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In general, a warranty is an obligation attached to products that requires the 

manufacturers to provide compensation for customer (buyer) according to the warranty 

terms when the warranted products fail to perform their intended functions [179]. A 

warranty is important to the manufacturer as well as the customer of any commercial 

product since it provides protection to both parties. As for the customer, a warranty 

provides a resource for dealing with items that fail due to the uncertainty of the product's 

performance and unreliable products. For the manufacturer, it provides protection since 

the warranty terms explicitly limit the responsibility of a manufacturer in terms of both 

time and type of product failure. Because of the role of the warranty, manufacturers have 

developed various types of warranty policy to grab the interest of the customers. 

However, manufacturers cannot extend the warranty period without limit and maximize 

warranty benefits because of the cost related to it. 
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Many researchers have investigated on the topic of warranty modeling and policy and 

expanded their studies of warranty in various different conditions, i.e., maintenance 

policies.  

In this dissertation, we focus on the developments of warranty cost models with various 

maintenance policies as well as the warranty policy with post warranty periods for single-

component and multi-component systems including parallel-series, series-parallel and k-

out-of-n systems from the perspectives of consumer and manufacturer, maintenance 

policies and repair policies. First, the role, concept and other factors of the warranty 

policies, are introduced. We conduct the literature review and present the selected 

mathematical background that will be used throughout the dissertation.  

We develop several warranty cost models and derive reliability measures for various 

systems including series-parallel, parallel-series, and k-out-of-n configurations based on 

the proposed alter- and mixed- quasi-renewal processes. We focus on the warranty cost 

analysis including repairable products with a given warranty period using the induction 

method. Additionally, we use the non-homogenous Poisson process and minimal repair to 

develop warranty cost models for the k-out-of-n systems in the warranty period subject to 

failure times and repair times (two dimensional model). We combine maintenance 

policies and several warranty policies such as failure repair/replacement warranty, pro-

rata warranty and combination warranty into the cost analysis. Additionally, we 

investigate the maintenance policies with warranty period and post warranty period based 

on two dimensions such as failure times and repair times. Finally, we present concluding 

remarks and future research topics.  
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Chapter 1  

Introduction  
 

 

As the market becomes competitive and diversified, it is hard for the manufacturers to 

differentiate its product to consumers with only quality and an eye catching design. Also with 

the massive information available to consumers regarding the product manufacturers need to 

find a better way to communicate with its customers to differentiate and to inform its product. 

In order to achieve this goal, many companies promote the warranty policy as an effective 

tool to attract consumers.  

Hyundai Motor Company (HMC) first introduced its new model “Excel” car to the US in 

1986 [179]. The company used low price strategy to penetrate into the competitive market. 

However, company was not as successful as they had hoped since the perception of Hyundai 

car was "affordable but low quality" compared to the same size vehicles of its US and 

Japanese competitors. Trying to overcome this perception, HMC invested heavily into the 

brand, design and quality. Also it launched the 10-year or 100,000 miles warranty program for 

the cars sold in US in 1998 [1, 179]. This warranty policy was non-precedent and was more 

than enough to successfully promote the improvement of its quality to many potential buyers. 

With this program, the company was able to communicate with the consumers more 
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effectively on their commitment to the product and show confidence of the quality of its cars. 

Consequently now the perception from the consumer towards HMC is different from when it 

first entered the market. 

Recently service industry is trying to adopt the warranty system from the manufacturing 

industry, such as computer, automotive manufacture and television set manufacture. For 

example, to deliver better service, a hospital group, Geisinger Health System, in Pennsylvania 

has conducted an experiment in February 2006 for elective heart bypass surgery, the hospital 

charges a flat fee service that includes a warranty of 90 days of follow-up treatment [91, 97]. 

Under this program, after a surgery patients need not pay for any further service such as 

treatment from complications, follow up visits and etc. The hospital normally charges a flat 

fee for the surgery and the 50% of the estimated cost for any potential treatments for the 90 

days during the warranty period using historical data. This implies that any additional cost 

incurred the hospital needs to bear. This system provides hospital with the incentives to 

improve its service to its patients while they are in treatment and take close care for any 

follow up treatments to minimize the future cost. As for the patients, they are receiving better 

quality service from the doctors and hospitals compared with previously where the service 

was focused more on the frequency. As a result, patients have been less likely to return to 

intensive care and have spent fewer days in the hospital before they were discharged. Now the 

hospital is known for its superior service and the follow up treatment resulting from the 

warranty policy.  
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In summary, the warranty policy can be utilized to benefit a company in many ways. The 

above two examples well illustrate its role as a communicational, promotional tool and also 

incentive to improve the quality of the product or service. 

 

1.1. Concept of the Warranty Policy  

Warranty policy is a guarantee or an obligation to repair or replace a defective product or parts 

when the product does not perform its expected function during a given time period. This is a 

contract between the customer and the manufacturer upon the point when the policy is sold.  

Warranty benefits both the consumer and the manufacturer as it is set to protect both parties. 

The consumer is protected as it guarantees a resource to deal with any defects or errors while 

using the product. Similarly, the manufacturer is protected because the warranty terms 

explicitly limit the responsibility in terms of both time and type of product failure. The 

warranty policy is an obligation attached to products that require the manufacturer to provide 

compensation for consumers according to the warranty terms when the warranted products 

fail to perform their intended functions [179].  

As for a manufacturer, with the increase in demand for better quality warranty, it tries to 

develop an appealing policy and strategically use it as a promotional/marketing tool. 

Companies often emphasize on the benefits received under the policy such as details of the 

compensation for the defects, the charge or the period of the warranty. However, given that 

any service under the warranty policy is a potential cost item for a company, drafting a policy 

which is economically optimal so that it minimizes the cost but maximizes the satisfaction of 

the consumer is critical. 
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In summary, the warranty policy concept is to protect both the consumer and the manufacturer. 

The consumer is provided a resource for dealing with items that fail to function properly, i.e., 

unreliable products. Whereas the manufacturer is provided protection because warranty terms 

explicitly limits the responsibility in terms of both time and type of product failure. When 

products are getting more complicated, it would be difficult for customers to make a 

purchasing decision. So, the warranty policy would provide one of the criteria for products’ 

quality and reliability. And the longer warranty period cost more expenses for the sellers. 

When a manufacturer wants to provide better warranty condition than their other competitive 

sellers, they are supposed to provide better quality of products. Otherwise, they couldn’t save 

their warranty cost. Such trade-offs would make the warranty policy be a strong marketing 

tool to increase the sales rate and to advertise the quality of products. 

 

1.2. Warranty Policies    

There are various characteristics which categorize the warranty policy separately. These 

characteristics include the number of warranty dimensions, the renewability of a warranty and 

the warranty compensation methods. You can refer more details to [20, 21].  

 

One and Two Dimensional Policies 

First, consider the number of warranty dimensions. Most warranties in practice are one 

dimensional for which the warranty terms are based on product age or product usage, but not 

both. Compared to one dimensional warranty, two dimensional warranties are more complex 

since the warranty obligation depends on both product age and product usage as well as the 

potential interaction between them. Two dimensional warranties are often seen in automobile 
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industry. As mentioned in section 1.1, HMC is currently offering 10 years with 100,000 miles 

warranty on the power train for most of their new models. Several researchers [20, 95] have 

studied the warranty policy based on the automobile industry’s data.  

 

Renewing Warranty and Non-renewing Warranty 

One of the basic characteristics of warranties is whether they are renewable or not. For a 

regular renewable policy with warranty period, whenever a product fails in the warranty 

period, a customer is compensated according to the terms of the warranty contract and the 

warranty policy is renewed for another period. As a result, a warranty cycle starting from the 

point of sale, ending at the warranty expiration date, is a random variable whose value 

depends on the warranty period, the total number of failures under the warranty and the actual 

failure inter-arrival times. The majority of warranties in the market are non-renewable for 

which the warranty cycle, which is the same as the warranty period, is not random, but pre-

determined since the warranty obligation will be terminated as soon as warranty period unit of 

time passes after the sale. These types of policies are also known as fixed period warranties.  

 

Free Replacement Warranty, Pro-rata Warranty and Combination warranty 

According to the methods of compensation specified in a warranty contract upon premature 

failures, there are three basic types of warranties: free replacement/repair warranty (FRW), 

pro-rata warranty (PRW) and combination warranty (CMW) . Under FRW, a failed item is 

replaced/repaired at no cost to the buyer if the failure occurs in the warranty period. On the 

other hand, under PRW, warranty services are not provided free of charge, but are provided at 

a pro-rated cost with the proration depending on the amount of usage or service time provided 
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by the item prior to its failure [20]. In Chapter 7, alternative PRW is suggested. In the 

alternative PRW, customers will have to pay partial repairing service cost depending on the 

failure time. If the replacement costs are more expensive than the repair costs, manufacturers 

would provide to repair the failed parts/products instead of replacement and vice versa. 

Accordingly, whenever the product is failed, the manufacturers would commonly provide 

repair services than replacement services. So, alternative PRW is more easily applicable than 

original PRW because alternative PRW handles a repair service, not a replacement service. 

Combination warranty contains both features of FRW and PRW, which often contains two 

warranty periods, a free replacement period followed by a pro-rata period. Full-service 

warranty also known as preventive maintenance warranty, is a policy that may be offered for 

expensive deteriorating complex products such as automobiles. Under these type of policies, 

consumers not only receive free repairs upon premature failures, but also free preventive 

maintenance.  

 

1.3. Organization of the Study 

In this dissertation, we study warranty cost analysis and maintenance policies under various 

conditions with factors such as different types of warranty policies from the perspectives of 

consumer and manufacturer, maintenance policies and repair policies. For the cost analysis, 

we obtain the expected warranty cost and develop related cost models. To conduct warranty 

analysis, we also explore the characteristics of the warranty policy. In Chapter 1, we briefly 

discuss the concept of warranty and review the overall information about the warranty policy 

such as warranty’s role, concept, different types and purpose. In Chapter 2, we conduct the 

literature review about the research on warranty and warranty related maintenance. We also 
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briefly discuss basic concepts on counting processes such as renewal process, quasi-renewal 

process, non-homogenous Poisson process, compound and marked Poisson process and 

bivariate exponential distribution that will later be used in this research. For the literature 

review, we will focus on research articles which have been published relatively recently since 

2000 and also briefly review papers that published before the year 2000. The research 

objectives are described and summarized in Chapter 3.  

In Chapter 4, we introduce two altered quasi renewal processes based on the ordinary quasi-

renewal process. The first is called altered quasi-renewal process with random parameter and 

the second is a mixed quasi-renewal process with considerations of replacements and repairs 

strategies. Based on the proposed alter- and mixed- quasi-renewal processes, we develop 

several warranty cost models and also derive reliability measures for various systems 

including series-parallel, parallel-series, and k-out-of-n configurations. The results of this 

study using mixed and altered quasi-renewal processes can be found helpful for practitioners 

to analyze the system warranty cost in practice. 

In Chapter 5, warranty cost models for various systems subject to imperfect repair based on 

the quasi-renewal processes and exponential distribution are developed. This chapter focuses 

on the warranty cost analysis including repairable products with a given warranty period 

considering conditional probabilities and renewal theory.  

In Chapter 6, we develop a modified block replacement model for k-out-of-n systems and 

determine optimum policies of both a threshold level for the number of failed components to 

prevent the system’s failures and the maintenance cycle that minimizes the expected total 

system cost. To overcome the existing block replacement policies’ drawbacks which are 

rather wasteful if a preventive replacement happens just after a failure replacement, in our 
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developed policy, replacement service for a failure is provided when m number of failed 

components occur. We also take into considerations downtime period of each failed 

component using the order statistics for life time and age distributions for k-out-of-n systems. 

In Chapter 7, warranty period and post warranty period are considered. We use non-

homogenous Poisson process (NHPP) and minimal repair to develop warranty cost models for 

k-out-of-n systems in the warranty period subject to one dimension and two dimensions. The 

relationships between current inter-failure interval and the next inter-failure interval are 

investigated. Using the optimized warranty period, we obtain the expected values of nth inter-

failures intervals. For the post warranty period, we obtain total expected cost and total 

expected duration with respect to maintenance policies such as corrective maintenance and 

preventive maintenance. Then, we obtain a long-run expected cost per unit time and determine 

optimum warranty periods and periodical maintenance periods.  

In Chapter 8, we develop a two-dimensional warranty policy with repair times and failure 

times which are statistically correlated in bivariate distributions. Based on our developed 

approaches, we investigate the property of the bivariate renewal function and obtain the 

number of warranty services in a warranty period using the field data.  

Numerical examples are discussed in each Chapter to demonstrate the results and proposed 

models derived for Chapters 4-8. 

The last Chapter, Chapter 9, presents concluding remarks and future research topics. For the 

future research, there are two interesting problems as follows: The warranty cost models can 

be developed considering two maintenance policies such as age replacement policy and block 

replacement policy under different warranty policies in the warranty period and post warranty 
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peirod. The other future research topic is to develop warranty cost models considering the 

non-renewable warranty policies with different lengths of warranty periods. 
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Chapter 2 

Background and Literature Review 
 

 

2.1. Warranty Cost Analysis 

This chapter discusses about the research on warranty policies and related topics that many 

researchers [7, 20, 38-40, 50, 53, 85, 117, 120, 121, 123, 146, 182, 190] have been done in the 

literature by several different categorized groups. General descriptions of various types of 

warranty policies and mathematical models can be found in Blischke and Murthy [20, 21]. 

 

2.1.1. One Dimensional ( = Attribute) Warranty and Two Dimensional Warranty  

One dimensional warranty is characterized by the warranty period, which is defined in terms 

of a single variable. Single variable could be time, age or usage. In the case of two-

dimensional warranties, there are two dimensions to express warranty polices. One is 

representing time and the other representing item usage. As a result, many different types of 

warranties may be defined based on the characteristics of warranty policies [20]. And many 

researchers have studied the cost analysis based on two dimensional warranty [10, 32, 42, 43, 

70, 71, 83, 107, 197]. Yun and Kang [197] examine new warranty servicing strategy, 

considering imperfect repair with a two-dimensional warranty. Baik et al.[10] study two-

dimensional failure modeling for a system where degradation is due to age and usage with 

minimal repair. Most of the products have one of two attributes with some exceptions, for 

example, a vehicle. Several researchers [20, 95] have studies the warranty policy based on the 
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automobile industry’s data. Compared to one-attribute warranties, two-attribute warranties are 

more complex [4-8]. Chun and Tang [44] propose several decision models that estimate the 

expected total cost incurred under various types of two-attribute warranty policies. Kim and 

Rao [85] consider two-attribute warranty policies for non-repairable items and the item 

failures are described in terms of a bivariate exponential distribution. Jiang and Ji [76] study a 

multiple attribute value model based on four attributes such as cost, availability, reliability and 

lifetime. Samatli-Pac and Taner [146] develop and investigate different repair strategies for 

one- and two-dimensional warranties with the objective of minimizing manufacturer’s 

expected warranty cost using QRP. Other researchers [10, 32, 42, 43, 70, 71, 83, 197] have 

also developed warranty models by considering two-dimensional warranty strategies. 

 

2.1.2. Renewing Warranty and Non-renewing Warranty 

Under a renewing warranty, the product which fails during its warranty period is replaced by a 

new one at a cost to the manufacturer or at a pro-rated cost to the user and the warranty is 

renewed. Under a non-renewing warranty, the manufacturer guarantees a satisfactory service 

only during the original warranty period. Renewable warranties are usually given to the non-

repairable and inexpensive products such as home appliances and so on. Compared to the 

renewable warranties, the period of non-renewable warranties is relatively longer. So this 

might be one of possible reasons why such policies are not as popular as non-renewable ones 

for warranty issuers [6]. Jung et al. [81] investigate the optimal replacement policies 

following the expiration of warranty such as renewing warranty and non-renewing warranty. 

Chukova and Hayakawa [38, 39] evaluate the warranty costs over the warranty period under 

non-renewing and renewing warranty policies over the life cycle of the product. Sahin and 
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Polatoglu [144] prove that the cost rate function is psedo-convex under a fixed-maintenance 

period policy under non-renewing and renewing warranty policies. Chen and Chien [30] 

investigate a model to study the effect of PM carried out by the buyer on items sold under a 

renewing FRW.  

 

2.1.3. Warranty Period and Post Warranty Period 

During warranty period, as mentioned above, there are several kinds of warranty polices such 

as FRW, PRW or CMW. However, during post warranty period, customers have to repair or 

replace the failure product at their own expenses. Jung and Park [80] consider two types of 

warranty policies such as renewing warranty and non-renewing warranty with warranty period 

and post warranty period. They derive the expressions for the expected maintenance costs for 

the periodic preventive maintenance during post warranty period. Jung et al.[81] study the 

optimal replacement policies during post warranty period considering the expected downtime 

per unit time and the expected cost rate per unit time. Jung [79] consider the optimal period 

for the periodic PM during the post warranty period which minimize the expected long-run 

maintenance cost per unit time.  

 

2.1.4.   Warranty Reserve 

Warranty reserve is one of important factors which would be considered for the warranty 

policies. Therefore, several researchers [26, 72, 73, 126, 161, 184] have considered the 

warranty reserve for the cost anlaysis. Patankar and Mitra [126] investigate the effect of 

warranty execution on the expected warranty reserves of a linear pro rata rebate plan. Ja et al. 

[72, 73] consider a policy where warranty is not renewed on product failure within the 
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warranty period but the product is minimally repaired by the manufacturer with the warranty 

reserves.  

 

2.2.  Reliability and Warranty 

The relationship between warranty policies and products’ reliability is very closely related. If 

the product’s reliability is good, then the product’s warranty could be extended. Otherwise, 

the product’s warranty should be considered again. However, there are some exceptions. To 

increase a product’s sales, some providers extend the product’s warranty period. They use the 

warranty policy as a marketing tool. The reliability of product is determined by several 

important factors such as product’s design, development, manufacturing stages and so on. It 

depends on the selection of suppliers and their cooperation in quality efforts as well. This 

implies that several important factors must take into account the interaction between warranty 

and reliability. A company either gives a warranty that is far shorter than the expected life of 

their item or increases the cost to a very high level to cover expected warranty costs. 

Therefore, a product’s reliability is one of important measures to investigate the warranty cost 

analysis [106]. In the other hand, Percy [127] presents some new ideas for improving a 

product’s reliability by adopting Bayesian methodology. 

 

2.3.   Maintenance Policies  and Warranty  

Many researchers [30-32, 37, 51, 59, 77, 79, 80, 82, 90, 92, 102, 109, 115, 118, 125, 130, 144, 

145, 160, 168, 170, 173, 174, 176-178, 181, 193] have published studies on maintenance 

polices. Jhang and Sheu [75] derive the expected long-run cost per unit time for each policy. 

Sheu [153] considers a two-typed failures system which is subject to shocks what arrive by a 
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NHPP with the ARP and the BRP. Wang [174] summarizes, classifies and compares various 

existing maintenance policies for both single-unit and multi-unit systems. Pham and Wang 

[129] also summarize various treatment methods and optimal policies on the imperfect 

maintenance. Jung and Park [80] develop the optimal periodic PM policies following the 

expiration of warranty. Garbatov and Soares [59] plan the maintenance from an economic 

point of view so as to minimize maintenance costs but satisfying a minimum reliability level.  

The maintenance objectives are to minimize the maintenance related operating costs, to 

maximize equipment availability and reliability or prolong equipment lifetime [76]. For 

deteriorating complex products, it is essential to perform preventive maintenance to achieve 

satisfactory reliability performance. Maintenance involves planned and unplanned actions 

carried out to retain a system at or restore it to an acceptable operating condition. Planned 

maintenance is usually referred as preventive maintenance while unplanned maintenance is 

labeled as corrective maintenance or repair [179]. Two well-known preventive maintenance 

policies are block replacement policy and age replacement policy. Barlow and Hunter [13] 

suggest these two types of preventive maintenance. Since then, a lot of research have been 

done regarding maintenance polices. Jhang and Sheu [75] derive the expected long-run cost 

per unit time for each policy. Sheu [153] considers a two-typed failures system which is 

subject to shocks what arrive by a NHPP with age and block replacement policy. Wang [174] 

summarized, classified and compared various existing maintenance policies for both single-

unit and multi-unit systems. Also, Pham and Wang [129] summarize various treatment 

methods and optimal policies on the imperfect maintenance. Jung and Park [80] develop the 

optimal periodic preventive maintenance policies following the expiration of warranty. 
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Griffith [151] consider an extended block replacement policy with used items and shock 

models with two types of failures.  

Age replacement policy is useful in maintaining simple equipment. In the other hands, block 

replacement policy is useful in maintaining large and complex equipment. For the age 

replacement policy, between maintenance periods, a failed component/system is replaced at 

the moment. However, in the block replacement policy, between maintenance periods, a failed 

component/system is repaired minimally.  

Cost model [3, 14] 

In a similar way of cost model in age replacement policy, let CPR and CCR stand for preventive 

replacement cost and corrective replacement cost, respectively. Consider a single component 

system. The system is replaced on failure and preventively at times T, 2T, …, etc. Let H(t) 

denotes the mean number of replacements in the interval (0, t) of a unit(system). 

( )( )E T t  is the expected duration and the expected cost rate is given by 

( )+
= PR CRC C H t

Expected cost rate
T

 

Modified cost model 1 [119] 

Park and Yoo [119]  propose the modified block replacement policy where a block 

replacement is performed at failure k, counting after the pre-determined individual failure-

replacement interval (0, ].τ  They called this policy as the block replacement policy based on 

idle count. dC is downtime cost per unit. Additionally, M(t) represents the mean number of 

failures replacements during (0, ]τ and ( ) ( )τiR  is the time-to-failure i from τ for the fleet. 

dC D  is the mean downtime cost per unit. Let ( )G tτ be the cdf of the residual life at .τ  
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Modified cost model 2 [114] 

Nakagawa [114]  propose another modified block replacement policy with an idle period, 

units are replaced at failure until a fixed time T and then follows an idle period d, during 

which failed units are left idle. I(d) is the mean downtime per unit during d. 

( ) ( )
τ

+ +
=

+
PR CR dC C M T C I d

Expected cost rate
d

 

( ) ( )
0

d

Twhere I d G t dt= ∫  

2.3.3. Maintenance Cost Analysis 

Boland and Proschan [24] investigate a model for the minimal repair-periodic replacement 

policy and consider the problem of determining the period which minimizes the total expected 

cost of repair and replacement. Park et al. [118] consider the situation where each PM relieves 

stress temporarily and hence slows the rate of system degradation, while the hazard rate of the 

system remains monotonically increasing. Canfield [27] obtains the cost optimization of the 

PM intervention interval by determining the average cost-rate of system operation. Wang and 

Pham [178] investigate availability, maintenance cost and optimal maintenance polices of the 

series system with n constituting components under the general assumption that each 

component is subject to correlated failure and repair, imperfect repair, shut-off rule and 

arbitrary distributions of times to failure and repair.   
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2.3.4. Maintenance Policies and Warranty 

The maintenance objectives are to minimize the maintenance related operating costs, to 

maximize equipment availability and reliability or prolong equipment lifetime [76]. For 

deteriorating complex products, it is essential to perform preventive maintenance to achieve 

satisfactory reliability performance. Maintenance involves planned and unplanned actions 

carried out to retain a system at or restore it to an acceptable operating condition. Planned 

maintenance is usually referred as preventive maintenance while unplanned maintenance is 

labeled as corrective maintenance or repair [179]. Two well-known preventive maintenance 

policies are block replacement policy and age replacement policy. Barlow and Hunter [13] 

suggest these two types of preventive maintenance. Since then, a lot of research have been 

done regarding maintenance polices. Jhang and Sheu [75] derive the expected long-run cost 

per unit time for each policy. Sheu [153] considers a two-typed failures system which is 

subject to shocks what arrive by a NHPP with age and block replacement policy. Wang [174] 

summarize, classify and compare various existing maintenance policies for both single-unit 

and multi-unit systems. Also, Pham and Wang [129] summarize various treatment methods 

and optimal policies on the imperfect maintenance. Jung and Park [80] develop the optimal 

periodic preventive maintenance policies following the expiration of warranty. Garbatov and 

Soares [59] plan the maintenance from an economic point of view so as to minimize 

maintenance costs but satisfying a minimum reliability level. Also, several researchers [31, 77, 

160] investigate the maintenance policies based on the Bayesian approach. Chen and Popova 

[31] propose two kinds of Bayesian maintenance polices. Additionally, a set of maintenance 

policies which consist of minimal repair and preventive maintenance is analyzed for the case 

of known and unknown failure parameters of the item’s lifetime distribution. Sheu et al.[160] 
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and Juang and Anderson [77] consider a Bayesian theoretic approach to determine an optimal 

adaptive preventive maintenance policy with minimal repair. A Bayesian approach is 

established to formally express and update the uncertain parameters for determining an 

optimal adaptive preventive maintenance policy. Stephens and Crowder [164] analyze the 

discrete time warranty data based on the Markov Chain Monte Carlo (MCMC) model. 

 

2.4 Other Topics 

2.4.1 Burn-in Process and Warranty  

The burn-in process is a part of the production process whereby manufactured products are 

operated for a short period of time before release [128]. Burn-in is used to improve product 

quality pre-sale. Particularly for products with an initially high failure rate sold under 

warranty, burn-in can be used to reduce the warranty cost [155].  Several researchers [29, 34, 

128, 155, 159, 163, 169, 186, 187, 189, 198, 199] have investigated the warranty policy using 

the burn-in process. Wu et al. [186] develop a cost model to determine the optimal burn-in 

time and warranty length for non-repairable products under the fully renewing FRW and PRW 

policy. In Chang’s paper [29], the optimal burn-in decision has to take both the critical time 

and its post-burn-in mean residual life into considerations for improving reliability due to the 

features of unimodal failure rate function and its upside down unimodal mean residual life. 

Rangan and Khajoui [136] construct a new stochastic model which treats burn-in, warranty 

and maintenance strategies together in order to define coordinated strategies for system design 

and management. Wu and Clements-Croome [189] consider a product with a long time 

dormant period and investigate two burn-in policies, which incur different burn-in costs and 

different burn-in effects on the products. Sheu and Chien [155] consider a general repairable 
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product sold under warranty and determine the burn-in time required before the product is put 

on sale. Burn-in time is optimized to minimize the expected total cost under various warranty 

policies. In Yun et al’s papers [198, 199], optimal burn-in time to minimize the total mean 

cost, which is the sum of manufacturing cost with burn-in and cumulative warranty cost, is 

studied under cumulative FRW and PRW .     

 

2.4.2  Software Reliability and Warranty 

On the other hand, based on various software systems, many researchers [51, 55, 132, 133, 

140, 143, 145, 165, 182] have investigated and studied the warranty policy considering 

several factors such as maintenance and upgrade of software models.  Using software 

reliability, Pham and Zhang [132] develop cost models with warranty cost, time to remove 

each error detected in the software system and risk cost due to software failure. Sahin and 

Zahedi [143, 145] present a framework and develop a Markov decision model to analyze 

warranty, maintenance and upgrade decisions for software packages under different market 

conditions. Voas [171] presents several methodologies according to the specific needs of the 

organization requesting assurances about the software’s integrity and the peculiarities of that 

type of software. Williams [182] suggest an approach to calculating the delivery cost of a 

software product when warranty is to be provided with an imperfect debugging phenomenon.  

 

2.4.3 Bayesian Approach and Warranty 

The Bayesian decision method is another approach for the warranty analysis. In this section, 

we investigate many papers [25, 31, 56, 63, 68, 77, 78, 93, 96, 104, 127, 128, 160, 164, 172] 
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which cover the warranty policy and the maintenance policy based the Bayesian decision 

method.  

In order to set up the warranty policy, a policy maker should have some information about a 

product’s failure. For example, there are past failure data, experimental data regarding the 

product’s failure, intuition of the product’s failure. The Bayesian decision approach is a way 

to incorporate this information into the decision making process [31]. Jung and Han [78] 

determine an optimal replacement policy for a repairable system with warranty period based 

on the Bayesian approach in case of renewing FRW and renewing PRW. Huang and Zhuo [67] 

propose a Bayesian decision model for determining the optimal warranty policy for repairable 

products. Fang and Huang [56] present an approach along with Bayesian process to tackle a 

complex decision problem and based on that approach, the optimal prior and posterior 

decisions of pricing scheme, production plan and warranty policy can be determined 

simultaneously. Gutierrez-Pulido et al. [63] provide an approach for the determination of 

warranty length that takes into account the following aspects: choice of a good estimate of the 

failure-time model of the product and the use of a utility function that incorporates different 

considerations of costs, marketing and quality. Chukova et al. [41] design a procedure for 

estimating the degree of repair as well as other modeling parameters by Markov Chain Monte 

Carlo (MCMC) methods.  

Also, several researchers [31, 77, 160] investigate the maintenance policies based on the 

Bayesian approach. Chen and Popova [31] propose two kinds of Bayesian maintenance 

polices. Additionally, a set of maintenance policies which consist of minimal repair and 

preventive maintenance is analyzed for the case of known and unknown failure parameters of 

the item’s lifetime distribution. Sheu et al.[160] and Juang and Anderson [77] consider a 
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Bayesian theoretic approach to determine an optimal adaptive preventive maintenance policy 

with minimal repair. A Bayesian approach is established to formally express and update the 

uncertain parameters for determining an optimal adaptive preventive maintenance policy. 

Stephens and Crowder [164] analyze the discrete time warranty data based on the MCMC 

model. 

 

2.5    Mathematical Background 

In this subsection, we investigate several backgrounds to study warranty analysis 

mathematically. Several processes have been considered to stand for failure intervals. 

Amongst them, two types of stochastic processes, renewal processes and non-homogeneous 

Poisson processes [74, 88, 133, 180] are very useful for warranty cost modeling. We study 

renewal process [89, 142], quasi-renewal process [173, 175] and its extensions and bivariate 

distributions. When Poisson process’ parameter λ  is constant, it is Poisson process. However, 

when the parameter is not constant, it is non-homogenous Poisson process. And there are two 

more applications such as combined Poisson process and marked Poisson process [167].   

 

2.5.1  Renewal Processes [45, 66, 89, 142] 

Consider a counting process for which the times between successive events are independent 

and identically distributed with an arbitrary distribution. Such a counting process is called a 

renewal process. Let ( ){ }, 0N t t ≥ be a counting process and let nX  denote the time between 

the (n-1)st and the nth event of this process, 1.n ≥  If the sequence of nonnegative r.v. 

{ }1 2, ,X X " is independent and identically distributed, then the counting process 
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( ){ }, 0N t t ≥ is said to be a renewal process. The probability theories were used to model the 

failure times for the warranty policy. Assuming that successive failure times form a renewal 

process, Balcer and Sahin [12] derive moments of the total replacement cost for PRW policy 

and FRW policy. Phelps [134] and Balachandran et al. [11] use a Markovian approach for the 

cost analysis under warranty. 

 

2.5.2 Quasi-renewal Processes [40, 120, 122-124, 131, 138, 139, 146, 175] 

Wang and Pham [175] introduce the quasi-renewal processes (QRP). Additionally, Wang and 

Pham [175] propose a quasi renewal process (QRP) which is motivated by imperfect repair 

processes of hardware which are used in many studies [40, 120, 122-124, 131, 138, 139, 146, 

175]. Let nX  be the inter-occurrence time between the (n-1)th and nth events of the process. Let 

( ) ( ) ( ),i i if x F x and h x  be the pdf, cdf, and failure rate of random variable iX , respectively. 

We say ( ){ }, 0N t t >  is a quasi-renewal process (QRP) associated with the distribution F and 

the parameterα , α > 0 a constant, if 1α −= ⋅n
n nX Z , n =1,2,… where nZ s are iid and ~nZ F , 

where ( ){ }, 0N t t >  is a counting process. The pdf, cdf and failure rate, respectively, for n = 

2,3,4,… are given by 
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If we use these two moments, we obtain the variance of N(t). There is another extension of 

QRP, censored QRP. It is similar to truncated QRP but it is slightly different. If there are 

above a certain number of failures, they would be transformed into the last number of failures. 

It means that any observed failure above a certain number, m, are transformed into a single 

value m. Censored QRP’s first moment and second moment are given by 
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2.5.4 Non-homogeneous Poisson Processes [74, 89, 141, 142]   

( ){ }, 0N t t ≥ is said to be a non-homogeneous Poisson process with intensity function ( )tλ  if 

satisfies 

• ( ) 0N t =  

• ( ){ }, 0N t t ≥ has independent increments 

• Pr(exactly 1 event in (t, t+h)) = ( ) ( )t h o hλ +  

• Pr(more than 1 event in (t, t+h)) = ( )o h  

Then  ( )( ) ( ) ( ) ( ) ( )
0

Pr , 0
!

n
tm t m t

N t n e n where m t s ds
n

λ−= = ≥ = ∫  

N(t) has a Poisson distribution with mean m(t) which is the mean value function of the 

process.  

 

2.5.5 Compound Poisson Processes and Marked Poisson Processes [167] 

Both compound Poisson and marked Poisson processes appear often as models of physical 

phenomena. Given a Poisson process ( )N t  of rate 0,λ > suppose that each event has 

associated with it a random variable, possibly representing a value, an interval. The successive 
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values 1 2 3, , ,X X X "  are assumed to be independent random variables. Then, a compound 

Poisson process is the cumulative value process defined by 

( )
( )

1
0

N t

k
k

Z t X for t
=

= ≥∑  

If 0λ > is the rate for the process ( )N t  and ( )1E Xμ = and ( )2
1Var Xσ =  are the common 

mean and variance for 1 2 3, , , ,X X X " then the moments of ( )Z t  can be determined as follows: 

( )( ) ( )( ) ( )2 2;E N t t Var N t tλμ λ σ μ= = +  

A marked Poisson process is the sequence of pairs ( ) ( )1 1 2 2, , , , ,W X W X " 1 2, ,where W W "are 

the waiting times or event times in the Poisson process ( )N t .  

Theorem 2.1 [167] Let ( ) ( )1 1 2 2, , , ,W X W X " be a marked Poisson process where 

1 2 3, , ,X X X " are the waiting times in a Poisson process of rate λ and 1 2 3, , ,X X X " are 

independent identically distributed continuous random variables having probability density 

function ( )f x . Then ( ) ( )1 1 2 2, , , ,W X W X " form a two-dimensional non-homogeneous 

Poisson point process where the mean number of points in a region A is given by 

 

( ) ( )
A

A f x dxdtμ λ= ∫∫  

 

2.5.6 Bivariate Exponential Distribution 

The bivariate distributions have been investigated by many researchers [22, 46, 52, 58, 60-62, 

65, 85, 103, 110-113, 149, 162, 195, 196] for the reliability applications. Specifically, some 

researchers have studied for the cases of bivariate gamma distributions [46, 110, 112, 195], 
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bivariate exponential distributions [22, 23, 52, 61, 65, 85, 97, 113, 117, 149], bivariate logistic 

distributions [28, 62] and others [60, 200].  

Among various bivariate distributions, bivariate exponential distributions (BED) are one of 

the most common distributions applied in reliability engineering. The BEDs have also 

attracted many practical applications in reliability problems. However, unfortunately, there is 

no clear and explicit form for the BED unlike bivariate normal distributions. Therefore, a lot 

of researchers [22, 23, 52, 61, 65, 85, 97, 113, 117, 149] have tried to develop various types of 

BEDs.  
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Chapter 3 

Research Objectives  
 

 

In this dissertation, we study various warranty models with explicit consideration of the 

characteristics of warranty, the system structure, the impact of repairs, and the value of time. 

There are many papers published over the last several decades on warranty and its related 

topics. As a result of Chapter 2, Literature review, we summarize several special areas which 

not many papers have covered and investigated and we want to investigate those areas and list 

the objectives which this dissertation will cover.  

Many researchers investigate the expected warranty cost for warranty cost analysis. While 

expected warranty cost is a good measure on the overall cost of warranty, it provides little 

information of the risk contained in a warranty program. Therefore, it is not sufficient enough 

to express the data using only the expected values. If we obtain the variance of warranty cost 

with the expected value, the result would provide a better accurate cost analysis. The objective 

is to develop warranty cost models for single and multi-component systems including series-

parallel, parallel-series and k-out-of-n systems by calculating the expected value and the 

variance of the warranty cost. 

More specific, in Chapter 4, we introduce the concepts of altered quasi renewal based on the 

ordinary quasi-renewal process. Based on the proposed altered quasi-renewal processes, we 

develop the warranty cost models and also derive reliability measures for various systems 

including series-parallel, parallel-series, and k-out-of-n configurations.  
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In Chapter 5, using altered quasi-renewal process, we develop cost models by obtaining the 

expected warranty cost and variance of warranty cost and determine the distribution of 

number of failures by induction method.  

In Chapter 6, we develop a modified block replacement model for k-out-of-n systems and 

determine optimum policies of both a threshold level for the number of failed components to 

prevent the system’s failures and the maintenance cycle that minimizes the expected total 

system cost.  

In Chapter 7, in the warranty period, we present warranty cost analyses using NHPP, and 

marked Poisson process. In the post warranty period, we consider the maintenance policies 

with preventive maintenance and corrective maintenance. After developing cost models with 

the warranty period and the post warranty period, we obtain the expected values of total cost 

and total duration.  

In Chapter 8, we conduct warranty cost anslysis using the two-dimensional warranty model 

when failure times and repair times are dependent. Field data is considered for real 

applications.  

Concluding remarks are presented in Chapter 9, in which, we summarize the contributions of 

the study, and discuss some future research directions.  
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Chapter 4 

Altered Quasi-renewal Concepts for 
Modeling Renewable Warranty Costs 

with Imperfect Repairs1  
 

 

 
4.1 Introduction 

 
In this chapter, we focus on the analysis of warranty cost and the distribution function of 

number of product failures within a warranty period w. Using the warranty cost model, 

manufacturers can make the appropriate decisions related to the warranty policy.  

In order to set up the warranty policy, a policy maker should have some information about a 

product’s failure. For example, there are past failure data, experimental data regarding the 

product’s failure, intuition of the product’s failure. We investigate several backgrounds to 

study warranty analysis mathematically. Several processes have been considered to stand for 

failure intervals. Amongst them, renewal process is one of frequently used models. You can 

refer renewal process to Section 2.5.1.  

In this chapter, a replacement service is assumed to be possible during the warranty period by 

introducing two alternate quasi renewal concepts based on the QRP. You can refer QRP to 

Section 2.5.2. The first is called an altered QRP. In the QRP model, upon each imperfect 

repair, the time to failure will be reduced to a fraction α of the immediately previous interval 

                                            
1 M. Park and H. Pham, “Altered quasi‐renewal concepts for modeling renewable warranty costs with 
imperfect repairs” Mathematical and Computer Modelling (2010), doi:10.1016/j.mcm.2010.05.028 
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and be dependent of all previous intervals. The altered QRP, however, does not necessarily 

have the same patterns. The second concept is called a mixed QRP considering both repairs 

and replacements subject to imperfect strategies. These strategies would allow an immediate 

replacement in case of a premature or severe failure despite number of failures is less than a 

threshold level within a warranty period. The concept of the above alternative quasi renewal 

models and other important properties will be discussed in Section 4.4.  

Using these two concepts, we develop cost models for multi-component systems. For our 

warranty cost analysis, we obtain a distribution function of the number of failures assuming 

that the policy is renewable. In other words, whenever a product fails within warranty period 

w, the warranty policy is renewed for another period of w if the product is restored after the 

failure. Note that repair and replacement do not happen simultaneously.  

Chapter 4 is organized as follows. In Section 4.2, a literature review is discussed. Section 4.3 

consists of a description of the distribution of number of failures and the explanations of the 

assumptions used in this study. Section 4.4 focuses on two altered QRPs. Section 4.5 derives 

two different approaches for the warranty cost analysis. In Section 4.6, we discuss a real 

application. A numerical example is given in Section 4.7 to illustrate the two concepts with 

different conditions and finally, concluding remarks are discussed in Section 4.8.   

 

4.1.1  Nomenclature 

w : length of a warranty period 

T : r.v. time 

λ  : constant failure rate  

h : an upper limit on the number of repairs under warranty 
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,α β :  parameters for QRP and altered QRP, respectively 

an , bn : the number of repairs and replacements within a warranty period, respectively 

n : the number of system failures within the warranty period, i.e. = +a bn n n  

( ) ( ) ( ), ,a b sN t N t N t : the number of repairs, the number of replacements and the number of 

system failures at r.v. time t, respectively 

iX : the renewal inter-failure time of repairs between the (i-1)th and ith events of the process  

iY : the renewal inter-failure time of replacements between the (i-1)th and ith events of the 

process  

( )sf ⋅ , ( )sF ⋅ , ( )sR ⋅  : pdf, cdf and reliability function of system failure times within a warranty 

period w, respectively  

( )ijf ⋅ , ( )ijF ⋅ , ( )ijR ⋅ : pdf, cdf and reliability function of component j’s failure times after (i-1)th 

repair/replacement within a warranty period w, respectively  

( )isf ⋅ , ( )isF ⋅ , ( )isR ⋅ : pdf, cdf and reliability function of system failure times after (i-1) 

repair/replacement within a warranty period w, respectively  

ac , bc : warranty cost for repairs and replacements within a warranty period w, respectively  

 

4.2 Literature Review 

Recently, Bai and Pham [8] develop the truncated and censored QRPs from the concept of 

QRP and introduce repair-limit risk-free warranty policies where it considers a number of 

system failures within a warranty period, and thereafter the failed product would be replaced 

instead of being repaired. They assumed that only repair service would occur in the upper 

limit of the number of repairs under warranty. Park and Pham [122] develop the warranty cost 
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models, reliability and other measures for k-out-of-n systems using applications of the QRP. 

Rehmert [138, 139] develops expressions for the point availability using the QRP.  Recently, 

Wu and Li [190] elaborate warranty cost models for repairable products with a dormant mode. 

Chukova and Hayakawa [38] conduct a cost analysis for non-renewing warranty with repair 

time. Samatli-Pac and Taner [146] develop and investigate different repair strategies for one- 

and two-dimensional warranties with the objective of minimizing manufacturer’s expected 

warranty cost using the QRP. Zuo et al. [201] study a warranty servicing policy for a class of 

multi-state deteriorating and repairable products using minimal repairs. 

Under a renewing warranty, for the product which fails during its warranty period, it is 

replaced by a new one at a cost borne by the manufacturer or at a pro-rated cost charged to the 

user then the warranty is renewed. Under a non-renewing warranty, the manufacturer 

guarantees a satisfactory service only during the original warranty period. Renewable 

warranties are usually given to non-repairable and inexpensive products. Compared to the 

renewable warranties, the period of non-renewable warranties is relatively longer, which 

provides one possible reason as to why such policies are not as popular as non-renewable ones 

for warranty issuers [6]. Jung et al. [81] investigate the optimal replacement policies 

following the expiration of warranty such as renewing warranty and non-renewing warranty. 

Chukova and Hayakawa [38, 39] evaluate the warranty costs over the warranty period under 

non-renewing and renewing warranty policies over the life cycle of the product. Sahin and 

Polatoglu [144] prove that the cost rate function is pseudo-convex under a fixed-maintenance 

period policy under non-renewing and renewing warranty policies. Chen and Chien [30] 

investigate a model to study the effect of PM carried out by the buyer on items sold under a 

renewing FRW.  
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The impact of a repair service on product reliability is one of the most significant factors in 

warranty cost. One can categorize repairs into three subcategories based on the effort of 

repairs or the condition of repaired items; as-good-as-new repair, minimal repair and 

imperfect repair. As-good-as-new repair assumes that after repair, the restored system 

functions like new such that the failure time distribution is the same as that of a new product. 

Minimal repair, which is also called as-bad-as-old repair, assumes that the failure rate of a 

repaired system equals that of the system just before the most recent failure. Imperfect repair 

refers to the case where a repair action responds to a system neither as-good-as-new nor as-

bad-as-old but to a level in between. Most maintenance and warranty models using renewal 

theory were actually based on as-good-as-new assumption. A few researchers [13-19] 

consider imperfect repair for the warranty cost. Chukova et al. [39] classify the type of repair 

according to the depth of repair. Dimitrov et al. [50] evaluate the expected warranty costs for 

repairable product associated with linear pro-rata, non-renewing free replacement and 

renewing free replacement warranties considering several type of warranty services including 

the imperfect repair. Chukova et al. [41] present an approach to modeling imperfect repairs 

under the warranty policy. Yanez et al. [191] investigate a robust solution to a probabilistic 

model that is applicable to several types of repairs including imperfect repairs. Mettas and 

Zhao [101] explore the general renewal processes to model and analyze complex repairable 

systems with various degrees of repair. Wu and Clements [188] deal with the reliability 

modeling of failure processes for repairable systems where the failure intensity shows a 

bathtub-type non-monotonic behavior.  

Clearly, as-good-as-new repair and as-bad-as-old repair represent two extreme types of repair 

services. So far the studies in warranty literature mostly focus on as-good-as-new repair 
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scenario. It is well-known that after repair the system may not be as-good-as-new in 

maintenance practice. In reality, most repair actions are somewhere between these extremes, 

and we aim to conduct the study based on both imperfect repair and perfect repair. In this 

chapter, we suggest two alternative QRPs for the imperfect repair and through the proposed 

approach, replacement service which is same as perfect repair is considered with the imperfect 

repair, together.  

Throughout the chapter, we consider the expected value and variance of the warranty cost 

together. The expected warranty cost has been mainly investigated for warranty cost analysis. 

While the expected warranty cost is a good measure on the overall cost of warranty, it 

provides little information of the risk contained in a warranty program. Therefore, it is not 

sufficient enough to express the data using only the expected values. The variance and the 

standard deviation provide us a numerical measure of the scatter of a data. These measures are 

useful for making comparisons between data sets that go beyond simple visual appearances. 

While measures of central tendency (i.e. expectation) are used to estimate ‘normal’ values of a 

dataset, measures of dispersion (i.e. variance) are important for describing the spread of the 

data, or its variation around a central value. Two distinct samples may have the same mean or 

median, but completely different levels of variability, or vice versa. A proper description of a 

set of data should include both of these characteristics [71].  

For example, meteorologists often use variance to help classify abnormal climatic conditions. 

They use variance to describe the abnormality of a data value. Because we obtain the variance 

of warranty cost with the expected value, the result provides a more accurate cost analysis. 

We believe the models will help warranty policy makers to make optimal decisions with the 

objective of downsizing manufacturers’ warranty cost.  
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4.3 Model Consideration  

4.3.1 Problem Descriptions 

This chapter presents the warranty model which helps policy makers to have appropriate and 

reasonable decisions related to the warranty policies. Using the proposed approaches, we 

obtain the expected warranty cost and the variance of the warranty cost. Two modified QRPs 

are suggested based on the original QRP. The first one is the altered QRP and the second one 

is the mixed QRP.  

Imperfect repair is a repair service that noticeably improves the performance of the product. It 

can also be defined in terms of the degree to which the operating condition of an item is 

restored through maintenance [101, 177]. In collaboration, It is a maintenance action that 

restores the system operating state to be somewhere between as-good-as-new and as-bad-as-

old. In this chapter, imperfect repairs are considered such that after each repair, the system is 

between the states of new and old, and each repair will be modeled by a QRP. The QRP is 

characterized by a scaling parameter α  that alters the time until next failure after each 

renewal. If 0 1,α< <  then a repair service is imperfect. This parameter indicates the degree 

of the product’s deterioration.  

When we propose the warranty cost models using two alternative QRPs, the following 

assumptions are needed: 

• Repair and replacement do not occur simultaneously.  

• The time for both repair and replacement service are negligible.  

• All warranty claims are valid and executed.  

• Repairs are imperfect and the repair process can be modeled by a QRP. 
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• When the product fails to function, the manufacturer makes a decision between repair 

and replacement based on the failed product’s condition of the product. 

• The time to perform an inspection in which to determine whether the failed component 

needs a repair or a replacement is negligible.  

• The warranty period is renewable. 

 

4.3.2 Renewable Warranty 

The warranty policy can be categorized into renewable warranty or nonrenewable warranty 

based on its renewability. Under the renewable warranty, we investigate the cost analysis with 

a pre-specified warranty period denoted by w. After a repair or replacement, the restored 

system will renew the warranty period again as for the original one due to the renewable 

nature of the warranty. Let warranty cycle T be a time interval starting from the point of sale 

and ending at the point of expiration of the warranty. In case of a non-renewable warranty, a 

warranty cycle T coincides with an original warranty period w. However, for a renewable 

policy, T is a r.v. whose value depends on the extended warranty periods as well as the 

original warranty period. Let ti be the ith failure time. If the ith failure occurs during the 

warranty period, the product would have same length of warranty period from ti. The warranty 

cycle T is composed of the failure intervals and the original warranty period from the last 

failure time under the renewable warranty policy. However, under the non-renewable 

warranty policy, the warranty cycle is same as the original warranty period. In next section, 

using the property of the renewable warranty policy, we obtain the distribution of the number 

of failures with imperfect repairs.   

 

4.3.3 Distribution of N 
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Given N is the number of system failures, we obtain the distribution of N and derive several 

statistical properties of warranty cost function per cycle or per product sold. Let N be the 

number of system failures within a warranty period w. The warranty policy is assumed to be 

renewable after each repair/replacement. This subsection derives the distribution of the 

number of system failures within the warranty period. Under the perfect repair assumption, we 

can obtain the pmf of N  as follows [9]: 

[ ] ( ) ( ) , 1,2,3,= = =⎡ ⎤⎣ ⎦ "
n

s sP N n F w R w for n
 

 
Lemma 1: Under the imperfect repair, every ( )isF w  is different, so the pmf of N is given by 
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4.4 Two Suggestd Quasi-renewal Processes  

In this section, we first present two alternate QRPs: the altered QRP and mixed QRP. The 

altered QRP differs from the original QRP as it is changing parameter in the equation. The 

mixed QRP mixes the repair intervals and the replacement intervals.  

 

4.4.1 Altered Quasi-renewal Process 
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From the original QRP, each inter-failure interval has a common pattern like

2 3 1
2 1 3 1 4 1 1, , , , n

nX X X X X X X Xα α α α −= ⋅ = ⋅ = ⋅ = ⋅" where X1 represents the first failure 

interval. It means that the failure time will be reduced with a fraction α  if α is less than 1. In 

reality, such a specific pattern would be difficult to observe. We now discuss an altered QRP 

that does not need to assume such pattern.  

 

Definition: A counting process ( ){ }, 0N t t >  is said to be the altered QRP associated with 

the distribution F and the random parameter nβ , nβ > 0, a constant, if 1n nX Xβ= ⋅ , n = 2, 

3,… where 1 ~ ,X F  and , where 2,3,n nβ = " are not necessarily equal. Define if and iF  be 

the pdf and cdf of iX . As for altered QRP, the cdf and pdf for n = 2, 3, 4,… are, respectively, 

given by 

( ) ( )1 1
1 1 1,
β β β

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
n n

n n n

F x F x f x f x
                                     (4.4.1) 

Additionally, the component j’s cdfs and pdfs of inter-failure interval i, respectively, for i = 2, 

3, 4,…  are given by 

( ) ( )1 1
1 1 1,
β β β

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ij j ij j

ij ij ij

F x F x f x f x

                                  (4.4.2) 
 

4.4.2 Mixed Quasi-renewal Processes 

Bai and Pham [8] proposed a warranty model addressing the relationships between the 

number of repairs and replacements. Let h be an upper limit of the number of repairs under the 

warranty. Assuming that aN and bN are correlated and ( )cov , 0a bN N ≠  then 

( ) ( ) ( ) ( )0, 0< → = > → =a b b aN w h N w N w N w h
                             

(4.4.3) 
This implies that if there are fewer than h failures, the replacements would not occur, instead, 

only repair services would be provided. If there are h failures, a replacement would occur. In 

other words, if there are more than h system failures within w, the failed product will be 
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replaced instead of being repaired again. As previously mentioned, repair-limit risk-free 

warranty policies of a fixed period w, where a replacement only happens after h failures under 

a warranty period, are suggested. However, in this chapter, we consider that the replacement 

would happen if the system failure is premature and severe because the likelihood of it 

occurring in real life is higher. Therefore, the relation (4.4.3) was altered as (4.4.4) for the 

mixed QRP as follows: 

( ) ( ) ( ) ( )0, 0< → ≥ > → ≤a b b aN w h N w N w N w h
                             

(4.4.4)
 

In this model, even if there are fewer than h failures, the replacement strategies can be happen 

using mixed QRP. In the case of a failure of function of a product, either repair or replacement 

may be provided based on the failure condition, and the manufacturer should select which 

services would be provided. Additionally, in general, the superposition of any two renewal 

processes is not a renewal process. Since we assume that the repairs and replacements would 

not happen simultaneously, they could be the renewal processes.   

 

4.5 System Warranty Cost Analysis  

In this section, warranty cost analyses are conducted by computing the expected warranty cost 

as well as the variance of the warranty. We now discuss the cost analyses considering two 

approaches. The first approach is to use the mixed QRP and conditional probabilities for the 

warranty analysis. Failure time is assumed to follow exponential distribution. The second is to 

use the altered QRP with inter-failure intervals instead of exponential distribution and 

conditional probabilities.  

 

4.5.1 Warranty Cost Modeling using the Mixed QRP 
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Let T be an exponential random variable time having failure rate λ , i.e. T ~ ( )exp λ

independent of renewal process. Then, its memoryless property for the calculation of 

expectation can be applied. Let ( )aN t  and ( )bN t  be the number of repairs and the number of 

replacement at r.v. time t. Denote ac  as the repair cost per failure and bc  the replacement cost 

per unit. Then for the warranty cost per product sold C, the expected value E(C) and variance 

Var(C) of the system warranty cost within a warranty period w can be obtained as follows, 

respectively,
 

( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 2 cov ,

= +

= + +

a a b b

a a b b a b a b

E C c E N t c E N t

Var C c Var N t c Var N t c c N t N t        (4.5.1) 
The expected number of repair services is ( ) .⎡ ⎤⎣ ⎦aE N t  We use the conditional probabilities to 

derive the expected function of the number of repairs given the first failure time, 1X x= .
  

  

( ) ( ) ( ) ( )1 1 1⎡ ⎤= ⎡ = ⎤ = ⎡ = ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ∫a a aE N t E E N t X x E N t X x f x dx

                  

(4.5.2)

                      
We separate two cases such as ≥ <T x and T x . Let T be r.v. time and could be any time 

interval, for example, a warranty period. If the warranty period w (T = w) is less than the first 

repair, then the number of repair services within the warranty period is zero. On the other 

hand, if the warranty period is larger than and equal to the first repair time, then the expected 

number of repair services given that ≥T x , is the expected number of repair services plus one. 

Generally, it would be adding one to the expected number of repair services during (T-x) 

period. Since T is assumed to be exponential distributed and using the memoryless property, 

the distribution of number of repairs during T-x period is the same as the distribution of the 

number of repairs during T period. For interested readers, it is referred to [142]. Therefore, 

( ) 1 , 0aE N t X x T x⎡ = < ⎤ =⎣ ⎦                                                        (4.5.3)
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( ) ( )1 , 1⎡ = ≥ ⎤ = + ⎡ ⎤⎣ ⎦⎣ ⎦a aE N t X x T x E N t
                                   (4.5.4)

 

From eqs. (4.5.3) and (4.5.4) and conditional probabilities, the expected warranty cost is given 

by 

( ) ( ) ( )
( ) ( )
( ) ( )

( )( ) ( )

1 1 1

1 1

1 1

,

,

,

1

⎡ = ⎤ = ⎡ = < ⎤ < =⎣ ⎦ ⎣ ⎦
+ ⎡ = ≥ ⎤ ≥ =⎣ ⎦
= ⎡ = ≥ ⎤ ≥ =⎣ ⎦

= + ≥⎡ ⎤⎣ ⎦

a a

a

a

a

E N t X x E N t X x T x P T x X x

E N t X x T x P T x X x

E N t X x T x P T x X x

E N t P T x
                 

(4.5.5) 

From eqs. (4.5.2) and (4.5.5), we obtain 

( ) ( ) ( ) ( )( ) ( )

( )( ) ( )

1 1 1

1

1

1

λ

λ

−

−

= ⎡ = ⎤ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

= + ⎡ ⎤⎣ ⎦

∫ ∫

∫

x

a a a

x

a

E N t E N t X x f x dx E N t e f x dx

E N t e f x dx
    (4.5.6)

 

After simplifications, we obtain the expected number of repair services as follows: 

( )
( )

( )

1

11

x

a x

e f x dx
E N t

e f x dx

λ

λ

−

−
=⎡ ⎤⎣ ⎦

−

∫

∫                                             (4.5.7)

 

Similarly, let iY  be the inter-failure interval of a replacement service between the ( )1 thi − and 

thi  events of the processes and that under a renewal process, replacement service is the same 

as perfect repair. We then obtain the expected number of replacements. 

( )
( )

( )

1

11

y

b y

e f y dy
E N t

e f y dy

λ

λ

−

−
=⎡ ⎤⎣ ⎦

−

∫

∫                                            (4.5.8)

 

Therefore, the expected warranty system cost is given by 
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( ) ( )( ) ( )( )
( )

( )

( )

( )

1 1

1 11 1

λ λ

λ λ

− −

− −
= + = +

− −

∫ ∫

∫ ∫

x y

a a b b a bx y

e f x dx e f y dy
E C c E N t c E N t c c

e f x dx e f y dy
   

(4.5.9) 

To obtain the variance of the warranty system cost, we first need to calculate the second 

moment. Similarly to the first moment, we consider the first failure during the warranty period. 

We separate the two cases such as ≥ <T x and T x . Then  

( )( ) ( )( ) ( )( )2 2 2
1 1, 0, , 1⎡ ⎤ ⎡ ⎤ ⎡ ⎤= < = = ≥ = +

⎣ ⎦ ⎣ ⎦ ⎣ ⎦a a aE N t X x T x E N t X x T x E N t

        

(4.5.10)

                      
Therefore, 

( )( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )( )( )

2 2
1 1 1

2
1 1

2
1 1

2

2

,

,

,

1

1 2 λ
−

⎡ ⎤ ⎡ ⎤= = = < < =
⎣ ⎦ ⎣ ⎦

⎡ ⎤+ = ≥ ≥ =⎣ ⎦
⎡ ⎤= = ≥ ≥ =
⎣ ⎦
⎡ ⎤= + ≥
⎣ ⎦

= + +

a a

a

a

a

x

a a

E N t X x E N t X x T x P T x X x

E N t X x T x P T x X x

E N t X x T x P T x X x

E N t P T x

E N t E N t e

               (4.5.11) 

Using eqs. (4.5.10) and (4.5.11), we obtain the second moment as follows: 

 

( )( ) ( )( )

( )( ) ( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

2 2
1

2
1 1

2
1

2
1

1 2

1 2

a a

a

x

a a

x

a a

E N t E E N t X x

E N t X x f x dx

E N t E N t e f x dx

E N t E N t e f x dx

λ

λ

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤= =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= =
⎣ ⎦

= + +

= + +

∫

∫

∫                     (4.5.12)

 The second moment is given by 
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( )( ) ( )( )( ) ( )

( )

( )

( )
( )

( )

1
1

112

1 1

1 2
11 2

1 1

λ
λ

λλ

λ λ

−

−

−−

− −

⎛ ⎞
⎜ ⎟
+⎜ ⎟

⎜ ⎟−+ ⎝ ⎠= =
⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∫ ∫
∫∫

∫ ∫

x
x

xx

a
a x x

e f x dx
e f x dx

e f x dxE N t e f x dx
E N t

e f x dx e f x dx

(4.5.13) 

 

Therefore, the variance of the number of repair services is given by 

( )( ) ( )( ) ( )( )

( )

( )
( )

( )

( )

( )

22

1
21

1 1

11

1 2
1

11

a a a

x
x

x x

xx

Var N t E N t E N t

e f x dx
e f x dx

e f x dx e f x dx

e f x dxe f x dx

λ
λ

λ λ

λλ

−

−

− −

−−

⎡ ⎤ ⎡ ⎤= − ⎣ ⎦⎣ ⎦
⎛ ⎞
⎜ ⎟
+⎜ ⎟ ⎛ ⎞⎜ ⎟− ⎜ ⎟⎝ ⎠= − ⎜ ⎟⎛ ⎞ ⎜ ⎟−−⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫
∫ ∫

∫∫
     (4.5.14) 

Similarly, the variance of the number of replacement services is given by 

( )( )

( )

( )
( )

( )

( )

( )

1
21

1 1

11

1 2
1

11

y
y

y y

b yy

e f y dy
e f y dy

e f y dy e f y dy
Var N t

e f y dye f y dy

λ
λ

λ λ

λλ

−

−

− −

−−

⎛ ⎞
⎜ ⎟
+⎜ ⎟ ⎛ ⎞⎜ ⎟− ⎜ ⎟⎝ ⎠= − ⎜ ⎟⎛ ⎞ ⎜ ⎟−−⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫
∫ ∫

∫∫
          (4.5.15)

 

Next, we will derive the covariance of the repair services and the replacement services. The 

covariance of those are given by 

( ) [ ] [ ] [ ],a b a b a bCov N N E N N E N E N= −                                        (4.5.16)
 

Using eq. (4.3.1), we obtain  
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[ ] [ ]

[ ]

( )( ) ( ) ( )( )
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⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑ ∑

∑∑

∑∑ ∏
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h

a b a b a a b b
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h

a b
n n

n nh

a b is n n s
n n i

E N N n n P N n N n

n n P N n

n n F w R w
                       (4.5.17)

 

Therefore, the covariance of the repair services and the replacement services is given by 

( )

( )( ) ( ) ( )( ) ( )

( )

( )

( )

1 1

1
0 0 1

1 1

,

1 1

a b

a b
b a

a b

x y
n nh

a b is n n s x y
n n i

Cov N N

e f x dx e f y dy
n n F w R w

e f x dx e f y dy

λ λ

λ λ

− −
+∞

+ +
− −= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞

= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

∫ ∫∑ ∑ ∏
∫ ∫

(4.5.18) 

                     
From eqs. (4.5.14), (4.5.15) and (4.5.18), the variance of the warranty system cost is given by 

( ) ( ) ( ) ( )

( )

( )

( )
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( )

( )

( )

2 2

1
21

1 12
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∫
(4.5.19) 
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4.5.2 Warranty Cost Modeling using Inter-failure Intervals and Alternative 

QRPs 

The reliability function of the ith inter-failure interval for the system using altered QRP is 

given by  

( ) ( ) ( )

1

1 1

1 11

is is is

s
is is

R w F w f x dx

f x dx
β β

= − = −

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

∫

∫
                                                  (4.5.20)

                      
Therefore, the reliability function of a system with n failures is given by 

( ) ( )( )

( )( )
1

1
2

1 11 1
β β

=

=

=

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏
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n

s is
i

n

s is
i is is

R w R w

f x dx f x dx
                         (4.5.21)

 

For the cost analysis, we now derive the expected warranty cost and the variance of the 

warranty cost. First, using eq. (4.4.1), the pmf of the number of system failures within a 

warranty period is given by 

( ) ( )( ) ( ) ( )( )

( )( )

1
1

1 1
2 ( 1) ( 1)

1 1 1 11

s

n

is n s
i

n

s is s
i is is n s n s

P N n F w R w

f x dx f x dx f x dx
β β β β

+
=

= + +

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞

= − ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∏
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      (4.5.22) 

                      

The expected number of repair warranty services can be obtained as follows: 

( ) ( )( )1 1
1 2 ( 1) ( 1)

1 1 1 11
β β β β

∞

= = + +

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
= ⋅ − ⋅ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∏∫ ∫ ∫

a

a

n

a a s is s
n i is is n s n s

E N n f x dx f x dx f x dx (4.5.23) 

We next derive the variance of the number of repair services. First we calculate the second 

moment. And the variance of the number of repair services is given by 
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(4.5.24)    

Similarly to eq. (4.5.23), we obtain the expected number of replacement warranty services:  

( ) ( )( ) ( )( )
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⎛ ⎞
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∑ ∏ ∫ ∫
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(4.5.25) 

Similarly, the variance of the number of replacement services is given by 
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(4.5.26) 
Let ac  and bc are the repair cost per failure and replacement cost per failure, respectively. As 

for the warranty cost per product sold C, the expected warranty cost is given by 
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(4.5.27)

            

 

From eqs. (4.5.24) and (4.5.26), the variance of warranty system cost can be obtained 
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(4.5.28) 

Similarly, we may develop cost models in case of series, parallel, series-parallel and parallel-

series systems based on the inter-occurrence intervals. The cost analyses for multi-component 

systems are similar to the cost analysis of the system and could be easily obtained using the 

proposed approaches.  

 

4.6 An Industrial Application  

This section shows real-life bench marking examples using the proposed approaches and 

existing data from Samatli-Paç and Taner [146]. They suggest a real life example for their 

warranty cost model using QRP. A leading beverage company runs its own repair facilities for 

the industrial refrigerators used in its retail outlets in Turkey. The company performs three 

different kinds of repairs on failed refrigerators. Type 1 repair is the simplest one which only 

the part causing the failure is repaired depending on whichever is applicable to that specific 

part. Type 2 repair is adding a preventive maintenance service on the most critical part 
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affecting the lifetime after the type 1 repair. Type 3 is an ultimate refurbishment operation in 

which all critical parts are checked or tested and deteriorated parts are cleaned, repaired or 

replaced. The replacement service is not considered in this example.  

Data indicated that repair types have average cost of 10, 28 and 59 YTL (new Turkish Liras). 

Statistical analyses were performed on a particular brand and model of refrigerator with data 

on 2150 refrigerators. Of these, 285 failed at least once during the observation period. The 

maximum likelihood estimation for the repair type 2 of the 285 repaired refrigerators yields 

that the time between the first and second failures is Weibully distributed with the shape 

parameter of 1.02 and the scale parameter of 127.57 and α is 0.91. Similarly, it yields that the 

time until first failure closely follows a Weibull distribution with parameters of (scale, shape) 

= (158.24, 1.68). Time limits of the region within which a repair will be attempted are set in 

view of the distribution that characterizes the time until first failure. In particular, the limits 

are set systematically first at around a conservative value of 5, 7, 9, 10, 15 & 20 years. So we 

obtain expected warranty cost and the variance of the warranty cost based on these different 

years. After the product’s first failure, they provide three different repair services. Table 4.6.1 

summarizes their repair costs, α  values and inter-failure intervals’ shape parameters and scale 

parameters from Samatli-Paç and Taner [146].  

 

Table 4.6.1 Weibull distribution parameters and repair costs  

Inter-failure interval Repair type shape scale α  cost* 
1st  N/A 1.68 158.24 N/A N/A 

2nd 
1 1.55 38.38 0.25 10 
2 1.02 127.57 0.91 28 
3 1.11 140.51 0.98 59 

*new Turkish Liras 
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Using eqs (4.5.27) & (4.5.28) Table 4.6.2 is obtained. It shows the expected warranty cost for 

one product (unit: new Turkish Liras) and the variance of the expected warranty cost under 

the three different repair types for several choices of different warranty periods.  

In Fig. 4.6.1, there is no big difference between three repair types based on expected warranty 

cost and the standard deviation in the earlier warranty period. In Table 4.6.2, if they select the 

repair type 2, it makes smaller expected warranty cost than when we choose other repair types 

although there is no big difference. However, as warranty time goes on, the warranty cost of 

the repair type 2 and 3 are increased higher than the repair type 1. In the later warranty period, 

the repair type 1 is much better than others in terms of the expected warranty cost.  

These real-world benchmarking examples showed how the proposed model can be used for 

the warranty cost analysis. The next section covers for a various choices of parameters in 

terms of several systems for sensitivity analysis.  

 

Table 4.6.2 Warranty cost analysis by different repair types  

Year Repair Type E(C) SD CV 

5 
1 0.08 1.63 20.44 
2 0.04 1.94 48.23 
3 0.05 3.26 60.39 

7 
1 0.32 3.88 12.04 
2 0.19 4.98 26.22 
3 0.27 8.55 32.21 

9 
1 0.79 6.87 8.73 
2 0.60 10.07 16.69 
3 0.87 17.53 20.20 

10 
1 1.09 8.51 7.84 
2 0.98 13.50 13.82 
3 1.42 23.66 16.62 

15 
1 2.49 15.79 6.33 
2 6.14 41.46 6.75 
3 9.43 74.60 7.91 

20 1 2.57 18.51 7.20 
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2 22.16 90.94 4.10 
3 35.46 167.01 4.71 

 

  
Fig. 4.6.1 Warranty cost analysis by different repair 

 

4.7  Numerical Example and Sensitivity Analysis  

In this section, a numerical example is presented using the warranty cost model. We consider 

a system assuming that a system’s failure rate follows Weibull distribution. We investigate the 

warranty cost for the system and select the appropriate warranty service type among several 

different warranty service types based on the result of the warranty cost analysis. In other 

words, the cost analysis results help the policy maker select the appropriate warranty service 

among several choices. The warranty cost analysis is investigated using eqs. (5.27) and (5.28). 

We assume that the failure time of the system follows the Weibull distribution with different 

parameters. The reliability of the product is affected by the parameters of the Weibull 

distribution which is widely used in reliability engineering because other distributions such as 

exponential, Rayleigh, and normal are special cases of the Weibull distribution. It is also 

because its flexibility that allows accurate representation of a variety of lifetime distributions. 
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First, we consider Weibull distribution with shape parameter 1 and scale parameter 0.5. Let iβ  

be ith inter-failure interval’s parameter for the altered QRP. Given h=2, the warranty costs and 

the parameters of the altered QRP are assumed as follows: 

1$20, $30, 0.9, 0.8β β += = = =a b i nc c  

The results of the expected warranty cost, E(C), standard deviation, SD(C), of warranty cost 

and coefficient of variation (CV) are listed in Table 4.7.1. For the sensitivity analysis purpose, 

we include in Table 4.7.1 a 10-warranty period unit which starts at 0.1 and finishes at 1.0 and 

r.v. T would be assumed as the total warranty cycle.   

Table 4.7.1 E(C), SD(C) and CV  

w  ( )E C ( )*SD C *CV ( )* *SD C **CV  
0.1 34.07 10.87 0.32 20.45 0.13 
0.2 38.23 21.89 0.57 40.80 0.17 
0.3 42.39 31.47 0.74 59.55 0.18 
0.4 46.45 39.75 0.86 75.42 0.19 
0.5 50.33 46.85 0.93 87.54 0.19 
0.6 53.95 52.88 0.98 95.51 0.18 
0.7 57.26 57.97 1.01 99.46 0.17 
0.8 60.21 62.24 1.03 99.88 0.17 
0.9 62.78 65.82 1.05 97.53 0.16 
1 64.96 68.81 1.06 93.25 0.15 

*  : Repair and replacement are independent. 
**  : Repair and replacement are dependent. 

 

 
Fig. 4.7.1 E(C), SD(C) and CV  
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In Table 4.7.1, we separate the cases repair and replacement are independent and dependent. 

In both cases, the expected warranty cost increases as warranty time increases. When a repair 

and a replacement service are independent, it means that there is no covariance between repair 

and replacement. It is worth noting that the standard deviation of warranty cost is larger when 

repair and replacement are dependent than when repair and replacement are independent. In 

Fig. 4.7.1, when repair and replacement are independent, it can be seen that both the 

expectation and the standard deviation of warranty cost functions increase monotonically over 

w. We can observe that standard deviation is larger than the expected warranty cost as the 

warranty period goes on. The coefficient of variation (CV) is the ratio of the standard 

deviation to the mean and describes the magnitude sample values and the variation within 

them. When the warranty time progresses, the CV is decreasing. It indicates smaller variations. 

When the manufacturers have to make very important decisions for the company’s revenue, 

they can use the proposed models to make important decisions. If we assume that there are 

several different warranty services, then one warranty service type should be taken among 

them. The first and the second inter-failure interval’s parameters for the altered QRP are 1β

and 2 ,β respectively. In Table 4.7.2, the parameters of the first inter-failure rate for the altered 

QRP are changed as 0.6, 0.7 and 0.8 with other conditions which shown in the first row. 

Similarly, in Table 4.7.3, the parameters of the second inter-failure rate for the altered QRP 

are changed as 0.5, 0.6, 0.7, 0.8 and 0.9 with other parameter conditions for the sensitivity 

analysis. The scale parameters of the Weibull distribution for first inter-failure rate are 

changed as 5, 10, 15, 20 and 25 in Table 4.7.4. In Table 4.7.5, the warranty repair costs of the 

failure are changed as $10, $20, $30, $40 and $50 with other parameters. Finally, in Table 

4.7.6, the warranty replacement costs of the failure are changed as $20, $30, $40, $50 and $60. 
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For simplicity, we consider the first failure and the second failure only. For Tables 4.7.2-4.7.6, 

we obtain the expected warranty cost, the variance of the warranty cost and the coefficient of 

variation based on different conditions.      

           

Table 4.7.2 warranty cost analysis with different parameters for the first inter-failure interval 
 

  2β =0.6, c1=$20, c2=$30, 2, 1i ikλ = =  

  Type1: 1β =0.6 Type2: 1β =0.7 Type3: 1β =0.8 
w E(C) SD CV E(C) SD CV E(C) SD CV 

0.1 34.13 13.79 0.40 34.10 12.58 0.37 34.08 11.57 0.34 
0.2 38.43 26.56 0.69 38.34 24.50 0.64 38.27 22.80 0.60 
0.3 42.80 37.21 0.87 42.59 34.52 0.81 42.44 32.28 0.76 
0.4 47.08 45.96 0.98 46.73 42.84 0.92 46.49 40.21 0.87 
0.5 51.15 53.04 1.04 50.66 49.67 0.98 50.32 46.77 0.93 
0.6 54.89 58.68 1.07 54.29 55.18 1.02 53.85 52.14 0.97 
0.7 58.25 63.10 1.08 57.54 59.59 1.04 57.02 56.47 0.99 
0.8 61.15 66.54 1.09 60.37 63.07 1.04 59.79 59.93 1.00 
0.9 63.60 69.20 1.09 62.77 65.79 1.05 62.15 62.67 1.01 
1 65.59 71.23 1.09 64.75 67.89 1.05 64.11 64.81 1.01 

 

Table 4.7.3 warranty cost analysis with different parameters for the second inter-failure 
interval 

 
  1β =0.9, c1=$20, c2=$30, 2, 1i ikλ = =   

  Type1: 2β =0.5 Type2: 2β =0.6 Type3: 2β =0.7 Type4: 2β =0.8 Type5: 2β =0.9 
w E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV

0.1 34.07 10.60 0.31 34.07 10.72 0.31 34.07 10.81 0.32 34.07 10.87 0.32 34.07 10.92 0.32
0.2 38.20 20.93 0.55 38.21 21.35 0.56 38.22 21.66 0.57 38.23 21.89 0.57 38.24 22.07 0.58
0.3 42.28 29.51 0.70 42.32 30.37 0.72 42.36 30.99 0.73 42.39 31.47 0.74 42.41 31.84 0.75
0.4 46.20 36.56 0.79 46.30 37.95 0.82 46.38 38.97 0.84 46.45 39.75 0.86 46.50 40.36 0.87
0.5 49.87 42.27 0.85 50.06 44.27 0.88 50.20 45.73 0.91 50.33 46.85 0.93 50.43 47.73 0.95
0.6 53.22 46.83 0.88 53.51 49.47 0.92 53.75 51.40 0.96 53.95 52.88 0.98 54.11 54.05 1.00
0.7 56.21 50.42 0.90 56.62 53.70 0.95 56.96 56.12 0.99 57.26 57.97 1.01 57.51 59.42 1.03
0.8 58.81 53.17 0.90 59.34 57.12 0.96 59.81 60.03 1.00 60.21 62.24 1.03 60.56 63.97 1.06
0.9 61.01 55.22 0.91 61.67 59.85 0.97 62.26 63.24 1.02 62.78 65.82 1.05 63.24 67.82 1.07
1 62.82 56.69 0.90 63.61 61.99 0.97 64.32 65.88 1.02 64.96 68.81 1.06 65.54 71.07 1.08

 

Table 4.7.4 warranty cost analysis with different scale parameters 
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  1β =0.9, 2β =0.6, c1=$20, c2=$30, , ,k kλ= = =1 2 21 2 1  

  Type1: 1λ =5 Type2: 1λ =10 Type3: 1λ =15 Type4: 1λ =20 Type5: 1λ =25 
w E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV

0.1 31.64 7.14 0.23 30.82 5.13 0.17 30.55 4.21 0.14 30.41 3.66 0.12 30.33 3.28 0.11
0.2 33.36 14.72 0.44 31.69 10.71 0.34 31.13 8.82 0.28 30.85 7.68 0.25 30.68 6.89 0.22
0.3 35.15 21.72 0.62 32.61 15.98 0.49 31.75 13.22 0.42 31.31 11.53 0.37 31.05 10.35 0.33
0.4 37.01 28.16 0.76 33.58 20.98 0.62 32.40 17.43 0.54 31.81 15.23 0.48 31.45 13.69 0.44
0.5 38.93 34.08 0.88 34.61 25.72 0.74 33.10 21.46 0.65 32.34 18.79 0.58 31.88 16.91 0.53
0.6 40.90 39.50 0.97 35.69 30.19 0.85 33.85 25.30 0.75 32.91 22.20 0.67 32.33 20.01 0.62
0.7 42.89 44.43 1.04 36.83 34.42 0.93 34.64 28.98 0.84 33.52 25.48 0.76 32.83 23.00 0.70
0.8 44.90 48.90 1.09 38.03 38.39 1.01 35.49 32.48 0.92 34.17 28.63 0.84 33.36 25.88 0.78
0.9 46.90 52.92 1.13 39.28 42.12 1.07 36.39 35.81 0.98 34.87 31.65 0.91 33.94 28.66 0.84
1 48.88 56.51 1.16 40.58 45.60 1.12 37.35 38.97 1.04 35.63 34.54 0.97 34.56 31.33 0.91

 

Table 4.7.5 warranty cost analysis with different repair costs 

  1β =0.9, 2β =0.6, c2=$60, 1 1 2 22, 1, 2, 1λ λ= = = =k k  

  Type1: 1c =10 Type2: 1c =20 Type3: 1c =30 Type4: 1c =40 Type5: 1c =50 
w E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV

0.1 66.52 9.53 0.14 67.06 14.23 0.21 67.60 18.04 0.27 68.14 21.44 0.31 68.68 24.60 0.36
0.2 72.99 19.75 0.27 74.13 29.04 0.39 75.28 36.35 0.48 76.43 42.71 0.56 77.57 48.49 0.63
0.3 79.26 28.26 0.36 81.05 41.51 0.51 82.85 51.83 0.63 84.65 60.74 0.72 86.44 68.78 0.80
0.4 85.20 35.31 0.41 87.67 51.94 0.59 90.14 64.83 0.72 92.60 75.91 0.82 95.07 85.87 0.90
0.5 90.71 41.09 0.45 93.84 60.59 0.65 96.98 75.64 0.78 100.11 88.53 0.88 103.24 100.11 0.97
0.6 95.68 45.78 0.48 99.46 67.69 0.68 103.24 84.53 0.82 107.02 98.93 0.92 110.80 111.84 1.01
0.7 100.07 49.55 0.50 104.46 73.45 0.70 108.85 91.77 0.84 113.24 107.41 0.95 117.63 121.41 1.03
0.8 103.82 52.56 0.51 108.78 78.09 0.72 113.73 97.61 0.86 118.69 114.25 0.96 123.64 129.12 1.04
0.9 106.94 54.96 0.51 112.41 81.79 0.73 117.88 102.27 0.87 123.34 119.70 0.97 128.81 135.26 1.05
1 109.44 56.85 0.52 115.36 84.71 0.73 121.29 105.93 0.87 127.22 123.98 0.97 133.15 140.08 1.05

 

Table 4.7.6 warranty cost analysis with different replacement costs 

  1β =0.9, 2β =0.6, c1=$20, 1 1 2 22, 1, 2, 1λ λ= = = =k k  

  Type1: 2c =20 Type2: 2c =30 Type3: 2c =40 Type4: 2c =50 Type5: 2c =60 
w E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV E(C) SD CV

0.1 23.07 9.20 0.40 34.07 10.72 0.31 45.07 12.02 0.27 56.06 13.18 0.24 67.06 14.23 0.21
0.2 26.24 17.96 0.68 38.21 21.35 0.56 50.19 24.23 0.48 62.16 26.77 0.43 74.13 29.04 0.39
0.3 29.41 25.41 0.86 42.32 30.37 0.72 55.23 34.55 0.63 68.14 38.22 0.56 81.05 41.51 0.51
0.4 32.51 31.69 0.97 46.30 37.95 0.82 60.09 43.22 0.72 73.88 47.83 0.65 87.67 51.94 0.59
0.5 35.46 36.93 1.04 50.06 44.27 0.88 64.65 50.43 0.78 79.25 55.80 0.70 93.84 60.59 0.65
0.6 38.19 41.24 1.08 53.51 49.47 0.92 68.83 56.35 0.82 84.15 62.35 0.74 99.46 67.69 0.68
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0.7 40.67 44.76 1.10 56.62 53.70 0.95 72.56 61.18 0.84 88.51 67.67 0.76 104.46 73.45 0.70
0.8 42.86 47.59 1.11 59.34 57.12 0.96 75.82 65.07 0.86 92.30 71.97 0.78 108.78 78.09 0.72
0.9 44.76 49.85 1.11 61.67 59.85 0.97 78.58 68.18 0.87 95.50 75.39 0.79 112.41 81.79 0.73
1 46.36 51.61 1.11 63.61 61.99 0.97 80.86 70.62 0.87 98.11 78.09 0.80 115.36 84.71 0.73
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Fig. 4.7.2 warranty cost analysis with different parameters 
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failure will happen faster. In Table 4.7.4, as the scale parameter increases, the expected 

warranty cost and the standard deviation decrease. For Table 4.7.5, as the repair cost increases, 

the expected warranty cost and standard deviation increase. Based on the tables, we find that the 

warranty cost is easily affected by replacement cost and repair cost among many other factors. 

Also, as the replacement cost per service increases, the expected warranty cost and standard 

deviation increase too. 

 

4.8 Concluding Remarks  

In this chapter, we introduced two alternative quasi-renewal processes. They are: altered 

quasi-renewal and mixed quasi-renewal processes. These processes can be found in many 

practical applications such as the one described in Section 4.6. We obtained the expected 

value of warranty cost, covariance of warranty cost and variance of warranty cost for the 

warranted product. We presented sensitivity analysis and numerical examples. Based on this 

study, we believe that these mixed and altered quasi-renewal processes are useful for warranty 

cost analysis. The results of reliability and warranty cost functions can be easily applied and 

would be helpful for marketing purpose.   
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Chapter 5 
 

Warranty Cost Analyses using Induction 
Method with Imperfect Repair2 

 

 

5.1  Introduction 

 

Given that the warranty is a post sale service, potential expenses could occur for manufacturer. 

This potential cost is difficult to estimate and is known to be a significant portion of the total 

cost. Therefore, the warranty cost could be a serious negative factor which affects the 

company’s profit. Many companies use the warranty policy to increase their sales but also try 

to minimize the related cost. For example, if a warranty period is scheduled too long without 

considering the qualities of products, then it increases the risk of potential costs for the 

manufacturers. The range of warranty cost analysis would not only need to consider the 

characteristics of warranty policies and replacement/repair cost but also the distribution of the 

number of product failures.  

Using a renewal process with an imperfect repair, Wang and Pham [175] introduce quasi 

renewal process (QRP) and apply QRP for software engineering successfully [131]. After the 

QRP was introduced by Wang and Pham [175], several researchers [40, 120, 122-124, 131, 

                                            
2 M. Park and H. Pham, “Warranty cost analyses using quasi‐renewal processes for multi‐component 
systems” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans (Accepted 
for Publication)  
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138, 139, 146, 175] have applied the QRP for their research topics. Rehmert [138, 139] 

develops expressions for the point availability using the QRP.  

This chapter focuses on the cost analysis for the repairable models with a fixed warranty 

period, which the warranty policy starts from the original date of purchase and is effective 

until the warranty ends. Using the QRP, we consider the imperfect repair for the multi-

component system as well as the single component system to develop the warranty cost model. 

Using the property of exponential distribution which is frequently used for the modeling, we 

propose new approach for the warranty cost analysis. The proposed approach is expected to be 

beneficial to the manufacturer to estimate the warranty cost accurately.  

For many cases, repairable warranty policies have fixed warranty periods. It is common to 

find the products which have fixed warranty periods, for example, vehicles and electronic 

appliances such as laptops, desktop, DVD, HDTV and etc. This seems more realistic and 

applicable to our daily life. Cost analysis is conducted mainly using the QRP and exponential 

distribution to obtain the mean and variance. Exponential distribution has several properties 

that are useful, such as memoryless property. Further, property that the summation of 

exponential distributions follows gamma distribution was also used, however, there is a 

limitation for this property, it is valid when every parameters of exponential distributions are 

equal.  

The outline of the chapter is as follows. Section 5.1 explains nomenclature. In Section 5.2, we 

describe the problem and several assumptions. Section 5.3 focuses on the distribution of the 

number of components’ failures based on the QRP. Section 5.4 presents cost analysis using 

single component system and multi component systems such as series, parallel and parallel-

series. In Section 5.5, we discuss the implications of both research and practice. Several 
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numerical examples and sensitivity analyses are given in Section 5.6 to illustrate the 

methodologies derived in this chapter for single component system and four-component 

parallel-series system, concluding remarks are discussed in Section 5.7.  

 

5.1.1  Nomenclature 

( ) ( ) ( ),i i if x F x and h x : probability density function (pdf), cumulative distribution function 

(cdf), and failure rate of random variable iX , respectively 

( ) ( ),F R⋅ ⋅ : r.v. inter-failure time’s cdf, reliability function, respectively 

( ) ( ),j jF R⋅ ⋅ : cdf and reliability function of jth component’s r.v. inter-failure time, 

respectively  

( ) ( ),s sF R⋅ ⋅ : cdf and reliability function of system’s r.v. inter-failure time, respectively 

:w  prefixed warranty period 

:N  number of  component’s failures in the warranty period w  

:sN  number of  system’s failures in the warranty period w  

( ) :N t  number of component’s failures by time t  

:C  system’s warranty cost in warranty period w  

:c  warranty cost per one system failure in the warranty period w  

nS  : arrival time of nth renewal 

 

5.2  Problem Description 

We consider the following assumptions in this study:   
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• The inter-occurrence failure intervals follow exponential distribution  

• The Repair time is negligible 

• The failed products are repairable  

• Inter-occurrence failure intervals are independent to each other, and 

• The review time which examines whether the failed components need the repair 

services, is negligible.  

With respect to warranty cost analysis, we consider imperfect repairs based on a QRP. When a 

repair is imperfect, the inter-failure intervals are specified by a parameter α  that alters the 

random variables corresponding to time until next failures after each renewal. In other words, 

this parameter indicates the degree of repair. For example, if the parameter is less than 1, it 

indicates imperfect repair. If it is greater than 1, it indicates an improvement after repair.  

 
5.3  Distribution of N 

In this section, we first present the definition of QRP which introduced by Wang & Pham 

[175]. The impact of a repair service on product reliability is one of the most significant 

factors in warranty cost. One can divide repairs into three categories based on the effort of 

repairs or the condition of repaired items; as good as new repair, minimal repair and imperfect 

repair.  

 As good as new repair - assumes that after repair the restored system functions 

like new such that the failure time distribution is the same as that of a new product.  

 Minimal repair (also called as bad as old repair) - assumes that the failure rate of a 

repaired system equals that of the system just before the most recent failure.  

 Imperfect repair - refers to the situation where a repair action responds to a system 

neither as good as new nor as bad as old but to a level in between.   
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Most maintenance models using renewal theory were actually based on ‘as good as new’. 

However, it is well-known that the imperfect repair is more common in real life compared to 

‘as good as new’ repair. Wang and Pham [175] develop the QRP to model failure times when 

the repair is imperfect. You can refer QRP to section 2.5.2. 

 

5.3.1 Repairable Warranty Policy with Fixed Warranty Period  

According to the type of compensation upon products’ failures, there are three basic types of 

warranties such as FRW, PRW and CMW. We would normally purchase products with fixed 

warranty period, for examples, like electronic appliances, vehicles and etc. And if a system 

fails during the warranty period, products would be repaired. If we pay more money for longer 

warranty period, then warranty period can be extended. The pdf of inter-failure interval is 

following exponential distribution, i.e. ( ) ( )~ expif x λ . Then we conduct the cost analysis 

using QRP and exponential distribution for repairable warranty policy with fixed warranty 

period w. To derive the statistical properties of warranty cost per cycle or per product sold, it 

is necessary to obtain the distribution of ,N  the number of failures within w. We present 

repairable warranty polices with a warranty period and distribution of the number of system 

failures. Using this distribution of the number of component failures, the expected warranty 

system cost and the variance of the warranty system cost is obtained in the next section.  

 

5.3.2  Distribution of N  

It is clearly known that the ( )N t  of “renewals” that has occurred up to time t  and the arrival 

time of the nth renewal, nS , have the following relationship: 

( ) nN t n S t≥ ↔ ≤                                                             (5.3.2) 
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( )N t  is at least n if and only if the thn  renewal occurs prior to or at time t  [142]. We assume 

that there are n system failures in the warranty period. iX  is the inter-arrival interval and i.i.d. 

r.v. from exponential distribution. If there are n  failures and fixed warranty period ,w  then 

the sum of inter-arrival interval by n  is less or equal to w  and the sum of inter-arrival 

interval by 1n+  is larger than .w  That is, 

1 2

1 2 1

n

n

X X X w
X X X w+

+ + + ≤

+ + + >

"
"                                                    (5.3.3)

 

 

 
 

Figure 5.3.1 Warranty model with fixed warranty period w  and n  failures 
 

If nY denotes 
1

,
=

=∑
n

n i
i

Y X
 
then  

1

n

n n

Y w
Y X w+

≤

+ >                                                             (5.3.4)
 

Using these two equations, we obtain the distribution of number of failures based on QRP and 

exponential distribution. A well-known characteristic of the exponential distribution is that if 

each r.v. iX  follows ( )Exp λ  then the sum of n  functions, nY  follows the gamma distribution,

( ),Gamma n λ . That is, 

( )
( )

~ ,

~ ,

λ

λ
i

n

X Exp

Y Gamma n                                                           (5.3.5) 

Using the renewal processes, the corresponding pdfs are given by 

w

t

X1 X2 X3 X4 Xn Xn+1…
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It is noted that the above results do not apply the QRP. Then, the pdf of the number of 

component’s failures is given by 
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The expected number of failures can be obtained as follow: 
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1

1

1
!

n

n w

n

E N nP N n

wn e
n

w

λ

λ

λ

∞

=

⎛ ⎞∞ −⎜ ⎟
⎝ ⎠

=

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

∑

∑

                                            

(5.3.8)

     

 

Next we will derive the variance of the number of failures. First we calculate the second 

moment.  
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n                                             (5.3.9)

 
Therefore, the variance of the number of failures is  
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If a repair service is imperfect and the inter-occurrence interval follows QRP, the pdf of the nth 

inter-occurrence interval can be written as; 

( ) 11 1

1 1
n n nf x f x

α α− −

⎛ ⎞= ⎜ ⎟
⎝ ⎠                                                    (5.3.11) 

Then for the ( )1 thn +  function, ( )
1

,
nXf x
+

 we assume that each function follows exponential 

distribution with parameter λ.  We obtain 

( )
1
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1
1 1 1 1 n
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X n n nf x f x e λ α

λα α α+
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(5.3.12) 

Every exponential parameter for each interval is not same when the QRP are used. When 

parameter λ  is different, ( )
nYf y  could be obtained by using the method of induction. We 

begin with the case 2n =  assuming 1 2X and X  are independent.  

( ) ( ) ( )
1 2 1 2

1 2
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We can rewrite eq. (5.3.13) as follows: 

( ) 2 1

1 2

1 1
1 2

2 1

1 2 2 1
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X Xf y e eλ λλ λ
λ λ

λ λ λ λ

− −

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
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Similarly, in the case of 3,n =  
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In general, the pdf of the thn  terms can be obtained using the method of induction [142]:  

( )
1

1

1

1
1

1 1
i

n

n y
j

X X
i j ii

j i

f y e λ λ
λ

λ λ

−

+ +
= ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑ ∏"

                                               (5.3.16) 

Also we can obtain the following 
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Let inC  be 

1

1 1
j

j i

j i

λ

λ λ
≠ −
∏  with n failures. The probability mass function (pmf) of the number of 

failures is as follows: 
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5.4  Warranty Cost Analysis 

 

In this section, warranty cost analyses are conducted by computing the expected warranty cost 

as well as the variance of the warranty. We also obtain reliability functions and derive several 

statistical properties of warranty cost function per cycle or per product sold.    

5.4.1  Single Component System 

The goal of cost analysis is to obtain the expected value of warranty cost and the variance of 

warranty cost. If the inter-occurrence intervals follow the regular renewal processes, then the 

expected warranty cost and the variance of warranty cost are, respectively, given by 

( ) ( ) wE C cE N c
λ

= =
                                                             (5.4.1) 



72 
 

 
 

( ) ( ) ( )

2
2 2

1 1 !

nw

n

n w wVar C c Var N c e
n

λ

λ λ

⎛ ⎞ ∞−⎜ ⎟
⎝ ⎠

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

                           (5.4.2)
 

If they follow the QRP, then the expected number of failures and variance of the number of 

failures are: 
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and
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(5.4.5) 

Therefore, the expected warranty system cost is 
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The variance of the warranty system cost is given by 
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(5.4.7) 

5.4.2  Multi-component System 

In this subsection, we derive the distribution, the first and second moments of the warranty 

cost and analyze the warranty cost by computing the expected warranty cost as well as the 
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variance of the warranty for multi-component systems such as series, parallel and parallel-

series based on QRP and exponential distribution.  

 

Series system  

For the engine of a car to run we need several different parts to operate in sequence. If any of 

the parts in the sequence fails to operate we will not be able to start the engine. As such in 

general, a series system functions successfully only when all the components in the system 

properly functions. In other words, every component should work successfully in order for the 

system to work. Consider a series system consisting of q  components as shown in Figure 

5.4..1. We derive the series system’s pmf, cdf and reliability functions. Then we obtain the 

expected warranty cost and variance of warranty cost.    

 

 
 

Figure 5.4.1. Series system with q  components 

Define { }1,2, ,qΩ ≡ " . Let ( )F n  and ( )R n  be the cdf and the reliability function of the r.v. 

inter-failure interval of series system with n  failures, respectively. Let ijkC  be 

1

1 1
j

j h

j h

λ

λ λ
≠ −
∏  of 

ith failure for component j which has k failures totally. For the series system shown in Figure 

5.4.1, the cdf of component j is given by 

1 q2 …
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By [54], the system reliability function ( )R n  is same with ( )
1
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And we obtain the pmf of series system.  
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 For the cost analysis, we now wish to obtain the function of expected cost and variance cost. 

The expected number of failures is given by 

( ) ( )
1

s
n

E N nP N n
∞

=

= =∑

                                                     

(5.4.11) 

where ( )sP N n=  is as in eq. (5.4.10). We now derive the variance of the number of failures. 

We can easily derive the second moment as follows:

 

( ) ( )2 2

1
s

n

E N n P N n
∞

=

= =∑

                                                      

(5.4.12)
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The variance of the number of failures is given by 

( ) ( ) ( )22Var N E N E N= −

                                                  

(5.4.13) 

where ( )E N  and ( )2E N  are given as eqs. (5.4.11) and (5.4.12). 

The expected and variance of the system warranty cost for the series system are obtained as 

follows: 
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Parallel system 

In contrast with the series system where a single failure of a component will result in failure 

of the whole system, in the parallel system, for the system to fail operating all parts of the 

system must fail. Similar to the analysis of series systems, we can obtain the warranty cost 

function for parallel systems where there are q components connected in parallel as shown in 

Figure 5.4.2. We derive the parallel system’s pmf, cdf and reliability functions, respectively. 

Then we obtain the expected warranty cost and variance of warranty cost. 
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Figure 5.4.2 Parallel system with q components 

Define { }1,2, ,qΩ ≡ " . Let ( )F n  and ( )R n  be the cdf and the reliability function of the r.v. 

inter-failure interval of parallel system with n  failures, respectively. Then, for the parallel 

system shown in Figure 5.4.2, the cdf of a component j obtained from eq. (5.4.8). By [54], the 

parallel system reliability function ( )R n  is same with ( )( )
1

1 1 .
q

j
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system reliability function is given by 
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Also we can obtain the pmf of the system and expected warranty cost and standard deviation 

of warranty cost.  
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(5.4.17) 

The first moment and the second moment of the number of system failures can be similarly 

obtained from eqs. (5.4.11) and (5.4.12) where ( )sP N n=  is given as eq. (5.4.17). Therefore, 

…

1

2

q
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the variance of the number of system failures can be obtained using the first moment and the 

second moment. The expected warranty cost for parallel systems is given by 
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The variance of warranty cost is given by 
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Parallel-series system  

Consider a parallel-series system consisting of r  parallel routes where each route has q  units 

connected in series as shown in Figure 5.4.3. We derive the parallel-series system’s pmf, cdf 

and reliability functions, then we obtain the expected warranty cost and variance of warranty 

cost.    
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Figure 5.4.3 Parallel-series system with r q⋅  components 

Let ( )jlF n and ( )jlR n  be the cdf and the reliability function of the inter-failure interval of 

component j  in the row of ,l  respectively. Additionally, let ijklC  be 
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for component j in the thl  row with k failures. Then for the parallel-series system shown in 

Figure 5.4.3, the cdf of component j  in the row of l  is given by 
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1,2, 1,2,where j q and l r= =" "  
The system reliability function is 
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 Also, we can obtain the pmf of the system and expected warranty cost and standard deviation 

of warranty cost, respectively.  
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Using the pmf of the system, the expected number of parallel-series system failures, ( )E N  

and the second moments of parallel-series system failures, ( )2E N  can be obtained. The 

expected warranty cost and variance of the system warranty cost for the parallel-series system 

are given as follows, respectively; 
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Similarly to the parallel-series systems, we can obtain the warranty cost functions for the 

series-parallel system. 

 

 

5.5 Discussion 

Implications for Research 

We consider the expected value and variance of the warranty cost together. The expected 

warranty cost has been mainly investigated for warranty cost analysis. While expected 

warranty cost is a good measure on the overall cost of warranty, it provides little information 

of the risk contained in a warranty program. Therefore, it is not sufficient enough to express 

the data using only the expected values. Because we obtain the variance of warranty cost with 

the expected value, the result provides a more accurate cost analysis. Recently, many research 

[9, 64, 147, 148, 181] have been published on multi-component systems. Sarhan [147, 148] 

derived the reliability equivalence factors of multi-component systems including a series-

parallel system and a parallel-series system. However, few researchers [9] have investigated 

the multi-component system under warranty. While several researchers have investigated 

simple systems under warranty, our proposed approach is to consider complicated systems as 

well as simple system to conduct the warranty cost analysis in detail.  

Additionally, so far the studies in warranty literature mostly focus on “as good as new” repair 

scenario. Our study in this chapter aims to conduct the warranty cost analysis based on both 

the imperfect repair as well as perfect repair. 

In summary, we develop warranty cost models for repairable systems from the stand point of 

both the manufacturer and the customer. They are very useful for warranty policy makers to 
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make decisions regarding the warranty policy such as making warranty cost reserve, 

estimating the warranty period and calculating the warranty expenses.  

 

Implications for Practice 
 
The developed models in this chapter can be used in various ways. If the time for inter-failure 

interval can be an exponentially distributed random variable with parameter λ,  our model can 

be applied for the manufacturing products such as electronic appliances and agricultural 

tractors, transportations such as airplanes and vehicles or power plant generators. If the 

warranty cost can be estimated accurately, then it makes critical role for both the 

manufacturing companies and the customers. Under the manufacturers’ point of view, 

engineers can estimate the warranty cost and set up the warranty reserve approximately. 

Under the customers’ point of view, the proposed model results can be used as a tool to help 

potential customers to select appropriate warranty options which are suitable for purchasing 

the products.  

Samatli-Paç and Taner [146] suggest a real life example for their warranty cost model using a 

QRP.  A leading beverage company runs its own repair facilities for the industrial 

refrigerators used in its retail outlets in Turkey. The company performs three different kinds 

of repairs on failed refrigerators. Data indicated that repair types 2 have average cost of 28 

YTL (new Turkish Liras). Statistical analyses were performed on a particular brand and 

model of refrigerator with data on 2150 refrigerators. Of these, 285 failed at least once during 

the observation period. Maximum likelihood estimation for the repair type 2 of the 285 

repaired refrigerators yields that the time between the first and second failures is Weibully 

distributed with the shape parameter of 1.02 and the scale parameter of 127.57 and α  is 0.91. 
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If the shape parameter is closely near to 1, i.e. the Weibull distribution with shape parameter 1 

and the scale parameter 127.57 is same as the exponential distribution with the exponential 

parameter 127.57. Similarly, it yields that the time until first failure closely follows an 

exponential distribution with a parameter of 158.24. Time limits of the region within which a 

repair will be attempted are set in view of the distribution that characterizes the time until first 

failure. In particular, the limits are set systematically first at around a conservative value of 1, 

3 and 5 years. So we obtain expected warranty cost and the variance of the warranty cost 

based on these different years. Table 5.5.1 shows the expected warranty cost for one product 

(unit: new Turkish Liras) and the variance of the expected warranty cost under the repair type 

2 with 1, 3 and 5 year warranty periods. 

Table 5.5.1 Warranty cost analysis using Repair type 2 with 1 2158.24, 127.57λ λ= =  and 

0.91α =  

Warranty Period  Expected warranty cost Standard Deviation Coefficient of Variation 
1  3.772  9.560  2.534 
3  11.168  13.710  1.228 

5  18.367  13.301  0.724 

  

These real-world benchmarking examples showed how the proposed model can be used for 

the warranty cost analysis. The next section covers for a various choices of parameters in 

terms of several systems including multi-component systems.  

 

5.6 Numerical Example and Sensitivity Analysis  

In this section, two numerical examples are presented to illustrate the analyses of system cost 

functions. We first consider a single component system, and then a parallel-series system is 

investigated. For the numerical examples, because the computations have the infinite sum to 
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obtain the expected number of failures and their variances, a numerical method is used in the 

calculation. The approximate numerical values are obtained using the Mathematica. We 

sample a certain number of terms in the series, and then run an extrapolation to estimate the 

contributions of other terms. There are two approaches to estimating this contribution. The 

first uses the Euler-Maclaurin method, and is based on approximating the sum by an integral. 

The second method, known as the Wynn epsilon method, samples a number of additional 

terms in the sum, and then tries to fit them to a polynomial multiplied by a decaying 

exponential [183].  

 

Case I. 

Consider a single component system which is the simplest case. We derive the expected 

warranty cost (E(C)), standard deviation of warranty cost (SD(C)) and coefficient of variation 

(CV) for a 20 warranty period units which start at 0.1 and finish at 2.0. We change the λ  

values as 1 and 0.5, and α  values as 0.99, 0.95 and 0.90. We assume that α is less than 1 

because the repair is imperfect.  Other assumptions used are as followings; 

• The warranty cost per a failure is c = $2000 

• There are n failures for each component.  

• The given warranty period unit is fixed period j for each component;

{ }0.1,0.2,0.3,0.4, ,1.8,1.9,2.0j∈ "  

Using eqs. (5.4.6) and (5.4.7) we obtain the expected warranty system cost and variance of 

warranty system cost. The expected warranty cost of single component system plots with λ =1 

and λ = 0.5 are in Figure 5.6.1. For each case, α s have three different values 0.99, 0.95 and 

0.90. As the warranty periods are longer, the expected warranty cost increases. If λ s are equal, 
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the expected warranty cost would increase when they have smaller .α  Smaller α  means that 

the next failure time would come faster and there are more failed components. So, the cost 

would increase as more repairing service is needed. Also, as λ  increases, the expected cost 

decreases. The variance and standard deviation of warranty cost in Figure 5.6.1 shows they 

increase as warranty time goes on. We see that the pattern of the standard deviation is similar 

to the expected cost patterns by changing α  and λ . Using standard deviation and expected 

values, we obtain the CV in Figure 5.6.1. The CV shows that they have high variance and the 

plots are unstable.  

Table 5.6.1 Cost analysis for single component system 
 α  W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

λ = 1 

α = 0.99 
E(C ) 198 400 601 802 1003 1204 1405 1606 1811 2010 

SD(C ) 693 1080 1432 1781 2136 2498 2871 3249 3692 4046 
CV 3.497 2.697 2.382 2.221 2.131 2.076 2.043 2.023 2.038 2.013 

α = 0.95 
E(C ) 201 403 605 809 1013 1219 1427 1636 1844 2055 

SD(C ) 702 1786 1719 2007 2406 2687 3307 3751 3837 4340 
CV 3.500 4.432 2.842 2.482 2.374 2.204 2.318 2.293 2.081 2.112 

α = 0.90 
E(C ) 201 405 610 818 1029 1242 1458 1676 1897 2121 

SD(C ) 709 1112 1500 1894 2302 2729 3176 3644 4135 4649 
CV 3.524 2.750 2.458 2.314 2.238 2.197 2.179 2.174 2.180 2.192 

λ = 0.5 
 

α = 0.99 
E(C ) 400 802 1204 1606 2010 2413 2818 3220 3624 4021 

SD(C ) 1080 1781 2498 3249 4046 4869 5749 6643 7591 8522 
CV 2.697 2.221 2.076 2.023 2.013 2.018 2.040 2.063 2.094 2.119 

α = 0.95 
E(C ) 402 809 1219 1635 2055 2479 2909 3343 3782 4225 

SD(C ) 1092 1827 2591 3407 4282 5217 6213 7271 8387 9560 
CV 2.715 2.260 2.125 2.084 2.084 2.104 2.136 2.175 2.218 2.263 

α = 0.90 
E(C ) 405 818 1242 1676 2121 2577 3045 3526 4021 4530 

SD(C ) 1112 1894 2729 3644 4649 5752 6959 8275 9709 11269 
CV 2.750 2.314 2.197 2.174 2.192 2.232 2.285 2.347 2.415 2.487 
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Figure 5.6.1 E(C), Standard deviation and Coefficient of Variation for the single system 

 

 Case II. 

We consider the parallel-series system with four components shown in Figure 5.6.2 under the 

fixed warranty period policy assuming that for component i, i=1,2,3,4, the warranty period 

and λs are the same only in each interval, but λs between intervals are different.  

 
Figure 5.6.2 Parallel-series system with four components 

Let *
Ciλ ,i =1,2,3,4 be an exponential parameter for component i. In Case II, we use three cases, 

when ( ) ( ) ( )* * * *
C1 C2 C3 C4λ ,λ λ ,λ = 2,2,2,2 1,2,3,4, , and ( )4,2,4,2 .  We vary α  values as 0.99, 0.95 

and 0.90. We assume that α is less than 1 because the repair is imperfect. Other assumptions 

used are as followings; 

• The warranty cost per a failure is c=$500 

• There are n failures for each component.  

• The given warranty period unit is fixed period j for each component;

{ }0.1,0.2,0.3,0.4, ,1.8,1.9,2.0j∈ "  
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Using eqs. (5.4.23) and (5.4.24), the cost analyses are shown in Table 5.6.2. The expected 

warranty costs have similar patterns as single component system’s E(C). The coefficient of 

variation in Figure 5.6.3 shows that the data are stable.  

Table 5.6.2 Cost analysis for the parallel-series system 

( )* * * *
1 2 3 4, , ,C C C Cλ λ λ λ   α   W 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

(2,2, 
2,2) 

0.99 
E(C ) 6.91 24.93 50.51 80.79 113.51 146.94 179.81 211.16 240.38 267.02 

SD(C ) 101.59 191.77 270.58 338.61 396.71 445.90 487.22 521.69 550.26 573.79 
CV 14.70 7.69 5.36 4.19 3.49 3.03 2.71 2.47 2.29 2.15 

0.95 
E(C ) 7.49 26.95 54.47 86.90 121.79 157.27 191.96 224.88 255.38 283.01 

SD(C ) 105.73 199.25 280.60 350.43 409.69 459.53 501.09 535.49 563.78 586.88 
CV 14.12 7.39 5.15 4.03 3.36 2.92 2.61 2.38 2.21 2.07 

0.9 
E(C ) 8.32 29.84 60.10 95.56 133.46 171.74 208.91 243.92 276.09 304.99 

SD(C ) 111.41 209.45 294.18 366.34 427.05 477.61 519.34 553.52 581.30 603.71 
CV 13.39 7.02 4.89 3.83 3.20 2.78 2.49 2.27 2.11 1.98 

(4,2, 
4,2) 

0.99 
E(C ) 3.55 13.13 27.34 44.94 64.90 86.35 108.57 130.99 153.14 174.65 

SD(C ) 72.85 139.74 200.66 255.72 305.18 349.38 388.68 423.47 454.15 481.11 
CV 20.54 10.64 7.34 5.69 4.70 4.05 3.58 3.23 2.97 2.75 

0.95 
E(C ) 3.84 14.22 29.54 48.47 69.86 92.78 116.44 140.22 163.63 186.27 

SD(C ) 75.84 145.33 208.41 265.24 316.09 361.33 401.37 436.66 467.62 494.68 
CV 19.73 10.22 7.06 5.47 4.52 3.89 3.45 3.11 2.86 2.66 

0.9 
E(C ) 4.27 15.77 32.68 53.48 76.90 101.86 127.52 153.17 178.29 202.46 

SD(C ) 79.96 152.97 218.98 278.15 330.81 377.38 418.35 454.20 485.44 512.54 
CV 18.71 9.70 6.70 5.20 4.30 3.70 3.28 2.97 2.72 2.53 

(4,4, 
4,4) 

0.99 
E(C ) 1.82 6.91 14.77 24.93 36.97 50.51 65.22 80.79 96.96 113.51 

SD(C ) 52.20 101.59 148.12 191.77 232.57 270.58 305.89 338.61 368.84 396.71 
CV 28.70 14.70 10.03 7.69 6.29 5.36 4.69 4.19 3.80 3.49 

0.95 
E(C ) 1.97 7.49 15.99 26.95 39.92 54.47 70.24 86.90 104.17 121.79 

SD(C ) 54.37 105.73 154.03 199.25 241.41 280.60 316.90 350.43 381.31 409.69 
CV 27.55 14.12 9.63 7.39 6.05 5.15 4.51 4.03 3.66 3.36 

0.9 
E(C ) 2.20 8.32 17.73 29.84 44.12 60.10 77.37 95.56 114.34 133.46 

SD(C ) 57.34 111.41 162.11 209.45 253.44 294.18 331.76 366.34 398.05 427.05 
CV 26.12 13.39 9.14 7.02 5.74 4.89 4.29 3.83 3.48 3.20 
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Figure 5.6.3 E(C), Standard deviation and coefficient of variation for the parallel-series system 

 

5.7  Concluding Remarks 

This research focuses on the cost analysis including the repairable models with a fixed 

warranty period. Not much research has been done using QRP, especially on warranty cost 

analysis although Wang and Pham [175] introduced the QRP in 1996. Based on the property 

of exponential distribution which is frequently used for the modeling, we develop the 

warranty cost model which is applicable in real life. We show a real-world benchmarking 

example for Section 5.5 and other computational experimentation for Section 5.6. The 

proposed approach is helpful for the manufacturer to estimate the warranty cost accurately.  

Based on QRP and exponential distribution, we obtained the expected warranty cost, standard 

deviation of the warranty cost and coefficient of variation changing several parameters such as 

λ  and α .  λ  is used in the exponential distribution and α s are used in the QRP. Cost analysis 

was used to draw figures and compare several warranty costs and their standard deviation 

with different parameters. Expected warranty costs are generally increased as the warranty 

periods go on. As α  increases, the expected warranty cost decreases. Also with the increase 

of λ s, the expected warranty costs are decreased too.  
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Chapter 6  

A Generalized Block Replacement Policy 
for a k-out-of-n System with Respect to 

Threshold Number of Failed Components 
and Risk Cost 

 

 

 

6.1 Introduction  

The objective of the maintenance policy is to find ways to minimize the expected total system 

costs or maximize the product’s reliability. For a complicated product that deteriorating in 

function, it is essential to perform the preventive maintenance service to achieve the systems’ 

satisfactory reliability performance. Maintenance involves planned or unplanned actions 

carried out to retain or to restore the system to an acceptable operating condition. Planned 

maintenance is usually referred as preventive maintenance (PM) while unplanned 

maintenance is corrective maintenance (CM) or repair. Furthermore, two well-known PM 

policies are block replacement policy (BRP) and age replacement policy (ARP) from Barlow 

and Hunter [13]. For the BRP, an operating system is replaced with a new system periodically 

and at failures. The strength of the BRP is its simplicity because we don’t need to keep 

detailed records on the failure times. Nonetheless the weakness is that despite the product 
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being practically new, we can replace at planned replacement times. In the classical BRP [14, 

15] for a group of operating units, each unit is individually replaced on failure or they are 

replaced preventively at a fixed maintenance cycle .τ  But such a policy is somewhat wasteful 

if a unit which is almost new are replaced as a block replacement. Many researchers [16-18, 

84, 108, 114, 166] have developed modified block replacement policies (MBRP) based on 

classical BRP [13-15] and have tried to overcome several drawbacks [115] including:  

• When a failure occurs just before the maintenance cycle ,τ  it left idle until τ  without 

the failure replacement (FR) [19, 47, 49, 114, 115]; 

• When a failure occurs just before the maintenance cycle ,τ  it is replaced with an used 

one [18, 84, 108, 166]; 

• A young operating unit is not replaced at the maintenance cycle τ  and remains in 

service [4, 16, 17].  

Berg and Epstein [17] study a MBRP which overcomes the drawback at planned replacement 

times where one may be replacing a practically new item. Archibald and Dekker [4] extend 

the MBRP of Berg and Epstein [17] and consider a discrete time frame work for multi-

component systems. Nakagawa [114, 115] proposes the MBRP with an idle period, where 

units are replaced at failures until a fixed time and then follows an idle period, during which 

failed units are left idle. There are two extreme examples under this MBRP: All units may fail 

and remain idle during the idle period, which is undesirable; all units may be operating but 

will be replacing them all during the preventive maintenance period.  Park and Yoo [119] try 

to overcome these extreme cases and propose another MBRP where a block replacement is 

performed at a certain number of failures, counting after the pre-determined individual failure-

replacement interval (0, ].τ  Despite both Nakagawa and Park & Yoo’s effort to overcome the 
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classical BRP’s drawbacks, they were not successful to overcome completely as they assume 

that units are replaced at failure until a fixed time. In Park and Yoo’s policy [119], their model 

has certain period that uses the classical BRP, meaning in some parts their policy has the 

classical policy’s properties.  

Multi-component systems are more realistic when its compare to a single-component system 

in real life. However, not many researchers [168] have studied the MBRP for multi-

component system. Archibald and Dekker [4] develop the MBRP for multi-component 

systems. The surveys of maintenance models for multi-component systems have been 

accomplished [37, 168]. Pham and Wang [130] study the opportunistic maintenance of a k-

out-of-n system with imperfect PM and minimal repair where partial failure is allowed. They 

develop opportunistic maintenance models with two decision variables subject to reliability 

requirements. Recently Park and Pham [29] develop cost models based on the quasi-renewal 

processes for multi-component systems. Li and Pham [92] develop optimal inspection-

maintenance policies, consisting of the time sequence for inspection & preventive 

maintenance threshold levels for both degradation processes. They assumed that the system 

failure is only detected by individual inspection. However, in several other papers [130, 176], 

researchers assumed that the system failure is monitored and detected immediately.  

In this chapter, we develop a generalized block replacement policy (GBRP) for a k-out-of-n 

system with respect to a threshold level for the number of failed components (m) and risk 

costs where m < (n-k+1). If there are less than m numbers of failures in the maintenance cycle 

,τ  then the failure replacement (FR) services for failed units and the preventive replacement 

(PR) services for other deteriorating units will be provided at the end of the periodic time 

( ), 1, 2k kτ⋅ = " . If there are m numbers of failures, then the failure replacement services will 
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be provided immediately at that point. Note that the k-out-of-n system functions if and only if 

at least k of the components must function. In other words, the system will not fail as long as 

the number of failed components would be less than (n-k+1). Although there is no need to do 

anything when there are exactly m numbers of failures since the system still hasn’t failed, we 

wouldn’t want to take a risk to wait without any FR action if the number of failed components 

would be close to a critical upper threshold level (n-k+1).   

The remainder of this chapter is organized as follows. Section 6.2 explains the structure of the 

GBRP. Section 6.3, we obtain the expected cost rates of the proposed policies. The downtime 

period is calculated by the life time distribution and the age distribution. We discuss several 

numerical examples in Section 6.4. Concluding remarks are discussed in Section 6.5.    

 

6.1.1  Nomenclature 

ECR(t) : Expected Cost Rate based on time t 

1 :c  failure replacement cost  

2 :c  risk cost per unit time  

3 :c  PR cost  

4 :c  system failure cost  

N τ : total number of failures in a k-out-of-n system during [ ]0, τ  

iT  : time to failure of the ith component in a k-out-of-n system, 1, 2, ,i n= "  

L : number of failed components after the last FR service until the next maintenance cycle 

( ) :N t  total number of failures for a component during [ ]0, t  

m : threshold level for failed components 
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n : number of components in the system  

( ) ( ),f t F t : pdf, cdf of time to failure of a component, respectively 

( )R t : reliability function of a component  

( ) :M t  ( ) ,E N t⎡ ⎤⎣ ⎦  renewal function associated with ( )F t  

( ) :m t  
( ) ,

dM t
dt  

intensity function 

( ) ( ) :iU n ith order statistics of ( )1 2, , , nT T T"  for a k-out-of-n system 

( ) :Z t  time from t since the last renewal, i.e. the age of the component in use at time t 

:⎢ ⎥⎣ ⎦  integer part of the number 

 

6.1.2  Assumptions 

• Failure replacement times and preventive replacement times are negligible.  

• Component are i.i.d. 

• The FR cost for a failed component and the PR cost are costlier than the risk cost per 

unit time.  

• The FR cost, the PR cost, the risk cost and the system failure cost are constant. 

• If a failed component is not replaced at the moment and left idle condition by the next 

maintenance cycle, it incurs the risk cost based on its idle period.   

 

6.2 Generalized Block Replacement Policy  

The threshold level of failures which is set up to prevent the inefficiency and the failure of the 

system is denoted as .m  When the total numbers of failures is less than the threshold number 
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of failed components, . .i e N mτ < , the policy is described in Figure 6.2.1. When the total 

numbers of failures is greater than or equal to the threshold number of failed units, 

. . ,i e N mτ ≥ the total numbers of failures, ,N τ  could be composed of several sets of m 

numbers of failures and remaining left idle failed units, L, by the periodic maintenance time τ  

as described in Figure 6.2.2. We provide the PR service for the deteriorating units and the FR 

service for the failed units at times ( )1, 2, .k kτ⋅ = "  The failed unit is not replaced at the 

moment, and it remains in failed state during the time interval from an individual failure to m 

number of failures jointly. This can be applied to the maintenance model where a component 

is monitored continuously, and its failures can be detected immediately when a failure 

happens. The company can save the maintenance expense by using this policy. We separate 

two cases: N mτ <  and .N mτ ≥  In case of ,N mτ < there is no failure replacement by time τ  

and failed units would be left idle to decrease the maintenance cost by time τ  in Figure 6.2.1. 

After that, when it is the periodic maintenance cycle τ , we provide the FR service and the PR 

service. If the number of failed units does not reach m, we don’t need to provide the FR 

service during the maintenance period. But at the time τ , we provide the FR services for 

failed units and the PR services for deteriorating units. The circles represent units’ failures and 

dotted red lines represent the idle period in Figure 6.2.1.  
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Figure 6.2.1: A k-out-of-n system with the number of failed components is less than m, 
N mτ <  

When Nτ  is greater than or equal to ,m  we provide the failure replacements at the moment. 

During one maintenance cycle ,τ  there may be more than one failure replacement. It means 

that there can be several sets of m numbers of failures. This model for a k-out-of-n system 

with a threshold level m is described in Figure 6.2.2.  In Figure 6.2.2, there are n numbers of 

components and periodical maintenance cycles ( ), 1, 2, .k kτ⋅ = "  When mth failure occurs, 

the FR services for failed components are provided. If we set up the threshold level m 

regarding the number of failures, then FR service for every failed component at the time of mth 

failed components are provided. At each maintenance cycles ( ), 1, 2, ,k kτ⋅ = " the FR 

services for failed components and the PR services for other deteriorating components 

periodically are provided.  
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Figure 6.2.2: A k-out-of-n system when the number of failed components is larger than and 

equal to m, .N mτ ≥  

6.3 Expected Cost Rates  

Nakagawa [114, 115] propose the idle period to save the maintenance cost and Park and Yoo 

[119] use the idle period and suggest the idle count for each unit. They obtain the expected 

cost rate and compare their MBRPs to other existing MBRP and classical BRP. In their 

policies, units are replaced at failure until a fixed time T and then follow an idle period during 

which failed units are left idle. Compared to those existing MBRPs, we do not consider the 

first fixed time before the idle period. Instead, we consider the idle count for each component 

for k-out-of-n systems. Let ( )N τ  be the total number of failures for one unit during [ ]0, .τ  

Let m, n and L be the threshold number of failed components, total component number in the 

system and the number of failed components that remain idle until the next maintenance, 

respectively. The number of failed components, Nτ , is given by   

( ) ( )n N
N n N m L

mτ

τ
τ

⋅⎢ ⎥
= ⋅ = ⋅ +⎢ ⎥

⎣ ⎦
                                               (6.3.1) 
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When the total number of failed components is less than m, we provide the FR services for the 

failed components and the PR services for other deteriorating components at the maintenance 

cycle .τ  As for the expected cost, let 1 2c and c  be a FR cost and a risk cost per unit time, 

respectively. If the number of failures, Nτ  is less than a threshold level of component failures, 

m, then the total failure replacement cost is 1 .c Nτ⋅  These FR services take place only at the 

time of τ  because Nτ  is not larger than m (see Figure 6.2.1). The expected FR cost is given 

by ( ) ( )1 1 .c E N c n Mτ τ⋅ = ⋅ ⋅  Also, the number of non-failed components are .n Nτ−  The PR 

cost, 3c  is multiplied by the number of non-failed components at the maintenance cycle .τ  So 

their PR cost is ( )3 ,c n Nτ−  and the corresponding expected cost is given by 

( ) ( )( )( )3 3 1 .c E n N c n Mτ τ⋅ − = −   

The risk cost can be derived by using the order statistics based on either the life time 

distributions or age distributions. For the k-out-of-n systems, even though there are m failures 

which are less than 1n k− + , the system still would not fail. Despite this we consider the risk 

cost because we believe that if some parts of the system are not functioning, it would make it 

less efficient and likely incur cost. If a machine in a factory, for example, is not properly 

running and would need to be repaired, it will also incur cost during the repair period with a 

less productivity. In this chapter, we consider the risk cost for failed components of k-out-of-n 

systems. To obtain the downtime period, we consider ( )F t and ( ).Z t  ( )F t  is the cdf of the 

life time distribution and ( )Z t  is the time to t since the last renewal. 

Downtime period using the life time distribution, ( )F t  
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The r.v. ( ) ( )iU n is the ith order statistics of n independent random samples for 1,2, ,i n= "  

that represents the time to ith failure of n components while ( )1 thi − failed components are left 

idle. The survival function of ( ) ( )iU n  can be obtained [119]: 

( ) ( ){ } ( ) ( )
1

0
1

i j n ji

j

n
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− −

=

⎛ ⎞
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∑                                    (6.3.2) 

Let i be the number of failed components. Then from eq. (6.3.2), the mean time to the thi  

failure ( ) ( ){ }iE U n  can be obtained as follows: 
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∫
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                           (6.3.3) 

The total risk cost can also be obtained 

( ) ( )( )2
1

N
j

j

c U n
τ

τ
=

⋅ −∑
                                                        (6.3.4)

 

On the other hand, when the number of failures is larger than or equal to the threshold level of 

component failures, we provide the FR service for the failed components at the time when mth 

failure happens. In Figure 6.2.2, there may be more than just one failure replacement service 

during one maintenance cycle, .τ  Therefore, total cost is composed of a FR cost which 

multiplied by total number of failures for a k-out-of-n system, a risk cost which multiplied by 

idle times and a PR cost which multiplied by total number of non-failed components. Total 

FR cost is obtained by the FR cost, 1,c  multiplied by the number of failed components during 
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the maintenance cycle (0, ].τ  The risk cost per unit time, 2 ,c  is multiplied by the downtime 

period. The downtime period composed of a certain number of failure replacement intervals 

and the last interval. There are N
m
τ⎢ ⎥

⎢ ⎥⎣ ⎦
 number of failure replacement intervals. In a failure 

replacement interval, there are 1m −  number of failed components because they provide the 

failure replacement service when the mth component fails. Therefore, the downtime period 

excluding the last interval is given by 

( ) ( ) ( )( ) ( )( )
1

1

1 1

N
m m

j m ii m

i j
U n U n

τ⎢ ⎥
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= =

−∑∑                                               (6.3.5) 

The downtime period in the last interval is given by  
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When we use the life time distribution and ,N mτ <  the expected downtime period is given by  
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                (6.3.7) 

When the system is monitored continuously and ,N mτ <  using ( ) ( ) ,jU n  the expected 

downtime period is obtained by 
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Also when ,N mτ ≥  the expected downtime period is given by  
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(6.3.8) 

Downtime period using the age distribution, ( )Z t  

Let ( )Z t  be the time from t  since the last renewal. This is called the age distribution at t

[141]. Then the function ( )H t  is given by  
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The r.v. ( ) ( ) ,iQ n is the ith order statistics of n independent random samples for 1,2, ,i n= "  

that represents the time from ith failure to τ  while ( )1 thi − failed components are left idle [119]. 

Similarly, the survival function of ( ) ( ) ,iQ n can be obtained 
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Let i be the number of failed components. From eq. (6.3.10), the mean time from failure i to 

time t, ( ) ( ){ }iE Q n  is given by  
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If the number of failures, ,Nτ  is less than a threshold level of component failures, m, the 

failure replacement services then take place at the time of .τ  To obtain the downtime period, 

we add each failed component idle period. So the total downtime period is given by 

( ) ( )( )
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N
j

j

Q n
τ

=
∑                                                            (6.3.12) 

On the other hand, if the number of failures, Nτ , is greater than a threshold level of failures, m, 

the failure replacement services may take place during the maintenance cycle. The following 

first term in eq. (6.3.13) covers the downtime period excluding the last period using the age 
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distribution. The second term covers the last interval’s downtime period. When ,N mτ ≥  the 

total downtime period is as follows:   
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The downtime period could be obtained using the age

 

distribution for and .N m N mτ τ< ≥  

When ,N mτ <  the expected downtime period is given by 
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                     (6.3.14) 

Similarly, when ,N mτ ≥  the expected downtime period is obtained by 
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Therefore, when ,N mτ ≥  the expected downtime period is given by 
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(6.3.15) 

If we use ( ) ( )iU n  and life time distribution ( ) ,F t  the total expected cost of N mτ <  is as 

follows:
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When ,N mτ ≥  the expected total cost is as follows:  
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(6.3.17) 

If r.v. L follows LF  distribution, we can obtain the expected cost rate, ( ) ,ECR τ  as follows:  
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(6.3.18)
 

We consider several costs other than the system failure cost. The threshold number of failures 

is less than 1,n k− +  so before the system failure, they provide the FR for failed components 

and the PR service for the other deteriorating components. When the number of failed 

components is 1,n k− +  the system would fail.  

 

6.4  Numerical Example  

If the threshold number of failures are fewer than ( )1n k− +  and we use the life time 

distribution ( ) ,F t  then we can obtain the expected cost rate using eq. (6.3.18). Due to a 

complex nonlinear function, we use the Nelder-Mead downhill simplex method [92, 137] to 

obtain an optimum solution for the above optimization problem, with a hope to obtain the 

global solution. In this study, we also have used other non-linear optimization approaches 

such as random search method, differential evolution method and simulated annealing method. 

Among them, Nelder-Mead downhill simplex method seems to be the most popular direct 

search method for obtaining the optimum solution of a nonlinear function, which does not 

require the calculation of derivatives. Using the Nelder-Mead approach, we optimize the 

expected cost rate of the model. For the numerical example below, we apply our GBRP using 
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( )F t  in case of 1.m n k< − +  We wish to find the optimal period *τ  and the optimal 

threshold number of failures, *m , which minimizes the expected cost rate, given in eq. 

(6.3.18). In summary, from eq. (6.3.18), we can formulate the following optimization problem: 

* *Find ( , ) :          Minimize  ( , )m ECR mτ τ  

In Fig. 6.4.1, a 2-out-of-10 system with a threshold level 3m =  for GBRP is described. At the 

maintenance cycle τ , they will provide the FR service for all failed components and the PR 

service for other deteriorating components. Before the mth failure, there is no need to take any 

action for failed components. Obviously it would save the cost. The failed components left 

idle before the mth failure. 

 

Fig. 6.4.1 2-out-of-10 system with a threshold level m=3 for GBRP 

Suppose that the failure time of a system follows an exponential distribution with parameter 

1.λ  That is, ( ) 1

1

1
t

F t e λ
−

= −  and ( )
1

.tM t
λ

=  Given various cost parameters such as FR cost, 

PR cost, risk cost, and the system failure cost, using eq. (6.3.18) we can obtain the results to 

illustrate an example as given in Figure 6.4.4. The number of failed components that remain 
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idle until the next maintenance, ,L  is assumed to follow the truncated exponential distribution 

with parameter 2λ . The pdf of ,L  0 L m< ≤  is given by 

( ) 2 2

2

1 1exp

1 exp
L

l
f l

m
λ λ

λ

⎛ ⎞
−⎜ ⎟
⎝ ⎠=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

                                                         (6.4.1) 

Table 6.4.1 shows that as
1

1
λ

 increases, the values of τ  decrease. However, the expected cost 

rate increases monotonically and the number of threshold level, m increases as
1

1
λ

increases. 

 

           Table 6.4.1: Expected cost rate for various values of 1λ  and number of components for 
a 2-out-of-n system when 1 2 3$300, $10 $50.c c and c= = =  

1

1
λ

 5n =  7n =  10n =  15n =  20n =  
m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  

1/100 1 20.0 27.50 1 20.0 32.50 1 10.0 80.00 1 10.0 105.00 1 9.9 131.31 
1/50 1 10.0 55.00 1 10.0 65.00 1 9.9 80.81 2 10.0 135.00 2 9.9 161.62 
1/20 1 7.9 69.62 2 10.0 95.00 2 7.9 139.24 4 10.0 220.00 4 7.9 310.13 
1/10 2 7.9 107.60 2 5.7 166.67 4 7.9 246.84 7 9.3 387.10 10 9.9 505.05 
1/5 4 7.9 215.19 5 7.1 330.99 8 7.9 430.38 13 8.6 627.91 N/A 
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Figure 6.4.2: Expected cost rate for various 1λ  and the number of components for 2-out-of-n 
system when 1 2 3$300, $10 $50.c c and c= = =  

As the value of 
1

1
λ

 increases, it implies that the number of failed components increases. From 

Table 6.4.2, we observe that m and the ECR increase. In Table 6.4.2, we use different cost 

values from Table 6.4.1. It is also interesting to note that the expected cost rate increases 

monotonically as 
1

1
λ  increases with other parameters fixed. When the number of components 

becomes greater, it appears that the expected cost rate increases.  

         Table 6.4.2 Expected cost rate for various 1λ  and number of components for 2-out-of-n 
system when 1 2 3$300, $50 $10.c c and c= = =  

1

1
λ

 5n =  7n =  10n =  15n =  20n =  
m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  

1/100 1 20.0 17.50 1 20.0 18.50 1 10.0 40.00 1 10.0 45.00 1 9.9 50.51 
1/50 1 10.0 35.00 1 10.0 37.00 1 9.9 40.40 1 6.6 68.18 2 9.9 80.81 
1/20 1 7.9 44.30 1 5.7 64.91 2 7.9 88.61 2 5.3 141.51 2 3.9 205.13 
1/10 2 7.9 82.28 2 5.7 117.54 2 3.9 179.49 2 2.6 288.46 2 1.9 421.05 
1/5 2 1.9 157.90 2 2.8 239.29 2 1.9 368.42 13 8.6 572.09 N/A 

 

 

Fig. 6.4.3. Expected cost rate for various 1λ  and number of components for 2-out-of-n system 
when 1 2 3$300, $50 $10.c c and c= = =  
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Using eq. (6.3.18), Table 6.4.3 gives the values of m, τ  and the expected cost rate for various 

choices of 1 2 3,c c and c  based on different n values. Let 1 2 3,c c and c  be the FR cost, the risk 

cost and the PR cost. In Table 6.4.3, we present the results of sensitivity analysis for various 

cost coefficients and other values to illustrate the effects on the ECR and m. The first case in 

Table 6.4.3 is 1 2$300, $50c c= =  and 3 $10.c =  The number of components are n=5, 7, 10, 15 

and 20. 1 10λ =  is the parameter of the exponential distribution for the time to failure of one 

component. 2 10λ =  is another parameter of the truncated exponential distribution  for the 

number of failed components in the last interval after the last FR service. For each case, we 

use several different costs in Table 6.4.3. As we would expect, the expected cost rate increases 

and the maintenance cycle gets longer as the PR cost increases.   

           Table 6.4.3: Expected cost rate for various cost coefficients and number of components 
for a 2-out-of-n system with 1 2$300 $50c and c= =  

PR  
Cost  

5n =  7n =  10n =  15n =  20n =  
m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  m τ  ECR  

10 2 7.9 82.3 2 5.7 117.5 2 3.9 179.5 2 2.6 288.5 9 9.0 418.9 
20 2 7.9 88.6 2 5.7 129.8 2 3.9 205.1 6 7.9 336.7 9 9.0 437.8 
30 2 7.9 94.9 2 5.7 142.1 4 7.9 224.1 6 7.9 353.2 9 9.0 456.7 
40 2 7.9 101.3 2 5.7 154.4 4 7.9 235.4 6 7.9 369.6 9 9.0 475.6 
50 2 7.9 107.6 2 5.7 166.7 4 7.9 246.8 6 7.9 386.1 9 9.0 494.4 
60 2 7.9 113.9 2 5.7 178.9 4 7.9 258.2 7 9.3 400.0 9 9.0 513.3 
70 2 7.9 120.3 2 5.7 191.2 5 9.9 268.7 7 9.3 412.9 9 9.0 532.2 
80 2 7.9 126.6 4 10.0 198.0 5 9.9 276.8 7 9.3 425.8 9 9.0 551.1 
90 2 7.9 132.9 4 10.0 204.0 5 9.9 284.8 8 10.0 438.0 10 9.9 569.7 

100 2 7.9 139.2 4 10.0 210.0 5 9.9 292.9 8 10.0 450.0 10 9.9 585.9 
110 2 7.9 145.6 4 10.0 216.0 5 9.9 301.0 8 10.0 462.0 10 9.9 602.0 
120 2 7.9 151.9 4 10.0 222.0 5 9.9 309.1 8 10.0 474.0 10 9.9 618.2 
130 2 7.9 158.2 4 10.0 228.0 5 9.9 317.2 8 10.0 486.0 10 9.9 634.3 
140 2 7.9 164.6 4 10.0 234.0 5 9.9 325.3 8 10.0 498.0 10 9.9 650.5 
150 2 7.9 170.9 4 10.0 240.0 5 9.9 333.3 8 10.0 510.0 10 9.9 666.7 
160 2 7.9 177.2 4 10.0 246.0 5 9.9 341.4 8 10.0 522.0 10 9.9 682.8 
170 2 7.9 183.5 4 10.0 252.0 5 9.9 349.5 8 10.0 534.0 10 9.9 699.0 
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180 2 7.9 189.9 4 10.0 258.0 5 9.9 357.6 8 10.0 546.0 10 9.9 715.2 
190 2 7.9 196.2 4 10.0 264.0 5 9.9 365.7 8 10.0 558.0 10 9.9 731.3 
200 2 7.9 202.5 4 10.0 270.0 5 9.9 373.7 8 10.0 570.0 10 9.9 747.5 

 

 

 Fig. 6.4.4: Expected cost rate and the threshold level, m for various cost parameters and the 

number of components for a 2-out-of-n system 

 

6.5  Concluding Remarks 

We develop a GBRP for a k-out-of-n system based on the idle period aspects and obtain the 

optimal policy by determining the threshold number of failures and the periodic maintenance 

time interval. To minimize the cost, we use idle periods instead of immediate FR services. 

Until there are m numbers of failures, we did not provide the FR service, instead, at the time 

of mth failures, we provide the FR service. At the time of periodic maintenance time τ , we 

provide the FR service for failed components and the PR service for other deteriorating 

components. Our model has also taken into account the risk cost where the cost coefficients 

can be varied and are not subject to any restrictions, although the risk cost is, intuitively, 

assumed to be less than the FR cost and the PR cost in practice. We set up the threshold 

number of failures as fewer than or greater than .Nτ  For each case, we develop the expected 
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cost rate and obtain the optimized maintenance cycle and the optimized number of threshold 

level of the system in order to minimize the cost rate.  
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Chapter 7 

Warranty Cost Analysis and Optimization 
with Imperfect PM and Two Types of 

Warranty Periods 
 

 

 

7.1  Introduction  

Warranty policies are important factors in the process of decision making for both the 

consumer and manufacturer when buying a product. Companies, on one hand, use warranty 

policies as a marketing tool with hopes to increase the sales whilst to minimize the related 

warranty cost. Therefore, an appropriate warranty period, if not the best, is an important 

measure that the manufacturers seek to minimize the warranty costs. For example, if a 

warranty period is too long, then manufacturers are vulnerable to more claims, responsibilities 

resulting in higher cost. If the warranty period is too short, it could be a weakest link to attract 

customers to purchase the product. As such, warranty becomes an important factor for both 

consumer and manufacturer. Minimal repair is defined as the failure rate of a repaired product 

is same as just before the most recent repair. This concept of minimal repair was introduced 

by Barlow and Proschan [14]. If repairs are minimal, a failure rate then follows non-

homogeneous Poisson processes (NHPP). Many researchers [88, 133, 180] have developed 

several warranty models based on the NHPP. Krivtsov [88] proposes to capitalize on the fact 
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that NHPP’s rate of occurrence of failures formally coincides with the hazard function of the 

underlying lifetime distribution. Yue and Cao [194], Finkelstein [57] and Murthy [105] 

consider a system with minimal repairs which is almost equivalent to a NHPP and develop 

their approaches. Ja et al. [72] derive the mean and the variance for the manufacturers’ total 

discounted warranty cost of a single sale for single component items under several warranty 

policies. Bai and Pham [7] extend this analysis for the minimally repaired series systems and 

their application can be seen in warranty design, warranty reserve determination and risk 

analysis. Duchesne and Marri [53] show how risk adjustment principles considered in the 

economics and actuarial science literature can be applied to the determination of a warranty 

reserve while they much more extended those obtained by Bai & Pham [7].  

The range of warranty cost analysis needs to consider not only the characteristic of the 

warranty policy and replacement/repair cost, but also the distribution of the number of product 

failures. Different models [20, 21] have been studied in order to provide guidance in selecting 

the optimal warranty plans. One of the main interests that arise from the warranty policy is to 

obtain the optimal warranty period and its corresponding warranty cost analysis.  

Several researchers [7, 20, 38-40, 50, 53, 85, 117, 120, 121, 123, 146, 182, 190] have studied 

the warranty cost analysis. However, the published literature offers few approaches to 

determine the warranty period. Chien [33] determines the optimal warranty period and the 

optimal out-of-warranty replacement age while minimizing the corresponding cost functions. 

Menezes and Currim [100] focus on aiding decisions on how long the warranty period is for 

three genetic warranty types considering a product’ price, costs and failure rates. Gutierrez-

Pulido et al. [63] propose a methodology with the determination of warranty length that takes 

into account the reliability of the product, the consumer appreciation of the competitiveness of 



113 
 

 
 

the warranty scheme, the effect on the image of the company when the product fails under the 

warranty period, and the costs that the manufacturer incurs to fulfill the warranty. Wu [185] 

provides a theoretical development and empirical study on determining price, warranty period 

and production rate.  

In this chapter, a warranty period and a post warranty period are considered simultaneously. 

For warranty period, we assume that every failed component would be repaired minimally on 

the point of failure. In other words, a customer would have minimal repair services because of 

their warranty policy whenever a component fails. If it is repaired minimally, then the failure 

rate is well-known to follow NHPP. So, NHPP is used for cost analyses in the warranty period. 

The relationships between current inter-failure interval and next inter-failure interval are also 

studied with considerations of two-dimensional NHPP. The discussion of the methodology to 

conduct warranty cost analyses using NHPP will also be presented. The time limitation of 

repair services is considered for the customer’s satisfaction. In other words, if the failed 

product comes to the warranty service centers, after repair the product should be returned back 

to the customer as soon as possible. If the product cannot be fixed within a threshold time of 

repair services, they should provide replacement services instead of repair services for the 

customer’s satisfaction. Two-dimensional NHPP is used to model two warranty services for 

the methodology. Unlike many researchers [32, 71, 83] who used a product’s usage and age/ 

time for two dimensions, we use the repair time and failure time as two dimensions for the 

warranty analysis.   

The chapter is organized as follows. In Section 7.2, the research problems are described. 

In Section 7.3, we develop several cost analyses and their corresponding decision variables 

within a warranty period including two-dimensional NHPP (failure times and repair times). It 
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presents the long run expected cost per unit time. Section 7.4 presents optimization problems 

to minimize the long run expected cost and obtain three decision variables such as the 

warranty period, repair time limit and the maintenance cycle. We discuss numerical examples 

in Section 7.5. The concluding remarks are presented in Section 7.6.  

7.1.1  Nomenclature 

Tw : Time of warranty period being finished 

:XΨ  Number of failures in the area Ψ  

nY : Waiting time between (n-1)th and nth failure 

nS : Waiting time until the nth event, 
1

n

n k
k

S Y
=

= ∑
 

( )N Ψ : Number of failures occurred in the area Ψ  

( ) ( ), :R Rf t F t  pdf and cdf of the repair times, respectively 

( ) :m t  Rate of NHPP which each failure time follows  

c : warranty cost per a system failure 

,cpm pmc c  : Cost of CPM and cost of PM, respectively 

A : Limitation of the warranty reserve
 

W
iTC : Total cost incurred during the warranty period when 1i = : aspect of a customer, 2i = : 

aspect of a manufacturer 

( )1 2, ,iTC w w T : Total cost with three decision variables ( )1 2, ,w w T  when 1i = : aspect of a 

customer, 2i = : aspect of a manufacturer 

( )1,TD w T : Total duration with two decision variables ( )1,w T  

, :p q  probability that a PM alone is imperfect is p, and 1q p= −  



115 
 

 
 

( )1 1 2, , ,TC w w T p q : Total cost with three decision variables ( )1 2, ,w w T  under the customer’s 

point of view when the PM is imperfect with the probability p  and 1q p= −   

( )2 1 2, , ,TC w w T p q : Total cost with three decision variables ( )1 2, ,w w T  under the 

manufacturer’s point of view when the PM is imperfect with the probability p  and 1q p= −   

( )1, ,TD w T p q : Total duration with two decision variables ( )1,w T  when the PM is imperfect 

with the probability p  and 1q p= −  

PWTC : Total cost incurred during post warranty period 

, ,,PW PW
p q p qTC TD : Total cost and total duration in the post warranty period, respectively, when the 

PM is imperfect with probability p  and 1q p= −  

,W PWTD TD : Total duration in the warranty period and in the post warranty period, 

respectively 

( )1 2, ,iL w w T : Long run expected cost per unit time with three decision variables ( )1 2, ,w w T  

when 1,i =  it is under the customers’ point of view and when 2,i =  it is under the 

manufacturers’ point of view. 

( )1 1 2, , ,L w w T p q : Long run expected cost per unit time with three decision variables 

( )1 2, ,w w T  under the customer’s point of view when the PM is imperfect with the probability 

p  and 1q p= −   

( )2 1 2, , ,L w w T p q : Long run expected cost per unit time with three decision variables 

( )1 2, ,w w T  under the manufacturer’s point of view when the PM is imperfect with the 

probability p  and 1q p= −   
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1 2,y y : Times to perform CPM and PM, respectively 

 

7.2  Problem Description  

We develop the warranty cost model considering warranty period and post warranty period for 

the k-out-of-n system. The structure of warranty period and post warranty period is described 

in Fig. 7.2.1. During the warranty period, whenever a product fails, only minimal repair 

services are provided. Corrective maintenance (CM) has the same meaning with minimal 

repair. However, during the post warranty period, it will consider two different kinds of 

services: corrective maintenance combined with preventive maintenance (CPM) and 

preventive maintenance (PM) itself. Perform CM on the failed components together with PM 

on all unfailed but deteriorating ones (which is CPM) once exactly m components are idle, or 

perform PM on the whole system once the total operating time reaches , 1,2,iT i = " , 

whichever occurs first. That is, if m components fail in the post warranty period, CPM is 

performed; if less than m components fail in the post warranty period, then PM is carried out 

at time , 1,2,iT i = " . m is assumed to be a predetermined positive integer, where 

1 1.m n k≤ ≤ − +  As long as m is less than 1n k− + , the system will not fail and continue to 

operate. PM service is provided periodically in the post warranty period and upon at least a 

certain fixed number of failures which is m with CM. 

 
Fig. 7.2.1 Warranty period and post warranty period 

Minimal Repair

0

Post warranty Period

T1

PMCPM

Warranty Period

T2 ….

PMCPM

w

m failures
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Fig. 7.2.1 indicates that when there are less than a certain number of failures ,m  in the post 

warranty period, PM would be provided at the time of , 1,2,iT i = " . When there are m  

number of failures, CM would be provided for failed components and PM for the deteriorating 

components which is CPM. After each CPM, the interval Ti starts again periodically as a new 

cycle.  

Customers would not be interested in PM during the warranty period, because the 

warranty will enable them to receive a repair service. However, during the post warranty 

period, the customers have to bear the cost for any failure of either the components or the 

system, causing them to be cautious of the condition of the product and possible cost related 

to any failures. Thus, customers may be interested to purchase a PM service when the 

maintenance cost is much less than a failure cost. This cost analysis of post warranty period 

extends the work by Pham and Wang [130].    

During the warranty period, in relation to the compensation to a failure of a product, there 

are three basic types of warranty policies: free repair/replacement warranty (FRW), pro-rata 

warranty (PRW) and combination warranty (CMW). FRW is a warranty which provides a free 

repair or replacement service for the customers. PRW would enable partial refund of purchase 

cost depending on the failure time. However, in the alternative PRW, customers need to pay 

service cost depending on the failure time. CMW contains both features of FRW and PRW. In 

the chapter, CMW is referred to as a combination of FRW and alternative PRW.  

We develop warranty cost models considering both the warranty period and the post 

warranty period with minimal repairs. We then obtain the optimal warranty period, the repair 

time limitation and maintenance cycle to minimize the long run expected cost per unit time 



118 
 

 
 

when warranty reserve are enough. Additionally, when the warranty reserve is limited, we try 

to obtain the optimal warranty period.  

7.2.1  Assumptions 

1) Each failure of a component of the system during the warranty period is immediately 

detected. 

2) Inter-occurrence failure intervals are independent to each other. 

3) The probability of having more than one failed component simultaneously is zero. 

4) A repair time is not included in the warranty period. It is not only because the repair times 

relatively short compared to the warranty period but also because it increases the 

customer’s satisfaction.  

5) k-out-of-n system consists of n statistically independent and identically distributed 

components.  

 

7.3 Warranty Cost Modeling  

In this section, we develop two-dimensional warranty model with failure times and repair 

times during the warranty period and investigate the optimal warranty period and repair time 

limitation. Three decision policies (warranty periods, repair time limitation, and the 

maintenance cycles) are obtained to minimize the long run expected cost during the warranty 

period and the post warranty period.  

 

7.3.1  Two-dimensional Warranty Model in the Warranty Period 

During the warranty period, whenever a system fails, it would be repaired minimally on the 

point of failure. Additionally, two kinds of warranty services are considered. One is a repair 

service and the other is a replacement service. In general, when there is a failed component, 
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the repair service is considered first, and replaced only when it cannot be repairable. Also, if 

failed products were delivered to the warranty service centers, they should return back to the 

customer within a certain threshold of time for customers’ satisfaction. Therefore, repair 

warranty service time limitations are considered. Because the repair service is minimal, the 

repair service rate follows NHPP. Since there are two kinds of warranty services, repair and 

replace, we call it a two-dimensional NHPP warranty, referred to [167].  

Fig. 7.3.1 describes the warranty services time model for a k-out-of-n system. The warranty 

policy is non-renewable. While trying to repair a failed system, if a repair time exceeds the 

time limit, w2, then it is replaced, rather than continuing for repair. w1 represents the warranty 

period and w2 represents a time limitation for the repair service. The horizontal axis is the 

failure time 1 , 1,2, ,iT i = "  in a NHPP of rate ( )m t  and the vertical axis is the repair time 

2 , 1,2, ,iT i = "  which is assumed to be identically distributed and independent of the NHPP. 

We consider repair times which are less than the repair time limit and repair times are not 

included in the warranty period for the customer’s satisfaction.  

  
Fig. 7.3.1 Warranty services model using two-dimensional NHPP 

Failure Time, T1

Repair Time, T2
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In Fig. 7.3.1, 1,1 1,2, , ,t t "  are the failure times in a NHPP of rate ( )1 .m t  Then a point is placed 

in the ( )1, 2,,t t⋅ ⋅  place for 1, 2,i = " . A r.v. repair time is assumed to be i.i.d. and independent 

of the Poison process. If 1,1 1,2, ,T T "  are failure times in a non-homogenous Poisson process of 

rate ( )1m t  and repair times 2,1 2,2, ,T T "  are independent identically distributed continuous r.v. 

having pdf ( )2 .Rf t  Then ( ) ( )1,1 2,1 1,2 2,2, , , ,T T T T "  form a two-dimensional NHPP in the 

( )1 2,T T  plane, where the mean number of points in a region Ψ  is given by [167] 
 
 

( ) ( ) ( )1 2 2 1Rm t f t dt dt
Ψ

μ Ψ = ⋅∫∫
                                              

(7.3.1) 

The number of points ( )N Ψ  falling in the area ,Ψ  has a Poisson distribution with mean 

( )μ Ψ  in eq. (7.3.1). If XΨ  denotes the number of failures in the area ,Ψ  then we obtain the 

reliability function of the component, in terms of number of failures, as follows: 
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The expected number of failures can be obtained as follows: 
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This is the expected warranty cost for a component. Then, we consider a k-out-of-n system 

where there are n components in the system. For the k-out-of-n system, we need to have at 

least k-out-of-n components in the system to work. Assuming that all units have identical and 

independent life distributions and the reliability function of a component is obtained by eq. 

(7.3.2). Then, the probability of having exactly k functioning units out of n is given by 

( )( ) ( ) ( )( )Pr , , 1 0,1,2, ,
n kkn

n k R x R x R x k n
k

"
−⎛ ⎞

= − =⎜ ⎟
⎝ ⎠                    

(7.3.4)
 

where ( )R x
 
is given by eq. (7.3.2).

 
Since this is a k-out-of-n system, the probability that a system is not working is given by 

               

( ) ( ) ( )( )
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i

n
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i

− −
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where ( )R x

 
is given by eq. (7.3.2).

 
If the expected number of system failures multiplied by the warranty cost, then the expected 

warranty cost ( )wE C  is obtained by 

( ) ( ) ( )( )
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(7.3.6)

 

where ( )R x is given by eq. (7.3.2) and let c  be the warranty cost per a system failure and sx  

be the number of system failures. 

There are three basic types of warranty policies FRW, PRW and CMW. Under a FRW, 

customers would receive a repair/replacement warranty service for free. Under a PRW, 

customers would receive a refund depending on the failure time. The basic notion of a pro-rata 

warranty is that replacements are not provided free of charge, but at a prorated cost, 

depending on the amount of usage or service time provided prior to its failure [20]. In this 

chapter, we consider that customers have to pay partial repairing service cost depending on 
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the failure time, this policy called alternative PRW. If the replacement cost exceeds the repair 

cost, manufacturers would provide repair service rather than replacement service. Accordingly, 

whenever the product fails, the manufacturer would end up providing the repair service more 

often than the replacement service. So, alternative PRW is more easily applicable than 

original PRW. CMW contains both features of FRW and alternative PRW. We look at cost 

analyses with both sides: perspectives of the customers and of the manufacturers. We use the 

expected warranty cost of the two-dimensional warranty, eq. (7.3.6) to obtain the long run 

expected cost per unit time. The repair service and the replacement service are considered 

together.  

Let ( )wE C  be the expected warranty cost in the warranty period. And i.i.d. r.v. ( ),i it t1 2  is a 

pair of a failure time and a repair time of ith failure, i=1,2,…. Under the alternative PRW, if 

the failure occurs under warranty, then customers have to pay partial repair cost, ( )1 2, .i ig t t

Therefore, from the customer’s perspective, the total warranty cost in the warranty period 

1
WTC  is given by 
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(7.3.7) 

From the manufacturer’s perspective, the total warranty cost 2
WTC  is given by 
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 where 2 2 1+ =p q  and ( )wE C  is given in eq. (7.3.6). 

Using these warranty policies (FRW, alternative PRW and CMW), we consider warranty cost 

analyses under the aspects of both the customers and manufacturers.  

For the cost function, there may be several options [20]. Among them, the customer cost 

function for proportional linear co-pay [20] is assumed to be selected as follows: 
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(7.3.9) 

Usually, ( )1 2,i ig t t would be any non-increasing positive function in ( )1 2, ,∈Ωi it t  1, 2,....i =  

( )1 2,i ig t t  decreases to zero as 1it and 2it  increase.  

 

7.3.2 Optimal Warranty Period When Warranty Reserve is Limited 

In this section, we try to obtain the optimal warranty period when there is a limitation for 

warranty reserve. If the first failure time is larger than ,w1  then the number of failure in w1  is 

zero. , 1,2, ,iY i = "  denotes a waiting time between (n-1)th and nth failure. Using the mean 

function, the probability that the first failure time is larger than w1  is given by  

{ } ( )( )
( ) ( )1 2 2 1

1 1 0
Rm t f t dt dt

P Y w P N e Ψ

− ⋅∫∫
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So, the probability that the nth waiting time is larger than w1  is given by 
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From eqs. (7.3.10) & (7.3.11), we obtain the expected waiting time for nth failure.  
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Also, the expected length time of nth failure interval is given by:
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For example, if c = $ 500 and warranty cost reserve is $ 2,500, and 2 10,w =  then we can have 

up to 5 failures, and the expected waiting time until 5 failures is given by   

( )

( ) ( )
( ) ( )

1 2 2 1

1 2 2 14

1 2 3 4 5 10
1 !

34.0719

R
i

m t f t dt dt

R

i

e m t f t dt dt
E Y Y Y Y Y dw

i

Ψ

− ⋅

∞ Ψ

=

∫∫ ⎛ ⎞
⋅⎜ ⎟

⎝ ⎠+ + + + =

=

∫∫
∑∫

         

(7.3.14)

               

 



125 
 

 
 

where the rate of NHPP which each failure time follows, is ( )
2
1

1 2
tm t =  and the pdf of the 

repair times follows the Weibull distribution with a shape parameter 2k =  and a scale 

parameter 200λ =  whose pdf is given by ( )
2

2 2
2002 2

2
1

100 200

kt t

R
t tkf t e eλ

λ λ

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
2, 0.t ≥  

And using same rate of NHPP and pdf of the repair times, the expected waiting time until 6 

failures is given by   
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If we can have up to 5 failures and don’t have sufficient warranty cost reserve for the 6th 

failures, then the warranty period would be located in the time unit interval between 34.0719 

and 37.5373. The time unit can be chosen based on previous data from manufacturers. If each 

unit represents a month then the warranty period would be between 34.0719 months and 

37.5373 months. So roughly a 35 or 36 or 37 months warranty period would be recommended 

for the manufacturers’ warranty policy.  

 

7.3.3  Imperfect Maintenance Service in the Post Warranty Period 

We will consider the post warranty cost in the cost analyses in this section. For the cost 

analysis during warranty period, we use the cdf of failure rate which follows NHPP. On the 

contrary, for the cost analysis for post warranty period, we use the cdf of failure time. There 

are two services in the post warranty period, one is the PM and the other is CPM. PM is one 

type of maintenance services to prevent the system failure. CPM is a mixture between PM and 

CM. In the warranty period, a failed component would be repaired minimally whenever a 
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failure occurs using its warranty. Additionally, the customer didn’t consider PM in the 

warranty period because of their warranty. However, in post warranty period, there are 

repeated periodic intervals , 1, 2, .iT i = "  If there are less than a certain number of failures, 

PM services would be provided at the time of , 1, 2, .iT i = "  A threshold number of failure is 

named m. If there are m failures, they provide CPM services. After either PM service or CPM 

service is provided, another interval T is set up for next period’s PM. Additionally, we 

consider that there are two kinds of PM; one is perfect PM and the other is imperfect PM.  

Usually, it is assumed that imperfect maintenance restores the unit’s operating state to 

somewhere between “as good as new” and “as bad as old”. In other words, this implies that 

after PM, a system is good as new with probability p and is bad as old with probability 1-p. 

The post warranty cost consists of two parts, CPM cost and PM cost.  A renewal cycle is 

completed either by any CPM or by a imperfect PM where a system is good as new with 

probability p. Let pT  be the first perfect PM alone time point. ( )mF ⋅  and ( )mR ⋅  denotes the 

cdf and reliability function of exactly m component failures. The probability of CPM is given 

by
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Similarly, the probability of PM is given by 
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Let cpmc  be the cost of CPM and let pmc  be the cost of PM. The total cost during a post 

warranty period with imperfect PM ( ), 1,
PW
p qTC w T  is given by 
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We obtain total cost during warranty period and post warranty period with perfect PM and 

imperfect PM. Under customers’ point of view, the total cost with imperfect PM 

( )1 1 2, , ,TC w w T p q  is given by 

( ) ( )1 1 2 1 , 1, , , ,W PW
p qTC w w T p q TC TC w T= +

                                     
(7.3.19)

 

where 1
WTC  and ( ), 1,

PW
p qTC w T  are given in eq. (7.3.7) and (7.3.18), respectively.  

As a special case when the PM is assumed to be perfect. It is easy to ascertain the total 

maintenance cost of CPM and PM individually. Then, total cost for post warranty period is 

given by  
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As the customers’ point of view, the total cost is given by 
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where 1
WTC  is given in eq. (7.3.7).  

Under manufacturers’ point of view, the total cost is given by 

( )2 1 2 2, , WTC w w T TC=

                                                          

(7.3.22) 

where 2
WTC  is given in eq. (7.3.8).  
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7.3.4  Long Run Expected Cost 

In this section, we obtain the long run expected cost per unit time using the expected duration 

and the expected cost. We obtain the expected duration of a renewal cycle in a similar way to 

obtain the expected cost. The duration is illustrated in Fig. 7.3.2. Let y1 be the time to perform 

CPM and y2 be the time to perform PM.  

 
Fig. 7.3.2 expected duration structure 

PM is assumed to be imperfect. So the total duration

 

of a renewal cycle with decision 

variables ( )1,w T  is given by 
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p qTD w T p q TD TD= +

                                                    

(7.3.23) 

We already obtain the ( )P CPM  and ( )P PM  from eqs. (7.3.16) & (7.3.17). When PM is 

imperfect, the post warranty duration ,
PW
p qTD  is given by  
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The expected total duration of a renewal cycle when PM is imperfect ( )1, ,TD w T p q  is given 

by 

( )

( ) ( )
( )

( ) ( )1 1
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(7.3.25) 

We assume that PM at time T is perfect in this section. A renewal cycle consists of 

maintenance time and 1w  duration. Let WTD  and PWTD  be total duration of warranty period 

and post warranty period, respectively. The duration of post warranty period can be obtained 

as follows: 

( ) ( ) ( )( ) ( )( )
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(7.3.26) 

Total duration is given by 

( ) ( )
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(7.3.27)

                     On the other hand, the long run expected cost per unit time is obtained separately when PM is 

perfect or imperfect, when they are under the customer’ point of view or under the 

manufacturer’ point of view, when warranty polices are used among FRW, alternative PRW 

or CMW.  

When PM is imperfect ( )0 1p≤ ≤  and under the customer’ point of view, the long run 

expected cost per unit time is given by 
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where 1
WTC  is given in eq. (7.3.7).  

When PM is perfect, that means p = 1, then eq. (7.3.28) becomes  
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(7.3.29)

                

When PM is imperfect and under the manufacturer’ point of view, the long run expected cost 

is given by 
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where 2
WTC  is given in eq. (7.3.8).  

When PM is perfect and under the manufacturer’ point of view, the long run expected cost per 

unit time becomes: 
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7.4 Optimization Problem  
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In Sections 7.3, we obtain the long run expected cost per unit time using the expected 

warranty cost and the expected duration during the warranty period and the post warranty 

period. For the long run expected cost per unit time, we use two-dimensional warranty 

analysis and imperfect PM. From time to time, people need an optimal policies in which while 

warranty cost reserve is larger than the total warranty cost and while the maintenance interval 

in the post warranty period happens after the warranty period, the long run expected cost per 

unit time is minimized both under the customer’s point of view and under the manufacturer’s 

point of view.  

The optimization problem can be formulated in terms of decision variables 1 2,w w  and .T   

Under customers’ point of view, we minimize the function ( )1 1 2, , ,L w w T p q  with some 

constraints based on the three types of warranty policy. Under customers’ point of view, 

( )
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subject to 

1 2 1, 0, 0,w w T w T≥ > <  
where 1

WTC  is given in eq. (7.3.7).  

Similarly, under manufacturers’
 

point of view, the function ( )2 1 2, , ,L w w T p q  is also 

minimized with several constraints. Under manufacturers’
 
point of view, 
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1 2 1, 0, 0,w w T w T≥ > <  

where 2
WTC  is given in eq. (7.3.8).  

The optimal maintenance policy can be determined from the optimization model using 

nonlinear function solving approaches. Also, the optimal warranty period could be obtained 

by computer software using various kinds of parameters and distributions for the failure rate. 

  

7.5  An Application  

In South Korea, there are four nuclear sites and, in 2010, there are 20 nuclear power plants in 

operation with a total licensed output amount to 17,716 MWe (MegaWatt electrical) and 8 

nuclear power plants under construction, for a total of 28 units in operation by the end of 2016 

[2]. We investigate the field data to check their dependency using a nonparametric method. 

We implement our proposed approaches to conduct warranty cost analysis using the field data.  

7.5.1  Data Description 

Among 20 nuclear power reactors in the four nuclear plants in South Korea, we pick one 

nuclear plant which has three nuclear power reactors. This nuclear plant is kind of 1-out-of-3 

system because it is actually three parallel components system. If only one nuclear reactor is 

broken and fail to operate, then they would repair it immediately. So m is assumed to be 1. It 

is summarized that 10 failure data for nuclear power plants for relatively recent events or 

failures in Table 7.5.1.  
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Table 7.5.1  Failure times and repair times for nuclear power plants (failure times : days, 

repair times : hours)  

No. Reactor 1 Reactor 2 Reactor 3 
Failure Repair Failure Repair Failure Repair 

1 465.43 197.83 34.85 276.92 218.85 29.25 
2 717.26 202.50 383.85 85.13 12.04 278.87 
3 7.00 641.87 188.86 310.25 110.94 5.25 
4 39.11 372.58 666.26 316.00 278.84 35.67 
5 174.62 3.79 666.06 447.79 633.10 622.08 
6 362.15 225.83 115.29 102.96 505.41 207.50 
7 196.84 108.08 1398.44 220.37 166.08 319.33 
8 150.24 51.92 49.68 352.71 1178.80 162.79 
9 132.55 842.25 230.30 355.63 368.25 41.71 
10 520.24 851.13 75.02 126.33 62.35 28.54 

From Operational Performance Information System for Nuclear Power Plant [107] 

The proposed approach has warranty model in the warranty period and the maintenance model 

in the post warranty period. But the real application covers only the warranty model. From the 

website [107], we obtain the failure data and repair data but the maintenance related 

information is not available. The real application covers only the warranty period and the 

simulated data covers the post warranty period.  

We investigate the warranty cost analysis using repair times and failure times of the nuclear 

power plants in the warranty period. To conduct cost analysis, we have to find out whether the 

failure times and the repair times are dependent or not. In next subsection, we are going to do 

the dependence test.   

7.5.2  Dependency Test 

In this section using a nonparametric method, Kendall’s τ , we are going to test the hypothesis 

if the failure times and repair times are dependent. If failure times and repair times are 

independent then we can use the proposed model which is eq. (7.3.1). Otherwise, a bivariate 

function with the failure times and the repair times can be used in order to obtain the warranty 
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cost. Kendall’s rank correlation measures the strength of monotonic association between the 

failure times and repair times. It may also be noted that usual Pearson correlation is fairly 

robust and it usually agrees well in terms of statistical significance with results obtained using 

Kendall’s rank correlation. The null and the alternative hypotheses are as follows: 

: The failure time and the repair time are independent.
: The failure time and the repair time are dependent.a

H
H

⎧
⎨
⎩

0

        
or

  :
:a

H
H

τ
τ
=⎧

⎨ ≠⎩
0 0

0  
Based on the result of Kendall’s τ  method using R software [99], for Reactor 1, τ  is -0.022 

and the p value is 1. Therefore, at significant level 0.05,α =  we cannot accept the alternative 

hypothesis .aH  It is concluded that the failed times and repair times are independent. 

Similarly, for Reactor 2, τ  is 0.067 and the p value is 0.8618. For Reactor 3, τ  is 0.33 and the 

p value is 0.2105. At significant level 0.05,α =  because all Reactors’ p values are larger then 

significant level 0.05,α =  it is concluded that the failed times and repair times for Reactor 2, 

and 3 are independent.  

7.5.3  Best Fit Distributions 

Given the field data from Table 7.5.1, we now want to figure out the best fit distributions for 

the repair times. Calculations are based on more than 10 distributions specified from computer 

software. Using the computer software, it shows that for Reactor 1’s repair times, Weibull 

distribution, exponential and gamma distributions are best three well-fitted distribution by the 

order of log likelihood values. For Reactor 2 and 3, the three best well fitted distributions are 

described in Table 7.5.2. pdfs of each distributions are as follows. 

Weibull distribution with three parameters : 
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Weibull distribution with two parameters :  
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Rayleigh distribution : ( )
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Exponential distribution with two parameters : ( )
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(7.5.4) 

Gamma distribution : ( ) ( )
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Log normal distribution : ( )
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Table 7.5.2  Three best fitted distributions of repair times for 3 reactors 

Fitted distribution Reactor 1 Reactor 2 Reactor 3 
Best Weibull (3 Par.*) Weibull (3 Par.) Weibull (3 Par.) 

 0.72,β =  
303.98,η =  
3.75γ =   

3.1424β =  
356.8643η =  

58.7363γ = −  

0.6428β =  
131.4138η =  
5.1975γ =  

Second best Exponential (2 Par.) Weibull (2 Par.) Exponential (2 Par.)
 0.0029λ =  

345.9875η =  
2.4628β =  
293.05η =  

0.0060λ =  
167.85η =  

Third best Gamma Rayleigh Weibull (2 Par.) 
 0.8730α =  

400.6667θ =  
2.0000β =  
253.2770η =  

0.8496β =  
159.1387η =  

* Par. : parameters 

 

For Reactor 1, Weibull with 3 parameters, exponential with 2 parameters and gamma 

distributions are well-fitted distributions. Based on the output, we choose the Weibull 
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distribution for the repair times’ pdf then conduct warranty cost analysis. After we use the 

computer software, we figure out that for Reactor 2, the best fitting distributions for the repair 

times are listed by Weibull distribution with three parameters (β = 3.1424, η= 356.8643, γ = 

-58.7363), Weibull distribution with two parameters (β = 2.4628, η  = 293.05) and Rayleigh 

distribution ( β = 2, η = 253.2770). And the best fitting distributions for Reactor 3 are listed by 

Weibull distribution with three parameters ( β = 0.6428, η = 131.4138, γ = 5.1975), 

exponential distribution with two parameters ( β = 0.0060, η  = 167.85) and Weibull 

distribution with two parameters (β = 0.8496, η = 159.2770).  

For the failure rates of NHPP, many researchers [180] have investigated and studied the 

estimation and simulation of NHPP. However, in the study, we simplified the estimation for 

the failures rates of NHPP and used linear regression for cdf of failure times. Therefore, for 

each reactors, we obtain three different failure rates of NHPP which are given by 

( )1 1 1214 455,λ t t= +  ( )2 1 1475 527,λ t t= − and ( )3 1 1429 713.λ t t= −  Using this failure rates, 

we can estimate the expected number of warranty services.  

 

7.5.4 Long Run Expected Cost 

Due to a complex nonlinear function, we use the Nelder-Mead downhill simplex method [92, 

137] to obtain an optimum solution for the above optimization problem, with a hope to obtain 

the global solution. In this study, we also have used other non-linear optimization approaches 

such as random search method, differential evolution method and simulated annealing method. 

Among them, Nelder-Mead downhill simplex method seems to be the most popular direct 

search method for obtaining the optimum solution of a nonlinear function, which does not 
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require the calculation of derivatives. Using the Nelder-Mead approach, we optimize the long 

run expected cost of the model. For the numerical example below, we apply our developed 

models. We wish to find the optimal periods * *
1 2,w w  and the optimal maintenance cycle, *,T  

which minimizes the long run expected costs. In summary, we can formulate the following 

optimization problem: 

* * *
1 2 1 2Find (w , w , ) :          Minimize  ( w , w , , )T L T p q  

We consider that after PM service, a system is good as new with probability p and is bad as 

old with probability 1 .p−  The PM service is considered imperfect, because it is more likely 

in real life.  

A 1-out-of-3 system is considered under manufacturers’ point of view and PRW policy and 

m  is assumed to be 1. Suppose that a time to failure of each component follows the Weibull 

distribution eq. (7.5.2). Additionally, 1y  is the time to perform CPM and 2y  is the time to 

perform PM. cpmc  is cost of CPM and pmc  is cost of PM. Let 

1 20.6, 0.4, $2000, $100cpm pmy y c c= = = =  

Under alternative PRW and under customers’ point of view, total warranty cost from eq. 

(7.3.7) is given by 
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Each nuclear reactor’s reliability function, ( )jR x  can be obtained from previous Section 7.5.3 

Best fitted distribution. Denote ( )1E T and ( )2E T as follows: 

( )

( )

1
1

2
2

2 12
3

2

wE T

wE T

+
=

=
                                                             

(7.5.2) 

Using eq. (7.3.9), the expected value of ( )1 2,i ig t t  is given by 
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We can rewrite the expected value of ( )1 2,i ig t t  as follows: 
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(7.5.4) 

Substituting the above data into eq. (7.3.28), the long run expected cost per unit time under 

the customers’ point of view is given by  
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We consider three optimum policies of the warranty period, the repair time limit, and the 

maintenance cycle. Under 60% for the perfect maintenance, we obtain the optimal solution as 

follows: 

* * *
1 2297, 3.1, 518w w T= = =  and

 ( )* * *
1 1 2, , , 0.9639L w w T p q =  

Only minimal repair is performed for any component’s failure in the warranty period. In the 

post warranty period, PM services would be repeated. The failed component will be subject to 

CM together with PM on the remaining deteriorating components when there are m numbers 

of failed components in the middle of maintenance cycles in the post warranty period. If less 

than m numbers of components fails until time *,T  PM is carried out at * 518T =  and the 

optimized warranty period is 297.  

 

7.6  Concluding Remarks  

In this chapter, we showed the methodology for the warranty period, post warranty cost 

analyses and the long run expected cost per unit time subject to minimal repairs. In the 

warranty period, the warranty cost methodology is that a certain number of failures are 

considered in the censored area by the warrant period and the repair time limit. Obviously the 

longer warranty period is more helpful to increase the sales and the number of customers. We 

investigate the optimal warranty period when there is the limitation of the warranty cost 

reserve. Considering warranty conditions such as different perspective of views (customers vs 

manufacturers) and warranty policies (FRW, alternative PRW and CMW), we obtain the 
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optimal warranty period and the repair time limit. We also proposed the two-dimensional 

NHPP and obtained the expected warranty cost.  

For the post warranty period, we considered two types of warranty services such as CPM and 

PM. There are periodically interval T and when there are less than the threshold number of 

failures, manufacturers provide periodic PM services. However, when there are the threshold 

numbers of failures, then they provide CPM services. Also, we considered perfect PM 

services and imperfect PM services. We discussed the alternative PRW instead of the original 

PRW and obtained the long run expected cost per unit time and optimal policies for (w, T). 

We presented several numerical examples to demonstrate the applicability of the 

methodologies and results derived in the chapter. Eventually, we obtain two optimized local 

values for two numerical examples.  
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Chapter 8 

A New Two-dimensional Warranty Policy 
with Repair Times and Failure Times 

using Field Data 
 

 

 

8.1  Introduction  

Some people insist that the most effective way to measure a manufacturer’s performance is 

not the frequency of recalls but rather the amount manufacturers pay in warranty costs relative 

to their revenues [179]. Although Toyota has outshined its major American Competitors 

before, it is struggling by recent recalls for their popular models these days. Industry analyst 

estimates that it will cost some $250 million in warranty costs alone to address one of the two 

recalls in the United States in Feb. 2010 [48]. Reuters said that Toyota, reeling from its largest 

recall in history, is considering a new warranty program that at least matches Hyundai’s 

market-leading 10-year, 100,000 mile power train warranty [86]. As we see, the warranty can 

be used as not only the important measurement for a manufacturer’s performance but also big 

promotions to allure the customer.   

Also, warranty policy is a guarantee for the seller to provide to the buyer with a specific 

service such as repair or replacement in the event of the product failure. Nowadays with a 

global competition amongst manufacturers, having a good quality product with an eye 
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catching design is not sufficient enough to appeal to consumers to make a purchase. Other 

intangible features, warranty policy, after sales service (A/S), brand et al., are becoming 

important factors in consumer behavior. Further as the economy contracts, consumers will 

want to extend the usage period by fixing or replacing parts to reduce cost. As a consequence, 

the consumer's demand for a more detailed warranty policy is increasing. This is why the 

warranty policy is becoming more important to companies, as they can strategically use 

warranty policy as a promotional tool to appeal to consumers.  

 

Many different types of warranties may be defined based on the characteristics of warranty 

policies [20, 21]. Various common from a simple to complicates warranty policies are as 

follows. The one dimensional warranty is characterized by the warranty period and the two-

dimensional warranty is characterized by a region in a two-dimensional plane with the usage 

and the age/time. In other words, single variable could be time, age or usage. In the case of 

two-dimensional warranties, one is representing time and the other representing item usage. 

Using two-dimensional warranty policy, we calculate the warranty cost and investigate the 

statistical properties of warranty models. Several researchers [32, 42, 43, 70, 71, 83, 107, 197] 

have proposed two-dimensional models under warranty. Yun and Kang [197] examine new 

warranty servicing strategy, considering imperfect repair with a two-dimensional warranty. 

Chukova and Johnston [43] consider that the warranty has options in choosing the degree of 

repair applied to an item that has failed within the warranty period and develop a particular 

warranty repair strategy, related to the degree of the warranty repair, for non-renewing, two-

dimensional, free of charge to the consumer warranty policy. Chun and Tang [44] propose 

several decision models that estimate the expected total cost incurred under various types of 

two-attribute warranty policies. Kim and Rao [85] consider two-attribute warranty policies for 
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non-repairable items and the item failures are described in terms of a bivariate exponential 

distribution. Iskandar et al. [71] investigate a new warranty servicing strategy for items sold 

with two-dimensional warranty where the failed item is replaced by a new one when it fails 

for the first time in a specified region of the warranty and all other failures are repaired 

minimally. In Chen and Popova’s paper [32], they suggest a new maintenance policy which 

minimizes the total expected servicing cost for an item with two-dimensional warranty.  

If the failure times and the repair times are independent, marked Poisson process could be 

used to develop the two-dimensional warranty model [121]. If they are dependent, bivariate 

distributions could be used to model the failure times and the repair times. From the proposed 

model, one can determine the number of warranty services under warranty. To test whether if 

they are independent or dependent, there are several ways might be considered. If the failure 

times and the repair times are following the bivariate normal distribution, t test could be used 

to check their dependence. On the contrary, if they are not following the bivariate normal 

distribution, nonparametric methods such as Spearman rank correlation coefficient test or 

Kendall’s τ  test could be used. 

Using the field data, we can obtain the key information to evaluate product’s reliability 

practically. Because of this reason, many researchers have investigated various topics from the 

field data. Among them, Several researchers [94, 95] have studied the warranty policy based 

on the field data from real applications. Majeske [94] proposes a general mixture model 

framework for automobile warranty data that includes parameters for product field 

performance, the manufacturing and assembly process and dealer preparation process. Oh and 

Bai [116] develop methods for estimating the lifetime distribution for situations where 

additional field data can be gathered after the warranty expires in a parametric time to failure 
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distribution. Jung and Bai [83] consider a method of estimating lifetime distribution for 

products under two-dimensional warranty in which age and usage are used simultaneously to 

determine the eligibility of a warranty claim.  

Field data provides important information which is useful to evaluate the reliability of the 

product, to investigate the weak point of the product and to compare the product’s design, 

material and production methods. Additionally, instead of the usage and the age, we consider 

totally different two dimensions such as failure times and repair times. We study the bivariate 

distributions of product’s failure times and repair times for the two-dimensional warranty 

policy using the field data.  

The remainder of this chapter is organized as follows. In Section 8.2, the problem description 

is discussed. Section 8.3 focuses on the two-dimensional warranty models when failures times 

and repair times are dependent. Two-dimensional renewal function is obtained using BED for 

several types of warranty policies. An illustrative example is given in Section 8.4 to show the 

two-dimensional warranty models with BEDs using a field data. Finally, we discuss the 

strengths and the weakness of the proposed approach in Section 8.5 and concluding remarks 

are given in Section 8.6.    

 

8.1.1  Nomenclature 

, :w w1 2  Warranty period and time limit of the repair service, respectively 

( ) ( ) ( ) ( ), , , :f F F L⋅ ⋅ ⋅ ⋅  pdf, cdf, reliability function and likelihood function, respectively 

( ) ( ), , , :f x y F x y  Bivariate pdf and cdf, respectively for failure times X  and repair times Y  
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( ), :M w w1 2  Expected number of warranty services by the warranty period w1  and by the 

repair time limit w2  

c : a warranty cost per failure 

( ) ( ) ( ) ( ), , , , , , , , , , :N w N w w N w w w w N w w w w1 2 2 1 2 3 11 12 21 22 4 11 12 21 22 number of repair services 

under warranty for Policy (1), for Policy (2), for Policy (3) and for Policy (4), respectively. 

 

8.1.2  Assumptions 

• Repair and replacement do not happen simultaneously. Although they tried to 

repair it for the time being in customer service center, but the failed product can’t 

be repaired, the failed product would be replaced.  

• When a product fails, the repair service would be provided first.  

• Repair cost and replacement cost are constant.  

• For the customer’s satisfaction, the repair times are excluded in the warranty 

period.  

 

 

8.2  Problem Description  

The typical well-known two-dimensional warranty policy is to use usage and age/time as two-

dimensions. In this chapter, totally different two-dimensions are used such as the failure times 

and the repair times. In this developed two-dimensional warranty policy, if a customer’s failed 

product is delivered to the customer service center for repair services, the customer service 

center is supposed to return the fixed product back within the threshold time for the 

customer’s satisfaction. Therefore, if the failed product can’t be repaired after the time being, 
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the replacement service is provided instead of continuing to repair. The failure times would be 

censored by the warranty period, on the other hand, the repair times would be censored by the 

limit of the repair time. We consider the warranty services which happen only within two 

censored limitations.  

When we investigate two-dimensional warranty using failure times and repair times instead of 

usage and age/time, we separate the two cases: when repair times and failure times are 

dependent and when repair times and failure times are independent. If they are independent, 

Park and Pham [121] recently develop two-dimensional warranty model using non-

homogeneous Poisson process and consider other conditions such as under different warranty 

policies (free repair/replacement, pro-rata and combination) and under different point of views 

(customer and manufacturer) including post warranty period. Based on the field data and since 

they are dependent, we first determine a bivariate distribution and then develop two-

dimensional warranty models with repair times and failure times. The failure time is the 

interval between product’s recovery time for previous failure and next failure time and the 

repair time is the interval between a failure time and its recovery time.  

 

8.3   Model Formulation  

Murthy et al. [107] derived expressions for the expected warranty cost for the four policies. 

We develop four different policies based on different shapes of the repair time limits and 

discuss the two-dimensional renewal functions to model warranty cost.  

Four models with different time limit of repair services are described in Fig. 8.3.1. Let w2 be a 

time limit for the repair service and w1 be a warranty period. Also, T1  axis has constant 

warranty period limitation for the failure times and on the other hand, T2  axis has constant 
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limit for the repair times. In Fig. 8.3.1 (a), we consider there is no warranty period. If we use 

this model in the customer service center, they can obtain the repair cost using the number of 

repair services without the warranty period. Then the customer service center can obtain the 

repair cost. They use repair time limit, as mentioned before, which indicates that if they can’t 

repair the failed product within the time limit, then they provide the replacement service 

instead of continuing to repair. Using this model, the manufacturer could handle the repair 

cost and replacement cost using the repair time limit and find a way to maximize the 

customers’ satisfaction and to minimize the company’s cost.   

 
 Fig. 8.3.1: Two-dimensional warranty policies with various time limits of the repair times 

 

In Fig. 8.3.1 (b), the time limit is square-shaped which is a basic-shaped model using the 

repair time limit and the warranty period.  Fig. 8.3.1 (c) and Fig. 8.3.1 (d) have ladder-shaped 

limits for the repair time. Fig. 8.3.1 (c) has the repair time limit which is higher level at the 
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earlier period and then lower level at the later period. Lastly, Fig. 8.3.1 (d) has the repair time 

limit which is lower level at the earlier period and then higher level at the later period. 

 

8.3.1  Two-dimensional Renewal Function 

Let ( ),M w w1 2  be the bivariate renewal function. Two-dimensional renewal function plays an 

important role in the analysis of two-dimensional warranty policies. But it is difficult to obtain 

analytic expressions for ( ),M w w1 2  and computational procedures are generally required. 

Hunter [69] obtains the analytical expression for ( ),M w w1 2 using Downton’s BED [52]. It is 

rare that the transform is invertible in closed form. For most of the bivariate models, closed 

Laplace transform inversions are not available [109]. Let ( )*
1 2,f s s  be bivariate Laplace 

transform of ( ),f x y  and ( )*
1 2,F s s  be the bivariate Laplace transform of ( ), ,F x y the 

cumulative density function of ( ), .f x y  Then we know that 

( ){ } ( ) ( )*
1 2*

1 2
1 2

,
, ,

f s s
L F x y F s s

s s
= =

                                        (8.3.1)
 

From the properties of Laplace transforms, we have  

( ) ( ) ( ) ( ) ( )
( )*

1 2* * *
1 2 1 2 1 2

1 2

,
, , , ,

n
nn n f s s

f s s f s s F s s
s s

⎡ ⎤⎣ ⎦⎡ ⎤= =⎣ ⎦
                        (8.3.2)

 

A requisite property of ( ),f x y  is that the conditional expectations of X and Y must be 

increasing functions of the other variable. Clearly, the expected warranty cost as well as the 

variance increase linearly with y. Let ( ) ( ),nF x y  be n-fold convolution function of ( ), .F x y  

( ) ( ) ( ), ,n

n

M x y F x y
∞

=

=∑
1                                                     (8.3.3)
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We obtain the bivariate Laplace transform of ( ),ρM x y  as: 

( ) ( )
( )

*
*

*

,
,

,
f s s

M s s
s s f s s

=
⎡ ⎤−⎣ ⎦

1 2
1 2

1 2 1 21                                          (8.3.4)
 

If we use the Laplace transform, we obtain the reverse renewal function, eq. (8.3.4). However, 

it is difficult to obtain two-dimensional renewal function using the reverse Laplace transform. 

Therefore, in the chapter, after Ross’ algorithm [142] is extended, two-dimensional renewal 

function is obtained. Let ( ),N w w1 2  be the number of warranty services within the warranty 

period. Let ( ),x y  be the failure times and the repair times respectively. Later, their parameters 

could be calculated using the field data.   

A bivariate extension of the exponential distribution is proposed as a model for certain 

problems in reliability engineering. The exponential distribution plays a fundamental role as a 

model in a variety of applications, typically connected with survival time, in some of its many 

forms of appearance. However, unfortunately, unlike the normal distribution, the exponential 

distribution does not have a natural extension to the bivariate or the multivariate case. 

Therefore, a large number of classes of bivariate distributions with exponential marginals 

have been proposed since 1960. Nadarajah and Kotz [113] derive the several distributions 

using bivariate exponential random variables. In BED, several researchers have developed 

their own type of bivariate exponential. Downton [52] derives his BED using a simple failure 

model in 1970. Hawkes [65] extends Downton’s BED and proposes a more general 

distribution. Freund [58] proposes another bivariate extension of the exponential distribution 

as a model for certain problems in life testing for a two-component systems. Among them, the 

BEDs with the memoryless property are Marshall & Olkin’s [98], Freund’s [58] and Block & 
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Basu’s [23] from [87], on the contrary, the BED without the memoryless property is Raftery’s 

[135]. Also, if the marginal distributions of BED are exponential, then we can use the BED 

for the field data.  Marshall & Olkin’s BED [98] and Raftery’s BED [135] have exponential 

marginals. Freund’s BED [58] and Block & Basu’s BED [23] have marginals which are 

mixture of exponential distributions. In the study, Marshall & Olkin’s BED is chosen for the 

warranty cost analysis because it has memoryless property and exponential marginal. In 

Marshall & Olkin’s BED, both the marginals have exponential distribution, and they can be 

equal with a positive probability. Because of that reason, if in a bivariate data set, for some 

cases two dimensions take values with positive probabilities, the Marshall & Olkin’s BED can 

be used quite effectively to analyze such data set [91]. From [97, 98], the Marshall & Olkin’s 

BED’s joint probability density function is given by  

( ) ( ) ( )( )1 2 3 1 2 3, expf x y x yθ θ θ θ θ θ= + − − +                                   (8.3.5) 

for 0 x y< <  and 

( ) ( ) ( )( )2 1 3 2 1 3, expf x y x yθ θ θ θ θ θ= + − − +                                  (8.3.6) 

for 0 y x< <  and 

   ( ) ( )( )3 1 2 3, expf x y yθ θ θ θ= − + +                                                 (8.3.7) 

for 0 ,x y< =  when 1 2 30, 0, 0, 0, 0.x y θ θ θ> > > > >  

The marginal pdfs of X and Y are exponential with parameters 1 3θ θ+ and 2 3,θ θ+  

respectively; so, in particular, 

( ) ( )
1 3 2 3

1 1                 E X E Y
θ θ θ θ

= =
+ +                                                 (8.3.8) 

The correlation coefficient ( ),Cor X Yρ =  is given by 
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3

1 2 3

.θρ
θ θ θ

=
+ +                                                                             (8.3.9) 

 

8.3.2  Expected Number of Warranty Service Modeling  

We start by determining ( ), ,E N w w⎡ ⎤⎣ ⎦1 2  the expected number of renewals in the censored 

area of ( ), .w w1 2  First, we condition on X and Y1 1 , the times of the first failure renewal and 

the first repair renewal. Using the conditional probability, ( ),E N w w⎡ ⎤⎣ ⎦1 2  can be written as 

follows: 

( ) ( )

( ) ( )

, , ,

, , ,

E N w w E E N w w X Y

E N w w X x Y y f x y dxdy
∞ ∞

⎡ ⎤⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= = =⎣ ⎦∫ ∫

1 2 1 2 1 1

1 2 1 10 0

                     (8.3.10)
 

where ( ),f x y is the joint inter-arrival density. To determine ( ), ,E N w w X x Y y⎡ ⎤= =⎣ ⎦1 2 1 1 , we 

now condition on whether or not the two constants ( ),w w1 2  exceed ( ),x y , respectively. So 

we consider 4 cases as follows: 

1 2

1 2

1 2

1 2

1)

2)

3)

4)

w x and w y

w x and w y

w x and w y

w x and w y

< <

≥ <

< ≥

≥ ≥                                                           (8.3.11)

 

If we are given that ,w x and w y≥ ≥1 2  then the number of renewals by time will equal 1 plus 

the number of additional renewals between w1  and x  and between w1  and .y  But if the inter-

failure intervals follow a BED which has the bivariate lack of memory property, it follows 

that, given that ,w x and w y< <1 2  the amount by which they exceed x and y is also bivariate 
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exponential, and so given that the number of renewals between w1  and x  and between w2  and 

y  will have the same distributions as ( ),N w w1 2  by the memoryless property of exponential 

random variables. On the other hand, for other cases, as the first renewal occurs by times x 

and y, it follows that the number of renewals by times ( ),w w1 2  is equal to zero. Hence,  

( )
( )
( )
( ) ( )

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2

1 2 1 1 1 2 1 2

, , , , 0

, , , , 0

, , , , 0

, , , , 1 ,

E N w w X x Y y w x w y

E N w w X x Y y w x w y

E N w w X x Y y w x w y

E N w w X x Y y w x w y E N w w

⎡ ⎤= = < < =⎣ ⎦
⎡ ⎤= = ≥ < =⎣ ⎦
⎡ ⎤= = < ≥ =⎣ ⎦
⎡ ⎤= = ≥ ≥ = + ⎡ ⎤⎣ ⎦⎣ ⎦                (8.3.12)

 

And using eq. (8.3.12) if the first failure time is X1  and its repair time is ,Y1  the expected 

number of warranty services within repair service time limit w2  and the warranty period w1 is 

given by 

( )
( ) { }
( ) { }
( ) { }
( )

1 2 1 1

1 2 1 1 1 2 1 2 1 1

1 2 1 1 1 2 1 2 1 1

1 2 1 1 1 2 1 2 1 1

1 2 1 1 1 2

, ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , ,

E N w w X x Y y

E N w w X x Y y w x w y P w x w y X x Y y

E N w w X x Y y w x w y P w x w y X x Y y

E N w w X x Y y w x w y P w x w y X x Y y

E N w w X x Y y w x w y

⎡ ⎤= =⎣ ⎦
⎡ ⎤= = = < < < < = =⎣ ⎦
⎡ ⎤+ = = ≥ < ≥ < = =⎣ ⎦
⎡ ⎤+ = = < ≥ < ≥ = =⎣ ⎦
⎡ ⎤+ = = ≥ ≥⎣ { }

( ) { }

( )( ) { }

1 2 1 1

1 2 1 1 1 2 1 2

1 2 1 2

, ,

, , , , ,

1 , ,

P w x w y X x Y y

E N w w X x Y y w x w y P w x w y

E N w w P w x w y

≥ ≥ = =⎦
⎡ ⎤= = = ≥ ≥ ≥ ≥⎣ ⎦

= + ≥ ≥⎡ ⎤⎣ ⎦         (8.3.13)

 

Substituting this into eq. (8.3.10), we obtain 

( ) ( )( ) { } ( )

( )( ) { } ( )

1 2 1 2 1 20 0

1 2 1 20 0

, 1 , , ,

1 , , ,

E N w w E N w w P w x w y f x y dxdy

E N w w P w x w y f x y dxdy

∞ ∞

∞ ∞

= + ≥ ≥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= + ≥ ≥⎡ ⎤⎣ ⎦

∫ ∫
∫ ∫

             

(8.3.14) 
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or 

( ) ( )
{ } ( )
{ } ( )

1 20 0
1 2 1 2

1 20 0

, ,
, ,

1 , ,

P w x w y f x y dxdy
M w w E N w w

P w x w y f x y dxdy

∞ ∞

∞ ∞

≥ ≥
= =⎡ ⎤⎣ ⎦

− ≥ ≥

∫ ∫
∫ ∫

           (8.3.15)

 
To obtain the variance of the warranty system cost, we first need to calculate the second 

moment. Similarly to the first moment, we consider the first failure during the warranty period. 

We separate four cases such as eq. (8.3.12). Then, similarly to eq. (8.3.13),   

( ) ( )( )22
1 2 1 1 1 2 1 2, , , , 1 ,E N w w X x Y y w x w y E N w w⎡ ⎤ ⎡ ⎤= = ≥ ≥ = +

⎣ ⎦⎣ ⎦       
        

(8.3.16)

                      and remaining three cases equal to zero. Therefore, 

( )( )

( )( ) ( )( )( ) ( )

2
1 2 1 1

2
1 2 1 2 1 2

, ,

1 2 , , ,

E N w w X x Y y

E N w w E N w w P w x w y

⎡ ⎤= =
⎣ ⎦

= + + ≥ ≥
               (8.3.17) 

Using eq. (8.3.17), we obtain the second moment as follows: 

 

( ) ( )( )

( )( ) ( )

( )( ) ( )( )( ) ( ) ( )

( )( ) ( )( ) { } ( )

22
1 2 1 2 1 1

2
1 2 1 10 0

2
1 2 1 2 1 20 0

2
1 2 1 2 1 20 0

, , ,

, , ,

1 2 , , , ,

1 2 , , , ,

E N w w E E N w w X x Y y

E N w w X x Y y f x y dxdy

E N w w E N w w P w x w y f x y dxdy

E N w w E N w w P w x w y f x y dxdy

∞ ∞

∞ ∞

∞ ∞

⎡ ⎤⎡ ⎤⎡ ⎤ = = =⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= = =
⎣ ⎦

= + + ≥ ≥

⎡ ⎤= + + ≥ ≥⎣ ⎦

∫ ∫

∫ ∫

∫ ∫
                    (8.3.18) 

After simplifications, the second moment is given by 

( )
( )( )( ) { } ( )

{ } ( )( )
1 2 1 22 0 0

1 2

1 20 0

1 2 , , ,
,

1 , ,

E N w w P w x w y f x y dxdy
E N w w

P w x w y f x y dxdy

∞ ∞

∞ ∞

+ ≥ ≥
⎡ ⎤ =⎣ ⎦ − ≥ ≥

∫ ∫
∫ ∫

    

(8.3.19) 

where ( )1 2,E N w w⎡ ⎤⎣ ⎦  is given as eq. (8.3.15). 

Using the first moment and the second moment, we easily obtain the variance of the number 

of warranty services.  
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( )( )
( )( ) { } ( )

{ } ( )( ) ( )( )

1 2

21 2 1 20 0
1 2

1 20 0

,

1 2 , , ,
,

1 , ,

Var N w w

E N w w P w x w y f x y dxdy
E N w w

P w x w y f x y dxdy

∞ ∞

∞ ∞

+ ≥ ≥⎡ ⎤⎣ ⎦= − ⎡ ⎤⎣ ⎦
− ≥ ≥

∫ ∫
∫ ∫

   

(8.3.20) 

where ( )1 2,E N w w⎡ ⎤⎣ ⎦  is given from eq. (8.3.15). 

 

8.3.3 Various Policies - Expected Cost Models 

In this section, based on the developed warranty policies in Fig. 8.3.1, we develop the number 

of warranty services under warranty and obtain the expected warranty cost.  

Policy (a) 

For Policy (a), we do not consider the warranty period. We only consider the repair time limit 

and it indicates that one-dimensional warranty policy is investigated. Park and Pham [120] 

obtain the renewal function for one-dimensional warranty model. If ( )N w1 2  denotes the 

number of repair services under warranty for Policy (a), then the expected number of repair 

service is given by  

( ) ( )
( ) ( )
( ) ( )

20
2 1 2

20
1

Y

Y

P w y f y dy
M w E N w

P w y f y dy

∞

∞

≥
= =⎡ ⎤⎣ ⎦

− ≥

∫
∫

                                (8.3.21)

 

and its variance is given by 

( )( )
( )( ) ( ) ( )

( ) ( )( ) ( )( )22 20
1 2 2

20

1 2

1

Y

Y

E N w P w y f y dy
Var N w E N w

P w y f y dy

∞

∞

+ ≥⎡ ⎤⎣ ⎦= − ⎡ ⎤⎣ ⎦
− ≥

∫
∫

         

(8.3.22) 

where ( )1 2E N w⎡ ⎤⎣ ⎦  obtained from eq. (8.3.21). 
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Let c be a warranty cost per failure and ( )N w1 2  be the number of renewals over the warranty 

period w2 . The expected warranty cost per item sold is given by  

( ) ( )( )
( )

E C c E N w

c M w

= ⋅

= ⋅
1 1 2

2                                                          
(8.3.23) 

where ( )M w2  obtained from eq. (8.3.21).  

( ) ( )( )Var C c Var N w= ⋅22 1 2

                                                       
(8.3.24) 

where ( )( )Var N w1 2  obtained from eq. (8.3.22). 

Policy (b) 

If ( ),N w w2 1 2  denotes the number of repair services under warranty for Policy (b), then the 

expected warranty cost per item sold is given by  

( ) ( )( )
( )

,

,

E C c E N w w

c M w w

= ⋅

= ⋅
2 2 1 2

1 2                                                          
(8.3.25) 

where ( ),M w w1 2  obtained from eq. (8.3.15).  

( ) ( )( ),Var C c Var N w w= ⋅22 1 2

                                                       
(8.3.26) 

where  ( )( ),Var N w w1 2  obtained from eq. (8.3.20). 

Policy (c) 

In case of Policy (c), there are two different levels of repair time limits. In the beginning, the 

time limit of repair services is a high level. Then, after a time being, the time limit is a low 

level. In other words, the time limits are changed by two different linear lines. It is described 

in Fig. 8.3.1 (c). If ( ), , ,N w w w w3 11 12 21 22  denotes the number of repair services under warranty 

for Policy (c), the expected warranty cost per item sold is given by  



156 
 

 
 

( ) ( )( )
( )
( ) ( ) ( )( )

, , ,

, , ,

, , ,

E C c E N w w w w

c M w w w w

c M w w M w w M w w

= ⋅

= ⋅

= ⋅ + −

3 3 11 12 21 22

11 12 21 22

11 22 12 21 11 21                            (8.3.27)

 

where  ( ),M ⋅ ⋅  obtained from (8.3.15) 

( ) ( )( ) ( )( ) ( )( )( ), , ,Var C c Var N w w Var N w w Var N w w= ⋅ + +2
3 11 22 12 21 11 21        (8.3.28)

           
 

where  ( )( ),Var N ⋅ ⋅  obtained from eq. (8.3.20). 

Policy (d) 

In case of Policy (d), there are two different levels of repair time limits. In the beginning, the 

time limit of repair services is a low level. Then, after a time being, the time limit is a high 

level. It is described in Fig. 8.3.1 (d). If ( ), , ,N w w w w4 11 12 21 22  denotes the number of repair 

services under warranty for Policy (d), the expected warranty cost per item sold is given by  

( ) ( )( )
( )
( ) ( ) ( )( ){ }

, , ,

, , ,

, , ,

E C c E N w w w w

c M w w w w

c M w w M w w M w w

= ⋅

= ⋅

= ⋅ − −

4 4 11 12 21 22

11 12 21 22

12 22 11 22 11 21                           (8.3.29)

 

where  ( ),M ⋅ ⋅  obtained from (8.3.15). 

( ) ( )( ) ( )( ) ( )( )( ), , ,Var C c Var N w w Var N w w Var N w w= ⋅ + +2
4 12 22 11 22 11 21        (8.3.30)

           
 

where  ( )( ),Var N ⋅ ⋅  obtained from eq. (8.3.20).  

 

8.4  Illustrative Example Using the Field Data  
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In South Korea, there are four nuclear sites and, in 2009, there are 20 nuclear power plants in 

operation with a total licensed output amount to 17,716 MWe (MegaWatt electrical) and 8 

nuclear power plants under construction, for a total of 28 units in operation by the end of 2016 

[2]. We investigate the field data to check their dependency using a nonparametric method. 

We implement our proposed approaches to conduct warranty cost analysis using the field data.  

 

8.4.1  Data Description 

Among 20 nuclear power plants in the four nuclear sites in South Korea, we summarize the 30 

failure data for nuclear power plants for relatively recent events or failures in Table 1. It 

describes the failure data and the repair data.  

Table 8.4.1:  Failure times and repair times for nuclear power plants  

No. Failure (days) Repair (hours) No. Failure (days) Repair (hours) 
1 353.04 104.88 16 30.27 87.12 
2 334.72 45.84 17 117.37 65.52 
3 80.04 48.96 18 126.27 61.2 
4 6.49 41.28 19 56.45 17.28 
5 1.34 6.96 20 45.28 88.56 
6 467.19 46.32 21 267.31 8.64 
7 74.18 405.36 22 615.64 255.12 
8 398.86 42.48 23 115.37 269.76 
9 1048.23 230.64 24 359.76 232.8 

10 829.39 91.2 25 412.3 79.44 
11 227.2 68.64 26 276.69 119.04 
12 260.14 7.44 27 601.04 71.76 
13 14 20.4 28 192.17 39.12 
14 14.15 48.96 29 0.36 6.24 
15 38.96 65.52 30 1021.01 56.64 

From Operational Performance Information System for nuclear Power Plant 
(http://opis.kins.re.kr/index.jsp?Lan=US) 
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The exploratory data analysis on the failure times and the repair times is conducted to know 

their attribution. By the shape of each box plots and histograms in Fig. 8.4.1, we would know 

that the failure times and repair times are not normally distributed, respectively.   

 

Fig. 8.4.1 Histograms and box plots for the failure time and the repair time before 

transformation 

 

8.4.2  Nonparametric Method  

In this section using a nonparametric method, Kendall’s τ , we are going to test the hypothesis 

if the failure times and repair times are dependent. As mentioned before, if the two random 

variables, failure times and repair times, are independent then we can use NHPP model in 

Park and Pham [121]. Otherwise, a bivariate function with the failure times and the repair 

times is used in order to obtain the warranty cost. Kendall’s rank correlation measures the 

strength of monotonic association between the vectors x and y. It may also be noted that usual 

Pearson correlation is fairly robust and it usually agrees well in terms of statistical 
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significance with results obtained using Kendall’s rank correlation. The null and the 

alternative hypotheses are as follows: 

: The failure time and the repair time are independent.
: The failure time and the repair time are dependent.a

H
H

⎧
⎨
⎩

0
  

Based on the result of Kendall’s τ  method using R software [99], τ  is 0.277 and the p value 

is 0.012246. Therefore, at significant level 0.05,α =  we cannot accept the null hypothesis 

.H0  Therefore, it is concluded that the failed times and repair times are dependent.  

Given the field failure data from Table 8.4.1, we now want to figure out the best fit 

distributions. Calculations are based on the distribution specified from R software [9]. 

Computer software calculated the β  (the slope of the line), the η  (the characteristic life, or 

the point at which 63.2% of the items in the data set have failed), ρ  (a value between -1 and 1 

that expresses how well the data fits the probability line) and residual of Y, êY  (the error rate 

how far the data from the probability line). Using the computer software, it indicates that for 

the failure times, gamma, exponential and Weibull distributions are best three well-fitted 

distribution. For the repair times, exponential with 2 parameters and with 1 parameter, 

lognormal and gamma distributions are well-fitted distributions. Based on the output, we 

choose the BED then conduct warranty cost analysis. It is because the commonly fitting 

distribution for the repair time and the failure time is only exponential distribution with one 

parameter. We need to choose the commonly fitting distribution for both data because we 

want to get the bivariate distribution for dependable two-dimensional data. After we use the 

computer software, we figure out that the best fitting distributions for the failure time are 

listed by gamma distribution with two parameters ( ρ2 = 0.9772, êY =0.5173), exponential 
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distribution with one parameter ( ρ2= 0.9787, êY =0.7193) and Weibull with two parameters 

( ρ2= 0.9721, êY =1.1988). And the best fitting distributions for the repair time are listed by 

exponential distribution with two parameters ( ρ2 = 0.9468, êY = 1.3147) and exponential 

distribution with one parameter ( ρ2= 0.9468, êY = 1.5303). Additionally, the BED is the most 

commonly used models for the joint distribution of failure times and repair times [113].  

8.4.3  Expected Number of Warranty Services 

To illustrate the proposed method, we assume that a two-dimensional warranty has been 

provided by the manufacturer to have the warranty period and the time limit of the repair 

services. Using the repair times and the failure times, we try to conduct warranty cost analysis 

by Marshall & Olkin’s BED. From the nuclear power plant field data, we calculate their 

BED’s parameters in Table 8.4.2 using eqs. (8.3.8) & (8.3.9). 

 

Table 8.4.2 Estimated parameters in the Marshall & Olkin’s BED 

1θ  2θ  3θ  ρ  

Estimated parameters 0.001016 0.008414 0.002562 0.213659 
 

Based on the parameters in Table 8.4.2, we show the numerical example and the sensitivity 

analysis. For the numerical examples, Among four policies, Policy (b) and Policy (c) are 

considered in the numerical examples because Policy (a) is one dimensional warranty policy 

and Policy (d) is quite similar to Policy (c).  

Policy (b) Analysis 

Table 8.4.3 shows the expected number of failures under warranty for the limitation 

parameters for Policy (b). Using eqs (8.3.15) & (8.3.20), we investigate the repair cost. The 



161 
 

 
 

repair time limit, 2,w  starts from 5 to 50 by interval 5. The warranty period, 1,w  is considered 

as 100, 200, 300 and 500. We obtain the expected number of warranty services and its 

variance. As a result of the sensitivity analysis, the expected number of warranty services and 

its variance are described in Table 8.4.3. If policy makers in companies can pre-determine the 

two constants, such as warranty period and repair time limit, they can use our model as a basic 

tool to make decisions for the company.  

Table 8.4.3: Expected number of warranty services under warranty for Policy (b) 

w2 
w1=100 w1=200 w1=300 w1=500 

E(N) Var(N) E(N) Var(N) E(N) Var(N) E(N) Var(N) 
5 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 

10 0.0004 0.0004 0.0008 0.0008 0.0010 0.0010 0.0012 0.0012 
15 0.0009 0.0009 0.0018 0.0018 0.0023 0.0023 0.0027 0.0027 
20 0.0015 0.0015 0.0032 0.0032 0.0041 0.0041 0.0046 0.0047 
25 0.0024 0.0024 0.0049 0.0049 0.0062 0.0063 0.0072 0.0072 
30 0.0034 0.0034 0.0069 0.0070 0.0088 0.0089 0.0102 0.0103 
35 0.0045 0.0045 0.0093 0.0094 0.0119 0.0120 0.0136 0.0138 
40 0.0058 0.0058 0.0119 0.0121 0.0153 0.0155 0.0176 0.0179 
45 0.0072 0.0073 0.0149 0.0151 0.0191 0.0194 0.0219 0.0224 
50 0.0088 0.0088 0.0181 0.0184 0.0232 0.0238 0.0267 0.0274 

 

  

Fig. 8.4.2: Expected number of warranty services and its variance for Policy (b) 
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Using Policy (c), the sensitivity analysis is conducted and Table 8.4.4 and Table 8.4.5 are 

obtained. Using the field data, the parameters of bivariate exponential distributions were 

calculated in Table 8.4.2. In a similar way to the Policy (b) Analysis, the expected number of 

warranty services and its variance are obtained in Table 8.4.4 and Table 8.4.5 using Policy 3. 

Four different constants such as 11 12 21, ,w w w and 22w  are used. For Table 8.4.4, 11 300w =  and 

12 500w =  are fixed and other two constants, 21w and 22w  are changed. And the expected 

number of warranty services and its variance are obtained using Policy (c). Similarly, in Table 

8.4.5, 11 500w =  and 12 1,000w =  are fixed and other two constants, 21w and 22w  are changed. 

Expected number of warranty services and its variance have similar pattern each other. And 

21w does not affect the expected number of services severely, on the contrary,  11w  and 12w  

have severe effect on the expected number and variance in Table 8.4.4 and Table 8.4.5.  

Table 8.4.4: Expected number of warranty services when 11 12300, 500w w= =  for Policy (c) 

w21 
w22=20 w22=40 w22=60 w22=100 

E(N) Var(N) E(N) Var(N) E(N) Var(N) E(N) Var(N) 
1 0.0042 0.0000 0.0166 0.0005 0.0366 0.0021 0.0971 0.0137 
3 0.0043 0.0000 0.0166 0.0005 0.0366 0.0021 0.0972 0.0137 
5 0.0043 0.0000 0.0166 0.0005 0.0366 0.0021 0.0972 0.0137 
7 0.0043 0.0000 0.0167 0.0005 0.0366 0.0021 0.0972 0.0137 
9 0.0044 0.0000 0.0167 0.0005 0.0367 0.0021 0.0973 0.0137 

11 0.0044 0.0000 0.0168 0.0005 0.0367 0.0021 0.0973 0.0137 
13 0.0045 0.0000 0.0169 0.0005 0.0368 0.0021 0.0974 0.0137 
15 0.0046 0.0000 0.0169 0.0005 0.0369 0.0021 0.0975 0.0138 
17 0.0047 0.0001 0.0170 0.0005 0.0370 0.0021 0.0976 0.0138 
19 0.0048 0.0001 0.0171 0.0005 0.0371 0.0022 0.0977 0.0138 

 

Table 8.4.5: Expected number of warranty services when 11 12500, 1,000w w= =  for Policy (c) 

w21 w22=50 w22=100 w22=150 w22=200 
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E(N) Var(N) E(N) Var(N) E(N) Var(N) E(N) Var(N) 
1 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4894 0.2306 
3 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4894 0.2306 
5 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4895 0.2306 
7 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4895 0.2306 
9 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4895 0.2306 

11 0.0308 0.0014 0.1226 0.0185 0.2752 0.0808 0.4895 0.2306 
13 0.0309 0.0014 0.1226 0.0185 0.2752 0.0808 0.4895 0.2306 
15 0.0309 0.0014 0.1226 0.0185 0.2753 0.0808 0.4895 0.2306 
17 0.0309 0.0015 0.1227 0.0185 0.2753 0.0808 0.4895 0.2306 
19 0.0309 0.0015 0.1227 0.0186 0.2753 0.0809 0.4896 0.2306 

 

In Table 8.4.6 and Fig. 5, 21 10w =  and 12 1,000w =  are fixed and other two constants, 11w and 

22w  are changed.   

Table 8.4.6: Expected number of warranty services when 21 1210, 1,000w w= =  for Policy (c) 

w22 
w11=200 w11=300 w11=400 w11=500 

E(N) Var(N) E(N) Var(N) E(N) Var(N) E(N) Var(N) 
20 0.0037 0.0000 0.0045 0.0000 0.0048 0.0000 0.0050 0.0000 
40 0.0133 0.0003 0.0171 0.0005 0.0189 0.0006 0.0198 0.0006 
60 0.0287 0.0013 0.0377 0.0021 0.0423 0.0026 0.0443 0.0028 
80 0.0493 0.0037 0.0661 0.0061 0.0746 0.0075 0.0786 0.0082 

100 0.0748 0.0081 0.1019 0.0137 0.1160 0.0170 0.1226 0.0185 
120 0.1046 0.0154 0.1448 0.0264 0.1662 0.0328 0.1763 0.0360 
140 0.1383 0.0263 0.1945 0.0457 0.2251 0.0572 0.2398 0.0629 
160 0.1755 0.0415 0.2508 0.0734 0.2927 0.0926 0.3131 0.1022 
180 0.2157 0.0617 0.3132 0.1111 0.3689 0.1416 0.3963 0.1569 
200 0.2586 0.0877 0.3815 0.1610 0.4535 0.2071 0.4895 0.2306 
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Fig. 8.4.3: Expected number of warranty services and its variance for Policy (c) 

8.5  Discussion 

Using BED and renewal theory, the two-dimensional renewal function is obtained. We 

consider the expected value and variance of the warranty cost together in the proposed 

approach. The expected warranty cost has been mainly investigated for warranty cost analysis. 

While expected warranty cost is a good measure on the overall cost of warranty, it provides 

little information of the risk contained in a warranty program. Therefore, we also obtain the 

variance of warranty cost with the expected value. The results provide more accurate and 

realistic cost analysis. Because we analyze the warranty cost based on the field data, the 

results of numerical example and the sensitivity analysis are more practical. It might give 

practitioners very useful tools to investigate the warranty cost as well as various warranty 

policies. Additionally, the repair service and the replacement service are considered at the 

same time. For the two dimensions, we consider the repair times and the failure times, not age 

and usage.  
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We estimate the expected number of warranty services using the bivariate renewal functions 

based on the field data. We also perform the hypothesis to determine whether the failure times 

and repair times from the nuclear power plants field data are dependent to each other using 

nonparametric method. The BED is selected as the best fitting bivariate distribution using 

computer software. We obtain the number of warranty services under warranty and under the 

repair service limit. As a result of that, product’s manufacturer can calculate the warranty cost 

using the developed approaches. This is very helpful for policy makers to make important 

decisions for their companies.  
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Chapter 9 

Concluding Remarks & Future Research 
 

 

9.1. Concluding Remarks 

The contribution of this dissertation is to focus on the developments of warranty cost models 

with various maintenance policies as well as the warranty policy with post warranty periods 

for single-component and multi-component systems including parallel-series, series-parallel 

and k-out-of-n systems. Through various types of warranty cost models for each chapter, we 

want to distinguish this study from previous research in the following aspects: 

• Present improved approaches on the cost analysis using both the expected value and 

the variance of the warranty cost for more complicated systems including k-out-of-n 

systems  

• Consider the cost analysis in the post-warranty period under two perspectives 

(customers, manufacturers) to suggest accurate analyses to build warranty policies 

• Suggest warranty cost structures based on two dimensional NHPP such as repair times 

and failure times  

More specifically, in Chapter 4, based on the proposed alter- and mixed- quasi-renewal 

processes, we develop several cost models and also derive reliability measures for various 

systems.   

In Chapter 5, warranty cost models are presented based on the quasi-renewal processes and 

exponential distribution. Cost analyses are conducted for various systems under the basic 
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assumption that a repair service is imperfect. We develop warranty cost models, reliability, 

and other measures for several systems including multicomponent systems.  

In Chapter 6, to minimize the expected total system cost, we develop a modified block 

replacement model for k-out-of-n systems and develop optimum policies of both a threshold 

level for the number of failed components to prevent the system’s failures and the 

maintenance cycle. Additionally, we alleviate the existing block replacement policies’ 

drawbacks which are rather wasteful if a preventive replacement happens just after a failure 

replacement. Our developed policy considers replacement service for a failure when m 

numbers of failed components occur. We also take into considerations the downtime period of 

each failed component using the order statistics for life time and age distributions for k-out-of-

n systems. 

In Chapter 7, we develop cost models by combining both warranty period and post warranty 

period and then derive the long run expected cost per unit time to find two decision variables 

including optimized maintenance cycle. The warranty services are separated into repair 

services and replacement services. Using the two-dimensional NHPP, we determine the 

threshold level for repair service time. In other words, as for the two kinds of warranty 

services, repair and replacement, if manufacturers can not finish the repair services within the 

threshold time, then they will have to provide replacement services instead of repair services 

to increase customers’ satisfaction. So, we use two dimensional NHPP and obtain the 

expected warranty cost and the variance of the warranty cost.  

In Chapter 8, a two-dimensional warranty policy is developed with repair times and failure 

times which are statistically correlated in bivariate distributions. Using the field data, the 
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parameters are calculated and the warranty model is investigated using a bivariate exponential 

distribution which was the best fit distribution based on the field data. 

 

9.2. Future Research 

The following research problems that extend further research on these topics for a future study 

as follows: 

Problem 1. Combine maintenance policies such as block replacement policy (BRP) and age 

replacement policy (ARP) and warranty policies such as FRW, PRW and CMW into the 

warranty cost modeling. The BRP and ARP can be compared based on two dimensional 

warranty policies with repair times and failure times in terms of the expected cost rates. 

Taking the product warranty into account, mathematical formulations for a product under 

ARP and BRP can be developed. For product with an increasing failure rate, the optimal 

replacement age can be obtained such that the long-run expected cost rate is minimized. The 

expected cost rate for all total number of failures during a warranty period can be calculated 

whereas the previous researchers [35, 192] have used a failure for determining the expected 

cost rate. In other words, we consider a certain number of failures in the testing period, and 

expected cost rates to obtain total cost of a certain number of failures, which is divided by 

their duration. In summary, warranty cost models may be developed considering two 

maintenance policies such as ARP and BRP under different warranty policies such as FRW, 

PRW and CMW. 

 

Problem 2: With the renewable warranty policy, warranty cost models can be developed 

subject to different length of warranty periods and obtain the distribution of number of 
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failures. The model would be suggested when the warranty period is assumed to be a random 

variable. For the globalized companies, they can sell their products with different warranty 

periods based on the locations and times. Additionally, customers can select the length of 

warranty according to their own needs if they may pay an additional fee. Therefore, the 

warranty period and the repair time limit can be changed and be considered as random 

variables. Under the non-renewable warranty policy, the expected number of warranty 

services and their variances within the warranty period can be obtained and maintenance 

policy be considered during post warranty period. In summary, warranty cost models 

considering the non-renewable warranty policies with different warranty periods would be an 

interesting research topic.   
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