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ABSTRACT OF THE THESIS

Evolution Equations For Multi-Time Wavefunctions

By SÖREN PHILIPP PETRAT

Thesis Director:

Roderich Tumulka

Multi-time wavefunctions are of particular interest in relativistic quantum mechanics. A multi-

time wavefunction has separate time-variables for each particle; this makes it a manifestly Lorentz-

invariant object. The time-evolution equations are systems of Schrödinger equations; one for each

particle’s time variable and each with a certain Hamiltonian. We derive conditions under which

these systems of equations have a common solution. Also, we derive three main results about

concrete multi-time models. First we show that a model proposed by Dürr and Tumulka in 2001

is inconsistent. The second result is a consistent model for a constant number of particles with a

cutoff pair potential. The third result is a consistent theory for a simple quantum field theoretic

model with creation and annihilation of particles. Existence and uniqueness of solutions is proven

for both models.
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Chapter 1

Introduction

In usual quantum mechanics the wavefunction (for N -particles) depends on 3N spatial variables and

one time variable. This is not a Lorentz-invariant object (one has simultaneity for all particles). The

idea of the multi-time formalism is to add a separate time-variable for each particle. One then has a

multi-time wavefunction, i.e., a wavefunction that depends on 3N spatial and N time variables. The

main reason for doing so is to get a manifestly Lorentz-invariant theory. A multi-time wavefunction

can be a Lorentz-invariant object. Moreover, evolution laws for the multi-time wavefunction can

be stated such that no additional structure on space-time is involved. This is believed to be one

criterion for a fundamentally Lorentz-invariant theory (see for example [5]).

Multi-time wavefunctions were first introduced in 1932 by Dirac, Fock and Podolsky in [3]. After

that they have widely been neglected in favour of a quantum field theoretic (QFT) description.

Important work with the goal to make quantum mechanics more relativistic invariant has been

done by Tomonaga and Schwinger in 1946 (see [7]). They defined wavefunctions on (spacelike)

hypersurfaces and gave an evolution law from one hypersurface to another. The connection of our

work with that of Tomonaga and Schwinger is that a multi-time wavefunction easily leads to a

wavefunction on a hypersurface (with some restrictions).

The multi-time formalism which uses a wavefunction in the particle representation has the main

advantage that the mathematical formalism is easier. For example, the fundamental equations in

this work are just partial differential equations. So far, consistent multi-time theories have only

been constructed for non-interacting particles. In this work we consider multi-time theories with

interaction.

This work is structured as follows. In chapter 2 we state some general considerations about



2

the multi-time formalism. We will see that there are two different ways of looking at the multi-

time wavefunctions and its evolution laws. We also derive conditions for the existence of solutions

to multi-time equations. Chapter 3 deals with a concrete proposal put forward by D. Dürr and R.

Tumulka in 2001 for a multi-time model that is based on a simple quantum field theoretic model with

creation and annihilation of particles. We show that this proposal is inconsistent, i.e., there is no

solution to the proposed system of multi-time equations. Consistent multi-time models are presented

in chapter 4. We construct two multi-time models and show that there is a unique solution to the

multi-time equations. The first model describes N Dirac particles that interact via a pair potential

if two particles are closer to each other than a certain radius δ. The second model is a consistent

multi-time version of the simple quantum field theoretic model with creation and annihilation of

particles. In both models we have to introduce a cutoff δ. (Note that because of this δ-cutoff our

models are not actually fundamental Lorentz-invariant.) The main result of this work is Theorem

4.3.6 where the multi-time QFT model is defined and shown to be consistent.
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Chapter 2

General Considerations about the

Multi-Time Formalism

2.1 Wavefunctions on Hilbert Space and on Configuration

Space-Time

Usual one-time quantum mechanics (in the Schrödinger picture) deals with a time-dependent wave-

function ψ = ψ(t) = ψt that is the solution of a Schrödinger equation (throughout this work we will

use units in which ~ = 1)

i
∂

∂t
ψ(t) = H(t)ψ(t) (2.1)

with a Hamiltonian H(t). The wavefunction ψ(t) is for each parameter t ∈ R usually considered

to be an element of a (separable, complex) Hilbert space H, so the Hamiltonian is for each t an

operator from on H. Examples of such Hamiltonians are the non-relativistic Schrödinger operator

and the relativistic Dirac operator. H(t) must be self-adjoint for each t in order to lead to a

unitary time evolution. If H(t) is self-adjoint for each t then there is a family of unitary operators

(U(t, s))t,s∈R,s<t such that for every solution of (2.1) we have ψ(t) = U(t, s)ψ(s), i.e., specifying

initial conditions ψ(0) ∈ H determines the wavefunction ψ(t) ∈ H. U(t, s) is the solution of the

equation i ∂∂tU(t, s) = H(t)U(t, s). If the Hamiltonian H(t) is time independent (H(t) = H) then U

is given by U(t, s) = e−iH[t−s].

In this work another way of looking at the Schrödinger equation (2.1) will be useful. The

wavefunction ψ can also be regarded as a function on configuration space and time in a suitable
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function space. For example, for N particles we could choose the set of all smooth functions,

C∞(R × R3N ,Ck) (for some k) as a suitable function space. (For X = Rd and Y = Ck (d, k ∈ N),

C∞(X,Y ) is the space of all infinitely often differentiable functions f : X → Y .) The Hamiltonians

are then operators that map smooth functions to smooth functions. We later show in Lemma

4.1 that for a certain class of operators H, specifying initial conditions ψ0 ∈ C∞({0} × X,Y )

uniquely determines the wavefunction ψ ∈ C∞(R × X,Y ). Moreover, many practically relevant

Hamiltonians are more or less local in configuration space (e.g. differential operators). This allows

us to ask questions about what happens at a particular x ∈ X that would not be meaningful for

arbitrary operators (e.g., whether the commutator of two Hamiltonians vanishes at x). This will

be particularly advantageous when dealing with multi-time wavefunctions. There we consider a

configuration space-time. For example, in the case of N particles the configuration space-time is

R4N . We consider wavefunctions ψ : R4N → Ck in a suitable function space, e.g., C∞(R4N ,Ck). We

will also find that in the multi-time framework Hamiltonians on configuration space-time are given

by simpler expressions than Hamiltonians on Hilbert space. Finally, to regard the Hamiltonians

H in the multi-time framework as operators on configuration space-time is closer to the spirit of

relativity since in this way space and time are considered on an equal footing.

2.2 Multi-Time Evolution Equations and Consistency Con-

ditions

In this section we describe our idea of how a multi-time wavefunction could be defined by a system

of equations. For simplicity we first regard a wavefunction for a system of two particles in R3.

The multi-time wavefunction ψ = ψ ((t1,x1), (t2,x2)) then depends on two time and two position

variables. The straightforward generalization of (2.1) is the following system of multi-time equations

(where we did not write out the explicit variable dependence):

i
∂

∂t1
ψ = H1ψ

i
∂

∂t2
ψ = H2ψ. (2.2)

In order to coincide with the one-time theory the Hamiltonians H1 and H2 should be choosen in such

a way that for equal times their sum is the one-time Hamiltonian. In the following sections 2.2.1 and

2.2.2 we regard this system of multi-time equations on Hilbert space and on configuration space-
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time. We find that a theorem about necessary conditions for solutions to a system of multi-time

equations can be formulated in both settings. In the Hilbert space framework we have to impose

very strong conditions on the Hamiltonians in order to prove the exact theorem though. However,

we conjecture that the theorem also holds under more general conditions, like those we consider

in section 3.3. In the configuration space-time framework we are able to prove a theorem that is

immediately applicable to the equations we use in section 3.2. This is another advantage of using

this framework.

2.2.1 Formulation on Hilbert Space

We first consider this system of equations for wavefunctions on Hilbert space. The multi-time

wavefunction is ψ(t1, t2) ∈ H for all t1, t2 ∈ R and the Hamiltonians Hi(t1, t2) : H → H (for i = 1, 2)

are self-adjoint operators for all t1, t2 that can possibly be time-dependent (i.e., dependent on t1 and

t2). The system of multi-time equations then reads

i
∂

∂t1
ψ(t1, t2) = H1(t1, t2)ψ(t1, t2)

i
∂

∂t2
ψ(t1, t2) = H2(t1, t2)ψ(t1, t2). (2.3)

The multi-time Hamiltonians in (2.3) should be chosen such that they lead to the one-time theory

(2.1) with Hamiltonian H(t) if t1 = t2 = t, i.e.,

H1(t, t) +H2(t, t) = H(t). (2.4)

Note that in this multi-time setting the bosonic (or fermionic) symmetry properties of the wave-

function are more complicated. To illustrate the difficulty, regard the standard exampleH = L2(R6).

Then for given t1, t2 we have a wavefunction ψt1,t2(x1,x2). The correct bosonic symmetry is not

ψt1,t2(x1,x2) = ψt1,t2(x2,x1) but rather ψt1,t2(x1,x2) = ψt2,t1(x2,x1). In section 3.3 this leads to

an extra conditions on permissible wavefunctions.

We now derive a necessary and sufficient condition for the system of equations (2.3) to have a

common solution ψ(·, ·) : R2 → H. In the case of time independent Hamiltonians Hi(t1, t2) = Hi

(for i = 1, 2) we have ψ(t1, t2) = e−iH1t1ψ(0, t2) and ψ(t1, t2) = e−iH2t2ψ(t1, 0). Therefore we can

write a solution of (2.3) as

ψ(t1, t2) = e−iH1t1e−iH2t2ψ(0, 0) = e−iH2t2e−iH1t1ψ(0, 0) (2.5)
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We conclude that (2.3) can have a solution only under certain conditions on the Hamiltonians.

Equality in (2.5) holds for all ψ(0, 0) ∈ H if and only if e−iH1t1e−iH2t2 = e−iH2t2e−iH1t1 , and

thus if and only if [H1, H2] = 0. For time-dependent Hamiltonians we proceed in a similar way.

The result for a necessary and sufficient condition on the Hamiltonians is stated in Assertion 2.1,

which also generalizes the considerations so far to N instead of two multi-time equations. We call

2.1 an assertion since we do not rigorously prove it. (Also note, that for example for unbounded

Hamiltonians it is not obvious how exactly the expression (2.7) is to be understood.)

Assertion 2.1 (Consistency Conditions on Hilbert Space). Let the operators Hi(t1, . . . , tN ) : H → H

be selfadjoint for all ti ∈ R, i = 1, . . . , N . Then a necessary and sufficient condition for the existence

of a solution ψ(t1, . . . , tN ), for all φ ∈ H, to the system of multi-time equations

i
∂

∂ti
ψ(t1, . . . , tN ) = Hi(t1, . . . , tN )ψ(t1, . . . , tN ) (2.6)

for all i = 1, . . . , N , satisfying the initial condition ψ(0, . . . , 0) = φ, is

[
Hi(t1, . . . , tN ), Hj(t1, . . . , tN )

]
+ i

∂Hi(t1, . . . , tN )

∂tj
− i∂Hj(t1, . . . , tN )

∂ti
= 0 (2.7)

for all i, j = 1, . . . , N , i 6= j.

Proof. It suffices to consider an infinitesimal time evolution. In that case we know that for the

one-time evolution operator we have U(dt, 0) = 1− iH(0)dt− 1
2H(0)2(dt)2 (to second order in dt).

We now consider the i-th and j-th (i 6= j) equations of (2.6). For ease of notation we only explicitly

write the ti and tj dependence of Hi, Hj and ψ. We regard the time evolution from initial times (0, 0)

to times (dti, dtj) in two different ways (along two different infinitesimal paths in the (ti, tj)-plane),

ψ(0, 0)→ ψ(0, dtj)→ ψ(dti, dtj) and ψ(0, 0)→ ψ(dti, 0)→ ψ(dti, dtj). (2.8)

To second order in dti and dtj we get two expressions for ψ(dti, dtj),

ψ(dti, dtj) =
(

1− iHi(0, dtj)dti −
1

2
Hi(0, dtj)

2(dti)
2
)
ψ(0, dtj)

=
(

1− iHi(0, dtj)dti −
1

2
Hi(0, dtj)

2(dti)
2
)(

1− iHj(0, 0)dtj −
1

2
Hj(0, 0)2(dtj)

2
)
ψ(0, 0)

(2.9)
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and

ψ(dti, dtj) =
(

1− iHj(dti, 0)dtj −
1

2
Hj(dti, 0)2(dtj)

2
)
ψ(dti, 0)

=
(

1− iHj(dti, 0)dtj −
1

2
Hj(dti, 0)2(dtj)

2
)(

1− iHi(0, 0)dti −
1

2
Hi(0, 0)2(dti)

2
)
ψ(0, 0).

(2.10)

Therefore a common solution to the i-th and j-th equation of (2.6) can only exist if

(
1− iHi(0, dtj)dti −

1

2
Hi(0, dtj)

2(dti)
2
)(

1− iHj(0, 0)dtj −
1

2
Hj(0, 0)2(dtj)

2
)

=
(

1− iHj(dti, 0)dtj −
1

2
Hj(dti, 0)2(dtj)

2
)(

1− iHi(0, 0)dti −
1

2
Hi(0, 0)2(dti)

2
)
. (2.11)

We now evaluate this expression. We have (to first order in dti)

Hj(dti, 0) = Hj(0, 0) +
∂Hj(ti, tj)

∂ti
|(0,0)dti (2.12)

and (to first order in dtj)

Hi(0, dtj) = Hi(0, 0) +
∂Hi(ti, tj)

∂tj
|(0,0)dtj . (2.13)

To simplify the notation we set Hi(0, 0) = Hi, Hj(0, 0) = Hj , Hi(0, dtj) = Hi(dtj), Hj(dti, 0) =

Hj(dti),
∂Hi(ti,tj)

∂tj
|(0,0) = ∂Hi

∂tj
and

∂Hj(ti,tj)
∂ti

|(0,0) =
∂Hj
∂ti

. With (2.12) and (2.13) the expression (2.11)

becomes, neglecting terms in third and higher orders of dti and dtj ,

0 =
(

1− iHi(dtj)dti −
1

2
(Hi(dtj))

2(dti)
2
)(

1− iHjdtj −
1

2
H2
j (dtj)

2
)

−
(

1− iHj(dti)dtj −
1

2
(Hj(dti))

2(dtj)
2
)(

1− iHidti −
1

2
H2
i (dti)

2
)

= 1− iHi(dtj)dti − iHjdtj −Hi(dtj)Hjdtidtj −
1

2
(Hi(dtj))

2(dti)
2 − 1

2
H2
j (dtj)

2

− 1 + iHj(dti)dtj + iHidti +Hj(dti)Hidtidtj +
1

2
(Hj(dti))

2(dtj)
2 +

1

2
H2
i (dti)

2

= 1− iHidti − i
∂Hi

∂tj
dtidtj − iHjdtj −HiHjdtidtj

− 1 + iHjdtj + i
∂Hj

∂ti
dtidtj + iHidti +HjHidtj

= −i∂Hi

∂tj
dtidtj + i

∂Hj

∂ti
dtidtj − [Hi, Hj ]dtidtj . (2.14)
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In full notation the expression (2.14) is

[Hi(0, 0), Hj(0, 0)] + i
∂Hi(ti, tj)

∂tj
|(0,0) − i

∂Hj(ti, tj)

∂ti
|(0,0) = 0. (2.15)

We conclude that an infinitesimal time evolution is path-independent, i.e., with condition (2.15)

we get the same solution ψ(dti, dtj) from initial conditions ψ(0, 0) no matter if we first evolve in

dti and then dtj or the other way around. Let us now regard ψ(ti, tj). We define ψ(ti, tj) by first

evolving ψ(0, 0) to ψ(ti, 0) and then to ψ(ti, tj). According to the above reasoning this is the same

as evolving ψ(0, 0) to ψ(ti − dti, 0), then to ψ(ti − dti, dtj), then to ψ(ti, dtj) and then to ψ(ti, tj).

This procedure of “cutting out” infinitesimal rectangles can repeated, so we finally find that we can

also evolve ψ(0, 0) to ψ(0, tj) and then to ψ(ti, tj) and arrive at the same solution as the other way

around. Therefore, if the condition (2.15) holds for arbitrary initial times for any i and j, then we

have a solution to (2.6) and if we have a solution to (2.6) then (2.15) holds for arbitrary initial times

for any i and j.

Note that even though for unbounded Hamiltonians it is not clear how the expression (2.7) is to

be understood, given concrete unbounded operators Hi and Hj we still might be able to calculate

the expression (2.7) formally. This is the case for the (unbounded) Hamiltonians we consider in

section 3.3. Therefore we think that Assertion 2.1 also holds for unbounded Hamiltonians. We also

think that the assertion holds if we consider an infinite number of time variables.

2.2.2 Formulation on Configuration Space-Time

The system of equations (2.2) can also be considered in the framework of functions on configuration

space-time. For N particles the configuration space-time is R4N . The operators in (2.2) then live on

a suitable function space and act on functions on configurations space-time. This makes it possible

to prove an exact consistency condition which can be applied to the model we consider in section

3.2. We denote R4 3 x = (x0, x1, x2, x3). For a two particle system the multi-time wavefunction is

ψ(x1, x2) : R8 → Ck (where Ck, k ∈ N is a suitable spin space) and the Hamiltonians Hi (for i = 1, 2)

are now operators on a suitable function space, e.g., on C∞(R8,Ck). Note that in this setting the

Hamiltonians should not be regarded as explicitly time-dependent, since they are operators acting

on the configuration space-time R8 (i.e., they act on those variables on which ψ depends). The
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system of multi-time equations reads

i
∂

∂x0
1

ψ(x1, x2) = (H1ψ)(x1, x2)

i
∂

∂x0
2

ψ(x1, x2) = (H2ψ)(x1, x2). (2.16)

Also note that in this setting a bosonic wavefunction satisfies ψ(x1, x2) = ψ(x2, x1). This seems

like a more straightforward generalization of the concept of bosonic symmetry to multi-time wave-

functions than the corresponding statement on Hilbert space.

The next Theorem 2.2 shows that the consistency condition is a necessary condition under which

the system of multi-time equations (2.16), generalized to an arbitrary number of particles, can have

solutions. We abbreviate R4m 3 q4 = (x1, . . . , xm). For Theorem 2.2 we define the configuration

space-time as C =
⋃∞
m=0 R4m and the spin space as S =

⋃∞
m=0(Ck)⊗m for a suitable k ∈ N. The

wavefunction evaluated at a certain configuration q4 in the m-particle sector is an element of the m-

particle spin space Sm = (Ck)⊗m. C2(C ,S) denotes the space of all twice continuous differentiable

functions from C to S.

Theorem 2.2 (Consistency Conditions on Configuration Spacetime). Let ψ : C → S with ψ(q4) ∈

Sm and Hj : F → F , where F denotes a subspace of C2(C ,S). Then every solution ψ ∈ F to the

system of multi-time equations

i

(
∂

∂x0
j

ψ

)
(q4) = (Hjψ)(q4) (2.17)

for all j ∈ N, with ∂ψ
∂x0
j
∈ F for all j ∈ N, must satisfy

[
i
∂

∂x0
i

−Hi, i
∂

∂x0
j

−Hj

]
ψ(q4) = 0, (2.18)

or equivalently

([Hi, Hj ]ψ) (q4) + i

(
∂Hi

∂x0
j

ψ

)
(q4)− i

(
∂Hj

∂x0
i

ψ

)
(q4) = 0, (2.19)

for all i, j ∈ N, i 6= j and all q4 ∈ C , where ∂Hi
∂x0
j

def
=

[
∂
∂x0
j
, Hi

]
.

Proof. We consider the i-th and j-th (i 6= j) equations of (2.17). If ψ is a common solution to both
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equations, we have

(
i
∂

∂x0
i

−Hi

)
ψ(q4) = 0 and

(
i
∂

∂x0
j

−Hj

)
ψ(q4) = 0. (2.20)

Therefore also [
i
∂

∂x0
i

−Hi, i
∂

∂x0
j

−Hj

]
ψ(q4) = 0. (2.21)

This is the same as (2.19) for fixed i, j ∈ N as the following calculation shows. We use the product

rule ∂
∂x0 (Hψ) = ∂H

∂x0ψ +H ∂ψ
∂x0 and ∂ψ

∂x0
i∂x

0
j

= ∂ψ
∂x0
j∂x

0
i
.

0 =

[
i
∂

∂x0
i

−Hi, i
∂

∂x0
j

−Hj

]
ψ(q4)

= −

(
∂

∂x0
i

∂ψ

∂x0
j

)
(q4)− i

(
∂

∂x0
i

(Hjψ)

)
(q4)− i

(
Hi

∂ψ

∂x0
j

)
(q4) + (HiHjψ) (q4)

+

(
∂

∂x0
j

∂ψ

∂x0
i

)
(q4) + i

(
∂

∂x0
j

(Hiψ)

)
(q4) + i

(
Hj

∂ψ

∂x0
i

)
(q4)− (HjHiψ) (q4)

= −i
(
∂Hj

∂x0
i

ψ

)
(q4)− i

(
Hj

∂ψ

∂x0
i

)
(q4)− i

(
Hi

∂ψ

∂x0
j

)
(q4) + (HiHjψ) (q4)

+ i

(
∂Hi

∂x0
j

ψ

)
(q4) + i

(
Hi

∂ψ

∂x0
j

)
(q4) + i

(
Hj

∂ψ

∂x0
i

)
(q4)− (HjHiψ) (q4)

= ([Hi, Hj ]ψ) (q4) + i

(
∂Hi

∂x0
j

ψ

)
(q4)− i

(
∂Hj

∂x0
i

ψ

)
(q4). (2.22)

If ψ is a common solution to all equations (2.17) then the above condition has to hold for all i, j ∈ N,

i 6= j.



11

Chapter 3

Inconsistency of a Proposed

Multi-Time QFT Model on All

Space-Time Configurations

This chapter deals with a conjecture made by D. Dürr and R. Tumulka in 2001 about a simple multi-

time QFT model. The model describes a fixed number of electrons that can emit and absorb photons.

First, we describe the one-time version in section 3.1. After that we state the conjecture about

formulating this model in the multi-time formalism. The idea is to use the one-time Hamiltonian

and to split it into several Hamiltonians, each associated with one particle. It is instructive to discuss

this model for a wavefunction on Hilbert space and for a wavefunction on configuration space-time.

On configuration space-time the model will have a simpler formulation, so the conjecture is first

stated in this setting in section 3.2 and then on Hilbert space in section 3.3. We show that the

multi-time equations in both settings do not have a solution, thus disproving the conjecture.

3.1 The One-Time QFT Model

We first discuss the one-time quantum field theoretic description of a model of free non-relativistic

particles with emission and absorption (see [4] and originally [6, p. 339]). We consider two kinds of

particles: electrons (or more generally: fermions) and photons (or bosons). We consider a constant

electron number N and we allow the number of photons to change. Photons can be created in the

vicinity of an electron (emission) and they get annihilated if they are close to an electron (absorption).
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In the following we denote electron variables by xi ∈ R3. We abbreviate electron configurations by

ξ = x1, . . . ,xN with constant N and photon configurations by η = y1, . . . ,ym with yk ∈ R3.

The Hamiltonian for this theory is the sum of a free Hamiltonian and an interaction term which

is the sum of a creation and an annihilation part:

H = Hfree +Hint = Hfree +Hc +Ha. (3.1)

The time evolution equation is the usual Schrödinger equation:

i
∂

∂t
ψ = Hψ (3.2)

for a wavefunction ψ on Fock space. The Fock space is F =
⊕∞

m=0H(m) with the (N,m)-particle

sector H(m) = AL2(R3N ) ⊗ SL2(R3m) (anti-symmetrized in the electron and symmetrized in the

photon variables). For the (N,m)-particle configuration space we denote Q(m) = R3N × R3m. The

full configuration space then is Q =
⋃∞
m=0Q(m). We denote ψ(N,m) ∈ H(m). The scalar product on

the (N,m)-sector in Fock space is given by

〈ψ|χ〉H(m) =

∫
R3N

dξ

∫
R3m

dη ψ∗(ξ, η)χ(ξ, η) (3.3)

and the scalar product on Fock space is

〈ψ|χ〉F =

∞∑
m=0

〈ψ|χ〉H(m) =

∫
R3N

dξ

∞∑
m=0

∫
R3m

dη ψ∗(ξ, η)χ(ξ, η). (3.4)

The action of the Hamiltonian on the (N,m)-sector in Fock space is given by

(Hfreeψ)(ξ, η) =

− N∑
j=1

1

2mx
∆xj −

m∑
k=1

1

2my
∆yk

ψ(ξ, η) (3.5)

(Hcψ)(ξ, η) =
1√
m

N∑
j=1

m∑
k=1

ϕ(yk − xj)ψ(ξ, η\yk) (3.6)

(Haψ)(ξ, η) =
√
m+ 1

N∑
j=1

∫
R3

dyϕ∗(y − xj)ψ(ξ, η ∪ y) (3.7)

where mx > 0 denotes the electron mass and my > 0 denotes the photon mass.1 We use the

notation η\yk = (y1, . . . ,yk−1,yk+1, . . . ,ym) and η ∪ y = (y1, . . . ,ym,y). ϕ is a square-integrable

1Since this is a simple non-relativistic model the introduction of a photon mass makes sense.
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cutoff function. It can be considered to be a form-factor that determines the effective range of the

electron interaction. In terms of field operators the Hamiltonian can be written as follows:

Hfree = −
N∑
j=1

1

2mx
∆xj −

∞∑
k=1

1

2my
∆yk (3.8)

Hint =

N∑
j=1

(
a†ϕ(xj) + aϕ(xj)

)
. (3.9)

The definition of the smeared-out creation operators a†ϕ(xj) and annihilation operators aϕ(xj) is:

a†ϕ(xj) =

∫
R3

dyϕ(y − xj)a†(y) (3.10)

aϕ(xj) =

∫
R3

dyϕ∗(y − xj)a(y) (3.11)

with

(a†(y)ψ)(ξ, η) =
1√
m

m∑
k=1

δ(yk − y)ψ(ξ, η\yk) (3.12)

(a(y)ψ)(ξ, η) =
√
m+ 1ψ(ξ, η ∪ y). (3.13)

Their action on a certain sector in Fock space therefore is:

(a†ϕ(xj)ψ)(ξ, η) =
1√
m

m∑
k=1

ϕ(yk − xj)ψ(ξ, η\yk) (3.14)

(aϕ(xj)ψ)(ξ, η) =
√
m+ 1

∫
R3

dyϕ∗(y − xj)ψ(ξ, η ∪ y). (3.15)

Indeed a†(y) is the adjoint of a(y) (see Appendix A.1). Also a†ϕ(xj) is the adjoint of aϕ(xj), i.e.,

(aϕ(xj))
† = a†ϕ(xj), so Hint and therewith H is self-adjoint (see Appendix A.1).

In order to compare to subsequent calculations (in the multi-time model) it is worth calculating

the commutation relations of the one-time creation and annihilation operators directly (with our

notation). We find the following well-known results (see Appendix A.1):

[a†ϕ1
(xj1), a†ϕ2

(xj2)] = 0

[aϕ1(xj1), aϕ2(xj2)] = 0

[aϕ1
(xj1), a†ϕ2

(xj2)] =

∫
R3

dyϕ∗1(y − xj1)ϕ2(y − xj2). (3.16)
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For ϕ1(x) = ϕ2(x) = δ(x) (as in most physics textbooks) the last commutator corresponds to:

[a(xj1), a†(xj2)] = δ(xj1 − xj2). (3.17)

For xj1 = xj2 = 0 the last commutator of (3.16) corresponds to

[aϕ1
, a†ϕ2

] =

∫
R3

dy ϕ∗1(y)ϕ2(y) = 〈ϕ1|ϕ2〉. (3.18)

3.2 The Conjecture on Configuration Space-Time

We now state the conjecture about a multi-time version of the described model in the configuration

space-time setting. We denote C (N,m) = (R4)N × (R4)m, so the full configuration space-time is

C =
⋃∞
m=0 C (N,m). Initial conditions will be specified on the subset of configuration space-time for

which all time coordinates are zero. This set we denote by C0 = ({0} × R3)N ×
⋃∞
m=0({0} × R3)m.

For a configuration q4 ∈ C we use the notation q4 = (ξ4, η4) = (x1, . . . , xN , y1, . . . , ym) (with

xj , yk ∈ R4). For single space-time points x ∈ R4 we denote x = (x0,x) = (x0, x1, x2, x3). Let mx

and my be positive constants and N,m ∈ N.

Conjecture 3.1 (R. Tumulka and D. Dürr, 2001 and 2009). The following equations consistently

define a multi-time wave function ψ : C → C from initial data on C0 (i.e., the set where all time

coordinates are zero): For any (ξ4, η4) ∈ C , m = |η4|, and any i = 1, . . . , N and k = 1, . . . ,m,

i
∂ψ

∂x0
i

(ξ4, η4) = − 1

2mx
∆xiψ(ξ4, η4) +

1√
m

m∑
k=1

ϕ̃(yk − xi)ψ(ξ4, η4\yk)

+
√
m+ 1

∫
R3

dy ϕ̃∗
(
(x0
i ,y)− xi

)
ψ
(
ξ4, η4 ∪ (x0

i ,y)
)

(3.19)

i
∂ψ

∂y0
k

(ξ4, η4) = − 1

2my
∆ykψ(ξ4, η4), (3.20)

where ϕ̃ : R4 → C is a fixed function satisfying

i
∂ϕ̃

∂y0
(y) = − 1

2my
∆yϕ̃(y). (3.21)

If this conjecture were correct, it would provide an example of consistent multi-time equations

with interaction. However, the following Theorem 3.2 shows that the conjecture is not correct.
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Theorem 3.2. Suppose the function ϕ̃(0, ·) : R3 → C is not identically zero and has compact support.

Then the above system of equations (3.19), (3.20) has only one continuous solution ψ : C → C,

namely ψ = 0.

Proof. For every i = 1, . . . , N , we define the operator Hxi on functions ψ on C by saying that

Hxiψ(ξ, η) is the right hand side of (3.19).2 Now choose i, j ∈ {1, . . . , N} with i 6= j and let3

K =

[
i
∂

∂x0
i

−Hxi , i
∂

∂x0
j

−Hxj

]
. (3.23)

Let Ψ be a solution of the above system of equations (3.19) and (3.20). We then have that (Ψ ∈

S ′i ∩S ′j and) (
i
∂

∂x0
i

−Hxi

)
Ψ = 0 (3.24)

and (
i
∂

∂x0
j

−Hxj

)
Ψ = 0. (3.25)

It follows that (Ψ ∈ SK and) KΨ = 0. We show in Appendix A.2 that K is a multiplication

operator, multiplying by the function

f(ξ, η) = 2i Im

∫
R3

dy ϕ̃∗(0,y + xi − xj) ϕ̃(x0
i − x0

j ,y). (3.26)

From this result about K the theorem follows in this way: We have that f(q)Ψ(q) = 0 for every

q ∈ C and will show that f 6= 0 on a dense subset of C ; then Ψ vanishes on a dense subset, and by

continuity vanishes everywhere. Let

g(x) = g(x0,x) =

∫
R3

dy ϕ̃∗(0,y + x) ϕ̃(x0,y) = 〈ϕ|TxUx0ϕ〉 (3.27)

with ϕ = ϕ̃(0, ·), Tx the translation operator Txϕ(y) = ϕ(x−y), and Ux0 the unitary time-evolution

operator of the free Schrödinger equation. Since f(ξ, η) = 2i Im g(xi − xj), it suffices to show that

Im g(x) 6= 0 on a dense subset of R4. (The following argument we owe to Eric Carlen, Roderich

Tumulka and Eugene Speer. Presumably, the hypothesis of compact support of ϕ can be weakened.)

2For the sake of completeness, we note that Hxi is defined on the space Si of those measurable functions ψ : C → C
that are twice partially differentiable with respect to each of x1i , x

2
i , and x3i and for which the integrand in (3.19),

ϕ̃∗
(
(x0i ,y)− xi

)
ψ
(
ξ, η ∪ (x0i ,y)

)
, (3.22)

is an integrable function of y for every (ξ, η). For later use, let S ′i be the space of ψ ∈ Si for which ∂ψ/∂x0i exists.
3For the sake of completeness, we note that K is defined on the space SK of those ψ : C → C with ψ ∈ S ′i ∩S ′j

for which i∂ψ/∂x0i −Hxiψ ∈ S ′j and i∂ψ/∂x0j −Hxjψ ∈ S ′i .
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To this end, we will show that g possesses an analytic continuation on C4 \ {x0 = 0}. It then

follows that if Im g vanished on an open subset U of R4 \ {x0 = 0} then, by the Cauchy–Riemann

partial differential equations,

∂Re g

∂Rexµ
=

∂Im g

∂Imxµ
,

∂Re g

∂Imxµ
= − ∂Im g

∂Rexµ
(3.28)

g would have to be constant on U ; again by analyticity, g would have to be constant everywhere on

R4 \ {x0 = 0}, which it is not: On the one hand, we have that

g(x)→ ‖ϕ‖2L2 as x→ 0 (3.29)

because g(0) = ‖ϕ‖2L2 and g is continuous at 0, as Tx and Ut are strongly continuous in x and t. On

the other hand,

|g(x)| < ‖ϕ‖2L2 for x0 6= 0 (3.30)

because g(t,x) = 〈ϕ|TxUtϕ〉 is the inner product between two functions of norm ‖ϕ‖, thus must

have absolute value no greater than ‖ϕ‖2, and can assume the maximum value only if ϕ = eiθTxUtϕ

for some θ ∈ R, which occurs only if x = 0 and t = 0. Thus, g is not constant.

To see that g is analytic, we use the Green function of the free Schrödinger equation,

Utϕ(x) =

∫
R3

dyGt(x,y)ϕ(y), (3.31)

Gt(x,y) =
( 1

2πit

)3/2

e−i(x−y)2/2t, (3.32)

and thus write

g(x) =
( 1

2πix0

)3/2
∫
R3

dy

∫
R3

dz ϕ∗(y)ϕ(z) ei(y−z−x)2/2x0

. (3.33)

The pre-factor and the exponential term together form an analytic function in x on C4 \ {x0 = 0}.

From the Payley–Wiener theorem and standard arguments it follows that if a function f(z, λ) is

analytic in z for every λ and ϕ has compact support then
∫
dλϕ(λ) f(z, λ) is analytic. Since our ϕ

was assumed to have compact support, g is analytic.
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3.3 The Conjecture on Hilbert Space

We now switch to the Hilbert space setting and state the corresponding conjecture. ψ is now a

wavefunction on Fock space. The Fock space is F =
⊕∞

m=0H(m) with the (N,m)-particle sector

H(m) = L2(Q(m)) (anti-symmetrized in the electron variables) where Q(m) = R3N × R3m. Note

that the Fock space is not symmetrized in the photon variables now. Instead, equation (3.36) below

represents the bosonic symmetry.

We now “translate” the equations (3.19), (3.20) into equations on Hilbert space. The corre-

sponding Hamiltonians (the right hand sides of (3.19), (3.20)) are

Hxi = Hfree
xi +Hc

xi +Ha
xi ,

Hyk = Hfree
yk

, (3.34)

with

(Hfree
xi ψ)(ξ, η) = − 1

2mx
∆xiψ(ξ, η),

(Hc
xiψ)(ξ, η) =

1√
m

m∑
k=1

ϕ̃(tyk − txi ,yk − xi)

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1 − tyc)

)
ψ(m−1)

]
(ξ, η\yk),

(Ha
xiψ)(ξ, η) =

√
m+ 1

∫
R3

dym+1ϕ̃
∗(tym+1

− txi ,ym+1 − xi)ψ(ξ, η ∪ ym+1),

(Hfree
yk

ψ)(ξ, η) = − 1

2my
∆ykψ(ξ, η). (3.35)

The expression ∆cψ
(m) means the Laplace operator acting on the c-th variable of ψ(m). We have to

insert the operator exp
(∑m−1

c=k
i

2my
∆c(tyc+1 − tyc)

)
in the definition of Hc

xi in order to keep track of

the corresponding time variables when we remove a variable from the η-configuration. In Appendix

A.2 it is shown that Ha
xi is the adjoint of Hc

xi , i.e., that both Hxi and Hyk are self-adjoint. Note that

if all times in (3.35) are set equal we get the one-time Hamiltonians (3.5) (if we set ϕ̃(y, 0) = ϕ(y)).

Keeping track of the corresponding time variables is also relevant to the condition for the bosonic

symmetry. This condition on ψ is (we only write out the variables yp and yq in the η configuration)

ψ(ξ,yp,yq) = e
− i

2my
∆yp (tyq−typ )

e
− i

2my
∆yq (typ−tyq )

ψ(ξ,yq,yp) (3.36)

for all yq,yp ∈ η. We denote with ψ0 the wavefunction on Fock space with all parameters txj and

tyk set to zero. The conjecture about the multi-time model on Fock space is
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Conjecture 3.3. The following equations consistently define a multi-time wave function ψ on the

Fock space F from initial data ψ0 ∈ F that are symmetric in the y-variables: For the (N,m)-sector

of Fock space,

i
∂ψ

∂txi
(ξ, η) =

(
(Hfree

xi +Hc
xi +Ha

xi)ψ
)

(ξ, η)

i
∂ψ

∂tyk
(ξ, η) =

(
Hfree
yk

ψ
)

(ξ, η) (3.37)

with the Hamiltonians (3.35) and where ϕ̃ : R4 → C is a fixed function that is square integrable for

each t and that satisfies

i
∂ϕ̃

∂t
(t,y) = − 1

2my
∆yϕ̃(t,y). (3.38)

Indeed we find that the consistency conditions formulated in Assertion 2.1 are not satisfied by

the Hamiltonians (3.35). We calculate in Appendix A.2 that

[Hxi , Hxj ] + i
∂Hxi

∂txj
− i

∂Hxj

∂txi
= 2i Im

∫
R3

dy ϕ̃∗(y − xi)ϕ̃(y − xj),

[Hyk , Hyj ] + i
∂Hyk

∂tyj
− i

∂Hyj

∂tyk
= 0,

[Hxi , Hyk ] + i
∂Hxi

∂tyk
− i∂Hyk

∂txi
= 0. (3.39)
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Chapter 4

Two Consistent Multi-Time

Models

As it does not seem possible to establish a consistent multi-time QFT model on all of space-time,

we define in this chapter the multi-time wavefunction only on a subset of space-time. This subset is

the set of all spacelike configurations with a δ cutoff taken into account.1

Our main result is a consistent multi-time QFT model with creation and annihilation of particles.

This result is stated in Theorem 4.20. This chapter is organized as follows. In section 4.1 we first

prove important statements about the existence of solutions for certain systems of equations. These

results will be used in sections 4.2 and 4.3 to prove the existence of solutions for the multi-time

evolutions. In section 4.2 we set up a multi-time model for N electrons that interact via a potential

only if they are closer to each other than δ. This model will be particulary helpful in proving and

understanding the next model in section 4.3. In this section we consider the QFT multi-time model

with a constant number of electrons that can emit and absorb photons in a δ-ball around each

electron.

The idea is to use the known one-time evolution with interaction for certain “groups” of particles.

Those groups will be defined in such a way that particles within a group interact with each other,

but particles in different groups do not. Our time-evolution equations will be “Dirac-type” equations

and in the case of the QFT model “Dirac-type” equations with additional emission and absorption

terms. We show that these equations have the property that solutions propagate with a finite speed.

1For N particles the set of all spacelike configurations is {(x1, . . . , xN ) ⊂ R4N : ∀i 6= j : (xi−xj)µ(xi−xj)µ > 0}.
For a four-vector x, xµxµ = −(x0)2 + x2 denotes its Minkowski lenght. x is called spacelike if xµxµ > 0, timelike if
xµxµ < 0 and lightlike if xµxµ = 0.
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This will be important in proving the Theorems about the multi-time evolution.

4.1 Existence of Solutions for Certain Systems of Equations

This section is due to Roderich Tumulka. If S is a closed subset of Rd then C∞(S,Ck) means the

space of functions f : S → Ck such that there is an open neighborhood U of S in Rd and a smooth

function g : U → Ck with f = g on S.

If B is a vector bundle over the manifold M then C∞(M ,B) denotes the space of smooth

cross-sections of B, i.e., the space of smooth functions ψ : M → B with ψ(q) ∈ Bq for all q ∈M .

(If S is a closed subset of M then C∞(S,B) means the space of functions f : S → B such that

there is an open neighborhood U of S in M and a smooth cross-section g ∈ C∞(U,B|U ) with f = g

on S.) By a Hermitian vector bundle we mean a complex vector bundle B equipped on each fiber

space Bq with an inner product (i.e., a positive-definite, Hermitian sesqui-linear form) 〈·|·〉q that

varies smoothly with q. By a Dirac-type differential operator on B we mean an operator of the form

Hψ(q) = i

dimTqM∑
i=1

Ai(q) ∂iψ(q) +B(q)ψ(q) (4.1)

where the coefficients Ai(q) and B(q) are self-adjoint matrices on Bq (self-adjoint with respect to

〈·|·〉q) and smooth functions of q. By an emission-absorption-type integral operator we mean an

operator of the form

Hψ(q) =

n(q)∑
i=1

∫
Bd1

dy Ci(q, y)ψ(Fi(q, y)) +

n′(q)∑
i=1

C ′i(q)ψ(F ′i (q)), (4.2)

where the functions n, n′ : M → N are locally constant (i.e., constant on every connected component

of M ), Bd1 is the closed unit ball in Rd, Ci(q, y) ∈ Bq⊗B∗Fi(q,y), C
′
i(q) ∈ Bq⊗BF ′i (q)

, the functions

Ci, C
′
i, Fi, F

′
i are smooth, and the (dimTFi(q,y)M × d) matrix ∂Fi(q, y)/∂yj has rank d for all q, y,

and i ≤ n(q).

The following fact is known (see [2]):

Lemma 4.1. Let M be a complete Riemannian manifold and B a Hermitian vector bundle over

M . When H is a Dirac-type differential operator then the PDE

i
∂f(t, q)

∂t
= Hf(t, q), (4.3)
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where t ∈ R, q ∈ M , and f is a cross-section of B, possesses, for any smooth initial datum

f0 ∈ C∞(M ,B), a unique smooth solution f ∈ C∞(R×M ,B) with f(0, ·) = f0(·).

Lemma 4.2. For each α = 1, . . . , L, let Mα be a complete Riemannian manifold, Bα a Hermitian

vector bundle over Mα, Gα a closed subset of Mα, and Dα a closed subset of R×Mα with {0}×Gα ⊆

Dα. Let Dα(t) = {q ∈ Mα : (t, q) ∈ Dα}. Let Hα be a Dirac-type differential operator on Bα.

Suppose that, for each α, the set Dα is such that a solution ψ ∈ C∞(Dα,Bα) of the equation

i
∂ψ

∂t
= Hαψ (4.4)

is uniquely determined by initial data on Gα, i.e., ψ(0, q) = φ(q) with φ ∈ C∞(Gα,Bα). Then also

the (interaction-free) multi-time evolution equations

i
∂ψ

∂tα
= Hαψ (4.5)

possess, for every initial datum φ ∈ C∞(
∏L

1 Gα,⊗L1 Bα), a unique solution ψ, and we have ψ ∈

C∞(
∏L

1 Dα,⊗L1 Bα).

Proof. We write q = (q1, . . . , qL) for a point in
∏

Gα. First obtain χ1(t1, q) by solving (4.5) for α = 1

with initial datum χ1(0, q) = φ(q). In detail, choose a smooth continuation φ̃ of φ on M :=
∏L

1 Mα;

by Lemma 4.1, there exists a smooth solution χ̃1(t1, q) of

i
∂f

∂t1
= H1f (4.6)

on R ×M . Since H acts only on q1 and B1 but not on qα and Bα for α ≥ 2, different values of

q2, . . . , qL decouple in (4.6), i.e., if we insert particular values Q2, . . . , QL for the variables q2, . . . , qL

in χ̃1 then the resulting function χ̃1(t1, q1, Q2, . . . , QL) equals the function χ̂(t1, q1) obtained by

solving (4.6) from initial data φ̂(q1) = φ̃(q1, Q2, . . . , QL). By assumption, the solution χ̂ on D1

depends only on the initial data φ̂ on G1, so χ̃ on D1×
∏L

2 Gα depends only on the initial data φ̃ on∏L
1 Gα, which is φ; define χ1 = χ̃ on D1×

∏L
2 Gα. Thus, we have that χ1 ∈ C∞(D1×

∏L
2 Gα,⊗L1 Bα),

solves (4.6), and agrees with φ at t1 = 0; we also have that χ1 is uniquely determined by (4.6) and

the initial condition φ.

In the same way, obtain χ2(t1, t2, q) by solving (4.5) for α = 2 with initial datum χ2(t1, 0, q) =

χ1(t1, q). Continue this way to obtain χ3, . . . , χL, and set ψ = χL. We then have that ψ ∈
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C∞(
∏L

1 Dα,⊗L1 Bα), and we know that every solution of (4.5) for all α = 1, . . . , L with initial

datum φ has to agree with ψ.

Now it is clear that ψ satisfies (4.5) for α = L but it remains to show this also for α = 1, . . . , L−1.

So consider some β ∈ {1, . . . , L− 1}, and call ψ again χL. Since

[
i∂

∂tβ
−Hβ ,

i∂

∂tL
−HL

]
= 0, (4.7)

we have that ( i∂

∂tL
−HL

)( i∂
∂tβ
−Hβ

)
χL =

( i∂
∂tβ
−Hβ

)( i∂

∂tL
−HL

)
χL = 0 (4.8)

because ( i∂

∂tL
−HL

)
χL = 0. (4.9)

We need to show that the function

χ′β,L :=
( i∂
∂tβ
−Hβ

)
χL (4.10)

vanishes identically on
∏L

1 Dα. To this end, we note that χ′β,L satisfies (4.5) for α = L with initial

datum

χ′β,L(t1, . . . , tL−1, 0, q) =
( i∂
∂tβ
−Hβ

)
χL−1(t1, . . . , tL−1, q). (4.11)

By the linearity of (4.5) and the uniqueness part of Lemma 4.1, it suffices to show that this initial

datum vanishes identically; that is, it suffices to show that χL−1 satisfies (4.5) with α = β. If

β = L − 1, this is immediate from the construction of χL−1. If β < L − 1, we repeat the above

reasoning to find that it suffices to show that χL−2 satisfies (4.5) with α = β. After L−β repetitions

we are done.

4.2 Model 1: Fixed Particle Number with δ-Range Interac-

tion Potential

In this section a multi-time theory for a constant number of electrons N and an interaction pair po-

tential with δ-range is described. We use the following notation: We abbreviate q = (x1, . . . ,xN ) ∈

R3N with each xk ∈ R3 and similarly q4 = (x1, . . . , xN ) ∈ R4N with xk ∈ R4.

After introducing the fundamental one-time-evolution equation in section 4.2.1, we prove the
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finite propagation speed of solutions in section 4.2.2. In section 4.2.3 we define the “groups” of

particles and the subset of space-time on which the multi-time wavefunction will be defined. Finally,

in section 4.2.4 these results and the results from section 4.1 are used to define the multi-time

evolution for the wavefunction and prove the existence and uniqueness of solutions.

4.2.1 The Dirac Equation with Potential

For this multi-time model we use the Dirac equation with some interaction potential. The one-

particle Dirac equation with potential for a wavefunction ψ : R4 → C4 is

i
∂

∂t
ψ(t,x) =

(
−icα ·∇ + βmc2 + V (x)

)
ψ(t,x) (4.12)

with positive constants m and c, a Hermitian (4×4)-matrix valued function V and the (4×4) Dirac

matrices α = (α1, α2, α3) and β. Note that we do not explicitly write out the summation over the

spin indices. For example, with V ψ we mean that the s-component of the spinor V ψ is
∑3
p=0 V

s
pψ

p.

The Dirac equation can be generalized to an N -particle equation. For a wavefunction ψ :

R3N+1 → (C4)⊗N the N -particle Dirac equation with potential is

i
∂

∂t
ψ(t, q) =

(
N∑
k=1

(
−icαk ·∇k + βkmc

2
)

+ V (q)

)
ψ(t, q) (4.13)

with positive constants m and c and a Hermitian matrix valued function V : R3N → (C4×4)⊗N .

The Dirac matrices αk and βk act only on the k-th particle’s spin indices and ∇k acts only on the

k-th particle’s position variables.

4.2.2 Finite Propagation Speed

For the Dirac equations (4.12) and (4.13) we now show that the wavefunction cannot propagate faster

than at the speed of light. In Lemma 4.3 this statement is precisely formulated for the one-particle

Dirac equation. Lemma 4.4 generalizes this statement to N particles.

These Lemmas also tell us about the domain of dependence of solutions of the Dirac equation.

The domain of dependence of a wavefunction ψ(t) for a certain region M0 ⊂ R3 is the region on

which initial conditions ψ(0) have to be specified in order to determine the wavefunction ψ(t) on

M0. In the following Lemma 4.3 we denote the ball around x with radius r ≥ 0 as Br(x) = {y ∈

R3 : ||y − x||2 ≤ r}. The ball around the origin is abbreviated Br := Br(0). The ball around x

can also be written as Br(x) = x + Br with the summation defined as a + B := {a + b : b ∈ B}
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for a ∈ X and B ⊂ X. We also want to express that a certain region of space cannot grow faster

than with the speed of light. For a subset M0 ⊂ R3 we therefore define Mt = M0 + Bct with the

summation of sets defined as A+B := {a+b : a ∈ A, b ∈ B}. Pictorally speaking one obtains Mt by

putting a ball with radius ct around each point of M0. The next Lemma 4.3 states that the domain

of dependence for x is given by Bct(x) and that a wavefunction with compact support M0 has after

time t compact support in Mt.

Lemma 4.3 (Finite Propagation Speed: One-particle Dirac Equation). Let ψ be a solution of the

one-particle Dirac equation (4.12) with initial data ψ(0, ·) ∈ L2(R3,C4) ∩ C∞(R3,C4) and with a

Hermitian potential matrix V ∈ C∞(R3,C4×4). Let t > 0.

(i) Then specifying initial conditions on Bct(x) uniquely determines ψ(t,x). (I.e. the domain of

dependence grows with the speed of light.)

(ii) Let ψ(0, ·) have compact support, supp(ψ(0, ·)) = M0 ⊂ R3. Then the support of ψ(t, ·) is a

subset of Mt = M0 + Bct. (I.e. the support of the wavefunction cannot grow faster than with

the speed of light.)

Proof. For this proof we set c = 1. Let (T,y) ∈ R4 with T > 0 and for t ∈ [0, T ] let

Σt =
{

(t,x) ∈ R4 : x ∈ BT−t(y)
}

(4.14)

denote the corresponding set of the equal-time hypersurface for time t (note that for t = T , ΣT =

(T,y)). We first prove the following statement (∗): If ψ vanishes on Σ0 it also vanishes on Σt for all

t ∈ [0, T ].

For any t ∈ [0, T ), let the lightcone between the surfaces Σ0 and Σt be Ct =
⋃
t′∈[0,t] Σt′ . Let

Σs denote the sides of the lightcone such that Σ0 ·∪Σt ·∪Σs = ∂Ct (the boundary of Ct) as shown in

Figure 4.1. For ease of notation and since we consider a fixed time t we do not write an index t for

the time-dependence of Σs and also define C := Ct. Let n be the outward-pointing unit vector field

on ∂C orthogonal to ∂C in the Euclidean metric on R4, i.e., ||n||2 =
∑4
i=1 n

ini = 1 and for any

tangent vector s on ∂C, n · s =
∑4
i=1 n

isi = 0.2 Let ψ† denote the complex conjugate and transpose

of the spinor ψ (so that |ψ|2 = ψ†ψ). Let j = (j0, j1, j2, j3) = (|ψ|2, ψ†α1ψ,ψ†α2ψ,ψ†α3ψ) denote

2We use a normal vector in the Euclidean metric here because we have to deal with the lightlike hypersurface Σs,
so the normal vector in the Minkowski sense would be lightlike, too. Therefore the flux integrals (4.16) could not be
written down in this simple form.



25

Figure 4.1: Σ0 and Σt are parts of equal time hypersurfaces, Σs is lightlike. Σ0, Σt and Σs enclose a volume
in R4, the truncated lighcone of (T,y).

the four-current. Then the continuity equation can be expressed as div(j) = 0.3 According to Gauß’

integral Theorem,

0 =

∫
C

div(j) d4x =

∫
∂C

j · n d3x =

∫
Σ0

j · n d3x+

∫
Σt

j · n d3x+

∫
Σs
j · n d3x. (4.16)

The differential d3x denotes the volume on a 3-surface relative to the Euclidean metric and j · n =∑3
k=1 j

knk denotes the Euclidean inner product. Now suppose that ψ|Σ0 = 0. Since the (outward-

pointing) normal vector on Σ0 is n = (−1, 0, 0, 0) we have j · n = −j0 = −|ψ|2 = 0 on Σ0. On Σt

the normal vector is n = (1, 0, 0, 0), so j · n = j0 = |ψ|2 on Σt. Therefore (I denotes the identity on

C4)

0 =

∫
Σt

j · n d3x+

∫
Σs

j · n d3x =

∫
Σt

|ψ|2 d3x+

∫
Σs
ψ†(n0I +α · n)ψ d3x. (4.17)

Next we prove that the (4 × 4)-matrix A := (n0I + α · n) is positive semi-definite on Σs, i.e., that

all eigenvalues are ≥ 0. For any unit vector b ∈ R3 we have that α · b has eigenvalues −1 and +1.4

Therefore the matrix ||n||α · n
||n|| has eigenvalues +||n|| and −||n||, so the lowest eigenvalue of A is

3Note the difference between the four-divergence div(j) = ∂µjµ = ∂j0

∂t
+∇·j and the three-divergence div(j) = ∇·j.

The continuity equation div(j) = 0 or
∂|ψ|2
∂t

= −div(j) is a consequence of the Dirac equation (4.12). Indeed, since

V , β and αi are Hermitian matrices and since for a Hermitian matrix A, ψ†Aψ is real, we find:

∂|ψ|2

∂t
=
∂
(
ψ†ψ

)
∂t

=
∂ψ†

∂t
ψ + ψ†

∂ψ

∂t
= 2Re

(
ψ†
∂ψ

∂t

)
= 2Re

(
ψ† (−α ·∇− iβm− iV )ψ

)
= −2Re

(
ψ†α ·∇ψ

)
= −

(
ψ†α ·∇ψ +

(
∇ψ†

)
·αψ

)
= −∇ ·

(
ψ†αψ

)
= −div(j) (4.15)

4For the Dirac matrices the following relation holds: αiαj + αjαi = 2δijI. Therefore for any unit vector b ∈ R3

we have (α · b)2 =
∑3
i,j=1 b

ibjαiαj =
∑3
i,j=1 b

ibj(2δijI − αjαi) = −(α · b)2 + 2||b||2I, i.e., (α · b)2 = ||b||2I = I, so
α · b has eigenvalues −1 and +1.
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e = n0 − ||n||. On Σs the normal-vector is n = ( 1√
2
,n) with ||n|| = 1√

2
, so e = 1√

2
− 1√

2
= 0. We

then have

0 =

∫
Σt

|ψ|2 d3x+

∫
Σs
ψ†(n0I +α · n)ψ︸ ︷︷ ︸

≥0

d3x. (4.18)

Since each integrand is ≥ 0, each integral is ≥ 0. Then according to (4.18) each integral has to

vanish. In particular this means that the integrand |ψ|2 has to vanish (almost everywhere) on Σt,

i.e., ψ|Σt = 0 (almost everywhere). From Lemma 4.1 we have that ψ ∈ C∞(R4,C4), therefore ψ

vanishes identically on Σt for all t ∈ [0, T ] (in particular also for t = T ). We have proven the

statement (∗): If ψ vanishes on Σ0 it also vanishes on Σt for all t ∈ [0, T ]. The two statements of

the Lemma follow in this way:

(i) Suppose ψ1, ψ2 ∈ C∞(R4,C4) are solutions of the Dirac equation (4.12) and are identical on

Σ0 and arbitrary on the rest of the t = 0 hypersurface. Then ψ1 − ψ2 is also a solution of the

Dirac equation with ψ1−ψ2 = 0 on Σ0. According to statement (∗) also ψ1−ψ2 = 0 in (T,y),

i.e., ψ1(T,y) = ψ2(T,y).

(ii) Suppose ψ(0, ·) has compact support, supp (ψ(0, ·)) = M0 ⊂ R3. Recall that Mt = M0 + Bt.

Now consider a point (t, z) ∈ R4 for t ≥ 0 and (t, z) /∈ Mt. This means that Bt(z) ∩M0 = ∅.

Since ψ(0, ·) = 0 on Bt(z) (outside M0), according to (∗) also ψ(t, z) = 0. Since this is true

for any (t, z) /∈Mt, ψ(t, ·) vanishes outside Mt.

From Lemma 4.3 (i) it follows immediately that the wavefunction on any M0 ⊂ R3 at time t is

uniquely determined by specifying initial conditions on Mt = M0 +Bct at time zero, i.e., the domain

of dependence for M0 is given by Mt.

Lemma 4.3 can be generalized for the N -particle Dirac equation. We first generalize our notion

of sets growing with the speed of light from R3 to R3N . Consider a point q ∈ R3N . It denotes a

certain configuration of N points in R3. Now let each of these points grow with the speed of light,

i.e., put a ball of radius ct ≥ 0 around each point. Then the corresponding set in configuration space

is

B
(N)
ct (q) := Bct(x1)× · · · ×Bct(xN ) =

N∏
i=1

Bct(xi). (4.19)

This definition can also be expressed by introducing the || · ||2,∞-norm. For any q ∈ R3N we define

||q||2,∞ := max
i=1,...,N

||xi||2. (4.20)
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Then we find B
(N)
ct (q) = {p ∈ R3N : ||p− q||2,∞ ≤ ct}.5 For the set around the origin we abbreviate

B
(N)
ct (0) = (Bct(0))N =: B

(N)
ct . We then have B

(N)
ct (q) = q + B

(N)
ct . If an arbitrary subset of

configuration space M0 ⊂ R3N grows with the speed of light one obtains Mt = M0 +B
(N)
ct .

Lemma 4.4 (Finite Propagation Speed: N -particle Dirac Equation). Let ψ be a solution of the

N -particle Dirac equation (4.13) with initial data ψ(0, ·) ∈ L2(R3N , (C4)⊗N ) ∩ C∞(R3N , (C4)⊗N )

and with a Hermitian potential matrix V ∈ C∞(R3N , (C4×4)⊗N ). Let t > 0.

(i) Then specifying initial conditions on B
(N)
ct (q) uniquely determines ψ(t, q). (I.e., the domain of

dependence grows with the speed of light.)

(ii) Let ψ(0, ·) have compact support, supp(ψ(0, ·)) = M0 ⊂ R3N . Then the support of ψ(t, ·) is a

subset of Mt = M0 +B
(N)
ct . (I.e., the support of the wavefunction cannot grow faster than with

the speed of light.)

Proof. The proof goes along the same lines as in the one-particle case. Again for this proof we

set c = 1. We first generalize the definition of the hypersurfaces to the N -particle case. Let

Q = (Q1, . . . ,QN ) ∈ R3N and (T,Q) ∈ R3N+1 with T > 0. The ball in configuration space (in the

sense discussed above) around Q with radius t is B
(N)
t (Q). For t ∈ [0, T ] let

Σt =
{

(t, q) ∈ R3N+1 : q ∈ B(N)
T−t(Q)

}
(4.22)

denote the corresponding set of the equal-time hypersurface for time t. We first prove the following

statement (∗∗): If ψ vanishes on Σ0 it also vanishes on Σt for all t ∈ [0, T ].

We define Ct =
⋃
t′∈[0,t] Σt′ as the “generalized lightcone” between the surfaces Σ0 and Σt.

Again, Σs denotes the sides of the generalized lightcone such that Σ0 ·∪Σt ·∪Σs = ∂Ct. For ease of

notation and since we consider a fixed time t we do not add an index t for the time-dependence of

5Both expressions for B
(N)
ct (q) are equivalent (denote p = (p1, . . . ,pN )):

N∏
i=1

Bct(xi) = {p ∈ R3N : pi ∈ Bct(xi) ∀i = 1, . . . , N}

= {p ∈ R3N : ||pi − xi|| ≤ ct ∀i = 1, . . . , N}

= {p ∈ R3N : max
i=1,...,N

||pi − xi|| ≤ ct}

= {p ∈ R3N : ||p− x||2,∞ ≤ ct}. (4.21)
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Σs and from now on we write C instead of Ct. Σs is composed of k faces in the following sense. We

call

Σs,k =
⋃

t′∈(0,t)

{(t′, q) ∈ Σs : ||Qk − xk||2 = T − t′} (4.23)

the k-th face of Σs. Then we have that Σs =
⋃
k=1,...,N Σs,k. Now let n = (n0,n1, . . . ,nN ) ∈ R3N+1

be the outward-poining unit vector field on ∂C orthogonal to ∂C in the Euclidean metric, i.e.,

||n||2 =
∑3N+1
i=1 nini = 1 and for any tangent vector s on ∂C, n · s =

∑3N+1
i=1 nisi = 0. The current j

for N particles is j = (j0, j1, . . . , jN ) = (|ψ|2, ψ†α1ψ, . . . , ψ
†αNψ). The continuity equation for N

particles is div(j) = ∂|ψ|2
∂t + div(j) = 0 (with div(j) =

∑N
k=1 div(jk)).6 According to Gauß’ integral

Theorem,

0 =

∫
C

div(j) d3N+1x =

∫
∂C

j · n d3Nx =

∫
Σ0

j · n d3Nx+

∫
Σt

j · n d3Nx+

∫
Σs
j · n d3Nx. (4.25)

The differential d3Nx denotes the (3N)-surface area relative to the Euclidean metric on R3N+1

and j · n =
∑3N+1
k=1 jknk is the Euclidean inner product on R3N+1. We suppose ψ|Σ0

= 0. As

the normal vector on Σ0 has components n0 = −1 and nk = 0 (for all k = 1, . . . , N) it follows

j · n = −j0 = −|ψ|2 = 0 on Σ0. On Σt we have n0 = 1 and nk = 0 (for all k = 1, . . . , N), so

j · n = j0 = |ψ|2. Therefore (I denotes the identity on (C4)⊗N )

0 =

∫
Σt

j · n d3x+

∫
Σs
j · n d3x =

∫
Σt

|ψ|2 d3x+

∫
Σs
ψ†(n0I +

N∑
k=1

αk · nk)ψ d3x. (4.26)

The (4N × 4N )-matrix A := (n0I +
∑N
k=1αk · nk) is positive semi-definite on Σs for the following

reason. Since for any unit vector b ∈ R3 we have that α · b has eigenvalues −1 and +1 (see footnote

4) each matrix ||nk||αk · nk
||nk|| has eigenvalues +||nk|| and −||nk||. Then the lowest eigenvalue of

A is e = n0 −
∑N
k=1 ||nk||. On Σs the normal-vector has the component n0 = 1√

2
. The spatial

components depend on the face of Σs. At Σs,k the spatial components have norm ||nj || = 1√
2
δjk

6The continuity equation for the N -particle Dirac equation can be derived in the following way. Note that V , β
and αik are Hermitian matrices and that for a Hermitian matrix A, ψ†Aψ is real. Then

∂|ψ|2

∂t
= 2Re

(
ψ†
∂ψ

∂t

)
= 2Re

(
ψ†

(
N∑
k=1

(−αk ·∇k − iβkm)− iV
)
ψ

)

= 2Re

(
ψ†

N∑
k=1

(−αk ·∇k)ψ

)
= −

N∑
k=1

(
ψ†αk ·∇kψ +

(
∇kψ

†
)
·αkψ

)

= −
N∑
k=1

(
∇k ·

(
ψ†αkψ

))
= −

N∑
k=1

div(jk) = −div(j) (4.24)
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(for all j = 1, . . . , N), so e = 1√
2
−
∑N
j=1

1√
2
δjk = 0. Thus

0 =

∫
Σt

|ψ|2 d3x+

∫
Σs
ψ†

(
n0I +

N∑
k=1

αk · nk

)
ψ︸ ︷︷ ︸

≥0

d3x. (4.27)

Since each integrand is ≥ 0, each integral is ≥ 0. Then according to (4.27) each integral has to

vanish. This means in particular for the integral over Σt, that the integrand |ψ|2 has to vanish

(almost everywhere) and therefore ψ = 0 on Σt (almost everywhere). Since from Lemma 4.1 we

know that ψ ∈ C∞(R3N+1, (C4)⊗N ), ψ has to vanish identically on Σt. We have proven: If ψ

vanishes on Σ0 it also vanishes on Σt for all t ∈ [0, T ] (∗∗). With that the two statements of Lemma

4.3 follow:

(i) As in the one-particle case, suppose ψ1, ψ2 ∈ C∞(R3N+1, (C4)⊗N ) are both solutions of the

Dirac equation (4.13) that are identical on Σ0 and arbitrary on the rest of the t = 0 hypersur-

face. Then ψ1 − ψ2 is another solution of the Dirac equation (4.13) with ψ1 − ψ2 = 0 on Σ0.

From the statement (∗∗) above it follows ψ1 − ψ2 = 0 in (T,Q), i.e., ψ1(T,Q) = ψ2(T,Q).

(ii) Consider ψ(0, ·) with compact support supp (ψ(0, ·)) = M0 ⊂ R3N . Recall that Mt = M0 +

B
(N)
t . Now for any (t, q) ∈ R3N+1 with t ≥ 0 and q /∈ Mt we have B

(N)
t (q) ∩M0 = ∅. Since

ψ(0, ·) = 0 on B
(N)
t (q) (outside M0), also ψ(t, q) = 0 (according to (∗∗)). This is true for any

(t, q) /∈Mt, therefore ψ(t, ·) vanishes outside Mt.

Lemma 4.4 (i) implies that the wavefunction at time t on any M0 ⊂ R3N is uniquely determined

by the initial conditions on Mt = M0 +B
(N)
ct at time zero, i.e., the domain of dependence for M0 is

given by Mt.

4.2.3 The Configuration Space-Time and Partitions

Although the multi-time evolution that we define in Theorem 4.6 uses the Dirac equation, it is not

fully relativistic but presumes a certain Lorentz frame. For the construction of a multi-time evolution

we consider groups of particles that are too far away from each other to interact, i.e., every particle

from one group does not interact with any particle from the other group. Then we have separate

time-evolutions for each group (as they do not influence each other by interaction). The subset of
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space-time on which the multi-time wavefunction will be defined is

C(N)
δ =

{
q4 ∈ R4N : ∀i 6= j : ti = tj or ||xi − xj || > c|ti − tj |+ δ

}
(4.28)

This is the set of all spacelike configurations in which additionally for each pair of particles either

the times are equal or the spatial distance from the one’s particle lightcone to the other particle is

bigger than δ for equal times.

The subset of space-time C(N)
δ is divided into different regions in order to define the groups of

particles that are too far away from each other (further than δ) to interact. For that we use a

partition P into different groups of particles. A partition P of the set of the first N natural numbers

is a set P = {S1, . . . , SL} with
⋃L
α=1 Sα = N and Sα ∩ Sβ = ∅ for α 6= β. The set of space-time

points with the property that for a given partition the particles in different groups do not interact

with each other is

C(N)
δ,P = {q4 ∈ R4N :(1) ∀i, j ∈ Sk ∀k = 1, . . . , L : ti = tj

(2) ∀i ∈ Sk, j ∈ S` ∀k 6= ` : ||xi − xj ||2 > c|ti − tj |+ δ}. (4.29)

An example is shown in Figure 4.2. We write q4 = (t1, q1; . . . ; tL, qL). With that notation we indicate

to which partition q4 belongs. We denote PN = {partitions P of N}. The set C(N)
δ on which the

time evolution will be defined can therefore be written as C(N)
δ =

⋃
P∈PN C

(N)
δ,P .

Figure 4.2: This space-time configuration is an element of C(N)
δ , in fact of C(N)

δ,{S1,S2} with S1 = {1, 2, 3} and

S2 = {4, 5}.
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4.2.4 The Multi-Time Evolution

Definition 4.5. For a pair potential V we write

V =

N∑
i,j=1
i 6=j

W (xi − xj). (4.30)

We say that a pair potential V has δ-range (δ > 0) if for all i, j ∈ N , i 6= j,

W (xi − xj) = 0 for ||xi − xj || > δ. (4.31)

The consistent multi-time model for N particles is defined in the following Theorem 4.6. We

define C(N)
δ,0 = ({0} × R3)N . Given a partition P = {S1, . . . , SL} we use the two notations

C(N)
δ,P 3 q

4 = (t1, q1; . . . ; tL, qL) =
(
(x0

1,x1), . . . , (x0
N ,xN )

)
(4.32)

with x0
i = tα for i ∈ Sα.

Theorem 4.6. Let V ∈ C∞(R3N , (C4×4)⊗N ) be a pair potential with δ-range. Then for all initial

conditions φ : C(N)
δ,0 → (C4)⊗N , φ ∈ L2 ∩ C∞

(
C(N)
δ,0 , (C4)⊗N

)
there is a unique wavefunction ψ :

C(N)
δ → (C4)⊗N with ψ|C(N)

δ,0

= φ and ψ ∈ C∞
(
C(N)
δ , (C4)⊗N

)
, which satisfies on C(N)

δ,P for every

partition P = {S1, . . . , SL} the equations

i
∂

∂tα
ψ(t1, q1; . . . ; tL, qL) =

∑
j∈Sα

(
−icαj ·∇j + βjmc

2
)

+
∑
i,j∈Sα
i6=j

W (xi − xj)

ψ(t1, q1; . . . ; tL, qL)

(4.33)

for all α = 1, . . . , L and with tα = x0
i for all i ∈ Sα.

Proof. The Theorem is proven in three steps: First, we define a function Ψ. Second, we show that

any solution ψ of the evolution equations with initial conditions φ must agree with Ψ. Third, we

show that Ψ satisfies the equations (4.33).

Step 1. We define Ψ on C(N)
δ by defining it on each C(N)

δ,P using induction on the number L of groups

in a partition.
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• We start the induction with L = 1. The corresponding partition is P = {S1} with S1 =

{1, . . . , N}. Note that with P = {S1} we have q4 = (t1, q1) with q1 = (x1, . . . ,xN ). Let Ψ on

C(N)
δ,P be the (unique) solution of

i
∂

∂t1
Ψ(t1, q1) =

∑
j∈S1

(
−icαj ·∇j + βjmc

2
)

+
∑
i,j∈S1
i 6=j

W (xi − xj)

Ψ(t1, q1) (4.34)

with initial conditions given by φ on C(N)
δ,0 . This is just a one-time Dirac-type equation. (From

Lemma 4.1 we know that there is a unique solution.)

• The induction assumption is that Ψ has been defined on C(N)
δ,P ′ for every partition P ′ with

L′ = L− 1 or fewer groups.

• Now we perform the induction step from L − 1 to L. Consider any P consisting of L

groups. We construct Ψ(Q4) for an arbitrary Q4 = (T1, Q1; . . . ;TL, QL) ∈ C(N)
δ,P . (Note

that according to our notation, P = {S1, . . . , SL} and T1 < T2 < · · · < TL.) According

to the induction assumption, Ψ is given for P̃ = {S1, . . . , SL−2, SL−1 ∪ SL}, in particular,

Ψ(T1, Q1; . . . ;TL−1, QL−1;TL−1, qL) is given for any qL ∈ B(|SL|)
TL−TL−1

(QL). Since the domain

of dependence of QL is B
(|SL|)
TL−TL−1

(QL) (see Lemma 4.4), we can solve the equation

i
∂

∂tL
Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, qL) =∑

j∈SL

(
−icαj ·∇j + βjmc

2
)

+
∑
i,j∈SL
i 6=j

W (xi − xj)

Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, qL)

(4.35)

to obtain Ψ(T1, Q1, . . . , TL, QL). Since Q4 ∈ C(N)
δ,P was arbitrary, we have defined Ψ on C(N)

δ,P

for every partition P with L or fewer groups.

Step 2. Let ψ be a solution of the multi-time equations (4.33) with initial conditions φ. Then,

for the induction start with L = 1, this ψ has to agree with Ψ on C(N)
δ,{N}, since both functions

have the same initial conditions and are solutions of the same equation (4.34). The same holds for

the induction step. Both ψ and Ψ have the same initial conditions and are solutions to the same

equation (4.35). Therefore ψ agrees with Ψ.

Step 3. This part of the proof is due to Roderich Tumulka. For any space-time point (T,Q) with
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T > 0, let

D+
s,(T,Q) =

⋃
0≤t≤s

{T − t} ×Bc|t|(Q) (4.36)

be the “pyramid-shaped” region with tip at (T,Q); it is the set of all space-time points whose domain

of dependence (at time T − s) is contained in the domain of dependence of (T,Q). Likewise, for a

group of k particles, we define, for T > 0 and Qα ∈ R3k,

D+
s,(T,Qα) =

⋃
0≤t≤s

{T − t} ×B(k)
c|t|(Qα). (4.37)

Now, choose any Q4 = (T1, Q1; . . . ;TL, QL). Choose ε > 0 in such a way that

2ε < Tα+1 − Tα (4.38)

for every α = 1, . . . , L− 1 and

2ε < ‖Xi −Xj‖ − |X0
i −X0

j | − δ (4.39)

for every i ∈ Sα, j ∈ Sβ with α 6= β. We show that for any fixed β = 1, . . . , L, fixed Q̃4
α = (Tα, Qα)

for α 6= β, and varying Q̃4
β ∈ D

+
2ε,(ε+Tβ ,Qβ), Ψ(Q̃4

1, . . . , Q̃
4
L) satisfies

i
∂Ψ

∂tβ
= HβΨ =

∑
j∈Sβ

(
−icαj ·∇j + βjmc

2
)

+
∑
i,j∈Sβ
i 6=j

W (xi − xj)

Ψ. (4.40)

To this end, let ψ(tβ , qβ , t>β , q>β) be the solution, provided by Lemma 4.2, of the two-time evolution

equations

i
∂ψ

∂tβ
= Hβψ (4.41)

and

i
∂ψ

∂t>β
= H>βψ =

L∑
α=β+1

Hαψ +

L∑
α,γ=β+1
α 6=γ

Wαγψ (4.42)

for tβ ∈ [Tβ − ε, Tβ + ε] and t>β ∈ [Tβ − ε, Tβ+1 + ε] with initial data

ψ(Tβ − ε, qβ , Tβ − ε, qβ+1, . . . , qL)

= Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, Tβ − ε, qβ , Tβ − ε, qβ+1, . . . , qL) (4.43)
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for qα ∈ B(|Sα|)
Tα−Tβ+2ε(Qα) for α ≥ β.

We now show that for tβ = t>β in the interval [Tβ − ε, Tβ + ε],

ψ(tβ , qβ , tβ , q>β) = Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, tβ , qβ , . . . , qL). (4.44)

The crucial point here is that the groups Sβ and S>β do not interact in this time interval. Set

Gβ =

L∏
α=β+1

B
(|Sα|)
Tα−Tβ+2ε(Qα). (4.45)

For any (x1,x2, . . .) ∈ B(|Sα|)
2ε (Qβ) and (x′1,x

′
2, . . .) ∈ Gβ we have that

‖xi − x′j‖ > δ (4.46)

for all i and j by virtue of the choice of ε. As a consequence, W (xi − x′j) = 0, that is, the equation

for S≥β contains no interaction term between Sβ and S>β for Tβ − ε ≤ tβ ≤ Tβ + ε. That is,

H≥β =

L∑
α=β

H0,α +

L∑
α,γ=β
α6=γ

Wαγ = Hβ +H>β . (4.47)

(Notabene: The operators called H are not, as usual, operators on the L2 space over the configu-

ration space; they are affine-linear combinations of the derivative operators ∂i with matrix-valued

coefficients. The difference is that the latter, but not the former, can be considered at a single

configuration.) When both time variables are set equal in ψ, then its Hamiltonian is the sum of

the partial Hamiltonians, Hβ +H>β ; thus, it is the same as for Ψ with fixed T1, Q1, . . . , Tβ−1, Qβ−1

and the same time variable tβ for qβ , . . . , qL. From the uniqueness statement of Lemma 4.1, we thus

obtain (4.44).

By definition of Ψ, the value of Ψ(Q̃) depends on

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, T̃β , Q̃β , Tβ+1, q>β) (4.48)

with q>β ∈
∏L
α=β+1B

(|Sα|)
Tα−Tβ+1

(Qα). The value of (4.48), in turn, is obtained from

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, T̃β , Q̃β , T̃β , q>β) (4.49)
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by solving the equation i∂Ψ/∂tβ+1 = H>βΨ. It follows that (4.48) is equal to

ψ(T̃β , Q̃β , Tβ+1, q>β), (4.50)

since the latter is obtained by solving i∂ψ/∂t>β = H>βψ (with the difference that qβ is not fixed

but one of the variables of the function solved for in the PDE; but that difference does not affect

the solution because the evolutions for different values of qβ decouple, so that it does not matter

whether we first solve the PDE and then set qβ = Q̃β or the other way around) from the same initial

data (4.44). Now (4.50) can be obtained from ψ(Tβ − ε, qβ , Tβ+1, q>β) by solving (4.41). According

to Lemma 4.2, the evolution of Ψ from (4.48) to Ψ(Q̃4) commutes with solving (4.41); therefore,

Ψ(Q̃4) can be obtained from

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, Tβ − ε, qβ , Tβ+1, Qβ+1, . . . , TL, QL) (4.51)

by solving (4.41), which is what we wanted to show.

Since β was arbitrary, we have shown that Ψ satisfies the multi-time evolution equations. Finally,

to see that Ψ is smooth we note that on
∏L
α=1D

+
α , Ψ simultaneously satisfies the multi-time evolution

equations for all α = 1, . . . , L; Lemma 4.2 guarantees that the only solution is smooth.

4.3 Model 2: A Multi-Time QFT Model with δ-Cutoff

Now the multi-time Dirac theory for a variable number of particles is formulated. Specifically a

consistent multi-time theory for the QFT model with a constant electron number and emission and

absorption of photons is defined. Therefore some of the definitions from above have to be generalized

to a variable number of particles.

4.3.1 The Dirac Equation with Creation and Annihilation Terms

In the following emission-absorption model we use a wave equation for electrons and photons with

creation and annihilation terms. For the electrons (massive spin- 1
2 particles) we use the familiar

N -particle free Dirac equation. For the photon-part we will use a Dirac-like equation for massless

spin-1 particles (as described in [1]). For a single particle this equation reads

i
∂

∂t
ψ(t,y) = −ic (S ·∇)ψ(t,y) (4.52)
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with S = (S1, S2, S3) and a wavefunction ψ : R3 → C3 with constraint div(ψ) = ∇ · ψ = 0.

The Hermitian (3 × 3)-matrices Sj are the analog of the Pauli matrices for spin-1 particles. (They

represent infinitesimal rotations for spin-1.) They can explicitly written down for example in the

following representation as (Sj)k` = −iεjk`, i.e.,

S1 =


0 0 0

0 0 −i

0 i 0

 , S2 =


0 0 i

0 0 0

−i 0 0

 , S3 =


0 −i 0

i 0 0

0 0 0

 . (4.53)

They satisfy the relation

(SiSj + SjSi)ab = 2δijδab − δaiδbj − δajδbi. (4.54)

Note that this relation implies that

[(S ·∇) (S ·∇)]ab = ∆δab −∇a∇b (4.55)

which is the well-known identity from vector analysis

−∇× (∇× ψ) = ∆ψ −∇(∇ · ψ). (4.56)

Therefore for all ψ with vanishing divergence we have an expression for the square root of the

Laplacian that leads to equation (4.52). Since (Sj)k` = −iεjk` the photon equation (4.52) can also

be written as

i
∂

∂t
ψ(t,y) = c∇× ψ(t,y). (4.57)

with constraint div(ψ) = 0. This equation is equivalent to the (vacuum) Maxwell equations by

setting ψ = 1√
2

(
E√
ε0

+ i B√
µ0

)
with electric field E and magnetic field B. Further properties of the

photon wavefunction are described in [1] and other papers by the same author.

With that the equation for massive spin- 1
2 and massless spin-1 particles that includes creation

and annihilation terms is the following equation for a wavefunction ψ : R × Q → S. For the
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(N,m)-particle sector it reads:

i
∂

∂t
ψ(t, ξ, η) =

N∑
j=1

(
−icαj ·∇xj + βjmc

2
)
ψ(t, ξ, η) +

m∑
k=1

(−icSk ·∇yk)ψ(t, ξ, η)

+
1√
m

N∑
j=1

m∑
k=1

ϕδ(yk − xj)ψ(t, ξ, η\yk) +
√
m+ 1

N∑
j=1

∫
R3

dy ϕ∗δ(y − xj)ψ(t, ξ, η ∪ y)

(4.58)

with positive constants m and c. The Dirac matrices αj and βj act only on the j-th electron’s spin

indices and ∇xj acts only on the j-th electron’s position variables. The matrices Sk act only on the k-

th photon’s spin indices and ∇yk acts only on the k-th photon’s position variables. ϕδ(x) : R3 → C3

is a square-integrable cut-off function with δ-range. (Again, note that for ease of notation we do not

explicitly write out the summation over the spin indices.)

4.3.2 The Domain of Dependence

In the case of a constant particle number N we found that the wavefunction on M0 ⊂ R3N is

determined by specifying initial conditions on Mt = M0 + B
(N)
ct . A similar statement is true for a

variable particle number. Suppose we have a certain point in configuration space q ∈ R3N × R3m

and we want to determine its domain of dependence. A major difficulty is that the domain of

dependence is a very complicated set because it has to be taken into account which photons can

be absorbed and which not. Already for one electron and a small number of photons (both with

finite propagation speed) it is a very difficult mathematical problem to determine which photons

can possibly be “reached” in a certain time. Let us first define what kind of configuration jumps are

allowed in this model. We define an allowed jump in the following way.

Definition 4.7. For a configuration (ξ, η) ∈ R3N ×R3m a jump (ξ, η)→ (ξ′, η′) is called allowed if

(ξ′, η′) is one of the following two configurations:

1. ξ′ = ξ and η′ = (η ∪ y) with y ∈ Bδ(xi) for some i ∈ N .

2. ξ′ = ξ and η′ = (η\yk) with yk ∈ Bδ(xi) for some i ∈ N .

With that, a very abstract definition for the domain of dependence of a configuration q can be

given:

Mt(q) = {γ(t) such that γ : [0, t]→ Q, γ(0) = q, γ ∈ E} (4.59)
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where E is the set of allowed histories. An allowed history γ fulfills two conditions: First, γ makes

only allowed jumps and second, electrons and photons cannot move faster than with the speed of

light between jumps, i.e., ||dxidt || ≤ c (for i ∈ N ) and ||dykdt || ≤ c (for k ∈ N).

Since we want to avoid the difficulty of dealing with Mt(ξ, η) we give an upper bound for the

domain of dependence, Nt(ξ, η) ⊃Mt(ξ, η). We define

Nt(ξ, η) =
{

(ξ′, η′) ∈ Q : 1. ξ′ ∈ B(N)
ct (ξ)

2. η′ = η′′ ∪
N⋃
i=1

η′′′i with (i) η′′ ∈ B(#η′′′′)
ct (η′′′′) for η′′′′ ⊂ η

(ii) η′′′i ⊂ Bct+δ(xi)
}
. (4.60)

This definition says that for a given configuration (ξ, η) the set Nt(ξ, η) is constructed in the following

way.

1. Electrons can maximally move with the speed of light.

2. The new photon configuration consists of two parts: (i) The photons that did not get absorbed

by electrons. They can maximally move with the speed of light. We allow that an arbitrary

number of photons did get absorbed. (ii) The photons that were created by any of the electrons

in a ball with radius δ during the time interval [0, t].

The approximation in the definition of Nt(ξ, η) is that we allowed that an arbitrary number of

photons can be absorbed, but as discussed above, in fact only a certain number of photons can be

absorbed. We later need to consider subsets of configuration space that do not change if an allowed

jump is performed. In the following we refer to unordered configurations.

Definition 4.8. B ⊂ ΓN (R3)×Γ(R3) is called closed under allowed jumps if for any (ξ, η) ∈ B and

for any allowed jump (ξ, η)→ (ξ′, η′), also (ξ′, η′) ∈ B.

Sets that are closed under allowed jumps can be further characterized. Since the ξ-configuration

does not change under allowed jumps only the set of η-configuration is important in the question

wheather a set is closed under allowed jumps. We define for B ⊂ ΓN (R3)×Γ(R3) the set Bξ = {η ∈

Γ(R3) : (ξ, η) ∈ B} and abbreviate Uδ(ξ) =
⋃N
i=1Bδ(xi) and Uδ(ξ)

c = R3\Uδ(ξ). Then we have the

following Lemma.
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Lemma 4.9. Let B ⊂ ΓN (R3)× Γ(R3). Then the following two statements are equivalent.

(i) B is closed under allowed jumps.

(ii) For every ξ, there is a B′ξ ⊂ Γ (Uδ(ξ)
c) such that Bξ = B′ξ × Γ (Uδ(ξ)).

Proof. First, note that Γ(R3) = Γ (Uδ(ξ)
c)× Γ (Uδ(ξ)).

• (i) ⇒ (ii): For a fixed ξ with (ξ, η) ∈ B, we can write η = (η′, η′′) with η′ ∈ Γ (Uδ(ξ)
c) and

η′′ ∈ Γ (Uδ(ξ)). Allowed jumps cannot change η′ since η′ is outside of the δ-neighborhood of

the ξ-configuration. Now fix ξ and η′. Since B is closed under allowed jumps we have to add

and remove an arbitrary number of photons within the δ-ball of the ξ-configuration. This is

true for any ξ and η′, therefore B can be written as in (ii).

• (ii)⇒ (i): Any B for which Bξ = B′ξ ×Γ (Uδ(ξ)), is closed under allowed jumps, since for any

configuration in B one can add or remove photons in Uδ(ξ) and still has a configuration in B.

Lemma 4.9 says that for a set that is closed under allowed jumps the ξ-configuration is arbitrary,

the number of photons outside the δ-balls around each electron is arbitrary, but the set has to include

all possible configurations in the union of the δ-balls around the electrons.

In the proof of Lemma 4.12 we need an important formula for integrals over the unordered

configuration space. Let (S, µS) be a measure space. Then there is a corresponding measure on

Γ(S),

µΓ(S)(B) =

∞∑
m=0

1

m!
µ⊗mS

(
π−1

(
B(m)

))
(4.61)

for B ⊂ Γ(S), B(m) = B ∩ Γ(m)(S). µ⊗mS is the product measure on Sm and π maps ordered

configurations to unordered configurations, i.e.,

π ((y1, . . . ,ym)) = {y1, . . . ,ym}. (4.62)

With that we have an explicit expression for integrals over the unordered configuration space:

∫
Γ(S)

dηf(η) =

∞∑
m=0

1

m!

∫
Sm6=

dy1 · · · dym f({y1, . . . ,ym}) (4.63)

with Sm6= := {η ∈ Sm : yi 6= yj ∀i 6= j}. For these integrals the following Lemma holds.
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Lemma 4.10. For any measure space (S, µS) one has

∫
Γ(S)

dη
∑
y∈η

f(y, η\y) =

∫
Γ(S)

dη′
∫
S\η′

dy f(y, η′). (4.64)

Proof. With (4.63) we show that equation (4.64) holds. In the second step we define z := yk and

(z1, . . . ,zk−1) := (y1, . . . ,yk−1) and (zk, . . . ,zm−1) := (yk+1, . . . ,ym). Also η′ := {z1, . . . ,zm′}

and m′ := m− 1. In the third step we use that the summands in the sum over k do not depend on

k anymore.

∫
Γ(S)

dη
∑
y∈η

f(y, η\y) =

∞∑
m=1

1

m!

∫
Sm6=

dy1 · · · dym
m∑
k=1

f(yk, {y1, . . . ,ym}\yk)

=

∞∑
m′=0

1

(m′ + 1)!

m′+1∑
k=1

∫
Sm
′
6=

dz1 · · · dzm′
∫
S\{z1,...,zm′}

dz f(z, {z1, . . . ,zm′})

=

∞∑
m′=0

1

m′!

∫
Sm
′
6=

dz1 · · · dzm′
∫
S\{z1,...,zm′}

dz f(z, {z1, . . . ,zm′})

=

∫
Γ(S)

dη′
∫
S\η′

dy f(z, η′). (4.65)

For the set Nt(ξ, η) we find:

Lemma 4.11. Nt(ξ, η) is closed under allowed jumps.

Proof. We show that Nt(ξ, η) is closed under the two possible allowed jumps:

1. Suppose (ξ′, η′) → (ξ′, η′\y′k) with y′k ∈ Bδ(x
′
i) for any i ∈ N . This configuration is also

in Nt(ξ, η), since we allowed that an arbitrary number of photons could get absorbed (confer

condition (2)(i) in definition (4.60)).

2. Suppose (ξ′, η′) → (ξ′, η′ ∪ y′) with y′ ∈ Bδ(x′i) for any i ∈ N . This configuration is also in

Nt(ξ, η), since y′ ∈ Bδ(x′i) ⊂ Bct+δ(xi) (confer condition (2)(ii) in definition (4.60)).

With that at hand we can prove the following Lemma 4.12 about the domain of dependence for

the Dirac equation with photon creation and annihilation terms.
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Lemma 4.12 (Domain of Dependence: Dirac Equation with Emission/Absorption). Let ψ be a

solution of equation (4.58) with initial data ψ(0, ·) ∈ L2(Q,S) ∩ C∞(Q,S). Let t > 0.

(i) Then specifying initial conditions on Nt(ξ, η) as defined in (4.60) uniquely determines ψ(t, ξ, η).

(I.e., the domain of dependence is contained in Nt(ξ, η).)

(ii) Let ψ(0, ·) have compact support, supp(ψ(0, ·)) = M0 ⊂ Q. Then the support of ψ(t, ·) is a

subset of Nt =
⋃
q∈M0

Nt(q).

Proof. We set c = 1. Let (ξ̃, η̃) ∈ Q(m) and let T > 0. We define for t ∈ [0, T ]

Σt =
{

(t, q) ∈ R×Q : q ∈ NT−t(ξ̃, η̃)
}
. (4.66)

As in the case of a constant particle number we first prove (∗∗∗): If Ψ vanishes on Σ0 it also vanishes

on Σt for all t ∈ [0, T ].

We define Ct =
⋃
t′∈[0,t] Σt′ and denote with Σs the sides of the region Ct such that Σ0 ·∪Σt ·∪Σs =

∂Ct. Note that Σs is in fact dependent on t but for ease of notation we do not explicitly add an

index t. Ct can be split into parts that belong to the (N,m)-particle sector for each m, i.e. C
(m)
t =

Ct ∩
(
R×Q(m)

)
such that Ct =

⋃∞
m=0 C

(m)
t . Let n(m) = (n(m),0,n

(m)
x1 , . . . ,n

(m)
xN ,n

(m)
y1 , . . . ,n

(m)
ym )

be the outward-pointing unit vector field on ∂C
(m)
t orthogonal to ∂C

(m)
t in the Euclidean metric

on R1+3N+3m. We use the following notation for the current. For the (N + m)-particle sector we

denote

j(m) :=
(
|ψ|2, ψ†α1ψ, . . . , ψ

†αNψ,ψ
†S1ψ, . . . , ψ

†Smψ
)

(4.67)

j3,(m) :=
(
ψ†α1ψ, . . . , ψ

†αNψ,ψ
†S1ψ, . . . , ψ

†Smψ
)
. (4.68)

The total “probability flux” through the “surface” ∂Ct is according to Gauß’ integral Theorem given

by
∞∑
m=0

∫
C

(m)
t

ds dξ dη div
(
j(m)

)
=

∞∑
m=0

∫
∂C

(m)
t

dσ(m) j(m) · n(m) (4.69)

where dσ(m) denotes the (3N + 3m)-surface area relative to the Euclidean metric. We now calculate

div
(
j(m)

)
. Using the results from the derivation of the continuity equation for a constant particle
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number (see equation (4.24)) we obtain for a solution ψ of equation (4.58):

div
(
j(m)

)
=

∂

∂t
|ψ|2(t, ξ, η) + div

(
j3,(m)

)
= 2

1√
m

N∑
j=1

m∑
k=1

Im
(
ψ†(t, ξ, η)ϕδ(yk − xj)ψ(t, ξ, η\yk)

)
+ 2
√
m+ 1

N∑
j=1

Im

(
ψ†(t, ξ, η)

∫
Bδ(xj)

d3y ϕδ(y − xj)ψ(t, ξ, η ∪ y)

)
(4.70)

For every ξ, we define Nξ,T−s = {η ∈
⋃∞
m=0 R3m : (ξ, η) ∈ NT−s(ξ̃, η̃)} and N

(m)
ξ,T−s = R3m ∩Nξ,T−s.

We then have for the l.h.s. of (4.69):

∞∑
m=0

∫
C

(m)
t

ds dξ dη div
(
j(m)

)
=

∫ t

0

ds

∞∑
m=0

∫
Σ

(m)
s

dξ dη div
(
j(m)

)
=

∫ t

0

ds

∫
B

(N)
T−s(ξ̃)

dξ 2

N∑
j=1

Im

[ ∞∑
m=1

1√
m

∫
N

(m)
ξ,T−s

dη

m∑
k=1

ψ†(t, ξ, η)ϕδ(yk − xj)ψ(t, ξ, η\yk)︸ ︷︷ ︸
A1(N

(m)
ξ,T−s)

+

∞∑
m=0

√
m+ 1

∫
N

(m)
ξ,T−s

dη ψ†(t, ξ, η)

∫
Bδ(xj)

dy ϕ∗δ(y − xj)ψ(t, ξ, η ∪ y)︸ ︷︷ ︸
A2(N

(m)
ξ,T−s)

]
(4.71)

We now show that the expression (4.71) equals zero. We show for any (measurable) set B ⊂⋃∞
m=0 R3m that is closed under allowed jumps that A1(B) = A∗2(B). This holds in particular

for Nξ,T−s. To perform this calculation we switch to unordered configurations. We denote B̂ =

π(B 6=) = {{y1, . . . ,ym} ∈ Γ(R3) : (y1, . . . ,ym) ∈ B6=} with B 6= = {η ∈ B : yi 6= yj ∀i 6= j}. Also

B(m) = R3m∩B and B̂(m) = Γ(m)∩ B̂ and we denote Uδ := Bδ(xj). According to Lemma 4.9, since

B is closed under allowed jumps, so is B̂, and we have B̂ = B̂′×Γ(Uδ) for a certain set B̂′ ⊂ Γ(U cδ ).

For ease of notation we do not explicitly write out the fixed variables ξ and t. We also use Lemma
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4.10.

A1(B) =

∞∑
m=1

1√
m

∫
B(m)

dη

m∑
k=1

ψ†(η)ϕδ(yk − xj)ψ(η\yk)

=

∞∑
m=1

1√
m
m!

∫
B̂(m)

dη̂
∑
y∈η̂

1√
m!
ψ̂†(η̂)ϕδ(y − xj)

1√
(m− 1)!

ψ̂(η̂\y)

=

∫
B̂

dη̂
∑
y∈η̂

ψ̂†(η̂)ϕδ(y − xj)ψ̂(η̂\y)

=

∫
B̂′
dη̂′
∫

Γ(Uδ)

dη̂′′
∑
y∈η̂

ψ̂†(η̂′′)ϕδ(y − xj)ψ̂(η̂′′\y)

=

∫
B̂′
dη̂′
∫

Γ(Uδ)

dη̂′′′
∫
Uδ

dy ψ̂†(η̂′′′ ∪ y)ϕδ(y − xj)ψ̂(η̂′′′)

=

∫
B̂′
dη̂′
∫

Γ(Uδ)

dη̂′′′
(
ψ̂†(η̂′′′)

∫
Uδ

dy ϕ∗δ(y − xj)ψ̂(η̂′′′ ∪ y)

)∗
=

∫
B̂

dη̂′′′′
(
ψ̂†(η̂′′′′)

∫
Uδ

dy ϕ∗δ(y − xj)ψ̂(η̂′′′′ ∪ y)

)∗
= A∗2(B) (4.72)

Since A1(B) = A∗2(B) we have that Im (A1(B) +A2(B)) = Im (A1(B) +A∗1(B)) = 0 and therefore

the flux-integral (4.71) is zero. Then it follows from (4.69) that

0 =

∞∑
m=0

∫
∂C

(m)
t

j(m) · n(m) dσ(m)

=

∞∑
m=0

[∫
Σ

(m)
0

j(m) · n(m) dσ(m) +

∫
Σ

(m)
t

j(m) · n(m) dσ(m) +

∫
Σs,(m)

j(m) · n(m) dσ(m)

]
. (4.73)

We now suppose that ψ vanishes on Σ0, so ψ also vanishes on Σ
(m)
0 for all m ∈ N. The normal vector

on Σ
(m)
0 is n(m) = (−1, 0, . . . , 0), so j(m) · n(m) = −|ψ|2 = 0 on Σ

(m)
0 . The normal vector on Σ

(m)
t is

n(m) = (1, 0, . . . , 0), so j(m) · n(m) = |ψ|2 on Σ
(m)
t . Let I denote the identity on (C4)⊗N × (C3)⊗m.

Then for Σs,(m) we have

j(m) · n(m)|Σs,(m) = ψ†

n(m),0I +

N∑
j=1

αi · n(m)
xi +

m∑
k=1

Sk · n(m)
yk

ψ

=: ψ†Mψ. (4.74)

Therefore from (4.73) it follows that

0 =

∞∑
m=0

∫
Σ

(m)
t

|ψ|2 dσ(m) +

∞∑
m=0

∫
Σs,(m)

ψ†Mψ dσ(m). (4.75)
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We show that the matrix M is positive semi-definite. We know that for any unit vector b ∈ R3

the matrices (b · α) and (b · S) have the lowest eigenvalue e = −1.7 Then the lowest eigenvalue

of M is eM = n(m),0 −
∑N
j=1 ||n

(m)
xi || −

∑m
k=1 ||n

(m)
yk ||. Note that there is now more than one

“pyramid” in the m-photon sector because this sector has contributions from other sectors. Those

pyramids can overlap so the surface Σ
(m)
t looks more complicated than in the case of a constant

particle number. However, since there are only finitely many pyramids the normal vector on Σs,(m)

has the component n(m),0 = 1√
2

and for the spatial components we have ||n(m),`|| = 1√
2
δ`j (for

j = 1, . . . , N +m). Therefore eM = 0. Then the rest of the argument goes along the same lines as

the end of the proof of Lemma 4.4.

4.3.3 On Existence and Uniqueness

Similar results as in section 4.1 should hold for equation (4.58). So far, we have not been able to

prove the following statement though. It can therefore only be stated as a conjecture.

Conjecture 4.13. Let B be a Hermitian vector bundle over the manifold M . There is a suitable,

large subspace F of C∞(Cδ,0 ×M ,S ⊗B) such that for every initial condition φ ∈ F there is a

unique solution ψ ∈ C∞(R× Cδ,0 ×M ,S ⊗B) of (4.58); for every time t, ψ(t) ∈ F .

With that we can state

Lemma 4.14. Suppose that Conjecture 4.13 is true. For each α = 1, . . . , L, let Hα be the Hamilto-

nian in (4.58). The (interaction-free) multi-time evolution equations

i
∂ψ

∂tα
= Hαψ (4.78)

possess, for every initial datum φ ∈ F (CLδ,0,S⊗L), a unique solution ψ, and ψ ∈ C∞(CLδ,0,S⊗L).

This can be proved just like Lemma 4.2.

7For (b ·α) this is shown in footnote 4. For (b · S) this can be verified by direct calculation in the representation
(4.53). We have

(b · S)− λ =

 0 −ib3 ib2
ib3 0 −ib1
−ib2 ib1 0

−
 λ 0 0

0 λ 0
0 0 λ

 =

 −λ −ib3 ib2
ib3 −λ −ib1
−ib2 ib1 −λ

 . (4.76)

The characteristic polynomial is

det ((b · S)− λ) = −λ3 + ib1b2b3 − ib1b2b3 + λb22 + λb21 + λb23 = −λ3 + λ, (4.77)

so the eigenvalues of (b · S) are −1, 0,+1.
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4.3.4 The Configuration Space-Time and Partitions

The multi-time evolution will be defined on

Cδ =

∞⋃
m=0

C(N,m)
δ (4.79)

with the following generalization of the subset of space-time (for N +m particles):

C(N,m)
δ =

{
(ξ4, η4) ∈ R4N × R4m :

(1) ∀i, j ∈ N 2, i 6= j : txi = txj or ||xi − xj || > c|txi − txj |+ 2δ

(2) ∀i ∈ N ∀k ∈M : txi = tyk or ||xi − yk|| > c|txi − tyk |+ δ
}
. (4.80)

where we abbreviate the set of the first N natural numbers as N := {1, . . . , N} and likewise M :=

{1, . . . ,m}. For a given partition P = {S1, . . . , SL} = {(Sξ1 , S
η
1 ), . . . , (SξL, S

η
L)} we define

C(N,m)
δ,P =

{
(ξ4, η4) ∈ R4N × R4m :

(1) ∀i, j ∈ Sξv , ∀k, ` ∈ Sηv , ∀v = 1, . . . , L : txi = txj = tyk = ty`

(2) ∀i ∈ Sξv , ∀j ∈ Sξw, ∀v, w = 1, . . . , L, v 6= w : xi /∈ Bc|txi−txj |+2δ(xj)

(3) ∀i ∈ Sξv , ∀k ∈ Sηw, ∀v, w = 1, . . . , L, v 6= w : xi /∈ Bc|txi−tyk |+δ(yk)
}
. (4.81)

Again, we have that

C(N,m)
δ =

⋃
P∈P
C(N,m)
δ,P . (4.82)

For an element q4 ∈ C(N,m)
δ,P and for a partition P = {(Sξ1 , S

η
1 ), . . . , (SξL, S

η
L)} we write:

q4 = (t1, q1; . . . ; tL, qL) = (t1, q
ξ
1, q

η
1 ; . . . ; tL, q

ξ
L, q

η
L)

=
(
(x0

1,x1), . . . , (x0
N ,xN ), (y0

1 ,y1), . . . , (y0
m,ym)

)
(4.83)

with x0
j = y0

k = tα for j ∈ Sξα, k ∈ Sηα.

4.3.5 Properties of C(N,m)
δ,P and Nt

We collect some Lemmas which will be used in the proof of Theorem 4.20.
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Lemma 4.15. Let τ2 ≥ τ1 and (QS1
, τ1;QS2

, τ2) ∈ C(N,m1+m2)
δ,P . Then for all qS′2 ∈ Nτ2−τ1(QS2

)

the configuration (QS1 , τ1; qS′2 , τ1) ∈ C(N,m1+m′2)
δ,P .

Proof. We denote ∆t := τ2 − τ1 and set c = 1. Then according to the definition (4.81) of C(N,m)
δ,P ,

(QS1
, τ1;QS2

, τ2) ∈ C(N,m)
δ,P means that

For all X ∈ QSξ1 , X̃ ∈ QSξ2 : X /∈ B∆t+2δ(X̃). (4.84)

For all X ∈ QSξ1 , Ỹ ∈ QS
η
2

: X /∈ B∆t+δ(Ỹ ). (4.85)

For all Y ∈ QSη1 , X̃ ∈ QSξ2 : Y /∈ B∆t+δ(X̃). (4.86)

Now choose an arbitrary qS′2 ∈ N∆t(QS2
). We denote qS′2 = (qSξ2

, qS′η2 ). (Here we use the notation

xβj ∈ qSξ2 and X̃βj ∈ QSξ2 .) According to the definition of N∆t(QS2
), see (4.60), this means:

For all j = 1, . . . , N2 : xβj ∈ B∆t(X̃βj ). (4.87)

For all y ∈ qS′η2 and some X̃ ∈ QSξ2 , Ỹ ∈ QS
η
2

: y ∈ B∆t(Ỹ ) or y ∈ B∆t+δ(X̃). (4.88)

Now we show that (QS1
, τ1; qS′2 , τ1) ∈ C(N,m)

δ,P . The next statements follow from the simple fact that

if a /∈ Br+ε(c) and b ∈ Br(c) then a /∈ Bε(b).

• From (4.84) and (4.87) it follows immediately that

for all X ∈ QSξ1 , x ∈ qSξ2 : X /∈ B2δ(x). (4.89)

• If y ∈ B∆t(Ỹ ) in (4.88), then with (4.85) the next statement (4.90) follows immediately. If

y ∈ B∆t+δ(X̃) in (4.88), then it follows with (4.84).

For all X ∈ QSξ1 , y ∈ qS′η2 : X /∈ Bδ(y). (4.90)

• From (4.86) and (4.87) it follows immediately that

for all Y ∈ QSη1 , x ∈ qSξ2 : Y /∈ Bδ(x). (4.91)
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Statements (4.89), (4.90) and (4.91) together are equivalent to (QS1
, τ1; qS′2 , τ1) ∈ C(N,m)

δ,P . Since

qS′2 ∈ N∆t(QS2) was arbitrary, the Lemma is proven.

Lemma 4.16. Let (ξ1, η1, τ ; ξ2, η2, τ) ∈ C(N,m)
δ,{S1,S2}. Let (Hψ)(ξ, η) be the emission-absorption Dirac-

type operator, the right hand side of (4.58). Then

(Hψ)(ξ, η) = (H1ψ)(ξ, η) + (H2ψ)(ξ, η), (4.92)

where H1 acts only on the variables ξ1, η1 and H2 acts only on ξ2, η2.

Proof. The Lemma follows from a simple calculation. Note that ϕδ(x) = 0 for ||x|| > δ and that
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||x− y|| > δ for x /∈ Bδ(y).

(Hψ)(ξ, η) =

N∑
j=1

(
−icαj ·∇xj + βjmc

2
)
ψ(ξ, η) +

∑
y∈η

(−icSy ·∇y)ψ(ξ, η)

+

N∑
j=1

∑
y∈η

ϕδ(y − xj)ψ(ξ, η\y) +

N∑
j=1

∫
R3

dy ϕ∗δ(y − xj)ψ(ξ, η ∪ y)

=
∑
j∈Sξ1

(
−icαj ·∇xj + βjmc

2
)
ψ(ξ, η)

︸ ︷︷ ︸
(Hx,free1 ψ)(ξ,η)

+
∑
j∈Sξ2

(
−icαj ·∇xj + βjmc

2
)
ψ(ξ, η)

︸ ︷︷ ︸
(Hx,free2 ψ)(ξ,η)

+
∑
y∈η1

(−icSy ·∇y)ψ(ξ, η)︸ ︷︷ ︸
(Hy,free1 ψ)(ξ,η)

+
∑
y∈η2

(−icSy ·∇y)ψ(ξ, η)︸ ︷︷ ︸
(Hy,free2 ψ)(ξ,η)

+
∑
j∈Sξ1

∑
y∈η1

ϕδ(y − xj)ψ(ξ, η\y)

︸ ︷︷ ︸
(Hc1ψ)(ξ,η)

+
∑
j∈Sξ1

∑
y∈η2

ϕδ(y − xj)︸ ︷︷ ︸
=0 as xj /∈Bδ(y)

ψ(ξ, η\y)

+
∑
j∈Sξ2

∑
y∈η1

ϕδ(y − xj)︸ ︷︷ ︸
=0 as xj /∈Bδ(y)

ψ(ξ, η\y) +
∑
j∈Sξ2

∑
y∈η2

ϕδ(y − xj)ψ(ξ, η\y)

︸ ︷︷ ︸
(Hc2ψ)(ξ,η)

+
∑
j∈Sξ1

∫
Bδ(xj)

dy ϕ∗δ(y − xj)ψ(ξ, η ∪ y)

︸ ︷︷ ︸
(Ha1ψ)(ξ,η)

+
∑
j∈Sξ2

∫
Bδ(xj)

dy ϕ∗δ(y − xj)ψ(ξ, η ∪ y)

︸ ︷︷ ︸
(Ha2ψ)(ξ,η)

=

(Hx,free
1 +Hy,free

1 +Hc
1 +Ha

1

)
︸ ︷︷ ︸

H1

ψ

 (ξ, η)

+

(Hx,free
2 +Hy,free

2 +Hc
2 +Ha

2

)
︸ ︷︷ ︸

H2

ψ

 (ξ, η). (4.93)

If the photons variables are unordered configurations we have to adjust the definition of a carte-

sian product of two configurations. We define

A1×̂A2 := {(ξ1, ξ2, η1 ∪ η2) : (ξi, ηi) ∈ Ai, η1 ∩ η2 = ∅}. (4.94)

Then we get the following results that follow directly from the definition of Nt(q), see (4.60).
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Lemma 4.17. For any configuration Q1×̂Q2 = (Q1, Q2) we have

Nt(Q1, Q2) = Nt(Q1)×̂Nt(Q2). (4.95)

Lemma 4.18. For any configuration Q we have

Ns(Nt(Q)) = Ns+t(Q). (4.96)

Lemma 4.19. For any configuration Q1 and Q2 we have

Nt1({Q1}×̂Nt2−t1(Q2)) = Nt1(Q1)×̂Nt2(Q2). (4.97)

Proof. This is an immediate consequence of Lemmas 4.17 and 4.18.

4.3.6 The Multi-Time Evolution

We now have everything together to prove the main result of this work. Theorem 4.20 is a consistent

multi-time model with creation and annihilation of particles. We define Cδ,0 = ({0} × R3)N ×⋃∞
m=0({0} × R3)m, i.e., Cδ,0 is the subset of Cδ where all times are zero. The spin space is S =

(C4)⊗N ⊗
⋃∞
m=0(C3)⊗m. If B is a vector bundle over the manifold M then C∞(M ,B) means the

smooth cross-section of B.

Theorem 4.20. Let δ > 0. Suppose that Conjecture 4.13 is true and that ϕδ ∈ C∞(R3,C3)

vanishes outside the δ-ball around the origin. Then for every φ ∈ C∞(Cδ,0,S) with φ ∈ F(Cδ,0,S)

as in Conjecture 4.13, there is a unique multi-time wavefunction ψ ∈ C∞(Cδ,S) with ψ|Cδ,0 = φ,

solving at every q4 ∈ Cδ (writing q4 = (ξ4, η4) = (t1, q1; . . . ; tL, qL)) the equations

i
∂

∂tα
ψ(ξ4, η4) =

∑
j∈Sξα

(
−icαj ·∇xj + βjmc

2
)
ψ(ξ4, η4) +

∑
k∈Sηα

(−icSk ·∇yk)ψ(ξ4, η4)

+
1√
m

∑
j∈Sξα

∑
k∈Sηα

ϕδ(yk − xj)ψ(ξ4, η4\yk)

+
√
m+ 1

∑
j∈Sξα

∫
R3

dy ϕ∗δ(y − xj)ψ(ξ4, η4 ∪ (tα,y)) (4.98)
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for all α = 1, . . . , L.

Proof. The Theorem is proven along the same line of arguments as Theorem 4.6: First, we define a

function Ψ. Second, we show that any solution ψ of the evolution equations with initial conditions

φ must agree with Ψ. Third, we show that Ψ satisfies the equations (4.98).

Step 1. We define Ψ on Cδ by defining it on each Cδ,P using induction on the number L of groups

in a partition.

• We start the induction with L = 1. For any m = 0, 1, 2, . . . the only partition with L = 1

is P = {(Sξ1 , S
η
1 )} with Sξ1 = {1, . . . , N}, Sη1 = {1, . . . ,m}, and we can write q4 ∈ C(N,m)

δ,P as

q4 = (t1, q1). Let Ψ(q4) = ψt1(q1), where ψ is the solution of (4.58) with initial conditions

given by φ on Cδ,0 which, by Conjecture 4.13, exists, is unique and satisfies ψt1 ∈ F(Cδ,0,S)

for every t1.

• The induction assumption is that Ψ has been defined on C(N,m)
δ,P ′ for every m and every partition

P ′ with L′ = L− 1 or fewer groups, and Ψ(t1, q1; . . . ; tL′ , qL′) as a function of qL′ always lies

in F(Cδ,0,S ⊗ Ck) with k = 3(
∑L′−1
α=1 |S

η
α|)4(

∑L′−1
α=1 |S

ξ
α|), with F as in Conjecture 4.13.

• Now we perform the induction step from L − 1 to L. We construct Ψ(Q4) for an arbi-

trary Q4 = (T1, Q1; . . . ;TL, QL) ∈ C(N,m)
δ,P . (Note that according to our notation, P =

{(Sξ1 , S
η
1 ), . . . , (SξL, S

η
L)} and T1 < T2 < · · · < TL.) According to the induction assumption,

Ψ(T1, Q1; . . . ;TL−1, QL−1;TL−1, qL) is given for any qL = (ξL, ηL) ∈ NTL−TL−1
(QL). Since the

domain of dependence of QL is NTL−TL−1
(QL) (see Lemma 4.12), we can solve the equation

i
∂

∂tL
Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, qL) =∑
j∈SξL

(
−icαj ·∇xj + βjmc

2
)

+
∑
k∈SηL

(−icSk ·∇yk)

Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, qL)

+
1√
|SηL|

∑
j∈SξL

∑
k∈SηL

ϕδ(yk − xj)Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, ξL, ηL\yk)

+
√
|SηL|+ 1

∑
j∈SξL

∫
R3

dy ϕ∗δ(y − xj)Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, ξL, ηL ∪ y) (4.99)

to obtain Ψ(T1, Q1, . . . , TL, QL). By Conjecture 4.13, there is a unique solution, and we have

that Ψ(T1, Q1; . . . ;TL−1, QL−1; tL, qL) as a function of qL lies, for every tL in F . Since Q4 ∈

C(N,m)
δ,P was arbitrary, we have defined Ψ for every Q4 lying in some C(N,m)

δ,P with a partition P

into L or fewer groups.
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Step 2. Let ψ be a solution of the multi-time equations (4.98) with initial conditions φ. Then,

for the induction start with L = 1, this ψ has to agree with Ψ on the equal-time configurations

by Conjecture 4.13, since both functions have the same initial conditions and are solutions of the

same equation (4.58). The same holds for the induction step. Both ψ and Ψ have the same initial

conditions and are solutions to the same equation (4.99). Therefore ψ agrees with Ψ.

Step 3. This part of the proof is due to Roderich Tumulka. Choose any Q4 = (T1, Q1; . . . ;TL, QL) ∈

C(N,m)
δ,P . Choose ε > 0 in such a way that

2ε < Tα+1 − Tα (4.100)

for every α = 1, . . . , L− 1 and

2ε < ‖Xi −Xj‖ − |X0
i −X0

j | − 2δ,

2ε < ‖Xi − Yk‖ − |X0
i − Y 0

k | − δ (4.101)

for every i ∈ Sξα, j ∈ Sξβ and k ∈ Sηβ with α 6= β. For this proof we define

D+
s,(T,Qα) =

⋃
0≤t≤s

{T − t} ×Nct(Qα). (4.102)

We show that for any fixed β = 1, . . . , L, fixed Q̃4
α = (Tα, Qα) for α 6= β, and varying Q̃4

β ∈

D+
2ε,(ε+Tβ ,Qβ), Ψ(Q̃4

1, . . . , Q̃
4
L) satisfies

i
∂Ψ

∂tβ
= HβΨ, (4.103)

with Hβ defined as the right-hand side of (4.99) with L replaced by β (and Ψ(. . . ) replaced by

Ψ(Q̃4
1, . . . , Q̃

4
L) and the corresponding addition or removal of photon variables). To this end, let

ψ(tβ , qβ , t>β , q>β) be the solution, provided by Lemma 4.12 and 4.14, of the two-time evolution

equations

i
∂ψ

∂tβ
= Hβψ (4.104)

and

i
∂ψ

∂t>β
= H>βψ (4.105)

(with H>β defined as the right-hand side of (4.99) with L replaced by > β and Ψ replaced by ψ)
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for tβ ∈ [Tβ − ε, Tβ + ε] and t>β ∈ [Tβ − ε, Tβ+1 + ε] with initial data

ψ(Tβ − ε, qβ , Tβ − ε, qβ+1, . . . , qL)

= Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, Tβ − ε, qβ , Tβ − ε, qβ+1, . . . , qL) (4.106)

for qα ∈ NTα−Tβ+2ε(Qα) for α ≥ β.

We now show that for tβ = t>β in the interval [Tβ − ε, Tβ + ε],

ψ(tβ , qβ , tβ , q>β) = Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, tβ , qβ , . . . , qL). (4.107)

The crucial point here is that the groups Sβ and S>β do not interact in this time interval. Set

Gβ =

L∏
α=β+1

NTα−Tβ+2ε(Qα). (4.108)

For any q ∈ N2ε(Qβ) and q′ ∈ Gβ it follows from Lemmas 4.15 and 4.19 and by virtue of the choice

of ε, that (q, Tβ−ε; q′, Tβ−ε) ∈ C(N,m)
δ . By Lemma 4.16 the equation for S≥β contains no interaction

term between Sβ and S>β for Tβ − ε ≤ tβ ≤ Tβ + ε. That is,

H≥β = Hβ +H>β . (4.109)

When both time variables are set equal in ψ, then its Hamiltonian is the sum of the partial Hamilto-

nians, Hβ +H>β ; thus, it is the same as for Ψ with fixed T1, Q1, . . . , Tβ−1, Qβ−1 and the same time

variable tβ for qβ , . . . , qL. From the uniqueness statement of Lemma 4.14, we thus obtain (4.107).

By definition of Ψ, the value of Ψ(Q̃) depends on

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, T̃β , Q̃β , Tβ+1, q>β) (4.110)

with q>β ∈
∏L
α=β+1NTα−Tβ+1

(Qα). The value of (4.110), in turn, is obtained from

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, T̃β , Q̃β , T̃β , q>β) (4.111)

by solving the equation i∂Ψ/∂tβ+1 = H>βΨ. It follows that (4.110) is equal to

ψ(T̃β , Q̃β , Tβ+1, q>β), (4.112)
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since the latter is obtained by solving i∂ψ/∂t>β = H>βψ from the same initial data (4.107). Now

(4.112) can be obtained from ψ(Tβ − ε, qβ , Tβ+1, q>β) by solving (4.104). According to Lemma 4.14,

the evolution of Ψ from (4.110) to Ψ(Q̃4) commutes with solving (4.104); therefore, Ψ(Q̃4) can be

obtained from

Ψ(T1, Q1, . . . , Tβ−1, Qβ−1, Tβ − ε, qβ , Tβ+1, Qβ+1, . . . , TL, QL) (4.113)

by solving (4.104), which is what we wanted to show.

Since β was arbitrary, we have shown that Ψ satisfies the multi-time evolution equations at Q4.

Finally, to see that Ψ is smooth we note that on
∏L
α=1D

+
α , Ψ simultaneously satisfies the multi-time

evolution equations for all α = 1, . . . , L; Lemma 4.14 guarantees that the only solution is smooth.
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Appendix A

Appendix

A.1 Calculations for the One-Time QFT Model

Adjointness of a(y) and a†(y). We regard only one sector in Fock space (the m-photon sector):

〈ψ(N,m)|a†(y)χ(N,m)〉 =

∫
R3N

dξ

∫
R3m

dη ψ∗(ξ, η)
1√
m

m∑
k=1

δ(yk − y)χ(ξ, η\yk)

=

∫
R3N

dξ

m∑
k=1

∫
R3(m−1)

dη′
∫
R3

dyk ψ
∗(ξ, η′ ∪ yk)

1√
m
δ(yk − y)χ(ξ, η′)

=

∫
R3N

dξ

m′+1∑
k=1

∫
R3m′

dη′ χ(ξ, η′)
1√

m′ + 1
ψ∗(ξ, η′ ∪ y)

=

∫
R3N

dξ

∫
R3m′

dη′ χ(ξ, η′)
√
m′ + 1ψ∗(ξ, η′ ∪ y)

= 〈a(y)ψ(N,m)|χ(N,m)〉. (A.1)
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Adjointness of aϕ(xi) and a†ϕ(xi).

〈ψ|a†ϕ(xi)χ〉 =

∫
R3N

dξ

∞∑
m=1

∫
R3m

dη ψ∗(ξ, η)
1√
m

m∑
k=1

ϕ(yk − xi)χ(ξ, η\yk)

=

∫
R3N

dξ

∞∑
m=1

m∑
k=1

∫
R3(m−1)

dη′
∫
R3

dyk
1√
m
ψ∗(ξ, η′ ∪ yk)ϕ(yk − xi)χ(ξ, η′)

=

∫
R3N

dξ

∞∑
m′=0

m′+1∑
k=1

∫
R3m′

dη′
1√

m′ + 1

∫
R3

dykϕ(yk − xi)ψ∗(ξ, η′ ∪ yk)χ(ξ, η′)

=

∫
R3N

dξ

∞∑
m′=0

∫
R3m′

dη′
(√

m′ + 1

∫
R3

dyϕ∗(y − xi)ψ(ξ, η′ ∪ y)

)∗
χ(ξ, η′)

= 〈aϕ(xi)ψ|χ〉. (A.2)

Commutation relations of the one-time creation and annihilation operators.

• Creation operators:

a†ϕ1
(xi1)(a†ϕ2

(xi2)ψ)(ξ, η) =
1√
m

m∑
k=1

ϕ1(yk − xi1)(a†ϕ2
(xi2)ψ)(ξ, η\yk)

=
1√
m

m∑
k=1

ϕ1(yk − xi1)
1√
m− 1

m∑
k′=1
k′ 6=k

ϕ2(yk′ − xi2)ψ(ξ, η\yk\yk′)

=
1√

m(m− 1)

m∑
k′=1
k′ 6=k

ϕ1(yk − xi1)ϕ2(yk′ − xi2)ψ(ξ, η\yk\yk′).

(A.3)

a†ϕ2
(xi2)(a†ϕ1

(xi1)ψ)(ξ, η) =
1√

m(m− 1)

m∑
k′=1
k′ 6=k

ϕ2(yk − xi2)ϕ1(yk′ − xi1)ψ(ξ, η\yk\yk′).

(A.4)

⇒ [a†ϕ1
(xi1), a†ϕ2

(xi2)] = 0. (A.5)
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• Annihilation operators:

aϕ1(xi1)(aϕ2(xi2)ψ)(ξ, η) =
√
m+ 1

∫
R3

dyϕ∗1(y − xi1)(aϕ∗2 (xi2)ψ)(ξ, η ∪ y)

=
√
m+ 1

∫
R3

dyϕ∗1(y − xi1)
√
m+ 2

∫
R3

dy′ϕ∗2(y′ − xi2)·

· ψ(ξ, η ∪ y ∪ y′)

=
√

(m+ 1)(m+ 2)

∫
R3

dy

∫
R3

dy′ϕ∗1(y − xi1)ϕ∗2(y′ − xi2)·

· ψ(ξ, η ∪ y ∪ y′). (A.6)

aϕ2
(xi2)(aϕ1

(xi1)ψ)(ξ, η) =
√

(m+ 1)(m+ 2)

∫
R3

dy

∫
R3

dy′ϕ∗2(y − xi2)ϕ∗1(y′ − xi1)·

· ψ(ξ, η ∪ y ∪ y′). (A.7)

⇒ [aϕ1
(xi1), aϕ2

(xi2)] = 0. (A.8)

• Creation and annihilation operators:

a†ϕ2
(xi2)(aϕ1

(xi1)ψ)(ξ, η) =
1√
m

m∑
k=1

ϕ2(yk − xi2)(aϕ∗1 (xi1)ψ)(ξ, η\yk)

=
1√
m

m∑
k=1

ϕ2(yk − xi2)
√
m

∫
R3

dyϕ∗1(y − xi1)ψ(ξ, η\yk ∪ y)

=

m∑
k=1

∫
R3

dyϕ2(yk − xi2)ϕ∗1(y − xi1)ψ(ξ, η\yk ∪ y). (A.9)

aϕ1(xi1)(a†ϕ2
(xi2)ψ)(ξ, η) =

√
m+ 1

∫
R3

dyϕ∗1(y − xi1)(a†ϕ2
(xi2)ψ)(ξ, η ∪ y)

(notation: y := ym+1) =
√
m+ 1

∫
R3

dyϕ∗1(y − xi1)
1√
m+ 1

m+1∑
k=1

ϕ2(yk − xi2)ψ(ξ, η ∪ y\yk)

=

m+1∑
k=1

∫
R3

dyϕ2(yk − xi2)ϕ∗1(y − xi1)ψ(ξ, η ∪ y\yk). (A.10)

⇒ ([aϕ1
(xi1), a†ϕ2

(xi2)]ψ)(ξ, η) =

∫
R3

dyϕ∗1(y − xi1)ϕ2(y − xi2)ψ(ξ, η). (A.11)

⇒ [aϕ1(xi1), a†ϕ2
(xi2)] =

∫
R3

dyϕ∗1(y − xi1)ϕ2(y − xi2). (A.12)
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A.2 Calculations for the Multi-Time QFT Model on Space-

Time

Calculation of K. In the following, in order to keep the notation as simple as possible, we work

with unordered configurations η, i.e., the combinatorial factors 1
m and

√
m+ 1 vanish. Also, we set

1
2mx

= 1. We abbreviate Hi = Hxi , Hj = Hxj . With Theorem 2.2 we have

Kψ(ξ4, η4) =

[
i
∂

∂x0
i

−Hxi , i
∂

∂x0
j

−Hxj

]
ψ(ξ4, η4)

= [Hi, Hj ]ψ(ξ4, η4) + i
∂Hi

∂x0
j

ψ(ξ4, η4)− i∂Hj

∂x0
i

ψ(ξ4, η4)

= [Hi, Hj ]ψ(ξ4, η4)

= HiHjψ(ξ4, η4)−HjHiψ(ξ4, η4). (A.13)



58

We find

HiHjψ(ξ4, η4) = Hi

(
−∆xjψ(ξ4, η4) +

∑
y∈η4

ϕ̃(y − xj)ψ(ξ4, η4\y)

+

∫
R3

dy ϕ̃∗
(
(x0
j ,y)− xj

)
ψ
(
ξ4, η4 ∪ (x0

j ,y)
))

=

(
∆xi∆xjψ(ξ4, η4)−

∑
y∈η4

ϕ̃(y − xj) ∆xiψ(ξ4, η4\y)

−
∫
R3

dy ϕ̃∗
(
(x0
j ,y)− xj

)
∆xiψ

(
ξ4, η4 ∪ (x0

j ,y)
))

+

(
−
∑
y′∈η4

ϕ̃(y′ − xi)∆xjψ(ξ4, η4\y′)

+
∑

y′∈η4\y

ϕ̃(y′ − xi)
∑
y∈η4

ϕ̃(y − xj)ψ(ξ4, η4\y\y′)

+
∑

y′∈η4∪(x0
j ,y)

ϕ̃(y′ − xi)
∫
R3

dy ϕ̃∗
(
(x0
j ,y)− xj

)
ψ
(
ξ4, η4 ∪ (x0

j ,y)\y′
))

+

(
−
∫
R3

dy′ ϕ̃∗
(
(x0
i ,y
′)− xi

)
∆xjψ(ξ4, η4 ∪ (x0

i ,y
′))

+

∫
R3

dy′ ϕ̃∗
(
(x0
i ,y
′)− xi

) ∑
y∈η4

ϕ̃(y − xj)ψ(ξ4, η4\y ∪ (x0
i ,y
′))

+

∫
R3

dy′ϕ̃∗
(
(x0
i ,y
′)− xi

) ∫
R3

dyϕ̃∗
(
(x0
j ,y)− xj

)
ψ
(
ξ4, η4 ∪ (x0

j ,y) ∪ (x0
i ,y
′)
))

.

(A.14)
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Therefore

HiHjψ(ξ4, η4)−HjHiψ(ξ4, η4)

=
∑

y′∈η4∪(x0
j ,y)

∫
R3

dy ϕ̃(y′ − xi)ϕ̃∗
(
(x0
j ,y)− xj

)
ψ
(
ξ4, η4 ∪ (x0

j ,y)\y′
)

+
∑
y∈η4

∫
R3

dy′ ϕ̃∗
(
(x0
i ,y
′)− xi

)
ϕ̃(y − xj)ψ(ξ4, η4\y ∪ (x0

i ,y
′))

−
∑

y∈η4∪(x0
i ,y
′)

∫
R3

dy′ ϕ̃(y − xj)ϕ̃∗
(
(x0
i ,y
′)− xi

)
ψ
(
ξ4, η4 ∪ (x0

i ,y
′)\y

)
−
∑
y′∈η4

∫
R3

dy ϕ̃∗
(
(x0
j ,y)− xj

)
ϕ̃(y′ − xi)ψ(ξ4, η4\y′ ∪ (x0

j ,y))

=

∫
R3

dy ϕ̃((x0
j ,y)− xi)ϕ̃∗

(
(x0
j ,y)− xj

)
ψ
(
ξ4, η4

)
−
∫
R3

dy ϕ̃((x0
i ,y)− xj)ϕ̃∗

(
(x0
i ,y)− xi

)
ψ
(
ξ4, η4

)
=

∫
R3

dy

(
ϕ̃((x0

j ,y)− xi)ϕ∗ (y − xj)− ϕ̃((x0
i ,y)− xj)ϕ∗ (y − xi)

)
ψ
(
ξ4, η4

)
=

(
〈Txjϕ|Ux0

j−x0
i
Txiϕ〉 − 〈Txiϕ|Ux0

i−x0
j
Txjϕ〉

)
ψ
(
ξ4, η4

)
=

(
〈Txj−xiϕ|Ux0

j−x0
i
ϕ〉 − 〈Ux0

j−x0
i
ϕ|Txj−xiϕ〉

)
ψ
(
ξ4, η4

)
=

(
〈Txj−xiϕ|Ux0

j−x0
i
ϕ〉 −

(
〈Txj−xiϕ|Ux0

j−x0
i
ϕ〉
)∗)

ψ
(
ξ4, η4

)
= 2i Im

(
〈Txj−xiϕ|Ux0

j−x0
i
ϕ〉

)
ψ
(
ξ4, η4

)
= 2i Im

∫
R3

dy ϕ̃∗(0,y + xi − xj) ϕ̃(x0
j − x0

i ,y)ψ(ξ4, η4) (A.15)

where Tx is the translation operator Txϕ(y) = ϕ(y−x), and Ux0 the unitary time-evolution operator

of the free Schrödinger equation.
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Adjointness of Ha
xi and Hc

xi . We set m′ = m− 1.

〈ψ|Hc
xiχ〉F

=

∫
R3N

dξ

∞∑
m=0

∫
R3m

dη ψ∗(ξ, η)(Hc
xiχ)(ξ, η)

=

∫
R3N

dξ

∞∑
m=1

∫
R3m

dη ψ∗(ξ, η)
1√
m

m∑
k=1

ϕ̃(tyk − txi ,yk − xi)·

·

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1 − tyc)

)
χ(m−1)

]
(ξ, η\yk)

=

∫
R3N

dξ

∞∑
m=1

1√
m

m∑
k=1

∫
R3(m−1)

d(η\yk)

∫
R3

dyk ψ
∗(ξ, η)ϕ̃(tyk − txi ,yk − xi)·

·

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
χ(m−1)

]
(ξ, η\yk)

=

∫
R3N

dξ

∞∑
m=1

1√
m

m∑
k=1

∫
R3(m−1)

dη′
∫
R3

dyk

[
exp

(
m−1∑
c=k

−i
2my

∆c(tyc+1
− tyc)

)
ψ∗(m)

]
(ξ, η′ ∪ yk)·

· ϕ̃(tyk − txi ,yk − xi)

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
χ(m−1)

]
(ξ, η′)

=

∫
R3N

dξ

∞∑
m=1

1√
m

m∑
k=1

∫
R3(m−1)

dη′
∫
R3

dym+1 ψ
∗(ξ, η′ ∪ ym+1)ϕ̃(tym+1 − txi ,ym+1 − xi)χ(ξ, η′)

=

∫
R3N

dξ

∞∑
m′=0

∫
R3m′

dη′
[
m′ + 1√
m′ + 1

∫
R3

dym′+1 ϕ̃
∗(tym′+1

− txi ,ym′+1 − xi)ψ(ξ, η′ ∪ ym′+1)

]∗
·

· χ(ξ, η′)

= 〈Ha
xiψ|χ〉F (A.16)

Commutation relations of the multi-time Hamiltonians.

[
Hfree
xi , Hfree

xj

]
=

[
1

2mx
∆xi ,

1

2mx
∆xj

]
= 0[

Hfree
yk

, Hfree
yj

]
=

[
1

2my
∆yk ,

1

2my
∆yj

]
= 0

[
Hfree
xi , Hfree

yk

]
=

[
1

2mx
∆xi ,

1

2my
∆yk

]
= 0 (A.17)
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([
Hfree
xi , Hc

xj

]
ψ
)

(ξ, η)

= − 1

2mx

1√
m

∆xi

(
m∑
k′=1

ϕ̃(yk′ − xj)

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m−1)

]
(ξ, η\yk)

)

+
1

2mx

1√
m

m∑
k′=1

ϕ̃(yk′ − xj)∆xi

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m−1)

]
(ξ, η\yk)

= 0 (for i 6= j) (A.18)

([
Hfree
xi , Ha

xj

]
ψ
)

(ξ, η) = − 1

2mx
∆xi

(√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xj)ψ(ξ, η ∪ ym+1)

)
−
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xj)

(
− 1

2mx
∆xiψ

)
(ξ, η ∪ ym+1)

= 0 (for i 6= j) (A.19)

([
Hc
xi , H

c
xj

]
ψ
)

(ξ, η)

=
1√
m

m∑
k=1

ϕ̃(tyk − txi ,yk − xi)
1√
m− 1

m−1∑
k′=1

ϕ̃(tyk′ − txj ,yk′ − xj)·

·

[
exp

(
m−2∑
c′=k′

i

2my
∆c′(tyc′+1

− tyc′ )

)
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m−2)

]
(ξ, η\yk\yk′)

− (i↔ j)

= 0 (A.20)

([
Ha
xi , H

a
xj

]
ψ
)

(ξ, η)

=
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xi)

(
Ha
xjψ
)

(ξ, η ∪ ym+1)

−
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xj)

(
Ha
xiψ
)

(ξ, η ∪ ym+1)

=
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xi)

√
m+ 2

∫
R3

dym+2ϕ̃
∗(ym+2 − xj)ψ(ξ, η ∪ ym+1 ∪ ym+2)

−
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xj)

√
m+ 2

∫
R3

dym+2ϕ̃
∗(ym+2 − xi)ψ(ξ, η ∪ ym+1 ∪ ym+2)

= 0 (A.21)
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([
Ha
xi , H

c
xj

]
ψ
)

(ξ, η)

=
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xi)

(
Hc
xjψ
)

(ξ, η ∪ ym+1)

− 1√
m

m∑
k=1

ϕ̃(yk − xj)

(
Ha
xi

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m−1)

])
(ξ, η\yk)

=
√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xi)

1√
m+ 1

m+1∑
k=1

ϕ̃(yk − xj)·

·

[
exp

(
m∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m)

]
(ξ, η ∪ ym+1\yk)

− 1√
m

m∑
k=1

ϕ̃(yk − xj)
√
m

∫
R3

dym+1ϕ̃
∗(ym+1 − xi)·

·

[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1

− tyc)

)
ψ(m−1)

]
(ξ, η\yk ∪ ym+1)

=

∫
R3

dyϕ̃∗(y − xi)ϕ̃(y − xj)ψ(ξ, η) (A.22)

([
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xi

]
ψ
)

(ξ, η)

= − 1

2my

1√
m

∆yk

(
m∑
k′=1
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[
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(
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i

2my
∆c(tyc+1

− tyc)

)
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]
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+
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)
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]
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2my
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i
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+
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2my
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[
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(
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i

2my
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)
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]
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+− 1

2my

1√
m

(
∆yk ϕ̃(yk − xi)
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(
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i

2my
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)
ψ(m−1)

]
(ξ, η\yk) (A.23)

([
Hfree
yk

, Ha
xi

]
ψ
)

(ξ, η)

= − 1

2my

√
m+ 1∆yk

(∫
R3

dym+1ϕ̃
∗(ym+1 − xi)ψ(ξ, η ∪ ym+1)

)
+

1

2my

√
m+ 1

∫
R3

dym+1ϕ̃
∗(ym+1 − xi) (∆ykψ) (ξ, η ∪ ym+1)

= 0 for k 6= m+ 1 (A.24)
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We also find

((
i
∂Hxi
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)
ψ

)
(ξ, η)

=

((
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+ i

∂Hc
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∂Ha
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∂tyk

)
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m
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∂
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)
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1

2my

1√
m
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k′=1

ϕ̃(yk′ − xi)

[
exp

(
m−1∑
c=k

i
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1
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[
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(
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i

2my
∆c(tyc+1

− tyc)
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]
(ξ, η\yk)

+ i
1√
m

( ∂

∂tyk
ϕ̃(yk − xi)

)[
exp

(
m−1∑
c=k

i

2my
∆c(tyc+1
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)
ψ(m−1)

]
(ξ, η\yk) (A.25)

From that and the fact that ϕ̃ satisfies the free Schrödinger equation, the results (3.39) follow.
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