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ABSTRACT OF THE DISSERTATION

Three Theoretical Studies of Ferroelectric Materials in Diferent

Geometries

By LUCIA P ALOV A
Dissertation Director:

Professor Premala Chandra

Using a combination of numerical and analytical technigu@sesent characterizations of fer-
roelectric materials in bulk, thin-film and nanostructumometries. My results have impact on
ongoing research and on design for nanodevices.

Size-dependent effects in ferroelectrics are importaettduheir long-range electrostatic inter-
actions; thus their dielectric properties depend on edewtchanical boundary conditions. In my
first study, | address the effects of strain on the measurmgkepties of thin-film (TF) ferroelectrics.
It has been suggested that the observed suppression of nradigl€ctric characteristics implies
underlying strain gradients in the film. | show that the saffifieces can be explained by a simpler
model with homogeneous strain, and | suggest a “smoking ganthtop probe.

The quantum paraelectric-ferroelectric transition (QPBThe topic of my second study. Using
methods including finite-size scaling and self-consis@atissian theory, | calculate the classical-
guantum crossover in the dielectric susceptbility and #seilting temperature-pressure phase di-
agram; comparison with current experiment is excellent @nedlictions are made for future mea-
surements. Here, temperature can be considered a “finiteeffiet” in time, and previous results on
the QPFT using diagrammatic technigues are recovered dadded using this approach.

Recent synthesis of artificially structured oxides withéckerboard” patterning at the nanoscale



has been reported, and this serves as motivation for my #tirdy. Here, | use first-principles

methods to characterize an atomic-scale Bif-8IMnO3; nanocheckerboard, and find that it has
properties that are distinctive from those of either pacembpound. More specifically, it has both a
spontaneous polarization and magnetization, and alstaglssp magnetostructural effect. My work
on this prototypical multiferroic nanocheckerboard matas further theoretical and experimental

studies of new heterostructures with properties that anengérically induced.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 A Brief History of Ferroelectrics

Ferroelectricity was first observed in two water-solublgstals, Rochelle salt (sodium potassium
tartrate tetrahydrate) and KDP (potassium dihydrogenpitete) [1, 2]. However, it took more than
twenty years for a new class of much simpler materials, kiter oxides, to be discovered [3].
Though there were early theoretical studies on the Rockalle[4], the discovery of these sim-
ple perovskite ferroelectrics has led to much progress derstanding the physics underlying the

observed experimental phenomena. [see Fig. 1.3] [5-7].

The first studied ferroelectric perovskite is now well knoBaiTiOs [8, 9] [see Sec. 1.2.3]. After
its discovery, many new ferroelectrics have been studiatjihg to deeper understanding of their
properties. A breakthrough was made with the developmetthefoft mode description of the
ferroelectric transition [10, 11]. Today, we use the pheanatogical Landau-Ginzburg theory with
symmetry considerations placed on the order parameteairjpation] to describe phase transitions
in ferroelectrics [12, 13] [see Sec. 1.2.4]. After an era olklperovskites, miniaturization took
place, and thin ferroelectric films [14, 15] and later pekitesoxide superlattices [16—26] were in-
troduced. The goal is now to design new materials with beti@perties, such as higher polarization
or critical temperature values, than those found in natlioglay, a triumph of ferroelectric materi-
als is in their wide functionality, with important applidahs that include sonar, medical ultrasound,

ferroelectric random access memories (FERAMS), and evips aiside ski passes.



1.1.2 Ferroelectric Applications

Ferroelectric random access memory (FeERAM) is a promigapdj@ation of ferroelectric materials.
FeRAM is non-volatile as it retains stored information eweimen not powered. This is a very
useful property because information is automaticallyestorvithout pressing a “save” button. For
example, non-volatile competing Flash memories are ctiyresed in digital cameras. In contrast
to Flash memories, FeERAM'’s advantages are its lower powsswaption, faster write performance
and a greater maximum number of write-erase cycles [27, &].why don't we use FERAM
memories instead of Flash memories in our digital cameras @ the big problems is that the
existing FeERAMs have lower storage density than their Ftaghterparts. To increase the amount
of information stored per unit of area, we need to go to smalbales, and this is exactly where
basic research comes into play. It concentrates on quegiiteted to nanoscales: What happens to
electric properties when we go to smaller sizes? Is theraldfgyence in ferroelectric film vs. bulk
behavior?

The answer is that there is a huge difference between bulldiectric properties and those
of thin ferroelectric films. This is due to the fact that theatomechanical boundary conditions
are very important at small scales because of the underdgimgtrange electrostatic interactions in
ferroelectrics, in contrast to short-range [Heisenbepi} steractions in ferromagnets. Of course,
when one starts to talk about boundary conditions, it is i to know details associated with
the ferroelectric film. How is the film fabricated? What andendn are the electric contacts? It
turns out that most of the films are epitaxially grown on sigiss, and the choice of the substrate
influences the dielectric properties of a ferroelectric flhot. For example, a material that displays
no bulk ferroelectric behavior may be ferroelectric as a thin grown on a specific substrate [15].
Similarly, the choice of metalic contacts matters, and e Ito suppression of the ferroelectric
signal [switchable polarization, see Sec. 1.2.1] due toldejzation effects [29].

Ferroelectric materials have the ability to generate actidesignal upon deformation. This so
called piezoelectric property [see Eq. (1.9)] is in fact wmakes these materials so useful. From

a guitar pickup to a piezoelectric motor, the mechanicatgnis converted to an electric signal, or



vice versa. For example in a piezoelectric microscope, igmoplectric crystal is used to finely tune
changes in position with an electric signal. In sonar, thenddor pressure variations] is detected
and generated using an electric signal. Similarly, motiba daby in the uterus is detected by

medical ultrasound devices.

The technologically most important ferroelectric, andzpiglectric nowadays is PbZr,. Ti, O
(PZT). Its advantage lies in large values of its spontangumligrization and its piezoelectric co-
eifficient that are important for good signal readout andciffit electromechanical conversion,
respectively. PZT also displays reliably constant behrawwer a wide temperature range; this char-
acteristic is connected to its morphotropic, temperatudependent, phase boundary between two
structural phases at abaut= 50% of Ti concentration. Unfortunately, because PZT contaéasl )
an environmentally unfriendly element, much current redefocuses on identifying and design-

ming lead-free ferroelectrics with comparable properties

1.1.3 Ferroelectrics in Solid State Theories

The reason why we study ferroelectrics is not only becaugheaif wide range of technological

applications, but also because these materials turn o teséful examples of systems, for which
simple theoretical descriptions work very well. One suokotly is a phenomenological Landau
[or Landau-Ginzburg] theory of phase transitions. Thisotlids based on describing the system
by the order parameter, polarization in this case, thatstéke account symmetries of the studied
phases. Although Landau theory is usually connected wéldtgscription of magnetic transitions

in most of the textbooks, it actually works much better forgedectric-ferroelectric transitions [see
Sec. 1.2.4]. In essence, the Landau theory is a mean fieldytiBaerefore it works well when the

coordination number [number of nearest neighbours] is.higtis can be achieved either by large
dimensionality of the system, or by long-range interactjahe presence of Coulomb interactions
in ferroelectrics leads to the fact that Landau theory imbdt in these systems for a temperature

window close to the ferroelectric-paralectric phase fitams [13]



Another reason why ferroelectric materials have been atuBcently is because of their con-
nection to quantum criticality. Because ferroelectricenals are insulating systems [see Sec. 1.2.1],
there are no free charges and thus no electronic dissipaBeoause there is limited disorder and
no other competing fixed points in these materials, theylaysgery simple behavior close to their
guantum critical point at low temperatures and high press{see Sec. 1.3.2 and Chapter 3]. Fur-
thermore, unlike magnetic systems, they can be studiedvbaloor just above their upper critical
dimension. Finally, another advantage of these quantutcalrsystems is that the theory can be

directly compared to ongoing experiment [30-32].

1.1.4 Multiferroics

Multiferroics are materials where electric and magnetirristimes also elastic] properties are com-
bined in a single phase material. Just as ferroelectricnatgere used for ferroelectric memories,
current research concentrates on questions related tdbj@ossultiferroic memories. A memory
element made of a multiferroic material can be in one of fasgble states [instead of two in a
traditional memory element], which means that twice as maofdrmation can be stored per cell.
Another advantage of multiferroic memories lies in thaythepport fast low-power electrical write
and non-destructive magnetic read operation. This woultbve the disadvantage of the destructive
read process currently associated with ferroelectric mes33, 34]. However, to implement such
memory one needs a material whose magnetic state can beechbypgpplying an electric field or
vice versa, a material with a high value of the so called maghectric coupling. Of course, for a
multiferroic memory to be used technologically, one alsedsea material with room temperature

ferroelectric and ferromagnetic behavior.

In general, it is difficult to find a room temperature singleape multiferroic with large mag-
netoelectric coupling. This is mostly because differeitedn need to be fulfilled in order for a
material to be both, a ferroelectric and a ferromagnet. 8ndkversion symmetry needs to be satis-
fied in the case of ferroelectrics [see Sec. 1.2.1], whenedeh time-reversal symmetry in the case

of ferromagnets [35]. Ferroelectrics are insulators [wendbwant any free carriers, but electric



dipoles], whereas ferromagnets are usually metals [asxEmple iron], where spins of electrons
of partially filled d shells magnetically order [33, 36]. Semmaterials do exhibit ferroelectricity
and ferromagnetism simultaneously in spite of these @itdaut they either have a weak magne-
toelectric coupling [for example, BiFeQsee Sec. 1.2.3], or their critical temperatures, or atectr
polarizations are very lowy 10K and~ 10~2uC/em?, respectively] [33, 37]. Because it is dif-
ficult to find a single phase multiferroic, current reseanso @oncentrates on questions related to

artificial design of new multiferroic materials.

1.2 Overview of Ferrolectrics

1.2.1 Ferroelectric

Let us now properly define a ferroelectric material (feregéiic). A ferroelectric is an insulating
system with two or more discrete stable [or metastablegstat different nonzero electric polar-
ization in zero applied electric field, referred to as “spm@ous” polarization. For a system to be
considered ferroelectric, it must be possible to switchveen these states with an applied electric
field, which changes the relative energy of the states tlrdlig coupling of the field to the polar-
ization—E - P [38]. A typical dependence of energy on the spontaneousipaten is shown in
Fig. 1.1, where the ferroelectric undergoes a phase tramgiiom a paraelectric [non-polar] high

temperature to a ferroelectric [polar] low temperaturesghat a critical temperatufi.

An essential property of a ferroelectric is that it is chéedzed by a hysteresis loop, that is,
the dependence of the electric polarization on an appliectré field, Fig. 1.2. When an electric
field is first applied, the ferroelectric becomes polarizegaioping a finite value of the electric
polarization, and it stays polarized having a nonzero spwuus polarization value even when
the field is turned off. The latter feature distinguishes raokdectric and a paraelectric, in which
polarization scales linearly with an applied electric fieddd vanishes when the field is turned off.
Switching between two spontaneous polarization stateddrralectric is achieved by inverting the

sign of the applied electric field, as is shown in Fig. 1.2. sThivitching property between “up”



Energy

T>T
‘ Polarization
T< Tc
Polarization
“down” “up”

Figure 1.1: Energy versus “spontaneous” polarization é&aied above and below critical temper-
ature7,.. Two minima in the energy for two distinct spontaneous paédion [‘up” and “down’]
states form below ., whereas the polarization is zero abdvdsee Fig. 1.5]. Electric field switches
between the “up” and “down” ferroelectric states [see Fig].1

and “down” polarization states [see Figs. 1.1 and 1.2] hasetli out to be useful for encoding

information as “0” and “1” states in the ferroelectric randaccess memory (FERAM).

The electric polarizatiorj3 is usually defined for a finite system as the electric dipolenmat

per volumeV, where the dipole moment is obtained from the charge depsity
ﬁ—l/dﬁ? () (1.1)
=V p(r). .

However, it has been discussed that Eq. (1.1) is not a usaflldefinition of the polarization

in a finite crystal due to possible redistribution of surfabarges, nor is it a useful definition for



“down”

Figure 1.2: Ferroelectric hysteresis loop. PolarizatiBh dependence on the applied electric field
(E). When electric field is first applied, the ferroelectric eré&l becomes polarized, and it stays
polarized even when the field is turned off. Switching betwi®o spontaneous polarization “up”
and “down” states is achieved by inverting the sign of thdiedgelectric field.

calculations on infinite ferroelectric crystals with petioboundary conditions. The “modern theory
of polarization” provides another way how to defife and its advantage lies in connecting the

definition of polarization directly to what is measured expentally [39, 40],

Aﬁ:/dt

Here, the polarization is expressed as an integrated ¢udesrsity, and is directly connected to the

1
d7j (7. 1). 1.2
‘/;ell /cell j( ) ( )

electrical and optical means of measuring polarizationtiddahat only difference in the electric
poIarizationA15 is defined via Eq. (1.2). This is exactly half of the differeretween the two spon-
taneous polarization [‘up” and “down”] states that is obtad experimentally from, for example,

the hysteresis loop measurements [see Fig. 1.2].



1.2.2 Multiferroic

Next, we define a ferromagnet, ferroelastic, and finally atifieafoic material (multiferroic). A
ferromagnet is a material where, similarly to a ferroeiegcswitching between two or more spon-
taneous magnetization states is achieved by applying aetiadield. A ferroelastic exhibits spon-
taneous strain. A multiferroic is a material in which two dirthree of ferroelectricity, ferromag-
netism and ferroelasticity occur in the same phase [33,We&]will be mostly interested in so called
magnetoelectric multiferroics [multiferroics from now]dhat exhibit spontaneous polarization and

spontaneous magnetization simultaneously.

1.2.3 Perovskites

Figure 1.3: Ideal cubic perovskite structure [space gromgrR]: A site cations occupy corners of
the cube, while typically smalleB site cations occupy center of the cube. Six oxygérferm an
octahedron around thB site cation [shown by dashed lines].

Typical examples of ferroelectric, and also multiferroiaterials are perovskite oxides. This
is a very large family of composition AB{Jsee Fig. 1.3], wherel and B each represent a cation
element or mixture of two or more such elements or vacanaisswill see that choosing a mag-

netic B site cation leads to a possibility of an antiferromagnditicar ferromagnetically ordered



perovskite, and in general the combined ferroelectric andmatic properties can lead to a multi-
ferroic perovskite-based system [see Chapter 4]. In tlismse we describe electric and magnetic
properties of a few bulk perovskites that we study in moreiitl@t the form of either bulk [see

Chapters 3 and 4], thin film [see Chapter 2], or superlatsee [Chapter 4] in the next Chapters.

Before we describe individual systems, let us first point teseful quantity, the Goldschmidt

tolerance factor,

. A+ TO
V2(rp +ro)’

a.3)
wherer 4, rg andrp are ionic radii ofA, B cations and) anion, respectively. Goldschmidt has
shown that the perovskite structure is formed when 1. In general, whert > 1, the B atom
is small and the structure develops a small polar distartaenin BaTiQ. Whent < 1, the A

atom is small, and the oxygens move towards the “empty” spack that the corner-shared oxygen

octahedra rotate, as in SrTyor BiFeQ; [38].

Figure 1.4: Common structural distortions of the cubic pskde cell [of a BiFe(Mn)Q system,
see Chapter 4]. (a) Polar distortion with relative shift ofadd Fe/Mn cations with respect to O
anions along the-axis [I'; (2)], (b) + (in-phase) rotations of the oxygen octahedra [dashed]lines
about thez-axis [M; (2)], (c) — (out-of-phase) rotations of the oxygen octahedra [dasimes]|
about thez-axis [R] (2)].

Recently, Stokes has classified three typical unstabletstal distortions of the ideal cubic
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perovskites [42]: (i) polar distortion of cations with regp to anions that leads to an electric dipole
moment and to the electric polarization, and two non-podéational distortions (iiH rotations
of the oxygen octahedra, that is all rotations about a gives are in phase, or (iii}- rotations
of the oxygen octahedra, that is sense of rotations alesralong the rotation axis, as is sketched
in Fig. 1.4. By freezing in these modes, or combinations eséhmodes, we generate various

perovskite structures that correspond to different stinattspace groups.

BaTi03

Cubic phase P P

Figure 1.5: Crystal structure of the perovskite ferrogledaTiOs;. (A) High temperature, para-
electric, cubic phase Psm. (B and C) Room temperature, ferroelectric, tetragonahi4hases.
Displacing Ti cation with respect to O anions leads to a nomeéectric dipole moment and breaks
the inversion symmetry of the cubic phase. Two symmetrywadgit “up” and “down” polarization
variants are shown. The atomic displacements are scalezldleérly visible [18].

Barium titanate (BaTi@) is a typical ferroelectric perovskite. It has a paraeleatubic per-
ovskite structure [PBm] at high temperatures, and it undergoes a series of prasstions: first
to a ferroelectric tetragonal P4mm phase [generated by pgléz) mode] at 393 K [as shown in
Fig. 1.5], then to a ferroelectric orthorhombic Amm2 phagenierated by polalr;, ([110]) mode]
at 278 K, and finally to a ferroelectric rhombohedral R3m ghrenerated by polar; ([111])
mode] at 183 K, see Fig. 1.6. The first transition is of a secomttr, while the latter two are

first order transitions [see Sec. 1.2.4]. A phenomenoldgicder-disorder model best describes
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the sequence of these phase transitions as follows. As wadgirmentioned above, because the
B cation (Ti) is small { > 1, see Eq.(1.3)], it always displaces towards the “emptytepalong
one of the cube diagonals. At high temperature, all pos$ilil&] directions are allowed, therefore
the averaged displacement is zero [paraelectri@Rmphase]. At low temperature, the displace-
ments all adopt either the same orientation [giving the ibhainedral R3m symmetry], or two, or
four preferred [111] directions [giving the orthorhombien®n2, or tetragonal P4Amm symmetry,

respectively] [38, 36].

Spontaneous polarization arises from breaking inversiamsetry of the cubic perovskite para-
electric phase. This is done by displacing the Ti cation wétpect to O anions, which leads to a
nonzero electric dipole moment. The displacement is alddd ]} [110], or [001] direction in
the ferroelectric R3m, Ammz2, or P4Amm BaE@hase, with values of polarizations satisfying the
V3 : /2 : 1ratio, respectively [36, 38]. For example, the polarizaio the tetragonal ferroelectric
phase is abow7uC/cm?. Here, the Ti cation displaces either “upwards” or “downsedrwith
respect to the oxygen anions, leading to two polarizatipnor Py, Symmetry equivalent states,
Fig. 1.5. As we discussed already in Sec. 1.2.1, it is passibswitch between these two states by

applying an electric field.

SrTiO3 and KTaO3

Strontium titanate (SrTig) is an “incipient ferroelectric” [43]. It remains paraelgéc down to zero
temperatures, but it lies close to a paraelectric-feratgtetransition as we describe in Sec. 1.3.2
[see Fig. 1.12], and in Chapter 3. First principles caléofet show that quantum fluctuations sup-
press the ferroelectricity in SrTi{d44—-46]. SrTiQ [t < 1, see Eq.(1.3)] undergoes a structural
phase transition from the paraelectric cubicImto the paraelectric tetragonal 14/mcm phase at
about 110 K [47], where the oxygen octahedra rotate arourtdsian axis in an antiferrodistortive
R (2) mode.

Potassium tantalate (KTais also an “incipient ferroelectric”. It does not undergty atruc-

tural transition, and it remains cubic paraelectric 3mdown to low temperatures [48]. As we
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discuss in Chapter 3, KTa{lies deeper in the paraelectric phase than SgTi&hd away from

the quantum paraelectric-ferroelectric transition, lseaits zero temperature dielectric constant is

much lower than the dielectric constant in Sr¥ifa3, 49].
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Figure 1.6: Critical temperature vs. concentration phaagrdm of Sy_,Ba,TiO3, deduced from

the x-ray and neutron-diffraction studies [50].

Another possibility how to create a new perovskite systeto isubstitute A, or B site cation.

For example, the isoelectronic A site substitution of Bay SP* results in BaSr,_, TiO3 (BST),

Fig. 1.6. As more Sr is introduced, the ferroelectric traositemperatures are lowered, and the

value of the spontaneous polarization decreases insidefeaoelectric phase [50].
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BiFeOs

Bismuth ferrite (BiFe@Q) is a room temperature ferroelectric, and a promising keael-material for
room temperature electronic applications [51]. The spwedas polarization of BiFeQis large,
about60 — 100uC /em? [Refs. [52-56]], and is comparable to the polarization @ widely used

and technologically important ferroelectric PZT.

Figure 1.7: Ground state structure of R3c BigeQounter-rotations of the oxygen octahedra
[R; ([111])] and polar ionic displacementE [ ([111])] are along the body diagonal [111] axis [56].

We show the ground state structure of BiRe® Fig. 1.7. It has rhombohedral R3c symme-
try, where the oxygen octahedra rotate alternatively slass and couterclockwise along the body
diagonal [111] direction [rotationak} ([111]) mode], and where Bi- and Fé* cations displace
with respect to @~ anions in the structure along the [111] direction [pdlar([111]) mode]. Again,
because the Goldschmidt tolerance factet 1 [see Eq.(1.3], the oxygen octahedra rotations are
favored. The polar mode is responsible for ferroelectricavéor of BiFeQ, and for the onset of
spontaneous polarization that accordingly points alomghthdy diagonal [111] direction. Ferro-
electricity in BiFeQ has a different origin than that of BaTiQsee Sec. 1.2.3] [36]. It is driven by
stereochemically lone-pair-active “Bi cations that off-center toward neighboring oxygen anions,

and this off-centering is stabilized by a covalent bond fation between Bi and O [57].



14

a)

O
S

900

E
800 }
700 }
600 |

o 5001

= 400

Temperature (°C)

300

200

100 0 .
i T 1360 1356  1.352  1.348
BFeO, 01 02 03 04 Average ionic radius (A)

o
Substitution Fraction of NdFeO,

BiFe03 RE substitution

Figure 1.8: (a) Critical temperature vs. NdFRe€ncentration phase diagram of,BiNd,FeOG:;.
Solid lines correspond to the structural phase transitisere R refers to the rhombohedral R3c,
and O1 and O2 refer to the GdFe@pe Pnma and PbZr2type Pbam structures, respectively [61].
Notice that pure BiFe@undergoes a transition from the R3c to Pnma phase at 1100 Rr¢bosed
phase diagram for rare-earth (RE) substituted Bik;e®);, ,RE,FeQ;. The black line represents
the structural phase boundary between the rhombohedraliRBue) and the orthorhombic Pnma
(in green) structural phases. At lower temperature sideregion in light blue corresponds to the
coexistence of R3c and Pbam phases. Double hysteresis ébw@wibr (in dark green) is observed
close to the structural transition [60].

BiFeO; undergoes a phase transition from the ferroelectric rhdrath@l R3c to a paraelectric
orthorhombic Pnma phase at Curie temperature 1100 K [58].pHnaelectric Pnma phase is also a
high pressure phase of BiFg{®9]. We show that Pnma lies very close, othlneV per perovskite
cell, above the R3c ground state of BiRe{®0]. Therefore, perturbations such as the external
pressure, or a rare-earth [RE=SmGd*, Dy?*, Nd®*] A site isoelectronic substitution on place

of Bi** in Bi;_,RE,FeQ; are enough to stabilize this phase, Fig. 1.8.

In Bi;_,RE.FeQ;, the substitution of smaller RE cation on place of Bi catieauits in sup-

pression of ferroelectricity [which is driven by the stezkemically active Bit], and because the
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Goldschmidt tolerance factor [see Eq.(1.3)] decreasess fispace” is given to the oxygen octahe-
dra to rotate in a new rotational; ([110]) and M3 ([001]) (Pnma) pattern [62]. Double hysteresis
loops are observed in Bi,RE.FeQ; close to the R3c-Pnma transition [see dark green region in
Fig. 1.8 (b)]. We recognize that this behavior is due to aotakefield-induced transition between
the paraelectric Pnma and ferroelectric R3c phases, rHthararising from true antiferroelectric
character of Bi_,RE,.FeG;. Finally, because the R3c-Pnma phase transition is of thedider,
structural changes at the transition are accompanied ImMailgie of the piezoelectric coefficient of

Bi,_,RE.Fe(;, which becomes comparable to the technologically used BA[ [

In BiFeQ;, ferroelectricity and magnetism coexist at room tempeeatlBulk BiFeQ has a
G-(rocksalt)-type antiferromagnetic (AFM) ordering oetRe magnetic moments. In addition, a
spiral spin structure with incommensurate long-wavelemigriod of~ 6204 is superimposed on
this magnetic ordering [63]. Its Neel temperature is 643 &][6t has been shown that a net mag-
netization arises from the Dzyaloshinskii-Moriya-type [®6] weak ferromagnetism [67], where
the spin-orbit coupling plays a crucial role in that it fosdbe Fe magnetic moments to cant, which
results in a small net magnetization value. Such small magten has been indeed measured
in BiFeG; thin films, where the spiral spin structure is suppressedtalilee presence of the sub-
strate [54]. BiFe@is therefore known as a room temperature multiferroic. Bseats ferroelectric
behavior originates from the Bi-O interaction, and the n&ignordering and magnetization from

the Fe magnetic moments, its magnetoelectric coupling kW&o, 68].

BiMnO 3

Bulk bismuth manganite (BiMng) has a Goldschmidt tolerance factox 1 [see Eq. (1.3)] close

to BiFeQ;, because of the similarity between the Fe and Mn transitietals, and therefore favors
oxygen octahedra rotations. However, because Mn is Jalter-Betive, the structure becomes
highly distorted [36, 69, 70]. BiMn@has centrosymmetric monoclinic structure with the space
group C2/c [71, 72], and thus zero spontaneous polarizgiith We mention that there have been

several experiments on BiMnQand some of them show ferroelectric hysteresis loops [@3],
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Figure 1.9: Temperature variation of magnetizatidrand inverse of molar magnetic susceptibility
Xmor Of BIMNO3 measured at 1T [75].

optical second-harmonic generation [74]. Therefore hfermeasurements are encouraged in order
to justify the BiMnGQ; ground state. BiMn@is also known as a ferromagnet with Curie temperature

105 K, and with a low tepmerature magnetic monte6j.z per Mn [75-78], Fig. 1.9.

1.2.4 Phase Transitions - Landau Theory

We mentioned that a ferroelectric undergoes a phase ti@ngibm the ferroelectric phase with
nonzero spontaneous polarization to a paraelectric ph#kezero spontaneous polarization at a
critical temperaturd’,, see Fig. 1.1. Similarly, a phase transition occurs betvileeferromagnetic
[or antiferromagnetic] and paramagnetic phase, and weisksd examples of these transitions in
perovskites in Sec. 1.2.3. Here, we use phenomenologigaddiatheory to describe these phase
transitions, and we focus our attention on the ferroelegaraelectric transitions. Similar results
can be obtained for magnetic transitions, and we refer théareto find details of these derivations
elsewhere [13, 79].

The basic idea of Landau theory is that the free energy carressed as a series expansion of

polarization [the order parameter] close to the phaseitians In addition, symmetry constraints
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are postulated on the expansion. In particular, we wantrid® énergy to be invariant under the
inversion symmetryP — — P. Because the two symmetry equivaléh{“up”) and — P (“down”)
states have the same energy [see Fig. 1.1], we allow only tvers in the power series of the
polarization,

1 1 1
G(P) = 5azﬂ + ZbP‘1 + 6cP6 — EP. (1.4)

Here, we truncate the power series at the sixth term, andshésrm is the coupling energy between
electric field and polarizationE - P, introduced in Sec. 1.2.1. For simplicity, we assume bulk
ferroelectric with spatially uniform polarization [a mahemain sample]. We note that we choose

the origin of the free energy for the free unpolarized, waisad crystal to be zero.

The condition for finding the system in its equilibrium st&é%\”) — (. This condition leads
to an equation for the spontaneous polarizatioR, + bP3 + ¢cP®> = E. In most ferroelectrics,
the linear dielectric susceptibility, defined as= 22 is observed to follow the Curie-Weiss

OE | P=0’

behavior at reasonably high temperatures [see Fig. 1.9] [79

(1.5)

From Eg. (1.4) and Eq. (1.5), we find that= é and the temperature dependent coefficient in the

expansion of the free energy(P) = G(P,T), a, vanishes at the phase boundar{at T,

a ~ T—T(). (16)

Let us now distinguish two types of transitions: a first-orftiscontinous) and a second-order
(continous) phase transition. A first-order transitiordie#o a finite jump in the dielectric suscepti-
bility and the spontaneous polarization at the ferroeleg@araelectric phase boundaryiat# Ty.

It is also accompanied by a finite change in the volume betvileerferroelectric and paraelec-
tric phase, and by a latent heat. In a second-order phasstiman the spontaneous polarization

smoothly decreases until it vanishes at the critical teatpeeT,. = T,, where also the dielectric
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susceptibility diverges [see Eq. (1.5)]. It is conveniemuse the sign of the Landau coefficiént
to distinguish the order of the phase transition: it can mvshthatb < 0 corresponds to the first,

while b > 0 corresponds to the second order phase transition.

There are also two types of transitions in ferroelectricdisplacive, and an order-disorder type
of transition. The latter has been already described in 2c3 on the example of ferroelectric
BaTiOs, where the spontaneous polarization always exists, bua hasdom orientation above the
critical temperaturd’,. resulting in zero net polarization. On the contrary, theapgahtion, and the
displacements of ions that contribute to the polarizattampletely vanish abovg. in a displacive

ferroelectric, such as, for example, in strained Sgli€ee Sec. 1.3.1, or Chapters 2 and 3].

Finally, let us discuss when the Landau theory breaks dowon-tiform charge distribution
in a ferroelectric leads to a spatially dependent poladaﬁ(F), and in general to a ferroelectric
domain structure. Therefore to fully describe a paragte@trroelectric transition, one has to allow
spatial fluctuations of the order parameter, polarizatwnich lead to an additional Ginzburg term
in the free energy [Eq. (1.4)[Fg ~ fddF(VP(F))Z. However, when the fluctuations of the
polarization become too large, and comparable to the paldon value itself, the Landau mean
field theory breaks down. This criterion is known as the Gumglzriterion, and one can show that
the Landau-Ginzburg theory is valid for systems sittingwaihieir upper critical dimensiow, > 4.
We will see in Chapter 3 that this is the case of bulk quanturagdactrics [see Sec. 1.3.2] that sit

close to their quantum paraelectric-ferroelectric trimsiat very low temperatures.

Ford = 3, the Ginzburg [or Levanyuk-Ginzburg] criterion can be verit in the form

1 T—Tp
A <<
(AC,)? €8 | Ty

, (1.7)

where AC, is the change in the specific heat at the phase transitlor, 1 is a constant, ang,
is the range of polarization-polarization interaction,iethis typically large in ferroelectrics. This
criterion is therefore satisfied over a broad temperaturgaaand the Landau [or Landau-Ginzburg]

theory works well in the vicinity of the paraelectric-feelectric transition [13].
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1.3 Discussion of Thesis Topics

1.3.1 Challenge of Ferroelectric Films
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Figure 1.10: (left) Expected,. of (001) BaTiG, under biaxial in-plane strair (), based on thermo-
dynamic analysis. The green region represents the range @@rs) in the predicted, resulting
from the spread in reported property coefficients for BaTiaat enter into the thermodynamic anal-
ysis. The data points show the observedndT, values of coherent BaTigfilms grown by molec-
ular beam epitaxy (MBE) on GdSg@blue circle) and DySc®(red circle) substrates and by pulsed
laser deposition (PLD) on GdSg@blue square) and DyS¢(red square) substrates [14]. (right)
Expected shift iril,. of (100) SrTiG; with biaxial in-plane strain, based on thermodynamic analy
sis. The arrows indicate the predicted direction of the qed¢ion for strained SrTiQ in-plane for
biaxial tensile strain and out-of-plane for biaxial conggige strain. The, values for SrTiQ fully
constrained (commensurate) to the lattice constants &lQg)g.29 X (SrAlg 5Tag 503)0.71 (LSAT)
and (110) DySc@substrates are indicated by the positions of the correspgraarows. The cross
shows the observed. shift of a 500A-thick SrTiO; film epitaxially grown on (110) DySc[15].

Ferroelectric films can show tremendously different betvathan bulk. We illustrate this dif-
ference on two ferroelectric BaTiGand SrTiQ thin films grown on different substrates [GdSO
DyScG;, or (LaAlOs3)g.29 X (SrAlg 5 Tag 503)0.71 (LSAT)] in Fig. 1.10. The temperature axis in the
figure denotes the critical temperatdfie which dramatically raises by several hundreds of degrees
when the films are strained [14, 15]. Notice that even though 8rTiO; is paraelectric down to
zero temperatures [see Sec. 1.2.3], SgTilin film grown on DyScQ displays room temperature

ferroelectricity [15].
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Figure 1.11: Schematic of a ferroelectric thin film (unitlpebpitaxially grown on a substrate with
in-plane lattice constantsg andb, respectively. The film stretches in the in-plane direcsorthat
its lattice constant matches to the substrate and createsptame [tensile] straim,, while it relaxes
its out-of-plane lattice constant.

In order to understand this effect, we need to look at the mrgchl boundary conditions pos-
tulated by the substrate. In particular, the in-plane stthat acts on the ferroelectric thin film
[horizontal axis in Fig. 1.10] arises from a lattice misniatzetween the film and the substrate.
Schematically, this situation is sketched in Fig. 1.11, rehile film in-plane lattice constant
is smaller than the lattice constahbf the substrate. The film has a tendency to stretch so that
its lattice constant matches the lattice constant of thetsaie, while it relaxes in the out-of-plane
direction. Value of the misfit bi-axial in-plane strain iethexpressed as

b—a()
b Y

(1.8)

€s =

wheree; > 0 corresponds to a tensile, while < 0 corresponds to a compressive strain. We use

Landau theory in Chapter 2 to show that the critical tempegaihdeed raises with strain.

Very thin films have a tendency to be strained uniformly by kastec deformation, while thick
films relax the strain by forming dislocations, and the sttz@comes zero in the bulk limit far from
the substrate [80]. We address the question of how misfiichsions are distributed within the film

in Chapter 2, where we compare a segregated strain modeinisgfh dislocations residing in a thin
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buffer layer close to the substrate and the rest of the filmdgmmeously strained, with a model
where uniform distribution of the dislocations leads to mmomogeneous strain in the film [81].

The effect of strain on polarizatioﬁ is encorporated in the piezoelectric couplifg,,

: (1.9)

where{i, j, k} € {z,y,z}, and the strain tensar;, = 1 (2%‘ + g—%) is defined as by how the

displacement of a point in the solid varies with positioi We note thak,, = ¢,, = ¢, in EQ.
(1.8).
Similarly, a flexoelectric coupling tensar between the strain gradient and polarization can be

introduced in inhomogenously strained films [81, 82],
_ Z y J . .
P = pijr 9 (1.10)

The flexoelectric effect was depicted to be responsibleriart@served broadening and suppres-
sion of the dielectric susceptibility in thin ferroelectfilms [81]. We note that the dielectric suscep-
tibility diverges at the paraelectric-ferroelectric phdmundary in a second order phase transition
of a bulk, and therefore understanding this dramatic chamfjee characteristic dielectric behavior
is necessary for any potential thin film ferroelectric apaiions. In fact, this critical observation
motivates our research in Chapter 2, where we discuss possilgin of the broadening and sup-
pression of many thin-film characteristics. We show thas¢haebserved effects can be explained by
a simpler model with homogeneous strain in the majority effim, and our work suggests that
further benchtop experiments beyond dielectric measuntstaee necessary to determine the nature

of the underlying strain. We predict a “smoking gun” protbimtest our model.

1.3.2 Ferroelectrics as a Way to Study Quantum Critical Behwaior

The Curie-Weiss law [Eq. (1.5)] has been observed to breaskndat very low temperatures in

some perovskites, for example in BaFiCBrTiO;, 1#0O-substituted SrTig) or KTaO;, where the
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temperature dependence of the dielectric constant [ovalgumily the dielectric susceptibility] be-
comes inversely proportional to temperature squared réitla@ having linear temperature depen-
dence [30, 32, 83, 84]. We show in Chapter 3 that this changeesdrom quantum fluctuations of
the polarization at low temperatures where quantum efieetsl to be incorporated, and therefore

the classical Landau-Ginzburg description breaks down.

In other words, the main difference is that a ferroelectti@ guantum critical point at zero
temperature possesses fluctuations of the polarizatiofi epatial and temporal scales, whereas a
ferroelectric at the classical critical point [or classicaraelectric-ferroelectric phase transition] has
fluctuations on all spatial scales only. This can be undedstbamm a formalism that maps a quantum
system of dimensiod back to a classical system of dimensib z, wherez is a dynamical critical
exponent [also the temporal direction] defined from the elisipn relationv ~ ¢*. We show in

Chapter 3 that = 1 in ferroelectrics, and therefore there is only one tempdiraknsion.

The main reason why studying ferroelectrics close to theangum critical point is so intriguing
it that now the effective dimension of the quantum ferroglecsystem in bulk § = 3] becomes
d + 1 = 4. This is fascinating because as we discuss in Sec. H244 is just the upper critical
dimension, and thus we are able to study ferroelectricsabfds effectively two dimensional thin
films], at [as bulk], or above the upper critical dimensiorithvipole-dipole interactions effec-
tively lifting the dimension of tetragonal phases]. Let wénp out that this is not the case in other

[magnetic] critical systems whete> 1.

In addition, simple theoretical scaling predictions cacd®pared directly with experiment. We
show two measurements on bulk Sri@ Fig. 1.12. Results of the dielectric constant tempegatur
dependence of Sr'fiO; are plotted in the figure on the left, where large dielectésponse at
low temperatures saturates ‘Bt ~ 4K [43]; quantum fluctuations are believed to stabilize the
paraelectric phase [44, 46]. On the other hand, whénis substituted by?O, the system becomes
ferroelectric at critical temperatu K [peak in the dielectric constant in the figure on the right at
atmospheric pressure 1 bar]. As we see in Sec. 1.3.1, afipticaf strain induces ferroelectricity

in SrTiO;, and therefore it is not surprising th&tO substitution [yet another perturbation of the
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Figure 1.12: (left) Dielectric constants;o ande;, of the monodomain SrTiQsamples A and B
[0, is the stress applied by thermal treatment]. Indé8/c vs. temperaturd” [43]. (right) The
large influence of pressure on the temperature dependertbe dfelectric constant (7') in 8O-
substituted SrTi@leading to the complete suppression of the ferroelecteatestThe inset shows
the shift of T, with pressure [30].

perovskite structure] drives ferroelectricity. What ismmonteresting is that by applying pressure on
the '8O-substituted SrTig) the critical temperature is tuned continuouslylte= 0 [see the inset in
the figure on the right], thereby making it an ideal settingtfie detailed study of a quantum critical
point sitting at{7., p.} = {0K,0.7kbar}. Even though this point sits strictly at zero temperature,
we show in Chapter 3 that it has a significant impact on theedigt properties at a wide range of

temperatures and pressures [see Fig. 3.10].

1.3.3 A Designed Multiferroic

We discuss in Sec. 1.1.4 that it is difficult to find a single gghanultiferroic material, and that
much of attention is given to an artificial design of new miater Our research is motivated by
the latter, with first principles methods [85-87] being asegsial tool for the study of promising

systems [17, 18, 88, 89].

In Chapter 4, we identify a promising artificially structdrperovskite-based system with an

unusual heterostructure, an atomic-scale BiF-8@MnO3 nanocheckerboard [see Fig. 4.1]. We
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find that the multiferroic nanocheckerboard ground stdteriits the desired properties of each con-
stituent material: polar and ferrimagnetic due to Bige@d BiMnG;, respectively [see Sec. 1.2.3].
We also study the effect of arrangement of the magnetic 8-itions [Fe and Mn] on mag-
netic properties of the BiFeBiMnO3 system, and examine the effect of structural distortion.
Ouir first-principles calculations uncover a magnetostmadteffect in the nanocheckerboard where
switching between finite and zero magnetization statesssiple. Such magnetostructural effect
is not observed either in the bulk, or other superlatticacstires of the constituent materials. We
show that the interesting magnetostructural behavionieli to quasidegenerate magnetic states of
the magnetically frustrated checkerboard geometry, ansl inot restricted only to the BiFgO
BiMnO3 nanocheckerboard, and we encourage future experimentsferent nanocheckerboard

systems [90].

1.4 Outline of the Present Work

The rest of this dissertation is organized as follows. Infgi&la2, we study dielectric properties of
thin ferroelectric films using phenomenological Landauwtiyethat we introduce in Sec. 1.2.4. In
particular, we explain broadening of the dielectric susibdjty as a result of a segregated strain
model and an effective bias field in thin ferroelectric filrse¢ Sec. 1.3.1]. In Chapter 3, we focus
our attention on how the dielectric properties of bulk quamtparaelectrics change at very low
temperatures and high pressures [see Sec. 1.3.2]. Finalypapter 4, we design a new multiferroic
system with a novel magnetostructural effect, the BiF&IMnO3 nanocheckerboard, using first

principles methods [see Sec. 1.3.3].
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Chapter 2

Modeling the Dependence of Properties of Ferroelectric Tm Film on
Thickness

2.1 Introduction

Increasing demands for high-density data storage witla-féist accessibility present tremendous
challenges. In parallel to the characterization of new nal#e important size-dependent effects
must be understood to optimize design. This is particultatlg for ferroelectric memories, whose
nonvolatility and low power consumption make them welltsdifor portable applications; [27, 28]

their dielectric properties are strongly dependent onteletechanical boundary conditions due to

the long-range nature of their underlying electrostatieractions.

The sensitivity of ferroelectricity to homogeneous strannbulk perovskite oxides is well-
known [91] [see Sec. 1.3.1]. In thin films, the effects of hgaiweous misfit strain have been iden-
tified [92], studied and controlled to the point that parécusystems have been strain-engineered
to have spontaneous polarizations significantly largem thase in the bulk [14, 15]. Despite these
impressive achievements, several authors [81, 93-95] siaggested that homogenous epitaxial
strain cannot qualitatively account for all the observdeat$ in ferroelectric films. In particular,
the thickness-dependence of their dielectric propertssstieen attributed to defect-induced strain
gradients [81, 93]. We explore whether these observedeifeets are also consistent with an
alternative scenario where the majority of each ferroaleélm is homogeneously strained. Our
phenomenological study indicates that thickness-depertielectric measurements are insufficient
to determine the presence, or absence of underlying inhensamgyis strain and we suggest further

benchtop experiments that will resolve this issue.

In well-screened coherent epitaxial ferroelectric thim§| uniform polarization is energetically

favored. Lattice mismatch between the film and the subsisaiékey source of macroscopic strain
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in these systems [22, 92]. For very thin films, the energy fmygtomogeneously straining the film
to match the substrate is less than that associated witmtiragluction of stress-relieving defect
structures at the interface. However in thicker films, sugkfitndislocations form and produce
strain gradients [22, 80, 93, 96, 97]; threading dislocetiand point defects are additional sources

of inhomogeneous strain.

In planar ferroelectric films, inhomogeneous strain caedfthe ferroelectric transition through
both smearing and through its coupling to the polarizati@uch flexoelectric coupling of strain
gradients to the polarization has been the topic of muchnteiogerest [81, 82, 98], particularly
as it has been suggested that flexoelectric effects are emthdny large dielectric coefficients [99].
Recently, it has been argued that such strain and/or stradgegts are crucial for the modeling
of thickness-dependent dielectric properties of ferrtele films. [81, 93] Here, we propose an
alternative model: that the misfit dislocations reside imiththin buffer layer next to the interface;
the majority of the film, which is relatively defect-free, ttien homogeneously strained. [100] In
our phenomenological treatment, we also include a bulkoamigy [95] in the form of an effective
field, [101] possibly due to asymmetry of the electrodes ard/'the thin buffer layer. We model the
thickness-dependent dielectric properties in two diffietgpes of ferroelectric films, and compare
our results with experiment and with first-principles cédtions whenever possible. Finally, we
discuss a benchtop “smoking gun” probe to distinguish ogreggted strain scenario with that of

inhomogeneous strain in ferroelectric thin films.

The structure of this chapter is as follows. In Sec. 2.2, w&vethe experiments that motivate
this study and their implications for any descriptive modztails of our phenomenological Landau
approach are presented in Sec. 2.3, with specific discuséithre appropriate boundary conditions
and depolarization effects. In Sec. 2.4 we present our neainlts for films of two specific materials,
with comparison to previous findings whenever possible aadiptions for future measurements.
The implications of our model and our results are discussesec. 2.5. We end with a summary

(Sec. 2.6) and with ideas for future work.
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2.2 Experimental Motivation

Broadening of the temperature-dependent permittivithiim films near the paraelectric-ferroelectric
transition is reported by several experimental groups2f107] this observed smearing, accompa-
nied by an overall reduction in its magnitude, is more prawaa with decreasing film thickness.
Careful measurements on free-standing ferroelectric llamgield bulk-type dielectric responses,
suggesting interfacial effects as the source of thesenbiddependent effects. [108] A second re-
lated observation is that there is a clear separation ofeéeatyre scales associated with the onset of

reversible spontaneous polarization and the maximum dfitlectric constant in thin ferroelectric

films. [81]
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Figure 2.1: Relative permittivity (dielectric constanty @ function of temperaturee([I')]
for (Ba, Sr)Ti0O5 (BST) films of different thicknesses grown a#vRuO3/MgO (SRO) sub-
strates [106] where the,,...(T') at temperaturd,,,,, is indicated with an arrow.

In Fig. 2.1, we display relative permittivity measuremethdsie on (Ba,Sr)Ti@(BST) thin films

grown on SrRu@ (SRO). [106] The measurements show suppression of theveelagrmittivity



28

with decreasing film thickness. As the film thickness de@sds 340 nm, the temperature associ-
ated with the maximum of the permittivityf¥,,...) appears to saturate at about 300 K, Vifit,.. for

the two thinnest films not being clearly discernable. As wiédiscuss in Sec. 2.4, this is consistent
with the prediction of our model that there should be a maxmiu 7, () at a thicknes$ = [*;
from the data in Figure 2.1 we estimdte< 340 nm in BST films grown on SRO.

In ferroelectric films, in contrast with their bulk countarfs, there is an observed distinc-
tion [81] betweerll},,, andTY.,,, the temperature where polarization becomes switchaliies T
separation of temperature-scales and the permittivitpdeaing discussed earlier are both features
characteristic of dielectric behavior in an applied biakif[@01]; the latter could be due to a real
charge distribution or it could result from another phykiefiect [95] that breaks the symmetry
P — —P. For example, it has been noted [81] that flexoelectric dagpknown to increase near
a ferroelectric transition [82], implies a spatially-vany effective field term due to the underlying
inhomogeneous strain [81]. The resulting phenomenolbgiaadel successfully reproduces key
thickness-dependences of the dielectric properties [BEfe, we ask whether these experimental
trends are indeed proof of underlying strain inhomogesegitor whether they may be consistent

with another strain profile.

2.3 Landau Theory

We model the thickness-dependent properties of strainedelectric films using a Landau ap-
proach [13, 91], where all misfit dislocations are assumedsgime within a thin buffer layer of size
Ip << I, wherel is the film thickness (e.g., Fig. 2.2); this is in contrast tiees approaches where
these defects are assumed to be roughly uniformly diseiibwithin the film [93]. Elastic relaxation
then occurs so that there is homogeneous strain in the filepékar the buffer layer (e.g., Fig. 2.3).
Recent X-ray diffraction experiments [106] support preicuggestions [109] that the in-plane
film strain«; [we change the notation from} in Egs. (1.8) and (1.9) ta,; so thate is attributed to
the dielectric constant] decreases with increasing tleiskr{) of the overall films; furthermore the

observed thickness-dependent strain fits an exponential [ft06, 109] very well. Therefore in our
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Figure 2.2: A schematic of the planar ferroelectric capacitnder consideration, with the key
length scales and regions clearly demarcated. Note thahibimatch defects are segregated in a
buffer layer of thicknesgz on the substrate, and that the polarization and strain aregeneous

in the majority of the film. Incomplete charge compensatiothe ferroelectric-electrode interfaces
results in a residual depolarization field, as shown.

segregated strain approach, thin films experience homogsrigm strain that decreases exponen-
tially with their overall thickness; more specifically we model this thickness-dependent am|
film strain as

w = ume e, up = (b—a)/b, (2.1)

wherel. is a characteristic length scale of the strain relaxatiow, caand b refer to the in-plane
lattice parameters of the film (bulk value) and the substratgpectively [100]. We emphasize that
our values of,. are determined from X-ray diffraction [106, 109] for filmsafange of thicknesses.
We note that these values lfare comparable to the film thicknesses of intergst(/), resulting

in a non-trivial thickness-dependence of the strain-eelgiroperties. More generally, we remark

that the segregated strain approach described here hasibe@iin modeling epitaxially strained
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Figure 2.3. Schematic of the segregated strain model; herestastic defects reside withig
(<< 1) of the film-substrate interface so that the majority of tha fs homogeneously strained.

superlattices [21] with results that are consistent withegskment [110].

In Fig. 2.2, we display a schematic of the planar ferroelecgpacitor under consideration with
the length scales involved. More specifically we assume glesidomain ferroelectric film with
the (uniaxial) polarization in the z direction, normal te thiim-substrate interface. Physically, we
expect a build-up of free surface charge at the ferroetebimundaries which, if uncompensated,
results in a depolarization fielH;. In practice such depolarization effects are significargjuced
by metal electrodes that provide charge compensation; vewtheir non-ideal nature means that
some residual depolarization field remains. Becdusis proportional tollﬁ, wherel, is the screen-
ing length of the electrodes, its importance increases meiilaced film thickness [22, 13, 111, 112]
and becomes significant [29, 113] for- 100nm; a term in our Landau expansion will be included

to account for these depolarization effects.
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The defect buffer layer is also displayed in Fig. 2.2 and, iasussed above, we assume ho-
mogeneous (but possibly relaxed relative to the substsaita)n in the remainder of the ferroelec-
tric film which is controlled by the substrate-film lattice smatch. Following a previous anal-
ysis of epitaxially strained films [92], the stress tenseys = o0,. = o,. = 0, because there
are no tractions acting on the top film surface. For the speeise of a (001) ferroelectric film
grown on a cubic substrate, the straip, = u,, = w; andu,, = 0 since the angle between
the two lattice vectors remains unchangéd=¢ 7). We consider here film tetragonal symme-
try with w,, # 0 andu,, = u,, = 0. These mixed mechanical boundary conditions associ-
ated with two-dimensional clamping mean that the standéstie free energyG(P, o) cannot
be used to find the equilibrium properties of these systemstpad a Legendre transformation,
G'(P,w) = G(P,0) + w(0zg + 0yy) + uz,0.., to a modified thermodynamic potential must be

performed in order to study the equilibrium properties & tonstrained film [92].

We are almost ready to write an expression@fP, v;) and to calculate observable thermody-
namic quantities. As discussed earlier, the experimeiggesi a term i+ that breaks the symmetry
P — —P. This is achieved by linear coupling @t to an external electric field.,; and/or to an

effective bias field [95], which we take to be of the form

W, = Woe™ /e, (2.2)

wherel,, ~ .. We note that the thickness-dependencélffis included to model the increased
smearing of the dielectric susceptibility with decreasimg ferroelectric films [95]. At present we
will treat W; phenomenologically, and will defer discussion of its exgaial decay and its possible

origins to Sec. 2.5.

Putting all these elements together, we begin our phendiginal study with the free-energy
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expansion

1
G(P,&,T) = &(T)Pz + Z’YP4 - (Wl + Eext)P - C?llo'zzp2

N —

1
—Q12(0ze + O‘yy)P2 - 5311(032333 + O'zy + ng)
1
_312(Uxxayy) - 312Uzz(0xx + Uyy) - _3440'3;317

2
(2.3)

wherea(T) = o(T) + ag; o(T) = B(T — Tyuk), Truk is the bulk transition temperaturey
is discussed below, angland~y are Landau coefficients. Hefg;; ands;; are the electrostrictive
constants and the elastic compliances at constant pdlarizeespectively. The depolarization field

contributes to the free energy through the coefficigfi) in Eq. 2.3 [13, 114],

(2.4)

wherel, is the screening length of the electrodes, andnde, are the electric permittivities of the

vacuum and the electrodes, respectively.

The mechanical conditions in the film avé:/0o,, = 0G /0oy, = —u;, 0G /00, = 0, and
0G /0o, = —u,, [92]. Solving for the in-plane stresses, one finds that= 0 ando,, = o, =
o, where the applied in-plane stresss eliminated by the in-plane strain (o). This procedure,

together witho,, = 0, leads to

u? 1, 1,
G' (P, T) = 311T1312 + 5 (T)P? + 17 P} — (Wi + Eewt) P, (2.5)

wherey* = v+ Sf‘ﬁ;m anda; (T) = a(T) —y Sfﬁfm +a4. We note that we explicitly refer to the
[-dependence of the polarizatioR ], which here results from the thickness-dependence otthims
(u;), the bias field ¥;) and depolarization field termy(), consistent with observation. [81] One

can express the out-of-plane strair ) through its dependence on the out-of-plane polarization
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(P,) and the in-plane strain:() as

2812
811 + S12

2812

Uzz(Pl,Ul) = m

u + (Qu1 — Q12) 2. (2.6)

The Curie film temperatur€; refers to the paraelectric-ferroelectric transition abzetal field,

ElT = W, + E.+ = 0. Itincreases with an applied compressive stréie(< 0)

1 4Q12 e 2.7)

1) = Tour + = |w
c BL "s11+ 512 epeel

but has a decreasing component for very thin films due to depgation effects. The dielectric

susceptibility is
d*G

Xl_l = Eod—]312 = € Oé}k(T) + 3’}’*P12:| (28)

which diverges af’; if the spontaneous polarizatia — 0; that can only occur iElT = 0 (see
Eqg. (2.10) below). The dielectric susceptibility is obsatto diverge for bulk systems [91] and
for free-standing films. [108] In genera?c}lT # 0 for ferroelectric capacitors anfl, # 0 atT, so
that x; has a finite maximum at a temperatdrg,,, defined by%lT:TmM = 0. We note that this

condition combined with the expression fgrabove yields

= (2.9)

where we see thdf!

max

differs from 7} and depends on film thickness via the polarization; this
equation generally has to be solved numerically to oldfdip, once the expression fd? (7' has

been determined.

The condition for finding the system in its equilibrium st&eZ% = 0. The spontaneous

polarizationP; emerges then as the solution(s) to the following cubic eguat

of (TP +~"F = B (2.10)
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where forElT = W; + E.: # 0, we have to be careful to distinguish between the parae&ectr
(nonswitchable) polarizatio®, and the ferroelectric (switchable) polarizatiéh. Here, switch-
able refers to the fact that there are multiple solutiongterpolarization that can be accessed by

application of a finitels..;. There are three solutions to Eq. (2.10),

ET 1/3 ET 1/3
Pp=< l +\/ﬁ> —(— l +\/ﬁ> (2.11)
2y* 2ry*
and
1 \/g E;T 1/3 ElT 1/3
Pp= 5Py +ig- [(27* + \/ﬁ> + (— 2y T \/ﬁ> : (2.12)
where
*3 T\2

27,7*3 + 4,7*2
and the number of polarization solutions is determined bystgn ofR so that the single nonswitch-

able P, corresponds t&® > 0. Therefore the transition temperatdfe., ., between nonswitchable

and switchable polarizations occurs when= 0, leading to the expression

T N T\2/3
Tferro - Tc - B (Z) (El ) . (214)

At this temperature, the paraelectric solution becomesatable extremum.

In general, the three temperature scal@s..,, Tmq.. andT; differ as indicated in Fig. 2.4.
We note that for very thin films< 60 nm), there is suppression of all three temperatures due to
depolarization effects. We also remark on the presence abamum in7,,..(l) that has already
been alluded to in Section 2.2; this feature will be discdasemore detail when we apply this

phenomenology to specific materials and substrates.

2.4 Results

In this section, we calculate dielectric properties for specific materials, (Ba; Siy.5)TiO3 (BST)

and SrTiQ (STO). Our study of BST films allows us to make direct commaribetween our
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Figure 2.4: Thickness dependence of the three distinct éemtyre scale§.,,, (solid), Tia.
(dashed) and* (dotted line) forE.,; = 0 in the segregated defect model described in the text.
Here, Landau coefficients for BST on SRO [see Tables 2.1 éohZEec. 2.4] have been used and
Tmaz (1) is noted to display a peak &t= 60 nm.

calculated properties and the experiments (Fig. 2.1) trwivated the inhomogeneous strain sce-
nario. [81] In order to explore different parameter regimee study these films on two distinct
substrates, SRO and Pt/SiSi (PSS); here, we note that the latter is a hypothetica sage to

date epitaxially grown single-crystal films of BST on PSSéhaut yet been realized.

We also apply our phenomenological treatment to STO films dha known for their coher-
ence; this is achieved by highly controlled growth condisichat inhibit defect formation, and
thus, inhomogeneous strain effects are not expected. L6lTknowledge, there do not exist pub-
lished high-resolution dielectric measurements of se@i6TO films with polarization normal to
the electrode-ferroelectric interface. We therefore caramur results whenever possible to first-
principles calculations, [116] and make experimental jotaxhs for a range of epitaxial strain val-

ues that could be realized by a variety of substrates.

The parameters used in our calculations are presented iesTald and 2.2. Table 2.1 indicates
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Table 2.1: Landau parameters for BST [92, 81] and STO [1156$(iunits). We use th& > 100K
values fora(T'), except in calculations in Fig. 2.15 where we interpolath> 100K and the
T < 50K values to75K, where the tway(7") functions cross.

y(T) s11 + 812
Film (10°%) Qn Q12 (10712
BST 4[796 +2.16(1-273)] 0.110 20.0430 56
STO 1700 0.066 -0.0135 3.0
a(T)
Film (10°)
BST 9.1 (T - 235.0)
STO (' > 100K) 7.06 (T - 35.5)
STO (' < 50K) 263.5 (Coth[42.0/T] - 0.90476)

Table 2.2: Film parameters: effective fidld, and compressive strain,, [15, 81], with associated
length scale$,, and/. [106] [see Egs. 2.1 and 2.2]; also the values for screenimgihe. [117] and
the relative permittivitye. of electrodes are shown.

Wy [ U, I le
Film Substrate (kV/cm) (nm) %) (nm) (nm) e,
BST SRO 400 300 -0.50 300 0.023 1.0
BST PSS 450 300 -0.77 300 0.400 1.0

STO  LSAT 400 300 -0.90 300 0.023 1.0

the Landau coefficients used for each material. Film-rdlgt@rameters, displayed in Table 2.2,
are determined from data on strain relaxation; the chaiatitelength/. [see Eq. ( 2.1)] from the
lattice constant measurements lies somewhere bet@(®eand300 nm [106, 109]. In order to make
comparison with the inhomogeneous strain model scenahimhwises a characteristic length scale
of 300 nm [81], we keep thig, value in our calculations. Data on electrode screeningtteng.) is

I, of SRO 0f0.23 A [117], and we set. of (LaAlO3)g.29x (SrAly5Tag.503)0.71 (LSAT) to be the
same value, since LSAT is dominated by SyATa, 503 that is very similar to SRO. We choose the
screening length of PSS to bhe= 4 A, which is expected to be larger thgnin metallic SRO due
to the presence of semiconducting silicon. We displayrstigi value for three different substrates,

BST on SRO, [81] BST on PSS s = 3.95 A, bp, = 3.92 A), and STO on LSAT. [15] The bias
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field is set to beély = 4.0 x 107 V/m for BST films on SRO, a value that is comparable to that
of applied external fields in related BST dielectric measwarts. [106] We keep the sarig, for
STO films and a slightly different onéi(, = 4.5 x 107 V/m) for BST films on PSS. The bias field
W, is treated phenomenologically [see Eq. ( 2.2)] and we empddés crucial role in modeling key

features of the dielectric properties of ferroelectric §|ras will be discussed in more detail shortly.

2.4.1 (BasSrys)TiO5

In Fig. 2.4, we display the three temperature scales as éidnnaf thickness for BST films on SRO
electrodes WithFe,; = 0: Thpaz, TF @NdTterro. BecauseElT = W; # 0, there is a clear separation
of the three temperatures; fﬁ)qT = 0, they collapse ont@;’ [compare Egs. (2.7), (2.9), and (2.14)].
Therefore an estimate &, can be obtained from the differencetf,,, andT}, where the latter
can be expressed in terms of (experimentally accessiblejdiaparameters and by the value of the
misfit strain [Eg. (2.7)]. The magnitude of the obtained biakl, W, = 400 kV/cm, is in rough
agreement with experiment: the experimental temperdfijfg = 250 K for a 950 nm film in
Fig. 2.1 is close to the calculatdg¢ = 268 K in Fig. 2.4, andl e = 280 K for the 660 nm film

in Fig. 2.1 is also reasonably close to the calcul&tgglc = 304 K in Fig. 2.4.

The temperaturd’,,... displays a peakl},.. = 519 K at[* = 60 nm, and it decreases with
increasing thickness and asymptotically approadjeshe bulk transition temperature. As previ-
ously noted in Sec. 2.2, fdr< [*, T,,.. decreases with decreasifigby contrast forl > [*, the
trend is consistent with that displayed in Fig. 2.1. Moreagetly, the behavior of’,,,, depends
on that of the polarization as a function of temperature Bge(2.9)]. Both the strain and the bias
field make the polarization decrease with increasing filrokiéss { > 60 nm) as will be discussed
shortly, and this monotonic behavior makEs,, decrease as well. The observed peakjy.. is
driven by the depolarization field contribution in our madE},... becomes suppressed for very thin
films (I < 60 nm) and approaches zero just as does the polarization & firasthicknesses (see
Fig. 2.7). The value off = 60 nm is determined by the strength of the depolarization dmriton,

and thus, is expected to depend on the electrode and/oragbstaterial. As already noted, we use
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a longerl. for BST films on PSS than for BST on SRO. Because the depdiianzéeld contribu-
tion to our free energy is proportional ip [see Eq. (2.4)], the resulting will be larger for BST
on PSS than on the SRO substrate. For BST on PSS, we caldwdatié peak i}, occurs at

I* ~ 300 nm, in contrast to the value &f ~ 60 nm for BST on SRO displayed in Fig. 2.4.

The theoretical temperatufE” in Fig. 2.4 refers to the paraelectric-ferroelectric traos at
zero total fieId,ElT = W, + E.t = 0[see Eq. (2.7)]. It has a peak & nm with a maximum
value of ¥ = 329 K, and then decreases with increasing film thickness dueetstthin relaxation
term,u; ~ e~!/!, It reaches its bulk transition temperature valiig,{, = 235 K) for thicker fully
relaxed films:7* = 238 K for 1000 nm film. Due to the depolarization contribution [see Eq. R.4

T is suppressed for very thin films and eventually reaches zero

The temperaturd’.,,, that separates switchable and nonswitchable polarizaéigimes in-
creases for increasirigand saturates when it reaches the bulk transition temperdtuEqg. (2.14),
we see that there is competition between thickness-deperdatributions due ta; and toW; in
Terro- Therefore whether this temperature increases or deaadsie increasing film thickness
depends on their relative magnitudes. For exanipjg,,, is shown to increase with increasing
in Fig. 2.4, reflecting the dominance of the bias field contidn in this particular case. We note
that the switchable (ferroelectric) regime is lost as thmdibecome very thin, e.g., ferroelectricity
vanishes at ~ 100 nm at fixed temperaturé0 K. T.,,., reaches zero at a critical film thickness
(Ieriz ~ 35 nm here) and films with < [..;; remain in the nonswitchable polarization regime at all

temperatures.

In Fig. 2.5, we display our calculated relative permitinat7’) (¢ = 1+x) for BST films on SRO
substrates witlE,.,; = 0. Reduction ine(l) as a function of decreasing thickness is observed for
both theory and experiment (Fig. 2.%),,, decreases arifl,,,,. increases akdecreases. Favorable

comparison of the calculated relative permittivifif’. can be made to its measured analog [106]

exp

P shown in Fig. 2.1£%¢ = 2035 at T),q, = 268 K matches withesat, ~ 1900 at Tynqr ~ 260

max

K for the 950 nm film, andet®c = 1044 at T),,.. = 304 K matches with the5?, ~ 1100 at

max

Tinaz = 290 K for the 660 nm film.
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Figure 2.5: Calculated relative permittivity as a functiohtemperature for BST films on SRO
substrates of thicknessés= 10pm, 950, 660, 340, 280 and 175 nm. The highest permittivity
corresponds to the thickest film; the divergenceligum film at the bulk Curie temperatuss K
is indicated. Reduction of the permittivity for thin filmsdabserved; the peak of permittivity shifts
towards higher temperatures in agreement with Fig. 2.1.

We also predict the thickness-dependent dielectric behafie(7") for BST films epitaxially
grown on PSS in Fig. 2.6. For films of decreasing thicknessahe [*, a systematic reduction in
e is observed and the peak in the permittivity is shifted todotemperatures.

Next we present the calculated nonswitchable polarizatidtig. 2.7 at temperaturgd0 K with
E..: = 0 for BST films on SRO. The polarization is roughly proportibtathe bias fieldiV; and
its value increases with increasing misfit strajnsee Eq. (2.10)]. Motivated by experiment, we
have modeled the bias field and misfit strain to decrease mateasing film thickness exponentially
AWy, w} ~ e Ve 1, = {l,,1.}), and therefore the polarization also decreases with ¢hifikns.
However, for very thin filmsi(< 50 nm), there is suppression of the polarizatiét) ue to depolar-
ization field effects and a peak with a maximum value of pakion P,,,,, = 0.2 C/m? atl = 50

nm develops. The temperature dependence of the polarizitiawo different film thicknesses

is displayed in the inset of Fig. 2.7. Thes¥T') curves shows good qualitative agreement with
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Figure 2.6: Calculated relative permittivity as a functimintemperature for BST films epitaxially
grown on PSS substrates of thicknesses40, 68, 150, 300 and580 nm. The highest permittivity
corresponds to the thickest film. Reduction of the perniigtifor thin films is observed, and the
peak of permittivity shifts towards lower temperatures.

analogous measurements. [81] In general, the polarizdggreases with increasing temperature.

Terro, the transition temperature separating the presence tftsatile and nonswitchable spon-
taneous polarizations, is plotted in the presence of eataectric field for BST films on SRO in
Fig. 2.8.Tferro( Eext) reaches its maximum &, = —W; (whereW; = Wye~'/I), and decreases
symmetrically about this value in agreement with Eq. (2.4 note that the maximum .,
decreases for thicker films as anticipated by the zero-fiztial (EIT) results of 7} displayed in
Fig. 2.4. The temperaturgy.,,, at zero external field matches the behavior of Fig. 2.4. Swalite

and nonswitchable polarization phases are marked.

Calculated hysteresis loops are displayed in Fig. 2.9 fof #&s on SRO substrates At= 290
K with [ = 100 nm and! = 175 nm. According to Fig. 2.8, at this temperature for these film
thicknesses, the switchable polarization develops omlgdatain values of nonzero external electric

field: .,y = {—298,—275} kV/cm for 100 nm film andE,,; = {—229, —218} kV/cm for 175 nm
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Figure 2.7: Calculated nonswitchable polarizationgﬂ[(see Fig. 2.4) forBST films on SRO
substrates of various thicknessés dt temperature 300 K and fdr.,; = 0; polarization as a
function of temperature for films of thickness 175 (solidjl&20 nm (dashed line) is shown in the
inset.

film. The width of the hysteresis loops in Fig. 2.9 is given by &bove field ranges; it decreases with
increasing film thickness and shows good qualitative agesmvith experiment. [106] Hysteresis
loops are symmetric around the poift,; = —W; and P = 0, where the bias fieldV; is the
thickness-dependent field offset. This field offset (speilfy, we refer to the shift of the center of
the hysteresis loop along the field axis from zero-field pmsjtbecomes larger for thinner films [see
Eqg. (2.2)] and is temperature independent. However, théwatithe loops shrinks as temperature
is increased, as shown in Fig. 2.8. Symmetry in the hysteilesps around® = 0 yields zero
offset in the spontaneous polarization and therefore nucéged charge offset within the thin film.
We note that significant charge offsets are observed in drilties with designed polarization and

strain gradients. [118]
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Figure 2.8: Transition temperatuig.,.., as a function of applied external electric field,; for
BST films on S RO substrates of thicknesseg0 (solid), 175 (dashed) an@20 nm (dotted line).
The corresponding line divides the region into switchalld aonswitchable polarization phases
for each film.
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2.4.2 Strained SrTiG;

Bulk strontium titanate (STO) remains paraelectric dowthtolowest temperatures accessible, but
strained STO films may be driven into a ferroelectric phasmeat room temperature. [15] To our
knowledge, detailed thickness-dependent dielectric areazents on such STO films have been
performed only with tensile epitaxial strain, resultingiieplane polarization. [15, 119] Here, we
make predictions for the thickness-dependent dielectopgrties of STO films with compressive

epitaxial strains and polarizations normal to the film-$xie interface.

We begin by making direct comparison between our resultslarsk ofab initio studies, [116]
displayed in Figs. 2.10 and 2.11. Sinak initio calculations consider uniformly strained films
without strain relaxation and without an effective biasdjelve setlt; = 0 for the purpose of
comparison here. In Fig. 2.10, we present the spontanedasization as a function of misfit

strain for al = 100 nm STO film at zero total fieIdElT = 0. Dots in the figure correspond to
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Figure 2.9: Calculated hysteresis polarization loops T Blms on SRO substrates of thicknesses
100 and175 nm at temperature 290 K.

first-principles calculations, [116] where the out-offpdgpolarization in the ferroelectric tetragonal
phase ¢; < —0.75%) for films with zero macroscopic field has been calculated. cM@ose the

I = 100 nm STO film where we do not expect depolarization effects tonfqgortant ( > [*;

see Fig. 2.14) for comparison with tlab initio data. Good agreement is achieved at temperatures
T ~ 250 K; our calculated curves follow the behavior of einitio dots. At lower temperatures,
better agreement is achieved for less compressive sti@ireatly indicating that fully relaxed STO

is paraelectric down to zero temperature.

Continuing our comparison with the resultsatifinitio calculations, [116] we display the para-
electric relative permittivity as a function of externakelric field E..; and film strainu; for a
I =100 nm STO film atT" = 200 K in Fig. 2.11. A nonpolar tetragonal phase develops foiirsra
—0.75% < w; < +0.54% according to theb initio calculations. [116] From Fig. 2.10, the best fit

for the polarization just at the paraelectric-ferroeliecthase boundaryu{ = —0.75%) is achieved
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Figure 2.10: Spontaneous polarizatiBhC'/m?] as a function of misfit strainu) for 100 nm STO
film at temperature¥’ = 200 (dotted),T’ = 250 (dashed) and” = 300 K (solid line) and zero total
field, EZT = 0. Dots correspond to ab-initio values of the polarizatidretafrom [116].
at7T = 200 K, and therefore we choose this temperature to calculatearaelectric permittiv-
ity data. We compare our results to thle initio calculations in the range of compressive strain
—0.5% < w; < 0.0%: in both cases, the permittivity) increases with increasing compressive
strain; this occurs even more rapidly in the range of extdialls —150 < E.,; < 150 kV/cm,
and its magnitude in the ran@80 < ¢ < 1500 in Fig. 2.11 roughly corresponds to thb initio
values400 < e < 1800. [116] We note that the observed increase of the paraelqo#rimittivity
with strain can be understood from Eq. (2.8).

Both Figs. 2.10 and 2.11 indicate good agreement betweettgasd our phenomenological
model and those of previous first-principles calculaticarg] this provides us with confidence re-
garding the Landau coefficients and more generally with r@ach described here applied to
strained STO films. Next we calculate the dielectric prdpertf strained STO films using a nonzero
value for the effective bias fieldV; = 400 kV/cm, that is comparable to that used for BST films in

Sec2.4.1.
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Figure 2.11: Calculated paraelectric relative permiiias a function of external electric field. .;
and misfit strainy; = —0.5, —0.4, —0.3, —0.2, —0.1 and0.0% for 100 nm STO film at temperature
T = 200 K. The permittivity data are shown in the limit of zero biaddiéV; in order to make
comparison with the ab-initio data in [116].

Our calculated relative permittivity as a function of temrgiare and film thickness at compres-
sive strainu,, = —0.9% (STO on LSAT) withE,,; = 0 is plotted in Fig. 2.12. The permittivity
is suppressed for thinner films and its maximum is shiftedatoshigher temperatures, displaying
similar trends for botk andT,,,... as for BST on SRO in Sec 2.4.1,,,,.. increases with decreasing
I, but develops a peak &t= 60 nm and is again suppressed for very thin films due to depalariz
tion effects. The screening length of LSAT is comparablé.tior SRO, and thus so 5. The
magnitude ofe is also comparable to that in BST films in Fig. 2.5; it resuttenf similar values
of the Landau coefficients and the value of the compressiamsh both films [see Table 2.1]. To
our knowledge, there exists only one published dielect@asarement on strained STO with the
polarization normal to the film-substrate interface; thipegiment, performed onla= 50 nm STO
film grown on LSAT fu,,, = —0.9% (Ref. [15])], yieldser,4: ~ 400, which is in a good agreement

with our calculated maximum value of permittivief?/c = 364 for this film/substrate combination.
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Figure 2.12: Calculated relative permittivity as a funotiof temperature for STO films of thick-
nesses$ = 50, 100, 200, 300, 400, 500 and600 nm at misfit compressive strain,, = —0.9%. The
highest permittivity corresponds to the thickest film. Rethn of the permittivity for thin films is
observed.

We investigate the effect of compressive strain on theivelgermittivity in Fig. 2.13. We observe
that increased compressive strain shifts the permittauitye toward higher temperatures and larger

shifts ofT},,.. occur for thinner films.

We display the nonswitchable polarization as a function lof thickness and misfit strain at
T = 300 K and E.,; = 0 in Fig. 2.14. Again, the polarization shows similar behawas in BST
films in Sec. 2.4.1; it decreases with increasing film thidenand is suppressed for very thin films
(< 50 nm) due to depolarization effects. Increasing the stragulte in higher polarization, in
agreement with Fig. 2.10; this time, however, the polaitravalues change due to the effect of a
nonzero bias field. In the inset, the temperature dependaitee nonswitchable polarization is
plotted in/ = 100 nm and! = 500 nm STO films at misfit straim,, = —0.9% (STO on LSAT

substrate). The polarization decreases with increasmgeeature.

Unstrained bulk STO remains paralectric down to zero teatpes. However, as previously
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Figure 2.13: Calculated relative permittivity as a funotiof temperature for STO films of thick-
nessesd = 50, 300 and600 nm at misfit strainu,, = —0.9% (solid) andu,, = —3.0% (dotted
line). Higher values of misfit compressive strain shifts gegmittivity curve towards to higher
temperatures where the larger shiftsigf,, are observed for the thinner films.

noted, a ferroelectric regime occurs for strained STO filfh§] We plot the transition tempera-
ture T, SEpParating switchable and nonswitchable polarizatignes, as a function of film
thickness and misfit strain &.,; = 0 in Fig. 2.15. We predict a ferroelectric phase to occur for
compressive strains larger thai0%, and note that ferroelectricity is recovered here for thertist
STO films as one goes from a thick-film nonswitchable regima thin-film switchable one (at
fixed T); e.qg., ferroelectricity emerges at2.0% strained films for thicknesse¥) < [ < 160 nm.
This is distinct from the behavior previously described BiTBfilms, where ferroelectricity is lost by
making films thinner (see Fig. 2.4).,, indicates a maximum &t ~ 60 nm, and this peak is due
to depolarization effects [see Eq. (2.4)] that reduce thesition temperature to zero for the thinnest
films. T, decreases in thicker films$ ¢ 60 nm) for values of compressive straif), > 2.0%,

as shown in Fig. 2.15. However, it increases with increafimgthickness for small values of com-

pressive strainu,, < 1.5%), similarly to BST films on SRO substrates (with}, = —0.5%) in
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Figure 2.14: Calculated nonswitchable polarizati®fC/m?] of STO films as a function of film
thickness {) for misfit strainsu,,, = —3.0, —2.5, —2.0, —1.5 and —0.9% at temperaturg00 K.
In the inset, the polarization as a function of temperattijdg plotted for100 (solid) and500 nm
(dashed line) films at misfit straim,, = —0.9% and zero external field.
Fig. 2.4. We note here that althoudh.,,, increases, it has negative nonphysical value for these
low strain values, and thin films remain in the nonswitchabime down to zero temperature. As
noted previously, the thickness dependence of this terperacale arises from competition be-

tween strain and bias field contributions [see Eq. (2.148; former dominates for large enough

mistmatch strainsu,, 2 2.0%), and in this casel .., decreases with increasing film thickness.

2.5 Discussion

Next we explore the implications of our results and the origf our model assumptions. We
begin with a general discussion of the effective bias fieldpitaxial perovskite oxide films. Both
the inhomogeneous (see Fig. 2.16) and the segregated (@e2.8) strain models describe the
thickness-dependent dielectric properties of ferrogledtims consistently with experiment, and

thus, further measurements are required to determine treepce and/or absence of underlying
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Figure 2.15: Transition temperaturg,,.., separating switchable (below) and nonswitchable (above
the temperature curve) polarization phases as a functi@raf film thicknesd and misfit strain

um = —3.0, —2.5and—2.0 % for E.,; = 0. Ty.,r, becomes negative for compressive misfit strain
values smaller thah.5% for all film thicknesses, resulting in a nonswitchable piaktion regime.

inhomogeneous strain throughout the film. These models leaah effective bias fields, one that is
spatially varying [81] and the other that is uniform, andsiekactly this feature that we exploit in a

proposed benchtop experiment to distinguish these twaasiosn

An effective bias field breaks up-down symmetry at all terapges. In a film above the zero-
(external) field £.,; = 0) ferroelectric transition temperatutg.,..,, this results in a nonzero
macroscopic polarization in zero external electric fielek[&€q. (2.10)]. For the sake of complete-
ness, we note that the Curie temperatiiterefers to the paraelectric-ferroelectric transition abze
total field (£} = W, + E..x = 0). While this polarization can vary with temperature, makin
the film pyroelectric, it should not be confused with a feleotric spontaneous polarization. The
correct distinction between polar and ferroelectric filmsriade on the basis of switchability, as

determined, for example, through a hysteresis measuretmeainonswitchable polar film, there is
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Figure 2.16: Schematic of the inhomogeneous strain modgifBere the effective bias field’(z)

is spatially-dependent due to flexoelectric coupling; hbeecharacteristic length scales associated
with the strain relaxation/{) and the buffer layeri), where the elastic defects reside, are assumed
comparable with the overall film thickness. (

only one locally stable polarization state with,; = 0, and the system will show dielectric behav-
ior in a finite external electric field. On the other hand, drid are two (or more) stable polarization
states for the system with,,; = 0 that can be switched by the application of an external étectr
field, then the film is ferroelectric, and it will exhibit a alaateric ferroelectric hysteresis loop. An
effective bias field¥; will lead to a lateral shift in the ferroelectric hysterekisp, which can be
used to determine the associated effective bias voltagessadhe film. Field offsets have been,
indeed, experimentally observed I00 nm PbZp 2Tig sO3 thin films. [120] We also remark that
an effective bias field will make the two polarization stasgsmetry inequivalent with different

energies.
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The transition from nonswitchable to switchable ferrogleghases usually occurs as a func-
tion of decreasing temperature’Bt.,..,. The detailed thickness dependence gf,T, depends on
material-specific parameters, as can be seen in Figs. 22.88dor BST and STO thin films. More
generally the dependence of the dielectric properties enters via thmsgkaxation [Eq. (2.1)], the
bias [Eqg. (2.2)], and the depolarization fields. For theistralaxation, an exponential decay on a
characteristic length scale of several hundred nanometesobserved experimentally. [106, 109]
In our model, we assume the same exponential decay for theitadg of the uniform effective
bias field. These two quantities determine the thicknessmgnce of the quantities of interest in
all but the very thinnest films, where the depolarizationdfielrm dominates, strongly suppressing
T'terror the polarization, and,,... In the case of the temperature,,.., (see Figs. 2.4 and 2.15),
the strain and effective bias contributions opppose eduér §Eq. (2.14)], and depending on their
relative strengthsT’.,,.(l) increases (BST case whelg dominates) or decreases (situation for

strained STO whereg; is greater) with increasing film thickne&s

A direct consequence of the strain contributiorif1g,., is that we predict that ferroelectricity
can be strengthened as the films get thinngriricreases with decreasiiyy resulting in a transi-
tion from a nonswitchable polar phase to a ferroelectritedb@low a critical thicknesk-r; more
specifically, for STO measured &i0 K and compressive strain2.5% (see Fig. 2.15), the critical
thickness below which ferroelectricity appeardds = 200 nm. This runs counter to the usual
notion that ferroelectricity is suppressed as the film theds decreases, disappearing below a criti-
cal thickness; we note that would be the case for BST on SRf2,(i¢ dominates the expression
for T.,r,) Where our results displayed in Fig. 2.4 indicate a crititatkness of about00 nm
at temperaturé0 K. This reentrant ferroelectricity as a function of deciegs should be readily
observable in an appropriate experiment for strained ST filith the polarization normal to the

film-substrate interface.

Both the strain and the effective bias contributions actdoreaser’,, . (1) and P, [related by
Eqg. (2.9)] as a function of increasing film thicknegg(6ee Figs. 2.4, 2.7 and 2.14). By contrast,

the depolarization contribution suppresdes.. (/) and P, with decreasing. The dominance of
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this depolarization term explains the observed shift of gpeak of7},..(l) to higher values of

I* for semiconducting substrates (e.g., PSS) (see Fig 2.6hthe longer screening lengthis)(
than their metallic counterparts (e.g., SRO). Here, wellrétat the depolarization contribution to
the free-energy expansiondg; ~ [./l [EQ. (2.4)]. We note that the thickness-dependent effect
of the depolarization field on the relative permittivity hHasen noted before [95] with a similar
term,afL = a/l, where boundary conditions for the spatially varied pakion are proposed that
incorporate the effects of a symmetry-breaking effectigklfiln this previous approach, [956then

is a boundary-related characteristic length. Since trokii@iss dependence in both treatments is the
same, one obtains similar results for the relative pemwitigtvith appropriate choice of these length
scales [, anda) although their physical origins are different. Here, weédhaxtended this treatment
to address the thickness dependence of other dielectrepres (e.g., polarization) as well, and
we note that the previous inhomogeneous strain approaglli@hot include such depolarization

effects for thin ferroelectric films.

The smearing of the sharp peak in the temperature-depedi#attric response(Figs. 2.5, 2.6
and 2.12) in zero electrical fieldt,; = 0) is a signature of the presence of a finite effective bias
field WW; this point has been much discussed previously both heeeHge. (2.8) and (2.10)] and by
others. [81, 95, 101, 108); assumes larger values for thinner films [see Eq. (2.2)] armlshes
the permittivity to smaller values in thinner films [see EQ.8]], in accordance with experiment
(Fig. 2.1). In the bulk limit, both the strain and the biasdiefanish and bulk behavior of the

dielectric properties is recovered.

While there is general agreement that effective bias fielag @an important role in the prop-
erties of perovskite thin films, [81, 95, 101, 108] their dfiecrigins and their spatial natures in
the films are less well understood. For example, an effediige field can be produced by a spa-
tially (z) dependent strain via a flexoelectric effect; [81] we wifiereto this as the inhomogeneous
strain model, and it is schematically depicted in Fig. 2.lt6this scenario, misfit dislocations are
distributed roughly isotropically throughout the film anguce strain gradients. By contrast, in

the segregated strain model presented here, the elastictslefe concentrated in a thin buffer layer
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Benchtop Probe for the Segregated Strain Model

—— 'net' field EIT= 0
- - - 'net' field EIT;t 0

Figure 2.17: Schematic of a benchtop probe to test for theegated strain model: the field offset
(W) in the observed hysteresis loop can be tuned to zero bycagiplh of an electric field’,, (1) =

ext

—W7; in this case, the relative permittivity sharpens sincenig(thickness-dependent) fieﬂi‘f =
B (1) + Wi = 0.

near the film-substrate interface (see Fig. 2.2 and Fig. Z.Bjs buffer layer itself breaks the up-
down symmetry of the film, which then results in a nonzeroaif¥e field. To be more specific, it
may be that an edge dislocation in the buffer layer produdesa polar distortion. This makes
the buffer layer polar and produces a field in the uniform filve then expect the strength of the
effective bias field to be related to the areal density ofdistions, and thus to the magnitude of the

homogeneous strain in the film.

As we have shown in Sec. 2.4.1, using the segregated strailelnfgee Figs 2.2 and 2.3)
we recover the thickness-dependent dielectric propeofi&ST films consistent with those mea-
sured [106] and calculated using flexoelectric effects {8ithin an inhomogeneous strain scenario
(see Fig 2.16). Therefore, in order to determine which of¢htevo models is applicable to a partic-

ular film, additional experimental characterization isessary. The presence of strain gradients in



54

the BST films studied using flexoelectricity [81] was veriftadx-ray analyses [121], though similar
studies on different BST films (on different substratesjdate the absence of such inhomogeneous
strain. [122] Therefore it is clear that observations otkhess-dependent permittivities and polar-
izations are not enough to indicate the underlying straariilprof the ferroelectric film. Naturally,
the presence and/or absence of strain gradients can bessedrdirectly by x-ray diffraction but

this probe may not be always easily accessible or practical.

Here, we emphasize that the effective bias fields assocwitbdthese two strain models are
spatially different (see Figs 2.16 and 2.3), and we will use distinction to propose a benchtop
experiment to distinguish between these two scenariofielmbomogeneous strain model, [81] the
effective bias field is spatially nonuniform; more specifigas proportional to the strain gradient
via a flexoelectric coupling, and thus, has an exponentdglyaying spatial profile within the film
(see Fig 2.16). By contrast, in the segregated strain magel Fig 2.3), the effective bias field
is uniform from the edge of the buffer layer to the surfacesuising that this effective bias field
W, is uniform in the majority of the film, one can tune an extermalctric field to the right value,
B

ext

(I) = =W, to create a net zero-field conditio®f(l) = E}

ext

(1) + W] where the specific
value of the necessary external field would be thicknesgstdgnt. Therefore there would exist

an external field valugZ*

ext

(1) when the hysteresis loop would no longer have a field offset; a
this value of the applied external field, a sharp peak in thgpature dependence of the relative
permittivity should be observed (Fig 2.17). We emphasizd this must be a unipolar hysteresis
experiment, with single top and bottom electrodes; manysureanents are performed across two
top electrodes, namely, two series capacitors, where ondvadways be uncompensated. Another
probe of the spatial uniformity ofl” would be to measure ([, as a function ofE,,;, for a
uniform effective bias field, there would be a sharp peak jg,}, as shown in Fig. 2.8. This
pronounced peak would not be present for a spatially vargifertive bias fieldit/(z) since the
latter would have varying magnitude in the sample and naquéat value of applied (uniformk,,.;
could completely compensate for it everywhere in the filmydrtally, we note thait¥’(z) could

arise from coupling of the polarization to gradients in thraig, [81] in chemical composition, and
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in temperature. [95, 118, 123] There do exist graded fezptat structures where such spatially
varying quantities are explicitly present by design. Hereharge offset is often observed in the
charge-voltage hysteresis loops, [118] and this couldesasvan indicator of underlying gradients
in ferroelectric films if a suitable “charge origin” could bhosen as a reference.

We emphasize that we expect different films, with varying positions, substrates, and growth
conditions, to have diverse strain and effective bias fieddiles. The inhomogeneous scenario may
describe some, while others may be better modelled by thegagd strain approach; still others
may exhibit intermediate behavior. By carefully monitgrigrowth conditions, it should be possible
to control the density and spatial distribution of stragheving defects; in some case, it may even be
feasible to kinetically inhibit them to obtain uniform cabatly strained films. [15] We emphasize
that in each case, the strain and effective bias field digtabs must be carefully characterized for
a full interpretation of the measured thickness-dependietéctric behavior, and we have presented
simple proposals for benchtop measurements to ascer@imitortance of strain gradients in the

films.

2.6 Summary

In conclusion, we have demonstrated that a segregatea stadlel (cf. Fig 2.2) describes the
observed thickness-dependent dielectric propertiesaidiectric films as well as a previous model
of inhomogeneous strain. [81] Therefore such thicknepsdent behavior is not signatory of
underlying strain gradients, and more measurements mupetiermed to determine the strain
profile in the film. If the effective bias field is spatially daim, it can be compensated by the
application of an applied external electric fielf},,(1) = —W;, whose value will be dependent on

the overall film thickness. Benchtop experiments performed with,;, = E*

ext

(1) will yield bulk-
like sharp dielectric responses. However, such compemsatill not be possible if the effective
bias field is spatially varying, since then its effects cariomm cancelled by the application of an
external uniform field.

We have compared our results with experiment (BST on SROhexrer possible and have also
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made predictions for measurements on strained STO filmsauitiof-plane polarization. Agree-
ment with existingab initio calculations, when appropriate, has been good. The plitysibf
reentrant ferreoelectricity in strained STO films has alserbdiscussed and we hope that this will
be explored experimentally in the near future.

Our phenomenological study of planar films suggests thdt thiekness-dependent dielectric
properties are not indicative of underlying inhomogenesitan and are consistent with other strain
profiles. We view this project as the beginning of a broadedysof the physical consequences of
boundary-induced effects in ferroelectrics of increalsimpmplex host topologies. The next step is
to explore cases where the strain gradients will be indugegelometry, examples include curved
films and cylindrical shells. Because of the coupling betwiie elastic and the electrical degrees
of freedom in these systems, we expect tunable strain grzdie stabilize novel polarization con-
figurations with rich phase behavior, and here, flexoeleeffects should definitely be investigated.
More complex host geometries and boundary conditions grected to favor more novel orderings
and dielectric properties; the possibility of identifyimgd characterizing these features in three-
dimensional ferroelectrics on the nanoscale could alssbtulin the design of future ferroelectric

memories. [124]



57

Chapter 3

Quantum Critical Paraelectrics and the Casimir Effect in Time

3.1 Introduction

The role of temperature in the vicinity of a quantum phasesiteon is distinct from that close to its
classical counterpart, where it acts as a tuning parametes@the transition [see Eq.(1.6)]. Near
a quantum critical point (QCP), temperature provides a loergy cutoff for quantum fluctuations;
the associatedinite time-scale is defined through the uncertainty relation~ 1@% This same
phenomenon manifests itself as a boundary condition in#yafan path integral; it is in this sense
that temperature plays the role ofiaite-size effect in timeat a quantum critical point. [125-129]
The interplay between the scale-invariant quantum ctifloatuations and the temporal boundary

condition imposed by temperature is reminiscent of the i@mseffect,[130-132] where neutral

metallic structures attract each other [133-137] due to-peint vacuum fluctuations.

This chapter is organized as follows. In Sec. 3.2, we expllogeobservable ramifications of
temperature as a temporal Casimir effect, applying it taettemple of a quantum ferroelectric crit-
ical point (QFCP) where detailed interplay between theowy experiment is possible below, at and
above the upper critical dimension. Our work is motivateddxgent experiments on the quantum
paraelectric (QPE) SrTig(STO) wherel /T behavior is measured in the dielectric susceptibility
near the QFCP.[30-32] In Sec. 3.3, we show how this resulniglg obtained using finite-size scal-
ing (FSS) in time; more generally we present similar deidvet of several measurable quantities,
recovering results that have been previously derived usioge technical diagrammatic,[138—-141]
large N [142], and renormalization group (RG) methods.[143, 1&44ddrticular, we present a sim-
ple interpretation of finite-temperature crossover fuordi near quantum critical points previously
found usinge-expansion techniques,[144] and link them to ongoing lemyterature experiments

on quantum paraelectric materials. In Sec. 3.4, we illtssttese ideas using a Gaussian theory
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to characterize the domain of influence of the QFCP and weeptdke full phase diagram. Next
in Sec. 3.5, we expand upon previous work by tuning away freenQFCP, studying deviations
from scaling; here we find that coupling between the softijmdtion and long-wavelength acoustic
phonon modes is relevant and can lead to a shift of phase boaadand to a reentrant quantum
ferroelectric (QFE) phase. Finally in Sec. 3.6, we end wittiszussion of our results and with

guestions to be pursued in future work.

3.2 The Casimir Effect

The Casimir effect results from the interplay of zero-pdinottuations and boundary conditions,
and leads to the attraction between two parallel conduqgtiates in a vacuum.[130, 145, 146]
It was one of the first predicted, observable consequenceaafum fluctuations. Because the
Casimir force scales inversely proportionally to the fayrbwer of the plate separatianit is only
measurable whedmis quite small (micron regime). Recently, the Casimir pheanon has assumed
a new importance in the design of nanoscale devices.[133-143] Generalizations of the Casimir
effect to critical systems with external constraints comdi to be fruitful [131, 132, 148-150]. In
this section, we revisit the Casimir effect, recoveringvesly derived results [130, 151-155], and

show how it is related to the critical fluctuations of the pation field in quantum paraelectrics.

3.2.1 The Casimir Coefficient

The Casimir effect results from the effect of boundary ctiads on the zero-point fluctuation
modes of the electromagnetic field. We will consider the $@sipcase of two parallel conducting
plates. The energy\&, is the finite difference between the zero-point energigh amd without
the plates,[130, 151-154] and the force is then the spai@tative of AE. The component of the
electric field parallel to the conducting plates must vaniere are two sets of modes that satisfy
this condition: the transverse electric (TE) and transvenagnetic (TM) modes where the electric

or magnetic field are respectively parallel to the plat&&]IThe electric field for the transverse
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electric field modes is given by

ET(&,2) = Z Egn(2 x 41)e' ™ % sin (%z) , (n>0) (3.1)
(TL,TL>0

wherer andz are the co-ordinates parallel and perpendicular to theplaspectively, is an inte-

ger, andE, is the Fourier amplitude of the fields. There isme-= 0 TE mode. The corresponding
e i . S o — O

magnetic field is calculated using Faraday’s equatiéns £ = —0B/0t, or B = EV x K. The

magnetic field for the TM field modes is given by

B™(z, 2) = Z Bgn (2 x G1)e'7 cos <%Tz) , (n>0). (3.2)

qL,n>0

We note that there is one extra= 0 TM mode. The corresponding electric fields are computed

2

, = = 10FE o > = ,
from Maxwell’'s displacement current equati®x B = — — or E = ——(V x B). The Fourier

c2 Ot w

modes of these fluctuations thus involve a discrete set ogvemiors,

Jn = ((ﬁ_a QZTL)a (33)

whereg.,, = nm/a andn is an integer, leading to a discrete set of normal mode freciesw;, , =

c cﬁ + ¢2, [see Fig. 3.1], where is the speed of light.

The zero-point energy of the fields inside the plates is gbxen

&;zz%m S % (3.4)

qL qL,m>0

where the first term is the zero point energy of the- 0 TM mode, and the second term counts the
zero point energy of the TM and TE modes with> 0. We may rewrite these two terms as a sum

over alln, both positive and negative, as follows

fo =" S e (3.5)

n=—00 ¢,
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P

Figure 3.1: Schematic of the Casimir effect indicating thetnormal modes of the electromagnetic
field between two conducting plates occupy a discrete setwévectors. In the transverse electric
(TE) modes the electric field lies parallel to the plates and 1. In the TM modes the magnetic
field lies parallel to the plates and > 0. The modification of the frequencies of the zero-point
fluctuations by boundary conditions changes the energyeofyilstem, creating a pressure on the
plates.

d?q.
(2m)?’

fic — d%q. 5 5
o= A? n;oo/w\/ q7 + Gz (3.6)

The quantity€-/A determined from Eqg. (3.6) is dimensionally of the foféix:/A] = hc[L~3].

In the continuum limit we Iequ — Af whereA is the area of the plates, to obtain

Because: is the only length scale in the system, it follows that thenggin the zero-point energy

must have the form

=K—. (3.7)
The fact that this Casimir energy is sensitive to arbitragriplate separatiom, is a direct conse-

guence of the gaplessness, and thus the scale-free natheepfoton field.

The traditional calculation of in the Casimir energy Eq. (3.7) is performed using a regedari

tion procedure enforced by a zeta function.[130, 151, 158FHwe present an alternative derivation
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in which we calculate the necessary sums by exploiting thetsire of the Bose function and the
residue theorem of complex analysis. This approach is @etttrthe Matsubara formalism[157]
used to study many-body systems at finite temperature. fidreriet us take a brief diversion to de-
scribe the technique in general before applying it speditawvards the calculation of the Casimir

coefficient.

3.2.2 The Matsubara Method

We begin by noting that the Bose function

1

np(z) = helkeT _ 1 (3.8)

has poles on the imaginary axis [see Fig. 3.2} at iv,,, wherev,, = n27kpT/h, because

eihn /kBT _ 2mni _ 1 (3.9)

Next we take
z = 1ivy + 0, (3.10)

whered is small so that is slightly off the imaginary axis so that

1 kgl

np(iv, +0) = T 1~ s (3.11)
from which we see thatzT is the residue at each of the poles- iv,, of np(z), so that
kT

If we have a functionF'(z), that does not have poles on the imaginary axis, we can use the
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Figure 3.2: Contour integration pathused to sum over the Matsubara frequencies.

residue theorem and Eq. (3.12) to write

j{sz(z)nB(z) = 2mi Z kBTTF(il/n), (3.13)
c n

where( is a contour that encircles the imaginary axis in a clockvesese, as shown in Fig. 3.2.

Equation (3.13) can be rearranged to read

> Flivn) = — ¢ -—F(2)np(2), (3.14)

which is a key result in the Matsubara approach used to eeatiians that emerge in the study of

many-body systems at finite temperatures.[157]
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We will now apply Eqg. (3.14) to the specific case of the Casuoogfficient. To do so, we must
identify the summations that we need to calculate. We begjin the zero-point energy per unit

area (3.6)

& he d?
L5 e (3.15)

We are interested only in themange in the zero point energy as a result of the plates. In the it

infinite plate separatioru(— oo) the discrete interval i9.,,, Aq., = 7/a, becomes infinitesimal,

Agq a
7T—/a = ;fdQZ'

Therefore the change in the zero-point energy per unit aredalthe presence of the plates is given

and the sum over. in Eq. (3.15) can be replaced by an integpd|, = >

n

by

d2
— hica / U 1(q1,a), (3.16)
a—o0 ™
where

1 dQZ
I(qi,a) = %Z\/qiwﬁn—/%\/qiwi (3.17)

By making this subtraction, we remove the ultraviolet djesrces in the zero-point energy. By

using the Matsubara method, we can reexpress the sum in Ed) ¢

1
2ac

Zn: V(eqr)? + (cgn)? = ﬁ Zn: F(ivy,), (3.18)

where
F(z) =4/c2¢} — 22 (3.19)

We associate the discrete wavevectgrs, with a “Matsubara frequencyy,,, = v,,. Then

2k T
CQon = anl =n < ki C> , (3.20)
a h
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(a) (b)
—cqL \ cqu —cqy cq. Flw+id)
=_——_ = @
C

. . . 1 .
Figure 3.3: (a) Contour integration pathused to calculateﬁﬁ— >, F(iv,) in EQ. (3.23), where
C

F(z) = y/c*¢® — 22, showing branch cuts if(z) atz = +cg,. (b) Distortion of the contour

into contourC” that wraps around the branch cutsfofz). The integrand of the integral along the
branch cuts is the differendé(w + i0) — F(w — id) between the value of(z) above and below
the branch cut.

where the effective Casimir temperature is given by

h
kpTo = —=. (3.21)
2a
so that
1 2a
= =, 3.22
Bc reTo = e (3.22)

We note thafl > scales inversely with the plate separati@i (~ 1/2a).

Following the Matsubara approach, the sum in Eq. (3.18) @am lje rewritten as a contour

integral[157] around the poles at= iv,, of the Bose functiomp(z, B¢) yielding

1 . d
%;F(Wn) Z/C—Z.F(z)nB(z,ﬁc)- (3.23)

211

The second term idi(q, ,a), EqQ. (3.17), corresponds to the— oo, or B — oo limit of the
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first term, and thus we may write

I(gi,0) = lim {i | 3=Fe )[nB<z,ﬂo>—nB<z,ﬂ'>]}. (3.24)

B'—o0 c? 211

The subtraction of th6- — oo limit of the integrand in Eq. (3.24) regulates the overatégral
at largez, guaranteeing that the integrand around a contour at ywirhishes. This condition
permits us to evaluate the integral by distorting the cantoound the branch cuts if(z) that

extend fromz = £c¢q, to infinity, as shown in Fig. (3.6). We then obtain

oo -5 ([ / ) Flw+i6) — F(w—ib)] [15(w, ) — 1 — oo}]. (3.25)

To evaluate the branch cut, we note fofw & id) = \/(cq1 )? — (w £ 46)2,
F(w+1i0) — F(w—1id) = w? — (cq1)? sgn(w), (3.26)
is an odd function of, which permits us to replaces (w) by its odd partuz(w) + % to obtain

—cqL _ 1
I(q1,a) = </ / > F(w+1id)— F(w—19)] {nB(w,ﬂc)+§}—{ﬂc—>oo} .
(3.27)
Because the integrand is an even functionupive can replace this integral by twice the integral

over positivew to obtain

I(ql,a) 022/ d: w2—c2 2 |:<an60 —> —{ﬂc—>oo}:|
cqy
= 022 - w? — c2ql np(w, Bc). (3.28)

cqL

The change in zero point energy is then given by

Al 9 d?q | dw
2o _ o, / np(w, fo)yJw? — 2, (3.29)
A w>q | (27T)3 +
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where we have made the substitutiary c = h5c. By carrying out the integral over, , we obtain

Aéc B¢

— = —6W202/dww3n3(w,ﬂc). (3.30)

Rescaling the integral in Eq. (3.30) by changing variabtes + hw/kpT and replacingic =

2a/he, we obtain

Al w2 he
e A NN ¥ L 3.31
A 6212 622 / Yer Z17 72043 (3.31)

in numerical agreement with previous derivations.[13A-41%4] The associated force per unit area

is then

F dAE 7% he 1
i C= T =13x10%—— N/m? 3.32
A da 240 a* 310 (a/pm)4 /m (3-32)

indicating that measurements of the Casimir force must wkoymeed at plate separations at or
below the micrometer length scale. [133-137, 147] Whenwedonducting plates are parallel,

the force is attractive, but it can be repulsive in otheratitins.[158, 159]

3.2.3 The Casimir Effect and Black-Body Radiation

With 551 = kpTc = he/2a [Eq. (3.22)], the Casimir energy density [Eq. (3.30] beceme

AFEqx kBTC
= 3.33
Aa  3m263h3 /dwx " ( )

and is similar to the thermal energy density of black-bodliation [12, 155] in a volumé&” = a A

at a finite temperatur&> [160]. The similarity between the Casimir and the blackbedgrgy
density is testament to their common origin as boundaryitiom effects. Traditionally we think
of black body radiation as resulting from an excitation afrthal modes. Our calculation shows
that the Casimir effect and blackbody radiation are bothsequences of boundary conditions and

the redistributionof zero-point fluctuation modes in the vacuum.
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Recent experiments have observed the Casimir effect betparllel plates with a one mi-
cron separationa( = 1m).[133-137, 147] The corresponding “Casimir temperétiwe these

experiments is

h
Te = 2 ~ 1000K. (3.34)
2akp

The Casimir effect at these length scales couples to the photens that predominate in the black-
body spectrum at 1000 K. The boundary conditions imposethéywto phenomena on the electro-

magnetic field are almost identical.

More generally, zero-point fluctuations play a major rolegaantum phase transitions.[126,
127, 129] The effect of finite temperature in the vicinity of/a = 0] quantum critical point is
the temporal analog of the Casimir phenomenon, a “Casirfécefn time,” where temperature
imposes temporal constraints on critical zero-point flatns. As we will see, there is an intimate
connection between a finite temporal dimension and a norteenperature in a quantum system,
[125-129] and this connection has many observable consegs®n thermodynamic quantities for
guantum critical systems at nonzero temperatures. Hmmaligt this relation can be understood

within the framework of the Heisenberg uncertainty prifheip

h
At ~ —— 3.35
T (3.35)

where a thermal energy fluctuation leads to an upper cutdiffie, the Planck time, that is inversely
proportional to the temperature. More formally, finite-fmmature emerges in a path integral frame-
work as a periodic boundary effect in imaginary time [see. Set4], which becomes particularly
important near a quantum critical point where there existnfum fluctuations on all spatial and
temporal scales. Here, finite-temperature correspondsetoedistribution of quantum zero-point
fluctuations due to the imposition of external constraiatg] thus is analogous to the Casimir effect
for two parallel metallic plates in vacuum. Running thiswargent the other way, we note that the
removal of temporal modes by periodic finite boundary cdond# generates a temperature [and

thus entropy and thermal energy] in a system near a quanttioacpoint.
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3.2.4 The Casimir Effect in Space and in Time

The Casimir effect is a boundary condition response of thetelimagnetic vacuum, as we discuss
in Sec. 3.2.1. The gapless nature of the photon spectrumatieainthe zero-point electromagnetic
fluctuations are scale-invariant; the vacuum is literatyaiquantum critical state. However, once
the boundary conditions are introduced, the system is tamexy from criticality and develops a
finite correlation length{. The Coulomb interaction between two charges, the comel&tinction

of the electromagnetic potential inside the cavity, is gghfrom the vacuum to the cavity as

[\

e 62

V(q) free ~ (00400 —¢) = — — V(q)cavity ~ e £= % (3.36)
1

L=

where the plates have removed field modes and have introdufiritie ¢ [proportional to the only

length scale in the system, the interplate separai]lotn an analogous way, the partition function
of a quantum system at finite temperatures is described bym=nkan path integral over the con-
figurations of the fields in Euclidean space time [161] wheragerature introduces a cutoff in the
temporal direction. In Fig. 3.4 we present a visual comparisf the Casimir effect in space and in
time. In both cases, the finite boundary effects induce thiacement of a continuum of quantum

mechanical modes by a discrete spectrum of excitations.

In the quantum paraelectric of interest here, the path iatég taken over the space time con-

figurations of the polarization fiel®(z, 7),

Z = Z exp [— SEFEP]] , (3.37)
{P(z,7)}
where
h/kgT
Sp[P] = / drd®xz Lp[P] (3.38)
0

and Lg[P] is the Lagrangian in Euclidean space time. The action pdrtumeé is now the Free
energy I’ of the system [see Table 3.1]. The salient point is that fitdétaperature imposes a

boundary condition in imaginary timend the allowed configurations of the bosonic quantum fields
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Space Time

(a) / (b) \

. |
h
F// nz=1
o
/
E() = E;, €™ 7sin (%@) Pn(f, T) _ Pn(f) T

Figure 3.4: Casimir effect in space and time. (a) Imposibbspatial boundaries on the quantum
critical electromagnetic field yields the conventional i@as effect. (b) Imposition of temporal
boundary conditions on a quantum critical paraelectricegates the effect of nonzero temperature.

are periodic in the imaginary time intervale [0, 48] (8 = ,CB%T) so thatP(Z,7) = P(Z,7 + i),

which permits the quantum fields are thus decomposed in tefimsliscrete set of Fourier modes

Po(#,7) = Y P(q,ivy)e!TTn7) (3.39)

q)n

where

vy =n <2W’;BT> (3.40)
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Table 3.1: Casimir effect and quantum criticality.
Finite-temperature effects

Casimir effect near quantum criticality
Boundary condition Space Time
“S matrix” U = e tBt/h Z =e PF
Path Integral U= /D[gzb] exp [iS[¢]/h] Z = /D[P] exp [-Sg[P]/h]
Action/time E Sg/Bh=F
Time interval t(— o0) Bh
Spatial interval a 00
Discrete wavevector/frequency Gen = (m/a)n vn, = (27kgT/h)n

are the discrete Matsubara frequencies [see Eq. (3.20)jeeal that atl’ = 0 the (imaginary)
frequency spectrum is a continuum. The response and diorefanctions in (discrete) imaginary
frequency

XE(q_: iVn) = <P(q_: iVn)P(_Ja _iVn)> (341)

can be analytically continued to yield the retarded respduasction

XE(q_; iVn) - XE(q_; w) = XE(q_; z)|z:w+i(5 (342)

wherew is a real frequency; for writing convenience we will subsemfly drop the E subscript in
X, €.9.x(¢,w) = xB(7,w).
Like the parallel plates in the traditional Casimir effdetnperature removes modes of the field.

In this case it is the frequencies not the wavevectors tlsainas a discrete character, namely,

q = (q;w) = (q,ivn), (3.43)

wherev,, are defined in Eq. (3.40).

The Casimir analogy must be used with care. In contrast totimnteracting nature of the
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low-energy electromagnetic field, the modes at a typical @Finteracting. In the conventional
Casimir effect, the finite correlation length is inducedguthrough the discretization of momenta
perpendicular to the plates. By contrast, at an interaciGgp, the discretization of Matsubara fre-
guencies imposed by the boundary condition generates d¢ne#h fluctuations in the fields in real
time. These are fed back via interactions to generate a tatye-dependent gap in the spectrum
and a finite correlation time. Despite the complicated matirthis feedback, provided the under-
lying system is critical, temperature acting as a boundandition in time will set the scale of the

finite correlation time

h

f’r = likBT’

(3.44)

wherex is a constant. In cases where the quantum critical physigsversal, such as ferroelectrics
in dimensions below! = 3, we expect the coefficient to be also universal and independent of
the underlying strength of the mode-mode coupling. The fteral confinement” of the fields
in imaginary time thus manifests itself as a finite respoise tin the real-time correlation and

response functions.

For the quantum paraelectric at the QFCP, the imaginary tioneelation functions are scale-

invariant
1
7,iv) = (P({,iv)P(—q,—1i ~ . 3.45
x(q,iv) (P(q,iv)P(—q, —iv)) oA (3.45)
At a finite temperature this response function acquires tefaarrelation time
(q,ivy) ! (3.46)
R '
where
&% =37, {{P*) 0 — (P*)7—0} (3.47)

is determined by mode-mode interactions, whegrés the coupling constant describing the quartic
interactions between the modes, to be defined in Sec. 3.4.0e as shall be shown explicitly in

Sec. 3.4, that for dimensionssuch thatl < d < 3, the feedback will be sufficiently strong such
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that&, will be independenof the coupling constant,.; by contrast ford > 3 the feedback effects
are weak so that there will beya dependence of;. The casel = d = 3 is marginal and will be

discussed as a distinct case. At a temperature above a quaritical point, the energy scale

A(T) = akpT (3.48)

will set the size of the gap in the phonon dispersion relatidere A(T') ~ ¢! anda = O(1) is
a constant of proportionality.

Reconnecting to our previous discussion, we remark thaitirea response functions from
expressions like Eq. (3.46) are obtained by analytic coation to real frequencies,, — w. Since

&~ % the dielectric susceptibility in the approach to the QF@PR the temperature dependence

1

T2 (3.49)

X(T) = xl(q,ivn) ~ &
q=0,v=0

in contrast to the Curie formy(~ %) associated with a classical paraelectric; 1hi&? temperature-

dependence was previously derived from a diagrammatiomestion,[138, 139], from analysis of
the quantum spherical model[142] and from renormalizagjooup studies.[143, 144] We note that
this 1/7°% behavior in the dielectric susceptibility of the quanturigegectric has been observed
experimentally.[31, 32, 162] We summarize in Table 3.1 thie between the conventional Casimir

effect and finite-temperature behavior in the vicinity of &)

3.3 Finite-Size Scaling in Time

The spatial confinment of order parameter fluctuations neksaical critical point has been studied
as a “statistical mechanical Casimir effect”, [131, 1489]1dnd here we extend this treatment to
study the influence of temperature near a QCP using FSS irinarg@gime. This scaling approach

is strictly valid in dimensions less than the upper critidimhension. Quantum critical ferroelectrics
in d = 3 lie at the marginal dimension = d + z = 4), so the scaling results are valid up

to logarithmic corrections, which we discuss later [see. 3e8]; herez = 1 refers to a linear
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Figure 3.5: Schematic of finite-size effects (a) at a classind at a (b) quantum critical point where
the appropriate lengths are defined in the text.

dispersion relationy = c.q.

Following the standard FSS procedure,[125, 163, 164] wegafoundaries on the system near
its critical point. For a classical system with tuning paeten: = % and correlation lengtl,
we confine it in a box of sizé and then write the standard FSS scaling form

x=t"f (%) (3.50)

for the susceptibility.[125, 163—165] Similar reasonireg de used when a system is near its QCP.
Here temperature is no longer a tuning parameter, this sdkken over by an external tuning field
g. Temperature now assumes a new role as a boundary conditiomé. Introducing a fixed.,

[see Fig. 3.5(b)] associated with a finife while replacingt — g, the quantum critical version of
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Eq. (3.50) is

x=g '@ (%) ; (3.51)

whereyg is the tuning parameter. The dispersion relatios c¢;¢* yields[¢;] = [¢*]; this combined

with € ~ g~7 leads to¢, ~ g—*”. We therefore write

X =g 1P < ?i) , (3.52)
g zZV

where®(x) ~ zP is a crossover function whepds determined by the limiting values &f(z); when
x — 0, we expecty = x(L;), whereas we should recover the zero-temperature reguit )

whenz — oco. Therefore we obtain

/7..

_ L, \= X _x
g <g_zﬂ> L T (3.53)

and the temperature-dependenée (x 1/7") emerges naturally from FSS arguments. Therefore a
(T = 0) quantum critical point can influence thermodynamic properof a system at finité’ just

as a finite-size system displays aspects of classicalarjiltenomena despite its spatial constraints.
A schematic overview of the finite-size scaling argumentshaee presented here is displayed in

Fig. 3.6.

The FSS approach can also yield thia@lependences of the specific heat and the polarization of

a quantum critical paraelectric. At a finite-temperaturagghtransition, to obtain the specific-heat

~

capacity of a finite size box with << ¢, we write f ~ t27*F(L/€) ~ 27 (t%)_@_a)/ﬂ

L=(2=)/7 In a similar spirit, applying the quantum FSS analogies¢ L., t — g, — & =

g~*"), we obtain
(2-a)

2—«

92— L7— Ten _27~a
fqm(LT) ~g" <g—217> ~ Ly = ~T7%0 (3.54)

so that theél'-dependent specific heat is

Co(T) = Ty JOT? ~ T75 1 (3.55)
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Classical to Quantum Scaling

T
Classic Quantum
t g
. L o~ (L
—+ 7P (_) =y TP (_T)
X ¢ X=49g £
L<<§ Ly <<&r

Figure 3.6: Overview of the finite-size scaling at classaa quantum critical points; hefeis the
exponent associated with the spatial correlation lengitesi has already been used in the text as a
frequency.

in the vicinity of a QCP. Similarly th€" dependence of the polarization B{T") ~ T% and we
note thatP(E) = 8f,m/0E|,—0 ~ E'/° is T independent, since finite-temperature scaling does

not affect field behavior.

Simple scaling relations at classical and quantum criticate summarized in Fig. 3.6. The key
notion is that at a QCP, finit& effects correspond to the limii, << &;; in this casel, becomes
the effective correlation length in time, and thedependences follow. We note that we expect this
finite-size approach to work for dimensiods< d? where there will be logarithmic corrections to

scaling in the upper critical dimensiafy.

Let us now be more specific with exponents for the quantumetectic case. At criticality the

observedl” dependence of the paraelectric susceptibility¢an be found by a soft-mode analysis,
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Table 3.2: Observables forla = 4 QPE in the vicinity of a QFCP.

T dependences g dependences
Observable (g=0) (T=0)
Polarization P~T! P~ g'/?
Susceptibility x~T72 X~ gt
P~ E1/3

X(@,T) = (1/w?) F («/T)

[43, 91] and therefore the exponents for the quantum panaiel@re those of the quantum spherical
model.[142] For the case of interedd (= d + z = 3 + 1 = 4), the quantum spherical model has
exponentsy = 1/(D —2) = 1/2andy = 2/(D — 2) = 1, so thaty;, = -t = 2 and we recover
thexy~! ~ T scaling found earlier. Other specifit dependences are displayed in Table 3.2. For
d = 3, we havey ~ T2; this relation was experimentaly observed [30, 84] in STidaly we note
that the FSS that we have discussed suggestsithecaling form

Xw,T)=—F (%) (3.56)

that is similar to that observed in other systems at quantutioatity;[166, 167] this was previously
derived by more technical methods.[144] Predictions fqregxnent are summarized in Table 3.2.
We note that since we are in the upper critical dimensiomethdl be logarithmic corrections to this
scaling but we do not expect these to be experimentally itapbfor the temperature dependences

described here; however they will be considered later in $€c

3.4 Gaussian Theory: lllustration of Temperature as a Bounary Effect

3.4.1 Gap Equation

In this section we use the self-consistent Gaussian thedltystrate how the¢(7") found via FSS in

time appears from a more microscopic approach; we also shedgrossover behavior between the
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classical and the quantum critical points. This approaéyisvalent to the self-consistent one-loop

approximation[168] that is used in the context of metallagmnetism.

The soft-mode treatment has been described extensivelyietse;[43, 91, 168] here we briefly
outline the derivation of the gap equation. The Lagrangraiuclidean space time&;z in EQ.

(3.38), for displacive ferroelectrics is tii¢ model:
1 c
Lp— 5 [(0-PP + (VP) + 1P + 'YZP4, (3.57)

which determines the partition function. Notice that intimg Eq. (3.57), we have chosen rescaled
units in which the characteristic speed of the soft made- 1. In a self-consistent Hartree the-
ory, interaction feedback is introduced via its renormalon of quadratic terms; this procedure is

equivalent to replacing g by the Gaussian Lagrangian
1
Lo=5P [-02-V*+r+%]P (3.58)

where

¥ = 37.(P?) (3.59)

is the Hartree self-energy [see Fig. 3.7]. We note that tludermode coupling theory is exact for
the “spherical model” generalization ¢f theory in which the order parameter hsiscomponents

andN is taken to infinity.

The Green'’s function can now be determined from Dyson’s gguashown diagrammatically

in Fig. 3.7, and takes the form

Glq) = G(qivn) = [(imn)? = —r—%] ", (3.60)

so the action is diagonalized in this basis. The poleS(@f w) determine the dispersion relatian
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Figure 3.7: Diagrammatic representation of (a) the Dysaratign and (b) the Gaussian self-energy
where Py = 0 in the paraelectric state (and is finite in the ferrelecthage).

for the displacive polarization modes
wp =q° + A%, (3.61)
where here we have introduced the gap function
A*(r,T) = r +X(r,T). (3.62)

This quantity vanishes at both quantum and classical afigioints where there are scale-free (gap-
less) fluctuations. At the quantum critical point whéte= 0, A(r.,0) = r. + 3(r.,T = 0), SO

that we can eliminate, = —%(r.,7 = 0), to obtain
A*(r, T) = O + [3(r, T) = S(re, 0)), (3.63)

whereQ3 = (r —r.) = g.

The amplitude of the polarization fluctuations is given by

(P) = =6(0.0) = =55 Y Gl (3.64
q
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so the self-consistency Eq. (3.59) condit®n= 3+.(P?) can now be written

X(r,T) = (=37.) TZ/ G(q,ivy), (3.65)

whereX(r,T) is the temperature-dependent self-energy. By convertiegdiscrete Matsubara
summation to a contour integral, deformed around the poles+w(q) in the dispersion relation,
we can convert this expression to the form

ddq [nB(wq) + %]

2(r7) =37 [ T , (3.66)

Wq

where we denote(w) = np(w, ) = 1/(e’ — 1). Atthe quantum critical point(= r. and

T = 0), we havev, = ¢ andn(w,) = 0 so that

dig 1
Y(re,0) = 3%/W%a (3.67)
and using Eqg. (3.63), we can write the gap function as
d’q [nB(w )+ l] 1
2 2 q 21 —
Wy = @+ A2 (3.68)

3.4.2 T Dependence of the Gap at the QCP

In the paraelectric phases, we can use the temperaturedtsgiegap to determine the dielectric

susceptibilityy. Writing

, (3.69)

we use Egs. (3.60) and (3.62) to express it as

x Y, T) = A%(r,T). (3.70)
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At the quantum critical poin22 = 0, so the gap equation Eg. (3.68) becomes

) - a<tmer ddq [np(wg) +5] 1
A%(re,T) = 3%/0 (27r)d{ VE+ A? Qq}’ (3.71)

where we have inputted the dispersion relation, Eq. (3f61),, in Eq. (3.71). We notice that both

thermal and quantum fluctuations contribute to this exjprass

Even though the mean-field gap equation is only formally eixetfie spherical mean-field limit,
it is sufficient to illustrate the qualitative influence Bfon the gap at the QCP. In order to explore
the cutoff dependence of Eqg. (3.71), we note that in thewidilet limit of interest, the last two

terms can be expressed as

1(1 1 A2
B e 3.72
2{wq q} 15 (3.72)

where there is complete cancellation wh&n= 0 exactly at the QCP. However just slightly away
from it, whenA is finite, Eq. (3.72) leads tog;.> scaling dependence of the integral in Eq. (3.71);
therefore the cutoff is required to ensure that Eq. (3.71ipite in dimensionsi > 3. However, in
dimensionsd < 3, this integral is convergent in the ultraviolet and the uppeéoff in Eq. (3.71)
can be entirely removed. Thus, fér< 3, the only scale in the problem is temperature itself. The
integral is also convergent in the infrared provided 1. The spatial dimensiong= 1 andd = 3
correspond to space time dimensiails= d + 1 = 2andD = d + 1 = 4, which are the well-
known lower and upper critical dimensions of #&theory. This provides us with a dimensional
window 1 < d < 3 where inverse temperature acts as a cutoff in time. In tiigeathe temperature
dependence of the gap

A(T) = agT (3.73)

is independent of the strength of the coupling constanand the cutoff, a feature that can be
illustrated already within mode-coupling theory. RecgllthatA (7)) = 7- anda = a4 [see Eq.
(3.48) and Fig. 3.4], we note that confirmation of Eq. (3.83)ansistent with our earlier discussion

[see after Eq. (3.47)] that. is independent of coupling constant; in this dimensionaideiv,
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Figure 3.8: Dependence of;(T" — 0) on dimensionalityl. Inset: T dependence ok /T for d = 2
and coupling constants in the rang®1 < w < 5.0; hereTy is the temperature scale where

¢ ~ a and we note thaim7_.g as is indepengéﬁt Of.

temperature is a boundary effect in (imaginary) time antésanly temporal scale in the problem.

In order to calculatey,, we rewrite the gap equation at criticality as

A2 5 e  ¢@=1dg ( [nB(wq) + %] 1
2" T Pd/o (2m)d { Wq B Z}’ (3.74)

whereT'y¢?ldg (Ty = ngdd//;)) is the d-dimensional volume measure. Rescalg «4T and

q = uT', we obtain

Fyla] = T %af /e (3.75)
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where

Fd[a]

© . (eoth(AvVuZ+a2) 1
N (d/2)/ u du{ A u} (3.76)

Notice that ford = 3 — ¢ [d — 3], Eq. (3.76) contains a singularity 6f(a?/¢). Therefore we split

off the singular part of Eq. (3.76) as follows

Falel = 5y )3 T(d/2) [ /oooud_ld“ <00th(%{w/g)_l>
r(izd)
e () @77
yielding
Falel = 5y )3 r(d)2) [ /0 udu COth(%)_l
- T (W)] (3.78)

provided(1 < d < 3). The first term in this expression is a smooth positive flarctof d anda,
whereas the second is a singular negative functiothwith poles atd = 1 andd = 3. Ford < 3,
the temperature prefactor on the right-hand side of Eq.5f3v@nishes’ — 0, so a consistent
solution requiresy, to satisfy

Fylag) = 0. (3.79)

In Fig. 3.8 we display the dependencecgfon dimensionalityl < d < 3. We notice thaty,
goes to zero as the dimension approaches the lower crifivangiond., = 1, anday vanishes in
the vicinity ofd ~ 3 asay ~ /3 — d, consistent with previous calculations [144]. At a small

finite temperature, we can expand aroune o4 + da(T'), to obtain

2

_ @ —d
A(T) = aqT + <% F’C[lad]> T4, (3.80)

Thus in dimensiond < 3, the dominant low-temperature behavior is independemnt,dhe strength
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of the mode-mode coupling, which enters into the subleatiéngperature dependence. The tem-
perature dependence of the gap in two dimensions is showreimset of Fig. 3.8, where we see

thatlimr_.g as = 0.96 is the same for all couplings.

Ford = 3, the linear coefficient oA(7") depends ony., becoming independent of. in the
limit that v. — oo ; here we have neglected logarithmic correctiona4nWe remark that here we
are presenting and expanding a previous analysis[142hqtiat they. independence ok, for
d < 3 can be understood via the insight that temperature is a laoyredfect in time. According
to Egs. (3.75) and (3.76), we writ€Z = ~.F3[a] and solve foras in the limit of upper cutoff

Umaz = Qmax/T = 27TTO/T >> g,

Ye
as(T,ve) ~ . 3.81
3( ’Y) \/1_’_’}/0(%)111(%) ( )

In the limit of strong couplingas ~ [ln(‘l’}ﬁ)]_m is 7. independent. For weak coupling, the
situation relevant herey; is indeed a function ofy. but remains independent of temperature so
that A ~ T according to Eqg. (3.73); temperature dependences dereddmould therefore be in

agreement with those found from a scaling perspective wisgrtirect comparison is possible.

3.4.3 Temperature-Dependent Dielectric Susceptibility

To provide an explicit illustration of the above calculats) we now use Egs. (3.68) and (3.70) to
numerically determine the temperature-dependent pataelsusceptibility in the approach to the
quantum critical point (QCP) id = 3. We obtainy~(T) = A2 ~ T? for the approach = r,

in agreement with previous results and discussion. We hateat similar analysis in the vicinity of
the classical phase transition leads to the expected Qus@ptibility [y =*(7" — 7.5 >> 0) ~ T
since in this (high) temperature regime the Bose functiofedn (3.71) scales a%. We also

remark that if we assume that = &y with no ¢ dependence then we recover the Barrett[169]

ﬁ(:)() .

expressiony ! ~ A + Bcoth {24

because the disperson is constant ariddependent this

approach is not applicable near quantum criticality whbeegap vanishes and tlhedependence
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becomes important.

One more point needs to be considered before we proceed wittet-consistent Hartree the-
ory. In the self-consistent Hartree theory (SCHT) of thedelectric phase, the polarization field
Py acquires a nonzero valué} enters the Lagrangiafg in Eq. (3.57) as? = Py + P, where
0 P are fluctuations of the polarization field around its meame&al, [P, = 0 in the paraelectric

phase]. The self energy Eq. (3.59) becomes
¥ = 37.(P?) = 3. (P} + (5P?)) (3.82)

as indicated diagrammatically in Fig. 3.7. The equilibrivadue P, is easily obtained by introduc-
ing an electric field into the Lagrangian by replacifig — Lg + E - P, then seeking the stationary
point6S/§ Py = 0 which gives(r Py + 37.0P?Py + v.P§ — E) = 0, or

E
r+ % —2y.P = 5 =0 (3.83)
0

at zero electric field. According to Eq. (3.62)2(r,T) = r + X(r,T), so that the spectral gap in
the ferroelectric phase is

A3 (r,T) = 27.F§(r,T) > 0. (3.84)

In Fig. 3.9(a) we plot the calculated temperature-depensieectral gap\(r, 7') for three dif-
ferent values of- as indicated in its schematic inset. As expected, for thetgma critical (QC)
regime [2] the spectral gap closes exactlyiat= 0 leading to a linear dispersion relatian,= ¢
at the QCP. We note that in the quantum paraelectric (QRHEdr y '] is constant. In the quan-
tum ferroelectric (QFE) agaii is constant; though there exists a classical paraeldetnioelectric
transition atl’ = T, wherex~! ~ (T — T.). The static dielectric susceptibility in the vicinity of
the QCP (low T) is presented in the same thraegimes in Fig. 3.9(b) where we see that in the
QPE regimey (T — 0) saturates, at the QCRT') ~ T'~2 and diverges a& — 0. In the QFE, the

susceptibility also saturates at low temperatures, thdhgrCurie law is recovered in the vicinity
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Figure 3.9: Temperature dependence of the a) spectral ghp)ahe dielectric susceptibility for
three temperature scans defined in the schematic insety henre— r..

of the classical transition &t = T..

Fig. 3.10 shows the phase diagram that results from theceeHBistent Hartree theory. This
figure serves to emphasize how the strictly zero-temperd@E€P gives rise to a quadratic power-
law dependence of the inverse susceptibility on temperaiver a substantial region of tHe— g

phase diagram.

The crossover temperaturg, between Curiex™! ~ T) and quantum criticaly(~! ~ T7?)
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Figure 3.10: T-g phase diagram as determined by a selfstensianalysis of the dielectric suscep-
tibilty. The power law exponents are depicted in differesibes via the functiondm(#"_%. This
expression selects the exponerblue region) fory~! ~ 72 [T, = 0 for QCP], exponent (green
region) for classical Curie behavigr—' ~ (T' — T,) and exponen@ (red region) for a constant

susceptibility.
behavior in the susceptibility is defined by the expression

hwo

1o

wherewy = <= is the characteristic soft-mode frequeney,is the soft-mode velocity, and is

the lattice spacing. Here we have assumed a simple bandustugq) = wqsinga such that

dw

= = (wpa) cos qa|q:0 so so thatvy = <= as stated above. The factorf in the de-

q=0
nominator of Eq. (3.85) results from the observation thatsparation of the poles of the Bose and
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Fermi functions in the complex frequency planeNs,, = 27k, which sets the natural conver-
sion factor between temperature and frequency t®ddg;. T; also corresponds to the temperature
when the correlation length is comparable to the latticestaont € ~ «); here the correlation length
£= 5—0 ~ ¢~ 1/2 [see Eq. (3.52)]. Neutron-scattering measurements[17@ieadispersion relation
indicate that the soft-mode velocity in STOds~ 10%m/s and the lattice constant has been mea-
sured [15] to beisTo = 3.9 x 10~ 1%n; thereforeT, ~ 30K . We note that withO'® substitution,
the ambient pressure Curie temperature[30Q[.is~ 25K . Using the values of, andasro from
above, we gety ~ 2.6 x 10'3 Hz in SrTiO;. The typical frequenc§2, = ¢'/2 [spectral gap at zero
temperature] at which one observes the change in behavibe idielectric susceptibility [exponent
2, blue region] is thus from Fig. 3.1, ~ 1072 wy = 2.6 x 10! Hz. Indeed, Raman scattering
on ferroelectric SITfO3 [T, = 25K] shows that the zero temperature Raman shift [171] is about

10 em~! which translates int6), ~ 3 x 10'' Hz, in good agreement with our calculation.

3.5 Coupling to Long-Wavelength Acoustic Modes

3.5.1 Overview

In a conventional solid, broken translational symmetryglfeto three acoustic Goldstone modes. At
a ferroelectric QCP, these three modes are supplementedebgranore optical zero modes. This
coexistence of acoustic and optic zero modes is a uniqueegyopf the ferroelectric QCP, and in

this section we examine how their interaction influence€nable properties.

The gap of the optical modes in a ferroelectric is sensitiviaé dimensions of the unit cell and
couples linearly to the strain field. This leads to an indkgacoupling between the critical optical
mode and the long-wavelength acoustic phonons that musirsedered. To address this issue, we
consider the effect of a coupling between the soft polarization and the strain field created by
single long-wavelength acoustic phonon mode. Softenirth@folar transverse optic (TO) mode
near the QCP enhances the effect of this coupling. UsingrBioeal analysis we find that the cou-

pling between the TO and LA mode is marginally relevant in phgsically important dimension
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d = 3, and thus can not be ignored. The main result of the analysiet the acoustic phonons act
to soften and reduce the quartic interaction between the ppbnons. Beyond a certain threshold
n > n., this interaction becomes attractive, leading to the dgraknt of a reentrant paraelectric
phase at finite temperatures. We note that such a couplingptesic phonons has been considered
previously,[139] and here we are rederiving and extendimgy pesults in a contemporary frame-

work.

3.5.2 Lagrangian and Dimensional Analysis

We introduce the coupling of the polarizatioR ((z, 7)) and the acoustic phonow (Z, 7)) fields as

a coupling of the polarization to strainnV¢P?; we then write the Lagrangian [139] as
1 -
CEP,¢] = L[P+ 5[(0:0)* + &(Ve)?] — nVeP?, (3.86)

whereLg[P] is our previous Lagrangian without acoustic coupling gireeqg. (3.57). Here the
constantn is the coupling strength to the acoustic phonon; the lattdynamics are introduced
in the bracketed terms of Eq. (3.86). Since we are using umitghich the velocity of the soft
optical phonon is ong; = i—a is the ratio of the acoustic to the soft optical phonon vélesi We
will discuss the restoration of dimensional constants in B386) when we make comparison to

experiment in Sec. 3.5.6.

We begin with a dimensional analysis of the couplings tosstweir relative importance in the
physically important dimensiod = 3. In order to do so, we introduce the RG flow by rescaling

length, time, momentum, and frequency
r_ T / /
T = N qg =qA, vV =vA, (3.87)

with constantA > 1 representing flow away from the infrared (IR) limit of the Q@#at is flow

from small to large momentum and frequency. In terms of tiseaked variables’ and 7/, the
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action Eq. (3.38) with Lagrangian Eq. (3.86)dn+ 1 dimensions becomes

S[P,¢] = /dr/ddwﬁEPqﬁ
B/A
= / dr' / dx 'Ad+1 [(Z?T/P)2+(V’P)2+(8Tr¢)2+(v’6¢)2

n 5QOP2 Z%P‘l AT 1v ¢P2}. (3.88)

We emphasize that we write? = r — r. as the coefficient of th&? term in the Lagrangiat. ;[ P]
[Eq. (3.57)], entering Eq. (3.86) in Eq. (3.88), since our Ry starts from the QCPr(= 7).

RescalingP, ¢, 2, 7. andn, so that the action Eq. (3.88) assumes its initial form, wigewr
P'=PAT, ¢ =0AT, (Q3) =032 A=A o =gA> T, (3.89)

which leads to

B/A
S[P,¢| = /O dr’ / d' Lp[P, ¢']. (3.90)

Now the fields, the mass term, and the coupling constants fiometv values leaving the action
unperturbed. We remark that the upper cuttoff in the imaginene dimension is replaced by

infinity as the temperaturé ~ % approaches zero.

Analyzing the RG expressions in Eqg. (3.89), we find that®jeerm grows as we flow away
from the QCP IR limit; therefore it is a relevant perturbatigarameter independent of dimension
d. This is consistent with the fact th@2 = r — r. = g tunesthe system away from the QCP.
Similarly we find that couplings. andn grow (relevant) in dimensiod < 3, decrease (irrelevant)
in dimensiond > 3, and do not change (marginally relevant)dn= 3. We see that in this case
(d = 3) the coupling to acoustic phonong)is equally important as the mode-mode coupling (

and thus has to be included to the Gaussian model.

Let us now briefly summarize what we know abautbefore we proceed to the discussion of
the acoustic coupling. In Sec. 3.4.2 we found that the spectral gaps independent ofj. for

dimensionsl < d < 3 in the zero-temperature limit [see Fig. 3.8]. This is in agnent with
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Figure 3.11: Diagrammatic representation of the self-gynénat includes coupling to both optical
and acoustic phonons. Hefgis the renormalized coupling, including the exchange of@uatic
phonon.

the above results, wherg is a relevant perturbative parameter; more precise asdly&b] shows

~. flowing to the nontrivial Wilson-Fisher fixed point:. Here all the system properties become
functions ofy} + dv. ~ ~;, and so arey. independent. On the other hand, in dimensidns 3
andd = 3, v, flows to zero (with logarithmic corrections in the marginake). In these cases the
system properties are functions®f. and thus are. dependent; we have already seen an example

of this behavior in the specific case of tthe= 3 spectral gap.

3.5.3 Gap Equation

We are now ready to explore how the system’s low-temperdiahavior changes in the presence
of acoustic phonons in dimensieh= 3. Let us look first at the LA phonon field. Following
the procedure of Sec. 3.4.1, we find the acoustic Green’'ditumand dispersion relation from Eq.
(3.86) to be

D(q) = D(q, iva) = [(iva)? — &), (3.91)
walg) = 2. (3.92)

We emphasize thé? dependency of the new interaction termyV¢P?, in the Lagrangian
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Eq. (3.86). Therefore it contributes to the polarizatioli-eeergy as an additional term inside the
brackets of Eq. (3.58). This new contribution arises duedttzero second-order perturbation and
is schematically shown in Fig. 3.11, where the solid lingespnts the soft polarization TO Green’s
function Eq. (3.60) and the dashed line represents the LA&@sdunction Eq. (3.91). We note
that the interaction represented bya in the self-energy consists of a contribution each from the

coupling~. andn. Thus we can write the polarization self-enedgys a sum of these two terms

X(rT) = Xy.(rT)+ X, (r,T)
3
= (_370)TZ/(§T§3G(%Z.VTL)

d3q . .
+ ey | G Glasiv) Dl i) (3.93)

whereX, is the Hartree self-energy Eq. (3.65) previously calcdateSec. 3.4.1. We remark
that theg? term in the integral fob, arises due to form of the interactioW §). Converting the
Matsubara summation to a contour integral, deformed ardboegolesz, = +w,(q) andz, =
+w,(q) in the dispersion relations of the polarization Eq. (3.61d acoustic phonon Eq. (3.92)

modes, respectively, we can rewrlig in the form [139]

3,(r, T) = —4?72/ (qug ¢ { nspla) + 5] | [nalwa(@) + 5] } . (399

m) wplwg — wj] walwp — w7l

At the quantum critical point, where = r. and7" = 0, the dispersionu,(q) = g andnpg(w,) =

np(wq) = 0 so that

d3q 1
Sy (re, 0) = —dn? / @ T (3.95)

Using Eq. (3.63), we write the gap function [as in Sec. 3.44l]

A2 = Qg + A%c + A%,
3q [ B( (q)) 1] 1
2 p 2
A . 3’70/ (d ( nplw - — 1,

27)3 Wy 2q
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Figure 3.12: Schematic temperature dependence of the diatectric susceptibility where cou-
pling to a long-wavelength acoustic phonon is included i ¢hlculation; inset indicates phase
trajectory and region of corrections due to acoustic cogptieep in the QPE phase (yellow).

q — 5=
" 27) wplw? — w2] walw? — w2] 2¢[¢ + 1)¢3

A2 — —4?72/ (d3q3 9 <[n3(wp(Q)) + 3] N [n5(walg)) + 3] ) >7

(3.96)

whereA?YC has been already defined in Eqg. (3.68).

We emphasize that the. andn terms in Eq. (3.96) have opposite signs in their contrilbutio
to the spectral gapr. The negative coefficient of? reflects the fact that it emerges from second-
order perturbation theory; physically it is due to thermahhanced virtual excitations caused by

coupling between polarization TO and LA phonon modes.
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3.5.4 Deep in the Quantum Paraelectric Phase

Let us first explore the effect of the acoustic couplindeep in the QPE region of the phase diagram

[see inset of Fig. 3.12]. Herg>> 0 andA >> T = 0. In this regime, we write

4
x '=A=02+D(A) - A(n) %, (3.97)
with
4n? d3
Ay =TT / G na(en). (3.98)

where derivations ofi(n) and D(A) are presented in Sec. 3.7; for our purposes, the key poiot is t
note thatlima o D(A) = 0. SettingA(n) ~ n?> = 0, we recover a constant expression foas

a function of temperature in the QPE phase consistent witlpayvious derivations from Sec. 3.4.
Forn # 0, the dielectric susceptibility acquires different lowrgerature behavior. The quartic

T4

temperature term in Eq. (3.97%A(n) T

drives the inverse susceptibility at low temperatures;
such a “bump” in the susceptibility [or “well” in the inversaisceptibility, see Fig. 3.12] due to
acoustic phonon coupling has been considered previoud8].[1t is then natural to inquire whether
a finiten could eventually drive the inverse susceptibility to zemor{egative) values. Here we show
that this is not the case. We start by looking for a solutio&qf (3.97) withy~! = A? = 0, and
show that such a solution does not exist. Indeegfat 0, y ! in the QPE phase is nonzero as we
saw in Sec. 3.4. A% # 0, growth of last term in Eq. (3.97) exceeds all bounds andaaequate a

constant ternf23 [notice thatD(A)|a—o = 0]. The inverse susceptibility therefore remains positive

deep in the QPE phase witl],} # 0.

We note that when the temperature increases sahat 7' and we are no longer in the QPE
phase [red in Fig. 3.10], we enter the “tornado” region of P influence [blue in Fig. 3.10] where
x~ ! ~ A2 ~ T2 as was shown in Sec. 3.4. At this point the quadratic teneralependence
dominates and coupling to the acoustic phonons becomemgibég)l as a result a turn-over in the

inverse susceptibility from-7" to +7? dependence occurs [see Fig. 3.12].
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3.5.5 Quantum Critical Temperature-Dependent DielectricSusceptibility

We already know that there exists a classical phase transiti7, for g < 0 andn = 0; for n # 0
could this line of transitions enter the > 0 part of the phase diagram and result in a reentrant
guantum ferroelectric phase near the- 0 QCP? In order to explore this possibility, we study the
temperature-dependent susceptibility near the QCR [at 0] and find that unstable behavior is
possible. Next we follow the line of transitions, wheye! = A% = 0 and show that its behavior is

changed for > 7.

We begin withx (7") in the vicinity in the quantum critical regime whege= 0 [trajectory 2 in
Fig. 3.9]; hereQ? = g = 0 andg ~ w ~ T > 0 at low temperatures. Taking = 0, the spectral

gap Eq. (3.96) becomes

3e N T2
A% =55 / dgqnp(q/T) = av.1? = 15 (3.99)

and we recover the quadratic temperature dependen;g]e,: A%c ~ T2, that was derived in

Sec. 3.4.2.

With n # 0, then contribution to the gap becomes

an’ g np(éq/T) )
2= —_— _ PN/ ) = 22
B = 272 dq 2 _1 ("B(q/ T) z = —pnT". (3.100)

For both caseg < 1, the expression under the integral in Eqg. (3.100) is pasipee Sec. 3.8 for
specifics], which results in a negative coefficient ﬂo% Adding both~,. andn terms in the gap

equation Eg. (3.96), we write the expression for the diglesusceptibility

=A% = (aye - BT = (3 - AT, (3.101)

wherea and 3 are explicitly calculated in Sec. 3.9. When the coefficiehf’d is zero, namely,
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Figure 3.13: The transition lin€.(g) for different values of), the acoustic coupling constant; for
n > n. a reentrant quantum ferroelectric (FE) phase emerges. Rasepboundaries result from
numerical solution of the gap equatiaA ([ # 0) = 0] discussed in the text; the parameters used
here are as followsy, = 1,¢ = 0.9, . = 0.62, and{n > n.,n < n.} = {0.63,0.59}.

I 7 32 -1)
n="ne= \/4:6 = \/Z (ﬁ) Ve (3.102)

the phase boundary ling ! = 0] becomes vertical in the approach to the QCP; when 7., it

when

“meanders” to the right leading to reentrant behavior.

3.5.6 Details of the Phase Boundaryy(~! = 0)

We now follow the phase transition line, defined py' = 0 [A = 0] out to finite temperatures.
From Sec. 3.4 we know that there is a classical ferroelepaiaelectric phase transtiongt 0 at
Curie temperaturé,(g); it is depicted as a solid line in Fig. 3.9, where the dielectusceptibility
diverges,y = A~2 — oo. Our results in Sec. 3.4 are for = 0, and we study the effect of

n > n. > 0 on this transition line.
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To do this, we look for a solution to the gap equation Eq. (B.9%henA(7.,n) = 0, which
yields the transition lind (g, n). When the spectral gap closes, the dispersion relatiorfseof ©
soft polarization and the LA acoustic modes both becomeaatifie,(¢) = ¢ andw,(q) = éq).

Inserting these values into Eq. (3.96) and setting- 0, we obtain

dmazx 4 2 dmax (6 /T)
_9.202 _ _ n _ nBlceg/lc
2708 = 3 [ daans(o/T) =) [ daa{nntarry - PR
Umazx 4,’7 Umazx ng (’C"u)
— 2 _ o
= T: {3%/0 duunp(u) @ 1)/0 duu{nB(u) — }}
(3.103)

for the equation determinin@,(g). At low temperatures, we note that we recover the scaling
relation2j = g ~ T since both integrals become proportionallip (uyq. = = >> 1). At
high temperatures z(u) ~ % so the right-hand side of Eq. (3.103) becomes proportitmal.,

and we recover the classical behavjor T..

Fig. 3.13 shows th&.(g) transition line. Fom > 7. ~ 0.6, the transition line “wanders” into
theg > 0 region, leading to a reentrant quantum ferroelectric ph&seh reentrance suggests the
possibility of nearby coexistence and a line of first-ordansitions ending in a tricritical point, but
the confirmation of this phase behavior requires a cal@rabeyond that presented here and will

be the topic of future work.

In order to make direct comparison with experiment, we muost nestore dimensions to our
coupling constant and more generally to our Lagrangian E86]. We start by explicitly restoring
all physical coefficients to the Lagrangian as follows:

3~
BF = /dr;dTL

L = Z[@0P)?+3(VPP| + 2P+ P —np(V.9) P2 + £ [(0:0) + 2(VH)].

(3.104)

wherec, andc, are the soft optical and acoustic phonon velocities, reisméy, and whereP and
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6 are the unrescaled physical polarization and phonon dispiant fields. Then by writing

T cia 2 P o
Cex SRR ep SlPeg (3.105)
we obtain Eqg. (3.86), the rescaled Lagrangian,
BF / dB3zdrLp (P, ¢),
Lo(Pg) = 5 [(0.P)+(VPP] + LP? + 1Pt n(V6)P? 4 3 (06 + 2(V9)?]
(3.106)

where

cg D h 1 h _ Cq
EL:£E7 r= Ea v = c3a27D’ n= ?2/2 ;T/D7 c=—. (3107)

In the dimensionless units used in this section, we fount tha

& c3c+1
=%, 3.108
Te=AG" \/ c2+c+1 (3.108)

wherea = 1, § = (3002;25:11)) Using Eqg. (3.107), we can now rewrite this critical couglin

dimensionful terms as follows

NeD = \/7ac5/2
&3
5/2 C C+1 h
\/7ac \/ c2+c+1 cg’az%D

_ \/m\/ w) (3.109)

Z4+é+1

For SrTiQ;, the acoustic [172, 173] and the soft-mode [170] velocitiage been measured to be
~ 8000m/s andcs ~ 10000m/s, respectively, so that = 0.8; the crystal mass density is

5.13g/ecm3 = 5.13 x 103kg/m3. The value ofy. has been measured [31, 32] using ferroelectric
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Arrott plots of E/P vs P? to beegy.p = 0.2 m*/C?. Inputting all these numbers and = 0.6

into our dimensionful expression fgrp, we obtain
noF0 = 5.74 x 10'°0m/C? (3.110)

as the dimensionful critical coupling to be compared witheriment.

Next we estimate the experimental valuenoin SrTiO; as [174]n ~ £ where@ ands
are the typical magnitudes of the electrostrictive cortstand the elastic compliances [92, 174],
respectively; here we use the values [1Z4} 0.05 g_i ands = 3 x 10712 72—3;. Thereofore

we obtain

nsro = 1.7 x 101°.Jm/C? (3.111)

so that from our analysis we observe thgto < nfg O for the SrTiQ; system. However, there
are two points of uncertainty here that we should emphagizeve use experimental values for
SrTit60; as they are not yet available for SHD3; (i) we use values of) ands at room tempera-
ture, and these quantities need to be determined at low tatpes. Despite the roughness of our
estimate, it is reasonable to assuirie not changed dramatically by the issues raised in (i) ahd (i
We encourage further experimental investigations of ‘S€¥j at low temperatures to clarify this

situation.

3.5.7 Translational-Invariance as Protection against Damping Effects and Singular

Interactions

Our analysis of the effects of acoustic coupling has beerdiio a Hartree treatment of the leading
self-energy. This approach neglects two physical effggtstamping, the process by which a soft-
mode phonon can decay by the emission of an acoustic phorb(iiathe possibility of singular

interactions induced by the exchange of acoustic phonons.

Similar issues are of great importance in magnetic quantoase transitions in metals, where
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the coupling of the magnetization to the particle-hole tantm of electrons introduces damp-
ing [175-177]. For example, in the simplest Hertz-Moriyaatment of a ferromagnetic quantum

critical point, damping by the electron gas gives rise to adgatic Lagrangian of the form

Su=>Y_ {qz +r4 M} |M(q,v)|?, (3.112)

q?V q

where the term linear ifv| is a consequence of damping by the particle-hole continuithis term
plays a vital role in the quantum critical behavior; by comipg the dimensions of thg? term with
the damping term, we see that = ¢, which means that the temporal dimension scales as3
spatial dimensions under the renormalization group. Tassthe effect of pushing the upper critical
dimension down fromi — 1 = 3to4 — z = 1 dimensions. In addition to this effect, the coupling
to the electron-hole continuum also introduces non-lootEractions between the magnetization
modes, casting doubt on the mapping i*dield theory.

Fortunately, translational invariance protects the feectric against these difficulties. Trans-
lational invariance guarantees that the soft mode can ngiledalirectly to the displacement of the
lattice; instead it couples to the strain, the gradient efdlsplacement, according to the interaction

H; = —nV¢P2. When we integrate out the acoustic phonons, the inducedhiction between the

soft-mode phonons takes the form

2

q

where the numerator results from the coupling to the straither than the displacement. The
presence of the? term in the numerator removes the “Coulomb-typé? divergence at smat,
protecting the soft-mode interactions from the developgrmeéa singular long range component.

A similar effect takes place with the damping. To see this,need to examine the imaginary

part of the self-energy appearing in the Gaussian coniibib the action, Eq. (3.58),

1
Sa=) B [V2 +a + 1+ Ey(a) | |1P(g, V). (3.114)

q)lj
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Damping results from the imaginary part of self-energ/(q,w). To compute the damping, we

generalize,, given in Eq. (3.94) to finite frequency, obtaining

1 1
a9) =2 [ Gk {wp[(z[fpw;?_ A e e _Z)} |
(3.115)
where we have used the short-hangd = w,(k), wp, = wp(§ — k), ne = nplwa(k)), andn, =
nplwp(q — E)]. The imaginary part of this expression at zero temperaforepositive v, is then
given by
Bk k2

Im[%,(q,v—id0)] = ﬂn2/wm5(w—wa—wp). (3.116)

We can determine the smallw behavior of this damping rate by simple dimensional analyBhe
dimension of the right-hand side[ig’]/[w?] ~ ¢, so the damping rate must have the form

ImX(q, v) ~ n?V*F <— ) , (3.117)

vl vl

where a more careful analysis of the integral revealsﬁhégf—', ﬁ) is not singular at either small

momentum or frequency. The most important aspect of thidtrissthat the scattering phase space
grows quadratically with frequency and momentum, so thab#és not dominate over the other
terms in the action Eq. (3.114). The scaling dimension ajudemcy remains the same as that of

momentum, and thus the upper-critical spatial dimensiamares as! = 3.

3.6 Discussion

3.6.1 Logs, Dipolar Interactions, and the Barrett Formula

Before summarizing our results, let us briefly touch on a nemmdd topics closely related to our
work which we have not yet discused; more specifically theyjuibe logarithmic corrections in

the upper critical dimension, dipolar interactions and uke of the Barrett formula for quantum
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paraelectrics. As we have already noted in Sec. 3.5.2, tlagipation mode-mode interactiop.
and coupling to the acoustic phonomsare both marginally relevant in the dimension of physical
interestd = 3. Thus logarithmic corrections to the scaling relationsc[Se3] have to be included,;
we have already seen their appearance in the expressian; florEq. (3.81). The correction to
scaling of the free energy near the classical ferro-paca@ephase transition in four dimensions
is [125]

Fa(t,ve) = folt,ve)[1 + 9ve In(to /)], (3.118)

E/Eq

wheret = |T==| is the reduced temperaturg(t,y.) = t2® (W

) is the scaling form of the
free energy with a universal scaling functign ¢ is the reduced Debye temperature for the soft
mode Eq. (3.85) ang. is the polarization mode-mode coupling at QCP. Sipce %’E:Ov we
have

X = Xo[L + 9ve n(to/t)]"/?, (3.119)
wherex, ~ t~!. By applying the quantum-classical analogy [Sec. 3.3], wigevat the upper

critical dimensiond? =3 (d+ z =4; z = 1),

fam(9,7¢) = folg:7e)[L + 97e In(g90/9)] M, (3.120)

wheregy = w? is the Debye frequency for the soft mode squargdy, +.) has the same form as

before, and; is the tuning parameter. By setting= %\ E—0, the dielectric susceptibility becomes

X = xo[1 + 97 In(go/9)]*/3, (3.121)

wherexg ~ g~ ~ T72. The temperature dependenceyofith logarithmic corrections is then
found by making the subsitution ~ 7?2 in Eqg. (3.121), and these results are identical to those
found previously using diagrammatic techniques[138]. Aalagous procedure can be used to find

the logarithmic corrections to other thermodynamic quaes.

We note that here we assume the upper critical [spatial] wéme d¥ = 3; however if we
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include uniaxial dipole-dipole interactions, we will ha¥g¢ = 2. Basically this is because when all

dipoles point in the [same}-direction, the TO polarization frequency Eqg. (3.61) beesril178]

2
W) = ¢ + A% + 53—;, (3.122)

whereg is a constant, and we derive Eq. (3.122) in Sec. 3.10. We hatetlie last term of Eq.
(3.122) is specific to the uniaxial [e.g., tetragonal] casd & not present for isotropic dipolar

interactions. Applying simple scaling, we obtain

~ Az (y) ~ q
Qo) =~ = (3.123)

where the constants b* > 1 represent flow to the infrared (IR) limit of the QCP. We show in
Sec. 3.10 that in order for Egs. (3.122) and (3.123) to bsfgadi simultaneouslys must equab

so thatg, “counts” for effectivelytwo dimensions c@?}ce = d + 1), so that for a quantum uniaxial
ferroelectric the total effective dimensiondsy; = d7}¥ +z = (d +1) + 2 = d + 2 with & = 2

since then we obtaid. sy = 4.

At this time, it is not known whether SrifiOs is cubic or tetragonal at low temperatures. In any
case, we expect the samples under study to be structuraltidornain so that averaging over long
length scales will make them effectively cubic; thus uréhxiipolar interactions do not need to be
considered. The observdd® behavior ofy in the vicinity of the QCP supports this contention [i.e.,
di?‘}ce = 3]; for dzg’c‘}ce = 4, a differentT dependencey[~! ~ T°] is expected[142] for a QPE so
that a reexamination of the underlying model would be nesgds match experiment. Until details
of the samples are known, this situation cannot be ascedakvVe note that such? dependence of
the inverse susceptibility has also been observed[162]irdhtrystal ferroelectrics Kfa . Nb, O3

and Ka_,Na, TaO; where uniaxial dipolar interactions are not important, esecencourage further

low-temperature studies of these systems.

A consistent discrepancy between the observed low-teryserdielectric susceptibility and

the Barrett formula[169] has been observed in the quantuaepectric phase. [43, 162] Here we
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emphasize that the discrepancy occurs when the systemeaggtslose to the QCP; thus it provides
a measure of the tuning distance to the QCP. Because thalgpblarization mode softens as the
system approaches the QCP, with the gap vanishing compleded, the momentum dependence in
the dispersion relation Eq. (3.61) becomes important. éxectly for this reason that the Barrett

formula, that assumes a constant dispersion relation,&, breaks down close to the QCP.

The Barrett formula [169] works well deep in the QPE phase [3&.4], where the gap is much
bigger than temperature. One such example is KT&OJ O), which remains paraelectric down to
zero temperature, but in contrast to Sr{@TO) shows a much lower value of the zero temperature
dielectric susceptibility Y k7o = 4000, xsTo = 24000] [43, 49]. The closer the system is tuned to
the QCP, the smaller is the spectral gap and the bigger thextlie susceptibility. Therefore, STO
sits much closer to the QCP than KTO, and indeed KTO showsedfihito the Barrett formula [49].

Notice that by pluggingy, into Eq. (3.68), we get the Barrett expression,

~ 3 2
X_l = AQ — Q? + 370 <Coth(w0/2T) Amax o qmax)

07 4r2 @0 3 2
1 /T
= = <51 coth(Ty /2T) — T0> , (3.124)

whereT = &g, andM andTj are fitting constants.

3.6.2 Summary and Open Questions

Let us now summarize the main results of this chapter. Hereaitn has been to characterize
the finite-temperature properties of a material close tgu@ntum ferroelectric critical point; we
have rederived and extended previous theoretical ressilig $caling methods and self-consistent
Hartree theory. In the process we have made an analogy hetemgerature as a boundary effect
in time and the Casimir effect, and have used this to shed tighboth problems. Using simple
finite-size scaling, we have presented straightforwari/aions of finite-temperature observables
for direct comparison with experiment, and our approactyleded a scaling forny (w) = %F(%)

which serves as an additional prob€eljf the soft-mode Debye temperature-scale where we expect
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crossover between Curig’) and Quantum CriticalX?) behavior iny~!. We emphasize that this
scaling method is useful in this system whers low [z = 1]; otherwise ifz is higher, the system

is usually well above its upper critical dimension wheresthpproach is inappropriate. Next we
have used self-consistent Hartree methods to determiriE thg phase diagram and the crossover
between classical and quantum behavior. In particular warseinfluence of the quantum critical
point on the susceptibility at finite temperatures, and weped in materials parameters to determine
the size of its basin of attraction. Finally we include canglto an acoustic phonon and find that it
affects the transition line; for such couplings greatenthahreshhold strength there is a reentrant

guantum ferroelectric phase.
Naturally these results suggest a number of open questimhBexe we list a few:

(i) The presence of a reentrant phase suggests the pdgsdiilnearby phase coexistence, a
tricritical point, and a line of first order transitions. Fhs a particularly appealing scenario given
that recent experiments[179] suggest coexistence of QEEXE in SrTi*05 and is a topic we

plan to pursue shortly.

(ii) If indeed there is a tricritical point and a line of firetder phase transitions, could there also
be a metaelectric critical point in the— E' plane analogous to the metamagnetic situation[180, 181]
in some metallic systems? There is indication that an aoa®gnetaelectric critical point occurs

in a multiferroic system,[182] so this is a question drivgrrécent experiment.

(iif) What happens when we add spins to a system near its gomafarroelectric critical point?

Would the resulting multiferroic have particularly disttive properties?

(iv) Similarly, what type of behavior do we expect if we dopa&@antum parelectric in the
vicinity of a QCP? There is by now an extensive body evideheg ¢lectronically mediated su-
perconductivity is driven by the vicinity to a magnetic qtian critical point, a phenomenon of
“avoided criticality”, whereby superconductivity in thécinity of a naked magnetic quantum crit-
ical point[183, 184]. In such systems, the metallic tramspooperties develop strange metallic
properties that have been termed “non-Fermi liquid bemgti85, 186]. This raises the important

guestion, as to what, if any, is the ferroelectric counterfmathis behavior? In particular, how does
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the presence of a soft mode affect the semimetallic pregzedf a doped quantum critical ferro-
electric, and does a doped ferroelectric quantum criticahtpalso develop superconductivity via
the mechanism of avoided criticality?

We believe that we have only begun to explore the rich phyasseciated with the quantum
ferroelectric critical point, a simple setting for studgimany issues associated with quantum criti-
cality that emerge in much more complex materials. Furtioeerthe possibility of detailed interplay

between theory and experiment is very encouraging.

3.7 Appendix A: D(A) and A(n)

We derive expressions fdp(A) and A(n) [Eq. (3.98)] using the gap equation Eq. (3.96) deep in
the QPE region (D), wherg >> 0 andA >> T ~ 0. Collecting all “%”-terms under integrals of

A? andA}in Eq. (3.96), we obtain the expression fofA),

R L
”ﬁ/@§ﬁ<%w—%ﬁﬁﬁ“ﬂ0
q

”*/gﬂﬁ<%wiﬁfﬁ%iﬂ>

e, w0
oA

I /q'maw d 9 1 1
1 = q4q )
0 VAZ+ @2 g

dmax 1 1
I, = dqq® _
’ A qq<A2+fu—fﬂ q%l—@ﬁ’

dmax 1 1
= dq ¢* — = . (3125
/0 e <vA2+q2[—A2+q2[52—1] q3[02_1]> -

I3

Notice that limn_oD(A) = 0, since all three integral$;, I, and Is become zero at zero gap.

We split the integrald; (i = 1,2,3) into two parts,I; = O"A

+ [#er wherenA >> A. Since
g >> A in the second integral part, we neglectdtslependence and get a zero contribution. Thus,
only the first integral part contributes, aht{ A) becomes a function ak only, with no temperature

dependence.
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Next we show that the second Bose-Einstepw,(¢)] term under the integral al&% in Eq.

(3.96) results in the formi(n) in equation Eq. (3.98),

o [ g 5 nplwde] o [ ¢ 5 nplwa(q)]
— 4 / @) oal? — ] 4772 / 4(277)3Z(~:q[A2+q2(1—E2)] 4
4dn< T d 5 T
—%F/#unB(cu) = —Al)) 57 (3.126)

whereu = ¢/T. Notice that we approximatd? >> ¢?(1 — &) in the second line of Eq. (3.126).
For low momenta, this is indeed the case. For large momentay A >> T =~ 0, we neglectA

in Eg. (3.126) and the integral becomes

4

2
_Wn—éz) /dq qnp(éq). (3.127)

In the limitq >> T, np(éq) ~ e~%/T and Eq. (3.127) becomes exponentially small2e /7]
and can be neglected. Similarly, we neglect the rest of tirasten the gap function Eq. (3.96)
with Bose-Einstein thermal distributiong|w,(q)]. Deep in the QPE phasA >> T, so that
nplwy(q)] = e~*/T at low momenta, onplw,(q)] ~ e %rse/T at large momenta. In both cases

A, qiarge >> T, the integrals containing z[wy,(¢)] become exponentially small and are negligible.

3.8 Appendix B: Integral Eqg. (3.100) is Positive forc < 1

We also show that the expression under the integral in EG.0Q3.is positive for the two cases,

¢ < 1. First, assuming that < 1, ¢qg < ¢ [positiveg’s] andng(cq/T) > np(q/T) we write

{nata) - 22 T s (122 matea/ D) g

2 -1

_ é(éi 7 (éa/T) 20, (3.128)

which we note is positive. Similarly, far > 1, ég > ¢, andng(éq/T) < np(q/T), we write

{nata/m) - 22 2 s (12 1) mete/T g

cc—1
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- é(éi (/) 2 0 (3.129)

which is also positive. Therefore the integral in Eq. (3)1i8(ositive in both cases.

3.9 Appendix C: & and 3 are Constants

To evaluate the quantities and 3 in Egs. (3.99) and (3.100), we make a change of variables to

u=q/T, andu = éq/T, respectively. The expressions for these two constantstteeome

(Imacv/T 1
5 / duunp(u) = =
0

joN
|

22 1
-~ 2 (Imaz/T 1 5qmaz/T 1 1
b = 2(Z—1) [/0 = duunp(u) = 3@-1) <1 - C—3> (3.130)

where we have taken the limits of integration to infinity asetdi the resulf;* du unp(u) = ’%2

3.10 Appendix D: Dipole-Dipole Interactions in Uniaxial Feroelectrics

The interaction energy between two dipojgsandp; siting on two sites’; ands;, respectively, is

L PP — 307 pi) (7 - )
Wi (r) = Areg|r]3

: (3.131)

wherei is a unit vector in the direction of the vect@r= ; — ;. From Eq. (3.131), we find the

total dipole-dipole interaction potential to be

1 a b [ Oab 3rapb
W (F) = e ijza:bpi P (— - , (3.132)

wherer = |7|, anda, b label vector coordinates. After we perform a Fourier transf the interac-

tion potential becomes

1 a b 9ad
W@ == rir; q;’, (3.133)
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whereq = |q] refers to the momentum dependencéiofq). Assuming that all dipoles point in the

same £) direction in the uniaxial case, we find that the dipole poéén

2
W (q) ~ % (3.134)
W (q) contributes to Lagrangian Eq. (3.88)g [P, | — Lg[P, ]+ W, so that the TO polarization
frequency Eqg. (3.61) then reads [178]
2

(3.135)

q
wHa) = i’ + AP+ 5,

where we introduce constant of proportionality
We show that Egs. (3.122) and (3.123) lead to the conditen2. Let us assume that > 1.

Then
2, 2 2 2
2 P BT S = ¢ g
q = {4z +Qy +qZ = b2 +(b2z)k Nb_27

2
& o~ i (3.136)

g2 q?

Since we also rescale frequenoyq) [Eq. (3.122)] by a constant, expressiajtsand %22 are to be

proportional. This leads then to the condition

(3.137)
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Chapter 4

Multiferroic BiFeO 3-BiMnO ;3 Nanocheckerboard From First
Principles

4.1 Introduction

Artificially structured oxides present intriguing oppatities for material design. With dramatic ad-
vances in epitaxial growth techniques allowing atomidescantrol, experimental and theoretical
attention has focused on strained-layer superlatticeslfG20-26]. Properties significantly differ-
ent from those in the bulk have been observed, leading todbksilulity of designing new materials
at the nanoscale with enhanced functionalities [187-1RB8Eently, progress has been reported in
the synthesis of artificially structured oxides with latér@nocheckerboard” (or nanopillar) pat-
terning. In particular, the length scale of this checkerbaadering can be controlled by synthetic
processes and stoichiometry, offering promise for apfidina such as ultrahigh-density magnetic

recording media [190-195].

One functionality of particular current interest is mudtifoicity: the combination of ferromag-
netism and ferroelectricity, with coupling between therdpoeous polarization and the magne-
tization. Room temperature multiferroic materials witlgthimagnetoelectric couplings are de-
sirable, because they can support novel functionalitieslectronic devices [34, 196]. Magne-
tostructural and magnetoelectric couplings have beemabden a number of materials, including
bulk [197, 198] and layered [199] manganites, epitaxial E4T200], EuSe/PbSe . Te, multilay-

ers [201], and SrRugdSrTiO; oxide interfaces [202].

Because of the distinct natures of ferroelectric and feagmetic ordering, it has proved dif-
ficult to find a single-phase room temperature multiferromtenial with large polarization, large
magnetization, and large magnetoelectric and/or magieetoie coupling [36]. Most current mul-

tiferroic devices are based on nanocomposites [37, 198]Jadwances in the synthesis of artificially
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structured materials further support studies of novel ifeatbic heterostructures [51]. Exploring
the coupling of ferroelectric and/or magnetic states taisthas shown to be exceptionally fruit-
ful in many multiferroic nanocomposites [37]. The challeng to anticipate what new properties
can arise in such heterostructures from combining twordistnaterials, and how these properties

depend on the geometry of the combination.

First-principles approaches are ideally suited for megtitis challenge. These methods allow
searching over a variety of compositions, heterostruag@@metries, and structure types to find a
material with the desired properties [203]. With first-mijsles methods, it is possible also to iden-
tify and characterize low-energy alternative structutiesugh they are not manifest in the bulk, they
can become physically relevant with changes in the extgraslmeters and boundary conditions

produced in a nanocomposite.

In this chapter, we use first principles calculations to esglthe structure and properties of
a prototypical atomic-scale checkerboard of Bigegdd BiMnO; (Fig 4.1). Ferroelectric anti-
ferromagnetic (AFM) bulk BiFe@and half-metallic ferromagnetic (FM) bulk BiMnCare good
candidates for a nanocomposite with ferroelectric-feagnetic (multiferroic) behavior. The prop-
erties of the atomic-scale checkerboard are found to bettiinelated to the properties of the bulk
constituents in their ground states and in low-energy radidre structures. The ground state of the
BiFeO;-BiMnO3 atomic-scale checkerboard is multiferroic, i.e. ferrotde and ferrimagnetic, ac-
quiring the desired properties from the constituents. bfitamh, we show that the BiFe2BiMnOg3
atomic scale checkerboard displays a magnetostructdesdtenamely, it changes its magnetic or-
dering with the change of its crystal structure. This efisa@rgued to be inherent to B-site cation
checkerboard geometry, resulting from magnetic frustrefor the particular arrangement of cations

and bonds.

The organization of this chapter follows. In Sec. 4.2, wecdbs the first-principles method
and the structural distortions and magnetic orderingsidersd. Results for low-energy alternative

structures of bulk BiFe@and BiMnG; are reported in Secs. 4.3 and 4.4, respectively. The ground
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state of the BiFe@BiMnO3 atomic-scale checkerboard is shown to be ferroelectricfamonag-
netic in Sec. 4.5. A simple Heisenberg model is construdttmaepresent the energies of various
magnetic states of this checkerboard computed from firstgles. In Sec. 4.6, the effect of struc-
tural distortions on the magnetic ordering of the nanockdmbard is explored, and we relate the
properties of alternative low-energy structures of theckbeboard to those of bulk BiFeCand
BiMnOgs. Anisotropic epitaxial strain is shown to drive a magnetansition in the atomic-scale
checkerboard in Sec. 4.7. We study the effect of B-site naimangement on magnetic properties
of the BiFeQ-BiMnOg3 system in Sec. 4.8. The possibility of experimentally mafi a BiFeQ-

BiMnO3 nanocheckerboard is discussed in Sec. 4.9. Conclusiomsesented in Sec. 4.10.

4.2 Method

First-principles calculations are performed using denfihctional theory within the local spin-
density approximation with Hubbard U (LSDA+U) method as iempented in the Viennab ini-
tio simulation package VASP-4.6.34 [86, 87]. Projector-augt@e wave potentials (PAW) [204,
205] are used with 15 valence electrons for Bi'C6s26p?®), 14 for Fe 8pS3d54s2), 13 for Mn
(3p%3d°4s?), and 6 for O 2s22p*). The robustness of the results is tested with two diffeient
plementations of the rotationally invariant LSDA+U versid he first is due to Liechtenstein [206]
with effective on-site Coulomb interactidnz. = U,;,, = 5eV and effective on-site exchange inter-
actionJg, = Jy,m = 1eV. The second is due to Dudarev [207], V\Mﬁfr{ =5.2eV, U;!’;f = 4eV,
whereU¢// = U — J. Both implementations treat localizefelectron states in Fe and Mn. It has
previously been shown that theéeand J values give good agreement with experiment in bulk
BiFeO; [56]. The valuevaﬂ = 5.2¢V has previously been used for bulk BiMp@round state
calculations [57].

The BiFeQ-BiMnO3 atomic-scale checkerboard is shown in Fig. 4.1. BifF@@d BiMnG;
alternate at the atomic level, forming a checkerboard paitethe xy plane and pillars of the same
composition along z. The supercelly&a x v/2a x 2¢, containing two Fe and two Mn. In the

limit of the atomic-scale pillars considered here, the &bdmoard structure is the same as that of a
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Figure 4.1. (a) BiFe@BiMnO3; atomic-scale checkerboard. (b) Top view of the atomicescal
checkerboard. (c) Perovskite cell. Dashed lines show agexyctahedron surrounding the B-
site (Fe, or Mn) cation.

(110)-oriented superlattice.

We consider two additional types of B-site cation-orderéde®;-BiMnO3 systems: a (001)-
oriented layered superlattice, with single unit-cell F& &in layers alternating along, and a
rocksalt structure, with Fe and Mn alternating in every otieit cell ((111) superlattice in the
atomic-scale limit considered here). In both cases, thersefl isv/2a x v/2a x 2¢. For consistency,
we take the supercell for bulk BiFe@nd bulk BiMnQ, calculations to be/2a x v/2a x 2¢, except

for the R3c structure, where we use/2a x v/2a x v/2a supercell.

| i
Wiy i) in

G-AFMO C-AFM [ A-AFMA FM A

Figure 4.2: Magnetic orderings considered for bulk Bige@d bulk BiMnG;: Symbols for each
type of ordering are introduced next to each label.
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Figure 4.3: Magnetic orderings considered for the Bif&IMnO3 atomic-scale checkerboard
compatible with the,/2a x v/2a x 2c¢ supercell. Symbols for each type of ordering are introduced
next to each label.

Several types of magnetic orderings are studied here: thgé&{rocksalt), C-type, A-type
AFM, and FM ordering of the local magnetic moments in bulk &k, or bulk BiMnO; (see
Fig. 4.2). All orderings considered are collinear; this igpgorted by recent neutron scattering

measurements on BiFg@oped with Mn [208], that indicate collinear AFM ordering.

Magnetic orderings of the BiFe@BiMnO3 atomic-scale checkerboard are shown in Fig. 4.3,
where we consider six collinear orderings of Fe and Mn spBisnilarly, six collinear orderings
of the magnetic Fe and Mn spins are explored in the BiFBMINO3 (001)-oriented superlattice
and the rocksalt structure. For the (001)-oriented sufiieda these orderings are described by
the notation FeFM (FeAFM), or MnFM (MnAFM), referring to theM (AFM) ordering for the
Fe (Mn) moments in the relevant layer, respectively, with temaining ambiguities resolved as

follows: FeEAFMMnAFM magnetic order has AFM ordered Fe and lslyers with FM order along
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Table 4.1: Resulting space groups for considered struddistortions (see Fig. 1.4). P3m is the
ideal perovskite structure and P4/mmm is the uniformlyisée tetragonal unit cell.

My (2) R} (y) Ry ([111])
and and and
Modes — Ij(z) Mi(2) Ti(z) Rf(y) Tr(y) Rf(111]) Ty ([111))

Abbrevation T (2) M (2) MT(z) Rf(y) RI(y) Rf(d) RI'(d)
Space Group P4mm P4/mbm  P4bm 14/mcm l4cm  3cR R3c

the mixed Fe-Mn chains in the direction, while G-AFM designates the case with AFM order
along the mixed chains; similarly, FeFMMnFM has FM orderedaRd Mn layers with AFM order,
while FM designates the case with FM order along the mixethsh#&or the rocksalt structure, we
consider FM and G-AFM ordering, FeAFMMnFM ordering, refiegto FM ordered Mn sublattice
and AFM ordered Fe sublattice; similarly we consider FeFM¥M ordering with FM ordered Fe
and AFM ordered Mn sublattices, respectively. Finally, EMFM ordering has AFM ordered Mn
and Fe sublattices, which are coupled FM in each FezNayer, while the AFMAFM ordering has

AFM ordered Mn and Fe sublattices coupled AFM in each FesNayer.

Structures generated by three modes of the cubic perovskiteture are considered (see Fig.
1.4) [42]: (a) the zone center polBf mode, (b) theMgr oxygen octahedron rotations (all rotations
about a given axis are in phase), andRg) rotations (sense of rotations alternates along the rotatio
axis). Space groups corresponding to the structural diisterconsidered are presented in Table 4.1,
and we use the notation c-, |-, or r- to refer to the structdrsiortion of the B-site cation-ordered
checkerboard, layered superlattice, or rocksalt stracttgspectively. To search for the ground
state for a given magnetic ordering and structure type, wiompe structural relaxation with the
conjugate gradient algorithm. Both the cell shape and thea@eme are relaxed; more specifically,
the ions are relaxed towards equilibrium positions ungl iHellmann-Feynman forces are less than
10—3eV/21. An energy cutofb50eV for the plane wave basis set is used. Convergence in theyenerg
is reached with precisioh0~"el. A Monkhorst-Pack k-point grid [209] is generated with dgns

4 x 4 x 4 for the (V2 x v/2 x /2) supercell, andt x 4 x 2 for the (/2 x /2 x 2) supercell.
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For magnetic energy calculations (Secs. 4.5.2 and 4.8),sedhe energy cutof00eV, and the
Monkhorst-Pack k-point grid with densiyx 6 x 4. Gaussian broadening of the partial occupancies
for each wavefunction i8.05¢V . A tetrahedron method with Blochl corrections [210] is u$ed
the density of states (DOS) calculations, with the MonkhBack k-point gridd x 4 x 4 for the
(V2 x v/2 x v/2) and8 x 8 x 4 for the (V2 x /2 x 2) supercell.

The rotational distortion can be quantified using the oxygetahedron rotational angte de-

fined specifically for each oxygen in the octahedron as

£
<L

cos® = ) (4.2)

=
=

wheret is the shortest vector from the rotation axis to the refezgpusition of the oxygen, andlis
the shortest vector from the rotation axis to the positiothefoxygen in the distorted structure. The
rotation axis is [001] and [010] for th&/5"(z) and R, (y) distortions respectively, and the threefold
axis (body diagonal of the cube or distorted cube) forftje[111]) distortion. Due to deformation
of the oxygen octahedron in the BiFeBiMnO3 checkerboard structures, these angles may be
different for different oxygens in the same octahedron. @fsrt an average value if the range is
small; otherwise the lower and upper limits of the range aesgnted.

The polar distortions of the various structures can be dfieshtoy estimating the polarization

based on a linearized expression with nominal charges:
5 _ el .
P=4 zj: q; A, (4.2)

whereP is the polarizationAw; is the displacement of thigh ion with respect to its ideal perovskite
position, ¢; is the nominal charge of thgh ion (gg; = +3, ¢re = +3, gvn = +3, g0 = —2), and
Q) is the unit cell volume.

For selected structures the true value for the spontanealasization is computed using the
Berry phase method [39, 40] as implemented in VASP-4.6.84his formalism, the polarization

is only well-definedmod eﬁ/Q, whereR is any lattice vector an€ is the primitive-cell volume;
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thus possible values of the polarization are points on tiied¢edefined bmﬁo + eﬁ/ Q, whereP is
the value directly obtained from the Berry phase calcufatiohoosing the lattice point (or branch)
that corresponds to the measured switching polarizatian (& an electrical hysteresis loop) is
done by computing the polarization of states closely spat@uy an adiabatic path connecting the
structure of interest to a high-symmetry reference strecttrhese laborious calculations can be
avoided by an approach based on the reformulation of theipalen in terms of Wannier function
centers [39]; the switching polarization is obtained frdra difference between the two symmetry-
related variants by associating the Wannier centers wihsttime atoms in both structures [211,
212]. Due to incompatibility between the Wannier90 and tA&W codes, we cannot use this latter
approach here; we make the necessary branch choices basechputations along adiabatic paths

combined with the nominal-charge polarization estimate.

4.3 BiFeGO; Structures

In agreement with previous first-principles calculationd axperiment [56, 208, 213, 214], we find
that the ground state structure of BiFgkias rhombohedral R3¢ symmetry, which is a combination
of the rotationalR; ([111]) mode (counter-rotations of the oxygen octahedra aboutlth] [axis)
and a polad’; ([111]) modes, with Bi, Fe, and O displaced relative to one anothamga[111]
and further distortion of the oxygen octahedra by displaa@nef the O displaced perpendicular to
[111]. [42] The oxygen octahedra rotation angle is largeuaib4°, and is comparable to rotations
in other perovskites [215]. The R3c ground state has G-AFddkgalt) ordering (see Fig. 4.2),
and Fe local magnetic moment ¢f. 3. [208] The density of states (DOS) is plotted in Fig. 4.4:
it has a2eV band gap that separates occupied and unoccupietskges. The polar character of
BiFeQ; arises from the polal’; ([111]) mode, and the spontaneous polarization using the Berry
phase method i®73¢ = 90uC/ecm? along the [111] direction.

Next alternative structures of BiFg@re studied, and we consider those generated by freezing
in linear combinations of the rotationaf;", R, and polal”; modes, and four magnetic orderings

(see Fig. 4.2). Their energies are plotted in Fig. 4.5 (sse &ble 4.2). By symmetry, the FM
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Figure 4.4: Density of states (DOS) of the R3¢ G-AFM grourades{GS) of BiFe@. Spin up states
are plotted by solid line and spin down states by a dasheditiverted view). The zero is set to the
valence band maximum. DOS shows an insulating band gap of 2 eV

ordering has the same energy for ffig(z) andI’, (y) structures; this is also true for the G-AFM
ordering. In contrast, the C-AFM ordering has differentrggédor thel', (z) andI'; (y) Structures;
this is also true for the A-AFM ordering, as the y and z dirautsi for these spin arrangements are

not symmetry-related (see Figs. 4.2 and 4.5).

For all structural distortions considered, the favored negig ordering is G-AFM (open circle).
This is consistent with the Goodenough-Kanamori rulesiegits strongr bond is formed between
Fee, and the neighbouring @ orbitals in an ideal80° Fe-O-Fe bond (ideal perovskite structure),
or a weakr bond is formed between He, and Op orbitals when the bond is bent towardl¥’ (as

the structure is distorted); in both cases, the AFM supéraxge is favored [216—218].
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Figure 4.5: Structural energetics of bulk BireTEnergy difference per Fe for different magnetic
orderings (see Fig. 4.2) and structural distortions (see Eé4 and Table 4.1) relative to the FM
PnBm structure.

The most favorable low-energy alternative structures aedground state of BiFe{are pre-
sented in Table 4.2. The low-ener§y (z) structure, with PAmm symmetry, is the supertetragonal
structure withc/a ~ 1.3, previously discussed elsewhere [219, 220]. It has beewrsihecently
that this phase can be stabilized in Bikg@in films [221]. The polarization computed by the Berry
phase method [219] iBP4™™ ~ 150u.C'/cm?. The nominal-charge estimates are therefore smaller
than the true values for both the P4Amm and R3c structureghbuelative values are well repro-
duced. The polar distortion is dominant in all structuressigdered; the rotation-only structures are
higher in energy, and the presence of a polar distortionstémdtabilize the rotational instabilities.
For example, thé; +M;" andI', +R] distortions relax back t&'; with zero oxygen octahedron
rotation angle. The only exception is the R3c structure, hirctvthe rotational and polar distortions

coexist.
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Table 4.2: GS and low-energy alternative structures of BilleO;. The energy differencAFE is
given with respect to the FM P3m structure, as in Fig. 4.5. Polarizatidhis estimated from the
nominal charges (Eq. (4.2)). Also included are the band 4aand the a and c lattice constants
for the v/2a x v2a x 2¢ supercell of PAmm, and the a lattice constant and the andte the
V2a x v/2a x v/2a supercell of R3c.

Space Group P4mm R3c
Modes Iy (2) Ry ([111]), Ty ([111])
Mag. order G-AFM C-AFM G-AFM
AFE[eVIFe] -1.09 -1.10 -1.25
A [eV] 1.75 2.23 1.99
PluC/cm?] 113.6 116.2 62.1

a/clA]  3.68/4.64 3.67/4.68 552, = 59.8°

4.4 BiMnOj; Structures

Previous first principles calculations show that the grosiade structure of bulk BiMn®is mon-
oclinic centrosymmetric C2/c with zero spontaneous ppdgion [57] and FM ordering [70, 222,
223]. Bismuth (Bi) cations are off-center due to stereodbaly active Bi lone pairs, and the
Jahn-Teller activity of MA™ further distorts the structure [69]. Optimizing the atorpisitions
and lattice constants, we performed a first-principlesutaton for this structure to find an energy
gain of 1.26eV/Mn relative to the the ideal cubic perovskite structurehw®-AFM ordering and

agp = 3.83}1; the latter is used as our reference state throughout tbimee

We study low-energy alternative structures of BiMpgdmpatible with a/2 x v/2 x 2 supercell.
Results are presented in Fig. 4.7. The lowest energy steibfas R3c symmetry, the same structure
type as the ground state of BiFgQt is FM, with magnetic momer.9u 5 per Mn. This structure
lies only43meV/Mn above the BiMn@ monoclinic ground state. The computed DOS is shown in
Fig. 4.6: the system is half-metallic, with a gap of 3.25 e\tha spin down channel. As an aside,
we note that it might be useful to stabilize BiMp@s a half-metal in this low energy structure for

possible applications in spintronics [224].

For all structural distortions considered, the favored nedig ordering is FM, consistent with

previous analysis that showed that BiMnfavors FM structures with a half-metallic character [69,
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Figure 4.6: Density of states (DOS) of the R3c FM alternasivacture of BiMnQ. Spin up states
are plotted by solid line and spin down states by a dashed(ilwerted view). Fermi energy is
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Figure 4.7. Structural energetics of bulk BiIMpOEnergy difference per perovskite cell (Mn) for
different magnetic orderings (see Fig. 4.2) and for stmadtdistortions (see Fig. 1.4 and Table 4.1)
generated by the specified modes.

225]. The ferromagnetism in BiMn{xan be explained by a combination of Goodenough-Kanamori
rules and orbital ordering [36, 69, 70, 226]. Structuratatisons (either oxygen octahedron rota-
tions or polar distortion) widen the spin-down gap (see &abB); a similar trend is observed for
the band gap in BiFe{)(see Table 4.2). A small band gap opens with a monocliniodish in the

FM BiMnO3 ground state [69, 223].

The Jahn-Teller active Mt configuration tends to favor elongation of the oxygen oaabe.
In contrast to BiFe®, in which the polar instability strongly dominates, theatatnal and polar
instabilities in BiMnG; are comparable in magnitude, as can be seen by comparingehgias of
theT'; (z), M3 (z) and R; (y) states. The latter two states have a small residual poleabitity.
A polar distortion along a Cartesian axis lowers the enefgh® G-AFM state so that the energy

difference between this state and the FM ground state idlgmeauced; this does not occur if the
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Table 4.3: Low energy alternative structures of FM bulk Bi®n The energy differencé\ E is
calculated with respect to the G-AFM Bm structure (as in Fig. 4.7). Listed are values of the spin-
down band gag,,, in the half-metallic structures or metallic (m) charactiee oxygen octahedron
rotational angle® (see Sec. 4.2), and theandc lattice constants of thg/2 x /2 x 2 supercell.

Space Group P4/mmmm P4bm l4cm R3c
Modes - My(2).Ti(2) R{@).Ti(y) Ri([111)), T ([111))
AFE [eVIMn] -0.57 -1.02 -1.03 -1.22
Apm [eV] m 0.73 2.74 3.25
O[°] - 114 12.0 13.3
a/ c A] 3.83/ 3.86 3.81/4.01 3.81/3.83 5.51=60°

polar distortion is along [111] as in the R3c phase. The @xedd rotation angles in the low-energy
BiMnOj structures are all similar in magnitude, varying betwééenr- 14°, with an angle ofl 3° for
the FM R3c structure. The value of the octahedral rotatiayieaim the G-AFM R3c structurd4°,

is the same as in G-AFM R3c BiFgO

4.5 BiFeO;-BiMnO 5 Nanocheckerboard Ground State

4.5.1 Crystal structure, magnetization and polarization

In the search for the ground state of the atomic-scale chiecked cation ordering, we considered
the six collinear magnetic states of Fig. 4.3 and four défferstructures: the tetragonal P4/mmm
structure and three additional structures, obtained Bzing in al'; (z) mode, a combination of
RI(y) andT; (y), and a combination of R(111) andl'; (111). We designate these latter three
structures by the space group they would have if all B sitagwecupied by the same cation, with
the prefix c- to remind us that the actual symmetry is lower tduihe checkerboard ordering: c-
P4mm, c-l4cm, and c-R3c. The GS of the BikeBIMnO3 nanocheckerboard is found to be c-R3c,
as could be expected based on the R3c GS of bulk BjFa@ on our results for bulk BiMn The
magnetic ordering in the c-R3c GS is FeAFMMnFM. Fe magnetiorants are ordered AFM along
the Fe pillars and Mn magnetic moments are ordered FM alomdyvith pillars, as expected from

the G-AFM and FM ground states of BiFg@nd BiMnQ;, respectively (see Secs. 4.3 and 4.4).
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AFM and FMzy layers alternate alongas is sketched in Fig. 4.3. The computed Fe and Mn local
magnetic moments arelup and3.8u 5, respectively; these are the same values as those reported
here in the parent compounds BiFg@nd BiMnQ;. Although the contribution from Fe magnetic
moments to the net magnetization cancels due to the AFM pittéering, the contribution from Mn

moments adds, leading to a net magnetizatio®.&fk z per Fe-Mn pair.
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Figure 4.8: Density of states (DOS) of the c-R3c FeAFMMnFMuwd state (GS) of BiFef
BiMnO3; nanocheckerboard. Spin up states are shown by a solid lihesgin down states by a
dashed line. The zero is set to the valence band maximum. aie dpap in the spin-up channel is
0.9eV.

The DOS of the ¢c-R3c FeEAFMMnFM GS is shown in Fig. 4.8. The gainfeatures are very
similar to those found in BiFeQ(Fig. 4.4) and BiMnQ (Fig. 4.6), the main difference being that
the spin-up Mn states at the Fermi level in BiMp@ave split to open a gap, with the occupied

states at the top of the valence band narrowing the gaptd’.

Direct calculation of the spontaneous polarization usirgBerry phase method for the c-R3c
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Figure 4.9: Spontaneous polarizatiﬁn: (P, Py, P.) as a function of the structural distortion of
the c-R3c FEAFMMnFM BiFe@BiMnO3 nanocheckerboard.00% distortion corresponds to the
c-R3c ground state structure, abfd to the ideal perovskite structure.

GS yields a value of? = (19.6, —1.1, 30.5) uC/em?. This is well defined only up to the polar-
ization latticee B/ [39, 40], which in this case i613.2, 13.1, 0.1)n; + (—13.2, 13.0, 0.1)ny +
(0.0, 0.2, 26.6)n3 uC/cm?, whereii is a vector of integers. To determine the branch that cor-
responds to the switching polarization, we compute therjzaiion along a structural deformation
path that linearly connects the c-R3c GS to the ideal cubiovsé&ite structure. As shown in Fig. 4.9,
the computation is performed for structures down to 75% effthl distortion (at which point the

structures become metallic) and then linearly extrapdl&ied% using the expression

APoos_o% = 4 X APjggo_750 = (33.8,33.5,39.8)uC/cm?>. (4.3)

The magnitude of this estimat&2.0..C /cm?, suggests the branch cho@gp = (32.9, 38.0, 30.7)
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Table 4.4: B-site-cation-oxygen-B-site-cation (B-O-Bnlls in the c-R3c ground state (GS) of the
BiFeO;-BiMnO3 nanocheckerboard. B-O and O-B bond lengths and the B-O-B bogle are
given. Atoms are numbered as in Fig. 4.10. The subscriptétes the cartesian direction along
which the bond lies.

B-O-B bond Notation |B —O|[A] |O — B|[A] Angle
(Fe; — O7 — Fey). Tre 1.93 2.08 1538
(Feg — O5 — Fey), Jre 1.96 2.08 156.8

(Mny — Og — Mny),  Jarm 2.10 1.91 1537
(Mny — Og — Mny),  Jum 1.87 2.18 156.3
(Mny — Oy — Fey),  J2, 1.92 2.06 166.8
(Fey — Oy — Mmny),  J2, 1.97 1.97 156.8
(Mny — O3 — Fey),  J2, 1.95 1.95 1651
(Fey — Oy — Mny),  J2, 2.04 1.91 155.3
(Mny — Og — Fea),  Jb, 2.05 2.03 152.0
(Fey — O19 — Mng),  J7, 1.94 2.11 1433
Mny — Oyy — Fey J? 2.05 1.95 1514
Y int
(Feg — 012 — Mng)y J’;th 2.07 1.98 1441

pC'/em? with magnitude| Py,| = 58.9uC/em?. However, we would expect it to be considerably
larger, based on comparison between the Berry ph@asef bulk BiFeOQ; and the| P| computed
using nominal charges (see Sec. 4.3); following this imnitwe would make the branch choice
Py, = (46.1, 51.3, 57.4) uC/cm? with magnitude| P,,| = 89.7uC/cm?. This remaining am-
biguity highlights the challenge of picking the right branehen the polarization is much larger
than the quantum; in either case it is clear that the poldoizaf the checkerboard is comparable to
the largest values found in ferroelectrics. Thus, we find the c-R3c GS of the BiFe2BIiMnOs
nanocheckerboard is multiferroic: ferroelectric, witHgrzation comparable to the polarization of
bulk BiFeG;, and ferrimagnetic, with magnetization contributed bydaragnetic ordering in the

BiMnO3 component.

4.5.2 Magnetic Coupling Constants

To gain insight into the magnetic properties of the nanokddaoard, we model the magnetic or-

dering energies using a nearest-neighbor (nn) HeisenbedgInThe nn magnetic couplings arise
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O Mn

Figure 4.10: Sketch showing the displacements of oxygemsio the R, ([111]) mode, which
contributes to the c-R3c ground state (GS) of the Bif8MnO3; nanocheckerboard. Two in-
equivalent iron (Feand Fg) and manganese (Mrand Mn,) atoms and twelve oxygens ¢ 12)
comprise the,/2 x v/2 x 2 unit cell. The corners of each cube are occupied by Bi (notvaho

from superexchange through the oxygens that lie on the bbetigeen the B site cations, with
the strength of the superexchange being quite sensitileetgeéometry of the B-O-B bond. If the
structure were ideal cubic perovskite, there would be timdependent couplingsgd, Jy;, and
Jint, corresponding to 180Fe-O-Fe, Mn-O-Mn and Fe-O-Mn bonds, respectively. Theyemsl
of the couplings in the c-R3c structure is based on the gagméthe B-O-B bonds as given in
Table 4.4; the labeling of the bonds and the changes in thdsbdue to the R([111]) mode are
shown in Fig. 4.10. The two Fe-O-Fe bonds are almost iddrtichond angle and bond length;
this is also the case for the two Mn-O-Mn bonds. This suggéstisa single value of 7. andJys,,
can be used for the Fe-O-Fe and Mn-O-Mn interactions, reéispbc On the other hand, the mixed
Fe-O-Mn bonds vary in both B-O bond length, fran91 — 2.11}1, and B-O-B bond angle, from

143.3 — 166.8°. This suggests the use of three different coupling consti, JZ or.J) forthe

wnt wnt



127

Table 4.5: Calculated magnetic energi®® per four-perovskite unit cell (u.c.) in the c-R3c GS
structure of BiFe@-BiMnO3; nanocheckerboard. The notation for magnetic ordering as ¢
Fig. 4.3. The symbols, y, a, b, c appearing in the magnetic energy are defined as follaws:

JFGSFGSFQ, Yy = JMnSMnSan a = J%tSFeSan b= JiﬁntSFeSMn- Cc = J;LtSFeSMn-
Magnetic state ~ Magnetic ordering Heisenberg energy AE FittedA E
[per u.c.] [eViu.c.] [eV/u.c.]
FEAFMMnFM  Fd Fe, Mn] Mn}  Ey — 2z + 2y + 2a — 2¢ 0.000 0.000
FEAFMMnFM  Fe Fe,Mn! Mn]  Ey — 22 + 2y — 2a + 2¢ 0.200 0.207
G-AFM Fel Fé Mn! Mn]  Ey— 20— 2y —2a —4b—2¢  0.032 0.026
C-AFM Fe| Fe, Mn{ Mny  Eg + 2z + 2y — 2a — 4b — 2¢  0.143 0.152
FEFMMnAFM  Fd Fel Mnt Mn)  Eo + 22 — 2y — 2a + 2¢ 0.436 0.436
FEFMMnAFM  Fd Fel Mnl Mn}  Eo + 22 — 2y + 2a — 2¢ 0.222 0.229
FEAFMMnAFM Fe Fe,Mn! Mn}, Ey— 2z —2y+2a+4b+2c  0.275 0.284
FM Fel Fel Mn] Mn)  Ey 4+ 20+ 2y 4+ 2a +4b+2c  0.416 0.410

Fe-O-Mn interactions based on the typical values of the lamyles, approximately 186154 and
144, respectively. Note that the angles of the Fe-O-Mn bondkérFg -Mn, layer in Fig. 4.10 are
about 166 and 154, while the angles in the Eevin, layer are about 152and 144.

The values of these five exchange couplings were determiastfirst-principles results for the
total energies of various magnetic orderings for the c-RScsBucture of the nanocheckerboard,
given in Table 4.5. The structure is fixed to that obtainedtierFeAFMMnFM ordering F{eFeﬁ
Mn! Mn). The ordering FgFe, Mn! Mn), also described as FeAFMMnFM, is a distinct state
with a different (higher) energy. Similarly, for the FeFMMRM ordering, there are two distinct
magnetic states: EeFe, Mn! Mn) and Fé Fel Mn! Mn., with different energies as given in
Table 4.5.

We express the Heisenberg magnetic energy of each magtatéc s
1
E=Fy+ 5 Z JijSiSj, (4-4)
j

whereS; andS; are the spin§p. = 2, Sy, = 3 with coupling constants;; = Jpe, Jarn, Jg

wnt?

JB

wnt? “int?

andFE) is a constant. We extract values of the coupling constanfistig the Heisenberg



128

model energy to the first-principles energies by the leastues method, obtaining

Ey =218meV, Jp.="T7.1meV, Jy, = —3.2meV,

int = —3.0meV, Jii

. =4.3meV, Jl. =T73meV.

n

(4.5)

The quality of the fit can be assessed by comparing the finstiptes energy to the fitted values in

the fifth column of the table.

The AFM character o/, and the FM character af,;,, correspond to that of bulk G-AFM
BiFeO; and bulk FM BiMnG;, respectively. Their values are comparable to those aidairom
the observed bulk transition temperatures within mean fredry assuming a single Ji¢ puir ~
6.3meV and Jyrp bk = —1.5meV, respectively [64, 75-78, 227]. The correspondence is not
exact because of the difference in the bond geometry betiwg&rBiFeOQ; and bulk BiMnGQ; and

the nanocheckerboard.

In the Fg-Mn; layer, the average Fe-Mn interactidp,; is very weakly AFM(JS, +me)/2 e
0, while in the Fg-Mn, layer it is strongly AFM(Jgn + J.)/2 > 0. This corresponds to the
preferred FeAFMMnFM ordering I-ilLeFeﬁ Mn{ Mng and explains the close competition with G-
AFM ordering, in which both layers are AFM ordered (see Fi§. @nd Table 4.5). The exchange
coupling between!® Fe andd* Mn takes place via superexchange through the bridging O. For
angles close to 180 strongo bonding favors FM ordering. However, as the Fe-O-Mn angles
deviate from 180through the oxygen octahedron rotational distortion, timiature ofr bonding

leads to an increasingly AFM character of the coupling [21¥8]}. This behavior can be seen in the

dependence of the fitted values ff,; on the Fe-O-Mn angle, plotted in Fig. 4.11.

Within this nearest-neighbor Heisenberg model, we exglareider range of possible magnetic
orderings for the R3c structure nanocheckerboard, inquéati, orderings with lower translational
symmetry than those included in the first-principles inggdgion. The supercells considered in-

cluded2 x 2 x 2 (p = 8 perovskite cells)2 x 2 x 4 and4 x 2 x 2 (p = 16 perovskite unit cells).
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Figure 4.11: Angular dependence of the Fe-Mn magnetic exgghaoupling constant;,,; in the
c-R3c GS structure of the BiFg&BiMnO3 nanocheckerboard (blue circles). The black line is a
linear fit. J;,,; changes sign (AFM;,,; > 0to FM J;,; < 0) at the bond angle af60°.

The Heisenberg model energies were computed foPapih configurations in each supercell.

The lowest energy ordering found in this larger set of coméians is still the FeAFMMnFM
ordering, with FM alignment of the Mn and AFM antialignmerfttbe Fe along the Mn and Fe
pillars, respectively, and alternating FM and AFM layers as in Fig. 4.3. The lowest-energy
alternative magnetic state is a state in which one Mn perrsafpén the FMzy layer flips, at an
energy cost 06.3 meV/supercell. The net magnetization for the resultingestiecreases from

Mgg = 3.81.5 per one Fe-Mn pair té;—zMGS.

Within a mean field approximation with four effective fieldsjo for the two Fe atoms and
two for the two Mn atoms in the unit cell of the BiFg@®iMnO3 nanocheckerboard, the magnetic
transition temperature of the BiFg@iMnO3; nanocheckerboard 5. = 406 K. This tempera-
ture is intermediate between the Neel temperatiif§; = 643 K, of bulk BiFeO; and the Curie

temperature7 ;" = 105 K, of bulk BiMnOs [64, 75-78].
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4.6 Alternative Structures of the BiFeO;-BiMnO 3 Nanocheckerboard
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Figure 4.12: Structural energetics of BiFeBiMnOs nanocheckerboard. Energy difference per
perovskite cell (per B-cation) for different magnetic aidgs (see Fig. 4.3) and for structural dis-
tortions (see Fig. 1.4 and Table 4.1). Inset: zoomed vievhefmagnetic energies for the c-R3c
structure. FeAFMMnNFM ordering (filled diamond) competeshws-AFM ordering (open circle)
in the nanocheckerboard alternative structures.

The energies for various magnetic orderings and structlistdrtions of the nanocheckerboard
are shown in in Fig. 4.12. The structural parameters for eaatcture type are relaxed for each
magnetic ordering. The most energetically favorable médtive structures, like the ground state
FeAFMMnFM c-R3c structure, are polar and include oxygemloetra rotations.

The polar distortion in the alternative structures of thaawneckerboard is quantified by the
value of the polarization computed using nominal charges (&.2)), that can be directly com-
pared with nominal-charge polarizations in the structweBiFeO; (cf. Tables 4.2 and 4.6). As
in BiFeG;, there is a low-lying supertetragonal P4mm phase, with~ 1.3 and very large spon-

taneous polarization. For the various structures consitjaghe polarization tends to decrease as
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Table 4.6: Low energy alternative and ground state (GSgtsire of BiFeQ-BiMnO3 nanochecker-
board. Energy differencAE[eV/B — cation] is calculated for different magnetic orderings with
respect to FeEAFMMnAFM P4/mmm structure [as in Fig. 4.12]sulating DOS band gap (or
metallicm character), polarizatio® estimated from the nominal charges [Eq. (4.2)], the in-plan
a and out-of-plane lattice constants [see perovskite cell in Fig. 4.1], andgaxytoctahedron ro-
tation angle® are given for the lowest-energy magnetic ordering cornegimg to each structural

distortion.

Space group P4/mmm c-P4mm c-l4cm c-R3c
Modes - [;(2)  R{Ii(y) RED;(111)
Mag. order FeAFMMnFM  G-AFM G-AFM  FeAFMMnFM
A [eV] m 1.01 1.55 0.90
P [uC/cm?] - 101.9 715 57.9
a/ c A] 3.81/3.88 3.66/4.60 5.80/3.67 5.50/ 3.93
O[°] - - 4.8 7.2-20.3
AFE (FeAFMMnFM) -0.132 -0.615 -0.767 -0.915
AFE (G-AFM) 0.000 -0.668 -0.813 -0.913
AFE (C-FIM) -0.042 -0.654 -0.774 -0.884
AFE (FEFMMnAFM) -0.054 -0.625 -0.717 -0.865
AE (FEAFMMnAFM) 0.000 -0.592 -0.721 -0.856
AFE (FM) -0.077 -0.567 -0.661 -0.817

rotational distortion is introduced, with the smallestuafound in the c-R3c¢ structure.

In the P4/mmm structure, the nanocheckerboard is metattde a band gap opens with ei-
ther polar or rotational distortion. This behavior is sanito that of BiIMnQ and BiFeQ, which
are metallic in the FM P8m, or P4/mmm structures with a band gap opened and/or wideyed

distortion (in FM BiMnG;, only in the spin-down channel).

As can be seen in Fig. 4.12, the difference in energies betdifferent structure types is gener-
ally much larger than the difference in magnetic energies fgiven structure type. The interesting
feature of this figure is that the favored magnetic ordermndifferent for different structure types,
switching between ferrimagnetic FeAFMMnFM and antiferemmetic G-AFM. This is in contrast
to the case of bulk BiFe(see Fig. 4.5), or bulk BiMn@ (see Fig. 4.7), in which the favored

magnetic ordering does not change for different structypes.
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4.7 Magnetic and Structural Transitions Driven by Anisotropic Strain

The sensitivity of the magnetic exchange couplings to thecgire should produce changes in the
magnetic ordering energies for perturbations that coupléné crystal structure, such as electric
field, pressure and epitaxial strain. It is even possiblé #ghsatructural perturbation could drive
the system through a magnetic transition into an alteredtiw-energy ordering. Furthermore,
the fact that in the nanocheckerboard the favored magnetariog is different for different struc-
ture types, discussed in the previous section, suggestshthanagnetic ordering of the system
could in principle be changed by a perturbation that chatigestructure type, producing a novel
magnetic-coupling response at the magnetic-structurasetoundary [200, 90]. For example, it
might be possible to drive the nanocheckerboard from itsniegnetic FeAFMMnFM c-R3c GS

with a nonzero magnetization to a G-AFM c-14cm state witlozmagnetization.

We have explored this possibility for two types of epitaxdtdain. First, we investigated the
c-R3c phase with an isotropic epitaxial strain, correspumtb an (110) matching plane. Thus, the
second and third lattice vectors of th€a x v/2a x 2¢ supercell, along [-110] and along [001], are
constrained to be perpendicular with uniform scaling ofléttice constants = (1 + s)ag andc =
(1+ s)co, whereag = 5.504 andcy = 3.93A are the unstrained lattice constants of FeAFMMnFM
c-R3c GS. In this case, there is no magnetic transition: yiseem remains FeAFMMnFM from

s = 0% up to strain ofl0%.

Second, we considered an anisotropic epitaxial straimesponding to a (001) matching plane,
such that the lattice constant along [110] is fixed/® x ag = 5.524, while the lattice constant
a along [-110] is elongated, with strain defined%g%’—o. ap = 3.94 is chosen as it is the lattice
constant of an ideal perovskite cell with volume which is #iverage of that of bulk R3c BiFeO

(Vero = 59.2843 /B — cation) and bulk C2/c [71, 72] BIMn® (Veaso = 59.4143 / B — cation).

The anisotropic epitaxial strain dependence of the eneigfi¢he c-R3c and c-14m structures

is presented in Fig. 4.13. At 0% strain, the energy diffeechetween FeAFMMnFM to G-AFM
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Figure 4.13: Epitaxial-strain-driven magnetic transitio BiFe(;-BiMnO3 nanocheckerboard. To-
tal energies of the FeAFMMnFM (solid) and G-AFM (dashed Jimagnetic orderings in the c-R3c
structure type (blue) and c-l4cm structure type (red), asnatfon of anisotropic in-plane tensile
strain (details in the text).

in the ¢c-R3c structure is 5 meV/B-cation; this differs stiglfrom the value for the relaxed struc-
tures reported in Table 4.6 due to the difference in latt@estants between the epitaxial constrained
structure and the fully relaxed structure (the correspuméenergy difference at 0% strain for c-14cm
is greater because the difference in lattice constantseistgy). At 3% strain, there is a magnetic
transition from ferrimagnetic FeAFMMnFM to this low-lyin@-AFM phase, while the structure re-
mains c-R3c. This arises from the modification of the excbar@uplings by the structural changes

produced by the changing epitaxial strain.

With a further increase in strain, there is a transition frofR3c to a c-l4cm phase at about
4.5%. Since the favored magnetic ordering is G-AFM in bothditiral phases, no magnetic tran-
sition accompanies the structural transition. Howevés, tbsult does illustrate the feasibility of a

epitaxial-strain-induced structural transition from guadtern of rotational distortions to another in
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Table 4.7: Calculated total magnetic energies E [eV/Betdtand energy differenceA E [eV/B-
cation] in an ideal perovskite structure with lattice camstzy, = 3.839A4 for various magnetic
states in the checkerboard, rocksalt (oxygens are relaxadcomodate their preferable positions),
and layered superlattice of BiFgBiMnO3. The checkerboard ordering shows a quasidegenerate
spectrum of magnetic energies, whereas the rocksalt ardeldysuperlattice show larger gaps be-
tween the ground state (GS) and the first alternative magstetie. Values ot/r, = Upyy, = 5eV
andJr. = Jum = leV are used in the upper, while valuesiéf!/ = 4eV, Ul = 5.2¢V with

Uelf = U — J are used in the lower panel of the table, respectively (see4S2).

Checkerboard Rocksalt Superlattice Layered Superlattice
Magnetic State E Magnetic State E Magnetic State E
FeAFMMnFM  -35.04 FMFM -35.06 FeAFMMnFM -35.11
AFE AFE AFE
FeAFMMnFM  0.000 FMFM 0.000 FeAFMMnFM 0.000
FM 0.022 FeAFMMnFM 0.044 FM 0.111
C-FIM 0.076 FeFMMnAFM 0.045 FeAFMMnAFM 0.135
FeAFMMnAFM  0.081 FM 0.065 FeFMMnFM 0.136
G-AFM 0.114 AFMAFM 0.101 G-AFM 0.181
FeFMMnAFM  0.119 G-AFM 0.114 FeFMMnAFM 0.260
E E E
FeAFMMnFM  -34.68 FMFM -34.66 FeAFMMnFM -34.76
AFE AFE AFE
FeAFMMnFM  0.000 FMFM 0.000 FeAFMMnFM 0.000
FM 0.028 FM 0.047 FM 0.097
FeAFMMnAFM  0.084 FeFMMnAFM 0.055 FeAFMMnAFM 0.137
C-FIM 0.113 FeAFMMnFM 0.070 FeFMMnFM 0.143
FeFMMnAFM  0.129 G-AFM 0.079 G-AFM 0.219
G-AFM 0.152 AFMAFM 0.084 FeFMMnAFM 0.257

this system; a coupled structural-magnetic phase bouritiasymay be brought to light by future

exploration of various epitaxial strain constraints.

4.8 Role of the B-Site Cation Ordering in Magnetostructural Effect

Quasidegenerate magnetic states in the BFFBMnO3; nanocheckerboard are a necessary ingre-
dient for the observed magnetostructural effect (cf. Fig24nd Table 4.6), where change in the
magnetic ordering is achieved by a perturbation (e.g.arjait strain, as in Sec. 4.7]). Here, we
investigate the role of the cation-ordering geometry iredatning the spectrum of magnetic states;

in particular, this will show whether the quasideneratysectrum is unique to the checkerboard
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geometry.

Magnetic energies are computed in the ideal perovskitetsirel of five systems: the bulk parent
BiFe(O; and BiMnG;, the BiFeQ-BiMnO3 nanocheckerboard, the BiFe®BiMnO3 layered (001)
superlattice, and the BiFe@BiMnOj3 rocksalt structure with Fe and Mn alternating in every other
unit cell ((111) superlattice). The results for the chebkeard, the rocksalt, and the layered super-
lattice are presented in Table 4.7. Bulk BiFeénd bulk BiMnG; exhibit behavior similar to the
(001) layered superlattice [90]. In these three systemesditfierence in energy between the mag-
netic ground state (G-AFM in bulk BiFeQFM in bulk BiMnOs, and FEAFMMnFM in the (001)
layered superlattice) and the first alternative state ikérange).10 — 0.14eV/B — cation. This
spectral gap is sufficiently large that structural changemot lower the energy of an alternative

state below that of the original magnetic ground state.

Indeed, for all structures considered the lowest magnttte 1 bulk BiFeQ and bulk BiMnGQ;
is G-AFM and FM, respectively (see Figs. 4.5, 4.7). In theljGfuperlattice, we calculate magnetic
energies for the G-AFM and FeAFMMnFM magnetic states in ttsacsural distortions: For I-l14cm
(see Table 4.1), we findE = —0.504eV/B — cation for G-AFM andAE = —0.553eV/B —
cation for FeAFMMnFM with respect to the FeAFMMnFM magnetic statelie ideal perovskite
cell (see Table 4.7). For I-R3c, we fillE = —0.752¢V/B — cation for G-AFM and AE =
—0.761eV/B — cation for FeAFMMnFM. For both structural distortions considerdige lowest

energy magnetic ordering is FeAFMMnFM.

In contrast, all magnetic states in the nanocheckerboadja@asidegenerate, all are lower in
energy than the lowest-energy states in the (001) supedathd the bulk. The rocksalt structure is
an intermediate case: while the difference between the FMEgnetic ground state and the first
alternative state i8.05¢V/B — cation, close to half of the spectral gap of the (001) superlattice
and bulk, all the states considered fall in the same lowggnaindow as for the checkerboard.
Therefore it is much more likely that a structurally-drivieansition between the different magnetic
states could occur in the checkerboard, or in the rocksalttsire, than in the other geometries

studied here.
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The importance of the B-site cation geometry in the magretiering energy spectrum can be
qualitatively understood from a simple Heisenberg modé¢hefform given in Eq. (4.4), where we
assume that the exchange couplings, Jys, andJ;,; are independent of cation geometry, thus
being transferable from one geometry to the other. We carpappately reproduce the magnetic
ordering energies in the ideal perovskite structure of tieckerboard with the Mn-Mn interaction
Jurn being strongly FM, the Fe-Fe interactioir. being AFM and about half the strength, and the
Fe-Mn interaction/;,; being weakly FM. Assuming the same values in the FeAFMMnFMd&S
the (001) layered superlattice, the high and medium-sthrebgnds are all satisfied (happy in the
language of frustrated magnetism) and the only unhappysareiweak bonds between the Mn and
the opposite spin Fe in the adjacent layer (one bond per Broatirhus this state is energetically
clearly preferred over other orderings considered, whiidhalve a significant fraction of unhappy
high and/or medium strength bonds, thus opening the ol gayein the magnetic energy spectrum.
In contrast, in the checkerboard, the total fraction of hagidl medium-strength bonds is half that
in the layered superlattice, and the alternative statedoaren energy as they involve tradeoffs
between a larger number of happy weak bonds and a smallereruwshbinhappy medium or high-
strength bonds. Finally, in the rocksalt structure, alltiearest neighbor bonds are weak. This is
consistent with the fact that all orderings considered &tevaenergies. However, a simple one-
parameter model does not correctly account for the energeder of the states in this range or the
gap between the ground state ordering and the first alteensiate, which would require a model

including next-nearest neighbor interactions.

Indeed, the assumption of exact transferability used alowaly semi-quantitatively valid. In
particular, changes in B-site cation geometry result iatied energy shifts of the Fe, Mn and O
states and changes in the orbital wavefunctions, and thalsanges to the wavefunction overlaps
and energy denominators that contribute to superexchampes leads to different values of the
magnetic couplings/z., Jam, Or Jine in the various geometries considered (cf. Table 4.7). In
addition, structural distortions modify these magnetigplings, as would be needed to explain the

difference in the ordering of the magnetic energies in Tablé and 4.7. However, the simple model
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does serve to give useful insight into this complex issud, laghlights the fact that the magnetic

ordering spectrum is indeed very sensitive to the B-sit®oarrangement.

4.9 Discussion

The experimental realization of the BiFeBiMnO3 nanocheckerboard would be challenging as
its formation energy is positive: the combined total eresgif R3¢ G-AFM ground state of bulk
BiFeO; (E[BFO] = —35.079¢V/B — cation) and of the R3c FM lowest energy structure of
bulk BiMnO3 (E[BM O] = —36.676eV /B — cation) are lower than that of the c-R3c FeAFMM-
nFM ground state of the BiFe@BiMnO3 nanocheckerboardE( BFM O] = —71.694eV /2B —
cations). Though the BiFe@BiMnO3; nanocheckerboard is at best metastable, there is indica-
tion from experiments that fabrication of the BiFeBiMnO3 nanocheckerboard with square sizes
on the order of a unit cell would not be impossible with appiate tuning of growth parameters.
Growth of (001) BiMnQ on BiFeG; films has recently been reported. In this study post-anmgali
led to intermixing of the Fe and Mn, with a concomitant inaean ferromagnetid’,. [228]. This
experiment provides support for the first-principles otaton that magnetic ordering in this sys-
tem is very sensitive to the B-site cation arrangement. VWdtfard to other film orientations, (110)
and (111) as well as (001) BiFg@ilms have been successfully grown on oriented SgT$0b-
strates [55, 229]. For BiMn§) (111) and (001) oriented films have been grown with sulestrat
vicinality [74, 230]. There should be no fundamental obstdo analgous growth of (110) ori-
ented films of BIMnQ. More generally, a combination of patterned substratiassible masking,
layer-by-layer growth, and carefully tuned growth parametould influence the deposition process
enough to produce a checkerboard structure of BfF-BMnO3.

In order to make better contact with future experiment, itisful to consider magnetic ordering
of larger-scale rn BiFeQ;-BiMnO3 checkerboards, where the lateral dimension of the BiFa@
BiMnOg pillars is n perovskite lattice constants. Within eachapjlBiFeQ and BiMnG; regions
should be G-AFM and FM respectively, since this orderinchis most energetically favorable in

the parent bulk structures. This is true even in the extremse of n=1 discussed in Sec. 4.5. The
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magnetic coupling constanig-., Jur,, andJ;,; (Eq. (4.5)), obtained in Sec. 4.5.2 would allow the
construction of Heisenberg models to explore the magnetiering of these larger-scale checker-
boards with the ideal perovskite structure, wheégge and J;, connecting two atoms in the xy

plane can be taken to be equal to the coupling along the,ilaiiwe have not pursued this farther
here. Generally speaking, we expect that the possibility sifucturally-driven magnetic transition

should decrease as the lateral size of the Bf-a@d BiMnGQ; pillars increases and the interface
effects (Fe-Mn interactions) become less important.

On a technical note, the robustness of our calculated fiistiples results has been checked by
using two different implementations of LSDA+U with differeparametrizations to compute mag-
netic ordering energies in the ideal perovskite structoretlie checkerboard, the rocksalt cation
ordering, and the layered superlattice (Table VI). The lesylts are the same for both implementa-
tions: the type of ground state magnetic ordering for eatibrcarrangement, the quasidegeneracy
of the spectrum of magnetic energies in the checkerboaedgdip in the energy spectrum in the
layered (001) superlattice, and the intermediate chara€the rocksalt ordering.

Finally we remark that our first principles calculations ax imclude spin-orbit coupling (SOC)
that is known to lead to weak ferromagnetism in Bi¢6Y]. Since the BiFe@BiMnO3 nanochecker-
board already has a ferrimagnetic ground state without Sslysion of SOC may result in a
slightly changed value of the total magnetization and tolksoaating angles of the Fe and Mn
spins; these changes should not fundamentally affect thdtsepresented here. The addition of

SOC to our present calculations is certainly worth pursirnigiture work.

4,10 Summary

In this chapter, the structure and properties of an atomadesBiFeQ-BiMnO3 checkerboard were
investigated using first-principles calculations and negigrmodeling. This unusual heterostructure
was found to have properties distinct from those of its budkept constituents, or those of (001)
superlattices of these two materials. We attribute thisbieh to the magnetic frustration resulting

from its B-site cation geometry; this leads to a quasidegaaananifold of magnetic states that can
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be switched through small applied external perturbaticesylting in an unusual magnetostructural
effect. The possibility of realizing this system in the lediory was discussed. This study of a two-
component nanocheckerboard should be considered as agffpohciple example, and we plan

to study similar geometries on longer length scales toifatal contact with future experiments.
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