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One of the most significant advances in biology has been the ability to sequence the
DNA of organisms. Even in the shadow of the completion of the human genome,
intractable regions of the genome remain incomplete. Next generation high-
throughput short read sequencing technologies are now available and have the
ability to generate millions of short read DNA sequences per run. Although greater
coverage depths are possible, de novo sequence assembly with these shorter
sequences is significantly more complex than resequencing; handling them presents
new computational problems and opportunities. Identifying repetitive regions,
coping with sequencing errors, and manipulating the millions of short reads
simultaneously, are some of the difficulties that must be overcome. As a result of
these complexities and working with the short read sequences from the Waksman
SOLiD sequencing platform, this work explores the problem of de novo assembly.
Initially, we develop tools for filtering short read sequence data based on quality
scores and find that this procedure is critical for the success of the subsequent de

novo assembly. Next, we analyze the key phenomena responsible for producing contigs

ii



that are much shorter than the values provided by theoretical estimates. Finally, we
explore two different routes to circumventing the difficulty imposed by short
contigs. The first involves utilization of information from multiple orthologous
genomes in a comparative assembly. In particular, we developed a pipeline for
using the reference genome of a close by relative to improve genome assembly. The
second approach uses paired read information to build scaffolds that are two orders
of magnitude larger than the original contigs. For typical bacterial genomes, less
than one hundred of these scaffolds are required to cover the entire genome. The
combination of short reads from various platforms, assembly, and recovery
pipelines brings mid-sized genomes close to completion. As a result, minimal
additional work using conventional sequencing technologies are enough to close the
remaining small gaps and return a finished single genome. Current advancements
in sequencing technologies leave us hopeful that it would be possible to provide

fairly complete assemblies for complex genomes via these technological approaches.
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Introduction

The DNA double helix is nature’s elegant solution to the problem of how to store
information and how to pass that information from one generation of cells to the next.
DNA is classically known to contain the information, which can be transcribed to RNA
and then translated into proteins which are necessary for the cell’s functioning. Since
DNA contains the genetic information that is the basis for all modern living things to
function, reproduce, and grow, knowledge of the sequence is essential for a better
understanding of the organism of interest. The ability to sequence a genome quickly and
cheaply will revolutionize the study of medicine and science. The goal of individual
genome sequencing is closer to becoming a reality than ever before. Such an advance
could lead to an era of personalized medicine, such as personalized cancer therapy based
on the sequencing of the cancer tumor genome in order to maximize effectiveness of the
treatment [1].

Already over the past few decades, DNA sequencing has dramatically changed
the nature of biological research in many areas such as genetics, evolution, comparative
biology, cell biology and developmental biology. Recent technological advances in high
throughput sequencing (HTS) reduce the time and cost to sequence DNA. Improvement
to the biochemistry involved continually increases the short read length (50 bp -150bp).
Therefore, these advances minimized the effort involved in the actual sequencing, while
at the same time providing an unprecedented amount of sequence information that needs

to be analyzed.



Chapter 1: Sequencing Technologies

1.1 Early Sequencing Techniques:

DNA sequencing is a tool that has been available to scientists for over 30 years.
While the initial protocols were developed by Frederick Sanger et al. in 1975, the chain-
termination method, also known as the Sanger method did not initially become the
sequencing method of choice [2, 3]. At first, Maxam-Gilbert sequencing, also known as
chemical sequencing, was more popular even though the sequencing protocols were
published two years later [4]. The reason for the initial popularity of Maxam-Gilbert
sequencing was the ability to use purified DNA directly while Sanger sequencing
required the DNA of interest to be cloned. Maxam-Gilbert sequencing is based on
chemical modification of DNA and subsequent cleavage at specific bases [4]. Over
time, with the improvements made to the chain termination method, Maxam-Gilbert
sequencing fell out of favor allowing for Sanger Sequencing to become the sequencing
method of choice.

The Sanger method is still considered the gold standard of DNA sequencing. The
Sanger method’s strengths are the length (700-1000 bp) and quality of its reads. While
the Sanger method originally used radioactivity for identification, current automated
methods use fluorescently labeled 2',3'-dideoxynucleotide triphosphates (ddNTPs).
Since the ddNTP cannot form a phosphodiester bond with the next dNTP, the DNA chain
elongation is terminated. The ratio of a particular ddNTP constitutes only 1% of regular
dNTP mix, therefore enabling some DNA polymerization to continue. The polymerase
reaction produces a mixture of fluorescent products of various lengths that can be

resolved by several methods, namely gel or capillary electrophoresis. Even considering



the various improvements in techniques and automation that have been made over the

past three decades, Sanger sequencing is still time consuming and expensive to sequence

a large genome. (Table 1.1)

Sanger SOLiD
G.A. lIx HiSeq 2000 4 4hq
Read Fragment Fragment Fragment Fragment Fragment
=gt 700-1000 bp  35-150 bp 35-150 bp 35-50 bp 35-75 bp
Paired End  Paired End Paired End Paired End
50 x 50 bp 50 x 50 bp 35x25bp  50x35bp
75 x 75 bp 75x75bp 50x35bp 75x35bp
100 x 100 bp 100 x 100 bp
150 x 150 bp 150 x 150 bp  Mate-Pair ~ Mate-Pair
50x50bp  75x75bp
Mate-Pair Mate-Pair
36 x 36 bp 36 x 36 bp
Run 96 Mbp 90 Gbp 150-200 Gbp 150 Gbp 500 Gbp
(per plate)
Time/ 10,000 days 0.25 days <1 hour 0.5 days <1 hours
Gbp (27.4 years)  (2x100 bp) (2x100 bp) (2 x50bp) (2 x75 bp)
@h7/€]o]sl  ~$2,000,000 ~$1,000 ~$1,000

Table 1.1: Sequencing Costs — The sequencing cost and run comparison between Sanger
Sequencing machines and two of the second generation sequencing platforms

Sanger sequencing, with the advantages of a reduced handling of toxic and

radioisotopes, became the preeminent sequencing technique for decades. This tool,

coupled with innovations in the genomics field and continually improving computer

systems and algorithms, allowed for the initiation of an ambitious project: deciphering

the human genome. The primary goal of Human Genome Project’s (HPG) was to

determine the sequence and to identify all the genes of the human genome (current



estimate is approximately ~25,000 genes). Initially, the goal would be reached using a
sequencing plan which was traditional for larger genomes: using Sanger sequences to
chromosome walk, also known as primer walking (Figure 1.1). This method progresses
through the entire DNA strand, piece by piece, until the sequence of the entire
chromosome is known. This project, founded in 1990 by the United States Department
of Energy and the National Institute of Health, had a budget of $3 billion and was

expected to take 15 years [5].

Chromosome Walking

Chromosomal DNA -

primer Gencmic D

TN [
L Isolate DNA Fragment from one end

| Probe to lsolate next clone
NN AR
ALY F A

[ ANV

Figure 1.1: Chromosome Walking — This was the original approach of the HGP to
sequence the human genome. To start the process, a primer that matches the beginning
of the desired DNA sequence is used to generate a short portion of DNA containing the
unknown sequence for a portion of the chromosome. This newly generated short DNA
strand is then sequenced. The end of this short piece of DNA is used as a primer for the
next part of the long DNA. That way the short sequences from the long DNA keeps
walking along the sequence, therefore sequencing the entire chromosome.

The competition between Celera Genomics, a private company, and the publically
funded Human Genome Project led to great advances in the sequencing community and
fundamentally changed the way people thought about sequencing large genomes. One

such advance adopted by Celera genomics was a technique that at the time was only

attempted on small genomes or fragments of large genomes, namely shotgun sequencing



[6, 7]. Since Sanger sequencing can only be used for relatively short read lengths of 700
to 1,000 bp, longer sequences, such as chromosomes, must be reduced to smaller pieces
and then re-assembled in order to get the complete sequence. Whole genome shotgun
sequencing is a faster but a significantly more complex and riskier process, since the
large quantity of reads and no position identification make assembly computationally
challenging (Figure 1.2). For shotgun sequencing [6, 7], the DNA is randomly sheared
into many small segments and then sequenced using the Sanger method [2, 3]. With
shotgun sequencing, redundancy of the sequence is essential in order to reassemble the
sequence. Overlapping ends are used to assemble the final contiguous sequence. As a
result, several rounds of fragmentation and sequencing are essential to obtain the
necessary redundancy in order to complete assembly. For sequencing the human
genome, certain areas of the genome were sequenced up to twelve fold coverage in order

to make an accurate assembly.



Reassemble the whole genome
concurrently

ACCTTGCGCAGAAATTTCGCGCA
TTTCGCGCAGGGCAAGAGGTGTTA

ACCTTGCGCAGAAATTTCGCGCAGGGCAAGAGGTGTTA

Figure 1.2: Whole Genome Shotgun Sequencing — This approach was used by Celera
Genomics to sequencing the human genome. Take many copies of the genome of
interest. Cut in randomly into sizes with the ability to be sequenced. Reassemble the
genome. With their own sequencing information from step two and the relative positions
provided by the daily publishing of the HGP BAC, Celera genomics published their
version of the genome in 2001.

Sophisticated computational alignment tools, such as the Celera Assembler, were
created to align and assemble the data from both their own sequencing runs as well as the
HGP released sequences [8]. Ultimately, the advancements of Celera Genomics resulted
in the Human Genome Project changing its methods for reaching their goal, by moving
from a chromosome walking approach to hierarchal shotgun sequencing of large
fragments of the genome namely the BAC-by-BAC method (Figure 1.3). In the BAC-by-

BAC method, the DNA was cut into BAC, bacterial artificial chromosome, sized pieces

150-350 kbp, and each BAC was shotgun sequenced simplifying the assembly slightly. In



the end, Celera Genomic’s submitted the first draft of the human genome at a cost of

approximately $300 million. (HGP budget was $3 billion) [9, 10].

Cut DNA into BAC sized pieces
150 -350 kbp in lenath

Reassemble Cut each BAC
5~ GGGCGBCGACCTCGCGEGTTTTCGC -3 the BAC for sequencing
GGCGGCGACCTCGCGGOTTITCGCA «— )
GGCGGCGACCTCOCGGGTTTTCCT T ’—1_\
GCGGCGACCTCGCGGGTTTTCGCTA N '—]_\ — R
CGGCGACCTCGCGGGTTTTCGCTAT N R
}

§'- GGGCGGCGACCTCGCGGGTTTTCGCTA-3  Final assembled sequence

Figure 1.3: BAC-by-BAC Method - This approach was what was ultimately used by the
HGP for their sequencing runs. Take many copies of the genome of interest. Cut them
into BACs (150-350 kbp). Cut each BAC randomly into sizes with the ability to be
Sanger sequenced. Reassemble the BACs. The HGP had a slightly simplified problem
of assembling many BACs, but then the genome needed to be reassembled from the
BACs.

1.2 Current Sequencing Technology:

Today, even after the human genome project has been labeled as completed,
problems still lurk in assembly projects. Intractable regions, or regions of repetitive
sequences in the chromosomes that result in gaps in the genome assembly, remain
unsequenced. New whole genome sequencing technologies are needed to reach the goal
of resequencing a specific human genome for $1000 or less. [11]. For years, the

technological advances were limited to improvements on Sanger sequencing and

derivatives, such as shotgun sequencing. A revolution in sequencing technology first



appeared in 2005 from 454 Life Sciences, sequencing by synthesis [12], and the
multiplex polony sequencing protocols from the Church lab at Harvard Medical School
[13]. Both groups developed methods that enabled massively parallel high throughput
sequencing. At the time, these technologies enabled fifty fold increases in sequence
quantities over the current Sanger sequencers at a much lower cost, approximately 1/9™

of the cost of conventional sequencing (Figure 1.4) [13].

—— High
— — Throughput
— Sequences

Sanger
Sequences

Genome

Figure 1.4: Qualitative comparison - This figure is a qualitative comparison between
the sequences generated by Sanger and those from the HTS platforms. There is higher
abundance and depth of coverage with the short reads, but they are also significantly
shorter with little overlap allowed for confidence.

Despite the initial complaints regarding higher error rates, much shorter read
lengths (original lengths: 454 100 bp [14], Church Lab 17-18 bp [13]), and the increased
computational power needed to handle the data, these technologies are currently available
and thriving in labs throughout the world [15]. HTS platforms are now capable of
generating far cheaper albeit far shorter reads (50 to 500 bp instead of 800 to 1,000 bp),
presenting new computational problems and opportunities. All of the HTS technologies

have the same problems and the advantages of the original 454 sequencing technology,

when compared to Sanger sequencing: high throughput sequencing, lower costs, and



higher error rates (Table 1.1). When the high throughput sequencing platforms are
compared to each other, there are advantages and disadvantages to each. Technological
advancements at each company are constantly improving the read lengths, while the error
rates are being decreased both directly and indirectly. The HTS platforms are slowly
improving error rates directly by improving the biochemistry and the mechanisms for the
detection of the nucleotides, and indirectly because the sheer magnitude of coverage of
the genome should help to correct the remaining errors. Finally, computational resources
are constantly dropping in price and are becoming more available to handle the
magnitude of data. As these sequencers become more ubiquitous, computational
programs are constantly being developed to aid in the sequencer specific output.

New applications for HTS platforms are constantly being developed. The
resequencing, chromatin immunoprecipitation (ChIP-Seq), methylation analysis (Methyl-
Seq), gene expression profiling (RNA-Seq, SAGE), and small RNA analysis pipelines
traditionally require the alignment of the HTS sequences against the reference genome as
an initial step. This alignment reduces the computational burden since the alignment
gives confidence in the accuracy of the remaining dataset. All the reads with too many
errors would not have aligned and get thrown out prior to continuation down the desired
pipeline. With the inherent lack of a reference genome for de novo assembly, the
problems of how to handle the data in order to optimize an assembly is still not resolved
and, as the quantities of data increase, these problems are becoming ever more
complicated.

The HTS platforms are comprised of several distinct platforms. These

technologies include massively parallel sequencing-by-synthesis (SBS) such as
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Roche/454 pyrosequencing and Illumina’s “Clonal Single Molecule Array” technology,
and sequencing-by-ligation (SBL) such as Applied Biosystems SOLiID Analyzer (Rusk
and Kiermer 2008). All of these platforms require the creation of a clone-free library of
short DNA molecules with oligonucleotide tags on their ends. There are two key
technical benefits of these approaches over Sanger sequencing. The first is that there is
no need to clone the DNA and propagate them through bacterial systems. The second is
no prior knowledge of the sequence is required for the sequencing; the oligonucleotide
tags are independent of the genomic DNA. Each of these platforms can generate
approximately one hundred megabases to many gigabases of raw sequence data per run,
with costs in the $5,000-$10,000 range per run, depending on the platform.

Sequencing by synthesis, from Illumina, uses a DNA polymerase to identify the
bases present in the complementary DNA molecule (Figure 1.5). Reversible terminator
methods use reversible versions of dye-terminators. Sequence-by-synthesis adds one
nucleotide at a time, detecting fluorescence corresponding to that position. The blocking
group is then removed to allow the polymerization of another nucleotide [16]. The
current read lengths have been recently increased to 150 bp for short read fragments and
150 x 150 bp ends for paired end reads. Additionally, Illumina has recently added a
long-insert mate-pair protocol for their machine. The protocol produces up to 150 x 150
bp pair reads with long linkers two to five kilobases in length. Because of the library

preparation’s lack of robustness, it is currently not very widely used.
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Primer Polymerase
Reversible chain terminator

Remove
Fluorophore

Remove
termination

Figure 1.5: lllumina’s Clonal Single Molecule Array Technology - In an Illumina
flow cell, clusters of sequence are grown. Each cluster should contain one single
sequence. Illumina flows reversible dye terminators over these clusters one at a time.
The correct base pair is incorporated and with the terminator on the nucleotide
sequencing cannot continue on. The florescence is recorded after all four nucleotides are
passed. Then the termination is reversed and the cycle begins again until the sequence is
finished. (Adapted from [17])

In contrast, pyrosequencing, a specific form of sequence by synthesis from 454
Life sciences, also uses DNA polymerization to add nucleotides (Figure 1.6).
Pyrosequencing adds one type of nucleotide at a time, detects the light emitted by the
release of attached pyrophosphates, and uses it to quantify the number of nucleotides
added to a given location. Increasing the short read length is of the greatest interest to

454 Life Sciences, and they consequently produce the longest short reads of these

technologies, 300-500 bp [12, 17].
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DMA on Beads
Enzymes on Beads

Primer -*,\
Y C G
» »
Lo

—>

After the flow
ofthe 4
nuceotides,
the cycle
begins again

Figure 1.6: Roche/454 Pyrosequencing - In pyrosequencing, a bead containing multiple
copies of a single sequence is dropped in a well with enzymes and primer. The machine
then flows one nucleotide at a time over the wells. As the correct base is incorporated the
well, the energy release is quantized and recorded. The cycle begins again once the last
nucleotide is flowed through. Since quantizing long homogeneous stretches is difficult,
pyrosequencing is known to have problems in those locations. (Adapted from [17])
Sequencing by ligation, used in Applied Biosystems SOLID analyzer, is
fundamentally different. It uses a DNA ligase enzyme rather than polymerase to identify
the target sequence (Figure 1.7). This method uses a pool of all possible
oligonucleotides, where positions 4-5 contain 1 of 16 specific dinucleotides.
Hybridization and ligation of a specific oligonucleotide that matches that of the template
occurs. The preferential ligation by DNA ligase for matching sequences allows for the
detection of a specific signal. Other than the biochemistry, the major difference between
SOLID and the other sequencer systems is that it queries 2 bases at once. Thus, there is

double confirmation of every base [18]. These sixteen possible dinucleotides are divided

into four groups and assigned a unique color (i.e. color 0 represents AA, TT, CC, and
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GG) (Figure 1.7C). While only four colors are used, these groups are designed such that
every combination of base and color call will uniquely identify the second base.
Therefore, each color essentially encodes a transition matrix in the base space. Each
SOL.ID sequence starts with a reference base (i.e. the last base of the primer usually a T
or G) followed by a number of color call. Using the reference base and the first color
call, one can find the first base. This base in turn can be combined with the second color
call to obtain the second base. Continuing this pattern, one can translate the entire
sequence back into DNA-space.

The current maximum read length for SOLID is 50 bp for both short read
fragments and the ends of mate pair reads. Additionally, with the latest upgrade of the
machine, paired end capabilities have been added. For the paired end reads, the forward
read can be either 35 or 50 bp and the paired end is 25 bp long. In 2008, SOLID
published that their cost of resequencing the human genome is approximately $60,000
[19]. According to their 2010 promotional information, the cost has dropped down to
$6,000 for 30x coverage of the human genome [20]. While this price only accounts for
the sequencing reagents necessary, this is one step closer to the current goal of the $1,000

human genome.



Iy

iJINA U K

~F

SO bp
s - \Y
4 N
V4 \
! \
I 1
|\ ]
\ V4
N yd
. __”

CLEAV!

[

J

’

[¥¥]

- T=N-N-N-7-7-7

14

P N
|
!
P1 Adapter P2 Adapter
- T
& ~
S O~
o= O U
Oy Yy 7y O
PR NP AN AP
()M Y Y )
e A m\_{,\\\/mv
Y —~ ~~ () =
O N O
‘/_\’ — \/A\\/’,_\v/_\\'
/ O O O

w

Temnlate Senuence
empiate sequen

(G-Canen-n-z-7-7

C.

Figure 1.7: Applied Biosystems SOLiD Analyzer Sequencing by Ligation — A. Mate
pair protocol and bead creation: The DNA is fragmented and circularized. The circles
of appropriate length are selected. Adapters are ligated onto the sequence. The
sequence is placed onto a bead and amplified. These beads are placed onto a slide for
sequencing. B. Sequencing: Primers hybridize to the adapter sequence within the library
template. A set of four fluorescently labeled di-base probes compete for ligation to the
sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st
and 2nd base in each ligation reaction. Multiple cycles of ligation, detection and cleavage
are performed. C. Di-base Transitions: The SOLiD di-base transitions are also known
as color space. (Adapted from ABI SOLiD Brochure)
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1.3 The Third Generation of Sequencing Technology: Single Molecule Platforms:

The rate at with the second generation sequencing platforms has been increasing
its sequences has been dramatic. And it is abundantly clear that this is still the beginning
of what these platforms can do. More diverse sequencing experiments are being planned
and attempted every day, but all of the methods mentioned above require the creation of a
clonal library, a time intensive step that may also result in an unevenly developed library.
Should this occur, this could potentially skew the sequencing results. This can cause
havoc in de novo assembly projects. Sequences could be improperly assembled due to an
imbalance in either direction, underrepresented sequences could be mis-categorized as an
error and overrepresented sequences could be misconstrued as a repeated region. The
goal of the third generations of sequencing technologies seeks to eliminate the need for a
clonal library, which would not only avoid this potential pitfall but also increase the scale
and reduce the cost of sequencing [21, 22]. The single molecule technologies have long
read lengths, much longer than the HTS platforms. In addition, their major advantage is
the direct sequencing of both DNA and RNA. This allows for sequencing with
potentially smaller amounts of starting material and direct identification of methylation
sites.

Some of these single molecule sequencing platforms under development include
platforms by Helicos Biosciences, VisiGen Biotechnologies, Pacific Biosciences,
Genovoxx, Life Technologies and others. While most of these systems have not been
commercialized yet, a few of the Pacific Biosciences Single Molecule Real Time

Technology are currently in use in various labs. Through various improvements and by
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eliminating need for the clonal library, these companies hope to achieve the elusive goal

of the $1,000 genome.
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Chapter 2: Assembling the Genome

Assembling a genome de novo has often been compared with putting together a
large jigsaw puzzle [23, 24]. Repetitive regions of the genome are likened to similarly
colored pieces, similar to putting together the pieces of a green grass field. From the very
beginning, sequence assembly was a computationally daunting task and it still continues
to be. As the sequencing technologies mature and genomes attempted become more

complex, the computational resources must become more refined to meet the demand.

2.1 Early Contig Assembly Algorithms:

The first assemblers appeared in the late 1980 and early 1990s. These initial
assemblers were simplistic in that they were slightly enhanced sequence alignment
programs which took advantage of the long read lengths and lack of complexity of the
genome for assembly. With the dream of assembling more complex genome,
sophisticated strategies needed to be employed to handle the massive quantities of data,
address repetitive regions, and correct for the errors that occur using Sanger sequencing.

Not only did the assembling of the human genome revolutionize how sequencing
of novel genomes was done, but it also revolutionized the analysis and assembly of the
data. With the challenge of assembling Drosophila melanogaster and the human genome,
Kececioglu and Meyers discuss an algorithm to tackle this complex problem [25]. They
discuss that the sequence reconstruction problem is a variation of the shortest common
superstring problem, therefore sequence reconstruction falls into the class of NP-hard
problems for which no efficient computational solution can exist [24]. Sequence

reconstruction is further complicated by the presence of sequencing errors and reverse
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complements of fragments. In the end, the long Sanger reads as well as use of small
mate-pair libraries aided in overcoming some of the complexity of the assembly problem
[8, 10]. Their assembly algorithm employs creation of graph where the reads represent
nodes and the edges represent the overlaps followed by a graph correcting mechanism to
end up with a finished sequence. This algorithm became the core of the Celera
Assembler [8] followed shortly thereafter by ARACHNE from Eric Lander’s lab at MIT
[26]. In addition, the complexities inherent to processing these assemblies for both
Celera Genomics and the HGP required utilization of high performance computing in
order to achieve the final output [10, 27].

The HGP took a decade to complete using high quality long reads. The
assemblers that targeted use of Sanger reads are tuned specifically to take advantage of
both the long lengths by allowing long overlaps between the reads and the low error rate.
However, with the commercial availability of HTS platforms, hundreds of millions of
short reads can be generated in a few days, while adequate computer resources to process
them are not always available. The reads produced by HTS platforms require more
intricate assemblies than ever before, as the reads are much shorter, and consequently
have many ambiguous overlaps, are much more numerous 0(100,000,000), and have
significantly higher error rates. The assemblers from the past would not produce optimal

assemblies on these new types of reads.

2.2 Current Contig Assembly Algorithms:
With this in mind, over the past few years several assemblers have been

developed or modified to allow the assembly of short read sequences in order to make
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assembly on moderate machines achievable. Most current assemblers have added (or
include) algorithms for the assembly of mate pair/paired end short read sequences. All of
the assemblers have a problem with long repeated regions and have different error
correcting mechanism to avoid misassemblies. Due to the complexities and
computational resources involved, most current assemblers target small to midsized
genomes (150 kbp — 15 Mbp), although some large draft genomes have been
successfully assembled. Li et al used SOAPdenovo to assemble a draft giant panda
genome (estimated size ~2.4 Gbp). While it is a draft, this genome is far from complete
with fifty percent of the bases existing in contigs of ~40 kbp or larger, fifty percent of the
bases existing in scaffolds of ~1.3 Mbp or larger and ~200,000 gaps [28].

There are two main core algorithms for assembly of sequence de novo - 3’ kmer
extension (Figure 2.1) and Eulerian walk algorithms (Figure 2.2). The 3’ kmer extension
family of algorithms is more closely related to each other than the Eulerian walk family’s
relationships. But there are still advantages and disadvantages to each of these three
assemblers. The 3’ kmer extension assemblers aim to extend a short read into the longest
possible assembly through repetitive cycles of finding short read overlaps. The algorithm
searches for reads that satisfy the overlap requirement, and if one is found, the read of
interest is extended. The core idea or assumption is that if the overlap requirement is
met, it is sufficient confirmation that the short reads are actually part of the same
assembly.

The 3’ kmer extension algorithm cycles through its various steps until all of the
short reads have been incorporated into one of the contigs (Figure 2.1). In order to have

the ability to search for the necessary reads, all of the short reads and their complements
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are read into memory and placed into two searchable data structures. Loading these reads
into the data structure allows for a simplified and speedy search for potential extension
short reads. Before the cycle can commence, seed sequences are selected for extension
from the short read data structure. Next, all the sequences that satisfy the minimal
overlap requirements of the program are found. Once found, there are two options for
extension depending on the program being used: either the consensus of all the
overlapping reads is established and used for extension, or the longest perfect match is
identified and the seed is extended by the rest of that particular read. As the reads are
incorporated into a contig, they are removed from the data structure and cannot be used
for extension elsewhere. The overlap search cycles through many 3’ extensions until a
failure occurs. If the 3’ end cannot be continued, the complement is calculated and
extension commences on the opposite end until failure. These steps are repeated with a
new seed as necessary until all the short reads have been removed from the data

structures.
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Figure 2.1: 3 Kmer Extension - This is the basic algorithm for all the 3’ kmer
extension assemblers. Step 1: Take the short reads and place them into a searchable data
structure. Step 2: Select a seed sequence. Step 3: Find all sequences that satisfy the
minimal overlap requirement (sequence in red). Step 4: Either find consensus for all the
reads that match or find the longest perfect match and extend the seed. Continue 3’
extension until failure to extend occurs. Step 5: Calculate the complement and start
extension of the complement until failure occurs. Repeat steps 2-5 until all seeds have
been removed.

In contrast to the core algorithms involved in 3’ kmer assembly, the Eulerian walk
algorithms initially place the short reads into a graph via various algorithms and then
correct the graph until the final contigs emerge. These assemblers are loosely based on
the assembly algorithms of the Celera Assembler [25]. While this family of graphing
assemblers is not as closely related as the 3’ extension algorithms, they do contain the

same essential parts: kmer organization, graph creation, graph simplification, error

correction, and finally assembly/output (Figure 2.2). The nodes of the graphs can either
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be kmers that make up the sequences or the short reads themselves. The node sequences
have a length L and are organized into a searchable data structure. For graph creation,
the nodes are organized and edges represent overlaps between the sequences within the
nodes. A path exists if there is an overlap of L-1 between two kmers, or the overlap
criteria is met. For graph simplification, all unique paths are condensed into a
continuous sequence. The algorithms will try and correct all erroneous paths and errors
that it can identify through both topological features of the graph as well as identifying
low coverage paths. Finally, once all that is done, the final assembly is output. Once all
errors are corrected, it is presumed that the paths can be walked to find the correct

assembly.
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Figure 2.2: The Eulerian walk algorithm - These algorithms vary more greatly then the
3’ kmer extension algorithms, but they involve the same basic processes in slightly
various ways. Step 1: The short reads sequences and the kmers, length L, that make up
the sequences are organized into a searchable data structure. Step 2: Graph Creation -
The kmers are organized and the reads are threads through to create paths between the
kmers. A path exists if there is an overlap of L-1 between 2 kmers. Step 3: Graph
simplification — All unique paths are condensed into 1 sequence. Step 4: Error
correction — erroneous paths and errors are corrected. Step 5: Output the assembly.

The 3’ kmer extension family is very good at providing large contigs, but is
highly sensitive to sequencing errors and slight variations in repetitive regions. These
types of sensitivities lead to misassemblies in the genome. Preprocessing of these short
read sequences becomes critical. In contrast, the Eulerian walk algorithms have the
advantage of being able to “visualize” all the connections between the sequences and use

established graphical manipulation algorithms to correct the graph and therefore the

assembly. As a result, misassemblies and repetitive regions are easier to pick out, correct
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and/or simplify. But creation of the sequence graph and error correcting are not trivial
tasks, and require a significant amount of memory. To their advantage, the Eulerian walk
algorithms have the advantage of a faster run-time then the 3° kmer graph extension

algorithms.

2.3 Current Assembly Algorithms in Detail:

The assemblers are constantly being refined and invented by researchers
interested in the assembly problem. Some of the newest innovations to these assemblers
are adapting older short read assembly techniques into parallelizable programs. While
new assemblers are always appearing they almost always fit into one of the two
categories mentioned above. Below is a discussion in detail of some of the most popular
assemblers for short read sequences available.

The assemblers that make up the 3’ kmer extension family are SSAKE [29],
VCAKE [30], and SHARGCS [31]. The difference between these three is in the manner
in which they handle error prone short read sequences to optimize the assembly. While
the overall algorithm is the same, the extension details are slightly different in all three
programs. Both SSAKE and VCAKE find all overlapping sequences, from longest to
shortest (where shortest equals a predefined minimum), and then gets a consensus for the
extension. SSAKE will extend by the largest number of bases possible in the consensus,
but VCAKE will only extend 1 bp at a time before repeating the search for extension.
SHARGCS finds the longest perfect read and extends the sequence by the end of the
read. Since short read extension is so sensitive to error, in order to improve the assembly

both SSAKE and SHARCGS recommend a preprocessing step to remove the low quality
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reads. SHARCGS also contains a very interesting feature of being able to combine
multiple runs at different parameter settings to aid in confidence in assembly. The
reasons for a failed extension are dependent on the stringency of the assembly parameters
chosen. Breaks caused by weak stringency/loose assembly parameters are usually a
result of ambiguities, while under strong stringency/conservative assembly perameters,
these breaks are a result of lack of coverage [31]. Therefore, being able to combine
multiple runs is a benefit to the confidence in SHARCGS assembly algorithm. VCAKE
contains another unique feature. If sufficient perfect matching reads is not achieved,
VCAKE will search for more short reads containing a single mismatch after the 10" base
in the short read. Both SHARGCS and VCAKE do not have modules for dealing with
mate pair reads. Even though SSAKE has added modules to its 3’ kmer extension
algorithm to handle mate pair reads, it does not handle them optimally. SSAKE will only
extend the scaffold one hop in either direction, which is a severe disadvantage.

In contrast to the core algorithms involved in 3’ kmer assembly, the Eulerian walk
algorithms all contain the same essential parts: kmer/read organization, graph creation,
graph simplification, error correction and finally assembly/output (Figure 2.2). For
example, for the generation of the kmer graph and analysis, the short read sequences and
the kmers, of length L, that make up the sequences are organized into a searchable data
structure. For the graph creation, the kmers are organized and the reads are threaded
through to create paths between the kmers. A path exists if there is an overlap of L-1
between two kmers. For graph simplification, all unique paths are condensed into a
continuous sequence. The algorithms then will try and correct all erroneous paths and

errors that it can identify through both topological features of the graph as well as
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identifying low coverage paths. Repetitive regions are identified by cycles in the graph.
Once all errors are corrected and repeats are identified, it is presumed that the paths can
be walked to find the correct assembly. Finally, once all that is done, the final assembly
is outputted.

Velvet [32], EULER-USR [33, 34], Edena [35], SOAP [36], ABYySS [37], and
ALLPATHS [38] comprise part of the family of graphical algorithms. The principal
differences between these assemblers are how they create the graph and then proceed
with graph correction and simplification. One caveat is that these assemblers have the
potential to be very sensitive to uneven distribution in the sequencing of the genome.
This weakness is generally a result of its error correction algorithm, with highly uneven
sequencing; true edges can be deleted, reducing the sizes of the contigs.

Velvet builds the a kmer graph using an Idury/Waterman/Pevzner model without
doing any initial error correction [39, 40]. Velvet then proceeds to do three consecutive
levels of error correcting. The EULER-USR generalizes the Velvet model by allowing
for mismatches in the paths of the kmer graph [33, 34]. It then does maximum branching
optimization to remove erroneous edges. Finally in EULER-USR, there is a possibility
for low coverage areas to be given a second chance to be used in the final assembly, even
though they were initially eliminated. Edena [35], like Velvet, does not include initial
error preprocessing prior to graph creation; unlike Velvet, Edena uses the overlap-layout-
consensus approach to generate the sequence graph where the nodes are the reads and
edges exist if the overlap criteria is met [25]. After graph creation but prior to assembly,
Edena does graph correction. During assembly it does several phases of error correction

to achieve the final graph.
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SOAP [36] follows a similar kmer graph creation scheme as Velvet and EULER-
USR but restricts the kmer length to odd numbers from thirteen to thirty-one. While
larger kmers would allow for higher confidence since the rate of uniqueness would be
higher and therefore make a simpler graph, SOAP restricts the length since it would
require a higher sequencing depth and longer read length for a successful assembly. In
addition, SOAP builds its scaffolds using the smallest insert size first.

ABYSS is built to natively use distributed computing [37]. It essentially mimics
EULER-USR for a parallel computing environment. ALLPATHS [38] tries to find all
paths from one read to a second read covered by other reads, and then it attempts to
isolate small parts of the genome to assemble these segments independently.
ALLPATHS assembles local sequences first and then aggregates these local assemblies
into the master assembly. In addition, ALLPATHS does not return a single assembly;
this program returns all possible assemblies including any ambiguities that exist. All but
Edena use mate-pair/paired end information to simplify the graph and optimize the

assembly.

2.4 Comparing Short Read Assemblers:

In order to compare these assemblers, some common metrics have been
developed: the N50, percent of the genome covered through contig alignment, the
longest contig assembled and perfect, error-free contig alignment. The N50 contig size is
a standard measure used by all of the assemblers to define their success. An N50 contig
size means that half of all bases reside in contigs of this size or longer. Another critical

consideration is the genome used for the test, error rates, length of both the short reads
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and genome, redundancy (fold coverage) and repetition of the genome, simulation and/or
real short read data, and the computing power that ran these algorithms. These metrics
are very dependent on the genome being assembled. It is very difficult to compare these
metrics between sources, since the basis can be vastly different.

In a recent paper, attempts to use most of these assemblers with a variety of
parameters were made on the same dataset, facilitating comparison [41]. ALLPATHS
could not be used due to a production version not being available. EULER-SR and
SHARCGS regularly ran out of RAM (max available 32 GB) during their assembly runs.
EULER-USR was not used in this set of assemblies and seems to have corrected the
problem of importing large datasets.

The data involved in this experiment came from Illumina sequencing of the 6Mb
Pseudomonas syringae pv syringae B728a genome. The sequencing run produced
3,551,133 mate pairs with 36 bp reads and an average of 400 bp linker lengths. This
translates to ~255 Mb (42x) of coverage of the 6Mb genome. For paired end read
assembly only SSAKE and Velvet were compared, but initially SSAKE, VCAKE, and
Velvet were all compared without the additional mate pair information, essentially
treating them as ~7 million independent short read sequences. Velvet assemblies took
several minutes to run while VCAKE and SSAKE required days to complete. VCAKE
and SSAKE generated assemblies with a large number of errors primarily due to
assembling noncontiguous regions into a single contig. Velvet had the optimal balance
between length and accuracy (N50 = 6,963 nucleotides) with errors amounting to 0.2% of

the assembly. On simulated reads, a test that removed potential errors from the Illumina
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sequencing, longer contigs were yielded (N50 = 13,771 nucleotides), but still at minimum
2.5% of the genome was still not resolvable.

For the paired end reads, SSAKE yielded relatively short contigs with high error
rates (N50 > 1.5 kb and errors rates > 47%). This was essentially no better than the
unpaired assemblies. Velvet, on the other hand, yielded longer contigs (N50 > 15.6 kb)
with a higher error rates. Optimization of parameters yielded a better balance, shrinking
both the contig size (N50 = 12.5 kb) and the error rate (0.5% of the length of the
assembly). In addition to this initial study, they discovered, as expected, fold coverage
plays an important role in assembly. However, after 35 fold deep coverage the rate of
contig extension declines drastically. Finally, they concluded that the parameters

selected for all of the assembly programs play a critical role in the length of the contigs.

2.5 Building Scaffolds with Mate Pair/Paired End Sequences:

The complete draft genomes of Drosophila and Human were not achieved using
Sanger fragment reads alone. Small mate-pair libraries were critical in this effort in order
to help resolve some of the sequencing ambiguities, such as sequencing repetitive regions
[8, 10]. The conclusion was that scaffold assembly is essential for complex genome
assembly. From the beginning, the incorporation of information contained in mate pair
data has either been addressed concurrently with contig assembly or as an independent
scaffolding module [42-44]. Current scaffolding algorithms generally fall into two
classes. The de Bruijn graph based assemblers, such as Velvet, utilize mate pairs to
improve the walk in the same de Bruijn graph used for contigs assembly. Basically, the

paired reads add confidence to the final assembly. The second class formulates the
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scaffolding problem in terms of a graph. The vertices are associated with the assembled
contigs and edges represent the mate pair linkers [32, 42, 44]. The design of an
independent scaffolding module, like Bambus, is seen to allow greater flexibility in the
algorithms and additional control over the scaffolding process [44].

Most early scaffolding algorithms follow a greedy approach. Initially, there is
some scheme required to order the contigs and pairing information for use [42, 44].
Next, the mate pairs are iteratively incorporated as long as this does not conflict with the
previously assembled scaffolds. Essentially, with iteration, only a subset of contigs and
their corresponding links are considered. In addition, the ordering scheme, since it is
usually based on the number of links between two contigs, could potentially cause
improper scaffolding by incorporating repeats/chimeric contigs that have a significant
number of links associated with it. Knowing the advantages and disadvantages of short
read data, this type of solution faces difficulties [23].

Recently a new scaffolding module has joined the ranks to aid in genome
assembly. SOPRA is a scaffolding algorithm that corrects contig assembly and builds
scaffolds using statistical optimization [45]. SOPRA was designed to handle the unique
challenges inherent in scaffolding using short read data. Unlike previous scaffolding
algorithms, SOPRA takes a global approach to linker analysis. SOPRA’s goal is to select
a sufficiently large subset of mate pair constraints that will achieve a balance between
size and quality of the final assembly. In SOPRA, scaffold assembly is presented as an
optimization problem for variables associated with the contig connectivity graph. The
error-prone nature of HTS data and the fundamental limitations from the shortness of the

reads have likely lead to questionable assemblies. SOPRA attempts to circumvent this
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problem by treating all the constraints alike in order to solve the optimization problem.
The solution itself indicates the problems, chimeric/repetitive contigs, etc., which are
subsequently removed. This process iterates until a core set of consistent constraints is
reached.

The core algorithm of SOPRA works for both DNA space and color space short
read sequences. SOPRA has an additional key feature for the SOLiID HTS platform
should it be used as part of its prescribed pipeline. The pipeline includes using S-
SOPRA, a color space version of SSAKE or V-SOPRA, the color space version of
Velvet, and additional programs for read tracking. If used within these pipelines, SOPRA
is able to use a dynamic programming approach to robustly translate the color-space
assembly to base-space by keeping track of where the reads assembled and the reference

base associated with the read [45].

2.6 Assembly Conclusion

While all of these assemblers and scaffolders are attempting to do the same thing,
assemble a genome de novo, there is still room for improvement. All of these assemblers
are computationally quite taxing on computer systems, and rarely do they output a single
genomic sequence from short reads. Both memory costs and run time remain issues. In
addition, currently none of these systems can easily handle large repetitive genomes
assembly optimally and only Velvet, S-SOPRA, and V-SOPRA can handle the assembly
of color space reads of the SOLID system. In contrast, algorithms are constantly being
advanced, new programs are continually being written, computers are consistently getting

faster, memory is consistently getting cheaper, and new processor technologies are being
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experimented on specifically to optimize assembly. Some assemblers are being written
or modified to merge the pipelines together using mate pairs from the beginning to aid in
the analysis (Phusion [46] and ALLPATHS [38]). In order to better understand the
assemblers’ final output, one must explore all aspects of contig building, short reads, and

mate pairs.
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Chapter 3: Assembly Theory — The Lander and Waterman Calculations

Now that the second generation technologies are available and are able to deliver
data at dramatically lower costs and at substantially higher coverage than the previous
generation of technologies, the problem remains of how to assemble the short read
sequences into a useful DNA sequence. Unfortunately, while these technologies yield
high coverage, they also yield very short reads (35-500 bases), a significant limitation for
assembly. After understanding the current group of short read assemblers, including their
respective strengths and weaknesses, a statistical understanding of genome assembly is
needed. In a very influential paper published over a decade ago, Lander and Waterman
developed a theory for fingerprinting using restriction fragment lengths [47]. The
original paper pointed out that this theory could be applied to shotgun sequencing and
therefore able to give some statistical boundary for the data from the HTS platforms.
Lander and Waterman’s theory provides estimates of the expected size of the assembled
contigs given the conditions for detecting overlaps and the depth of sequence coverage.

The following inputs are critical for Lander and Waterman’s statistical analysis.
A) the DNA sequences: there are N DNA fragments of length L that are randomly placed
on a genome of length G ; B) the assembly: if two of these fragments overlap by a length
greater than or equal to the threshold T, a true overlap would be inferred from the
significance of sequence similarity. There are two crucial parameters in this model
derived from the inputs above: ¢ =NL/G, equivalent to the redundancy of coverage, and
o =1-T/L. One of the significant results of the Lander and Waterman analysis is that

the average length of a contig is given by L[((e*° —1)/c) + (L-o)].
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While Lander and Waterman derived this result in the region where the number
of clones N is much smaller than the genome size G, massively parallel sequencing
functions in a very different range of parameters. The length of the read L is of the order
of 50 bp, versus 1 kbp available by Sanger sequencing, but the number of reads from a
single run of a machine, N, is on the order of a few hundred million. With these
considerations, unlike in the original Lander and Waterman calculations, N /G is not
very small. In addition, T, which is somewhere between 16 and 35 depending upon the
genome size, is not much smaller than L. In this limit, the above formula for the average
size of the contig has to be replaced by (e —1)/(1—e "'®) + L(1- &), which is the same
as(e® -1 /(1-e ")+ L(1- o). With the current short read sequence parameters, the
average size of contigs is significantly smaller than most of the genomes of interest,
0O(1,000 bp). For example, with 40 fold coverage of the genome, sequences of 25 bp in
length and allowing for a 20 bp overlap, the calculations yield a theoretical average of
approximately 3,700 bp long. Thus, this is a fundamental roadblock to sequence
assembly from traditional short reads.

One way to overcome the problems posed by shorter contigs is to increase the
depth of sequencing. Greater coverage depths are affordable (50-200x instead of 2-10x)
using the current sequencing technologies, but de novo sequence assembly with these
simple shorter sequences is significantly more complex, as is suggested by the Lander
and Waterman estimates. Since extension is much smaller than the overlap, the contigs
do not grow quickly. This is one of the reasons the expected size for the contigs are so

low.
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With all these considerations, the question then arises: can an accurate genome
assembly be computed at acceptable computational costs de novo? To answer this
question, one must take a detailed look at all the potential factors and how they interplay
with each other Some potential factors include errors, repetitive regions, non-uniform
distribution of sequencing libraries, and ambiguity in extension,. All of these factors are

not accounted for in the Lander and Waterman’s calculations.
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Figure 3.1: Contig Assembly vs. the Ideal - Here shows a comparison of the average
contig length from a real assembly versus the expected contig length calculated according
to the equations proposed by Lander and Waterman. As one can see, Real assembly is
very far from reaching the estimated size.
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Chapter 4: High Throughput Sequences and Short Read Issues

From the above discussion, it is clear what the ideal assembly should be. An
understanding of the parameters that keep the assembly from reaching its true potential is
now needed. The long reads of Sanger sequences were able to overcome some of the
complexity involved in large assembly attempts, but they also had some issues. Sanger
sequencing usually requires prior knowledge of a small section of sequence that the HTS
platforms do not. From this oligonucleotide, sequencing commences. In addition, with
Sanger sequencing, DNA is usually cloned before sequencing and therefore, sometimes
contains parts of the cloning vector, which can lead to significant errors in de novo
assembly. This step is eliminated in all HTS platforms. With the advantages of lower
cost and library preparation come significant shortcomings: the sequences are
significantly shorter and of lesser quality. As the read length decreases, the assemblies
become highly fragmented and ultimately lower the quality of the final assembly [48,
49]. Therefore taking into account all issues and trying to compensate for them becomes
critical with short read sequence assembly.

Once only achievable at large sequencing centers, these HTS platforms now make
sequencing and sequence dependant projects available to many researchers and labs. The
sequences from the HTS platforms are very different than Sanger Sequences; the old
analysis tools are unable to accurately process this data. Understanding in detail the
advantages and disadvantages posed by the sequences from the HTS platforms is a

crucial step for optimized analysis of these short read sequences.
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4.1 Sequencing Technology Issues
Library Preparation:

HTS platforms contain some elements that can introduce bias at the library level.
The two library preparation steps that can potentially introduce bias are: the sonication
and polymerase chain reaction (PCR) amplification steps. The sonication shears the
DNA into smaller fragments for sequencing. These fragments are then run through a size
selection gel in order to isolate sequences of the proper length to sequence. Normally,
sonication produces random shearing of the DNA. However, under certain conditions,
sonication seems to shear A, T rich regions preferentially [50]. Some researchers have
seen evidence of these biases in HTS reads [51]. Preferential shearing can result in non-
uniform representation of specific regions of the genome within the size selecting band.
The PCR step is used to amplify the DNA to usable quantities for sequencing. It is
possible that specific sequence motifs can amplify preferentially and lead to an
unbalanced library. Even a slight bias, in either sonication or PCR amplification, can
have noticeable effects on an assembly since the biases affect the uniformity of the
coverage of the genome. Most assemblers assume a uniform coverage distribution, so
large deviations from the estimated coverage can potentially cause faulty assemblies.
Quality:

Another significant consideration for the HTS platforms is the reduction in quality
of the sequences produced compared to Sanger sequencing. Like all sequencing
platforms, Sanger included, the number of errors grows exponentially toward the end of
the read, but with Sanger you can locate long sections (700-1000 bp) that are mostly free

from error. In addition, the long overlaps that can be used to align two Sanger reads are
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adequate. However, the sequences from the HTS platforms do not allow for long
overlaps. In addition, errors can potentially occur throughout the read; although, like
Sanger sequences, the number of errors grows exponentially towards the end of the read
[52]. While the sequences can be truncated to remove the increased number of errors at
the end, the reads still remain short (30-100 bp) and can still contain some error. These
errors can lead to misassemblies, early termination of contig assembly, and added
complexity in resolving repeated regions. Dealing with these errors is important for
resequencing and is essential for de novo assembly.

Paired Short Reads:

The availability of large paired read libraries is an important and fairly recent
development. While a tiny percentage of the reads used in the drosophila and human
projects were paired Sanger reads, they made a noticeable impact in aiding the assembly
[8, 10]. The additional information offered, the known approximate distance between the
reads, from large mate pair/paired end short read sequence libraries is critical to
overcome the high fragmentation found using solely the short read sequences [34, 45].

All three short read sequencing platforms have introduced the ability to generate
mate pair and/or paired end reads (Illumina and SOLID both MP & PE; 454 MP only)
(Figure 4.1). Paired end libraries require equivalent amounts of start DNA as fragment
libraries and cost the same to prepare. The difference between the two types of paired
reads is the library preparation. For paired end reads, there is no circularization step.
Essentially, a paired end read is a long fragment where the DNA is sequenced on both
ends. The standard paired end read protocols limit the size of the fragment to 500 bp, and

therefore, the starting DNA requirement is similar to that of a fragment library
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preparation. For mate pair read, the DNA of the desired length is circularized with an
adapter in the center. The DNA that is sequenced flanks the internal adapter. The DNA
required for the library preparation is a factor of the size of the circularized DNA. The
longer the linker, the more DNA is required to prepare the library. Since circularization
is not very efficient, up to four times more DNA is required. This is especially true for
the long linker lengths. In order to generate mate pairs for sequencing, more DNA is not
always possible to obtain and, therefore, can remove mate pairs as a possibility. Plus, the
cost involved for preparation and sequencing the mate pair libraries is approximately

60% higher. Thus having long mate pair reads is not always an option for assembly.

Mate-pair short reads
Clrcularization step
300-20,000 bp
Paired end short reads
300-500 bp
> < Fragment

Figure 4.1: Fundamental Difference between Mate Pair and Paired End Reads -
Mate pairs require circularization of the DNA and have longer linker lengths. Paired end
reads are generated by sequencing two ends of a long fragment.
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Each short read found at the ends of the paired read contains the same error
profiles as a single, independent short read. But, mate pair reads have an additional
factor to consider: relatively high variability in linker length [45]. This is mostly a result
of the size selection process; the DNA is moved through a gel and then the desired sized
pieces are selected. The longer the linker desired; the closer the DNA fragments run
together on the gel. Therefore, even with extreme care, the variability introduced can be
high. Smaller linker lengths separate with larger gaps so it is easier to select mostly
homogeneous lengths.

Platform Specific:

The problems mentioned above are typical of the HTS platforms in general, but
since sequencing protocols on each machine differ, platform specific problems need to be
considered as well. For example, the 454 technology does not use chain termination.
Therefore, in long homopolymeric regions, stretches of sequence containing greater than
six copies of a single nucleotide in a row, the sequencer had difficulty quantizing the
length of the region. In the third generation sequencers, the high error rates are kept in
check through sequencing the same strand multiple times [23]. Finally with the ABI
SOL.ID platform there are two considerations. The SOLID platform can have issues
sequencing regions of the genome with high A, T content and, while not a chemistry
problem, color space is a factor that must be considered. SOLIiD sequencing is reported
in color space, a representation of two-base encoding. In resequencing projects, this aids
in the differentiation between errors and single nucleotide polymorphisms (SNPs). But in

other cases, a naive translation from color space to base space can lead to serious error
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amplification [45, 53]. Therefore, it becomes critical for the sequences to remain in

color space for assembly in addition to having a robust translation mechanism [45].

4.2 Genomic Technology Issues

The shorter read length produced by the HTS platforms has always proved
problematic. As the length of each individual read decreases, the probability of non-
uniqueness increases thus resulting in more fragmented assemblies (Table 4.1) [38, 49].
Since the reads cannot bridge long repetitive regions, the short read length is particularly
problematic for those regions, and as a result, the true length is difficult to target. These
long repeats occur more often as the complexity of the genome increases [54]. Even if
perfect reads are used for fragment assembly, between the additional ambiguity and

inability to accurately resolve repeats, the assembly ends up being highly fragmented [23,

48, 49].
Kmer Length

K E. coli S. cerevisiae  A. thaliana H. sapiens
200 0.063 0.26 0.053 0.18
160 0.068 0.31 0.064 0.49
120 0.074 0.39 0.086 1.7
80 0.082 0.49 0.15 7.2
60 0.088 0.58 0.27 18.0
50 0.091 0.63 0.39 32.0
40 0.095 0.69 0.65 78.0
30 0.11 0.77 1.5 330.0
20 0.15 1.0 5.7 2,100.0
10 18.0 63.8 880.0 40,000.0

Table 4.1: Fraction of Kmers with Unique Placement on the Genome - For a given k
and a genome, this table shows the fraction of kmers having a unique placement.
(Adapted from [38])
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4.3 Data Management

With the Illumina HiSeq 2000 and the ABI SOLID 4 and 4hq Systems producing
O(100 million) reads per run, data management and storage has become an increasingly
more complex issue. The increase in throughput is what makes certain types of
sequencing experiments possible at acceptable costs, but they also threaten to inundate
available computing resources. The Illumina HiSeq 2000 produces enough sequence to
generate approximately 30 fold coverage for two human genomes with a single run. For
Illumina, the images are not analyzed on the machine, they are analyzed on its dedicated
cluster. Therefore, bandwidth and transfer speed become critical for the Illumina
sequencing run since image files are quite large. Once the images are processed, the
actual images are erased and the files are stored in binary to keep the storage footprint
small. With a single double slide run of the current ABI SOLID platform (4), enough
sequence is generated to cover the human genome thirty fold. Within the next few
releases, ABI projects that the number of beads, and therefore reads, which can be
deposited on a slide will increase to ~1 billion beads. This will be achieved by using
smaller beads and semi-ordered arrays. Forty-five terabytes of data is expected as the
throughput from the machine per month, making accurate analysis and adequate storage
capabilities even more critical than before.

As the data becomes more abundant and more dense, standard analysis schemes
will be overwhelmed [23]. Efficient ways of storing, transporting, and analyzing these
reads will be required. Parallel implementations and specialized hardware, high RAM
machines [23, 24] and GPU specific software [55], are beginning to be used to speed up

and make analysis possible.
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In addition to routine data management problems involved with sequence
libraries, de novo assembly adds it own computational requirements for analysis. De
novo assembly is a much more computationally intensive task. Comparative assemblies
or analyses that require a reference genome, while not trivial, does significantly simplify
the task [23]. Aligning the reads along the genome is inherently an error correcting
mechanism; those reads that contain a certain number of errors will not align. With the
aligned reads, a wider margin of non-uniform coverage can be used to assemble
genomes. These differences in coverage are also critical for other types of sequencing
experiments and analysis, ChlP-Seq, methylation analysis, gene expression profiling,
small RNA Analysis, to name a few. For true de novo assembly, the non uniform
distribution becomes a liability: it can potentially cause contigs to break or misassemblies
to form [45]. This can potentially be somewhat overcome by using paired reads, which
can pose significant algorithmic obstacles for assembly themselves, i.e. keeping track of
the mates, and disentanglement of misplaced mate-pair ends [45].

All of these aspects must be taken into account when attempting de novo
assemblies. There are many different hurdles to overcome in order to optimize assembly.
While not simple in the most trivial of cases, understanding the interplay between all
these forces becomes a critical and increasingly difficult as the genome becomes more
complex. As a result, technigues have to be addressed and improved upon to manipulate

these HTS libraries in order to overcome some of these obstacles prior to assembly.
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.Chapter 5: Preprocessing Short Read Sequences

Both Illumina and ABI SOLID claim the accuracy of their sequences are above
99.9%; this number is highly misleading. The 99.9% accuracy rate is based on direct
resequencing projects for monoploid organisms with at least some fold coverage, i.e.
based only on the aligned reads without including any of the reads that were thrown out.
Mismatches/Errors can be identified and dealt with once the short read sequences have
been aligned. The maximum number of allowable mismatches/errors is a parameter given
to the alignment program. So for a de novo project with no orthologous sequence,
identifying true reads is almost impossible since sequences cannot be selected for against
an orthologous reference genome. Even orthologous genomes will sample only a subset
of the true reads due to SNPs, insertions, deletions, rearrangements, and evolutionary
divergence of sections in the genome of interest. Since the quality of the library is
critical for assembly, how can erroneous reads be removed in order to lower the
probability of misassembly? The answer is critical for many of the assemblers mentioned
above: preprocessing the library.

All the current HTS technologies produce a sequence and an estimate of the
quality of the data. Quality scores are calculated on a per color call/base call basis.
These quality scores are calculated by training the sequencing process parameters against
several annotated datasets [52]. For example, the ABI SOLID platform process
parameters are image intensity, noise to signal value, and angle. The quality scores are in
the form of a phred quality value, essentially the logarithm of the probability that a
particular call was inaccurately identified [56]. In essence, the higher the quality score,

the higher the confidence in the accuracy of that call. While one can use these scores in
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the assemblers, most do not due to the additional complexity involved in the
incorporation. Most rely on removal of the low quality reads prior to assembly and/or
their error correcting mechanisms. Critical for the ABI SOLID platform is the lack of
prefiltering of low quality reads from the instrument; the SOLID platform only reports
the raw reads with their related quality values. One of the reasons ABI SOL.iD allows all
reads to pass, where the two-base transition can be identified, even if with poor quality, is
that all such reads could be useful. As such, these reads are reported after primary
analysis if desired; this then allows the researcher to decide the filtering parameters prior
to post analysis. In most cases, the first step for secondary analysis is alignment of the
short reads along the reference.

Even though Illumina does an inherent prefiltering step, since assembly is highly
sensitive to sequencing errors, it becomes critical to mitigate potential errors prior to
assembly. Therefore prefiltering becomes critical for all HTS platforms. There are two
types of sequencing errors commonly observed: polyclonal/correlated errors and
independent, erroneous color calls [57]. Polyclonal and correlated errors occur when the
entire read is of poor quality or missequenced due to a bead level/cluster problem such as
in a polyclonal bead/cluster or poor resolution of a particular bead/cluster. A polyclonal
bead/cluster occurs when two different templates are amplified on a single bead or in a
cluster and then sequenced, resulting in a hybrid sequence that has no match in the true
genome. While the original goal was to identify polyclonal beads, there is no guarantee
that all the reads identified by this part of the filter are due to polyclonality. A more
robust filtering system using the information gathered during the imaging and processing

of the sequencing run, i.e. image intensity, noise to signal and angle, could be designed to
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distinguish between polyclonal beads versus other types of correlated errors. Single color
call/ base call errors are independent and can occur multiple times in the sequence also
leading to an inaccurate sequence.

Here, we developed a filtering framework, specific for the ABI SOLID platform
that attempts to optimize the preprocessing step by identification and removal of error
prone reads using the quality values (QVs) provided from the SOLID’s primary analysis
or the SOLID Accuracy Enhancement Tool (SAET) modified primary analysis datasets.
SAET uses the raw data and the information contained in the two base encoding to
correct the miscalls (http://solidsoftwaretools.com/gf/project/saet/). This tool and its use
for de novo assembly will be further discussed in Chapter 8. This filtering algorithm
flexibly targets the two different types of errors that can occur during SOLID sequencing.
The ultimate goal of the preprocessor is to eliminate the low quality reads and pass only
the high quality data into downstream applications, thus saving time and resources and
improving final output quality. (All further data and discussion in this chapter focus on

the SOLID HTS platform.)

5.1 Tailoring of Error Identification:

To identify sequencing reads with either polyclonal calls or miscalls, we utilized
several resequencing datasets where few mismatches were expected between the
reference sequence and the sequencing reads. Using these datasets, profiles for both
polyclonal/correlated errors and erroneous color calls were determined through various
QV analyses. Using the SOLiID mapping pipeline, CoronaL.ite available from ABI

(http://solidsoftwaretools.com/gf/), the reads were matched to the reference sequence, and
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similar to other HTS platforms, the number of errors increased toward the 3’ end [34].
Fewer errors occur at the 5” end of the read irrespective of the genome being sequenced
(E. coli, DH10B; Arabidopsis, AtCol; or human, Hu3) (Figure 5.2A). The lower error rate
between DH10B/AtCol and Hu3 is due to a difference in sequencing chemistry (SOLID
v2 vs. v3) (DH10B data available for download at
http://solidsoftwaretools.com/gf/project/ecoli2x50/). From the graph plotting error as a
function of QV, it was very clear that color calls with QVs of ten or less had a higher
probability of being erroneous (Figure 5.2B). With a QV of ten or less, the SOLID
indicates the probability of error for that color call is 10% or higher. Single color call
errors occur randomly throughout the sequence. Polyclonal beads seem to reflect subpar
color calls all throughout the read, i.e. lower than expected QV values at the 5’ end of the
sequenced read. Analysis of the quality values show early color calls can be highly
predictive for the remainder of the read (Figure 5.1). Therefore, the filter polyclonal
analysis focuses on the quality of the first ten color calls, requiring that some portion of
them be of high quality (QV>=25). Further details of the script are found in the methods
subsection.

For both Illumina and SOLID platform short reads, one way to improve the
quality of datasets is to trim the ends of the reads, which essentially removes the error
tails [34, 52, 58]. While trimming the tails is effective at removing the most error prone
regions, it does affect the length of the read and, therefore, the optimal extension
according to Lander and Waterman [47]. Short contigs are a direct factor of the read
length and the overlap size. The lllumina platform, while still providing fractured

assemblies handles truncation better than the SOLiD platform since reads remain
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relatively long after being trimmed. For example, with read lengths of 150 bp even if
one removes 33-50% of the read, the Illumina read is still longer than the SOLID raw
read directly off the machine [34, 59]. The error tails between the two platforms are very
similar and, as such, one would expect a slightly more fragmented assembly from SOLID
reads. One of the most important reasons to sequence DNA on the SOLID HTS platform
is the ability to generate large mate pair libraries with long linker lengths. This will be

further discussed in a later chapter.
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A. —— Full Analysis - Aw. of pos. 11-35

—— Passed Reads - p=1 - Aw. of pos. 11-35

—— Failed Reads - p=1 - Aw. of pos. 11-35

B —Full Analysis - Aw. of pos. 11-35
—Passed Reads - p=3 - Aw. of pos. 11-35

—Failed Reads - p=3 - Aw. of pos. 11-35

—— Full Analysis - Awg. of pos. 11-35

— Passed Reads - p=5 - Aw. of pos. 11-35

— Failed Reads - p=5 - Awg. of pos. 11-35

Figure 5.1: Predictive Nature of the First 10 Positions of the Sequenced Read -
Graphs A, B, and C contain a quality value analysis on Arabidopsis Columbia accession
pre-error and post-error analysis. The following error settings were used for all the above
mentioned datasets: A.p=1,p_ QV=25,e=n/a, & e QV =10B. p=3, p_QV =25,
e=nfa, & e QV =10and C. p=5, p_QV =25,e=n/a & e_QV =10. The lines represent
the average QV for the positions 11-35. The green line represents for the full, unfiltered
data; the blue line represents that sequences that passed the filter; and finally, the red line
represents the reads that did not pass the filter requirements.
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Figure 5.2: The Relationship Between Error and Location in SOLID HTS reads - A.
Location of errors in the SOLID reads. The errors increase on the 3’ end of the read,
while the 5” end of the read remains relatively error free. B. The QVs of the identified
errors from the SOLiD matching pipeline. QVs lower than 10 overwhelmingly
correspond to detected errors based on the identification of error by the matching
pipeline. DH10B_R3 (E. coli, reverse mate), DH10B_F3 (forward read), Hu3 (Human
3), Hu2, and AtCol_F3 (Arabidopsis thaliana, Columbia)
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5.2 Data Analysis:

While filter defaults exist (minimum polyclonal counts: p=1, polyclonal minimum
QV: p_QV=25, maximum errors identified: e=3, maximum QV to identify independent
errors: e_QV=10), the settings of the parameters should depend upon the error tolerance
of the downstream applications, such as mapping, de novo assembly, or transcriptome
analysis. The user has the ability to define both the counts and the QV that determine the
removal of a read from the dataset. More conservative parameters result in smaller
datasets, as less data is able to successfully pass the filtering criteria is (Table 5.1, 5.2,
5.3,A.1, A2, & A3).

When the filter is applied to a C. elegans resequencing dataset, 25 x 25 bp mate
pair short reads, using the stringent settings (p=3, p_QV=22, e=3, e_QV=10), the raw
reads were reduced from 40 M reads to 5 M. Mapping of these reads increased from 56%
to 96%. Of the reads that failed the filter, 38% still mapped with 0-2 mm. However, for
both the unfiltered and the failed reads, many reads matched with 1 or 2 mm, while the
filtered reads had the highest percentage of reads mapping with 0 mm. These results
demonstrate that the filter can effectively identify perfect reads, which would be
necessary for applications like de novo sequence assembly. While reducing the errors
within the dataset is highly critical for a quality assembly, most assemblers contain error
identification protocols and will attempt removal even if absent. In addition, extreme
reduction of coverage could potentially be more harmful than the presence of few errors.
In a practical de novo assembly project, we found that the settings should be much more

relaxed [60].
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This error analysis framework was tested on several datasets from SOLID v2 and
v3 (data not shown). The data that is shown is based on SOLID v2 output of Arabidopsis
fragment data and C. elegans mate pair sequencing runs. The Arabidopsis fragment run
was a full slide which returned ~193 million reads, and the C. elegans mate pair runs
were run on a quarter slide each and returned ~40 million sequences for each of the mate
pair ends. Details on the composition of the sequences run can be found in Tables 5.1,
5.2, A.1, A.3. The sequencing for these runs followed the protocol as described
(Chatterjee, Michael et al., in review). For analysis, the mapping for the resequencing
portion was done using ABI’s open source mapping software CoronaL.ite to match the

reads to the genome. Error profiling on the matching output was done only on the reads

which mapped uniquely to the reference genome.

% F3
Original reads
# of reads # of Passing Reads  Retained

A. thaliana F3 No filter
Columbia Fragment 35 bp 193,121,694 193,121,694 100.0%
Default (p1 & e3) error analysis
Columbia Fragment 35 bp 193,121,694 64,294,608 33.3%
p_1 & e 5 error analysis
Columbia Fragment 35 bp 193,121,694 86,915,381 45.0%
p_5 & e_0 error analysis
Columbia Fragment 35 bp 193,121,694 19,566,547 10.1%

Table 5.1: Detailed Filtering Information-Fragment — Detailed information on the
filtering of a fragment library of Arabidopsis Columbia accession pre-error and post-error
analysis.
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5.3 Downstream Applications - Alignment:

Here are downstream analyses done on a single mate pair dataset filtered at
different levels. The library consists of 50 bp long reads generated by the SOLID
platform for the 4.7 Mb genome of Escherichia coli DH10B (available for download at
http://solidsoftwaretools.com/gf/project/ecoli2x50/). The unaltered library provides ~600
x coverage of the genome.

Mapping was done using the open source software CoronaL.ite available from

ABI (http://solidsoftwaretools.com/gf/). While mapping run times are not dramatic with

this library, these times can vary with larger datasets (data not shown). Removing even
the worst ~20% (p=1, e=off) of the reads does have an impact on mapping runtimes and
the quality of the reads aligned. This very low filter is what we recommend for

transcriptome analysis which is very sensitive to the read count. This filter removes the

lowest quality reads, with minimal impact to mapping (Table 5.2, A.2).
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1 sequence Alignment |

— [ reciem | T wor [ [ [ A

& col_[Polyclonal] Evor | [original | Wapping fo Tota

DH105 | Count |Count| Reads | Reads | Run Time |Aligned Reads Aluned
Off Off

28,941,110  100.0% 1h24min 41.6%  100.0%
Dataset
Off Off 28,883,016 100.0% 1h29min 44.9%  100.0%
Dataset
1 Off 23,491,468 812% 1h17min 47.9%  93.4%
1 Off 22,002,401  76.2% 1h2lmin 557% 94.5%
3 Off 16,278,327  56.2% 1h 56.9%  76.8%
3 off  16,788530 58.1% 1h9min 62.8%  81.3%
5 off 10,881,678 37.6%  46min  63.6%  57.4%
5 Off 12,660,928 43.8%  55min  67.9% 66.3%
1 5 6,160,991  21.3%  36min  96.4%  49.3%
1 5 7,612,647  26.4%  44min  96.5% 56.7%
1 3 4,148,469  14.3%  25min  98.4%  33.9%
1 3 5355243  185%  31min  985%  40.7%
3 3 3,925,017  13.6%  22min  98.3%  32.0%
3 3 5,175,181  17.9%  31min  98.4% 39.3%
5 0 778,838 2.7% 6min  99.7% 6.4%
5 0 1,179,762  4.1% 7min  99.8% 9.1%

Table 5.2: Alignment Results for Different Filtering Criteria - Mapping results for
different filtering criteria analyzed by ABI’s CoronaL.ite. For different filtering criteria,
we present the number of reads remaining after filtering, mapping runtime and the
number of aligned reads. The maximum number of times the reads were allowed to
match was 10 and the number of mismatches permitted was 3. As the filter setting
becomes more conservative, the dataset gets smaller and the fidelity of the matching gets
higher because the quality of the reads improves. While more reads that could potentially
match get thrown out, there is an increasing probability that the remaining reads are true
to the genome.

5.4 Downstream Applications: De novo Assembly:

An assembly was performed using Velvet on the DH10B genome (50 bp reads)
(Table 5.3) [61]. Using simple fragment assembly, the impact of filtering can be seen in
the trend of the contig N50s. Initially if the dataset is too large and the errors remain

unfiltered, the assembly can be poisoned since there exists a larger probability for

ambiguity and misassemblies. With too small a library, even if the quality is excellent,
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the N50s fall since the reduction is coverage can yield an inability to extend the contigs.
There is a tradeoff between coverage and quality in assembling a genome. The optimal
choice of parameters, identification of errors and truncation depends on the coverage of

the original dataset. (Table 5.3)

Filter Criteria

Polyclonal Error Truncation F3 F3 Total |

DH10B  Count  Count Length  Mate pairs Orphans Orphans Sequences |
Full off off 35 28,627,096 314,014 255920 57,824,126
Filter 1 1 off 35 19,586,554 3,904,914 2,415,847 45,493,869
Filter 2 3 off 35 12,782,983 3,495,344 4,005547 33,066,857
Filter 3 5 off 35 8,177,848 2,703,830 4,483,080 23,542,606
Filter 4 1 5 35 2,727,735 3,433,256 4,884,912 13,773,638
Filter 5 1 3 35 1,439,840 2,708,629 3,915403 9,503,712
Filter 6 3 3 35 1,382,001 2,543,016 3,793,180 9,100,198
Filter 7 5 0 35 89,862 688,976 1,089,900 1,958,600

.

| Fold  Conig |
DH10B Coverage N50 |
Full 431 531
Filter 1 339 653
Filter 2 246 939
Filter 3 175 1,270
Filter 4 103 890
Filter 5 71 608
Filter 6 68 605
Filter 7 15 164

Table 5.3: Assembly at Different Filtering Criteria - For different filtering criteria, we
show the number of remaining mate-pair reads, the number of remaining F3 and R3
orphans, the estimated fold coverage, and the N50s for contig assembly for DH10B. The
trend of assembly can clearly be seen across the reported N50s. As there is refinement of
the dataset for the better quality reads, the N50s increase. Once the coverage crosses a
critical amount, the N50s decrease and the dataset is reduced to the point where quality
restrictions became a detriment.
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5.5 Methods:

The filtering Perl script (http://hts.rutgers.edu/filter) was written to overcome
memory constraints imposed by uploading all of the reads and their corresponding QVs
into memory. The program sacrificed runtime in order to have a small memory footprint.
Uploading the data into memory for analysis will only prove more difficult as the
quantities of reads sequenced grows with the new generations of the SOLID platform.
The algorithm holds only one read and its corresponding QVs in memory at a time. For
mate pairs, one sequence and its corresponding QV is held from each file, F3 and R3, at
any given time. Comparisons of bead identifiers allow for mate pairs to be identified,
error checked, and then written to the appropriate output file. For a full slide of mate pair
reads, 200 million+, the program requires several hours to run (A. thaliana fragment data
~200 million reads requires 5 hours to run; spel3D & E mate pair data ~40 million in
each tag requires ~2 hours to run).

The filtering framework has several user defined fields which allow for full
manipulation and customization of the output. It analyzes both mate pair and fragment
SOL.ID data. For each, both the .csfasta file and the QV.qual file are required in order for
the analysis to proceed since this analysis is mostly based on the quality scores that are
outputted by the SOLID platform.

The output of this error analysis is defined by the user. The user sets up the initial
name of the output file, the analysis fills in the rest. Another user defined option is to
output the corresponding quality files along with the post analysis .csfasta files. These
quality files can potentially be very large, so if unneeded for further analysis, this option

can be turned off. For fragment error analysis output, only two sets of files exist: passing
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and failing. Mate pair reads, in contrast, have eight different files, four for passing reads
and four for failing reads (mate pair F3, mate pair R3, F3 orphan (mate is missing or of
bad quality), and R3 orphan (mate is missing or of bad quality)). Both the passing and
failing files contain two mate pair files where the mates are identified and output to their
respective F3 and R3 file. The ordering of the mates is identical in both files.
Additionally there are passing and failing orphan files. Reads that did not have a mate
after SOLID’s primary analysis or ones that passed while their mates did not are
separated and put into their respective F3 or R3 orphan file. Therefore, if a mate pair
preprocessing is done, then eight files are outputted.

Truncation is an additional option and helps minimize errors in the short reads in
order to maximize the usable sequence for post analysis. With the release of SOLID v3,
which allows for longer reads(up to 50 bp) truncation down to shorter sizes (30-35 bp) is
viable for de novo assembly [62]. Since the quality of the reads degrades as the reads get
longer on the 3’ end, it is possible that reads that would have failed the filtering analysis
at full length would pass once they were truncated (Figure 5.2) [62]. Recognition of
truncation as a viable option is based on in-depth analyses of resequenced and matched
data.

Finally, two additional functionalities were included: 1) removal of any read that
conta