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ABSTRACT OF THE DISSERTATION

Three Theoretical Studies of Ferroelectric Materials in Different

Geometries

By LUCIA P ÁLOV Á

Dissertation Director:

Professor Premala Chandra

Using a combination of numerical and analytical techniques, I present characterizations of fer-

roelectric materials in bulk, thin-film and nanostructure geometries. My results have impact on

ongoing research and on design for nanodevices.

Size-dependent effects in ferroelectrics are important due to their long-range electrostatic inter-

actions; thus their dielectric properties depend on electromechanical boundary conditions. In my

first study, I address the effects of strain on the measured properties of thin-film (TF) ferroelectrics.

It has been suggested that the observed suppression of many TF dielectric characteristics implies

underlying strain gradients in the film. I show that the same effects can be explained by a simpler

model with homogeneous strain, and I suggest a “smoking gun”benchtop probe.

The quantum paraelectric-ferroelectric transition (QPFT) is the topic of my second study. Using

methods including finite-size scaling and self-consistentGaussian theory, I calculate the classical-

quantum crossover in the dielectric susceptbility and the resulting temperature-pressure phase di-

agram; comparison with current experiment is excellent andpredictions are made for future mea-

surements. Here, temperature can be considered a “finite-size effet” in time, and previous results on

the QPFT using diagrammatic techniques are recovered and extended using this approach.

Recent synthesis of artificially structured oxides with “checkerboard” patterning at the nanoscale

ii



has been reported, and this serves as motivation for my thirdstudy. Here, I use first-principles

methods to characterize an atomic-scale BiFeO3-BiMnO3 nanocheckerboard, and find that it has

properties that are distinctive from those of either parentcompound. More specifically, it has both a

spontaneous polarization and magnetization, and also displays a magnetostructural effect. My work

on this prototypical multiferroic nanocheckerboard motivates further theoretical and experimental

studies of new heterostructures with properties that are geometrically induced.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 A Brief History of Ferroelectrics

Ferroelectricity was first observed in two water-soluble crystals, Rochelle salt (sodium potassium

tartrate tetrahydrate) and KDP (potassium dihydrogen phosphate) [1, 2]. However, it took more than

twenty years for a new class of much simpler materials, perovskite oxides, to be discovered [3].

Though there were early theoretical studies on the Rochellesalt [4], the discovery of these sim-

ple perovskite ferroelectrics has led to much progress in understanding the physics underlying the

observed experimental phenomena. [see Fig. 1.3] [5–7].

The first studied ferroelectric perovskite is now well knownBaTiO3 [8, 9] [see Sec. 1.2.3]. After

its discovery, many new ferroelectrics have been studied, leading to deeper understanding of their

properties. A breakthrough was made with the development ofthe soft mode description of the

ferroelectric transition [10, 11]. Today, we use the phenomenological Landau-Ginzburg theory with

symmetry considerations placed on the order parameter [polarization] to describe phase transitions

in ferroelectrics [12, 13] [see Sec. 1.2.4]. After an era of bulk perovskites, miniaturization took

place, and thin ferroelectric films [14, 15] and later perovskite oxide superlattices [16–26] were in-

troduced. The goal is now to design new materials with betterproperties, such as higher polarization

or critical temperature values, than those found in nature.Today, a triumph of ferroelectric materi-

als is in their wide functionality, with important applications that include sonar, medical ultrasound,

ferroelectric random access memories (FeRAMs), and even chips inside ski passes.
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1.1.2 Ferroelectric Applications

Ferroelectric random access memory (FeRAM) is a promising application of ferroelectric materials.

FeRAM is non-volatile as it retains stored information evenwhen not powered. This is a very

useful property because information is automatically stored, without pressing a “save” button. For

example, non-volatile competing Flash memories are currently used in digital cameras. In contrast

to Flash memories, FeRAM’s advantages are its lower power consumption, faster write performance

and a greater maximum number of write-erase cycles [27, 28].So why don’t we use FeRAM

memories instead of Flash memories in our digital cameras? One of the big problems is that the

existing FeRAMs have lower storage density than their Flashcounterparts. To increase the amount

of information stored per unit of area, we need to go to smaller scales, and this is exactly where

basic research comes into play. It concentrates on questions related to nanoscales: What happens to

electric properties when we go to smaller sizes? Is there anydifference in ferroelectric film vs. bulk

behavior?

The answer is that there is a huge difference between bulk ferroelectric properties and those

of thin ferroelectric films. This is due to the fact that the electromechanical boundary conditions

are very important at small scales because of the underlyinglong-range electrostatic interactions in

ferroelectrics, in contrast to short-range [Heisenberg] spin interactions in ferromagnets. Of course,

when one starts to talk about boundary conditions, it is important to know details associated with

the ferroelectric film. How is the film fabricated? What and where are the electric contacts? It

turns out that most of the films are epitaxially grown on substrates, and the choice of the substrate

influences the dielectric properties of a ferroelectric filma lot. For example, a material that displays

no bulk ferroelectric behavior may be ferroelectric as a thin film grown on a specific substrate [15].

Similarly, the choice of metalic contacts matters, and can lead to suppression of the ferroelectric

signal [switchable polarization, see Sec. 1.2.1] due to depolarization effects [29].

Ferroelectric materials have the ability to generate an electric signal upon deformation. This so

called piezoelectric property [see Eq. (1.9)] is in fact what makes these materials so useful. From

a guitar pickup to a piezoelectric motor, the mechanical energy is converted to an electric signal, or
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vice versa. For example in a piezoelectric microscope, the piezoelectric crystal is used to finely tune

changes in position with an electric signal. In sonar, the sound [or pressure variations] is detected

and generated using an electric signal. Similarly, motion of a baby in the uterus is detected by

medical ultrasound devices.

The technologically most important ferroelectric, and piezoelectric nowadays is PbZr1−xTixO3

(PZT). Its advantage lies in large values of its spontaneouspolarization and its piezoelectric co-

eifficient that are important for good signal readout and efficient electromechanical conversion,

respectively. PZT also displays reliably constant behavior over a wide temperature range; this char-

acteristic is connected to its morphotropic, temperature-independent, phase boundary between two

structural phases at aboutx = 50% of Ti concentration. Unfortunately, because PZT contains lead,

an environmentally unfriendly element, much current research focuses on identifying and design-

ming lead-free ferroelectrics with comparable properties.

1.1.3 Ferroelectrics in Solid State Theories

The reason why we study ferroelectrics is not only because oftheir wide range of technological

applications, but also because these materials turn out to be useful examples of systems, for which

simple theoretical descriptions work very well. One such theory is a phenomenological Landau

[or Landau-Ginzburg] theory of phase transitions. This theory is based on describing the system

by the order parameter, polarization in this case, that takes into account symmetries of the studied

phases. Although Landau theory is usually connected with the description of magnetic transitions

in most of the textbooks, it actually works much better for paraelectric-ferroelectric transitions [see

Sec. 1.2.4]. In essence, the Landau theory is a mean field theory. Therefore it works well when the

coordination number [number of nearest neighbours] is high. This can be achieved either by large

dimensionality of the system, or by long-range interactions; the presence of Coulomb interactions

in ferroelectrics leads to the fact that Landau theory is reliable in these systems for a temperature

window close to the ferroelectric-paralectric phase transition. [13]
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Another reason why ferroelectric materials have been studied recently is because of their con-

nection to quantum criticality. Because ferroelectric materials are insulating systems [see Sec. 1.2.1],

there are no free charges and thus no electronic dissipation. Because there is limited disorder and

no other competing fixed points in these materials, they display very simple behavior close to their

quantum critical point at low temperatures and high pressures [see Sec. 1.3.2 and Chapter 3]. Fur-

thermore, unlike magnetic systems, they can be studied below, at or just above their upper critical

dimension. Finally, another advantage of these quantum critical systems is that the theory can be

directly compared to ongoing experiment [30–32].

1.1.4 Multiferroics

Multiferroics are materials where electric and magnetic [sometimes also elastic] properties are com-

bined in a single phase material. Just as ferroelectric materials are used for ferroelectric memories,

current research concentrates on questions related to possible multiferroic memories. A memory

element made of a multiferroic material can be in one of four possible states [instead of two in a

traditional memory element], which means that twice as muchinformation can be stored per cell.

Another advantage of multiferroic memories lies in that they support fast low-power electrical write

and non-destructive magnetic read operation. This would remove the disadvantage of the destructive

read process currently associated with ferroelectric memories [33, 34]. However, to implement such

memory one needs a material whose magnetic state can be changed by applying an electric field or

vice versa, a material with a high value of the so called magnetoelectric coupling. Of course, for a

multiferroic memory to be used technologically, one also needs a material with room temperature

ferroelectric and ferromagnetic behavior.

In general, it is difficult to find a room temperature single-phase multiferroic with large mag-

netoelectric coupling. This is mostly because different criteria need to be fulfilled in order for a

material to be both, a ferroelectric and a ferromagnet. Broken inversion symmetry needs to be satis-

fied in the case of ferroelectrics [see Sec. 1.2.1], whereas broken time-reversal symmetry in the case

of ferromagnets [35]. Ferroelectrics are insulators [we donot want any free carriers, but electric
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dipoles], whereas ferromagnets are usually metals [as for example iron], where spins of electrons

of partially filled d shells magnetically order [33, 36]. Some materials do exhibit ferroelectricity

and ferromagnetism simultaneously in spite of these criteria, but they either have a weak magne-

toelectric coupling [for example, BiFeO3, see Sec. 1.2.3], or their critical temperatures, or electric

polarizations are very low [∼ 10K and∼ 10−2µC/cm2, respectively] [33, 37]. Because it is dif-

ficult to find a single phase multiferroic, current research also concentrates on questions related to

artificial design of new multiferroic materials.

1.2 Overview of Ferrolectrics

1.2.1 Ferroelectric

Let us now properly define a ferroelectric material (ferroelectric). A ferroelectric is an insulating

system with two or more discrete stable [or metastable] states of different nonzero electric polar-

ization in zero applied electric field, referred to as “spontaneous” polarization. For a system to be

considered ferroelectric, it must be possible to switch between these states with an applied electric

field, which changes the relative energy of the states through the coupling of the field to the polar-

ization− ~E · ~P [38]. A typical dependence of energy on the spontaneous polarization is shown in

Fig. 1.1, where the ferroelectric undergoes a phase transition from a paraelectric [non-polar] high

temperature to a ferroelectric [polar] low temperature phase at a critical temperatureTc.

An essential property of a ferroelectric is that it is characterized by a hysteresis loop, that is,

the dependence of the electric polarization on an applied electric field, Fig. 1.2. When an electric

field is first applied, the ferroelectric becomes polarized developing a finite value of the electric

polarization, and it stays polarized having a nonzero spontaneous polarization value even when

the field is turned off. The latter feature distinguishes a ferroelectric and a paraelectric, in which

polarization scales linearly with an applied electric field, and vanishes when the field is turned off.

Switching between two spontaneous polarization states in aferrolectric is achieved by inverting the

sign of the applied electric field, as is shown in Fig. 1.2. This switching property between “up”
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Figure 1.1: Energy versus “spontaneous” polarization is sketched above and below critical temper-
atureTc. Two minima in the energy for two distinct spontaneous polarization [“up” and “down”]
states form belowTc, whereas the polarization is zero aboveTc [see Fig. 1.5]. Electric field switches
between the “up” and “down” ferroelectric states [see Fig. 1.2].

and “down” polarization states [see Figs. 1.1 and 1.2] has turned out to be useful for encoding

information as “0” and “1” states in the ferroelectric random access memory (FeRAM).

The electric polarization~P is usually defined for a finite system as the electric dipole moment

per volumeV , where the dipole moment is obtained from the charge densityρ(~r),

~P =
1

V

∫

d~r~rρ(~r). (1.1)

However, it has been discussed that Eq. (1.1) is not a useful bulk definition of the polarization

in a finite crystal due to possible redistribution of surfacecharges, nor is it a useful definition for



7

Figure 1.2: Ferroelectric hysteresis loop. Polarization (P ) dependence on the applied electric field
(E). When electric field is first applied, the ferroelectric material becomes polarized, and it stays
polarized even when the field is turned off. Switching between two spontaneous polarization “up”
and “down” states is achieved by inverting the sign of the applied electric field.

calculations on infinite ferroelectric crystals with periodic boundary conditions. The “modern theory

of polarization” provides another way how to define~P , and its advantage lies in connecting the

definition of polarization directly to what is measured experimentally [39, 40],

∆~P =

∫

dt
1

Vcell

∫

cell
d~rj(~r, t). (1.2)

Here, the polarization is expressed as an integrated current density, and is directly connected to the

electrical and optical means of measuring polarization. Notice that only difference in the electric

polarization∆~P is defined via Eq. (1.2). This is exactly half of the difference between the two spon-

taneous polarization [“up” and “down”] states that is obtained experimentally from, for example,

the hysteresis loop measurements [see Fig. 1.2].
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1.2.2 Multiferroic

Next, we define a ferromagnet, ferroelastic, and finally a multiferroic material (multiferroic). A

ferromagnet is a material where, similarly to a ferroelectric, switching between two or more spon-

taneous magnetization states is achieved by applying a magnetic field. A ferroelastic exhibits spon-

taneous strain. A multiferroic is a material in which two or all three of ferroelectricity, ferromag-

netism and ferroelasticity occur in the same phase [33, 41].We will be mostly interested in so called

magnetoelectric multiferroics [multiferroics from now on] that exhibit spontaneous polarization and

spontaneous magnetization simultaneously.

1.2.3 Perovskites

Figure 1.3: Ideal cubic perovskite structure [space group Pm3̄m]: A site cations occupy corners of
the cube, while typically smallerB site cations occupy center of the cube. Six oxygensO form an
octahedron around theB site cation [shown by dashed lines].

Typical examples of ferroelectric, and also multiferroic materials are perovskite oxides. This

is a very large family of composition ABO3 [see Fig. 1.3], whereA andB each represent a cation

element or mixture of two or more such elements or vacancies.We will see that choosing a mag-

netic B site cation leads to a possibility of an antiferromagnetically, or ferromagnetically ordered
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perovskite, and in general the combined ferroelectric and magnetic properties can lead to a multi-

ferroic perovskite-based system [see Chapter 4]. In this section, we describe electric and magnetic

properties of a few bulk perovskites that we study in more detail in the form of either bulk [see

Chapters 3 and 4], thin film [see Chapter 2], or superlattice [see Chapter 4] in the next Chapters.

Before we describe individual systems, let us first point to auseful quantity, the Goldschmidt

tolerance factor,

t =
rA + rO√
2(rB + rO)

, (1.3)

whererA, rB andrO are ionic radii ofA, B cations andO anion, respectively. Goldschmidt has

shown that the perovskite structure is formed whent ≈ 1. In general, whent > 1, theB atom

is small and the structure develops a small polar distortion, as in BaTiO3. When t < 1, the A

atom is small, and the oxygens move towards the “empty” spacesuch that the corner-shared oxygen

octahedra rotate, as in SrTiO3, or BiFeO3 [38].

Figure 1.4: Common structural distortions of the cubic perovskite cell [of a BiFe(Mn)O3 system,
see Chapter 4]: (a) Polar distortion with relative shift of Bi and Fe/Mn cations with respect to O
anions along thez-axis [Γ−

4 (z)], (b) + (in-phase) rotations of the oxygen octahedra [dashed lines]
about thez-axis [M+

3 (z)], (c) − (out-of-phase) rotations of the oxygen octahedra [dashed lines]
about thez-axis [R+

4 (z)].

Recently, Stokes has classified three typical unstable structural distortions of the ideal cubic
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perovskites [42]: (i) polar distortion of cations with respect to anions that leads to an electric dipole

moment and to the electric polarization, and two non-polar rotational distortions (ii)+ rotations

of the oxygen octahedra, that is all rotations about a given axis are in phase, or (iii)− rotations

of the oxygen octahedra, that is sense of rotations alternates along the rotation axis, as is sketched

in Fig. 1.4. By freezing in these modes, or combinations of these modes, we generate various

perovskite structures that correspond to different structural space groups.

BaTiO3

Figure 1.5: Crystal structure of the perovskite ferroelectric BaTiO3. (A) High temperature, para-
electric, cubic phase Pm̄3m. (B and C) Room temperature, ferroelectric, tetragonal P4mm phases.
Displacing Ti cation with respect to O anions leads to a nonzero electric dipole moment and breaks
the inversion symmetry of the cubic phase. Two symmetry equivalent “up” and “down” polarization
variants are shown. The atomic displacements are scaled to be clearly visible [18].

Barium titanate (BaTiO3) is a typical ferroelectric perovskite. It has a paraelectric cubic per-

ovskite structure [Pm̄3m] at high temperatures, and it undergoes a series of phase transitions: first

to a ferroelectric tetragonal P4mm phase [generated by polar Γ−
4 (z) mode] at 393 K [as shown in

Fig. 1.5], then to a ferroelectric orthorhombic Amm2 phase [generated by polarΓ−
4 ([110]) mode]

at 278 K, and finally to a ferroelectric rhombohedral R3m phase [generated by polarΓ−
4 ([111])

mode] at 183 K, see Fig. 1.6. The first transition is of a secondorder, while the latter two are

first order transitions [see Sec. 1.2.4]. A phenomenological order-disorder model best describes
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the sequence of these phase transitions as follows. As we already mentioned above, because the

B cation (Ti) is small [t > 1, see Eq.(1.3)], it always displaces towards the “empty” space along

one of the cube diagonals. At high temperature, all possible[111] directions are allowed, therefore

the averaged displacement is zero [paraelectric Pm3̄m phase]. At low temperature, the displace-

ments all adopt either the same orientation [giving the rhombohedral R3m symmetry], or two, or

four preferred [111] directions [giving the orthorhombic Amm2, or tetragonal P4mm symmetry,

respectively] [38, 36].

Spontaneous polarization arises from breaking inversion symmetry of the cubic perovskite para-

electric phase. This is done by displacing the Ti cation withrespect to O anions, which leads to a

nonzero electric dipole moment. The displacement is along [111], [110], or [001] direction in

the ferroelectric R3m, Amm2, or P4mm BaTiO3 phase, with values of polarizations satisfying the
√

3 :
√

2 : 1 ratio, respectively [36, 38]. For example, the polarization in the tetragonal ferroelectric

phase is about27µC/cm2. Here, the Ti cation displaces either “upwards” or “downwards” with

respect to the oxygen anions, leading to two polarizationPup or Pdown symmetry equivalent states,

Fig. 1.5. As we discussed already in Sec. 1.2.1, it is possible to switch between these two states by

applying an electric field.

SrTiO3 and KTaO3

Strontium titanate (SrTiO3) is an “incipient ferroelectric” [43]. It remains paraelectric down to zero

temperatures, but it lies close to a paraelectric-ferroelectric transition as we describe in Sec. 1.3.2

[see Fig. 1.12], and in Chapter 3. First principles calculations show that quantum fluctuations sup-

press the ferroelectricity in SrTiO3 [44–46]. SrTiO3 [t < 1, see Eq.(1.3)] undergoes a structural

phase transition from the paraelectric cubic Pm3̄m to the paraelectric tetragonal I4/mcm phase at

about 110 K [47], where the oxygen octahedra rotate around cartesian axis in an antiferrodistortive

R+
4 (z) mode.

Potassium tantalate (KTaO3) is also an “incipient ferroelectric”. It does not undergo any struc-

tural transition, and it remains cubic paraelectric Pm3̄m down to low temperatures [48]. As we
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discuss in Chapter 3, KTaO3 lies deeper in the paraelectric phase than SrTiO3, and away from

the quantum paraelectric-ferroelectric transition, because its zero temperature dielectric constant is

much lower than the dielectric constant in SrTiO3 [43, 49].

BaxSr1−xTiO3

Figure 1.6: Critical temperature vs. concentration phase diagram of Sr1−xBaxTiO3, deduced from
the x-ray and neutron-diffraction studies [50].

Another possibility how to create a new perovskite system isto substitute A, or B site cation.

For example, the isoelectronic A site substitution of Ba2+ by Sr2+ results in BaxSr1−xTiO3 (BST),

Fig. 1.6. As more Sr is introduced, the ferroelectric transition temperatures are lowered, and the

value of the spontaneous polarization decreases inside each ferroelectric phase [50].
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BiFeO3

Bismuth ferrite (BiFeO3) is a room temperature ferroelectric, and a promising lead-free material for

room temperature electronic applications [51]. The spontaneous polarization of BiFeO3 is large,

about60 − 100µC/cm2 [Refs. [52–56]], and is comparable to the polarization of the widely used

and technologically important ferroelectric PZT.

Figure 1.7: Ground state structure of R3c BiFeO3: counter-rotations of the oxygen octahedra
[R+

4 ([111])] and polar ionic displacements [Γ−
4 ([111])] are along the body diagonal [111] axis [56].

We show the ground state structure of BiFeO3 in Fig. 1.7. It has rhombohedral R3c symme-

try, where the oxygen octahedra rotate alternatively clockwise and couterclockwise along the body

diagonal [111] direction [rotationalR+
4 ([111]) mode], and where Bi3+ and Fe3+ cations displace

with respect to O2− anions in the structure along the [111] direction [polarΓ−
4 ([111]) mode]. Again,

because the Goldschmidt tolerance factort < 1 [see Eq.(1.3], the oxygen octahedra rotations are

favored. The polar mode is responsible for ferroelectric behavior of BiFeO3, and for the onset of

spontaneous polarization that accordingly points along the body diagonal [111] direction. Ferro-

electricity in BiFeO3 has a different origin than that of BaTiO3 [see Sec. 1.2.3] [36]. It is driven by

stereochemically lone-pair-active Bi3+ cations that off-center toward neighboring oxygen anions,

and this off-centering is stabilized by a covalent bond formation between Bi and O [57].
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Figure 1.8: (a) Critical temperature vs. NdFeO3 concentration phase diagram of Bi1−xNdxFeO3.
Solid lines correspond to the structural phase transitions, where R refers to the rhombohedral R3c,
and O1 and O2 refer to the GdFeO3-type Pnma and PbZrO3-type Pbam structures, respectively [61].
Notice that pure BiFeO3 undergoes a transition from the R3c to Pnma phase at 1100 K. (b) Proposed
phase diagram for rare-earth (RE) substituted BiFeO3, Bi1−xRExFeO3. The black line represents
the structural phase boundary between the rhombohedral R3c(in blue) and the orthorhombic Pnma
(in green) structural phases. At lower temperature side, the region in light blue corresponds to the
coexistence of R3c and Pbam phases. Double hysteresis loop behavior (in dark green) is observed
close to the structural transition [60].

BiFeO3 undergoes a phase transition from the ferroelectric rhombohedral R3c to a paraelectric

orthorhombic Pnma phase at Curie temperature 1100 K [58]. The paraelectric Pnma phase is also a

high pressure phase of BiFeO3 [59]. We show that Pnma lies very close, only14meV per perovskite

cell, above the R3c ground state of BiFeO3 [60]. Therefore, perturbations such as the external

pressure, or a rare-earth [RE=Sm3+, Gd3+, Dy3+, Nd3+] A site isoelectronic substitution on place

of Bi3+ in Bi1−xRExFeO3 are enough to stabilize this phase, Fig. 1.8.

In Bi1−xRExFeO3, the substitution of smaller RE cation on place of Bi cation results in sup-

pression of ferroelectricity [which is driven by the stereochemically active Bi3+], and because the
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Goldschmidt tolerance factor [see Eq.(1.3)] decreases, more “space” is given to the oxygen octahe-

dra to rotate in a new rotationalR+
4 ([110]) andM+

3 ([001]) (Pnma) pattern [62]. Double hysteresis

loops are observed in Bi1−xRExFeO3 close to the R3c-Pnma transition [see dark green region in

Fig. 1.8 (b)]. We recognize that this behavior is due to an electric-field-induced transition between

the paraelectric Pnma and ferroelectric R3c phases, ratherthan arising from true antiferroelectric

character of Bi1−xRExFeO3. Finally, because the R3c-Pnma phase transition is of the first order,

structural changes at the transition are accompanied by high value of the piezoelectric coefficient of

Bi1−xRExFeO3, which becomes comparable to the technologically used PZT [60].

In BiFeO3, ferroelectricity and magnetism coexist at room temperature. Bulk BiFeO3 has a

G-(rocksalt)-type antiferromagnetic (AFM) ordering of the Fe magnetic moments. In addition, a

spiral spin structure with incommensurate long-wavelength period of∼ 620Å is superimposed on

this magnetic ordering [63]. Its Neel temperature is 643 K [64]. It has been shown that a net mag-

netization arises from the Dzyaloshinskii-Moriya-type [65, 66] weak ferromagnetism [67], where

the spin-orbit coupling plays a crucial role in that it forces the Fe magnetic moments to cant, which

results in a small net magnetization value. Such small magnetization has been indeed measured

in BiFeO3 thin films, where the spiral spin structure is suppressed dueto the presence of the sub-

strate [54]. BiFeO3 is therefore known as a room temperature multiferroic. Because its ferroelectric

behavior originates from the Bi-O interaction, and the magnetic ordering and magnetization from

the Fe magnetic moments, its magnetoelectric coupling is weak [36, 68].

BiMnO 3

Bulk bismuth manganite (BiMnO3) has a Goldschmidt tolerance factort < 1 [see Eq. (1.3)] close

to BiFeO3, because of the similarity between the Fe and Mn transition metals, and therefore favors

oxygen octahedra rotations. However, because Mn is Jahn-Teller active, the structure becomes

highly distorted [36, 69, 70]. BiMnO3 has centrosymmetric monoclinic structure with the space

group C2/c [71, 72], and thus zero spontaneous polarization[57]. We mention that there have been

several experiments on BiMnO3, and some of them show ferroelectric hysteresis loops [73],or
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Figure 1.9: Temperature variation of magnetizationM and inverse of molar magnetic susceptibility
χmol of BiMnO3 measured at 1T [75].

optical second-harmonic generation [74]. Therefore, further measurements are encouraged in order

to justify the BiMnO3 ground state. BiMnO3 is also known as a ferromagnet with Curie temperature

105 K, and with a low tepmerature magnetic moment3.6µB per Mn [75–78], Fig. 1.9.

1.2.4 Phase Transitions - Landau Theory

We mentioned that a ferroelectric undergoes a phase transition from the ferroelectric phase with

nonzero spontaneous polarization to a paraelectric phase with zero spontaneous polarization at a

critical temperatureTc, see Fig. 1.1. Similarly, a phase transition occurs betweenthe ferromagnetic

[or antiferromagnetic] and paramagnetic phase, and we discussed examples of these transitions in

perovskites in Sec. 1.2.3. Here, we use phenomenological Landau theory to describe these phase

transitions, and we focus our attention on the ferroelectric-paraelectric transitions. Similar results

can be obtained for magnetic transitions, and we refer the reader to find details of these derivations

elsewhere [13, 79].

The basic idea of Landau theory is that the free energy can be expressed as a series expansion of

polarization [the order parameter] close to the phase transition. In addition, symmetry constraints
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are postulated on the expansion. In particular, we want the free energy to be invariant under the

inversion symmetry,~P → −~P . Because the two symmetry equivalent~P (“up”) and−~P (“down”)

states have the same energy [see Fig. 1.1], we allow only eventerms in the power series of the

polarization,

G(P ) =
1

2
aP 2 +

1

4
bP 4 +

1

6
cP 6 − EP. (1.4)

Here, we truncate the power series at the sixth term, and the last term is the coupling energy between

electric field and polarization,~E · ~P , introduced in Sec. 1.2.1. For simplicity, we assume bulk

ferroelectric with spatially uniform polarization [a monodomain sample]. We note that we choose

the origin of the free energy for the free unpolarized, unstrained crystal to be zero.

The condition for finding the system in its equilibrium stateis ∂G(P )
∂P = 0. This condition leads

to an equation for the spontaneous polarization,aP + bP 3 + cP 5 = E. In most ferroelectrics,

the linear dielectric susceptibility, defined asχ ≡ ∂P
∂E

∣
∣
P=0

, is observed to follow the Curie-Weiss

behavior at reasonably high temperatures [see Fig. 1.9] [79],

χ =
C

T − T0
. (1.5)

From Eq. (1.4) and Eq. (1.5), we find thatχ = 1
a , and the temperature dependent coefficient in the

expansion of the free energyG(P ) ≡ G(P, T ), a, vanishes at the phase boundary atT = T0,

a ∼ T − T0. (1.6)

Let us now distinguish two types of transitions: a first-order (discontinous) and a second-order

(continous) phase transition. A first-order transition leads to a finite jump in the dielectric suscepti-

bility and the spontaneous polarization at the ferroelectric-paraelectric phase boundary atTc 6= T0.

It is also accompanied by a finite change in the volume betweenthe ferroelectric and paraelec-

tric phase, and by a latent heat. In a second-order phase transition, the spontaneous polarization

smoothly decreases until it vanishes at the critical temperatureTc = T0, where also the dielectric
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susceptibility diverges [see Eq. (1.5)]. It is convenient to use the sign of the Landau coefficientb

to distinguish the order of the phase transition: it can be shown thatb < 0 corresponds to the first,

while b > 0 corresponds to the second order phase transition.

There are also two types of transitions in ferroelectrics: adisplacive, and an order-disorder type

of transition. The latter has been already described in Sec.1.2.3 on the example of ferroelectric

BaTiO3, where the spontaneous polarization always exists, but hasa random orientation above the

critical temperatureTc resulting in zero net polarization. On the contrary, the polarization, and the

displacements of ions that contribute to the polarization,completely vanish aboveTc in a displacive

ferroelectric, such as, for example, in strained SrTiO3 [see Sec. 1.3.1, or Chapters 2 and 3].

Finally, let us discuss when the Landau theory breaks down. Non-uniform charge distribution

in a ferroelectric leads to a spatially dependent polarization ~P (~r), and in general to a ferroelectric

domain structure. Therefore to fully describe a paraelectric-ferroelectric transition, one has to allow

spatial fluctuations of the order parameter, polarization,which lead to an additional Ginzburg term

in the free energy [Eq. (1.4)],GG ∼
∫

dd~r (∇P (~r))2. However, when the fluctuations of the

polarization become too large, and comparable to the polarization value itself, the Landau mean

field theory breaks down. This criterion is known as the Ginzburg criterion, and one can show that

the Landau-Ginzburg theory is valid for systems sitting above their upper critical dimension,d > 4.

We will see in Chapter 3 that this is the case of bulk quantum paraelectrics [see Sec. 1.3.2] that sit

close to their quantum paraelectric-ferroelectric transition at very low temperatures.

Ford = 3, the Ginzburg [or Levanyuk-Ginzburg] criterion can be written in the form

A 1

(∆Cv)
2 ξ6

0

<< |T − T0

T0
|, (1.7)

where∆Cv is the change in the specific heat at the phase transition,A ∼ 1 is a constant, andξ0

is the range of polarization-polarization interaction, which is typically large in ferroelectrics. This

criterion is therefore satisfied over a broad temperature range, and the Landau [or Landau-Ginzburg]

theory works well in the vicinity of the paraelectric-ferroelectric transition [13].
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1.3 Discussion of Thesis Topics

1.3.1 Challenge of Ferroelectric Films

Figure 1.10: (left) ExpectedTc of (001) BaTiO3 under biaxial in-plane strain (εs), based on thermo-
dynamic analysis. The green region represents the range (error bars) in the predictedTc resulting
from the spread in reported property coefficients for BaTiO3 that enter into the thermodynamic anal-
ysis. The data points show the observedεs andTc values of coherent BaTiO3 films grown by molec-
ular beam epitaxy (MBE) on GdScO3 (blue circle) and DyScO3 (red circle) substrates and by pulsed
laser deposition (PLD) on GdScO3 (blue square) and DyScO3 (red square) substrates [14]. (right)
Expected shift inTc of (100) SrTiO3 with biaxial in-plane strain, based on thermodynamic analy-
sis. The arrows indicate the predicted direction of the polarization for strained SrTiO3: in-plane for
biaxial tensile strain and out-of-plane for biaxial compressive strain. Theεs values for SrTiO3 fully
constrained (commensurate) to the lattice constants of (LaAlO3)0.29×(SrAl0.5Ta0.5O3)0.71 (LSAT)
and (110) DyScO3 substrates are indicated by the positions of the corresponding arrows. The cross
shows the observedTc shift of a 500-̊A-thick SrTiO3 film epitaxially grown on (110) DyScO3 [15].

Ferroelectric films can show tremendously different behavior than bulk. We illustrate this dif-

ference on two ferroelectric BaTiO3 and SrTiO3 thin films grown on different substrates [GdScO3,

DyScO3, or (LaAlO3)0.29×(SrAl0.5Ta0.5O3)0.71 (LSAT)] in Fig. 1.10. The temperature axis in the

figure denotes the critical temperatureTc, which dramatically raises by several hundreds of degrees

when the films are strained [14, 15]. Notice that even though bulk SrTiO3 is paraelectric down to

zero temperatures [see Sec. 1.2.3], SrTiO3 thin film grown on DyScO3 displays room temperature

ferroelectricity [15].
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Figure 1.11: Schematic of a ferroelectric thin film (unit cell) epitaxially grown on a substrate with
in-plane lattice constantsa0 andb, respectively. The film stretches in the in-plane directionso that
its lattice constant matches to the substrate and creates anin-plane [tensile] strainεs, while it relaxes
its out-of-plane lattice constant.

In order to understand this effect, we need to look at the mechanical boundary conditions pos-

tulated by the substrate. In particular, the in-plane strain that acts on the ferroelectric thin film

[horizontal axis in Fig. 1.10] arises from a lattice mismatch between the film and the substrate.

Schematically, this situation is sketched in Fig. 1.11, where the film in-plane lattice constanta0

is smaller than the lattice constantb of the substrate. The film has a tendency to stretch so that

its lattice constant matches the lattice constant of the substrate, while it relaxes in the out-of-plane

direction. Value of the misfit bi-axial in-plane strain is then expressed as

εs =
b − a0

b
, (1.8)

whereεs > 0 corresponds to a tensile, whileεs < 0 corresponds to a compressive strain. We use

Landau theory in Chapter 2 to show that the critical temperature indeed raises with strain.

Very thin films have a tendency to be strained uniformly by an elastic deformation, while thick

films relax the strain by forming dislocations, and the strain becomes zero in the bulk limit far from

the substrate [80]. We address the question of how misfit dislocations are distributed within the film

in Chapter 2, where we compare a segregated strain model withmisfit dislocations residing in a thin
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buffer layer close to the substrate and the rest of the film homogeneously strained, with a model

where uniform distribution of the dislocations leads to an inhomogeneous strain in the film [81].

The effect of strain on polarization~P is encorporated in the piezoelectric couplingdijk,

dijk =
∂Pi

∂εjk
, (1.9)

where{i, j, k} ∈ {x, y, z}, and the strain tensorεjk = 1
2

(
∂uj

∂rk
+ ∂uk

∂rj

)

is defined as by how the

displacement~u of a point in the solid varies with position~r. We note thatεxx = εyy = εs in Eq.

(1.8).

Similarly, a flexoelectric coupling tensorµ between the strain gradient and polarization can be

introduced in inhomogenously strained films [81, 82],

Pl = µijkl
∂εij

∂rk
. (1.10)

The flexoelectric effect was depicted to be responsible for an observed broadening and suppres-

sion of the dielectric susceptibility in thin ferroelectric films [81]. We note that the dielectric suscep-

tibility diverges at the paraelectric-ferroelectric phase boundary in a second order phase transition

of a bulk, and therefore understanding this dramatic changein the characteristic dielectric behavior

is necessary for any potential thin film ferroelectric applications. In fact, this critical observation

motivates our research in Chapter 2, where we discuss possible origin of the broadening and sup-

pression of many thin-film characteristics. We show that these observed effects can be explained by

a simpler model with homogeneous strain in the majority of the film, and our work suggests that

further benchtop experiments beyond dielectric measurements are necessary to determine the nature

of the underlying strain. We predict a “smoking gun” protocol to test our model.

1.3.2 Ferroelectrics as a Way to Study Quantum Critical Behavior

The Curie-Weiss law [Eq. (1.5)] has been observed to break down at very low temperatures in

some perovskites, for example in BaTiO3, SrTiO3, 18O-substituted SrTiO3, or KTaO3, where the
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temperature dependence of the dielectric constant [or equivalently the dielectric susceptibility] be-

comes inversely proportional to temperature squared rather than having linear temperature depen-

dence [30, 32, 83, 84]. We show in Chapter 3 that this change comes from quantum fluctuations of

the polarization at low temperatures where quantum effectsneed to be incorporated, and therefore

the classical Landau-Ginzburg description breaks down.

In other words, the main difference is that a ferroelectric at a quantum critical point at zero

temperature possesses fluctuations of the polarization on all spatial and temporal scales, whereas a

ferroelectric at the classical critical point [or classical paraelectric-ferroelectric phase transition] has

fluctuations on all spatial scales only. This can be understood from a formalism that maps a quantum

system of dimensiond back to a classical system of dimensiond+z, wherez is a dynamical critical

exponent [also the temporal direction] defined from the dispersion relationω ∼ qz. We show in

Chapter 3 thatz = 1 in ferroelectrics, and therefore there is only one temporaldimension.

The main reason why studying ferroelectrics close to their quantum critical point is so intriguing

it that now the effective dimension of the quantum ferroelectric system in bulk [d = 3] becomes

d + 1 = 4. This is fascinating because as we discuss in Sec. 1.2.4,d = 4 is just the upper critical

dimension, and thus we are able to study ferroelectrics below [as effectively two dimensional thin

films], at [as bulk], or above the upper critical dimension [with dipole-dipole interactions effec-

tively lifting the dimension of tetragonal phases]. Let us point out that this is not the case in other

[magnetic] critical systems wherez > 1.

In addition, simple theoretical scaling predictions can becompared directly with experiment. We

show two measurements on bulk SrTiO3 in Fig. 1.12. Results of the dielectric constant temperature

dependence of SrTi16O3 are plotted in the figure on the left, where large dielectric response at

low temperatures saturates atT ∼ 4K [43]; quantum fluctuations are believed to stabilize the

paraelectric phase [44, 46]. On the other hand, when16O is substituted by18O, the system becomes

ferroelectric at critical temperature25K [peak in the dielectric constant in the figure on the right at

atmospheric pressure 1 bar]. As we see in Sec. 1.3.1, application of strain induces ferroelectricity

in SrTiO3, and therefore it is not surprising that18O substitution [yet another perturbation of the
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Figure 1.12: (left) Dielectric constantsε110 andε11̄0 of the monodomain SrTiO3 samples A and B
[σth is the stress applied by thermal treatment]. Inset:103/ε vs. temperatureT [43]. (right) The
large influence of pressure on the temperature dependence ofthe dielectric constantε′(T ) in 18O-
substituted SrTiO3 leading to the complete suppression of the ferroelectric state. The inset shows
the shift ofTc with pressure [30].

perovskite structure] drives ferroelectricity. What is more interesting is that by applying pressure on

the18O-substituted SrTiO3, the critical temperature is tuned continuously toT = 0 [see the inset in

the figure on the right], thereby making it an ideal setting for the detailed study of a quantum critical

point sitting at{Tc, pc} ≡ {0K, 0.7kbar}. Even though this point sits strictly at zero temperature,

we show in Chapter 3 that it has a significant impact on the dielectric properties at a wide range of

temperatures and pressures [see Fig. 3.10].

1.3.3 A Designed Multiferroic

We discuss in Sec. 1.1.4 that it is difficult to find a single phase multiferroic material, and that

much of attention is given to an artificial design of new materials. Our research is motivated by

the latter, with first principles methods [85–87] being an essential tool for the study of promising

systems [17, 18, 88, 89].

In Chapter 4, we identify a promising artificially structured perovskite-based system with an

unusual heterostructure, an atomic-scale BiFeO3-BiMnO3 nanocheckerboard [see Fig. 4.1]. We
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find that the multiferroic nanocheckerboard ground state inherits the desired properties of each con-

stituent material: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively [see Sec. 1.2.3].

We also study the effect of arrangement of the magnetic B-site cations [Fe and Mn] on mag-

netic properties of the BiFeO3-BiMnO3 system, and examine the effect of structural distortion.

Our first-principles calculations uncover a magnetostructural effect in the nanocheckerboard where

switching between finite and zero magnetization states is possible. Such magnetostructural effect

is not observed either in the bulk, or other superlattice structures of the constituent materials. We

show that the interesting magnetostructural behavior is linked to quasidegenerate magnetic states of

the magnetically frustrated checkerboard geometry, and thus is not restricted only to the BiFeO3-

BiMnO3 nanocheckerboard, and we encourage future experiments on different nanocheckerboard

systems [90].

1.4 Outline of the Present Work

The rest of this dissertation is organized as follows. In Chapter 2, we study dielectric properties of

thin ferroelectric films using phenomenological Landau theory that we introduce in Sec. 1.2.4. In

particular, we explain broadening of the dielectric susceptibility as a result of a segregated strain

model and an effective bias field in thin ferroelectric films [see Sec. 1.3.1]. In Chapter 3, we focus

our attention on how the dielectric properties of bulk quantum paraelectrics change at very low

temperatures and high pressures [see Sec. 1.3.2]. Finally,in Chapter 4, we design a new multiferroic

system with a novel magnetostructural effect, the BiFeO3-BiMnO3 nanocheckerboard, using first

principles methods [see Sec. 1.3.3].
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Chapter 2

Modeling the Dependence of Properties of Ferroelectric Thin Film on

Thickness

2.1 Introduction

Increasing demands for high-density data storage with ultra-fast accessibility present tremendous

challenges. In parallel to the characterization of new materials, important size-dependent effects

must be understood to optimize design. This is particularlytrue for ferroelectric memories, whose

nonvolatility and low power consumption make them well-suited for portable applications; [27, 28]

their dielectric properties are strongly dependent on electromechanical boundary conditions due to

the long-range nature of their underlying electrostatic interactions.

The sensitivity of ferroelectricity to homogeneous strainin bulk perovskite oxides is well-

known [91] [see Sec. 1.3.1]. In thin films, the effects of homogeneous misfit strain have been iden-

tified [92], studied and controlled to the point that particular systems have been strain-engineered

to have spontaneous polarizations significantly larger than those in the bulk [14, 15]. Despite these

impressive achievements, several authors [81, 93–95] havesuggested that homogenous epitaxial

strain cannot qualitatively account for all the observed effects in ferroelectric films. In particular,

the thickness-dependence of their dielectric properties has been attributed to defect-induced strain

gradients [81, 93]. We explore whether these observed size-effects are also consistent with an

alternative scenario where the majority of each ferroelectric film is homogeneously strained. Our

phenomenological study indicates that thickness-dependent dielectric measurements are insufficient

to determine the presence, or absence of underlying inhomogeneous strain and we suggest further

benchtop experiments that will resolve this issue.

In well-screened coherent epitaxial ferroelectric thin films, uniform polarization is energetically

favored. Lattice mismatch between the film and the substrateis a key source of macroscopic strain
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in these systems [22, 92]. For very thin films, the energy costfor homogeneously straining the film

to match the substrate is less than that associated with the introduction of stress-relieving defect

structures at the interface. However in thicker films, such misfit dislocations form and produce

strain gradients [22, 80, 93, 96, 97]; threading dislocations and point defects are additional sources

of inhomogeneous strain.

In planar ferroelectric films, inhomogeneous strain can affect the ferroelectric transition through

both smearing and through its coupling to the polarization.Such flexoelectric coupling of strain

gradients to the polarization has been the topic of much recent interest [81, 82, 98], particularly

as it has been suggested that flexoelectric effects are enhanced by large dielectric coefficients [99].

Recently, it has been argued that such strain and/or stress gradients are crucial for the modeling

of thickness-dependent dielectric properties of ferroelectric films. [81, 93] Here, we propose an

alternative model: that the misfit dislocations reside within a thin buffer layer next to the interface;

the majority of the film, which is relatively defect-free, isthen homogeneously strained. [100] In

our phenomenological treatment, we also include a bulk anisotropy [95] in the form of an effective

field, [101] possibly due to asymmetry of the electrodes and/or to the thin buffer layer. We model the

thickness-dependent dielectric properties in two different types of ferroelectric films, and compare

our results with experiment and with first-principles calculations whenever possible. Finally, we

discuss a benchtop “smoking gun” probe to distinguish our segregated strain scenario with that of

inhomogeneous strain in ferroelectric thin films.

The structure of this chapter is as follows. In Sec. 2.2, we review the experiments that motivate

this study and their implications for any descriptive model. Details of our phenomenological Landau

approach are presented in Sec. 2.3, with specific discussionof the appropriate boundary conditions

and depolarization effects. In Sec. 2.4 we present our main results for films of two specific materials,

with comparison to previous findings whenever possible and predictions for future measurements.

The implications of our model and our results are discussed in Sec. 2.5. We end with a summary

(Sec. 2.6) and with ideas for future work.
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2.2 Experimental Motivation

Broadening of the temperature-dependent permittivity in thin films near the paraelectric-ferroelectric

transition is reported by several experimental groups; [102–107] this observed smearing, accompa-

nied by an overall reduction in its magnitude, is more pronounced with decreasing film thickness.

Careful measurements on free-standing ferroelectric lamellae yield bulk-type dielectric responses,

suggesting interfacial effects as the source of these thickness-dependent effects. [108] A second re-

lated observation is that there is a clear separation of temperature scales associated with the onset of

reversible spontaneous polarization and the maximum of thedielectric constant in thin ferroelectric

films. [81]

Figure 2.1: Relative permittivity (dielectric constant) as a function of temperature [ε(T )]
for (Ba, Sr)T iO3 (BST) films of different thicknesses grown onSrRuO3/MgO (SRO) sub-
strates [106] where theεmax(T ) at temperatureTmax is indicated with an arrow.

In Fig. 2.1, we display relative permittivity measurementsdone on (Ba,Sr)TiO3 (BST) thin films

grown on SrRuO3 (SRO). [106] The measurements show suppression of the relative permittivity
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with decreasing film thickness. As the film thickness decreases to 340 nm, the temperature associ-

ated with the maximum of the permittivity (Tmax) appears to saturate at about 300 K, withTmax for

the two thinnest films not being clearly discernable. As we will discuss in Sec. 2.4, this is consistent

with the prediction of our model that there should be a maximum in Tmax(l) at a thicknessl = l∗;

from the data in Figure 2.1 we estimatel∗ < 340 nm in BST films grown on SRO.

In ferroelectric films, in contrast with their bulk counterparts, there is an observed distinc-

tion [81] betweenTmax andTferro, the temperature where polarization becomes switchable. This

separation of temperature-scales and the permittivity broadening discussed earlier are both features

characteristic of dielectric behavior in an applied bias field [101]; the latter could be due to a real

charge distribution or it could result from another physical effect [95] that breaks the symmetry

P → −P . For example, it has been noted [81] that flexoelectric coupling, known to increase near

a ferroelectric transition [82], implies a spatially-varying effective field term due to the underlying

inhomogeneous strain [81]. The resulting phenomenological model successfully reproduces key

thickness-dependences of the dielectric properties [81].Here, we ask whether these experimental

trends are indeed proof of underlying strain inhomogeneities, or whether they may be consistent

with another strain profile.

2.3 Landau Theory

We model the thickness-dependent properties of strained ferroelectric films using a Landau ap-

proach [13, 91], where all misfit dislocations are assumed toreside within a thin buffer layer of size

lB << l, wherel is the film thickness (e.g., Fig. 2.2); this is in contrast to other approaches where

these defects are assumed to be roughly uniformly distributed within the film [93]. Elastic relaxation

then occurs so that there is homogeneous strain in the film except for the buffer layer (e.g., Fig. 2.3).

Recent X-ray diffraction experiments [106] support previous suggestions [109] that the in-plane

film strainul [we change the notation fromεs in Eqs. (1.8) and (1.9) toul so thatε is attributed to

the dielectric constant] decreases with increasing thickness (l) of the overall films; furthermore the

observed thickness-dependent strain fits an exponential form [106, 109] very well. Therefore in our



29

Figure 2.2: A schematic of the planar ferroelectric capacitor under consideration, with the key
length scales and regions clearly demarcated. Note that themismatch defects are segregated in a
buffer layer of thicknesslB on the substrate, and that the polarization and strain are homogeneous
in the majority of the film. Incomplete charge compensation at the ferroelectric-electrode interfaces
results in a residual depolarization field, as shown.

segregated strain approach, thin films experience homogeneous film strain that decreases exponen-

tially with their overall thicknessl; more specifically we model this thickness-dependent in-plane

film strain as

ul = ume−l/lc , um = (b − a)/b, (2.1)

wherelc is a characteristic length scale of the strain relaxation, and a andb refer to the in-plane

lattice parameters of the film (bulk value) and the substrate, respectively [100]. We emphasize that

our values oflc are determined from X-ray diffraction [106, 109] for films ofa range of thicknesses.

We note that these values oflc are comparable to the film thicknesses of interest (lc ∼ l), resulting

in a non-trivial thickness-dependence of the strain-related properties. More generally, we remark

that the segregated strain approach described here has beenused in modeling epitaxially strained
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Figure 2.3: Schematic of the segregated strain model; here the elastic defects reside withinlB
(<< l) of the film-substrate interface so that the majority of the film is homogeneously strained.

superlattices [21] with results that are consistent with experiment [110].

In Fig. 2.2, we display a schematic of the planar ferroelectric capacitor under consideration with

the length scales involved. More specifically we assume a single-domain ferroelectric film with

the (uniaxial) polarization in the z direction, normal to the film-substrate interface. Physically, we

expect a build-up of free surface charge at the ferroelectric boundaries which, if uncompensated,

results in a depolarization fieldEd. In practice such depolarization effects are significantlyreduced

by metal electrodes that provide charge compensation; however, their non-ideal nature means that

some residual depolarization field remains. BecauseEd is proportional tole
l , wherele is the screen-

ing length of the electrodes, its importance increases withreduced film thickness [22, 13, 111, 112]

and becomes significant [29, 113] forl ∼ 100nm; a term in our Landau expansion will be included

to account for these depolarization effects.
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The defect buffer layer is also displayed in Fig. 2.2 and, as discussed above, we assume ho-

mogeneous (but possibly relaxed relative to the substrate)strain in the remainder of the ferroelec-

tric film which is controlled by the substrate-film lattice mismatch. Following a previous anal-

ysis of epitaxially strained films [92], the stress tensorsσzz = σxz = σyz = 0, because there

are no tractions acting on the top film surface. For the special case of a (001) ferroelectric film

grown on a cubic substrate, the strainuxx = uyy = ul and uxy = 0 since the angle between

the two lattice vectors remains unchanged (θ = π
2 ). We consider here film tetragonal symme-

try with uzz 6= 0 and uyz = uxz = 0. These mixed mechanical boundary conditions associ-

ated with two-dimensional clamping mean that the standard elastic free energyG(P, σ) cannot

be used to find the equilibrium properties of these systems; instead a Legendre transformation,

G′(P, ul) = G(P, σ) + ul(σxx + σyy) + uzzσzz, to a modified thermodynamic potential must be

performed in order to study the equilibrium properties of the constrained film [92].

We are almost ready to write an expression forG′(P, ul) and to calculate observable thermody-

namic quantities. As discussed earlier, the experiments suggest a term inG that breaks the symmetry

P → −P . This is achieved by linear coupling ofP to an external electric fieldEext and/or to an

effective bias field [95], which we take to be of the form

Wl = W0e
−l/lw , (2.2)

wherelw ∼ lc. We note that the thickness-dependence ofWl is included to model the increased

smearing of the dielectric susceptibility with decreasingl of ferroelectric films [95]. At present we

will treat Wl phenomenologically, and will defer discussion of its exponential decay and its possible

origins to Sec. 2.5.

Putting all these elements together, we begin our phenomenological study with the free-energy
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expansion

G(P, σ̄, T ) =
1

2
α̃(T )P 2 +

1

4
γP 4 − (Wl + Eext)P − Q11σzzP

2

−Q12(σxx + σyy)P
2 − 1

2
s11(σ

2
xx + σ2

yy + σ2
zz)

−s12(σxxσyy) − s12σzz(σxx + σyy) −
1

2
s44σ

2
xy,

(2.3)

whereα̃(T ) = α(T ) + αd; α(T ) = β(T − Tbulk), Tbulk is the bulk transition temperature,αd

is discussed below, andβ andγ are Landau coefficients. HereQij andsij are the electrostrictive

constants and the elastic compliances at constant polarization, respectively. The depolarization field

contributes to the free energy through the coefficientα̃(T ) in Eq. 2.3 [13, 114],

αd =
le

ε0εel
, (2.4)

wherele is the screening length of the electrodes, andε0 andεe are the electric permittivities of the

vacuum and the electrodes, respectively.

The mechanical conditions in the film are∂G/∂σxx = ∂G/∂σyy = −ul, ∂G/∂σxy = 0, and

∂G/∂σzz = −uzz [92]. Solving for the in-plane stresses, one finds thatσxy = 0 andσxx = σyy ≡

σ, where the applied in-plane stressσ is eliminated by the in-plane strainul(σ). This procedure,

together withσzz = 0, leads to

G′(Pl, ul, T ) =
u2

l

s11 + s12
+

1

2
α∗

l (T )P 2
l +

1

4
γ∗P 4

l − (Wl + Eext)Pl, (2.5)

whereγ∗ = γ+
4Q2

12
s11+s12

andα∗
l (T ) = α(T )−ul

4Q12

s11+s12
+αd. We note that we explicitly refer to the

l-dependence of the polarization (Pl), which here results from the thickness-dependence of the strain

(ul), the bias field (Wl) and depolarization field term (αd), consistent with observation. [81] One

can express the out-of-plane strain (uzz) through its dependence on the out-of-plane polarization
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(Pl) and the in-plane strain (ul) as

uzz(Pl, ul) =
2s12

s11 + s12
ul +

(
Q11 −

2s12

s11 + s12
Q12

)
P 2

l . (2.6)

The Curie film temperatureT ∗
c refers to the paraelectric-ferroelectric transition at zero total field,

ET
l ≡ Wl + Eext = 0. It increases with an applied compressive strain (Q12 < 0)

T ∗
c = Tbulk +

1

β

[

ul
4Q12

s11 + s12
− le

ε0εel

]

(2.7)

but has a decreasing component for very thin films due to depolarization effects. The dielectric

susceptibility is

χ−1
l = ε0

d2G

dP 2
l

= ε0

[

α∗
l (T ) + 3γ∗P 2

l

]

(2.8)

which diverges atT ∗
c if the spontaneous polarizationPl → 0; that can only occur ifET

l = 0 (see

Eq. (2.10) below). The dielectric susceptibility is observed to diverge for bulk systems [91] and

for free-standing films. [108] In general,ET
l 6= 0 for ferroelectric capacitors andPl 6= 0 at T ∗

c , so

thatχl has a finite maximum at a temperatureTmax defined by∂χl
∂T |T=Tmax = 0. We note that this

condition combined with the expression forχl above yields

Pl(T )
dPl(T )

dT

∣
∣
∣
Tmax

= − β

6γ∗
, (2.9)

where we see thatT l
max differs from T ∗

c and depends on film thickness via the polarization; this

equation generally has to be solved numerically to obtainT l
max once the expression forPl(T ) has

been determined.

The condition for finding the system in its equilibrium stateis ∂G
∂P = 0. The spontaneous

polarizationPl emerges then as the solution(s) to the following cubic equation:

α∗
l (T )Pl + γ∗P 3

l = ET
l (2.10)
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where forET
l = Wl + Eext 6= 0, we have to be careful to distinguish between the paraelectric

(nonswitchable) polarizationPp and the ferroelectric (switchable) polarizationPf . Here, switch-

able refers to the fact that there are multiple solutions forthe polarization that can be accessed by

application of a finiteEext. There are three solutions to Eq. (2.10),

Pp =

(
ET

l

2γ∗
+

√
R
)1/3

−
(

−ET
l

2γ∗
+
√
R
)1/3

(2.11)

and

Pf =
1

2
Pp ± i

√
3

3

[(
ET

l

2γ∗
+

√
R
)1/3

+

(

−ET
l

2γ∗
+

√
R
)1/3

]

, (2.12)

where

R ≡ α∗3
l (T )

27γ∗3
+

(ET
l )2

4γ∗2
(2.13)

and the number of polarization solutions is determined by the sign ofR so that the single nonswitch-

ablePp corresponds toR > 0. Therefore the transition temperatureTferro between nonswitchable

and switchable polarizations occurs whenR = 0, leading to the expression

Tferro = T ∗
c − 3

β

(γ∗

4

)1/3
(ET

l )2/3. (2.14)

At this temperature, the paraelectric solution becomes an unstable extremum.

In general, the three temperature scalesTferro, Tmax and T ∗
c differ as indicated in Fig. 2.4.

We note that for very thin films (< 60 nm), there is suppression of all three temperatures due to

depolarization effects. We also remark on the presence of a maximum inTmax(l) that has already

been alluded to in Section 2.2; this feature will be discussed in more detail when we apply this

phenomenology to specific materials and substrates.

2.4 Results

In this section, we calculate dielectric properties for twospecific materials, (Ba0.5Sr0.5)TiO3 (BST)

and SrTiO3 (STO). Our study of BST films allows us to make direct comparison between our
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Figure 2.4: Thickness dependence of the three distinct temperature scalesTferro (solid), Tmax

(dashed) andT ∗
c (dotted line) forEext = 0 in the segregated defect model described in the text.

Here, Landau coefficients for BST on SRO [see Tables 2.1 and 2.2 in Sec. 2.4] have been used and
Tmax(l) is noted to display a peak atl∗ = 60 nm.

calculated properties and the experiments (Fig. 2.1) that motivated the inhomogeneous strain sce-

nario. [81] In order to explore different parameter regimes, we study these films on two distinct

substrates, SRO and Pt/SiO2/Si (PSS); here, we note that the latter is a hypothetical case since to

date epitaxially grown single-crystal films of BST on PSS have not yet been realized.

We also apply our phenomenological treatment to STO films that are known for their coher-

ence; this is achieved by highly controlled growth conditions that inhibit defect formation, and

thus, inhomogeneous strain effects are not expected. [15] To our knowledge, there do not exist pub-

lished high-resolution dielectric measurements of strained STO films with polarization normal to

the electrode-ferroelectric interface. We therefore compare our results whenever possible to first-

principles calculations, [116] and make experimental predictions for a range of epitaxial strain val-

ues that could be realized by a variety of substrates.

The parameters used in our calculations are presented in Tables 2.1 and 2.2. Table 2.1 indicates
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Table 2.1: Landau parameters for BST [92, 81] and STO [115] (in SI units). We use theT > 100K
values forα(T ), except in calculations in Fig. 2.15 where we interpolate the T > 100K and the
T < 50K values to75K, where the twoα(T ) functions cross.

γ(T ) s11 + s12

Film (106) Q11 Q12 (10−12)
BST 4[796 + 2.16(T-273)] 0.110 -0.0430 5.6
STO 1700 0.066 -0.0135 3.0

α(T )
Film (105)
BST 9.1 (T - 235.0)

STO (T > 100K) 7.06 (T - 35.5)
STO (T < 50K) 263.5 (Coth[42.0/T] - 0.90476)

Table 2.2: Film parameters: effective fieldW0 and compressive strainum [15, 81], with associated
length scaleslw andlc [106] [see Eqs. 2.1 and 2.2]; also the values for screening length le [117] and
the relative permittivityεe of electrodes are shown.

W0 lw um lc le
Film Substrate (kV/cm) (nm) (%) (nm) (nm) εe

BST SRO 400 300 -0.50 300 0.023 1.0
BST PSS 450 300 -0.77 300 0.400 1.0
STO LSAT 400 300 -0.90 300 0.023 1.0

the Landau coefficients used for each material. Film-related parameters, displayed in Table 2.2,

are determined from data on strain relaxation; the characteristic lengthlc [see Eq. ( 2.1)] from the

lattice constant measurements lies somewhere between200 and300 nm [106, 109]. In order to make

comparison with the inhomogeneous strain model scenario, which uses a characteristic length scale

of 300 nm [81], we keep thislc value in our calculations. Data on electrode screening lengths (le) is

le of SRO of0.23 Å [117], and we setle of (LaAlO3)0.29× (SrAl0.5Ta0.5O3)0.71 (LSAT) to be the

same value, since LSAT is dominated by SrAl0.5Ta0.5O3 that is very similar to SRO. We choose the

screening length of PSS to bele = 4 Å, which is expected to be larger thanle in metallic SRO due

to the presence of semiconducting silicon. We display strain um value for three different substrates,

BST on SRO, [81] BST on PSS (aBST = 3.95 Å, bPt = 3.92 Å), and STO on LSAT. [15] The bias
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field is set to beW0 = 4.0 × 107 V/m for BST films on SRO, a value that is comparable to that

of applied external fields in related BST dielectric measurements. [106] We keep the sameW0 for

STO films and a slightly different one (W0 = 4.5 × 107 V/m) for BST films on PSS. The bias field

Wl is treated phenomenologically [see Eq. ( 2.2)] and we emphasize its crucial role in modeling key

features of the dielectric properties of ferroelectric films, as will be discussed in more detail shortly.

2.4.1 (Ba0.5Sr0.5)TiO 3

In Fig. 2.4, we display the three temperature scales as a function of thickness for BST films on SRO

electrodes withEext = 0: Tmax, T ∗
c andTferro. BecauseET

l = Wl 6= 0, there is a clear separation

of the three temperatures; forET
l = 0, they collapse ontoT ∗

c [compare Eqs. (2.7), (2.9), and (2.14)].

Therefore an estimate ofW0 can be obtained from the difference ofTmax andT ∗
c , where the latter

can be expressed in terms of (experimentally accessible) Landau parameters and by the value of the

misfit strain [Eq. (2.7)]. The magnitude of the obtained biasfield, W0 = 400 kV/cm, is in rough

agreement with experiment: the experimental temperatureT exp
max = 250 K for a 950 nm film in

Fig. 2.1 is close to the calculatedT calc
max = 268 K in Fig. 2.4, andT exp

max = 280 K for the660 nm film

in Fig. 2.1 is also reasonably close to the calculatedT calc
max = 304 K in Fig. 2.4.

The temperatureTmax displays a peak,Tmax = 519 K at l∗ = 60 nm, and it decreases with

increasing thickness and asymptotically approachesT ∗
c , the bulk transition temperature. As previ-

ously noted in Sec. 2.2, forl < l∗, Tmax decreases with decreasingl; by contrast forl > l∗, the

trend is consistent with that displayed in Fig. 2.1. More generally, the behavior ofTmax depends

on that of the polarization as a function of temperature [seeEq. (2.9)]. Both the strain and the bias

field make the polarization decrease with increasing film thickness (l > 60 nm) as will be discussed

shortly, and this monotonic behavior makesTmax decrease as well. The observed peak inTmax is

driven by the depolarization field contribution in our model. Tmax becomes suppressed for very thin

films (l < 60 nm) and approaches zero just as does the polarization at these film thicknesses (see

Fig. 2.7). The value ofl∗ = 60 nm is determined by the strength of the depolarization contribution,

and thus, is expected to depend on the electrode and/or substrate material. As already noted, we use
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a longerle for BST films on PSS than for BST on SRO. Because the depolarization field contribu-

tion to our free energy is proportional tolel , [see Eq. (2.4)], the resultingl∗ will be larger for BST

on PSS than on the SRO substrate. For BST on PSS, we calculate that the peak inTmax occurs at

l∗ ∼ 300 nm, in contrast to the value ofl∗ ∼ 60 nm for BST on SRO displayed in Fig. 2.4.

The theoretical temperatureT ∗
c in Fig. 2.4 refers to the paraelectric-ferroelectric transition at

zero total field,ET
l = Wl + Eext = 0 [see Eq. (2.7)]. It has a peak at80 nm with a maximum

value ofT ∗
c = 329 K, and then decreases with increasing film thickness due to the strain relaxation

term,ul ∼ e−l/lc. It reaches its bulk transition temperature value (Tbulk = 235 K) for thicker fully

relaxed films:T ∗
c = 238 K for 1000 nm film. Due to the depolarization contribution [see Eq. (2.4)],

T ∗
c is suppressed for very thin films and eventually reaches zero.

The temperatureTferro that separates switchable and nonswitchable polarizationregimes in-

creases for increasingl and saturates when it reaches the bulk transition temperature. In Eq. (2.14),

we see that there is competition between thickness-dependent contributions due toul and toWl in

Tferro. Therefore whether this temperature increases or decreases with increasing film thickness

depends on their relative magnitudes. For example,Tferro is shown to increase with increasingl

in Fig. 2.4, reflecting the dominance of the bias field contribution in this particular case. We note

that the switchable (ferroelectric) regime is lost as the films become very thin, e.g., ferroelectricity

vanishes atl ∼ 100 nm at fixed temperature60 K. Tferro reaches zero at a critical film thickness

(lcrit ∼ 35 nm here) and films withl < lcrit remain in the nonswitchable polarization regime at all

temperatures.

In Fig. 2.5, we display our calculated relative permittivity ε(T ) (ε = 1+χ) for BST films on SRO

substrates withEext = 0. Reduction inε(l) as a function of decreasing thickness is observed for

both theory and experiment (Fig. 2.1);εmax decreases andTmax increases asl decreases. Favorable

comparison of the calculated relative permittivityεcalc
max can be made to its measured analog [106]

εexp
max shown in Fig. 2.1:εcalc

max = 2035 atTmax = 268 K matches withεexp
max ≈ 1900 atTmax ≈ 260

K for the 950 nm film, andεcalc
max = 1044 at Tmax = 304 K matches with theεexp

max ≈ 1100 at

Tmax ≈ 290 K for the660 nm film.
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Figure 2.5: Calculated relative permittivity as a functionof temperature for BST films on SRO
substrates of thicknessesl = 10µm, 950, 660, 340, 280 and175 nm. The highest permittivity
corresponds to the thickest film; the divergence for10µm film at the bulk Curie temperature235 K
is indicated. Reduction of the permittivity for thin films isobserved; the peak of permittivity shifts
towards higher temperatures in agreement with Fig. 2.1.

We also predict the thickness-dependent dielectric behavior of ε(T ) for BST films epitaxially

grown on PSS in Fig. 2.6. For films of decreasing thickness where l < l∗, a systematic reduction in

ε is observed and the peak in the permittivity is shifted to lower temperatures.

Next we present the calculated nonswitchable polarizationin Fig. 2.7 at temperature300 K with

Eext = 0 for BST films on SRO. The polarization is roughly proportional to the bias fieldWl and

its value increases with increasing misfit strainul [see Eq. (2.10)]. Motivated by experiment, we

have modeled the bias field and misfit strain to decrease with increasing film thickness exponentially

({Wl, ul} ∼ e−l/lx , lx = {lw, lc}), and therefore the polarization also decreases with thicker films.

However, for very thin films (l < 50 nm), there is suppression of the polarization (P ) due to depolar-

ization field effects and a peak with a maximum value of polarizationPmax = 0.2 C/m2 at l = 50

nm develops. The temperature dependence of the polarization for two different film thicknesses

is displayed in the inset of Fig. 2.7. TheseP (T ) curves shows good qualitative agreement with
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Figure 2.6: Calculated relative permittivity as a functionof temperature for BST films epitaxially
grown on PSS substrates of thicknessesl = 40, 68, 150, 300 and580 nm. The highest permittivity
corresponds to the thickest film. Reduction of the permittivity for thin films is observed, and the
peak of permittivity shifts towards lower temperatures.

analogous measurements. [81] In general, the polarizationdecreases with increasing temperature.

Tferro, the transition temperature separating the presence of switchable and nonswitchable spon-

taneous polarizations, is plotted in the presence of external electric field for BST films on SRO in

Fig. 2.8.Tferro(Eext) reaches its maximum atEext = −Wl (whereWl = W0e
−l/lc), and decreases

symmetrically about this value in agreement with Eq. (2.14); we note that the maximum ofTferro

decreases for thicker films as anticipated by the zero-total-field (ET
l ) results ofT ∗

c displayed in

Fig. 2.4. The temperatureTferro at zero external field matches the behavior of Fig. 2.4. Switchable

and nonswitchable polarization phases are marked.

Calculated hysteresis loops are displayed in Fig. 2.9 for BST films on SRO substrates atT = 290

K with l = 100 nm andl = 175 nm. According to Fig. 2.8, at this temperature for these film

thicknesses, the switchable polarization develops only for certain values of nonzero external electric

field: Eext = {−298,−275} kV/cm for 100 nm film andEext = {−229,−218} kV/cm for 175 nm
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Figure 2.7: Calculated nonswitchable polarization P[C
m2 ] (see Fig. 2.4) forBST films on SRO

substrates of various thicknesses (l) at temperature 300 K and forEext = 0; polarization as a
function of temperature for films of thickness 175 (solid) and 620 nm (dashed line) is shown in the
inset.

film. The width of the hysteresis loops in Fig. 2.9 is given by the above field ranges; it decreases with

increasing film thickness and shows good qualitative agreement with experiment. [106] Hysteresis

loops are symmetric around the pointEext = −Wl andP = 0, where the bias fieldWl is the

thickness-dependent field offset. This field offset (specifically, we refer to the shift of the center of

the hysteresis loop along the field axis from zero-field position) becomes larger for thinner films [see

Eq. (2.2)] and is temperature independent. However, the width of the loops shrinks as temperature

is increased, as shown in Fig. 2.8. Symmetry in the hysteresis loops aroundP = 0 yields zero

offset in the spontaneous polarization and therefore no associated charge offset within the thin film.

We note that significant charge offsets are observed in graded films with designed polarization and

strain gradients. [118]
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2.4.2 Strained SrTiO3

Bulk strontium titanate (STO) remains paraelectric down tothe lowest temperatures accessible, but

strained STO films may be driven into a ferroelectric phase even at room temperature. [15] To our

knowledge, detailed thickness-dependent dielectric measurements on such STO films have been

performed only with tensile epitaxial strain, resulting toin-plane polarization. [15, 119] Here, we

make predictions for the thickness-dependent dielectric properties of STO films with compressive

epitaxial strains and polarizations normal to the film-substrate interface.

We begin by making direct comparison between our results andthose ofab initio studies, [116]

displayed in Figs. 2.10 and 2.11. Sinceab initio calculations consider uniformly strained films

without strain relaxation and without an effective bias field, we setWl = 0 for the purpose of

comparison here. In Fig. 2.10, we present the spontaneous polarization as a function of misfit

strain for al = 100 nm STO film at zero total field,ET
l = 0. Dots in the figure correspond to
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100 and175 nm at temperature 290 K.

first-principles calculations, [116] where the out-of-plane polarization in the ferroelectric tetragonal

phase (ul < −0.75%) for films with zero macroscopic field has been calculated. Wechoose the

l = 100 nm STO film where we do not expect depolarization effects to beimportant (l > l∗;

see Fig. 2.14) for comparison with theab initio data. Good agreement is achieved at temperatures

T ∼ 250 K; our calculated curves follow the behavior of theab initio dots. At lower temperatures,

better agreement is achieved for less compressive strain, correctly indicating that fully relaxed STO

is paraelectric down to zero temperature.

Continuing our comparison with the results ofab initio calculations, [116] we display the para-

electric relative permittivity as a function of external electric field Eext and film strainul for a

l = 100 nm STO film atT = 200 K in Fig. 2.11. A nonpolar tetragonal phase develops for strains

−0.75% < ul < +0.54% according to theab initio calculations. [116] From Fig. 2.10, the best fit

for the polarization just at the paraelectric-ferroelectric phase boundary (ul = −0.75%) is achieved
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at T = 200 K, and therefore we choose this temperature to calculate ourparaelectric permittiv-

ity data. We compare our results to theab initio calculations in the range of compressive strain

−0.5% < ul < 0.0%: in both cases, the permittivity (ε) increases with increasing compressive

strain; this occurs even more rapidly in the range of external fields −150 < Eext < 150 kV/cm,

and its magnitude in the range800 ≤ ε ≤ 1500 in Fig. 2.11 roughly corresponds to theab initio

values400 ≤ ε ≤ 1800. [116] We note that the observed increase of the paraelectric permittivity

with strain can be understood from Eq. (2.8).

Both Figs. 2.10 and 2.11 indicate good agreement between results of our phenomenological

model and those of previous first-principles calculations,and this provides us with confidence re-

garding the Landau coefficients and more generally with the approach described here applied to

strained STO films. Next we calculate the dielectric properties of strained STO films using a nonzero

value for the effective bias field,W0 = 400 kV/cm, that is comparable to that used for BST films in

Sec 2.4.1.



45

 0

 250

 500

 750

 1000

 1250

 1500

-300 -200 -100  0  100  200  300

re
la

tiv
e 

pe
rm

itt
iv

ity

External Field [kV/cm]

-0.5 %
-0.4 %
-0.3 %
-0.2 %
-0.1 %
 0.0 %

l=100 nm
T=200 K
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T = 200 K. The permittivity data are shown in the limit of zero bias field Wl in order to make
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Our calculated relative permittivity as a function of temperature and film thickness at compres-

sive strainum = −0.9% (STO on LSAT) withEext = 0 is plotted in Fig. 2.12. The permittivity

is suppressed for thinner films and its maximum is shifted toward higher temperatures, displaying

similar trends for bothε andTmax as for BST on SRO in Sec 2.4.1.Tmax increases with decreasing

l, but develops a peak atl = 60 nm and is again suppressed for very thin films due to depolariza-

tion effects. The screening length of LSAT is comparable tole for SRO, and thus so isl∗. The

magnitude ofε is also comparable to that in BST films in Fig. 2.5; it results from similar values

of the Landau coefficients and the value of the compressive strain in both films [see Table 2.1]. To

our knowledge, there exists only one published dielectric measurement on strained STO with the

polarization normal to the film-substrate interface; this experiment, performed on al = 50 nm STO

film grown on LSAT [um = −0.9% (Ref. [15])], yieldsεexp
max ≈ 400, which is in a good agreement

with our calculated maximum value of permittivity,εcalc
max = 364 for this film/substrate combination.
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Figure 2.12: Calculated relative permittivity as a function of temperature for STO films of thick-
nessesl = 50, 100, 200, 300, 400, 500 and600 nm at misfit compressive strainum = −0.9%. The
highest permittivity corresponds to the thickest film. Reduction of the permittivity for thin films is
observed.

We investigate the effect of compressive strain on the relative permittivity in Fig. 2.13. We observe

that increased compressive strain shifts the permittivitycurve toward higher temperatures and larger

shifts ofTmax occur for thinner films.

We display the nonswitchable polarization as a function of film thickness and misfit strain at

T = 300 K andEext = 0 in Fig. 2.14. Again, the polarization shows similar behavior as in BST

films in Sec. 2.4.1; it decreases with increasing film thickness and is suppressed for very thin films

(< 50 nm) due to depolarization effects. Increasing the strain results in higher polarization, in

agreement with Fig. 2.10; this time, however, the polarization values change due to the effect of a

nonzero bias field. In the inset, the temperature dependenceof the nonswitchable polarization is

plotted in l = 100 nm andl = 500 nm STO films at misfit strainum = −0.9% (STO on LSAT

substrate). The polarization decreases with increasing temperature.

Unstrained bulk STO remains paralectric down to zero temperature. However, as previously
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temperatures where the larger shifts ofTmax are observed for the thinner films.

noted, a ferroelectric regime occurs for strained STO films.[15] We plot the transition tempera-

ture Tferro, separating switchable and nonswitchable polarization regimes, as a function of film

thickness and misfit strain atEext = 0 in Fig. 2.15. We predict a ferroelectric phase to occur for

compressive strains larger than2.0%, and note that ferroelectricity is recovered here for the thinnest

STO films as one goes from a thick-film nonswitchable regime toa thin-film switchable one (at

fixed T ); e.g., ferroelectricity emerges at−2.0% strained films for thicknesses30 . l . 160 nm.

This is distinct from the behavior previously described in BST films, where ferroelectricity is lost by

making films thinner (see Fig. 2.4).Tferro indicates a maximum atl∗ ≈ 60 nm, and this peak is due

to depolarization effects [see Eq. (2.4)] that reduce the transition temperature to zero for the thinnest

films. Tferro decreases in thicker films (l > 60 nm) for values of compressive strainum > 2.0%,

as shown in Fig. 2.15. However, it increases with increasingfilm thickness for small values of com-

pressive strain (um . 1.5%), similarly to BST films on SRO substrates (withum = −0.5%) in
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Fig. 2.4. We note here that althoughTferro increases, it has negative nonphysical value for these

low strain values, and thin films remain in the nonswitchableregime down to zero temperature. As

noted previously, the thickness dependence of this temperature scale arises from competition be-

tween strain and bias field contributions [see Eq. (2.14)]; the former dominates for large enough

mistmatch strains (um & 2.0%), and in this case,Tferro decreases with increasing film thickness.

2.5 Discussion

Next we explore the implications of our results and the origin of our model assumptions. We

begin with a general discussion of the effective bias field inepitaxial perovskite oxide films. Both

the inhomogeneous (see Fig. 2.16) and the segregated (see Fig. 2.3) strain models describe the

thickness-dependent dielectric properties of ferroelectric films consistently with experiment, and

thus, further measurements are required to determine the presence and/or absence of underlying
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inhomogeneous strain throughout the film. These models eachhave effective bias fields, one that is

spatially varying [81] and the other that is uniform, and it is exactly this feature that we exploit in a

proposed benchtop experiment to distinguish these two scenarios.

An effective bias field breaks up-down symmetry at all temperatures. In a film above the zero-

(external) field (Eext = 0) ferroelectric transition temperatureTferro, this results in a nonzero

macroscopic polarization in zero external electric field [see Eq. (2.10)]. For the sake of complete-

ness, we note that the Curie temperatureT ∗
c refers to the paraelectric-ferroelectric transition at zero

total field (ET
l ≡ Wl + Eext = 0). While this polarization can vary with temperature, making

the film pyroelectric, it should not be confused with a ferroelectric spontaneous polarization. The

correct distinction between polar and ferroelectric films is made on the basis of switchability, as

determined, for example, through a hysteresis measurement. In a nonswitchable polar film, there is
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Figure 2.16: Schematic of the inhomogeneous strain model [81] where the effective bias fieldW (z)
is spatially-dependent due to flexoelectric coupling; herethe characteristic length scales associated
with the strain relaxation (lc) and the buffer layer (lB), where the elastic defects reside, are assumed
comparable with the overall film thickness (l).

only one locally stable polarization state withEext = 0, and the system will show dielectric behav-

ior in a finite external electric field. On the other hand, if there are two (or more) stable polarization

states for the system withEext = 0 that can be switched by the application of an external electric

field, then the film is ferroelectric, and it will exhibit a characteric ferroelectric hysteresis loop. An

effective bias fieldWl will lead to a lateral shift in the ferroelectric hysteresisloop, which can be

used to determine the associated effective bias voltage across the film. Field offsets have been,

indeed, experimentally observed in100 nm PbZr0.2Ti0.8O3 thin films. [120] We also remark that

an effective bias field will make the two polarization statessymmetry inequivalent with different

energies.



51

The transition from nonswitchable to switchable ferroelectric phases usually occurs as a func-

tion of decreasing temperature atTferro. The detailed thickness dependence of Tferro depends on

material-specific parameters, as can be seen in Figs. 2.4 and2.15 for BST and STO thin films. More

generally thel dependence of the dielectric properties enters via the strain relaxation [Eq. (2.1)], the

bias [Eq. (2.2)], and the depolarization fields. For the strain relaxation, an exponential decay on a

characteristic length scale of several hundred nanometerswas observed experimentally. [106, 109]

In our model, we assume the same exponential decay for the magnitude of the uniform effective

bias field. These two quantities determine the thickness dependence of the quantities of interest in

all but the very thinnest films, where the depolarization field term dominates, strongly suppressing

Tferro, the polarization, andTmax. In the case of the temperatureTferro (see Figs. 2.4 and 2.15),

the strain and effective bias contributions opppose each other [Eq. (2.14)], and depending on their

relative strengths,Tferro(l) increases (BST case whereWl dominates) or decreases (situation for

strained STO whereul is greater) with increasing film thicknessl.

A direct consequence of the strain contribution toTferro is that we predict that ferroelectricity

can be strengthened as the films get thinner (ul increases with decreasingl), resulting in a transi-

tion from a nonswitchable polar phase to a ferroelectric state below a critical thicknesslCT ; more

specifically, for STO measured at100 K and compressive strain−2.5% (see Fig. 2.15), the critical

thickness below which ferroelectricity appears islCT = 200 nm. This runs counter to the usual

notion that ferroelectricity is suppressed as the film thickness decreases, disappearing below a criti-

cal thickness; we note that would be the case for BST on SRO (here, Wl dominates the expression

for Tferro) where our results displayed in Fig. 2.4 indicate a criticalthickness of about100 nm

at temperature60 K. This reentrant ferroelectricity as a function of decreasing l should be readily

observable in an appropriate experiment for strained STO films, with the polarization normal to the

film-substrate interface.

Both the strain and the effective bias contributions act to decreaseTmax(l) andPl [related by

Eq. (2.9)] as a function of increasing film thickness (l) (see Figs. 2.4, 2.7 and 2.14). By contrast,

the depolarization contribution suppressesTmax(l) andPl with decreasingl. The dominance of
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this depolarization term explains the observed shift of thepeak ofTmax(l) to higher values of

l∗ for semiconducting substrates (e.g., PSS) (see Fig 2.6) that have longer screening lengths (le)

than their metallic counterparts (e.g., SRO). Here, we recall that the depolarization contribution to

the free-energy expansion isαd ∼ le/l [Eq. (2.4)]. We note that the thickness-dependent effect

of the depolarization field on the relative permittivity hasbeen noted before [95] with a similar

term,αBL
d = a/l, where boundary conditions for the spatially varied polarization are proposed that

incorporate the effects of a symmetry-breaking effective field. In this previous approach, [95]a then

is a boundary-related characteristic length. Since the thickness dependence in both treatments is the

same, one obtains similar results for the relative permittivity with appropriate choice of these length

scales (le anda) although their physical origins are different. Here, we have extended this treatment

to address the thickness dependence of other dielectric properties (e.g., polarization) as well, and

we note that the previous inhomogeneous strain approach [81] did not include such depolarization

effects for thin ferroelectric films.

The smearing of the sharp peak in the temperature-dependentdielectric response(Figs. 2.5, 2.6

and 2.12) in zero electrical field (Eext = 0) is a signature of the presence of a finite effective bias

field W ; this point has been much discussed previously both here [see Eqs. (2.8) and (2.10)] and by

others. [81, 95, 101, 108]Wl assumes larger values for thinner films [see Eq. (2.2)] and sopushes

the permittivity to smaller values in thinner films [see Eq. (2.8)], in accordance with experiment

(Fig. 2.1). In the bulk limit, both the strain and the bias field vanish and bulk behavior of the

dielectric properties is recovered.

While there is general agreement that effective bias fields play an important role in the prop-

erties of perovskite thin films, [81, 95, 101, 108] their specific origins and their spatial natures in

the films are less well understood. For example, an effectivebias field can be produced by a spa-

tially (z) dependent strain via a flexoelectric effect; [81] we will refer to this as the inhomogeneous

strain model, and it is schematically depicted in Fig. 2.16.In this scenario, misfit dislocations are

distributed roughly isotropically throughout the film and produce strain gradients. By contrast, in

the segregated strain model presented here, the elastic defects are concentrated in a thin buffer layer
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Figure 2.17: Schematic of a benchtop probe to test for the segregated strain model: the field offset
(Wl) in the observed hysteresis loop can be tuned to zero by application of an electric fieldE∗

ext(l) =
−Wl; in this case, the relative permittivity sharpens since thenet (thickness-dependent) fieldET

l =
E∗

ext(l) + Wl = 0.

near the film-substrate interface (see Fig. 2.2 and Fig. 2.3). This buffer layer itself breaks the up-

down symmetry of the film, which then results in a nonzero effective field. To be more specific, it

may be that an edge dislocation in the buffer layer produces alocal polar distortion. This makes

the buffer layer polar and produces a field in the uniform film.We then expect the strength of the

effective bias field to be related to the areal density of dislocations, and thus to the magnitude of the

homogeneous strain in the film.

As we have shown in Sec. 2.4.1, using the segregated strain model (see Figs 2.2 and 2.3)

we recover the thickness-dependent dielectric propertiesof BST films consistent with those mea-

sured [106] and calculated using flexoelectric effects [81]within an inhomogeneous strain scenario

(see Fig 2.16). Therefore, in order to determine which of these two models is applicable to a partic-

ular film, additional experimental characterization is necessary. The presence of strain gradients in
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the BST films studied using flexoelectricity [81] was verifiedby x-ray analyses [121], though similar

studies on different BST films (on different substrates) indicate the absence of such inhomogeneous

strain. [122] Therefore it is clear that observations of thickness-dependent permittivities and polar-

izations are not enough to indicate the underlying strain profile of the ferroelectric film. Naturally,

the presence and/or absence of strain gradients can be addressed directly by x-ray diffraction but

this probe may not be always easily accessible or practical.

Here, we emphasize that the effective bias fields associatedwith these two strain models are

spatially different (see Figs 2.16 and 2.3), and we will use this distinction to propose a benchtop

experiment to distinguish between these two scenarios. In the inhomogeneous strain model, [81] the

effective bias field is spatially nonuniform; more specifically, is proportional to the strain gradient

via a flexoelectric coupling, and thus, has an exponentiallydecaying spatial profile within the film

(see Fig 2.16). By contrast, in the segregated strain model (see Fig 2.3), the effective bias field

is uniform from the edge of the buffer layer to the surface. Assuming that this effective bias field

Wl is uniform in the majority of the film, one can tune an externalelectric field to the right value,

E∗
ext(l) = −Wl, to create a net zero-field condition [ET (l) = E∗

ext(l) + Wl] where the specific

value of the necessary external field would be thickness-dependent. Therefore there would exist

an external field valueE∗
ext(l) when the hysteresis loop would no longer have a field offset; at

this value of the applied external field, a sharp peak in the temperature dependence of the relative

permittivity should be observed (Fig 2.17). We emphasize that this must be a unipolar hysteresis

experiment, with single top and bottom electrodes; many measurements are performed across two

top electrodes, namely, two series capacitors, where one would always be uncompensated. Another

probe of the spatial uniformity ofW would be to measure Tferro as a function ofEext; for a

uniform effective bias field, there would be a sharp peak in Tferro, as shown in Fig. 2.8. This

pronounced peak would not be present for a spatially varyingeffective bias fieldW (z) since the

latter would have varying magnitude in the sample and no particular value of applied (uniform)Eext

could completely compensate for it everywhere in the film. Physically, we note thatW (z) could

arise from coupling of the polarization to gradients in the strain, [81] in chemical composition, and
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in temperature. [95, 118, 123] There do exist graded ferroelectric structures where such spatially

varying quantities are explicitly present by design. Here,a charge offset is often observed in the

charge-voltage hysteresis loops, [118] and this could serve as an indicator of underlying gradients

in ferroelectric films if a suitable “charge origin” could bechosen as a reference.

We emphasize that we expect different films, with varying compositions, substrates, and growth

conditions, to have diverse strain and effective bias field profiles. The inhomogeneous scenario may

describe some, while others may be better modelled by the segregated strain approach; still others

may exhibit intermediate behavior. By carefully monitoring growth conditions, it should be possible

to control the density and spatial distribution of strain-relieving defects; in some case, it may even be

feasible to kinetically inhibit them to obtain uniform coherently strained films. [15] We emphasize

that in each case, the strain and effective bias field distributions must be carefully characterized for

a full interpretation of the measured thickness-dependentdielectric behavior, and we have presented

simple proposals for benchtop measurements to ascertain the importance of strain gradients in the

films.

2.6 Summary

In conclusion, we have demonstrated that a segregated strain model (cf. Fig 2.2) describes the

observed thickness-dependent dielectric properties of ferroelectric films as well as a previous model

of inhomogeneous strain. [81] Therefore such thickness-dependent behavior is not signatory of

underlying strain gradients, and more measurements must beperformed to determine the strain

profile in the film. If the effective bias field is spatially uniform, it can be compensated by the

application of an applied external electric fieldE∗
ext(l) = −Wl, whose value will be dependent on

the overall film thicknessl. Benchtop experiments performed withEext = E∗
ext(l) will yield bulk-

like sharp dielectric responses. However, such compensation will not be possible if the effective

bias field is spatially varying, since then its effects cannot be cancelled by the application of an

external uniform field.

We have compared our results with experiment (BST on SRO) whenever possible and have also
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made predictions for measurements on strained STO films without-of-plane polarization. Agree-

ment with existingab initio calculations, when appropriate, has been good. The possibility of

reentrant ferreoelectricity in strained STO films has also been discussed and we hope that this will

be explored experimentally in the near future.

Our phenomenological study of planar films suggests that their thickness-dependent dielectric

properties are not indicative of underlying inhomogeneousstrain and are consistent with other strain

profiles. We view this project as the beginning of a broader study of the physical consequences of

boundary-induced effects in ferroelectrics of increasingly complex host topologies. The next step is

to explore cases where the strain gradients will be induced by geometry, examples include curved

films and cylindrical shells. Because of the coupling between the elastic and the electrical degrees

of freedom in these systems, we expect tunable strain gradients to stabilize novel polarization con-

figurations with rich phase behavior, and here, flexoelectric effects should definitely be investigated.

More complex host geometries and boundary conditions are expected to favor more novel orderings

and dielectric properties; the possibility of identifyingand characterizing these features in three-

dimensional ferroelectrics on the nanoscale could also be useful in the design of future ferroelectric

memories. [124]
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Chapter 3

Quantum Critical Paraelectrics and the Casimir Effect in Time

3.1 Introduction

The role of temperature in the vicinity of a quantum phase transition is distinct from that close to its

classical counterpart, where it acts as a tuning parameter across the transition [see Eq.(1.6)]. Near

a quantum critical point (QCP), temperature provides a low energy cutoff for quantum fluctuations;

the associatedfinite time-scale is defined through the uncertainty relation∆t ∼ ~

kBT . This same

phenomenon manifests itself as a boundary condition in the Feynman path integral; it is in this sense

that temperature plays the role of afinite-size effect in timeat a quantum critical point. [125–129]

The interplay between the scale-invariant quantum critical fluctuations and the temporal boundary

condition imposed by temperature is reminiscent of the Casimir effect,[130–132] where neutral

metallic structures attract each other [133–137] due to zero-point vacuum fluctuations.

This chapter is organized as follows. In Sec. 3.2, we explorethe observable ramifications of

temperature as a temporal Casimir effect, applying it to theexample of a quantum ferroelectric crit-

ical point (QFCP) where detailed interplay between theory and experiment is possible below, at and

above the upper critical dimension. Our work is motivated byrecent experiments on the quantum

paraelectric (QPE) SrTiO3 (STO) where1/T 2 behavior is measured in the dielectric susceptibility

near the QFCP.[30–32] In Sec. 3.3, we show how this result is simply obtained using finite-size scal-

ing (FSS) in time; more generally we present similar derivations of several measurable quantities,

recovering results that have been previously derived usingmore technical diagrammatic,[138–141]

largeN [142], and renormalization group (RG) methods.[143, 144] In particular, we present a sim-

ple interpretation of finite-temperature crossover functions near quantum critical points previously

found usingε-expansion techniques,[144] and link them to ongoing low-temperature experiments

on quantum paraelectric materials. In Sec. 3.4, we illustrate these ideas using a Gaussian theory
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to characterize the domain of influence of the QFCP and we present the full phase diagram. Next

in Sec. 3.5, we expand upon previous work by tuning away from the QFCP, studying deviations

from scaling; here we find that coupling between the soft polarization and long-wavelength acoustic

phonon modes is relevant and can lead to a shift of phase boundaries and to a reentrant quantum

ferroelectric (QFE) phase. Finally in Sec. 3.6, we end with adiscussion of our results and with

questions to be pursued in future work.

3.2 The Casimir Effect

The Casimir effect results from the interplay of zero-pointfluctuations and boundary conditions,

and leads to the attraction between two parallel conductingplates in a vacuum.[130, 145, 146]

It was one of the first predicted, observable consequences ofvacuum fluctuations. Because the

Casimir force scales inversely proportionally to the fourth power of the plate separationa, it is only

measurable whena is quite small (micron regime). Recently, the Casimir phenomenon has assumed

a new importance in the design of nanoscale devices.[133–137, 147] Generalizations of the Casimir

effect to critical systems with external constraints continue to be fruitful [131, 132, 148–150]. In

this section, we revisit the Casimir effect, recovering previously derived results [130, 151–155], and

show how it is related to the critical fluctuations of the polarization field in quantum paraelectrics.

3.2.1 The Casimir Coefficient

The Casimir effect results from the effect of boundary conditions on the zero-point fluctuation

modes of the electromagnetic field. We will consider the simplest case of two parallel conducting

plates. The energy,∆E , is the finite difference between the zero-point energies with and without

the plates,[130, 151–154] and the force is then the spatial derivative of∆E . The component of the

electric field parallel to the conducting plates must vanish. There are two sets of modes that satisfy

this condition: the transverse electric (TE) and transverse magnetic (TM) modes where the electric

or magnetic field are respectively parallel to the plates.[156] The electric field for the transverse
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electric field modes is given by

~ETE(~x, z) =
∑

~q⊥,n>0

E~qn(ẑ × q̂⊥)ei~q⊥·~x sin
(nπ

a
z
)

, (n > 0) (3.1)

where~x andz are the co-ordinates parallel and perpendicular to the plates respectively,n is an inte-

ger, andE~qn is the Fourier amplitude of the fields. There is non = 0 TE mode. The corresponding

magnetic field is calculated using Faraday’s equations~∇× ~E = −∂ ~B/∂t, or ~B =
1

iω
~∇× ~E. The

magnetic field for the TM field modes is given by

~BTM(~x, z) =
∑

~q⊥,n>0

B~qn(ẑ × q̂⊥)ei~q⊥·~x cos
(nπ

a
z
)

, (n ≥ 0). (3.2)

We note that there is one extran = 0 TM mode. The corresponding electric fields are computed

from Maxwell’s displacement current equation~∇× ~B =
1

c2

∂ ~E

∂t
or ~E = − c2

iω
(~∇× ~B). The Fourier

modes of these fluctuations thus involve a discrete set of wavevectors,

~qn = (~q⊥, qzn), (3.3)

whereqzn = nπ/a andn is an integer, leading to a discrete set of normal mode frequenciesω~q⊥n =

c
√

~q2
⊥ + q2

zn [see Fig. 3.1], wherec is the speed of light.

The zero-point energy of the fields inside the plates is givenby

EC =
∑

~q⊥

~ω~q⊥,0

2
+ 2

∑

~q⊥,n>0

~ω~q⊥,n

2
, (3.4)

where the first term is the zero point energy of then = 0 TM mode, and the second term counts the

zero point energy of the TM and TE modes withn > 0. We may rewrite these two terms as a sum

over alln, both positive and negative, as follows

EC =
~c

2

∞∑

n=−∞

∑

~q⊥

√

q2
⊥ + q2

zn. (3.5)
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Figure 3.1: Schematic of the Casimir effect indicating thatthe normal modes of the electromagnetic
field between two conducting plates occupy a discrete set of wavevectors. In the transverse electric
(TE) modes the electric field lies parallel to the plates andn ≥ 1. In the TM modes the magnetic
field lies parallel to the plates andn ≥ 0. The modification of the frequencies of the zero-point
fluctuations by boundary conditions changes the energy of the system, creating a pressure on the
plates.

In the continuum limit we let
∑

~q⊥
→ A

∫ d2q⊥
(2π)2

, whereA is the area of the plates, to obtain

EC = A
~c

2

∞∑

n=−∞

∫
d2q⊥
(2π)2

√

q2
⊥ + q2

zn. (3.6)

The quantityEC/A determined from Eq. (3.6) is dimensionally of the form[EC/A] = ~c[L−3].

Becausea is the only length scale in the system, it follows that the change in the zero-point energy

must have the form

∆Ec

A
= K~c

a3
. (3.7)

The fact that this Casimir energy is sensitive to arbitrary interplate separation,a, is a direct conse-

quence of the gaplessness, and thus the scale-free nature ofthe photon field.

The traditional calculation ofK in the Casimir energy Eq. (3.7) is performed using a regulariza-

tion procedure enforced by a zeta function.[130, 151, 153] Here, we present an alternative derivation
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in which we calculate the necessary sums by exploiting the structure of the Bose function and the

residue theorem of complex analysis. This approach is central to the Matsubara formalism[157]

used to study many-body systems at finite temperature. Therefore let us take a brief diversion to de-

scribe the technique in general before applying it specifically towards the calculation of the Casimir

coefficient.

3.2.2 The Matsubara Method

We begin by noting that the Bose function

nB(z) =
1

e~z/kBT − 1
(3.8)

has poles on the imaginary axis [see Fig. 3.2] atz = iνn, whereνn = n2πkBT/~, because

ei~νn/kBT = e2πni = 1. (3.9)

Next we take

z = iνn + δ, (3.10)

whereδ is small so thatz is slightly off the imaginary axis so that

nB(iνz + δ) =
1

e~δ/kBT − 1
≈ kBT

~δ
, (3.11)

from which we see thatkBT is the residue at each of the polesz = iνn of nB(z), so that

nB(z) =
∑

n

kBT

~(z − iνn)
. (3.12)

If we have a function,F (z), that does not have poles on the imaginary axis, we can use the
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z = 2iπkBT × n

Figure 3.2: Contour integration pathC used to sum over the Matsubara frequencies.

residue theorem and Eq. (3.12) to write

∮

C
dzF (z)nB(z) = 2πi

∑

n

kBT

~
F (iνn), (3.13)

whereC is a contour that encircles the imaginary axis in a clockwisesense, as shown in Fig. 3.2.

Equation (3.13) can be rearranged to read

∑

n

F (iνn) =
~

kBT

∮

C

dz

2πi
F (z)nB(z), (3.14)

which is a key result in the Matsubara approach used to evaluate sums that emerge in the study of

many-body systems at finite temperatures.[157]
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We will now apply Eq. (3.14) to the specific case of the Casimircoefficient. To do so, we must

identify the summations that we need to calculate. We begin with the zero-point energy per unit

area (3.6)

EC

A
=

~c

2

∑

n

∫
d2q⊥
(2π)2

√

q2
⊥ + q2

zn. (3.15)

We are interested only in thechange in the zero point energy as a result of the plates. In the limitof

infinite plate separation (a → ∞) the discrete interval inqzn, ∆qzn = π/a, becomes infinitesimal,

and the sum overn in Eq. (3.15) can be replaced by an integral
∑

n =
∑

n

∆q

π/a
=

a

π

∫
dqz.

Therefore the change in the zero-point energy per unit area due to the presence of the plates is given

by

∆EC

A
=

EC

A
− EC

A

∣
∣
∣
∣
a→∞

= ~ca

∫
d2q⊥
(2π)2

I(q⊥, a), (3.16)

where

I(q⊥, a) =
1

2a

∑

n

√

q2
⊥ + q2

zn −
∫

dqz

2π

√

q2
⊥ + q2

z . (3.17)

By making this subtraction, we remove the ultraviolet divergences in the zero-point energy. By

using the Matsubara method, we can reexpress the sum in Eq. (3.17) as

1

2ac

∑

n

√

(cq⊥)2 + (cqzn)2 =
1

~c2βC

∑

n

F (iνn), (3.18)

where

F (z) =
√

c2q2
⊥ − z2. (3.19)

We associate the discrete wavevectors,qzn, with a “Matsubara frequency”cqzn ≡ νn. Then

cqzn = cn
π

a
≡ n

(
2πkBTC

~

)

, (3.20)



64

−cq⊥ −cq⊥ F (ω + iδ)

F (ω − iδ)

cq⊥ cq⊥

C

(a) (b)

C ′ C ′

Figure 3.3: (a) Contour integration pathC used to calculate
1

~βC

∑

n F (iνn) in Eq. (3.23), where

F (z) =
√

c2q2
⊥ − z2, showing branch cuts inF (z) at z = ±cq⊥. (b) Distortion of the contour

into contourC ′ that wraps around the branch cuts ofF (z). The integrand of the integral along the
branch cuts is the differenceF (ω + iδ) − F (ω − iδ) between the value ofF (z) above and below
the branch cut.

where the effective Casimir temperature is given by

kBTC =
~c

2a
, (3.21)

so that

βC =
1

kBTC
≡ 2a

~c
. (3.22)

We note thatTC scales inversely with the plate separation (TC ∼ 1/2a).

Following the Matsubara approach, the sum in Eq. (3.18) can now be rewritten as a contour

integral[157] around the poles atz = iνn of the Bose functionnB(z, βC ) yielding

1

~βC

∑

n

F (iνn) =

∫

C

dz

2πi
F (z)nB(z, βC ). (3.23)

The second term inI(q⊥, a), Eq. (3.17), corresponds to thea → ∞, or βC → ∞ limit of the
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first term, and thus we may write

I(q⊥, a) = lim
β′→∞

{
1

c2

∫

C

dz

2πi
F (z)

[
nB(z, βC ) − nB(z, β′)

]
}

. (3.24)

The subtraction of theβC → ∞ limit of the integrand in Eq. (3.24) regulates the overall integral

at largez, guaranteeing that the integrand around a contour at infinity vanishes. This condition

permits us to evaluate the integral by distorting the contour around the branch cuts inF (z) that

extend fromz = ±cq⊥ to infinity, as shown in Fig. (3.6). We then obtain

I(q⊥, a) =
1

c2

(∫ −cq⊥

−∞
+

∫ ∞

cq⊥

)
dω

2πi
[F (ω+iδ)−F (ω−iδ)] [nB(ω, βC) − {βC → ∞}] . (3.25)

To evaluate the branch cut, we note forF (ω ± iδ) =
√

(cq⊥)2 − (ω ± iδ)2,

F (ω + iδ) − F (ω − iδ) = −2i
√

ω2 − (cq⊥)2 sgn(ω), (3.26)

is an odd function ofω, which permits us to replacenB(ω) by its odd partnB(ω) +
1

2
to obtain

I(q⊥, a) =
1

c2

(∫ −cq⊥

−∞
+

∫ ∞

cq⊥

)
dω

2πi
[F (ω+ iδ)−F (ω− iδ)]

[

{nB(ω, βC) +
1

2
} − {βC → ∞}

]

.

(3.27)

Because the integrand is an even function ofω, we can replace this integral by twice the integral

over positiveω to obtain

I(q⊥, a) = − 2

c2

∫ ∞

cq⊥

dω

π

√

ω2 − c2q2
⊥

[(

nB(ω, βC) +
1

2

)

− {βC → ∞}
]

= − 2

c2

∫ ∞

cq⊥

dω

π

√

ω2 − c2q2
⊥ nB(ω, βC). (3.28)

The change in zero point energy is then given by

∆EC

A
= −2~

2βC

∫

ω>q⊥

d2q⊥dω

(2π)3
nB(ω, βC)

√

ω2 − c2q2
⊥, (3.29)
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where we have made the substitution2a/c = ~βC . By carrying out the integral overq⊥, we obtain

∆EC

A
= − ~

2βC

6π2c2

∫

dωω3nB(ω, βC). (3.30)

Rescaling the integral in Eq. (3.30) by changing variables to x = ~ω/kBT and replacingβC =

2a/~c, we obtain

∆EC

A
= − 1

6π2~2β3
Cc2

π4

15
︷ ︸︸ ︷
∫

dx
x3

ex − 1
= − π2

720

~c

a3
(3.31)

in numerical agreement with previous derivations.[130, 151–154] The associated force per unit area

is then

F

A
=

d∆Ec

da
=

π2

240

~c

a4
= 1.3 × 10−3 1

(a/µm)4
N/m2 (3.32)

indicating that measurements of the Casimir force must be performed at plate separations at or

below the micrometer length scale. [133–137, 147] When the two conducting plates are parallel,

the force is attractive, but it can be repulsive in other situations.[158, 159]

3.2.3 The Casimir Effect and Black-Body Radiation

With β−1
C = kBTC = ~c/2a [Eq. (3.22)], the Casimir energy density [Eq. (3.30] becomes

∆EC

Aa
= −(kBTC)4

3π2c3~3

∫

dxx3n(x), (3.33)

and is similar to the thermal energy density of black-body radiation [12, 155] in a volumeV = aA

at a finite temperatureTC [160]. The similarity between the Casimir and the blackbodyenergy

density is testament to their common origin as boundary-condition effects. Traditionally we think

of black body radiation as resulting from an excitation of thermal modes. Our calculation shows

that the Casimir effect and blackbody radiation are both consequences of boundary conditions and

theredistributionof zero-point fluctuation modes in the vacuum.
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Recent experiments have observed the Casimir effect between parallel plates with a one mi-

cron separation (a = 1µm).[133–137, 147] The corresponding “Casimir temperature” for these

experiments is

TC =
~c

2akB
∼ 1000 K. (3.34)

The Casimir effect at these length scales couples to the samephotons that predominate in the black-

body spectrum at 1000 K. The boundary conditions imposed by the two phenomena on the electro-

magnetic field are almost identical.

More generally, zero-point fluctuations play a major role atquantum phase transitions.[126,

127, 129] The effect of finite temperature in the vicinity of a[T = 0] quantum critical point is

the temporal analog of the Casimir phenomenon, a “Casimir effect in time,” where temperature

imposes temporal constraints on critical zero-point fluctuations. As we will see, there is an intimate

connection between a finite temporal dimension and a nonzerotemperature in a quantum system,

[125–129] and this connection has many observable consequences on thermodynamic quantities for

quantum critical systems at nonzero temperatures. Heuristically, this relation can be understood

within the framework of the Heisenberg uncertainty principle

∆t ∼ ~

kBT
, (3.35)

where a thermal energy fluctuation leads to an upper cutoff intime, the Planck time, that is inversely

proportional to the temperature. More formally, finite-temperature emerges in a path integral frame-

work as a periodic boundary effect in imaginary time [see Sec. 3.2.4], which becomes particularly

important near a quantum critical point where there exist quantum fluctuations on all spatial and

temporal scales. Here, finite-temperature corresponds to the redistribution of quantum zero-point

fluctuations due to the imposition of external constraints,and thus is analogous to the Casimir effect

for two parallel metallic plates in vacuum. Running this argument the other way, we note that the

removal of temporal modes by periodic finite boundary conditions generates a temperature [and

thus entropy and thermal energy] in a system near a quantum critical point.
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3.2.4 The Casimir Effect in Space and in Time

The Casimir effect is a boundary condition response of the electromagnetic vacuum, as we discuss

in Sec. 3.2.1. The gapless nature of the photon spectrum means that the zero-point electromagnetic

fluctuations are scale-invariant; the vacuum is literally in a quantum critical state. However, once

the boundary conditions are introduced, the system is tunedaway from criticality and develops a

finite correlation length,ξ. The Coulomb interaction between two charges, the correlation function

of the electromagnetic potential inside the cavity, is changed from the vacuum to the cavity as

V (q)free ∼ 〈δφqδφ−q〉 =
e2

q2
→ V (q)cavity ∼ e2

q2
⊥ + ξ−2

ξ =
a

π
(3.36)

where the plates have removed field modes and have introduceda finiteξ [proportional to the only

length scale in the system, the interplate separationa]. In an analogous way, the partition function

of a quantum system at finite temperatures is described by a Feynman path integral over the con-

figurations of the fields in Euclidean space time [161] where temperature introduces a cutoff in the

temporal direction. In Fig. 3.4 we present a visual comparison of the Casimir effect in space and in

time. In both cases, the finite boundary effects induce the replacement of a continuum of quantum

mechanical modes by a discrete spectrum of excitations.

In the quantum paraelectric of interest here, the path integral is taken over the space time con-

figurations of the polarization fieldP (~x, τ),

Z =
∑

{P (x,τ)}

exp

[

−SE[P ]

~

]

, (3.37)

where

SE [P ] =

∫
~/kBT

0
dτd3xLE[P ] (3.38)

andLE [P ] is the Lagrangian in Euclidean space time. The action per unit time is now the Free

energyF of the system [see Table 3.1]. The salient point is that finitetemperature imposes a

boundary condition in imaginary timeand the allowed configurations of the bosonic quantum fields
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Figure 3.4: Casimir effect in space and time. (a) Impositionof spatial boundaries on the quantum
critical electromagnetic field yields the conventional Casimir effect. (b) Imposition of temporal
boundary conditions on a quantum critical paraelectric generates the effect of nonzero temperature.

are periodic in the imaginary time intervalτ ∈ [0, ~β] (β ≡ 1
kBT ) so that~P (~x, τ) = ~P (~x, τ + ~β),

which permits the quantum fields are thus decomposed in termsof a discrete set of Fourier modes

Pn(~x, τ) =
∑

~q,n

P (~q, iνn)ei(~q·~x−νnτ) (3.39)

where

νn = n

(
2πkBT

~

)

(3.40)
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Table 3.1: Casimir effect and quantum criticality.

Finite-temperature effects
Casimir effect near quantum criticality

Boundary condition Space Time
“S matrix” U = e−iE t̄/~ Z = e−βF

Path Integral U =

∫

D[φ] exp [iS[φ]/~] Z =

∫

D[P ] exp [−SE[P ]/~]

Action/time E SE/β~ = F

Time interval t̄(→ ∞) β~

Spatial interval a ∞
Discrete wavevector/frequency qzn = (π/a) n νn = (2πkBT/~) n

are the discrete Matsubara frequencies [see Eq. (3.20)]; werecall that atT = 0 the (imaginary)

frequency spectrum is a continuum. The response and correlation functions in (discrete) imaginary

frequency

χE(~q, iνn) = 〈P (~q, iνn)P (−~q,−iνn)〉 (3.41)

can be analytically continued to yield the retarded response function

χE(~q, iνn) → χE(~q, ω) = χE(~q, z)|z=ω+iδ (3.42)

whereω is a real frequency; for writing convenience we will subsequently drop the E subscript in

χ, e.g.,χ(~q, ω) ≡ χE(~q, ω).

Like the parallel plates in the traditional Casimir effect,temperature removes modes of the field.

In this case it is the frequencies not the wavevectors that assume a discrete character, namely,

q = (~q, ω) → (~q, iνn), (3.43)

whereνn are defined in Eq. (3.40).

The Casimir analogy must be used with care. In contrast to thenoninteracting nature of the
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low-energy electromagnetic field, the modes at a typical QCPare interacting. In the conventional

Casimir effect, the finite correlation length is induced purely through the discretization of momenta

perpendicular to the plates. By contrast, at an interactingQCP, the discretization of Matsubara fre-

quencies imposed by the boundary condition generates the thermal fluctuations in the fields in real

time. These are fed back via interactions to generate a temperature-dependent gap in the spectrum

and a finite correlation time. Despite the complicated nature of this feedback, provided the under-

lying system is critical, temperature acting as a boundary condition in time will set the scale of the

finite correlation time

ξτ =
~

κkBT
, (3.44)

whereκ is a constant. In cases where the quantum critical physics isuniversal, such as ferroelectrics

in dimensions belowd = 3, we expect the coefficientκ to be also universal and independent of

the underlying strength of the mode-mode coupling. The “temporal confinement” of the fields

in imaginary time thus manifests itself as a finite response time in the real-time correlation and

response functions.

For the quantum paraelectric at the QFCP, the imaginary timecorrelation functions are scale-

invariant

χ(~q, iν) = 〈P (~q, iν)P (−~q,−iν)〉
∣
∣
∣
∣
T=0

∼ 1

ν2 + c2
sq

2
. (3.45)

At a finite temperature this response function acquires a finite correlation time

χ(~q, iνn) ∼ 1

ν2
n + c2

sq
2 + ξ−2

τ
(3.46)

where

ξ−2
τ = 3γc

{
〈P 2〉T 6=0 − 〈P 2〉T=0

}
(3.47)

is determined by mode-mode interactions, whereγc is the coupling constant describing the quartic

interactions between the modes, to be defined in Sec. 3.4. We note, as shall be shown explicitly in

Sec. 3.4, that for dimensionsd such that1 < d < 3, the feedback will be sufficiently strong such
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thatξτ will be independentof the coupling constantγc; by contrast ford > 3 the feedback effects

are weak so that there will be aγc dependence ofξτ . The cased = du
c = 3 is marginal and will be

discussed as a distinct case. At a temperature above a quantum critical point, the energy scale

∆(T ) = αkBT (3.48)

will set the size of the gap in the phonon dispersion relation. Here∆(T ) ∼ ~ξ−1
τ andα = O(1) is

a constant of proportionality.

Reconnecting to our previous discussion, we remark that real-time response functions from

expressions like Eq. (3.46) are obtained by analytic continuation to real frequenciesiνn → ω. Since

ξτ ∼ 1
T , the dielectric susceptibility in the approach to the QFCP has the temperature dependence

χ(T ) = χ(q, iνn)

∣
∣
∣
∣
q=0,ν=0

∼ ξ2
τ ∝ 1

T 2
, (3.49)

in contrast to the Curie form (χ ∼ 1
T ) associated with a classical paraelectric; this1/T 2 temperature-

dependence was previously derived from a diagrammatic resummation,[138, 139], from analysis of

the quantum spherical model[142] and from renormalization-group studies.[143, 144] We note that

this 1/T 2 behavior in the dielectric susceptibility of the quantum paraelectric has been observed

experimentally.[31, 32, 162] We summarize in Table 3.1 the link between the conventional Casimir

effect and finite-temperature behavior in the vicinity of a QCP.

3.3 Finite-Size Scaling in Time

The spatial confinment of order parameter fluctuations near aclassical critical point has been studied

as a “statistical mechanical Casimir effect”, [131, 148, 149] and here we extend this treatment to

study the influence of temperature near a QCP using FSS in imaginary time. This scaling approach

is strictly valid in dimensions less than the upper criticaldimension. Quantum critical ferroelectrics

in d = 3 lie at the marginal dimension (D = d + z = 4), so the scaling results are valid up

to logarithmic corrections, which we discuss later [see Sec. 3.6]; herez = 1 refers to a linear
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Figure 3.5: Schematic of finite-size effects (a) at a classical and at a (b) quantum critical point where
the appropriate lengths are defined in the text.

dispersion relation,ω = csq.

Following the standard FSS procedure,[125, 163, 164] we impose boundaries on the system near

its critical point. For a classical system with tuning parametert = T−Tc
Tc

and correlation lengthξ,

we confine it in a box of sizeL and then write the standard FSS scaling form

χ = t−γf

(
L

ξ

)

(3.50)

for the susceptibility.[125, 163–165] Similar reasoning can be used when a system is near its QCP.

Here temperature is no longer a tuning parameter, this role is taken over by an external tuning field

g. Temperature now assumes a new role as a boundary condition in time. Introducing a fixedLτ

[see Fig. 3.5(b)] associated with a finiteT , while replacingt → g, the quantum critical version of
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Eq. (3.50) is

χ = g−γΦ

(
Lτ

ξτ

)

, (3.51)

whereg is the tuning parameter. The dispersion relationω = csq
z yields [ξτ ] = [ξz]; this combined

with ξ ∼ g−ν̃ leads toξτ ∼ g−zν̃ . We therefore write

χ = g−γΦ

(
Lτ

g−zν̃

)

, (3.52)

whereΦ(x) ∼ xp is a crossover function wherep is determined by the limiting values ofΦ(x); when

x → 0, we expectχ = χ(Lτ ), whereas we should recover the zero-temperature result (χ ∼ g−γ)

whenx → ∞. Therefore we obtain

χ ∼ g−γ

(
Lτ

g−zν̃

) γ
zν̃

∼ L
γ
zν̃
τ ∼ T− γ

zν̃ (3.53)

and the temperature-dependence (Lτ ∝ 1/T ) emerges naturally from FSS arguments. Therefore a

(T = 0) quantum critical point can influence thermodynamic properties of a system at finiteT just

as a finite-size system displays aspects of classical critical phenomena despite its spatial constraints.

A schematic overview of the finite-size scaling arguments wehave presented here is displayed in

Fig. 3.6.

The FSS approach can also yield theT -dependences of the specific heat and the polarization of

a quantum critical paraelectric. At a finite-temperature phase transition, to obtain the specific-heat

capacity of a finite size box withL << ξ, we writef ∼ t2−αF (L/ξ) ∼ t2−α
(

L
t−ν̃

)−(2−α)/ν̃ ∼

L−(2−α)/ν̃ . In a similar spirit, applying the quantum FSS analogies (L → Lτ , t → g, ξ → ξz
τ =

g−zν̃), we obtain

fqm(Lτ ) ∼ g2−α

(
Lτ

g−zν̃

)− (2−α)
zν̃

∼ L
− 2−α

zν̃
τ ∼ T

2−α
zν̃ (3.54)

so that theT -dependent specific heat is

cv(T ) = T∂2fqm/∂T 2 ∼ T
2−α
zν̃

−1 (3.55)
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Figure 3.6: Overview of the finite-size scaling at classicaland quantum critical points; herẽν is the
exponent associated with the spatial correlation length sinceν has already been used in the text as a
frequency.

in the vicinity of a QCP. Similarly theT dependence of the polarization isP (T ) ∼ T
β
zν̃ and we

note thatP (E) = ∂fqm/∂E|g=0 ∼ E1/δ is T independent, since finite-temperature scaling does

not affect field behavior.

Simple scaling relations at classical and quantum criticality are summarized in Fig. 3.6. The key

notion is that at a QCP, finiteT effects correspond to the limitLτ << ξτ ; in this caseLτ becomes

the effective correlation length in time, and theT dependences follow. We note that we expect this

finite-size approach to work for dimensionsd < du
c where there will be logarithmic corrections to

scaling in the upper critical dimensiondu
c .

Let us now be more specific with exponents for the quantum paraelectric case. At criticality the

observedT dependence of the paraelectric susceptibility (χ) can be found by a soft-mode analysis,
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Table 3.2: Observables for aD = 4 QPE in the vicinity of a QFCP.

T dependences g dependences
Observable (g=0) (T=0)
Polarization P ∼ T 1 P ∼ g1/2

Susceptibility χ ∼ T−2 χ ∼ g−1

P ∼ E1/3

χ(ω, T ) =
(
1/ω2

)
F (ω/T )

[43, 91] and therefore the exponents for the quantum paraelectric are those of the quantum spherical

model.[142] For the case of interest (D = d + z = 3 + 1 = 4), the quantum spherical model has

exponents̃ν = 1/(D − 2) = 1/2 andγ = 2/(D − 2) = 1, so thatγth = γ
zν̃ = 2 and we recover

theχ−1 ∼ T 2 scaling found earlier. Other specificT dependences are displayed in Table 3.2. For

d = 3, we haveg ∼ T 2; this relation was experimentaly observed [30, 84] in STO. Finally we note

that the FSS that we have discussed suggests the “ω
T ” scaling form

χ(ω, T ) =
1

ω2
F
(ω

T

)

(3.56)

that is similar to that observed in other systems at quantum criticality;[166, 167] this was previously

derived by more technical methods.[144] Predictions for experiment are summarized in Table 3.2.

We note that since we are in the upper critical dimension, there will be logarithmic corrections to this

scaling but we do not expect these to be experimentally important for the temperature dependences

described here; however they will be considered later in Sec. 3.6.

3.4 Gaussian Theory: Illustration of Temperature as a Boundary Effect

3.4.1 Gap Equation

In this section we use the self-consistent Gaussian theory to illustrate how theχ(T ) found via FSS in

time appears from a more microscopic approach; we also studythe crossover behavior between the
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classical and the quantum critical points. This approach isequivalent to the self-consistent one-loop

approximation[168] that is used in the context of metallic magnetism.

The soft-mode treatment has been described extensively elsewhere;[43, 91, 168] here we briefly

outline the derivation of the gap equation. The Lagrangian in Euclidean space time,LE in Eq.

(3.38), for displacive ferroelectrics is theφ4 model:

LE → 1

2

[
(∂τP )2 + (∇P )2 + rP 2

]
+

γc

4
P 4, (3.57)

which determines the partition function. Notice that in writing Eq. (3.57), we have chosen rescaled

units in which the characteristic speed of the soft modecs = 1. In a self-consistent Hartree the-

ory, interaction feedback is introduced via its renormalization of quadratic terms; this procedure is

equivalent to replacingLE by the Gaussian Lagrangian

LG =
1

2
P
[
−∂2

τ −∇2 + r + Σ
]
P (3.58)

where

Σ = 3γc〈P 2〉 (3.59)

is the Hartree self-energy [see Fig. 3.7]. We note that this mode-mode coupling theory is exact for

the “spherical model” generalization ofφ4 theory in which the order parameter hasN components

andN is taken to infinity.

The Green’s function can now be determined from Dyson’s equation, shown diagrammatically

in Fig. 3.7, and takes the form

G(q) ≡ G(~q, iνn) =
[
(iνn)2 − q2 − r − Σ

]−1
, (3.60)

so the action is diagonalized in this basis. The poles ofG(~q, ω) determine the dispersion relationωq
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Figure 3.7: Diagrammatic representation of (a) the Dyson equation and (b) the Gaussian self-energy
whereP0 = 0 in the paraelectric state (and is finite in the ferrelectric phase).

for the displacive polarization modes

ω2
q = q2 + ∆2, (3.61)

where here we have introduced the gap function

∆2(r, T ) = r + Σ(r, T ). (3.62)

This quantity vanishes at both quantum and classical critical points where there are scale-free (gap-

less) fluctuations. At the quantum critical point whereTc = 0, ∆(rc, 0) = rc + Σ(rc, T = 0), so

that we can eliminaterc = −Σ(rc, T = 0), to obtain

∆2(r, T ) = Ω2
0 + [Σ(r, T ) − Σ(rc, 0)], (3.63)

whereΩ2
0 = (r − rc) = g.

The amplitude of the polarization fluctuations is given by

〈P 2〉 = −G(0, 0) = − 1

βV

∑

q

G(q)eiqx|x=0, (3.64)



79

so the self-consistency Eq. (3.59) conditionΣ = 3γc〈P 2〉 can now be written

Σ(r, T ) = (−3γc)T
∑

n

∫
ddq

(2π)d
G(q, iνn), (3.65)

whereΣ(r, T ) is the temperature-dependent self-energy. By converting the discrete Matsubara

summation to a contour integral, deformed around the polesz = ±ω(q) in the dispersion relation,

we can convert this expression to the form

Σ(r, T ) = 3γc

∫
ddq

(2π)d

[
nB(ωq) + 1

2

]

ωq
, (3.66)

where we denotenB(ω) ≡ nB(ω, β) = 1/(eβω − 1). At the quantum critical point (r = rc and

T = 0), we haveωq = q andn(ωq) = 0 so that

Σ(rc, 0) = 3γc

∫
ddq

(2π)d
1

2q
, (3.67)

and using Eq. (3.63), we can write the gap function as

∆2 = Ω2
0 + 3γc

∫
ddq

(2π)d

([
nB(ωq) + 1

2

]

ωq
− 1

2q

)

,

ωq =
√

q2 + ∆2. (3.68)

3.4.2 T Dependence of the Gap at the QCP

In the paraelectric phases, we can use the temperature-dependent gap to determine the dielectric

susceptibilityχ. Writing

χ = χ(q, ω)

∣
∣
∣
∣
∣
~q,ω=0

= 〈P (q)P (−q)〉
∣
∣
∣
∣
∣
q=0

= −G(~q, ω)

∣
∣
∣
∣
∣
~q,ω=0

, (3.69)

we use Eqs. (3.60) and (3.62) to express it as

χ−1(r, T ) = ∆2(r, T ). (3.70)
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At the quantum critical pointΩ2
0 = 0, so the gap equation Eq. (3.68) becomes

∆2(rc, T ) = 3γc

∫ q<qmax

0

ddq

(2π)d

{
[
nB(ωq) + 1

2

]

√

q2 + ∆2
− 1

2q

}

, (3.71)

where we have inputted the dispersion relation, Eq. (3.61),for ωq in Eq. (3.71). We notice that both

thermal and quantum fluctuations contribute to this expression.

Even though the mean-field gap equation is only formally exact in the spherical mean-field limit,

it is sufficient to illustrate the qualitative influence ofT on the gap at the QCP. In order to explore

the cutoff dependence of Eq. (3.71), we note that in the ultraviolet limit of interest, the last two

terms can be expressed as

1

2

{
1

ωq
− 1

q

}

= −∆2

4q3
, (3.72)

where there is complete cancellation when∆ = 0 exactly at the QCP. However just slightly away

from it, when∆ is finite, Eq. (3.72) leads to aqd−3
max scaling dependence of the integral in Eq. (3.71);

therefore the cutoff is required to ensure that Eq. (3.71) isfinite in dimensionsd > 3. However, in

dimensionsd < 3, this integral is convergent in the ultraviolet and the upper cutoff in Eq. (3.71)

can be entirely removed. Thus, ford < 3, the only scale in the problem is temperature itself. The

integral is also convergent in the infrared providedd > 1. The spatial dimensionsd = 1 andd = 3

correspond to space time dimensionsD = d + 1 = 2 andD = d + 1 = 4, which are the well-

known lower and upper critical dimensions of theφ4 theory. This provides us with a dimensional

window1 < d < 3 where inverse temperature acts as a cutoff in time. In this range, the temperature

dependence of the gap

∆(T ) = αdT (3.73)

is independent of the strength of the coupling constantγc and the cutoff, a feature that can be

illustrated already within mode-coupling theory. Recalling that∆(T ) = α
Lτ

andα ≡ αd [see Eq.

(3.48) and Fig. 3.4], we note that confirmation of Eq. (3.73) is consistent with our earlier discussion

[see after Eq. (3.47)] thatξτ is independent of coupling constant; in this dimensional window,
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Figure 3.8: Dependence ofαd(T → 0) on dimensionalityd. Inset:T dependence of∆/T for d = 2

and coupling constants in the range0.01 < γc(d=2)
qmax

< 5.0; hereT0 is the temperature scale where
ξ ∼ a and we note thatlimT→0 α2 is independent ofγc.

temperature is a boundary effect in (imaginary) time and is the only temporal scale in the problem.

In order to calculateαd, we rewrite the gap equation at criticality as

∆2

T 2
= α2 =

3γc

T 2
Γd

∫ ∞

0

qd−1dq

(2π)d

{
[
nB(ωq) + 1

2

]

ωq
− 1

2q

}

, (3.74)

whereΓdq
d−1dq (Γd = 2πd/2

Γ(d/2) ) is the d-dimensional volume measure. Rescaling∆ = αdT and

q = uT , we obtain

Fd[α] = T 3−dα2
d/γc (3.75)
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where

Fd[α] =
3

(2
√

π)dΓ(d/2)

∫ ∞

0
ud−1du

{coth(1
2

√
u2 + α2)√

u2 + α2
− 1

u

}

. (3.76)

Notice that ford = 3− ε [d → 3], Eq. (3.76) contains a singularity ofO(α2/ε). Therefore we split

off the singular part of Eq. (3.76) as follows

Fd[α] =
3

(2
√

π)dΓ(d/2)

[ ∫ ∞

0
ud−1du

(

coth(1
2

√
u2 + α2) − 1√

u2 + α2

)

+

αd−1

2
√

π
Γ(d

2
)Γ( 1−d

2
)

︷ ︸︸ ︷
∫ ∞

0
ud−1du

(
1√

u2 + α2
− 1

u

)]

, (3.77)

yielding

Fd[α] =
3

(2
√

π)dΓ(d/2)

[ ∫ ∞

0
ud−1du

(

coth(1
2

√
u2 + α2) − 1√

u2 + α2

)

− 12

(2
√

π)d+1
αd−1

(

Γ
(

5−d
2

)

(d − 1)(3 − d)

)]

, (3.78)

provided(1 ≤ d ≤ 3). The first term in this expression is a smooth positive function of d andα,

whereas the second is a singular negative function ofd with poles atd = 1 andd = 3. Ford < 3,

the temperature prefactor on the right-hand side of Eq. (3.75) vanishesT → 0, so a consistent

solution requiresαd to satisfy

Fd[αd] = 0. (3.79)

In Fig. 3.8 we display the dependence ofαd on dimensionality1 < d < 3. We notice thatαd

goes to zero as the dimension approaches the lower critical dimensiondl
c = 1, andαd vanishes in

the vicinity of d ∼ 3 asαd ∼
√

3 − d, consistent with previousε calculations [144]. At a small

finite temperature, we can expand aroundα = αd + δα(T ), to obtain

∆(T ) = αdT +

(
α2

d

γcF ′[αd]

)

T 4−d. (3.80)

Thus in dimensionsd < 3, the dominant low-temperature behavior is independent ofγc, the strength
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of the mode-mode coupling, which enters into the subleadingtemperature dependence. The tem-

perature dependence of the gap in two dimensions is shown in the inset of Fig. 3.8, where we see

that limT→0 α2 ≡ 0.96 is the same for all couplings.

For d = 3, the linear coefficient of∆(T ) depends onγc, becoming independent ofγc in the

limit that γc → ∞ ; here we have neglected logarithmic corrections inα3. We remark that here we

are presenting and expanding a previous analysis[142], noting that theγc independence ofαd for

d ≤ 3 can be understood via the insight that temperature is a boundary effect in time. According

to Eqs. (3.75) and (3.76), we writeα2
3 = γcF3[α] and solve forα3 in the limit of upper cutoff

umax = qmax/T ≡ 2πT0/T >> α3,

α3(T, γc) ∼
√

γc

1 + γc(
3

8π2 ) ln(4πT0
T )

. (3.81)

In the limit of strong coupling,α3 ∼
[
ln(4πT0

T )
]−1/2

is γc independent. For weak coupling, the

situation relevant here,α3 is indeed a function ofγc but remains independent of temperature so

that∆ ∼ T according to Eq. (3.73); temperature dependences derived here should therefore be in

agreement with those found from a scaling perspective whenever direct comparison is possible.

3.4.3 Temperature-Dependent Dielectric Susceptibility

To provide an explicit illustration of the above calculations, we now use Eqs. (3.68) and (3.70) to

numerically determine the temperature-dependent paraelectric susceptibility in the approach to the

quantum critical point (QCP) ind = 3. We obtainχ−1(T ) = ∆2 ∼ T 2 for the approachr = rc

in agreement with previous results and discussion. We note that a similar analysis in the vicinity of

the classical phase transition leads to the expected Curie susceptibility [χ−1(T → T+
c >> 0) ∼ T ]

since in this (high) temperature regime the Bose function inEq. (3.71) scales asTω . We also

remark that if we assume thatω ≡ ω̃0 with no q dependence then we recover the Barrett[169]

expressionχ−1 ∼ A + B coth ~ω̃0
kBT ; because the disperson is constant andq independent this

approach is not applicable near quantum criticality where the gap vanishes and theq dependence
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becomes important.

One more point needs to be considered before we proceed with our self-consistent Hartree the-

ory. In the self-consistent Hartree theory (SCHT) of the ferroelectric phase, the polarization field

P0 acquires a nonzero value.P0 enters the LagrangianLE in Eq. (3.57) asP = P0 + δP , where

δP are fluctuations of the polarization field around its mean value,P0 [P0 = 0 in the paraelectric

phase]. The self energy Eq. (3.59) becomes

Σ = 3γc〈P 2〉 = 3γc

(
P 2

0 + 〈δP 2〉
)

(3.82)

as indicated diagrammatically in Fig. 3.7. The equilibriumvalueP0 is easily obtained by introduc-

ing an electric field into the Lagrangian by replacingLE → LE +E ·P , then seeking the stationary

point δS/δP0 = 0 which gives〈rP0 + 3γcδP
2P0 + γcP

3
0 − E〉 = 0, or

r + Σ − 2γcP
2
0 =

E

P0
= 0 (3.83)

at zero electric field. According to Eq. (3.62),∆2(r, T ) = r + Σ(r, T ), so that the spectral gap in

the ferroelectric phase is

∆2
f (r, T ) = 2γcP

2
0 (r, T ) > 0. (3.84)

In Fig. 3.9(a) we plot the calculated temperature-dependent spectral gap∆(r, T ) for three dif-

ferent values ofr as indicated in its schematic inset. As expected, for the quantum critical (QC)

regime [2] the spectral gap closes exactly atT = 0 leading to a linear dispersion relation,ω = q

at the QCP. We note that in the quantum paraelectric (QPE),∆ [or χ−1] is constant. In the quan-

tum ferroelectric (QFE) again∆ is constant; though there exists a classical paraelectric-ferroelectric

transition atT = Tc whereχ−1 ∼ (T − Tc). The static dielectric susceptibility in the vicinity of

the QCP (low T) is presented in the same threer regimes in Fig. 3.9(b) where we see that in the

QPE regimeχ(T → 0) saturates, at the QCPχ(T ) ∼ T−2 and diverges asT → 0. In the QFE, the

susceptibility also saturates at low temperatures, thoughthe Curie law is recovered in the vicinity
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(a)

(b)

Figure 3.9: Temperature dependence of the a) spectral gap and b) the dielectric susceptibility for
three temperature scans defined in the schematic inset; hereg = r − rc.

of the classical transition atT = Tc.

Fig. 3.10 shows the phase diagram that results from the self-consistent Hartree theory. This

figure serves to emphasize how the strictly zero-temperature QCP gives rise to a quadratic power-

law dependence of the inverse susceptibility on temperature over a substantial region of theT − g

phase diagram.

The crossover temperature,T0, between Curie (χ−1 ∼ T ) and quantum critical (χ−1 ∼ T 2)
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Figure 3.10: T-g phase diagram as determined by a self-consistent analysis of the dielectric suscep-
tibilty. The power law exponents are depicted in different colors via the function dlnχ−1

dln(T−Tc)/T0
. This

expression selects the exponent2 (blue region) forχ−1 ∼ T 2 [Tc ≡ 0 for QCP], exponent1 (green
region) for classical Curie behaviorχ−1 ∼ (T − Tc) and exponent0 (red region) for a constant
susceptibility.

behavior in the susceptibility is defined by the expression

T0 ≈ ~ω0

2πkB
, (3.85)

whereω0 = cs
a is the characteristic soft-mode frequency,cs is the soft-mode velocity, anda is

the lattice spacing. Here we have assumed a simple band structure ω(q) = ω0 sin qa such that

cs = dω
dq

∣
∣
∣
q=0

= (ω0a) cos qa
∣
∣
q=0

so so thatω0 = cs
a as stated above. The factor of2π in the de-

nominator of Eq. (3.85) results from the observation that the separation of the poles of the Bose and
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Fermi functions in the complex frequency plane is∆νn = 2πkBT , which sets the natural conver-

sion factor between temperature and frequency to be2πkB . T0 also corresponds to the temperature

when the correlation length is comparable to the lattice constant (ξ ∼ a); here the correlation length

ξ ≡ cs
Ω0

∼ g−1/2 [see Eq. (3.52)]. Neutron-scattering measurements[170] of the dispersion relation

indicate that the soft-mode velocity in STO iscs ≈ 104m/s and the lattice constant has been mea-

sured [15] to beaSTO = 3.9 × 10−10m; thereforeT0 ≈ 30K. We note that withO18 substitution,

the ambient pressure Curie temperature[30] isTc ∼ 25K. Using the values ofcs andaSTO from

above, we getω0 ≈ 2.6×1013Hz in SrTiO3. The typical frequencyΩ0 = g1/2 [spectral gap at zero

temperature] at which one observes the change in behavior inthe dielectric susceptibility [exponent

2, blue region] is thus from Fig. 3.10,Ω0 ≈ 10−2 ω0 = 2.6 × 1011Hz. Indeed, Raman scattering

on ferroelectric SrTi18O3 [Tc = 25K] shows that the zero temperature Raman shift [171] is about

10 cm−1 which translates intoΩ0 ≈ 3 × 1011Hz, in good agreement with our calculation.

3.5 Coupling to Long-Wavelength Acoustic Modes

3.5.1 Overview

In a conventional solid, broken translational symmetry leads to three acoustic Goldstone modes. At

a ferroelectric QCP, these three modes are supplemented by one or more optical zero modes. This

coexistence of acoustic and optic zero modes is a unique property of the ferroelectric QCP, and in

this section we examine how their interaction influences observable properties.

The gap of the optical modes in a ferroelectric is sensitive to the dimensions of the unit cell and

couples linearly to the strain field. This leads to an inevitable coupling between the critical optical

mode and the long-wavelength acoustic phonons that must be considered. To address this issue, we

consider the effect of a couplingη between the soft polarization and the strain field created bya

single long-wavelength acoustic phonon mode. Softening ofthe polar transverse optic (TO) mode

near the QCP enhances the effect of this coupling. Using dimensional analysis we find that the cou-

pling between the TO and LA mode is marginally relevant in thephysically important dimension
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d = 3, and thus can not be ignored. The main result of the analysis is that the acoustic phonons act

to soften and reduce the quartic interaction between the optic phonons. Beyond a certain threshold

η > ηc, this interaction becomes attractive, leading to the development of a reentrant paraelectric

phase at finite temperatures. We note that such a coupling to acoustic phonons has been considered

previously,[139] and here we are rederiving and extending prior results in a contemporary frame-

work.

3.5.2 Lagrangian and Dimensional Analysis

We introduce the coupling of the polarization (P (~x, τ)) and the acoustic phonon (φ(~x, τ)) fields as

a coupling of the polarization to strain−η∇φP 2; we then write the Lagrangian [139] as

LE[P, φ] = LE [P ] +
1

2

[
(∂τφ)2 + c̃2(∇φ)2

]
− η∇φP 2, (3.86)

whereLE [P ] is our previous Lagrangian without acoustic coupling givenin Eq. (3.57). Here the

constantη is the coupling strength to the acoustic phonon; the latter’s dynamics are introduced

in the bracketed terms of Eq. (3.86). Since we are using unitsin which the velocity of the soft

optical phonon is one,̃c = ca
cs

is the ratio of the acoustic to the soft optical phonon velocities. We

will discuss the restoration of dimensional constants in Eq. (3.86) when we make comparison to

experiment in Sec. 3.5.6.

We begin with a dimensional analysis of the couplings to assess their relative importance in the

physically important dimensiond = 3. In order to do so, we introduce the RG flow by rescaling

length, time, momentum, and frequency

x′ =
x

Λ
, τ ′ =

τ

Λ
, q′ = qΛ, ν ′ = νΛ, (3.87)

with constantΛ > 1 representing flow away from the infrared (IR) limit of the QCP, that is flow

from small to large momentum and frequency. In terms of the rescaled variablesx′ and τ ′, the
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action Eq. (3.38) with Lagrangian Eq. (3.86) ind + 1 dimensions becomes

S[P, φ] =

∫ β

0
dτ

∫

ddxLE[P, φ]

=

∫ β/Λ

0
dτ ′

∫

ddx′Λd+1
{1

2
Λ−2

[

(∂τ ′P )2 + (∇′P )2 + (∂τ ′φ)2 + (∇′c̃φ)2
]

+
1

2
Ω2

0P
2 +

1

4
γcP

4 − ηΛ−1∇′φP 2
}

. (3.88)

We emphasize that we writeΩ2
0 = r − rc as the coefficient of theP 2 term in the LagrangianLE [P ]

[Eq. (3.57)], entering Eq. (3.86) in Eq. (3.88), since our RGflow starts from the QCP (r = rc).

RescalingP , φ, Ω2
0, γc andη, so that the action Eq. (3.88) assumes its initial form, we write

P ′ = PΛ
d−1
2 , φ′ = φΛ

d−1
2 , (Ω2

0)
′ = Ω2

0Λ
2, γ′

c = γcΛ
3−d, η′ = ηΛ2− d+1

2 , (3.89)

which leads to

S[P, φ] =

∫ β/Λ

0
dτ ′

∫

ddx′LE[P ′, φ′]. (3.90)

Now the fields, the mass term, and the coupling constants flow to new values leaving the action

unperturbed. We remark that the upper cuttoff in the imaginary time dimension is replaced by

infinity as the temperatureT ∼ 1
β approaches zero.

Analyzing the RG expressions in Eq. (3.89), we find that theΩ2
0 term grows as we flow away

from the QCP IR limit; therefore it is a relevant perturbation parameter independent of dimension

d. This is consistent with the fact thatΩ2
0 = r − rc = g tunesthe system away from the QCP.

Similarly we find that couplingsγc andη grow (relevant) in dimensiond < 3, decrease (irrelevant)

in dimensiond > 3, and do not change (marginally relevant) ind = 3. We see that in this case

(d = 3) the coupling to acoustic phonons (η′) is equally important as the mode-mode coupling (γ′
c)

and thus has to be included to the Gaussian model.

Let us now briefly summarize what we know aboutγc before we proceed to the discussion of

the acoustic couplingη. In Sec. 3.4.2 we found that the spectral gap∆ is independent ofγc for

dimensions1 < d < 3 in the zero-temperature limit [see Fig. 3.8]. This is in agreement with
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Figure 3.11: Diagrammatic representation of the self-energy that includes coupling to both optical
and acoustic phonons. Herẽγc is the renormalized coupling, including the exchange of an acoustic
phonon.

the above results, whereγc is a relevant perturbative parameter; more precise analysis [125] shows

γc flowing to the nontrivial Wilson-Fisher fixed pointγ∗
c . Here all the system properties become

functions ofγ∗
c + δγc ≈ γ∗

c , and so areγc independent. On the other hand, in dimensionsd > 3

andd = 3, γc flows to zero (with logarithmic corrections in the marginal case). In these cases the

system properties are functions ofδγc and thus areγc dependent; we have already seen an example

of this behavior in the specific case of thed = 3 spectral gap.

3.5.3 Gap Equation

We are now ready to explore how the system’s low-temperaturebehavior changes in the presence

of acoustic phonons in dimensiond = 3. Let us look first at the LA phonon fieldφ. Following

the procedure of Sec. 3.4.1, we find the acoustic Green’s function and dispersion relation from Eq.

(3.86) to be

D(q) ≡ D(~q, iνn) = [(iνn)2 − c̃2q2]−1, (3.91)

ωa(q) = c̃q. (3.92)

We emphasize theP 2 dependency of the new interaction term,−η∇φP 2, in the Lagrangian
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Eq. (3.86). Therefore it contributes to the polarization self-energy as an additional term inside the

brackets of Eq. (3.58). This new contribution arises due to nonzero second-order perturbation and

is schematically shown in Fig. 3.11, where the solid line represents the soft polarization TO Green’s

function Eq. (3.60) and the dashed line represents the LA Green’s function Eq. (3.91). We note

that the interaction represented by adot in the self-energy consists of a contribution each from the

couplingγc andη. Thus we can write the polarization self-energyΣ as a sum of these two terms

Σ(r, T ) = Σγc(r, T ) + Ση(r, T )

= (−3γc)T
∑

n

∫
d3q

(2π)3
G(q, iνn)

+ 4η2T
∑

n

∫
d3q

(2π)3
q2G(q, iνn)D(q, iνn), (3.93)

whereΣγc is the Hartree self-energy Eq. (3.65) previously calculated in Sec. 3.4.1. We remark

that theq2 term in the integral forΣη arises due to form of the interaction (∇φ). Converting the

Matsubara summation to a contour integral, deformed aroundthe poleszp = ±ωp(q) andza =

±ωa(q) in the dispersion relations of the polarization Eq. (3.61) and acoustic phonon Eq. (3.92)

modes, respectively, we can rewriteΣη in the form [139]

Ση(r, T ) = −4η2

∫
d3q

(2π)3
q2

{

[nB(ωp(q)) + 1
2 ]

ωp[ω2
a − ω2

p]
+

[nB(ωa(q)) + 1
2 ]

ωa[ω2
p − ω2

a]

}

. (3.94)

At the quantum critical point, wherer = rc andT = 0, the dispersionωp(q) = q andnB(ωp) =

nB(ωa) = 0 so that

Ση(rc, 0) = −4η2

∫
d3q

(2π)3
1

2c̃(c̃ + 1)q
. (3.95)

Using Eq. (3.63), we write the gap function [as in Sec. 3.4.1]as

∆2 = Ω2
0 + ∆2

γc
+ ∆2

η,

∆2
γc

= 3γc

∫
d3q

(2π)3

([
nB(ωp(q)) + 1

2

]

ωp
− 1

2q

)

,
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Figure 3.12: Schematic temperature dependence of the static dielectric susceptibility where cou-
pling to a long-wavelength acoustic phonon is included in the calculation; inset indicates phase
trajectory and region of corrections due to acoustic coupling deep in the QPE phase (yellow).

∆2
η = −4η2

∫
d3q

(2π)3
q2

([
nB(ωp(q)) + 1

2

]

ωp[ω2
a − ω2

p]
+

[
nB(ωa(q)) + 1

2

]

ωa[ω2
p − ω2

a]
− 1

2c̃[c̃ + 1]q3

)

,

(3.96)

where∆2
γc

has been already defined in Eq. (3.68).

We emphasize that theγc andη terms in Eq. (3.96) have opposite signs in their contribution

to the spectral gap∆. The negative coefficient ofη2 reflects the fact that it emerges from second-

order perturbation theory; physically it is due to thermally enhanced virtual excitations caused by

coupling between polarization TO and LA phonon modes.
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3.5.4 Deep in the Quantum Paraelectric Phase

Let us first explore the effect of the acoustic couplingη deep in the QPE region of the phase diagram

[see inset of Fig. 3.12]. Hereg >> 0 and∆ >> T ≈ 0. In this regime, we write

χ−1 = ∆2 = Ω2
0 + D(∆) − A(η)

T 4

∆2
, (3.97)

with

A(η) =
4η2

c̃

∫
d3u

(2π)3
u nB(c̃u), (3.98)

where derivations ofA(η) andD(∆) are presented in Sec. 3.7; for our purposes, the key point is to

note thatlim∆→0 D(∆) = 0. SettingA(η) ∼ η2 = 0, we recover a constant expression forχ as

a function of temperature in the QPE phase consistent with our previous derivations from Sec. 3.4.

For η 6= 0, the dielectric susceptibility acquires different low-temperature behavior. The quartic

temperature term in Eq. (3.97),−A(η) T 4

∆2 , drives the inverse susceptibility at low temperatures;

such a “bump” in the susceptibility [or “well” in the inversesusceptibility, see Fig. 3.12] due to

acoustic phonon coupling has been considered previously [139]. It is then natural to inquire whether

a finiteη could eventually drive the inverse susceptibility to zero (or negative) values. Here we show

that this is not the case. We start by looking for a solution ofEq. (3.97) withχ−1 = ∆2 = 0, and

show that such a solution does not exist. Indeed atη2 = 0, χ−1 in the QPE phase is nonzero as we

saw in Sec. 3.4. Atη2 6= 0, growth of last term in Eq. (3.97) exceeds all bounds and cannot equate a

constant termΩ2
0 [notice thatD(∆)|∆=0 = 0]. The inverse susceptibility therefore remains positive

deep in the QPE phase withχ−1
min 6= 0.

We note that when the temperature increases so that∆ ∼ T and we are no longer in the QPE

phase [red in Fig. 3.10], we enter the “tornado” region of theQCP influence [blue in Fig. 3.10] where

χ−1 ∼ ∆2 ∼ T 2, as was shown in Sec. 3.4. At this point the quadratic temperature dependence

dominates and coupling to the acoustic phonons becomes negligible; as a result a turn-over in the

inverse susceptibility from−T 4 to +T 2 dependence occurs [see Fig. 3.12].
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3.5.5 Quantum Critical Temperature-Dependent DielectricSusceptibility

We already know that there exists a classical phase transition atTc for g < 0 andη = 0; for η 6= 0

could this line of transitions enter theg > 0 part of the phase diagram and result in a reentrant

quantum ferroelectric phase near theg = 0 QCP? In order to explore this possibility, we study the

temperature-dependent susceptibility near the QCP [atg = 0] and find that unstable behavior is

possible. Next we follow the line of transitions, whereχ−1 = ∆2 = 0 and show that its behavior is

changed forη > ηc.

We begin withχ(T ) in the vicinity in the quantum critical regime whereg = 0 [trajectory 2 in

Fig. 3.9]; hereΩ2
0 = g = 0 andq ∼ ω ∼ T & 0 at low temperatures. Takingη = 0, the spectral

gap Eq. (3.96) becomes

∆2
γc

=
3γc

2π2

∫

dq q nB(q/T ) ≡ α̃γcT
2 =

γcT
2

4
(3.99)

and we recover the quadratic temperature dependence,χ−1
γc

= ∆2
γc

∼ T 2, that was derived in

Sec. 3.4.2.

With η 6= 0, theη contribution to the gap becomes

∆2
η = −4η2

2π2

∫

dq
q

c̃2 − 1

(

nB(q/T ) − nB(c̃q/T )

c̃

)

≡ −β̃η2T 2. (3.100)

For both cases̃c ≶ 1, the expression under the integral in Eq. (3.100) is positive [see Sec. 3.8 for

specifics], which results in a negative coefficient for∆2
η. Adding bothγc andη terms in the gap

equation Eq. (3.96), we write the expression for the dielectric susceptibility

χ−1 = ∆2 = (α̃γc − β̃η2)T 2 = (
γc

4
− β̃η2)T 2, (3.101)

whereα̃ and β̃ are explicitly calculated in Sec. 3.9. When the coefficient of T 2 is zero, namely,
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Figure 3.13: The transition lineTc(g) for different values ofη, the acoustic coupling constant; for
η > ηc a reentrant quantum ferroelectric (FE) phase emerges. The phase boundaries result from
numerical solution of the gap equation [∆(η 6= 0) = 0] discussed in the text; the parameters used
here are as follows:γc = 1,c̃ = 0.9, ηc = 0.62, and{η > ηc, η < ηc} = {0.63, 0.59}.

when

η = ηc =

√
γc

4β̃
=

√

3

4

(
c̃3(c̃2 − 1)

c̃3 − 1

)

γc, (3.102)

the phase boundary line [χ−1 = 0] becomes vertical in the approach to the QCP; whenη > ηc, it

“meanders” to the right leading to reentrant behavior.

3.5.6 Details of the Phase Boundary (χ−1 = 0)

We now follow the phase transition line, defined byχ−1 = 0 [∆ = 0] out to finite temperatures.

From Sec. 3.4 we know that there is a classical ferroelectric-paraelectric phase transtion atg < 0 at

Curie temperatureTc(g); it is depicted as a solid line in Fig. 3.9, where the dielectric susceptibility

diverges,χ = ∆−2 → ∞. Our results in Sec. 3.4 are forη = 0, and we study the effect of

η > ηc > 0 on this transition line.
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To do this, we look for a solution to the gap equation Eq. (3.96), when∆(Tc, η) = 0, which

yields the transition lineTc(g, η). When the spectral gap closes, the dispersion relations of the TO

soft polarization and the LA acoustic modes both become linear [ωp(q) = q andωa(q) = c̃q].

Inserting these values into Eq. (3.96) and setting∆ = 0, we obtain

−2π2Ω2
0 = 3γc

∫ qmax

0
dq q nB(q/Tc) −

4η2

(c̃2 − 1)

∫ qmax

0
dq q

{

nB(q/Tc) −
nB(c̃q/Tc)

c̃

}

= T 2
c

{

3γc

∫ umax

0
duunB(u) − 4η2

(c̃2 − 1)

∫ umax

0
duu

{

nB(u) − nB(c̃u)

c̃

}}

(3.103)

for the equation determiningTc(g). At low temperatures, we note that we recover the scaling

relationΩ2
0 = g ∼ T 2

c since both integrals become proportional toT 2
c (umax = qmax

Tc
>> 1). At

high temperaturesnB(u) ≈ 1
u , so the right-hand side of Eq. (3.103) becomes proportionalto Tc,

and we recover the classical behaviorg ∼ Tc.

Fig. 3.13 shows theTc(g) transition line. Forη > ηc ≈ 0.6, the transition line “wanders” into

theg > 0 region, leading to a reentrant quantum ferroelectric phase. Such reentrance suggests the

possibility of nearby coexistence and a line of first-order transitions ending in a tricritical point, but

the confirmation of this phase behavior requires a calculation beyond that presented here and will

be the topic of future work.

In order to make direct comparison with experiment, we must now restore dimensions to our

coupling constant and more generally to our Lagrangian Eq. (3.86). We start by explicitly restoring

all physical coefficients to the Lagrangian as follows:

βF =

∫
d3x̃dτ

~
L

L =
α

2

[

(∂τ P̃ )2 + c2
s(∇P̃ )2

]

+
rD

2
P̃ 2 +

γD

4
P̃ 4 − ηD(∇.φ̃)P̃ 2 +

ρ

2

[

(∂τ φ̃)2 + c2
a(∇φ̃)2

]

,

(3.104)

wherecs andca are the soft optical and acoustic phonon velocities, respectively, and whereP̃ and
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φ̃ are the unrescaled physical polarization and phonon displacement fields. Then by writing

x̃

cs
= x,

c3
sα

~
P̃ 2 = P 2,

c3
sρ

~
φ̃2 = φ2 (3.105)

we obtain Eq. (3.86), the rescaled Lagrangian,

βF =

∫

d3x̃dτLE(P, φ),

LE(P, φ) =
1

2

[
(∂τP )2 + (∇P )2

]
+

r

2
P 2 +

γ

4
P 4 − η(∇φ)P 2 +

1

2

[
(∂τφ)2 + c̃2(∇φ)2

]
,

(3.106)

where

c2
s

~
L = LE, r =

rD

α
, γ =

~

c3
sα

2
γD, η =

1

αc
5/2
s

√

~

ρ
ηD, c̃ =

ca

cs
. (3.107)

In the dimensionless units used in this section, we found that

ηc =

√

α̃

β̃
γc =

√

3

4

(
c̃3(c̃ + 1)

c̃2 + c̃ + 1

)

γc, (3.108)

whereα̃ = 1
4 , β̃ =

(
c̃2+c̃+1
3c̃3(c̃+1)

)

. Using Eq. (3.107), we can now rewrite this critical coupling in

dimensionful terms as follows

ηcD =

√
ρ

~
αc5/2

s ηc

=

√
ρ

~
αc5/2

s

√

3

4

(
c̃3(c̃ + 1)

c̃2 + c̃ + 1

)
√

~

c3
sα

2
γcD

= cs
√

ργcD

√

3

4

(
c̃3(c̃ + 1)

c̃2 + c̃ + 1

)

. (3.109)

For SrTiO3, the acoustic [172, 173] and the soft-mode [170] velocitieshave been measured to be

ca ≈ 8000m/s and cs ≈ 10000m/s, respectively, so that̃c = 0.8; the crystal mass density is

5.13g/cm3 = 5.13 × 103kg/m3. The value ofγc has been measured [31, 32] using ferroelectric



98

Arrott plots ofE/P vs P 2 to beε0γcD = 0.2 m4/C2. Inputting all these numbers andηc = 0.6

into our dimensionful expression forηcD, we obtain

ηSTO
cD = 5.74 × 1010Jm/C2 (3.110)

as the dimensionful critical coupling to be compared with experiment.

Next we estimate the experimental value ofη in SrTiO3 as [174]ηSTO ≈ Q
s whereQ ands

are the typical magnitudes of the electrostrictive constants and the elastic compliances [92, 174],

respectively; here we use the values [174]Q = 0.05 m4

C2 ands = 3 × 10−12 ms2

kg . Thereofore

we obtain

ηSTO = 1.7 × 1010Jm/C2 (3.111)

so that from our analysis we observe thatηSTO < ηSTO
cD for the SrTiO3 system. However, there

are two points of uncertainty here that we should emphasize:(i) we use experimental values for

SrTi16O3 as they are not yet available for SrTi18O3; (ii) we use values ofQ ands at room tempera-

ture, and these quantities need to be determined at low temperatures. Despite the roughness of our

estimate, it is reasonable to assumeη is not changed dramatically by the issues raised in (i) and (ii).

We encourage further experimental investigations of SrTi18O3 at low temperatures to clarify this

situation.

3.5.7 Translational-Invariance as Protection against Damping Effects and Singular

Interactions

Our analysis of the effects of acoustic coupling has been limited to a Hartree treatment of the leading

self-energy. This approach neglects two physical effects:(i) damping, the process by which a soft-

mode phonon can decay by the emission of an acoustic phonon and (ii) the possibility of singular

interactions induced by the exchange of acoustic phonons.

Similar issues are of great importance in magnetic quantum phase transitions in metals, where
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the coupling of the magnetization to the particle-hole continuum of electrons introduces damp-

ing [175–177]. For example, in the simplest Hertz-Moriya treatment of a ferromagnetic quantum

critical point, damping by the electron gas gives rise to a quadratic Lagrangian of the form

SM =
∑

q,ν

[

q2 + r +
|ν|
q

]

|M(q, ν)|2, (3.112)

where the term linear in|ν| is a consequence of damping by the particle-hole continuum.This term

plays a vital role in the quantum critical behavior; by comparing the dimensions of theq2 term with

the damping term, we see that[ν] ≡ q3, which means that the temporal dimension scales asz = 3

spatial dimensions under the renormalization group. This has the effect of pushing the upper critical

dimension down from4 − 1 = 3 to 4 − z = 1 dimensions. In addition to this effect, the coupling

to the electron-hole continuum also introduces non-local interactions between the magnetization

modes, casting doubt on the mapping to aφ4 field theory.

Fortunately, translational invariance protects the ferroelectric against these difficulties. Trans-

lational invariance guarantees that the soft mode can not couple directly to the displacement of the

lattice; instead it couples to the strain, the gradient of the displacement, according to the interaction

HI = −η∇φP 2. When we integrate out the acoustic phonons, the induced interaction between the

soft-mode phonons takes the form

V (q, ν) = −4η2 q2

ν2 + c̃2q2
, (3.113)

where the numerator results from the coupling to the strain,rather than the displacement. The

presence of theq2 term in the numerator removes the “Coulomb-type”1/q2 divergence at smallq,

protecting the soft-mode interactions from the development of a singular long range component.

A similar effect takes place with the damping. To see this, weneed to examine the imaginary

part of the self-energy appearing in the Gaussian contribution to the action, Eq. (3.58),

SG =
∑

q,ν

1

2

[

ν2 + q2 + r + Ση(q)

]

|P (~q, ν)|2. (3.114)
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Damping results from the imaginary part of self-energy,Σ′′
n(q, ω). To compute the damping, we

generalizeΣη given in Eq. (3.94) to finite frequency, obtaining

Ση(q, z) = 2η2

∫
d3k

(2π)3
k2

{

[np + 1
2 ]

ωp[(z − ωp)2 − ω2
a]

+
[na + 1

2 ]

ωa[(z − ωa)2 − ω2
p]

+ (z ↔ −z)

}

,

(3.115)

where we have used the short-handωa ≡ ωa(k), ωp ≡ ωp(~q − ~k), na = nB[ωa(k)], andnp =

nB[ωp(~q − ~k)]. The imaginary part of this expression at zero temperature,for positiveν, is then

given by

Im[Ση(q, ν − iδ)] = πη2

∫
d3k

(2π)3
k2

ωpωa
δ(ω − ωa − ωp). (3.116)

We can determine the smallq, ω behavior of this damping rate by simple dimensional analysis. The

dimension of the right-hand side is[q5]/[ω2] ∼ q2, so the damping rate must have the form

ImΣ(q, ν) ∼ η2ν2F

(
q

|ν| ,
∆

|ν|

)

, (3.117)

where a more careful analysis of the integral reveals thatF
(

q
|ν| ,

∆
|ν|

)

is not singular at either small

momentum or frequency. The most important aspect of this result is that the scattering phase space

grows quadratically with frequency and momentum, so that itdoes not dominate over the other

terms in the action Eq. (3.114). The scaling dimension of frequency remains the same as that of

momentum, and thus the upper-critical spatial dimension remains asd = 3.

3.6 Discussion

3.6.1 Logs, Dipolar Interactions, and the Barrett Formula

Before summarizing our results, let us briefly touch on a number of topics closely related to our

work which we have not yet discused; more specifically they include logarithmic corrections in

the upper critical dimension, dipolar interactions and theuse of the Barrett formula for quantum
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paraelectrics. As we have already noted in Sec. 3.5.2, the polarization mode-mode interactionγc

and coupling to the acoustic phononsη, are both marginally relevant in the dimension of physical

interestd = 3. Thus logarithmic corrections to the scaling relations [Sec. 3.3] have to be included;

we have already seen their appearance in the expression forα3 in Eq. (3.81). The correction to

scaling of the free energy near the classical ferro-paraelectric phase transition in four dimensions

is [125]

fcl(t, γc) = f0(t, γc)[1 + 9γc ln(t0/t)]
1/3, (3.118)

wheret = |T−Tc
Tc

| is the reduced temperature,f0(t, γc) = t2Φ
(

E/E0

|t/t0|3/2

)

is the scaling form of the

free energy with a universal scaling functionΦ, t0 is the reduced Debye temperature for the soft

mode Eq. (3.85) andγc is the polarization mode-mode coupling at QCP. Sinceχ = ∂2f
∂E2 |E=0, we

have

χ = χ0[1 + 9γc ln(t0/t)]
1/3, (3.119)

whereχ0 ∼ t−1. By applying the quantum-classical analogy [Sec. 3.3], we write at the upper

critical dimension,du
c = 3 (d + z = 4; z = 1),

fqm(g, γc) = f0(g, γc)[1 + 9γc ln(g0/g)]1/3, (3.120)

whereg0 ≡ ω2
0 is the Debye frequency for the soft mode squared,f0(g, γc) has the same form as

before, andg is the tuning parameter. By settingχ = ∂2f
∂E2 |E=0, the dielectric susceptibility becomes

χ = χ0[1 + 9γc ln(g0/g)]1/3, (3.121)

whereχ0 ∼ g−1 ∼ T−2. The temperature dependence ofχ with logarithmic corrections is then

found by making the subsitutiong ∼ T 2 in Eq. (3.121), and these results are identical to those

found previously using diagrammatic techniques[138]. An analogous procedure can be used to find

the logarithmic corrections to other thermodynamic quantitites.

We note that here we assume the upper critical [spatial] dimension du
c = 3; however if we
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include uniaxial dipole-dipole interactions, we will havedu
c = 2. Basically this is because when all

dipoles point in the [same]z-direction, the TO polarization frequency Eq. (3.61) becomes [178]

ω2(q) = q2 + ∆2 + β
q2
z

q2
, (3.122)

whereβ is a constant, and we derive Eq. (3.122) in Sec. 3.10. We note that the last term of Eq.

(3.122) is specific to the uniaxial [e.g., tetragonal] case and is not present for isotropic dipolar

interactions. Applying simple scaling, we obtain

q̃x(y) =
qx(y)

b
, q̃z =

qz

bk
, (3.123)

where the constantsb, bk > 1 represent flow to the infrared (IR) limit of the QCP. We show in

Sec. 3.10 that in order for Eqs. (3.122) and (3.123) to be satisfied simultaneously,k must equal2

so thatqz “counts” for effectivelytwo dimensions (dspace
eff = d + 1), so that for a quantum uniaxial

ferroelectric the total effective dimension isdeff = dspace
eff + z = (d + 1) + z = d + 2 with du

c = 2

since then we obtaindeff = 4.

At this time, it is not known whether SrTi18O3 is cubic or tetragonal at low temperatures. In any

case, we expect the samples under study to be structurally multidomain so that averaging over long

length scales will make them effectively cubic; thus uniaxial dipolar interactions do not need to be

considered. The observedT 2 behavior ofχ in the vicinity of the QCP supports this contention [i.e.,

dspace
eff = 3]; for dspace

eff = 4, a differentT dependence [χ−1 ∼ T 3] is expected[142] for a QPE so

that a reexamination of the underlying model would be necessary to match experiment. Until details

of the samples are known, this situation cannot be ascertained. We note that suchT 2 dependence of

the inverse susceptibility has also been observed[162] in mixed crystal ferroelectrics KTa1−xNbxO3

and Ka1−yNayTaO3 where uniaxial dipolar interactions are not important, andwe encourage further

low-temperature studies of these systems.

A consistent discrepancy between the observed low-temperature dielectric susceptibility and

the Barrett formula[169] has been observed in the quantum paraelectric phase. [43, 162] Here we
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emphasize that the discrepancy occurs when the system gets very close to the QCP; thus it provides

a measure of the tuning distance to the QCP. Because the optical polarization mode softens as the

system approaches the QCP, with the gap vanishing completely here, the momentum dependence in

the dispersion relation Eq. (3.61) becomes important. It isexactly for this reason that the Barrett

formula, that assumes a constant dispersion relation,ω = ω̃0, breaks down close to the QCP.

The Barrett formula [169] works well deep in the QPE phase [Sec. 3.5.4], where the gap is much

bigger than temperature. One such example is KTaO3 (KTO), which remains paraelectric down to

zero temperature, but in contrast to SrTiO3 (STO) shows a much lower value of the zero temperature

dielectric susceptibility [χKTO ≈ 4000, χSTO ≈ 24000] [43, 49]. The closer the system is tuned to

the QCP, the smaller is the spectral gap and the bigger the dielectric susceptibility. Therefore, STO

sits much closer to the QCP than KTO, and indeed KTO shows a nice fit to the Barrett formula [49].

Notice that by plugging̃ω0 into Eq. (3.68), we get the Barrett expression,

χ−1 = ∆2 = Ω2
0 +

3γc

4π2

(
coth(ω̃0/2T )

ω̃0

q3
max

3
− q2

max

2

)

=
1

M

(
T1

2
coth(T1/2T ) − T0

)

, (3.124)

whereT1 ≡ ω̃0, andM andT0 are fitting constants.

3.6.2 Summary and Open Questions

Let us now summarize the main results of this chapter. Here our aim has been to characterize

the finite-temperature properties of a material close to itsquantum ferroelectric critical point; we

have rederived and extended previous theoretical results using scaling methods and self-consistent

Hartree theory. In the process we have made an analogy between temperature as a boundary effect

in time and the Casimir effect, and have used this to shed light on both problems. Using simple

finite-size scaling, we have presented straightforward derivations of finite-temperature observables

for direct comparison with experiment, and our approach hasyielded a scaling formχ(ω) = 1
ωF (ω

T )

which serves as an additional probe ofT0, the soft-mode Debye temperature-scale where we expect
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crossover between Curie (T ) and Quantum Critical (T 2) behavior inχ−1. We emphasize that this

scaling method is useful in this system wherez is low [z = 1]; otherwise ifz is higher, the system

is usually well above its upper critical dimension where this approach is inappropriate. Next we

have used self-consistent Hartree methods to determine theT − g phase diagram and the crossover

between classical and quantum behavior. In particular we see the influence of the quantum critical

point on the susceptibility at finite temperatures, and we can put in materials parameters to determine

the size of its basin of attraction. Finally we include coupling to an acoustic phonon and find that it

affects the transition line; for such couplings greater than a threshhold strength there is a reentrant

quantum ferroelectric phase.

Naturally these results suggest a number of open questions and here we list a few:

(i) The presence of a reentrant phase suggests the possibility of nearby phase coexistence, a

tricritical point, and a line of first order transitions. This is a particularly appealing scenario given

that recent experiments[179] suggest coexistence of QPE and QFE in SrTi18O3 and is a topic we

plan to pursue shortly.

(ii) If indeed there is a tricritical point and a line of first-order phase transitions, could there also

be a metaelectric critical point in theg−E plane analogous to the metamagnetic situation[180, 181]

in some metallic systems? There is indication that an analogous metaelectric critical point occurs

in a multiferroic system,[182] so this is a question driven by recent experiment.

(iii) What happens when we add spins to a system near its quantum ferroelectric critical point?

Would the resulting multiferroic have particularly distinctive properties?

(iv) Similarly, what type of behavior do we expect if we dope aquantum parelectric in the

vicinity of a QCP? There is by now an extensive body evidence that electronically mediated su-

perconductivity is driven by the vicinity to a magnetic quantum critical point, a phenomenon of

“avoided criticality”, whereby superconductivity in the vicinity of a naked magnetic quantum crit-

ical point[183, 184]. In such systems, the metallic transport properties develop strange metallic

properties that have been termed “non-Fermi liquid behavior”[185, 186]. This raises the important

question, as to what, if any, is the ferroelectric counterpart to this behavior? In particular, how does
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the presence of a soft mode affect the semimetallic properties of a doped quantum critical ferro-

electric, and does a doped ferroelectric quantum critical point also develop superconductivity via

the mechanism of avoided criticality?

We believe that we have only begun to explore the rich physicsassociated with the quantum

ferroelectric critical point, a simple setting for studying many issues associated with quantum criti-

cality that emerge in much more complex materials. Furthermore the possibility of detailed interplay

between theory and experiment is very encouraging.

3.7 Appendix A: D(∆) and A(η)

We derive expressions forD(∆) andA(η) [Eq. (3.98)] using the gap equation Eq. (3.96) deep in

the QPE region (D), whereg >> 0 and∆ >> T ≈ 0. Collecting all “12 ”-terms under integrals of

∆2
γc

and∆2
η in Eq. (3.96), we obtain the expression forD(∆),

D(∆) ≡ 3

2
γc

∫
d3q

(2π)3

(
1

ωp
− 1

q

)

−2η2

∫
d3q

(2π)3
q2

(
1

ωa[ω2
p − ω2

a]
− 1

q3c̃[1 − c̃2]

)

−2η2

∫
d3q

(2π)3
q2

(
1

ωp[ω2
a − ω2

p]
− 1

q3[c̃2 − 1]

)

≡ 3γc

4π2
I1 −

η2

c̃π2
I2 −

η2

π2
I3,

I1 =

∫ qmax

0
dq q2

(

1
√

∆2 + q2
− 1

q

)

,

I2 =

∫ qmax

0
dq q3

(
1

∆2 + q2[1 − c̃2]
− 1

q2[1 − c̃2]

)

,

I3 =

∫ qmax

0
dq q4

(

1
√

∆2 + q2[−∆2 + q2[c̃2 − 1]
− 1

q3[c̃2 − 1]

)

. (3.125)

Notice that lim∆→0D(∆) = 0, since all three integralsI1, I2 and I3 become zero at zero gap.

We split the integralsIi (i = 1,2,3) into two parts,Ii =
∫ n∆
0 +

∫ qmax

n∆ , wheren∆ >> ∆. Since

q >> ∆ in the second integral part, we neglect its∆ dependence and get a zero contribution. Thus,

only the first integral part contributes, andD(∆) becomes a function of∆ only, with no temperature

dependence.
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Next we show that the second Bose-EinsteinnB[ωa(q)] term under the integral of∆2
η in Eq.

(3.96) results in the formA(η) in equation Eq. (3.98),

−4η2

∫
d3q

(2π)3
q2 nB[ωa(q)]

ωa[ω2
p − ω2

a]
= −4η2

∫
d3q

(2π)3
q2 nB [ωa(q)]

c̃q[∆2 + q2(1 − c̃2)]

≈ −4η2

c̃

T 4

∆2

∫
d3u

(2π)3
u nB(c̃u) ≡ −A(η)

T 4

∆2
, (3.126)

whereu = q/T . Notice that we approximate∆2 >> q2(1 − c̃2) in the second line of Eq. (3.126).

For low momenta, this is indeed the case. For large momenta,q >> ∆ >> T ≈ 0, we neglect∆

in Eq. (3.126) and the integral becomes

− 4η2

2π2c̃(1 − c̃2)

∫

dq qnB(c̃q). (3.127)

In the limit q >> T , nB(c̃q) ≈ e−c̃q/T and Eq. (3.127) becomes exponentially small [∼ T 2e−c̃q/T ]

and can be neglected. Similarly, we neglect the rest of the terms in the gap function Eq. (3.96)

with Bose-Einstein thermal distributionnB[ωp(q)]. Deep in the QPE phase∆ >> T , so that

nB[ωp(q)] ≈ e−∆/T at low momenta, ornB[ωp(q)] ≈ e−qlarge/T at large momenta. In both cases

∆, qlarge >> T , the integrals containingnB[ωp(q)] become exponentially small and are negligible.

3.8 Appendix B: Integral Eq. (3.100) is Positive for̃c ≶ 1

We also show that the expression under the integral in Eq. (3.100) is positive for the two cases,

c̃ ≶ 1. First, assuming that̃c < 1, c̃q < q [positiveq’s] andnB(c̃q/T ) > nB(q/T ) we write

{

nB(q/T ) − nB(c̃q/T )

c̃

}
1

c̃2 − 1
>

(

1 − 1

c̃

)

nB(c̃q/T )
1

c̃2 − 1

=
1

c̃(c̃ + 1)
nB(c̃q/T ) ≥ 0, (3.128)

which we note is positive. Similarly, for̃c > 1, c̃q > q, andnB(c̃q/T ) < nB(q/T ), we write

{

nB(q/T ) − nB(c̃q/T )

c̃

}
1

c̃2 − 1
>

(

1 − 1

c̃

)

nB(q/T )
1

c̃2 − 1
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=
1

c̃(c̃ + 1)
nB(q/T ) ≥ 0 (3.129)

which is also positive. Therefore the integral in Eq. (3.100) is positive in both cases.

3.9 Appendix C: α̃ and β̃ are Constants

To evaluate the quantities̃α and β̃ in Eqs. (3.99) and (3.100), we make a change of variables to

u = q/T , andu = c̃q/T , respectively. The expressions for these two constants then become

α̃ =
3

2π2

∫ qmax/T

0
duunB(u) =

1

4
,

β̃ =
2

π2(c̃2 − 1)

[
∫ qmax/T

0
− 1

c̃3

∫ c̃qmax/T

0

]

duunB(u) =
1

3(c̃2 − 1)

(

1 − 1

c̃3

)

,(3.130)

where we have taken the limits of integration to infinity and used the result
∫∞
0 du unB(u) = π2

6 .

3.10 Appendix D: Dipole-Dipole Interactions in Uniaxial Ferroelectrics

The interaction energy between two dipoles~pi and~pj siting on two sites~ri and~rj, respectively, is

Wij(~r) =
~pi · ~pj − 3(~n · ~pi)(~n · ~pj)

4πε0|~r|3
, (3.131)

where~n is a unit vector in the direction of the vector~r ≡ ~rj − ~ri. From Eq. (3.131), we find the

total dipole-dipole interaction potential to be

W (~r) =
1

4πε0

∑

i,j,a,b

pa
i p

b
j

(
δab

r3
− 3rarb

r5

)

, (3.132)

wherer ≡ |~r|, anda, b label vector coordinates. After we perform a Fourier transform, the interac-

tion potential becomes

W (~q) =
1

ε0

∑

a,b

pa
~q pb

−~q

qaqb

q2
, (3.133)
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whereq ≡ |~q| refers to the momentum dependence ofW (~q). Assuming that all dipoles point in the

same (z) direction in the uniaxial case, we find that the dipole potential

W (~q) ∼ q2
z

q2
. (3.134)

W (~q) contributes to Lagrangian Eq. (3.86),LE[P,Φ] → LE[P,Φ]+W , so that the TO polarization

frequency Eq. (3.61) then reads [178]

ω2(q) = c2
sq

2 + ∆2 + β
q2
z

q2
, (3.135)

where we introduce constant of proportionalityβ.

We show that Eqs. (3.122) and (3.123) lead to the conditonk = 2. Let us assume thatk > 1.

Then

q̃2 = q̃x
2 + q̃y

2 + q̃z
2 =

q2
x + q2

y

b2
+

q2
z

(b2)k
≈ q2

b2
,

q̃2
z

q̃2
≈ b2−2k q2

z

q2
. (3.136)

Since we also rescale frequencyω(q) [Eq. (3.122)] by a constant, expressionsq̃2 and q̃z
2

q̃2 are to be

proportional. This leads then to the condition

k = 2. (3.137)
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Chapter 4

Multiferroic BiFeO 3-BiMnO 3 Nanocheckerboard From First

Principles

4.1 Introduction

Artificially structured oxides present intriguing opportunities for material design. With dramatic ad-

vances in epitaxial growth techniques allowing atomic-scale control, experimental and theoretical

attention has focused on strained-layer superlattices [16–18, 20–26]. Properties significantly differ-

ent from those in the bulk have been observed, leading to the possibility of designing new materials

at the nanoscale with enhanced functionalities [187–189].Recently, progress has been reported in

the synthesis of artificially structured oxides with lateral “nanocheckerboard” (or nanopillar) pat-

terning. In particular, the length scale of this checkerboard ordering can be controlled by synthetic

processes and stoichiometry, offering promise for applications such as ultrahigh-density magnetic

recording media [190–195].

One functionality of particular current interest is multiferroicity: the combination of ferromag-

netism and ferroelectricity, with coupling between the spontaneous polarization and the magne-

tization. Room temperature multiferroic materials with high magnetoelectric couplings are de-

sirable, because they can support novel functionalities inelectronic devices [34, 196]. Magne-

tostructural and magnetoelectric couplings have been observed in a number of materials, including

bulk [197, 198] and layered [199] manganites, epitaxial EuTiO3 [200], EuSe/PbSe1−xTex multilay-

ers [201], and SrRuO3/SrTiO3 oxide interfaces [202].

Because of the distinct natures of ferroelectric and ferromagnetic ordering, it has proved dif-

ficult to find a single-phase room temperature multiferroic material with large polarization, large

magnetization, and large magnetoelectric and/or magnetoelectric coupling [36]. Most current mul-

tiferroic devices are based on nanocomposites [37, 196], and advances in the synthesis of artificially
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structured materials further support studies of novel multiferroic heterostructures [51]. Exploring

the coupling of ferroelectric and/or magnetic states to strain has shown to be exceptionally fruit-

ful in many multiferroic nanocomposites [37]. The challenge is to anticipate what new properties

can arise in such heterostructures from combining two distinct materials, and how these properties

depend on the geometry of the combination.

First-principles approaches are ideally suited for meeting this challenge. These methods allow

searching over a variety of compositions, heterostructuregeometries, and structure types to find a

material with the desired properties [203]. With first-principles methods, it is possible also to iden-

tify and characterize low-energy alternative structures;though they are not manifest in the bulk, they

can become physically relevant with changes in the externalparameters and boundary conditions

produced in a nanocomposite.

In this chapter, we use first principles calculations to explore the structure and properties of

a prototypical atomic-scale checkerboard of BiFeO3 and BiMnO3 (Fig 4.1). Ferroelectric anti-

ferromagnetic (AFM) bulk BiFeO3 and half-metallic ferromagnetic (FM) bulk BiMnO3 are good

candidates for a nanocomposite with ferroelectric-ferromagnetic (multiferroic) behavior. The prop-

erties of the atomic-scale checkerboard are found to be directly related to the properties of the bulk

constituents in their ground states and in low-energy alternative structures. The ground state of the

BiFeO3-BiMnO3 atomic-scale checkerboard is multiferroic, i.e. ferroelectric and ferrimagnetic, ac-

quiring the desired properties from the constituents. In addition, we show that the BiFeO3-BiMnO3

atomic scale checkerboard displays a magnetostructural effect, namely, it changes its magnetic or-

dering with the change of its crystal structure. This effectis argued to be inherent to B-site cation

checkerboard geometry, resulting from magnetic frustration for the particular arrangement of cations

and bonds.

The organization of this chapter follows. In Sec. 4.2, we describe the first-principles method

and the structural distortions and magnetic orderings considered. Results for low-energy alternative

structures of bulk BiFeO3 and BiMnO3 are reported in Secs. 4.3 and 4.4, respectively. The ground
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state of the BiFeO3-BiMnO3 atomic-scale checkerboard is shown to be ferroelectric andferrimag-

netic in Sec. 4.5. A simple Heisenberg model is constructured to represent the energies of various

magnetic states of this checkerboard computed from first principles. In Sec. 4.6, the effect of struc-

tural distortions on the magnetic ordering of the nanocheckerboard is explored, and we relate the

properties of alternative low-energy structures of the checkerboard to those of bulk BiFeO3 and

BiMnO3. Anisotropic epitaxial strain is shown to drive a magnetic transition in the atomic-scale

checkerboard in Sec. 4.7. We study the effect of B-site cation arrangement on magnetic properties

of the BiFeO3-BiMnO3 system in Sec. 4.8. The possibility of experimentally realizing a BiFeO3-

BiMnO3 nanocheckerboard is discussed in Sec. 4.9. Conclusions arepresented in Sec. 4.10.

4.2 Method

First-principles calculations are performed using density functional theory within the local spin-

density approximation with Hubbard U (LSDA+U) method as implemented in the Viennaab ini-

tio simulation package VASP-4.6.34 [86, 87]. Projector-augmented wave potentials (PAW) [204,

205] are used with 15 valence electrons for Bi (5d106s26p3), 14 for Fe (3p63d64s2), 13 for Mn

(3p63d54s2), and 6 for O (2s22p4). The robustness of the results is tested with two differentim-

plementations of the rotationally invariant LSDA+U version. The first is due to Liechtenstein [206]

with effective on-site Coulomb interactionUFe = UMn = 5eV and effective on-site exchange inter-

actionJFe = JMn = 1eV . The second is due to Dudarev [207], withU eff
Mn = 5.2eV , U eff

Fe = 4eV ,

whereU eff = U − J . Both implementations treat localizedd electron states in Fe and Mn. It has

previously been shown that theseU andJ values give good agreement with experiment in bulk

BiFeO3 [56]. The valueU eff
Mn = 5.2eV has previously been used for bulk BiMnO3 ground state

calculations [57].

The BiFeO3-BiMnO3 atomic-scale checkerboard is shown in Fig. 4.1. BiFeO3 and BiMnO3

alternate at the atomic level, forming a checkerboard pattern in the xy plane and pillars of the same

composition along z. The supercell is
√

2a ×
√

2a × 2c, containing two Fe and two Mn. In the

limit of the atomic-scale pillars considered here, the checkerboard structure is the same as that of a
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Figure 4.1: (a) BiFeO3-BiMnO3 atomic-scale checkerboard. (b) Top view of the atomic-scale
checkerboard. (c) Perovskite cell. Dashed lines show an oxygen octahedron surrounding the B-
site (Fe, or Mn) cation.

(110)-oriented superlattice.

We consider two additional types of B-site cation-ordered BiFeO3-BiMnO3 systems: a (001)-

oriented layered superlattice, with single unit-cell Fe and Mn layers alternating alongz, and a

rocksalt structure, with Fe and Mn alternating in every other unit cell ((111) superlattice in the

atomic-scale limit considered here). In both cases, the supercell is
√

2a×
√

2a×2c. For consistency,

we take the supercell for bulk BiFeO3 and bulk BiMnO3 calculations to be
√

2a×
√

2a×2c, except

for the R3c structure, where we use a
√

2a ×
√

2a ×
√

2a supercell.

Figure 4.2: Magnetic orderings considered for bulk BiFeO3 and bulk BiMnO3: Symbols for each
type of ordering are introduced next to each label.
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Figure 4.3: Magnetic orderings considered for the BiFeO3-BiMnO3 atomic-scale checkerboard
compatible with the

√
2a ×

√
2a × 2c supercell. Symbols for each type of ordering are introduced

next to each label.

Several types of magnetic orderings are studied here: the G-type (rocksalt), C-type, A-type

AFM, and FM ordering of the local magnetic moments in bulk BiFeO3, or bulk BiMnO3 (see

Fig. 4.2). All orderings considered are collinear; this is supported by recent neutron scattering

measurements on BiFeO3 doped with Mn [208], that indicate collinear AFM ordering.

Magnetic orderings of the BiFeO3-BiMnO3 atomic-scale checkerboard are shown in Fig. 4.3,

where we consider six collinear orderings of Fe and Mn spins.Similarly, six collinear orderings

of the magnetic Fe and Mn spins are explored in the BiFeO3-BiMnO3 (001)-oriented superlattice

and the rocksalt structure. For the (001)-oriented superlattice, these orderings are described by

the notation FeFM (FeAFM), or MnFM (MnAFM), referring to theFM (AFM) ordering for the

Fe (Mn) moments in the relevant layer, respectively, with the remaining ambiguities resolved as

follows: FeAFMMnAFM magnetic order has AFM ordered Fe and Mnlayers with FM order along
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Table 4.1: Resulting space groups for considered structural distortions (see Fig. 1.4). Pm̄3m is the
ideal perovskite structure and P4/mmm is the uniformly strained tetragonal unit cell.

M+
3 (z) R+

4 (y) R+
4 ([111])

and and and
Modes Γ−

4 (z) M+
3 (z) Γ−

4 (z) R+
4 (y) Γ−

4 (y) R+
4 ([111]) Γ−

4 ([111])

Abbrevation Γ−
4 (z) M+

3 (z) MΓ(z) R+
4 (y) RΓ(y) R+

4 (d) RΓ(d)
Space Group P4mm P4/mbm P4bm I4/mcm I4cm R3̄c R3c

the mixed Fe-Mn chains in thez direction, while G-AFM designates the case with AFM order

along the mixed chains; similarly, FeFMMnFM has FM ordered Fe and Mn layers with AFM order,

while FM designates the case with FM order along the mixed chains. For the rocksalt structure, we

consider FM and G-AFM ordering, FeAFMMnFM ordering, referring to FM ordered Mn sublattice

and AFM ordered Fe sublattice; similarly we consider FeFMMnAFM ordering with FM ordered Fe

and AFM ordered Mn sublattices, respectively. Finally, theFMFM ordering has AFM ordered Mn

and Fe sublattices, which are coupled FM in each Fe-Mnz layer, while the AFMAFM ordering has

AFM ordered Mn and Fe sublattices coupled AFM in each Fe-Mnz layer.

Structures generated by three modes of the cubic perovskitestructure are considered (see Fig.

1.4) [42]: (a) the zone center polarΓ−
4 mode, (b) theM+

3 oxygen octahedron rotations (all rotations

about a given axis are in phase), and (c)R+
4 rotations (sense of rotations alternates along the rotation

axis). Space groups corresponding to the structural distortions considered are presented in Table 4.1,

and we use the notation c-, l-, or r- to refer to the structuraldistortion of the B-site cation-ordered

checkerboard, layered superlattice, or rocksalt structure, respectively. To search for the ground

state for a given magnetic ordering and structure type, we perform structural relaxation with the

conjugate gradient algorithm. Both the cell shape and the cell volume are relaxed; more specifically,

the ions are relaxed towards equilibrium positions until the Hellmann-Feynman forces are less than

10−3eV/Å. An energy cutoff550eV for the plane wave basis set is used. Convergence in the energy

is reached with precision10−7eV . A Monkhorst-Pack k-point grid [209] is generated with density

4 × 4 × 4 for the (
√

2 ×
√

2 ×
√

2) supercell, and4 × 4 × 2 for the (
√

2 ×
√

2 × 2) supercell.
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For magnetic energy calculations (Secs. 4.5.2 and 4.8), we use the energy cutoff800eV , and the

Monkhorst-Pack k-point grid with density6×6×4. Gaussian broadening of the partial occupancies

for each wavefunction is0.05eV . A tetrahedron method with Blochl corrections [210] is usedfor

the density of states (DOS) calculations, with the Monkhorst-Pack k-point grid4 × 4 × 4 for the

(
√

2 ×
√

2 ×
√

2) and8 × 8 × 4 for the (
√

2 ×
√

2 × 2) supercell.

The rotational distortion can be quantified using the oxygenoctahedron rotational angleΘ de-

fined specifically for each oxygen in the octahedron as

cosΘ =
~u · ~v
|~u||~v| , (4.1)

where~u is the shortest vector from the rotation axis to the reference position of the oxygen, and~v is

the shortest vector from the rotation axis to the position ofthe oxygen in the distorted structure. The

rotation axis is [001] and [010] for theM+
3 (z) andR+

4 (y) distortions respectively, and the threefold

axis (body diagonal of the cube or distorted cube) for theR+
4 ([111]) distortion. Due to deformation

of the oxygen octahedron in the BiFeO3-BiMnO3 checkerboard structures, these angles may be

different for different oxygens in the same octahedron. We report an average value if the range is

small; otherwise the lower and upper limits of the range are presented.

The polar distortions of the various structures can be quantified by estimating the polarization

based on a linearized expression with nominal charges:

~P =
|e|
Ω

∑

j

qj∆ ~uj, (4.2)

where~P is the polarization,∆ ~uj is the displacement of thejth ion with respect to its ideal perovskite

position,qj is the nominal charge of thejth ion (qBi = +3, qFe = +3, qMn = +3, qO = −2), and

Ω is the unit cell volume.

For selected structures the true value for the spontaneous polarization is computed using the

Berry phase method [39, 40] as implemented in VASP–4.6.34. In this formalism, the polarization

is only well-definedmod e~R/Ω, where~R is any lattice vector andΩ is the primitive-cell volume;
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thus possible values of the polarization are points on the lattice defined by~P0 + e~R/Ω, where ~P0 is

the value directly obtained from the Berry phase calculation. Choosing the lattice point (or branch)

that corresponds to the measured switching polarization (e.g. in an electrical hysteresis loop) is

done by computing the polarization of states closely spacedalong an adiabatic path connecting the

structure of interest to a high-symmetry reference structure. These laborious calculations can be

avoided by an approach based on the reformulation of the polarization in terms of Wannier function

centers [39]; the switching polarization is obtained from the difference between the two symmetry-

related variants by associating the Wannier centers with the same atoms in both structures [211,

212]. Due to incompatibility between the Wannier90 and the VASP codes, we cannot use this latter

approach here; we make the necessary branch choices based oncomputations along adiabatic paths

combined with the nominal-charge polarization estimate.

4.3 BiFeO3 Structures

In agreement with previous first-principles calculations and experiment [56, 208, 213, 214], we find

that the ground state structure of BiFeO3 has rhombohedral R3c symmetry, which is a combination

of the rotationalR+
4 ([111]) mode (counter-rotations of the oxygen octahedra about the [111] axis)

and a polarΓ−
4 ([111]) modes, with Bi, Fe, and O displaced relative to one another along [111]

and further distortion of the oxygen octahedra by displacement of the O displaced perpendicular to

[111]. [42] The oxygen octahedra rotation angle is large, about 14◦, and is comparable to rotations

in other perovskites [215]. The R3c ground state has G-AFM (rocksalt) ordering (see Fig. 4.2),

and Fe local magnetic moment of4µB . [208] The density of states (DOS) is plotted in Fig. 4.4:

it has a2eV band gap that separates occupied and unoccupied Fed states. The polar character of

BiFeO3 arises from the polarΓ−
4 ([111]) mode, and the spontaneous polarization using the Berry

phase method isPR3c = 90µC/cm2 along the [111] direction.

Next alternative structures of BiFeO3 are studied, and we consider those generated by freezing

in linear combinations of the rotationalM+
3 , R+

4 , and polarΓ−
4 modes, and four magnetic orderings

(see Fig. 4.2). Their energies are plotted in Fig. 4.5 (see also Table 4.2). By symmetry, the FM
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Figure 4.4: Density of states (DOS) of the R3c G-AFM ground state (GS) of BiFeO3. Spin up states
are plotted by solid line and spin down states by a dashed line(inverted view). The zero is set to the
valence band maximum. DOS shows an insulating band gap of 2 eV.

ordering has the same energy for theΓ−
4 (z) andΓ−

4 (y) structures; this is also true for the G-AFM

ordering. In contrast, the C-AFM ordering has different energy for theΓ−
4 (z) andΓ−

4 (y) structures;

this is also true for the A-AFM ordering, as the y and z directions for these spin arrangements are

not symmetry-related (see Figs. 4.2 and 4.5).

For all structural distortions considered, the favored magnetic ordering is G-AFM (open circle).

This is consistent with the Goodenough-Kanamori rules: either a strongσ bond is formed between

Feeg and the neighbouring Op orbitals in an ideal180◦ Fe-O-Fe bond (ideal perovskite structure),

or a weakπ bond is formed between Fet2g and Op orbitals when the bond is bent towards90◦ (as

the structure is distorted); in both cases, the AFM superexchange is favored [216–218].
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Figure 4.5: Structural energetics of bulk BiFeO3. Energy difference per Fe for different magnetic
orderings (see Fig. 4.2) and structural distortions (see Fig. 1.4 and Table 4.1) relative to the FM
Pm̄3m structure.

The most favorable low-energy alternative structures and the ground state of BiFeO3 are pre-

sented in Table 4.2. The low-energyΓ−
4 (z) structure, with P4mm symmetry, is the supertetragonal

structure withc/a ∼ 1.3, previously discussed elsewhere [219, 220]. It has been shown recently

that this phase can be stabilized in BiFeO3 thin films [221]. The polarization computed by the Berry

phase method [219] isPP4mm ≈ 150µC/cm2. The nominal-charge estimates are therefore smaller

than the true values for both the P4mm and R3c structures, butthe relative values are well repro-

duced. The polar distortion is dominant in all structures considered; the rotation-only structures are

higher in energy, and the presence of a polar distortion tends to stabilize the rotational instabilities.

For example, theΓ−
4 +M+

3 andΓ−
4 +R+

4 distortions relax back toΓ−
4 with zero oxygen octahedron

rotation angle. The only exception is the R3c structure, in which the rotational and polar distortions

coexist.



119

Table 4.2: GS and low-energy alternative structures of bulkBiFeO3. The energy difference∆E is
given with respect to the FM Pm̄3m structure, as in Fig. 4.5. PolarizationP is estimated from the
nominal charges (Eq. (4.2)). Also included are the band gap∆ and the a and c lattice constants
for the

√
2a ×

√
2a × 2c supercell of P4mm, and the a lattice constant and the angleα for the√

2a ×
√

2a ×
√

2a supercell of R3c.

Space Group P4mm R3c
Modes Γ−

4 (z) R+
4 ([111]), Γ−

4 ([111])

Mag. order G-AFM C-AFM G-AFM
∆E[eV/Fe] -1.09 -1.10 -1.25

∆ [eV] 1.75 2.23 1.99
P[µC/cm2] 113.6 116.2 62.1

a/ c [Å] 3.68/ 4.64 3.67/ 4.68 5.52,α = 59.8◦

4.4 BiMnO3 Structures

Previous first principles calculations show that the groundstate structure of bulk BiMnO3 is mon-

oclinic centrosymmetric C2/c with zero spontaneous polarization [57] and FM ordering [70, 222,

223]. Bismuth (Bi) cations are off-center due to stereochemically active Bi lone pairs, and the

Jahn-Teller activity of Mn3+ further distorts the structure [69]. Optimizing the atomicpositions

and lattice constants, we performed a first-principles calculation for this structure to find an energy

gain of 1.26eV /Mn relative to the the ideal cubic perovskite structure with G-AFM ordering and

a0 = 3.83Å; the latter is used as our reference state throughout this section.

We study low-energy alternative structures of BiMnO3 compatible with a
√

2×
√

2×2 supercell.

Results are presented in Fig. 4.7. The lowest energy structure has R3c symmetry, the same structure

type as the ground state of BiFeO3. It is FM, with magnetic moment3.9µB per Mn. This structure

lies only43meV /Mn above the BiMnO3 monoclinic ground state. The computed DOS is shown in

Fig. 4.6: the system is half-metallic, with a gap of 3.25 eV inthe spin down channel. As an aside,

we note that it might be useful to stabilize BiMnO3 as a half-metal in this low energy structure for

possible applications in spintronics [224].

For all structural distortions considered, the favored magnetic ordering is FM, consistent with

previous analysis that showed that BiMnO3 favors FM structures with a half-metallic character [69,
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Figure 4.6: Density of states (DOS) of the R3c FM alternativestructure of BiMnO3. Spin up states
are plotted by solid line and spin down states by a dashed line(inverted view). Fermi energy is
shown by the vertical dashed line crossing zero. DOS shows a half-metallic character.
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Figure 4.7: Structural energetics of bulk BiMnO3. Energy difference per perovskite cell (Mn) for
different magnetic orderings (see Fig. 4.2) and for structural distortions (see Fig. 1.4 and Table 4.1)
generated by the specified modes.

225]. The ferromagnetism in BiMnO3 can be explained by a combination of Goodenough-Kanamori

rules and orbital ordering [36, 69, 70, 226]. Structural distortions (either oxygen octahedron rota-

tions or polar distortion) widen the spin-down gap (see Table 4.3); a similar trend is observed for

the band gap in BiFeO3 (see Table 4.2). A small band gap opens with a monoclinic distortion in the

FM BiMnO3 ground state [69, 223].

The Jahn-Teller active Mn3+ configuration tends to favor elongation of the oxygen octahedron.

In contrast to BiFeO3, in which the polar instability strongly dominates, the rotational and polar

instabilities in BiMnO3 are comparable in magnitude, as can be seen by comparing the energies of

theΓ−
4 (z), M+

3 (z) andR+
4 (y) states. The latter two states have a small residual polar instability.

A polar distortion along a Cartesian axis lowers the energy of the G-AFM state so that the energy

difference between this state and the FM ground state is greatly reduced; this does not occur if the
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Table 4.3: Low energy alternative structures of FM bulk BiMnO3. The energy difference∆E is
calculated with respect to the G-AFM Pm3̄m structure (as in Fig. 4.7). Listed are values of the spin-
down band gap∆hm in the half-metallic structures or metallic (m) character,the oxygen octahedron
rotational angleΘ (see Sec. 4.2), and thea andc lattice constants of the

√
2 ×

√
2 × 2 supercell.

Space Group P4/mmmm P4bm I4cm R3c
Modes - M+

3 (z), Γ−
4 (z) R+

4 (y), Γ−
4 (y) R+

4 ([111]), Γ−
4 ([111])

∆E [eV/Mn] -0.57 -1.02 -1.03 -1.22
∆hm [eV] m 0.73 2.74 3.25

Θ[◦] - 11.4 12.0 13.3
a/ c [Å] 3.83/ 3.86 3.81/ 4.01 3.81/ 3.83 5.51,α = 60◦

polar distortion is along [111] as in the R3c phase. The octahedral rotation angles in the low-energy

BiMnO3 structures are all similar in magnitude, varying between11− 14◦, with an angle of13◦ for

the FM R3c structure. The value of the octahedral rotation angle in the G-AFM R3c structure,14◦,

is the same as in G-AFM R3c BiFeO3.

4.5 BiFeO3-BiMnO 3 Nanocheckerboard Ground State

4.5.1 Crystal structure, magnetization and polarization

In the search for the ground state of the atomic-scale checkerboard cation ordering, we considered

the six collinear magnetic states of Fig. 4.3 and four different structures: the tetragonal P4/mmm

structure and three additional structures, obtained by freezing in aΓ−
4 (z) mode, a combination of

R+
4 (y) and Γ−

4 (y), and a combination of R+4 (111) andΓ−
4 (111). We designate these latter three

structures by the space group they would have if all B sites were occupied by the same cation, with

the prefix c- to remind us that the actual symmetry is lower dueto the checkerboard ordering: c-

P4mm, c-I4cm, and c-R3c. The GS of the BiFeO3-BiMnO3 nanocheckerboard is found to be c-R3c,

as could be expected based on the R3c GS of bulk BiFeO3, and on our results for bulk BiMnO3. The

magnetic ordering in the c-R3c GS is FeAFMMnFM. Fe magnetic moments are ordered AFM along

the Fe pillars and Mn magnetic moments are ordered FM along the Mn pillars, as expected from

the G-AFM and FM ground states of BiFeO3 and BiMnO3, respectively (see Secs. 4.3 and 4.4).
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AFM and FMxy layers alternate alongz as is sketched in Fig. 4.3. The computed Fe and Mn local

magnetic moments are4.1µB and3.8µB , respectively; these are the same values as those reported

here in the parent compounds BiFeO3 and BiMnO3. Although the contribution from Fe magnetic

moments to the net magnetization cancels due to the AFM pillar ordering, the contribution from Mn

moments adds, leading to a net magnetization of3.8µB per Fe-Mn pair.
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Figure 4.8: Density of states (DOS) of the c-R3c FeAFMMnFM ground state (GS) of BiFeO3-
BiMnO3 nanocheckerboard. Spin up states are shown by a solid line and spin down states by a
dashed line. The zero is set to the valence band maximum. The band gap in the spin-up channel is
0.9 eV.

The DOS of the c-R3c FeAFMMnFM GS is shown in Fig. 4.8. The general features are very

similar to those found in BiFeO3 (Fig. 4.4) and BiMnO3 (Fig. 4.6), the main difference being that

the spin-up Mn states at the Fermi level in BiMnO3 have split to open a gap, with the occupied

states at the top of the valence band narrowing the gap to0.9eV .

Direct calculation of the spontaneous polarization using the Berry phase method for the c-R3c
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Figure 4.9: Spontaneous polarization~P = (Px, Py, Pz) as a function of the structural distortion of
the c-R3c FeAFMMnFM BiFeO3-BiMnO3 nanocheckerboard.100% distortion corresponds to the
c-R3c ground state structure, and0% to the ideal perovskite structure.

GS yields a value of~P = (19.6, −1.1, 30.5) µC/cm2. This is well defined only up to the polar-

ization latticee~R/Ω [39, 40], which in this case is(13.2, 13.1, 0.1)n1 + (−13.2, 13.0, 0.1)n2 +

(0.0, 0.2, 26.6)n3 µC/cm2, where~n is a vector of integers. To determine the branch that cor-

responds to the switching polarization, we compute the polarization along a structural deformation

path that linearly connects the c-R3c GS to the ideal cubic perovskite structure. As shown in Fig. 4.9,

the computation is performed for structures down to 75% of the full distortion (at which point the

structures become metallic) and then linearly extrapolated to 0% using the expression

∆~P100%−0% = 4 × ∆~P100%−75% = (33.8, 33.5, 39.8)µC/cm2 . (4.3)

The magnitude of this estimate,62.0µC/cm2, suggests the branch choice~Pbp = (32.9, 38.0, 30.7)
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Table 4.4: B-site-cation-oxygen-B-site-cation (B-O-B) bonds in the c-R3c ground state (GS) of the
BiFeO3-BiMnO3 nanocheckerboard. B-O and O-B bond lengths and the B-O-B bond angle are
given. Atoms are numbered as in Fig. 4.10. The subscript indicates the cartesian direction along
which the bond lies.

B-O-B bond Notation |B − O| [Å] |O − B| [Å] Angle
(Fe1 − O7 − Fe2)z JFe 1.93 2.08 153.8◦

(Fe2 − O5 − Fe1)z JFe 1.96 2.08 156.8◦

(Mn1 − O8 − Mn2)z JMn 2.10 1.91 153.7◦

(Mn2 − O6 − Mn1)z JMn 1.87 2.18 156.3◦

(Mn1 − O1 − Fe1)x Jα
int 1.92 2.06 166.8◦

(Fe1 − O2 − Mn1)x Jβ
int 1.97 1.97 156.8◦

(Mn1 − O3 − Fe1)y Jα
int 1.95 1.95 165.1◦

(Fe1 − O4 − Mn1)y Jβ
int 2.04 1.91 155.3◦

(Mn2 − O9 − Fe2)x Jβ
int 2.05 2.03 152.0◦

(Fe2 − O10 − Mn2)x Jγ
int 1.94 2.11 143.3◦

(Mn2 − O11 − Fe2)y Jβ
int 2.05 1.95 151.1◦

(Fe2 − O12 − Mn2)y Jγ
int 2.07 1.98 144.1◦

µC/cm2 with magnitude|Pbp| = 58.9µC/cm2. However, we would expect it to be considerably

larger, based on comparison between the Berry phase|P | of bulk BiFeO3 and the|P | computed

using nominal charges (see Sec. 4.3); following this intuition we would make the branch choice

~Pbp = (46.1, 51.3, 57.4) µC/cm2 with magnitude|Pbp| = 89.7µC/cm2. This remaining am-

biguity highlights the challenge of picking the right branch when the polarization is much larger

than the quantum; in either case it is clear that the polarization of the checkerboard is comparable to

the largest values found in ferroelectrics. Thus, we find that the c-R3c GS of the BiFeO3-BiMnO3

nanocheckerboard is multiferroic: ferroelectric, with polarization comparable to the polarization of

bulk BiFeO3, and ferrimagnetic, with magnetization contributed by ferromagnetic ordering in the

BiMnO3 component.

4.5.2 Magnetic Coupling Constants

To gain insight into the magnetic properties of the nanocheckerboard, we model the magnetic or-

dering energies using a nearest-neighbor (nn) Heisenberg model. The nn magnetic couplings arise
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Figure 4.10: Sketch showing the displacements of oxygen atoms in theR+
4 ([111]) mode, which

contributes to the c-R3c ground state (GS) of the BiFeO3-BiMnO3 nanocheckerboard. Two in-
equivalent iron (Fe1 and Fe2) and manganese (Mn1 and Mn2) atoms and twelve oxygens (1 − 12)
comprise the

√
2 ×

√
2 × 2 unit cell. The corners of each cube are occupied by Bi (not shown).

from superexchange through the oxygens that lie on the bondsbetween the B site cations, with

the strength of the superexchange being quite sensitive to the geometry of the B-O-B bond. If the

structure were ideal cubic perovskite, there would be threeindependent couplings, JFe, JMn and

Jint, corresponding to 180◦ Fe-O-Fe, Mn-O-Mn and Fe-O-Mn bonds, respectively. The analysis

of the couplings in the c-R3c structure is based on the geometry of the B-O-B bonds as given in

Table 4.4; the labeling of the bonds and the changes in the bonds due to the R+4 ([111]) mode are

shown in Fig. 4.10. The two Fe-O-Fe bonds are almost identical in bond angle and bond length;

this is also the case for the two Mn-O-Mn bonds. This suggeststhat a single value ofJFe andJMn

can be used for the Fe-O-Fe and Mn-O-Mn interactions, respectively. On the other hand, the mixed

Fe-O-Mn bonds vary in both B-O bond length, from1.91 − 2.11Å, and B-O-B bond angle, from

143.3− 166.8◦. This suggests the use of three different coupling constants Jα
int, Jβ

int or Jγ
int for the
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Table 4.5: Calculated magnetic energies∆E per four-perovskite unit cell (u.c.) in the c-R3c GS
structure of BiFeO3-BiMnO3 nanocheckerboard. The notation for magnetic ordering is that of
Fig. 4.3. The symbolsx, y, a, b, c appearing in the magnetic energy are defined as follows:x =
JFeSFeSFe, y = JMnSMnSMn, a = Jα

intSFeSMn, b = Jβ
intSFeSMn, c = Jγ

intSFeSMn.

Magnetic state Magnetic ordering Heisenberg energy ∆ E Fitted∆ E
[per u.c.] [eV/u.c.] [eV/u.c.]

FeAFMMnFM Fe↑1 Fe↓2 Mn↑
1 Mn↑

2 E0 − 2x + 2y + 2a − 2c 0.000 0.000
FeAFMMnFM Fe↓1 Fe↑2 Mn↑

1 Mn↑
2 E0 − 2x + 2y − 2a + 2c 0.200 0.207

G-AFM Fe↑1 Fe↓2 Mn↓
1 Mn↑

2 E0 − 2x − 2y − 2a − 4b − 2c 0.032 0.026
C-AFM Fe↑1 Fe↑2 Mn↓

1 Mn↓
2 E0 + 2x + 2y − 2a − 4b − 2c 0.143 0.152

FeFMMnAFM Fe↑1 Fe↑2 Mn↓
1 Mn↑

2 E0 + 2x − 2y − 2a + 2c 0.436 0.436
FeFMMnAFM Fe↑1 Fe↑2 Mn↑

1 Mn↓
2 E0 + 2x − 2y + 2a − 2c 0.222 0.229

FeAFMMnAFM Fe↑1 Fe↓2 Mn↑
1 Mn↓

2 E0 − 2x − 2y + 2a + 4b + 2c 0.275 0.284
FM Fe↑1 Fe↑2 Mn↑

1 Mn↑
2 E0 + 2x + 2y + 2a + 4b + 2c 0.416 0.410

Fe-O-Mn interactions based on the typical values of the bondangles, approximately 166◦, 154◦ and

144◦, respectively. Note that the angles of the Fe-O-Mn bonds in the Fe1-Mn1 layer in Fig. 4.10 are

about 166◦ and 154◦, while the angles in the Fe2-Mn2 layer are about 152◦ and 144◦.

The values of these five exchange couplings were determined from first-principles results for the

total energies of various magnetic orderings for the c-R3c GS structure of the nanocheckerboard,

given in Table 4.5. The structure is fixed to that obtained forthe FeAFMMnFM ordering Fe↑1 Fe↓2

Mn↑
1 Mn↑

2. The ordering Fe↓1 Fe↑2 Mn↑
1 Mn↑

2, also described as FeAFMMnFM, is a distinct state

with a different (higher) energy. Similarly, for the FeFMMnAFM ordering, there are two distinct

magnetic states: Fe↑1 Fe↑2 Mn↓
1 Mn↑

2 and Fe↑1 Fe↑2 Mn↑
1 Mn↓

2, with different energies as given in

Table 4.5.

We express the Heisenberg magnetic energy of each magnetic state,

E = E0 +
1

2

∑

ij

JijSiSj, (4.4)

whereSi andSj are the spinsSFe = 5
2 , SMn = 4

2 with coupling constantsJij = JFe, JMn, Jα
int,

Jβ
int, J

γ
int, andE0 is a constant. We extract values of the coupling constants byfitting the Heisenberg
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model energy to the first-principles energies by the least-squares method, obtaining

E0 = 218meV, JFe = 7.1meV, JMn = −3.2meV,

Jα
int = −3.0meV, Jβ

int = 4.3meV, Jγ
int = 7.3meV.

(4.5)

The quality of the fit can be assessed by comparing the first-principles energy to the fitted values in

the fifth column of the table.

The AFM character ofJFe and the FM character ofJMn correspond to that of bulk G-AFM

BiFeO3 and bulk FM BiMnO3, respectively. Their values are comparable to those obtained from

the observed bulk transition temperatures within mean fieldtheory assuming a single J:JFe,bulk ≈

6.3meV andJMn,bulk ≈ −1.5meV , respectively [64, 75–78, 227]. The correspondence is not

exact because of the difference in the bond geometry betweenbulk BiFeO3 and bulk BiMnO3 and

the nanocheckerboard.

In the Fe1-Mn1 layer, the average Fe-Mn interactionJint is very weakly AFM(Jα
int +Jβ

int)/2 &

0, while in the Fe2-Mn2 layer it is strongly AFM(Jβ
int + Jγ

int)/2 > 0. This corresponds to the

preferred FeAFMMnFM ordering Fe↑1 Fe↓2 Mn↑
1 Mn↑

2 and explains the close competition with G-

AFM ordering, in which both layers are AFM ordered (see Fig. 4.3 and Table 4.5). The exchange

coupling betweend5 Fe andd4 Mn takes place via superexchange through the bridging O. For

angles close to 180◦, strongσ bonding favors FM ordering. However, as the Fe-O-Mn angles

deviate from 180◦ through the oxygen octahedron rotational distortion, the admixture ofπ bonding

leads to an increasingly AFM character of the coupling [216–218]. This behavior can be seen in the

dependence of the fitted values forJint on the Fe-O-Mn angle, plotted in Fig. 4.11.

Within this nearest-neighbor Heisenberg model, we explored a wider range of possible magnetic

orderings for the R3c structure nanocheckerboard, in particular, orderings with lower translational

symmetry than those included in the first-principles investigation. The supercells considered in-

cluded2 × 2 × 2 (p = 8 perovskite cells),2 × 2 × 4 and4 × 2 × 2 (p = 16 perovskite unit cells).
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Figure 4.11: Angular dependence of the Fe-Mn magnetic exchange coupling constantJint in the
c-R3c GS structure of the BiFeO3-BiMnO3 nanocheckerboard (blue circles). The black line is a
linear fit. Jint changes sign (AFMJint > 0 to FM Jint < 0) at the bond angle of160◦.

The Heisenberg model energies were computed for all 2p spin configurations in each supercell.

The lowest energy ordering found in this larger set of configurations is still the FeAFMMnFM

ordering, with FM alignment of the Mn and AFM antialignment of the Fe along the Mn and Fe

pillars, respectively, and alternating FM and AFMxy layers as in Fig. 4.3. The lowest-energy

alternative magnetic state is a state in which one Mn per supercell in the FMxy layer flips, at an

energy cost of6.3 meV/supercell. The net magnetization for the resulting state decreases from

MGS = 3.8µB per one Fe-Mn pair top−2
p MGS .

Within a mean field approximation with four effective fields,two for the two Fe atoms and

two for the two Mn atoms in the unit cell of the BiFeO3-BiMnO3 nanocheckerboard, the magnetic

transition temperature of the BiFeO3-BiMnO3 nanocheckerboard isTc = 406K. This tempera-

ture is intermediate between the Neel temperature,T exp
N = 643 K, of bulk BiFeO3 and the Curie

temperature,T exp
c = 105 K, of bulk BiMnO3 [64, 75–78].
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4.6 Alternative Structures of the BiFeO3-BiMnO 3 Nanocheckerboard
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Figure 4.12: Structural energetics of BiFeO3-BiMnO3 nanocheckerboard. Energy difference per
perovskite cell (per B-cation) for different magnetic orderings (see Fig. 4.3) and for structural dis-
tortions (see Fig. 1.4 and Table 4.1). Inset: zoomed view of the magnetic energies for the c-R3c
structure. FeAFMMnFM ordering (filled diamond) competes with G-AFM ordering (open circle)
in the nanocheckerboard alternative structures.

The energies for various magnetic orderings and structuraldistortions of the nanocheckerboard

are shown in in Fig. 4.12. The structural parameters for eachstructure type are relaxed for each

magnetic ordering. The most energetically favorable alternative structures, like the ground state

FeAFMMnFM c-R3c structure, are polar and include oxygen octahedra rotations.

The polar distortion in the alternative structures of the nanocheckerboard is quantified by the

value of the polarization computed using nominal charges (Eq. (4.2)), that can be directly com-

pared with nominal-charge polarizations in the structuresof BiFeO3 (cf. Tables 4.2 and 4.6). As

in BiFeO3, there is a low-lying supertetragonal P4mm phase, withc/a ∼ 1.3 and very large spon-

taneous polarization. For the various structures considered, the polarization tends to decrease as
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Table 4.6: Low energy alternative and ground state (GS) structure of BiFeO3-BiMnO3 nanochecker-
board. Energy difference∆E[eV/B − cation] is calculated for different magnetic orderings with
respect to FeAFMMnAFM P4/mmm structure [as in Fig. 4.12]. Insulating DOS band gap∆ (or
metallicm character), polarizationP estimated from the nominal charges [Eq. (4.2)], the in-plane
a and out-of-planec lattice constants [see perovskite cell in Fig. 4.1], and oxygen-octahedron ro-
tation angleΘ are given for the lowest-energy magnetic ordering corresponding to each structural
distortion.

Space group P4/mmm c-P4mm c-I4cm c-R3c
Modes - Γ−

4 (z) R+
4 ,Γ−

4 (y) R+
4 ,Γ−

4 ([111])

Mag. order FeAFMMnFM G-AFM G-AFM FeAFMMnFM
∆ [eV] m 1.01 1.55 0.90

P [µC/cm2] - 101.9 71.5 57.9
a/ c [Å] 3.81/ 3.88 3.66/ 4.60 5.80/ 3.67 5.50/ 3.93
Θ[◦] - - 4.8 7.2-20.3

∆E (FeAFMMnFM) -0.132 -0.615 -0.767 -0.915
∆E (G-AFM) 0.000 -0.668 -0.813 -0.913
∆E (C-FIM) -0.042 -0.654 -0.774 -0.884

∆E (FeFMMnAFM) -0.054 -0.625 -0.717 -0.865
∆E (FeAFMMnAFM) 0.000 -0.592 -0.721 -0.856

∆E (FM) -0.077 -0.567 -0.661 -0.817

rotational distortion is introduced, with the smallest value found in the c-R3c structure.

In the P4/mmm structure, the nanocheckerboard is metallic,while a band gap opens with ei-

ther polar or rotational distortion. This behavior is similar to that of BiMnO3 and BiFeO3, which

are metallic in the FM Pm̄3m, or P4/mmm structures with a band gap opened and/or widenedby

distortion (in FM BiMnO3, only in the spin-down channel).

As can be seen in Fig. 4.12, the difference in energies between different structure types is gener-

ally much larger than the difference in magnetic energies for a given structure type. The interesting

feature of this figure is that the favored magnetic ordering is different for different structure types,

switching between ferrimagnetic FeAFMMnFM and antiferromagnetic G-AFM. This is in contrast

to the case of bulk BiFeO3 (see Fig. 4.5), or bulk BiMnO3 (see Fig. 4.7), in which the favored

magnetic ordering does not change for different structure types.
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4.7 Magnetic and Structural Transitions Driven by Anisotropic Strain

The sensitivity of the magnetic exchange couplings to the structure should produce changes in the

magnetic ordering energies for perturbations that couple to the crystal structure, such as electric

field, pressure and epitaxial strain. It is even possible that a structural perturbation could drive

the system through a magnetic transition into an alternative low-energy ordering. Furthermore,

the fact that in the nanocheckerboard the favored magnetic ordering is different for different struc-

ture types, discussed in the previous section, suggests that the magnetic ordering of the system

could in principle be changed by a perturbation that changesthe structure type, producing a novel

magnetic-coupling response at the magnetic-structural phase boundary [200, 90]. For example, it

might be possible to drive the nanocheckerboard from its ferrimagnetic FeAFMMnFM c-R3c GS

with a nonzero magnetization to a G-AFM c-I4cm state with zero magnetization.

We have explored this possibility for two types of epitaxialstrain. First, we investigated the

c-R3c phase with an isotropic epitaxial strain, corresponding to an (110) matching plane. Thus, the

second and third lattice vectors of the
√

2a×
√

2a× 2c supercell, along [-110] and along [001], are

constrained to be perpendicular with uniform scaling of thelattice constantsa = (1 + s)a0 andc =

(1+ s)c0, wherea0 = 5.50Å andc0 = 3.93Å are the unstrained lattice constants of FeAFMMnFM

c-R3c GS. In this case, there is no magnetic transition: the system remains FeAFMMnFM from

s = 0% up to strain of10%.

Second, we considered an anisotropic epitaxial strain, corresponding to a (001) matching plane,

such that the lattice constant along [110] is fixed to
√

2 × a0 = 5.52Å, while the lattice constant

a along [-110] is elongated, with strain defined asa−a0
a0

. a0 = 3.9Å is chosen as it is the lattice

constant of an ideal perovskite cell with volume which is theaverage of that of bulk R3c BiFeO3

(VBFO = 59.28Å3/B− cation) and bulk C2/c [71, 72] BiMnO3 (VBMO = 59.41Å3/B− cation).

The anisotropic epitaxial strain dependence of the energies of the c-R3c and c-I4m structures

is presented in Fig. 4.13. At 0% strain, the energy difference between FeAFMMnFM to G-AFM
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Figure 4.13: Epitaxial-strain-driven magnetic transition in BiFeO3-BiMnO3 nanocheckerboard. To-
tal energies of the FeAFMMnFM (solid) and G-AFM (dashed line) magnetic orderings in the c-R3c
structure type (blue) and c-I4cm structure type (red), as a function of anisotropic in-plane tensile
strain (details in the text).

in the c-R3c structure is 5 meV/B-cation; this differs slightly from the value for the relaxed struc-

tures reported in Table 4.6 due to the difference in lattice constants between the epitaxial constrained

structure and the fully relaxed structure (the corresponding energy difference at 0% strain for c-I4cm

is greater because the difference in lattice constants is greater). At 3% strain, there is a magnetic

transition from ferrimagnetic FeAFMMnFM to this low-lyingG-AFM phase, while the structure re-

mains c-R3c. This arises from the modification of the exchange couplings by the structural changes

produced by the changing epitaxial strain.

With a further increase in strain, there is a transition fromc-R3c to a c-I4cm phase at about

4.5%. Since the favored magnetic ordering is G-AFM in both structural phases, no magnetic tran-

sition accompanies the structural transition. However, this result does illustrate the feasibility of a

epitaxial-strain-induced structural transition from onepattern of rotational distortions to another in
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Table 4.7: Calculated total magnetic energies E [eV/B-cation] and energy differences∆E [eV/B-
cation] in an ideal perovskite structure with lattice constant a0 = 3.839Å for various magnetic
states in the checkerboard, rocksalt (oxygens are relaxed to accomodate their preferable positions),
and layered superlattice of BiFeO3-BiMnO3. The checkerboard ordering shows a quasidegenerate
spectrum of magnetic energies, whereas the rocksalt and layered superlattice show larger gaps be-
tween the ground state (GS) and the first alternative magnetic state. Values ofUFe = UMn = 5eV
andJFe = JMn = 1eV are used in the upper, while values ofU eff

Fe = 4eV , U eff
Mn = 5.2eV with

U eff = U − J are used in the lower panel of the table, respectively (see Sec. 4.2).

Checkerboard Rocksalt Superlattice Layered Superlattice
Magnetic State E Magnetic State E Magnetic State E
FeAFMMnFM -35.04 FMFM -35.06 FeAFMMnFM -35.11

∆E ∆E ∆E
FeAFMMnFM 0.000 FMFM 0.000 FeAFMMnFM 0.000

FM 0.022 FeAFMMnFM 0.044 FM 0.111
C-FIM 0.076 FeFMMnAFM 0.045 FeAFMMnAFM 0.135

FeAFMMnAFM 0.081 FM 0.065 FeFMMnFM 0.136
G-AFM 0.114 AFMAFM 0.101 G-AFM 0.181

FeFMMnAFM 0.119 G-AFM 0.114 FeFMMnAFM 0.260

E E E
FeAFMMnFM -34.68 FMFM -34.66 FeAFMMnFM -34.76

∆E ∆E ∆E
FeAFMMnFM 0.000 FMFM 0.000 FeAFMMnFM 0.000

FM 0.028 FM 0.047 FM 0.097
FeAFMMnAFM 0.084 FeFMMnAFM 0.055 FeAFMMnAFM 0.137

C-FIM 0.113 FeAFMMnFM 0.070 FeFMMnFM 0.143
FeFMMnAFM 0.129 G-AFM 0.079 G-AFM 0.219

G-AFM 0.152 AFMAFM 0.084 FeFMMnAFM 0.257

this system; a coupled structural-magnetic phase boundarythus may be brought to light by future

exploration of various epitaxial strain constraints.

4.8 Role of the B-Site Cation Ordering in MagnetostructuralEffect

Quasidegenerate magnetic states in the BiFeO3-BiMnO3 nanocheckerboard are a necessary ingre-

dient for the observed magnetostructural effect (cf. Fig. 4.12 and Table 4.6), where change in the

magnetic ordering is achieved by a perturbation (e.g., epitaxial strain, as in Sec. 4.7]). Here, we

investigate the role of the cation-ordering geometry in determining the spectrum of magnetic states;

in particular, this will show whether the quasidenerature spectrum is unique to the checkerboard
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geometry.

Magnetic energies are computed in the ideal perovskite structure of five systems: the bulk parent

BiFeO3 and BiMnO3, the BiFeO3-BiMnO3 nanocheckerboard, the BiFeO3-BiMnO3 layered (001)

superlattice, and the BiFeO3-BiMnO3 rocksalt structure with Fe and Mn alternating in every other

unit cell ((111) superlattice). The results for the checkerboard, the rocksalt, and the layered super-

lattice are presented in Table 4.7. Bulk BiFeO3 and bulk BiMnO3 exhibit behavior similar to the

(001) layered superlattice [90]. In these three systems, the difference in energy between the mag-

netic ground state (G-AFM in bulk BiFeO3, FM in bulk BiMnO3, and FeAFMMnFM in the (001)

layered superlattice) and the first alternative state is in the range0.10 − 0.14eV/B − cation. This

spectral gap is sufficiently large that structural changes cannot lower the energy of an alternative

state below that of the original magnetic ground state.

Indeed, for all structures considered the lowest magnetic state in bulk BiFeO3 and bulk BiMnO3

is G-AFM and FM, respectively (see Figs. 4.5, 4.7). In the (001) superlattice, we calculate magnetic

energies for the G-AFM and FeAFMMnFM magnetic states in two structural distortions: For l-I4cm

(see Table 4.1), we find∆E = −0.504eV/B − cation for G-AFM and∆E = −0.553eV/B −

cation for FeAFMMnFM with respect to the FeAFMMnFM magnetic state in the ideal perovskite

cell (see Table 4.7). For l-R3c, we find∆E = −0.752eV/B − cation for G-AFM and∆E =

−0.761eV/B − cation for FeAFMMnFM. For both structural distortions considered, the lowest

energy magnetic ordering is FeAFMMnFM.

In contrast, all magnetic states in the nanocheckerboard are quasidegenerate, all are lower in

energy than the lowest-energy states in the (001) superlattice and the bulk. The rocksalt structure is

an intermediate case: while the difference between the FMFMmagnetic ground state and the first

alternative state is0.05eV/B − cation, close to half of the spectral gap of the (001) superlattice

and bulk, all the states considered fall in the same low-energy window as for the checkerboard.

Therefore it is much more likely that a structurally-driventransition between the different magnetic

states could occur in the checkerboard, or in the rocksalt structure, than in the other geometries

studied here.
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The importance of the B-site cation geometry in the magneticordering energy spectrum can be

qualitatively understood from a simple Heisenberg model ofthe form given in Eq. (4.4), where we

assume that the exchange couplingsJFe, JMn andJint are independent of cation geometry, thus

being transferable from one geometry to the other. We can approximately reproduce the magnetic

ordering energies in the ideal perovskite structure of the checkerboard with the Mn-Mn interaction

JMn being strongly FM, the Fe-Fe interactionJFe being AFM and about half the strength, and the

Fe-Mn interactionJint being weakly FM. Assuming the same values in the FeAFMMnFM GSof

the (001) layered superlattice, the high and medium-strength bonds are all satisfied (happy in the

language of frustrated magnetism) and the only unhappy bonds are weak bonds between the Mn and

the opposite spin Fe in the adjacent layer (one bond per B cation). Thus this state is energetically

clearly preferred over other orderings considered, which all involve a significant fraction of unhappy

high and/or medium strength bonds, thus opening the observed gap in the magnetic energy spectrum.

In contrast, in the checkerboard, the total fraction of highand medium-strength bonds is half that

in the layered superlattice, and the alternative states arelow in energy as they involve tradeoffs

between a larger number of happy weak bonds and a smaller number of unhappy medium or high-

strength bonds. Finally, in the rocksalt structure, all thenearest neighbor bonds are weak. This is

consistent with the fact that all orderings considered are at low energies. However, a simple one-

parameter model does not correctly account for the energetic order of the states in this range or the

gap between the ground state ordering and the first alternative state, which would require a model

including next-nearest neighbor interactions.

Indeed, the assumption of exact transferability used aboveis only semi-quantitatively valid. In

particular, changes in B-site cation geometry result in relative energy shifts of the Fe, Mn and O

states and changes in the orbital wavefunctions, and thus inchanges to the wavefunction overlaps

and energy denominators that contribute to superexchange.This leads to different values of the

magnetic couplingsJFe, JMn, or Jint in the various geometries considered (cf. Table 4.7). In

addition, structural distortions modify these magnetic couplings, as would be needed to explain the

difference in the ordering of the magnetic energies in Tables 4.6 and 4.7. However, the simple model
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does serve to give useful insight into this complex issue, and highlights the fact that the magnetic

ordering spectrum is indeed very sensitive to the B-site cation arrangement.

4.9 Discussion

The experimental realization of the BiFeO3-BiMnO3 nanocheckerboard would be challenging as

its formation energy is positive: the combined total energies of R3c G-AFM ground state of bulk

BiFeO3 (E[BFO] = −35.079eV/B − cation) and of the R3c FM lowest energy structure of

bulk BiMnO3 (E[BMO] = −36.676eV/B − cation) are lower than that of the c-R3c FeAFMM-

nFM ground state of the BiFeO3-BiMnO3 nanocheckerboard (E[BFMO] = −71.694eV/2B −

cations). Though the BiFeO3-BiMnO3 nanocheckerboard is at best metastable, there is indica-

tion from experiments that fabrication of the BiFeO3-BiMnO3 nanocheckerboard with square sizes

on the order of a unit cell would not be impossible with appropriate tuning of growth parameters.

Growth of (001) BiMnO3 on BiFeO3 films has recently been reported. In this study post-annealing

led to intermixing of the Fe and Mn, with a concomitant increase in ferromagneticTc [228]. This

experiment provides support for the first-principles observation that magnetic ordering in this sys-

tem is very sensitive to the B-site cation arrangement. Withregard to other film orientations, (110)

and (111) as well as (001) BiFeO3 films have been successfully grown on oriented SrTiO3 sub-

strates [55, 229]. For BiMnO3, (111) and (001) oriented films have been grown with substrate

vicinality [74, 230]. There should be no fundamental obstacle to analgous growth of (110) ori-

ented films of BiMnO3. More generally, a combination of patterned substration, possible masking,

layer-by-layer growth, and carefully tuned growth parameters could influence the deposition process

enough to produce a checkerboard structure of BiFeO3-BiMnO3.

In order to make better contact with future experiment, it isuseful to consider magnetic ordering

of larger-scale n×n BiFeO3-BiMnO3 checkerboards, where the lateral dimension of the BiFeO3 and

BiMnO3 pillars is n perovskite lattice constants. Within each pillar, BiFeO3 and BiMnO3 regions

should be G-AFM and FM respectively, since this ordering is the most energetically favorable in

the parent bulk structures. This is true even in the extreme case of n=1 discussed in Sec. 4.5. The
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magnetic coupling constantsJFe, JMn andJint (Eq. (4.5)), obtained in Sec. 4.5.2 would allow the

construction of Heisenberg models to explore the magnetic ordering of these larger-scale checker-

boards with the ideal perovskite structure, whereJFe andJMn connecting two atoms in the xy

plane can be taken to be equal to the coupling along the pillar, but we have not pursued this farther

here. Generally speaking, we expect that the possibility ofa structurally-driven magnetic transition

should decrease as the lateral size of the BiFeO3 and BiMnO3 pillars increases and the interface

effects (Fe-Mn interactions) become less important.

On a technical note, the robustness of our calculated first-principles results has been checked by

using two different implementations of LSDA+U with different parametrizations to compute mag-

netic ordering energies in the ideal perovskite structure for the checkerboard, the rocksalt cation

ordering, and the layered superlattice (Table VI). The key results are the same for both implementa-

tions: the type of ground state magnetic ordering for each cation arrangement, the quasidegeneracy

of the spectrum of magnetic energies in the checkerboard, the gap in the energy spectrum in the

layered (001) superlattice, and the intermediate character of the rocksalt ordering.

Finally we remark that our first principles calculations do not include spin-orbit coupling (SOC)

that is known to lead to weak ferromagnetism in BiFeO3 [67]. Since the BiFeO3-BiMnO3 nanochecker-

board already has a ferrimagnetic ground state without SOC,inclusion of SOC may result in a

slightly changed value of the total magnetization and to small canting angles of the Fe and Mn

spins; these changes should not fundamentally affect the results presented here. The addition of

SOC to our present calculations is certainly worth pursuingin future work.

4.10 Summary

In this chapter, the structure and properties of an atomic-scale BiFeO3-BiMnO3 checkerboard were

investigated using first-principles calculations and magnetic modeling. This unusual heterostructure

was found to have properties distinct from those of its bulk parent constituents, or those of (001)

superlattices of these two materials. We attribute this behavior to the magnetic frustration resulting

from its B-site cation geometry; this leads to a quasidegenerate manifold of magnetic states that can
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be switched through small applied external perturbations,resulting in an unusual magnetostructural

effect. The possibility of realizing this system in the laboratory was discussed. This study of a two-

component nanocheckerboard should be considered as a proof-of-principle example, and we plan

to study similar geometries on longer length scales to facilitate contact with future experiments.
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Lucia Bodnárová,Anomalous Atomic Dynamics of Crystal Al10V, Diploma thesis, Comenius
University, Bratislava, Slovakia (2004).


