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ABSTRACT OF THE THESIS

Architecture of a Programmable System-on-Chip

Platform for Flexible Radio Processing

by Onkar Sarode

Thesis Director: Prof. Predrag Spasojević

The emergence of multiple radio access technologies (RATs) and their continuous

evolution, is driving the need for programmable radio processing. Programmable radio

devices with run-time flexibility and resource virtualization features will not only enable

faster time-to-market, longer lifetime of devices, and universal connectivity, but also act

as building blocks for advanced wireless technologies of adaptive and cognitive radios.

These requirements have forced a shift from the traditional ASIC approach. However,

most existing flexible solutions are based on either fully software-defined or software-

controlled approaches that lack the power efficiency, performance and determinism (for

real-time constraints) needed for wireless processing.

In this thesis, we propose a programmable multi-processor system-on-chip (SoC)

platform architecture based on a novel Virtual Flow Pipelining (VFP) framework that

aims at striking a balance between flexibility (as provided by SDR) and performance (as

provided by ASICs). The key highlights of this concept are a simple task-level program-

ming model for provisioning protocol flows, and the use of dedicated hardware-based

OS-like support for controlling their run-time execution. We present the evolution of
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a clustering-based organization for the SoC with distributed-shared controllers. Clus-

tering along with an inherent architectural support for message passing provides a bal-

ance between scalability and hardware overhead. Shared controllers with a pipelined

microarchitecture and a separate interconnect for control messaging are designed for

low hardware complexity and high performance.

The proposed architecture is evaluated by creating a bit- and cycle-accurate model

in synthesizable register-transfer-level (RTL). It has been built into a virtual platform

for 802.11a transmitter, which has successfully executed single and multiple flows for

rates of 6, 12 and 24 Mbps. This thesis also presents a characterization and analysis of

the architecture to provide key implications such as control overhead for different task

sizes, its impact on cluster size etc.
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Chapter 1

Introduction

Evolution of wireless devices is at a very exciting stage. We are now amidst of an

accelerating trend towards intelligent devices, such as smart phones, that converge ser-

vices and functionality earlier provided by cell phones, tablet computers, MP3 players

etc. Maximizing the efficacy of these devices calls for providing wireless connectivity

across space and time. In fact, applications in the near future will demand availability

of ubiquitous connectivity in a seamless manner. However, providing such connectivity

is difficult because there exists no single universal wireless technology that covers the

entire world. This recent and projected growth in the demand for wireless connectivity

together with the emergence of diverse radio access technologies (RATs) and standards,

has opened significant opportunities and challenges in the wireless communication de-

vices industry.

Future wireless devices must incorporate multiple communication functions provided

via different standards, e.g. personal navigation (GPS), personal area networking (Blue-

tooth, Zigbee etc.), local area networking (802.11a/g/n), TV reception (MediaFLO,

DVB-H/T etc.), and mobile cellular networking (LTE, WiMax) on a single device.

With this increase in the ways and means by which people need to communicate − i.e.

data communications, voice communications, video communications, broadcast messag-

ing, command and control communications, emergency response communications, etc.

− modifying radio devices easily and cost-effectively has become business critical. The

emerging 4G wireless standards itself impose heterogeneous wireless communication

environments where the infrastructure will be built with devices using different radio

access technologies, and operating at different spectrum bandwidth. Furthermore, the

cognitive radio technology, seen as the solution to deal with the problem of spectrum
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scarcity, demands broader flexibility and agility features from the wireless devices.

1.1 Software Defined Radio

Software defined radio (SDR) [1] technology is seen as the solution for providing the flex-

ibility, cost efficiency and power to drive communications forward, with wide-reaching

benefits realized by service providers and product developers through to end users. Here

we shall define a Software Defined Radio and discuss the factors/benefits that drive this

technology. Understanding these driving factors is vital to be able to appreciate the

implications they have on the requirements/specifications for these devices (discussed

in Chapter 2).

Simply put, a SDR is defined[2] as a Radio in which some or all of the physical layer

functions are Software Defined ; where Software Defined refers to the use of software

processing within the radio system or device to implement operating (but not control)

functions. This definition implies that the complete physical layer processing for the

SDR is performed by software routines running on processor(s). A later discussion will

explain how our programmable solution contrasts with the SDR notion. But, for now

we put forth the driving factors for the SDR because these are the very same factors

that drive a programmable system-on-chip (SoC) solution that we propose.

1.2 Factors Driving the SDR

The factors driving the SDR can be divided into two broad categories: Short Term

drivers and Long Term drivers. Short Term drivers refer to the factors that influence

the adoption of this technology in the near future, i.e., 5 years or so. On the other hand,

Long Term refers to the factors and visions, related to the advanced wireless market in

the distant future, for which the SDR can act as a key enabling technology.

1.2.1 Short Term Driving Factors

Benefits of SDR will be seen throughout the wireless industry chain − from product-

based and service-based providers through end users of the devices and services.
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Factors affecting network operators

Network operators have to deal with the constant evolution of standards and technolo-

gies. For example[3], LTE Advanced is currently in the works and it features a full

OFDMA uplink physical layer as opposed to SC-FDMA for LTE. Such evolutions take

place over a short period of time − sometimes as low as two years − which is short in

comparison to the time it takes to develop, test and validate equipment.

For network operators, SDR enables new features and capabilities to be added to

existing infrastructure − increasing the time-in-market for their purchased equipment.

This allows network operators to quasi-future proof their networks − saving major new

capital expenditures. The ease of upgrades means faster deployment of new standards

and services. The use of a common radio platform for multiple markets, significantly

reducing logistical support and operating expenditures.

Factors affecting product-based providers

SDR approach implies the use of a common platform for implementation of diverse

wireless technologies and standards. The impact of such a platform-based approach is

that it will dramatically reduce the time-to-market for new products. By facilitating

extensive reuse, this approach will also reduce the effort involved in development and

testing of new products, thus lowering the costs. Thus, infrastructure equipment ven-

dors, system integrators and terminal device makers can all roll out “family” of radio

products e.g. macrocells, femtocells etc. in a fast and cost effective manner. New algo-

rithms and software will be targeted for a proven framework, thus making the process of

estimating their performance, latency etc. not only easier but also more deterministic.

It also makes debugging and upgrading devices easy.

Furthermore for terminal device manufacturers, SDR also acts as a enabling tech-

nology towards the need for a cost-effective multi-modal solution − one that can pro-

vide connectivity across heterogeneous RATs. The benefit of providing the ability to

evolve/upgrade with improvements in standards applies here as well.
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Factors affecting end-users

For end-users, the SDR offers ubiquitous wireless connectivity − i.e. the means to

connect using whatever means (RATs, bands etc.) available. The easy-to-upgrade

feature of SDRs imply a longer lifetime for the mobile devices − thus reducing costs.

1.2.2 Long Term Driving Factors

Software Defined Radios are seen as the potential building blocks for advanced wireless

technologies − Adaptive Radio, Cognitive Radio[1, 4] – which act as a major driving

factor for SDR technology from a long term perspective.

The next couple of paragraphs very briefly introduce the advanced adaptive and

cognitive wireless technologies, which themselves are vast topics of very active research.

Advanced Wireless Technologies − Adaptive and Cognitive Radios

Adaptive radio is a technology in which communications systems have a means of

monitoring their own performance and modifying their operating parameters to improve

this performance. The use of SDR technologies in an adaptive radio system enables

greater degrees of freedom in adaptation, and thus higher levels of performance and

better quality of service in a communications link.

Furthermore, building on adaptive radios, the cognitive radio technology[5, 1] offers

to solve the problem of efficient utilization of the radio spectrum, which has become

critical in order to accommodate the exponential growth of wireless devices in the

future. These future cognitive radios will perform continuous or frequent sensing of

their network environment (spectrum, interference conditions etc.) and dynamically

change (their RAT, operating frequency, power control etc.) to make optimum use of

the available spectrum while providing seamless connectivity.

SDR − Key Enabler for Advanced Wireless Technologies

In order to accomplish these advanced features, we need wireless devices that can adapt

to a variety of radio interference conditions and protocol standards. Such a radio should
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be capable of dynamic physical layer adaptation via scanning of available spectrum,

selection from a wide range of operating frequencies, rapid adjustment of modulation

waveforms and adaptive power control.

SDR technology has the capability of providing the physical layer flexibility required

for realizing these technologies. Thus adoption of the SDR technology is critical in

allowing end-users to make optimal use of available frequency spectrum and wireless

networks, with a common set of radio hardware.

Having discussed the positive benefits driving the SDR concept, we now introduce

the challenges and difficulties involved in realizing this technology. From hardware

design point of view, the challenges are enormous, both on the radio-frequency (RF)

and analog front-end and on the digital baseband side. This thesis focusses on and

discusses only the digital baseband challenges and solutions. The following section is

aimed at discussing, from a high-level perspective, the difficulties of adopting the SDR

approach as well as at presenting an overview that can act as a platform for introducing

our work. More details of related work, their aspects and contrast with our solution

will be covered in Chapter2 after we explain the specifications/metrics for comparison.

1.3 True SDR versus ASIC: the flexibility-performance gap

The discussion up to this point focussed only on the features, flexibility and driving

factors related to future wireless devices. With this myopic view, fully programmable

SDRs seem to be the dream solution. In fact SDR has been a dream for the last decade

− without any solutions available in the volume market. The major gap between this

dream (SDR) and reality (traditional ASICs) is performance and power.

As we have already seen, the need for adaptability, reduced time-to-market, longer

time-in-market etc. all point against the full custom ASIC solution. But the ASIC

approach is capable of delivering on the low-cost, performance and power requirements

of future wireless protocols. Resorting to a technique of building multi-modal radios
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comprising of multiple ASIC modules (one for each standard), is not a feasible solution.

The current requirement itself will demand at least 16 baseband modules[6], which will

result in heavy silicon and prohibitive costs, let alone the incapacity to evolve with the

volatile standards.

Fully software programmable solutions built using CPUs − true SDR − depicted in

Fig.1.1a, although providing maximum flexibility, are compute centric. They are not

suitable for delivering the requirements of the network-centric world − i.e.[7] a short

sequence of data manipulation operations, sequential nature with high data dependency.

Moreover, these solutions are extremely power hungry.

1.4 Bridging the gap: a hardware-oriented, programmable SoC solu-

tion

To keep the cost low to enable a deployment model that can provide the capacity for

future data traffic requirements while allowing evolution with wireless standards creates

a dichotomy that can be resolved through a new generation of platform-based System-

on-Chip (SoC) devices that combine aspects of programmable devices and ASICs in a

balanced manner.

A key aspect to consider is that providing wireless devices with flexibility within

certain reasonable bounds is enough. A fully programmable solution is an overkill.

Metaphorically, if the problem is undoing a screw, and the type of screw head is un-

known, then carrying a single screwdriver with modifiable screw-ends is enough. Car-

rying a complete toolset is not required. A solution that provides limited versatility −

to support diverse RATs and adapt to their evolutions − is enough.

Depicted in Fig.1.1b, the Software Controlled Radio [2] concept, i.e., using a mix of

parameterizable hardware functional units (FUs) and application specific instruction set

processors (ASIPs) under the control of a central software programmable CPU, is a step

in right direction for achieving the required balance. Nevertheless, for reasons discussed

in Section 2.2, the software controlled approach cannot deliver the performance and

power requirements. This approach proves even weaker, when we consider support
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for virtualized multiple traffic flows etc., which are required by the advanced wireless

technologies.
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Figure 1.1: SDR v/s SCR v/s VFP

1.4.1 Introducing Our Solution − Background and Overview of the

Thesis

To summarize the implementation challenges, they can be broadly categorized under RF

and Analog Front-end design; and Digital Baseband Design. As mentioned previously,

our work focusses on the Digital Baseband part. In fact, the Digital Baseband Design
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challenges can be further classified as;

1. related to processing/functional units: These deal with the design of the data

plane processors/functional units. The issues here involve analysis and explo-

ration of algorithms, their hardware/software partitioning and implementation,

making them parameterizable and flexible etc.

2. related to system integration, programmability and run-time control : This deals

with the challenges in creating a framework, which provides all the required mech-

anisms for programmability, scheduling of the numerous different tasks running on

very different operating units and executing the program within a real-time con-

straint, while accurately resolving the dependencies and exploiting parallelization

possibilities. This challenge is precisely the the scope of our work.

This thesis proposes a programmable SoC architecture, based on a novel Virtual

Flow Pipelining (VFP)[7] framework (elaborated in Chapter3), wherein the system

control, while being programmable, is implemented as dedicated hardware − not us-

ing a central software programmable CPU with a real time operating system. Fig.1.1c

depicts the concept. We refrain from calling our solution a SDR or SCR, which im-

plies a software programmable CPU based control. Instead we have OS-like hardware

based support that executes soft control flow programs. We aim at striking a favor-

able balance between flexibility and performance. An important point is that the VFP

based approach targets better performance and power than the Software Controlled

approaches, while providing the required flexibility.

The architecture proposed in this work is a clustering-based architecture which aims

at striking a balance between fully distributed and fully centralized approaches. The

architecture uses distributed-shared controllers with a scheme for message passing to

handle scalability. This enables us to achieve scalability with a reasonable hardware

overhead. Another major aspect, of this work has been the architecture and design of

the shared controller. The challenge was to enable the controller to support maximum

number of processing elements with minimum impact on performance. This has been

achieved by designing an asynchronous pipelined microarchitecture for the controller
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that can simultaneously serve multiple processing elements. Identifying the parallelism

in the VFP control mechanisms and exploiting it using the pipelined architecture is

a major contribution of this work. Furthermore, a new interconnect for control com-

munication was designed to improve performance. The concept of IDs is introduced

and uniform messaging schemes/formats and interfaces for the processing elements are

designed for communication with the VFP controller. This work has implemented

the complete system in synthesizable hardware description language (HDL), enabling

bit and cycle accurate simulations and performance analysis. During the coarse of this

work, 802.11a-like OFDM based baseband processing has been successfully implemented

on the system[8]. More details will be covered in later chapters.

The organization of the rest of the thesis is as follows; based on the driving factors

discussed in this chapter, Chapter 2 will discuss the specific requirements/specifications

of the programmable radio devices. Using these specifications as criteria, Chapter 2

will also discuss some of the existing and related work/solutions as well as compare and

contrast them with our solution. Chapter 3 will describe the Virtual Flow Pipelining

architectural framework and programming model. Chapter 4 will delve into the archi-

tecture of the SoC and controller. Experimentation and performance analysis is covered

in Chapter 5. Finally, Chapter 6 concludes with the insights and scope for future work.
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Chapter 2

Requirements of Flexible Baseband Processing for

Cognitive Radio Applications and their Implications

In Chapter 1 we discussed the factors driving the need for flexible solutions for the

wireless radio processing. We also introduced the challenges involved in realizing such a

solution, namely the performance-flexibility gap between the established ASIC approach

and the desired SDR approach. This chapter will identify and present the specific

requirements of a flexible solution. The requirements presented in this chapter can

be thought of as higher level specifications for the architecture and will also act as

guidelines for drawing comparisons with other related work.

As mentioned in the previous chapter, this work focuses only on the digital base-

band challenge of the radio system. More specifically, we concentrate on the system

integration, programmability and run-time control/scheduling of the digital baseband.

Hence, the next section will focus more on the framework requirements rather than

those of constituent data-plane processors and/or hardware functional units. Later in

2.2 we discuss the impact of these requirements on the architectural decisions.

2.1 The Requirements

Before, we begin elaborating the requirements it is important to mention that, from an

application point of view, we are targeting a system that together with the short term

SDR factors, can also support the cognitive and adaptive radio applicative scenarios

(long term factors of Chapter 1). Broadly speaking the goal is to create a Dynamically

Reconfigurable Platform[9]. The following sections put forth the requirements and their

justification for such a system.
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2.1.1 Platform-based Paradigm

The realization of the flexible wireless digital basebands calls for an evolution from

the Intellectual Property (IP) reuse paradigm to a platform reuse paradigm[9]. Simply

putting, a platform is a SoC communication structure on which different IP can be

seamlessly connected. [10] defines a platform as a layer of abstraction with two views.

The upper view allows an application to be developed without referring to the lower

levels of abstraction. The lower view is a set of rules that classify a set of components

belonging to the platform.

The main requirements that a platform targeting digital baseband must provide are:

1. A network-centric framework that provides separation between communication

and computation aspects of the executed protocols. The communication scheme

architected must be independent of the type of interconnect used (bus, crossbar,

etc.), thus providing support for the Globally Asynchronous Locally Synchronous

(GALS) approach, which is now imperative for seamless IP integration in large

SoCs.

2. A programming model or Application Programming Interface (API) which is a

high level interface to the hardware. This provides the required upper view or

level of abstraction for easily programming the system. This decouples the pro-

gramming aspect of the platform from the microarchitecture aspects as well as

makes the programs independent of the actual functional units or processors used

for executing the data operations.

3. Integration of heterogeneous processing engines within unified programming paradigm.

This is even more important because there is a consensus appearing[9][11][12][13][14],

which states that the way of solving the tradeoffs between power, performance

and flexibility is the use of heterogeneous multi-processor SoC (MPSoC) based

solutions (discussed in section 2.2). Therefore, a platform should provide the uni-

form rules/interface to seamlessly integrate these heterogeneous computing cores.

This will help create a library of components that are compliant with the plat-

form, thereby increasing their reusability and making system integration faster
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and easier. Development and/or enhancements of the IP components can be done

completely independently and in parallel − provided the platform/interface rules

are obeyed.

4. System integration and verification phases becomes straightforward. IPs can be

developed independently without caring about communication with other IPs.

This boosts the reusability of cores and enable developing families of products.

Thus, reducing the time to market and non-recurring engineering (NRE) costs.

5. Programmability is facilitated by the common platform programming model or

API. This makes mapping of protocols onto the hardware easy and reconfigurable.

Thus, a platform-based approach lends itself to the realization of a flexible solu-

tion. It also enhances the software reusability and makes upgrades easy.

2.1.2 Programmability/Configurability

We have already mentioned that there is a growing demand by consumers for connec-

tivity everywhere. This demand, together with the goals of small size, low cost, and

power efficiency are driving the need for multi-modal solutions that are implemented as

a common configurable hardware platform (as opposed to having independent hardware

per RAT). In fact this is the very basic idea behind the concept of SDR.

Furthermore, there is practically no doubt that the MPSoC ([9][11][15][13][16][14])

is a promising approach to solve the challenge of improving the contradicting objectives

of performance, power efficiency and flexibility.

We must be able to program the MPSoC in order to execute a complete wireless

communication protocol. Moreover, changing the configuration/program must enable

the implementation of different protocols on the same platform. The following points

explicitly define the properties of the required programmability/configurability and

degrees of freedom, which are required to be provided by the platform architecture in

order to support diverse RATs.

Configurability of the Computing Cores: This degree of freedom primarily deals

with the computational aspect of the platform. The MPSoC approach involves a
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new step in programming of the chip, where constituent computations/functions

of the protocol must be identified, extracted and mapped onto the constituent pro-

cessing elements (PE). Thus the different PEs that make up the MPSoC must be

configurable computing cores − i.e. parameterizable hardware functions for com-

putational intensive tasks that need less flexibility (e.g. FFT) or general purpose

RISC processors or application specific instruction set processors (ASIP). The

platform programming model must provide uniform way − irrespective of the

type of PE − for selecting the required configuration/function of the PE, as per

the protocol under execution. The nature of this programmability/configuration

depends on the granularity of PEs − coarse-grain or fine-grain. For example, while

executing a WiMAX transmitter on a MPSoC with coarse-grain PEs, the inter-

leaver ASIP must be configured to perform the WiMAX interleaving algorithm.

This configuration must be changed to run the 802.11a interleaver algorithm when

the device has to transmit 802.11a packets.

Configurability/Programmability of the Control-Flow: The platform must have

a programmable control-flow as per the protocol being implemented. This degree

of freedom deals with the programmable nature of the sequence of the constituent

computations/functions of the protocol that being implemented on the PEs. The

programming model must provide flexibility in defining the producer-consumer

relations, which must be supported by the hardware platform in the form of con-

figurable communication structure.

Freedom to Upgrade/add FU Configurations: This degree of freedom enhances

the ability of the platform to evolve with emerging protocols, specifically when

it needs a completely new computational task not considered at design time.

This aspect applies only to the programmable processor-based components of the

MPSoC, where new programs on the CPUs will manifest as new configurations. A

thorough analysis of the value and affordability of the degree of programmability

required for different functions needs to be performed. For example, a configurable

hardware engine capable of multi-length (over a wide range) multi-stream FFT
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core is enough − dedicating a CPU for the FFT function is neither affordable nor

does it add any value.

All these above mentioned of degrees of freedom, together with the ability to exploit

task-level parallelism, must be built into the programming model.

2.1.3 Dynamic Reconfigurability

The technologies of Adaptive Radio and Cognitive Radio take the programmabil-

ity/configurability requirement to the next level. The solutions for efficient spectrum

usage need the wireless devices to dynamically reconfigure based on the changes in the

radio environment. In fact, this agility in adaptation is required on a per-packet basis.

This requirement of dynamic reconfigurability at run-time on a per-packet basis is

also driven by the user demand for seamless connectivity when moving across het-

erogeneous RATs. In fact this requirement for seamless connectivity has even more

implication on the requirements, discussed in the next section.

2.1.4 Multiple Simultaneous Traffic Flows

Consider the following applicative scenario: A person starts a video conference with

a friend while leaving office in a business center, then takes the train to go home in

the suburbs. During the person’s journey the video conference must be continued

without any disconnections. This demand of seamless and ubiquitous connectivity for

users − during the course of an active application − needs to be supported by soft

vertical handovers across the diverse RATs that are available. The implications of this

on the digital baseband platform is that it needs to support at least 2 diverse RATs

simultaneously [9][17].

In fact users will be running multiple radio applications simultaneously on the same

wireless device − e.g. GPS and Bluetooth file transfer to a friends phone together

with data download from the internet. Such scenarios drive the need for more than 2

simultaneous diverse traffic flows on the platform. This support for independent radio

links is also needed by the future cognitive radios in order to communicate (control and
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data) and co-operate with multiple radio neighbors for opportunistic spectrum usage

as well as formation of ad hoc networks.

2.1.5 Resource Virtualization and QoS guarantees

Satisfying the previous two requirements − simultaneous support for multiple traffic

streams and dynamic (per-packet) reconfigurability − with lowest cost requires sharing

the hardware resources of the platform. At the same time every radio session is also

required to adhere its relevant real-time constraints. This poses a difficult system

problem − as satisfaction of temporal constraints depends on the resource availability,

resource sharing can make the temporal behavior of each radio session (or traffic flow)

depend on the behavior of all other simultaneous radio sessions in the system, which is

difficult to predict since the combinations of radio sessions change dynamically.

This drives the need for virtualization support that will isolate each radio session

such that it only sees a fraction of the platform resources. It will also protect the

higher protocol layers from the changes in radio access features and loading on the

hardware[7][18].

Thus the platform API layer or programming model will have to incorporate virtu-

alization features. Primarily, this involves handling the hardware processing resource

allocation for enforcing the QoS guarantees across the multiple traffic sessions while

maintaining isolation between them. Thus from the point of view of higher layers, each

session treats its share of bandwidth as a separate (virtual) channel that is unaware of

other sessions in the system.

2.1.6 Throughput, Real Time Constraints and Power Efficiency

The throughput requirements of digital baseband processing for 4G devices are in the

range of 100Mbps data rates which translates to approximately 500 giga operations

per second (GOPS)[11]. Moreover, this high throughput must be delivered within a

minimal power budget of around 200mW [11][19].

In addition to the throughput requirements, most of the processing is bound by tight

real-time constraints; e.g. WLAN packet retransmission has strict deadline (SIFS time)
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that is 16 micro seconds, which involves the entire receive and transmit paths. A failure

in meeting these real time constraints will cause the processing to be worthless. These

type of strict latency and timescale requirements, makes the scheduling and execution

of the tasks on the platform challenging.

2.2 Implications of the Requirements

Heterogeneous MPSoC

In order to provide required performance within the power budget, the solution has

to be MPSoC based, as multiple simpler cores running at lower frequency are more

power efficient. Moreover, the functional analysis[14] of the tasks performed in the the

digital baseband processing has revealed a clear diversity of computational load and

flexibility requirements. Hence, a heterogeneous MPSoC is the best suited solution for

our requirements of sections 2.1.2 and 2.1.6 − providing flexibility only where it adds

value and can be afforded.

Run-time Task Scheduling

The requirements of data dependent control-flow, dynamic (per-packet) reconfigurabil-

ity (section 2.1.3), and maintenance of real-time constraints and performance guarantees

across multiple radio sessions (sections 2.1.5, 2.1.6); on a heterogeneous MPSoC cannot

be satisfied by compile-time scheduling. This dictates the need for run-time scheduling.

Hardware Support for Programmability/Scheduling

Providing this run-time scheduling support is difficult as well as inefficient with a soft-

ware controlled approach. The software control implies that the scheduler is imple-

mented as software on a CPU and will require a real time operating system (RTOS) for

sharing the CPU processing power. Running the RTOS will itself consume considerable

energy. Moreover, the synchronization between the control code (running as software)

and the processing elements (performing data-plane processing) will be interrupt based.

To avoid high interrupt overheads, the execution time of the PEs must at least be a
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degree higher (thousands of cycles) than the interrupt latencies (hundreds of cycles)

of the operating system environment. As an interesting example[20], consider the in-

terrupt latency is around 300 cycles and 50,000 interrupts are generated per second,

this overhead itself swallows 10% of the 150MHz processor resources. Also the delayed

responses to the PEs will decrease the PE utilization as well as increase system latency.

Broadly speaking, the time scales of real-time operating system slices and CPU con-

text switching in the software controlled environment are an order of magnitude larger

than the ones required by the wireless protocol processing (tens of µs vs. µs)[7]. Hence,

Software Controlled Radio platforms are not adequate for the multi-flow communica-

tion support since time slicing of processing resources will be inefficient and non-precise.

These implications drive the need for a architectural framework with hardware-oriented

support for dynamic task scheduling/programmability on the heterogeneous MPSoC.

This architecture must have mechanisms for efficient resource sharing, low overhead

context switching, high utilization of PEs and exploiting the task-level parallelism in-

herent in wireless protocol processing. The Virtual Flow Pipelining (VFP) concept is a

novel architecture framework that caters to these requirements and their implications.

2.3 Related Work

A number of architectures and implementations for flexible baseband processing are

available in literature. But none of them cover all the requirements and their implica-

tions mentioned in the prior sections. We discuss some of these below.

The work by G. Fettweis et al [13][21] incorporates the use of a dedicated hardware

unit for programmability/scheduling with real-time support. This work is the most

closely related to ours. But, unlike our scheme, they resolve their control dependencies

in software. This causes stalling due to long interrupt latencies. Also they have a fully

centralized approach for which the performance degrades for tasks that are smaller

than 4000 clock cycle. As shown in Chapter 5, our performance is better with efficient

support for short tasks. Also, their solution cannot support simultaneous multiple flows.
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In fact, as described in [22] they too resort to a software approach in order to support

multiple flows. The good point about their work is that it is C-programmable.

Another interesting approach is by [40], where they have their control implemented

using a SW programmable processor − but the processor is an application specific pro-

cessor (ASIP), designed with special hardware supported instructions for scheduling

etc. This gives the approach the programmability of a SW approach with better per-

formance. However, as will be shown in Chapter 5 the performance is limited when

compared to ours. Also, our argument is that we really do not need that much pro-

grammability.

The IDROMEL platform[17] from OpenAirInterface use a software based approach,

but claims to performance by delocalizing part of the scheduling to local MIPS mi-

croprocessors − present in every processing block. They aim at support for only 2

simultaneous RATs − thus lacking support for virtualization.

[23] too has a distributed software based control with a MIPS processor embedded

in every processing element. Real-time scheduling is achieved by avoiding the use of

an operating system and interrupt based mechanisms. Instead a polling based event

detection (per control processor) is used. Also, this is a homogeneous MPSoC solution,

hence probably the MIPS based software control makes sense − complex scheduling

techniques can be implemented. Support for multiple flows and virtualization is missing.

IMECs COBRA [24] is perhaps one solution that meets most of the requirements

described in this chapter. But not many details about it are available in literature. It

targets 4G giga-bit rates and claims support for multiple simultaneous radio sessions

with real-time guarantees.

The architectures of PicoChip[25], Infineon’s MuSIC[26] and Sandbridge’s SB3011

platform[27] argue high computational performance and high flexibility. But they are

all DSP-centered and accelerator-assisted with a centralized control − reconfiguration

and scheduling is performed by one central software processor. This approach is not

scalable and complex control strategies (pipelining, etc.) are difficult and inefficient to

implement. Also reconfiguration is often slow.

SODA[28] too has CPU based control and scheduling. It also lacks support for
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dynamic reconfiguration, multiple flows and virtualization. Moreover, its performance

is limited − supports maximum of 24Mbps rate for the 802.11a protocol at 400 MHz.

Our platform can achieve the same performance at just 100 MHz.
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Chapter 3

The Framework: Virtual Flow Pipelining

The previous chapter elaborated on the requirements of digital baseband platforms

for supporting future wireless technologies. We also discussed the implications of the

requirements on the approach to be taken towards realization of the required features.

Finally, with these guidelines for reference we evaluated some of the existing solutions

in literature.

This chapter will elaborate on the specifications and features of the Virtual Flow

Pipelining (VFP) framework, which is the basis for the programmable SoC architec-

ture. As introduced in the Section 1.4.1, the VFP architecture framework addresses

the workload characteristics of wireless communication protocols with hardware-based

programmable control mechanisms that engage both hardware and software modules

in a uniform manner in order to satisfy both functional and performance requirements.

The following sections detail the features, the programming model, and the mechanisms

of the VFP framework.

3.1 Divide and Conquer Approach: Task Level Programmability with

Coarse Grain PEs

As per the arguments of Section 2.2 and [15, 9, 11, 12, 13, 14], we have concluded

that the MPSoC is the most suitable approach for achieving the flexibility and per-

formance requirements of emerging wireless protocols within the strict power budgets.

The MPSoC approach brings with it the challenge of distributing the workload across

its constituent processing elements (PEs) and programming the system.
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Power related considerations

Before we can actually tackle programmability/scheduling related challenges we need

to decide the nature of the PEs. This is an important design issue because it impacts

the power efficiency of the system. Analysis ([29, 14, 30]) of the workload of wireless

baseband processing has led to the realization that many of their constituent functional

entities are similar − e.g. channel encoder/decoder, block interleaver/deinterleaver,

modulator/demodulator, pulse shaping lter, and channel estimator. The specific al-

gorithms that each of these entities performs − e.g. type of interleaving etc. − will

depend on the standard/protocol being executed. Moreover, these different functional

entities offer plenty algorithm/task level parallelism − implying each of these can be

executed in parallel without intensive interactions. In fact, the analysis in [29] shows

that in most computation intensive algorithms, the amount of memory access for inter-

nal computation is about 10 to 200 times greater than that for the communication with

other algorithm blocks. It means that if a PE is strong enough to cover one entire signal

processing algorithm, the amount of interprocess communication can be minimized.

Minimizing the amount of interprocess communication is important in a low power

system because the energy cost of inter process communication (involving access to

system interconnect etc.) is at least two times higher than that of internal memory

access. This is the primary reason we choose to use coarse grained PEs.

Throughput related considerations

From the view point of system throughput, the coarse grain PE is also a better choice

because the communication delay between ne grain PEs degrades system throughput.

Usually, the operation speed of the interprocess communication network is slower than

the internal memory access. Furthermore, the interprocess communication time is not

deterministic. So, the ne grain PEs must be scheduled under the assumption of worst

case delay. These factors degrade achievable maximum system throughput, if fine

grained PEs are used.
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Flexibility related considerations

The use of coarse grained PEs, each executing specific tasks/algorithms, paves the way

for the use of heterogeneous PEs. As discussed in Section 2.2, the diversity of com-

putational complexity and flexibility among the functional tasks/algorithms further

advocate this divide-and-conquer approach. It facilitates achieving flexibility while us-

ing specialized cores − which help achieve power efficiency by adding flexibility and/or

computational power only when required and afforded.

Thus, with all these considerations, the VFP framework uses a heterogeneous MP-

SoC approach with coarse-grain PEs, which can be configured to execute constituent

tasks/kernels of the wireless protocol. These tasks are stitched together by another

higher level of programmability, which in effect implements the intended wireless pro-

tocol.

3.2 What is a Virtual Flow?

The allocations of the share of platform hardware resources to a protocol flow, specifying

the tasks involved, their sequence and performance requirements, in effect creates a

Virtual Flow. Multiple such virtual flows can be supported by the VFP framework.

Consider a heterogeneous MPSoC that includes the PEs shown in Fig. 3.1a. This

figure is meant to be an abstract view of the MPSoC platform, meant for building the

notion of virtual flows and comparing it to the traditional hardwired pipeline. Details

regarding the SoC organization, microarchitecture, interconnect etc. will be discussed

in the next chapter.

Building on this abstract view, Fig. 3.1a shows two virtual flows being executed

on the MPSoC. The blue path depicts virtual flow 1 (V F1) and the red path depicts

virtual flow 2 (V F2). As can be seen each flow has its own sequence as well as different

operations to be performed within each stage of the sequence. Also, both these flows

coexist on the MPSoC platform concurrently, with their performance guarantees (QoS

requirements) specified as part of the flow timings and priorities.
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Figure 3.1: Virtual Flow Pipelining − Abstract View

3.2.1 Pipelining: Exploitation of Task-level Parallelism

This section considers the execution of the programmed virtual flows in a pipelined

manner. Specifically, the VFP framework executes asynchronous pipelines (of soft na-

ture) in order to exploit the coarse grained parallelism. Fine-graned instruction and

data parallelism is utilized within the individual PEs. As elaborated in section 3.1,

the VFP framework uses the divide-and-conquer principle to implement the wireless

protocols on a programmable task-level. This is particularly important for 2 reasons;

• it makes the mapping of tasks to PEs and programming the flow simpler (discussed
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in section 3.3)

• it presents the opportunity to exploit task-level parallelism by executing different

operations of potentially independent virtual flows on the PEs in parallel.

In order to exploit this task-level parallelism, the tasks within the virtual flows are

executed in a pipelined fashion. For example, the Fig. 3.1b illustrates the pipelined

operation of the virtual flows extracted from Fig. 3.1a. The most important advantages

to be noted from the Fig. 3.1b are that;

1. The platform is executing two virtual flows concurrently, in a pipelined fashion,

by multiplexing the PEs among the flows. Thus, the utilization of PEs is high

and high system throughput is sustained, while supporting virtualization.

2. The flexibility of defining the virtual flows enables the latency of the pipelines

executing the virtual flows to be variable. This is important from the point of

view of achieving the real-time constraints associated with the protocol flows,

while maintaining virtualization properties.

3.2.2 Virtual Flow Pipelining Overview

The pipelined execution of the programmable virtual flows in essence gives the name

Virtual Flow Pipelining (VFP). Managing this flexible pipelined operation is achieved

using the event-based control-flow sequencing and synchronization mechanisms that

constitute the VFP framework. These are discussed in section 4.1.2. The VFP frame-

work also handles the fast context switching and data communication between different

PEs (stages of the pipeline) in a manner so as to achieve high PE utilization and system

throughput.

In contrast to VFP, a traditional hardware pipeline is incapable of providing the per-

formance, flexibility and virtualization properties. Fig. 3.1c illustrates the inefficiencies

if a hardware pipeline was used to implement the two protocol flows depicted in 3.1a.

But the benefit of a hardware pipeline is that it has a deterministic performance − since

allocation of all the resources is completely inflexible and static throughout the frame
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period. The determinism is a desirable feature in order to guarantee QoS features. Our

Virtual Flow Pipeline framework adds the required flexibility to the hardware pipelining

approach, while retaining performance guaranties. This is achieved in the VFP by use

of scheduling mechanisms (discussed in 4.1.2), which respect and enforce the priorities

and timings requested by the upper layers.

3.3 How are Virtual Flows Created? − The VFP Programming Model

Before we go on and present the VFP control mechanisms, let us consider the VFP

programming model. It is the programming model that enables creation and description

of the virtual flows − in terms of functionality and performance requirements.

Based on the divide and control principle, our model involves breaking up the pro-

tocol flow into constituent tasks/functions. A task is an atomic computational ker-

nel/algorithm that can be completely executed on a PE, e.g. interleaving, MMSE esti-

mation etc. Thus at flow provisioning time, the following information is to be identified

and represented in order to create a virtual flow;

1. Description of the tasks involved (i.e. the operation to be executed, number of

operands etc.) and their mapping to respective PEs. This is the lower level of

programming.

2. Description of control-flow/sequence of the protocol, which effectively stitches the

different tasks performed by the PEs into forming a flow. This is the higher level

of programming that brings out the data dependencies among tasks.

3. Performance requirements of the flow − in terms of timings and priorities of the

constituent tasks from the perspective of higher layers.

The representation of the above information in form of control data structures is

called a Virtual Flow Program. Multiple such flow programs can be created and defined

at the flow provisioning time. But as discussed in the previous chapter (2.2), the need for

virtualization, run-time reconfiguration and execution of multiple flows, together with

maintenance of real-time constraints adds dynamics to the problem of actual scheduling
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and execution of tasks. Hence, the potential sequence space and timings of operations

in a virtual flow are described at provisioning time, but the actual sequence and timings

are decided at run-time − based on the run-time results.

3.3.1 Representing the Virtual Flow Program

The tasks and their sequence is then represented using a directed acyclic graph (DAG).

A DAG representation enables representation and execution of spawning of one-to-many

child tasks as well as facilitates joining many-to-one tasks.



 



 


 







 


Figure 3.2: VFP Programming Model

For example, lets assume that Fig. 3.2a represents a simple protocol. The structure

of the DAG represents the protocol flow (higher level of programmability), whereas

the nodes depict the PEs involved and their required configuration (lower level of

programmability). Fig. 3.2b, illustrated the example flow program for the protocol

depicted in Fig. 3.2a.

On the MPSoC, the virtual flow programs actually translate to control code that

resides in the form of tables/data structures in the memories. These tables will be

described in the next chapter.

3.3.2 Features of the Programming Model

Salient features of the programming model are:
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1. The heterogeneous PEs are treated uniformly. Thus, the fact that a PE could a

configurable HW module or a programmable processor, does not impact the way

the platform is programmed.

2. The programmer is relieved from the burden of synchronization and data depen-

dency checks. This is completely handles by the hardware.

3. Although the mapping of task-to-PE is done by the programmer, the actual

scheduling and activation of tasks is managed by the hardware mechanisms at

run-time. Thus, the programmer is not required to handle this at compile-time −

making the programming easier and more conducive to dynamics associated with

virtualization. This feature provides the required level of abstraction towards the

higher layers.

4. The task-level break up and two level programmability facilitates pipelining of

operations, thus exploiting task level parallelism.

3.4 VFP Mechanisms

This section will describe the underlying control mechanisms of the VFP framework.

These mechanisms support the programming model and are actually responsible for the

execution of the protocol flows on the platform. A unique aspect of the VFP is that

these mechanisms are all hardware-oriented. In a way, these mechanisms can be looked

at as a hardware implementation of some operating system functions, thus obviating

the need for one.

3.4.1 Control-flow Sequencing and Data Communication

The control-flow, which executes the higher level programming, is implemented as a

sequence of producer-consumer interactions. Basically, the virtual flow program repre-

sented by the DAG is nothing but a bunch of producer-consumer sequences. A PE task

acts as producer for the tasks following it in the DAG. Essentially, for a given virtual

flow, every PE in the DAG acts as a producer (except the leaf node tasks) and every



28

PE acts as a consumer (except the root).

Thus, whenever a PE task (producer) completes, its consumers are identified and

further mechanisms are triggered. This process of identifying and engaging of all the

consumers of a particular producer task − as per the Control-flow data structure in the

memory − in essence executes the control flow.

The data communication, between PEs is also handled by the VFP framework −

again using the producer-consumer notion. The framework has provisions for checking

race conditions and data overwrites using semaphores. Moreover, data transfers are

performed by Direct Memory Access (DMA) engines that relieves the PEs of this bur-

den. This effective separation of computation and communication, improves the PE

utilization as well as the determinism in allocation of PE bandwidth.

3.4.2 Synchronization

The programming model of VFP allows for forking (for parallel execution) and joining

of tasks. This calls for the need for task synchronization. For example, in the case of

joining, the start of a task has to be synchronized with the completion of multiple pro-

ducer tasks. In general, the synchronization mechanisms are needed to trigger/activate

particular tasks in the flow only after all their associated dependencies have been re-

solved.

As mentioned in section 3.3.2, the VFP framework handles the task synchroniza-

tion independently − i.e. without the need for specific programming. This is done

by maintaining counting semaphores associated with every task in every flow. These

semaphores are initialized at the provisioning time (and periodically reinitialized for

repeating tasks), and decremented once on every associated producer task completion.

Finally, a semaphore reaching zero is the triggering event for that particular task. All

these mechanisms are implemented in dedicated hardware logic, together with memory

table entries for maintaining the synchronization states.
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3.4.3 Scheduling

The stringent performance requirement of wireless protocols needs to be supported at

the architecture level with mechanisms that will guarantee processing latency, timely

response, and provisioned quality of service parameters. Hence effective scheduling

mechanisms are incorporated in the VFP framework to satisfy requirements of individ-

ual flows as well as to efficiently share the processing resources between the flows.

As mentioned earlier, the virtual flows (tasks, their sequence and performance re-

quirements) are defined at provisioning time, but need the run-time scheduler in order

to ensure the performance under dynamic system loading. The run-time scheduler is

in charge of ensuring both the deterministic and the statistical (average type) perfor-

mance guaranties, depending on the flow setup. The scheduling function of the VFP

controller multiplexes each PE (configurable hardware unit or programmable proces-

sor) either based on a time reservation (for deterministic guarantees) or a best effort

scheme (for deterministic guarantees). In order to support synchronous framing type

of protocols (e.g., time division multiplexing), the flow scheduling information for the

time reservation based scheme also specifies the repetition time.

For providing these degrees of priorities, the tasks whose synchronization criteria is

met are queued up as either synchronous tasks or as asynchronous tasks (with multi-

ple priorities) for scheduling. The type of tasks depends on the type of performance

demanded as per the virtual flow program.

Synchronous Tasks

The synchronous tasks are associated with the deterministic guarantees. These tasks

have allocation per repetitive flow frame intervals, reserving the corresponding PE for

the required processing time at the specific interval within the periodic frame. In short,

synchronous tasks have a dedicated share of the PE bandwidth. Fig. 3.3 illustrates

the allocation of bandwidth to the synchronous tasks. These allocations can belong to

different virtual flows.
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Figure 3.3: VFP Scheduling Policy

Asynchronous Tasks

These tasks are associated with the statistical guarantees. The asynchronous tasks

which are allocated in the shared processing bandwidth left over after the allocation

of the reserved capacity by the synchronous tasks. Thus they are scheduled as per a

best effort policy. The asynchronous tasks are scheduled by fixed or Weighted Round

Robin scheduling discipline. The asynchronous tasks are interrupted at the start time

of the synchronous task time slot, and resumed at the point of interruption after the

completion of the synchronous task. The interruption is also necessary in order to guar-

anty the processing bandwidth for the deterministic processing of synchronous tasks.

(Presently our implementation does not support interruption of async tasks. Instead

we stall scheduling an async task if its processing time is long enough so as to clash

with a synchronous task allocation.)

The fig. 3.3 illustrates all the scheduling policies. Important observations are that the

async task AT1 is interrupted and resumed later in order to cater to the dedicated

bandwidth of synchronous task ST2. The G1, G2 and G3 are guard times for the
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synchronous tasks − it is the time window for sampling the enabling event. Enabling

events delayed more than the time G cause the synchronous task to be rescheduled (red

arrow) and the dedicated bandwidth is released (used up by AT2).

3.4.4 Context Switching

Given the short processing time for the packet, or parts of it, the fast context switching

needs to be supported by both software execution (CPUs), as well as hardware PEs,

otherwise the utilization of the units will be low. For the systems targeting hundreds

of megabits per second data throughput the unit processing time is sub-microsecond,

dictating the use of hardware assisted and controlled context switching.

Also, the processing time of the task execution has to be deterministic. In order

to cater to these requirements, the VFP system controller completely handles all the

activities up to beginning of task processing (pre-processing) and takes over immedi-

ately after the completion of task execution. Thus the PEs are engaged only in useful

processing activities and can be kept occupied in a pipelined fashion.

The pre-processing functions performed by the VFP for the PE, include scheduling

the task, bringing in the input data, setting up the input buffer pointers and flow

context information. Following this the PE is triggered with the task command, which

it promptly begins executing. Similarly, the post-processing functions performed by the

VFP after the task execution completes include, identifying consumers and transferring

the output data.

Thus, the constituent PEs of the system have a very myopic view. They are unaware

of notions of flows nor do they know to which flow the task they are processing belongs.

The PEs just respond to the commands from the VFP controller and hand over the

control back to the VFP controller as soon as execution completes.

3.5 Putting it All Together − The Layered Radio Perspective

This sections attempts to provide a high level overview of the VFP framework while

summarizing the features and mechanisms discussed in the previous sections. We try
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to provide this complete picture by proposing a Layered Radio Architecture view of the

system. This view is depicted in the fig. 3.4.





















  

 


















Figure 3.4: Layered Radio Architecture

The following points describe the different layers while relating them to the VFP:

Higher Layers These layers dictate the number of flows executed by the lower layers

as well as their functionality and performance requirements. This is done by cre-

ating the virtual flow programs (according to the protocol requirements) through

interactions with the virtualization layer.

Virtualization Layer This layer presents the uniform API for the higher layers to

program the virtual flows. It effectively provides a hardware abstraction between
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the multi-radio environment at the higher layers and the common hardware plat-

form at the lower levels − thus shielding the radio applications from the sharing

and loading of the processing layer and hiding the existence of other concurrent

seesions.

Dynamic Reconfiguration Layer This layer constitutes the efficient control-flow,

synchronization, fast context switching and run-time scheduling mechanisms as

discussed in section 4.1.2. It is this layer that is responsive to the dynamics of the

system and is responsible for enforcing the budgets and guarantees provisioned

at compile time. On one side the dynamic reconfiguration layer interacts with

the virtualization layer to receive the provisioned functionality and timings, while

on the other side it schedules and drives the PE execution and data transfers as

per the run-time results and events. It is also responsible for exploiting task-level

parallelism by managing the asynchronous pipeline.

Processing Layer This is the layer where the actual data plane processing is done.

It constitutes the heterogeneous PEs (which presents a uniform interface to the

dynamic reconfiguration layer) and the underlying interconnect. This layer offers

the dynamic reconfig layer with three degrees of freedom in order to achieve the

required flexibility. They are;

1. selection of PE configuration, which decides what operation/algorithm the

PE executes;

2. sequencing of the PEs to form the coarse grain protocol flow; and

3. denition of new PE functions by adding new software programs to the CPU-

based data plane PEs.

The constituents of the processing layer have a myopic view. They are com-

pletely transparent of the notion of flows. They are like slaves of the dynamic

reconfiguration layer − responding to commands on as a case by case basis.
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3.6 Correlating the VFP Framework and the Requirements

In this final section of the chapter describing the VFP framework, we will correlate

the framework with the requirements covered in Chapter2. This will bring out the

significance of different aspects of the framework and help evaluate it qualitatively. Let

us discuss each of the requirements, one by one.

Platform-based Paradigm This requirement is satisfied by the two level program-

ming model provided by VFP. It provides separation between programming the

PE tasks and the actual top level sequence of the tasks − effectively achieving sep-

aration of computation and communication. Uniform support for heterogeneous

components further qualifies the framework.

Programmability/Configurability and Dynamic Reconfiguration The Programma-

bility requirement is satisfied in a straightforward manner by the programming

provisions. Various protocols/standards can be programmed onto the SoC at

compile time. The particular protocol to be used/executed in order to trans-

mit a particular packet can be decided at run-time − when inserting the packet

for baseband processing. This feature in effect achieves the required per-packet

dynamic reconfigurability.

Multiple Simultaneous Traffic Flows The support for having multiple diverse pro-

tocols pre-programmed together with the ability of the framework to multiplex

and interleave the tasks onto PEs achieves this requirement.

Virtualization and QoS guarantees This is achieved by the scheduler policy and

its run-time implementation. The protocols are pre-programmed and then dy-

namically initiated by the higher layers at run-time − without system loading

considerations. Then the run-time scheduling of the tasks to PEs, which execute

them with a myopic view, achieves the virtualization.

Throughput, Real-time Constraints and Power Efficiency These are achieved

by all the VFP mechanisms (scheduling, synchronization, context s/w) and their
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unique hardware implementation. These mechanisms offload the PE of all the

task and flow management functions. Thus, the PEs are kept busy with only

useful application/algorithm processing. Furthermore, the pipelining (task-level

parallelism) further increases throughput. This hardware-based task management

together with the scheduler policy and transparent data passing, increase the

determinism in the system − a key requirement for meeting real time constraints.

Avoiding the use of operating system or a CPU operating at very high speed helps

power reduction.
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Chapter 4

Virtual Flow Pipelining based SoC Architecture

In Chapter 3 we have presented the Virtual Flow Pipelining framework for satisfying

the requirements of programmable and flexible radio processing. In this chapter we will

eloborate on the development of the framework into a system-on-chip (SoC) architec-

ture. Putting it differently, the previous chapter answers the “What” questions (What

are the specs, the mechanisms, the programs?). This chapter will answers the “How”

questions (How is the framework implemented? How is it organized?).

4.1 Preliminaries

In this section we put forth the preliminaries that lead to the SoC architectural ap-

proaches and micro-architecure discussions. Strictly speaking this section while be-

ginning to answer the Hows actually extends on the Whats discussed in the previous

chapter. The reason for including these here is that they are closely associated with

and naturally lead to the implementation discussions.

4.1.1 Control-code Memory Structures

We begin with showing how the virtual flow program code is actually mapped onto

the memory. In a way this answers the − What are the control code memory data

structures? − question. As mentioned in section 3.3, the protocol flows are represented

as directed acyclic graphs. Two such protocol flows are shown in Fig. 4.1. The ta-

bles/data structures representing these flows in the memory are also shown in Fig. 4.1.

We use two flows to demonstrate how multiple flows reside in the control memory. As

can be seen the figure shows 2 types of structures; Task Descriptors tables and table

for Scheduling Properties and Synchronization State.
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While the Task Descriptors deal with the DAG description and info pertaining to

the execution of the respective task, the other structure holds information required for

the consistent and correct operation of the flows together with the maintenance of the

required timings and QoS across flows.

PE1:op1

PE4:op3 PE3:op2

PE2:op3

Task Descriptors for PE-1

Scheduling Properties 

& Synchronization state 

Consumer-1 Ptr.

Task Descriptors for PE-4

Consumer-1 Ptr.
PE5:op1

PE1:op3

PE2:op3

Consumer-1 Ptr.

Task Descr.  ptr.

Task Descr.  ptr.

Task Descr.  ptr.

Protocol Flow #1

Protocol Flow #2

A

B C

D

X

Z

Y

PE3:op1
Z’

Consumer-1' Ptr

Consumer-2 Ptr.

Figure 4.1: Control Code Data Structures

Task Descriptors

It the Task Descriptors (TD) that describe the DAG. There exists a TD entry for every

task in every flow. The information in each TD falls in two main categories − first,

context switch and task execution related information and second, control-flow related

information. We elaborate on each of these categories next.

Context Switch and Task Execution Related Info This part of the task descrip-

tors contains all the information needed by the PE before it can start the task
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execution. This can be thought to be the information at the nodes of the protocol

flow DAGs. Explicitly, this information is;

1. Task Command and type: Tells the PE what command is to be executed.

Other flags also convey what type of task it is, i.e., chunking task, first chunk

or last chink etc. (Chunking will be explained in the later sections).

2. Input Data Info: Provides information about how many buffers in the input

memory are associated with this task. It mentions the pointers and size for

each of the buffers where the actual data to be operated on resides.

3. Flow Context Info: Is used to appropriately resume tasks that were inter-

rupted or tasks which are operated on in parts (e.g. chunks). This informa-

tion is just the pointer and size of the location in the internal memory of the

PE where the actual flow context info resides.

Control-flow Related Info This part of the task descriptors provides the informa-

tion about the consumers of the task being described. In effect, this can be

thought of as the information pertaining to the edges of the DAGs. It contains

the IDs of the consumer tasks in the flow together with the pointers to the loca-

tions of the respective input memories where the output of the current task should

be copied. This control-flow information in effect describes any forking and/or

joining of tasks. It also facilitates having potential consumers, where the actual

run-time consumer will be decided based on the result of the current task. This

feature, in effect, enables programming simple if-else type scenarios. As shown

in the Fig. 4.1, for Flow−1, task A has two consumers (forking) − B and C. The

TD for task A has pointers for each B and C. The Flow−2 illustrates the case of

potential consumers, task Y can have one consumer − either Z or Z’ − depending

on the result of task Y.

Each TD entry has a link to its corresponding entry in the Scheduling Properties

and Sync. State tables − not shown explicitly in Fig. 4.1, its just color coded. In

the Fig. 4.1, the TDs are shown as separated per PE. They can be such in physical
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separate memories per PE or just in one memory. For the Distributed-control approach

discussed in section 4.2 the TDs are in physically separate memories per PE.

Scheduling Properties and Sync. State tables

These tables too have an entry per task per flow. As the name suggests, each task entry

contains two categories of information.

Scheduling Properties This part holds all the info needed by the scheduler for

appropriately scheduling the task for meeting the performance guarantees and

timings. This info here is used while queuing the task in the queues of scheduler

− which then makes the scheduling decisions as per the policy. This info indicates

whether the scheduler class of the task − Synchronous or Asynchronous (section

3.4.3). For Synchronous tasks it includes task start time, its reschedule period and

repetition count, type of task (e.g. chunking, first chunk or not etc.), chunk size,

TD pointer, guard time window width etc. For Asynchronous tasks, it provides

the priority of the task, whether it is control or data tasks, its processing time

and TD pointer.

Synchronization State It holds the semaphores and flags needed for correctly syn-

chronizing the control-flow and maintaining data consistency. It has a counting

semaphore for task sync. − especially for managing the joining of tasks. It also

has flags for maintaining input data consistency. Copying data to a input buffer is

allowed only if the corresponding buffer flag is reset indicating the buffer is avail-

able. This prevents overwrites of data, thus maintaining its consistency through

the flow. Other info includes initial value of the counting semaphore, used to

reload the task.

We will discuss more about the physical partitioning of these control-code memory

structures in later sections when we present the architectural approaches.
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4.1.2 VFP Control Mechanisms

As mentioned in section 4.1.2, the protocol flow is implemented as a sequence of

producer-consumer interactions. It is the VFP mechanisms that comprise these producer-

consumer interactions. The main objective of the VFP mechanisms is to offload the

PEs of all these producer-consumer interactions, thus maximizing the PE utilization for

useful application/algorithm processing. In this section we present a step-by-step ac-

count of the set of interactions that happen as part of the VFP scheme. So this section

answers the question − What are the interactions between producer and consumer? In

the later sections, when we discuss the architecture approaches, we will see how each

of these preliminary steps are implemented and the impact of the chosen approach.

Fig. 4.2 is an abstract diagram that depicts the steps (numbered) between a pro-

ducer and a consumer. As shown in the figure, a PE together with its local data memory

and any more local control logic (e.g. DMA engines) is called a Functional Unit (FU).

Other elements of the Fig. 4.2 include the control-code memory structures and task

scheduler queues. The scheduler queues and task descriptors are shown as separate and

at the depicted positions just to convey the idea that they are associated per PE. Their

positions and/or separation in Fig. 4.2 does not imply anything about their actual

physical position and organization. This figure is an abstract representation only for

the purpose of illustrating the interactions.

Following points elaborate on the steps;

We begin with the assumption that the Producer FU already has a few tasks queued

up in its scheduler queues, with their corresponding input data residing in the local data

memory.

1. As per the scheduling policy a task from the ones present in the producer sched-

uler queues is scheduled for execution whenever the producer PE frees up, i.e.,

completes its previous scheduled task.

2. Before the scheduled task can be actually triggered/dispatched for execution to

the producer PE, we need to context switch. As explained in section 4.1.1, all the

information required to perform the context switch and trigger the task is present
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Figure 4.2: VFP Control Mechanisms

in the Task Descriptor for the respective task. This includes passing the pointers

and sizes of the input data, providing the actual command to be executed, and

passing pointers to any residue flow context information. Once this context switch

setup is completed, the PE is triggered to begin processing.

3. As soon as the processing is completed the PE is freed up. The PE is imme-

diately ready to take up a new task selected/scheduled from the candidates in

the scheduler queues of associated with the producer. Thus, a new task could be

processed in parallel with all the steps to follow − maximizing the PE utilization.

The synchronization state in the Scheduling Properties and Sync. State table

entry of this completed task is also reset/reloaded − i.e. the task sync. counting

semaphore is reloaded and the data consistency check flag is cleared to indicate

its availability.

4. Next the consumers of the task just completed are identified, using the control-flow

information residing in the task descriptor. The actual consumers are chosen from

a set of potential consumers (equivalent to resolving if-else dependency) depending

on the result of the PE. For example, for the Decoder-PE, the consumer may

depend on whether the CRC passes or fails. These kind of control dependencies
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are resolved using a vector-based scheme discussed and detailed in [31].

5. Having identified the consumer, an input buffer availability check is performed

for each consumer. This check helps maintain data consistency by preventing

overwrites. The flags for performing this check reside in the entry corresponding

to the consumer, in the Scheduling Properties and Sync. State tables.

6. After the data consistency check for a consumer passes, output data from the

producer FU is copied to the consumer input data memory. This transfers hap-

pens using DMA engines − independent of the producer or consumer PEs. The

consumer task descriptor is updated with the pointer and size of the data just

received.

7. Following the data transfer, the task synchronization is performed. This involves

updating (decrementing) the counting semaphore in the consumer task’s Schedul-

ing Properties and Sync. State table entry. If the semaphore has reached zero

means all the producer tasks, joining at this consumer task, have completed. Such

a consumer task is said to be ready for execution.

8. If the task synchronization condition in the previous step is satisfied, then the

ready consumer task is queued up in its respective scheduler queue using the

scheduling properties in its corresponding entry.

9. This completes the set of interactions between a producer and a consumer. This

consumer assumes the role of producer for the tasks that follow it. The same set

of steps, starting from step number 1 above, can be imagined to be performed by

it as well.

Thus, the producer-consumer interactions are performed by dedicated hardware in

parallel with the actual processing of PEs. This in effect achieves a pipelined operation

of the PEs, which exploits the task-level parallelism offered by wireless protocols.
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4.2 Distributed-Control Approach

Having discussed the preliminaries, this section will present an approach that was first

considered and implemented for the VFP framework. We will first present the SoC

organization and then discuss the issues that this approach had.

4.2.1 Distributed-control SoC Organization

Fig. 4.3 depicts the SoC organization for the approach using distributed control.
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Figure 4.3: Distributed-Control SoC Organization

Following are the points to note about the organization;

• The PEs have associated local data memories and data is explicitly passed between

the data memories, without the use of any central shared data memory. This

organization avoids the need for caches, which may be needed if a large and slow
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shared memory is used. Avoiding caches simplifies the memory management and

also makes the PE processing more deterministic − because data is available

locally.

• The VFP control is completely distributed, with a dedicated VFP control module

associated with every PE. This control module also includes a DMA engine for

performing the producer-to-consumer data transfers.

• The Task Descriptors associated with each PE are physically separate memories.

These TD memories are local to the corresponding VFP control modules. Al-

though the TD memory is local to the VFP module it also has a port connected

to the global SoC interconnect. This serves 2 purposes − first, for populating the

entries at flow provisioning time, and second, for enabling remote VFP modules

to update values in it at run-time.

• The Scheduling Properties and Sync. State tables for all the tasks of all the

PEs reside in one physical shared memory. This memory is connected to the

global SoC interconnect so that it can be accessed (updated and read) by all the

distributed VFP modules − thus permitting any PEs to form producer-consumer

relations.

• Thus, the overall organization consists of a number of functional units (FUs)

connected using a PLB bus based interconnect. The FU comprises of the PE, the

data memory (input and output), the VFP control module and the task descriptor

memory.

Next let us discuss the issues with the distributed architecture that have necessitated

the need for a new architecture.

4.2.2 Issues with the Distributed Approach

The distributed approach has the following drawbacks that impact the system scalabil-

ity and performance.
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High Hardware Complexity

The hardware complexity of the VFP controller is very high − approximately 25K

gates. This number is larger that some of the simple PEs, resulting in more than

100 percent overhead. Moreover, the distributed architecture has a VFP controller

per PE, which limits the scalability of the system. This is because the total hardware

overhead becomes prohibitively large as we increase the number of PEs in the system

− its a linear increase. This is not good, especially while considering solutions for

infrastructure equipment devices which have to accommodate large number of PEs for

supporting hundreds of traffic flows simultaneously.

Control Communication Bottleneck

The producer-consumer interactions for the distributed architecture are producer-diven.

This means that once the producer task completes the producer VFP controller is

responsible for performing all the control mechanisms, right up to queuing of the ready

task into the consumer side scheduler queues. But because the VFP controllers are

distributed, the producer driven mechanisms result in considerable amount of control

traffic on the global interconnect. This traffic comprises of the following accesses (Fig.

4.4):

1. Accesses to the shared Scheduling Properties and Sync. State tables memory to

read the data consistency check semaphore of the consumer as well as update

its own. Also to update and read the task synchronization semaphores after the

output data has been passed to the consumer. If the synchronization enables the

consumer task, then its scheduling descriptor is fetched from the shared tables

too − all over the global interconnect.

2. The producer VFP controller also needs to update the task descriptors at the

consumer side with the pointers and size of the data passed to it − again over

the global interconnect.

3. Finally, after the task synchronization passes, the producer VFP is responsible
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for queuing the ready task into the consumer scheduler queues. This also needs

the global bus access.
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Figure 4.4: Issues with the Distributed-Control Organization

Thus it can be seen that each producer-consumer interaction results in considerable

global accesses. Moreover, this kind of global control communication traffic is generated

by multiple PEs in the system. The accumulative effect is that the control communi-

cation is delayed and it also impacts the interconnect bandwidth available for the data

transfers. Even if the there is sufficient bandwidth for the traffic, these global accesses

are high latency accesses, i.e., approximately 10-15 cycles of overhead (DMA engine

+ bus arbitration). This means short accesses such as fetching the data consistency

semaphore (which could be a polling operation), has a 10 times high overhead associ-

ated with it.

Thus, with its high hardware overhead, the distributed approach is not an efficiently

scalable solution. The communication bottleneck not only adds to this but also impacts
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the system performance by increasing latency and effectively reducing PE utilization

for short processing tasks.

4.3 Clustering-based SoC Organization

The issues with the fully distributed approach call for a new SoC organization. But the

diametrically opposite solution of having a fully-centralized organization has obvious

limitations of scalability. The need for striking a balance between the scalability and

hardware overhead has resulted in the new clustering-based organization shown in Fig.

4.5.
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Figure 4.5: Clustering-based SoC Organization

There are 3 main challenges that associated with the clustering-based architecture.

They are;

1. Designing a centralized VFP controller that will be shared across multiple PEs in

the cluster.

2. Providing a solution for efficient control communication between the PEs and the
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VFP controller.

3. Maintaining scalability by handling the possibility of having producer-consumer

interactions across cluster boundaries.

In the following sections we discuss how each of these challenges is handled.

4.4 Shared VFP Controller

As discussed in the previous section a single VFP controller will be used to serve all

the PEs in a cluster. This will help reduce the hardware complexity of the system. The

challenge in designing such a shared VFP controller is that the performance impact of

sharing must be minimized. Otherwise, such solution will not be very different from a

Software Controlled approach discussed in Chapter 1.

4.4.1 Control-code Memory Organization

Preliminary modification with sharing the VFP controller is to localize the control data

structures in the system. Since most of the control mechanisms are now centralized, the

associated control-code memories can be made local as well. Thus the accesses to these

memories can be local and hence have very low latencies − 1-2 cycles. This also reduces

the control communication across PEs, which was a problem with the distributed SoC.

Specifically, the memory organization changes are;

• The Scheduling Properties and Synchronization State tables are now provided

with a local port to the VFP controller. These tables contain the entries for all

the tasks of every PE that belongs to the cluster in which the VFP controller is

shared. As we will see in the next section the table can be accesses by multiple

blocks in the VFP simultaneously, hence we need a simple fair round-robin arbiter

for controlled access to the memory.

• The Scheduler Task Queues that were previously a distributed are now centralized

in the VFP controller.
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• The control-flow information is extracted from the Task Descriptors and is made

local to the shared controller in the form of new control structure called Task-

flow tables. Also, the link to the control-flow table entry is added to the Task

Descriptor of the corresponding task.

• Finally, the Task Descriptors which now contain only the task operation informa-

tion, e.g., command, data pointers and size etc. are still kept distributed along

with the associated control logic hardware. This is done in order to have fast

dispatch of the task once it has been scheduled.

4.4.2 Parallelism among the VFP functions

As discussed in section 4.1.2, the main control functions of a VFP controller are;

• Task scheduling

• Context switch

• Consumer identification

• Data consistency check

• DMA transfer

• Task synchronization

These constituent control mechanisms of the VFP framework present a scope for

exploiting parallelism. This parallelism is illustrated in the Fig. 4.6. The first row in the

figure shows the sequence of the VFP control functions associated with PE-1. The fields

with an offset, i.e., Context switch and Task processing and PE output data transfer, are

the functions that are not performed by the shared part of the VFP controller. They

are instead distributed. The second and third rows in the figure depicts the sequence

of VFP functions for PE-2 and PE-3. The Fig. 4.6 can be thought of as a pipelining

sequence diagram. It can be seen that at a given time instant, each of the three PEs are

performing/executing different VFP mechanisms. Thus by partitioning the design of the

shared VFP controller into these potentially concurrent VFP functions, this parallelism
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Figure is not to scale. 
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Figure 4.6: Parallelism Among VFP Mechanisms

can be exploited. Such a design can then serve multiple PEs simultaneously, reducing

the performance impact of having a shared controller.

4.4.3 VFP Controller Architecture

As discussed in the previous section, exploiting the function-level parallelism is the main

strategy for improving performance of the shared VFP controller. The Fig. 4.7 shows

an abstract view of the microarchitecture of the VFP controller. The microarchitecture

is composed of macro-pipelined stages. The structure is an asynchronous buffered

pipeline. The pipeline stages have short elastic buffers − FIFOs − between them.

These buffers are indicated as brown rectangles with arrowheads in the Fig. 4.7. The

main stages in the pipeline are − Consumer identification (triggered by the PE after

a task completes), Data consistency check, DMA transfer, Task synchronization and

ready task queuing, Task scheduling, and finally Context switch after which the Task

processing begins. The data transfer is performed in a distributed fashion. The VFP

controller delegates the data transfer task to the distributed DMA engines − one per

PE − which on completion of the transfer get back into the VFP controller pipeline

using messaging.
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Figure 4.7: Shared VFP Controller Pipelined Architecture

Each of the stages serve different PEs simultaneously. As seen in the Fig. 4.8, at

some time instant #1, various PEs are engaging separate stages of the controller. Also,

PE-b and PE-c are performing data transfers using the independent DMA engines. At

a later time instant (called #2), seen is Fig. 4.8, different PEs are engaging the stages.

Thus at each time instant, multiple PEs are served. Each of these stages exploits more

parallelism internally, but is not depicted in the figure for clarity.

!"#$%&'(

)*$+,-#.+(

/010(

)*$+2+1#$)'(

)3#)4(

5'$)6()3#)4(

7!8,#,#(10+4(

90+4(

+)3#",:2$;(

From 

PEs To PEs 

Time  

instant #1 

To PEs 

!"#$%&'(

)*$+,-#.+(

/010(

)*$+2+1#$)'(

)3#)4(

5'$)6()3#)4(

7!8,#,#(10+4(

90+4(

+)3#",:2$;(

From 

PEs 

Time  

instant #2 

DMA engines 

DMA engines 

Figure 4.8: Parallelism Exploited by the VFP Controller Pipeline

Thus it can be seen that the shared VFP controller has explicit hardware level

parallelism. This is the major advantage over the Software Controlled approach −
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which can at most have pseudo-parallelism of multithreading. Moreover, each of the

stages in the VFP controller is designed specifically to perform the associated control

functions. This optimization is a further performance advantage.

The detailed design with internal blocks, state machines etc. can be found in [32, 33].

4.5 Control Communication Interconnect

The shared VFP controller requires to communicate with all the PEs within the cluster

and vice versa. Moreover, since the VFP is pipelined and simultaneously serves mul-

tiple PEs, there arises a need to keep track of the PE being served. This is done by

introducing the concept of IDs for each of the PEs. In fact, the IDs are hierarchical −

8 bit values − higher 4 bits specify the cluster number and the lower 4 bits specify the

FU ID within the cluster. It is using these IDs that the VFP associates the messages

moving along the pipeline stages with the appropriate PEs. IDs also enable the VFP

to communicate with the appropriate PE.

Another issue with the control communication between the PEs and the VFP con-

troller is that if it happens over the cluster interconnect, then we essentially have issues

similar to the distributed approach. Moreover, since the controller is now a remote

entity with respect to the PE, the control communication has to messaging based. This

means that each PE needs to create a short 2-4 word message containing its ID and all

other information and pointers required by the VFP controller to perform the delegated

function. The detailed message formats for different types of messaging between the

VFP controller and the PEs is present in [34, 35].

If this messaging together with the data communication happens over the cluster

interconnect, it will be a potential bottleneck. In fact, even if we put aside the inter-

connect bandwidth issue, the latency for transferring each 2-4 word message will be

approximately 16 plus clock cycles (through the DMA, arbitration on either side etc.).

Hence, the need for a new fast control communication interconnect, which will also

offload the cluster interconnect dedicating it for data transfers only.

Considering this requirement five simple and fast customized buses are designed
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Figure 4.9: VFP-FU Control Communication Interconnect

connecting the PEs and the VFP controller – depicted in Fig. 4.9. The buses are

simple and low overhead because they are just one-to-many or many-to-one type of

buses. Hence, at most a decoder (using the FU ID) or arbiter is required per bus

to select among the PEs in a cluster to communicate with. The arbiters designed

are simple fair round-robin arbiters so that each PE is served equally by the VFP

controller. These buses are fast because they have a dedicated interface at each PE and

VFP controller. Hence, there is no arbitration within the PE or VFP controller − the

only arbitration is between PEs − which takes just 1-2 cycles extra. Moreover these

buses are customized in terms of their width and communication protocol − resulting

in ready to use information in the messages. All these features, reduce the latency

involved in the PE-to-VFP communications.

This control communication interconnect requires uniform interface to be designed

per FU. Also, the message formats have to be uniform across FUs. The FU interface

specifications and design along with the message formats are detailed in [34, 35]
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4.6 Clustering-based Producer-Consumer Interactions

As elaborated in the section 4.1.2, the VFP mechanisms essentially comprise of producer-

consumer interactions. For the case of the distributed-control SoC organization, as dis-

cussed in section 4.2.2, these control mechanisms are driven by the producer side VFP.

But with the adoption of a clustering based organization we now have two possible

scenarios;

Intra-cluster producer-consumer relationship: Scenario when the producer and

consumer are both in the same cluster.

Inter-cluster producer-consumer relationship: When the producer and consumer

are in separate clusters.

4.6.1 Intra-Cluster Producer-Consumer Interaction

Since both the producer and consumer are in the same cluster, it is fairly obvious that

the VFP controller of the cluster is responsible for handling the interaction mechanisms.

Also, the control data structures associated with the producer as well as the consumer

tasks are all present locally to the VFP controller of the cluster. The producer-consumer

interactions in this case are carried out as per the pipeline flow as shown in the Fig. 4.7.

Basically, once the producer tasks completes the consumer has to be identified. The

Task-flow tables data structure, which is now local to the VFP is used for this purpose.

But, it contains the potential consumers. The actual consumers depend on the result

of the producer task. Here, the PE generates a consumer identification vector which

depends on the result of the computation. The vector is then deciphered by the VFP

consumer identification stage to select the actual consumer from the potential list in

the Task-flow tables. After the actual consumer has been identified, its ID is available.

The VFP controller consumer identification stage uses the upper 4 bits (cluster ID) in

the ID to decide whether the consumer belongs to the same cluster or not. Once, it

is identified that the consumer belongs to the same cluster, the control is just passed

on to the next stage, i.e., Data consistency check, within the same VFP controller.

This is done by writing a message/descriptor into its queue. The rest of the control
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functions continue as per the sequence of pipeline stages discussed in section 4.4.3.

The data transfer is delegated to the distributed DMA engine (of the consumer PE)

within the same cluster. The data is then read by the consumer side DMA into its inpu

memory from the producer side output memory. The reason for this (consumer-driven)

manner of data transfer is explained in the next section. The data transfer happens

across the cluster interconnect. The complete VFP control latency from the point a

producer completes its task to the point the consumer task initiates is approximately

120 clock cycles. This number is considering the DMA engine latency as well, but

ignoring the time taken to transfer data from producer to consumer. This data transfer

time adds to the latency. From the point of view of throughput, the VFP mechanisms

aim at parallelizing the processing of a task with the data transfer of the previous task,

thus improving throughput. For this we use two output buffers (ping and pong) in an

alternating fashion − more about this will be discussed in the Chapter 5

4.6.2 Inter-Cluster Producer-Consumer Interaction

In this scenario the producer and consumer are in separate clusters. Hence, the question

arises − which VFP controller should take responsibility of performing the control

functions?

The function of Consumer identification has to be performed by the producer-side

VFP. In fact, it is only after identifying the consumer and evaluating its cluster ID is

it realized that this is a inter-cluster producer-consumer scenario.

Once the scenario has been identified, the control is transfered to the consumer-

side VFP. How this is done is discussed later, but first lets discuss the reasons for this

decision. The memories storing the control data structures for a particular consumer PE

are present in the same cluster and local to the cluster’s shared VFP controller. This is

because most producer-consumer interactions are confined to the same cluster. Then the

major reason for having a primarily consumer-driven VFP control is that it maintains

all the control related memory accesses to local interactions − thus maintaining the

benefits of having control memories local to the VFP controller. In contrast, if we had

a producer-side VFP driven scheme, it would need global accesses by the VFP controller
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Figure 4.10: Inter-cluster Producer-Consumer Interaction

to gather control information from the data structures of the consumer, which lie in

a remote cluster. This impacts performance because of considerably increasing the

latency involved in activating the consumer task.

Having explained the reason for a primarily consumer-driven interaction, we now

elaborate on how it is achieved for an inter-cluster scenario. The goal is to delegate

the VFP control from the producer-side controller (that has identified the remote con-

sumer) to the remote consumer-side controller. And to do this without disrupting or

stalling the other PEs being served by either controller. So we need a scheme that is

symmetric with respect to the intra-cluster producer-consumer interactions. This is

achieved using message passing, as depicted in the Fig. 4.10 − from producer-side VFP

to the consumer-side VFP. As seen in Fig. 4.10, this achieves maintaining the same

nature of pipelined operation of the VFP controller − but across clusters. Thus, the

distributed VFP controllers share (more by the consumer-side) the responsibility for

managing inter-cluster producer consumer interactions.

Lets describe the stages involved at a slightly more detailed/microarchitecture level.
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Figure 4.11: Complete Clustering-based SoC

An mentioned earlier, the scenario is identified by the Consumer identification stage at

the producer-side, which then instead of writing the message into the Data consistency

stage buffer, writes it into an outgoing mailbox. The outgoing mailbox controller de-

tects this request to transfer an outgoing message. It then, via the DMA engine and

global interconnect, transfers the message to the consumer-side Data consistency check

stage buffer. The Data-consistency check stage at the consumer-side VFP controller

then reads this message and continues the processing − oblivious to the fact that it is

performing an inter-cluster interaction.

Thus, after all the considerations described in the previous sections, the final SoC ar-

chitecture is as seen in Fig. 4.11. Next chapter evaluates and discusses the performance

of the SoC architecture.
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Chapter 5

Implementation and Performance Results

This chapter initially describes the implementation details of our design and also pro-

vides hardware complexity results. Further, it discusses the performance results for the

clustering-based organization.

5.1 Implementation

As part of this work, the complete SoC platform (i.e. excluding the PEs) design and

microarchitecture has been done at bit- and cycle- accurate level. Also, the design has

been implemented in synthesizable register-transfer-level (RTL) using System Verilog

Hardware Description Language.

The interconnect used in the system is the AMBA AXI 3.0 ([36]) based intercon-

nect DesignWare IP from Synopsys[37]. The interconnect structure used is the Multiple

Address Multiple Data structure − since Synopsys license we had could provide only

this. Anyways, the problem of optimizing the interconnect, although impacts the per-

formance, is orthogonal to this work.

The functional verification of the platform has been done using an Open Verification

Methodology (OVM) based verification environment. The same environment is also used

for measuring parameters (section 5.2) for evaluating the performance of the system.

The details of the environment and functional verification can be found in [39].

5.1.1 Hardware Complexity

The complete VFP platform for a cluster of 8 PEs was synthesized using Synopsys

Design Compiler [38]. The platform included the shared VFP controller and supporting

distributed logic (i.e. context switch logic, FU messaging interface and DMA engines)
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but no PEs. The resultant gate count for the platform is 114K gates. Gate count here

is in terms of the NAND2 gates.

The gate count for the distributed VFP design was 25K gates per VFP controller.

Hence, for 8 PEs the total VFP logic gate count becomes 25K×8 = 200K gates. Thus,

hardware saved is approximately, (200K − 114K)/200K = 0.43 i.e. 43%. These are

significant savings in hardware, which will also translate to power savings. This work

has not calculated power numbers due to unavailability of EDA tools for it.

5.2 Evaluation Metrics and Parameters

The RTL simulations of the platform design under the OVM based environment[39] is

used for collecting data for performance evaluation. Before getting into the performance

discussions, following is a description of the parameters/metrics considered for the

performance evaluations.

5.2.1 PE Utilization

PE utilization is defined as the percentage of the total time that the PE is busy process-

ing tasks. Maximizing the PE utilization is the primary goal of the VFP architecture.

In fact, it is the very rationale behind offloading all the task-flow management to the

dedicated VFP controller.

The complement of PE utilization is nothing but the VFP control overhead. Hence,

% of VFP overhead = 100 − PE utilization For e.g., suppose three tasks, each requiring

processing time of 40 cycles, are executed on a PE using the VFP based control. The

total time taken to complete the processing of all the three tasks is measured to be 150

cycles. Then the PE utilization in this case is (40×3)/150=0.8 i.e. 80%. And the VFP

overhead is 20%.

The goal for efficient processing of wireless protocols is to have high utilization even

for short processing tasks. Hence the PE utilization values are plotted for different task

processing times.
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5.2.2 VFP Controller Idle Time

The VFP controller idle time, as the name suggests, is the percentage of the total

time that the VFP controller is idle. As discussed in section 4.4.3, the VFP controller

microarchitecture consists of stages. The VFP idle time is calculated for each of these

stages, but while evaluating/ploting the values, only the lowest value is used. The

reason being that the lowest value the most constraining one with respect to how much

time the VFP is idle.

The significance of the VFP idle time measurement is to get an insight into the

number of PEs that one shared VFP controller can handle efficiently.

5.2.3 PE Throughput

This value depicts the number of tasks completed by a PE per second. These throughput

values are assuming a normalized frequency of 100MHz. Increasing the number of PEs

x, will provide x times the throughput. These numbers are useful for the protocol

programmer, since they help in deciding the tasks sizes, required number of PEs etc.

5.3 Performance Results

In this section we discuss the results with synthetic workloads. The aim is to provide

some information for understanding the limits (in worst and best case) and characteri-

zation of the design.

A dummy PE was modeled in System Verilog for creating different simulation sce-

narios. This dummy PE is called golden PE. The golden PE was modeled with its task

processing time and output data size as variable, using parameters.

Multiple platforms were created with different number of gold PEs in a cluster, i.e.,

different number of PEs (i.e. 2, 4, 6, 8, 10, 12 and 14) sharing the same VFP controller.

For each case, 2 virtual flows were programmed and simulated. Each of the flows, for

every configuration of number of PEs per VFP controller, consisted of tasks (one for

each PE) in a chain. For example, for the case of 4 PEs sharing a VFP controller, each

of the 2 flows programmed were in the sequence 1 − > 2 − > 3 − > 4. This kind of
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fully dependent flows are a worst case scenario from the VFP controller point of view,

because it has to perform all the VFP control mechanisms for each of task. Also, the

processing time for task for each PE in the flow was set to be equal.

In order to get well averaged values for the utilization, idle time etc., 100 frames

for each flow were simulated. Thus, a total of 200 frames were simulated, i.e., 200

tasks were required to be performed by each PE. Moreover, the VFP controller had to

perform all the control mechanisms for 200 × number of PEs times (e.g. 800 times

for 4 PE cluster).

For each of the configurations of number of PEs sharing a VFP controller (i.e. 2, 4,

6, 8, 10, 12 and 14), simulations were run executing 200 frames with increasing values

of task processing times.

5.3.1 PE Utilization − No Data Transfer

The above described setup and simulations were performed, by setting the size of the

output data of each of the PEs to 1 word. By doing this we account for all the overheads

involved except for data transfer time − since it is just one word and can be neglected.

Evaluating these simulations without the impact of data transfer is important because

without any data transfer only factors affecting the PE utilization are the VFP scheme

overhead and the impact of sharing the VFP controller. Thus, the no data transfer case

becomes a worst case from the VFP controller point of view.

The Fig. 5.1 shows the curves of PE utilization v/s Task processing times (in clock

cycles) for increasing number of PEs sharing a VFP controller. The values of PE

utilization are averaged across all the PEs in the respective configuration.

Following are the observations from the plot;

• On the whole it can be seen that the PE utilization increases from left to right,

i.e., with increasing Task processing times.

• The PE utilization numbers are lower for larger number of PEs per VFP controller,

but only up to distinct cut-off points. For example, the 8 PE case has lower

utilization values than the 2,4 and 6 PE configurations, only for tasks shorter



62

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" '!" #!!" #'!" $!!" $'!" %!!" %'!" &!!" &'!" '!!"

!"#$"

%"#$"

&"#$"

'"#$"

()"#$"

(!"#$"

(%"#$"

Task lengths (clock cycles) 

PE 

utilization 
(%) 

No. of PEs per 

VFP Controller 

,-.-"../"

,-.-"01234"

*+,-./"01"23-4567"89#"

.06/40::;4"

Figure 5.1: PE Utilization v/s Task Processing Time (No Data Transfer)

than 100 clock cycles. Above the 100 cycle task cutoff, the utilization is same

as that for lower configurations. For the 14 PE case this cut-off value is task

processing time of 200 cycles.

• These lower utilization numbers, up to a cutoff, for increasing number of PEs per

cluster is due to the impact of sharing the VFP controller. Above the distinct

cutoffs of task processing times, the impact of sharing the VFP is nullified. This

is because for longer task processing times, the VFP controller has more idle time

between requests by PEs. This claim is verified by the Fig. 5.2 discussed in the

next section.

• Above the maximum cutoff of task processing time of 200 cycles, all the cluster

configurations have a similar exponentially decreasing increase in PE utilization.

This increase is primarily because the overhead of the VFP control scheme (ex-

cluding the sharing of VFP) is fixed; and once the impact of sharing the VFP

is nullified, this fixed VFP overhead gets relatively smaller with increasing task

processing times.
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• The curves show that the VFP based architecture can attain high PE utilization

(80% +), even with considerably short task processing times, e.g. 120 cycle

tasks for 8 PE configuration. This is a good result since it enables the VFP

based SoC to effectively support short processing tasks, e.g., FFT for five OFDM

symbols (64 samples each) of 802.11a using a pipelined FFT architecture will need

approximately 350 clock cycles (64 for FFT calculation and 6 for pilot insertion

etc.). In comparison, the related work of CoreManager [13] and OSIP [40] only

mention task lengths of up to 2000 clock cycles. This probably implies they

cannot support lower task processing times effectively.

5.3.2 VFP Controller Idle Time

For the very same simulations as the previous section, curves of the VFP idle time

are plotted against the Task processing times for the various configurations of PEs per

clusters (i.e. 2, 4, 6, 8, 10, 12 and 14). These are depicted in Fig. 5.2.
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Figure 5.2: VFP Controller Idle Time v/s Task Processing Time

Lower values of VFP idle time signify that the VFP controller is kept busy − due
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to many requests from the PEs. Values of under 10% indicate that the VFP controller

is almost congested.

Following are the observations and deductions from Fig. 5.2;

• The VFP controller, confirming to intuitions, is increasingly busy for larger num-

ber of PEs per cluster.

• Clear cutoffs, in terms of task lengths, can be observed for different configura-

tions indicating the minimum task sizes that each configuration can efficiently

support. For example, for 8 PEs to share the VFP effectively, the task lengths

must be longer than 100 clock cycles. Similarly, the minimum task length for the

configuration of 14 PEs sharing a cluster is 200 clock cycles.

• It can be seen that these cutoffs are consistent with the cutoffs in the PE utilization

curves discussed in the previous section. Thus proving our claims there.

The work in [40] present similar analysis of their work. Comparing the results shows

that the VFP controller is more scalable, i.e., can handle more number of PEs while

supporting short tasks, e.g., [40] needs minimum task sizes of 5000 cycles for supporting

8 PEs.

5.4 Impact of Data Transfer

This section discusses the impact of data transfer on the performance − specifically

the PE utilization. Simulations similar to those in the previous section are run for

different ratios of Data transfer time to Task processing time. These ratios are used

instead of absolute data sizes or data transfer times because there is a strong correlation

between the data transfer size and task processing time. Most of the operations/tasks

of wireless protocol processing are very data dependent, e.g., pipelined FFT takes one

clock cycle per sample. Also, the data transfer time will never really exceed the task

processing time (assuming same clock frequency for both). Even if a PE task did no

data operations and just wrote some output to the memory, the task processing time
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will be equal to the time that it will take to transfer this data to a consumer’s input.

In this worst case the ratio of data transfer time to task processing time is 1.
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Figure 5.3: PE Utilization v/s Task Processing Time (Impact of Data Transfer)

The Fig. 5.3, shows the curves of PE utilization v/s Task processing time for

different ratios (i.e. no data transfer, 0.5, 0.75 and 1) of Data transfer time to Task

processing time. For clarity only curves for configuration of 8 PEs sharing a VFP

controller are shown. The case of 8 PEs is of value because most of the wireless protocol

flows will need up to 8 PEs for transmitter or receiver.

Observations from Fig. 5.3 are;

• The curve for the no data transfer case can be considered as the best case scenario

with respect to the impact of data transfer.

• It can be seen that with increasing ratios of data transfer time to task process-

ing time, the PE utilization remains unaffected till the case when data transfer

time and task processing times become comparable, i.e., ratio is 1. The reason

for this good or unaltered performance for lower ratios is that the VFP control

mechanisms achieve a good overlap of processing a task and data transfer for the
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Figure 5.4: Impact of Data Transfer

previously completed task. The overlap is illustrated in Fig. 5.4b. This overlap is

achieved using two regions (ping and pong) of output memory in an alternating

fashion (Fig. 5.4a). The first task writes its output to the ping region. On com-

pletion of this task, the next task is immediately triggered and writes its output

to the pong region. Concurrently data is transfered from the ping region to the

consumer, thus achieving overlap and maximizing PE utilization by keeping it

busy.

• For the case when data transfer time and task processing time are equal the

PE utilization numbers show degradation. This is because the ping-pong scheme
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discussed above, fails to keep the PE busy when data transfer takes longer than

the PE processing. A task can be activated for a PE only if either ping or pong

region is free, else PE remains idle. This is precisely what happens when the

ratio is 1. As can be seen in Fig. 5.4c, the output data transfer of the first task

(i.e. ping region) has not completed even beyond the completion of the second

task (that has used pong). Hence, a new task cannot be immediately activated,

resulting in the PE waiting idle that degrades utilization.

The sustained utilization numbers even for up to 75% ratio of data transfer time to

task processing time, indicates the success of the architecture is trying to minimize the

impact of data transfer on performance.

5.5 PE Throughput
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Figure 5.5: PE Throughput v/s Task Processing Time

The Fig. 5.5, plots the throughput per PE v/s task processing times. The through-

put is the tasks completed per second. The curves are plotted for 8 PE configuration

and different ratios of data transfer time to task length. It can be seen that one PE can
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achieve a throughput of 200K tasks/second for tasks length of 500 clock cycles (i.e.

5µs task length).

5.6 Real Life Application − 802.11a

In order to have a more realistic benchmarking, the platform designed as part of this

work has been integrated with the PEs required for a 802.11a-like transmitter. This

work is detailed in [8].
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Figure 5.6: Real Life Application − 802.11a - like OFDM Transmitter

The constituent PEs and their flow is depicted in the Fig. 5.6. The constituent PEs

are;

MAC : This PE performs the tasks of a reconfigurable MAC and currently supports

two protocols ALOHA and CSMA-CA back off. It also uses 802.11a compatible

inter-frame spacing (IFS) durations and fame formats.

Header (HDR) : This engine performs the task of appending the header as per the

802.11a frame format to the frame sent by the MAC engine. It also forks another

task to the IFFT PE to initiate the transmission of the 802.11a packet preamble.

This way the preamble is just transmitted by the time the actual data frame

arrives at the IFFT for transmission. The HDR PE also performs the chunking of

the frame so that PEs further down the flow operate on smaller data sizes, thus

reducing overall latency.
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Scrambler (SCR) : This PE is the length-127 scrambler with its polynomial (x7 +

x4 + 1) as per the 802.11a standard.

Encoder (ENC) : This is the rate 1/2 convolution encoder required for 802.11a data

rates of 6, 12 and 24 Mbps.

Interleaver (INTLV) : The PE performing the interleaving function as per the

802.11a standard.

Modulator (MOD) : This is the modulator (mapper) that can support modulation

schemes of BPSK, QPSK and 16QAM needed for the 802.11a data rates of 6,

12 and 24 Mbps.

IFFT : This PE is responsible for performing the IFFT function on the data from

the modulator along with pilot insertion and cyclic insertion in order to create

OFDM symbols for transmission as per the 802.11a standard. The symbol size for

802.11a is 64, hence the PE calculates 64 point IFFT. As mentioned previously,

this PE also generates the packet preamble.

Detailed results and experiments are described in [8]. Here some of the key results

are presented.

• The platform successfully supported 802.11a data rates of 6, 12 and 24 Mbps.

These were the only rates that could be simulated because the Encoder PE could

do only rate 1/2 encoding. Table 5.6 shows the peak throughput values, i.e., the

system provides the output at the peak rate but a rate matching FIFO is used

after the IFFT PE to transmit at the frequency satisfying the 802.11a data rate

(6, 12 and 24 Mbps respectively.)

• The platform also supported two simultaneous flows at a time, for each data rate,

i.e., 6, 12 and 24 Mbps. Table 5.6 provides the peak throughput numbers. The

2 flows of 24 Mbps can be output at a peak rate of 88.5 Mbps. It can be seen

that the peak throughput increases by less than twice when the 802.11a data rate

doubles. This is because the PEs after the MAC operate on larger data sizes
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Table 5.1: Throughput Results for 802.11a-like OFDM Flows
Target
Rate
(Mbps)

Peak Through-
put Measured
for Single Flow
(Mbps)

Peak Through-
put Measured
for Two Flows
(Mbps)

6 7.47 26.98
12 16.25 51.06
24 34 88.5

for higher data rates (assuming they work on same number of OFDM symbols

for each data rate). The high peak throughput demonstrates the potential of the

platform to support more than 2 concurrent flows, but could not be simulated due

to implementation restrictions. The restriction is that the IFFT PE is a legacy

design which has maximum of 2 FIFOs to receive its output. Forcing higher

number of flows breaks the simulations due to errors.
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Chapter 6

Conclusion and Future Work

This work designed and implemented a clustering-based SoC architecture based on the

hardware-oriented Virtual Flow Pipelining framework for programmable radio process-

ing. A task manager (VFP controller), which can be shared across multiple PEs, is also

designed to implement OS-like mechanisms in hardware. Based on the implementation

and performance results discussed in chapter 5 we can have the following conclusions;

• The results prove the performance advantage of the hardware-based control im-

plemented using the VFP framework. The platform is capable of efficiently (with

PE utilization numbers of 80+%) for short tasks (i.e. task length in hundreds of

clock cycles), as opposed to other related work ([13, 40]) that support task lengths

above 2000 cycles. This is an important result because wireless protocols demand

support for short tasks.

• The parallelism of task processing and data transfers, exploited by the imple-

mented platform, achieves minimizing the impact of data transfer on performance.

This result is important because the wireless protocol workload is very IO/data

intensive.

• The asynchronous pipelined architecture of the shared VFP controller is very

scalable. The design has successfully minimized the performance impact of sharing

the control, e.g., even 14 PEs sharing the controller can achieve 80+% utilization

for task lengths of 250 clock cycles.

• The shared VFP controller has provided significant hardware saving, thus en-

abling the clustering-based SoC organization that provides a balance between

the scalability and hardware overhead. A cluster size of 8 PEs is a good choice,
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because it can efficiently support (with 80+% utilization) tasks as small as 120

clock cycles. The hardware saving are also significant (43%) providing a solu-

tion with reasonable hardware overhead. Moreover, many of the wireless protocol

flows need up to 8 PEs, thus minimizing the number of high latency inter-cluster

producer-consumer interactions.

Future Work

The following points can be considered for improving this work and developing on it;

• Including the feature of speculative data transfer. In the current architecture, the

transfer of data happens only after the the consumer has been identified, which is

required because the actual consumer can depend on the result. This is equivalent

to having an if-else control dependency, e.g. the consumer of a CRC check could

be different depending on whether the check passes or fails. But this sequence of

actions adds to the system latency. Speculating the consumer will enable initi-

ating the data transfer earlier (in fact in parallel with the task processing), thus

reducing latency. A mechanism is required to identify the actual consumer and

then take corrective measures if the speculation fails. This speculative scheme has

good potential for performance improvement because such control dependencies

in wireless protocols are rare.

• Estimating power numbers and introducing power-control features. A weakness

of this work is that it does not estimate the power requirement of the platform.

This was due to the unavailability of EDA tools. But it is an important analysis

that should be performed. Also, the VFP controller must be enabled with features

to control the voltage and frequency of PEs in a dynamic manner. This will help

achieve a power efficient solution − vital for a wireless solution.

• Performing FPGA-based validation. The implementation and execution of this

platform on a multi-board, multi-chip FPGA-based hardware can build even more

confidence regarding its capabilities.
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• Implementing more real life wireless protocols. More number of real wireless

protocols (e.g. WiMax, etc.) must be programmed and executed on the platform.

This will help gaining insights on the impact of real workloads and their diversity,

thus exposing more areas for improvement.
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[4] Zoran Miljanić, Ivan Seskar, Khanh Le, and Dipankar Raychaudhuri. The WIN-
LAB network centric cognitive radio hardware platform: WiNC2R. Mob. Netw.
Appl., 13(5):533–541, 2008.

[5] J. Mitola. Cognitive radio: An Integrated Agent Architecture for Software Defined
Radio. PhD thesis, KTH Royal Institute of Technology, 2000.

[6] Dake Liu, Anders Nilsson, Eric Tell, Di Wu, and Johan Eilert. Bridging Dream and
Reality: Programmable Baseband Processors for Software-defined Radio. Comm.
Mag., 47(9):134–140, 2009.
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[20] Olli Silven and Kari Jyrkkä. Observations on Power-efficiency Trends in Mobile
Communication Devices. EURASIP J. Embedded Syst., 2007(1):17–17, 2007.

[21] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus, M.B.S. Tavares, G. Fet-
tweis, H. Ahlendorf, and P. Robelly. A Fully Programmable 40 GOPS SDR Single
Chip Baseband for LTE/WiMAX Terminals. In 34th European Solid-State Circuits
Conference, 2008. ESSCIRC 2008., pages 466 – 469, Sept 5-18, 2008.

[22] O. Arnold and G. Fettweis. Power Aware Heterogeneous MPSoC with Dynamic
Task Scheduling and Increased Data Locality for Multiple Applications. In in
Proceedings of the X International Workshop on Systems, Architectures, MOdeling,
and Simulation (SAMOS’10), 19-22 July 2010.

[23] Camille Jalier, Didier Lattard, Gilles Sassatelli, Pascal Benoit, and Lionel Torres.
Flexible and Distributed Real-time Control on a 4G Telecom MPSoC. In Proceed-
ings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 3961 – 3964, 2010.



76

[24] IMEC COBRA: Imecs cognitive baseband radio to support 4G and broadband
access to multiple services. http://www2.imec.be/be_en/press/imec-news/
cobra.html.

[25] D. Pulley. Multi-core DSP for Basestations: Large and Small. In Design Automa-
tion Conference, 2008. ASPDAC 2008. Asia and South Pacific, pages 389 –391,
21-24 2008.

[26] U. Ramacher. Software-Defined Radio Prospects for Multistandard Mobile Phones.
Computer, 40(10):62 –69, oct. 2007.

[27] John Glossner, Daniel Iancu, Mayan Moudgill, Gary Nacer, Sanjay Jinturkar, Stu-
art Stanley, and Michael Schulte. The Sandbridge SB3011 Platform. EURASIP
J. Embedded Syst., 2007(1):16–16, 2007.

[28] Yuan Lin, Hyunseok Lee, M. Who, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. SODA: A Low-power Architecture For Software Radio. In Com-
puter Architecture, 2006. ISCA ’06. 33rd International Symposium on, pages 89
–101, 0-0 2006.

[29] Hyunseok Lee. A Baseband Processor for Software Defined Radio Terminals. PhD
thesis, University of Michigan, Ann Arbor, MI, USA, 2007. Adviser-Mudge, Trevor
N.

[30] Najam-ul-Islam Muhammad, Rizwan Rasheed, Renaud Pacalet, Raymond Knopp,
and Karim Khalfallah. Flexible Baseband Architectures for Future Wireless Sys-
tems. In DSD ’08: Proceedings of the 2008 11th EUROMICRO Conference on
Digital System Design Architectures, Methods and Tools, pages 39–46, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[31] Zoran Miljanic and Khanh Le. Processing Engine Interface Specification. www.
svn.winlab.rutgers.edu/cognitive/Architecture/r1/pe.

[32] Onkar Sarode. Centralized VFP Controller Architecture Document. www.svn.
winlab.rutgers.edu/cognitive/Architecture/r2/vfp.

[33] Onkar Sarode. Centralized VFP Controller Architecture Visio Diagrams. www.
svn.winlab.rutgers.edu/cognitive/Architecture/r2/vfp.

[34] Onkar Sarode. Functional Unit Interface and Architecture Document. www.svn.
winlab.rutgers.edu/cognitive/Architecture/r2/fu.

[35] Onkar Sarode. Functional Unit Interface and Architecture Visio Diagrams. www.
svn.winlab.rutgers.edu/cognitive/Architecture/r2/fu.

[36] AMBA 3.0 AXI. www.arm.com.

[37] DesignWare IP Solutions for the AMBA Interconnect. http://www.synopsys.
com/dw.

[38] Synopsys Design Compiler User Guide. http://www.synopsys.com/Tools.

[39] Akshay Jog. Architecture Validation of the WiNC2R Platform. Master’s thesis,
Rutgers University, October 2010.



77

[40] J. Castrillon, Diandian Zhang, T. Kempf, B. Vanthournout, R. Leupers, and G. As-
cheid. Task Management in MPSoCs: An ASIP Approach. pages 587 –594, nov.
2009.


