength (μV/m) Distance (m) Bandwidth (KHz)

1.705 - 30 30 30 9
30 - 80 90 10 120
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Figure 2.4: Electric fields from a BPL span carrying signals at 30 MHz, with VS = 1 volt (In these
plots, x = 0 corresponds to the point of BPL injection.)

determined. Since the limits are defined at distances close to the wires (i.e., at 10 m and 30 m), the

following calibration results are based on the near-field solution.

According to FCC measurement guidelines [66], the field strength should be measured at dis-

tances of 0, 1/4, 1/2, 3/4, and 1 wavelength down the line from the BPL injection point. As a

conservative test, we search for the maximum field down the line up to 600 meters, which is greater

than the wavelength of the lowest BPL frequency (i.e. 1.7 MHz). A measurement height of 2 meters

is used for all the results, to emulate the heights of widely used mobile antennas. Assuming a unity

source voltage VS = 1 volt, we obtain Figure 2.4, which depicts the electric field of a BPL section

at 30 MHz2. The total field strength assuming a perfectly conducting ground is also presented. Fol-

lowing the assumptions of Section 2.1.4, these computations were made for an excess attenuation of

30 dB/km. The maximum electric field strength is seen to be ∼ 72 dBμv/m at y = 10 m and ∼ 60

dBμv/m at y = 30 m. The 12-dB difference is greater than that which would occur in a radiation

for field (20 log10(30/10) ∼ 9.5 dB), because the near field falls off more rapidly with distance,

i.e., faster than y−1.

The maximum electric field strength was computed across the BPL frequency band, as illustrated

in Figure 2.5a. The electric field strength considered in our study is the root-mean-square (rms)

magnitude of the total field. To take into account the coupler mismatching loss, results include an

2The BPL power propagates in both directions from its injection point. Under our assumptions, the field strength as a
function of x is symmetrical about the injection point (x = 0 in Figure 2.4).
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Figure 2.5: Calibrating source voltage based on the maximum electric field strength from 2 to 80
MHz. (a) Maximum field strength for VS = 1 volt at y = 30 m (f < 30 MHz) and y = 10 m
(f > 30 MHz). (b) Limits on BPL source voltage and a curve-fitting approximation. Note that the
ordinate is in rms volts within the relevant bandwidth.

excess attenuation of 0, 15, and 30 dB/km. For an excess attenuation of 30 dB/km, the maximum

field strength is decreased by 4 dB or less for frequencies up to 15 MHz. Note that excess attenuation

has little impact at frequencies above 15 MHz.

To satisfy emission requirements, the source voltage must be scaled down from 1 volt for every

frequency so that its rms value within the relevant bandwidth (i.e., 9 kHz for f < 30 MHz and

120 kHz for f > 30 MHz) just meets the FCC limits. The results are presented in Figure 2.5b for

the excess attenuations of 0 dB, 15 and 30 dB/km. Here, we choose to calibrate the source voltage

using an excess attenuation of 0 dB; this leads to VS values that are conservative, specifically, they

are lower by ∼ 4 dB at f = 5 MHz and by less at all other frequencies.

A convenient formula for the approximate voltage limit was devised by curve-fitting the follow-

ing model to the result with 0-dB excess attenuation (i.e., the most conservative limit)

VS =

⎧⎨
⎩ a1f

2
c + b1fc + c1, if fc ≤ 30MHz,

a2f
2
c + b2fc + c2, if fc ≥ 30MHz,

(2.29)

where fc is the operating frequency in MHz and VS is in rms volts within the relevant bandwidth.

The coefficients are given in Table 2.3, and the result is shown by the solid curve in Figure 2.5b. We

use this formula as our model for allowed BPL source voltage vs. frequency.
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Table 2.3: Coefficients of Approximation Formula (2.29)
Coefficient Value Coefficient Value

a1 −6.076 × 10−5 a2 7.008 × 10−6

b1 1.054 × 10−3 b2 −9.718 × 10−4

c1 0.05574 c2 0.04538

2.2.2 Interference to Terrestrial Services

To assess the potential interference from BPL into incumbent services, we need to translate electric

field strength into the power level at the receiver of a local radio. For fixed-gain antennas, the

received emission power is given by [5]

Pemit = 10 log10

( |Er|2
2η

)
+ 10 log10

(
λ2

4π

)
+ Gr + 10 log10(φ) + δ, (dBW) (2.30)

where Er is the incident field strength in V/m, η is the characteristic impedance of free space, λ

is the emission wavelength in meters, Gr is the receiver antenna gain in dBi, φ is the average duty

cycle of the BPL signal, and δ is a compensation for differences between rms and measured quasi-

peak values. In this evaluation, Gr = 0 dB and δ = −2 dB; and φ = 50% is used, which assumes

moderate Internet utilization.

As a potential interferer to nearby radio services, a BPL system should emit as little power as

possible, consistent with its purpose. Under the current emission limits, however, BPL emission

power can be substantially higher than typical ambient noise, as shown in Figure 2.6. Here, the

BPL power density is the received power given in (2.30) divided by 9 kHz (120 kHz) if f < 30

MHz (f > 30 MHz). We choose the noise levels in a “business environment” and a “quiet rural

environment”, which are the highest and the lowest levels, respectively, of man-made ambient noise

as defined in [67]. We see that, at the specified measurement distances, the current FCC limits can

lead to the BPL emission powers 20 to 35 dB higher than the noise.

It thus appears that BPL emission can be deleterious even if they meet FCC limits. To examine

this prospect in a more complete way, we used our computation program for the near field to conduct

the following experiment:

1. We define an interference condition as occurring at an incumbent receiver if the BPL power

density there equals or exceeds that of the ambient noise. The ambient noise is chosen as
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Figure 2.6: Maximum allowed emission power spectrum density from BPL at y = 30 m (for
f < 30) MHz and at y = 10 m (for f > 30 MHz), compared with ambient noise level in a
“business environment” and a “quiet rural environment”.

that in a “business environment”. We define the 3-dB critical distance as the smallest lateral

distance from the power line for which no interference (as defined above) occurs.

2. We envision an incumbent receiver at a height z = 2 m; a lateral distance y of 0, 5, 10, 15,

..., 90 m; and a distance x along the transmission line within L = 600 m of the BPL source3

(injection point).

3. For each y, we compute the percentage of x-positions between x = 0 and x = L at which

interference occurs, doing so for frequencies of 2, 15, 25, 30, 45, 60 and 80 MHz.

The results of this exercise are shown in Figure 2.7. For f = 30 MHz, we show two curves:

One for the rules governing the lower band (f < 30 MHz), and one for the rules governing the

upper band (f > 30 MHz). We see that the BPL interference impact is significantly greater for

frequencies in the lower band. To completely avoid excess interference (meaning that the ordinate

value is 0%), radio receivers have to be at a distance from the power lines of 45 to 85 m as f ranges

from 2 MHz to 30 MHz. The corresponding distances for the upper band are from 35 to 70 m as f

ranges from 30 MHz to 80 MHz.

3We assume the regenerator L meters to the right of x = 0 will generate the same field pattern, and so on down the
line, leading to a periodic pattern of field strength |E| vs. x, with period L. We can thus confine our attention to just one
period.
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Figure 2.7: (a) Percentage of locations in longitudinal (x) direction where BPL interference is above
the ambient noise. (b) 3-dB critical distance at various BPL frequencies.

To understand this difference, we note from Table 2.2 that the Part 15 requirement on E-field

amplitude is 30 μV/m at y = 30 m, and 90 μV/m at y = 10 m. If these locations were in the far

field, where |E| is inversely proportional to y, these two requirements might seem commensurate.

However, the near field is still dominant at these locations, so that |E| ∼ y−n, where n lies some-

where between 1 and 2. In this case, 90 μV/m at 10 m implies less than 30 μV/m at 30 m, i.e., it is a

more stringent requirement. Moreover, these field strength limits are rms values within a specified

bandwidth, namely, 9 kHz below 30 MHz and 120 kHz above 30 MHz. This amounts to a power

spectrum density reduction of ∼ 11 dB for the allowed emissions above 30 MHz which, as Fig-

ure 2.7 shows, has major implications for the relative terrestrial interferences from these two bands.

We will see similar differences between the two bands when we compare far-field interferences into

airborne receivers and BPL throughputs.

2.2.3 Interference to Airborne Services

The FCC Part 15 Rules specify a set of bands at which to prohibit overhead MV BPL operation

([4], p. 148), as an additional measure to reduce harmful interference to aeronautical radio services.

These excluded bands are currently used by federal aircraft stations in the 2 to 50 MHz frequency

range and by commercial radionavigation services in the 74.8 to 75.2 MHz. In this section, we

investigate the justification for such restrictions.
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Figure 2.8: Interference to airborne radios from a mass BPL deployment on the ground with random
directions.

We consider a circular area wherein BPL are placed with a fixed center-to-center spacings4 and

arbitrarily oriented. They form a grid structure as shown in Figure 2.8, where each short line indi-

cates the orientation of a BPL span. Each numerical result is an average over 500 cases of random

deployments where, for each deployment, the voltages from different BPL spans are assumed to

add noncoherently.

We assume the BPL format is orthogonal frequency division multiplexing (OFDM); that, for

concreteness, the tone spacing is 9 kHz; and that the transmit voltage per tone is chosen to just meet

the FCC emission limits. The spectral density at a given frequency is then accurately estimated as

the average received tone power at that frequency divided by the tone spacing.

We use the noise floor increase as a metric of the interference from the BPL aggregation, which

is defined by [5]

	N = 10 log10[(PN + PR)/PN ] (dB), (2.31)

where PN and PR are the noise power and BPL radiation power, respectively. Hence, it represents

the noise level increase, due to the BPL radiation, at the receiver of a victim radio service.

It is hard to predict the actual ambient noise level at an airborne receiver because of the compli-

cated noise condition (e.g. engine, air flow, etc.). Therefore, we consider both the level in a “quiet

rural environment” and that in a “business environment”, to include a wide range of noise levels.

BPL radiations were computed for both cases, from a BPL deployment5 where N = 221 spans

4Although our BPL model is infinitely long, a signal is always attenuated to a negligible level within a certain distance.
With the practical settings in Table 2.1, the effective propagation distance of a BPL signal is usually less than 1 km without
regeneration.

5This results in a density of ∼ 2.8 spans/km2. If one BPL span carries broadband signals to 30 customers and 1
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Figure 2.9: The noise floor increase from BPL interference at aircraft radio receivers. 221 BPL
spans in a 5-km radius. (a) Federal aircraft stations in 2 to 50 MHz. The center frequencies at the
excluded bands are indicated by small circles; (b) Radionavigation services at 75 MHz.

reside in a circular area with a radius of R = 5 km. Typical federal aircraft receivers in the 2 to 50

MHz frequency range operate at 18,000 to 40,000 feet (approximately 5.5 to 12 km) above ground

and the radionavigation services at 75 MHz are used by aircrafts during climbing/landing from 0

to 3,000 feet (approximately 915 m) above ground. Therefore, heights of 6 km, 9 km and 12 km

are considered in the 2 to 50 MHz frequency range, and heights of 300 m, 600 m and 900 m are

considered at 75 MHz.

Figure 2.9 shows the noise floor increases at the center of the BPL deployment (D = 0 in

Figure 2.8) in the 2 to 50 MHz frequency range, and those at various radial distances from the

center of the deployment at 75 MHz. The results illustrate how much the noise level increase

from the mass BPL deployment depends on the ambient noise levels at an aeronautical receiver.

Assuming a less noisy environment (i.e., “quiet rural”), the tested deployment of BPL can cause up

to a 14 dB increase in the noise level of a radio device traveling above it. On the other hand, a more

noisy background (i.e., “business”) can dominate this BPL interference. We also see that the BPL

interference impact at frequencies above 30 MHz is mild, even for a quiet ambient environment.

This is due to more stringent emission requirements set for this range of frequencies, as explained

in Section 2.2.2.

We conclude from this exercise that due caution fully justifies the exclusion imposed by Part 15

of 4 urban households is a BPL customer, as predicted in [42], the deployment corresponds to a household density of
∼ 338/km2, which is far less than that in a major US city.
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Rules on BPL usage at 75 MHz. The same applies to the exclusions at those frequencies in the 2-30

MHz band where federal aeronautical equipment operates.

2.2.4 Ionospheric Interference

We have shown that the direct radiation from a large BPL deployment can cause discernible interfer-

ence to airborne receivers. Via ionospheric propagation, an aggregate radiation has the potential to

raise noise levels at receivers hundreds of miles away. Ionosphere refraction is an important means

of long-distance radio communication in the HF band (up to 30 MHz or up to 50 MHz depending on

time-of-day, season, and sunspot cycle). Many government, military, amateur and commercial radio

services reside in this frequency range, because of the ability to communicate over long distances.

Since the HF band is also a major part of the BPL operating band, a large group of BPL spans

operating at the same HF frequency may act like an effective HF transmitter and cause interference

to incumbent receivers at a large distance.

This potential was investigated in Figure 2.10, where the total radiation power density from a

large BPL deployment of 221 spans was computed for frequencies from 2 to 50 MHz. The BPL

deployment setting is the same as that in Section 2.2.4. The result clearly shows that the aggregate

radiation power for a large number of BPL spans at the same HF frequency is on the order of μW per

KHz. This profile is very trivial compared to an amateur radio transmitter, which typically radiate

100 or 200 watts in a few KHz.

In one of our studies [68], we show that the aggregate radiation is proportional to the number of

BPL spans. According to Figure 2.10, it would take an extremely large number of BPL spans (or

equivalently, an extremely high density of BPL deployment) to achieve discernible interference at

distant receivers. This large gap ensures that the BPL interference via ionospheric propagation is

not an issue for amateur radios.

2.3 BPL Capacity Under Interference Constraint

The above study clearly shows that the BPL transmission power is bounded by its emission limit,

which will further constrain the system capacity. Therefore, it is necessary for us to understand, (i)

whether a viable BPL capacity can be achieved under current interference constraints; and (ii) the
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Figure 2.10: Total radiation power density from a large BPL deployment on the ground with random
directions. N = 221 spans.

effectiveness of trading BPL capacity for less emission interference.

2.3.1 Capacity while Meeting FCC Rules

With knowledge of the maximum allowable BPL excitation, we can provide a rough estimate of

the BPL capacity. Since allowable source voltage varies with frequency, attainable load power at

the regenerators will also vary with frequency. Multicarrier modulation schemes such as OFDM

are good choices for this condition, since frequency groups can be easily assigned different power

levels, and also different modulations.

We will compute throughputs for two possible BPL systems, each occupying 28 MHz and using

OFDM. One operates in a “lower band” from 2 to 30 MHz, and the other operates in an “upper

band” from 32 to 60 MHz. Assuming additive flat Gaussian noise in each subcarrier channel, the

Shannon capacity of a BPL system using OFDM with N subcarriers is given by

C = 0.5
N∑

i=1

Bi log2

(
1 +

PL,i

N0,iBi

)
, (2.32)

where the factor 0.5 accounts for the fact that time division is used at the regenerator to separate

incoming (received) and outgoing (regenerated) OFDM packets. In addition:

1. PL,i is the power delivered by the i-th tone to the regenerator load, and it relates to the line

current and regenerator impedance derived earlier. The current is the one associated with
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Table 2.4: BPL throughputs (in Mbps) of two 28-MHz bands.

ΔL (dB) 0 6 12 18 24

C 125 97 70 45 25
TP 88 62 38 19 8

(a) Lower band, [2, 30] MHz

ΔL (dB) 0 6 12 18 24

C 72 46 24 9.3 2.8
TP 38 18 6.4 1.8 0.4

(b) Upper band, [32, 60] MHz

using the maximum allowable source voltage, VS , and includes the effect of the assumed

excess attenuation of 30 dB/km.

2. The noise spectrum density N0,i is the ambient noise level at the i-th tone frequency, as given

in [69]6.

3. The noise bandwidth Bi is assumed here to be 9 kHz, corresponding to about 3111 tones in

each 28-MHz band. Since VS , as modeled by (2.29), is the rms voltage in a 9-kHz (120-kHz)

bandwidth for the lower (upper) band, we can use (2.29) directly to get the source voltage in

the lower band, and must scale (2.29) by
√

9/120 to get the source voltage in the upper band.

Clearly, (2.32) represents an upper bound on the throughput than can be achieved in a given

BPL system. A practical lower bound on the throughput, based on the use of uncoded adaptive

modulation, can be shown to be [71]

TP = 0.5
N∑

i=1

Bi log2

(
1 +

PL,i

6.4×N0,iBi

)
. (2.33)

We have computed results for both throughput measures, (2.32) and (2.33). We consider five

different spacings of the regenerators, remembering that our default assumption is 600 m. Specifi-

cally, we consider excess losses (ΔL) between regenerators of 0, 6, 12, 18 and 24 dB, corresponding

to spacings (still assuming 30 dB/km excess attenuation) of 0, 200, 400, 600, and 800 meters. The

results are given in Table 2.4 for both 28-MHz bands.

In these tables, C represents an upper bound on the total attainable throughput. We note that the

numbers are a lot smaller than the 600-Mbps figure reported in [41]. To see why, we enumerate the

major differences in assumptions between that study and this one:

6The referenced paper reports the noise level up to 25 MHz. Since there is generally less noise at higher frequencies
[70], the noise density above 25 MHz is conservatively set to -120 dBm/Hz.
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1. The earlier analysis omits the factor of 0.5 that we have assumed to reflect time division

between reception and regeneration.

2. The earlier analysis assumes a total launch power of 10 mW, apportioned via water-filling

among subcarriers spanning [2, 50] MHz. Assuming BPL voltages that satisfy Part 15 limits,

we obtain a launch power that is lower by ∼ 6 dB for the same band and is even lower for the

smaller bandwidth (28 MHz) used in the present analysis.

3. In the earlier analysis, the estimate of 600-Mbps capacity pertains to a simple network with

few junctions and no excess loss. The present analysis treats excess loss as a study parameter,

starting at 0 dB.

If we adjust our calculations to match the transmit power, bandwidth and excess loss of the analysis

in [41], with the power distributed uniformly and the time division factor of 0.5 omitted, we obtain

a capacity C ∼ 560 Mbps. The two analyses are thus reconciled.

In Table 2.4, TP is the total attainable throughput when the modulation for each subcarrier is

uncoded BPSK or uncoded M-QAM, with the specific modulation (i.e., constellation size) chosen

according to the received SNR for that subcarrier. For span lengths of 600-1000 m (excess loss of

18-24 dB), the throughputs in the lower band are in the range predicted in [64], i.e., ∼ 10 Mbps

or more. The results for both C and TP are decidedly lower for the upper band, a consequence of

the tighter restrictions on BPL emissions in that band. This suggests that operators might choose

the lower band for downlink (operator-to-subscriber) transmissions and the upper band for uplink

(subscriber-to-operator) transmissions.

2.3.2 Tradeoff between Capacity and Interference

The most effective and reliable way to mitigate the BPL interference is to reduce the source power,

although this will correspondingly degrade the throughput. Considering the desire for more strin-

gent emission regulations [6], it is worth understanding the relationship between capacity and BPL

interference potential.

Assuming the signal-to-noise ratio at the load receiver is large, we can approximate the capacity
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of a BPL system by

C =

∫
log2(1 + αL(f)αMSNR(f))df

≈
∫

log2(αL(f)αMSNR(f))df

=

∫
log2(αL(f)SNR(f))df + BW log2(αM ), (2.34)

where SNR(f) is the received signal-to-noise ratio in a narrow band channel, centered at f and

with the source power just meeting the emission limits at each BPL frequency; αL(f) accounts

for the frequency-dependent loss due to any imperfect transmission conditions (e.g, multipath);

αM denotes the mitigation ratio of the source power, which we assume to be constant across the

BPL frequency range. The first term of the approximation accounts for the capacity without power

reduction (i.e., αM = 1). If, for example, αL(f) = 1, SNR(f) = 1000 (30 dB) and the BPL

frequency range is from 2 to 80 MHz, the first term will be ∼ 780 Mbps. The second term of the

approximation is the reduction in capacity due to reducing αM . If, for example, αM = 0.5 (a 3-dB

reduction in transmit power), the capacity decrease will be ∼ 78 Mbps.

Assuming an infinitely long BPL span7, Figure 2.11 illustrates the tradeoff between BPL in-

terference and BPL capacity by assuming a sufficiently large capacity (i.e., the first term of the

approximation is greater than 800 Mbps). The interference is quantified in terms of the 3-dB critical

distance (defined in Section 2.2.2), assuming “Business” ambient noise. The critical distance is ap-

proximately linear with capacity decrease up to 400 Mbps, where the critical distance is very short.

The exchange rate is about 15 m/100 Mbps for most frequencies. Note that this slope is independent

of the definition of the critical distance. It is in fact a function of the decay rate of the electric field

in the lateral direction. Fox example, assume we define the critical distance as the lateral distance

at which the noise increase is X dB. It can be shown that the distance-capacity slope is ∼ 15 m/100

Mbps independent of X.

7That is, the lines span from −∞ to ∞. This model simplifies the field computation by ignoring the longitudinal
variations of the emission fields. The results should approximate the lateral variations of the fields in the vicinity of a
long BPL span.
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Figure 2.11: Relationship between interference (measured by the 3-dB critical distance) and capac-
ity reduction. The ambient noise level is for a “business environment”.

2.4 Summary

We have modeled the electromagnetic fields from a medium-voltage 3-phase power line mounted

above a lossy earth and carrying BPL signals to and from Internet customers. Beginning with an

exact formulation for the fields, we have made a number of practical assumptions and approxima-

tions to facilitate reductions to numerical results. This includes the use of the saddle point method

to simply and accurately estimate the radiation far field. For computing near fields, corresponding

to locations close to the power lines, we have resorted to the numerical computation of near-infinite

double integrals. The methodology used here can be applied for various alternative assumptions

about the power line dimensions and impedances, the BPL couplers and placements, and other

parameters.

The near-field computation program developed from this effort was used to obtain a profile of

BPL source voltage vs. frequency for attaining compliance with FCC field strength limits. This

profile was used to determine BPL interference impact on local terrestrial receivers in terms of the

percentage of the area where the BPL emission was perceptible. The far-field approximation was

then used to assess the potential of aggregate interference to airborne receivers and HF radios via

ionospheric propagation. Finally, we explored the tradeoff between BPL capacity and interference

potential, and used the profiles of allowed source voltage vs. frequency to quantify system through-

put bounds for two BPL bands, namely, a “lower band” from 2 to 30 MHz and an “upper band”

from 32 to 60 MHz.
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The numerical results show that: (i) BPL interference to local incumbent services can be dis-

cernible with high probability if the FCC limits are just met. (ii) BPL interference to airborne

receivers can be significant, depending on the ambient noise level in aircraft; thus, the exclusive

frequency bands specified for aeronautical communications should remain. (iii) The equivalent ra-

diated transmit power of aggregate BPL deployments is far below that of a typical amateur radio and

so the interference threat to ionospheric radio services is negligible. (iv) Reasonable throughputs

can be achieved with launch powers for which the resulting E-fields meet FCC Part 15 rules. (v) By

lowering the launch powers, one can reduce the interference range by roughly 15 meters for every

100-Mbps decrease in system capacity.
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Chapter 3

Anomaly Detection in Dynamic Spectrum Access Networks

Dynamic spectrum access has been proposed as a means to share scarce radio resources, and re-

quires devices to follow protocols that access spectrum resources in a proper, disciplined manner.

For a cognitive radio network to achieve this goal, spectrum policies and the ability to enforce

them are necessary. Detection of an unauthorized (anomalous) usage is one of the critical issues in

spectrum etiquette enforcement. In this chapter, we first present a network structure for dynamic

spectrum access and then formulate the anomalous usage detection problem using statistical signif-

icance testing. The detection problem is investigated considering two cases, namely, the authorized

(primary) transmitter is (i) mobile and (ii) fixed. We propose a detection scheme for each case,

respectively, by exploiting the spatial pattern of received signal energy across a network of sensors.

Analytical models are formulated when the distribution of the energy measurements is given and,

due to the intractability of the general problem, we present an algorithm using machine learning

techniques to solve the general case when the statistics of the energy measurements are unknown.

3.1 A System Model of Dynamic Spectrum Access

3.1.1 DSA Network Structure

We consider a DSA network as illustrated in Figure 3.1, where licensed (i.e., primary) and unli-

censed (i.e., secondary) transmitters are scattered in an area filled with auxiliary spectrum sensors.

In the paradigm of DSA, secondary users make use of idle spectrum resources by opportunistically

accessing the network in these idle bands, which will not result in interference to incumbent users.

However, such a spectrum efficiency can be easily undermined by a reckless user or an attacker

who disguises itself as the primary transmitter in an attempt to convince other secondary users that

a primary users has returned to use that spectrum band. Thus, a spectrum access policy is necessary
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Figure 3.1: A DSA environment, with primary and unauthorized transmitters within an area popu-
lated with spectrum sensors. Spectrum sensors cooperatively detect the presence of the unauthorized
transmitters via the local exchange of energy measurements.

as such a policy explicitly states the conditions for when a secondary user can and cannot use spec-

trum. The policies are defined by spectrum policy makers and are broadcast by a management unit,

which can be either a stand alone central processor or a part of the primary transmitter’s functions.

For spectrum agility, the policies can change dynamically and users should be able to interpret them

without human intervention. Interpreted languages, such as XG Policy Language (XGPL), have

been proposed to formalize the policies [9]. To enforce spectrum policies, a trusted spectrum sen-

sor network is responsible for collecting spectrum usage data and reporting them to the spectrum

management unit. The management unit applies appropriate detection rules to identify anomalous

usage and performs localization to locate anomalous transmitters.

To minimize the interference, we assume there should be no more than one authorized trans-

mitter in a certain spectrum band at any time. In addition, since an interference signal may use

the same signal structure as a primary signal, the proposed detection algorithms will be based on

received signal energy.

3.1.2 Energy Detection Model at A Sensor

We consider a time-domain energy detector consisting of a band-pass filter (BPF), Nyquist sampling

A/D converter, square-law device and integrator, as depicted in Figure 3.2. At the n-th sensor, the
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Figure 3.2: The signal processing of the assumed energy detector. The square-law envelope detector
produces the squared envelope of the BPF output, which is then sampled at uniform intervals. W is
the bandwidth of the BPF. The energy is estimated as the sum of L such samples.

output of an energy detector can be expressed as

yn =

L∑
l=1

|rn(l) + wn(l)|2 (3.1)

where rn(l) is the complex received signal at the n-th sensor, and wn(l) is the complex Gaussian

noise with zero mean and variance σ2
w at each phase. wn(l) is i.i.d. over the L temporal energy

samples. Previous work has shown that yn/σ2
w has a noncentral chi square distribution [72]. In this

section, we will show that its distribution can be approximated to lognormal for two extreme cases.

The results here will be utilized to develop our detection algorithms.

Let μr,n(l) cos θn(l) and μr,n(l) sin θn(l) be the real and imaginary part of rn(l), respectively,

where θn is an arbitrary phase value. Then the total received signal envelop |rn(l)+wn(l)| is Ricean

distributed with the parameter

Kn(l) =
μ2

r,n(l)

2σ2
w

. (3.2)

It is easy to see that Kn(l) is the instantaneous SNR at the n-th sensor. By approximating a Ricean

distribution as Nakagami ( [73], p. 79), pn = |rn(l) + wn(l)|2 has a gamma distribution with the

PDF

f(pn) =
p

mn,l−1
n

Γ(mn,l)a
mn,l
n

exp

(
−pn

an

)
, (3.3)

where

an =
E[pn]

mn,l
(3.4)

and

mn,l =
(Kn(l) + 1)2

2Kn(l) + 1
. (3.5)

In the following two asymptotic cases, we show that the sum of L energy samples are also

Gamma distributed.



42

1) Asymptotic distribution of yn for very large SNR:

When μ2
r,n(l) 
 2σ2

w, Kn(l) 
 1 and

an =
E[pn]

mn,l
=

μ2
r,n(l) + 2σ2

w

mn,l
=

(2Kn(l) + 1)2σ2
w

(Kn(l) + 1)
≈ 4σ2

w. (3.6)

Then, the scale an is a constant over the sample index l and thus yn is also gamma distributed with

the scale an and the shape

mn =
L∑

l=1

mn,l =
L∑

l=1

(Kn(l) + 1)2

2Kn(l) + 1
≈ 1

2

L∑
l=1

(Kn(l) + 1) =
L

2
+

1

4σ2
w

L∑
l=1

μ2
r,n(l) =

L

2
(1 + γ̄n),

(3.7)

where

γ̄n =

∑L
l=1 μ2

r,n(l)

2σ2
wL

(3.8)

is the average received SNR within one measurement. When γ̄n is sufficiently large, mn in (3.7)

can be further simplified by neglecting L/2. Following Appendix C, Yn = 10 log10(yn) is approxi-

mately Gaussian distributed.

2) Asymptotic distribution of yn for very small SNR:

When μ2
r,n(l) � 2σ2

w, Kn(l) ≈ 0, mn,l ≈ 1, and

an =
E[pr]

mn,l
=

(2Kn(l) + 1)2σ2
w

(Kn(l) + 1)
≈ 2σ2

w. (3.9)

Again, the scale an is a constant over the sample index l and thus yn is also gamma distributed with

the scale an and the shape

mn =
L∑

l=1

mn,l ≈ L. (3.10)

Similarly, Yn is Gaussian distributed when L is large. In addition, the signal power is negligible in

this case and thus the energy measurement only includes the noise.

Therefore, for both of the above asymptotic distributions, Yn ∼ N (μY,n, σ2
Y,n) with the mean

μY,n = 10 log10(anmn) (3.11)

and the variance

σ2
Y,n =

(
10

ln 10

)2

ψ′(mn). (3.12)

The parameters an and mn are given by (3.6) and (3.7) or (3.9) and (3.10), depending on the ap-

proximations. A special treatment to μY,n in the large-SNR approximation is that, we neglect the

term, L/2, in (3.7), that is, mn = γ̄nL/2. The reason will be clear as follows.
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In the detection analysis, we will approximate an energy measurement to either of these two

asymptotic solutions, depending on the received SNR. It is then necessary to find an optimal SNR

threshold to minimize the approximation error. From (3.7) we see that, when the average SNR γ̄n =

1, two asymptotic approximations will give the same μY,n and σ2
Y,n. Therefore, in the proposed

analytical solutions, we will use the large SNR approximation when the average SNR is greater

than 0 dB, and use the small SNR approximation otherwise.

3.1.3 Energy Detection Model Over Multiple Sensors

In the case of a large SNR, by neglecting the term L/2 in (3.7),

μY,n = 10 log10

(
L∑

l=1

μ2
r,n(l)

)
. (3.13)

Noting that Yn is Gaussian distributed conditional on the received signal energy
∑L

l=1 μ2
r,n(l) within

one measurement, we rewrite the energy detector output as

Yn = Y0,n + YS,n + YW,n, (3.14)

where Y0,n + YS,n = μY,n and YW,n ∼ N (0, σ2
Y,n) accounts for the randomness due to the noise.

We use Y0,n to quantify the measured energy due only to the deterministic path loss fading, and

it is generally given by

Y0,n = Y0 − 10γ log10(dn/d0), (3.15)

where Y0 is the signal strength measured at the reference distance d0, dn is the distance between the

transmitter and the n-th sensor, and γ is the path loss exponent1.

Further, YS,n accounts for the multipath and shadow fading at different locations, and we model

YS,n as a spatial Gaussian process2, YS,n ∼ N (0, σ2
S,n). Taking into account the spatial correlation

of channel fading, we assume YS = (YS,1, YS,2, . . . , YS,N ) are jointly Gaussian, YS ∼ N (0,ΣS).

1Here we do not specify the direction of a propagation link, as depicted in the model (3.15). Therefore, the authorized
transmitter is assumed to use an omnidirectional antenna.

2The shadow fading is widely modeled as lognormal over space [74]. The multipath fading can be modeled as
a Nakagami distribution and thus its gain (in the linear ratio) is also Gamma distributed. Again by Appendix C, it
approximates to lognormal. However, this approximation is not always accurate as the parameter m in (C.1) may be
small.
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Since the randomness due to the noise (quantified by YW,n) and that due to the channel fading

(quantified by YS,n) are independent, Yn is Gaussian distributed over space, that is,

Yn ∼ N (Y0,n, σ2
Y,n + σ2

S,n). (3.16)

In addition, the measurements from all the N sensors, Y = (Y1, Y2, . . . , YN ), are also jointly

Gaussian with the covariance matrix

ΣY = ΛY + ΣS , (3.17)

where ΛY is a diagonal matrix where the n-th diagonal element is σ2
Y,n.

In the case of a very small SNR, from (3.9) and (3.10), we virtually neglect the signal strength,

and thus the energy measurement Yn is i.i.d. Gaussian across sensors.

In the following, we devise our detection algorithms based on the above models.

3.2 Modeling Anomalous Detection Using Significance Testing

In general, we only have the information in the normal situation and thus the detection of anomalous

usage can be formulated as a statistical significance testing problem. The received signal at each

sensor is defined as:

H0 : r(t) + w(t), normal usage, (3.18a)

H1 : r(t) + u(t) + w(t), anomalous usage. (3.18b)

where r(t) is the signal from an authorized transmitters complying with the spectrum policy, u(t)

is an unknown unauthorized signal, and w(t) is noise that we assume to be additive and white

Gaussian with zero mean. The normal spectrum usage is defined as the null hypothesis H0.

A significance testing problem consists of the following key components:

• Test statistic v: a measure of the observed data.

• Acceptance region Ω: if v ∈ Ω, we accept the null hypothesis H0.

• Significance level α: the probability of incorrectly rejecting the null hypothesis, i.e., the

probability of false alarm.
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In our detection problem, the observed data is a series of energy measurements, Y = (Y1, Y2, . . . , YN ),

where Yn is given by Section 3.1.2 and 3.1.3. For different statistics of Y in what follows, we will

define v and Ω so that, for a specified false alarm probability α, Prob(v /∈ Ω|H0) ≤ α, where v

not in Ω declares the presence of the anomalous behaviors in the network.

3.3 Detecting Unauthorized Spectrum Usage in DSA Networks

Unlike the conventional energy detection problems where a signal is detected from noise based on

the noise power level [72,75], it is generally impractical to apply a threshold based on the authorized

signal strength to detect interference. The authorized signal strength can be time-variant because

of several effects, such as power control and transmitter mobility. This power variation can render

the energy estimation useless. In this section, we propose two detection algorithms, one for the

case where the authorized transmitter is mobile and one that works better but only for the stationary

case. Provided the distribution of the authorized signal energy is known, we present analytical

solutions to determining detection thresholds. In the more general case where it is hard to obtain

such information, we propose to utilize a machine learning technique to derive empirical thresholds.

3.3.1 Linearity Check for A Mobile Authorized Transmitter

Following the discussion in Section 3.1.1, there should be only one authorized transmitter at any

time in the spectrum under surveillance. Thus, the detection problem becomes distinguishing be-

tween single and multiple transmissions in the same spectral resource. To do this, we need a decision

statistic that captures the characteristics of the radiation power in the case of a single transmission.

Provided a single radio source, we rewrite the energy detector output in (3.14) as

Yn = Y0 − 10γ log10(dn/d0) + YR,n, (3.19)

where YR,n = YS,n+YW,n ∼ N (0, σ2
Y,n+σ2

S,n). (3.19) shows that, when the received SNR is large,

the energy measurement (in log scale) is a linear function of the log-distance (i.e., log10(d)) plus

a random Gaussian term, YR,n, across the sensors. On the other hand, this linearity breaks when

the measurement consists of signal strengths from multiple transmitters. As depicted in Figure 3.3,

where we measure the received signal energy at 10 sensors for 10 independent trials, the energy

from a single transmitter shows distinct linear decay with the log-distance, whereas the RSS from
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Figure 3.3: Energy measurement vs. logarithmic distance between an authorized transmitter and
N = 10 sensors. In an 100-meter×100-meter area, the sensors are uniformly located. Path loss
exponent γ = 3.5 and σS,n = 1 dB in (3.14). The noise power is neglected. The authorized
transmitter is located at the center. In theH1 case, one unauthorized transmitter is randomly located.
Detailed simulation settings are given in Section 3.4.1.

two transmitters does not present the similar pattern. Thus, by examining the linearity of the energy

measurements with log-distance, we may distinguish the case of a single transmission (i.e., normal

usage) from the case of multiple overlapped transmissions (i.e., anomalous usage). It is worth noting

that, as shown in (3.14), this method relies on the linear property of the channel fading, and thus the

detection is performed only based on the energy measurements where the received SNR is greater

than 0 dB (i.e., the large SNR approximation is acceptable). With a slight abuse of notations, N in

the following denotes the number of energy measurements we actually use, which is less or equal

to the number of all the sensors.

Further, the distance dn between the transmitter and a sensor can be obtained in two ways: (a)

the authorized transmitter periodically announces its location, using a signal format that is decodable

at the sensors; or (b) the sensors cooperatively estimate the transmitter location based on measured

RSS. In either case, a sensor knows its own location.

Given the distance dn, the remaining unknown parameters are the mean Y0 and the path loss

exponent γ. In general, it is hard to obtain their accurate values, so we use linear least squares to

estimate them.
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Suppose Y = (Y1, . . . , YN )T is the vector of N energy measurements, and

A =

⎡
⎢⎢⎢⎢⎣

1 −10 log10(d1/d0)

...
...

1 −10 log10(dN/d0)

⎤
⎥⎥⎥⎥⎦ . (3.20)

Note that A has a rank of 2 as long as there are at least two sensors with difference distances from

the transmitter. Then, the least square estimation of Y0 and γ gives
⎡
⎣ Ŷ0

γ̂

⎤
⎦ = (AT

A)−1
A

T
Y

= (AT
A)−1

A
T (A

⎡
⎣ Y0

γ

⎤
⎦+ YR)

=

⎡
⎣ Y0

γ

⎤
⎦+ (AT

A)−1
A

T
YR, (3.21)

where YR = (YR,1, YR,2, . . . , YR,N )T ∼ N (0,ΣY ) as defined in (3.17). Further, we define the

vector of the estimation error (residuals) ê as

ê = Y − Ŷ

= A

⎡
⎣ Y0

γ

⎤
⎦+ YR −A

⎡
⎣ Ŷ0

γ̂

⎤
⎦

= YR −A(AT
A)−1

A
T
YR

= (I −A(AT
A)−1

A
T )YR. (3.22)

When the distance matrix A is exactly known, the residuals are independent of the transmission

power. Based on the linearity of the propagation model, we infer that the distribution of the residuals

in the normal usage case should differ from that of the anomalous case. Then, the residuals ê can be

a measure of linearity. However, its distribution is not always explicit. As (3.27) below shows, the

matrix D = (I −A(AT
A)−1

A
T ) in (3.22) is singular, so ê is no longer a multivariate Gaussian

even though YR is. To facilitate the analysis, we seek a new measure of the linearity, which not

only has a known distribution but also retains as much information from ê as possible. Given that

the N × N matrix D has two zero eigenvalues (see (3.27)), ê only has N − 2 independent bases
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from YR. Therefore, we can construct a new statistic êu whose distribution can be derived in the

normal usage case, using the following theorem:

Theorem 1 Given a multivariate Gaussian YR ∼ N (0,ΣY ) and a N × 2 matrix A with rank of

2, we define êu = U
T
2 ê, whereU2 is an N × (N − 2) matrix consisting of (N − 2) eigenvectors of

AA
T that correspond to the (N − 2) zero eigenvalues. Then

êu ∼ N (0,Σe), (3.23)

where Σe = U
T
2 ΣY U2.

Proof 1 Given that A in (3.20) is a N × 2 matrix, using the singular value decomposition (SVD),

we have

A = UΛV
T , (3.24)

where U is a N × N orthogonal matrix, V is a 2 × 2 orthogonal matrix. Λ is a N × 2 diagonal

matrix with two nonzero singular values (i.e., assuming there are at least two sensors that have

different distances from the transmitter):

ΛN×2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0

0 λ2

0 0

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ Λ̃2×2

0

⎤
⎦ . (3.25)

Then we have

A(AT
A)−1

A
T = UΛV

T (VΛ
T
U

T
UΛV

T )−1
VΛ

T
U

T

= UΛ(ΛT
Λ)−1

Λ
T
U

T

= U

⎡
⎣ Λ̃

0

⎤
⎦ (Λ̃Λ̃)−1

[
Λ̃ 0

]
U

T

= U

⎡
⎣ I

0

⎤
⎦[

I 0

]
U

T

= U

⎡
⎣ I2×2 0

0 0

⎤
⎦U

T (3.26)
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Therefore,

D = I−A(AT
A)−1

A
T = U(IN×N −

⎡
⎣ I2×2 0

0 0

⎤
⎦)UT = U

⎡
⎣ 0 0

0 I(N−2)×(N−2)

⎤
⎦U

T .

(3.27)

There are 2 zero singular values in the matrix D and thus it is not invertible.

Now letU = [U1,U2], whereU1 is N × 2 andU2 is N × (N − 2). Since

AA
T = UΛΛ

T
U

T

= [U1,U2]

⎡
⎣ Λ̃

2 0

0 0

⎤
⎦
⎡
⎣ U

T
1

U
T
2

⎤
⎦ , (3.28)

U2 consists of (N − 2) eigenvectors of AA
T corresponding to the (N − 2) zero eigenvalues.

Multiplying the residues ê byU
T
2 , we have

êu = U
T
2 ê

= U
T
2 DYR

= U
T
2 U

⎡
⎣ 0 0

0 I(N−2)×(N−2)

⎤
⎦U

T
YR

= U
T
2 U2U

T
2 YR

= U
T
2 YR. (3.29)

GivenYR ∼ N (0,ΣY ), it is known that êu ∼ N (0,Σe), where

Σe = E[êuê
T
u ] = U

T
2 ΣY U2. (3.30)

Similar to the significance test in [76], we can define a likelihood-based acceptance region for

êu as

Ω = {êu : f(êu) ≥ fT}, (3.31)

where the probability density function is

f(êu) = (2π)−N/2|Σe|−1/2 exp

(
−1

2
ê

T
uΣ

−1
e êu

)
.
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Then, Ω in (3.31) can also be expressed as

Ω = {êu : êT
uΣ

−1
e êu < Te}. (3.32)

Therefore, we obtain the test statistic êLCM = ê
T
uΣ

−1
e êu. It can be shown that êLCM follows a

chi-square distribution with N − 2 degrees (e.g., see Section V-C in [76]). Thus, the false alarm

probability is given by

PF =
Γ((N − 2)/2, Te/2)

Γ((N − 2)/2)
, (3.33)

where Γ(k, x) is the upper incomplete gamma function.

This probability is accurate only when the distance matrix A (or equivalently, the location of

the authorized transmitter) is exactly known and the distribution of the energy measurements across

sensors is lognormal. These two conditions are not often met in practice, which will result in an

unknown distribution for the test statistic êLCM and distort the expected false alarm rate (i.e., PF

in (3.33)), as we shall see in Section 3.4.2. To extend our algorithm to a more general scenario, we

propose the application of One-class SVM (Support Vector Machines), proposed in [77], to find an

acceptance region.

One-class SVM is a kernel based machine learning technique for data classification, which

involves a training phase and a testing phase. Each data instance, either in the training set or in the

testing set, is represented by one or multiple attributes. As the name of One-class SVM implies,

all training data are from a class of interest and the goal is to empirically generate a model that can

predict whether a data instance from the testing set belongs to this class. One-class SVM finds its

use in the anomalous or outlier detection problems where the anomalous case cannot be accurately

described using training data and thus the classification can only be formulated as a significance test

(see Section 3.2). Therefore, the data attributes are the test statistics in our significance test model.

Since the SVM method can handle data with an unknown distribution, there can be many choices

of data attributes in our anomalous detection problem. An obvious option is êLCM derived in the

analytical solution. However, it will result in a similar3 detection performance to that of the ana-

lytical one in terms of the receiver operating characteristic (ROC). Since we are actually interested

3Note that the ROCs of the analytical solution and SVM are not necessarily the same even if they both use êLCM as
the test statistic, because they have different acceptance regions. Specifically, the analytical solution has a single-sided
acceptance region as defined in (3.32) but the SVM has a double-sided acceptance region as given by (D.4).
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in the estimation residues ê given in (3.22), we use it directly in the SVM. ê is also more reliable

compared to êLCM as it involves less matrix manipulations, which are based on the assumption of

the Gaussian distribution. Note that it is not necessary to assume the received SNR > 0 dB in the

SVM solution. Hence ê utilizes energy measurements from all the sensors regardless of the received

SNR.

Provided the training data are sufficiently sampled from an underlying probability distribution

(i.e., in the normal class), we apply One-class SVM to estimate a subset, Ω, (i.e., a fraction of

the training data), so that, any testing data from the same distribution will lie outside of Ω with

a probability equal to a specified value, ν ∈ (0, 1). Apparently ν corresponds to the false alarm

probability and Ω is the acceptance region in the significance test. In summary, given the energy

measurements (thus ê) that are well-sampled in the normal usage case, we use One-class SVM to

find an empirical acceptance region corresponding to a specified false alarm probability, PF . See

Appendix D for the mathematical description of One-class SVM.

3.3.2 Signalprint Check for A Stationary Authorized Transmitter

Provided the authorized transmitter is stationary, we can further improve the performance of unau-

thorized signal detection by exploiting a more reliable metric, the signalprint. In this section, we

present a fingerprint based method analogous to the fingerprint based localization [46]. Specifically,

transmitters at different locations lead to different spatial distribution of RSS. Thus, an interference

signal can be detected by examining the difference between its signalprint (i.e., the vector of energy

measurements Y) and the authorized one. The authorized signalprint can be obtained (i) if the au-

thorized transmitter periodically broadcasts an “identity” signal that is decodable at the sensors; or

(ii) by using a previous measurement that is known from the authorized signal.

Denote the known authorized signal energy by Yn and the currently measured energy by Ỹn at

the n-th sensor, respectively. For measurements with large SNR, since the channel is stationary, the

shadowing and multipath fading YS,n in (3.14) is constant over time. Thus,

Ỹn − Yn = Ỹ0,n − Y0,n + ỸW,n − YW,n

= Ỹ0 − Y0 + ỸW,n − YW,n

= Ỹ0 − Y0 + dYW,n. (3.34)
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Since YW,n and ỸW,n are due to noise, they are independent of each other and dYW,n = ỸW,n−YW,n

is also Gaussian distributed, that is, dYW,n ∼ N (0, σ2
Ỹ ,n

+ σ2
Y,n), where ỸW,n ∼ N (0, σ2

Ỹ ,n
). The

reference energy Y0 can be time variant, because (i) the authorized transmission power may change

over time (e.g., by power control), and (2) the signal strength |r(t)| may change over time (e.g., an

OFDM signal with many subcarriers). For measurements with small SNR, we neglect the signal

strength (see Section 3.1.2) and thus Y0 = Ỹ0. Combining the two approximations, we have4

Ỹn − Yn =

{
C + dYW,n if γ̄n ≥ 0 dB, (3.35a)

dYW,n if γ̄n < 0 dB, (3.35b)

where the signal strength shift C = Ỹ0 − Y0 is a constant across all the sensors. Denote Y =

[Y1, Y2, . . . , YN ]T and Ỹ = [Ỹ1, Ỹ2, . . . , ỸN ]T . We estimate C using a simple linear regression

model,

Ĉ =

⎧⎪⎨
⎪⎩

Ĉ =
1

Nr
e

T
r (Ỹ −Y) =

1

Nr

Nr∑
n=1

(Ỹn − Yn), Nr > 0, (3.36a)

0, Nr = 0, (3.36b)

where er is a N × 1 vector with the n-th element

er,n =

{
1 if γ̄n ≥ 0 dB, (3.37a)

0 if γ̄n < 0 dB. (3.37b)

Nr is the number of 1’s in er. Without loss of generality, we assume the energy measurements from

all the N sensors are arranged so that the first Nr measurements have SNR≥ 0 dB and thus the first

Nr elements of er are 1 and the rest of them are 0.

Then, the residue of the estimation is

ê = Ỹ −Y − Ĉer

= Ỹ −Y − 1

Nr
ere

T
r (Ỹ −Y), for Nr > 0,

= (I −Er)(Ỹ −Y), (3.38)

where Er is a N ×N matrix where all elements in the top left Nr ×Nr block are 1/Nr and others

are zeros.

4This method requires the same asymptotic approximation (either for large- or small-SNR) for both measurements
Yn and Ỹn. For a good approximation in practice, we will only use the measurements where Yn and Ỹn both have SNR
greater or less than zero.
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The mean of the estimate residue is

E[ê] = (I − Er)E[Ỹ −Y]. (3.39)

From (3.35), E[Ỹ −Y] gives a N × 1 vector whose first Nr elements are C and the remaining

elements are zeros. Then ê has zero mean.

Since Er has the rank of 1, (I − Er) is a singular matrix with rank of (N − 1). As a result, the

joint distribution of the N elements in ê is not easy to obtain. Similar to Theorem 1, we construct

a N × (N − 1) matrix, Q2, whose columns are the N − 1 eigenvectors of Er corresponding to its

N − 1 zero eigenvalues. Then, we have ErQ2 = 0 and

êsub = QT
2 ê = QT

2 (Ỹ −Y). (3.40)

Since Q2 has a full rank (i.e., N − 1), the N − 1 elements of êsub are jointly Gaussian distributed.

Also êsub has a zero mean because of (3.39).

From (3.35), we have

E[(Ỹi − Yi)(Ỹi − Yi)] =

⎧⎨
⎩

C2 + σ2
Ỹ ,i

+ σ2
Y,i, if γ̄i ≥ 0 dB, (3.41a)

σ2
Ỹ ,i

+ σ2
Y,i, if γ̄i < 0 dB. (3.41b)

and

E[(Ỹi − Yi)(Ỹj − Yj)] =

⎧⎨
⎩

C2, if γ̄i ≥ 0 dB and γ̄j ≥ 0 dB, (3.42a)

0, if γ̄i < 0 dB and γ̄j < 0 dB. (3.42b)

Then,

E[(Ỹ −Y)(Ỹ −Y)T ] = ΛỸ + ΛY + C2NrEr, (3.43)

where ΛỸ and ΛY are covariance matrix for ỸW and YW , respectively, as defined in (3.17).

Then the variance of êsub is given by

Σe = E[êsubê
T
sub]

= QT
2 E[(Ỹ −Y)(Ỹ −Y)T ]Q2

= QT
2 (ΛỸ + ΛY )Q2 + C2NrQ

T
2 ErQ2

= QT
2 (ΛỸ + ΛY )Q2. (3.44)

Similar to (3.32), the likelihood-based acceptance region for êsub is

Ω = {êsub : êSCS = ê
T
subΣ

−1
e êsub < Te}. (3.45)
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Therefore, the false alarm probability is

PF =
Γ((N − 1)/2, Te/2)

Γ((N − 1)/2)
. (3.46)

Since this analytical solution is derived based on the asymptotic approximations in Section 3.1.2,

we will see from Section 3.4.2 that, it is only accurate when the received SNR is either very large

or very small. Therefore, for a general scenario where the approximations are no longer acceptable,

we will apply the SVM method to obtain an empirical detection threshold. Similarly, we will use

the residues, ê, from (3.38) as the test statistics of the SVM.

3.4 Simulation Evaluation

3.4.1 Simulation settings

In this section we evaluate the performance of our proposed methods, which we call LCM (Linearity-

Check-for-Mobile Transmitter, Section 3.3.1) and SCS (Signalprint-Check-for-Stationary-Transmitter,

Section 3.3.2). Their performance were tested in a 100-meter×100-meter square area, where N sen-

sors are randomly placed with a uniform probability distribution. Both authorized transmitter and

unauthorized transmitters are randomly located in the area. Each result is an average over 20000

independent trials (i.e., independent transmitter and sensor locations and independent random chan-

nel fadings). Unless otherwise noted, in these numerical studies we assume that, (a) there is only

one unauthorized transmitter and it uses the same transmission power as the authorized user; (b)

N = 50 for LCM and N = 10 for SCS; (c) the path loss, γ = 3.5, and the standard deviation of

the fading, σS,n = 4 dB, which are typical values in an urban microcell environment with a very

mild random fading; (d) the variation of the channel fading across all sensors is i.i.d., that is, ΣS in

(3.17) is a diagonal matrix; (e) the number of samples in each energy measurement, L = 16.

3.4.2 Detection Performance

Figure 3.4 shows the complementary receiver operating characteristic (C-ROC) curves by LCM and

SCS methods under various SNR conditions. The expected false alarm probabilities are both from

0.002 to 0.2, set by (3.33) and (3.46), respectively. The ROC curves are shown for different SNR

levels of energy measurements, represented by the median of received SNR among all the sensors,
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Figure 3.4: Complementary ROC by (a) LCM and (b) SCS. The expected false alarm probabilities
are [0.002, 0.2]. In LCM, the median of the received SNR among all the sensors is 0 dB (solid), 10
dB (dashed), and 20 dB (dotted), respectively. In SCS, the median of the received SNR among all
the sensors is -20 dB (solid), 0 dB (dashed), and 20 dB (dotted), respectively.

γ̄med. For the SVM method in LCM where the location of the authorized transmitter is unknown

(i.e., “SVM w/o location”), we estimate it by the weighted centroid as

[x, y] =

∑NC

i=1 pi[xi, yi]∑NC

i=1 pi

, (3.47)

where pi is the i-th largest signal strength (in linear scale) from all the sensors and (xi, yi) is the

location of the corresponding sensor. It has been shown in [78] that an unbalanced distribution of

sensors (with respect to the transmitter to be localized) can degrade the accuracy of a centroid based

algorithm. To mitigate the impact due to the unbalanced network topology, we choose NC = 10

sensors with the strongest energy measurement to perform the localization. An advantage of the

SVM solutions seen from the results is that the actual PF is close to the designated one regardless

of the SNR level. On the contrary, the analytical solution fails to predict the correct false alarm

probability under certain SNR conditions. Specifically, in LCM, the actual and analytical false

alarm probabilities match each other only for large γ̄med (e.g., > 20 dB), because the analytical

solution is based on the large SNR approximation. In SCS, the analytical false alarm probability is

accurate when the absolute dB value of γ̄med is large (e.g., ±20 dB), because the method makes use

of data in both asymptotic conditions.

Regarding the detection performance, given a large SNR (e.g., γ̄med = 20 dB), both schemes

achieve detection rate above 90% for a false alarm rate of 10%. Moreover, SCS achieves much
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Figure 3.5: The effects of energy measurement variation on the detection probability, PD, for the
actual false alarm rate of 0.1. γ̄med = 20 dB. (a) PD vs. σS,n for LCM. L = 8 (solid) and L = 128
(dashed); (b) PD vs. L for SCS. σS,n = 0 dB (solid), 6 dB (dashed), and 12 dB (dotted).

higher detection probability using far fewer sensors than LCM, thanks to the more reliable metric

based on signalprints. However, SCS can only be used in the case where the authorized transmitter

is fixed while LCM does not have this constraint. In addition, the results show the effects of using

the estimation residues, ê, as the test statistics. In LCM, we observe that, given the location of

the authorized transmitter, the analytical and SVM solutions have similar ROCs although they use

different test statistics. In SCS, the detection rate by the SVM solution is more stable against SNR

than that of the analytical solution. Particularly, the SVM solution is superior to the analytical one

when the SNR of energy measurements is small (i.e. γ̄med ≤ 0 dB).

In the following results, we fix the false alarm rate at PF = 0.1 and investigate the effects of

different system parameters on the detection probability of the proposed methods.

The variation of energy measurements are mostly caused by the random channel fading and

noise, as we have seen from (3.14). Their effects are illustrated in Figure 3.5. From (3.19), we see

that the variation of measurements mostly results from the random channel fading, σS,n. The noise,

averaged by L samples, has little impact on LCM. On the other hand, from (3.34), the variation

of measurements is caused solely by the noise. Thus, with more samples in a measurement, the

detection rate of SCS is higher.

Figure 3.6 shows the detection probability for different values of interference-to-signal ratio



57

−20 −15 −10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transmission ISR, (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

,
P D

Analytical
SVM w/ location
SVM w/o location

(a)

−20 −15 −10 −5 0 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Transmission ISR, (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

,
P D

Analytical
SVM

(b)

Figure 3.6: Detection probability vs. transmission ISR by (a) LCM and (b) SCS, where γ̄med is 20
dB (solid), 10 dB (dashed) and 0 dB (dotted). The actual PF = 0.1.

(ISR), which is defined by the ratio of transmission power from unauthorized and authorized trans-

mitter. For both methods, the detection rates monotonically increase with the interference power,

except for the LCM’s SVM solution where the unauthorized transmitter location is unknown (i.e.,

curves with triangle markers). For these cases, and when the noise power is negligible (e.g.,

γ̄med = 20 dB), the machine learning based solution treats the signal strengths from both trans-

mitters equally and it only tries to tell whether there are simultaneous transmissions. Thus, the

detection probabilities appear approximately symmetric with respect to the ISR of 0 dB, where the

highest accuracy is usually obtained. When the noise power is significant (e.g., γ̄med = 0 dB), the

estimation residues, ê, are mostly contributed by noise in the normal case. When the interference

power is significant (i.e., ISR > 0 dB), its impact on ê increases and it deviates the residues from

those in the normal (large noise) case. Therefore, when ISR > 0 dB, the detection probability

increases as the SNR decreases.

We now consider the case of multiple unauthorized transmitters. The transmitters are assumed

non-colluding and independent, so that their powers add noncoherently at each sensor. Intuitively,

more unauthorized radios should lead to better detection because the total amount of transmitted

power (and the resulting interference power at each sensor) increases. We thus address a more inter-

esting scenario, where the total transmission powers from all unauthorized radios is fixed. Figure 3.7

shows the detection probabilities of LCM and SCS schemes for different numbers of unauthorized
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transmitters. The unauthorized transmitters have equal transmission powers and are randomly lo-

cated in the test area with a uniform distribution. In addition, the total transmission power from all

the unauthorized radios is equal to the authorized one. We observe that more unauthorized radios

leads to higher detection rates for both schemes, even if the aggregate interference power remains

constant.
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Figure 3.7: Detection probability vs. the number of independent authorized transmitters, for (a)
LCM and (b) SCS, where γ̄med is 20 dB (solid), 10 dB (dashed), and 5 dB (dotted). The total
transmission power of the unauthorized radios equals the authorized transmission power (i.e., ISR
= 0 dB). The actual PF = 0.1.

3.5 Summary

In this chapter, we investigated the problem of detecting unauthorized spectrum usage in a dynamic

spectrum access network. Assuming there is only one authorized user in each spectrum channel,

we formulated the detection of anomalous spectrum usage as several statistical significance testing

problems. With respect to the mobility of the authorized transmitter, we propose two detection algo-

rithms. For the mobile case, we present a Linearity-Check-for-Mobile-Transmitter (LCM) method

to examine the linear relation between log-scale RSS and logarithmic link distance. For the station-

ary case, we present a Signalprint-Check-for-Stationary-Transmitter (SCS) method to compare the

current RSS pattern with a stored pattern of the authorized transmitter. Provided the distribution of

the energy measurements is known, we derive analytical models for the significance test statistics.

In the general case where the distribution is unknown, we introduce a machine-learning approach

to provide empirical solutions.
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The simulation results show that, the false alarm probabilities predicted by the analytical solu-

tions are sensitive to the SNR of energy measurements across the sensor network. The accuracy of

(3.33) increases with the SNR and the accuracy of (3.46) increases as the SNR changes away from

0 dB. Given the authorized transmitter location in LCM, the SVM based empirical solution and an-

alytical solution have very similar detection probabilities. On the other hand, the empirical solution

of SCS is more stable against noise than the analytical solution in terms of the detection perfor-

mance. Furthermore, the random variation of measurements has different effects on the detection

performance of two proposed schemes. Specifically, the random channel fading significantly deteri-

orates the detection rate of LCM but has little impact on SCS. In contrast, the number of samples in

each measurement, indicating how well the noise can be averaged, is the only factor that determines

the variance of measurements in SCS. Provided a large SNR and a single unauthorized radio, both

LCM and SCS schemes achieve the detection probability above 0.9 while keeping the false alarm

rate less than 0.1. The detection probabilities are even higher when there are multiple unauthorized

radios, for the same total interference power. Moreover, SCS is always superior to LCM in that

it achieves much higher detection probability using far fewer sensors, thanks to the more reliable

metric based on signalprints.
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Chapter 4

Interference Classification in Mobile Ad Hoc Networks

4.1 Preamble

Wireless communications are very susceptible to interference and poor communication perfor-

mance. Communication protocols (particularly at the link layer) have been designed to deal with a

variety of causes for poor link performance. For example, power control techniques might increase

the transmission power when a receiver is not able to receive a strong enough version of a communi-

cation signal. Or, in the presence of congestion, a medium access control protocol might commence

a back off procedure to wait for the channel utilization to improve. Even in more malicious settings,

such as jamming, link layer adaptation whereby a transmitter and receiver pair coordinate a switch in

operating channels is possible. Unfortunately, the solution for one type of poor performance might

not be the proper response for another cause of poor performance. Consequently, identifying and

classifying the cause for poor communication performance is an essential first step in network re-

pair, in defending the network from potential adversaries and, even, in taking appropriate offensive

countermeasures.

The fact that the wireless medium is a shared and open medium makes easy for other entities,

intentionally or otherwise, to cause interference. For example, a selfish node may deviate from

an underlying MAC protocol by aggressively using a shorter back off time (or even disregarding

back off entirely) in order to gain a larger fraction of channel access time, or an adversarial entity

may launch a jamming attack targeted at ensuring that a receiver cannot successfully decode a

packet. Merely identifying the presence of interference, however, is not sufficient for deciding how

to respond. Network congestion can look very similar to an adversarial jammer bypasses MAC-

layer back off and emits valid protocol packets. Consequently, being able to identify the cause of

poor performance also requires being able to identify whether the interference is adversarial or due

to a more benign reason, identifying the strategy that an adversarial source of interference may be
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employing, and understanding the likelihood associated with different potential explanations for a

perceived radio scenario.

Ensuring resilience to interference and denial of service attacks is an essential step towards

building a secure and dependable MANET. In general, a defense strategy consists of detection and

appropriate countermeasures against network anomalies. Significant progress have been made in the

literature to thwart jamming-based DoS threats through physical and MAC layer mechanisms. Many

defense schemes are shown to be effective against certain types of jamming attacks. Such schemes

include frame masking for protocol-aware reactive jammers [14], channel hopping for narrow band

jammers [15, 54], channel codings for low power jammers [16, 55], incentive and punishment for

selfish jammers [49, 56], and spatial retreats for powerful jammers [17, 57]. Nevertheless, existing

detection methods (e.g. [50, 51, 79]) can only tell whether a jamming attack is present but few are

able to characterize the attack’s behavior, which is the basis of choosing the corresponding defense

schemes. The gap between the binary-answer (i.e., ‘yes’ or ‘no’) detection and dedicated counter-

measure renders most of the existing defense proposals less effective facing a sophisticated attacker,

which can intelligently change its jamming strategies. Moreover, we will show in this chapter that,

interference due to hidden terminal problems in a wireless network can cause throughput degrada-

tions similar to that by a jamming attack. Although such interference can be mitigated by MAC

mechanisms such as adaptive carrier sensing [18, 80], without properly recognizing the cause of

current network anomaly, we may over-react to a nonmalicious interference problem and may ar-

tificially introduce new threats to the network. In this chapter, we address the issue of classifying

unintentional and intentional (i.e., jamming) interference in a 802.11 based MANET and we seek

the answers to the following two important questions:

• When a packet is received with error, is it due to unintentional interference, malicious jam-

ming, or just poor link quality with a low SNR?

• When an expected ACK is missing, is the data packet lost at the receiver or the ACK is

corrupted at the sender?
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4.2 Vulnerabilities in MANET

A fundamental vulnerability of wireless networks arises from the open nature of the wireless medium

and, when one considers MANETs, further vulnerabilities arise from the open peer-to-peer archi-

tecture. Unlike wired networks that have dedicated routers, each mobile node in an ad hoc network

may function as a router and forward packets for other nodes. The wireless channel is accessible

to both legitimate network users and malicious attackers. As a result, securing wireless networks

and MANETs can be very challenging as the attacks can easily come from anywhere within the

network as well as from outside the network. A quick survey of the literature for securing wireless

networks reveals a categorization of many vulnerabilities. Loosely speaking, these threats can be

broadly categorized into: confidentiality threats (e.g. adversaries inferring the meaning of commu-

nications), integrity threats (e.g. threats that arise from attacks on the identity of participants or

from manipulation of messages), and availability threats (e.g. denial of service attacks that might

exploit medium-access protocols) [81]. For this thesis, our interest will focus on issues related to

availability of communications in wireless/MANET scenarios. Specifically, we will focus on the

following three physical layer vulnerabilities of a 802.11 based MANET, which can be easily taken

advantage of by jamming attacks. It is worth noting that, although the discussion here is specific for

the 802.11 protocol, similar issues also apply to other wireless MAC protocols in general.

4.2.1 Carrier sensing

Carrier sensing is a fundamental mechanism in the 802.11 CSMA/CA protocol [1]. Each user senses

the channel before a transmission and defers the transmission if it senses a busy channel to reduce

the collision. This mechanism consists of physical carrier sensing and virtual carrier sensing. In

the physical carrier sensing, the channel is determined busy if the sensed signal power is larger than

a carrier sensing threshold, or idle otherwise. In the virtual carrier sensing, each user regards the

channel busy during the period indicated in the MAC header of the MAC frames. An example of

such virtual carrier sensing is the use of RTS (ready to send), CTS (clear to send), DATA, and ACK

as defined in the IEEE 802.11 protocol.

The virtual carrier sensing mechanism can only notify the nodes in the transmission range of

the sender that the medium is occupied or not, and hence whether a transmission can be decoded
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Figure 4.1: 802.11 DSSS-PHY frame format [1].

correctly assuming that the ambient background interference level is small enough. Transmissions

outside of the transmission range can introduce enough interference to corrupt the reception [82].

In addition, some ongoing transmissions may not be decoded correctly due to other transmissions

nearby, resulting in the failure of the virtual carrier sensing. Hence virtual carrier sensing cannot

rule out collisions from inside of the transmission range and is incapable of prevent interference

from outside of the transmission range.

Physical carrier sensing range, in which a transmission is heard but may not be decoded cor-

rectly, can be much larger than the transmission range and hence it can be more effective than the

virtual carrier sensing in avoiding the interference. However, large carrier sensing range reduces

spatial reuse and thus the network capacity. An adaptive carrier sensing range is often pursued

based on the network topology, reception power, and data rate [18, 80].

The fact that carrier sensing is not sufficient to avoid interference can be exploited by malicious

jamming attacks that: (i) transmit a low power signal to emulate outside-of-range interference, and

(ii) misguide the network to make wrong decisions (e.g., an improperly large sensing range).

4.2.2 Packet reception

We use the 802.11 DSSS (Direct Sequence Spread Spectrum) PHY as our underlying physical layer

while studying the process of packet reception in 802.11. Figure 4.1 illustrates an 802.11 DSSS

PHY frame, which consists of a 144-bit PLCP (Physical Layer Convergence Procedure) preamble,

a 48-bit PLCP header, and a MPDU (MAC payload tailed by a 32-bit CRC). To correctly receive a

packet, the receiver must go through three phases without error: preamble detection, PLCP header

reception, and a MAC-layer CRC check.

The preamble carries a pseudorandom number (PN) sequence that is the same for all frames. In

the preamble detection phase, the receiver tries to synchronize its timing with the PN sequence of an
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incoming packet when the signal strength of the preamble is greater than a hardware-set threshold,

known as the carrier sensing threshold (CS THRESHOLD). After the receiver successfully syn-

chronizes with the preamble, the receiver recognizes the start of a valid 802.11 frame transmission

and searches for a PLCP header after the preamble. The PLCP header contains the information

about the modulation/coding bitrate (e.g., 1 Mb/s DBPSK or 2 Mb/s DQPSK), the frame length

(16 bits) and a frame check sequence (16-bit CRC). If the PLCP header reception passes the CRC

check, the receiver enters the receive state and starts to receive the MAC header, data payload, and

the MAC CRC. The packet is successfully received after the MAC CRC checksum is deemed to

be correct. We note that the preamble detection and PLCP header reception are independent of the

MAC header information. Thus, the receiver can lock onto a packet and go into a receive state even

when a packet is being transmitted with a different node intended as the destination.

The above reception process exposes a 802.11 receiver to three common forms of interfer-

ence/DoS attacks: (i) scrambling the preamble synchronization and preventing the victim node

from entering the receive state; (ii) corrupting the MAC frame by introducing errors in the CRC

checksum; and (iii) forcing the victim node into a receive state by continuously transmitting ran-

dom packets.

4.2.3 Capture effect

The capture effect is a physical layer mechanism that provides some ability to cope with interference

or collisions in wireless networks. When multiple nodes transmit simultaneously in the same chan-

nel, interference occurs but does not necessarily result in packet collisions. An incoming packet can

be correctly received if the received SINR exceeds a certain threshold [83,84]. This phenomenon is

known as the capture effect. Recent experiments show that the SINR threshold that a packet can be

captured at (i.e., the capture threshold) is highly dependent on the arrival timing of the contending

packets [85]. For the Atheros 802.11a chipset under their test, the receiver can capture the first

incoming packet with the SINR of∼ 4 dB but can only capture the secondly arrived packet when its

SINR is above ∼ 11 dB. Therefore, a DoS attacker can send a jamming packet with a relatively low

power and prevent the victim receiver from locking onto its destined packet as long as the jamming

packet arrives the first.
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4.3 Interference Classification Using ACK

To facilitate the design of an interference resilient MANET, we propose an interference classifica-

tion scheme based solely on the statistics of the ACK reception. Our choice of ACK as the only

measure of interference is motivated by the following considerations:

• The classification should be performed at the sender without cooperation from the receiver

(except for sending an ACK for every received packet). Communications between the sender

and receiver are the target of jamming attacks, and hence it is precisely the sender who would

be most interested in understanding the cause for poor communications en route to its re-

ceivers.

• The receiver has a passive role in a communication because it often does not know who

is a potential sender and/or when a packet is coming. Therefore, the receiver’s perception

about interference is less accurate and it can be easily fooled by an attacker. On the contrary,

the sender initializes a communication and knows when an ACK should come (i.e., within a

certain timeout after sending out a packet). Hence, it not only has a more accurate observation

on the network condition, but also is more agile to react to anomalies.

• An ACK packet is usually short (i.e., 14 Byte long in 802.11) and thus less vulnerable to

interference.

• An ACK packet has a fixed length in most MAC protocols (except for piggybacked ACK)

and thus its statistics are more stable compared to variable length packets.

We do not consider authentication based attacks (e.g., fake ACKs) in this work and note that

there have been many security enhancements that have been proposed to address authentication

threats against communications [86, 87].

4.3.1 Jamming Attack Models

Although a radio jammer can apply many strategies to interfere with a target communication, they

boil down to several basic cases and their combinations from a sender’s perspective:
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• A random on-off jammer that only interferes with the sender. The jammer alternatively

switches between sleeping for ts units of time and jamming for tj units of time. ts and tj

can be either random or fixed. During the jamming phase, the jammer constantly sends jam-

ming packets with a variable length1. We define the attack strength as the average ratio of the

jamming duration and total time. Specifically, there is no jamming when the attack strength is

0 and the jammer launches a constant attack when the strength is 1. Since this type of jammer

only interferes with the sender, the ACKs from the receiver will occasionally be corrupted

even if all data packets can be successfully delivered (assuming a good link condition). Note

that this model does not take into account attacks that prevent the sender from sending out a

packet. Detection of such attacks is beyond the scope of our interference classification.

• A reactive on-off jammer that only corrupts the ACK reception at the sender. This jammer is

more intelligent compared to the above random jammer, as it can eavesdrop on data packets

from the sender and predict the transmission time of ACKs. The jammer only turns on during

the ACK transmission phase and tries to corrupt the sender’s reception of an ACK. Similarly,

we define the attack strength as the probability that the jammer turns on in an ACK transmis-

sion duration. The reactive jammer is more stealthy in that, (i) it will not appear in an idle

channel; (ii) it can deliberately corrupt the preamble synchronization for an ACK packet to

prevent the sender entering the receive state. Consequently, the sender may not even know

whether the receiver sends the ACK.

• A jammer that only interferes with the receiver. It can be either random or reactive. A

random jammer is irrespectively blocking the receiver. A reactive jamming attack dedicated

to a receiver may be difficult to implement in general because it is not easy to know the

destination node of a packet before it is completed received and decoded. In practice, a

reactive jammer can turn on whenever it detects an incoming packet (by synchronizing the

preamble). These two jamming models result in the same impact from the sender’s view—

data packets are corrupted. Therefore, we do not distinguish them in this work.

• Combination attacks that are any combinations of the above three basic strategies can be

1Similar attacks can be launched by simply sending a radio waveform or a sequence of random bits. Their differences
will be discussed in Section 4.4.
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employed by an adversary so as to be more difficult to recognize or classify.

4.3.2 Classification Metrics

The direct consequence of interference is packet corruption. Hence the packet error rate is an ideal

measure of the interference level and its effectiveness has been recognized in previous works [79].

However, a malicious jammer can try to disguise itself by preventing a node from starting the receive

state, as discussed in Section 4.2. As a result, the sender may not even notice an incoming packet,

and hence it cannot detect that there was a packet error. A merit of our ACK based classification

scheme is that, the sender knows that an anomaly happens if it fails to receive an expected ACK,

and is thus not dependent on whether a receiver noticed that there was a start of a packet. Therefore,

we believe that detection at the source is an essential component to classifying interference and thus

propose the following metrics based on the statistics associated with the ACK reception event.

ACK Error Rate (AER):

AER =
Ne

Nc + Ne
, (4.1)

where Nc is the number of correctly received ACKs and Ne is the number of ACKs received with

error. We count a failed reception as an erroneous ACK as long as the sender enters its receive state.

The incoming packet can be an interference packet other than the true ACK that never comes (e.g.,

the receiver does not receive the data packet so it does not send the ACK). As a result, the AER is

an overestimate of the true ACK error. However, it does disclose an anomalous case that should not

happen if there is no interference. Therefore it is a reliable measure of the SINR level at the sender

end.

ACK Block Rate (ABR):

ABR =
Nmh

Nt
, (4.2)

where Nt is the total number of data packets successfully sent, or equivalently, the total number of

expected ACKs. Nmh is the number of missing ACKs when the sender does not go into the receive

state but the carrier sensing power is above CS THRESHOLD (i.e., the preamble power threshold

which triggers the receive state). This situation occurs when (i) the expected ACK does not come

but there is a strong interference packet, or (ii) the expected ACK comes but the sender fails to

synchronize with its preamble due to interference. In either case, the ABR reflects the interference
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level at the sender that blocks or may block the reception of ACKs.

ACKMissing Rate (AMR):

AMR =
Nml

Nt
, (4.3)

where Nml is the number of missing ACKs when the sender does not go into the receive state and

the carrier sensing power is below CS THRESHOLD. It accounts for the case where the receiver

does not actually send an ACK and indicates that the receiver either fails to receive the data packet

or is kept from sending the ACK. In either case, the receiver is not at a good point to maintain a

reliable communication. Note that Nml is not an inclusive counter for the receiver-side interference

and a part of the missing ACKs can be counted in Nmh if the sender is being interfered with at the

same time. Consequently, it may underestimate the interference level at the receiver end when the

interference is severe at the sender.

AER-RSS consistency: As we will see, although the AER is an effective measure of the re-

ceived ACK errors, it cannot tell whether a weak reception is caused by an intentional jamming, an

unintentional interference, or merely by poor link quality. Therefore, we introduce another metric,

the AER–RSS consistency, similar to the PDR–RSS consistency proposed in [79]. Here the RSS is

the signal strength of the received ACK. Given a specific modulation and coding scheme, AER is a

monotonically decreasing function of SINR, which can be expressed by

AER = f

(
P

I + N

)
= f

(
RSS

I + N
− 1

)
, (4.4)

where P, I,N is the power of the ACK signal, interference signal, and noise, respectively. Then,

the interference power is uniquely determined by AER and RSS for a certain noise level:

I =
RSS

f−1(AER) + 1
−N. (4.5)

A vanishing I implies that the ACK errors are caused by a low link quality (i.e., a low SNR) and

otherwise by interference. In addition, Section 4.2 shows that the unintentional interference in a

properly operating network is always from outside of the carrier sensing range and thus its strength

must be limited within a certain level. When an estimate I is above this level, we can claim that the

interference is from a malicious attacker.
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4.3.3 Machine learning based classification model

A general model for our interference classification work can be expressed by,

H0 : {y1, . . . , yK} ∈ Ω0, interference free,

H1 : {y1, . . . , yK} ∈ Ω1, interference type 1,

...

HM : {y1, . . . , yK} ∈ ΩM , interference type M,

(4.6)

where a case of interest is classified into one of M interference scenarios based on K metrics,

{y1, . . . , yK}, or classified as an interference free scenario. These statistics can be any combination

of the above metrics (i.e., AER, ABR, AMR, and RSS) depending on the actual problems that we

discuss below. An acceptance region, Ωm, m = 0, . . . ,M , is a subset of a K-dimensional vector

space that accounts for the network behaviors under interference of type-m.

Due to the dynamics of a wireless network (e.g. our motivating scenario of a MANET), the wide

range of specifications for the hardware of senders and receivers, and the potential uncertainties that

arise from often unforseen threats, it is impractical to analytically quantify the above statistic met-

rics in a real network. Fortunately, machine learning techniques provide us powerful tools that can

empirically describe the acceptance regions, Ωm, in a statistically stationary environment. Specifi-

cally, we use a Support Vector Machine (SVM) method proposed in [88], C-SVC , to perform the

classification in this work. Note that the classification model in (4.6) is independent of the method

to quantify Ωm and many other statistical tools, including other SVM based methods, can serve the

purpose of our classification.

4.4 Case Studies

4.4.1 Simulation in QualNet

We investigate the performance of the proposed classification metrics in several typical interference

scenarios and, in the process, seek to arrive at a comprehensive classifier design that can handle

all possible interference threats in a MANET. A MANET with 802.11b MAC and PHY protocols

was built in the QualNet network simulator [89]. To maximize the impact of interference, we set an

infinite number of data packets in all senders’ queues to keep the channel saturated. In addition, we
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implemented a MAC protocol that can perform both random and reactive jamming attacks with an

adjustable probability, as defined in Section 4.3.1. Unless otherwise specified, the jammer uses the

same transmission power as that of a legitimate node. Since the official QualNet does not implement

a SINR-based preamble detection function or the capture effect, which play important roles in the

interference analysis, we have incorporated the implementation from [85] into our simulations.

Table 4.1 summarizes the key parameters in the simulation. In the following results, all the statistic

metrics defined in Section 4.3.2 are estimated over a 20 second window.

Table 4.1: MANET Simulation Parameters in QualNet
Parameter Value
PHY data rate 2 Mbps
RTS/CTS disabled
TX power 15 dBm
Noise power -103 dBm
CS THRESHOLD -93 dBm
Preamble detection threshold [1, 5] dB
Capture threshold 8 dB
Data packet length 512 Bytes
Jamming MAC packet length 16 Bytes
Path loss exponent, γ 4
Shadow fading none

4.4.2 Unintentional Interference versus Jamming

As discussed in Section 4.2, carrier sensing mechanisms in 802.11 CSMA/CA cannot rule out all

unintentional interference cases in a wireless network. Figure 4.2 depicts such a scenario, where the

node 3 and 4 are moving from the inside to the outside of the carrier sensing range of the node 1 and

2. Specifically, the horizontal distance (which we call interference distance) between the interfering

nodes, d, increases from 300 to 900 meters. We see from Figure 4.3 that, when all the nodes are

within the carrier sensing range of each other, the two communication pairs will equally share the

medium. However, when they move out of the carrier sensing range, the nodes can no longer detect

a busy channel but the transmission at the remote nodes (say, 3 and 4) still increases the background

noise level and thus corrupts packets at a local receiver (say, node 2). Therefore, the throughput of
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Figure 4.2: A MANET that unintentional interference occurs. Node 1 and 3 keep sending packets
to node 2 and 4, respectively. RS is the radius of the carrier sensing range (denoted by dashed arcs).
(x, y) denote the coordinates of each node.

the node 1 shows a sudden drop when the interference nodes are∼ 640 meters away from each other

(which implies the carrier sensing range) and gradually increases to a saturation point (i.e., d > 900

meters) where the medium is totally interference free and each pair of the nodes exclusively occupy

the channel.

As we have known, jamming attackers can take advantage of this vulnerability and launch a

low power jamming attack to emulate the unintentional out-of-range interference. We replace the

node 3 with a random jammer and similarly move it between 500 to 900 meters away from the

node 1 and 2. The random jammer sends jamming packets at a probability of 0.3. The jamming

probability is chosen so that the effect of jamming is similar to that of the unintentional interference

at the interference distance ∼ 640 m, where the unintentional interference is the strongest.) By

Comparing the throughput and ACK errors between the jammer and unintentional interference in

Figure 4.3, we see that the threat of the random jammer is only significant when it goes into the

carrier sensing range of the victim node, or equivalently, increases its jamming power above the

maximal level of an unintentional interference. This provides us an opportunity to distinguish the

jamming attack from unintentional interference using the consistency between AER and RSS.

For different link distances between the node 1 and 2, Figure 4.4 shows the footprints of AER

and RSS measured at the node 1 for the above two interference scenarios and the one without
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Figure 4.3: Unintentional interference versus random jamming in terms of (a) the throughput and
(b) AER at the node 1. The interference distance is the horizontal distance between the node 1 and
3 (or the jammer). The jamming probability is 0.3.

interference. It clearly shows that the unintentional interference power is upper bounded and from

the above analysis, we know this maximal power is achieved at the edge of the carrier sensing range.

Only an intentional jamming attack can go beyond this limit. Hence this AER–RSS boundary is

where we distinguish the jamming from unintentional interference. On the other hand, the lower

bound for the unintentional interference is achieved when the interference distance increases to the

infinity and the interference power diminishes. Using the AER and RSS as the input metrics to the

SVM classifier in Section 4.3.3, we can obtain the empirical acceptance regions (i.e., Ωm in (4.6) as

the three shaded areas in Figure 4.4.

4.4.3 Random Jammer versus Reactive Jammer

A reactive protocol-aware jammer can prevent the sender (waiting for an ACK) from going into

the receive state by corrupting the preamble synchronization of the incoming ACK. As a result, the

sender may not correctly perceive the collision and AER alone is no longer a reliable indicator of

the interference level. Hence we have introduced another two metrics, ABR and AMR, to account

for the more stealthy interference attacks as described in Section 4.3.1.

For the three basic jamming attack models, including random sender jammer, reactive sender

jammer, and receiver jammer, Figure 4.5 shows the discriminating capability of the proposed classi-

fication metrics. A very interesting observation is that, for each basic attack model, there is only one
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Figure 4.4: AER–RSS consistency for the cases of no interference (dots), unintentional interference
(circles), and random jamming (crosses). The shaded areas are the three acceptance regions derived
using C-SVC corresponding to the three interference scenarios.
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Figure 4.5: Statistics of the ACK reception by (a) random sender jammer, (b) reactive sender jam-
mer, (c) receiver jammer.

statistic metric with nontrivial values. If we lay out all the three metrics in a 3-dimensional space

as depicted in Figure 4.6, the three basic attack models are neatly mapped onto three orthogonal

bases. We also test two combined jamming attacks. For the combined random receiver jamming

and reactive sender jamming (Jamcombo), the 3-tuple metrics fall onto the ABR–AMR plane, that

is, the resulted AER is 0. For the combined random receiver and sender jamming (Randboth), the

3-tuple values fall across all three dimensions. We note that the results from the interference-free

case reside in the AER–AMR plane, which can be emulated by an attacker that switch between

receiver jamming and random sender jamming. However, such an emulation attack can be detected

using the above consistency check.
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Figure 4.6: 3-d metric space to classify the receiver jamming (JamRX), random sender jamming
(RandTX), reactive sender jamming (ReactTX), interference-free (No Jam), combined random
receiver jamming and reactive sender jamming (Jamcombo), and combined random receiver and
sender jamming (Randboth).

4.5 Summary

To classify interference in an 802.11 based wireless network, or more specifically a MANET, we

have proposed an interference classification framework, which distinguish between interference-

free, unintentional interference, and jamming attacks. From the sender’s perspective, we first cate-

gorize the potential interference scenarios into (a) unintentional interference, (b) random jamming

to the sender, (c) protocol-aware reactive jamming to the sender, (d) random or reactive jamming to

the receiver, and (e) combined jamming to both the sender and receiver. Given these interference

models, we have introduced new classification metrics based on the statistics of ACK receptions.

Specifically, we have proposed the AER, ABR, and AMR metrics, which correspond to ACK er-

ror rates, blocking rates, and missing rates measured at the sender. The three metrics form a 3-

dimensional space onto which all interference scenarios can be mapped. In addition, we utilized

the consistency of the frame error rate and received signal strength to handle the case where a mali-

cious jammer tries to emulate unintentional interference. The existing consistency model has been

extended so as to distinguish between low link quality (low SNR), unintentional interference, and

malicious jamming. Further, we reiterate that the proposed classification scheme is carried out by

the sender without the receiver’s collaboration (except for sending ACKs).



75

Chapter 5

Conclusion and Future Work

In this thesis, we have investigated three interference related issues that are critical to the success of

three emerging communication systems, including evaluation of HF interference from Broadband

over Power Line (BPL) systems, detection of interference in Dynamic Spectrum Access (DSA)

networks, and classification of interference in Mobile Ad Hoc Network (MANET).

First, we model the electromagnetic fields from a medium-voltage 3-phase power line mounted

above a lossy earth and carrying broadband signals to and from Internet customers. We present both

an exact solution for the near fields and a closed-form approximation for the far field from arbitrarily

long lines. BPL emissions are computed by considering a semi-infinitely long BPL section and the

maximum allowable excitation voltage versus frequency is computed by assuming compliance with

FCC field strength limits. We show, based on our power line model, that (i) terrestrial interference

can be significant under FCC compliance, (ii) interference into airborne receivers is potentially

significant, and so current rules prohibiting BPL use at selected frequencies in the 2-50 MHz band

and at 75 MHz are appropriate, (iii) there is no threat from BPL deployments to high frequency

(HF) and very high frequency (VHF) ionospheric channels, (iv) Reasonable throughputs (up to 125

Mbps for a 28-MHz band) can be achieved with launch powers for which the resulting E-fields meet

FCC Part 15 rules, and (v) By lowering the launch powers, one can reduce the interference range by

roughly 15 meters for every 100-Mbps decrease in system capacity.

Then we study the problem of detecting unauthorized spectrum usage in a DSA network. As-

suming there is only one authorized user in each spectrum channel, we propose two detection algo-

rithms. For the mobile case, we present a Linearity-Check-for-Mobile-Transmitter (LCM) method

to examine the linear relation between log-scale RSS and logarithmic link distance. For the station-

ary case, we present a Signalprint-Check-for-Stationary-Transmitter (SCS) method to compare the

current RSS pattern with a stored pattern of the authorized transmitter. Our study shows that both
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schemes achieve a detection probability above 0.9 while keeping the false alarm rate less than 0.1,

given that the received SNR is large. The detection probabilities are even higher when there are

multiple unauthorized radios, for the same total interference power.

Finally, we propose an interference classification framework to classify interference in a 802.11

based MANET, which distinguishes between interference-free, unintentional interference, and jam-

ming attacks. Given the proposed interference models, we introduce new classification metrics

based on the statistics of ACK receptions, including ACK error rate (AER), ACK block rate (ABR),

and ACK missing rate (AMR). The three metrics form a 3-dimensional space onto which all in-

terference scenarios can be mapped. In addition, we utilize the consistency of the frame error rate

and received signal strength to handle the case where a malicious jammer tries to emulate uninten-

tional interference. The existing consistency model is extended so as to distinguish between low

link quality (low SNR), unintentional interference, and malicious jamming. We note that the pro-

posed classification scheme is carried out by the sender without the receiver’s collaboration (except

for sending ACK’s). It eliminates the interference threats to the classification scheme and thus is

preferable in a dynamic MANET system.

Throughout the study, we have identified several issues that are worth further attention.

Our current BPL interference analysis is based on a 3-phase overhead parallel line model. In

practice, HF interference from a BPL system is not only from medium-voltage power lines, but also

from couplers, neutral lines, and low-voltage distribution lines [5]. It is computationally prohibitive

to take into account all these factors in the analysis and thus a comprehensive study based on field

measurements would be a highly useful next step. Although the FCC Part 15 rules specify the

peak emission strength from BPL, the measurement guidelines to locate this peak strength remains

vague. For example, the rules do not specify the measurement antenna height and the recommended

distance extrapolation factors have been shown to be inconsistent with real tests [90]. Appropriate

measurement schemes should be further investigated to identify the maximal BPL emissions at the

minimum cost.

For the interference detection in DSA networks, we have seen that our LCM scheme for the

mobile transmitter case is very sensitive to noise and random channel fadings. To improve the

robustness of the proposed method, promising solutions include: (i) Incorporating other estimated
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parameters, such as the path loss exponent, γ̂, in (3.21) into the test statistics; and (ii) including mea-

surement samples from the anomalous case in the machine learning process. Existing algorithms,

such as [91], can make use of undersampled anomalous training data to refine the acceptance region

of the detection. It is also worth carrying out experiments to confirm our theoretical analysis.

We have presented a framework to classify interference in MANET. However, the current so-

lution only addresses several typical interference models. A comprehensive classifier design is not

yet available to handle all potential interference threats. It would be useful to understand the char-

acteristics of some more advanced jamming attacks in our proposed 3-d metric space, further define

different regions in this space that correspond to different interference scenarios, and evaluate other

powerful classification metrics to complement our classifier design.
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Appendix A

Effects of Insulation and Line Sags

To facilitate a tractable analysis, the proposed model of BPL interference does not take into ac-

count the effects of insulation and conductor sags. Nonetheless, we examine the validity of such

assumptions through simulations in 4nec2, a popular electromagnetics modeling program based on

the Numerical Electromagnetics Code [92]. Figure A.1 illustrates the maximal E-field strength from

a 3-phase BPL section (i.e., between two poles) under various assumptions on line insulation and

line sag. For the case of line insulation, we assume polyethylene material with a thickness of 2.3

mm [93]. For the case of line sag, we use the parabolic approximation (26) in [94], and a piecewise

line structure is built to emulate the resulting catenary section. For a 100-meter long and 10-meter

high power line, we estimate a sag of 2 meters.
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Figure A.1: Maximal E-field strength from a 3-phase BPL section with various configurations at 30
MHz. The maximal value is taken along the BPL propagation direction (i.e., x-axis) and at a height
of 2 meters above ground. Each BPL section is 100 meters long, 10 meters above the lossy ground.
Insulated power lines are covered by polyethylene with the thickness of 2.3 mm, with a permittivity
of 2.4ε0. The line sag is 2 meters at the lowest point (i.e., mid-span). All four configurations have
the same source voltage.
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The computations for all four configurations (Figure A.1) were made for the same BPL source

voltage. We observe that, for the assumed geometry, (i) the effect of ignoring line sag is negligible,

and (ii) the effect of ignoring line insulation is minor (∼ 1 dB at all lateral distances) and on

the conservative side. Moreover, a feature of our study is that the BPL source voltage is always

calibrated to just meet the FCC limits. Thus, a scale-factor change in the predicted emission field

due to ignoring the insulation is compensated by a corresponding change in the assumed source

voltage. We conclude that our analytical model, in its simplifications regarding insulation and sag,

provides accurate estimates of BPL interference.
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Appendix B

The Source Impedance of A BPL Coupler

Using an approximate analysis, we will first calculate the source impedance for a single phase

wire and then show that the result can be extended to the three-phase BPL scenario with minor

adjustment. The choice of the source coupler impedance is a tradeoff between the competing goals

of high power delivery efficiency and low transmission loss: A larger coupler impedance can extract

more power from the BPL transmissions, while it also results in greater attenuation of those signals

along the line. Based on a discussion of this subject in [38], we believe a useful rule-of-thumb for

BPL engineering is to satisfy the condition,

Plaunch =
1

10
Pavail (B.1)

where the power launched onto the wires, Plaunch, is given by

Plaunch =
1

2
Re

[
Zright

∣∣∣∣ VS

ZS + Zleft + Zright

∣∣∣∣
2
]

=
1

2
Re

[
Zin

∣∣∣∣ VS

ZS + Zin + Zin

∣∣∣∣
2
]

≈ 1

2
Re

[
ZC

∣∣∣∣ VS

ZS + 2ZC

∣∣∣∣
2
]

.

(B.2)

The last two lines are based on assumptions in Section 2.1.4.

The maximum available power at the load, Pavail, is achieved when the load impedance equals

the source impedance, that is, Ẑin = ZS/2 (because the power is launched in both directions).

Hence,

Pavail =
1

2
Re

[
Ẑin

∣∣∣∣ VS

ZS + 2Ẑin

∣∣∣∣
2
]

=
1

16
Re

[ |VS |2
ZS

]
. (B.3)

Combining (B.1)-(B.3), we have

1

2
Re

[
ZC

∣∣∣∣ VS

ZS + 2ZC

∣∣∣∣
2
]

=
1

160
Re

[ |VS |2
ZS

]
. (B.4)
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If we further assume that ZS and Zin are both resistances (a fair approximation), we obtain ZS ≈
1
19ZC. For ZC ≈ 500 ohms, ZS = 26 ohms.

For the three-phase power lines, we assume that the BPL signal is launched only into the first

wire, with ground return, so ZS has the form

ZS =

⎛
⎜⎜⎜⎜⎝

ZS1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎠ (B.5)

and VS = [VS1, 0, 0]
T . Then the expression for Pavail remains unchanged and

Plaunch =
1

2
Re [I(0)∗Zin(0)I(0)] , (B.6)

where

I(0) = [ZS + 2Zin(0)]−1
VS. (B.7)

Consider now a weak coupling system, that is, where the diagonal elements of Zin(0) dominate1.

Then

I(0) ≈
[

VS1

(ZS1 + Zin,11)
, 0, 0

]T

(B.8)

and Plaunch has the same form as that in the single phase wire. Thus the impedance solution is again

ZS1 ≈ 1

19
Zin,11 ≈ 1

19
ZC,11, (B.9)

where Zin,11 and ZC,11 are the first-row and first-column element of Zin(0) and ZC, respectively.

Here we also assume that ZS1 and Zin,11 can be approximated as resistances.

1This is a very bold assumption. The actual characteristic matrix Zin(0) = ZC is nearly full for the BPL configura-
tions in this problem. However, our numerical tests show that the resulted ratio, Plaunch/Pavail ≈ 0.12 at fc ≥ 5 MHz
and is much smaller at fc < 5 MHz. Thus, the impedance choice (B.9) can provide a ballpark estimate based on the
expected transmission loss in (B.1).
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Appendix C

Approximating A Gamma Distribution Using A Lognormal
Distribution

For a Gamma distributed random variable y whose PDF is given by

f(y) =
ym−1

Γ(m)am
exp
(
−y

a

)
, a =

E[y]

m
, (C.1)

Y = ln(y) can be approximated by a normal distribution N (μY , σ2
Y ) given m is large [95], where

μY = ln(a) + ψ(m) (C.2)

and

σY =
√

ψ′(m). (C.3)

ψ(m) = d
dm ln Γ(m) is the digamma function and ψ′(m) = d2

dm2 ln Γ(m) is the trigamma function.

In addition, ψ(m) ≈ ln(m) for a large m. We denote a lognormally distributed random variable

y ∼ Log-N(μY , σ2
Y ).
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Appendix D

Mathematical Model of One-class SVM

One-class SVM is defined by the following optimization problem [77],

min
ρ∈R,ξ∈Rl,c

ρ2 +
1

νl

l∑
i=1

ξi (D.1)

subject to ‖Φ(vi)− c‖2 ≤ ρ2 + ξi,

ξi ≥ 0, i = 1, . . . , l.

where the data instance (i.e., the test statistics), vi, is the estimate residues in our anomaly detection

work, given in (3.22) and (3.38), respectively. Hence vi is a N -dimensional energy measurements.

k is the number of attributes in each data instance. Hence k equals to N , the total number of

spectrum sensors. l is the number of data instances in the training set, that is, the number of trials

in the training phase. ξ = (ξ1, . . . , ξl) are slack variables, which allow a fraction of training data

to be excluded from the hypersphere in the constraint. Φ(vi) is a mapping function that maps

the measurements, vi, into a feature space where an inner product can be computed by a kernel

function defined as KΦ(vi,vj) = Φ(vi)
T Φ(vj). We use the radial basis function (RBF) as the

kernel function in our study:

KΦ(vi,vj) = exp(−1

k
‖vi − vj‖2), γ > 0. (D.2)

The anomaly detection problem can be viewed as minimizing the radius ρ of a hypersphere, centered

at c, that encloses a subset of the training data (i.e., the acceptance region, Ω).

The optimization problem (D.1) is solved by the dual problem,

min
α

∑
i

∑
j

αiαjKΦ(vi,vj)−
∑

i

αiKΦ(vi,vj) (D.3)

subject to 0 ≤ αi ≤ 1

νl
,
∑

i

αi = 1.
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Each data instance from the testing set, u, is then classified using the decision function,

H0 :
∑

i

∑
j

αiαjKΦ(vi,vj)− 2
∑

i

αiKΦ(vi,u) + KΦ(u,u) ≤ R2. (D.4)

Note that we do not need to know the explicit form of Φ(vi) to solve the dual problem.
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