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Abstract of the Dissertation 
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The Myotube-Integrated Microelectrode Array 

By Christopher Gresham Langhammer 

 

Dissertation Director: 

Dr. Bonnie Firestein 

 

 

Neural interface designs are diverse, including multiple cortical, deep brain, spinal, 

non-invasive, and PNS-based approaches to stimulation and recording. There are an 

estimated 1.7 million Americans living with limb loss, and many more suffering from PNS 

injury without expected motor recovery, who may benefit from a neural interface that can 

help place a prosthetic actuator directly under neural control. Technologies exist capable 

of recording neural activity from both the PNS and CNS, but they face problems 

acquiring large enough numbers of independent and appropriately tuned neural signals 

to provide reliable dexterous control. This dissertation introduces a new neural interface 

design that uses myotubes cultured on a topographically modified MEA as a means of 

extracting large numbers of independent neural signals pertaining to motor control from 

the PNS. To provide proof of principal for the basic science concepts underpinning this 

design, the following three aims are pursued and results are discussed: 

Aim 1 – To develop a bio-interface capable of modulating myotube behavior and 

guiding myotube formation and contractility to specific locations. 
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Aim 2 – To integrate the bio-interface from Aim 1with a substrate-embedded MEA for 

the purpose of recording myotube activity selectively from independent myotubes within 

a culture. 

Aim 3 – To integrate the interface designed in Aims 1 and 2 with neuronal culture, as 

the first step towards developing a structured co-culture system. 
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Specific Aims 

The ideal neural interface is a bidirectional transducer that establishes contact 

between a technical device and neural structures within the body. The objective of such 

devices is to record bioelectrical signals from the nervous system or to implant such 

signals in order to restore motor and sensory function in disabled patients [3, 4]. 

Research in the fields of neural interfaces and neural prostheses focuses on restoring 

motor and sensory function in patients with limb amputations [5, 6], spinal cord injury 

(SCI) [7, 8], stroke [4, 9], and degenerative diseases [3, 4, 9]. However, advances in 

these fields have thus far translated into only modest clinical improvements despite the 

technologies’ tremendous potential [10]. A modification of the known “cultured-probe” 

design, a neural interface in which neurons cultured directly onto an electrode surface 

prior to implantation facilitate incorporation into the host nervous system [11-13], may 

significantly improve the recording capabilities of current neural interfaces. By using 

myotubes rather than neurons as the electrogenic cell type cultured onto the electrode 

surface and by targeting the peripheral nervous system (PNS) as the implantation site, 

we hope to overcome many of the critical barriers to progress in this field. This project 

aims to develop a modified planar microelectrode array (MEA) designed to facilitate 

integration of muscle cells (myotubes) grown in culture. The MEA surface will be tailored 

specifically to improve the sealing between myotubes and electrodes for improvement 

upon the ability of current devices to distinguish electrical activity of individual cells. 

Principals of this new interface will be developed to optimize the specificity with which 

the myotubes are able to interact with the electrodes, including the development of 

computational algorithms meant to interpret the multi-modal data a prototype is likely to 

generate. These myotubes may then act as biological signal amplifiers for action 
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potentials received from regenerated motor neuron axons following amputation, creating 

a gateway for acquiring motor intention from the nervous system.  We are using a highly 

reductionist approach to a complex clinical problem to demonstrate that recording motor 

intention along its final common pathway is an achievable goal.  

HYPOTHESIS: An MEA can be designed to guide myotube formation to specific sites 

and can interact with these myotubes (recording or stimulating) in a selective manner.  It 

may be possible to use this technology in a novel type of neural interface or in 

development of laboratory systems requiring the study of ordered muscle cell cultures or 

muscle/nerve co-cultures. 

To demonstrate the ability of myotubes to transduce APs transmitted along α-

motoneuron axons, we propose the following aims: 

Aim 1 – To develop a bio-interface capable of modulating myotube behavior and 

guiding myotube formation and contractility to specific locations, while maximizing the 

number of independently active myotubes. 

Aim 2 – To integrate this bio-interface with a substrate-embedded MEA for the 

purpose of recording myotube activity selectively from independent myotubes within a 

culture. 

Aim 3 – To integrate the interface designed in Aims 1 and 2 above with neuronal 

culture, as the first step towards developing a co-culture system in which we can 

observe the transmission of action potentials from a neuronal population to a myotube 

population. 
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1 Introduction:  a review of current technology in neural 

interfaces and the health relevance of the myo-MEA 

1.1 Current state of neural interface technology 

1.1.1 Abstract: 

Neural prosthetics are “artificial extensions to the body that restore or supplement 

functions of the nervous system lost during disease or injury [14].”  Typically, a 

neuroprosthetics device consists of some sensor or actuator that interacts with the 

environment and a “neural interface” responsible for communicating with the nervous 

system.  The neural interface is the point at which the machine exchanges information 

with the nervous system (reviewed recently in the popular press [15]).  In the case of 

sensory prostheses, such as a cochlear implant [16, 17], the neural interface is designed 

to insert signals into the nervous system by stimulating the nervous tissue, while in the 

case of motor prosthetics [18-20], such as those currently under development in many 

laboratories, the purpose is to extract signals from the nervous system by recording the 

activity of the nervous tissue.  Long-term efforts are aimed at creating hybrid systems 

capable of two-way communication with the nervous system for restoring full function to 

amputees as well as to other patient groups [21, 22].  The major hurdle to progress in 

the clinical advancement of neuroprosthetics devices is the development of neural 

interfaces capable of efficient communication with the nervous system [5]. 

1.1.2 Acquiring Neural Signals Related to Motor Intention: 

The mechanical capabilities of currently available prosthetic devices have become 

sophisticated [5, 18]. However, motor tasks are driven by gross anatomic movements or 

low bandwidth myoelectric couplings, making them cumbersome [5, 13]. For such 



2 

 

 

prostheses, communication with the user is the weakest link in the chain of components 

that includes electronics, computing, actuators, mechanisms, and materials, all of which 

are adequate for the application [18]. Neuroprosthetic devices aim to correct this 

deficiency by placing the prosthetic actuator directly under neural control. One subtype 

of neuroprosthetic device, a neuromuscular prosthesis, captures neural signals involved 

in motor intention and redirects them for use in controlling an artificial device. Efforts to 

move such devices into clinical practice have been slowed by the lack of a neural 

interface capable of recording neural signals effectively enough to restore fine motor 

control or sensory function [5, 6, 23]. 

Current reviews of neural interface design highlight the following functional criteria as 

bottlenecks in the continued progress of this field [6, 23-25]: 1) obtaining stable, long-

term recordings of large populations of neurons, 2) developing computationally efficient 

algorithms for translating neuronal activity into command signals capable of controlling a 

complex artificial actuator, and 3) determining how to use brain plasticity to incorporate 

prosthetics. While small populations of highly tuned neurons can accurately predict 

movement parameters, highly tuned neurons are rare in a random sample of cortical 

cells. Because motor information is represented in this highly distributed way, large 

samples of recorded cortical neurons are preferred [23, 26, 27]. It has been estimated 

that recordings from 500 to 700 cortical neurons would be needed to achieve 95% 

accuracy in predicting one-dimensional hand movements [28]. The minimum number of 

recordings required to transform thoughts into a reasonable range of motions most likely 

exceeds 1000 [18], a number presently exceeding the capabilities of cortical probes. As 

an analogy, imagine trying to read a computer screen with only a small number of pixels 

(Fig. 2.1-1).  The more complex the message, the larger the number of pixels required to 

read it.  As a research community, we should pursue diverse approaches to both 
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simplifying the message and improving our ability to read it.  This will require the 

development of diverse methods to record and decode motor intention as well as 

targeting multiple regions of the nervous system. 

 

Figure 2.1-1.  Information density in neural interfaces 

More complex messages require a larger number of independent signals sources (in this case pixels) for proper 

decoding 

 

The intention to perform an action is born in the cortex of the brain, is processed 

through multiple regions of the brain and spinal cord, comprising the central nervous 

system (CNS), and is transmitted along the axons of the PNS, finally arriving at the 

neuromuscular junction (NMJ) where it triggers the depolarization and contraction of the 

specific muscle cells required to perform the desired action.  There is continual debate 

on where in this chain of transmission is the best location from which to derive a useful 

motor signal, and therefore, to target with a neural interface [6, 12, 23, 29-31]. 
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1.1.3 CNS Interfaces: 

Historically, many have designed neural interfaces with the intention of 

communicating directly with cortical tissue [9].  Most of these efforts use penetrating 

MEAs to record depolarization of cell bodies [3, 5, 12, 23]. With these designs, 

electrodes located at the end of micron-scale spikes are inserted directly into central 

nervous system (CNS) tissue. While there are a number of benefits to this approach 

(most notably that it is technically simple to record a neural signal from a region where 

the large neuronal cell bodies may be accessed), progress is confounded by the 

complicated encoding of information in cortical brain regions [32] and by the highly 

invasive nature of implanting any foreign device in the CNS [33, 34]. Complicating issues 

for these electrodes include poor long-term recording due to fibrous encapsulation, 

inflammation, death of surrounding neurons, and insufficient data transfer and decoding 

ability to interpret signals recorded at the cortical implantation site [9, 35, 36]. These 

devices have yet to perform at the level necessary to justify their use in large-scale 

clinical trials [6] but are in use in a limited number of clinical trials with a small number of 

patients [10]. 

1.1.4 PNS Interfaces: 

As an alternative to targeting the CNS, other groups have developed means of 

targeting the PNS [3].  An MEA-based neural interface that targets the PNS improves on 

current technology by taking advantage of the specific nature of the PNS in managing 

motor control. Each conscious action originates with upper motor neurons in the motor 

cortex that trigger a neural network distributed across brainstem nuclei, cerebellum, and 

spinal cord. This neural network synthesizes input from thousands of tactile, positional, 

and visual sources with motor intention from the primary motor cortex to derive 

controlled motor output [18]. Recording neural activity in the PNS after it has passed 
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through the many processing steps occurring in the spinal cord, brainstem, and 

cerebellum may result in increased information content in the resulting signal. A clinically 

relevant example of this phenomenon is cochlear implants, which restore hearing by 

directly stimulating the nerve cells in the cochlea. Attempts to stimulate more central 

areas of the auditory pathway have been less successful. Experts suspect this failure is 

secondary to the loss of important signal processing in the periphery [25]. Due to its 

comparative physical accessibility, the discrete encoding of motor and sensory signals, 

the regenerative capacity of peripheral axons [4, 26, 37], and the reasons discussed 

above, the PNS may represent a more convenient location for accessing neural signals.   

Neural interfaces that target the PNS pose a good compromise between the benefits 

and drawbacks of many types of neural interfaces [29, 30]. However, even in the PNS, 

interfaces with good specificity (i.e., the ability to record the activity of specific neurons) 

pay the price of being more invasive (Fig. 2.1-2). Consequently, there are multiple PNS 

interface designs (reviewed in [12]). 

 

Figure 2.1-2.  Invasive PNS interfaces schematized by selectivity and invasiveness 

(Reproduced from [38]) 
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Extraneural electrodes, such as the cuff or epineural designs (relatively noninvasive 

and unspecific), attach to the outside of peripheral nerves.  The most popular current 

examples are cuff electrodes [39], which attach to the outside of nerve bundles and 

record the activity of the fascicles (large, related axon clusters) with the nerve, but are 

only capable of recording a small amount of information [40].   

Intraneural electrodes (more invasive but more specific) are inserted directly inside of 

the peripheral nerve where the recording sites can make nearly direct contact with the 

axons transmitting information.  Notable examples include longitudinal intrafascicular 

electrodes (LIFEs) [30], but also a number of other penetrating electrode designs have 

also been deployed in the PNS [41], though at this point these are primarily used for 

stimulation rather than recording purposes (such as the Utah staggered electrode array 

– USEA).   

Regenerative electrodes, such as the sieve electrode (highly invasive and highly 

specific), are placed in the gap of peripheral nerves that have been fully transected and 

record from axons which regenerate through the electrode [42].  Problems with this type 

of interface are currently being addressed by the redesigning the recording sites to be 

tubular rather than planar [43-46].  These tubular recording sites are frequently 

fabricated by rolling arrays of parallel microchannels (microgrooves) with incorporated 

substrate-embedded MEAs into cylindrical constructs for implantation [47, 48]. 

1.1.5 EMG Surface Interfaces: 

The most clinically successful means of establishing a control signal for powered 

prosthetic devices has been recording the electromyographic (EMG) activity of residual 

muscles [49, 50].  Traditionally, this has been accomplished using residual muscles that 

were related to the activity of the prosthesis prior to amputation or by using EMG activity 

recorded from other unrelated muscles that have been retrained for prosthetic control 
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[51].  More recently, a technique titled “targeted muscle reinnervation” (TMR) has been 

developed, in which the residual peripheral nerves left after an amputation are rerouted 

to muscles left useless by the loss of the limb (Fig. 2.1-3) [52].  These nerves regenerate 

onto the new musculature allowing the amputee to contract them by trying to perform 

actions with the missing limb, and providing a new EMG source from which more 

intuitive control over a powered prosthetic may be derived [53].  All currently available 

myoelectric technologies depend on EMG recordings made at the skin’s surface, and 

while muscle-implantable electrodes have been shown to be stable for long periods of 

time, such devices are almost exclusively used for functional electrical stimulation (FES) 

rather than EMG recording (with the notable exception of devices intended for diagnostic 

purposes) [12].   

 

Figure 2.1-3.  Postoperative anatomy for two patients receiving TMR 

This illustration shows where the surviving peripheral nerves have been rerouted to residual muscled for 

reinnervation (reproduced from [53]) 
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1.2 The myotube-integrated MEA (myo-MEA) as a next step 

The proposed neural interface employs a combination of electromyography, which 

takes advantage of the larger extracellular voltage changes caused by the 

depolarizations of muscle cells relative to those of neurons [54-56], and a cultured-probe 

technique, which takes advantage of the high degree of specificity available to 

dissociated cultures grown on MEAs [13, 57, 58]. Such a device is necessary because 

recording from individual PNS axons is not feasible with traditional approaches. 

Recording from motor axons in vitro is not currently feasible because they are 

comparatively small and create extracellular voltage changes below the detection limit 

for traditional MEAs [9, 59]. Developing a myo-MEA may enable researchers to use 

myotubes as a biological signal amplifier to record neural signals carried in spinal 

motoneuron axons. The myotube amplifies the signal traveling down the motoneuron 

axon by virtue of coupling through the neuromuscular junction (NMJ) in much the same 

way a loud speaker amplifies the voice of someone speaking into a microphone.  

Based on the relative success of EMG-based and PNS-based neural interfaces, the 

myo-MEA is a neural interface design meant to combine the benefits of the two 

approaches.  In this thesis, we culture myotubes on an electrode array in a modification 

of the traditional cultured probe concept [11], specifically employing microscale grooves 

to accomplish two goals: 1) direct the formation of myotubes to specific electrode sites, 

and 2) to preserve myotube independence from one another. This is important in terms 

of increasing the number of independent signals available per unit surface area and 

maximizing the capability of such a device to record neural signals. Additionally, the 

topographical modification serves to stabilize the myotube culture, which can be 
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mechanically disrupted by the contractions of the myotubes themselves over extended 

periods of time. 

There are three primary ways targeting the PNS by using myotubes as signal 

receiver/amplifiers will improve on current neural interface designs: 1) the current 

understanding of cell-electrode contact suggests that the increased physical size and 

transmembrane current of myotubes will improve electrode sealing [60-62], 2) the bi-

directional communication between myotubes and motoneurons may promote growth of 

axon collaterals from the native PNS into the cultured probe [26, 37], and 3) current 

knowledge about neural information processing suggests that targeting the PNS for 

neural interface implantation will simplify the algorithms involved in decoding motor 

intention [3, 5]. The myo-MEA design stands to increase Rseal between the cell and 

electrode, specifically targets neural signals that are highly tuned to motor intention, and 

targets a portion of the nervous system where motor intention has already undergone 

cerebellar processing. 
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2 Developing and characterizing novel tools for quantifying 

muscle cell and neuronal behaviors 

2.1 Identification and quantification of skeletal myotube contraction and 

association in vitro by video microscopy 

2.1.1 Abstract: 

Ex vivo cell-based experimental systems used to study muscle cell contraction, and 

others based on incorporation of cells into sensitive force transducers or 

electrophysiology equipment, are time-consuming, invasive, and not universally 

available, slowing the pace of research. Video microscopy provides a noninvasive way 

to record the contractile behavior of skeletal muscle cells in vitro. We have developed a 

numerical procedure, using image processing and pattern recognition algorithms, that 

makes it possible to quantify contractile behavior of multiple myotubes simultaneously, 

based on video data. We examined the ability of the program to identify movement using 

a simplified graphical model of myotube contraction and found that the program’s 

success is dependent on the morphology and movement characteristics of the objects. 

However, the program performs optimally over the types of motions approximating those 

observed in culture and identifies contracting myotubes in sample videomicrographs of 

muscle cells in vitro. This program quantifies contractility on a population level, can be 

adapted for use in laboratories capable of digital video capture from a microscope, and 

may be coupled with other experimental techniques to supplement existing research 

tools. 
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2.1.2 Introduction: 

Skeletal muscle is the largest tissue in the body by weight and plays many roles in 

maintaining homeostasis and health. Muscle tissue engineering has been recognized as 

important for the replacement of both cardiac [63] and skeletal [64] muscle cells, as 

actuators in biointerfacing robotic applications [65], as protein delivery vehicles in gene 

replacement therapies [66], and as biological sensors in lab-on-a-chip applications [67-

69]. Experimental systems used to study muscle cell contraction are time-consuming, 

invasive, and not universally available, thus slowing the pace of research [65, 70-72]. 

Traditionally, tools for examining muscle cell function fall into several categories: 

biochemical, morphological, and kinetic. 

Biochemical studies focus on the molecular composition of muscle, measuring the 

quantities of myosin or actin subtypes or other proteins relevant to the intracellular 

contractile machinery [64, 73, 74], and can reveal shifts from fetal to mature phenotypes. 

Such studies are limited in their ability to directly show the involvement of specific 

proteins in generating excitation or contraction and in demonstrating a change in 

functionality associated with the changing levels of these proteins. As a result, 

biochemical techniques are frequently used in conjunction with other methods. 

Morphological studies consist of static examinations of cell shape, size, and 

appearance [56, 63, 73-76]. Looking at the organization of cellular structures unique to 

myotubes, such as the sarcomere or neuromuscular junction, is an important means of 

identifying stages in muscle cell development. However, by only examining the way the 

cells look and not how they act, these methods miss the dynamic aspects of myotube 

behavior. 

Kinetic studies are meant to quantify muscle cell excitation and contraction by one of 

several methods. Contractile force can be measured by integrating muscle preparations 
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with macroscopic [63, 64, 77] or microscopic [72] force transducers. Force generation is 

a very direct endpoint for quantifying myotube function, but such studies depend on the 

use of dissected tissues or trypsin-digested cells and their time-consuming manual 

integration with force transducers. Muscle cell kinetics can also be studied using 

traditional electrophysiology [56] or can be visualized by imaging Ca2+ sparks or voltage 

changes within myotubes [73, 78, 79] using dyes with voltage- or Ca2+-dependent 

fluorescence. Voltage- or Ca2+-based techniques provide information about the 

intracellular handling of Ca2+ or depolarization events on a very short timescale with high 

resolution. However, some dyes have been shown to have an effect on Ca2+ handling 

and cell health when used over long periods [80]. 

Finally, muscle cell kinetics can be studied using video recordings based on 

transmitted light. Most frequently, optical data are acquired through careful placement of 

photodiodes used for spot or edge detection of cell boundaries or through the application 

of digitized spot detector algorithms to full digital recordings [71]. Current optical 

techniques are highly sensitive to cell geometry, specimen focus, and detection methods 

[71]. As a result, they are overwhelmingly geared toward application to single cells and 

still require complicated cell preparations. Finally, the need for clear visual fields, 

precisely shaped and positioned single-cell targets, and the necessity for bulky optical 

equipment means that these techniques cannot be used simultaneously with many of 

the biochemical, morphological, or kinetic techniques mentioned previously [71]. 

One of the problems facing all of the kinetic studies mentioned above is the variability 

among muscle cells. Cardiac and skeletal muscle cell differentiation and development in 

vitro varies greatly between preparations [71] or even across the same culture [68]. Only 

a partial understanding of muscle cell kinetics can be inferred from limited observations 

of events since the activities and morphologies observed in different viewing fields may 
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be very different. Because myotube behavior can be so complex, there is no single 

comprehensive method to examine myotube contractility. It is therefore crucial to use 

combinations of techniques and to generate supplemental new techniques to provide 

novel insight into myotube excitation/contraction [68, 71, 81]. 

We have developed a video-based research tool to facilitate population-level studies 

of developing myotube functionality, termed the Visual Twitch Analysis (VTA) algorithm, 

which can be easily combined with other existing research tools. The full text of the 

MATLAB code for the VTA algorithm is available in the appendices of this thesis. Video 

microscopy provides a noninvasive way to record the contractile behavior of skeletal 

muscle cells in vitro [56, 71, 76, 82-87]. Visual analysis of such data by hand, however, 

is confounded by the small and sporadic nature of spontaneous muscle cell contractions 

in vitro, by the difficulty of assigning some form of graded quantification to these events, 

and by the unavoidable introduction of bias, either through visual identification of 

contraction events or through hand selection of specific regions that are then passed to 

an automated analysis tool [71]. Having a fully automated system to perform video 

analysis makes it possible to quantify large amounts of data in an unbiased way and with 

a high degree of reproducibility and flexibility. 

2.1.3 Materials & Methods: 

2.1.3.1 Cell Culture  

Myoblasts were isolated, cultured, and imaged as previously described in the 

literature [54, 88, 89]. Briefly, pregnant Sprague Dawley rats were sacrificed by CO2 

inhalation at gestational day 21, in accordance with Rutgers University animal care 

procedures.  Pups were removed by Cesarean section, and hind limb muscles were 

removed to a separate container of Hanks’ Balanced Salt Solution (Invitrogen, Carlsbad, 

CA) + 1% HEPES Buffer (Mediatech, Inc., Herndon, VA).  Tissue was finely minced and 
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brought to a final volume of 7 ml in PBS containing 1.5 U/ml collagenase (type D, Roche, 

Mannheim, Germany) and 2.5 U/ml dispase (type II, Roche, Mannheim, Germany).  

Tissue slurry was then incubated for 20 min at 37o C and triturated using a pipette to 

break up remaining tissue clumps.  Solid debris were allowed to settle for 15 minutes, 

and remaining cells were pelleted out of the supernatant by centrifugation.  The cell 

pellet was resuspended in growth medium consisting of Ham’s F-10 medium including 

20% fetal bovine serum, 1% Penicillin/Streptomycin, (all from Invitrogen, Carlsbad, CA) 

and 2.5 ng/ml human b-FGF (Promega Corporation, Madison, WI).  Cells were then 

plated into 75 cm2 flasks and incubated for 24 hrs to allow for attachment of viable cells.  

Cultures were washed 3X with PBS to remove non-adherent cells and debris.  Cells 

were then resuspended and plated onto smooth or grooved PDMS surfaces at a density 

of 150,000 cells/cm2 in differentiation medium consisting of Neurobasal medium 

including 2% B27 Supplement, 1% Penicillin/Streptomycin, and 1% GlutaMAX (all from 

Invitrogen, Carlsbad, CA).  Prior to seeding, surfaces were coated with laminin (Sigma 

Aldritch, St. Louis, MO) at 40 µg/ml.   

2.1.3.2 In Vitro Video Capture & Synthetic Data Generation  

Videos were acquired at day in vitro (DIV) 7 – 14, using an inverted microscope 

(Olympus, Center Valley, PA) with a SensiCam digital camera (PCO Imaging, Kelheim, 

Germany) and Image-Pro Plus image acquisition software (MediaCybernetics, 

Bethesda, MD).  Thirty second videos of myotube behavior were acquired over 200 

frames using a 10× objective and 512 × 640 pixel resolution, recording an area of 

0.55 mm2.  To create the standardized set of videos used for subsequent program 

validation, example videos were hand sorted into groups containing 0, 1, 2, 3, 4, or 5 

contractile cells.  The number of videos in each group are as follows; N0-3 = 5, N4 = 3, N5 

= 2. 
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Synthetic data were generated to correlate with the in vitro video data above. Bars 

were created by randomly generating the coordinates for two points in a viewing field of 

512 × 640 pixels. These points were connected with a black line of varying width. The 

amplitude of bar movement was determined by randomly generating a horizontal and 

vertical deviation for each of the bar endpoints from a predetermined range. The 

frequency of oscillations was selected from a range of 0.0 to 13.3 Hz (or 0 to 400 times 

over the course of the movie). Movies were simulated for 200 frames, with a timing of 

0.15 sec/frame, which was the maximum acquisition rate for our software/camera 

combination (see Discussion for a description of how acquisition frame rate may affect 

further analysis of video data). Bar width and endpoint deviation were drawn from a 

distribution yielding the final behaviors indicated in Table 1. 
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2.1.3.3 Automated Data Analysis 

Figure 3.1-1.  VTA program processing path 

Blocks indicate individual processing steps (rectangles) or decision points at which irrelevant data can be 

discarded (diamonds). Arrows indicate the inputs of experiment-derived data (black arrows) or external 

parameters (gray arrows) to each processing sub-step to the next. The algorithm is conceptually broken into 

three fundamental steps (black dashed lines) discussed in the text. Portions are run iteratively (gray dashed 

boxes) to improve accuracy. 

 

The VTA program involves an automated three part process, shown in Fig. 3.1-1: 1) 

image processing and data extraction, 2) generating sets of possible myotube 

conformations that explain the data, and 3) selecting the best set of myotube 

conformations. In the first step, the VTA program breaks each frame of the video into 
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multiple regions and compares it to the initial frame. This generates a measure of how 

local pixel intensity changes as a function of time. These changes can be caused by 

myotube contractions or by culture artifacts, such as changes in lighting and floating 

debris. In the second step, these time-variant functions are used to identify contractile 

regions of the video. In the third step, these regions are judged for “fitness” in explaining 

the data. Because the process is partially dependent on several parameters used in the 

image processing and fitness testing steps, this process is repeated several times and 

averaged to yield the final estimate of the number and location of cells (see Discussion 

section for description of how parameter values affect program performance). 

 

Figure 3.1-2.  Representative videomicrograph and accompanying VTA analysis 

(A) Full image of the viewing field; in this case containing multiple independently active myotubes, at t = 0 s (red 

stars). Selected areas (red boxes) are magnified and shown at separate time points in B and C, respectively. (B) 
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and (C) Magnified image of the area boxed and labeled in A. B.1 and C.1 show these regions at t = 0 s; noteworthy 

features (white arrowheads) are noted for comparison with later time points. Myotube movement is apparent from 

the displacement of these features in B.2 and C.2 from their initial positions (again indicated by white 

arrowheads) to their position at maximum deflection some time later (red arrowheads). (D) Example output from 

the VTA program, demarcating the areas covered by the 3 active cells (color-coded hatchwork). (E) The δK(t) 

function for each of the 3 cells plotted over time. Individual contractile events can be visualized as the peaks 

occurring semi-rythmically throughout. (F) The correlation of each δXY(t) function with the δK(t) functions shown 

in E. Activity is clearly correlated in regions associated with particular cells. 

 

In the first part, a series of image processing steps transform the video into a 

collection of time-variant functions representing the extent to which a given region in the 

image has deviated from its initial position over the course of the movie. The first step is 

to threshold each frame of the video to turn it into a black and white image. Pixels with a 

value above the binarization threshold (TB) are assigned a value of 1 while all others are 

0. Next, each image is divided into an N × N grid. Each block of the grid is treated as its 

own interrogation window (WXY), where the capital subscripts X and Y refer to the block’s 

location in the N × N grid. For each WXY, the quantity of binarized pixels (Pxy), which 

switch values (i.e., from 1  0 or from 0  1) as compared to first frame in the video (t = 

0), are summed over x and y, where the subscripts lower-case x and y indicate the 

position of each pixel within its interrogation window (WXY) (Fig. 3.1-2, B-C). This is 

repeated for each subsequent frame (t = 1, 2, … n), generating a time-variant indicator 

of deviation from the starting point for each WXY (referred to as EXY(t)). This is repeated 

for all WXY, according to Eq. 1: 

Significant change from the initial position in a particular EXY may indicate contractile 

activity in the corresponding window. WXY windows that contain EXY(t) peak values above 

  (1) 



19 

 

 

the product of the “spike threshold” value (TS) and the standard deviation of the EXY(t) 

function are assumed to include contractile information, while those without peaks over 

this level are excluded from further analyses. Inclusion criteria for further analysis are 

expressed in Eq. 2: 

Videos containing fewer than a threshold number (TN) of windows demonstrating 

contractility are classified as containing no contractile cells. Finally, the remaining EXY(t) 

functions are each normalized to themselves, to yield the “delta function” (δXY(t)). The 

δXY(t) functions are therefore essentially a unitless measure of displacement as a 

function of time, which allows the rest of the algorithm to identify portions of the images 

that move synchronously. δXY(t) is calculated according to Eq. 3: 

 

 

In the second stage, the Jade algorithm [90] is used to perform independent 

component analysis (ICA) on the δXY(t) functions. ICA is a computational technique used 

to recover original independent data streams when the data are sampled on multiple 

recording devices, each of which records a different linear mixture of the original data. 

An example is recording two people speaking at a cocktail party from microphones 

placed at four arbitrary locations around the room (the “cocktail party problem”). ICA is 

ideally suited to regenerate the original sound information of each speaker based on the 

recordings from the four microphones, each of which records a different mixture of both 

speakers based on its location relative to the two signal sources [91]. In its most basic 

form, the ICA algorithm must be instructed of the number of original signal sources it is 

  (2) 

   (3) 
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meant to identify. Further explanation of the algorithms used to perform ICA has been 

discussed extensively by other groups [91-94]. 

Performing ICA on the δXY(t) functions returns new time-variant functions in the form 

of K separated data streams (termed δK(t)), where K is the number of signals the ICA 

algorithm was instructed to extract. These δK(t) functions represent the presumed activity 

of the contractile myotubes, which have been recorded in a mixed fashion in the δXY(t) 

functions (Fig. 3.1-2, D). The δXY(t) functions act like an array of N2 microphones, 

recording contractile activity from K independent myotubes, which are like the cocktail 

party guests in the example above. This is performed iteratively for K = 1,2,… K, 

generating K possible prospective myotube sets. After each iteration, the results are 

analyzed in the third stage of our algorithm, and judged for overall fitness.  

The third stage is concerned with determining which of the myotube sets generated in 

the second stage most closely resemble the natural behavior of myotubes while 

explaining the observed data. The first step in this process is to exclude δK(t) functions 

that are obviously not generated by myotubes. This is accomplished by grouping WXY 

windows into clusters based on the correlation coefficient of their respective δXY(t) 

functions with each δK(t) function (Fig. 3.1-2, E1-3). Any window (WXY) is included in 

cluster K according to the inclusion criteria in Eq. 4: 

where TR is the correlation threshold. At this point, the center of WXY becomes a “node” 

for the purposes of identifying myotube location. All nodes within a cluster are then 

joined according to the Delaunay triangulation [95]. Edges over a certain length (TL) are 

then eliminated, leaving an arbitrarily shaped graph denoting the location of a likely 

contractile body (Fig. 3.1-2, F). The area of the resulting compound polygon is taken to 

  (4) 
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be the estimated area of that prospective myotube (AI). This process allows us to 

generate a two-dimensional map of each prospective myotube in a set based on 

correlation of each δXY(t) function with the set of δK(t) functions.  

Clusters are then screened for validity based on morphological characteristics, and 

clusters that are unlikely to be real myotubes are eliminated. For example, clusters 

covering more than a threshold percentage (TA) of the viewing area are more likely to be 

lighting artifacts than they are to be myotube contractions. Similarly, clusters composed 

of a smaller number of triangular sections than a threshold number (TT) are more likely 

to be floating debris than contracting myotubes. If a cluster does not pass both of these 

criteria, the corresponding δK(t) function is excluded from further analyses. While 

excluded δK(t) functions are not counted in further analysis, their initial inclusion is 

important because it provides the program with the opportunity to identify artifacts in the 

video and isolate their effect from the relevant data.  

The remaining WXY clusters are then used to measure the overall fitness for a given 

set of δK(t) functions. These measurements take the form of “success” and “failure” 

metrics, calculated from the geometry of the nodes in each cluster and the behavior of 

the δXY(t) functions, meant to identify how well the WXY cluster explains the video data all 

within the context of looking for contractile myotubes. There are three success metrics, 

“Success Spread” (S1), “Area Coverage” (S2), and “Cell Number” (S3), as well as three 

failure metrics, “Correlation Difference” (F1), “Scatter” (F2), and “Missed Twitch” (F3) (see 

the appendix of this thesis an expanded explanation of how success and failure metrics 

are calculated). Each of these success and failure metrics is normalized to itself, 

creating a range of values between 1 and 0 for each of the cluster sets. They are then 

used to create a vector within the unit cube representing the total success and total 

failure of the cluster set (Fig. 3.1-3, A-B). The magnitude of the failure vector is then 
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subtracted from the magnitude of the success vector to assign a final score to the cluster 

set called the “Net Success” score (SN), according to Eq. 5 (Fig. 3.1-3 C): 

The set with the greatest net success score is considered the winner, and the number 

and location of the WXY clusters is taken to be the number and location of contractile 

cells in the video (Fig. 3.1-3, C, blue bar). 

Figure 3.1-3.  Success vector, failure vector, and net success score  

Illustrative data from video pictured in Fig. 3.1-2 (K = 10). (A – B) The total success vector and failure vector, 

respectively, represented in their own unit cubes. Each cluster set receives a score on all three success metrics 

and all three failure metrics, defining a spot in “success space” and “failure space” (gray circles sequentially 

labeled 1-10). The distance from this point to the origin is the magnitude of the success and failure vectors (black 

lines). The highest success score and lowest failure score are indicated in the figure (red lines). The “shadow” of 

each point is projected on the 3 planes created by the 3 axes (blue circles). (C) The net success score shown for 

each cluster set examined. The height of the bar above the x-axis represents the length of the success vector. 

From this amount, the length of the failure vector is subtracted (red bars), leaving either residual positive net 

  (5) 
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successes (gray bars), or a negative net success score. The cluster set with the highest residual net success 

score is considered the “winner” (blue bars). Values for the parameters used in this analysis are indicated to the 

right. 

 

Because several of the steps indicated involve external parameters, specifically all of 

the thresholding steps, the result of VTA analysis is sensitive to the values selected for 

these parameters (Fig. 3.1-1, gray arrows). For this reason, the analysis is performed 

several times for each video, and the parameters are drawn randomly from an 

appropriate range at the beginning of each trial (Fig. 3.1-1, gray dashed boxes). For 

additional information on the VTA algorithm (including MATLAB code and parameter 

values), see the appendix of this thesis. 

2.1.3.4 Validation of VTA Program Performance on In Vitro and Synthetic Data 

The VTA program was used to identify the number of contractile myotubes in the 

standardized in vitro video data set 1 in Table 1.  The algorithm generated three cell 

number guesses for each video of each group.  All the guesses generated for a given 

group were then averaged together to provide the VTA estimate of that group’s average 

number of cells per video.  This estimate can be easily compared against the number of 

cells actually present in each video for that group as a means of gauging program 

performance. 

 

Set: # of Bars: Task: Behavioral Range: 

1 
0 – 5 

(Cells) 

Identify the average number of 

contractile myotubes in groups of 

videos hand-selected to contain 0, 1, 

2, 3, 4, or 5 myotubes. 

As observed in vitro 

2 
1 

(200 videos) 

Identify a single moving bar over a 

range of behaviors exceeding the 

Frequency = 0.0 – 13.3 Hz 

Footprint = 0.0 – 0.30 mm2 
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program’s detection ability. Oscillation Area = 0.0 – 0.23 mm2 

3 
1 

(200 videos) 

Identify a single moving bar over a 

range of behaviors simulating 

biological data. 

Frequency = 0.0 – 1.0 Hz 

Footprint = 0.0 – 0.06 mm2 

Oscillation Area = 0.0 – 0.03 mm2 

4 
0 – 10 

(200 videos) 

Identify multiple randomly placed, 

and potentially overlapping bars. 

Frequency = 0.0 – 1.0 Hz 

Footprint = 0.0 – 0.06 mm2 

Oscillation Area = 0.0 – 0.03 mm2 

5 
0 – 10 

(200 videos) 

Identify multiple randomly placed, 

and non-overlapping bars. 

Frequency = 0.0 – 1.0 Hz 

Footprint = 0.0 – 0.06 mm2 

Oscillation Area = 0.0 – 0.03 mm2 

 

Table 3.1-1.  Description of synthetic and in vitro data sets 

 

In order to examine the performance envelope of the VTA program in situations 

atypical of those observed in our culture system, analysis of computer-generated data 

sets (synthetic data) was performed. Videos consisted of an oscillating black bar against 

a white field, meant to simulate the most basic movement of myocytes seen in video 

micrograph recordings. Bars of varying dimensions, orientations, and activity levels 

(frequency and amplitude) were simulated. Parameters determining the behaviors of the 

synthetic myotubes were randomly selected for each video from a pre-defined range. 

Five sets of videos  were analyzed, as described in Table 1. 

We use two metrics to measure VTA program performance: 1) number estimate error 

(NE), and 2) area estimate error (AE). The number estimate error is calculated as the 

difference between the number of bars identified by the program (NI) and the true 

number of bars in the video (NT), as in Eq. 6. Area estimate error is calculated as the 

difference between the contractile area identified by the VTA program (AI) and the true 

area over which a bar moves during its oscillation (AT), as in Eq. 7: 
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These error metrics are measured against features of the videos in the synthetic data 

sets, such as oscillation frequency, bar footprint, oscillation area, and number of bars 

present. The bar footprint is defined as the area covered by the stationary bar. 

Oscillation area is defined as the area through which the bar oscillates minus the bar 

footprint, allowing for the quantification of completely arbitrary bar movements. All 

synthetic data were generated and analyzed in MATLAB (The MathWorks, Natick, MA). 

2.1.4 Results: 

2.1.4.1 Analysis of In Vitro Video Data 

Rather than creating additional synthetic data, which included artificially generated 

noise artifact as a means of testing the algorithm’s robustness to biological and culture 

noise, the VTA algorithm was instead used to analyze a standardized set of videos, data 

set 1 in Table 1. Figure 3.1-4 A shows the average number of contractile cells per video 

identified for 6 groups of videos, containing 0, 1, 2, 3, 4, and 5 contractile cells, 

respectively.  The VTA algorithm is sensitive enough that it identifies an average of 1.58 

cells per video in the group where no contractile cells are present.  In these cases, the 

algorithm incorrectly identifies lighting artifact and vibrational noise as contractile motion.  

This same inclusion error is repeated in each group, resulting in identified cell numbers 

of 2.60, 3.80, 4.27, 5.11, 5.83 for the other 5 groups (an average overestimation of 1.37 

cells in each case). However, at this level of sensitivity, the algorithm is clearly able to 

provide an indication of the different activity levels in each group relative to other groups, 

differing by even a single contractile myotube.   

  (6) 

  (7) 
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2.1.4.2 Single Object Identification 

The program’s ability to identify a single bar was examined over two ranges of 

parameter values as described in Table 1 (data sets 2 and 3). Over the range of bar 

footprints, a noticeable decline in the area estimate error begins after 0.065 mm2, after 

which each step results in a noticeable worsening of the area estimate error (Fig. 3.1-4, 

B). Prior to this crossing point, the program overestimated the area by 0.01 mm2, while 

after the crossing point, it underestimates the area of coverage by an average of 

0.08 mm2. Also noticeable is the program’s failure to detect bars with a footprint below 

0.0004 mm2, consistent with the VTA algorithm excluding signal sources below a 

minimum size. 
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Figure 3.1-4.  Program performance 

(A) VTA performance on standardized in vitro data.  Program performance at single bar identification vs. bar 

footprint (B), and oscillation area (C), respectively, examined over the range of behavioral characteristics 

described in Table 1. The Number Estimate Error is displayed (blue lines and left y-axis), as well as the Area 

Estimate Error (red lines and right y-axis). For comparison, these graphs also show the range of behaviors 

observed in cell culture (shaded area). (D) The Number Estimate Error as a function of bar number. (E) The Area 

Estimate Error as a function of bar number. Results at multiple object identification are shown for overlapping 

bar (solid line) and non-overlapping bar (dashed line) data sets as described in Table 1. Error bars represent the 

standard error of the mean. 

 

Both the number estimate error and the area estimate error are sensitive to the 

oscillation area (Fig. 3.1-4, C). Similar to the trend observed with the increasing footprint 

size, there is a marked falling off in the accuracy of the area prediction past 0.07 mm2. 

Prior to 0.07 mm2, the program performs well, underestimating the area by only 

0.004 mm2, while after that point, this number increases to 0.05 mm2. The number error 

is even more sensitive to the oscillation area, beginning a steep increase in the number 

estimate error at 0.01 mm2. Between 0.01 mm2 and 0.08 mm2, there is a marked 

increase in the number estimate error with each step before this error metric plateaus. 

Despite sensitivity of some performance measures to the extreme value of footprint 

and oscillation area, the program performs consistently at the single bar identification 

task over the range of behaviors meant to mimic culture behaviors in vitro, discussed in 

data set 3 in Table 1 (Fig. 3.1-4, A-C, gray shading). In analysis of synthetic data set 3 

(data not shown), the VTA program overestimated the number of bars present by only 

0.62. Over this same range of parameter values, the program performs similarly well at 

the area-identification task, overestimating the area by an average of 0.007 mm2. 
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2.1.4.3 Multiple Object Identification 

Analysis was run on synthetic data sets 4 and 5, as described in Table 1. In both 

cases, the cell count estimate error stays low until some threshold is reached. When the 

overlapping bar data set is analyzed, the program can successfully classify videos 

containing up to 6 bars without overestimating or underestimating the number of bars by 

more than 1. When the non-overlapping data set is analyzed, by comparison, the 

program maintains a similar level of accuracy (overestimating or underestimating by less 

than 1) until more than 8 bars are present. However, program performance on both the 

overlapping and non-overlapping data sets drops off steeply past 6 and 8 bars, 

respectively, decreasing almost linearly with the number of bars past that point (Fig 3.1-

4, D). In comparison, the area estimate error does not change past 6 bars with the 

exception that it starts to underestimate the contractile area. The magnitude of the area 

estimate error remains consistently low, however, even though the sign is reversed (Fig. 

3.1-4, E). 

2.1.4.4 Analysis of Example Video Micrographs 

To expose the program to a wide range of behaviors, we performed analysis on 

several example videos taken under multiple culture conditions. Conditions included 

growth on a smooth substrate to encourage the formation of syncitial networks (Fig. 3.1-

5, A) and on a grooved substrate to encourage the formation of independent and aligned 

myotubes (Fig. 3.1-5, B).  
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Figure 3.1-5.  Frequency and sources of misclassification errors 

(A) A syncitial network of contractile myotubes grown on a smooth surface (single red star). (B) Contractile 

myotubes (red stars) grown on surfaces modified with 100 µm grooves (red bars). (C – D) Locations of contractile 

cells identified by the VTA program from the videomicrographs shown in A and B, respectively. (E – F) 

Histograms of the VTA estimated number of cells in each video (blue bars), relative to the actual number of cells 

(vertical red line). The mean, median, and mode of the estimates are also shown in each case. (G) Single bar 

misclassification by identifying one or both of the edges as multiple bars. (H) Two mostly overlapping bars 

identified as the same object (yellow hatch work). (I) The omission of the center area of the bar resulting in 

underestimation of area coverage. 

 

Inspection revealed that the network shown in Fig. 3.1-5 A was electrically coupled 

and contracted as a single network. The program was able to identify the network as a 

single contractile entity in 10 out of 10 trials (Fig. 3.1-5 E). Fig. 3.1-5 B shows myotubes 

cultured in 100 µm wide grooves which are 35 µm deep. Culturing the cells on the 

grooves resulted in the alignment of the myotubes and prevented myotubes in 

neighboring grooves from touching one another and forming networks. As a result, the 

myotubes contract independently of one another. Visual inspection revealed that this 

video contained 4 independent myotubes, one in each of two trenches and two located 

in the same trench (Fig. 3.1-5 B, red stars). These myotubes are successfully identified 
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and localized by the VTA program, which identified 4 cells in 9 out of 10 trials, with an 

average estimate of 3.9 cells (Fig. 3.1-5 F).  Example videos for the above analysis may 

be found in the online supplementary material. 

2.1.5 Conclusion: 

2.1.5.1 Selection of Processing Steps and Parameter Values 

Image processing for the automated analysis of biological data is a constantly 

evolving field. Selecting an appropriate method for specific projects usually means 

selecting from a grab bag of available algorithms and recombining them or tuning them 

to meet the needs of a particular application. There is no guide in this process other than 

experience, and more importantly, experimentation. The algorithm we have developed is 

meant to identify contractile myotubes in vitro. It consists of a series of image processing 

steps meant to generate trackable features, pattern recognition steps meant to extract 

the relevant patterns of behavior, and a cost-benefit analysis step meant to determine 

the overall fitness, all as a means of determining the number and location of the 

contractile myotubes. The result is a novel technique for quantifying functional 

population-level behaviors of myotubes and a generalizable blueprint for algorithm 

development in a wide range of other potential applications. While the optical analysis of 

myotube contractility has been performed previously [71, 83-86], the technique 

described in this paper expands on the utility of preexisting methods by fully automating 

the process of data extraction and increasing applicability in a wider variety of 

experimental situations. 

As mentioned previously, the VTA algorithm is sensitive to the values for the 

parameters used in each of the processing steps. For example, the number of horizontal 

and vertical divisions the image is segmented into (N) affects the sensitivity and 

resolution of the subsequent analysis. Large N results in an image which is finely diced 
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into small WXY windows, increasing spatial resolution. Because each WXY is small, 

however, it contains a smaller number of pixels (Pxy), and the EXY(t) function (calculated 

as in Eq. 1) for that WXY will contain a reduced signal to noise ratio (SNR). While this 

increases spatial resolution, it diminishes the ability of the program to use ICA to extract 

meaningful δK(t) functions. Alternatively, small N values result in large WXY windows 

containing contractile information with a higher SNR, at the expense of spatial resolution. 

Similarly, there is a trade-off in the relative sensitivity vs. specificity of the algorithm, 

which can be tuned by altering the parameter values.  If the algorithm is made more 

sensitive, by relaxing cluster exclusion thresholds for example, the algorithm can identify 

contractile cells in videos where there are none (Fig. 3.1-4 A).  Alternatively, raising 

detection thresholds to increase specificity can result in the exclusion of contractile 

activity from smaller sources.  Even in such cases, however, the program has the benefit 

of applying the same parameter set in the analysis of each video, and therefore 

maintaining consistency. 

Ultimately, the optimal values for many of the parameters used in the VTA algorithm 

are related to the apparatus used to acquire the video data. Different set-ups may have 

very different optical qualities, including different levels of contrast, magnifications, frame 

acquisition rate, and pixel spatial resolution, which would change the appearance of 

myotubes within the video. All of these changes would therefore change the optimal 

thresholding values. The parameter values used in this study were tuned experimentally, 

using a procedure where VTA program output was compared to by-hand analysis for a 

small sub-set of randomly selected videos, and parameters were tuned to minimize the 

difference. Parameter values selected using this process were then applied in the 

analysis of all videos. Use of the VTA algorithm on other sets of data will likely require 

application-specific fine-tuning. Furthermore, while we use units on the scale of single 
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mm2 and Hz because they are relevant to the size and activity levels of our subject in 

this study, skeletal myotubes, these units may be altered depending on the capabilities 

of individual recording equipment and subject. While the opportunity to improve program 

performance by automating parameter selection exists (see Future Directions below), 

the exercise exceeds the scope of this paper 

2.1.5.2 Sources of Error and Error Reduction 

Despite the selection of the most relevant and useful image processing, pattern 

recognition, and fitness-checking algorithms, the program still makes errors. In the single 

bar identification task, overestimation of the number of bars results from identifying one 

or both of the edges as multiple bars (Fig. 3.1-5 G). This is responsible for the chronic, 

low level overestimation of bar number occurring at all activity levels and is especially 

pronounced for bars with high oscillation areas. A second type of error, occurring during 

the multiple bar identification task, is when the VTA program assumes that two mostly 

overlapping bars are the same object (Fig. 3.1-5 H). For this to happen, the bars must 

move through approximately the same region, causing the program to identify only one 

pattern of behavior within that region. The cells need to be closely overlapping for this to 

happen, however, which is why this effect does not appear until there are >6 bars per 

image in the overlapping bar data set and >8 bars in the non-overlapping bar data set. 

Additionally, there are two types of errors that cause the observed underestimation of 

area: 1) the omission of the center area of the bar (Fig. 3.1-5 I) and 2) the omission of 

alternating portions of the area through which the bar oscilates (Fig. 3.1-5 G). The first 

occurs because when the bar is large, the pixels in the central region never change 

values as the bar oscillates. Therefore, it appears to the VTA program as an inactive 

region. The second occurs because at large amplitudes, the multiple fronts do not add 

up to cover the whole area of oscillation. 
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In practice, myotube contraction is bound by connections with the substrate and 

extracellular matrix, causing feature behavior in videos of myotube contraction in vitro to 

fall well within the optimal performance envelope seen in Figure 3.1-4. The first type of 

error (identifying one front as multiple bars) is a result of large displacements of the bar 

during oscillation and is unlikely to occur when the myotube is partially substrate-

adherent. However, contraction can also cause a deflection in the local extracellular 

matrix, causing the VTA algorithm to identify it as a portion of the myotube and 

generating an overestimate of the myotube area (Fig. 3.1-5C, webbing between 

myotube branches). The second type of error (identifying two bars as one bar) is a result 

of the close overlap between two or more bars. This is unlikely to happen in culture 

because the cells grow in a monolayer, making it difficult for two or more cells to occupy 

the same space in videos of contracting myotubes in vitro. 

2.1.5.3 Implications and Future Directions 

This program fills a gap in researchers’ ability to monitor muscle cell function. The 

image processing steps successfully generate trackable features from video data, and 

the success and failure metrics are flexible enough to exclude extraneous information, 

such as changing lighting conditions or floating debris, while capturing a wide range of 

myotube morphologies and activities. It provides a way of looking at contractility on a 

population level, rather than in individual cells, and may be performed in most 

laboratories. Additionally, it is non-invasive and can be performed at multiple time points 

on the same culture or even on the same group of cells within a culture. The flexibility of 

this new analytical tool allows its use in a way that supplements the other biochemical, 

morphological, and kinetic techniques currently employed. 

There are several areas of the VTA program, which may be improved through further 

development. The addition of a filtering step of the δXY(t) functions or the δK(t) functions 
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that occurs prior to the ICA or WXY clustering steps may increase the efficacy of the 

program by removing high-frequency noise [91]. This may be especially interesting to 

pursue because it may also open the possibility of using δK(t) function-based 

approaches to generating additional success and failure metrics, which may improve 

program performance. Additionally, the VTA algorithm currently runs a user-determined 

number of times (J) and averages the estimates of the results. Many data processing 

algorithms include a feedback loop measuring some objective function of error and will 

alter parameter values iteratively in an effort to reduce the error measure below some 

threshold [78], and the incorporation of such an element into the VTA algorithm may 

improve performance accordingly. Finally, the weighting of each success and failure 

metric within the cost/benefit analysis affects program performance and may be 

optimized in a similar fashion to the other parameters. Currently each metric is weighted 

equally. However, a nonlinear combination of these same metrics may result in an 

improved fitness testing outcome.  Such improvements, however, are beyond the scope 

of this paper. 

Additional gains may be made by incorporating a controlled lab-on-a-chip device into 

the experimental design. The integration of substrate-based, microfabricated sensor 

arrays with the described optical technique could create new and sensitive dual-modality 

sensing arrays. For example, the application of the VTA algorithm to myotubes grown on 

an arrays of micropillars meant to accommodate and quantify cell contractility [96] would 

generate a sensitive mechanism to detect force generation in populations of myotubes. 

Another useful combination would be the application of the VTA algorithm to cells grown 

on, or immobilized on, microelectrode arrays (MEAs), which would provide a sensitive 

way to quantify the correlation between excitation and contraction in populations of 

single cells. Additionally, the use of the VTA algorithm in conjunction with MEA 
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technology would enable the incorporation of a contraction triggering mechanism, 

eliminating the dependence of many procedures on spontaneous activity. 

2.2 Automated Sholl analysis of digitized neuronal morphology at multiple 

scales:  Whole-cell Sholl analysis vs. Sholl analysis of arbor sub-regions 

2.2.1 Abstract: 

The morphology of dendrites and the axon determines how a neuron processes and 

transmits information. Neurite morphology is frequently analyzed by Sholl analysis or by 

counting the total number of neurites and branch tips. However, the time and resources 

required to perform such analysis by hand is prohibitive for the processing of large data 

sets and introduces problems with data auditing and reproducibility. Furthermore, 

analyses performed by hand or using course-grained morphometric data extraction tools 

can obscure subtle differences in data sets because they do not store the data in a form 

that facilitates the application of multiple analytical tools. To address these 

shortcomings, we have developed a program (titled “Bonfire”) to facilitate digitization of 

neurite morphology and subsequent Sholl analysis. Our program builds upon other 

available open-source morphological analysis tools by performing Sholl analysis on 

subregions of the neuritic arbor, enabling the detection of local level changes in dendrite 

and axon branching behavior. To validate this new tool, we applied Bonfire analysis to 

images of hippocampal neurons treated with 25 ng/ml Brain-Derived Neurotrophic Factor 

(BDNF) and untreated control neurons. Consistent with prior findings, conventional Sholl 

analysis revealed that global exposure to BDNF increases the number of neuritic 

intersections proximal to the soma. Bonfire analysis additionally uncovers that BDNF 

treatment affects both root processes and terminal processes with no effect on 

intermediate neurites. Taken together, our data suggest that global exposure of 
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hippocampal neurons to BDNF results in a reorganization of neuritic segments within 

their arbors, but not necessarily a change in their number or length. These findings were 

only made possible by the neurite-specific Sholl data returned by Bonfire analysis. 

2.2.2 Introduction: 

Neuronal morphology is important for determining how action potentials propagate, 

how information is processed [97-100], and neuronal function [101-104]. Neurite 

branching affects how single neurons integrate synaptic inputs [105, 106] and how they 

communicate as networks [107]. Alterations in neuronal morphology and branching 

patterns have been observed in a wide range of developmental or acquired disorders 

[108-111] in which it is thought that altered arbor structure plays a role in the 

pathogenesis of the disorder. Understanding the factors affecting neuronal morphology 

is, therefore, integral to understanding nervous system health and disease. 

Neuronal morphology is a complex phenomenon to study due to the wide range of 

metrics which may be quantified [112, 113]. The need for streamlined methods of 

acquiring neuronal morphological data has given rise to a growing number of fully-

automated and semi-automated tools [114-118]. Each has unique strengths and 

weaknesses associated with removing user control and relying on computers for neurite 

identification, resulting in a trade-off between speed and reliability. Often, neurite 

morphology is analyzed by counting the total number of neurites, branch points, tips, or 

by Sholl analysis (Fig. 3.2-1 A) [119]. Each of these methods used in isolation falls short 

of providing a full description of arbor morphology because it is possible to generate the 

same output from two different input arbors (Fig. 3.2-1 B-C) [113]. Additionally, the 

pattern of dendritic and axonal extensions is a result of cytoskeletal assembly and 

disassembly processes regulated by intracellular and extracellular factors. Because of 

the highly local role of many of these regulatory processes, final arbor morphology is a 
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product of specific effects acting locally in each neurite. Axons and dendrites, for 

example, develop distinct morphological behaviors even when exposed to the same 

global environment [120]. The application of these data extraction techniques to whole 

neuronal arbors destroys the ability to observe local changes. These failures of 

traditional data-generating tools make it difficult to test specific hypotheses about the 

biochemical processes driving arborization. This problem is compounded by the time 

associated with manual quantification, which makes it impossible to practically employ 

more than a very few quantification techniques, limits data sharing opportunities 

between laboratories, and creates problems with reproducibility and data auditing [117]. 

 

Figure 3.2-1.  Schematic of several classic morphological analysis tools 

A) Schematic of Sholl analysis, branch/terminal point counting, and segment counting. B) Two distinct arbors 
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(left and right) that generate identical Sholl curves. C) Two distinct arbors (left and right) that generate identical 

terminal point and branch counts. 

 

In this study, we report the release of a unique tool that incorporates two existing 

morphological analysis platforms, along with custom analytical components, to provide 

detailed neurite-level morphological data. The program incorporates NeuronJ [114] to 

acquire spatial information about the position of neuritic segments in space relative to 

the rest of the cell (Fig. 3.2-2 B). It then exports this information to NeuronStudio [121] to 

allow the user to define structural information about the connectivity between neurites 

(Fig. 3.2-2 C). Custom portions of the program then assign “identities” to each neuritic 

segment according to its location within an arbor. Assigning an identity to each segment 

allows the program to perform a series of analyses relating morphological metrics to 

segmental identity (Fig. 3.2-3). The workflow created is intended to streamline data 

digitization and storage processes while preserving the reliability of user control. 

We validate the program’s ability to detect changes in arbor morphology by applying 

this analysis to neurons incubated with BDNF, a well-studied extracellular factor that 

regulates neurite morphology [122-124]. Most studies have found that BDNF increases 

dendrite number close to the soma and reduces distal dendrite number [125, 126]. 

BDNF promotes similar increases in proximal axon complexity [127-129]. Historically, 

BDNF has been shown to increase dendrite complexity [130, 131] and number [132] by 

altering the rates at which new dendrite branches are gained and lost [132]. The exact 

mechanisms by which these effects are mediated are still debated and may differ by cell 

type or location in the same cell [133-136]. Bonfire analysis was applied to our 

experimental data to assess whether this novel analysis detects effects of BDNF on 

neurites that may have been missed by conventional Sholl analysis. 
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2.2.3 Materials & Methods: 

2.2.3.1 Cell Culture & Imaging 

Hippocampal neurons were isolated from E18 rat embryos and cultured as previously 

described [137]. Briefly, embryos were removed by Cesarian section at 18 days 

gestation and decapitated. The hippocampi were manually dissected under a 

microscope, and cells were triturated with a fire polished glass pipette tip, counted on a 

hemocytometer, and plated at a density of ~1800 cells per mm2 on 35 mm petri plates 

(Corning) coated with 1 mg/ml poly-D-lysine (Sigma-Aldrich). Cultures were maintained 

in Neurobasal medium containing penicillin, streptomycin, glutamine, and B27 

supplement (NB; all purchased from Invitrogen).  

At 5 days in vitro (DIV5), cells were transfected with cDNA encoding GFP using 

Effectene (Qiagen), as previously described [138-141]. The low efficiency of this 

transfection technique in this cell system allows the easy identification of the processes 

associated with single neurons. In the BDNF treatment groups, treatment occurred from 

DIV7-10, during which regular NB was replaced with NB containing 25 ng/ml BDNF. This 

BDNF concentration does not stimulate p75 or other Trk (A and C) receptors, [142]. 

Cultures were fixed in 4% paraformadehyde on DIV10 and immunostained with rat anti-

GFP (a gift from Dr. Shu-Chan Hsu, Rutgers University) and MAP-2 (Sigma-Aldrich). 

Neurons were imaged in the GFP channel at 200x using an Olympus Optical IX50 

microscope with a Cooke Sensicam CCD cooled camera, fluorescence imaging system, 

and ImagePro software (MediaCybernetics).  Images were acquired in 8-bit TIFF format, 

measuring 512 X 640 pixels. 



40 

 

 

2.2.3.2 Program Mechanics & Usage 

 

Figure 3.2-2.  Schematic of the digitization and analysis process available through 

the Bonfire program  

A) A neuron that has been “skeletonized” as a first step in digitizing its structure. B-E) Example graphical output 

of each step of the Bonfire procedure, as applied to segments of the image shown above in A). Example non-

linkage errors (D, red spots) have been left in the figure intentionally to demonstrate Bonfire program error 

identification.  Each step is performed on the entire neuron, but are shown in panels to emphasize the sequence 

in which they occur. 

 

The Bonfire program is a series of custom scripts written in MATLAB (MathWorks). 

Neuronal morphology was digitized in three stages based on the initial images. In the 

first stage, the semi-automated tools available through the NeuronJ plugin [114] to 

ImageJ (NIH, Bethesda MD) were used to define positions of all neurites (Fig. 3.2-2 A-
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B). The data for each neurite are exported using NeuronJ in the form of a series of 

nodes with defined positions in the X-Y plane, where nodes belonging to an individual 

neurite segment are linked by association. These tools allow the user to guide the 

tracing of each neuritic segment with course resolution by hand but reduce tracing time 

by using a curve-fitting algorithm to fine-tune the exact location of the nodes defining the 

neurite position. 

In the second stage, portions of the Bonfire program were used to convert the strings 

of nodes provided by NeuronJ into SWC format [143] for further manipulation. 

NeuronStudio [121] is then used to define the pattern of connectivity between neurite 

segments (Fig. 3.2-2 C). The transformation of the data into SWC format allows for the 

linkage of the simple strings of nodes defined previously into more complex branching 

structures. After linking is complete, another component of the Bonfire program checks 

the resulting structure for errors and non-linkages (Fig. 3.2-2 D), based on the 

assumption that each neuritic segment may only give rise to two or less daughter 

segments [144]. This assumption is made to facilitate future integration with theoretical 

growth models [145] and does not result in significant loss of data [146]. These two 

steps fully determine the structure of each cell’s neuritic arbor in 2-dimensional space 

and encode it in a digital format.  

Using these digitized neuritic arbors, a second component of the Bonfire program 

was then used to perform process identification and extract the following metrics: 

number of primary neurites, number of secondary neurites, number of branch points per 

cell, number of terminal neurite tips per cell, and Sholl analysis performed with a 3.0 µm 

ring interval (Fig. 3.2-2 E). Sholl analysis is performed conceptually by drawing 

concentric circles around the cell body at incrementally increasing radii and counting the 

number of times each circle crosses a neuritic segment (shown counting around the 
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circle counterclockwise for demonstration in Fig. 3.2-1 A). The number of intersections is 

graphed as a function of radial distance from the cell body (Fig. 3.2-1 A upper right 

quadrant) to give a quantitative representation of how neurite density varies spatially. 

Because the location and linkage pattern of neurites is user-defined using external 

tools, the algorithms associated with data extraction are geometric in nature and do not 

depend on conceptually complex image analysis. For example, the algorithm for Sholl 

analysis is based on the assumption that if a neuritic segment starting at one node (node 

Nn with Cartesian coordinates Xn,Yn) lies inside of a soma-centric circle with radius r (Cr), 

and its daughter node (node Nn+1 with Cartesian coordinates with coordinates Xn+1,Yn+1) 

lies outside of radius r, then that neurite must cross the circle with radius r. Cr is also 

intersected by this neuritic segment if the reverse is true. Therefore, Cr is intersected by 

a neuritic segment when the criteria outlined in Equation 1 are met, as follows: 
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The above holds true regardless of the spacing between nodes defining a neurite 

path, and so can be used for all mother-daughter node pairs. To return the cumulative 

Sholl curve, this same check is performed between every mother-daughter node pair 

and every circle, and the results are summed by circle. Because every node is checked 

for the existence of a mother node, this reliably returns the Sholl information for the 

entire arbor. Furthermore, because every node-pair can be tagged with a structure-

based identity, it is possible to later tabulate which identity-classes intersect with specific 

circles. Additional descriptions of the algorithms involved in data management can be 

found as comments in the MATLAB code accompanying this article. Afterward, data 
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were transferred to Excel to facilitate statistical analysis. The experimenter was blinded 

to experimental conditions during all data analysis. 

2.2.3.3 Branch Identity-specific Data Analysis 

 

Figure 3.2-3.  Two structure-dependent labeling schemes that assign an identity to 

neurite segments based on their location within their arbors 

A) Randomly generated arbor, labeled according to the “Inside-out” scheme (I/O – A.1) or the “Roots, 

Intermediate, Terminal” scheme (RIT – A.2) [113], and color-coded according to order. B) An example neuritic 

arbor, which has been digitized and color-coded according to branch order using I/O labeling (B.1) and RIT 

labeling (B.2), respectively. C) Schematized example neuritic arbor, color-coded according to I/O labeling (C.1) 

and RIT labeling (C.2), respectively, with super-imposed Sholl rings. D-F) The order-specific Sholl curves 

resulting from the arbors shown in Fig 3.2-2C. C.3) Example arbor in gray, showing neuritic segments that 

change groupings between the two labeling schemes (black), accompanied by a schematic showing the relative 

areas of emphasis for the I/O (G.1) and RIT (G.2) labeling schemes. 

 

Two labeling schemes were used to assign structure-based identity to segments, 

which allow us to analyze subregions of the arbor with varying degrees of specificity. 

Neuritic segments, or branches, are the uninterrupted stretches of neurite starting at one 

branch point, or starting at the cell body in the case of root segments, and ending when 

the neurite terminates or at the next branch point. These segments can be grouped 

together in different ways. In the most frequently used convention, these processes are 
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assigned a number, or branch order. In this convention, termed “inside-out” labeling (I/O) 

here, branch order starts at 1 with any branch initiating at the soma and increases by 1 

with each branch point reached, moving from the soma to the branch tips (Fig. 3.2-3 A.1 

– F.1) [113]. The second convention is the “roots, intermediate, terminal” (RIT) 

convention (Fig. 3.2-3 A.2 – F.2), in which any neurite originating in the soma is a root 

segment, any neurite with no daughter neurites is a terminal segment, and any neurite 

not a root or a terminal is an intermediate segment [113]. 

Having neurites assigned segmental identities in I/O and RIT labeling allows the 

performance of more traditional forms of analysis on specific subregions of the arbor. 

For example, Figure 3.2-3 A.1 – F.1 shows Sholl analysis performed on neurite 

segments that have been consolidated into three separate groups based on their 

structural identity, resulting in three separate Sholl curves for the same cell. This 

technique is performed the same way as standard Sholl analysis but uses three possible 

groupings of segments. In the example shown in Figure 3.2-3, the first grouping contains 

only primary segments, and therefore, only the intersections of primary segments with 

the Sholl rings are tallied in the generation of the Sholl curve for that group (Fig. 3.2-3 

D.1). In the second group, only secondary processes are counted, and in the third group, 

all segments with order ≥ 3 are counted, generating the Sholl curves shown in Figure 

3.2-3 E.1 – F.1, respectively. A similar analysis can be performed using the RIT labeling 

scheme in which only the Sholl intersections with root segments (Fig. 3.2-3 D.2), 

intermediate segments (Fig. 3.2-3 E.2), or terminal segments (Fig. 3.2-3 F.2) are 

counted. Note that the sum of all the component Sholl curves adds up to the total Sholl 

curve for the cell, and therefore, is the same in both of these cases. 
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2.2.4 Results: 

 

Figure 3.2-4.  Results of Bonfire analysis for hippocampal neurons treated with 25 

ng/ml BDNF and untreated control neurons 

A) Total Sholl curves with example inverted GFP images (inset). B) Average number of primary and secondary 

processes per cell. C) Average number of branch points and terminal points per cell. D-F) Segment identity-

specific Sholl analysis according to the I/O labeling scheme, where segments have been grouped as either 

primary (D), secondary (E), or tertiary and greater (F). G-I) Segment identity-specific Sholl analysis according to 

the RIT labeling scheme, where segments have been grouped as either root segments (G), intermediate 

segments (H), or terminal segments (I).  All error bars represent the standard error of the mean (SEM).  Statistical 

analysis of dendrite number was performed on the total number of Sholl intersections in the bracketed regions 

using two-tailed unpaired t test with Welch correction (n = 18 for 0 ng/ml BDNF condition, n = 24 for 25 ng/ml 

condition). 
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2.2.4.1 Global analysis:  

As seen by other groups [127], global exposure to BDNF in vitro increases proximal 

neurites within the first 35 µm of the soma but has no effect on distal neurites (Fig. 3.2-4 

A). Quantification of the number of primary and secondary neurites shows that BNDF 

treatment causes a statistically significant increase in the number of primary extensions, 

and while there is a trend of an increasing number of secondary neurites it does not 

reach statistical significance (Fig. 3.2-4 B). In addition, we analyzed the effect of global 

BDNF administration on the average number of branch points and number of terminal 

branches per cell (Fig. 3.2-4 C), which showed no change between conditions. Similarly, 

global BDNF exposure causes no significant change in average process length or total 

arbor length (data not shown). While the specifics of BDNF treatment vary based on the 

type of neuron and system (in vitro vs. in vivo) [125-129], these results are broadly 

consistent with the general scientific consensus that BDNF treatment increases arbor 

“complexity.” 

2.2.4.2 Local analysis: 

A more detailed picture of BDNF-induced morphological changes is created by the 

local-level Sholl analysis. RIT-based Sholl analysis identifies that the increased number 

of proximal Sholl intersections is due to two effects: 1) there is an increase in the number 

of primary neurites (Fig. 3.2-4 B), which causes an increase in the number of Sholl 

intersections with primary neurites (Fig. 3.2-4 D and G), and 2) there is an increase in 

the number of Sholl intersections with terminal neurites (Fig. 3.2-4 I). However, when the 

I/O labeling scheme is used (Fig. 3.2-4 D-F), only primary neurites appear to change 

significantly between conditions. This is because the neurite sub-type responsible for 

much of the change (terminal neurites) is split between the second two classifications 

using the I/O labeling scheme, making a statistically significant change impossible to 



47 

 

 

detect. Taken together, these two schemes indicate that the increase in proximal Sholl 

intersections is caused by increased primary sprouting as well as increased presence of 

low-order branches that terminate rather than branch into daughter segments. 

2.2.5 Discussion and Conclusions: 

2.2.5.1 Morphological Analysis: 

The data generated during the study of neuroscience are as variable as the subject 

itself, including genetic, proteomic, morphological, electrophysiological, histological, and 

behavioral data. Even within the subtype of morphological data, there is no consensus 

on which metrics are most significant, and there are frequently multiple means of 

capturing, analyzing, and storing the data [118]. Consequently, every laboratory 

accumulates a unique set of tools according to their means and needs. Recently, 

researchers have turned increasingly to the field of neuroinformatics, which aims to 

create tools and standards to help integrate information across research platforms and 

laboratories [147]. In an environment where such diversity is required for its continued 

productivity, the development of tools meant to bridge existing platforms can be more 

effective than the development of tools which aim to vertically integrate all steps in 

analysis in one platform. 

Digitizing neuronal morphology generally consists of 6 steps: 1) image acquisition, 2) 

skeletonization, 3) generation of meta-data, such as arbor structure, 4) quantification, 5) 

analysis and interpretation, and finally, 6) data storage. Numerous software packages 

have been developed to assist neuroscientists in these various steps, including 

automated [115, 117, 148] and hand-assisted [114] skeletonization tools, neurite linking 

tools [121, 149, 150], automated data-analysis tools [116, 151], and database tools [152, 

153]. One notable absence from the collection of available open-source tools is a 

method for deriving Sholl profiles, which interfaces with the other tools used to digitize 
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neuronal morphology. Current Sholl tools available for download operate by simple 

image thresholding [154], are entirely user-driven [149, 155], or provide limited and 

highly specific output [121]. While commercial alternatives exist, they are frequently cost-

prohibitive and cannot be altered to meet unique demands.  

The Bonfire program integrates with two existing tools used in neuronal digitization 

(NeuronJ and NeuronStudio) and provides a means of extracting Sholl profiles from 

digitized neurons stored in standard SWC format. Furthermore, the linkage of an 

automated, structure-based labeling system with an automated Sholl analysis algorithm 

creates a powerful new method for quantifying highly specific changes occurring in 

dendrites and axons following genetic or pharmacologic manipulations. The reason for 

having multiple methods of segmenting the data is that each method only focuses on a 

small region of the neuritic arbor, making it better suited to identify effects in that region. 

The I/O scheme focuses on primary and secondary neurites at the expense of higher 

order neurites (Fig 3.2-3 G.1, D.3 – F.3). Such a scheme may uncover morphological 

effects caused by factors acting at the cell body but may miss changes preferentially 

affecting only the more terminal regions of the arbor. Conversely, the RIT scheme 

captures effects of factors at terminal segments but causes a loss of resolution in the 

intermediate segments since they are grouped together (Fig. 3.2-3 G.2, D.3 – F.3). The 

RIT scheme is best for identifying factors that affect the stability or creation of terminal 

segments, but this scheme misses effects that occur close to the cell body. The 

difference in regions of focus between the two schemes is generated by their accounting 

for the same set of processes differently (Fig. 3.2-3 C.3). This identity-specific 

information reveals trends in neurite patterning, which were previously obscured by 

global-level analyses. 
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2.2.5.2 Biological Findings: 

Primary segment numbers confirm that BDNF exposure increases primary neurite 

number. However, the absence of a significant change in the number of branch points or 

terminal points and the lack of a change in the average segment length implies that the 

effect of BDNF is not due to overall increased neurite branching. Taken together with the 

absence of a change in the total arbor length, these findings, which represent an entirely 

new function for BDNF, suggest that global exposure of hippocampal neurons to BDNF 

in vitro results in a reorganization of neuritic segments within their arbors but not 

necessarily a change in overall neurite number or length. 

Data extracted using Bonfire analysis provide a more detailed view of these 

morphological changes, and for the first time, tie the effects of BDNF to specific regions 

of the arbor. The importance of having the multiple methods of data segmentation 

provided by the two labeling schemes is clarified by the fact that the analysis identified 

not only a global effect of bath application of BDNF but also that this global effect is 

predominantly driven by a change in two specific arbor subregions. These details about 

the local nature of morphological changes have not been identified using conventional 

methods [139, 155, 156]. 

2.2.5.3 Future Directions: 

One of the most exciting opportunities opened by the generation of morphological 

data containing local-level detail on arbor structure is the ability to fuel mathematical 

exploration of the molecular processes locally guiding arborization [157-161]. Much work 

has been done deriving generative models of neuronal morphologies [162-165]. These 

models are based on observation, but their mechanics are meant to represent biological 

processes driving cellular morphology [157-159, 166]. Providing these models with a 

more detailed source of experimental data would improve mathematicians’ ability to 
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generate and test specific hypotheses about biochemical regulatory networks. As 

mentioned previously, final arbor structure is a result of balanced cytoskeletal assembly 

and disassembly processes which are regulated by local and global factors. Detailed 

morphological analysis of specific regions of the dendritic and axonal arbors may provide 

a convenient window into the regulation of neuronal structure by locally active factors. 

The result would be a closer integration of mathematical modeling with experimental 

science. 

For example, the mathematical interpretation of Sholl data can be performed using 

multiple methods [161]. The selection of the most informative one may be dependent on 

cell type, or even the process type within one cell, implying that the biological drivers of 

neurite branching and growth may change based on context. However, even using 

multiple mathematical approaches, interpretation of standard Sholl analysis is not 

straightforward. An observed increase in Sholl intersections may be due to a variety of 

changes in branching behavior, including increased sprouting from the soma, more rapid 

neurite bifurcation, delayed termination, or even neurite extension from the periphery 

back toward the soma. It is therefore necessary to determine the contribution of each 

process type to the overall Sholl curve if such information is to be instructive of the 

underlying biological processes. 

2.2.5.4 Conclusions: 

The Bonfire program provides a useful bridge to integrate several existing digitization 

tools, makes the data available in a variety of formats (.swc morphological descriptions 

of individual neurons, .xls summary reports, and graphical analysis provided within 

MATLAB), and assists in the generation of morphological databases where information 

is stored concisely and can be revisited with unique analyses or audited for correctness 

as the need arises without having to re-digitize the data. The Bonfire program capitalizes 
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on the strengths of previously developed tracing programs to reduce the time required 

for high-fidelity tracing, while preserving the flexibility of laboratories to generate digitized 

neuronal files using their own preferred method. Though the program currently 

integrates most effectively with NeuronJ and NeuronStudio, it operates on standard 

SWC encoded neuronal information, which can be created using a variety of methods. 

Furthermore, the MATLAB code is readily available for modification, enabling users to 

modify or expand on the analysis to meet their own needs. In making this tool freely 

available, we hope to increase the accessibility of high-quality morphological analysis 

tools to the scientific public and to establish a precedent for building and sharing open-

source tools for improved morphological analysis of neurons. 

2.3 Semi-automated spike sorting for increased information retrieval from 

microelectrode array recordings 

2.3.1 Abstract: 

Microelectrode arrays (MEAs) measure the activity of multiple neurons on a single 

channel.  In order to take full advantage of this technology’s ability to measure neuronal 

or muscle cell activity, on both the scale of single cells and the scale of cell networks, it 

is necessary to identify the activity of individual cells within MEA data.  There are many 

techniques for doing so, and no consensus on which one works the most effectively.  

Selection of an appropriate process is, therefore, based on the requirements of particular 

experiments and constrains of the experimental set up.  We have composed a program 

which successfully allows a user to identify the activity of individual cells in MEA data.  It 

is flexible enough to identify activity from multiple cell types (myotubes and neurons) and 

returns accurate information on the morphology, as well as the timing, of their action 
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potentials.  Furthermore, the program reduces the time required to analyze the data and 

the user-introduced bias by partially automating the process. 

2.3.2 Introduction: 

2.3.2.1 A New Type of Data 

Neuroscience research produces data on a wide range of scales.  At the molecular 

level, genes encode protein structure, and protein activity is regulated through 

protein/gene interaction networks.  At the single neuron level, protein activity affects 

morphology and membrane composition, which can in turn affect how single neurons 

process and transmit action potentials.  At a multicellular level, the behavior of such 

individual units affects how networks of neurons will behave.  At a tissue level, the 

behavior of large neuronal networks dictates the function of the central nervous system 

and goes on to control organism behavior. Therefore, nervous system health and 

disease is a function of events occurring across multiple levels of complexity and scale.  

Understanding the linkages between levels increases our depth of understanding, and 

the potential for findings at one level to have implications on other scales. 

The relatively recent popularization of MEA technology now allows neuroscientists to 

examine neuronal behavior on a single neuron- and network-level.  MEAs record 

extracellular voltage traces (EVTs) from multiple interacting neurons, for relatively long 

periods of time, both in vivo and in vitro.  Analyzing and interpreting this wealth of new 

data has created a challenge that requires the convergence of computational and 

experimental techniques [167].  Researchers using this technology must have an 

understanding of the nature of the data that are recorded, the mathematical and 

computational methods for processing these data, and the biological basis for data 

generation and significance.   
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2.3.2.2 Extracellular Voltage Traces (EVTs) 

Recording neuronal EVTs is performed by placing a conductor, which is connected to 

a recording device, in the vicinity of a neuron’s soma where neuronal action potentials 

create their largest transmembrane currents [168, 169].  This rapidly changing current 

creates voltage transients that can be transmitted along the conductor and subsequently 

recorded.  A conductor will transmit all such activity along its length, so regional 

specificity is achieved by insulating all of the conductor except the points from which you 

want to record activity.  In vivo MEAs, for example, usually consist of arrays of 

conducting wire, insulated along their length except for the tip.  In vitro MEAs consist of 

conducting layers deposited on top of a glass slide and insulated everywhere except at 

the contact pads (Fig. 3.3-1, A). 

Extracellular voltage at any point is the sum of a number of factors, including the 

activity of any neurons close enough that their APs can be detected (Fig. 3.3-1, B) [167], 

as well as noise [170].  Because neurons are frequently packed closely together (in vitro 

and especially in vivo), this means that any EVT may contain information from any 

number of neurons.  The interpretation of data from multiple neurons recorded on a 

single channel is a complex problem that has been likened to trying to understand the 

function of an orchestra without any knowledge that the final sound is generated by 

different instruments playing simultaneously [168].  Similarly, the most meaningful 

interpretations of neuronal activity depend on knowing the activity of single cells, due to 

the nature of information exchange through action potentials (APs).  Figure 3.3-1, E 

shows a schematic of one possible arrangement of neurons on an MEA.  Neurons are 

networked selectively (and color-coded by network), and contact pads are shown in 

black.  Synchronous depolarization of a network would result in nearly simultaneous 

event detection on each of the pads contacted by that network.  The blue network and 
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green network would be easily differentiated based on the pattern of activated electrodes 

because they do not spatially overlap.  However, the green network completely overlaps 

the red network, making differentiation between the two far more difficult.  Figures 3.3-1, 

F-G show unsorted sample data recorded from 22 electrodes in a culture where the 

situation of overlapping networks likely exists.  The vertical banding apparent in Figure 1, 

F indicates that networks are present, and are causing synchronous activity.  The 

expanded view (Fig. 3.3-1, G) further shows that this activity is likely a combination of a 

large network causing activation of a majority of electrodes (indicated on the bottom of 

Fig. 3.3-1, G with green arrows), and a smaller network on a subset of these electrodes 

(bottom of Fig. 3.3-1, G with red arrows).  Teasing out the behavior of these networks, 

and therefore making full use of the EVT information, requires determining the firing 

patterns of each neuron whose activity is recorded by any one electrode. 

 

Figure 3.3-1.  Recording and interpretation of EVTs using and MEA 
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A) Phase microscopy of muscle-cell culture on commercially available MEA.  B) Schematic representation of 

potential neuron locations relative to contact pad on MEA.  C) Example segments of EVT recorded from a single 

electrode, showing three distinct spike morphologies (small-positive, small-negative, and large-negative), 

indicating the likely presence of three nearby neurons.  Threshold levels used for spike detection indicated by 

black dashes.  D)  2 Seconds of example EVT data recorded demonstrating temporal relationship of spike events.  

E) Schematic representation of neuronal culture on MEA, showing multiple active units with multiple patterns of 

connectivity.  F) Example spike trains from unsorted EVTs (Time is on the X axis, electrode ID is on the Y axis).  

Each row corresponds to an electrode, and each blue dot indicates a spike occurrence at that time.  G) A close-

up of 20 s of data. The vertical alignment of events qualitatively shows that there is network activity (green and 

red arrows on the bottom axis), but because the units are not sorted by biological source (only by electrode 

location), it is impossible to quantitate the linkage between cells. 

 

Neurons are believed to communicate through discrete events (APs), which occur at 

specific points in time.  Such phenomena are modeled using “point processes” in 

probability theory [167].  The EVTs recorded from an MEA, however, are continuous 

measures of extracellular voltage over time (an example segment of an EVT is shown in 

in Fig. 3.3-1, D).  The computational techniques used to translate continuous EVTs to 

point processes representing the single cell activity of an unknown number of neurons 

are therefore the mandatory first step in analysis of this type of data [167].Though this 

task is a formidable one, it is made possible by the fact that every neuron fires action 

potentials resulting in EVTs with a signature shape specific to only that neuron [167, 

168].  Figure 3.3-1, C shows three differently shaped events recorded in an EVT from a 

single electrode.  This is because each individual neuron has a unique location and 

orientation relative to the electrode contact, and the quality of extracellular environment 

separating the two is unique [169].  The process by which each depolarization event 

recorded in an single-electrode EVT is assigned to a particular neuron is known as 

“spike sorting [171].” 
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2.3.2.3 Spike Sorting Process 

The process of spike sorting can be roughly broken into a three step process shown 

in Figure 3.3-2 [172]: 1) likely spike events are identified in the continuous EVT, 2) 

features that may be used to identify the origins of these events are defined, and 3) the 

events are classified into multiple groups based on the clustering of these features.  

While there are additional methods of interpretation that do not rely on spike sorting 

[173-175], these will not be considered here.  There are multiple methods for performing 

each step of the process mentioned above, and there is no consensus on which 

performs best [167, 171].  Technique validation is further complicated by the fact that 

each step is largely modular and may therefore be used with many combinations of the 

other steps and that there is a large amount of variability associated with hand sorting of 

the data (considered the gold standard) [172].  Consequently, there are essentially 

limitless permutations of analytical techniques and no real means for comparing their 

efficacy. 

Selecting the best set of algorithms is, therefore, primarily a function of what the data 

are needed for subsequently.  Experimenters looking to answer specific questions may 

be able to tolerate one type of uncertainty in favor of gaining specificity on some other 

metric.  This unique set of constraints, determined by their experimental design, will 

dictate the correct assembly of their spike-sorting process.  

2.3.2.4 Program Goals 

Our experimental designs aim to assess the ability of substrate-embedded MEAs to 

record from or stimulate muscle cells as well as neurons.  Furthermore, we would 

ultimately like to be able to identify coupling of biological, signal-producing units.  We are 

therefore interested in being able to observe and quantify the characteristics of the EVTs 

generated by both cell types as well as the sequence with which they occur.  Finally, 
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because the task of spike sorting by hand is such a long one and can introduce so much 

bias, we need to develop a semi-automated process which reduces the burden on the 

experimenter and improves reproducibility. 

Because we are working with muscle cells, we will face a number of unique problems.  

In particular, the APs generated by the muscle cells are likely to produce widely variable 

spike shapes between units due to the unique shape of each cell.  Additionally, even the 

EVTs produced by a single cell are likely to show wide variability because the cell is 

capable of movement relative to the electrode over the course of AP generation. Finally, 

we will be using custom electrode designs where each electrode is likely to have 

differing noise levels because of their different dimensions. 

A program to semi-automate the process of spike sorting was designed with the 

above goals in mind and composed in MATLAB (Mathworks, Natick MA) to accept data 

from a Multichannel Systems MEA recording setup.  In this program, an attempt is 

initially made to automatically analyze all data.  The program then prompts the user to 

“proof” the data and guides the user through a revision analysis on data segments where 

the automated process failed to sort the units correctly. The algorithms involved in the 

program, and the rationale for their selection, are discussed below.  Sample data sets of 

neuronal and myotube recordings were analyzed to confirm functionality. 

2.3.3 Materials & Methods: 

2.3.3.1 Cell culture and sample data acquisition 

Myoblasts and cortical neurons were isolated and cultured as previously described in 

the literature [1, 54, 88, 89]. Briefly, pregnant Sprague Dawley rats were sacrificed by 

CO2 inhalation at gestational day 21 for myoblasts and 18 for cortical neurons, in 

accordance with Rutgers University animal care procedures.  To isolate cortical cells, 

pups were removed by Cesarean section and cortex was isolated and the meninges 
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removed, and cortex was triturated to create a single cell suspension. Cortical cells were 

then seeded onto MEAs in MEM medium plus 1% penicillin/streptomycin, 10% horse 

serum, and 3% v/v of 20% glucose solution at a surface density of 225,000 cells/cm2.  

Prior to use, the medium was glutamate depleted by 24 hr exposure to astrocytes 

culture, and the MEA surface was incubated overnight in 3% PEI dissolved in borate 

buffer. To isolate myoblasts, pups were removed by Cesarean section and hind limb 

muscles were removed to a separate container of Hanks’ Balanced Salt Solution 

(Invitrogen, Carlsbad, CA) + 1% HEPES Buffer (Mediatech, Inc., Herndon, VA).  Tissue 

was finely minced and brought to a final volume of 7 ml in PBS containing 1.5 U/ml 

collagenase (type D, Roche, Mannheim, Germany) and 2.5 U/ml dispase (type II, Roche, 

Mannheim, Germany).  Tissue slurry was then incubated for 20 min at 37o C and 

triturated using a pipette to break up remaining tissue clumps.  Solid debris was allowed 

to settle for 15 minutes, and remaining cells were pelleted out of the supernatant by 

centrifugation.  The cell pellet was resuspended in growth medium consisting of Ham’s 

F-10 medium including 20% fetal bovine serum, 1% Penicillin/Streptomycin, (all from 

Invitrogen, Carlsbad, CA) and 2.5 ng/ml human b-FGF (Promega Corporation, Madison, 

WI).  Cells were then plated into 75 cm2 flasks and incubated for 24 hrs to allow for 

attachment of viable cells.  Cultures were washed 3X with PBS to remove non-adherent 

cells and debris.  Cells were then resuspended and plated onto commercially available 

MEAs (Multichannel Systems) at a density of 100,000 – 300,000 cells/cm2 depending on 

the experiment in differentiation medium consisting of Neurobasal medium including 2% 

B-27 Supplement, 1% Penicillin/Streptomycin, and 1% GlutaMAX (all from Invitrogen, 

Carlsbad, CA).  Prior to seeding, surfaces were coated with laminin (Sigma Aldritch, St. 

Louis, MO) at 40 µg/ml.  Recordings were made using a standard MCS recording array, 

sampling the extracellular voltage from 60 contact pads at 20,000 Hz.  Contact pad 
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spacing was 200 µm and diameter was 10 µm.  Recordings were made throughout the 

development of cultures to observe a wide variety of behaviors. 

2.3.3.2 Data analysis 

Figure 3.3-2.  Schematic of spike-sorting algorithm. 

 

2.3.3.2.1 Event Detection 

The detection of unsorted spike events is typically performed by amplitude 

thresholding in which all instances where the EVT exceeds a certain threshold are 

recorded as potential spikes [176].  While other methods exist [171, 172], they were not 

considered here for reasons of algorithmic simplicity and because they are based on 

assumptions best suited for neuron-only EVTs.  The highly variable EAP morphologies 
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expected from myotube cultures, however, and the variable noise amplitude expected on 

custom MEAs makes selection of an appropriate threshold level complicated.  An 

adaptive thresholding technique was therefore used, in which the spike-threshold is set 

to a multiple of the SD for the entire data segment [172] (Fig. 3.3-2, B).  Additionally, 

because myotubes are expected to depolarize over a variable length of time, a variable 

“blanking window” was imposed after each instance where the threshold was broken.  

After an event is detected, the blanking window prevents the identification of subsequent 

events for a set time. 

2.3.3.2.2 Feature Generation 

Features representing spike characteristics can be generated based on a wide variety 

of techniques.  Some draw from very obvious morphological characteristics which are 

apparent to the naked eye, such as amplitude and duration [171], or template matching 

[176, 177].  Others draw on computational techniques to generate less obvious 

characteristics, involving Fourier [178] and wavelet transforms [179].  Principal 

Component Analysis (PCA) was selected for our algorithm because of the high degree 

of flexibility it provides relative to its computational simplicity [172].  A full discussion of 

PCA is outside the scope of this discussion, but briefly, it identifies the variance between 

sets of vectors and returns basis-vectors that explain this observed variance in rank 

order of importance, known as the principal components (PCs).  In other words, it is a 

way of automatically generating features based on the variability in the dataset it is run 

on.  This means that a custom set of PCs is created for each electrode’s EVT recording 

rather than needing a set that is applied to all EVTs equally. 

The first step of PCA is creating the set of vectors it is run on.  This is done by taking 

each fragment of the full EVT that was identified as a likely spike and aligning them.  In 

our case this is a multi-step process in which we 1) identify an instance of where the 
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EVT breaks the spike-threshold, 2) establish an investigation window around that point, 

3) identify the maximum amplitude of the EVT within that window, 4) assign the point of 

maximum amplitude as the event center, and 5) realign each event to that point (Fig. 

3.3-2, B-C).  Figure 3.3-3, A shows three example incidences where the spike threshold 

was broken and establishment of the interrogation window (thick red line) and blanking 

window (dashed red line) around that point.  The size of the interrogation window (both 

lead time and lag time) can be adjusted as needed.  Figure 3.3-3, B shows all incidences 

from 60 S of example data aligned to maximum deflection point, as described above.  

PCA is then run on the set of aligned spike vectors (Fig. 3.3-2, D), and the first two PCs 

(Fig. 3.3-3, B blue lines) are used to generate a 2 dimensional feature space.  Figure 

3.3-2, C.1 shows this feature space (the first and second PCs are the X- and Y-axis, 

respectively), in which every spike instance can be placed as a point based on its 

resemblance to PC1 and PC2, respectively. 

2.3.3.2.3 Clustering 

While a number of alternative clustering algorithms are available [179, 180], our 

program uses either K-means or a Guassian mixture (GM) algorithm, depending on what 

phase of operation the program is in.  Automatic analysis utilizes the K-means approach, 

while user-assisted analysis takes advantage of the GM process.  In either approach, 

the process roughly progresses as a series of trial-and-error attempts to identify the 

“correct” number of clusters that best explains the data, followed by an assessment of 

how successful the effort was. 

During user-assisted analysis, the user defines the number of clusters the GM 

process should look for.  Then, based on these clusters, the user may select clusters to 

split or join until optimal sorting is achieved as defined by the user.  Each time a cluster 

is split, it is reanalyzed in its own PC space rather than the PC space of the full data set, 
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which resulted in the original poor clustering (Fig. 3.3-2, E.1).  During automatic 

clustering, the K-means algorithm is used.  The program successively identifies 1 – 8 

clusters in the data and scores the efficacy of the clustering based on a measure of the 

distance between all points in each cluster.  Cluster sets where all points in each cluster 

are close to each other and far from the points in the other clusters are scored well, 

while cluster sets where points in each cluster are closer to the points from other clusters 

than they are to each other are scored poorly (Fig. 3.3-2, E.1).  The cluster set receiving 

the highest score is assumed to be the most appropriate clustering of the data and is 

passed to the next step in the process.  Figure 3.3-3, C1 shows example data that has 

been clustered (3 clusters were identified) 

2.3.3.2.4 Post-processing and Recombination of Correlated Clusters 

Following clustering, groups are “tightened” by shifting the time stamp for all events to 

the location where they are all maximally correlated with the first instance in their cluster.  

The cluster average and SD are then calculated (Fig. 3.3-2, F).  All events in the cluster 

are therefore maximally correlated with this mean curve.  The time at which the cluster 

average breaks the threshold is then assigned as the event time for all events in that 

group (Fig. 3.3-2, G).  Finally, all curves are aligned to this break point and are cross-

correlated.  Spike groups where the correlation between their shapes is above a 

threshold value are then combined (Fig. 3.3-2, H).  Figure 3.3-3, C shows the three 

traces from Figure 3.3-3, B after they have been assigned to clusters, corresponding to 

the activity of individual cells.  Once this has been successfully completed, the firing 

sequence of each of these cells can be observed in the original EVT (Fig. 3.3-3, C.2). 

2.3.3.2.5 Recursive Evaluation and Workflow 

Once all data have been sorted automatically, the program allows the user to “proof” 

the spike identification process by showing the clusters obtained on each electrode.  The 
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user then has the opportunity to accept the sorting, exclude the electrode altogether (as 

would be done with nonfunctional/noise electrodes), or to mark the electrode for revision 

analysis.  The program uses the information to build a list of electrodes which need to be 

revisited and then allows the user to perform spike sorting by hand on these electrodes 

(Fig. 3.3-2, right side). 

Figure 3.3-3.  Spike-sorting by principal component analysis (PCA) 
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A) Example data (same as from Fig. 3.3-1 B), now showing the location of the placement window (bold red bar) 

and the blanking window (dashed red bar), relative to the point at which the EVT crosses the spike threshold 

(black dashed line).  B) EVT spikes following alignment to their point of maximum displacement (red lines) along 

with the first two PCs identified by the PCA process (dashed and dotted blue lines, respectively).  C) Spike 

assignment by clustering.  C) Spikes after clustering. Each individual trace appears in the faded color, while the 

average of all spikes in that cluster and their standard deviation appear in darker lines.  C.1) Each spike is 

represented by a point at a unique location in PC-space (PC1 = x-axis, PC2 = y-axis), based on it’s similarity to 

the PCs shown in panel B.  Clusters identified by K-means algorithm are color coded, and correspond to the 

colors shown in panel C.  These spikes can then be identified by location in the full EVT (C.2).  This returns the 

information on the firing sequence of three individual neurons, even though they are all recorded on only one 

electrode. 

2.3.4 Discussion and Results: 

2.3.4.1 Performance Tradeoffs 

Many forms of feature identification and clustering exist for use in spike sorting 

algorithms, and there are many permutations used by laboratories to address this 

problem.  No “off-the-shelf” approach works across the board because of the unique 

aspects of every experimental system and different goals of different experimenters.  As 

a result, many laboratories develop customized means to perform their analysis, driven 

by their particular situation.  The huge diversity seen in myotube EVTs is the driving 

factor behind the development of our spike sorting algorithm.  We needed a process 

capable of identifying completely arbitrary spike morphologies over a wider range of 

amplitudes and durations than is typically observed with neurons and in a variable 

environment.  The most efficient means of doing this is a user-informed automated 

process in which a computer takes a try at the data, and then a user is allowed to proof 

the computer’s work and correct deficiencies.  In the process of developing enough 

flexibility to account for the variability, a number of tradeoffs in performance were made, 

which should be considered. 
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In the event detection step, we use an adaptive threshold that is set automatically 

based on the RMS noise for the entire data segment.  This allows for electrodes with 

different base levels of noise to be more easily included in analysis by eliminating the 

need to hand select a threshold level (i.e., higher thresholds are assigned to channels 

where there is a high noise floor).  This has the added benefit of raising the threshold on 

channels where there is high amplitude activity, reducing the number of erroneous units 

that are identified from long-lasting, multiphasic muscle cell depolarizations.  However, 

this elevation of the threshold also has the effect of reducing sensitivity to small 

amplitude spikes, allowing units with large amplitude to effectively silence units with 

small amplitude.  Similarly, the user-defined blanking window has both pros and cons.  A 

large blanking window can prevent the double identification of events where the EVT 

breaks the threshold twice, as can happen with exceptionally large neuronal APs or the 

multiphasic and large amplitude muscle cell APs.  However, it also has the potential to 

mask events that immediately follow other events.  An appropriate window should be 

selected based on whether the characteristics of the spikes, or their temporal 

relationship, is considered more important in a particular experiment. 

Aligning the initially detected spikes to their point of maximum deflection is done to 

account for the variability in muscle cell depolarizations, which tends to be reduced in 

the higher amplitude regions.  While this addresses the high variability in the lead and 

lag regions observed in muscle cell depolarizations, it creates problems based on the 

symmetry of some APs.  APs that are equally biphasic can be split between the positive 

and negative peaks, effectively breaking a single biological unit into two units as 

detected by the algorithm.  Despite this shortcoming, aligning to the maximum deflection 

is generally much better than aligning to break point.  Ultimately, the goal of the 

alignment step is to reduce the irrelevant variability between spikes to allow a more 
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effective PCA process to occur.  Once alignment has been achieved and PCA has 

identified the PCs, there is some debate on the number of PCs needed to appropriately 

cluster.  Typically 2 or 3 are used, but some have found that four or more may provide 

better robustness against noise.  Including more PC dimension in our clustering process 

may start to explain irrelevant variance (again, the consequence of highly variable 

myotube APs, particularly in the leading and lagging zones).  Additionally, the problem of 

non-stationarity will be exacerbated by the use of superfluous PCs, as it systematically 

creates a region of variability in spikes known to come from a single neuron. 

Either K-means or GM clustering methods perform well.  GM works best in the hands 

of a human because the distribution of the points when non-stationarity is a problem is 

largely non-Gaussian [180].  Most large scale variance is caused by non-stationarity 

effects and causes slurring of the clusters along some manifold.  Of particular note in the 

clustering step is the reanalysis of split clusters in their own PC space.  This creates a 

higher definition feature space in which other clusters do not reduce the ability to 

distinguish more “closely” related clusters by creating a false relative proximity.  This 

makes the process of splitting and joining clusters accurate and comparatively bias-free, 

as points are still always clustered based on either of the two algorithms above. 

Another unique aspect of this algorithm relative to many currently in use, is the 

consolidation of clusters and time shifting to align them to the threshold breakpoint.  

Muscle cell APs can go on for over 10 µs and can have multiple peaks and valleys, 

which means considerable delays are possible between the onset of an AP and the point 

of maximum deflection.  Identifying the time stamp for an event that allows for accurate 

identification of event onset will facilitate the identification of an accurate firing sequence, 

and therefore, potentially causal relationships within a network. 
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2.3.5 Conclusion: 

The program is successfully able to sort spikes based on the EVT morphology.  A 

fully-automated (i.e., unsupervised) analysis of 1 min of data recorded on 60 channels 

requires ~ 3 hr to complete but does not require any user intervention. By hand analysis 

of this same data segment typically takes ~5hrs of user-intensive labor.  While 

automated clustering is successful in ~50% of cases, the program unable to 

appropriately group the spikes in the more complicated channels.  Therefore, by hand 

analysis is still generally required to correct deficiencies in the automated spike-sorting 

process.  Once channels requiring hand sorting have been identified, the program 

provides enough structure to assist the user in the logical grouping of spikes but also 

enough flexibility to adequately guide the grouping process.  Because the automated 

process correctly deals with ~50% of the channels, however, it reduces the time it takes 

to analyze these large data sets by half.  Most importantly, it provides an accurate 

measure of spike morphology, which can be used in subsequent analysis, and also an 

accurate firing sequence for all identified units, which will provide appropriate input for 

subsequent network identification processes. 

Future directions include the development of network ID algorithms so that network 

dynamics can be examined quantitatively in addition to examining the properties of 

individual units.  More effective automated clustering algorithms can also be employed 

that will further reduce the time it takes to analyze these large data sets. 
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3 Tunable culture environments affect myotube and motor 

neuron behaviors 

3.1 The effect of microscale grooves on skeletal myotube alignment and 

independence in a 2D culture system 

3.1.1 Abstract: 

The development of tissue engineering techniques capable of recapitulating features 

of skeletal muscle tissue has applications in both lab-on-a-chip and clinical applications.  

There are many tools available which have the ability to cause the development of 

contractile and aligned myotubes in both two and three dimensions.  However, little has 

been done to assess the ability of these techniques to preserve the independent function 

of neighboring myotubes that allows for the controlled development of graded force in 

skeletal muscle in situ.  This study examines the effects of microscale topographical 

trenches in promoting myotube alignment and studies the effect of these substrate 

modifications on myotube independence.  We find that cell alignment is promoted by 

narrower microscale trenches, especially in the early stages of myoblast adhesion and 

spreading, but that the same degree of orientation is ultimately achieved across the full 

range of trench geometries.  Similarly, the presence of microscale trenches resulted in 

the earlier onset of spontaneous contractions without altering the maximum number of 

spontaneously contractile myotubes ultimately achieved.  Furthermore, the use of 

microscale trenches resulted in concentrated spontaneous contractions in the trench 

regions with geometry-depended specificity.  Implications of these findings on potential 

mechanisms regulating myotube differentiation are discussed as well as potential 

applications of microscale trenches for controlled myotube culture preparation. 
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3.1.2 Introduction: 

The ability to control the formation of muscular tissue-engineered constructs holds 

potential in the treatment [181], diagnosis [182, 183], and study of disease processes 

[184, 185].  Additional applications exist in nonclinical bioengineering fields, such as 

biorobotics [65] and biodetection [81, 186].  One of the most unique aspects of skeletal 

muscle cells is the large morphological change that myoblast cultures undergo when 

fusing into contractile myotubes during development.  As differentiation and maturation 

occurs, singly-nucleated myoblasts first adhere to the substrate, then align and fuse into 

multinucleated myostraps, and finally mature into contractile myotubes, which can be 

several orders of magnitude larger than their precursor myoblasts [187].  Each step of 

this process is instructed by each cells’ genetic program, communication with 

neighboring cells [188], and interactions with the chemical [189], physical [190], and 

electrical [191, 192] extracellular environment.  In skeletal myotube cultures, two basic 

morphologies are usually present: 1) branching multipolar and 2) spindle-shaped bipolar. 

Because the multipolar myotube is a single, continuous cell, it contracts as a single unit. 

In the case that two separate myotubes are next to each other but are not fused, they 

retain the ability to contract independently of one another. 

Great progress has been made in the field of skeletal muscle tissue engineering, and 

the wide range of potential applications is reflected in the wide range of tools employed 

to control myotube growth [181, 193].  Most tissue engineering tools take advantage of 

topographical or chemical means of inducing ordered culture architecture similar to that 

observed in vivo.  However, while myotube alignment is clearly important to muscle 

tissue’s ability to efficiently develop large forces, the generation of controlled, 

sustainable, repeatable contractions requires the selective and coordinated activation of 

independently operable motor units [194, 195].  While a great deal of effort has been 
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placed on cataloguing our ability to encourage myotube differentiation, development, 

and alignment, less effort has been directed at developing ways to exert control over 

myotube independence [1].  Unraveling the mechanisms by which these independent 

motor units are produced and maintained from a nearly homogenous pool of progenitor 

cells is therefore an important step in muscle tissue engineering [196].  Additionally, 

control of myotube formation has implications in creating microscale devices or sensors 

based on biological elements [81].  Preserving independent control over myotubes, 

rather than allowing them to fuse randomly, will improve such devices by increasing the 

number of independent cellular signal transducers (for biosensor applications) or 

actuators (in biorobotics applications). 

3.1.3 Methods: 

3.1.3.1 Substrate fabrication and characterization 

Figure 4.1-1.  Characterization of PDMS Substrate 

A) Top-down microscopic view of PDMS substrate with 100 µm trench width and spacing.  B) Side view of 

substrate from A.  Similar substrates with different geometries were produced using the same technique with 

trench spacing an width of up to 500 µm (200 µm and 300 µm shown in C and D, respectively). 

 

PDMS monomer (Dow Corning, Sylgard 184) was mixed 10:1 with curing agent.  The 

solution was poured over a silicon wafer, which had been coated with SU-8, into which 

the negative pattern of our groove geometries had been developed.  After degassing 

under vacuum for 30 min, the PDMS was cured overnight at 37º C.  The PDMS was then 
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peeled from the surface of the silicon SU-8 master, resulting in a positive pattern of 

grooves.  The geometry of the grooves on the resulting substrates was characterized 

using bright field microscopy (Fig. 4.1-1).  Sample substrates were imaged top down 

(Fig. 4.1-1 A), and in cross section following transaction (Fig. 4.1-1 B). The size of each 

feature in pixels was counted using ImageJ software (NIH, Bethesda MD)] and 

converted into µm using a known conversion factor specific to the microscope objective.  

A pattern of parallel grooves with equal pitch and width were selected for the 

experimental geometry so that each viewing field contained an equal quantity of groove 

and plateau surface area. 

3.1.3.2 Myotube isolation and culture 

Myoblasts were isolated and cultured as previously described [1]. Briefly, pregnant 

Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 21, and pups 

were removed by Cesarean section.  Hind limb muscles were removed, and tissue was 

finely minced and digested (20 min at 37o C) in PBS containing 1.5 U/ml collagenase 

(type D, Roche, Mannheim, Germany) and 2.5 U/ml dispase (type II, Roche, Mannheim, 

Germany).  Single cells were separated from debris, pelleted by centrifugation, and 

resuspended in growth medium consisting of Ham’s F-10 medium plus 20% fetal bovine 

serum, 1% Penicillin/Streptomycin, (all from Invitrogen, Carlsbad, CA) and 2.5 ng/ml 

human b-FGF (Promega Corporation, Madison, WI).  Cells were then plated into 75 cm2 

flasks and incubated for 24 hrs.  Adherent cells were resuspended and plated onto 

PDMS substrates in differentiation medium consisting of Neurobasal medium including 

2% B-27 supplement, 1% Penicillin/Streptomycin, and 1% GlutaMAX (all from Invitrogen, 

Carlsbad, CA) at a surface density of 200,000 cells/cm2.  Prior to seeding, surfaces were 

plasma treated (O2 plasma for 120 S at 50 Watts) and adsorbed overnight with 40 µg/ml 
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laminin (Sigma Aldrich, St. Louis, MO).  Medium changes were performed every other 

day. 

3.1.3.3 Quantification of myoblast and myotube alignment 

Myoblasts were seeded onto PDMS substrates bearing either 100 µm X 100 µm, 200 

µm X 200 µm, or 400 µm X 400 µm trenches (trench width µm X separation µm).  PDMS 

substrates with a smooth surface were used as an unaltered control, and each surface 

was prepared in triplicate.  Two randomly selected fields, showing 0.55 mm2, from each 

myoblast-seeded substrate were imaged using a phase contrast microscope at 12 hrs 

post seeding and every 24 hours after that until DIV 8.  Myoblast alignment in these 

images was assessed using a modification of the image intensity gradient algorithm 

[197, 198].  Briefly, each image  was broken into square tiles.  The intensity gradient of 

each pixel in this square interrogation window in both the X direction (δx) and Y direction 

(δy) is calculated and then averaged across the field.  An angle, θ, is then calculated 

based on the arctan of δy/δx, which represents the average orientation of optical density 

within that field.  This series of operations is repeated for every square tile, and the 

distribution of resultant θ’s provides a measure of bulk culture alignment.  Squares 

located on trench edges were excluded to prevent the introduction of substrate-based 

alignment bias. 

3.1.3.4 Quantification of myotube contractility 

To dynamically analyze contractile activity of myotubes, videos of cell behavior were 

acquired after the onset of spontaneous contractility and were analyzed as described in 

[1].  Briefly, videos were analyzed using a series of image processing and pattern 

recognition steps, which made it possible to identify regions of synchronized contractility 

within videos of myotube cultures.  This analysis provided the number and location of the 

contractile myotubes.  An additional step was added to this process in which the 
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orientation and locations of the trenches were identified in each video, allowing 

additional analysis examining the spatial relationship of spontaneous contractility to the 

trenches.  Three measures relating contractility and trench location were examined.  The 

first was the percentage of the contractile activity that is located in the trenches, 

calculated as the sum of all contractile area located inside of the trenches divided by the 

total area identified as contractile in the video.  The second metric was the average 

number of trenches spanned by each myotube, where at least 5% of the myotube must 

be located in a trench in order for it to be counted.  The final metric was the average 

number of myotubes that exist in each trench, again where at least 5% of the myotube 

must be located in a trench in order for it to be counted.  Because there were no 

trenches on the smooth control surfaces, videos of myotubes on trenches were 

compared to smooth surfaces on which the same orientation and trench pattern had 

been artificially imposed.  Thirty second videos of myotube behavior were acquired over 

200 frames using a 10× objective and 512 × 640 pixel resolution, recording an area of 

0.55 mm2.  Two videos for each triplicate replication of PDMS substrates bearing 100 

µm, 200 µm, and 400 µm trench geometries as well as a smooth control were analyzed. 
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3.1.4 Results and Discussion: 

3.1.4.1 Myotube morphology on PDMS substrates with microscale 

topographical trenches 

 

Figure 4.1-2.  Myotube morphology on chemically and topographically patterned 

substrates 

A) Myotubes at DIV 11 grown on unpatterned (top) and laminin-striped (middle and bottom) glass. B) Myotubes at 

DIV 11 grown on PDMS substrates topographically modified with 30 µm grooves (left), 50 µm grooves (middle) 

and 150 µm grooves (right).  Striations in myotubes at DIV 14 grown in the plateau region (C) and groove regions 

(D) of a topographically modified PDMS substrate. 

 

Consistent with prior results, we found that both microscale chemical [184, 189, 190, 

199] and topographical [54, 197, 200-202] patterning techniques were effective at 

directing myotube alignment (Fig. 4.1-2 A and B).  Conditions affecting the rate of fusion 

and the final myotube morphology (shape and size) include seeding density and surface 

chemistry. Surfaces adsorbed with pro-fusion proteins, such as laminin, promoted 

myotube differentiation while those adsorbed with non-bioactive adhesion promoters, 

such as polyethyleneimine (PEI) or poly-D-lysine (PDL), did not (data not shown).  On 

laminin adsorbed surfaces, myoblast fusion and maturation into striated myotubes was 
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robust.  Myotubes in the intertrench plateau regions tended to be flattened out and non-

overlapping, pushing more of the myotube into one focal plane and facilitating 

visualization of the striations (Fig. 4.1-2 C).  Cell growth in the trench regions tended to 

be more three-dimensional and allowed for multi-layered growth, requiring images from 

serial Z-planes to show myotube striations (Fig. 4.1-2 D).  While this produced local 

changes in cell density, each low magnification image contained a constant cell density 

because it contained equal portions of trench and plateau regions regardless of trench 

geometry, due to our selection of substrates with equal trench width and spacing. 

Also consistent with previous studies [189], we found that there is an optimal width for 

creating patterns of physically isolated, unbranching myotubes (Fig. 4.1-2 A).  For 

chemical patterns, it has been observed previously that as the feature size is reduced 

below this critical size, myotubes either connect between features or fail to adhere and 

mature, and as feature size is increased over the critical size, several myotubes are able 

to associate within each feature.  Optimal trench spacing for achieving a 1:1 trench-to-

myotybe relationship was similar to the dimensions for chemical spacing.  Fig. 4.1-2 B 

shows primary myocyte cultures on trench widths of 30 µm, 50 µm, and 150 µm. On 50 

µm trench geometry, each feature contained a single myotube. In the larger groove 

geometries, multiple myotubes co-localized within the same feature, and on smaller 

trench geometries, myotubes were able to reach across trenches.  The width of 

individual myotubes, however, appeared largely unchanged between these different 

scenarios. 
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Figure 4.1-3.  Myoblast alignment with major trench axis in DIV 0 – DIV 8 

A) Angular deviation distribution (top) of local alignment fields detected using gradient method (example field 

bottom) for myoblasts on 100 µm trenches 12 hr after seeding.  B) Angular deviation distribution (top) of local 

alignment fields detected using gradient method (example field bottom) for myoblasts on an unpatterned PDMS 

substrate.  C) Average amplitude of angular deviation from the major trench axis for substrates with 100 µm, 200 

µm, 400 µm, and unpatterned control for timepoinst from 12 hr following seeding to DIV 8. 

 

We used the optical gradient method to identify the effective angle of alignment for 

each square field of the microscope image based on the average X- and Y- intensity 

gradients of the pixels therein (Fig. 4.1-3 A and B – bottom, red bars).  The orientation of 

each square field can then be compared to the orientation of the trenches.  The 

distribution of orientations for the entire image relative to the primary trench direction will 

be highly concentrated around zero for cultures that are highly aligned with trench axis 

(Fig. 4.1-3 A – top) or will be flat for cultures with random growth (Fig. 4.1-3, B – top).  

To characterize this distribution, the average angular deviation from the trench axis can 
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be calculated, which will be approximately 45º in the case of random growth and will be 

lower in the cases of more organized growth [197, 203]. 

Analysis of myoblast and myotube alignment using this method showed that myotube 

alignment was induced by topographical guidance cues, consistent with prior studies on 

guidance cues of similar size.  Myotube cultures seeded on PDMS substrates with 

trenches had an average angular deviation noticeably lower than that observed in 

cultures grown on smooth PDMS substrates, which was approximately equal to the 45º 

expected from truly random growth (Fig. 4.1-3 C).   

Analysis over the timescale of DIV 0 through DIV 8, however, showed a number of 

additional trends in myoblast alignment and fusion into myotubes.  While myotubes on 

all grooved substrates ultimately reach the same degree of directed orientation by DIV 8, 

there are transient differences between substrates bearing 100 µm, 200 µm, and 400 µm 

trench geometries during early time points (Fig. 4.1-3 C).  Alignment of myoblasts, even 

before they have begun to fuse into myotubes, occurs sooner on the narrower trench 

geometries, as exhibited by the alignment of unfused myoblasts as early as 12 hours 

after seeding on 100 µm trenches (Fig. 4.1-3 A) relative to an unpatterned control (Fig. 

4.1-3 B). 
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3.1.4.2  Myotube contractility on PDMS substrates with microscale 

topographical trenches 

 

Figure 4.1-4.  The number of independently active cells per unit surface area in 

grooved and smooth myotube cultures as a function of culture age 

 

Spontaneous contractility is observed in many myotube culture systems.  With the 

recent development of an algorithm for quantifying myotube association based on videos 

of spontaneous contractility [1], we are now able to look at the effects of topographical 

guidance cues on this measure of myotube function in addition to simple morphological 

examination.  Figure 4.1-4 shows the number of independent spontaneously active 

myotubes identified in cultures on smooth and patterned PDMS from DIV 6 – 24.  

Consistent with qualitative observations in the literature, myotubes in culture underwent 

an early period of maturation during which spontaneous activity increased as myotubes 

fused and matured, followed by a gradual decrease in activity [197].  The exact time 

course of these events is a product of factors specific to each culture system, ranging 

from medium composition, cell source, cell density, and various characteristics of the 
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extracellular environment.  In our culture system, spontaneous twitches have been 

observed as early as DIV 5 and can continue through 3 weeks in culture.  When this 

spontaneous activity is quantified, we see a similar trend as is observed in the myotube 

alignment data.  While myotube cultures on grooved substrates exhibited a greater 

number of spontaneously contractile cells during early time points (i.e., DIV 8 – 13), the 

myotube cultures on smooth substrates ultimately caught up to them and produced 

similar quantities of spontaneously contractile cells (i.e., DIV 15 – 17). 

 

Figure 4.1-5.  VTA-Identified regions of contractility on grooved PDMS substrates 

with 100 µm – 400 µm trench geometries and unpatterned control 

 

The contraction identification algorithm also shows the physical location of contractile 

myotubes.  This analysis shows trends in the spatial distribution of contractile activity 

that is dependent on trench geometry.  Figure 4.1-5 shows example behaviors of 

myotubes on patterned and smooth PMDS substrates.  Qualitatively, myotube 
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contractility appears to be directed to, aligned with, and confined largely within the 

trenches.  The highest degree of order is achieved at 100 µm, with disorder increasing 

as the length of uninterrupted trench width increases.  On the 100 µm trench geometry, 

myobutes aligned along the trench axis ,and typically, there was  only 1 myotube per 

trench.  When the trenches were this close together, however, it was possible for one 

myotube to bridge multiple trenches.  On the 200 µm trench geometry, contractility was 

still largely directed to the trenches, but it became possible for multiple myotubes to be 

active in a single trench.  On 400 µm trench geometry, myotubes increasingly spilled out 

of the trenches, there was an increase in overlapping activity, and there was diminished 

alignment and elongation of contractile areas within the trenches.  Finally, on smooth 

substrates, there was no order to the myotube activity, and myotube contractility was 

distributed in random locations and with random orientations. 
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3.1.4.3 Myotube contractility selectively guided to trenches 

 

Figure 4.1-6.  Myotube contractility spatial relationship with trenches 

A) Example image of contractile myotubes at DIV8 on 100 µm groove spacing.  B) Activity pattern of myotubes 
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indicated in A. Percentage of total contractile area located in trenches for (C), the average number of trenches 

spanned by each myotube (D), and the average number of myotubes found in each trench (E), is quantified for 

100 µm, 200 µm, and 400 µm trench geometries (filled points) relative to unpatterned control for each case (empty 

points).  Error bars represent the standard error of the mean. 

 

By superimposing a map of contractile activity on the location of trenches (Fig. 4.1-6 

A) for each video, it is possible to quantify the relationships between contractility 

distribution and trench location that are qualitatively shown in Figure 4.1-5.  Because it is 

possible that trench distribution itself may create a sorting effect, each video of myotube 

behavior on patterned substrates was compared to videos of unpatterned cultures on 

which the trench pattern from the video being analyzed has been superimposed.  For 

some of the metrics examined, there was a slight trend, suggesting a dependence on 

trench spacing. However, a much greater effect wasclearly present between each 

patterned substrate and its unpatterned control.  

Figure 4.1-6 C confirms the observation that contractile activity is directed largely to 

the trenches.  In each of the trench geometries, substantially more of the contractile 

activity appeared in a trench region compared to the smooth control surfaces.  Because 

trench spacing and width are equal in all geometries, 50% of the surface shown in each 

video is trench and 50% is the intertrench plateau region.  This means that in the case 

where myotube activity is randomly distributed, we would expect to find ~50% in the 

trenches, which is approximately the case in our experimental system. 

Not only is contractile activity directed generally to the trenches, but trench location 

correlated with contractile activity with some degree of specificity depending on trench 

geometry.  For example, in the 100 µm trench geometry, a single trench typically only 

contained a single myotube, while many myotubes were able to span multiple trenches.  

By comparison, in the larger trench geometries, the wider trenches were more likely to 
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contain multiple myotubes while it is more difficult for single myotubes to span the larger 

distance between trenches.  This observation is reflected in Figure 4.1-6 D and E, where 

the closely spaced and narrow trenches of the 100 µm case resulted in a larger number 

of trenches spanned per myotube, and a lower number of myotubes found in each 

trench, as compared to the other patterns.  More important than a comparison between 

trench geometries, however, is the clear difference between each geometry and the 

unpatterned controls.  Relative to these unpatterned controls, myotube formation is 

directed to the trenches in a selective manner that preserves functional independence of 

myotubes from those in neighboring trenches. 

3.1.5 Conclusions: 

In this study, we have investigated the effects of microscale topographical patterns in 

the form of parallel stripes on the development of structured myotube cultures, using 

myotube alignment, and for the first time, a measure of functional myotube 

independence as endpoints.  Many different substrates have been used to drive 

myotube alignment [181, 193].  However, in many of these techniques, myotubes show 

a “dose-insensitivity” effect, in which myoblast response to a graded range of alignment 

cues tends to be essentially binary (i.e., cells are either highly aligned or completely 

random) rather than exhibiting a graded alignment response [191, 200, 204, 205].  This 

is consistent with our findings that there is little difference between the ultimate amount 

of alignment observed between trench widths over the range of trench geometries 

examined.   

Additionally, we found that changes in myotube behavior in response to microscale 

trenches are largely a product of early events in myoblast spreading and alignment.  

Myotube alignment increases through DIV 8, but a large and substrate geometry-

dependent difference in cell alignment on patterned and unpatterned substrates was 
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observed as early as 12 hours following seeding.  This was likely because in the early 

stages of myoblast attachment, cell spreading was partially guided by the grooves.  The 

effect was most notable in the narrower trench geometries because these features have 

spatial dimensions on the same order of magnitude as the myoblasts themselves.  

Because myoblasts are polarized cells, which are spindle shaped, this head start in 

alignment most likely reduces the amount of time they need to spend migrating under 

their own power to achieve the end-to-end alignment thought to be required for fusion 

and differentiation into myotubes.   

While the effects of microscale topographical trenches on myotube alignment are 

relatively straightforward, their effect on myotube independence is more complicated.  

Based on the static images that the morphological studies are based on, it would have 

appeared that guidance cue geometries above or below a critical size resulted in 

communication between myotubes within the same feature or between features, 

respectively.  In our own chemical and topographical patterning work, as well as that of 

others groups, this was visualized as branching myotubes.  From these morphological 

studies, it follows logically that only myotubes located in separate grooves are 

electrically isolated from one another and would therefore twitch independently. 

However, based on studies of spontaneous myotube contractility, it now appears that 

myotubes are capable of maintaining independence from neighboring cells even when 

they overlap extensively.  This is supported by our observation that the use of 

microscale topographical guidance cues resulted in earlier alignment and onset of 

spontaneous activity but did not increase the final number of independent cells.  These 

observations support a conceptual model where myoblast fusion and differentiation is 

primarily controlled by intrinsic factors rather than the extrinsic factors delivered by the 

static mechanical cues found in the extracellular environment of the synthetic microscale 
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trenches [196, 206].  While the small boost in myoblast alignment provided by the 

microscale trenches is sufficient to give the fusion/maturation process a head start, it 

does not alter myotube cellular physiology, and therefore, the functional endpoint 

reached is ultimately the same. 

While microscale topographical features do not have any effect on cellular 

independence, they can serve the useful purpose of controlling culture mechanics.  

Microscale grooves can be used not only to drive culture-level myotube alignment but 

also to direct contractile activity to specific regions and encourage contraction in specific 

directions.  Microscale patterning techniques may be used to generate controlled 

anisotropy, as exists in native tissue architecture, and to direct formation of myotubes to 

specific locations, as would be required by microdevices incorporating an engineered 

skeletal muscle component. 

This study depended on the spontaneous activity of rat myotubes in culture to show 

myotube independence.  Future studies will involve the integration of this myotube 

guidance technique with multi-modality bio-MEMS devices with substrate embedded 

electrodes for the purpose of recording bioelectrical activity or selectively triggering 

contraction of myotubes located in specific regions.  Developing such biointerfaces for 

tissue engineered skeletal muscle constructs may improve the performance of skeletal 

myotube-integrated lab-on-a-chip or biorobotic devices by increasing their degrees of 

freedom for actuation or detection.  Additionally, such an idea may be clinically useful 

within the context of a microscale adaptation of the targeted muscle reinnervation (TMR) 

technique, which uses surface EMG to control prosthetic devices in amputees [53].  

Making signal acquisition a process that occurs on the scale of single muscle fibers 

detected with microscale implantable electrodes, rather than course surface electrodes, 
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may increase the number of independent signals that can be recorded, thereby 

increasing the bandwidth for communication with the user. 

3.2 Spatially selective detection of extracellular action potentials and neurite 

outgrowth in spinal cord explant culture vs. dissociated neuronal culture 

3.2.1 Abstract: 

Ultimately, our goal is to develop a culture system able to sustain structured co-

cultures of myotubes and neural tissue.  The objective of such a system is to observe 

the activation of myotube populations by neuronal sources that have innervated them in 

vitro, thereby creating a lab-on-a-chip tool for studying myotube-neuron interactions and 

the formation and maintenance of the neuromuscular junction.  Meeting this objective 

requires that myotubes and neurons be grown in such proximity that physical contact 

through axonal outgrowth from the neuronal source is possible, but confined so that the 

extracellular action potential (EAP) from each cell type can be recorded separately.  

Neuronal culture is possible in a variety of ways, from highly disorganized dissociated 

culture to highly organized organotypic preparations.  Here we examine the feasibility of 

using spinal cord explant cultures, similar to slice preparations, as a means of 

geographically confining the neuronal cell bodies while preserving the ability of neuronal 

cells to access distant targets through axonal outgrowth.  EAP localization was 

determined using commercially available substrate-embedded multielectrode arrays 

(MEAs), and axonal outgrowth was determined using immunohistochemical staining 

techniques.  We find that explant cultures preserve neuronal function while successfully 

confining cell bodies (and therefore EAPs) to a precise location and exhibit the 

aggressive axonal outgrowth required for our application.  Additionally, guidance of 
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axonal outgrowth from explants is possible using either chemical or topographical 

guidance cues. 

3.2.2 Introduction: 

Neurons can be cultured using a number of techniques, each preserving different 

degrees of physiological relevance and enabling different degrees of control over 

experimental conditions.  At one extreme is dissociated culture, typically produced by 

triturating embryonic central nervous system (CNS) tissue into a cell suspension where 

each cell is separated from its neighbors before being randomly recombined on a growth 

substrate.  These cultures contain multiple cell types intermixed without regard to their 

relationship in vivo.  From this starting point, it is possible to induce some degree of 

order through selective elimination of certain cell types, as in cytosine arabinoside 

(AraC) treatment to eliminate cell types other than neuros, giving some control over 

cellular composition of the culture [207].  Additional order can be imposed through 

spatial patterning of cells using topographical [208] or chemical [59] cues, thereby 

effecting the ability of the cells to make contact with neighboring cells.  With the obvious 

relevance this has to studies of neural dynamics, such techniques have become 

increasingly popular in neuroscience and have been facilitated by the explosion in 

microfluidic techniques for producing structured cell culture environments [209-211].  At 

the other extreme is the organotypic culture of neural tissue from more mature animals.  

Performed as acute or chronic experiments, slices of neural tissue can be isolated to 

preserve the patterns of synaptic connectivity within those slices [212]. 

Within the scope of our project, preserving native tissue architecture is likely to be 

important for several reasons.  Motor neurons and myotubes have been observed to 

interact in dissociated culture [56, 88, 213], but formation of mature NMJs is thought to 

be a process involving multiple cell types [187, 214-216].  In particular, synaptic pruning 
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at the NMJ may be dependent on the use of organotypic preparations rather than 

dissociated culture [217, 218].  Additionally, we are spatially constrained by the need to 

have myotubes and neurons close enough to make contact through axonal extension yet 

far enough away that their EAPs do not overlap significantly. 

In this series of experiments, we examined the spatial electrophysiological 

characteristics of dissociated neuronal culture and spinal cord explant culture.  The 

implications of our findings to the suitability of each culture type is discussed, and it is 

determined that explants provide the most advantageous behavioral characteristics. 

3.2.3 Methods: 

3.2.3.1 Isolation and culture of spinal cord explants and dissociated neurons 

Spinal cord explants are prepared using procedures based on [219].  Briefly, 

pregnant Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 15, 

and pups were removed by Cesarean section.  Spinal cord was removed posteriorly and 

transferred to a PDMS- lined petri dish in a drop of medium.  The cord is then bisected 

longitudinally and finely minced transversely into sections 200 – 300 µm thick. Sections 

were suspended in NB medium plus 1% GlutaMAX supplement and 2% B27 

supplement. Explants were then plated onto chemically or topographically patterned 

glass substrates or MEAs, all of which had been adsorbed overnight with laminin at 40 

ug/ml in 10 µL of medium.  Explants can be precisely positioned on the growth substrate 

during this step.  In this experiment, explants were positions with the explant body over 

three contacts in the top row of the MEA, allowing space for axonal outgrowth over the 

other contacts.  After 5 min, allowing for initial adhesion, enough medium was added to 

just cover the explant, and it was placed in an incubator at 5% CO2 and 37 deg C.  

Medium was replaced every 2 days. 
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Because spontaneous EAP activity and culture survivability was low in dissociated 

spinal cord cultures, cortical neurons were used as a proxy to determine spatial 

distribution of EAPs in dissociated neuronal culture.  Cortical neurons were isolated as 

previously described [139].  Briefly, pregnant Sprague Dawley rats were sacrificed by 

CO2 inhalation at gestational day 18, and pups were removed by Cesarean section.  

Cortex was isolated, meninges were removed, and a single-cell suspension was 

prepared by triturating the cortex with a flame-polished glass pipette.  Cortical cells were 

then seeded onto MEAs in MEM medium plus 1% penicillin/streptomycin, 10% horse 

serum, and 3% v/v of 20% glucose solution at a surface density of 225,000 cells/cm2.  

Prior to use, the medium was glutamate depleted by 24 hr exposure to astrocytes in 

culture, and the MEA surface was treated overnight with 3% PEI dissolved in borate 

buffer. 

3.2.3.2 Immunostaining 

Explants were fixed and stained on DIV 13 to identify axonal and dendritic outgrowth.  

Explants were fixed in a PBS plus 4% PFA and 4% sucrose solution for 15 min at room 

temperature.  After washing 3 times in PBS, explants were then permeablized and 

blocked for 1 hr at room temperature in PBS plus 2% FBS, 0.2% Triton, and 0.02% 

sodium azide.  Explants were rinsed 3 times with PBS, and incubated in primary 

antibody solution for 2 hr at room temperature (1:500 mouse anti-Tau and 1:200 rabbit 

anti-MAP2).  Primary antibody solution was removed, and explants were washed 3 times 

with PBS before incubation in secondary antibody solution for 1 hr at room temperature 

(1:300 donkey Cy2-conjugated anti-mouse and 1:300 goat Cy3-conjugated anti-rabbit).  

Secondary antibody was removed, and explants were washed 3 times with PBS before 

imaging using an epiflourescent microscope.  Five well-attached explants were imaged 
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in each condition, and their outgrowth was quantified using ImageJ software (NIH, 

Bethesda MD). 

3.2.3.3 Chemical patterning 

Laminin patterns were produced using a technique called microscale plasma-initiated 

patterning [220].  Briefly, PDMS stamps bearing the negative of the desired pattern were 

created using standard soft lithography techniques.  These stamps were then brought 

into contact with glass coverslips.  Surfaces where the PDMS makes contact with the 

glasswere sealed with dry surface tension.  The stamps were left in contact with the 

glass coverslips while theywere exposed to 120 seconds of O2 plasma treatment at a 

power of 50 W.  During this time, the plasma makes contact with the glass everywhere 

except for the regions obscured by the PDMS stamp.  The O2 plasma alters the glass 

surface chemistry, making it more hydrophilic in these exposed regions.  After treatment, 

the stamps were removed, and a solution of 40 µg/ml laminin was added to the glass 

coverslip.  The differential surface hydrophilicity resulting from the plasma exposure is 

sufficient to drive laminin deposition selectively on the plasma-treated regions, 

generating a surface pattern of laminin adsorbed from the solution. 

3.2.3.4 Topographical patterning 

Topographical patterns were created on 1 mm thick glass slides in SU-8 2025 

photoresist (PR) using standard photolithography processes.  Briefly, glass substrates 

were cleaned with sequential 10 min washes in acetone, isopropanol, and DI water, and 

dehydrated in a convection oven for 30 min at 130 ºC. PR was spin-coated onto the 

glass substrate to a depth of 40 µm.  The chips were softbaked for 1 hr at 45 ºC, at 

which point the temperature was cycled twice from 95 ºC to 45 ºC for 10 min each before 

being held at 95 ºC for 2 hr and slowly cooled to 25 ºC. Photoresist was then exposed to 

5 cycles of UV light at a dosage of 45 mJ/cm2 through a transparency mask bearing the 
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topographical pattern. Post-exposure bake consisted of a slow ramp to 95 ºC for 30 min, 

followed by a slow cool to room temperature. The pattern was developed in SU-8 

developer followed by a quick rinse in acetone, and chips were completed by hard 

baking them for 1 hr at 150 ºC.  All heating steps were performed on a programmable 

hot-plate unless otherwise stated.  A pattern of open-ended parallel grooves was used. 

3.2.3.5 MEA recording and data analysis 

Recordings of spontaneous cellular activity were made on a heat-controlled stage at 

37 oC in room atmosphere using a standard MCS recording array, sampling extracellular 

voltage from 60 contact pads at 20,000 Hz.  In dissociated neuronal culture, contact pad 

spacing was 200 µm and diameter was 10 µm.  For recording from explants, more 

spatial specificity was achieved by using an MEA with contact pad spacing of 100 µm 

and diameter of 10 µm.  Recordings of dissociated cultures have been made from DIV 

14 to DIV 35.  Results from a 2 min section of data recorded on DIV 21, by which point 

spontaneous activity has fully developed, are shown. Recordings from explant culture 

were collected from DIV 7 to DIV 21.  Dataare shown from DIV 7 to emphasize how 

rapidly spontaneous activity appears in explant culture. 

Individual EAPs were identified in the extracellular voltage trace (EVT) recorded on 

each electrode using a thresholding algorithm.  The threshold was set by hand for each 

channel to account for the different levels of background noise.  While the time of each 

EAP was recorded, PCA-based spike sorting was not performed because we are 

primarily interested in the location of each spike in the 8X8 electrode grid rather than in 

its biological origin.  The relative activity recorded by each electrode contact is calculated 

as the total number of spikes recorded on that electrode.  This information is displayed 

as a scaled heat map for each culture type (Fig. 4.1-1 C and F) in which each square 
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represents an electrode’s position in the 8X8 grid, and its color encodes its activity level 

(hot colors indicate higher activity). 
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3.2.4 Results and Discussion: 

3.2.4.1 Spatial localization of EAPs in dissociated cortical vs. spinal cord 

explant culture 

 

Figure 4.2-1.  EAP Spatial distribution in dissociated cortical culture vs. spinal 
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cord explant culture 

A) Dissociated cortical neurons @ 225,000 cells/cm2 on an MEA (contact spacing = 200 µm).  B) Raster plot 

showing 30 s of activity of culture in A at DIV 21.  C) Spatial distribution of activity shown in B.  D) Spinal cord 

explant culture in which the explant has been positioned such that cell bodies overlie three electrodes in the top 

row of an MEA (contact spacing = 100 µm), and axonal outgrowth extends over the rest of the contacts.  E) Raster 

plot showing 30 s of activity of culture in D.  F) Spatial distribution of activity shown in E. 

 

There is an obvious morphological difference between dissociated cultures and 

explant cultures.  In dissociated culture, both neuronal cell bodies and neuritic 

extensions are evenly and randomly distributed over entire recording surface (Fig. 4.2-1 

A), while in explant culture the neuronal cell bodies and neuritic outgrowth overlie 

separate recording sites (Fig. 4.2-1 D).  Both culture types exhibit primarily bursting 

activity, in which spike trains of closely spaced EAPs are generated on several 

electrodes simultaneously (Fig. 4.2-1 B and E).  The periodicity, duration, and intensity 

of these spike trains are highly variable, even within the same culture, making 

quantitative comparisons difficult.  However, spontaneous bursting activity appears 

noticeably sooner in explant culture (as early as DIV 7) as compared to dissociated 

cultures, which typically begin showing spontaneous activity around DIV 14.  This 

difference is likely caused by the neurons in the explant body being much more closely 

associated with one another and their respective support cells than is the case in 

dissociated culture.  

Within the context of structured co-cultures, the most important difference between 

the two culture systems is apparent in the spatial distribution of EAP activity.  

Dissociated culture shows activity at a variety of locations randomly spread over the 

recording surface (Fig. 4.2-1 C).  This is because cell bodies are located near each 

recording site and are capable of synaptic communication with essentially any other cell 
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in culture.  As a result, any two electrodes may be a part of a network.  In comparison, 

explant EAP detection is limited to those electrodes directly underneath the explant body 

(Fig. 4.2-1 F).  While the neuronal signals generated by these neurons are certainly 

transmitted along the axonal outgrowth, they do not produce a large enough EAP to be 

detected using planar electrode arrays.  As a consequence, EAP detection is limited to a 

single, highly localized area associated with the explant body. 

3.2.4.2 Axonal and dendritic outgrowth from spinal cord explants 

 

Figure 4.2-2.  SC Explant Morphology and Outgrowth 

A) SC explant isolated from E15 rat embryo. Explants were fixed on DIV 8, and stained with antibodies to MAP2 

(green) and Tau46 (red).  B) Average distance of maximum axonal extension from explant body in standard NB 

medium and NB containing 1 µM Ara-C.  Error bars represent standard error of the mean. 

 

Although the neuritic outgrowth from the spinal cord explant does not generate 

detectable EAPs, it is important to determine their axonal or dendritic identity in order to 

confirm whether these processes are likely to conduct information to distant targets and 

to estimate how distant these targets can be while still hoping to make synaptic contact.  

Following staining for axonal and dendritic markers (Fig. 4.2-2 A), we observe that the 

vast majority of outgrowth is axonal, and these axons fasciculate in similar fashion to 

their behavior in situ.  This ordered and semi-directed outgrowth is not observable in 

dissociated cultures, where axons from individual cells tend to grow independently.  

Furthermore, the extent of axonal projection was far greater than that observed for 
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dissociated neuronal culture with an average of 1.4 mm maximum axonal outgrowth 

(Fig. 4.2-2 B). 

As the intended use of the explants will be in co-cultures of primary cells, it may be 

necessary to use Ara-C to knock down the number of contaminating fibroblasts or other 

proliferative cell types, thereby enriching for post-mitotic neurons and myotubes.  As 

such, axonal outgrowth length was quantified in both the presence and absence of 1 µm 

Ara-C, which was added to the medium.  After 13 days in culture the presence of Ara-C 

in the medium did not appreciably reduce axonal outgrowth (Fig. 4.2-2 B). 

 

Figure 4.2-3.  Topographical and chemical guidance of explant outgrowth 

A) Hippocampal explant at DIV12 interacting with laminin stripes deposited on a PEI-coated glass coverslip using 

a microfluidics/evaporation based technique.  B) Spinal cord explant culture at DIV 11 grown on laminin stripes in 

NB.  Laminin stripes prepared using a combined microfluidic/evaporation procedure rather than the traditional u-

PIP plasma-based procedure.  C) Explant outgrowth on topographically patterned substrate. 
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Chemical or topographical cues will be required to create structured co-cultures, so 

the feasibility of both techniques in directing axonal extension was examined 

qualitatively.  Chemical cues are able to guide the direction of axonal outgrowth.  

However, axons are able to cross the space between the patterned lines, especially in 

the region close to the explant (Fig. 4.2-3 A and B).  Topographical cues are also able to 

guide neurite outgrowth and show less crossing between lanes than was present on the 

chemical patterns, likely because the large physical obstruction represents a greater 

barrier to growth (Fig. 4.2-3 C). 

3.2.5 Conclusions: 

Our specific aims require a culture system with the potential for physical contact 

between motor neuron and muscle cell pools in combination with sufficient separation to 

enable independent EAP recording from both.  Both of these requirements are satisfied 

by explant cultures, which offer spatial EAP specificity and aggressive axonal outgrowth.  

Additionally, the earlier onset of spontaneous activity implies more rapid maturation and 

may shorten the amount of time required to establish functional contact between the 

explant and targets.  Finally, the explant system preserves tissue-relevant cellular 

connectivity in the explant body.  Because this may be important in NMJ formation, it is 

an important feature to preserve in culture systems in trying to recreate physiologically 

relevant motor neuron-myotube communication. 

The information gained from these experiments has resulted in a number of important 

design decisions for our culture system.  Both chemical and topographical patterning 

techniques are successful in guiding axonal outgrowth from explant cultures.  However, 

going forward, we will employ topographical patterning in our device design.  Chemical 

patterning involves repeated physical interaction with the surface that can damage other 
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features already deposited, and it only works with select agents.  In comparison, 

topographical patterns provide a more flexible technology platform because patterns can 

be built permanently into the substrate and then adsorbed with pro-adhesion or pro-

differentiation cues secondarily, as was the case with our topographical substrates.  

Finally, axonal outgrowth of up to 1.4 mm away from the explant body can be reasonably 

expected.  This measurement provides an indicator of the physical separation possible 

between myotubes and neurons that can be bridged by axonal growth. 
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4 Myo-MEA design considerations 

4.1 Skeletal myotube integration with planar microelectrode arrays in vitro for 

spatially selective recording and stimulation: A comparison of neuronal and 

myotube extracellular action potentials 

4.1.1 Abstract: 

Multielectrode array (MEA) technology holds tremendous potential in the fields of 

biodetection, lab-on-a-chip applications, and tissue engineering by facilitating non-

invasive electrical interaction with cells in vitro.  To date, significant efforts at integrating 

the cellular component with this detection technology have worked exclusively with 

neurons or cardiac myocytes.  We investigate the feasibility of using MEAs to record 

from skeletal myotubes derived from primary myoblasts as a way of introducing a third 

electrogenic cell type and expanding the potential end-applications for MEA-based 

biosensors.  We find that the extracellular action potentials (EAPs), frequently called 

“spikes,” produced by spontaneously contractile myotubes have similar amplitudes to 

neuronal EAPs.  Similarly, it is possible to classify myotube EAPs by biological signal 

source using a shape-based spike sorting process similar to that used to analyze neural 

spike trains.  While the within-unit variability is low for myotube EAPs, indicating 

successful spike-sorting, the among-unit variability is very high.  Additionally, myotube 

activity can cause simultaneous activation of multiple electrodes, in a similar fashion to 

the activation of electrodes by networks of neurons.  The existence of multiple electrode 

activation patterns indicates the presence of several large, independent myotubes.  The 

ability to identify these patterns suggests that MEAs may provide an electrophysiological 

basis for examining the process by which myotube independence is maintained, despite 

rapid myoblast fusion during differentiation.  Finally, it is possible to use the underlying 
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electrodes to selectively stimulate individual myotubes without stimulating others nearby.  

Potential uses of skeletal myotubes grown on MEA substrates in lab-on-a-chip 

applications, tissue engineering, co-cultures with motor neurons, and neural interfaces 

are discussed. 

4.1.2 Introduction: 

Future generations of biomedical devices rely increasingly on the integration of a 

cellular component for sensing or actuation.  In such hybrid biosensors, living cells 

convert some stimulus into a signal that is measured by a secondary sensor, taking 

advantage of highly sensitive and selective sensing mechanisms and signal amplification 

cascades that have been honed by evolution [81].  These new hybrid sensors are 

increasingly used in lab-on-a-chip applications, where they allow scientists to study the 

behavior of individual cell types to environmental or experimental stimuli as well as the 

behavior of multiple cells or cell types acting in concert [81, 186, 221].  Successful 

operation of cell-based biosensors depends on the integration of a cell type that 

responds to the stimuli of interest with an appropriate secondary detection method [68, 

222-224].  Having access to a wide range of cell types available for the limited number of 

non-invasive secondary sensing modalities will significantly expand the capabilities of 

hybrid biosensors [81, 222].   

Substrate embedded MEAs are a particularly convenient tool for this application 

because they are capable of noninvasive and selective stimulation and recording.  

Because they detect local changes in voltage at their contact sites, however, they are 

most effectively used with electrogenic cell types that generate rapidly changing 

bioelectric potentials.  Much of the work done to date interfacing MEAs with cells in vitro 

has been done with applications in two cell systems [81, 186]: 1) neurons, where the 

ability to identify the activity of single cells in spike trains through a process called “spike-
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sorting” is used to identify patterns of population activity and network dynamics and 2) 

cardiac myocytes, where spatial and temporal resolution allow the measurement of 

transduction velocity through sheets of linked cardiomyocytes. 

Here we demonstrate the feasibility of integrating a third cell type, skeletal muscle 

cells, with MEAs in vitro for recording their bioelectric activity and optically detecting their 

contractions.  Skeletal myotubes are formed by the selective fusion of precursor 

myoblasts during a process which results in multiple independently active cells with 

complex and overlapping morphologies [188].  The process is well documented but is 

primarily studied using morphological, biochemical, and kinetic measurements of 

contractile force [1].  The temporal flexibility and spatial specificity of MEA technologies, 

however, are ideal for non-invasively probing cellular behavior during myoblast fusion 

and differentiation into mature myotubes.  While myotubes have been shown to develop 

on an MEA surface using C2C12 cells [189], very little has been done to quantitatively 

examine the EAPs of myotubes that have been similarly differentiated from myoblasts in 

vitro.  In this feasibility study, myotube EAPs are quantitatively compared to EAPs from 

cortical neurons in vitro in order to provide a performance benchmark.   

Availability of skeletal myotubes for lab-on-a-chip applications opens another door in 

the development of high-throughput screening technologies, provides an improved test-

bed for research into neuromuscular disorders [183], and may have implications in 

skeletal muscle tissue engineering, where the selective activation of fibers is required for 

controlled muscle construct contraction [65, 197].  Taken a step farther, it opens the door 

for co-culture of myotubes and additional cell types, such as motor neurons, which would 

allow investigators to look into the complexities of nerve-muscle interactions [225], or the 

formation of neural circuits like the spinal reflex arc [189, 224], with a new degree of 

clarity.   
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4.1.3 Methods: 

4.1.3.1 Myotube and neuronal isolation and culture 

Myoblasts were isolated and cultured as previously described [1]. Briefly, pregnant 

Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 21 and pups 

were removed by Cesarean section.  Hind limb muscles were removed, and tissue was 

finely minced and digested (20 min at 37o C) in PBS containing 1.5 U/ml collagenase 

(type D, Roche, Mannheim, Germany) and 2.5 U/ml dispase (type II, Roche, Mannheim, 

Germany).  Single cells were separated from debris, pelleted by centrifugation, and 

resuspended in growth medium consisting of Ham’s F-10 medium plus 20% fetal bovine 

serum, 1% Penicillin/Streptomycin, (all from Invitrogen, Carlsbad, CA) and 2.5 ng/ml 

human b-FGF (Promega Corporation, Madison, WI).  Cells were then plated into 75 cm2 

flasks and incubated for 24 hrs.  Adherent cells were resuspended and plated onto 

MEAs (Multichannel Systems) in differentiation medium consisting of Neurobasal 

medium including 2% B-27 Supplement, 1% Penicillin/Streptomycin, and 1% GlutaMAX 

(all from Invitrogen, Carlsbad, CA) at a surface density of 300,000 or 200,000 cells/cm2 

for recording and stimulation experiments, respectively.  Prior to seeding, surfaces were 

coated overnight with 40 µg/ml laminin (Sigma Aldritch, St. Louis, MO).   

Cortical neurons were isolated as previously described [139].  Briefly, pregnant 

Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 18 and pups 

were removed by Cesarean section.  Cortex was isolated, meninges were removed, and 

a single cell suspension was prepared by triturating the cortex with a flame-polished 

glass pipette.  Cortical cells were then seeded onto MEAs in MEM medium plus 1% 

penicillin/streptomycin, 10% horse serum, and 3% v/v of 20% glucose solution at a 

surface density of 225,000 cells/cm2.  Prior to use, the medium was glutamate-depleted 
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by 24 hr exposure to astrocytes in culture, and the MEA surface was treated overnight 

with 3% PEI dissolved in borate buffer.  

4.1.3.2 Acquisition and analysis of electrophysiological data 

Recordings of spontaneous cellular activity were made on a heat-controlled stage at 

37o C at room atmosphere using a standard MCS recording array, sampling extracellular 

voltage from 60 contact pads at 20,000 Hz.  Contact pad spacing was 200 µm, and 

diameter was 10 µm.  Recordings of myocyte cultures were made at DIV 12 and 14, a 

window during which spontaneous contractile activity was maximal.  Recordings of 

cortical neurons were made on DIV 21 after neurons have had time to establish mature 

synapses and network dynamics. 

Spike sorting was performed using custom algorithms composed in a MATLAB 

environment and based in part on the algorithms discussed in [172].  Briefly, potential 

spikes were identified using a voltage threshold of 5x the RMS noise for each channel.  

All spikes were aligned to their point of maximal deflection based on a window 2 ms 

preceding and 4 ms following the threshold break-point, and principal component 

analysis PCA was performed on the resulting set of vectors.  Using their position in a 2D 

space based on the first two PCs, likely spike events were then clustered using a K-

means algorithm.  The clustering process was user-guided, where the experimenter 

identified the starting number of clusters, and was then able to split and join clusters 

iteratively until spikes were correctly classified based on visual investigation.  Because 

each cell produces action potentials with a unique shape, each of the resulting clusters 

represents the activity of a single cell (or “unit”) as its activity is recorded in the 

extracellular voltage trace (EVT) from a single electrode.  Metrics of spike characteristics 

were then calculated based on the morphology of the average spike shape for each unit.  

In our case, SNR is the ratio of the peak-to-valley amplitude of a spike shape to the RMS 
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noise recorded on that electrode, and the Unit SD is the average SD along the 6 ms 

window surrounding the point of maximal deflection. 

4.1.3.3 Analysis of contractile activity 

An unordered myotube culture was grown on a commercially available MEA.  On DIV 

7, stimulation at selected electrode sites was delivered using an MCS signal generator 

and associated software.  10 Cycles of a 2V biphasic pulse with a 40 µs duration was 

delivered across sets of 2 or 4 electrodes as indicated in Fig. 5.1-3.  This regime was 

repeated with a frequency of 1 Hz.  Videos of cells were acquired using the Qcapture-

pro software at a frame rate of 25 frames per second.  Automated localization of 

contractile activity was performed as discussed in [1].  Briefly, videos were analyzed 

using a series of image processing steps and pattern recognition steps, which make it 

possible to identify regions of synchronized contractility within videos of myotube 

cultures, returning the location of the contractile myotubes (Fig. 5.1-3, A - top) as well as 

their pattern of contractions (Fig. 5.1-3, A - bottom). 

4.1.4 Results & Discussion: 

4.1.4.1 Myotube vs. neuronal extracellular action potentials 

Consistent with prior findings [189], myoblast differentiation into myotubes occured on 

MEA surfaces.  The myotubes form long, overlapping tubular structures, approximately 

20 µm to 40 µm across and up to several mm in length (Fig. 5.1-1, A).  By comparison, 

neurons are in the range of 20 µm in diameter, with an accompanying neuritic arbor 

which can reach longer lengths (Fig. 5.1-1, B).  Both cell types are electrogenic, creating 

transmembrane currents through roughly similar processes.  The unique membrane 

composition, morphology, and behavior of each cell type, however, results in different 

EAP characteristics. 
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Figure 5.1-1.  Characteristic myotube-electrode and neuronal-electrode 

interactions 

A) Myotube morphology on MEA at DIV 12.  A single myotube is outlined in red dashes, and the area over which 

it’s EAP is likely detectable is shaded in red.  A1-A3) Representative myotube EAP shapes following spike sorting 

(6 ms shown, variable y-axis scale).  B) Neuronal morphology on MEA at DIV 21.  B1-B3) Representative neuronal 

EAP shapes following spike sorting (6 ms shown, variable y-axis scale).  C) Scatter plot showing maximum 

positive deflection vs. maximum negative deflection for each unit.  D) Average positive and negative deflections 

over all units.  E) Average signal to noise ratio (SNR) over all units.  F) Average unit standard deviation over all 

units.  All error bars represent the standard error of the mean. 
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The shape of the EAP is primarily a result of the spatial relationship between the cell 

and the electrode contact [169, 226].  Neurons have static surface interactions over 

short periods of time, and recordable EAPs are primarily generated by the soma, which 

results in stereotyped EAP shapes like that pictured in Fig. 5.1-1, B.3.  The 

predominance of EAPs that are negative and essentially unipolar is shown in Fig. 5.1-1, 

C by the large number of neuronal points appearing below the dashed line.  Bipolar (Fig. 

5.1-1, B2) and unipolar (Fig. 5.1-1, B3) EAP shapes may also be seen by recording from 

proximal neurites [169], but the vast majority of neurites are too small to produce a 

detectable signal without special modifications [227].  In comparison, the EAPs 

generated by myotubes are far more variable.  Standard unipolar and bipolar EAPs are 

possible (Fig. 5.1-1, A1 – red and green), but arbitrary shapes are more frequent (Fig. 

5.1-1, A1-3).  This is likely due to the longer period over which the depolarization occurs, 

the propagation of the intracellular action potential along the myotube, and the changing 

shape and location of the myotube during excitation and contraction [228-230].  This 

variability is reflected in the greater scatter of the myotube points in Fig. 5.1-1, C.  

Despite the variability in spike shape, however, spikes generated by a single biological 

unit are remarkably reproducible, as evidenced by the small within-unit variability (Fig. 

5.1-1 F). 

Myotubes and neurons produce EAPs with similar amplitudes (Fig. 5.1-1, D).  

However, due to the variability between cultures, and even between electrodes within 

the same device [81], a direct comparison between myotube and neuronal EAP signal 

strength can only be made by normalizing the peak-to-valley amplitude of each unit by 

the noise associated with the electrode contact on which it is recorded.  This analysis 

shows that myotube spikes tend to have a higher SNR than neuronal spikes.  Current 

theories suggest that this is due to a combination of two effects stemming from the 
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increased size of myotubes relative to neurons [61]: 1) increased extracellular voltage 

change caused by the larger ionic movement accompanying depolarization and 2) 

improved electrode sealing and coverage due to the larger surface area contacted by 

myotubes. 

4.1.4.2 Myotube network vs. neuronal network activity patterns 

A striking feature of culture behavior for each cell type is the synchronous activation 

of multiple units, which appears as vertical bands of events in Fig. 5.1-2.  This culture-

level behavior has different root causes for myotubes and for neurons.  Many myotubes 

are large enough to pass within recording distance of multiple electrodes (Fig. 5.1-1, A – 

red field).  Therefore, a single myotube will frequently create EAPs that register as units 

on multiple electrodes.  When the myotube depolarizes, each of these units registers a 

single event at the same time, causing the vertical banding in the raster plot of culture 

activity.  The vertical banding therefore exists as a line of single events occurring at 

essentially the same time (Fig. 5.1-2, C).   

In contrast, single neurons will only ever be within recording distance of a single 

electrode (Fig. 5.1-1, B – red field).  Because of their far-reaching processes, however, it 

is possible for neurons to be synaptically connected with other neurons.  As waves of 

activity travel through these multicellular networks, it produces synchronous activation of 

multiple electrodes as multiple neurons, each one within the recording field of a different 

contact, are activated.  As such, the precise activation pattern of each unit in the network 

is unique (Fig. 5.1-2, D).  Overall activity is driven by the network, so the activity of all 

networked units generally overlaps, but there is a much less clear cause-and-effect 

relationship between individual events on separate electrodes than exists with 

myotubes. 
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Figure 5.1-2.  Synchronous multi-electrode activation in myotube cultures and 

neuronal cultures 

Rast plot axes show the time (X-axis) and unit number (Y-axis) of each EAP as a point.  The above raster plots 

show 30 s of data recorded from from a myotube culture at DIV 12 (A), 30 s of data recorded from a neuronal 

culture at DIV 21 (B), and and expanded view of 1 s data segments from within A and B as indicated by the red 

rectangle (C and D taken from A and B, respectively).  Two example networks are shown in each case (blue and 

green rectangles). 

 

It is important to note that multiple networks coexist in the same culture (both in 

myotube cultures and neuronal cultures) as do units that are active independently from 

any other units.  Each network’s activity is observable as the synchronous activation of a 

different set of units (Fig. 5.1-2, B-C – blue and green rectangles).  Coexisting networks 

in neuronal culture are expected, due to the large number of available neurons and the 
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structured and specific way synapses are formed and pruned.  The behavior is 

surprising in myotubes, however, where disordered culture tends to produce multipolar 

or branching myotubes that contract as single entities [1] and where the precedent set 

by cardiac myocytes is the formation of mass syncitia.  If myotubes fused with all other 

contacted myotubes, the result would be a single contractile entity, as in cardiac 

myotubes.  The existence of multiple myotube networks within an unstructured culture 

suggests that myotube fusion is a directed process which proceeds with some specificity 

[188]. 

4.1.4.3 Selective stimulation of myotube networks 

The discovery that multiple independent myotubes are identifiable by their pattern of 

spontaneous bio-electrical activity, and that their independence is conserved even when 

they may partially overlap, led to an investigation of whether these myotube networks 

can be selectively stimulated.  Stimulation of a central region of the culture resulted in 

contraction of multiple myotubes within the culture (Fig. 5.1-3, A), paced along with the 

stimulus.  Stimulation of more peripheral regions, however, triggered contraction only of 

selected cells within the culture (Fig. 5.1-3, B-D).  Stimulation of an intermediate area 

between two of these cells resulted in simultaneous activation of both (Fig. 5.1-3, E). 
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Figure 5.1-3.  Stimulation of myotube networks using a substrate-embedded MEA 

Active myotubes are identified based on automated analysis of video-micrographs, and indicated by the colored 

meshwork, and the electrodes used for stimulation are indicated by the orange and yellow dots.  A) Stimulation 

in a central region, triggering contraction in a large area of the overlying myotube layer.  B-D) Stimulation at 

peripheral sites, showing activation of subsets of myotubes.  D) Stimulation at an intermediate site, showing 

activation of the myotubes from C and D in red and blue hatchwork, respectively. 

 

Temporally selective myotube stimulation has been demonstrated [224], as has the 

spatially selective stimulation of neuronal preparations [208].  However, this is the first 

demonstration of spatially selective stimulation of myotubes and the subsequent 

contraction of a selected subset of cells in the culture.  This finding reinforces the notion 

that multiple independently active myotubes can coexist in the same culture, even when 

they may be in direct physical contact with one another at points along their length.  

Additionally, it confirms the ability to use MEA technology to selectively stimulate 

contraction in specific myotube networks without stimulating those around them.  

Spatially-selective stimulation frees researchers from dependence on spontaneous 

contractility or bulk stimulation as a means of observing contractile activity in skeletal 

muscle cell preparations. 

4.1.5 Conclusions: 

By integrating a skeletal myotube culture with a substrate embedded MEA, we have 

shown that spontaneously contractile myotubes are capable of producing activity that is 

detectable both optically and electrically.  Skeletal myotubes have EAPs with SNR 

similar to those recorded from neuronal somata cultured under similar conditions.  

However, myotube EAPs are longer in duration and can be multiphasic, while neuronal 

depolarizations are rapid, small, and predictably monophasic.  The activity of each cell 

can be identified based on its unique EAP signature, and the activity of single myotubes 
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spanning multiple electrode contacts can be observed as linked activity between these 

units.  Additionally, multiple independently active myotubes exist in the same culture 

despite physical contact with other myotubes and can be distinguished optically based 

on contraction or on the network-like behavior of the underlying electrodes. 

Microdevices with integrated cellular components can be classified based on whether 

they are used to sense or induce cellular activity and on the whether they have clinical or 

laboratory applications.  The integration of skeletal myotubes with MEAs has 

implications in each of the categories above.  The ability to monitor myotube excitation 

and contraction during development and over extended periods may provide new insight 

into development and diseases of the neuromuscular system.  In the field of skeletal 

muscle tissue engineering, the ability to study the means by which myotubes fuse or 

remain independent may fuel progress in constructing skeletal tissue grafts capable of 

graded contraction through activation of subsets of myotubes [197].  Similarly, the ability 

to trigger specific myotubes in a culture provides a method of control over microscale 

biorobotic actuation [65].  Most interesting, however, is the potential to combine skeletal 

myotube cultures with neuronal cultures on MEAs [189].  Integration of motoneuron-

myotube co-cultures with an MEA substrate would provide researchers with a sensitive 

means of observing the NMJ, unraveling the complicated trophic communication 

occurring between motor neurons and myotubes and observing simple neuronal circuit 

formation, such as the spinal reflex arc.  Additionally, it may open the door to new 

approaches to neural interfaces.  One can conceptualize a neural interface designed to 

restore conscious motor control of prosthetic devices based on using individual 

myotubes as biological signal amplifiers for motor intention carried along regenerated 

motor fibers [231].  Using a myotube-integrated MEA would provide regenerating motor 

axons with a neurotrophin-secreting target for reinnervation.  Recording EAPs from 
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myotubes onto which PNS axons had successfully regenerated would solve the 

problems associated with recording from peripheral motor axons because of their small 

size [45, 227], inducing and maintaining neurite ingrowth into regenerative electrodes 

[43, 48], and isolation of a large number of motor signals from other neural activity 

carried in the PNS [44, 46].  Such an approach potentially increases the communication 

bandwidth of the targeted muscle reinnervation approach [52, 53] by reducing it to a 

single cell scale.  Future work will include the integration of an MEA with topographical 

guidance cues in order to create structured myotube cultures, and ultimately, facilitate 

the formation of structured motor neuron-myotube co-cultures. 

4.2 A topographically modified substrate-embedded MEA for directed myotube 

formation at electrode contact sites 

4.2.1 Abstract: 

Myoblast fusion into functionally distinct myotubes, and their subsequent integration 

with the nervous system, is a poorly understood phenomenon with important 

applications in basic science research, skeletal muscle tissue engineering, and cell-

based biosensor development.  We have previously demonstrated the ability of 

microelectrode arrays to record the extracellular action potentials (EAPs) of myotubes, 

and shown that this information reveals the presence of multiple, Electrophysiologically 

independent myotubes even in unstructured cultures where there is extensive physical 

contact between cells.  Additionally, we have shown the ability if microscale 

topographical trenches to guide the myoblast alignment and fusion process, and shown 

that they are able to direct contractile activity to specific locations.  In this paper, we 

combine substrate embedded MEA technology with topographical patterns in order to 

develop a novel technological platform for exploring myotube independence, with the 
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hopes of expanding applications of the system to also examine myoblast fusion myotube 

innervation. 

4.2.2 Introduction: 

Muscle tissue generates controllable, graded, and sustainable forces through the 

highly regulated activation of distinct motor units, each consisting of a unique set of 

muscle fibers [195].  The ability of skeletal myotubes to remain electrophysiologically 

distinct from their neighbors, therefore, is one of the traits required to fulfill this role.  This 

stands in stark contrast to other electrogenic cell types such as neurons, where CNS 

function depends on the formation of multicellular networks, or cardiomyocytes, where 

cardiac output depends on the synchronicity of their contractions.  Each myotubes’ 

ability to remain independent from its neighbors is made more puzzling by the 

developmental origin of myotubes, which are formed by the rapid fusion of myoblasts 

from a seemingly homogenous pool of precursor cells.  Not only does this fusion process 

result in highly aligned, tightly packed, yet independent myotubes within a single muscle, 

but also in the formation of distinct muscles with specific sights of attachment relative to 

the joints at which they act.  Despite the clear importance of regulating the myoblast 

fusion process in the development of the musculoskeletal system, however, little is 

known about the process [196, 206].  The study of myoblast fusion and myotube 

independence has applications outside of basic science as well.  Muscle tissue 

engineering is a field with multiple applications in human health and regenerative 

medicine.  The study of how to generate and manipulate myotube formation and how 

these myotubes are integrated with the nervous system is an important step in muscle 

tissue engineering for clinical applications [181, 193]. 

A major roadblock to progress in this field is the lack of in vitro models allowing 

researchers to probe the means by which myotube independence is preserved over the 
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course of myoblast fusion.  Studies of muscle cells in vitro have focused largely on 

differentiation, metabolism, morphology, or force generation, but have not focused on 

myotube independence [1].  While techniques for identifying single motor units in vivo 

exist, these systems suffer  the limitations of all in vivo system.  In both cases, the 

techniques used to interrogate the samples are frequently destructive to the cells, 

making time-course studies difficult. 

By integrating tissue engineering techniques with novel dual-modality (optical and 

bioelectrical) sensing technologies, we are developing a lab-on-a-chip test bed for non-

invasive examinations of myotube fusion.  Because an important part of muscle tissue is 

its highly aligned structure, we are incorporating topographical guidance cues into our 

sensing array as a means of exercising control over culture morphology.  It is our hope 

that this combination of technologies will act as a seed platform, with the potential to be 

adapted for use in a wide variety of applications following relatively simple redesign.  For 

example, electrode contact spacing and shape can be modified to provide basic science 

researchers tool for monitoring myoblast fusion during development.  For cell-based 

biosensor applications, topographical guidance cues can be used to direct myotubes to 

electrode sites in order to maximize the number of independent signal producing units 

available to a detection array.  Finally, topographical modifications can be used to 

produce microenvironments capable of sustaining multiple cell types in structured 

cocultures.  An example of this would be the coculture of myotubes with motor neurons 

for the examination of simple neural circuits, like the spinal reflex arc, the development 

of a functional neuromuscular tissue phantom for high-throughput screening and 

biodetection, or the development of a regenerative neural interface targeted to the 

peripheral nervous system. 
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4.2.3 Methods: 

4.2.3.1 Device fabrication 

 

Figure 5.2-1.  myo-MEA schematic 

A) Upper-left quadrant of the device, showing connections between 1 of the 4 recording fields and the external 

contact pads.  B) Detailed view of recording field from A.  Gold conducting features shown in orange, SU-8 

topographical features shown in blue.  All units in µm. 

 

A prototype device was designed incorporating topographical modifications that direct 

myotube formation and spinal cord explant (SCE) outgrowth with a substrate embedded 

MEA. Specifically, two regions of trenches used to direct myotube formation to specific 

electrode sites are connected to a central field for a spinal cord explant (SCE), which is 

spatially separated from the grooves to allow neuron/myotube contact only through 

axonal outgrowth (Fig. 5.2-1 B). The two wing regions, oriented horizontally and 

vertically, consist of four grooves with a single electrode contact at the bottom. The 

central field contains 5 recording electrodes to record from multiple points beneath the 

explant body and axonal outgrowth. A large pad is included as an internal reference 

electrode (not shown). The electrodes are patterned to interface with a Multichannel 

Systems MEA recording head-stage through external contact pads located around the 

periphery of the chip (Fig. 5.2-1 A). 
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Figure 5.2-2.  Schematic of microfabrication process 

Steps A-K are explained in the text. 

 

The electrode contact and lead pattern is produced using a lift-off technique [232]. 

Briefly, a layer of photoresist (PR) bearing the electrode pattern is produced using 

standard optical lithography (Fig. 5.2-2 A-D). The PR is then undercut using a short 

hydrofluoric acid (HF) etch followed by sputtering of a 200/700 Å thick chromium/gold 

(Cr/Au) conducting electrode layer (Fig. 5.2-2 E-F). The PR is dissolved in acetone, 

removing the conducting layer everywhere except the electrode pattern (Fig. 5.2-2 G). A 

layer of SU-8 PR is then spin-coated onto the electrode-patterned surface (Fig. 5.2-2 H) 

and exposed and developed using a topographical feature mask to generate 

topographical trenches (Fig. 5.2-2 I) and central confinement regions, also selectively 

exposing the electrode contact pads located at the bottom of both while leaving the 

electrode leads electrically insulated from the culture environment (Fig 5.2-2 J-K). A 

PDMS ring is affixed to the surface creating a culture chamber around four recording 

fields, enabling multiple simultaneous experiments (Fig. 5.2-3 B).  
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4.2.3.2 Myoblast isolation and culture 

Myoblasts were isolated and cultured as previously described [1]. Briefly, pregnant 

Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 21 and pups 

were removed by Cesarean section.  Hind limb muscles were removed, and tissue was 

finely minced and digested (20 min at 37o C) in PBS containing 1.5 U/ml collagenase 

(type D, Roche, Mannheim, Germany) and 2.5 U/ml dispase (type II, Roche, Mannheim, 

Germany).  Single cells were separated from debris, pelleted by centrifugation, and 

resuspended in growth medium consisting of Ham’s F-10 medium plus 20% fetal bovine 

serum, 1% Penicillin/Streptomycin, (all from Invitrogen, Carlsbad, CA) and 2.5 ng/ml 

human b-FGF (Promega Corporation, Madison, WI).  Cells were then plated into 75 cm2 

flasks and incubated for 24 hrs.  Adherent cells were resuspended and plated onto 

MEAs (Multichannel Systems) in differentiation medium consisting of Neurobasal 

medium including 2% B-27 Supplement, 1% Penicillin/Streptomycin, and 1% GlutaMAX 

(all from Invitrogen, Carlsbad, CA) at a surface density of 300,000 cells/cm2.  Prior to 

seeding, surfaces were coated overnight with 40 µg/ml laminin (Sigma Aldritch, St. 

Louis, MO). 

4.2.3.3 Electrophysiological and optical data acquisition and analysis 

Recordings of spontaneous cellular activity were made on a heat-controlled stage at 

37o C at room atmosphere using a standard MCS recording array, sampling extracellular 

voltage from 60 contact pads at 20,000 Hz.  Contact pad spacing was 200 µm, and 

diameter was 10 µm.  Recordings of myocyte cultures were made at DIV 14, when 

spontaneous contractile activity is maximal.  Spike sorting was performed using custom 

algorithms composed in a MATLAB environment and based in part on the algorithms 

discussed in [172].  Briefly, potential spikes were identified using a voltage threshold of 

5x the RMS noise for each channel.  All spikes were aligned to their point of maximal 
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deflection based on a window 2 ms preceding and 4 ms following the threshold break-

point, and principal component analysis (PCA) was performed on the resulting set of 

vectors.  Using their position in a 2D space based on the first two PCs, likely spike 

events were then clustered using a K-means algorithm.  The clustering process was 

user-guided, where the experimenter identified the starting number of clusters, and was 

then able to split and join clusters iteratively until spikes were correctly classified based 

on visual investigation.  Because each cell produces action potentials with a unique 

shape, each of the resulting clusters represents the activity of a single cell (or “unit”) as 

its activity is recorded in the extracellular voltage trace (EVT) from a single electrode.  

Metrics of spike characteristics were then calculated based on the morphology of the 

average spike shape for each unit.  In our case, SNR is the ratio of the peak-to-valley 

amplitude of a spike shape to the RMS noise recorded on that electrode, and the Unit 

SD is the average SD along the 6 ms window surrounding the point of maximal 

deflection. 

To dynamically analyze contractile activity of myotubes, videos of cell behavior were 

acquired after the onset of spontaneous contractility and were analyzed as described in 

[1].  Briefly, videos were analyzed using a series of image processing and pattern 

recognition steps which made it possible to identify regions of synchronized contractility 

within videos of myotube cultures.  These locations are then taken to be the location of 

the contractile myotubes.   
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4.2.4 Results and Discussion: 

4.2.4.1 Device characterization 

 

Figure 5.2-3.  Myo-MEA prototype 

A) Microscopic view of prototype recording field schematized in Fig. 5.2-1, B.  B) Image of finished prototype, 

including PDMS culture chamber. 

 

The fabrication process generates devices capable of recording myotube and explant 

EAPs and withstands repeated cycles through the sterilization-usage-regeneration 

processes involved in cell culture (Fig. 5.2-3 A-B).  In examinations of the electrode 

noise-floors (data not shown), it was determined that the gold leads establish electrical 
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continuity between the recording contact sites and the external contacts which interface 

with the MCS head stage.  Electrode noise was low (~3 µV) for functional electrodes, 

while it was elevated to the maximum noise detectible using the MEA recording array 

(~40 µV) where electrode continuity with the culture fluid was lost (either by scratching 

the lead under the SU8 insulating layer or through incomplete development of trenches).  

The SU8 layer has good adhesion properties, without cracking or delamination flaws 

(Fig. 5.2-3 A).  Additionally, the SU8 layer is optically clear, facilitating the observation of 

culture conditions in and around the experimental fields.  Final prototypes have 4 

recording fields inside of the PDMS culture ring, enabling parallel experiments (Fig. 5.2-3 

B). 

4.2.4.1 Myotube formation guided by trenches 
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Figure 5.2-4.  Myotube differentiation and guidance on myo-MEA topographical 

features 

A-B) Myotubes lying along the bottom of trenches and on top of electrode contacts in a “wing” region.  C-D) 

Myotube contractility funneled down trenches. 

 

Consistent with our prior studies on the effects of microscale trenches on myotube 

morphology, topographical features constructed on top of the substrate embedded MEA 

are able to direct myotube formation and morphology.  Multiple myotubes are observed 

to form along the bottom of the trenches, aligned in parallel with the major trench axis.  

Similarly, the topographical features are able to direct myotube contractility to the 

trenches.  However, because these trenches are open ended and connect to a large 

open field, they have the interesting effect of funneling multiple myotubes to a single 

trench (Fig. 5.2-4 D), and of funneling separate “fingers” of a single myotube down 

multiple trenches (Fig. 5.2-4 C). 

4.2.4.1 Detection of myotube EAPs 

 

Figure 5.2-5.  Myo-MEA recordings of myotube EAPs 

EAPs are detected from sister cultures grown on topographically patterned myo-MEA (red), uninsulated myo-

MEA (green), and commercially available MEA (blue).  A) All units for each device superimposed (6 ms of data 
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shown).  B) Average positive and negative deflection for all units measured in µV.  C) Average SNR for all units.  

D) Average unit SD for all units. 

 

We are able to use the topographically modified myo-MEA prototypes to record the 

bioelectrical activity of spontaneously active myotubes in similar fashion to commercially 

available MEAs.  Spike sorting of the resulting extracellular voltage traces (EVTs) is 

possible, yielding unit-specific EAPs with high reproducibility, and low intra-unit variance 

(Fig. 5.2-5 D).  A comparison was made of myotube EAP qualities measured on three 

different types of electrode; 1) topographically modified myo-MEAs, 2) the myo-MEA 

electrode pattern without the insulating topographical SU8 layer, and 3) commercially 

available MEAs.  There is similar EAP morphology recorded on all substrates, exhibiting 

the characteristic multiphasic and unpredictable EAP morphologies (Fig. 5.2-5 A).  

However, there is an amplification of EAP amplitude observed on the fully insulated 

prototypes (Fig. 5.2-5 B) relatative to both the uninsulated and the commercially 

available MEAs.  This contributed to the insulated myo-MEA also providing EAP 

recordings with a larger SNR (Fig. 5.2-5 C), however the effect is less than would be 

expected based on the larger amplitudes.  This finding is consistent with the theory that 

guidance of myotube formation to electrode sites by the topographical trenches results in 

an increase in electrode sealing [62, 226, 233], but that the reduction in recording 

surface area results in a higher noise floor.  The finding that the uninsulated myo-MEA 

electrode pattern also showed increased amplitude and SNR over the commercially 

available MEA is somewhat surprising, as theory would dictate that current leakage 

through the uninsulated leads and into solution would diminish the effective voltage 

recorded.  However, in cultures this dense, the overlying cell layer may provide some 

insulation, diminishing this current shunt.  When combined with the much larger surface 

area available for recording, this may explain the observed increase in amplitude. 
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4.2.4.2 Changes in myotube dynamics due to topographical modification 

 

Figure 5.2-6.  Patterns of myotube activation on topographically patterned vs. 

uninsulated myo-MEAs 

A) 5 seconds of activity detected in four fields of a topographically patterned myo-MEA.  B) 3 Seconds of data 

from a single recording field in which repeating activation motifs have been identified by hand (colored 

rectangles).  Activity detected in four fields of an uninsulated myo-MEA during non-seizure-like (C) and seizure-

like (D) activity.  Recordings made at DIV 14.  Each raster plot consists of four horizontal fields, representing 

each of the four recording fields.  The electrodes in each field are color-coded according to location (central 

electrodes in green, wing electrodes in red). 
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Using the spike sorted EAP data, it is possible to identify spatial and temporal 

patterns in myotube activation.  These patterns of activity are affected by the 

topographical patterning of the electrode.  Figure 5.2-6 A shows 5 seconds of data 

recorded from the 4 fields of a myo-MEA. Total activity is the result of a combination of 

repeating vertical banding patterns (generated by myotubes that span multiple trenches 

and the central region), and units that fire in isolation (generated by myotubes confined 

to a single trench).  Obvious repeating activation motifs occurring in 3 seconds of data 

from a single recording field have been identified by hand (Fig. 5.2-6 B – colored 

rectangles).  The distribution of the synchronous bursting patterns is limited to each of 

the 4 recording fields (i.e., there is little activity that spans more than 1 recording field).  

By comparison to the insulated myo-MEA, there are two noteworthy observations about 

the EAP activity recorded by the the uninsulated myo-MEA electrode pattern.  There are 

more units recorded on it (a 20% increase over the insulated myo-MEA), and these units 

are have a higher activation rate.  This is consistent with the much larger recording field, 

which in the uninsulated myo-MEA includes the leads as well as the contacts.  This 

larger electrode area records activity of all cells along its path, contributing to the larger 

number of units detected.  Additionally, these units are active more frequently, and are 

capable of switching between “seizure-like” state, where every unit fires synchronously 

and rapidly, and more “non-seizure-like” state, where individual units and activation 

motifs can be identified.  One possible explanation is that the culture is able to grow in 

an uninterrupted sheet in which every cell is mechanically coupled to every other cell.  

This may create a situation where contraction of a myotube mechanically triggers the 

contraction of neighboring cells, even though they may remain electrophysiologically 

distinct.  The presence of the topographical cues may be enough to break up the 
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mechanical coupling to the point that culture-wide “epileptic” events are no longer 

possible. 

4.2.5 Conclusions: 

4.2.5.1 Structured myotube culture on a topographically modified substrate 

embedded MEA 

Based on the need for an in vitro means of probing myoblast fusion and myotube 

independence for basic science applications, and the need for functional and structured 

myotube cultures for tissue engineering and biosensing applications, we have integrated 

topographical modifications which induce cell guidance with a substrate embedded 

MEA.  To facilitate the device’s future integration with spinal cord explants for the 

development of structured motor neuron-myotube cocultures, we have selected 

topographical modifications in the form of two trench regions (for myotube formation) 

joined to a central region (designed for spinal cord explant adhesion and spreading).  

The topographical modifications are able to direct myotube formation and contractility, as 

detected optically, and the underlying substrate embedded MEA is able to record EAPs 

from the overlying myotubes, which can then be spike sorted to identify the activity of 

multiple individual myotubes recorded on a single electrode.  Further, the topographical 

modifications induce a change in the quality of the EAPs observed which is consistent 

with current theories on cell-electrode interactions, and a change in the behavior of the 

myotube culture which is caused by the induced structure. 

4.2.5.2 Future Directions 

We have developed the techniques required to quantify contractile and bioelectric 

activity generated by neurons and myotubes. Furthermore, we have used 

microfabrication processes to create culture systems that modulate these behaviors. The 

next step in advancing the myo-MEA technology platform is leveraging our existing 
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analytical tools, designed to observe individual cells, to create a means of rigorously 

quantifying the behavior of multiple cells acting in concert. This will provide a way to fully 

interpret the behaviors of myotubes and neurons (both of which are able to associate 

with other cells of either type) in our structured cultures. This tool will take the form of 

automated pattern identification algorithms that isolate the repeating motifs generated by 

myotubes that span multiple electrodes (i.e., the vertical banding patterns in fig. 5.2-5F). 

Isolation of these activation motifs will allow us to identify how many independent 

myotubes are active on an electrode surface and their spatial distribution. Within the 

context of the next-generation hybrid-biosensors and neural interfaces we have 

discussed, this is a good indicator of the number of independent signals the interface will 

be able to record.  
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5 Future directions in co-culture 

5.1 Spinal cord explant culture on a topographically modified substrate-

embedded MEA guides axonal outgrowth and facilitates selective recording: 

Toward a neuromuscular system on a chip 

5.1.1 Abstract: 

Integration of a neuronal cell source is a necessary component of a motor neuron-

myotube coculture system.  The ability of the topographical modifications on the myo-

MEA to support explant integration are, therefore, examined.  We find that the central 

regions of the recording fields in the myo-MEA are sufficient for stabilizing explant 

adhesion and recording their extracelluar action potential (EAP) bursting activity 

simultaneously from multiple electrodes underlying the explant body.  Explant activity is 

not, however, present on electrodes located in the trenches.  Furthermore, the 

topographical trenches are able to guide myotube formation to specific locations, 

facilitating the identification of independent myotube activity.  The feasibility of combining 

these two cell types on the myo-MEA platform is discussed, along with an experimental 

approach for identifying the motor neuron-myotube connectivity that is expected to form. 

5.1.2 Introduction: 

Ultimately, the myo-MEA was developed as a co-culture system in which we can 

observe the transmission of action potentials from a neuronal population to a myotube 

population.  This device is represented schematically in Figure 6.1-1, showing the 

necessary spatial relationships of the component cell types (Fig. 6.1-1 A), along with the 

modalities of data to be recorded from each location (Fig. 6.1-1 B-D).   
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Figure 6.1-1.  Conceptual coculture possible using myo-MEA design 

A) Spatial relationship between explant and myotube culture zones.  B) Example of MEA-based identification of 

spatially confined explant EAPs.  C) Example identification and spike sorting of myotube EAPs.  D) Identification 

of myotube contractility patterns in microscale topographical trenches. 

 

In order to successfully meet this goal, a neuronal source with controllable 

architecture needs to be appropriately selected, and deployed in the device 

demonstrating localized extracellular actions.  As discussed in Chapter 4 of this thesis, 

explants provide an ideal source of neuronal input because of the highly localized EAP 

activity and aggressive axonal outgrowth.  As depicted in Figure 6.1-1 A, these two 

qualities may enable them to synaptically contact the trench-bound myotubes from the 

central explant region through axonal outgrowth.  This would enable the selective 

recording of explant EAPs from the central region, and myotube EAPs and contractions 

from the trench region.  As a test of this hypothesis, we have cultured explants on the 

central region of the myo-MEA recording field and monitored for axonal outgrowth, while 
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recording from all electrodes to determine whether EAP activity is confined to the central 

region while axons infiltrate the trenches. 

5.1.3 Methods: 

5.1.3.1 Cell culture 

Spinal cord explants are prepared using procedures based on [219].  Briefly, 

pregnant Sprague Dawley rats were sacrificed by CO2 inhalation at gestational day 15, 

and pups were removed by Cesarean section.  Spinal cord was removed posteriorly and 

transferred to a PDMS- lined petri dish, bisected longitudinally, and finely minced 

transversely into sections 200 – 300 µm thick. Explants were then plated onto myo-

MEAs, all of which had been adsorbed overnight with laminin at 40 ug/ml in 10 µL of 

medium, at which point they were precisely positioned in the central explant zone of 

each recording field.  After 5 min, allowing for initial adhesion, enough medium was 

added to just cover the explant, and it was placed in an incubator at 5% CO2 and 37 deg 

C.  Medium was replaced every 2 days. 
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5.1.4 Results: 

5.1.4.1 Spatial distribution of neuronal and myotube EAP sources sources 

 

Figure 6.1-2. Explant integration with the myo-MEA 

A) Spinal cord explants (SCE) cultured in central region of 2 neighboring recording fields. B) Axonal guidance 

down trenches from DIV 2 - 5. C) 5 Seconds of bursting EAP activity recorded from explants in (A). D) 5 Seconds 

of myotube EAPs recorded from all 4 of a myo-MEA. In raster plots (C) and (F), units are color-coded based on 

electrode location (central region = green, trench wing regions = red). 

 

SCE adhere to the myo-MEA surface, with the explant body largely confined to the 

central region (Fig.  6.1-2 A). By DIV 5, aggressive axonal outgrowth extends along the 

glass bottom and is guided down the topographical channels (Fig. 6.1-2 B). By DIV 7 

explant bodies generate spontaneous bursting activity detectable on the central region 
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electrodes, consisting of multiple, rapid, EAPs (Fig. 6.1-2 C). Bursting behavior can be 

observed from multiple explants on the same myo-MEA, however, the distance between 

them is sufficient that their activity is not coupled.  Additionally, explant EAP activity is 

bound only to the central region, and even up to an age of 3 weeks in culture explant 

bursting activity is never detectable on the trench electrodes.  By comparison, myotube 

EAP activity can be observed in the wing regions (red points) as well as the central 

regions (green points) (Fig. 6.1-2 D). 

5.1.5 Discussion and Conclusions: 

5.1.5.1 Feasibility of detecting information transmission from a neuronal 

population to a myotube population in structured cocultures 

Though the two cell types have not been cultured together at this point, we expect the 

motor neurons to make contact with myotubes based on NMJ regeneration that occurs 

in vivo and on the unstructured in vitro systems in which physical interactions have been 

observed. Our proposed system addresses the unique problem of using a structured 

coculture system to identify transmission of information.  Detecting this phenomena 

based on activity of each cell type will require a unique analytical approach.  Multiple 

patterns of connectivity may exist (Fig. 6.1-3 A-C), and it is important that an 

experimental paradigm be developed which makes it possible to detect transmission of 

information in a variety of different forms, and is robust against the types of noise 

observed in culture. 
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Figure 6.1-3.  Myo-MEA coculture schematics demonstrating potential patterns of 

synaptic connectivity 

 

Once mechanically stable cocultures have been developed, functional motor neuron-

myotube association will be assessed in a two stage process in which correlated activity 

is analyzed before and after application of botulinum toxin or tubocurarine, selective 

presynaptic and postsynaptic NMJ blockers, respectively. In both stages, spontaneous 

bioelectric activity from the explant and myotubes will be observed, and the biological 

connectivity between units will be quantified using the algorithm developed in Aim 1. 

Because explant activity is only recorded on the central field electrodes regardless of 

neurite outgrowth, and because of the exclusion of myotubes from the central region 
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during the seeding process, we can assume that all activity in the wing regions 

originates from myotubes (Fig. 6.1-3 A-C – red points in raster plots) and all activity in 

the central region originates from the explant (Fig. 6.1-3 A-C – blue points in raster 

plots). In the wing regions we expect to see a mixture of single electrode activity (single 

myotubes located in a single trench) and multielectrode activity (myotube syncitia 

spanning multiple trenches) and in the central region we expect to see standard explant 

bursting. During periods of explant silence, spontaneous activity drives myotube activity, 

revealing the pattern of independent myotubes (Fig. 6.1-3 A-B – unaligned red points). 

However, during periods of explant bursting, additional patterns of myotube activity will 

emerge where multiple myotubes which had previously contracted independently will be 

driven synchronously by neuronal input from the explant (Fig. 6.1-3 B – vertically aligned 

red points). Synaptic connectivity between the explant and myotubes will therefore be 

detectable as a difference in myotube activation patterns during “explant-active” and 

“explant-silent” periods. This same analysis will be repeated following application of the 

NMJ blocker. Because both agents act selectively at the NMJ, spontaneous activity of 

both myotubes and the explant will be preserved but connectivity between them will be 

lost.  Therefore, there will be no difference in myotube activation patterns between 

explant-active and explant-silent periods following the NMJ blockade. Because each 

culture can be tested before and after NMJ blockade, each culture is internally 

controlled.  

These results would demonstrate that the myo-MEA can record EAPs from myotubes, 

and that their activity encodes a representation of information originating from a neuronal 

source, demonstrating that we have in essence reconstituted the neuromuscular system 

from its component cell types. 
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6 Appendicies 

6.1 Protocols 

6.1.1 Myocyte Isolation and Culture Protocol: 

Materials & Ordering Information Particular to this Procedure: 

1. Concentrated Acetic Acid – (Sigma, 318590) 

2. Calf Skin Collagen in 0.1 N acetic acid – (Sigma, C8919) 

3. Collagenase D – (Roche, 11088858001) 

4. Dispase II – (Roche, 10295825001) 

5. CaCl2 solution – (use lab stock) 

6. Hams F-10 – (Gibco, 11550) 

7. Fetal Calf Serum (FCS) – (use lab stock)  

8. Horse Serum – (use lab stock) 

9. Human bFGF – (Invitrogen, 13256-029) 

Making Reagents and Solutions: 

1. Make collagen adsorbed petri-dishes (only if none are already available) [234], or 

gelatin coated petri dishes [54]: 

a. Make collagen solution, store at 4°C: 

i. Add 1 ml concentrated acetic acid to 179 ml H2O and sterile filter 

(or whatever dilution takes you to 0.1 N) 

ii. Add 20 ml 0.1% calf skin collagen in 0.1 N acetic acid 

b. Incubate in plastic tissue culture dishes overnight at room temperature 

c. Remove and SAVE collagen solution (they can be reused) 

d. Rinse dishes in sterile H2O and allow to air dry 

e. Store at RT for up to 6 months 
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Procedure: 

2. Harvest thigh muscles from E21 – P1 rat embryos: 

a. If necessary, sack the mother rat according to standard procedures and 

remove embryos 

b. Under a stereo microscope, remove the lower limb using dissecting 

tweezers and scissors.  Place relevant muscle specimens in a drop of 

sterile dissociation medium  (based on practical experience); 

i. Gently grab the lower limb at the knee with one tweezer and cut 

the leg off as far toward the backbone as possible 

ii. Try not to include abdominal wall or contents 

iii. Remove the skin/fat layer by grabbing the leg with one tweezer, 

the skin/fat with the other and peeling off the skin 

iv. Remove the foot at the ankle 

v. Remove the relevant parts (intact, skinned ankle through hip) to 

another dish to keep moist 

3. Dissociate Muscle Cells (sterile technique used from here on): 

a. Finely mince tissue using a razor blade 

b. Transfer to a 15 ml tube containing 2 ml collagenase/dispase solution 

along with 2 – 4 ml dissecting buffer 

c. Add 60 uL of CaCl2 solution 

d. Triturate with a 1000 uL pipette 

i. Note: cut off tip of pipette to make titrating easier 

e. Shake cells and digestion solution in incubator for 20 min 

f. Dilute digestion products (supernatant) in 25 ml PBS 
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g. Centrifuge cells @ 300 RCF for 5 min, aspirate supernatant, and 

resuspend pellet in growth medium 

4. Enrich for Myoblasts: 

a. Dilute cell suspension into 45 ml of growth medium and plate into T-75 

flasks (pre-coated w/ collagen) – each dissection should require ~3 flasks 

b. Incubate @ 37°C, 5% CO2 overnight 

c. Rinse 3X in sterile PBS to remove unattached debris (RBCs and mature 

muscle cells not capable of attaching) 

d. Incubate in sterile PBS for 20 min 

e. Shake cells off the bottom of the flask by tightening the cap and striking it 

sideways against your palm 

f. Centrifuge the cell suspension @ 300 RCF for 5 min and resuspend in 

appropriate medium 

g. Freeze cells according to freezing protocol, or plate immediately for use 

5. Confirm ability to Differentiate in Culture: 

a. Myoblasts can be identified by staining for desmin.  Otherwise observing 

their differentiation into myotubes also confirms their ability to 

differentiate.  Multinucleated myotubes should form starting within a few 

days, and should continue forming for up to a week.  Spontaneous 

twitching should begin around 1 week into differentiation. 

b. Replace growth medium with fusion medium 

c. Replace fusion medium every day 

6. Growth for experiments: 

a. Experiments with muscles cells in co-culture should be performed on 

laminin adsorbed glass coverslips 
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b. Laminin adsorbed at 20 ug/ml for 1 hr @ 37°C. 

c. Rinse w/ sterile H2O 

d. Plate myoblasts at a density from 70,000 –  100,000 cells/cm2 to 

maximize fusion [54] (200,000 on MEAs) 

i. When plating, use Neurobasal for cell differentiation or Growth 

Medium otherwise 

Other topics and additional techniques to improve the myoblast yield from isolation 

steps, including the use of Ara-C to eliminate fibroblastic contamination, can be found in 

Daniels, et. Al, 2000 [88]. 

6.1.2 Freezing Myotubes for “Long-Term” Storage and Thawing for Use: 

Materials & Ordering Information: 

1. Myotubes 

2. DMSO (Use Lab Stock) 

3. Myocyte growth medium (GM) 

General Info: 

1. Cell suspensions should be frozen @ ~2e6 cells/ml 

2. Freezing medium is myocyte GM + 7% DMSO v/v 

3. There are no transitional temperature steps, simply place cells directly in -80°C 

Freezing Procedure (performed the day after cells are isolated, and have been 

growing overnight on a culture vessel): 

1. Detach cells from surface of culture vessel according to the standard practices 

and pellet: 

a. The following should be performed on non-confluent cultures only 

(otherwise just do this will all the cells, not the selectively detached ones) 
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b. Remove GM and rinse 2x with sterile PBS to remove non-adherent debris 

(blood cells, myocyte debris, etc.) 

c. Cover with 2/3 culture vessel volume of sterile PBS, tighten cap and place 

on the shaking incubator @ 60 rpm for 5 min @ 37°C 

d. Check periodically for detachment of ~70% of cells (myocytes adhere less 

strongly to the substrate and therefore detach first) 

e. Alternatively, instead of steps (c) and (d), cover bottom of culture vessel 

with sterile PBS and place in 37°C incubator for 20 min 

f. Remove the PBS with these cells (myocytes) to a 15 ml conical and 

centrifuge @ 300 RCF for 5 min 

4. Resuspend myocytes in GM to appropriate volume such that final cell 

concentration is ~2e6 cells/ml: 

a. Resuspend pellet in 2 or 3 ml GM 

b. Dilute 50 ul of this in 450 ul of GM, and add 500 ul Trypan blue (1:20 total 

dilution) 

c. Wait 3 min and count live cells (unstained ones) in the hemacytometer 

d. Add appropriate amount of medium to bring suspension to ~2e6 cells/ml 

5. Add DMSO, mix, partition into cryovials, and transfer to -80°C 

a. Final concentration of DMSO should be 7% v/v 

b. Mix gently by inverting several times (DMSO destabilized cell 

membranes) 

c. Most cryovials contain up to 1.8 ml fluid, do not overfill 

Thawing Procedure (performed the day before cells are needed): 

1. Remove myocyte vials from freezer and thaw in 37°C H2O bath: 
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a. Stand there while this happens, leaving them in the freezing medium in 

the bath significantly reduces cell viability and function (DMSO is so bad 

for the cells) 

2. Remove residual freezing medium by centrifugation: 

a. Dilute contents of vials in ~20 ml sterile PBS, and mix gently 

b. Centrifuge @ 300 RCF for 5 min, and aspirate medium 

3. Plate onto culture vessel for intermediate culture prior to plating for actual culture 

a. Resuspend pellet in GM and plate at 75,000 – 100,000 cells/cm2 

b. Incubate overnight 

c. Prior to re-plating under experimental conditions, rinse surface 2X with 

sterile PBS to remove dead cells and extraneous debris 

i. When plating, use Neurobasal for cell differentiation or Growth 

Medium otherwise 

Notes: 

1. It is unclear how long the cells last at -80°C, so do not count on storing more than 

you will likely use in the next couple of weeks 

6.1.3 F-10 Based Myocyte Growth Medium: 

Materials & Ordering Information: 

1. Ham’s F-10 Medium – (Gibco/Invitrogen - 11550-043 (500 mL @ $18.50))  

4. B-FGF – (PeproTech, Catalog#: 100-18B, Lot#: 1207CY08-1) 

5. Fetal Calf Serum (FCS) – (Use Lab Stock) 

6. Pen/Strep – (Use Lab Stock) 

Procedure: 

1. Recipe [234]: 

d. 80% Ham’s F-10 
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e. 20% FCS 

f. 1% Pen/Strep 

g. 2.5 ng/ml b-FGF 

6. Protocol: 

a. Mix F-10 from powder according to their directions 

b. Remove 100 ml of F-10 from the 500 ml container to a separate sterile 

container.  Save for later use 

c. Add 100 ml of FCS 

d. Add 5 ml of pen/strep 

e. Add 50 ul of B-FGF stock (usually at 25 ug/ml) 

f. Sterile filter to a new container (required because a portion of this 

procedure takes place outside the hood) 

7. Store at 4°C.  Stable for at least 1 month 

6.1.4 Neurobasal (NB) Medium: 

Materials & Ordering Information: 

1. NB base (Use Lab Stock) 

2. B27 Supplement (Use Lab Stock) 

3. L-glutamine (Sigma, G3126) 

4. Pen/Strep (Use Lab Stock) 

5. Beta-mercaptoethanol (Aldrich, M6250) 

6. Glutamax [Invitrogen – 35050-061 ($25.20)] 

Recipe-1: 

1. 97% Neurobasal Base Medium 

2. 2% B27 Supplement (or NS21 supplement) 

3. 1% Pen/Strep 
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4. 69 ug/ml L-Glutamine (0.4 mM) 

5.  1.84 nl/ml beta-mercaptoethanol 

Recipe-2: 

1. 96% Neurobasal Base Medium 

2. 2% B27 Supplement (or NS21 supplement) 

3. 1% Pen/Strep 

4. 1% Glutamax 

Procedure-1: 

1. Add 10 ml of B27 supplement to 500 ml of NB base medium 

2. Add 5 ml of Pen/Strep 

3. Add 34.5 mg of L-glutamine 

4. Remove 10 ml of mixture to a secondary container 

a. Add 7.3 ul of beta-mercaptoethanol to this secondary container and mix 

well 

5. Take 1.24 ml of the diluted beta-mercaptoethanol and add it back to the NB 

6. Mix well, and sterile filter to a new container 

7. Store @ 4°C, PROTECT FROM THE LIGHT (wrap in foil) 

Procedure-2: 

1. Remove 20 ml of unmixed NB 

2. Add 10 ml of B27 supplement (or NS21 supplement) 

3. Add 5 ml of Pen/Strep 

4. Add 5 ml of Glutamax 

5. Mix well, and sterile filter to a new container (does not need to be sterile filtered if 

everything is done in the hood) 

6. Aliquot into 50 mL tubes and… 
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7. Store @ 4°C, PROTECT FROM THE LIGHT (wrap in foil) 

Notes: 

1. Other recipes call for Glutamax instead of L-glutamine to avoid toxic breakdown 

products.  If this is the case you can exclude the beta-mercaptoethanol from the 

recipe.  Invitrogen also recommends supplementing with glutamic acid for initial 

seeding steps, but our lab tried this and said it didn’t make any difference. 

6.1.5 Collagenase – Dispase Preparation Protocol: 

Materials & Ordering Information: 

1. Collagenase D – (Roche, 11088858) 

2. Disapse II – (Roche, 91011622) 

3. PBS  – (Use Lab Stock) 

4. CaCl2 – (Use Lab Stock) 

Procedure: 

1. Recipe [234]: 

a. 1.5 U/ml collagenase D 

b. 2.4 U/ml dispase II 

c. 2.5 mM CaCl2 

2. Prepare solution at 2X final concentrations and store at -20°C 

a. Prepare CaCl2 solution in PBS to a final concentration of .25 M 

i. Add 1.83 grams of CaCl2 dehydrate (FW 147) to 50 ml dH2O 

ii. Shake until dissolved 

iii. Sterile filter to a new conical tube 

b. Reconstitute collagense D (stock usually ~.25 U/mg) 

i. Reconsititue to 2X desired working concentration (~3.0 U/ml) 

ii. Add 1 ml of PBS to container of 100 mg collagenase 
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iii. Remove to a sterile conical tube and add 8 more ml of PBS 

iv. Sterile filter, aliquot into 1 ml portions and freeze at -20°C 

c. Reconstitute dispase (stock usually at 0.5 U/mg) 

i. Reconstitute to 2X concentration (~5.0 U/ml) 

ii. Reconstitute 200 mg of dispase II in 20 ml PBS w/o Ca++/Mg++ 

iii. Sterile filter, aliquot into 1 ml portions and freeze at -20°C 

3. Prepare immediately before use from 2X frozen stock. 

a. Mix 1 aliquot dispase solution with 1 aliquot collagenase solution with 2 

ml of dissecting buffer containing the tissue slurry 

b. Add 60 ul of the CaCl2 solution to activate the enzymes 

Notes: 

Protocol modified and updated based on personal experience and experimentation 

6.1.6 Immunofluorescence Staining Protocol:  

Materials: 

1. Cells to be stained 

2. Primary Antibodies 

3. Secondary Antibodies 

4. Rhodamine Phalloidin [Fischer, NC9817931] 

5. Triton X-100 [Sigma, T9284] 

6. Bovine Serum Albumin – (BSA) [Sigma, BP1605100] 

7. Syringe Filter [Use Lab Stock] 

Protocol: 

If you don’t already have blocking and fixing solutions 

1. Make Blocking Solution (“neuro-block”) 
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a. 2.0% Normal Goat Serum (or FBS, or BSA depending on the needs of the 

particular Abs to be used and experimental set-up 

b. 2.0% Triton solution (normally at 10% concentration) 

c. 1.0% Sodium Azide solution (normally at 2.0% itself) 

d. All mixed up in PBS 

e. For 25 ml: 

i. 23.75 ml PBS 

ii. 250 ul sodium azide solution 

iii. 0.5 ml Triton solution 

iv. 0.5 ml Normal Goat Serum 

2. Obtain Fixing Solution (methanol) from -20°C refrigerator 

Else: 

1. Remove cell medium 

2. Wash 3x with 1X DPBS (w/ Ca++ & Mg++) [PBS, can be nonsterile] 

3. Fix cells: 

a. Cover cells in methanol. 

b. Incubate for 15 min at -20oC 

c. Remove methanol by aspiration (by dumping if you are fixing fragile 

structures) 

4. Wash 3x with 1X DPBS (w/ Ca++ & Mg++) [PBS, can be nonsterile] 

5. Make antibody solutions by diluting according to instructions. 

d. Make in neuro-block without Triton X-100 (or w/ Triton X-100, this 

shouldn’t effect anything), 1:200 dilution 

e. Make enough to fill appropriate number of wells  

6. Add Primary antibody solutions: 
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f. Cover cells with Primary antibody solution (see step 7),  

g. Incubate for 3 hr @ RT 

h. Remove and SAVE your primary Ab 

7. Wash 3x with 1X DPBS (w/ Ca++ & Mg++) [PBS, can be nonsterile] 

i. Wait 5 min between each wash, agitate as little as possible 

8. Make Secondary antibody solutions – (protect them from light using foil to avoid 

photobleaching): 

j. Make in neuro-block with or without Triton X-100, 1:200 dilution 

k. Make enough to fill appropriate number of wells 

9. Add Secondary antibody solution – (protect them from light using foil to avoid 

photobleaching): 

l. Cover cells with Secondary antibody solution (see step 10) for 1 hr @ RT 

(ensure cell plates are covered in foil to avoid photobleaching) 

m. Remove and SAVE your secondary Ab 

10. Wash 3x with 1X DPBS (w/ Ca++ & Mg++) [PBS, can be nonsterile] 

11. Store appropriately depending on conditions: 

n. Store at 4oC hydrated in 1X DPBS w/Ca++ & Mg++) – (protect them from 

light to avoid photobleaching) 

o. Or if the sample has been prepared on a glass slide, use an antifading 

agent to mount the coverslips to a glass slide 

6.1.7 Hoechst Staining Protocol: 

Materials & Ordering Information: 

1. Hoechst Nuclear Stain (Sigma, Fisher, pretty much anyone)  

Procedure: 

1. Prepare stock Hoechst solution: 



146 

 

 

a. Stock solution made at ~2 mM (~1 mg/ml) in dH2O [235] 

b. Most Hoechst stains will precipitate in PBS at this concentration 

c. Even in dH2O it may be difficult to get stain into solution, stirring and heat 

may be necessary, or addition of DMSO 

2. Dilute stock solution to make working solution: 

a. Working solution at ~2 µM (~1 µg/ml) 

b. Dilute stock solution 1:1000 in the desired solution (PBS for fixed cells, 

medium for live cells) 

c. Protect from light 

3. Incubate cells: 

a. 30 min @ RT for fixed and permeabilized cells 

b. 1 hr @ 37°C in incubator for live cells 

c. Protect from light 

d. Remove and SAVE Hoechst solution 

4. Wash (in PBS): 

5. Store (at 4°C) 

6.1.8 Alpha-Bungarotoxin Labeling Protocol: 

Materials & Ordering Information: 

1. Alpha-Bungarotoxin (Invitrogen, B13422)  

2. PBS (Use Lab Stock) 

3. Growth Medium/Treatment medium 

4. Sodium Azide (Use Lab Stock) 

Procedure: 

1. Reconstitute and store aB toxin [236]: 
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a. Reconstitute 500 ug of fluorescently labeled aB toxin in 0.5 ml sterile 

dH2O   

b. Add sodium azide to a final concentration of 2mM: 

i. Stock sodium azide is typically at 2% (or .3M) 

ii. Add 3 ul of sodium azide solution to reconstituted aB toxin 

c. Aliquot at 25 ul and 10 ul per tube and store at -20°C – protect from light 

i. The reconstituted stock can be stored at 2-6°C if it is going to be 

used in the short-term 

ii. Avoid repeated freeze-thaw cycles, can store short time @4°C 

2. Make aB working solution: 

a. aB toxin stock normally at 1 mg/ml, while working stock is at 5 ug/ml [237] 

(other papers use an even lower concentration [56, 88, 238]) 

b. Remove an aliquot of aB toxin from the -20°C freezer where they are 

stored 

c. Dilute aB toxin 1:200 in desired medium (whatever you are going to 

incubate the cells in, probably the same as the medium they were just in) 

d. 25 ul will make 5 ml of working solution 

e. 10 ul will make 2 ml or working solution 

3. Treat cells: 

a. Incubate cells in working solution for 1 h [88, 213, 237, 238] (Other 

procedures incubate for longer, or have more involved washout steps 

[56], but this should work) 

b. Rise 3X in medium (same type as whatever you were using) 

c. Replace cells in medium and either return to incubator or proceed to 

fixation [238]  
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4. Fix Cells: 

a. Rinse cells in PBS 

b. Place cells in 4% paraformaldehyde for 30 min @ RT [88, 238] (other 

groups use more complex fixation procedures [56], but this should work) 

c. Rinse cells 3X in PBS, careful not to wash the cells off the surface 

d. Store in PBS until you stain for other proteins (see IF staining protocol) 

6.1.9 Substrate Regeneration (Electrode & Topographical): 

Materials & Ordering Information: 

1. Trypsin (Invitrogen, 15090-046) 

2. Tergazyme (Use Lab Stock) 

Substrate Cleaning Procedure: 

1. Biologically remove adherent cells from surface: 

a. Incubate for 1 hr (or longer as needed) in 2.5% trypsin solution @ 37°C 

b. Aspirate trypsin, and rinse surface with PBS  repeatedly using 1000 µL 

pipette 

c. Inspect under a microscope for remaining cells, and repeat above steps 

as necessary until all or the desired amount of cells and debris have been 

removed 

2. Chemically clean surface: 

a. Rinse the surface with Tergazyme solution using a squirt-bottle 

b. Tergazyme solution may be left on the surface for short incubation 

periods, but not overnight 

c. Inspect under a microscope for remaining cells, and repeat above steps 

as necessary until all or the desired amount of cells and debris have been 

removed  
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3. If necessary, physically clean surface: 

a. Remove cells and debris that won’t detach chemical by gently scrubbing 

the surface with a cotton swab 

4. Sterilize surface (NOTE: Do not perform this step until cells and biological 

material have been removed from the surface as incubation in alcohol will fix 

these materials to the electrode/topographical substrates): 

a. Soak in EtOH for 1 Hr 

b. Remove to a sterile container and allow to air dry (preferably in the hood) 

c. Use soon after to avoid recontamination  

PDMS Stamp Cleaning Procedure: 

1. Wipe any debris that may be present on the bottom of the PDMS mold. 

2. Sterilize surface: 

a. Soak in EtOH for 1 Hr 

b. Remove to a sterile container and allow to air dry (preferably in the hood), 

making sure the contact surface is clean and dry 

c. Use soon after to avoid recontamination  

6.1.10 Plasma Generator Protocol: 

Materials: 

1. Plasma generator 

2. Substrate to be modified 

3. Others 

Protocol: 

1. Turn on and warm up the machinery if necessary (requires a 20 min warm-up 

from a cold-start): 

a. Turn both gas tanks on (valves turned several turns to the left) 
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b. Turn on the vacuum pump 

c. Turn on the generator 

2. Sign-in on the usage roster 

3. Select a program to run, or create a new program if necessary (Note: Always 

check the program parameters before you run any samples!): 

a. Programs are not assigned to people or labs – you must check you 

program before each time you run it 

b. Programs 1 & 9 are used for maintenance – DON’T CHANGE THESE  

4. Plasma treat the sample: 

a. Place sample on the center tray (Note: Altering tray configuration can be 

used to change surface treatment (ie, ion deposition vs plasma treatment) 

b. Press “Start” to run treatment cycle  

c. Monitor BP/RP during the treatment.  This value should stay below 5.  If it 

increases over 5, stop the treatment 

d. Wait for cycle to run and chamber to depressurize before removing 

sample.  Chamber is depressurized when a slight change in 

depressurizing noise is heard.  If the chamber does not depressurize fully 

and the door can not be opened, bleed the remainder of pressure using 

the <Bleed> button 

5. Close down the machinery: 

a. Record he “Gas #” and “Press” readings at the end of the cycle - (should 

be in the range of the others on the sign-in sheet) 

b. Turn off gas valves 

c. If you are the last user of the day, turn of generator and pump 

Notes on Machine Use: 
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1. Left dial: 

a. Use <L Disp> button to select feature to read 

b. Having the <Set> button depressed causes you to read what the feature 

is currently set to 

c. Change settings while the <Set> button is depressed by using the <Incr.> 

and <Decr.> keys 

d. If the <Set> button is not depressed the dial reads the current level of 

whatever feature is selected 

2. There are effectively only 4 variables which can be altered: 

3. Time (Left dial, option 4) 

a. Set directly using cycle button (L Display) and <Set> buttons to select 

setting, and <Incr/Decr> buttons to change 

4. Power (Left dial, option 2) 

a. Set directly using cycle button (L Display) and <Set> buttons to select 

setting, and <Incr/Decr> buttons to change 

5. Pressure (Right dial, set value by controlling valve opening %) 

a. Pressure is changes using the gauge on the right 

b. The gauge reads valve % open, not pressure.  This number drives the 

chamber pressure.  Actual pressure readings are obtained at the end and 

recorded 

c. CO2 (Gas 1) should be set to 40% when used 

d. O2 (Gas 2) should be set to 60% when used 

6. Gas selection 

a. Gas 1 – CO2 

b. Gas 2 – O2 
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c. Right gauge reads how much valves are open.  The combination of 

gasses will result in final pressure (read at end) 

7. Set the variables required for your experiment using the <R/L Display> buttons 

and <Set> button to select setting, and <Incr/Decr> buttons to change 

a. Endpt – doesn’t change (100) 

b. DC Bias – doesn’t change (0) 

c. BP/RP – doesn’t change (80) 

d. Time – as per experiment 

e. Power – as per experiment 

f. Pressure – (changed on right display as described above) 

g. Gas selection – (changed on right display as described above) 

h. See below for example programs/settings 

Example Settings: 

Power –  50 (Watts) 

Endpt –  100 

Time – 120 (seconds) 

DC Bias –  0  

BP/RP –  80 

Gas 2 –  60 

6.1.11 SU-8 Photolithography Protocol: 

Materials & Ordering Information: 

1. Substrate 

2. Acetone 

3. Isopropanol 

4. DI water 
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5. SU-8 Photoresist 

6. Photoresist Developer 

CRITICAL STEP:  Work in small batch sizes (2 substrates at a time) to prevent 

the duration of processing steps from effecting the treatment each substrate 

receives. 

Substrate Pretreatment: 

1. Set oven temp to 130. 

2. Wipe substrate of any residue or dust using acetone and dust-free cloth. 

3. Clean in acetone. 

a. Soak substrate in acetone for ten minutes, rinse in isopropanol. 

4. Clean in isopropanol. 

a. Soak substrate in isopropanol for ten minutes, rinse the substrate with DI 

water. 

5. Clean in DI water. 

a. Soak substrate in DI water for ten minutes, rinse with DI water. 

b. Using filtered air, blow dry the substrate until it is dry. 

6. Clean up when done pre-treating the substrate. 

a. Place used chemicals in appropriate bins. 

b. Return containers to appropriate location. 

c. Ensure all surfaces are dry and clear of chemicals. 

PAUSE POINT: Cleaned samples can be left overnight, when appropriately 

stored, and used the next morning starting from this point. 

7. Dehydrate sample. 

a. Place the substrate in the oven at ~130˚C for 30 minutes. 

b. Cool to RT after baking by opening the oven door.   
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c. Do not allow sample to sit in atmosphere for long periods of time at RT, 

they will collect moisture. 

Coat with SU-8: 

8. Start the soft-bake program on the programmable hot plate (currently program # 

___) 

9. Set up spinner (run recipe # 1 to give ~40 µm thick layer). 

a. Turn on spinner controller if necessary and press recipe on the keypad. 

When prompted with a screen that reads” Recipe:_”, enter the recipe for 

the corresponding thickness of the SU-8.  The following chart shows the 

appropriate spinner recipe for each thickness; 

 

b. Remove chuck from spinner and line the spinner bucket with aluminum 

foil (the chuck is easily removed by pulling up). 

c. Get a piece of aluminum foil large enough to cover the bucket and its 

sides. Make a small hole in the middle of the foil and lay it inside the 

bucket. 

Photores

ist 

Thickness 

(µm) 

Recip

e 

Spin 

Speed 

SU-8 

2025 25 0 3000 

SU-8 

2025 41 1 2000 

SU-8 

2025 75 2 1000 
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d. Form the aluminum foil around the edge of the bucket so that SU-8 will 

not splatter on the walls.  Make sure there is no foil going into the vacuum 

hole in the center. 

e. Place appropriate chuck on the spinner (make sure the substrate covers 

the entire chuck to prevent SU-8 splatter). 

CRITICAL STEP:  Use fresh SU-8, from a clean container, that has had time to 

equilibrate to room temperature.  I suggest aliquoting the SU-8 you are going to 

use the evening prior to coating. 

10. Coat the substrate with SU-8. 

f. Place the substrate on the center of the chuck and turn on the vacuum so 

that the substrate does not move. 

g. Apply 1 mL SU-8 per inch substrate (for 2 in glass squares this will be ~2-

3 full droppers full. 

i. Apply in the center of substrate, distributing in an even circle 

centered on the center of the spinner chuck. 

ii. “Suck” bubbles back into the dropper until no bubbles exist, or 

“pop” them using a needle and or blade. 

h. Approximately 2-3 droppers full of SU-8. 

11. Spin off excess SU-8. 

i. Press the “start” button, and make sure the vacuum is toggled off before 

removing the substrate after spinning. 

12. Move chip IMMEDIATELY to warming programmable hotplate. 

j. By this time the hotplate should be several degrees above RT at least, 

and on its way to a stable temp in the range of 45-65 deg C. 

13. Clean up after using the spinner. 
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a. Remove foil from spinner bucket and discard. 

b. Clean any residue on spinner. 

c. Make sure the vacuum switch is turned off. 

Soft Bake: 

14. Allow soft-bake program on the programmable hotplate to run to completion. 

a. See last page for a description of programmed heating/cooling steps 

(currently program 4) 

15. Remove substrate from hot-plate to next processing step or appropriate storage 

after completion of soft-baking program. 

PAUSE POINT: SU-8 coated substrates may be left for 2 or 3 days at RT before 

the next processing step. 

Exposure: 

16. Turn EVG 620 on. 

b. Turn on the main switch (red) on EVG 620, key must be in “off” position. 

c. Turn on the lamp power, located under the bench. Then press “start” to 

fire lamp. 

* The lamp must be heated ten minutes prior to usage. 

d. Turn on the key switch. 

e. Turn on the PC power, located under the bench in the cabinet. 

f. Run EVG 620 Software 

i. Log in. 

ii. Use File-Open to find the appropriate recipe, located in  

“C:\Program Files\EVG\EVG6XX\Recipes\SU8\Glass”. 

17. Run the appropriate recipe (currently “40um_SU8_Glass_CL_V04.rcp”) 

g. Exposure should be ~250 mJ/cm2. 
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h. Press “Run,” then follow the instructions on the screen. 

i. Some substrates may require alignment. 

j. Use black background when exposing to prevent back scattering. 

18. Store substrates on counter while processing, and move substrates to 

programmable hotplate all at once before running the post exposure bake 

program. 

19. Shut down EVG 620. 

a. Turn off PC. 

i. Close EVG Software and shutdown Windows. 

b. Turn off the key switch. 

c. Cool lamp (CRITICAL STEP) 

i. Switch off the lamp power, then turn it back on. 

ii. Wait 10 minutes, then switch off the power again. 

k. Turn off the main switch. 

Post Exposure Bake: 

20. Move all substrates to programmable hotplate surface. 

21. Run post exposure bake program (currently program # 2) 

a. See final page for a description of heating/cooling programs 

PAUSE POINT: Following PEB, appropriately stored substrates may be left at 

RT for 1 day waiting to be developed. 

Develop: 

22. Immerse substrate in SU-8 Developer. 

a. Agitate so that the developer removes exposed SU-8. 

b. Ideal developing time is found in the chart below. 

Photoresist Thickness (µm) Develop Time 
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(min) 

SU-8 2025 25 4 

SU-8 2025 41 5 

SU-8 2025 75 7 

 

23. Remove the substrate and rinse with isopropanol. 

c. If large amounts of cloudy white fluid are apparent, return to developer for 

another minute 

24. Examine under the microscope. 

d. Inspect to see if unexposed material has been successfully removed from 

features. 

e. Return to developer if significant material is left. 

25. Blow dry with filtered air or allow to dry on a counter-top 

Hard Bake (Annealing): 

26. Place substrates on programmable hotplate surface. 

27. Run annealing program (currently program # 3).  
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Recommended Treatment (as of 2010-03-05): 

Soft Bake:  Post Exposure Bake: Hard Bake: 

Ramp: Temp: Time: Exposure: Ramp: Temp: Time: Ramp: Temp: Time: 

450 45 1 hr 5 X 45 

mJ/cm2 

120 30 1 hr 120 150 1 hr 

120 95 10 min  120 50 10 min 60 25 1 hr 

120 45 10 min  120 65 10 min    

120 95 10 min  120 95 30 min    

120 45 10 min  60 25 1 hr    

120 95 2 hr        

60 25 1 hr        

 

6.2 Visual Twitch Analysis Online Supporting Material 

6.2.1 Description of Success and Failure Metrics 

Success Metric: Rationale: Description: 

Success Spread An ideal WXY cluster contains nodes where the A measure of how obviously the WXY can be identified 
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(S1) correlation between δXY(t) and the cluster’s δK(t) 

function is very high relative to the other δK(t) 

functions. This is indicative that the δXY(t) functions 

for the WXY in the cluster match the appropriate δK(t) 

function very closely and are much less similar to the 

other δK(t) functions. 

as belonging to one particular cluster. It is calculated as 

the extent to which the correlation coefficient for each 

δXY(t) function and the δK(t) function to which it has 

been matched is greater than the average correlation 

coefficient between that δXY(t) function and the other 

δK(t) functions, averaged over the whole viewing field. 

Area Coverage 

(S2) 

Encourage the algorithm to select for δK(t) functions 

that explain a broader area, rather than a very small 

area that is more highly correlated, and is meant to 

reduce the frequency of multiple sections of the same 

myotube being labeled as separate clusters. 

The percentage of the interrogation windows that are 

finally assigned to clusters. This number increases with 

the number of WXY windows included in all clusters. 

Cell Number 

(S3) 

Encourages the VTA algorithm to find all cells and not 

simply settle for identifying only the obvious ones. 

The number of cells that the algorithm identifies divided 

by the total number of possible cells (i.e., the maximum 

value of K). 

 

Failure Metric: Rationale: Description: 
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Correlation 

Difference 

(F1) 

A measure of the difference in the correlation 

coefficient between all δXY(t) functions in a cluster and 

the cluster’s corresponding δK(t) function and the 

average correlation coefficient of the same δXY(t) 

functions with the other δK(t) functions. 

Rather than being averaged for every WXY over the 

whole image, as in “Success Spread,” it is instead 

averaged for each cluster. Because this would be a 

measure of success similar to the success metric 

“Success Spread,” F2 is calculated as 1 minus this 

amount. 

Scatter 

(F2) 

Myotube contractions tend to cause changes in pixel 

intensity in a highly localized fashion. Therefore, a 

high density of nodes in a cluster is more likely 

caused by myotube contraction than nodes spread 

over a larger area with little activity in the space 

between nodes of the same cluster. 

The average edge length between linked nodes in the 

identified cells. 

Missed Twitch 

(F3) 

Reduce the overall fitness of cluster sets that fail to 

take into account all the observed contractions. 

The average of the EXY(t) functions of all WXY windows 

that are observed to twitch but are not eventually 

assigned to clusters. The more contractile activity 

excluded, the greater this handicap. 
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6.2.2 VTA Program Analysis of TTX Treatment on Spontaneous Contractility in Skeletal Myotubes 

 Skeletal myotubes were isolated and cultured as 

described in the manuscript section titled “Methods: Cell 

Culture.”  Twelve videos of myotube behavior were acquired 

at DIV 14 by selecting random locations in the culture and 

recording videos as described in the manuscript section 

titled “Methods:  In Vitro Video Capture and Synthetic Data 

Generation.”  The medium in these cultures was then 

exchanged for medium containing 500 nM tetrodotoxin 

(TTX), and the video acquisition procedure was repeated.  

Data were analyzed using the VTA algorithm as described 

in the manuscript.   

TTX is a reversible sodium channel blocker known to 

block impulse propagation in excitable membranes, and 

therefore, blocks contractile activity in myotubes.  

Consistent with the results shown in Figure 4A, there is a slight bias in analysis, resulting in the identification of 0.75 cells per video in 

the TTX-treated case.  Review of these videos revealed that this activity is a misclassification of lighting artifacts and other sources of 

Supplemental Figure 1  Spontaneous contractile activity in 

myotubes before and during treatment with tetrodotoxin (TTX) at 

500 nM.  N = 12 
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culture noise and that all contractile activity is, in fact, silenced by the exposure to TTX.  However, despite the slight off-set, the VTA 

algorithm is able to robustly identify a change in contractile activity between the treated and untreated cases. 

6.3 VTA MATLAB CODE 

function VTA 

 

% Clear the working area. 

clc; 

clear all; 

close all; 

 

% Open up the psuedo-GUI to walk you through program use 

save_path = []; 

answer1 = []; 

answer2 = []; 

answer3 = []; 

button1 = questdlg('Run VTA step-by-step or all-at-once','','step-by-step','all-at-once','step-by-step'); 

if strcmp(button1,'step-by-step'); 

    button2 = questdlg('Select VTA Process to Run','','Step 1','Step 2','Step 3','Step 1'); 

    if strcmp(button2,'Step 1'); 

        VTA_step1(button1,answer1); 

    elseif strcmp(button2,'Step 2'); 

        VTA_step2(button1,answer2,save_path); 



164 

 

 

    elseif strcmp(button2,'Step 3'); 

        VTA_step3(button1,answer3,save_path); 

    end 

elseif strcmp(button1,'all-at-once'); 

     

    prompt={'Number of trials (J):',... 

        'Number of horizontal and vertical divisions (N):',... 

        'Black/white conversion threshold (Tb)'}; 

    name='Image Processing Parameters'; 

    numlines=1; 

    defaultanswer={'3','40','auto'}; 

    options.Resize='on'; 

    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer1=inputdlg(prompt,name,numlines,defaultanswer,options); 

     

    prompt={'Spike threshold:',... 

        'Enter the minimum # of ICs to look for (K_m_i_n):',... 

        'Enter the maximum # of ICs to look for (K_m_a_x):'}; 

    name='Signal Processing Parameters'; 

    numlines=1; 

    defaultanswer={'1.96','1','10'}; 

    options.Resize='on'; 
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    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer2=inputdlg(prompt,name,numlines,defaultanswer,options); 

 

    prompt={'Correlation threshold:',... 

        'Length threshold',... 

        'Area threshold',... 

        'Triangle threshold',... 

        'Node threshold'}; 

    name='Cost-benefit Parameters'; 

    numlines=1; 

    defaultanswer={'.6','50','.2','15','10'}; 

    options.Resize='on'; 

    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer3=inputdlg(prompt,name,numlines,defaultanswer,options); 

     

    [save_path] = VTA_step1(button1,answer1); 

    disp(save_path); 

    VTA_step2(button1,answer2,save_path); 

    VTA_step3(button1,answer3,save_path); 

end 
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clc; 

clear all; 

close all; 

 

 

%======================================================================== 

%======================================================================== 

function [save_path] = VTA_step1(button1,answer1) 

% Create the _ImageInfo output, saved for future analysis. 

 

if strcmp(button1,'step-by-step'); 

    prompt={'Number of trials (J):',... 

        'Number of horizontal and vertical divisions (N):',... 

        'Black/white conversion threshold (Tb)'}; 

    name='Image Processing Parameters'; 

    numlines=1; 

    defaultanswer={'1','25','auto'}; 

    options.Resize='on'; 

    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer=inputdlg(prompt,name,numlines,defaultanswer,options); 

elseif strcmp(button1,'all-at-once'); 

    answer = answer1; 
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end 

J_max = str2num(answer{1}); 

N_0 = str2num(answer{2}); 

if isempty(str2num(answer{3})); 

    Tb_0 = answer{3}; 

else 

    Tb_0 = str2num(answer{3}); 

end 

 

%Calls sub-routine that identifies and locates videos to be analyzed.  The 

%program then steps through this list analyzing each video. 

[pathname filename save_path] = build_filelist_imageprocess;  

waitbar_vid = waitbar(0,['Currently Analyzing ' num2str(0) ' of ' num2str(size(filename,2)) ' Videos'],'Position',[480 390 270 60]); 

for kkk = 1:size(filename,2); 

 

    waitbar(kkk/size(filename,2),waitbar_vid,['Currently Analyzing ' num2str(kkk) ' of ' num2str(size(filename,2)) ' Videos']); 

    waitbar_trial = waitbar(0,['Trial Number ' num2str(0) ' of ' num2str(J_max) ' Trials'],'Position',[480 300 270 60]); 

 

    %Clear data from old movie and use a sub-routine to load a new movie 

    %for analysis.  To conserve memory, only one movie is loaded at a time. 

    clear mov m n; 

    [mov n] = raw_data_gen(filename,pathname,kkk); 

     



168 

 

 

    for J = 1:J_max; 

        waitbar(J/J_max,waitbar_trial,['Trial Number ' num2str(J) ' of ' num2str(J_max) ' Trials']); 

        [N Tb] = step1_parameter_gen(N_0,Tb_0); 

        [I_0_temp del_XY_temp E_XY_temp] = del_XY_gen(mov,n,N,Tb); 

        I_0 = I_0_temp; 

        del_XY{J} = del_XY_temp; 

        E_XY{J} = E_XY_temp; 

        N_out{J} = N; 

        Tb_out{J} = Tb; 

    end 

 

    % IF YOU WANT TO RUN VTA, AND DON'T NEED TO PRODUCE AN OUTPUT MOVIE - 

    % RECOMMENDED! 

    ImageInfo = struct('I_0',I_0,'N_out',N_out,'Tb_out',Tb,'del_XY',del_XY,'E_XY',E_XY,'J_max',J_max); 

    save([save_path{kkk},'\','Vid_',filename{kkk}(1:max(find(filename{kkk} == '.'))-1),'_ProcessedImage'],'ImageInfo'); 

 

    % IF YOU NEED TO RUN VTA, AND PRODUCE AN OUTPUT MOVIE - 

    % THIS IS REALLY FOR DEMONSTRATION PURPOSES ONLY! 

%     save([save_path{kkk},'\','Vid_',filename{kkk}(1:max(find(filename{kkk} == '.'))-1),'_ProcessedImage'],'ImageInfo','mov'); 

 

    % IF YOU ONLY WANT THE IMAGE (FOR ALIGNMENT PURPOSES ONLY) 

%     ImageInfo = struct('I_0',I_0); 

%     save([save_path{kkk},'\','Vid_',filename{kkk}(1:max(find(filename{kkk} == '.'))-1),'DUPLICATE_ProcessedImage'],'ImageInfo'); 
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    close(waitbar_trial); 

end 

close(waitbar_vid); 

 

dir_indexes = find(save_path{1} == '\'); 

dir_level = 4; 

save_path = save_path{1}(1:dir_indexes(dir_level)-1); 

 

 

%======================================================================== 

%======================================================================== 

function VTA_step2(button1,answer2,save_path) 

% Create the _SignalInfo output, saved for future analysis. 

 

if strcmp(button1,'step-by-step'); 

    prompt={'Spike threshold:',... 

        'Enter the minimum # of ICs to look for (K_m_i_n):',... 

        'Enter the maximum # of ICs to look for (K_m_a_x):'}; 

    name='Signal Processing Parameters'; 

    numlines=1; 

    defaultanswer={'1.96','1','3'}; 

    options.Resize='on'; 
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    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer=inputdlg(prompt,name,numlines,defaultanswer,options); 

    uiwait(warndlg('Please select a folder containing data analysis files from VTA Step 1')); 

    [pathname filename] = build_filelist_signalprocess(save_path); 

elseif strcmp(button1,'all-at-once'); 

    answer = answer2; 

    [pathname filename] = build_filelist_signalprocess(save_path); 

end 

 

Ts_0 = str2num(answer{1}); 

K_min = str2num(answer{2}); 

K_max = str2num(answer{3}); 

 

K = K_max - K_min + 1; 

 

waitbar_vid = waitbar(0,['Currently Analyzing ' num2str(0) ' of ' num2str(size(filename,2)) ' Videos'],'Position',[480 390 270 60]); 

for kkk = 1:size(filename,2); 

 

    load([pathname{kkk},'\',filename{kkk}]); 

    J_max = ImageInfo(1).J_max; 

    waitbar(kkk/size(filename,2),waitbar_vid,['Currently Analyzing ' num2str(kkk) ' of ' num2str(size(filename,2)) ' Videos']); 

    waitbar_trial = waitbar(0,['Trial Number ' num2str(0) ' of ' num2str(J_max) ' Trials'],'Position',[480 300 270 60]); 
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    %VTA algorithm begins here.  Runs on each video identified by the 

    %function <build_filelist>. 

    del_K_raw_out = []; 

    params = []; 

    for J = 1:J_max; 

 

        %clear variables from prior use and update waitbar 

        clear E_XY del_XY Ts amp_mean threshold inds U S pc eigen IC_try ; 

        E_XY = ImageInfo(J).E_XY; 

        del_XY = ImageInfo(J).del_XY; 

        waitbar(J/J_max,waitbar_trial,['Trial Number ' num2str(J) ' of ' num2str(J_max) ' Trials']); 

        waitbar_IC = waitbar(0,['Currently Analyzing ' num2str(0) ' ICs - (Range = ' num2str(K_min) ' - ' num2str(K_max) ')'],'Position',[480 210 270 60]); 

 

        %Zero out del_XY function from W_XYs that do not contain 

        %contractile activity. 

        [Ts] = step2_parameter_gen(Ts_0); 

        [amp_mean threshold] = find_activity(E_XY,Ts); 

        inds = find(amp_mean == 0); 

        for ii = 1:length(inds); 

            del_XY(:,inds(ii)) = zeros(size(del_XY,1),1); 

        end 
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        %BEGIN ICA LOOP 

        [U,S,pc]= svd(del_XY',0); 

        eigen = diag(S).^2; 

        IC_try = K_min:K_max; 

 

        for K = 1:(K_max - K_min + 1); 

 

            waitbar((K-K_min+1)/(K_max-K_min+1),waitbar_IC,['Currently Analyzing ' num2str(K) ' ICs - (Range = ' num2str(K_min) ' - ' num2str(K_max) ')']); 

            clear W del_K_raw; 

 

            %Execute ICA to generate the del_K functions (suggested 

            %myotube activity patterns) from the larger number of 

            %del_XY functions generated previously, and normalize them. 

            W = jade(del_XY',IC_try(K)); 

            del_K_raw = abs((W * del_XY')'); 

            for ii = 1:size(del_K_raw,2); 

                del_K_raw(:,ii) = (del_K_raw(:,ii)-min(del_K_raw(:,ii)))/max(del_K_raw(:,ii)-min(del_K_raw(:,ii))); 

            end 

            del_K_raw_out{J,K} = del_K_raw; 

            Ts_out(J) = Ts; 

 

        end 

        close(waitbar_IC); 
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    end 

    SignalInfo = struct('del_K_raw',del_K_raw_out,'Ts_out',Ts_out); 

    save([pathname{kkk},'\',filename{kkk}(1:max(find(filename{kkk} == '_'))-1),'_ProcessedSignal'],'SignalInfo'); 

    close(waitbar_trial); 

end 

close(waitbar_vid); 

 

 

%======================================================================== 

%======================================================================== 

function VTA_step3(button1,answer3,save_path) 

% Create the _Output output, saved for future analysis. 

 

if strcmp(button1,'step-by-step'); 

    prompt={'Correlation threshold:',... 

        'Length threshold',... 

        'Area threshold',... 

        'Triangle threshold',... 

        'Node threshold'}; 

    name='Cost-Benefit Parameters'; 

    numlines=1; 

    defaultanswer={'.6','50','.4','15','10'}; 

    options.Resize='on'; 
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    options.WindowStyle='normal'; 

    options.Interpreter='tex'; 

    answer=inputdlg(prompt,name,numlines,defaultanswer,options); 

    uiwait(warndlg('Please select a folder containing data analysis files from VTA Step 1 and Step 2')); 

else 

    answer = answer3; 

end 

 

Tr_0 = str2num(answer{1}); 

Tl_0 = str2num(answer{2}); 

Ta_0 = str2num(answer{3}); 

Tt_0 = str2num(answer{4}); 

Tn_0 = str2num(answer{5}); 

 

[pathname filename1 filename2] = build_filelist_CB(save_path); 

waitbar_vid = waitbar(0,['Currently Analyzing ' num2str(0) ' of ' num2str(size(filename1,2)) ' Videos'],'Position',[480 390 270 60]); 

for kkk = 1:size(filename1,2); 

 

    load([pathname{kkk},'\',filename1{kkk}]); 

    load([pathname{kkk},'\',filename2{kkk}]); 

     

    J_max = ImageInfo(1).J_max; 

    waitbar(kkk/size(filename1,2),waitbar_vid,['Currently Analyzing ' num2str(kkk) ' of ' num2str(size(filename1,2)) ' Videos']); 
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    waitbar_trial = waitbar(0,['Trial Number ' num2str(0) ' of ' num2str(J_max) ' Trials'],'Position',[480 300 270 60]); 

 

    %VTA algorithm begins here.  Runs on each video identified by the 

    %function <build_filelist>. 

    clear IC_guess area_info monte_carlo_parameters S_F_metrics; 

    clear IC_guess area_info params S_F_metrics; 

    X_clusters_out = []; 

    Y_clusters_out = []; 

    R_clusters_out = []; 

    R_raw_out = []; 

    del_K_raw_out = []; 

    R_out = []; 

    del_K_out = []; 

    amp_mean_out = []; 

    params = []; 

 

    K_min = size(SignalInfo(1,1).del_K_raw,2); 

    K_max = size(SignalInfo(1,(size(SignalInfo,2))).del_K_raw,2); 

    IC_try = K_min:K_max; 

 

    for J = 1:J_max; 

        

        clear ind_end footprint N Ts Tr Tb I_0 Y_raw X_raw y x del_XY amp_mean X Y amp_mean_lin inds; 
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        Ts = SignalInfo(J).Ts_out(J); 

        Tb = ImageInfo(J).Tb_out; 

        [Tr Tl Ta Tt Tn] = step3_parameter_gen(Tr_0,Tl_0,Ta_0,Tt_0,Tn_0); 

        I_0 = ImageInfo(J).I_0; 

        N = ImageInfo(J).N_out; 

        E_XY = ImageInfo(J).E_XY; 

        del_XY = ImageInfo(J).del_XY; 

        

        S1 = zeros(1,size(IC_try,2)); 

        S2 = zeros(1,size(IC_try,2)); 

        S3 = zeros(1,size(IC_try,2)); 

        cell_num = zeros(1,size(IC_try,2)); 

        F1 = zeros(1,size(IC_try,2)); 

        F2 = zeros(1,size(IC_try,2)); 

        F3 = zeros(1,size(IC_try,2)); 

         

        [amp_mean threshold] = find_activity(E_XY,Ts); 

         

        if sum(amp_mean > threshold) > Tn; 

 

            y = size(I_0,1)/N; 

            x = size(I_0,2)/N; 

            Y_raw = floor((1/2*y):y:size(I_0,1)); 
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            X_raw = floor((1/2*x):x:size(I_0,2)); 

            [X_grid,Y_grid] = meshgrid(X_raw,Y_raw); 

            X = reshape(X_grid,1,(size(X_grid,1)*size(X_grid,2))); 

            Y = reshape(Y_grid,1,(size(Y_grid,1)*size(Y_grid,2))); 

            y = floor(y); 

            x = floor(x); 

 

            %clear variables from prior use and update waitbar 

            waitbar(J/J_max,waitbar_trial,['Trial Number ' num2str(J) ' of ' num2str(J_max) ' Trials']); 

            waitbar_IC = waitbar(0,['Currently Analyzing ' num2str(0) ' ICs - (Range = ' num2str(K_min) ' - ' num2str(K_max) ')'],'Position',[480 210 270 60]); 

 

            for K = 1:(K_max - K_min + 1); 

 

                clear W X_clusters Y_clusters del_K_raw del_K R_raw R R_clusters; 

                del_K_raw = SignalInfo(J,K).del_K_raw; 

                waitbar((K-K_min+1)/(K_max-K_min+1),waitbar_IC,['Currently Analyzing ' num2str(K) ' ICs - (Range = ' num2str(K_min) ' - ' num2str(K_max) ')']); 

                 

                %Calculate the correlation of each del_XY W/ EACH del_K and 

                %discard del_K functions that correlate with spatially 

                %nonsensical clusters of del_XY functions. 

                [R_raw] = raw_R_calc(del_K_raw,del_XY); 

                [R del_K] = del_K_test(R_raw,del_K_raw,Tr,Tl,Ta,Tt,X,Y); 
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                cell_num(K) = size(R,1); 

                S3(K) = cell_num(K); 

                 

                if isempty(R); 

                    X_clusters_out{J,K} = []; 

                    Y_clusters_out{J,K} = []; 

                    R_clusters_out{J,K} = []; 

                    R_out{J,K} = []; 

                    del_K_out{J,K} = []; 

                     

                else 

                    del_K_plot(del_K,R,amp_mean,K); 

                    [X_clusters Y_clusters R_clusters] = XY_cluster_gen(R,Tr,X,Y); 

                    mesh_gen(K,I_0,X_clusters,Y_clusters,R_clusters,x,y,IC_try,Tl); 

                     

                    %Group W_XYs into clusters based on correlation of 

                    %del_XY function with each del_K function, plot, and 

                    %calculate S/F metrics. 

                    [S1(K) F1(K)] = S1_F1_metric_gen(R,Tr); 

                    [S2(K)] = S2_metric_gen(R); 

                    [F2(K) footprint{K}] = F2_metric_gen(K,I_0,X_clusters,Y_clusters,R_clusters,x,y,IC_try,Tl); 

                    [F3(K)] = F3_metric_gen(R,Tr,amp_mean); 
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                    X_clusters_out{J,K} = X_clusters; 

                    Y_clusters_out{J,K} = Y_clusters; 

                    R_clusters_out{J,K} = R_clusters; 

                    R_out{J,K} = R; 

                    del_K_out{J,K} = del_K; 

                end 

            end 

            close(waitbar_IC); 

             

            [ind_end] = summary_plot(S1,S2,S3,F1,F2,F3,Tb,Ts,Tn,Tr,Tl,Ta,Tt,N,filename1{kkk},IC_try,K_max,K_min,J); 

            pause(1); 

             

            monte_carlo_parameters(J,:) = [N Ts Tr Tn 0 Tl Ta Tt]; 

            S_F_metrics(:,:,J) = [S1 ; S2 ; S3 ; F1 ; F2 ; F3]; 

            IC_guess(J) = cell_num(ind_end); 

             

            try 

                area_info{J} = footprint{ind_end}; 

            catch ME; 

                area_info{J} = 0; 

            end 

 

            close all; 
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        else 

            X_clusters_out{J,K} = []; 

            Y_clusters_out{J,K} = []; 

            R_clusters_out{J,K} = []; 

            R_out{J,K} = []; 

            del_K_out{J,K} = []; 

        end 

    end 

    close(waitbar_trial); 

    save([pathname{kkk},'\',filename1{kkk}(1:max(find(filename1{kkk} == '_'))-1),'_Output'],'monte_carlo_parameters','IC_guess','area_info','S_F_metrics'); 

end 

close(waitbar_vid); 

 

 

%======================================================================== 

%======================================================================== 

function [pathname filename save_path] = build_filelist_imageprocess 

 

uiwait(warndlg('Please select a folder containing subfolders of video data.  After, please select a folder where you would like analysis files to be saved.')); 

dir_list = []; 

sub_dir_list = []; 

pathname = []; 



181 

 

 

filename = []; 

save_path = []; 

qq = 0; 

mm = 0; 

nn = 0; 

 

directory_root = uigetdir([],'SELECT FOLDER CONTAINING DATA'); 

save_dir = uigetdir([],'CHOOSE LOCATION TO SAVE ANALYZED DATA'); 

curr_time = datestr(now); 

curr_time(find(curr_time == ':')) = '_'; 

A = dir(directory_root); 

for ii = 3:size(A,1); 

     

    if getfield(A,{ii,1},'isdir') == 1; 

        qq = qq + 1; 

        if ischar(getfield(A,{ii,1},'name')); 

            dir_list{qq} = getfield(A,{ii,1},'name'); 

        else 

            dir_list{qq} = num2str(getfield(A,{ii,1},'name')); 

        end 

         

        B = dir([directory_root,'\',dir_list{qq}]); 

        for jj = 3:size(B,1); 
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            if getfield(B,{jj,1},'isdir') == 1; 

                mm = mm + 1; 

                if ischar(getfield(B,{jj,1},'name')); 

                    sub_dir_list{mm} = getfield(B,{jj,1},'name'); 

                else 

                    sub_dir_list{mm} = num2str(getfield(B,{jj,1},'name')); 

                end 

                 

                mkdir([save_dir '\' [curr_time ' Data Analysis'] '\' dir_list{qq} '\' sub_dir_list{mm}]); 

                 

                C = dir([directory_root,'\',dir_list{qq},'\',sub_dir_list{mm}]); 

                vid_names = {C.name}; 

                for kk = 1:size(vid_names,2); 

                    if strcmp(vid_names{kk}(max(find(vid_names{kk} == '.')):end),'.avi'); 

                        nn = nn + 1; 

                        pathname{nn} = [directory_root '\' dir_list{qq} '\' sub_dir_list{mm}]; 

                        filename{nn} = [vid_names{kk}]; 

                        save_path{nn} = [save_dir '\' [curr_time ' Data Analysis'] '\' dir_list{qq} '\' sub_dir_list{mm}]; 

                    else 

                    end 

                end 

            end 

        end 
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    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [mov n] = raw_data_gen(filename,pathname,kkk) 

 

mov = aviread([pathname{kkk} '/' filename{kkk}]); 

[m n] = size(mov); 

 

 

%======================================================================== 

%======================================================================== 

function [N Tb] = step1_parameter_gen(N_0,Tb_0) 

 

%Number of horizontal and vertical divisions used in segmenting image into 

%interrogation windows (W_XYs) 

N = N_0 + round((rand - .5)*20); 

% N = N_0; 

 

%Imaging threshold used to convert original image to black & white 

if strcmp(Tb_0,'auto'); 
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    Tb = ['auto']; 

else 

    Tb = Tb_0 + ((rand - .5)*.15); 

end 

 

 

%======================================================================== 

%======================================================================== 

function [Ts] = step2_parameter_gen(Ts_0) 

 

%Spike threshold used for detecting regions of contractile activity 

Ts = Ts_0 + ((rand - .5)*1.9);      

 

 

%======================================================================== 

%======================================================================== 

function [Tr Tl Ta Tt Tn] = step3_parameter_gen(Tr_0,Tl_0,Ta_0,Tt_0,Tn_0) 

 

 

%Correlation threshold applied to the correlation coefficient between each 

%W_XY's del_XY function to determine which image regions are correlated 

%with del_K function 

Tr = Tr_0 + ((rand - .5)*.15);    
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%Length threshold - i.e., the maximim allowable length of an edge 

%connecting two nodes in the W_XY clusters.  Edges above this length are 

%removed from the clusters. 

Tl = Tl_0; 

 

%Area threshold - the maximum proportions of the image that can be covered 

%by a single cell. Clusters covering more than this percentage of the 

%screen are excluded. 

Ta = Ta_0; 

 

%Triangle threshold - the minimum number of triangles contained by a 

%cluster to be included in analysis. Clusters containing fewer than this 

%number of triangles are excluded 

Tt = Tt_0; 

 

%Node threshold - the mimimum number of W_XYs containing contractile 

%activity needed by a del_K to be included in analysis    

Tn = Tn_0; 

 

 

%======================================================================== 

%======================================================================== 
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function [I_0 del_XY E_XY] = del_XY_gen(mov,n,N,Tb) 

 

[I_0,map] = frame2im(mov(1)); 

y = size(I_0,1)/N; 

x = size(I_0,2)/N; 

vert_edges = floor(1:y:size(I_0,1)); 

horz_edges = floor(1:x:size(I_0,2)); 

Y_raw = floor((1/2*y):y:size(I_0,1)); 

X_raw = floor((1/2*x):x:size(I_0,2)); 

y = floor(y); 

x = floor(x); 

 

[X_grid,Y_grid] = meshgrid(X_raw,Y_raw); 

X = reshape(X_grid,1,(size(X_grid,1)*size(X_grid,2))); 

Y = reshape(Y_grid,1,(size(Y_grid,1)*size(Y_grid,2))); 

 

% Automatically choose optimal Tb for each interrogation window if Tb = 

% 'auto', otherwise, threshold according to Tb 

if strcmp(Tb,'auto'); 

    for jj = 1:N; 

        for kk = 1:N; 

            I = I_0(vert_edges(jj):vert_edges(jj) + y-1,horz_edges(kk):horz_edges(kk) + x-1); 

            [dummy T] = histeq(I,2); 
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            Tb_grid(jj,kk) = find(T,1,'first')/256; 

        end 

    end 

else 

    Tb_grid = Tb*ones(N,N); 

end 

 

%Create the error signal for each image section (E_XY_3D), and reshape it 

%into E_XY  

 

waitbar_IC = waitbar(0,['Abandon all hope...'],'Position',[480 210 270 60]); 

E_XY_3D = []; 

for ii = 1:n-1; 

    I_t = frame2im(mov(ii+1)); 

    waitbar(ii/(n-1),waitbar_IC,['Abandon all hope...']); 

    for jj = 1:N; 

        for kk = 1:N; 

            I_orig = I_0(vert_edges(jj):vert_edges(jj) + y-1,horz_edges(kk):horz_edges(kk) + x-1); 

            I_orig = im2bw(I_orig,Tb_grid(jj,kk)); 

            I = I_t(vert_edges(jj):vert_edges(jj) + y-1,horz_edges(kk):horz_edges(kk) + x-1); 

            I = im2bw(I,Tb_grid(jj,kk)); 

            E_XY_3D(ii,jj,kk) = sum(sum(abs(I - I_orig)))/(y*x); 

        end 
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    end 

end 

close(waitbar_IC); 

 

%Reshape the error signalgenerated above into a (n-1) by N^2 array (E_XY) 

%to correspond with other matrices used in the algorithm. 

E_XY = reshape(E_XY_3D,n-1,N^2); 

 

%Generates del_XY by normalizing each E_XY to itself, and eliminates NaNs. 

del_XY = []; 

for ii = 1:size(E_XY,2) 

    del_XY(:,ii) = (E_XY(:,ii)-min(E_XY(:,ii)))/max(E_XY(:,ii)-min(E_XY(:,ii))); 

end 

del_XY(isnan(del_XY)) = 0; 

 

 

%======================================================================== 

%======================================================================== 

function [pathname filename] = build_filelist_signalprocess(save_path) 

 

if isempty(save_path); 

    directory_root = uigetdir; 

else 
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    directory_root = save_path; 

end 

 

dir_list = []; 

sub_dir_list = []; 

pathname = []; 

filename = []; 

qq = 0; 

mm = 0; 

nn = 0; 

 

A = dir(directory_root); 

for ii = 3:size(A,1); 

     

    if getfield(A,{ii,1},'isdir') == 1; 

        qq = qq + 1; 

        if ischar(getfield(A,{ii,1},'name')); 

            dir_list{qq} = getfield(A,{ii,1},'name'); 

        else 

            dir_list{qq} = num2str(getfield(A,{ii,1},'name')); 

        end 

         

        B = dir([directory_root,'\',dir_list{qq}]); 
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        for jj = 3:size(B,1); 

            if getfield(B,{jj,1},'isdir') == 1; 

                mm = mm + 1; 

                if ischar(getfield(B,{jj,1},'name')); 

                    sub_dir_list{mm} = getfield(B,{jj,1},'name'); 

                else 

                    sub_dir_list{mm} = num2str(getfield(B,{jj,1},'name')); 

                end 

                 

                C = dir([directory_root,'\',dir_list{qq},'\',sub_dir_list{mm}]); 

                vid_names = {C.name}; 

                for kk = 1:size(vid_names,2); 

                    if strcmp(vid_names{kk}(max(find(vid_names{kk} == '_')):end),'_ProcessedImage.mat'); 

                        nn = nn + 1; 

                        pathname{nn} = [directory_root '\' dir_list{qq} '\' sub_dir_list{mm}]; 

                        filename{nn} = [vid_names{kk}]; 

                    else 

                    end 

                end 

            end 

        end 

    end 

end 
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%======================================================================== 

%======================================================================== 

function [amp_mean threshold] = find_activity(E_XY,Ts) 

 

%Spike detection by comparison with the quantity Ts multiplied by the STD 

threshold = mean(mean(E_XY)) + Ts * mean(std(E_XY,0,1)); 

for ii = 1:size(E_XY,2); 

    [peak_value{ii}] = spikes_detect(E_XY(:,ii),threshold); 

 

    if isempty(peak_value{ii}); 

        amp_mean(ii) = 0; 

    else 

        amp_mean(ii) = mean(peak_value{ii}); 

    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [peak_values] = spikes_detect(E_XY,threshold) 
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record_toggle = 0; 

kk = 0; 

peak_values = []; 

 

for ii = 2:length(E_XY); 

    if E_XY(ii) > threshold && E_XY(ii-1) <= threshold; 

        record_toggle = 1; 

        kk = kk + 1; 

        jj = 1; 

        spike_trace = []; 

    elseif record_toggle == 1 && E_XY(ii) <= threshold && E_XY(ii-1) > threshold; 

        record_toggle = 0; 

        [peak_values(kk)] = max(spike_trace); 

    end 

     

    if record_toggle == 1; 

        spike_trace(jj) = E_XY(ii); 

        jj = jj + 1;         

    else 

    end 

end 

 

peak_values = peak_values'; 
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%======================================================================== 

%======================================================================== 

function [R_raw] = raw_R_calc(del_K,del_XY) 

 

for ii = 1:size(del_K,2); 

    for jj = 1:size(del_XY,2); 

        corrs = corrcoef(del_K(:,ii),del_XY(:,jj)); 

        R_raw(ii,jj) = corrs(1,2); 

        if isnan(R_raw(ii,jj)); 

            R_raw(ii,jj) = 0; 

        else 

        end 

    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [R del_K] = del_K_test(R_raw,del_K_raw,Tr,Tl,Ta,Tt,X,Y) 

 

%Initialize outputs and counters 
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num_points = []; 

footprint_test = []; 

zz = 1; 

R = []; 

del_K = []; 

footprint_thresh = Ta*512*640; 

 

%Test clusters for geometric feasibility 

for ii = 1:size(R_raw,1); 

    X_clusters{ii} = X(find(R_raw(ii,:) >= Tr)); 

    Y_clusters{ii} = Y(find(R_raw(ii,:) >= Tr)); 

    if isempty(X_clusters{ii}) || length(X_clusters{ii}) < 3; 

        num_tri(ii) = 0; 

        footprint_test(ii) = 0; 

    else 

        tri = delaunay(X_clusters{ii},Y_clusters{ii},{'QJ'}); 

        [tri_mod dummy] = tri_prune(tri,X_clusters{ii},Y_clusters{ii},Tl); 

        num_tri(ii) = size(tri_mod,1); 

        if isempty(tri_mod); 

            footprint_test(ii) = 0; 

        else 

            footprint_test(ii) = tri_area(tri_mod,X_clusters{ii},Y_clusters{ii}); 

        end 
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    end 

    if ((num_tri(ii) >= Tt) & (footprint_test(ii) < footprint_thresh)); 

        R(zz,:) = R_raw(ii,:); 

        del_K(:,zz) = del_K_raw(:,zz); 

        zz = zz + 1; 

    else 

    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [tri_mod av_lengths] = tri_prune(tri,x,y,Tl) 

 

qq = 1; 

max_length = []; 

for ii = 1:size(tri,1); 

    tri_int = tri(ii,:); 

    for jj = 1:3; 

        x0 = x(tri_int(1)); 

        y0 = y(tri_int(1)); 

        x1 = x(tri_int(2)); 

        y1 = y(tri_int(2)); 
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        leg_length(jj) = sqrt( (x1-x0)^2 + (y1-y0)^2 ); 

        tri_int_old = tri_int; 

        tri_int(1) = tri_int_old(2); 

        tri_int(2) = tri_int_old(3); 

        tri_int(3) = tri_int_old(1); 

        qq = qq + 1; 

    end         

    max_length(ii) = max(leg_length); 

end 

 

tri_mod = tri(find(max_length < Tl),:); 

 

legss = []; 

if isempty(tri_mod); 

    legss = 0; 

else 

    kk = 1; 

    for ii = 1:size(tri_mod,1); 

        tri_int = tri_mod(ii,:); 

        for jj = 1:3; 

            x0 = x(tri_int(1)); 

            y0 = y(tri_int(1)); 

            x1 = x(tri_int(2)); 
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            y1 = y(tri_int(2)); 

            leg_length(jj) = sqrt( (x1-x0)^2 + (y1-y0)^2 ); 

            legss(kk) = leg_length(jj); 

            tri_int_old = tri_int; 

            tri_int(1) = tri_int_old(2); 

            tri_int(2) = tri_int_old(3); 

            tri_int(3) = tri_int_old(1); 

            kk = kk + 1; 

        end 

    end 

end 

 

av_lengths = mean(legss); 

 

 

%======================================================================== 

%======================================================================== 

function [A] = tri_area(tri,X,Y) 

 

for ii = 1:size(tri,1); 

    P = [X(tri(ii,1)) Y(tri(ii,1)) ; X(tri(ii,2)) Y(tri(ii,2)) ; X(tri(ii,3)) Y(tri(ii,3))]; 

    [q,r] = qr((P(2:3,:) - repmat(P(1,:),2,1))'); 

    A(ii) = abs(prod(diag(r)))/2; 
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end 

 

A = sum(A); 

 

 

%======================================================================== 

%======================================================================== 

function del_K_plot(del_K,R,amp_mean_lin,K) 

 

N = sqrt(size(R,2)); 

 

IC_window_size = [1200 750]; 

IC_window_start = [1 150]; 

figure(10+K); clf; hold on; 

set(figure(10+K),'Position',[IC_window_start(1)+20*K IC_window_start(2)-20*K IC_window_size]); 

subplot(3,1,1); hold on; 

xlabel('Time (s)','FontSize',12); 

ylabel('\delta_K Value','FontSize',12); 

title('\delta_K(t) Functions vs. Time','FontWeight','Bold','FontSize',14); 

cluster_color_ind = hsv(size(R,1)); 

legend_strings = []; 

for ii = 1:size(R,1); 

    plot((.15 * [1:size(del_K,1)]),del_K(:,ii),'Color',cluster_color_ind(ii,:),'LineWidth',1.5); 
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    legend_strings_new = (['\delta_' num2str(ii) '(t)']); 

    legend_strings = strvcat(legend_strings,legend_strings_new); 

end 

legend(legend_strings,'Location','EastOutside'); legend boxoff; 

set(gca,'FontSize',12) 

 

for ii = 1:size(R,1); 

    subplot(3,size(R,1),size(R,1) + ii); hold on; title(['\delta_' num2str(ii)],'FontSize',12,'FontWeight','Bold'); 

    I = reshape(R(ii,:),N,N); 

    imagesc(I,[0 1]); axis equal; axis tight; axis off; 

end 

subplot(3,2,5); hold on; axis off; title('Amplitude'); 

imagesc(reshape(amp_mean_lin-1,N,N)); axis equal; axis off; colorbar; axis tight; 

subplot(3,2,6); hold on; axis off; title('Cell Coverage'); 

imagesc(reshape(max(R,[],1),N,N),[0 1]); axis equal; axis off; colorbar; axis tight; 

 

 

%======================================================================== 

%======================================================================== 

function [X_clusters Y_clusters R_clusters] = XY_cluster_gen(R,Tr,X,Y) 

 

for ii = 1:size(R,1); 

    X_clusters{ii} = X(find(R(ii,:) >= Tr)); 
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    Y_clusters{ii} = Y(find(R(ii,:) >= Tr)); 

     

    if isempty(R(ii,find(R(ii,:) >= Tr))); 

        R_clusters{ii} = 0; 

    else 

        R_clusters{ii} = R(ii,find(R(ii,:) >= Tr)); % 

    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [footprint] = mesh_gen(K,I_0,X_clusters,Y_clusters,R_clusters,x,y,IC_try,Tl) 

 

overlay_window_size = [800 600]; 

overlay_window_start = [700 300]; 

figure(K); clf; hold on; 

set(figure(K),'Position',[overlay_window_start(1)+20*K overlay_window_start(2)-20*K overlay_window_size]); 

 

imagesc(I_0); colormap('gray'); axis('equal'); axis('tight'); 

cluster_color_ind = hsv(size(X_clusters,2)); 

for ii = 1:size(X_clusters,2); 

    if isempty(X_clusters{ii}) || length(X_clusters{ii}) < 3; 
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    else 

        tri = delaunay(X_clusters{ii},Y_clusters{ii},{'QJ'}); 

        [tri_mod av_lengths(ii)] = tri_prune(tri,X_clusters{ii},Y_clusters{ii},Tl); 

        footprint(ii) = 0; 

        footprint(ii) = tri_area(tri_mod,X_clusters{ii},Y_clusters{ii}); 

        if isempty(tri_mod); 

        else 

            for jj = 1:1:size(tri_mod,1); 

                patch(X_clusters{ii}(tri_mod(jj,:)),Y_clusters{ii}(tri_mod(jj,:)),cluster_color_ind(ii,:),'FaceAlpha',.2,'EdgeColor',cluster_color_ind(ii,:),'LineWidth',.75); 

            end 

            scatter(X_clusters{ii},Y_clusters{ii},R_clusters{ii}*(y*x)*.5,cluster_color_ind(ii,:),'LineWidth',.75); 

            triplot(tri_mod,X_clusters{ii},Y_clusters{ii},'Color',cluster_color_ind(ii,:),'LineWidth',.75); 

        end 

    end 

end 

axis off;  

axis tight;  

title(['W_X_Y Clusters Based on Correlation of \delta_X_Y and \delta_K  - ' num2str(size(X_clusters,2)) ' Clusters (Search For ' num2str(IC_try(K)) ' ICs)']); 

 

 

%======================================================================== 

%======================================================================== 

function [pathname filename1 filename2] = build_filelist_CB(save_path) 



202 

 

 

 

if isempty(save_path); 

    directory_root = uigetdir; 

else 

    directory_root = save_path; 

end 

 

dir_list = []; 

sub_dir_list = []; 

pathname = []; 

filename = []; 

save_path = []; 

qq = 0; 

mm = 0; 

nn = 0; 

nnn = 0; 

 

A = dir(directory_root); 

for ii = 3:size(A,1); 

     

    if getfield(A,{ii,1},'isdir') == 1; 

        qq = qq + 1; 

        if ischar(getfield(A,{ii,1},'name')); 
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            dir_list{qq} = getfield(A,{ii,1},'name'); 

        else 

            dir_list{qq} = num2str(getfield(A,{ii,1},'name')); 

        end 

         

        B = dir([directory_root,'\',dir_list{qq}]); 

        for jj = 3:size(B,1); 

            if getfield(B,{jj,1},'isdir') == 1; 

                mm = mm + 1; 

                if ischar(getfield(B,{jj,1},'name')); 

                    sub_dir_list{mm} = getfield(B,{jj,1},'name'); 

                else 

                    sub_dir_list{mm} = num2str(getfield(B,{jj,1},'name')); 

                end 

              

                C = dir([directory_root,'\',dir_list{qq},'\',sub_dir_list{mm}]); 

                vid_names = {C.name}; 

                for kk = 1:size(vid_names,2); 

                    if strcmp(vid_names{kk}(max(find(vid_names{kk} == '_')):end),'_ProcessedSignal.mat'); 

                        nn = nn + 1; 

                        pathname{nn} = [directory_root '\' dir_list{qq} '\' sub_dir_list{mm}]; 

                        filename1{nn} = [vid_names{kk}]; 

                    else 
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                    end 

 

                    if strcmp(vid_names{kk}(max(find(vid_names{kk} == '_')):end),'_ProcessedImage.mat'); 

                        nnn = nnn + 1; 

                        pathname{nnn} = [directory_root '\' dir_list{qq} '\' sub_dir_list{mm}]; 

                        filename2{nnn} = [vid_names{kk}]; 

                    else 

                    end 

                end 

            end 

        end 

    end 

end 

 

 

%======================================================================== 

%======================================================================== 

function [S1 F1] = S1_F1_metric_gen(R,Tr) 

 

for ii = 1:size(R,1); 

    if isempty(R(ii,find(R(ii,:) >= Tr))); 

        R_clusters{ii} = 0; 

    else 
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        R_clusters{ii} = R(ii,find(R(ii,:) >= Tr)); % 

    end 

    R_clusters_inverse_temp = R(ii,find(R(ii,:) < Tr)); 

    R_clusters_inverse{ii} = R_clusters_inverse_temp(find(R_clusters_inverse_temp)); 

 

    R_good(ii) = mean(R_clusters{ii}); 

    R_bad(ii) = mean(R_clusters_inverse{ii}); 

 

    area_success_function(ii) = length(R_clusters{ii}(find(isnan(R_clusters{ii}) == 0)))/size(R,2); % 

end 

 

S1 = sum(area_success_function); 

F1 = 1 - (mean(R_good) - mean(R_bad)); 

 

 

%======================================================================== 

%======================================================================== 

function [S2] = S2_metric_gen(R) 

 

R_sort = sort(R,1,'descend'); 

if isempty(R_sort(2:end,:)); 

    mean_wrong_del_K = zeros(1,size(R_sort,2)); 

else 
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    mean_wrong_del_K = mean(R_sort(2:end,:),1); 

end 

success_spread = R_sort(1,:) - mean_wrong_del_K; 

S2 = mean(success_spread(find(isnan(success_spread) == 0))); 

 

 

%======================================================================== 

%======================================================================== 

function [F2 footprint] = F2_metric_gen(K,I_0,X_clusters,Y_clusters,R_clusters,x,y,IC_try,Tl) 

 

for ii = 1:size(X_clusters,2); 

    if isempty(X_clusters{ii}) || length(X_clusters{ii}) < 3; 

    else 

        tri = delaunay(X_clusters{ii},Y_clusters{ii},{'QJ'}); 

        [tri_mod av_lengths(ii)] = tri_prune(tri,X_clusters{ii},Y_clusters{ii},Tl); 

        footprint(ii) = 0; 

        footprint(ii) = tri_area(tri_mod,X_clusters{ii},Y_clusters{ii}); 

    end 

end 

F2 = mean(av_lengths); 

 

 

%======================================================================== 
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%======================================================================== 

function [F3] = F3_metric_gen(R,Tr,amp_mean_lin) 

 

total_fit_R = max(R,[],1); 

missed_twitch = amp_mean_lin(find(total_fit_R < Tr)); 

F3 = sum(missed_twitch); 

 

 

%======================================================================== 

%======================================================================== 

function [ind_end] = summary_plot(S1,S2,S3,F1,F2,F3,Tb,Ts,Tn,Tr,Tl,Ta,Tt,N,filename,IC_try,K_max,K_min,J) 

 

%COMBINATION OF SUCCESS METRICS 

S1_norm = S1/max(S1); 

S2_norm = S2/max(S2); 

S3_norm = S3/K_max; 

 

total_success = sqrt( (S2_norm).^2 + (S1_norm).^2 + (S3_norm).^2 ); 

[value ind] = max(total_success); 

 

%COMBINATION OF COST METRICS 

F1_norm = F1/max(F1); 

F2_norm = F2/max(F2); 
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F3_norm = F3/max(F3); 

 

total_failure = sqrt( (F2_norm).^2 + (F1_norm).^2 +(F3_norm).^2 ); 

[value min_failure_ind] = min(total_failure(find(total_failure))); 

failure_ind_list = find(total_failure); 

ind_f = failure_ind_list(min_failure_ind); 

 

%CALCULATING THE NET SUCCESS LEVEL 

net_success = total_success - total_failure; 

if isempty(find(net_success)) 

    val_end = 0; 

    ind_end = 1; 

else 

    [val_end temp_ind] = max(net_success(find(net_success))); 

    ind_list = find(net_success); 

    ind_end = ind_list(temp_ind); 

end 

IC_final_choice = zeros(1,length(net_success)); 

IC_final_choice(ind_end) = val_end; 

 

 

figure(99+J); clf; hold on; 

set(figure(99+J),'Position',[1 60 1600 900]); 
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subplot(2,2,2); hold on; 

for ii = 1:(K_max - K_min + 1); 

    if ii == ind_f; 

    else 

        plot3(F1_norm(ii),F2_norm(ii),0,'bo','MarkerSize',10,'LineWidth',1); 

        text(F1_norm(ii),F2_norm(ii),0,num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 

 

        plot3(F1_norm(ii),1,F3_norm(ii),'bo','MarkerSize',10,'LineWidth',1); 

        text(F1_norm(ii),1,F3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 

 

        plot3(1,F2_norm(ii),F3_norm(ii),'bo','MarkerSize',10,'LineWidth',1); 

        text(1,F2_norm(ii),F3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 

 

        plot3([0 F1_norm(ii)],[0 F2_norm(ii)],[0 F3_norm(ii)],'k-','MarkerSize',15,'LineWidth',1); 

        scatter3(F1_norm(ii),F2_norm(ii),F3_norm(ii),total_failure(ii)*100,[.7 .7 .7],'filled'); 

        text(F1_norm(ii),F2_norm(ii),F3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Right','VerticalAlignment','Bottom','FontWeight','Bold','FontSize',12,'Margin',15); 

    end 

end 

plot3(F1_norm(ind_f),F2_norm(ind_f),0,'ro','MarkerSize',10,'LineWidth',2); 

text(F1_norm(ind_f),F2_norm(ind_f),0,num2str(IC_try(ind_f)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3(F1_norm(ind_f),1,F3_norm(ind_f),'ro','MarkerSize',10,'LineWidth',2); 
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text(F1_norm(ind_f),1,F3_norm(ind_f),num2str(IC_try(ind_f)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3(1,F2_norm(ind_f),F3_norm(ind_f),'ro','MarkerSize',10,'LineWidth',2); 

text(1,F2_norm(ind_f),F3_norm(ind_f),num2str(IC_try(ind_f)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3([0 F1_norm(ind_f)],[0 F2_norm(ind_f)],[0 F3_norm(ind_f)],'r-','MarkerSize',15,'LineWidth',2); 

scatter3(F1_norm(ind_f),F2_norm(ind_f),F3_norm(ind_f),total_failure(ind_f)*100,'r','filled'); 

text(F1_norm(ind_f),F2_norm(ind_f),F3_norm(ind_f),num2str(IC_try(ind_f)),'HorizontalAlignment','Right','VerticalAlignment','Bottom','FontWeight','Bold','FontSize',12,'Margin',15); 

view(3); grid on; axis([0 1 0 1 0 1]); 

xlabel('Correlation Difference (F_1)','FontSize',12); ylabel('Scatter (F_2)','FontSize',12); zlabel('Missed-Twitch (F_3)','FontSize',12); title('Failure 

Vector','FontWeight','Bold','FontSize',14); 

set(gca,'FontSize',12); 

 

subplot(2,2,1); hold on; 

for ii = 1:(K_max - K_min + 1); 

    if ii == ind; 

    else 

        plot3(S2_norm(ii),S1_norm(ii),0,'bo','MarkerSize',10,'LineWidth',1); 

        text(S2_norm(ii),S1_norm(ii),0,num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 

 

        plot3(S2_norm(ii),1,S3_norm(ii),'bo','MarkerSize',10,'LineWidth',1); 

        text(S2_norm(ii),1,S3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 
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        plot3(1,S1_norm(ii),S3_norm(ii),'bo','MarkerSize',10,'LineWidth',1); 

        text(1,S1_norm(ii),S3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Center','FontWeight','Light','FontSize',10,'Color','b'); 

 

        plot3([0 S2_norm(ii)],[0 S1_norm(ii)],[0 S3_norm(ii)],'k-','MarkerSize',15,'LineWidth',1); 

        scatter3(S2_norm(ii),S1_norm(ii),S3_norm(ii),total_success(ii)*100,[.7 .7 .7],'filled'); 

        text(S2_norm(ii),S1_norm(ii),S3_norm(ii),num2str(IC_try(ii)),'HorizontalAlignment','Right','VerticalAlignment','Bottom','FontWeight','Bold','FontSize',12,'Margin',15); 

    end 

end 

plot3(S2_norm(ind),S1_norm(ind),0,'ro','MarkerSize',10,'LineWidth',2); 

text(S2_norm(ind),S1_norm(ind),0,num2str(IC_try(ind)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3(S2_norm(ind),1,S3_norm(ind),'ro','MarkerSize',10,'LineWidth',2); 

text(S2_norm(ind),1,S3_norm(ind),num2str(IC_try(ind)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3(1,S1_norm(ind),S3_norm(ind),'ro','MarkerSize',10,'LineWidth',2); 

text(1,S1_norm(ind),S3_norm(ind),num2str(IC_try(ind)),'HorizontalAlignment','Center','FontWeight','Bold','FontSize',10,'Color','r'); 

 

plot3([0 S2_norm(ind)],[0 S1_norm(ind)],[0 S3_norm(ind)],'r-','MarkerSize',15,'LineWidth',2); 

scatter3(S2_norm(ind),S1_norm(ind),S3_norm(ind),total_success(ind)*100,'r','filled'); 

text(S2_norm(ind),S1_norm(ind),S3_norm(ind),num2str(IC_try(ind)),'HorizontalAlignment','Right','VerticalAlignment','Bottom','FontWeight','Bold','FontSize',12,'Margin',15); 

view(3); grid on; axis([0 1 0 1 0 1]); 

xlabel('Success Spread (S_1)','FontSize',12); ylabel('Area Coverage (S_2)','FontSize',12); zlabel('Cell Number (S_3)','FontSize',12); title('Success 

Vector','FontWeight','Bold','FontSize',14); 
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set(gca,'FontSize',12); 

 

subplot(2,1,2); hold on; 

bar([net_success(1:(K_max - K_min + 1))' total_failure(1:(K_max - K_min + 1))'],'stacked'); colormap([.7 .7 .7 ; .6 0 0]); 

bar(IC_final_choice(1:(K_max - K_min + 1)),'FaceColor',[0 0 .6]); 

set(gca,'XTick',1:(K_max - K_min + 1),'FontSize',12); 

tick_labels = []; 

for ii = 1:(K_max - K_min + 1); 

    tick_labels_new = [num2str(IC_try(ii)) '(' num2str(S3(ii)) ')']; 

    tick_labels = strvcat(tick_labels,tick_labels_new); 

end 

set(gca,'XTickLabel',tick_labels); 

monte_carlo_info = strvcat(['Tb = ' num2str(Tb)],['N = ' num2str(N)],['Ts = ' num2str(Ts)],['Tn = ' num2str(Tn)],['Tr = ' num2str(Tr)],['Tl = ' num2str(Tl)],['Ta = ' num2str(Ta)],['Tt = ' 

num2str(Tt)]); 

text(K_max - K_min + 1.5,max(net_success + total_failure),monte_carlo_info,'FontWeight','Bold','FontSize',12,'HorizontalAlignment','Left','VerticalAlignment','Top'); 

title('Net Success Score','FontWeight','Bold','FontSize',14); ylabel('Net Success Value','FontSize',12); xlabel('K (# of Clusters Identified)','FontSize',12); 

legend('Net Success','Failure','Winner','Location','SouthEastOutside'); legend boxoff; 
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