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ABSTRACT OF THE DISSERTATION
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ORDERS IN THE SPACETIME DIMENSION

by ROBERT MORTON SCHABINGER

Dissertation Director: Matthew J. Strassler

In this thesis we discuss in detail computational methods and new results for one-loop

virtual corrections to N = 4 super Yang-Mills scattering amplitudes calculated to all

orders in ε, the dimensional regularization parameter. It is often the case that one-loop

gauge theory computations are carried out toO(ε0), since higher order in ε contributions

vanish in the ε → 0 limit. We will show, however, that the higher order contributions

are actually quite useful. In the context of maximally supersymmetric Yang-Mills,

we consider two examples in detail to illustrate our point. First we will concentrate on

computations with gluonic external states and argue thatN = 4 supersymmetry implies

a simple relation between all-orders-in-ε one-loop N = 4 super Yang-Mills amplitudes

and the first and second stringy corrections to analogous tree-level N = 4 amplitudes.

For our second example we will derive a new result for the all-orders-in-ε one-loop

superamplitude for planar six-particle NMHV scattering, an object which allows one

to easily obtain six-point NMHV amplitudes with arbitrary external states. To make

the presentation as self-contained as possible, we extensively review the prerequisites

necessary to understand the main results of this thesis.
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Chapter 1

Overview

In recent years, tremendous progress has been made towards a more complete under-

standing of the scattering amplitudes in N = 4 super Yang-Mills theory [1] (hereafter

simply N = 4). Lovingly referred to as the “harmonic oscillator” of quantum field

theory, N = 4 has more symmetry than any other gauge theory, especially in its

so-called planar limit [2, 3]. Although the theory’s S-matrix has been under investi-

gation for nearly 30 years [4], the last five have been particularly exciting. Numerous

ground-breaking discoveries have been made (like the application of the AdS/CFT cor-

respondence [3] to gluon scattering at strong coupling [5], a hidden dual superconformal

symmetry of the planar theory [6], and a dual description of the S-matrix as an integral

over periods in a Grassmann manifold [7] to name just a few) and there is no reason to

believe that we have learned everything N = 4 has to teach us.

One of our main goals in this thesis is to further develop existing tools for the calcu-

lation of one-loop N = 4 amplitudes to all orders in the dimensional regularization [8]

parameter. This parameter, ε, is introduced to cut off the IR divergences that appear in

massless gauge theory calculations (we encourage readers less familiar with the struc-

ture of IR divergences in gauge theory to peruse Appendix A). We will illustrate our

methods by considering examples where our results find useful application. At times

we will develop aspects of N = 4 S-matrix theory that appear to be of purely academic

interest, but, in fact, a significant part of the computational machinery discussed in this

thesis can be applied to calculations in any quantum field theory. When techniques are

applicable only in N = 4 we will try to emphasize this. Before delving into the details

of the problems we want to solve, a few words of historical introduction are in order.
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N = 4 SYM is a very special four dimensional quantum field theory and its S-

matrix has a number of unusual properties, many of which were unknown until very

recently. We begin by reviewing some of its better-known features. The field content

of the model consists of a gauge field Aµ, four Majorana fermions ψi, three real scalars

Xp, and three real pseudo-scalars Yq. All fields are in the adjoint representation of a

compact gauge group, G. The Lagrange density of N = 4 is given by [9]1

L = tr

{
− 1

2
FµνF

µν + ψ̄i /Dψi +DµXpDµXp +DµYqDµYq (1.1)

−igψ̄iαpij [Xp, ψj ] + gψ̄iγ5β
q
ij [Yq, ψj ]

+
g2

2

(
[Xl, Xk][Xl, Xk] + [Yl, Yk][Yl, Yk] + 2[Xl, Yk][Xl, Yk]

)}
,

where the 4× 4 matrices αp and βq are given by 2

α1 =

 iσ2 0

0 iσ2

 , α2 =

 0 −σ1

σ1 0

 , α3 =

 0 σ3

−σ3 0

 , (1.2)

β1 =

 −iσ2 0

0 iσ2

 , β2 =

 0 −iσ2

−iσ2 0

 , β3 =

 0 σ0

−σ0 0

 .

Once the gauge group and coupling constant g are fixed, the theory is uniquely specified.

It turns out that in scattering amplitude calculations it is more convenient to pair up

the scalars and pseudoscalars and work with three complex scalar fields. The presence

of four supercharges means that there is an SU(4) R-symmetry acting on the fields.

This symmetry acts on the state space as well and dictates selection rules for N = 4

scattering amplitudes.

One of the first remarkable discoveries made about the N = 4 model is that the

superconformal symmetry of the classical Lagrange density (1.1) (see Appendix B for a

brief discussion of the N = 4 superconformal group) remains a symmetry at the quan-

tum level [11]. This implies that the β function vanishes to all orders in perturbation

theory. It follows [12, 13, 14, 15, 16] that the theory is UV finite in perturbation theory

1Here we use the conventions of [10] for the Lagrange density, which differ somewhat from the
conventions of [9].

2σ0 is the 2× 2 identity matrix.
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(it turns out that the β function remains zero non-perturbatively as well, but this is

trickier to prove [17]).

Most of the work on N = 4 scattering amplitudes focuses on the massless, super-

conformal N = 4 model described above but we note in passing that it is also possible

to construct an N = 4 model with both massive and massless fields [18]. One can

give some of the scalar fields in (1.1) vacuum expectation values (VEVs) at the cost of

superconformal invariance and some of the generators of G. Formally, the fact that the

six scalar fields can acquire VEVs without breaking supersymmetry implies that the

theory has a six-dimensional moduli space of vacua. The N = 4 model where some, but

not all, of the gauge group generators are broken by scalar VEVs is called the Coulomb

phase of the theory. While most of the literature has focused on the massless, confor-

mal phase of the theory, the Coulomb phase is also quite interesting and is starting to

attract the attention it deserves [9, 19, 20, 21, 22]. Unfortunately, a proper discussion

of the Coulomb phase is beyond the scope of this thesis and we focus our attention

exclusively on the S-matrix in the conformal phase of the theory, using dimensional

regularization to regulate the IR divergences.

To better understand what makes N = 4 so much simpler than garden-variety

quantum field theories, it is instructive to compare the form of the one-loop virtual

corrections in N = 4 to, say, those in ordinary Yang-Mills theory. To be concrete,

consider the four-gluon scattering amplitude in both models. Näıvely, one might think

that the final results in the N = 4 model are naturally expressed in terms of the

Feynman integral basis for pure Yang-Mills, modulo UV divergent contributions. In

fact, the basis of Feynman integrals that one needs for one-loop N = 4 calculations

form an even smaller subset. To understand this point, we must take a closer look at

the integral basis for four-point scattering in pure Yang-Mills theory [23].

There are scalar box integrals, triangle integrals, and bubble integrals. For instance,

−i(4π)2−ε
∫

d4−2εp

(2π)4−2ε

1

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
(1.3)

is a box integral and

−i(4π)2−ε
∫

d4−2εp

(2π)4−2ε

1

p2(p− k1 − k3)2
(1.4)
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is a bubble integral. After a moment’s thought it is clear that the bubble integrals are

UV divergent and the triangle and box integrals are UV finite (let us stress that they

are NOT IR finite (see e.g. Appendix A)).

If we follow the above line of reasoning, we would conclude that the one-loop four-

gluon amplitude in N = 4 is built out of triangles and boxes, but not bubbles. Remark-

ably, this turns out not to be the case; the one-loop four-gluon N = 4 amplitude is built

out of box integrals only. What is even more remarkable is that, with the caveat that

we drop contributions O(ε) and higher, this conclusion holds [24] for n-gluon scattering

amplitudes3.

For our purposes, the result in the above paragraph will not suffice; we are interested

in studying N = 4 amplitudes to all orders in ε and we therefore need to modify the

integral basis. Actually, this is not too hard. It has been clear at least since the work

of [25] that all one has to do is add scalar pentagon integrals to the basis. Then one

can express any one-loop N = 4 scattering amplitude in terms of pentagons and boxes

to all orders in ε. These ideas will be explained in much more detail in Section 2 after

the necessary framework has been developed.

Another main theme of this thesis is a novel relation between one-loop scattering

amplitudes in N = 4 gauge theory and tree-level scattering amplitudes in open super-

string theory4. With a bit of inspiration, the relationships to be discussed can be derived

from the existing string theory literature. To the best of our knowledge, however, they

are unknown at the time of this writing. We shall test our relationship explicitly in the

simplest non-trivial case to establish confidence that it is correct.

What do we mean by “the simplest non-trivial case?” It turns out that there is a

natural organizing principle for the S-matrix of N = 4. If we label all external momenta

as outgoing, as is conventional, then N = 4 amplitudes can be organized according to

a natural isomorphism between their little-group transformation properties and their

SU(4)R transformation properties. In particular, we can assign a set of SU(4)R indices

3As we will be clear later, it is now known that this conclusion holds for one-loop N = 4 scattering
amplitudes with arbitrary external states.

4Tree-level amplitudes of massless particles in open superstring constructions compactified to four
dimensions have a universal form [26].
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to each external state according to whether it is a positive helicity gluon, negative

helicity fermion etc. Then there is a natural map [6, 27, 28] from each external state of

the theory to a subset5 of {1, 2, 3, 4}. In what follows g±(pi) is a positive or negative

helicity gluon of momentum pi, φ
±
a (pi) is a positive or negative helicity fermion of flavor

a and momentum pi, and S±a (pi) is a complex scalar of flavor a and momentum pi. A

scalar has no helicity so the assignment of “+” and “−” is arbitrary (but useful) for

scalar particles.

g+(pi)↔ pi

φ+
1 (pi)↔ p1

i φ+
2 (pi) ↔ p2

i φ+
3 (pi)↔ p3

i φ+
4 (pi)↔ p4

i

S+
1 (pi)↔ p12

i S+
2 (pi)↔ p23

i S+
3 (pi)↔ p13

i

S−1 (pi)↔ p34
i S−2 (pi)↔ p41

i S−3 (pi)↔ p42
i

φ−1 (pi)↔ p123
i φ−2 (pi) ↔ p234

i φ−3 (pi)↔ p341
i φ−4 (pi)↔ p412

i

g−(pi)↔ p1234
i (1.5)

The only a priori non-zero scattering amplitudes are those that respect the R-symmetry;

it must be possible to collect k complete copies of {1, 2, 3, 4}, where k is a non-negative

integer.

To make this rather abstract discussion more concrete, we consider examples for

k = 0, 1, and 2. For k = 0 we have, for example, the all-positive helicity amplitude

A (p1, p2, p3, p4). For k = 1 a good example is the four-positive helicity fermion am-

plitude A
(
p1

1, p
2
2, p

3
3, p

4
4

)
. Finally, an example for k = 2 is the four-point amplitude

with a positive-negative helicity gluon pair and a positive-negative helicity fermion pair

A
(
p1, p

1234
2 , p1

3, p
234
4

)
. In fact, it turns out that supersymmetry forces all scattering

amplitudes with k = 0 or 1 to be equal to zero (see Appendix C for a discussion of the

supersymmetric Ward identities responsible for this). This implies that the first non-

zero amplitudes have k = 2. Such amplitudes are called MHV amplitudes for historical

reasons6.

5The map given in (1.5) is obviously not unique. Any consistent permutation of the flavor and
SU(4)R labels for a given type of field would define an equally valid map.

6MHV stands for maximally helicity violating. The n-point MHV amplitude describes, for example,
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At the outset of the author’s investigations, Stieberger and Taylor had recently

discovered [26] a relation between the one-loop gluon N = 4 MHV amplitudes and the

tree-level gluon open superstring MHV amplitudes for which they had no explanation.

Our work demystifies the relation they found and generalizes it as much as possible.

Since Stieberger and Taylor showed explicitly that all MHV amplitudes satisfy the

relation, it is of some interest to look at the simplest uncalculated example as an

explicit test of our proposed generalization of the simpler Stieberger-Taylor relation.

In other words, we ought to calculate the all-orders-in-ε one-loop six-gluon7 next-to-

MHV (NMHV) amplitudes in N = 4. Fortunately, Stieberger and Taylor have already

tabulated all independent six-gluon NMHV amplitudes in open superstring theory [29]

compactified to four dimensions. The existence of these results will make it significantly

easier to check our proposed relations. Furthermore, our relations shed some light in

a non-obvious way on an old result in pure Yang-Mills. In a nutshell, we are able to

explain why A1−loop
1;N=0(k1, k2, · · · , kn) vanishes when n > 4 and three of the gluons are

replaced by photons.

The precise statement of our relations between gauge and string theory is somewhat

technical and we postpone further discussion of it to Section 4. Suffice it to say that

the gauge theory side of our relation requires one-loop N = 4 amplitudes calculated

to all orders in ε. At the outset of our investigations, it was not clear precisely what

computational strategy was most appropriate. Therefore the entirety of Section 3 and

part of Section 5 will be devoted to the explicit calculation of all-orders-in-ε one-loop

amplitudes in N = 4.

Before we can discuss what is perhaps our nicest result for all-order one-loop N = 4

amplitudes, we have to review several exciting recent developments in the theory of

N = 4 scattering amplitudes. For what follows the planar limit of the N = 4 theory

will be indispensable. The planar limit will be defined more carefully in Section 2, but

a scattering experiment where two negative helicity gluons go in and n−4 positive helicity gluons and 2
negative helicity gluons come out. Such an outcome violates helicity as much as is possible at tree-level
in QCD.

7It is straightforward to check that at least six external particles need to participate in order to get
an NMHV amplitude.
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for now we discuss the simple example of four-gluon scattering to get across the main

idea and to illustrate why taking this limit simplifies the S-matrix. We remind the

reader that the building blocks for one-loop four-point scattering amplitudes in N = 4

are the three independent box integrals. Only the first of the three can be drawn in

a plane without self-intersections. Operationally, the planar limit is reached if one

computes the complete N = 4 amplitude and then throws away all basis integrals that

cannot be drawn in a plane without self-intersections. The reduction in the number

of basis integrals (three to one) is modest at the one-loop four-point level. However,

as you add more loops and legs, working in the planar limit dramatically reduces the

complexity of the final results.

We now specialize to the planar limit and discuss some of the remarkable features

of the N = 4 S-matrix in this limit. Particularly exciting is the fact that, in the planar

limit, it is possible to completely solve the perturbative S-matrix (up to momentum

independent pieces) for the scattering of either four gluons or five gluons (and, by

N = 4 supersymmetry, all four- and five-point amplitudes). Starting from the work

of [30], Bern, Dixon, and Smirnov (BDS) made an all-loop, all-multiplicity proposal for

the finite part of the MHV amplitudes in N = 4. In this paper [31], BDS explicitly

demonstrated that their ansatz was valid for the four-point amplitude through three

loops. Subsequent work demonstrated that the BDS ansatz holds for the five-point

amplitude through two-loops [32] and that the strong coupling form of the four-point

amplitude calculated via the AdS/CFT correspondence (the unfamiliar reader should

consult Appendix D for a brief description of this important result) has precisely the

form predicted by BDS [5].

In fact, [5] sparked a significant parallel development. Motivated by the fact that

the strong coupling calculation proceeded by relating the four-point gluon amplitude

to a particular four-sided light-like Wilson loop, the authors of [33] were able to show

that the finite part of the four-point light-like Wilson loop at one-loop matches the

finite part of the planar one-loop four-gluon scattering amplitude. The focus of [33]

was on the planar four-gluon MHV amplitude, but it was shown in [34] that this MHV

amplitude/light-like Wilson loop correspondence holds for all one-loop MHV amplitudes
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in N = 4. As will be made clear in Section 6, an arbitrary n-gluon light-like Wilson loop

should be conformally invariant in position space.8 What was not at all obvious before

the discovery of the amplitude/Wilson loop correspondence is that N = 4 scattering

amplitudes must be (dual) conformally invariant in momentum space.

It turns out that this hidden symmetry (referred to hereafter as dual conformal in-

variance) has non-trivial consequences for theN = 4 S-matrix. Assuming that the MHV

amplitude/light-like Wilson loop correspondence holds to all loop orders, the authors

of [35] were able to prove that dual conformal invariance fixes the (non-perturbative)

form of all the four- and five- point gluon helicity amplitudes (recall that non-MHV

amplitudes first enter at the six-point level) in N = 4. Up to trivial factors, they

showed that the functional form of the (dual) conformal anomaly coincides with that of

the BDS ansatz. Subsequently, work was done at strong coupling [36, 37] that provides

evidence for the assumption made in [35] that the MHV amplitude/light-like Wilson

loop correspondence holds to all orders in perturbation theory. Quite recently, the

symmetry responsible for the correspondence was understood from a perspective that

bears on the results seen at weak coupling as well [38].

The idea is that, due to the fact that non-trivial conformal cross-ratios can first be

formed at the six-point level, one would näıvely expect the four- and five-point am-

plitudes to be momentum-independent constants to all orders in perturbation theory.

It is well-known, however, that gluon loop amplitudes have IR divergences. These IR

divergences explicitly break the dual conformal symmetry and it is precisely this break-

ing which allows four- and five- gluon loop amplitudes to have non-trivial momentum

dependence. In fact, the arguments of [35] allowed the authors to predict the precise

form that the answer should take and they found (up to trivial constants) complete

agreement with the BDS ansatz to all orders in perturbation theory.

At this stage, it was unclear whether the appropriate hexagon Wilson loop would

still be dual to the six-point MHV amplitude at the two-loop level. This question was

8Strictly speaking, the conformal symmetry is anomalous due to the presence of divergences at the
cusps in the Wilson loop. If one regulates these divergences and subtracts the conformal anomaly, then
the finite part of what remains will be conformally invariant.
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decisively settled in the affirmative by the work of [39] on the scattering amplitude side

and [40] on the Wilson loop side. Another issue settled by the authors of [39] and [40]

was the question of whether the BDS ansatz fails at two loops and six points. It had

already been pointed out by Alday and Maldacena in [41] that the BDS ansatz must

fail to describe the analytic form of the L-loop n-gluon MHV amplitude for sufficiently

large L and n, but it had not yet been conclusively proven until the appearance of [39]

and [40] that L = 2 and n = 6 was the simplest possible example of BDS ansatz

violation. The difference between the full answer and the BDS ansatz is called the

remainder function and it is invariant under the dual conformal symmetry.

Since full two-loop six-point calculations are extremely arduous, one might hope

that there is a smoother route to proving the above fact. In fact, Bartels, Lipatov, and

Sabio Vera [42] derived an approximate formula for the imaginary part of the two-loop

remainder function in a particular region of phase-space and multi-Regge kinematics.

For some time, this formula was the subject of controversy, due to subtleties associ-

ated with analytical continuation of two-loop amplitudes. In [43] the present author

confirmed the controversial result of BLSV for the imaginary part of the remainder by

explicitly continuing the full results of [40] into the Minkowski region of phase-space in

question.

The authors of [40], Drummond, Henn, Korchemsky, and Sokatchev, recently dis-

covered an even larger symmetry of the planar S-matrix. In [6] DHKS found that there

is actually a full dual N = 4 superconformal symmetry acting in momentum space,

which they appropriately christened dual superconformal symmetry. One of the main

ideas utilized in [6] is that all of the scattering amplitudes with the same value of

n are absorbed into a bigger object called an on-shell N = 4 superamplitude. This

superamplitude can be further expanded into k-charge sectors and we will often re-

fer to the k-charge sectors of a given superamplitude as superamplitudes as well. For

example, the n = 6, k = 2 superamplitude would contain component amplitudes like

A
(
p1234

1 , p1234
2 , p3, p4, p5, p6

)
and A

(
p1

1, p
1234
2 , p234

3 , p4, p5, p6

)
among others.

In [6] DHKS made an intriguing conjecture for the ratio of the k = 3 and k = 2

six-point superamplitudes. They argued that the k = 3 superamplitude is naturally
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written as the k = 2 superamplitude times a function invariant under the dual super-

conformal symmetry. DHKS explicitly demonstrated that their proposal holds in the

one-loop approximation. This ratio function has recently been the subject of intensive

investigation and there are strong arguments in favor of it [44]. Nevertheless, it would

be nice to see explicitly that the two-loop ratio function is invariant under dual super-

conformal symmetry and this is being investigated by David Kosower, Radu Roiban,

and Cristian Vergu. It turns out that the all-orders-in-ε one-loop six-point N = 4

NMHV superamplitude is necessary to explicitly test the dual superconformal invari-

ance of the ratio function at two loops in dimensional regularization. In Section 6 we

review the dual superconformal symmetry and explain how the all-orders-in-ε one-loop

formula we present in Section 5 can be rewritten to manifest this hidden symmetry as

much as possible.

To summarize, the structure of this thesis is as follows. In Section 2 we review

the modern computational techniques prerequisite to the topics discussed later in the

thesis. In Section 3 we discuss a new, efficient approach to the calculation of all-orders-

in-ε one-loop N = 4 amplitudes, with the one-loop six-point gluon NMHV amplitude

as our main non-trivial example. In Section 4 we discuss a novel relation between

one-loop N = 4 gauge theory and tree-level open superstring theory and illustrate its

usefulness by solving an old puzzle in pure Yang-Mills. In Section 5 we discuss N = 4

on-shell supersymmetry and extend our results for all-orders-in-ε one-loop six-gluon

NMHV amplitudes to the full one-loop N = 4 NMHV superamplitude. In Section 6

we elaborate on the light-like Wilson loop/MHV amplitude correspondence, on dual

superconformal invariance and on the relevance of the results of Section 5 to testing the

dual superconformal invariance of the two-loop ratio function. Finally, in Section 7, we

summarize the main results of the thesis. In addition, we provide several appendices

where we discuss important topics that deserve some attention but would be awkward

to include in the main text. In Appendix A we discuss dimensional regularization, its

usefulness in the regularization of IR divergences, and the structure of these divergences

in planar N = 4 gauge theory at the one-loop level. In Appendix B we give a brief

introduction to the N = 4 superconformal group. In Appendix C we give a brief
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introduction to the supersymmetric Ward identities, consequences of supersymmetry

for the S-matrix that result in linear relations between many of the components ofN = 4

superamplitudes. Finally, in Appendix D, we explain the AdS/CFT correspondence in

general terms and then apply it to the calculation of the strong coupling form of the

four-gluon amplitude in N = 4.
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Chapter 2

Review of Computational Technology

In this section we review some of the tools that make state-of-the-art gauge theory

computations possible. In 2.1 we discuss color decompositions, useful procedures that

allow one to isolate the independent color structures that appear in the final results

at the very beginning of a calculation. In 2.2 we define the planar limit of Yang-Mills

theory. In 2.3 we introduce the spinor helicity formalism, a very convenient way of

dealing with the external wave-functions of fermions and gauge bosons. In 2.4 we

introduce the BCFW recursion relation and discuss its main applications. In 2.5 we

introduce the four dimensional generalized unitarity method at the one-loop level in

the context of N = 4 and discuss the integral basis, valid through O(ε0), needed to use

it. Finally, in 2.6 we generalize the results of 2.5 to 4 − 2ε dimensional spacetime (D

dimensional generalized unitarity).

2.1 Color Decompositions

In non-Abelian gauge theories one has to deal with the color, helicity, and kinematic

degrees of freedom separately. Otherwise the resulting expressions for loop-level virtual

corrections in scattering processes become much too complicated. In this thesis, we will

only need to deal with color adjoints (all fields inN = 4 live in the adjoint representation

of the gauge group, which we take to be SU(Nc)) and therefore restrict ourselves to

discussing methods applicable to the situation where all of the external particles are

in the adjoint representation. This should be contrasted to the situation in QCD.

There one needs to deal with external particles that are color fundamentals as well

(the fermions). Decoupling the color degrees of freedom in QCD is possible as well (see

e.g. [45] for an example at the one-loop level). The resulting decomposition, however,
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is much less simple.

To begin, we illustrate the concept of color decomposition by analyzing a contribu-

tion to four-gluon scattering at tree-level. In what follows, we deviate from the standard

normalization (described in textbooks like [10]) and replace

Tr{T aT b} =
δab

2

with

Tr{T aT b} = δab .

If this alternative normalization convention is not adopted the color decomposition

results in objects that have an annoying 2n out front for an n-point scattering process

(see e.g. [46] for some sample calculations with the standard conventions). We will see

that the usual Feynman rules can be split up into simpler rules that only contribute

to specific color structures. As a first example, we consider the s-channel Feynman

diagram for the four-point scattering process. For this diagram we need only the gluon

propagator and the three-gluon vertex and we work in ’t Hooft-Feynman gauge using

the conventions of [10].

Denote the s-channel graph by AS . We then have

AS =
(
gfa1a2b

[
εh1(k1) · εh2(k2)(k1 − k2)µ + εh2µ (k2)εh1(k1) · (2k2 + k1)

+εh1µ (k1)εh2(k2) · (−2k1 − k2)
])( −igµνδbc

(k1 + k2)2

)
×

×
(
gfa3a4c

[
εh3(k3) · εh4(k4)(k3 − k4)ν

+εh4ν (k4)εh3(k3) · (2k4 + k3) + εh3ν (k3)εh4(k4) · (−2k3 − k4)
])
, (2.1)

where we have kept the polarizations of the gluons arbitrary. For now we ignore the

dependence of AS on everything except color. This leaves us with

fa1a2bfa3a4b (2.2)

To push further, we exploit a few simple facts about the Lie algebra of SU(Nc). The

structure constants of the group can be written as

fabc = − i√
2

Tr{T aT bT c − T aT cT b} (2.3)
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and the structure constants with one index contracted up with a fundamental repre-

sentation generator matrix can be rewritten by using the algebra itself:

− i√
2

[T a, T b] = fabcT c . (2.4)

These relations allow us to write (2.2) completely in terms of the T a. After massaging

the color factors into the desired form

fa1a2bfa3a4b = − i√
2

Tr{T a1T a2T b − T a1T bT a2}fa3a4b

= −1

2
Tr{T a1T a2 [T a3 , T a4 ]− T a1 [T a3 , T a4 ]T a2}

= −1

2
Tr{T a1T a2T a3T a4 − T a1T a2T a4T a3

−T a1T a3T a4T a2 + T a1T a4T a3T a2} (2.5)

we can now go back to eq. (2.1)

AS = ig2Tr{T a1T a2T a3T a4 − T a1T a2T a4T a3 − T a1T a3T a4T a2 + T a1T a4T a3T a2} ×

×1

2

[
εh1(k1) · εh2(k2)(k1 − k2)µ + εh2µ (k2)εh1(k1) · (2k2 + k1)

+εh1µ (k1)εh2(k2) · (−2k1 − k2)
] gµν

(k1 + k2)2

[
εh3(k3) · εh4(k4)(k3 − k4)ν

+εh4ν (k4)εh3(k3) · (2k4 + k3) + εh3ν (k3)εh4(k4) · (−2k3 − k4)
]

(2.6)

and we see explicitly that we’ve achieved our goal. This amplitude contributes to four

different color structures and four different color-ordered partial amplitudes. A color-

ordered partial amplitude is defined as the collection of all terms from all the different

diagrams that have the same color structure. The reason that this decomposition is so

useful in practice is that the color structures are independent and therefore, by con-

struction, each color-ordered partial amplitude must be gauge invariant. Since a color

structure is only defined up to cyclic permutations (because the trace is cyclicly sym-

metric), we choose representatives for them with the convention that T a1 is always the

first generator matrix to appear in any trace structure. To make sure that the notation

is clear, we remind the reader that a1 denotes the color label, valued in {1, · · · , Nc},

of the first gluon. However, due to cyclic symmetry, what we decide to call the first

gluon is completely arbitrary. Finally, we note that this technique can easily be used

to expand the color factors of the four-gluon vertex as well.
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Although the n-point generalization of the above tree-level color decomposition is

typically explained in a field theory context, for us it is useful to follow the route

that was taken historically. In [47, 48] it was pointed out that an elegant way to

derive color decomposition formulae in field theory is to first derive the formulae in

an open superstring theory and then take a particular limit (the infinite string tension

limit) in which the unwanted modes in the superstring theory decouple and N = 4

gauge theory falls out. This approach benefits us because we will need the tree-level

color decomposition for open superstring theory in Section 4 when we discuss our non-

trivial relations between one-loop N = 4 amplitudes and tree-level open superstring

amplitudes.

It has been known since the early days of superstring theory, that one can write a

open superstring theory amplitude as

Atreestr

(
kh11 , kh22 , · · · , khnn

)
=

gn−2
∑

σ∈Sn/Zn

Tr{T aσ(1)T aσ(2) · · ·T aσ(n)}Atreestr

(
k
hσ(1)
σ(1) , k

hσ(2)
σ(2) , · · · , k

hσ(n)
σ(n)

)
+O(α′2) , (2.7)

where partial amplitudes are associated to appropriate Chan-Paton factors and one

sums over all distinguishable permutations1. In the infinite string tension limit, the

formula above reduces to an analogous one for U(Nc) N = 4 gauge theory:

Atree
(
kh11 , kh22 , · · · , khnn

)
= (2.8)

gn−2
∑

σ∈Sn/Zn

Tr{T aσ(1)T aσ(2) · · ·T aσ(n)}Atree
(
k
hσ(1)
σ(1) , k

hσ(2)
σ(2) , · · · , k

hσ(n)
σ(n)

)
.

At this stage, the alert reader may be wondering whether the U(Nc) written above

should really be SU(Nc). Actually, this is not the case. Locally, one can always write

U(Nc) ' SU(Nc) × U(1) and, since U(1) is Abelian, we are effectively in SU(Nc)

because any partial amplitude containing the U(1) particle (photon) must vanish. This

cancellation is simply due to the fact that such a particle has no way to couple to states

1String amplitudes can be expressed as a power series in the inverse string tension, α′, and (2.7)
is the zeroth order term. More discussion of the perturbation theory of the massless modes in open
superstring is given in 4.
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that live in the adjoint of SU(Nc). In fact, this vanishing yields the following identity

0 = Atree
(
kh11 , kh22 , · · · , khnn

)
+Atree

(
kh22 , kh11 , · · · , khnn

)
+ · · ·+Atree

(
kh22 , kh33 , · · · , kh11

)
(2.9)

for the partial amplitudes, commonly referred to as the photon decoupling identity. Eq.

(2.9) is nothing but the expression for an (vanishing) amplitude with a photon with

momentum k1 and helicity h1 and n−1 SU(Nc) adjoint particles. The reason that there

is a sum with kh11 inserted in all possible positions is that the photon is not ordered with

respect to the n− 1 adjoint particles and therefore we have to symmetrize with respect

to the insertion of the photon. Finally, we remark that there is another feature of (2.9)

that should bother the alert reader: it looks like there are (n− 1)! independent partial

amplitudes that need to be computed to determine the full amplitude. In practice, the

situation is much better; recently, the authors of [49] showed that, in fact, there are

really only (n− 3)! independent partial amplitudes.

To summarize, the claim is that, at tree-level, N = 4 amplitudes2 organized in

terms of their color structures look identical to open superstring amplitudes organized

in terms of their Chan-Paton [50] factors. It is also very important to note that all

we had to assume about the superstring construction to get this to work at tree-level

is that it approaches N = 4 field theory in a particular limit. In a nutshell, this is

why the tree-level S-matrix of massless modes in superstring theory is model indepen-

dent. This model independence disappears at loop level and one has to work much

harder. Nevertheless an analogous program can be carried out at one-loop [51] and it

has been shown that one can use string constructions to derive useful one-loop color

decomposition formulae in field theory. It is to this topic that we now turn.

Unfortunately, there are many more color structures at one-loop than at tree-level

and this complicates things. Since a description of the necessary heterotic string con-

struction would take us much too far afield, we refer the interested reader to [51] and

simply state the main result of their work. In N = 4, one-loop scattering amplitudes

2All that we have really assumed is that our gauge group is SU(Nc) and that all of the fields
transform in the adjoint representation.
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can be decomposed into color-ordered partial amplitudes using the formula

A1−loop
N=4

(
kh11 , · · · , khnn

)
= gn−2 g

2Ncµ
2εe−γEε

(4π)(2−ε)∑
σ∈Sn/Zn

Tr{T aσ(1) · · ·T aσ(n)}A1−loop
1;N=4

(
k
hσ(1)
σ(1) , · · · , k

hσ(n)
σ(n)

)
+

gn−2 g
2µ2εe−γEε

(4π)2−ε

[n
2

]+1∑
m=2

( ∑
σ∈ Sn/(Zm−1×Zn−m+1)

Tr{T aσ(1) · · ·T aσ(m−1)} ×

×Tr{T aσ(m) · · ·T aσ(n)}A1−loop
2;N=4

(
k
hσ(1)
σ(1) , · · · , k

hσ(n)
σ(n)

))
, (2.10)

where [n
2

]
≡ Floor

(n
2

)
. (2.11)

In this thesis we will very often use the notation A1−loop
1 as a somewhat abbreviated

version of A1−loop
1;N=4. The appearance of e−γEε/(4π)2−ε in (2.10) is necessary for technical

reasons and will be explained in Subsection 2.5. The factor µ2ε, the unit of mass, is

explained in Appendix A and is important in theories where the interesting observables

are infrared finite. Also, in contrast to what happened at tree-level, we have both

single-trace color structures and double-trace color structures. Actually, as we will see

in the next subsection, the double-trace structures will be irrelevant for us because

they are sub-leading in the number of colors, Nc. In any case, at one-loop, there are

analogs of the photon decoupling relations at tree-level and these allow one to express

the coefficients of the double-trace color structures in terms of the coefficients of the

single-trace color structures [51]. The coefficients of the single-trace structures are

commonly referred to as the leading color-ordered partial amplitudes, again because of

their dominance at large Nc.

2.2 Planar Limit

Long ago, ’t Hooft observed that non-Abelian gauge theories simplify dramatically [2]

in a particular limit, in which one fixes the combination λ = 2Nc g
2, eliminates g in

favor of Nc and λ, and then takes Nc to infinity (λ is referred to as the ’t Hooft coupling

in his honor). One thing ’t Hooft conjectured was that large Nc gauge theory ought to
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have a stringy description. This idea was given new life by Maldacena in his ground-

breaking work [3] on the near-horizon geometry of AdS5 × S5 (see Appendix D). In

brief, Maldacena showed that type IIB superstring theory in an AdS5×S5 background is

dual to a N = 4 SYM gauge theory. Maldacena’s duality was incredibly novel because

it related planar N = 4 at strong coupling to classical type IIB superstring theory at

weak coupling. In this thesis, we will see that unexpected simplicity also emerges in

the planar limit of weakly coupled N = 4.

For our purposes, the advantage of working in the planar limit is that the simple

tree-level color decomposition formula of eq. (2.9) actually generalizes to multi-loop

amplitudes. This is not hard to guess at the one-loop level from the decomposition

formula (2.10). In this formula, the single-trace color structures have an explicit factor

of Nc out front that the double-trace structures do not. It follows that the single-

trace structures dominate in the large Nc limit. To be explicit, the planar L-loop color

decomposition formula is

AL−loop
1

(
k
hσ(1)
1 , k

hσ(2)
2 , . . . , k

hσ(n)
n

)
=

gn−2

(
g2Ncµ

2εe−γEε

(4π)2−ε

)L ∑
σ∈ Sn/Zn

Tr(T aσ(1)T aσ(2) . . . T aσ(n))×

×AL−loop
1

(
k
hσ(1)
1 , k

hσ(2)
2 , . . . , k

hσ(n)
n

)
. (2.12)

Clearly, this is going to be much easier to work with than a full L-loop color decompo-

sition.

Although N = 4 supersymmetry by itself is very powerful and puts highly non-

trivial constraints on the perturbative S-matrix, N = 4 supersymmetry together with

the planar limit is even more powerful. In section 6 we will discuss a so-called hidden

symmetry of the N = 4 S-matrix that emerges in the large λ limit. This symmetry,

called dual superconformal invariance is like a copy of the ordinary superconformal

invariance of the N = 4 that acts in momentum space3.

3The Lagrange density of N = 4 is manifestly superconformally invariant in position space. We
encourage the reader unfamiliar with superconformal symmetry to peruse Appendix B.
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2.3 Spinor Helicity Formalism

In this subsection we review the spinor helicity formalism, a computational frame-

work suitable for research-level helicity amplitude computations in non-Abelian gauge

theories. Although the formalism has been fully developed for more than twenty

years [52, 53, 54, 55, 56, 57], it has only recently begun to replace the traditional

techniques in mainstream textbooks (see e.g. [58]). The underlying assumption of the

method is that the correct way to deal with the S-matrix is to compute helicity am-

plitudes. This is a useful approach in practice because many helicity amplitudes are

protected by supersymmetry or related by discrete symmetries (entering either from

parity invariance or the color decomposition).

The spinor helicity formalism is designed to streamline the computation of helicity

amplitudes and to allow one to express the results obtained in as simple a form as

possible. In the spinor helicity formalism, everything that enters into the computation

of a helicity amplitude is expressed in terms of the same set of building blocks. For

example, all dot products involving the polarization vectors of the gluons (or photons)

in the scattering process under consideration are expressed in terms of spinor products.

This is also true for invariants built out of scalar products of external four-momenta.

Another nice feature of the method is directly related to the way in which external

polarization vectors are dealt with in the spinor helicity framework. In a moment,

we will see that on-shell gauge invariance is built into the spinor helicity polarization

vectors and this can be exploited to cancel numerous terms at the beginning of the

calculation. In this subsection we closely follow [59], though we will ultimately rewrite

everything in more modern notation.

Consider free particle solutions to the massless Dirac equation. The positive and

negative energy solutions, u±(p) and v∓(p) are equivalent up to phase conventions [58].

In particular, it is possible to make a choice where v∓(p) = u±(p) and we can eliminate

v∓(p) in favor of u±(p). In this language, a momentum invariant, sij ≡ (pi + pj)
2, is

easily expressed in terms of spinor products as

sij = ū−(pi)u
+(pj)ū

+(pj)u
−(pi) . (2.13)
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The above identity can be verified by turning the right-hand side of (2.13)into a trace

over gamma matrices and projection operators (see e.g. [10] if unfamiliar). The polar-

ization vectors ε+(pi) and ε−(pi) are expressed as

ε+
µ (pi) =

ū−(qi)γµu
−(pi)√

2 ū−(qi)u+(pi)
(2.14)

ε−µ (pi) =
ū−(pi)γµu

−(qi)√
2 ū−(pi)u−(qi)

, (2.15)

where the four-momentum qi is called the reference momentum associated to pi. Though

it not yet clear where eqs. (2.14) and (2.15) come from, it should at least seem plausi-

ble that one can build a (1/2,1/2) wavefunction out of a (1/2,0) wavefunction and a

(0,1/2) wavefunction4. In fact, it is straightforward to show [58] that eqs. (2.14) and

(2.15) are compatible with the most general wavefunctions for positively and negatively

polarized gluons (with the convention that the momentum of the gluon is always out-

going). The reference momentum associated to pi is present because the polarization

vector of a gluon state is only defined up to a term proportional to pi; it is always per-

missible to add a term αpµ to ε±µ (p) since the Ward identities of gauge theory guarantee

that any such term will drop out of gauge invariant quantities.

The arbitrariness introduced into the definitions of the polarization vectors (ε±(pi) ≡

ε±(pi, qi)) by the qi can be effectively exploited because of the following identities:

ū+(pj)/ε
−(pi, pj) = ū−(pj)/ε

+(pi, pj) = 0

/ε+(pi, pj)u
+(pj) = /ε−(pi, pj)u

−(pj) = 0

ε+(pi, pj) · ε−(pj , q) = ε+(pi, q) · ε−(pj , pi) = 0

ε+(pi, q) · ε+(pj , q) = ε−(pi, q) · ε−(pj , q) = 0

ε+(pi, q) · q = ε−(pi, q) · q = 0 . (2.16)

Thankfully, the traditional, clunky notation for spinors is no longer used. It makes

much more sense to define

u+(pi) ≡ |i 〉 u−(pi) ≡ |i ] ū+(pi) ≡ [i | ū−(pi) ≡ 〈i | . (2.17)

4Here we are using the representation theory of SU(2)×SU(2) to label the states of definite helicity.
This is possible because the complexified proper orthochronous Lorentz group and SU(2)×SU(2) have
isomorphic Lie algebras. The complexification is necessary to obtain the desired isomorphism between
the Lie algebras but doesn’t affect the labeling of representations. See e.g. [60] for more details.
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Then the eqs. (2.13), (2.14), and (2.15) discussed above can be rewritten as

sij = 〈i j〉[j i] (2.18)

ε+
µ (pi) =

〈qi| γµ |i]√
2 〈qi i〉

(2.19)

ε−µ (pi) =
〈i| γµ |qi]√

2 [i qi]
(2.20)

It is also conventional to suppress explicit slashes: pµj 〈1| γµ |2] is written as 〈1| j |2].

Finally, for reference, we translate the Fierz identity, the Schouten identity, and the

identity
∑n

i=1 ki = 0 (in an n particle scattering process) into modern spinor language:

〈i| γµ |j] 〈k| γµ |`] = 2 [j k]〈` j〉

〈i j〉〈k `〉+ 〈i k〉〈` j〉+ 〈i `〉〈j k〉 = 0
n∑
i=1

[j i]〈i k〉 = 0 (2.21)

To gain some familiarity with the ideas of this subsection, we calculate the tree-level

four-gluon amplitude, Atree
(
k1234

1 , k1234
2 , k3, k4

)
. We started evaluating the s-channel

diagram in (2.6). Actually, this is the only diagram we have to evaluate since the

t-channel and contact diagrams are identically zero if we choose q1 = q2 = k4 and

q3 = q4 = k1, as can easily be verified using eqs. (2.16). This is a remarkable feature

of the spinor helicity formalism. Many terms that would be present in a traditional

calculation vanish if one makes a judicious choice for the reference momenta. In fact, it

is now known (and will be made clear in the next subsection) that one never needs to

deal with four-gluon vertices in the evaluation of gluonic tree amplitudes. Continuing

with our computation, we evaluate the s-channel diagram using eqs. (2.18), (2.19), and

(2.20) and rewrite all invariants in spinor language

Atree
(
k1234

1 , k1234
2 , k3, k4

)
=
i

2

[
ε−(k1) · ε−(k2)(k1 − k2)µ

+ε−µ (k2)ε−(k1) · (2k2 + k1) + ε−µ (k1)ε−(k2) · (−2k1 − k2)
] gµν

(k1 + k2)2[
ε+(k3) · ε+(k4)(k3 − k4)ν + ε+

ν (k4)ε+(k3) · (2k4 + k3)

+ε+
ν (k3)ε+(k4) · (−2k3 − k4)

]



22

=
i

2〈1 2〉[2 1]

[
ε−(k1) · ε−(k2)ε+(k3) · ε+(k4)(k1 − k2) · (k3 − k4)

+ε−(k1) · ε−(k2)(k1 − k2) · ε+(k4)(k3 + 2k4) · ε+(k3)

+ε−(k1) · ε−(k2)(k1 − k2) · ε+(k3)(−2k3 − k4) · ε+(k4)

+ε+(k3) · ε+(k4)(2k2 + k1) · ε−(k1)(k3 − k4) · ε−(k2)

+ε−(k2) · ε+(k4)(2k2 + k1) · ε−(k1)(2k4 + k3) · ε+(k3)

+ε−(k2) · ε+(k3)(2k2 + k1) · ε−(k1)(−2k3 − k4) · ε+(k4)

+ε+(k3) · ε+(k4)(−2k1 − k2) · ε−(k2)(k3 − k4) · ε−(k1)

+ε−(k1) · ε+(k4)(−2k1 − k2) · ε−(k2)(2k4 + k3) · ε+(k3)

+ε−(k1) · ε+(k3)(−2k1 − k2) · ε−(k2)(−2k3 − k4) · ε+(k4)
]

=
i

2〈1 2〉[2 1]

[
− 4ε−(k2) · ε+(k3)k2 · ε−(k1)k3 · ε+(k4)

]
=

i

2〈1 2〉[2 1]

[
−4
〈2| γµ |4]√

2 [2 4]

〈1| γµ |3]√
2 〈1 3〉

〈1| 2 |4]√
2 [1 4]

〈1| 3 |4]√
2 〈1 4〉

]
. (2.22)

In the above, all but one ( ε−(k2) · ε+(k3) ) of the dot products of polarization vectors

vanished as a consequence of our choice of reference momenta. Using eqs. (2.21), we

arrive at the final result

Atree
(
11234, 21234, 3, 4

)
=

i〈1 2〉4

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
. (2.23)

In fact, this result generalizes to arbitrarily many gluons [61] and we take this oppor-

tunity to define the n-gluon tree-level MHV amplitude (Parke-Taylor formula):

AMHV
n; 〈i j〉 ≡ A

tree
(
1, ..., i1234, ..., j1234, ..., n

)
= i

〈ij〉4

〈12〉〈23〉...〈n1〉
. (2.24)

The identities of eqs. (2.21) are useful in simple situations (like the calculation above)

but, in practice, it usually makes more sense to simplify spinor strings using complex

deformations of spinor variables and the analyticity properties of scattering amplitudes.

This will be discussed more in the next subsection.
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2.4 BCFW Recursion

In this subsection we review the recursion relation of Britto, Cachazo, Feng, and Witten

(BCFW recursion), a powerful tool used primarily for the calculation of tree-level helic-

ity amplitudes in massless gauge theories. Shortly after BCFW recursion was developed

in [62] it was realized, probably by the authors of [63] and perhaps also by the authors of

the original paper, that BCFW recursion is also useful when confronted with the prob-

lem of simplifying messy linear combinations of rational functions of spinor products.

This is because, in many situations of practical interest, physical linear combinations

of spinor products are tightly constrained by their singularity structure.

Although, it is possible [27, 64] to write down a manifestly N = 4 supersymmetric

version of BCFW recursion, we present the recursion relation in its original incarnation.

Suppose that all tree-level (n−1) and lower-point gluon helicity amplitudes are known.

Britto, Cachazo, Feng, and Witten showed that one can write any n-gluon tree ampli-

tude in terms of particular deformations of the known lower-point gluon amplitudes.

The algorithm will be easy to understand once we explain the concept.

The main idea is that scattering amplitudes are analytic functions of all their inputs.

To exploit this analyticity it makes sense to complexify all four-momenta in the problem

before going any further. Now, imagine factorizing the amplitude we wish to calculate

on a collinear or multi-particle pole5, say the one associated to the invariant K2 ≡

(ki + · · ·+ ki+j)
2:

Atree
(
kh11 , · · · , khii , · · · , k

hi+j
i+j , · · · , k

hn
n

)
K2→ 0−→∑

h

Atree
(
khii , · · · , k

hi+j
i+j ,K

h
) −i
K2

Atree
(
−K−h, khi+ji+j , · · · , k

hn
n , kh11 , · · · , khi−1

i−1

)
.

(2.25)

This is the picture that one should have in mind. Intuitively, BCFW recursion is

based on the observation that the set of all such limits of a particular n-point gluon

tree amplitude actually carry all the information necessary to reconstruct the complete

tree amplitude. In general, one should only expect this approach to work for tree

5If these notions are not familiar, see [59] for an elementary discussion.
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amplitudes; we shall see later that factorization properties are typically not sufficient

to fix the analytical structure of amplitudes at the one-loop level and higher.

To try and realize this intuitive picture of reversing collinear and multi-particle

factorization limits more concretely, BCFW found it convenient to consider a particular

analytical continuation applicable to general gluon tree amplitudes (under appropriate

assumptions). Consider the following deformation of the holomorphic spinor associated

to k` and the anti-holomorphic spinor associated to km:

λ` → λ`(z) = λ` + zλm

λ̃m → λ̃m(z) = λ̃m − zλ̃` , (2.26)

where z is a complex parameter. At the level of spinors it is not even obvious that this

complex deformation is well-defined. The corresponding relations for k` and km

kµ` → kµ` (z) = kµ` +
z

2
〈m| γµ |`]

kµm → kµm(z) = kµm −
z

2
〈m| γµ |`] (2.27)

make it clear that the BCFW shift (eq. (2.26)) preserves overall momentum conserva-

tion
n∑
i=1

ki = 0 (2.28)

and, furthermore, a small calculation using (2.21) makes it clear that

k`(z)
2 = km(z)2 = 0 . (2.29)

So the BCFW deformation is well-defined after all.

We now evaluate the integral

1

2πi

∮
C
dz
Atree

(
kh11 , · · · , khmm (z), · · · , kh`` (z), · · · , khnn

)
z

(2.30)

in two different ways, assuming that C is a very large circle in the complex z-plane that

encloses all poles of the integrand. Of course, we know the answer must be zero

1

2πi

∮
C
dz
Atree

(
kh11 , · · · , khmm (z), · · · , kh`` (z), · · · , khnn

)
z

= 0 (2.31)
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by virtue of the choice of contour and Cauchy’s theorem. On the other hand6, we can

write

1

2πi

∮
C
dz
Atree

(
kh11 , · · · , khmm (z), · · · , kh`` (z), · · · , khnn

)
z

=

Atree
(
kh11 , · · · , khmm , · · · , kh`` , · · · , k

hn
n

)
+
∑
α

Resz=zα

{
Atree

(
kh11 , · · · , khmm (z), · · · , kh`` (z), · · · , khnn

)
z

}
(2.32)

where α is indexing the poles of the amplitude in z induced in particular factorization

channels by the BCFW shift. Though it is not at all obvious, it can be shown [62] that

it is always possible to find some shift (and associated pair (khmm , kh`` )) for which (2.32)

is valid (we focus on pure glue for now). Combining eqs. (2.31) and (2.32), we see that

the amplitude at the origin of z-space (which is what we want) is given by a sum of

residues of the shifted amplitude divided by z:

Atree
(
kh11 , · · · , khmm , · · · , kh`` , · · · , k

hn
n

)
=

−
∑
α

Resz=zα

{
Atree

(
kh11 , · · · , khmm (z), · · · , kh`` (z), · · · , khnn

)
z

}
. (2.33)

Since the physical poles that amplitudes can develop must all be of the form

1

(ki + · · ·+ ki+j)2
(2.34)

for various i and j, it is possible to develop a recursive algorithm based on eqs. (2.25)

and (2.33).

Specifically, an n-point gluon amplitude can be expressed as a sum over factorization

channels such that km and k` are not both on the same side of the intermediate state7

in (2.25). Each factorization channel should be evaluated after the chosen BCFW shift

has been made, with the value of z fixed by solving the equation (ki+· · ·+ki+j)2(z) = 0.

The technique is best illustrated through a simple example.

6Here we can proceed only under the assumption that the integrand goes to zero fast enough that
C can be safely taken to infinity. This assumption is justified for a large class of shifts [62].

7This is because no residue in z can arise unless there is non-trivial z dependence in (ki+· · ·+ki+j)2.
The fact that BCFW shifts respect momentum conservation makes such non-trivial z dependence
impossible if both shifted particles are on the same side of the intermediate state.
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As such, we derive the six-gluon tree amplitude Atree
(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
using the deformation

λ4(z) = λ4 + zλ3

λ̃3(z) = λ̃3 − zλ̃4 . (2.35)

Possible contributions for this choice of shift are in the s23, s45, and s123 channels.

Clearly the multi-particle channel gives zero contribution, due to the fact that gluon

amplitudes with zero or one negative helicity (and all the rest positive) are protected

by supersymmetry (see Appendix C for a discussion). The s23 and s45 channel graphs

are non-zero and, if we label them A1 and A2, we have

A1 =
∑
h

Atree
(
k1234

2 , k1234
3 (z),−(k2 + k3)−h(z)

) −i
(k2 + k3)2

×

×Atree
(

(k2 + k3)h(z), k4(z), k5, k6, k
1234
1

)
= Atree

(
k1234

2 , k1234
3 (z),−K23(z)

) −i
s23

Atree
(
K1234

23 (z), k4(z), k5, k6, k
1234
1

)
=

i〈2 3̂〉4

〈2 3̂〉〈3̂ − K̂23〉〈−K̂23 2〉
−i
s23

i〈K̂23 1〉4

〈K̂23 4̂〉〈4̂ 5〉〈5 6〉〈6 1〉〈1 K̂23〉
(2.36)

and

A2 =
∑
h

Atree
(
k4(z), k5,−(k4 + k5)−h(z)

) −i
(k4 + k5)2

×

×Atree
(

(k4 + k5)h(z), k6, k
1234
1 , k1234

2 , k1234
3 (z)

)
= Atree

(
k4(z), k5,−K1234

45 (z)
) −i
s45

Atree
(
K45(z), k6, k

1234
1 , k1234

2 , k1234
3 (z)

)
=

i[4̂ 5]4

[4̂ 5][5 − K̂45][−K̂45 4̂]

−i
s45

i[K̂45 6]4

[K̂45 6][6 1][1 2][2 3̂][3̂ K̂45]
. (2.37)

In the above, a hatted spinor variable reminds us which spinors have been shifted. At

this stage, we see why complexified momenta are necessary; if we worked with real

momenta the three-point amplitudes Atree
(
k1234

2 , k1234
3 (z),−K23(z)

)
and

Atree
(
k4(z), k5,−K1234

45 (z)
)

in the above would vanish identically. In order to further

simplify the above equations we need

〈a K̂23〉 =
〈a|K23 |4]

[K̂23 4]
and

[K̂45 b] =
〈3|K45 |b]
〈3 K̂23〉

(2.38)
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together with the solutions of (k2 + k3)2(z) = 0 and (k4 + k5)2(z) = 0:

z23 =
s23

〈3| 2 |4]
and

z45 = − s45

〈3| 5 |4]
. (2.39)

It may concern the reader that we are not able to express all quantities appearing in A1

and A2 explicitly in terms of unshifted spinors. Actually, this will turn out not to be

a problem; all factors of [K̂23 4] and 〈3 K̂23〉 cancel out of the final result as can easily

be verified by counting how many times they will appear in the numerator and in the

denominator of each expression. Applying identities (2.38) to A1 and A2, we finally

obtain

A1 =
i〈2 3〉4

〈2 3〉(〈4 5〉+ z23〈3 5〉)〈5 6〉〈6 1〉s23
×

× 〈1|K23 |4]4

〈3|K23 |4] 〈2|K23 |4] (〈4|K23 |4] + z23 〈3|K23 |4]) 〈1|K23 |4]

A2 =
i[4 5]4

[4 5]([2 3]− z45[2 4])[6 1][1 2]s45
×

× 〈3|K45 |6]4

〈3|K45 |5] 〈3|K45 |4] (〈3|K45 |3]− z45 〈3|K45 |4]) 〈3|K45 |6]
(2.40)

and

Atree(k1234
1 , k1234

2 , k1234
3 , k4, k5, k6) = A1 +A2 (2.41)

which can be confirmed (numerically using e.g. S@M [65]) by comparing to the result

given in [66].

Before moving on to loop-level calculations, we need to say a few words about the

application of BCFW recursion to the simplification of messy rational linear combi-

nations of spinor products. This works well when there is reason to believe that an

expression for which you have an ugly formula naturally collapses down to a single

term. BCFW then allows you to systematically guess the form of the allegedly simple

common denominator. To better understand this we consider the following thought

experiment. Suppose that instead of choosing q1 = q2 = k4 and q3 = q4 = k1 to eval-

uate Atree
(
k1234

1 , k1234
2 , k3, k4

)
in eq. (2.22) we instead made an unintelligent choice of

reference momenta that resulted in more than one Feynman diagram making a non-

zero contribution to the amplitude. Now imagine making a table of all possible BCFW
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shifts, numerically evaluated at a randomly chosen non-degenerate phase-space point.

Initially, we would find that all shifts produce several poles in z. We could deduce that

everything should be put over the common denominator 〈1 2〉〈2 3〉〈3 4〉〈4 1〉 by system-

atically multiplying the unsimplified expression for Atree
(
k1234

1 , k1234
2 , k3, k4

)
by each

invariant in the problem and then checking to see if our table of all BCFW shifts has

a simpler z-pole structure or not. In short order, we would be able to deduce that

Atree
(
k1234

1 , k1234
2 , k3, k4

)
=

C

〈1 2〉〈2 3〉〈3 4〉〈4 1〉
. (2.42)

This is powerful because evaluating BCFW shifts numerically is a lot less labor inten-

sive than attempting an analytic simplification. Once the denominator is determined,

it is then a simple matter to use dimensional analysis and the known little group rescal-

ing properties8 of the amplitude to fix C = 〈1 2〉4. This thought experiment might

seem somewhat contrived, but, at least in N = 4, many loop-level calculations result

in objects that are naturally put over a single denominator. While more non-trivial

amplitudes have constituents like 〈2| 5 + 3 |6] and 〈6|4 + 5|2 + 3|1〉, it is straightforward

to try a large number of guesses in a fraction of a second using a computer. Once

the denominator is determined, it is typically possible to apply the dual constraints of

little group covariance and correct dimensionality to great effect. All new results in this

thesis were simplified using some variant of this technique.

Finally, we should emphasize that arbitrary tree-level scattering processes in N = 4

can be generated using BCFW recursion [27, 64] provided that the above discussion

is supersymmetrized and described in the language of the N = 4 on-shell superspace

introduced in Section 5.

2.5 Generalized Unitarity in Four Dimensions

We now turn to loop-level calculations. Most of the calculations in this thesis are at the

one-loop level, but the ideas reviewed in this subsection and the next, with appropriate

8The little group of the Lorentz group in four dimensions for a massless external state is SO(2).
Keeping in mind ki = λiλ̃i, we expect scattering amplitudes to transform covariantly under the rescaling
λi → tiλ, λ̃i → t−1

i λ̃i. The precise transformation law of course depends on the helicities of the massless

external particles in the scattering process: we have A(tiλi, t
−1
i λ̃i;hi) =

(∏n
i=1 t

−2hi
i

)
A(λi, λ̃;hi).
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modifications, have been applied to multi-loop calculations as well. The program of

generalized unitarity pioneered by Bern, Dixon, Dunbar, and Kosower [67, 68] was

developed to replace the traditional Feynman diagram based approach to loop-level

calculations. For most loop-level applications it is much more efficient to use generalized

unitarity diagrams because they are built out of on-shell tree amplitudes and the number

of contributions scales roughly like number of topologies times the number of particle

species allowed to run in the loop. This is a already a big improvement over the usual

Feynman diagram expansion. As will be made clear, once you take into account the

fact that each diagram is also easier to compute, the generalized unitarity approach is

even more attractive.

As was made clear in the introduction, any one-loop planar N = 4 amplitude can

be written as

A1−loop
1 (kh11 , · · · , khnn ) =

∑
α

CαI
(α)
4 +O(ε) , (2.43)

where α labels the specific kinematic structure of the box integral (more on our labeling

scheme below) and each box integral is evaluated through O(ε0). Much of the power of

the generalized unitarity technique comes from (2.43), so it is worth spending some time

trying to understand it. It turns out that (2.43) is very special to N = 4. An equation

similar to (2.43) would hold for generic N = 2 and N = 1 gauge theories, except that

triangle and bubble integrals (discussed briefly in the introduction) would have to be

added to the box integrals on the right-hand side [24, 67]. Less supersymmetry (i.e.

N = 1 super Yang-Mills) makes such a relation less powerful and a little more difficult

to work with (see e.g. [69]). For N = 0 it becomes harder still and we really need ideas

from the next subsection to make an analogous construction.

Before we start, we need a convenient way to enumerate the box topologies for

a planar n-particle scattering process. Consider, as usual, a regular n-gon with one

external line attached at each vertex. In an approach based on Feynman diagrams

this would be the highest-point Feynman integral that could possibly appear prior to
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integral reduction. There are  n

n− 4

 =
n!

(n− 4)!4!
(2.44)

ways to collapse this n-gon down to a box. Consequently, it is natural to label each box

in the integral basis by an n − 4-tuple of integers corresponding to the internal lines

that need to be erased to produce the box in question9. In this thesis we will mostly

be interested in n = 6 for which (2.44) gives 15 boxes.

This formula gives the largest number of boxes that could possibly appear. De-

pending on the helicity configuration, certain classes of boxes may make no contri-

bution to the sum in (2.43). To be less cryptic, we write (2.43) out explicitly for

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5, k6

)
and A1−loop

1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
:10

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5, k6

)
=
AMHV
n; 〈1 2〉

2

(
− s3s4I

(1,2)
4 − s4s5I

(2,3)
4 − s5s6I

(3,4)
4

−s1s6I
(4,5)
4 − s1s2I

(5,6)
4 − s2s3I

(1,6)
4 + (s3s6 − t2t3)I

(1,4)
4 + (s1s4 − t1t3)I

(2,5)
4

+(s2s5 − t1t2)I
(3,6)
4 +O(ε)

)
(2.45)

A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
= − i

2
×

×〈1 2〉〈2 3〉[4 5][5 6] 〈3| (1 + 2) |6] 〈1| (2 + 3) |4] t31
s1s2s4s5(t1t2 − s2s5)(t1t3 − s1s4)

(
s4s5I

(2,3)
4 + s1s2I

(5,6)
4 + s6t1I

(3,5)
4

+s3t1I
(2,6)
4

)
− i

2

((
〈1| (2 + 3) |4]

t2

)4 〈2 3〉〈3 4〉[5 6][6 1] 〈4| (2 + 3) |1] 〈2| (3 + 4) |5] t32
s2s3s5s6(t2t3 − s3s6)(t2t1 − s2s5)

9Our convention will be to start counting with the propagator connecting the 1st and nth vertices.

10In eqs. (2.45) and (2.46) si ≡ si i+1 and ti ≡ si i+1 i+2, where indices are mod 6. We will frequently
use this notation in our discussions of six-point scattering. The notation can, of course, be generalized to
describe a basis of kinematic invariants for arbitrary n. For instance, at the eight-point level, invariants
like w1 ≡ (k1 + k2 + k3 + k4)2 will enter.
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+

(
〈2 3〉[5 6]

t2

)4 [2 3][3 4]〈5 6〉〈6 1〉 〈1| (2 + 3) |4] 〈5| (3 + 4) |2] t32
s2s3s5s6(t2t3 − s3s6)(t2t1 − s2s5)

)(
s5s6I

(3,4)
4

+s2s3I
(6,1)
4 + s1t2I

(4,6)
4 + s4t2I

(1,3)
4

)
− i

2

((
〈3| (1 + 2) |6]

t3

)4

×

×〈6 1〉〈1 2〉[3 4][4 5] 〈2| (6 + 1) |5] 〈6| (1 + 2) |3] t33
s6s1s3s4(t3t1 − s1s4)(t3t2 − s6s3)

+

(
〈1 2〉[4 5]

t3

)4

×

× [6 1][1 2]〈3 4〉〈4 5〉 〈5| (6 + 1) |2] 〈3| (1 + 2) |6] t33
s6s1s3s4(t3t1 − s1s4)(t3t2 − s6s3)

)(
s6s1I

(4,5)
4 + s3s4I

(1,2)
4

+s2t3I
(1,5)
4 + s5t3I

(2,4)
4

)
+O(ε) . (2.46)

In the six-point MHV amplitude, all of the boxes with two adjacent external masses

enter with zero coefficient and in the six-point NMHV amplitude all of the boxes with

two diametrically opposed external masses enter with zero coefficient. Boxes with two

external masses are special in that they have different analytic structures depending on

whether the two external masses are adjacent or diametrically opposed. For historical

reasons, two mass box integrals with adjacent external masses are called two mass hard

and two mass box integrals with diametrically opposed external masses are called two

mass easy.

Explicit formulae for these box integral functions will be provided shortly, but first

let us say a few more words about (2.43). Clearly, the zero mass box will only appear

for the special case of four particle scattering. For general n, planar N = 4 MHV ampli-

tudes are built out of one mass and two mass easy boxes [67] and planar N = 4 NMHV

amplitudes are built out of one mass, two mass easy, two mass hard, and three mass

boxes [63]; four mass boxes don’t appear until the eight-point N2MHV level. In particu-

lar, the absence of two mass easy basis integrals in A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
does not generalize to higher n NMHV amplitudes.

Before going further, we need to carefully define the one-loop Feynman integrals

which enter into our perturbative calculations. In general, the Feynman integrals that

enter into calculations in massless gauge theories have severe IR divergences that need

to be regulated. In dimensional regularization [8] one regulates the IR divergences by

analytically continuing the scattering amplitude under consideration from D = 4 to

D = 4 − 2ε and then computing its Laurent expansion about ε = 0 (see Appendix A
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for background). We make the definition

ID=4−2ε
n ≡ i(−1)n+1(4π)2−ε

∫
d4−2εp

(2π)4−2ε

1

p2 . . . (p−
∑n−1

i=1 Ki)2
(2.47)

= i(−1)n+1(4π)2−ε
∫

d4p

(2π)4

d−2εµ

(2π)−2ε

1

(p2 − µ2) . . . ((p−
∑n−1

i=1 Ki)2 − µ2)
.

The prefactor i(−1)n+1(4π)2−ε cancels a factor of i(−1)n(4π)ε−2 that always arises in

the calculation of one-loop Feynman integrals and on the second line we have explicitly

separated out the integrations into four dimensional and −2ε dimensional pieces. This

second form will be useful in the next subsection and later on in this thesis. In what

follows, we give explicit results for a representative sample of basis integrals that enter

into planar one-loop N = 4 scattering amplitudes. For our representative of each

integral species, we shall use the kinematics of the point at which the basis integral

first enters into the sum in eq. (2.43). For example, we use five-point kinematics for

the one mass box because this integral first appears in planar one-loop five-point MHV

amplitudes. A technical point to be aware of is that, in expanding an L-loop Feynman

integral in ε, a factor of eγEε L is expanded with the Feynman integral in order to

prevent a proliferation of factors of γE that would otherwise occur. This remark and

definition (2.48) explain why the prefactors in eq. (2.10) have the form that they do.

Following [68] (and checking against the more recent article [63]) we have:

I4 =
Γ(1 + ε)Γ2(1− ε)
stΓ(1− 2ε)

{
2

ε2

[
(−s)−ε + (−t)−ε

]
− ln2

(
−s
−t

)
− π2

}
, (2.48)

I
(5)
4 =

−2Γ(1 + ε)Γ2(1− ε)
s1s2 Γ(1− 2ε)

{
− 1

ε2

[
(−s1)−ε + (−s2)−ε − (−s4)−ε

]
+ Li2

(
1− s4

s1

)
+ Li2

(
1− s4

s2

)
+

1

2
ln2

(
−s1

−s2

)
+
π2

6

}
, (2.49)

I
(2,5)
4 =

−2Γ(1 + ε)Γ2(1− ε)
(t1t3 − s1s4) Γ(1− 2ε)

{
− 1

ε2

[
(−t1)−ε + (−t3)−ε − (−s1)−ε − (−s4)−ε

]
+ Li2

(
1− s1

t1

)
+ Li2

(
1− s1

t3

)
+ Li2

(
1− s4

t1

)
+ Li2

(
1− s4

t3

)
− Li2

(
1− s1s4

t1t3

)
+

1

2
ln2

(
−t1
−t3

)}
, (2.50)
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I
(2,4)
4 =

−2Γ(1 + ε)Γ2(1− ε)
s5t3 Γ(1− 2ε)

{
− 1

2ε2

[
(−s5)−ε + 2(−t3)−ε − (−s1)−ε − (−s3)−ε

]
−1

2
ln

(
−s1

−s5

)
ln

(
−s3

−s5

)
+

1

2
ln2

(
−s5

−t3

)
+ Li2

(
1− s1

t3

)
+ Li2

(
1− s3

t3

)}
, (2.51)

I
(3,5,7)
4 =

−2Γ(1 + ε)Γ2(1− ε)
(t1t6 − s2s6) Γ(1− 2ε)

{
− 1

2ε2

[
(−t1)−ε + (−t6)−ε − (−s2)−ε − (−s6)−ε

]
−1

2
ln

(
−s2

−t6

)
ln

(
−s4

−t6

)
− 1

2
ln

(
−s4

−t1

)
ln

(
−s6

−t1

)
+

1

2
ln2

(
−t1
−t6

)
+ Li2

(
1− s2

t1

)
+ Li2

(
1− s6

t6

)
− Li2

(
1− s2s6

t1t6

)}
, (2.52)

I
(2,4,6,8)
4 =

−Γ(1 + ε)Γ2(1− ε)
w1w3ρΓ(1− 2ε)

{
− Li2

(
1

2
(1− λ1 + λ2 + ρ)

)
(2.53)

−Li2

(
− 1

2λ1
(1− λ1 − λ2 − ρ)

)
+ Li2

(
− 1

2λ1
(1− λ1 − λ2 + ρ)

)
+ Li2

(
1

2
(1− λ1 + λ2 − ρ)

)
− 1

2
ln

(
λ1

λ2
2

)
ln

(
1 + λ1 − λ2 + ρ

1 + λ1 − λ2 − ρ

)}
,

where

ρ ≡
√

1− 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2 , (2.54)

and

λ1 =
s1s3

w1w3
, (2.55)

λ2 =
s5s7

w1w3
. (2.56)

We will never need to use these results directly to compute our amplitudes. By

combining a power variant of the optical theorem for Feynman diagrams (if unfamiliar

see e.g. [10]), the fact that the above integrals form a complete basis for one-loop planar

N = 4 scattering amplitudes through O(ε0), and the fact that the above integrals are

uniquely determined by how they develop residues when viewed as contour integrals

in C4 (there is a canonical choice for the contours which shall be discussed shortly),

we can deduce all of the coefficients in the sum of eq. (2.43) for any given amplitude

without explicitly evaluating a single Feynman integral [67, 70]. This is the power of the
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generalized unitarity technique in the context of planar N = 4.11 This is a remarkable

claim, so we examine it in detail. First let us be clear about one subtle point, in the

above formulae all of the basis integrals were evaluated in the Euclidean region after

Wick rotation because this is technically easier; in the Euclidean region the Laurent

expansions of Feynman loop integrals have real coefficients. In what follows we deal

with Feynman integrals before Wick rotation and therefore it makes sense to ignore the

prefactor of i(−1)n+1(4π)2−ε until we actually have our final answer and are ready to

Wick rotate from Minkowski space to Euclidean space. At that point it can be trivially

restored. In general, it is useful to think about loop calculations in two phases, the

first being the determination of the coefficients in eq. (2.43) and the second being the

actual analytical evaluation of the basis integrals.

To better understand how generalized unitarity is superior to Feynman diagrams,

we compare the two approaches for the simple example of the five-point amplitude

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5). This exercise is perfect for us because the actual answer

is well-known and it fits on a page even if written out in gory detail:

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) =

i
AMHV

5;〈12〉

2

(
s2s3I

(1)
4 + s3s4I

(2)
4 + s4s5I

(3)
4 + s5s1I

(4)
4 + s1s2I

(5)
4 +O(ε)

)
, (2.57)

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) =

i
AMHV

5;〈12〉

2

(
s2s3

∫
d4−2εp

(2π)4−2ε

1

(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2(p+ k5)2

+s3s4

∫
d4−2εp

(2π)4−2ε

1

p2(p− k1 − k2)2(p+ k4 + k5)2(p+ k5)2

+s4s5

∫
d4−2εp

(2π)4−2ε

1

p2(p− k1)2(p+ k4 + k5)2(p+ k5)2

+s5s1

∫
d4−2εp

(2π)4−2ε

1

p2(p− k1)2(p− k1 − k2)2(p+ k5)2

+s1s2

∫
d4−2εp

(2π)4−2ε

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2
+O(ε)

)
. (2.58)

We now argue that, by complexifying the loop momentum, p, and changing the contour

from the usual one over all R1,3 to a particular 4-torus T 4 ∼= S1×S1×S1×S1 embedded

11As mentioned before, similar arguments can be used to greatly simplify calculations in theories with
less supersymmetry. However, such calculations are usually harder because the ansatz for the amplitude
(right-hand side of (2.43)) will be less tightly constrained and may contain many more terms.
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in C4, we can isolate a single coefficient, say is1s2A
MHV
5;〈12〉/2, on the right-hand side of

(2.58).

To obtain a meaningful relation, we will of course be interested in somehow per-

forming the same sequence of operations on the left-hand side of (2.58). This is less

obvious and is where the optical theorem for Feynman diagrams comes into play. Ul-

timately, the left-hand side will be evaluated using a variant of the optical theorem,

generalized unitarity, a name coined by in Eden, Landshoff, Olive, and Polkinghorne

in their classic text [71].12 For now, one should simply remember that we must at

some point return to the question of how to make sense of the “raw” expression for the

amplitude (that delivered directly from Feynman diagrams) with respect to whatever

contours of integration we introduce on the right-hand side of (2.58).

The idea proposed above is well-motivated. One of the main reasons loop-level

computations (even in UV finite theories like N = 4) are hard is that one has to worry

about regulating divergences in the momentum integrals over all p-space. It would be

nice if there was some meaningful IR-finite data that one could extract by considering

the amplitude on contours in C4 other than R1,3. We now show how this is realized in

the present example. We consider eq. (2.58) on a contour Γp defined by

Γp = {p ∈ C4 : |p2| < δ, |(p−k1)2| < δ, |(p−k1−k2)2| < δ, |(p+k4+k5)2| < δ} (2.59)

for sufficiently small δ. On this contour, we can evaluate the right-hand side of eq.

(2.58),

i
AMHV

5;〈12〉

2

(
s2s3

∫
Γp

d4p

(2πi)4

1

(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2(p+ k5)2

+s3s4

∫
Γp

d4p

(2πi)4

1

p2(p− k1 − k2)2(p+ k4 + k5)2(p+ k5)2

+s4s5

∫
Γp

d4p

(2πi)4

1

p2(p− k1)2(p+ k4 + k5)2(p+ k5)2

+s5s1

∫
Γp

d4p

(2πi)4

1

p2(p− k1)2(p− k1 − k2)2(p+ k5)2

+s1s2

∫
Γp

d4p

(2πi)4

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2

)
, (2.60)

12We should point out that most of the formalism reviewed in this subsection was developed in [72].
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using a multidimensional generalization of Cauchy’s residue theorem. Note that we

have set ε to zero. Very soon we will see that, on Γp, eq. (2.58) is perfectly well-defined

in D = 4. Γp is a product of four tiny circles that wrap all of the singularities of the

integrand

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2

in C4 and, furthermore, fail to wrap all four of the singularities of any of the other four

integrands. The so-called global residue theorem [73] allows us to evaluate (2.60) in an

incredibly straightforward fashion. The first four terms in (2.60) give zero contribution

because a non-zero contribution can only arise if all singularities of the integrand are

wrapped by the contour. The final term,

i
AMHV

5;〈12〉

2
s1s2

∫
Γp

d4p

(2πi)4

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2
,

evaluates to

i
AMHV

5;〈12〉

2
s1s2 det−1

(
∂

∂pµ
(p−Ki)

2

) ∣∣∣∣∣
pµ= p∗µ

, (2.61)

where the new factor is just the Jacobian that results if one changes the integration

variables from the pµ to the propagator denominators, (p − Ki)
2, themselves. This

Jacobian is evaluated on the solution of the four equations (p∗ − Ki)
2 = 0. Thus, it

appears that our strategy to isolate the integral coefficient is1s2A
MHV
5;〈12〉/2 was almost

successful. The only problem is that the definition of Γp does not specify a unique

contour of integration; the system (p∗ − Ki)
2 = 0 has two solutions, p∗ (1) and p∗ (2).

The question of which contour is the “right” one to use is an important technical one

that we return to later; it will be much easier to address this point once we’ve explained

how to interpret the left-hand side of eq. (2.58) evaluated on Γp.

The optical theorem for Feynman diagrams is usually presented in text books (see

e.g. [10]) for individual Feynman diagrams. In its simplest incarnation, it relates the

product of two tree-level diagrams integrated over an appropriate Lorentz invariant

phase-space (of the external lines of the two tree amplitudes that depend on p) to the

imaginary part of the one-loop Feynman diagram built by gluing together the two tree

diagrams in the kinematic channel under consideration (called the channel “being cut”).
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Technically speaking, a cut can be implemented by replacing of a set of propagators by

delta functions that force the momenta carried by the replaced propagators on-shell.

From this point of view, the optical theorem is only useful as a cross-check on indi-

vidual Feynman diagrams, not as a calculational tool. However, the generalized version

of the optical theorem is much more powerful because it relates on-shell tree amplitudes

integrated over an appropriate Lorentz invariant phase-space to the imaginary parts of

pieces of complete one-loop amplitudes. Furthermore, one might hope that N = 4 is a

theory where the integral basis is such that the analytic structure of each basis element

can be deduced from its imaginary part without any ambiguities. Indeed, as was shown

in [67], N = 4 is in the class of so-called cut-constructible theories. One might guess

that this is the case by looking at the explicit formulae of eqs. (2.48)-(2.54).

To better understand this discussion, we introduce our variant of the optical theorem

and apply it to the I
(5)
4 topology of A1−loop

1 (k1234
1 , k1234

2 , k3, k4, k5). Consider the com-

plete set of Feynman diagrams that have gluons running in the loop13 and the topology

of I
(5)
4 . It is worth pointing out that the set of Feynman diagrams contributing will

be smaller if we work in background field gauge. It was first understood in [67] that

there are enormous practical advantages to working in background field gauge when one

is faced with the task of computing a one-loop N = 4 scattering amplitude in which

all the external states are gluons. The reason for this is that the use of background

field gauge reduces the degree of the loop momentum polynomial in the numerator of

each Feynman integrand. In the calculation of an n-point scattering amplitude, one

expects a loop momentum polynomial of degree n − 4 in the numerator of an n-point

contribution to the amplitude. For us, this means that the use of background field

gauge will allow us to express A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) in such a way that there

will be at most one power of the loop momentum in any given term in the numerator

of the Feynman integral with five propagator denominators (pentagon topology) and

13In the particular case of A1−loop
1 (k12341 , k12342 , k3, k4, k5), it turns out that, once internal lines are put

on-shell, the SU(4)R symmetry does not allow non-zero contributions from fermions or scalars. This
is a general phenomenon that will occur in pure-glue one-loop N = 4 amplitudes whenever multiple
external lines are attached to a corner of a generalized unitarity diagram and all of these lines are
positive (or negative) helicity gluons.
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no powers of the loop momentum in the numerators of the five daughter integrals (the

notion of daughter integral is explained in A.3) with four propagator denominators (box

topology).

First let’s think about the pentagon diagram. It is possible to exploit that fact that

there is at most one power of the loop momentum in the numerator of the pentagon

diagram to reduce the pentagon diagram to a sum over boxes. We can see this directly

from results derived in [25] truncated to O(ε0). If we Feynman parametrize the loop

momentum in the pentagon diagram using Feynman parameters xi, the following two

formulas can be used to write the pentagon diagram as a sum of scalar box integrals:

I5 =
1

2

5∑
j=1

CjI
(j)
4 +O(ε) (2.62)

I5[xi] =
1

2

5∑
j=1

S−1
ij I

(j)
4 +O(ε) (2.63)

In A.3 we derive these formulae and carefully define the functions Cj and Sij . The

important point is that there is a piece of the pentagon diagram that has the same

topology as the other two true box diagrams that contribute and it is this piece that

should be grouped together with those diagrams.

At last, we are set up to explain the principle of generalized unitarity. Suppose

we cut through, say, propagators one and three in the two true box diagrams and

the relevant piece of the reduced pentagon. The claim is that, if we add up all three

pieces, the fact that they share the same topology (and we have added up all possible

contributions) guarantees that the sum will be a product of two on-shell tree amplitudes,

one with external momenta −p, k1, k2, and p− k1−k2 and one with external momenta

−p+k1 +k2, k3, k4, k5 and p , integrated over the appropriate Lorentz invariant phase-

space. Since N = 4 is cut-constructible, we can easily invert this process and deduce

complete one-loop integrands of a particular topology by calculating two appropriate

on-shell tree amplitudes and tacking on a couple of missing propagator denominators.

In fact, this discussion motivates replacing Feynman diagrams completely in favor of

what we’ll call generalized unitarity diagrams.

Using generalized unitarity with double cuts is already very powerful, but we want
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to do even better. We would like to use the principle of generalized unitarity in a way

that meshes well with our earlier discussion of multidimensional contour integrals and

the right-hand side of eq. (2.58). What this amounts to is cutting all the propagators in

all contributions with a particular box topology. In other words, we can reconstruct the

integrand of the piece of the one-loop amplitude A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) (with

gluons running in the loop) and topology I
(5)
4 by first multiplying four appropriate tree

amplitudes together (three three-point amplitudes and one four-point amplitude) and

then tacking on the missing propagator denominators:

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I
(5)
4

= (2.64)∫
d4p

(2πi)4
Atree

(
−p, k1234

1 , (p− k1)1234
)
Atree

(
(−p+ k1), k1234

2 , p− k1 − k2

)
×

×Atree
(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
Atree

(
(−p− k4 − k5)1234, k4, k5, p

1234
)
×

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2

+

∫
d4p

(2πi)4
Atree

(
−p, k1234

1 , p− k1

)
×

×Atree
(
(−p+ k1)1234, k1234

2 , p− k1 − k2

)
Atree

(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
×

×Atree
(
(−p− k4 − k5)1234, k4, k5, p

1234
) 1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2

In this example, there are just two consistent assignments of the internal SU(4)R indices

that would not obviously give a vanishing result by virtue of the SUSY Ward identities

A(k1, k2, · · · , kn) = 0 and A(k1234
1 , k2, · · · , kn) = 0 or their parity conjugates14. In

general, one should sum over all the internal configurations allowed by the SU(4)R

symmetry.15 There is, however, a more subtle constraint which forces the first term in

eq. (2.65) to zero. It turns out that when there are configurations with two on-shell

three-point amplitudes next to each other, the adjacent three-point amplitudes must

have different SU(4)R index structures or they vanish [74]. Therefore, the product

Atree
(
−p, k1234

1 , (p− k1)1234
)
Atree

(
(−p+ k1), k1234

2 , p− k1 − k2

)
Atree

(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
Atree

(
(−p− k4 − k5)1234, k4, k5, p

1234
)

14Parity acts on scattering amplitudes as complex conjugation (interchange of angle and square
brackets in spinor products).

15In component language, what we mean is that, usually, the four Majorana fermions running in the
loop and the three complex scalars running in the loop would give non-vanishing contributions.
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must vanish because Atree
(
(−p+ k1), k1234

2 , p− k1 − k2

)
and

Atree
(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
have the same SU(4)R index structure.

All the hard work is now done and we can evaluate the reconstructed one-loop

integrand of eq. (2.65) as a contour integral (with Γp as the contour) in exactly the

same way that we evaluated the right-hand side of eq. (2.60). We find that eq. (2.65)

gives

Atree
(
−p, k1234

1 , p− k1

)
Atree

(
(−p+ k1)1234, k1234

2 , p− k1 − k2

)
×

×Atree
(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
Atree

(
(−p− k4 − k5)1234, k4, k5, p

1234
)
×

×det−1

(
∂

∂pµ
(p−Ki)

2

) ∣∣∣∣∣
pµ= p∗µ

, (2.65)

where p∗ (i) represents either of the two solutions of (p∗−Ki)
2 = 0. Finally, we can put

together the left- and right-hand sides of (2.58) evaluated on Γp:

Atree
(
−p, k1234

1 , p− k1

)
Atree

(
(−p+ k1)1234, k1234

2 , p− k1 − k2

)
×

×Atree
(
(−p+ k1 + k2)1234, k3, p+ k4 + k5

)
×

×Atree
(
(−p− k4 − k5)1234, k4, k5, p

1234
) ∣∣∣∣∣
pµ=p∗µ

= i
AMHV

5;〈12〉

2
s1s2 , (2.66)

where we have cancelled a Jacobian factor from both sides. The only loose end to tie

up is what to do about the fact that there are actual two distinct contours specified by

Γp. There is no natural reason to chose one solution of (p∗ −Ki)
2 = 0 over the other

and, to make matters worse, it appears that the equations defined by (2.66) are not

consistent. On one solution to (p∗−Ki)
2 = 0, p∗ (1) = kµ1 + 1/2 〈2 3〉 〈1| γµ |2] /〈1 3〉, the

product of trees on the left-hand side of (2.66) is is1s2A
MHV
5;〈12〉 and on the other solution,

p∗ (2) = kµ1 + 1/2 [2 3] 〈2| γµ |1] /[1 3], the product of trees is 0. To summarize, our two

equations read

0 = i
s1s2

2
AMHV

5;〈12〉 (2.67)

is1s2A
MHV
5;〈12〉 = i

s1s2

2
AMHV

5;〈12〉 (2.68)

The reason for the lack of consistency is that we truncated our basis at O(ε0). As we

will see in the next section, adding a massless pentagon integral to the basis of Feynman
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integrals fixes this apparent inconsistency in a very nice way. For now, we appeal to

symmetry to fix our problem [70]. Our two solutions, p∗ (1) and p∗ (2), are related by

parity symmetry (complex conjugation of the spinor products). We want our final

answer to be parity invariant and one way to ensure this is to simply add eqs. (2.67)

and (2.68). If we do this we find that the left-hand side is equal to the right-hand side,

which implies that this procedure works, at least for A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5). It

turns out that this ad hoc prescription will work for general one-loop amplitudes if one

doesn’t care about the higher order in ε pieces of the amplitude. For general multi-loop

amplitudes, however, such sloppy analysis is simply not sufficient. We will also need

something better for our all-orders-in-ε computations at the one-loop level. It is to this

that we turn in the next subsection.

2.6 Generalized Unitarity in D Dimensions

The great thing about generalized unitarity is that it works in very general situations

(the unitarity of the S-matrix is a consequence of probability conservation in quantum

mechanics). In particular, generalized unitarity is compatible with dimensional regu-

larization because dimensional regularization preserves unitarity. As was shown shortly

after the seminal papers on the generalized unitarity technique were published, there

is no inherent restriction to O(ε0); if desired, one can compute amplitudes to all orders

in ε by working a little harder. [75] We explain how this works in the context of the

example of the last subsection and, in the process, explain how one needs to modify

the basis of planar one-loop box integrals used so far if one is interested in computing

planar N = 4 amplitudes to all orders in the dimensional regularization parameter.

At the five-point level, there is an obvious candidate integral that one could try

adding to the basis of scalar boxes: the massless pentagon. Let us try to prove that

there is a non-vanishing pentagon contribution to A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) that

we ignored in the last subsection. Our experience in 2.5 has taught us that it is a

bad idea to try and think of the pentagon integrals in the problem as reductive box

contributions from the start. Rather, we should make the most general ansatz of scalar

basis integrals that makes sense and let the amplitude decide how it wants to be written.
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To this end, we perform the same generalized unitarity analysis on the left-hand side of

(2.58) that we did in the last subsection but this time make an ansatz
∑

iAi I
(i)
4 +B I5

for the right-hand side. As before, we can get a non-zero contribution from A4I
(5)
4 but

now we will also have a non-zero contribution from B I5:

B

∫
Γp

d4p

(2πi)4

1

p2(p− k1)2(p− k1 − k2)2(p+ k4 + k5)2(p+ k5)2
(2.69)

= B
1

(p+ k5)2
det−1

(
∂

∂pµ
(p−Ki)

2

) ∣∣∣∣∣
pµ= p∗µ

.

This makes all the difference. Instead of eqs. (2.67) and (2.68) we now have the system

0 = A4 +B
1

(p∗ (1) + k5)2
(2.70)

is1s2A
MHV
5;〈12〉 = A4 +B

1

(p∗ (2) + k5)2
(2.71)

which is consistent and solvable. We will follow [70] and refer to this technique as the

leading singularity method (the leading singularities being the left-hand sides of the

above equations). We find

A4 = −iAMHV
5;〈12〉

s1s2β̃5

β5 − β̃5

, B = iAMHV
5;〈12〉

s5s1s2

β5 − β̃5

, (2.72)

where

β5 =

(
1 +
〈23〉[25]

〈13〉[15]

)−1

, β̃5 =

(
1 +
〈25〉[23]

〈15〉[13]

)−1

. (2.73)

The formula for A4 bears no resemblance to is1s2A
MHV
5;〈12〉/2 and, indeed, one can check

numerically (using e.g. S@M [65]) that they are not equal. At first sight, it appears

that the leading singularity method fails to reproduce the known result. In actuality

there is no contradiction because, secretly, the result obtained in the previous subsection

was expressed in terms of a different basis with 4 − 2ε dimensional boxes and 6 − 2ε

dimensional pentagon integrals as opposed to the 4− 2ε dimensional box and pentagon

integrals we used above. The connection between these two bases is the reduction

formula derived in A.3 using traditional techniques:16

ID=4−2ε
5 =

1

2

[ 5∑
j=1

CjI
(j), D=4−2ε
4 + 2εC0I

D=6−2ε
5

]
. (2.74)

16Note that eq. (2.74) employs the original conventions of definition (2.48).
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The answer looks much nicer in this basis (employed in the last subsection) because, in

that basis, the higher order in ε terms are more cleanly separated from those that are

present through O(ε0). This is related to the fact that there will always be an explicit

ε out front of ID=6−2ε
5 and ID=6−2ε

5 is both UV and IR finite [25]. In this thesis, we

will refer to the basis with all elements expanded about D = 4 as the geometric basis

and the basis with ID=6−2ε
5 pentagons as the dual conformal basis (this notation will

be motivated in Section 6). Simplifying (2.72) after projecting the geometric basis onto

the dual conformal basis using (2.74), we find that

Ã4 = −s1s2

2
AMHV

5;〈12〉 (2.75)

as before and

B̃ = ε ε(1, 2, 3, 4)AMHV
5;〈12〉 , (2.76)

where we have made the useful definition

ε(i, j,m, n) ≡ 4iεµνρσk
µ
i k

ν
j k

ρ
mk

σ
n = [i j]〈j m〉[mn]〈n i〉 − 〈i j〉[j m]〈mn〉〈n i〉 . (2.77)

In above eq. (2.75) is the coefficient of I
(5), D=4−2ε
4 and eq. (2.76) is the coefficient of

ID=6−2ε
5 in the conventions of definition (2.48).

What we have learned is that, in the case of A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5), we are

able to learn all about the higher-order in ε pieces of the amplitude without ever leaving

four dimensions. It would be great if the leading singularity method gave us all of the

pentagon coefficients for arbitrary n but, unfortunately, life is not so simple. In fact, as

we shall see in the next subsection, one needs to develop more machinery to calculate

the pentagon integrals already at the six-point level. In a nutshell, what we need to do

is to further develop the D dimensional unitarity technique of Bern and Morgan [75]

to reconstruct one-loop integrands in N = 4 without dropping any higher order in ε

pieces.

We now review the Bern-Morgan approach to D-dimensional integrand reconstruc-

tion to prepare the reader for the next section where we discuss simple extensions of

their results. As an illustration, we consider the amplitude A1−loop
1;N=0(k1, k2, k3, k4) in

pure Yang-Mills theory. Following [75], the remind the reader of the second form for
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ID=4−2ε
4 where we split up the integral over the loop momentum into four dimensional

and −2ε dimensional pieces:

ID=4−2ε
4 = −i(4π)2−ε × (2.78)

×
∫

d4p

(2π)4

d−2εµ

(2π)−2ε

1

(p2 − µ2)((p− k1)2 − µ2)((p− k1 − k2)2 − µ2)((p+ k4)2 − µ2)
.

If we consider an s-channel cut of the above zero mass box integral, we find the on-shell

conditions

p2 = µ2 (p− k1 − k2)2 = µ2 . (2.79)

It follows that, to reconstruct the complete one-loop integrand in D dimensions using

the principle of generalized unitarity, one should simply imagine that the lines of the

tree amplitudes on either side of the unitarity cut(s) (external lines of the trees that

have p-dependent momenta) have a mass µ. Actually, the procedure of gluing trees

together to form loops is a little more complicated in D dimensions because there is (so

far) no analog of the spinor helicity framework in −2ε dimensions. Consequently, the

whole process is more closely related to traditional perturbation theory. In particular,

summing over internal degrees of freedom inside the loop being reconstructed is much

more labor intensive than it is in four dimensions. One trick to try and avoid tedious

algebra, which works better in some situations than in others, is to perform a super-

symmetric decomposition of the amplitude. For example, if we rewrite a loop of gluons

in the following way:

Ag = (Ag + 4Af + 3As)− 4(Af +As) +As

We see that the contribution from a loop of gluons (i.e. pure Yang-Mills theory) can be

derived by summing the answer in N = 4 and the contribution from a loop of complex

scalars and then subtracting off the contribution from four N = 1 chiral multiplets.

For the present application this works beautifully because the first two terms on the

right-hand side of the above equation are protected by supersymmetry and vanish (see

Appendix C). It follows that

A1−loop
1;N=0(k1, k2, k3, k4) = A1−loop

1; scalar(k1, k2, k3, k4) (2.80)
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and, in this particular case, we can avoid some numerator algebra by calculating

A1−loop
1; scalar(k1, k2, k3, k4) instead of A1−loop

1;N=0(k1, k2, k3, k4).

Generalized unitarity applied to A1−loop
1; scalar(k1, k2, k3, k4) gives

1

(4π)2−εA
1−loop
1; scalar(k1, k2, k3, k4) =∫

d4p

(2π)4

d−2εµ

(2π)−2ε

(
i

p2 − µ2
Atreeµ2 ((−p)s, k1, k2, (p− k1 − k2)s̄)

i

(p− k1 − k2)2 − µ2
×

×Atreeµ2 ((−p+ k1 + k2)s, k3, k4, ps̄) +
i

p2 − µ2
Atreeµ2 ((−p)s̄, k1, k2, (p− k1 − k2)s)×

× i

(p− k1 − k2)2 − µ2
Atreeµ2 ((−p+ k1 + k2)s̄, k3, k4, ps)

)
. (2.81)

The massive scalar amplitudes Atreeµ2 ((−p)s, k1, k2, (p− k1 − k2)s̄) and

Atreeµ2 ((−p)s̄, k1, k2, (p− k1 − k2)s) are equal, as are Atreeµ2 ((−p+ k1 + k2)s, k3, k4, ps̄)

and Atreeµ2 ((−p+ k1 + k2)s̄, k3, k4, ps). Using

Atreeµ2 ((−p)s, k1, k2, (p− k1 − k2)s̄) =
iµ2[1 2]

〈1 2〉((p− k1)2 − µ2)
and (2.82)

Atreeµ2 ((−p+ k1 + k2)s, k3, k4, ps̄) =
iµ2[3 4]

〈3 4〉((p+ k4)2 − µ2)
, (2.83)

which can be derived from Feynman diagrams, we find

1

(4π)2−εA
1−loop
1; scalar(k1, k2, k3, k4) =

1

(4π)2−ε
2[1 2][3 4]

〈1 2〉〈3 4〉
×

×
∫

d4p

(2π)4

d−2εµ

(2π)−2ε

µ4

(p2 − µ2)((p− k1)2 − µ2)((p− k1 − k2)2 − µ2)((p+ k4)2 − µ2)

=
1

(4π)2−ε
2i[1 2][3 4]

〈1 2〉〈3 4〉
ID=4−2ε

4 [µ4] (2.84)

A1−loop
1;N=0(k1, k2, k3, k4) = A1−loop

1; scalar(k1, k2, k3, k4) =
2i[1 2][3 4]

〈1 2〉〈3 4〉
ID=4−2ε

4 [µ4] . (2.85)

A basis integral with some power of µ2 inserted in the numerator is usually referred to

as a µ-term and such terms will play a central role in this thesis. It is often convenient to

rewrite µ-terms in terms of dimensionally shifted integrals. This is easily accomplished

by manipulating the −2ε dimensional part of the integration measure in eq. (2.48).

Written out, the −2ε dimensional integral is∫
d−2εµ

(2π)−2ε
f(µ2) =

∫
dΩ−2ε

(2π)−2ε

∫ ∞
0

dµµ−2ε−1f(µ2)

=
1

2

∫
dΩ−2ε

(2π)−2ε

∫ ∞
0

dµ2(µ2)−ε−1f(µ2) , (2.86)
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where, as usual, ∫
dΩ−2ε =

2π−ε

Γ(−ε)
. (2.87)

Now, if we replace f(µ2) with µ2r we can absorb the extract factors of µ2 into the

integration measure:∫
d−2εµ

(2π)−2ε
µ2rf(µ2) =

(2π)2r
∫
dΩ−2ε∫

dΩ2r−2ε

∫
d2r−2εµ

(2π)2r−2ε
f(µ2) (2.88)

= −ε(1− ε)(2− ε) · · · (r − 1− ε)(4π)r
∫

d2r−2εµ

(2π)2r−2ε
f(µ2) .

If r is a natural number, this analysis leads to

ID=4−2ε
n [µ2r] = −ε(1− ε)(2− ε) · · · (r − 1− ε)ID=2r+4−2ε

n (2.89)

relating µ-terms and dimensionally-shifted integrals. Now, a very interesting phe-

nomenon can occur, which we illustrate by applying eq. (2.89) to our result for

A1−loop
1;N=0(k1, k2, k3, k4). We first rewrite the answer

A1−loop
1;N=0(k1, k2, k3, k4) =

2i[1 2][3 4]

〈1 2〉〈3 4〉
ID=4−2ε

4 [µ4] = −2ε(1− ε)i[1 2][3 4]

〈1 2〉〈3 4〉
ID=8−2ε

4 (2.90)

and then Feynman parametrize it:

A1−loop
1;N=0(k1, k2, k3, k4) = −2ε(1− ε)i[1 2][3 4]

〈1 2〉〈3 4〉
Γ(ε)× (2.91)

×
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

1

D(x, y, z)ε
. (2.92)

Remarkably, the ε expansion of the above starts at O(ε0). Explicitly, we find

A1−loop
1;N=0(k1, k2, k3, k4) = −2i[1 2][3 4]

〈1 2〉〈3 4〉

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz +O(ε)

= − i[1 2][3 4]

3〈1 2〉〈3 4〉
+O(ε) . (2.93)

At first sight, this result might seem rather puzzling since, without the µ4 in the numer-

ator, the integral ID=4−2ε
4 is UV finite and IR divergent. What has happened is that,

in shifting to D = 8− 2ε, we have induced a UV divergence (the integral now has the

same number of powers of the loop momenta in the measure of integration as it has in

the denominator) and the IR divergences effectively got regulated by the µ2 factors in

the propagator denominators. The explicit ε in the numerator coming from eq. (2.89)
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is canceling the induced UV pole, which is why the ε expansion of A1−loop
1;N=0(k1, k2, k3, k4)

starts at O(ε0).

Although we have been focusing on scalars running in the loop we could equally well

have performed the above analysis for a loop of fermions with one obvious additional

complication: the need to sum over internal spin states in a Lorentz covariant way.

Typical tree amplitudes with a pair of massive fermions will be built out of a string

beginning with ū±(p) and ending with u±(p). In order to fuse together two such tree

amplitudes across a unitarity cut, we simply use the spin sum identity

∑
s

us(p)ūs(p) = /p+ µ (2.94)

heavily used in traditional perturbation theory [10]. In 3.1, we treat a gluon running in

the loop as well. Due to the fact there is no straightforward massive counterpart (with

two spin states) to the massless gluon, treating an internal gluon line requires a little

more thinking. Perhaps this is why nobody bothered to treat such contributions until

fairly recently [76, 77, 78, 79].

Also, we wish to remark that there is no reason for us to restrict ourselves to double

cuts; as we shall see in the next section, we can profit enormously by using quintuple

cuts in D dimensions to determine individual pentagon coefficients one at a time. The

idea is conceptually similar to what we did with quadruple cuts and box coefficients

in 2.5, though it is a bit more complicated. It turns out that the leading singularity

method supplemented byD dimensional quintuple cuts allows one to efficiently calculate

all-orders-in-ε one-loop N = 4 amplitudes.
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Chapter 3

Efficient Computation and New Results For One-Loop

N = 4 Gluon Amplitudes Calculated To All Orders in ε

3.1 Efficient Computation Via D Dimensional Unitarity

In order to harness the power of D-dimensional unitarity for the application at hand, we

have to extend the results of Bern and Morgan to treat cut internal gluon lines. To be

clear, many other authors have thought about extending the Bern-Morgan approach to

integrand reconstruction (see e.g. [76, 77, 78, 79]). All of them either focus on a getting

numerical results or isolate terms that would be missed by four dimensional generalized

unitarity. There are obviously many applications where it makes sense to follow one

of these strategies. In this thesis, however, we have a different goal. We develop the

Bern-Morgan approach to the point where non-trivial (read higher than four-point)

reconstructions of complete D-dimensional integrands can be made analytically. In

fact, we expect that our approach will mesh well with the spinor integration reduction

technique of [80, 81], which is applicable to general field theory amplitudes at one-

loop. Although the authors of the works cited in the last sentence analyzed a variety

of processes, they relied on the work of others for input integrands except in the well-

understood case of complex scalars running in the loop. In other words, the important

problem of reconstructing general one-loop integrands in D dimensions analytically

directly from tree amplitudes was beyond the scope of their investigations. Although

the ideas we discuss in this section will probably be clear to the experts, to the best of

our knowledge several of them have not appeared in print so far.

Now, to illustrate our approach to D-dimensional unitarity, we offer an alternative

derivation of the massless pentagon coefficient of eq. (2.76) associated to
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A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5). All we really need to do right now is extend Bern-

Morgan to the case of purely gluonic external states with a massless vector running in

the loop. Later in this thesis we will also think about the case where some of the external

gluons are replaced by fermions. It seems likely that so far most researchers have found

it expedient to side-step the question of how to properly treat a gluon running in the

loop by exploiting supersymmetry decompositions as was done in Subsection 2.6. We

argue that it is no more difficult to calculate directly.

We warm up by repeating the analysis of the last subsection, but for the pentagon

coefficient of A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) using quintuple cuts. Using the massive

scalar three-point vertices [82],

Atreeµ2 ((−p)s, k1, (p− k1)s̄) = −i
√

2p · ε+(k1) and (3.1)

Atreeµ2
(
(−p)s, k1234

1 , (p− k1)s̄
)

= −i
√

2p · ε−(k1), (3.2)

and quintuple D dimensional generalized unitarity cuts we can deduce the pentagon

integral coefficient for the scalar loop contribution to the five-point MHV amplitude.

In the above, the polarization vectors can be evaluated using eqs. (2.14) and (2.15)

because we are implicitly using the four dimensional helicity scheme (see A.2) where the

external polarization vectors are kept in four dimensions. The result of this calculation

is

A1−loop
1; scalar

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

= Atreeµ2
(
(−p∗)s, k1234

1 , (p∗ − k1)s̄
)
×

×Atreeµ2
(
(−p∗ + k1)s, k

1234
2 , (p∗ − k1 − k2)s̄

)
×

×Atreeµ2 ((−p∗ + k1 + k2)s, k3, (p∗ + k4 + k5)s̄)×

×Atreeµ2 ((−p∗ − k4 − k5)s, k4, (p∗ + k5)s̄)A
tree
µ2 ((−p∗ − k5)s, k5, (p∗)s̄) , (3.3)

where pν∗ solves the on-shell conditions:

p2
∗ − µ2 = 0 (p∗ − k1)2 − µ2 = 0 (3.4)

(p∗ − k1 − k2)2 − µ2 = 0 (p∗ + k4 + k5)2 −µ2 = 0 (p∗ + k5)2 − µ2 = 0 .

It turns out that, in this case, the solution is unique and is given by [81] expanding the

four dimensional, massive loop momentum with respect to a basis K1, K2, K3, and K4
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of four-vectors:

pν = L1K
ν
1 + L2K

ν
2 + L3K

ν
3 + L4K

ν
4 (3.5)

and then solving a system of linear equations for the Li coefficients. It makes sense to

choose the K’s to be the four-vectors in the problem; in the present example we set

K1 = k1 + k2 K2 = k1 K3 = −k4 − k5 K4 = −k5. (3.6)

Explicitly, we have

L1

L2

L3

L4


=

1

2



K2
1 K1 ·K2 K1 ·K3 K1 ·K4

K2 ·K1 K2
2 K2 ·K3 K2 ·K4

K3 ·K1 K3 ·K2 K2
3 K3 ·K4

K4 ·K1 K4 ·K2 K4 ·K3 K2
4



−1

K2
1

K2
2

K2
3

K2
4


. (3.7)

Now that we are warmed up, we are ready to try the quintuple cut of the fermion loop

contribution. The only reason that the fermion loop contribution is more complicated

is that we have to sum over internal fermion spin states using eq. (2.94); the net result

of the sum over internal states for the scalar loop contribution is just an overall factor

of two. Although Bern and Morgan did not literally give their fermions a mass µ, our

procedure is easily deduced from the discussion in their paper [75].

To reconstruct the one-loop integrand, we need tree amplitudes with two massive

fermions and a gluon:

Atreeµ2
(
pf̄ , k1, (−p− k1)f

)
= − i√

2
ū(p)/ε+(k1)u(p+ k1) (3.8)

Atreeµ2
(
pf̄ , k

1234
1 , (−p− k1)f

)
= − i√

2
ū(p)/ε−(k1)u(p+ k1) (3.9)

where we don’t worry about specifying the spins of the fermions because we will ul-

timately sum over them using (2.94). For the quintuple cut of the fermion loop we



51

find

A1−loop
1; fermion

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

= −
(
− i√

2

)5

ū(p∗)/ε
+(k5)u(p∗ + k5)

ū(p∗ + k5)/ε+(k4)u(p∗ + k4 + k5)ū(p∗ + k4 + k5)/ε+(k3)u(p∗ − k1 − k2)

ū(p∗ − k1 − k2)/ε−(k2)u(p∗ − k1)ū(p∗ − k1)/ε−(k1)u(p∗)

= −
(

i√
2

)5

Tr
[
/ε+(k5)(/p∗ + /k5 + µ)/ε+(k4)(/p∗ + /k4 + /k5 + µ)

/ε+(k3)(/p∗ − /k1 − /k2 + µ)/ε−(k2)(/p∗ − /k1 + µ)/ε−(k1)(/p∗ + µ)
]
.

(3.10)

In this context, the extra overall minus sign is a result [75] of using three-point

amplitudes with spinor strings of the form ū(p)/ε+(k1)u(p+k1), when really they should

have spinor strings of the form ū(p)/ε+(k1)u(−p− k1). Now that we understand how to

deal with a loop of fermions, it is natural to ask what the analogous prescription is for

a loop of gluons. Clearly, to start we need to write down three-point gluon amplitudes

Atreeµ2 (−pg, k1, (p− k1)g) = i
√

2
(
ε+(k1) · p gρσ + k1 ρ ε

+
σ (k1)

−k1σ ε
+
ρ (k1)

)
ε∗ ρ(p)εσ(p− k1) (3.11)

Atreeµ2
(
−pg, k1234

1 , (p− k1)g
)

= i
√

2
(
ε−(k1) · p gρσ + k1 ρ ε

−
σ (k1)

−k1σ ε
−
ρ (k1)

)
ε∗ ρ(p)εσ(p− k1) (3.12)

without committing to a specific choice of polarization for the gluons with p-dependent

external momenta. These degrees of freedom will eventually be summed over. Ac-

tually, the correct summation procedure is fairly obvious [10]. We can use the naive

replacement ∑
λ

ελρ(k1)ε∗λσ (k1)→ −gρσ (3.13)

valid in Abelian gauge theory, provided that we correct for the fact that we are over-

counting states by including the quintuple cut of a ghost loop. This is simple since

the contribution from a ghost loop is nothing but the contribution from a complex

scalar loop with an extra overall minus sign coming the fact that the ghost field obeys

Fermi-Dirac statistics:

A1−loop
1; ghost

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

= −A1−loop
1; scalar

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5
. (3.14)
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Returning to the quintuple cut of the gluon loop, we have

A1−loop
1; gluon

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

=
(
i
√

2
)5
ε∗ ρ1(p∗)

(
ε−(k1) · p∗ gρ1σ1

+k1 ρ1 ε
−
σ1(k1)− k1σ1 ε

−
ρ1(k1)

)
εσ1(p∗ − k1)ε∗ ρ2(p∗ − k1)

(
ε−(k2) · (p∗ − k1) gρ2σ2

+k2 ρ2 ε
−
σ2(k2)− k2σ2 ε

−
ρ2(k2)

)
εσ2(p∗ − k1 − k2)ε∗ ρ3(p∗ − k1 − k2)×

×
(
ε+(k3) · (p∗ − k1 − k2) gρ3σ3 + k3 ρ3 ε

+
σ3(k3)− k3σ3 ε

+
ρ3(k3)

)
εσ3(p∗ + k4 + k5)

ε∗ ρ4(p∗ + k4 + k5)
(
ε+(k4) · (p∗ + k4 + k5) gρ4σ4 + k4 ρ4 ε

+
σ4(k4)

−k4σ4 ε
+
ρ4(k4)

)
εσ4(p∗ + k5)ε∗ ρ5(p∗ + k5)

(
ε+(k5) · (p∗ + k5) gρ5σ5 + k5 ρ5 ε

+
σ5(k5)

−k5σ5 ε
+
ρ5(k5)

)
εσ5(p∗)

=
(
i
√

2
)5 (

ε−(k1) · p∗ gρ1σ1 + k1 ρ1 ε
−
σ1(k1)− k1σ1 ε

−
ρ1(k1)

)
(−gσ1ρ2)(

ε−(k2) · (p∗ − k1) gρ2σ2 + k2 ρ2 ε
−
σ2(k2)− k2σ2 ε

−
ρ2(k2)

)
(−gσ2ρ3)(

ε+(k3) · (p∗ − k1 − k2) gρ3σ3 + k3 ρ3 ε
+
σ3(k3)− k3σ3 ε

+
ρ3(k3)

)
(−gσ3ρ4)(

ε+(k4) · (p∗ + k4 + k5) gρ4σ4 + k4 ρ4 ε
+
σ4(k4)− k4σ4 ε

+
ρ4(k4)

)
(−gσ4ρ5)(

ε+(k5) · (p∗ + k5) gρ5σ5 + k5 ρ5 ε
+
σ5(k5)− k5σ5 ε

+
ρ5(k5)

)
(−gσ5ρ1) .

(3.15)

Finally, we combine together all of the above results with the appropriate multiplic-

ities:

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

= 3A1−loop
1; scalar

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

+4A1−loop
1; fermion

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

+

(
A1−loop

1; gluon

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5
−A1−loop

1; scalar

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
I5

)
,

where we have dealt with the ghost loop contribution as discussed above. One can

straightforwardly check (numerically using e.g. S@M [65]) that, after projecting (3.16)

onto the dual conformal basis using eq. (2.74), the result agrees with that obtained ear-

lier using the leading singularity method (eq. (2.76)). Evaluating the numerator algebra

becomes slightly more involved for quintuple cuts of one-loop six-gluon amplitudes, but

we will still be able to use the above procedure to great effect.

We are finally in a position to outline the strategy that we will use to solve, say,

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6) to all orders in ε. This amplitude works well as an
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example because its full analytical form is known [83]:

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6) =

AMHV
6; 〈12〉

2

(
− s3s4I

(1,2), D=4−2ε
4

−s4s5I
(2,3), D=4−2ε
4 − s5s6I

(3,4), D=4−2ε
4 − s1s6I

(4,5), D=4−2ε
4 − s1s2I

(5,6), D=4−2ε
4

−s2s3I
(1,6), D=4−2ε
4 + (s3s6 − t2t3)I

(1,4), D=4−2ε
4

+(s1s4 − t1t3)I
(2,5), D=4−2ε
4 + (s2s5 − t1t2)I

(3,6), D=4−2ε
4

+ε
6∑
i=1

ε(i+ 1, i+ 2, i+ 3, i+ 4)I
(i), D=6−2ε
5 + ε tr[ /k1 /k2 /k3 /k4 /k5 /k6]ID=6−2ε

6

)
.

(3.16)

We will, of course, mostly be interested in evaluating all1 six-gluon NMHV amplitudes,

but we assure the reader that the strategy utilized for A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6)

will carry over in a completely straightforward fashion to the other six-gluon amplitudes.

The general idea is that, while the leading singularity method does not fix every-

thing to all orders in ε starting at six points, the method is very powerful and does

fix everything up to holes in the soft/collinear bootstrap. What we mean by “holes

in the soft/collinear bootstrap” is the following. One might ask to what extent the

universal factorization properties of A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6) under soft and

collinear limits determine the analytic form of the amplitude, given that we already

know A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5) to all orders in ε. It turns out that there is only one

function in A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6) that is not constrained in this approach:

One can check that

tr[ /k1 /k2 /k3 /k4 /k5 /k6] (3.17)

has no soft or collinear limits in any channel.2 Therefore any attempt to deduce the

form of the one-loop six-gluon MHV amplitude from that of the one-loop five-gluon

amplitude by demanding consistency of the soft and collinear limits will miss terms like

that above.

1In the next subsection we will go through the exercise of determining how many independent NMHV
gluon helcity amplitudes there are (ignoring N = 4 supersymmetry for now).

2A soft or collinear limit for planar amplitudes is particularly simple because one only has to consider
nearest-neighbor pairs of momenta. If unfamiliar, see [59] for an elementary discussion of planar soft
and collinear limits.
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This ambiguity is reflected in the solution of the leading singularity equations for

A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6). Solving the system of 15 × 2 = 30 equations in

15 + 6 = 21 unknowns determines 20 of the unknown integral coefficients in terms

of one of the pentagon coefficients, say that associated to I
(1), 4−2ε
5 . The point is that if

we can evaluate one pentagon coefficient using D-dimensional unitarity, then the lead-

ing singularity equations, which require only four dimensional inputs to solve, give us

everything else. This is a much better strategy than trying to evaluate the quintuple

cut of each pentagon independently because it allows one to solve for all the pentagon

coefficients with a minimum of effort beyond that required to determine the coefficients

of the boxes.

Before going any further, we should clarify a potentially confusing point about

the solution to the leading singularity equations for A1−loop
1 (k1234

1 , k1234
2 , k3, k4, k5, k6).

Suppose we let B1 be the coefficient of I
(1), 4−2ε
5 . Then a generic box coefficient, say

that of I
(1,6), D=4−2ε
4 , will have the form α16 + β16B1. It may seem strange that the

box coefficient associated to I
(1,6), D=4−2ε
4 depends on the pentagon coefficient B1. This

apparent paradox is resolved by projecting the geometric basis onto the dual conformal

basis: the pentagons I
(1), D=4−2ε
5 and I

(6), D=4−2ε
5 each contribute to the coefficient of

I
(1,6), D=4−2ε
4 in the dual conformal basis after the formula (2.74) is applied to them.

Remarkably, these extra contributions conspire to cancel all of the B1 dependence that

was present in the coefficient of I
(1,6), D=4−2ε
4 , considered as an element of the geometric

basis.

In solving the leading singularity equations, we were free to choose any pentagon

coefficient we wanted as the parameter undetermined by the system. The reason

that we chose the coefficient of I
(1), 4−2ε
5 is that it is particularly simple to deter-

mine this integral coefficient using quintuple cuts. This follows from the fact that

Atreeµ2

(
(p− k1)s, k

1234
1 , k6, (−p− k6)s̄

)
, Atreeµ2

(
(p− k1)f̄ , k

1234
1 , k6, (−p− k6)f

)
, and
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Atreeµ2

(
(p− k1)g, k

1234
1 , k6, (−p− k6)g

)
can each be represented by a single Feynman di-

agram:

Atreeµ2
(
(p− k1)s, k

1234
1 , k6, (−p− k6)s̄

)
= − i 〈1| p |6]2

s6 〈1| p |1]
(3.18)

Atreeµ2
(
(p− k1)f̄ , k

1234
1 , k6, (−p− k6)f

)
=

i(p+ k6) · ε+(k6)

〈1| p |1]
ū(p+ k6)/ε−(k1)u(p− k1) (3.19)

Atreeµ2
(
(p− k1)g, k

1234
1 , k6, (−p− k6)g

)
= −2iερ(p− k1)ε∗σ(p+ k6)

〈1| p |1]
×

×
(
ε−(k1) · p ε+(k6) · p gρσ + ε+(k6) · p k1σε

−
ρ (k1)− ε+(k6) · p k1 ρ ε

−
σ (k1)

+ε−(k1) · p k6σ ε
+
ρ (k6)− ε−(k1) · p k6 ρ ε

+
σ (k6)− k1 · k6ε

−
ρ (k1)ε+

σ (k6)
)

(3.20)

Using the same logic that was employed for the five-point pentagon coefficient calculated

above and the results of eqs. (3.18)-(3.20), it is straightforward to compute B1. One

subtlety is that the line p2−µ2 is left uncut in the evaluation of this integral coefficient.

As a result, the expression for µ2 is not given simply by p2
∗, the way that it was

in the five-point example worked out in detail above. Instead, one has the relation

p2
∗ − 2p∗ · k1 = µ2. Also, to use the framework of eqs. (3.5) and (3.7), we have to make

the following adjustments: (3.5) becomes

pν = L1K
ν
1 + L2K

ν
2 + L3K

ν
3 + L4K

ν
4 + k1 (3.21)

and theKi four-vectors all need to be shifted by−k1 (i.e. instead ofK1 = k1+k2+k3, we

have K1 = k2+k3). In this thesis, we fix the overall phase of our pentagon coefficients by

matching onto eq. (3.16) and its supersymmetrization. In order to apply our methods

to N = 0 calculations, a more careful tracking of phase factors would be necessary.

Before presenting the results of our all-orders-in-ε six-gluon NMHV calculations,

we make some remarks about how we expect the strategy outlined for six-gluon MHV

amplitudes to generalize to higher-multiplicity amplitudes. First of all, we conjecture

that the number of “holes” in the one-loop soft/collinear bootstrap is controlled by

kinematics as opposed to dynamics (i.e. independent of the k in NkMHV). We interpret

the fact that this is true at the six-point level (in the sense that the leading singularities

for both MHV and NMHV amplitudes fix everything up to a single pentagon coefficient)
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as evidence for this proposal. If our idea turns out to be correct, we are in a position

make an interesting claim about the leading singularity method at one-loop. This is

because we have found an intriguing pattern for the number of holes as a function of n

in higher-point gluon MHV amplitudes. Specifically, we have found that the one-loop

seven-point amplitude has 6 holes and the eight-point gluon MHV amplitudes has 21.

Thus, we conclude this subsection by conjecturing that the number of holes in the

soft/collinear bootstrap at the n-point level (pentagon coefficients undetermined by the

leading singularity method) is n− 1

5

 =
(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)

120
, (3.22)

equal to the number of pentagons at the (n − 1)-point level. Loosely speaking, we

can think of this result as the statement that, at the n-point level an independent

object analogous to tr[ /k1 /k2 /k3 /k4 /k5 /k6] can be constructed for each pentagon integral at

the (n − 1)-point level without spoiling any of the soft/collinear constraints relating

n-point one-loop planar amplitudes to (n− 1)-point one-loop planar amplitudes.

3.2 The All-Orders in ε Planar One-Loop N = 4 NMHV Six-Gluon

Amplitudes

In this subsection, we give our formulae for the one-loop planar six-gluon NMHV pen-

tagon coefficients in N = 4 and discuss the structural similarities between our results

and certain two-loop planar six-gluon integral coefficients entering into the NMHV

amplitudes calculated in [84]. Our first task, of course, is to understand how many in-

dependent NMHV gluon amplitudes there are (delaying a discussion of the constraints

coming from N = 4 supersymmetry until Subsection 5.1). Näıvely, there are a large

number of possibilities:

1. A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
2. A1−loop

1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
3. A1−loop

1

(
k1234

1 , k1234
2 , k3, k4, k

1234
5 , k6

)
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4. A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5, k

1234
6

)
5. A1−loop

1

(
k1234

1 , k2, k
1234
3 , k1234

4 , k5, k6

)
6. A1−loop

1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
7. A1−loop

1

(
k1234

1 , k2, k
1234
3 , k4, k5, k

1234
6

)
8. A1−loop

1

(
k1234

1 , k2, k3, k
1234
4 , k1234

5 , k6

)
9. A1−loop

1

(
k1234

1 , k2, k3, k
1234
4 , k5, k

1234
6

)
10. A1−loop

1

(
k1234

1 , k2, k3, k4, k
1234
5 , k1234

6

)
11. A1−loop

1

(
k1, k

1234
2 , k1234

3 , k1234
4 , k5, k6

)
12. A1−loop

1

(
k1, k

1234
2 , k1234

3 , k4, k
1234
5 , k6

)
13. A1−loop

1

(
k1, k

1234
2 , k1234

3 , k4, k5, k
1234
6

)
14. A1−loop

1

(
k1, k

1234
2 , k3, k

1234
4 , k1234

5 , k6

)
15. A1−loop

1

(
k1, k

1234
2 , k3, k

1234
4 , k5, k

1234
6

)
16. A1−loop

1

(
k1, k

1234
2 , k3, k4, k

1234
5 , k1234

6

)
17. A1−loop

1

(
k1, k2, k

1234
3 , k1234

4 , k1234
5 , k6

)
18. A1−loop

1

(
k1, k2, k

1234
3 , k1234

4 , k5, k
1234
6

)
19. A1−loop

1

(
k1, k2, k

1234
3 , k4, k

1234
5 , k1234

6

)
20. A1−loop

1

(
k1, k2, k3, k

1234
4 , k1234

5 , k1234
6

)
many of which are obviously related by parity3 or cyclic symmetry4. In particular,

we will now show that all of the above can be related toA1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
,

3Recall that CP is a good symmetry of perturbative scattering amplitudes even in pure N = 0
Yang-Mills.

4Recall from 2.2 that, for example, the amplitudes A1−loop
1 (k12341 , k12342 , k12343 , k4, k5, k6) and

A1−loop
1 (k12342 , k12343 , k4, k5, k6, k

1234
1 ) are equal by virtue of the color structure in the planar limit.
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A1−loop
1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
, and A1−loop

1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
(ampli-

tudes 1., 2., and 6. in the above). In fact, we will see in Section 5 that it is possible to

derive a beautiful all-orders-in-ε N = 4 supersymmetrization of the six-point NMHV

amplitudes using only these three all-orders-in-ε component amplitudes as inputs. To

start, we see immediately that amplitudes 11. - 20. are related to 1. - 10. by parity

which acts on the amplitudes by reversing the helicities of all gluons. Next, we see that

4. and 10. are related to 1. through a series of cyclic shifts followed by a relabeling

of the momenta of the external gluons. Similarly, amplitudes 7. and 8. are related to

2. through cyclic shifts followed by a relabeling. Finally, 3., 5., and 9. are related to

2. through cyclic shifts, a relabeling, and a parity transformation. Amplitude 6. can’t

be related to 1. or 2. through some combination of parity and cyclicity, so we need to

include it in our basis as well.

Now that we understand why it makes sense to focus on 1., 2., and 6. in the above,

we present our results for these amplitudes. To begin, let us recall the results of the

calculations performed in [68]. The authors of that work determined the box coefficients

for all NMHV gluon amplitudes in the dual conformal basis, leaving only the 6 − 2ε

pentagon coefficients undetermined. They found

A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
= −1

2
B1

(
s4s5I

(2,3)
4 + s1s2I

(5,6)
4

+s6t1I
(3,5)
4 + s3t1I

(2,6)
4

)
− 1

2
B2

(
s5s6I

(3,4)
4 + s2s3I

(6,1)
4

+s1t2I
(4,6)
4 + s4t2I

(1,3)
4

)
− 1

2
B3

(
s6s1I

(4,5)
4 + s3s4I

(1,2)
4

+s2t3I
(1,5)
4 + s5t3I

(2,4)
4

)
+K1εI

(1),6−2ε
5 +K2εI

(2),6−2ε
5

+K3εI
(3),6−2ε
5 +K4εI

(4),6−2ε
5 +K5εI

(5),6−2ε
5 +K6εI

(6),6−2ε
5 , (3.23)
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A1−loop
1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
= −1

2
G1

(
s4s5I

(2,3)
4 + s1s2I

(5,6)
4

+s6t1I
(3,5)
4 + s3t1I

(2,6)
4

)
− 1

2
G2

(
s5s6I

(3,4)
4 + s2s3I

(6,1)
4

+s1t2I
(4,6)
4 + s4t2I

(1,3)
4

)
− 1

2
G3

(
s6s1I

(4,5)
4 + s3s4I

(1,2)
4

+s2t3I
(1,5)
4 + s5t3I

(2,4)
4

)
+ F1εI

(1),6−2ε
5 + F2εI

(2),6−2ε
5

+F3εI
(3),6−2ε
5 + F4εI

(4),6−2ε
5 + F5εI

(5),6−2ε
5 + F6εI

(6),6−2ε
5 , (3.24)

and

A1−loop
1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
= −1

2
D1

(
s4s5I

(2,3)
4 + s1s2I

(5,6)
4

+s6t1I
(3,5)
4 + s3t1I

(2,6)
4

)
− 1

2
D2

(
s5s6I

(3,4)
4 + s2s3I

(6,1)
4

+s1t2I
(4,6)
4 + s4t2I

(1,3)
4

)
− 1

2
D3

(
s6s1I

(4,5)
4 + s3s4I

(1,2)
4

+s2t3I
(1,5)
4 + s5t3I

(2,4)
4

)
+H1εI

(1),6−2ε
5 +H2εI

(2),6−2ε
5

+H3εI
(3),6−2ε
5 +H4εI

(4),6−2ε
5 +H5εI

(5),6−2ε
5 +H6εI

(6),6−2ε
5 , (3.25)

All of the spin factors which entered into the box coefficients (Bi, Gi, and Di) were

determined. They are given by

B1 = B0 (3.26)

B2 =

(
〈1| 2 + 3 |4]

t2

)4

B0

∣∣∣
j→j+1

+

(
〈2 3〉[5 6]

t2

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j+1

(3.27)

B3 =

(
〈3| 1 + 2 |6]

t3

)4

B0

∣∣∣
j→j−1

+

(
〈1 2〉[4 5]

t3

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j−1

, (3.28)

G1 =

(
〈5| 4 + 6 |2]

t1

)4

B0 +

(
〈1 3〉[4 6]

t1

)4

B
〈 〉↔[ ]
0 (3.29)

G2 =

(
〈3| 2 + 4 |6]

t2

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j+1

+

(
〈5 1〉[2 4]

t2

)4

B0

∣∣∣
j→j+1

(3.30)

G3 =

(
〈1| 2 + 6 |4]

t3

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j−1

+

(
〈3 5〉[6 2]

t3

)4

B0

∣∣∣
j→j−1

, (3.31)
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and

D1 =

(
〈4| 1 + 2 |3]

t1

)4

B0 +

(
〈1 2〉[5 6]

t1

)4

B
〈 〉↔[ ]
0 (3.32)

D2 =

(
〈1| 2 + 4 |3]

t2

)4

B0

∣∣∣
j→j+1

+

(
〈2 4〉[5 6]

t2

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j+1

(3.33)

D3 =

(
〈4| 1 + 2 |6]

t3

)4

B0

∣∣∣
j→j−1

+

(
〈1 2〉[3 5]

t3

)4

B
〈 〉↔[ ]
0

∣∣∣
j→j−1

, (3.34)

where

B0 = i
〈1 2〉〈2 3〉[4 5][5 6] 〈3| 1 + 2 |6] 〈1| 2 + 3 |4] t31

s1s2s4s5(t1t2 − s2s5)(t1t3 − s1s4)
. (3.35)

Using the strategy outlined it 3.1, we reproduce the above and, furthermore, find explicit

expressions for the Ki, Gi, and Hi.

Although the raw answers obtained using the method described in the last subsection

are already compact enough to fit on a single page, it is clearly desirable to find simpler

formulae (i.e. answers that fit on a single line). In their unpublished work on the

two-loop planar NMHV gluon amplitudes [84], Kosower, Roiban, and Vergu derived

explicit expressions for all possible µ-term hexabox coefficients. Motivated by issues

of IR consistency that we will elaborate on in Section 6, we evaluated the answers

they obtained numerically and were able to find a straightforward mapping between

their results and ours. To explain this relationship, it is useful to consider a concrete

example.

We consider the coefficient of the s1-channel hexabox integral5 that appears in the

amplitude A2−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
calculated to all orders in ε. It turns

out that this µ-term hexabox coefficient and K2 (coefficient of the s1-channel 6 − 2ε

dimensional pentagon coefficient that appears in A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
)

are simply related:

K2 =
C2

2s1
K2 , (3.36)

where we have given the hexabox coefficient the convenient label K2 and C2 is one of the

variables that we used to define the reduction of the one-loop scalar hexagon integral

5A hexabox is simply a Feynman integral topology that looks a a hexagon and square fused together
and has nine propagator denominators.
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to a sum of six scalar pentagons in A.3:

I6 =
1

2

6∑
i=1

CiI
(i)
5 . (3.37)

This relation makes a certain amount of sense if we think about collapsing the box

in the µ-term hexabox to a point. This turns the hexabox µ-term into a pentagon

µ-term. Evidently, s1 appears because we are working with the s1 channel hexabox

and, perhaps, C2 appears because we are relating an object with six external legs to

one with five. In any case, the above relation will allow us to exploit extremely simple

results found for the NMHV hexabox coefficients [84] to write beautiful formulas for

the Ki, Fi, and Hi. We find

K1 =
i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(3.38)

K2 =
i

2
C2
〈3| 1 + 2 |6]2 〈1 2〉2[4 5]2t21
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.39)

K3 =
i

2
C3
〈1| 2 + 3 |4]2 〈2 3〉2[5 6]2t21
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

(3.40)

K4 =
i

2
C4

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(3.41)

K5 =
i

2
C5
〈3| 1 + 2 |6]2 〈1 2〉2[4 5]2t21
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.42)

K6 =
i

2
C6
〈1| 2 + 3 |4]2 〈2 3〉2[5 6]2t21
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

, (3.43)
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F1 =
i

2
C1

(
〈5| 6 + 1 |2] 〈3| 2 + 4 |6] 〈1| 3 + 5 |4] + 〈2| 6 + 1 |5] [6 2][2 4]〈1 5〉〈3 5〉

)2

s6s3 〈5| 6 + 1 |2] 〈2| 6 + 1 |5]

(3.44)

F2 =
i

2
C2

(
〈3| 1 + 2 |6] 〈1| 3 + 5 |4] 〈5| 4 + 6 |2] + 〈6| 1 + 2 |3] 〈1 3〉〈3 5〉[2 6][4 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.45)

F3 =
i

2
C3

(
〈1| 2 + 3 |4] 〈5| 4 + 6 |2] 〈3| 5 + 1 |6] + 〈4| 2 + 3 |1] [2 4][4 6]〈3 1〉〈5 1〉

)2

s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

(3.46)

F4 =
i

2
C4

(
〈5| 6 + 1 |2] 〈3| 2 + 4 |5] 〈1| 3 + 5 |4] + 〈2| 6 + 1 |5] [2 6][4 2]〈5 1〉〈5 3〉

)2

s6s3 〈5| 6 + 1 |2] 〈2| 6 + 1 |5]

(3.47)

F5 =
i

2
C5

(
〈3| 1 + 2 |6] 〈1| 3 + 5 |4] 〈5| 4 + 6 |2] + 〈6| 1 + 2 |3] 〈1 3〉〈3 5〉[2 6][4 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.48)

F6 =
i

2
C6

(
〈1| 2 + 3 |4] 〈5| 4 + 6 |2] 〈3| 5 + 1 |6] + 〈4| 2 + 3 |1] [2 4][4 6]〈3 1〉〈5 1〉

)2

s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]
,

(3.49)
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and

H1 =
i

2
C1

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(3.50)

H2 =
i

2
C2

〈1 2〉2
(
〈3| 1 + 2 |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.51)

H3 =
i

2
C3

[5 6]2
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)2

s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]

(3.52)

H4 =
i

2
C4

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(3.53)

H5 =
i

2
C5

〈1 2〉2
(
〈3| (1 + 2) |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(3.54)

H6 =
i

2
C6

[5 6]2
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)2

s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]
.

(3.55)

We also checked these results against a Feynman diagram calculation.

These results have a couple of striking features of which we have only a partial

understanding. The numerators of all the spin factors (divided by the appropriate Ci)

are perfect squares. Furthermore, the pentagon coefficients possess a certain i→ i+ 3

symmetry. What we mean is that the following surprising relations hold:

K1

C1
=
K4

C4

K2

C2
=
K5

C5

K3

C3
=
K6

C6
. (3.56)

with analogous formulas for the Fi and Hi. As we will see in Section 6, this i → i+ 3

symmetry becomes clear when the amplitude is written in a way that makes a hidden

symmetry6 of the planar S-matrix manifest. In the next section we explore an interesting

connection between all-orders-in-ε one-loop N = 4 amplitudes and the first two non-

trivial orders in the α′ expansion of tree-level superstring amplitudes. The explicit

6This hidden symmetry is called dual superconformal invariance and some background and motiva-
tion for it is provided in the second part of Appendix D.
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one-loop results presented so far in this thesis will provide us with useful explicit cross-

checks on the relations we propose.
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Chapter 4

New Relations Between Amplitudes in N = 4 Gauge

Theory and Open Superstring Theory

Before reviewing the scattering of massless modes in open superstring theory, we offer

a brief explanation of what motivated our investigation in the first place. Several years

ago, Stieberger and Taylor [26] calculated the lowest-order, O(α′2), stringy corrections

to N = 4 tree-level gluon MHV amplitudes.1 They found that their result2,

Atreestr

(
k1234

1 , k1234
2 , k3, · · · , kn

) ∣∣∣
O(α′2)

= −π
2

12
AMHV
n;〈12〉

( [n2−1]∑
k=1

{ [[1]]k[[2]]k }

−
[n2−1]∑
k=3

{ [[1]]k[[2]]k−2 }+ C(n) +
∑

k<l<m<n<N

ε(k, l,m, n)

)
,

C(n) =

{
−{ [[1]]n

2
−2[[n2 + 1]]n

2
−2} n > 4, even,

−
{

[[1]]n−5
2

[[n+1
2 ]]n−3

2

}
n > 5, odd,

was precisely equal to −6ζ(2) times the analogous one-loop N = 4 amplitude with a

factor of µ4 inserted into the numerator of each basis integral,

A1−loop
1

(
k1234

1 , k1234
2 , k3, · · · , kn

)
[µ4]

∣∣∣
ε→0

. This non-obvious connection was actually

made by showing that both

Atreestr

(
k1234

1 , k1234
2 , k3, · · · , kn

) ∣∣∣
O(α′2)

〈1 2〉4
and

A1−loop
1

(
k1234

1 , k1234
2 , k3, · · · , kn

)
[µ4]

∣∣∣
ε→0

〈1 2〉4

1As mentioned in the introduction, tree-level amplitudes of massless particles in open superstring
constructions compactified to four dimensions have a universal form [26].

2In Stieberger and Taylor’s notation, say at the six-point level, [[1]]1 = s1, { [[1]]1 } = s1 + s2 + s3 +
s4 + s5 + s6, [[1]]2 = t1, and { [[1]]2 } = t1 + t2 + t3.
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are, apart from trivial constants, equal to the all-plus one-loop amplitude in pure Yang-

Mills theory [83], A1−loop
1;N=0 (k1, k2, · · · , kn). The only reason an equivalence between

A1−loop
1

(
k1234

1 , k1234
2 , k3, · · · , kn

)
[µ4]

∣∣∣
ε→0

〈1 2〉4
and A1−loop

1;N=0 (k1, k2, k3, · · · , kn)

is possible is that both have the same manifest invariance under cyclic shifts i →

i + 1. It is hard to imagine that additional relationships between N = 0 and N = 4

amplitudes could exist because, in general, there is no reason to expect N = 0 and

N = 4 amplitudes to have similar symmetry properties (for more general amplitudes

there is no trick analogous to dividing the one-loop MHV amplitude by 〈1 2〉4). Indeed,

it is incredibly likely that this relation between pure Yang-Mills and N = 4 is purely

accidental. However, additional relations between superstring tree amplitudes and N =

4 one-loop amplitudes are a more realistic possibility. It is this possibility that we discuss

in this section. The new results presented are based on work done in collaboration with

Lance J. Dixon (to appear in [85]).

4.1 Organization of the Open Superstring S-matrix

For the simple case of a U(1) gauge group, it has been known since the work of Fradkin

and Tseytlin [86] that the effective action governing the low-energy dynamics of open

superstrings ending on a single Dirchlet 3-brane (though the connection between gauge

symmetry and D-branes remained hidden until the work of Dai, Leigh, and Polchinski

in [87] and Leigh in [88]) is nothing but a supersymmetrization of the Born-Infeld action.

This action, expressed in terms of the Maxwell field strength tensor,

LBI =
1

(2πgα′)2

(
1−

√
Det

(
gµν + (2πgα′)Fµν

))
=

1

(2πgα′)2

(
1−

√
1 +

(2πgα′)2

2
FµνFµν −

(2πgα′)4

16
(FµνF̃µν)2

)
(4.1)

= −1

4
FµνFµν + 3 ζ(2)g2α′2

(
FµνFνρFρσFσµ −

1

4

(
FµνFνµ

)2)
+O

(
g4α′4F 6

)
was proposed long ago [89] as an alternative description of electrodynamics. In the

context of string scattering, the constant α′ is identified with the string tension. A

natural generalization to the case of a U(Nc) gauge group is realized [90] when the
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open superstrings under consideration end on a stack of Nc coincident D3-branes. This

situation is unfortunately much more complicated to describe with an effective action

and there is no known analog of eq. (4.2); despite intensive effort, the non-Abelian Born-

Infeld action, as it is commonly called, is only known up to fourth order [91] in α′. For

us, only the first two non-trivial orders in this expansion play a serious role. Due to the

fact that there is no N = 4 supersymmetrizable operator of mass dimension six that

one can write down in terms of non-Abelian field strengths and covariant derivatives,

the first two non-trivial orders in the α′ expansion are actually O(α′2) and O(α′3). In

our conventions, the non-Abelian Born-Infeld action is given by [92, 93, 94]

LNABI = −1

4
Tr
{
FµνFµν

}
+ ζ(2)g2α′2 Tr

{1

2
FµνFνρFρσFσµ + FµνFνρFσµFρσ

−1

8
FµνFρσFνµFσρ −

1

4
FµνFνµFρσFσρ

}
+ 8 ζ(3)α′3 Tr

{
ig3
(
FµνFνρFρσFτµFστ

+FµνFστFνρFτµFρσ −
1

2
FµνFνρFστFρµFτσ

)
+ +g2

(1

2
(DµFνρ)(DµFρσ)FτνFστ

+
1

2
(DµFνρ)Fτν(DµFρσ)Fστ − Fµν(DµFρσ)(DτFνρ)Fστ −

1

8
(DµFνρ)Fστ (DµFρν)Fτσ

+(DτFµν)Fρσ(DµFνρ)Fστ

)}
+O

(
α′4 TrF 6

)
. (4.2)

It is worth pointing out that normalization employed by the author of [94] differs from

that used above by a factor of two. This convention was subsequently adopted by [92]

and [93]. We have normalized our O(α′2) and O(α′3) effective Lagrangians so that they

reproduce the α′ expansions of the string scattering results given in [95], where the

leading-color four-point amplitude is

Atreestr (k1234
1 , k1234

2 , k3, k4) = AMHV
4;〈12〉

Γ(1 + α′t)Γ(1 + α′t)

Γ(1 + α′(s+ t))

= AMHV
4;〈12〉

(
1− ζ(2)st α′2 + ζ(3)st(s+ t) α′3

−ζ(4)

4
st(4s2 + st+ 4t2) α′4 +O(α′5)

)
. (4.3)

4.2 New Relations

We now return to the observed correspondence between the results of [83] and [26]

discussed briefly at the beginning of this section. By comparing the two references it is
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easy to see that

Atreestr

(
kh11 , · · · , khnn

) ∣∣∣
O(α′2)

= −6ζ(2)A1−loop
1

(
kh11 , · · · , khnn

)
[µ4]

∣∣∣
ε→0

, (4.4)

where the gluon helcity configuration is MHV and should of course match on both sides

of eq. (4.4).

Since our notation may not be completely obvious, we consider an illustrative ex-

ample. Specifically, we check that eq. 4.4 holds for the five-gluon MHV amplitude

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
. In terms of unevaluated scalar Feynman integrals [83],

we have

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
=
−AMHV

5;〈12〉

2

(
s2s3I

(1), D=4−2ε
4 + s3s4I

(2), D=4−2ε
4

+s4s5I
(3), D=4−2ε
4 + s5s1I

(4), D=4−2ε
4 + s1s2I

(5), D=4−2ε
4

−2ε ε(k1, k2, k3, k4)ID=6−2ε
5

)
. (4.5)

Applying the dimension shift operation of [83] to the amplitude sends ε → ε − 2 and

IDn → IDn [µ4]:

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
[µ4] =

−AMHV
5;〈12〉

2

(
s2s3I

(1), D=4−2ε
4 [µ4]

+s3s4I
(2), D=4−2ε
4 [µ4] + s4s5I

(3), D=4−2ε
4 [µ4] + s5s1I

(4), D=4−2ε
4 [µ4]

+s1s2I
(5), D=4−2ε
4 [µ4]− 2(ε− 2) ε(k1, k2, k3, k4)ID=6−2ε

5 [µ4]

)
. (4.6)

Applying eq. (2.89) gives

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
[[µ4] =

AMHV
5;〈12〉ε(1− ε)

2

(
s2s3I

(1), D=8−2ε
4

+s3s4I
(2), D=8−2ε
4 + s4s5I

(3), D=8−2ε
4 + s5s1I

(4), D=8−2ε
4

+s1s2I
(5), D=8−2ε
4 − 2(ε− 2) ε(k1, k2, k3, k4)ID=10−2ε

5

)
. (4.7)

Finally, we take the limit as ε → 0. As explained in 2.6, the terms which survive

are those proportional to the ultraviolet singularities of the dimensionally-shifted basis
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integrals.

A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
[µ4]

∣∣∣
ε→0

=
AMHV

5;〈12〉

2

(
s2s3

( 1

6

)
+ s3s4

( 1

6

)
+s4s5

( 1

6

)
+ s5s1

( 1

6

)
+ s1s2

( 1

6

)
+ 4 ε(1, 2, 3, 4)

( 1

24

))

=
AMHV

5;〈12〉

12

({
s2s3

}
+ ε(k1, k2, k3, k4)

)
, (4.8)

where, following [26],
{
s2s3

}
represents the sum of s2s3 and its four cyclic permutations.

Finally, plugging this expression into eq. (4.4) gives the following prediction for

Atreestr

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
O(α′2)

:

Atreestr

(
k1234

1 , k1234
2 , k3, k4, k5

) ∣∣∣
O(α′2)

= −ζ(2)
AMHV

5;〈12〉

2

({
s2s3

}
+ ε(k1, k2, k3, k4)

)
. (4.9)

By comparing to the all-n result for theO(α′2) stringy corrections given at the beginning

of this section, it is clear that the prediction of the conjecture for the O(α′2) piece of

Atreestr

(
k1234

1 , k1234
2 , k3, k4, k5

)
is correct. It is obvious from the above analysis that we

would have been unsuccessful had we performed the dimension shift operation on the

expression normally associated with the five-gluon one-loop MHV amplitude,

−AMHV
5;〈12〉

2

(
s2s3I

(1), D=4−2ε
4 + s3s4I

(2), D=4−2ε
4 + s4s5I

(3), D=4−2ε
4 + (4.10)

+s5s1I
(4), D=4−2ε
4 + s1s2I

(5), D=4−2ε
4

)
,

illustrating that eq. (4.4) is only applicable if one works to all orders in ε on the field

theory side. We wish to stress that, although we find the language of [83] convenient,

we could have used the coefficients of the UV poles of N = 4 one-loop MHV amplitudes

considered in D = 8 − 2ε to define the right-hand side of eq. (4.4) and nothing would

have changed, apart from maybe an unimportant overall minus sign.

Now, suppose we want to generalize the Stieberger-Taylor relation. One obvious

question is whether we can relax their requirement that the helicity configuration on

both sides of (4.4) be MHV. Indeed, we will see that the relation actually holds for gen-

eral helicity configurations. Fortunately, Stieberger and Taylor calculated all six-point

NMHV open superstring amplitudes in [29] (unfortunately not in a form as elegant
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as eq. (4.1)). As a first check, we verified that A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
,

A1−loop
1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
, and A1−loop

1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
all sat-

isfy (4.4). Shortly after going through this exercise, we realized that there is a more

general way to argue that the relation should be helicity-blind. In fact, we will see that

one can use all-orders-in-ε N = 4 Yang-Mills amplitudes to derive the O(α′3) stringy

corrections as well. The study of relevance for us was done by Dunbar and Turner

in [96]. They pointed out that the N = 4 theory considered in eight dimensional space-

time has UV divergences and that the requirement that the counterterm Lagrangian

respect N = 4 supersymmetry fixes it uniquely to be the N = 4 supersymmetrization

of Tr{F 4} (2nd line of eq. (4.2)), the same operator that appears at O(α′2) in the

non-Abelian Born-Infeld action of [90]. Now it is clear why we found that, up to a

trivial constant, one-loop N = 4 gluon amplitudes dimensionally shifted to D = 8− 2ε

are equal to the O(α′2) stringy corrections to N = 4 gluon tree amplitudes: The un-

derlying effective Lagrangians are completely determined by dimensional analysis and

N = 4 supersymmetry. In other words, there is only one dimension eight operator that

is N = 4 supersymmetrizable.

This is not, however, the end of the story. That the non-Abelian Born-Infeld action

is fixed to order O(α′2) by N = 4 supersymmetry is perhaps more widely appreciated

than the fact that it is fixed by N = 4 supersymmetry to order O(α′3). It is highly non-

trivial to prove the above claim (see [92, 97]), but it is true. On the field theory side,

Dunbar and Turner showed that D = 10 − 2ε counterterm Lagrangians are built out

of (an appropriate N = 4 supersymmetrization of) operators like F 5 and D2F 4. Now

that we have the result of [92] in hand and we know that the O(α′3) terms in the non-

Abelian Born-Infeld action (eq. (4.2)) are also built out of F 5 and D2F 4 operators, we

can conclude that the requirement of N = 4 supersymmetry will uniquely fix the linear

combination of D2F 4 and F 5 operators that enter into the D = 10−2ε N = 4 countert-

erm Lagrangian. As a cross-check, we evaluated A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5

)
[µ6]

∣∣∣
ε→0

and A1−loop
1

(
k1234

1 , k1234
2 , k3, k4, k5, k6

)
[µ6]

∣∣∣
ε→0

and observed that, up to an overall fac-

tor of 60ζ(3), the results obtained precisely matched the appropriate stringy corrections
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(eq. (4.1)). These observations indicate that an analogous relationship,

Atreestr

(
kh11 , · · · , khnn

) ∣∣∣
O(α′3)

= 60ζ(3)A1−loop
1

(
kh11 , · · · , khnn

)
[µ6]

∣∣∣
ε→0

(4.11)

holds in this case, again, for arbitrary helicity configurations.

To summarize, we have seen that quite a bit of non-trivial information about the

low-energy dynamics of open superstrings is encoded in all-orders-in-ε one-loop N = 4

amplitudes. At this point, one might hope that the trend continues and the stringy

corrections are all somehow encoded in the N = 4 theory considered in some higher

dimensional spacetime. Unfortunately, there is no analog of eq. (4.4) and eq. (4.11) at

O(α′4). It is not hard to see this explicitly at the level of four-point amplitudes.

Based on our experience so far, one might expect the four-point MHV amplitude

dimensionally shifted to D = 12 − 2ε to match the O(α′4) stringy correction given in

eq. (4.3) up to a multiplicative constant. However, a short calculation shows that

A1−loop
1 (k1234

1 , k1234
2 , k3, k4)[µ8]

∣∣∣
ε→0

=
st(2s2 + st+ 2t2)

840
AMHV

4;〈12〉 (4.12)

which does not have the same s and t dependence as the O(α′4) stringy correction,

Atreestr (k1234
1 , k1234

2 , k3, k4)
∣∣∣
O(α′4)

= −ζ(4)

4
st(4s2 + st+ 4t2)AMHV

4;〈12〉 . (4.13)

Although it was originally hoped that N = 4 supersymmetry would constrain the

non-Abelian Born-Infeld action to all orders in α′, it is now clear that this already fails

to work at O(α′4) [97]. Since it is illuminating, we repeat the argument of [97]. One

can easily see that there must be more than one independent N = 4 superinvariant

at O(α′4) by comparing the O(α′4) terms in the Abelian Born-Infeld action to the

O(α′4) terms in the non-Abelian Born-Infeld action responsible for the O(α′4) piece

of the four-point tree open superstring amplitude. It is clear from eq. (4.2) that the

Abelian Born-Infeld action doesn’t contain any derivative terms. On the other hand,

operators of the form (DF )4 are the only dimension ten operators which can enter into

and produce the observed O(α′4) four-point tree-level superstring amplitude [94],

Atreestr (k1234
1 , k1234

2 , k3, k4)
∣∣∣
O(α′4)

= −ζ(4)

4
st(4s2 + st+ 4t2)AMHV

4;〈12〉 . (4.14)
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Since the O(α′4) terms in the Abelian Born-Infeld action form an N = 4 superinvariant

by themselves (since they are present in the Abelian case where no derivative terms

are allowed), the linear combination of operators of the form (DF )4 responsible for the

above result must be part of an distinct N = 4 superinvariant.

Before leaving this section, we make one further remark about our results at O(α′2)

that is relevant to n-gluon scattering. We initially suspected that the stringy corrections

at this order in α′ would obey a photon-decoupling relation exactly like the one in pure

Yang-Mills at tree level, where replacing a single gluon by a photon produces a vanishing

result. This turned out to be a little too simplistic. The Tr{F 4} operator that governs

the dynamics at this order in α′ can, in fact, couple one or even two photons to gluons.

However, once you have replaced at least three external photons, the matrix elements

do vanish, so long as at least one of the gluons touching the insertion of Tr{F 4} is

off-shell.

For example, replacing, for sake of argument, gluons k1234
2 , k3, and k4 by photons

results in the identity

0 = Atreestr (k1234
1 , k1234

2 , k3, k4, k5)
∣∣∣
O(α′2)

+Atreestr (k1234
1 , k1234

2 , k4, k3, k5)
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O(α′2)

+

Atreestr (k1234
1 , k3, k4, k

1234
2 , k5)

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k3, k

1234
2 , k4, k5)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k4, k3, k

1234
2 , k5)

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k4, k

1234
2 , k3, k5)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k1234

2 , k3, k5, k4)
∣∣∣
O(α′2)

+Atreestr (k1234
1 , k1234

2 , k4, k5, k3)
∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k3, k4, k5, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k3, k

1234
2 , k5, k4)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k4, k3, k5, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k4, k

1234
2 , k5, k3)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k1234

2 , k5, k3, k4)
∣∣∣
O(α′2)

+Atreestr (k1234
1 , k1234

2 , k5, k4, k3)
∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k3, k5, k4, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k3, k5, k

1234
2 , k4)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k4, k5, k3, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k4, k5, k

1234
2 , k3)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k5, k

1234
2 , k3, k4)

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k5, k

1234
2 , k4, k3)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k5, k3, k4, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k5, k3, k

1234
2 , k4)

∣∣∣
O(α′2)

+

Atreestr (k1234
1 , k5, k4, k3, k

1234
2 )

∣∣∣
O(α′2)

+Atreestr (k1234
1 , k5, k4, k

1234
2 , k3)

∣∣∣
O(α′2)

. (4.15)
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An immediate out-growth of our three-photon decoupling relation for Tr{F 4}matrix

elements is a plausible explanation of the observation [98] that, for the all-plus helicity

configuration at one loop in pure Yang-Mills, replacing three gluons by photons always

gives zero for the five- and higher-point amplitudes. Stieberger and Taylor showed

that MHV Tr{F 4} matrix elements are closely related to the all-plus one-loop pure

Yang-Mills amplitudes and, therefore, it is reasonable to expect the photon-decoupling

identity discussed above for Tr{F 4} matrix elements to carry over to the all-plus one-

loop pure Yang-Mills amplitudes as well.
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Chapter 5

On-Shell Superspace and All-Orders One-Loop N = 4

Superamplitudes

So far in this thesis, N = 4 supersymmetry has played a somewhat peripheral role in

that all results have been presented in component form and we have rather unfairly

focused on computing n-gluon amplitudes. In this section we discuss a powerful for-

malism that unifies all amplitudes with a given k-charge1. We will see that this is

naturally accomplished by introducing auxiliary Grassmann variables. Essentially, the

point of introducing these variables is that it allows one to make manifest that the

S-matrix is SU(4)R invariant, N = 4 supersymmetric, and that the action of these

symmetries connects all scattering amplitudes with the same multiplicity and k-charge

but different external states. The goal is to replace the scattering amplitudes studied so

far (amplitudes with a particular SU(4)R index structure) with N = 4 superamplitudes,

SU(4)R invariant objects that contain as components all N = 4 amplitudes of a given

multiplicity, n. Writing results in terms of superamplitudes will also allow us to give

a less heuristic definition of k-charge. Indeed, this section should make it much more

clear why we use SU(4)R indices to label component N = 4 scattering amplitudes.

1Recall that, so far, we have defined the k-charge of an amplitude operationally as how many
complete copies of the set {1, 2, 3, 4} appear in the helicity labels of the amplitude’s external lines (e.g.
A(k1, k

123
2 , k43, k4, k

12
5 , k

34
6 ) has k-charge two).
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5.1 General Discussion of N = 4 On-Shell Superspace

Let us remind the reader how the massless N = 4 supermultiplet is usually constructed.

Normally, one begins by taking the anticommutator of the N = 4 supercharges

{Qaα, Q̄b α̇} = δ a
b Pαα̇

= δ a
b λαλ̃α̇ (5.1)

and then picking pµ = (p, 0, 0,p) to define a preferred reference frame. It is then follows

that some of the supercharges anticommute with themselves and everything else in this

frame and others act as creation (Q̄b 1̇) or annihilation (Qa1) operators on the space of

states. This approach is useful for some purposes (like determining the particle content

of the massless supermultiplet) but to describe scattering it is better to try and build

a formalism where the supercharges act as creation and annihilation operators on the

space of states in a manifestly Lorentz covariant way.2 Our goal is readily accomplished

if we introduce a set of four Grassmann variables, {η1
` , η

2
` , η

3
` , η

4
` }, for each external four-

vector, p`, in the problem. Then one can easily see that (suppressing the ` label for

now)

Qaα = λαη
a and Q̄b α̇ = λ̃α̇

∂

∂ηb
(5.2)

together satisfy (5.1). Furthermore, the introduction of the ηa allows one to build a

super wavefunction (Grassmann coherent state) for each external line

Φ(p, η) = G+(p) + ηaΓa(p) +
1

2!
ηaηbSab(p) +

1

3!
ηaηbηcεabcdΓ̄

d(p)

+
1

4!
ηaηbηcηdεabcdG

−(p) . (5.3)

which makes it possible to consider scattering in a manifestly N = 4 supersymmetric

way. To convince the reader that (5.2) and (5.3) make sense, we must construct the

covariant analogs of Qi1 and Q̄j 1̇ in the traditional, non-covariant approach (i.e. we

need to identify the relevant creation operators). In fact, given that λαQaα = 0 and

Q̄b α̇λ̃
α̇ = 0 (the supercharges only have components parallel to λα and λ̃α̇), we can

2This alternative approach is not new [99, 100], but its power was not properly appreciated until
very recently [6, 101, 27].



76

read off the analogs of Qi1 and Q̄j 1̇: the annihilation and creation operators are simply

the components of the supercharges along the directions of the spinors, âc ≡ Qc = ηc

and â†d ≡ Q̄d = ∂/∂ηd, and they satisfy the algebra

{Qc, Q̄d} = δcd . (5.4)

Now that we know what the creation operators are we can act on the super wavefunction

(5.3) in various combinations. All that we have to do to show that (5.3) is complete

and correct is find some combination of creation operators (η derivatives) that isolate

each term in the super wavefunction. Following [6, 28], we have

Φ(p, η)
∣∣∣
ηa=0

= G+(p) Q̄aΦ(p, η)
∣∣∣
ηa=0

= Γa(p) Q̄aQ̄bΦ(p, η)
∣∣∣
ηa=0

= Sab(p)

1

3!
Q̄aQ̄bQ̄cε

abcdΦ(p, η)
∣∣∣
ηa=0

= Γ̄d(p)
1

4!
Q̄aQ̄bQ̄cQ̄dε

abcdΦ(p, η)
∣∣∣
ηa=0

= G−(p) .

(5.5)

Evidently, our on-shell superspace construction is well-defined and it therefore makes

sense to speak about N = 4 on-shell superamplitudes, A(Φ1, · · · ,Φn), that take into

account all elements of the planar3 S-matrix with n external states simultaneously. The

n-point superamplitude is naturally expanded into k-charge sectors as4

A(Φ1, · · · ,Φn) = An;2 +An;3 + · · ·+An;n−2 . (5.6)

So far, we have defined k-charge at the level of component amplitudes. For example,

A(p1234
1 , p1234

2 , p3, p4) and A(p1234
1 , p123

2 , p4
3, p4) both have k-charge two because one needs

two copies of {1, 2, 3, 4} to label their external states. At the level of the superamplitude,

the k-charge of a given term on the right-hand side of (5.6) is determined by the number

of Grassmann parameters that appear in it divided by four5. In this thesis, we will

often abuse notation and refer to An;k (a k-charge sector of the superamplitude) as a

superamplitude since there is usually no possibility of confusion.

3Clearly, at the moment, this is a choice we are making since supersymmetry commutes with color.

4As discussed in Appendix C, the k = 0 and k = 1 sectors (and by parity the k = n− 1 and k = n
sectors) are identically zero for non-degenerate kinematical configurations.

5The SU(4)R rotates the Grassmann parameters into each other and the superamplitude must be
a singlet under R-symmetry transformations. This is impossible unless, for a given term, each SU(4)
index, {1, 2, 3, 4}, appears the same number of times.
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We now turn to the MHV tree-level superamplitude, Atreen;2 , which has the sim-

plest superspace structure and can be completely determined by matching onto the

Parke-Taylor formula (or any other component amplitude for that matter). Clearly,

the simplest possible superspace structure is given by the eight-fold Grassmann delta

function itself and corresponds to the first term on the right-hand side of (C.5),

Atreen;2 =
1

16

4∏
a=1

n∑
i,j=1

〈i j〉ηai ηaj Âtreen;2 , (5.7)

where we have used the explicit formula for the Grassmann delta function δ(8) (Qaα)

derived in Appendix C. Suppose we are interested in computing

Atree
(
p1234

1 , p1234
2 , p3, · · · , pn

)
using Atreen;2 . To compute this amplitude one expands

(5.7) and extracts the coefficient of η1
1η

2
1η

3
1η

4
1η

1
2η

2
2η

3
2η

4
2. In the future, we will write this

combination as η1234
1 η1234

2 to save space. The result of this calculation is the numerator

of the familiar Parke-Taylor amplitude times Âtreen;2 :

Atree
(
p1234

1 , p1234
2 , p3, · · · , pn

)
= 〈1 2〉4 Âtreen;2 . (5.8)

It follows that

Âtreen;2 =
i

〈1 2〉〈2 3〉 · · · 〈n 1〉
(5.9)

and

Atreen;2 = i
1
16

∏4
a=1

∑n
i,j=1〈i j〉ηai ηaj

〈1 2〉〈2 3〉 · · · 〈n 1〉
. (5.10)

We have successfully given a unified description of all MHV tree amplitudes in N = 4.

It is worth reminding the reader that superspace structures are exact and independent

of the loop expansion. Therefore, we can immediately write

An;2 = i
1
16

∏4
a=1

∑n
i,j=1〈i j〉ηai ηaj

〈1 2〉〈2 3〉 · · · 〈n 1〉

(
1 +

(
g2Ncµ

2εe−γEε

(4π)2−ε

)
M1−loop

+

(
g2Ncµ

2εe−γEε

(4π)2−ε

)2

M2−loop + · · ·

)
(5.11)

as well, although the determination of ML−loop may be quite non-trivial. In the above

we still suppress the tree-level gauge coupling and color structure, worrying only about

relative factors between different loop orders.
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Before moving on to more non-trivial examples, we point out an important subtlety

related to the special case of n = 3 in eq. (5.10). Our experience with scattering

amplitudes suggests that we should also be able to define the MHV and anti-MHV

three-point superamplitudes, A3;2 and Ā3;2, even though, näıvely, it would appear

that any superamplitude with four Grassmann variables in each term must vanish due

to supercharge conservation (Appendix C). After all, the Grassmann polynomial that

expresses supercharge conservation already has eight Grassmann variables in each term.

There is a way out, however, if one allows for degenerate kinematics. For three-point

kinematics we have p1 = −p2 − p3 which implies that 0 = p2
1 = 〈2 3〉[3 2]. Making the

choice [2 3] = 0 and 〈3 2〉 6= 0 leads to the three-point MHV superamplitude (setting

n = 3 in eq. (5.10)) and making the choice 〈2 3〉 = 0 and [3 2] 6= 0 will lead us

to the anti-MHV three-point superamplitude. Setting all of the holomorphic spinor

products to zero in the three-point amplitude forces all of the holomorphic spinors to

be proportional to one another. Quantitatively, this means that λα ` = c`χα for some

spinor χα and coefficients c`. Consequently, the total supercharge can be written as

Qaα = χα
∑3

`=1 c`η
a
` . The point is that now the α dependence just sits in the spinor

χα which pulls out of the sum over `. Overall factors inside delta functions can’t

lead to non-trivial constraints and it follows that the overall supercharge conserving

delta function is only four-fold in this special case. It is very instructive to realize this

discussion explicitly and determine the superspace structure of Ā3;2.

We start with momentum conservation

λα 1 λ̃α̇ 1 + λα 2 λ̃α̇ 2 + λα 3 λ̃α̇ 3 = 0 (5.12)

and project by taking the spinor product of this equation with, say, λ̃α̇ 1:

λα 2[2 1] + λα 3[3 1] = 0 . (5.13)

Permuting labels, we can also write

λα 1[1 3] + λα 2[2 3] = 0 . (5.14)



79

Solving for λα 1 and λα 3 in terms of λα 2, we find

Qaα =
3∑
`=1

λα ` η
a
` = −λα 2

[2 3]ηa1
[1 3]

+ λα 2η
a
2 − λα 2

[2 1]ηa3
[3 1]

= λα 2

(
[2 3]ηa1 + [3 1] ηa2 + [1 2]ηa3

[3 1]

)
(5.15)

and the arguments of the last paragraph imply that the superspace structure of Ā3;2 is

simply

δ(4) ([2 3]ηa1 + [3 1] ηa2 + [1 2] ηa3) =

4∏
a=1

([2 3] ηa1 + [3 1] ηa2 + [1 2] ηa3) .

Now that the superspace structure of Ā3;2 is fixed, it is a simple matter to match

onto, say, the anti-MHV three-gluon amplitude and determine the entire superampli-

tude. As it stands, we have

Ā3;2 = Ā′3;2

4∏
a=1

([2 3] ηa1 + [3 1] ηa2 + [1 2] ηa3) (5.16)

Expanding out both sides of eq. (5.16) for, say, Atree
(
k1234

1 , k2, k3

)
and extracting the

coefficient of η1234
1 , we find

Atree
(
k1234

1 , k2, k3

)
= Ā′3;2

4∏
a=1

([2 3] ηa1 + [3 1] ηa2 + [1 2] ηa3)

i[2 3]4

[2 3][3 1][1 2]
= Ā′3;2[2 3]4

i

[2 3][3 1][1 2]
= Ā′3;2 . (5.17)

Thus, we finally have

Ā3;2 = i

∏4
a=1 ([2 3] ηa1 + [3 1] ηa2 + [1 2] ηa3)

[1 2][2 3][3 1]
. (5.18)

As we will see, the superspace structure of the six-point NMHV superamplitude is in

some sense built out of pieces of Ā3;2. The superamplitude A6;3 is of particular interest

for us because it represents the desired supersymmetrization of the results derived in

Section 3. To proceed, we need to know the superspace structure of A6;3 and which

component amplitudes are required to nail it down. Happily, this difficult problem was

solved in a recent paper by Elvang, Freedman, and Kiermaier [101]. Here we simply
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present their formula for A6;3 and refer the reader interested in the derivation to C.2.

The result is

A1−loop
6; 3 =

δ(8)(Qaα)

[3 4]4〈5 6〉4
(
A1−loop

1

(
p1234

1 , p2, p3, p4, p
1234
5 , p1234

6

) 4∏
a=1

([3 4] ηa1 + [4 1] ηa3

+[1 3] ηa4) +A1−loop
1

(
p123

1 , p4
2, p3, p4, p

1234
5 , p1234

6

) 3∏
a=1

([3 4] ηa1 + [4 1] ηa3 + [1 3] ηa4)×

×
(
[3 4] η4

2 + [4 2] η4
3 + [2 3] η4

4

)
+A1−loop

1

(
p12

1 , p
34
2 , p3, p4, p

1234
5 , p1234

6

) 2∏
a=1

([3 4] ηa1

+[4 1] ηa3 + [1 3] ηa4)
4∏

a=3

([3 4] ηa2 + [4 2] ηa3 + [2 3] ηa4)

+A1−loop
1

(
p1

1, p
234
2 , p3, p4, p

1234
5 , p1234

6

) (
[3 4] η1

1 + [4 1] η1
3 + [1 3] η1

4

) 4∏
a=2

([3 4] ηa2

+[4 2] ηa3 + [2 3] ηa4) +A1−loop
1

(
p1, p

1234
2 , p3, p4, p

1234
5 , p1234

6

)
×

×
4∏

a=1

([3 4] ηa2 + [4 2] ηa3 + [2 3] ηa4)
)
.

(5.19)

It is also well-known that, when used in conjunction with the four dimensional helicity

scheme [102], results derived from supersymmetry such as the above hold order-by-order

in the dimensional regularization parameter. If we want to use the above formula to give

a supersymmetrized version of the all-orders-in-ε six-point NMHV superamplitude, we

have to somehow determine the pentagon coefficients ofA1−loop
1

(
p123

1 , p4
2, p3, p4, p

1234
5 , p1234

6

)
,

A1−loop
1

(
p12

1 , p
34
2 , p3, p4, p

1234
5 , p1234

6

)
, and A1−loop

1

(
p1

1, p
234
2 , p3, p4, p

1234
5 , p1234

6

)
(the box

coefficients for NMHV amplitudes with pairs of scalars or fermions were already com-

puted in [103] or can be deduced from [104]). In this thesis we are focused on computing

the unknown pentagon coefficients and we will therefore suppress the box contributions

to N = 4 amplitudes throughout the rest of this work except when it is desirable to

include them for pedagogical purposes.

Now, there are two ways that we could try and go forward. One would be to try

and match the superamplitude onto three different pure-gluon amplitudes that we have

already computed and solve a linear system to determine the eighteen unknown pen-

tagon coefficients (one system of three equations in three unknowns suffices to determine

all eighteen unknowns by virtue of the leading singularity method). Alternatively, we
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could try and determine the coefficients directly by combining the leading singularity

method with D dimensional unitarity, as was done in Section 3 for six-gluon ampli-

tudes. Either way we will have to simplify the rather complicated results obtained

using BCFW shifts. In this section we try both approaches although it would proba-

bly be easier to use the first to determine everything. In Subsection 5.2, we compute

amplitudes with fermion/anti-fermion pairs directly because, if we’d like to claim that

our approach to D dimensional integrand reconstruction is applicable in principle to

one-loop QCD calculations, it is important to see that the calculational method dis-

cussed in Section 3 can handle amplitudes where some of the external gluons have been

replaced by fermions. For the final amplitude with a scalar/anti-scalar pair we obtain

the result in Subsection 5.3 by matching onto the result we derived in Section 3 for

A1−loop
1

(
p1234

1 , p2, p
1234
3 , p4, p

1234
5 , p6

)
.

5.2 NMHV Amplitudes With a Fermion/Anti-Fermion Pair

The approach that we use in this subsection to calculate the higher-order in ε pentagon

coefficients for A1−loop
1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

)
is completely analogous to the ap-

proach outlined in Subsection 3.1 for six-gluon amplitudes. There are, of course, a few

minor differences. The diagrammatics are a bit less obvious and some of the three-

point tree amplitudes used to reconstruct the one-loop integrands are different. We

will need the three-point vertex for a fermion, anti-fermion, and a complex scalar in D

dimensions. This is just a Yukawa coupling:

Atreeµ2 (−pf̄ , k12
1 , (p− k1)f ) = iū(p)u(p− k1) . (5.20)

As the attentive reader may have suspected, we are actually going to compute

A1−loop
1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
instead of A1−loop

1

(
k1

1, k
234
2 , k3, k4, k

1234
5 , k1234

6

)
to

make life as easy as possible. If we compute A1−loop
1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
, it

will turn out that we can recycle the four-vertices (eqs. (3.18) - (3.20)) that we used

in our six-gluon calculations. All we have to do is rewrite eq. (5.19) with shifted

component amplitudes. Going through the proof in C.2, we see that this is an entirely
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straightforward exercise and we arrive at

A1−loop
6; 3 =

δ(8)(Qaα)

[5 6]4〈1 2〉4
(
A1−loop

1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

) 4∏
a=1

([5 6] ηa3 + [6 3] ηa5

+[3 5] ηa6) +A1−loop
1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) 3∏
a=1

([5 6] ηa3 + [6 3] ηa5 + [3 5] ηa6)×

×([5 6] η4
4 + [6 4] η4

5 + [4 5] η4
6) +A1−loop

1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

) 2∏
a=1

([5 6] ηa3

+[6 3] ηa5 + [3 5] ηa6)
4∏

a=3

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6)

+A1−loop
1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

) (
[5 6] η1

3 + [6 3] η1
5 + [3 5] η1

6

)
4∏

a=2

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6) +A1−loop
1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
×

×
4∏

a=1

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6)
)

(5.21)

with very little effort.

Also, when we say compute the amplitude, what we really mean is compute the

pentagon coefficient of I
(1); D=6−2ε
5 . Once this function is determined, the leading sin-

gularity equations give the rest of the pentagon coefficients for free. We denote the first

diagram MI , the second MII and so forth (the particle content of each topology will

be quite clear from the expression that we present for it). We present each of these

contributions in turn:

A1−loop
1;MI

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

=

(
−i√

2

)2

εα(p∗ + k5 + k6)[4|γαu(p∗ − k1 − k2 − k3)ū(p∗ − k1 − k2 − k3)γβ|3〉

ε∗β(p∗ − k1 − k2)i
√

2ε∗ ρ5(p∗ + k5 + k6)
(
ε+(k5) · (p∗ + k5 + k6) gρ5σ5

+k5 ρ5 ε
+
σ5(k5)− k5σ5 ε

+
ρ5(k5)

)
εσ5(p∗ + k6)ε∗σ(p∗ + k6)

−2i

〈1| p∗ |1]

(
ε−(k1) · p∗ ε+(k6) · p∗ gρσ

+ε+(k6) · p∗ k1σε
−
ρ (k1)− ε+(k6) · p∗ k1 ρ ε

−
σ (k1) + ε−(k1) · p∗ k6σ ε

+
ρ (k6)

−ε−(k1) · p∗ k6 ρ ε
+
σ (k6)− k1 · k6ε

−
ρ (k1)ε+

σ (k6)
)
ερ(p∗ − k1)

i
√

2ε∗ ρ2(p∗ − k1)
(
ε−(k2) · (p∗ − k1) gρ2σ2 + k2 ρ2 ε

−
σ2(k2)

−k2σ2 ε
−
ρ2(k2)

)
εσ2(p∗ − k1 − k2)
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= − 2i

〈1| p∗ |1]
gρ5α[4|γα(/p∗ − /k1 − /k2 − /k3 + µ)γβ|3〉gσ2β(

ε+(k5) · (p∗ + k5 + k6) gρ5σ5 + k5 ρ5 ε
+
σ5(k5)− k5σ5 ε

+
ρ5(k5)

)
gσ5σ(

ε−(k1) · p∗ ε+(k6) · p∗ gρσ + ε+(k6) · p∗ k1σε
−
ρ (k1)

−ε+(k6) · p∗ k1 ρ ε
−
σ (k1) + ε−(k1) · p∗ k6σ ε

+
ρ (k6)

−ε−(k1) · p∗ k6 ρ ε
+
σ (k6)− k1 · k6ε

−
ρ (k1)ε+

σ (k6)
)

gρρ2
(
ε−(k2) · (p∗ − k1) gρ2σ2 + k2 ρ2 ε

−
σ2(k2)− k2σ2 ε

−
ρ2(k2)

)
,

(5.22)

A1−loop
1;MII

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

= −
(
−i√

2

)4

[4|γαε∗α(p∗ − k1 − k2 − k3)u(p∗ + k5 + k6)ū(p∗ + k5 + k6)/ε+(k5)u(p∗ + k6)(
i(p∗ + k6) · ε+(k6)

〈1| p∗ |1]
ū(p∗ + k6)/ε−(k1)u(p∗ − k1)

)
ū(p∗ − k1)/ε−(k2)

u(p∗ − k1 − k2)ū(p∗ − k1 − k2)γβε
β(p∗ − k1 − k2 − k3)|3〉

=
i(p∗ + k6) · ε+(k6)

4 〈1| p∗ |1]
[4|γβ(/p∗ + /k5 + /k6 + µ)

/ε+(k5)(/p∗ + /k6 + µ)/ε−(k1)(/p∗ − /k1 + µ)/ε−(k2)(/p∗ − /k1 − /k2 + µ)γβ|3〉 ,

(5.23)

A1−loop
1;MIII

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

=

(i)2[4|u(p∗ − k1 − k2 − k3)ū(p∗ − k1 − k2 − k3)|3〉(
−
√

2i(p∗ + k5 + k6) · ε+(k5)
) −i 〈1| p∗ |6]2

s6 〈1| p∗ |1]

(
−
√

2i(p∗ − k1) · ε−(k2)
)

(5.24)

= −2i[4|/p∗ − /k1 − /k2 − /k3 + µ|3〉(p∗ + k5 + k6) · ε+(k5)
〈1| p∗ |6]2

s6 〈1| p∗ |1]
(p∗ − k1) · ε−(k2) ,

A1−loop
1;MIV

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

= −(i)2[4|u(p∗ + k5 + k6)(
− i√

2
ū(p∗ + k5 + k6)/ε+(k5)u(p∗ + k6)

)
i(p∗ + k6) · ε+(k6)

〈1| p∗ |1]
ū(p∗ + k6)/ε−(k1)u(p∗ − k1)

(
− i√

2

ū(p∗ − k1)/ε−(k2)u(p∗ − k1 − k2)

)
ū(p∗ − k1 − k2)|3〉

= − i(p∗ + k6) · ε+(k6)

2 〈1| p∗ |1]
[4|(/p∗ + /k5 + /k6)

/ε+(k5)(/p∗ + /k6)/ε−(k1)(/p∗ − /k1)/ε−(k2)/p∗ − /k1 − /k2)|3〉 . (5.25)
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Combining eqs. (5.22) - (5.25) with the appropriate multiplicities, we finally find

A1−loop
1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

=

A1−loop
1;MI

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

+A1−loop
1;MII

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

+3A1−loop
1;MIII

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

+3A1−loop
1;MIV

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

) ∣∣∣
I
(1)
5

. (5.26)

In the above, the overall phase of the diagrams was deduced by first calculating an MHV

amplitude with an external fermion/anti-fermion pair and then matching it onto the

known result, obtainable from eq. (3.16) and the known MHV superspace structure (eq.

(5.10)). Once the correct phase is determined for the A1−loop
1

(
k1234

1 , k2, k
123
3 , k4

4, k5, k6

)
pentagons, it is straightforward to obtain the correct phase for the NMHV amplitude

of interest by flipping the polarization of second gluon. As before, we should project

the pentagon integrals onto the dual conformal basis using (2.74) before attempting to

simplify the result. After trying all BCFW shifts, we were able to find a simple formula

for the above pentagon coefficient. Suppressing the overall factor of ε from (2.74), we

find:

Kff̄
1 =

i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)
, (5.27)

where the Ci appear in the reduction of a massless scalar hexagon integral to a sum of

one mass pentagons and they entered into our six gluon results in Subsection 3.2.

The I
(1); D=6−2ε
5 pentagon coefficient of A1−loop

1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

) ∣∣∣
I
(1)
5

can

be derived in a completely analogous fashion. We will not describe the calculation in

detail because it is extremely similar to that above but the final result is, of course,

important and we present it using the similar notation:

H f̄f
1 = − i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)
. (5.28)
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In H f̄f
1 above, the origin of the overall minus sign is a reflection of the fact that our D

dimensional generalized unitarity technique naturally computes

A1−loop
1

(
k1234

1 , k1234
2 , k4

3, k
123
4 , k5, k6

) ∣∣∣
I
(1)
5

, which is off by a minus sign from

A1−loop
1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

) ∣∣∣
I
(1)
5

≡ H f̄f
1 .

Before leaving this subsection, let us say a few more words about how we de-

rived eqs. (5.27) and (5.28). We treat (5.27) but (5.28) is no more difficult. In

fact, (5.26) is particularly easy to simplify down to (5.27) due to its similarity to

A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

) ∣∣∣
I
(1)
5

. Comparing eq. (5.27) above to

K1 =
i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(5.29)

from Subsection 3.2, we see that one BCFW shift is particularly helpful in determining

the analytic structure of Kff̄
1 . Suppose we make the shift

λ3 → λ3(z) = λ3 + zλ4

λ̃4 → λ̃4(z) = λ̃4 − zλ̃3 , (5.30)

on the unsimplified formula for Kff̄
1 given by eq. (5.26). What we will find is that this

shift evaluated at a random phase-space point looks like

Kff̄
1 +K1z

evaluated numerically at the random point. This immediately tells us to just take one

of the factors of

(
〈2| (1 + 6) |5] 〈1| (2 + 3) |4] 〈3| (1 + 2) |6] + 〈5| (1 + 6) |2] 〈1 2〉〈2 3〉[4 5][5 6]

)
in K1 and replace λ3 with λ4 in that factor to get Kff̄

1 . Of course, there is no guarantee

that something like this will work in general, but we will see that we are also able to

guess a simple result for the first pentagon coefficient of the scalar/anti-scalar amplitude

considered in the next subsection.
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5.3 NMHV Amplitudes With a Scalar/Anti-Scalar Pair

In this subsection, we use the results that we have so far for

A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
, A1−loop

1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
,

A1−loop
1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
, A1−loop

1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

)
,

and A1−loop
1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
and eq. (5.21) for A6;3 to deduce an expression

for the I
(1); D=6−2ε
5 pentagon coefficient of

A1−loop
1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
. Clearly, the first step is to expand eq. (5.21) and

extract the coefficient of η1234
1 η1234

3 η1234
5 . Doing this results in the relation

A1−loop
1

(
k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6

)
=

〈1| 3 + 5 |6]4

〈1 2〉4[5 6]4
A1−loop

1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
+4
〈1| 3 + 5 |6]3 〈3 1〉[6 4]

〈1 2〉4[5 6]4
A1−loop

1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

)
+6
〈1| 3 + 5 |6]2 〈3 1〉2[6 4]2

〈1 2〉4[5 6]4
A1−loop

1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
+4
〈1| 3 + 5 |6] 〈3 1〉3[6 4]3

〈1 2〉4[5 6]4
A1−loop

1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
+
〈3 1〉4[6 4]4

〈1 2〉4[5 6]4
A1−loop

1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
(5.31)

which can be used to trivially solve for the I
(1); D=6−2ε
5 pentagon coefficient of

A1−loop
1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
.

We can simplify the complicated looking expression that results by using BCFW
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shifts. By examining the results that we have so far

K1 =
i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

(5.32)

Kff̄
1 =

i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)
(5.33)

H f̄f
1 = − i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)
(5.34)

H1 =
i

2
C1

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)2

〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

(5.35)

we see that a natural guess for the I
(1); D=6−2ε
5 pentagon coefficient of

A1−loop
1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
is

M ss∗
1 =

i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)2

〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

(5.36)

because it has a factor in common with both Kff̄
1 and H f̄f

1 . In fact, this is almost right.

If we try subtracting eq. (5.36) from the expression obtained by solving eq. (5.31), we

find that what’s left over is easily determined using BCFW analysis to be

i

6
C1〈1 2〉2[5 6]2

which implies that the entire pentagon coefficient is given by

M ss∗
1 =

i

2
C1

(( 〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]
)2

〈2| 1 + 6 |5] 〈5| 1 + 6 |2] s3s6

+
1

3
〈1 2〉2[5 6]2

)
(5.37)

All of the necessary pieces are now in place and we can use them to determine all of

the higher-order terms in the N = 4 superamplitude A6;3. We do this in the next

subsection.
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5.4 The N = 4 Supersymmetrization of the Six-Point NMHV Ampli-

tudes

In this subsection we use the results derived in the last two subsections and some of those

derived in Section 3 to write down the full form of the higher-order in ε contributions

(in the dual conformal basis) to the one-loop planar six-point NMHV superamplitude.

We present all of the higher-order pieces of the component scattering amplitudes that

appear in eq. (5.21) for A6;3. To determine the other pentagon coefficients we first

solved the requisite leading singularity equations numerically using our I
(1); D=6−2ε
5

pentagon coefficients as inputs. Then, based on the analytical formulas obtained in

this section and the last, we found it straightforward to guess appropriate compact

formulas for the remaining undetermined coefficients, checking everything numerically

against our numbers from the leading singularity equations. If we first define

K1 =
i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(5.38)

K2 =
i

2
C2
〈3| 1 + 2 |6]2 〈1 2〉2[4 5]2t21
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.39)

K3 =
i

2
C3
〈1| 2 + 3 |4]2 〈2 3〉2[5 6]2t21
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

(5.40)

K4 =
i

2
C4

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(5.41)

K5 =
i

2
C5
〈3| 1 + 2 |6]2 〈1 2〉2[4 5]2t21
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.42)

K6 =
i

2
C6
〈1| 2 + 3 |4]2 〈2 3〉2[5 6]2t21
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

, (5.43)
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Kff̄
1 =

i

2
C1

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)
s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
(5.44)

Kff̄
2 =

i

2
C2

(
〈3| 1 + 2 |6] 〈1 2〉[4 5]t1

)(
[4 5]〈1 2〉 〈4| 5 + 6 |3] 〈3| 4 + 5 |6]

)
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.45)

Kff̄
3 =

i

2
C3

(
〈1| 2 + 3 |4] 〈2 3〉[5 6]t1

)(
[5 6]〈2 3〉 〈1| 2 + 3 |4] 〈4| 1 + 2 |3]

)
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

(5.46)

Kff̄
4 =

i

2
C4

(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈3| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 3〉[4 5][5 6]

)
s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
(5.47)

Kff̄
5 =

i

2
C5

(
〈3| 1 + 2 |6] 〈1 2〉[4 5]t1

)(
[4 5]〈1 2〉 〈4| 5 + 6 |3] 〈3| 4 + 5 |6]

)
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.48)

Kff̄
6 =

i

2
C6

(
〈1| 2 + 3 |4] 〈2 3〉[5 6]t1

)(
[5 6]〈2 3〉 〈1| 2 + 3 |4] 〈4| 1 + 2 |3]

)
s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

, (5.49)
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M ss∗
1 =

i

2
C1

(( 〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]
)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

+
1

3
〈1 2〉2[5 6]2

)
(5.50)

M ss∗
2 =

i

2
C2

(
[4 5]2〈1 2〉2 〈4| 5 + 6 |3]2 〈3| 4 + 5 |6]2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

+
1

3
〈1 2〉2[5 6]2

)
(5.51)

M ss∗
3 =

i

2
C3

(
[5 6]2〈2 3〉2 〈1| 2 + 3 |4]2 〈4| 1 + 2 |3]2

s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

+
1

3
〈1 2〉2[5 6]2

)
(5.52)

M ss∗
4 =

i

2
C4

(( 〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]
)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

+
1

3
〈1 2〉2[5 6]2

)
(5.53)

M ss∗
5 =

i

2
C5

(
[4 5]2〈1 2〉2 〈4| 5 + 6 |3]2 〈3| 4 + 5 |6]2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

+
1

3
〈1 2〉2[5 6]2

)
(5.54)

M ss∗
6 =

i

2
C6

(
[5 6]2〈2 3〉2 〈1| 2 + 3 |4]2 〈4| 1 + 2 |3]2

s2s5 〈1| 2 + 3 |4] 〈4| 2 + 3 |1]

+
1

3
〈1 2〉2[5 6]2

)
, (5.55)
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H f̄f
1 = − i

2
C1

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)
s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
(5.56)

H f̄f
2 =

i

2
C2

〈1 2〉
(
〈3| 1 + 2 |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

×

×
(

[4 5]〈1 2〉 〈4| 5 + 6 |3] 〈3| 4 + 5 |6]
)

(5.57)

H f̄f
3 =

i

2
C3

[5 6]
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)
s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]

×

×
(

[5 6]〈2 3〉 〈1| 2 + 3 |4] 〈4| 1 + 2 |3]
)

(5.58)

H f̄f
4 = − i

2
C4

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)
s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

×

×
(
〈2| 1 + 6 |5] 〈1| 2 + 3 |4] 〈4| 1 + 2 |6] + 〈5| 1 + 6 |2] 〈1 2〉〈2 4〉[4 5][5 6]

)
(5.59)

H f̄f
5 =

i

2
C5

〈1 2〉
(
〈3| 1 + 2 |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)
s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

×

×
(

[4 5]〈1 2〉 〈4| 5 + 6 |3] 〈3| 4 + 5 |6]
)

(5.60)

H f̄f
6 =

i

2
C6

[5 6]
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)
s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]

×

×
(

[5 6]〈2 3〉 〈1| 2 + 3 |4] 〈4| 1 + 2 |3]
)
, (5.61)
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and

H1 =
i

2
C1

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(5.62)

H2 =
i

2
C2

〈1 2〉2
(
〈3| 1 + 2 |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.63)

H3 =
i

2
C3

[5 6]2
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)2

s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]

(5.64)

H4 =
i

2
C4

(
〈2| 6 + 1 |5] 〈1| 2 + 4 |3] 〈4| 1 + 2 |6] + 〈5| 6 + 1 |2] 〈1 2〉〈2 4〉[3 5][5 6]

)2

s6s3 〈2| 6 + 1 |5] 〈5| 6 + 1 |2]

(5.65)

H5 =
i

2
C5

〈1 2〉2
(
〈3| 1 + 2 |6] 〈4| 1 + 2 |3] [5 3] + 〈6| 1 + 2 |3] 〈4| 1 + 2 |6] [5 6]

)2

s1s4 〈3| 1 + 2 |6] 〈6| 1 + 2 |3]

(5.66)

H6 =
i

2
C6

[5 6]2
(
〈1| 2 + 3 |4] 〈4| 1 + 2 |3] 〈2 4〉+ 〈4| 2 + 3 |1] 〈1| 2 + 4 |3] 〈2 1〉

)2

s2s5 〈4| 2 + 3 |1] 〈1| 2 + 3 |4]

(5.67)

in what will hopefully be obvious notation given what has been discussed so far, then

the final form of our answer reads

A1−loop
6;3 = · · ·+ ε

δ(8)(Qaα)

[5 6]4〈1 2〉4
6∑
`=1

(
K`

4∏
a=1

([5 6] ηa3 + [6 3] ηa5 + [3 5] ηa6)

+Kff̄
`

3∏
a=1

([5 6] ηa3 + [6 3] ηa5 + [3 5] ηa6)
(
[5 6] η4

4 + [6 4] η4
5 + [4 5] η4

6

)
+M ss∗

`

2∏
a=1

([5 6] ηa3 + [6 3] ηa5 + [3 5] ηa6)

4∏
a=3

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6)

+H f̄f
`

(
[5 6] η1

3 + [6 3] η1
5 + [3 5] η1

6

) 4∏
a=2

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6)

+H`

4∏
a=1

([5 6] ηa4 + [6 4] ηa5 + [4 5] ηa6)
)
I

(`); D=6−2ε
5 (5.68)

where, as usual, we have suppressed the well-known box integral contributions. In

Section 6 we will see that there is another form for the higher-order in ε contributions
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to A1−loop
6;3 that is even simpler than eq. (5.68).

5.5 The Structure of An;2 At One, Two, and Higher Loops

In this subsection we review the ongoing program of research dedicated to understanding

the multi-loop structure of the planar MHV superamplitude in N = 4. This program

was begun with the seminal paper of Bern, Dixon, Dunbar, and Kosower [67] which

computed all one-loop MHV superamplitudes in N = 4 (as usual, we will only be

interested in the planar contributions). Recall the notation used in eq. (5.11):

An;2 = i
1
16

∏4
a=1

∑n
i,j=1〈i j〉ηai ηaj

〈1 2〉〈2 3〉 · · · 〈n 1〉

(
1 +

(
g2Ncµ

2εe−γEε

(4π)2−ε

)
M1−loop

+

(
g2Ncµ

2εe−γEε

(4π)2−ε

)2

M2−loop + · · ·

)
. (5.69)

After Atreen;2 is factored out, the analytic structure at L loops, ML−loop, can be deter-

mined by comparing to, say, AL−loop
1 (p1234

1 , p1234
2 , p3, · · · , pn) modulo the Parke-Taylor

amplitude. Although most of the multi-loop N = 4 literature prior to the development

of N = 4 on-shell superspace focused on purely gluonic amplitudes, the discussion of

5.1 makes it clear that, in the MHV sector, one can make this choice and still determine

the full superamplitude (Of course it is probably more natural to perform all calcula-

tions in a manifestly N = 4 supersymmetric way [105]). In all of the applications that

follow, it will be useful to redefine the contribution from the L-th loop as follows:(
g2Ncµ

2εe−γEε

(4π)2−ε

)L
ML−loop =

(
2g2Nce

−γEε

(4π)2−ε

)L
M(L)(n, t

[r]
i , ε) = aLM(L)(n, t

[r]
i , ε) ,

(5.70)

where we have made the useful definitions

a ≡ λe−γEε

(4π)2−ε and t
[r]
i ≡ (pi + · · ·+ pi+r−1)2 . (5.71)

Using this notation, eq. (5.11) reads

An;2 = i
1
16

∏4
a=1

∑n
i,j=1〈i j〉ηai ηaj

〈1 2〉〈2 3〉 · · · 〈n 1〉

(
1 +

∞∑
L=1

aLM(L)(n, t
[r]
i , ε)

)
. (5.72)

Let us now describe the work that was done by BDDK in [67]. In that work, BDDK
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determined the structure of M(1)(n, t
[r]
i , ε) for all n through O(ε0). They found

M(1)(n, t
[r]
i , ε) = CΓ

n∑
i=1

(
− 1

ε2

(
µ2

−t[2]
i

)ε
−

[n2 ]−1∑
r=2

n∑
i=1

ln

(
−t[r]i
−t[r+1]

i

)
ln

( −t[r]i+1

−t[r+1]
i

)

+Dn

(
t
[r]
i

)
+ Ln

(
t
[r]
i

)
+
nπ2

6

)
+O(ε) , (5.73)

where CΓ is given by

CΓ =
Γ(1 + ε)Γ(1− ε)2

2Γ(1− 2ε)
.

The form of Dn

(
t
[r]
i

)
and Ln

(
t
[r]
i

)
depends upon whether n is odd or even. For

n = 2m+ 1,

D2m+1 = −
m−1∑
r=2

(
n∑
i=1

Li2

[
1−

t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

])
,

L2m+1 = −1

2

n∑
i=1

ln

(
−t[m]

i

−t[m]
i+m+1

)
ln

( −t[m]
i+1

−t[m]
i+m

)
,

whereas for n = 2m,

D2m = −
m−2∑
r=2

(
n∑
i=1

Li2

[
1−

t
[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1

])
−

n/2∑
i=1

Li2

[
1−

t
[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1

]
,

L2m = −1

4

n∑
i=1

ln

(
−t[m]

i

−t[m]
i+m+1

)
ln

( −t[m]
i+1

−t[m]
i+m

)
.

The above only holds for n ≥ 5. For n = 4 we have

M(1)(4, t
[r]
i , ε) = CΓ

{
− 2

ε2

[(−s
µ2

)−ε
+

(
−t
µ2

)−ε ]
+ ln2

(
−s
−t

)
+ π2

}
. (5.74)

Subsequently, the functionsM(2)(4, t
[r]
i , ε) andM(2)(5, t

[r]
i , ε) were determined through

terms ofO(ε0) in [30] and [32] respectively. Remarkably, the following relationships were

found:

M(2)(4, t
[r]
i , ε)

∣∣∣
O(ε0)

− 1

2
M(1)(4, t

[r]
i , ε)

2
∣∣∣
O(ε0)

=

αM(1)(4, t
[r]
i , 2ε)

∣∣∣
O(ε0)

+ β (5.75)

M(2)(5, t
[r]
i , ε)

∣∣∣
O(ε0)

− 1

2
M(1)(5, t

[r]
i , ε)

2
∣∣∣
O(ε0)

=

αM(1)(5, t
[r]
i , 2ε)

∣∣∣
O(ε0)

+ β , (5.76)
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where both sides of the above are only considered through O(ε0). α and β are transcen-

dentality two and four numbers respectively.6 Generically, L-loop planar amplitudes in

N = 4 are built out of transcendentality 2L numbers and functions [106]. In the above,

α and β have the transcendentality that they do because both sides of eqs. (5.75) and

(5.76) are expected to have uniform transcendentality four.

Given these striking results, Bern, Dixon, and Smirnov proposed [31] the following

ansatz for the analytical structure of all planar MHV superamplitudes,

ln

(
1 +

∞∑
L=1

aLM(L)(n, t
[r]
i , ε)

)
=
∞∑
L=1

aL
(
f (L)M(1)(n, t

[r]
i , Lε) + C(L) + E(L)(n, ε)

)
,

(5.77)

which they checked for n = 4 through three loops in their paper. In eq. (5.77) above,

f (L) and C(L) are numbers of the appropriate transcendentality (2(L − 1) and 2L re-

spectively) and E(L)(n, ε) contains higher-order in ε contributions that are unimportant

because, usually, both sides of (5.77) are expanded to some order in a and then higher-

order in ε terms are dropped to put all of the n dependence on the right-hand side into

the functionM(1)(n, t
[r]
i , Lε). Actually, a structure like this is expected in gauge theory

on general grounds for the ε pole terms; the IR divergences of planar non-Abelian gauge

theory amplitudes are well-understood and known to exponentiate [107, 108]. What is

really novel about eq. (5.77) is that it holds also for the finite terms.

In fact, the so-called BDS ansatz (eq. (5.77)) is known to be valid to all loop orders

if n = 4 or 5 [35]. This is a fact that will be explained in Section 6 after introducing

dual superconformal symmetry. For higher multiplicity, however, life is not so simple.

It was proven in [41, 42, 39] that the BDS ansatz fails at two loops and six points. For

this case, which will be the one of primary interest to us, eq. (5.77) must be modified:

M(2)(6, t
[r]
i , ε)

∣∣∣
O(ε0)

− 1

2
M(1)(6, t

[r]
i , ε)

2
∣∣∣
O(ε0)

=

αM(1)(6, t
[r]
i , 2ε)

∣∣∣
O(ε0)

+ β +R
(2)
6

(
t
[r]
i

)
, (5.78)

The new term on the right-hand side is called the two-loop, six-point remainder func-

tion. It is IR finite and highly constrained. For example, in order to be consistent

6For example, ζ(2) is transcendentality two and ζ(4) is transcendentality four. One also speaks of
functions carrying transcendentality (e.g. Li2[1− −s−t ] has transcendentality two).
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with the known results for four and five point scattering at two loops, R
(2)
6 must have

vanishing soft and collinear limits in all channels. Also, we know from the discussion

above that R
(2)
6 should be a function of uniform transcendentality four. Furthermore,

as we will see in the next section, the remainder function is not an arbitrary function

of the t
[r]
i . In fact, for generic kinematics it is a function of only three independent

variables.



97

Chapter 6

Dual Superconformal Symmetry and the Ratio of the

Six-Point NMHV and MHV Superamplitudes at

Two-Loops

In this section we review developments related to a recently discovered hidden symmetry

of the planar N = 4 S-matrix, dual superconformal symmetry, and we present an

alternative formula for the higher-order contributions to A1−loop
6;3 that manifest the new

symmetry as much as possible. The formula obtained is very simple and is the form of

our results used in a recent study of the N = 4 planar NMHV superamplitude at two

loops (the study is in preparation [84]). As will be explained more below, one of the

ideas that the authors of [84] want to test is whether the NMHV superamplitude divided

by the MHV superamplitude is dual superconformally invariant, as was proposed earlier

in [6] by Drummond, Henn, Korchemsky, and Sokatchev. The new results described in

this section for A1−loop
6;3 were obtained in collaboration with one of the authors of [84],

Cristian Vergu. This thesis has been primarily been about perturbation theory at weak

coupling and, therefore, we will describe all developments in perturbation theory even

though most of them were first seen non-perturbatively in the strong coupling regime

of N = 4 (via the AdS/CFT correspondence). Of course, it would be a shame to

completely ignore the strong coupling regime, so we offer a brief account in Appendix

D for the reader interested in a historical introduction to the ideas discussed in this

section.
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6.1 Light-Like Wilson-Loop/MHV Amplitude Correspondence

We begin by describing a very surprising connection between two a priori completely

unrelated observables. One of the observables,

An;2

Atreen;2

= 1 +

∞∑
L=1

aLM(L)(n, t
[r]
i , ε) (6.1)

was discussed at length in Subsections 5.1 and 5.5. The other, the expectation value of

an n-gon (denoted Cn) light-like Wilson loop

W [Cn] ≡ 1

Nc
〈0|Tr

[
P

{
exp

(
ig

∮
Cn

dxνAaν(x)ta
)}]

|0〉 (6.2)

has not been introduced so far, so we will analyze its definition in some detail. Of

course, we will also have to understand, at least in principle, how to calculate the set of

objects introduced above perturbatively if our goal is to establish a connection between

eqs. (6.1) and (6.2).

Since it may well be the case that the reader is less familiar with Wilson loop

expectation values than with scattering amplitudes, we first take a step back and discuss

Wilson loops in general. Wilson loops were introduced by Wilson in [109] in an attempt

to better understand the phenomenon of quark confinement in non-Abelian Yang-Mills

theory (he had the gauge group SU(3)color in mind). The asymptotic behavior of

Wilson loop expectation values as the circumference of the loop goes to infinity tells

you whether your gauge theory (in Euclidean space) is confining in the infrared. If we

define A(C) to be the area of the surface of minimal area bounded by C and L(C) to

be the circumference of C, it can be shown [110] that if we have

W [C]
L(C)→∞−→ W0e

−kA(C) , (6.3)

then the gauge theory is in the confining phase, provided that the contour C is smooth

(without cusps) and is space-like back in Minkowski space.

Although the above application is probably what would come to the minds of most

researchers if asked about Wilson loops, we have something completely different in

mind. We want to think about the special case where the contour C has cusps and

each segment between cusps has length zero in Minkowski space. This sort of Wilson
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loop expectation value enters into the calculation of certain universal soft functions

in QCD. These soft functions are important because they control the resummation of

large logarithms that often appear at the edges of phase-space when one tries to näıvely

compute next-to-leading (or higher) corrections to cross-sections for processes in QCD.

As we shall see, n-cusp light-like Wilson loop expectation values also play an important

in N = 4, but in a rather different way.

It is now time to return to eq. (6.2),

W [Cn] =
1

Nc
〈0|Tr

[
P

{
exp

(
ig

∮
Cn

dxνAaν(x)ta
)}]

|0〉 , (6.4)

and scrutinize everything that enters into the expression on the right-hand side. In the

above, the gauge connection, Aaν is contracted with the SU(Nc) fundamental represen-

tation gauge group generators, ta. The quantity Aaνt
a is integrated around the closed

contour Cn. Each cusp of Cn is labeled xνi and the lines between adjacent cusps have

lengths (xi − xi+1)2 = 0. The distances between non-adjacent cusps are in general

non-zero. If we introduce the notation x2
ij = (xi − xj)2, we have nine distinct non-zero

distances for n = 6: {x2
13, x

2
24, x

2
35, x

2
46, x

2
51, x

2
62, x

2
14, x

2
25, x

2
36}. In field theory, when

one is faced with evaluating the expectation value of an exponential of field operators,

one simply expands the exponential and applies Wick’s theorem in the standard way,

usually using Feynman diagrams as a book-keeping device. This case is no different,

but the appearance of the path-ordering operator, P , tells us to order the integrals that

we get out of the exponential’s Taylor expansion according to how we are traversing

the Wilson loop. In fact the only non-commutative structure in the problem are the ta

generator matrices, so the path-ordering in this case is just an ordering on the SU(Nc)

generators that appear in the argument of the exponential. Finally, we have to trace

over gauge theory indices to obtain a gauge invariant functional of Cn. Suppose we

tried to make sense of W [Cn] without the trace:

W ′[Cn] =
1

Nc
〈0|P

{
exp

(
ig

∮
Cn

dxνAaν(x)ta
)}
|0〉 . (6.5)

Under a gauge transformation Ω, Aaνt
a becomes Ω−1Aaνt

aΩ + i
gΩ−1∂νΩ. This induces a
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change in W ′[Cn],

Ω−1 1

Nc
〈0|P

{
exp

(
ig

∮
Cn

dxνAaν(x)ta
)}
|0〉Ω , (6.6)

and we see that W ′[Cn] is not gauge invariant. This problem is easily fixed by taking

the trace over generator matrices and this brings us back to W [Cn].

Now that we understand how to interpret W [Cn], we calculate it to order O(g2)

(lowest non-trivial order). Expanding the path-ordered exponential gives

P

{
exp

(
ig

∮
Cn

dxνAaν(x)ta
)}

=

1 + ig

∮
Cn

dxνAaν(x)ta +
1

2!
(ig)2

∮
Cn

∮
Cn

dxρdyσAaρ(x)Abσ(y)taijt
b
jk + · · · . (6.7)

Truncating the above at O(g2) and taking its vacuum expectation value gives

1 +
1

2!
(ig)2

∮
Cn

∮
Cn

dxρdyσ〈0|Aaρ(x)Abσ(y)|0〉taijtbjk (6.8)

since 〈0|Aaν(x)ta|0〉 = 0 by virtue of Lorentz invariance. Finally, we take the trace over

generator matrices, tack on the overall factor of 1/Nc, and obtain W [Cn] through O(g2):

W [Cn]
∣∣∣
O(g2)

= 1− g2

2!Nc

∮
Cn

∮
Cn

dxρdyσ〈0|Aaρ(x)Abσ(y)|0〉taijtbji . (6.9)

Since 〈0|Aaρ(x)Abσ(y)|0〉 is just the well known two-point correlation function for the

Yang-Mills field in position space,

〈0|Aaρ(x)Abσ(y)|0〉 =
−gρσδabµ2επεeγEε

4π2(−(x− y)2)1−ε (6.10)

it is clear that Wilson loop expectation values are conveniently described by Feynman

diagrams. For example, if we parametrize our n-gon loop, for 1 ≤ i ≤ n, as

{xν(τi) = xνi − τixνi i+1, y
ν(τi) = xνi − τixνi i+1|0 ≤ τ ≤ 1} , (6.11)

the O(g2) piece of one contribution to W [C6] (that with a gluon line connecting lines

x1−x2 and x4−x5) can be calculated by integrating over the positions on lines x1−x2
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and x4 − x5 where a gluon stretched between them can be absorbed/emitted1:

− g
2

Nc

∫ xρ2

xρ1

dxρ
∫ xσ5

xσ4

dyσ
−gρσδabµ2επεeγEε

4π2(−(x− y)2)1−ε t
a
ijt

b
ji

= − g
2

Nc

∫ 1

0
(−dτ1x

ρ
12)

∫ 1

0
(−dτ4x

σ
45)

−gρσµ2επεeγEε

4π2(−(x1 − x4 − τ1x12 + τ4x45)2)1−ε t
a
ijt

a
ji

=
µ2εg2πεeγEε

4π2Nc

∫ 1

0
dτ1

∫ 1

0
dτ4

x12 · x45

(−(x1 − x4 − τ1x12 + τ4x45)2)1−εCFNc

=
µ2εg2πεeγEεCF

4π2

∫ 1

0
dτ1

∫ 1

0
dτ4

x12 · x45

(−(x1 − x4 − τ1x12 + τ4x45)2)1−ε (6.12)

On general grounds, we expect such a contribution to be a real number for (x1 − x4 −

τ1x12 + τ4x45)2 < 0 and ε sufficiently small, real, and positive. In this thesis we will

never have to leave the region where these conditions are satisfied.

Of course, for n = 6, we will have to add a very large number of topologically

distinct contributions in order to obtain a gauge invariant result. It will be simpler and

get the point across just as effectively if we follow [33] and calculate W [C4] in detail to

O(g2). In this case the only non-zero invariants are x2
13 and x2

24. Clearly, the first class

of diagrams, those that have a gluon with both ends attached to the same line, vanish

once the light-like character of the Wilson loop is taken into account. The second class

of diagrams connect to adjacent lines and straddle a cusp. Such graphs are divergent

due to presence of the cusps. These divergences come from the regions of parameter-

space where positions of absorption/emission approach a cusp. Such divergences are

short distance and therefore ultraviolet in nature. Finally, we will see that the last

class of diagrams, those with a gluon line connecting opposing sides, are finite in four

dimensions. If we denote the diagram in class (`) (` ∈ {1, 2, 3}) that has a gluon

1Due to the fact that we have two integrals over the entire closed contour, we pick up a factor of 2!
(from interchanging the roles of xρ and yσ) that cancels against the factor of 2! in the denominator of
eq. (6.9).
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stretched between lines xi − xi+1 and xj − xj+1 as W(`)
ij , we have

W(1)
ii = 0 for all 1 ≤ i ≤ 4 (6.13)

W(2)
12 = W(2)

34 = −g
2CF e

γEε(−x2
13πµ

2)ε

8π2ε2
(6.14)

W(2)
23 = W(2)

14 = −g
2CF e

γEε(−x2
24πµ

2)ε

8π2ε2
(6.15)

W(3)
13 = W(3)

24 =
g2CF e

γEε
(

ln2
(
x213
x224

)
+ ζ(2)

)
16π2

. (6.16)

Taking into account the fact that, in the large Nc limit,

CF =
N2
c − 1

2Nc
−→ Nc

2
,

we make the replacement

g2CF e
γEεπε

8π2
−→ a (6.17)

and find that the O(a) analytic structure of W [C4] is given by

W [C4]
∣∣∣
O(a)

= − 1

ε2

((
−x2

13µ
2
)ε

+
(
−x2

24µ
2
)ε)

+
1

2

(
ln2

(
x2

13

x2
24

)
+ π2

)
+O(ε) . (6.18)

This is a remarkable result. Recall eq. (5.74), where we wrote down the one-loop

analytic structure of the four-point MHV superamplitude:

M(1)(4, t
[r]
i , ε

′) = CΓ

{
− 2

ε′2

[(−s
µ′2

)−ε′
+

(
−t
µ′2

)−ε′ ]
+ ln2

(
−s
−t

)
+ π2

}
, (6.19)

where CΓ is given by

CΓ =
Γ(1 + ε′)Γ(1− ε′)2

2Γ(1− 2ε′)
.

Up to some redefinition of a, ε, and µ, the above expression for W [C4] at lowest non-

trivial order matches the above formula forM(1)(4, t
[r]
i , ε

′) exactly if we make the iden-

tifications

s↔ x2
13 and t↔ x2

24 . (6.20)

This surprising connection captures the essence of the light-like Wilson loop/MHV

amplitude correspondence in planar N = 4. Even more remarkably, the work of [33]

generalizes. There is now a large body of evidence for the following relation

ln

(
An;2

Atreen;2

)∣∣∣∣∣
finite;O(aL)

= ln

(
W [Cn]

)∣∣∣∣∣
finite;O(aL)

+D(L)
n , (6.21)
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valid for all multiplicity and for all-loop orders (see Appendix D for a bit more discus-

sion). In the above, D
(L)
n is transcendentality 2L number. As one might guess from

eqs. (6.18) and (6.19) there is also a relation between the IR poles on the amplitude

side and UV poles on the Wilson loop side. As hinted at above, one must make some

non-trivial redefinitions of parameters in order to make this precise. This part of the

story is more subtle and we will not worry about getting the detailed relationship for

the pole terms correct because nothing that we discuss relies upon it.

The key observation is that there is a superconformal symmetry (see Appendix B if

unfamiliar with superconformal symmetry) acting on the Wilson loop in a natural way

because it is defined in position space (where the Lagrangian density that possesses

this symmetry is constructed). Ultraviolet divergences in the Wilson loop due to the

presence of cusps breaks the subgroup of conformal transformations in a controlled

fashion. The action of the conformal symmetry is anomalous and one can derive non-

perturbatively valid anomalous conformal Ward identities that fix the finite part of

W [Cn] that comes from the breaking of the conformal symmetry up to an additive

constant at all loop orders [35]. What remains must be a function of the conformal

cross-ratios. For example, at the six-point level, there are three such cross-ratios

u1 =
x2

13x
2
46

x2
14x

2
36

u2 =
x2

24x
2
51

x2
25x

2
14

u3 =
x2

35x
2
62

x2
36x

2
25

, (6.22)

each of which is invariant under conformal transformations. Now recall that the special

conformal transformations can be obtained by conjugating a spatial translations by

the conformal inversions (Appendix B). Furthermore, it is straightforward to see that

(xij)αα̇ = (xµi − x
µ
j )(σµ)αα̇ transforms under inversion as:

I[xij ] = x−1
i − x

−1
j = −x−1

j (xi − xj)x−1
i = −x−1

j xijx
−1
i . (6.23)

Due to the fact that u2 and u3 are obtained by cyclicly permuting u1, we can rest

assured that they are conformally invariant if u1 is. We see that

I[u1] =
I[x2

13]I[x2
46]

I[x2
14]I[x2

36]
=

x213
x21x

2
3

x246
x24x

2
6

x214
x21x

2
4

x236
x23x

2
6

=
x2

13x
2
46

x2
14x

2
36

(6.24)

and u1 is indeed invariant under inversion. This actually implies the invariance of u1
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under the full conformal group, since it is obviously invariant under Poincaré transfor-

mations and dilatations.

We are now in a position to make some remarks about the analytic structure of the

n-point MHV superamplitudes inN = 4. As we will discuss more in the next subsection,

the fact the Wilson loop/MHV amplitude correspondence of eq. (6.21) exists implies

the existence of a novel hidden symmetry of the planar N = 4 S-matrix through the

identification xµi −x
µ
i+1 = pµi . This symmetry is called hidden because it cannot have its

origin in the Lagrangian (it acts naturally in momentum space). This hidden symmetry

is called dual superconformal invariance for reasons that should now be clear. In fact,

the dual conformal subgroup already tells us quite a bit of useful information about

the analytic structure of the MHV superamplitude. For instance, the reason that the

BDS ansatz gives the exact finite part for n = 4 or 5 external states is obvious once

one understands that the ansatz is just the contribution of the conformal anomaly and

that the conformal anomaly is exact for four or five points; due to the light-like nature

of the Wilson loops under consideration, no conformally invariant cross-ratios can even

be written down for four or five particles in N = 4. In fact, if dual conformal symmetry

wasn’t broken by IR divergences, we would expect the full non-perturbative answer to

be just a constant times the appropriate tree amplitude.

We can also justify the claim that we made about the two-loop six-point remainder

function in 5.5. Recall eq. (5.78) for the analytic structure of

ln(1 +
∑

L=1 a
LM(L)(6, t

[r]
i , ε)) expanded up to second order in perturbation theory:

M(2)(6, t
[r]
i , ε)

∣∣∣
finite
− 1

2
M(1)(6, t

[r]
i , ε)

2
∣∣∣
finite

=

αM(1)(6, t
[r]
i , 2ε)

∣∣∣
finite

+ β +R
(2)
6

(
t
[r]
i

)
. (6.25)

Given everything that we have discussed so far, it is clear that the six-point two-loop

remainder function R
(2)
6

(
t
[r]
i

)
must actually be a function of three dual conformally
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invariant cross-ratios. If we use the dictionary

x2
13 ↔ s1

x2
24 ↔ s2

x2
35 ↔ s3

x2
46 ↔ s4

x2
15 ↔ s5

x2
26 ↔ s6

x2
14 ↔ t1

x2
25 ↔ t2

x2
36 ↔ t3 (6.26)

we see that, from the point of view of dual conformal symmetry, eq. (6.22) becomes

u1 =
s1s4

t1t3
u2 =

s2s5

t2t1
u3 =

s3s6

t3t2
(6.27)

and we have

R
(2)
6

(
t
[r]
i

)
= R

(2)
6 (u1, u2, u3) . (6.28)

So far, we have really only used the dual conformal subgroup of the dual superconformal

symmetry. In the next section we will identify the full dual symmetry group.

6.2 Dual Superconformal Invariance

To realize the dual superconformal generators on their dual superspace [6] we intro-

duce variables θai α to solve the (Qaα) supercharge conservation constraint in much the

same way that the xi αα̇ of the last subsection solve the (Pαα̇) momentum conservation

constraint. In other words,

θai α − θai+1α = λi αη
a
i (6.29)

is the supersymmetric complement of the relation

xi αα̇ − xi+1αα̇ = λi αλ̃i α̇ . (6.30)
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Intuitively, since (dual) superconformal symmetry naturally acts in (momentum) posi-

tion space and position and momentum are not mutually compatible observables, we

expect the algebra of the ordinary superconformal group (see Appendix B) and the dual

superconformal group to be somehow entangled. This intuition is correct; the sketch

below shows that there is indeed some overlap between the non-trivial generators of the

superconformal (left-hand side) and the dual superconformal (right-hand side) groups:

Pαα̇ Kαα̇

Qaα Q̄b α̇ = S̄b α̇ Saα

Saα S̄bα̇ = Q̄bα̇ Qaα

Kαα̇ Pαα̇ (6.31)

In the above, the generators Qaα and Pαα̇ on the superconformal side and Qaα and

Pαα̇ on the dual superconformal side are actually realized in a pretty trivial fashion

and were just included to make the table look more symmetrical:

Qaα =
n∑
i=1

λi αη
a
i and Pαα̇ =

n∑
i=1

λi αλ̃i α̇

Qaα =
n∑
i=1

∂

∂θai α
and Pαα̇ =

n∑
i=1

∂

∂xi αα̇
. (6.32)

The generators Saα and Kαα̇ on the superconformal side and Saα and Kαα̇ on the dual

superconformal side are a lot more complicated:

Saα =

n∑
i=1

∂

∂λi α

∂

∂ηai
and Kαα̇ =

n∑
i=1

∂

∂λi α

∂

∂λ̃i α̇

Saα =

n∑
i=1

(
− θbi αθ

a β
i

∂

∂θbi β
+ x β̇

i α θ
a β
i

∂

∂xi ββ̇

+λi αθ
a γ
i

∂

∂λi γ
+ x β̇

i+1α η
a
i

∂

∂λ̃i β̇
− θbi+1αη

a
i

∂

∂ηbi

)
and

Kαα̇ =
n∑
i=1

(
x β̇
i α x

β
i α̇

∂

∂xi ββ̇
+ x β

i α̇ θ
b
i α

∂

∂θbi β

+x β
i α̇ λi α

∂

∂λi β
+ x β̇

i+1α λ̃i α̇
∂

∂λ̃i β̇
+ λ̃i α̇θ

b
i+1α

∂

∂ηbi

)
.

(6.33)



107

Finally, the generators Q̄b α̇ and S̄bα̇ on the superconformal side and S̄b α̇ and Q̄bα̇ on

the dual superconformal side:

Q̄b α̇ =
n∑
i=1

λ̃i α̇
∂

∂ηbi
and S̄bα̇ =

n∑
i=1

ηbi
∂

∂λ̃i α̇
(6.34)

S̄b α̇ =

n∑
i=1

(
x β
i α̇

∂

∂θbi β
+ λ̃i α̇

∂

∂ηbi

)
and Q̄bα̇ =

n∑
i=1

(
θb αi

∂

∂xi αα̇
+ ηbi

∂

∂λ̃i α̇

)
.

actually match up if we restrict to the on-shell superspace introduced in Section 5 (by

ignoring all θai α terms).

Of course, if one wants to check explicitly that all the commutation relations are

satisfied, one needs the rest of the representation. Below we present the remaining dual

superconformal generators:

M =
n∑
i=1

(
x α̇
i α

∂

∂xi βα̇
+ x α̇

i β

∂

∂xi αα̇
+ θai α

∂

∂θai β
+ θai β

∂

∂θai α
+ λi α

∂

∂λi β
+ λi β

∂

∂λi α

)

M̄ =
n∑
i=1

(
x α
i α̇

∂

∂xi αβ̇
+ x α

i β̇

∂

∂xi αα̇
+ λ̃i α̇

∂

∂λ̃i β̇
+ λ̃i β̇

∂

∂λ̃i α̇

)

Rab =
n∑
i=1

(
θaαi

∂

∂θbi α
+ ηai

∂

∂ηbi
− 1

4
δabθ

c α
i

∂

∂θci α
− 1

4
δabη

c
i

∂

∂ηci

)

D = −
n∑
i=1

(
x αα̇
i

∂

∂xi αα̇
+

1

2
θaαi

∂

∂θai α
+

1

2
λ α
i

∂

∂λi α
+

1

2
λ̃ α̇
i

∂

∂λ̃i α̇

)

Z = −1

2

n∑
i=1

(
λ α
i

∂

∂λi α
− λ̃ α̇

i

∂

∂λ̃i α̇
− ηai

∂

∂ηai

)
.

(6.35)

The rest of the ordinary superconformal operator representation is given in Appendix

B. The above discussion was just intended to give the reader some sense of how the

ordinary and dual superconformal algebras fit together. Although we will not use it

here, it is worth mentioning that the non-trivial overlap between the dual and ordinary

superconformal algebras suggests that one should consider commutation relations of

the generators of the two algebras with each other. The structure generated by this

procedure is called a Yangian [111, 44]. It is also worth pointing out that there is a sense

in which the realization of the dual superconformal algebra described above is better

than that of the ordinary superconformal algebra: the superconformal generators have

only first-order derivatives in their operator representations. It is therefore reasonable
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to suppose that formulae for superamplitudes which make the dual superconformal

symmetry as manifest as possible will be significantly simpler than those of 5.1, where

our results manifested ordinary N = 4 supersymmetry.

In [6], Drummond, Henn, Korchemsky, and Sokatchev constructed a set of six dual

superconformally invariant functions,

R146 =
δ(4) ([4 5]ηa6 + [5 6]ηa4 + [6 4]ηa5)

∏6
i=1〈i i+ 1〉

t1〈1 2〉〈2 3〉 〈1| 5 + 6 |4] 〈3| 4 + 5 |6] [4 5][5 6]

R251 =
δ(4) ([5 6]ηa1 + [6 1]ηa5 + [1 5]ηa6)

∏6
i=1〈i i+ 1〉

t2〈2 3〉〈3 4〉 〈2| 6 + 1 |5] 〈4| 5 + 6 |1] [5 6][6 1]

R362 =
δ(4) ([6 1]ηa2 + [1 2]ηa6 + [2 6]ηa1)

∏6
i=1〈i i+ 1〉

t3〈3 4〉〈4 5〉 〈3| 1 + 2 |6] 〈5| 6 + 1 |2] [6 1][1 2]

R413 =
δ(4) ([1 2]ηa3 + [2 3]ηa1 + [3 1]ηa2)

∏6
i=1〈i i+ 1〉

t1〈4 5〉〈5 6〉 〈4| 2 + 3 |1] 〈6| 1 + 2 |3] [1 2][2 3]

R524 =
δ(4) ([2 3]ηa4 + [3 4]ηa2 + [4 2]ηa3)

∏6
i=1〈i i+ 1〉

t2〈5 6〉〈6 1〉 〈5| 3 + 4 |2] 〈1| 2 + 3 |4] [2 3][3 4]

R635 =
δ(4) ([3 4]ηa5 + [4 5]ηa3 + [5 3]ηa4)

∏6
i=1〈i i+ 1〉

t3〈6 1〉〈1 2〉 〈6| 4 + 5 |3] 〈2| 3 + 4 |5] [3 4][4 5]

(6.36)

which they then used to write all of the one-loop box coefficients of A1−loop
6;3 in a way

that meshes well with dual superconformal symmetry. More precisely, they found that

they could express all the leading singularities in the computation of the NMHV su-

peramplitude in a manifestly dual superconformally invariant way using R146 and its

cyclic permutations. In N = 4 there is a choice of basis (the dual conformal basis

discussed introduced Subsection 2.6) where the dual superconformal properties of the

theory at loop level are as manifest as possible. At the one-loop level, this basis consists

of D = 4− 2ε box integrals and D = 6− 2ε pentagon integrals.

The simplicity of the results for boxes suggests that we should try to play the same

game for the (now known) pentagon coefficients of the NMHV superamplitude. This

is actually not as straightforward as it sounds, due to the fact that the Rpqr above do

not form a linearly independent set [6, 64]. In fact, for each pentagon topology, it is
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possible to fit an ansatz of the form

Ci
iδ(8)(Qaα)

〈1 2〉〈2 3〉〈3 4〉〈4 5〉〈5 6〉〈6 1〉

(
z

(i)
1 R413 + z

(i)
2 R524 + z

(i)
3 R635

+z
(i)
4 R146 + z

(i)
5 R251 + z

(i)
6 R362

)
(6.37)

= CiAtree6;2

(
z

(i)
1 R413 + z

(i)
2 R524 + z

(i)
3 R635 + z

(i)
4 R146 + z

(i)
5 R251 + z

(i)
6 R362

)
using just five component amplitudes (for example those used to fix the form of A1−loop

6;3

in Section 5). Fortunately, there is an obvious, preferred, maximally symmetric solution:

z
(i)
i = z

(i)
i+3. For example, for the pentagon coefficient of I

(5)
5 , we set z

(5)
5 = z

(5)
2 . This

choice then forces (
z

(5)
1

)〈 〉↔[ ]
= z

(5)
4

(
z

(5)
3

)〈 〉↔[ ]
= z

(5)
6 (6.38)

as well. The other topologies behave in a completely analogous fashion. To simplify the

result, it is convenient to work numerically with complex spinors. It is then possible to

recognize the origin of the imaginary parts of the zi as coming from the natural odd

six-point invariant

[1 2]〈2 3〉[3 4]〈4 5〉[5 6]〈6 1〉 − 〈1 2〉[2 3]〈3 4〉[4 5]〈5 6〉[6 1] .

We can now determine the rest of the structure by experimenting with real-valued

candidate expressions that respect all the constraints of the problem and have the right

BCFW shifts in all channels. In the end, we find

A1−loop
6;3 =

· · ·+ i

6
ε Atree6;2

6∑
i=1

Ci

(
1

2
(2si+1si−2 − titi+1) ti−1 (Ri+2 i−1 i+1 +Ri−1 i+2 i−2)−(

[i i+ 1]〈i+ 1 i+ 2〉[i+ 2 i+ 3]〈i+ 3 i+ 4〉[i+ 4 i+ 5]〈i+ 5 i〉 − 〈i i+ 1〉 ×

[i+ 1 i+ 2]〈i+ 2 i+ 3〉[i+ 3 i+ 4]〈i+ 4 i+ 5〉[i+ 5 i]
)

(Ri+2 i−1 i+1 −Ri−1 i+2 i−2)

+
1

2
(2si−1si+2 − ti−1ti+1) ti (Ri+3 i i+2 +Ri i+3 i−1) +

1

2
(2si+3si − titi−1) ti+1 ×

(Ri+1 i−2 i +Ri−2 i+1 i−3)−
(

[i i+ 1]〈i+ 1 i+ 2〉[i+ 2 i+ 3]〈i+ 3 i+ 4〉 ×

[i+ 4 i+ 5]〈i+ 5 i〉 − 〈i i+ 1〉[i+ 1 i+ 2]〈i+ 2 i+ 3〉[i+ 3 i+ 4]〈i+ 4 i+ 5〉 ×

[i+ 5 i]
)

(Ri+1 i−2 i −Ri−2 i+1 i−3)

)
I

(i), D=6−2ε
5 (6.39)
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Remarkably, when written in this form, the pentagon contributions to the one-loop

six-point NMHV superamplitude are related by cyclic symmetry. We can use this fact

to explain relation (3.56), reproduced below for convenience:

K1

C1
=
K4

C4

K2

C2
=
K5

C5

K3

C3
=
K6

C6
. (6.40)

Examining eq. (6.39), it is trivial to see that the only piece of a given pentagon that

does not return to itself under i → i + 3, is the Ci coefficient out front. Evidently,

relation (3.56) is a property of the full superamplitude because the symmetric choice

z
(i)
2 = z

(i)
5

in our ansatz was necessary to manifest the cyclic symmetry of the superamplitude;

writing the superamplitude in the form given by eq. (6.39) shows that there are not

enough independent R-invariant structures to support a full i → i + 6 symmetry for

the coefficients divided by their Ci. If we didn’t know about relation (3.56) we would

have discovered it by simply calculating K1, expressing it in terms of R-invariants, and

then taking cyclic permutations of the result to generate the other Ki. Now that we

have in hand a pretty formula for the pentagon coefficients of A1−loop
6;3 built out of dual

superconformal invariants, it would be nice if there was some application of our result.

It is to this that we turn in the next subsection.

6.3 Ratio of the Six-Point NMHV and MHV Superamplitudes at

Two-Loops

In [6], Drummond, Henn, Korchemsky, and Sokatchev (DHKS) made an interesting

all-loop prediction based on a remarkable one-loop calculation in their paper. They

calculated the NMHV ratio function, RNMHV ≡ A6;3/A6;2 , to O(a) and found a dual

superconformally invariant function. This is a non-trivial result because both A6;3 and

A6;2 have IR divergences. The universal, helicity-blind structure of the IR divergences

guarantees that the NMHV ratio function is finite to all loop orders. However, at loop

level the dual superconformal symmetry is anomalous. One way to circumvent this
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problem might be to write

A6;3 = A6;2

(
RNMHV +O(ε)

)
(6.41)

to all loop orders and hope that all of the messiness associated with dual superconformal

anomalies resides in the A6;2 prefactor.2 It is not entirely clear that this approach makes

sense. For example, as discussed in [6], it is not obvious that the dual superconformal

generator Q̄aα̇ annihilates the ratio function, because this generator (eq. (6.34)) is

sensitive to the dependence of RNMHV on the dual variables, xi αα̇, and the dependence

of the finite parts of A6;3 and A6;2 on the dual variables is fairly complicated (even at

O(a)). Therefore it is interesting to check by explicit calculation that RNMHV is given

by a dual superconformally invariant function. We have already seen that pulling a

factor of Atree6;2 out of A1−loop
6;3 is a natural operation and simplifies the formula for the

one-loop NMHV superamplitude. The question is whether A1−loop
6;3 simplifies when one

factors out the entire one-loop MHV superamplitude.

DHKS carried out this analysis and they found that R1−loop
NMHV could be expressed

in terms of R-invariants and linear combinations of two mass hard, two mass easy,

and one mass boxes (see eqs. (2.45) and (2.46)). When evaluated through O(ε0) (see

eqs. (2.49)-(2.51)), these box integrals give rise to logarithms and dilogarithms. After

simplifying all logarithms and dilogarithms, non-trivial cancellations occur and DHKS

2Recently, Beisert, Henn, McLoughlin, and Plefka developed a technique to address these anomalies
directly by deforming the dual superconformal generators [44].
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found the simple dual superconformally invariant result:3

R1−loop
NMHV =

1

4
R146

(
− ln (u1) ln (u2) + ln (u2) ln (u3) + ln (u3) ln (u1)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
+

1

4
R251

(
ln (u2) ln (u3)− ln (u3) ln (u1) + ln (u1) ln (u2)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
+

1

4
R362

(
ln (u2) ln (u3) + ln (u3) ln (u1)− ln (u1) ln (u2)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
+

1

4
R413

(
− ln (u2) ln (u3) + ln (u3) ln (u1) + ln (u1) ln (u2)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
+

1

4
R524

(
ln (u2) ln (u3)− ln (u3) ln (u1) + ln (u1) ln (u2)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
+

1

4
R635

(
ln (u2) ln (u3) + ln (u3) ln (u1)− ln (u1) ln (u2)

+ Li2 (1− u1) + Li2 (1− u2) + Li2 (1− u3)− π2

3

)
. (6.42)

Given the validity of eq. (6.41) at one loop and six points, it is reasonable to suspect

that something similar will happen at higher loops as well. However, it is often a mistake

to extrapolate from one to higher loops. For example, the BDS ansatz is exact at the

one-loop n-point level, but fails already at two loops and six points, as discussed in 5.5.

NMHV configurations first appear at the six-point level and, consequently, the first

really non-trivial check of (6.41) is at two loops and six points. To this end, Kosower,

Roiban, and Vergu recently computed the two-loop six-point NMHV superamplitude

and their result is pending publication [84]. Before they could check (6.41) at O(a2),

they had to resolve a technical problem related to ε poles induced by µ-terms at the

two-loop level.

3In eq. (6.42) the π2/3 factors are inessential and depend on precisely how one defines the analytic
structure of the MHV amplitude. We follow the conventions of DHKS in [105].
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In order to understand the problem we need to recall the discussion of Subsection 3.1

where we introduced µ-term hexabox integrals. We didn’t properly define this integral

in 3.1 because it wasn’t necessary at the time. The s1-channel µ-term hexabox integral

is given by

I
(2);D=4−2ε
(4,6) [µ2] =

∫
dp4−2ε

(2π)4−2ε

1

p2(p− k2)2(p− k1 − k2)2

∫
dq4

(2π)4

∫
d−2εµ

(2π)−2ε
×

× µ2

((q + p)2 − µ2)(q2 − µ2)((q − k3)2 − µ2)((q − k3 − k4)2 − µ2)
×

× 1

(((q + k1 + k2)2 − µ2)(((q − k3 − k4 − k5)2 − µ2)
. (6.43)

In this case it turns out that, to leading order, the above integral factorizes [39] and we

can write

I
(2);D=4−2ε
(4,6) [µ2] = I

(2);D=4−2ε
3 ID=4−2ε

6 [µ2] =

(
− 1

ε2
(−s1)−1−ε

)(
−εID=6−2ε

6

)
=

(
− 1

ε2
(−s1)−1−ε

)(
− ε

2

6∑
i=1

CiI
(i);D=6−2ε
5

)
, (6.44)

where the last equality follows from 3.37. One can check numerically that (6.44) is valid

through O(ε0); the hexabox µ-term can be evaluated through O(ε0), apart from trivial

factors, is a 1/ε pole times a certain linear combination of the finite one-loop functions

I
(i);D=6
5 . Back in Section 3 where we discussed planar gluon NMHV amplitudes, we

noted a close connection between the one-loop pentagon coefficients we calculated and

appropriate µ-term hexabox coefficients. For the sake of concreteness, we go back to

the particular example discussed in 3.1, where we wrote down the relationship between

the coefficients of ε I
(2);D=6−2ε
5 and I

(2);D=4−2ε
(4,6) [µ2]:

K2 =
C2

2s1
K2 . (6.45)

If we use the above relation to express the K2 in terms of K2, we find that the contri-

bution from this NMHV µ-term hexabox to the ratio function at O(a2) looks like

K2I
(2);D=4−2ε
(4,6) [µ2] =

(−s1)−εK2

εC2

6∑
i=1

CiI
(i);D=6
5 +O(ε0) (6.46)

To see how this is all related to our one-loop NMHV pentagon coefficients, let’s take a

step back and remember what we’re trying to calculate. Since we want RNMHV to two
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loops4

RNMHV =
Âtree6;3 + a Â1−loop

6;3 + a2Â2−loop
6;3 + · · ·

1 + aM(1)(n, t
[r]
i , ε) + a2M(2)(n, t

[r]
i , ε) + · · ·

= Âtree6;3 + a
(
Â1−loop

6;3 − Âtree6;3 M(1)(n, t
[r]
i , ε)

)
+a2

(
Â2−loop

6;3 − Â1−loop
6;3 M(1)(n, t

[r]
i , ε) + Âtree6;3 M(1)(n, t

[r]
i , ε)

2

−Âtree6;3 M(2)(n, t
[r]
i , ε)

)
+O(a3) , (6.47)

we see that there are other places for us to look for 1/ε poles at O(a2) besides the

actual two loop contributions. It is possible for one-loop contributions of O(ε) to hit

the universal soft singular terms (see eq. (A.29)) in another one-loop contribution and

interfere to produce 1/ε singularities. For instance, there will be a contribution of the

form

−
(
εK2I

(2);D=6−2ε
5

)(
− 1

ε2

6∑
i=1

(−si i+1)−ε
)

=
K2
∑6

i=1 (−si i+1)−ε

ε
I

(2);D=6−2ε
5 +O(ε0)

coming from the cross-term −Â1−loop
6;3 M(1)(n, t

[r]
i , ε). This shows that, to have any hope

of finding an IR finite result for RNMHV, the supersymmetrized and dual superconfor-

mally covariant result derived in the last subsection for the one-loop NMHV pentagon

coefficients, eq. (6.39), is a key ingredient. Indeed, the authors of [84] have checked at

the level of superamplitudes that a finite result is obtained for RNMHV once all sources

of IR divergences are properly taken into account.5 It should now be intuitively clear

why the hexabox coefficients derived by Kosower, Roiban, and Vergu are so similar to

our one-loop pentagon coefficients; a close connection between them is necessary for

the theory to be IR consistent.

4In eq. (6.47), ÂL−loop
6;3 denotes the superamplitude with a factor of Atree6;2 stripped off.

5Strictly speaking, this conclusion has only been demonstrated for the even part of the remainder
function; the odd part of the remainder function wasn’t studied by the authors of [84].
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Chapter 7

Summary

In this thesis, we have discussed several recent developments in the theory of the N = 4

S-matrix. After reviewing some of the most important computational techniques in 2,

we discussed a simple refinement of the D dimensional unitarity technique of Bern and

Morgan in 3.1. One notable feature of our approach is that all integrands are recon-

structed in D dimensions directly from tree amplitudes without any need for super-

symmetric decompositions. While our approach to D dimensional unitarity is probably

already familiar to experts in the field, to the best of our knowledge no detailed exposi-

tion of the ideas have appeared in print so far. We also discuss how our approach to D

dimensional unitarity meshes well with the leading singularity method in the context

of all-orders-in-ε one-loop N = 4 calculations. In 3.2 we presented simple formulae for

the higher-order in ε pentagon coefficients of the planar one-loop six-gluon NMHV am-

plitudes A1−loop
1 (k1234

1 , k1234
2 , k1234

3 , k4, k5, k6), A1−loop
1 (k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6), and

A1−loop
1 (k1234

1 , k2, k
1234
3 , k4, k

1234
5 , k6). Näıvely, these results may seem rather useless

because, if one only cares about the massless N = 4 S-matrix, one never needs the

pentagon coefficients.

However, we argue in 4 that, actually, the higher-order in ε pentagon coefficients

are useful because they contain non-trivial information about tree-level scattering of

massless modes in open superstring theory. After reviewing the non-Abelian Born-Infeld

action in 4.1, we argued in 4.2 that matrix elements of the non-Abelian Born-Infeld

action at O(α′2) and O(α′3) can be predicted from all-orders-in-ε N = 4 amplitudes

dimensionally shifted to either D = 8 − 2ε or D = 10 − 2ε. First of all, we should

emphasize that, while most of this thesis focused on one-loop amplitudes in the planar

limit, we expect this particular discovery to hold for the non-planar contributions as
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well. This is because all we are claiming in either case is that two effective actions (that

certainly know about the non-planar contributions) are equivalent because N = 4

supersymmetry forces them to be. As an amusing by-product of our analysis, we were

able to use another close connection between the one-loop all-plus amplitudes in pure

Yang-Mills and our stringy corrections at O(α′2) to understand the vanishing of the

all-plus amplitudes when three or more gluons are replaced by photons for n > 4.

At this point, in Section 5, we explained how to supersymmetrize the results of 3.2.

To this end, we introduced the N = 4 on-shell superspace in 5.1 and discussed some

important examples of N = 4 superamplitudes. In 5.2, we first explain that, follow-

ing Elvang, Freedman, and Kiermaier, one can choose the five component amplitudes

A1−loop
1

(
k1234

1 , k1234
2 , k1234

3 , k4, k5, k6

)
, A1−loop

1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

)
,

A1−loop
1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
,A1−loop

1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
,

and A1−loop
1

(
k1234

1 , k1234
2 , k3, k

1234
4 , k5, k6

)
and determine the full N = 4 superamplitude

in terms of them. We then showed how to extend the methods of 3.1 to deal with

A1−loop
1

(
k1234

1 , k1234
2 , k123

3 , k4
4, k5, k6

)
and A1−loop

1

(
k1234

1 , k1234
2 , k1

3, k
234
4 , k5, k6

)
. It is cru-

cial that our techniques be applicable to amplitudes with external fermions if we want

them to be useful for theories with less supersymmetry such as QCD. Finally, in 5.3

we determine A1−loop
1

(
k1234

1 , k1234
2 , k12

3 , k
34
4 , k5, k6

)
indirectly and in 5.4 we complete the

process by collecting our results. We write down for the first time the higher-order

pentagon contributions to the six-point NMHV N = 4 superamplitude.

While the form of the pentagon coefficients in the superamplitude makes N = 4 su-

persymmetry manifest, we show in 6.2 (after reviewing some of the developments that

led to the discovery of dual superconformal invariance in 5.5 and 6.1) that the superam-

plitude takes on a simpler form if expressed in terms of the R-invariants of Drummond,

Henn, Korchemsky, and Sokatchev. Remarkably, in this form, the pentagon coeffi-

cients are related by cyclic symmetry. We can understand the greater simplicity of this

formula by comparing the explicit operator realization of the ordinary and dual super-

conformal symmetries. Some of the ordinary superconformal generators are expressed

in terms of 2nd-order partial differential operators, whereas all of the dual superconfor-

mal generators are expressed in terms of 1st-order differential operators. This is to be
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expected since differences of dual variables are just momenta; the dual superconformal

symmetry acts naturally in momentum space. As a result, it is not too surprising that,

when expressed in terms of R-invariants, the pentagon coefficients look even simpler

than those presented in 5.4, where dual superconformal symmetry was obscured.

Finally, in 6.3 we explain the relevance of our results to the study of whether or not

the two-loop NMHV ratio function is dual superconformally invariant in dimensional

regularization. Our higher-order in ε pentagon coefficients can interfere with 1/ε2 poles

coming from the soft divergences of the one-loop MHV superamplitude to produce a

contribution proportional to 1/ε. Thus, the results written down in 6.2 in terms of

superconformal R-invariants are necessary to produce a finite result for the two-loop

ratio function if one is working in dimensional regularization and wants to proceed

without specializing to particular component amplitudes.

There has been a tremendous amount of recent progress on the planar N = 4 S-

matrix [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141], which, unfortunately,

we don’t have time to say much about. One of the main points emphasized by the

new papers on the subject is that one should be able to learn everything there is to

know about the planar N = 4 S-matrix using only four dimensional information. In the

spirit of the recent developments, we should check whether, perhaps, our predictions

for the O(α′2) and O(α′3) stringy corrections to N = 4 amplitudes don’t really rely

on all pentagon coefficients but only some linear combination thereof. Recall from the

discussion of Section 3 that, at the one-loop n-point level, amplitudes computed via the

leading singularity method are not uniquely determined to all orders in ε but have

(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)

120
(7.1)

pentagon coefficients that must be determined by some other method. It is conceivable

that, after performing the dimension shift operation and summing over all contribu-

tions, all the undetermined coefficients actually drop out. In fact, there is evidence

that this happens for N = 4 amplitudes dimensionally shifted to D = 8 − 2ε; we

checked that we could derive the appropriate tree-level stringy corrections at O(α′2) for
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both MHV and NMHV n = 6 amplitudes, n = 7 MHV amplitudes, and n = 8 MHV

amplitudes using the leading singularity method (without D dimensional unitarity).

However, for the O(α′3) stringy corrections, this no longer works. For example, one can

check that the one-loop N = 4 six-point MHV amplitude cannot be used to compute

Atreestr

(
k1234

1 , k1234
2 , k3, k4, k5, k6

)
at O(α′3) unless all pentagon coefficients in the ampli-

tude are determined. Our conclusion is that there are still some questions that can

be answered by calculating N = 4 amplitudes to all orders that cannot (at least not

obviously) be answered by calculating amplitudes in a framework that requires only

four dimensional inputs.

Although our approach to the N = 4 S-matrix, which we can summarize as com-

pleting the leading singularity equations by computing the minimal number of required

µ cuts, may not be needed to study multi-loop N = 4 scattering amplitudes near the

conformal point, we have seen in this thesis that there are other interesting avenues of

exploration. Besides the connection that we found between stringy corrections and di-

mensionally shifted one-loop amplitudes, it seems plausible, for example, that a variant

of our approach will be the right way to think about computing scattering amplitudes

at a generic point in the N = 4 moduli space. It will also be quite interesting to see

whether our approach to D dimensional integrand construction is useful for theories

with less or no supersymmetry. We hope to address these questions in future work.
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Appendix A

Dimensional Regularization

In this Appendix, we begin in A.1 by giving a cursory review of dimensional regu-

larization (dim reg), focusing on the regularization of IR divergences, which are the

only divergences that appear in the N = 4 theory. In A.2 we remind the reader that

simply declaring that dim reg will be used to regulate divergences is not meaningful

because there are several different variants of dim reg. We describe the salient features

of one scheme, called the four dimensional helicity scheme, which is particularly useful

for regulating the divergences in supersymmetric gauge theories. In Subsection A.3 we

give an explicit derivation of eq. (2.74), which played an important role in the body of

this thesis. Finally, in Subsection A.4, we briefly talk about the general structure of IR

divergences in planar one-loop N = 4 scattering amplitudes.

A.1 Definitions and Principal Applications

Dim reg was first shown to be a well-defined regulator by ’t Hooft and Veltman in [8]

and in this section we describe the method used by them in their seminal paper1. It is

actually quite straightforward to describe the method. The only subtlety is related to

defining εµνρσ, a point that we will return to later. When one is faced with the evalu-

ation of a divergent scattering amplitude the prescription is to make the replacement∫ d4q
(2π)4

→
∫ d4−2εq

(2π)4−2ε in each Feynman integral in the expression for the amplitude de-

rived from Feynman diagrams and simultaneously multiply the answer by a factor µ2ε.

1The reader should be aware that many modern calculations do not use the exact scheme advocated
by ’t Hooft and Veltman, but variations on the same theme (see e.g. A.2).
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This factor of µ2ε is called the unit of mass and its function is to prevent the dimen-

sionality of the scattering amplitude from changing under the above replacement2. The

regularization parameter ε is usually understood to be small (but non-zero) and less

than one in absolute value. We explain the main features of the method by considering

a few basic examples and illustrating how it is used in practice.

Let us first think about regulating an uninteresting toy model like massless φ4

theory, were there are no complications introduced by external wavefunctions or tensor

structures in the numerators of the Feynman integrals. It turns out that everything that

we want to have happen happens if we make a couple of well-motivated assumptions

about the behavior of the regulated Feynman integrals:

i. All of the usual properties that integrals enjoy, such as linearity, still hold for the

regulated integrals.

ii. The integrals are analytic in the complex ε plane except at isolated non-essential

singular points.

Although the first property seems completely trivial, this is actually not at all the case

because we’re integrating over a space of non-integer dimension. In fact, attempting

to carry out the renormalization procedure for massless φ4 theory is the perfect way to

appreciate this subtlety because one of the integrals that one encounters is the massless

one-point function

I1(0, ε) = i(4π)2−ε
∫

d4−2εq

(2π)4−2ε

1

q2
, (A.1)

which looks truly pathological. We would be happy if we could simply ignore this

integral and, happily, its value is indeed zero in dim reg. It turns out that demanding

linearity and uniqueness of the results obtained from a given regulated Feynman integral

together with analyticity in ε force (A.1) to zero [142]. The same conclusion holds for

any Feynman integral with a scaleless integrand.

An obvious question is what happens to the one-loop tadpole if we consider massive

φ4 theory? In this case the answer is not zero and, in fact, the evaluation of this integral

2The physical meaning of µ varies depending on the physical meaning of the (gauge invariant subset
of) Feynman integrals under consideration.



121

will make it clear why analyticity is so crucial for the whole regularization program to

work. If we modify A.1 by p2 → p2−m2, we get the integral that we want to evaluate.

The calculation proceeds in the standard way [10], first Wick rotating to Euclidean

space and then introducing spherical coordinates in 4− 2ε dimensions, we find

I1(m2, ε) = −Γ(1 + ε)m2−2ε

ε(1− ε)
(A.2)

for 1 < ε < 2. At first sight, it looks like we’ve just hit an insurmountable obstacle; the

integral I1(m2, ε) only converges for ε well away from where we want it (near ε = 0).

However, this is no problem at all because the function is analytic everywhere except

at the isolated points ε = 0 and ε = 1 and we can easily analytically continue I1(m2, ε)

to the rest of the complex ε-plane. Furthermore, the assumptions of dim reg guarantee

that I1(m2, ε) has a well-behaved Laurent expansion everywhere in the complex plane.

In particular, in a small neighborhood of ε = 0 we find

I1(m2, ε) = m2

(
−1

ε
+ (γE − 1 + ln(m2) +O(ε)

)
(A.3)

The ln(m2) factor looks quite peculiar because there is a dimensionful quantity inside

a logarithm. In fact, if we kept track of the ε expansion of the unit of mass, we would

find a factor −m2 ln(µ2) which combines together with the m2 ln(m2) in the above to

yield a proper, dimensionless logarithm. In this context, the unit of mass, µ, plays the

role of the renormalization scale.

In order to discuss dimensional reg in a more non-trivial example involving vector

and fermion fields, we have to understand how to modify the Feynman rules for these

species of fields in a way that is consistent with the prescription given above for scalar

integrals (we must verify that our modification doesn’t spoil gauge invariance). The

shift to 4− 2ε dimensions is applied to everything in the problem; the Dirac matrices,

the metric, the external momenta, the external spinor and vector wavefunctions (when

applicable), and the epsilon tensor εµνρσ should all make sense in 4−2ε if the program is

to work3. Everything generalizes to 4−2ε dimensions straightforwardly except εµνρσ and

3Actually, as we will see in A.2, this is an unnecessarily stringent requirement; in fact, the loop
momenta are the only vectors that have to be treated in 4− 2ε dimensions.
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the external wavefunctions. ’t Hooft and Veltman reasoned that it had to be sensible

to allow the wavefunctions of the external particles to live in exactly four dimensions

if helicity amplitudes are to make sense but they had to think harder about the Levi-

Civita pseudotensor. Making sense of εµνρσ in 4−2ε dimensions was the main technical

problem ’t Hooft and Veltman had to solve in order to show that dim reg is well-defined.

The solution they came up with was to leave the definition of εµνρσ alone. This is

okay so long as you treat objects built out of εµνρσ, like γ5, with special care. A consis-

tent treatment of γ5 is particularly important because it enters into the calculation of

the axial anomaly. Suppose we have some 4−2ε dimensional momentum, `ν , contracted

into γµ and that we want to commute /̀ past γ5. To do this in a consistent fashion

you must first divide ` up into a four dimensional component and a −2ε dimensional

component:

` = `‖ + µ . (A.4)

Then, taking into account the fact that γ5 is defined to be an intrinsically four dimen-

sional object, we see that

{`‖, γ5} = 0 as usual (A.5)

but [µ, γ5] = 0 . (A.6)

This prescription for γ5 allowed ’t Hooft and Veltman to rederive the results of ABJ

for the axial anomaly [143, 144] in a different way.

Now that we have addressed all of the subtleties associated with the construction of

a consistent regularization scheme for non-SUSY models4, it is very natural to wonder

whether IR divergences are also regulated by ε in massless theories or if the method is

only suitable for carrying out the renomalization procedure. In fact, dim reg can be used

to regulate all physical singularities that crop up in scattering amplitude calculations.

We have developed the method to the point where we can consider a realistic example.

The one-loop vertex diagram in QED furnishes a nice one because it is very simple and

4The scheme described above will not work for models with unbroken supersymmetry. See A.2 for
a description of the Four Dimensional Helicity Scheme, a more sophisticated variant of dim reg, which,
in particular, works in the context of N = 4 super Yang-Mills.
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yet has both UV and IR divergences which manifest themselves as poles in ε. We find

Σ1 = −ie2µ2ε

∫
d4−2εk

(2π)4−2ε
γµ

/k +m

k2 −m2
γµ

1

(p− k)2
, (A.7)

where we have suppressed the external spinor states because they are irrelevant for

us. At the outset, it may be hard to see why this example requires more care than

the massive tadpole integral treated above. Recall, however, that γµγµ = 4 must

be replaced with γµγµ = 4 − 2ε and this also modifies the identity γµ/kγµ = −2/k to

γµ/kγµ = −(2−2ε)/k. After applying this identity, Feynman parametrizing, and shifting

the integration variable to q = k − (1− x)p one finds

Σ1 = ie2µ2ε

∫ 1

0
dx

∫
d4−2εq

(2π)4−2ε

(2− 2ε)(/q + (1− x)/p)−m(4− 2ε)

(x(q + (1− x)p)2 + (1− x)(q + xp)2 −m2)2

= ie2µ2ε

∫ 1

0
dx

∫
d4−2εq

(2π)4−2ε

(2− 2ε)(1− x)/p−m(4− 2ε)

(q2 + x(1− x)p2 −m2x)2
. (A.8)

If we now consider a Taylor series expansion of the above about /p = m. It is very well-

known [10] that the first non-zero term5, dΣ1
d/p

∣∣∣
/p=m

, is related to the mass renormalization

of the electron via

Z2 =

(
1− dΣ1

d/p

∣∣∣
/p=m

)−1

. (A.9)

Following [145], we can separate dΣ1
d/p

∣∣∣
/p=m

into two pieces, one of which converges in the

IR but diverges in the UV and one of which converges in the UV but diverges in the

IR:

dΣ1

d/p

∣∣∣
/p=m

= 2ie2µ2ε(1− ε)
∫ 1

0
dx

∫
d4−2εq

(2π)4−2ε

(1− x)

(q2 −m2x2)2

+8ie2m2µ2ε

∫ 1

0
dx

∫
d4−2εq

(2π)4−2ε

x(1− x)(1 + x(1− ε))
(q2 −m2x2)3

. (A.10)

The integrals over q and x can be performed without difficulty and we get

dΣ1

d/p

∣∣∣
/p=m

= −Γ(ε)
2e2(1− ε)
(4π)2−ε

( µ
m

)2ε
∫ 1

0
x−2ε(1− x)dx

+
4e2Γ(1 + ε)

(4π)2−ε

( µ
m

)2ε
∫ 1

0
x−1−2ε(1− x)(1 + x(1− ε))dx

= −Γ(ε)
e2

(4π)2−ε(1− 2ε)

( µ
m

)2ε
− 2e2Γ(1 + ε)(1− ε)

(4π)2−εε(1− 2ε)

( µ
m

)2ε
.(A.11)

5The integral at /p = m is trivially zero, since it is just the integral of a dimensionless function.
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The first line of (A.11) has a Feynman parameter integral that makes sense at ε = 0

but, nevertheless, this contribution has a UV divergence coming from the factor Γ(ε)

out front of the integral. This is a general feature of UV divergences; they manifest

themselves as special (but analytic) functions singular at ε = 0 that appear after per-

forming loop integrations that are divergent by power-counting. Once again, the unit of

mass is going to play the role of the renormalization scale. Note that the first Feynman

parameter integral in (A.11) converges for Re(ε) < 1/2 and the second converges for

Re(ε) < 0.

From this rich example we draw the conclusion that, in fact, dim reg regularizes

IR divergences as well as the more familiar UV ones. Even in complicated cases one

can separate out the UV divergences first and use them to renormalize the amplitude

because the UV divergences should be manifest after integrating out the loop momenta.

The IR divergences typically only appear after integrating out some Feynman param-

eters as well and, therefore, should be dealt with after the UV divergences have been

removed via the renormalization procedure.

A.2 The Four Dimensional Helicity Scheme

The Four Dimensional Helicity Scheme is a particularly useful variant of dim reg. In

this Subsection, we discuss its salient features and contrast it to the so-called ’t Hooft-

Veltman Scheme discussed in Subsection A.1. The Four Dimensional Helicity Scheme

is the variant of dim reg that we implicitly work in throughout the main text of this

thesis. The criterion that one uses to decide if a regulator is appropriate for a given

quantum field theory is whether the proposed regulator preserves all the symmetries of

the model. Despite the many successes of the ’t Hooft-Veltman Scheme in the Standard

Model, it is not an appropriate regulator for supersymmetric models because examples

exist (see e.g. [146]) where its use explicitly violates certain supersymmetric Ward

identities.

Surprisingly, these issues were not properly understood until 2002 when the Four

Dimensional Helicity Scheme [102] was proposed as a variant of dim reg fully consistent
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with supersymmetry to all orders in perturbation theory. As the name suggests, all ex-

ternal momenta and wavefunctions are kept in four dimensions; only the loop momenta

are continued to D dimensions. The rules for objects built out of εµνρσ are the same in

the ’t Hooft Veltman scheme. The main insight of [102] was that one must introduce an

additional scale, called the spin dimension, which is taken to be the dimension in which

the wavefunctions of all virtual particles circulating in loops live. If supersymmetry is

to be preserved, the spin dimension, Ds, must be treated as follows.

i. Perform all index contractions as if Ds > D > 4.

ii. After the amplitude is a function only of the loop momenta, external momenta,

external wavefunctions, D, and Ds, set Ds = 4.

It is useful to note that if Ds is set to D we recover the ’t Hooft-Veltman Scheme.

A.3 A Useful Integral Reduction Identity Involving Dimensionally-

Shifted Integrals at the One-Loop Level

In this Subsection we derive eq. (2.74) explicitly to supplement the streamlined discus-

sion of Subsection 2.6. This exercise should also help the reader understand why the

coefficients of the pentagon integrals in the dimensionally shifted basis defined in 2.6

contain an explicit factor of ε, whereas the box integrals in it do not. We begin with

the dimensionally regulated one-loop integrals of eq. (2.48):

ID=4−2ε
n = i(−1)n+1(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

1

`2 . . . (`−
∑n−1

i=1 Ki)2
. (A.12)

It has been known for a very long time how to write down an expression for (A.12) as

a Feynman parameter integral [10]:

ID=4−2ε
n = Γ(n− 2 + ε)

∫ 1

0
dnxi

δ (1−
∑n

i=1 xi)(
(
∑n

i=1 xipi−1)2 −
∑n

i=1 xip
2
i−1

)n−2+ε , (A.13)
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where pi =
∑i

j=1Kj . There is, however, a particularly nice, symmetric way of rewriting

this expression [25]. The above formula collapses to6

ID=4−2ε
n = Γ(n− 2 + ε)

∫ 1

0
dnxi

δ (1−
∑n

i=1 xi)(∑n
i,j=1 pi−1 · pj−1xixj

)n−2+ε . (A.14)

This representation of ID=4−2ε
n will enter into our derivation of eq. (2.74). The idea is

to evaluate the same integral in two different ways.

Following [25], we define

ID=4−2ε
n [`2] ≡ i(−1)n+1(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

`2

`2 . . . (`−
∑n−1

i=1 Ki)2
. (A.15)

Of course, this integral can be trivially reduced by canceling the numerator against the

first propagator denominator.

ID=4−2ε
n [`2] = −ID=4−2ε

n−1 . (A.16)

However, we are also free to evaluate it as a Feynman parameter integral. Going through

the usual Feynman parametrization procedure we find something of the form

ID=4−2ε
n [`2] = i(−1)n+1(4π)2−εΓ(n)

∫ 1

0
dnxiδ

(
1−

n∑
i=1

xi

)
×

×
∫

d4−2εq

(2π)4−2ε

q2 +
∑n

i,j=1 pi−1 · pj−1xixj +
∑n

i=1 xip
2
i−1(

q2 −
∑n

i,j=1 pi−1 · pj−1xixj

)n−2+ε . (A.17)

These integrals are easily carried out by using the standard formulae [10]

i(−1)n+1(4π)2−ε
∫

d4−2εq

(2π)4−2ε

1

(q2 −∆)n
=

Γ(n− 2 + ε)

Γ(n)∆n−2+ε

and i(−1)n+1(4π)2−ε
∫

d4−2εq

(2π)4−2ε

q2

(q2 −∆)n
= −(2− ε)Γ(n− 3 + ε)

Γ(n)∆n−3+ε
. (A.18)

ID=4−2ε
n [`2] becomes

ID=4−2ε
n [`2] =

∫ 1

0
dnxiδ

(
1−

n∑
i=1

xi

)
×

×

(
− (2− ε)Γ(n− 3 + ε)(∑n

i,j=1 pi−1 · pj−1xixj

)n−3+ε +
Γ(n− 2 + ε)

∑n
i,j=1 pi−1 · pj−1xixj(∑n

i,j=1 pi−1 · pj−1xixj

)n−2+ε

+
Γ(n− 2 + ε)

∑n
i=1 xip

2
i−1(∑n

i,j=1 pi−1 · pj−1xixj

)n−2+ε

)
. (A.19)

6One can verify this relation directly after eliminating one of the variables through the relation∑n
i=1 xi = 1 on both sides of the equation.
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This simplifies nicely:

ID=4−2ε
n [`2] =

∫ 1

0
dnxiδ

(
1−

n∑
i=1

xi

)
×

×

(
− (2− ε)Γ(n− 2 + (ε− 1))(∑n

i,j=1 pi−1 · pj−1xixj

)n−2+(ε−1)
+

(n− 3 + ε)Γ(n− 2 + (ε− 1))(∑n
i,j=1 pi−1 · pj−1xixj

)n−2+(ε−1)

+
Γ(n− 2 + ε)

∑n
i=1 xip

2
i−1(∑n

i,j=1 pi−1 · pj−1xixj

)n−2+ε

)

=

∫ 1

0
dnxiδ

(
1−

n∑
i=1

xi

)(
(n− 5 + 2ε)Γ(n− 2 + (ε− 1))(∑n
i,j=1 pi−1 · pj−1xixj

)n−2+(ε−1)

+
Γ(n− 2 + ε)

∑n
i=1 xip

2
i−1(∑n

i,j=1 pi−1 · pj−1xixj

)n−2+ε

)

= (n− 5 + 2ε)ID=6−2ε
n +

n∑
i=1

p2
i−1I

D=4−2ε
n [xi] .

(A.20)

Equating the last line of (A.20) with the right-hand side of(A.16),

−ID=4−2ε
n−1 = (n− 5 + 2ε)ID=6−2ε

n +
n∑
i=1

p2
i−1I

D=4−2ε
n [xi] (A.21)

we finally obtain a non-trivial relation between scalar integrals.

In fact, all of the above analysis goes through unchanged if ID=4−2ε
n [`2] is replaced

by ID=4−2ε
n [(`− pi−1)2], allowing us to derive a total of n relations that can be written

in a unified way as

−I(i);D=4−2ε
n−1 = (n− 5 + 2ε)ID=6−2ε

n + 2

n∑
j=1

SijI
D=4−2ε
n [xi] , (A.22)

where we have introduced the daughter-integral notation (which first appeared in Sub-

section 2.5) and the matrix Sij defined as

Sij = −1

2
(pi + ...+ pj−1)2, i 6= j

Sij = 0, i = j , (A.23)

where both i and j are to be taken mod n. Solving for ID=4−2ε
n [xi], we obtain

ID=4−2ε
n [xi] =

1

2

[ n∑
j=1

S−1
ij I

(j), D=4−2ε
n−1 + (n− 5 + 2ε)CiI

D=6−2ε
n

]
, (A.24)
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where Ci =
∑n

j=1 S
−1
ij . Finally, we can exploit the identity

∑n
i=1 xi = 1 and sum over

the index i in the above. This yields

ID=4−2ε
n =

1

2

[ n∑
j=1

CjI
(j), D=4−2ε
n−1 + (n− 5 + 2ε)C0I

D=6−2ε
n

]
, (A.25)

where C0 =
∑n

i=1Ci. This is the final form of our desired relation.

This formula for n = 5,

ID=4−2ε
5 =

1

2

[ 5∑
j=1

CjI
(j), D=4−2ε
4 + 2εC0I

D=6−2ε
5

]
, (A.26)

turns out to be very useful in the analysis of one-loop N = 4 amplitudes in dimensional

regularization because the five-point scalar integral is related to a linear combination of

four-point scalar integrals plus a five-point integral in D = 6− 2ε dimensions that has

an explicit factor of ε out front. Furthermore, it turns out that the D = 6 − 2ε scalar

integral has no poles in ε. This then implies that eq. (A.26) corresponds to a special

case that relates the five-point integral to four-point integrals, up to O(ε) contributions

that can be neglected if one is only interested in computing one-loop amplitudes to

O(ε0). For us, this relation provides a convenient way to separate higher order in ε

contributions from those that contribute only through O(ε0).

Eq. (A.25) for n = 6 also appears throughout the main text of this thesis. To see the

utility of (A.25) for this value of n, one needs to know something more about the matrix

Sij and its rank. In deriving eq. (A.24), we implicitly assume that Sij is invertible.

Actually this is only a valid assumption for n ≤ 6 and n = 6 is the borderline case. It

is well-known that, beginning at the six-point level, additional non-linear constraints

on scattering processes exist coming from the fact that it is no longer possible to find

an n− 1 dimensional linearly independent subset of the n external momenta [25].

To be more concrete, let’s specialize to n = 6 and count the degrees of freedom for

external momenta in D = 4. The sum of all momenta is zero by construction, so clearly

at most five of the external momenta are linearly independent. However, it must be the

case that any one of these five momenta can be expressed as a linear combination of the

other four, simply because the vector space that we’re working in is four dimensional.
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More precisely, we have the six relations

Det(ki · kj)r = 0, (A.27)

where the r subscript is to be interpreted as an instruction to delete the r-th column

of the matrix (ki · kj). It turns out that the changing the value of r doesn’t change the

left-hand side of (A.27) and, therefore, all six equations give the same constraint7 on

the kinematics. The object C0 is proportional to Det(ki · kj)r and therefore can be set

equal to zero. This results in

ID=4−2ε
6 =

1

2

6∑
i=1

CiI
(i), D=4−2ε
5 (A.28)

a special case of (A.25) for n = 6.

A.4 One-Loop IR Structure of Planar Amplitudes in N = 4

In this subsection, we review the results of [147], where all possible IR divergences at

one-loop in massless gauge theories were classified. Actually, the one-loop IR diver-

gences in N = 4 are a little bit simpler than in the general case. In general, one would

expect poles in epsilon both from soft virtual gluons and from collinear virtual parti-

cles. In axial gauge [148], all the contributions from collinear virtual particles come

from self-energy corrections to external lines. In N = 4, these corrections vanish by

virtue of the N = 4 supersymmetry8. Therefore, all of the IR divergences in virtual

corrections to one-loop scattering processes in planar N = 4 have their origin in soft

virtual gluons connecting pairs of adjacent external lines9. If we take the index i in

what follows to be mod n, we have

7A priori (A.27) could have been identically satisfied. It turns out that this is not the case and, as
a result, there is a non-trivial constraint on the kinematics.

8There would be a non-zero contribution to the collinear anomalous dimension at one loop in QCD,
for example.

9If we did not restrict ourselves to planar contributions, then soft virtual gluons could connect
non-adjacent external lines as well.
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A1−loop
1

(
kh11 , · · · , khnn

) ∣∣∣∣∣
singular

= − 1

ε2
g2Ncµ

2εe−γEε

(4π)2−ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

n∑
i=1

(
µ2

−si i+1

)ε
Atree

(
kh11 , · · · , khnn

)
(A.29)

for color-ordered partial amplitudes in the Euclidean kinematical region (defined in

Subsection 2.5). In (A.29), the unit of mass plays the role of the factorization scale.

One remarkable feature of (A.29) is that the singular terms are proportional to the

corresponding tree amplitude. This makes sense because erasing a gluon line connecting

two external states (turning a one-loop amplitude into a tree amplitude) should in some

sense be equivalent to making that gluon line infinitely soft.
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Appendix B

N = 4 Superconformal Symmetry

In this thesis we study the (essentially unique) Yang-Mills theory based on the N = 4

supersymmetric extension of the Poincaré group. This extension, called the N = 4

superconformal group, is an example of a Lie supergroup, a generalization of a Lie

group that possesses a Z2 graded Lie algebra. We begin by briefly reminding the reader

how each symmetry operation in the superconformal group acts in N = 4 extended

Minkowski space. Of course, the symmetries that act in the fermionic directions are

not so easy to visualize. Consequently, we will argue by analogy to the appropriate

even (under the Z2 grading) cases for the symmetries generated by odd operators.

As usual, we ultimately care more about the Lie superalgebra of the Lie supergroup

than the supergroup itself. So in the second part of this appendix we write down the

N = 4 superconformal algebra and give an explicit example of a representation of the

algebra. We focus on the particular infinite dimensional representation of the N = 4

superconformal algebra discussed in Subsection 6.2.

To start, we remind the reader that the Poincaré group by itself is nothing but the

isometry group of Minkowski space. As such it contains

spacetime translations : x′µ = xµ + rµ and (B.1)

spacetime rotations : x′µ = Mµ
ν x

ν . (B.2)

Since there are four coordinates to translate in, three pairing of coordinate axes ({x, y},

{x, z}, and {y, z}) to define spatial rotations in, and three spatial directions to boost

in, the dimension of the Poincaré group is ten. In this Appendix, we will follow the

conventions used in the main text and label generators using spinor notation. Spatial

translations are generated by the momentum operator, Pαα̇, and spacetime rotations

are generated by Mαβ and M̄α̇β̇.
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Now, suppose that one adds four fermionic directions to R1,3 labeled by a for a ∈

{1, 2, 3, 4}. One certainly expects any well-behaved theory to be invariant under the

full isometry group of the space on which the theory sits. This implies that we should

now include translations along the new fermionic directions

spacespace translations : θ′aµ = θaµ + ηaµ (B.3)

in addition to the spacetime translations and rotations discussed above when attempting

to write down the full set of constraints on a candidate N = 4 supersymmetric action.

Superspace translations are generated by the so-called supercharges, Qa
α and Q̄a α̇.

There are sixteen of these fermionic generators in all because there are four fermionic

coordinate axes and the supercharges carry spacetime indices as well. These obvious

translational isometries need to be there but they introduce a bit of a problem because

now the number of fermionic generators (sixteen) is larger than the number of bosonic

generators (ten) that we have introduced so far.1

Fortunately, there is a natural extension of the Poincaré group that would provide

six additional bosonic generators at the cost of placing very strong constraints on the

form of interactions. What we are alluding to is the conformal group which, in addition

to the ten dimensional Poincaré group, näıvely consists of

dilatations : x′µ = αxµ and (B.4)

special conformal transformations : x′µ =
xµ − rµx2

1− 2r · x+ r2x2
. (B.5)

In fact, the above Lie group admits a central extension and the associated central

charge (so-called because it commutes with all other generators), Z, is realized trivially

on physical states. The physics of the central charge should become more clear in the

next part of this appendix, where we discuss an explicit realization of the N = 4 su-

perconformal algebra. For now, we focus on understanding the dilatations and special

conformal transformations. The dilatation operation, generated by D, is just a rescal-

ing of the coordinates and, at the level of operators, it measures the classical scaling

1In a supersymmetric theory the number of bosonic generators must be equal to the number of
fermionic generators [149].
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dimension. The special conformal transformations, generated by Kαα̇, are a bit more

difficult to understand, as their action on Minkowski space looks rather complicated.

A nice way to proceed is as follows. If we introduce the discrete operation of conformal

inversion

inversion : x′µ =
xµ

x2
≡ I[xµ] , (B.6)

it turns out [6] that one can think of the special conformal symmetries as being generated

by an inversion, a translation, and another inversion applied in succession:

Kαα̇ = I Pαα̇ I . (B.7)

At this stage, one might think that we have successfully identified all of the N = 4

superconformal transformations because we have sixteen bosonic and sixteen fermionic

generators. However, we haven’t yet taken into account all symmetries. For instance,

we haven’t discussed how the SU(4)R symmetry discussed extensively in the main text

fits into this picture. As is well-known, SU(4) has fifteen generators, Rab. There is

also a global Abelian axial symmetry (called hypercharge by some authors [6]). In

theories with N 6= 4 the axial charge, A can enter into the commutation relations of

the superconformal algebra in a non-trivial way [150]. For the special case of N = 4,

however, the axial charge decouples and therefore plays only a peripheral role. Indeed,

we only mention it because it makes the total number of bosonic symmetries 32.

We are clearly still missing something because there is again a mismatch between the

number of fermionic and bosonic generators. It turns out that what we are missing are

the analogs of special conformal transformations along the fermionic directions [151].

Indeed, we can identify sixteen new fermionic generators, the generators of the special

supersymmetry transformations, along the lines of eq. (B.7):

Sαa = I Q̄a α̇ I and S̄a α̇ = I Qa
α I . (B.8)

At long last we have identified all 64 superconformal generators. Obviously, now that we

have identified all generators, we should investigate their (anti)commutation relations.
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B.1 The N = 4 Superconformal Algebra and One of Its Representa-

tions

We first present, in spinor notation, the non-trivial (anti)commutation relations of the

N = 4 superconformal algebra:

[D,Pαα̇] = Pαα̇ [D,Kαα̇] = −Kαα̇

[D,Qa
α] =

1

2
Qa

α

[
D, Q̄a α̇

]
=

1

2
Q̄a α̇

[D,Saα] = −1

2
Saα

[
D, S̄aα̇

]
= −1

2
S̄aα̇[

Kαα̇,Qa
β

]
= εβαS̄aα̇

[
Kαα̇, Q̄a β̇

]
= εβ̇α̇Saα[

Kαα̇,Pββ̇
]

= εβαεβ̇α̇D + εβ̇α̇Mαβ + εβαM̄α̇β̇

[Pαα̇,Sa β] = εβαQ̄a α̇

[
Pαα̇, S̄aβ̇

]
= εβ̇α̇Q

a
α

[Mαβ,Mγδ] = εγαMβδ + εγβMαδ + εδαMβγ + εδβMαγ[
M̄α̇β̇, M̄γ̇δ̇

]
= εγ̇α̇M̄β̇δ̇ + εγ̇β̇M̄α̇δ̇ + εδ̇α̇M̄β̇γ̇ + εδ̇β̇M̄α̇γ̇

[Mαβ,Sa γ ] = εγβSaα + εγαSa β
[
M̄α̇β̇, S̄

a
γ̇

]
= εγ̇α̇S̄aβ̇ + εγ̇β̇S̄

a
α̇[

Mαβ,Qa
γ

]
= εγβQa

α + εγαQa
β

[
M̄α̇β̇, Q̄a γ̇

]
= εγ̇α̇Q̄a β̇ + εγ̇β̇Q̄a α̇

[Mαβ,Kγγ̇ ] = εγβKαγ̇ + εγαKβγ̇

[
M̄α̇β̇,Kγγ̇

]
= εγ̇α̇Kγβ̇ + εγ̇β̇Kγα̇

[Mαβ,Pγγ̇ ] = εγβPαγ̇ + εγαPβγ̇
[
M̄α̇β̇,Pγγ̇

]
= εγ̇α̇Pγβ̇ + εγ̇β̇Pγα̇

[Rab,Rc d] = δ c
b Rad − δ a

d Rc b

[Rab,Qc
α] = −

(
δ c
b Qa

α −
1

4
δ a
b Qc

α

) [
Rab, Q̄c α̇

]
= δ a

c Q̄b α̇ −
1

4
δ a
b Q̄c α̇

[Rab, Sc α] = δ a
c Sb α −

1

4
δ a
b Sc α

[
Rab, S̄c α̇

]
= −

(
δ c
b S̄aα̇ −

1

4
δ a
b S̄c α̇

)
{
Qa

α, Q̄b α̇

}
= δ a

b Pαα̇
{
Saα, S̄b α̇

}
= δ b

a Kαα̇{
Saα,Qb

β

}
= δ b

a Mαβ + εβαRb a +
1

2
εβαδ

b
a (D + Z){

S̄aα̇, Q̄b β̇

}
= δ a

b M̄α̇β̇ − εβ̇α̇R
a
b +

1

2
εβ̇α̇δ

a
b (D− Z) (B.9)

Our focus in this work is on the differential operator representation of the above superal-

gebra (discussed in 6.2). For a supermatrix representation of the N = 4 superconformal

algebra we refer the interested reader to [111]. It’s worth pointing out that, strictly
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speaking, the above superalgebra is not appropriate for the dual superconformal sym-

metry discussed in 6.2; to write down the dual superconformal algebra one should take

(B.9) and swap the SU(4)R chiralities of all operators. The representation that we

present acts on the on-shell superspace of 5.1:

Pαα̇ =
n∑
i=1

λi αλ̃i α̇ Kαα̇ =
n∑
i=1

∂

∂λi α

∂

∂λ̃i α̇

Mαβ =
n∑
i=1

(
λi α

∂

∂λi β
+ λi β

∂

∂λi α

)
M̄α̇β̇ =

n∑
i=1

(
λ̃i α̇

∂

∂λ̃i β̇
+ λ̃i β̇

∂

∂λ̃i α̇

)

D =
n∑
i=1

(
1

2
λ α
i

∂

∂λi α
+

1

2
λ̃ α̇
i

∂

∂λ̃i α̇
+ 1

)
Rab =

n∑
i=1

(
−ηai

∂

∂ηbi
+

1

4
δ a
b ηci

∂

∂ηci

)

Qaα =

n∑
i=1

λi αη
a
i Q̄a α̇ =

n∑
i=1

λ̃i α̇
∂

∂ηai
Saα =

n∑
i=1

∂

∂λi α

∂

∂ηai

S̄aα̇ =
n∑
i=1

ηai
∂

∂λ̃i α̇
Z =

n∑
i=1

(
1 +

1

2
λ α
i

∂

∂λi α
− 1

2
λ̃ α̇
i

∂

∂λ̃i α̇
− 1

2
ηai

∂

∂ηai

)
(B.10)

Note that, for each i, the central charge is identified with one minus the helicity operator

Z =

n∑
i=1

(1− hi) . (B.11)

By construction, each superfield Φ(p, η) has helicity +1 (see eq. (5.3)). Therefore,

Z annihilates all on-shell superamplitudes as expected for the N = 4 theory in the

conformal phase.
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Appendix C

N = 4 Supersymmetric Ward Identities and Their

Solutions

In this Appendix we derive N = 4 supersymmetric Ward identities (N = 4 SWI),

linear relations between on-shell scattering amplitudes that are consequences of the

action of N = 4 supersymmetry on the space of states. After warming up with the

very simple (but very important) example of the relations A (k1, k2, · · · , kn) = 0 and

A
(
k1234

1 , k2, · · · , kn
)

= 0, which are true even non-perturbatively in any supersym-

metric gauge theory, we study the much more non-trivial case of the six-point NMHV

superamplitude. Recently, it has been shown that, for general superamplitudes, a so-

lution to the complete set of N = 4 supersymmetric Ward identities can be found

using ideas from representation theory. We illustrate this for the six-point NMHV

superamplitude in C.2.

C.1 A (k1, k2, · · · , kn) = 0 and A (k1234
1 , k2, · · · , kn) = 0

Before we can begin, we have to say a few more words about notation. Throughout

most of this thesis it has mattered relatively little what conventions are used for the

evaluation of spinor products. There is a good numerical program for the evaluation

of spinor products, S@M [65], and, therefore, all the results presented in the main text

can be checked without worrying too much about the underlying conventions. However,

for the sake of completeness, we now present one convention that meshes well with the

N = 4 on-shell superspace of Subsection 5.1. We define the holomorphic spinor product

of λα = (λ1, λ2) and χα = (χ1, χ2) as

〈λχ〉 = λαχα = εαβλβχα ≡ Det

 λ1 χ1

λ2 χ2

 (C.1)
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This definition will be helpful in analyzing the consequences of supercharge conser-

vation, from which A (k1, k2, · · · , kn) = 0 and A
(
k1234

1 , k2, · · · , kn
)

= 0 follow trivially.

First recall that, implicitly, there is always an overall four-momentum conserving delta

function that can be pulled out front of any scattering amplitude. This factor is so triv-

ial that we don’t even write it, but it follows from the fact that the total momentum

operator annihilates the amplitude and acts multiplicatively on it

Pαα̇A(Φ1, · · · ,Φn) = 0 . (C.2)

In much the same way,

Qaα A(Φ1, · · · ,Φn) =

(
n∑
`=1

λα ` η
a
`

)
A(Φ1, · · · ,Φn) = 0 (C.3)

implies that an overall factor of

2∏
α=1

4∏
a=1

δ

(
n∑
`=1

λα ` η
a
`

)
= δ(8)

(
n∑
`=1

λα ` η
a
`

)
(C.4)

can be factored out of every superamplitude and eq. (5.6) becomes

A(Φ1, · · · ,Φn) = δ(8)

(
n∑
`=1

λα ` η
a
`

)(
Ân;2 + Ân;3 + · · ·+ Ân;n−2

)
. (C.5)

Now, a useful simplification of the supercharge conserving delta function follows

from our definition of the holomorphic spinor product. Suppose we fix the SU(4)R

index and consider the product

δ

(
n∑
`=1

λ1 ` η
a
`

)
δ

(
n∑
`=1

λ2 ` η
a
`

)
=

(
n∑
`=1

λ1 ` η
a
`

)(
n∑
`=1

λ2 ` η
a
`

)
. (C.6)

Let us rearrange the product in the following way. First, suppose that we select two of

the external momenta indexed by i and j. For now we assume that i < j. If we expand

the above product and collect all terms involving both i and j, we get

λ1 iλ2 jη
a
i η

a
j + λ1 jλ2 iη

a
j η

a
i = (λ1 iλ2 j − λ1 jλ2 i)η

a
i η

a
j = 〈i j〉ηai ηaj . (C.7)

We can easily drop the assumption that i > j if we write

〈i j〉ηai ηaj =
1

2

(
〈i j〉ηai ηaj + 〈j i〉ηaj ηai

)
. (C.8)
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Finally, we have (
n∑
`=1

λ1 ` η
a
`

)(
n∑
`=1

λ2 ` η
a
`

)
=

1

2

n∑
i,j=1

〈i j〉ηai ηaj (C.9)

and we have a more useful expression for our eight-fold Grassmann delta function:

δ(8)

(
n∑
`=1

λα ` η
a
`

)
=

1

16

4∏
a=1

n∑
i,j=1

〈i j〉ηai ηaj (C.10)

From the above expression for δ(8) (Qaα), we see that, for non-degenerate kine-

matics, a superamplitude must have a k-charge of at least two to be consistent with

supercharge conservation. Since A (k1, k2, · · · , kn) belongs to the k-charge zero sector

and A
(
k1234

1 , k2, · · · , kn
)

to the k-charge one sector, these amplitudes and all other

amplitudes related to them by N = 4 supersymmetry vanish for generic kinematical

configurations. However, we remind the reader that one can have non-vanishing k = 1

amplitudes if one allows all spinors to be proportional to one another. As was demon-

strated in 5.1, this construction is important in its own right because it allows one to

define the three-point MHV and anti-MHV superamplitudes.

The study of supersymmetric Ward identities has a long history (see e.g. [152, 153,

154, 155]) and culminated recently in [101] where Elvang, Freedman, and Kiermaier

presented a complete solution to the N = 4 SWI. In other words, as discussed in

Subsection 5.1, it is now possible to express any N = 4 superamplitude as a linear

combination of a minimal number of linearly independent component amplitudes. To

illustrate the power of the new techniques, we derive eq. (5.19) for the six-point NMHV

superamplitude in the next subsection.

C.2 A6;3

In [101], Elvang, Freedman, and Kiermaier (EFK) found a useful general solution to the

N = 4 SWI using only the constraints coming from ordinary N = 4 supersymmetry and

SU(4)R invariance. Their main new observation was that one can profit by demanding

that on-shell superamplitudes be manifestly SU(4)R invariant. Then, using represen-

tation theory, they described the solution for superamplitudes in the (k, n) sector. In



139

this subsection we focus on (3, 6) sector because the resulting formula is what we use

in the main text of this thesis.

The basic approach used by EFK was to start with an ansatz and then impose the

constraints of N = 4 supersymmetry and SU(4)R invariance on it. The starting point

for their ansatz is Nair’s formula [99] for the MHV tree-level superamplitudes, derived

in eq. (5.10) and reproduced here for convenience

An; 2 = i
1
16

∏4
a=1

∑n
i,j=1〈i j〉ηai ηaj

〈1 2〉〈2 3〉 · · · 〈n 1〉
(C.11)

The moral of Subsection C.1 above is that all N = 4 superamplitudes are naturally

written with a factor of δ(8) (Qaα) pulled out front. It is therefore follows that the

superspace structure of an arbitrary superamplitude will be of the form

An; k = δ(8) (Qaα)
(
· · ·

)
. (C.12)

As noted in Subsection 5.1, the NMHV superamplitude A6;3 requires a total of twelve

Grassmann variables. Since eight variables are already present in the supercharge con-

serving delta function, we need just four more from some other source. The EFK ansatz

for A6;3 is

AEFK
6; 3 = δ(8) (Qaα)

6∑
i,j,k,l=1

qijkl η
1
i η

2
j η

3
kη

4
l . (C.13)

A familiar result from the representation theory of SU(N) is that one can learn

all about the algebra of SU(N) simply by studying the SU(2) subalgebras inside of

it (see e.g. [156]). In the same vein, we can impose SU(4)R invariance on (C.13) by

demanding that (C.13) be invariant under infinitesimal SU(2)R rotations acting on any

pair of SU(4)R indices. For example, an infinitesimal σ1 rotation of the pair (1, 2)

parametrized by θ acts as θ 0

0 θ

 η1
i

η2
i

 = θ

 η2
i

η1
i

 . (C.14)

For short, we can write δR(1, 2)
η1
i = θη2

i etc. Now suppose we apply the δR(1, 2)
operation

to (C.13). We already know that the δ(8) term is SU(4)R invariant by itself, so we focus



140

on the other term and find:

δR(1, 2)

 6∑
i,j,k,l=1

qijkl η
1
i η

2
j η

3
kη

4
l

 = θ
6∑

i,j,k,l=1

qijkl(η
2
i η

2
j η

3
kη

4
l + η1

i η
1
j η

3
kη

4
l ) (C.15)

and

δR(1, 2)

 6∑
i,j,k,l=1

qjikl η
1
j η

2
i η

3
kη

4
l

 = θ
6∑

i,j,k,l=1

qjikl(η
2
j η

2
i η

3
kη

4
l + η1

j η
1
i η

3
kη

4
l ) .(C.16)

If we insist that the right-hand sides of the above two equations be SU(2)R invariant,

then they must vanish. Comparing, we see that qijkl = qjikl. The exact same argument

can be applied to each pair of SU(4)R indices and it therefore follows that qijkl must

be symmetric in each pair of indices. In what follows, we will often need to refer to the

part of AEFK
6; 3 that was acted on non-trivial by SU(4)R so we define:

PNMHV ≡
6∑

i,j,k,l=1

qijkl η
1
i η

2
j η

3
kη

4
l (C.17)

To impose supersymmetry on their NMHV ansatz, EFK used the eight spinor su-

percharges contracted with arbitrary spinors εα and ε̃α̇

Qa =
6∑
i=1

〈ε i〉ηai and Q̄a =
6∑
i=1

[ε i]
∂

∂ηai
(C.18)

and demanded that they all annihilate PNMHV (the δ(8) term is, of course, already

annihilated by all supercharges). As we shall see shortly, it pays to start with the Q̄a.

Before going further, it is convenient to explicitly eliminate ηa5 and ηa6 using the δ(8)

term in AEFK
6; 3 . This is accomplished simply by taking the inner product of the equation

enforced by the delta function,

Qaα =
6∑
i=1

|i〉ηai = 0 , (C.19)

with 〈5|, then again with 〈6|, and then finally solving a system of two equations in two

unknowns. Explicit expressions for ηa5 and ηa6 in terms of the other four Grassmann

variables (with SU(4)R index a) result. We find:

ηa5 = −
4∑
i=1

〈i 6〉
〈5 6〉

ηai and ηa6 =

4∑
i=1

〈i 5〉
〈5 6〉

ηai . (C.20)
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Plugging these results back into eq. (C.17) gives

PNMHV =
1

〈5 6〉4
4∑

i,j,k,l=1

cijkl η
1
i η

2
j η

3
kη

4
l , (C.21)

where the cijkl are some linear combination of the qijkl. The precise relationship between

the qijkl and the cijkl is not important, but note that the total symmetry of the qijkl

implies that the cijkl must be totally symmetric as well.

Suppose we start by investigating the constraints resulting from the action of Q̄1 on

PNMHV:

Q̄1PNMHV =
1

〈5 6〉4
4∑

r,i,j,k,l=1

cijkl[ε r]
∂

∂η1
r

(η1
i η

2
j η

3
kη

4
l )

=
1

〈5 6〉4
4∑

i,j,k,l=1

cijkl[ε i]η
2
j η

3
kη

4
l

=
1

〈5 6〉4
4∑

j,k,l=1

(
4∑
i=1

cijkl[ε i]

)
η2
j η

3
kη

4
l . (C.22)

Since we demand that Q̄1PNMHV = 0, the quantity in parentheses on the last line of

(C.22) must vanish. Using the resulting relation allows us to eliminate c3jkl and c4jkl

from the sum over i in eq. (C.22). We find

PNMHV =
1

〈5 6〉4
4∑

j,k,l=1

2∑
i=1

cijkl η
1
i η

2
j η

3
kη

4
l +

4∑
j,k,l=1

(c3jkl η
1
3 + c4jkl η

1
4)η2

j η
3
kη

4
l

=
1

〈5 6〉4
4∑

j,k,l=1

2∑
i=1

cijkl η
1
i η

2
j η

3
kη

4
l +

4∑
j,k,l=1

((
−

2∑
i=1

[i 4]

[3 4]
cijkl

)
η1

3

+

(
2∑
i=1

[i 3]

[3 4]
cijkl

)
η1

4

)
η2
j η

3
kη

4
l

=
1

〈5 6〉4[3 4]

4∑
j,k,l=1

2∑
i=1

cijkl([3 4] η1
i + [4 i] η1

3 + [i 3] η1
4)η2

j η
3
kη

4
l . (C.23)

Very similar reasoning applies to j, k, and l. If we define

Xijkl = ([3 4] η1
i + [4 i] η1

3 + [i 3] η1
4)([3 4] η2

j + [4 j] η2
3 + [j 3] η2

4)×

×([3 4] η3
k + [4 k] η3

3 + [k 3] η3
4)([3 4] η4

l + [4 l] η4
3 + [l 3] η4

4) (C.24)
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we eventually arrive at

PNMHV =
2∑

i,j,l,k=1

cijkl
Xijkl

[3 4]4〈5 6〉4
and

AEFK
6; 3 = δ(8)(Qa)

2∑
i,j,l,k=1

cijkl
Xijkl

[3 4]4〈5 6〉4
(C.25)

Xijkl has a superspace structure that closely resembles that of the three-point anti-

MHV superamplitude and is annihilated by the Qa supercharges. This is why it was

smart to start with the Q̄a supersymmetries; after solving the Q̄a Ward identities, the

Qa Ward identities are satisfied automatically.

Our final task is to identify the cijkl with particular components of A6; 3. Following

EFK, we first exploit the total symmetry of cijkl to write

AEFK
6; 3 =

δ(8)(Qaα)

[3 4]4〈5 6〉4
∑

1≤i≤j≤k≤l≤2

cijklX(ijkl) , (C.26)

where X(ijkl) represents the sum over all distinct arrangements of the fixed indices

i, j, k, l. For example, X(1112) = X1112 + X1121 + X1211 + X2111. The number of

distinct entries in Xijkl is given by the appropriate multinomial coefficient. It is now a

straightforward matter to extract a particular component NMHV amplitude from the

superamplitude. For example, the partial amplitude A
(
k1234

1 , k2, k3, k4, k
1234
5 , k1234

6

)
is obtained by collecting all terms proportional to η1

1η
2
1η

3
1η

4
1η

1
5η

2
5η

3
5η

4
5η

1
6η

2
6η

3
6η

4
6. The

variables η1
5η

2
5η

3
5η

4
5η

1
6η

2
6η

3
6η

4
6 eat the factor δ(8)(Qaα)/〈5 6〉4. By staring at eq. (C.24),

we see that the last four Grassmann variables must come from the X(1111) term in the

sum because [3 4]4η1
1η

2
1η

3
1η

4
1 is the only contribution with all four ηa1 . So, in the end,

we conclude that c1111 = A
(
k1234

1 , k2, k3, k4, k
1234
5 , k1234

6

)
and this suggests a strategy

to determine the remaining four cijkl: c1112, c1122, c1222, and c2222. The idea is to first

take the eight Grassmann variables

η1
5η

2
5η

3
5η

4
5η

1
6η

2
6η

3
6η

4
6

and, as above, use them to eat the factor of δ(8)(Qaα)/〈5 6〉4. Then the trick is to select

helicity states for k1 and k2 that smoothly interpolate betweenA
(
k1234

1 , k2, k3, k4, k
1234
5 , k1234

6

)
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(for c1111) and A
(
k1, k

1234
2 , k3, k4, k

1234
5 , k1234

6

)
(for c2222). In other words,

c1112 = A
(
k123

1 , k4
2, k3, k4, k

1234
5 , k1234

6

)
, c1122 = A

(
k12

1 , k
34
2 , k3, k4, k

1234
5 , k1234

6

)
,

and c1222 = A
(
k1

1, k
234
2 , k3, k4, k

1234
5 , k1234

6

)
. (C.27)

At long last, we arrive at a new form for the superamplitude A6; 3, expressed as a

linear combination of five component amplitudes:

A6; 3 =
δ(8)(Qaα)

[3 4]4〈5 6〉4
(
A
(
k1234

1 , k2, k3, k4, k
1234
5 , k1234

6

)
X(1111)

+A
(
k123

1 , k4
2, k3, k4, k

1234
5 , k1234

6

)
X(1112) +A

(
k12

1 , k
34
2 , k3, k4, k

1234
5 , k1234

6

)
X(1122)

+A
(
k1

1, k
234
2 , k3, k4, k

1234
5 , k1234

6

)
X(1222) +A

(
k1, k

1234
2 , k3, k4, k

1234
5 , k1234

6

)
X(2222)

)
(C.28)

where the X(ijkl) are sums over distinguishable permutations of the Xijkl (for fixed

indices i, j, k, l) defined by eq. (C.24). If we expand the above we arrive at eq. (5.19):

A1−loop
6; 3 =

δ(8)(Qaα)

[3 4]4〈5 6〉4
(
A1−loop

1

(
p1234

1 , p2, p3, p4, p
1234
5 , p1234

6

) 4∏
a=1

([3 4] ηa1 + [4 1] ηa3

+[1 3] ηa4) +A1−loop
1

(
p123

1 , p4
2, p3, p4, p

1234
5 , p1234

6

) 3∏
a=1

([3 4] ηa1 + [4 1] ηa3 + [1 3] ηa4)×

×
(
[3 4] η4

2 + [4 2] η4
3 + [2 3] η4

4

)
+A1−loop

1

(
p12

1 , p
34
2 , p3, p4, p

1234
5 , p1234

6

) 2∏
a=1

([3 4] ηa1

+[4 1] ηa3 + [1 3] ηa4)
4∏

a=3

([3 4] ηa2 + [4 2] ηa3 + [2 3] ηa4)

+A1−loop
1

(
p1

1, p
234
2 , p3, p4, p

1234
5 , p1234

6

) (
[3 4] η1

1 + [4 1] η1
3 + [1 3] η1

4

) 4∏
a=2

([3 4] ηa2

+[4 2] ηa3 + [2 3] ηa4) +A1−loop
1

(
p1, p

1234
2 , p3, p4, p

1234
5 , p1234

6

)
×

×
4∏

a=1

([3 4] ηa2 + [4 2] ηa3 + [2 3] ηa4)
)
.

(C.29)
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Appendix D

The AdS/CFT Correspondence, the Strong-Coupling

Form of the Four-Gluon Amplitude, and Hidden

Symmetries of Planar N = 4

In this appendix, we first describe in D.1 the general idea of the Anti-De Sitter/Conformal

Field Theory (AdS/CFT) correspondence (in its original incarnation) between N = 4

SYM and type IIB superstring theory on AdS5 × S5. Then, in D.2, we turn to a spe-

cific application, namely the computation of the planar N = 4 four-gluon scattering

amplitudes at strong coupling. The derivation of even this simplest of the simple MHV

amplitudes becomes quite technical at strong coupling, so we present a sketch of the

calculation and proceed rather quickly to the final results. We feel that this is justified,

so long as we take care to omit only technical details that play no direct role in this

thesis. The intent of this particular appendix is not to provide rigorous justifications

but, rather, to help the less expert reader better appreciate the history and background

behind the relevant developments discussed at greater length in the main text of this

thesis. Of particular interest is the way in which the strong coupling calculation de-

scribed in this appendix led researchers to two previously unknown hidden symmetries

of the large Nc S-matrix, dual superconformal invariance and fermionic T-duality.

D.1 The AdS/CFT Correspondence for N = 4 Super Yang-Mills

One can most easily understand the AdS/CFT correspondence by thinking about the

physics of Nc coincident D3-branes in type IIB superstring theory [157]. D3-branes

were introduced in Subsection 4.1 in the context of the non-Abelian Born-Infeld action.

Recall that, in the low energy limit, the non-Abelian Born-Infeld action describes the
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interactions of the massless modes of open superstrings1 terminating on a stack of Nc

coincident D3-branes. The end result is a U(Nc) N = 4 super Yang-Mills theory living

on the (3+1 dimensional) world-volume of the D3-branes plus stringy corrections of

O(α′2) and higher. Quite remarkably, it was proposed in [3] that, if desired, one can

describe the low energy physics of open superstrings ending on these Nc coincident D3-

branes by instead considering the massless modes of closed type IIB superstrings in the

geometry very close to the D3-brane stack (the D3-branes back-react on R1,9 to produce

a non-trivial geometry). A great deal of evidence for this proposal has accumulated over

the years but, for now, we will simply try to give the reader an intuitive feel for how

the AdS/CFT correspondence (in its weakest form) works.

One massless mode associated with the closed superstring is, of course, the graviton.

If we declare that we are only interested in the dynamics of the graviton near the stack

of D3-branes, we can replace the closed string sector of the full type IIB superstring

theory with the field equations for the graviton derived from the classical Lagrangian

of N = 2 supergravity [158]. At the level of the supergravity action, the dynamical

field associated with the graviton is the spacetime metric. In flat space superstring

theory one has the Lorentz group in ten dimensional spacetime, SO(1, 9). Inserting Nc

D3-branes breaks this group down to an SO(1, 3) along the world-volume directions of

the D-branes and an SO(6) rotating the other six directions into each other. It turns

out that there is a unique metric that satisfies the supergravity equations of motion

and is consistent with this symmetry breaking pattern:

1√
1 + 4πgsNcα′2

r4

(
− dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+

√
1 +

4πgsNcα′2

r4

(
dr2 + r2dΩ2

5

)
, (D.1)

where r is the distance from the stack of D3-branes. Clearly, r can be thought of as the

radius of an S5 for which dΩ2
5 is the measure of solid angle. This metric has a nice small

1As before, the non-Abelian Born-Infeld action is not sensitive to the details of the string
construction.
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r limit. That is to say, in the neighborhood of the Nc D3-branes, the metric reduces to

r2√
4πgsNcα′2

(
− dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+

√
4πgsNcα′2

r2

(
dr2 + r2dΩ2

5

)
(D.2)

=

√
4πgsNcα′2

r2
dr2 +

r2√
4πgsNcα′2

(
− dx2

0 + dx2
1 + dx2

2 + dx2
3

)
+
√

4πgsNcα′2dΩ2
5

which is nothing but the metric of AdS5 × S5. To summarize, Maldacena’s proposal is

that there exist two very different descriptions of the same physics. In its weakest form,

we have U(Nc) N = 4 super Yang-Mills theory in 3 + 1 dimensional Minkowski space

(in some limit to be determined below) on one side and on the other we have type IIB

supergravity in an AdS5 × S5 background.

Unless we understand when the curvature corrections on the supergravity side start

to matter, the proposed duality won’t be of much use to us, since we don’t know much

about quantum gravity in strongly curved backgrounds. Another important technical

point we must address is what regime of the U(Nc) N = 4 field theory we are probing

if we ignore the fluctuations in the Ramond-Ramond fields on the supergravity side.

Basically, what we want is for the radius of AdS5 to be sufficiently large relative to the

string scale that the spacetime we are working in is weakly curved. In symbols, we have

√
4πgsNc >> 1 , (D.3)

where we have cancelled a factor of α′ on both sides of the above. Now, suppose that

we insist on gs << 1 so that N = 2 supergravity is solidly within the perturbative

regime (the only regime we understand fairly well). At first sight it would appear that

the above criterion cannot be satisfied if the supergravity theory is in the perturbative

regime. However, Nc need not be a small parameter the way it is in QCD. Suppose we

define a new coupling constant, λ ≡ 4πgsNc. We can first take Nc →∞ and gs → 0 in

such a way that the product gsNc is constant. After rewriting everything in terms of λ,

we then take λ large. This procedure lets us keep the supergravity theory perturbative

while at the same time allowing us to satisfy the above inequality. Now, from the low

energy open string description (the non-Abelian Born-Infeld action), we can make the

identification

g2 = 2πgs . (D.4)
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The regime that we know how to work with on the AdS side corresponds to taking

the large Nc limit in the U(Nc) N = 4 theory and then going to strong ’t Hooft

coupling. Thus, we are led to the remarkable conclusion that weakly coupled type IIB

supergravity in an AdS5 × S5 background can give us analytical control over planar

N = 4 with gauge group U(Nc) in the strong coupling regime. It is important to note

that, for most purposes, the gauge group is effectively SU(Nc) due to the fact that an

overall U(1) decouples from the D3-brane dynamics2.

One obvious check of the proposed duality is that the symmetries of the supergravity

theory on AdS5 × S5 match the well-known symmetries of N = 4. N = 4 has a

SO(4, 2) conformal symmetry and an internal S0(6) R-symmetry3. It is easy to see

that SO(6) R-symmetry matches the SO(6) isometry group of S5. What about the

SO(4, 2) conformal symmetry? If we try to embed AdS5 in R6 we arrive at

X2
0 +X2

1 −X2
2 −X2

3 −X2
4 −X2

5 =
√
λα′ (D.5)

for the induced metric. In these global coordinates it is clear that the isometry group of

AdS5 is SO(4, 2) and everything works out nicely. It is worth pointing out that, in most

AdS/CFT analyses, the S5 factor is ignored completely. This is because it corresponds

to the internal SO(6)R symmetry of N = 4 which plays only a peripheral role in the

dynamics.

Though we have made it clear what the AdS/CFT correspondence is supposed to

do for us, we do not yet know precisely how to go from one picture to another. In fact,

there is no systematic procedure; each class of observables must be treated on a case-

by-case basis. To illustrate how this might work we consider the particular example

of Wilson loops. These observables are fairly well understood objects in N = 4 field

theory but we would like to give a dual gravitational description of them. With this

description in hand, we will be able to use AdS/CFT duality to analytically calculate

2One can think of the overall U(1) as describing the overall motion of the entire stack of Nc D3-
branes [159].

3Here we’re not worried about global issues. In principle we should be more careful; for example,
strictly speaking, we should write SU(4)R instead of S0(6)R because SU(4)R is the spin cover of
SO(6)R. However, for the purposes of this thesis, it suffices to identify Lie groups that have isomorphic
Lie algebras.
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Wilson loops at strong coupling in the N = 4 theory (at least in principle).

Intuitively, the parameter r in eq. (D.3) measures “depth” in AdS5. Each fixed-

r cross-section of AdS5 is flat 3 + 1 dimensional Minkowski space times a conformal

factor. As r → ∞, the metric becomes conformally equivalent to ordinary Minkowski

spacetime and this is known as the boundary of AdS5. When one draws cartoons of

AdS5, the “top” is the boundary and the “bottom” (r = 0) corresponds to being deep

inside AdS5. At r = 0 there is a coordinate singularity in the AdS5 metric (called the

Poincaré horizon). This is an artifact of the metric we used, eq. (D.3), which is usually

called the Poincaré patch.4

Finally, we remark that UV physics in large Nc N = 4 field theory maps to physics

near the boundary in AdS5 and, conversely, IR physics in the field theory maps to

physics deep inside AdS5 near r = 0. In other words, the r variable in the AdS5 metric

can be thought of as an energy scale in the dual N = 4 field theory [160]. Actually, one

needs to be a bit careful because there is another commonly used form of the Poincaré

metric

R2

z2
(dz2 + dxµdx

µ) , (D.6)

where the boundary is at z = 0 and the Poincaré horizon (IR in the dual field theory)

is at z =∞. In fact, this is the form that we will use in the next subsection.

Unfortunately, a detailed discussion of [161], the original work on Wilson loops in

AdS5, would take us too far afield. Nevertheless, it is instructive to outline the AdS5

description for N = 4 Wilson loops. In what follows we will primarily be interested in

light-like Wilson loop expectation values but the basic principle is essentially the same

for any Wilson loop expectation value. Recall from Subsection 6.1 that a Wilson loop

expectation value is defined as

W [C] =
1

Nc
〈0|Tr

[
P

{
exp

(
ig

∮
C
dxνAaν(x)ta

)}]
|0〉 (D.7)

for some closed contour, C. The spirit of the AdS/CFT correspondence can be summa-

rized by the statement that it is holographic. The use of the word “holography” comes

4In global coordinates this singularity disappears.
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from the similarity of the AdS/CFT correspondence to the way in which holograms

are generated5. In this particular example, if one puts a contour, C, on the boundary

of AdS5 and wants to compute the corresponding Wilson loop expectation value, it is

very natural to consider a string world sheet in AdS5 that has the desired contour as

its boundary. A trivial but important observation is that there is gravity in the bulk

and objects in AdS5 tend to fall towards the horizon. This implies that the world-sheet

bounding the Wilson loop will inevitably sag into the bulk until it reaches equilibrium.

Then, the Wilson loop expectation value is simply computed by making a saddle-point

approximation to the partition function of the string world sheet bounding C (it’s not

clear that this makes sense in anything other than Euclidean signature). In conclusion,

up to some undetermined normalization that must be fixed by other considerations,

we have the following prescription for the evaluation of planar N = 4 Wilson loop

expectation values via AdS/CFT:

〈WC〉 = A e−Scl[χ̄] , (D.8)

where χ̄ is shorthand for the solution (or family of solutions) of the equations of motion

that minimizes the classical relativistic string action6 with AdS5 target space, subject

to the above mentioned boundary condition. We will see more explicitly how this works

in practice in the next subsection.

D.2 Planar Four-Gluon Scattering at Strong Coupling and Large Nc

Hidden Symmetries of the N = 4 S-Matrix

In a remarkable paper [5], Alday and Maldacena explained how to calculate planar gluon

scattering amplitudes at large ’t Hooft coupling and explicitly constructed the solution

in the four-point case. Strictly speaking, their solution is only valid for scattering in

the eikonal limit, but for the simple case of four gluons there is no essential loss of

generality. Before attempting to describe the scattering of open superstrings in AdS5

5In holography three dimensional images are produced by light reflecting off of the boundary of the
object being imaged. Through AdS/CFT, one has control over a theory of quantum gravity living on
the whole of AdS5 if one understands a conformal quantum field theory on the boundary of AdS5.

6This action, the Nambu-Goto action, is very well-known and will be defined in the next subsection.
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it is very instructive to first analyze something simpler. By carrying out the analysis

for flat space bosonic string theory we can gain some intuition about what sort of

answer to expect when we redo the calculation in AdS5. We shall consider a scattering

amplitude with four tachyons, the lowest-lying states in the bosonic string spectrum to

avoid unnecessary complications introduced by gluon polarization vectors. Analyzing

the flat-space bosonic string theory result will, in our opinion, make the subsequent

discussion of open superstring scattering in AdS5 much easier to follow.

Before we discuss the eikonal scattering of bosonic strings we give a very brief

review of the two most widely used action functionals for bosonic strings. These are the

Nambu-Goto action and the Polyakov action. The Nambu-Goto action was proposed

long ago [162] and has the form:

SNG =
1

2πα′

∫
W
dσdτ

√
det
[
∂αχµ∂βχνgµν

]
. (D.9)

Here gµν is the target space metric and the derivatives are with respect to the coordi-

nates, σ and τ , of the two dimensional world-sheet, W. In the context of bosonic string

theory, the target space is R26, but the Nambu-Goto action is applicable to classical

relativistic strings propagating in curved spacetimes (e.g. AdS5) as well.

Some years later, Polyakov [163] reformulated the Nambu-Goto action:

SP =
1

4πα′

∫
W
dσdτ

√
−det(hab)h

abgµν∂aχ
µ∂bχ

ν (D.10)

He introduced an auxiliary metric, hab, that one can eliminate through the equations

of motion (if desired) to recover the Nambu-Goto action. The utility of hab is that

it facilitates a path integral formulation of bosonic string theory [163] and allows one

to write perturbative scattering amplitudes as functional integrals. For example, the

tree-level four-tachyon string partial amplitude that will be of interest to us is given by

Atreetach(k1, k2, k3, k4) =

∫
d[χµ]d[hab]

Z
e−SP

4∏
i=1

Vi(χµ) , (D.11)

where the Vi(χµ) are the tachyon vertex operators7 given by

Vi(χµ) =

∫
∂W

dzje
ikµj χµ(zj) , (D.12)

7In string theory one uses the so-called “operator-state correspondence” to compute correlation
functions. This just means that the operators used to describe states look like external states themselves.
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where the integral in (D.12) appears because each tachyon can be inserted anywhere

on the boundary of the composite world-sheet. Clearly, we are free to choose the

order in which we insert the tachyons on the boundary. Here, we choose the ordering

{z1, z2, z3, z4} corresponding to a Chan-Paton factor Tr{T a1T a2T a3T a4}.

The starting pointing for our tree-level string theory partial amplitude is a string

diagram, where four string world-sheets merge to form a single, composite world-sheet.

Now, the string world-sheet enjoys a full SL(2,R) conformal invariance [164]. This

SL(2,R) together with the invariance of the world-sheet under general coordinate trans-

formations puts severe constraints on the string amplitude. For example, it follows

from elementary complex analysis that there exists a Schwarz-Christoffel transforma-

tion which maps the composite world-sheet to the half plane with a singular point for

each external state on the boundary.

The stringy formula of eq. (D.11) for the tree-level tachyon amplitude looks very

complicated but taking into account the symmetries of the problem will allow us to

bypass most of the necessary integrations. To start, we gauge-fix all available sym-

metries. The invariance of the action under general coordinate transformations al-

lows us to choose hab to be the Euclidean metric on R2. Gauge-fixing SL(2,R) is

a bit more involved because of the non-trivial Jacobian that results. To avoid a

lengthy digression, suffice it to say that the three generators of SL(2,R) allow us to fix

z1 = 0, z3 = 1, and z4 = ∞ and the interested reader can find the resulting Jacobian

worked out in [165]. Actually, ignoring the Jacobian is fine; if we kept it would just

cancel against terms containing z4 that näıvely look dangerous due to the fact that we

gauge-fixed z4 to infinity. Gauge-fixing (D.11) makes it look much more tractable:

Atreetach (k1, k2, k3, k4) =

∫ ∞
−∞

dz4

∫ z4

−∞
dz3

∫ z3

−∞
dz2

∫ z2

−∞
dz1

∫
d[χµ]d[hab]

Z
×

×e−
1

4πα′
∫
W dσdτ

√
−det(hab)h

ab∂aχµ∂bχµ e
∑
j ik

µ
j χµ(zj)

≈
∫ 1

0
dz2

∫
d[χµ] e−

1
4πα′

∫
W dσdτ χµ

(
−∂2
)
χµ e

∑
j ik

µ
j χµ(zj) . (D.13)

The functional integral over χµ in the above is trivially evaluated (it is Gaussian)

by changing variables χµ(zi) = χ′µ(zi) + i
∑

j G(|zi − zj |)kjµ and using the fact that

G(|zi−zj |) = −2α′ ln(|zi−zj |) is the two dimensional Green’s function for the equation
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−∂2χ = 0. Carrying out this functional calculus8 and using the gauge conditions for

the zi (and throwing away pieces proportional to logs of z4) results in

Atreetach (k1, k2, k3, k4) ≈
∫ 1

0
dz2 e

α′
(
k1·k2 ln(z2)+k2·k3 ln(1−z2)

)
. (D.14)

Now if we work in the eikonal limit (high energy, fixed angle scattering), Gross and

Mende [166] observed that string amplitudes are well-approximated by a saddle-point

estimate. In other words, the integral in (D.14) can be approximated by extremizing

the argument of the exponential and then evaluating the exponential on this solution.

The argument is extremized at

z̄2 =
k1 · k2

k1 · k2 + k2 · k3
(D.15)

and we finally obtain

Atreetach (k1, k2, k3, k4) ≈ A0e
α′
(
k1·k2 ln

(
k1·k2

k1·k2+k2·k3

)
+k2·k3 ln

(
k2·k3

k1·k2+k2·k3

))
. (D.16)

for the partial amplitude. Note that this solution only makes sense in the Euclidean

region where both k1 ·k2 and k2 ·k3 are negative. Although the details will of course be

somewhat different, it is reasonable to expect the eikonal scattering of open superstrings

in AdS5 to have the same basic exponential structure that we saw with the bosonic string

in flat space.

So far, it is probably not clear why we went to the trouble of deriving eq. (D.16).

The important point is that, if the basic exponential structure of (D.16) carries over

to classical strings on AdS5, we can guess using the AdS/CFT correspondence that

the partial amplitude A
(
k1234

1 , k1234
2 , k3, k4

)
in N = 4 gauge theory at strong cou-

pling is of the form Atree
(
k1234

1 , k1234
2 , k3, k4

)
e−S(s, t). Conjecturing this form could

probably be dismissed as overly speculative if it wasn’t for the work of Bern, Dixon,

and Smirnov in [31]. BDS found that the finite parts of multi-loop contributions to

A
(
k1234

1 , k1234
2 , k3, k4

)
/AMHV

4; 〈1 2〉 appeared to be exponentiating and, based on an explicit

8The alert reader will notice that there is a divergence in the Green’s function at zi = zj and there is
no obvious reason why i 6= j. We gloss over this technical problem because, in the case of superstrings
(which is what we will ultimately be interested in), the Tachyon mode is lifted to a massless, gluon
mode and this problem goes away by virtue of the on-shell condition k2i = 0.
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three loop calculation, they formulated an all-orders-in-ε ansatz for the four-point am-

plitude. Essentially, they predicted

Astrong
(
k1234

1 , k1234
2 , k3, k4

)
= AMHV

4; 〈1 2〉e
BIR(s,t,λ,ε)+

γc(λ)
4

(
1
2

ln(t/s)2+ 2π2

3

)
+C(λ) (D.17)

which is quite remarkable, since the finite part of A1−loop
1

(
k1234

1 , k1234
2 , k3, k4

)
/AMHV

4; 〈1 2〉 is

proportional to ln(t/s)2 +π2 [67]; roughly speaking BDS conjectured that the complete,

non-perturbative dependence of A
(
k1234

1 , k1234
2 , k3, k4

)
/AMHV

4; 〈1 2〉 on s and t is fixed by the

one-loop quantum corrections. In (D.17), BIR(s, t, λ, ε) refers to the IR divergent terms

and C(λ) to terms that are not predicted by the ansatz. BIR(s, t, λ, ε) is actually

pretty well understood (see e.g. [167] for a recent review). C(λ) exists because it

is generally not possible to predict finite terms that have no dependence on s or t.

Finally, we comment on the physical interpretation of γc(λ). This constant, called the

cusp anomalous dimension plays a central role in the general theory of IR divergences

in gauge theories. At each order in perturbation theory, the contribution to the cusp

anomalous dimension at that order controls the most 1/ε2 singular contributions [168].

Remarkably, Alday and Maldacena [5] were able to determine the analog of eq.

(D.16) for four-point superstring scattering in AdS5 and found complete agreement

with the prediction of BDS. Their paper utilized a novel mapping of AdS5 to AdS5,

which, roughly speaking, interchanged the IR and the UV. In some sense, this mapping,

was every bit as important as the final formula (D.17) because it allowed researchers

to uncover previously unknown hidden symmetries of the large Nc S-matrix.

To begin, we’d like to visualize the scattering process in AdS5. Unfortunately, the

composite world sheet is much harder to draw in AdS space than it was in flat space.

The picture to have in mind is as follows. Recall the general shape of AdS5 described

in the last subsection and the corresponding metric of eq. (D.3). There, the IR is

at the bottom and the UV is at the top. With the metric of (D.6) this is still the

right picture; the only difference is the now the top corresponds to z = 0 and the

bottom corresponds to z = ∞. Recall also that each fixed-z cross-section of the AdS5

corresponds to R1,3 times a conformal factor. This means that, if we want to, we can

insert a D3-brane at any fixed value of z. In fact, we need to insert a D3-brane stack
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near z =∞ for our open superstrings to end on. This makes sense because, as we know,

gluon scattering amplitudes have IR divergences and open superstrings need D-branes

to terminate on. Thus, one should visualize a stack of D3-branes at the bottom of AdS5

with four interacting open strings attached to the D3-branes.

In fact, Alday and Maldacena argued that the stringy scattering process are nat-

urally forced into the eikonal regime where the semi-classical approximation becomes

applicable. They found the boundary conditions described in the above paragraph a

bit hard to work with directly and, consequently, tried changing variables from

R2

z2
(dz2 + dxµdx

µ) (D.18)

to some other spacetime where, hopefully, the scattering problem would map to some-

thing more tractable. They succeeded in a very remarkable way: they discovered a

change of variables that maps the scattering problem in AdS5 to the calculation of a

light-like Wilson loop again in AdS5. It turns out that the right variable change to try

is defined through the relations

z = R2/r(σ, τ) ∂τy
µ =

ir(σ, τ)2

R2
∂σx

µ(σ, τ) ∂σy
µ = − ir(σ, τ)2

R2
∂τx

µ(σ, τ)) . (D.19)

Though it is not obvious, this non-local coordinate transformation carries AdS5 to

AdS5; eq. (D.18) maps to

R2

r2
(dr2 + dyµdy

µ) , (D.20)

where now all variables implicitly depend on the world-sheet coordinates σ and τ . What

this means is that now we must seek a classical worldsheet that sits inside AdS5 and

extremizes the Nambu-Goto action.

In fact, the existence of the above mapping is related to the existence of hidden

symmetries of N = 4 in the large Nc limit. After applying (D.19), the D3-brane stack

that we inserted in the IR near the Poincaré horizon gets mapped to a stack in the UV

near the boundary, r = 0. The composite world sheet now hangs from the boundary

of AdS5, not unlike the situation described in the last subsection in the context of

the strong coupling Wilson loop expectation value calculation. The transformation

performed on the xµ variables can be used to figure out how to interpret the boundary
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of worldsheet in the new coordinates. Starting with a displacement in the new R1,3,

yµ(τ, σf )− yµ(τ, σi), we have

yµ(τ, σf )− yµ(τ, σi) =

∫ σf

σi

dσ∂σyµ =

∫ σf

σi

dσ
(
− ir2

R2
∂τx

µ
)

= 2πα′
∫ σf

σi

dσPτµ

= 2πα′pµ , (D.21)

where we have recognized −i/(2πα′)(r/R)2∂τx
µ as the canonical momentum density

conjugate to xµ. In the original AdS5 where four open superstrings scatter, each gluon

vertex operator carried one of pµ1 , p
µ
2 , p

µ
3 , or pµ4 . These momenta satisfy the constraints

p2
i = 0 and

4∑
i=1

pµi = 0. (D.22)

In the new coordinates these conditions evidently imply that each external state now

corresponds to a light-like line segment in R1,3 and, furthermore, that the sum of all

four light-like line segments form a closed loop. Thus, we see that the apparent simi-

larity between the configuration of the composite world-sheet in the {r(σ, τ), yµ(σ, τ)}

variables and the setup for the calculation of a Wilson loop in AdS5 is not accidental. In

fact, they are in one-to-one correspondence. Finally, we conclude that the calculation

of the four-point MHV amplitude at strong coupling in planar N = 4 boils down to the

calculation of a four-sided light-like Wilson loop in a dual AdS5.

This correspondence allowed various authors [33, 36, 37] to make several bold con-

jectures that are now on very solid ground. First, [33] observed that a correspondence

between light-like Wilson loops (in position space) and MHV scattering amplitudes (in

momentum space) holds at weak coupling, implying that there is a dual conformal in-

variance acting on momentum invariants, since light-like Wilson loops are conformally

invariant objects in position space. Later, it was understood in [6] that this dual confor-

mal invariance is actually more naturally treated as a dual superconformal invariance,

which we discuss in detail in 6 and B. A important point, recently clarified in [38], is

whether there exists a symmetry (beyond dual superconformal invariance) responsible

for the light-like Wilson loop/MHV amplitude duality. Two different groups [36, 37]

established the existence of a new symmetry for strings in AdS5 × S5, called fermionic

T-duality. Although these papers were major achievements, a fully field theoretic de-

scription (i.e. one that obviously extends to the weak coupling regime of N = 4) of
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the new symmetry was lacking until the recent work of [38]. The authors of [38] proved

that fermionic T-duality is a symmetry of the field theory and acts by interchanging

ordinary superconformal invariance and dual superconformal invariance, confirming the

hypothesis advanced earlier in [36].
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