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We describe a 2D shape abstraction system that aims to clarify the structure without loss of

the expressiveness of the original shape. To do this, traditional approaches in computer graph-

ics typically use simplification techniques based on local adjustments of vertices, edges and

faces. However, this thesis argues that an effective depiction can benefit from a computational

representation compatible with a human’s understanding of the shape. To support this argu-

ment, we first present a system that parses a 2D planar shape into a part-based structure that

approximately respects the structural organization in human perception. Then we show that

simplifications of this representation align with the common artistic practices in shape abstrac-

tion, in which only prominent parts are preserved and the visual structures are more clarified

than using traditional simplification methods based on local adaptation of geometric details.

To compute the part structure of a given shape, we first propose that a part connects to the

rest of the shape via its transition. Then we use a simple but general model to mathematically

locate and describe this transition. We show that our model generalizes previously discovered

theories on how the human visual system parses a shape into parts. It also provides a plausible

way of explanatory shape analysis that requires clean pruning of parts without leaving attach-

ment traces. Following insights from cognitive science, we have designed a set of heuristics to
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resolve ambiguities in the representation of the shape. A set of stroke-based tools is designed

so that the user can interact with the system to guide the shape analysis as well as to evaluate

and optimize the performance of the parser.

Geometric thresholds and part selection tools are provided for the user to specify a subset

of the part structure computed from the above step. The abstraction is done by simply recon-

structing the shape from this subset. The reconstruction respects the geometric properties of the

original part attachment and allows topological alternations of the structure resulting from elim-

ination of less salient parts, which greatly improves the flexibility in the reconstruction. The

perceptual study we have conducted confirms that human subjects indeed prefer our abstrac-

tions over the traditional 2D shape simplifications by Douglas-Peucker or Progressive Meshes,

both of which try to approximate certain geometric properties during the simplifications.
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Chapter 1

Representation and Depiction

An effective depiction system lets the viewer effortlessly grasp shape information from the

image. Accurate photorealistic images (which are the ultimate goal of photorealistic rendering)

do not necessarily achieve this best. Good examples of effective depictions are often found in

hand-drawn technical illustrations, stylized caricatures, terrain and road maps and many other

forms of visual arts.

Isle of Wight

Hull

Sea of

the

Hebrides
EdinburghEdinburgh

Figure 1.1: Left: A map of the United Kingdom and Republic of Ireland; Right: a simplified
version by a cartographer [Robinson et al., 1995]

Figure 1.1 shows two maps of the United Kingdom and Republic of Ireland. The left one

is rendered using standard Azimuthal orthographic projection. The right one is the simplified

version we obtained from Robinson and Morrison’s cartography text [Robinson et al., 1995]. In

this simplified version, many details that exist in the left one are eliminated, including removal

of some of the islands (for example, those around the sea of the Hebrides). Also, notice that

many bays (firths) that are kept in the abstracted version are opened up so that their presence is

emphasized, such as those to the north of Edinburgh and the one to the south of Hull. Again, to

the south, the Isle of Wight is made more separated from the coast of England.
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According to Robinson and Morrison, cartographic abstraction is a procedure that involves

two steps: first analyzing the shape of the outlines and then retaining those distinctive shapes

on the map. When cartographers abstract shapes, they do not simply leave out details. Instead,

they create bias in the sizes and relative configurations of the geometric components they want

to convey. In addition, these components are purposely made more readable and pertinent.

Geometric accuracy here is less important than using clean, smooth lines to emphasize the

main component parts, which they call the “basic shapes” of the map.

Cartography is not alone in such practices. The same philosophy is often seen in other

forms of artistic depiction. It is widely agreed that artistic drawing goes beyond the reproduc-

tion of contours. Instead, the subject is always broken down into the most basic form that the

drawer perceives, and lines are the expression of the inner form of the awareness of this set

of components and particularities [Taylor, 1987]. Art theorists exclusively advocate the rep-

resentational concept [Arnheim, 2004a], which is claimed to be the essential building block

of “image-making of any kind.” Representational concepts furnish the concepts of the visual

forms being depicted, and the particular formation of this representation in the human visual

system distinguishes artistic drawings from nonartistic imaging.

It is certainly desirable for a computer depiction system to follow the same theory so that

more effective imaging is possible by systematic structural abstraction. To confirm the feasibil-

ity of adopting this philosophy, this thesis proposes a computational model of 2D shape whose

representation is in terms of parts. We also describe an experimental shape abstraction system

based on this representation. In respect of artistic practice, our depiction system generates the

abstracted shapes from a subset of the component parts that is interactively specified by the

user based on the geometric prominence and the importance of the part. The effectiveness of

this approach is assessed through a perceptual preference study.

For such a system, it is essential that the shape to be depicted is properly represented in order

to facilitate the abstraction. In building up our part-based representation, we borrow elements

from various existing theories on human perceptual organization and structural shape models.

In the rest of this chapter, we survey the state-of-the-art research on how shapes are represented

by the human visual system, by computer graphics and by computer vision systems.
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1.1 Shape, representation and depiction

In traditional computer graphics research, especially photorealistic rendering, shapes are rep-

resented in terms of geometric primitives, including pixels, points, curves and surfaces, among

which polygons and triangular meshes are probably the most popular representations of shapes

in 2D and 3D spaces, respectively. Since the goal is to simulate the appearance of the real

world efficiently and realistically, shapes in these systems are represented in such a way that

the geometric accuracy is maximized under a given length of representation, which typically

uses geometric level of detail techniques.

Computer vision research, on the other hand, exclusively involves transforming raw input of

shapes (i.e., digital images or geometries, which are also known as low-level representations)

into higher-level representations that are suitable for comparison. Depending on the specific

task or application, hundreds of different kinds of shape representation schemes have been

proposed to facilitate shape indexing, classification, segmentation and recognition [Zhang and

Lu, 2004]. For such systems, it is commonly agreed that stability is an important requirement

for a good representation. Given the measures of similarities between shapes and between

their representations, a small change in a shape should produces only a small change in its

representation, and vice versa. This practice of representing shapes is often called the integral

invariants of the shape, which are stable under various shape operations under certain distance

measure in the shape space [Hoffman, 1983; Kuijper and Olsen, 2005; Manay et al., 2006;

Ogniewicz, 1994; Shaked and Bruckstein, 1998]. However, the representation may or may not

reflect the real behavior of human vision. For example, the widely used spectral transformation

techniques, including Fourier and wavelet descriptors, reflect the hypothesis that at each stage

of the visual perception, the output is a linear or nonlinear combination of the processing of

the neurons at different scales. However, this hypothesis was found to be invalid, according to

Albright and Gross [Albright and Gross, 1990]

A successful artistic depiction presents the visual information in a way that leads to a desired

representation in the viewer’s visual system. Likewise, the representation scheme underlying

our graphics system must be compatible with the human visual representation and initiates the
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recognition [Hoffman, 1983; Hoffman and Richards, 1984]. This means that the representation

in our application should correlate well with the representation of the human visual system.

This makes it possible to directly render, enhance or manipulate the features or structures that

the recognition relies on to guarantee the recognizability and achieve the effectiveness of the

depiction.

Quite a few perceptually driven shape rendering and model simplification methods have

been proposed by applying knowledge of the limitations and capabilities of the human visual

perception. Most of this work is grounded in physiological and psychophysical study on early

vision [Ferwerda, 2001; Hubel, 1988] The perception of color, orientation, frequency, motion,

etc., is studied and applied by enhancing the visual responses in building working visualization

systems such as those by Gooch et al. [2004] and Rusinkiewicz et al. [2006], among many

others.

Hubel and Wiesel’s discovery of neuronal edge detectors [Hubel and Wiesel, 1968] suggests

the very beginning of visual processing produces a shape representation in terms of detected

edges and silhouettes, which in turn become the inputs of further perceptual activities. Recog-

nition, however, does not rely directly on the boundary geometries of the shape since people

see similarity between shapes with different geometries. Thus, in our work, we try to consider

the possibility of how an effective computer depiction system can benefit from higher-level

shape representations based on the understanding of higher-level perceptual behavior in psy-

chophysics and cognitive science research.

1.1.1 Structural representation in terms of parts

The mechanism of how the human visual system recognizes shapes is still not clear, but we do

know that recognition of complex objects is done through the integration of shape components

[Gross et al., 1985; Sundar et al., 2003; Tsunoda et al., 2001]. The idea of considering basic

components and groups of components as the basic and higher-level structural units supports

the theory of parts proposed by Hoffman and Richards [1984], who showed that parts can be

considered as the basic shape unit in human perception. The visual system decomposes shapes

into parts and the recognition proceeds in terms of matching the patterns or configurations of
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the parts.

The idea of shape decomposition is consistent with (and goes beyond) the classic frame-

work by Marr [Marr, 1977; Marr and Nishihara, 1978], which proposes representing the shape

in terms of generalized cylinders—a hierarchical representation of elongated tube-like compo-

nents that is formally a generalization of a cylinder, where a base (not necessarily circular as in

a cylinder) is swept along some axis (not necessarily straight), allowing for some variations in

the size of the base.

Biederman [1987] has made similar arguments about the process of shape perception, which

suggests that recognition proceeds in terms of basic components, geons, of the shape. Dickin-

son et al. [1991] apply this idea to build a recognition system by matching shape components

with a set of predefined 3D primitives in a hierarchical way. Shapes are decomposed into

regions and then into groups of regions (or aspects [Dickinson et al., 1991]). The volume

primitives and their connectivity are inferred from the aspect hierarchy.

Representation of shape in terms of parts is supported by research in cognitive science.

Siddiqi et al. show that humans perceive parts consistently, and such consistency is not only

intrapersonal, but also interpersonal. The viewer tends to decompose a shape into parts con-

sistently at different times, and different humans decompose the shape in mostly the same way

[Siddiqi et al., 1996], although the salience of each part and the subjects’ understanding of its

morphology may vary depending to its geometry [Hoffman and Singh, 1997; Siddiqi et al.,

2001b].

This implies that a shape representation compatible with human recognition should include

the notion of a part structure of the shape. The enhancement, distortion or exaggeration of

shape features should maintain the consistency of this structure to avoid loss of identifiability.

1.1.2 Art as structural abstraction

Considering artistic depiction as an expression of the apprehended structure of a scene is sup-

ported by art theorists and practiced in art. Every drawing guidebook tells the student to learn

to see the subject and practice seeing the composition of the shape. For example, according
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to Delacroix [Arnheim, 2004a], in drawing the object, the artist must first be well aware of

the “contrast of its principal lines” before he “sets pencil to paper”. Here, the principal lines

refer to those frames and skeletons that help to sketch out the essential structure of the subject.

Depiction is considered shaping the structure of the form that one has in mind.

The comprehension of the subject’s structure is particularly emphasized in drawing guide-

books for children, as humans in their early stages often lack the ability to build this structure

through analytical observation of subjects. That leads to drawings with “fused” parts and com-

ponents [Eng, 1999; Speed, 1972]1. Eng argues that this perceptual fusion happens when the

undeveloped visual system familiarizes itself with the complex form resulting from the com-

bination of parts until it is capable of conceiving the combination as a whole. Guided by this

(limited) perception, the drawing exhibits a degree of “over-abstractionism”, such as illustrated

in Figure 1.2 [Arnheim, 2004a, Chapter IV]. A child’s drawing skill grows when his ability of

observation becomes more developed and when he is able to break down more complex shapes

into simple and meaningful units.

Figure 1.2: A horse drawn by a five-year-old boy. Legs are fused together. Courtesy of [Arn-
heim, 2004a], used with permission.

The example of children’s drawing shows that to achieve this goal, the awareness of the

structural, part-based representation is the first essential step. This representation informs the

system with “what is known” about the scene, as opposed to “what is seen”. According to the

20th century artist Picasso, the former, rather than the latter, is what an artist depicts [Durand,

2002]. In Chapter 4 we demonstrate that a depiction system shares a similar relationship be-

tween “what to depict” and the resulting depiction—the images may fail to communicate the

1 This also partly results from the contour fusion in the motor act of drawing.
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shape composition as having distinct parts, if they are not present in the underlying representa-

tion. As has been pointed out by Durand [2002], depiction can be considered as the inverse of

the vision problem. The computer graphics system is responsible for the recognizability of the

depicted results.

Certainly, depiction can go far beyond a visual presentation of “what is known” and it means

a lot more than just conveying the knowledge about the shape completely and honestly. This is

primarily because human vision is not merely a photographic sensory system; instead, it is an

act of generalization, symbolization and associative thinking about the geometry concepts the

human visual system perceives [Arnheim, 2004b; Imhof, 1982]. This is not only demonstrated

in cognitive science, but is also acknowledged by artists. An artist always draws a component

as a certain peculiar instance of a symbolic form that he has learned. For example, the shape of

the human head is often conceptualized as “an elongated circle” [Ludwin, 1998; Willats, 1997].

One primary goal of depiction, as a form of expression, is to convey the shape geometry and

structural composition that the artists choose to see and intend to show:

Art is not what you see but what you make others see.

—Edgar Degas2

Artists do not attempt to, neither do they need to copy the geometry of the shape onto the

paper as accurately as they can. Instead, shape generalization strategies like simplification,

deformation, exaggeration, grouping and spatial rearrangement are widely used, as the reflec-

tion of the conceptualization at the “seeing” stage [Agrawala and Stolte, 2001; Imhof, 1982;

Robinson et al., 1995].

However, improper placement of line strokes may result in a problematic image that leads

to unintentional structural perception of the object. Recall that the undeveloped motor action

could cause fused depiction that fails to articulate the composition of part structure of the vi-

sual form. Recall also that the human visual system relies on the part structure for recognition

[Hoffman and Richards, 1984]. However, only a small number of parts is essential for this pur-

pose and this set of parts determines how far the abstraction can go. In an abstracted depiction,

2 http://en.wikiquote.org/wiki/Edgar Degas

http://en.wikiquote.org/wiki/Edgar_Degas
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Figure 1.3: A face shape with levels of abstractions. The left-most, framed, is a photograph of
a human face. The next four are depictions of this face with four levels of abstraction. Picture
courtesy of McCloud [1994], used with permission.

parts that are not essential are candidates for omission.

Figure 1.3 shows an example from the classic comic book “Understanding Comics: The

Invisible Art” by Scott McCloud [McCloud, 1994] with four abstraction levels of a human

face. As shown in the right-most depiction, a few lines and dots are readily perceived as a face

by the human visual system.

From the examples in Figure 1.3, we also notice that an artist’s skill goes far beyond just leav-

ing out irrelevant parts. Preserved parts are presented with sophisticated strokes and hatches, as

well as exaggeration, idealization and symbolization. In the second depiction, for example, the

concavity of the cheeks is exaggerated, and in the third and the fourth, the eyes are symbolized

by two dots and the mouth is simply a horizontal line segment. Artists are also good at putting

together the preserved parts in a coherent way. For example, although hairs and ears are left

out in the right-most depiction, the gaps they leave are naturally filled and the parent part they

attach to, the head, is presented with a single stroke.

All these are interesting observations that we consider could potentially help a computer

graphics system to produce more effective rendering results. In particular, the task that maps

“scene primitives” into corresponding “picture strokes” through omission, exaggeration, etc.,

is described using the denotation system [Willats, 1997, Part II], as opposed to the drawing

system [Willats, 1997, Part I] which determines the location and orientation of each stroke in

the picture space. However, as the first step towards a rendering system that explicitly targets

for clarification and recognizability of the depiction, in our research we focus on how we can let

our system analyze the structural representation in terms of parts and coherently compose the

abstracted version with a selective set of parts. Also, we would like to provide a user interface
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that allows the user to interactively guide the shape analysis and the selection of essential parts.

We limit the scope to 2D shapes that contain no self-intersections. As an experimental system,

we further limit the ability of our shape representation by considering only the hierarchical

composition of parts. Modeling of other elements of perceptual organization, such as patterns,

texture, etc., requires the development of a more powerful shape understanding system, and we

leave this for future work.

1.2 Related work

Our research follows the path of structural simplification. For the computation of our structural

representation, we incorporate existing theories from cognitive science research on perceptual

organization and shape description, such as the minimum principle and causality theory. On a

high level, we also follow the understanding of the Gestalt psychologists to locate and utilize

the geometric regularities, e.g., symmetry, proximity, etc., for cues of shape composition in

terms of parts. This process begins with locating symmetries between edges of shapes [Blum,

1973; Kimia, 2003; Tek and Kimia, 1999].

1.2.1 Locally reflective symmetry and axial representation

Before we go into more detail about computational approaches to symmetry related shape rep-

resentations, we would like to point out that in computer graphics and human vision research,

symmetry is a general geometric concept. Formally, in Euclidean geometry, symmetry refers to

the group of transformations that are bijective and distance preserving (globally isometric) with

the composition as the group operation3 [Beckman, 1953]. Specifically, such transformations

include reflection, translation, rotation and any of their compositions. In our research, however,

we only consider the reflective symmetry, partly due to the limitation of the state-of-the-art

techniques in discovering all potential symmetries. Fortunately, most single objects in reality

3 This definition of symmetry can be extended to the group of any transformations (or functions) on any system
that preserves all the features of interest of the system. See Rosen [2008] for more detailed discussions of symmetry
and group theory in a more general setting.
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are dominated by reflective symmetry. Symmetries corresponding to translational and rota-

tional transformations are more often seen among different objects when they exhibit certain

patterns. As explained in the previous section, an investigation into symmetries such as these

is outside the scope of our research.

A 2D shape Ω is said to be reflectively symmetric if there exists a line l such that for any

point p ∈ Ω, its reflective counterpart with respective to l, p′, is also in Ω, or d(Ω, p′) =

0. Figure 1.4(a) shows such an example, where each point on the left curve can be mapped

one-to-one to its corresponding point on the right curve such that all these pairs share a same

perpendicular bisector. However, for a more general 2D shape like shown in Figure 1.4(b),

such a reflection does not typically exist. Nevertheless, it is still possible to find this one-to-one

map between two curve segments along the shape boundary such that the perpendicular feet of

all the pairs form a smooth curve. This was first studied by Brady and Asada who called these

continuous, one-to-one mapped pairs of boundary points the smoothed local symmetries (SLS)

[Brady and Asada, 1984]. The smoothed curve is called the SLS axis.
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Figure 1.4: a: Reflection about a line; b: Reflection about a curve. Smoothed locally reflective
symmetry (right) can be considered as a generalization of the globally reflective symmetry (left)

In the next chapter, we will come back to explore more about the differential geometry

and its relationship to the proximity of pairs of contour segments along the smoothed local

symmetries. Here we merely point out that Figure 1.4 also implies the generative viewpoint of

the axial shape representation [Rosenfeld, 1986], which states that the shape could be generated

by sweeping a template geometry of varying size along a curve called the rib or spine. This

template geometry, called the generator, could take any shape (provided that the resulting shape

is not degenerate or self-intersecting). In the case of Figure 1.4, it is a line segment. In most

popular axial representations, the generator is reflectively symmetric along the axis with respect
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to the the line passing through by the point on the curve in a certain direction. To the best

of the author’s knowledge, most structural shape simplification approaches in this category

exclusively choose axial shape representations. The structural simplification is thus reduced to

axial pruning.

Axial representation is region-based. Formally, each axial segment ds corresponds to a sub-

region <ds such that the whole shape Ω is a union of these subregions, i.e., ΩS =
⋃
ds∈S<ds.

Here S is the entire axis of the shape and <ds is the generator at the axial segment ds. The ge-

ometric parameters of the generator at each point on the spine together with the axis itself fully

define the geometry of the shape. The axial representation is said to recover the shape. This

shape recovered by the axial representation is unique, but this is not true in the other direction.

In general, one point of the shape could correspond to multiple axial segments since generators

can overlap.

Most commonly, the subregion is locally symmetric to itself with respective to the axial seg-

ment it corresponds to. Symmetry axis representations are popular not only because they are

mathematically well-defined, but also because symmetry is believed to be a crucial organiz-

ing principle of shape perception [Leyton, 1987]. This has been validated by psychophysical

studies in the past decades. Kovâcs and Julesz [Kovâcs and Julesz, 1994; Kovâcs et al., 1998]

have offered strong psychophysical evidence of our visual system’s sensitivity to medial prop-

erties. Burbeck and Pizer’s work suggests that the spatial symmetry is indeed computed and

represented by the human visual system [Burbeck and Pizer, 1995]. They showed that pairs of

responses from shape boundary signals (at a particular scale [Burbeck et al., 1996]) are gath-

ered and transferred for subsequent visual processing. Specifically, at a particular scale, two

boundary patches of which the perceived normals form the same angle to the line that connects

them are correlated and encoded in the visual system. This directly supports the mathematical

definition of a local symmetry pair, which will be described in detail later in Section 2.4.1 of

next chapter. Lee et al. [1998] have presented evidence that early stages of visual processing

are also involved in the perception of the symmetries of local features, though this involvement

seems to decrease with increasing feature width. This work also implied that mass centers of

local symmetry patches receive stronger visual responses.
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1.2.2 Medial axis transformation

The most popular axial representation is probably the medial axis transformation (MAT) pro-

posed by Blum [1967; 1973]. It is defined as the medial axis, the loci of the centers of maxi-

mally inscribed disks, together with the radius function defined on the axis. Denote the shape

as Ω; the corresponding medial axis as setM and the radius function onM asR :M→ R+.

It turns out that Ω =
⋃
`∈MC(`,R(`)), where C(`,R(`)) refers to the circle centered at `.

It has a radius of R(`) and is tangent to the shape boundary on at least two points. To some

extent the medial axis initiates the recognition by giving the intuitive indication of the shape

organization with its graph structure. Each edge (called the medial edge) of its graph structure

corresponds to some portion of the boundary. And for each boundary vertex, there must exists

at least one corresponding point (called the medial center) or continuous curve segment (called

the ligature [Blum, 1973]) on the medial edge.

In Figure 1.5(a), the foreground medial edges show nice correspondences to the head, body

and fins of the shark. This way, the MAT naturally connects the region and the boundary of

the shape and the inherent graph structure facilitates graph-based shape matching [Pelillo et al.,

1998; Siddiqi et al., 1998]. With all these advantages, MAT plays an active role in computer

vision and shape analysis [Blum, 1973; Blum and Nagel, 1978; Rosenfeld, 1986; Siddiqi et al.,

1998].

However, this representation suffers from instability. The transformation from the shape

boundary to the medial axis is not continuous under simple distance space like Hausdorff met-

ric dH [Munkres, 1999]. That is, for two shapes Ω1 and Ω2, dH(Ω1,Ω2) → 0 does not guar-

antee that dH(M(Ω1),M(Ω2)) → 0. We call this the differential instability of the MAT. For

example, unstable branches of the medial axis could appear or disappear due to small boundary

perturbations, as shown in Figure 1.5(b). Instability of the MAT can also be revealed when a

curve is discretized—the medial axis of a polygonal approximation (c) has many more hairs

than that of the corresponding shape with a smooth boundary. Another case of instability is

shown in (d) where a very small hole is added in the middle, but the medial axis changes

substantially so that the topological structure of the axis agrees with the modified shape.



13

These perturbations are regarded as noise in image analysis [Choi and Seidel, 2001; Og-

niewicz and Kübler, 1995; Shaked and Bruckstein, 1998]. All this research suggests that minor

perturbations should be considered of less importance (or not considered at all) in the computed

shape representation, and the corresponding portion of the medial axis should be pruned. Vari-

ous approaches to medial axis pruning exist. However, they follow the same paradigm, that is,

a significance function is defined on the medial axis, and the medial edges are pruned according

to a given threshold.

(a) (b)

(c) (d)

Figure 1.5: The instability of the MAT. (a) The shape and its medial axis; (b) a small per-
turbation of the shark around the mouth results in a large change in the corresponding medial
axis in both the foreground and background; (c) the medial axis of the polygonal approxima-
tion; (d) the medial axis of the shark with a tiny hole in the middle. In all cases we have
dH(Ω1,Ω2)→ 0, but the medial axes are very different

Different significance functions were defined. For example, Montanari’s approach of using

propagation velocity of the symmetry axis in the grassfire model was typical in early attempts

[Montanari, 1968; 1969]. These pruning methods removed unstable medial branches but also

resulted in disconnected axes. However, Shaked [Shaked and Bruckstein, 1998] argued that

an acceptable pruning method should preserve the axial structure and the result should also be

continuous—small differences in pruning degree result in small differences in the axes. Og-

niewicz and Kübler [1995] concluded that there were only a few significance measures which

could be used in conjunction with a simple thresholding algorithm with no danger of discon-

nection. Such significance measures had a single local maximum on the axis. Ogniewicz and

Kübler suggested a few residual functions on the axis as the definition of the significance, in-

cluding the ratio of the potential residual value (the length of boundary unfolded by the axis)
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and the chord residual value (the distance between the axis’ anchor points on the medial edge)

[Ogniewicz, 1994; Ogniewicz and Kübler, 1995], which were actually identical to the signifi-

cance measure given by Blum and Nagel [Blum and Nagel, 1978].

Besides pruning, there exist other methods to avoid differential instabilities, such as defining

a proper distance metric between axes [Choi and Seidel, 2001], or using certain curve matching

approaches like the optimal curve alignment cost [Sebastian et al., 2003].

1.2.3 Structural pruning and robust medial representation

MAT pruning as described in the previous section tries to eliminate long axial edges that cor-

respond to small perturbs to the shape region. However, even though the axis changes contin-

uously with the object’s boundary in the sense of Hausdorff distance, the instabilities of the

medial axis are also found in the topological connectivity among the axial segments (or inter-

nal structural alterations of bifurcation points) caused by slight changes in the shape boundary

[August et al., 1999]. We call such alterations of bifurcations the structural instabilities.

The structural instability not only makes it infeasible to use the medial axis to describe the

hierarchy of the shape components, but also makes it hard to design shape matching algo-

rithms that are based on the graph structure of the medial axis [Siddiqi et al., 1998; Zhu and

Yuille, 1995]. Crafting different matching schemes between medial axes, so that the MAT rep-

resentations of more similar shapes have closer matches, is one popular type of approach to

graph-based shape matching.

The shock graph [Kimia et al., 1995] is probably the most popular and successful represen-

tation in this category. In practice, it is closely related to the medial axis transformation [Kimia,

2003; Serra, 1982]. Instead of assigning a radius to each point on the medial axis, each node in

a shock graph is either a continuous segment of medial axis or a singular point. A first-order

shock is an axial segment along which the associated radius changes monotonically. A second-

order shock is a stationary axial point where the radius reaches a local minimum. A third-order
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shock is an axial segment along which the associated radius stays constant. Finally a fourth-

order shock is any medial point that does not belong to any of the other three categories4. The

graph is constructed by connecting adjacent medial curves or points in the original medial axis.

Quite a few shock graph matching algorithms have proposed for object classification and

recognition. General graph matching is known to be NP-hard [Garey and Johnson, 1979].

But for shock graphs, which can be converted to tree structures under the shock graph grammar

defined by Siddiqi and Kimia [Siddiqi and Kimia, 1996], polynomial-time matching algorithms

are possible. For example, Siddiqi et al. [1998] reduce the problem into matching of eigenvalue

sums of sub-adjacency-matrices of the graph using semidefinite programming. Sebastian et al.

[2001] propose using editing distance to measure the similarity between two shock graphs.

Here the editing distance is defined to be the minimum number of atomic editing steps it takes

to convert one shock graph to the other.

1.2.4 Approximate symmetry

An alternative to complicated MAT matching algorithms is to modify the MAT representation

to facilitate the shape matching. To the best of our knowledge, this family of approaches goes

back to the shape representation; its proponents believe that the shape representation in this

sense should help capture the “intuitive concepts” in the sense of how the human visual system

analyzes and understands shapes [Richards and Hoffman, 1985; Zhu and Yuille, 1995]. Human

perception is implicitly or explicitly modeled in such representations [Mumford, 1991]. In this

approach there are two different categories of MAT-based representations which compared with

4 The original definition of the shock graph by Kimia et. al. is given in a more general setting. In Kimia
et al. [1995], a shock is defined as the touching point of distinctive boundary points during the process of shape
deformation. According to the time of formation, a shock can be one of four types. A first-order shock is a
boundary point with normal discontinuity. A second-order shock is a local minimum of time when it is formed.
A third-order shock takes the same amount of time to form as its neighboring shocks. And when the process of
deformation collapses to a single point a fourth-order shock is formed. The whole deformation procedure gives a
complete shape segmentation by the sequence of such shocks. Since the structure of the shape remains invariant
during the deformation, the resulting segmentation naturally respects the structure of the original shape as well.
Obviously the resulting shock set depends on the specific deformation scheme. To preserve the shape structure,
Kimia et al. proposed using a combination of constant boundary propagation (the grassfire) and heat diffusion
(mean curvature flow). However, almost all the existing shock-graph based shape matching systems assume pure
grassfire boundary propagation, which leads to the definition above in terms of the differential properties of radii
along the medial axis.
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the standard MAT or shock graphs, are more robust due to less sensitivity to small boundary

perturbations.

One family of such representations tries to retain only good portions of the medial axis.

August et al. [1999] point out that the alternating structures of the medial axis are typically

related to ligatures. They find that these are less intuitive as visual hints for a human to perceive

the structure of the shape. Thus, they propose to use the set of non-ligature medial centers

as a more stable, better perceptually-aligned shape representation. This line of research is

further elaborated by Macrini et al. [2008] with a more robust ligature detection algorithm and

a structured graphical representation called a bone graph that properly associates non-ligature

medial edges. In such representations, the connectivity between bones is no longer defined by

the connectivity of the medial edges. Instead, it pursues a more intuitive graph structure.

Approximate symmetry is a different approach. It trades accuracy in shape geometry for the

simplicity of the representation. The theory behind this representation admits that the shape

structure that the human visual system perceives is not necessarily the result of a precise geo-

metric processing. A partial, approximate description could be more intuitive in capturing the

structural representation that the human visual system uses to recognize and understand visual

forms [Alt et al., 1988b; Mitra et al., 2006; Podolak et al., 2006].

One way to justify the approximate symmetry is the minimum principle [Feldman, 1999],

which advocates, from a philosophy perspective, that simpler theories and shorter descriptions

about the world tend to be closer to the truth. Approximate symmetry’s another name, which

tends to be more popular in physics research, is the broken symmetry [Rosen, 1998; Wigner,

1965], and it implies another justification: the causal explanation of the shape formation by

Leyton [1992]. The causality theory considers the current state of the shape to be the result of

a series of symmetry breaking events. These events generally break the previously established

symmetry in geometry. Accordingly, the shape gets more and more complicated.

An example of such a procedure is illustrated in Figure 1.6, where a cup and a plate with

perfect reflective symmetry, with respect to the plane that passes through the dotted line and

parallel to the view direction, is shown in (a). This symmetry is broken when the cup is made

into a mug with a handle attached on the left, as shown in Figure 1.6(b). The symmetry can
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be further broken when the mug is placed into an environment where the lighting condition is

asymmetric (c) or even further when it is used to serve a cup of tea (d).

(a) (b) (c) (d)

Figure 1.6: A sequence of events that breaks the symmetry of the original shape.

Thus, the initial symmetry with respect to the dotted line is not the accurate symmetry of

the final asymmetric scene. Instead, it represents the major, dominating symmetry. To recover

the initial symmetry of (a) from the final result of (d), a shape analysis system must be able to

“smartly” disregard the confusion caused by the asymmetric handle attachment, shading and

teabag.

Now the questions is, what the best approximate symmetry for a given shape is? An imme-

diate answer would be, the one that seems most natural! More specifically, the approximate

symmetry of a given shape should grasp the most essential and sufficient structural information

of the shape. The region that the symmetry recovers represents our general knowledge about

the shape of this object, thus initiates our recognition of it. This approximate symmetry is

the key to the structurally based shape abstraction since its ultimate goal is to keep only these

essential parts!

Unfortunately, this “naturalness” is not a criterion that a computer algorithm can accept. In

fact, computing the approximate symmetry has been an open-ended question simply because

the problem is not well defined.

One path of research in finding approximate symmetries is based on exact symmetry detec-

tion algorithms that try to identify the transformation between geometric primitives, such as

Atallah’s algorithms in finding rigid transformation [Atallah, 1984] and reflective symmetries

[Atallah, 1985] in an exact sense. The approximate versions of the above problems were then

studied by Alt et al. [1988a], where the geometry was limited to point sets at first and then
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extended to polygons [Alt et al., 1991]. This line of research is more widely studied in com-

puter vision for pattern recognition, registration, tracking, multiple view geometry [Goshtasby,

2005; Hartley and Zisserman, 2003], and robust regression techniques have been applied, such

as the RANSAC [Fischler and Bolles, 1987; Stewart, 1999] to handle very noisy inputs, even

with structural outliers [Chum and Matas, 2005; Georgescu and Meer, 2004; Jin, 2008].

As opposed to seeking correspondence between different objects, structure computation in

our scope demands the computation of self-symmetry. Following the same transformation-

based framework, for a given shape Ω, this problem is typically formalized so as to find a

transformation T, such that for all the points p ∈ Ω, their maps under this transformation

T(p) are not very far from Ω itself, or that there is an exactly symmetric shape Ω′ under this

transformation (T(Ω′) = Ω′) that is not very far from Ω [Kazhdan et al., 2004]. The phrase

“not very far” needs further formalization. The measurement proposed by Alt et al. [1988a;

1991] demands that the maximum of this distance should be below some threshold ε. While

the more popular PCA technique seeks minimization of the sum of all these distances, this is

considered not robust [Meer, 2004] and less intuitive [Podolak et al., 2006].

Although the whole point of approximate symmetry is to simplify the representation of the

transformation, sticking to one single reflection might be too simplified. Recall Figure 1.4(b)

that shows a typical case when a single reflective transformation is not quite capable of de-

scribing the symmetry. Instead, the human visual system naturally perceives a one-to-one

correspondence between points along the left and the right curves via continuous, smoothly

varying transformations. These reflections represent a more complicated transformation that

transforms the curves to each other with zero error. In this sense, the whole medial axis can be

considered as one complicated (and unstable), but exact, reflective transformation.

Consider also the case of the tea mug shown in Figure 1.6. One would argue that the region

that the single reflection could possibly recover is just the main body, which gives you Fig-

ure 1.6(a)—a cup. However, the handle is the feature that separates a mug from a regular cup.

Its symmetry recovers the other important part of the mug shape that our recognition system

relies on to correctly recognize the object as a mug. Thus, in this mug shape, there are two

essential axial symmetries. Note that the axial symmetry that recovers the handle is a series of
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smoothed local reflections, as shown in Figure 1.7.

Figure 1.7: Dotted lines indicate essential symmetries and corresponding parts that make up
the mug shape.
Less relevant parts, such as the shadow and the teabag, are shown in gray.

State-of-the-art research in symmetry description agrees that in order to compute intuitive

symmetries of a given shape, the system has to provide a balance between the complexity of

the symmetry descriptor (i.e. the minimum principle [Feldman, 1999]) and the accuracy in the

recovery of the geometry from the shape descriptor. Keeping these two factors in mind, Feld-

man and Singh [2006] proposed a Bayesian probabilistic model in which the shape is explained

to be generated through a stochastic growing procedure starting from the axial structure. Thus,

computing the axis is reduced to the maximization of the joint probability of the axial structure

and the shape generated from this axis. The objective probability function takes into account

both the accuracy in recovering the shape and the complexity of the axial structure.

An alternative approach towards the approximate symmetry transformation is through sam-

pling and voting. Mitra et al. [2006] proposes sampling symmetric pairs of boundary surface

patches of 3D models; each sampled pair votes its local reflective transformation. Then local

consensuses, or modes, are located to represent the dominating reflective symmetries. Podolak

et al. [2006] finds the major global reflective transformation by a similar idea but instead of the

surface boundary, the whole region (volume) of the 2D (3D) shape is sampled. These approx-

imate symmetry detection systems do not produce any new shape representations based on a

particular symmetry transformation. Instead, the symmetric structures they exploit are used for

more intuitive shape matching [Podolak et al., 2006], symmetrization [Mitra et al., 2007] and

more user-friendly interaction techniques [Gal et al., 2009].

Leyton [1992] proposes looking for traces of the shape manipulation from the asymmetry



20

of the shape. Differing from the axis transformation and generative shape descriptors, this ap-

proach takes the causality explanation directly and the recovered symmetry-breaking process

is described in terms of a language governed by the process grammar. This is fundamentally

different from the transformation based approaches described previously. According to Leyton

[1992], each recovered shape element carries certain information about the shape under the

process grammar that is innate to human perception. In symmetry analysis based purely on

geometric transformations, the input is taken as a set of geometric elements, although in the

resulting shape representation that those approaches produce, there could inherently be seman-

tics attached, partly due to the symmetry-curvature duality [Leyton, 1987]. The history of the

shape is the history that we perceive, rather than the actual formation of the object. Causal-

ity theory does not try to recover the true history of any shape. In fact, according to Leyton,

procedures that make the shape more organized are not recoverable even by the human visual

system. The shape is the type of “memory” that carries symmetry-breaking procedures only;

symmetry-improving procedures, if any, can not be perceived by the human visual system.

recoverable

unrecoverable

recoverable

unrecoverable

(a) (b)

Figure 1.8: Symmetry breaking and recovery as one-way procedures

Figure 1.8(a) shows two mugs with which we are already familiar. The left mug has a teabag

in it, which breaks the symmetry of the mug body. From this figure, a human observer would

immediately realize that the teabag is later attached to the mug. However, if you remove the

teabag and restore the symmetry of the mug body, as shown on the right in (a), it is not possible

for the human observer to infer that these “teabag attachment and removal” events have ever

occurred, since removing the teabag improves the symmetry of the scene.

Human perception inevitably involves the recovery of the abstracted, conceptualized version

of a given scene. The scene includes only essential visual elements, which the observer uses

to index the object. If the observer were to describe the scene, from the viewpoint of Leyton
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process grammar, this set of visual elements would sit on the top level of the syntax tree.

To the observer, the differences between the original scene and the abstracted version merely

serve a decorative purpose. The abstraction is deterministic and essential, but the decorations

are arbitrary and optional. Figure 1.8(b) shows another example. In this case, the observer

can choose to ignore the peculiars of the original human face and only retain the conceptual

version which a set of symbolized geometric elements suffices to express. However, you cannot

ask an artist to draw a portrait by telling him only that the model has two eyes, a nose and

a mouth without giving more information. Going from the abstracted shape to the original,

concreted, detail-rich scene is simply not possible: you cannot tell whether the cartoon face in

Figure 1.8(b) is young or old, male or female, Asian or white, etc.

As mentioned in the very beginning of this thesis, Figures 1.8(a) and (b) are two examples

of shape abstraction. They are the results of a systematic, sophisticated removal of less relevant

details while faithfully retaining important features. They contain more concise and organized

forms of geometry, and so they are closely related to approximate symmetry.

1.2.5 Geometry simplification

Figure 1.9 shows two typical shape simplification paradigms in traditional computer graphics.

Simplification using Progressive Meshes [Hoppe, 1996] is a bottom-up edge collapse proce-

dure. It starts from the original shape and each simplification step merges one edge into a new

vertex. Given the original polygon with six vertices in Figure 1.9, edge p1p2 gets first merged

into vertex p12 and then this new edge p12p3 into p123. This procedure continues until the error

in decimation is about to exceed a specified threshold or until the whole shape has collapsed.

Simplification using the Douglas-Peucker algorithm [Douglas and Peucker, 1973] goes in

the other direction. It starts with a line segment 5 , and refines the shape by iteratively adding

a point from the original shape that is furthest from the approximation. Figure 1.9(b) illustrates

5For a polyline, Douglas and Peucker [1973] used the line segment that connects the first and last vertices as the
initial approximation. The problem of how to obtain the first line segment for a closed polygon was not addressed
by [Douglas and Peucker, 1973]. In our implementation, we opt for the pair of vertices from the polygon that is
furthest apart from each other
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Figure 1.9: Decimating a 6-vertex polyline into 4 vertices using (a) Progressive Meshes; (b)
Douglas-Peucker

two such steps. At the coarsest scale approximation, which is the line segment p0p5, Douglas-

Peucker chooses to insert p2 since it is the furthest point from the original shape to p0p5. In most

cases, choosing to add this furthest point effectively reduces the error of the approximation.

Then p4 is chosen since it is the furthest from the refined polyline p0p2p5. This procedure

continues until the distance to the farthest point is below the specified error threshold or all the

vertices have been added, which makes the approximation exactly the same as the original. In

both methods, the judgement made in each step locally minimizes the error of the geometric

approximation.

There are also shape simplification methods that work in the frequency space. High fre-

quency details are filtered away in the simplified version. Finkelstein and Salesin’s wavelet

curve representation [1994] is one such example. Various shape smoothing and signal process-

ing approaches fall into this category, e.g. Desbrun et al. [1999]; Ecker [2004]; Jones et al.

[2003b]; Paris et al. [2008], just to name a few. Similar to the Douglas-Peucker algorithm

or Progressive Meshes, these approaches also simplify the shape based on local adaptation of

boundary geometry.

Abstraction differs from traditional geometric simplification approaches in its processing

units and in its reason for simplifying shapes. The goal of geometric simplification is to mini-

mize the spatial distance from the original shape to the simplified version. Thus, the processing

unit is typically the boundary curve of the shape. Abstraction, on the other hand, tries to main-

tain the observer’s coarse-level understanding of the scene. It is essential that components
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which are the building blocks of the scene in our concept are present in the abstracted version.

One way to better understand their differences is to look at the requirements when we sim-

plify shapes. For geometric simplification in a given polygonal model, the requirement pro-

posed typically involves the storage size or the objective distance from the decimated to the

original, such as “decimating a 3D mesh from 1M vertices to 5K”, or “the error to the original

should be bounded by the amount ε”. The requirements can be raised in a continuous manner

except for the constraints of topology. For example, the number of geometric simplexes should

be integers and they should maintain the Euler characteristics [Armstrong, 1983] if required.

For shape abstraction, the requirements are typically to preserve concepts that the user wants

to maintain. The abstraction system only removes parts and features that do not account for

the object concepts, but the choice of the retained parts and features is implicitly associated

with the concept. For example, when the purpose of abstracting the portrait in Figure 1.8(b)

is just to conceptualize a human face, then the simplified version shown suffices. But if the

requirement is to draw a male’s face, more concrete features will be needed. Likewise, the

abstraction in Figure 1.8(a) is good enough to convey the scene “mug” without the teabag and

the rim decorations in the original scene.

Instead of crafting a computation model of perceptual parts, Mehra et al. [2009] abstract

shapes by extracting feature curves and reconstructs the shape from the set of most salient

curves. Their approach accommodates 3D models with non-trivial topology and moderate

noise, and still produces pleasing results. Since the structural representation is in terms of

feature lines, the success of their system relies on the existence of salient feature lines on the

model. Accordingly, the approach performs best on man-made shapes..

1.3 Non-photorealistic rendering

Our work on shape abstraction tries to directly address the problem of what to draw by trans-

forming the scene into a shape description in terms of perceptual parts. As described in the

very beginning of this chapter, this is obviously inspired by the artistic practice. Thus, this

work is more appropriately considered as continuing the line of research in non-photorealistic
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rendering(NPR) than geometric approximation.

Previous non-photorealistic research addresses related issues by feature removal and en-

hancement. As introduced in the previous section, smoothing the shape removes high frequency

components. It is often used to bring more aesthetic visual presentation in nonphotorealism

since human observers seem to favor shapes with such characteristics [Dickie, 1974; Taka-

hashi, 1995]. However, it also blurs the boundaries between components and makes important

features less distinctive. Various approaches have been proposed to deal with this issue.

Bilateral diffusion based on various anisotropic kernels is one of the biggest families of

feature-preserving smoothing techniques for images [Paris et al., 2008; Tomasi and Manduchi,

1998; Weiss, 2006] and 3D meshes [Fleishman et al., 2003]. Non-iterative feature-preserving

smoothing methods based on robust statistics have also been proposed [Fleishman et al., 2005;

Jones et al., 2003a]. Smoothing that preserves features has proven to be very useful in produc-

ing nice looking, abstracted imaging and video rendering [Kang et al., 2007; Kyprianidis et al.,

2009].

To avoid image pixels or surfaces that belong to different components or patches being dif-

fused together, an alternative to feature-preserving smoothing is to compute the patches directly.

Segmentation is another widely used technique for image and video abstraction [DeCarlo and

Santella, 2002; Orzan et al., 2007; Wang et al., 2004; Winnemöller et al., 2006]. Since the

imaging phase after segmentation involves averaging colors (a scalar property of each pixel)

over each region, the scope of this technique is limited to image and video abstraction.

Image smoothing and segmentation have had some success in producing nice abstraction re-

sults. Due to the enhancement of edge features, on which the early stages of human vision rely,

image smoothing and segmentation often help to clarify the structure of the scene. However,

the structural clarification is based on replacement or diffusion of neighboring image patches or

shape boundaries. The methods themselves do not necessarily provide a new representation of

“what to draw”. Thus, these techniques do not seem to be flexible enough for the more creative

shape abstraction and exaggeration that are often seen in artistic practice. They instead rely on

very coherent user input to achieve satisfactory depictions.
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The remaining chapters of this thesis will describe our work on how we can compute a

structural, part-based representation about “what to draw” from a 2D shape boundary. Then

we will present our shape abstraction system by simplifying this representation, along with the

perceptual study we have conducted to evaluate this approach.
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Chapter 2

Identifying Parts using Contour Grouping Strength

As we have introduced in the first chapter, the human visual system recognizes a complicated

shape in terms of parts. In Hoffman [1983], where the concept is first introduced to the field of

computational vision, a part is brought out as a “first index in the memory of form”, the “basic

unit” for recognition of shape. This is not only about the description of the part, but also about

its relation to the rest of the shape. Parts of a visual form are like words of a conversation.

When we see parts, and if we are to describe a shape in English, we find that, naturally, our

description is also in terms of parts.

However, it is not so natural for a computer system to take up this seemingly simple task to

see parts. In this chapter, we present an approach for detecting the set of potential parts on a

shape, which is the first step in solving the problem above. This work has appeared in [Mi and

DeCarlo, 2007] and is presented here in greater detail.

2.1 Locating parts: existing approaches

We first review existing computational models of parts, followed by our work on separating

parts from 2D shapes, both mathematically and computationally.

2.1.1 Medial axis revisited

The family of symmetry-based structural representations has been extensively surveyed in the

previous chapter. In particular, since each branch of the medial axis often matches certain part-

like visual components quite well, axial representations based on the medial axis transformation
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are now one of the most widely used families of structural representations in computer vision

and graphics.

In spite of the fact that the symmetry revealed by MAT (called the medial symmetry is well

supported from neuropsychological study [Burbeck and Pizer, 1995; Burbeck et al., 1996], and

that it is widely used in shape representations, the medial axis does not directly map to what

seems to be a reasonable representation of parts.
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Figure 2.1: Different shapes may have identical medial axes (based on Blum and Nagel [1978])
and shock graphs

Let’s look at an example to see how axes map to parts. Considering each branch as a visual

component sometimes lacks specificity: some of these branches are not parts. Figure 2.1 shows

two different shapes, (a) on the left is a single rounded rectangle, whereas (c) on the right is

slightly more complicated in terms of part composition. The medial axis of the right figure

intuitively predicts the structure of the shape. However, the left figure has several medial edges

while the whole shape consists of a single part only. These two shapes share the same medial

axis structure—the only difference is the radius function on the axis. Because these medial

edges also have the same shock types [Kimia et al., 1995] as shown in Figure 2.1(b), simply

attributing shock types to the medial edges does not seem to help in grouping the medial edges

together to distinguish (c) from (a). In fact, the instability of the MAT topology also implies

that some of the unstable medial edges do not predict any shape information.

B

C1

C2

Figure 2.2: The shallow bump B is not intuitively represented by MAT. The whole shape is
represented as one single ribbon with varying-radius disks as generators



28

Besides the precision issue illustrated by Figure 2.1, and the instability we have discussed

earlier in Chapter 1 due to perturbations, the medial axis representation also has problems in

accuracy because it does not capture the complete set of symmetries. For example, Figure 2.2

shows a ribbon with a shallow bump B on the top. However, the symmetries associated with B

are dominated by circles (like C2) along the major axis instead of those like C1, and the MAT

fails to represent this feature since the bitangent circles representing the local symmetries of B,

such as C1, go beyond the bottom of the shape. This inconsistency implies that a human’s per-

ception of symmetries and organizations does not necessarily prefer symmetry pairs of smaller

distances.

2.1.2 Boundary representations

Since axial representations do not always identify visual components from a given shape, we

examine geometries of the shape contours to uncover structural information. This idea was

strongly supported by Pasupathy and Connor’s [2002] findings about how visual neurons re-

spond to boundary curvatures and angular positions . Koenderink and van Doorn [1982] made

the argument from the artists’ point of view that on the object surface there are elliptic portions

with positive Gaussian curvatures and hyperbolic portions with negative Gaussian curvatures.

The elliptic portions are typically considered as parts and the hyperbolic patches are perceived

as transitional regions: the “glue” that keeps things together but itself is of little interest. This

observation agrees quite well with the basic component model already discussed in Chapter

1: the generalized geons or volume primitives have positive normal curvatures everywhere in

every direction on their surfaces, except for the bent primitives which have negative curvatures

inside the bend. Note that the patches with major and minor negative curvatures do not have

any corresponding portion on the outline [Koenderink and van Doorn, 1982; Richards et al.,

1987]. Koenderink’s theory gives the possibility of computational models based on the local

geometry of the shape boundaries. Various boundary-based approaches have been proposed

since his work.

Richards and Hoffman [1985] decomposed the shape boundary at curvature minima into

primitives called codons. According to the signs of the two curvature minima and the sign of
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the curvature maxima in between, a codon can be one of 6 types. However, they also argued that

a human does not necessarily partition the shape boundary into codons. Instead, only negative

curvature minima are considered as the boundaries between shape components. The perceptual

parts of a two-dimensional contour also tend to be the segments bounded by points of greatest

negative curvatures. They called this the minima rule. In support of this claim, Hoffman and

Richards [1984] present several compelling examples, including Rubin’s classical face-vase

illusion.

An obvious follow up to the minima rule is to define pairs of consecutive negative curva-

ture minima as the part boundaries. The portion with positive curvatures (if there is any) is

defined as the part [Latecki and Lakämper, 1999; Rosin, 1999]. However, as both Latecki and

Lakämper [1999] and Rosin [1999] have pointed out, this might not always work. Symmetry

is still needed to supplement boundary cues in locating and separating parts [De Winter and

Wagemans, 2006].

This leads to two types of part partitioning schemes proposed by Siddiqi et al. [1995; 1996].

In their model, a part can be either neck-based or a limb. In both cases, the parts are separated

from the rest of the shape by local pairs of medial symmetries such that the two boundary points

are local curvature minima. If the corresponding radius function reaches a local minimum, it

forms a neck, otherwise, a limb. They correspond to the second-order and first-order shocks,

respectively.

Figure 2.3 summarizes the above described theories about human perceptual organization

based on geometric cues on the boundary. The dot lines separating parts are called part lines

according to Siddiqi et al. [1995].

neck limb

short
cut

short
cut

m- m- m- m- m-

m+

m+

m+

Figure 2.3: Boundary cues that suggest potential part cuts. Solid dots labeled with “m+”s are
positive curvature minima while circles labeled with “m-”s are negative minima. Together they
divide the shape boundary into the codons, while only negative curvature minima potentially
divide the boundary into parts.
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Singh et al. [1999] extended the minima rule and the part models of Siddiqi et al. [1995] with

the short-cut rule, which states that the human visual system prefers to connect segmentation

points that are in close proximity, in order to form a part. The two sides of the part boundary

should form a symmetry pair and at least one side is a negative curvature minimum. As also

shown in Figure 2.3, the symmetry pair adjacent to the leftmost “m-” separates a salient part,

while only one side has negative curvature. This is also the case for the rightmost negative

curvature minima.

2.2 Symmetry in shape description and part separation

Chapter 1 described how the human visual system benefits from the reflective symmetry prop-

erties of the shape in building up the visual representation. This section, in particular, reinforces

the key role of symmetry in the perception of parts.

Note the connection between the different roles symmetry plays in the shape description

and the part separation by the visual system. When we use symmetry to describe a shape

(either in the sense of causality explanation [Leyton, 1992] or as a mechanism of description

minimization [Feldman, 1999; Mitra et al., 2006]), we effortlessly relate one side of the shape

boundary to the other; and points of both sides are paired in a smooth and continuous manner.

The human visual system’s inclination in pairing symmetric boundary segments makes sym-

metric object contours a very strong cue in perceptual grouping. Arguments for this have been

made by Geisler et al. [2001], Orabona et al. [2006] and Geisler and Perry [2008]. This also jus-

tifies computational models that separate the part from the rest of the shape along a symmetry

pair. Otherwise, our visual system could not find a proper boundary segment that is symmetric

with one side of the shape boundary, with the other side that is now in a separate piece due to

asymmetric part cut—the originally strongly grouped pairs are cut apart!

We take an example from Singh et al. [1999], shown in Figure 2.4, to illustrate this further.

Connecting the only two negative curvature minima (in Figure 2.4(a)) results in a strange cut

(Figure 2.4(b)); the cuts shown in (c) following the short-cut rule looks more reasonable. The

reason (b) is a bad cut is that the “bridge” that connects the two pieces forms a salient symmetry
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m-

m-

(a) (b) (c)

Figure 2.4: Do not separate strongly grouped contour segments apart!

itself. Due to this symmetry, its two sides, outlined in (a), are strongly grouped perceptually by

the human visual system, which excludes any separation between them.

2.2.1 Transitional region between parts

A large-scale study on shape segmentation by human subjects shows that negative curvature

minima and local symmetries together are effective at predicting the locations of visual parts

[De Winter and Wagemans, 2006]. But it also demonstrates moderate inconsistency among

subjects. Subjects make part cuts less consistently when the boundaries between parts are less

salient and the curvature extrema along the shape boundary are more difficult to localize. Com-

putationally, locating curvature extrema are known to be numerically unstable and unreliable

since the estimation of curvatures involves second derivatives. More robust curvature estima-

tion techniques such as proposed by Kalogerakis et al. [2007], however, typically involve some

bandwidth parameters, the choice of which affects the location of the curvature extrema.

m-

m-

m-

m-

(a) (b) (c)

Figure 2.5: 15 subjects were asked to cut the shape in (a) into two by drawing a line. The lines
they drew were traced and combined as shown in (a). The transition between parts, which is the
region that connects these two parts, covers all these cuts (b). A transitional region also exists
between overlapping parts (c). In both (b) and (c), dark and light gray colors indicate part body
and transitional regions, respectively. Thick lines are shape boundaries.

To demonstrate this inconsistency, we prepared a two-part shape shown in Figure 2.5(a),

and conducted a minimal, informal study that involved 15 subjects with a design similar to
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De Winter and Wagemans [2006]. The connection between the two parts forms two negative

curvature minima and a neck. The locations of the negative minima, however, do not perfectly

agree with the location of the neck, which slightly increases the inconsistency among subjects

in locating a cut between the two parts [De Winter and Wagemans, 2006]. As expected, subjects

roughly agreed on the cut predicted by the neck, with moderate variations. The distribution of

the cuts implies that instead of a single, determinant boundary line (which Siddiqi et al. [1995]

call the part line), there is a region that sits between neighboring parts which accommodates

all reasonable part segmentations. Geometrically, the body of each part takes its own form.

Bodies of neighboring parts may or may not overlap with each other. For adjacent parts with

disjoint bodies, as in Figure 2.5(b), this region serves as the transition from one part to the

other. Figure 2.5 (c) is an illustration of transitions that exist between overlapping parts. They

smooth out sharp corners formed by the intersections of part bodies, like fillets often found in

mechanical systems [Brady and Asada, 1984].

We propose the concept of the transitional region between parts not only because it respects

the perceptual organization of shapes by the human visual system, but also because it provides

a mechanism to distinguish different parts of the shape, as will soon be discussed in Section 2.3.

2.2.2 Ambiguous shape explanation

neck

A

B

n
ec
k

n
ec
k neck

(a) neck (b) bridge or neck (c) bridge or bend (d) bend

Figure 2.6: Similar boundary curvature profiles give different perceptual shape explanations.

Due to the existence of a transitional region, a part segmentation is not binary—it’s not a

partition of the shape. A point in the shape can belong to no parts, one part, or multiple parts.

A morphological analysis on a gradually varying closed curve, illustrated by Figure 2.6, reveals

another aspect of how we understand and describe shapes in terms of parts: separating a part

from the rest of the shape is often an ambiguous task characterized by multiple explanations.
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Singh et al. [1999] originally proposed an alternative yet still reasonable part decomposition

for Figure 2.4(a): a cut could be made in the middle of the bridge to make both sides neck-

based parts, as illustrated in Figure 2.6(b). The ambiguity can be resolved by “nudging” the

two gray portions of the shape boundary as shown in Figure 2.6(b) towards the left or the

right. Nudging them to the left results in the shape in Figure 2.6(a), which we have already

studied in the previous section. The two negative curvature minima give a strong neck-based

part decomposition, whereas the bridge no longer exists. Nudging them to the right makes

the bridge feature less salient. However, the entire shape, as shown in Figure 2.6(c), starts

to exhibit a bending structure—another ambiguous explanation! Of course, nudging the two

boundary segments in gray even further right again, as in (d), disambiguates the description by

excluding the compositional explanation based on the short-cut, which is salient in the original

shape in (b). Such a shift in the categorization of a shape under deformation was first discussed

by Kimia et al. [1990] and then further studied psychophysically by Siddiqi et al. [2001b].

The bending structure shown in (d) raises another interesting point: even with the negative

curvature minima, the local symmetries do not form a strong part-cut. The human visual system

would rather explain this whole shape as a bent form of a straight band. Here, the minima rule

is ineffective.

Consider the justification for the minima rule based on transversality that Richards and Hoff-

man [1985] have originally proposed. In particular, when a part intersects with the rest of the

shape transversally on only one side, this cut will only be triggered by a single negative cur-

vature minimum. However, a single negative minimum may or may not trigger a part cut

perceptually, as has been illustrated by Figures 2.6(b) and (d).

This leads to reconsideration of the cues that the human visual system uses to decompose a

shape. In the rest of this chapter, we try to approach this question from two directions. First, in-

stead of trying to find out what kind of geometric properties the transitions should have in order

to separate parts, we look back at the original, and equivalent question: what kind of properties

should the shape boundaries have to qualify as belonging to the same perceptual component,

i.e., the invariant of the part body. The minima rule cannot be used when the the cause of neg-

ative curvature minima is a structural bend (see Figure 2.6(d)). Thus, a computational model
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that can effectively distinguish bending from transversality would be desirable.

Second, we relate this model to the classic theory that gestalt psychologists have been ad-

vocating for almost a century: contour grouping. Good continuity is a strong hint that the hu-

man visual system should group together segments of boundary curves into identifiable shape

components. We introduce results from cognitive science on the mathematical descriptions of

contour grouping strength, and show its equivalence to the invariant of the part body that we

use to separate parts.

2.3 Invariant of that basic part with reflective symmetry

A basic part is the primary unit in the composition of the shape: it is a part that could not be

further decomposed into smaller parts. In the rest of this chapter, we will extensively discuss

the geometry of the basic part and leave the more complicated compound parts for the next

chapter.

From the viewpoint of causality theory, a negative curvature minimum in a basic part can

have three types of explanations: additive composition, subtractive composition, or bending.

Figures 2.7(a) and (b) show two types of additive compositions. In particular, the body of (a)

is only connected to the rest of the shape through the transitional region, while in (b), the body

intersects the main shape. However, it differs from the body-intersecting case in Figure 2.5(c) in

that the body of this part is not closed. Typically this “open” body corresponds to a protrusion,

or a limb, according to Siddiqi et al. [1996]; while a closed-body part connects to the rest of

the shape through a neck. Despite the difference in both cases, the transitions are characterized

by negative curvatures.

Figures 2.7(c) and (d) are the inverse of (a) and (b), where the parts are results of certain

“cut-out” events. In the latter cases, the transitions between the parts and the main shapes have

positive curvatures, while the bodies of the parts contain concave boundaries. These parts are

not contained within the shape; instead, they are on the background and are thus called back-

ground parts. The regular ones contained in the shape are the foreground parts. Beside positive

and negative part compositions, we regard all other negative curvatures as caused by bending,
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Figure 2.7: Different types of “history” events that cause negative curvature minima on the
shape boundaries. (a) disjoint additive composition; (b) intersecting additive composition; (c)
disjoint subtractive composition; (d) intersecting subtractive composition; (e) part bending. (a)-
(d) are the results of part attachment, while (e) is not. Dark and light gray colors indicate part
body and transitional regions, respectively. Thick lines are shape boundaries.

illustrated in Figure 2.7(e) (Obviously, like (c) and (d), there could also be a background version

of this bending structure that leads to a positive curvature maximum).

The geometric properties of parts on the background are simply the reverses of the fore-

ground parts and we can easily extend existing computational models, as well as our model

of part to these cases with minimal modification. For example, the minima rule could be used

to predict background parts by locating positive curvature maxima. However, the existence of

negative parts does complicate the analysis of the shape structure. For now, we focus on the

foreground parts only until the next chapter, when we will come back to deal with parts on both

sides of the shape boundary. This simplifies the task: we only need to differentiate a bending

structure from an additive part composition.

To avoid being “confused” by the negative curvature on the shape boundary that is caused

by structural bending, we explore the axial structures that are present in the shape and refer

to the geometry of the corresponding “unbent” version in order to determine the existence of

the transition between parts. To recover the unbent version of an axial structure, we refer to a

generative axial representation [Rosenfeld, 1986] and regenerate the shape with a straightened-

out spine and the same set of generators. Note that although skeleton-driven deformation often

faces difficulties in handling self-intersecting boundaries (typically when the radius of the cur-

vature of the spine is smaller than the radius of the generator), the unbending process does not

need to address this issue since the new spine is straight. Computing the axial description is an

ill-defined problem and we will describe our approach to it in Section 2.4. Here, we point out

that by ruling out the subtractive composition and canceling the bending of the axial structure,

additive composition, or transversality, becomes the only cause of concave boundary contours.
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Figure 2.7(e) and Figure 2.8 illustrate several cases of the unbent process. In particular, Fig-

ure 2.8(a) shows a case where a bent axis does not accompany the concave boundary—curved

axis does not always lead to negative curvatures on the boundary.

Associating a bent axial structure with its unbent, “symmetrized” version has been previ-

ously proposed by Blum and Nagel [1978] and is supported by Leyton’s theory on the causality

explanation of the human visual system. This theory considers every shape as a result of a se-

ries of symmetry-breaking events, as we have discussed earlier in Section 1.2.4. A part with a

bending structure is not in its primitive state. Instead, it serves as storage that records the event

in the past that bent the part to its current state from its initial, more symmetric version with a

straight axis [Leyton, 2001]. We can examine the boundary geometry of the unbent shape for

cues of part compositions since this bending event does not introduce new parts.

(a) (b)

Figure 2.8: The human visual system automatically “recovers” a previous, symmetrized state
at the sight of a bending structure. Note that in (a), the body of the slightly bent part is convex
everywhere even though it appears bent. Dashed lines are the centers of reflections, and the
arrows denote the unbending preprocessing.

The unbent axial structure is perfectly reflective with respect to its straight axis. Under this

condition, we can easily see that the non-concavity condition for the part body is equivalent to

the non-concavity of the radius function. Let S denote the line of reflection, and L(s) denote

the distance between the symmetry pair with respect to a point s on S (see Figure 2.9). Here,

we call the line segment that connects the symmetry pair the chord; L(s) the chordal length.

In the rest of this thesis, we will often refer to the chordal radius, denoted as rc. It is defined

as half of L(s). Note that this is not the radius of the medial circle. The latter is defined as the

distance from one side of the symmetry pair to the center of the medial circle, while the choral

radius is the distance to the center of the reflection. It is introduced mainly for simplicity of

notation.
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Figure 2.9: L and rc are convex functions within a single part with perfect reflective symmetry.

The shape of the part body is completely defined by the chordal radius. rc and L are concave

functions with respect to s, i.e. the mathematical form of the part-body invariant:

d2L

ds2
6 0 (2.1)

2.4 The basic part with smoothed local symmetries

The invariant we proposed in Section 2.3 is general, but so far we assume we already have the

unbent version of the part body with a straight axial structure. As explained in the previous

section, this requires the computation of an axial representation of the original shape. Rosen-

feld pointed out that this is an ill-posed problem since there typically exist multiple generative

explanations [1986]. In our research, we use Brady and Asada’s smoothed local symmetries

(SLS) as it has been one of the most popular axial descriptions. Note that for some parts, e.g.,

a rounded parallelogram, a shearing deformation would be a better causal explanation. Such

parts are better described by Brooks’ generalized ribbons [Brooks, 1981]. We do not explore

this possibility here.

2.4.1 Geometry of local symmetry

Although different definitions of local symmetries exist and they lead to different symmetry

axis computations, Brady’s SLS uses the canonical (and most popular) definition of local re-

flective symmetry, as is described in Section 1.2.1 [Blum, 1967; Brady and Asada, 1984; Giblin

and Brassett, 1985]1. We represent the boundary of a simple 2D shape by a C2 continuous

1 The MAT [Blum, 1967] and the SLS [Brady and Asada, 1984] both use a bitangent circle to define a pair of
local reflective symmetries. However, the former restricts that the circle must be completely inside or outside the
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curve α : I → R2, where α is arc-length parameterized with the domain I. Consider a pair

of points on the shape boundary with parameters u and v, where u, v ∈ I. By definition,

their locations in the Euclidean space are α(u), α(v) and tangent directions α′(u), α′(v),

respectively. We define the chord as the line segment between α(u) and α(v) and denote its

length as L(u, v) = ‖α(v) − α(u)‖ and its direction as p(u, v) = 1
L(u,v)(α(v) − α(u)). See

Figure 2.10(a) for an illustration.

µ'=µµ

' L(u,v
)

®(v)
®(u)

®’(v)

®’(u)

p

r

L

(a) (b)

Figure 2.10: Local geometry of a pair of boundary points with general position (a); and a local
symmetry pair (b). The dotted line in (b) is the local perpendicular bisector.

Any two points u, v on the plane can be reflectively symmetric with respect to their perpen-

dicular bisector. However, this does not qualify them to form a local symmetry. Instead, we

further require that the angles θ(u, v) from α′(u) to p(u, v) and ϕ(u, v) from p(u, v) to α′(v)

be the same, where the range of θ(u, v) and ϕ(u, v) are defined to be (−π, π]. This means that

the tangent lines at these two boundary points should also form a reflection with respect to the

same perpendicular bisector, as shown as the dotted line in Figure 2.10(b). This bisecting line

passes through the center of the unique circle that is bitangent to both α(u) and α(v).

To formalize the mathematical form of local symmetry, and to facilitate the notation when

we study the geometric properties of the local symmetries further in the next section, we define

the asymmetry A of u and v as:

A(u, v) = $(θ(u, v)− ϕ(u, v)); (2.2)

Here $(·) is the wrapping operator that “pulls” any angle back to the interval (−π, π]. One

implementation of this operation is $(φ) = atan2(sinφ, cosφ). Naturally, when the value of

shape.



39

A(u, v) = 0, u and v form a locally reflective symmetry.

Note that the values of θ, ϕ do depend on the order of the parameters u, v. Specifically,

θ(v, u) = $(π− θ(u, v)), and the same relation applies to ϕ(u, v). A, however, is not affected

by this order. In the rest of this chapter we maintain the convention by placing u ahead of v,

unless otherwise stated. When the context is clear, we simply omit the parameters (u, v) for L,

p, θ, ϕ and A etc.

The geometry of smoothed local reflective symmetries has been extensively studied by Brady

and Asada [1984], as well as by Giblin and Brassett [1985]. We want to extract these symme-

tries, so of relevance here are the differential correspondences between locally symmetric pairs.

Starting from a local symmetry (u, v), if one side u moves along the curve boundary for an in-

finitesimal amount du, how much should v move to remain symmetric with u? This can be

expressed by the following equation [Giblin and Brassett, 1985]:

(
1

r
− κ(u)

)
du+

(
1

r
− κ(v)

)
dv = 0. (2.3)

where r is the radius of the bitangent circle as shown in Figure 2.10(b), and κ(u) and κ(v)

denote the curvatures at u and v respectively.

2.4.2 Tracing the smoothed local symmetries

Equation (2.3) is of more interest in revealing some mathematical facts about the smoothed

local symmetries. When it comes to computing the set of smoothed local symmetries, however,

a robust algorithm that directly applies this relationship to determine the set of smoothed local

symmetries is not so obvious [Giblin and Brassett, 1985].

Numerical solutions for computing the full set of local reflective symmetries do exist, in-

cluding the original pixel-based approach by Brady and Asada [1984], and later efforts based

on boundary curves represented by piecewise cubic B-splines [Saint-Marc et al., 1993]. Both

algorithms have O(n2) complexities, with n being the number of line/curve segments, and

require an additional step to connect computed local symmetries.
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Our algorithm takes advantage of the symmetry-curvature duality theorem [Leyton, 1987]

by tracing all the symmetries of basic parts of a given shape boundary represented by poly-

gons. The symmetry-curvature duality theorem states that smoothed local symmetry axes only

terminate at curvature extrema. For any curvature extremum of a planar curve, there is a unique

smoothed local symmetry axis that terminates there. In other words, we do not need to trace

the symmetry from spiral2 boundary curve segments3.

A(u,v) computed

A(u,v) not needed

curvature extrema

spiral vertexA(u,v) > 0

A(u,v) < 0

v
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Figure 2.11: Tracing smoothed local symmetries using marching squares. The first 5 steps of
the tracing are visualized in both the parameter space (a) and the Euclidean space (b). Numbers
1, 2, ..., 5 show in each step which pairs of boundary points are examined.

We illustrate our algorithm in Figure 2.11, which shows the first five steps of the symmetry

tracing starting from a positive curvature maxima vi (also labeled with “M+”). Figure 2.11(a)

shows a portion of the parameter space of the pair (u, v) arranged as a grid. Pairs with u =

v are along the diagonal, each pair corresponding to a vertex of the boundary polygon. By

the symmetry-curvature duality theorem, we know that there are smoothed local symmetries

starting from each vertex of curvature extremum, and it is safe to skip other vertices since they

are on segments of spiral curves.

2 A segment of boundary curve is called spiral if it has monotonically varying curvatures.
3 Unfortunately, not all smoothed local symmetries can be traced from shape boundaries, since SLS can form

a loop that does not end at any boundary point, according to Giblin and Brassett [1985]. One notable case is an
axis that encircles the hole in an O shape. We believe that any relevant axis that does not terminate at a curvature
extremum will be present in the MAT. We do not pursue this further, and exclude shapes with holes from our work.
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Note that extending the symmetry curvature duality to curves represented by polygons re-

quires properly estimating curvatures at the vertices. Appendix 2.B briefly describes our cur-

vature estimator. It also proves that A(vi−1,vi) and A(vi,vi+1) must have different signs for

any vertex vi such that (κ(vi−1)− κ(vi)) (κ(vi)− κ(vi+1)) < 0, i.e., the estimated curvature

reaches a local extremum at vi. It follows that there must be either a point on the edge vi−1vi

that forms a local symmetry with vi+1 or a point on the edge vivi+1 locally symmetric with

vi−1. This pair initiates the tracing of the discrete smoothed local symmetries from vi.

To find the initial symmetry pair of a series of discrete SLS starting from a local extremum

vi, we first examine the square adjacent to vi (square 1 in Figure 2.11(a)). We evaluate the

asymmetry measure of the vertex pair corresponding to each corner of this square. Then, for

each side of the square, we compare the signs of the two corners’ asymmetries. If the signs are

different, then there must be a zero crossing on that edge. In the case shown in Figure 2.11(a),

A(vi−1,vi+1) and A(vi,vi+1) have different signs. Therefore, we know that vertex vi+1 is

locally symmetric to some point on the edge vi−1vi.

The benefit of this tracing approach lies in that after square 1 has been processed, the only

square to process next is the one on the other side of the grid edge with different signs of

asymmetries on either end, which is square 2 in Figure 2.11(a). Thus, a significant portion of

asymmetries of vertex pairs is never computed. This process can keep going until we reach the

other end of the smoothed local symmetries—another curvature extremum. The tracing will

not end in the middle (away from the diagonal in the parameter space). There must always be

another edge since theAs on each side of the curve have different signs. This is also proven by

Giblin and Brassett [1985].

When all four sides of the square across the zero-crossing edge have zero-crossings, an

ambiguity needs to be resolved about which direction to continue the tracing. In our system, we

simply choose the next side counterclockwise as the exit for tracings from positive curvature

extrema, while for those from negative extrema, we choose the next side clockwise. This

scheme effectively explores all the symmetries that end at curvature extrema.

It is obvious that the time complexity of this tracing algorithm is linear to the number of

symmetry pairs that could possibly be discovered. One extreme case is a circle discretized into
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an equilateral n-gon, in which case the complexity is O(n2).

The tracing algorithm is inspired by the traditional marching squares and cubes [Lorensen

and Cline, 1987]. However, there is a potential issue in using the marching squares algorithm in

the (u, v) space. Due to the introduction of the wrapping function$, the asymmetry measure is

not defined in Euclidean space, but rather on a torus parameterized by θ and ϕ4. Figure 2.12(a)

shows the topology of this toroidal (θ, ϕ) space, where θ is used as the radius of the cross

section and ϕ as the radius of the ring. The solid curve on the torus shows where θ = ϕ, which

we call the curve of symmetry. Unfortunately, this closed curve does not split the space into

two half spaces by itself. Instead, it does so together with the curve θ − ϕ = ±π, which we

call the curve of discontinuity. Additionally, the two subspaces should not be characterized by

the signs of θ − ϕ, but by the signs of the asymmetries, since the range of θ − ϕ is (−2π, 2π)

while only half this interval—the range of the asymmetry measure (−π, π]—is meaningful.
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Figure 2.12: Pitfalls of using the marching squares algorithm directly. The dashed closed
curve (portions of which are hidden and thus drawn in translucent style) in (a) is the curve
of symmetry while the solid closed curve is that of discontinuity. The value of each angle
and corresponding asymmetry measures are shown in (b). The square where improper tracing
happens is shown in (c).

For two pairs of (θ, ϕ) with As of different signs, there are two types of interpolative paths,

one that intersects with the curve of symmetry and one that intersects the curve of discontinuity.

The fact that these two pairs have the same sign of asymmetry measures does not mean that

there are no symmetry pairs in between. Instead, for some badly sampled polygonal models,

such as the example in Figure 2.12(b), there does exist a symmetry pair between vi and some

4 Kuijper et al. [2006] called the (θ, ϕ) space the pre-symmetry set
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point on the edge vjvj+1. However, the true zero-crossing needs to go a long way on the torus

surface by crossing in and again out the A > 0 subspace. On the other hand, the marching

squares scheme we described above will trace down the wrong direction—at the square 2 in

Figure 2.12(c); instead of taking 3 as the next square, it goes for 3′. Likewise, a marching square

edge with different signs of asymmetry measures does not guarantee a true zero-crossing.

To address this problem, an adaptive refinement step is used to eliminated the possibility

of jumps on the torus surface that are too large. Specifically, we watch the ratio between the

edge length and the chordal length. If the edge is longer than half of the chord currently being

discovered, we subdivide the edge. This effectively limits the length of the curve on the torus

corresponding to the marching square edge. Hence, “zero-crossing overshooting” is guaranteed

not to happen. A simpler solution (although less efficient) will be to resample the entire polygon

before processing to enforce a specific minimum spacing between vertices.

2.4.3 Whole SLS vs SLS of basic parts

Figure 2.13 shows the SLS axes of five peanuts shapes that our system computes. The set of

smoothed local symmetries is quite redundant. (Also recall that the set of symmetries captured

by the MAT fails to represent certain salient parts, e.g., shallow bumps). Brady and Asada

[1984] pointed out that the boundary point that forms a symmetry pair with a given boundary

point is not unique. Some of these symmetry pairs reflect global structures of the shape, some

represent local features, and the rest of them do not convey any interesting structural infor-

mation about the shape. Rom and Médioni [1993] proposed a method of pruning a symmetry

set using the angle between the chord and the tangents, the ratio between the length of the

smoothed local symmetries and the thickness of the ribbon, and other filtering schemes, which

address some of the problems created by the non-intuitiveness of the symmetry set.

Figure 2.13: Redundant smoothed local symmetries of peanut shapes
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In fact, tracing the smoothed local symmetries is only meaningful within a basic part, and

the purpose of tracing this axis is to study the second derivatives of the chordal lengths: equa-

tion (2.1). We assumed that within a single part body, the human visual system can recover the

symmetric version of the part. When the tracing goes into the transitional region, this assump-

tion is no longer valid. Thus, when the tracing of the SLS reaches the end of a part body and

enters its transition, that might be a good time to stop tracing. But this does not always work in

all situations. In Section 3.1.3, we will further describe the condition to stop the SLS tracing.

Sections of SLS with negative values of equation (2.1) are the focus of our interest since they

indicate potential transitions from parts to the rest of the shape. In the section that follows, we

will first study in depth the differential geometries about the smoothed local symmetries and

then return to locating those interesting part transitions.

2.5 Locating the part body and transition

The discussion in the previous section proposed an effective way of locating and describing

the part and its transition to the rest of the shape. In practice, we found that using the second

derivative of L with respect to the SLS axis is not ideally stable numerically. In this section

we will explore further the geometry of the smoothed local symmetries. It not only facilitates

the computation of the part structure, but also naturally connects our approach to the existing

computational part models.

2.5.1 Chordal geometry

To prepare for a deeper study of the differential geometry of the smoothed local symmetries, we

first provide some facts about the geometry of any pair of boundary points u and v on the C2

continuous shape α, which we call the chordal geometry. More detailed derivations of these

facts are provided in Appendix 2.A.

We define the partial tangent circle C(u, v) as the circle that is tangent to the curve at α(u)

and passes through α(v). (See Figure 2.14, which also shows C(v, u)). C(u, v) and C(v, u)

have radii r̃(u, v) = L
2 sin θ and r̃(v, u) = L

2 sinϕ , respectively. Here the radius is signed and is
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negative if θ or φ is negative. If the circle is tangent to u or v from outside, then the radius is

negative.

We can write the partial derivatives of θ and ϕ in terms of these radii and boundary curva-

tures:
∇θ =

(
−κ(u) + 1

2r̃(u,v) ,
1

2r̃(v,u)

)
∇ϕ =

(
− 1

2r̃(u,v) , κ(v)− 1
2r̃(v,u)

)
,

(2.4)

Here κ is the curvature ofα and we follow the convention that convex shape boundary segments

have positive curvatures. It naturally follows from (2.4) that:

∇(θ + ϕ) =
(
−κ(u), κ(v)

)
∇(θ − ϕ) =

(
−κ(u) + 1

r̃(u,v) ,−κ(v) + 1
r̃(v,u)

)
.

(2.5)

2.5.2 Geometry along smoothed local symmetries

Now we are ready to derive the second derivative of the choral length L with respect to a small

amount of movement along the symmetry, or ds. Here we denote the curve parameters of the

positions of the boundary point u as u+ du, and v as v + dv.

Since u and v form a local symmetry, we have θ = ϕ. When this is the case, the two partial

tangent circles overlap, producing r = r̃(u, v) = r̃(v, u), which is bitangent with the shape

boundary at both u and v. Accordingly we call r the bitangent radius.

Along any symmetry, θ − ϕ = 0, thus the change of θ − ϕ is also 0, which means ∇(θ −

ϕ) · (du, dv) = 0. Using the second equation of (2.5) and replacing r̃(u, v) and r̃(v, u) with r,

®(v)
r(u,v)~

r(v,u)
~

®(u)

C(v,u)

C(u,v)

Figure 2.14: Geometry of partial tangent circles C(u, v) and C(v, u)
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we get the relation of du and dv as given by equation (2.3)—just as what Gibbons [1985] had

given previously. However we would like to bring to the reader’s attention how the direction

of each side of the smoothed local symmetries continues along the boundary. Normally, du

and dv are of different signs and when one side of the symmetry pair moves counterclockwise

along the shape boundary, the other side moves clockwise. The condition for this occurrence is

when the bitangent radius is either larger or smaller than the radii of curvatures at both u and v.

For example, the symmetries captured by the MAT are of this type since all the corresponding

bitangent circles are inscribed. However, if the bitangent radius is between the radii of the

osculating circles at the two tangent points, then we have du and dv have different signs. As

one side of the symmetry pair moves on, the other side turns back. These “skewed” local

motions of the symmetry pairs on the shape boundary are illustrated by Figure 2.15.

A
B

C

A
B

C

A
B

C

(a) (b) (c)

Figure 2.15: Motion of the symmetry pair along the boundary. The axis sweeps along intuitive
symmetries when the signs of du and dv differ, as in (a) and (c). When du is of the same sign
as dv, local symmetries continue in a “skewed” fashion, as shown in (b).

Brady and Asada [1984] assumed that only the first case could happen, by referring to the

work by Bookstein [1979] on algorithms for constructing the medial axis. They did realize,

however, that under this assumption, the set of symmetry pairs is not continuous in the (u, v)

space. Thus their definition of the smoothed local symmetries virtually assumes that the local

symmetries are examples of the first case. In fact, skewed continuation of local symmetries

does not reveal any intuitive symmetry of the shape, so in our implementation, we also choose

to ignore them. Still, they need to be traced if we wish to uncover symmetries beyond them (as

in Figure 2.15).

Now we take a closer look at the local coordinate system at the SLS axial point, s, of a

symmetry pair u and v. Consider an infinitesimal movement ds along the axis, bringing the
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two points to u+ du and v + dv, respectively, We have:

s =
α(u) +α(v)

2

p =
α′(u) +α′(v)

2 cos θ

ds =
1

2

(
α′(u)du+α′(v)dv

)
We know that u and v form a locally reflective symmetry with each other. The center of

the symmetry is given by s as shown above. The direction goes along the bisector, which is

perpendicular with the unit-length chordal direction p. This direction, denoted as p⊥, is:

p⊥ =
α′(u)−α′(v)

2 sin θ
(2.6)

However, p⊥ is not parallel to ds. When we project ds onto p and p⊥, we have:

ds⊥ =
1

2
(du− dv) sin θ,

ds|| =
1

2
(du+ dv) cos θ

(2.7)

where s⊥ and s|| are the perpendicular and parallel components of ds, respectively.

®(v)

® (v+ dv)

®(u)

®(u + du)

ds

ds{

L(u,v)

ds

p

p

Figure 2.16: Local differential structure of the SLS axis

Figure 2.16 illustrates all the components related to the structure that describes a local move-

ment of the SLS axis. Ideally, we hope that ds|| ≈ 0, since we want the SLS axis to be a good

visual representation of the locally reflective symmetry. Whenever du and −dv are approxi-

mately equal, the parallel component is close to zero. In particular, when the curvatures of the

two boundary points are small relative to the reciprocal of the bitangent radius r, then according

to (2.3), the SLS axis does a good job of reflecting the symmetry structure. However, in cases
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when ds|| is relatively larger than ds⊥, we find that the SLS axis is no longer a good represen-

tation of the symmetry structure. A typical situation where this occurs is when the “tip” of the

part is circular. The exact placement of the SLS is unstable. An example of this instability can

be seen on the sides of the peanut shapes in Figure 2.13.

Here, we commit to the reflective symmetry and choose to omit the parallel component of

the axial structure. Thus, instead of considering the second derivative of the chordal length

with respect to ds as the part-body invariant expressed by (2.1), we consider it with respect to

s⊥, which revises the invariant to
d2L

ds2⊥
6 0 (2.8)

In fact, both (2.1) and (2.8) have the same sign, so qualitatively they are equivalent. However,

as will be discussed below, by ruling out the non-intuitive potion, the new version (2.8) better

aligns our perception of the salience of visual parts.

Appendix 2.A gives the gradient of the lengths of a chord (u, v) with respect to u and v as:

∇L = (− cos θ, cosϕ) (2.9)

Along the SLS axis, we have dL = ∇L · (du, dv) = (−du+ dv) cos θ; dividing this by ds⊥

(see equation (2.7)), we get:
dL

ds⊥
= −2 cot θ. (2.10)

Also from equation (2.4), we have

dθ

ds⊥
= csc θ

(
−2κ(u) + 1

r̃(u,v)

)
du+

(
1

r̃(v,u)

)
dv

du− dv

Considering that when u and v form a local symmetry, r̃(u, v) = r̃(v, u) = r, and also that the

relative motion of the two boundary points across the symmetry is given by equation (2.3), we

get:
dθ

ds⊥
= − csc θ

κ(u)du− κ(v)dv

du− dv

= − csc θ
κ(u)

(
1
r − κ(u)

)
+ κ(v)

(
1
r − κ(v)

)(
1
r − κ(u)

)
+
(
1
r − κ(v)

) (2.11)
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This, together with (2.9), and denoting wu = 1/r − κ(v) and wv = 1/r − κ(u), results in:

d2L

ds2⊥
= −2 csc3 θ

κ(u)wu + κ(v)wv
wu + wv

(2.12)

This completes the derivations of d
2L
ds2⊥

in terms of the boundary curvatures and bitangent radius.

2.5.3 Contour grouping strength and part transition

The cocircularity of the partial tangent circles across the chord, which implies local reflective

symmetry, is a strong cue for perceptual grouping. This motivates us to observe the concavity of

the chordal length function by tracking along the SLS axis. Research in cognitive science sug-

gests that although the cocircularity cue dominates, under good cocircularities good collinearity

further improves the grouping strength. Interested readers can refer to the quantitative study

conducted by Elder and Goldberg [2002] on how cocircularity and collinearity (which they call

“parallelism”) cues interact in determining the contour continuation.

Collinearity is a measure of how two segments of 2D contour line up with each other. A

common practice (such as the measure used by Elder and Goldberg [2002]) is to use the total

turning angle from one to the other. Formally, given a pair of boundary points, this is exactly

the sum of θ and ϕ shown in Figure 2.10(a). Here we follow existing conventions in research

on occluding contour grouping [Kellman and Shipley, 1991; Singh and Hoffman, 1999], and

use the term relatability to measure the grouping strength. Originally, the relatability between

points α(u) and α(v) is defined by R(u, v) = minc
∫
c |κ(γ)|dγ, where c is any interpolating

curve connecting α(u) and α(v) such that it is C1 continuous and does not include any inflec-

tions. For a reflectively symmetric pair of contour segments that have the same sign of θ and ϕ,

we haveR(u, v) = θ + ϕ. This assumption is valid along smoothed local symmetries because

of the cocircularity that is already present; the relatability thus depends only on the collinearity.

To derive the changes of R(u, v), we use methods similar to those used when we derived

equation (2.12) from equation (2.11), resulting in:

dR
ds⊥

= −2 csc θ
κ(u)wu + κ(v)wv

wu + wv
(2.13)
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We will further analyze the factors that affect (2.13). For now we point out the relationship

between (2.13) and (2.12):
d2L

ds2⊥
= csc2 θ

dR
ds⊥

(2.14)

The similarity in forms is not surprising since (2.13) is essentially twice dθ
ds⊥

evaluated using

(2.11). This has a very interesting implication. The classical minima rule, after the “normaliza-

tion” by the curviness of the symmetry axis, can be explained by perceptual grouping. Namely,

if the grouping strength of the local symmetry gets stronger, or at least stays the same along the

SLS axis, the axis stays within the body of a part. Otherwise, the axis enters into the section of

transition, which leads to the rest of the shape.

¼¼

RR

(a) (b)

Figure 2.17: Shape and relatability profiles along symmetry axes

Figure 2.17 further illustrates this theory. The top row shows different fragments of 2D

shapes along the SLS axes. In particular, shapes in (a) are geometric primitives, each of which

consists of a single part. Their SLS axes are also shown, and below each shape is the corre-

sponding relatability profile along the SLS axis. As we can see, at the starting point in each

shape the relatability value is 2π and then it monotonically decreases (it may or may not in-

clude an interval with a constant value of R), and finally drops to 0, at which point the local

symmetry pair becomes most relatable and closes up the shape. Figure 2.17(b), in contrast,

shows two fragments of shapes each of which perceptually involves multiple parts. Similarly,

the SLS axis is plotted and the corresponding profile of theR value is shown under each shape.

But unlike examples in (a), both shapes have increasing intervals ofR, and as we can perceive,

these sections with increasingRs are exactly where parts come together—transitions.
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2.5.4 Locating part transitions using relatability

The signs of equations (2.12) and (2.13) help to identify the section of the SLS axis that corre-

sponds to part transition; we also hope to have a measure of the transition strength. Due to the

curvature factor in the right hand side of both equations, they are scale-dependent. We simply

multiply them with the bitangent radius r to remove the scale dependency. In spite of the qual-

itative equivalence between (2.12) and (2.13), we believe that quantitatively, dR
ds⊥

aligns better

with the sensitivity of the visual system towards the shape transition. Putting these together, we

give our model of the strength of a part transition at a point on a local symmetry:

Definition 2.5.1. The local strength of the part transition, B, of a symmetry pair is defined as

the first derivative of relatability with respect to ds⊥, normalized by the radius r:

B = r
dR
ds⊥

.

In practice, within a part body we would like to accept slight increases of relatabilities (or

concavity of chordal lengths), since we expect to encounter noise or fluctuations at different

scales. Thus, we use a small threshold b0 > 0. Only those with B > b0 are considered

symmetries of part transition. Useful values of b0 range from 0.2 to 1. Later in this section we

will describe in detail how we set the value b0.

Figure 2.18 shows the SLS axes of the same set of the shapes from Figure 2.13, except that

only those with b0 > 0 are highlighted. Note that a local symmetry with B > b0, that qualifies

to be transitional, does not necessarily result in a plausible part cut. Although a local maximum

of B could arguably be a good candidate for separating a part from the shape, as we have

explained earlier in Section 2.2, it is often more desirable to locate a continuous section of part

transition. B could also be spuriously large if one point of the symmetry is a corner vertex (even

Figure 2.18: The smoothed local symmetries of the peanut shapes that have positive values of
dR
ds⊥

are highlighted while the rest, most of which redundant, are in a lighter color
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a shallow corner), which typically has a very large curvature value under concurrent curvature

estimation methods. We want our method to be more robust to such fluctuations.

Instead of looking at individual symmetry pair, we integrate B along adjacent local symme-

tries with B > b0. This leads to the following definition:

Definition 2.5.2. The total strength of a part transition, T , between two parts is defined as the

change of relatability across the transitional section:

T =

∫
c

dR
ds⊥

ds⊥,

where c is the axis segment with B > b0.

Note that by integrating equation (2.13) with s⊥, the scale dependency is removed. Thus,

normalization with r is not needed. The integral is a measurement of the change in total turning

angle, θ+ ϕ, along the transitional section of local symmetries, which is considered one of the

the part saliency measurements proposed by Hoffman and Singh [1997].

In our system, only a section of symmetries with significant total strength is considered as a

potential part transition. However, using the difference in turning angles as the total boundary

strength is not conducive to detecting shallow parts. In practice, we use the normalized total

strength Tn = T
R , which is normalized by:

R =

∫
cRds

′
⊥∫

c ds
′
⊥

This is the average value of relatability along the symmetry. Similarly, we employ a threshold

t0. A valid part transition has Tn > t0.

The form equation (2.13) indicates that the local strength of the part transition is not deter-

mined by just one side of the shape boundary. The other side, across a continuous sequence of

local symmetries, also matters. In particular, the factors include a weighted sum of curvatures

κ(u) and κ(v) where the weights on both sides are proportional to their speeds in the symmetry

tracking, which becomes even more obvious if (2.3) is rewritten as κu
κv

= wu
wv

.

It naturally follows that the human visual system does not perceive a potential part transition
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 B  increases

B < 0

Parts Transitions (with Tn   >  t
0
) 

cup bend taper short cut limb neck

B = 0 0 < B < b
0

B > b
0

B > 2b
0

B > 2b
0

Figure 2.19: How both sides of the symmetry turn determines whether they form a part tran-
sition, and if so, how strong the transition is. Note that the boundaries of bend, taper, short-cut
and limb share the same shape geometry and turning angle on their left side, so the boundary
strength is determined by the right side.

if both sides of a local symmetry are convex. This corresponds to the “cup” shape, according to

Brady and Asada [1984]. See the first shape in Figure 2.19 for one such example. The rest of the

shapes in Figure 2.19 all have concave boundaries. If the total weighted sum of the curvatures

cancels each other out, the integral of the change in total turning angle is 0. A bending structure,

where one side of the shape boundary is concave, is one such case—no section of transition

is perceived here either. The convex side does not completely cancel out the concavity of the

boundary it is symmetric with. But if it almost does so, and B < b0, then as we mentioned

earlier, the transitional strength is so weak that the visual system does not perceive a convincing

part transition. The “taper” shape, again from Brady and Asada [1984], is one typical example

(Figure 2.19). Another such case is the shallow neck shown in Figure 2.6(c). Note that a neck

is where the chordal length reaches a local minimum, hence (2.12) is positive, which indicates

positive local transitional strength. If it is not significant enough, a shallow neck like this will

not be perceived as a transitional region either. However, if the convex side is almost flat,

such as the fourth shape in Figure 2.19, B will be significantly positive. If the integral of a

continuous section of symmetries with B > b0 is large enough, then this section is perceived

as transition. This agrees perfectly with the short-cut rule proposed by [Singh et al., 1999]. Of

course, if both sides of the symmetry are concave, together they contribute to the transitional

strength. Depending on their relative position, the part on one side of the transitional section

might be perceived as a limb or a neck-based, which are the two cases proposed by Siddiqi and

Kimia [1995].
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Figure 2.18 suggests the implementation of locating sections of smoothed local symmetries

that correspond to transitional regions between parts. We further clarify this procedure with

1

2

3

R

Btan-1

tan-1b0

M+
1 2 3

(a) (b)

Figure 2.20: The relatability and local strength along the SLS (b) help to locate the transitional
regions between parts (a).

Figure 2.20. The algorithm begins with the tracing of the smoothed local symmetries from

each curvature extremum, such as the SLS traced from the local positive curvature maximum

from the toe of the foot shown in Figure 2.20(a). Then we compute the local transitional

strengths of symmetries along the SLS, followed by locating continuous sections with B > b0.

For each section, we compute the normalized total strength Tn, and only consider sections with

Tn > t0. As shown in Figure 2.20(b), the traced SLS contains three potential transitional

sections. However, the total strength of section 2 is lower than t0, thus is not considered as a

part transition.

The two strength thresholds jointly determine the existence and extent of the transition be-

tween parts. Figure 2.21(a) shows the same set of shapes as Figure 2.18, but arranges them in

rows. Each row in (a) has the same shape but uses different local transitional thresholds: b0

ranges from 0.1 through 1.0. As b0 increases, fewer local symmetries are included in the transi-

tion section, and thus the total transitional strength Tn decreases. For a threshold of t0 = 0.15,

the last shape is rejected from being considered as a composition of two parts in any choice of

b, since it lacks sufficient total transitional strength.

Figure 2.21(b) shows another group of shapes under the same threshold settings. In fact,

these shapes are the results of “filling” the bottom indentations (from the background) of the

shapes on the left. As expected, since only one side of the symmetry contributes to the local

transitional strength of each shape, the total strengths are roughly below half of those in (a).
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Figure 2.21: Effects of varying transition strength and b0. Below each shape is the correspond-
ing value of normalized total strength Tn (or zero for no transition).

vi+1

vi-1
vi

Btan-1

tan-1b0

vi+1vi-1vi

(a) (b)

Figure 2.22: Split transition due to local curvature estimates.

Consequently, four of them are considered to be single-part shapes.

It is worth noting an implementation issue related to the sensitivity of the system due to

curvature estimation. Figure 2.22(a) shows a perceptually continuous section of transitional

region. However, the right boundary of the shape happens to have three consecutive vertices

lining up, in which case, our curvature estimator evaluates as κ(vi) = 0. Accordingly, its local

symmetry has transitional strength 0, which breaks the transitional section into two pieces.

Instead of trying to incorporate a wider window on the shape boundary in curvature estimation

(This makes it difficult to trace the SLS properly, as is explained in Appendix 2.B), we estimate

the local transitional region in a more robust way. For any local symmetry ds with chordal

length L, we look at a neighborhood of size L
5 along the SLS axis and use the median as the

transitional strength.
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2.6 Extrapolation of part body using symmetry

We have described our part transition model which is used to locate the sections of smoothed

local symmetries shared between parts. But it does not give the geometric description of the

part body itself. Figure 2.7 shows how different forms a part body could possibly take and how

different parts could be connected with each other differently. The parts can be closed as in

(a,c) or open (b,d); they can be parts of the foreground (a,b) or the background (c,d).

Since the portion of the part body that “merges” into the transition is unknown, we can

construct a reasonable connection by extrapolation. Following the model in Singh and Fulvio

[2005] of the extrapolation of contours of 2D shapes by human vision, we use a logarithmic

spiral to compute the unknown boundary of the part body. There are two cases; the first occurs

when a ”salient symmetry” is present. The SLS axis of a part forms a “salient symmetry” when

the parallel component of s|| is small relative to s⊥. If the local symmetry s0 where the SLS

enters into the transition has
ds||
ds⊥

∣∣∣
s0
< 0.1, then we choose to extrapolate this coherent part of

the SLS axis using a logarithmic spiral; but the chordal lengths along the axis are extrapolated

linearly. The boundary of the part body is regenerated from the extrapolated axis and chordal

lengths. Otherwise, in the second case, if we cannot locate any salient symmetries, we simply

extrapolate the boundary using a logarithmic spiral.

Gray et al. [2006] describes logarithmic spirals in detail. The derivative of the curvature

of the logarithmic spiral with respect to the arc length is given by dκ
ds = −bκ2, where b is

the constant term that determines how fast the curvatures decay along the curve. Note that

logarithmic spirals are characterized by their self-similarity, and b is scale independent. We

have verified that any b larger than 1 produces reasonable looking results (we simply set b = 2).

We have also tried to determine b based on the existing segment of the SLS axis. However, the

start point of extrapolation could have the highest curvature along the whole axis, which makes

b negative. This conflicts with the conclusions of Singh and Fulvio [2005]: human vision

extrapolates a contour segment by a curve with decaying curvatures, which means b must be

positive.

Figure 2.23 further explains the subsequent procedures. Each point vi of the part boundary
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Figure 2.23: Extending the body of a part is a four-step procedure. First, the SLS axis is
extended (a); then part boundaries on both left (c) and right (d) sides are transformed into radius
functions along the axis (b); At each side, the inflection point of the chordal radius function
is located separately; the concave portion is abandoned, replaced with a linear extrapolation;
Finally, the boundary is regenerated using the extended axis and chordal radii.

is then represented as an axial point si (with unit tangent s′i) and a chordal radius rci, such that

α(vi) = si ± rci ·R90s
′
i (2.15)

where R90 =

0 −1

1 0

 is the rotation matrix that transforms the axial tangents to the per-

pendicular vectors towards the boundary points on the u side of the corresponding local sym-

metries. This map gives us the radius function along the axis. Recall the part body invariant

described in Section 2.3. We want to redefine this function by getting rid of the transition—the

convex portion. To do this, we simply locate the inflection point (after which the radius curve

becomes convex) and extrapolate linearly from there, as shown in Figure 2.23(c) and (d). Then

we regenerate the shape boundary using (2.15). Since now the radius is concave along the entire

symmetry axis, there would not be any extended boundary with positive transitional strength.

In general, the inflection points of the radius curves of both sides are not mapped to the same

axial point (see Figures 2.23(c) and (d)). Thus, we evaluate the chordal radii and extrapolate

the radius functions using (2.15) separately. In fact, as indicated by Figure 2.23(a), the extrap-

olated axis does not align with the actual SLS axis from s0. Beyond this axial point, the two

extrapolated chordal radius at any axial point may not be the same. It is also possible that the

whole radius along the axis is concave. In this case, the extrapolation starts from the last pair
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of the transitional local symmetry. This typically happens to the non-concave side of the transi-

tional boundary—the concave side across the symmetries makes the SLS transitional, like the

“short-cut” case in Figure 2.19. If either of the radius extrapolation leads to negative values,

we simply abandon extending the body, and close it with a cubic Hermite curve. A neck-based

part such as in Figure 2.7(a) and (c) typically falls into this case. While some parts close up

naturally, we can always close the body of a part even if it is extendable, as also shown in

Figure 2.23(a). A part with a closed-up body has the description of its own form, while the part

extension always implies the attachment to other parts. However, the part extension gives us

flexibility in editing the way the part is attached, and so we always extend a part when possible.

2.7 Discussion

Our shape analysis algorithm tries to incorporate theories and findings from concurrent cogni-

tive science research. With different previous theories and computational models proposed to

interpret the composition of parts by geometric properties, our model fits them all into one sim-

ple framework. At the highest level, the design of the system is guided by theories and models

in geometry and perception (the minima rule, the symmetry curvature duality, relatability).

Good contour continuity is one of the strongest sources of perceptual grouping. Since per-

ceptually grouped contour segments are perceived as elements of the same visual component,

any deviation in good continuity along the contour will thus be perceived as a result of sepa-

rated components. This insight forms the base of our approach to separating parts from the rest

of the shape.

A transitional model in a shape analysis system is as important as a lexical analyzer for

language processing. It finds geometric units—parts. A shape-understanding system does not

stop here, however. As the human perceives any shape as a well-organized multiple-part struc-

ture, we hope our system also organizes the parts into a structure that respects the perceptual

organization by the human visual system. This is a challenging task even for simple polygonal

shapes, since understanding many shapes involves resolving ambiguities in the representation.

The next chapter reveals the details on how our system works towards this goal.
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2.A Derivations of chordal geometry

This appendix gives detailed derivations of the local geometry about a pair of boundary points

(not necessary a local symmetry) we used in Section 2.4.1 and Section 2.5.2. Again, throughout

this appendix, the boundary of a simple 2D shape is represented by a C2 continuous curve α

with unit-length parametrization.

2.A.1 Derivatives of L

Recall p(u, v) = 1
L(u,v)(α(v)−α(u)) = α(v)−α(u)

‖α(v)−α(u)‖ (see Section 2.4.1). We have:

∂L

∂u
=
∂‖α(v)−α(u)‖

∂u
=
∂
√

(α(v)−α(u)) · (α(v)−α(u))

∂u

=
1

2

−2α′(u) · (α(v)−α(u))

‖α(v)−α(u)‖

= −α′(u) · p = − cos θ

∂L

∂v
=
∂‖α(v)−α(u)‖

∂v
= α′(v) · p = cosϕ

Thus, we get ∇L = (− cos θ, cosϕ). Note that ∂L
∂v can be derived in a manner similar to

deriving ∂L
∂u ; or by reversing the order of local symmetry tracing and substituting u with v:

∂L(u, v)

∂v
= −∂L(v, u)

∂v
= − cos(π − ϕ) = cosϕ

This “anti-symmetry” trick is used throughout this appendix.

2.A.2 Derivatives of θ and ϕ

To get higher order derivatives ofL, we need to determine derivatives of θ and ϕ for an arbitrary

pair of points on the boundary. Since θ cannot be expressed by a simple function due to the

introduction of the wrapping function $, we first derive the derivatives of cos θ. Considering

that ∇ cos θ = − sin θ∇θ, it follows that∇θ = 1
− sin θ∇ cos θ.

We know ‖α′(u)‖ = 1 by the unit-length parametrization. It follows that cos θ = α′(u) ·p.
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We have:
∂ cos θ

∂u
=

∂α′(u) · p
∂u

=
∂α′(u)

∂u
· p+α′(u) · ∂p

∂u
∂ cos θ

∂v
=

∂α′(u) · p
∂v

= α′(u) · ∂p
∂v

(2.16)

Now we need ∂p
∂u and ∂p

∂v . Since

∇ 1

L
= − 1

L2
∇L

We have:
∂p

∂u
=

(α(v)−α(u)) cos θ

L(u, v)2
− α′(u)

L(u, v)
=
p cos θ −α′(u)

L(u, v)

∂p

∂v
=
−(α(v)−α(u)) cosϕ

L(u, v)2
+
α′(v)

L(u, v)
=
α′(v)− p cosϕ

L(u, v)

(2.17)

To expand (2.16), we further write α′(u) in terms of the curvature κ(u):

∂α′(u)

∂u
· p = α′′(u) · p = −κ(u)n(u) · p = κ(u) sin θ (2.18)

where n(u) is the outward pointing normal vector at u.

Now all the elements are ready for∇θ. Plugging (2.17) and (2.18) into (2.16), we get:

∂θ

∂u
=

1

− sin θ

(
κ(u) sin θ +

cos2 θ − 1

L(u, v)

)
= −κ(u) +

sin θ

L(u, v)

∂θ

∂v
=

1

− sin θ

(
cos(θ + ϕ)− cos θ cosϕ

L(u, v)

)
=

sinϕ

L(u, v)

Considering that r̃(u, v) = L(u,v)
2 sin θ and r̃(v, u) = L(u,v)

2 sinϕ , we can simplify the expression of

∇θ:
∂θ

∂u
= −κ(u) +

1

2r̃(u, v)
,
∂θ

∂v
=

1

2r̃(v, u)
(2.19)

Equation (2.19) gives both components of∇θ. To get∇ϕ, we again use the “anti-symmetry”

trick by considering the other side of the chord (u, v). To use the expression of ∇θ, we ex-

change u and v, and replace θ with π − ϕ. This gives ∂(π−ϕ)
∂v = −κ(v) + 1

2r̃(v,u) . Thus,

∂ϕ

∂u
= − 1

2r̃(u, v)
,

∂ϕ

∂v
= κ(v)− 1

2r̃(v, u)
. (2.20)
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2.B Curvature estimation and symmetry-curvature duality on polygons

To estimate the discrete curvature at a vertex vi, we use the circumcircle formed by vi and its

two adjacent neighbors vi−1 and vi+1 to approximate the osculating circle at vi. The curvature

is simply the reciprocal of the radius of this circumcircle. Accordingly, the estimated curvature

at vi is given by

κ(vi) =
2 sin(φ2 )√

‖α(vi)−α(vi−1)‖‖α(vi+1)−α(vi)‖
(2.21)

where φ = arccos (p(vi−1,vi) · p(vi,vi+1)); and α′(vi) is estimated as the osculating cir-

cle’s tangent direction at point α(vi). This local geometry estimation scheme, as has been

widely used in previous research [McCrae and Singh, 2009; Mullineux and Robinson, 2007;

Tookey and Ball, 1997], makes the symmetry-curvature duality theorem applicable to curves

represented by polygons. Considering the SLS tracing algorithm described in Section 2.4.2, we

only need to show that A(vi−1,vi) and A(vi,vi+1) must have different signs if vi is a local

curvature extremum given that the curvature is estimated by equation (2.21). Here we only

examine the case where vi is a positive curvature maxima by showing that A(vi−1,vi) < 0

and A(vi,vi+1) > 0. Other cases can be derived similarly.

vi

vi+1
vi-1

vi+2
vi-2

µ

'

µ
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p(v
i,v i
+1
)
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p(v
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Figure 2.24: Osculating circles and
chordal geometries around vi

Figure 2.24 shows the osculating circles, Cvi and

Cvi+1 , of vertex vi and vi+1, respectively, as well as

the chordal geometries between these two vertices. By

definition, A(vi,vi+1) = θ(vi,vi+1) − ϕ(vi,vi+1).

Note that according to the inscribed angle theorem, θ

is the same as the inscribed angle of Cvi subtended by

the chord vivi+1, and ϕ is the same as the inscribed

angle of Cvi+1 subtended by the same chord. Since

κ(vi) > κ(vi+1), the radius of Cvi is smaller than that of Cvi+1 . It follows that θ > ϕ, which

means A(vi,vi+1) > 0. A(vi−1,vi) < 0 can be shown in a similar manner.
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Chapter 3

Shape Parsing in terms of Parts

For any given shape we can find all the basic parts using the model proposed in Chapter 2, but

the set of geometric components includes more than just parts. Each of them might be a real

part used by the human visual system to describe the shape, such as part A in Figure 3.1(a);

it might also be only a portion of a part, such as B and C in Figure 3.1(a). Together they are

perceived as a single part, since the most natural description of the whole shape would probably

be this part with a protrusion, part A, on the top, as depicted in (b). We treat part-like elements

such as A, B and C as determined using the part body invariant from Chapter 2 as potential

part candidates.

This chapter describes our method of identifying real parts from among these part candidates

and constructing a comprehensive, structural description of the shape in terms of these parts.

Our shape parser follows morphological frameworks [Rom and Médioni, 1993; van der Poorten

and Jones, 2002] that identify and delete parts from the whole shape one by one in the order of

their sizes. The set of deleted parts are used collectively to describe the shape. Section 3.1 will

introduce this approach in detail, with an improved part separation scheme thanks to the tran-

sitional model described in Chapter 2. However, Section 3.2 shows a few problems with this

M+

M+

M+

M+

M+

A

B
C

(a) (b)

Figure 3.1: Not every populated element is perceived as a real part. Of the three candidates in
(a), only part A is recognized as a part by the human visual system. B and C are explained as
portions of a bigger part, shown in (b)



63

approach. In particular, it proposes taking both parts of the shape and parts of its background

into account. It also points out that using only size to order the deletions can produce parts

that do not respect the perceptual organization. Furthermore, when we use this description as a

representation for abstracted depiction in Chapter 4, the resulting abstraction appears distorted.

Section 3.3 and Section 3.4 proposes a set of heuristics as our models of perceptual organiza-

tion. These models are implemented using constraints that restrict deletions that would disrupt

the perceptual organization. A graph-based algorithm is described in Section 3.5 to implement

these constraints for the set of deletable parts. In Section 3.6, we further demonstrate that this

approach can be adapted to allow a user to guide the decomposition using strokes drawn on the

shape. This approach has been presented in [Mi et al., 2009] and here we describe it in more

detail.

3.1 Shape analysis by sequential part pruning

In Figure 3.1(a), B and C become part candidates of the whole shape because of the existence

of part A. A’s transition into the base forms contour segments of negative curvatures. Because

of these concave curve boundaries, the smoothed local symmetries traced from the lower two

positive maxima also become transitional, and these transitional SLS axial segments give rise

to the candidates B and C. If only A were not there!

The description of the shape in the beginning of this chapter hints that in order to arrive at a

correct explanation about candidates B and C, A would need to disappear. This naturally leads

to the paradigm of “shape analysis by pruning”: if we can somehow cleanly delete part A, then

the negative curvatures between A and the base formed by candidates B and C are gone. The

SLS axes of B and C no longer contain any transitional sections. Instead, they are merged as a

complete part (Figure 3.1(b)), which correctly describes the base of the shape.

3.1.1 Related work on structural pruning

The medial axis pruning described in Chapter 1 is meant for shape simplification. The pruned

axis of the simplified shape does not change the relationship between retained medial edges.
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Compared to this, the chordal axis transformation and morphological pruning of the chordal

axis are more related to the shape analysis.

The chordal axis transformation (CAT) is very similar to the MAT. They both recover the

boundary of the shape using the same set of local symmetries—those on which the bitangent

circles are maximally inscribed [Leyton, 1992]. The difference is only in what generates each

pair. For the MAT, the generator is simply the bitangent circle; for the CAT, the generator is the

bitangent circle only when this circle is shared with other symmetry pairs; otherwise, the CAT

takes the local symmetry chord as the generator. In the latter case, the center of the generator

lies exactly on the SLS axis, which means that this portion of the chordal axis is a subset of the

SLS axis.

For shapes represented by polygons, in Prasad’s [1997] implementation, the CAT pruning is

based on the discrete CAT, which is simply the CAT with the discrete set of local symmetries.

Specifically, a pair of vertices of a polygon is considered locally symmetric in terms of the

discrete CAT if and only if they form a constrained Delaunay edge in the constrained Delaunay

triangulation (CDT) [Chew, 1989] of this polygon with edge connectivity constraints. Thus,

topologically, computing the CDT is the essential step in the computation of the discrete CAT.

The CDT divides the shape into so called constrained Delaunay triangles, each of which can

be one of four types, according to the number of polygon edges they share. An isolated triangle

is a Delaunay triangle whose three edges are all polygon edges. Since this only happens with

triangular polygons, we choose to ignore this type of polygon since the analysis is trivial. A

terminal triangle shares two polygon edges; a sleeve triangle shares one, while a junction

shares none—all its edges are internal Delaunay edges.

sleeve

junction

terminal
A

B
C

junction

turned to

sleeve

B
C

A

B
C

B
C

(a) (b)

Figure 3.2: (a) shows the CAT of the shape in Figure 3.1. Each of the three sleeves is led by a
terminal triangle. They can be related to parts A, B and C naturally. (b) shows that pruning the
sleeve on the top from the CAT simplifies the topology of the sleeve structure and the chordal
axis, but this pruning also suffers from the stump artifacts.
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Figure 3.2(a) is an example of the CAT. The only junction is shown in white; sleeve and

terminal triangles are shown in medium and dark gray, respectively. The virtue of the discrete

CAT is that major local discrete symmetries are naturally represented by chains of adjacent

sleeve triangles (in the rest of this chapter, we simply call them sleeves). When a sleeve is

adjacent to a terminal triangle, we say that the terminal triangle leads the sleeve. Considering

the connection between the CAT and the SLS, a sleeve of the discrete CAT led by a terminal

triangle can often be related to the smoothed local symmetries of a basic part candidate traced

from some curvature extremum1. In Figure 3.2(a), A, B and C can each be related to a sleeve

led by a terminal triangle, and these sleeves join at a junction triangle. Figure 3.2(b) further

shows that once the sleeve related to A has been deleted, the sleeves related to candidates B

and C are now combined into a single part. In fact, this junction becomes a sleeve triangle if

any one of its adjacent sleeves (each led by a terminal triangle) is deleted. After the deletion

of any one sleeve, the other two sleeves are merged, and the sleeve structure of the whole

shape becomes simplified, as pointed out by Prasad [1997] and applied by van der Poorten

and Jones [2002] in their map simplification system. Prasad and Rao [2000] also point out

that this structural removal implies the hierarchy of the shape. In the case of A, B and C

in Figure 3.2(b), removing the top sleeve and leaving a whole more salient sleeve structure

suggests interpreting the shape as: a single sleeve containing both B and C, with a branch that

contains A.

A

B
C

Figure 3.3: The simplification of the topology of the axis structure, as well as the stump artifact
of the MAT pruning

However, removing A does not lead to a clean, smooth sleeve. There are often stumps left

after the pruning of discrete CAT, as pointed out by van der Poorten and Jones [2002]. In

the domain of continuous chordal axis pruning, such stump artifacts were noticed even earlier

1 In most well sampled polygons, one of the vertices of a terminal triangle is also a curvature extremum, and
a smoothed local symmetry can be traced from it. But unfortunately, this connection between the smoothed local
symmetries and sleeves in the discrete CAT is not guaranteed.
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by Rom and Médioni [1993] in their work on morphological 2D shape analysis. As shown

in Figure 3.3, the regenerated shape with the top medial edge pruned also exhibits a similar

stump artifact, although in this case, the stump has a round form. As shown in Figure 3.3, the

junction of the three medial edges is the result of the existence of all three part candidates A,

B and C. Portions of the medial edges of B and C that are close to part A are also affected by

A. In the shape with A pruned, however, the regeneration is based on the medial edges of B

and C, which are “contaminated” by A. In other words, the medial edges are computed based

on the whole shape, but these medial edges never get reevaluated during the pruning. This

results in the “stump” artifacts of the MAT pruning. Given the equivalence between the MAT

and CAT, shape simplification by CAT pruning shares similar problems with the medial axis

pruning, including the stump artifacts and the unrepresented shallow bumps (recall Figure 2.2

in Section 2.1.1), as well as structural instability2.

3.1.2 Shape analysis with clean removal of parts

The existence of stump artifacts results from the failure to removeA cleanly. Rom and Médioni

[1993] attempt to eliminate this problem by pruning more of the boundary by a fixed amount,

which achieves limited success. Our transitional part connection model provides a more elegant

solution to this issue.

Figures 3.4(a) and (b) show the SLS axis starting from the very tip of the shape, and the

relatability R of the local symmetries along this axis. The transitional region, indicated in

thick gray, signals the existence of a potential part candidate, which is A in the figure. As

described in Section 2.5.4, this transitional section is detected by the interval with significant

positive values of B. If we were to follow the traditional binary segmentation of the shape in

terms of parts, any chord of local symmetry along this section would be reasonable. In this

case, however, a stump would remain, revealing traces of the prior existence of A, except for

the last pair (as indicated by s1) where the transition is completely removed.

2 Prasad [2007] tries to resolve the structural instability of the discrete CAT by introducing the approximate
co-circularity of edge-adjacent triangles, which shows an idea very similar to the bone graph proposed by Macrini
et al. [2008].
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Figure 3.4: (a) The transitional SLS of candidate A. (b) The corresponding values of relata-
bility along the axis. (c) A clean part removal. (d) The decision to delete A is based on the
short-cut rule, or rule of proximity.

Following the removal of part A, instead of completing the shape with a line segment, we

use a cubic Hermite spline with C1 boundary continuity. In our implementation, we have also

tried other interpolative curves, including the Euler spirals [Kimia et al., 2003] and curves of

elastica [Mumford, 1994]. We do not see significant differences between the cubic spline and

the elastic interpolations. Due to the local symmetry of the chord, the Euler spiral is always a

circular arc, which we find to be visually distracting in some occasions.

The short-cut rule naturally justifies our choice of A, rather than B or C, as the part to be

deleted. The short-cut rule [Singh et al., 1999] points out that closer local symmetry triggers

stronger contour grouping. This suggests that parts should be deleted in the order of their

scale. We use the chordal length of the local symmetry as our scale measure. Note that since

the chordal length of s1 does not represent the size of the part body, but rather that of the

transition, this length is affected by how the part joins the main body of the shape. It would be

more reasonable to use the scale of the part body to order the deletion. Thus, instead of using

this radius, we evaluate the extrapolated radii at s1 on both sides and order the part deletion by

their sum. For a part that is not extendable, which is typically neck-based, we use the smallest

chordal length of the transitional region. See Figure 3.5 for illustrations of both cases. Notice

that for extrapolated part candidates, our definition of the scale measure is independent of the
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Lrcl+rcr

(a) (b)

Figure 3.5: For extendable parts, we use L̃ = rcl + rcr as the scale measure, where rcl and rcr
are the extrapolated left and right radii at the last symmetry pair (a). If such extension does not
exist, we simply use the minimal chordal length of the transitional section. For a neck-based
part, this is just the distance across the neck.

forms that the transitions take.

As pointed out by Rom and Médioni [1993], the deleted components naturally form a hi-

erarchy according to the relationship between the completion curve after a previous deletion

and the deleted boundary of a subsequent deletion. We can also build this relationship between

parts, but in a little more complicated way due to the introduction of the transitional region.

For two subsequently deleted parts P1 and P2 where P1 is deleted before P2, P2 is considered

the parent of part P1 only if the body of P2 shares any segment of curve that has been used

to complete the shape after the deletion of P1. The transitional boundary of P2 sharing P1’s

completion curve does not qualify P1 to be a parent part of P2. If this is the case, we assign the

parent of P1 as P2’s parent.

For neighboring parts with similar scale measures, our system opts to delete them together,

in part because it is often a better arrangement to consider neighboring parts at the same level

in the shape hierarchy rather than to treat one as the parent of the other, which is implied by

the sequential deletion. At this moment, we simply consider that two scale measures L̃1 > L̃2

are similar if L̃1 < 2L̃2. In Section 3.3.5, we will revisit this issue and come up with a

better justification for multiple part deletion. For multiple neighboring parts, we simply use the

smallest scale as the scale of the whole group, and we use a single Hermite curve to complete

the gap left after the deletion of these parts.

We summarize the procedure for computing the shape description, given a simple 2D shape,

as follows:
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Figure 3.6: Sequential deletion of
parts reveals the composition of
the kangaroo shape

Part detection

1. Trace local symmetries from each curvature ex-

tremum including those with negative curvatures. At

this moment we only consider parts from the fore-

ground, and most foreground parts are described by

SLS axes traced from positive curvature extrema.

But in some situations, a single SLS axis that starts

at a negative curvature minimum may continue on

to describe symmetries of a part in the foreground.

2. Locate transitional sections of the SLS with signif-

icant strength Tn > t0. If any end of the transition

correspond to a basic part candidate, build the data

structures related to this candidate based on the tran-

sition and the SLS on that end, including the nec-

essary part extension, where possible. Note that a

basic part candidate does not contain any other po-

tential parts.

Part decomposition

3. Find the group of neighboring parts with the small-

est scale as measured by the smallest part in the

group. Replace their boundary with the completion

curve.

4. If the shape is not empty, go to step 1.

The whole set of deleted parts, as well as the hierarchy

the deletion implies, collectively constitutes the shape de-

scription in terms of parts.

We apply a sequence of part deletions to a kangaroo

shape, which gives us the step-by-step results as well as



70

the final decomposition in Figure 3.6. Note that in the bottom figure, extendable parts overlap

with their parent parts. Examples of deletions that involve multiple parts can also be found

in the first and fourth steps. Because of this arrangement, the two ears of the kangaroo are

both subparts of the head. The leg and the the tail are deleted together as a group due to their

similarity in scale. Since their transitional boundaries overlap, the hierarchical relationship

built according to Rom and Médioni [1993] will consider the leg as a subpart of the tail if the

former is deleted after the latter.

3.1.3 Termination condition for SLS tracing

Section 2.4.3 has portrayed the high complexity of the SLS axis, together with the good news

that all we need to focus on are the local symmetries related to the basic parts. Thus, instead of

locating transitional sections and basic parts after the whole set of SLS is traced out, we do so

on the fly. We stop tracing when we do not expect there could be any more basic parts along the

rest of the SLS. The problem now is to determine when we do not have to trace any further. An

immediate answer would be: stop tracing once we locate a section of transition with significant

total strength T .

Btan-1

m- B
C

A
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m+
M+ M+

skewed

LS

sskewed

LS

B C

(a) (b)

Figure 3.7: Tracing SLS stops when no other basic part is expected. Note again that at sections
of skewed local symmetries, R and B are not defined. The bodies of the parts are closed,
instead of extended, for better visualization.

However this simple solution might fail. Figure 3.7 illustrates this with a shallow, flat hump.

Along the boundary of the hump there are five curvature extrema. Two of them are negative

curvature minima, which turn out to be irrelevant in discovering the part of the hump when

tracing the SLS from them.

The SLS from the right curvature maximum contains a transitional region which predicts

a potential part candidate at corner A. Then the local symmetries proceed in a skewed way,
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Figure 3.8: Keep tracing until at least one side of the SLS stably passes a segment of boundary
curve with negative curvatures

shown by the dotted curve, which is skipped according to the convention, previously explained

in Section 2.5.2. The SLS terminates at the positive curvature minimum in the middle, which

means that tracing from this extremum is no longer necessary. The local symmetries from these

two extremum are thus not relevant to the hump either.

The SLS tracing from the left curvature maximum behaves similarly in the beginning—an

immediate transitional section of SLS indicates a potential corner candidate B followed by a

sequence of skewed local symmetries. However, after that the local symmetries resume normal

continuation and enter into another transitional section. As shown in Figure 3.7(b), this section

corresponds to the hump C. We would not have discovered this hump if we had followed the

simple solution and stopped at B.

Observe the movement of the left end of the SLS chord when being traced from the left

curvature maximum (let’s call it the tip here). It first goes counter clockwise and passes the

left negative curvature minimum (s0 to s1 in Figure 3.8); as the tracing proceeds in a skewed

manner, it “shrinks” back towards the tip (s1 to s2). After that, the local symmetries enter the

transitional section of C; the left end passes the left minimum again. But this time, it does not

shrink back (s2 to s3).

In our system, after we have discovered a transitional SLS, we look ahead to see if the

symmetries proceed in a skewed fashion. If this is the case, and the skewed local symmetries

shrink back, we keep tracing to discover more transitional sections.
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3.1.4 Results

With all the elements in place for the first version of the shape analysis system, we are ready

to test it on some shapes. We have assembled five sets of shapes, each consisting of three

shapes of the same category, on which we think our shape parser described thus far would do

a reasonable job. Figure 3.9 shows the resulting decompositions, arranged column-wise. In

particular, shapes on the first four columns are from Kimia’s 99 dataset [Sebastian et al., 2001;

2003]. Observe the heads of the elephants, the legs and feet of the rabbits, and the fingers and

wrists of the hands. The body of each decomposed part takes its own form. It may overlap or

be disjoint with the bodies of the neighboring parts. Finally, the transitional regions glue all

these parts together into a coherent shape. In the right-most column are three gourd shapes.

Two of them are contaminated with noise of varying magnitudes. Since our system does not

specifically handle noise, these bumps and protrusions are treated as parts. Note that the major

recovered part of the lower compartment of the middle gourd loses its original roundness. This

happens in part because at the moment our system only considers foreground parts, but the

noise contaminates the boundary in both inward and outward directions. Indeed, our system is

not meant to handle noise. Curvature flow does a better job here.

Figure 3.9: Results of shape composition in terms of parts. The part bodies are shown in
colors; transitional regions are shown in light gray.

Figure 3.10 further compares the parts of our model with the shape description in terms of
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[Siddiqi 95]

User study

[Siddiqi 95]

Our method

Figure 3.10: Comparison between binary part segmentation by Siddiqi et al. [1995] and shape
description in our part model, which explicitly describes their bodies and the transitions in
between. Also notice that Siddiqi et al. [1995] only considers two particular types: limbs and
neck-based parts. Some parts are missing in their results.

part segmentation [Siddiqi et al., 1995]. The comparison between our results and those of Sid-

diqi et al.’s reveals that our model discovers not only limbs and neck-based parts, but also some

others that are not described in the previous approach. For example, we successfully decom-

pose the foot and the tail of the kangaroo, and the trunk of the elephant. Our system makes

specific distinctions between part bodies and transitions. While in the segmentation of Siddiqi

et al., each region of the binary segmentation has to contain some of the transition. It seems

to be the representation scheme itself that inevitably limits the power of a shape segmentation

system in describing the forms of overlapping parts, such as the heads of the rabbit and the

elephant.

3.2 Valid and invalid deletions

The first version our shape parser has demonstrated a capability to describe parts in a more

meaningful way. To further assess its performance in analyzing shape structure, we test our

procedure on some other shapes, and consider the role of background parts in shape analysis.

These tests further demonstrate the need for a method that orders parts for removal that does
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not simply look locally on the shape (using measures such as size).

3.2.1 Background parts

The analysis of the shark shape in Figure 1.5(a) begins with the deletion of a portion of the top

tail fin as shown in Figure 3.11(b), because it narrows down and forms a neck in the middle

due to the indentation. Notice that the word “indentation” reveals the most natural explanation

of the cause of the negative curvature minimum labeled in Figure 3.11(a). Recall that in Sec-

tion 2.3 we demonstrated three possible causes of negative curvatures along the shape bound-

ary, and we have chosen to ignore the subtractive composition here (refer to Figures 2.7(c) and

(d)). Although the shape analysis could still proceed beginning with the deletion of candidate

B shown in Figure 3.11(b), the resulting description of the top tail fin would end up looking

very strange. Here, considering candidate A as a part of the background seems to be the only

plausible way to match the most salient perceptual organization of this region.

Considering parts from both the foreground and the background implies that perceptual fig-

ure/ground assignment is not globally consistent3. This is supported by recent studies on local

geometric factors that affect the assignment and saliency of perceptual parts and, in turn, figures

[Hoffman and Singh, 1997; Kim and Feldman, 2009].

3.2.2 Part scale, area and contour grouping

However, taking parts of both foreground and background into account does not necessarily

make the indentation the first potential candidate to be removed. The base of the indentation

is wider than the neck on the foreground it causes. This again would cause the top half of the

upper fin, candidate B, to be deleted next.

It is perfectly reasonable to doubt the validity of the deletion order based on the scale, or

to accept the rationale of the scale order but to doubt the scale measure based on the chordal

3 Most traditional research assumes that figure/ground assignment is globally consistent along the entire shape
contour, meaning that, for the entire shape, human vision interprets one side of the boundary curve as figure and
the other side as ground. However, local geometric cues are proven to be influential to the figural assignment.
Accordingly, the border ownership may locally reverse, creating an inconsistency in figure/ground assignments
along the contour [Kim and Feldman, 2009; Peterson and Gibson, 1994].
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length of the base. An immediate response would be to try the area measure, which seems to be

a commonly considered criterion to order deletions, according to previous research in medial

or chordal axis pruning [Prasad, 1997; Rom and Médioni, 1993; Shaked and Bruckstein, 1998].

Unfortunately, although indentation A has a smaller area than that of B, the area of the little

corner candidate C is even smaller. If ordering the deletion by area, C would be deleted first,

leaving a wider indentation. Continuing the deletion in this order would fill the wider inden-

tation. This new step is acceptable since in the final description of the shape, it explains this

part of the shape as a whole fin minus an indentation. However, the description also includes

corner C, which implies that after the deletion of the wide indentation, a corner grows from the

foreground, making the indentation narrower. This is not intuitive. Consequently, C does not

seem to be an intuitive part in its shape context either. Deleting parts in the order of area might

be a valid approach to simplify geometry because the area difference is locally minimized (in

a greedy manner), but for a shape description system that works by removing perceptual parts

one by one, it is also flawed.

B
A C m-

(a) (b) (c) (d)

Figure 3.11: The first potential candidate to be removed should be A, from the background
(a). Ordering by extended chordal length would select B (b), and part C would be chosen by
arer. Neither is ideal. The system populates them as valid basic part candidates because of the
negative curvature minima (d)

As we have pointed out in Section 3.1.2, although the tracings of SLS populate significantly

more part candidates, only deleted elements are parts used to describe the shape. This makes

the deletion a non-compromising task—every deleted candidate will be associated with a per-

ceptual unit, explaining the formation of the shape in the final description [Leyton, 2001]. If a

deletion does not turn out to be associated with any shape unit naturally, it is an invalid deletion.

Of course, our goal is to make as many valid deletions as possible.
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Figure 3.12: Part A’s com-
pletion curve connects more
strongly grouped contour seg-
ments.

We can give different reasons why the deletion of the cor-

ner C in Figure 3.11(c) does not make sense perceptually.

One argument is to defend the scale-based deletion order. Re-

call that we chose this order by the short-cut rule, which is

well grounded in gestalt psychology about proximity.

Figure 3.12 offers a closer observation of the geometry

around the top tail fin. It also shows the completion curves

of the candidates A, B and C. Now consider the question: of

all three pairs of contour segments connected by these completion curves, which pair is most

strongly grouped? It seems easy to agree that the answer is A. The short-cut rule is still valid,

but the distance measured in Euclidean space, such as the chordal length can align badly with

the perceptual distance.

However, instead of attempting to improve the perceptual grouping measure, we decide to

stick to the chordal length across the symmetry to order the deletion for two reasons. First,

the perceptual grouping of contour segments is affected by many factors. We have already

incorporated the most prevailing geometric cues, including the cocircularity (by separating

parts only across local symmetries), collinearity (with our model of part transition) and distance

(implied by the deletion order). There are other related cues, however, including curvature,

orientation, etc. We have yet to see a systematic, quantitative study of a robust measure of

contour grouping strength that takes all related factors into account.

Second, even if we have a perfect grouping measure, there are still other factors that affect

the salience of a potential part. As further demonstrated by Figure 3.13, although the candidates

A, A′ and B have exactly the same geometries of their bodies and transitions (except that A′

is a candidate of the background), only B is a good candidate for deletion. The shape of (a)

becomes that of (b) after A′ is deleted. Including A′ in the description means that (a) is the

result of an indentation made to the shape (b) from the bottom, which does not sound very

persuasive.

The lesson learned here is that deletion of a part candidate is not a decision that can be

made solely on its local geometry. Its neighboring candidates, the global structure of the shape
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Figure 3.13: Neither A nor A′ is a good candidate for deletion since (a) is interpreted as a
bending structure. B is a salient part, since it is interpreted as a hump on (b).

surrounding it, as well as the shape before and after the deletion, are the factors that should be

taken into consideration.

The reason relates to recoverability theory [Leyton, 1992] described in Section 1.2.4. The

human visual system does not perceive Figure 3.13(b) as a symmetrized version of (a), thus,

(a) does not come from (b), which invalidates the deletion of A′ as a part. Similar arguments

can be made against the deletion of candidate A. This is another reason why the deletion of

candidateC in Figure 3.11 is not appropriate—the top tail fin does not become more symmetric

because of this deletion.

3.3 Heuristics to prevent symmetry breaking

Choosing the next part to delete in our system involves a difficult decision. The concerns de-

scribed in the previous section shed light on resolving the ambiguity and lead to our shape

parsing strategy by introducing a set of heuristics as constraints on the deletion. These con-

straints are imposed so that the theory of recoverability and the explanation towards the shape

structure by the human visual system are strongly encouraged. This section and Section 3.4

describe these constraints.

3.3.1 Prevent distortion of symmetry of neighboring parts

The main point of the theories of causality and recoverability, is that the human visual sys-

tem only perceives symmetry-breaking events of the shape. Attaching a part to a shape does

not typically make it more symmetric. Accordingly, when parsing a shape deleting parts, the

shape should only become more symmetric as we remove parts. Thus, when selecting parts for
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deletion, a valid part deletion does not distort existing symmetries.

Thus in order to assess a part removal, we need to measure how removing a part in fact

distorts the symmetry of other parts. Unfortunately, we lack a principled measurement of how

symmetric a general shape is. Sebastian et al. [2003] presents a shape categorization system by

aligning contour curves, but their algorithm is more suitable for matching curve segments. It

does not seem to straightforward to use their system here. Instead, we introduce a heuristic to

constrain part deletions.

We start with an example shown in Figure 3.14, where (a) shows a neck-based part. Since

we are considering parts from the background, B is also recognized as a potential part can-

didate. However, the explanation suggested by deleting B—describing A as an indentation

made to C—is not persuasive to the human visual system since this step does not make A more

symmetric but only distorts its axial structure. As shown in Figures 3.14 (b) and (c), a succes-

sive deletion of this distorted protrusion C gives the same result as if the system had chosen to

delete A in the first place. Note that when A is deleted, B’s symmetry is not distorted, since B

no longer exists. Since the deletion of B would not effectively simplify the structure, this step

is further discouraged by the minimum principle: deleting part candidate A is a better move

since the description implied by this deletion is shorter. We conclude with our first heuristic: if

the deletion of a part candidate distorts the symmetry axis of any of its neighbors that do not

disappear, this deletion is considered invalid4.

A
B

C

(a) (b) (c)

Figure 3.14: Removing B from the shape in (a) distorts the symmetry of A and results in a
new part C, as shown in (b), which is subsequently removed; Removing part A causes B to
disappear (c).

To measure whether the deletion of a part candidate makes a neighboring candidate disap-

pear, we introduce the dependency, or δ. Roughly speaking, δ measures how much a potential

part can be explained as the transition of a neighboring potential part from the other side of

4 This corresponds to the second heuristic in [Mi et al., 2009] which is called: Don’t distort parts.



79

AB

c
A

c
B

`A
∪cB
−`B

`
A

`
B

`
B ∪

c
A −`

A

Figure 3.15: Elements of the definitions of δB|A and δA|B

the shape boundary. For example, part B in Figure 3.14 only exists because of the transitional

region of A. Given a foreground part A and a background part B, the dependency of B on A,

denoted as δB|A, is defined by:

δB|A = 1−
∫
`B∪cA−`A min(0, κ(γ))dγ∫

`B
min(0, κ(γ))dγ

where `A, `B , cA and cB are the boundary and completion curves, respectively, of candidates

A and B. Figure 3.15 further illustrates these curve elements.
∫
` min(0, κ(γ))dγ measures the

total negative curvature along a curve `. Here we care about concave curve segments only since

B would not be a background candidate without body curves of negative curvatures. Likewise,

if B is in the foreground, the max operator will be used instead. A larger value of δB|A means

that B depends more on A. For instance, in Figure 3.14, δB|A = 1; after A is removed, there

will be no trace of B left. In practice, we are not so strict and say that B “almost” disappears

after A is deleted, if δB|A > δ0. Useful values of δ0 vary from 0.6 to 0.75. In our system, we

use 2/3 as the threshold δ0.

3.3.2 Prevent distortion of any salient axial symmetry

Avoiding distortion of the symmetry should be further extended to symmetries that have not

yet been discovered as a basic part candidate. We have already seen such cases illustrated

by Figure 3.13(a), where the axis of the bending structure is moved significantly if either the

foreground part A or the background part A′ is deleted. In particular, we say that deleting A

intrudes on the bending structure since they are both on the foreground and the deletion narrows
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the structure down. If the part is on the other side of the shape boundary, such as A′, we say

that the deletion disrupts the structure.

Note that although only the SLS of basic part candidates are computed when we trace them

from curvature extrema, and deleting a candidate may distort other axial symmetries, prevent-

ing distortion of this extended set of symmetries does not mean that we should fall back to

compute the whole set of SLS. Appendix 3.A describes our approximate solution to find sym-

metries that may be distorted. Here, we assume that we have this SLS already. We need to

check if it is distorted when a part is deleted.

3.3.3 Measuring symmetry distortion

To measure how much a local symmetry is distorted, we introduce another term, the symmetry

distortion, or λ. This is defined as the ratio between the amount of the boundary movement

normalized by the sum of this movement and the chordal radius. Specifically, λ = d
r+d , where

d is the maximum movement of the shape boundary due to the deletion of a part and r is the

chordal radius, illustrated in Figure 3.16(a). A deletion with λ > λ0 is considered significant

symmetry breaking and is thus restricted. Useful values of λ0 range from 0.1 to 0.3. In our

system, λ0 = 1
5

5. Section 3.6.2 will further justify our choice of the threshold values. Note that

λ measures the distortion of both the symmetry of a part and any other salient axial structure

computed according to Appendix 3.A.

A’

r

d

d/2

(a) (b)

Figure 3.16: (a) Measuring the symmetry distortion of the bending structure due to the removal
of part A′; (b) the movement of the SLS axis

5 The amount of movement of the axis is d
2

, and the corresponding normalized distortion of the axis should be
d

2r+d
. The threshold of 1

9
under this measurement will predict symmetry distortion equivalently.
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3.3.4 Deletions that improve symmetry

The argument against the deletion of B in Figure 3.14(b) includes the complaint that this dele-

tion does not lead to a more organized structure, and this is justified by the idea of recoverability.

This implies that if a deletion does lead to more symmetric geometry, it should be allowed, even

if it distorts the less symmetric axial structure. We have already seen one such example: dele-

tion of part B in Figure 3.13(b) is perfectly valid since it leads to a more salient axial structure,

even though the symmetry distortion measurement λ is well above the threshold λ0. This also

explains in part why deleting partA from the top tail fin in Figure 3.11(a) (and filling the inden-

tation) seems to be a compelling next step, aside from the justification given by Section 3.2.2

in terms of the contour grouping strength.

A

B B

Figure 3.17: The curves of the symmetries before and after the deletion of A

To measure whether a deletion leads to a more symmetric structure, we locate the approxi-

mate medial symmetry that this deletion affects (again, see Appendix 3.A for details), and this

relates two boundary curves as shown in bold Figure 3.17. Here, the curve-matching algorithm

by Sebastian et al. [2003] is appropriate for our purpose. We compute the energy of alignment

between these two curves using Sebastian’s algorithm. If this energy decreases after the dele-

tion of A, then this step is considered as improving the symmetry it affects, which makes the

deletion valid.

3.3.5 Preventing breaking of inter-part symmetries

Deletion of a part could also break the symmetries along the sleeve, when a pair of part can-

didates across the sleeve form a reflective symmetry which aligns with the symmetries of the

sleeve itself. Such inter-part symmetries also exist between neighboring parts, as described

earlier in Section 3.1 (although we only considered foreground parts then). Our system actively
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A B
A

B

A

B

Figure 3.18: Symmetries between parts advocate group deletion. The left figure shows neigh-
boring symmetric candidates; the middle and the right figures are instances of part candidates
symmetric across a symmetry axis.

searches for these symmetries and avoids deleting its symmetric counterparts.

Figure 3.18 illustrates all possible configurations of part candidates that we consider remov-

ing. In particular, we consider two neighboring part candidates locally symmetric and delete

them in the same group if they are on the same side of shape boundary, and both their scales L̃

(see Figure 3.5 in Section 3.1.2) and protrusions differ by a factor of less than 2. The protru-

sion of a part candidate is measured as
∫
c ds
′
⊥, the perpendicular component of the SLS axial

length6. Here we use a grouping scheme similar to that of the original in Section 3.2.2, except

that now we also consider the amount of protrusion. In addition, we have tried measuring the

symmetry between two candidates by how well the boundary curves of the two candidates align

with each other [Sebastian et al., 2003], but this does not produce a significant improvement

over our existing simple measurement.

For remote candidates across a sleeve, we further require that the width of the sleeve is

smaller than the sum of the candidates’ scales. More remote pairs of candidates are not consid-

ered symmetric across the sleeve. This is justified by the psychophysical study by Siddiqi et al.

[2001a] on the shape triangle. A pair of bumps on the boundary only form a part when their

distance is small compared to their scale.

3.4 Heuristics to avoid premature axis truncation

Let us continue studying the example of the top tail fin in Figures 3.11 and 3.17. Part B is not

a good candidate for deletion not because it distorts the symmetry of part A (since the deletion

causes A to disappear as well), but because it truncates the whole top tail fin. However, the

6 Note that our definition of protrusion differs from that in Hoffman and Singh [1997] where it is defined as the
ratio of the perimeter to the base.
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B

B

B

B

B

A

A

A1

A2

A1

A2

A1

A2

(a) (b) (c)

Figure 3.19: Cases of part removal that extends, from left to the right, the symmetry of a salient
axial structure. In each case, the candidate that is constrained to be deleted to avoid premature
axis truncation is labeled as B. Its neighboring candidates, deletion of which extends the
symmetry of B, are labeled as A, A1 or A2.

most natural description of the tail would ideally include a complete tail fin, which exhibits a

salient axial structure. We would like to preserve this structure by invalidating the deletion of

B. Figure 3.1 on page 62 is another example. Unless A is removed in advance, neither part B

nor C should be deleted, since each of them represents a portion of the base with a salient axial

structure.

Figure 3.19 summarizes the general configurations of salient axial symmetries of the fore-

ground, with both foreground and background part candidates sitting on them. In the case of

(a), where there is only one part on either side, the part candidate B is constrained from being

deleted only when the removal of a neighboring candidate A improves the global symmetry.

Recall that in this case, A is not considered to distort any symmetry, and is allowed to be re-

moved (see Section 3.3.4). In Figure 3.19(b), there are part candidates, labeled as A1 and A2,

on both sides of the candidate B. And they are on the same side of the shape boundary—both

on the foreground or on the background. The system simply holds off deleting candidateB and

waits for candidates A1 and A2 to be removed first.

In both cases, A, or A1 and A2, form negative curvatures on the boundary segments. It is

these parts that cause the transitional region of candidateB, which belongs to a longer and more

salient axial structure and should not be truncated prematurely. According to causality theory,

it makes more sense to remove the cause of the event in the shape history, which encourages

deleting A or A1 and A2 first. Analyzing the shape this way also preserves the explanation that

considers B as belonging to the main structure. Thus, instead of accepting B as a real part,

candidate A, A1 and A2 should be removed and put in the shape description first. We conclude
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with the second heuristic: if a part candidate belongs to a holistic, salient axial structure, and

deleting the candidate truncates this structure in the middle, this deletion is invalid7.

The problem here is that this “salient axial structure” is typically not available in those traced

SLS axes, partly due to early termination of the SLS tracings8. We resort to using the CAT com-

puted using the CDT, the discrete chordal axis transformation, to find these salient structures.

Appendix 3.B describes this approach in detail. How to identify the part candidates (such as A,

A1 and A2 in Figure 3.19) that potentially extend the symmetry of their neighboring part (such

as B) are also explained.

Note the difference between the case demonstrated in Figure 3.19(b) and the symmetric part

candidates across a symmetric axis as illustrated in Figure 3.18. They are not more related

than their seemingly similar appearance. In fact, A1 and A2 in Figure 3.19(b) do not have

to be symmetric. Likewise, symmetric candidates A and B in Figure 3.18 may not have a

neighboring candidate that should be preserved from premature truncation.

3.4.1 Discussion

Figure 3.19(c) reveals one aspect of the limitations to our approach: salient axial symmetry

detection using the CAT (Appendix 3.B) needs improvement. This figure shows a case when

our system cannot make intuitive judgements. This happens when there are part candidates on

both sides, but one is a protrusion and the other an indentation. Two factors complicate the sit-

uation. First, the two part candidates may form a bending structure. Second, the generalization

of the junction by its sleeviness and the turning angle criterion could fail here, as it typically

does on poorly sampled polygonal shapes. Recall that in Section 1.2.4 of Chapter 1, we argued

that removing parts can be considered a procedure for recovering the set of parts that are es-

sential for the recognition of the shape. Accordingly their symmetries are only approximate in

describing the entire shape, since irrelevant parts are not described. During the process of the

part removal, we want to avoid breaking the symmetries of these essential parts.

7 This corresponds to the first heuristic in [Mi et al., 2009] which is called: Dont truncate axes prematurely.
8 In fact, it turns out that SLS axes are not ideal for computing salient axial structures, as is further explained in

Appendix 3.A.
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If we call recovering the structure of the shape by removing parts a “bottom-up” procedure,

we need an auxiliary “top-down” process to tell the “bottom-up” approach in advance what to

avoid disrupting, which is a dilemma since what will be recovered later is not available. The

computation of the generalized salient sleeve of the CDT is a more or less temporary solution, in

the good hope that salient symmetries are captured by these sleeves. We believe that the body of

research in approximate symmetry inference and computation directly from the original shape

[Feldman and Singh, 2006; Lee and Liu, 2009; Mitra et al., 2006] is the right track towards a

better solution.

3.5 Shape analysis by sequential constrained part pruning

The heuristics described in the previous two sections impose constraints on how the basic part

candidates should be deleted. We construct a direct graph [Cormen et al., 2001, page 1080 −

1084] to help the system sort out the set of parts from the pool of candidates, such that all the

constraints are observed. The graph is constructed as follows:

• Each part candidate is a node of the graph;

• If candidate P1 interrupts the structure of its neighbor P2, and after P2 is deleted, P2 does

not almost disappear, add an edge from P1 to P2 (Section 3.3.1);

• If candidate P intrudes or disrupt a salient axial structure Ξ that does not belong to any

basic part candidates (Section 3.3.2), simply remove P from the graph, along with all its

incident and outgoing edges 9;

• If two candidates are considered symmetric either locally or across a sleeve they both sit

on, we make sure they are deleted together by adding a pair of edges pointing from each

candidate to the other (Section 3.3.5);

• If a candidate P2 sits on a sleeve led by one of its neighboring candidates P1, and deleting

P2 results in a more symmetric sleeve, add an edge from P1 to P2. (Section 3.4).

9 Note that this can create a situation where the removal of a neighboring part can distort P . However, given the
choice of allowing the deletion of P which will distort a salient axial structure Ξ , or the distortion of P itself, this
compromise solution avoids “deadlock” and opts for the latter—the potential distortion of P .
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(1)

C
A D

B

E

F

G H

C

A
D

B

E

F

G H

B waits for C and A to avoid premature truncation of salient axial structure (Sec-
tion 3.4); C, D wait for A to avoid disrupting its structure; while A doesn’t wait for
them since removing A makes C and D disappear (Section 3.3.1); this makes A the
only deletable candidate in the upper tail fin (The lower fin G is also deletable, but
it has a bigger size). After the deletion, the entire top fin becomes a new salient part
candidate W , and E is slightly extended to E′.

(2)
U

Q R
S

T
V

U

Q R
S

T

V
¥

Similar to step 1, the axial structure of T gets extended if V or S is deleted; but V should
not be deleted since it disrupts the structure of S. This makes S a valid candidate for
deletion. The background candidate R disrupts both the structure of its neighboring
Q and the global axial structure, denoted as Ξ (Section 3.3.2). After this deletion,
candidate Y expands the front half of the shark body; and R is extended to R′.

(3)

F

G H

I

J

L

K

W

F

G H

I

J

L

K

¥ ¥

W

Similar to R in the previous step, F , H , K and L break both types of symmetries.
I and J form a reflective symmetry with respect to Ξ , and they are deleted together
(Section 3.3.5).

(4)

G

W

F

H

E’

F

G H

¥

W

E’

G and W are a pair of locally symmetric parts and they should be deleted together as
well (Section 3.3.5). This step reveals a new part candidate X .

Figure 3.20(a): Step by step decomposition of the shark.
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(5)
M N

K’ O
P

X

U
M N

K’ O P

X

U

¥

X leads the sleeve of the main axial structure from the left. Deleting O sitting on it
extends its symmetry. Accordingly, X becomes X ′ (Section 3.4).

(6)
N

P

X’

U

Q R’

Y

N

P Q R’

X’

U

Y

The extendedX ′ is again blocked byQ, which also blocks Y . DeletingQ extendsX ′ to
X ′′ and Y to Y ′. Note that candidates P and R′ are considered to extend the structure
of X ′ and Y , respectively. This is not intuitive, although no harm is done because P
and R’ disrupt Q.

(7)

M N U

X” Y’ X” Y’

M N U

Yet another candidate N sitting on the axial structure of X ′′ and Y ′ is removed.

(8)

Z Z

Removing N finally merges X ′′ and Y ′ into one single part Z.

Figure 3.20(b): Step by step decomposition of the shark, continued. See text for explanation.

We compute the strongly connected components of the graph. These components divide

the set of candidates into groups. Then we find groups with no outgoing edges since any of

such groups is valid for deletion as long as all the candidates are deleted together based on the

way the graph is constructed. There must be at least one such group since strongly connected

components form an acyclic graph. We then remove the group that contains the smallest part.
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Figures 3.20(a) and 3.20(b) illustrate the analysis of a shark shape by sequential constrained

part pruning. Each step is demonstrated by a set of figures. In particular, the upper left figure

of each step highlights the next part to be deleted in a dark color, and the choice is further

explained by the remaining figures and the notes below. The lower left figure shows the entire

set of part candidates; the figure in the middle is a close-up version that shows the region around

the part to be deleted, each letter denoting a candidate; the graph is shown on the right, with the

directed edges explained below the figures. The parts that distort Ξ and their outgoing edge are

also included, although they are not counted when solving for deletable parts using the graph

algorithm. In the graph for each step, the strongly connected components with zero outdegree

are labeled with a rounded rectangle; in particular, the rectangle of the component to be deleted

next is shown in gray. In our approach, we simply delete the strongly connected component that

contains the part with the smallest scale, which is the scheme explained in Section 3.1.2. The

difference here is that this time our choice also conforms to heuristics that model perceptual

organization.

3.6 User guided shape analysis and performance assessment

Thus far, at each step in the shape parsing, the system automatically chooses the next set of

parts that comply with the heuristics. No human interaction is necessary or possible. It is often

desirable, however, to allow users to interactively express their “explanation” or “understand-

ing” of the shape. We provide a scribble interface that lets users do so by drawing strokes of

specified types on top of the shape using a tablet. Two types of strokes are available which

correspond to two different explanations for the area of the shape that the strokes cover:

1. Keep whole: This stroke tells the parser there should be no part that contains only a

portion of the stroke. The top row of Figure 3.21 shows such a stroke on the map in blue

of the Fife area of Scotland, UK. The stroke covers the whole Firth of Tay as well as

St. Andrews Bay. By default, as shown in the middle figure, our shape analysis system

explains the eastern part of Fife as a single peninsula with an indentation10. The Firth of

10 Geographically, it is the Estuary of the River Eden and St. Andrews Bay.
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Tay and the bay are considered two separated parts. However, this stroke prohibits this

explanation. Instead, it tells the parser to analyze it in a such way that a single part covers

both the firth and the bay. The only compatible analysis is to consider northern Fife as

a part protruding into a very wide version of the Firth of Tay, as the top right section of

Figure 3.21 shows.

2. Not a part: Briefly speaking, this stroke informs the system that there is no part present

on this side of the shape boundary. More precisely, any locally part-like elements that

contain any portion of the stroke are considered as resulting from the formation of a

neighboring real part, which is typically on the other side of the shape boundary. If

the stroke is on the foreground, then there should be no foreground part whose body

is formed by the convex boundary curves around the stroke. Likewise, if it is on the

background, the nearby concave shape boundary should not form the body of any part

on the background. The bottom left section of Figure 3.21 is a closed-up version of

the top left map, zoomed in to show details of east Fife around St. Andrews and the

River Eden. By scribbling strokes (shown in red) to the left of the protrusion above

St. Andrews, the system is informed that the concave curves to the left do not form any

part on the background. Thus, it knows the protrusion on the right should be deleted

so that it becomes part of the shape description. After this deletion, as the bottom right

figure shows, the river is still recognized as a salient part, but this time, its form does not

conflict with the stroke.

This “understanding” could be used in two different ways. We might consider it as guid-

ance for shape parsing. The automatic shape parsing system can be modified so that the user

guidance is respected. Alternatively, the user strokes could be used as a way to measure how

well the system parses the shape, by counting how many part deletions are inconsistent with

the strokes that the user has input. The system is more effective if it gives fewer explanations

inconsistent with user strokes.
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Firth of Forth 

Firth of 

Tay

St Andrews

Fife, Scotland Default explanation Guided explanation

St Andrews

River Eden

Firth of 

Tay

East coast of Fife Default explanation Guided explanation

Figure 3.21: Top row: the “keep whole” stroke merges St. Andrews Bay and the Firth of Tay
into a single background part, and the northeastern Fife is interpreted as a peninsula into this
part; Bottom row: the “not a part” stroke makes certain that the peninsula above the town of
St. Andrews is recognized as a part.

3.6.1 User guidance

To guide part pruning using strokes, we can simply modify the candidate graph constructed

by Section 3.5: remove all the conflicting candidates, together with their incident and outgoing

edges. This treatment is similar to how we treat candidates that disrupt the global axial structure

Ξ(section 3.3.2).

Strokes of type “not a part” need slightly more care. First, after the actual enforcement of

such a stroke, i.e., a neighboring candidate on the other side of the shape boundary is removed,

and the portion of the stroke that overlaps the conflicting candidate should be removed too.

Figure 3.22 shows a common case that necessitates user guidance: the automatic analysis opts

to remove B, but the user can simply cross out the region of B using the red stroke. This

way, deleting candidate A becomes the best next step. After A is removed, only the portion

of this stroke outside the region of B is still active. Imagine what would happen if we did

not deactivate strokes this way: the larger indentation shown in Figure 3.22(b) would never

be removed. Another issue is that the user may have difficulty in deciding what the region

of a candidate actually covers. Also observe that in Figure 3.22(a) the computed completion
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curve for B does not really enclose the whole stroke. To overcome this problem, and also to

tolerate strokes that are not placed very carefully, we judge the size of the stroke and that of

the conflicting candidate. We measure the effective area of a stroke as the area of its smallest

bounding square As. Only candidates with area Ap < nAs are tested to see whether they

comply with the “not a part” constraints. In our implementation, we set n = 9 and find it works

effectively.

A

B

(a) (b)

Figure 3.22: (a) A “Not a part” stroke disables interpreting B as a part; (b) After the deletion
of part A, the portion of the stroke inside the region of part candidate B is disabled (in gray),
as the acknowledgement of this stroke.

By definition, it does not make sense to have any stroke that crosses the shape boundary.

The user will get immediate warning upon such a mistake. Strokes could also be inconsistent

or contradictory, which could lead to deadlocks in the shape parsing if too many strokes are

specified. However, the mechanism is not currently available to effectively detects such incon-

sistencies. The user needs to see the actual decomposition results before making adjustments

accordingly.

L1

L2

A1
A2

A0A0

Figure 3.23: The “not a part”
stroke to avoid wrong figure-
ground discrimination

We also allow the user to interfere with the shape parsing

by specifying a weight wl to adjust the the distance space of

the foreground. In computing the part scale (to order the dele-

tion) and symmetry breaking, the distance of the foreground

is scaled by wl. This is often a more effective way to glob-

ally bias towards deleting foreground or background part can-

didates. Figure 3.23 uses a “not a part” stroke to avoid wrongly

classifying the gap A0 between two leaves L1 and L2 as a part.

For biological shapes like this, we can simply bias towards removing parts on the figure’s side.

In this case, since the figure is on the background, we set wl � 1. This way, the effective scales

of foreground candidates, like that of A0, are enlarged so that deleting them has lower priority.
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3.6.2 Assessing thresholds

Our shape analysis system involves two types of heuristics that drive the decision-making in

choosing the right set of candidates. These heuristics are parameterized by a set of thresholds;

the system behaves differently with varying values of these thresholds. We gather a set of user

strokes that we consider to be ”ground truth” for a particular shape. The strokes provide an

opportunity to quantitatively measure the system’s performance with a given set of thresholds.

To assess our approach, we let the system finish its analysis on a given shape without enforcing

the constraints of the strokes. Instead, we simply count the number of strokes that each step

of deletion conflicts with. The scale factor wl described in Section 3.6.1 still applies for more

intuitive correspondence between strokes and parts.

In particular, we are interested in the following thresholds:

λ0 The threshold to determine whether the symmetry of a part with a salient axial struc-

ture is disrupted. A larger value of λ0 tolerates more symmetry breaking.

δ0 The threshold to test whether a candidate disappears after a neighboring part has been

deleted. A value of 0 virtually disables the heuristics of symmetry breaking, and a

value of 1 ignores the exception of allowing part deletion that causes neighboring

candidates to disappear.

ζ0 The threshold to determine the main sleeves of the CDT (see Appendix 3.B). A smaller

value of ζ0 allows more sleeves to be connected. This certainly encourages the ex-

tension of the main symmetry and makes it less likely that a salient axial structure

would be disrupted in the middle, which helps to avoid breaking the “keep whole”

constraints. However, this also makes the system too aggressive in extending the axial

structures of part candidates at the cost of deleting some of the wrong candidates that

sit on them.

We confirmed the proper establishment of these thresholds by evaluating the performance

of the parser. The assessment involved two subjects (XMI, the author; and DHA, a graduate

student from Rutgers University), each of whom was asked to draw strokes of both types on four

maps: Australia, Mainland China and Taiwan, Japan, and the United Kingdom and Ireland, as
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Maps used from left to right: Australia, Mainland China and Taiwan, Japan, UK and Ireland
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Figure 3.24: The performance of the shape parsing system in terms of the percentage of strokes
with which the deletions are inconsistent. With other thresholds set at their default values, each
row shows how the performance varies by changing values of λ0, δ0 and ζ0, respectively. The
first and second columns shows results from two users DHA and XMI on of the four maps. The
last column gives the system’s average performance for all maps with respect to each user’s
inputs.
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DHA XMI DHA XMI
Overview

Zoomed-in

Overview

Zoomed-in

Figure 3.25: Examples of strokes used for threshold assessment. “Keep whole” strokes are in
green (foreground) and blue (background). “Not a part” strokes are in red.

shown in the top row of Figure 3.24. Some of the strokes are shown in Figure 3.25. In particular,

each figure of the top row shows the strokes related to the most prominent set of parts. And

the bottom rows are the zoomed-in versions with strokes related to parts of finer detail. For

many shapes, functional semantics could be attached to specific parts. We exclusively chose

geographic shapes in the hope of ruling out the effects of the users’ knowledge of part semantics

not related to the shape itself.

As described in the previous sections, our system uses a set of threshold values fixed at λ0 =

1
5 , δ0 = 2

3 , ζ0 = 1
2 . (These threshold values were chosen by hand so that the parser analyzes

the Australia shape satisfactorily to us.) It is impractical to find the connections between these

values and the number of inconsistencies analytically. In part, it is because whether to enforce

a heuristic constraint on deletion is determined by a profound process involving a wide range

of geometric factors. Moreover, the determination of a subsequent deletion is based on the



95

analysis of the resulting shape from previous deletions, which means the “butterfly effect”

more or less exists: a small part might affect the analysis of a relatively wide region around

its neighborhood. Nevertheless, we are still able to find these connections through experiments

and draw conclusions in a statistical sense based on our observations. The remaining three rows

of Figure 3.24 show the percentages of user strokes with which our automatic shape analysis is

inconsistent. Each row has one varying and two fixed threshold values. As the figures imply, the

set of default values is indeed locally optimal. This can further be confirmed by a non-linear

optimizer using the Hooke and Jeeves method [Hooke and Jeeves, 1961]. The table below

lists the numbers of strokes that the analysis of the four shapes above is inconsistent with.

These numbers are grouped into four rows by different combinations of the heuristics (with

the thresholds set to their default values). In particular, H1 in the table refers to the heuristics

to prevent symmetry breaking; and H2 refers to the heuristics to avoid premature truncation.

The total number of strokes that each subject input for each shape is listed on the top row. The

bottom two rows are respectively the numbers of deletions and the numbers of resulting parts

that the automatic shape parsing produces. As the table shows, the shape analysis governed by

both types of heuristics indeed respects the gathered data the best.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Australia China Japan UKIR 
DHA XMI DHA XMI DHA XMI DHA XMI 

Total strokes 84 99 144 180 96 117 152 202 
H1 and H2 6 5 8 6 6 5 9 14 
H1 only 18 15 25 19 19 26 34 48 
H2 only 17 14 24 20 16 22 27 27 
None 28 21 45 44 29 33 47 58 
Total Deletions 505 855 733 887 
Parts 544 908 768 950 
 

3.A Locating global chordal symmetries

When we explained the heuristics in this chapter, we heavily referred to potential symmetries

that might be distorted by a part deletion. These symmetries reveal the global axial structure

that a deletion should maintain. However, sometimes these symmetries are not available since

each SLS tracing is terminated early when the system speculates that continuing the SLS tracing

would result in no more potential part candidates. Even worse, a salient axial structure may not

necessarily be represented by a single SLS axis, but by several of them. Even for the simple
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shapes shown in Figure 3.26(a), the major axial symmetry of the fish body is divided into two

continuous pieces, each in a separate SLS axis. For more complicated shapes, it would be very

difficult to locate those segments of SLS axes that collectively form the major axial structures

of the shape.

A
`A

Foreground CDT

Background CDT

`
vi

vj
vj+1vi-1

A

(a) (b) (c) (d)

Figure 3.26: (a) The primary symmetry, which is a salient structure of the fish shape, is sepa-
rated into multiple SLS axes; (b) the “other side” of the symmetry with respect to a boundary
curve `A of a part A is approximated as a path along the constrained Delaunay triangulation;
(c) approximate global symmetries across both foreground and background CAT; (d) the fore-
ground symmetries needed to be accounted for when deleting the bottom fin part A.

The good news is that salient axial symmetries are typically present in the medial axis rep-

resentation, although each may span multiple medial edges. This inspires us to consider the

subset of SLS: the medial symmetry, which is just the CAT representation. In practice, we

use the constrained Delaunay triangulation (CDT), the discrete version of CAT, to help locate

potential global symmetries. Figure 3.26 explains how CDT is used. For the boundary segment

`A of any given part A, spanning from vi to vj , we find its one-ring neighborhood in the CAT.

By definition, this first-ring must include the previous and following vertices vi−1 and vj+1. As

Figure 3.26(c) shows, the segment from vi−1 to vj+1 divides the first-ring neighborhood into

the background and foreground regions of triangles. The boundary of the first-ring is also di-

vided into two sequences of vertices. Neighboring vertices of each sequence are also connected

by a constrained Delaunay edge. More importantly, observe that one sequence of vertices is

adjacent to `A by internal Delaunay edges on the foreground and the other by edges on the

background. Those Delaunay edges are used in our system as the set of the local symmetries

that need to be accounted for when the part A is deleted. Figure 3.26(d) shows the symme-

tries across the foreground in gray. Note that on the foreground side, not all vertices of `A are

involved in these symmetries.
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3.B Discovering salient axial structures with CDT

This section describes a method for finding long salient axial structures in the CAT. In partic-

ular, we join up separate sleeves of the CAT if the junction that joins them together is only

present due to a small attached part, and also if the two sleeves line up well.

Recall that there are three types of triangles in a given CDT: terminal, sleeve and junction

triangles which respectively have one, two and three internal (unconstrained) Delaunay edges.

Here, we extend this classification by noting that a junction can be considered as a generalized

sleeve triangle. Observe that a junction divides a shape into three subregions; each of its edges

is adjacent to a sleeve of the CDT. A sleeve triangle can be considered as a junction with one

subregion empty. Thus, from the opposite perspective, by measuring how “empty” the most

empty side of a junction is, we are able to evaluate the “sleeviness” of that junction. Denoting

the areas of the three regions divided by a junction as A0, A1 and A2 such that A0 6 A1 6 A2.

Figure 3.27(a) shows a fish shape with three junctions identified as (1), (2) and (3), among

which the subregions A0, A1 and A2 corresponding to each junction are shown in (b), (c) and

(d) respectively. We define the sleeviness as ζ = 1 − A0
A1

. Obviously, for a sleeve triangle,

ζ = 1. This value is not defined for a terminal triangle, where A1 = 0. In our system, we

introduce a threshold ζ0 such that all triangles with ζ > ζ0 are sleevy. In a sleevy triangle,

we call the two edges that are adjacent to A1 and A2 sleevy edges. In the discrete CAT, each

Delaunay edge forms a local symmetry; thus, sleevy edges connected by sleevy triangles form

a sequence of more salient and consistent local symmetries.

(1)

(2)
(3)

A0

A1
A2

0

(1)

A0

A1

0

1

(3)A2

A0

A1
A2

0000

2

(2)
111

(a) (b) (c) (d)

Figure 3.27: (a) The CDT of the foreground of the fish shape; (b, c) more “sleevy” junctions;
(d) A less “sleevy” junction.

By generalizing the sleeve triangle to junctions, it is possible for our system to realize the

continuation of the main body from the head on the left to the tail on the right, which stops at
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Figure 3.28: The axial direction of each sleeve i, (i = 0, 1, 2) at a sleevy junction is estimated
as the vector pointing from the center of the junction axis to the axial point that is r̂ci in distance
from the Delaunay edge adjacent to region i. (a) Shows how distances are measured; (b) shows
the estimated axial directions at the junction triangle.

the left of junction 3.

We do not permit every sleevy junction triangle to connect the sleeve of its region 1 with that

of its region 2. Instead, we take into account how smoothly one sleeve aligns with the other.

Here, we define the inter-sleeve turning angle ΨŜi,j (i, j = 0, 1, 2 and i 6= j), as the turning

angle from the direction dŝi to dŝj , where Ŝi and Ŝj are the discrete chordal axes of the ith and

jth regions, respectively; dŝi and dŝj are their axial directions at the junction. To handle noise

[Prasad, 2007], the direction of the chordal axis is averaged along a distance of min(r̂c, ‖Ŝ‖),

where r̂c is the chordal radius of the sleeve at the junction and ‖Ŝ‖ is the length of the sleeve.

Figure 3.28 explains how each chordal axis direction dŝi at the junction is estimated. When

evaluating ΨŜi,j , we care about the amount of turning angle only, not the turning direction.

Thus,

ΨŜi,j = arccos

(
− dŝi · dŝj
‖dŝi‖‖dŝj‖

)
Sleeves Ŝ1 and Ŝ2 are connected by the sleevy junction only if they line up significantly better

than Ŝ0 and Ŝ2. Formally, we require that

ΨŜ0,2 −ΨŜ1,2 > Ψ0
1− ζ
1− ζ0

, (3.1)

where Ψ0 > 0 is a constant that is applied as a weight to the smoothness factor: a larger value of

Ψ0 means a higher requirement in how well Ŝ1 should line up with Ŝ2. In our system, it is fixed

to be π
3 . By multiplying Ψ0 with 1−ζ

1−ζ0 , we purposely alleviate the condition for very sleevy
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junctions. For example, if ζ = 1, then (3.1) becomes equivalent to ΨŜ0,2 − ΨŜ1,2 > 0. which

means as long as Ŝ1 connects to Ŝ2 more smoothly than Ŝ0 does, the junction is considered

to be a valid sleevy triangle that can also connect neighboring sleevy edges to form a more

salient sleeve structure. As 1−ζ
1−ζ0 becomes closer to 1, the value of the right hand side of (3.1)

increases. Accordingly, the connection from Ŝ1 to Ŝ2 needs to be significantly smoother than

that from Ŝ0 to Ŝ2.

Junctions that meet the conditions described above join isolated sleeves into longer ones.

These enhanced sleeves are the salient axial symmetries that we would like to preserve. Since

sleevy triangles include some of the junctions, the axial symmetries are the generalized version

of the discrete chordal axis transformation described by Prasad [1997]. For a junction, a value

of ζ closer to 1 implies a better proximity to a sleeve triangle in the Delaunay triangulation and

more dominant continuation fromA1 toA2. Note that the continuation of the sleeve is uniquely

defined at each triangle as long as ζ0 > 0. Section 3.6.2 examines how different choices of ζ0

affect the results of shape analysis.

Similar to the sleeve originally defined by Prasad [1997], the enhanced sleeve also consists

of a series of adjacent Delaunay edges. Figure 3.29(a) offers examples of such generalized

S1
` S0

`S2
`

S4
`S3

`

S5
`

T2

T1

T0

T3

B

C
A D

E

F

G H

I

J
K

L

(a) (b)

Figure 3.29: (a) Generalized sleeves of the shark shape around the tail; (b) basic part candidates
for this region

sleeves, with the associated parts shown in (b). Since there are no salient axial structures on the

background, we show the constraint Delaunay triangulation of the foreground only. Of all the

foreground junction triangles, the only non-sleevy triangle is T3. T0, T1 and T2 are examples

of sleevy triangles. They connect intermittent sleeves into longer ones, revealing salient axial

structures in the shape. Among these sleeves, Ŝ1 is led by the part candidate B. C, G, I and

J contain the entire sleeves of Ŝ2, Ŝ3, Ŝ0 and Ŝ4, respectively, but are not considered to lead
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them. Instead, C, together with A and D, sits on Ŝ1. Candidates I and J sit on the sleeve Ŝ5,

which is part of the main shark body.

In describing these examples, we say that a part candidate contains a Delaunay edge if its

boundary includes both end vertices. A candidate leads a sleeve if it contains either of the

two end edges but not both. Also, we say that a candidate sits on a sleeve if its two boundary

vertices are on the same side of a sleeve. A part candidate could be sitting on the sleeve from

either the same or the other side of the shape boundary. For example, A sits on Ŝ1 from the

other side of the boundary since A is a background candidate, while I and J sit on Ŝ5 from

the same side. Either case can lead to a boundary section along the symmetry that the sleeve

represents, which stops the tracing of the SLS from continuing. In the case of Figure 3.29,

A’s body forms the transitional region which causes the tracing of B’s SLS to stop. The SLS

tracing of the main body will also be stopped at around I and J , since these two protrusions

forms negative curvatures on the boundary segments. In other words, it is the parts sitting on

the sleeve that cause the transitional region of the leading candidate. Thus, instead of accepting

B as a real part, in order to correctly analyze the upper tail fin, the first step is to remove the

candidate A and put it in the shape description.
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Chapter 4

Abstracted Depiction in terms of Parts

A complete sequence of deletions driven by heuristic constraints and user guidance produces

a description of the shape in terms of its deleted parts. This set of parts serves as a structural

representation that describes the distinct components of the shape. This makes it possible

for each stroke in the depiction to articulate a certain shape component. This articulation is

particularly important for an abstracted depiction where the economical placement of strokes

is required. Fused-part artifacts, which are often seen in children’s drawings, can be effectively

avoided. Recall that in Section 1.1.2, we pointed out that these fused parts are possibly caused

by the lack of a clear compositional description of the shape.

The key to maintaining component articulation using only a few strokes is that not all com-

ponents are needed for an expressive shape depiction. Only a small subset of them is essential

for recognition [Hoffman and Richards, 1984]. For a successful visual presentation, the clear

distinction between the depicted components is much more important than a complete view of

the entire set of shape components [Biederman, 1987]. Thus, a natural approach to an effective

system would be to retain the subset of parts that serves as the invariant for the recognition of

the object and removing the rest. Figure 4.1 follows this procedure and presents an abstracted

shark shape in (c) by removing irrelevant parts from (a), including the indentation on the upper

(a) (b) (c)

Figure 4.1: (a) The description of the shark shape in terms of parts, which follows naturally
from the decomposition sequence illustrated by Figures 3.20(a) and 3.20(b) on pages 86–87.
(b) The set of parts that is sufficient to express the shape of the shark; other parts are considered
irrelevant. (c) The resulting shape with irrelevant parts removed.
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tail fin, the mouth and three little fins on the body.

Without knowing the functions of the parts, the best we can do is to infer from each part’s

geometric properties its importance to the recognition process. Before we describe our ap-

proach to this problem, we first address a potential issue related to the topological constraints

that constrain when some parts can be eliminated when making the abstraction.

4.1 Part attachment and shape reconstruction

The success of abstraction by simply reversing the deletion order, such as shown in Fig-

ure 4.1(c), relies on luck. Recall that deleting a part is the process of replacing the boundary

with the completion curve. If any portion of the boundary of a part to be deleted (say, P0) is the

completion curve of another part (P1) that needs to be preserved, that portion of P0’s boundary

does not exist unless P1 is deleted first. This topological dependency between parts is caused

by the sequential deletion in the shape analysis stage, which in turn constrains how parts can be

eliminated for the abstraction. It is also possible to obtain the abstracted shape in Figure 4.1(c)

by reattaching parts to be retained, starting from the main body. If the reattachment of a part is

done by replacing the completion curve with its boundary, however, the topological dependency

is still an issue.

P0

P1P1 P1P1T1L T1R

P0

T1L
T1R

(a) (b)

(c) (d)

Figure 4.2: (a) The top fin, P1, grows from the bumpy back P0. By means of part attachment
or removal based on curve replacement, it is not possible allow the shape to retain P1 without
also retaining P0. (b) Explicit separation of the extended part body from the transition is an
alternative scheme for part attachment. (c) This scheme does not require the existence of the
completion curve of the part being attached, thus, P1 can be attached to the shark without P0.
(d) The resulting abstraction.
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Figure 4.2 shows a shark shape similar to that of Figure 4.1, but this shark has a slight bump

between the back and the fin on the top. This bump is recognized as a separate part, as shown

in Figure 4.2(a). The bump is not crucial for the shape to be recognized as a shark—the shape

in Figure 4.1 does not have one—but the fin that grows from it is essential for a successful

abstraction. This is exactly the situation described above. It is not straightforward to remove

the bump simply by replacing its boundary with its completion curve without also removing

the fin. Likewise, it is not possible to attach the fin on the top without attaching the bump first,

since the completion curve of the fin comes from the bump.

4.1.1 Parametrization of part transition

Our system computes the abstracted shape by the sequence of part attachments in reverse order

of the shape deletions previously applied for shape analysis, except that non-essential parts

are skipped. Inspired by the paradigm of “modeling by example” [Funkhouser et al., 2004],

when attaching a part, we simply disregard the completion curve to overcome the dependency

problem. Instead, we locate the intersection points between the base that the part is attached to

and the extended part body, and then glue them together smoothly. Since the topology involved

in the 2D shape attachment is considerably simpler than the situation Funkhouser et al. [2004]

needed to handle, we go a little further than simply smoothing the intersections out. We hope to

ensure that the new transitions from the fin into the shark body resemble its original transitions

to the slight bump, which are labeled as T1L and T1R in Figures 4.2 (b) and (c).

ab
bw

dapdbp

dbw

P

W W

P

dapdbp

bwaw
aw

apapbp bp
cp

cwdaw dbw daw

(a) (b)

Figure 4.3: Attaching a part P to the whole shape W .

To ensure the seamless, smooth connection of parts, each of a part’s two transitional bound-

ary curves is described by a set of parameters that fits the original attachment. When attaching
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the part to a new base, the same set of parameters is used to reconstruct the transitions. The pa-

rameters of each transition indicate both where to build the transition, and how the transitional

boundary should appear. As demonstrated by Figure 4.3(a), the first transitional boundary of a

part P (in counterclockwise order along the boundary curve) is the original curve segment from

aw to ap, where aw is also the starting point of both the boundary curve and the completion

curve of P , and ap is the location where the part body starts extrapolation on the right side.

This transition smoothes out the first intersection a between the part body and the completion

curve. We use two offset lengths daw and dap to describe the location of aw and ap, where daw

is the offset from a to aw along the completion curve and dap measures the offset from a to ap

along the extrapolated part body. The location of the second transitional curve between bp and

bw, which corresponds to the second intersection point b, can be described by the two offsets

dbw and dbp similarly.

Not all part bodies can be extrapolated. As Section 2.6 has described, when extrapolated

radii along the the extrapolated axis become negative, the part has a closed body only and this

body may not intersect with the completion curve. However, the transitional curves can still be

described following the scheme illustrated by Figure 4.3 (b). In this case, dap = dbp is defined

as the distance from half way point cp between ap and bp along P ’s body curve; daw and dbw

are the offset lengths from cw to aw and bw, respectively, where cw is the closest point on the

completion curve to cp.

To parameterize the form of the transitions, we use cubic Hermite splines to fit the transi-

tional boundaries, such that


(maw,map) = arg min

maw,map

∑
i

∥∥∥∥α(sai)− hα(aw,maw, ap,map,
sai − aw
ap − aw

)

∥∥∥∥2
(mbw,mbp) = arg min

mbw,mbp

∑
j

∥∥∥∥α(sbj)− hα(bp,map, bw,mbw,
sbj − bp
bw − bp

)

∥∥∥∥2 (4.1)

where {sai}, {sbj} are vertices on the two transitional curves, respectively, and h is the hermite
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curve given by:

hα(s0,m0, s1,m1, s) =
(
s3, s2, s, 1

)


2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0





α(s0)

α(s1)

α(s0) +m0α
′(s0)

α(s1) +m1α
′(s1)


Note that the 4 × 4 matrix in the middle is the standard Hermite geometry matrix. The values

of m0 and m1 are simply set to zero in the rare event that they are negative from the fit of (4.1),

which ensures the tangent directions don’t flip along the curve.

The composition of the abstracted shape from the subset of parts proceeds in reverse order of

the deletion in the shape analysis stage. For each connected shape, the set of parts deleted in the

last step is not attached to anything. Accordingly, when we add them back onto the abstraction,

we simply build a new shape consisting of these parts. This shape becomes the base for the

subsequent attachment of parts which were originally deleted from it in the decomposition.

4.1.2 Part attachment

Section 4.1.1 shows how the transition curves of a given part can be parameterized by an

8−tuple (dap, dbp, daw, dbw,map,mbp,maw,mbw). To add transitional curves to glue the part

and the base shape, intersections a and b are first located and the start and end points of each

transitional curve are recovered from the first four offset parameters. For a part whose body is

not extendable, dap and dbp can respectively represent the parameters of points ap and bp on the

curve of the part body. Also, note that since we are now attaching a new part P to an existing

base shape W , daw and dbw are no longer the offsets along the completion curve, but rather

along the boundary of W . The other four parameters determine the lengths of the tangent vec-

tors at these end points. With these tangents and the positions of the end points as the boundary

conditions for the Hermite splines, the geometry of each new transition is completely defined.

Note that when attaching onto the shape a group of neighboring parts, which were deleted

together during the analysis step, they are attached together as well. For group attachments like
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Figure 4.4: When attaching the fingers
and wrist, it is not necessary to regenerate
transitions between grouped fingers.
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Figure 4.5: A displacement is given to B
so that its prominence is maintained in the
resulting abstraction

this, instead of rebuilding the transitions for all the parts, only the first transition (counterclock-

wise along the boundary, transition a in Figure 4.3) of the first part and the second transition

of the last part (transition b in Figure 4.3, the parts are also ordered counterclockwise along

the shape boundary) are regenerated. It is not necessary, and somewhat unwise, to regenerate

the intermediate transitions since they are readily available from the original shape. Such an

example is shown in Figure 4.4. The index, middle, ring and little fingers (FI , FM , FR and FL

in the figure, respectively) are to be attached together. When we do this, we simply copy the

transitional boundaries from the original model.

In rare cases a cubic curve does not quite fit the transitional curve of a part P well enough.

Typically this is not a problem for the visual presentation of P itself since the human visual

system is not sensitive to this level of geometric accuracy. However the inaccurate transition

occasionally “buries” a smaller part that grows from it, as Figure 4.5 shows, where part B is

almost buried by the reconstructed transition of part P . Consequently, in the resulting abstrac-

tion, B is considerably less prominent.

One solution to this problem is to remember the intersection point (s0) between the sym-

metry axis of part B and its completion curve. When attaching B back to the shape in the

reconstruction of the abstraction, we find the closest point on the boundary of the base shape to

s0, and translate B accordingly so that s0 stays on the boundary. All the subparts of B are also

translated accordingly to maintain their positions relative toB. In all the cases we have studied,
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this simple solution suffices. However, the amount of such a translation is completely deter-

mined locally. For a more general solution, especially when displacements of different parts

are involved, we would expect that special care needs to be taken to avoid boundary overlap or

other global inconsistencies.

4.2 Selecting the right set of parts

The part regeneration scheme gives us the maximal freedom to choose any reasonable set of

parts for abstraction. Thanks to this flexibility, we no longer need to concern ourselves with

topological dependency. The only criterion for deciding whether a part should be retained in

the final abstraction is its importance. However, as explained in the beginning of this chapter,

an obvious measurement of such importance does not exist. Thus, we design a set of tools that

allows the user to select the subset of parts interactively.

First, we rely on the the visual prominence of a part to prioritize the part. The prominence

measures how easily a part grabs visual attention. This differs from part salience [Hoffman

and Singh, 1997] in that the latter measures not only how prominent a part is, but also how

convincingly a fragment of shape contour is perceived as a part, as opposed to a mere subset

of a part. Chapter 2 and Chapter 3 described our model of determining if a fragment of shape

contour is a part. Here, we only use the components related to the prominence: the area and the

protrusion1. We measure the area and the protrusion of all parts, which are the two obvious

geometric properties related to a part’s prominence. A box selection tool is provided to allow

the user to select the most prominent subset of parts based on these two measurements. (Recall

that the protrusion of a part is measured as the perpendicular component of the length of the

part’s SLS axis—see Section 3.3.5—and the area is the region between the part boundary and

the completion curve).

We apply this thresholding scheme to the Australia shape, with key steps that produce the

abstraction illustrated by Figure 4.6. In particular, Figure 4.6 (b) is the set of parts collected by

1 In [Hoffman and Singh, 1997], the protrusion is defined as the ratio of the perimeter the part to the length of
the part line, which is a scale independent part distinctiveness measure. As Hoffman and Singh have hypothesized,
a bigger protrusion implies a more distinctive visual part
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Figure 4.6: Selecting a subset of 8 parts for the abstraction of the Australia coastline by their
visual prominence. The decomposition in (b) contains 544 parts.

our automatic shape parser described in Chapter 3. These parts provide a complete description

of the whole shape, but we do not need all of them. (c) is the set of parts selected using the box

selector and the resulting abstraction is shown in (d), which is reconstructed as described in the

previous section. Figure 4.6 (e) illustrates the two geometric measurements we used. Each dot

in Figure 4.6 (f) represents a pair of measurements in the “area-protrusion” parameter space of

each part. In this space, the user can effectively select the most important components of the

shape using a box selector.

We also allow the user to pick parts manually for reconstruction because the box selector

is not always flexible enough, for two reasons. First, not all the most prominent parts of any

shape would be chosen by the box selector since other factors might also affect the part promi-

nence. More importantly, a part might happen to be very important to the user despite its lesser

geometric prominence. Figure 4.7(a) shows a map of the state of New Jersey, USA, together

with the part decomposition in (b). For New Jersey residents, it is often important for them to

have Sandy Hook included in their state map, as circled in Figure 4.7(a), which features a very
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Figure 4.7: To match the part composition of the artist-drawn New Jersey map (e), the abstrac-
tion of the New Jersey map by our system requires a manual selection of the part corresponding
to Sandy Hook.

nice beach and the oldest lighthouse of the US2. Observe that in the drawing of Figure 4.7(e)

by a New Jersey artist, this area is purposely included with very exaggerated prominence. The

actual prominence parameters of this part, however, correspond to the circled dot in the “area-

protrusion” space shown at right in Figure 4.7. Unfortunately, no simple box selector would

include this dot without also including some others that are less critical. Instead of making

up an arbitrary prominence function, we simply allow users to override the prominence-based

thresholding by clicking the parts they think are important to include. Thus, the user can select

the three major parts with the default box thresholding, but can also click the extra part that

corresponds to Sandy Hook in order to include it in the reconstruction. This gives a total of

four parts as shown in (c). Figure 4.7(d) displays the assembled abstraction. Compared with the

artist’s drawing in (e), our abstraction manages to capture the “basic shape” [Robinson et al.,

1995] of the map but lacks the ability to depict important features with proper exaggeration and

idealization of visual forms.

4.3 Summary of our approach

We now have all the elements of our system in place. We summarize our approach, including

the heuristics-driven shape analysis and the user-assisted shape abstraction, as follows.

Part candidate detection

2 http://www.sandy-hook.com/

http://www.sandy-hook.com/
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1. Trace local symmetries from each curvature extremum including those with negative

curvatures. Stop tracing when no more potential basic parts are expected (Section 3.1.3).

This step gives the transitional sections of SLS.

2. Locate transitional sections of SLS with significant strength Tn > t0 (Section 2.5.4).

Build the data structures related to the part candidate based on all transitional sections,

including necessary part extensions (Section 2.6), when possible. By calling the elements

produced by this step “part candidates”, we emphasize that each of these elements might

be a part in certain shape contexts, which we have yet to examine in order to determine

whether or not the candidate is indeed a part of the shape.

Compared to the “naive” morphological shape analysis described on page 69, the two steps

above explore both the foreground and the background for part candidates. The tracings of

SLS are also stopped early for better efficiency.

Part decomposition

3. Compute the CAT, which we currently use to infer the global structure of the shape

context (Appendices 3.A and 3.B).

4. Follow the steps described in Section 3.5 on page 85 to construct a graph D that infers

the formation of each part candidate and constraints how parts should be deleted (Sec-

tions 3.3 – 3.5).

5. Accommodate optional user guidance expressed by the strokes. Modify D accordingly

(Section 3.6.1).

6. Find the strongly connected components of D with no outgoing edges. The construction

of the graph guarantees that removing any of these components respects both our models

of perceptual organization and the user constraints (Section 3.5).

7. Find the group of parts with the smallest scale. Replace its boundary with the completion

curve. Each deleted part becomes a part of our shape representation.

8. If the shape is not empty, go back to step 1.

With the entire set of the deleted parts, we are able to recover the original shape. To clarify
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structures and to emphasize important components, however, it is often better to show only a

more simplified shape with only a small subset of these parts.

Abstraction

9. The user selects a subset of the most prominent parts from the decomposition using the

box selector that imposes a set of geometric thresholds. Alternatively, this thresholding

can be overridden by clicking and including parts that are important to the user (Sec-

tion 4.2).

10. Reconstruct the shape by adding back the selected subset of parts, proceeding in the

reverse order of the deletion in the decomposition stage (Section 4.1.2).

4.4 Results and comparisons

4.4.1 Comparing to abstractions with degraded features

Section 4.3 summarizes the ingredients of our approach to shape analysis and abstracted de-

piction that are new to the fields of computer vision and graphics. These ingredients are: (1)

the shape analysis driven by a set of heuristics that models human perceptual organization, as

discussed in Chapter 3; (2) consideration of not only parts from the foreground, but also those

from the background of the shape, which better accommodates the possible explanation of

subtractive composition; (3) a shape reconstruction scheme that effectively eliminates the topo-

logical dependency among parts introduced in the decomposition step, which makes it possible

to retain the essential parts in the abstracted depiction and omit any less prominent components.

Figure 4.8 shows abstractions of the Australia map with different combinations of ingredi-

ents. In particular, the abstractions on the first row are generated based on the description (in

terms of parts) by our shape analyzer with all the heuristics turned on. The set of parts that leads

to the abstractions on the second row is produced by our shape parser without heuristics. To

generate the third row, we allow the parser to consider foreground parts only. As indicated by

the results, the abstraction derived from a better description of the shape in terms of parts (row

(a)) also produces a simpler shape composition with cleaner strokes.The components presented
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also resemble the components of the original shape better. Observe that in the abstractions on

the second and the third rows, many parts are distorted as a result of the original distortion

in the decomposition stage, which is not surprising since the analyzer would not preserve the

shape structure if the heuristics were not enforced.

Original

Selection and reconstruction Reverse decomposition order

(a)

(b)

(c)

Low detail High detail Low detail High detail

Figure 4.8: Disabling features: (a) with heuristics; (b) no heuristics; (c) no heuristics, fore-
ground only. The left two columns show reconstructions from selected parts. The right two
columns use reverse decomposition order.

Moreover, Figure 4.8 provides a strong testimony to the importance of freedom in choosing

the correct set of parts. The rightmost two columns of Figure 4.8 show the results created by

simply reversing the deletion to a point that all the important parts that are present in the cor-

responding reconstructed abstraction are reattached. As the figures show, there are wiggles on

the boundaries caused by the attachment of shallow, less prominent parts. Instead of expressing
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any important features, they are reattached only to maintain the topological consistency, so it is

possible for more prominent parts to be attached. Unfortunately, this is done at the cost of the

clarity of the lines and the expressiveness of the overall abstraction.

4.4.2 Comparing to traditional geometric simplifications

We further compare our shape abstraction to three traditional geometric simplification tech-

niques, which were introduced briefly in Chapter 1:

Douglas-Peucker (DP) algorithm [Douglas and Peucker, 1973], which approximates the

original shape by top-down greedy vertex sampling;

Progressive Mesh (PM) representation [Garland and Heckbert, 1997; Hoppe, 1996], which

is a paradigm of bottom-up approximation that simplifies the shape by collapsing edges and

adjusting vertices to locally minimize the area errors;

Curvature Flow (CF) smoothing [Desbrun et al., 1999], which simplifies the shape in the

frequency domain and produces results with smoothed boundary curves.

The abstractions and simplifications of five shapes are shown in Figure 4.9. The set of parts

retained for the abstracted shark shape is selected using the area and protrusion thresholds

explained in Section 4.2. The other simplifications are hand-tuned to the degree that the same

set of features are preserved. To allow polygon-to-polygon comparisons to DP and PM, we

also decimate our abstracted shape by DP such that the decimated polygons of each shape have

the same number of vertices.

We have already seen the decomposition of the shark shape in Figures 3.20(a) and 3.20(b) on

pages 86–87. Here we present the abstraction in Figure 4.9(a). Since the processing units are

the parts, the integrity of their forms is naturally preserved in the resulting abstraction. Com-

pared to the clearly spelled-out part structure in our abstraction, the decimated shapes using

either DP or PM contain edges that span multiple neighboring fins due to the lack of a per-

ceptually based structural representation—one of the factors that also causes the “fused” parts

seen in children’s drawings [Arnheim, 2004a, also introduced briefly in Chapter 1]. Similar

problems with DP or PM can be found in their simplifications of the rest of the shapes. For
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example, the maple leaf simplified by DP has its lower lobes distorted due to the existence of

a few longer teeth nearby. The feathering of the lighthouse weathervane and the teeth of the

crab are all fused together, and both approaches distort the pine’s crown in an irregular manner.

In contrast, our approach omits some of the minor features (such as the “teeth” on top of the

carapace and cheliped claws of the crab shape) and instead dedicates vertices to more important

parts. Our abstraction is the only one to fully preserves the forms of the crab eyes, and it ignores

the minor teeth of the maple leaf so that the composition of the lobes can be expressed more

clearly. CF does smooth the shapes in a pleasant way. However, it not only fails to eliminate

some of the minor parts cleanly, it also distorts other salient parts. The two fins on the front of

the shark shape are shortened. Sharp features have all disappeared, though they were salient on

the maple lobes, as well as on the arrow head of the weathervane. The smoothed pine crown

exhibits a very different structure, something like a tortoise shape.

Figure 4.9 also reveals that a simplification using DP always carries the smallest error in

terms of the Hausdorff distance to the original shape; and errors in our abstractions in terms of

this distance metric are typically 50%− 100% larger. However, the DP method does not seem

to produce the most preferable results that best express the original forms—we will further

confirm this in Section 4.5. Indeed, a geometrically defined distance metric may not necessarily

align well with the distance as perceived by the human visual system.

With its default settings, our shape analysis system does not always do a good job of parsing

all the shapes of Figure 4.9. In particular, the automatic analyses of the maple leaf and the

crab fail to produce shape descriptions that respect human perception. However, since most

of the parts of both shapes appear in the foreground, it makes sense to inform the system of

this. Following the trick described at the end of Section 3.6.1, we bias the analysis procedure

towards deleting foreground parts by setting the foreground distance weight wl = 1
8 .

Figure 4.10 shows a maps of the UK and Ireland, including the abstractions and simplifica-

tions at two different levels of detail, using four different approaches. The abstractions created

using our approach are based on the set of parts generated by our automatic parser with the

default parameter settings. (For shapes like coastline maps, parts are formed from both the
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Original

Abstraction DP PM CF

Figure 4.10: Automatic abstractions and simplifications of the UK and Ireland (7600 vertices,
decomposed into 950 parts; abstractions use 114 (top) and 31 parts (bottom)).

foreground and the background. The default parameters are thus more appropriate.) All ap-

proaches produce results that are reasonable but have different styles. In particular, features

retained in our abstraction are presented literally, while omitted features have no effect on the

geometries of the result. Each of the other approaches tries to include all the components

by spreading the error, which is caused by the limits in the complexity of the representation,

across the entire shape. Consequently, minor details can affect the final shape more or less.

They can form meaningless minor features along the boundary, which cannot be mapped to

any real feature in the original shape, but which may also reflect certain geometric textures on

the boundary. In particular, such textures produce a result with a “map-like” style which is

appealing, especially when the viewer does not care what the individual features actually are.
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(a)

(b)

(c)

(d)

(e)

(f)

Original Abstraction
moderate detail

Abstraction
low detail

CF
low detail

Figure 4.11: More maps: (a) eastern China; (b) Iceland; (c) Luzon Island (Philippines); (d)
Newfoundland; (e) Baffin Island (Canada); (f) the island of New Guinea.
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(a) Original with strokes (b) User guided (c) Cartographer

Figure 4.12: User guided results from the strokes in (a), compared to one produced by a
cartographer (after Robinson et al. [1995]).

Figure 4.11 shows more maps together with their abstracted depiction in both low and mod-

erate levels of detail both using our approach. For comparison purposes, it also includes on

the rightmost column the results produced by curvature flow. Again, compared to the results

of CF our approach produces crystal clear imagery. Every section of the boundary curves can

be mapped directly to a perceptual part of the original shape. The smoothing-based approach

removes the high frequency geometry coherently. Neighboring minor features are averaged

together, resulting in shallow wiggles along the shape boundary. The differences between these

two approaches are particularly evident at places such as the coastline of southeast China and

northeast of Baffin Island. Figure 4.11 also shows a potential risk that our approach takes:

if an eliminated part happens to be important to the user, the resulting abstraction could be

very distracting. It is very possible that the viewer would feel that the distorted presentation of

these features is at least better than nothing, even though they might not resemble the original

forms at all. The Port au Port Peninsula of Newfoundland Island, and the south portion of the

Bomberai Peninsula of western New Guinea (marked by arrows in (d) and (f), respectively) are

two such cases3.

Of course, the users can manually include in the abstraction whatever parts they feel nec-

essary just by clicking them, as described in Section 4.2. Figure 4.12 shows an example with

a moderate amount of user interactions involved, matching our abstraction to a cartographer’s

3 The overall shape of New Guinea is famous for its resemblance to a bird. The Bomberai Peninsula, together
with the Bird’s Head Peninsula to its north, form the head of the bird. By removing the south part of the Bomberai
Peninsula, our low-detail abstraction drops the “jaw” of the head, which is particularly distracting to people familiar
with the geography of New Guinea.
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drawing obtained from Robinson et al. [1995], which was also shown by Figure 1.1 in the very

beginning of this thesis. To create a similar set of “basic shapes”, we interact with the system

in both the shape analysis stage and the abstraction stage. In particular, 2 “keep whole” and 3

“not a part” strokes (3 of which can be seen in the insets of (a)) were used to modify the default

interpretation of the part composition. In addition, we manually selected 14 tiny parts (red

dots), which would have been eliminated by the geometric thresholds. The abstracted shape is

shown in Figure 4.12(b), side by side with Robinson et al.’s in (c). We feel that our abstraction

produces a part composition similar to what the cartographer has drawn. However, the cartog-

rapher rearranges the configurations of the parts, and distorts their forms so that they look more

distinctive while maintaining the coherence of the whole.

4.5 Assessment

To assess our approach to shape abstraction in comparison to the existing geometric simpli-

fication methods, a perceptual preference study is conducted. In particular, we compare our

approach to the Douglas-Peucker (DP) algorithm [Douglas and Peucker, 1973] as well as Pro-

gressive Meshes (PM) [Hoppe, 1996] with a quadratic error metric [Garland and Heckbert,

1997].

The difficulty here is that our approach has a different goal from DP or PM. Our abstraction

aims to clarify the shape structure by eliminating irrelevant component parts, which we hy-

pothesize reduces the complexity of the representation for the human visual system. DP or PM,

on the other hand, tries to reduce the number of vertices in the shape. Their goal is to reduce

the complexity of the shape representation for computer storage. This difference in goals leads

to differences in the visual styles. Ours produces results with smooth shape boundaries since

down-sampling for smaller spatial complexity is not our concern; the results produced by DP

or PM are decimated polygons, which are often pointy.

To reduce the effect of such differences as much as possible, we avoid direct comparisons be-

tween simplifications from the two different styles. Instead, when compared to the result from

the DP or PM decimation in each test case, the abstracted shape is further simplified with the
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same decimation technique. As a result, each original shape has a total of four simplified ver-

sions, grouped in two pairs based on the decimation technique applied. For Douglas-Peucker,

the comparison is made between:

DPO: Douglas-Peucker decimation of the original shape

DPA: Douglas-Peucker decimation of the abstracted shape

And for the Progressive Mesh decimation, it is between

PMO: Progressive Mesh decimation of the original shape

PMA: Progressive Mesh decimation of the abstracted shape

Thus, the difference between the members of each pair is whether our abstraction technique

is applied as an intermediate step. Note that both decimation methods simplify the shape such

that all the vertices or edges are taken into account. With the extra abstraction step in DPA and

PMA, less prominent parts are eliminated. The subsequent decimation is thus not “distracted”

by the presence of these parts. We thus expect that, if the numbers of vertices are the same,

the decimation from the abstraction contains fewer parts than the corresponding decimation

from the original, while the structure of the preserved parts in the decimated abstraction are

better preserved. Now we use a perceptual preference study to answer this question: whether,

and when, does this extra abstraction step help in creating more expressive depictions. In the

study, we control the amount of part distortion by decimating the shape to a varying numbers

of retained vertices. We are particularly interested in cases when the abstracted shapes are

decimated to a level such that the preserved parts are about to be distorted. We hope to find

out, in this case, how do these results compare to the decimation from the original shapes with

the same number of vertices. At this point, the corresponding parts in DPO and PMO will

likely be distorted, but we also expect that they contain more (distorted) detail. If the study

shows that people prefer DPA to DPO (and PMA to PMO) when the abstraction is decimated

to such a level, we can conclude that the abstraction with fewer details but clearer parts is a

more preferable form of shape depiction.
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4.5.1 The settings of the preference study

We collected 96 coastline maps from the NOAA/National Geophysical Data Center4. All maps

were rendered by Azimuthal orthographic projection [Snyder, 1987], centered at the point of

interest of the original shape.

The abstraction of each map was based on the set of automatically computed parts using the

default parameter settings described in Section 3.6.2. Each map was abstracted with a manually

set protrusion threshold p0. The area threshold was set accordingly: a0 = p2
0. We used this

constraint in order to make a fair comparison, since both DP and PM use the number of vertices

in the decimated shape as the only threshold.

The decimation level decided how many vertices would be shown in both viewports after

decimation. We used 8 different levels for each shape: 2
i
3N0, i = −4,−2, ..., 3 where N0 was

an estimate of the minimal number of vertices to be retained to avoid introducing fused parts or

interrupting salient axial structures of any parts retained in the abstracted shape. We prepared

25 maps and determinedN0 by hand for each of them for both decimation approaches. Then for

each decimation, we performed a linear regression on N0 using a single independent variable

Θ =
∑

P ΨP , where ΨP denotes the total turning angle of the boundary of part P , andΘ is the

sum across all the parts in a shape. Here the total turning angle, ΨP , was merely the discrete

version of the integral of the absolute values of curvatures along the part boundary. We found

it suitable to use their sum across all parts, Θ, as a scale-independent measure of the perceptual

complexity of shape contours. For Douglas-Peucker and progressive meshes, the values of N0

were 0.65Θ and 0.60Θ, respectively. For DP, the coefficient of determination (R2) of the linear

relationship between N0 and Θ was 0.81; and for PM, it was 0.79.

Figure 4.13 shows the settings for the comparison of the South American coastline as sim-

plified by DPO with the same map simplified by DPA. In particular, the top row of Figure 4.13

shows the screen display. The middle row shows the original shape, followed by the results of

DPO: 8 simplified versions of the original, each decimated to a particular number of vertices

using Douglas-Peucker, as described above. The bottom row shows the abstracted shape and

4 http://rimmer.ngdc.noaa.gov/

http://rimmer.ngdc.noaa.gov/
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Experiment Display (i = 1, DP)

Original DP simplifications of original (DPO) −−−−−−−−−−−−−−−−→ i

−4 −3 −2 −1 0 1 2 3

Abstraction DP simplifications of abstraction (DPA)

Figure 4.13: Example of an experiment display, and pairs of maps used in the study (decimated
using Douglas-Peucker).

the results of DPA: 8 different levels of decimation using the same settings as DPO. The only

difference is that these are decimated from the abstracted shape.

The study contains 96 maps with 8 levels of decimation, which yields 768 different (map ×

decimation level) combinations. When assembling the sessions for each subject, we randomly

select from these combinations, subject to the following constraints:

• Each subject was assigned 192 combinations, 96 pairs of which were decimated using

Douglas-Peucker, and the other 96 using progressive meshes.

• In each decimation method (DP or PM), each map (at any decimation level) was shown

exactly once to the subject.

• In each decimation and for each decimation level, the subject was shown 12 different

maps. The 12 maps decimated by Douglas-Peucker do not overlap the 12 decimated by

progressive meshes.
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• One particular (map × decimation level) combination was shown only once for a group

of 8 subjects. That is, every 8 subjects cover the whole grid once.

• Each subject had an equal chance of getting any of the (map × decimation level) combi-

nation. The order of the trials shown was also randomly assigned.

Each trial was proceeded by a centered red circle that was shown for 500ms for visual fix-

ation purpose. Then the original shape, its decimated version, and the decimated abstraction

(using the same decimation approach) were displayed simultaneously in three viewports of the

same size arranged in two rows. The viewport displaying the original shape was centered on

the top row and the other two, showing the decimated shapes, were on the bottom, as shown in

Figure 4.13. Whether the simplification from the abstraction was shown on the left or on the

right was randomized and counterbalanced across all trials per decimation level per subject. We

applied a two alternative forced choice (2-AFC) scheme, which asked the subject to directly

compare the results of DPO and DPA, or PMO and PMA and choose the simplification they

liked better. In making the choice, they were told to achieve a balance between clarity and

expressiveness of the presentation, and a choice had to be made for each trial.

The display we used was a Dell Ultrasharp 2005FP (99.5 PPI), and the distance from the back

of the chair to the monitor was fixed at 1 meter. The study involved 16 subjects—all graduate

students from Rutgers University. All had normal or corrected-to-normal vision. None of the

subjects had participated in a similar experiment before. Before the formal experiment began,

all the subjects had a practice session to familiarize themselves with the assessment system.

The 16 participants were divided into two groups, each covering the (map × decimation

level) grid exactly once for each decimation method. Consequently, each combination was

judged exactly twice. Figure 4.14 shows the percentage distributions of all three possible

outcomes. The green area shows the percentage of both judgements favoring the decimated

abstraction, whereas judgements favoring the decimated original both times is shown in blue.

The light yellow area in the middle indicates the percentage of ties in judgements. Intuitively,

a larger green area means that the abstraction, as the intermediate step prior to the decimation,

improves the results more effectively. From Figure 4.14, we find that subjects favored the dec-

imated abstraction when the decimation caused structural destruction only slightly or not at
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all, which is evident from the high green regions around the centers of both decimation meth-

ods. Adding more vertices to the already abstracted shape did not add any shape information

because minor parts had been eliminated beforehand, but with the extra vertices a decimation

shape from the original was offered a chance to present extra features. Thus, at these levels

the abstraction as an intermediate step was not as effective. Going in the opposite direction,

when decimated too much the whole shape structure was broken, no matter whether it was

from the original or from the abstraction. In such cases (mostly with i = −4,−3), the subjects’

preferences reverted to chance levels.

4.5.2 Significance of shape abstraction

Special care needs to be taken when formally analyzing the significance of the effectiveness of

our approach at each decimation level. As a typical 2-AFC study, it is subjected to a binomial

analysis of the proportion of trials in which the abstracted shapes are preferred [Siegel and

Castellan, 1988]. However, we could not directly apply this test to the complete set of trials at

each decimation level since each level had 16 subjects involved. Each subject had their own

unique aesthetic taste and observational habits that could very likely affect their judgements.

This adds extra variance to the distribution, which is commonly called the overdispersion5.

Note that the assumption of the binomial distribution is still valid for the set of judgements made

by a single subject. Thus, for each subject j, we assume that the percentage of preferred shapes,

where the decimation at level i from the abstraction is more effective for the subject than the

decimation from the original at the same level, is a binomial random variableXi,j ∼ B(n, pi,j),

where pi,j , denoting our approach’s success rate in each trial at level i for subject j, is another

random variable. Our abstraction approach at level i is significant if we can show that the

expectation, E(pi,j), is significantly larger than 1
2 . Here we turn to the family of Beta functions

5 We can actually use Tarone’s Z statistic to test whether our data can be interpreted by a binomial distribution
[Tarone, 1979]. In our study, with 95% confidence, we reject the null hypothesis that the underlying distribution of
the decimated abstraction being preferred to the corresponding decimated original is binomial when i = −1, 3 for
PM and when i = −3, 1, 2, 3 for DP.
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(a) Douglas-Peucker (b) Progressive Mesh

Figure 4.14: Results from shape preference study. The green areas indicate the percentage of
pairs where PMA or DPA were selected both times, and the blue areas where PMO or DPO
were selected both times (the light yellow areas were a tie)

to formalize pi,j’s distribution, e.g., pi,j ∼ Beta(αi, βi), i.i.d, where

Beta(p;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

is the Beta function with E(p) = α
α+β and Var(p) = αβ

(α+β)2(α+β+1)

The generality of this setup lies in that the Beta functions can have a wide variety of forms

in defining the density over the interval of [0, 1] by using different combinations of α and

β. With this compound arrangement, Xi,j turns out to be a random variable of the so-called

Beta-Binomial distribution, typically denoted as P(n, µi,Mi), where µi = α
α+β is the expected

mean of the Beta function; Mi = α+ β; and in our case, n = 12.

At the decimation level i, each Xi,j is a sample of this random variable. It is possible to

estimate the confidence intervals of µi = E(pi,j) as well as other parameters of this distribution,

given the set of observations {Xi,j} , j = 1, ..., N using maximum likelihood (ML) [Smith,

1983]. A more implementation-friendly description of this approach is given later by Ennis

and Bi. [1998a;b]. Note that the first moment estimate of µi is simply µ̂i =
∑

j Xi,j

N , which is

quite close to that of the ML estimates.

We present the estimated parameters in Figure 4.14. The curves in both DP and PM show

the values of estimated µ̂i for each of i = −4,−3, ..., 3. The error bars show the corresponding
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95% confidence intervals at these decimation levels. It is now evident that, for each of DP

and PM, there is a wide range of decimation levels, at which the intermediate abstraction step

makes a significant improvement and leads to more concise and more expressive results. In

particular, at these levels the amount of decimation breaks the part structure of the abstracted

shape only slightly or not at all. Subjects preferred DPA significantly over DPO for i = −1

and i = 0 (p < 0.02). This preference for PMA over PMO was even stronger for i = −2,−1

and 0 (p < 0.005).

Finally, we note that the Beta-Binomial model has previously been applied to evaluate the

effects of such factors as toxicological treatments [Williams, 1975], policy changes [Gange

et al., 1996], and sensory analysis [Anguloa et al., 2007; Ennis and Bi., 1998a]. This model

for the analysis of a 2-AFC experiment was first studied by Morrison [1978]. Compared to the

traditional binomial analysis, the Beta-Binomial model takes into account differences among

subjects and hence provides a more reliable significance test. To the best of our knowledge,

our preference study applies this model for the first time to evaluate the effectiveness of certain

visual styles. We believe this sets a new paradigm for the evaluation of non-photorealistic

rendering research.

4.6 Limitations of abstraction in terms of parts

Besides showing the success of our approach, the assessment also confirms the observation we

made in Section 4.4.2 about the abstraction of Newfoundland Island: the removal of Port au

Port Peninsula produces a straight coastline on the west, which turns out to be distracting to

observers who think the peninsula is important. Leaving out parts that are important to some

of the viewers is the risk that the automatic abstraction takes. It was the main reason that the

decimated abstraction (either DPA or PMA) lost a trial in the assessment. It could be even

more distracting if this happens to the abstraction of a shape with explicit functional semantics

attached to its parts, such as those shown in Figure 4.9. For example, our abstraction of the

crab shape immediately becomes worse than the result of DP or PM if one of the crab’s eyes is

missing. However, this potential failure does not contradict the theory that the visual process

of recognition is based on the visual process of shape parsing. Instead, it strengthens the theory
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that underlies our abstraction: any parts that are used for recognition should be preserved in

the abstracted results, because depiction, as a inverse of vision procedure, needs to make sure

it retains those elements used for recognition.

Original DPA DPO

Figure 4.15: Northeastern coastline of Baffin Island with different visual styles of presenta-
tions. Both shapes of DPA and DPO are decimated to 50 vertices.

The assessment also reveals that when a set of parts exhibits a certain pattern on the shape

boundary, removing them completely and leaving a smooth, blank contour curve is not the best

treatment for some people. For example, our low-detailed abstraction of Baffin Island has this

effect on the north east coastline shown in the middle of Figure 4.15. While decimating this area

of the shape using Douglas-Peucker results in unfaithful compositions of parts, the existence

of shape patterns is somewhat spelled out. During the informal interviews with some of the

subjects after the experiment, when asked for the rationale for preferring DPO to DPA, they

explained their judgement based on the two different approaches to the treatments of patterns.

Obviously, the proper treatment of shape textures is an interesting direction of extending our

work. Our abstracted depiction system works the best when a shape can be described as a set

of parts. But parts are not the the whole story when it comes to shape representation. Other

perceptual elements can also be explored (and sometimes as better candidates) for effective

abstraction and structural shape editing. For example, in Mehra et al.’s abstraction system

[2009], the abstracted shape is reconstructed from a representation in terms of feature curves.
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Chapter 5

Discussion and Future Work

This thesis has presented our work on structurally based shape representation and abstraction.

A set of perceptually driven heuristics is proposed to guide the search for a hierarchical shape

structure that respects human perceptual organization. From the algorithmic point of view, our

approach attempts to recover the procedural modeling using reverse engineering [Várady and

Martin, 2002], which is a popular paradigm followed by various automatic parametric feature

recognition algorithms in CAD systems [Han J.H. and W.C., 2000; W.C., 1995]. However, even

for man-made shapes such as mechanical parts, recovering the modeling procedure has been a

difficult problem in the field of CAD research. The task is obviously even harder for finding the

part structure of a general shape [Pauly et al., 2008]. We feel we have made concrete progress

on this problem.

Due to the difficulty of the task, we limit the scope to closed 2D shapes with no self-

intersections. Even so, it is still an open-ended problem characterized by multiple plausible

explanations of the shape. Further progress on this track is possible, but requires a deeper

understanding of human perceptual organization and related computational approaches.

5.1 Contribution

Part-based shape representation is an old idea in computer vision, and it is also not new to use

a structural representation for simplification. The main contribution of this thesis is to propose

a combination of elements that we show are each important to obtain favorable results within

this framework for abstracted depiction, in particular a model of perceptual organization that

guides the decomposition process. The computation of the part-based shape structure has made
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it possible to create abstracted shapes at different levels of detail, and it opens the door to

structurally-based shape editing and sophisticated part manipulation, including stylization and

exaggeration of 2D shapes in terms of parts.

The abstraction system we have built shows that simplification and reconstruction based on

this part-based representation leads to greater effectiveness in shape depiction by using a set

of fewer parts to obtain a clearer shape structure. This is then confirmed by our perceptual

preference study, which demonstrates the use of a Beta-Binomial test to handle the problem of

overdispersion introduced by the differences in aesthetic tastes of different subjects.

Our formalization of transition region between parts offers the first computational model in

vision research that describes the extent and salience of parts and their connections. Its mathe-

matical characterization also nicely unifies previous theories of parts of visual forms. Compu-

tationally, it enables the clean removal of parts without leaving traces. It represents a significant

improvement over the scheme used by Rom and Médioni [1993] in their morphological shape

analysis system.

There are also a few ingredients in our work that we feel are interesting to related fields in

part-based shape analysis and computer depiction. We point out that considering parts in both

the foreground and the background is justified by ongoing work in perception [Kim and Feld-

man, 2009]. We also demonstrate through the comparisons in Figure 4.8 that it is important to

consider parts from both sides of the shape boundary. Figure 4.8 also shows the importance of a

flexible assembly scheme for shape abstraction that allows freedom in choosing the appropriate

set of retained parts. Figure 4.8 further demonstrates that an abstracted depiction can be more

expressive if it is based on a shape description that respects visual explanations better.

Based on our models of perceptual organization, we have introduced a graph algorithm to

disambiguate among multiple explanations of the shape. Our system will certainly benefit from

even more flexible approaches to shape assembly and better models of perceptual organization.

In particular, we lack a good measure of how symmetric, or organized, a given shape is. Con-

sequently, we lack a way of assessing whether a symmetry is improved. Currently, we avoid

this limitation by using a simple (but not general) approach in terms of heuristics (Sections 3.3

and 3.4). We also avoid the difficulties in robustly computing the major approximate axial



130

structures by simply finding coherent CAT axes (Appendices 3.A and 3.B). As explained in

Section 3.4, not all salient structures are present in the CAT. We are optimistic about future

work in these directions.

5.2 Limitations of the representation

The structural representation in terms of parts offers the opportunity for the abstraction system

to effectively allocate strokes to present important features. However, our current implementa-

tion of this representation also limits the abstraction systems in various ways.

5.2.1 The peanut dilemma

In some cases, the system proceeds by deleting a part merely to avoid breaking a coherent

axial structure. However, this is not consistent with artistic drawing as we claimed in the very

beginning of the thesis, since a “part” whose only function is to extend the axial structure might

not be the most salient among its neighboring candidates when it is deleted.

Take the shape of a two-seed peanut as an example (see Figure 2.21 on page 55). In the

extreme case, when only one part is allowed to represent the entire peanut, we would choose

to approximate both halves with a single part. This can be done by deleting the two indenta-

tions between the seeds. However, the indentations should not be perceived as parts. On the

other hand, if we choose to describe the peanut with two parts, our system can never produce

a reasonable abstraction with a single part that contains both seeds. Unfortunately, our current

framework forces the system to choose one representation or the other. A mechanism that

effectively accommodates both explanations and allows the flexibility of choosing the repre-

sentation at any levels of detail is desirable.

5.2.2 Effects of figure/ground discrimination on abstraction

A closer study of the experiment described in Section 3.6.2 shows that the system makes a sig-

nificantly number of mistakes by deleting part candidates which are inconsistent with the “not
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a part” constraints. The purpose of these constraints, as described in Section 3.6, is to tell the

shape parser that, locally, which side of the shape boundary constitutes the part. Unfortunately,

this leads to the still unresolved problem of figure-ground discrimination. Figural assignment

in human perception involves complex visual processing. Non-geometric factors could play

important roles in discriminating the figure from the ground, e.g., the viewing orientation [Ve-

cera et al., 2002], the type of shape [Ren et al., 2006], and more often, the semantics attached

to the part [Peterson and Gibson, 1994]. The figure-ground discrimination problem resides in

our shape decomposition due to the ambiguities introduced by considering both foreground and

background parts.

On the other hand, two neighboring parts on different sides of the shape boundary could

both be represented as figures in the human visual system. In geographic shapes, a peninsula

with a neighboring bay is a typical example. Ideally, the structural representations proposed in

Section 5.2.1 could be extended to accommodate such ambiguity by including parts from both

sides. Our current framework, however, forces the parser to make a binary choice by selecting
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Figure 5.1: (a) The original Australia coastline with lands and gulfs in northern Australia
labeled. (b) Automatic parsing results, with the Gulf of Carpentaria parsed as the figure and
the Arnhem Land as the ground. (c) The resulting abstraction. (d) The reverse explanation
achieved by user guidance. (e) The abstraction results from (d), which appears very similar
to (c). Note the difference between the tips of Arnhem Lands of the two abstractions. It is
less sharp in (c) since it is considered a transitional boundary of the Gulf of Carpentaria and is
regenerated using a Hermite curve.
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parts from one side or the other at each step of the decomposition, instead of both.

Figure 5.1 shows two plausible explanations for the the northern Australia coastline. By

default, the system fails to recognize Arnhem Land as the figure due to an earlier deletion of

the Joseph Bonaparte Gulf. The commitment to treat the Joseph Bonaparte Gulf as a part (as the

figure) on the background implies considering the neighboring part (with a considerably larger

scale) as the ground. Luckily, the reconstruction process still produces a prominent foreground

part, thanks to the explicit modeling of the transition—recall that the transitional region of a

part is typically also the body of a neighboring part candidate on the other side of the shape

boundary. However, the luck resulting from hiding our choice of the figure and the ground is

not reliable if any of the wrongly discriminated parts are manipulated, since any dynamics to

the parts reveals the figural assignment immediately [Barenholtz and Feldman, 2006].

5.3 Future work

Art is not what you see but what you make others see.

—Edger Degas

Edger Degas’s teaching and examples from cartographers and artists tell us that we do not

need to be too faithful in presenting the forms of shape components (recall the cartographer’s

drawing of the UK and Ireland shown in Figure 4.12(c), and the very exaggerated Sandy Hook

in the New Jersey map in Figure 4.7(e)). The abstracted depiction does not stop at merely

selectively showing or hiding parts of the shape description. Instead, it involves a wide range of

sophisticated manipulations and creative distortion of part forms in terms of a denotation system

[Willats, 1997, Part II] in order to present the shape structure in a most effective manner. Further

more, in terms of a drawing system [Willats, 1997, Part I], an artist should also accordingly

adjust the positions and orientations of these parts to accommodate the changes in their forms

and to maintain the overall coherence of the shape.

With a given set of parts, our current abstraction system does not necessarily render a shape

in its simplest form. This is because some parts can be further simplified. Curve fairing can

be used to remove non-critical corners provided that important ones are preserved; also, curvy
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Figure 5.2: (a) The map of Yangtze River Delta; (b) our mid-level abstraction; (c) a possible
depiction that abstracts the part of Yangtze Estuary; (d) intersection of different parts, which
necessitates the global adjustments of the positions and orientations of parts.

axial structures are often seen to be straightened out in cartographic practices. Figure 5.2 shows

a map of the Yangtze River Delta, which includes the metropolitan areas around Shanghai. The

entire Yangtze Estuary is treated as a single part. In our current abstraction system, we only

have two choices: either to consider the Yangtze Estuary an important part and include it in the

abstraction as in Figure 5.2(b), or to simply omit it1. In cartography, however, this part is often

depicted as an indentation with a much simpler axial structure. See Figure 5.2(c).

We call this kind of simplification of individual parts the “per-part” abstraction, which is

one possible perceptually driven part operation for shape generalization. We have already seen

other interesting part operations such as exaggeration, idealization, etc., all suggesting exciting

future work that enhances the function of the denotation system. However, it is not trivial to im-

plement the part operations. Topological consistency needs to be accounted for when geometric

operations are applied to the parts separately. Observe that in the example of Figure 5.2(c), the

Isle of Chongming, which also takes a simpler form, is nudged to the south slightly, and its

major axis becomes slightly more horizontal. If were not for this small adjustment, in the re-

sulting abstracted depiction the boundary of the island and the bank of the estuary would have

intersected with each other as in Figure 5.2(d).

Recall that our shape analysis has faced difficulties due to the lack of both reliable contour

grouping and symmetry measurements, and a general algorithm that computes the approximate

axial structure of a given shape. Our current solutions to these problems are temporary and

1 The second and third figures of 4.11(a) on page 117 adopted these two strategies respectively.
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heuristic. Further research in shape analysis, computational vision and perceptual science will

certainly improve the performance of systems like ours.
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bilateral filtering and its applications. In ACM SIGGRAPH 2008 classes, pages 1–50, 2008.

Anitha Pasupathy and Charles E. Connor. Population coding of shape in area v4. Natural

Neuroscience, 5(12):1332–1338, 2002.

M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. Guibas. Discovering structural regularity

in 3D geometry. ACM Transactions on Graphics, 27(3):#43, 1–11, 2008.

Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker. Matching hierarchical structures

using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21:1105–1120, 1998.

Mary A. Peterson and Bradley S. Gibson. Must figured-ground organization precede object

recognition? an assumption in peril. Psychological Science, 5(5):253–259, Sep. 1994.

Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon Rusinkiewicz, and Thomas

Funkhouser. A planar-reflective symmetry transform for 3D shapes. In SIGGRAPH ’06:

ACM SIGGRAPH 2006 Papers, pages 549–559, New York, NY, USA, 2006. ACM.

L. Prasad and R Rao. A geometric transform for shape feature extraction. In Proceedings of

SPIE, pages 222–233, 2000.



146

Lakshman Prasad. Morphological analysis of shapes. Technical Report CNLS Newsletter, No.

139, LALP-97-010-139, Center for Nonlinear Studies, T-DOT, Theoretical Division, Los

Alamos National Laboratory, July 1997.

Lakshman Prasad. Rectification of the chordal axis transform skeleton and criteria for shape

decomposition. Image and Vision Computing, 25(10):1557–1571, 2007.

Xiaofeng Ren, Charless C. Fowlkes, and Jitendra Malik. Figure/ground assignment in natural

images. In Proc. 9th Europ. Conf. Comput. Vision, volume 2, pages 614–627, 2006.

W. A. Richards and D. D. Hoffman. Codon constraints on closed 2D shapes. Computer Vision,

Graphics, and Image Processing, 31:156–177, 1985.

W. A. Richards, Jan J. Koenderink, and D. D. Hoffman. Inferring three-dimensional shapes

from two-dimensional silhouettes. Journal of Optical Society of America. A, 4(7):1168–

1175, 1987.

Arthur H. Robinson, Joel L. Morrison, Phillip C. Muehrcke, A. Jon Kimerling, and Stephen C.

Guptill. Elements of Cartography, 6th edition. Wiley, 1995.

Hillel Rom and Gerard Médioni. Hierarchical decomposition and axial shape description. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 15(10):973–981, 1993.

Joe Rosen. Symmetry discovered: concepts and applications in nature and science. Dover

Publications Inc., Mineola, NY, USA, 1998.

Joe Rosen. Symmetry Rules: How Science and Nature Are Founded on Symmetry. Springer,

Rockville, MD, USA, 2008.

Azriel Rosenfeld. Axial representations of shape. Computer Vision, Graphics, and Image

Processing, 33(2):156–173, 1986.

Paul L. Rosin. Shape partitioning by convexity. IEEE Trans. Systems, Man, and Cybernetics,

part A, 30:202–210, 1999.



147

Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. Exaggerated shading for depicting

shape and detail. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 1199–1205,

New York, NY, USA, 2006. ACM.

P. Saint-Marc, H. Rom, and G. Medioni. B-spline contour representation and symmetry detec-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1191–1197,

1993.

T. Sebastian, P. Klein, and B. Kimia. Recognition of shapes by editing shock graphs. Computer

Vision, IEEE International Conference on, 1:755, 2001.

T. Sebastian, P. Klein, and B. Kimia. On aligning curves. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(1):116–124, 2003.

J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

D. Shaked and A. M. Bruckstein. Pruning medial axes. Computer Vision and Image Under-

standing, 69:156–169, 1998.

K. Siddiqi and B. Kimia. Parts of visual form: Computational aspects. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(3):239–251, March 1995.

K. Siddiqi and B.B. Kimia. A shock grammar for recognition. IEEE CVPR, page 507, 1996.

K. Siddiqi, K. J. Tresness, and B. B. Kimia. Parts of visual form: computational aspects. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 17:239–251, 1995.

K. Siddiqi, K. J. Tresness, and B. B. Kimia. Parts of visual form: Psychophysical aspects.

Perception, 25:399–424, 1996.

Kaleem Siddiqi, Ali Shokoufandeh, Sven J. Dickinson, and Steven W. Zucker. Shock graphs

and shape matching. In ICCV ’98: Proceedings of the Sixth International Conference on

Computer Vision, page 222, Washington, DC, USA, 1998. IEEE Computer Society.

Kaleem Siddiqi, Benjamin B. Kimia, Allen Tannenbaum, and Steven W. Zucker. On the psy-

chophysics of the shape triangle. Vision Research, 41(9):1153–1178, 2001a.



148

Kaleem Siddiqi, Benjamin B. Kimia, Allen Tannenbaum, and Steven W. Zucker. On the psy-

chophysics of the shape triangle. Vision Research, 41:1153–1178, 2001b.

S. Siegel and N.J. Castellan. Nonparametric statistics for the behavioral sciences. McGraw–

Hill, Inc., second edition, 1988.

M. Singh and J. M. Fulvio. Visual extrapolation of contour geometry. Proceedings of the

National Academy of Sciences, USA, 102(3):939–944, 2005.

M. Singh and D. D. Hoffman. Completing visual contours: The relationship between relatabil-

ity and minimizing inflections. Perception and Psychophysics, 61:636–660, 1999.

M. Singh, G.D. Seyraninan, and D.D. Hoffman. Parsing silhouettes: The short-cut rule. Per-

ception and Psychophysics, (61):636–660, 1999.

D. M. Smith. Maximum likelihood estimation of the parameters of the beta binomial distribu-

tion. Applied Statistics, 32:196–204, 1983.

J. P. Snyder. Map Projections - A Working Manual. U.S. Geological Survey Profesional Paper

1395. U.S. Geological Survey, 1987.

Harold Speed. The Practice and Science of Drawing, chapter Vision, pages 43–46. Dover

Publications, 3 edition, June 1972.

Charles V. Stewart. Robust parameter estimation in computer vision. SIAM Reviews, 41:513–

537, 1999.

H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and re-

trieval. In SMI ’03: Proceedings of the Shape Modeling International 2003, page 130,

Washington, DC, USA, 2003. IEEE Computer Society.

Shigeko Takahashi. Aesthetic properties of pictorial perception. Psychological Review, 102(4):

671–683, 1995.

R.E. Tarone. Testing the goodness of fit of the binomial distribution. Biometrika, 66:585–590,

1979.



149

Joshua Charles Taylor. Nineteenth-century Theories of Art. University of California Press,

1987.

Hseyin Tek and Benjamin B. Kimia. Perceptual organization via the symmetry map and sym-

metry transforms. In In Proc. of CVPR, Forth Collins, pages 471–476, 1999.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV ’98: Pro-

ceedings of the Sixth International Conference on Computer Vision, page 839, Washington,

DC, USA, 1998. IEEE Computer Society.

R.M. Tookey and A.A. Ball. The mathematics of surfaces VII, Information Geometers, chapter

Estimation of curvatures from point data, pages 131–144. Winchester, 1997.

K. Tsunoda, Y. Yamane, M. Nishizaki, and M. Tanifuji. Complex objects are represented

in macaque inferotemporal cortex by the combination of feature columns. Nature Neuro-

science, 4:832–838, 2001.

P.M. van der Poorten and Christopher B. Jones. Characterisation and generalisation of carto-

graphic lines using delaunay triangulation. International Journal of Geographical Informa-

tion science, (8):773–794, 2002.
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